&

nvpPopos

MPOMHOEV#
BI=|

N

National Technical University of Athens
School of Electrical and Computer Engineering
Division of Communication, Electronic and Information Engineering

Stochastic Computing Architectures for

Information Processing Systems

by

Nikolaos Temenos

Supervisor
Paul-Peter Sotiriadis, Professor, NTUA

A dissertation submitted to the
Department of Electrical and Computer Engineering
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Athens, December 2022

nvpPopos

MPOMHOEV#
BI=|

N

EBvikdé MetooPio TTolvteyveio
Yol Hiextpordymv Mnyovikdv & Mnyovikov Y ToAoyioT®dV
Topéac Emxowvovidv, Hiektpovikrg & Zvompdtov [TAnpopopikng

Stochastic Computing Architectures for

Information Processing Systems

AdaKTopiKi) AtoTpipi

NikoAiaog Tépevog

YroPAnOnke oto Tpunqpo Hiextpodldymv Mnyovikdv kot Mnyovikov Y Toloyiotdv

0€ LEPIKT EKTANPOOT TOV ATUITHCEDY Y10 TNV OTOKTION SIO0KTOPIKOD SITAMUOTOC

Abnva, Aexépfplog 2022

J

4

nvpfopo

MPOMHEEY

N>

National Technical University of Athens
School of Electrical and Computer Engineering
Division of Communication, Electronic and Information Engineering

Stochastic Computing Architectures for

Information Processing Systems

PhD Dissertation

Nikolaos Temenos

Advisory Committee:
Athanasios D. Panagopoulos

Professor, NTUA

Paul - Peter Sotiriadis

Kiamal Pekmestzi
Professor, NTUA

Professor Emeritus, NTUA

Approved by the seven-member examination committee on 13/12/2022.

W Panayiotis
‘ /P/rbfessor Professor -~

Anastasios Doulamis

Associate Professor

Athens, December 2022

The research work was supported by the Hellenic Foundation

H F R I for Research and Innovation (HFRI) under the HFRI PhD

::L'::iéh"%:lmgggﬁf;; Fellowship grant (Fellowship Number:1216).

Nworaog Tépevog
Copyright © Nworaog Tépevog, 2022
Me gm@OAaén mavtog dikaiopotog. All rights reserved.

Amayopebdetal 1 avtypapn, amodnKevon kat dStovon g mapovcag epyaciog, 5 OAOKANPOL 1 TUN-
HOTOG ALTNG, Yo epmopikd okond. Emtpémeton n avoatdmmon, omobnkevuon kot Stavoun yio okomd un
KEPOOOKOTIKO, EKTOOEVTIKNG 1 EPEVVITIKNG VGONG, VIO TNV TPoHIOHEST VoL avapEPETOL 1 TNy TPO-
€levong Kot va dtatnpeitat to mapdv ppvope. Epotiuoto mov agopoldv i ypnon g epyaciog yio
KEPOOGKOTIKO GKOTO TPEMEL VAL AmeLOVVOVTOL TPOG TO GLYYPUPEX.

Ot amoOYELS KOl TO GUUTEPAGLLOTO TOV TEPLEYOVTAL GE AVTO TO £YYPAPO EKPPAELOVY TO GLYYPAPEN Kol
dev Tpémel va eppunvevbel 6TL avtimpocmredovy Tig emionpeg Oécelg tov EOvikov MetooPiov [Tolvteyvei-

Oov.

Abstract

Arithmetic operations on stochastic sequences is the basis of the unconventional computational ap-
proach known as Stochastic Computing (SC). Deviating from the standard binary arithmetic, SC encodes
and processes the value of binary numbers in the form of stochastic sequences, making arithmetic op-
erations and highly-complex functions realizable using a few simple standard logic gates and memory
elements, having inherent natural robustness in soft-errors. SC’s properties and advantages have been
exploited in a plethora of fields characterized by massive parallelism requirements like Neural Networks
and Image Processing. Beyond its strong points, SC introduces an accuracy-latency trade-off impacting
the energy efficiency. Therefore, achieving low latency along with increased computational accuracy is
the primary design goal is SC systems.

This dissertation presents novel SC architectures realizing essential arithmetic operations and non-
linear functions, as well as realistic Neural Networks and Image Processing applications based on them.

In the first part of the dissertation, the operating principles of the architectures are introduced and
their behavior is modeled based on Stochastic Finite-State Machines (SFSM) and analyzed using Markov
Chains (MC). This leads to a deeper understanding of their stochastic dynamics and the verification of
their proper operation. The MC modeling is further extended to a general methodology enabling the
analytical derivation of the SFSMs’ first and second moment statistical properties. The methodology is
accompanied by overflow/underflow MC modeling, allowing to balance the accuracy-latency trade-off
according to performance requirements, and to set the guidelines for the selection of the register’s size.

In the second part of the dissertation, the proposed architectures are compared to existing ones, in
the SC literature, in computational accuracy and hardware resources, including area, power and energy
consumption as well as in terms of their advantages in the overall design flow. The efficacy of the ar-
chitectures is demonstrated by using them as building blocks in the realization of several Digital Signal
Processing (DSP) operations, including convolution, noise reduction and image down-sampling filters as
well as Neural Networks. Finally, the results of the introduced architectures’ performance in computa-
tional accuracy and hardware resources are compared to those achieved using standard binary computing

methods highlighting the advantages of the first ones.

Keywords: Stochastic Computing, Stochastic FSM, Markov Chain Modeling, Digital Circuits

Abstract

IHepiinyn

Ot aplBuntikég mpaéelg e otoyaotikég akolovbdieg sivar 1 fdon g U cupPaTiKNG TEXVIKNAG TOV
elvat yvoot) ©g Z1oxaoTikoc Ymoroyiopds (XY). Amoxkiivovtag and v Tumikn Svadikn aptOunTik,
0 XY kwdwomotel ko eneepydletar TNV T TV SLASIKOV apOUOY LE TN HOPPT| CTOYOGTIK®OV 0KO-
AovOudv, Kadiotdvrag duvat) TV TPAYROTOToinon aptlunTiK®dv Tpalemv kot ENPETIKG TOADTAOK®Y
GUVOPTHGEMV UE TN XPNON AlYOV TUTIKOV AOYIKOV TUADV Kot 6Totyeimv pviung. Madi pe mv puoikn
eupwaotio Tov XY 6g GOAANATA, 01 1010TNTES KOl TO TAEOVEKTNUATE ToV £xovv aflononbel o TAnOdpa
nediov pe avaykeg Lolikod TopoAANAGHOD Kol (KPT avoy] 6 GPAALOTO, CUUTEPIAALBOVOLEVOV TOV
VELPOVIKOV SIKTVOV Kot TG eneepyaciog eikovag Heta&d ToAdv dAAwv. [1épa and ta .yvpd Tov on-
peto, o XY ewodyet éva couPipacud akpiferos-kabootépnong mov exnpedlel TV evepyELoKT] AmOS00
KO, ®G €K TOVTOV, Yo, va, a&lomom el pe tov koldtepo duvato Tpdmo, 1 enitevén Yauning kabvotépnong
€ GLUVOLOCHO HE OVENHEVN VTTOAOYIOTIKN aKpifela efvar TpoTOopytKd LEANLLOL.

Yty mapovoa SotpiPr] mepovcldloviol VEES apYLITEKTOVIKEG TOL VAOTOOUV Pacikég aplOunTikég
TPAEELS KOl U YPOUUIKEG cuvapTioElg oe XY. Ol e0mTEPIKOL KOTAYOPNTES TOV XPTGLOTOLOVV KoO1-
otobv Vv eneepyacio ¢ axoAovding 16680V TOVG ALTIOKPATIKY, BeEATIdVOVTOG €161 TO GLUPIPoacud
axpifeac-kabvotépnong tov XY. [N va avaderyBobv ot 1310TNTEG Kat 1 apyn AEITOLPYIONG TOV OpyLTE-
KTOVIK®V, 0VOADOVTOL SIEE0STKA LLE TN YP1|OT) OTOYOCTIKOV UNYOVOV TETEPAUCUEVNG KaTdoTaong (EMITK)
KoL LOVTEAOTTOIOVVTOL e TN Xpnon aAvcidwv Markov (AM).

10 TPp®TO PEPOG TNG STPIPNG, M APy AELTOVPYING TOV OPYLITEKTOVIKOV OVOADETOL UE TN Y¥PToN
EMIIK kot povtehomotegitat pe ™ xprion AM, n onoia exitpénet v KaAHTEP KATOVONOT THG LOKPOTPO-
Beoung 6TOY0OTIKNG SLVAIKNG TOVG Kot TNV enainfgvon g opbng Aettovpyiog tove. H poviehomoinon
™mg AM emeKkteivetol Tepattépm e P yevikn LeBodoroyio OV emTPENEL TV OVOALTIKY EEQYOYN TMV
GTOTIOTIKOV WO10THTOV TG TPMTNG Kot TG 6gvtepng pomng twv EMIIK. H pebodoroyia cuvodevetat and
povtehonoinon AM vrepyeiliong/vmoyeilong, ENLTpETOVTAG TV EKTIUNGN TOV 0plOpod TOV KATUGTAGE-
MV OV LELOVOLV T GPAALATE YNPLOV TOV TPOEPYOVTOL OO TNV EUPAVIOT VIEPYEIMONC/VTTOYEIAMONC,
0étovtag £To1 TIg KoTELBLVTNPLES YPOLLLES Yo TV ETAOYT TOVL HEYEOOVG TOL KATOYWPNTH TOL YPT|CLLO-
TOLOVV.

210 3e0TEPO PEPOG TNG SATPIPG, Ol APYITEKTOVIKES GLYKPIVOVTOL EKTEVAS LE TIG VIIAPYOVGES GTN
Bproypagio tov XY 6Gov apopd TV LTOAOYIGTIKY aKpiBELa Kot ToOVG TOPOVG LAKOV, GUUTEPIAALBO-
VOUEVOL TOV YMPOV TOL KATOACUBAVOLY TO, KUKADUATO, TV KOTOVAA®GT) 16Y00G KOl EVEPYELLS, KUOMS
KO TO, OPEAN OV EIGAYOVV GTN GUVOAIKT pon 6yediaonc. H omoTeEAecUATIKOTTA TOV OPYLTEKTOVIKMDV

OVAOEIKVOETAL LLE TN YPNON TOVG G SOUIKA GTOL el GTNV LAOTOINGN S10pOp®V ENEEEPYACTIKMY LOVE-

8 Hepilnym

dwv, mov mepapPavovy cuvEMEN, epiltpa peiwong BopvBov kot voderyatoAnyiog elkOvas, Kabmg Kot
veupwVIKA diktua. To amOTEAECUATH TOV EMOOCEMV TOV UPYLTEKTOVIKOV OGOV apOpd TV LTOAOYIGTL-
K1 aKpifelo Kot Tovg TOPOVG VAIKOD GUYKPIVOVTOL [E EKEIVA TTOV EMTVYYAVOVTUL LLE T XP1OT TUTIKOV
dvadikdv pneboddwv vToAoYIG OV, TPoBAAlovTag TO TAEOVEKTHLATA TOV XY MG TOAAG VTOGYOUEVT] EVOA-

AOKTIKY] Lopon emelepyaciog onuatoy.

Aggaig Khedwa: Ztoyootikog Ymoloyiopog, Ltoxaotikd Avtopata, Alvcida Markov, Wnoerokd Kukko-

poto

Extetanévn epidnyn

Yy mopovoa STpP TopovcldlovTol KUVOTOUES YNPLOKESG OPYLTEKTOVIKES TOV VAOTOOUV Boot-
KEC apOUNTUCES TPAEELG KO U1 YPOLUKES GUVAPTNGELG GTOV GTOYOGTIKO VIOAOYIGHO (Stochastic
Computing - SC). H avdivon tovg yivetor d1e€odikd e TN yp1|ON GTOYOCTIKMOY UNYXOVAV TETEPUCUE-
vov kataotdoewv (Stochastic Finite-State Machines - SFSMs), evd yia Tnv katovonor e GTOXUCTIKNAG
SUVOLIKNG CLUUTEPIPOPAS TOVG, LOVIELOTOLOVVTOL HEG® aAVGidmv Markov (Markov Chains - MC). Ta
TAEOVEKTILLOTO KOL 1] OTOTEAEGUATIKOTITO, TOVG, EXLOEKVOOVTAL LE TV a&loT0iNGT TOVG GTNV VAOTOIN G|
dopkdv povadwv ynelakng eneEepyaciog onpartog (Digital Signal Processing - DSP).

O 6710Y06TIKOG VITOAOYIGUOS OVIKEL GTNV KATNYOPio TV 1N GLUPOTIKOV HeBOd®V VTTOAOYIGUOD, KO-
0mg kmducomotel kot emelepydleTor MV TN SLASIKOV aplOUdV HE TN LOPPT] GTOYOCTIKOV 0KOAOVOIDV
tov evog ynoiov (bit). H ceplaxn enelepyacia og eninedo yneiov, enttpénel nv vAonoinon Hepelwdmv
opOUNTIKOV TPAEEWV e T XPN O HELOVOLEVOY AoYIK®VY TUA®V (logic gates), evd 1dtaitepa TOAVTAOKES
GUVOPTNGELC, OTMG Y10l TOPASELYLLOL 1T YPOUUIKES, VAOTOLOVVTOL OTAG LLE TN PN UNYOVDV TETEPUCUE-
VOV KoTooTdoemy. EmmAéov, dedopévng tng mavotikng @Homng Tov, 0 GTOYOCTIKOG VITOAOYIoUOG gival
EYYEVAG OVEKTIKOG GE odApata (soft errors), Tov onpaivel OTL 1 AVTIGTPOEN LEPIKMV YNpiov dev eivar
emdnuia yo v TAnpoeopio tov idtov tov onuatog. [épav TV TAEOVEKTNUAT®V TOV, 0 GTOXUGTIKOG V-
moloylopds etodyet pia avtiotddiunon (trade-off) peta&d Tov KOLS TV GTOXOCTIKGV 0KOAOLOUDY TPOg
eneEepyacio Kat g akpifeLag TOv YPOVIKOD HEGOV OPOL TOV GTOXAGTIKOV aplBov. Q¢ ek TOVTOL, Yo VoL
a&lomomBel pe tov KaAvtepo duvatd Tpdno, N emitevén youning kabvotépnong (latency) o€ cuvévaoud
pe avénuévn vtoAoyloTikn akpifela omoTeLel TPOTAPYIKO HEAN LA GYEOIAGIOD GE GLOTHUATA BUCIGUEVOL
GTO GTOYAGTIKO VITOAOYIGUO, DGTE VO ATOPEVYOEL 1| GUVOAIKY KATOVAAWDGT) EVEPYELNG.

To mAgovekTNUOTA KO O1 WOIOTNTEG TOV GTOYOGTIKOD VTOAOYIGHOV, ELVOOVV KOTE KOPOV EPAPLOYES
7OV 1) VAOTO{NGY| TOVG Kol Ol OTOLTHGELG TOVG GLVOVALOVY TOVTOYPOVE AVAYKES Yiot LOLIKO TOPUAATAL-
OO, TEPLOPICUO GE EKTAGT KOL OVOYT GE LKPEG ATOKAMGELG oo Tovg akpiPeig voloyispove. Ot epap-
HOYEG aVTEG TEPIAAUPAVOVV Ta TEYVNTA VEVP®VIKA dikTva eumpociag Tpopodotnong (Artificial Neural
Networks - ANNSs) e éppacn ota molvenineda perceptron (Multi-Layer Perceptrons - MLPs) kot ta
oLVEMKTIKA vevpovikd diktva (Convolutional Neural Networks - CNN) 6tov Topéa g tevnTIS von-
LOGUVNG, TIG UNyavéS dtavuopdtov vrootnpiEng (Support Vector Machines - SVMs) 6tov topéa g pun-
yovikng pabnong (Machine Learning - ML) kot tov ¢idtpov yopikng fertioong counepthapfovopévav
TV PIATpOV peimong Bopdov, didpeong TN, EVioyLoNG EVKPIVELNG EIKOVOG Kol GAA®Y GTOV TOUEN TNG
ynoakng eneepyaciog ewdvag (Digital Image Processing -DIP). Q6t660, 0 6T0Y06TIKOG VTOLOYIGHOG

dev mepropiletar povo ota avetépo medio, Kabmg ExEl EPUPLOCTEL LUE EMTVYI0 GTO EAOCTIKO QIATPAPL-

0 Exterouévn Hepidnyn

opa (soft filtering), mov cupumeptiappdvet eiktpa tenepacpévng kpovotikng amdkpiong (Finite Impulse
Response - FIR) kot dneipng kpovotiknig amokpiong (Infinite Impulse Response - 1IR), otnv kwdiko-
noinon/amokmdkonoinon dopHwong ceaipdtwy (error correcting codes), 6NV €MIAVGT TOAGVOLOV
(polynomial solving) kot o€ GAAa.

Mo Baotkn Aettovpyio OV EKTEAEITOL GTOVG TUPTVEG YNPLOKNG EMeEepyaciog CNUATOC GE OLEG TIG
TOPOTOVE EPAPUOYEG, EIVOL QDTN TOL TOAAATAAGLOG OV Kot TNG TpOcBeong (multiply-and-add). 1o oto-
YOGTIKO VITOAOYIGUO, 1) TPAEN TOL TOAAATAAGLOGHOD amoteAel Evav amd Tovg PacIKOTEPOLS TAPEYOVTEG
7OV ToV KaO16TOVV EAKLGTIKG, KOOMG VAoTOLEiTOL Al pe T xpron piag Toing AND 1§ XNOR, avado-
YOG LE TNV OVATOPAGTOCT 0plBpdV o ypnoponroteital. To koppdtt tng mpdcbeons OUmG, VAoTolEiTon
Tomikd amod Evay mrorvmAéktn (Multiplexer - MUX), o onolog amattel pio emmpocOetn myn toyaiov optd-
LAV Y10 TO GO EMAOYTG TOV, TEPAV TMV dVO €GOSV TOV. 26TAC0, 1| TNYN TVYaiOY apOUOY arnoTelel
oo LOVT] TNG OYKMOEG SOUIKO KOUUATL, 0OV GE GUYKPLOT] LE TIG VTOAOITEG AOYIKEG TTOAES TTOV YPNGULO-
mowoHVTOL, KOTAAAUPAVEL TO HEYOADTEPO HEPOG TNG EMPAVELDG TG oxedlaong. EmmAéov, n €E0dog Tov
0Bpotot cLVVNOWG KAMUOKMVETOL KOTA TO MLLGL, TOL GNHaivel 0Tt yio Eva dedopévo unKog akorovdiog
1N OVAAVGT| LELMVETOL GTO GO, EVM 1 HEIMGN TNG AVAALONG, EVIEIVETOL TEPALTEP® OTAV VOICTAVTOL G-
KeTOl KAMPUOK®TOL LITOAOYIGHOT. Q¢ €K TOVTOV, 0 TOATAEKTNG Elvar 1] AyOTEPO EAKVGTIKT ETIAOYT] YO
aBpotom, apov Gg OAO To TAPATAVED TPOSTIOETAL KOL 1| LENUEVT KATOVAA®GT) EVEPYELOG DESOUEVNG TG
avaykng yo avénomn g avaivong g axorovding e€6dov. Ta i pelovekTipoTo Topovctdlel Kot o
AQUPETNG 0 0TTOI0C VAOTOLEITAL [E TN XPNOTN TOAVTAEKTT, UE TN OV dtapopd 0Tt TEPLopileTal 6€ LOVO
pio oo Tig dVO PUCIKEG AVOTAPAGTAGELS TOV GTOYOGTIKOD VITOAOYIGUOV.

[o TV OVTHETOTIOT TOV HEIOVEKTNIATMY TOV EIGAYEL O TOAVTAEKTNC, Ex0oVV dlepevuvn el didpopot
00po1oTEG Kat apapétes, £6TIALOVTAG TOVTOYPOVO GTNV VITOAOYIGTIKY KOl GXESOGTIKT ATOSOTIKOTNTA.
Mio pocéyyion faciopév oty apy] KAMUOK®ONS TOL EIGAYEL O TOAVTAEKTNG, OTOPEVYEL TNV EMTAEOV
nyN TV aptBpdv 6To onpa ETAOYNG, aviikadiotovtag) pe Eva ototyeio pvnung T Flip-Flop, avé-
vovTog TapdAAnio v akpifela 6TOVG VTOAOYIGUOVG. Mia TapOLOL0, KAUOK®OT TPOGEYYION, ETEKTEIVEL
T ypnon tov evog otoryeiov pvqung T Flip-Flop og mapoandve, epappodloviog pio pnyovi TEnepucuevemv
KOTOGTAGE®V Y10 VO 0ENCEL TEPALTEP® TNV OKPIPELE TOV. AVOQOPIKA LLE TOVG UN-KALAK®OTOVG a.fpot-
oTé¢, pia Tpooéyyion Paciletal 6TV avaTapAcTOCT) EVOG GTOYXOCTIKOD aplBLoD TOL PEPEL TNV TANPOPO-
pio Tov 6g dVo axorovbieg, pia yio o TPOSMUO TOL Kot pia yio TV Téén péyebovg Tov. Av ko givar puo
TOAAG VITOGYOLUEVT TPOGEYYION GE EMMEDO EPAPUOYNG, 1 KOOIKOTOINGT GTOYAGTIKOD aplfpov HEcm dVo
aKoAovdidV emPAAAEL TEPLOPIGLOVG GTN GLVOAKT GYEdiNON, KaBdS amattel amod Tig LTOAOTEG TPAEELS,
Y. TOAMOTAAGLOGTES, Vo 0koAoVOOUV emtiong ot TV apyn Aettovpyiag. Opoimg pe Tov TPONyoLUEVO
a0po1oth), GAAN TPOGEYYIoN KMIKOTOLEL £VAV GTOXAGTIKO aplOUd YPNCILOTOLDVTAS TOV AOYO TV Ao-
YIKOV HOVAS®V KOl UNOEVIKOV HETAED TV akoAOLOIDOV 16050V Tov. Q6TOGO, 1) AVATOPAGTOCT) CUTY|
elvat acOUPOTN KE TIC TUTKES OVOTOPUGTAGELS TTOV YPTGULOTOLOVVTOL GTO GTOYOGTIKO VTOAOYIGUO, EVA
N Topoy@yn 600 aKoAOLOIDY Yo Evay HOVO GTOYAGTIKO aptOud, emnpedlel tn cuvolkn aglomoinon Towv
TOPOV KO TOV VAIKOD.

Ocov apopd ToVg GTOYUCTIKODS APUPETES, Lia TPOCEYYIoT cVoyeTileL Tig akoAovdie e10660v. AvTo,
®GTO60, AmalTtel TPOGOYT, KAOMG 0 GTOYAGTIKOG VTOAOYIGLOG EIVOL ETPPETNG GE GOPAALLOTO TOV TPOKOL-

AovvTal amd GLOYETIGUEVEG £1G60J0VC. EmmAéov, edv 1 apaipeon elvat pua evotdpeon opOuntikn Tpaén,

11

dnradn vopiotator peta&d 60 GAA®Y VITOAOYICUAOV, 1) AVOYEVVIOT] GUCYETIGUEVAOV EIGOJMV Elvatl amapai-
), avéavovrtag v a&lomoinen Tov Tépmv Kot Tov VAIKoD. Mia dAAN Tpocéyyion epapuolel emmiéov
AOYIKEG LOVEAdES Yio va. BedTidoel TNV akpifeta pog oAng XNOR n omoia mpoceyyilet v apaipeom, o-
VTOALAGGOVTOG TOPOLG VAKOD Kot KaBuaTépnon yia akpifela VTOAOYIGU®Y, Kol To VO PACIGUEVE GTOV
oplOpd TOV EMTAEOV AOYIKMOV HLOVAS®V TOV ¥PNGULOTOLOVVTAL.

Yvvoyilovtog omd T0 ToPATAV®, Ol TEPIGGOTEPESG TPOGEYYIGES AVTAAALAGGOVV TO ¥POVO EKTEAEGNG
/KoL TV ETPAVELD TOV DAKOV Yo TV axpifela vtoroyicpmv. Emmhiéov, opiopéves amd avtég eilcdryovv
TEPLOPIGLOVE TTOV LELDOVOVY TNV EVEMEIN GTO YDPO GYESAGHOD TOV GTOYAGTIKOD VITOAOYIGHOV. Me Kivr)-
TPO TO. TPOAVAPEPOEVTO, GTNV TAPOVGA EPYAGIO TPOTEIVOVTOL OPYLITEKTOVIKEG U KAMUOK®OTOV 00potoTdv
Kot opotpeTomv. Ta TAeoveKTNUATA TOV TPOSPEPOLV gival ToAVEPIOLa: dev amaitodV Kapio Tyn Toyoi-
oV aplfudv, dev KAMPOKOVOLY TO OmOTELEGHA £E000V, AELTOVPYOLV e AVEEAPTNTES KO TOVOLLOLOTVTO!
KOTOVEUNUEVEG akoAoVOiES £16000V, ONANOT OEV OTALTOVVTAL EIOIKA GUGYETIGUEVES £16000L, Elval GULL-
Batéc pe Tig TVTIKEG AVamTaPAGTAGELS APOUdV TOL GTOYAGTIKOD VITOAOYIGHOV KOl ETLTVYYAVOVY DYNAR
VTOAOYIOTIKT aKPIPELD XPTGILOTOIOVTOG LIKPE UAKT 0KOAOLOLOV £1G6OJ0V.

Ye TePTMOELG OOV Yperaletar Tpaén Tov TOALUTAAGIOGHOD Kat TG Tpdcbeons va yivel palikad,
1N XPNOT LELOVOUEV®V 0fPOIGTMOV GE SO OEVOPOL EIGAYEL TPOKANGELS GE EMIMEDO AOENOTG LAIKO Kot
TayOTNTOG oYEdicoNs. 10 va aVILETOTIGTOVV QVTES, GTOV GTOYAGTIKO DTOAOYIGHO £E€TALETOL O GLGGM®-
pevTIKOS TapdAdnrog petpntig (Accumulative Parallel Counter - APC), o omoiog afpoiletl artiokpatikd
OAEC TIG aKoAoVDiES £1G030V, TAPAYOVTOG TO OMOTEAEGILO GE OLASIKY| HOPPT|. 26TOCO, GE GAVGLOMTOVG
VIOAOYIGHOVG 1 dvadikd £E0dog Ttov APC eiodyet Tic akdlovbeg mpokAncelg oyxedtoopov: 1) meplopilet
TNV EQOPLOGILOTNTO TV VPIGTAUEVOV GTOYOCTIKOV UNYOVOV TETEPACUEVOV KOTUCTAGEMY TOV VAO-
0100V 1010iTEPOL TOAVTAOKEG GUVOPTIGELS, CUUTEPIAUUPOVOUEVOV U1 YPOUUIKOY GUVOPTHGEDY Kot 2)
OTNV TEPITTMOGCT TOV ATALTOVVTOL KOl AAAES 0PLOUNTIKEG TTPAEELS, Y10 TOPASELYLLOL OTAV Ol TOAAATAOG 0L
oot akoAovBovV TNV €000 TV GTOYUGTIKOV UNYOVOV TETEPACUEVOV KATUCTAGEMV, 1) Suadikn ££000G
mpénel va avayevvn el ¢ 6ToYaoTIKY okoAlovBia TPOKEWEVOL va VoL pNGLLOTONHOUY AOYIKEG TOLES.

Me xivntpo tovg avetépm mepropiopots tov APC, | mopovoa epyacio €10yl po opyLTEKTOVIKT
aBpototn mov ypnoomotel Evav StHopPT olypa-0édta Tpmng tédéng (SDM). O mpotevdpevog a-
Opotog 6T0YX0oTIKOD VTOAOYIGHOV Glypa-0éAdta (SCSD) abpoilel ta ynoeio Tov akodovdidy 16650V
o€ €vo. SI0LA0 OESOUEVMV KOL OTT) GUVEXELD YPTCLLOTOIEL £VOL EGMTEPIKO GYNUO LETATPOTNG EDPOVG dE-
doUEVOV MOTE VoL EKUETAALEVTEL TNV 10T TA TOV X-A VoL LETATPETEL EVOL GO VYNANG AVAALGNG GE GO
Tov gvoc ynolov. Ilpoceépet Ta axdrovba mheovektnpata: 1) Aettovpyet pe aveEaptnteg 16060VG, 2) 1|
TPOchean YIVETOL ATIOKPATIKA Y®Pig entmpdoOeTeg TNYES TUYOI®Y APOU®V, 3) ETLTLYXAVEL YPTYOPT G-
YKMoT e PKpE UK axkoAovBiog 166600, 4) emITpENEL VA YIVOUV OTOTEAECUATIKG 0AVGIOMOTEG TPAEELS
LE TOL LTLAPYOVTO OPLOUNTIKG KUKADUOTO Kot 5) ETITPENEL TN YPT|OT) OTOLGONTOTE GTOYUGTIKNG N0~
VG MEMEPACLEVOV KATAGTAGEWDY JLEVPVVOVTUS £TGL T GXEOLUGT] VELPOVIK®OV SIKTO®OV KO PN GTO YMDPO
6)€d10GTG TOV GTOYUOTIKOD VITOAOYIGUOV.

Oco avaeopd TG N YPOUUIKEG GUVAPTNGELS TOV YPNGLOTOOVVTIOL GTOV GTOYAGTIKO VTOAOYIGUO,
peta&d apkeTOv OmMS TG VIEPPOMKNG EPATTOUEVNC, TOV YPOUULKOD KEPOOVG, TNV EKOETIKY, TOV peyi-
GTOL KO TOV EA0YIOTOV, O TEAEVTAiES 61O £ival 01T ONUOPIAEIG SEGOUEVIG TNG YPONG TOVG GTO GTPMLLOL

LEYIOTNG cuykévipmong (max pooling layers) ota vevpovikd diktva Kot ota pidTpa peiwong Bopvfov.

. Exterouévn Hepidnyn

Mio TpdTN TPOGEYYIoN Y10 TV VAOTOINGT TOV PEYIoTOL Kot EAOYIGTOV, XPTGLULOTOLEL TOAVTAEKTEG KOL TY|
GLVAPTNON VILEPPBOAKNC EPATTOUEVNC VAOTOUUEVNG (G UNYOVT TTETEPUCUEVMV KOTAGTAGEWY. 26TOCO,
€vog amd ToVG 000 TOATAEKTES YPNOLULOTOLEL [Li EMUTALOV YEVVITPL TOPOYMOYNG GTOYOGTIKAV (KOAOL-
0oV Yo To TO oA EMAOYNG TOV TOAVTAEKTY, AVEAVOVTOG £TGL TIG OMALTHGELS TOL VAKOV. ‘Eyovtog mg
Baon v mponyovuevn apyn Asrtovpyioag, dAAN TPoGEYYIoN avTikaoTd TOV HETOTPOTEN SLAJIKOD GE
6TOY0OTIKO pE pio Aoykn ToAn XOR yio va HetdoeL TV eXBApLVeT| VAIKOD, SLTHp®VTG TV DTOAOIT
dopn ene€epyaciog. Mia mopopole TPOGEYYLION, OVTIKOOIGTA TN N0V TEXEPACUEVOV KOTACTAGEDV LLE
Katayopnt petatdoniong (shift register) yio v amobfkevon tov Aoyikdv HOVAd®V 0o TN pic €K TV
dv0 1600wV Tov Kot To AMyotepo onpavtikd bit (Least-Significant Bit - LSB) mopdyst Loy povada
povo av €xet kopeotel péypt owtd. 'Eva facicd petovéktnua opmg givar to akpiPéc péyedog tov Kataym-
PNTN LETOTOTIONG, TO OTOI0 OV OEV EMAEYEL LE GOGTA, 1| VTOAOYIOTIKN akpifeta g e£600V peldVETOL
SPOUOTIKG.

[Mopoakivodevol oo TIC GYESUGTIKEG TPOKANGELS TV TPOTYOLUEVOV HEDOd®V GE GLVIVAGUO LLE TNV
ovayKT Y10t VTOAOYIGLOVG LE YOUNAN KABVGTEPT|OT GTO GTOYOUCTIKO VITOAOYIGUO, GTHV TOPOVGA EPYOGIQ
TPOTEIVOVTOL SO SLOPOPETIKEG TPOGEYYIGELG Y10, TNV VAOTOINGT TOV peyioTov/ehayioTton. X avtibeon ue
OAEC TPOGEYYIGELG, O1 TPOTEWVOUEVEG OPYLTEKTOVIKEG YPNCUYLOTOLOVV £VOV GLGCOPEVTH Y10, TNV amevOei-
0G amoHNKELOT TOV TPOCTLACUEVOV SL0POP®YV TOV YNeimv HeTadD TV 310 aKOAOLOL®Y £1GOS0V TOVG,
yopig Tpocheteg TNYEC Tapay®YNG TVYAIOV APBU®V, KOOIGTOVTOS T AEITOVPYIO TOVG OLTIOKPOTIKT. AV-
16 €Y1 OC AMOTEAEG O T UEI®ON TG KAOLOTEPNONG KoL TOLTOYPOVA TNV ETTEVET VTOAOYIGUMOY VYNANG
aKpifelag pe ™ xpnon HIKPOL PNKOLS aKOAOVOIDV E1GOS0V.

YAETIKG e TN YPNON GTOYACTIKMV UNYOUVAOV TETEPUGIEVNG KATAGTOUONG Y10 TV DAOTOINGN 1N YPOLLL-
LIKGV GLUVOPTAGE®DV, Y10, VO EIVOL EPIKTN 1] TPOGEYYIGN TOVGS, 0L TPETEL VO IKOVOTOLOHV TOVTOYPOVE OPL-
opéves cuvOnKec. Zuykekpyléva, O TPEMEL va amoTELOVVTOL 0T EVaY TEMEPAGUEVO aPlOUO KOTOGTACE-
@V LE TNV TPOTI KoL TNV TeEAevTaia va ivatl kopespéves, dnAadn va punv uropodv vo Eemepactolv, Ha
TPETEL 01 PETAPAGEIS EVTOC TOV KATUGTAGEDY TOVG VoL 001 youvTaL amd akolovdieg 16000V, Ue GTOYO-
OTIKEG 1OIOTNTEG KOl TEMEPUCUEVO UNKOG KOl TEAOG OAES Ol KATOGTAGELS VO ETKOVOVOLV UETOED TOVG.
Ot TPON YOV UEVEG IOIOTNTEG TEPLYPAPOVV TIG UNYOVEG TEMEPUCUEVMV KATAGTAGEDV MG EPYOIKES AAVGT-
deg Markov, emtpémovtag) cOvBeon GuVOPTHCE®V LEG® TNG EKTEAEGNG AOYIKGOV TTpdiemv pHetaly tv
TOUVOTHTOV TOV KOTOGTAGEMV.

[Mopd to TOAAATAG TAEOVEKTNLLOTO TOVG, Ol GTOYOCTIKEG UNYAVES TTETEPOUCUEVOV KATAGTAGEDV £XOVV
KoL TI¢ O1KEG Tovg aduvapies. H kupidtepn and avtég, elvar n eloaymyn cuoyeticemv Heta&d tov yneiov
g axoAovBiog e£600v, YEYOVOG TOL gival LOYIKO, SESOUEVOV TOV GTOYEIMV LLVAUNG TTOVL OTOLTOVVTOL Y10
TNV LAOTOINGT TV UNYOVOV KATAGTOCTG. TNV TPMTY TPOGEYYICT| TTOL YIVE Y10 T1 LOVIEAOTOINGT) TOVG,
0 VoAOYIoUdC TNE avTocvoyétiong (autocorrelation) g €660V KaOMG Kot TG HEGC TUNG, ETaANOELT-
KE pe opliuntikd tepdpata. e pio 6g0tepn Tpocyyion, ypnotponoindnkay aivcideg Markov yio va
OmodEIEOVY TNV apyn AEITOVPYLOG OPKETOV [T YPUUUK®OV GUVOPTHGEDV, YOPIG OGTOGO VOl SlEPEVLVAOVTOL
0l GTOTIOTIKEG W10TNTEG TNG €€000V. XTO YEVIKO TAAIGLO TNG GLGYETIONG, AVTN TPoceyYileTal Kupimg
oo TNV OTTIKN Yovia TG akolovbiog 16000V, GTNV 0ol Ol HETOTPOTEIS SVASIKOV GE GTOYUGTIKOVG
appode potpalovtal v mnyn Toyeiov aptldudv Tovg pe okomd ™ dnpovpyic akolovdimv 16650V

HE HEYIOTN EMKAALYT] LETAED TV BEGE®MV TV AOYIK®V TOLG povadwv. H teyvikh avtn evod emtpénel

13

TNV omod0TIKN VAOTOINGT OPIGUEVOVY aPOUNTIKOV TPAEE®DY, OTMG Yl TOPADELY O TNV APAipEST, Elvat
TPOGOAPUOGUEVT GTNV 1010 TNV TPAEN.

Me agopun Tig avaykeg yio fabid KaTovonomn ToV GTOTICTIKAV W10THTOV TOV EE00MV TV GTOY0CTL-
KOV UNYOvOV TETEPAGUEVOV KATAGTAGEWDY, GTNV TOPOVGA £PYUcia elcdyeTal Eva padnpatikd Traiclo
Yo T AemTopepn avaivon kot eEoywyn Tovg, Paciopuévo og aivoideg Markov. TIpokettan yio pia yevikn
pebodoroyia, Vo TV Evvola OTL UTOPEL VO EPOPLOCTEL GE OTOLI0ONTOTE GTOYAGTIKY UNYOVT] TTETEPUCLE-
VOV KOTAGTAGE®DY EKQPAGUEVT] VIO T LopP1 Moore Kot povtelomompévn og olvcida Markov. H kopa
GUVELGQOPE TNG EPYOTIOG EIVOL O AVOAVTIKOG VTOAOYIGLAC LLE TN XP1 O KAEIGTOV TUTOL EKPPAGEDY TOV
oKOAOVO®V OTUTIGTIKOV I0TATOV TOL TEPIAAUPAVOLV: TNV OVOUEVOUEVT] TIUN KOl TN UEGT TIUN TNG
€£000V, TNV AVTOGVGYETION KOl TNV GVTOCLVILOKLULAVOT TG €650V, TNV ETEPOGLGYETION KAL 1) ETEPO-
cuvolakOpaven TG €£600V LE TIG E1GOJ0VG, TNG OLOKDLOVOT|G KO TNG TUTIKY] ATOKALGNG TOL LEGOV OPOV
g €000V, TOL HEGOV TETPOYOVIKOD GORAALATOC TOV LEGOV OPOV TNG £E0J0V, TNV TOOVOTNTA VITEPYEIAL-
o1G Kot VITOYEIMOTNG OTIC KATAGTAGEIS KOPEGUOV KO TELOG TOV aVOUEVOUEVO apliud fnudtov mtpy arnd
TIG LIEPYEIMOELG KO TIG VTTOYEIMIGELS, O OTO10G KOTA GLVETELN BETEL TIG KOTELOVVTNPLEG YPOULES Yl TV
EMAOYY TOL OPLOUOL TOV KATOGTACEMY TOV UEIOVOLY T AavOaGUEVE YNnplo TOL TPOEPYOVTOL OO TIG
VIEPYEIMOELS KOl TIG VITOYEIAIGELC.

Mo v a&oAdynon g enidoong TV TPOTEWVOUEV®V APYLTEKTOVIK®V, YIVETOL 1] GOYKPLOT] TOVG LLE V-
nhpyovceg mpooeyyioelg otn PiAloypapio TOL GTOYAGTIKOD VITOAOYIGHOV. E1d1KdTEPQ, O TPOTEWVOUEVEG
OPYITEKTOVIKES GUYKPIVOVTOL GE VTOAOYIOTH AKPIPELD YPNOLOTOIDVTOG LETPIKES COAALATOV Y10t S10PO-
PETIKA UMK akolovBiog 16050V KoM Kol Gg a&l0moincT TOP®Y VAIKOV, GUUTEPIAAUPBOVOUEVOV TOV
F¥DOPOL TOV KATOAOUPAVOVV TO KUKAMDUOTO, KOTOVAAMGCT) EVEPYELNS KoL 1YD0G COLG®MVA LE TNV HEYLOTY
dvuvarr cuyvotnta Asrtovpyioc. Ta amoteréoparta £de1&av Tmg dedouévng g a&lomoinong TV EcwTEPL-
KOV KOTOYOPNTOV KoL LETPNTAOV, Ol TPOTEWVOUEVEG ALPYITEKTOVIKES ETLTVYYAVOLV LEYOADTEPT] VTTOAOYIOTL-
KN okpifela pe pikpd piKn okolovdidv 16080V, ovEdvovtog eEAGyIeTO TOVG GVVOAKOVS TOpovg. A&ilet
va onueiwbel mog Aapfavovtag Loy TV avtioTdbUIon Kabuotépnong - avENong VTOAOYIGTIKNG O-
KpiPelog, otV TPAyHOTIKOTNTO 1] GUVOAIKY KOTAVIAMGT EVEPYELNG Y10 TIG TPOTEWVOUEVES OPYLTEKTOVIKEG
elvat TopdpoLa 1 Kot IKPATEPN OO TIG VITAPYOVGEG TPOGEYYIGELS, 0poD EVOL TTEPLTTN 1| XPNOT LEYOAOV
KoV akoAovOdV 160J0V.

Y eninedo ePUPROYNG, Ol TPOTEWVOUEVESG OPYLTEKTOVIKEG a&lomotOnKay Yo TNV VAoToinon dlapo-
POV SLEPYOCLOV OV EKTEAOVVTOL OO YNPLUKOVG ENEEEPYUOTEG. e OVTEG GUUTEPIAOUPAVOVTAL: dOUIKT
povada cuVEMENGS, PIATpa Ywpikng evicyvong (spatial enhancement filters) Kot Téhog vevpmvikd diktvo
MLP. ¢ eninedo a&lomoinong vAKoD, ot SOMIKEG LOVADEG GLYKPIONKAY HE TIC GLUPOTES SLAOIKEG VAO-
TOMGELS GE YDPO TOV KOTOAAUPBAVOLV TOL KUKADUOTO, KOTOVOAMGCT EVEPYELNG Kol 1GYD0G COUPOVO LE
NV LEYLETN dVVaTY] GLYVOTNTO AELTOVPYIOG.

EeEKIVOVTOG UE TOV TPOTEWVOUEVO 0fpOloTh, Y10 Vo, Yivel aicgOnT 1 OTOTELEGUATIKOTNTO TOV GE O~
MG1O®OTOVE VTOAOYIGHOVS OESOUEVIG TNG KN KALOK®OTNG QOGNS TOV, YPNOIHOTOmONKE TapdAAnAo 1
royucég modeg AND yio Tnv vAomoinon doukrg povddag mov ekterel Ty Tpdén g cuvéMEne. ‘Enetta,
1 SOUIKN LOVASQ XPNOLOTOMONKE (G LAGKO Y10, TO GIATPAPIGUA EIKOVAG E OKOTO TNV EEOUAADVOT| TOV
gwovootoyeiov (pixels) g €161 dote va yivel peimon tov Bopvov g ewkodvag. Ta amotedéopato oTnV

aELOAOYNON TG TOLOTNTAG EIKOVAG £0E1EAV TTMG O TPOTEWOUEVOS 0BPOIGTNG EMTVYYAVEL ATOOEKTES TIUES,

” Exterouévn Hepidnyn

ot omoieg etvar eEonpetikd PEATIOUEVEG CUYKPLTIKA [LE TOVG KALOKOTOVS 0BpOIoTES. Xe EMINESO LAIKOV,
0 Y®PO¢ oV KoToapfaveral eival eEPETIKG LKPOTEPOG Ad AVTOV TOV GLUPBATOD dVLASIKOV, WGTOCO,
N KOTOVAAMGN EVEPYELNG AVEPYETOL GE PETPLEG THEG, TOV fval avapeVOLEVO dedOUEVNC TG PVOTG TOV
GTOYOGTIKOV VITOAOYIGHLOV

Yuveyilovtog e TOV TPOTEWVOUEVO GTOXUGTIKO apalpétn, N agloroinon Tov yivetat aicOnth oty v-
Aomoinon eiktpov evicyvong evkpivelng ewovag (image sharpening filter). Avolvticotepa, 10 pidTpo
evioyvong gukpivelag ekovag Stoywpileton 6€ TPEIS VTOAOYIGLOVG OV TEPAALPAVOLY TO PIATPAPIGUA,
™V eE0y®mYN TOV AETTOUEPELDV TNG EIKOVAG Kol TEAOG TNV EVIoYLON TNG. AT TO TOPATAV®, TO PIATPAPL-
opa yivetot HEo® GUVEMENG YPTOUYLOTOLOVTAG T SOUIKT] LOVASH TTOL VAOTOLEITAL HLEGM TOL GTOYAGTIKOD
aBpototn, 0 omoiog ypnooToteitat Kot yio tnv TeAKn evioyvon. H eEaywyn tov Aentopepeidv omartel
NV 0QOiPEST] TNG PIATPOPIGUEVNG EIKOVAG OO TNV OPYIKT, pia dtadtkacio Tov glval KATAAANAN Yo TOV
TPOTEWOUEVO GTOYAGTIKO ApalpET KaOMC 01 101 VIGPYOVGEC TPOGEYYIGELS AOLVATOVY GTIV VAOTOINGT|
U1 KAOKOTAG apaipeons. Avapopikd e TV a&loldynoT) e ToldTNTOS EIKOVOS, TO, ATOTEAEGLLOTO) TOV
oyedov BEATIOTA, EVD G eminedo aglomoinon TOpV 1 LEIMOT TOV YDPOL TOV KATAAAUPAVEL TO KOKA®LLOL
GLYKPLTIKE P TN cupPath dvadikn vAoroinon Mtay oehnTy, ®GTdGO, 1) KATAVAAMGT EVEPYELNS OAVIAOE
G€ UETPLEC TIUEG.

Ot apyITEKTOVIKES LEYIGTOV/EAOYIOTOV, NTAV KATAAANAES Y10 TV VAOTOINGT GIATPOL SLoEGOV
(median filter), To omoio ypnoonoleital yio T Bertimon ekdvag mov Exel VITOGTEL KALOI®GT GTA E1KO-
voototyeia g, Onmg yuo Tapdderypo ailoimon Adyw BopHfov. H dopn g didtaéng tov @idtpov dia-
pécov, Paciletar og akyopipo amodotikng ta&vounong, oniadn cuykpicels peyébovg peta&d tov £166-
dmv. Zuykprtikd pe to piktpo eEopdivvong, To GIATpo dapécov £xel TNV O10TNTA VoL Stotnpet TIg aKpég
g ewdvog (edge preservation), kaf1GTOVTOG TO KOTAAANAO Y10 6TAdI0 TPO-EMEEEPYOTing EKOVOG TPV
v aviyvevon akuodv (edge detection). Ta anotedéopata og eninedo VIOAOYIGTIKNG axpifelag Edei&ov
TG KOt 01 VO TPOTEWVOUEVES OPYLTEKTOVIKEG LEYIGTOV/EAUYIGTOL NTOV IKAVOTOUTIKES Y10t PIATPAPIGHLAL
€OVaG pe B0pufo. Zyetikd pe TV aglonoinon tov Topmv, 1 OEVTEPT APYLTEKTOVIKT LEYIoTOV/EMYiTTOV
010701l TOPATAVED KUKA®UATIKO YDPO 00 TNV TPATY, OUMG, Kot 01 000 KATaAGUPavoY 6Yed0V TO PG
amd ovtd G ovpPfotng dvadikng vAomoinong. Omwc Kot e Tig GAAES dVO EQUPLOYES, 1) KATOVIA®ON
evépyelag aviAle og PETPLEG TILEG CLYKPLTIKA e TN VPt dvadiKY], SE60UEVOL TOL GUVOMKO UKOG
oKoLAOVOLDY oL emeEepyalovTat.

H de01epn TPOTEWVOUEVT] OPYITEKTOVIKY] TOL HEYIGTOV, XPTGLULOTOMONKE Y1t TV VAOTOINGN GIATPOL
pLéYIoTNG cuykévTpwong (max pooling). H Asttovpyia tov Paciletor otnv vroderypatoinyio
(undersampling) ewdvog KaOMG LEIDVEL TN SLACTACT] TNG, EVO OTOTEAEL AVOTOGTOGTO KOUUATL GTOL GVY-
YPOVE VELPOVIKG dikTVa dES0UEVOL OTL EMTPENEL TNV EEAYOYT TOV ONUOVIIKOTEP®V YOPUKTNPLOTIKOV
g ewovog 166d0v. Ta amotedécpata o eninedo VIOAOYIOTIKNG akpifelag £6eEav TmG 1 VIOdSEy Lo~
Tolyia g eKOvVag mpaypatonoleital pe to BEATIGTO duvatd Tpdmo, To omoio vrootnpileTan omd TIg
petpikéc mov Aopfavovtar veoyw. Oco avagopd v a&loroinen TV TOP®V TOV VAIKOD, GUYKPLITIKY LUE
TNV SVadIKN VAOTOINGT TAPUTNPEITUL TG O YDPOG TOV KATOAAUPAVEL TO KOKAMLLO LEUDVETOL ETLAPKMG.

Téhog, o abpoiotic SCSD ypnoomombnke pali pe v TpdTN GPYITEKTOVIKT TOL UEYIGTOL Y10 TNV
VAOTOINGN GTOYAGTIKOD VELP®VA, 0 0Tt010¢ amotéleae T Pdon yio Tnv vAoroinon evog MLP. Ta amote-

Aéopata o€ EMMEDO KATYOPLOTOINGNG Yol 5V0 S10POPETIKEG OpYLTEKTOVIKES dtkTvoL MLP g peaioTikd

15

GUVOLO dedOUEVMV, £0E1EQV TG 1 akpifelo TOV emMTVYYAVETAL LIEPPAIVEL QVTNV TTOV EMTVYYAVETOL UE
TNV TUTIKN SVASIKT AVOTOPAGTACT UPOU®V TOV OKT® Kol TV dekaéEl yneiov. Emmiéov, cuykpirikd
LLE OTEG TIC OVOTOPUCTAGELS, LEUDVETOL OPAUOTIKA YDPOG TOL KATUAAUPAVEL O EKAGTOTE VELPAOVOG. XV-
ykpioelg pe NdN vapyovra MLP 6to medio Tov 6T0X0GTIKOD VTOAOYIGHOV, avEDEIEAY TN dVVATOTNTA Yo

eneepyacio pe pkpd Pikn akolovdidv 16050V kabds kot TNV gveMéio ot GuVoAKY oyxediao.

16

Extetouévn Hepiinyn

Acknowledgements

I am extremely grateful to my supervisor Professor Paul-Peter Sotiriadis for his invaluable help and
support in making this dissertation possible. His teachings and immense scientific knowledge were of
vital importance as they effectively guided me towards becoming a devoted research scientist. Having
worked under his supervision is honorable for me to the greatest degree and for that I am deeply thankful.

I would like to express my appreciation to the honorable members of my advisory committee Pro-
fessor Emeritus Kiamal Pekmestzi and Professor Athanasios Panagopoulos for their excellent feedback
and support throughout the years of my PhD studies. My sincere thanks are extended to the honorable
members of the examination committee Professor Panayiotis Psarrakos, Professor Theodora Varvarigou,
Associate Professor Anastasios Doulamis and Professor Nikolaos Doulamis for their participation and
their instructive comments. My special thanks to Professor Panayiotis Psarrakos for his important teach-
ings in Linear Algebra.

I would like to thank from the bottom of my heart my fellow PhD students Baxevanakis Dim-
itrios, Konstantinos Papafotis, Konstantinos Touloupas, Konstantinos Asimakopoulos, Costas Oustoglou,
Charis Basetas, Christos Dimas, loannis Georgakopoulos, Vassilis Alimisis, Neoclis Hadjigeorgiou as
well as the rest NTUA Circuits & Systems Group members for the moments that we shared and the
friendships we developed, hopefully lasting in the years to come. A special thanks goes to my friend Dr.
Nikolaos Voudoukis for his life advices and to Konstantinos Touloupas and to Konstantinos Papafotis for
their invaluable time they spent in carefully reviewing and improving my publications.

I am forever grateful to my teachers and mentors Professors Dimitrios Nikolopoulos and Panayiotis
Yannakopoulos for introducing me to the scientific way of thinking, for their invaluable teachings and
for supporting me throughout the years of my studies, in every possible way.

Many thanks towards the Hellenic Foundation for Research and Innovation (HFRI) for supporting
financially this dissertation.

My wholehearted thanks go to my parents Eirini and Alekos Temenos, my aunt Despoina Driva,
my brother Tasos and my friends for their continuous support, understanding, love and encouragement
throughout the years of my studies. Finally yet importantly, my deepest gratitude goes to Mr. Panagiotis
Sotiriadis, a generous and kind soul, for inspiring me and for his tremendous effort in helping me to

further continue my studies to the advanced degrees. [will remember him forever.

18

Acknowledgements

SC
SNG
LFSR
MC
FSM
SFSM
DSP
FPGA
IC
FxP
FP
SCPB
MAE
MSE
PSNR
SSIM

Abbreviations

Stochastic Computing

Stochastic Number Generator
Linear-Feedback Shift Register
Markov Chain

Finite-State Machine

Stochastic Finite-State Machine
Digital Signal Processing/Processor
Field-Programmable Gate Array
Integrated Circuit

Fixed Point Arithmetic

Floating Point Arithmetic
Stochastic Computing Processing Block
Mean Absolute Error

Mean Squared Error

Peak Signal-to-Noise Ratio
Structural Similarity Index Measure

20

Abbreviations

Contents

Introduction 31
1.1 Motivationand Scope e 31
1.2 ThesisOutline e 33
Stochastic Computing Principles 35
Theoretical Analysis 37
Stochastic Computing Architectures 39
3.1 Non-Scaling Adder and Subtracter Architectures 39
3.1.1 Non-Scaling Adder Architecture 40
3.1.2 Non-Scaling Subtracter Architecture 44
3.2 MAXand MIN Architectures 46
3.2.1 Stochastic MAX Architecture 47
3.2.2 Stochastic MIN Architecture 53
3.3 Compact MAX and MIN Architectures 55
3.3.1 Compact MAX Architecture 56
3.3.2 Compact MIN Architecture as a Variation of the MAXone 60
3.4 Stochastic Computing Sigma-DeltaAdder 61
3.4.1 SCSD High-Level Architecture 62
3.4.2 Markov Chain Modeling 65
Statistical Properties Of Stochastic Finite-State Machines 69
4.1 Finite-State Machines in Stochastic Computing 69
4.2 Stochastic Finite State Machines & Markov Chain Modeling 71
4.2.1 Stochastic Finite State Machines 71
4.2.2 Markov Chain Modeling of a Stochastic FSM 72
4.3 Statistical Modeling of Stochastic FSMs 74
43.1 ExpectedValue 75
43.2 Auto-Correlation & Covariance 75

433 Cross-Correlation & Covariance v v v v v i v i 76

22 Contents
4.3.4 Variance and Standard Deviation L. 77

4.3.5 Mean Squared Error Analysis 77

4.4 Number of States Selection & Register Size Estimation 78
4.4.1 Stochastic Finite-State Machine Overflow/Underflow Modeling 78

4.4.2 Expected number of Steps before Overflows/Underflows 79

4.4.3 Guidelines to select the number of states 80

4.5 Modeling Examples 81
4.5.1 Modeling Example 1: StochasticTanh 81

4.5.2 Modeling Example 2: StochasticAdder 84

4.53 Execution Times Performance 89

II Performance Results and Applications 97
5 Comparison with the Stochastic Computing Literature 929
5.1 Comparison of StochasticAdders 100

5.2 Comparison of Stochastic Subtracters 102

5.3 Comparison of Stochastic MAX and MIN 105

5.4 Comparison of Stochastic Compact MAX and MIN 108

6 Applications 115
6.1 ImageBlurring 115

6.2 Image Sharpening Filter 118

6.3 Median Filter 120
63.1 MAXandMIN 120

6.3.2 Compact MAXandMIN 122

6.4 MAXPooling 123

6.5 Neural Network Design 124
6.5.1 SCSD Adder Artificial Neuron 124

6.5.2 Forming a SC Multi-Layer Perceptron 126

6.53 SCSDMLP Performance 126

7 Conclusion 133
References 139

2.1

3.1

32

3.3

34

3.5

3.6

3.7

3.8

3.9

3.10

List of Figures

Stochastic Number Generator 35

Proposed stochastic adder Architecture. T, is the m-bit register’s state, updated according
t0 3.0 L 40
Markov Chain model of the proposed stochastic adder. The register’s zero state, is rep-
resented by two states in the model, 04 and Op. Transition probabilities A, B and C' are

givenby (3.3) L 41
Proposed stochastic subtracter architecture. T}, is the m-bit register’s current state, up-
dated according to (3.17). 45

Markov Chain model of the proposed stochastic subtracter. The register’s zero state, is

represented by two states in the model, 04 and 0. Transition probabilities A, B and C'

are given by (3.18) L 45
Proposed stochastic MAX architecture. 75, is the m-bit register’s state, updated according
10 (3.23). . . 47

Markov Chain model of the proposed stochastic MAX architecture. Output Z,, is deter-

mined by the state’s transition according to transition probabilities A, B, C, D given by

Extended Markov Chain model of the proposed stochastic MAX architecture with tran-
sition probabilities given by (3.26). Each register state is represented by two states in
the model and is classified into two subsets of states; upper ones outputting Z,, = 1 and

lower ones outputting Z,, = 0. Subscripts a, b denote in which subset S, is currently

into. Transition probabilities A, B, C, D are given by (3.26). 50
Proposed stochastic MIN architecture. 7T;, is the m-bit register’s state, updated according
t0(3.23). . o o 53

Markov Chain model of the proposed stochastic MIN architecture. Output K, is deter-
mined by the state’s transition according to transition probabilities A, B, C, D given by

Extended Markov Chain model of the proposed stochastic MIN with transition probabil-
ities given by (3.26). Each register state is represented by two states; upper one outputs
K,, = 0 and lower one outputs K,, = 1. Subscripts a, b denote in which set S'n is cur-

rently into. L. 54

24

List of Figures

3.11

3.12

3.13

3.14

3.15

3.16

4.1
4.2

43

4.4

4.5
4.6

4.7

4.8

Proposed compact stochastic MAX architecture where M = 2™. T,, is the register’s
current value, updated according to (3.54). 56
Markov Chain model of the proposed compact stochastic MAX architecture. Transition
probabilities are given by (3.58). J,, denotes the result of the comparison between the
register’s current value with the initialone M /2. 57
Proposed compact stochastic MIN architecture. 7;, denotes the M = 2™ register’s cur-
rent value and is updated according to (3.54). 61
Architecture of the proposed Stochastic Computing Sigma-Delta (SCSD) adder. The
XNOR gates between the input sequences { X7} {W;}N_, are used to multiply num-
bers in bipolar format. The multiplication results are added to a single bus with the range
of its represented value converted from [0, k| to [—F, k|. The first-order digital SDM con-
verts a higher resolution signal into a single-bit one, outputting the average of its input
according to (3.80), realizing the sum-of-products. 62
Top: system level model of a first-order Sigma-Delta Modulator. Bottom: realization of
the first-order Digital Sigma-Delta Modulator. The quantizer block, is replaced by the
selection of the most significant bit. 64
Expected value of the output’s time-average, E[Z], calculated using (3.88), estimating
the sums of three inputs with probability values p%] = 0.1, p%] = 0.2, p?] = 0.3, as the
sequence length increases N = 1,...,1000. 67

A multi-input single-output stochastic computing processing block. 71
Conversion example of a stochastic Mealy (left) to Moore (right) FSM. State D; in the
Mealy is separated into two states in the Moore D¢, D? outputting 1 and 0 respectively. In
this example, transition probabilities C', Co, Cs5, are arbitrary selected, but, determined
by two stochastic input sequences { X} }{X2}. L. 72
Example of a Markov Chain model describing the operation of a stochastic FSM. Transi-
tion probabilities A; are defined by a boolean function and determine the state’s transition
(see example below). The output Z,, is related to the current state, expressing the FSM’s
behavior as a Moore one, outputting Oor 1. 73
Example of the Markov Chain overflow/underflow model with absorbing states M, M,
corresponding to thatof Fig. 4.3. 78
Architecture of the stochastic tanh function. 81
Markov Chain model describing the operation of the stochastic tanh function. Transition
probabilities are given by (4.32). 82
Expected value of the stochastic tanh’s output mean]E[Z n] calculated using (4.11), pa-
rameterized with M = 4 states and sequence length N = 64. For the numerical calcula-
tions, 10% i.i.d. runs for each point are considered. 83
Auto-Covariance Cz(n + r,n) of the stochastic tanh’s output calculated using (4.14),
parameterized with M = 4 states, sequence length N = 256 and time lags » = 0, 1. For

the numerical calculations, 10* i.i.d. runs for each point are considered. 84

List of Figures 25

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

5.1

Variance Var(Zy) of the stochastic tanh’s output mean calculated using (4.21), parame-
terized with M = 4 states and sequence length N = 64. For the numerical calculations,
10 i.i.d. runs for each point are considered. 85
Mean Squared Error of the stochastic tanh’s output mean calculated using (4.22) for M =
4 states and input sequence length N = 64. For the numerical calculations, 10% i.i.d. runs
for each point are considered. 86

Markov Chain overflow/underflow model of the stochastic tanh function. Transition

probabilities are given by (4.32). 86

Probability of overflow/underflow of the stochastic tanh calculated using (4.27) for in-

creasing number of states M = 4, ..., 32, input X = 0.5 and sequence length N = 64.
... 87

Expected number of steps before overflows/underflows N* of the stochastic tanh calcu-

lated using (4.31), for M = 8, 16, 32 states and sequence length N = 32 (dashed line).

The guideline N* > N allows for reduced overflow/underflow occurrence. 88

Architecture of the stochasticadder [80]. 88

Markov Chain model describing the operation of the stochastic adder. Transition proba-
bilities are given by (4.36). L 89
Expected value of the stochastic adder’s output mean E[Z ~N|. Top: calculated using
(4.11), parametrized with M = 8 states and sequence length N = 64. Bottom: Nu-
merical calculations for 10% i.i.d. runs foreachpoint. 90
Auto-Covariance C'z(n + r,n) of the stochastic adder’s output. Top: Calculated using
(4.14), parametrized with M = 8 states, sequence length N = 64 and delay » = 1.
Bottom: Numerical calculations for 10* i.i.d. runs for each point. 91
Variance of the stochastic adder’s output mean Var(Z ~). Top: calculated using (4.21),
parametrized with M = 8 states and sequence length N = 64. Bottom: Numerical
calculations for 10% i.i.d. runs foreachpoint. 92
Mean Squared Error of the stochastic adder’s output mean MSE(Z ~). Top: calculated
using (4.22), parametrized with M = 8 states and input sequence length N = 64. Bot-
tom: Numerical calculations for 10% i.i.d. runs for each point. 93
Markov Chain overflow model of the stochastic adder. Transition probabilities are given
by (4.360). . . e 93
Probability of overflow of the stochastic adder calculated using (4.40), for inputs X' =
X? = 0.5, increasing number of states M = 4, ..., 32 and increasing sequence lengths N. 94
Expected number of steps before overflows N* of the stochastic adder calculated using
(4.31), for M = 4,...,32 states, inputs X' = X? = 0.5 and increasing sequences

lengths N. The guideline N* > N allows for reduced overflow occurrence. 94

Stochastic Computing adders. From top left to bottom right: i) Scaling adder in [41], ii)
Scaling adder in [84], iii) Non-scaling adder in [72] and iv) Scaling/Non-Scaling adder
18] . . . 100

26

List of Figures

52

53

54

5.5

5.6

5.7

5.8

59

5.10

5.11

5.12

5.13

5.14

6.1

6.2

Comparison of accuracy in MAE of stochastic adders for typical stochastic sequence
lengths N e 101
Comparison of Power x Delay? (p.J x ns) (top) and Energy (p.J) (bottom) consumption

of stochastic adders for typical stochastic sequence lengths N 102
Comparison of Energy per operation (p.J x ns) and MAE of stochastic adders for typical
stochastic sequence lengths N. Sobol sequences areused. 103
Stochastic Computing subtracters. From top left to bottom right: i) Absolute correlated

input subtracter in [4], ii) Scaling/Non-scaling subtracter in [18] and iii) Subtracter in [54].103
Comparison of accuracy in MAE of stochastic subtracters for typical stochastic sequence
lengths N 105
Comparison of Power x Delay? (p.J x ns) (top) and Energy (p.J) (bottom) consumption

of stochastic subtracters for typical stochastic sequence lengths N 106
Comparison of Energy per operation (pJ x ns) and MAE of stochastic subtracters for
typical stochastic sequence lengths V. Sobol sequences areused. 107
Stochastic computing max and min architectures. From top left to bottom right: 1) Cor-
related MAX/MIN in [39], ii) Tanh MAX/MIN in [43], iii) Tanh MAX/MIN w/o RNG

[89] and iv) Shift Register MAX/MIN in [58]. 108
Accuracy comparison in MAE of stochastic MAX/MIN architectures for typical sequence
lengths IN. For each [V, the architectures’ number of states is selected to result in the
highest computational accuracy. Corresponding register sizes are citedin 5.2. 109
Comparison of Power x Delay? (pJ x ns) (top) and Energy p.J (bottom) consumption

of stochastic MAX/MIN architectures. For each [V, the architectures’ number of states

is selected to result in the highest computational accuracy. Corresponding register sizes
arecited in 5.2. L 110
Comparison of Energy per operation (pJ x ns) and MAE of stochastic MAX/MIN for
typical stochastic sequence lengths N. L. 111
Accuracy comparison in MSE of stochastic MAX architectures for typical sequence lengths

N. For each N, their register sizes are selected to result in the highest MSE and are cited
inTable 5.4. L 113
Energy comparison in p.J of stochastic MAX architectures for typical sequence lengths

N. For each N, their register sizes are selected to result in the highest MSE and are cited
inTable 5.4. 113

A 3 x 3 stochastic computing convolution kernel realized using 9 AND gates for multi-
plication and 8 proposed non-scaling stochastic adders. W,, and F,, denote the generated
sequences of weights and the input image pixel values respectively. 116
Image filtering using a 3 x 3 convolution kernel for various sequence lengths N. From left
to right cases: a) Original image b) MATLAB’s blur calculation ¢) N = 16 d) N = 32
) N=064H)N=128g) N =256 h) N =5121)) N =1024 116

List of Figures

27

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

Image sharpening filter realized using the proposed non-scaling adder and subtracter. The
convolution kernel is realized as shownin Fig. 6.1.
Image Sharpening Filter. From left to right: a) MATLAB’s Original Image, b) MAT-
LAB’s Image Sharpening calculation, ¢) Image Sharpening Filter realized with the pro-
posed SC architectures. Sequence length N = 256 and register size m = 4-bit.
Sorting network realizing a SC median filter. Each node is realized using the proposed
MAX and MIN architectures.
Median Filtering with a 3 x 3 kernel, realized using the proposed MAX and MIN archi-
tectures for various sequence lengths N. From upper left to lower right: i) MATLAB’s
Original Image ii) MATLAB’s Noisy Image with salt & pepper noise density 0.02 iii)
MATLAB’s filtered image iv) N = 16 v) N = 32 vi) N = 64 vii)) N = 128 viii)
N = 256 ix) N = 512 x) N = 1024. Register size used is m = 2 corresponding to
M =4states e e
Denoising using a 3 x 3 median filter. From left to right: 1) MATLAB’s 8-bit noisy
image with salt & pepper noise density 0.05, II) MATLAB’s median filtered image, I1I)
Proposed stochastic median filter with sequence length N = 256 and register size m = 3-
bitS. . .
Down sampling using a 2 X 2 max-pooling kernel. Left: MATLAB’s max pooling com-
putation for 8-bit pixel representation, Right: max pooling kernel realized using the pro-
posed compact MAX with sequence length N = 2% and register size m = 4-bits.

SC neuron realized using the proposed SCSD adder architecture shown in Fig. 3.14.
The non-linear activation function is realized using any single-bit input/output Stochastic
Finite-State Machine.
Approximating the clipped ReLU of (6.3) using the Stochastic MAX architecture of Fig.
3.5, for input values X € [—1,1], with 103 i.i.d. runs on each input value, sequence
length N = 256 and register size m = 4-bits.
Example of sequence generation in the input layer, with X7, W71, j = 1,... k corre-
sponding to the values of the inputs and the weights of a single neuron respectively. The
Sobol number generators are shared among the inputs and the weights respectively. . . .
Multi-Layer Perceptron network architecture. Each hidden layer is realized using the
proposed SC neuron of Fig. 6.9 containing the proposed SCSD adder architecture of Fig.
3140
Amultiply-and-accumulate processing block realizing each unit Oy existing in the output

layer. The result is obtained after IV clockcycles.

118

. 123

127

128

28

List of Figures

4.1

5.1

5.2

53

54
5.5

6.1

6.2

6.3

6.4
6.5

6.6

6.7

List of Tables

Execution Times (s) for the Modeling of two SFSMs: the STanh and the Stochastic Adder 95

Hardware Resources Comparison between the Proposed Non-Scaling Adder and Sub-
tracter and the State-of-the-Art in Area (pm?), Critical Path (ns), Power Consumption
(mW) and Energy (pJ) peroperation 104
Comparison of computational accuracy and corresponding register sizes of MAX/MIN
architectures for typical sequence lengths N, 112
Hardware Resources Comparison between the Proposed MAX/MIN and the State-of-the-
Art in Area (um?), Critical Path (ns), Power (mW) and Energy (pJ) Consumption per
OPETAtiON o v v i e e e 112
Register sizes resulting in the highest MSE basedon NV 113
Hardware Resources Comparison between the Proposed Compact MAX/MIN and the
State-of-the-Art in Area (m?), Critical Path (ns), Power (mW) and Energy (p.J) Con-
SUMPLION . . v vt o e e e e e e e e e e e e 114

Accuracy and Image Quality Comparison in the Filtering with a 3 x 3 Convolution Kernel
using the Proposed and State-of-the-Art Stochastic Adders 117
Comparison of Hardware Resources for Implementing the 3 x 3 Convolution Kernel using
the Proposed and State-of-the-Art Stochastic Adders in Area (um?), Critical Path (ns),
Power (mW) and Energy (pJ) peroperation 117
Computational Accuracy & Image Quality for the Image Sharpening Filter Realized using
the Proposed Architectures 119
Comparison of Hardware Resources for the Implementation of the Image Sharpening Filter 120
Accuracy in PSNR of the realized 3 x 3 Median Filter using the Proposed Max and Min
Architectures e e 121
Hardware Resources for the Implementation of a 3 x 3 Median Filter using the Proposed
MAX and MIN Architectures in Area (um?), Critical Path (ns), Power (mW) and En-
ergy (pJ) peroperation 121
Computational Accuracy in PSNR and SSIM of the realized 3 x 3 Median Filter using
the Proposed Max and Min Architectures 122

30

List of Tables

6.8 Hardware Resources for the Implementation of a 3 x 3 Median Filter using the Proposed
Compact MAX & MIN Architectures in Area (m?), Critical Path (ns), Power (mW)
and Energy (pJ)

6.9 Computational Accuracy in PSNR and SSIM of the realized 2 x 2 Max Pooling kernel
using the Proposed Compact MAX Architecture

6.10 Hardware Resources for the Implementation of a 2 x 2 Max Pooling kernel using the
Proposed Compact MAX Architecture in Area (um?), Critical Path (ns), Power (mW)
and Energy (pJ) e

124

6.11 Inference Accuracy in percentages (%) of the proposed SCSD, FxP and FP MLP realizations 129

6.12 Hardware resources required for the realization of a 784-input neuron
6.13 Performance Comparison of SC-based MLPs in inference accuracy and hardware re-

sources efficiency for the realization of the computational units

129

Introduction

1.1 Motivation and Scope

Efficient realization of digital systems in Integrated Circuits (ICs) and Field Programmable Gate
Arrays (FPGAs) is of utter importance given the accelerated growth of emerging applications [75, 28,
22, 29]. The typical binary arithmetic representations used for their implementation, namely the Fixed-
Point (FxP) and Floating Point (FP), can be hardware-demanding for the modern Digital Signal Processors
(DSPs), especially when massive parallelization is necessary [22, 50, 12]. This is further intensified when
non-linear functions are required in the processing, for instance the exponential and the hyperbolic tangent
[50, 80, 76, 43]. To this end, unconventional computing paradigms are under extensive exploration [64,
10, 29, 36, 67], with Stochastic Computing being an effective approach among many [40, 28, 66, 29].

Stochastic Computing (SC) deviates from the standard binary arithmetic and its processing, as it
encodes the value of binary numbers in the form of finite-length stochastic sequences of logic Os and
Is [23, 7, 9]. Therefore, its single-bit processing allows for the fundamental arithmetic operations and
highly-complex functions to be realized using a few logic gates and standard cells [69, 9], thereby reduc-
ing dramatically the hardware area requirements compared to the traditional binary arithmetic [50]. An
inherent property of SC is that of the robustness on soft-errors, meaning that occurring bit-flips are not
detrimental (up to a certain degree) for the reliability of the signals’ information [23]. Beyond its strong
points, SC requires computational cycles to increase the calculations’ accuracy, impacting on the energy
being dissipated [20, 65, 46, 66]. Hence, to make the best of it, achieving low latency combined with
increased computational accuracy, is of primary design concern in SC [88, 34, 66].

The properties and advantages of SC favour applications that combine massive parallelism needs,
area constraints and tolerance to small deviations from the exact calculations. These applications include
Multi-Layer Perceptrons (MLPs) [48, 49, 37], Convolutional Neural Networks (CNN) [12, 74, 91] and
others [62, 51, 16, 35, 52] in the field of Deep Learning, Support Vector Machines (SVMs) [55, 56, 30]
in the field of Machine Learning (ML) and noise reduction, averaging, smoothing, sharpening and other
spatial enhancement filters [42, 43, 8, 79, 81] in the field of Image Processing. However, SC is not limited
to the previous fields; it has been successfully applied in soft-filtering, i.e. Finite Impulse Response (FIR)
[33, 2, 11, 82, 85, 1] and Infinite Impulse Response (IIR) [73, 33, 53] filters, error correcting coding &

32 Chapter 1 - Introduction

decoding [26, 7, 9, 27], polynomial solving [54, 63, 6, 3, 71, 86] and others [26, 7, 9, 90, 45, 44].

Essential operations performed in the DSP cores utilized by the aforementioned applications, rely
mostly in multiply-and-add operations and non-linear functions [80]. With respect to the fundamental
arithmetic operations, multiplication is the simplest in SC. According to the SC number representation
used, a single AND gate for positive-signed stochastic numbers or an XNOR gate for negative-signed
stochastic numbers is used [23]. The addition and subtraction operations between two stochastic se-
quences should follow the probabilistic nature of SC, meaning that their result cannot exceed one or be
less than minus one. For this reason, the operation of most adders [41, 84, 72, 18] and subtracters [4, 18,
54] is based upon the scaling of their result with a typical value of two. However, when multiple cascaded
computations are required, scaled adders and subtracters do not favour them, especially when 1) other
operations follow, for instance non-linear functions and 2) the number of adders and/or subtracters is not
a multiple of two. On the other hand, existing non-scaling adders [72, 18, 90] impose design constraints
as they do not follow the standard SC number representation formats.

Regarding the realization of non-linear functions, Stochastic FSMs (SFSMs) are employed for such
purpose [15, 16]. They are known for their ability to approximate widely used functions such as the
hyperbolic tangent (tanh) [15, 43], the exponential [15, 43], the linear gain [15, 43], the max & min [43,
89, 58, 39] and others [15, 43], with the max & min being the most popular ones due to their presence in
max pooling operations and in median filtering [50, 81]. Despite their importance, SFSMs have only been
used in complement with Markov Chains (MCs) to formally prove the non-linear functions’ principle
of operation [15, 43], without further investigating their statistical properties nor their impact on the
calculations [78, 39, 4, 57, 17]. Increased correlation among the bits of the SFSMs’ output sequences
may result in calculation errors in the operations following, for instance a potential multiplication of the
output with itself, thus degrading the overall accuracy[78, 13, 59, 14].

This dissertation presents novel architectures realizing essential arithmetic operations and non-linear
functions in Stochastic Computing, including a non-scaling adder, non-scaling a subtracter, two different
max and min architectures and a multi-input single-bit output adder. Their main advantage they offer,
is the improvement on the SC’s accuracy-latency trade-off, which stems from their ability to combine
highly-accurate computations with short sequence lengths. The above properties are demonstrated with
an in-depth analysis using SFSMs and MCs.

The operation principle of the architectures is analysed using SFSMs and MC modeling which allows
for a better understanding of their long-term stochastic dynamics and the verification of their proper
operation. The MC modeling is further extended to a general methodology for the analytical derivation
of the SFSM’ statistical properties, including their expected value, their variance and standard deviation,
their correlation and covariance as well as the mean squared error. The methodology is accompanied
by overflow/underflow MC modeling allowing to estimate the number of states that reduce bit-errors
originating from overflow/underflow occurrence, setting the guidelines for the selection of the register’s
size.

For the evaluation of their performance, the architectures are compared extensively with existing ones
in the SC literature in computational accuracy using standard error metrics and hardware resources, in-

cluding area, power and energy consumption as well as in the benefits they introduce in the overall design

Thesis Outline 33

flow. The efficacy of the architectures is demonstrated with their use as building blocks in the realiza-
tion of several DSP tasks, including convolution, noise reduction and image down-sampling filtering as
well as Neural Networks. The results of the architectures’ performance in computational accuracy and
hardware resources are compared to those achieved using standard binary computing methods so as to

highlight their advantages.

1.2 Thesis Outline

The present dissertation is divided in two parts, theoretical analysis and experimental results. In the
first part including chapters 3 and 4, the operation principle of the proposed architectures using SFSMs
and their modeling using MCs is introduced. In the second part including chapters 5 and 6, experimental
results and applications realized using the proposed architectures are presented. Specifically, the rest of
this dissertation is organized as follows.

In Chapter 2, the conversion of binary numbers into stochastic sequences, the two fundamental SC
number representation formats, the sequences’ properties and the notation used throughout the dissertation
is provided. Moreover, the operation of the essential logic gates used in SC under different number
representation formats is described.

In Chapter 3, the proposed architectures, namely the non-scaling adder, the non-scaling subtracter,
the two max and min and the SCSD adder are introduced and their operation principle is described using
SFSMs. Then, their modeling using MCs is shown and their expected value is derived analytically, used
to prove their proper operation in the limiting case.

In Chapter 4, the MC modeling of Chapter 3 is extended to a general methodology for the analytical
derivation of the SFSMs’ statistical properties and the modeling of overflows/underflows. Two SFSMs
selected from the SC literature are modeled using the proposed framework and their results are compared
to those obtained from the numerical experiments.

In Chapter 5, the proposed architectures are compared extensively with existing ones in the SC lit-
erature in computational accuracy, hardware resources and their trade-offs in the overall SC design is
discussed.

In Chapter 6, applications of standard DSP tasks realized using the proposed architectures are shown,
while comparisons with the conventional binary computing methods in hardware resources and compu-
tational accuracy demonstrate their efficacy.

Finally, Chapter 7 concludes the present dissertation.

34

Chapter 1 - Introduction

Stochastic Computing
Principles

The Stochastic Number Generator (SNG), shown in Fig. 2.1[9, 23], is the standard circuit converting
a k-bit deterministic number into its stochastic 0, 1 sequence representation, also referred as a stochastic
number. A pseudo-random number generator uniformly distributed in {0,1,...,2* — 1} and typically
implemented as a k-bit Linear-Feedback Shift Register (LFSR), generates on every clock cycle a k-bit
random number which is compared with the deterministic number B € [0, 1]. The bit generation is
completed after N = 2% clock cycles and corresponds to the length of the sequence [9, 7, 20]. To convert

the stochastic number back to its binary form, an up-counter of k-bits is used.

LFSR va ...,0,0,1,0,1,1,0,...
A
clk —
k
Binary Number //

Figure 2.1: Stochastic Number Generator

The N-bit output sequence generated by the SNG, i.e. {X,},n = 1,2,..., N, with n being the
current time index (or clock cycle), is independent and identically distributed (i.i.d.). It represents a non-
negative number in [0, 1] and is known as unipolar format in SC. The probability of the stochastic number
is defined as X £ P,(X,, = 1) = B/2*, which is the normalized value of B in k-bit representation and

its mean is given as
= 1
XN:N(X1+X2+"'+XN)' 2.1

Negative numbers, known as bipolar format, can also be represented using the transformation X +—»
2X —1, expanding the range of the stochastic number to [—1, 1] [23]. For both stochastic number formats,
the length of the sequence N is directly associated with the accuracy of the representation, which increases
at the cost of additional clock cycles and is considered as SC’s essential design trade-off.

Fundamental mathematical operations are supported within the context of SC and can be realized

simply by logic gates according to the format used [69, 82]. To proceed with the analysis of the most

36 Chapter 2 - Stochastic Computing Principles

important logic gates used in essential operations, we assume that inputs {X,}, {Y,} are stochastic
sequences generated by different SNGs and that {Z,,} is the result of their operation.

* NOT Gate: The NOT gate in unipolar format, Z,, = NOT(X,,), complements the probability of
the input,

Z=P(Z,=1)=P(X,=0)=1-P(X,=1)=1- X, 2.2)

Z=P(Zy,=1)=P(Xn=0)=1-P(X,=1)=—X. 2.3)

* AND Gate: The AND gate in unipolar format, Z,, = AND(X,,,Y,,), performs multiplication.

Z=P(Zy=1)=P(Xpn=1Y, =1) = P(X,, = 1)P(Y, =1) = XY. (2.4)

* XNOR Gate: The XNOR gate in bipolar format, 7, = XNOR(X,,, Y,,), performs multiplication.

Z=P(Zn=1)=P(X,=1,Y,=1)+ P(X, =0,Y, =0)
=2P(X, =1)P(Y,=1)—P(X,=1)—P(Y,=1)+1 (2.5)
= XY.

e Multiplexer: Assuming an an ii.d. control sequence {C,}, the multiplexer (MUX),
Zn = MUX(X,,,Y,; Cy,), is the standard way to perform scaled addition between two stochas-

tic numbers, regardless of the format used, and is given as

()=P(X,=1,C,=1)+P(Y,, =1,C, =0)
P(X, =1)P(C, =1) + P(Y, = 1)P(C,, = 0)
=XC+YC. (2.6)

Furthermore, if (and only) P(C,, = 1) = 1/2, the MUX operates as a scaling adder, i.e.,

PX,=1)+PY,=1) X+VY
2 o2

Q@.7)

Stochastic subtraction, on the other hand, can only be realized in the bipolar format, using a NOT
gate in one of the two inputs as

2.8)

It is important to mention here that the logic gates OR,NOR and XOR do not realize a specific operation in
neither SC number representation formats [69] and are only used complementary with other logic gates.

Part 1

Theoretical Analysis

Stochastic Computing
Architectures

In this chapter, the following proposed SC architectures are presented: 1) a non-scaling adder [80],
2) a non-scaling subtracter [80], 3) a MAX [81], 4) a MIN [81], 5) a compact MAX & MIN [76], capable
of realizing both functions and 6) a multi-input single-bit output adder. !. The architectures’ principle
operation is described using Stochastic Finite-State Machines, while their stochastic behavior is mod-
eled using Markov Chains, allowing for the derivation of the expected value of their output and their

verification of proper operation.

3.1 Non-Scaling Adder and Subtracter Architectures

An essential operation performed in the SC-based DSP cores, is that of the multiply-and-add. The
multiplication part, is implemented using a single AND or XNOR gate according to the stochastic number
representation used. Their addition part in SC though, is typically realized by the MUX which requires an
additional random number source for its select signal, besides its inputs. However, the random number
source by itself is a large block compared to the SC elements, occupying most of the design’s area [65].
In addition, the adder’s output is typically scaled by 1/2 meaning that for a given sequence length the
resolution has dropped by 2. This makes the MUX less attractive for cascaded computations and blocks
that rely on exact calculations. The same apply for the MUX implementation of the subtracter.

To address the former issues focusing on computational and design efficiency, several adders [41,
84, 72, 18] and subtracters [4, 18, 54] have been published and explored [68] within the context of SC.
The adder in [41], is based on the multiplexer’s scaling principle, but avoids the extra random number
source by using a single T Flip-Flop, increasing also its accuracy. A similar (scaling) approach is pre-

sented in [84], but instead of a T Flip-Flop, it employs a two-state FSM to further increase its accuracy.

!Copyright © IEEE. Chapter 3 is reprinted, with permission, from: 1) N. Temenos, P.P. Sotiriadis, “Non-Scaling Adders
and Subtracters for Stochastic Computing using Markov Chains”, IEEE Trans. on Very Large Scale Integration Systems, vol
29,no. 9, pp. 1612-1623, Sept. 2021, 2) N. Temenos and P. P. Sotiriadis, “Stochastic Computing MAX and MIN Architectures
Using Markov Chains: Design, Analysis and Implementation”, IEEE Trans. on Very Large Scale Integration Systems, vol 29,
no. 11, pp. 1813 - 1823, Nov. 2021 Personal use of this material is permitted, but republication/redistribution requires IEEE
permission.

Copyright © Elsevier. Chapter 3 is reprinted, with permission, from P. P. Sotiriadis and N. Temenos, “Compact MAX and
MIN Stochastic Computing Architectures”, Integration, vol. 87, pp. 194-204, November 2022. Personal use of this material is
permitted, but republication/redistribution requires Elsevier permission.

40 Chapter 3 - Stochastic Computing Architectures

The semi-stochastic approach explored in [83], uses the parallel input adder originally proposed in [68],
which provides computations in binary format that do not always favor next stage SC-based computa-
tional blocks, for instance non-linear functions. The non-scaling adder in [72] is based on a two-line
representation of a stochastic number carrying its information in two sequences; one for its sign and one
for its magnitude. Although it is a promising approach in application level [90], the two-line encoding
imposes system design constraints as it requires from other operations, e.g. multipliers, to follow this
principle as well. Furthermore, the size of its counting unit is only estimated empirically [90]. Similarly
to the previous adder, the adder (and subtracter with one inverted input) presented in [18], encodes a
stochastic number by using the ratio of logic ones and zeros between its input sequences. Yet, its unique
representation is incompatible with standard SC formats, while the generation of two sequences for a sin-
gle stochastic number, influences the overall hardware utilization. Regarding stochastic subtracters, the
method in [4, 39, 5] correlates the input sequences. This, however, requires caution since SC elements are
prone to errors caused by correlated inputs [65]. Moreover, if the subtraction is an intermediate operation,
regenerating correlated inputs is necessary. Another technique presented in [54] applies iterative logic
units to enhance the accuracy of an XNOR gate with one of its inputs inverted. As expected, it trades
hardware resources and latency for accuracy, both depending on the number of stages used.

All the above methods, trade circuit run-time and/or hardware area for accuracy. In addition, cer-
tain of them introduce constraints that reduce the flexibility on the SC design space. Motivated by the
aforementioned and to achieve the best of both worlds, we propose non-scaling adder and subtracter archi-
tectures for SC. They offer the following advantages: 1) They do not require any random number source,
2) They do not scale the output result, 3) They operate with independent and identically distributed input
sequences (i.e., no specially correlated inputs required), 4) They are compatible with standard SC formats

and 5) They are fast-converging, achieving high accuracy with short sequences lengths.

3.1.1 Non-Scaling Adder Architecture

\

Up Count:
T,=T,1+1
(f Ty <2m —1)

m-bit
register

Down Count:
Y, —s Tp=Typ1—1
(if T_y > 0)

o

Figure 3.1: Proposed stochastic adder Architecture. 7T}, is the m-bit register’s state, updated according to
3.1

The proposed adder architecture is shown in Fig. 3.1. If OR(X,,, Y,,) = 1 then the output is Z,, = 1.

Non-Scaling Adder and Subtracter Architectures 41

In the case of X,, = Y,, = 1, a1 is also stored and carried in the register (up-count by 1) in order to be
outputted in the first future clock cycle »/, i.e., Z,, = 1, for which X, = Y, = 0. Moreover, when
X, =Y, =0, the register is down-counted by 1 if it had a positive prior value. The procedure of storing
1s, when X,, = Y,, = 1, and carrying them until they can be outputted compensates for the inability of
the single-bit output to accommodate instantaneous value of more than 1.

The above are captured in the schematic of Fig. 3.1, where the register is m-bit with current state 7,
in the set Tz = {0,1,2,..., M — 1}, where M = 2™. Note that T,, equals the number of accumulated
logic 1s "owned” to the output, with initial value 7y = 0 when the operation starts. From Fig. 3.1 one

can conclude that the state of the adder evolves according to the following iteration
T, — min {Tn_l + XY, — (T s >0)Yn?n,M—1} 3.1)

where X,, = NOT(X,,) = 1 — X,, and similarly for Y,.

Although the proposed adder is designed to process stochastic sequences, its behavior is deterministic.
As seen in Fig. 3.1, the output is a deterministic function of the inputs without any additional randomiza-
tion which could increase uncertainty and degrade precision. Specifically, the adder’s output precision
is determined by the length, IV, of the input sequences, their stochastic properties and the register’s size,
m.

3.1.1.1 Markov Chain Modeling

Register’s
Zero Value

ﬂm ﬂB/ C ﬂﬂmc
O 0O 20 20

v T / / v
Z, =0 Zn =1 Z, =1 Z, =1

Figure 3.2: Markov Chain model of the proposed stochastic adder. The register’s zero state, is represented

by two states in the model, 04 and 0. Transition probabilities A, B and C' are given by (3.3)

The operation of the stochastic adder architecture is modeled by the Markov Chain (MC) in Fig. 3.2.
To explain its derivation we note first that we assign two states 0 4 and 0 to the zero value of the register,
whereas states 1 to M — 1 represent the corresponding values of the register. Therefore, the MC state .5,
can take the M + 1 values in the set

S 2{04,05,1,2,.... M — 1}. (3.2)

Although using two zero states may appear confusing, it simplifies the analysis significantly because it

allows us to relate the output value, Z,,, to the state only (i.e. the output is a function of the MC state and

42 Chapter 3 - Stochastic Computing Architectures

not of the inputs X, and Y},).

Let the MC’s state be .S;,_1. Then the transition to the next state S,, and the output Z,, are determined

according to the following transition probabilities

A =P.(X,, = 0)Pp(Y, = 0)
B=Py(X,=1)+P(Y, =1) — 2P, (X, = 1)P.(Y,, = 1)
C =P.(X, = 1)P.(Y, =1). (3.3)

As seen in Fig. 3.2 there are three kinds of states: A) The two zero states 04 and Op corresponding to
register’s zero state and also embedding information of the predecessor input-state pair; B) States 1 to
M — 2 capturing a sequential increase/decrease of the register’s value, and C) State M — 1 corresponding
to the maximum value of the register which is also the overflow state in the case of X;,, = Y,, = 1 with
probability C.

To analyze the behavior of the MC, which captures that of the proposed stochastic adder, we proceed
with standard definitions. The (M + 1) x (M + 1) transition probability matrix, with state ordering
(04,05,1,2,..., M — 1), is defined as

H= [Pr(sn+1 = 5| = sa)}
Sa,SpES

where the (s4, $p) entry of the matrix is the probability to transition to state s;, from state s,. Matrix H is

written as
(A B C |
A B (C
0o A B C ...
H=|. : : (3.4

0 A B C

0

i 0 A B+C]
The probability distribution vector of state S,,, defined as
[P(Sy=04)]
Pr<Sn = OB
pl 2| P(S,=1) e [0, 1)M+1 (3.5)
i P.(S,=M-1) |

can be expressed as

Pn = poH™ € [0, 1], (3.6)

Non-Scaling Adder and Subtracter Architectures 43

where
po = [1,070,...0} e [0, 1M+ 3.7)

is the initial distribution vector and represents the starting state of the register Sp = 0 4.

3.1.1.2 Expected Output Value and Verification of Operation

We use the MC model equations from the previous subsection to derive the expected value of the
adder’s output. To this end we calculate first the expected value of the instantaneous output Z,,. Note
that since Z,, depends only on the state .5,,, it is zero if and only if S;, = 04. Therefore it is

E[Zy] = P(Zn =1) = P (S, € S — {04}) = 1 — poH"eT, (3.8)

where we used (3.6) and e; = [0, ...0,1,0, .., 0} € RM+1 s the i-th normal vector. Then, the average

value of the output /V-bit sequence,

~ 1
ZNZN(Z1+ZQ+---+ZN) (3.9)
has expected value
1 & 1 (&
” — E _ § : n T

Both the expected value of { Z,, } and its mean are essential in quantifying the model’s accuracy given its
inputs {X,, }, {Y,, } and will be used to verify the operation of the architecture.

The operation of the proposed architecture as an adder is proven here. As above, for the IID input
sequences we use notation X = P.(X,, = 1)and Y £ P.(Y;, = 1). In addition, we assume that
0< X,Y < limplying A, B,C > 0, as defined in (3.3). Therefore, the main, first upper and first lower

diagonals of matrix H in (3.4) are positive implying the following Lemma whose proof is straightforward.
Lemma 1. A/l entries ofHM*1 are positive, i.e., HM-1 5

The result of Lemma 1 implies that (I + |H|)»~! > 0 which along with Theorem 1 from [31] below

proves that H is irreducible.
Theorem 1. Matrix H is irreducible if and only if (I + |H|)M =1 > 0, where I is the identity matrix.

Moreover, since H is a stochastic matrix it’s spectral radius is p(H) = 1 having 1 as an eigenvalue.
Now consider vector v € RM*1 such that

1—A prl

1-4 p p°
A TATATTTT A

vl =6 |1, (3.11)

44 Chapter 3 - Stochastic Computing Architectures

where we have set

e Xy

PmA-a—x)a-v) (3-12)
p—1

eéApM_l (3.13)

and1 = [1,1,...,1]7 € RM+1 s the column vector of ones.

It can be verified that v” and 1 are left and right eigenvectors of H corresponding to eigenvalue 1,
ie. v H =T and H1 = 1. Moreover it is v71 = 1. From Theorem 8.6.1 in [31] we get that

N
1
]\}iirlm—ZH’L =17, (3.14)
n=1

noting that 1v” isa (M + 1)x (M + 1) rank-one matrix. From (3.10) and (3.14) we getlimy_, oo]E[ZN] =
1—polvTel. Since pol = 1 and vTeT = 6 we get limy_,o E[Zx] = 1 — 6 and by replacing 6 we have

p—1
pM -1

lim E[Zy]=1-A (3.15)
N—oo
We assume in addition that X + Y < 1 which along with 0<X,Y <1 imply that 0 < p < 1 and so
limps 00 pM = 0. Therefore since 1 — A(1 —p) =14+ C — A= X +Y we get

lim (lim E[ZN]) =X+Y (3.16)
M—o00 \ N—00
which proves the correct operation in the limiting case.

The result of (3.16) is valid for stochastic addition in unipolar format and it is extended directly to
bipolar format via the transformation Z — 2(Z — 1), where Z=X+Y" as before.

3.1.2 Non-Scaling Subtracter Architecture

The proposed subtracter architecture is shown in Fig. 3.3. It is comprised of the proposed stochastic
adder with inverted one input and its output. Therefore, the subtracter operates like the adder with inputs
X, and Y,, having probabilities P-(X,, = 1) = 1 — X and P.(Y,, = 1) = Y respectively. The addition
operation implies that 7 N ~ 1 — X 4 Y and the output inversion gives C N=1-— 7 N~ X-Y. For
the subtracter to operate appropriately it must be X > Y.

Similarly to the stochastic adder, the counter’s value 7}, (with initial value Ty = 0) belongs to T =
{0,1,2, ..., M — 1}, where = 2™ and m is the register’s size. The state T;, indicates the number of logic

1s "owned” to the addition (1 — X,,) + Y}, and evolves according to

T, = min {Tn,1 + XY~ (Th1>0) X, Y0, M—1}. (3.17)

Non-Scaling Adder and Subtracter Architectures 45

\

Up Count:

T, =T, 1+1
(if Ty < 2™ = 1)

m-bit m 1 ﬂ S Cn
register A
Down Count: clle
Tn = Tn—l -1
(if T1 > 0)

\/

Figure 3.3: Proposed stochastic subtracter architecture. 7, is the m-bit register’s current state, updated
according to (3.17).

3.1.2.1 Markov Chain Modeling

Register’s
Zero Value

(v ¢
\Q/C*@” -0

y T \/ \/ v
C,=1 C,=0 C,=0 C,=0

Figure 3.4: Markov Chain model of the proposed stochastic subtracter. The register’s zero state, is rep-
resented by two states in the model, 04 and 0. Transition probabilities A, B and C are given by (3.18)

The operation of the proposed subtracter architecture is modeled by the MC model shown in Fig. 3.4.
Both zero states 04 and Op represent the zero value of the register, whereas 1 to M — 1 represent the
corresponding non-zero values of the register. Moreover, the state of the MC model, .S,, belongs to the
set of M + 1 elements given in (3.2), while the state .S;, and its output C,, is determined by the following
transition probabilities

A =P (X, = 1)P:(Y, = 0)
B =P,(X, = 1)P.(Y,, = 1) + P.(Y,, = 0)P,(X,, = 0)
C =P, (X, = 0)P.(Y, = 1). (3.18)

The analysis of the MC’s behavior can be obtained by using equations (3.4), (3.5) and (3.7), along
with (3.18) to calculate the probability distribution vector of state .S, after n = 1,2,..., N steps. Note
that although matrix H is the same for both the adder and subtracter, transition probabilities A, B and C'
are different. Also, the MC models are the same, except the output values.

46 Chapter 3 - Stochastic Computing Architectures

3.1.2.2 [Expected Output Value and Verification of Operation

According to the MC model of Fig. 3.4 itis C),, = 1 if and only if S,, = 04. Therefore, the expected

value of the instantaneous output is
E[C,] = P(Cy, = 1) = Po(S, = 04) = poH"e] . (3.19)

The average value of the output /N-bit sequence is

~ 1
Ov =5 (C1+ 0ot +Cn), (3.20)
with expected value given by
1 1
A — E— n\ T
BION] =g 2 EIC) = (3 7)ol (321)

The procedure to verify the operation of the proposed subtracter architecture is identical to that of the
adder in Subsection 3.1.1.2. Following Lemma 1 and since matrix H is irreducible according to Theorem

1 and corresponding assumptions, we conclude that the operation at the limit case using (3.21) implies

lim < lim]E[éN]) =X-V. (3.22)
M—00 \ N—o0

Also, it can be shown that bipolar representation C' = X — Y of the stochastic subtracter is achieved
using C +— 2C.

3.2 MAX and MIN Architectures

The MAX & MIN are very popular non-linear functions [50], especially in max pooling operations,
and thus their efficient implementation is significant within SC’s context. Current MAX & MIN archi-
tectures include the following ones.

The architecture by Lee et al.[39] realizes the stochastic MAX & MIN by correlating [4] the input
sequences using a three state FSM and then a single gate to produce the output, depending on the desired
function (MAX or MIN). The FSM’s number of states limits the accuracy of the output since it can only
store logic ones according to the FSM depth used.

Another architecture, by Li et al. in [43] uses MUXs and the FSM-based tanh function [15] to realize
the MAX & MIN. One of the two MUXs though, uses an additional hardware-demanding binary-to-
stochastic converter to generate the MUX’s select signal (besides its inputs) thus increasing the hardware
requirements [65]. Furthermore, the dependence of the FSM’s number of states with the input sequence
length requires numerical simulations beforehand to derive the register’s size that yields the highest com-
putational accuracy. Following Li et al. [43], the approach by Yu et al. in [89] replaces the binary-to-

stochastic converter with an XOR to reduce the hardware overhead, keeping the rest of the processing

MAX and MIN Architectures 47

structure.

A recent method to realize the MAX & MIN is proposed by Lunglmayr et al. in [58]. Instead of
tanh-based FSM as in Yu et al. [89], it uses a shift register to store the ones from one of its inputs, and
its least significant bit (LSB) produces a logic 1 if it has saturated up to the LSB. Similarly to [89], the
size of shift register that yields the highest computational accuracy is derived with numerical simulations
according to the stochastic sequence length used. Moreover, if the shift register’s size is not selected

accurately, the output’s accuracy is reduced as shown in [58].

Motivated by the design challenges of the former methods combined with the necessity for fast com-
putations in SC, we propose a different approach for MAX & MIN. The proposed architectures utilize an
accumulator to capture and store the signed bit-differences between their two input sequences, without
additional random sources, making their operation deterministic. This results in fast convergence and at
the same time highly-accurate computations using short input sequence lengths. The above properties are
demonstrated by modeling the architectures using Markov Chains, allowing us to explain their operating
principles in detail, derive the first moment statistics of their output and prove their proper operation at
the limit.

3.2.1 Stochastic MAX Architecture

\

Up Count: jo|:>7
T, =T, 1+1
e m 1 Zn,
IIL"blt (o j:)_»
register
JIn
clk
Down Count:
Yn— T, =T,1—-1

.

+o]

Figure 3.5: Proposed stochastic MAX architecture. T;, is the m-bit register’s state, updated according to
(3.23).

The proposed stochastic MAX architecture is shown in Fig. 3.5, where { X, }, {Y,, } are the stochastic
input sequences and {Z,,} is the output. Ideally, if for some n it is Y;, > X,,, then the m-bit register’s
value is increased by 1 (up count), whereas if Y,, < X, it is decreased by 1 (down count). If Y,, = X,
the register’s value remains unchanged. Also, we assume the initial value 7y = 0. One could say that the
m-bit register’s purpose is to count the signed bit-differences between its two inputs.

It is important to note that the up & down counting of the m-bit register is saturating, meaning that
states 0 and M — 1 cannot be exceeded and it is always T}, € Tr where Tr = {0, 1,2, ..., M — 1}, with
M = 2™ being the total number of states. Hence, from the architecture of Fig. 3.5 we conclude that the

48 Chapter 3 - Stochastic Computing Architectures

state T;, evolves according to
T, = max { min {T,,_1 + X,V — X, Vi, M—1}, 0}7 (3.23)

where X, =1— X, andY,, =1-Y,,.

The architecture’s output Z,, is determined as follows: if X, and Y;, are both 0 or both 1, then Z,, is
0 or 1 respectively; if Y,, > X, then Z, = 1; if Y;, < X,,, then Z,, = 1 if the register was zero in the
previous cycle, i.e. if T,,_1 = 0, and it is Z,, = 0 otherwise. Defining .J,, to be 1 if 7;, > 0 and zero

otherwise, and by inspecting the architecture in Fig. 3.5, the output Z,, can be expressed as

Zn =Y+ Xndn1. (3.24)

The deterministic behavior of the proposed architecture in Fig. 3.5 is captured by (3.23) and (3.24).
Specifically, the output Z,, is a function of the inputs and the state 7}, without any additional randomiza-
tion from any source. As such, the resolution of {Z,, } is only limited by the length of the N-bit stochastic

input sequences and the register’s size.

3.2.1.1 Markov Chain Modeling

To model the operation of the proposed architecture with the stochastic inputs, we consider two
Markov Chain (MC) models. The first one is more simple and allows us to easily model the transi-
tions of the state. However, it not convenient for modeling the output which is a function of the previous
state and the current inputs. To simplify the derivation of output’s statistics, we extend the first model
by doubling the number of states, so that the output depends only on the current state. Both models are
helpful in explaining different aspects of the architecture’s behavior and are discussed in the following
subsections.

A,Zn:() A7Zn:O AsZn:O A7Zn:0

ﬂ C, Z,=1 C, Z, =1 [} C,Z, =1 [}

O G
A) Dp.z,-0 A) bpz,-0 A Dz, =0 4

B+D,Z, =1 B, Z,=1 B, Z,=1 B+C,Z, =1

—

Initial State

Figure 3.6: Markov Chain model of the proposed stochastic MAX architecture. Output Z,, is determined
by the state’s transition according to transition probabilities A, B, C, D given by (3.26).

The first MC model is shown in Fig. 3.6. It describes the MAX architecture’s operation, corre-
sponding to a Mealy FSM. The model’s M states have the obvious one-to-one correspondence with the

register’s states. The MC state S, at time index n, starting from Sy = 0, transitions within the set

S$21{0,1,2,...,.M —2,M —1}. (3.25)

MAX and MIN Architectures 49

If the MC’s current state is .S,,—1 at time index n — 1, then inputs X,,, Y, along with S,,_; determine the

output Z,, as well as the next state S,,. The transition probabilities A, B, C' and D are

A =P,(X,, = 0)P:(Y, = 0)
B =P.(X, = 1P (Y, = 1)
C =P (X, = 0)P:(Y, = 1)
D =P,(X,, = 1)P,(Y,, = 0). (3.26)

To proceed with the analysis of the MC’s behavior, we define the M x M transition probability matrix

H=|P(Sp1 = s|S, = @LSGS

where P,(S,+1 = $|S, = o) is the transition probability from state o to state s, at time index n, and
o,s=0,1,..., M — 1. From (3.26) it is

1-c ¢ 0 : 0 |
D A+B C 0 0
0 D A+B C ... 0
H=]))) .) . (3.27)
0 . 0 D A+B C
| 0 e e 0 D 1-D]
The probability distribution vector of state S, is defined as
[P.(S, =0 |
P.(S, =
pL & | Pr(Sp=2 e [0, 1M, (3.28)
| Pr(Sy=M-1) |
Forn =1,2,..., N steps it is expressed as
pn =pol" € [0, 1]V, (3.29)

where py is the initial distribution vector representing the starting state of the register, i.e. Sy = 0, i.e.,

Po = [1,0,0,...0} e [0,1]M. (3.30)

Despite its simplicity, the MC model of Fig. 3.6 is not convenient for the analysis of the statistics
of the output. Instead, we can double the number of its states to get the MC model of Fig. 3.7. This
extended MC model corresponds to a Moore FSM, relating the output value Z,, only to the state. Each

50 Chapter 3 - Stochastic Computing Architectures

register state is represented by two states in the model of Fig. 3.7. The states of the model are classified
into two sub-sets; the first one, S, 2 {04, 14, ..., (M — 1),} containing the states that output Z,, = 0,
and the second one, Sy = {0y, 1p,..., (M — 1)} containing the states that output Z,, = 1. The MC’s

state S'n transitions within the 2\ states in
S28,US8,={04,0,1a,1p,...,(M—1)q,(M—1)}, (3.31)

according to inputs X,,,Y,, and with initial state Sy = 0,. The transition probability matrix H €

B+D

Initial |
State i

Register’s Register’s Register’s Register’s
0" State 15" State 2" State M — 1" State

Figure 3.7: Extended Markov Chain model of the proposed stochastic MAX architecture with transition
probabilities given by (3.26). Each register state is represented by two states in the model and is classified
into two subsets of states; upper ones outputting Z,, = 1 and lower ones outputting Z,, = 0. Subscripts
a, b denote in which subset S,, is currently into. Transition probabilities A, B, C', D are given by (3.26).

[0, 1]2M>2M of the model in Fig. 3.7 is expressed using A, B, C, D from (3.26), the definitions F £
B+ Dand U £ B + C and the state ordering (0q, 0p, 1a, 1p, . .., (M — 1)4, (M — 1)) as follows

AF 0 C 0 0
AF 0 C 0 0
D0 A B 0 C 0 0
D0 A B 0 C 0 0
00D 0 A B 0 C 0 0
o oD 0o A B 0 C 0 0
0= (3.32)
0 O D 0 A B 0 C
0 O D 0 A B 0 C
0 0 D 0 AU
0 0 D 0 AU

MAX and MIN Architectures 51

The probability distribution vector of state S'n, is defined as

[Po(S, = 04)]
P,(S,, = 0p)
Pr(gn = 1a)
L e | P(Sy=1p) € [0,1]2M (3.33)
Pr(S, = (M—1),)
L r(gn = (M_l)b) i
and it is expressed as
B = PoH™ € 0, 1], (3.34)
where the initial state of the register So = 0q is given by
o = [1,0,0,...0} e [0, 1]2M. (3.35)

3.2.1.2 Expected Output Value and Proof of Operation

To derive the first moment statistics of the MAX architecture, we use the MC model of Fig. 3.7 along
with equations (3.32), (3.34) and (3.35). Based on the model, we use the fact that Z,, = 1 if and only if
S'n € Sp. Therefore, the expected value of the output 7, is

E[Z,] = P(Zy = 1) = P, (Sn c Sb> = poH"qL, (3.36)
with g, (ones in the even-indexed positions) defined as
ge £100,1,0,1,...,0,1] € [0, 1]*M. (3.37)

The average of the N-bit output sequence is

1

I N(Zl—i—Zg—i—---—i—ZN), (3.38)

and using (3.36) its expected value is written as

~ 1 Y 1. Y rrn T
E[ZN] =5 Y _ElZn] = o (D_H" | . (3.39)
n=1 n=1

To proceed with the proof of operation, we assume that 0 < X,Y < 1 and X # Y, which imply that

52 Chapter 3 - Stochastic Computing Architectures

0<A, B,C,D<1 and p # 1 where

LC (1-X)Y
A Rlies e (3.40)

By inspecting the MC model of Fig. 3.7 one can observe that the chain is irreducible, since every state

is accessible from every other one, and so the transition matrix H is also irreducible.

Let vT = [v1,v2,..., ng]T € R2M pe the left eigenvector of ﬁ, ie. vTH = oT, corresponding to
eigenvalue 1 and be normalized such that v"'1 = 1, where 1 = [1,1,...,1]T € R?™ is a column vector

of ones. Then, it can be verified that

v1 = Awi + Dws
Vo = le
Vo1 = Awy + Dwyyq
vor = Cwy_1 + Bwy,
voni—1 = Awpy

vors = Cwpyr—1 + Uwypy (3.41)

where k = 2,3,..., M — 1 and wy, is given by

wp =ML k=1,2,...,M (3.42)
with
a P—1
P T (3.43)

Since the transition matrix H is irreducible, from Theorem 8.6.1 in [31] it is limy_, % Zﬁ;l H" =
1v”. Combining it with (3.39) we get

M
Jim E[Zx] = polv’ ¢! =v'q! = ; Vo (3.44)

From (3.41) and (3.42) we have

Vo = FA
vak = A(C + Bp)p*~?
vars = A(C + Up)p™ 2, (3.45)

MAX and MIN Architectures 53

resulting in

M—2

M
ZUQkI)\{F+(C+BP)p1+(C+UP)PM2}~ (3.46)
k=1

p—1

Combining the above and taking the limit when N, M — oo we get

M
i, Jim BlZ81) = Jim (Z) - , 64D

which verifies that Z converges to max{X,Y}.

3.2.2 Stochastic MIN Architecture

] Ty =T, 1+1

m-bit
register

Down Count:
Y, — T =Ty — 1

-

Figure 3.8: Proposed stochastic MIN architecture. 7, is the m-bit register’s state, updated according to
(3.23).

The proposed MIN architecture is shown in Fig. 3.8. Again, the m-bit register is used to count the
number of cases Y,, > X, minus the number of cases Y,, < X,,. Therefore, the accumulator’s current
value T),, starts from Ty = 0, belongs in the set Tz = {0, 1,2, ..., M — 1} which has a total of M = 2™
states and is updated according to (3.23). Similarly to the max architecture, states 0 and M — 1 constrain

the values’ range of T;,.

In contrast to the MAX architecture, the output K, here is determined as follows: if X,, and Y,, are
both 0 or 1, then K, has the same value 0 or 1 respectively; if Y,, > X, then K, always outputs 0;
and, if Y,, < X,,, then K,, = 1 if and only if the register’s previous value was T,,_; > 0, and K,, = 0
otherwise. Summarizing the former cases and also considering the architecture in Fig. 3.8 as well as the

definition J,, = T;, > 0, the instantaneous output K, is expressed as

Ko = Xo (Yo + Jni). (3.48)

54 Chapter 3 - Stochastic Computing Architectures

D+A, K, =0 A K, =0 A K, =0 A K, =0

(v C K, =0 (v CE=0 (y cr-0 (¥

O O “u O =y O

4) pKk,—1 4) DE.=1 A4) DK,=1 4

B, K, =1 B K, =1 B K, =1 B+C, K, =1

W_J

Initial State

Figure 3.9: Markov Chain model of the proposed stochastic MIN architecture. Output K, is determined
by the state’s transition according to transition probabilities A, B, C, D given by (3.26).

3.2.2.1 Markov Chain Modeling

The operation of the proposed MIN architecture is modeled using the MC model in Fig. 3.9. The
MC’s current state .S,, transitions within its M states in the set S given by (3.25), while its probability
distribution vector after N steps is calculated using equations (3.26), (3.27), (3.29) and (3.30).

The MC model in Fig. 3.9 is converted to that in Fig. 3.10 which allows to relate its current state S,
to the output K, by classifying the model’s states into the sub-sets S,, S that always output K, = 1 and
K, = Orespectively. Furthermore, S, transitions within 2)M states in the set given by (3.25), with initial
value Sy = 0,. Assuming the states’ ordering (Oa, Opy -y (M—1)4,(M— 1),,), the transition probability

B+D
FB 4
Initial : e
State ; :
Kn = 1

Register’s Register’s Register’s Register’s

0t State 1 State 2" State M —1'" State
Figure 3.10: Extended Markov Chain model of the proposed stochastic MIN with transition probabilities
given by (3.26). Each register state is represented by two states; upper one outputs X,, = 0 and lower
one outputs K,, = 1. Subscripts a, b denote in which set S, is currently into.

Compact MAX and MIN Architectures 55

matrix of the MC model is given by (3.49) where we have defined U £ B4+ Cand W 2 D + A

(BW 0 C 0 0]
BW 0 C 0 0
D0 ABOCDO 0
D0 ABOCO 0
0 0DO0 ABOC 0
. 0 0DO0 ABOCO 0
H= (3.49)
0 0 D0 A BOC
0 0 D0 A BOC
0 0 D0 AU
0 0 D0 AU
3.2.2.2 [Expected Output Value and Proof of Operation
The expected value of the instantaneous output K, is
E[K,| = P(K, = 1) = P, (én e sa) N (3.50)
where we used (3.35) and (3.49), and, ¢, is defined as
G £ [1,0,1,0,...,1,0] € [0,1]*M. (3.51)
The average of the output N-bit sequence is
~ 1
KN:N<K1+K2+~~~+KN), (3.52)
and its expected value, using (3.50), is given by
1 & 1 (&
76 — — 5 rrn T
E[Kn] =+ ; E[n] = 0 <; H) G - (3.53)

Note that the procedure to prove the operation of the MIN architecture, follows closely that of the MAX

one.

3.3 Compact MAX and MIN Architectures

In this section we present a different architecture for the realization of the MAX and the MIN. In
contrast to the previous proposed ones, the architecture is compact in the sense that it can realize the

MAX and/or the MIN without changing the logic gates constituting the architecture. Of major interest is

56 Chapter 3 - Stochastic Computing Architectures

also the analysis for the first moment statistics and the proof of operation accompanying the architecture,

which is conducted on a stochastic FSM expressing a Mealy behavior.

3.3.1 Compact MAX Architecture

\

Xy — Up Count: ﬂ
M Tn = Tn—l +1
m-bit m 1 | Zn
register
Down Count:
Yn — Tn=Th1—-1 j:)i

.

Figure 3.11: Proposed compact stochastic MAX architecture where M = 2. T, is the register’s current
value, updated according to (3.54).

Fig. 3.11 shows the proposed stochastic MAX architecture where { X, } and {Y,,} are the stochastic
input sequences, assumed to be generated by SNGs, and {Z,,} is the output. Its operation is based on
increasing the m-bit register’s current value 7, by 1 if X, > Y, and decreasing it by 1 if X, < Y},
within the set T £ {0,1,2,..., M — 1}, starting from Ty = M /2, where M = 2™ is the number
values. Essentially, the register counts the number of signed bit-wise differences between its two inputs,

X, and Y,,. We can express the update of the register’s value as
Eaznmx{mm{ﬂ%4+u&1—Y%A4—1LO}, (3.54)

where the min and max functions imply the natural saturating behavior of the counter since values 0 and
M — 1 cannot be exceeded.
To derive the output Z,,, we define first the result of the comparison between the register’s current

value 7}, and the reference value M /2 as

0, if T, < M/2
Jp = , (3.55)
1, if T, > M/2

which, following Fig. 3.11, implies that
Zn = JnXpn + anm (3-56)

where .J,, = 1 — J,, (considering 0 and 1 as Real numbers). Note that .J,, = 1 means that input sequence
X, has had more 1s than Y,, had, within the storing range of the register. In this case, the output is

Zn = X, as expected, whereas if J,, = 0 itis Z,, = Y,,.

Compact MAX and MIN Architectures 57

Although the input sequences are stochastic, the architecture’s operation is deterministic, modeled by
Egs. (3.54) - (3.56), and the output Z,, is a function of T;,, X, and Y},. These imply that the accuracy of
{Z,,} depends on: 1) the size, m, of the register, and 2) the length, N, of the input sequences.

3.3.1.1 Markov Chain Modeling

Initial State

= B>Zfl 321"71 32171 Bo+ A Z, =1

AZ G 4Z =0 A Z, =1 :1

o ,ﬂ e ﬂm

02—1 U C.,Z,,:l U Z, =0

= B1,Z, =0 Blzfo 312:0 Bi,Z, =0
%ﬁ T — —
Jp, =0 J, =1

Figure 3.12: Markov Chain model of the proposed compact stochastic MAX architecture. Transition
probabilities are given by (3.58). J,, denotes the result of the comparison between the register’s current
value with the initial one M /2.

To investigate the stochastic behavior of the proposed MAX architecture we model it as the Markov
Chain (MC) shown in Fig. 3.12. The MC has the M states in the set given by (3.57)

S2{0,1,....,M —2,M — 1}, (3.57)

and its current state is .5, corresponding to the current value 7;, of the register. The initial state is
So=M/2.

The transition from state S,,_; to state S, is determined by S, —1, X, and Y,,. Using the probability
distributions of inputs X, and Y;,, the assumption that their sequences are 11D, and the operation of the
MAX architecture in Fig. 3.11, we derive the transition probabilities shown in the MC model in Fig. 3.12

as

b
[I>

= Pr(anl)Pr(Ynzo) X(l_Y)

By 2 P(Xy =0)P(Yp=0)=(1-X)(1-Y)

By & P(X,=1)P.(Y,=1)=XY

B £ By + By

C £ P(X,=0)P(Y,=1)=(1-X)Y, (3.58)

where we have set X = P,(X,, = 1) and Y = P,(Y,, = 1). Assuming the state ordering (0,1,..., M —
1) in S and using (3.58), the M x M transition probability matrix H = [Pr(SnH = 5;|Sn = sz)] 50.5:€S
05

58 Chapter 3 - Stochastic Computing Architectures

is written as

1—A A 0 0
B A 0
O C B A ... 0
H=| . - (3.59)
O ... 0 C B A
0 0 C 1-C]

The probability distribution vector of state S, is defined as

P.(S,=0
P.(S, =
pr & | Pr(Sn=2) e 0,1, (3.60)
i P.(S,=M-1) |
and it is expressed as,
pn=poH" € [0,1*. (3.61)

Here, po is the initial distribution vector representing the starting state of the register, Sy = M /2. It is

Po = €pn/2+15 (3.62)

where e; = [0,...,0,1,0,...,0] € RM is the i-th standard vector, i.e., with all zeros except the ith entry

being one.

3.3.1.2 Expected Output Value and Proof of Operation

We use the MC model in Fig. 3.12 and (3.58)-(3.62) to derive the output’s first moment statistics.

The expected value of the output 7, is expressed as

E[Z,] = P,(Z, = 1)

:ZPT'(Z’I’L = 17577,—1 =s5X,=2Y, :y)
seS
z,ye{0,1}

= PZy=1|Sy1=5X,=2,Y, =y)P(Sp1=5X, =2,Y, =) (3.63)
sES
z,y€{0,1}
Regarding the conditional probability P,(Z, = 1|S,—1 = s, X,, = z,Y,, = y) we note that Z,, is a
(deterministic) function of .S,,_1, X, and Y,,, as can be seen in the MC model in Fig. 3.12. Using the
MC model and Eq. (3.56) we can distinguish between three possible cases, i.e.:

Compact MAX and MIN Architectures 59

1. When S;,_1 < M /2 —2,then Z,, = 1l ifandonly ¥,, = 1,
2. When S,,_1 = M /2 — 1, then Z,, = 1 if and only at least one of X,,, Y}, is 1,
3. When S,,_1 > M /2, then Z,, = 1 ifand only X,, = 1.

Therefore we can decompose the summation in Eq. (3.63) as

M/2-2
E[Z,) = Zpr(sn_1 =5Y,=1)+ ZPT(Sn_l =M/2-1,X,=xY,=1)
s=0 (2,y)#(0,0)
M-—1
+Y Pu(Sn1 =5 X, =1). (3.64)
s=M/2

Since X,,, Y,, and S,,_; are independent random variables , it is
Po(Sn-1=8Xy=2,Y,=y) = P(Sy1=5)P. (X, = 2) P (Y, = ¥)

simplifying (3.64) to

M/2-2
E[Z,) =YY Pr(Sn-1=5)+ (X +Y — XY)P(Sy1=M/2-1)
s=0

M-—1
+ XY P(Sh1=5)
s=M/2
=pna (Yel + (X +Y = XV)el, + Xef)). (3.65)

M/2-1 . .
where e, = ZZ:{ e; and ey = Zf\i M /241 Ei- The N-bit output sequence time-average,
1

ZN:N(21+ZQ+-~-+ZN>, (3.66)

has the expected value below based on Eq. (3.65),

N N-1
~ 1 1
E[ZN] = > E[Z.) = o <§) Hn> (ye{ +(X+Y = XY)ey o+ Xe%}). (3.67)
n=1 n=0

Eq. (3.67) is used to confirm the operation of the MAX architecture for large NV and M values.
To verify the operation of the proposed MAX architecture we assume that0 < XY < land X # Y.
Then, from (3.58) itis 0 < A, B,C < 1, as well as p # 1, where we have defined

LA _X(1-Y)

P T T —x) (3.68)

Moreover, note that p > 1 if and only if X > Y.

60 Chapter 3 - Stochastic Computing Architectures

Observing the MC model in Fig. 3.12 one can conclude that the MC is irreducible, as each state s; is
accessible, with positive probability, from every other state s;, implying irreducibility for the matrix H

as well. Therefore, from Theorem 8.6.1 in [31] we have that

1 N—-1
lim — Y H"=1"v, (3.69)

N—o0
n=0

where the row vector v € RM is the unique left eigenvector of H, vH = v, corresponding to eigenvalue

1 and being normalized, i.e. v17 = 1, and, 1 = [1,1,...,1] € RM is the all ones vector. It can be
verified directly that v = A\y/[1, p, p2, ..., pM 1], where
L—p
Ay = . 3.70
wt (3.70)
Combining (3.67) and (3.69) and noting that pg17 = 1 we get
lim E[Zy] = v<Ye{ (XY~ XY)ehy+ Xeg)
=Yvel + (X—i—Y—XY)veﬂ/Q—l-Xveg. (3.71)
Using the expressions of v, ey, and ey we get
T Mja—2) _ 1= pMP
UeL:)\JVI<1+P++p /_) :w
M/2—-1 _ M/2
T M/2-1 _ P P
vepr g = AMP = 1— M
M/2 _ M
, - P P
vell = A <pM/2 gpMI2HL L M 1) =i (3.72)
directly implying from (3.72) that limp; o (limN_>00 E[Z N]) =Y ifp < 1land
1Mo (th%O E[ZN]) = Xifp>1,andso
. X, X>Y
lim < lim]E[ZN]> - , (3.73)
M—o00 \ N—oo Y, Y >X

which proves that the proposed architecture provides the correct expected result in the limiting case.

3.3.2 Compact MIN Architecture as a Variation of the MAX one

The MIN architecture can be obtained as a variation of the MAX one, as shown in Fig. 3.13. The
counting of logic 1s is identical to that of the MAX architecture. The difference between the two archi-
tectures is the swap of the NOT gate between the two AND gates that along with the OR gate, determine
the output. Therefore, the MIN architecture’s analysis is similar to that of the MAX one’s.

Stochastic Computing Sigma-Delta Adder 61

Xn — Up Count:

M Tn = Tnfl +1
m-bit m L
register

Down Count:
Yn — Tn = Tnfl -1

.

D W,

Figure 3.13: Proposed compact stochastic MIN architecture. 7;, denotes the M = 2™ register’s current
value and is updated according to (3.54).

3.4 Stochastic Computing Sigma-Delta Adder

Within the SC-based DSP cores, the multiply-and-add operation is the most important one. Each
multiplication between two sequences is realized using an AND or XNOR gate according to the SC
number representation format used. The addition part is mainly approached by two design strategies;
two-input adder-tree structures and multi-input adders. Typical two-input SC adders scale the addition’s
result by a factor of two, reducing also the output sequence’s resolution by the same factor [65]. This
forces each subsequent layer within the adder-tree to increase the addition’s scaling in increasing powers
of two. To compensate for the resolution drop, the sequence length should be increased in powers of
two according to the number of layers within the adder-tree, resulting in increased latency and total
energy consumption[80]. Moreover, it is also expected for the adder-tree’s output to constrain cascaded
operations in handling cases where up-scaling is required, such as in non-linear functions [72].

To address the adder-tree’s scaling challenges, multi-input adders were considered for use in SC,
with the accumulative parallel counter (APC) [68] being the most popular one [21, 83, 50, 37]. The
APC accumulates deterministically all input sequences in parallel producing the result in binary format.
In SC-based cascaded computations, however, the APC’s binary output introduces the following design
challenges; 1) it limits the applicability of existing single-bit input/output Stochastic Finite-State Ma-
chines (SFSMs) realizing highly-complex functions including non-linear ones [15, 43] and 2) in case
when other arithmetic operations are required, for instance when multiplications follow the output of SF-
SMs, the binary output has to be regenerated as a stochastic sequence in order for the SC logic gates to
be used [52].

Both adder-tree and multi-input adder design strategies have been explored within the context of
SC for the realization of Multi-Layer Perceptrons (MLP) [37, 49, 48], a class of NNs. In [37], each
neuron forming the MLP is realized using an APC followed by a multi-bit input single-bit output FSM
approximating the fanh (BTanh) non-linear activation function, implemented as a binary up/down counter.
However, the BTanh’s design is not systematic; on the one hand the FSM’s number of states affecting the

tanh’s approximation are derived using numerical experiments for fixed input sequence lengths, while

62 Chapter 3 - Stochastic Computing Architectures

on the other the input sequence’s bit-length driving the FSM’s state update is not considered. In [49], a
hybrid SC MLP is realized using an adder-tree structure composed of extended stochastic logic (ESL)
adders [18] in the input layer and APCs in the rest layers. This hybrid format encoding enables the on-
line update of weights. On the other hand, the ESL adders require an additional binary-to-stochastic
number converted for the select signal, taxing on the hardware resources [18, 80], while the adder-tree
requires a tripe modular redundant (TMR) binary search divider, resulting in large sequence lengths for
its computation and stabilization phases [50, 49]. With respect to the activation functions, the same
approach as in [37] was followed, but, a multi-input single-bit output FSM realizing the rectifier linear
unit (ReLU) was used. Similar to [49], in [48] a gradient-based updating scheme was applied to a MLP,
showing the effectiveness of the gradients’ and the weights’ on-line learning. Yet, in [49] no emphasis in
the multiply-and-add operations is given.

Motivated by the limitations of existing SC adder design strategies, this work introduces a SC adder
architecture that utilizes a first-order sigma-delta modulator (SDM). The proposed Stochastic Computing
Sigma-Delta (SCSD) adder sums the bits of the input sequences into a single-data bus and then employs an
internal data range conversion scheme so as to exploit the SDM’s property of converting a high-resolution
signal into a single-bit one. It offers the following advantages: 1) it operates on independent inputs, 2) the
addition is done deterministically without additional random sources, 3) it is fast converging with small
sequence lengths, 4) it enables cascaded operations to be made efficiently with existing SC arithmetic
circuits and 5) it allows the use of any single-bit input/output SFSM, thereby opening the SC-based NN

design space.

3.4.1 SCSD High-Level Architecture

X1 Ul '

VVT{ 2 k m-bit
n L l 777777777 l - register

X5:> Un <> Va | O:avn T,

w2 } >: : | (: :) : | -

Range conversion
from [0, k] to [k, k]

Figure 3.14: Architecture of the proposed Stochastic Computing Sigma-Delta (SCSD) adder. The XNOR
gates between the input sequences { X7 }N_,, {W;}_, are used to multiply numbers in bipolar format.
The multiplication results are added to a single bus with the range of its represented value converted
from [0, k] to [—k, k]. The first-order digital SDM converts a higher resolution signal into a single-bit
one, outputting the average of its input according to (3.80), realizing the sum-of-products.

The proposed multi-input single-bit output Stochastic Computing Sigma-Delta (SCSD) adder archi-
tecture is shown in Fig. 3.14. Its sequences { X3}, {W7}N_| with j = 1,...,k are assumed to be
i.i.d., while {Zn}ﬁ’:1 is the output sequence. The XNOR gates are used to multiply the input sequences

in bipolar format [23], as {X% N {Wﬁ}flvzl may carry information of negative-signed numbers. This

Stochastic Computing Sigma-Delta Adder 63

N

results in k intermediate sequences {Uﬁ}nzl, whose time-average according to (2.1) is U Jj\, =X fVW]]V,

with probability pr; =P, (U;, = 1) = pxipwi-

The summation of the & bits of {Uf;}ﬁf:l follows the multiplication operation, resulting in the se-

N

quence {V;J}¥_,

where V,, = Z?Zl Uﬂ;. It is an integer-valued sequence, since it holds V,, € V), where

V =1{0,1,...,k}, with probability py (v) = P,.(V;, = v) and time-average value

. 1 N 1 N k k 1 N k . k o
VN:NZV:NZZU£:Z<NZU£>:ZU]:ZX}VW]{,. (3.74)
n=1 n=1j=1 j=1 n=1 j=1 j=1

It should be noted that the summation operation is strictly deterministic as it is implemented with
conventional binary arithmetic as shown in Fig. 3.14, without additional randomizing sources. This
implies that 1) there is no loss of information and 2) the precision of V,, is exclusively determined by the
length, N, of the input sequences.

To exploit the first order SDM’s property of converting a higher-resolution signal into a single-bit one,
the value of V}, should have both positive and negative signed numbers. As such, since V,, is the sum of
k inputs, the range of V;, {0, ..., k} is extended to {—k, . .., k} using the transformation V;, — 2V,, — k.
Note that the multiplication operation existing in the range conversion process is realized using a left shift
operation. The bit-width ¢ of V,, is determined according to the number of inputs, k, and should be such
that it can capture all incoming bits, namely ¢ = [log, k|, where [-] is the ceiling function. On the other
hand, the bit-width after the range conversion should be ¢/ = ¢ + 1, accounting for the signed value of
V.

The first-order digital SDM (DSDM) contained within the SCSD adder architecture of Fig. 3.14,
consists of an adder and an m-bit register, followed by a most significant bit (MSB) selection block. The
MSB block, replaces the quantizer existing in the system level model of a typical first order SDM as
shown in Fig. 3.15, which is a simplification of the comparison between the register’s current value and
zero [19, 32]. Therefore, considering the signed representation of 7;,, the MSB’s operation implements
a function Q(+) as

1, MSB(T,) =0
QT) = : (3.75)
0, MSB(T},) =1

Since (3.75) describes the quantization process of a single-bit DSDM outputting 0, 1, in the case when

MSB(T,,) = 1, the quantizer’s output, Z,, is fed back as a —1 using sign extension, instead of a logic 0.

Assuming that the register’s initial value Tj can be any one within the set 7 = {0,1,..., M — 1},
where M = 2™ is the number of states, the DSDM’s current state 7;, is updated as

T, = max {o,min {Tos + Vi = Zo, M—1}}. (3.76)

The max(-) and min(-) functions are used here to denote the register’s natural saturation to states 0 and
M — 1, given that they cannot be exceeded. Therefore, considering (3.75) and (3.76), the SDM’s output

64 Chapter 3 - Stochastic Computing Architectures

Vo 1 | Ta L Zn
1—2-1 = =

m-bit

register
A
I Q)
V. ¢ Ql clk . Z,&{0.1}

clk

Figure 3.15: Top: system level model of a first-order Sigma-Delta Modulator. Bottom: realization of the
first-order Digital Sigma-Delta Modulator. The quantizer block, is replaced by the selection of the most
significant bit.

and consequently that of the SDSC adder is expressed as
Zn = Q (max {0, min {Ty, 1+V,~Z, 1, M~1}}). (3.77)

The first order SDM is stable, i.¢ Zy is bounded in [—1,1] if and only if the input Vi is bounded in
[—1,1] [70]. Otherwise, if I7N< —1or VN>1, a —1 or a 1 will be constantly fed back on every clock
cycle respectively, resulting in a repeated decrease or increase of the register’s current value 7;,.

According to (3.76), the DSDM’s state update describes a first-order difference equation. By simpli-
fying the register’s saturating behavior and taking the time-average of the sequences according to (2.1),

the state update forn = 0,1, ..., N becomes

1T T—INV Z, 3.78
N(N_ 0)_N§(n_ n71)~ (3.78)

Taking the limit N — oo in (3.78) and considering that Vi € [—1, 1], it holds that
Zn = Vn, (3.79)

which using (3.74) formulates the sum-of-product operation as
k

Zy = X,Wi. (3.80)
j=1

Finally, by applying the transformation Zn = 2Zy — 1in (3.80), the output’s time-average in bipolar

Stochastic Computing Sigma-Delta Adder 65

format can be obtained.

3.4.2 Markov Chain Modeling

The proposed SCSD adder’s long-term stochastic dynamics can be further explored by describing the
operation of the first-order SDM as a Stochastic Finite-State Machine (SFSM) and consequently modeling
it as a Markov Chain (MC) [78]. To proceed, it is important to explain first the derivation of 1) the MC’s
state space and 2) the MC'’s transition probabilities.

The quantizer’s operation according to (3.75), expresses the behavior of the SFSM as a Moore one,
given the relation of the current output Z,, to the state 7),. As such, the MC’s current state, S,,, transitions
within the set S = {0,1,..., M — 1}, which is a bijective mapping of the register’s set 7.

The MC’s transition probabilities are determined by {V;,}2_,, and can be challenging to model since
each r.v. V,, takes values within V = {0, 1, ..., k}. To this end, we consider the probability generating
function (P.G.F.) of V,, defined as Gy;, £ E(s"), where s € R, calculated as

Gv,(s) =E (s'") =E (sU’lb+"'+U5> =E (sU}L . 3U5> =E (sU71L> ..E <3U5)

k k
=[Icn =11 ((1 —pw)+pw8), (3.81)
j=1

where GUﬁ(s) = (1 — pys) + pyis, is the PG.F. of the j-th r.v. Uj. Using (3.81), P.(V,, = v) is
calculated as

= (3.82)
v.

A =0) = () 57 (G lo)

s=0

The MC’s state update is similar to that of the register’s one in (3.76), since it is determined by the
previous state .S,,_1, the current input V,, and the previous output Z,,_;. The relation with the previous

output makes the analysis difficult, but, it can be eliminated by introducing a new r.v., V¥, as follows
Sn =S +Vu—Zp 1= Sn—l + V; (383)

Note that in (3.83), the state S,, is updated considering that V,, € {—k, ..., k}and Z,, € {£1}. Moreover,
since Z,, is related to the state, it is convenient to partition S into two subsets S, = {0,1,..., M /2 -1}
and S, = {M/2,...,.M — 1}, such that S = S, U Sp, S, NS, = {}. Therefore, it holds that if
Sn €Sy = Z,=—-1landif S, € S, = Z, = 1.

Once the state update within the state space is defined and the transition probabilities are derived,
they can be used to define the (M x M) transition probability matrix as H £ [P.(S,, = 0]S,—1 =
0i)] = [Po;,0;], Where 0,05 € S.

To give a better intuition behind the transitions within the MC and the elements of I, we proceed with
the following example. For k = 3 inputs, V;, € {0, 1, 2, 3} and after using the mapping V;, — 2V,, — k,
V., € {-3,—1,1,3}. Moreover, considering that V. =V, — Z,,_1, then V,* € {—4,—2, —,2,4}. Using
(3.78) to calculate P.(V,, = v) and taking cases for the transition from S,,_1 to Sy,:

66 Chapter 3 - Stochastic Computing Architectures

e IfS,_1 €8,
- IfP(V,, =0),then S,, = Sp—1 — 2,
- If P.(V, = 1), then S,, = S;,_1,
- If P.(V,, =2),then S,, = Sp,—1 + 2,
- If P(V,, = 3),then S,, = S,,—1 + 4.
e IfS,,_1 € Sb
- IfP.(V, =0),then S,, = S,_1 — 4,

|
=
~
S

I

(0)

(1), then S, = Sp—1 — 2,
- If P.(V,, =2),then S,, = S;,_1,

(3)

- IfP.(V,, =3),then S,, = S,,_1 + 2.

For simplicity we denote py (v) as p{, and for M = 8 states we write matrix [using the state ordering

(0,1,...,7)as

pApy 0 pi 0 pY 00
", pi 0 pb 0 pd O

o o O

Py 0 py 0 pp 0 p},
0 O 0 pb 0 pE 0

H = bv T by U Py v (3.84)
Py 0 pi, 0 pd 0 p}
0 p?/ 0 p%/ 0 p%/ 0 p%/

©<w

0 0 py 0 py 0 pp P}
0 0 0% 0 py 0 pi+p

Assuming that the MC’s starting state Sy can be any one within S, then the initial distribution vector

is defined as
mo = (1/M)1" € [0, 1M (3.85)

where 1 is the column vector of M ones. It can be used along with the transition probability matrix H

from (3.84) to calculate the states’ probability distribution vector as
T, = moH"™ € [0, 1], (3.86)

The states’ probability distribution vector enables the derivation of the output’s first-moment statistics.

The expected value of Z,, is calculated as

E[Z.) = Y 2P(Zn=2) = (—1)mel + mef, (3.87)
ze{£1}

Stochastic Computing Sigma-Delta Adder 67

where ¢, = Zi‘i{Q e; € RM and e, = Z%Mm“ e; € RM withe; = [O, ..0,1,0, ..,0} € RM being
the i-th standard vector. The result of (3.86) along with (3.87) can be used to derive the expected value
of the time-average as

N N N
E[Zn] :% A % > <(—1)7rnef + wne{) - %m (Z H") ((—l)eaT + e{). (3.88)
n=1 n=1 n=1

In Fig. 3.16, the expected value of the time-average, IE[Z ~], is plotted using (3.88), for increasing
values of the sequence length N = 1,2, ...,1000, number of states M/ = 32 and input probability values
p%] = 0.1, p2U = 0.2, p?] = 0.3. It can be observed that the proposed SCSD adder converges fast to the
sum of the inputs, namely after N' = 100 clock cycles.

0.7
o6r———"—"— e
0.5 J
? 04 [T
N
o3]
0.2 _ 1
—E[Zy]
2o
017 p =0.2| 1
py =03
0 L L Il Il
0 200 400 600 800 1000

Sequence Length N

Figure 3.16: Expected value of the output’s time-average, E[Z ~|, calculated using (3.88), estimating the
sums of three inputs with probability values p}; = 0.1,pf, = 0.2,p}; = 0.3, as the sequence length
increases N = 1,...,1000.

68

Chapter 3 - Stochastic Computing Architectures

Statistical Properties Of

Stochastic Finite-State
Machines

In this chapter ! , a general methodology to derive analytically the statistical properties of Stochastic
Computing Finite-State Machines (SFSM) is introduced. The SFSMs, expressed as Moore ones, are mod-
eled using Markov Chains, enabling the derivation in closed form of their output sequences’ statistical
properties, including their expected value, their auto- & cross-correlation, their auto- & cross-covariance,
their variance and standard deviation as well as their mean squared error. A MC overflow/underflow prob-
ability model accompanies the methodology, allowing to calculate analytically the expected number of
steps before overflows/underflows, setting the guidelines to select the register’s size that reduces erro-
neous bits originating from them. In the proposed methodology both the input sequence length and the
number of the SFSMs’ states are considered as parameters, accelerating the overall design procedure as
the necessity for multiple time-consuming numerical simulations is eliminated. The proposed method-
ology’s accurate modeling capabilities are demonstrated with its application in SFSMs selected from the

SC literature, while comparisons with the numerical experiments justify its correctness.

4.1 Finite-State Machines in Stochastic Computing

The concept of using SFSMs to approximate non-linear functions such as the tanh, the exponential
etc. was introduced in [15]. For the approximations to be feasible, the SFSMs should satisfy the following
conditions according to [15]: 1) they have a finite number of ordered states with the first and last one
being saturating, meaning that they cannot be exceeded; 2) the transitions within their states are driven
by input sequences, with stochastic properties and finite length; and 3) each state communicates with the
rest ones. These conditions allow for the operation of a SFSM to be described as an ergodic Markov
Chain (MC), enabling the synthesis of functions based on simple logical operations between the states’
probabilities[15].

Despite the SFSMs’ multiple advantages, they also come with their own weaknesses [15]. In[15], itis

mentioned that SFSMs introduce correlations among the bits of the output sequence, which is reasonable

'Copyright © IEEE. Chapter 4 is reprinted, with permission, from: N. Temenos and P. P. Sotiriadis, “A Markov Chain
Framework for Modeling the Statistical Properties of Stochastic Computing Finite-State Machines”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Early Access. Personal use of this material is permitted, but
republication/redistribution requires IEEE permission.

70 Chapter 4 - Statistical Properties Of Stochastic Finite-State Machines

given the memory elements required to implement the state machines [15]. However, the calculation of
the output’s auto-correlation is estimated with numerical experiments[15]. This is also the case for the
SFSM’s output that approximates the given function, in which, two important factors contribute as well:
1) the number of states and 2) the input sequence length.

The SFSM analysis of [15], is further extended in [43]. Specifically, in [43], MCs are used to formally
prove the principle of operation of several SC-based non-linear functions, including the exponential, the
tanh etc. [43]. A fault-tolerance analysis with respect to bit-flips is also considered in [43]. Nevertheless,
the SFSM’s statistical properties are not investigated.

Stochastic sequence correlation is often caused at the input as discussed in [9, 4, 39, 57]; the binary-to-
stochastic number converters share a common random number source. This allows for certain arithmetic
operations to be realized more efficiently as shown in [9, 4, 39, 57], at the cost of increased correlation
between the input and the output sequences. The use of a de-correlator unit composed of D Flip-Flops to
reduce correlations is mentioned in [39], but, the analysis is supported by numerical experiments.

With respect to the SFSM’s output auto-correlation, it is only investigated in [13]. Its calculation,
however, faces modeling difficulties when joint distributions are required and thus it is limited to approx-
imations [13]. The variance in multi-stage SC circuits is analyzed in [59]. Yet, it is approached from a
gate-level perspective, without further investigation in SFSMs.

Motivated by the needs for an in-depth understanding of the SFSMs’ statistical properties, in this
work we introduce a mathematical framework for their detailed analysis based on MCs. It is a general
methodology, in the sense that it can be applied to any SFSM modeled as a MC. The major contribution of
this manuscript is the analytical calculation using closed-formed expressions of the following quantities
in a SFSM:

* The expected value of the output and the output’s mean.

* The auto-correlation and auto-covariance of the output.

* The cross-correlation and cross-covariance of the output with the inputs.
e The variance & the standard deviation of the output’s mean.

* The mean squared error of the output’s mean.

 The probability of overflows and underflows in the saturating states.

* The expected number of steps before overflows and underflows, used to select the number of states

of the SFSM balancing the computational accuracy hardware trade-off.

Once applied to a SFSM, the proposed framework can be an effective tool to: 1) evaluate the correctness
of the SFSM’s output when approximating a given function; 2) measure the correlation among the bits
in the output sequence and to what extent it affects further operations (e.g. multiplication) of the output
with itself and the inputs; 3) calculate the expected accuracy of the SFSM’s output and to compare it with
the experimental numerical results; and 4) select the register’s size that balances computational accuracy

compared to hardware resources. A further advantage of the proposed framework is that it considers as

Stochastic Finite State Machines & Markov Chain Modeling 71

parameters both the input sequence length and the number of states, which is of utter importance for
the modeling of SFSMs; it eliminates the necessity for multiple time-consuming parametric simulations
to derive the statistical properties and the register’s size, thereby accelerating their design & modeling

procedure.

4.2 Stochastic Finite State Machines & Markov Chain Modeling

In this section, the methodology to model SFSMs as Markov Chains is presented.

4.2.1 Stochastic Finite State Machines

1
1
Xl s 5
X2 +>1
n . Stochastic Computing L Zy
o Processing Block 7

1

Figure 4.1: A multi-input single-output stochastic computing processing block.

From a system-level perspective, a SC processing block (SCPB) is represented by the abstract model
of Fig. 4.1. Typically in SC, it can describe the operation of

1. a combinational logic expression,
2. asequential logic expression,
3. ahigher-level architecture, containing both of the previous processing elements.

Therefore, a SCPB can have many stochastic input sequences {X%}, j=1,...,k, each one with proba-
bility X/ = P,.(X}, = 1), while {Z, } is the output sequence.

The realization of sequential logic circuits and high-level architectures requires memory elements.
This means that the SCPB must have a set of internal states Tp = {0,1,2,..., W — 1}, where W is the
number of states. When counters are used in SC, it is important to note that they may saturate. Assume
for example that the states are linearly ordered, i.e. 0 <1 < 2 <, ..., < W —1 and the goal of the SCPB
is to capture an operation of the form T;, = T,,-1 + f(X,...., X)), where T, is the current state. State
T, is constrained in 7, i.e., within 0 and W—1 and what is (typically) realized by the SCPB is the state

update process

T, = max {min {Tn,1 +f(X}l,...,X,’§)7W—1},O}. (4.1)

72 Chapter 4 - Statistical Properties Of Stochastic Finite-State Machines

To provide with better insight on the state update, we proceed with the following example. Assume
31i.i.d. input sequences { X!}, {X2}, { X3} and the function

F(X} X2, X2) = AND (X}, X2 X2) ~AND (X1.X2.X7)

where Xiﬁb =1- X Considering the above, T, increases its value by 1-bit when and only when
all three inputs are simultaneously 1, i.e. X! = X2 = X2 = 1, decreases its value by 1-bit when
X} = X2 = X? = 0 and maintains its previous value otherwise, i.e. T), = T}, 1.

The purpose of the counter’s register in the previous example, is to remember the cases where all
three inputs are 1, so as to "balance” them with the cases where all three inputs are 0.

With respect to the output, Z,, is determined according to the SCPB’s operation. In the simplest
case of combinational logic, Z,, is straightforward. However, in the case where the SCPB describes a
sequential logic circuit or a higher-level architecture, then FSMs are utilized. Therefore, the SCPB’s
operation can be described using a stochastic FSM (SFSM) and consequently be modeled as a Markov
Chain (MC), allowing for the exploration of its long-term stochastic dynamics and the calculation of its
statistical properties.

4.2.2 Markov Chain Modeling of a Stochastic FSM

A SFSM expresses a behavior that falls into the category of either a Mealy or a Moore FSM. The
former implies that the current output Z,, is a function of the inputs and the state, whereas the latter implies
that Z,, is determined solely by the current state. Although the conversion from one FSM behavior to
another is a feasible and standard task [60], as shown with the example in Fig. 4.2, here we consider only
Moore-based FSMs. This is because relating the current state to the output only, makes the mathematical

modeling, analysis and design of SFSMs using MCs more tractable.

Cy
Cs,C3/0 02/0 CQ,cy 1—')
ﬂ 1/1 ﬂ% Cy
Ollls ‘ = "

oy
C1/1 \035

Ci=P(X!=1,X2=1) Co=P (X} =10X2=1) C3=P (X! =0,X2=0)

Figure 4.2: Conversion example of a stochastic Mealy (left) to Moore (right) FSM. State D; in the Mealy
is separated into two states in the Moore D¢, D% outputting 1 and 0 respectively. In this example, tran-
sition probabilities C', C', C's, are arbitrary selected, but, determined by two stochastic input sequences

{XGH{XT}

A SFSM can be described by a MC model, with an example shown in Fig. 4.3. The MC of Fig. 4.3

is used as reference to explain the modeling procedure of a SFSM, but, note that any MC can be used.

Stochastic Finite State Machines & Markov Chain Modeling 73

The MC of Fig. 4.3 has a total of M states and its current state, .5,,, takes values within the set
S21{0,1,2,...,.M —2,M —1}. 4.2)

Therefore, the MC’s current state S,,, is described as a function of the previous state and the inputs, i.e.
Sp = F(Sp—1, XZL) and thus the output is a function of the state, i.e. Z, = G(S,).

Considering that a counter is used as memory element, there is a difference between the counter’s
total number of states, W, and the MC’s number of states, M ; the MC has at least as many states as
the counter has, i.e. M > W, meaning that the mapping from the MC states to those of the counter
is surjective, but, not necessarily injective. This can be based on many factors, such as the conversion
from a Mealy SFSM behavior to a Moore one, the counter’s register type, for instance a shift-register, the
SCPB’s number of inputs etc.

R” IR
/@3\;@/

v V \ \/
Z, €{0,1} Z, €{0,1} Z, €{0,1} Z, €{0,1}

Figure 4.3: Example of a Markov Chain model describing the operation of a stochastic FSM. Transi-
tion probabilities A; are defined by a boolean function and determine the state’s transition (see example
below). The output Z, is related to the current state, expressing the FSM’s behavior as a Moore one,
outputting 0 or 1.

Proceeding to the MC’s behavior and assuming that transitions occur from a state o; to any other one
oj, with 0;,0; € S, then the (M x M) transition probability matrix is defined as
H £ [P,(S, = 0j|Sn—1 = 0;)]. Considering that the transitions from one state o; to another o are
determined by the inputs X!, X2, ... ,Xﬁ of the SCPB, then the transition probabilities A;,j =1,...,1
could be any boolean function, such as AND, OR, XOR etc, as

A; =P, (fj(X}L,XTQL, N .,X,’:)) . 4.3)

To further explain how A; are determined, consider the following example. Suppose that the MC’s state

Sn_1 at time index n — 1, transitions as follows

« IfX!=X2=1and S, 1 >0,thenS, =S, 1+1,

IfX!=X2=0and S, 1 >0,then S, = S, 1 — 1,

If XOR(X}, X2) =1and S,—1 > 0, then S, = S,,_1,

IfOR(X}, X2)=1and S,_; = 0, then S, = S,,_1 + 2,

IfOR(X}, X2)=1and S,,_1 = M — 1, then S,, = S,,_1.

74 Chapter 4 - Statistical Properties Of Stochastic Finite-State Machines

Based on the above, the transition probabilities can be described as A; = P,(AND(X}, X2) = 1),
As = P,(NOR(X}, X2) = 1) and A3 = P,(XOR(X,, X2) = 1). They can be used along with the MC
model of Fig. 4.3 and the state ordering (0, 1,..., M —1), to express H as in (4.4), where Ay = A; + As.

(4, 0 Ay 0
Ay As A; 0
0 A2 A3 A1
H=| . =~ = . (4.4)
0 ... 0 Ay A3 A
0 0 Ay A4

Note that since H is stochastic, it satisfies Zjvil H; j = 1, where (4, j) represents the i-th row and j-th

column of the matrix H. The probability distribution vector of state .S,,, is defined as

P.(S, =0)
P.(S, =
pL 2| Pr(Sn=2) e o, 1M (4.5)
i P.(S,=M-1) |
and forn = 1,2, ..., N steps it is derived as
pn = poH™ € [0, 1]M. (4.6)

Here, py denotes the initial distribution vector representing the starting state of the MC, Sy, which can

take any value within S. It is expressed as
po = e € [0,1]", 4.7

where e; = [0,...,1,...,0] € RM is the i-th standard vector.

Before we proceed with the analysis in the next section, it is important to note that we consider only
MCs that are irreducible; they have the property that starting from any state o;, it is possible to transition

to any other one o, regardless of the number of transition steps.

4.3 Statistical Modeling of Stochastic FSMs

In this section, we use the MC model and its principles to derive analytically the statistical properties
of SFSMs.

Statistical Modeling of Stochastic FSMs 75

4.3.1 Expected Value

To derive the first-moment statistics, one can observe first from the MC model of Fig. 4.3, that Z,, is
related to the state only; each state outputs either O or 1, based on the SFSM’s operation. It is convenient
therefore, to partition S into two subsets S; and Sy, such that S = S1USy, S1 NSy = {}, where S, € S1
=Z,=1land S,, € Sy = Z, = 0.

Considering the above and also the equations describing the MC (4.4), (4.6) and (4.7), the expected

value of the instantaneous output 7, is calculated as
E[Z,) = Po(Z, =1) = P, (Sn € S1) = poH"q", (4.8)

with ¢ € RM defined as

g2 e, (4.9)

€S

where g represents the set of states outputting 1. To give a better intuition behind the calculation of (4.8)
and the definition of ¢ in (4.9), suppose that the states 0 and 1 are the only ones outputting 1. Then S is
partitioned into S; = {0,1} and S = {2,...,M — 1} and thus ¢ = [1, 1,0,...,0].

The average of the N-bit output sequence is

= 1
ZN:N(ZlJrZﬁ...JFZN), (4.10)

and using (4.8) its expected value is calculated as

N N
E[Zn] =% > E[Z.)] = %po (Z H”) q’. (4.11)
n=1 n=1

Both E[Z,,] and E[Zy] are also essential in the calculation of the second-moment statistics in the following

subsection.

4.3.2 Auto-Correlation & Covariance

The auto-correlation of the output {Z,, } for time lag r > 0 is

RZ(TL +r, n) éE[ZTH—TZn] = PT(ZTL+7’ = LZn = 1) = ZPT(SH—H‘ = j27 STL =]1)

J1,j2€81
= Z P (Sp = j1) P (Sptr = J2|Sn = j1) = Z(POH"%TJ(%HT%)
J1,j2€81 J1,j2€81

=poH"QH"q", (4.12)

76 Chapter 4 - Statistical Properties Of Stochastic Finite-State Machines

where ¢ is given by (4.9) and Q € RM*M jg

Q=) elej = diag(q). (4.13)

J1ES1

The auto-covariance of the output {Z,, } is calculated using (4.8) and (4.12) as

Cz(n+rn) 2 E[(Znsr — E[Zn4r))(Zn — E[Z,])]
= RZ(” +r, n) - E[Zn-‘rr}E[Zn]
= poH"QH"q" — poH"""q"poH"q"" (4.14)

4.3.3 Cross-Correlation & Covariance

We recall that Z,, and S,, depend only on {X%}, 7 = 1,2,...,k and not on their future values.
Moreover, the random variables of the input sequences { X ,Jl} are assumed to be independent to each other,
since they originate from different random number sources. To this end, we derive the cross-correlation
of the output {Z,,} with the a single input { X, } as

RZX(na n—i—r) £ E[Zan+r}:Pr(Zn = laXn+r = 1) (4-15)

To proceed further, we distinguish cases for r,

e Forr =0,

Ryx(n,n) =P(Zn=1,X,=1)=Y Pu(Zy=1,Xy=1,81=0)
oceS

= Z PT(STL:Uth =1,58,1 :J)

o€S,
01E€851

> PSu=01] X0 =1, 1=0)P(X, =1)P(Sp_1=0)

c€S,
o1 681

—poH" Y(H o V)¢ P(X, = 1), (4.16)

where matrix H oV is the point-wise (Hadamard) product of H with V, where V € {0, 1}M*M jg
such that v;, j = 1 if and only if the transition from the i-th to the j-th state is done with X,, = 1.

* Forr > 1, since Z, and X, 4, are independent we have

Rzx(n,n+7) =Po(Zy = 1)Pr(Xpir = 1) = poH" ¢T Pr(Xpir = 1). 4.17)

Statistical Modeling of Stochastic FSMs 77

Summarizing,

H" Y HoV)¢{TP.(X,=1), r=0
Rzx(n,n+1r)= po (Ja () (4.18)
pOanTPr(Xn-i-r = 1)7 r>0

The cross-covariance between the output {Z,, } and the input { X, } sequences
Cyx(n,n+r)=Rzx(n,n+r)—E[Z,]E[X+], (4.19)
is derived directly from (4.8) and (4.18) and the definition X = P,(X,, = 1) giving

XpoH" Y(HoV —H)¢", r=0
Cox(nntr) =4 P Ja (4.20)
0, r>0

4.3.4 Variance and Standard Deviation

The variance of Zy from (4.10) is calculated using the expression (4.14) as follows

N
Var(Zx) =E[(Zn ~ BIZN]Y) = 53 . El(Z ~ E[Z1)(Z; - BIZ)]

ij=1
1N R N
N2 ZCZ(i’j):ﬁ ZCz(i,i)+2ZC’Z(i,j)
=1 i=1 i>j

1 N N . N-1 N ' N
:ﬁ pOZHZQqT_Z(poHZqT) +2<Z pOHJQH(z—])qT

i=1 i=1 j=1 i=j+1
N-1 N _ _
— (poH'q") (poH’q")) : (4.21)
j=1 i=j+1
while the standard deviation is obtained as 0, = Var(Zy).

4.3.5 Mean Squared Error Analysis

To investigate the output accuracy of a SFSM, one can calculate analytically the Mean Squared Error
(MSE) between the output’s mean value Zy and the actual value of the computation Z. It is calculated

as
MSE(Zy) = E [(ZN - 2)2} —E [Z?V —2ZNZ + Zﬂ —E [Z}ﬂ — 9E[ZN)Z + Z*
= Var(Zy) + E[Zn)* — 2E[ZN]Z + Z2, (4.22)

where the analytical expressions (4.11) and (4.21) are used.

78 Chapter 4 - Statistical Properties Of Stochastic Finite-State Machines

4.4 Number of States Selection & Register Size Estimation

The registers utilized by the SCPBs are typically used to store and “remember” logic 1s based upon a
counting process. Ideally, with finite input sequence length and infinite number of states, the counting is
performed perfectly, i.e. without loss of 1s. In practice, however, this is not feasible given the register’s
finite number of states; if they are too few, the counting process results in overflows or underflows that

may degrade the output’s accuracy.

Consider the following scenario: starting from any initial state of the register, e.g. Ty € Tg, the
SCPB’s inputs are such that they force 7}, to perform a walk within states 0,..., W — 1. Eventually,
T,, will reach either of its saturating states W — 1 or 0 and may visit them repeatedly. This can cause
overflows or underflows given that states W — 1 and 0 cannot be exceeded to allow for further counting
and correctly storing of logic 1s. Therefore, it is important to investigate how the number of states W are
related to overflows/underflows and when this impacts the accuracy of the output sequence.

4.4.1 Stochastic Finite-State Machine Overflow/Underflow Modeling

To explain the modeling procedure of overflows/underflows, consider the MC of Fig. 4.3 and suppose
that its current state S,, is M — 1 (or 0). The overflows/underflows occur when and only when the next
combination of inputs at time index n + 1, force the MC'’s state to return to itself, i.e. S,,1 = Sy, where
it should transition to Sy, +1 = S, + 1 or Sp,+1 = S, — 1 instead. However, states M/ and —1 do not exist
and as expected, the MC of Fig. 4.3 does not allow for overflows/underflows to be modeled. Therefore,
we modify it to the one shown in Fig. 4.4 which contains two extra absorbing states M,, My, so as to
capture the overflows/underflows. Note that both states M, M, are used for modeling purposes only and

do not imply any change of the register’s states or size.

1 QA:K
co. oG

Ay : Ay

,,,,

m,As
Ay

ﬂ'/—\s @)

_ o «

Ay

\ v ' ' v
Z, €40,1} Z, €{0,1} Z, € {0, 1} Z, € {0, 1} Z, € {0,1} Z, €4{0,1}

Figure 4.4: Example of the Markov Chain overflow/underflow model with absorbing states M, M,
corresponding to that of Fig. 4.3.

Based on the MC model of Fig. 4.4 one can calculate the probability of overflows/underflows in states
M,, My,. First, the set of the MC’s states is defined as sS4 {0,1,2,..., M — 1, M,, My} and assuming a
state order (0,1,2,..., M — 1, M,, Mp) then the transition probability matrix He [0, 1}(M+2)X(M+2) is

Number of States Selection & Register Size Estimation 79
written as
[0 0 A4 0 0 A2
Ay A3 A1 O Ay
0 Ay A3 A 0
: o (4.23)
0 0 Ay A3 A1 0 O
0 0 Ay A3 A1 O
0 0O 0o o0 1 0
0 0 0 1
The MC’s current state S, probability distribution vector is
[P.(S, =0) |
Pr(An - 1)
T e) € [0, 1]M+2 (4.24)
P.(S,=M-1)
Pr(Sn = Ma)
L Pr(n = Mb) |
and is calculated as
o = PoH", (4.25)
with initial distribution vector
po = e; € [0,1]M+2, (4.26)

Considering the above, the probability that the MC has overflowed/underflowed by clock cycle n in states

M, and M, is Pr(S’n = M,) and P,(S, = M) respectively and is calculated as

P7'(Sn = Ma)v Pr(Sn = Mb)} :ﬁoﬁ"[e;‘\?+1, e£1+2]-

4.4.2 Expected number of Steps before Overflows/Underflows

(4.27)

It is reasonable to further investigate the overflow/underflow process, especially when the operation

of the SFSM and consequently that of the SCPB restrains their occurrence. For this reason, we calculate

the expected number of transitions before the first overflow/underflow, i.e. before states M, or M, are

reached. We write matrix H in its canonical form [25,61] as

A

H | R
02,01 | I2

)

(4.28)

80 Chapter 4 - Statistical Properties Of Stochastic Finite-State Machines

where H € [0,1]M*M R € [0,1]M*2, I, € [0,1]>*? and 04,5/ € [0, 1]>*M. Using H, the fundamental
matrix of the absorbing MC [25, 61] is calculated as

F=(Iy — H)™t e RM*M, (4.29)

Considering that the initial state, Sp, can be any within the states S of the MC of Fig. 4.3, then the

expected number of transitions before the MC is absorbed is
N* =poF1, (4.30)

where 1 € RM is the column vector of all ones and py is given by (4.7). The potentially negative impact
of overflows/underflows and the importance of N* in the register’s state selection, is discussed in the

following subsection.

4.4.3 Guidelines to select the number of states

According to the SCPB’s operation and the counting process itself, an overflow/underflow does not
always result in an erroneous bit at the output. To give a better insight on this, we consider two cases for
a MC with a finite number of states M :

e The MC’s current state S,, starts from the initial state Sy = 0, transitions within S, and is al-
lowed to transition to its saturating states, visiting them repeatedly as well. Typically in SC, such
MC describes the operation of a SFSM that approximates an asymptotically bounded function and

actually benefits from the overflows/underflows, for instance the stochastic fanh [15].

e The MC'’s current state .S,, starts from the initial state Sy = 0, transitions within S, but, is not
allowed to repeatedly visit the last state, M — 1 which is a saturating one. Such MC describes the
operation of a SFSM that captures the bit-differences from the input sequences and stores them
cumulatively in a register, but, does not benefit from overflows as they may result in erroneous bits

at the output sequence [80, 81].

From the above, it is reasonable for a SFSM to have the number of its states carefully selected so as to
limit the use of registers taxing on the hardware resources. In this direction, one can use the expression of
N* in (4.30) as a guideline to select M and hence the register’s size. First, one has to select the stochastic
sequence length N, the number of states M and the input probabilities X/ = PT(X% =1),j=1,...,k
Since N* is a function of the inputs and the number of states M = 2", a reasonable register’s size w can
be selected

w:min{weN\ min N*(Xl,...,Xk,Qw)zN}. 4.31)
(X1, XK

Modeling Examples 81

4.5 Modeling Examples

In this section we show how the the proposed MC framework can be applied to model in detail the
statistical properties of two SFSMs, selected from the SC literature. To demonstrate our framework’s
accurate modeling, we compare its results with those obtained from the numerical calculations for 10*

runs with i.i.d. inputs, all conducted using Matlab.

4.5.1 Modeling Example 1: Stochastic Tanh

Architecture: The first modeling example we consider is the stochastic tanh function (STanh) introduced
in [15]. Its architecture is shown in Fig. 4.5, where {X,,} is the i.i.d. input sequence and {Z,,} is the
output. If X, = 1, then the w-bit register’s current value T, is increased by 1-bit, whereas in the opposite
case, i.e. X, = 0, it is decreased by 1-bit.

The up & down counting of T}, occurs within 7 £ {0,1,..., W — 1}, where W is the total number
of states. Here, the up & down counting is realized using a ripple binary counter, able to count up to
W = 2" states, where w is the register’s size, but, note that it can also be realized by a shift-register. The
first and last states, 0 and W — 1, are saturating, which means that they cannot be exceeded. Therefore,
considering (4.1), with initial state 7o = W /2, T,, is updated as

T, = max {min {T,—1 + X, — X,,, W—1},0}.

The instantaneous value of the output Z,,, is determined by the state’s current value as Z,, = T,, >
W /2. According to the analysis in [15] and considering the above, for an input X representing a stochastic
number in bipolar format, the configuration shown in Fig. 4.5 approximates the Tanh(-) function as
STanh(W, X) ~ Tanh(XW /2).

T

Up Count:
Tn =1p—1+ 1

V w-bit w 1 7
register n

Down Count:
. Tn =dpn-1— 1

.

Figure 4.5: Architecture of the stochastic tanh function.

Xn

Y

Markov Chain Modeling: The operation of the STanh architecture shown in Fig. 4.5 can be described
by the MC model of Fig. 4.6. Its states have an one-to-one correspondence with the register’s ones and

therefore the MC’s current value .S, transitions within S = {0, 1,..., M —1}. The transition probabilities

82 Chapter 4 - Statistical Properties Of Stochastic Finite-State Machines

are

Ay = P(X, = 1)

Ay =P(X,=0)=1-P(X,=1) (4.32)
and can be used to describe the transition probability matrix H € RM*M a5
[(Ay A1 0 0]
Ay 0 A1 O ... 0
0 Ay, 0 A ... 0
H=\|. =] (4.33)
0 ... 0 A 0 4
0 0 Ay A

Assuming an initial distribution vector py = epr/2 € R the MC’s probability distribution vector p,, is
calculated using (4.6).

A, Ay

ﬂ Ay Ay Ay Ay Ay ﬂ
OO 2O 2020 20
~— — — — ~— _—
A, A Ay Ay A

: 2 2

y v v v v v
z0 7,20 7,20 Z, =1 Zy=1 Zy=1

Figure 4.6: Markov Chain model describing the operation of the stochastic tanh function. Transition
probabilities are given by (4.32).

First-Moment Statistics: Considering the MC model of Fig. 4.6, S can be separated into
So=10,...,M/2—1}and §; = {M/2,..., M — 1}. Therefore, using (4.9), ¢ is expressed as

g= > e (4.34)

i=M /241

allowing for E[Z,,] and E[Zy] to be calculated using (4.8) and (4.11) respectively. A graphical represen-
tation of IE[Z] approximating the Tanh function, is shown in Fig. 4.7 parameterized with M = 4 states
and N = 64-bit sequence length.

Second-Moment Statistics: To derive the second-moment statistics, one can start from the calculation of
the auto-correlation Rz (n + 7, n) using (4.12). Note that) € RMXM s obtained from (4.13), where the
vector ¢ is used from (4.34). Once Rz (n+r,n) is calculated, it can be used to derive the auto-covarinace
Cz(n+ r,n) using (4.14). In Fig. 4.8, Cz(n + r,n) is plotted, for M = 4 states, input sequence length
N = 256 and two time lags » = 0, 1. As one can observe, Cz(n + r,n) peaks when X = 0 (bipolar
format) and is reduced when the delay is increased from O to 1 samples. The variance of the output’s

mean Var(Z) is calculated using (4.21). In Fig. 4.9 we demonstrate this calculation using M = 4 states

Modeling Examples 83

:
— — —Numerical -~

Eq. (12) of
05
rﬁ 0
2
05F
/,/
I'//
. ‘ ‘
1 05 0 05 1
X

Figure 4.7: Expected value of the stochastic tanh’s output mean E[Z] calculated using (4.11), parame-
terized with M = 4 states and sequence length N = 64. For the numerical calculations, 10* i.i.d. runs
for each point are considered.

and input sequence length NV = 64.

Mean Squared Error: The MSE is calculated using (4.22), in which Z = Tanh(X M /2). The results
are shown in Fig. 4.10 for M = 4 states and input sequence length N = 64.

Overflow/Underflow Modeling: The modeling of overflows/underflows is achieved using the MC
model of Fig. 4.11, which contains the two absorbing states M, Mj,. With state ordering (0, 1,2, ..., M —

1, M,, My) and the transition probabilities from (4.32), the transition probability matrix H e RIM+2)x(M+2)

becomes

[0 A, 0 0 0 A
A, 0 A 0 ... 0 0 0
0 Ao 0 A ... 0 0 0
A=\ o (4.35)
0 0 A, 0 A 0 0
0 0 Ay 0 A 0
0 0 0 0 1 0
L0 0 0 0 0 1]

Using (4.35), the probability distribution vector p,, is calculated from the expression given in (4.25),
where the initial distribution vector is pg = €j7/2. In addition, Fig. 4.12 shows the probability of over-
flow/underflow calculated using (4.27) for X = 0.5 (unipolar format), sequence length N = 64 and
increasing number of states M =4, ..., 32.

Register’s size selection: The matrix H from (4.35) can be used to derive the fundamental matrix F’
according to (4.29). Then, the expected number of steps before overflows N* can be calculated using

(4.30), considering that py = epr/o € RM . In Fig. 4.13, N* is plotted, parametrized with sequence

84 Chapter 4 - Statistical Properties Of Stochastic Finite-State Machines

r=20
0.3 .
o — — — Numerical
02k Eq. (15)
0.1
n
< — —~
0 ; —
T 05 0 05 1
~ r=1
© 015 ‘
- — — — Numerical
0.1t e Eq. (15)
0.05r
0 ; ; . o
-1 -0.5 0 0.5 1

X

Figure 4.8: Auto-Covariance C'z(n + r,n) of the stochastic tanh’s output calculated using (4.14), pa-
rameterized with M = 4 states, sequence length N = 256 and time lags » = 0,1. For the numerical
calculations, 10% i.i.d. runs for each point are considered.

length N = 32 and state sizes M = 8, 16, 32. It can be observed that the condition N* > N from (4.31),
is satisfied only when M = 16, 32 states are used.

One can conclude that the advantage of modeling the expected number of steps before overflows
N* is twofold; on the one hand, it allows to accurately select the number of states that reduce the over-
flow/underflow occurrence, while on the other it prevents from selecting an unnecessarily large number

of states, taxing on the hardware resources.

4.5.2 Modeling Example 2: Stochastic Adder

Architecture: The second modeling example we consider, is the non-scaling adder introduced in [80]. Its
architecture is shown in Fig. 4.14, where { X} }, { X2} are i.i.d. input sequences and {Z,,} is the output.
Its principle operation is based upon the storing of logic ones in a w-bit register when X! = X2 =

so as to output them in a future clock cycle n’ for which X 711, =X 2, = 0. The register’s current value
T, up and down counts within T = {0,1,..., W — 1}, where W = 2 is the total number of states.

Therefore, T,’s accumulating behavior is expressed as [80]
T, = min {Tn,l + X2X2 (T, >0) X0 X2, W—1}.

From the architecture of Fig. 4.14, the instantaneous output can be described as Z,, = X} + X247, >
0. Note that for the architecture’s proper operation, it holds 0 < X! + X2 < 1.

Markov Chain Modeling: The MC model of Fig. 4.15 describes the operation of the adder’s architec-
ture. Here, the register’s initial value O is represented by two states in the model, 04 and Op, so as for

its SFSM to be expressed as a Moore one. Hence, its current state S, transitions within M + 1 values

85

Modeling Examples
0.02
— — = Numerical
Eq. (22)
0.015 1
< 001 1
>
0.005 [1
O L L L
-1 0.5 0 0.5 1

Figure 4.9: Variance Var(Z) of the stochastic tanh’s output mean calculated using (4.21), parameterized
with M = 4 states and sequence length N = 64. For the numerical calculations, 10* i.i.d. runs for each

point are considered.

within S = {04,05,1,2, ..., M — 1}, while its transition probabilities are

Ay =P, (X! =0)P.(X2=0)

n

Ay =P (X} =1)+ P(X2=1)-2P.(X! =1)P.(X2=1)

n

A3 =P, (X! =1)P.(X2 =1). (4.36)

n

They can be used to write the transition matrix H € ROMFTDX(M+1) 54

(A, Ay As ... 0
A1 A2 A3 0
0 A Ay A; ... 0

H=1. : : (4.37)

: .0 A A As
o 0 A A2+A3_

Since the MC’s initial state is Sy = 0.4, here the initial distribution vector is pg = e; € RM*! and thus
the states’ probability distribution vector p,, is calculated using (4.6) [80].

First-Moment Statistics: Observing the MC model of Fig. 4.15, one can see that S,, =04 = Z,, =0,
separating S into Sy = {04} and S; = {1,2,..., M — 1}. Therefore, vector ¢ = [0, 1,...,1] € RM+!

is expressed as

¢= e (4.38)

86 Chapter 4 - Statistical Properties Of Stochastic Finite-State Machines

0.15
— — = Numerical
Eq. (23)
/
— 0.1 / 1
- /
N /
I
15/ / \
M 0.05+ / 1
/
O / L L L
-1 0.5 0 0.5 1

Figure 4.10: Mean Squared Error of the stochastic tanh’s output mean calculated using (4.22) for M = 4
states and input sequence length N = 64. For the numerical calculations, 10 i.i.d. runs for each point
are considered.

1

1 Al -
— . S . 2 ~\\
. ’
_— @ @ «

2

1

Ay Ay A
() — O 0L
‘N o o o o
) ~~— ~— _— — -
§ Ay T A As 5 A

2

: 1 v v v v
va: 0 Z,,': 0 Zn =0 Zn =1 Zn=1 Zp =1

Figure 4.11: Markov Chain overflow/underflow model of the stochastic tanh function. Transition prob-
abilities are given by (4.32).

and can be used to calculate E[Z,,] and E[Zy] using (4.8) and (4.11) respectively [80]. For two inputs
X1, X% € [0,1], the expected value of the output’s mean is shown in Fig. 4.16, parametrized with
M = 8 states and N = 64-bit sequence length. From Fig. 4.16, it can be seen that the distribution of the
output’s mean, IE[Z ~/|, calculated using (4.11), matches the one obtained from the numerical experiments,
verifying also the correctness of the additions for two inputs X', X2 € [0, 1], suchthat0 < X'+ X? < 1.

Second-Moment Statistics: The auto-correlation Rz (n + r,n) is calculated using (4.12), considering
the vector ¢ from (4.38) and can be used to calculate Cz(n 4 r,n) from the expression (4.14). The auto-
covariance C'z(n + r,n) is illustrated in Fig. 4.17, for two inputs X!, X2 € [0, 1], parametrized with
M = 8 states, input sequence length N = 64 and a delay » = 1. One can observe that the auto-covariance
peaks when X' = X2 = 0.5 with a negligible value of approximately 0.03 and gradually decreases when
moving away from these values. Notice that the results obtained from the analytic calculation, follow the

ones from the numerical experiments.

Considering Cz(n + 7, n), the variance of Zy, Var(Zy), can be calculated using the expression

(4.21). In Fig. 4.18 it is demonstrated for M = 8 states and input sequence length N = 64. From Fig.

Modeling Examples 87

0.6 ‘
——P(8,) = M,
Z P8 =M,
S 05F]
5
E
B
So4ar]
=
=]
[em]
=
£o03f .
3
Gy
o
2021 1
3
:g
201 =]
O 1 1 1 1 1 1
4 8 12 16 20 24 28 32

M states

Figure 4.12: Probability of overflow/underflow of the stochastic tanh calculated using (4.27) for increas-
ing number of states M = 4, ..., 32, input X = 0.5 and sequence length N = 64.

4.18, it is observed that the analytic calculation of Var(Zy) follows closely the one obtained from the

numerical experiments, where the results have values with order of magnitude up to 1073,

Mean Squared Error: The MSE of the adder’s output mean can be calculated using (4.22), where
Z = X' + X2 InFig. 4.19 the MSE is shown for M = 8 states, sequence length N = 64 and inputs
X', X? € [0,1]. From Fig. 4.19, it is noticeable that the analytic calculation of the MSE(Zy) using
(4.22) matches the one obtained from the numerical experiments.
Overflow Modeling: The procedure to model overflows deviates from the previous SFSM example.
Here, we are interested in ”how far” the MC’s current value S,, can transition, corresponding to ”how
many” additional logic 1s are stored from the counting process. Therefore, the modeling of overflows
becomes one-sided, in the sense that only one absorbing state is used, M,. In Fig. 4.20, the adder’s MC
overflow model is shown.

With state ordering (04,03, 1, . .., M—1, M,), the transition probability matrix H € R(M+2)x(M+2)
is written using the transition probabilities given in (4.36) as

(A4, Ay A, 0
Al Ay A 0
0 A Ay As 0
H=10 01, (4.39)
: 0 A Ay Az 0
: 0 A Ay As
00 1

and using po = e; € RM*2, the probability distribution vector after N steps is calculated with the

88 Chapter 4 - Statistical Properties Of Stochastic Finite-State Machines

300

250 M = 32|

200

150

100

Expected number of steps N*
before overflows/underflows

a
o

Figure 4.13: Expected number of steps before overflows/underflows N* of the stochastic tanh calculated
using (4.31), for M = 8, 16, 32 states and sequence length N = 32 (dashed line). The guideline N* > N
allows for reduced overflow/underflow occurrence.

Up Count:
T,=T,1+1
(i Ty < 2v —1)

w-bit
register

Down Count:
(if T,-1 > 0)

[

T, >0

IS

+°]

clk

Figure 4.14: Architecture of the stochastic adder [80].

expression (4.25). Considering that only one absorbing state is used, then the probability of overflow is
[80]

Po(S, = M,) = poH"ed; 5 (4.40)

In Fig. (4.21), the adder’s probability of overflow is graphically illustrated, for inputs with values X' =
X2 = 0.5, increasing number of states M = 4, ..., 32 and sequence lengths N = 16, 32, 64, 256. As
expected, an increase on the number of states, reduces the probability of overflow.

Register’s size selection: For the calculation of the expected number of steps before overflows N*, the
matrix H from (4.39) is used along with the initial distribution vector pg = e; € RM*1, In Fig. 4.22,

N* is plotted for inputs X! = X2 = 0.5, increasing number of states M = 4, ..., 32 and stochastic
sequence lengths N = 16, 32, 64, 128, 256.

Modeling Examples 89

Register’s
Zero Value

8142/ wL A2+A3
‘7/ ‘~T11/ i T

v oo v v v
Zn =0 Zn =1 Zn =1 Zn =1

Figure 4.15: Markov Chain model describing the operation of the stochastic adder. Transition probabili-
ties are given by (4.36).

It can be seen from Fig. 4.22 that for small values of IV, namely N = 16, 32, a slight increase on the
number of states has negligible difference on the condition to be satisfied, N* > N. However, this is not
the case for large values of N, for instance N = 128 and more, in which an increase of the number of

states and hence the register’s size, is necessary to satisfy N* > N.

4.5.3 Execution Times Performance

To highlight the time efficiency of our proposed framework in the modeling of the SFSMs’ statistical
properties, we compare its execution times with those obtained from the numerical experiments. For the
STanh, we use 102 input values uniformly distributed in [0, 1] and for the Stochastic Adder we use 10
input values uniformly distributed in [0, 1] x [0, 1]. Regarding the numerical experiments, we conduct
10% and 10° runs with i.i.d input sequences of length N = 64-bits for each input value we consider. To
measure the relative performance we use the speedup metric, which is the ratio of the execution time of
the numerical experiments, Ly, over that of the analytical modeling one, Ljy, i.e. Speedup = Ln/ L.
The execution times are used to calculate the time saving metric as (Ly — Lps)/ Ly * 100%. We also
cite the Mean Absolute Error (MAE), which is the absolute difference between the averaged output of
the numerical experiments for 10* and 10° runs and the analytical modeling output, summed over all the
uniformly distributed input values.

Table 4.1, presents the numerical simulation and analytical calculation execution times of the two
SFSMs. When 10° runs are used, it is observed that the calculation of the expected value and the auto-
correlation using the proposed framework, result in substantial time savings for both the STanh, 99.47%
and 99.90% respectively, and the Stochastic Adder, 99.94% and 99.96% respectively. With respect to
the calculation of the variance and the MSE, the analytical modeling of our proposed method yields
significant time savings, corresponding to 95.07% and 94.93% respectively for the STanh and 92.21%
and 91.91% respectively for the Stochastic Adder. Decreasing the number of runs to 10%, is expected to
increase the MAE and the execution time, at the cost however of reducing the numerical experiments’

approximations.

90 Chapter 4 - Statistical Properties Of Stochastic Finite-State Machines

Eq. (12)

Numerical

Figure 4.16: Expected value of the stochastic adder’s output mean IE[Z ~|. Top: calculated using (4.11),
parametrized with M = 8 states and sequence length N = 64. Bottom: Numerical calculations for 10*
i.i.d. runs for each point.

Modeling Examples 91

Eq. (15)

Numerical

Figure 4.17: Auto-Covariance Cz(n + r,n) of the stochastic adder’s output. Top: Calculated using
(4.14), parametrized with M = 8 states, sequence length N = 64 and delay » = 1. Bottom: Numerical
calculations for 10 i.i.d. runs for each point.

92 Chapter 4 - Statistical Properties Of Stochastic Finite-State Machines

Eq. (22)

Numerical

x1078

)

N

N 4

Var(

o N

XZ

Xl

Figure 4.18: Variance of the stochastic adder’s output mean Var(Z ~). Top: calculated using (4.21),
parametrized with M/ = 8 states and sequence length N = 64. Bottom: Numerical calculations for 10*
i.1.d. runs for each point.

Modeling Examples 93

Eq. (23)

x1078

E[(Zy - 2.)]

X2 0 0

Xl

Figure 4.19: Mean Squared Error of the stochastic adder’s output mean MSE(Zy). Top: calculated
using (4.22), parametrized with M = 8 states and input sequence length N = 64. Bottom: Numerical
calculations for 10 i.i.d. runs for each point.

Register’s
Zero Value

SRR (¥ .
a@)/o\@f a3 e OF

v

4,

\/ \/ v
Zn 0 Zn:1 Zn:1 Zn=1

Figure 4.20: Markov Chain overflow model of the stochastic adder. Transition probabilities are given by
(4.36).

94 Chapter 4 - Statistical Properties Of Stochastic Finite-State Machines

1 _ T
——N=16
— N =232

N=64 ||

i 0.8 | N =128

q% ——— N = 256

g

S 0.6 |

(-

@]

iy

5 0.4 |

<

Q0

2

[al

0.2 i
\\;7
0 ! EEm—— e P -
4 8 12 16 20 24 28 32

M states

Figure 4.21: Probability of overflow of the stochastic adder calculated using (4.40), for inputs X! =

X? = 0.5, increasing number of states M = 4, ..., 32 and increasing sequence lengths V.
300 w
—N=16
—N=132

250 - N =64 //,,,,,//f*”**** A
2 ——N=128 j§nsse
2 5 - N=256 et
= o 200 - 1
—
23
2 g 150f .
g3
= o
O =
+ 9 L i
é 2 100
2]
5

50 y 1
O Il Il Il Il L Il
4 8 12 16 20 24 28 32
M states

Figure 4.22: Expected number of steps before overflows N* of the stochastic adder calculated using
(4.31), for M = 4,...,32 states, inputs X' = X? = 0.5 and increasing sequences lengths N. The
guideline N* > N allows for reduced overflow occurrence.

Modeling Examples

95

Table 4.1: Execution Times (s) for the Modeling of two SFSMs: the STanh and the Stochastic Adder

STanh 10% runs

Epr:rrinninf?sl(s) I\?:iitrl‘g:?l) Speedup MAE SaviTr:rgnse(%)
Exp. Value 441 0.24 18.37 1.1x 1073 94.55
Auto-Correlation 19.84 0.26 76.30 6.6 x 10—3 98.58
Variance 6.76 3.35 2.01 1.7 x 10~4 50.44
MSE 6.87 3.42 2.00 2.6 x 10~% 50.12
Stochastic Adder 10% runs
Exp. Value 303.80 1.62 187.5 5.1 x10~% 99.46
Auto-Correlation 302.89 2.28 132.49 3.8 x 103 99.24
Variance 318.07 249.08 1.26 2.2 x107% 21.69
MSE 320.19 251.15 1.27 1.1 x 10~4 21.56
STanh 10° runs
Experimens(s) | Modelmgty | PR | MAE | o o0
Exp. Value 45.37 0.24 189.04 3.5 x107% 99.47
Auto-Correlation 270.85 0.26 1041.73 9.8 x 107% 99.90
Variance 68.06 3.35 20.31 3.1x107° 95.07
MSE 67.56 3.42 19.75 8.2 x 107° 94.93
Stochastic Adder 10° runs

Exp. Value 3.09 x 103 1.62 1.91 x 103 | 1.6 x 10~ 99.94
Auto-Correlation 6.54 x 103 2.28 2.87 x 103 | 8.3 x 1074 99.96
Variance 3.20 x 103 249.08 1.28 x 10% | 4.9 x 107° 92.21
MSE 3.11 x 103 320.19 1.24 x 103 | 1.7 x 107° 91.91

96

Chapter 4 - Statistical Properties Of Stochastic Finite-State Machines

Part 11

Performance Results and Applications

Comparison with the Stochastic
Computing Literature

In this chapter!. the proposed architectures are compared with popular SC adders [41, 72, 84, 23,
18], subtracters [4, 54, 18], MAX and MIN architectures [39, 43, 58, 89] existing in the literature, in
both computational accuracy and hardware resources. With respect to the computational accuracy, the
Mean Absolute Error (MAE) and/or the Mean Squared Error (MSE) are considered. For two inputs
X,Y € 10,1], the MAE and the MSE are defined respectively as

MAE(X,Y) =E [|f(X,Y) _ ZN|] (5.1)
and
MSE(X,Y) = E [(f(x, Y) - ZN)Q} , (5.2)

where f(X,Y) is a function applied to the inputs such that f : R? — R and Z is a selected architecture’s
output mean. The MAE/MSE is estimated numerically in a grid of pair values (X,Y), assuming the
unipolar SC format. For each grid point, 10® runs with pairs of i.i.d. sequences are conducted to derive
the MAE/MSE. Then, all MAE/MSE values of each architecture are averaged, while the experiments are
run for stochastic sequences with lengths N = 2%, where k = 4, ..., 10.

Regarding the hardware resources, the operation of all architectures is described using Verilog HDL
targeting the Xilinx Kintex-7 FPGA kit and then the designs are fed into the Synopsys Design Compiler
using the FreePDK CMOS library at 45nm [77]. For the comparisons, the following estimates are pro-
vided: 1) the total area in ym?, 2) the average power consumption for the max operating frequency in
mW., 3) the critical path in ns and 4) the energy per operation (average power x the critical path) in p.J.

!Copyright © IEEE. Chapter 5 is reprinted, with permission, from: 1) N. Temenos, P.P. Sotiriadis, “Non-Scaling Adders
and Subtracters for Stochastic Computing using Markov Chains”, IEEE Trans. on Very Large Scale Integration Systems, vol
29,no. 9, pp. 1612-1623, Sept. 2021, 2) N. Temenos and P. P. Sotiriadis, “Stochastic Computing MAX and MIN Architectures
Using Markov Chains: Design, Analysis and Implementation”, IEEE Trans. on Very Large Scale Integration Systems, vol 29,
no. 11, pp. 1813 - 1823, Nov. 2021 Personal use of this material is permitted, but republication/redistribution requires IEEE
permission.

Copyright © Elsevier. Chapter 5 is reprinted, with permission, from P. P. Sotiriadis and N. Temenos, “Compact MAX and
MIN Stochastic Computing Architectures”, Integration, vol. 87, pp. 194-204, November 2022. Personal use of this material is
permitted, but republication/redistribution requires Elsevier permission.

100 Chapter 5 - Comparison with the Stochastic Computing Literature

5.1 Comparison of Stochastic Adders

The SC adder architectures existing within the literature are shown in Fig. 5.1, where it is assumed

that { X, } and {Y,,} are the input sequences while {Z,, } is the output sequence.

i) ii)

Xy
Y, — 2-stat Zn
X, | M [
T 1 -
4 Zn Y"
clk ——> clk
%
S(%,) iii)

M(X,,)
Comb.
Logic

S(Ya)
M(Yn)

V
En. U/D
Counter
in
A\

V

Modulus-1
1-bit Counter

Random Number
Generator
A

I
clk

Figure 5.1: Stochastic Computing adders. From top left to bottom right: i) Scaling adder in [41], ii)
Scaling adder in [84], iii) Non-scaling adder in [72] and iv) Scaling/Non-Scaling adder in [18].

The computational accuracy, the power x delay? and energy consumption of the adders considered
are presented in Figs. 5.2 and 5.3, while their detailed hardware requirements, including the area, are cited
in Table 5.1. Note that the hardware requirements for the input sequence generation are not included.

A) MUX: We consider the original circuit used for scaled addition (in unipolar format) and scaled
subtraction (in bipolar) [23]. It requires large sequence lengths N to achieve acceptable accuracy com-
pared to the other architectures, which reflects to the increased total energy consumption, according to
Fig. 5.3. Moreover, the required SNG also impacts both power and energy consumption. This is why it
is the least popular approach for both addition and subtraction.

B) Adders in [41] and [84]: The adder in [41] uses a T Flip-Flop to replace the SNG of the original

Comparison of Stochastic Adders 101

0.12 \
a — % —Proposed
S — e -MUX
0.1 ~ (84] -
O,
\ —-¢ -[72]
\
= N — 4 —[18]
2 X
2 0.08r S A A [41] -
= < N
2 N\ Q
= N \
2 0.06 - » N 1
= I
=} ® \e\
g | \\ Se j
g 0.04 < <
= AN (S
é *\ RN
S N~ oL
0.02 + e~ Sk T~ 1
*_ A o ——_ >~ 0
Teelil, e o i 3
To—ae T Tk
0 | | | s\ﬁh“%_“ﬁ———-ﬂﬁ

16 32 64 128 256 512 1024
Stochastic Sequence Length N

Figure 5.2: Comparison of accuracy in MAE of stochastic adders for typical stochastic sequence lengths
N

MUX adder, while the adder in [84] employs a 1-bit register along with a two-state FSM to slightly
improve on the accuracy. Compared to the adder in [84], the proposed one requires almost the same area
for a register of m = 2-bits and slightly more power and energy consumption per operation according to
Table 5.1. Compared to the adder in [41], the proposed one has higher power and energy consumption per
operation. However, the proposed adder achieves better accuracy than both of them for short sequence
lengths according to Fig. 5.2 and 5.4. Moreover, the non-scaling behavior of the proposed adder benefits
cascaded computations since the resolution of the sequence is not reduced by 2 for every adder used.

C) Adder in [72]: The non-scaling adder in [72] assumes a two-line representation of a stochastic
number, one to represent the magnitude and one the sign. Here we use the adder with unipolar format (plus
fixed sign) and design parameter “threshold” 2, following the design methodology in [90], to compare it
with the other adders. As shown in Fig. 5.2 it has lower accuracy than the proposed adder and has almost
the same power consumption, with energy being its strong point according to Table 5.1. Moreover, the
adder in [72] occupies more area compared to the proposed one for register sizes m = 2, 3.

D) Adder in [18]: The adder (and subtracter by using a NOT gate in one of its inputs) in [18] encodes
stochastic numbers as the ratio of the switching activities of two sequences. The 4 inputs of the adder
are pair-wise XNORed and then fed to a MUX that uses a modulus 1 counter as its select signal and it’s
output is the scaled result of the addition. To derive its non-scaling sum, two of the inputs and the output
of a SNG are used as inputs to a 3 input XNOR. The XNOR’s output as well as the MUX form the adder’s
outputs while their ratio yields the final (non-scaled) sum. According to Table 5.1, the overall hardware
utilization is taxed due to the additional SNG, which impacts the power and energy consumption as well.
Furthermore, to achieve comparable accuracy to that of the other adders, it requires large sequence lengths
as shown in Fig. 5.2. Its main advantage is that it can be used for both scaling or non-scaling additions

and the ratio encoding can be used to directly realize other standard operations as well, e.g. multipliers,

102 Chapter 5 - Comparison with the Stochastic Computing Literature

— % —Proposed — & - MUX [84] — ¢ —[72] — * —[18] — & — [41]]
103
)
N
X 2 - =
~ 10 E //:g;/// 4
S —Z=
™ ;//J//
5 4ol L -2 ~ 4]
= 10 /§:‘/ AT
A zZZ a7
X gff%/ a7
g 100 ¢ 5~ kel 3
: e
~ Ve
10'1 Il L Il L Il Il 1
16 32 64 128 256 512 1024
Stochastic Sequence Length N
Xk
102 /y;//& |
w0
E */;//@ //0
N> //B/ ,(}/ //A
> 10" F i n A-]
%0 /;}5/ //O’ ///
= KT ez s
= */:5 = //A/
100r &7 £AT 3
/A//
A// 1 L 1 1

16 32 64 128 256 512 1024
Stochastic Sequence Length N

Figure 5.3: Comparison of Power x Delay? (pJ x ns) (top) and Energy (pJ) (bottom) consumption of
stochastic adders for typical stochastic sequence lengths N

dividers etc. However, the incompatibility of the ratio encoding with other more popular SC encodings
results in extra translation hardware complexity when is coupled with other traditional SC numerical
architectures.

5.2 Comparison of Stochastic Subtracters

The SC subtracter architectures existing within the literature are shown in Fig. 5.5, where it is assumed
that { X, } and {Y,,} are the input sequences while {Z,, } is the output sequence.

The accuracy, the power x delay? and energy comparison between the stochastic subtracters are
shown in Figs. 5.6 and 5.7, while the detailed hardware utilization results are shown in Table 5.1. Since
the NOT gate does not degrade the accuracy of the computations for the proposed subtracter as well as
the MUX and [18], the results are identical that of the adder. Note that the area, power and energy con-

sumption of the proposed subtracter is almost the same to those of the proposed adder since the additional

Comparison of Stochastic Subtracters 103

— % —Proposed — & —-MUX [84] — ¢ —[72] — » —[18] — & - [41]]
10%F
1024 o024 = 1024
% ~<_ &
— 10 BN \%1\2 b E
3 f %4 1024 N \
\; [WO\ 256 ﬁﬁiﬁ \ 256
g NN 512 N
e \% 195 1024 - M2\ 198
g 101 L Qﬁ\ N 512 3%4 \ 4
° g W A 128 \ 64
i BN ~ 256 AN
\
64

? s 32 Mg) \5’2
! TN R 32 \
S N ~ 64 6\éw

107 £ ‘q6 N 16

;)
K
T 16
®
101 H ' e ' ' ' ' e
10 107
MAE

Figure 5.4: Comparison of Energy per operation (p.J x ns) and MAE of stochastic adders for typical
stochastic sequence lengths N. Sobol sequences are used.

i) ii)

Random Number
Generator R Xp
1 n
clk R<B s 1 1
k X n Z, n
B

Binary Number |r

\J

X3 \ Zy
R <B 71; YZ Dc "
k

Binary Number B

Modulus-1
1-bit Counter

En.

Random Number
Generator
A

I
clk

Figure 5.5: Stochastic Computing subtracters. From top left to bottom right: i) Absolute correlated input
subtracter in [4], ii) Scaling/Non-scaling subtracter in [18] and iii) Subtracter in [54].

two NOT gates have minimal impact.

A) Subtracter in [4]: To realize the operation of subtraction hardware-efficiently, the method in [4]

correlates two input sequences, using the same LFSR for two different comparators in the SNG stage,

104 Chapter 5 - Comparison with the Stochastic Computing Literature

Table 5.1: Hardware Resources Comparison between the Proposed Non-Scaling Adder and Subtracter
and the State-of-the-Art in Area (um?), Critical Path (ns), Power Consumption (mW) and Energy (p.J)
per operation

Stochastic Adders
Register (bit) | Area (um?) | Power (mW) | Critical path (ns) | Energy (pJ)
m =2 59.60 0.053 0.074
Proposed™ m=3 83.49 0.077 L4 0.108
Adder/Subtracter m=4 98.30 0.084 ' 0.117
m=2>5 112.61 0.098 0.137
[41] 2241 0.021 0.8 0.016
[84] 54.39 0.040 1.2 0.048
[72] 92.49 0.071 1.2 0.057
k=4 74.34 0.079 0.063
k= 97.62 0.094 0.075
MUX* k=6 122.09 0.122 0.097
Adder/Subtracter k=17 133.71 0.140 0.8 0.112
LFSR size k k=8 168.21 0.160 0.128
k=29 177.40 0.171 0.136
k=10 192.20 0.193 0.154
k=4 83.49 0.106 0.084
k=5 105.69 0.124 0.099
[1871* k=6 126.24 0.159 0.127
Adder/Subtracter k= 144.54 0.176 0.8 0.140
LFSR size k k=8 168.65 0.192 0.153
k=29 178.64 0.212 0.169
k=10 194.75 0.229 0.183
Stochastic Subtracters
[54] 41.76 0.063 0.8 0.050
k=4 105.12 0.14 0.112
k=5 130.75 0.176 0.140
. k=6 166.13 0.229 0.183
LFS[f{]size E k=17 188.65 0.264 0.8 0.211
k=38 207.01 0.299 0.239
k=9 229.95 0.331 0.264
k=10 264.54 0.350 0.280

* In these cases the subtracter is obtained with negligible additional hardware requirements (2 NOT gates for the proposed adder and 1 for the rest) and its impact is insignificant in the area,
power and energy consumption
** Includes sequence correlation

and an XOR gate to provide the output sequence. This architecture has an important key point; consider
the following two cases: 1) If the first SC operation is the subtraction, one can shape the architecture to
effectively generate two signals from SNGs with one LFSR [4, 39]. 1I) If, on the other hand, subtraction
is an intermediate SC operation, to effectively use the XOR gate, the subtracter’s input sequences must
be re-generated in order to have high cross-correlation. Fig. 5.6 suggests that[4] achieves lower accuracy
compared to the proposed stochastic subtracter, while it has the advantage of very low power and energy
consumption when operating in case (I) above. When the subtraction is an intermediate operation, case
(II), the proposed subtracter achieves better overall performance as shown in Fig. 5.7 and Table 5.1.

B) Subtracter in [54]: The subtracter in [54] uses an XNOR gate with inputs the two stochastic se-
quences, one of them inverted, to generate a rough estimate of the subtraction result, and cascaded logic

stages to improve its accuracy. The number of additional logic stages considered here is 3, but can be fur-

Comparison of Stochastic MAX and MIN 105

0.12 T
— % —Proposed
&\\ —e -MUX
0.1r \‘O [18] b
N ~o-[4
= \ 7*7[54]
5 0.08 N 7
€a) \\
et & Q
= N N
2 0.06 ~]
2 % %
g \\\ E\\
® Y —
S 0.04 - - S 7
; = ‘?‘\:—_ﬁ_____g___*____*
G‘\\\ Tel
0.02 g 6\\\6 ~%]
“‘~‘‘\ ERON
0 1 1 1 T“*——-ﬁk—___‘.

16 32 64 128 256 512 1024
Stochastic Sequence Length N

Figure 5.6: Comparison of accuracy in MAE of stochastic subtracters for typical stochastic sequence
lengths NV

ther expanded at the cost of additional hardware resources and delay. The proposed stochastic subtracter
achieves better accuracy than the one in [54] as shown in Fig. 5.6, but, the latter one has lower power

and energy consumption according to Table 5.1.

5.3 Comparison of Stochastic MAX and MIN

The SC MAX/MIN architectures existing within the literature are shown in Fig. 5.9, where it is
assumed that { X, } and {Y, } are the input sequences while {Z,,} (and { K, } if the MIN is also produced)
is the output sequence.

The computational accuracy of the proposed MAX and MIN architectures is shown in Fig. 5.10, the
power x delay? and energy consumption metrics are shown in Fig. 5.11, while the detailed hardware
resources are cited in Table 5.3. We note that the MAX architectures in [39, 43, 58, 89] including the
proposed one are able to output the MIN as well without affecting the total hardware resources, i.e.
introducing additional logic units or registers. Therefore, the presented accuracy and hardware resource
metrics for the MAX architectures apply to the MIN architectures as well. Moreover, in Table 5.2 the
register sizes resulting in highest computational accuracy with respect to the sequence lengths N are
cited.

A) MAX/MIN in [39]: The core of the architecture is a 3-state FSM that forces the overlap of logic
ones between its two input i.i.d. sequences {X,} and {Y},}, to produce two correlated outputs. These
are used as inputs to an OR gate to produce the final output. If the OR gate is replaced by an AND in the
architecture, then the MIN can be realized. According to Fig. 5.10 the proposed architecture has better
accuracy regardless of the sequence length NV used and this is intensified especially for smaller values
of N. Hardware-wise, the proposed architecture occupies less area as well as consumes less power and

energy for register sizes m = 1,2, similar for m = 3, while for m = 4,5 Lee et. al’s method [39] is

106 Chapter 5 - Comparison with the Stochastic Computing Literature

— % —Proposed — & -MUX 18] — & —[4] —* - [54]‘
3
10
z
X //’Q
20
~ cSACH *
ey //// // //
3 =25 =
o) RIS x
SRL T A 3
X 7z - -7
5 a2
B PY e SEAPr 38
P 7
= 0L &/1//’?'//]
10 g T ‘ ‘ ‘ ‘ ‘
16 32 64 128 256 512 1024
Stochastic Sequence Length N
10°
_R
<102k /9'/44@ A
~ 10 e =
S P ////@’/ K
> // Q‘// -
&8 R =T
-~ E s -
= 10" £ //O///E DY 1
= 2T T
ISR SR
///ﬁ///*
¥~
100 £ - ‘ ‘ ‘ ‘ :

16 32 64 128 256 512 1024
Stochastic Sequence Length N

Figure 5.7: Comparison of Power x Delay? (p.J x ns) (top) and Energy (p.J) (bottom) consumption of
stochastic subtracters for typical stochastic sequence lengths N

slightly better. However, the fact that Lee et. al’s approach in [39] requires more clock cycles to achieve
the same accuracy as the proposed architecture should not be neglected; the increased latency implies a

further increase in dissipated energy, exceeding the proposed one’s.

B) MAX/MIN in [43]: The inputs of this architecture, are fed to a MUX that uses a SNG as its select
signal. The MUX’s stochastic output is the input of the stochastic tanh function [15], implemented as
a FSM of 2™ states (m-bits), while the FSM’s output is determined by the current state; starting from
the zero state, the first 27 /2 — 1 output 0, while the rest output 1. The FSM’s output is also used as a
select signal in a MUX that determines whether X, or Y}, to be the architecture’s current output. From
Fig. 5.10, the proposed architecture results in better computational performance in terms of accuracy.
The increased performance of the proposed architecture also applies to the hardware utilization as shown
in Table 5.3, which is due to the additional SNG used, contributing negatively in the total area, power

and energy consumption. Moreover, an important design aspect is the register’s size. As stated in Li et

Comparison of Stochastic MAX and MIN 107

‘— # —Proposed — & - MUX [18] — & —[4] — % —[54] ‘
10% ¢
Joz
\
, 1024
o \}\512 @10\24
E 2 1\ > i
S 10 \ 512~
\ \ < 512
g P12 256
= \ \ \
5 N N 024 W6\ g
g, pved \ 128 l 8
- N N %’12 28
& *128 N V128
210 N 4@56 \ i
= 10 F \ \ 64]
g i RN \ 64 1
= \\ \\0312 ’*,‘128 %{
\ \ \
N 32 \"{14 2 \a
*\ \ 16 }{
AN R Ay
NET 2 16
ol \ A6
0 ‘ 5 ‘ P
102 107!
MAE

Figure 5.8: Comparison of Energy per operation (p.J x ns) and MAE of stochastic subtracters for typical
stochastic sequence lengths N. Sobol sequences are used.

al. in[43], increasing its size and hence the number of its states, the computational accuracy increases as
well. Yet the selection of its size that yields the highest accuracy is estimated with numerical simulations.
On the other hand, the guidelines to select the register’s size in the proposed architecture eliminates the
parametric simulation time completely.

C) MAX/MIN in [89]: To avoid the power and area hungry SNG from Li et al.’s method in [43],
the architecture by Yu et al.[89] uses an XOR between the two inputs instead, that acts as an enable
signal to up-count logic 1s coming from its input X,,. The counting is based on the stochastic tanh
FSM, implemented in the same way shown by Li et al. in[43]. Consequently, the tanh’s output is used
as a select signal in a MUX that determines if X,, or Y, is the output. Accuracy-wise, the proposed
architecture results in better computational results as shown in Fig. 5.10. In terms of hardware resources,
the proposed architecture occupies larger area, but, has reduced power and energy consumption when
the same register size is used according to Table 5.3. From a designer’s perspective, the register size
that maximizes the accuracy of the Yu et al.’s architecture in [89] is derived with simulations. If not
chosen carefully based on the sequence length N, it directly affects the output’s accuracy; by reducing
the number of its states it will increase the output’s error. On the contrary, the analytic derivation of the
proposed max’s register size, provides insight on its design.

D) MAX/MIN in [58]: In this architecture, motivated by Yu et al.’s method in [89], an XOR between
the inputs is used as an enable signal in a linear FSM, implemented as a shift register of m-bits (can also
be implemented as a binary counter). The FSM performs a right shift of the most significant bit (MSB) if
X, = 1 whereas a left shift if X,, = 0. The FSM’s output is determined by the least significant bit (LSB)

108 Chapter 5 - Comparison with the Stochastic Computing Literature

i)

X, max
3-state Zn
FSM
Y, —
K,
1
1
1 -
v min
In: X, ==Y, In: X, ==Y, In: X, ==Y,
Out: Xyp1 =Xy, Yosr =V Out: X,i41 = Xy, Yo =Y, Out: Xpy1 = Xp, Yo =Y,
m In: X, =0Y, =1 In: X, =1,Y, =0 m
Ot Xy = 1Yo1 = 1 Outs X = 1Yo ~ 1 @
> >
> >
< <
< <
I X, = 1Y, =0 I X, = 0¥, = 1
U Out: Xpi1 = 0,Yp0 =0 Out: Xpip =0,V =0 U
e Xy 1Y =0 In: X, =0.Y, =1
Out: X1 = LY, =0 Outi: X1 =0,Yn1 =1
iii) iv)
Xn Enable 0 1
v) tanh
n
Z,
Input -
max X
n J Enable
Y, Shift Reg. &

LSB selection

Input

Figure 5.9: Stochastic computing max and min architectures. From top left to bottom right: 1) Correlated
MAX/MIN in [39], ii)) Tanh MAX/MIN in [43], iii) Tanh MAX/MIN w/o RNG [89] and iv) Shift Register
MAX/MIN in [58].

of the register and produces 1 if it has saturated up to the LSB. Finally, a MUX selects either the FSM’s
output or Y;, along with additional logic gates. From the comparison with the proposed architecture shown
in Fig. 5.10, the approach by Lunglmayr et al. in [58] results in lower computational accuracy. However,
the power and energy consumption per clock cycle is its strong point which is due to the advantage of the
shift register over the binary one as shown in Table 5.3. Yet, the architecture’s output accuracy depends
on the saturation of the shift register up to its LSB. If its size is not chosen accurately, for instance if it is
less or more than a specific value, the output’s accuracy can be greatly reduced and this is also shown in
Lunglmayr et al. [58]. We note that the register size that results in highest accuracy possible is used in
the simulations and is also cited in Table 5.2 , taken from [58].

5.4 Comparison of Stochastic Compact MAX and MIN

The computational accuracy and the energy consumption of the MAX and MIN are presented in Figs.
5.13 and 5.14. Furthermore, the hardware resources are cited in Table 5.5. We note the following: 1)
for all architectures we selected for each N the register size m that results in the highest computational

accuracy possible and we provide it in Table 5.4; 2) we assumed that the up & down counting in all

Comparison of Stochastic Compact MAX and MIN 109

0.05] T
\ — # —Proposed
\ —e -[39]
' [43]
L \ 4
0.04 8 — & —[89]
5 N — * —[58]
A & N
o 0.03 1 NN 1
= N \
= RN
ks RSN
R A N
Q N \\\
< 002f RN 1
z N
3 . NN
= ~z S
i T RO S |
0.01 ~ \\\\g O——_ 5
*~ - \\\\\2\
“~—:::§
0 Il L Il Il Il

16 32 64 128 256 512 1024
Stochastic Sequence Length N

Figure 5.10: Accuracy comparison in MAE of stochastic MAX/MIN architectures for typical sequence
lengths N. For each IV, the architectures’ number of states is selected to result in the highest computa-
tional accuracy. Corresponding register sizes are cited in 5.2.

MAX/MIN architectures is done using binary (ripple) counters able to count up to M = 2" states, where
m is the register’s size; and 3) the MAX architectures [39, 43, 58, 89] including the proposed one can
output the MIN without additional hardware resources (only with modification). As such, the presented
accuracy results in Fig. 5.13 and the hardware resources in Table 5.5 for the MAX architectures apply to
the MIN ones as well.

A) MAX/MIN in [43]: in According to Fig. 5.13, the proposed MAX results in better computational
accuracy and also occupies less resources according to Table 5.5, which is due to the SNG used in [43].
Considering the register’s size, in the proposed MAX architecture it is derived according to the analysis
shown in Section 4, whereas in the architecture in [43] numerical simulations are required.

B) MAX/MIN in [89]: Compared to [89], the proposed MAX results in better computational per-
formance according to Fig. 5.13. In terms of hardware resources, the proposed MAX occupies slightly
more area when the same register size is used, but, has less energy and power consumption; although it
is expected that higher area will result in higher power and energy consumption, in fact, the synthesis
tool optimizes further the design’s mapping using high area, power and mapping effort. Therefore, even
if one counts the gates used between the two architectures, the theoretical result will not reflect the one
obtained from the synthesis tool. Moreover, the advantage of the proposed MAX architecture over the
one in [89], is the design guidelines for the register’s size selection according to N, which eliminates the
simulation time completely.

C) MAX/MIN in [58]: From Fig. 5.13, the proposed architecture results in better accuracy, but, the
architecture in [58] is more hardware-efficient according to Table 5.5, which is due to the shift-register
used over the binary one. However, it is expected that if the shift-register’s size is not chosen carefully
based on the sequence length NV, it will directly affect the output’s accuracy; when the number of the

FSM’s states are reduced, it will result in reduced computational accuracy and this is shown in [58]. We

110 Chapter 5 - Comparison with the Stochastic Computing Literature

— % —Proposed [43] — # —[58]
— o -[39] — & -[89]

—_
o
w

102 A{; A

Power x Delay? (pJ x ns)
N
\
ATANN
3 A
N\
\

o Rt ‘
_ T
— ﬁ/ﬁ 7
8:;/ /ﬁ,/ g
1000 X ‘ ‘ : ‘ ‘ 3
16 32 64 128 256 512 1024
Stochastic Sequence Length N
103

2

-

L E
|

—
=

7
—

TXR

-
=
e

-

16 32 64 128 256 512 1024
Stochastic Sequence Length N

Figure 5.11: Comparison of Power x Delay? (p.J x ns) (top) and Energy p.J (bottom) consumption of
stochastic MAX/MIN architectures. For each IV, the architectures’ number of states is selected to result
in the highest computational accuracy. Corresponding register sizes are cited in 5.2.

note that the shift register size values shown in Table 5.4 are taken from [58].

D) MAX/MIN in [39]: From Fig. 5.13, it can be seen that the proposed MAX results in better accu-
racy, regardless of the stochastic sequence length N, when a 3-state FSM is used. To further investigate
the impact of the FSM’s number of states in accuracy, we increased their total number from 3 to 5. One
can observe that the accuracy is increased for sequences with N > 128-bit length when compared to
the 3-state FSM, but, it is lower than that of the proposed MAX architecture. In terms of hardware re-
sources, the proposed MAX achieves similar performance with register sizes m = 2, 3-bits, while for
more than 4-bits, the MAX in [39] is slightly better. However, one should not neglect the fact that to
achieve the same accuracy as the proposed one, the MAX in [39] requires more computational cycles IV,
which reflects on the total energy consumed as shown in Fig. 5.12.

E) MAX/MIN in [81]: In the architecture in [81], the procedure to store the differences between
the inputs follows that of the proposed MAX. However, in the proposed work the current value of the

register’s state is compared with M /2 instead of 0 in [81]. As such, the overflow/underflow modeling is

Comparison of Stochastic Compact MAX and MIN 111

|= % —Proposed — & - [39] [43] — ¢ —[89] — » —[58]]
10%
1024
: 512
1024
o~ a2 1024 i
10 N fi@’?‘é AN O 956
=) 21 > b ‘512
S N~ h \% <%],2 &
= SO 956 12 So. Vg 128
o N
% AN « SO %Sﬁ\ i
g Sos ag 48
(=9 1L ~ AN -
o 10 L ~ \ﬁ \\\é),\4 |
= r N
g < 64 28 32
3 x_ R T
& SL32 \%4 Ncs < 16
g * B T 1
5 N \ \\q ©
10°¢ Moy 1 E
F .]
6
107" ‘ S —
103 102 107
MAE

Figure 5.12: Comparison of Energy per operation (p.J X ns) and MAE of stochastic MAX/MIN for
typical stochastic sequence lengths V.

improved and hence the understanding of the errors due to overflows. According to Fig. 5.13 it can be
seen that the MSE has the same order of magnitude. However, with respect to the hardware resources,

the proposed MAX requires slightly less area when the same register size is used.

112 Chapter 5 - Comparison with the Stochastic Computing Literature

Table 5.2: Comparison of computational accuracy and corresponding register sizes of MAX/MIN archi-
tectures for typical sequence lengths N

Mean Absolute Error (MAE) x10~2

N =2k [2* [25 [26 [27 [28 | 29 | 210
Proposed 153 [1.08 [071 | 044 [026 | 0.15 | 008
Register m-bit 1 2 3 4 5
[39] 491 [262 | 167 [130 | 111 | 1.02 [0.95
Register m-bit 2
[43] 421 [341 [251 [169 | 127 [082 [0.54
Register m-bit 2 3 4 5
[89] 36 [239 [192 [122 | 085 [0.62 | 039
Register m-bit 2 3 4 5
[58] 291 [224 [179 [111 [076 | 046 [0.25
Shift Register m-bit 2 3 4 5 6

Table 5.3: Hardware Resources Comparison between the Proposed MAX/MIN and the State-of-the-Art
in Area (um?), Critical Path (ns), Power (mW) and Energy (pJ) Consumption per operation

Register Area Power | Critical path | Energy

m-~(bit) (pm?) | (mW) (ns) 2

m=1 37.54 0.032 0.048

m =2 60.86 0.049 0.074

Proposed m=3 88.69 0.063 1.5 0.095
m=4 106.24 0.077 0.116

m=5 119.21 0.086 0.130

[39] m=2 91.49 0.062 1.5 0.094
m=2k=4 109.81 0.083 0.133

m=2k=5 131.87 0.092 0.147

m=3k=6 176.92 0.133 0.213

MUX L[gg%{ size k m=3k=7 199.45 0.142 1.6 0.227
m=3k=28 236.32 0.161 0.257

m=4,k=9 291.90 0.184 0.295

m=>5,k=10 | 311.61 0.193 0.309

m=2 48.01 0.052 0.078

[89] m=3 61.47 0.076 1.5 0.114
m=4 104.97 0.101 0.151

m =2 46.46 0.021 0.031

m=3 57.25 0.034 0.052

Shift[}s{z]gister m=4 73.21 0.046 L5 0.069
m=5 89.16 0.057 0.084

m=26 105.12 0.068 0.103

Comparison of Stochastic Compact MAX and MIN 113

T T
— % —Proposed
2E * — + —[43] |
10
AN 89
&= — % - [58]
8 o ®ro — & - [39] 3-State FSM
£ .13l NI SN R — % —[39] 5-State FSM| |
= 10 *\\\\ﬁ'\\\\\\ — — —[81]
NN
?sé \\\i— \\ $§:'Q~::*\
g REN Fs \+\\ ﬂ*
1N <7 S
00;1047 *\\ \xk*‘«—_;\ 4
= \\ +
< *
< Sl
=1 *\\
10 S i
106 ‘ ‘ ‘ ‘ ‘ ‘ ‘

16 32 64 128 256 512 1024
Stochastic Sequence Length NV

Figure 5.13: Accuracy comparison in MSE of stochastic MAX architectures for typical sequence lengths
N. For each N, their register sizes are selected to result in the highest MSE and are cited in Table 5.4.

108
A
///
_* %
2
102’ /// 7 5 1
— A X7
~ i e
S - 55
— ¥ %0
'S /// ///ﬁ//
o
E » ///
a 101 L s s il
5] Bk 7 1(/ — % —Proposed
R e —+ -3
P -
< - [89]
// Q.
y//:/‘f e — % —[58]
Z, — —
&>z s 4 [39]
0 w V2
10° PEEPL - ——[81] E
-
-A// L L L L L L

16 32 64 128 256 512 1024
Stochastic Sequence Length N

Figure 5.14: Energy comparison in p.J of stochastic MAX architectures for typical sequence lengths V.
For each IV, their register sizes are selected to result in the highest MSE and are cited in Table 5.4.

Table 5.4: Register sizes resulting in the highest MSE based on NV

N:2k||24|25|26|27|28|29|210

Proposed 2 | 3 | 4 | 5 6
[43] 2 | 3 5
[89] 2 3 5
[58] 2 3| 4 6
[39] 2 3
[81] 1 2 3 | 4 | 5

114 Chapter 5 - Comparison with the Stochastic Computing Literature

Table 5.5: Hardware Resources Comparison between the Proposed Compact MAX/MIN and the State-
of-the-Art in Area (um?), Critical Path (ns), Power (mW) and Energy (p.J) Consumption

Register Area Power | Critical path | Energy

m~(bit) (pm?) | (mW) (ns) (pJ)

m=2 48.33 0.044 0.066

m = 73.69 0.063 0.094

Proposed m= 92.31 0.074 1.5 0.111
m=>5 106.55 0.081 0.121

m =6 117.44 0.093 0.139

m=2k=4 109.81 0.083 0.133

m=2k=5 131.87 0.092 0.147

m=3,k=6 176.92 0.133 0.213

MUX L[li‘g%{ size k m=3,k=7 199.45 0.142 1.6 0.227
m=3,k=28 236.32 0.161 0.257

m=4,k=9 291.90 0.184 0.295

m=>5,k=10 | 311.61 0.193 0.309

m =2 48.01 0.052 0.078

[89] m=3 61.47 | 0.076 L5 0.114
m=4 104.97 0.101 0.151

m=2 46.46 0.021 0.031

m=3 57.25 0.034 0.052

Shift[lsiz]gister m =4 73.21 0.046 1.5 0.069
m=>5 89.16 0.057 0.084

=6 105.12 0.068 0.103

[39]

3-State FSM m=2 91.49 0.062 1.5 0.094
m=1 37.54 0.032 0.048

m=2 60.86 0.049 0.074

[81] m=3 88.69 | 0.063 L5 0.095
m=4 106.24 0.077 0.116

m=5 119.21 0.088 0.130

Applications

In this chapter! we use the proposed architectures to implement several digital signal processing
tasks [79, 80, 81]. We evaluate their performance with comparisons with the standard binary computing

methods as well as with the SC literature in computational accuracy and hardware resources.

6.1 Image Blurring

To demonstrate the proposed adder’s effectiveness in cascaded computations we use it as a building
block, along with AND gates for multiplication, to realize a convolution kernel, as shown in Fig. 6.1.
Specifically, the convolution is used in a Digital Image Processing task, which is the filtering of an entire
image using a 3 x 3 Box blur kernel. By adjusting appropriately kernel’s weight values and by including
non-linear functions, this kernel can be used in Neural Networks.

For the application, we select a gray-scale image and represent each pixel with an 8-bit number as
it is typically required in image processing. The pixels’ and the kernel’s values are normalized to range
[0, 1] in order to be processed in the SC domain. For the stochastic number representation, we consider
typical stochastic sequence lengths, namely N = 2%, with k = 4,..., 10 and investigate their effect in
the accuracy of the computations. Then, the proposed, as well as selected adders, are used to realize the
convolution operation and their performance is reported.

Among the selected adders, we excluded the standard MUX from comparisons as it requires large
N lengths to achieve acceptable accuracy as shown in Fig. 5.2 implying also an increased hardware
overhead. The same applies to the adder in [18] due to the fact that 1) the two-sequence encoding of

a stochastic number increases the design complexity in cascaded computations and 2) each non-scaling

'Copyright © IEEE. Chapter 6 is reprinted, with permission, from: 1) N. Temenos, P.P. Sotiriadis, “Non-Scaling Adders
and Subtracters for Stochastic Computing using Markov Chains”, IEEE Trans. on Very Large Scale Integration Systems, vol
29,no. 9, pp. 1612-1623, Sept. 2021, 2) N. Temenos and P. P. Sotiriadis, “Stochastic Computing MAX and MIN Architectures
Using Markov Chains: Design, Analysis and Implementation”, IEEE Trans. on Very Large Scale Integration Systems, vol 29,
no. 11, pp. 1813 - 1823, Nov. 2021 3) N. Temenos and P. P. Sotiriadis, “Modeling a Stochastic Computing Non-Scaling Adder
and its Application in Image Sharpening”, IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 69, no. 5, pp. 2543 -
2547, May 2022 Personal use of this material is permitted, but republication/redistribution requires IEEE permission.

Copyright © Elsevier. Chapter 6 is reprinted, with permission, from P. P. Sotiriadis and N. Temenos, “Compact MAX and
MIN Stochastic Computing Architectures”, Integration, vol. 87, pp. 194-204, November 2022. Personal use of this material is
permitted, but republication/redistribution requires Elsevier permission.

116 Chapter 6 - Applications

WitLit A
Fr+LI+1 Fki
L ' n
Withit? A
FRHLI+2
n

i+2,
W4

k42,0
B

+2,j+1
Wi+

k42,141
Fy

Wit2it2

Flt2ie2

H*#

Figure 6.1: A 3 3 stochastic computing convolution kernel realized using 9 AND gates for multiplication
and 8 proposed non-scaling stochastic adders. W, and F}, denote the generated sequences of weights and
the input image pixel values respectively.

adder is hardware demanding for moderate NV lengths according to Table 5.1.

The accuracy comparison of the convolutions based on the selected adders is shown in Table 6.1
evaluated with two metrics: 1) the Peak Signal-to-Noise Ratio (PSNR) and 2) the Structural Similarity
Index Measure (SSIM). The first measures the absolute accuracy of computation and is one of the standard
metrics used for images, while the second one measures the perceived quality of an image with values
in [0, 1] (higher means better quality) [87]. In addition, a graphical representation of the computations
using the proposed adder is shown in Fig. 6.2. Moreover, Table 6.2 presents the corresponding hardware

resources to realize the convolution kernel.

Figure 6.2: Image filtering using a 3 x 3 convolution kernel for various sequence lengths N. From left
to right cases: a) Original image b) MATLAB’s blur calculationc) N = 16 d) N = 32¢) N = 64 1)
N =128g) N =256 h) N =5121) N = 1024

We note first that the register size used for the proposed adder is m = 2, as it does not degrade the

Image Blurring 117

Table 6.1: Accuracy and Image Quality Comparison in the Filtering with a 3 x 3 Convolution Kernel
using the Proposed and State-of-the-Art Stochastic Adders

‘ ‘ Peak-Signal-to-Noise Ratio (PSNR)
N=ok [[220 | 280 [26 | o7 [28 [20 [210

Proposed 16.61 19.25 | 22.06 | 25.08 | 28.01 | 30.90 | 33.94

[84] <10 13.56 | 17.91 | 21.95 | 25.68 | 28.67 | 31.92
[41] <10 13.01 | 17.58 | 21.52 | 25.71 | 28.57 | 31.84
[72] 16.45 | 19.04 | 22.08 | 25.15 | 28.01 | 30.96 | 33.63
[68] 1575 | 18.76 | 21.57 | 24.80 | 27.83 | 30.81 | 33.84

‘ ‘ Structural Similarity Index Measure (SSIM)

Proposed || 0.210 | 0.292 | 0.391 | 0.512 | 0.628 | 0.734 | 0.831

[84] <0.2 <0.2 | 0.231 | 0.346 | 0.490 | 0.620 | 0.748
[41] <0.2 <0.2 | 0.250 | 0.367 | 0.504 | 0.628 | 0.747
[72] 0.218 | 0.297 | 0.391 | 0.498 | 0.612 | 0.725 | 0.828
[68] 0.209 | 0.289 | 0.381 | 0.487 | 0.598 | 0.713 | 0.811

Table 6.2: Comparison of Hardware Resources for Implementing the 3 x 3 Convolution Kernel using the
Proposed and State-of-the-Art Stochastic Adders in Area (um?), Critical Path (ns), Power (mW) and
Energy (p.J) per operation

H Area (um?) ‘ Power (mW) ‘ Critical Path (ns) ‘ Energy (pJ)

Proposed 554.63 0.390 1.6 0.624
[68]

Binary Output 443.95 0.157 1.9 0.298

168] 661.71 0.254 2 0.509

Stochastic Output : ’ ’

[41] 207.57 0.104 1.5 0.156

[84] 456.62 0322 1.6 0515

[72] 952.20 0.492 1.5 0.738

Conventional 9,017.13 2.440 75 18.30

Binary

result of calculations in this specific application. Moreover, the kernel by itself, requires 9 multipliers

(AND gates) and 8 stochastic adders, while its structure is adder tree based.

A) Convolution using adders [41] and [84]: According to Table 6.1, the two scaling adders [41] and
[84] provide acceptable accuracy and SSIM results when using more than N = 256-bit sequence lengths,
which is due to sequence resolution drop by 2 after each addition. On the contrary, the convolution using
the proposed stochastic adder achieves the same accuracy using only half sequence length, e.g. IV = 128.
This leads to less energy per convolution for the proposed compared to the convolution using [84] due
to different lengths required. The convolution using [41] however, despite the large IV value, e.g. 256,
it also achieves good power and energy efficiency. A further advantage of the proposed adder is that it
benefits operations that require non-scaled computations after the convolution stage, whereas adders [41]
and [84] face up-scaling followed by sequence regeneration design challenges.

B) Convolution using adder [72]: Due to its non-scaling nature, the convolution kernel using the

adder in [72] achieves the same accuracy as the proposed approach according to Table 6.1. However,

118 Chapter 6 - Applications

it also has slightly increased energy consumption, making the proposed one more efficient for multiple
non-scaling additions.

C) Convolution using adder [68]: The accumulative parallel counter (APC) is a popular adder capable
of adding single-bit sequences in parallel producing binary output and it is used in the SC literature [50,
83] as it benefits multiply-and-accumulate stages. Compared to the proposed approach, it achieves almost
the same performance in terms of accuracy. Note however that if the convolution is the final operation,
i.e. no further operations are required, APC is effective terms of hardware. Otherwise it requires more
area than the proposed approach due to the required binary-to-stochastic converter to re-randomize the
output for further computations, e.g. non-linear functions.

D) Convolution with conventional binary: Compared to the conventional arithmetic architectures,
the proposed approach requires negligible area, which is its strong point and is approximately x 16 less
according to Table 6.2. On the other hand, given the moderate number clock cycles to achieve acceptable

results, for instance N = 64, its energy consumption is higher, namely 21p.J.

6.2 Image Sharpening Filter

We demonstrate the efficiency of the proposed non-scaling adder and subtracter in cascaded compu-

tations with the realization of an image sharpening filter [24]. Its operation, is described as

g(k, 1) = f(k, 1)+ c(f(k, 1) —w= f(k,1)), 6.1)

where f(k,1) and g(k,) are the input and output images of size k& x [respectively, w is a weight mask
and c is a constant.

To further explain the image enhancement properties of each operation in (6.1), we start first with its
second term. Convolving the input image f(k,[) with a weight kernel w, outputs a filtered version of
f(k,1), determined by the kernel’s weight values. Then, subtracting w f(k,1) from f(k,1) allows to
extract the “details” of an image. The multiplication with the constant value ¢, results in image sharpening
for ¢ = 1 and high-boost filtering for values ¢ > 1. Here, we consider ¢ = 1. Finally, the sharpened
image g(k, 1) is obtained by adding the extracted details to the input image. Note that in the convolution
process, AND gates are used for multiplication. The architecture realizing the image sharpening filter is

shown in Fig. 6.3, where the convolution kernel of Fig. 6.1 is used.

k,l
Gn

i —>(——>(+)—>

Figure 6.3: Image sharpening filter realized using the proposed non-scaling adder and subtracter. The
convolution kernel is realized as shown in Fig. 6.1.

Proceeding to the experimental setup, we selected a gray-scale image assuming an 8-bit number

Image Sharpening Filter 119

representation for each pixel and then we normalized their values to range [0, 1]. The normalization is
based on stochastic numbers with sequence length N = 2%, with k = 6, ..., 10. This also applies to the
weight values of the 3 x 3 mask w, which are selected here to be 0.125. Note that all computations are
conducted with simulations using MATLAB and Sobol sequences[46].

The computational accuracy of the proposed stochastic sharpening filter is evaluated with two metrics,
the PSNR in dB and the SSIM. In Table 6.3, the results for typical values of NV considered are shown, while

in Fig. 6.4 a graphical illustration of the computations using the proposed architectures with stochastic

sequence length V = 256 and a register of m = 4-bits is demonstrated.

Table 6.3: Computational Accuracy & Image Quality for the Image Sharpening Filter Realized using the
Proposed Architectures

N = 2k 26 27 28 29 210
PSNR (dB) 31.98 | 33.23 | 34.63 | 34.93 | 3498
SSIM 0.950 | 0.960 | 0.966 | 0.967 | 0.967

Figure 6.4: Image Sharpening Filter. From left to right: a) MATLAB’s Original Image, b) MATLAB’s
Image Sharpening calculation, ¢) Image Sharpening Filter realized with the proposed SC architectures.
Sequence length N = 256 and register size m = 4-bit.

From a hardware perspective, the realization of the image sharpening filter requires the following
computations: 1) a 3 x 3 convolution kernel, 2) a subtraction and 3) an addition. Among them, the con-
volution kernel is the largest computational block and its implementation using the proposed stochastic
adder requires 8 adders and 9 AND gates for multiplication. For the 9 adders in total and the subtracter,
a register size of m = 4-bits is used, as it does not degrade the accuracy of computations for stochastic

sequences with length NV up to 1024.

According to the results shown in Table 6.4, the advantage of the proposed approach is that of the area
occupation, which is approximately 11% of the standard binary one’s. On the other hand, the total energy
consumed by the proposed approach is determined by N, which is selected according to the accuracy
requirements. For instance, for N = 27 the total energy dissipated has moderate values equal to 142p.J.
Note that since N is determined by the sobol input sequence generators, they are not included in Table

6.4, but, they can be designed efficiently according to [46].

120 Chapter 6 - Applications

Table 6.4: Comparison of Hardware Resources for the Implementation of the Image Sharpening Filter

H Area (um?) ‘ Power (mW) ‘ Critical Path (ns) ‘ Energy (pJ)

Proposed 1,093 0.62 1.8 1.11
Binary 8-bit 9,284 2.8 7.6 21.28

6.3 Median Filter

In this section we demonstrate the effectiveness of the proposed MAX and MIN and the Compact
MAX and MIN architectures in a standard Digital Image Processing application. We use them as building
blocks to implement a 3 x 3 median filter, which is typically used to reduce noise from images [24]. The

kernel’s structure is based on the sorting network presented in [43], shown in Fig. 6.5.

k,l
B

A —e— min(A,B)

k141
Fn

B —e— max(A,B)

k142
Fn

k41,0

vy

k+1,14+1
Fn

k1,042
Fn

k+2,1
FTL

k2,041
FTI,

k42,142
Fn

Figure 6.5: Sorting network realizing a SC median filter. Each node is realized using the proposed MAX
and MIN architectures.

6.3.1 MAX and MIN

We first select a gray-scale image with 8-bit representation for each pixel and inject salt & pepper
noise with a noise density of 0.02. Afterwards, we normalize the pixel values to range [0, 1] so as to
be processed in the SC domain. Given the fact that the accuracy of the architecture is based on the
stochastic sequence length N = 2*, we use typical values of k = 4,5, ..., 10 and investigate their effect
in computational accuracy with simulations using Matlab.

A graphical illustration of the computations using the proposed architectures to implement the median
filter is shown in Fig. 6.6, while their respective accuracy results evaluated with the PSNR in dB are cited
in Table 6.5. From sequence lengths N = 64 and forth, the proposed approach provides with a sufficient
approximation of the median filter’s computation, supported by the PSNR of 25.55 dB as well.

To proceed with the hardware resources, we note that the selected register size for each max and min

we utilize is m = 2 as it does not degrade the computational accuracy and holds for all the lengths NV

Median Filter 121

vi) vii) viii) ix) x)

Figure 6.6: Median Filtering with a 3 x 3 kernel, realized using the proposed MAX and MIN architectures
for various sequence lengths N. From upper left to lower right: i) MATLAB’s Original Image ii) MAT-
LAB’s Noisy Image with salt & pepper noise density 0.02 iii) MATLAB’s filtered image iv) N = 16 v)
N =32vi) N = 64 vii)) N = 128 viii) N = 256 ix) N = 512 x) N = 1024. Register size used is
m = 2 corresponding to M = 4 states

Table 6.5: Accuracy in PSNR of the realized 3 x 3 Median Filter using the Proposed Max and Min
Architectures

Peak-Signal-to-Noise Ratio (PSNR) dB
N=2+]| 2t | 25 | 26 | o7 | 28 | 20 [210
Proposed || 20.64 | 23.16 [2555 | 27.75 [29.64 | 31.05 [32.11

used in this specific application. In Table 6.6 the comparison between the traditional binary method using
8-bits is shown. It is important to note that since the SNG’s LFSR size determines [V, it also affects the
overall hardware utilization. Moreover, given the fact that IV is a parameter selected according to the
accuracy requirements, the SNG’s hardware resources are therefore not included in Table 6.6. Yet, their
design can be optimized according to[88, 34].

According to the results, the proposed approach occupies almost half the binary method’s area, which
is its strong point. Depending on the required accuracy from the sequence length N, the hardware effi-
ciency follows accordingly. For instance, for NV = 64 which provides acceptable results, the total energy

consumption has moderate values compared to the binary ones corresponding to 68.35 p.J.

Table 6.6: Hardware Resources for the Implementation of a 3 x 3 Median Filter using the Proposed MAX
and MIN Architectures in Area (14m?), Critical Path (ns), Power (mW) and Energy (p.J) per operation

H Area (um?) [Power (mW) [Critical Path (ns) [Energy (pJ)

Proposed 1,139 0.534 2.0 1.068
Binary 8-bit 2,470 2.295 22 5.049

122 Chapter 6 - Applications

6.3.2 Compact MAX and MIN

We first select a gray-scale image using 8-bit representation and then inject salt & pepper noise, with
noise density of 0.05. The pixel values are afterwards normalized from range [0, 255] to range [0, 1] in
order to be processed in the SC domain. To investigate the computational accuracy we consider typical
stochastic sequence lengths N = 2%, with k = 5, ..., 10 and calculate the PSNR in dB and the SSIM.

In Table 6.7 the calculated PSNR and SSIM results for typical values of N are shown. Moreover,
in Fig. 6.7 for N = 28-bit sequences and a register size of m = 3-bits, the denoising with the 3 x 3
median filter using the proposed stochastic MAX and MIN is shown, compared to the computation using
MATLAB. As one can observe, both the PSNR and the SSIM with values 33.81 and 0.90 respectively,
demonstrate the increased computational efficiency of the proposed MAX & MIN architectures.

In Table 6.8, we present the hardware resources required to realize the 3 x 3 median filter using
the proposed MAX & MIN architectures and the standard binary method, where we cite two different
implementations. In the first one, we have not included the hardware resources for the generation of the
input sequences as we want for our implementation to be flexible based on the designer’s choice of inputs
(pseudorandom, random etc). In the second one, we have included the hardware resources of an optimized
SNG based on the sharing scheme in [34]. We note that we relaxed the register size requirements to
m = 3-bits in the proposed MAX/MIN architectures for this specific task as our experiments showed
that the accuracy of computations is not degraded.

From the results shown in Table 6.8, the advantage of the proposed method is the occupied area, which
is reduced by approximately 40% /28% with/without SNGs when compared to the binary one. Moreover,
with respect to the energy efficiency, it is expected that the stochastic sequence length IV affects it directly;
for example for N = 64-bit sequences the total energy consumed is 85.76/75.52p.J with/without SNGs
resulting in moderate values compared to the binary method.

Figure 6.7: Denoising using a 3 x 3 median filter. From left to right: I) MATLAB’s 8-bit noisy image
with salt & pepper noise density 0.05, II) MATLAB’s median filtered image, I1I) Proposed stochastic
median filter with sequence length N = 256 and register size m = 3-bits.

Table 6.7: Computational Accuracy in PSNR and SSIM of the realized 3 x 3 Median Filter using the
Proposed Max and Min Architectures

N=2 || 25 [28 | 27 [28 | 29 | 210
PSNR (dB) || 24.85 | 27.33 [29.72 | 31.87 | 33.66 | 34.91
SSIM || 059 | 0.73 | 0.83 | 090 | 0.94 | 0.96

MAX Pooling 123

Table 6.8: Hardware Resources for the Implementation of a 3 x 3 Median Filter using the Proposed
Compact MAX & MIN Architectures in Area (jum?), Critical Path (ns), Power (mW) and Energy (p.J)

H Area (um?) ‘ Power (mW) ‘ Critical Path (ns) ‘ Energy (pJ)

Proposed 1,539 0.59 2.0 1.18
Proposed w/ SNG 1,812 0.67 2.0 1.34
Binary 8-bit 2,520 2.295 2.2 5.05

6.4 MAX Pooling

The down sampling is a standard process used in NN as it reduces the dimensionality of the input
image based on a max pooling kernel, allowing for the most important features to be preserved. Here,
we consider a 2 x 2 max pooling kernel, realized using the proposed compact MAX architecture. Similar
to the denoising task, we first select a grayscale image and normalize its pixel values to range [0, 1].
Then we select stochastic sequence lengths N = 2 with k = 5, ..., 10 and investigate the the kernel’s
performance considering the PSNR and SSIM metrics.

In Tables 6.9 and 6.10 the accuracy on computations and the required hardware resources to realize
the 2 x 2 max pooling kernel are respectively cited. It is shown that using more than N = 27-bit sequence
lengths, the downsampling of an image can be achieved accurately. This is also demonstrated in Fig. 6.8
for sequence length N = 28-bits and register size of m = 4-bits, where the max pooling is compared to
the MATLAB’s calculation.

For the reported hardware resources in Table 6.10, it is shown that the realization of the 2 x 2 kernel
using the proposed stochastic MAX, occupies smaller area when compared to the binary one, approxi-
mately 40% less. This can benefit NN-based designs when 1) multiple copies of the kernel are required

and 2) they have to operate in parallel.

Figure 6.8: Down sampling using a 2x 2 max-pooling kernel. Left: MATLAB’s max pooling computation
for 8-bit pixel representation, Right: max pooling kernel realized using the proposed compact MAX with
sequence length N = 28 and register size m = 4-bits.

124 Chapter 6 - Applications

Table 6.9: Computational Accuracy in PSNR and SSIM of the realized 2 x 2 Max Pooling kernel using
the Proposed Compact MAX Architecture

N:2kH25‘26‘27‘28‘29‘210

PSNR (dB) || 20.09 | 23.14 | 26.31 | 29.58 | 32.94 | 36.52
SSIM 0.58 | 0.72 | 0.82 | 090 | 0.94 | 0.97

Table 6.10: Hardware Resources for the Implementation of a 2 x 2 Max Pooling kernel using the Proposed
Compact MAX Architecture in Area (um?), Critical Path (ns), Power (mW) and Energy (pJ)

H Area (um?) ‘ Power (mW) ‘ Critical Path (ns) ‘ Energy (pJ)

Proposed 250.61 0.084 2.0 0.17
Binary 8-bit 432.71 0.058 2.2 0.12

6.5 Neural Network Design

Here we show how the proposed SCSD adder can be used to realize a SC artificial neuron along with

the proposed MAX architecture.

6.5.1 SCSD Adder Artificial Neuron

The proposed SCSD adder’s 0, 1 output, enables further processing with the use of SC-based logic
gates and/or SFSMs. The latter ones, are known to approximate non-linear functions within the context
of SC, some of which belonging in the class of activation ones [15]. Therefore, placing a SFSM after the

proposed SCSD adder, allows for the realization of an artificial neuron, as shown in Fig. 6.9.

B n

X,
Wil j Stochastic Computing
" Activation function

2
X DQ—> Sigma-Delta
WZ:>

Xk

N

Figure 6.9: SC neuron realized using the proposed SCSD adder architecture shown in Fig. 3.14. The non-
linear activation function is realized using any single-bit input/output Stochastic Finite-State Machine.

The SCSD neuron’s current output value according to Fig. 6.9 is G,, = ¢ (Z,,), where ¢(-) represents
the activation function, while using the time-average value of Zn from (3.80), determines G N as

k
Gy =06(Zn) =0 > Wi+ By |. (6.2)
j=1

Neural Network Design 125

Note that the time-average values By, WN of sequences { B, } {Wn}fl\[:1 refer to the bias and the

n=1»

weights of the neuron respectively.

Among the widely used activation functions in SC including the hyperbolic tangent (tanh), the expo-
nential and the rectifier linear unit (ReLU) [15, 43], ReLU is the most popular one; it has the property of
obtaining sparse representations by eliminating random fluctuations when used in NNs [50]. For an input
sequence { X n}fy:l with time-average value X N, the non-linear activation function ReLU is defined as
ReLU(X y) £ max(0, Xy). However, considering that the SC’s range is constrained in [—1, 1], in fact,
a variation of the ReL U is realized in SC, namely the clipped ReLU, defined as

Clipped ReLU ()Z'N> £ min (max (0, X'N), 1). (6.3)

It is apparent that architectures realizing the max function are of high importance, with several archi-
tectures being explored in SC [39, 43, 89, 58, 81, 76]. Among them, we select the one proposed in [81],

due to its property of combining short-sequence lengths with high computational accuracy.

To showcase the effectiveness of MAX architecture of Fig. 3.5 in approximating the clipped ReLU
function of (6.3), we proceed as follows; we select 2 - 10? uniformly distributed input values X e [—1,1]
and for 102 i.i.d. runs on each input value we calculate the mean of the output’s time-average A ~. For
input sequence length N = 256-bits and a register size of m = 4-bits, the results are illustrated in Fig.
6.10. It is observed the MAX’s output yields significant approximation results, with a slight deviation
when the input value X € [—0.05,0.05].

= = =MAX output A\
~————Equation (20)

0.8 i
06 1
=)

W)
3}
~ 04r 4
b ,
2 p
o)
= 0.2r 4 .
O 7
0 -~ 4

0.2 . . .

-1 0.5 0 0.5 1

Figure 6.10: Approximating the clipped ReLU of (6.3) using the Stochastic MAX architecture of Fig.
3.5, for input values X € [—1, 1], with 10% i.i.d. runs on each input value, sequence length N = 256 and
register size m = 4-bits.

126 Chapter 6 - Applications

6.5.2 Forming a SC Multi-Layer Perceptron

The SCSD neuron in Fig. 6.9 can be used as a basic building block to form a SC-based MLP, which
will be referred to as SCSD MLP. The MLP belongs to a class of feedforward NNs, with the network’s
architecture consisting mainly of three types of layers; input, hidden and output. In each layer, every unit
is connected to every other one in the next layer, meaning that the MLP is fully connected. The layers
within the MLP’s architecture are shown in Fig. 6.12. Each layer within the MLP is explained as follows:

* Input Layer: The units of the input layer are the values of the input features, which in our case have

N

been converted into sequences { X7, 12,

j=1,2,..., kby SNGs. The same applies to the values
of the weights existing in all layers. For the sequence generation, Sobol number generators are
considered as they require shorter sequence lengths when compared to the LFSR number generators
when approximating a binary number as a stochastic one [47]. Moreover, they can be shared among
the inputs and the weights respectively, as the neurons are independent to each other. An example

of the sequence generation for a single neuron in the input layer is shown in Fig. 6.11.

* Hidden Layers: Each hidden layer is formed by stacking [;, neurons in parallel and the number
of layers can be of any depth h. As such, considering the SCSD-based neuron of Fig. 6.9 the
time-average output of each neuron in the MLP of Fig. 6.12 is described as

é’]\v"’n:gb (Zj’t,"n) = min (max (O, Z]’:;”n) , 1) , (6.4)

where ¢(-) is substituted with the clipped ReLU from (6.3), A, = 1,2,...,l,andnp =1,2,...,h

denote the current unit in each layer and the current hidden layer respectively.

* Output Layer: The MLP’s output layer, obtains the desired predictions and is of length ¢, corre-

sponding to the number of classes being learned. Assuming c classes to be learned, the time-average

value of each output unit ¢, = 1,2, ..., ¢, is described as
I
O =" Zy et (6.5)
Ap=1

The output layer is the last processing stage within the MLP, so the result of (6.5) is realized in
SC using a multiply-and-accumulate unit as shown in Fig. 6.13, with the result obtained after N
clock cycles. In addition, the following should be noted: 1) the bit-width b’ of the multiply-and-
accumulate unit is determined by the number of the inputs to each unit in the output layer, /;,, and
2) the register length should be such that N = 2°, where b refers to the length of the input binary

number according to the definitions in Section 2 .

6.5.3 SCSD MLP Performance

The performance of the SCSD MLP is demonstrated with multiclass classification using the MNIST
dataset [38]. It consists of 60,000 training samples and 10, 000 testing samples of grayscale images

Neural Network Design 127

1,1
Un

—

b R<B
Xk—n

b

e

W k’1+h B

Figure 6.11: Example of sequence generation in the input layer, with X7 , ijl, j = 1,...,k corre-
sponding to the values of the inputs and the weights of a single neuron respectively. The Sobol number
generators are shared among the inputs and the weights respectively.

with pixel size 28 x 28, where each image represents handwritten digits with values ranging from 0 to
9, resulting in 10 classes in total. In the experiments, two network architectures are considered, set to
784 — 100,/200 — 10; a 784 input layer, a hidden layer of 100/200 neurons and an output layer with 10
neurons corresponding to the dataset’s classes.

With respect to the training procedure, in the hidden layers neurons employ the clipped ReLU defined
in (6.3), whereas in the output layer the softmax activation function is used for the classification. The
values of the inputs and the weights in all layers are constrained to range [—1, 1] so as to be processed in
the SC domain during the inference phase. Moreover, the use of bias in all layers is not considered as it
would further tax on the hardware resources due to sequence generation. The training procedure for the
weights’ extraction is conducted using Python and the keras library.

Once the values of the weights are extracted from the training phase, they are used in the MLP for
the inference (testing) procedure. For the evaluation of the MLP’s inference along with the SCSD-based
realization using different sequence lengths N = 512, 1024, fixed point (FxP) using 8, 16 bits and Float-
ing Point (FP) using 32 bits number representations are considered. The inference procedure of all MLPs
is done using MATLAB.

6.5.3.1 Inference Accuracy

The classification performance of the MLP is evaluated using the accuracy metric, which is the ratio of
the number of correct predictions to the total number of predictions. In the MNIST case, the total number
of predictions corresponds to the number of testing samples, equal to 10, 000. To derive the accuracy of

the SCSD MLP, the mean and standard deviation (std) of 10 independent runs over the testing samples

128 Chapter 6 - Applications

Input Layer Hidden Layers Output Layer

Figure 6.12: Multi-Layer Perceptron network architecture. Each hidden layer is realized using the pro-
posed SC neuron of Fig. 6.9 containing the proposed SCSD adder architecture of Fig. 3.14.

ZLh
n
W"Lh:)
72 D Yol pbis b, O
V[/"f.h, :> register
.

A
: N
Zlnh clk
Wit

Figure 6.13: A multiply-and-accumulate processing block realizing each unit O¢° existing in the output
layer. The result is obtained after IV clock cycles.

\J

are considered. This is due to the presence of the LFSR-based SNG existing in the MAX architecture
where the input is compared to the value 0.5 (bipolar format of the value 0) so as to realize the clipped
ReLU from (6.3). Sobol SNGs are reported to reduce the approximation accuracy of SFSMs over LFSR
SNGs and therefore the latter ones are preferred [47]. The accuracy results of the proposed SCSD MLP

accompanied by the FxP and FP realizations in percentages are cited in Table 6.11.

From the results shown in Table 6.11, it is observed that for the proposed SCSD MLP, when the
sequence length N increases from 512-bit to 1024-bit length the std decreases, which is due to the im-
provement of the sequences’ convergence in both network architectures. In addition, when the number
of hidden layers is increased from 100 to 200, the percentage accuracy is improved by 0.82 and by 1.14
for sequence lengths N = 512 and N = 1024 respectively,

Compared to the FxP 8-bit realization it can be seen that the SCSD MLP with sequence length N =
512-bit achieves similar percentage accuracy results, increased by 0.49 and 0.33 for the networks 784 —
100 — 10 and 784 — 200 — 10 respectively, when the sequence length increases to N = 1024. Compared
to the FxP 16-bit realization, the percentage accuracy of the SCSD MLP for the networks 784 — 100 — 10
and 784 — 200 — 10 is decreased by 0.26 and 0.12 using sequence length N = 512-bits respectively, but
using N = 1024-bits, it is increased by 0.28 and 0.33 respectively. On the other hand, compared to the

FP MLP realization, an expected reduction of approximately 1% in the percentage accuracy is observed

Neural Network Design 129

Table 6.11: Inference Accuracy in percentages (%) of the proposed SCSD, FxP and FP MLP realizations

MLP MLP
784-100-10 784-200-10
Proposed SCSD (mean =+ std) | (mean =+ std)

Seq. Length N = 512-bit 9541 £0.56 | 96.23 £ 0.68
Seq. Length N = 1024-bit 9594 £ 041 | 96.68 + 0.40

FxP 8-bit 95.45 96.24
FxP 16-bit 95.67 96.35
FP 32-bit 96.68 97.43

for the SCSD realizations, which is slightly higher for the FxP realizations.

Table 6.12: Hardware resources required for
the realization of a 784-input neuron

Area Power | Delay | Energy | ADP(x10%) EDP
(um?) (mW) | (ns) (pJ) | (um? xns) | (pJ x ns)
SCSD 44462.88 4.06 4 16.24 177.85 64.96
g-)l()[i)t 703907 3.89 42 16.33 2956.40 68.61
FxP
. 2368023.5 12.5 42 52.5 9945.70 220.5
16-bit

6.5.3.2 Hardware Resources

The largest computational block within the MLP is the input layer considering its 784 inputs, making
reasonable to investigate on its hardware resources. To this end, the SCSD and FxP neurons are described
first using Verilog HDL and then they are fed into the Synopsys Design Compiler so as to extract their
hardware resources using the FreePDK CMOS library at 45nm [77]. The following estimates are pro-
vided: 1) the total area in ym?, 2) the average power consumption for the maximum operating frequency
inmW, 3) the delay in ns, 4) the energy per operation in p.J, defined as the average power x delay prod-
uct, 5) the area-delay product (ADP) in um? x ns and 6) the energy-delay product (EDP) in p.J x ns.
The results for the hardware resources are cited in Table 6.12.

According to Table 6.12 it can be seen that the SCSD neuron reduces the area by 93.68% and by
98.12% of the 8-bit and 16-bit FxP ones respectively, resulting to x15.83 and x53.25 smaller area re-
spectively. The ADP results follow the same direction as the area ones given that the delay between the
SCSD and FxP neurons is similar, meaning that the SCSD neuron reduces by 93.98% and 98.21% the
ADP of the 8-bit and 16-bit FxP neurons respectively. With respect to the energy per operation, the SCSD
results in similar values compared to the 8-bit FxP, but, reduces the energy of the 16-bit FXP neuron by
69%. Similar results are also observed for the case of the EDP, where the SCSD neuron reduces the EDP
of the 16-bit FxP neuron by approximately 70%.

It should be noted that the FP number representation introduces large hardware overhead when com-
pared to the FxP number representation due to the presence of the FP multipliers [50, 49], making it less

attractive for massive multiply-and-add operations. This is also the case for the SC multipliers when

130 Chapter 6 - Applications

the SNG sharing scheme is included [49]. Therefore, despite the FP MLP’s accuracy improvement of
approximately 1%, the hardware resources required to realize a FP neuron are not considered in Table
6.12.

6.5.3.3 Related Work

Table 6.13: Performance Comparison of SC-based MLPs in inference accuracy and hardware resources
efficiency for the realization of the computational units

Relative error (€) of Hardware Efficiency
i y % of the FxP
Work Architecture Seq. Length N Accuracy on MNIST (as a % of the FxP)
Area Energy
Proposed SCSD 784-100-10 512/1024 0.0131/0.0077 6.3% /1.87% 94% / 30%
784-200-10 512/1024 0.0123/0.0077 (FxP 8/16-bit) | (FxP 8/16-bit)
" 50% 30%
[37] 784-100-200-10 1024 0.0018 (FxP 9-bit) (FxP 9-bit)
40.7% 38%
[49] 784-200-100-10 4096 0.0133 (FxP 8-bit) (FxP 8-bit)
: . 7.3% 10%
[48] 784-128-128-10 1/gradient 0.0179 (FxP 10-bit) (FxP 10-bit)

* The highest accuracy score is used to calculate the relative error, taken from [37]
** The relative error of accuracy corresponds to the training procedure

For a fair comparison with the related work in SC in terms of classification performance, it is reason-
able to consider the relative error of the inference accuracy given that the network architectures differ. It
is defined as

_ Accuracy ,p — Accuracy g ’ (6.6)
Accuracypp

where Accuracyp and Accuracyg. are the classification accuracies using FP and SC number repre-

sentations respectively. In terms of hardware efficiency, the area occupation and energy consumption in

percentages over that of the FxP arithmetic are reported. The performance results are cited in Table 6.13.

In [37], a stochastic neuron is realized using an APC, followed by a FSM operating as the non-linear
function fanh (BTanh) and implemented as binary up/down counter. The design of the BTanh is fixed, in
the sense that the FSM’s number of states affecting the tanh’s approximation are derived using numerical
experiments for specific input sequence lengths. Moreover, the input sequence’s bit-length driving the
FSM affecting the number of the FSM’s states is not considered.

According to Table 6.13, the relative accuracy error of the MLP in [37] is small, but, note that only
the best score is reported, whereas in the proposed work and the rest ones, the average accuracy over
independent runs is considered. For the hardware resources, in [37] a 200-input neuron is reported,
utilizing 50% area and 30% energy of the FxP 9-bit realization On the other hand, the proposed 784-
input neuron occupies only the 6.3%/1.86% of the 8/16-bit FxP’s area respectively, while the energy is
94%/30% of the 8/16-bit FxP respectively. Moreover, the proposed SCSD adder opens the SC design
space as it allows the use of single-bit output SFSMs, which consequently enables the realization of
multiplications using AND/XNOR gates according to the SC number format used.

In [49], stochastic neurons in the input layer are realized by adopting the extended stochastic logic

Neural Network Design 131

(ESL) [18], whereas in the rest layers they are realized using APCs. Combining two different multiply-
and-add processing methods allows the use of ESL-based backpropagation circuits, enabling online train-
ing. The ESL adder tree, however, requires a TMR binary search divider, resulting in large sequence
lengths for its computation and stabilization phases[50, 49].

From the results in Table 6.13, the relative accuracy error of the MLP in [49] using N = 4096-bit
sequence lengths is similar to that of the proposed SCSD one when N = 512-bit sequence lengths are
used, resulting in a x8 faster convergence for the proposed approach. Comparing the area efficiencies, it
can be seen that the proposed approach results in significant savings of the FxP 8 /16-bit realization, but,
energy-wise the approach in [49] is better when 8-bits FxP are considered. From a design perspective,
the proposed SCSD adder uses the standard SC encodings, whereas in [49] the use of ESL logic for the
realization of the multiply-and-add units introduces design challenges [80].

Deviating from the previous approaches targeting multiply-and-add computational units, in [48], a
signed SC gradient descent (SCGD) circuit capable of updating the value of the gradient and the weights
was used in the training process of a MLP. From the computational accuracy results in [48], this method
achieves significant training accuracy when compared to the FxP arithmetic with step size 271V Note that
in [48], only the FxP arithmetic is reported as an accuracy metric, hence for fair comparisons among the
works cited, we consider FP arithmetic using a 784 — 128 — 128 — 10 network, yielding 98.8% accuracy
after 20 training epochs. Regarding the hardware resources, the SCGD circuits result in reduced area
and energy compared to their FxP counterparts according to Table 6.13, but accuracy-wise the proposed

approach results in smaller relative error.

132 Chapter 6 - Applications

Conclusion

In the first part of the dissertation, SC architectures for information processing systems were pre-
sented. Their operation principle was analysed in detail from a bit-level perspective, setting the foun-
dations for the description of their behavior using SFSMs. To further explore their long-term stochastic
dynamics, the architectures were modeled using MCs allowing for the derivation of their first-moment
statistics, used to formally prove their proper operation at the limit. The MC modeling was extended to a
general methodology that can be applied to any SFSM described as a Moore FSM, enabling the derivation
of the second-moment statistics and the mean squared error, besides the first-moment ones. In addition,
an extended overflow/underflow MC modeling procedure was introduced that can be used to estimate
the number of states corresponding to the architectures’ internal register size. From the above, it can be
concluded that the contribution of the proposed architectures’ theoretical analysis to the SC literature is
the next step towards a better understanding of the behavior of SC elements relying on SFSMs, along
with the acceleration of their design procedure.

In the second part of the dissertation, the performance of the proposed SC architectures is evaluated
with comparisons with the existing approaches and realistic applications. With respect to the comparison
with existing approaches, it was shown that the proposed architectures combine high accuracy outputs
and small sequence lengths, which originates from the presence of the internal registers they use making
their processing deterministic. When compared to existing approaches, their internal registers used by the
proposed architectures impacts the power and energy consumption per clock cycle. Therefore, it would
be reasonable to investigate to what extend a reduction of the number of states could balance the trade-off
between the hardware resources and the high computational accuracy with small sequence lengths. Re-
garding the applications, it was shown that the proposed architectures are effective in executing several
DSP operations, justified using standard computational performance metrics. Compared to the realiza-
tions using standard binary approaches, the proposed ones result in significant area savings with moderate
total energy consumption values, due to the increased sequence lengths required for such applications.
Hence, a further relaxation of the architectures’ register size and its impact on the computational accuracy

could be explored.

134 Chapter 7 - Conclusion

List of Publications

PhD Publications
International Peer-Reviewed Journals

1. N. Temenos and P. P. Sotiriadis, ”A Stochastic Computing Sigma-Delta Adder Architecture for
Efficient Neural Network Design”, IEEE Journal on Emerging and Selected Topics in Circuits and
Systems (JETCAS), Accepted with minor revision

2. N. Temenos and P. P. Sotiriadis, ”A Markov Chain Framework for Modeling the Statistical Prop-
erties of Stochastic Computing Finite-State Machines”, IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, Early Access 2022

3. P. P. Sotiriadis and N. Temenos, “Compact MAX and MIN Stochastic Computing Architectures”,
Elsevier Integration, vol. 87, p.p. 194-204, 2022

4. N. Temenos and P. P. Sotiriadis, “Modeling a Stochastic Computing Non-Scaling Adder and its
Application in Image Sharpening”, IEEE Trans. on Circuits and Systems II: Express Briefs, Early
Access, vol. 69, no. 5, pp. 2543 - 2547, May 2022 [Invited Journal]

5. N. Temenos, A. Vlachos and P. P. Sotiriadis, “Efficient Stochastic Computing FIR Filtering using
Sigma-Delta Modulated Signals”, MDPI Technologies, 10, 1, 2022 [Invited Journal]

6. N. Temenos and P. P. Sotiriadis, “Stochastic Computing MAX and MIN Architectures Using Markov
Chains: Design, Analysis and Implementation”, IEEE Trans. on Very Large Scale Integration Sys-
tems, vol. 29, no. 11, pp. 1813 - 1823, Nov. 2021

7. N. Temenos and P. P. Sotiriadis, “Non-Scaling Adders and Subtracters for Stochastic Computing
using Markov Chains”, IEEE Trans. on Very Large Scale Integration Systems, vol. 29, no. 9, pp.
1612-1623, Sept. 2021

International Peer-Reviewed Conferences

1. A.Vlachos, N. Temenos, P. P. Sotiriadis, ”Exploring the Effectiveness of Sigma-Delta Modulators
in Stochastic Computing-Based FIR Filtering”, IEEE International Conference on Modern Circuits
and Systems Technologies (MOCAST), Thessaloniki, Greece, 2021 [Nominated for Best Paper
award]

136 Publications

2. N. Temenos and P. P. Sotiriadis, ”Deterministic Finite State Machines for Stochastic Division in
Unipolar Format”, IEEE International Symposium on Circuits and Systems (ISCAS), Virtual, 2020

3. N. Temenos and P. P. Sotiriadis, ”A New Technique for Stochastic Division in Unipolar Format”,
IEEE International Conference on Modern Circuits and Systems Technologies (MOCAST), Thes-
saloniki, Greece, 2019

Additional publications
International Peer-Reviewed Journals

1. A. Temenos, N. Temenos, A. Doulamis and N. Doulamis, ”On the Exploration of Automatic Build-
ing Extraction from RGB Satellite Images Using Deep Learning Architectures Based on U-Net”,
MDPI Technologies, 10, 1, 2022 [Invited Journal]

International Peer-Reviewed Conferences

1. A. Temenos, E. Protopapadakis, A. Doulamis and N. Temenos, "Building Extraction from RGB
Satellite Images using Deep Learning: A U-Net Approach.” In ACM The 14th PErvasive Tech-
nologies Related to Assistive Environments Conference (PETRA), June 2021.

2. C.Basetas, N. Temenos, and P. P. Sotiriadis, “Implementation of multi-step look-ahead sigma-delta
modulators using ic technology”, In IEEE International Frequency Control Symposium (IFCS),
Olympic Valley, USA, 2018 [Nominated for Best Paper award]

3. C. Basetas, N. Temenos, and P. P. Sotiriadis, “Comparison of two all-digital frequency synthesiz-
ers with a jitter removal circuit”, In IEEE International Frequency Control Symposium (IFCS),
Olympic Valley, USA, 2018

4. N. Temenos, C. Basetas, and P. P. Sotiriadis. Hardware optimization methodology of multi-step
look-ahead sigma-delta modulators. In IEEE International Conference on Modern Circuits and
Systems Technologies on Electronics and Communications (MOCAST), Thessaloniki, Greece,
2018

5. C. Basetas, N. Temenos, and P. P. Sotiriadis, “An efficient hardware architecture for the imple-
mentation of multi-step look-ahead sigma-delta modulators”, In IEEE International Symposium
on Circuits and Systems (ISCAS), Florence, Italy, 2018

6. C. Basetas, N. Temenos and P. P. Sotiriadis, “Comparison of recently developed single-bit all-
digital frequency synthesizers in terms of hardware complexity and performance”, In IEEE Inter-

national Symposium on Circuits and Systems (ISCAS), Florence, Italy, 2018.

7. N. Temenos, C. Basetas, and P. P. Sotiriadis, “Noise shaping advantages of band-pass multi-step
look-ahead sigma-delta modulators over conventional ones in signal synthesis”, In IEEE 4th Pan-

hellenic Conference on Electronics and Telecommunications (PACET), Xanthi, Greece, 2017.

137

10.

11.

. N. Temenos, C. Basetas, and P. P. Sotiriadis, “Efficient all-digital frequency synthesizer based on

multi-step look-ahead sigma-delta modulation”, In IEEE 4th Panhellenic Conference on Electron-
ics and Telecommunications (PACET), Xanthi, Greece, 2017.

C. Basetas, N. Temenos, and P. P. Sotiriadis, “Wide-band frequency synthesis using hardware-
efficient band-pass single-bit multi-step look-ahead sigma-delta modulators”, In IEEE Int. Freq.
Control Symp. & Europ. Freq. and Time Forum (IFCS-EFTF), Besancon, France, 2017.

C. Basetas, N. Temenos, and P. P. Sotiriadis, “Frequency synthesis using low-pass single-bit multi-
step look-ahead sigma-delta modulators in quadrature upconversion scheme”, In IEEE Int. Freq.
Control Symp. & Europ. Freq. and Time Forum (IFCS-EFTF), Besancon, France, 2017.

C. Basetas, P. P. Sotiriadis, and N. Temenos, “32-qam all-digital rf signal generator based on a
homodyne sigma-delta modulation scheme”, In IEEE Int. Freq. Control Symp. & Europ. Freq.
and Time Forum (IFCS- EFTF), Besancon, France, 2017.

138 Publications

(3]

[6]

(7]

(8]

(9]

References

Hamdan Abdellatef et al. “Low-area and accurate inner product and digital filters based on stochas-
tic computing”. In: Signal Processing 183 (2021), p. 108040.

Kazi J Ahmed, Bo Yuan, and Myung J Lee. “High-accuracy stochastic computing-based fir filter
design”. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE. 2018, pp. 1140-1144.

Armin Alaghi and John P Hayes. “A spectral transform approach to stochastic circuits”. In: 2012
IEEE 30th International Conference on Computer Design (ICCD). IEEE. 2012, pp. 315-321.

Armin Alaghi and John P Hayes. “Exploiting correlation in stochastic circuit design”. In: 2013
IEEE 31st International Conference on Computer Design (ICCD). IEEE. 2013, pp. 39-46.

Armin Alaghi and John P Hayes. “Fast and accurate computation using stochastic circuits”. In:
2014 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE. 2014, pp. 1—
4.

Armin Alaghi and John P Hayes. “STRAUSS: Spectral transform use in stochastic circuit synthe-
sis”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 34.11
(2015), pp. 1770-1783.

Armin Alaghi and John P Hayes. “Survey of stochastic computing”. In: ACM Transactions on
Embedded computing systems (TECS) 12.2s (2013), pp. 1-19.

Armin Alaghi, Cheng Li, and John P Hayes. “Stochastic circuits for real-time image-processing

applications”. In: Proceedings of the 50th Annual Design Automation Conference. 2013, pp. 1-6.

Armin Alaghi, Weikang Qian, and John P Hayes. “The promise and challenge of stochastic com-
puting”. In: [EEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 37.8
(2017), pp. 1515-1531.

Mohsen Riahi Alam, M Hassan Najafi, and Nima TaheriNejad. “Sorting in memristive memory”.
In: ACM Journal on Emerging Technologies in Computing Systems (JETC) (2022).

Mohammed Alawad and Mingjie Lin. “Fir filter based on stochastic computing with reconfigurable
digital fabric”. In: 2015 IEEE 23rd Annual International Symposium on Field-Programmable Cus-
tom Computing Machines. IEEE. 2015, pp. 92-95.

140

References

[12]

[16]

[17]

Arash Ardakani et al. “VLSI implementation of deep neural network using integral stochastic com-
puting”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25.10 (2017),
pp. 2688-2699.

Timothy Baker and John Hayes. “Impact of autocorrelation on stochastic circuit accuracy”. In:
2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE. 2019, pp. 271-277.

Timothy J Baker and John P Hayes. “Bayesian accuracy analysis of stochastic circuits”. In: 2020
IEEE/ACM International Conference On Computer Aided Design (ICCAD). IEEE. 2020, pp. 1-9.

Bradley D Brown and Howard C Card. “Stochastic neural computation. I. Computational ele-
ments”. In: IEEE Transactions on computers 50.9 (2001), pp. 891-905.

Bradley D Brown and Howard C Card. “Stochastic neural computation. II. Soft competitive learn-
ing”. In: IEEE Transactions on Computers 50.9 (2001), pp. 906-920.

Rahul Kumar Budhwani, Rengarajan Ragavan, and Olivier Sentieys. “Taking advantage of corre-
lation in stochastic computing”. In: 2017 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE. 2017, pp. 1-4.

Vincent Canals et al. “A new stochastic computing methodology for efficient neural network imple-
mentation”. In: IEEE transactions on neural networks and learning systems 27.3 (2015), pp. 551—
564.

Pong P Chu. FPGA Prototyping by VHDL Examples: Xilinx MicroBlaze MCS SoC. John Wiley &
Sons, 2017.

S Rasoul Faraji and Kia Bazargan. “Hybrid binary-unary hardware accelerator”. In: IEEE Trans-
actions on Computers 69.9 (2020), pp. 1308-1319.

S Rasoul Faraji et al. “Energy-efficient convolutional neural networks with deterministic bit-stream
processing”. In: 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE. 2019, pp. 1757-1762.

Christiam F Frasser et al. “Fully Parallel Stochastic Computing Hardware Implementation of Con-
volutional Neural Networks for Edge Computing Applications”. In: IEEE Transactions on Neural
Networks and Learning Systems (2022).

Brian R Gaines. “Stochastic computing systems”. In: Advances in information systems science
(1969), pp. 37-172.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins. Digital Image Processing Using Matlab. Second.
Gatesmark Publishing, 2009.

Charles Miller Grinstead and James Laurie Snell. Introduction to probability. American Mathe-
matical Soc., 1997.

Warren J Gross and Vincent C Gaudet. Stochastic Computing: Techniques and Applications. Springer,
2019.

References 141

[27]

[35]

[40]

Warren J Gross, Vincent C Gaudet, and Aaron Milner. “Stochastic implementation of LDPC de-
coders”. In: Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and
Computers, 2005. IEEE. 2005, pp. 713-717.

Saransh Gupta et al. “COSMO: Computing with Stochastic Numbers in Memory”. In: ACM Jour-
nal on Emerging Technologies in Computing Systems (JETC) 18.2 (2022), pp. 1-25.

Jie Han and Michael Orshansky. “Approximate computing: An emerging paradigm for energy-
efficient design”. In: 2013 18th IEEE European Test Symposium (ETS). IEEE. 2013, pp. 1-6.

Kaining Han et al. “A Low Complexity SVM Classifier for EEG Based Gesture Recognition using
Stochastic Computing”. In: 2020 IEEE International Symposium on Circuits and Systems (ISCAS).
IEEE. 2020, pp. 1-5.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Kaveh Hosseini and Michael Peter Kennedy. Minimizing Spurious Tones in Digital Delta-Sigma
Modulators. Springer Science & Business Media, 2011.

Hideyuki Ichihara et al. “Compact and accurate digital filters based on stochastic computing”. In:

IEEFE Transactions on Emerging Topics in Computing 7.1 (2016), pp. 31-43.

Hideyuki Ichihara et al. “Compact and accurate stochastic circuits with shared random number
sources”. In: 2014 IEEE 32nd International Conference on Computer Design (ICCD). 1EEE. 2014,
pp- 361-366.

Yuan Ji et al. “A hardware implementation of a radial basis function neural network using stochastic
logic”. In: 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE). 1IEEE.
2015, pp. 880-883.

Honglan Jiang et al. “Approximate arithmetic circuits: A survey, characterization, and recent ap-
plications”. In: Proceedings of the IEEE 108.12 (2020), pp. 2108-2135.

Kyounghoon Kim et al. “Dynamic energy-accuracy trade-off using stochastic computing in deep
neural networks”. In: Proceedings of the 53rd Annual Design Automation Conference. 2016, pp. 1—
6.

Yann LeCun et al. “Gradient-based learning applied to document recognition”. In: Proceedings of
the IEEE 86.11 (1998), pp. 2278-2324.

Vincent T Lee, Armin Alaghi, and Luis Ceze. “Correlation manipulating circuits for stochastic
computing”. In: 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE. 2018, pp. 1417-1422.

Vincent T Lee et al. “Architecture considerations for stochastic computing accelerators”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 37.11 (2018), pp. 2277—
2289.

Vincent T Lee et al. “Energy-efficient hybrid stochastic-binary neural networks for near-sensor
computing”. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.
IEEE. 2017, pp. 13-18.

142 References

[42] Peng Li and David J Lilja. “Using stochastic computing to implement digital image processing
algorithms”. In: 2011 IEEE 29th International Conference on Computer Design (ICCD). 1IEEE.
2011, pp. 154-161.

[43] Peng Li et al. “Computation on stochastic bit streams digital image processing case studies”. In:
1EEE Transactions on Very Large Scale Integration (VLSI) Systems 22.3 (2013), pp. 449-462.

[44] Siting Liu, Warren J Gross, and Jie Han. “Introduction to dynamic stochastic computing”. In: /[EEE
Circuits and Systems Magazine 20.3 (2020), pp. 19-33.

[45] Siting Liuand Jie Han. “Hardware ODE solvers using stochastic circuits”. In: 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC). IEEE. 2017, pp. 1-6.

[46] Siting Liuand Jie Han. “Toward energy-efficient stochastic circuits using parallel Sobol sequences”.
In: IEEFE Transactions on Very Large Scale Integration (VLSI) Systems 26.7 (2018), pp. 1326-1339.

[47] Siting Liuand Jie Han. “Toward energy-efficient stochastic circuits using parallel Sobol sequences”.
In: IEEFE Transactions on Very Large Scale Integration (VLSI) Systems 26.7 (2018), pp. 1326-1339.

[48] Siting Liu et al. “Gradient descent using stochastic circuits for efficient training of learning ma-
chines”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
37.11 (2018), pp. 2530-2541.

[49] Yidong Liu et al. “A stochastic computational multi-layer perceptron with backward propagation”.
In: IEEFE Transactions on Computers 67.9 (2018), pp. 1273-1286.

[50] Yidong Liu et al. “A survey of stochastic computing neural networks for machine learning appli-
cations”. In: /EEE Transactions on Neural Networks and Learning Systems 32.7 (2020), pp. 2809—
2824,

[51] Yidong Liu et al. “An energy-efficient and noise-tolerant recurrent neural network using stochastic
computing”. In: /[EEE Transactions on Very Large Scale Integration (VLSI) Systems 27.9 (2019),
pp. 2213-2221.

[52] Yidong Liu et al. “An energy-efficient online-learning stochastic computational deep belief net-
work”. In: IEEE Journal on Emerging and Selected Topics in Circuits and Systems 8.3 (2018),
pp. 454-465.

[53] Yin Liu and Keshab K Parhi. “Architectures for recursive digital filters using stochastic comput-
ing”. In: IEEE Transactions on Signal Processing 64.14 (2016), pp. 3705-3718.

[54] Yin Liu and Keshab K Parhi. “Computing polynomials using unipolar stochastic logic”. In: ACM
Journal on Emerging Technologies in Computing Systems (JETC) 13.3 (2017), pp. 1-30.

[55] Yin Liu and Keshab K Parhi. “Computing RBF kernel for SVM classification using stochastic
logic”. In: 2016 IEEE International Workshop on Signal Processing Systems (SiPS). IEEE. 2016,
pp- 327-332.

[56] Yin Liu et al. “Machine learning classifiers using stochastic logic”. In: 2016 IEEE 34th Interna-
tional Conference on Computer Design (ICCD). IEEE. 2016, pp. 408—411.

References 143

[57]

[58]

[64]

[65]

[66]

[67]

Yin Liu et al. “Synthesis of correlated bit streams for stochastic computing”. In: 2016 50th Asilomar
Conference on Signals, Systems and Computers. IEEE. 2016, pp. 167—174.

Michael Lunglmayr, Daniel Wiesinger, and Werner Haselmayr. “Design and analysis of efficient
maximum/minimum circuits for stochastic computing”. In: IEEE Transactions on Computers 69.3
(2019), pp. 402—409.

Chengguang Ma, Shunan Zhong, and Hua Dang. “Understanding variance propagation in stochas-
tic computing systems”. In: 2012 IEEE 30th International Conference on Computer Design (ICCD).
IEEE. 2012, pp. 213-218.

M Morris Manno and MD Ciletti. Digital Design Global Edition. 6th ed. 2018.
Carl D Meyer. Matrix analysis and applied linear algebra. Vol. 71. Siam, 2000.

Antoni Morro et al. “A stochastic spiking neural network for virtual screening”. In: IEEE transac-

tions on neural networks and learning systems 29.4 (2017), pp. 1371-1375.

M Hassan Najafi et al. “A reconfigurable architecture with sequential logic-based stochastic com-
puting”. In: ACM Journal on Emerging Technologies in Computing Systems (JETC) 13.4 (2017),
pp. 1-28.

M Hassan Najafi et al. “Low-cost sorting network circuits using unary processing”. In: IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 26.8 (2018), pp. 1471-1480.

M Hassan Najafi et al. “Performing stochastic computation deterministically”. In: [EEE Transac-
tions on Very Large Scale Integration (VLSI) Systems 27.12 (2019), pp. 2925-2938.

M Hassan Najafi et al. “Time-encoded values for highly efficient stochastic circuits”. In: /EEE
Transactions on Very Large Scale Integration (VLSI) Systems 25.5 (2017), pp. 1644—-1657.

Vasileios Ntinas, Georgios Ch Sirakoulis, and Antonio Rubio. “Memristor-based Probabilistic Cel-
lular Automata”. In: 2021 IEEE International Midwest Symposium on Circuits and Systems (MWS-
CAS). IEEE. 2021, pp. 792-795.

Behraoz Parhami and Chi-Hsiang Yeh. “Accumulative parallel counters”. In: Conference Record
of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers. Vol. 2. IEEE. 1995,
pp. 966-970.

Keshab K Parhi. “Analysis of stochastic logic circuits in unipolar, bipolar and hybrid formats”. In:
2017 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE. 2017, pp. 1-4.

Shanthi Pavan, Richard Schreier, and Gabor C Temes. Understanding delta-sigma data converters.
John Wiley & Sons, 2017.

Weikang Qian et al. “An architecture for fault-tolerant computation with stochastic logic”. In: [EEE
transactions on computers 60.1 (2010), pp. 93—105.

Ao Ren et al. “Sc-denn: Highly-scalable deep convolutional neural network using stochastic com-
puting”. In: ACM SIGPLAN Notices 52.4 (2017), pp. 405-418.

144

References

[73]

[74]

[81]

[82]

[83]

[84]

[86]

Naman Saraf et al. “IIR filters using stochastic arithmetic”. In: 2014 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE. 2014, pp. 1-6.

Hyeonuk Sim, Saken Kenzhegulov, and Jongeun Lee. “DPS: Dynamic precision scaling for stochas-
tic computing-based deep neural networks”. In: Proceedings of the 55th Annual Design Automation
Conference. 2018, pp. 1-6.

Yuhong Song et al. “BSC: Block-based Stochastic Computing to Enable Accurate and Efficient
TinyML”. In: 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE.
2022, pp. 314-319.

Paul P Sotiriadis and Nikos Temenos. “Compact MAX and MIN Stochastic Computing architec-
tures”. In: Integration 87 (2022), pp. 194-204.

James E Stine et al. “FreePDK: An open-source variation-aware design kit”. In: 2007 [EEE inter-
national conference on Microelectronic Systems Education (MSE’07). IEEE. 2007, pp. 173-174.

Nikos Temenos and Paul P Sotiriadis. “A Markov Chain Framework for Modeling the Statistical
Properties of Stochastic Computing Finite-State Machines”. In: /[EEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (2022).

Nikos Temenos and Paul P Sotiriadis. “Modeling a Stochastic Computing Nonscaling Adder and
its Application in Image Sharpening”. In: IEEE Transactions on Circuits and Systems II: Express
Briefs 69.5 (2022), pp. 2543-2547.

Nikos Temenos and Paul P Sotiriadis. “Nonscaling adders and subtracters for stochastic computing
using Markov chains”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 29.9
(2021), pp. 1612-1623.

Nikos Temenos and Paul P Sotiriadis. “Stochastic Computing Max & Min Architectures Using
Markov Chains: Design, Analysis, and Implementation”. In: /EEE Transactions on Very Large
Scale Integration (VLSI) Systems 29.11 (2021), pp. 1813—-1823.

Nikos Temenos, Anastasis Vlachos, and Paul P Sotiriadis. “Efficient Stochastic Computing FIR
Filtering Using Sigma-Delta Modulated Signals”. In: Technologies 10.1 (2022), p. 14.

Pai-Shun Ting and John Patrick Hayes. “Stochastic logic realization of matrix operations”. In: 2014
17th Euromicro Conference on Digital System Design. IEEE. 2014, pp. 356-364.

Paishun Ting and John P Hayes. “Eliminating a hidden error source in stochastic circuits”. In:
2017 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT). IEEE. 2017, pp. 1-6.

Anastasios Vlachos, Nikos Temenos, and Paul P Sotiriadis. “Exploring the Effectiveness of Sigma-
Delta Modulators in Stochastic Computing-Based FIR Filtering”. In: 2021 10th International Con-
ference on Modern Circuits and Systems Technologies (MOCAST). IEEE. 2021, pp. 1-4.

Shaowei Wang et al. “Weighted-Adder Based Polynomial Computation Using Correlated Unipolar
Stochastic Bitstreams”. In: [EEE Transactions on Circuits and Systems II: Express Briefs (2022).

References 145

[87]

[88]

[91]

Zhou Wang and Alan C Bovik. “Modern image quality assessment”. In: Synthesis Lectures on
Image, Video, and Multimedia Processing 2.1 (2006), pp. 1-156.

Meng Yang et al. “Towards theoretical cost limit of stochastic number generators for stochastic
computing”. In: 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE. 2018,
pp. 154-159.

Joonsang Yu et al. “Accurate and efficient stochastic computing hardware for convolutional neural
networks”. In: 2017 IEEE International Conference on Computer Design (ICCD). IEEE. 2017,
pp. 105-112.

Bo Yuan, Yanzhi Wang, and Zhongfeng Wang. “Area-efficient scaling-free DFT/FFT design using
stochastic computing”. In: IEEE Transactions on Circuits and Systems II: Express Briefs 63.12
(2016), pp. 1131-1135.

Aidyn Zhakatayev et al. “Sign-magnitude SC: Getting 10X accuracy for free in stochastic com-
puting for deep neural networks”. In: 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC). IEEE. 2018, pp. 1-6.

