
 

 

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ  

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ 

«ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» 

 
 
 
 
 
 
 
 
 
 
 
 

Μεταπτυχιακή Eργασία 
 
 
 

Electromechanical design and assembly of an automated Quality Inspection 
automated station and implementation of ΑΝΝ based defect detection 

 
Ηλεκτρομηχανολογικός σχεδιασμός και κατασκευή αυτοματοποιημένου σταθμού 
Ελέγχου Ποιότητας και εφαρμογή ελέγχου ελαττωμάτων βασισμένου σε Τεχνητά 

Νευρωνικά Δίκτυα 
 
 
 
 
 
 
 
 
 

Σπυρίδων Κανακάκης 
 
 
 
 
 
 
 
 
 
 

Eπιβλέπων Kαθηγητής: Πανώριος Μπενάρδος 

 
 
 
 
 
 
 
 

AΘHNA 2022 
 

  



 

  



 
 

 

Εθνικό Μετσόβιο Πολυτεχνείο 

Σχολή Μηχανολόγων Μηχανικών, 

Τομέας Τεχνολογίας των Κατεργασιών  

 
 

 
 

 

 

Electromechanical design and assembly of an 
automated Quality Inspection automated station and 

implementation of ΑΝΝ based defect detection 

Ηλεκτρομηχανολογικός σχεδιασμός και κατασκευή 
αυτοματοποιημένου σταθμού Ελέγχου Ποιότητας και 

εφαρμογή ελέγχου ελαττωμάτων βασισμένου σε 
Τεχνητά Νευρωνικά Δίκτυα 

 
 

 
 

Διπλωματική Εργασία 

του 
 

ΚΑΝΑΚΑΚΗ Δ. ΣΠΥΡΙΔΩΝΟΣ 

στα πλαίσια του  

Διατμηματικού Μεταπτυχιακού Προγράμματος 
Σπουδών  

«Συστήματα Αυτοματισμού» 
 
 

Επιβλέπων : ΠΑΝΩΡΙΟΣ ΜΠΕΝΑΡΔΟΣ 

  Επίκουρος Καθηγητής 
 

 
 

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την ……………………….. 
 

(Υπογραφή) (Υπογραφή) (Υπογραφή) 

 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .      

   

   

 
 

Αθήνα, Οκτώβριος 2022





 
 

Εθνικό Μετσόβιο Πολυτεχνείο 

Σχολή Μηχανολόγων Μηχανικών, 

Τομέας Τεχνολογίας των Κατεργασιών  

 
 

 
 

 
 
 

Copyright Oc – All rights reserved. Με την επιφύλαξη παντός δικαιώματος. Σπυρίδων Κανακάκης, 2022. 
 

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος 

αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διάνο- 

µή για σκοπό µη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η 

πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. 
 

Το περιεχόμενο αυτής της εργασίας δεν απηχεί απαραίτητα τις απόψεις του Τμήματος, του Επιβλέποντα, ή 

της επιτροπής που την ενέκρινε. 

 
∆ΗΛΩΣΗ ΜΗ ΛΟΓΟΚΛΟΠΗΣ ΚΑΙ ΑΝΑΛΗΨΗΣ ΠΡΟΣΩΠΙΚΗΣ ΕΥΘΥΝΗΣ 

Με πλήρη επίγνωση των συνεπειών του νόμου περί πνευματικών δικαιωμάτων, δηλώνω ενυπογράφως ότι 

είμαι αποκλειστικός συγγραφέας της παρούσας Πτυχιακής Εργασίας, για την ολοκλήρωση της οποίας κάθε 

βοήθεια είναι πλήρως αναγνωρισμένη και αναφέρεται λεπτομερώς στην εργασία αυτή. Έχω αναφέρει πλήρως 

και µε σαφείς αναφορές, όλες τις πηγές χρήσης δεδομένων, απόψεων, θέσεων και προτάσεων, ιδεών και 

λεκτικών αναφορών, είτε κατά κυριολεξία είτε βάσει επιστημονικής παράφρασης. Αναλαμβάνω την 

προσωπική και ατομική ευθύνη ότι σε περίπτωση αποτυχίας στην υλοποίηση των ανωτέρω δηλωθέντων 

στοιχείων, είμαι υπόλογος έναντι λογοκλοπής, γεγονός που σημαίνει αποτυχία στην Πτυχιακή µου Εργασία 

και κατά συνέπεια αποτυχία απόκτησης του Τίτλου Σπουδών, πέραν των λοιπών συνεπειών του νόμου περί 

πνευματικών δικαιωμάτων. ∆δηλώνω, συνεπώς, ότι αυτή η Πτυχιακή Εργασία προετοιμάστηκε και 

ολοκληρώθηκε από εμένα προσωπικά και αποκλειστικά και ότι, αναλαμβάνω πλήρως όλες τις συνέπειες του 

νόμου στην περίπτωση κατά την οποία αποδειχθεί, διαχρονικά, ότι η εργασία αυτή ή τμήμα της δεν µου ανήκει 

διότι είναι προϊόν λογοκλοπής άλλης πνευματικής ιδιοκτησίας. 

 

 

(Υπογραφή) 

 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

                   Κανακάκης Σπυρίδων 



 
  



Περίληψη 
 

 

Στόχος της παρούσας διπλωματικής εργασίας είναι ο ηλεκτρομηχανολογικός σχεδιασμός 

και η κατασκευή ενός αυτοματοποιημένου σταθμού Ελέγχου Ποιότητας και η εφαρμογή 

ελέγχου ελαττωμάτων βασισμένου σε  τεχνητά νευρωνικά δικτύα. Το πρόβλημα που 

στοχεύει να επιλύσει το προτεινόμενο σύστημα είναι η ενσωμάτωση αυτοματοποιημένου 

συστήματος ποιοτικού ελέγχου, βασισμένου σε οπτική είσοδο δεδομένων,  με μειωμένη 

πολυπλοκότητα στο σχεδιασμό και ενσωμάτωση σε μια γραμμή παραγωγής, λιγότερο 

τεχνικά απαιτητικό στην εφαρμογή του και σε κάποιο βαθμό οικονομικά προσιτό, σε 

σύγκριση με τα υπάρχοντα συστήματα που έχουν εφαρμοστεί σε γραμμές παραγωγής. 

Ως προς την διαδικασία που ακολουθήθηκε, αρχικά, ολοκληρώθηκε ο μηχανολογικός 

σχεδιασμός του συστήματος, συμπεριλαμβανομένου του δομικού πλαισίου και των 

συστημάτων μετάδοσης κίνησης και συναρμολογήθηκαν όλα τα μηχανικά μέρη. Στη 

συνέχεια ολοκληρώθηκε ο ηλεκτρολογικός σχεδιασμός του αυτοματοποιημένου σταθμού, 

συμπεριλαμβανομένης της επιλογής κινητήρων, του σχεδιασμού του ηλεκτρικού 

κυκλώματος για τον έλεγχο του σταθμού και όλων των πρόσθετων ηλεκτρικών μερών και 

καλωδίων που απαιτούνται για τη σωστή λειτουργία του σταθμού. Στη συνέχεια 

ολοκληρώθηκε η συναρμολόγηση των ηλεκτρικών μερών επί του  πλαισίου και των 

μηχανολογικών υποσυστημάτων. 

Παράλληλα, αναπτύχθηκε το λογισμικό ελέγχου του αυτοματοποιημένου σταθμού. Αυτή η 

διαδικασία περιλάμβανε την ανάπτυξη του Γραφικού Περιβάλλοντος Διεπαφής Χρήστη, 

του λογισμικού ελέγχου κίνησης του συστήματος, συμπεριλαμβανομένης της τροφοδοσίας 

εικόνας από την κάμερας, ενός γραφήματος θέσης της κάμερας και ένα παράθυρο 

καταγραφής σφαλμάτων και, τέλος, τον προγραμματισμό του μικροελεγκτή, ο οποίος 

λειτουργεί μεσολαβεί μεταξύ του λογισμικού ελέγχου κίνησης και ορισμένων 

ηλεκτρολογικών μερών. 

Αναπτύχθηκε επίσης ένα μοντέλο ελέγχου ελαττωμάτων που βασίζεται σε Τεχνητό 

Νευρωνικό Δίκτυο για την αναγνώριση ελαττωμάτων σε αντικείμενα από χυτό αλουμίνιο. 

Ο σκοπός αυτού του μοντέλου ήταν να επιβεβαιώσει τη λειτουργία του αυτοματοποιημένου 

σταθμού ως μέσο εφαρμογής ποιοτικού ελέγχου. Για την ανάπτυξή του, αρχικά επιλέχθηκε 

η αρχιτεκτονική του μοντέλου, ακολούθησε η επιλογή και η επισήμανση των εικόνων για 

ενός συνόλου εικόνων για την εκπαίδευση του μοντέλου και στη συνέχεια 

πραγματοποιήθηκε η εκπαίδευση του μοντέλου. Μετά την ολοκλήρωση της εκπαίδευσης, 

χρησιμοποιήθηκαν συγκεκριμένες μετρικές για την αξιολόγηση της απόδοσης του μοντέλου 

και παρουσιάστηκε η διαδικασία ενσωμάτωσής του στο λογισμικό ελέγχου της διάταξης. 

Τέλος, εξετάστηκε η λειτουργικότητα της ηλεκτρομηχανολογικής διάταξης και του 

λογισμικού ελέγχου, καθώς και η απόδοση του εκπαιδευμένου μοντέλου Τεχνητού 

Νευρωνικού Δικτύου και έγιναν ορισμένες προτάσεις για τη βελτίωσή τους. 

 

 

Λέξεις Κλειδιά 
 

Αυτοματοποιημένος σταθμός, Έλεγχος Ποιότητάς, Έλεγχος Σφαλμάτων, Μηχανολογικός 

σχεδιασμός, μικροελεγκτής, Arduino, GRBL, Nema 17, Γραφικό Περιβάλλον Διεπαφής 

Χρήστη, Qt5, pyQt5, OpenCV, matplotlib, Τεχνητά Νευρωνικά Δίκτυα, Deep Learning, 

SSD, TensorFlow, TensorBoard 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 



Abstract 
 

 

The goal of this thesis is the electromechanical design and assembly of an automated 

Quality Inspection station and the implementation of Artificial Neural Network based 

defect detection. The problem the proposed system aims to resolve is the integration of 

automated Quality Inspection system based on optical input with decreased complexity in 

design and integration to a production line, less technically demanding in its 

implementation and to a certain degree affordable, compared to the existing systems found 

in production lines.  

The mechanical design of the system was firstly, completed, including the structural frame 

and the motion translation systems and all mechanical parts were assembled. The 

electrical design of the automated station was then completed, including the selection of 

motors, the design of the electrical circuit for the control of the station and all additional 

electrical parts and wiring required for the proper function for the station. The assembly 

of the electrical parts to the mechanical frame and sub-assemblies was then completed.  

Concurrently, the control software of the automated station was developed. This process 

included the development of the Graphic User Interface, the motion control software for 

the control of the system, including the camera feed, a position graph of the end effector 

and an error dialog and lastly, the programming of the microcontroller, which acts as an 

intermediate between the motion control software and certain individual electrical parts.  

An Artificial Neural Network based defect detection model was also developed to 

recognize defects on aluminum cast items. The purpose of this model was to establish the 

function of the automated station as a Quality Inspection system. For its development, the 

model architecture was firstly chosen, followed by the selection and labelling of the 

images for a training dataset and then the training of the model. After the training was 

complete, certain metrics were utilized to evaluate the performance of the model and the 

process of its integration was presented.  

Lastly, the functionalities of the electromechanical assembly and the control software 

were examined, as well as the performance of the trained Artificial Neural Network 

model, and certain suggestions were made for their improvement.  

 

 
Keywords 

Automated station, Quality Inspection, Defect Detection, Mechanical Assembly, Arduino, 

GRBL, Nema 17, Graphic User Interface, Qt5, pyQt5, OpenCV, matplotlib, Artificial 

Neural Networks, Deep Learning, SSD, TensorFlow, TensorBoard 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Ευχαριστίες 
 

 
 

Η εκπόνηση και συγγραφή της παρούσας διπλωματικής εργασίας δεν θα μπορούσε να 
πραγματοποιηθεί χωρίς την αμέριστη στήριξη του επιβλέποντα Επίκουρου Καθηγητή 
κου. Πανώριου Μπενάρδου. Η καθοδήγησή του στα διαδικαστικά και επιστημονικά 
ζητήματα που πραγματεύεται η παρούσα εργασία υπήρξε πολύτιμη, όπως επίσης και η 
κατανόηση και υπομονή που επέδειξε στις δυσκολίες που προέκυψαν κατά την 
εκπόνηση της παρούσας.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
  



Table of Contents 
 

Table of Figures ..................................................................................................................... 14 

1. Introduction ....................................................................................................................... 16 

1.1 Background 16 

1.2 Problem Statement 18 

2. Mechanical design of automated station ........................................................................... 20 

2.1 Design of structural frame 20 

2.2 Design of motion translation system 24 

2.3 Assembly of mechanical parts 26 

3. Electrical design of automated station .............................................................................. 28 

3.1 Selection of electric motors 28 

3.2 Design of the electrical circuit for the control of the electric motors 32 

3.3 Additional electrical parts and wiring 35 

3.4 Assembly of the electrical circuit 37 

4. Control software for the automated station ....................................................................... 39 

4.1 Graphic User Interface 40 

4.2 Motion control of the automated station 45 

4.3 Programming the microcontroller 48 

4.4 Position graph, error dialog and camera feed 49 

5. Implementation of defect detection using Artificial Neural Networks ............................. 52 

5.1 Artificial Neural Network architecture 53 

5.2 Selection and labeling of images 57 

5.3 Training the Artificial Neural Network model 59 

5.4 Evaluation of the Artificial Neural Network model 60 

5.5 Integration of Artificial Neural Network model on a GUI 67 

6. Conclusions and suggestions for further research ............................................................. 70 

6.1 Functionality of automated station 70 

6.2 Functionality of control software 72 

6.3 Performance of defect detection 72 

References .............................................................................................................................. 75 

Annex A – CAD Designs of 3D printed parts ....................................................................... 78 

 
 

 

  



Table of Figures  
 

Figure 1: Ιimplementation of Computer Vision based Quality Inspection ............................ 17 

Figure 2: Integration of high-quality cameras for quality inspection. ................................... 17 

Figure 3: 3030 Aluminum extrusion with dimensions in mm ............................................... 20 

Figure 4: Final assembly of previous design ......................................................................... 21 

Figure 5: Design of 3D printed part for mobility ................................................................... 21 

Figure 6: Freebody diagram of z-axis sub-assembly ............................................................. 22 

Figure 7: Final 3D CAD design ............................................................................................. 24 

Figure 8: Lead screw assembly .............................................................................................. 25 

Figure 9: Motion translation system for X, Y and Z axis ...................................................... 26 

Figure 10: Final mechanical assembly ................................................................................... 27 

Figure 11: Brushed and brushless dc motor ........................................................................... 28 

Figure 12: Servo motor – Operating principal diagram ......................................................... 29 

Figure 13: Stepper motor – operating principal diagram ....................................................... 29 

Figure 14: Nema 17 stepper motor ........................................................................................ 30 

Figure 15: Nema 17 manufacturer specifications (Schneider Electronics) ........................... 32 

Figure 16: DRV8825 Motor driver breakout board ............................................................... 33 

Figure 17: Arduino Uno development board ......................................................................... 34 

Figure 18: Arduino GRBL V2 Shield attached to an Arduino Uno ...................................... 34 

Figure 19: Power supply unit 12V, 8A .................................................................................. 35 

Figure 20: Endstop switch ..................................................................................................... 36 

Figure 21: JST and GX4 connectors ...................................................................................... 37 

Figure 22: Fritzing electronics diagram ................................................................................. 38 

Figure 23: 3D printed enclosures for Arduino and PSU ........................................................ 38 

Figure 24: Final assembly of automated station - Photographs ............................................. 38 

Figure 25: Control software flowchart ................................................................................... 39 

Figure 26: Qt designer environment ...................................................................................... 41 

Figure 27: Manual Control Group ......................................................................................... 42 

Figure 28: Input Control and Main buttons ........................................................................... 42 

Figure 29: LCD displays for XYZ ......................................................................................... 43 

Figure 30: Tab widget ............................................................................................................ 43 

Figure 31: GUI as seen in Qt Designer (left) and as exported from Qt Designer (right) ...... 44 

Figure 32: Final GUI from Python script ............................................................................... 45 

Figure 33: Slot and Signal graph of Qt framework................................................................ 46 

Figure 34: Compiled microcontroller code size on the Arduino IDE .................................... 49 

Figure 35: Position graph example ........................................................................................ 49 

Figure 36: Error display during operation of the automated station ...................................... 50 

Figure 37: Transfer learning .................................................................................................. 55 

Figure 38: Benefits of transfer learning ................................................................................. 55 

Figure 39: LabelImg image labelling environment ............................................................... 59 

Figure 40: mAP calculation flowchart ................................................................................... 61 

Figure 41: Intersection over Union (IoU) .............................................................................. 62 

Figure 42: Precision and Recall in ML .................................................................................. 63 

Figure 43: Equation for the calculation of the Average Precision ......................................... 64 

Figure 44: Recall of trained ANN .......................................................................................... 64 

Figure 45: Precision of trained ANN ..................................................................................... 65 

Figure 46: Loss function values during training of ANN ...................................................... 67 

Figure 47: GUI for defect detection ....................................................................................... 69 

Figure 48: Proposed design with diagonal aluminum extrusions .......................................... 71 
 
 

 
 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 
 

1.1 Background 
 

Reliable and accurate quality control is an important element in industrial manufacturing. 

The repetitive nature of the processes involved in quality control has resulted in the field 

being one of the most automated, within the manufacturing world. However, with any 

significant increase in the complexity of the product subjected to quality control or the 

characteristics subjected to inspection, the overall processes become exponentially more 

complex for an automated system to perform.  

 

Manufacturing goods in general and more specifically metal casting, which will be examined 

within the scope of this thesis, are subjected to quality control in search of certain 

characteristic that divert from the required end product (Venkat Sai, 2017). One such 

characteristic, specifically for cast items, is dimensional accuracy and is generally the easiest 

to be automated with simple electromechanical additions within a production line. Another 

one regards to the presence of defects in the surface of a product or a part of a product, such 

as pinholes or cracks. One other kind of quality control regards the intended functionality of 

the final product and can vary immensely between different products. As mentioned, the 

detection of first kind of defect, the dimensional, has already been automated to a great 

degree as a result of the rapid progress of manufacturing lines in the past century. The 

detection for the latter two kinds has also been automated to quite an extensive degree, 

especially during the past three decades, as computing technologies have provided way to 

implement automation and cease to rely purely on the presence of human experts.  

 

In respect to the detection of defects in manufactured products, the most utilized technology 

is computer vision. There are several factors that make it an ideal technology for such 

application. The most prominent would have to be its seemingly intuitive nature. Defect 

detection at any product has been traditionally performed visually by highly competent 

individuals that were very well versed to the manufacturing processes of a product and as 

such could provide an accurate assessment on the existence of a defect and perhaps even the 

source of the defect within the manufacturing line. The cumulative knowledge of these 

individuals could not be utilized in the automation of these processes, if the transition was 

not at some degree intuitive to the individuals themselves, which at the very least means 

visual in nature. This is highlighted because there are numerous other defect detection 

methodologies not visual in nature such as laser scanning, ultrasound etc. that are not as 

intuitive as the purely visual observation.  

 

The rapid advancement of Computer Vision (CV) during the past years has allowed for the 

implementation of such control in manufacturing lines (Anand, Sheila, 2019). Even without 

any quality inspection automation included in computer vision, an expert can assess the 

quality of a product without being physically present in the production line, which at the 

very least improves the working conditions of the individual and possibly increases the speed 

of assessment.  

 

Concurrently, the progress of object detection algorithms has been tremendous the past 

twenty years (Zhong-Qiu Zhao et. al., 2019). These algorithms, which will be thoroughly 

explained in a later chapter, belong to the field of Artificial Intelligence (AI) and more 

specifically the field of Machine Learning (ML). The latter field has experienced astonishing 

progress within the last decade, both regarding its capabilities and the ease by which it can 



be implemented, despite its high complexity. It is, thus, far from novel to see quality control 

being implemented in manufacturing lines, with ML algorithms performing tasks, otherwise 

performed by human experts, utilizing CV implementations.  

 

 

 
Figure 1: Ιimplementation of Computer Vision based Quality Inspection 

 

These systems usually consist of high-quality cameras, fixed on a specific point in the 

manufacturing line, feeding images, either continuously in live feed or in still frames, to a 

computer which runs an object detection algorithm (Anand, Sheila, 2019). Upon detection 

of a defect, the item is separated from the rest of the manufactured goods, either by labelling 

or simply by being singled out from the line with some form of actuation. Such 

implementations can also occur for packing and shipping of goods as well, or even at a 

designated quality control stage during production.  

 

 
Figure 2: Integration of high-quality cameras for quality inspection. 

These ML-enabled quality control systems, due to the complexity of these productions lines 

as well as the complexity of the systems themselves, are in most cases custom built to fit a 

specific production line of a specific product. Implementation of the hardware and more so, 

the software of these systems, is a demanding task that requires significant resources in the 

form of hardware specifications, highly skilled personnel and time required for the 

development of custom object detection algorithms. As it will be thoroughly explained 

further on, slight differences on the inputs of these algorithms or insufficient resources 

available can render these algorithms insufficient in terms of speed and accuracy of 

prediction to the point where their implementation cannot be justified.  



 

Even if the resources are available and the implementation of a ML model is successful in 

the quality control of a production item, any alteration in the conditions of the prediction can 

render the model extremely insufficient. There are steps that can ensure the effectiveness of 

a model within a much greater range of conditions, but these steps require a great level of 

technical knowledge and in some cases even greater resources. It should be noted that the 

immense progress in the field of ML the past decade has led to the creation of certain 

development frameworks (Goldsborough, 2016) that make this process much less 

complicated at a development level, however, proper utilization and optimization of these 

algorithms still remains a highly technical matter.  

 

In respect to the hardware, the requirements for its specifications vary depending on the 

product and the production line. Cameras are in most cases implemented within the 

production line on or near existing machinery equipment. Video or image feed is usually 

transmitted to a nearby computing unit, which runs the ML algorithm that detect defects. 

The computer, upon detection of a defect, responds in a pre-programmed manner. The 

cameras used are usually of high quality of image and at a high enough frames-per-second 

to keep up with the speed of the production line and their positioning is relevant to the stage 

of the production line in which defect detection is implemented and is determined by each 

application.  

 

The result of this high degree of complexity, the hardware selection and specification, the 

highly technical nature of ML development, integration, optimization and generalization and 

the resulting resources required, both in time and in cost (Jianglin Huang, 2015), for the 

overall systems, have been the reason why these automated quality control systems have 

been used almost exclusively in high output production lines. For any other application, with 

a smaller output, the costs for the integration of such systems usually rarely outweigh the 

benefits, even in a long enough time frame. 

 

1.2 Problem Statement 
 

The limiting factors described in the previous chapter, impede the application of new 

developments in the field of ML in the automation of quality control for low production 

output. At this time, there are no commercial products available for integration in a 

production environment that can accomplish this task, that include both hardware and 

software.  

 

Software frameworks, tools and solutions that enable the use of computer vision and ML in 

quality control operations do exist, however these do not come in the form of a product that 

integrates all the required hardware with the software. Furthermore, the software mentioned 

either requires a certain degree of coding experience, ML knowledge and hardware 

integration skills or in most cases is costly.  

 

A demand therefore rises for the development of an integrated solution of ML integrated 

quality control for low production outputs that is of decreased complexity in its design and 

integration to a production line, less technically demanding to implement and to a certain 

degree affordable.  

 

The proposed solution, which is the subject of the current thesis, is the electromechanical 

design and assembly of an automated station that can control the movement of a high-quality 



camera within its working area, in order to capture images of products, which will then be 

subjected to defect detection.  

 

The electromechanical design of this station should be robust enough to ensure proper 

function and capability of integration to a variety of production environments, yet with 

materials, both mechanical and electrical, that allow for a simplified and cost-effective 

construction, therefore, either commercially available or easily manufactured and 

assembled.  

 

For the control of the automated station, a control software will be developed, including both 

the necessary programming for the function of the station and the graphic user interface 

(GUI) for the use of the station by a user. The steps and tools for the development of the 

control software will be presented and its design will be such that it allows the overall system 

to operate for a wide range of products and applications without any need for modification.  

  

Furthermore, within the scope of this thesis, the advancements of ML and more specifically 

Artificial Neural Networks (ANNs), will be utilized in order to create a functional defect 

detection model. The theoretical background necessary for the development and 

optimization of this model will be thoroughly explained and the steps for the creation, 

evaluation, optimization and integration of the model will be illustrated.  

 

The current thesis will conclude with an assessment of the functionality and robustness of 

the mechanical and electrical design and assembly of the automated station, the capabilities 

of the control software and the precision and speed of the defect detection model, with 

suggestions on the improvements of any possible issues that may arise for any of the above.  

 

  



2. Mechanical design of automated station 
 

The overall mechanical design of the automated station was based on the structural frame 

designed and assembled by Ms. Clara Berger, during her student internship at NTUA and as 

described in her report (Berger, 2018). The geometry of the frame has influenced the design 

process and selection of all other mechanical components. However, during the design 

process of the automated station, certain changes were deemed necessary both for structural 

reasons, as well as for the proper operation of certain subsystems and overall, the automated 

station.  

 

In this chapter, the structural frame will be introduced, as it was previously designed and 

assembled, the changes that were deemed necessary will be highlighted, the actuation for the 

3-axis camera module will be analyzed and the overall assembly of the mechanical 

components will be thoroughly described.  

 

2.1 Design of structural frame 
 

The original frame was constructed with commercially available aluminum extrusion that 

can be easily cut at desired length and assembled into lightweight, often complex 

constructions. These extrusions are usually named after the dimensions of their cross section 

in millimeters, with the extrusion used in the original frame being a 3030-aluminum 

extrusion, meaning 30mm by 30mm in width and height in its cross section.  

 

 
Figure 3: 3030 Aluminum extrusion with dimensions in mm 

 

The assembly was possible with the use of 90-degree aluminum corner brackets placed at 

the junction of two aluminum extrusions. The fastening of these brackets was possible 

without any need for drilling with the use of specially designed nuts (tee-nuts) that slide in 

the ridges of the aluminum extrusion and when tightened are lodged firmly between the folds 

of each ridge. By combining aluminum extrusions of various lengths with the 

aforementioned parts, the structural frame was assembled. The same process was 

implemented for the construction of the mobile sub-assemblies of the frame.  

 

Following the nomenclature of CNC systems (Smid, 2000) of equivalent modus operandi, 

the immobile, structural part of the frame represents the X- axis, and will henceforth be 

mentioned as such. The mobile parts of the frame, again by the same nomenclature, will be 

assigned as Y-axis for the horizontal mobile part and Z-axis for the vertical mobile part.  

 



 

 

 
Figure 4: Final assembly of previous design 

 

The mobility of the aforementioned parts was possible with 3D printed custom designed 

parts. These parts were inserted in the ridges of the aluminum extrusions, with tolerances 

that allowed the free slide of the 3D printed part along the ridge. Holes placed on the upper 

part of each 3D printed part allowed for the joining of each mobile sub-assembly, thus 

granting them freedom of movement along the length of the corresponding aluminum 

extrusion on which the 3D printed part was inserted.  

 
Figure 5: Design of 3D printed part for motion translation 

 

Without any actuation present, both mobile parts were tested manually and they performed 

their intended purpose. However, upon the assembly of additional electromechanical parts, 

a significant issue arose. The Z-axis, meaning the structural part, could easily slide along the 

Y-axis without any equipment added to it. With the addition of all necessary equipment for 

the mobility of the camera module, such as the motors, transmission, mechanical parts etc., 

there was a significant increase in the weight of the Z-axis sub-assembly. The center of mass 

of the sub-assembly being further away from the center line of the aluminum extrusion and 

by extension, the 3D printed part inserted in each central ridge that allowed for the mobility 

of the Z-axis sub-assembly, meant that an equally significant torque was placed on the 3D 

printed part, that pushed it to be in contact with the outer surface of the aluminum extrusion 

closest to the Z-axis sub-assembly and the furthest inner surface of the ridge of the aluminum 

extrusion. The free body diagram of figure 6 clearly illustrates the issue: 

 



 
 

Figure 6: Freebody diagram of z-axis sub-assembly 

 

The increased contact of the 3D printed part with the ridge, and the amount of force it placed 

on it, did not create an issue with the structural integrity of the sub-assembly or the 3D 

printed part. It did however increase the friction between the 3D printed part and the ridge, 

hence restricting the movement of the Z-axis sub-assembly. Additionally, the elasticity of 

the 3D printed part along with the loose tolerances that were chosen for the 3D printed part 

to allow for its unrestricted movement, meant that the torque introduced by the weight of the 

Z-axis sub-assembly was tilting the vertical axis of the Z-axis by a significant amount, 

causing loss of perpendicularity between the Z and Y axis of motion. 

 

As an initial step, the tilting of the Z-axis was disregarded, as certain adjustments on the 

design of the mechanical components needed for the actuation of the camera module could 

allow for the vertical movement of the camera, regardless of the relatively minor alignment 

issues of the Z-axis. Calculations were made for the effect of the normal forces of the 3D 

printed part on the surface and the ridges of the aluminum extrusion, accounting for the final 

weight of the sub-assembly as it was preliminarily designed at that point and the friction they 

produced. The effect of the normal forces was enough to certainly cause issues with the 3D 

printed part overtime and the effect of the friction was not insignificant and would certainly 

increase the load on the motors. Furthermore, the effect of the friction was unilateral along 

the horizontal axis on which the Z-axis sub-assembly moved, which introduced torque that 

caused severe deviation from the perpendicularity between the Z and Y axis movements of 



the two sub-assemblies.  

 

The motor assigned to the Y-axis motion sub-system will have to accommodate the friction 

created by the movement of the whole Z-axis sub-assembly along the Y-axis, as illustrated 

in Figure 6. Though a specific motor for Z-axis has not been chosen at this point for this 

application, an assumption of a motor size is possible, given the overall size and capabilities 

of the individual components and the overall system, which would equate to a motor of a 

weight of 250gr.   The calculation of the friction requires the normal force applied to the 

aluminum extrusion outer surface and inner ridge as a result of the torque created by the off-

center mass of the Z-axis assembly. This torque is equal to the mass of the whole Z-axis sub-

assembly multiplied by the distance of the center of gravity of the sub-assembly to the 

midline of the aluminum extrusion, which is the centerline of motion transfer of the Y axis 

motor. Both the mass and the distance from the midline can be easily calculated by the CAD 

design. The sum of the torques and the forces in considered zero, for the midline of the 

aluminum extrusion. By calculating these two normal forces with the principals laid above, 

the only data required is the coefficient of friction between a 3D printed part made from PLA 

and an aluminum extrusion.  

 

𝛵𝛭𝑧
=  𝑀𝑧 ∗ 𝑔 ∗ 𝑙𝑍𝑌 (1) 

𝛴(𝛵) = 0 → 𝛵𝛭𝑧
= 𝑁1 ∗ 0.015 + 0.015 ∗ 𝑁2 (2) 

𝛴(𝐹) = 0 → 𝑁1 = 𝑁2 (3) 

Where: 

𝑀𝑧: the mass of the whole Z-axis sub-assembly, here equal to 0.89kg 

 𝑙𝑍𝑌: the distance of the center of mass of the Z-axis sub-assembly to the midline of the 

extrusion, here equal to approx. 32mm 

 

Solving the system of the equations (1), (2), (3) in respect to 𝑇𝑀𝑍
, 𝑁1 & 𝑁2 , the resulting 

normal forces are the following: 

 𝑁1 = 𝑁2 = 9.49𝑁 

 

Explicit bibliographical data were not found for the static and dynamic friction coefficient 

between anodized aluminum and 3D printed PLA. Since the very 3D printing process of the 

PLA can alter its geometry, a testing rig would have to be created and a series of test for the 

determination of the static and dynamic friction between specific 3D printed parts and 

anodized aluminum extrusion would be required. However, the setup of such a testing rig is 

well beyond the scope of this thesis as it is quite an elaborate and time-consuming process.  

 

From existing resources, the sliding friction behavior of thermoplastics on aluminum vary 

from 0.22 to 0.45 depending on the sliding distance (Hechtel, 2021). The fact that PLA is a 

thermoplastic material (Van der Walt et. al., 2019) and anodized aluminum exhibits better 

tribological properties than untreated aluminum (Atraszkiewicz et. al., 2020), means that 

these data can be used for this application, with an added safety factor being the use of the 

upper values of the friction coefficient. So, in this regard, the coefficient factor will be chosen 

as 0.45. 

  

From the equation of friction, the overall static friction resulting from the normal forces 

𝑁1 & 𝑁2  is calculated, for a friction coefficient equal to 𝜇 = 0,45, as: 

𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = (𝑁1 + 𝑁2) ∗ 𝜇 = 8,55𝑁 (4) 

  

This force, the 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛, is the load the motor for the Y-axis will have to overcome to initiate 



the motion of the Z-axis sub-assembly along the Y-axis and it is more than significant 

enough to require a change in the mechanical design of the Y sub-assembly.  

 

A complete redesign of the way the Z-axis sub-assembly was attached to the horizontal 

aluminum extrusion of the Y-axis sub-assembly was deemed necessary. The new design 

consists of two precision shafts that guide two linear bearings, both of which attach to the Z-

axis sub-assembly, thus allowing it to move freely along the Y-axis horizontal distance. The 

precision shafts have been chosen with a diameter of 8mm, which is sufficient enough to 

withstand the eccentric load of the Z-axis sub-assembly, without introducing any visible 

deviations to the horizontal path along the Y-axis. Concurrently, the linear bearings offer 

minimal friction during the movement of the sub-assembly. This design is thoroughly 

analyzed in respect to the friction forces generated, on a latter chapter regarding the selection 

of motors. 

 

The finalized design of the structural frame of the automated station is illustrated in the CAD 

design of figure 7. 

 
Figure 7: Final 3D CAD design 

 

2.2 Design of motion translation system 
 

For systems with the main objective of allowing 3-axis mobility to a module, whether it 

being a spindle, a 3D printer head or any other tool, there are two prevalent motion 

translation methods. One is belt drive, which can be implemented in a number of different 

arrangements, most notably cartesian, coreXY and Hbot (Amridesvar et al., 2020). The other 

one is a translation screw, also known as power screw, with its most notable implementation 

being the lead screw and the ball screw. (Kaiji Sato et al., 1995) (Baluta, 2007)  

 

Both of these translation methods are commonly implemented in all sorts of different 

mechanical systems and their modus operandi is considered common knowledge among the 

mechanical engineering domain. As such, for the purposes of this thesis, only the inherent 

differences between these two systems that directly affect the main objective of the 

automated station will be presented and compared.  

 

Firstly, belt drive systems utilize a timing belt, usually teethed, that locks into toothed 

pulleys, thus transferring power usually from a motor to a moving part, via a series of 

arranged pulleys. These systems are preferred in high speed, high efficiency applications, 



where the moving parts are usually relatively lightweight and there are no great demands for 

increased positional accuracy and repeatability. The reason for this is the presence of a 

timing pulley, which is usually constructed from an elastomer with significantly greater 

elasticity than steel. This elasticity is the root cause of most of its drawbacks such as the 

lower positional accuracy and repeatability, backlash effect, rippling effect during sudden 

changes in momentum, high degree of material aging, need for frequent re-tensioning and 

slipping under high load.  

 

Translation screw systems use, as the name implies, a screw that via a nut translates 

rotational motion to linear. Depending on the nut and the geometry of the teeth on the screw 

there are various implementations. The most prevalent are the lead screw, with its variations, 

and the ball screw. The ball screw, most commonly found in high load, high precision 

applications is by far the most suitable solution for any system similar to its mechanics to 

the one studied in the present thesis. However, due to its high cost it cannot possibly be 

considered for this application.  

 

Lead screw systems that are commonly available are the square thread and trapezoidal or 

acme thread. The former is reserved for high power transmission, which combined with its 

significant cost make it unsuitable for this application. The latter, most commonly used due 

to its versatility, low cost and ease of implementation has, as the name suggests, teeth of 

trapezoidal geometry. In comparison to the belt drive systems analyzed above, a trapezoidal 

lead screw system is much more robust under load or sudden changes in momentum, does 

not slip unless the maximum torque of the motor is exceeded in counter-torque, needs 

minimal maintenance to operate and is much easier to implement, with minimal mechanical 

parts added to the structural frame. The only drawback that is worth mentioning is the 

relatively lower speed compared to a belt drive system, with the difference between the two 

systems in speed not being relevant to the main objective of the automated station being 

designed.  

 

In conclusion, it is apparent that the most suitable system to be implemented in the automated 

station is the trapezoidal lead screw. With this, we can proceed to the design of such a system. 

The main components are the trapezoidal screw, the nut, a bearing to support the weight of 

the screw on its free end and a motor coupler to attach the screw to the motor on the opposing 

end. Additionally, these components should be mounted on the structural frame.  

 

The lead screw is placed parallel to the aluminum extrusion (or the precision shafts in the 

case of Y-axis), on the central axis of which a mobile part moves along. The lead screw 

attaches to the frame on one end via the bearing which is housed on a 3D printed part that is 

fastened to the frame. On the other end, as mentioned the lead screw attaches to the motor 

via the motor coupler. The motor is secured on the frame via an aluminum part that is 

fastened on the frame with tee-nuts.  

 
Figure 8: Lead screw assembly 

 



The nut is placed on the lead screw before the lead screw is secured on the frame, and it is 

fastened on a 3D printed part that acts as an intermediate connection between the nut and the 

mobile part the nut is transferring motion to. The connection is again made possible with 

bolts between the nut and the 3D printed part and the 3D printed part and the relative mobile 

part. 

 

Following this implementation process and designing all the necessary intermediate parts, 

while taking into account the geometry of the structural frame with the changes presented in 

the previous chapter, the resulting motion translation systems for each axis are illustrated on 

figure 9.  

 
Figure 9: Motion translation system for X, Y and Z axis 

 

It should be noted, that by design the automated station cannot operate with a single 

translation system along the X-axis. Positioning only one such system unilaterally would 

introduce a torque that would rotate the 3D printed sliding parts within the range of their 

tolerances to be in contact with the corresponding aluminum extrusion ridges. As such, the 

3D printed sliders would get stuck and the system would be motionless along the X-axis. To 

resolve that, there should be two motion translation systems along the X-axis, one for each 

of the horizontal aluminum extrusion it consists of, within which the 3D printed sliders 

reside. The motion of these two translational systems should be perfectly coordinated in 

order to prevent misalignment of the 3D sliders that will eventually cause them to be blocked 

within the ridges of the aluminum extrusion. This coordination can be achieved 

mechanically, but it requires elaborate design and introduces many challenges. It can be 

resolved however, during the electrical and software design latter on.   

 

The 3D printed parts mentioned above, with the exception of the sliders, were developed 

firstly on a CAD program, within an assembly design of the entire electromechanical system. 

Once their dimensions where chosen to ensure proper function of the motion translation 

system and no interference with any other part of the assembly, the CAD file of the parts 

were exported as .STL files and 3D printed in a Raise 3D Pro 2 FDM (fused deposition 

modelling) 3D printer with PLA (polylactic acid) filament. The technical drawings of these 

parts can be found in Annex A.  

 

2.3 Assembly of mechanical parts 
 

With the design for the sub-assemblies for each of the three axes and the overall structural 



frame, the finalized mechanical assembly is mostly complete and is illustrated in figure 10. 

 

 
Figure 10: Final mechanical assembly 

 

It should be noted that certain mechanical parts were also placed for provisional purposes. 

The overall mechanical design as originally designed and assembled and modified for the 

purposes of this thesis in the ways previously analyzed, is more than capable of responding 

to the demands of the main objective of the automated station. The addition of 90-degree 

aluminum corners to all inside corners of the structural frame was deemed necessary to allow 

for increased structural rigidity of the frame. Since, the frame consists of individual parts 

fastened with bolts and nuts and the operation of the automated station requires constant 

movement within this frame, inevitably these fastened connections would periodically 

require re-fastening due to the dynamic load from the acceleration and deceleration of the 

various moving parts. With the introduction of further supporting mechanical parts on the 

structural frame, the dynamic load is more evenly dispersed in a greater number of 

connections, thus the need for re-fastening can be greatly reduced or at the very least delayed 

significantly.  

 

  



3. Electrical design of automated station 
 

The electrical design of the automated station consists of all the non-mechanical parts of the 

overall assembly that allow for the automated operation of the individual axis, including 

motors, controllers, processing units, camera, sensors, power supply unit and of course all 

the necessary plugs and wiring.  

 

Certain design parameters of the electrical assembly were influenced by the mechanical 

design of the station analyzed in the previous chapter. Concurrently, certain design decisions 

implemented during the mechanical design were made with regards to specific electrical 

components in mind. Such a cyclic process is necessary during the design of complex 

electromechanical systems as there are differences among both electrical and mechanical 

components, which otherwise produce the same results, that heavily alter the geometry of 

the final assembly. As such, it is inherently impossible or at the very least impractical to 

design either the mechanical or the electrical part of an assembly without taking into account 

the other.  

 

With this clarification, the electrical components deemed most fit for this application are 

presented in the following chapters and the specifications for each component are illustrated. 

 

3.1 Selection of electric motors 
 

There are a lot of different kinds of electric motors that could potentially be suitable for 

implementation in an automated system. The specific needs of this application, the 

automated station, immediately reduces the multitude of different choices. Further analysis 

on the advantages and disadvantages of each of the different kinds of motors, in the context 

of the main objective of the automated station, further reduces the suitable choices.  

 

Initially, the power demands for each motor should be specified. For the X and Y axis, there 

is only the dynamic load of the movement of the parts each axis is carrying. In this regard, 

the only parameter that needs calculating is the force of friction that the motors need to 

overcome to make that movement possible, which in this case is quite apparent that it is 

minimal. For the Z axis, the power demands are slightly more complex, as there is a 

permanent static load the motors are required to uphold, which is the weight of the camera 

module, along with the parts that transfer movement to the module, in addition to the 

dynamic load that results from the requirement to move the module along the Z-axis.  

 

The results of the power calculations indicate that high power output motors are unnecessary 

in this application, which immediately excludes the use of any AC motor. The available 

options are therefore limited to relatively low powered DC motors. These include brushed 

and brushless DC motors, servo motors and stepper motors.  

 

  

  
Figure 11: Brushed and brushless dc motor 



Brushed motors operate on an on/off pattern, where they rotate when voltage is provided and 

are still when it is not. Though simple in their operation, they are inherently unsuitable for 

use cases where positioning is integral as they lack any form of integrated positioning 

control. A closed loop system for their control could be designed but it would increase the 

complexity of the system unnecessarily. The same restrictions apply to brushless motors. 

Additionally, both these types of motors, though more than capable in regards to power 

output, usually operate in high rotational speeds. This introduces further complexity to the 

systems, as gear reduction should be implemented to take advantage of the high-power 

output in a much more controlled rotational speed. These motors are quite common in robotic 

applications when closed loop control and gear reduction are implemented, but they are 

deemed unnecessary for this particular application.  

 

 
Figure 12: Servo motor – Operating principal diagram 

 

Servo motors address most of the issues that arise from the DC motors. They are actually 

more of a rotational actuator, rather than simply a motor. They are composed of a DC motor, 

usually a gear reduction system and a sensor that provides positional feedback. They require 

a specific controller to operate, which reads the values of the position sensor and adjusts the 

voltage input of the DC motor, allowing for control of the angle and the velocity of the 

motor. These systems provide excellent precision and high performance and are favored in 

robotic and automation applications. However, such performance comes with the necessity 

for a rather complex construction of the motor and intricate control implementation by the 

controller, resulting in high costs. Lower cost servo motors exist but they come with a low 

torque output, with the cost increasing rapidly for any significant increase in torque output.  

 

 
Figure 13: Stepper motor – operating principal diagram 

 

Lastly, there are stepper motors. These motors operate in a completely different principle 

than common DC motors. They are brushless and their rotation is an addition of individual 

equal steps on the circumference of the rotor. They have inherent position control without 



feedback (open loop), as by default they are operated step by step and can be controlled to 

hold each step. They are sized by the maximum opposing torque they can withstand while 

maintaining a step. These steps can increase in accuracy with a controlling technique called 

microstepping (Baluta, 2007) and even affordable ones can easily be micro-stepped to up to 

1/32nd of their step, which results in significantly high accuracy. They are generally low cost, 

especially comparing servo motors of equal torque output. For all these reasons, stepper 

motors are favored for prototyping applications and are deemed most suitable for use on the 

automated station.  

 
Figure 14: Nema 17 stepper motor 

 

 

The load these motors are required to operate under can be calculated, for each axis and 

motor with the following equations: 

 

• Z-axis: 

The motor assigned to the Z axis motion sub-system will only have to accommodate 

the weight of the camera and the 3D printed part connecting the camera to the motion 

sub-system. The combined weight is measured as 𝑀 =  0.182𝑘𝑔.  The torque 

required to raise this load in a lead screw is derived by the equation below (VCalc, 

2022):  

 

TR = F ⋅
dm

2
⋅

L+π⋅μ⋅dm

π⋅dm−μ⋅L
 (5) 

 Where: 

 𝑇𝑅: torque required to raise the load 

 𝐹: force opposed to the movement (the load), here equal to 𝑀 ∗ 𝑔 = 1.82𝑁  

 𝑑𝑚: mean diameter of lead screw, here equal to 8mm 

 𝐿: the lead, meaning the travel of the nut per one screw revolution, here equal to 2mm 

 𝜇: the coefficient of friction between the brass nut and the steel lead screw with no 

lubrication added, here equal to 0.19 (VCalc, 2022) 

  

 The result of the equation above is a required torque equal to 0.2N*cm. The unit of 

measurement being expressed as N*cm is such due to its commonality in datasheets 

of motors for such uses.   

 

• Y-axis: 

The calculation of the load the motor of the Y axis has to overcome has already been 

illustrated on an earlier chapter, though for a different motion translation system and 

overall mechanical design. The load of the current mechanical implementation is the 

weight of the Z-axis sub-assembly, multiplied by the distance from the center of 

gravity of the overall sub-assembly to the center of the precision rods utilized in the 



Y-axis sub-assembly. This torque 𝑇𝑀𝑍
 results in two normal forces created, 𝑁1 & 𝑁2, 

one between each linear bearing and the corresponding precision rod.  

 

𝛵𝛭𝑧
=  𝑀𝑧 ∗ 𝑔 ∗ 𝑙𝑍𝑌 (6) 

𝛴(𝛵) = 0 → 𝛵𝛭𝑧
= 𝑁1 ∗ 𝑙𝑁 + 𝑁2 ∗ 𝑙𝑁 (7) 

𝛴(𝐹) = 0 → 𝑁1 = 𝑁2 (8) 

Where: 

𝑀𝑧: the mass of the whole Z-axis sub-assembly, here equal to 0.89kg 

 𝑙𝑍𝑌: the distance of the center of mass of the Z-axis sub-assembly to the midpoint 

between the centers of the precision rods, here equal to approx. 37mm 

 𝑙𝑁: the distance between the center of each precision rod and the midpoint between 

the two rods, here equal to 21.5mm 

 

Solving the system of the equations 1, 2, 3 in respect to 𝑇𝑀𝑍
, 𝑁1 & 𝑁2 , the resulting 

normal forces are the following: 

 𝑁1 = 𝑁2 = 7.84𝑁 

 

 

 The effect of friction for these two normal forces can easily be calculated, given the 

friction of coefficient for the linear bearing chosen, which is 0.003 (Euro-

bearings.com).  

𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = (𝑁1 + 𝑁2) ∗ 𝜇 = 0.047𝛮 (9) 

 

 And with the torque is calculated by the equation (10) as: 

  

TR = F ⋅
dm

2
⋅

L + π ⋅ μ ⋅ dm

π ⋅ dm − μ ⋅ L
 = 0.02𝑁 ∗ 𝑐𝑚 (10) 

 Where: 

 𝑇𝑅: torque required  

 𝐹: force opposed to the movement (the load), here equal to 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 0.0235𝑁  

 𝑑𝑚: mean diameter of lead screw, here equal to 8mm 

 𝐿: the lead, meaning the travel of the nut per one screw revolution, here equal to 2mm 

 𝜇: the coefficient of friction between the brass nut and the steel lead screw with no 

lubrication added, here equal to 0.19 (VCalc, 2022) 

 

• X-axis 

The X-axis motors have to overcome the load of the friction created by the combined 

masses of the Z and Y axis sub-assemblies, created between the 3D printed sliders 

and the anodized aluminum surfaces of the extrusions. Two normal forces, 𝑁1 and 

𝑁2 are created at each of the two sliders of the X-axis sub-system, from the weight 

of the Z and Y sub-assemblies, which is easily calculated from the CAD file of the 

overall assembly. Each of these normal forces creates a friction, with a friction 

coefficient 𝜇 =  0.45, as explained in chapter 2.1. Each of the two motors will have 

to overcome each of these two friction forces. The calculations for all the above are 

illustrated in the equations (12) – (14): 

 
(𝑀𝑍 + 𝑀𝑌) ∗ 𝑔 = 𝑁1 + 𝑁2 (12) 

𝑁1 = 𝑁2 (13) 

𝐹1 = 𝐹2 = 𝑁1 ∗ 𝜇 = 𝛮2 ∗ 𝜇 (14) 



 

With 𝛭𝛧 = 0.89𝑘𝑔 and 𝑀𝑌 = 1.33𝑘𝑔, 𝐹1 = 𝐹2 = 24.6𝑁 

 

And utilizing the torque equation for a lead screw motion translation system, the 

required torque for each motor is calculated by equation (15) as: 

 

TR = F ⋅
dm

2
⋅

L + π ⋅ μ ⋅ dm

π ⋅ dm − μ ⋅ L
= 2.8𝑁 ∗ 𝑐𝑚  (15) 

Where: 

 𝑇𝑅: torque required  

 𝐹: force opposed to the movement (the load), here equal to 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 24.6𝑁  

 𝑑𝑚: mean diameter of lead screw, here equal to 8mm 

 𝐿: the lead, meaning the travel of the nut per one screw revolution, here equal to 2mm 

 𝜇: the coefficient of friction between the brass nut and the steel lead screw with no 

lubrication added, here equal to 0.19 (VCalc, 2022) 

 

In regards to the sizing of the stepper motor chosen, given the results from the calculation 

illustrated above on the motor torque demands of the axis sub-assemblies, the most suitable 

commercially available choice is the Nema 17 stepper motor, which is the industry standard 

for most 3D printers in production at the moment. The specifications for the Nema 17 motor 

(Schneider Electronics) are presented in figure 14, below. 

 

 
Figure 15: Nema 17 manufacturer specifications (Schneider Electronics) 

 

3.2 Design of the electrical circuit for the control of the 
electric motors  

 

With the selection of the electric motors most suitable for the application, the electrical 

circuit for their control should be designed. The fact that these motors are extensively used 

in commercial and prototyping applications, means that there are abundant resources on the 

control of these motors.  

 

The movement of the stepper motors is possible via an intermediate circuit called a motor 

driver. Motor drivers for stepper motors, coordinate the current passing to each phase of the 

stepper motor, thus controlling the number of steps, and the direction from which the current 



passes through each phase, thus controlling the direction of rotation. The information on the 

steps and the direction are sent by the microcontroller to the motor driver, which then 

executes the command by allocating the passing electric current accordingly.  

 

There are various motor drivers suitable for the Nema 17 motor. More costly drivers such as 

the TMC2209 (Prodanov et. al., 2022)offer reduced noise of operation by decreasing 

vibration through advanced current handling, sensorless homing by monitoring the load of 

the motor as a function of the current drawn by it and many other functionalities that are not 

deemed necessary for this application or can be otherwise achieved with lower costs.  

 

From the remaining options the most suitable motor driver is the DRV8825 circuit (Arief 

Wisnu Wardhana et. al., 2019). It offers 1/32nd microstepping capabilities to the motor, 

which translates to 0.06-degree theoretic accuracy and significant reduction on the noise 

during operation.  

 
Figure 16: DRV8825 Motor driver breakout board 

 

The motor driver is directly controlled by a microprocessor. The microcontroller passes a 

signal containing the number of steps and the direction of rotation for the stepper motors and 

the motor driver executes the motion. The only desired specification from the 

microcontroller in regards to the control of the stepper motors is the compatibility with the 

DRV8825 integrated circuit chosen, which is satisfied.  

 

Further required specification from the microcontroller regarding the available memory and 

the communication protocol with the computer unit. Both of these features are thoroughly 

analyzed in the control software chapter; however, it is worth mentioning that a 

microprocessor with sufficient memory is required to store the control commands that 

respond to certain operations of the automated station and the communication with the 

computer unit should be via USB to avoid unnecessary serial communication equipment.  

 

Both of these prerequisites are met with the Arduino Uno  (Badamasi, 2014)microcontroller 

station. With 32 kbytes of flash memory it can store a program many times larger and 

complex than the one intended for the control software and the 2kbyte of RAM are more 

than enough for the calculations and the communication with the computing unit. 

Additionally, it is equipped with a USB-to-Serial converter, thus allowing direct serial 

communication with a computing unit via the USB port. These benefits, combined with its 

extensive use on prototyping and online support, make it an ideal microcontroller for this 

application. 

 



 
Figure 17: Arduino Uno development board 

 

The connection of four motors, two for the X-axis, and one for each of the Y and Z axis, to 

four DRV8825 integrated circuits and to the Arduino Uno could be made either on a common 

breadboard or on a custom PCB on a perfboard. The first approach works great for initial 

prototyping but it is neither safe nor easy to use. The second approach, while time 

consuming, is necessary for any permanent circuit to operate safely both in respect to the 

circuit itself and the user that operates the system. In any other case such a custom PCB 

would have been made for the purposes of the project. However, the extensive community 

of the Arduino microcontroller and the equally extensive use of stepper motors similar to the 

ones selected for the automated station, means that such PCBs are commercially available 

at a very reasonable cost. Additionally, they have been designed to attach directly on the 

Arduino UNO and have connectors available for the motor drivers and the cables of the 

stepper motors. Such integrated circuits that attach directly on the Arduino UNO, are called 

shields and the shield used for this purpose is called an Arduino GRBL V2 Shield (Hasan et. 

al., 2018).  

 

 
Figure 18: Arduino GRBL V2 Shield attached to an Arduino Uno 

 

Lastly, a power supply unit is required to provide power to all individual components for the 

automated station. For the purposes of this thesis, it has been assumed that any computer 

unit (PC or single board computer) used for the control of the automated station will have 

an independent power supply.  

 

The power supply unit suitable for this application is selected based on three parameters. 

Firstly, the DC voltage it outputs, the maximum amperage it can deliver and the combination 

of these two parameters, the maximum power output in Watts. In regard to the DC voltage, 

the power supply is usually selected to match the voltage of the component that has the 

greatest power demand. Components requiring lower voltage can be accommodated via the 



use of an intermediate voltage converter, also known as buck converter, which is an 

integrated circuit that lowers the voltage provided by a power supply. A voltage converter 

can also be used to power components requiring higher voltage, though they dissipate 

significant heat, even in low to moderate amperages and are best avoided and the increased 

voltage requirement is met by a secondary power supply unit.  

 

In the scope of this application, the most power intensive components are the stepper motors, 

which are running on 12 volts. The Arduino UNO can also operate in that voltage, as well 

as the motor drivers and GRBL shield, so there is no need for voltage conversion. 

 

Given that the voltage is the same for each of the components presented above, the demand 

in amperage and by extension in power, can be easily calculated. For the amperage the 

maximum amperage stated by the manufacturer of each component is added. The combined 

amperage is then increased by a safety factor of 10%, and this is the required maximum 

amperage the power supply can deliver. The required power output of the power supply is 

the result of the multiplication of the maximum required amperage and the DC voltage output 

of the power supply.  

 

max(𝐴) = (𝐴𝐴𝑟𝑑𝑢𝑖𝑛𝑜 + 4 ∗ 𝐴𝑁𝑒𝑚𝑎17) ∗ 1.1  (16) 
max(𝐴) = (0.04 + 4 ∗ 1.8) ∗ 1.1 = 7.964A 

 

With these specifications in mind, a power supply unit is chosen from any of the 

commercially available ones, such as the one illustrated in figure 19.  

 

 
Figure 19: Power supply unit 12V, 8A 

 

3.3 Additional electrical parts and wiring 
 

Within the design of the electrical circuit of the automated station, there are certain 

secondary components that are important for the proper function of the overall assembly.  

 

Firstly, as mentioned previously, the selected stepper motors operate in an open loop. That 

implies that the controller can position the motors, but there is no feedback on whether the 

position has been reached. This could be potentially problematic if a moving parts motion is 

obstructed for any reason, when the motors will continue to operate until the duration of the 

movement is seemingly complete, even though there is no actual movement taking place. 

Given the nature of the application, it is highly unlikely that an obstacle will be presented to 

the motion of any of the axes, as they are designed with the volume of the object being 

inspected in mind. Thus, no need for a closed loop system, one with constant position 

feedback is deemed necessary.  

 

However, the same assumption cannot be made in the case of an abrupt loss of power. 



Through the control software, it is possible to save the position of each axis during the 

closing sequence of the control software and retrieve that position during the opening 

sequence. In case of unexpected loss of power, the software does not have the opportunity 

to save that position and during the startup sequence it will assume that the axes are either at 

the home position or the last known closing position. The same could also occur if the axis 

are moved even slightly while the automated station is unpowered. The result of something 

like that would be the controller not being aware of the actual position of each axis, which 

would cause catastrophic failure of one or more parts of the assembly in case they reach the 

end of their corresponding lead screw in high velocity.  

 

To avoid any of the above to occur, it is deemed necessary to have a homing sequence, 

during which the axes are moved to their zero position and their position, as information, is 

updated on the controller. That is possible with the installation of endstop switches at the 

ends of each lead screw. This not only ensures the safe initialization of the automated station, 

but also solves two other security risks. The first one is the case of obstacles in the way of 

an axis, as illustrated above, where the motor unable to proceed skips steps. In that case, 

even if an axis of the automated station, having skipped steps, reached towards the end of 

the lead screw, even at significant velocities, a properly placed endstop can prevent it from 

ramming onto the structural frame. Additionally, in case the X-axis lead screws and their 

corresponding nuts are misaligned for any of the reasons already mentioned, the endstops 

can provide a quick way to fix such a problem. 

 

These endstops are nothing more than a switch that when pressed sends a signal to the 

controller. There are endstops switches commercially available that provide additional safety 

functionalities but for the purposes of this application, a simple endstop switch, similar to 

the one illustrated below, installed at the two ends of each lead screw is sufficient.  

 

 
Figure 20: Endstop switch 

 

Equally important secondary electrical components are the connectors and the wiring that 

connect the individual components of the electrical assembly. In regard to the wiring, 

depending on the amperage passing through it, specific diameters, also known as gauges, of 

wire are required. For the purposes of this application, there are two different kinds of wiring. 

One is the signal wiring, which as the name implies, transfers signals between the individual 

components of the electrical assembly. Usually, they operate under 5V and the current 

passing through them is of the mA scale. Such wires are of the smallest diameter, yet shielded 

enough not to cause interference from the current passing from nearby cables. The other type 

of wiring is the power supply wiring. As mentioned, power supply voltage for this 

application is 12V and the current passing through these wires is of the A scale. For each of 

these two types of cable, a corresponding diameter is chosen according to safety standards 

(Locke, 2008).  

 

In regard to the connectors, their function is to ensure the secure connection of cables to the 

appropriate electrical components in a way that is safe yet does not restrict any possible 



changes to the electrical assembly during prototyping. In any other application, where there 

was no prototyping element, the connection would be permanently secured via soldering. 

The closest alternative was the use of connectors, and specifically JST connectors  

(Advanced Connection Systems - JST catalogue Vol. 120e)that are suitable both for 

signaling cables. A typical JST connector is illustrated below. For the power delivery to the 

stepper motors, the JST connectors are only borderline suitable, given the amperage range 

of each motor, so for safety reasons the more suitable 4-pin GX connectors (Hanson 

Technology - GX Aviation Connector Datasheet) were instead chosen and are also presented 

in figure 21. 

 

 
Figure 21: JST and GX4 connectors 

 

Lastly, in regard to the wiring it should be noted that the color scheme for the cabling was 

taken into account. For the power delivery cable for each phase of the stepper motors, the 

traditional color scheme for their cabling was upheld, meaning the combination of black, 

red, blue and green wires. For the signaling wires, the color yellow was chosen as it is most 

commonly used in data transferring cables. Additionally, since the major electrical 

components are fixed in certain positions on the structural frame, the wired connecting them 

could easily interfere with the free movement of each axis, if left unattended, thus posing a 

serious safety danger. It was deemed necessary that a cable harness be installed along each 

moving sub-assembly, to allow for the unrestricted moving of the axis, while safely storing 

all relative wiring.  

 

3.4 Assembly of the electrical circuit  
 

With all the major and secondary components selected, it is possible to design the final layout 

of the electrical circuit assembly. The assembly is firstly designed virtually to ensure, one 

last time, the compatibility of the individual components. The most appropriate software is 

Fritzing (Knörig et. al., 2009). The end result of the assembly on this software is illustrated 

in figure 22. 

 



 
Figure 22: Fritzing electronics diagram 

After purchasing the components, taking into account the physical dimensions of the 

mechanical assembly for the proper lengths of the wiring and the cable harness, it is possible 

to proceed to the physical assembly of the electrical circuit. It should be noted that the 

Arduino Uno along with the GRBL shield, the motor drivers and the GX connectors for the 

motors are enclosed in a 3D printed case both to be securely attached to the structural frame 

but also to ensure the safety of the operator during use. For the same reason, the power supply 

unit is also housed in a 3D printed enclosure. Both of the enclosures were designed in a CAD 

software, the files were exported in .STL file format ad were printed using an FDM printer 

with PLA filament. The technical drawings of these parts can be found in Annex A.   

 
Figure 23: 3D printed enclosures for Arduino and PSU 

 

With the physical assembly of the electrical circuit on the already assembled mechanical 

part, the automated station is presented in the photographs of figure 24. 

 

Figure 24: Final assembly of automated station - Photographs 

  



4. Control software for the automated station 
 

The process of writing a control software for the automated station, given the complexity of 

the task at hand, is not possible without an initial conceptual model of the structure of the 

individual parts that comprise the system. This model, commonly referred to as flowchart 

will serve as a much-needed guide during development, due to the complexity of the task, 

and as a means of explanation of the algorithmic process. The flowchart mentions processes 

and details relevant to the developments of the software that will be thoroughly explained 

on the chapters that follow.   

 

 
 

Figure 25: Control software flowchart 



The specific flowchart illustrated in Figure 24, is a graphical depiction of the processes of 

the control software designed for this application. Firstly, there are two distinct sub-divisions 

of what has been thus far referred to as control software, meaning the one developed for the 

PC and one for the microcontroller. The former functions as a way for the user to interact 

with the control software via inputs and outputs on the computer screen, which is the main 

function of the GUI. It also includes all other sub-processes that enable the user to send 

command to the microcontroller and by extension control the automated station. The latter, 

as the name implies regards to the processes allowing the microcontroller to directly control 

the individual electronic parts of the automate station or receive input form them. The 

purpose, structure and implementation of these processes will be thoroughly explained in the 

following chapters.  

 

4.1 Graphic User Interface 
 

For the creation of the Graphic User Interface (GUI), it is best to choose a tool with a wide 

variety of applications and widespread use among developers. Both of these characteristics 

will allow for the integration and possible adaptation of the different modules to the GUI. 

The industry standard for the creation of complex, scalable GUIs is, arguably, the Qt 

framework (Mezei, 2017).  

 

The Qt framework allows for the development of cross-station applications that run on all 

major desktop stations and supports various compilers. Though most notably used with C++ 

compilers, lately there has been widespread adoption of the pyQt library (Willman, 2022) 

which adapts the Qt framework for use in Python applications. The use of C++ for the Qt 

framework, would most likely result in an application that runs much faster than an 

equivalent application running pyQt on Python. However, the various functions of this 

application that run within the GUI, such as the communication with the microcontroller, are 

not easily implemented in C++ by one not adept to the language, as C++ has a notoriously 

steep learning curve. For these reasons, the implementation of the pyQt framework on a 

Python application was deemed as the most suitable and most specifically its more 

widespread and stable version, pyQt5.  

 

In regards to the Qt framework, it is important to illustrate its structure and how the various 

components of the control software will be developed along this structure. In the Qt 

framework, a window is created by the combination of different widgets. Widgets are 

elements that can display data, receive user input or simply provide a container for other 

widgets to be grouped in. Depending on the needs of the application, the designer/developer 

chooses the most appropriate widgets to integrate in the main window and groups these 

widgets within other widgets to allow for an adaptable GUI, in regard to its size. These 

widgets, placed in specific positions, can be customized to allow for a more user-friendly 

environment.  

 

The main window can be structured as a main function within the UI python file of the 

python application. Though such an approach is direct and offers a lot of control to the 

developer, for more complex applications, not unsimilar to this one, the sheer volume of the 

commands for the creation of the main window interface quickly becomes staggering. For 

this reason, the creators of the Qt Framework have developed a software called Qt Designer. 

Within Qt Designer, widgets can be placed on the main window via drag-and-drop and 

further customized within the environment of the software. Once the placement and 

customization of the widgets is complete, the software exports a file (.ui) which can be 



converted to executable Python code. This process allows for a much more intuitive design 

of the front end of the application being developed, while significantly reducing the 

complexity and time requirement.  

 

 
Figure 26: Qt designer environment 

With the use of the Qt designer, the main window of the control software is developed. The 

first step is the selection of appropriate widgets. For the control of the movement of the end 

tool (camera), 4 buttons are selected to correspond to the X and Y movement and are 

positioned in a cross to mimic the movement of the camera within the horizontal plane of 

the working area. For the Z movement, two buttons are positioned corresponding to the 

upwards and downwards motion of the camera along the vertical axis.  

 

The increment by which each axis is moved when a button is pressed is inputted by the user 

with the LineEdit widget indicated by the appropriate Label widget. The velocity by which 

the motion is carried out is also indicated by a Label widget and inputted with the selection 

of a RadioButton corresponding to slow movement and another one corresponding to fast. 

The options regarding the velocity are kept that way to limit the available options of speed 

to the limit as without proper knowledge of the capabilities of the system, an incorrect input 

could be potentially catastrophic for a subsystem or the automated station as a whole. The 

widgets mentioned above are grouped and labeled as Manual Control. 

 



 
Figure 27: Manual Control Group 

 

For a more precise movement, a group of widgets is created and labeled as Input Control. 

This group includes Label widgets indicating each axis and underneath each one, a LineEdit 

widget is placed, intended for the input of a numerical value by the user. Next to these there 

are two RadioBox widgets indicating if the movement the user wishes to initiate will be in 

regards to the relative or the absolute coordinate system of each axis, meaning whether the 

end tool will move by a certain distance in each axis or to specific coordinated, according to 

the numerical value inputted in the corresponding LineEdit widget of each axis.  

 

Below the Input Control group, another group of widgets is placed, which includes the 

buttons for the main automated functionalities of the control software, meaning the ones not 

included in the Manual Control group. These functions are:   

 

• Homing function indicated by Label widget as “Home”  

• Stopping function which ceases any ongoing movement and is labeled as “Stop”,  

• Photographing function, which saves the image that the camera is currently capturing 

as an appropriate file and is labeled as “Photo”  

• Moving function, which initiates a movement according to the specifications of 

position and velocity inputted by the user in the Input Control widget group and is 

labeled as “Move”.   

• “Save” and “Load” buttons, which for the purposes of this thesis are programmed to 

save the last known coordinates of the end tool and load them in the software upon 

initiating it.  

 

The buttons for each function have an image embedded that represents the purpose of the 

function, thus making the use of the control software much more intuitive. 

 

 
Figure 28: Input Control and Main buttons 



 

Additionally, label widgets are positioned to indicate the current position of the camera, 

corresponding to the X, Y and Z coordinates and each intended velocity. The numerical 

values for this data are outputted to the user in LCDNumber widgets, to differentiate the 

visually from the data inputted by the user. 

 

 
Figure 29: LCD displays for XYZ 

 

A Tab widget is used to group the two main outputs of the control software, the position 

graph and the camera feed. The Tab widget is selected because it allows the user to switch 

between these two elements, which both are large enough that if placed simultaneously on 

the main window they would be overwhelming to the user, require a large screen size and 

overall diminish the ease of use of the GUI. In place of the camera feed and the position 

graph, during the design of the GUI, a QWidget is placed, which is an element that reserves 

this position in the main window open for the developer to add custom content.  

 

 
Figure 30: Tab widget 

 

Lastly, on the bottom of the main window a QPlainTextEdit widget is placed. This widget 

is practically an open editable text window. Its function within this application, however, is 

to display all the necessary feedback to the user that cannot be otherwise displayed by the 

other widgets. This information could be the successful completion of a function, such as 

movement, photograph etc. or the occurrence of an error that needs to be addressed by the 

user. Its editability is therefore blocked for the user and the text it displays is provided 

directly by the control software. 

 

With all the necessary components of the GUI placed and grouped, there is one last step 

needed to ensure an optimized main window. That is the placement of spacers, horizontal 

and vertical ones. These spacers serve an important role, which is to keep the spacing 

between grouped widgets set to certain values, regardless of the size of the main window. 

Without these elements, the placement of each widget would differ according to the size of 

the main window, thus resulting in a very confusing and difficult to work layout. With these 



spacers added, the final GUI, as exported by Qt Designer, is illustrated in figure 31.  

 

 
Figure 31: GUI as seen in Qt Designer (left) and as exported from Qt Designer (right) 

 

The file type exported by Qt Designer is not, at this point, fit to be run within a Python script. 

For that to be possible a conversion of the file is required, to a Python script. That can be 

accomplished with the pyuic5 development tool, which converts the .UI (Culjak et. al., 2012) 

file to a python script with a pyQt5 syntax. After this conversion, the resulting file includes, 

in order, the necessary imports, meaning the libraries needed for the script to run, and a main 

function which includes all the widgets that were selected in the designing phase. Each 

widget is listed with its appropriate placement and any customization made within Qt 

Designer, as an editable python code in pyQt5 syntax. This code can successfully run, 

however since no functions are attached to the widgets, no results will be outputted.  

 

At this point any further customization on the main window or individual widgets that was 

not able to be made within the environment of Qt Designer can be made. Since there is no 

need for any customization, within the purposes of this application, the only change deemed 

necessary is the overall color scheme of the main window. At its current state it is based on 

light theme colors, which could be problematic after long term use of the software due to 

eye strain issues from high brightness. For this reason, a dark theme is applied to the overall 

color scheme of the application. The final GUI, after the placement of all individual widgets, 

the conversion to Python script and the customization, can be shown by running the relative 

Python script and its output is illustrated in figure 32. 

 



 
 

Figure 32: Final GUI from Python script 

 

4.2 Motion control of the automated station 
 

As mentioned in the previous chapter, the GUI works as an interface between the user and 

the control software, with which inputs and commands are given to the software and certain 

processes are executed by the software and the subsystems it is connected with, with the 

results of these processes being outputted as feedback to the user via the GUI. The 

framework within which the GUI is designed operates in a very specific mechanism that 

makes that possible. This mechanism is referred to as Signals & Slots. 

 

Within the Qt framework, every widget has a set of pre-defined signals it can emit, when a 

particular event takes place. A slot is a function that is called in response to a particular 

signal. Slots are functions, most commonly defined by the developer, that perform a specific 

task. In simple terms, while the Python script is running the main function that displays the 

GUI is constantly checking for events. Once an event occurs, it emits the signal that is linked 

to that event, that runs the function appointed to a specific Slot. Such an event could be the 

pressing of a button, which would signal a function to run that performs a task appointed on 

the pressing of the button.  

 



 
 

Figure 33: Slot and Signal graph of Qt framework 

 

With this in mind it is relatively straightforward to attach a specific function to each button. 

Initially, the press of a button is connected to a function that, depending on the button, reads 

the data inputted by the user on the purpose of the button and sends an appropriate command 

to the microcontroller to be executed. This seemingly straightforward process has a few 

obstacles that need to be addressed, depending on the functionality of each button. First and 

foremost, the communication with the microcontroller.  

 

As mentioned in a previous chapter, a computer is not capable of creating the output signal 

necessary for the control of the motor drivers and by extension the motors or to receive the 

input from the endstop directly. As such, there is a necessity for a microcontroller that 

intermediates between certain electronic components and the computer and translates the 

commands given by the user, through the GUI, to electric signals that result in appropriate 

actions. The communication between the microcontroller and the computer is therefore an 

integral part of the control process and should be addressed within the control software.  

 

The most common communication between a computer and an external device is via USB 

connection. The microcontroller chosen for this application has a USB-to-Serial converter 

which allows for serial communication between the computer and the microcontroller. To 

enable this communication the appropriate library must be added to the imports of the scripts. 

The Qt framework offers the capability of serial communication, further reducing the need 

for any additional library.  

 

In regard to the microcontroller, which by default is programmed with the C++ language, 

after providing power to it, a setup function runs once, which amongst other things, initiates 

serial communication with the computer at 115200 baud rate. After the setup function runs 

once, another function runs on a loop. Inside this loop function, there is a command that 

checks whether a message is received through the serial port. What this function does with 

the message received, will be fully explained further below.  

 

At this point, any moment a button is pressed, the computer can send a specific message to 

the microcontroller and the microcontroller constantly checks if a new message has arrived. 

The opposite has not been programmed, meaning the microcontroller cannot pass 



information to the computer. That is problematic, as there is no confirmation on the 

execution of commands by the microcontroller. The reason the opposite communication is 

much harder has to do with the very structure of the main window within the Qt framework.  

 

As previously explained, the main window is a block of code constantly running to check 

for events that can trigger certain signals. As such, the programming of a constant check for 

received messages is difficult, as an open WHILE loop would cause the program to not 

respond to other incoming events. To overcome this, after consideration of the available 

tools provided by the QT framework, the most suitable solution was determined to be the 

use of a QTimer. This is a class which, as the name implies, creates a timer and is connected 

to a slot. The developer inputs a specific time interval, which is the numerical value in 

milliseconds the timer is counting down from. Upon reaching the end of the countdown 

(timeout), a signal is emitted, which activates the slot. The advantage is that the timer runs 

in parallel with the main window and therefore does not affect its operation. With this 

process, an interval of 300ms is chosen, as no command of the automated station is expected 

to be executed in less time than that, and the communication from the microcontroller is 

checked every time timeout is reached.  

 

The last matter to be addressed in the communication between the computer and the 

microcontroller is the message itself. As already stated, the commands the microcontroller 

executes are not fast enough to interfere with the communication with the computer. Since 

these commands are mostly in regard to physical movements of the automated station and 

the baud rate is high enough, there are near zero chances a message from the microcontroller 

to the computer will be interrupted by another message, resulting in a fragmented final 

message received by the computer. The same cannot be said for messages sent by the 

computer to the microcontroller. With fast enough clicking of the buttons, messages can be 

sent at a speed that can cause issues with the integrity of the commands sent. Though in such 

cases the command will be ignored by the microcontroller, as it will not fit within the 

messages it is expecting to receive, such occurrences must be avoided. The simplest way is 

to use the smallest possible message. Given the fact that baud rate is essentially the number 

of symbols that can be transmitted in a second, then the smaller the message, the less time 

required to be fully transmitting, thus minimizing the risk of fragmentation.   

 

To create the smallest message possible, only the most necessary information regarding a 

specific command must be included in it. For commands regarding movement of the 

automated station the smallest message must include the button pressed, the x, y and z values, 

the velocity and whether the movement is in absolute or relative coordinates. The values are 

separated by a denominator, in this case a comma, to make parsing the data easier. For the 

homing sequence and the stop command, only a single numerical value appointed to each 

process is enough to initiate each function.  

 

Having established successful communication between the computer and the 

microcontroller, each button can be programmed to accomplish a specific function. The 

programming of each button is rather similar. The button, when pressed, reads from a 

specific LineEdit widget a user input and creates an appropriate message, which the passes 

to the function that communicates with the microcontroller. This applies for the manual 

control buttons, the Move, Stop and Homing Buttons. 

 

In regard to the Photo button, its programming requires the explanation of the operation of 

the camera feed, which is the subject of a later chapter. The Save and Load buttons, as 

explained, respectively save the location of the last known X, Y and Z coordinates and load 



them to the software by the user, both fairly simple programming tasks.  

 

 

4.3 Programming the microcontroller 
 

Programming the microcontroller that executes the motion commands provided by the 

computer, is a much different task than programming the GUI and its functions. As already 

stated, the very structure of the two programs is vastly different. A programming script for 

a microcontroller similar to the one used in this application usually consists of three different 

sections.  

 

The first section includes the inclusion of all necessary libraries for each application, the 

declaration of the type and initial value of variables and constants and of any other 

programming element as required by a library. The only noteworthy steps in this section are 

the selection of names for each of the aforementioned elements and their proper 

documentation with comments, as both of these steps allow for a much cleaner code.  

 

The second section is the setup function. This function only runs once, upon providing power 

to the microcontroller. It includes the initialization of pins and their appropriate roles as 

inputs or outputs, the initialization of the serial communication, and the setup of the 

maximum speed and acceleration for the stepper motors.  

 

The third section is the loop function, which, as the name implies, runs in a loop. Within the 

loop function are all the commands the microcontroller executes in repeat. This is the part 

that mostly differentiates the programming of microcontrollers to the programming of an 

application like the GUI with Python and Qt. Underneath the loop function, there can be 

various other functions created by the developer to execute specific tasks, but only run if 

they are called by the loop function. 

 

Within the loop function, there is a command that constantly checks for new messages that 

might have been received from the computer. Should a new message exist in the serial 

communication, it is sent to a function that converts it into a string type. This string is then 

passed to a parsing function that breaks the string according to the denominator chosen and 

saves them in specific places inside an array. A button function is called that, based on the 

element of the array that regards a specific button and the elements of the array that regard 

the information of the movement that needs to be executed, updates the new position of each 

axis. The new position of each axis is then passed on a function that executes the movement, 

meaning it commands the motors to be moved to the updated position. In case the button 

function identifies in the appropriate element of the array the value that indicates the stopping 

or homing function it acts accordingly, following the same process described above.  

 

Once the command has been executed and the process (movement, stopping or homing) has 

been completed, a messaging function sends a message to the computer to inform the 

successful completion of the movement. A timeout condition exists on the control software 

of the computer that indicates that if a command has been given and no response has been 

returned within a specific time interval then the movement has been unsuccessful and an 

error is displayed in the GUI.  

 

By using simple coding practices, such as the switch statements, the overall code can be both 

easily read but also minimal. This minimization of redundant complexity in the coding of 



the functions mentioned above, resulted in use of less than 30% of the microcontroller's 

storage space and 25% use of the dynamic memory, leaving ample memory for computation 

and data handling.  

 

 
Figure 34: Compiled microcontroller code size on the Arduino IDE 

 

4.4 Position graph, error dialog and camera feed 
 

Programming the position graph is not dissimilar to the programming of the button. As 

mentioned, the position graph will be implemented within the relative QWidget. A QWidget 

is a subclass within the Qt framework that allows for the custom creatin of widgets, meaning 

ones not already provided by the framework. Within this QWidget the position graph is 

programmed using the matplotlib, a library used extensively by developers for graphs of any 

kind.  

 

The graph is implemented in the most intuitive way, meaning the vertical axis of the graph 

represents the Y axis of motion and the horizontal axis represents the X axis. This is similar 

to how the user sees the actual axis in motion when observing the automated station from 

above with its longer side, the X axis perpendicular to the user. The extends of each axis of 

the graph are numbered according to the physical extends of the relative axis they represent. 

The Z axis cannot be represented directly, since that would require a 3D graph, which is 

arguably much less intuitive. The Z position of the camera is therefore displayed as a 

numerical value next to the point indicating the current position of the end tool – camera on 

the position graph. The zero point has already been selected during the development of the 

homing code, and is set accordingly on the position graph. The position graph at a random 

point, during operation of the automated station, is illustrated in figure 35.  

 

 
Figure 35: Position graph example 



To avoid unnecessary complication and since there is no need for constant update of the 

position of the end tool, the X, Y and Z positions are only updated when the control software 

of the computer receives a message from the microcontroller containing information about 

the completion of a movement. Therefore, the values displayed in the graph are always true 

to the microcontroller and are only updated when there is need to do so. Within the Qt 

framework that means that the function receiving messages from the microcontroller, as was 

explained in an earlier chapter, is added the task of checking the content of the message and 

should it include the successful completion of the movement, which in Qt framework terms 

would be the event, a signal is emitted to the position graph function, which is the slot, and 

it updates the graph accordingly.  

 

Since the function receiving messages has been updated to inspect the content of the 

messages received, it can now be tasked with the update of the error display. As mentioned 

previously, a QPlainText widget has been placed on the bottom of the main window to 

inform the user on the completion of each task. A successful completion of a task is more or 

less displayed by the rest of the widgets, whether it is the update of the position or the 

velocity. However, this information can be potentially missed by the user, for example in the 

case of a small enough movement, and additionally there is no way to examine it 

retrospectively. An unsuccessful completion of a task cannot be displayed with any other 

widget. So, there is great importance for direct communication of the processes of the 

microcontroller and their status. This function is carried out by the QPlainText widget placed 

at the bottom of the main window, which will henceforth be referred to as error display.  

 

Every message transmitted from the microcontroller the receiving function decodes it, and 

based on its content, it is sent to the error display function and is displayed using a matching 

color; successful tasks as displayed in green, information critical to the user, but otherwise 

not problematic to the function of the automated station are displayed in yellow and critical 

errors are displayed in red. Next to each message displayed in the error display, there is a 

time stamp indicative to the moment the task or error was displayed for logging purposes. In 

Qt terms, the information of the message decoded by the receiving function is the event, 

which triggers a signal that activates the slot, which is the error displaying function that 

updates the error display accordingly. During operation, the error display might contain the 

information presented in figure 36. 

 

 

Figure 36: Error display during operation of the automated station 

 

Lastly, the only part of the control software that remains unmentioned is the camera feed. 

Given the importance of the camera feed in this application, the camera feed is arguably the 

most important, and though it is the last presented in order, the rest of the control software 

has been written in a way that facilitates the proper function of the camera feed.  

 



As already mentioned, the camera feed will be placed within a QWidget that is embedded in 

the Tab widget of the main window. Within the Qt framework, there are capabilities that 

allow for a camera feed to be implemented within a widget, however such implementation 

is very limited in the scope of this application, where image processing might be required 

depending on the object inspected by the automated station.  

 

A camera feed is simply a timed collection of a single image at specific intervals (frames per 

second). This collection is possible through specific communication to the camera. The 

camera chosen for this application has a USB connection. A communication process similar 

to the one implemented for the microcontroller could be theoretically possible. In such a 

case, a timer could be set and the request for an image by the control software could be made 

at specific intervals. The image collected could be then displayed to the QWidget, by 

properly customizing its functionality, and the process could be repeated to achieve live feed 

for the camera.  

 

While this could be a potential implementation, it is rather unrefined. A much less complex 

and common implementation would be with a class of the Qt framework called QThread. 

This class, as the name implies, is an object that manages one thread of control within the 

program, basically resolving the inherent difficulty of running looping actions within a Qt 

created GUI. In terms of the Qt framework, an event loop can run within the thread 

concurrently with the main window, once activated.  

 

For the collection of the images, the most widely used library is OpenCV (Culjak et. al., 

2012), an open-source computer vision library.  By combining all the above, the camera feed 

is programmed by customizing the QWidget to display an image received by the QThread. 

The QThread is activated within the QWidget and is programmed with the OpenCV library 

to receive images by a camera device connected in a specific USB port and with a specific 

color scheme, aspect ratio etc. Every time a new image is collected, which is regarded as an 

event, a signal is sent to the QWidget, which displays the image. This process is fast enough 

to result in live camera feed.  

 

With the use of OpenCV, another function of the control software is rendered possible. That 

is the collection of images. Within the camera QThread, there is a global flag that once 

activated saves the current image displayed by the camera with an appropriate name. The 

flag is activated with the press of the “Photo” button. In the Qt framework, the event is the 

press of the button and the signal is sent to the thread (instead of another function of the main 

window as any other button), which acts as a slot. Lastly, in the camera feed, utilizing the 

OpenCV capabilities, a crosshair is placed in each frame, meaning two intersecting lines 

forming a cross to enable the user to easily place the camera in a specific position.  

 

With the completion of the programming of all the major functionalities of the control 

software, several other elements are programmed. These elements, however, regard 

secondary or assisting tasks and do not require any sophisticated implementation. Examples 

include a pop-up window during closing to inform the user of termination of the GUI, the 

function that encodes the message sent to the microcontroller and others. With the 

completion of the programming of these functions as well, the control software can be 

considered complete, and the collection of images for defect detection is now possible.  

  



5. Implementation of defect detection using Artificial 
Neural Networks 

 

This chapter aims to illustrate the process of utilization of latest advances in the field of A.I., 

more specifically of ANNs for defect detection on certain aluminum cast items. The 

immense complexity of the field is the first hurdle towards its proper utilization. It is, 

however, arguably the most important step, as attempting to implement Artificial Neural 

Network tools in an application without insight on its functionality, will make any attempt 

to interpret and optimize its output potentially invalid.  

 

Core concepts of ANNs will firstly be introduced and during the illustration of the 

implementation process, these concepts will be thoroughly explained within the scopes of 

the application. Any attempt to further delve into the details of the sub-processes of the 

operation and implementation of Artificial Neural Networks, will be avoided to keep the 

analysis short and on point.  

 

Firstly, for defect detection, the most utilized field of A.I. is Deep Learning (LeCun et. al., 

2015). Deep Learning is a subset of ML, which in it of itself belongs to the scope of A.I. ML 

aims to enable computers to complete certain tasks without explicit programming and Deep 

Learning aims to achieve this by utilization of ANNs. This difference between the two is 

actually immense in its core concept, as the utilization of ANNs allows the data to pass 

through the nodes of the network in highly connected ways, resulting in non-linear 

transformation of the data with increasing abstraction.  

 

This abstraction is the very edge of Deep learning. Because of it, compared to other ML 

methodologies, Deep Learning has some inherent advantages. It can accommodate large 

volumes of unstructured data, produce output fast and accurately and most importantly be 

utilized in cases where increased complexity of the system, such as non-linearities or 

disturbances, would have to be otherwise dealt with traditional algorithms of slower speed 

and decreased accuracy, such as linear regression. Taking into account the data volume from 

a video or live camera feed and the demand for near real-time detection, the exponential 

progress and implementation of Deep Learning in object detection in the past ten years begs 

no question. The complexity and time demand of the set up and the increased demands in 

higher hardware specifications are the obvious disadvantages in the utilization of Deep 

Learning, but within the scope of this application they are deemed as non-problematic and 

are therefore disregarded.  

 

Within the field of Deep Learning, the design of the ANNs, is referred to as architecture. 

The differentiation between the different types of architectures is a highly technical matter 

and the progress of the field is such that, to simply mention the most prevalent ANN 

architectures and their differences is well out of the scope of the current thesis. Instead, the 

focus will remain only on the architectures currently overutilized on object detection and 

disregard ones that are either still on a research level, not commonly used or otherwise not 

heavily favored by professional developers of the related field.  

 

Before further elaboration on the ANN architectures for object detection, a proper definition 

of the term is needed. Within the field of A.I., object detection is a computer vision task 

falling under the general term of object recognition. Object recognition (Zhong-Qiu Zhao et. 

al., 2019) includes image classification (Al-Saffar et. al., 2017; Atraszkiewicz et. al., 2020) 

and object localization (Long et. al., 2017). The former is a process including the input of an 



image with a single object and the output of a class label relative to the content of the image. 

The latter is a process including the input of an image with multiple objects with an output 

of a bounding box around one or more objects. Object detection is the combination of these 

two tasks within one process, which ultimately includes the object localization of one or 

more objects within an image with the addition of a class label on each object. With this 

definition in mind, it is a rather simple transition to defect detection. In regarding each type 

of defect as a different class of object and labeling it as such, with the utilization of ANNs, 

we can determine the location and type of a defect on a product.  

 

In the following chapters, the different architectures of ANNs utilized in object detection 

will be presented, the most suitable will be selected and the implementation steps will be 

explained. Ultimately, the appropriate ANN architecture will be implemented and the 

resulting model will be integrated in an application for use with the automated station. The 

steps for the implementation of the model, if followed correctly and with respect to the 

different features of each application, can allow the automated station to operate as a quality 

inspection tool for a number of different applications.  

 

5.1 Artificial Neural Network architecture 
 

As mentioned, to delve into the characteristics of all different ANN architectures, and their 

individual distinctions, is far beyond the scope of this thesis, as the immense progress of the 

field the past decade demands the thorough explanation of highly technical terms. A simpler, 

more direct way to determine the optimal type of ANN to implement in this specific 

application, is simply to compare the most commonly utilized, in applications similar to our 

own, architectures and types and find the one most fitting.  

 

Another, arguably more important, reason to look into the most commonly used ANN types 

is also a result of the highly technical nature of the matter and needs to be addressed. The 

implementation of a neural network, from its conception to the actual software development 

requires extensive knowledge on the subject matter and a high degree of skill in software 

development. While there are plenty of frameworks that simplify to an extent the 

development of a neural network model, the demand for the developer to be familiar with 

the extensive background regarding neural networks remains. The more a type of ANN has 

been utilized in real life applications, the more information is available for its proper 

implementation. The widespread use of a certain type of ANN in a certain field, can also 

rapidly decrease the time demands for the setup of an ANN, due to the existence of pre-

trained models. These pre-trained models and their importance to object detection 

application will be thoroughly explained later on.  

 

For object detection purposes, the most overutilized ANNs have two distinct types of 

architecture, the two-stage and the one-stage architecture (Lohia et. al., 2021). The former 

consists of a first step of extraction of Regions of Interest (RoIs) in an image and a second 

step including the classification and regression of RoIs, while the latter only performs the 

second step. The state of the art consists mostly of two-stage architectures as they perform 

with a much higher accuracy, but the one-stage are also utilized as they tend to be 

significantly faster.  

 

The most prominent two-stage object detector architectures include the R-CNN, Fast-CNN 

and Faster-CNN models (Juan Du, 2018), while the one-stage architecture includes the 

CenterNet (Duan et. al., 2019) family model, the Yolo family model (Juan Du, 2018)and 



SSD model (Wei Liu et. al., 2016). Both of these architectures include numerous other 

models, with a great degree of variation among them and are heavily utilized in the field of 

object detection.  

 

The individual distinction between all these models, though highly technical, can be of great 

importance to a defect detection application, even more than in other object detection 

applications, depending on the size of the defect, the variations with which it is presented 

and its differences in appearance with the non-defective parts of the project. However, 

selecting an appropriate type based on these highly technical characteristics and then further 

customizing the model to fit the necessities of such applications, would require hours of 

extensive research and implementation, enough to constitute as an additional master level 

thesis.  

 

The problem of determining the most suitable type of ANN, however remains and to address 

this, the framework, within which the model will be developed, can provide valuable 

information. The obvious choice for a ML framework with Deep Learning model capabilities 

is TensorFlow (Goldsborough, 2016). This framework, developed by Google for 

implementation in a wide variety of ML applications, offers the ability to utilize Deep 

Learning methodologies, in a far easier yet thoroughly robust way.  

 

The fact that the TensorFlow framework has been favorited in Object Detection application, 

means that there is a plethora of information for the utilization of the models mentioned 

above, but most importantly, there are data on the characteristics of each model in relation 

to the utilization of each model within the framework. More specifically, there is numerical 

data illustrating the performance of each model, meaning the speed and accuracy of each 

model, within a specific dataset. This means that these metrics can be used to determine 

which model is more suitable for the application, at least in an initial level in regards to the 

speed and accuracy demands of the application and of course to prove that the overall system 

works both on a conceptual and on a functional level, albeit not fully optimized.  

 

The available models of the TensorFlow framework, for object detection, are of both of the 

architectures mentioned above and, as mentioned, are pre-trained. The term pre-trained 

model, which was mentioned earlier, is rather important in the field of object detection. A 

pre-trained model is a saved network that was previously trained on a large dataset, typically 

on a large-scale image-classification task. A pretrained model can either be used as is or it 

can be customized to another set of objects, using transfer learning.  

 



 
Figure 37: Transfer learning 

 

Transfer learning  (Weiss, et. al., 2016)is a ML technique where a model trained on one task 

is re-purposed on a second related task. This can be a potentially powerful technique in the 

development of a model. This form of transfer learning used in deep learning is called 

inductive transfer. This is where the scope of possible models (model bias) is narrowed in a 

beneficial way by using a model fit on a different but related task. Transfer learning is 

advised to be used in cases, where its implementation can result in three possible benefits: 

 

1. Higher start. The initial skill (before refining the model) on the source model is 

higher than it otherwise would be. 

2. Higher slope. The rate of improvement of skill during training of the source model 

is steeper than it otherwise would be. 

3. Higher asymptote. The converged skill of the trained model is better than it otherwise 

would be. 

 

                        

 
Figure 38: Benefits of transfer learning 

 

In the specific case of object detection, significant resources would have to be used for a 



customized model to be developed for a specific application and abundant data would have 

to be provided for training to achieve optimization. In any other case of object detection, a 

pretrained model modified using transfer learning is the only viable solution. As mentioned, 

TensorFlow offers a collection of models, referred to as Model Zoo, pretrained in the COCO 

2017 dataset.  

 

The list of available models provides the metrics required for a selection of an appropriate 

model. Models of different architectures and types are provided, with an indication on the 

size of the inputted image, and numerical values indicating the speed at which detection is 

accomplished and the accuracy of the detection. It should be noted that the metric for 

accuracy, for object detectors, is most commonly the Mean Absolute Precision, a statistical 

parameter derived based on the correct detection of an object detector in reference to the sum 

of the total correct and incorrect detections. A higher value of mAP for a specific model, 

correlates to a greater accuracy in object detection.  

 

With these data now available for the provided models, a more informed decision on the 

most suitable one can be made. Firstly, since the main goal for defect detection within the 

scope of the thesis is the proof of concept, rather than optimization of the process, speed of 

detection is valued higher than performance. As such, two stage object detection 

architectures are disregarded in favor of the faster one stage architectures, meaning the CNN 

model family is not taken into consideration.  

 

Furthermore, the available resources, in respect to the hardware for the creation of the model, 

are limited to the use of a commercially available mid-range personal computer with 

integrated graphics, instead of a GPU. This latter statement is an important one, as the 

existence of a GPU and better yet a high-end GPU, significantly decreases the time demands 

for the training of the model. Regardless, the training time, being the most time-consuming 

process of model development, meant certain compromises were necessary. Merely looking 

at the list of the available pre-trained model, it is apparent that for any model provided there 

is a list of available alternatives depending on the size of the imputed image and that the 

increase in size is relative to the speed of detection. What is not apparent is that the size of 

the image also affects the training time proportionally, meaning that increased size leads to 

increased training time.  

 

At the same time, images of smaller size cannot be used indiscriminately for two reasons. 

To reduce the size of an image, the image needs to either be cropped or be compressed. The 

former option can be applied to an extent, but the region of interest in respect to the detection 

of defects is standard within the scope of the application and further segmentation of the 

images would be neither easily applicable nor time efficient, during operation of the 

automated station. The latter option severely affects the quality of the images, depending on 

the extent of the compression. This leads to the downsizing of possible defects to merely a 

few pixels, which makes their detection impossible even to the human eye.  

 

Summing up the above, it becomes apparent that the most suitable pre-trained model is one 

that allows for pictures of a decent size, yet small enough to allow for a reasonably fast 

training, with the model being fast enough to run within the operation of the automated 

station, yet without detrimental performance in respect to its accuracy. The object detection 

pretrained model available by the TensorFlow framework that meets these criteria is the SSD 

MobileNet V2 FPNLite 320x320. 

 

With the selection of the model complete, it is possible to proceed with the steps required to 



set up an object detection ANN model within the TensorFlow framework. These steps are 

illustrated and thoroughly explained in the following chapters.  

 

 

5.2 Selection and labeling of images 
 

Before further explanation of the individual steps for the development and utilization of the 

ANN model on this application, further elaboration is required on the environment within 

which the TensorFlow framework will be deployed. TensorFlow is most commonly utilized 

with the Python programming language. It is also common for developers on Deep Learning 

applications and other ML projects to utilize TensorFlow and other relevant libraries, with 

Python on a web-based interactive computing station, called Jupyter Notebooks. The 

commonality of this implementation translates to an abundance of information on the 

development of ANN models and as such it is adopted for this application.  

 

An additional benefit of the Jupyter Notebook station is the fact that it provides live code, 

equations, narrative text and visualization making it a great tool to illustrate and share code 

in a presentable manner with all the necessary documentation.  

 

In the same topic, it is regarded as a safe practice to run Jupyter Notebook and install all the 

libraries and modules required for model development in a virtual environment. The simple 

reason is that a virtual environment is more easily controlled by the developer, which 

addresses possible issues that Python may present in respect to the management of 

dependencies.  

 

Having created the virtual environment and installed all the tools necessary for this process, 

we can proceed with the first major stop, which is the selection of images. To train the model 

and validate its function as a defect detection tool, 82 high quality images were provided, of 

certain aluminum products with different defects or no defects at all. The reason these images 

were used is simply because the creation of the model was concurrent with the design and 

assembly of the automated station, hence it could not be used to provide the necessary 

images. To recreate the model creation methodology presented in the current and following 

chapter, the images would otherwise be collected with the control software and the 

electromechanical assembly of the automated station.  

 

As mentioned in the previous chapter, this number of images would be immensely 

insufficient for the creation of a custom ANN model. It is, however, more than sufficient for 

the implementation of the transfer learning methodology that was previously illustrated. For 

transfer learning, the higher the number of training images, the better chances of producing 

an accurate object detection model. However, there is a threshold, since with more images 

provided, the time for the training of the model, even with transfer learning, rapidly 

increases. A compromise is therefore required to minimize time demand yet achieve 

noteworthy accuracy. For this reason, from the 82 images provided, initially 15 were used 

for training and 10 were used for testing within the process of creating the model and the 

remaining were used for manual validation of the accuracy of the model.  

 

The images provided, as mentioned, were of extremely high quality. As it was stated in the 

previous chapter, the images at their current size, which is proportional to the quality, are 

unusable. An initial preprocessing of the images is necessary. By observing the images, it is 

apparent that the region of interest, in respect to defect detection, is in the middle of every 



image. A script is therefore created in Python that automatically crops every picture in a 

specific size enough to contain the region of interest. An image cropping resulting in a new 

image of 995x995 pixels is more than enough to include the region of interest, while 

accommodating for slight differences in the center alignment between the images provided. 

The main benefit is that the resulting images, that will ultimately be compressed to 320x320 

pixels to be inputted in the model, will include the region of interest yet only be compressed 

by approximately 67%, which should retain the majority of the detail of the defects to a more 

than acceptable degree.  

 

Having collected the images and separated them in three categories: training, test and 

validation, the next step is the labeling of the objects to be detected in each of the training 

images. At this point, a convention must be made in regards to what constitutes a defect of 

a product. Depending on the type of product examined automated station and the level of 

surface detail required by the application, a defect can be defined differently, so a case-by-

case approach is more logical. In our case study, since speed and accuracy are the main 

objectives, only the more visible and larger size defects will be labeled, as a proof of concept. 

As such, smaller surface defects such as minor cracks and pinholes are generally disregarded 

and only larger defects will be subjected to detection.  

 

Regarding cast aluminum products, there is a quite large number of different parameters that 

can result in the appearance of surface defects. from inconsistencies in the flow of the liquid 

metal during pouring, to defects on the die, to fluctuation in the temperature of the die or the 

cooling process of the cast item and many others. Defining the cause of a surface defect on 

an aluminum cast item is a highly technical skill that requires both extensive knowledge on 

the aluminum and its casting and equally extensive experience on the actual process. As such 

to classify the defects based on their cause would be nigh impossible, without lengthy 

feedback from a skilled person.  

 

Concurrently, a single label for defect detection could potentially pose an obstacle rather 

than simplify the defect detection process. The limited size of the dataset and the fact that 

there is a significant degree of visual difference between defects means that an attempt to 

categorize all defects under one label would make it difficult for the model to “define” 

through the training process what a defect is and how to detect it. With a large enough 

training data and a much lengthier training process, it would be theoretically possible for the 

model to reach a state where it could recognize defects despite their significant variance. 

This state, which in ML is referred to as Generalization, is a sought-after characteristic of a 

successful model. In the case of this application, however, with the limitations and 

constraints already mentioned, is it highly unlikely to achieve such a state for every defect 

present in the aluminum cast products.  

 

A much more realistic approach would be to categorize the different defects in a much 

broader, visual based way. By simply observing the defects it is apparent that they generally 

come into two distinct shapes, albeit with variations among them. These shapes are circular 

for defects akin to holes and curved lines for defects akin to cracks, and combinations of 

these two shapes. With all the above information regarding the nature of the defects, their 

variety and their most basic differentiations, the most suitable classification would be 

according to their shape, in order to facilitate the training of the model and achieve an ANN 

model capable of detecting defects of different classes, even at a most basic, proof-of-

concept level. By that accord, two classes of defects are created and are labeled as “Crack” 

and “Hole” in respect to which geometry of defect they are most similar to. 

 



The labeling process is quite straightforward and the most common process is with the use 

of an open-source tool, LabelImg (Yakovlev et. al., 2020) developed by Tzutalin. It is a 

graphical image annotation tool developed in Python with the use of the Qt framework, with 

annotation on images saved on XML files in PASCAL VOC form, a format commonly used 

for the labeling of images for ANN applications. It has a rather intuitive layout, within which 

the user imports an image, creates one or more labels in respect to the individual objects that 

the model will be trained to detect and then assigns these labels to the objects in the image 

with appropriate bounding boxes. The information on the location of the selected object 

within the image and the label of the object is saved on the XML files previously mentioned. 

It is a manual process, that for a large enough dataset would be extremely laborious, but 

necessary for the use of supervised learning models. The environment of the LabelImg is 

illustrated in the image below, as is the bounding box selection tool and the list of user 

defined labels.  

 

 
 

Figure 39: LabelImg image labelling environment  

Though it has not yet been mentioned, the process of collecting the images, separating them 

in appropriate files and utilizing the LabelImg tool to label them, need to be quite structured 

to proceed with the training of the model. In this context structured refers to the filing of 

each component, meaning images and appropriate .xml files with specific names and 

following a strict file structure in respect to the pathway of each file inside the virtual 

environment previously created. Deviation from this file structure, especially without full 

comprehension of the model training code, will result in errors during the process. By 

utilizing the Jupyter Notebook, the file structure can be somewhat automated and the 

accompanied highly presentable documentation, within the code file, making it easy to be 

adapted by anyone trying to train the model for a different set of products or defects.  

 

5.3 Training the Artificial Neural Network model 
 

With the images collected, labeled and placed on appropriate files, it is possible to proceed 

with the training of the ANN model. This process is developed in Python within the Jupyter 

Notebook station and consists of six main steps. These steps will be illustrated within this 

chapter with reference to the details relevant to the training of the model, rather than the 

process of the development. For the latter matter, the Jupyter Notebook file containing the 

training code includes documentation that makes editing the process for any other set of 

products possible.  

 



Firstly, as will the collection of the images, an automated process for the file structure and 

pathways is implemented. This process is rather critical to allow both the correct training of 

the model and the possible editing of the code in future applications. The setup process 

includes the creation of directories for the custom model, the pretrained model, all relative 

workspace subdirectories required for the creation of the model and finally the pipeline 

configuration. By pipeline, in the field of ML, it is meant the end-to-end construct that 

orchestrates the flow of data into, and output from, a ML model. A final check is made to 

ensure that the above file setup has been established and the next step can follow.  

 

The next step of the process is the downloading and installation of the TensorFlow Model 

Zoo collection and the numerous required dependencies. While rather simple in its 

implementation, the volume of material required to be downloaded and installed on the 

virtual environment setup for this process, is both time consuming and in need for further 

inspection. A verifying script check for the correct completion of the process and for any 

dependency missing, manual installation must be done by the developer. The PIP package 

installer, which was already installed in the virtual environment, greatly aids at this process 

 

With the dependencies installed, the next step is to create the Label Map for the training of 

the model, which in simple terms is the list of different labels with which the objects, in this 

case the defects, will be classified with. Since, in the scope of this application only one type 

of defect is examined, shrinkage cavities, there is only need for one label. Attention must be 

paid, however, that the name used for this label is the same name used during operation of 

the LabelImg tool for the labelling of the training images, otherwise the training process will 

not occur. Following this, the TFRecord files for the training and testing dataset are created. 

The details of the contents of these files regard to the TensorFlow framework and need no 

further elaboration within the context of this application.  

 

Following, the pretrained model is reconfigured to achieve transfer learning. The update on 

the configuring of the pretrained model is mostly an automatic process following the 

configuration of the pipeline as was structured previously. The last step is the actual 

commands to initiate the training of the model, including the number of steps during training. 

In regards to the number of steps, the higher the number, the more time the training will take 

to be completed but during the recurring process of training the increased steps will more 

likely provide better results in respect to accuracy. Within the scope of this application, a 

number of steps equal to 2000 is deemed appropriate as anything much higher will greatly 

increase the required time for training, partly due to the capabilities of the hardware 

 

Upon completion of this process, the output includes an abundance of information relevant 

to the performance of the model during training, both regarding the time required for 

detection and its performance in respect to accuracy. These metrics and all others provided 

by the TensorFlow framework, will be examined in the following chapter.   

 

 

5.4 Evaluation of the Artificial Neural Network model 
 

As mentioned, the evaluation of the model is possible through certain metrics that are 

outputted after the training of the model is complete. This information is accessible to a 

degree from the command prompt within which the training process runs, but it is convoluted 

to a degree and difficult to be extracted in a cohesive way. The TensorFlow offers a much 

more comprehensive way to evaluate the performance of a model, following the training 



process, through a tool named TensorBoard (Mané, 2015). Amongst its many features, 

TensorBoard provides developers with measurements and visualizations needed to evaluate 

the loss and accuracy of a model.  

 

These two metrics are the main indicators of performance of a ML model. The accuracy of 

the model has been mentioned and briefly explained in an earlier chapter, but for the 

evaluation of the model to be possible, all relevant metrics will be introduced and thoroughly 

explained.  

 

As mentioned, the performance of an object detection ANN model is evaluated by a metric 

called Average Precision and most often by the Mean Average Precision (Anwar, 2022). It 

is impossible to elaborate on the meaning of this metric without introducing other metrics 

relevant to it and to detection and localization algorithms. Furthermore, it should be stated 

that the mean Average Precision (mAP) is not a metric covering the performance of a model 

for all of its classes simultaneously, rather than a class-by-class metric. To introduce the 

metrics relevant to mAP the following graph helps illustrate the relationship between them. 

 

 

 
 

Figure 40: mAP calculation flowchart 

 

Following the flowchart above, the introduction of each metric relevant to the evaluation of 

the model will be made, starting from the bottom of the chart. 

 

1. Intersection over Union (IoU): 

IoU quantifies the closeness of the two bounding boxes (ground truth and prediction). It's a 

value between 0 and 1. If the two bounding boxes overlap completely, then the prediction is 

perfect and hence the IoU is 1. On the other hand, if the two bounding boxes don’t overlap, 



the IoU is 0. The IoU is calculated by taking the ratio between the area of intersection and 

the area of the union of two bounding boxes as shown below. 

 

 
Figure 41: Intersection over Union (IoU) 

 

2. True Positive, False Positive, False Negative: 

A prediction is said to be correct if the class label of the predicted bounding box and the 

ground truth bounding box is the same and the IoU between them is greater than a threshold 

value. 

 

Based on the IoU, threshold, and the class labels of the ground truth and the predicted 

bounding boxes, we calculate the following three metrics 

● True Positive (TP): The model predicted that a bounding box exists at a certain 

position (positive) and it was correct (true) 

● False Positive (FP): The model predicted that a bounding box exists at a particular 

position (positive) but it was wrong (false) 

● False Negative (FN): The model did not predict a bounding box at a certain position 

(negative) and it was wrong (false) i.e., a ground truth bounding box existed at that 

position. 

● True Negative (TN): The model did not predict a bounding box (negative) and it was 

correct (true). This corresponds to the background, the area without bounding boxes, 

and is not used to calculate the final metrics. 

 

3. Precision, Recall 

Based on the TP, FP, and FN, for each labeled class, we calculate two parameters: precision 

and recall. 

● Precision: tells us how precise our model is i.e., from the total detections made by 

the model, how many were actually true detection, meaning in this application actual 

defects. Hence, it is the ratio between the true positive and the total number of defect 

predictions (equivalently the sum of true positive and false positive) made by the 

model as shown below. 

● Recall: Tells us how good the model is at recalling classes from images i.e., out of 

total defects in the input image how many was the model able to detect. Hence, it is 

the ratio between the true positive and the total number of ground truth defects 

(equivalently the sum of true positive and false negative) made by the model as 

shown below. 

 



 
Figure 42: Precision and Recall in ML 

 

4. Precision-Recall Curve 

Ideally, we want both the precision and recall to be high i.e., whatever is detected is correct 

and the model can detect all the occurrences of a class. The value of precision and recall 

depends on how many true positives were detected by the model. Assigning a bounding box 

TP, FP, and FN depends on the following two things 

● The predicted label compared to the ground truth label 

● The IoU between the two boxes 

 

For a multiclass classification problem, the model outputs the conditional probability that 

the bounding box belongs to a certain class. The greater the probability for a class, the more 

chances the bounding box contains that class. The probability distribution along with a user-

defined threshold (between 0 to 1) value is used to classify a bounding box. 

 

The smaller this probability confidence threshold, the higher the number of detections made 

by the model, and the lower the chances that the ground-truth labels were missed and 

hence higher the recall (Generally, but not always). On the other hand, the higher the 

confidence threshold, the more confident the model is in what it predicts and hence higher 

the precision (Generally, but not always). We want both the precision and recall to be as high 

as possible, hence, there exists a tradeoff between precision and recall based on the value of 

the confidence threshold. 

 

A precision-recall curve plots the value of precision against recall for different confidence 

threshold values. With the precision-recall curve, we can see visually what confidence 

threshold is best for a given application.  

 

5. Average Precision 

Selecting a confidence value for your application can be hard and subjective. Average 

precision (AP) is a key performance indicator that tries to remove the dependency of 

selecting one confidence threshold value and its mathematical definition is the area 

underneath the Precision-Recall (PR) curve 

 

AP summarizes the PR Curve to one scalar value. Average precision is high when both 

precision and recall are high, and low when either of them is low across a range of confidence 

threshold values. The range for AP is between 0 to 1. 

 



 
Figure 43: Equation for the calculation of the Average Precision 

 

The actual calculation of the value of the Average Precision is possible though methods of 

numerical analysis, since the PR curve is drawn as connection of numerical values and is not 

the output of a specific function. Most common methods, especially for manual calculation 

is a rectangle approximation or interpolation and averaging.  

 

6. Mean Average Precision: 

AP value can be calculated for each class. The mean average precision is calculated by taking 

the average of AP across all the classes under consideration. i.e., 𝑚𝐴𝑃 =
1

𝑘
∗ ∑𝑘

𝑖 𝐴𝑃𝑖 

 

The process described throughs steps 1 to 6 to calculate all metrics regarding to the 

performance of the model is illustrated for contextual reasons, since the metrics mentioned 

above are outputted by the TensorFlow framework, at the end of the training of the model, 

through the TensorBoard tool for evaluation purposes. The mAP metrics for the training of 

the model, as outputted by Tensorboard are illustrated in figures 44 & 45.  

 

 

 
Figure 44: Recall of trained ANN 



 
Figure 45: Precision of trained ANN 

The two sets of graphs illustrated regard to the Recall and the Precision of the trained model, 

as these concepts have been defined above. Firstly, for both of these metrics, the horizontal 

axis regards to each step within the training process, a number that was inputted during the 

training setup of the model, that number being 2000. Only the value regarding the final step 

of the training process is plotted as it should represent the best recall and value attained by 

the model.  

 

Regarding the recall, the six figures represent, from left to right and from top to bottom, the 

average recall for 1, 10 and 100 detection and the average recall of small (area<322 pixels), 

medium (322 pixels<area<962 pixels) and large objects (962 pixels<area<100002 pixels) for 100 

detections. It is rather evident from these graphs that the recall of the model is stable, as the 

value of the Average Recall is similar for 10 and for 100 predictions, however the model is 

completely insufficient in recalling defects of smaller size but sufficient to a degree in the 

prediction of medium and larger size defects. The value for the latter defects is definitely 

low enough to require further optimization but it definitely establishes the capability of the 

model to recall classes from images 

 

Regarding to the precision of the model, the graphs represent on the top, the precision of the 

model (mean Average Precision – mAP), for small, medium and large objects and on the 

bottom the mAP over classes averaged over IOU thresholds ranging from .5 to .95 with .05 

increments, at 50% IOU and at 75% IOU.  All the mAP values depicted indicate that the 

model is far from optimized, as it is evident by the fact the mAP value for the model on the 

COCO database was 0.22. Less than half of this value is reached for the trained model of 

this application and it is only exhibited in the larger objects, with medium objects having an 

even lower value and smaller objects being completely insufficient. Additionally, the higher 

value of mAP averaged over IOU and at 50% IOU contrary to the mAP at 75% IOU, further 

indicates that the model has limited capabilities in detecting the complete area of the defects 

Since the existence and not the complete identification of the defect is the main role of the 

trained model within this application, that is not a concerning matter, but definitely one that 

could benefit from further optimization.  

 

The optimization of the trained model in respect to its precision and recall, will be thoroughly 

explained, with reference to the values of these graphs and their interpretation above, in a 

latter chapter.  



 

Another metric provided by the framework is the loss functions of the model. In contrast to 

the other metrics mentioned above, the loss functions are calculated during the training rather 

than during the evaluation of the already trained model. Even so, they provide valuable 

feedback, since they are the only metric that provides information on the actual training 

process, rather than its output, being the already trained model.  

 

Loss, or the often-interchangeable term Loss functions, is as the latter name implies a 

category of functions that are used extensively in the field of statistics to determine, in plain 

terms, how close a predicted value is to the true value. Within the field of ANNs, their role 

is very important as, during the training process, with every prediction (step) the loss 

function calculates, within a single value, the error of the prediction as defined above and 

provides it as an input to the next prediction in order to minimize it. This cyclic process is 

the core of the training of the model.  

 

There are several loss functions used in statistical modeling and by extension ANN. They 

range in complexity from as simple as a Mean Absolute Error to more complex like the 

Categorical Cross Entropy Loss and Hinge Loss. Not every loss function is suitable for every 

predictive model, including ANNs and the suitability is a highly technical matter that 

requires both proper education on the subject and experience on the field, as both the 

application and the data it includes affect the final choice in loss function. Within the scope 

of this application the loss function for the training of the model is inherited by the pretrained 

model used for transfer learning.  

 

The Tensorboard tool exports graphs illustrating the loss calculated for each step of the 

process, providing not only the total loss but even more specific data for loss, such as the 

classification loss, the localization loss and the regularization loss. The first two are self-

explanatory and the latter regards the loss function on the regularization, which is a technique 

used in ML, to tune a function or a model by adding an additional penalty term to the error 

(or loss) function ultimately aiding the model to achieve generalization. The four Loss 

metrics, the classification, localization, regularization and the total, as exported by 

Tensorboard, are illustrated in figure 46.  

 



 
Figure 46: Loss function values during training of ANN 

The most important feedback from these graphs is the trend by which the values are changing 

over each step of the training process. A successful ANN model, would exhibit a decline in 

the values of the loss functions with each step of the training, which is indeed the case for 

this model, but these values would eventually stabilize around a much smaller range of 

values. This is not the case for this model, as there is no stabilization evident in any of the 

loss functions. That is indicative of a model that has been trained with not enough steps. This 

and other parameters of the training process that would lead to a much more optimized model 

will be explained in a latter chapter.  

 

5.5 Integration of Artificial Neural Network model on a GUI 
 

There are many implementation methodologies available due to the capabilities provided by 

the TensorFlow framework. Since, within the scope of this application, there are no specific 

requirements for the deployment of the ANN model, a more general approach will be 

illustrated within this chapter.  

 

In most cases, where there is camera feed within an application, the ANN model is integrated 

in the function of the camera feed. There, within each image received sequentially by the 

camera, the ANN model tries to detect the objects it has been trained to detect. With a rate 

of 24 frames per second, meaning a new image input every approximately 42 milliseconds, 

a model that runs in any time less than that can theoretically detect objects seamlessly. Why 

this is theoretical is because it assumes that no other functionality is undertaken by the 

program while the image collection and object detection run, which in any application, but 

the simplest ones, is not true.  

 

The result is quite visible in systems with hardware of relatively low specifications, as any 



attempt to integrate the ANN model to a slightly complex GUI and control software results 

in intense lagging, to the extent that it renders the whole application inoperable. Referring 

back to the relevant chapter on the GUI and the way it operates, any lagging introduced to 

the loop can inadvertently cause the GUI to crash and the application to terminate 

unexpectedly. Unexpected crash, within the scope of this application, requires a reboot of 

the control software with the added time consumption for a full homing operation, as the 

position of the camera within the working area of the automated station is not saved without 

explicit command from the user or during normal shut down process. For all these reasons, 

an unoptimized ANN model integrated in the control software, running simultaneously with 

the camera feed, is deemed unnecessarily risky. Such integration can be easily accomplished 

once optimization of the model is complete and use of high specification hardware is 

possible.  

 

 To avoid the risks mentioned above and since there is no immediate demand by the 

application for live detection of defects, during every moment of operation of the automated 

station, an alternative approach has been implemented. An additional GUI was created, 

within which the ANN trained model has been integrated. The process for the creation of the 

additional GUI is no different in concept than the one described in chapter 4 of the present 

thesis, but significantly simpler. The only elements required in the Defect Detection GUI 

are: 

● a loading button to allow the user to load an image taken by the camera using the 

“Photo” button of the control software GUI or any other external image file  

● a cropping button that allows the user to focus the detection process on a specific 

part of the image, thus allowing for better accuracy of the prediction 

● and lastly, a detection button to initiate the defect detection process by the model.  

 

Following the process illustrated in an earlier chapter, the GUI is created in Qt Designer, 

exported, converted in python script format, the buttons are connected to their appropriate 

functions and a dark theme is applied to the GUI. The functions for the loading of the file 

and the cropping of the image are quite simple to be implemented in Python and will not be 

further explained. In regard to the implementation of the detection function, the image path 

is inputted, the image file subjected to detection is accessed using the OpenCV library, then 

the image is converted into a matrix using the NumPy library and the resulting matrix is 

converted to form recognized by the model. The detection is then initiated and which outputs 

the bounding boxes and the labels. These two elements are then placed on the original image, 

which is then plotted using the Matplotlib library. The GUI with an example of an image 

with defects detected is illustrated in figure 47.  

 



 
Figure 47: GUI for defect detection 

 

 

  



6. Conclusions and suggestions for further research 
 

With the completion of the design and construction of the automated station, the 

development of the control software and the training, evaluation and implementation of the 

ANN model for defect detection, we can proceed with the individual examination of the 

capabilities and possible flaws of each component and the overall system. In continuation to 

the sequence by which the individual parts of the system were presented in the previous 

chapters, the conclusions for each subsystem have been separated in regards to the physical 

subsystem, meaning the electromechanical assembly, the control software and the defect 

detection ANN model. Each subsystem will be examined in the following chapters.  

 

6.1 Functionality of automated station 
 

In regard to the mechanical system, following the assembly of all mechanical parts, no issues 

have been presented to indicate the necessity for any change, major or minor. A few 

suggestions can be made nevertheless.  

 

As mentioned in the relative chapter, the automated station, and more specifically its frame, 

is secured by 90-degree corner brackets, fixed in place using bolts and T-nuts. At the 

moment, no issue has risen with the integrity of the construction. However, the existence of 

moving parts on the frame and the resulting vibrations from the acceleration and deceleration 

of these parts, can potentially be problematic in the future. These vibrations can cause the 

bolted connection to loosen in time, thus allowing a degree of relative motion, even in the 

millimeter scale, between the individual parts of the frame. This relative motion can cause 

anything from increased vibration of the frame to misalignment of the axis. The former could 

range from an inconvenience to the user to further loss of fixture in bolted connections. The 

latter, depending on the severity, can cause loss of accuracy to the movement of the camera 

to increase and put stress on other mechanical components of the assembly even to the extent 

of resulting in failure of a mechanical part.  

 

The potential issues of the bolted connections can be easily resolved with the use of chemical 

adhesive agents, commonly referred to as thread lockers, that spread between the threads of 

the bolt and the nut, bonding them together in a much more secure manner. In addition to 

this, it is highly recommended that aluminum extrusions are placed diagonally in the lateral 

sides of the statical frame that are not used for access to the working area of the automated 

station. This recommendation aims to increase the stability of the overall construction, such 

that even in a case were some of the bolted connections are loose enough to allow for relative 

motion, the diagonal aluminum extrusions resist any relative motion, thus preventing the 

overall frame from being in any way slanted or misaligned.  

 



 
Figure 48: Proposed design with diagonal aluminum extrusions 

 

In regard to the electrical system, no issues have risen during the operation of the automated 

station. Any suggestions made would have to be relative to the ease of use of the system 

rather than the performance of its functionality. One such suggestion would be the use of a 

microcontroller with Wi-Fi capabilities, such as the ESP32 microcontroller, thus allowing 

the user to operate the automated station remotely and without a computer directly connected 

to the overall system.  

 

Another suggestion, which has already been scheduled to be integrated but exceeded the 

scope of this thesis due to time constraints, is the installation of a light source. A light source 

would be greatly beneficial to the quality of the images taken by the camera. Additionally, 

images of the same item taken with a light source from different angles could result in better 

detection.  

 

In the case of a single light source, the implementation is quite simple, with a relay being 

connected to one of the existing microcontroller’s free digital pins. The relay would have to 

be intermediate between the power line to the light source and be of the Normal Open (NO) 

type. Upon a relative command from the user through the GUI the microcontroller would 

signal the relay to close, thus allowing the light source to be fully powered. In this 

implementation no control over the intensity of the light source is possible through the GUI.  

 

In the case of multiple light sources in the perimeter of the frame or capability to control the 

intensity of one or more light sources, a second microcontroller would be required, as the 

first one has most digital pins used by other existing components. The two microcontrollers 

would have to be in communication, in order for the GUI to pass commands to the first 

microcontroller for translation and then to the second microcontroller for light control 

execution. For connection of a larger number of light sources to a microcontroller, a number 

greater than the digital pins of the second microcontroller, a multiplexing connection, such 

as charlieplexing, would have to be implemented.  

 

 

 

 



6.2 Functionality of control software 
 

The functionality of the control software has also been without any issues. Any further 

alterations or additions would serve to increase the ease of use, the aesthetics and perhaps 

the performance and efficiency of the GUI script, the latter being a matter of optimization 

within the scope of software development rather than a need that has risen from the operation 

of the GUI. At this point, since no such necessities have risen, no further elaboration on the 

optimizing of the control software code will be made within this chapter, as it would only be 

generic and unrelated to the objective of the application. 

 

As mentioned, with proper optimization of the trained ANN model, it would be possible and 

beneficial for the scope of this application, to integrate the defect detection model to the 

camera feed. It has already been thoroughly explained why only an optimized model would 

be recommended for integration, but even such a model needs only run when necessary to 

further facilitate a risk-free operation of the control software GUI.  

 

It is thus proposed to create a button that enables the model to run defect detection straight 

from the camera feed. This capability can be turned off during movements that occur outside 

a region of interest and be enabled once the camera is close enough to a region with potential 

defects. This process can be done manually by the operator of the control software. The only 

difference in implementation of the model in such a way with the way it implemented and 

illustrated on a previous chapter, is that instead of an image file being imported from a file 

path, processed an inputted to the model, the image file now comes directly from the camera 

feed with the use of the OpenCV library. All next steps of image processing, detection and 

update of the image with bounding boxes and labels remains the same, in terms of 

development.  

 

As mentioned in the relative chapter, the implementation of the control software regarding 

the functionality of the microcontroller is also remarkably successful within the scope of the 

application. A more common implementation would be the use of the GRBL Arduino Uno 

Shield, with the Arduino, the latter being uploaded with a GCode interpreter. That 

implementation would require most of the available memory of the Arduino Uno. As 

common an implementation as it may be, the limited available memory left for any other 

task is often the cause of issues in the correct execution of commands by the microcontroller 

and as a result an improper functionality of the system, in this case being the automated 

station. With the use of a microcontroller with more available memory, this implementation 

would perhaps be preferred for its popularity and much easier implementation, but would 

still not be a perfect match for this application or nearly as suitable as the one implemented.  

 

6.3 Performance of defect detection 
 

The performance of the model has been thoroughly explained using the appropriate metrics 

on the chapter illustrating the evaluation process of the trained ANN model.  As a proof of 

concept, it has been shown to be capable of detecting defects on aluminum products, but at 

its current performance level, it is not very probable that it would actually be deployed in a 

real-life application. However, certain changes in key parameters of the training of the 

model, could have resulted in a much higher accuracy.  

 

Firstly, in respect to the hardware used, a setup with a GPU is deemed necessary for such 

applications. Having completed the successful training of a model with the current 



specification, which lacks a GPU, it has become apparent that the training process is not only 

slower but even likely to fail, using only the CPU. This is a rather important observation, as 

many decisions made regarding the training parameters of the ANN model, were based 

around the minimizing of the time required for training, simply because a more extensive 

training could very realistically result in the CPU reaching its very limits for an extended 

period of time. In regard to the GPU required for such an application, there is really no limit, 

with the only suggestion being the use of one with a VRAM of at least 4Gb.  

 

Having established such a hardware setup, the most important training parameter that can 

increase the accuracy of the model is the number of the images used in training. Again, there 

is, theoretically, no limit to this number as the higher it is the better the model will become 

in detecting defects. Realistically, however, the time it would take to label these images 

manually would be a major obstacle, let alone the training process, which would be 

exponentially increased regardless of the hardware used. The use of transfer learning 

significantly brought down the number of images required for training and there is no 

specific rule of thumb for this number, however, based on the literature and suggestions from 

developers implementing ANN models with the process illustrated in the current thesis, the 

use of around 100 images for the training of each class would be ideal for this application.  

 

Having mentioned the classes of the ANN, it should also be noted that further examination 

into the correct distinction of the classes must be made. For the trained ANN model of 

chapter 5, the classes were defined in the most intuitive way possible, based on their shape 

i.e., long thin lines being cracks and rounded dents being holes. Further examination of a 

much larger training sample might reveal a more intuitive or better suited way to classify 

defects. A better classification, one that provides the most differentiation between the object 

of each class among all objects or lack thereof, will undoubtedly result in a more accurate 

ANN model.  

 

At the presentation of evaluation metrics of the trained model and more specifically of the 

output of the loss functions, it was noted that loss is reduced during the iterations of the 

training process and eventually its output stabilizes around a certain value. Since in the 

metrics regarding the output of the loss function for the trained ANN model of this 

application, the value output did not show any sign of stabilization and was still on a 

downward trend when the training was complete, is it quite apparent that more iterations of 

the training process were required. These iterations, referred to as steps, were selected to be 

2000. The small number of steps lead to a model prone to overfitting (Ying, 2018), meaning 

one trained to an extend on the training dataset, but highly ineffective on any other similar 

dataset. A better approach would have been the use of a bigger training dataset, which would 

then be separated into smaller groups of images (batches) and training process consisting of 

multiple passes through the entire dataset (epochs), This would result in a much more 

optimized model, one far less prone to overfitting.  

 

Lastly, should the implementations mentioned above do not result in high enough accuracy, 

a more drastic solution would be the use of an ANN model of different architecture. As 

mentioned in a previous chapter, the architecture of an ANN model can significantly impact 

its performance both in speed and in accuracy, with these two characteristics generally being 

inversely proportional. In case the speed of detection within an application is deemed 

secondary to the accuracy of the model, a different architecture than the one chosen in this 

application would have to be implemented. The SSD model used was a one stage detector, 

with relatively low-quality image input, resulting in a fast but generally low accuracy 

detection. For better accuracy, a model from the CNN family, with an image input of at least 



640x640 pixels, would be much more preferable, with a more likely candidate being the 

Faster-CNN, which has a respectable speed of detection. The creation of a model, with a 

more customized architecture and training, without transfer learning, from a dataset of at 

least 10000 images per class would ideally result in the greatest possible accuracy and speed 

of detection, however, its development and implementation would take immense resources 

and is therefore not recommended in any but the most demanding applications.  

  

  



References 
 

1. Advanced Connection Systems - JST catalogue Vol. 120e. (n.d.). Retrieved from 

https://www.jst.fr/doc/jst/pdf/jst-connector-catalogue-vol-120e.pdf 

2. Al-Saffar et. al. (2017). Review of deep convolution neural network in image 

classification. Jakarta, Indonesia: IEEE. doi:10.1109/ICRAMET.2017.8253139 

3. Amridesvar et al. (2020). Modeling phase distribution in build platform for. IOP 

Publishing. doi:10.1088/1757-899X/988/1/012047 

4. Anand, Sheila. (2019). A Guide for Machine Vision in Quality Control. CRC Press. 

doi:10.1201/9781003002826 

5. Anwar, A. (2022, 5 13). TowardsDataScience.com. Retrieved from 

https://towardsdatascience.com/what-is-average-precision-in-object-detection-

localization-algorithms-and-how-to-calculate-it-3f330efe697b 

6. Arief Wisnu Wardhana et. al. (2019). Stepper motor control with DRV 8825 driver 

based on square wave signal from AVR microcontroller timer. AIP Conference 

Proceedings 2094, 020015 (2019. doi:10.1063/1.5097484 

7. Atraszkiewicz et. al. (2020). Frictional Behaviour of Composite Anodized Layers on 

Aluminium Alloys. MDPI. doi:10.3390/ma13173747 

8. Badamasi, Y. A. (2014). The Working Principle Of An Arduino. Abuja, Nigeria: 

IEEE. doi:10.1109/ICECCO.2014.6997578 

9. Baluta, G. (2007). Microstepping Mode for Stepper Motor Control. Iasi, Romania: 

IEEE. doi:10.1109/ISSCS.2007.4292799 

10. Berger, C. (2018). Conception de la structure d’une machine de vision par 

ordinateur. National Technical Univeristy of Athens, Manufacturing Technology 

Devision. Athens, Greece: National Technical University of Athens. 

11. Culjak et. al. (2012). A brief introduction to OpenCV. Opatija, Croatia: IEEE. 

doi:CD:978-953-233-072-4 

12. Duan et. al. (2019). CenterNet: Keypoint Triplets for Object Detection. Proceedings 

of the IEEE/CVF International Conference on Computer Vision (ICCV). 

13. Euro-bearings.com. (n.d.). Euro-bearings.com. Retrieved 10 2022, from 

https://www.euro-bearings.com/bushingsgeneral.html 

14. Goldsborough, P. (2016). A Tour of TensorFlow. Technische Universität München, 

Fakultät für Informatik. doi:10.48550/arXiv.1610.01178 

15. Hanson Technology - GX Aviation Connector Datasheet. (n.d.). Retrieved from 

https://www.handsontec.com/dataspecs/connector/GX16.pdf 

16. Hasan et. al. (2018). Implementation and Manufacturing of a 3-Axes Plotter Machine 

by Arduino and CNC Shield. Al-Najaf, Iraq: IEEE. 



doi:10.1109/IICETA.2018.8458071 

17. Hechtel, K. (2021). PLASTIC MATERIALS FOR FRICTION. Curbell Plastics, Inc. 

18. Jianglin Huang. (2015). An empirical analysis of data preprocessing for machine 

learning-based software cost estimation. Information and Software Technology. 

doi:10.1016/j.infsof.2015.07.004 

19. Juan Du. (2018). Understanding of Object Detection Based on CNN Family and 

YOLO. Hong Kong: IOP Publishing Ltd. doi:10.1088/1742-6596/1004/1/012029 

20. Kaiji Sato et al. (1995). Control and Elimination of Lead Screw Backlash for Ultra-

Precision Positioning. JSME International Journal. doi:10.1299/jsmec1993.38.36 

21. Knörig et. al. (2009). Fritzing: a tool for advancing electronic prototyping for 

designers. Potsdam, Germany: TEI '09: Proceedings of the 3rd International 

Conference on Tangible and Embedded Interaction. doi:10.1145/1517664.1517735 

22. LeCun et. al. (2015). Deep Learning. Macmillan Publishers Limited. 

doi:10.1038/nature14539 

23. Locke, D. (2008). Guide to the wiring regulations: IEE wiring regulations (BS 7671: 

2008). John Wiley & Sons. 

24. Lohia et. al. (2021). Bibliometric Analysis of One-stage and Two-stage Object. 

Library Philosophy and. 

25. Long et. al. (2017). Accurate Object Localization in Remote Sensing Images Based 

on Convolutional Neural Networks. IEEE. doi:10.1109/TGRS.2016.2645610 

26. Mané, D. (2015). "TensorBoard: TensorFlow’s visualization toolkit, 2015.".  

27. Mezei. (2017). Cross-platform GUI for educational microcomputer designed in Qt. 

IEEE East-West Design & Test Symposium (EWDTS). 

doi:10.1109/EWDTS.2017.8110109 

28. Prodanov et. al. (2022). Reliability of low-power stepper motor drivers. Department 

of Electronics, Faculty of Electrical Engineering and Electronics, Gabrovo, Bulgaria. 

doi: 10.1109/ET55967.2022.9920214 

29. Schneider Electronics. (n.d.). Nema 17 - Datasheet. Retrieved from 

https://datasheetspdf.com/pdf-file/1260602/Schneider/NEMA17/1 

30. Smid, P. (2000). CNC Programming Handbook: A Comprehensive Guide to 

Practical CNC Programming. Industrial Press Inc. 

31. Van der Walt et. al. (2019). PLA as a suitable 3D printing thermoplastic for use in 

external beam radiotherapy. Australas Phys Eng Sci Med. doi:10.1007/s13246-019-

00818-6 

32. VCalc. (2022). https://www.vcalc.com/wiki/vCollections/Leadscrew-Torque-lift. 

Retrieved 10 2022, from https://www.vcalc.com/wiki/vCollections/Leadscrew-

Torque-lift 



33. Venkat Sai. (2017). A Critical Review on Casting Types and Defects. Telangana, 

India: Print ISSN. doi:10.32628/IJSRSET1732150 

34. Wei Liu et. al. (2016). SSD: Single Shot MultiBox Detector. Lecture Notes in 

Computer Science(), vol 9905. Springer, Cham. doi:10.1007/978-3-319-46448-0_2 

35. Weiss, et. al. (2016). A survey of transfer learning. J Big Data. doi:10.1186/s40537-

016-0043-6 

36. Willman. (2022). Beginning PyQt: A Hands-on Approach to GUI Programming with 

PyQt6 (2nd Edition ed.). Sunnyvale, CA, USA: Apress Berkeley, CA. 

doi:10.1007/978-1-4842-7999-1 

37. Yakovlev et. al. (2020). AN APPROACH FOR IMAGE ANNOTATION 

AUTOMATIZATION FOR ARTIFICIAL INTELLIGENCE MODELS LEARNING. 

doi:10.20535/1560-8956.36.2020.209755 

38. Ying, X. (2018). An Overview of Overfitting and its Solutions. IOP Publishing Ltd. 

doi:10.1088/1742-6596/1168/2/022022 

39. Zhong-Qiu Zhao et. al. (2019). Object Detection With Deep Learning: A Review. 

IEEE. doi:10.1109/TNNLS.2018.2876865 

 

 

  



Annex A – CAD Designs of 3D printed parts 
 

 
 

Part 1: Connection part between X-axis motion system and Y-axis sub-assembly.  

 


