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Abstract

In light of the growing EV penetration and the continuous enhancement of the
available charging grid over the last decade, the integration of EVs into common routing
problems has become an increasingly significant subject of research. Under proper EV
charging and discharging management, present grid capacity can meet the energy needs of a
significant number of EVSs, directing the transporting industry towards a more sustainable
future.

In this thesis, we investigate a new routing problem, which incorporates limited
battery capacity for electric vehicles, the ability to partially recharge at certain recharging
stations and the possibility of vehicles performing multiple trips within a route. Aiming at
illustrating industry-specific scenarios and addressing the need for practical solution
approaches, we propose the electric vehicle routing problem with partial recharging and
multiple trips (EVRP-PR-MT). In order to compete against benchmark optimal values, the
study investigates different solution methods with a focus on meta-heuristics, which better
apply to the complexity of EVRP problems. With respect to the EVRP-PR-MT, we formulate
a local search (LS) meta-heuristic with intra- and inter-route moves and custom
neighbourhood search heuristics regarding recharging stations. We tested our method against
two EVRP benchmark sets of small- and large-scale problems accordingly and achieved
higher than currently known optimum results on 75% of the instances while maintaining
computational times 94% lower on average per instance. Additionally, the LS method
managed to eliminate the need for one vehicle in two of the large-scale problems, while
maintaining optimal values.

All in all, this thesis presents a new flavour of the EVRP, which adapts to real-life
constraints and outperforms current benchmarks in solution quality and efficiency. The
EVRP-PR-MT could adapt to scenarios such as last-mile delivery in large city centres, where

route efficiency and duration play a crucial role in the competency of logistic systems.
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Xovoyn

Y76 10 mpiopa g av&avopevng 81eic0VonG TOV NAEKTPIKAOV OYNUATOV KOl TNG
ouveyole PeATimoNG TOL SBEGIHOV SIKTVOV POPTIONG KATA TNV TEAEVTOIO dEKAETIO, M
EVOOUATOON TOV NAEKTPIKOV OYNUATOV G€ KOWVA TPpoPANpota dpopordynong £xet yivel
0AOEVO KOl TTIO GNUOVTIKO OvTIKEIHEVO Epeuvag. YO TV KOTAAANAN dtoyeipion g
@OpTIONG Ko TNG eKPOpTions Twv EV, n mapodoa yopntikdtnTo ToU 01KTOOV UTopEl va
KOAOWEL TIG EVEPYELOKES vaykeg onuavtikob apBpod EV, katevBivovrag ) fropnyavio
LETAPOPDV TTPOGS £VaL O PLOGILO LEALOV.

2y mapovca daTpiPn, OlEpELVOVE Eva VEO TPOPANLLA OPOLOAGYNONGC, TO OTTOT0

EVOOUATMOVEL TNV TEPLOPICUEVT] YOPNTIKOTNTO TOV UTATOPLOV TV NAEKTPIKOV OYNUATOV, TN
ovvoTOTNTO UEPIKNG EMOVOPOPTIONG GE OPIOUEVOLS OTaOUOVS emavo@OpTIonNg Kot TN
ovvoTOTNTO TOV OYNUATOV VO EKTEAODV TOAAOTAEC OLOOPOUES €VTOC UOG OLOPOUNG.
2T0YeVLOVTOG TV ATOTOTTWGT TPUKTIKMOV TPOPANUATOV TG Propmyoviog LeETapopdVv,
TPOTEIVOVLE TO TPOPAN LA SPOUOAIYNONG NAEKTPIKADV OYNUATOV LE LEPIKT] ETAVAPOPTION
Kot ToAAATALG Sradpopés (EVRP-PR-MT). [pokepévou va avtayoviotel Tig fEATIOTEG TIHEG
avaPopAic, 1 LEAETN SlepeLVE O10POPETIKES LEBODOVE EMTAVONG LLE EULPAOT OTIG LETA-
evpetTikég peBddovC, ot omoieg e@approloviotl KOAHTEPA GTNV TOAVTAOKOTNTO TWV
npofinuatov EVRP. Ocov agpopd to EVRP-PR-MT, dtapopedvoupie pio LETO-EVPETIKN
uébodo tomkng avalnmong (Local Search) pe evpeticég puebddovg eviog kot peta&d Tomv
SO POU®V, TPOGAPUOLOVTAC TAPAAANAN EVPETIKES LeBOOOVE avalNTNONG YEITOVIAG
(neighbourhood search heuristics) 6cov apopd Tovg 6TadHoVE ETAVAPOPTIONG. AOKILACUE
™ 1nEB006 pog og 6vo cvvora avapopdg EVRP e mpofAnuota pikprg Kot peyding KApokog
avtioToryo Ko EmMTOYAUE VYNAOTEPA OO TAL YVOOTH PEATIOTO amoTeEAEGHOTA 6TO 75% TV
TEPIMTAOGEMV, EVA JOTNPTCALE DTOAOYIGTIKOVS Y pOVvoLg 94% yaunAdtepovg Katd HEco 6po
avd mepintoon. EmmAéov, n nébodog LS katdoepe va eEaretyet v avdykn yio Eva oynpo
o€ 000 oo T TPOPALOTO LEYAANG KMULOKOGS, 01T pOVTOS TOPAAANAC PEATIOTEG TIUES.

Yvvolikd, 1 mapovca datpiPn mapovstalet pa véa ekdoyn g EVRP, n onoia
TPOGOPUOLETOL GE TPAYUOTIKOVG TEPLOPIGLOVS Kat Eemepva Ta TpEyovTa benchmarks og
TowdTNTA AVoemV Kot arodotikdtrta. To EVRP-PR-MT Ba propovce va mpocappooctet o
oevaplo Ommg M mapddoon Tov terevtaiov yhopétpov (last mile) oe peydra aotikd kévipa,
OOV 1 ATOOOTIKOTNTO Kot 1] SLUPKELD TNG dadpopn S mailovv Kabopiotikd poio otV

EMAPKELN TOV GuoTNUATOV logistics.

Diploma Thesis, Andreas Apollonas Koulopoulos 7



Page intentionally left blank

Diploma Thesis, Andreas Apollonas Koulopoulos



Hepiinyn
Ewsayoyn

H teyvoroykn mpoodog Tig TehevTOie OEKOETIES ElYE TEPAGTIO OVTIKTLITO GTNV
QTOTEAECUATIKOTITO TOV EPOSIAOTIKGOV 0AVGIdmV. XN onuepvny ynelokn emoyn, to cloud
computing Kot 1 GVTOUOTOTOINGT EXTPETOVY GTIS ETAPEIEG VAL EKGLYYPOVIGOVV TIG
JLdKaGiEg TNG EPOJACTIKNG 0AVGIONG KOl VAL LELWGOLV T KOGTT Tovg. EmmAéov,
POUTOTIKT KOIL 1] TEYVITH VONLOGHVH EVomuaT®vVovTal oTic Asttovpyieg logistics,
EMTPEMOVTOG TEPULTEPM EVKOPIEG PEATIOTOTOINOTG KOt LEYOADTEPOV EAEYYOL

[MoapdAinio dedopévng g KAMPOTIKNG atlévtoc, PAETOVLE TO EVOLOPEPOV VO
oTPEPETOL GE PLOGIUEG EPOSUCTIKES, Ol OTTOIES TEPILAUPAVOLY TNV EPAPULOYN EVEPYELUKEL
OTOOOTIKAOV TPUKTIKMV KOl TEYVOAOYIDV, TN XpNon PLodciuwv Tépmv Kot VAKOV, Kabmg Kot
™ (PNON AVAVEDCLUWOV TNYDV EVEPYELNG, TN LEIMOT TOV EKTOUTOV Kot ATOPANTOV Kot TEAOG
M BeATioTONOINGT TV S1OPOUADV Yo TN HEIMOT TNG KATOVOAMGCNS KOVGIU®V.

Téhog, 01 epodLaGTIKEG GTOV KOG G1yd o1yd apyilovv va petafoivouv oty Téum
Bropnyavikn enovacTtacon, 1 0moio ival po oTPoPn TPOS £vo, OAO KOl TTLO YNPLOTONLUEVO KO
dtcvvoedepévo Propumyovikd tomio. Xapaktnpiletar and eEeAiEelg oty texvoroyia, Kabmg
Kot omd TV eotioon ot Pfrociudtra kat Tig avlpamiveg adiec, BELovTag va ptdcovpe OTmg
avapépet ko o Adel, 2022 og éva KuBepvo-Puoikd cvvepyotikd mepipaiiov. To supply
chain industry dev Topapével GTAGIIO O CNUOVTIKOG LOYAOS LETAGYNUATIGHOD TOV KAGSOV,
TAPATNPDOVTOG ALEAVOUEVO OKOOTUOTKO OALA Kol BLOUNYOVIKO EVOLAPEPOV.

O podLog TG d10ikNnoNG ePOdOGTIKNG aAvcidac Aomdv givar | PedtioTonoinomn Twv
S10OIKOGLOV TNG OTO TPIGLO TOV TPLUOV TAPUTAVE® TUADVOV TOV TPOAVAPEPONKALLE.

H dumthopatikny aut] kaAeitol va GuVEIGPEPEL GTNV PETARAOT) QVTY, GLYKEKPLUEVOL
070 KopudTt Tov routing nAektpikav oxynudtov. E&epevvioape £tot To cuoTHuaTa
OPOLOAOYNONG NAEKTPIK®V OYNUATOV Kot TPOTEIVOLLE TO TPOPANA SpOpOAdYNONG
NAEKTPIKOV OYNUATOV LE HEPIKT @OpTIoN Kot ToAlamAéS dradpopés (EVRP-PR-MT) kabmg
Aappdvouy vrdym pealoTikoH TEPLOPIGLOVG TS EQOINGTIKNG TV EV, mpoypappatilovv
NV POPTICN Kot amoPopTion TV EVS amd ) ¢acn 1ov mpoypopatictod TV d100popmy

Kol BEATIGTOTO0VV QUESH TIG SLOOPOUES ava aptOd oynudToV.
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2Toyos kat Lkomog
O 010%0G VTNG TNG SIMAMUOTIKNG EIVOL VO AVOTOPOCTHGOVUE Eva TPOPAN L
OPOLOALOYNONG NAEKTPIKAOV OYNUAT®V TO 0010 VO TPOGOUOIDVEL PEAAICTIKA TPOPAN AT
OV GLVOVTAOVTOL 6TV Propnyavio. ZVYKEKPYEVE GTOXEVOVLE VO AVGOVUE TO TPOPAN LA
EVRP-PR-MT, kofd¢ eniong va cuykpivovpe ta arotelécpotd pag pe benchmarks naveo
ota mpoPAnuata EVRP.

O oxomog pog etvon va povtedomotmoovpe 1o tpofinuo EVRP-PR-MT kot va
TPOTEIVOVUE OVTOY®OVIOTIKEG HEBBOOVG emiAvomg, dnAadn B ovpe 1 uéBodog mov Ha
avantHEoLLLE Va Bpickel 060 TO duvaTOV TEPLEGOTEPES PEATIOTEG TYLEG GTO GET TOV
benchmarks kot va to TetdyOVUE AVTO GE YPYOPO, VITOAOYIOTIKG LWADVTAS, YPOVO, KOOMG
avTamokpivetal g £vo eToptkd TAaic1o o€ Eva HETPLO LTOAOYIoTIKO Setup kot Ba ypetaldTay

ypryopo anotelécpata ®ote vo ohokAnpwbei to scheduling ko planning phase.

MeBoooloyia Meiétys Bifloypogiag
H Biproypagikn €pguva glvar  TPOKOTOPKTIKY EPYOGI0 TOL OTOLTEITOL VIO TOV
EVIOTIOUO KOl TNV OVATTLUEN HI0IG 100G Y10 OTTOLAONTOTE EPELVOL. LTV TOPOVGO HLEAETN
wpaypoatoromOnke PAoypaeikn Epevva Yia va cUYKEVIP®OOVV YVMOGELS CYETIKA LE TOL

Oépota mov mapatifevrol TopoKdTm:

e No éyovpe po KaAn avTiAnyn Tov TpoALaTog PO UOAOYN oG OYNUATOV KOl TOV
TOPOALOYDV TOV.

e T vo amoktoovpE o KOA KATavOnsT TV TEPUTAOK®Y TNG OPOLOAOYNONG
NAEKTPIKAOV OYNUATOV TOV TPOPANLLATOG.

o T va yoptoypaenoovpe Tig d1dpopes ekdoyés tov EVRP kot va Bpovpe to kevd ot
BipMoypapio 6OV T0 d1Kd pog Tapaiiayr o uropovoe vo cuUPAAEL.

e No OTOKTACOVLE YVOON TOV TOAATA®Y HeBdd®V eniAvong mov Exovv avamtuybel

ypnoporomOei yio v avtipetomion tov VRP kot tov EVRP.

[IpaypatoromOnke avalrtnon pe AéEelg-kiedrd oto Google Scholar, cto SCOPUS kot
010 Science Direct. Ot axoAovBot 6pot avalnTnong ¥pPNoYLOTOONKAV Yio TV EVPECT] OA®MV
TV 4pBpwv Tov Katardyov TV apBpwv yua ) Biprloypagikn avackdénnon: "VRP",
"EVRP", "Savings heuristic", "Local Search”, "Multi-trip", "evpetikég teyvikég Pertiooong

VRP", "uepucn enavapoption". Onmg avapépOnke mponyovpéVmS, To TPAOTO KPLTHPLO
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dthoyng ™S PrpAtoypapiog NTav 1 1IGTOPIKY tepapyia Kol 6T cuVEXELR £Yve Pe domn TV

avAyvmo Tov TiThov Ko TG TepiAnyng kdbe dpOpov.

Biflioypapixny Avapopa

O yvevikdg 6T10Y0G TOV TPOPANUATOS OPOUOAOYNONG OYNUAT®VY Elvar 1] EDPECT NG
GUVTOUOTEPNG OLALOPOUTNG Y10l TOALUTAMY OYNUATOV Vit TNV EVTNPETNON OA®V TOV TEAUTOV
evog dedopévou cuvorov. Ot Dantzig kot Ramseraypporyovmodipofian o
Apopordynong Oynudtov 1o 1959 wg [popinua Aroctoing Popt§yRaitidantzig
1959), ko amod tote, N ToyKOSHIO EpELVO cLVEYILEL VO TOPOVLGLALEL OOPOPETIKES
TPOCEYYIGEIS GTO Y10 TOV TPOTO EMAVOTNG TOL TPOPANLLOTOG,

O tepurtooelg tov VRP amoteAovvtommmdd.ohg d10popeTikoVs TEPLopioong,

OM®G M YOPNTIKOTNTO TOV OYNUATOV, GYEGELS TPOTEPAOTNTAS KoL XpoviKa Tapdbvpa. Katd
ouvvEéneLn, VITAPYoLV TOAAEG Taparlayég Tov VRP. TTap' dha avtd, ot TepIocdTepeg Epevveg
&xovv emkevipmbel oto KAaokd VRP, évav Bepeldon okedetd Tov TpofAuatog mov umopet
Vo SlpopPmBel AGTE VoL OVTATOKPIVETOL GE TPOUYUOTIKG GEVAPLOL KO ETLYEIPTLLOTIKES
TEPIMTOGELS TPOGTHETOVTOS TEPLOPIGHOVG,.

Yvykekpipévo, to variant Mutli-Trip VRP to omoio viobetioapue og avth ™
OMA®UATIKY, EMTPETEL GE Eva Oy VO EKTEAEGEL TOAAATAG Taidla 6€ o dtadpopn], Tov
onuoaivel 0Tt evolapeso otny dladpopn Tov pmopet va emotpéyel oto depot ya vo Kavet
restock | va popticel v pratapio tov Ko Emetta vo cvveyioetl vo e&umnpetel meldrteg. To
Multi Trip Vehicle Routing Problem, avagépetat tpdtn @opd oto dpbpo twv Brandao &
Mercer to 1998 o1 onoiot to emtlvcave pe v péBodo tov Tabu Search ndvm oe benchmarks
aALd ko o€ évo case study yuo tnv Bpetavikn etarpia Burton’s Biscuits, 6to omoio Kotdeepov
VO LELWGOLV TOV GLVOAKO 0p1OUd TOV ATAUTOVUEVOD GTOAOL OYNUATMV KOl TO GUVOAIKO
KOGTOG O10.0POUDV.

A&gdopéEVOL TOV 0VEAVOLEVOV ATOLTGEMV TNG Propnyoviag Kot TS ovaroyikd
ALENVOLLEVIC VTTOAOYIOTIKNG QVGKOAING TV EKKOAUTTOUEVOV £kd0YDV ToL VRP, ta tedevtaio
YPOVIOL EVPETIKES KOl LETO-EVPETIKES HEBOSOL £YOVV LOVOTTOANGEL TNV EMIAVGON TOV EKOOYDV
QVTAOV.

O tpdTeg néEBodot mTov ypnoipomomnOnkay frov ot akpiPeig uEbodot emidvong ot
omoieg elyav TEPLOPIGUEVT IKOVOTNTA EMIAVGNC TPOPANUATOV HEYAAW®Y SLOGTACEWY GE
amodeKTOVS ¥pdvous. 'EToin axadnuoik Kowotnto £6TpEYE TO EVOLLPEPOV TG TPOG TIG
evpeTikég HeBodovg, o omoieg ev avtiféoet pe Tic akpPeic pedddoove, avtamokpivovral

AmOd0TIKOTEPO GE TPOPANUATO LEYAADTEPNG KAILOKOC.
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Ot KAaoKEG EVPETIKES PHEHOSOL OMOTEAOVVTOL ATTO dVO PAGELS, TPATO OVTH THV OOUNCNG
LG EQIKTNG apYIKNG Ao kot émetta TG Pedtioong avtic. H mo yvoot eupetikn pébodog
dounong apyikng Aong eivar avt tov Clarke & Wright, tv onoia ypnowonomoape o
ot ™ Suthopotikn kot Bo avaldcovpe apydtepa.

O peta-gupetikég AoELS dlepeLVOLV TO €XPOg AVGEWV GE PeyalvTeEPO PAbogc, Kot
d€yeTon YOUNAOTEPNC TOLOTNTOG 1) OKOUN KOL U1 EPIKTEG AVCELG LE GTOYO TNV ATOPLYN TOTIKAOV
eloyiotwv. Xe TN TN SIMA®LLOTIKT XPNCUYLOTOIOVIE 0L LETA-EVPETIKN HEBOOO TOTIKNG
avalnftnong, n oAlmg local search, n oroia Aettovpyei emavainmtikd BEATIOVOVTOG TV TEMK
Abon o€ PaOog xpdvov YPNGUYOTOLDOVTOG CTPATNYIKES OLATOPAYTG TNG AVOTG, YVOOTESG KOl 1O
TEAEOTEC peTakivnong. Apydtepa o erektafoVE Kol GUYKEKPIUEVA GTOVG TEAEGTEG OLTOVG,.
Kdmoleg dAheg peta-gvpetikés HEB0d01 Tov YPNGLOTOLOVVTAL EVPEMG o€ epapproyés VRP givat
ot yevetikoi adydpiBuot, tabu search kot 1 xpnor VELPOVIK®Y SIKTOMV.

H gicaymyn ywo o tpofAquoto Spopordynong NAEKTPIKAOV OXNUATOV EYIVE OO TOVG
Erdogan & Miller-Hooks to 2012 oyetikd pe oxfHoto eVOAAOKTIKOV KAVGIL®OV, 01 0Toiot
npotewvov to Green-VRP. O Schneider, Stenger & Goeke g&édwoav to 2014 éva apOpo
omov mpocapudécave oto EVRP tov mepropiopd twv time-windows kot dev dpynoe va
avadvdel TAnBdpa cvvOeTwV TEPLopioudv ota tpoPAnuata EVRP.

Yvykekpipéva to variant too EVRP with multiple trips to oroio dwayeipildpoote o
ot TN SUTAMUOTIKN, £xel Otepevvn el eAdyloTO KOl G €Tl TO TAEIOTOV TAV® GE
OLYKEKPLUEVES EQUPLOYEG TTOV TPOCAPLOLOVTOL GE PEAACTIKG ETLYEPNOLOKA dedopéva. H
kaBopiopov cvuvBetdtepn eoon tov EVRP 6¢ oyéon pe to VRP oBnoe v mietoynoeia v
EPELVOG VO YPNOUYLOTOCEL KATH PACT) EVPETIKEG KO LETA-EVPETIKEG HEBOOOVCE.

Kortdlovtag ™ cuvolikn gwova g PPBMOypapikng EPELVOS TOL KAVOLLE,
napatnpioape 0t ta apbpa mdve ota EVRP mpofAquata ypriyopa vioBémmaoav tic d1dpopeg
ekdoyég mov lyav avoantuybel mhveo ota VRP, pe avEavopevo pubud kupimg petd to 2015,
Kol G €71 TO TAEIGTOV AvAPEPOVTOL O TPOKTIKG TpoPARpaTH TNG Bropumyoviog, I
ovykekpuévo case studies, To omoio VLOdEIKVIEL TO EVOLOPEPOV TNG Brounyaviag HETAPOPOV

TPOG TNV HETAROON OTNV NAEKTPOKIVION.
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AlyopiBuog

To EVRP-PR-MT avnket ota np-hard mpopinuata, omdte 6toyedovtag vo
EMAVGOVUE PEYAANG O1AGTOONC TPOPANLATO GE PEAMOTIKOVS YPOVOLGS, YPTCULOTOLOVLE
HETO-EVPETIKT LEBOOO 6VO PAGEDV.

O aAy6p1Bog TOV YPNGIUOTOLOVLLE ATOTEAEITOL ATO SVO PACTG: TPMTAV PACT) TNG
dOUNOM HOG apyIKNG EPIKTAG ADoNG, Ypnolomolmvtag Tov olyopduo Parallel Savings tov
Clark & Wright, ka1 t @domn g fertiotonoinong, 6mov ypnoILOTOIOVUE TOV aAYOpLOpo
local search emavaAappdvovioc molhandoc TeEAeoTEG peTAKIVIONC.

Xy acm d6unong apykng Advong, o adydpiBuog Parallel Savings apyiet
avabétovtog pia dtodpoun o kabe meddrn; Emerto og KAOg iteration emdéyet Tnv kaAvTEPT
Cevyomoinom dtadpop®dV 1| TEAATAOV, HEYPL VO LNV Uopel va yivel kdmolo merge Adyo twov
neplopiopdv mov xovpe Bécel. To kprrmpro Levyomoinong telotdv vtoAoyileTot OTMG
eaiveton e&icmon s(i, j) = dy; + dyj — d;j kou ovopdleton Ty amdcPeong (savings value). H
oelpd (evyomoinong yivetotr amd ta (evyapla pe vynAdTEPN T OTOGPEGNC TPOG ALTA LLE T
YOUNAOTEPT TIUN.

H meplopiopol mov Bécape dote va £X0VUE EPIKTES apyIKEG AVCELS Eivo M
YOPNTIKOTNTO TOL OYNUOTOC, ) LEYIGTN OMOGTOCT SLOOPOUNG KOl TPOULPETIKA TOV GUVOAKOG
YPOVOG S dpopn|g KaOe oxnpotog. Me avtOv TOV TPOTOV EYOVLE 0L OPYLKT] ADGT TNV Omoia
TPOPOOOTOVLE OTNV ENOUEVT PAOT TNG PEATIOTONOINONG.

¥t @don Pektictomoinong ypnopuonoovue ™ peta-gvupetikn uébodo local search
TOTOVTOG TAVE 6T0 poviélo mov €xovv dnuovpynoet ot Rasku Kérkkalnen and Musliu to
2019 yia to CVRP mtpofAnua kot petatpémovog to méve oto okd pog EVRP-PR-MT.

O aAyopiBpolpcal search Aertovpyei emavoinmrikd Bektidvovtag Ty tehikn Adon avd
apOuo iterations, ypNGILOTODVTAG GTPOTNYIKES SLOTAPOYNG TG ADONGC, YVOGTEG KOl OG
TeAe0TEC petakivnong. Ot teheotég petakivnong d1epeuvoly TOmKEG AVoELS AAAALOVTOG
Koppatio dStadpopdv. Otav pa tomkn Ao Ppebdet oe pia dtadpopn, o alydpBpog myv
ovyKpivel eite e apykn Avom. Xpnoponotovue dvo otpatnykés, tig first-accept ko best-
accept, ot oroieg avapépoviotl 6To av 0 alyopiduog Ba dexbel tnv TpdTN KaAVTEPT ADGT TOL
Ba Bpet, 1 Ba cvveyioetl Ty depedivion yertovidg Kot Ba dexBel Tnv Kaddtepn mbavn Avon.

O1 1eleoTéC KivnomMg OV ¥PNCLOTOMCAE Elval EVPETIKEG HEBOSOL EVTOG piag
dadpopng (intra-route), peta&o dwadpopdv (inter-route), kot TelecTtég yerTovIKNG ovaliTnong

06V 0popd TOLG 6TAOLOVS POPTIOTG.
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O gvpeticég pébodot evtog piag dradpoung (intra-route) mov ypnoyLorolovpe givat ot
2-opt move, 3-opt move, relocate move kot 2-opt exchange. H 2-opt move gvaildooet 2
OKUIEG EVTOG oL dtadpoung, 1 3-0pt move Ppickel koddtepeg AoELS evepydVTaG TAVED G 3
aKpES eVTOG pag dtadpopng. Ztnyv intra-move relocate £vag neddtng aAlalel BEon evtog pog
dwdpounc. H exchange move evoddhdooet péypt K axpég eviog g Avong. Zovibwg Aoym
VIOAOYLGTIKOV POpTOL 0 aptiuds K dev Eemepvaiet Tic 3 1} 4 axpéc.

Ot gvpetikég néBodot Hetald S1adPOU®Y TOV XPNCLLOTOMGaLLE givor ot 2-0pt
movement, 1-point move, 2-point move, insertion move, redistribute more, ko chain
exchange move. H inter-route 2-opt move, Asttovpyei pe TapOUolo TPOTO LE TNV OUDVOUY
intra-route pe v dtapopd 0Tt evarddoost 2 akuég petald 2 dwdpoudv. H 1-point move
uetakvel évo onueio amd pio dtadpoun oe pio GAAN. H 2-point move petoxvel pio axur (9
dvo onueia) arnd pia dSwdpoun o€ pio GAAN. H insertion move diepevvdel v mpocdnkn evog
TEAATT), oG AOTOC TEAATMV 1} Kot Hiaig Stodpopng o€ pia dtapopetikn dtadpoun. Tatdet
TAvm otV datdpaln e apyiknig Abong Kot énetta emthvet To routing TpdPAnua péxpt va
napdéel o ekt Avon v onoio petd cuykpiverl ue v apykn. H inter-route redistribute
move mpooradei va KatavEpel TeEAATES amd £va route ota vrorouta TpocTadovtag va
LEIDGEL TOV GLVOALKO ap1Bpd dadpopmv. H chain exchange move petakivei éva el amod
pio dtadpopr| kot avTikafiotd Evav deVTeEPO o€ AAAN dladpoun. O TeAdng TOL
avTIKoTaoTalnKe evogyetol vo tpootedel oe Tpitn dtadpoun.

YuvdvooTikd e Tig intra- & inter-route evpeTikég, TPOGAPUOCHLLE KOl OVDO TEAEGTES
avalfTnong YEITovidg Yo Tovg otaduong eoptiong pe Baon to povtého tav Keskin kat
Catay, 2016. To Worst Station Removal ypnoonotel tv urotoapio 660 to duvatdv
TEPLOCOTEPO TPV AT Ol EMAVAPOPTIOT Kol AVEAVEL TNV OMOTEAEGLOTIKY XPTOT) TOV
otabuov. EEoleipel Toug otafpotc mov emokéntovion ta EV pe vynAd enineda poptiong,
tavopavtag Katd eivovsa celpd ¢ otdlung e protapiog twv EV mov toug
EMOKEMTOVTOL Y10, EMAVAPOPTION, Kot 01 6Talfpol dtaypdpovrol EEKVOVTAG Ao TOV TPAOTO
ot1a0pd Tov Katadldyov. [ToAAEG Popég dnpovpyOLVTAL UN EPIKTEG ADGELS At OVTOV TOV
TEAEOTT, OTOTE HETA akoAovbei o Greedy Station Insertion, o omoiog evtomilel Tov TpdTO
TEAATN KOTA UNKOG TNG SL0OPOUNG Kol E16AYEL TO "pONVOTEPO" (GLVTOUOTEPT ATOGTACT))
otafpud oy axpun peta&d Tov ev AOYm TEAATY Kot Tov Tponyoduevoy meAdtr. Edv avti n
E100YMYN OTOTOYEL, EMYEIPELTAL 1] EIGAYMYN OTIG TPONYOVUEVESG OKUEG LE TOV 1010 TPOTO.

Ao TV GOVTOUN TTEPYPAPT TOVG Kal LOVO, Eival EVALAKPLITO OTL O TOPATAVE®

EVPETIKEC PHEHODOL, ATALTOVV OPKET] VITOAOYIGTIKT] 1YV OTOTE YPELAGTNKE O OXEOAGUOG EVOG
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TEPALATIKOD TAAVOL, LE 6TOYO Vo Ppickovpe KOADTEPU ATOTEAEGUOTO GE PEAAIGTIKOVGS

VIOAOY1GTIKOVG YPOVOLG,.

2yeoracuog lepoudrwy

To software nepifdriov 6to omoio Tpé&ape T0 LOVTELD pag ival 1] TELELTAIO EKOOOT
™mc python. Xpnowonomoape éva. laptop Macbook Pro 2019 pe npodiaypagpéc GPU: Intel
Iris Plus 1.5 GB, CPU: Intel Core i5 2.4 GHz, RAM 8 GB.

KaBaog to EVRP-PR-MT dev éxet povieAomomBel oe mponyovueveg épevveg, oev
vrapyovv benchmarks yia vo dokipaotei o adyop1Oude pog. Qg ek T00TOL, GLYKPIVOLUE Ta.
amoteAéopaTd pog pe ta onueia avaeopdg E-CVRP mov dnpovpyndnkay amnd toug
Mavrovouniotis et al., (2020) yia To 2020 IEEE Congress on Evolutionary Computation
(CEC). Ta E-CVRP benchmarks amotedovvtal amd 600 oet mpoPinudtov: Ipdtov, 6
TEPUTTAOCELS KPS O1AGTAONG Kol 0e0TEPOV 18 TEPMTOCELS LEYAADTEPWV OLUCTAGEMV.

210 O1dypappo Tapokdto PAETOVUE T TPOPALATO KPOTEPNG KAMUOKAG, TTOV TEPLEXOVV
nepmtOoels omd 21 uéypt ko 44 meddteg, and 4 puéypt S oxnuato Kot amd 4 péxpt 9 otadpong
@options. Me C avamapiototot 11 GUVOAIKN Y®PNTIKOTNTO v Oynua, Kot pe D ta

YMOUETPO TOV UTTOPEL VO, EKTEAECEL [IE 10 TATPT] POPTIOT).

Instance name #Customers #Stations #Vehicles C D
E-n29-k4-s7 21 7 4 6000 99
E-n30-k3-s7 22 7 3 4500 162
E-n35-k3-s5 29 5 3 4500 138
E-n37-k4-s4 32 4 4 8000 238
E-n60-k5-s9 50 9 5 160 99
F-n49-k4-s4 44 4 4 2010 260

[Mopaxato PAETovUE TO TPOPANHOTA LEYOADTEP®V SLOUGTACEMV LE TEPITTMOGELS TOV PTAVOLY
péypt ko 1000 meddteg. [apatnpodpe 6t vedpyet piypo otabpmv eoptiong amd 4 puéypt 13
Kol aptBpog otoAov oynpatev omd 4 péyxpt Kon 207, ahdd Kot S10KVUAVGELS GTNV
YOPNTIKOTNTA KOL TNV LEYIGTY 0TOGTOCT TOV UITOPEL vaL O10vOGEL £vOL TAP®S POPTIGUEVO

Yyl
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Instance name #Customers #Stations #Vehicles C D

E-n89-k7-s13 75 13 7 220 87
E-n112-k8-s11 100 11 8 200 100
M-n110-k10-s9 100 9 10 200 118
M-n126-k7-s5 120 5 7 200 199
M-n163-k12-s12 150 12 12 200 100
M-n212-k16-s12 199 12 16 200 100
F-n80-k4-s8 71 8 4 30000 53
F-n140-k7-s5 134 5 5 2210 307
X-n147-k7-s4 142 4 7 1190 2762
X-n221-k11-s9 213 7 11 944 1204
X-n360-k40-s9 351 9 40 436 1236
X-n469-k26-s10 458 10 26 1106 1230
X-n577-k30-s4 572 4 30 210 2191
X-n698-k75-s13 684 13 75 408 1336
X-n759-k98-s10 748 10 98 396 1367
X-n830-k171-s11 818 11 171 358 1385
X-n920-k207-s4 915 4 207 33 2773
X-n1006-k43-s5 1000 5 43 131 2536

Onwg mpoavapépape, oTOY0G Tov aAyopifov mov oyedidoatle ival va Ppioket Tig
KOADTEPEG TOOVEG ADGELS, EANYIOTOTOLMVTOG TOV VITOAOYLGTIKO Y¥pOVO ava instance.
[opampnoape oe ToALG TpeCipata 0Tt 0 aAYOPIOUOS pog KOAALEL o€ TOMKEG PEATIOTEG
AMOGELC, KOl Y10 VO TO KOTOUTOAEUNGOVUE OOKIUAGOLE SLOPOPETIKEG CTPUTIYIKES EQOPLOYNG
TOV TEAECTMOV peTakivnong Omwg eaivetal ot S1oypapLILOTO GTHY SLUPAVELD.

Ovo1oTIKA EVOALLGCOVLE TNV GEPE EPAPLOYNG TOV TEAECTMOV UEXPL VO Bpovpe
BérTioT Aon ava tepintmon ava instance, | péypt va Eemepacovpe Eva xpovikd 6pto (To
01010 OVOPEPETAL GTOV VITOAOYICUO TG PEATIOTNG AVGTC TOL OIS TTOPEYETOL OO TOL
benchmarks) 6mov deyopacte v KOAVTEPN ADoT oL Popel va Tapdyst o ahyoplOpds pog
0€ aVTO TO YPOVIKO SLUGTILLAL.

Tpéyovtog d1apopeTikodg cLVIVACUOVG 0vd instance TapatnpHoope OTL N KOADTEPN
oTPOTNYIKN avd LEGO 0po, apyilel epaprdlovag S1TapAcGoVTaS TNV OPYIKN ADOoN LE TO
worst station removal, énetta epoappdlovpe evaAdaE intra- ko inter-route moves, petd
e éyyovpe pe to greedy station insertion dote va unv £xovv mapafloctel o1 Teplopicpol
eOpTIOoNG Ko TEAMKE kKavovpe éva refinement spapudlovrog Eexmpiotd Adya iterations amd

intra kot inter-route moves.
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Hepopatike Awoteiéopuata

[Mapakdto Tapovctdlovpe KATolo amd To AmOTEAECUATA LG GE GLVOVACUO LE TNV
amddooon Tov adyopifuov Tomikng avaltnons e cuYKpon Ue To BEATIoTO dedopéva. Me
KOKKIvo avamapictavtol ta nodes, to (0) givor mwévta o depot kot pe podpo aotépt
dwypagpovtat ot otadpol eoOpTIoNG.

Apykd PAémovpue Eva mapdaderypa tov multi trip element g pebddovg pog, dmov
T0 TPAGIVO OYM L0, EKTEAEL GVO SLAOPOUES, EMGTPEPOVTAG EVOLaESH oTo depot yio restock.
Eniong oto ovykekpiuévo mpdPANUa eTTUYYAVOLLE KAADTEPT) OO TNV YVOOTH BEATIOT

Moo xotd 1.3%.
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X - axis
instance name LS Optimal Deviation
E-n35-k3-s5 520 527 133

Oélovtag va BiEovpe g onuoacio g aeONTIKNG 6TV TEAIKN Abon 1| ool amoTeAel
ONUAVTIKO GTOXELD T®V O100POUDV OTAV ETAVOVLE TPOKTIKA TPOPAN|LLOTAL KO TO,
napovcialovpe o stakeholders g Prounyaviog petapopdv, mopovctdlovpe TapaKIT® TO
TpOPANUa ™G opddag M pe didotaon 110, to omoio amotelel éva tédelo Topdadetypa intra-
route refinement, ka1 emPefardverar Kot onTIKd OAAG Kot TOLOTIKG, ENLTVYXAVOVTOG TEPITOV

9% KaAVTEPN TEMKT AVON O TNV PEXPL TOPO YVOGTYH BEATIOTT.
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instance name LS Optimal Deviation
IM-n110-k10-s9 832 914 8.97%

Télog, ot0 emodpeVO amelkoviLopuevo TPOPANUa Tapovctalel Eva eVOLOPEPOV

YOPOKTNPLOTIKO TNG HEBOS0OL OV avamTvyOnKe, To omoio givar 1 peiwon Tov otdélov. Evd 1

nepintoon X-n147-k7-s4 dnuovpyndnke pe 7 oxnuata mov eEuanpetovy 142 meldreg e

BérTioTo cuvoAikd kKOoTog 17704, n peta-gvpetikn LS mpoteiver po Ao mov ypnoipomotet

6 OYMLLOTO KO EMLTVYYAVEL KOGTOG AVOTG LE TEPLETOTEPO ATO 5% KAADTEPO AMOTELEGLAL.
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instance name LS Optimal Deviation
X-n147-k7-s4 16745 17704 5.42%

210V TapokdTo swovilopevo mivaka PAETovpe TNV amddoon g pebodov pag yio

TPOPAN LT LKPNG KALOKOG.

Solution Quality and CPU time (in seconds) for small-scale E-CVRP instances

E-CVRP instance name  Local Search Meta-Heuristic Optimal Cost Gap CPU time (s) Optimal Time Gap

E-n29-k4-s7 397 383 -3.66% 0.1 0.1 0.00%
E-n30-k3-s7 570 577 1.21% 0.1 31 96.77%
E-n35-k3-s5 520 527 1.33% 0.2 2.2 90.91%
E-n37-k4-s4 845 865 2.31% 0.3 34 91.18%
E-n60-k5-59 579 544 -6.43% 1 20.7 95.17%
F-n49-k4-s4 726 740 1.89% 0.7 8.9 92.13%

O1 otreg Optimal Cost kot Optimal Time avagépovtal 6ty amrdd061 ToV

aAyopiBuov mov avértvée 1 opddo Tov Mavrovouniotis, katd v dnuovpyia TV

npoavapepOévimv benchmarks. To Optimal Cost eivarl n péypt tdpa yvoorr Bértiotn Adon

K@GOg instance mov Ppédnke ypnoomoldvIag d0V0 aAyopibpove, Evav ypopukon

npoypappatiopov (linear programming), kot pia peta-gopetiky pébodo Beltiotonoinon
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amowkiag popunykiov (Ant colony optimisation). OotAn CPU time avageépeton oty
anddoon Tov adyopifuov Tov avarTuyOnke G VTN TN OITA®UATIKY] GE OEVTEPOAETTOL.

Ketvovtag e ta gelcaymyikd, 6Tov Tivako auTdv Topatnpovue 0Tt G TEGGEPLS OO
T1G £&1 TEPMTOGELS, TETHYOUE KOAVTEPN Ao T YVOOT PEATIOT Abon pe péon peiwon Tov
GLVOAKOD KOGTOVG TG Avong Katd 1,7%. Tavtdypova, o ypdvog CPU g pnebddov LS, og
OAEG TIC TEPMTMGELS, elval pkpdTePOg KoTd 93% Katd péso dpo. Aedopuévov Ot 1
£YKOTAGTOON MG Elvat AyOTEPO OMOSOTIKT OO ATOYT VITOAOYLIGTIKNG 1Y V0G KOOMG TOl
Bértiota amoteAéopata amd v opndade tov Mavrovouniotis Bpébnkav pe hardware 8-core
CPU 3.4 GHz kot 16GB RAM. To m0606T0 avTd avadEIKVOEL TNV OMOTEAEGLOTIKOTNTO TNG
peBOo0L oV avamTLYOINKE GTNV TOPOVGA OUTAMUOTIKY.

Amo v GAAN TAEVPAE, Gg 800 0o Tig £€L TEpITOOELS, cLYKEKPEV o€ E-n29-k4-s7
kot E-n60-k5-39, dev ptdcape otn yvoot BEATIoT TIUn, pévovtag miow Kotd 5% mepimov.
Y€ QUTEG TIC TEPUTTOGELS, 0 alyop1Olog dev givor og BEom va mapdEet o BEATIOTH Adon
EVTOC TOV OTOBEKTOV YPOVIKOD TANGIOV (OTTMG avapEPOE OTO KOUUATL TOL experimental
design), emopévmg povo ot ADGEIS TOV AaUPAVOVTOL EVIOG TOL €V AOY® EVPOVG
TopovctdlovTal.

210V EMOUEVO TIVOKO TOPOVGLALOVLLE TO ATOTEAEGLLOTO, TMOV TEPITTMOCEMV UEYAANG
KMpokog. Ed® propodpe va mapatnpricovpe BEATIOUEVT amOO0GT, EMTVYYAVOVTAG
VYNAOTEPO OO TO YVOOTA BEATIOTO 0mOTEAEG AT GTO 78% TV TEPIMTAOGCELS LE KATH LEGO

6po 4,5% kalvtepeg AVoELS.

Solution Quality and CPU time (in seconds) for large-scale E-CVRP instances

E-CVRP instance name Local Search Meta-Heuristic Optimal Cost Gap CPU time (s) Optimal Time Gap
E-n89-k7-513 743 724 -2.62% 1 31.8
E-n112-k8-s11 890 860 -3.49% 4.7 71.8
M-n110-k10-s9 832 914 10.7 57.6
M-n126-k7-s5 1045 1099 12.5 63.7
M-n163-k12-s12 1111 1109 -0.18% 11.8 158.4
M-n212-k16-s12 1350 1398 17.9 266.1
F-n80-k4-s8 250 240 -4.17% 43 23.7
F-n140-k7-s5 1175 1229 21.6 92.5
X-n147-k7-s4 16745 17704 9.6 104.5
X-n221-k11-s9 11814 12235 24.2 161
X-n360-k40-s9 27095 27701 115 1119.4
X-n469-k26-s10 25988 26881 84 1905.2
X-n577-k30-s4 52201 55266 43 3182
X-n698-k75-513 70899 75048 84 5511.7
X-n759-k98-510 79307 84996 136 7258.8
X-n830-k171-s11 164601 167575 342 6612.6
X-n920-k207-s4 344246 345214 378 6774.9
X-n1006-k43-s5 76873 80765 607 8380.6
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Onwg kot pe Tig pikpng KApakog TpofAnpato, mopatnpodie oAy Kalobg xpovoug
CPU xotd péso 0po 95% yaunAdtepa ava instance. Xe avtod to set tpopfinudrov,
OTOQUGIGOLLE VO SLOTNPTCOVE TIG EMAVAANYELS GE Eva EAAYIoTO aptBpd, mepimov 1+10,
TPOKEWEVOD VO OTOPVYOVE TOVS VYNAOVG VITOAOYIGTIKOVG XPOVOVGS. ZVYKEKPIUEV, GTIG
TEPWTAGELS LE TEPIGGOTEPOLS 0O S00 koOpPovg, TpEEae TOV alyoplOlo TOTIKNG
avalnmong yw pio povo eravainym. Ta amoteAésoTo TOV TPOEKLYAY OVAOEIKVDOLV TNV
amod0TIKOTNTO TOL aAyopiBpov pog o€ TpofAnpota HEYEANG KATaKOG Kot E101KOTEPOL
divetar £ueacn oTnV KOAN To1dTNTo TG apyIKNng ADomng mov mapdyetat oo To construction
phase.

levikd givon epeavég 0Tt kat ota 000 6eT TPoPAnudTmV N HEB0SHS Hag £xel TETVYEL
TOAD YOUNAODVS VTOAOYIGTIKOVG XPOVOLS GE L0 AIYOTEPO OMOOOTIKY| EYKATAGTAOT).
[MopdAinia Tetdyope Kot KaAdTEPES 0md TIC PEATIOTEG TIEG OTO 75% TV TpoPAnUdT@V.
AlEpELVAOVTOG SLOPOPETIKEG OTPATIYIKES Y10, va Bpovue BEATIOTEG ADGELG 68 OAa TOL INStances
Bprrape 600 mBava epmoddioL:

[Ipwrtov, mpoékvye 011, AOY® TS VOGS TNG LOVTEAOTTOINGNG TOAAUTAMY S10OPOUDYV,
N nEB0dOG pag xpnoonotel HEPIKES POPES Lia Oadpopn Atydtepn amd v Yveootn BéEATio,
1] OTO10 EVOOUATMVETAL GE L1 S100POpT| OYLATOS. AVTO GLUPAIVEL GTNV OPYIKT PAoT
KOTOOKELNG TNG AVOTG, 1 0Toia apyOTEPQ ETPAPVVEL VTOAOYICTIKA TN PO
Beltiotonoinong yo v enitevén 10V GLVOAIKOD BEATIGTOV, Kot 0 OAYOPOLLOG KOALGEL GE
TOTKG HEYIOTO. ZVYKEKPIUEVA, 1) ATOTEAECUATIKOTNTO TOV INter-route moves eivor
YOUNAOTEPN OTOV VTTAPYOLV AYOTEPES OLUOPOLES Y10 VO EPOPLOCTOVY KO Ol LETOKIVICELG
petald dradpopmv evfHvovTal Yo LeyaAdTEPES LETOPOAES GTO GUVOALKO KOGTOG TG AVGNG.

To 0e0tEPO TPOPANLA TTOL AVTILETOTIGANE TAV OTL 1) VTOAOYIOTIKT SVCKOATL KAOE
wpoPAnuatog dev avéavotay ekbetikd Adym g avdEnong ¢ d1d.oTacnS TOL TPOPANLATOG,
OAAG AOY® TNG abENOM TOV GLVOAIKOV aPOLOD TOV GTOAOV OYNUATOV. ZVYKEKPIUEVA, GE
TEPIMTMOCELS UE UEYOAO GTOLO OYNUATOV, ETPETE VO ELUYLICTOTOCOVLLE TIG EMOVOANYELG
TPOKEWEVOL Vo Tapapeivovpe eviog evog Aoyukol ypovikov miaisiov. [ap' 6Aa avtd, avtd
dev odnynoe o¢ amoteAéopato xapmAdTepa amd o PEATIOTO OTIC TEPIGCOTEPES TOV

TEPUTTAOGEDV.
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2vunepdouaro

2& VTN TN OIMA®UATIKT), TOPOVGIALOVUE i VEX EKOOYT] TOVL TPOPANLATOG
dpoporoynong oxnudtwv mov voAoyilel SludPoUES EAAYIGTNG ATOGTACTG Y10 NAEKTPIKA
oynuota. To TpoPANUa emAdETAL ¥PNOYOTOIDOVTOG EVa TAAIGL0 TOTIKNG ovaltnong pali pe
TPOCUPUOGUEVES EVPETIKEG LEBODOVS avalTNOTG YELTOVIAS OGOV 0POPA TOVG GTOOLOVG
EMAVOPOPTIONC.

Aokacape o anotelécpata pog o€ ovykplon pe E-CVRP benchmarks kot ta
aroteAécpaTo ivat EvOapPLVTIKE OGOV 0QOPE TV TPOGEYYIoNG THG AVOTG KOt TNV TOLOTNTA
™G X710 75% TV TPOoPANUATOV, KATAPEPULE VO EXLTUYOVUE KOADTEPESG OO TIG YVOOTES
BEATIOTEG TIHEG OE AVOAOYIKA ELAYLGTO YPOVO.

Metd amd moAld tpekipata, TapaTnpoape TO To eVOlaPEPOV atoryeio Tng Hebdoov
KaTé TNV Amoyr| Lov, 6mov og 600 TEPMTMGELS OTL 1] LEBOOOC OIS EMMTPEMOVTAG GTO OYNLOTA
Vo EKTEAOVV TOAAATAEG O10.0POLES, EAUYIGTOTOLOVGE TNV AVAYKT] Y10l TOVANYIGTOV £VaL OYMLLOL
avd TpoPANpa, To omoio emiPePfarmdvel To apykd pog KiviTpo Yo TV avarTuEn pog pebddov
oL o LTOPOVGE VUL TPOGUPUOCTEL G TPAYUATIKESG PLOUNYOVIKOVG TEPLOPIGIOVE.

X710 1610 Tpicpa, 0 AOYOS TOV TPOTOTOMGALE TOV aAYOPIOUO daTE va popTilet
LEPIKMG MTOV Y10 VO, EAQLYICTOTO|GOVUE OGO TO dVVATOV TEPIGGOTEPO TOV GLVOAMKO YPOHVO
dwdpounc. Ta dedouéva GLVOAMKOD YPOVOL avVE SLAOPOUY|, ETAEEAUE VO UMV TOL
TOPOVGLAGOVLE KAOMG dev UTOpoLE VO, To, GuYKpivovpe pe ta benchmarks yo va
OYOAAGOVUE TNV OMOTEAEGLOTIKOTITA TOVG,.

Me Bdon to amoTeAEGHATO TOV TOPOVGLALOVTOL TUPATAVE®, LITOPOVIE VO TOVUE LE
BePardmra 611 10 EVRP-PR-MT pmopet va mpocappoctel o€ £101Kd TpofALato Tov
KAAOO0VL, 6TwG N TapAdooT TEAEVTAIOL YIAMOUETPOL Yo dVO Adyovg. TIpdTov, ehayioTonotel
TOV GTOAO T®V OYNUATOV, 0 0Toi0¢ 6T0 TAaicto pag 3PL etapeiog mov petaPaiver e EV, Oa
ONUOLVE YOUUNAOTEPT) OPYIKT EMEVOVOT KO OPYOTEPQ LUKPOTEPO AELTOVPYIKO KOGTOG.
[MopdAinia, Aappdavovioag veoyn To S100£G1H0 JTKTVO CTUOUMOV ETAVAPOPTIONG OTA
TEPLOCOTEPO AOTIKA KEVTPA Kot TV 0Aoéva av&avopevn {itnon, 1 duvatdTnTo LEPIKNG
EMAVAPOPTIONG UETOPPALETAL G EK TOV TPOTEPMV KpATNomn otevdv time-slot poptiong,
yeyovog mov Ba Bertiove v aglomotio tov EVS og péco petagopds 6to KEVIPO TG TOANG.
Emutiéov n cuvolkn peimon g dtdpkelag e dStadpoung, divet T duvatodTnTa yio v
eEumnpétnon teplocOTEPOV TEANTAOV € pia pdvo Papoia.

Mertofaivoviog oTic TPOoTAGELS Yo mePETAipm Epevva Bewpovpe onuavtikd vo 000el
£LLPOALOT] GTOVG 001 YOVG KO GTOV TPOYPALUATICUO TOV SL0OPOLDY GUUTEPIAAUPAVOLEVOV

TV gpyotonpov (Goel A. & Gruhn V., 2006). Mg avtd 10 GKETTIKO, KATA TN
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povtelomoinon tov alyopifuov pog, avantdiéape Eva tpdcheto mepropiopd mov mepropilel
didpketa TG dradpoung, enttpénovtag Evav mbavo scheduling yio tovg 081yode tov 61O 0V.
Qo1660, KATA TN SLAPKELD TNG PAong Petioong tov aAyopiBov, avtdc 0 TEPLOPIGUOS GLYVA
napofralerol o eELdy1oTo Pabud, EMOUEVMG OEV TOV GUUTEPIAAPOLE GTNV TEAKY] SoTHTTOON
g Avonc. [Tap' 6Aa avtd, TpdreTon Yoo Pt onpovTikny TposOnkn mov Ba Bertiove Tov
avtoyoviotikotta tov EVRP-PR-MT otic mpaktikég epappoyég tov kAdoov tmv

LETOPOPAV.
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Chapter 1. Introduction

Introduction

“In the past the man has been first; in the future the system must be first.”

- Frederick Taylor

While in the dawn of Industry 5.0, the words of Frederick Taylor still echo in our ears
creating a sense of fear and excitement, as the development of the “system” (Operations and
Scientific Management) has reached an all-time high by utilising advanced technologies and
leveraging disruptive crises (i.e., COVID-19). Now, “the man” finds himself in turmoil where
advanced technology, with the use of Artificial Intelligence (Al) and Deep Learning, has
emancipated him from being “the first” and fear prevails over the possible implications of
such development. At the same time, the global industry continues to strive for optimisation
and faster ways of satisfying the never-ending and highly-customized needs of the modern
consumer, while of course reducing their environmental footprint. Thus, the focus is
eventually turned over to “the man” again, with Industry 5.0 putting him at the centre of the
value chain, while also using advanced Al and cognitive computing technologies to reach
optimum results in a Cyber-Physical collaborative environment (Adel, 2022). Supply Chain
Management, as an important driver of the industry’s transformation, doesn’t remain stagnant
towards Industry 5.0 and attracts a lot of academic and industrial attention.

In parallel, sustainability is becoming a global trend in industrial production. The
transportation sector is a major contributor to greenhouse gas (GHG) emissions, accounting
for approximately 20% of all carbon dioxide (COz) emissions globally, and road
transportation accounts for the large majority of those emissions (Albuquerque et al., 2020).
A future in which fossil fuels are only fossils, and clean energy (electricity produced by
renewable sources) powers the global grid, may seem impossible to grasp with our current
efforts. Nevertheless, there have been steps towards this utopia, as in 2022 passenger electric
cars are surging in popularity, estimated at 13% of new cars sold in 2022, and projected to
reach up to 30% of vehicles sold globally by 2030 (International Energy Agency, 2022). At
the same time, endeavours have been taken by regulators around the world to facilitate
vehicle electrification for its ability to mitigate GHG emissions, promote sustainable ways of
electricity generation, and reduce particulate matter pollution thus benefiting human health
(Waraich et al., 2009).

Diploma Thesis, Andreas Apollonas Koulopoulos 26



Chapter 1. Introduction

1.1 Context and Problem Statement

The main goal of Supply Chain Management is the optimisation of its operations, by
beating the competition and providing better service at lower cost with a sustainability remit
(Scott et al., 2011). Optimization is performed by solving complex computational problems,
routing, and many other instances related to problem-solving (Deb, 2011). There are many
ways to solve a problem that needs to be optimized, based on the type of problem. In this
thesis, research is performed regarding the optimisation of the electric vehicle routing
problem (EVRP), an extension of the vehicle routing problem (VRP). The main purpose of
this problem is to design multiple routes with minimal delivery cost, serving a set of
customers and operated by a fleet of Electric Vehicles (EVs). As the problem is an NP-hard
problem, determining the perfectly optimal solution is difficult to obtain.

In this thesis, we explore a delivery service system that employs an EV fleet to service
consumers. We propose the Capacitated Electric Vehicle Routing Problem with Partial
Recharging and Multiple Trips (EVRP-PR-MT), which a) take into account the real-life
restrictions of commercial EV fleets and logistics; b) allows EVs to charge and discharge
their batteries across the planning horizon and c) directly optimises the routes per the number

of vehicles utilised.
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1.2 Aim

The aim of this thesis is to solve an Electric Vehicle Routing Problem with constraints
that illustrate industry-specific scenarios. The modelling itself is not found in the available
literature; thus, following the trend of research, focusing more on real-life cases, we aim at

solving the EVRP-PR-MT, and testing its performance against common EVRP benchmarks.

1.3 Objectives

The main objective of this research is to develop a model for the EVRP-PR-MT and
propose a solution method, able to compete with instances of common capacitated EVRP
problems. The quality of our solution, measured as the comparison of our solution to the
optimal solution provided by each instance, should at least be comparable to the quality of the
known solution for the instance tested against. The computation time depends on the chosen

instance but should remain at a reasonable range within each benchmark test.

1.4 Thesis Outline
The thesis is comprised of seven chapters:

- Chapter 1 presents a brief introduction and a general outlook of the thesis.

- Chapter 2 presents a formal introduction to Vehicle Routing Problem and its
variants, and the solution methods found in the literature.

- Chapter 3 describes the mathematical formulation of our problem and the
proposed method for solving the EVRP-PR-MT.

- Chapter 4 provides the research methodology and evaluates the design of the
experimental process

- Chapter 5 presents our solution results compared to EVRP instances and analyses
the method’s performance

- Chapter 6 comments on this thesis, its limitations and possible applications, as

well as the role of this work as a stepping stone for future research
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Literature Review

In this chapter, we will give an overview of the literature about the VRP and its
extensions. In Section 2.1, we start with a walkthrough of the literature research process, in
Section 2.2 an introduction to VRP, in Section 2.3 we address the multiple variants of VRP,
later in Section 2.4 we review the different solution methods that have been developed for
solving VRPs and finally in Section 2.5 we dive into the EVRP problem and its

characteristics. Last, in Section 2.6 we summarise the findings from the literature review.

2.1 Literature Research Methodology
The literature review is the preliminary work required to identify and develop an idea
or concept for any research. A literature review was conducted in this study to gather
knowledge on the issues listed below:
e To have a good grasp of the vehicle routing problem and its variants.
e To gain a good understanding of the intricacies of the electric vehicle routing
problem.
e To map the different flavours of EVRP and find the gap in literature where our
variant could contribute.
e To obtain knowledge of the multiple solving methods that have been
developed or employed to tackle the VRP and the EVRP.

2.1.1 Search Process
A keyword search has been conducted on Google Scholar, SCOPUS and Science
Direct. The following search terms were used to find all of the papers in the list of articles for
the literature review: “VRP”, “EVRP”, “Savings heuristic”, “Local Search”, “Multi-trip”,
“Improvement Heuristics VRP”, “Partial Recharging”. As mentioned earlier, the first
screening criteria of the literature found was a historical hierarchy and later was done on the

basis of reading the title and abstract of each article.

2.1.2 Inclusion & Exclusion Criteria
The following criteria were used as guidelines through the vast literature in order to
filter related papers for our review:
e Only articles on the topics of the TSP, VRP, VRP solutions methods,

construction and optimisation heuristics were included in the review.
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e Articles discussing relating variants to ours are selected by reading the title
and abstract.

e Allarticles included are in English, as it is the primary language used in this
thesis, but articles in other languages were cited only to reference the
existence of research on a specific variant of the VRP.

e Only articles with full-text availability were included

2.2 Vehicle Routing Problem

The general objective of the Vehicle Routing Problem is finding the shortest route for
multiple vehicles to serve all customers of a given set. Dantzig and Ramser were the first to
introduce The Vehicle Routing Problem in 1959 as The Truck Dispatching Problem (Dantzig
& Ramser, 1959), and since then, global research keeps presenting different approaches on
how to solve the problem.

VRP instances consist of many different constraints, such as vehicle capacity,
precedence relations and time window. Consequently, many variants of the VRP exist.
Nonetheless, most research has focused on the classic VRP, a fundamental skeleton of the
problem that can be shaped to match real-life scenarios and business cases by adding
constraints.

The following is a broad definition of VRP. Let G = (V, A) be an undirected graph
where V ={0,1, ... ,n}isthe vertex setand A = {(i,j): i,j € V,i #j}Iisthe arc set. Vertex
0 symbolises the depot, which has k vehicles of capacity Q. Customers are represented by the
other vertices. Every customer i € V \ {0} has a positive demand, g; < Q. On A, a cost
matrix, c;;, is defined. The objective is to find a set of at most k vehicle routes that (i) start
and terminate at the depot, (ii) each customer is only visited once by a single vehicle, (iii)
each route's aggregated demand does not exceed Q, and (iv) the overall routing cost is

reduced.
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Figure 0.1 A VRP instance, and the suggested solution

Lenstra & Kan, 1981, first classified the VRPs as NP-hard problems, which means
that each time we are adding new nodes, i.e., customers, results in an exponential increase in

computational complexity.

2.2.1 VRP Notation
Let's go through our notation and its real-world interpretation.

e G = (V,A) isacomplete undirected graph
— Network of routes
e 1, is the starting node
— Representing a depot
e V' = (vy,... ,v,) nodes except the initial node
— Locations of customers
o A= {(@,):1i,j € V,i=j} withassociated weightasacostc: A - N*
— A single route between two points bearing a cost, such as distance.
o C isamatrix of edge weights indexed by nodes c;; where i,j € V
— Matrix of costs between customers
e R; c Vs apath that starts and ends at v,
— Route visits a subset of customers starting and ending at the depot, it can be referred
to it as a delivery plan.
e Kk number of paths

— Number of vehicles
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e R={R{,... ,Ry}isasetof paths
— All routes (delivery plans) for a curtain VRP instance.
e m ={my,... ,m}solution for agiven instance of VRP.

— Customer locations in series of visits for numerous vehicles.

The total cost of the route Ri that we intend to optimize is the sum of its weights (costs).

IRl
C(Rl) = z CT'k,‘l"k+1
k=0

The VRP solution's overall cost is the sum of each route cost.

[Ril

C(R) = Z C(RY)
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2.3 VRP Variants
The VRP model is broadly applied in the global transportation industry and supply

chain management, and different variants were further investigated since its dawn to better
adapt to the specialised needs of each application. Specifically, the VRP was enriched by
considering customer characteristics, service quality, system stochasticity, fleet
heterogeneity, environmental and energy issues etc. All flavours of VRP can be mutually

combined, which is usually the case found in the literature.

Information evolution Information quality
o travel times Static Deterministic o travel times
\— Wz VS, e demands
® customers . )
Dynamic Stochastic ® customers

Travelling Salesman

(single-vehicle) Pickup and Delivery

TSP VRP PDP
Dial A Ride

7
/ \ [ bare

eVRP CVRP VRPTW PDPT

electric Vehicles Capacitated Vehicles with Time Windows with Transfers
(aka. green VRP)

Figure 0.2 Taxonomy of VRPs

2.3.1 Capacitated Vehicle Routing Problem

The Capacitated VRP (CVRP) is an extension of the regular VRP model, by
introducing a capacity element for each customer, while the cargo capacity of a single vehicle
is assumed to be much smaller than the total customer demands. In the literature, it is often
referred to as demand. The customer's demand is represented by d € N*, which might reflect
capacity in the form of weight, size, or abstract ideas like a box of products. Furthermore,
each vehicle has a specified capacity Q > 0.

The CVRP extends the solution feasibility formula by the following capacity
constraint.

qR) =Xirdi < Q (1.3)
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If the vehicle capacity of the fleet stays the same, we are dealing with CVRP with a

homogeneous fleet. A fleet with varying capacities for each vehicle is a heterogeneous fleet.

2.3.2 Vehicle Routing Problem with Time Windows

Robert A. Russell, 1977 was the first to propose an extension to the set of constraints
about time intervals in which individual customers should be visited. Customers have
assigned time window intervals [e;, [;] where e; < [;. The time interval equals to the time
period in which a vehicle should visit the node.

The time window can be implemented as either a hard or soft restriction (Sanghavi et
al., 2007). A hard constraint requires the vehicle to visit the node, i.e., the customer, within
the time frame specified, or else the solution is not feasible. A hard constraint requires the
vehicle to visit the node, i.e., the customer, within the time frame specified, or else the
solution is not feasible. Soft restrictions do not absolutely compel the vehicle to visit the
customer, but they do impose a penalty for a missed period in the form of a penalty fee. The
penalty is incorporated into the cost function, which VRP seeks to decrease (Russell &
Urban, 2008).

2.3.3 Pick and Deliver
The Pick and Deliver Problem (PDP) extends the ordinary VRP by combining pick
and drop with precedence relationships, where the pickup point must come before the
associated delivery location. This kind of VRP is one of the most complicated, posing a
challenge to traditional approaches such as optimization heuristic algorithms. The viability of
a PDP solution is evaluated by determining if all delivery locations were visited before the

pickup point (Dumas et al., 1991).

2.3.4 Static & Dynamic VRP

When solving the vehicle routing problem, we normally assume that all the input data
is static and definite. However, in real-world applications, data such as customer demand or
travel time are frequently incomplete or inaccurate throughout the planning phase and are
only progressively discovered and described.

Static VRP considers the input data constant. The dynamic VRP is aware of
information evolution (Psaraftis, 1980), and its purpose is to develop a resilient routing
planner capable of solving previously encountered instances subject to minor modifications

without having to recalculate the entire instance. After solving a certain instance of a
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combinatorial optimization problem, it becomes necessary to repeatedly solve many other
instances with minor variations from the original instance but without revisiting the entire

problem (Bertsimas et al., 1990).

2.3.5 Deterministic & Stochastic VRP

A VRP is considered stochastic (Laporte & Gendreau, 1996), when part of the data
act as random variables, and the routes should be designed before the values of these random
variables become known. We can extract some hidden information from the probability
distribution of the random variables and utilize it to our advantage in the planning process.
Because stochastic information is part of the cost function, the newly produced plans will
include stochastic information, and the routing decisions may result in different conclusions.
On the contrary, deterministic VRP contains no random information that may be used before

route execution, and all provided information is known with certainty.

2.3.6 Multi-Trip VRP

Multi-Trip VRP is a variation in which vehicles can make several trips that start and
end at the same depot (Fermin Cueto et al., 2021). In the context of the multi-trip element of
the problem, we use the term trip to refer to an instance when a specific vehicle leaves the
depot to visit customers and returns. The term route, on the other hand, refers to the actual
path that a vehicle takes throughout a trip.

This is a variant that popped out of an empirical case study that Branddo & Mercer,
(1998) did for Burton’s Biscuits Ltd, where their simulation showed that by introducing a
second trip for vehicles returning in less than 7 hours, “the number of vehicles could be
reduced from 21 to 19 and the unit cost of the deliveries was 5% less ”. The study uses the
nearest neighbour insertion procedure to construct the initial route and applies Tabu search
with insertion and swap moves.

Petch & Salhi noted in a 2003 article that permitting multi-trips saves companies
money on all transportation expenditures. They also emphasize that Multi-Trip VRP may be
useful for both tactical and strategic planning, and they hope to get strategic planning insights
as a result (Petch & Salhi, 2003). Their solution approach is composed of a multi-phase
construction heuristic composed by Yellow’s savings algorithm (Yellow, 1970) phase, a
phase of improvement heuristics and a final tour partition approach where available trips are

partitioned into small feasible trips using a geographical “route codification”. After obtaining
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the new solution population, the search is reverted to the previous phase in order to enhance
the available solutions.

In the last decade, as research is focused more and more towards real-life cases, we
see a plethora of studies where multi-trip VRPs are implemented and solved with advanced
heuristics such as local search, adaptive large neighbourhood search and genetic algorithms
(Babaee Tirkolaee et al., 2019; Cattaruzza et al., 2014; Grangier et al., 2016).

In this thesis we allow vehicles to end the route and return to the depot, as it allows us
to introduce more restrictions and better portray a real-life problem, while still receiving
competitive results. In this research the reasons why a route could be broken into two could
be for recharging purposes, reloading/restocking the vehicle and incorporating shorter trip

durations that could help in the strategic planning of the drivers’ schedule.

2.3.7 Other VRP variants

Stein (1978) proposed the Dial-a-Ride (DARP), which is a special case of dynamic
VRP with pick and deliver. Passengers request a ride with an origin and drop location, as well
as an optional time window.

Split Delivery VRP is a variation in which customers can be visited more than once.
This might be useful for large-capacity deliveries or stocking fulfilment centres (Dror &
Trudeau, 1989).

Multi Depot VRP is a simplified version of the vehicle routing problem with PDP,
where pick can only take place at designated depot sites. Because of this, Multi Depot VRPs

are less complicated than the vehicle routing problem with pick and deliver.
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2.4 Solution Methods

The classic VRP and its derivatives have been proven to be NP-hard problems. Over
the last few decades, significant scientific efforts have been undertaken to overcome these
solving difficulties. In general, there are four types of solution techniques: exact methods,
classical heuristics, meta-heuristics and reinforcement learning based approaches. Exact
algorithms were the first to solve VRPs and are known to solve the issue optimally. However,
since exact optimisation employs enumeration, it converges slowly and is unable to handle
problems of reasonable sizes with a consistent success rate in a reasonable amount of time.
The most popular exact algorithms can tackle problems with up to 100 vertices (Baldacci et
al., 2008), although real instances frequently exceed this size. Therefore, research has focused
on heuristics (Laporte, 2007). When opposed to exact methods, approximate heuristics are
more suited for very large-scale routing problems. Heuristics are also easy to modify (i.e., by
adding limitations), which is necessary for realistic conditions. Simple heuristics include both
route construction and improvement approaches that grow the route one node at a time until a
full route is produced while simultaneously attempting to enhance the solution for a more
efficient global optimum. Meta-heuristics identify their first solution and then look for a

better global optimum solution.

2.4.1 Exact Algorithms
Although there are exact methods to solve the VRP, they have a limited ability to
handle instances of larger sizes in reality. The three primary approaches in this area are direct

tree search methods, dynamic programming, and integer linear programming.

Direct tree search
Direct tree search techniques solve the VRP by generating routes progressively using
a branch and bound tree. Their algorithm reformats arcs with branches; branches are formed
by including or omitting an arc from the solution (Christofides & Eilon, 1969). As a result,
broad search trees with minimal depth are produced. These algorithms could only solve
simple or small instances. The addition of two approaches capable of obtaining sharp lower

limits (Christofides N. et al., 1981) significantly improved the efficiency of these algorithms.
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Dynamic programming
An optimization technique called dynamic programming (DP) segregates complicated
problems into several smaller problems. At each level, a piece of the partial solution is added
as these subproblems are solved. The DP method produces an optimum solution for the
original problem when an optimal solution to a (sub)problem can be identified exclusively
based on the optimal solutions of its subproblems. This is called the Principle of Optimality
(van Hoorn, 2016).

Integer linear programming
Numerous approaches fall into this category as a result of the fact that the majority of
research on exact algorithms for the VRP has been conducted in the area of integer linear
programming (Laporte et al., 1984). Among integer linear programming techniques, vehicle

flow formulations are by far the most frequently employed.

2.4.2 Classic heuristics
Construction heuristics and improvement heuristics are two forms of classic
heuristics. The primary distinction between these two is that improvement heuristics begin

with a feasible solution that they seek to enhance, whereas construction heuristics do not.

® e
¥
® e
2 P
/ e //
. / //
/ _—
e J‘
depot - ----- starting line---------
[
@
[ -@
[]

Figure 0.3 A sweep algorithm example

Construction heuristics
The most well-known construction heuristic for solving a VRP is the savings method

proposed by Clarke & Wright in 1964. The fundamental idea is to merge routes based on the
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cost reductions that result from this process. Initial routes are established from the depot to
the customer and back. The method then computes the potential savings s;; = ¢q; + ¢ — ¢i;
by adding the arcs (i, 0) and (j, 0) and eliminating the arc (i, j), if this results in a positive
saving and a feasible merged route. The combination that has the highest savings is then
implemented. This approach is repeated until no further profitable and feasible savings are
attainable.

To initialize our solution in this thesis, we implement a savings heuristic variation
(Section 3.3.1), with added restrictions for maximum energy capacity and maximum route
duration, to generate a solution that could be easily adapted to industry-specific problems,

such as driver work schedules.

Improvement heuristics

Improvement heuristics begin with a feasible path. Afterwards, they aim to improve
the route by making either intra-route or inter-route improvements. Inter-route heuristics
move one or more consumers between routes, whereas intra-route heuristics move one or
more customers inside a route.

The 2-opt heuristic, which Croes (1958) first described, is an intra-route optimization
technique that offers a 2-optimal route; one that cannot be improved by swapping two arcs.
To achieve this, crossings (arcs that overlap) are removed from the routes since crossings are
never the best option in a traditional VRP with a symmetric cost matrix. However, the
optimum route could involve crossings in other VRP variations due to limitations like time
constraints. Similar techniques include Or-opt (Or, 1976), which involves moving a string of
vertices in a row while maintaining the orientation of the original path.

Several alternative inter-route improvement heuristics, such as ejection chains
(Glover, 1992), A-interchange (Osman, 1993), and CROSS (Taillard et al., 1997), have been
developed.

In this thesis, a set of improvement heuristics are being used in combination with

neighbourhood-search operators to reach the optimum (Section 3.3.2).
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2.4.3 Meta-heuristics
Meta-heuristics explores the solution space significantly more thoroughly than
standard heuristics. In meta-heuristics, inferior or infeasible motions can also be accepted to
escape from local minima. This field is divided into three categories: local search, population

search, and neural networks.

Local Search

Local search metaheuristics work within a single-point-based search framework, with
the goal of iteratively improving a solution in hand over time with respect to a single
objective by employing solution perturbation strategies known as move operators and move
acceptance methods that begin with an initially generated solution (Jackson et al., 2018). In
this thesis, we use the local search meta-heuristic built by Rasku, Kérkkéalnen and Musliu
(2019), and customized it to meet the requirements of EVRP with Partial Recharging and
Multiple Trips, while also adding inter-route and intra-route moves and recharging station
(RS) removal and insertion operators.

Tabu search (TS) is a local metaheuristic search method that is widely utilized in
mathematical optimization. Local search algorithms are frequently trapped in suboptimal
areas. TS improves the performance of these approaches by forbidding previously visited
solutions or others by user-defined restrictions. Taillard et al. (1997), who worked ona TS
heuristic for VRP with time-windows, introduced the core concept of tabu search. A
neighbourhood of the present solution is generated in the TS by an exchange mechanism that

swaps customer sequences between two routes.

Population Search

Population search methods simulate natural selection (i.e., genetic algorithms).
Mutating the attributes of candidate solutions from a population of solutions causes the
population to progress towards a new generation of presumably better solutions. As
mentioned by Mester & Bréysy, 2007 and Vidal et al., 2014, genetic algorithms are
frequently combined with local search.

A lot of attention has been towards Ant Colony Optimisation (ACO) for solving
VRPs. ACO illustrates the behaviour of real ants along with enhanced abilities such as
memory of past occurrences and knowledge about the distance to other locations (Bell &
McMullen, 2004). Basically, edges that occur frequently in good solutions are remembered as

good edges and are more likely to be used in later solutions. The first attempts to implement
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ACO to the travelling salesman problem (TSP) were done by Colorni, Dorigo and Maniezzo,
(1991), and later it was extended to the VRP, (Bullnheimer et al., 1999) showing promising
results. This led to ant colony optimisation methods being implemented for many variants of
the classical VRP (Corne et al., 1999).

Neural Networks

Neural networks operate in a manner that is similar to organic neural systems like the
brain. When it comes to vehicle routing, this idea has only attracted little attention, but over
the last decade, with the aid of deep learning techniques and other heuristics, its popularity
has dramatically increased. (Nazari et al., 2018) (Amir et al., 2013) (Chen et al., 2020). This
line of research finds a lot of stepping ground towards industry-specific problems where,
instead of the objective function, there are multiple other parameters and preferences
ingrained in the years-long experience of the route planners and the drivers.
“Drivers, for instance, have familiarity with certain neighbourhoods and knowledge of the
state of roads, and often consider the best places for rest and lunch breaks. This knowledge is
difficult to formulate and balance when operational routing decisions have to be made .
(Mandi et al., 2021)

Such and other examples are pointing out the need of incorporating past solutions into

the planning process and later in the optimisation phase.
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2.5 Electric Vehicle Routing Problem

The electric vehicle routing problem (EVRP) followed the green vehicle routing
problem proposed by Erdogan & Miller-Hooks, (2012) for alternative fuel vehicles, as a
particular variant, which was one of the first studies to present recharging stations as
dedicated points. These points have to be visited to extend the vehicle’s driving range. As
previously stated, the G-VRP fleet is made up of alternative fuel vehicles, with the objective
of minimizing the total distance travelled. The authors follow a complete refuelling policy.
The Modified Clarke and Wright Savings heuristic and the Density-Based Clustering
Algorithm are introduced as constructive heuristics.

Schneider et al., 2014 proposed the electric vehicle routing problem with time
windows (EVRPTW) by expanding the framework specifically for electric vehicles. They
make the assumption of a linear charging time, dependent on the EV's battery level when
they arrive at the stations, rather than Erdogan & Miller-Hooks, (2012) who use a constant
replenishing time. A similar model has been implemented in this thesis, incorporating a
partial charge policy which reduces delays in the total route duration.

Researchers began to examine the topic under more complex modelling for EV
batteries beginning with J. Lin et al., (2016). They suggest a framework for the EVRP that
considers the effects of EV load, speed, and battery charging speed on battery usage, diverse
fleet, cost of battery deterioration, and braking energy recovery. (Goeke & Schneider, 2015;
Touati-Moungla & Jost, 2011; S. Zhang et al., 2020; Z. Zhao et al., 2020).

Because of the problem's intricacy, most of the available research uses meta-heuristics
as solution approaches. Only a few articles discuss the exact methods for the EVRP, and the
work of Desaulniers et al., (2016) is one of them. For four EVPTW variants that cover
full/partial recharge and the number of station visits for a specific route, a column-generating
approach is proposed (Schneider et al., 2014).

The heuristic and meta-heuristic methods outlined in Section 2.3 may be used for the
EVRP with minimal adjustments to the station nodes and charging schedule due to
similarities between the VRP and the EVRP. For instance, a construction heuristic based on
the Clarke-and-Wright saving heuristic (Clarke & Wright, 1964) is proposed in Erdogan &
Miller-Hooks, (2012) study. If the merger of two routes would violate the distance constraint,
a station is added at the spot, increasing the total distance travelled. In order to relocate the
station, if one exists, to its prime location along the route without altering the sequence in

which customers are visited, Felipe et al., (2014) constructed a new neighbourhood operator
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called recharge relocation. Similar operators, such as station insertion and removal (Keskin &
Catay, 2016) are described in other publications and also used in this study.

To summarize, using meta-heuristics is realistically a one-way path to the best
solutions since the EVRP problem is more complex than the VRP versions suggested by

existing research.

2.5.1 EVRP with Multiple Trips

There is little literature to be found on EVRP with multi-trips, which does not come as
a surprise, as the specific VRP variant is usually studied in real-life case studies, and EVs
have not yet fully penetrated the transport market to a significant volume. The first literature
that combined the features of EVRP and Multiple Trips was introduced by M. Zhao & Lu,
(2019), which, foreseeably, studies a real-world routing problem, proposed by a Chinese
logistics company. The proposed solution method is a combination of ALNS and integer
programming (IP), which uses common insertion and removal heuristics.

In 2022, more interesting case studies were conducted on EVRPs with multi-trips,
proposing metaheuristic methods and solutions via genetic algorithms.

Mahmoud et al., (2022), proposed a Ruin & Recreate meta-heuristic for solving the
electric vehicle routing problem with time windows and multiple trips (EVRP-TW-MT). The
Ruin & Recreate meta-heuristic is a large neighbourhood search which follows the steps of:
a) initial route construction, b) partial node removal (“Ruin” step), ¢) configuring new points
to insert “ruined” nodes (“Recreate” step). The purpose of this study was to implement the
aforementioned method in a case study on sustainable last-mile logistics, in the city of Lyon,
France.

Wang et al., (2022), presented a hybrid variable neighbourhood search (Hybrid VNS)
algorithm for solving the multi-trip and heterogeneous-fleet electric vehicle routing problem
(MTHF-EVRP), at the 2022 Journal of System Simulation. They aimed at creating a model
that could be adapted to real business practice and managed to generate optimum solutions in
a very short time, highlighting the efficiency of the Hybrid VNS algorithm.

J. Zhang & Zhang, (2022), stress the need for research on applications of electric
buses (EBs) to short-notice evacuations. The current research suggests that their use is
obsolete in an evacuation preparation stage due to the inefficiency of the available power
grid, but neglects the potentiality of coordinated EBs. Thus, they propose a multi-trip EB
routing framework and compare it with conventional liquefied natural gas (LNG) buses in

terms of efficiency and operational cost. The algorithm developed is a genetic algorithm with
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improved recombination (GA-IR), which outperforms conventional genetic algorithms and
can be proven to improve evacuation efficiency, if combined with an increase in charging

stations and their strategic position allocation.
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2.6 Literature Review Results

In Table 1 and Table 2 we summarise the studied literature in order to give some
perspective to the research trends through time.

In Table 1, we present a summary of the literature on the general context of the VRP,
in chronological order. This table alone serves as an index of how the VRP has evolved in
terms of variants and solution methods. We can clearly see that soon after Dantzig and
Ramser (1959) first introduced the VRP problem, variants started to pop out, and many
solution methods were employed in parallel to their development. As better algorithms were
becoming available, linear programming and exact approaches started to fade from the
literature as early as the 2000s.

In Table 2, we showcase the literature on the general context of EVRP, which we
reviewed for the purpose of our research. As the EVRP is by definition a harder problem than
the VRP, it doesn't come as surprise to find only one article proposing an exact algorithm
(Desaulniers et al., 2016), while the rest incorporate more powerful solving methods. It is
also obvious that Table 2 is proportionally smaller in size than Table 1, which reflects the
lack of attention that the EVRP has received from the academic community. As seen in
Figure 2.4, according to the SCOPUS database, since the initial introduction of EVRP (or
GVRP) by Erdogan, only 67 articles on the topic of EVRP have been published, of which
only 5 have received around 100 citations, while the rest remain at low numbers. At the same
time, we notice that specifically on the EVRP there is a faster emergence of variants and also
research is being developed on top of industry-specific cases, which is also verified by Figure
0.5, showcasing documents published per year on the EVRP.

While the academic focus does not lean towards the EVRP, the transportation
industry makes important contributions to the field of VRP in general and drives the research
activities in this area. In the last 20 years, we can also see problem variants addressing very
specific industry constraints and, at the same time, an advancement in industry-related case
studies, as seen in both Table 1 and Table 2. This highlights the important role that the
transportation industry has portrayed in recent years in the development of research in terms

of introducing new variants and adapting solution methods to real-life needs
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Figure 0.4 Number of documents published on the topic of EVRP from 2012 till 2023 (according to
the SCOPUS database)
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Figure 0.5 Number of documents published per year on the EVRP (according to the SCOPUS
database)
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The EVRP-PR-MT

The most significant factors impacting commercial EV's competitiveness according to
the study of Davis & Figliozzi, (2013), are route feasibility, minimum fleet size, minimum
travelled distance, charging level, purchase costs and planning horizon. Following the
objective function of the classic VRP and inspired by the above, this research study presents a
detailed model of the EVRP that takes into account realistic operational constraints (i.e.,
vehicle capacity and multiple trips) and captures the most important parameters for optimal
routing where electric vehicles exist. In this chapter, we attempt to present a comprehensive
mathematical model for the EVRP-PR-MT that encompasses the real-world processes and
constraints that a corporation should consider when routing and scheduling an electric vehicle
fleet.

3.1 Problem Description

We define the electric vehicle routing problem with partial recharging and multiple
trips on the general premises of Cortés-Murcia’s (2019) problem formulation. We define a
complete directed graph G = (V', A) with a set of vertices V' = {V UF U {0O,N + 1}} and a
set of arcs given by A = {(i,j)|i,j € V',i # j}. LetV = {1, ..., N} be the set of customers,

F ={0,..., M} be the set of recharging stations (RS) and F’ be the set including dummy
vertices that represent the multiple visits to vertices of F. Vertices 0 and N + 1 denote the
depot as a departing and arriving node respectively.

There is a fixed fleet size of P homogeneous EVs, P = {p,, ..., p.}, With cargo load
capacity of Q, a driving range D (due to limited battery capacity) and a charging time t_;.
Each customer i has an associated demand g; and a service time s. During customer service,
all vehicles must remain at the customer locations for a certain time period (service time).
Similarly, vehicles remain stationed at recharging stations for t.; while charging. Energy
consumption of an EV travelling through an arc (i, j) € A is determined by the arc distance
d;; and the consumption rate y.

The EVRP-PR-MT seeks to determine a route plan for satisfying customers’ demands
while minimizing the sum of travel costs and charging costs, with each route departing from
the depot visiting all customers and coming back to the depot. Multiple trips, K = {k4, ..., k;}
are allowed in a route, for charging and reloading cargo purposes. The total travel distance of

a vehicle after the last charge should not exceed its maximal driving range D.
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The time spent at the RS during intra-route charging is represented by the positive
variable t.;, which is assumed linear and depends both on the inverse recharging rate r and

the difference between the required energy and state of charge (SoC) on arrival at i € F'.

3.2 Mathematic Formulation

We present a mixed integer linear programming formulation for the EVRP-PR-MT.
For every arc in (i, j) € A the Boolean decision variable x;; is equal to 1 if arc (i, j) is
traversed, O otherwise. Moreover, for the set of arcs {(i,j)|i € F',j € V} the Boolean
decision variable z;; is defined. It is equal to 1 if the customer j is visited from the recharging
station i, 0 otherwise. Variable u; defines the remaining cargo and y; defines the SoC on
arrival at vertex i € V'. Variable w; is the amount of energy recharge at recharging station i €
F'. Finally, the recharging time t; is computed as r * w;. Table 3 summarises the sets,
variables, and parameters of the model.

Using this notation, the EVRP-PR-MT can be formulated as the following integer
program, with the objective function to minimize:

min Z dijZng‘jp €Y

(i,))EA kEK peP

Subject to:

2x5+2z};=1 VieV,vkeK (2)
jev! jEF'

Z xf5<1 VieF,vkeKk 3)
jevli£j

D= ) xk=0 VieV,izjvkek )
jev’ jev'

uiSQ vieVv (5)
w—qx+Q(1—x)<w Vijev,i#jvkek 6)
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Sets and parameters

%4 Set of customer vertices

A Set of arcs

F Set of recharging stations vertices

F' Set of dummy vertices that represents the visits to RS on F
4 Set of nodes, recharging visits and depot nodes

K Set of trips vertices

P Set of homogenous EVs

ON+1 Depot nodes

Q Load Capacity

D Driving range

B Battery Capacity

q; Demand of customer i

s Service time

d;j Distance between vertices i and j

y Consumption rate

T Inverse recharging rate

a Vehicle Speed

Decision variables

IC; Initial SoC that is required by the vehicle that departs from the depot and arrives at node i
tei Time spent at the RS; during the intra-route charging

u; Remaining cargo on arrival at node i

w; Amount of energy recharged at RS;

Xij Boolean variable indicating if arc (i, j) is traversed

Yij SoC on arrival at node i

Zj Boolean variable indicating if the customer j is visited from RS;

Table 3. Variable and parameter definitions of the EVRP-PR-MT model

u—qizl+Q(2—xf—zE)<u vijeV,i#jvkek (7)
yi—ydfixls+B(1—xf) =yf Viev,vjeV',i#jvVkekK (8)
i+ wl —ydixl+ B(1—xf)=yf VieF,vjeV',i#jVkek 9
0<y¥<B VieV, Vvkek (10)
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0<yF+wk<B VieF,vkek (11)
zz{; <1 VieF,vkek (12)
JjEV

xf5€{0,1} VijeV',i#jVkeK (13)
zf;€{01} VieF,jeV,vkeK (14)
uk, Ick,yk¥ >0 vieV' vkek (15)
ti,wk >0 VieF,VkeK (16)

Based on the above, the objective function (1) is to minimize the total distance
travelled. Constraints (2) state that all customers have to be visited once while recharging
stations and dummy vertices cannot be visited more than once, constraints (.3). Flow
conservation constraints (4) guarantee for each vertex that the number of incoming arcs is
equal to the number of outgoing arcs. Vehicle capacity is restricted by constraints (5). Load
flow and fulfilment of demand are represented by constraints (6) for all the vertices and by
constraints (7) for those vertices visited after visiting a recharging station, where the demand
of a customer visited, affects the remaining load. The battery level at a vertex following a
customer visit is set by constraints (&) while constraints (9) set the battery level at a vertex
after a recharging station visit. Constraints (70) and (77) guarantee that battery capacity is
respected. Constraints (72) sets the maximum number of customers that could be served after
each visit at a recharging station. Constraints (7.3)—(16) specify the types and ranges of the

decision variables.
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3.3 Algorithm
The EVRP-PR-MT is an NP-hard problem and is an extension of the classic VRP.
Our goal is to solve large instances in a reasonable amount of time, and it is well understood
that using meta-heuristics is an effective technique to deal with these types of problems.
Accordingly, our solution could be divided into two phases: a construction phase, where an
initial solution is generated using a savings heuristic, and the improvement phase, where the

solution is optimised with a local search framework reiterating improvement moves.

3.3.1 Construction Phase

As mentioned in Section 2.3.2 the initial routes are constructed through the parallel
savings algorithm proposed by Clarke & Wright, (1964). The parallel savings algorithm
begins with each customer being serviced individually by a route. Then, for each iteration,
the best viable merging is made until no more mergers exist in the savings list. Because the
routes are built in parallel, each merging decreases the number of routes by one. The savings
are calculated by the method proposed by Clarke & Wright, (1964) for merging two routes by
connecting customers i and j with:

s(i,j) =dg; +doj — dj

The distance saved by merging the two routes by connecting i and j with an edge,
assuming that i and j are linked to the depot (marked by 0) with an edge prior to the merge
process, is described by the value of the savings s(i, j).

Aside from the savings function, the ordering of the savings values is important.
Typically, the merging with the highest saving value is applied first by the savings algorithm.
A merging is also subject to the following constraints:

i.  Customers i and j are not on the same route,
ii.  The merged routes should have an edge from i and j to the depot, and

iii.  The merge will not breach capacity or maximum route cost thresholds.

3.3.2 Improvement Phase
In the improvement phase of the algorithm, we implement the local search framework
proposed by Rasku, Karkkalnen and Musliu (2019), which iteratively improves the solution
by exploring neighbouring solutions. In this thesis, we apply intra-route and inter-route
moves, along with custom recharging station operators such as worst RS removal and RS

insertion, which are explained later in this chapter. The move operators generate
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neighbouring solutions by modifying one or more attributes of the solution. Here, attribute

might refer to arcs linking two customers, for example. When a neighbouring solution is

found, it is compared to the existing solution. If the neighbouring solution is better, it replaces

the present solution, and the search continues.

The two acceptance strategies used in our research are first-accept (FA) and best-

accept (BA). The first-accept approach chooses the first neighbour who meets the acceptance

requirement. The best-accept method looks at all neighbours who meet the criterion and

chooses the best one (Braysy & Gendreau, 2005).

Intra-route heuristics change one or more consumers' positions inside a route. The intra-

route heuristics applied in this thesis are: 2-opt move, 3-opt move, relocate move and 2-opt

exchange.

Lin & Kernighan (1973) first presented the 2-opt intra-route refinement solution for

the travelling salesman problem. As illustrated in Figure 0.1, the heuristic first selects two
non-consecutive edges that belong to the same route at random. The two selected edges are

removed from the original path, and their points are re-joined to form a new path.

Figure 0.1 Movement of the 2-opt intra-route heuristic

The 3-opt heuristic chooses three links to eliminate and reconnect for improvement,

rather than two as 2-opt heuristics do. Previous research has demonstrated that the power of a

3-opt operation is about similar to three 2-opt operations (Helsgaun, 2000), meaning that the

3-opt heuristic is more efficient and effective than the 2-opt heuristic in identifying the best
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solution. It should be noted that the 3-opt heuristic is not a simple extension of the 2-opt
heuristic: there is only one method to connect any two links picked by a 2-opt heuristic. On
the contrary, after picking three connections from a preliminary tour, there are seven methods
to reconnect them. A 3-opt heuristic should decide the optimum reconnecting type, making

the creation of efficient 3-opt heuristics exceedingly difficult (Figure 0.2).

2-0PT 3-OPT
~ ' Category 1)
Original Tour Original Tour Rsconnsctlng Type1  Reconnecting Type2  Reconnecting Type 3
77777 Category 2 Category 3
Reconnecting Type Reconnectlng Type4 Reconnecting Type 5  Reconnecting Type 6 Reoonnectlng Type 7

Figure 0.2 Hlustration of 2-opt and 3-opt heuristics in use

In intra-move relocate a selected customer is removed from its current position in its
route and moved to a different position in the same route (Karakostas et al., 2022). Figure 0.3
illustrates an example of the Intra-route Relocate neighbourhood, applied to the pair of

customers (5, 4).

d1

A0
(2)
(&)

Figure 0.3 Example of the intra-route relocate move
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A k-exchange move, in general, entails the deletion of (up to) k arcs from the present
solution and the production of k new ones to generate the future solution. The complexity of
exhaustively examining the k-exchange neighbourhood of a solution is O(n¥), so in practical
local search methods, the value of k rarely exceeds 3 or 4, because this would lead to

excessive computational times (Toth & Vigo, 2003).

Inter-route heuristics switch one or more customers between routes. The inter-route
heuristics applied in this thesis are: 2-opt movement, 1-point move, 2-point move, insertion

move, redistribute more, and chain exchange move.

The inter-route 2-opt method of refinement is, in fact, an expansion of the 2-opt intra-
route heuristic (Tavares et al., 2009). While in the 2-opt intra-route heuristic two edges
belonging to the same route are selected randomly, in the 2-opt inter-route heuristic two
edges that necessarily belong to distinct routes are selected randomly (Figure 0.4). The result
of this exchange can lead to a route whose vehicle capacity is disrespected. The new solution
IS not evaluated in this scenario.

The stopping criterion selected is reached by finding the minimum route distance from every

iteration.

Figure 0.4 Movement of the 2-opt inter-route heuristic
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The 1-point move (Groér et al., 2010) in Figure 0.5 modifies a route in its cost, by
moving one point from one route to another. Hence it can be used to obtain good solutions
concerning any of the objectives, given that the appropriate direction is adopted. So, when
trying to improve the unbalance of the routes, the search direction of the moves carried out by
the 1-point move has to be in this direction, and not, for example, toward decreasing the

Costs.

Figure 0.5 1-point move

The 2-point move is an extension of the intra-route exchange move, but it operates in
two routes. This operation is sometimes referred to as “exchange” (e.g., in, Braysy &
Gendreau, 2005; Savelsbergh, 1992) but the term “2-point” was adapted to differentiate it

from the intra-route which operates only on one route.

The inter-route insertion (Figure 0.6) removes a vertex from its position in a route and
reinserts it in a different route (Lei et al., 2012). If the insertion of the vertex in a newly
created route is better than an insertion in any of the existing routes, a new route is then

initiated with that vertex. This move may delete or create a route of the current solution.
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Figure 0.6 Insertion move

With the inter-route redistribute move, we try to insert the nodes of the first route into
the other routes if possible (Rasku, Karkkalnen and Musliu, 2019). The insertion order
matters, so it is possible to try all permutations of nodes to be inserted and routes to insert to

(and return the best).

The chain exchange move is found in literature as the "pair" operation (Wren &
Holliday, 1972). It involves moving and replacing a node on route 2 with a node on route 1.

The replaced node is then inserted on route 3 (if able).

Recharging station operators are critical elements of the methodology. As a result, deleting
them or shifting their placements in a route's visit sequence may enhance the solution. As a
result, after a set number of repetitions, a Station Removal (SR), followed by a Station
Insertion (SI), technique is used. The operators used in this thesis are Worst-Charge Station
Removal and Greedy Station Insertion (Keskin & Catay, 2016b).

The Worst-Charge Station Removal operator utilizes the battery as much as possible
before requiring recharging and increases the effective stations’ utilization. We propose the
elimination of stations that are visited by EVs with significantly high charge levels. The
stations are sorted in the non-increasing order of the battery level of the EVs that visit them

for recharging, and the stations are deleted starting with the first station in the list.
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When the vehicle arrives with a low battery level, the Greedy Station Insertion
operator detects the first customer along the route and inserts the "cheapest” (shortest
distance) station on the arc between that customer and the previous customer. If this insertion

fails, the previous arcs are attempted in the same manner.
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Experimental Methodology

In this chapter, we present the setting on which the algorithm was tested, the

benchmarks it competed against, as well as the design of the experimental process.

4.1 Experimental Setting
The main objective of the experiment is to evaluate our method’s performance against
the results of common EVRP benchmarks. The experiment is executed in a set environment

with the following characteristics presented below.

Software Environment. Python (Python 3.9.0) on the PyCharm 2022.1.1 IDE. We modified
the VeRyPy library to our unique problem specifications (EVRP-PR-MT) and used
matplotlib to plot the graph of the routes. Python was selected because of its high readability

and the wide range of open-source libraries available.

Hardware Environment. The hardware specifications on which we run the experiment are

found in Table 4. Hardware Environment below.

System MacBook Pro 2019

GPU Intel Iris Plus Graphics 655 1536 MB
CPU Intel Core i5 Quad-Core 2.4 GHz
RAM 8 GB

Operating System (OS) |macOS Monterey 12.0.1

Table 4. Hardware Environment

Benchmark Instances: As the EVRP-PR-MT has not been modelled in previous research,
there is no set of instances to test our algorithm on. Therefore, we compare our results against
the E-CVRP benchmarks created by Mavrovouniotis et al., (2020) for the 2020 IEEE
Congress on Evolutionary Computation (CEC). These E-CVRP benchmarks were generated
based on the C-VRP benchmarks of Christofides N. et al., (1981); Christofides & Eilon,
(1969); Fisher, (1994) and Uchoa et al. (2017). The E-CVRP benchmark set consists of two
groups of problems: a) six small-scale instances, b) eighteen large-scale instances, which are

presented below in
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Table 5 and Table 6. In the aforementioned tables, column “C” refers to each vehicle’s total
capacity in transported goods and column “D” represents the vehicle's battery capacity, in

terms of driving range. These datasets contain the following basic information which is used
as input in our solution method: a) Problem dimension, b) Nodes coordinates, ¢c) Number of

stations, d) Maximum vehicle load capacity, €) Maximum driving range (Energy capacity).

Instance name #Customers #Stations #Vehicles C D
E-n29-k4-s7 21 7 4 6000 99
E-n30-k3-s7 22 7 3 4500 162
E-n35-k3-s5 29 5 3 4500 138
E-n37-k4-s4 32 4 4 8000 238
E-n60-k5-s9 50 9 5 160 99
F-n49-k4-s4 44 4 4 2010 260

Table 5. Small-scale benchmark set and its characteristics
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Instance name #Customers #Stations #Vehicles C D

E-n89-k7-s13 75 13 7 220 87

E-n112-k8-s11 100 11 8 200 100
M-n110-k10-s9 100 9 10 200 118
M-n126-k7-s5 120 5 7 200 199
M-n163-k12-s12 150 12 12 200 100
M-n212-k16-s12 199 12 16 200 100
F-n80-k4-s8 71 8 4 30000 53

F-n140-k7-s5 134 5 5 2210 307
X-n147-k7-s4 142 4 7 1190 2762
X-n221-k11-s9 213 7 11 944 1204
X-n360-k40-s9 351 9 40 436 1236
X-n469-k26-s10 458 10 26 1106 1230
X-n577-k30-s4 572 4 30 210 2191
X-n698-k75-s13 684 13 75 408 1336
X-n759-k98-s10 748 10 98 396 1367
X-n830-k171-s11 818 11 171 358 1385
X-n920-k207-s4 915 4 207 33 2773
X-n1006-k43-s5 1000 5 43 131 2536

Table 6. Large-scale benchmark set and its characteristics
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4.2 Experimental Design

In the experimental process, we have designed a set of procedures, which will allow
us to reach the best possible global solution of our local search framework while minimising
the computational time of each instance. This has been done in accordance with the nature of
the framework utilised.

In this notion, we noticed that the algorithm sometimes gets stuck on local optima,
resulting in a worse global solution. To find a solution around that, we followed the steps
shown in Figure 0.1, until there is no new local search strategy to implement. The term
“reasonable time” below is a comparison to the computational time required to reach the
optimal solution of each instance, according to the benchmarks of Mavrovouniotis et al.,
(2020). The term “local search strategy” refers to the sequence in which the intra-route, inter-
route, RS insertion and RS removal moves are going to be iteratively applied, as seen in
Figure 0.2. The total number of strategies is equal to the number of possible combinations
between all moves, which is equal to m!, in our case 479001600 different strategies. Of
course, as seen in Figure 0.1 and Figure 0.2, we don’t test all possible scenarios as it would
violate the computational time constraint.

Through testing, we reached the outcome of the best working strategy on the basis of
solution optimality and computational time, being an initial implementation of the intra- and
inter-route moves in alternation with each other, followed by a refinement process, on the
produced solution, with a few iterations of separately applying intra- and inter-route moves.

The results are shown in the next chapter (0).
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Figure 0.1 Experimental procedure

Start

Y
Try a new

#| combination of intra-
and inter-route moves

Is total
solution
cost
improved

Is
computational
time on
reasonable
limits

yes

Figure 0.2 New local search strategy search
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Results

In this chapter, we present the results of the experiments executed, while also

comparing the latter with the benchmark instances mentioned in Section 4.1.

5.1 Experimental Results

Below in Figure 5.1 to Figure 0.9, we showcase some of the lower dimension
instances that were solved. The colour of a route represents a single vehicle. The nodes with a
black star act as recharging stations; the depot, node 0, acts as a reload point and a recharging
station as well. The problems of smaller dimensions were chosen based on the visual clarity
of routes and trips presented, making it easier to comment on and assess them.

On this notion, we can observe a visual attractiveness on the majority of routes, which
is considered an important element of route planning when facilitating practical issues and
collaborating with transportation industry stakeholders (Rossit et al., 2018). In the majority of
instances, we have an enhanced visual attractiveness with cyclical and clearly separated
routes. Specifically, the instances E-n37-k4-s4 and F-n49-k4-s4 represented in Figure 0.4 and
Figure 0.6 possess both the elements of optimality, in terms of solution quality, and visual
attractiveness.

In Figure 5.1, Figure 5.3 and Figure 0.5 we can observe clearly the multi-trip function
of our method. Specifically, in Figure 5.1, the dark gold vehicle traverses through nodes 12-
15-18-20-17-14 and then returns to the depot to reload and partially recharge to continue on a
second trip to node 16. The instance E-n60-k5-s9 which is represented in Figure 0.5, is
performing lower than the optimum; the nodes that visually seem like bottlenecks to the
improvement phase are 1, 32 and 46. However, integrating them either in the dark green or
orange route would lead to a capacity constraint violation.

In Figure 0.7 we can observe an overall cyclicity, but an optimal value is not reached.
A few improving points can be seen within each route in the areas where congestions of
nodes exist, i.e., in the pink route nodes 12, 13, 16, 17. In these areas, more intra-route
iterations are often needed in order to find the optimum sequence of visits. Nevertheless,
these improvements lead to minimal enhancement in the solution quality.

On the same note as above, Figure 0.8 showcases a perfect example of intra-route
refinement, which is reaffirmed both visually and in regards to solution quality, achieving

around 9% better results in total solution cost and subsequently an optimum result.
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Last but not least, Figure 0.9 presents an interesting feature of the method developed

in this thesis, which is fleet reduction. While the instance X-n147-k7-s4 is generated with 7

vehicles serving 142 customers with a total solution cost of 17704, the LS meta-heuristic

proposes a solution which utilizes 6 vehicles and reaches a solution cost with more than 5%

better result.
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5.2 Performance Analysis and Discussion

The performance of the local search meta-heuristic against the benchmarks mentioned
in Section 4.1 is presented in Table 7 and Table 8, for small- and large-scale problems. In
both tables, the “Optimal Cost” and “Optimal Time” columns refer to the performance of the
algorithm developed by Mavrovouniotis et al., (2020). The “Optimal Cost” values provided
on the benchmark sets in Table 7 and Table 8 are the best-known results generated yet.
Mavrovouniotis et al., (2020) proposed two solution methods for the instances; a mixed linear
programming approach for the small-scale problem set and an ACO meta-heuristic for both
problem sets. The “Optimal Time” values refer to the CPU time (in seconds) required for
each instance, on the following experimental setup: Linux System with an Intel Core i7-
3930K 3.20GHz processor with 12MB cache and 16GB RAM (Mavrovouniotis et al., 2020).

The “LS Cost” and “CPU Time” columns are referring to the performance of the
model developed in this thesis. With the “Gap” column, we present the deviation between the
solution obtained by implementing our algorithm and the solution proposed in the work of
Mavrovouniotis, in terms of cost and computational time.

In Table 7 we present the experimental results of the runs on the small-scale problem
set. In four out of six instances, we have achieved better than the known-optimal solution
with an average of 1.7% decrease in the total solution cost. At the same time, the CPU time
of the LS method, in all instances, is smaller by 93% on average. Given that our setup is less
efficient in terms of computational power, this percentage highlights the efficiency of the
method developed in this thesis. On the other hand, in two out of six instances, specifically in
E-n29-k4-s7 and E-n60-k5-s9, we haven’t reached the known optimal value, falling behind
by 5% approximately. In those instances, the algorithm is not able to provide an optimum
solution within the acceptable time frame (see Section 4.3), thus only the solutions obtained

within that range are shown.
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Instances Optimal Cost LS cost Gap Optimal Time CPU Time Gap
E-n29-k4-s7 383 397 -3.66% 0.1 0.1 0.00%
E-n30-k3-s7 577 570  1.21% 3.1 0.1 96.77%
E-n35-k3-s5 527 520  1.33% 2.2 0.2 90.91%
E-n37-k4-s4 865 845 2.31% 3.4 0.3 91.18%
E-n60-k5-59 544 579  -6.41% 20.7 1 95.17%
F-n49-k4-s4 740 726 1.89% 8.9 0.7 92.13%

Table 7. Solution Quality comparison for small-scale E-CVRP instances

In Table 8 we present the results of the large-scale instances. Here we can notice an
improved efficiency, in terms of solution cost reduction, of the local search meta-heuristic on
the larger-dimension problems, achieving higher than optimum results on fourteen out of
eighteen instances by an average of 4.5%. In a few instances, the LS method does not reach
optimal values, specifically in E-n89-k7-s13, E-n112-k8-s11, M-n163-k12-s12 and
F-n80-k4-s8, being on average 2.5% below the optimal values. As with the small-scale
problems, here we notice a clear advance in CPU time by an average of 95% lower. On this
benchmark set, we decided to keep the iterations at a minimal size, around 1+10, in order to
avoid high computational times. Keeping that in mind, we chose to include worse results in
terms of solution cost in Table 8; presenting a significant deviation in computational times,
while at the same time achieving optimal values in the majority of instances. Specifically, on
instances with over 500 nodes, we ran the local search algorithm for only one iteration; the

obtained result highlights the performance of our algorithm on large-scale problems.
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Instances Optimal Cost LS cost Gap Optimal Time CPU Time Gap

E-n89-k7-513 724 743 -2.62% 31.8 1 96.86%
E-n112-k8-s11 860 890  -3.49% 71.8 4.7 93.45%
M-n110-k10-59 914 832  8.97% 57.6 10.7 81.42%
M-n126-k7-s5 1099 1045 4.91% 63.7 12.5 80.38%
M-n163-k12-s12 1109 1111 -0.18% 158.4 11.8 92.55%
M-n212-k16-s12 1398 1350  3.43% 266.1 17.9 93.27%
F-n80-k4-s8 240 250  -4.17% 23.7 4.3 81.86%
F-n140-k7-s5 1229 1175 4.39% 92.5 21.6 76.65%
X-n147-k7-s4 17704 16745 5.42% 104.5 9.6 90.81%
X-n221-k11-s9 12235 11814 3.44% 161 24.2 84.97%
X-n360-k40-s9 27701 27095 2.19% 1119.4 115 89.73%
X-n469-k26-510 26881 25988  3.32% 1905.2 84 95.59%
X-n577-k30-s4 55266 52201 5.55% 3182 43 98.65%
X-n698-k75-513 75048 70899 5.53% 5511.7 84 98.48%
X-n759-k98-510 84996 79307 6.69% 7258.8 136 98.13%
X-n830-k171-s11 167575 164601 1.77% 6612.6 342 94.83%
X-n920-k207-s4 345214 344246 0.28% 6774.9 378 94.42%
X-n1006-k43-s5 80765 76873  4.82% 8380.6 607 92.76%

Table 8. Solution Quality comparison for large-scale E-CVRP instances

On a general note, we can notice that on both tables we have achieved very low
computational times. In order to maximise the ability of our algorithm of achieving better
results within this time scale, we investigated different strategies on the instances that
perform poorly. During this process, we noticed two possible backlogs.

First, it came to light that due to the nature of the multi-trip modelling, our method
sometimes utilises one less route than the currently known optimal, which integrates within a
vehicle trip. That happens at the initial construction phase of the solution, which later adheres
a computational burden on the optimisation phase to reach a global optimum. Specifically,
the efficacy of inter-route heuristics is lower when there are fewer routes to apply them on,

and the inter-route moves are responsible for larger changes in the total solution cost.
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The second thing we observed was that the computational difficulty of each instance
was not increasing exponentially due to an increase in the problem’s dimension but due to the
increase in the total number of vehicles utilised. Specifically, in instances with a large fleet of
vehicles, we had to minimise the iterations in order to stay within a reasonable time frame.

Nevertheless, this didn’t lead to lower-than-optimum results in most cases.
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Conclusions and Recommendations

In this thesis, we present a new flavour of the vehicle routing problem which
calculates minimum distance routes for electric vehicles. The EVRP-PR-MT considers a
limited vehicle driving range, cargo load and multiple trips per vehicle while enabling
vehicles to partially charge in order to decrease the total route duration. The problem is
formulated with linear programming and solved using a local search framework along with
custom neighbourhood search heuristics regarding the recharging stations. We tested our
results against E-CVRP benchmarks, and the results (Chapter 5) showcase promise in terms
of solution approach and quality. In the majority of instances, we managed to obtain better
than the known optimum values in proportionally minimum time compared to the ones
obtained in the instances run by Mavrovouniotis et al., (2020).

Through many runs on large-scale instances, we noticed that enabling the vehicles to
perform multiple trips often minimised the need for at least one vehicle per routing problem,
which reaffirms our initial motive of developing a method that could adapt to real-life
industry constraints. On the same note, the reason we modified our algorithm to charge
partially was to minimise the total route time as much as possible.

Based on the results shown in Chapter 5, we can confidently say that EVRP-PR-MT
can be adapted to industry-specific problems, such as last-mile delivery for two important
reasons. First, it minimises the fleet of vehicles, which in the context of a third-party logistics
(3PL) company transitioning into EVs, would mean less initial capital investment and later,
less operating costs. In parallel, keeping in mind the available recharging station grid in most
city centres and its growing demand, enabling partial recharging translates to a priori booking
of narrow charging slots, which would improve the credibility of EVs as inner city transport
vehicles. Of course, it also reduces the total route duration, which gives way to possibly more
customer visits in a single shift.

In parallel, during the modelling process of our algorithm, we also developed an
additional constraint which limits the route’s duration, enabling a possible time-scheduling
feature for the drivers of the fleet. However, during the improvement phase of the algorithm,
this constraint is often violated to a minimum extent, thus we didn’t include it in the final
solution formulation. Nevertheless, it is an important addition which would improve the
EVRP-PR-MT competitiveness in the transportation industry applications.

As Goel A. & Gruhn V. (2006) stress, not much attention has been drawn into

including the driver’s working hours in the vehicle routing phase. Integrating the driving
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Chapter 6. Conclusions and Recommendations

time, breaks and rest periods, would not only reduce the uncertainties of the routing plan
execution, but it will also aid the company in preemptively aligning with driver regulations.
Looking at the horizon of Industry 5.0, which puts humans at the centre of the value chain
and where driver’s and worker regulations are respected and implemented, the research in the
transportation industry should find the aforementioned issue fruitful, and necessary in order

to reach a holistically sustainable operational approach.
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