EONIKO METZOBIO NMOAYTEXNEIO
AIATMHMATIKO NMPOTPAMMA METAMNTYXIAKQN ZMOYAQN
«ZYITHMATA AYTOMATIEMOY»

MeTtatrTuylakr Epyacia

Electromechanical design and assembly of an automated Quality Inspection
automated station and implementation of ANN based defect detection

HAekTpounyavoAoyikog aoxed1aouo¢ Kal KATAOKEUN QUTOUATOTTOINUEVOU OTABUOU
EAéyxou lMoiétnrag kai spappoyn eAéyxou sAarrwudrwy Baoiouévou os Texvnrda
Neupwvikd AikTtua

Z1Tupidwv Kavakakng

AOHNA 2022

EBvikO MeTooBlo MoAuTexveio
ZXO0AN MnxavoAoywv Mnxavikav,

Topeag TexvoAoyiag Twv KaTtepyaoiwv

Electromechanical design and assembly of an
automated Quality Inspection automated station and
implementation of ANN based defect detection

HAgkrpounxavoAoyiko¢ oxeSIaoOSC KAl KATAOKEUN
auroparorroinuévou oraluou EAéyyou loiotnrag kai
spapuoyn eAEyxou eEAarTwuarwy Baciouévou oE
Texvnra Neupwvika Aikrua

AinAwpaTikn Epyaacia

T0V

KANAKAKH A. ZIMTYPIAQNOZ

oTO TAOIG10l TOV

Alotpunpoatikot MetamtuylakoU Mpoypappatog
2rnouvdwv
«XuotApota AUTOUOTIOMOU »

EruBAEnwy : MANQPIOZ MMENAPAOZ
Entikoupog KaBnyntng

Eykp(Bnke amo TNV TPLUEAN EEETOOTLKI ETILTPOTIN TNV eevrrreeeenrreerereereeas

(Yroypacpri) (Yroypaeri) (Yroypaeopri)

ABrjva, Oktwpplog 2022

EBvikO MeTooBlo MoAuTexveio
ZX0AN MnxavoAdoywv Mnxavikwy,

Touéag Texvohoyiag Twv KaTtepyaoimv

Copyright Oc — All rights reserved. Me tnv emidpUAaén mavrog Sikalwpatos. Znupidwv Kavakakng, 2022.

AnayopeUetal n aviypadr, anobnkeuon Kot SLavopn TG Mapouoag epyaciag, €§ oAOKANPOU 1 TUALOTOG
QUTAG, YLt EUTIOPLKO oKOTO. Emttpenetal n avatunwon, anodrkeuon kat Stdvo-

Un yla oKomo 1N KEPSOOKOTIKO, EKTIALSEVTIKAG 1 EPELVNTIKAG GUONG, UTIO TNV IPoUToBeon va avadEpeTal n
TtNYN TPOEAEUONG KAl VO SLATNPELTOL TO TAPOV VUL

To meplexOUeVo aUTHG TG gpyaciag Sev annyxel anapaitnta Tig anoyelg tou Tunuatog, tou EmPAénovta, 1
TNG EMLTPOTIAG TIOU TNV EVEKPLVE.

AHAQZIH MH AOTFOKAOMHZ KAl ANAAHWHZ NMPOzZQMNIKHZ EYOYNH2

Me mARpn EMlyvwon TwWV CUVETELWY TOU VOUOU TEPL MIVEULOTIKWY SIKALWHATWY, SnAwvw gvunoypadwg otL
elpat amokAeloTikOg cuyypadEag tng mapovoag Mruxlakng Epyaociag, yia tnv oAokArpwaon tng onolag kabe
BonBela elvatl TARPWE avayvwpLopévn Kat avadEpetal AEMTOUEPWE aTNV epyaocia auth. Exw avadépel mAnpwg
Kol pe oadeic avadopég, OAeg TIg nyES xpriong dedopévwy, andPewv, BEcewv Kal MPOTACEWY, LEEWV Kal
Aektikwv avadopwyv, eite katd KuploAe€ia eite Pdacel emotnuovikng mapddpaocns. Avalaupavw tnv
T(POOWTILKN KOl ATOMLKN) €uBUvn OTL og Mepimtwon amotuxiag otnv uAomoinon Twv avwtépw SnAwBEéviwy
oToLKElwV, elpat urtdAoyog évavtl AoyokAOTIC, yeyovog Tou onpaivel anotuyio otnv Mtuxlakn pou Epyaocia
KOl KOTAL CUVETIELDL amoTuXia ardKTnong tou TitAou Imoudwy, MEPAV TWV AOLTWV CUVETELWY TOU VOUOU TEpL
TIVEUMATIKWY Slkolwpdtwy. AdSnAwvw, ouvenwg, OtL auti n MNtuxwakn Epyacia mpogtoludotnke Kal
0AOKANPWONKE Ao gUEVA TIPOCWTILKA KO OTTOKAELOTIKA KAl OTL, avaAdUBAvwW MANPWG OAEG TIG CUVETIELEG TOU
VOLLOU OTNV TIEPLITTWON KATA TNV omnola amodeiyBel, SLaxpovikd, OTLn epyacia auTh i TUAKA TNG SEV LOU OVAKEL
S10TL gival mpoiov AoyokAomr ¢ GAANG VEU LATLKAC LSlokTnolag.

(Yroypaeri)

Kavokakng Znmupidwv

MepiAnyn

216%0¢ ™G TaPpoHoOS SUTAMUATIKNG EPYACiNG Elval 0 NAEKTPOUNXAVOLOYIKOS GYESOGUOG
KOl 1 KOTOOKELY EVOG ovTopaTomompuévov otadpod EAéyyov Tlowdtnrog kot n epapproyn
EAEYYOL EAUTTOUATOV Pociopévoy oe TeVNTO veupmvikd diktoa. To mpoPAnua mov
OTOYEVEL VO EMAVCEL TO TPOTEWVOUEVO GUOTNUO EIVOL 1) EVEOUATMOOT] GUTOLOTOTOUUEVOL
OULGTNLOTOG TTOLOTIKOV EAEYXOV, PACIGUEVOV GE OTTIKN €£(0000 OEOOUEVDV, WE LEWOUEVT
TOAVTAOKOTNTO GTO GYEOIOUO KOl EVOMUATMOON GE U0 YPOUUN Topaywyns, Alyotepo
TEYVIKA OTOLTNTIKO OTNV €QPOPHOYT TOL KOl 6€ KOmOolo Pabud otkovopikd mpoocitd, o€
GUYKPIOT LE TO VILAPYOVTIO GLUGTLOTO TOV £XOVV EPOUPUOCTEL O YPOLUUES TOPAYDYTG.

Q¢ mpoc TV dadiKacio Tov aKoAoLONONKE, apyKd, OLOKANPOONKE O PNYOVOLOYIKOG
OYEOIGOC TOV GUOTNUOTOS, GULUTEPIAAUPOVOUEVOL TOL SOUIKOV TANUGIOV Kol TV
CLUOTNUATOV HETASOONG KIVoNg Kol GUVOPUOAOYNONKAY OAOL TO pMYOVIKE HEPM. XN
GUVEYELDL OAOKANPOONKE 0 NAEKTPOAOYIKOG GYESIOGLOG TOV OVTOUOTOTOUEVOD GTOOLOV,
ocoumepAapUPavopévng ™G EMAOYNG KWNTHPWV, TOV GYESOGUOD TOL MAEKTPIKOV
KUKADLOTOG Y10 TOV EAEYYO0 TOV 6TAOHOD Kot OA®V TV TPOGHET®V NAEKTPIKAOV LEPOV KO
KOA®OIOV 7OV AmOITOVVTOL Yl TN OWOTH Agtovpyio. TOL OTOOHOV. XTn GLVEXELWN
OAOKANPMOONKE 1 GLVOPUOAOYNOT TOV MNAEKTPIKOV HEP®V €ML TOV MANIGIOL Kol T®V
LUNYOVOLOYIKMY VTOGVLGTNUATOV.

[TapdAinia, avartoyOnke o AOYIGUIKO EAEYYOL TOV CVTOUATOTOMUEVOL GTOOHOV. AVTI N
dwdkacio meptAdpuPove v avartuén tov Ipapucod TlepiPdiiovtog Aernagng Xpnot,
TOL AOYIGHIKOV EAEYYOV KIVONG TOV GLGTIHLOTOS, CUUTEPIAAUPOVOUEVNG TG TPOPOOOGIaG
EWoOvVag amd TV KAuepas, €vog ypagnuatog Béong tng kauepoc kot €va mapdbupo
KATOYPOONS COUAUATOV Kal, TEAOC, TOV TPOYPOUUOTIGUO TOL UIKPOEAEYKTH, O OMOI0G
Aertovpyel pecorafel pETOEL TOL AoYiGHIKOD €AEéyyov Kivnomg Kol OPICUEVAOV
NAEKTPOAOYIKDV LEPDV.

Avantoydnke emiong éva poviélo eAiéyyov elattopdtov mov Poaciletor oe Teyxvmtd
Nevpovikd ATKTLOo Y10 TNV avVOyvOPLoT EAOTTOUAT®OV GE OVTIKEILEVA OO YVTO QAOLLIVIO.
O 6K0mOG 0VTOL TOL LOVTEAOV NTAV VO ETPEPLDGEL TN AEITOVPYIO TOL AV TOUOTOTOUEVOD
010000 ®G HECO EPAPOYNG TOLO0TIKOV EAEYYXOV. [l TV avdmtuén tov, apyikd emALyOnke
N OPYITEKTOVIKY TOV HOVTEAOV, OKOAOVONGE 1) ETIAOYN KOL 1] EXICHUOVOT TOV EIKOVOV Y10
eVOG GLVOAOL E€IKOVOV YO TNV €KTOIOELON TOV HOVIEAOL KOl OTI GLVEYELL
TPOYUOTOTOONKE 1) EKTAIOELOT TOV HOVTELOV. METE TV OAOKANPWON TNG EKTOUOEVOTG,
YPNOLOTOONKOV GUYKEKPIUEVEG LETPIKES Y10, TNV OEIOAOYNOT TNG ATOS0CTC TOL LOVTEAOV
KOl TOPOVGLAGTNKE 1 SL0dIKAGI0 EVOMUATMOONG TOV GTO AOYIGUIKO EAEYYOL TNG d1dTaéng.
Téhog, efetdotnke 1N AETOLPYIKOTNTO TNC MAEKTPOUNYOVOAOYIKNG SldTAENG KOl TOL
AOYIOUIKOO €AEyyov, KoODS kot 1 omddoon TOL EKTOOELUEVOL povtéAov Teyxvntov
Nevpovikod AktHov Kot £ytvay OploUEVEG TPOTAGELS Yid TN PEATIOOTN TOLG.

Aggaic Kheona

Avtopatomompévog otabudc, ‘Ereyyog Ilowdtdg, 'EAeyyog Zeoipndtov, Mnyovoroyuog
oyedoudc, pkpoeieyktng, Arduino, GRBL, Nema 17, T'pawd Tlepifariov Atemoepnc
Xpnotn, Qt5, pyQt5, OpenCV, matplotlib, Teyvntd Nevpwvikd Aiktva, Deep Learning,
SSD, TensorFlow, TensorBoard

Abstract

The goal of this thesis is the electromechanical design and assembly of an automated
Quiality Inspection station and the implementation of Artificial Neural Network based
defect detection. The problem the proposed system aims to resolve is the integration of
automated Quality Inspection system based on optical input with decreased complexity in
design and integration to a production line, less technically demanding in its
implementation and to a certain degree affordable, compared to the existing systems found
in production lines.

The mechanical design of the system was firstly, completed, including the structural frame
and the motion translation systems and all mechanical parts were assembled. The
electrical design of the automated station was then completed, including the selection of
motors, the design of the electrical circuit for the control of the station and all additional
electrical parts and wiring required for the proper function for the station. The assembly
of the electrical parts to the mechanical frame and sub-assemblies was then completed.
Concurrently, the control software of the automated station was developed. This process
included the development of the Graphic User Interface, the motion control software for
the control of the system, including the camera feed, a position graph of the end effector
and an error dialog and lastly, the programming of the microcontroller, which acts as an
intermediate between the motion control software and certain individual electrical parts.
An Artificial Neural Network based defect detection model was also developed to
recognize defects on aluminum cast items. The purpose of this model was to establish the
function of the automated station as a Quality Inspection system. For its development, the
model architecture was firstly chosen, followed by the selection and labelling of the
images for a training dataset and then the training of the model. After the training was
complete, certain metrics were utilized to evaluate the performance of the model and the
process of its integration was presented.

Lastly, the functionalities of the electromechanical assembly and the control software
were examined, as well as the performance of the trained Artificial Neural Network
model, and certain suggestions were made for their improvement.

Keywords
Automated station, Quality Inspection, Defect Detection, Mechanical Assembly, Arduino,
GRBL, Nema 17, Graphic User Interface, Qt5, pyQt5, OpenCV, matplotlib, Artificial
Neural Networks, Deep Learning, SSD, TensorFlow, TensorBoard

EuxaplioTieg

H ekmévnon kat ouyypaen tne¢ napovoas SUTAwUATIKAC epyaciac dev Sa umopouoe va
npayuatorolnVei ywpic tnv auéptotn otnpién tov emBAénovra Enikoupou Kadnyntn
kou. Mavwptlou Mrevapbdou. H kaBodriynon tou ota SLadIKAOTIKA KAl ETTLOTNIUOVIKA
nTnuatTa ToU IPAYUATEVETAL) mapoUoa Epyacio UtNPEE MOAUTIUN, OTTWC ETTIONG KAL N
Katavonon kat umopovr) mou emedelée otic SUOKOAIEC mMOU MPoEkuyav Kotd TNV
EKTTIOVNON TNG MOPOUCAC.

Table of Contents

TADIE OF FIGUIES ...ttt bbbt
I 1011 €0 [1 o (oo USSP URURPRPRIN
1.1 Background
1.2 Problem Statement
2. Mechanical design of automated StAtIONcceierireiirerieee e
2.1 Design of structural frame
2.2 Design of motion translation system
2.3 Assembly of mechanical parts
3. Electrical design of automated STatioNccceeieiieieiiie i
3.1Selection of electric motors
3.2Design of the electrical circuit for the control of the electric motors
3.3 Additional electrical parts and wiring
3.4 Assembly of the electrical circuit
4. Control software for the automated StatioN............ccovereriniiiiinee s
4.1 Graphic User Interface
4.2 Motion control of the automated station
4.3 Programming the microcontroller
4.4 Position graph, error dialog and camera feed
5. Implementation of defect detection using Artificial Neural Networks..........c.cccccovennne.
5.1 Artificial Neural Network architecture
5.2 Selection and labeling of images
5.3 Training the Artificial Neural Network model
5.4 Evaluation of the Artificial Neural Network model
5.5 Integration of Artificial Neural Network model on a GUI
6. Conclusions and suggestions for further reSearch...........c.ccoocvee i
6.1 Functionality of automated station
6.2 Functionality of control software
6.3Performance of defect detection
R (=] 1] 0TSSR
Annex A — CAD Designs of 3D printed Partscccccevveieiieneeie e

Tab

le of Figures

Figure 1: Iimplementation of Computer Vision based Quality Inspection...............ccccvenue.n. 17
Figure 2: Integration of high-quality cameras for quality iNSPection.cccoceveiiereennene 17
Figure 3: 3030 Aluminum extrusion with dimensions iN MMcccvievenierieene e 20
Figure 4: Final assembly of previous deSignccooviiiiieieiieiiereeie e 21
Figure 5: Design of 3D printed part for mobility..........c.cccooiiieiiei 21
Figure 6: Freebody diagram of z-axis sub-assemblyccccoviieiiniiiiencse e 22
Figure 7: FINal 3D CAD GESIONviivieiieieeieesie et ste et te et sra e te e eeste e e staesse e e nneenee e 24
Figure 8: Lead SCreW aSSEMDBIYcc.voiiiiiiieiece et 25
Figure 9: Motion translation system for X, Y and Z aXiScccccceevvevveiieeneniesieese e, 26
Figure 10: Final mechanical assembly ..o 27
Figure 11: Brushed and brushless dc MOtOr...........cccvvieiieii e 28
Figure 12: Servo motor — Operating principal diagram............ccocveiveieieiinenenese e 29
Figure 13: Stepper motor — operating principal diagram...........ccccevveieiieeneiie e 29
Figure 14: Nema 17 StEPPEI MOTOT ...c..oiviiuirieiiiiiieiieiee ettt 30
Figure 15: Nema 17 manufacturer specifications (Schneider Electronics)cccccevvenen. 32
Figure 16: DRV8825 Motor driver breakout board.............c.ccceeviiiiiiiii e 33
Figure 17: Arduino Uno development Doard............ccooeveiiiiiiiiiiiccee e 34
Figure 18: Arduino GRBL V2 Shield attached to an Arduino UNnoccccevviieiieiiiecninnns 34
Figure 19: Power supply UNit 12V, BA ..o 35
Figure 20: ENASIOP SWILCH ...cc.vviiiiiie e 36
Figure 21: JST and GX4 CONNEBCIOISccueiuiiieriieieeiieieie ettt bbbt 37
Figure 22: Fritzing electronics diagram........c.coiveiiieiie it 38
Figure 23: 3D printed enclosures for Arduino and PSU............ccoeveiiineininencienceeeenes 38
Figure 24: Final assembly of automated station - Photographs...........ccccoveviiiiiiiic e 38
Figure 25: Control software fIOWChart...........c.coiiii e 39
Figure 26: Qt deSigner ENVIFONMENTc.eiiiieiieiie ettt sraesaeenree s 41
Figure 27: Manual Control GIOUPooeiiiiiiiieieie et 42
Figure 28: Input Control and Main DULEONSccceeiiiiiiiiic e 42
Figure 29: LCD displays fOr XY Z ..ot 43
FIgure 30: Tab WIAQEL ... ae et 43
Figure 31: GUI as seen in Qt Designer (left) and as exported from Qt Designer (right)44
Figure 32: Final GUI from Python SCIPL.........coviiiiiiic e 45
Figure 33: Slot and Signal graph of Qt framework.............ccocoveiiiiiiiieie e, 46
Figure 34: Compiled microcontroller code size on the Arduino IDE...........cccccoovevieiiieeinnnne 49
Figure 35: PoSition graph eXamPpPIeooiiiiiiiiieiee e 49
Figure 36: Error display during operation of the automated station.............c.cccoccvevveiieennnne 50
Figure 37: Transfer IEArNINGccooiiiiiii e 55
Figure 38: Benefits of transfer 1earningccceieeiii i 55
Figure 39: Labellmg image labelling environmentcccooiiiiiiicieiene e, 59
Figure 40: mAP calculation fIOWChart.............cove i 61
Figure 41: Intersection over Union (I0U) ... 62
Figure 42: Precision and Recall in ML ..o 63
Figure 43: Equation for the calculation of the Average PrecCiSion..........ccccccoeeeviverveicsnenenn, 64
Figure 44: Recall of trained ANNc.ooiiiie e 64
Figure 45: Precision Of trained ANN ..o 65
Figure 46: Loss function values during training of ANN ... 67
Figure 47: GUI for defect deteCtion..........coveieiiiiicie e 69
Figure 48: Proposed design with diagonal aluminum extrusions...........ccccceeeeviveienieseennn 71

1. Introduction

1.1 Background

Reliable and accurate quality control is an important element in industrial manufacturing.
The repetitive nature of the processes involved in quality control has resulted in the field
being one of the most automated, within the manufacturing world. However, with any
significant increase in the complexity of the product subjected to quality control or the
characteristics subjected to inspection, the overall processes become exponentially more
complex for an automated system to perform.

Manufacturing goods in general and more specifically metal casting, which will be examined
within the scope of this thesis, are subjected to quality control in search of certain
characteristic that divert from the required end product (Venkat Sai, 2017). One such
characteristic, specifically for cast items, is dimensional accuracy and is generally the easiest
to be automated with simple electromechanical additions within a production line. Another
one regards to the presence of defects in the surface of a product or a part of a product, such
as pinholes or cracks. One other kind of quality control regards the intended functionality of
the final product and can vary immensely between different products. As mentioned, the
detection of first kind of defect, the dimensional, has already been automated to a great
degree as a result of the rapid progress of manufacturing lines in the past century. The
detection for the latter two kinds has also been automated to quite an extensive degree,
especially during the past three decades, as computing technologies have provided way to
implement automation and cease to rely purely on the presence of human experts.

In respect to the detection of defects in manufactured products, the most utilized technology
is computer vision. There are several factors that make it an ideal technology for such
application. The most prominent would have to be its seemingly intuitive nature. Defect
detection at any product has been traditionally performed visually by highly competent
individuals that were very well versed to the manufacturing processes of a product and as
such could provide an accurate assessment on the existence of a defect and perhaps even the
source of the defect within the manufacturing line. The cumulative knowledge of these
individuals could not be utilized in the automation of these processes, if the transition was
not at some degree intuitive to the individuals themselves, which at the very least means
visual in nature. This is highlighted because there are numerous other defect detection
methodologies not visual in nature such as laser scanning, ultrasound etc. that are not as
intuitive as the purely visual observation.

The rapid advancement of Computer Vision (CV) during the past years has allowed for the
implementation of such control in manufacturing lines (Anand, Sheila, 2019). Even without
any quality inspection automation included in computer vision, an expert can assess the
quality of a product without being physically present in the production line, which at the
very least improves the working conditions of the individual and possibly increases the speed
of assessment.

Concurrently, the progress of object detection algorithms has been tremendous the past
twenty years (Zhong-Qiu Zhao et. al., 2019). These algorithms, which will be thoroughly
explained in a later chapter, belong to the field of Artificial Intelligence (Al) and more
specifically the field of Machine Learning (ML). The latter field has experienced astonishing
progress within the last decade, both regarding its capabilities and the ease by which it can

be implemented, despite its high complexity. It is, thus, far from novel to see quality control
being implemented in manufacturing lines, with ML algorithms performing tasks, otherwise
performed by human experts, utilizing CV implementations.

Figure 1: /implementation f Computer Vision based Quality Inspection

These systems usually consist of high-quality cameras, fixed on a specific point in the
manufacturing line, feeding images, either continuously in live feed or in still frames, to a
computer which runs an object detection algorithm (Anand, Sheila, 2019). Upon detection
of a defect, the item is separated from the rest of the manufactured goods, either by labelling
or simply by being singled out from the line with some form of actuation. Such
implementations can also occur for packing and shipping of goods as well, or even at a
designated quality control stage during production.

Y/ / /
Figure 2: Integration of high-quality cameras for quality inspection.

These ML-enabled quality control systems, due to the complexity of these productions lines
as well as the complexity of the systems themselves, are in most cases custom built to fit a
specific production line of a specific product. Implementation of the hardware and more so,
the software of these systems, is a demanding task that requires significant resources in the
form of hardware specifications, highly skilled personnel and time required for the
development of custom object detection algorithms. As it will be thoroughly explained
further on, slight differences on the inputs of these algorithms or insufficient resources
available can render these algorithms insufficient in terms of speed and accuracy of
prediction to the point where their implementation cannot be justified.

Even if the resources are available and the implementation of a ML model is successful in
the quality control of a production item, any alteration in the conditions of the prediction can
render the model extremely insufficient. There are steps that can ensure the effectiveness of
a model within a much greater range of conditions, but these steps require a great level of
technical knowledge and in some cases even greater resources. It should be noted that the
immense progress in the field of ML the past decade has led to the creation of certain
development frameworks (Goldsborough, 2016) that make this process much less
complicated at a development level, however, proper utilization and optimization of these
algorithms still remains a highly technical matter.

In respect to the hardware, the requirements for its specifications vary depending on the
product and the production line. Cameras are in most cases implemented within the
production line on or near existing machinery equipment. Video or image feed is usually
transmitted to a nearby computing unit, which runs the ML algorithm that detect defects.
The computer, upon detection of a defect, responds in a pre-programmed manner. The
cameras used are usually of high quality of image and at a high enough frames-per-second
to keep up with the speed of the production line and their positioning is relevant to the stage
of the production line in which defect detection is implemented and is determined by each
application.

The result of this high degree of complexity, the hardware selection and specification, the
highly technical nature of ML development, integration, optimization and generalization and
the resulting resources required, both in time and in cost (Jianglin Huang, 2015), for the
overall systems, have been the reason why these automated quality control systems have
been used almost exclusively in high output production lines. For any other application, with
a smaller output, the costs for the integration of such systems usually rarely outweigh the
benefits, even in a long enough time frame.

1.2 Problem Statement

The limiting factors described in the previous chapter, impede the application of new
developments in the field of ML in the automation of quality control for low production
output. At this time, there are no commercial products available for integration in a
production environment that can accomplish this task, that include both hardware and
software.

Software frameworks, tools and solutions that enable the use of computer vision and ML in
quality control operations do exist, however these do not come in the form of a product that
integrates all the required hardware with the software. Furthermore, the software mentioned
either requires a certain degree of coding experience, ML knowledge and hardware
integration skills or in most cases is costly.

A demand therefore rises for the development of an integrated solution of ML integrated
quality control for low production outputs that is of decreased complexity in its design and
integration to a production line, less technically demanding to implement and to a certain
degree affordable.

The proposed solution, which is the subject of the current thesis, is the electromechanical
design and assembly of an automated station that can control the movement of a high-quality

camera within its working area, in order to capture images of products, which will then be
subjected to defect detection.

The electromechanical design of this station should be robust enough to ensure proper
function and capability of integration to a variety of production environments, yet with
materials, both mechanical and electrical, that allow for a simplified and cost-effective
construction, therefore, either commercially available or easily manufactured and
assembled.

For the control of the automated station, a control software will be developed, including both
the necessary programming for the function of the station and the graphic user interface
(GUI) for the use of the station by a user. The steps and tools for the development of the
control software will be presented and its design will be such that it allows the overall system
to operate for a wide range of products and applications without any need for modification.

Furthermore, within the scope of this thesis, the advancements of ML and more specifically
Acrtificial Neural Networks (ANNSs), will be utilized in order to create a functional defect
detection model. The theoretical background necessary for the development and
optimization of this model will be thoroughly explained and the steps for the creation,
evaluation, optimization and integration of the model will be illustrated.

The current thesis will conclude with an assessment of the functionality and robustness of
the mechanical and electrical design and assembly of the automated station, the capabilities
of the control software and the precision and speed of the defect detection model, with
suggestions on the improvements of any possible issues that may arise for any of the above.

2. Mechanical design of automated station

The overall mechanical design of the automated station was based on the structural frame
designed and assembled by Ms. Clara Berger, during her student internship at NTUA and as
described in her report (Berger, 2018). The geometry of the frame has influenced the design
process and selection of all other mechanical components. However, during the design
process of the automated station, certain changes were deemed necessary both for structural
reasons, as well as for the proper operation of certain subsystems and overall, the automated
station.

In this chapter, the structural frame will be introduced, as it was previously designed and
assembled, the changes that were deemed necessary will be highlighted, the actuation for the
3-axis camera module will be analyzed and the overall assembly of the mechanical
components will be thoroughly described.

2.1Design of structural frame

The original frame was constructed with commercially available aluminum extrusion that
can be easily cut at desired length and assembled into lightweight, often complex
constructions. These extrusions are usually named after the dimensions of their cross section
in millimeters, with the extrusion used in the original frame being a 3030-aluminum
extrusion, meaning 30mm by 30mm in width and height in its cross section.

30

OC | “I0
LA
¥ oS —Pes

adihe

LS oo MW

Figure 3: 3030 Aluminum extrusion with dimensions in mm

The assembly was possible with the use of 90-degree aluminum corner brackets placed at
the junction of two aluminum extrusions. The fastening of these brackets was possible
without any need for drilling with the use of specially designed nuts (tee-nuts) that slide in
the ridges of the aluminum extrusion and when tightened are lodged firmly between the folds
of each ridge. By combining aluminum extrusions of various lengths with the
aforementioned parts, the structural frame was assembled. The same process was
implemented for the construction of the mobile sub-assemblies of the frame.

Following the nomenclature of CNC systems (Smid, 2000) of equivalent modus operandi,
the immobile, structural part of the frame represents the X- axis, and will henceforth be
mentioned as such. The mobile parts of the frame, again by the same nomenclature, will be
assigned as Y-axis for the horizontal mobile part and Z-axis for the vertical mobile part.

Figure 4: Final assembly of previous design

The mobility of the aforementioned parts was possible with 3D printed custom designed
parts. These parts were inserted in the ridges of the aluminum extrusions, with tolerances
that allowed the free slide of the 3D printed part along the ridge. Holes placed on the upper
part of each 3D printed part allowed for the joining of each mobile sub-assembly, thus
granting them freedom of movement along the length of the corresponding aluminum
extrusion on which the 3D printed part was inserted.

-

Figure 5: Design of 3D printed part for motion translation

Without any actuation present, both mobile parts were tested manually and they performed
their intended purpose. However, upon the assembly of additional electromechanical parts,
a significant issue arose. The Z-axis, meaning the structural part, could easily slide along the
Y-axis without any equipment added to it. With the addition of all necessary equipment for
the mobility of the camera module, such as the motors, transmission, mechanical parts etc.,
there was a significant increase in the weight of the Z-axis sub-assembly. The center of mass
of the sub-assembly being further away from the center line of the aluminum extrusion and
by extension, the 3D printed part inserted in each central ridge that allowed for the mobility
of the Z-axis sub-assembly, meant that an equally significant torque was placed on the 3D
printed part, that pushed it to be in contact with the outer surface of the aluminum extrusion
closest to the Z-axis sub-assembly and the furthest inner surface of the ridge of the aluminum
extrusion. The free body diagram of figure 6 clearly illustrates the issue:

in=

B

-

M: mass of camera and Z axis
N,: normal force (exterior)
N,: normal force (interior)

Figure 6: Freebody diagram of z-axis sub-assembly

The increased contact of the 3D printed part with the ridge, and the amount of force it placed
on it, did not create an issue with the structural integrity of the sub-assembly or the 3D
printed part. It did however increase the friction between the 3D printed part and the ridge,
hence restricting the movement of the Z-axis sub-assembly. Additionally, the elasticity of
the 3D printed part along with the loose tolerances that were chosen for the 3D printed part
to allow for its unrestricted movement, meant that the torque introduced by the weight of the
Z-axis sub-assembly was tilting the vertical axis of the Z-axis by a significant amount,
causing loss of perpendicularity between the Z and Y axis of motion.

As an initial step, the tilting of the Z-axis was disregarded, as certain adjustments on the
design of the mechanical components needed for the actuation of the camera module could
allow for the vertical movement of the camera, regardless of the relatively minor alignment
issues of the Z-axis. Calculations were made for the effect of the normal forces of the 3D
printed part on the surface and the ridges of the aluminum extrusion, accounting for the final
weight of the sub-assembly as it was preliminarily designed at that point and the friction they
produced. The effect of the normal forces was enough to certainly cause issues with the 3D
printed part overtime and the effect of the friction was not insignificant and would certainly
increase the load on the motors. Furthermore, the effect of the friction was unilateral along
the horizontal axis on which the Z-axis sub-assembly moved, which introduced torque that
caused severe deviation from the perpendicularity between the Z and Y axis movements of

the two sub-assemblies.

The motor assigned to the Y-axis motion sub-system will have to accommodate the friction
created by the movement of the whole Z-axis sub-assembly along the Y-axis, as illustrated
in Figure 6. Though a specific motor for Z-axis has not been chosen at this point for this
application, an assumption of a motor size is possible, given the overall size and capabilities
of the individual components and the overall system, which would equate to a motor of a
weight of 250gr. The calculation of the friction requires the normal force applied to the
aluminum extrusion outer surface and inner ridge as a result of the torque created by the off-
center mass of the Z-axis assembly. This torque is equal to the mass of the whole Z-axis sub-
assembly multiplied by the distance of the center of gravity of the sub-assembly to the
midline of the aluminum extrusion, which is the centerline of motion transfer of the Y axis
motor. Both the mass and the distance from the midline can be easily calculated by the CAD
design. The sum of the torques and the forces in considered zero, for the midline of the
aluminum extrusion. By calculating these two normal forces with the principals laid above,
the only data required is the coefficient of friction between a 3D printed part made from PLA
and an aluminum extrusion.

Ty,= M, *g* lzy (1)
2(T)=0 - Ty, =Ny x0.015+0.015 * N, (2)
Y(F)=0 >N, =N, (3)
Where:
M,: the mass of the whole Z-axis sub-assembly, here equal to 0.89kg
l,y: the distance of the center of mass of the Z-axis sub-assembly to the midline of the
extrusion, here equal to approx. 32mm

Solving the system of the equations (1), (2), (3) in respect to Ty, Ny & N, , the resulting
normal forces are the following:
N; = N, = 9.49N

Explicit bibliographical data were not found for the static and dynamic friction coefficient
between anodized aluminum and 3D printed PLA. Since the very 3D printing process of the
PLA can alter its geometry, a testing rig would have to be created and a series of test for the
determination of the static and dynamic friction between specific 3D printed parts and
anodized aluminum extrusion would be required. However, the setup of such a testing rig is
well beyond the scope of this thesis as it is quite an elaborate and time-consuming process.

From existing resources, the sliding friction behavior of thermoplastics on aluminum vary
from 0.22 to 0.45 depending on the sliding distance (Hechtel, 2021). The fact that PLA is a
thermoplastic material (Van der Walt et. al., 2019) and anodized aluminum exhibits better
tribological properties than untreated aluminum (Atraszkiewicz et. al., 2020), means that
these data can be used for this application, with an added safety factor being the use of the
upper values of the friction coefficient. So, in this regard, the coefficient factor will be chosen
as 0.45.

From the equation of friction, the overall static friction resulting from the normal forces
N, & N, is calculated, for a friction coefficient equal to u = 0,45, as:
Ffriction = (Nl + NZ) * u = 8,55N (4)

This force, the Fryiction, IS the load the motor for the Y-axis will have to overcome to initiate

the motion of the Z-axis sub-assembly along the Y-axis and it is more than significant
enough to require a change in the mechanical design of the Y sub-assembly.

A complete redesign of the way the Z-axis sub-assembly was attached to the horizontal
aluminum extrusion of the Y-axis sub-assembly was deemed necessary. The new design
consists of two precision shafts that guide two linear bearings, both of which attach to the Z-
axis sub-assembly, thus allowing it to move freely along the Y-axis horizontal distance. The
precision shafts have been chosen with a diameter of 8mm, which is sufficient enough to
withstand the eccentric load of the Z-axis sub-assembly, without introducing any visible
deviations to the horizontal path along the Y-axis. Concurrently, the linear bearings offer
minimal friction during the movement of the sub-assembly. This design is thoroughly
analyzed in respect to the friction forces generated, on a latter chapter regarding the selection
of motors.

The finalized design of the structural frame of the automated station is illustrated in the CAD
design of figure 7.

Figure 7: Final 3D CAD design

2.2 Design of motion translation system

For systems with the main objective of allowing 3-axis mobility to a module, whether it
being a spindle, a 3D printer head or any other tool, there are two prevalent motion
translation methods. One is belt drive, which can be implemented in a number of different
arrangements, most notably cartesian, coreXY and Hbot (Amridesvar et al., 2020). The other
one is a translation screw, also known as power screw, with its most notable implementation
being the lead screw and the ball screw. (Kaiji Sato et al., 1995) (Baluta, 2007)

Both of these translation methods are commonly implemented in all sorts of different
mechanical systems and their modus operandi is considered common knowledge among the
mechanical engineering domain. As such, for the purposes of this thesis, only the inherent
differences between these two systems that directly affect the main objective of the
automated station will be presented and compared.

Firstly, belt drive systems utilize a timing belt, usually teethed, that locks into toothed
pulleys, thus transferring power usually from a motor to a moving part, via a series of
arranged pulleys. These systems are preferred in high speed, high efficiency applications,

where the moving parts are usually relatively lightweight and there are no great demands for
increased positional accuracy and repeatability. The reason for this is the presence of a
timing pulley, which is usually constructed from an elastomer with significantly greater
elasticity than steel. This elasticity is the root cause of most of its drawbacks such as the
lower positional accuracy and repeatability, backlash effect, rippling effect during sudden
changes in momentum, high degree of material aging, need for frequent re-tensioning and
slipping under high load.

Translation screw systems use, as the name implies, a screw that via a nut translates
rotational motion to linear. Depending on the nut and the geometry of the teeth on the screw
there are various implementations. The most prevalent are the lead screw, with its variations,
and the ball screw. The ball screw, most commonly found in high load, high precision
applications is by far the most suitable solution for any system similar to its mechanics to
the one studied in the present thesis. However, due to its high cost it cannot possibly be
considered for this application.

Lead screw systems that are commonly available are the square thread and trapezoidal or
acme thread. The former is reserved for high power transmission, which combined with its
significant cost make it unsuitable for this application. The latter, most commonly used due
to its versatility, low cost and ease of implementation has, as the name suggests, teeth of
trapezoidal geometry. In comparison to the belt drive systems analyzed above, a trapezoidal
lead screw system is much more robust under load or sudden changes in momentum, does
not slip unless the maximum torque of the motor is exceeded in counter-torque, needs
minimal maintenance to operate and is much easier to implement, with minimal mechanical
parts added to the structural frame. The only drawback that is worth mentioning is the
relatively lower speed compared to a belt drive system, with the difference between the two
systems in speed not being relevant to the main objective of the automated station being
designed.

In conclusion, it is apparent that the most suitable system to be implemented in the automated
station is the trapezoidal lead screw. With this, we can proceed to the design of such a system.
The main components are the trapezoidal screw, the nut, a bearing to support the weight of
the screw on its free end and a motor coupler to attach the screw to the motor on the opposing
end. Additionally, these components should be mounted on the structural frame.

The lead screw is placed parallel to the aluminum extrusion (or the precision shafts in the
case of Y-axis), on the central axis of which a mobile part moves along. The lead screw
attaches to the frame on one end via the bearing which is housed on a 3D printed part that is
fastened to the frame. On the other end, as mentioned the lead screw attaches to the motor
via the motor coupler. The motor is secured on the frame via an aluminum part that is
fastened on the frame with tee-nuts.

Figure 8: Lead screw assembly

The nut is placed on the lead screw before the lead screw is secured on the frame, and it is
fastened on a 3D printed part that acts as an intermediate connection between the nut and the
mobile part the nut is transferring motion to. The connection is again made possible with
bolts between the nut and the 3D printed part and the 3D printed part and the relative mobile
part.

Following this implementation process and designing all the necessary intermediate parts,
while taking into account the geometry of the structural frame with the changes presented in
the previous chapter, the resulting motion translation systems for each axis are illustrated on
figure 9.

Figure 9: Motion translation system for X, Y and Z axis

It should be noted, that by design the automated station cannot operate with a single
translation system along the X-axis. Positioning only one such system unilaterally would
introduce a torque that would rotate the 3D printed sliding parts within the range of their
tolerances to be in contact with the corresponding aluminum extrusion ridges. As such, the
3D printed sliders would get stuck and the system would be motionless along the X-axis. To
resolve that, there should be two motion translation systems along the X-axis, one for each
of the horizontal aluminum extrusion it consists of, within which the 3D printed sliders
reside. The motion of these two translational systems should be perfectly coordinated in
order to prevent misalignment of the 3D sliders that will eventually cause them to be blocked
within the ridges of the aluminum extrusion. This coordination can be achieved
mechanically, but it requires elaborate design and introduces many challenges. It can be
resolved however, during the electrical and software design latter on.

The 3D printed parts mentioned above, with the exception of the sliders, were developed
firstly on a CAD program, within an assembly design of the entire electromechanical system.
Once their dimensions where chosen to ensure proper function of the motion translation
system and no interference with any other part of the assembly, the CAD file of the parts
were exported as .STL files and 3D printed in a Raise 3D Pro 2 FDM (fused deposition
modelling) 3D printer with PLA (polylactic acid) filament. The technical drawings of these
parts can be found in Annex A.

2.3 Assembly of mechanical parts

With the design for the sub-assemblies for each of the three axes and the overall structural

frame, the finalized mechanical assembly is mostly complete and is illustrated in figure 10.

Figure 10: Final mechanical assembly

It should be noted that certain mechanical parts were also placed for provisional purposes.
The overall mechanical design as originally designed and assembled and modified for the
purposes of this thesis in the ways previously analyzed, is more than capable of responding
to the demands of the main objective of the automated station. The addition of 90-degree
aluminum corners to all inside corners of the structural frame was deemed necessary to allow
for increased structural rigidity of the frame. Since, the frame consists of individual parts
fastened with bolts and nuts and the operation of the automated station requires constant
movement within this frame, inevitably these fastened connections would periodically
require re-fastening due to the dynamic load from the acceleration and deceleration of the
various moving parts. With the introduction of further supporting mechanical parts on the
structural frame, the dynamic load is more evenly dispersed in a greater number of
connections, thus the need for re-fastening can be greatly reduced or at the very least delayed
significantly.

3. Electrical design of automated station

The electrical design of the automated station consists of all the non-mechanical parts of the
overall assembly that allow for the automated operation of the individual axis, including
motors, controllers, processing units, camera, sensors, power supply unit and of course all
the necessary plugs and wiring.

Certain design parameters of the electrical assembly were influenced by the mechanical
design of the station analyzed in the previous chapter. Concurrently, certain design decisions
implemented during the mechanical design were made with regards to specific electrical
components in mind. Such a cyclic process is necessary during the design of complex
electromechanical systems as there are differences among both electrical and mechanical
components, which otherwise produce the same results, that heavily alter the geometry of
the final assembly. As such, it is inherently impossible or at the very least impractical to
design either the mechanical or the electrical part of an assembly without taking into account
the other.

With this clarification, the electrical components deemed most fit for this application are
presented in the following chapters and the specifications for each component are illustrated.

3.1 Selection of electric motors

There are a lot of different kinds of electric motors that could potentially be suitable for
implementation in an automated system. The specific needs of this application, the
automated station, immediately reduces the multitude of different choices. Further analysis
on the advantages and disadvantages of each of the different kinds of motors, in the context
of the main objective of the automated station, further reduces the suitable choices.

Initially, the power demands for each motor should be specified. For the X and Y axis, there
is only the dynamic load of the movement of the parts each axis is carrying. In this regard,
the only parameter that needs calculating is the force of friction that the motors need to
overcome to make that movement possible, which in this case is quite apparent that it is
minimal. For the Z axis, the power demands are slightly more complex, as there is a
permanent static load the motors are required to uphold, which is the weight of the camera
module, along with the parts that transfer movement to the module, in addition to the
dynamic load that results from the requirement to move the module along the Z-axis.

The results of the power calculations indicate that high power output motors are unnecessary
in this application, which immediately excludes the use of any AC motor. The available
options are therefore limited to relatively low powered DC motors. These include brushed
and brushless DC motors, servo motors and stepper motors.

Figure 11: Brushed and brushless dc motor

Brushed motors operate on an on/off pattern, where they rotate when voltage is provided and
are still when it is not. Though simple in their operation, they are inherently unsuitable for
use cases where positioning is integral as they lack any form of integrated positioning
control. A closed loop system for their control could be designed but it would increase the
complexity of the system unnecessarily. The same restrictions apply to brushless motors.
Additionally, both these types of motors, though more than capable in regards to power
output, usually operate in high rotational speeds. This introduces further complexity to the
systems, as gear reduction should be implemented to take advantage of the high-power
output in a much more controlled rotational speed. These motors are quite common in robotic
applications when closed loop control and gear reduction are implemented, but they are
deemed unnecessary for this particular application.

S

—— DC Motor

Figure 12: Servo motor — Operating principal diagram

Servo motors address most of the issues that arise from the DC motors. They are actually
more of a rotational actuator, rather than simply a motor. They are composed of a DC motor,
usually a gear reduction system and a sensor that provides positional feedback. They require
a specific controller to operate, which reads the values of the position sensor and adjusts the
voltage input of the DC motor, allowing for control of the angle and the velocity of the
motor. These systems provide excellent precision and high performance and are favored in
robotic and automation applications. However, such performance comes with the necessity
for a rather complex construction of the motor and intricate control implementation by the
controller, resulting in high costs. Lower cost servo motors exist but they come with a low
torque output, with the cost increasing rapidly for any significant increase in torque output.

Figure 13: Stepper motor — operating principal diagram

Lastly, there are stepper motors. These motors operate in a completely different principle
than common DC motors. They are brushless and their rotation is an addition of individual
equal steps on the circumference of the rotor. They have inherent position control without

feedback (open loop), as by default they are operated step by step and can be controlled to
hold each step. They are sized by the maximum opposing torque they can withstand while
maintaining a step. These steps can increase in accuracy with a controlling technique called
microstepping (Baluta, 2007) and even affordable ones can easily be micro-stepped to up to
1/32" of their step, which results in significantly high accuracy. They are generally low cost,
especially comparing servo motors of equal torque output. For all these reasons, stepper
motors are favored for prototyping applications and are deemed most suitable for use on the
automated station.

Figure 14: Nema 17 stepper motor

The load these motors are required to operate under can be calculated, for each axis and
motor with the following equations:

Z-axis:
The motor assigned to the Z axis motion sub-system will only have to accommodate
the weight of the camera and the 3D printed part connecting the camera to the motion
sub-system. The combined weight is measured as M = 0.182kg. The torque
required to raise this load in a lead screw is derived by the equation below (VCalc,
2022):

TR _ F.@.L+nudm(5)
2 mdm—pL

Where:

Tx: torque required to raise the load

F: force opposed to the movement (the load), here equal to M * g = 1.82N

d,,: mean diameter of lead screw, here equal to 8mm

L: the lead, meaning the travel of the nut per one screw revolution, here equal to 2mm

u: the coefficient of friction between the brass nut and the steel lead screw with no

lubrication added, here equal to 0.19 (VCalc, 2022)

The result of the equation above is a required torque equal to 0.2N*cm. The unit of
measurement being expressed as N*cm is such due to its commonality in datasheets
of motors for such uses.

Y-axis:

The calculation of the load the motor of the Y axis has to overcome has already been
illustrated on an earlier chapter, though for a different motion translation system and
overall mechanical design. The load of the current mechanical implementation is the
weight of the Z-axis sub-assembly, multiplied by the distance from the center of
gravity of the overall sub-assembly to the center of the precision rods utilized in the

Y-axis sub-assembly. This torque Ty, results in two normal forces created, N; & N,
one between each linear bearing and the corresponding precision rod.

Ty, = M;*xg* lzy (6)
J(T)=0 ->Ty, =Ny *ly+Ny*ly(7)
S(F)=0 > N, =N, (8)
Where:
M,: the mass of the whole Z-axis sub-assembly, here equal to 0.89kg
l,y: the distance of the center of mass of the Z-axis sub-assembly to the midpoint
between the centers of the precision rods, here equal to approx. 37mm
[: the distance between the center of each precision rod and the midpoint between
the two rods, here equal to 21.5mm

Solving the system of the equations 1, 2, 3 in respect to Ty, N; & N, , the resulting

normal forces are the following:
N, = N, = 7.84N

The effect of friction for these two normal forces can easily be calculated, given the
friction of coefficient for the linear bearing chosen, which is 0.003 (Euro-
bearings.com).

Ffriction = (N1 + N;) = u = 0.047N €))

And with the torque is calculated by the equation (10) as:

dm L+m-p-dm

TR=F — —————
R 2 m-dm—p-L

= 0.02N * cm (10)

Where:

Tg: torque required

F: force opposed to the movement (the load), here equal to Fyyc¢jon = 0.0235N
d,,: mean diameter of lead screw, here equal to 8mm

L: the lead, meaning the travel of the nut per one screw revolution, here equal to 2mm
u: the coefficient of friction between the brass nut and the steel lead screw with no
lubrication added, here equal to 0.19 (VCalc, 2022)

X-axis

The X-axis motors have to overcome the load of the friction created by the combined
masses of the Z and Y axis sub-assemblies, created between the 3D printed sliders
and the anodized aluminum surfaces of the extrusions. Two normal forces, N; and
N, are created at each of the two sliders of the X-axis sub-system, from the weight
of the Z and Y sub-assemblies, which is easily calculated from the CAD file of the
overall assembly. Each of these normal forces creates a friction, with a friction
coefficient u = 0.45, as explained in chapter 2.1. Each of the two motors will have
to overcome each of these two friction forces. The calculations for all the above are
illustrated in the equations (12) — (14):

(Mz + My) xg = Ny + N, (12)
N1:N2 (13)
Fy =F, =N xp =N, *u(14)

With M, = 0.89kg and My = 1.33kg, F, = F, = 24.6N

And utilizing the torque equation for a lead screw motion translation system, the
required torque for each motor is calculated by equation (15) as:

dm L+m-p-dm

TR=F — ——7——
R 2 m-dm—p-L

= 2.8N *cm (15)

Where:

Tg: torque required

F: force opposed to the movement (the load), here equal to Fyyc¢jon = 24.6N

d,,: mean diameter of lead screw, here equal to 8mm

L: the lead, meaning the travel of the nut per one screw revolution, here equal to 2mm
u: the coefficient of friction between the brass nut and the steel lead screw with no
lubrication added, here equal to 0.19 (VCalc, 2022)

In regards to the sizing of the stepper motor chosen, given the results from the calculation
illustrated above on the motor torque demands of the axis sub-assemblies, the most suitable
commercially available choice is the Nema 17 stepper motor, which is the industry standard
for most 3D printers in production at the moment. The specifications for the Nema 17 motor
(Schneider Electronics) are presented in figure 14, below.

Specifications

Single length Double length Triple length
Part number M-1713-1.5 = (1) M-1715-1.5= (1) M-1719-1.5+ (1)
Holding torque 0z-in 32 60 75

N-cm 23 42 53
Detent torque 0z-in 1.7 21 3.5
N-cm 1.2 15 25
Rotor inertia oz-in-sec? |0.000538 0.0008037 0.0011562
kg-cm? 0.038 0.057 0.082
Weight oz 7.4 8.1 12.7
grams 210 230 360
Phase current amps 1.5 1.5 1.5
Phase resistance ohms 1.3 2.1 20
Phase inductance mH 2.1 5.0 3.85

Figure 15: Nema 17 manufacturer specifications (Schneider Electronics)

3.2 Design of the electrical circuit for the control of the
electric motors

With the selection of the electric motors most suitable for the application, the electrical
circuit for their control should be designed. The fact that these motors are extensively used
in commercial and prototyping applications, means that there are abundant resources on the
control of these motors.

The movement of the stepper motors is possible via an intermediate circuit called a motor
driver. Motor drivers for stepper motors, coordinate the current passing to each phase of the
stepper motor, thus controlling the number of steps, and the direction from which the current

passes through each phase, thus controlling the direction of rotation. The information on the
steps and the direction are sent by the microcontroller to the motor driver, which then
executes the command by allocating the passing electric current accordingly.

There are various motor drivers suitable for the Nema 17 motor. More costly drivers such as
the TMC2209 (Prodanov et. al., 2022)offer reduced noise of operation by decreasing
vibration through advanced current handling, sensorless homing by monitoring the load of
the motor as a function of the current drawn by it and many other functionalities that are not
deemed necessary for this application or can be otherwise achieved with lower costs.

From the remaining options the most suitable motor driver is the DRV8825 circuit (Arief
Wisnu Wardhana et. al., 2019). It offers 1/32" microstepping capabilities to the motor,
which translates to 0.06-degree theoretic accuracy and significant reduction on the noise
during operation.

Figure 16: DRV8825 Motor driver breakout board

The motor driver is directly controlled by a microprocessor. The microcontroller passes a
signal containing the number of steps and the direction of rotation for the stepper motors and
the motor driver executes the motion. The only desired specification from the
microcontroller in regards to the control of the stepper motors is the compatibility with the
DRV8825 integrated circuit chosen, which is satisfied.

Further required specification from the microcontroller regarding the available memory and
the communication protocol with the computer unit. Both of these features are thoroughly
analyzed in the control software chapter; however, it is worth mentioning that a
microprocessor with sufficient memory is required to store the control commands that
respond to certain operations of the automated station and the communication with the
computer unit should be via USB to avoid unnecessary serial communication equipment.

Both of these prerequisites are met with the Arduino Uno (Badamasi, 2014)microcontroller
station. With 32 kbytes of flash memory it can store a program many times larger and
complex than the one intended for the control software and the 2kbyte of RAM are more
than enough for the calculations and the communication with the computing unit.
Additionally, it is equipped with a USB-to-Serial converter, thus allowing direct serial
communication with a computing unit via the USB port. These benefits, combined with its
extensive use on prototyping and online support, make it an ideal microcontroller for this
application.

Figure 17: Arduino Uno development board

The connection of four motors, two for the X-axis, and one for each of the Y and Z axis, to
four DRV8825 integrated circuits and to the Arduino Uno could be made either on a common
breadboard or on a custom PCB on a perfboard. The first approach works great for initial
prototyping but it is neither safe nor easy to use. The second approach, while time
consuming, is necessary for any permanent circuit to operate safely both in respect to the
circuit itself and the user that operates the system. In any other case such a custom PCB
would have been made for the purposes of the project. However, the extensive community
of the Arduino microcontroller and the equally extensive use of stepper motors similar to the
ones selected for the automated station, means that such PCBs are commercially available
at a very reasonable cost. Additionally, they have been designed to attach directly on the
Arduino UNO and have connectors available for the motor drivers and the cables of the
stepper motors. Such integrated circuits that attach directly on the Arduino UNO, are called
shields and the shield used for this purpose is called an Arduino GRBL V2 Shield (Hasan et.
al., 2018).

Figure 18: Arduino GRBL V2 Shield attached to an Arduino Uno

Lastly, a power supply unit is required to provide power to all individual components for the
automated station. For the purposes of this thesis, it has been assumed that any computer
unit (PC or single board computer) used for the control of the automated station will have
an independent power supply.

The power supply unit suitable for this application is selected based on three parameters.
Firstly, the DC voltage it outputs, the maximum amperage it can deliver and the combination
of these two parameters, the maximum power output in Watts. In regard to the DC voltage,
the power supply is usually selected to match the voltage of the component that has the
greatest power demand. Components requiring lower voltage can be accommodated via the

use of an intermediate voltage converter, also known as buck converter, which is an
integrated circuit that lowers the voltage provided by a power supply. A voltage converter
can also be used to power components requiring higher voltage, though they dissipate
significant heat, even in low to moderate amperages and are best avoided and the increased
voltage requirement is met by a secondary power supply unit.

In the scope of this application, the most power intensive components are the stepper motors,
which are running on 12 volts. The Arduino UNO can also operate in that voltage, as well
as the motor drivers and GRBL shield, so there is no need for voltage conversion.

Given that the voltage is the same for each of the components presented above, the demand
in amperage and by extension in power, can be easily calculated. For the amperage the
maximum amperage stated by the manufacturer of each component is added. The combined
amperage is then increased by a safety factor of 10%, and this is the required maximum
amperage the power supply can deliver. The required power output of the power supply is
the result of the multiplication of the maximum required amperage and the DC voltage output
of the power supply.

maX(A) = (AArduino + 4 * ANema17) * 1.1 (16)
max(A) = (0.04 + 4« 1.8) * 1.1 = 7.964A

With these specifications in mind, a power supply unit is chosen from any of the
commercially available ones, such as the one illustrated in figure 19.

Figure 19: Power supply unit 12V, 8A

3.3 Additional electrical parts and wiring

Within the design of the electrical circuit of the automated station, there are certain
secondary components that are important for the proper function of the overall assembly.

Firstly, as mentioned previously, the selected stepper motors operate in an open loop. That
implies that the controller can position the motors, but there is no feedback on whether the
position has been reached. This could be potentially problematic if a moving parts motion is
obstructed for any reason, when the motors will continue to operate until the duration of the
movement is seemingly complete, even though there is no actual movement taking place.
Given the nature of the application, it is highly unlikely that an obstacle will be presented to
the motion of any of the axes, as they are designed with the volume of the object being
inspected in mind. Thus, no need for a closed loop system, one with constant position
feedback is deemed necessary.

However, the same assumption cannot be made in the case of an abrupt loss of power.

Through the control software, it is possible to save the position of each axis during the
closing sequence of the control software and retrieve that position during the opening
sequence. In case of unexpected loss of power, the software does not have the opportunity
to save that position and during the startup sequence it will assume that the axes are either at
the home position or the last known closing position. The same could also occur if the axis
are moved even slightly while the automated station is unpowered. The result of something
like that would be the controller not being aware of the actual position of each axis, which
would cause catastrophic failure of one or more parts of the assembly in case they reach the
end of their corresponding lead screw in high velocity.

To avoid any of the above to occur, it is deemed necessary to have a homing sequence,
during which the axes are moved to their zero position and their position, as information, is
updated on the controller. That is possible with the installation of endstop switches at the
ends of each lead screw. This not only ensures the safe initialization of the automated station,
but also solves two other security risks. The first one is the case of obstacles in the way of
an axis, as illustrated above, where the motor unable to proceed skips steps. In that case,
even if an axis of the automated station, having skipped steps, reached towards the end of
the lead screw, even at significant velocities, a properly placed endstop can prevent it from
ramming onto the structural frame. Additionally, in case the X-axis lead screws and their
corresponding nuts are misaligned for any of the reasons already mentioned, the endstops
can provide a quick way to fix such a problem.

These endstops are nothing more than a switch that when pressed sends a signal to the
controller. There are endstops switches commercially available that provide additional safety
functionalities but for the purposes of this application, a simple endstop switch, similar to
the one illustrated below, installed at the two ends of each lead screw is sufficient.

Figure 20: Endstop switch

Equally important secondary electrical components are the connectors and the wiring that
connect the individual components of the electrical assembly. In regard to the wiring,
depending on the amperage passing through it, specific diameters, also known as gauges, of
wire are required. For the purposes of this application, there are two different kinds of wiring.
One is the signal wiring, which as the name implies, transfers signals between the individual
components of the electrical assembly. Usually, they operate under 5V and the current
passing through them is of the mA scale. Such wires are of the smallest diameter, yet shielded
enough not to cause interference from the current passing from nearby cables. The other type
of wiring is the power supply wiring. As mentioned, power supply voltage for this
application is 12V and the current passing through these wires is of the A scale. For each of
these two types of cable, a corresponding diameter is chosen according to safety standards
(Locke, 2008).

In regard to the connectors, their function is to ensure the secure connection of cables to the
appropriate electrical components in a way that is safe yet does not restrict any possible

changes to the electrical assembly during prototyping. In any other application, where there
was no prototyping element, the connection would be permanently secured via soldering.
The closest alternative was the use of connectors, and specifically JST connectors
(Advanced Connection Systems - JST catalogue Vol. 120e)that are suitable both for
signaling cables. A typical JST connector is illustrated below. For the power delivery to the
stepper motors, the JST connectors are only borderline suitable, given the amperage range
of each motor, so for safety reasons the more suitable 4-pin GX connectors (Hanson
Technology - GX Aviation Connector Datasheet) were instead chosen and are also presented
in figure 21.

Lastly, in regard to the wiring it should be noted that the color scheme for the cabling was
taken into account. For the power delivery cable for each phase of the stepper motors, the
traditional color scheme for their cabling was upheld, meaning the combination of black,
red, blue and green wires. For the signaling wires, the color yellow was chosen as it is most
commonly used in data transferring cables. Additionally, since the major electrical
components are fixed in certain positions on the structural frame, the wired connecting them
could easily interfere with the free movement of each axis, if left unattended, thus posing a
serious safety danger. It was deemed necessary that a cable harness be installed along each
moving sub-assembly, to allow for the unrestricted moving of the axis, while safely storing
all relative wiring.

3.4 Assembly of the electrical circuit

With all the major and secondary components selected, it is possible to design the final layout
of the electrical circuit assembly. The assembly is firstly designed virtually to ensure, one
last time, the compatibility of the individual components. The most appropriate software is
Fritzing (Knorig et. al., 2009). The end result of the assembly on this software is illustrated
in figure 22.

e
)| [===ma
5 L

Figure 22: Fritzing electronics diagram

After purchasing the components, taking into account the physical dimensions of the
mechanical assembly for the proper lengths of the wiring and the cable harness, it is possible
to proceed to the physical assembly of the electrical circuit. It should be noted that the
Arduino Uno along with the GRBL shield, the motor drivers and the GX connectors for the
motors are enclosed in a 3D printed case both to be securely attached to the structural frame
but also to ensure the safety of the operator during use. For the same reason, the power supply
unit is also housed in a 3D printed enclosure. Both of the enclosures were designed ina CAD
software, the files were exported in .STL file format ad were printed using an FDM printer
with PLA filament. The technical drawings of these parts can be found in Annex A.

Figure 23: 3D printed enclosures for Arduino and PSU

With the physical assembly of the electrical circuit on the already assembled mechanical
part, the automated station is presented in the photographs of figure 24.

Figure 24: Final assembly of automated station - Photographs

4. Control software for the automated station

The process of writing a control software for the automated station, given the complexity of
the task at hand, is not possible without an initial conceptual model of the structure of the
individual parts that comprise the system. This model, commonly referred to as flowchart
will serve as a much-needed guide during development, due to the complexity of the task,
and as a means of explanation of the algorithmic process. The flowchart mentions processes
and details relevant to the developments of the software that will be thoroughly explained

on the chapters that follow.

-
’

/ GUI Initialization \

Import GUI from
.ui file

Connect Buttons
to Functions

Search for MC
&
Connect to MC

|

Initiate Timer
Thread for
Message receiver

)

Initiate Camera
Thread

GUI Platform

Button

!

Emit Signal to Button
Function

Read LineEdit input

4 N

Compose message
for MC

/

Send message
/[toMC

4

Camera Feed

Camera Feed

b

Platform Independent Threads R

A /
/Position & Velocity LCDS\

Display position
and velocity

Position & Velocity

LCDs

-

/MC Message Receiveﬁ

/

Camera Feed

%

4)

/

Access camera

/)

(USB)

/

Check for new

/

message

/

Get image
(acc. to fps)

Al

Decode message

/

Extract data:

l / /Convert toth Image/ |

Error Display

/ Trajectory Graph '\

Microcontroller
Control Code

new position or error/

/

Process image:
scale & format

Update position &
display

Emit image to widget ~)

i

Process

Flowchart Annotation

Exec. task

Widget _ Library

Qt Framework
OpenCYV Library
Matplotlib Library

™ Serial Com/tion

Figure 25: Control software flowchart

The specific flowchart illustrated in Figure 24, is a graphical depiction of the processes of
the control software designed for this application. Firstly, there are two distinct sub-divisions
of what has been thus far referred to as control software, meaning the one developed for the
PC and one for the microcontroller. The former functions as a way for the user to interact
with the control software via inputs and outputs on the computer screen, which is the main
function of the GUI. It also includes all other sub-processes that enable the user to send
command to the microcontroller and by extension control the automated station. The latter,
as the name implies regards to the processes allowing the microcontroller to directly control
the individual electronic parts of the automate station or receive input form them. The
purpose, structure and implementation of these processes will be thoroughly explained in the
following chapters.

4.1 Graphic User Interface

For the creation of the Graphic User Interface (GUI), it is best to choose a tool with a wide
variety of applications and widespread use among developers. Both of these characteristics
will allow for the integration and possible adaptation of the different modules to the GUI.
The industry standard for the creation of complex, scalable GUIs is, arguably, the Qt
framework (Mezei, 2017).

The Qt framework allows for the development of cross-station applications that run on all
major desktop stations and supports various compilers. Though most notably used with C++
compilers, lately there has been widespread adoption of the pyQt library (Willman, 2022)
which adapts the Qt framework for use in Python applications. The use of C++ for the Qt
framework, would most likely result in an application that runs much faster than an
equivalent application running pyQt on Python. However, the various functions of this
application that run within the GUI, such as the communication with the microcontroller, are
not easily implemented in C++ by one not adept to the language, as C++ has a notoriously
steep learning curve. For these reasons, the implementation of the pyQt framework on a
Python application was deemed as the most suitable and most specifically its more
widespread and stable version, pyQt5.

In regards to the Qt framework, it is important to illustrate its structure and how the various
components of the control software will be developed along this structure. In the Qt
framework, a window is created by the combination of different widgets. Widgets are
elements that can display data, receive user input or simply provide a container for other
widgets to be grouped in. Depending on the needs of the application, the designer/developer
chooses the most appropriate widgets to integrate in the main window and groups these
widgets within other widgets to allow for an adaptable GUI, in regard to its size. These
widgets, placed in specific positions, can be customized to allow for a more user-friendly
environment.

The main window can be structured as a main function within the Ul python file of the
python application. Though such an approach is direct and offers a lot of control to the
developer, for more complex applications, not unsimilar to this one, the sheer volume of the
commands for the creation of the main window interface quickly becomes staggering. For
this reason, the creators of the Qt Framework have developed a software called Qt Designer.
Within Qt Designer, widgets can be placed on the main window via drag-and-drop and
further customized within the environment of the software. Once the placement and
customization of the widgets is complete, the software exports a file (.ui) which can be

converted to executable Python code. This process allows for a much more intuitive design
of the front end of the application being developed, while significantly reducing the
complexity and time requirement.

File Edit Form View Settings Window Help

Object Inspector 8 x

Object Class
~ MainWindow QMainWindow
~ @ centralwidget QWidget
(11} MainWindow - untitled® pushButton QPushButton
Type Here menubar QMenuBar A

Property Editor 8 x

[Fitter |l:'|} = /"
pushButton : QPushButton
Property Value ~
QObject
objectName pushButton
QWidget
enabled
~ geometry [(160, 110), 75 ..
X 160
Y 110
Width 75
Height 23
~ sizePolicy [Minimum, Fixe.,
Hoerizontal Policy Minimus m v
< >
Signal/Slot Editor g x
=
Sender Signal Receiver Slot
< >

Signal/Slot Editor Action Editor Resource Browser

Figure 26: Qt designer environment

With the use of the Qt designer, the main window of the control software is developed. The
first step is the selection of appropriate widgets. For the control of the movement of the end
tool (camera), 4 buttons are selected to correspond to the X and Y movement and are
positioned in a cross to mimic the movement of the camera within the horizontal plane of
the working area. For the Z movement, two buttons are positioned corresponding to the
upwards and downwards motion of the camera along the vertical axis.

The increment by which each axis is moved when a button is pressed is inputted by the user
with the LineEdit widget indicated by the appropriate Label widget. The velocity by which
the motion is carried out is also indicated by a Label widget and inputted with the selection
of a RadioButton corresponding to slow movement and another one corresponding to fast.
The options regarding the velocity are kept that way to limit the available options of speed
to the limit as without proper knowledge of the capabilities of the system, an incorrect input
could be potentially catastrophic for a subsystem or the automated station as a whole. The
widgets mentioned above are grouped and labeled as Manual Control.

Manual Control

Increment: [|
Velogity: Osow O Fast
Figure 27: Manual Control Group

For a more precise movement, a group of widgets is created and labeled as Input Control.
This group includes Label widgets indicating each axis and underneath each one, a LineEdit
widget is placed, intended for the input of a numerical value by the user. Next to these there
are two RadioBox widgets indicating if the movement the user wishes to initiate will be in
regards to the relative or the absolute coordinate system of each axis, meaning whether the
end tool will move by a certain distance in each axis or to specific coordinated, according to
the numerical value inputted in the corresponding LineEdit widget of each axis.

Below the Input Control group, another group of widgets is placed, which includes the
buttons for the main automated functionalities of the control software, meaning the ones not
included in the Manual Control group. These functions are:

e Homing function indicated by Label widget as “Home”

e Stopping function which ceases any ongoing movement and is labeled as “Stop”,

e Photographing function, which saves the image that the camera is currently capturing
as an appropriate file and is labeled as “Photo”

e Moving function, which initiates a movement according to the specifications of
position and velocity inputted by the user in the Input Control widget group and is
labeled as “Move”.

e “Save” and “Load” buttons, which for the purposes of this thesis are programmed to
save the last known coordinates of the end tool and load them in the software upon
initiating it.

The buttons for each function have an image embedded that represents the purpose of the
function, thus making the use of the control software much more intuitive.

Input Control
X Y z O ABSOLUTE
| | | | O reuame
HOME STOP PHOTO MOVE
SAVE LOAD

Figure 28: Input Control and Main buttons

Additionally, label widgets are positioned to indicate the current position of the camera,
corresponding to the X, Y and Z coordinates and each intended velocity. The numerical
values for this data are outputted to the user in LCDNumber widgets, to differentiate the
visually from the data inputted by the user.

X Y z Velocity
E mm E mm E mm E mm,s

Figure 29: LCD displays for XYZ

A Tab widget is used to group the two main outputs of the control software, the position
graph and the camera feed. The Tab widget is selected because it allows the user to switch
between these two elements, which both are large enough that if placed simultaneously on
the main window they would be overwhelming to the user, require a large screen size and
overall diminish the ease of use of the GUI. In place of the camera feed and the position
graph, during the design of the GUI, a QWidget is placed, which is an element that reserves
this position in the main window open for the developer to add custom content.

RAJECTORY CAMERA

Figure 30: Tab widget

Lastly, on the bottom of the main window a QPlainTextEdit widget is placed. This widget
is practically an open editable text window. Its function within this application, however, is
to display all the necessary feedback to the user that cannot be otherwise displayed by the
other widgets. This information could be the successful completion of a function, such as
movement, photograph etc. or the occurrence of an error that needs to be addressed by the
user. Its editability is therefore blocked for the user and the text it displays is provided
directly by the control software.

With all the necessary components of the GUI placed and grouped, there is one last step
needed to ensure an optimized main window. That is the placement of spacers, horizontal
and vertical ones. These spacers serve an important role, which is to keep the spacing
between grouped widgets set to certain values, regardless of the size of the main window.
Without these elements, the placement of each widget would differ according to the size of
the main window, thus resulting in a very confusing and difficult to work layout. With these

spacers added, the final GUI, as exported by Qt Designer, is illustrated in figure 31.

[T Motor Cantrol - MetorCentroLui

Manual Control
| e e

Manual Control

[t |] ot | e

| e [—
| Increment: 1= Increment: | J
| Velocity : Q siom O Fmst Velocity: Osem Ot
Input Control | Input Control
X :Y z O agsoume X Y Z O assoune
[I i O meme ||] O Rewme

P % el v e 2] ety e

| R | R |) il |] 3 0 0
|) I |
Figure 31: GUI as seen in Qt Designer (left) and as exported from Qt Designer (right)

The file type exported by Qt Designer is not, at this point, fit to be run within a Python script.
For that to be possible a conversion of the file is required, to a Python script. That can be
accomplished with the pyuic5 development tool, which converts the .Ul (Culjak et. al., 2012)
file to a python script with a pyQt5 syntax. After this conversion, the resulting file includes,
in order, the necessary imports, meaning the libraries needed for the script to run, and a main
function which includes all the widgets that were selected in the designing phase. Each
widget is listed with its appropriate placement and any customization made within Qt
Designer, as an editable python code in pyQt5 syntax. This code can successfully run,
however since no functions are attached to the widgets, no results will be outputted.

At this point any further customization on the main window or individual widgets that was
not able to be made within the environment of Qt Designer can be made. Since there is no
need for any customization, within the purposes of this application, the only change deemed
necessary is the overall color scheme of the main window. At its current state it is based on
light theme colors, which could be problematic after long term use of the software due to
eye strain issues from high brightness. For this reason, a dark theme is applied to the overall
color scheme of the application. The final GUI, after the placement of all individual widgets,
the conversion to Python script and the customization, can be shown by running the relative
Python script and its output is illustrated in figure 32.

TRAJECTORY CAMERA

Manual Control

[~
O ©
O

&

Increment :
Velocity :

Input Control

Y z O ABSDLUTE

X

® RELATVE
AXEO®
HOME STOP PHOTO MOVE

Velocity E‘ @
n mmfs “‘

1}
SAVE LOAD

Figure 32: Final GUI from Python script

4.2 Motion control of the automated station

As mentioned in the previous chapter, the GUI works as an interface between the user and
the control software, with which inputs and commands are given to the software and certain
processes are executed by the software and the subsystems it is connected with, with the
results of these processes being outputted as feedback to the user via the GUI. The
framework within which the GUI is designed operates in a very specific mechanism that
makes that possible. This mechanism is referred to as Signals & Slots.

Within the Qt framework, every widget has a set of pre-defined signals it can emit, when a
particular event takes place. A slot is a function that is called in response to a particular
signal. Slots are functions, most commonly defined by the developer, that perform a specific
task. In simple terms, while the Python script is running the main function that displays the
GUI is constantly checking for events. Once an event occurs, it emits the signal that is linked
to that event, that runs the function appointed to a specific Slot. Such an event could be the
pressing of a button, which would signal a function to run that performs a task appointed on
the pressing of the button.

e Objectd N connect(Object1, signal1, Object2, slot1)

connect(Object1, signali, Object2, slot2)
signall
signalz (" Objectz)
signal1
b slot1
——————p» slot2
{ Object3
signalt connect(Object1, signal2, Objectd, slot1)
f ectd)
Object4
slot1
L slotl
slot2

slot3
connect(Object3, signal1, Objectd, slot3) _J

Figure 33: Slot and Signal graph of Qt framework

With this in mind it is relatively straightforward to attach a specific function to each button.
Initially, the press of a button is connected to a function that, depending on the button, reads
the data inputted by the user on the purpose of the button and sends an appropriate command
to the microcontroller to be executed. This seemingly straightforward process has a few
obstacles that need to be addressed, depending on the functionality of each button. First and
foremost, the communication with the microcontroller.

As mentioned in a previous chapter, a computer is not capable of creating the output signal
necessary for the control of the motor drivers and by extension the motors or to receive the
input from the endstop directly. As such, there is a necessity for a microcontroller that
intermediates between certain electronic components and the computer and translates the
commands given by the user, through the GUI, to electric signals that result in appropriate
actions. The communication between the microcontroller and the computer is therefore an
integral part of the control process and should be addressed within the control software.

The most common communication between a computer and an external device is via USB
connection. The microcontroller chosen for this application has a USB-to-Serial converter
which allows for serial communication between the computer and the microcontroller. To
enable this communication the appropriate library must be added to the imports of the scripts.
The Qt framework offers the capability of serial communication, further reducing the need
for any additional library.

In regard to the microcontroller, which by default is programmed with the C++ language,
after providing power to it, a setup function runs once, which amongst other things, initiates
serial communication with the computer at 115200 baud rate. After the setup function runs
once, another function runs on a loop. Inside this loop function, there is a command that
checks whether a message is received through the serial port. What this function does with
the message received, will be fully explained further below.

At this point, any moment a button is pressed, the computer can send a specific message to
the microcontroller and the microcontroller constantly checks if a new message has arrived.
The opposite has not been programmed, meaning the microcontroller cannot pass

information to the computer. That is problematic, as there is no confirmation on the
execution of commands by the microcontroller. The reason the opposite communication is
much harder has to do with the very structure of the main window within the Qt framework.

As previously explained, the main window is a block of code constantly running to check
for events that can trigger certain signals. As such, the programming of a constant check for
received messages is difficult, as an open WHILE loop would cause the program to not
respond to other incoming events. To overcome this, after consideration of the available
tools provided by the QT framework, the most suitable solution was determined to be the
use of a QTimer. This is a class which, as the name implies, creates a timer and is connected
to a slot. The developer inputs a specific time interval, which is the numerical value in
milliseconds the timer is counting down from. Upon reaching the end of the countdown
(timeout), a signal is emitted, which activates the slot. The advantage is that the timer runs
in parallel with the main window and therefore does not affect its operation. With this
process, an interval of 300ms is chosen, as no command of the automated station is expected
to be executed in less time than that, and the communication from the microcontroller is
checked every time timeout is reached.

The last matter to be addressed in the communication between the computer and the
microcontroller is the message itself. As already stated, the commands the microcontroller
executes are not fast enough to interfere with the communication with the computer. Since
these commands are mostly in regard to physical movements of the automated station and
the baud rate is high enough, there are near zero chances a message from the microcontroller
to the computer will be interrupted by another message, resulting in a fragmented final
message received by the computer. The same cannot be said for messages sent by the
computer to the microcontroller. With fast enough clicking of the buttons, messages can be
sent at a speed that can cause issues with the integrity of the commands sent. Though in such
cases the command will be ignored by the microcontroller, as it will not fit within the
messages it is expecting to receive, such occurrences must be avoided. The simplest way is
to use the smallest possible message. Given the fact that baud rate is essentially the number
of symbols that can be transmitted in a second, then the smaller the message, the less time
required to be fully transmitting, thus minimizing the risk of fragmentation.

To create the smallest message possible, only the most necessary information regarding a
specific command must be included in it. For commands regarding movement of the
automated station the smallest message must include the button pressed, the X, y and z values,
the velocity and whether the movement is in absolute or relative coordinates. The values are
separated by a denominator, in this case a comma, to make parsing the data easier. For the
homing sequence and the stop command, only a single numerical value appointed to each
process is enough to initiate each function.

Having established successful communication between the computer and the
microcontroller, each button can be programmed to accomplish a specific function. The
programming of each button is rather similar. The button, when pressed, reads from a
specific LineEdit widget a user input and creates an appropriate message, which the passes
to the function that communicates with the microcontroller. This applies for the manual
control buttons, the Move, Stop and Homing Buttons.

In regard to the Photo button, its programming requires the explanation of the operation of
the camera feed, which is the subject of a later chapter. The Save and Load buttons, as
explained, respectively save the location of the last known X, Y and Z coordinates and load

them to the software by the user, both fairly simple programming tasks.

4.3 Programming the microcontroller

Programming the microcontroller that executes the motion commands provided by the
computer, is a much different task than programming the GUI and its functions. As already
stated, the very structure of the two programs is vastly different. A programming script for
a microcontroller similar to the one used in this application usually consists of three different
sections.

The first section includes the inclusion of all necessary libraries for each application, the
declaration of the type and initial value of variables and constants and of any other
programming element as required by a library. The only noteworthy steps in this section are
the selection of names for each of the aforementioned elements and their proper
documentation with comments, as both of these steps allow for a much cleaner code.

The second section is the setup function. This function only runs once, upon providing power
to the microcontroller. It includes the initialization of pins and their appropriate roles as
inputs or outputs, the initialization of the serial communication, and the setup of the
maximum speed and acceleration for the stepper motors.

The third section is the loop function, which, as the name implies, runs in a loop. Within the
loop function are all the commands the microcontroller executes in repeat. This is the part
that mostly differentiates the programming of microcontrollers to the programming of an
application like the GUI with Python and Qt. Underneath the loop function, there can be
various other functions created by the developer to execute specific tasks, but only run if
they are called by the loop function.

Within the loop function, there is a command that constantly checks for new messages that
might have been received from the computer. Should a new message exist in the serial
communication, it is sent to a function that converts it into a string type. This string is then
passed to a parsing function that breaks the string according to the denominator chosen and
saves them in specific places inside an array. A button function is called that, based on the
element of the array that regards a specific button and the elements of the array that regard
the information of the movement that needs to be executed, updates the new position of each
axis. The new position of each axis is then passed on a function that executes the movement,
meaning it commands the motors to be moved to the updated position. In case the button
function identifies in the appropriate element of the array the value that indicates the stopping
or homing function it acts accordingly, following the same process described above.

Once the command has been executed and the process (movement, stopping or homing) has
been completed, a messaging function sends a message to the computer to inform the
successful completion of the movement. A timeout condition exists on the control software
of the computer that indicates that if a command has been given and no response has been
returned within a specific time interval then the movement has been unsuccessful and an
error is displayed in the GUI.

By using simple coding practices, such as the switch statements, the overall code can be both
easily read but also minimal. This minimization of redundant complexity in the coding of

the functions mentioned above, resulted in use of less than 30% of the microcontroller's
storage space and 25% use of the dynamic memory, leaving ample memory for computation
and data handling.

Dang compiling.

uses 914

ocal variables. Maximum 1s 2048 bytes.

Figure 34: Compiled microcontroller code size on the Arduino IDE

4.4 Position graph, error dialog and camera feed

Programming the position graph is not dissimilar to the programming of the button. As
mentioned, the position graph will be implemented within the relative QWidget. A QWidget
is a subclass within the Qt framework that allows for the custom creatin of widgets, meaning
ones not already provided by the framework. Within this QWidget the position graph is
programmed using the matplotlib, a library used extensively by developers for graphs of any
kind.

The graph is implemented in the most intuitive way, meaning the vertical axis of the graph
represents the Y axis of motion and the horizontal axis represents the X axis. This is similar
to how the user sees the actual axis in motion when observing the automated station from
above with its longer side, the X axis perpendicular to the user. The extends of each axis of
the graph are numbered according to the physical extends of the relative axis they represent.
The Z axis cannot be represented directly, since that would require a 3D graph, which is
arguably much less intuitive. The Z position of the camera is therefore displayed as a
numerical value next to the point indicating the current position of the end tool — camera on
the position graph. The zero point has already been selected during the development of the
homing code, and is set accordingly on the position graph. The position graph at a random
point, during operation of the automated station, is illustrated in figure 35.

S Motor Control

TRAJECTORY CAMERA

Manual Control

@
o ©

o
+

Increment :

Velocity :

Input Control

Y r4 O ABSOLUE

(® RELATNE

aXEO®

HOME STOP PHOTOD MOVE

Velocity E‘ @
3

SAVE LOAD

Figure 35: Position graph example

To avoid unnecessary complication and since there is no need for constant update of the
position of the end tool, the X, Y and Z positions are only updated when the control software
of the computer receives a message from the microcontroller containing information about
the completion of a movement. Therefore, the values displayed in the graph are always true
to the microcontroller and are only updated when there is need to do so. Within the Qt
framework that means that the function receiving messages from the microcontroller, as was
explained in an earlier chapter, is added the task of checking the content of the message and
should it include the successful completion of the movement, which in Qt framework terms
would be the event, a signal is emitted to the position graph function, which is the slot, and
it updates the graph accordingly.

Since the function receiving messages has been updated to inspect the content of the
messages received, it can now be tasked with the update of the error display. As mentioned
previously, a QPlainText widget has been placed on the bottom of the main window to
inform the user on the completion of each task. A successful completion of a task is more or
less displayed by the rest of the widgets, whether it is the update of the position or the
velocity. However, this information can be potentially missed by the user, for example in the
case of a small enough movement, and additionally there is no way to examine it
retrospectively. An unsuccessful completion of a task cannot be displayed with any other
widget. So, there is great importance for direct communication of the processes of the
microcontroller and their status. This function is carried out by the QPlainText widget placed
at the bottom of the main window, which will henceforth be referred to as error display.

Every message transmitted from the microcontroller the receiving function decodes it, and
based on its content, it is sent to the error display function and is displayed using a matching
color; successful tasks as displayed in green, information critical to the user, but otherwise
not problematic to the function of the automated station are displayed in yellow and critical
errors are displayed in red. Next to each message displayed in the error display, there is a
time stamp indicative to the moment the task or error was displayed for logging purposes. In
Qt terms, the information of the message decoded by the receiving function is the event,
which triggers a signal that activates the slot, which is the error displaying function that
updates the error display accordingly. During operation, the error display might contain the
information presented in figure 36.

Velocity

E mm/s

Figure 36: Error display during operation of the automated station

Lastly, the only part of the control software that remains unmentioned is the camera feed.
Given the importance of the camera feed in this application, the camera feed is arguably the
most important, and though it is the last presented in order, the rest of the control software
has been written in a way that facilitates the proper function of the camera feed.

As already mentioned, the camera feed will be placed within a QWidget that is embedded in
the Tab widget of the main window. Within the Qt framework, there are capabilities that
allow for a camera feed to be implemented within a widget, however such implementation
is very limited in the scope of this application, where image processing might be required
depending on the object inspected by the automated station.

A camera feed is simply a timed collection of a single image at specific intervals (frames per
second). This collection is possible through specific communication to the camera. The
camera chosen for this application has a USB connection. A communication process similar
to the one implemented for the microcontroller could be theoretically possible. In such a
case, a timer could be set and the request for an image by the control software could be made
at specific intervals. The image collected could be then displayed to the QWidget, by
properly customizing its functionality, and the process could be repeated to achieve live feed
for the camera.

While this could be a potential implementation, it is rather unrefined. A much less complex
and common implementation would be with a class of the Qt framework called QThread.
This class, as the name implies, is an object that manages one thread of control within the
program, basically resolving the inherent difficulty of running looping actions within a Qt
created GUI. In terms of the Qt framework, an event loop can run within the thread
concurrently with the main window, once activated.

For the collection of the images, the most widely used library is OpenCV (Culjak et. al.,
2012), an open-source computer vision library. By combining all the above, the camera feed
is programmed by customizing the QWidget to display an image received by the QThread.
The QThread is activated within the QWidget and is programmed with the OpenCV library
to receive images by a camera device connected in a specific USB port and with a specific
color scheme, aspect ratio etc. Every time a new image is collected, which is regarded as an
event, a signal is sent to the QWidget, which displays the image. This process is fast enough
to result in live camera feed.

With the use of OpenCV, another function of the control software is rendered possible. That
is the collection of images. Within the camera QThread, there is a global flag that once
activated saves the current image displayed by the camera with an appropriate name. The
flag is activated with the press of the “Photo” button. In the Qt framework, the event is the
press of the button and the signal is sent to the thread (instead of another function of the main
window as any other button), which acts as a slot. Lastly, in the camera feed, utilizing the
OpenCV capabilities, a crosshair is placed in each frame, meaning two intersecting lines
forming a cross to enable the user to easily place the camera in a specific position.

With the completion of the programming of all the major functionalities of the control
software, several other elements are programmed. These elements, however, regard
secondary or assisting tasks and do not require any sophisticated implementation. Examples
include a pop-up window during closing to inform the user of termination of the GUI, the
function that encodes the message sent to the microcontroller and others. With the
completion of the programming of these functions as well, the control software can be
considered complete, and the collection of images for defect detection is now possible.

5. Implementation of defect detection using Artificial
Neural Networks

This chapter aims to illustrate the process of utilization of latest advances in the field of A.l.,
more specifically of ANNs for defect detection on certain aluminum cast items. The
immense complexity of the field is the first hurdle towards its proper utilization. It is,
however, arguably the most important step, as attempting to implement Artificial Neural
Network tools in an application without insight on its functionality, will make any attempt
to interpret and optimize its output potentially invalid.

Core concepts of ANNs will firstly be introduced and during the illustration of the
implementation process, these concepts will be thoroughly explained within the scopes of
the application. Any attempt to further delve into the details of the sub-processes of the
operation and implementation of Artificial Neural Networks, will be avoided to keep the
analysis short and on point.

Firstly, for defect detection, the most utilized field of A.l. is Deep Learning (LeCun et. al.,
2015). Deep Learning is a subset of ML, which in it of itself belongs to the scope of A.l. ML
aims to enable computers to complete certain tasks without explicit programming and Deep
Learning aims to achieve this by utilization of ANNSs. This difference between the two is
actually immense in its core concept, as the utilization of ANNs allows the data to pass
through the nodes of the network in highly connected ways, resulting in non-linear
transformation of the data with increasing abstraction.

This abstraction is the very edge of Deep learning. Because of it, compared to other ML
methodologies, Deep Learning has some inherent advantages. It can accommodate large
volumes of unstructured data, produce output fast and accurately and most importantly be
utilized in cases where increased complexity of the system, such as non-linearities or
disturbances, would have to be otherwise dealt with traditional algorithms of slower speed
and decreased accuracy, such as linear regression. Taking into account the data volume from
a video or live camera feed and the demand for near real-time detection, the exponential
progress and implementation of Deep Learning in object detection in the past ten years begs
no question. The complexity and time demand of the set up and the increased demands in
higher hardware specifications are the obvious disadvantages in the utilization of Deep
Learning, but within the scope of this application they are deemed as non-problematic and
are therefore disregarded.

Within the field of Deep Learning, the design of the ANNS, is referred to as architecture.
The differentiation between the different types of architectures is a highly technical matter
and the progress of the field is such that, to simply mention the most prevalent ANN
architectures and their differences is well out of the scope of the current thesis. Instead, the
focus will remain only on the architectures currently overutilized on object detection and
disregard ones that are either still on a research level, not commonly used or otherwise not
heavily favored by professional developers of the related field.

Before further elaboration on the ANN architectures for object detection, a proper definition
of the term is needed. Within the field of A.l., object detection is a computer vision task
falling under the general term of object recognition. Object recognition (Zhong-Qiu Zhao et.
al., 2019) includes image classification (Al-Saffar et. al., 2017; Atraszkiewicz et. al., 2020)
and object localization (Long et. al., 2017). The former is a process including the input of an

image with a single object and the output of a class label relative to the content of the image.
The latter is a process including the input of an image with multiple objects with an output
of a bounding box around one or more objects. Object detection is the combination of these
two tasks within one process, which ultimately includes the object localization of one or
more objects within an image with the addition of a class label on each object. With this
definition in mind, it is a rather simple transition to defect detection. In regarding each type
of defect as a different class of object and labeling it as such, with the utilization of ANNS,
we can determine the location and type of a defect on a product.

In the following chapters, the different architectures of ANNs utilized in object detection
will be presented, the most suitable will be selected and the implementation steps will be
explained. Ultimately, the appropriate ANN architecture will be implemented and the
resulting model will be integrated in an application for use with the automated station. The
steps for the implementation of the model, if followed correctly and with respect to the
different features of each application, can allow the automated station to operate as a quality
inspection tool for a number of different applications.

5.1 Artificial Neural Network architecture

As mentioned, to delve into the characteristics of all different ANN architectures, and their
individual distinctions, is far beyond the scope of this thesis, as the immense progress of the
field the past decade demands the thorough explanation of highly technical terms. A simpler,
more direct way to determine the optimal type of ANN to implement in this specific
application, is simply to compare the most commonly utilized, in applications similar to our
own, architectures and types and find the one most fitting.

Another, arguably more important, reason to look into the most commonly used ANN types
is also a result of the highly technical nature of the matter and needs to be addressed. The
implementation of a neural network, from its conception to the actual software development
requires extensive knowledge on the subject matter and a high degree of skill in software
development. While there are plenty of frameworks that simplify to an extent the
development of a neural network model, the demand for the developer to be familiar with
the extensive background regarding neural networks remains. The more a type of ANN has
been utilized in real life applications, the more information is available for its proper
implementation. The widespread use of a certain type of ANN in a certain field, can also
rapidly decrease the time demands for the setup of an ANN, due to the existence of pre-
trained models. These pre-trained models and their importance to object detection
application will be thoroughly explained later on.

For object detection purposes, the most overutilized ANNs have two distinct types of
architecture, the two-stage and the one-stage architecture (Lohia et. al., 2021). The former
consists of a first step of extraction of Regions of Interest (Rols) in an image and a second
step including the classification and regression of Rols, while the latter only performs the
second step. The state of the art consists mostly of two-stage architectures as they perform
with a much higher accuracy, but the one-stage are also utilized as they tend to be
significantly faster.

The most prominent two-stage object detector architectures include the R-CNN, Fast-CNN
and Faster-CNN models (Juan Du, 2018), while the one-stage architecture includes the
CenterNet (Duan et. al., 2019) family model, the Yolo family model (Juan Du, 2018)and

SSD model (Wei Liu et. al., 2016). Both of these architectures include numerous other
models, with a great degree of variation among them and are heavily utilized in the field of
object detection.

The individual distinction between all these models, though highly technical, can be of great
importance to a defect detection application, even more than in other object detection
applications, depending on the size of the defect, the variations with which it is presented
and its differences in appearance with the non-defective parts of the project. However,
selecting an appropriate type based on these highly technical characteristics and then further
customizing the model to fit the necessities of such applications, would require hours of
extensive research and implementation, enough to constitute as an additional master level
thesis.

The problem of determining the most suitable type of ANN, however remains and to address
this, the framework, within which the model will be developed, can provide valuable
information. The obvious choice for a ML framework with Deep Learning model capabilities
is TensorFlow (Goldsborough, 2016). This framework, developed by Google for
implementation in a wide variety of ML applications, offers the ability to utilize Deep
Learning methodologies, in a far easier yet thoroughly robust way.

The fact that the TensorFlow framework has been favorited in Object Detection application,
means that there is a plethora of information for the utilization of the models mentioned
above, but most importantly, there are data on the characteristics of each model in relation
to the utilization of each model within the framework. More specifically, there is numerical
data illustrating the performance of each model, meaning the speed and accuracy of each
model, within a specific dataset. This means that these metrics can be used to determine
which model is more suitable for the application, at least in an initial level in regards to the
speed and accuracy demands of the application and of course to prove that the overall system
works both on a conceptual and on a functional level, albeit not fully optimized.

The available models of the TensorFlow framework, for object detection, are of both of the
architectures mentioned above and, as mentioned, are pre-trained. The term pre-trained
model, which was mentioned earlier, is rather important in the field of object detection. A
pre-trained model is a saved network that was previously trained on a large dataset, typically
on a large-scale image-classification task. A pretrained model can either be used as is or it
can be customized to another set of objects, using transfer learning.

Inductive Learning Inductive Transfer

Allowed Hypotheses

Allowed Hypotheses

All Hypotheses All Hypotheses

Figure 37: Transfer learning

Transfer learning (Weiss, et. al., 2016)is a ML technique where a model trained on one task
IS re-purposed on a second related task. This can be a potentially powerful technique in the
development of a model. This form of transfer learning used in deep learning is called
inductive transfer. This is where the scope of possible models (model bias) is narrowed in a
beneficial way by using a model fit on a different but related task. Transfer learning is
advised to be used in cases, where its implementation can result in three possible benefits:

1. Higher start. The initial skill (before refining the model) on the source model is
higher than it otherwise would be.

2. Higher slope. The rate of improvement of skill during training of the source model
is steeper than it otherwise would be.

3. Higher asymptote. The converged skill of the trained model is better than it otherwise
would be.

higher slope higher asymptote

,

... With transfer
—— without transfer

performance

higher start

training

Figure 38: Benefits of transfer learning

In the specific case of object detection, significant resources would have to be used for a

customized model to be developed for a specific application and abundant data would have
to be provided for training to achieve optimization. In any other case of object detection, a
pretrained model modified using transfer learning is the only viable solution. As mentioned,
TensorFlow offers a collection of models, referred to as Model Zoo, pretrained in the COCO
2017 dataset.

The list of available models provides the metrics required for a selection of an appropriate
model. Models of different architectures and types are provided, with an indication on the
size of the inputted image, and numerical values indicating the speed at which detection is
accomplished and the accuracy of the detection. It should be noted that the metric for
accuracy, for object detectors, is most commonly the Mean Absolute Precision, a statistical
parameter derived based on the correct detection of an object detector in reference to the sum
of the total correct and incorrect detections. A higher value of mAP for a specific model,
correlates to a greater accuracy in object detection.

With these data now available for the provided models, a more informed decision on the
most suitable one can be made. Firstly, since the main goal for defect detection within the
scope of the thesis is the proof of concept, rather than optimization of the process, speed of
detection is valued higher than performance. As such, two stage object detection
architectures are disregarded in favor of the faster one stage architectures, meaning the CNN
model family is not taken into consideration.

Furthermore, the available resources, in respect to the hardware for the creation of the model,
are limited to the use of a commercially available mid-range personal computer with
integrated graphics, instead of a GPU. This latter statement is an important one, as the
existence of a GPU and better yet a high-end GPU, significantly decreases the time demands
for the training of the model. Regardless, the training time, being the most time-consuming
process of model development, meant certain compromises were necessary. Merely looking
at the list of the available pre-trained model, it is apparent that for any model provided there
is a list of available alternatives depending on the size of the imputed image and that the
increase in size is relative to the speed of detection. What is not apparent is that the size of
the image also affects the training time proportionally, meaning that increased size leads to
increased training time.

At the same time, images of smaller size cannot be used indiscriminately for two reasons.
To reduce the size of an image, the image needs to either be cropped or be compressed. The
former option can be applied to an extent, but the region of interest in respect to the detection
of defects is standard within the scope of the application and further segmentation of the
images would be neither easily applicable nor time efficient, during operation of the
automated station. The latter option severely affects the quality of the images, depending on
the extent of the compression. This leads to the downsizing of possible defects to merely a
few pixels, which makes their detection impossible even to the human eye.

Summing up the above, it becomes apparent that the most suitable pre-trained model is one
that allows for pictures of a decent size, yet small enough to allow for a reasonably fast
training, with the model being fast enough to run within the operation of the automated
station, yet without detrimental performance in respect to its accuracy. The object detection
pretrained model available by the TensorFlow framework that meets these criteria is the SSD
MobileNet V2 FPNLite 320x320.

With the selection of the model complete, it is possible to proceed with the steps required to

set up an object detection ANN model within the TensorFlow framework. These steps are
illustrated and thoroughly explained in the following chapters.

5.2 Selection and labeling of images

Before further explanation of the individual steps for the development and utilization of the
ANN model on this application, further elaboration is required on the environment within
which the TensorFlow framework will be deployed. TensorFlow is most commonly utilized
with the Python programming language. It is also common for developers on Deep Learning
applications and other ML projects to utilize TensorFlow and other relevant libraries, with
Python on a web-based interactive computing station, called Jupyter Notebooks. The
commonality of this implementation translates to an abundance of information on the
development of ANN models and as such it is adopted for this application.

An additional benefit of the Jupyter Notebook station is the fact that it provides live code,
equations, narrative text and visualization making it a great tool to illustrate and share code
in a presentable manner with all the necessary documentation.

In the same topic, it is regarded as a safe practice to run Jupyter Notebook and install all the
libraries and modules required for model development in a virtual environment. The simple
reason is that a virtual environment is more easily controlled by the developer, which
addresses possible issues that Python may present in respect to the management of
dependencies.

Having created the virtual environment and installed all the tools necessary for this process,
we can proceed with the first major stop, which is the selection of images. To train the model
and validate its function as a defect detection tool, 82 high quality images were provided, of
certain aluminum products with different defects or no defects at all. The reason these images
were used is simply because the creation of the model was concurrent with the design and
assembly of the automated station, hence it could not be used to provide the necessary
images. To recreate the model creation methodology presented in the current and following
chapter, the images would otherwise be collected with the control software and the
electromechanical assembly of the automated station.

As mentioned in the previous chapter, this number of images would be immensely
insufficient for the creation of a custom ANN model. It is, however, more than sufficient for
the implementation of the transfer learning methodology that was previously illustrated. For
transfer learning, the higher the number of training images, the better chances of producing
an accurate object detection model. However, there is a threshold, since with more images
provided, the time for the training of the model, even with transfer learning, rapidly
increases. A compromise is therefore required to minimize time demand yet achieve
noteworthy accuracy. For this reason, from the 82 images provided, initially 15 were used
for training and 10 were used for testing within the process of creating the model and the
remaining were used for manual validation of the accuracy of the model.

The images provided, as mentioned, were of extremely high quality. As it was stated in the
previous chapter, the images at their current size, which is proportional to the quality, are
unusable. An initial preprocessing of the images is necessary. By observing the images, it is
apparent that the region of interest, in respect to defect detection, is in the middle of every

image. A script is therefore created in Python that automatically crops every picture in a
specific size enough to contain the region of interest. An image cropping resulting in a new
image of 995x995 pixels is more than enough to include the region of interest, while
accommodating for slight differences in the center alignment between the images provided.
The main benefit is that the resulting images, that will ultimately be compressed to 320x320
pixels to be inputted in the model, will include the region of interest yet only be compressed
by approximately 67%, which should retain the majority of the detail of the defects to a more
than acceptable degree.

Having collected the images and separated them in three categories: training, test and
validation, the next step is the labeling of the objects to be detected in each of the training
images. At this point, a convention must be made in regards to what constitutes a defect of
a product. Depending on the type of product examined automated station and the level of
surface detail required by the application, a defect can be defined differently, so a case-by-
case approach is more logical. In our case study, since speed and accuracy are the main
objectives, only the more visible and larger size defects will be labeled, as a proof of concept.
As such, smaller surface defects such as minor cracks and pinholes are generally disregarded
and only larger defects will be subjected to detection.

Regarding cast aluminum products, there is a quite large number of different parameters that
can result in the appearance of surface defects. from inconsistencies in the flow of the liquid
metal during pouring, to defects on the die, to fluctuation in the temperature of the die or the
cooling process of the cast item and many others. Defining the cause of a surface defect on
an aluminum cast item is a highly technical skill that requires both extensive knowledge on
the aluminum and its casting and equally extensive experience on the actual process. As such
to classify the defects based on their cause would be nigh impossible, without lengthy
feedback from a skilled person.

Concurrently, a single label for defect detection could potentially pose an obstacle rather
than simplify the defect detection process. The limited size of the dataset and the fact that
there is a significant degree of visual difference between defects means that an attempt to
categorize all defects under one label would make it difficult for the model to “define”
through the training process what a defect is and how to detect it. With a large enough
training data and a much lengthier training process, it would be theoretically possible for the
model to reach a state where it could recognize defects despite their significant variance.
This state, which in ML is referred to as Generalization, is a sought-after characteristic of a
successful model. In the case of this application, however, with the limitations and
constraints already mentioned, is it highly unlikely to achieve such a state for every defect
present in the aluminum cast products.

A much more realistic approach would be to categorize the different defects in a much
broader, visual based way. By simply observing the defects it is apparent that they generally
come into two distinct shapes, albeit with variations among them. These shapes are circular
for defects akin to holes and curved lines for defects akin to cracks, and combinations of
these two shapes. With all the above information regarding the nature of the defects, their
variety and their most basic differentiations, the most suitable classification would be
according to their shape, in order to facilitate the training of the model and achieve an ANN
model capable of detecting defects of different classes, even at a most basic, proof-of-
concept level. By that accord, two classes of defects are created and are labeled as “Crack”
and “Hole” in respect to which geometry of defect they are most similar to.

The labeling process is quite straightforward and the most common process is with the use
of an open-source tool, Labellmg (Yakovlev et. al., 2020) developed by Tzutalin. It is a
graphical image annotation tool developed in Python with the use of the Qt framework, with
annotation on images saved on XML files in PASCAL VOC form, a format commonly used
for the labeling of images for ANN applications. It has a rather intuitive layout, within which
the user imports an image, creates one or more labels in respect to the individual objects that
the model will be trained to detect and then assigns these labels to the objects in the image
with appropriate bounding boxes. The information on the location of the selected object
within the image and the label of the object is saved on the XML files previously mentioned.
It is a manual process, that for a large enough dataset would be extremely laborious, but
necessary for the use of supervised learning models. The environment of the Labellmg is
illustrated in the image below, as is the bounding box selection tool and the list of user
defined labels.

labelimg - o &

File Edit Vview Help
Box Labels
& E|
CESY difficult
74
Open Dir

Use default label

74
Change Save Dir

=

»
Next Image
==
Previmage
]

Verify Image

File List

Figure 39: Labellmg image labelling environment

Though it has not yet been mentioned, the process of collecting the images, separating them
in appropriate files and utilizing the Labellmg tool to label them, need to be quite structured
to proceed with the training of the model. In this context structured refers to the filing of
each component, meaning images and appropriate .xml files with specific names and
following a strict file structure in respect to the pathway of each file inside the virtual
environment previously created. Deviation from this file structure, especially without full
comprehension of the model training code, will result in errors during the process. By
utilizing the Jupyter Notebook, the file structure can be somewhat automated and the
accompanied highly presentable documentation, within the code file, making it easy to be
adapted by anyone trying to train the model for a different set of products or defects.

5.3 Training the Artificial Neural Network model

With the images collected, labeled and placed on appropriate files, it is possible to proceed
with the training of the ANN model. This process is developed in Python within the Jupyter
Notebook station and consists of six main steps. These steps will be illustrated within this
chapter with reference to the details relevant to the training of the model, rather than the
process of the development. For the latter matter, the Jupyter Notebook file containing the
training code includes documentation that makes editing the process for any other set of
products possible.

Firstly, as will the collection of the images, an automated process for the file structure and
pathways is implemented. This process is rather critical to allow both the correct training of
the model and the possible editing of the code in future applications. The setup process
includes the creation of directories for the custom model, the pretrained model, all relative
workspace subdirectories required for the creation of the model and finally the pipeline
configuration. By pipeline, in the field of ML, it is meant the end-to-end construct that
orchestrates the flow of data into, and output from, a ML model. A final check is made to
ensure that the above file setup has been established and the next step can follow.

The next step of the process is the downloading and installation of the TensorFlow Model
Zoo collection and the numerous required dependencies. While rather simple in its
implementation, the volume of material required to be downloaded and installed on the
virtual environment setup for this process, is both time consuming and in need for further
inspection. A verifying script check for the correct completion of the process and for any
dependency missing, manual installation must be done by the developer. The PIP package
installer, which was already installed in the virtual environment, greatly aids at this process

With the dependencies installed, the next step is to create the Label Map for the training of
the model, which in simple terms is the list of different labels with which the objects, in this
case the defects, will be classified with. Since, in the scope of this application only one type
of defect is examined, shrinkage cavities, there is only need for one label. Attention must be
paid, however, that the name used for this label is the same name used during operation of
the Labellmg tool for the labelling of the training images, otherwise the training process will
not occur. Following this, the TFRecord files for the training and testing dataset are created.
The details of the contents of these files regard to the TensorFlow framework and need no
further elaboration within the context of this application.

Following, the pretrained model is reconfigured to achieve transfer learning. The update on
the configuring of the pretrained model is mostly an automatic process following the
configuration of the pipeline as was structured previously. The last step is the actual
commands to initiate the training of the model, including the number of steps during training.
In regards to the number of steps, the higher the number, the more time the training will take
to be completed but during the recurring process of training the increased steps will more
likely provide better results in respect to accuracy. Within the scope of this application, a
number of steps equal to 2000 is deemed appropriate as anything much higher will greatly
increase the required time for training, partly due to the capabilities of the hardware

Upon completion of this process, the output includes an abundance of information relevant
to the performance of the model during training, both regarding the time required for
detection and its performance in respect to accuracy. These metrics and all others provided
by the TensorFlow framework, will be examined in the following chapter.

5.4 Evaluation of the Artificial Neural Network model

As mentioned, the evaluation of the model is possible through certain metrics that are
outputted after the training of the model is complete. This information is accessible to a
degree from the command prompt within which the training process runs, but it is convoluted
to a degree and difficult to be extracted in a cohesive way. The TensorFlow offers a much
more comprehensive way to evaluate the performance of a model, following the training

process, through a tool named TensorBoard (Mané, 2015). Amongst its many features,
TensorBoard provides developers with measurements and visualizations needed to evaluate
the loss and accuracy of a model.

These two metrics are the main indicators of performance of a ML model. The accuracy of
the model has been mentioned and briefly explained in an earlier chapter, but for the
evaluation of the model to be possible, all relevant metrics will be introduced and thoroughly
explained.

As mentioned, the performance of an object detection ANN model is evaluated by a metric
called Average Precision and most often by the Mean Average Precision (Anwar, 2022). It
is impossible to elaborate on the meaning of this metric without introducing other metrics
relevant to it and to detection and localization algorithms. Furthermore, it should be stated
that the mean Average Precision (mAP) is not a metric covering the performance of a model
for all of its classes simultaneously, rather than a class-by-class metric. To introduce the
metrics relevant to mAP the following graph helps illustrate the relationship between them.

Mean Average)
Precision (mAP) |

s R
—~

//’———____-_:; ________ \\ l’__\--_\ I’____\
/ ‘ Average \’ R i ! i !
I Precision v : | :
| A ! I , |
I l Precision-Recall Il | I |
I Curve ' 1 ' |
N s . 11 | I |
i P it Bl X 1 A I L |
e 1l I
: [Precision] [Recall J 1 ! I |
I |
I A A & I , I
[/ B e A o \ (N , I :
; AR e T R 1 , 000 | \
i ¥ | (| 1 I \
i True False ’ False I \ [\
| Positive Positive | Negative (I | ! I
q b =S, AT e e =4 (I ! I |
1 e I | I ' I
- loU }< 1 |
1 - =~ -~ | I
i sy Calculation RIS 1 | I :
(I I
[1 1
S Ground 1| [
\
== i B
» % 1 1 : 1
. ~ i & \ 7/ \ 7/
Class 1 Class 2 Class n

Figure 40: mAP calculation flowchart

Following the flowchart above, the introduction of each metric relevant to the evaluation of
the model will be made, starting from the bottom of the chart.

1. Intersection over Union (loU):

loU quantifies the closeness of the two bounding boxes (ground truth and prediction). It's a
value between 0 and 1. If the two bounding boxes overlap completely, then the prediction is
perfect and hence the IoU is 1. On the other hand, if the two bounding boxes don’t overlap,

the 1oU is 0. The loU is calculated by taking the ratio between the area of intersection and
the area of the union of two bounding boxes as shown below.

Intersection over Union (loU)

Ratio between the area of intersection and
the area of union of 2 bounding boxes

u

loU =

Figure 41: Intersection over Union (loU)

2. True Positive, False Positive, False Negative:
A prediction is said to be correct if the class label of the predicted bounding box and the
ground truth bounding box is the same and the 1oU between them is greater than a threshold

value.

Based on the loU, threshold, and the class labels of the ground truth and the predicted
bounding boxes, we calculate the following three metrics

True Positive (TP): The model predicted that a bounding box exists at a certain
position (positive) and it was correct (true)

False Positive (FP): The model predicted that a bounding box exists at a particular
position (positive) but it was wrong (false)

False Negative (FN): The model did not predict a bounding box at a certain position
(negative) and it was wrong (false) i.e., a ground truth bounding box existed at that
position.

True Negative (TN): The model did not predict a bounding box (negative) and it was
correct (true). This corresponds to the background, the area without bounding boxes,
and is not used to calculate the final metrics.

3. Precision, Recall
Based on the TP, FP, and FN, for each labeled class, we calculate two parameters: precision
and recall.

Precision: tells us how precise our model is i.e., from the total detections made by
the model, how many were actually true detection, meaning in this application actual
defects. Hence, it is the ratio between the true positive and the total number of defect
predictions (equivalently the sum of true positive and false positive) made by the
model as shown below.

Recall: Tells us how good the model is at recalling classes from images i.e., out of
total defects in the input image how many was the model able to detect. Hence, it is
the ratio between the true positive and the total number of ground truth defects
(equivalently the sum of true positive and false negative) made by the model as
shown below.

Precision and Recall in Machine Learning
For each class
Correct Predictions TP

Precision = =
Total Predictions TP+ FP

Recall Correct Predictions TP
LECALL =— =
Total GroundI'ruth TP+ FN

Figure 42: Precision and Recall in ML

4. Precision-Recall Curve
Ideally, we want both the precision and recall to be high i.e., whatever is detected is correct
and the model can detect all the occurrences of a class. The value of precision and recall
depends on how many true positives were detected by the model. Assigning a bounding box
TP, FP, and FN depends on the following two things

e The predicted label compared to the ground truth label

e The loU between the two boxes

For a multiclass classification problem, the model outputs the conditional probability that
the bounding box belongs to a certain class. The greater the probability for a class, the more
chances the bounding box contains that class. The probability distribution along with a user-
defined threshold (between 0 to 1) value is used to classify a bounding box.

The smaller this probability confidence threshold, the higher the number of detections made
by the model, and the lower the chances that the ground-truth labels were missed and
hence higher the recall (Generally, but not always). On the other hand, the higher the
confidence threshold, the more confident the model is in what it predicts and hence higher
the precision (Generally, but not always). We want both the precision and recall to be as high
as possible, hence, there exists a tradeoff between precision and recall based on the value of
the confidence threshold.

A precision-recall curve plots the value of precision against recall for different confidence
threshold values. With the precision-recall curve, we can see visually what confidence
threshold is best for a given application.

5. Average Precision

Selecting a confidence value for your application can be hard and subjective. Average
precision (AP) is a key performance indicator that tries to remove the dependency of
selecting one confidence threshold value and its mathematical definition is the area
underneath the Precision-Recall (PR) curve

AP summarizes the PR Curve to one scalar value. Average precision is high when both
precision and recall are high, and low when either of them is low across a range of confidence
threshold values. The range for AP is between O to 1.

1

Average Precision (AP) = / p(r)dr
r=0

Figure 43: Equation for the calculation of the Average Precision

The actual calculation of the value of the Average Precision is possible though methods of
numerical analysis, since the PR curve is drawn as connection of numerical values and is not
the output of a specific function. Most common methods, especially for manual calculation
is a rectangle approximation or interpolation and averaging.

6. Mean Average Precision:
AP value can be calculated for each class. The mean average precision is calculated by taking

the average of AP across all the classes under consideration. i.e., mAP = % YK AP,

The process described throughs steps 1 to 6 to calculate all metrics regarding to the
performance of the model is illustrated for contextual reasons, since the metrics mentioned
above are outputted by the TensorFlow framework, at the end of the training of the model,
through the TensorBoard tool for evaluation purposes. The mAP metrics for the training of
the model, as outputted by Tensorboard are illustrated in figures 44 & 45.

DetectionBoxes_Recall/AR@1] DetectionBoxes_Re... /AR@10] DetectionBoxes_R... /AR@100
04
03
oz

o

Detectio.../AR@100 (medium)] DetectionB_.. /AR@100 (small) H DetectionB_.. /AR@100 (large)

L}

03

02

aa

Figure 44: Recall of trained ANN

DetectionBoxes_Precision/mAP oo DetectionBoxes_Precision/mAP (large) 3 f DetectionBoxes_Precisi../mAP (medium) S

0.08
0.06
004

0.02

500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000

DetectionBoxes_Precision/mAP (small) oo DetectionBoxes_Precision/mAP@.5010U 3 f DetectionBoxes_Precision/mAP@.7510U

0.003

0.002

500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500

Figure 45: Precision of trained ANN

The two sets of graphs illustrated regard to the Recall and the Precision of the trained model,
as these concepts have been defined above. Firstly, for both of these metrics, the horizontal
axis regards to each step within the training process, a number that was inputted during the
training setup of the model, that number being 2000. Only the value regarding the final step
of the training process is plotted as it should represent the best recall and value attained by
the model.

Regarding the recall, the six figures represent, from left to right and from top to bottom, the
average recall for 1, 10 and 100 detection and the average recall of small (area<32? pixels),
medium (322 pixels<area<96? pixels) and large objects (962 pixels<area<10000? pixels) for 100
detections. It is rather evident from these graphs that the recall of the model is stable, as the
value of the Average Recall is similar for 10 and for 100 predictions, however the model is
completely insufficient in recalling defects of smaller size but sufficient to a degree in the
prediction of medium and larger size defects. The value for the latter defects is definitely
low enough to require further optimization but it definitely establishes the capability of the
model to recall classes from images

Regarding to the precision of the model, the graphs represent on the top, the precision of the
model (mean Average Precision — mAP), for small, medium and large objects and on the
bottom the mAP over classes averaged over 10U thresholds ranging from .5 to .95 with .05
increments, at 50% IOU and at 75% IOU. All the mAP values depicted indicate that the
model is far from optimized, as it is evident by the fact the mAP value for the model on the
COCO database was 0.22. Less than half of this value is reached for the trained model of
this application and it is only exhibited in the larger objects, with medium objects having an
even lower value and smaller objects being completely insufficient. Additionally, the higher
value of mAP averaged over IOU and at 50% IOU contrary to the mAP at 75% 10U, further
indicates that the model has limited capabilities in detecting the complete area of the defects
Since the existence and not the complete identification of the defect is the main role of the
trained model within this application, that is not a concerning matter, but definitely one that
could benefit from further optimization.

The optimization of the trained model in respect to its precision and recall, will be thoroughly
explained, with reference to the values of these graphs and their interpretation above, in a
latter chapter.

Another metric provided by the framework is the loss functions of the model. In contrast to
the other metrics mentioned above, the loss functions are calculated during the training rather
than during the evaluation of the already trained model. Even so, they provide valuable
feedback, since they are the only metric that provides information on the actual training
process, rather than its output, being the already trained model.

Loss, or the often-interchangeable term Loss functions, is as the latter name implies a
category of functions that are used extensively in the field of statistics to determine, in plain
terms, how close a predicted value is to the true value. Within the field of ANNSs, their role
IS very important as, during the training process, with every prediction (step) the loss
function calculates, within a single value, the error of the prediction as defined above and
provides it as an input to the next prediction in order to minimize it. This cyclic process is
the core of the training of the model.

There are several loss functions used in statistical modeling and by extension ANN. They
range in complexity from as simple as a Mean Absolute Error to more complex like the
Categorical Cross Entropy Loss and Hinge Loss. Not every loss function is suitable for every
predictive model, including ANNs and the suitability is a highly technical matter that
requires both proper education on the subject and experience on the field, as both the
application and the data it includes affect the final choice in loss function. Within the scope
of this application the loss function for the training of the model is inherited by the pretrained
model used for transfer learning.

The Tensorboard tool exports graphs illustrating the loss calculated for each step of the
process, providing not only the total loss but even more specific data for loss, such as the
classification loss, the localization loss and the regularization loss. The first two are self-
explanatory and the latter regards the loss function on the regularization, which is a technique
used in ML, to tune a function or a model by adding an additional penalty term to the error
(or loss) function ultimately aiding the model to achieve generalization. The four Loss
metrics, the classification, localization, regularization and the total, as exported by
Tensorboard, are illustrated in figure 46.

Loss/classification_loss

200 400 600 800 1,000 1,200 1400 1,600 1,800 2,000 200 400 600 800 1,000 1,200 1400 1,600 1,800 2,000

Figure 46: Loss function values during training of ANN

The most important feedback from these graphs is the trend by which the values are changing
over each step of the training process. A successful ANN model, would exhibit a decline in
the values of the loss functions with each step of the training, which is indeed the case for
this model, but these values would eventually stabilize around a much smaller range of
values. This is not the case for this model, as there is no stabilization evident in any of the
loss functions. That is indicative of a model that has been trained with not enough steps. This
and other parameters of the training process that would lead to a much more optimized model
will be explained in a latter chapter.

5.5 Integration of Artificial Neural Network model on a GUI

There are many implementation methodologies available due to the capabilities provided by
the TensorFlow framework. Since, within the scope of this application, there are no specific
requirements for the deployment of the ANN model, a more general approach will be
illustrated within this chapter.

In most cases, where there is camera feed within an application, the ANN model is integrated
in the function of the camera feed. There, within each image received sequentially by the
camera, the ANN model tries to detect the objects it has been trained to detect. With a rate
of 24 frames per second, meaning a new image input every approximately 42 milliseconds,
a model that runs in any time less than that can theoretically detect objects seamlessly. Why
this is theoretical is because it assumes that no other functionality is undertaken by the
program while the image collection and object detection run, which in any application, but
the simplest ones, is not true.

The result is quite visible in systems with hardware of relatively low specifications, as any

attempt to integrate the ANN model to a slightly complex GUI and control software results
in intense lagging, to the extent that it renders the whole application inoperable. Referring
back to the relevant chapter on the GUI and the way it operates, any lagging introduced to
the loop can inadvertently cause the GUI to crash and the application to terminate
unexpectedly. Unexpected crash, within the scope of this application, requires a reboot of
the control software with the added time consumption for a full homing operation, as the
position of the camera within the working area of the automated station is not saved without
explicit command from the user or during normal shut down process. For all these reasons,
an unoptimized ANN model integrated in the control software, running simultaneously with
the camera feed, is deemed unnecessarily risky. Such integration can be easily accomplished
once optimization of the model is complete and use of high specification hardware is
possible.

To avoid the risks mentioned above and since there is no immediate demand by the
application for live detection of defects, during every moment of operation of the automated
station, an alternative approach has been implemented. An additional GUI was created,
within which the ANN trained model has been integrated. The process for the creation of the
additional GUI is no different in concept than the one described in chapter 4 of the present
thesis, but significantly simpler. The only elements required in the Defect Detection GUI
are:
e a loading button to allow the user to load an image taken by the camera using the
“Photo” button of the control software GUI or any other external image file
e a cropping button that allows the user to focus the detection process on a specific
part of the image, thus allowing for better accuracy of the prediction
e and lastly, a detection button to initiate the defect detection process by the model.

Following the process illustrated in an earlier chapter, the GUI is created in Qt Designer,
exported, converted in python script format, the buttons are connected to their appropriate
functions and a dark theme is applied to the GUI. The functions for the loading of the file
and the cropping of the image are quite simple to be implemented in Python and will not be
further explained. In regard to the implementation of the detection function, the image path
is inputted, the image file subjected to detection is accessed using the OpenCV library, then
the image is converted into a matrix using the NumPy library and the resulting matrix is
converted to form recognized by the model. The detection is then initiated and which outputs
the bounding boxes and the labels. These two elements are then placed on the original image,
which is then plotted using the Matplotlib library. The GUI with an example of an image
with defects detected is illustrated in figure 47.

W Defect Detection

Load
Crop
Detect

Save

Figure 47: GUI for defect detection

6. Conclusions and suggestions for further research

With the completion of the design and construction of the automated station, the
development of the control software and the training, evaluation and implementation of the
ANN model for defect detection, we can proceed with the individual examination of the
capabilities and possible flaws of each component and the overall system. In continuation to
the sequence by which the individual parts of the system were presented in the previous
chapters, the conclusions for each subsystem have been separated in regards to the physical
subsystem, meaning the electromechanical assembly, the control software and the defect
detection ANN model. Each subsystem will be examined in the following chapters.

6.1 Functionality of automated station

In regard to the mechanical system, following the assembly of all mechanical parts, no issues
have been presented to indicate the necessity for any change, major or minor. A few
suggestions can be made nevertheless.

As mentioned in the relative chapter, the automated station, and more specifically its frame,
is secured by 90-degree corner brackets, fixed in place using bolts and T-nuts. At the
moment, no issue has risen with the integrity of the construction. However, the existence of
moving parts on the frame and the resulting vibrations from the acceleration and deceleration
of these parts, can potentially be problematic in the future. These vibrations can cause the
bolted connection to loosen in time, thus allowing a degree of relative motion, even in the
millimeter scale, between the individual parts of the frame. This relative motion can cause
anything from increased vibration of the frame to misalignment of the axis. The former could
range from an inconvenience to the user to further loss of fixture in bolted connections. The
latter, depending on the severity, can cause loss of accuracy to the movement of the camera
to increase and put stress on other mechanical components of the assembly even to the extent
of resulting in failure of a mechanical part.

The potential issues of the bolted connections can be easily resolved with the use of chemical
adhesive agents, commonly referred to as thread lockers, that spread between the threads of
the bolt and the nut, bonding them together in a much more secure manner. In addition to
this, it is highly recommended that aluminum extrusions are placed diagonally in the lateral
sides of the statical frame that are not used for access to the working area of the automated
station. This recommendation aims to increase the stability of the overall construction, such
that even in a case were some of the bolted connections are loose enough to allow for relative
motion, the diagonal aluminum extrusions resist any relative motion, thus preventing the
overall frame from being in any way slanted or misaligned.

Figure 48: Proposed design with diagonal aluminum extrusions

In regard to the electrical system, no issues have risen during the operation of the automated
station. Any suggestions made would have to be relative to the ease of use of the system
rather than the performance of its functionality. One such suggestion would be the use of a
microcontroller with Wi-Fi capabilities, such as the ESP32 microcontroller, thus allowing
the user to operate the automated station remotely and without a computer directly connected
to the overall system.

Another suggestion, which has already been scheduled to be integrated but exceeded the
scope of this thesis due to time constraints, is the installation of a light source. A light source
would be greatly beneficial to the quality of the images taken by the camera. Additionally,
images of the same item taken with a light source from different angles could result in better
detection.

In the case of a single light source, the implementation is quite simple, with a relay being
connected to one of the existing microcontroller’s free digital pins. The relay would have to
be intermediate between the power line to the light source and be of the Normal Open (NO)
type. Upon a relative command from the user through the GUI the microcontroller would
signal the relay to close, thus allowing the light source to be fully powered. In this
implementation no control over the intensity of the light source is possible through the GUL.

In the case of multiple light sources in the perimeter of the frame or capability to control the
intensity of one or more light sources, a second microcontroller would be required, as the
first one has most digital pins used by other existing components. The two microcontrollers
would have to be in communication, in order for the GUI to pass commands to the first
microcontroller for translation and then to the second microcontroller for light control
execution. For connection of a larger number of light sources to a microcontroller, a number
greater than the digital pins of the second microcontroller, a multiplexing connection, such
as charlieplexing, would have to be implemented.

6.2 Functionality of control software

The functionality of the control software has also been without any issues. Any further
alterations or additions would serve to increase the ease of use, the aesthetics and perhaps
the performance and efficiency of the GUI script, the latter being a matter of optimization
within the scope of software development rather than a need that has risen from the operation
of the GUI. At this point, since no such necessities have risen, no further elaboration on the
optimizing of the control software code will be made within this chapter, as it would only be
generic and unrelated to the objective of the application.

As mentioned, with proper optimization of the trained ANN model, it would be possible and
beneficial for the scope of this application, to integrate the defect detection model to the
camera feed. It has already been thoroughly explained why only an optimized model would
be recommended for integration, but even such a model needs only run when necessary to
further facilitate a risk-free operation of the control software GUI.

It is thus proposed to create a button that enables the model to run defect detection straight
from the camera feed. This capability can be turned off during movements that occur outside
a region of interest and be enabled once the camera is close enough to a region with potential
defects. This process can be done manually by the operator of the control software. The only
difference in implementation of the model in such a way with the way it implemented and
illustrated on a previous chapter, is that instead of an image file being imported from a file
path, processed an inputted to the model, the image file now comes directly from the camera
feed with the use of the OpenCV library. All next steps of image processing, detection and
update of the image with bounding boxes and labels remains the same, in terms of
development.

As mentioned in the relative chapter, the implementation of the control software regarding
the functionality of the microcontroller is also remarkably successful within the scope of the
application. A more common implementation would be the use of the GRBL Arduino Uno
Shield, with the Arduino, the latter being uploaded with a GCode interpreter. That
implementation would require most of the available memory of the Arduino Uno. As
common an implementation as it may be, the limited available memory left for any other
task is often the cause of issues in the correct execution of commands by the microcontroller
and as a result an improper functionality of the system, in this case being the automated
station. With the use of a microcontroller with more available memory, this implementation
would perhaps be preferred for its popularity and much easier implementation, but would
still not be a perfect match for this application or nearly as suitable as the one implemented.

6.3 Performance of defect detection

The performance of the model has been thoroughly explained using the appropriate metrics
on the chapter illustrating the evaluation process of the trained ANN model. As a proof of
concept, it has been shown to be capable of detecting defects on aluminum products, but at
its current performance level, it is not very probable that it would actually be deployed in a
real-life application. However, certain changes in key parameters of the training of the
model, could have resulted in a much higher accuracy.

Firstly, in respect to the hardware used, a setup with a GPU is deemed necessary for such
applications. Having completed the successful training of a model with the current

specification, which lacks a GPU, it has become apparent that the training process is not only
slower but even likely to fail, using only the CPU. This is a rather important observation, as
many decisions made regarding the training parameters of the ANN model, were based
around the minimizing of the time required for training, simply because a more extensive
training could very realistically result in the CPU reaching its very limits for an extended
period of time. In regard to the GPU required for such an application, there is really no limit,
with the only suggestion being the use of one with a VRAM of at least 4Gb.

Having established such a hardware setup, the most important training parameter that can
increase the accuracy of the model is the number of the images used in training. Again, there
is, theoretically, no limit to this number as the higher it is the better the model will become
in detecting defects. Realistically, however, the time it would take to label these images
manually would be a major obstacle, let alone the training process, which would be
exponentially increased regardless of the hardware used. The use of transfer learning
significantly brought down the number of images required for training and there is no
specific rule of thumb for this number, however, based on the literature and suggestions from
developers implementing ANN models with the process illustrated in the current thesis, the
use of around 100 images for the training of each class would be ideal for this application.

Having mentioned the classes of the ANN, it should also be noted that further examination
into the correct distinction of the classes must be made. For the trained ANN model of
chapter 5, the classes were defined in the most intuitive way possible, based on their shape
I.e., long thin lines being cracks and rounded dents being holes. Further examination of a
much larger training sample might reveal a more intuitive or better suited way to classify
defects. A better classification, one that provides the most differentiation between the object
of each class among all objects or lack thereof, will undoubtedly result in a more accurate
ANN model.

At the presentation of evaluation metrics of the trained model and more specifically of the
output of the loss functions, it was noted that loss is reduced during the iterations of the
training process and eventually its output stabilizes around a certain value. Since in the
metrics regarding the output of the loss function for the trained ANN model of this
application, the value output did not show any sign of stabilization and was still on a
downward trend when the training was complete, is it quite apparent that more iterations of
the training process were required. These iterations, referred to as steps, were selected to be
2000. The small number of steps lead to a model prone to overfitting (Ying, 2018), meaning
one trained to an extend on the training dataset, but highly ineffective on any other similar
dataset. A better approach would have been the use of a bigger training dataset, which would
then be separated into smaller groups of images (batches) and training process consisting of
multiple passes through the entire dataset (epochs), This would result in a much more
optimized model, one far less prone to overfitting.

Lastly, should the implementations mentioned above do not result in high enough accuracy,
a more drastic solution would be the use of an ANN model of different architecture. As
mentioned in a previous chapter, the architecture of an ANN model can significantly impact
its performance both in speed and in accuracy, with these two characteristics generally being
inversely proportional. In case the speed of detection within an application is deemed
secondary to the accuracy of the model, a different architecture than the one chosen in this
application would have to be implemented. The SSD model used was a one stage detector,
with relatively low-quality image input, resulting in a fast but generally low accuracy
detection. For better accuracy, a model from the CNN family, with an image input of at least

640x640 pixels, would be much more preferable, with a more likely candidate being the
Faster-CNN, which has a respectable speed of detection. The creation of a model, with a
more customized architecture and training, without transfer learning, from a dataset of at
least 10000 images per class would ideally result in the greatest possible accuracy and speed
of detection, however, its development and implementation would take immense resources
and is therefore not recommended in any but the most demanding applications.

References

10.

11.

12.

13.

14.

15.

16.

Advanced Connection Systems - JST catalogue Vol. 120e. (n.d.). Retrieved from
https://www.jst.fr/doc/jst/pdf/jst-connector-catalogue-vol-120e.pdf

Al-Saffar et. al. (2017). Review of deep convolution neural network in image
classification. Jakarta, Indonesia: IEEE. doi:10.1109/ICRAMET.2017.8253139

Amridesvar et al. (2020). Modeling phase distribution in build platform for. 10P
Publishing. doi:10.1088/1757-899X/988/1/012047

Anand, Sheila. (2019). A Guide for Machine Vision in Quality Control. CRC Press.
d0i:10.1201/9781003002826

Anwar, A. (2022, 5 13). TowardsDataScience.com. Retrieved from
https://towardsdatascience.com/what-is-average-precision-in-object-detection-
localization-algorithms-and-how-to-calculate-it-3f330efe697b

Arief Wisnu Wardhana et. al. (2019). Stepper motor control with DRV 8825 driver
based on square wave signal from AVR microcontroller timer. AIP Conference
Proceedings 2094, 020015 (2019. doi:10.1063/1.5097484

Atraszkiewicz et. al. (2020). Frictional Behaviour of Composite Anodized Layers on
Aluminium Alloys. MDPI. doi:10.3390/mal3173747

Badamasi, Y. A. (2014). The Working Principle Of An Arduino. Abuja, Nigeria:
IEEE. d0i:10.1109/ICECCO0.2014.6997578

Baluta, G. (2007). Microstepping Mode for Stepper Motor Control. lasi, Romania:
IEEE. d0i:10.1109/1SSCS.2007.4292799

Berger, C. (2018). Conception de la structure d’une machine de vision par
ordinateur. National Technical Univeristy of Athens, Manufacturing Technology
Devision. Athens, Greece: National Technical University of Athens.

Culjak et. al. (2012). A brief introduction to OpenCV. Opatija, Croatia: IEEE.
doi:CD:978-953-233-072-4

Duan et. al. (2019). CenterNet: Keypoint Triplets for Object Detection. Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV).

Euro-bearings.com. (n.d.). Euro-bearings.com. Retrieved 10 2022, from
https://www.euro-bearings.com/bushingsgeneral.html

Goldsborough, P. (2016). A Tour of TensorFlow. Technische Universitdt Miinchen,
Fakultdt fiir Informatik. doi:10.48550/arXiv.1610.01178

Hanson Technology - GX Aviation Connector Datasheet. (n.d.). Retrieved from
https://www.handsontec.com/dataspecs/connector/GX16.pdf

Hasan et. al. (2018). Implementation and Manufacturing of a 3-Axes Plotter Machine
by Arduino and CNC Shield. Al-Najaf, Iraq: IEEE.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

217.

28.

29.

30.

31.

32.

doi:10.1109/1ICETA.2018.8458071
Hechtel, K. (2021). PLASTIC MATERIALS FOR FRICTION. Curbell Plastics, Inc.

Jianglin Huang. (2015). An empirical analysis of data preprocessing for machine
learning-based software cost estimation. Information and Software Technology.
doi:10.1016/j.infsof.2015.07.004

Juan Du. (2018). Understanding of Object Detection Based on CNN Family and
YOLO. Hong Kong: 10P Publishing Ltd. doi:10.1088/1742-6596/1004/1/012029

Kaiji Sato et al. (1995). Control and Elimination of Lead Screw Backlash for Ultra-
Precision Positioning. JSME International Journal. doi:10.1299/jsmec1993.38.36

Knorig et. al. (2009). Fritzing: a tool for advancing electronic prototyping for
designers. Potsdam, Germany: TEI '09: Proceedings of the 3rd International
Conference on Tangible and Embedded Interaction. doi:10.1145/1517664.1517735

LeCun et. al. (2015). Deep Learning. Macmillan Publishers Limited.
doi:10.1038/nature14539

Locke, D. (2008). Guide to the wiring regulations: IEE wiring regulations (BS 7671:
2008). John Wiley & Sons.

Lohia et. al. (2021). Bibliometric Analysis of One-stage and Two-stage Object.
Library Philosophy and.

Long et. al. (2017). Accurate Object Localization in Remote Sensing Images Based
on Convolutional Neural Networks. IEEE. doi:10.1109/TGRS.2016.2645610

Mang, D. (2015). "TensorBoard: TensorFlow’s visualization toolkit, 2015.".

Mezei. (2017). Cross-platform GUI for educational microcomputer designed in Qt.
IEEE East-West Design & Test Symposium (EWDTS).
doi:10.1109/EWDTS.2017.8110109

Prodanov et. al. (2022). Reliability of low-power stepper motor drivers. Department
of Electronics, Faculty of Electrical Engineering and Electronics, Gabrovo, Bulgaria.
doi: 10.1109/ET55967.2022.9920214

Schneider Electronics. (n.d.)). Nema 17 - Datasheet. Retrieved from
https://datasheetspdf.com/pdf-file/1260602/Schneider/NEMA17/1

Smid, P. (2000). CNC Programming Handbook: A Comprehensive Guide to
Practical CNC Programming. Industrial Press Inc.

Van der Walt et. al. (2019). PLA as a suitable 3D printing thermoplastic for use in
external beam radiotherapy. Australas Phys Eng Sci Med. doi:10.1007/s13246-019-
00818-6

VCalc. (2022). https://www.vcalc.com/wiki/vCollections/Leadscrew-Torque-lift.
Retrieved 10 2022, from https://www.vcalc.com/wiki/vCollections/Leadscrew-
Torque-lift

33.

34.

35.

36.

37.

38.

39.

Venkat Sai. (2017). A Critical Review on Casting Types and Defects. Telangana,
India: Print ISSN. doi:10.32628/IJSRSET1732150

Wei Liu et. al. (2016). SSD: Single Shot MultiBox Detector. Lecture Notes in
Computer Science(), vol 9905. Springer, Cham. doi:10.1007/978-3-319-46448-0_2

Weiss, et. al. (2016). A survey of transfer learning. J Big Data. doi:10.1186/s40537-
016-0043-6

Willman. (2022). Beginning PyQt: A Hands-on Approach to GUI Programming with
PyQt6 (2nd Edition ed.). Sunnyvale, CA, USA:. Apress Berkeley, CA.
doi:10.1007/978-1-4842-7999-1

Yakovlev et. al. (2020). AN APPROACH FOR IMAGE ANNOTATION
AUTOMATIZATION FOR ARTIFICIAL INTELLIGENCE MODELS LEARNING.
d0i:10.20535/1560-8956.36.2020.209755

Ying, X. (2018). An Overview of Overfitting and its Solutions. 10P Publishing Ltd.
doi:10.1088/1742-6596/1168/2/022022

Zhong-Qiu Zhao et. al. (2019). Object Detection With Deep Learning: A Review.
IEEE. doi:10.1109/TNNLS.2018.2876865

Annex A — CAD Designs of 3D printed parts

T T T T T
| [P S [I — I

107 .50

98.75
O

|
|
|
|
7375

| — @22.50

14.00
48,75

32 50—
—— 30.85—=]
[
|

~—@3.50

9.00
15.3:1—-—-| 14.00

= 15,00+
la———— 0 (T =

Part 1: Connection part between X-axis motion system and Y-axis sub-assembly.

