
National Technical University of Athens
School of Electrical and Computer Engineering

Division of Communication, Electronic and Information Engineering

Stochastic Computing Architectures for

Information Processing Systems

by

Nikolaos Temenos

Supervisor

Paul-Peter Sotiriadis, Professor, NTUA

A dissertation submitted to the

Department of Electrical and Computer Engineering

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Athens, December 2022



2



Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής

Stochastic Computing Architectures for

Information Processing Systems

Διδακτορική Διατριβή

Νικόλαος Τέμενος

Υποβλήθηκε στο Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

σε μερική εκπλήρωση των απαιτήσεων για την απόκτηση διδακτορικού διπλώματος

Αθήνα, Δεκέμβριος 2022





it{ati eirrnl Techni*al t-Iniv*rsity *f Athens
S*hool *f Eles{rical and Compwter Engineering

Divisia* of Commenication, Electrcnic and Informatian Engineering

Sfsch*sfic Csmputing Arckiterfurer for
Imformnfisn Prsces$ing Syrterms

Paul - Peter Sotiriadis

Professor, NTUA

PhA Disscrjatian

?E{ikclaos Ternenos

Advissry Crrnmrittee:
Athasiasios D, Panagcpc*las

Professor, NTUA

Kiamal Pekmestzi

Frafessor Emerif*s, NTUA

PauI - Peter Sotiriadis Kianral Pekrxestzi

iate Pr*fesscrProfesscr

Professor

Athens, Ileccrnb*r 202?

Appr*ved o-y the s*ven*{nenlber exaffiinati*n cammitt*e on 13ll2l2#2?.



The research work was supported by the Hellenic Foundation

for Research and Innovation (HFRI) under the HFRI PhD

Fellowship grant (Fellowship Number:1216).

.....................

 !"#$%&' ()*+,&'

Copyright © !"#$%&' *+457&', 2022

85 59!;<$%=> 9%7?#' @!"%!Bµ%?&'. All rights reserved.

G9%J&L5<5?%! > %7?!JL%;M, %9&OM"5QW> "%! @!%7&4M ?>' 9%L&<W%' 5LJ%WX%', 5= &$&"$ML&Q M ?4M-

4%?&' %Q?M', J!% 549&L!"# W"&9#. Y9!?L+95?%! > %7%?<9ZW>, %9&OM"5QW> "%! @!%7&4M J!% W"&9# µ>

"5L@&W"&9!"#, 5"9%!@5Q?!"M' M 5L5Q7>?!"M' ;<W>', Q9# ?>7 9L&[9#O5W> 7% %7%;+L5?%! > 9>JM 9L&-

+$5QW>' "%! 7% @!%?>L5X?%! ?& 9%L#7 4M7Q4%. YLZ?M4%?% 9&Q %;&L&<7 ?> \LMW> ?>' 5LJ%WX%' J!%

"5L@&W"&9!"# W"&9# 9L+95! 7% %95QO<7&7?%! 9L&' ?& WQJJL%;+%.

]! %9#^5!' "%! ?% WQ495L_W4%?% 9&Q 95L!+\&7?%! W5 %Q?# ?& +JJL%;& 5";L_`&Q7 ?& WQJJL%;+% "%!

@57 9L+95! 7% 5L4>75QO5X #?! %7?!9L&WZ95<&Q7 ?!' 59XW>45' O+W5!' ?&Q YO7!"&<85?W#j!&Q q&$Q?5\75X-

&Q.



Abstract

Arithmetic operations on stochastic se{uences is the basis of the unconventional computational ap-

proach known as Stochastic Computing (SC). Deviating from the standard binary arithmetic, SC encodes

and processes the value of binary numbers in the form of stochastic se{uences, making arithmetic op-

erations and highly-complex functions realizable using a few simple standard logic gates and memory

elements, having inherent natural robustness in soft-errors. SC�s properties and advantages have been

exploited in a plethora of fields characterized by massive parallelism re{uirements like Neural Networks

and Image Processing. |eyond its strong points, SC introduces an accuracy-latency trade-off impacting

the energy efficiency. Therefore, achieving low latency along with increased computational accuracy is

the primary design goal is SC systems.

This dissertation presents novel SC architectures realizing essential arithmetic operations and non-

linear functions, as well as realistic Neural Networks and Image Processing applications based on them.

In the first part of the dissertation, the operating principles of the architectures are introduced and

their behavior is modeled based on Stochastic Finite-State }achines (SFS}) and analyzed using}arkov

Chains (}C). This leads to a deeper understanding of their stochastic dynamics and the verification of

their proper operation. The }C modeling is further extended to a general methodology enabling the

analytical derivation of the SFS}s� first and second moment statistical properties. The methodology is

accompanied by overflow/underflow }C modeling, allowing to balance the accuracy-latency trade-off

according to performance re{uirements, and to set the guidelines for the selection of the register�s size.

In the second part of the dissertation, the proposed architectures are compared to existing ones, in

the SC literature, in computational accuracy and hardware resources, including area, power and energy

consumption as well as in terms of their advantages in the overall design flow. The efficacy of the ar-

chitectures is demonstrated by using them as building blocks in the realization of several Digital Signal

Processing (DSP) operations, including convolution, noise reduction and image down-sampling filters as

well as Neural Networks. Finally, the results of the introduced architectures� performance in computa-

tional accuracy and hardware resources are compared to those achieved using standard binary computing

methods highlighting the advantages of the first ones.

Keywords: Stochastic Computing, Stochastic FS}, }arkov Chain }odeling, Digital Circuits
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]! %L!O4>?!"+' 9L_=5!' 45 W?&\%W?!"+' %"&$&QOX5' 5X7%! > j_W> ?>' 4> WQ4j%?!"M' ?5\7!"M' 9&Q

5X7%! J7ZW?M Z' ~?&\%W?!"#' �9&$&J!W4#' (~�). G9&"$X7&7?%' %9# ?>7 ?Q9!"M @Q%@!"M %L!O4>?!"M,

& ~� "Z@!"&9&!5X "%! 595=5LJ_`5?%! ?>7 ?!4M ?Z7 @Q%@!"B7 %L!O4B7 45 ?> 4&L;M W?&\%W?!"B7 %"&-

$&QO!B7, "%O!W?B7?%' @Q7%?M ?>7 9L%J4%?&9&X>W> %L!O4>?!"B7 9L_=5Z7 "%! 5=%!L5?!"_ 9&$<9$&"Z7

WQ7%L?MW5Z7 45 ?> \LMW> $XJZ7 ?Q9!"B7 $&J!"B7 9Q$B7 "%! W?&!\5XZ7 47M4>'. 8%`X 45 ?>7 ;QW!"M

5QLZW?X% ?&Q ~� W5 W;_$4%?%, &! !@!#?>?5' "%! ?% 9$5&75"?M4%?_ ?&Q +\&Q7 %=!&9&!>O5X W5 9$>OBL%

95@XZ7 45 %7_J"5' 4% !̀"&< 9%L%$$>$!W4&< "%! 4!"LM %7&\M W5 W;_$4%?%, WQ495L!$%4j%7&4+7Z7 ?Z7

75QLZ7!"B7 @!"?<Z7 "%! ?>' 595=5LJ%WX%' 5!"#7%' 45?%=< 9&$$B7 _$$Z7. q+L% %9# ?% !W\QL_ ?&Q W>-

45X%, & ~� 5!W_J5! +7% WQ4j!j%W4# %"LXj5!%'-"%OQW?+L>W>' 9&Q 59>L5_`5! ?>7 575LJ5!%"M %9#@&W>

"%!, Z' 5" ?&<?&Q, J!% 7% %=!&9&!>O5X 45 ?&7 "%$<?5L& @Q7%?# ?L#9&, > 59X?5Q=> \%4>$M' "%OQW?+L>W>'

W5 WQ7@Q%W4# 45 %Q=>4+7> Q9&$&J!W?!"M %"LXj5!% 5X7%! 9LZ?%L\!"# 4+$>4%.

~?>7 9%L&<W% @!%?L!jM 9%L&QW!_`&7?%! 7+5' %L\!?5"?&7!"+' 9&Q Q$&9&!&<7 j%W!"+' %L!O4>?!"+'

9L_=5!' "%! 4> JL%44!"+' WQ7%L?MW5!' W5 ~�. ]! 5WZ?5L!"&X "%?%\ZL>?+' 9&Q \L>W!4&9&!&<7 "%O!-

W?&<7 ?>7 595=5LJ%WX% ?>' %"&$&QOX%' 5!W#@&Q ?&Q' %!?!&"L%?!"M, j5$?!B7&7?%' +?W! ?& WQ4j!j%W4#

%"LXj5!%'-"%OQW?+L>W>' ?&Q ~�. �!% 7% %7%@5!\O&<7 &! !@!#?>?5' "%! > %L\M $5!?&QLJX%' ?Z7 %L\!?5-

"?&7!"B7, %7%$<&7?%! @!5=&@!"_ 45 ?> \LMW> W?&\%W?!"B7 4>\%7B7 9595L%W4+7>' "%?_W?%W>' (~8q�)

"%! 4&7?5$&9&!&<7?%! 45 ?> \LMW> %$QWX@Z7 }arkov (A}).

~?& 9LB?& 4+L&' ?>' @!%?L!jM', > %L\M $5!?&QLJX%' ?Z7 %L\!?5"?&7!"B7 %7%$<5?%! 45 ?> \LMW>

~8q� "%! 4&7?5$&9&!5X?%! 45 ?> \LMW>G8, > &9&X% 59!?L+95! ?>7 "%$<?5L> "%?%7#>W> ?>' 4%"L&9L#-

O5W4>' W?&\%W?!"M' @Q7%4!"M' ?&Q' "%! ?>7 59%$MO5QW> ?>' &LOM' $5!?&QLJX%' ?&Q'. � 4&7?5$&9&X>W>

?>' A} 595"?5X75?%! 95L%!?+LZ W5 4!% J57!"M 45O&@&$&JX% 9&Q 59!?L+95! ?>7 %7%$Q?!"M 5=%JZJM ?Z7

W?%?!W?!"B7 !@!&?M?Z7 ?>' 9LB?>' "%! ?>' @5<?5L>' L&9M' ?Z7 ~8q�. � 45O&@&$&JX% WQ7&@5<5?%! %9#

4&7?5$&9&X>W>A} Q95L\5X$!W>'/Q9&\5X$!W>', 59!?L+9&7?%' ?>7 5"?X4>W> ?&Q %L!O4&< ?Z7 "%?%W?_W5-

Z7 9&Q 45!B7&Q7 ?% W;_$4%?% ^>;XZ7 9&Q 9L&+L\&7?%! %9# ?>7 54;_7!W> Q95L\5X$!W>'/Q9&\5X$!W>',

O+?&7?%' +?W! ?!' "%?5QOQ7?ML!5' JL%44+' J!% ?>7 59!$&JM ?&Q 45J+O&Q' ?&Q "%?%\ZL>?M 9&Q \L>W!4&-

9&!&<7.

~?& @5<?5L& 4+L&' ?>' @!%?L!jM', &! %L\!?5"?&7!"+' WQJ"LX7&7?%! 5"?57B' 45 ?!' Q9_L\&QW5' W?>

j!j$!&JL%;X% ?Z7 ~� #W&7 %;&L_ ?>7 Q9&$&J!W?!"M %"LXj5!% "%! ?&Q' 9#L&Q' Q$!"&<, WQ495L!$%4j%-

7&4+7&Q ?&Q \BL&Q 9&Q "%?%$%4j_7&Q7 ?% "Q"$B4%?%, ?>7 "%?%7_$ZW> !W\<&' "%! 57+LJ5!%', "%OB'

"%! ?% &;+$> 9&Q 5!W_J&Q7 W?> WQ7&$!"M L&M W\5@X%W>'. � %9&?5$5W4%?!"#?>?% ?Z7 %L\!?5"?&7!"B7

%7%@5!"7<5?%! 45 ?> \LMW> ?&Q' Z' @&4!"_ W?&!\5X% W?>7 Q$&9&X>W> @!%;#LZ7 595=5LJ%W?!"B7 4&7_-



�  !"#$%&%

@Z7, 9&Q 95L!$%4j_7&Q7 WQ7+$!=>, ;X$?L% 45XZW>' O&L<j&Q "%! Q9&@5!J4%?&$>^X%' 5!"#7%', "%OB' "%!

75QLZ7!"_ @X"?Q%. *% %9&?5$+W4%?% ?Z7 59!@#W5Z7 ?Z7 %L\!?5"?&7!"B7 #W&7 %;&L_ ?>7 Q9&$&J!W?!-

"M %"LXj5!% "%! ?&Q' 9#L&Q' Q$!"&< WQJ"LX7&7?%! 45 5"5X7% 9&Q 59!?QJ\_7&7?%! 45 ?> \LMW> ?Q9!"B7

@Q%@!"B7 45O#@Z7 Q9&$&J!W4&<, 9L&j_$$&7?%' ?% 9$5&75"?M4%?_ ?&Q ~�Z' 9&$$_ Q9&W\#457> 57%$-

$%"?!"M 4&L;M 595=5LJ%WX%' W>4_?Z7.

3+4+!' 5$+!6!%: ~?&\%W?!"#'�9&$&J!W4#', ~?&\%W?!"_GQ?#4%?%,G$QWX@%}arkov, �>;!%"_ �Q"$B-

4%?%
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~?>7 9%L&<W% @!%?L!jM 9%L&QW!_`&7?%! "%!7&?#45' ^>;!%"+' %L\!?5"?&7!"+' 9&Q Q$&9&!&<7 j%W!-

"+' %L!O4>?!"+' 9L_=5!' "%! 4> JL%44!"+' WQ7%L?MW5!' W?&7 W?&\%W?!"# Q9&$&J!W4# (Stochastic

Computing - SC). � %7_$QWM ?&Q' JX75?%! @!5=&@!"_ 45 ?> \LMW> W?&\%W?!"B7 4>\%7B7 9595L%W4+-

7Z7 "%?%W?_W5Z7 (Stochastic Finite-State }achines - SFS}s), 57B J!% ?>7 "%?%7#>W> ?>' W?&\%W?!"M'

@Q7%4!"M' WQ495L!;&L_' ?&Q', 4&7?5$&9&!&<7?%! 4+WZ %$QWX@Z7 }arkov (}arkov Chains - }C). *%

9$5&75"?M4%?% "%! > %9&?5$5W4%?!"#?>?% ?&Q', 59!@5!"7<&7?%! 45 ?>7 %=!&9&X>WM ?&Q' W?>7 Q$&9&X>W>

@&4!"B7 4&7_@Z7 ^>;!%"M' 595=5LJ%WX%' WM4%?&' (Digital Signal Processing - DSP).

] W?&\%W?!"#' Q9&$&J!W4#' %7M"5! W?>7 "%?>J&LX% ?Z7 4> WQ4j%?!"B7 45O#@Z7 Q9&$&J!W4&<, "%-

OB' "Z@!"&9&!5X "%! 595=5LJ_`5?%! ?>7 ?!4M @Q%@!"B7 %L!O4B7 45 ?> 4&L;M W?&\%W?!"B7 %"&$&QO!B7

?&Q 57#' ^>;X&Q (bit). � W5!L!%"M 595=5LJ%WX% W5 59X95@& ^>;X&Q, 59!?L+95! ?>7 Q$&9&X>W> O545$!Z@B7

%L!O4>?!"B7 9L_=5Z7 45 ?> \LMW> 454&7&4+7Z7 $&J!"B7 9Q$B7 (logic gates), 57B !@!%X?5L% 9&$<9$&"5'

WQ7%L?MW5!', #9Z' J!% 9%L_@5!J4% 4> JL%44!"+', Q$&9&!&<7?%! %9$_ 45 ?> \LMW> 4>\%7B7 9595L%W4+-

7Z7 "%?%W?_W5Z7. Y9!9$+&7, @5@&4+7>' ?>' 9!O%7&?!"M' ;<W>' ?&Q, & W?&\%W?!"#' Q9&$&J!W4#' 5X7%!

5JJ57B' %75"?!"#' W5 W;_$4%?% (soft errors), 9&Q W>4%X75! #?! > %7?!W?L&;M 45L!"B7 ^>;XZ7 @57 5X7%!

59!`M4!% J!% ?>7 9$>L&;&LX% ?&Q X@!&Q ?&Q WM4%?&'. q+L%7 ?Z7 9$5&75"?>4_?Z7 ?&Q, & W?&\%W?!"#' Q-

9&$&J!W4#' 5!W_J5! 4X% %7?!W?_O4!W> (trade-off) 45?%=< ?&Q 4M"&Q' ?Z7 W?&\%W?!"B7 %"&$&QO!B7 9L&'

595=5LJ%WX% "%! ?>' %"LXj5!%' ?&Q \L&7!"&< 4+W&Q #L&Q ?&Q W?&\%W?!"&< %L!O4&<. �' 5" ?&<?&Q, J!% 7%

%=!&9&!>O5X 45 ?&7 "%$<?5L& @Q7%?# ?L#9&, > 59X?5Q=> \%4>$M' "%OQW?+L>W>' (latency) W5 WQ7@Q%W4#

45 %Q=>4+7> Q9&$&J!W?!"M %"LXj5!% %9&?5$5X 9LZ?%L\!"# 4+$>4% W\5@!%W4&< W5 WQW?M4%?% j%W!W4+7%

W?& W?&\%W?!"# Q9&$&J!W4#, BW?5 7% %9&;5Q\O5X > WQ7&$!"M "%?%7_$ZW> 57+LJ5!%'.

*% 9$5&75"?M4%?% "%! &! !@!#?>?5' ?&Q W?&\%W?!"&< Q9&$&J!W4&<, 5Q7&&<7 "%?_ "#L&7 5;%L4&J+'

9&Q > Q$&9&X>WM ?&Q' "%! &! %9%!?MW5!' ?&Q' WQ7@Q_`&Q7 ?%Q?#\L&7% %7_J"5' J!% 4% !̀"# 9%L%$$>$!-

W4#, 95L!&L!W4# W5 +"?%W> "%! %7&\M W5 4!"L+' %9&"$XW5!' %9# ?&Q' %"L!j5X' Q9&$&J!W4&<'. ]! 5;%L-

4&J+' %Q?+' 95L!$%4j_7&Q7 ?% ?5\7>?_ 75QLZ7!"_ @X"?Q% 549L#WO!%' ?L&;&@#?>W>' (Artificial Neural

Networks - ANNs) 45 +4;%W> W?% 9&$Q59X95@% perceptron (}ulti-�ayer Perceptrons - }�Ps) "%! ?%

WQ75$!"?!"_ 75QLZ7!"_ @X"?Q% (Convolutional Neural Networks - CNN) W?&7 ?&4+% ?>' ?5\7>?M' 7&>-

4&W<7>', ?!' 4>\%7+' @!%7QW4_?Z7 Q9&W?ML!=>' (Support Vector }achines - SV}s) W?&7 ?&4+% ?>' 4>-

\%7!"M' 4_O>W>' (}achine �earning - }�) "%! ?Z7 ;X$?LZ7 \ZL!"M' j5$?XZW>' WQ495L!$%4j%7&4+7Z7

?Z7 ;X$?LZ7 45XZW>' O&L<j&Q, @!_45W>' ?!4M', 57XW\QW>' 5Q"LX75!%' 5!"#7%' "%! _$$Z7 W?&7 ?&4+% ?>'

^>;!%"M' 595=5LJ%WX%' 5!"#7%' (Digital Image Processing -DIP). �W?#W&, & W?&\%W?!"#' Q9&$&J!W4#'

@57 95L!&LX`5?%! 4#7& W?% %7Z?+LZ 95@X%, "%OB' +\5! 5;%L4&W?5X 45 59!?Q\X% W?& 5$%W?!"# ;!$?L_L!-
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W4% (soft filtering), 9&Q WQ495L!$%4j_75! ;X$?L% 9595L%W4+7>' "L&QW?!"M' %9#"L!W>' (Finite Impulse

Response - FIR) "%! _95!L>' "L&QW?!"M' %9#"L!W>' (Infinite Impulse Response - IIR), W?>7 "Z@!"&-

9&X>W>/%9&"Z@!"&9&X>W> @!#LOZW>' W;%$4_?Z7 (error correcting codes), W?>7 59X$QW> 9&$QZ7<4Z7

(polynomial solving) "%! W5 _$$%.

8!% j%W!"M $5!?&QLJX% 9&Q 5"?5$5X?%! W?&Q' 9QLM75' ^>;!%"M' 595=5LJ%WX%' WM4%?&' W5 #$5' ?!'

9%L%9_7Z 5;%L4&J+', 5X7%! %Q?M ?&Q 9&$$%9$%W!%W4&< "%! ?>' 9L#WO5W>' (multiply-and-add). ~?& W?&-

\%W?!"# Q9&$&J!W4#, > 9L_=> ?&Q 9&$$%9$%W!%W4&< %9&?5$5X +7%7 %9# ?&Q' j%W!"#?5L&Q' 9%L_J&7?5'

9&Q ?&7 "%O!W?&<7 5$"QW?!"#, "%OB' Q$&9&!5X?%! %9$_ 45 ?> \LMW> 4X%' 9<$>' AND M �N�R, %7%$#-

JZ' 45 ?>7 %7%9%L_W?%W> %L!O4B7 9&Q \L>W!4&9&!5X?%!. *& "&44_?! ?>' 9L#WO5W>' #4Z', Q$&9&!5X?%!

?Q9!"_ %9# +7%7 9&$Q9$+"?> (}ultiplexer -}U�), & &9&X&' %9%!?5X 4!% 59!9L#WO5?> 9>JM ?Q\%XZ7 %L!O-

4B7 J!% ?& WM4% 59!$&JM' ?&Q, 9+L%7 ?Z7 @<& 5!W#@Z7 ?&Q. �W?#W&, > 9>JM ?Q\%XZ7 %L!O4B7 %9&?5$5X

%9# 4#7> ?>' &J"B@5' @&4!"# "&44_?!, %;&< W5 W<J"L!W> 45 ?!' Q9#$&!95' $&J!"+' 9<$5' 9&Q \L>W!4&-

9&!&<7?%!, "%?%$%4j_75! ?& 45J%$<?5L& 4+L&' ?>' 59!;_75!%' ?>' W\5@X%W>'. Y9!9$+&7, > +=&@&' ?&Q

%OL&!W?M WQ7MOZ' "$!4%"B75?%! "%?_ ?& M4!WQ, 9&Q W>4%X75! #?! J!% +7% @5@&4+7& 4M"&' %"&$&QOX%'

> %7_$QW> 45!B75?%! W?& 4!W#, 57B > 45XZW> ?>' %7_$QW>', 57?5X75?%! 95L%!?+LZ #?%7 Q;XW?%7?%! %L-

"5?&X "$!4%"Z?&X Q9&$&J!W4&X. �' 5" ?&<?&Q, & 9&$Q9$+"?>' 5X7%! > $!J#?5L& 5$"QW?!"M 59!$&JM J!%

_OL&!W>, %;&< W5 #$% ?% 9%L%9_7Z 9L&W?XO5?%! "%! > %Q=>4+7> "%?%7_$ZW> 57+LJ5!%' @5@&4+7>' ?>'

%7_J">' J!% %<=>W> ?>' %7_$QW>' ?>' %"&$&QOX%' 5=#@&Q. *% X@!% 45!&75"?M4%?% 9%L&QW!_`5! "%! &

%;%!L+?>' & &9&X&' Q$&9&!5X?%! 45 ?> \LMW> 9&$Q9$+"?>, 45 ?> 4#7> @!%;&L_ &?! 95L!&LX`5?%! W5 4#7&

4X% %9# ?!' @<& j%W!"+' %7%9%L%W?_W5!' ?&Q W?&\%W?!"&< Q9&$&J!W4&<.

�!% ?>7 %7?!45?B9!W> ?Z7 45!&75"?>4_?Z7 9&Q 5!W_J5! & 9&$Q9$+"?>', +\&Q7 @!5L5Q7>O5X @!_;&L&!

%OL&!W?+' "%! %;%!L+?5', 5W?!_`&7?%' ?%Q?#\L&7% W?>7 Q9&$&J!W?!"M "%! W\5@!%W?!"M %9&@&?!"#?>?%.

8X% 9L&W+JJ!W> j%W!W4+7> W?>7 %L\M "$!4_"ZW>' 9&Q 5!W_J5! & 9&$Q9$+"?>', %9&;5<J5! ?>7 59!9$+&7

9>JM ?Q\%XZ7 %L!O4B7 W?& WM4% 59!$&JM', %7?!"%O!W?#7?%' ?> 45 +7% W?&!\5X& 47M4>'TFlip-Flop, %Q=_-

7&7?%' 9%L_$$>$% ?>7 %"LXj5!% W?&Q' Q9&$&J!W4&<'. 8!% 9%L#4&!%, "$!4%"Z?M 9L&W+JJ!W>, 595"?5X75!

?> \LMW> ?&Q 57#' W?&!\5X&Q 47M4>' T Flip-Flop W5 9%L%9_7Z, 5;%L4#`&7?%' 4X% 4>\%7M 9595L%W4+7Z7

"%?%W?_W5Z7 J!% 7% %Q=MW5! 95L%!?+LZ ?>7 %"LXj5!_ ?&Q. A7%;&L!"_ 45 ?&Q' 4>-"$!4%"Z?&<' %OL&!-

W?+', 4X% 9L&W+JJ!W> j%WX`5?%! W?>7 %7%9%L_W?%W> 57#' W?&\%W?!"&< %L!O4&< 9&Q ;+L5! ?>7 9$>L&;&-

LX% ?&Q W5 @<& %"&$&QOX5', 4X% J!% ?& 9L#W>4# ?&Q "%! 4X% J!% ?>7 ?_=> 4+J5O&Q' ?&Q. G7 "%! 5X7%! 4!%

9&$$_ Q9&W\#457> 9L&W+JJ!W> W5 59X95@& 5;%L4&JM', > "Z@!"&9&X>W> W?&\%W?!"&< %L!O4&< 4+WZ @<&

%"&$&QO!B7 59!j_$$5! 95L!&L!W4&<' W?> WQ7&$!"M W\5@X%W>, "%OB' %9%!?5X %9# ?!' Q9#$&!95' 9L_=5!',

9.\. 9&$$%9$%W!%W?+', 7% %"&$&QO&<7 59XW>' %Q?M ?>7 %L\M $5!?&QLJX%'. ]4&XZ' 45 ?&7 9L&>J&<457&

%OL&!W?M, _$$> 9L&W+JJ!W> "Z@!"&9&!5X +7%7 W?&\%W?!"# %L!O4# \L>W!4&9&!B7?%' ?&7 $#J& ?Z7 $&-

J!"B7 4&7_@Z7 "%! 4>@57!"B7 45?%=< ?Z7 %"&$&QO!B7 5!W#@&Q ?&Q. �W?#W&, > %7%9%L_W?%W> %Q?M

5X7%! %W<4j%?> 45 ?!' ?Q9!"+' %7%9%L%W?_W5!' 9&Q \L>W!4&9&!&<7?%! W?& W?&\%W?!"# Q9&$&J!W4#, 57B

> 9%L%JZJM @<& %"&$&QO!B7 J!% +7%7 4#7& W?&\%W?!"# %L!O4#, 59>L5_`5! ?> WQ7&$!"M %=!&9&X>W> ?Z7

9#LZ7 "%! ?&Q Q$!"&<.

�W&7 %;&L_ ?&Q' W?&\%W?!"&<' %;%!L+?5', 4X% 9L&W+JJ!W> WQW\5?X`5! ?!' %"&$&QOX5' 5!W#@&Q. GQ?#,

ZW?#W&, %9%!?5X 9L&W&\M, "%OB' & W?&\%W?!"#' Q9&$&J!W4#' 5X7%! 59!LL59M' W5 W;_$4%?% 9&Q 9L&"%-

$&<7?%! %9# WQW\5?!W4+75' 5!W#@&Q'. Y9!9$+&7, 5_7 > %;%XL5W> 5X7%! 4!% 57@!_45W> %L!O4>?!"M 9L_=>,
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@>$%@M Q;XW?%?%! 45?%=< @<& _$$Z7 Q9&$&J!W4B7, > %7%J+77>W> WQW\5?!W4+7Z7 5!W#@Z7 5X7%! %9%L%X-

?>?>, %Q=_7&7?%' ?>7 %=!&9&X>W> ?Z7 9#LZ7 "%! ?&Q Q$!"&<. 8!% _$$> 9L&W+JJ!W> 5;%L4#`5! 59!9$+&7

$&J!"+' 4&7_@5' J!% 7% j5$?!BW5! ?>7 %"LXj5!% 4!%' 9<$>' �N�R > &9&X% 9L&W5JJX`5! ?>7 %;%XL5W>, %-

7?%$$_WW&7?%' 9#L&Q' Q$!"&< "%! "%OQW?+L>W> J!% %"LXj5!% Q9&$&J!W4B7, "%! ?% @<& j%W!W4+7% W?&7

%L!O4# ?Z7 59!9$+&7 $&J!"B7 4&7_@Z7 9&Q \L>W!4&9&!&<7?%!.

~Q7&^X`&7?%' %9# ?% 9%L%9_7Z, &! 95L!WW#?5L5' 9L&W5JJXW5!' %7?%$$_WW&Q7 ?& \L#7& 5"?+$5W>'

M/"%! ?>7 59!;_75!% ?&Q Q$!"&< J!% ?>7 %"LXj5!% Q9&$&J!W4B7. Y9!9$+&7, &L!W4+75' %9# %Q?+' 5!W_J&Q7

95L!&L!W4&<' 9&Q 45!B7&Q7 ?>7 5Q5$!=X% W?& \BL& W\5@!%W4&< ?&Q W?&\%W?!"&< Q9&$&J!W4&<. 85 "X7>-

?L& ?% 9L&%7%;5LO+7?%, W?>7 9%L&<W% 5LJ%WX% 9L&?5X7&7?%! %L\!?5"?&7!"+' 4> "$!4%"Z?B7 %OL&!W?B7

"%! %;%!L5?B7. *% 9$5&75"?M4%?% 9&Q 9L&W;+L&Q7 5X7%! 9&$Q_L!O4%: @57 %9%!?&<7 "%4X% 9>JM ?Q\%X-

Z7 %L!O4B7, @57 "$!4%"B7&Q7 ?& %9&?+$5W4% 5=#@&Q, $5!?&QLJ&<7 45 %75=_L?>?5' "%! 9%7&4&!#?Q9%

"%?%754>4+75' %"&$&QOX5' 5!W#@&Q, @>$%@M @57 %9%!?&<7?%! 5!@!"_ WQW\5?!W4+75' 5XW&@&!, 5X7%! WQ4-

j%?+' 45 ?!' ?Q9!"+' %7%9%L%W?_W5!' %L!O4B7 ?&Q W?&\%W?!"&< Q9&$&J!W4&< "%! 59!?QJ\_7&Q7 Q^>$M

Q9&$&J!W?!"M %"LXj5!% \L>W!4&9&!B7?%' 4!"L_ 4M"> %"&$&QO!B7 5!W#@&Q.

~5 95L!9?BW5!' #9&Q \L5!_`5?%! > 9L_=> ?&Q 9&$$%9$%W!%W4&< "%! ?>' 9L#WO5W>' 7% JX75! 4% !̀"_,

> \LMW> 454&7&4+7Z7 %OL&!W?B7 W5 @&4M @+7@L&Q 5!W_J5! 9L&"$MW5!' W5 59X95@& %<=>W>' Q$!"&< "%!

?%\<?>?%' W\5@X%W>'. �!% 7% %7?!45?Z9!W?&<7 %Q?+', W?&7 W?&\%W?!"# Q9&$&J!W4# 5=5?_`5?%! & WQWWZ-

L5Q?!"#' 9%L_$$>$&' 45?L>?M' (Accumulative Parallel Counter - APC), & &9&X&' %OL&X`5! %!?!&"L%?!"_

#$5' ?!' %"&$&QOX5' 5!W#@&Q, 9%L_J&7?%' ?& %9&?+$5W4% W5 @Q%@!"M 4&L;M. �W?#W&, W5 %$QW!@Z?&<'

Q9&$&J!W4&<' > @Q%@!"# +=&@&' ?&Q APC 5!W_J5! ?!' %"#$&QO5' 9L&"$MW5!' W\5@!%W4&<: 1) 95L!&LX`5!

?>7 5;%L4&W!4#?>?% ?Z7 Q;!W?_457Z7 W?&\%W?!"B7 4>\%7B7 9595L%W4+7Z7 "%?%W?_W5Z7 9&Q Q$&-

9&!&<7 !@!%X?5L% 9&$<9$&"5' WQ7%L?MW5!', WQ495L!$%4j%7&4+7Z7 4> JL%44!"B7 WQ7%L?MW5Z7 "%! 2)

W?>7 95LX9?ZW> 9&Q %9%!?&<7?%! "%! _$$5' %L!O4>?!"+' 9L_=5!', J!% 9%L_@5!J4% #?%7 &! 9&$$%9$%W!%-

W4&X %"&$&QO&<7 ?>7 +=&@& ?Z7 W?&\%W?!"B7 4>\%7B7 9595L%W4+7Z7 "%?%W?_W5Z7, > @Q%@!"M +=&@&'

9L+95! 7% %7%J577>O5X Z' W?&\%W?!"M %"&$&QOX% 9L&"5!4+7&Q 7% 7% \L>W!4&9&!>O&<7 $&J!"+' 9<$5'.

85 "X7>?L& ?&Q' %7Z?+LZ 95L!&L!W4&<' ?&Q APC, > 9%L&<W% 5LJ%WX% 5!W_J5! 4!% %L\!?5"?&7!"M

%OL&!W?M 9&Q \L>W!4&9&!5X +7%7 @!%4&L;Z?M WXJ4%-@+$?% 9LB?>' ?_=>' (SD}). ] 9L&?5!7#457&' %-

OL&!W?M' W?&\%W?!"&< Q9&$&J!W4&< WXJ4%-@+$?% (SCSD) %OL&X`5! ?% ^>;X% ?Z7 %"&$&QO!B7 5!W#@&Q

W5 +7% @X%Q$& @5@&4+7Z7 "%! W?> WQ7+\5!% \L>W!4&9&!5X +7% 5WZ?5L!"# W\M4% 45?%?L&9M' 5<L&Q' @5-

@&4+7Z7 BW?5 7% 5"45?%$$5Q?5X ?>7 !@!#?>?% ?&Q ~-�7% 45?%?L+95! +7% WM4% Q^>$M' %7_$QW>' W5 WM4%

?&Q 57#' ^>;X&Q. qL&W;+L5! ?% %"#$&QO% 9$5&75"?M4%?%: 1) $5!?&QLJ5X 45 %75=_L?>?5' 5!W#@&Q', 2) >

9L#WO5W> JX75?%! %!?!&"L%?!"_ \ZLX' 59!9L#WO5?5' 9>J+' ?Q\%XZ7 %L!O4B7, 3) 59!?QJ\_75! JLMJ&L> W<-

J"$!W> 45 4!"L_ 4M"> %"&$&QOX%' 5!W#@&Q, �) 59!?L+95! 7% JX7&Q7 %9&?5$5W4%?!"_ %$QW!@Z?+' 9L_=5!'

45 ?% Q9_L\&7?% %L!O4>?!"_ "Q"$B4%?% "%! �) 59!?L+95! ?> \LMW> &9&!%W@M9&?5 W?&\%W?!"M' 4>\%-

7M' 9595L%W4+7Z7 "%?%W?_W5Z7 @!5QL<7&7?%' +?W! ?> W\5@X%W> 75QLZ7!"B7 @!"?<Z7 "%! 4> W?& \BL&

W\5@X%W>' ?&Q W?&\%W?!"&< Q9&$&J!W4&<.

�W& %7%;&L_ ?!' 4> JL%44!"+' WQ7%L?MW5!' 9&Q \L>W!4&9&!&<7?%! W?&7 W?&\%W?!"# Q9&$&J!W4#,

45?%=< %L"5?B7 #9Z' ?>' Q95Lj&$!"M' 5;%9?&4+7>', ?&Q JL%44!"&< "+L@&Q', ?>7 5"O5?!"M, ?&Q 45JX-

W?&Q "%! ?&Q 5$%\XW?&Q, &! ?5$5Q?%X5' @<& 5X7%! &! 9!& @>4&;!$5X' @5@&4+7>' ?>' \LMW>' ?&Q' W?o W?LB4%

4+J!W?>' WQJ"+7?LZW>' (max pooling layers) W?% 75QLZ7!"_ @X"?Q% "%! W?% ;X$?L% 45XZW>' O&L<j&Q.
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8X% 9LB?> 9L&W+JJ!W> J!% ?>7 Q$&9&X>W> ?&Q 45JXW?&Q "%! 5$%\XW?&Q, \L>W!4&9&!5X 9&$Q9$+"?5' "%! ?>

WQ7_L?>W> Q95Lj&$!"M' 5;%9?&4+7>' Q$&9&!>4+7>' Z' 4>\%7M 9595L%W4+7Z7 "%?%W?_W5Z7. �W?#W&,

+7%' %9# ?&Q' @<& 9&$Q9$+"?5' \L>W!4&9&!5X 4X% 59!9$+&7 J577M?L!% 9%L%JZJM' W?&\%W?!"B7 %"&$&Q-

O!B7 J!% ?& ?& WM4% 59!$&JM' ?&Q 9&$Q9$+"?>, %Q=_7&7?%' +?W! ?!' %9%!?MW5!' ?&Q Q$!"&<. �\&7?%' Z'

j_W> ?>7 9L&>J&<457> %L\M $5!?&QLJX%', _$$> 9L&W+JJ!W> %7?!"%O!W?_ ?&7 45?%?L&9+% @Q%@!"&< W5

W?&\%W?!"# 45 4X% $&J!"M 9<$> ��R J!% 7% 45!BW5! ?>7 59!j_LQ7W> Q$!"&<, @!%?>LB7?%' ?>7 Q9#$&!9>

@&4M 595=5LJ%WX%'. 8X% 9%L#4&!% 9L&W+JJ!W>, %7?!"%O!W?_ ?> 4>\%7M 9595L%W4+7Z7 "%?%W?_W5Z7 45

"%?%\ZL>?M 45?%?#9!W>' (shift register) J!% ?>7 %9&OM"5QW> ?Z7 $&J!"B7 4&7_@Z7 %9# ?> 4X% 5" ?Z7

@<& 5!W#@Z7 ?&Q "%! ?& $!J#?5L& W>4%7?!"# bit (�east-Significant |it - �S|) 9%L_J5! $&J!"M 4&7_@%

4&7& %7 +\5! "&L5W?5X 4+\L! %Q?#. �7% j%W!"# 45!&7+"?>4% #4Z' 5X7%! ?& %"L!j+' 4+J5O&' ?&Q "%?%\Z-

L>?M 45?%?#9!W>', ?& &9&X& %7 @57 59!$5J5X 45 WZW?_, > Q9&$&J!W?!"M %"LXj5!% ?>' 5=#@&Q 45!B75?%!

@L%4%?!"_.

q%L%"!7&<457&! %9# ?!' W\5@!%W?!"+' 9L&"$MW5!' ?Z7 9L&>J&<457Z7 45O#@Z7 W5 WQ7@Q%W4# 45 ?>7

%7_J"> J!% Q9&$&J!W4&<' 45 \%4>$M "%OQW?+L>W> W?& W?&\%W?!"# Q9&$&J!W4#, W?>7 9%L&<W% 5LJ%WX%

9L&?5X7&7?%! @<& @!%;&L5?!"+' 9L&W5JJXW5!' J!% ?>7 Q$&9&X>W> ?&Q 45JXW?&Q/5$%\XW?&Q. ~5 %7?XO5W> 45

_$$5' 9L&W5JJXW5!', &! 9L&?5!7#4575' %L\!?5"?&7!"+' \L>W!4&9&!&<7 +7%7 WQWWZL5Q?M J!% ?>7 %95QO5X-

%' %9&OM"5QW> ?Z7 9L&W>4%W4+7Z7 @!%;&LB7 ?Z7 ^>;XZ7 45?%=< ?Z7 @<& %"&$&QO!B7 5!W#@&Q ?&Q',

\ZLX' 9L#WO5?5' 9>J+' 9%L%JZJM' ?Q\%XZ7 %L!O4B7, "%O!W?B7?%' ?> $5!?&QLJX% ?&Q' %!?!&"L%?!"M. GQ-

?# +\5! Z' %9&?+$5W4% ?> 45XZW> ?>' "%OQW?+L>W>' "%! ?%Q?#\L&7% ?>7 59X?5Q=> Q9&$&J!W4B7 Q^>$M'

%"LXj5!%' 45 ?> \LMW> 4!"L&< 4M"&Q' %"&$&QO!B7 5!W#@&Q.

~\5?!"_ 45 ?> \LMW> W?&\%W?!"B7 4>\%7B7 9595L%W4+7>' "%?_W?%W>' J!% ?>7 Q$&9&X>W> 4> JL%4-

4!"B7 WQ7%L?MW5Z7, J!% 7% 5X7%! 5;!"?M > 9L&W+JJ!W> ?&Q', O% 9L+95! 7% !"%7&9&!&<7 ?%Q?#\L&7% &L!-

W4+75' WQ7OM"5'. ~QJ"5"L!4+7%, O% 9L+95! 7% %9&?5$&<7?%! %9# +7%7 9595L%W4+7& %L!O4# "%?%W?_W5-

Z7 45 ?>7 9LB?> "%! ?>7 ?5$5Q?%X% 7% 5X7%! "&L5W4+75', @>$%@M 7% 4>7 49&L&<7 7% =595L%W?&<7, O%

9L+95! &! 45?%j_W5!' 57?#' ?Z7 "%?%W?_W5B7 ?&Q' 7% &@>J&<7?%! %9# %"&$&QOX5' 5!W#@&Q, 45 W?&\%-

W?!"+' !@!#?>?5' "%! 9595L%W4+7& 4M"&' "%! ?+$&' #$5' &! "%?%W?_W5!' 7% 59!"&!7Z7&<7 45?%=< ?&Q'.

]! 9L&>J&<4575' !@!#?>?5' 95L!JL%;&<7 ?!' 4>\%7+' 9595L%W4+7Z7 "%?%W?_W5Z7 Z' 5LJ&@!"+' %$QWX-

@5' }arkov, 59!?L+9&7?%' ?> W<7O5W> WQ7%L?MW5Z7 4+WZ ?>' 5"?+$5W>' $&J!"B7 9L_=5Z7 45?%=< ?Z7

9!O%7&?M?Z7 ?Z7 "%?%W?_W5Z7.

q%L_ ?% 9&$$%9$_ 9$5&75"?M4%?% ?&Q', &! W?&\%W?!"+' 4>\%7+' 9595L%W4+7Z7 "%?%W?_W5Z7 +\&Q7

"%! ?!' @!"+' ?&Q' %@Q7%4X5'. � "QL!#?5L> %9# %Q?+', 5X7%! > 5!W%JZJM WQW\5?XW5Z7 45?%=< ?Z7 ^>;XZ7

?>' %"&$&QOX%' 5=#@&Q, J5J&7#' 9&Q 5X7%! $&J!"#, @5@&4+7Z7 ?Z7 W?&!\5XZ7 47M4>' 9&Q %9%!?&<7?%! J!%

?>7 Q$&9&X>W> ?Z7 4>\%7B7 "%?_W?%W>'. ~?>7 9LB?> 9L&W+JJ!W> 9&Q +J!75 J!% ?> 4&7?5$&9&X>WM ?&Q',

& Q9&$&J!W4#' ?>' %Q?&WQW\+?!W>' (autocorrelation) ?>' 5=#@&Q "%OB' "%! ?>' 4+W' ?!4M', 59%$>O5<?>-

"5 45 %L!O4>?!"_ 95!L_4%?%. ~5 4X% @5<?5L> 9L&W+JJ!W>, \L>W!4&9&X>O>"%7 %$QWX@5' }arkov J!% 7%

%9&@5X=&Q7 ?>7 %L\M $5!?&QLJX%' %L"5?B7 4> JL%44!"B7 WQ7%L?MW5Z7, \ZLX' ZW?#W& 7% @!5L5Q7B7?%!

&! W?%?!W?!"+' !@!#?>?5' ?>' 5=#@&Q. ~?& J57!"# 9$%XW!& ?>' WQW\+?!W>', %Q?M 9L&W5JJX`5?%! "QLXZ'

%9# ?>7 &9?!"M JZ7X% ?>' %"&$&QOX%' 5!W#@&Q, W?>7 &9&X% &! 45?%?L&95X' @Q%@!"B7 W5 W?&\%W?!"&<'

%L!O4&<' 4&!L_`&7?%! ?>7 9>JM ?Q\%XZ7 %L!O4B7 ?&Q' 45 W"&9# ?> @>4!&QLJX% %"&$&QO!B7 5!W#@&Q

45 4+J!W?> 59!"_$Q^> 45?%=< ?Z7 O+W5Z7 ?Z7 $&J!"B7 ?&Q' 4&7_@Z7. � ?5\7!"M %Q?M 57B 59!?L+95!



13

?>7 %9&@&?!"M Q$&9&X>W> &L!W4+7Z7 %L!O4>?!"B7 9L_=5Z7, #9Z' J!% 9%L_@5!J4% ?>7 %;%XL5W>, 5X7%!

9L&W%L4&W4+7> W?>7 X@!% ?>7 9L_=>.

85 %;&L4M ?!' %7_J"5' J!% j%O!_ "%?%7#>W> ?Z7 W?%?!W?!"B7 !@!&?M?Z7 ?Z7 5=#@Z7 ?Z7 W?&\%W?!-

"B7 4>\%7B7 9595L%W4+7Z7 "%?%W?_W5Z7, W?>7 9%L&<W% 5LJ%WX% 5!W_J5?%! +7% 4%O>4%?!"# 9$%XW!&

J!% ?> $59?&45LM %7_$QW> "%! 5=%JZJM ?&Q', j%W!W4+7& W5 %$QWX@5' }arkov. qL#"5!?%! J!% 4!% J57!"M

45O&@&$&JX%, Q9# ?>7 +77&!% #?! 49&L5X 7% 5;%L4&W?5X W5 &9&!&@M9&?5 W?&\%W?!"M 4>\%7M 9595L%W4+-

7Z7 "%?%W?_W5Z7 5";L%W4+7> Q9# ?> 4&L;M}oore "%! 4&7?5$&9&!>4+7> Z' %$QWX@% }arkov. � "<L!%

WQ75!W;&L_ ?>' 5LJ%WX%' 5X7%! & %7%$Q?!"#' Q9&$&J!W4#' 45 ?> \LMW> "$5!W?&< ?<9&Q 5";L_W5Z7 ?Z7

%"#$&QOZ7 W?%?!W?!"B7 !@!#?M?Z7 9&Q 95L!$%4j_7&Q7: ?>7 %7%457#457> ?!4M "%! ?> 4+W> ?!4M ?>'

5=#@&Q, ?>7 %Q?&WQW\+?!W> "%! ?>7 %Q?&WQ7@!%"<4%7W> ?>' 5=#@&Q, ?>7 5?5L&WQW\+?!W> "%! > 5?5L&-

WQ7@!%"<4%7W> ?>' 5=#@&Q 45 ?!' 5!W#@&Q', ?>' @!%"<4%7W>' "%! ?>' ?Q9!"M %9#"$!W>' ?&Q 4+W&Q #L&Q

?>' 5=#@&Q, ?&Q 4+W&Q ?5?L%JZ7!"&< W;_$4%?&' ?&Q 4+W&Q #L&Q ?>' 5=#@&Q, ?>7 9!O%7#?>?% Q95L\5X$!-

W>' "%! Q9&\5X$!W>' W?!' "%?%W?_W5!' "&L5W4&< "%! ?+$&' ?&7 %7%457#457& %L!O4# j>4_?Z7 9L!7 %9#

?!' Q95L\5!$XW5!' "%! ?!' Q9&\5!$XW5!', & &9&X&' "%?_ WQ7+95!% O+?5! ?!' "%?5QOQ7?ML!5' JL%44+' J!% ?>7

59!$&JM ?&Q %L!O4&< ?Z7 "%?%W?_W5Z7 9&Q 45!B7&Q7 ?% $%7O%W4+7% ^>;X% 9&Q 9L&+L\&7?%! %9# ?!'

Q95L\5!$XW5!' "%! ?!' Q9&\5!$XW5!'.

�!% ?>7 %=!&$#J>W> ?>' 59X@&W>' ?Z7 9L&?5!7#457Z7 %L\!?5"?&7!"B7, JX75?%! > W<J"L!WM ?&Q' 45 Q-

9_L\&QW5' 9L&W5JJXW5!' W?> j!j$!&JL%;X% ?&Q W?&\%W?!"&< Q9&$&J!W4&<. Y!@!"#?5L%, &! 9L&?5!7#4575'

%L\!?5"?&7!"+' WQJ"LX7&7?%! W5 Q9&$&J!W?M %"LXj5!% \L>W!4&9&!B7?%' 45?L!"+' W;%$4_?Z7 J!% @!%;&-

L5?!"_ 4M"> %"&$&QOX%' 5!W#@&Q "%OB' "%! W5 %=!&9&X>W> 9#LZ7 Q$!"&<, WQ495L!$%4j%7&4+7Z7 ?&Q

\BL&Q 9&Q "%?%$%4j_7&Q7 ?% "Q"$B4%?%, "%?%7_$ZW> 57+LJ5!%' "%! !W\<&' W<4;Z7% 45 ?>7 4+J!W?>

@Q7%?M WQ\7#?>?% $5!?&QLJX%'. *% %9&?5$+W4%?% +@5!=%7 9Z' @5@&4+7>' ?>' %=!&9&X>W>' ?Z7 5WZ?5L!-

"B7 "%?%\ZL>?B7 "%! 45?L>?B7, &! 9L&?5!7#4575' %L\!?5"?&7!"+' 59!?QJ\_7&Q7 45J%$<?5L> Q9&$&J!W?!-

"M %"LXj5!% 45 4!"L_ 4M"> %"&$&QO!B7 5!W#@&Q, %Q=_7&7?%' 5$_\!W?% ?&Q' WQ7&$!"&<' 9#L&Q'. G=X`5!

7% W>45!ZO5X 9Z' $%4j_7&7?%' Q9#^!7 ?>7 %7?!W?_O4!W> "%OQW?+L>W>' - %<=>W>' Q9&$&J!W?!"M' %-

"LXj5!%', W?>7 9L%J4%?!"#?>?% > WQ7&$!"M "%?%7_$ZW> 57+LJ5!%' J!% ?!' 9L&?5!7#4575' %L\!?5"?&7!"+'

5X7%! 9%L#4&!% M "%! 4!"L#?5L> %9# ?!' Q9_L\&QW5' 9L&W5JJXW5!', %;&< 5X7%! 95L!??M > \LMW> 45J_$&Q

4M"&Q' %"&$&QO!B7 5!W#@&Q.

~5 59X95@& 5;%L4&JM', &! 9L&?5!7#4575' %L\!?5"?&7!"+' %=!&9&!MO>"%7 J!% ?>7 Q$&9&X>W> @!%;#-

LZ7 @!5LJ%W!B7 9&Q 5"?5$&<7?%! %9# ^>;!%"&<' 595=5LJ%W?+'. ~5 %Q?+' WQ495L!$%4j_7&7?%!: @&4!"M

4&7_@% WQ7+$!=>', ;X$?L% \ZL!"M' 57XW\QW>' (spatial enhancement filters) "%! ?+$&' 75QLZ7!"# @X"?Q&

}�P. ~5 59X95@& %=!&9&X>W>' Q$!"&<, &! @&4!"+' 4&7_@5' WQJ"LXO>"%7 45 ?!' WQ4j%?+' @Q%@!"+' Q$&-

9&!MW5!' W5 \BL& 9&Q "%?%$%4j_7&Q7 ?% "Q"$B4%?%, "%?%7_$ZW> 57+LJ5!%' "%! !W\<&' W<4;Z7% 45

?>7 4+J!W?> @Q7%?M WQ\7#?>?% $5!?&QLJX%'.

�5"!7B7?%' 45 ?&7 9L&?5!7#457& %OL&!W?M, J!% 7% JX75! %!WO>?M > %9&?5$5W4%?!"#?>?% ?&Q W5 %-

$QW!@Z?&<' Q9&$&J!W4&<' @5@&4+7>' ?>' 4> "$!4%"Z?M' ;<W>' ?&Q, \L>W!4&9&!MO>"5 9%L_$$>$% 45

$&J!"+' 9<$5' AND J!% ?>7 Q$&9&X>W> @&4!"M' 4&7_@%' 9&Q 5"?5$5X ?>7 9L_=> ?>' WQ7+$!=>'. �95!?%,

> @&4!"M 4&7_@% \L>W!4&9&!MO>"5 Z' 4_W"% J!% ?& ;!$?L_L!W4% 5!"#7%' 45 W"&9# ?>7 5=&4%$<7W> ?Z7

5!"&7&W?&!\5XZ7 (pixels) ?>' +?W! BW?5 7% JX75! 45XZW> ?&Q O&L<j&Q ?>' 5!"#7%'. *% %9&?5$+W4%?% W?>7

%=!&$#J>W> ?>' 9&!#?>?%' 5!"#7%' +@5!=%7 9Z' & 9L&?5!7#457&' %OL&!W?M' 59!?QJ\_75! %9&@5"?+' ?!4+',
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&! &9&X5' 5X7%! 5=%!L5?!"_ j5$?!Z4+75' WQJ"L!?!"_ 45 ?&Q' "$!4%"Z?&<' %OL&!W?+'. ~5 59X95@& Q$!"&<,

& \BL&' 9&Q "%?%$%4j_75?%! 5X7%! 5=%!L5?!"_ 4!"L#?5L&' %9# %Q?#7 ?&Q WQ4j%?&< @Q%@!"&<, ZW?#W&,

> "%?%7_$ZW> 57+LJ5!%' %7+L\5?%! W5 4+?L!5' ?!4+', 9&Q 5X7%! %7%457#457& @5@&4+7>' ?>' ;<W>' ?&Q

W?&\%W?!"&< Q9&$&J!W4&<

~Q75\X`&7?%' 45 ?&7 9L&?5!7#457& W?&\%W?!"# %;%!L+?>, > %=!&9&X>W> ?&Q JX75?%! %!WO>?M W?>7 Q-

$&9&X>W> ;X$?L&Q 57XW\QW>' 5Q"LX75!%' 5!"#7%' (image sharpening filter). G7%$Q?!"#?5L%, ?& ;X$?L&

57XW\QW>' 5Q"LX75!%' 5!"#7%' @!%\ZLX`5?%! W5 ?L5!' Q9&$&J!W4&<' 9&Q 95L!$%4j_7&Q7 ?& ;!$?L_L!W4%,

?>7 5=%JZJM ?Z7 $59?&45L5!B7 ?>' 5!"#7%' "%! ?+$&' ?>7 57XW\QWM ?>'. G9# ?% 9%L%9_7Z, ?& ;!$?L_L!-

W4% JX75?%! 4+WZ WQ7+$!=>' \L>W!4&9&!B7?%' ?> @&4!"M 4&7_@% 9&Q Q$&9&!5X?%! 4+WZ ?&Q W?&\%W?!"&<

%OL&!W?M, & &9&X&' \L>W!4&9&!5X?%! "%! J!% ?>7 ?5$!"M 57XW\QW>. � 5=%JZJM ?Z7 $59?&45L5!B7 %9%!?5X

?>7 %;%XL5W> ?>' ;!$?L%L!W4+7>' 5!"#7%' %9# ?>7 %L\!"M, 4X% @!%@!"%WX% 9&Q 5X7%! "%?_$$>$> J!% ?&7

9L&?5!7#457& W?&\%W?!"# %;%!L+?> "%OB' &! M@> Q9_L\&QW5' 9L&W5JJXW5!' %@Q7%?&<7 W?>7 Q$&9&X>W>

4> "$!4%"Z?M' %;%XL5W>'. G7%;&L!"_ 45 ?>7 %=!&$#J>W> ?>' 9&!#?>?%' 5!"#7%', ?% %9&?5$+W4%?% M?%7

W\5@#7 j+$?!W?%, 57B W5 59X95@& %=!&9&X>W> 9#LZ7 > 45XZW> ?&Q \BL&Q 9&Q "%?%$%4j_75! ?& "<"$Z4%

WQJ"L!?!"_ 45 ?> WQ4j%?M @Q%@!"M Q$&9&X>W> M?%7 %!WO>?M, ZW?#W&, > "%?%7_$ZW> 57+LJ5!%' %7M$O5

W5 4+?L!5' ?!4+'.

]! %L\!?5"?&7!"+' 45JXW?&Q/5$%\XW?&Q, M?%7 "%?_$$>$5' J!% ?>7 Q$&9&X>W> ;X$?L&Q @!%4+W&Q

(median filter), ?& &9&X& \L>W!4&9&!5X?%! J!% ?> j5$?XZW> 5!"#7%' 9&Q +\5! Q9&W?5X %$$&XZW> W?% 5!"&-

7&W?&!\5X% ?>', #9Z' J!% 9%L_@5!J4% %$$&XZW> $#JZ O&L<j&Q. � @&4M ?>' @!_?%=>' ?&Q ;X$?L&Q @!%-

4+W&Q, j%WX`5?%! W5 %$J#L!O4& %9&@&?!"M' ?%=!7#4>W>', @>$%@M WQJ"LXW5!' 45J+O&Q' 45?%=< ?Z7 5!W#-

@Z7. ~QJ"L!?!"_ 45 ?& ;X$?L& 5=&4_$Q7W>', ?& ;X$?L& @!%4+W&Q +\5! ?>7 !@!#?>?% 7% @!%?>L5X ?!' %"4+'

?>' 5!"#7%' (edge preservation), "%O!W?#7?%' ?& "%?_$$>$& J!% W?_@!% 9L&-595=5LJ%WX%' 5!"#7%' 9L!7

?>7 %7X\75QW> %"4B7 (edge detection). *% %9&?5$+W4%?% W5 59X95@& Q9&$&J!W?!"M' %"LXj5!%' +@5X=%7

9Z' "%! &! @<& 9L&?5!7#4575' %L\!?5"?&7!"+' 45JXW?&Q/5$%\XW?&Q M?%7 !"%7&9&!>?!"+' J!% ;!$?L_L!W4%

5!"#7%' 45 O#LQj&. ~\5?!"_ 45 ?>7 %=!&9&X>W> ?Z7 9#LZ7, > @5<?5L> %L\!?5"?&7!"M 45JXW?&Q/5$%\XW?&Q

%=!&9&!5X 9%L%9_7Z "Q"$Z4%?!"# \BL& %9# ?>7 9LB?>, #4Z', "%! &! @<& "%?%$_4j%7%7 W\5@#7 ?& 4!W#

%9# %Q?# ?>' WQ4j%?M' @Q%@!"M' Q$&9&X>W>'. �9Z' "%! 45 ?!' _$$5' @<& 5;%L4&J+', > "%?%7_$ZW>

57+LJ5!%' %7M$O5 W5 4+?L!5' ?!4+' WQJ"L!?!"_ 45 ?> WQ4j%?M @Q%@!"M, @5@&4+7&Q ?&Q WQ7&$!"# 4M"&'

%"&Q$&QO!B7 9&Q 595=5LJ_`&7?%!.

� @5<?5L> 9L&?5!7#457> %L\!?5"?&7!"M ?&Q 45JXW?&Q, \L>W!4&9&!MO>"5 J!% ?>7 Q$&9&X>W> ;X$?L&Q

4+J!W?>' WQJ"+7?LZW>' (max pooling). � $5!?&QLJX% ?&Q j%WX`5?%! W?>7 Q9&@5!J4%?&$>^X%

(undersampling) 5!"#7%' "%OB' 45!B75! ?> @!_W?%W> ?>', 57B %9&?5$5X %7%9#W9%W?& "&44_?! W?% W<J-

\L&7% 75QLZ7!"_ @X"?Q% @5@&4+7&Q #?! 59!?L+95! ?>7 5=%JZJM ?Z7 W>4%7?!"#?5LZ7 \%L%"?>L!W?!"B7

?>' 5!"#7%' 5!W#@&Q. *% %9&?5$+W4%?% W5 59X95@& Q9&$&J!W?!"M' %"LXj5!%' +@5!=%7 9Z' > Q9&@5!J4%-

?&$>^X% ?>' 5!"#7%' 9L%J4%?&9&!5X?%! 45 ?& j+$?!W?& @Q7%?# ?L#9&, ?& &9&X& Q9&W?>LX`5?%! %9# ?!'

45?L!"+' 9&Q $%4j_7&7?%! Q9#^!7. �W& %7%;&L_ ?>7 %=!&9&X>W> ?Z7 9#LZ7 ?&Q Q$!"&<, WQJ"L!?!"_ 45

?>7 @Q%@!"M Q$&9&X>W> 9%L%?>L5X?%! 9Z' & \BL&' 9&Q "%?%$%4j_75! ?& "<"$Z4% 45!B75?%! 59%L"B'.

*+$&', & %OL&!W?M' SCSD \L>W!4&9&!MO>"5 4%`X 45 ?>7 9LB?> %L\!?5"?&7!"M ?&Q 45JXW?&Q J!% ?>7

Q$&9&X>W> W?&\%W?!"&< 75QLB7%, & &9&X&' %9&?+$5W5 ?> j_W> J!% ?>7 Q$&9&X>W> 57#' }�P. *% %9&?5-

$+W4%?% W5 59X95@& "%?>J&L!&9&X>W>' J!% @<& @!%;&L5?!"+' %L\!?5"?&7!"+' @!"?<&Q}�PW5 L5%$!W?!"#



1�

W<7&$& @5@&4+7Z7, +@5!=%7 9Z' > %"LXj5!% 9&Q 59!?QJ\_75?%! Q95Lj%X75! %Q?M7 9&Q 59!?QJ\_75?%! 45

?>7 ?Q9!"M @Q%@!"M %7%9%L_W?%W> %L!O4B7 ?Z7 &"?B "%! ?Z7 @5"%+=! ^>;XZ7. Y9!9$+&7, WQJ"L!?!"_

45 %Q?+' ?!' %7%9%L%W?_W5!', 45!B75?%! @L%4%?!"_ \BL&' 9&Q "%?%$%4j_75! & 5"_W?&?5 75QLB7%'. ~Q-

J"LXW5!' 45 M@> Q9_L\&7?% }�P W?& 95@X& ?&Q W?&\%W?!"&< Q9&$&J!W4&<, %7+@5!=%7 ?> @Q7%?#?>?% J!%

595=5LJ%WX% 45 4!"L_ 4M"> %"&$&QO!B7 5!W#@&Q "%OB' "%! ?>7 5Q5$!=X% W?> WQ7&$!"M W\5@X%W>.
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Abbreviations

SC Stochastic Computing

SNG Stochastic Number �enerator

LFSR �inear-Feedback Shift Register

MC }arkov Chain

FSM Finite-State }achine

SFSM Stochastic Finite-State }achine

DSP Digital Signal Processing/Processor

FPGA Field-Programmable �ate Array

IC Integrated Circuit

FxP Fixed Point Arithmetic

FP Floating Point Arithmetic

SCPB Stochastic Computing Processing |lock

MAE }ean Absolute Error

MSE }ean S{uared Error

PSNR Peak Signal-to-Noise Ratio

SSIM Structural Similarity Index }easure
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1 Introduction

9Q9 Motivation and Scope

Efficient realization of digital systems in Integrated Circuits (ICs) and Field Programmable �ate

Arrays (FP�As) is of utter importance given the accelerated growth of emerging applications ���, 2�,

22, 2��. The typical binary arithmetic representations used for their implementation, namely the Fixed-

Point (FxP) and Floating Point (FP), can be hardware-demanding for themodernDigital Signal Processors

(DSPs), especially whenmassive parallelization is necessary �22, �0, 12�. This is further intensified when

non-linear functions are re{uired in the processing, for instance the exponential and the hyperbolic tangent

��0, �0, �6, �3�. To this end, unconventional computing paradigms are under extensive exploration �6�,

10, 2�, 36, 6��, with Stochastic Computing being an effective approach among many ��0, 2�, 66, 2��.

Stochastic Computing (SC) deviates from the standard binary arithmetic and its processing, as it

encodes the value of binary numbers in the form of finite-length stochastic se{uences of logic 0s and

1s �23, �, ��. Therefore, its single-bit processing allows for the fundamental arithmetic operations and

highly-complex functions to be realized using a few logic gates and standard cells �6�, ��, thereby reduc-

ing dramatically the hardware area re{uirements compared to the traditional binary arithmetic ��0�. An

inherent property of SC is that of the robustness on soft-errors, meaning that occurring bit-flips are not

detrimental (up to a certain degree) for the reliability of the signals� information �23�. |eyond its strong

points, SC re{uires computational cycles to increase the calculations� accuracy, impacting on the energy

being dissipated �20, 6�, �6, 66�. Hence, to make the best of it, achieving low latency combined with

increased computational accuracy, is of primary design concern in SC ���, 3�, 66�.

The properties and advantages of SC favour applications that combine massive parallelism needs,

area constraints and tolerance to small deviations from the exact calculations. These applications include

}ulti-�ayer Perceptrons (}�Ps) ���, ��, 3��, Convolutional Neural Networks (CNN) �12, ��, �1� and

others �62, �1, 16, 3�, �2� in the field of Deep �earning, Support Vector }achines (SV}s) ���, �6, 30�

in the field of }achine �earning (}�) and noise reduction, averaging, smoothing, sharpening and other

spatial enhancement filters ��2, �3, �, ��, �1� in the field of Image Processing. However, SC is not limited

to the previous fields� it has been successfully applied in soft-filtering, i.e. Finite Impulse Response (FIR)

�33, 2, 11, �2, ��, 1� and Infinite Impulse Response (IIR) ��3, 33, �3� filters, error correcting coding �
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decoding �26, �, �, 2��, polynomial solving ���, 63, 6, 3, �1, �6� and others �26, �, �, �0, ��, ���.

Essential operations performed in the DSP cores utilized by the aforementioned applications, rely

mostly in multiply-and-add operations and non-linear functions ��0�. �ith respect to the fundamental

arithmetic operations, multiplication is the simplest in SC. According to the SC number representation

used, a single AND gate for positive-signed stochastic numbers or an �N�R gate for negative-signed

stochastic numbers is used �23�. The addition and subtraction operations between two stochastic se-

{uences should follow the probabilistic nature of SC, meaning that their result cannot exceed one or be

less than minus one. For this reason, the operation of most adders ��1, ��, �2, 1�� and subtracters ��, 1�,

��� is based upon the scaling of their result with a typical value of two. However, when multiple cascaded

computations are re{uired, scaled adders and subtracters do not favour them, especially when 1) other

operations follow, for instance non-linear functions and 2) the number of adders and/or subtracters is not

a multiple of two. �n the other hand, existing non-scaling adders ��2, 1�, �0� impose design constraints

as they do not follow the standard SC number representation formats.

Regarding the realization of non-linear functions, Stochastic FS}s (SFS}s) are employed for such

purpose �1�, 16�. They are known for their ability to approximate widely used functions such as the

hyperbolic tangent (tanh) �1�, �3�, the exponential �1�, �3�, the linear gain �1�, �3�, the max � min ��3,

��, ��, 3�� and others �1�, �3�, with the max � min being the most popular ones due to their presence in

max pooling operations and in median filtering ��0, �1�. Despite their importance, SFS}s have only been

used in complement with }arkov Chains (}Cs) to formally prove the non-linear functions� principle

of operation �1�, �3�, without further investigating their statistical properties nor their impact on the

calculations ���, 3�, �, ��, 1��. Increased correlation among the bits of the SFS}s� output se{uences

may result in calculation errors in the operations following, for instance a potential multiplication of the

output with itself, thus degrading the overall accuracy���, 13, ��, 1��.

This dissertation presents novel architectures realizing essential arithmetic operations and non-linear

functions in Stochastic Computing, including a non-scaling adder, non-scaling a subtracter, two different

max and min architectures and a multi-input single-bit output adder. Their main advantage they offer,

is the improvement on the SC�s accuracy-latency trade-off, which stems from their ability to combine

highly-accurate computations with short se{uence lengths. The above properties are demonstrated with

an in-depth analysis using SFS}s and }Cs.

The operation principle of the architectures is analysed using SFS}s and}Cmodeling which allows

for a better understanding of their long-term stochastic dynamics and the verification of their proper

operation. The }C modeling is further extended to a general methodology for the analytical derivation

of the SFS}� statistical properties, including their expected value, their variance and standard deviation,

their correlation and covariance as well as the mean s{uared error. The methodology is accompanied

by overflow/underflow }C modeling allowing to estimate the number of states that reduce bit-errors

originating from overflow/underflow occurrence, setting the guidelines for the selection of the register�s

size.

For the evaluation of their performance, the architectures are compared extensively with existing ones

in the SC literature in computational accuracy using standard error metrics and hardware resources, in-

cluding area, power and energy consumption as well as in the benefits they introduce in the overall design
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flow. The efficacy of the architectures is demonstrated with their use as building blocks in the realiza-

tion of several DSP tasks, including convolution, noise reduction and image down-sampling filtering as

well as Neural Networks. The results of the architectures� performance in computational accuracy and

hardware resources are compared to those achieved using standard binary computing methods so as to

highlight their advantages.

9Q< Thesis Outline

The present dissertation is divided in two parts, theoretical analysis and experimental results. In the

first part including chapters 3 and �, the operation principle of the proposed architectures using SFS}s

and their modeling using }Cs is introduced. In the second part including chapters � and 6, experimental

results and applications realized using the proposed architectures are presented. Specifically, the rest of

this dissertation is organized as follows.

In Chapter 2, the conversion of binary numbers into stochastic se{uences, the two fundamental SC

number representation formats, the se{uences�properties and the notation used throughout the dissertation

is provided. }oreover, the operation of the essential logic gates used in SC under different number

representation formats is described.

In Chapter 3, the proposed architectures, namely the non-scaling adder, the non-scaling subtracter,

the two max and min and the SCSD adder are introduced and their operation principle is described using

SFS}s. Then, their modeling using }Cs is shown and their expected value is derived analytically, used

to prove their proper operation in the limiting case.

In Chapter �, the }C modeling of Chapter 3 is extended to a general methodology for the analytical

derivation of the SFS}s� statistical properties and the modeling of overflows/underflows. Two SFS}s

selected from the SC literature are modeled using the proposed framework and their results are compared

to those obtained from the numerical experiments.

In Chapter �, the proposed architectures are compared extensively with existing ones in the SC lit-

erature in computational accuracy, hardware resources and their trade-offs in the overall SC design is

discussed.

In Chapter 6, applications of standard DSP tasks realized using the proposed architectures are shown,

while comparisons with the conventional binary computing methods in hardware resources and compu-

tational accuracy demonstrate their efficacy.

Finally, Chapter � concludes the present dissertation.
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2 Stochastic Computing
Principles

The Stochastic Number �enerator (SN�), shown in Fig. 2.1 ��, 23�, is the standard circuit converting

a k-bit deterministic number into its stochastic 0, 1 se{uence representation, also referred as a stochastic

number. A pseudo-random number generator uniformly distributed in {0, 1, . . . , 2k − 1} and typically

implemented as a k-bit �inear-Feedback Shift Register (�FSR), generates on every clock cycle a k-bit

random number which is compared with the deterministic number B ∈ [0, 1]. The bit generation is

completed afterN = 2k clock cycles and corresponds to the length of the se{uence ��, �, 20�. To convert

the stochastic number back to its binary form, an up-counter of k-bits is used.

<

Figure 2.1: Stochastic Number �enerator

The N -bit output se{uence generated by the SN�, i.e. {Xn}, n = 1, 2, ..., N , with n being the

current time index (or clock cycle), is independent and identically distributed (i.i.d.). It represents a non-

negative number in [0, 1] and is known as unipolar format in SC. The probability of the stochastic number

is defined as X , Pr(Xn = 1) = B/2k, which is the normalized value of B in k-bit representation and

its mean is given as

X̃N =
1

N
(X1 +X2 + · · ·+XN ) . (2.1)

Negative numbers, known as bipolar format, can also be represented using the transformation X 7→

2X−1, expanding the range of the stochastic number to [−1, 1] �23�. For both stochastic number formats,

the length of the se{uenceN is directly associatedwith the accuracy of the representation, which increases

at the cost of additional clock cycles and is considered as SC�s essential design trade-off.

Fundamental mathematical operations are supported within the context of SC and can be realized

simply by logic gates according to the format used �6�, �2�. To proceed with the analysis of the most
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important logic gates used in essential operations, we assume that inputs {Xn}, {Yn} are stochastic

se{uences generated by different SN�s and that {Zn} is the result of their operation.

� N�T �ate: The N�T gate in unipolar format, Zn = N�T(Xn), complements the probability of

the input,

Z = P (Zn = 1) = P (Xn = 0) = 1− P (Xn = 1) = 1−X, (2.2)

whereas in the bipolar format, it operates as a sign inverter.

Z = P (Zn = 1) = P (Xn = 0) = 1− P (Xn = 1) = −X. (2.3)

� AND �ate: The AND gate in unipolar format, Zn = AND(Xn, Yn), performs multiplication.

Z = P (Zn = 1) = P (Xn = 1, Yn = 1) = P (Xn = 1)P (Yn = 1) = XY. (2.�)

� �N�R �ate: The �N�R gate in bipolar format, Zn = �N�R(Xn, Yn), performs multiplication.

Z = P (Zn = 1) = P (Xn = 1, Yn = 1) + P (Xn = 0, Yn = 0)

= 2P (Xn = 1)P (Yn = 1)− P (Xn = 1)− P (Yn = 1) + 1 (2.�)

= XY.

� }ultiplexer: Assuming an an i.i.d. control se{uence {Cn}, the multiplexer (}U�),

Zn = }U�(Xn, Yn;Cn), is the standard way to perform scaled addition between two stochas-

tic numbers, regardless of the format used, and is given as

Z = P (Zn = 1) = P (Xn = 1, Cn = 1) + P (Yn = 1, Cn = 0)

= P (Xn = 1)P (Cn = 1) + P (Yn = 1)P (Cn = 0)

= XC + Y C. (2.6)

Furthermore, if (and only) P (Cn = 1) = 1/2, the }U� operates as a scaling adder, i.e.,

Z = P (Zn = 1) =
P (Xn = 1) + P (Yn = 1)

2
=

X + Y

2
. (2.�)

Stochastic subtraction, on the other hand, can only be realized in the bipolar format, using a N�T

gate in one of the two inputs as

Z = P (Zn = 1) =
P (Xn = 1) + P (Yn = 0)

2
=

X − Y

2
. (2.�)

It is important to mention here that the logic gates �R,N�R and��R do not realize a specific operation in

neither SC number representation formats �6�� and are only used complementary with other logic gates.
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3 Stochastic Computing
Architectures

In this chapter, the following proposed SC architectures are presented: 1) a non-scaling adder ��0�,

2) a non-scaling subtracter ��0�, 3) a }A� ��1�, �) a }IN ��1�, �) a compact }A��}IN ��6�, capable

of realizing both functions and 6) a multi-input single-bit output adder. 1. The architectures� principle

operation is described using Stochastic Finite-State }achines, while their stochastic behavior is mod-

eled using }arkov Chains, allowing for the derivation of the expected value of their output and their

verification of proper operation.

;Q9 NonHScaling Adder and Subtracter Architectures

An essential operation performed in the SC-based DSP cores, is that of the multiply-and-add. The

multiplication part, is implemented using a singleAND or �N�R gate according to the stochastic number

representation used. Their addition part in SC though, is typically realized by the }U�which re{uires an

additional random number source for its select signal, besides its inputs. However, the random number

source by itself is a large block compared to the SC elements, occupying most of the design�s area �6��.

In addition, the adder�s output is typically scaled by 1/2 meaning that for a given se{uence length the

resolution has dropped by 2. This makes the }U� less attractive for cascaded computations and blocks

that rely on exact calculations. The same apply for the }U� implementation of the subtracter.

To address the former issues focusing on computational and design efficiency, several adders ��1,

��, �2, 1�� and subtracters ��, 1�, ��� have been published and explored �6�� within the context of SC.

The adder in ��1�, is based on the multiplexer�s scaling principle, but avoids the extra random number

source by using a single T Flip-Flop, increasing also its accuracy. A similar (scaling) approach is pre-

sented in ����, but instead of a T Flip-Flop, it employs a two-state FS} to further increase its accuracy.

1Copyright © IEEE. Chapter 3 is reprinted, with permission, from: 1) N. Temenos, P.P. Sotiriadis, �Non-Scaling Adders

and Subtracters for Stochastic Computing using }arkov Chains�, IEEE Trans. on Very �arge Scale Integration Systems, vol

2�, no. �, pp. 1612-1623, Sept. 2021, 2) N. Temenos and P. P. Sotiriadis, �Stochastic Computing }A� and }INArchitectures

Using }arkov Chains: Design, Analysis and Implementation�, IEEE Trans. on Very �arge Scale Integration Systems, vol 2�,

no. 11, pp. 1�13 - 1�23, Nov. 2021 Personal use of this material is permitted, but republication/redistribution re{uires IEEE

permission.

Copyright © Elsevier. Chapter 3 is reprinted, with permission, from P. P. Sotiriadis and N. Temenos, �Compact }A� and

}IN Stochastic Computing Architectures�, Integration, vol. ��, pp. 1��-20�, November 2022. Personal use of this material is

permitted, but republication/redistribution re{uires Elsevier permission.



�0 Chapter 3 . Stochastic Computing Architectures

The semi-stochastic approach explored in ��3�, uses the parallel input adder originally proposed in �6��,

which provides computations in binary format that do not always favor next stage SC-based computa-

tional blocks, for instance non-linear functions. The non-scaling adder in ��2� is based on a two-line

representation of a stochastic number carrying its information in two se{uences� one for its sign and one

for its magnitude. Although it is a promising approach in application level ��0�, the two-line encoding

imposes system design constraints as it re{uires from other operations, e.g. multipliers, to follow this

principle as well. Furthermore, the size of its counting unit is only estimated empirically ��0�. Similarly

to the previous adder, the adder (and subtracter with one inverted input) presented in �1��, encodes a

stochastic number by using the ratio of logic ones and zeros between its input se{uences. �et, its uni{ue

representation is incompatible with standard SC formats, while the generation of two se{uences for a sin-

gle stochastic number, influences the overall hardware utilization. Regarding stochastic subtracters, the

method in ��, 3�, �� correlates the input se{uences. This, however, re{uires caution since SC elements are

prone to errors caused by correlated inputs �6��. }oreover, if the subtraction is an intermediate operation,

regenerating correlated inputs is necessary. Another techni{ue presented in ���� applies iterative logic

units to enhance the accuracy of an �N�R gate with one of its inputs inverted. As expected, it trades

hardware resources and latency for accuracy, both depending on the number of stages used.

All the above methods, trade circuit run-time and/or hardware area for accuracy. In addition, cer-

tain of them introduce constraints that reduce the flexibility on the SC design space. }otivated by the

aforementioned and to achieve the best of both worlds, we propose non-scaling adder and subtracter archi-

tectures for SC. They offer the following advantages: 1) They do not re{uire any random number source,

2) They do not scale the output result, 3) They operate with independent and identically distributed input

se{uences (i.e., no specially correlated inputs re{uired), �) They are compatible with standard SC formats

and �) They are fast-converging, achieving high accuracy with short se{uences lengths.

;Q9Q9 NonHScaling AdderArchitecture

<

Figure 3.1: Proposed stochastic adder Architecture. Tn is them-bit register�s state, updated according to

3.1.

The proposed adder architecture is shown in Fig. 3.1. If �R(Xn, Yn) = 1 then the output is Zn = 1.
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In the case of Xn = Yn = 1, a 1 is also stored and carried in the register (up-count by 1) in order to be

outputted in the first future clock cycle n′, i.e., Zn′ = 1, for which Xn′ = Yn′ = 0. }oreover, when

Xn = Yn = 0, the register is down-counted by 1 if it had a positive prior value. The procedure of storing

1s, when Xn = Yn = 1, and carrying them until they can be outputted compensates for the inability of

the single-bit output to accommodate instantaneous value of more than 1.

The above are captured in the schematic of Fig. 3.1, where the register ism-bit with current state Tn

in the set TR , {0, 1, 2, ...,M − 1}, whereM = 2m. Note that Tn e{uals the number of accumulated

logic 1s �owned� to the output, with initial value T0 = 0 when the operation starts. From Fig. 3.1 one

can conclude that the state of the adder evolves according to the following iteration

Tn = min
{
Tn−1 +XnYn −

(
Tn−1>0

)
XnY n,M−1

}
(3.1)

where Xn = N�T(Xn) = 1−Xn and similarly for Y n.

Although the proposed adder is designed to process stochastic se{uences, its behavior is deterministic.

As seen in Fig. 3.1, the output is a deterministic function of the inputs without any additional randomiza-

tion which could increase uncertainty and degrade precision. Specifically, the adder�s output precision

is determined by the length, N , of the input se{uences, their stochastic properties and the register�s size,

m.

;Q9Q9Q9 Markov Chain Modeling

  

    

Figure 3.2: }arkov Chainmodel of the proposed stochastic adder. The register�s zero state, is represented

by two states in the model, 0A and 0B . Transition probabilities A, B and C are given by (3.3)

The operation of the stochastic adder architecture is modeled by the }arkov Chain (}C) in Fig. 3.2.

To explain its derivation we note first that we assign two states 0A and 0B to the zero value of the register,

whereas states 1 toM − 1 represent the corresponding values of the register. Therefore, the }C state Sn

can take theM + 1 values in the set

S , {0A, 0B, 1, 2, ...,M − 1}. (3.2)

Although using two zero states may appear confusing, it simplifies the analysis significantly because it

allows us to relate the output value, Zn, to the state only (i.e. the output is a function of the }C state and
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not of the inputs Xn and Yn).

Let the MC�s state be Sn−1. Then the transition to the next state Sn and the output Zn are determined

according to the following transition probabilities

A =Pr(Xn = 0)Pr(Yn = 0)

B =Pr(Xn = 1) + Pr(Yn = 1)− 2Pr(Xn = 1)Pr(Yn = 1)

C =Pr(Xn = 1)Pr(Yn = 1). (3.3)

As seen in Fig. 3.2 there are three kinds of states: A) The two zero states 0A and 0B corresponding to

register�s zero state and also embedding information of the predecessor input-state pair; B) States 1 to

M−2 capturing a sequential increase/decrease of the register�s value, and C) StateM−1 corresponding

to the maximum value of the register which is also the overflow state in the case of Xn = Yn = 1 with

probability C.

To analyze the behavior of the MC, which captures that of the proposed stochastic adder, we proceed

with standard definitions. The (M + 1)× (M + 1) transition probability matrix, with state ordering

(0A, 0B, 1, 2, ...,M − 1), is defined as

H =
[
Pr(Sn+1 = sb|Sn = sa)

]

sa,sb∈S

where the (sa, sb) entry of the matrix is the probability to transition to state sb from state sa. Matrix H is

written as

H =




A B C . . . . . . 0

A B C . . . . . . 0

0 A B C . . . 0
...

. . .
. . .

. . .
. . .

...
...

. . . 0 A B C

0 . . . . . . 0 A B + C




. (3.4)

The probability distribution vector of state Sn, defined as

pTn ,




Pr(Sn = 0A)

Pr(Sn = 0B)

Pr(Sn = 1)
...

Pr(Sn = M − 1)




∈ [0, 1]M+1 (3.5)

can be expressed as

pn = p0H
n ∈ [0, 1]M+1, (3.6)
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where

p0 =
[
1, 0, 0, ...0

]
∈ [0, 1]M+1 (3.7)

is the initial distribution vector and represents the starting state of the register S0 = 0A.

;Q9Q9Q< Expected Output Value and Verification of Operation

We use the MC model equations from the previous subsection to derive the expected value of the

adder�s output. To this end we calculate first the expected value of the instantaneous output Zn. Note

that since Zn depends only on the state Sn, it is zero if and only if Sn = 0A. Therefore it is

E[Zn] = Pr(Zn = 1) = Pr (Sn ∈ S − {0A}) = 1− p0H
neT1 , (3.8)

where we used (3.6) and ei =
[
0, ...0, 1, 0, .., 0

]
∈ R

M+1 is the i-th normal vector. Then, the average

value of the output N -bit sequence,

Z̃N =
1

N

(
Z1 + Z2 + · · ·+ ZN

)
(3.9)

has expected value

E[Z̃N ] =
1

N

N∑

n=1

E[Zn] = 1−
1

N
p0

(
N∑

n=1

Hn

)
eT1 . (3.10)

Both the expected value of {Zn} and its mean are essential in quantifying the model�s accuracy given its

inputs {Xn}, {Yn} and will be used to verify the operation of the architecture.

The operation of the proposed architecture as an adder is proven here. As above, for the IID input

sequences we use notation X , Pr(Xn = 1) and Y , Pr(Yn = 1). In addition, we assume that

0 < X,Y < 1 implyingA,B,C > 0, as defined in (3.3). Therefore, the main, first upper and first lower

diagonals of matrixH in (3.4) are positive implying the following Lemmawhose proof is straightforward.

Lemma 9Q All entries ofHM−1 are positive, i.e.,HM−1 > 0.

The result of Lemma 1 implies that (I+ |H|)M−1 > 0 which along with Theorem 1 from [31] below

proves thatH is irreducible.

Theorem 9Q Matrix H is irreducible if and only if (I + |H|)M−1 > 0, where I is the identity matrix.

Moreover, since H is a stochastic matrix it�s spectral radius is ρ(H) = 1 having 1 as an eigenvalue.

Now consider vector v ∈ R
M+1 such that

vT = θ

[
1,

1−A

A
,
ρ

A
,
ρ2

A
, . . . ,

ρM−1

A

]
(3.11)
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where we have set

ρ ,
C

A
=

XY

(1−X)(1− Y )
, (3.12)

θ , A
ρ− 1

ρM − 1
(3.13)

and 1 = [1, 1, ..., 1]T ∈ R
M+1 is the column vector of ones.

It can be verified that vT and 1 are left and right eigenvectors of H corresponding to eigenvalue 1,

i.e. vTH = vT and H1 = 1. Moreover it is vT 1 = 1. From Theorem 8.6.1 in [31] we get that

lim
N→∞

1

N

N∑

n=1

Hn = 1vT , (3.14)

noting that 1vT is a (M + 1)×(M + 1) rank-onematrix. From (3.10) and (3.14)we get limN→∞ E[Z̃N ] =

1− p01v
T eT1 . Since p01 = 1 and vT eT1 = θ we get limN→∞ E[Z̃N ] = 1− θ and by replacing θ we have

lim
N→∞

E[Z̃N ] = 1−A
ρ− 1

ρM − 1
. (3.15)

We assume in addition that X + Y < 1 which along with 0<X,Y <1 imply that 0 < ρ < 1 and so

limM→∞ ρM = 0. Therefore since 1−A(1− ρ) = 1 + C −A = X + Y we get

lim
M→∞

(
lim

N→∞
E[Z̃N ]

)
= X + Y (3.16)

which proves the correct operation in the limiting case.

The result of (3.16) is valid for stochastic addition in unipolar format and it is extended directly to

bipolar format via the transformation Z 7→ 2(Z − 1), where Z=X+Y as before.

;Q9Q< NonHScaling Subtracter Architecture

The proposed subtracter architecture is shown in Fig. 3.3. It is comprised of the proposed stochastic

adder with inverted one input and its output. Therefore, the subtracter operates like the adder with inputs

Xn and Yn having probabilities Pr(Xn = 1) = 1−X and Pr(Yn = 1) = Y respectively. The addition

operation implies that Z̃N ≈ 1 −X + Y and the output inversion gives C̃N = 1 − Z̃N ≈ X − Y . For

the subtracter to operate appropriately it must beX ≥ Y .

Similarly to the stochastic adder, the counter�s value Tn (with initial value T0 = 0) belongs to TR ,

{0, 1, 2, ...,M − 1}, where = 2m andm is the register�s size. The state Tn indicates the number of logic

1s �owned� to the addition (1−Xn) + Yn and evolves according to

Tn = min
{
Tn−1+XnYn−

(
Tn−1>0

)
XnY n,M−1

}
. (3.17)



Non-Scaling Adder and Subtracter Architectures 45
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Figure 3.3: Proposed stochastic subtracter architecture. Tn is the m-bit register�s current state, updated

according to (3.17).

;Q9Q<Q9 Markov Chain Modeling

  

    

Figure 3.4: Markov Chain model of the proposed stochastic subtracter. The register�s zero state, is rep-

resented by two states in the model, 0A and 0B . Transition probabilities A, B and C are given by (3.18)

The operation of the proposed subtracter architecture is modeled by the MCmodel shown in Fig. 3.4.

Both zero states 0A and 0B represent the zero value of the register, whereas 1 to M − 1 represent the

corresponding non-zero values of the register. Moreover, the state of the MC model, Sn belongs to the

set ofM +1 elements given in (3.2), while the state Sn and its output Cn is determined by the following

transition probabilities

A =Pr(Xn = 1)Pr(Yn = 0)

B =Pr(Xn = 1)Pr(Yn = 1) + Pr(Yn = 0)Pr(Xn = 0)

C =Pr(Xn = 0)Pr(Yn = 1). (3.18)

The analysis of the MC�s behavior can be obtained by using equations (3.4), (3.5) and (3.7), along

with (3.18) to calculate the probability distribution vector of state Sn after n = 1, 2, . . . , N steps. Note

that although matrixH is the same for both the adder and subtracter, transition probabilities A, B and C

are different. Also, the MC models are the same, except the output values.
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;Q9Q<Q< Expected Output Value and Verification of Operation

According to the MC model of Fig. 3.4 it is Cn = 1 if and only if Sn = 0A. Therefore, the expected

value of the instantaneous output is

E[Cn] = Pr(Cn = 1) = Pr(Sn = 0A) = p0H
neT1 . (3.19)

The average value of the output N -bit sequence is

C̃N =
1

N
(C1 + C2 + · · ·+ CN ) , (3.20)

with expected value given by

E[C̃N ] =
1

N

N∑

n=1

E[Cn] =
1

N
p0

( N∑

n=1

Hn
)
eT1 . (3.21)

The procedure to verify the operation of the proposed subtracter architecture is identical to that of the

adder in Subsection 3.1.1.2. Following Lemma 1 and since matrixH is irreducible according to Theorem

1 and corresponding assumptions, we conclude that the operation at the limit case using (3.21) implies

lim
M→∞

(
lim

N→∞
E[C̃N ]

)
= X − Y. (3.22)

Also, it can be shown that bipolar representation C = X − Y of the stochastic subtracter is achieved

using C 7→ 2C.

;Q< MAX and MINArchitectures

The MAX & MIN are very popular non-linear functions [50], especially in max pooling operations,

and thus their efficient implementation is significant within SC�s context. Current MAX & MIN archi-

tectures include the following ones.

The architecture by Lee et al.[39] realizes the stochastic MAX & MIN by correlating [4] the input

sequences using a three state FSM and then a single gate to produce the output, depending on the desired

function (MAX or MIN). The FSM�s number of states limits the accuracy of the output since it can only

store logic ones according to the FSM depth used.

Another architecture, by Li et al. in [43] uses MUXs and the FSM-based tanh function [15] to realize

the MAX & MIN. One of the two MUXs though, uses an additional hardware-demanding binary-to-

stochastic converter to generate the MUX�s select signal (besides its inputs) thus increasing the hardware

requirements [65]. Furthermore, the dependence of the FSM�s number of states with the input sequence

length requires numerical simulations beforehand to derive the register�s size that yields the highest com-

putational accuracy. Following Li et al. [43], the approach by Yu et al. in [89] replaces the binary-to-

stochastic converter with an XOR to reduce the hardware overhead, keeping the rest of the processing
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structure.

A recent method to realize the MAX & MIN is proposed by Lunglmayr et al. in [58]. Instead of

tanh-based FSM as in Yu et al. [89], it uses a shift register to store the ones from one of its inputs, and

its least significant bit (LSB) produces a logic 1 if it has saturated up to the LSB. Similarly to [89], the

size of shift register that yields the highest computational accuracy is derived with numerical simulations

according to the stochastic sequence length used. Moreover, if the shift register�s size is not selected

accurately, the output�s accuracy is reduced as shown in [58].

Motivated by the design challenges of the former methods combined with the necessity for fast com-

putations in SC, we propose a different approach for MAX &MIN. The proposed architectures utilize an

accumulator to capture and store the signed bit-differences between their two input sequences, without

additional random sources, making their operation deterministic. This results in fast convergence and at

the same time highly-accurate computations using short input sequence lengths. The above properties are

demonstrated by modeling the architectures using Markov Chains, allowing us to explain their operating

principles in detail, derive the first moment statistics of their output and prove their proper operation at

the limit.

;Q<Q9 Stochastic MAXArchitecture

<

Figure 3.5: Proposed stochastic MAX architecture. Tn is them-bit register�s state, updated according to

(3.23).

The proposed stochastic MAX architecture is shown in Fig. 3.5, where {Xn}, {Yn} are the stochastic

input sequences and {Zn} is the output. Ideally, if for some n it is Yn > Xn, then the m-bit register�s

value is increased by 1 (up count), whereas if Yn < Xn, it is decreased by 1 (down count). If Yn = Xn

the register�s value remains unchanged. Also, we assume the initial value T0 = 0. One could say that the

m-bit register�s purpose is to count the signed bit-differences between its two inputs.

It is important to note that the up & down counting of them-bit register is saturating, meaning that

states 0 andM − 1 cannot be exceeded and it is always Tn ∈ TR where TR , {0, 1, 2, ...,M − 1}, with

M = 2m being the total number of states. Hence, from the architecture of Fig. 3.5 we conclude that the
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state Tn evolves according to

Tn = max
{
min

{
Tn−1 +XnYn −XnY n,M−1

}
, 0
}
, (3.23)

where Xn = 1−Xn and Y n = 1− Yn.

The architecture�s output Zn is determined as follows: ifXn and Yn are both 0 or both 1, then Zn is

0 or 1 respectively; if Yn > Xn then Zn = 1; if Yn < Xn, then Zn = 1 if the register was zero in the

previous cycle, i.e. if Tn−1 = 0, and it is Zn = 0 otherwise. Defining Jn to be 1 if Tn > 0 and zero

otherwise, and by inspecting the architecture in Fig. 3.5, the output Zn can be expressed as

Zn = Yn +XnJn−1. (3.24)

The deterministic behavior of the proposed architecture in Fig. 3.5 is captured by (3.23) and (3.24).

Specifically, the output Zn is a function of the inputs and the state Tn without any additional randomiza-

tion from any source. As such, the resolution of {Zn} is only limited by the length of theN -bit stochastic

input sequences and the register�s size.

;Q<Q9Q9 Markov Chain Modeling

To model the operation of the proposed architecture with the stochastic inputs, we consider two

Markov Chain (MC) models. The first one is more simple and allows us to easily model the transi-

tions of the state. However, it not convenient for modeling the output which is a function of the previous

state and the current inputs. To simplify the derivation of output�s statistics, we extend the first model

by doubling the number of states, so that the output depends only on the current state. Both models are

helpful in explaining different aspects of the architecture�s behavior and are discussed in the following

subsections.

 

Figure 3.6: Markov Chain model of the proposed stochastic MAX architecture. Output Zn is determined

by the state�s transition according to transition probabilities A,B,C,D given by (3.26).

The first MC model is shown in Fig. 3.6. It describes the MAX architecture�s operation, corre-

sponding to a Mealy FSM. The model�sM states have the obvious one-to-one correspondence with the

register�s states. The MC state Sn at time index n, starting from S0 = 0, transitions within the set

S , {0, 1, 2, . . . ,M − 2,M − 1}. (3.25)
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If the MC�s current state is Sn−1 at time index n− 1, then inputsXn, Yn along with Sn−1 determine the

output Zn as well as the next state Sn. The transition probabilities A,B,C and D are

A =Pr(Xn = 0)Pr(Yn = 0)

B =Pr(Xn = 1)Pr(Yn = 1)

C =Pr(Xn = 0)Pr(Yn = 1)

D =Pr(Xn = 1)Pr(Yn = 0). (3.26)

To proceed with the analysis of theMC�s behavior, we define theM×M transition probability matrix

H =
[
Pr(Sn+1 = s|Sn = σ)

]
σ,s∈S

where Pr(Sn+1 = s|Sn = σ) is the transition probability from state σ to state s, at time index n, and

σ, s = 0, 1, . . . ,M − 1. From (3.26) it is

H =




1− C C 0 . . . . . . 0

D A+B C 0 . . . 0

0 D A+B C . . . 0
...

. . .
. . .

. . .
. . .

...

0 . . . 0 D A+B C

0 . . . . . . 0 D 1−D




. (3.27)

The probability distribution vector of state Sn is defined as

pTn ,




Pr(Sn = 0)

Pr(Sn = 1)

Pr(Sn = 2)
...

Pr(Sn = M−1)




∈ [0, 1]M . (3.28)

For n = 1, 2, . . . , N steps it is expressed as

pn = p0H
n ∈ [0, 1]M , (3.29)

where p0 is the initial distribution vector representing the starting state of the register, i.e. S0 = 0, i.e.,

p0 =
[
1, 0, 0, ...0

]
∈ [0, 1]M . (3.30)

Despite its simplicity, the MC model of Fig. 3.6 is not convenient for the analysis of the statistics

of the output. Instead, we can double the number of its states to get the MC model of Fig. 3.7. This

extended MC model corresponds to a Moore FSM, relating the output value Zn only to the state. Each
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register state is represented by two states in the model of Fig. 3.7. The states of the model are classified

into two sub-sets; the first one, Sa , {0a, 1a, . . . , (M − 1)a} containing the states that output Zn = 0,

and the second one, Sb , {0b, 1b, . . . , (M − 1)b} containing the states that output Zn = 1. The MC�s

state S̃n transitions within the 2M states in

S̃ , Sa ∪ Sb = {0a, 0b, 1a, 1b, . . . , (M−1)a, (M−1)b}, (3.31)

according to inputs Xn, Yn and with initial state S̃0 = 0a. The transition probability matrix H̃ ∈

Figure 3.7: Extended Markov Chain model of the proposed stochastic MAX architecture with transition

probabilities given by (3.26). Each register state is represented by two states in the model and is classified

into two subsets of states; upper ones outputting Zn = 1 and lower ones outputting Zn = 0. Subscripts
a, b denote in which subset S̃n is currently into. Transition probabilities A,B,C,D are given by (3.26).

[0, 1]2M×2M of the model in Fig. 3.7 is expressed using A,B,C,D from (3.26), the definitions F ,

B +D and U , B + C and the state ordering
(
0a, 0b, 1a, 1b, . . . , (M − 1)a, (M − 1)b

)
as follows

H̃ =




A F 0 C 0 . . . 0

A F 0 C 0 . . . 0

D 0 A B 0 C 0 . . . 0

D 0 A B 0 C 0 . . . 0

0 0 D 0 A B 0 C 0 . . . 0

0 0 D 0 A B 0 C 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . .

...

0 . . . 0 D 0 A B 0 C

0 . . . 0 D 0 A B 0 C

0 . . . 0 D 0 A U

0 . . . 0 D 0 A U




. (3.32)
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The probability distribution vector of state S̃n, is defined as

p̃Tn ,




Pr(S̃n = 0a)

Pr(S̃n = 0b)

Pr(S̃n = 1a)

Pr(S̃n = 1b)
...

Pr(S̃n = (M−1)a)

Pr(S̃n = (M−1)b)




∈ [0, 1]2M (3.33)

and it is expressed as

p̃n = p̃0H̃
n ∈ [0, 1]2M , (3.34)

where the initial state of the register S̃0 = 0a is given by

p̃0 =
[
1, 0, 0, ...0

]
∈ [0, 1]2M . (3.35)

;Q<Q9Q< Expected Output Value and Proof of Operation

To derive the first moment statistics of the MAX architecture, we use the MCmodel of Fig. 3.7 along

with equations (3.32), (3.34) and (3.35). Based on the model, we use the fact that Zn = 1 if and only if

S̃n ∈ Sb. Therefore, the expected value of the output Zn is

E[Zn] = Pr(Zn = 1) = Pr

(
S̃n ∈ Sb

)
= p̃0H̃

nqTe , (3.36)

with qe (ones in the even-indexed positions) defined as

qe , [0, 1, 0, 1, . . . , 0, 1] ∈ [0, 1]2M . (3.37)

The average of the N -bit output sequence is

Z̃N =
1

N

(
Z1 + Z2 + · · ·+ ZN

)
, (3.38)

and using (3.36) its expected value is written as

E[Z̃N ] =
1

N

N∑

n=1

E[Zn] =
1

N
p̃0

(
N∑

n=1

H̃n

)
qTe . (3.39)

To proceed with the proof of operation, we assume that 0 < X,Y < 1 andX 6= Y , which imply that
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0<A,B,C,D<1 and ρ 6= 1 where

ρ ,
C

D
=

(1−X)Y

(1− Y )X
. (3.40)

By inspecting the MC model of Fig. 3.7 one can observe that the chain is irreducible, since every state

is accessible from every other one, and so the transition matrix H̃ is also irreducible.

Let vT = [v1, v2, . . . , v2M ]T ∈ R
2M be the left eigenvector of H̃ , i.e. vT H̃ = vT , corresponding to

eigenvalue 1 and be normalized such that vT 1 = 1, where 1 = [1, 1, . . . , 1]T ∈ R
2M is a column vector

of ones. Then, it can be verified that

v1 = Aw1 +Dw2

v2 = Fw1

v2k−1 = Awk +Dwk+1

v2k = Cwk−1 +Bwk

v2M−1 = AwM

v2M = CwM−1 + UwM (3.41)

where k = 2, 3, . . . ,M − 1 and wk is given by

wk = λρk−1, k = 1, 2, . . . ,M (3.42)

with

λ ,
ρ− 1

ρM − 1
. (3.43)

Since the transition matrix H is irreducible, from Theorem 8.6.1 in [31] it is limN→∞
1
N

∑N
n=1 H̃

n =

1vT . Combining it with (3.39) we get

lim
N→∞

E[Z̃N ] = p̃01v
T qTe = vT qTe =

M∑

k=1

v2k. (3.44)

From (3.41) and (3.42) we have

v2 = Fλ

v2k = λ(C +Bρ)ρk−2

v2M = λ(C + Uρ)ρM−2, (3.45)
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resulting in

M∑

k=1

v2k = λ

{
F + (C +Bρ)

ρM−2 − 1

ρ− 1
+ (C + Uρ)ρM−2

}
. (3.46)

Combining the above and taking the limit when N,M →∞ we get

lim
M→∞

(
lim

N→∞
E[Z̃N ]

)
= lim

M→∞

(
M∑

k=1

v2k

)
=





X, X > Y

Y, Y > X

, (3.47)

which verifies that Z̃N converges to max{X,Y }.

;Q<Q< Stochastic MINArchitecture

<

Figure 3.8: Proposed stochastic MIN architecture. Tn is the m-bit register�s state, updated according to

(3.23).

The proposed MIN architecture is shown in Fig. 3.8. Again, the m-bit register is used to count the

number of cases Yn > Xn minus the number of cases Yn < Xn. Therefore, the accumulator�s current

value Tn, starts from T0 = 0, belongs in the set TR , {0, 1, 2, ...,M − 1} which has a total ofM = 2m

states and is updated according to (3.23). Similarly to the max architecture, states 0 andM − 1 constrain

the values� range of Tn.

In contrast to the MAX architecture, the output Kn here is determined as follows: if Xn and Yn are

both 0 or 1, then Kn has the same value 0 or 1 respectively; if Yn > Xn, then Kn always outputs 0;

and, if Yn < Xn, then Kn = 1 if and only if the register�s previous value was Tn−1 > 0, and Kn = 0

otherwise. Summarizing the former cases and also considering the architecture in Fig. 3.8 as well as the

definition Jn = Tn > 0, the instantaneous outputKn is expressed as

Kn = Xn

(
Yn + Jn−1

)
. (3.48)
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Figure 3.9: Markov Chain model of the proposed stochastic MIN architecture. OutputKn is determined

by the state�s transition according to transition probabilities A,B,C,D given by (3.26).

;Q<Q<Q9 Markov Chain Modeling

The operation of the proposed MIN architecture is modeled using the MC model in Fig. 3.9. The

MC�s current state Sn transitions within its M states in the set S given by (3.25), while its probability

distribution vector after N steps is calculated using equations (3.26), (3.27), (3.29) and (3.30).

The MC model in Fig. 3.9 is converted to that in Fig. 3.10 which allows to relate its current state S̃n

to the outputKn by classifying the model�s states into the sub-sets Sa, Sb that always outputKn = 1 and

Kn = 0 respectively. Furthermore, S̃n transitions within 2M states in the set given by (3.25), with initial

value S̃0 = 0a. Assuming the states�ordering
(
0a, 0b, . . . , (M−1)a, (M−1)b

)
, the transition probability

Figure 3.10: Extended Markov Chain model of the proposed stochastic MIN with transition probabilities

given by (3.26). Each register state is represented by two states; upper one outputs Kn = 0 and lower
one outputsKn = 1. Subscripts a, b denote in which set S̃n is currently into.
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matrix of the MC model is given by (3.49) where we have defined U , B + C andW , D +A

H̃ =




B W 0 C 0 . . . 0

B W 0 C 0 . . . 0

D 0 A B 0 C 0 . . . 0

D 0 A B 0 C 0 . . . 0

0 0 D 0 A B 0 C 0 . . . 0

0 0 D 0 A B 0 C 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . .

...

0 . . . 0 D 0 A B 0 C

0 . . . 0 D 0 A B 0 C

0 . . . 0 D 0 A U

0 . . . 0 D 0 A U




. (3.49)

;Q<Q<Q< Expected Output Value and Proof of Operation

The expected value of the instantaneous outputKn is

E[Kn] = Pr(Kn = 1) = Pr

(
S̃n ∈ Sa

)
= p̃0H̃

nqTo , (3.50)

where we used (3.35) and (3.49), and, qo is defined as

qo , [1, 0, 1, 0, . . . , 1, 0] ∈ [0, 1]2M . (3.51)

The average of the output N -bit sequence is

K̃N =
1

N

(
K1 +K2 + · · ·+KN

)
, (3.52)

and its expected value, using (3.50), is given by

E[K̃N ] =
1

N

N∑

n=1

E[Kn] =
1

N
p̃0

(
N∑

n=1

H̃n

)
qTo . (3.53)

Note that the procedure to prove the operation of the MIN architecture, follows closely that of the MAX

one.

;Q; Compact MAX and MINArchitectures

In this section we present a different architecture for the realization of the MAX and the MIN. In

contrast to the previous proposed ones, the architecture is compact in the sense that it can realize the

MAX and/or the MIN without changing the logic gates constituting the architecture. Of major interest is
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also the analysis for the first moment statistics and the proof of operation accompanying the architecture,

which is conducted on a stochastic FSM expressing a Mealy behavior.

;Q;Q9 Compact MAXArchitecture

Figure 3.11: Proposed compact stochastic MAX architecture whereM = 2m. Tn is the register�s current

value, updated according to (3.54).

Fig. 3.11 shows the proposed stochastic MAX architecture where {Xn} and {Yn} are the stochastic

input sequences, assumed to be generated by SNGs, and {Zn} is the output. Its operation is based on

increasing the m-bit register�s current value Tn by 1 if Xn > Yn and decreasing it by 1 if Xn < Yn,

within the set TR , {0, 1, 2, . . . ,M − 1}, starting from T0 = M/2, where M = 2m is the number

values. Essentially, the register counts the number of signed bit-wise differences between its two inputs,

Xn and Yn. We can express the update of the register�s value as

Tn = max
{
min {Tn−1 +Xn − Yn,M − 1}, 0

}
, (3.54)

where the min and max functions imply the natural saturating behavior of the counter since values 0 and

M − 1 cannot be exceeded.

To derive the output Zn, we define first the result of the comparison between the register�s current

value Tn and the reference valueM/2 as

Jn =




0, if Tn < M/2

1, if Tn ≥M/2
, (3.55)

which, following Fig. 3.11, implies that

Zn = JnXn + JnYn, (3.56)

where Jn = 1− Jn (considering 0 and 1 as Real numbers). Note that Jn = 1 means that input sequence

Xn has had more 1s than Yn had, within the storing range of the register. In this case, the output is

Zn = Xn as expected, whereas if Jn = 0 it is Zn = Yn.
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Although the input sequences are stochastic, the architecture�s operation is deterministic, modeled by

Eqs. (3.54) - (3.56), and the output Zn is a function of Tn, Xn and Yn. These imply that the accuracy of

{Zn} depends on: 1) the size,m, of the register, and 2) the length, N , of the input sequences.

;Q;Q9Q9 Markov Chain Modeling

Figure 3.12: Markov Chain model of the proposed compact stochastic MAX architecture. Transition

probabilities are given by (3.58). Jn denotes the result of the comparison between the register�s current

value with the initial oneM/2.

To investigate the stochastic behavior of the proposed MAX architecture we model it as the Markov

Chain (MC) shown in Fig. 3.12. The MC has theM states in the set given by (3.57)

S , {0, 1, . . . ,M − 2,M − 1}, (3.57)

and its current state is Sn, corresponding to the current value Tn of the register. The initial state is

S0 = M/2.

The transition from state Sn−1 to state Sn is determined by Sn−1, Xn and Yn. Using the probability

distributions of inputs Xn and Yn, the assumption that their sequences are IID, and the operation of the

MAX architecture in Fig. 3.11, we derive the transition probabilities shown in the MCmodel in Fig. 3.12

as

A , Pr(Xn = 1)Pr(Yn = 0) = X(1− Y )

B1 , Pr(Xn = 0)Pr(Yn = 0) = (1−X)(1− Y )

B2 , Pr(Xn = 1)Pr(Yn = 1) = XY

B , B1 +B2

C , Pr(Xn = 0)Pr(Yn = 1) = (1−X)Y, (3.58)

where we have setX = Pr(Xn = 1) and Y = Pr(Yn = 1). Assuming the state ordering (0, 1, . . . ,M −

1) in S and using (3.58), theM×M transition probability matrixH =
[
Pr(Sn+1 = sj |Sn = si)

]
si,sj∈S
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is written as

H =




1−A A 0 . . . . . . 0

C B A 0 . . . 0

0 C B A . . . 0
...

. . .
. . .

. . .
. . .

...

0 . . . 0 C B A

0 . . . . . . 0 C 1− C




. (3.59)

The probability distribution vector of state Sn, is defined as

pTn ,




Pr(Sn = 0)

Pr(Sn = 1)

Pr(Sn = 2)
...

Pr(Sn = M−1)




∈ [0, 1]M , (3.60)

and it is expressed as,

pn = p0H
n ∈ [0, 1]M . (3.61)

Here, p0 is the initial distribution vector representing the starting state of the register, S0 = M/2. It is

p0 = eM/2+1, (3.62)

where ei = [0, . . . , 0, 1, 0, . . . , 0] ∈ R
M is the i-th standard vector, i.e., with all zeros except the ith entry

being one.

;Q;Q9Q< Expected Output Value and Proof of Operation

We use the MC model in Fig. 3.12 and (3.58)-(3.62) to derive the output�s first moment statistics.

The expected value of the output Zn is expressed as

E[Zn] = Pr(Zn = 1)

=
∑

s∈S
x,y∈{0,1}

Pr(Zn = 1, Sn−1 = s,Xn = x, Yn = y)

=
∑

s∈S
x,y∈{0,1}

Pr(Zn = 1|Sn−1 = s,Xn = x, Yn = y)Pr(Sn−1 = s,Xn = x, Yn = y) (3.63)

Regarding the conditional probability Pr(Zn = 1|Sn−1 = s,Xn = x, Yn = y) we note that Zn is a

(deterministic) function of Sn−1, Xn and Yn, as can be seen in the MC model in Fig. 3.12. Using the

MC model and Eq. (3.56) we can distinguish between three possible cases, i.e.:
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1. When Sn−1 ≤M/2− 2, then Zn = 1 if and only Yn = 1,

2. When Sn−1 = M/2− 1, then Zn = 1 if and only at least one ofXn, Yn is 1,

3. When Sn−1 ≥M/2, then Zn = 1 if and only Xn = 1.

Therefore we can decompose the summation in Eq. (3.63) as

E[Zn] =

M/2−2∑

s=0

Pr(Sn−1 = s, Yn = 1) +
∑

(x,y) 6=(0,0)

Pr(Sn−1 = M/2− 1, Xn = x, Yn = y)

+

M−1∑

s=M/2

Pr(Sn−1 = s,Xn = 1). (3.64)

Since Xn, Yn and Sn−1 are independent random variables , it is

Pr(Sn−1 = s,Xn = x, Yn = y) = Pr(Sn−1 = s)Pr(Xn = x)Pr(Yn = y)

simplifying (3.64) to

E[Zn] = Y

M/2−2∑

s=0

Pr(Sn−1 = s) + (X + Y −XY )Pr(Sn−1 = M/2− 1)

+X

M−1∑

s=M/2

Pr(Sn−1 = s)

= pn−1

(
Y eTL + (X + Y −XY )eTM/2 +XeTU

)
, (3.65)

where eL =
∑M/2−1

i=1 ei and eU =
∑M

i=M/2+1 ei. The N -bit output sequence time-average,

Z̃N =
1

N

(
Z1 + Z2 + · · ·+ ZN

)
, (3.66)

has the expected value below based on Eq. (3.65),

E[Z̃N ] =
1

N

N∑

n=1

E[Zn] =
1

N
p0

(
N−1∑

n=0

Hn

)(
Y eTL + (X + Y −XY )eTM/2 +XeTU

)
. (3.67)

Eq. (3.67) is used to confirm the operation of the MAX architecture for large N andM values.

To verify the operation of the proposedMAX architecture we assume that 0 < X,Y < 1 andX 6= Y .

Then, from (3.58) it is 0 < A,B,C < 1, as well as ρ 6= 1, where we have defined

ρ ,
A

C
=

X(1− Y )

Y (1−X)
. (3.68)

Moreover, note that ρ > 1 if and only if X > Y .
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Observing the MC model in Fig. 3.12 one can conclude that the MC is irreducible, as each state sj is

accessible, with positive probability, from every other state si, implying irreducibility for the matrix H

as well. Therefore, from Theorem 8.6.1 in [31] we have that

lim
N→∞

1

N

N−1∑

n=0

Hn = 1T v, (3.69)

where the row vector v ∈ R
M is the unique left eigenvector ofH , vH = v, corresponding to eigenvalue

1 and being normalized, i.e. v1T = 1, and, 1 = [1, 1, . . . , 1] ∈ R
M is the all ones vector. It can be

verified directly that v = λM [1, ρ, ρ2, . . . , ρM−1], where

λM ,
1− ρ

1− ρM
. (3.70)

Combining (3.67) and (3.69) and noting that p01
T = 1 we get

lim
N→∞

E[Z̃N ] = v
(
Y eTL + (X + Y −XY )eTM/2 +XeTU

)

= Y veTL + (X + Y −XY )veTM/2 +XveTU . (3.71)

Using the expressions of v, eL and eU we get

veTL = λM

(
1 + ρ+ · · ·+ ρM/2−2

)
=

1− ρM/2−1

1− ρM

veTM/2 = λMρM/2−1 =
ρM/2−1 − ρM/2

1− ρM

veTU = λM

(
ρM/2 + ρM/2+1 + · · ·+ ρM−1

)
=

ρM/2 − ρM

1− ρM
, (3.72)

directly implying from (3.72) that limM→∞

(
limN→∞ E[Z̃N ]

)
= Y if ρ < 1 and

limM→∞

(
limN→∞ E[Z̃N ]

)
= X if ρ > 1, and so

lim
M→∞

(
lim

N→∞
E[Z̃N ]

)
=

{
X, X > Y

Y, Y > X
, (3.73)

which proves that the proposed architecture provides the correct expected result in the limiting case.

;Q;Q< Compact MINArchitecture as a Variation of the MAX one

The MIN architecture can be obtained as a variation of the MAX one, as shown in Fig. 3.13. The

counting of logic 1s is identical to that of the MAX architecture. The difference between the two archi-

tectures is the swap of the NOT gate between the twoAND gates that along with the OR gate, determine

the output. Therefore, the MIN architecture�s analysis is similar to that of the MAX one�s.
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Figure 3.13: Proposed compact stochastic MIN architecture. Tn denotes theM = 2m register�s current

value and is updated according to (3.54).

;Q@ Stochastic Computing SigmaHDelta Adder

Within the SC-based DSP cores, the multiply-and-add operation is the most important one. Each

multiplication between two sequences is realized using an AND or XNOR gate according to the SC

number representation format used. The addition part is mainly approached by two design strategies;

two-input adder-tree structures and multi-input adders. Typical two-input SC adders scale the addition�s

result by a factor of two, reducing also the output sequence�s resolution by the same factor [65]. This

forces each subsequent layer within the adder-tree to increase the addition�s scaling in increasing powers

of two. To compensate for the resolution drop, the sequence length should be increased in powers of

two according to the number of layers within the adder-tree, resulting in increased latency and total

energy consumption[80]. Moreover, it is also expected for the adder-tree�s output to constrain cascaded

operations in handling cases where up-scaling is required, such as in non-linear functions [72].

To address the adder-tree�s scaling challenges, multi-input adders were considered for use in SC,

with the accumulative parallel counter (APC) [68] being the most popular one [21, 83, 50, 37]. The

APC accumulates deterministically all input sequences in parallel producing the result in binary format.

In SC-based cascaded computations, however, the APC�s binary output introduces the following design

challenges; 1) it limits the applicability of existing single-bit input/output Stochastic Finite-State Ma-

chines (SFSMs) realizing highly-complex functions including non-linear ones [15, 43] and 2) in case

when other arithmetic operations are required, for instance when multiplications follow the output of SF-

SMs, the binary output has to be regenerated as a stochastic sequence in order for the SC logic gates to

be used [52].

Both adder-tree and multi-input adder design strategies have been explored within the context of

SC for the realization of Multi-Layer Perceptrons (MLP) [37, 49, 48], a class of NNs. In [37], each

neuron forming the MLP is realized using an APC followed by a multi-bit input single-bit output FSM

approximating the tanh (BTanh) non-linear activation function, implemented as a binary up/down counter.

However, the BTanh�s design is not systematic; on the one hand the FSM�s number of states affecting the

tanh�s approximation are derived using numerical experiments for fixed input sequence lengths, while
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on the other the input sequence�s bit-length driving the FSM�s state update is not considered. In [49], a

hybrid SC MLP is realized using an adder-tree structure composed of extended stochastic logic (ESL)

adders [18] in the input layer and APCs in the rest layers. This hybrid format encoding enables the on-

line update of weights. On the other hand, the ESL adders require an additional binary-to-stochastic

number converted for the select signal, taxing on the hardware resources [18, 80], while the adder-tree

requires a tripe modular redundant (TMR) binary search divider, resulting in large sequence lengths for

its computation and stabilization phases [50, 49]. With respect to the activation functions, the same

approach as in [37] was followed, but, a multi-input single-bit output FSM realizing the rectifier linear

unit (ReLU) was used. Similar to [49], in [48] a gradient-based updating scheme was applied to a MLP,

showing the effectiveness of the gradients� and the weights� on-line learning. Yet, in [49] no emphasis in

the multiply-and-add operations is given.

Motivated by the limitations of existing SC adder design strategies, this work introduces a SC adder

architecture that utilizes a first-order sigma-delta modulator (SDM). The proposed Stochastic Computing

Sigma-Delta (SCSD) adder sums the bits of the input sequences into a single-data bus and then employs an

internal data range conversion scheme so as to exploit the SDM�s property of converting a high-resolution

signal into a single-bit one. It offers the following advantages: 1) it operates on independent inputs, 2) the

addition is done deterministically without additional random sources, 3) it is fast converging with small

sequence lengths, 4) it enables cascaded operations to be made efficiently with existing SC arithmetic

circuits and 5) it allows the use of any single-bit input/output SFSM, thereby opening the SC-based NN

design space.

;Q@Q9 SCSD High-Level Architecture

<

<

Figure 3.14: Architecture of the proposed Stochastic Computing Sigma-Delta (SCSD) adder. The XNOR

gates between the input sequences {Xj
n}Nn=1, {W

j
n}Nn=1 are used to multiply numbers in bipolar format.

The multiplication results are added to a single bus with the range of its represented value converted

from [0, k] to [−k, k]. The first-order digital SDM converts a higher resolution signal into a single-bit

one, outputting the average of its input according to (3.80), realizing the sum-of-products.

The proposed multi-input single-bit output Stochastic Computing Sigma-Delta (SCSD) adder archi-

tecture is shown in Fig. 3.14. Its sequences {Xj
n}Nn=1, {W

j
n}Nn=1 with j = 1, . . . , k are assumed to be

i.i.d., while {Zn}
N
n=1 is the output sequence. The XNOR gates are used to multiply the input sequences

in bipolar format [23], as {Xj
n}Nn=1, {W

j
n}Nn=1 may carry information of negative-signed numbers. This
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results in k intermediate sequences {U j
n}Nn=1, whose time-average according to (2.1) is Ũ

j
N = X̃

j
NW̃

j
N ,

with probability pUj=Pr(U
j
n = 1) = pXjpW j .

The summation of the k bits of {U j
n}Nn=1 follows the multiplication operation, resulting in the se-

quence {V j
n }Nn=1, where Vn =

∑k
j=1 U

j
n. It is an integer-valued sequence, since it holds Vn ∈ V , where

V = {0, 1, . . . , k}, with probability pV (v) = Pr(Vn = v) and time-average value

ṼN =
1

N

N∑

n=1

Vn =
1

N

N∑

n=1

k∑

j=1

U j
n =

k∑

j=1

(
1

N

N∑

n=1

U j
n

)
=

k∑

j=1

Ũ
j
N =

k∑

j=1

X̃
j
NW̃

j
N . (3.74)

It should be noted that the summation operation is strictly deterministic as it is implemented with

conventional binary arithmetic as shown in Fig. 3.14, without additional randomizing sources. This

implies that 1) there is no loss of information and 2) the precision of Vn is exclusively determined by the

length, N , of the input sequences.

To exploit the first order SDM�s property of converting a higher-resolution signal into a single-bit one,

the value of Vn should have both positive and negative signed numbers. As such, since Vn is the sum of

k inputs, the range of Vn {0, . . . , k} is extended to {−k, . . . , k} using the transformation Vn 7→ 2Vn−k.

Note that the multiplication operation existing in the range conversion process is realized using a left shift

operation. The bit-width c of Vn is determined according to the number of inputs, k, and should be such

that it can capture all incoming bits, namely c = ⌈log2 k⌉, where ⌈·⌉ is the ceiling function. On the other

hand, the bit-width after the range conversion should be c′ = c + 1, accounting for the signed value of

Vn.

The first-order digital SDM (DSDM) contained within the SCSD adder architecture of Fig. 3.14,

consists of an adder and anm-bit register, followed by a most significant bit (MSB) selection block. The

MSB block, replaces the quantizer existing in the system level model of a typical first order SDM as

shown in Fig. 3.15, which is a simplification of the comparison between the register�s current value and

zero [19, 32]. Therefore, considering the signed representation of Tn, the MSB�s operation implements

a function Q(·) as

Q(Tn) =




1, MSB(Tn) = 0

0, MSB(Tn) = 1
. (3.75)

Since (3.75) describes the quantization process of a single-bit DSDM outputting 0, 1, in the case when

MSB(Tn) = 1, the quantizer�s output, Zn, is fed back as a −1 using sign extension, instead of a logic 0.

Assuming that the register�s initial value T0 can be any one within the set T = {0, 1, . . . ,M − 1},

whereM = 2m is the number of states, the DSDM�s current state Tn is updated as

Tn = max
{
0,min

{
Tn−1 + Vn − Zn−1,M−1

}}
. (3.76)

The max(·) and min(·) functions are used here to denote the register�s natural saturation to states 0 and

M − 1, given that they cannot be exceeded. Therefore, considering (3.75) and (3.76), the SDM�s output
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<

<

Figure 3.15: Top: system level model of a first-order Sigma-Delta Modulator. Bottom: realization of the

first-order Digital Sigma-Delta Modulator. The quantizer block, is replaced by the selection of the most

significant bit.

and consequently that of the SDSC adder is expressed as

Zn = Q
(
max

{
0,min

{
Tn−1+Vn−Zn−1,M−1

}})
. (3.77)

The first order SDM is stable, i.e Z̃N is bounded in [−1, 1] if and only if the input ṼN is bounded in

[−1, 1] [70]. Otherwise, if ṼN< − 1 or ṼN>1, a −1 or a 1 will be constantly fed back on every clock

cycle respectively, resulting in a repeated decrease or increase of the register�s current value Tn.

According to (3.76), the DSDM�s state update describes a first-order difference equation. By simpli-

fying the register�s saturating behavior and taking the time-average of the sequences according to (2.1),

the state update for n = 0, 1, . . . , N becomes

1

N
(TN − T0) =

1

N

N∑

n=0

(Vn − Zn−1) . (3.78)

Taking the limit N →∞ in (3.78) and considering that ṼN ∈ [−1, 1], it holds that

Z̃N = ṼN , (3.79)

which using (3.74) formulates the sum-of-product operation as

Z̃N =
k∑

j=1

X̃
j
NW̃

j
N . (3.80)

Finally, by applying the transformation Z̃N 7→ 2Z̃N − 1 in (3.80), the output�s time-average in bipolar
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format can be obtained.

3.4.2 Markov Chain Modeling

The proposed SCSD adder�s long-term stochastic dynamics can be further explored by describing the

operation of the first-order SDMas a Stochastic Finite-StateMachine (SFSM) and consequentlymodeling

it as a Markov Chain (MC) [78]. To proceed, it is important to explain first the derivation of 1) the MC�s

state space and 2) the MC�s transition probabilities.

The quantizer�s operation according to (3.75), expresses the behavior of the SFSM as a Moore one,

given the relation of the current output Zn to the state Tn. As such, the MC�s current state, Sn, transitions

within the set S = {0, 1, . . . ,M − 1}, which is a bijective mapping of the register�s set T .

The MC�s transition probabilities are determined by {Vn}
N
n=1, and can be challenging to model since

each r.v. Vn takes values within V = {0, 1, . . . , k}. To this end, we consider the probability generating

function (P.G.F.) of Vn defined as GVn , E(sVn), where s ∈ R, calculated as

GVn(s) =E
(
sVn
)
= E

(
sU

1
n+···+Uk

n

)
= E

(
sU

1
n . . . sU

k
n

)
= E

(
sU

1
n

)
. . .E

(
sU

k
n

)

=
k∏

j=1

G
U

j
n
(s) =

k∏

j=1

(
(1− pUj ) + pUjs

)
, (3.81)

where G
U

j
n
(s) = (1 − pUj ) + pUjs, is the P.G.F. of the j-th r.v. U

j
n. Using (3.81), Pr(Vn = v) is

calculated as

Pr(Vn = v) =

(
1

v!

)
dv

dsv
(GVn(s))

∣∣∣∣
s=0

. (3.82)

The MC�s state update is similar to that of the register�s one in (3.76), since it is determined by the

previous state Sn−1, the current input Vn and the previous output Zn−1. The relation with the previous

output makes the analysis difficult, but, it can be eliminated by introducing a new r.v., V ∗n , as follows

Sn = Sn−1 + Vn − Zn−1 = Sn−1 + V ∗n . (3.83)

Note that in (3.83), the stateSn is updated considering thatVn ∈ {−k, . . . , k} andZn ∈ {±1}. Moreover,

since Zn is related to the state, it is convenient to partition S into two subsets Sa = {0, 1, . . . ,M/2− 1}

and Sb = {M/2, . . . ,M − 1}, such that S = Sa ∪ Sb, Sa ∩ Sb = {}. Therefore, it holds that if

Sn ∈ Sa ⇒ Zn = −1 and if Sn ∈ Sb ⇒ Zn = 1.

Once the state update within the state space is defined and the transition probabilities are derived,

they can be used to define the (M ×M) transition probability matrix as H , [Pr(Sn = σj |Sn−1 =

σi)] = [pσi,σj
], where σi, σj ∈ S .

To give a better intuition behind the transitions within theMC and the elements ofH , we proceed with

the following example. For k = 3 inputs, Vn ∈ {0, 1, 2, 3} and after using the mapping Vn 7→ 2Vn − k,

Vn ∈ {−3,−1, 1, 3}. Moreover, considering that V ∗n = Vn−Zn−1, then V
∗
n ∈ {−4,−2,−, 2, 4}. Using

(3.78) to calculate Pr(Vn = v) and taking cases for the transition from Sn−1 to Sn:
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� If Sn−1 ∈ Sa

� If Pr(Vn = 0), then Sn = Sn−1 − 2,

� If Pr(Vn = 1), then Sn = Sn−1,

� If Pr(Vn = 2), then Sn = Sn−1 + 2,

� If Pr(Vn = 3), then Sn = Sn−1 + 4.

� If Sn−1 ∈ Sb

� If Pr(Vn = 0), then Sn = Sn−1 − 4,

� If Pr(Vn = 1), then Sn = Sn−1 − 2,

� If Pr(Vn = 2), then Sn = Sn−1 ,

� If Pr(Vn = 3), then Sn = Sn−1 + 2.

For simplicity we denote pV (v) as p
v
V and forM = 8 states we write matrix H using the state ordering

(0, 1, . . . , 7) as

H =




p0V +p1V 0 p2V 0 p3V 0 0 0

p0V p1V 0 p2V 0 p3V 0 0

p0V 0 p1V 0 p2V 0 p3V 0

0 p0V 0 p1V 0 p2V 0 p3V

p0V 0 p1V 0 p2V 0 p3V 0

0 p0V 0 p1V 0 p2V 0 p3V

0 0 p0V 0 p1V 0 p2V p3V

0 0 0 p0V 0 p1V 0 p2V + p3V




. (3.84)

Assuming that the MC�s starting state S0 can be any one within S , then the initial distribution vector

is defined as

π0 = (1/M)1T ∈ [0, 1]M (3.85)

where 1 is the column vector of M ones. It can be used along with the transition probability matrix H

from (3.84) to calculate the states� probability distribution vector as

πn = π0H
n ∈ [0, 1]M . (3.86)

The states� probability distribution vector enables the derivation of the output�s first-moment statistics.

The expected value of Zn is calculated as

E[Zn] =
∑

z∈{±1}

zPr(Zn = z) = (−1)πne
T
a + πne

T
b , (3.87)
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where ea =
∑M/2

i=1 ei ∈ R
M and eb =

∑M
i=M/2+1 ei ∈ R

M , with ei =
[
0, ...0, 1, 0, .., 0

]
∈ R

M being

the i-th standard vector. The result of (3.86) along with (3.87) can be used to derive the expected value

of the time-average as

E[Z̃N ] =
1

N

N∑

n=1

E[Zn] =
1

N

N∑

n=1

(
(−1)πne

T
a + πne

T
b

)
=

1

N
π0

(
N∑

n=1

Hn

)(
(−1)eTa + eTb

)
. (3.88)

In Fig. 3.16, the expected value of the time-average, E[Z̃N ], is plotted using (3.88), for increasing

values of the sequence lengthN = 1, 2, . . . , 1000, number of statesM = 32 and input probability values

p1U = 0.1, p2U = 0.2, p3U = 0.3. It can be observed that the proposed SCSD adder converges fast to the

sum of the inputs, namely after N = 100 clock cycles.
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Figure 3.16: Expected value of the output�s time-average, E[Z̃N ], calculated using (3.88), estimating the
sums of three inputs with probability values p1U = 0.1, p2U = 0.2, p3U = 0.3, as the sequence length
increases N = 1, . . . , 1000.
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4
Statistical Properties Of
Stochastic Finite-State

Machines

In this chapter 1 , a general methodology to derive analytically the statistical properties of Stochastic

Computing Finite-StateMachines (SFSM) is introduced. The SFSMs, expressed asMoore ones, are mod-

eled using Markov Chains, enabling the derivation in closed form of their output sequences� statistical

properties, including their expected value, their auto- & cross-correlation, their auto- & cross-covariance,

their variance and standard deviation as well as their mean squared error. AMC overflow/underflow prob-

ability model accompanies the methodology, allowing to calculate analytically the expected number of

steps before overflows/underflows, setting the guidelines to select the register�s size that reduces erro-

neous bits originating from them. In the proposed methodology both the input sequence length and the

number of the SFSMs� states are considered as parameters, accelerating the overall design procedure as

the necessity for multiple time-consuming numerical simulations is eliminated. The proposed method-

ology�s accurate modeling capabilities are demonstrated with its application in SFSMs selected from the

SC literature, while comparisons with the numerical experiments justify its correctness.

4.1 Finite-State Machines in Stochastic Computing

The concept of using SFSMs to approximate non-linear functions such as the tanh, the exponential

etc. was introduced in [15]. For the approximations to be feasible, the SFSMs should satisfy the following

conditions according to [15]: 1) they have a finite number of ordered states with the first and last one

being saturating, meaning that they cannot be exceeded; 2) the transitions within their states are driven

by input sequences, with stochastic properties and finite length; and 3) each state communicates with the

rest ones. These conditions allow for the operation of a SFSM to be described as an ergodic Markov

Chain (MC), enabling the synthesis of functions based on simple logical operations between the states�

probabilities[15].

Despite the SFSMs�multiple advantages, they also comewith their ownweaknesses [15]. In [15], it is

mentioned that SFSMs introduce correlations among the bits of the output sequence, which is reasonable

1Copyright © IEEE. Chapter 4 is reprinted, with permission, from: N. Temenos and P. P. Sotiriadis, �A Markov Chain

Framework for Modeling the Statistical Properties of Stochastic Computing Finite-State Machines�, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Early Access. Personal use of this material is permitted, but

republication/redistribution requires IEEE permission.
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given the memory elements required to implement the state machines [15]. However, the calculation of

the output�s auto-correlation is estimated with numerical experiments[15]. This is also the case for the

SFSM�s output that approximates the given function, in which, two important factors contribute as well:

1) the number of states and 2) the input sequence length.

The SFSM analysis of [15], is further extended in [43]. Specifically, in [43], MCs are used to formally

prove the principle of operation of several SC-based non-linear functions, including the exponential, the

tanh etc. [43]. A fault-tolerance analysis with respect to bit-flips is also considered in [43]. Nevertheless,

the SFSM�s statistical properties are not investigated.

Stochastic sequence correlation is often caused at the input as discussed in [9, 4, 39, 57]; the binary-to-

stochastic number converters share a common random number source. This allows for certain arithmetic

operations to be realized more efficiently as shown in [9, 4, 39, 57], at the cost of increased correlation

between the input and the output sequences. The use of a de-correlator unit composed of D Flip-Flops to

reduce correlations is mentioned in [39], but, the analysis is supported by numerical experiments.

With respect to the SFSM�s output auto-correlation, it is only investigated in [13]. Its calculation,

however, faces modeling difficulties when joint distributions are required and thus it is limited to approx-

imations [13]. The variance in multi-stage SC circuits is analyzed in [59]. Yet, it is approached from a

gate-level perspective, without further investigation in SFSMs.

Motivated by the needs for an in-depth understanding of the SFSMs� statistical properties, in this

work we introduce a mathematical framework for their detailed analysis based on MCs. It is a general

methodology, in the sense that it can be applied to any SFSMmodeled as aMC. The major contribution of

this manuscript is the analytical calculation using closed-formed expressions of the following quantities

in a SFSM:

� The expected value of the output and the output�s mean.

� The auto-correlation and auto-covariance of the output.

� The cross-correlation and cross-covariance of the output with the inputs.

� The variance & the standard deviation of the output�s mean.

� The mean squared error of the output�s mean.

� The probability of overflows and underflows in the saturating states.

� The expected number of steps before overflows and underflows, used to select the number of states

of the SFSM balancing the computational accuracy hardware trade-off.

Once applied to a SFSM, the proposed framework can be an effective tool to: 1) evaluate the correctness

of the SFSM�s output when approximating a given function; 2) measure the correlation among the bits

in the output sequence and to what extent it affects further operations (e.g. multiplication) of the output

with itself and the inputs; 3) calculate the expected accuracy of the SFSM�s output and to compare it with

the experimental numerical results; and 4) select the register�s size that balances computational accuracy

compared to hardware resources. A further advantage of the proposed framework is that it considers as
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parameters both the input sequence length and the number of states, which is of utter importance for

the modeling of SFSMs; it eliminates the necessity for multiple time-consuming parametric simulations

to derive the statistical properties and the register�s size, thereby accelerating their design & modeling

procedure.

4.2 Stochastic Finite State Machines & Markov Chain Modeling

In this section, the methodology to model SFSMs as Markov Chains is presented.

4.2.1 Stochastic Finite State Machines

Figure 4.1: Amulti-input single-output stochastic computing processing block.

From a system-level perspective, a SC processing block (SCPB) is represented by the abstract model

of Fig. 4.1. Typically in SC, it can describe the operation of

1. a combinational logic expression,

2. a sequential logic expression,

3. a higher-level architecture, containing both of the previous processing elements.

Therefore, a SCPB can have many stochastic input sequences {Xj
n}, j = 1, . . . , k, each one with proba-

bility Xj = Pr(X
j
n = 1), while {Zn} is the output sequence.

The realization of sequential logic circuits and high-level architectures requires memory elements.

This means that the SCPB must have a set of internal states TR , {0, 1, 2, ...,W − 1}, where W is the

number of states. When counters are used in SC, it is important to note that they may saturate. Assume

for example that the states are linearly ordered, i.e. 0 < 1 < 2 <, . . . , < W −1 and the goal of the SCPB

is to capture an operation of the form Tn = Tn 1 + f(X1
n, . . . , X

k
n), where Tn is the current state. State

Tn is constrained in TR, i.e., within 0 andW 1 and what is (typically) realized by the SCPB is the state

update process

Tn = max
{
min

{
Tn−1 + f(X1

n, . . . , X
k
n),W−1

}
, 0
}
. (4.1)
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To provide with better insight on the state update, we proceed with the following example. Assume

3 i.i.d. input sequences {X1
n}, {X

2
n}, {X

3
n} and the function

f(X1
n, X

2
n, X

3
n) = AND

(
X1

n, X
2
n, X

3
n

)
−AND

(
X1

n, X
2
n, X

3
n

)

where X
j
n = 1 − X

j
n. Considering the above, Tn increases its value by 1-bit when and only when

all three inputs are simultaneously 1, i.e. X1
n = X2

n = X3
n = 1, decreases its value by 1-bit when

X1
n = X2

n = X3
n = 0 and maintains its previous value otherwise, i.e. Tn = Tn−1.

The purpose of the counter�s register in the previous example, is to remember the cases where all

three inputs are 1, so as to �balance� them with the cases where all three inputs are 0.

With respect to the output, Zn is determined according to the SCPB�s operation. In the simplest

case of combinational logic, Zn is straightforward. However, in the case where the SCPB describes a

sequential logic circuit or a higher-level architecture, then FSMs are utilized. Therefore, the SCPB�s

operation can be described using a stochastic FSM (SFSM) and consequently be modeled as a Markov

Chain (MC), allowing for the exploration of its long-term stochastic dynamics and the calculation of its

statistical properties.

4.2.2 Markov Chain Modeling of a Stochastic FSM

A SFSM expresses a behavior that falls into the category of either a Mealy or a Moore FSM. The

former implies that the current outputZn is a function of the inputs and the state, whereas the latter implies

that Zn is determined solely by the current state. Although the conversion from one FSM behavior to

another is a feasible and standard task [60], as shown with the example in Fig. 4.2, here we consider only

Moore-based FSMs. This is because relating the current state to the output only, makes the mathematical

modeling, analysis and design of SFSMs using MCs more tractable.

Figure 4.2: Conversion example of a stochastic Mealy (left) to Moore (right) FSM. StateD1 in the Mealy

is separated into two states in the Moore Da
1 , D

b
1 outputting 1 and 0 respectively. In this example, tran-

sition probabilities C1, C2, C3, are arbitrary selected, but, determined by two stochastic input sequences

{X1
n},{X

2
n}.

A SFSM can be described by a MC model, with an example shown in Fig. 4.3. The MC of Fig. 4.3

is used as reference to explain the modeling procedure of a SFSM, but, note that any MC can be used.
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The MC of Fig. 4.3 has a total ofM states and its current state, Sn, takes values within the set

S , {0, 1, 2, . . . ,M − 2,M − 1}. (4.2)

Therefore, the MC�s current state Sn, is described as a function of the previous state and the inputs, i.e.

Sn = F (Sn−1, X
j
n) and thus the output is a function of the state, i.e. Zn = G(Sn).

Considering that a counter is used as memory element, there is a difference between the counter�s

total number of states, W , and the MC�s number of states, M ; the MC has at least as many states as

the counter has, i.e. M ≥ W , meaning that the mapping from the MC states to those of the counter

is surjective, but, not necessarily injective. This can be based on many factors, such as the conversion

from a Mealy SFSM behavior to a Moore one, the counter�s register type, for instance a shift-register, the

SCPB�s number of inputs etc.

  

    

Figure 4.3: Example of a Markov Chain model describing the operation of a stochastic FSM. Transi-

tion probabilities Aj are defined by a boolean function and determine the state�s transition (see example

below). The output Zn is related to the current state, expressing the FSM�s behavior as a Moore one,

outputting 0 or 1.

Proceeding to the MC�s behavior and assuming that transitions occur from a state σi to any other one

σj , with σi, σj ∈ S , then the (M ×M) transition probability matrix is defined as

H , [Pr(Sn = σj |Sn−1 = σi)]. Considering that the transitions from one state σi to another σj are

determined by the inputsX1
n, X

2
n, . . . , X

k
n of the SCPB, then the transition probabilities Aj , j = 1, . . . , l

could be any boolean function, such as AND, OR, XOR etc, as

Aj = Pr

(
fj(X

1
n, X

2
n, . . . , X

k
n)
)
. (4.3)

To further explain how Aj are determined, consider the following example. Suppose that the MC�s state

Sn−1 at time index n− 1, transitions as follows

� If X1
n = X2

n = 1 and Sn−1 > 0, then Sn = Sn−1 + 1,

� If X1
n = X2

n = 0 and Sn−1 > 0, then Sn = Sn−1 − 1,

� If XOR(X1
n, X

2
n) = 1 and Sn−1 > 0, then Sn = Sn−1,

� If OR(X1
n, X

2
n)=1 and Sn−1 = 0, then Sn = Sn−1 + 2,

� If OR(X1
n, X

2
n)=1 and Sn−1 = M − 1, then Sn = Sn−1.
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Based on the above, the transition probabilities can be described as A1 = Pr(AND(X
1
n, X

2
n) = 1),

A2 = Pr(NOR(X
1
n, X

2
n) = 1) and A3 = Pr(XOR(X

1
n, X

2
n) = 1). They can be used along with the MC

model of Fig. 4.3 and the state ordering (0, 1, . . . ,M−1), to expressH as in (4.4), whereA4 = A1+A3.

H =




A2 0 A4 . . . . . . 0

A2 A3 A1 0 . . . 0

0 A2 A3 A1 . . . 0
...

. . .
. . .

. . .
. . .

...

0 . . . 0 A2 A3 A1

0 . . . . . . 0 A2 A4




. (4.4)

Note that since H is stochastic, it satisfies
∑M

j=1Hi,j = 1, where (i, j) represents the i-th row and j-th

column of the matrixH . The probability distribution vector of state Sn, is defined as

pTn ,




Pr(Sn = 0)

Pr(Sn = 1)

Pr(Sn = 2)
...

Pr(Sn = M−1)




∈ [0, 1]M (4.5)

and for n = 1, 2, . . . , N steps it is derived as

pn = p0H
n ∈ [0, 1]M . (4.6)

Here, p0 denotes the initial distribution vector representing the starting state of the MC, S0, which can

take any value within S . It is expressed as

p0 = ei ∈ [0, 1]M , (4.7)

where ei = [0, . . . , 1, . . . , 0] ∈ R
M is the i-th standard vector.

Before we proceed with the analysis in the next section, it is important to note that we consider only

MCs that are irreducible; they have the property that starting from any state σi, it is possible to transition

to any other one σj , regardless of the number of transition steps.

4.3 Statistical Modeling of Stochastic FSMs

In this section, we use the MC model and its principles to derive analytically the statistical properties

of SFSMs.
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4.3.1 Expected Value

To derive the first-moment statistics, one can observe first from the MC model of Fig. 4.3, that Zn is

related to the state only; each state outputs either 0 or 1, based on the SFSM�s operation. It is convenient

therefore, to partition S into two subsets S1 and S0, such that S = S1∪S0, S1∩S0 = {}, where Sn ∈ S1

⇒ Zn = 1 and Sn ∈ S0 ⇒ Zn = 0.

Considering the above and also the equations describing the MC (4.4), (4.6) and (4.7), the expected

value of the instantaneous output Zn is calculated as

E[Zn] = Pr(Zn = 1) = Pr (Sn ∈ S1) = p0H
nqT , (4.8)

with q ∈ R
M defined as

q ,
∑

i∈S1

ei, (4.9)

where q represents the set of states outputting 1. To give a better intuition behind the calculation of (4.8)

and the definition of q in (4.9), suppose that the states 0 and 1 are the only ones outputting 1. Then S is

partitioned into S1 = {0, 1} and S0 = {2, . . . ,M − 1} and thus q = [1, 1, 0, . . . , 0].

The average of the N -bit output sequence is

Z̃N =
1

N

(
Z1 + Z2 + · · ·+ ZN

)
, (4.10)

and using (4.8) its expected value is calculated as

E[Z̃N ] =
1

N

N∑

n=1

E[Zn] =
1

N
p0

(
N∑

n=1

Hn

)
qT . (4.11)

BothE[Zn] andE[Z̃N ] are also essential in the calculation of the second-moment statistics in the following

subsection.

4.3.2 Auto-Correlation & Covariance

The auto-correlation of the output {Zn} for time lag r ≥ 0 is

RZ(n+ r, n) ,E[Zn+rZn] = Pr(Zn+r = 1, Zn = 1) =
∑

j1,j2∈S1

Pr(Sn+r = j2, Sn = j1)

=
∑

j1,j2∈S1

Pr(Sn = j1)Pr(Sn+r = j2|Sn = j1) =
∑

j1,j2∈S1

(p0H
neTj1)(ej1H

reTj2)

=p0H
nQHrqT , (4.12)
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where q is given by (4.9) and Q ∈ R
M×M is

Q ,
∑

j1∈S1

eTj1ej1 = diag(q). (4.13)

The auto-covariance of the output {Zn} is calculated using (4.8) and (4.12) as

CZ(n+ r, n) , E
[
(Zn+r − E[Zn+r])(Zn − E[Zn])

]

= RZ(n+ r, n)− E[Zn+r]E[Zn]

= p0H
nQHrqT − p0H

n+rqT p0H
nqT . (4.14)

4.3.3 Cross-Correlation & Covariance

We recall that Zn and Sn depend only on {Xj
n}, j = 1, 2, . . . , k and not on their future values.

Moreover, the random variables of the input sequences {Xj
n} are assumed to be independent to each other,

since they originate from different random number sources. To this end, we derive the cross-correlation

of the output {Zn} with the a single input {Xn} as

RZX(n, n+r) , E[ZnXn+r]=Pr(Zn = 1, Xn+r = 1) (4.15)

To proceed further, we distinguish cases for r,

� For r = 0,

RZX(n, n) =Pr(Zn = 1, Xn = 1) =
∑

σ∈S

Pr(Zn = 1, Xn = 1, Sn−1 = σ)

=
∑

σ∈S,
σ1∈S1

Pr(Sn = σ1, Xn = 1, Sn−1 = σ)

=
∑

σ∈S,
σ1∈S1

Pr(Sn = σ1 | Xn = 1, Sn−1 = σ)Pr(Xn = 1)Pr(Sn−1 = σ)

=p0H
n−1(H ◦ V )qTPr(Xn = 1), (4.16)

where matrixH ◦V is the point-wise (Hadamard) product ofH with V , where V ∈ {0, 1}M×M is

such that vi, j = 1 if and only if the transition from the i-th to the j-th state is done withXn = 1.

� For r ≥ 1, since Zn and Xn+r are independent we have

RZX(n, n+ r) =Pr(Zn = 1)Pr(Xn+r = 1) = p0H
nqTPr(Xn+r = 1). (4.17)
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Summarizing,

RZX(n, n+ r) =




p0H

n−1(H ◦ V )qTPr(Xn = 1), r = 0

p0H
nqTPr(Xn+r = 1), r > 0

(4.18)

The cross-covariance between the output {Zn} and the input {Xn} sequences

CZX(n, n+ r) = RZX(n, n+ r)− E[Zn]E[Xn+r], (4.19)

is derived directly from (4.8) and (4.18) and the definitionX = Pr(Xn = 1) giving

CZX(n, n+ r) =




Xp0H

n−1(H ◦ V −H)qT , r = 0

0, r > 0
(4.20)

4.3.4 Variance and Standard Deviation

The variance of Z̃N from (4.10) is calculated using the expression (4.14) as follows

Var(Z̃N ) =E
[
(Z̃N − E[Z̃N ])2

]
=

1

N2

N∑

i,j=1

E
[
(Zi − E[Zi])(Zj − E[Zj ])

]

=
1

N2

N∑

i,j=1

CZ(i, j) =
1

N2




N∑

i=1

CZ(i, i) + 2

N∑

i>j

CZ(i, j)




=
1

N2

[
p0

N∑

i=1

H iQqT −

N∑

i=1

(
p0H

iqT
)2

+ 2

(
N−1∑

j=1

N∑

i=j+1

p0H
jQH(i−j)qT

−
N−1∑

j=1

N∑

i=j+1

(
p0H

iqT
) (

p0H
jqT
)
)]

, (4.21)

while the standard deviation is obtained as σZ̃N
=
√
Var(Z̃N ).

4.3.5 Mean Squared ErrorAnalysis

To investigate the output accuracy of a SFSM, one can calculate analytically the Mean Squared Error

(MSE) between the output�s mean value Z̃N and the actual value of the computation Z̄. It is calculated

as

MSE(Z̃N ) = E

[
(Z̃N − Z̄)2

]
= E

[
Z̃2
N − 2Z̃N Z̄ + Z̄2

]
= E

[
Z̃2
N

]
− 2E[Z̃N ]Z̄ + Z̄2

= Var(Z̃N ) + E[Z̃N ]2 − 2E[Z̃N ]Z̄ + Z̄2, (4.22)

where the analytical expressions (4.11) and (4.21) are used.
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4.4 Number of States Selection & Register Size Estimation

The registers utilized by the SCPBs are typically used to store and �remember� logic 1s based upon a

counting process. Ideally, with finite input sequence length and infinite number of states, the counting is

performed perfectly, i.e. without loss of 1s. In practice, however, this is not feasible given the register�s

finite number of states; if they are too few, the counting process results in overflows or underflows that

may degrade the output�s accuracy.

Consider the following scenario: starting from any initial state of the register, e.g. T0 ∈ TR, the

SCPB�s inputs are such that they force Tn to perform a walk within states 0, . . . ,W − 1. Eventually,

Tn will reach either of its saturating states W − 1 or 0 and may visit them repeatedly. This can cause

overflows or underflows given that statesW − 1 and 0 cannot be exceeded to allow for further counting

and correctly storing of logic 1s. Therefore, it is important to investigate how the number of statesW are

related to overflows/underflows and when this impacts the accuracy of the output sequence.

4.4.1 Stochastic Finite-State Machine Overflow/Underflow Modeling

To explain the modeling procedure of overflows/underflows, consider theMC of Fig. 4.3 and suppose

that its current state Sn is M − 1 (or 0). The overflows/underflows occur when and only when the next

combination of inputs at time index n+1, force the MC�s state to return to itself, i.e. Sn+1 = Sn, where

it should transition to Sn+1 = Sn+1 or Sn+1 = Sn− 1 instead. However, statesM and−1 do not exist

and as expected, the MC of Fig. 4.3 does not allow for overflows/underflows to be modeled. Therefore,

we modify it to the one shown in Fig. 4.4 which contains two extra absorbing states Ma,Mb so as to

capture the overflows/underflows. Note that both statesMa,Mb are used for modeling purposes only and

do not imply any change of the register�s states or size.

  

    

Figure 4.4: Example of the Markov Chain overflow/underflow model with absorbing states Ma,Mb

corresponding to that of Fig. 4.3.

Based on theMCmodel of Fig. 4.4 one can calculate the probability of overflows/underflows in states

Ma,Mb. First, the set of the MC�s states is defined as Ŝ , {0, 1, 2, ...,M − 1,Ma,Mb} and assuming a

state order (0, 1, 2, ...,M − 1,Ma,Mb) then the transition probability matrix Ĥ ∈ [0, 1](M+2)×(M+2) is
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written as

Ĥ =




0 0 A4 . . . . . . 0 0 A2

A2 A3 A1 0 . . . 0 0 A4

0 A2 A3 A1 . . . 0 0 0
...

. . .
. . .

. . .
. . .

...
...

...

0 . . . 0 A2 A3 A1 0 0

0 . . . . . . 0 A2 A3 A1 0

0 . . . . . . 0 0 0 1 0

0 . . . . . . 0 0 0 0 1




. (4.23)

The MC�s current state Ŝn probability distribution vector is

p̂Tn ,




Pr(Ŝn = 0)

Pr(Ŝn = 1)
...

Pr(Ŝn = M − 1)

Pr(Ŝn = Ma)

Pr(Ŝn = Mb)




∈ [0, 1]M+2 (4.24)

and is calculated as

p̂n = p̂0Ĥ
n, (4.25)

with initial distribution vector

p̂0 = ei ∈ [0, 1]M+2. (4.26)

Considering the above, the probability that theMC has overflowed/underflowed by clock cyclen in states

Ma andMb is Pr(Ŝn = Ma) and Pr(Ŝn = Mb) respectively and is calculated as

[
Pr(Ŝn = Ma), Pr(Ŝn = Mb)

]
=p̂0Ĥ

n[eTM+1, e
T
M+2]. (4.27)

4.4.2 Expected number of Steps before Overflows/Underflows

It is reasonable to further investigate the overflow/underflow process, especially when the operation

of the SFSM and consequently that of the SCPB restrains their occurrence. For this reason, we calculate

the expected number of transitions before the first overflow/underflow, i.e. before states Ma or Mb are

reached. We write matrix Ĥ in its canonical form [25, 61] as

Ĥ =

[
H̃ R

02,M I2

]
, (4.28)
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where H̃ ∈ [0, 1]M×M , R ∈ [0, 1]M×2, I2 ∈ [0, 1]2×2 and 02,M ∈ [0, 1]2×M . Using H̃ , the fundamental

matrix of the absorbing MC [25, 61] is calculated as

F = (IM − H̃)−1 ∈ R
M×M . (4.29)

Considering that the initial state, S0, can be any within the states S of the MC of Fig. 4.3, then the

expected number of transitions before the MC is absorbed is

N∗ = p0F1, (4.30)

where 1 ∈ R
M is the column vector of all ones and p0 is given by (4.7). The potentially negative impact

of overflows/underflows and the importance of N∗ in the register�s state selection, is discussed in the

following subsection.

4.4.3 Guidelines to select the number of states

According to the SCPB�s operation and the counting process itself, an overflow/underflow does not

always result in an erroneous bit at the output. To give a better insight on this, we consider two cases for

a MC with a finite number of statesM :

� The MC�s current state Sn starts from the initial state S0 = 0, transitions within S , and is al-

lowed to transition to its saturating states, visiting them repeatedly as well. Typically in SC, such

MC describes the operation of a SFSM that approximates an asymptotically bounded function and

actually benefits from the overflows/underflows, for instance the stochastic tanh [15].

� The MC�s current state Sn starts from the initial state S0 = 0, transitions within S , but, is not

allowed to repeatedly visit the last state,M − 1 which is a saturating one. Such MC describes the

operation of a SFSM that captures the bit-differences from the input sequences and stores them

cumulatively in a register, but, does not benefit from overflows as they may result in erroneous bits

at the output sequence [80, 81].

From the above, it is reasonable for a SFSM to have the number of its states carefully selected so as to

limit the use of registers taxing on the hardware resources. In this direction, one can use the expression of

N∗ in (4.30) as a guideline to selectM and hence the register�s size. First, one has to select the stochastic

sequence lengthN , the number of statesM and the input probabilitiesXj = Pr(X
j
n = 1), j = 1, . . . , k.

SinceN∗ is a function of the inputs and the number of statesM = 2w, a reasonable register�s size ŵ can

be selected

ŵ=min
{
w ∈ N | min

(X1,...,Xk)
N∗(X1, . . . , Xk, 2w)≥N

}
. (4.31)
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4.5 Modeling Examples

In this section we show how the the proposed MC framework can be applied to model in detail the

statistical properties of two SFSMs, selected from the SC literature. To demonstrate our framework�s

accurate modeling, we compare its results with those obtained from the numerical calculations for 104

runs with i.i.d. inputs, all conducted using Matlab.

4.5.1 Modeling Example 1: Stochastic Tanh

Architecture: The first modeling example we consider is the stochastic tanh function (STanh) introduced

in [15]. Its architecture is shown in Fig. 4.5, where {Xn} is the i.i.d. input sequence and {Zn} is the

output. IfXn = 1, then thew-bit register�s current value Tn is increased by 1-bit, whereas in the opposite

case, i.e. Xn = 0, it is decreased by 1-bit.

The up & down counting of Tn occurs within TR , {0, 1, . . . ,W − 1}, whereW is the total number

of states. Here, the up & down counting is realized using a ripple binary counter, able to count up to

W = 2w states, where w is the register�s size, but, note that it can also be realized by a shift-register. The

first and last states, 0 andW − 1, are saturating, which means that they cannot be exceeded. Therefore,

considering (4.1), with initial state T0 = W/2, Tn is updated as

Tn = max
{
min

{
Tn−1 +Xn −Xn,W−1

}
, 0
}
.

The instantaneous value of the output Zn, is determined by the state�s current value as Zn = Tn ≥

W/2.According to the analysis in [15] and considering the above, for an inputX representing a stochastic

number in bipolar format, the configuration shown in Fig. 4.5 approximates the Tanh(·) function as

STanh(W,X) ≈ Tanh(XW/2).

Figure 4.5: Architecture of the stochastic tanh function.

Markov Chain Modeling: The operation of the STanh architecture shown in Fig. 4.5 can be described

by the MC model of Fig. 4.6. Its states have an one-to-one correspondence with the register�s ones and

therefore theMC�s current valueSn transitions withinS = {0, 1, . . . ,M−1}. The transition probabilities
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are

A1 = Pr(Xn = 1)

A2 = Pr(Xn = 0) = 1− Pr(Xn = 1) (4.32)

and can be used to describe the transition probability matrixH ∈ R
M×M as

H =




A2 A1 0 . . . . . . 0

A2 0 A1 0 . . . 0

0 A2 0 A1 . . . 0
...

. . .
. . .

. . .
. . .

...

0 . . . 0 A2 0 A1

0 . . . . . . 0 A2 A1




. (4.33)

Assuming an initial distribution vector p0 = eM/2 ∈ R
M , the MC�s probability distribution vector pn is

calculated using (4.6).

  

    

    

Figure 4.6: Markov Chain model describing the operation of the stochastic tanh function. Transition

probabilities are given by (4.32).

First-Moment Statistics: Considering the MC model of Fig. 4.6, S can be separated into

S0 = {0, . . . ,M/2− 1} and S1 = {M/2, . . . ,M − 1}. Therefore, using (4.9), q is expressed as

q =

M∑

i=M/2+1

ei, (4.34)

allowing for E[Zn] and E[Z̃N ] to be calculated using (4.8) and (4.11) respectively. A graphical represen-

tation of E[Z̃N ] approximating the Tanh function, is shown in Fig. 4.7 parameterized withM = 4 states

and N = 64-bit sequence length.

Second-Moment Statistics: To derive the second-moment statistics, one can start from the calculation of

the auto-correlationRZ(n+ r, n) using (4.12). Note thatQ ∈ R
M×M is obtained from (4.13), where the

vector q is used from (4.34). OnceRZ(n+r, n) is calculated, it can be used to derive the auto-covarinace

CZ(n+ r, n) using (4.14). In Fig. 4.8, CZ(n+ r, n) is plotted, forM = 4 states, input sequence length

N = 256 and two time lags r = 0, 1. As one can observe, CZ(n + r, n) peaks when X = 0 (bipolar

format) and is reduced when the delay is increased from 0 to 1 samples. The variance of the output�s

mean Var(Z̃N ) is calculated using (4.21). In Fig. 4.9 we demonstrate this calculation usingM = 4 states
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Figure 4.7: Expected value of the stochastic tanh�s output mean E[Z̃N ] calculated using (4.11), parame-
terized with M = 4 states and sequence length N = 64. For the numerical calculations, 104 i.i.d. runs
for each point are considered.

and input sequence length N = 64.

Mean Squared Error: The MSE is calculated using (4.22), in which Z̄ = Tanh(XM/2). The results

are shown in Fig. 4.10 forM = 4 states and input sequence length N = 64.

Overflow/Underflow Modeling: The modeling of overflows/underflows is achieved using the MC

model of Fig. 4.11, which contains the two absorbing statesMa,Mb. With state ordering (0, 1, 2, ...,M−

1,Ma,Mb) and the transition probabilities from (4.32), the transition probabilitymatrix Ĥ ∈ R
(M+2)×(M+2)

becomes

Ĥ =




0 A1 0 . . . . . . 0 0 A2

A2 0 A1 0 . . . 0 0 0

0 A2 0 A1 . . . 0 0 0
...

. . .
. . .

. . .
. . .

...
...

...

0 . . . 0 A2 0 A1 0 0

0 . . . . . . 0 A2 0 A1 0

0 . . . . . . 0 0 0 1 0

0 . . . . . . 0 0 0 0 1




. (4.35)

Using (4.35), the probability distribution vector p̂n is calculated from the expression given in (4.25),

where the initial distribution vector is p̂0 = eM/2. In addition, Fig. 4.12 shows the probability of over-

flow/underflow calculated using (4.27) for X = 0.5 (unipolar format), sequence length N = 64 and

increasing number of statesM = 4, . . . , 32.

Register�s size selection: The matrix Ĥ from (4.35) can be used to derive the fundamental matrix F

according to (4.29). Then, the expected number of steps before overflows N∗ can be calculated using

(4.30), considering that p0 = eM/2 ∈ R
M . In Fig. 4.13, N∗ is plotted, parametrized with sequence
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Figure 4.8: Auto-Covariance CZ(n + r, n) of the stochastic tanh�s output calculated using (4.14), pa-
rameterized with M = 4 states, sequence length N = 256 and time lags r = 0, 1. For the numerical
calculations, 104 i.i.d. runs for each point are considered.

lengthN = 32 and state sizesM = 8, 16, 32. It can be observed that the conditionN∗ ≥ N from (4.31),

is satisfied only whenM = 16, 32 states are used.

One can conclude that the advantage of modeling the expected number of steps before overflows

N∗ is twofold; on the one hand, it allows to accurately select the number of states that reduce the over-

flow/underflow occurrence, while on the other it prevents from selecting an unnecessarily large number

of states, taxing on the hardware resources.

4.5.2 Modeling Example 2: Stochastic Adder

Architecture: The secondmodeling example we consider, is the non-scaling adder introduced in [80]. Its

architecture is shown in Fig. 4.14, where {X1
n}, {X

2
n} are i.i.d. input sequences and {Zn} is the output.

Its principle operation is based upon the storing of logic ones in a w-bit register when X1
n = X2

n = 1

so as to output them in a future clock cycle n′ for which X1
n′ = X2

n′ = 0. The register�s current value

Tn, up and down counts within TR = {0, 1, . . . ,W − 1}, where W = 2w is the total number of states.

Therefore, Tn�s accumulating behavior is expressed as [80]

Tn = min
{
Tn−1 +X1

nX
2
n −

(
Tn−1>0

)
X

1
nX

2
n,W−1

}
.

From the architecture of Fig. 4.14, the instantaneous output can be described asZn = X1
n+X2

n+Tn−1 >

0. Note that for the architecture�s proper operation, it holds 0 ≤ X1 +X2 ≤ 1.

Markov Chain Modeling: The MC model of Fig. 4.15 describes the operation of the adder�s architec-

ture. Here, the register�s initial value 0 is represented by two states in the model, 0A and 0B , so as for

its SFSM to be expressed as a Moore one. Hence, its current state Sn transitions within M + 1 values
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Figure 4.9: Variance Var(Z̃N ) of the stochastic tanh�s output mean calculated using (4.21), parameterized
withM = 4 states and sequence length N = 64. For the numerical calculations, 104 i.i.d. runs for each
point are considered.

within S = {0A, 0B, 1, 2, ...,M − 1}, while its transition probabilities are

A1 =Pr(X
1
n = 0)Pr(X

2
n = 0)

A2 =Pr(X
1
n = 1) + Pr(X

2
n = 1)− 2Pr(X

1
n = 1)Pr(X

2
n = 1)

A3 =Pr(X
1
n = 1)Pr(X

2
n = 1). (4.36)

They can be used to write the transition matrixH ∈ R
(M+1)×(M+1) as

H =




A1 A2 A3 . . . . . . 0

A1 A2 A3 . . . . . . 0

0 A1 A2 A3 . . . 0
...

. . .
. . .

. . .
. . .

...
...

. . . 0 A1 A2 A3

0 . . . . . . 0 A1 A2 +A3




. (4.37)

Since the MC�s initial state is S0 = 0A, here the initial distribution vector is p0 = e1 ∈ R
M+1 and thus

the states� probability distribution vector pn is calculated using (4.6) [80].

First-Moment Statistics: Observing the MC model of Fig. 4.15, one can see that Sn = 0A ⇒ Zn = 0,

separating S into S0 = {0A} and S1 = {1, 2, . . . ,M − 1}. Therefore, vector q = [0, 1, . . . , 1] ∈ R
M+1

is expressed as

q =
M+1∑

i=2

ei, (4.38)
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Figure 4.10: Mean Squared Error of the stochastic tanh�s output mean calculated using (4.22) forM = 4
states and input sequence length N = 64. For the numerical calculations, 104 i.i.d. runs for each point
are considered.

  

    

   

Figure 4.11: Markov Chain overflow/underflow model of the stochastic tanh function. Transition prob-

abilities are given by (4.32).

and can be used to calculate E[Zn] and E[Z̃N ] using (4.8) and (4.11) respectively [80]. For two inputs

X1, X2 ∈ [0, 1], the expected value of the output�s mean is shown in Fig. 4.16, parametrized with

M = 8 states andN = 64-bit sequence length. From Fig. 4.16, it can be seen that the distribution of the

output�s mean, E[Z̃N ], calculated using (4.11), matches the one obtained from the numerical experiments,

verifying also the correctness of the additions for two inputsX1, X2 ∈ [0, 1], such that 0 ≤ X1+X2 ≤ 1.

Second-Moment Statistics: The auto-correlation RZ(n + r, n) is calculated using (4.12), considering

the vector q from (4.38) and can be used to calculate CZ(n+ r, n) from the expression (4.14). The auto-

covariance CZ(n + r, n) is illustrated in Fig. 4.17, for two inputs X1, X2 ∈ [0, 1], parametrized with

M = 8 states, input sequence lengthN = 64 and a delay r = 1. One can observe that the auto-covariance

peaks whenX1 = X2 = 0.5with a negligible value of approximately 0.03 and gradually decreases when

moving away from these values. Notice that the results obtained from the analytic calculation, follow the

ones from the numerical experiments.

Considering CZ(n + r, n), the variance of Z̃N , Var(Z̃N ), can be calculated using the expression

(4.21). In Fig. 4.18 it is demonstrated for M = 8 states and input sequence length N = 64. From Fig.
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Figure 4.12: Probability of overflow/underflow of the stochastic tanh calculated using (4.27) for increas-

ing number of statesM = 4, . . . , 32, input X = 0.5 and sequence length N = 64.

4.18, it is observed that the analytic calculation of Var(Z̃N ) follows closely the one obtained from the

numerical experiments, where the results have values with order of magnitude up to 10−3.

Mean Squared Error: The MSE of the adder�s output mean can be calculated using (4.22), where

Z̄ = X1 +X2. In Fig. 4.19 the MSE is shown for M = 8 states, sequence length N = 64 and inputs

X1, X2 ∈ [0, 1]. From Fig. 4.19, it is noticeable that the analytic calculation of the MSE(Z̃N ) using

(4.22) matches the one obtained from the numerical experiments.

Overflow Modeling: The procedure to model overflows deviates from the previous SFSM example.

Here, we are interested in �how far� the MC�s current value Sn can transition, corresponding to �how

many� additional logic 1s are stored from the counting process. Therefore, the modeling of overflows

becomes one-sided, in the sense that only one absorbing state is used,Ma. In Fig. 4.20, the adder�s MC

overflow model is shown.

With state ordering (0A, 0B, 1, . . . ,M−1,Ma), the transition probabilitymatrix Ĥ ∈ R
(M+2)×(M+2)

is written using the transition probabilities given in (4.36) as

Ĥ =




A1 A2 A3 . . . . . . . . . 0

A1 A2 A3 . . . . . . . . . 0

0 A1 A2 A3 . . . . . . 0

0
. . .

. . .
. . .

. . . . . . 0
... . . . 0 A1 A2 A3 0
... . . . . . . 0 A1 A2 A3

0 . . . . . . . . . . . . 0 1




, (4.39)

and using p̂0 = e1 ∈ R
M+2, the probability distribution vector after N steps is calculated with the
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Figure 4.13: Expected number of steps before overflows/underflowsN∗ of the stochastic tanh calculated

using (4.31), forM = 8, 16, 32 states and sequence lengthN = 32 (dashed line). The guidelineN∗ ≥ N

allows for reduced overflow/underflow occurrence.

<

Figure 4.14: Architecture of the stochastic adder [80].

expression (4.25). Considering that only one absorbing state is used, then the probability of overflow is

[80]

Pr(Sn = Ma) = p̂0Ĥ
neTM+2 (4.40)

In Fig. (4.21), the adder�s probability of overflow is graphically illustrated, for inputs with valuesX1 =

X2 = 0.5, increasing number of states M = 4, . . . , 32 and sequence lengths N = 16, 32, 64, 256. As

expected, an increase on the number of states, reduces the probability of overflow.

Register�s size selection: For the calculation of the expected number of steps before overflows N∗, the

matrix Ĥ from (4.39) is used along with the initial distribution vector p0 = e1 ∈ R
M+1. In Fig. 4.22,

N∗ is plotted for inputs X1 = X2 = 0.5, increasing number of states M = 4, . . . , 32 and stochastic

sequence lengths N = 16, 32, 64, 128, 256.
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Figure 4.15: Markov Chain model describing the operation of the stochastic adder. Transition probabili-

ties are given by (4.36).

It can be seen from Fig. 4.22 that for small values ofN , namelyN = 16, 32, a slight increase on the

number of states has negligible difference on the condition to be satisfied,N∗ ≥ N . However, this is not

the case for large values of N , for instance N = 128 and more, in which an increase of the number of

states and hence the register�s size, is necessary to satisfy N∗ ≥ N .

4.5.3 Execution Times Performance

To highlight the time efficiency of our proposed framework in the modeling of the SFSMs� statistical

properties, we compare its execution times with those obtained from the numerical experiments. For the

STanh, we use 102 input values uniformly distributed in [0, 1] and for the Stochastic Adder we use 104

input values uniformly distributed in [0, 1] × [0, 1]. Regarding the numerical experiments, we conduct

104 and 105 runs with i.i.d input sequences of length N = 64-bits for each input value we consider. To

measure the relative performance we use the speedup metric, which is the ratio of the execution time of

the numerical experiments, LN , over that of the analytical modeling one, LM , i.e. Speedup = LN/LM.

The execution times are used to calculate the time saving metric as (LN − LM )/LN ∗ 100%. We also

cite the Mean Absolute Error (MAE), which is the absolute difference between the averaged output of

the numerical experiments for 104 and 105 runs and the analytical modeling output, summed over all the

uniformly distributed input values.

Table 4.1, presents the numerical simulation and analytical calculation execution times of the two

SFSMs. When 105 runs are used, it is observed that the calculation of the expected value and the auto-

correlation using the proposed framework, result in substantial time savings for both the STanh, 99.47%

and 99.90% respectively, and the Stochastic Adder, 99.94% and 99.96% respectively. With respect to

the calculation of the variance and the MSE, the analytical modeling of our proposed method yields

significant time savings, corresponding to 95.07% and 94.93% respectively for the STanh and 92.21%

and 91.91% respectively for the Stochastic Adder. Decreasing the number of runs to 104, is expected to

increase the MAE and the execution time, at the cost however of reducing the numerical experiments�

approximations.
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Figure 4.16: Expected value of the stochastic adder�s output mean E[Z̃N ]. Top: calculated using (4.11),
parametrized withM = 8 states and sequence length N = 64. Bottom: Numerical calculations for 104

i.i.d. runs for each point.
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Figure 4.17: Auto-Covariance CZ(n + r, n) of the stochastic adder�s output. Top: Calculated using

(4.14), parametrized withM = 8 states, sequence length N = 64 and delay r = 1. Bottom: Numerical
calculations for 104 i.i.d. runs for each point.
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Figure 4.18: Variance of the stochastic adder�s output mean Var(Z̃N ). Top: calculated using (4.21),

parametrized withM = 8 states and sequence length N = 64. Bottom: Numerical calculations for 104

i.i.d. runs for each point.



Modeling Examples 93

0

1

2

1

4

10
-3

0.5

6

0.5

0 0

0

1

2

1

4

10
-3

0.5

6

0.5

0 0

Figure 4.19: Mean Squared Error of the stochastic adder�s output mean MSE(Z̃N ). Top: calculated

using (4.22), parametrized with M = 8 states and input sequence length N = 64. Bottom: Numerical
calculations for 104 i.i.d. runs for each point.

  

    

Figure 4.20: Markov Chain overflow model of the stochastic adder. Transition probabilities are given by

(4.36).
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Figure 4.21: Probability of overflow of the stochastic adder calculated using (4.40), for inputs X1 =
X2 = 0.5, increasing number of statesM = 4, . . . , 32 and increasing sequence lengths N .
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Figure 4.22: Expected number of steps before overflows N∗ of the stochastic adder calculated using

(4.31), for M = 4, . . . , 32 states, inputs X1 = X2 = 0.5 and increasing sequences lengths N . The

guideline N∗ ≥ N allows for reduced overflow occurrence.
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Table 4.1: Execution Times (s) for the Modeling of two SFSMs: the STanh and the Stochastic Adder

STanh 104 runs

Numerical

Experiments(s)

Analytical

Modeling(s)
Speedup MAE

Time

Savings (%)

Exp. Value 4.41 0.24 18.37 1.1× 10−3 94.55

Auto-Correlation 19.84 0.26 76.30 6.6× 10−3 98.58

Variance 6.76 3.35 2.01 1.7× 10−4 50.44

MSE 6.87 3.42 2.00 2.6× 10−4 50.12

Stochastic Adder 104 runs

Exp. Value 303.80 1.62 187.5 5.1× 10−4 99.46

Auto-Correlation 302.89 2.28 132.49 3.8× 10−3 99.24

Variance 318.07 249.08 1.26 2.2× 10−4 21.69

MSE 320.19 251.15 1.27 1.1× 10−4 21.56

STanh 105 runs

Numerical

Experiments(s)

Analytical

Modeling(s)
Speedup MAE

Time

Savings (%)

Exp. Value 45.37 0.24 189.04 3.5× 10−4 99.47

Auto-Correlation 270.85 0.26 1041.73 9.8× 10−4 99.90

Variance 68.06 3.35 20.31 3.1× 10−5 95.07

MSE 67.56 3.42 19.75 8.2× 10−5 94.93

Stochastic Adder 105 runs

Exp. Value 3.09× 103 1.62 1.91× 103 1.6× 10−4 99.94

Auto-Correlation 6.54× 103 2.28 2.87× 103 8.3× 10−4 99.96

Variance 3.20× 103 249.08 1.28× 103 4.9× 10−5 92.21

MSE 3.11× 103 320.19 1.24× 103 1.7× 10−5 91.91
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Part II

Performance Results and Applications





5 Comparison with the Stochastic
Computing Literature

In this chapter1. the proposed architectures are compared with popular SC adders [41, 72, 84, 23,

18], subtracters [4, 54, 18], MAX and MIN architectures [39, 43, 58, 89] existing in the literature, in

both computational accuracy and hardware resources. With respect to the computational accuracy, the

Mean Absolute Error (MAE) and/or the Mean Squared Error (MSE) are considered. For two inputs

X,Y ∈ [0, 1], the MAE and the MSE are defined respectively as

MAE(X,Y ) = E

[∣∣f(X,Y )− Z̃N

∣∣
]

(5.1)

and

MSE(X,Y ) = E

[(
f(X,Y )− Z̃N

)2]
, (5.2)

where f(X,Y ) is a function applied to the inputs such that f : R2 7→ R and Z̃N is a selected architecture�s

output mean. The MAE/MSE is estimated numerically in a grid of pair values (X,Y ), assuming the

unipolar SC format. For each grid point, 103 runs with pairs of i.i.d. sequences are conducted to derive

the MAE/MSE. Then, all MAE/MSE values of each architecture are averaged, while the experiments are

run for stochastic sequences with lengths N = 2k, where k = 4, . . . , 10.

Regarding the hardware resources, the operation of all architectures is described using Verilog HDL

targeting the Xilinx Kintex-7 FPGA kit and then the designs are fed into the Synopsys Design Compiler

using the FreePDK CMOS library at 45nm [77]. For the comparisons, the following estimates are pro-

vided: 1) the total area in µm2, 2) the average power consumption for the max operating frequency in

mW , 3) the critical path in ns and 4) the energy per operation (average power× the critical path) in pJ .

1Copyright © IEEE. Chapter 5 is reprinted, with permission, from: 1) N. Temenos, P.P. Sotiriadis, �Non-Scaling Adders

and Subtracters for Stochastic Computing using Markov Chains�, IEEE Trans. on Very Large Scale Integration Systems, vol

29, no. 9, pp. 1612-1623, Sept. 2021, 2) N. Temenos and P. P. Sotiriadis, �Stochastic Computing MAX and MINArchitectures

Using Markov Chains: Design, Analysis and Implementation�, IEEE Trans. on Very Large Scale Integration Systems, vol 29,

no. 11, pp. 1813 - 1823, Nov. 2021 Personal use of this material is permitted, but republication/redistribution requires IEEE

permission.

Copyright © Elsevier. Chapter 5 is reprinted, with permission, from P. P. Sotiriadis and N. Temenos, �Compact MAX and

MIN Stochastic Computing Architectures�, Integration, vol. 87, pp. 194-204, November 2022. Personal use of this material is

permitted, but republication/redistribution requires Elsevier permission.
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5.1 Comparison of Stochastic Adders

The SC adder architectures existing within the literature are shown in Fig. 5.1, where it is assumed

that {Xn} and {Yn} are the input sequences while {Zn} is the output sequence.

< <
< <

<

<<

<

Figure 5.1: Stochastic Computing adders. From top left to bottom right: i) Scaling adder in [41], ii)

Scaling adder in [84], iii) Non-scaling adder in [72] and iv) Scaling/Non-Scaling adder in [18].

The computational accuracy, the power × delay2 and energy consumption of the adders considered

are presented in Figs. 5.2 and 5.3, while their detailed hardware requirements, including the area, are cited

in Table 5.1. Note that the hardware requirements for the input sequence generation are not included.

A) MUX: We consider the original circuit used for scaled addition (in unipolar format) and scaled

subtraction (in bipolar) [23]. It requires large sequence lengths N to achieve acceptable accuracy com-

pared to the other architectures, which reflects to the increased total energy consumption, according to

Fig. 5.3. Moreover, the required SNG also impacts both power and energy consumption. This is why it

is the least popular approach for both addition and subtraction.

B) Adders in [41] and [84]: The adder in [41] uses a T Flip-Flop to replace the SNG of the original
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Figure 5.2: Comparison of accuracy in MAE of stochastic adders for typical stochastic sequence lengths

N

MUX adder, while the adder in [84] employs a 1-bit register along with a two-state FSM to slightly

improve on the accuracy. Compared to the adder in [84], the proposed one requires almost the same area

for a register ofm = 2-bits and slightly more power and energy consumption per operation according to

Table 5.1. Compared to the adder in [41], the proposed one has higher power and energy consumption per

operation. However, the proposed adder achieves better accuracy than both of them for short sequence

lengths according to Fig. 5.2 and 5.4. Moreover, the non-scaling behavior of the proposed adder benefits

cascaded computations since the resolution of the sequence is not reduced by 2 for every adder used.

C) Adder in [72]: The non-scaling adder in [72] assumes a two-line representation of a stochastic

number, one to represent themagnitude and one the sign. Here we use the adder with unipolar format (plus

fixed sign) and design parameter �threshold� 2, following the design methodology in [90], to compare it

with the other adders. As shown in Fig. 5.2 it has lower accuracy than the proposed adder and has almost

the same power consumption, with energy being its strong point according to Table 5.1. Moreover, the

adder in [72] occupies more area compared to the proposed one for register sizesm = 2, 3.

D)Adder in [18]: The adder (and subtracter by using a NOT gate in one of its inputs) in [18] encodes

stochastic numbers as the ratio of the switching activities of two sequences. The 4 inputs of the adder

are pair-wise XNORed and then fed to a MUX that uses a modulus 1 counter as its select signal and it�s

output is the scaled result of the addition. To derive its non-scaling sum, two of the inputs and the output

of a SNG are used as inputs to a 3 input XNOR. The XNOR�s output as well as the MUX form the adder�s

outputs while their ratio yields the final (non-scaled) sum. According to Table 5.1, the overall hardware

utilization is taxed due to the additional SNG, which impacts the power and energy consumption as well.

Furthermore, to achieve comparable accuracy to that of the other adders, it requires large sequence lengths

as shown in Fig. 5.2. Its main advantage is that it can be used for both scaling or non-scaling additions

and the ratio encoding can be used to directly realize other standard operations as well, e.g. multipliers,
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Figure 5.3: Comparison of Power × Delay2 (pJ × ns) (top) and Energy (pJ) (bottom) consumption of
stochastic adders for typical stochastic sequence lengths N

dividers etc. However, the incompatibility of the ratio encoding with other more popular SC encodings

results in extra translation hardware complexity when is coupled with other traditional SC numerical

architectures.

5.2 Comparison of Stochastic Subtracters

The SC subtracter architectures existingwithin the literature are shown in Fig. 5.5, where it is assumed

that {Xn} and {Yn} are the input sequences while {Zn} is the output sequence.

The accuracy, the power × delay2 and energy comparison between the stochastic subtracters are

shown in Figs. 5.6 and 5.7, while the detailed hardware utilization results are shown in Table 5.1. Since

the NOT gate does not degrade the accuracy of the computations for the proposed subtracter as well as

the MUX and [18], the results are identical that of the adder. Note that the area, power and energy con-

sumption of the proposed subtracter is almost the same to those of the proposed adder since the additional
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Figure 5.4: Comparison of Energy per operation (pJ × ns) and MAE of stochastic adders for typical

stochastic sequence lengths N . Sobol sequences are used.
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Figure 5.5: Stochastic Computing subtracters. From top left to bottom right: i) Absolute correlated input

subtracter in [4], ii) Scaling/Non-scaling subtracter in [18] and iii) Subtracter in [54].

two NOT gates have minimal impact.

A) Subtracter in [4]: To realize the operation of subtraction hardware-efficiently, the method in [4]

correlates two input sequences, using the same LFSR for two different comparators in the SNG stage,



104 Chapter 5 - Comparison with the Stochastic Computing Literature

Table 5.1: Hardware Resources Comparison between the Proposed Non-Scaling Adder and Subtracter

and the State-of-the-Art inArea (µm2), Critical Path (ns), Power Consumption (mW ) and Energy (pJ)
per operation

Stochastic Adders

Register (bit) Area (µm2) Power (mW ) Critical path (ns) Energy (pJ)

Proposed∗

Adder/Subtracter

m = 2 59.60 0.053

1.4

0.074

m = 3 83.49 0.077 0.108

m = 4 98.30 0.084 0.117

m = 5 112.61 0.098 0.137

[41] 22.41 0.021 0.8 0.016

[84] 54.39 0.040 1.2 0.048

[72] 92.49 0.071 1.2 0.057

MUX∗

Adder/Subtracter

LFSR size k

k = 4 74.34 0.079

0.8

0.063

k = 5 97.62 0.094 0.075

k = 6 122.09 0.122 0.097

k = 7 133.71 0.140 0.112

k = 8 168.21 0.160 0.128

k = 9 177.40 0.171 0.136

k = 10 192.20 0.193 0.154

[18]∗

Adder/Subtracter

LFSR size k

k = 4 83.49 0.106

0.8

0.084

k = 5 105.69 0.124 0.099

k = 6 126.24 0.159 0.127

k = 7 144.54 0.176 0.140

k = 8 168.65 0.192 0.153

k = 9 178.64 0.212 0.169

k = 10 194.75 0.229 0.183

Stochastic Subtracters

[54] 41.76 0.063 0.8 0.050

[4]∗∗

LFSR size k

k = 4 105.12 0.14

0.8

0.112

k = 5 130.75 0.176 0.140

k = 6 166.13 0.229 0.183

k = 7 188.65 0.264 0.211

k = 8 207.01 0.299 0.239

k = 9 229.95 0.331 0.264

k = 10 264.54 0.350 0.280

∗ In these cases the subtracter is obtained with negligible additional hardware requirements (2 NOT gates for the proposed adder and 1 for the rest) and its impact is insignificant in the area,

power and energy consumption
∗∗ Includes sequence correlation

and an XOR gate to provide the output sequence. This architecture has an important key point; consider

the following two cases: I) If the first SC operation is the subtraction, one can shape the architecture to

effectively generate two signals from SNGs with one LFSR [4, 39]. II) If, on the other hand, subtraction

is an intermediate SC operation, to effectively use the XOR gate, the subtracter�s input sequences must

be re-generated in order to have high cross-correlation. Fig. 5.6 suggests that[4] achieves lower accuracy

compared to the proposed stochastic subtracter, while it has the advantage of very low power and energy

consumption when operating in case (I) above. When the subtraction is an intermediate operation, case

(II), the proposed subtracter achieves better overall performance as shown in Fig. 5.7 and Table 5.1.

B) Subtracter in [54]: The subtracter in [54] uses an XNOR gate with inputs the two stochastic se-

quences, one of them inverted, to generate a rough estimate of the subtraction result, and cascaded logic

stages to improve its accuracy. The number of additional logic stages considered here is 3, but can be fur-
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Figure 5.6: Comparison of accuracy in MAE of stochastic subtracters for typical stochastic sequence

lengths N

ther expanded at the cost of additional hardware resources and delay. The proposed stochastic subtracter

achieves better accuracy than the one in [54] as shown in Fig. 5.6, but, the latter one has lower power

and energy consumption according to Table 5.1.

5.3 Comparison of Stochastic MAX and MIN

The SC MAX/MIN architectures existing within the literature are shown in Fig. 5.9, where it is

assumed that {Xn} and {Yn} are the input sequences while {Zn} (and {Kn} if theMIN is also produced)

is the output sequence.

The computational accuracy of the proposed MAX and MIN architectures is shown in Fig. 5.10, the

power × delay2 and energy consumption metrics are shown in Fig. 5.11, while the detailed hardware

resources are cited in Table 5.3. We note that the MAX architectures in [39, 43, 58, 89] including the

proposed one are able to output the MIN as well without affecting the total hardware resources, i.e.

introducing additional logic units or registers. Therefore, the presented accuracy and hardware resource

metrics for the MAX architectures apply to the MIN architectures as well. Moreover, in Table 5.2 the

register sizes resulting in highest computational accuracy with respect to the sequence lengths N are

cited.

A) MAX/MIN in [39]: The core of the architecture is a 3-state FSM that forces the overlap of logic

ones between its two input i.i.d. sequences {Xn} and {Yn}, to produce two correlated outputs. These

are used as inputs to an OR gate to produce the final output. If the OR gate is replaced by an AND in the

architecture, then the MIN can be realized. According to Fig. 5.10 the proposed architecture has better

accuracy regardless of the sequence length N used and this is intensified especially for smaller values

of N . Hardware-wise, the proposed architecture occupies less area as well as consumes less power and

energy for register sizes m = 1, 2, similar for m = 3, while for m = 4, 5 Lee et. al�s method [39] is
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Figure 5.7: Comparison of Power × Delay2 (pJ × ns) (top) and Energy (pJ) (bottom) consumption of
stochastic subtracters for typical stochastic sequence lengths N

slightly better. However, the fact that Lee et. al�s approach in [39] requires more clock cycles to achieve

the same accuracy as the proposed architecture should not be neglected; the increased latency implies a

further increase in dissipated energy, exceeding the proposed one�s.

B) MAX/MIN in [43]: The inputs of this architecture, are fed to a MUX that uses a SNG as its select

signal. The MUX�s stochastic output is the input of the stochastic tanh function [15], implemented as

a FSM of 2m states (m-bits), while the FSM�s output is determined by the current state; starting from

the zero state, the first 2m/2 − 1 output 0, while the rest output 1. The FSM�s output is also used as a

select signal in a MUX that determines whether Xn or Yn to be the architecture�s current output. From

Fig. 5.10, the proposed architecture results in better computational performance in terms of accuracy.

The increased performance of the proposed architecture also applies to the hardware utilization as shown

in Table 5.3, which is due to the additional SNG used, contributing negatively in the total area, power

and energy consumption. Moreover, an important design aspect is the register�s size. As stated in Li et
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Figure 5.8: Comparison of Energy per operation (pJ×ns) and MAE of stochastic subtracters for typical

stochastic sequence lengths N . Sobol sequences are used.

al. in[43], increasing its size and hence the number of its states, the computational accuracy increases as

well. Yet the selection of its size that yields the highest accuracy is estimated with numerical simulations.

On the other hand, the guidelines to select the register�s size in the proposed architecture eliminates the

parametric simulation time completely.

C) MAX/MIN in [89]: To avoid the power and area hungry SNG from Li et al.�s method in [43],

the architecture by Yu et al.[89] uses an XOR between the two inputs instead, that acts as an enable

signal to up-count logic 1s coming from its input Xn. The counting is based on the stochastic tanh

FSM, implemented in the same way shown by Li et al. in[43]. Consequently, the tanh�s output is used

as a select signal in a MUX that determines if Xn or Yn is the output. Accuracy-wise, the proposed

architecture results in better computational results as shown in Fig. 5.10. In terms of hardware resources,

the proposed architecture occupies larger area, but, has reduced power and energy consumption when

the same register size is used according to Table 5.3. From a designer�s perspective, the register size

that maximizes the accuracy of the Yu et al.�s architecture in [89] is derived with simulations. If not

chosen carefully based on the sequence length N , it directly affects the output�s accuracy; by reducing

the number of its states it will increase the output�s error. On the contrary, the analytic derivation of the

proposed max�s register size, provides insight on its design.

D) MAX/MIN in [58]: In this architecture, motivated by Yu et al.�s method in [89], an XOR between

the inputs is used as an enable signal in a linear FSM, implemented as a shift register ofm-bits (can also

be implemented as a binary counter). The FSM performs a right shift of the most significant bit (MSB) if

Xn = 1whereas a left shift ifXn = 0. The FSM�s output is determined by the least significant bit (LSB)
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Figure 5.9: Stochastic computing max and min architectures. From top left to bottom right: 1) Correlated

MAX/MIN in [39], ii) TanhMAX/MIN in [43], iii) TanhMAX/MINw/o RNG [89] and iv) Shift Register

MAX/MIN in [58].

of the register and produces 1 if it has saturated up to the LSB. Finally, a MUX selects either the FSM�s

output orYn alongwith additional logic gates. From the comparisonwith the proposed architecture shown

in Fig. 5.10, the approach by Lunglmayr et al. in [58] results in lower computational accuracy. However,

the power and energy consumption per clock cycle is its strong point which is due to the advantage of the

shift register over the binary one as shown in Table 5.3. Yet, the architecture�s output accuracy depends

on the saturation of the shift register up to its LSB. If its size is not chosen accurately, for instance if it is

less or more than a specific value, the output�s accuracy can be greatly reduced and this is also shown in

Lunglmayr et al. [58]. We note that the register size that results in highest accuracy possible is used in

the simulations and is also cited in Table 5.2 , taken from [58].

5.4 Comparison of Stochastic Compact MAX and MIN

The computational accuracy and the energy consumption of the MAX andMIN are presented in Figs.

5.13 and 5.14. Furthermore, the hardware resources are cited in Table 5.5. We note the following: 1)

for all architectures we selected for each N the register size m that results in the highest computational

accuracy possible and we provide it in Table 5.4; 2) we assumed that the up & down counting in all
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Figure 5.10: Accuracy comparison in MAE of stochastic MAX/MIN architectures for typical sequence

lengths N . For each N , the architectures� number of states is selected to result in the highest computa-

tional accuracy. Corresponding register sizes are cited in 5.2.

MAX/MIN architectures is done using binary (ripple) counters able to count up toM = 2m states, where

m is the register�s size; and 3) the MAX architectures [39, 43, 58, 89] including the proposed one can

output the MIN without additional hardware resources (only with modification). As such, the presented

accuracy results in Fig. 5.13 and the hardware resources in Table 5.5 for the MAX architectures apply to

the MIN ones as well.

A) MAX/MIN in [43]: in According to Fig. 5.13, the proposed MAX results in better computational

accuracy and also occupies less resources according to Table 5.5, which is due to the SNG used in [43].

Considering the register�s size, in the proposed MAX architecture it is derived according to the analysis

shown in Section 4, whereas in the architecture in [43] numerical simulations are required.

B) MAX/MIN in [89]: Compared to [89], the proposed MAX results in better computational per-

formance according to Fig. 5.13. In terms of hardware resources, the proposed MAX occupies slightly

more area when the same register size is used, but, has less energy and power consumption; although it

is expected that higher area will result in higher power and energy consumption, in fact, the synthesis

tool optimizes further the design�s mapping using high area, power and mapping effort. Therefore, even

if one counts the gates used between the two architectures, the theoretical result will not reflect the one

obtained from the synthesis tool. Moreover, the advantage of the proposed MAX architecture over the

one in [89], is the design guidelines for the register�s size selection according toN , which eliminates the

simulation time completely.

C) MAX/MIN in [58]: From Fig. 5.13, the proposed architecture results in better accuracy, but, the

architecture in [58] is more hardware-efficient according to Table 5.5, which is due to the shift-register

used over the binary one. However, it is expected that if the shift-register�s size is not chosen carefully

based on the sequence length N , it will directly affect the output�s accuracy; when the number of the

FSM�s states are reduced, it will result in reduced computational accuracy and this is shown in [58]. We
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Figure 5.11: Comparison of Power × Delay2 (pJ × ns) (top) and Energy pJ (bottom) consumption of

stochastic MAX/MIN architectures. For each N , the architectures� number of states is selected to result

in the highest computational accuracy. Corresponding register sizes are cited in 5.2.

note that the shift register size values shown in Table 5.4 are taken from [58].

D) MAX/MIN in [39]: From Fig. 5.13, it can be seen that the proposed MAX results in better accu-

racy, regardless of the stochastic sequence length N , when a 3-state FSM is used. To further investigate

the impact of the FSM�s number of states in accuracy, we increased their total number from 3 to 5. One

can observe that the accuracy is increased for sequences with N ≥ 128-bit length when compared to

the 3-state FSM, but, it is lower than that of the proposed MAX architecture. In terms of hardware re-

sources, the proposed MAX achieves similar performance with register sizes m = 2, 3-bits, while for

more than 4-bits, the MAX in [39] is slightly better. However, one should not neglect the fact that to

achieve the same accuracy as the proposed one, the MAX in [39] requires more computational cyclesN ,

which reflects on the total energy consumed as shown in Fig. 5.12.

E) MAX/MIN in [81]: In the architecture in [81], the procedure to store the differences between

the inputs follows that of the proposed MAX. However, in the proposed work the current value of the

register�s state is compared withM/2 instead of 0 in [81]. As such, the overflow/underflow modeling is
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Figure 5.12: Comparison of Energy per operation (pJ × ns) and MAE of stochastic MAX/MIN for

typical stochastic sequence lengths N .

improved and hence the understanding of the errors due to overflows. According to Fig. 5.13 it can be

seen that the MSE has the same order of magnitude. However, with respect to the hardware resources,

the proposed MAX requires slightly less area when the same register size is used.
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Table 5.2: Comparison of computational accuracy and corresponding register sizes of MAX/MIN archi-

tectures for typical sequence lengths N

Mean Absolute Error (MAE) ×10−2

N = 2k 24 25 26 27 28 29 210

Proposed 1.53 1.08 0.71 0.44 0.26 0.15 0.08

Registerm-bit 1 2 3 4 5

[39] 4.91 2.62 1.67 1.30 1.11 1.02 0.95

Registerm-bit 2

[43] 4.21 3.41 2.51 1.69 1.27 0.82 0.54

Registerm-bit 2 3 4 5

[89] 3.16 2.39 1.92 1.22 0.85 0.62 0.39

Registerm-bit 2 3 4 5

[58] 2.91 2.24 1.79 1.11 0.76 0.46 0.25

Shift Registerm-bit 2 3 4 5 6

Table 5.3: Hardware Resources Comparison between the Proposed MAX/MIN and the State-of-the-Art

in Area (µm2), Critical Path (ns), Power (mW ) and Energy (pJ) Consumption per operation

Register

m-(bit)

Area

(µm2)
Power

(mW )
Critical path

(ns)
Energy

(pJ)

Proposed

m = 1 37.54 0.032

1.5

0.048

m = 2 60.86 0.049 0.074

m = 3 88.69 0.063 0.095

m = 4 106.24 0.077 0.116

m = 5 119.21 0.086 0.130

[39] m = 2 91.49 0.062 1.5 0.094

[43]

MUX LFSR size k

m = 2, k = 4 109.81 0.083

1.6

0.133

m = 2, k = 5 131.87 0.092 0.147

m = 3, k = 6 176.92 0.133 0.213

m = 3, k = 7 199.45 0.142 0.227

m = 3, k = 8 236.32 0.161 0.257

m = 4, k = 9 291.90 0.184 0.295

m = 5, k = 10 311.61 0.193 0.309

[89]

m = 2 48.01 0.052

1.5

0.078

m = 3 61.47 0.076 0.114

m = 4 104.97 0.101 0.151

[58]

Shift Register

m = 2 46.46 0.021

1.5

0.031

m = 3 57.25 0.034 0.052

m = 4 73.21 0.046 0.069

m = 5 89.16 0.057 0.084

m = 6 105.12 0.068 0.103
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Figure 5.14: Energy comparison in pJ of stochastic MAX architectures for typical sequence lengths N .

For each N , their register sizes are selected to result in the highest MSE and are cited in Table 5.4.

Table 5.4: Register sizes resulting in the highest MSE based on N

N = 2
k

2
4

2
5

2
6

2
7

2
8

2
9

2
10

Proposed 2 3 4 5 6

[43] 2 3 4 5

[89] 2 3 4 5

[58] 2 3 4 5 6

[39] 2 3

[81] 1 2 3 4 5
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Table 5.5: Hardware Resources Comparison between the Proposed Compact MAX/MIN and the State-

of-the-Art in Area (µm2), Critical Path (ns), Power (mW ) and Energy (pJ) Consumption

Register

m-(bit)

Area

(µm2)
Power

(mW )
Critical path

(ns)
Energy

(pJ)

Proposed

m = 2 48.33 0.044

1.5

0.066

m = 3 73.69 0.063 0.094

m = 4 92.31 0.074 0.111

m = 5 106.55 0.081 0.121

m = 6 117.44 0.093 0.139

[43]

MUX LFSR size k

m = 2, k = 4 109.81 0.083

1.6

0.133

m = 2, k = 5 131.87 0.092 0.147

m = 3, k = 6 176.92 0.133 0.213

m = 3, k = 7 199.45 0.142 0.227

m = 3, k = 8 236.32 0.161 0.257

m = 4, k = 9 291.90 0.184 0.295

m = 5, k = 10 311.61 0.193 0.309

[89]

m = 2 48.01 0.052

1.5

0.078

m = 3 61.47 0.076 0.114

m = 4 104.97 0.101 0.151

[58]

Shift Register

m = 2 46.46 0.021

1.5

0.031

m = 3 57.25 0.034 0.052

m = 4 73.21 0.046 0.069

m = 5 89.16 0.057 0.084

m = 6 105.12 0.068 0.103

[39]

3-State FSM
m = 2 91.49 0.062 1.5 0.094

[81]

m = 1 37.54 0.032

1.5

0.048

m = 2 60.86 0.049 0.074

m = 3 88.69 0.063 0.095

m = 4 106.24 0.077 0.116

m = 5 119.21 0.088 0.130



6 Applications

In this chapter1 we use the proposed architectures to implement several digital signal processing

tasks [79, 80, 81]. We evaluate their performance with comparisons with the standard binary computing

methods as well as with the SC literature in computational accuracy and hardware resources.

6.1 Image Blurring

To demonstrate the proposed adder�s effectiveness in cascaded computations we use it as a building

block, along with AND gates for multiplication, to realize a convolution kernel, as shown in Fig. 6.1.

Specifically, the convolution is used in a Digital Image Processing task, which is the filtering of an entire

image using a 3× 3 Box blur kernel. By adjusting appropriately kernel�s weight values and by including

non-linear functions, this kernel can be used in Neural Networks.

For the application, we select a gray-scale image and represent each pixel with an 8-bit number as

it is typically required in image processing. The pixels� and the kernel�s values are normalized to range

[0, 1] in order to be processed in the SC domain. For the stochastic number representation, we consider

typical stochastic sequence lengths, namely N = 2k, with k = 4, . . . , 10 and investigate their effect in

the accuracy of the computations. Then, the proposed, as well as selected adders, are used to realize the

convolution operation and their performance is reported.

Among the selected adders, we excluded the standard MUX from comparisons as it requires large

N lengths to achieve acceptable accuracy as shown in Fig. 5.2 implying also an increased hardware

overhead. The same applies to the adder in [18] due to the fact that 1) the two-sequence encoding of

a stochastic number increases the design complexity in cascaded computations and 2) each non-scaling

1Copyright © IEEE. Chapter 6 is reprinted, with permission, from: 1) N. Temenos, P.P. Sotiriadis, �Non-Scaling Adders

and Subtracters for Stochastic Computing using Markov Chains�, IEEE Trans. on Very Large Scale Integration Systems, vol

29, no. 9, pp. 1612-1623, Sept. 2021, 2) N. Temenos and P. P. Sotiriadis, �Stochastic Computing MAX and MINArchitectures

Using Markov Chains: Design, Analysis and Implementation�, IEEE Trans. on Very Large Scale Integration Systems, vol 29,

no. 11, pp. 1813 - 1823, Nov. 2021 3) N. Temenos and P. P. Sotiriadis, �Modeling a Stochastic Computing Non-Scaling Adder

and its Application in Image Sharpening�, IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 69, no. 5, pp. 2543 -

2547, May 2022 Personal use of this material is permitted, but republication/redistribution requires IEEE permission.

Copyright © Elsevier. Chapter 6 is reprinted, with permission, from P. P. Sotiriadis and N. Temenos, �Compact MAX and

MIN Stochastic Computing Architectures�, Integration, vol. 87, pp. 194-204, November 2022. Personal use of this material is

permitted, but republication/redistribution requires Elsevier permission.
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Figure 6.1: A3×3 stochastic computing convolution kernel realized using 9ANDgates for multiplication

and 8 proposed non-scaling stochastic adders. Wn and Fn denote the generated sequences of weights and

the input image pixel values respectively.

adder is hardware demanding for moderate N lengths according to Table 5.1.

The accuracy comparison of the convolutions based on the selected adders is shown in Table 6.1

evaluated with two metrics: 1) the Peak Signal-to-Noise Ratio (PSNR) and 2) the Structural Similarity

IndexMeasure (SSIM). The first measures the absolute accuracy of computation and is one of the standard

metrics used for images, while the second one measures the perceived quality of an image with values

in [0, 1] (higher means better quality) [87]. In addition, a graphical representation of the computations

using the proposed adder is shown in Fig. 6.2. Moreover, Table 6.2 presents the corresponding hardware

resources to realize the convolution kernel.

Figure 6.2: Image filtering using a 3 × 3 convolution kernel for various sequence lengths N . From left

to right cases: a) Original image b) MATLAB�s blur calculation c) N = 16 d) N = 32 e) N = 64 f)
N = 128 g) N = 256 h) N = 512 i) N = 1024

We note first that the register size used for the proposed adder is m = 2, as it does not degrade the
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Table 6.1: Accuracy and Image Quality Comparison in the Filtering with a 3 × 3 Convolution Kernel
using the Proposed and State-of-the-Art Stochastic Adders

Peak-Signal-to-Noise Ratio (PSNR)

N = 2k 24 25 26 27 28 29 210

Proposed 16.61 19.25 22.06 25.08 28.01 30.90 33.94

[84] <10 13.56 17.91 21.95 25.68 28.67 31.92

[41] <10 13.01 17.58 21.52 25.71 28.57 31.84

[72] 16.45 19.04 22.08 25.15 28.01 30.96 33.63

[68] 15.75 18.76 21.57 24.80 27.83 30.81 33.84

Structural Similarity Index Measure (SSIM)

Proposed 0.210 0.292 0.391 0.512 0.628 0.734 0.831

[84] <0.2 <0.2 0.231 0.346 0.490 0.620 0.748

[41] <0.2 <0.2 0.250 0.367 0.504 0.628 0.747

[72] 0.218 0.297 0.391 0.498 0.612 0.725 0.828

[68] 0.209 0.289 0.381 0.487 0.598 0.713 0.811

Table 6.2: Comparison of Hardware Resources for Implementing the 3×3 Convolution Kernel using the
Proposed and State-of-the-Art Stochastic Adders in Area (µm2), Critical Path (ns), Power (mW ) and
Energy (pJ) per operation

Area (µm2) Power (mW ) Critical Path (ns) Energy (pJ)

Proposed 554.63 0.390 1.6 0.624

[68]

Binary Output
443.95 0.157 1.9 0.298

[68]

Stochastic Output
661.71 0.254 2 0.509

[41] 207.57 0.104 1.5 0.156

[84] 456.62 0.322 1.6 0.515

[72] 952.20 0.492 1.5 0.738

Conventional

Binary
9,017.13 2.440 7.5 18.30

result of calculations in this specific application. Moreover, the kernel by itself, requires 9 multipliers

(AND gates) and 8 stochastic adders, while its structure is adder tree based.

A) Convolution using adders [41] and [84]: According to Table 6.1, the two scaling adders [41] and

[84] provide acceptable accuracy and SSIM results when using more thanN = 256-bit sequence lengths,

which is due to sequence resolution drop by 2 after each addition. On the contrary, the convolution using

the proposed stochastic adder achieves the same accuracy using only half sequence length, e.g. N = 128.

This leads to less energy per convolution for the proposed compared to the convolution using [84] due

to different lengths required. The convolution using [41] however, despite the large N value, e.g. 256,

it also achieves good power and energy efficiency. A further advantage of the proposed adder is that it

benefits operations that require non-scaled computations after the convolution stage, whereas adders [41]

and [84] face up-scaling followed by sequence regeneration design challenges.

B) Convolution using adder [72]: Due to its non-scaling nature, the convolution kernel using the

adder in [72] achieves the same accuracy as the proposed approach according to Table 6.1. However,
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it also has slightly increased energy consumption, making the proposed one more efficient for multiple

non-scaling additions.

C) Convolution using adder [68]: The accumulative parallel counter (APC) is a popular adder capable

of adding single-bit sequences in parallel producing binary output and it is used in the SC literature [50,

83] as it benefits multiply-and-accumulate stages. Compared to the proposed approach, it achieves almost

the same performance in terms of accuracy. Note however that if the convolution is the final operation,

i.e. no further operations are required, APC is effective terms of hardware. Otherwise it requires more

area than the proposed approach due to the required binary-to-stochastic converter to re-randomize the

output for further computations, e.g. non-linear functions.

D) Convolution with conventional binary: Compared to the conventional arithmetic architectures,

the proposed approach requires negligible area, which is its strong point and is approximately ×16 less

according to Table 6.2. On the other hand, given the moderate number clock cycles to achieve acceptable

results, for instance N = 64, its energy consumption is higher, namely 21pJ .

6.2 Image Sharpening Filter

We demonstrate the efficiency of the proposed non-scaling adder and subtracter in cascaded compu-

tations with the realization of an image sharpening filter [24]. Its operation, is described as

g(k, l) = f(k, l) + c
(
f(k, l)− w ∗ f(k, l)

)
, (6.1)

where f(k, l) and g(k, l) are the input and output images of size k × l respectively, w is a weight mask

and c is a constant.

To further explain the image enhancement properties of each operation in (6.1), we start first with its

second term. Convolving the input image f(k, l) with a weight kernel w, outputs a filtered version of

f(k, l), determined by the kernel�s weight values. Then, subtracting w ∗ f(k, l) from f(k, l) allows to

extract the �details� of an image. The multiplication with the constant value c, results in image sharpening

for c = 1 and high-boost filtering for values c > 1. Here, we consider c = 1. Finally, the sharpened

image g(k, l) is obtained by adding the extracted details to the input image. Note that in the convolution

process, AND gates are used for multiplication. The architecture realizing the image sharpening filter is

shown in Fig. 6.3, where the convolution kernel of Fig. 6.1 is used.

Figure 6.3: Image sharpening filter realized using the proposed non-scaling adder and subtracter. The

convolution kernel is realized as shown in Fig. 6.1.

Proceeding to the experimental setup, we selected a gray-scale image assuming an 8-bit number
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representation for each pixel and then we normalized their values to range [0, 1]. The normalization is

based on stochastic numbers with sequence length N = 2k, with k = 6, . . . , 10. This also applies to the

weight values of the 3 × 3 mask w, which are selected here to be 0.125. Note that all computations are

conducted with simulations using MATLAB and Sobol sequences[46].

The computational accuracy of the proposed stochastic sharpening filter is evaluatedwith twometrics,

the PSNR in dB and the SSIM. InTable 6.3, the results for typical values ofN considered are shown, while

in Fig. 6.4 a graphical illustration of the computations using the proposed architectures with stochastic

sequence length N = 256 and a register ofm = 4-bits is demonstrated.

Table 6.3: Computational Accuracy & Image Quality for the Image Sharpening Filter Realized using the

Proposed Architectures

N = 2k 26 27 28 29 210

PSNR (dB) 31.98 33.23 34.63 34.93 34.98

SSIM 0.950 0.960 0.966 0.967 0.967

Figure 6.4: Image Sharpening Filter. From left to right: a) MATLAB�s Original Image, b) MATLAB�s

Image Sharpening calculation, c) Image Sharpening Filter realized with the proposed SC architectures.

Sequence length N = 256 and register sizem = 4-bit.

From a hardware perspective, the realization of the image sharpening filter requires the following

computations: 1) a 3× 3 convolution kernel, 2) a subtraction and 3) an addition. Among them, the con-

volution kernel is the largest computational block and its implementation using the proposed stochastic

adder requires 8 adders and 9AND gates for multiplication. For the 9 adders in total and the subtracter,

a register size of m = 4-bits is used, as it does not degrade the accuracy of computations for stochastic

sequences with length N up to 1024.

According to the results shown in Table 6.4, the advantage of the proposed approach is that of the area

occupation, which is approximately 11% of the standard binary one�s. On the other hand, the total energy

consumed by the proposed approach is determined by N , which is selected according to the accuracy

requirements. For instance, for N = 27 the total energy dissipated has moderate values equal to 142pJ .

Note that since N is determined by the sobol input sequence generators, they are not included in Table

6.4, but, they can be designed efficiently according to [46].
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Table 6.4: Comparison of Hardware Resources for the Implementation of the Image Sharpening Filter

Area (µm2) Power (mW ) Critical Path (ns) Energy (pJ)

Proposed 1,093 0.62 1.8 1.11

Binary 8-bit 9,284 2.8 7.6 21.28

6.3 Median Filter

In this section we demonstrate the effectiveness of the proposed MAX and MIN and the Compact

MAX andMIN architectures in a standard Digital Image Processing application. We use them as building

blocks to implement a 3× 3median filter, which is typically used to reduce noise from images [24]. The

kernel�s structure is based on the sorting network presented in [43], shown in Fig. 6.5.

Figure 6.5: Sorting network realizing a SC median filter. Each node is realized using the proposed MAX

and MIN architectures.

6.3.1 MAX and MIN

We first select a gray-scale image with 8-bit representation for each pixel and inject salt & pepper

noise with a noise density of 0.02. Afterwards, we normalize the pixel values to range [0, 1] so as to

be processed in the SC domain. Given the fact that the accuracy of the architecture is based on the

stochastic sequence lengthN = 2k, we use typical values of k = 4, 5, . . . , 10 and investigate their effect

in computational accuracy with simulations using Matlab.

Agraphical illustration of the computations using the proposed architectures to implement the median

filter is shown in Fig. 6.6, while their respective accuracy results evaluated with the PSNR in dB are cited

in Table 6.5. From sequence lengthsN = 64 and forth, the proposed approach provides with a sufficient

approximation of the median filter�s computation, supported by the PSNR of 25.55 dB as well.

To proceed with the hardware resources, we note that the selected register size for each max and min

we utilize is m = 2 as it does not degrade the computational accuracy and holds for all the lengths N
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Figure 6.6: Median Filtering with a 3×3 kernel, realized using the proposedMAX andMIN architectures

for various sequence lengths N . From upper left to lower right: i) MATLAB�s Original Image ii) MAT-

LAB�s Noisy Image with salt & pepper noise density 0.02 iii) MATLAB�s filtered image iv) N = 16 v)
N = 32 vi) N = 64 vii) N = 128 viii) N = 256 ix) N = 512 x) N = 1024. Register size used is
m = 2 corresponding toM = 4 states

Table 6.5: Accuracy in PSNR of the realized 3 × 3 Median Filter using the Proposed Max and Min

Architectures

Peak-Signal-to-Noise Ratio (PSNR) dB

N = 2k 24 25 26 27 28 29 210

Proposed 20.64 23.16 25.55 27.75 29.64 31.05 32.11

used in this specific application. In Table 6.6 the comparison between the traditional binary method using

8-bits is shown. It is important to note that since the SNG�s LFSR size determines N , it also affects the

overall hardware utilization. Moreover, given the fact that N is a parameter selected according to the

accuracy requirements, the SNG�s hardware resources are therefore not included in Table 6.6. Yet, their

design can be optimized according to[88, 34].

According to the results, the proposed approach occupies almost half the binary method�s area, which

is its strong point. Depending on the required accuracy from the sequence length N , the hardware effi-

ciency follows accordingly. For instance, forN = 64 which provides acceptable results, the total energy

consumption has moderate values compared to the binary ones corresponding to 68.35 pJ .

Table 6.6: Hardware Resources for the Implementation of a 3×3Median Filter using the ProposedMAX

and MINArchitectures in Area (µm2), Critical Path (ns), Power (mW ) and Energy (pJ) per operation

Area (µm2) Power (mW ) Critical Path (ns) Energy (pJ)

Proposed 1,139 0.534 2.0 1.068

Binary 8-bit 2,470 2.295 2.2 5.049
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6.3.2 Compact MAX and MIN

We first select a gray-scale image using 8-bit representation and then inject salt & pepper noise, with

noise density of 0.05. The pixel values are afterwards normalized from range [0, 255] to range [0, 1] in

order to be processed in the SC domain. To investigate the computational accuracy we consider typical

stochastic sequence lengths N = 2k, with k = 5, . . . , 10 and calculate the PSNR in dB and the SSIM.

In Table 6.7 the calculated PSNR and SSIM results for typical values of N are shown. Moreover,

in Fig. 6.7 for N = 28-bit sequences and a register size of m = 3-bits, the denoising with the 3 × 3

median filter using the proposed stochastic MAX and MIN is shown, compared to the computation using

MATLAB. As one can observe, both the PSNR and the SSIM with values 33.81 and 0.90 respectively,

demonstrate the increased computational efficiency of the proposed MAX & MIN architectures.

In Table 6.8, we present the hardware resources required to realize the 3 × 3 median filter using

the proposed MAX & MIN architectures and the standard binary method, where we cite two different

implementations. In the first one, we have not included the hardware resources for the generation of the

input sequences as we want for our implementation to be flexible based on the designer�s choice of inputs

(pseudorandom, random etc). In the second one, we have included the hardware resources of an optimized

SNG based on the sharing scheme in [34]. We note that we relaxed the register size requirements to

m = 3-bits in the proposed MAX/MIN architectures for this specific task as our experiments showed

that the accuracy of computations is not degraded.

From the results shown in Table 6.8, the advantage of the proposedmethod is the occupied area, which

is reduced by approximately 40%/28%with/without SNGs when compared to the binary one. Moreover,

with respect to the energy efficiency, it is expected that the stochastic sequence lengthN affects it directly;

for example for N = 64-bit sequences the total energy consumed is 85.76/75.52pJ with/without SNGs

resulting in moderate values compared to the binary method.

Figure 6.7: Denoising using a 3 × 3 median filter. From left to right: I) MATLAB�s 8-bit noisy image
with salt & pepper noise density 0.05, II) MATLAB�s median filtered image, III) Proposed stochastic

median filter with sequence length N = 256 and register sizem = 3-bits.

Table 6.7: Computational Accuracy in PSNR and SSIM of the realized 3 × 3 Median Filter using the

Proposed Max and Min Architectures

N = 2k 25 26 27 28 29 210

PSNR (dB) 24.85 27.33 29.72 31.87 33.66 34.91

SSIM 0.59 0.73 0.83 0.90 0.94 0.96
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Table 6.8: Hardware Resources for the Implementation of a 3 × 3 Median Filter using the Proposed

Compact MAX &MINArchitectures in Area (µm2), Critical Path (ns), Power (mW ) and Energy (pJ)

Area (µm2) Power (mW ) Critical Path (ns) Energy (pJ)

Proposed 1,539 0.59 2.0 1.18

Proposed w/ SNG 1,812 0.67 2.0 1.34

Binary 8-bit 2,520 2.295 2.2 5.05

6.4 MAX Pooling

The down sampling is a standard process used in NNs as it reduces the dimensionality of the input

image based on a max pooling kernel, allowing for the most important features to be preserved. Here,

we consider a 2×2max pooling kernel, realized using the proposed compact MAX architecture. Similar

to the denoising task, we first select a grayscale image and normalize its pixel values to range [0, 1].

Then we select stochastic sequence lengths N = 2k with k = 5, . . . , 10 and investigate the the kernel�s

performance considering the PSNR and SSIM metrics.

In Tables 6.9 and 6.10 the accuracy on computations and the required hardware resources to realize

the 2×2max pooling kernel are respectively cited. It is shown that using more thanN = 27-bit sequence

lengths, the downsampling of an image can be achieved accurately. This is also demonstrated in Fig. 6.8

for sequence length N = 28-bits and register size ofm = 4-bits, where the max pooling is compared to

the MATLAB�s calculation.

For the reported hardware resources in Table 6.10, it is shown that the realization of the 2× 2 kernel

using the proposed stochastic MAX, occupies smaller area when compared to the binary one, approxi-

mately 40% less. This can benefit NN-based designs when 1) multiple copies of the kernel are required

and 2) they have to operate in parallel.

Figure 6.8: Down sampling using a 2×2max-pooling kernel. Left: MATLAB�smax pooling computation

for 8-bit pixel representation, Right: max pooling kernel realized using the proposed compact MAX with

sequence length N = 28 and register sizem = 4-bits.
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Table 6.9: Computational Accuracy in PSNR and SSIM of the realized 2× 2Max Pooling kernel using

the Proposed Compact MAXArchitecture

N = 2k 25 26 27 28 29 210

PSNR (dB) 20.09 23.14 26.31 29.58 32.94 36.52

SSIM 0.58 0.72 0.82 0.90 0.94 0.97

Table 6.10: Hardware Resources for the Implementation of a 2×2Max Pooling kernel using the Proposed

Compact MAXArchitecture in Area (µm2), Critical Path (ns), Power (mW ) and Energy (pJ)

Area (µm2) Power (mW ) Critical Path (ns) Energy (pJ)

Proposed 250.61 0.084 2.0 0.17

Binary 8-bit 432.71 0.058 2.2 0.12

6.5 Neural Network Design

Here we show how the proposed SCSD adder can be used to realize a SC artificial neuron along with

the proposed MAX architecture.

6.5.1 SCSDAdderArtificial Neuron

The proposed SCSD adder�s 0, 1 output, enables further processing with the use of SC-based logic

gates and/or SFSMs. The latter ones, are known to approximate non-linear functions within the context

of SC, some of which belonging in the class of activation ones [15]. Therefore, placing a SFSM after the

proposed SCSD adder, allows for the realization of an artificial neuron, as shown in Fig. 6.9.

Figure 6.9: SC neuron realized using the proposed SCSD adder architecture shown in Fig. 3.14. The non-

linear activation function is realized using any single-bit input/output Stochastic Finite-State Machine.

The SCSD neuron�s current output value according to Fig. 6.9 isGn = φ (Zn), where φ(·) represents

the activation function, while using the time-average value of Z̃n from (3.80), determines G̃N as

G̃N = φ
(
Z̃N

)
= φ




k∑

j=1

X̃
j
NW̃

j
N + B̃N


 . (6.2)
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Note that the time-average values B̃N , W̃N of sequences {Bn}
N
n=1,{Wn}

N
n=1 refer to the bias and the

weights of the neuron respectively.

Among the widely used activation functions in SC including the hyperbolic tangent (tanh), the expo-

nential and the rectifier linear unit (ReLU) [15, 43], ReLU is the most popular one; it has the property of

obtaining sparse representations by eliminating random fluctuations when used in NNs [50]. For an input

sequence {Xn}
N
n=1 with time-average value X̃N , the non-linear activation function ReLU is defined as

ReLU(X̃N ) , max(0, X̃N ). However, considering that the SC�s range is constrained in [−1, 1], in fact,

a variation of the ReLU is realized in SC, namely the clipped ReLU, defined as

Clipped ReLU
(
X̃N

)
, min

(
max

(
0, X̃N

)
, 1

)
. (6.3)

It is apparent that architectures realizing the max function are of high importance, with several archi-

tectures being explored in SC [39, 43, 89, 58, 81, 76]. Among them, we select the one proposed in [81],

due to its property of combining short-sequence lengths with high computational accuracy.

To showcase the effectiveness of MAX architecture of Fig. 3.5 in approximating the clipped ReLU

function of (6.3), we proceed as follows; we select 2 ·102 uniformly distributed input values X̂ ∈ [−1, 1]

and for 103 i.i.d. runs on each input value we calculate the mean of the output�s time-average ÃN . For

input sequence length N = 256-bits and a register size of m = 4-bits, the results are illustrated in Fig.

6.10. It is observed the MAX�s output yields significant approximation results, with a slight deviation

when the input value X̂ ∈ [−0.05, 0.05].
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0

0.2

0.4

0.6

0.8

1

Figure 6.10: Approximating the clipped ReLU of (6.3) using the Stochastic MAX architecture of Fig.

3.5, for input values X̂ ∈ [−1, 1], with 103 i.i.d. runs on each input value, sequence lengthN = 256 and
register sizem = 4-bits.
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6.5.2 Forming a SC Multi-Layer Perceptron

The SCSD neuron in Fig. 6.9 can be used as a basic building block to form a SC-based MLP, which

will be referred to as SCSD MLP. The MLP belongs to a class of feedforward NNs, with the network�s

architecture consisting mainly of three types of layers; input, hidden and output. In each layer, every unit

is connected to every other one in the next layer, meaning that the MLP is fully connected. The layers

within the MLP�s architecture are shown in Fig. 6.12. Each layer within the MLP is explained as follows:

� Input Layer: The units of the input layer are the values of the input features, which in our case have

been converted into sequences {Xj
n}Nn=1, j = 1, 2, . . . , k by SNGs. The same applies to the values

of the weights existing in all layers. For the sequence generation, Sobol number generators are

considered as they require shorter sequence lengths when compared to the LFSR number generators

when approximating a binary number as a stochastic one [47]. Moreover, they can be shared among

the inputs and the weights respectively, as the neurons are independent to each other. An example

of the sequence generation for a single neuron in the input layer is shown in Fig. 6.11.

� Hidden Layers: Each hidden layer is formed by stacking lh neurons in parallel and the number

of layers can be of any depth h. As such, considering the SCSD-based neuron of Fig. 6.9 the

time-average output of each neuron in the MLP of Fig. 6.12 is described as

G̃
λη ,η

N =φ
(
Z̃

λη ,η

N

)
= min

(
max

(
0, Z̃

λη ,η

N

)
, 1
)
, (6.4)

where φ(·) is substituted with the clipped ReLU from (6.3), λη = 1, 2, . . . , lη and η = 1, 2, . . . , h

denote the current unit in each layer and the current hidden layer respectively.

� Output Layer: The MLP�s output layer, obtains the desired predictions and is of length c, corre-

sponding to the number of classes being learned. Assuming c classes to be learned, the time-average

value of each output unit co = 1, 2, . . . , c, is described as

Õco
N =

lh∑

λh=1

Z̃
λh,h
N W̃

λh,h
N . (6.5)

The output layer is the last processing stage within the MLP, so the result of (6.5) is realized in

SC using a multiply-and-accumulate unit as shown in Fig. 6.13, with the result obtained after N

clock cycles. In addition, the following should be noted: 1) the bit-width b′ of the multiply-and-

accumulate unit is determined by the number of the inputs to each unit in the output layer, lh, and

2) the register length should be such that N = 2b, where b refers to the length of the input binary

number according to the definitions in Section 2 .

6.5.3 SCSD MLP Performance

The performance of the SCSD MLP is demonstrated with multiclass classification using the MNIST

dataset [38]. It consists of 60, 000 training samples and 10, 000 testing samples of grayscale images
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<
<

Figure 6.11: Example of sequence generation in the input layer, with X̂j , Ŵ j,1, j = 1, . . . , k corre-

sponding to the values of the inputs and the weights of a single neuron respectively. The Sobol number

generators are shared among the inputs and the weights respectively.

with pixel size 28 × 28, where each image represents handwritten digits with values ranging from 0 to

9, resulting in 10 classes in total. In the experiments, two network architectures are considered, set to

784 − 100/200 − 10; a 784 input layer, a hidden layer of 100/200 neurons and an output layer with 10

neurons corresponding to the dataset�s classes.

With respect to the training procedure, in the hidden layers neurons employ the clipped ReLU defined

in (6.3), whereas in the output layer the softmax activation function is used for the classification. The

values of the inputs and the weights in all layers are constrained to range [−1, 1] so as to be processed in

the SC domain during the inference phase. Moreover, the use of bias in all layers is not considered as it

would further tax on the hardware resources due to sequence generation. The training procedure for the

weights� extraction is conducted using Python and the keras library.

Once the values of the weights are extracted from the training phase, they are used in the MLP for

the inference (testing) procedure. For the evaluation of the MLP�s inference along with the SCSD-based

realization using different sequence lengthsN = 512, 1024, fixed point (FxP) using 8, 16 bits and Float-

ing Point (FP) using 32 bits number representations are considered. The inference procedure of all MLPs

is done using MATLAB.

6.5.3.1 Inference Accuracy

The classification performance of theMLP is evaluated using the accuracymetric, which is the ratio of

the number of correct predictions to the total number of predictions. In the MNIST case, the total number

of predictions corresponds to the number of testing samples, equal to 10, 000. To derive the accuracy of

the SCSD MLP, the mean and standard deviation (std) of 10 independent runs over the testing samples
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Figure 6.12: Multi-Layer Perceptron network architecture. Each hidden layer is realized using the pro-

posed SC neuron of Fig. 6.9 containing the proposed SCSD adder architecture of Fig. 3.14.

<

Figure 6.13: A multiply-and-accumulate processing block realizing each unit Oco
n existing in the output

layer. The result is obtained after N clock cycles.

are considered. This is due to the presence of the LFSR-based SNG existing in the MAX architecture

where the input is compared to the value 0.5 (bipolar format of the value 0) so as to realize the clipped

ReLU from (6.3). Sobol SNGs are reported to reduce the approximation accuracy of SFSMs over LFSR

SNGs and therefore the latter ones are preferred [47]. The accuracy results of the proposed SCSD MLP

accompanied by the FxP and FP realizations in percentages are cited in Table 6.11.

From the results shown in Table 6.11, it is observed that for the proposed SCSD MLP, when the

sequence length N increases from 512-bit to 1024-bit length the std decreases, which is due to the im-

provement of the sequences� convergence in both network architectures. In addition, when the number

of hidden layers is increased from 100 to 200, the percentage accuracy is improved by 0.82 and by 1.14

for sequence lengths N = 512 and N = 1024 respectively,

Compared to the FxP 8-bit realization it can be seen that the SCSD MLP with sequence length N =

512-bit achieves similar percentage accuracy results, increased by 0.49 and 0.33 for the networks 784−

100− 10 and 784− 200− 10 respectively, when the sequence length increases toN = 1024. Compared

to the FxP 16-bit realization, the percentage accuracy of the SCSDMLP for the networks 784−100−10

and 784− 200− 10 is decreased by 0.26 and 0.12 using sequence lengthN = 512-bits respectively, but

using N = 1024-bits, it is increased by 0.28 and 0.33 respectively. On the other hand, compared to the

FP MLP realization, an expected reduction of approximately 1% in the percentage accuracy is observed
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Table 6.11: InferenceAccuracy in percentages (%) of the proposed SCSD, FxP and FPMLP realizations

MLP

784-100-10

MLP

784-200-10

Proposed SCSD (mean ± std) (mean ± std)

Seq. LengthN = 512-bit 95.41 ± 0.56 96.23 ± 0.68

Seq. LengthN = 1024-bit 95.94 ± 0.41 96.68 ± 0.40

FxP 8-bit 95.45 96.24

FxP 16-bit 95.67 96.35

FP 32-bit 96.68 97.43

for the SCSD realizations, which is slightly higher for the FxP realizations.

Table 6.12: Hardware resources required for

the realization of a 784-input neuron

Area

(µm2)
Power

(mW )
Delay

(ns)
Energy

(pJ)
ADP (×103)
(µm2 × ns)

EDP

(pJ × ns)

SCSD 44462.88 4.06 4 16.24 177.85 64.96

FxP

8-bit
703907 3.89 4.2 16.33 2956.40 68.61

FxP

16-bit
2368023.5 12.5 4.2 52.5 9945.70 220.5

6.5.3.2 Hardware Resources

The largest computational block within the MLP is the input layer considering its 784 inputs, making

reasonable to investigate on its hardware resources. To this end, the SCSD and FxP neurons are described

first using Verilog HDL and then they are fed into the Synopsys Design Compiler so as to extract their

hardware resources using the FreePDK CMOS library at 45nm [77]. The following estimates are pro-

vided: 1) the total area in µm2, 2) the average power consumption for the maximum operating frequency

inmW , 3) the delay in ns, 4) the energy per operation in pJ , defined as the average power× delay prod-

uct, 5) the area-delay product (ADP) in µm2 × ns and 6) the energy-delay product (EDP) in pJ × ns.

The results for the hardware resources are cited in Table 6.12.

According to Table 6.12 it can be seen that the SCSD neuron reduces the area by 93.68% and by

98.12% of the 8-bit and 16-bit FxP ones respectively, resulting to ×15.83 and ×53.25 smaller area re-

spectively. The ADP results follow the same direction as the area ones given that the delay between the

SCSD and FxP neurons is similar, meaning that the SCSD neuron reduces by 93.98% and 98.21% the

ADPof the 8-bit and 16-bit FxP neurons respectively. With respect to the energy per operation, the SCSD

results in similar values compared to the 8-bit FxP, but, reduces the energy of the 16-bit FxP neuron by

69%. Similar results are also observed for the case of the EDP, where the SCSD neuron reduces the EDP

of the 16-bit FxP neuron by approximately 70%.

It should be noted that the FP number representation introduces large hardware overhead when com-

pared to the FxP number representation due to the presence of the FP multipliers [50, 49], making it less

attractive for massive multiply-and-add operations. This is also the case for the SC multipliers when
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the SNG sharing scheme is included [49]. Therefore, despite the FP MLP�s accuracy improvement of

approximately 1%, the hardware resources required to realize a FP neuron are not considered in Table

6.12.

6.5.3.3 Related Work

Table 6.13: Performance Comparison of SC-based MLPs in inference accuracy and hardware resources

efficiency for the realization of the computational units

Work Architecture Seq. LengthN
Relative error (ǫ) of
Accuracy on MNIST

Hardware Efficiency

(as a % of the FxP)

Area Energy

Proposed SCSD
784-100-10 512/1024 0.0131/0.0077 6.3% / 1.87%

(FxP 8/16-bit)

94% / 30%

(FxP 8/16-bit)784-200-10 512/1024 0.0123/0.0077

[37] 784-100-200-10 1024 0.0018∗
50%

(FxP 9-bit)

30%

(FxP 9-bit)

[49] 784-200-100-10 4096 0.0133
40.7%

(FxP 8-bit)

38%

(FxP 8-bit)

[48] 784-128-128-10 1/gradient 0.0179∗∗
7.3%

(FxP 10-bit)

10%

(FxP 10-bit)
∗ The highest accuracy score is used to calculate the relative error, taken from [37]

∗∗ The relative error of accuracy corresponds to the training procedure

For a fair comparison with the related work in SC in terms of classification performance, it is reason-

able to consider the relative error of the inference accuracy given that the network architectures differ. It

is defined as

ǫ =

∣∣∣∣
AccuracyFP − AccuracySC

AccuracyFP

∣∣∣∣ , (6.6)

where AccuracyFP and AccuracySC are the classification accuracies using FP and SC number repre-

sentations respectively. In terms of hardware efficiency, the area occupation and energy consumption in

percentages over that of the FxP arithmetic are reported. The performance results are cited in Table 6.13.

In [37], a stochastic neuron is realized using an APC, followed by a FSM operating as the non-linear

function tanh (BTanh) and implemented as binary up/down counter. The design of the BTanh is fixed, in

the sense that the FSM�s number of states affecting the tanh�s approximation are derived using numerical

experiments for specific input sequence lengths. Moreover, the input sequence�s bit-length driving the

FSM affecting the number of the FSM�s states is not considered.

According to Table 6.13, the relative accuracy error of the MLP in [37] is small, but, note that only

the best score is reported, whereas in the proposed work and the rest ones, the average accuracy over

independent runs is considered. For the hardware resources, in [37] a 200-input neuron is reported,

utilizing 50% area and 30% energy of the FxP 9-bit realization On the other hand, the proposed 784-

input neuron occupies only the 6.3%/1.86% of the 8/16-bit FxP�s area respectively, while the energy is

94%/30% of the 8/16-bit FxP respectively. Moreover, the proposed SCSD adder opens the SC design

space as it allows the use of single-bit output SFSMs, which consequently enables the realization of

multiplications using AND/XNOR gates according to the SC number format used.

In [49], stochastic neurons in the input layer are realized by adopting the extended stochastic logic
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(ESL) [18], whereas in the rest layers they are realized using APCs. Combining two different multiply-

and-add processing methods allows the use of ESL-based backpropagation circuits, enabling online train-

ing. The ESL adder tree, however, requires a TMR binary search divider, resulting in large sequence

lengths for its computation and stabilization phases[50, 49].

From the results in Table 6.13, the relative accuracy error of the MLP in [49] using N = 4096-bit

sequence lengths is similar to that of the proposed SCSD one when N = 512-bit sequence lengths are

used, resulting in a×8 faster convergence for the proposed approach. Comparing the area efficiencies, it

can be seen that the proposed approach results in significant savings of the FxP 8/16-bit realization, but,

energy-wise the approach in [49] is better when 8-bits FxP are considered. From a design perspective,

the proposed SCSD adder uses the standard SC encodings, whereas in [49] the use of ESL logic for the

realization of the multiply-and-add units introduces design challenges [80].

Deviating from the previous approaches targeting multiply-and-add computational units, in [48], a

signed SC gradient descent (SCGD) circuit capable of updating the value of the gradient and the weights

was used in the training process of a MLP. From the computational accuracy results in [48], this method

achieves significant training accuracy when compared to the FxP arithmetic with step size 2−10. Note that

in [48], only the FxP arithmetic is reported as an accuracy metric, hence for fair comparisons among the

works cited, we consider FP arithmetic using a 784− 128− 128− 10 network, yielding 98.8% accuracy

after 20 training epochs. Regarding the hardware resources, the SCGD circuits result in reduced area

and energy compared to their FxP counterparts according to Table 6.13, but accuracy-wise the proposed

approach results in smaller relative error.
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7 Conclusion

In the first part of the dissertation, SC architectures for information processing systems were pre-

sented. Their operation principle was analysed in detail from a bit-level perspective, setting the foun-

dations for the description of their behavior using SFSMs. To further explore their long-term stochastic

dynamics, the architectures were modeled using MCs allowing for the derivation of their first-moment

statistics, used to formally prove their proper operation at the limit. The MC modeling was extended to a

general methodology that can be applied to any SFSM described as aMoore FSM, enabling the derivation

of the second-moment statistics and the mean squared error, besides the first-moment ones. In addition,

an extended overflow/underflow MC modeling procedure was introduced that can be used to estimate

the number of states corresponding to the architectures� internal register size. From the above, it can be

concluded that the contribution of the proposed architectures� theoretical analysis to the SC literature is

the next step towards a better understanding of the behavior of SC elements relying on SFSMs, along

with the acceleration of their design procedure.

In the second part of the dissertation, the performance of the proposed SC architectures is evaluated

with comparisons with the existing approaches and realistic applications. With respect to the comparison

with existing approaches, it was shown that the proposed architectures combine high accuracy outputs

and small sequence lengths, which originates from the presence of the internal registers they use making

their processing deterministic. When compared to existing approaches, their internal registers used by the

proposed architectures impacts the power and energy consumption per clock cycle. Therefore, it would

be reasonable to investigate to what extend a reduction of the number of states could balance the trade-off

between the hardware resources and the high computational accuracy with small sequence lengths. Re-

garding the applications, it was shown that the proposed architectures are effective in executing several

DSP operations, justified using standard computational performance metrics. Compared to the realiza-

tions using standard binary approaches, the proposed ones result in significant area savings with moderate

total energy consumption values, due to the increased sequence lengths required for such applications.

Hence, a further relaxation of the architectures� register size and its impact on the computational accuracy

could be explored.
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