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Abstract

Gradient-based optimization using CAD-based parameterizations is widely
used in shape optimization in internal and external aerodynamics, where the
CAD-models parameters are used as design variables. Parametric Effective-
ness is introduced as a quantity used to compare the CAD-based parameter-
ization’s optimization potential to the potential of an optimization in which
all surface nodes are allowed to move and which corresponds to the maximum
possible flexibility.

The purpose of this diploma thesis is the formulation and development of
the Parametric Effectiveness, the investigation of its behaviour when dif-
ferent parameterizations are used and its association with shape optimiza-
tion results. This is done by using three applications, an isolated airfoil, an
S-bend duct and a 2D compressor cascade. Firstly, the Parametric Effec-
tiveness behaviour is investigated through parametric studies which involve
different parameterizations and parameterization methods such as NURBS
Bezier-Bernstein and volumetric B-splines. Furthermore, its association with
the optimization results as well as its evolution during the optimization pro-
cedure are evaluated. The Individual Parametric Effectiveness of each de-
sign variable is also computed and involved in the design variable’s selec-
tion, the results of which are also examined through certain optimization
runs. In this thesis, the gradient of any objective function is computed
using the continuous adjoint method in OpenFOAM as developed by the
Parallel CFD & Optimization Unit (PCOpt) of NTUA.
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Per—lhyh

Oi aitiokratikŁc mŁjodoi beltistopo—hshc, me th qr sh montŁlwn CAD, oi

par�metroi twn opo—wn apoteloÔn tic metablhtŁc sqediasmoÔ, br—skoun meg�lh

efarmog  sta probl mata beltistopo—hshc morf c, tìso sthn exwterik  ìso

kai sthn eswterik  aerodunamik . Gia thn upost rixh touc, eis�getai h Łn-

noia thc Parametrik c Apotelesmatikìthtac gia thn axiolìghsh thc dunamik c

twn montŁlwn CAD sthn beltistopo—hsh, se sÔgkrish me aut n thc eleÔ-

jerhc metak—nhshc kìmbwn, h opo—a mpore— na epitÔqei to kalÔtero dunatì

apotelŁsma.

Skopìc thc diplwmatik c ergas—ac e—nai h diatÔpwsh kai an�ptuxh thc mejì-

dou upologismoÔ thc Parametrik c Apotelesmatikìthtac, h diereÔnhsh thc

sumperifor�c thc se di�forec parametropoi seic kaj‚c kai h susqŁtish thc

me ta apotelŁsmata thc beltistopo—hshc, mŁsw tri‚n efarmog‚n: m—ac memon-

wmŁnhc aerotom c enìc agwgoÔ me diamìrfwsh tÔpou S kai miac 2D pterÔg-

wshc sumpiest . H sumperifor� thc exet�zetai arqik� mŁsw parametrik‚n

melet‚n me th qr sh diaforetik‚n parametropoi sewn all� kai mejìdwn parametropo—hshc

ìpwc, kampÔlec NURBS & Bezier-Bernstein, kai volumetric B-splines. Epi-

plŁon, melet�tai h susqŁtish twn tim‚n thc me ta apotelŁsmata thc beltistopo—hshc

b�shei twn sumperasm�twn thc prohgoÔmenhc melŁthc. Tautìqrona, upolog—ze-

tai h Parametrik  Apotelesmatikìthta gia k�je metablht  sqediasmoÔ kai

diereun�tai h suneisfor� thc sthn epilog  twn metablht‚n sqediasmoÔ, h

opo—a epikur‚netai mŁsw twn apotelesm�twn thc beltistopo—hshc. TŁloc,

gia th beltistopo—hsh qrhsimopoie—tai h suneq c suzug c mŁjodoc ìpwc Łqei

anaptuqje— apì thn Mon�da Par�llhlhc Reustodunamik c kai Beltistopo—shc

(MPUR & B) tou EMP.
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Chapter 1

Introduction

The evolution of computers and the enhancement of their computational
power have increased the involvement of CAD models, CFD and optimiza-
tion methods in aerodynamic shape design. Particularly, the integration
of CFD algorithms in the design procedure provides a relatively fast and
suitable frame for the aerodynamic performance evaluation, by reducing the
use of expensive and time-consuming experimental methods. Therefore, it
contributed in the development of various optimization methods and their
integration in the design process of aerodynamic shapes.

1.1 Shape Optimization

Shape optimization in aerodynamics aims at increasing the aerodynamic per-
formance of a certain application's shape heading gradually to the optimum
(or improved) shape. In general, optimization problems can be found as
maximization or minimization problems. Without loss in generality, in this
diploma thesis, all optimization problems will be cast in the form of mini-
mizing the cost function.

Optimization methods can be categorized by the number of objectives or
by the mathematical approach of the problem([1]). Firstly, they can be
classi�ed to SOO (Single-Objective Optimization) or MOO (Multi-Objective
Optimization) problems. The �rst category uses a single objective function
to formulate the aerodynamic performance, whereas the second one com-
bines two or more objective functions. The second classi�cation refers to
the mathematical formulation. The two general optimization categories are
classi�ed as, stochastic and deterministic. The �rst category evaluates the

1



2 1. Introduction

aerodynamic performance of multiple geometries, generated by di�erent de-
sign variables combinations. The optimized shapes are achieved through a
targeted exploration of di�erent parameters heading to the total minimum.
The deterministic or gradient-based optimization methods are based in the
di�erentiation of the objective function w.r.t. to the parameters de�ning the
shape, so that the sensitivity derivatives are extracted in order to update the
design variables and gradually reaching a local or a total minimum.

The interest of this thesis, is in the gradient-based optimization of SOO mini-
mization applications. More particular, the adjoint optimization method([1])
is used to compute sensitivity derivatives. In order to proceed in an opti-
mization loop, the geometry must be expressed using parameters that de�ne
its shape, which can be even the discretized surface's boundary coordinates.
More details are provided in the next sections of this chapter.

1.2 CAD Models in Shape Optimization

Nowadays, optimization methods are part of any design process. Prior to
any implementation of the optimization algorithms, the initial geometry is
designed or/and parameterized using CAD models, the parameters of which
are used as the design variables (~b2 Rn ). However in some cases, the bound-
ary nodes of the geometry are used as the problem's design variables. The
main advantage of utilizing CAD parameterizations, compared to the free-
moving of the shape's boundary, is the manufacturability of the model.

1.3 Shape Parameterization Methods

The shape parameterization methods that are used in this diploma thesis,
are NURBS curves, Bezier-Bernstein curves and volumetric B-splines. The
�rst two methods parameterize the contours of the geometries, where their
parameters (CPs) de�ne the shape of each geometry through the optimiza-
tion loop. However, volumetric B-splines parameterize, not only the contour
of the geometry, but also the case's internal grid. Moreover, an advantage of
shape parameterization is the fact that they produce (by de�nition) smooth
shapes during the whole optimization process, unlike the free-moving ap-
proach which requires surface smoothing algorithms.

However, the formulation of those shape parameterizations, impose a limi-
tation in the complexity of the generated shapes due to their formulation,
which limits their optimization potential. For that reason Parametric E�ec-
tiveness (PE) is introduced in order to evaluate the optimization potential of
a shape parameterization. Speci�cally, PE compares the performance gains
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of using a shape parameterization with the maximum performance gain that
can be achieved when the boundary's nodes are free to move one by one.

1.4 Purpose of This Thesis

Firstly, this thesis aims to provide a formulation of the PE metric in gradient
based optimization. Using the same formulation, the Individual Parametric
E�ectiveness value is also introduced as a measure to identify the importance
of each parameter in the optimization.

PE is programmed and tested using three applications of 2D internal and
external aerodynamics, an isolated airfoil, an S-bend duct and a compres-
sor stator's cascade([2]). The PE behaviour is investigated through various
studies for di�erent shape parameterizations and parameterization methods.
Also, it aims to study the correlation of PE values and the optimization
results of the three applications by utilizing di�erent shape parameteriza-
tions. In addition, PE values are also computed for di�erent cycles of the
optimization loop in order to investigate its evolution.

The contribution of the IPE in selecting the most e�ective parameters as
design variables is also tested, by performing optimization loops with selected
design variables based on the computed IPE values of certain cases.

1.5 Literature Survey - Previous Works

The work of this thesis was inspired by the works of [3] and [4]. The motiva-
tion of [3] was to introduce a method that rates the CAD parameterization of
a model in terms of its optimization potential. It provides the de�nition and
a formulation of the PE, as a measure to rate the quality of the CAD models
parameters as the design variables of the adjoint optimization procedure. [3]
suggests that PE can be used to select the design variables from a given CAD
model, by evaluating the PE of di�erent parameters sets as design variables.
However, the selection of design variables is based on engineering judgement,
which requires a considerable amount of time and experience. Finally, the
computation of PE is demonstrated using di�erent applications of structural
mechanics and aerodynamics.

Furthermore, [4] adopted the same approach for PE computation, and its
work is based on the �ndings of [3]. Speci�cally, [4] introduces an automated
approach in selecting the parameters of a CAD model with the highest PE,
which is the main focus of this work. The ultimate objective is the reduction
of time needed for the update of design variables of the CAD model, which
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is claimed by [4] that in complex applications it can be the same or even
more than the primal and adjoint �elds due to the available equipment and
software of an industrial environment. The suggested method is studied and
demonstrated in 3D applications in internal and external aerodynamics where
the computational cost of the parameters update is signi�cant.

Both papers utilize the same formulation for PE. The performance gains
of the CAD parameterization and the free-moving of the boundary are com-
puted using the sensitivity derivatives computed on every node of the surface,
where the gains of CAD sensitivity derivatives are computed based on steep-
est descent. The formulation of PE, aims in favoring the parameters that
impact the regions of higher sensitivity regardless of the area that they af-
fect. The latter is achieved by introducing a fair comparison condition for
the evaluation of di�erent parameterizations, where, the gains of both (CAD
and free-move) are normalized with a prede�ned small number of total defor-
mation, by setting the root mean square of the total boundary deformation
(V) equal to that value(dv). As a result, the normalized gains of both CAD
and free-move favor the CAD parameterizations (or sets of parameters of a
given CAD model), that a�ect the areas of higher sensitivities, regardless of
the amount of area they may displace.

The computation of the performance gains for CAD parameterization or free-
move, require the computation of the boundary displacement due to every
parameter change. Practically, this measure is the geometric derivatives of
CAD parameters which, in these papers are computed through �nite di�er-
ences by perturbing each parameter by� and compute the displacement of
all the surface's nodes for each parameters perturbation.

In this diploma thesis, a di�erent approach is proposed for the computation
of the PE. The formulation of the performance gains of CAD parameter-
ization and the free-move (nodal parameterization), are both based on the
steepest descent method. Also, the fair comparison condition is implemented
to compare the CAD and the nodal parameterizations, rather than the com-
parison between di�erent CAD parameterizations. Speci�cally, the fair com-
parison condition aims at a correlation between the steepest descent steps
(� ) of CAD parameterization and the boundary's free-move. In addition,
the boundary displacement due to change in the parameter's value i.e. the
geometric derivatives, are computed through the di�erentiation of the CAD
parameterizations mathematical expressions, which is signi�cantly faster.

Finally, the expression of PE as used in this thesis, does not favour the
deformation of the areas of high sensitivities. In fact, PE focuses on the
total improvement in performance, even if the latter may be achieved by
large deformation of areas with lower sensitives.
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1.6 Thesis Layout

The thesis structure and layout is briey presented as follows:

ˆ Chapter 2: The primal and adjoint problems are presented and ex-
plained, along with their boundary conditions, for the sensitivity deriva-
tives computation. The optimization algorithm is presented as well.

ˆ Chapter 3: The de�nition of PE is given. Also, an extensive presen-
tation and elaboration regarding the PE theory and formulation are
presented.

ˆ Chapter 4: In this chapter, the behaviour of PE is investigated through
parametric studies, where PE is computed w.r.t. the number of CPs
for di�erent parameterizations and parameterization methods. Also the
de�nition and formulation of IPE is presented for the quanti�cation of
the design variable's impact in the optimization. For the PE behaviour
study, three di�erent applications are used, an isolated airfoil, ans S-
bend type duct and a compressor cascade (all applications are 2D), the
objective functions of which are given and explained.

ˆ Chapter 5: In this chapter, PE is studied through the performance of
various optimization loops based on the previous chapter's results. The
PE results are associated and compared to the optimization results, for
the PE validation.

ˆ Chapter 6: The Summary and conclusions are presented, along with
a suggestions for future work.
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Chapter 2

Primal and Adjoint Problems

2.1 Primal Problem

All the applications of this thesis are dealing with 2D steady state incom-
pressible ows. The state equations of the primal problem are the RANS
equations ([5], [6], [7]). All equations of the primal problem are given in the
form of residuals.

The Navier-Stokes equations govern steady or unsteady, turbulent or lami-
nar viscous ows, in di�erential form. They are used to simulate the ow
of an aerodynamic problem, by computing the ow �elds inside a control
volume. The equations are solved with the SIMPLE algorithm([8]), using
�nite volumes([9]) of the OpenFOAM([10],[11])software.

2.1.1 The RANS Equations

The RANS equations, is an alternative formulation of the Navier Stokes
equations, proposed by Reynolds to include the e�ects of turbulence, using
the Boussinesq hypothesis([5]) in order to avoid the utilization of DNS (Direct
Numerical Simulation) which requires very dense grids and extensive amount
of computational power. The �nal form of the primal equations ([7]), are
presented as:

The mass conservation equation, a.k.a the continuity equation, is given as:

Rp = �
@vj
@xj

= 0 (2.1)

7



8 2. Primal and Adjoint Problems

The momentum conservation equation is given as:

Rv
i = vj

@vi
@xj

�
@

@xj

�
(� + � t )

�
@vi
@xj

+
@vj
@xi

��
+

@p
@xi

= 0; i = 1; 2(; 3) (2.2)

where:

vi are the mean velocity components,

p is the mean pressure,

� is the uid's kinematic viscosity,

� t is the turbulent viscosity (eddy viscosity).

~� is the turbulence model's variable

The turbulence viscosity �eld is computed using the so called turbulence
models. Turbulence models are classi�ed into three categories. The Alge-
braic models, which are the most primitive models, utilizing only algebraic
equations for � t computation, the �rst order models, where� t �eld is com-
puted by solving one PDE and the Second order models, solving two PDE.
In this thesis, the �rst order low-Re Spalart-Allmaras model is used in cases
where turbulence is applied.

2.1.2 Spalart-Allmaras turbulence model

Spalart-Allmaras is a �rst order turbulence model used to compute the� t .
However the turbulent viscosity in this model is not directly computed by
solving the PDE equation. A new variable ~� is introduced, which is consid-
ered to be the turbulence model's variable. The model's PDE ([7],[12]) is
written as:

R~� = vj
@~�
@xj

�
@

@xj

��
� +

~�
�

�
@~�
@xj

�
�

Cb2

�

�
@~�
@xj

� 2

� ~�P (~� )+~�D (~� ) = 0 (2.3)

Where � t is expressed as a function of ~� as follows:

� t = ~�f v1 (2.4)

The production and dissipation terms are given by:

P(~� ) = Cb1
~Y ; D(~� ) = Cw1f w( ~Y)

~�
� 2

(2.5)
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Term Y is derived from:

~Y = Y f v3 +
~�

� 2� 2
f v2; Y =

�
�
�
�eijk

@vk
@xj

�
�
�
� (2.6)

where, Y is the vorticity magnitude and � is the distance of cell centres
(cell centred-�nite volume scheme is employed) from the wall. The model
functions are written as:

f v1 =
X 3

X 3 + C3
v1

; f v2 =
1

�
1 + X

Cv 2

� 3 (2.7)

f v3 =
1 + Xf v1

Cv2

"

3
�

1 +
X

Cv2

�
+

�
X

Cv2

� 2
# �

1 +
X

Cv2

� � 3

(2.8)

X =
~�
�

; f w = g
�

1 + C6
w3

g6 + C6
w3

� 1
6

(2.9)

g = r + Cw2
�
r 6 � r

�
; r =

~�
~Y � 2� 2

(2.10)

The models Constants are:

Cb1 = 0:1355 Cb2 = 0:622 � = 0:41

� = 2
3 Cw1 = Cb1

� 2 + 1+ Cb2
� Cw2 = 0:3

Cw3 = 2 Cv1 = 7:1 Cv2 = 5

The Levi-Civita symbol eijk used in the vorticity magnitude:

eijk =

8
<

:

+1; (i; j; k ) 2 (1; 2; 3); (2; 3; 1); (3; 1; 2)
� 1; (i; j; k ) 2 (1; 3; 2); (3; 2; 1); (2; 1; 3)
0; i = j; j = k; k = i

(2.11)

At this point, it is useful to introduce the terms y+ , v+ and friciton velocity(v� ).
y+ , and v+ are de�ned as:

y+ =
v� � p

�
; v+ =

v
v�

(2.12)
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where � p is the distance of thep cell centre to the wall, � the kinematic
viscosity of the uid and v� the shear velocity. The latter is not a physical
ow quantity, and is de�ned as:

v� =
r

� w

�
(2.13)

where, � w is the wall shear stress and� is the uid's density.

As already mentioned, a low-Re turbulence model is implemented. As a
result, y+ must satisfy y+ < 1 (practically y+ < 5) in every case where
turbulence is applied. Alternatively, the �rst cell centres (normal to the
solid walls) must be in the viscous sub-layer, where the viscous shear stresses
dominate. Using the terms of eq.(2.12), the following condition must be
satis�ed:

y+ = u+ (2.14)

where the condition is only used as a measure to check whether the �rst
cell centres around the walls are located in the viscous sub-layer ([13]), with
the ultimate purpose to check the compatibility of the grid with the low-Re
model. Note that in all turbulent cases of this thesis, alwaysy+ < 1.

The system of eqs.(2.1) to (2.3) is solved by introducing proper boundary
conditions. A synoptic presentation of each patches boundary conditions on
di�erent patches follows:

Inlet

At the inlet patch of each case, a Dirichlet condition is imposed for thevi

and ~� (when turbulence is applied). Also a zero Neumann condition is used
for the p.

Outlet

A zero Dirichlet condition is imposed onp, and zero Neumann condition on
vi and ~� .

Solid Boundaries

The walls of the domain are simulated as no slip walls. It means that a zero
Dirichlet condition is used forvi and ~� . Moreover, a zero Neumann condition
is imposed on the normal (to the walls) pressure (p) gradient.
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2.2 The Adjoint Problem

The optimization problems studied in this diploma thesis are SOO, mini-
mization problems. As can be seen in chapter 4, each problem has a di�erent
objective function and constraints. In this chapter, a general approach re-
garding the handling of the objective function is presented.

Although the �rst two applications involve laminar ows, for demonstration
purposes, the formulation of the continuous adjoint problem as presented
in this chapter, includes also the turbulence viscosity terms. The laminar
equations are developed in the same way, excluding the turbulence terms
and turbulence equations.

2.2.1 Overview of the Adjoint Method

The idea of introducing the adjoint method in aerodynamics shape optimiza-
tion problems, is to avoid the computation of the derivatives of ow �eld
variables w.r.t. the design variables. Thus, the Adjoint method is considered
to be extremely e�cient, as the computational cost is relatively independent
from the size of the design space, in contrast with other methods such as
Direct Di�erentiation e.t.c. ([1]), where the cost is proportional to the num-
ber of design variables. In particular, it requires only the computation of the
primal and adjoint �elds, once in every optimization cycle, followed by the
computation of the sensitivity derivatives.

Considering that the design space is composed by the vector~b 2 Rn , and
assume that vector~U (comprising velocity componentsvi , pressurep and ~� )
includes the state variables. The objective function is of the following form:

F = F
�
~b;~U(~b)

�
; ~b2 Rn :

2.2.2 Adjoint Problem Formulation

In order to avoid the computation of the ow �elds derivatives w.r.t. each
design variable the augmented objective function is introduced as suggested
by [7] where the analysis is drawn from. As a result, the next paragraphs
follow the notations of [7]. The augmented objective function including the
mean ow equations and the adjoint �elds can be written as:

Faug = F +
Z



ui Rv

i d
 +
Z



qRpd
 +

Z



~� aR~� d
 (2.15)
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where ui is the adjoint velocity, q the adjoint pressure and ~� a the adjoint
variable of the turbulence model. As the residuals equal to zero (Rk = 0),
the sensitivity derivatives of the augmented objective function are equal to
those of the initial one �F aug

�bn
= �F

�bn
:

The di�erentiation of eq.(2.15), using the Leibniz theorem for the di�erenti-
ation of volume integrals with variable boundaries (S=S(~b)= @
),

�F aug

�bn
=

�F
�bn

+
Z



ui

@Rvi
@bn

d
 +
Z



q

@Rp

n
d
 +

Z



~� a

@R~�

@bn
d
 (2.16)

+
Z

SW p

�
ui Rv

i + qRp + ~� aR~�
�

nk
�x k

�bn
dS (2.17)

where,SWp denotes the controlled-parameterized surfaces and thenk stands
for the unit vector which is normal to the surface. The boundaries of the
domain are expressed asS = SI [ SO [ SW [ SW p, standing for the Inlet,
Outlet, �xed and controlled walls respectively.

2.2.3 Field Adjoint Equations Formulation

The �nal form of FAE are written as:

Rq = �
@uj
@xj

= 0 (2.18)

Ru
i = uj

@vj
@xi

�
@(vj ui )

@xj
�

@
@xj

�
(� + � t )

�
@ui
@xj

+
@uj
@xi

��
+

@q
@xi

+ ~� a
@~�
@xi

�
@

@xl

�
~� a~�

CY

Y
emjk

@vk
@xj

emli

�
= 0; i = 1; 2(; 3) (2.19)

R ~� a = �
@(vj ~� a)

@xj
�

@
@xj

��
� +

~�
�

�
@~� a

@xj

�
+

1
�

@~� a

@xj

@~�
@xj

+ 2
Cb2

�
@

@xj

�
~� a

@~�
@xj

�
+ ~� a~�C ~�

+
@�t
@~�

@ui
@xj

�
@vi
@xj

+
@uj
@xi

�
+ ( � P + D) ~� a = 0 (2.20)
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After the satisfaction of the FAE, the sensitivity derivatives are given as:

�F aug

�bn
=

Z

S
BC u

i
@vi
@bn

dS +
Z

S

�
uj nj +

@FSi

@p
ni +

�
@p
@bn

dS +
Z

S
BC ~� a

@~�
@bn

dS

+
Z

S

�
� ui nj +

@FSk

@�ij
nk

�
@�ij
@bn

dS �
Z

S
~� a

�
� +

~�
�

�
@

@bn

�
@~�
@xj

�
nj dS

+
Z

SW p

ni

@FSW p ;i

@xm
nm

�x k

�bn
nkdS +

Z

SW p ;i

�n i

�bn
dS +

Z

SW p

FSW p ;i ni
� (dS)
�bn

+
Z

SW p

(ui Rv
i + qRp) + ~� aR~� )

�x k

�bn
nkdS +

Z



~� ~� aC�

@�
@bn

d
 (2.21)

where:

BC u
i = ui vj nj +( � + � t )

�
@ui
@xj

+
@uj
@xi

�
nj � qni + ~� a~�

CY

Y
emjk

@vk
@xj

emli nl+
@FSk

@vi
nk

(2.22)

BC ~� a = ~� avj nj +
�

� +
�
�

� @~� a

@xj
nj �

~� a

�
(1 + 2Cb2 )

@~�
@xj

nj +
@FSk

@~�
nk (2.23)

The eq.(2.21) is used to identify the boundary conditions of the FAE, which
are formulated by properly treating the integrals containing the variations in
the state variables.

2.2.4 Adjoint Boundary Conditions

Inlet Boundaries, SI

The boundary conditions imposed at the inlet, is zero Dirichlet condition on
~� a and zero Neumann condition on q. The inlet conditions imposed on the
adjoint velocity are given as:

uj nj = u<n> = �
@FSI;i

@p
ni (2.24)

uI
<t> =

@FSI;k

@�ij
nk t I

i nj +
@FSI;k

@�ij
nk t I

j ni (2.25)

uII
<t> =

@FSI;k

@�ij
nk t II

i nj +
@FSI;k

@�ij
nk t II

j ni (2.26)

(2.27)
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where u<n> is the velocity normal to the inlet and uI
<t> & uII

<t> are the
tangential velocity components to thet I & t II directions respectively.t I

i is a
vector parallel to the velocity vector, andt II = eijk nj t I

k .

Outlet Boundaries, SO

For the ~� a, in order to eliminate the multiplier of @~�=@bn , a Robin-type
condition is applied as:

BC ~� a = ~� avj nj +
�

� +
�
�

� @~� a

@xj
nj +

@FSO ;k

@~�
nk = 0 (2.28)

To eliminate term @vi =@bn , the following condition is imposed:

BC u
i = ui vj nj + ( � + � t )

�
@ui
@xj

+
@uj
@xi

�
nj � qni

+ ~� a~�
CY

Y
emjk

@vk
@xj

emli nl +
@FSO;k

@vi
nk (2.29)

Finally, for uj nj a zero Neumann condition is imposed.

Fixed/Unparameterized wall Boundaries

Firstly as the walls are �xed all terms of @
@bn

and �
�bn

are equal to zero. In

order to eliminate the term @
@bn

�
@~�
@xj

�
nj , a zero Dirichlet condition is applied

for the ~� a. The normal adjoint velocity is imposed to be:

u<n> = �
@FSW;i

@p
; (2.30)

and the tangential adjoint velocity (in II direction):

uII
<t> =

@FSW;k

@�ij
nk t II

i nj +
@FSW;k

@�ij
nk t II

j ni (2.31)

Parameterized/Controlled Boundaries, SWp

The primal and adjoint boundary conditions imposed along the controlled
boundariesSWp are identical to those imposed forSw .
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2.2.5 Sensitivity derivatives

After satisfying the FAE, subject to ABC, the sensitivity derivatives �nal
expression is written as:

�F aug

�bn
= TW F

SD �
Z

SW p

SD1
@�ij
@xm

nj t I
i nmnk

�x k

�bn
dS �

Z

SW p

SD1� ij
� (nj t I

i )
�bn

�x k

�bn
dS

+
Z

SW p

SD2;i vI
<t>

�t I
i

�bn
dS �

Z

Sw p

SD2;i
@vi
@xm

nmnk
�x k

�bn
dS

�
Z

SW p

��
� +

~�
�

�
@~� a

@xj
nj +

@FSk

@~�

�
@~�

@xm
nmnk

�x k

�bn
dS

�
Z

SW p

(� u<n> + � <n><n> )
�

� ij
� (ni nj )

�bn
+

@�ij
@xm

nm
�x k

�bn
nkni nj

�
dS

�
Z

SW p

� <t I ><t I >

 

� ij
� (t I

i t I
j )

�bn
+

@�ij
@xm

nm
�x k

�bn
nk t I

i t I
j

!

dS

�
Z

SW p

(� <t II ><t I > + � <t I ><t II >

 

� ij
� (t II

i t I
j )

�bn
+

@�ij
@xm

nm
�x k

�bn
nk t II

i t I
j

!

dS

�
Z

SW p

� <t II ><t II >

 

� ij
� (t II

i t II
j )

�bn
+

@tij
@xm

nm
�x k

�bn
nk t II

i t II
j

!

dS

+
Z

SW p

ni

@FSW p ;i

@xm
nm

�x k

�bn
nkdS +

Z

SW p

FSW p ;i

�n i

�bn
dS +

Z

SW p

FSW p ;i ni
� (dS)
�bn

+
Z

SW p

(ui Rv
i + qRp + ~� aR~� + � aR� )

�x k

�bn
nkdS

�
Z

Sw p

2� a
@�
@xj

nj
@�
@xm

nmnk
�x k

�bn
dS (2.32)

where:

SD1 = � uI
<t> + � <t I ><n> + � <n><t I > (2.33)

SD2;i = ( � + � t )
�

@ui
@xj

+
@uj
x i

�
nj � qni +

@FSW p ;k

@vi
nk (2.34)

� ij =
@FSW p ;k

@�ij
nk (2.35)

Due to the non-zero variations in the normal and tangential vectors to the
SWp boundaries, some additional terms are included in eq.(2.32). The terms
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of eq.(2.35) andTW F
SD summarize the contribution of the wall functions di�er-

entiation. Speci�cally, term TW F
SD results from the di�erentiation of the wall

low. The 6th integral results from the di�erentiation of turbulence, where
the last integral is the contribution of the distance variation included to the
turbulence model.

2.3 Optimization Algorithm

The optimization algorithm is briey presented as follows:

1. Parameterization of the geometry and selection of the deisgn variables
(~b2 Rn ).

2. Solving the primal problem for the computation ofvi ; p; ~� .

3. Evaluation of the aerodynamic performance (F ). The �rst convergence
criterion: If the relative di�erence w.r.t. the previous cycle's value is
less than the prede�ned threshholds, the optimization loop ends.

4. Solving the FAE for the ui ; q; ~� a �elds.

5. Compute the sensitivity derivatives�F=�b n . The second convergence
criterion: If all sensitivity derivatives are lower than the prede�ned
values, the optimization loop converges.

6. Update the design variables(bnew
n ).

7. Update the grid.

8. Steps 2 to 7 are repeated until the convergence of the optimization loop
or completing the maximum number of optimization cycles.



Chapter 3

Parametric E�ectiveness -

De�nitions

3.1 Generalities

PE is a quality metric characterizing the parameterization of the shape to be
designed and, as such, can become very useful in supporting gradient-based
shape optimization runs in case any parameterization scheme, other than
nodal parameterization, is involved. In this diploma thesis, PE is computed
and used in aerodynamic shape optimization problems that are solved us-
ing continuous adjoint method. However, the PE can equally be used with
discrete adjoint. In general, computing the PE is a way to understand the
e�ectiveness of this parameterization which, in turn, helps the designer mak-
ing decisions on the number and quality of design variables. As such, it can
de�nitely be exploited in an attempt to reduce the computational cost of the
optimization loop.

PE is described as the ratio of the optimization potential of a NURBS curves
or volumetric B-splines parameterization to the gain expected if a nodal pa-
rameterization was used instead. The latter corresponds to the optimization
of the shape by individually displacing all nodes over the contour or sur-
face of the body to be designed, an action that gives the richest possible
design space. In this diploma thesis, both NURBS curves and volumetric B-
splines parameterization will be referred as CAD parameterizations, (in the
sense that corresponding quantities will be indexed by "CAD", even though
volumetric schemes a.k.a. free-form deformation techniques, are the exact
opposite to CAD). Quantities computed by using nodal parameterization

17
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will be referred to as \NODAL".

3.2 PE De�nition

PE is de�ned as the ratio of objective function's gains using a CAD param-
eterization of the geometry to the corresponding gain of objective function
by using nodal parameterization, during a gradient-based shape optimization
loop. It must be noted that de�nition and computation of PE in this diploma
thesis di�ers from the original work of [3], even if this work was practically
inspired our developments.

PE is de�ned as:

PE =
� J CAD

� J NODAL
(3.1)

where:

J is the objective function value of the aerodynamic shape optimization
under consideration,

� J CAD is the expected gain in J using CAD parameterization (see comment
on index \CAD" in the previous subsection),

� J NODAL is the expected gain in J using nodal parameterization.

In this work and without loss in generality, it is assumed that the optimization
will be performed using the steepest descent method. Both �J gains can be
derived using �rst-order Taylor-linearisation as follows:

� J CAD =
�
J new � J old

� CAD
=

dJ

d~b
� ~b (3.2)

� J NODAL =
�
J new � J old

� NODAL
=

dJ

d ~X s

� ~X s (3.3)

where:

~b is the vector of the design variables of the CAD parameterization,

~X s is the vector of the coordinates of the nodes on the body surface,

� ~b is the change in the values of design variables in an optimization step
using CAD parameterization,
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� ~X s is the displacement of the surface nodes in an optimization step using
nodal parameterization,

dJ
d~b

is the vector of the derivatives of J w.r.t.~b,

dJ
d ~X s

is the vector of the derivatives of J w.r.t. ~X s

If steepest descent is used to compute �~b& � ~X s, in a minimization problem,
these are given by:

� ~b= � � CAD

�
dJ

d~b

� T

(3.4)

� ~X s = � � NODAL

�
dJ

d ~X s

� T

(3.5)

where� i is the steepest descent step for each method. The �nal forms of �J
for the two parameterizations becomes:

� J CAD = � � CAD

�
dJ

d~b

� 2

(3.6)

� J NODAL = � � NODAL

�
dJ

d ~X s

� 2

(3.7)

The steepest descent assumption made above does not imply that this is the
method to be used in the optimization loop, but provides an easy way to
de�ne, compute and use PE.

Steepest descent is strongly dependent on the� value since this value de-
termines the magnitude of change either in the design variables or node's
coordinates. As the design variables sensitivity derivatives have di�erent or-
der of magnitude than nodal's sensitivity derivatives,� values for the two
cases (NODAL and CAD) generally di�er. In PE, the interest is not on the
actual value of the two � ; instead, it is their ratio that matters in order to
have a fair comparison of the two methods.

For a fair comparison of CAD and nodal parameterization, a constraint of
\total surface deformation" is introduced. The constraint demands equal
magnitude of geometry's total deformation after an optimization cycle for
both approaches. For the nodal optimization, deformation is directly linked
with � ~X s. For CAD parameterization, � ~X s emerges indirectly from the
computed � ~b. A surface integral of the squared normal displacement of
the surface nodes of each method, must be computed. This is a working
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assumption and, of course, di�erent constraints can be implemented.

The above constraint is written as:
Z

S

�
� ~X s

NODAL
� ~n

� 2
dS =

Z

S

�
� ~X s

CAD
� ~n

� 2
dS (3.8)

where:

~n is the normal unit outward vector over the surface to be optimized,

� ~X s
NODAL

is the surface deformation when using nodal parameterization,

� ~X s
CAD

is the surface deformation when using a CAD parameterization.

The surface deformation if nodal parameterization is used is computed by
eq.(3.5).

In CAD parameterization, the displacement of the surface nodes is connected
with changes of the design variables as follows:

� ~X s
CAD

=

 
d ~X s

d~b

! CAD

� ~b (3.9)

where:
�

d ~X s

d~b

� CAD
is the derivative of surface nodes coordinates w.r.t. the design

variables of CAD parameterization.

By replacing � ~b as computed by eq.(3.4), the above equation can be written
as:

� ~X s
CAD

= � � CAD
d ~X s

d~b

�
dJ

d~b

� T

CAD

(3.10)

The �nal integral form of the constraint of eq. (3.8), after replacing equations
(3.5) and (3.10) is given by:

Z

S
� 2

NODAL

�
dJ

d ~X S

� ~n
� 2

NODAL

dS =
Z

S
� 2

CAD

 
d ~X s

d~b

dJT

d~b
� ~n

! 2

CAD

dS (3.11)
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Since the two � values are constant, they can be used as multipliers out-
side of the integrals. Following a re-arrangement of eq.(C.2), the ratio of�
for a fair comparison (according to the criterion/constraint de�ned above) is:

� CAD

� NODAL
=

vu
u
u
u
t

R
s

�
dJ

d ~X s
� ~n

� 2

NODAL
dS

R
s

�
d ~X s

d~b
dJ
d~b

T
� ~n

� 2

CAD
dS

(3.12)

By means of eqs. (C), (3.6). (3.7) and (3.12), the mathematical expression
of PE takes the form:

PE =

vu
u
u
u
t

R
s

�
dJ

d ~X s
� ~n

� 2

NODAL
dS

R
s

�
d ~X s

d~b
dJ
d~b

T
� ~n

� 2

CAD
dS

�
dJ
d~b

� 2

CAD�
dJ

d ~X s

� 2

NODAL

(3.13)

The above equation comprises the following four terms (numerators or de-
nominators in eq.(3.13))

Term1 =
Z

s

 
d ~X s

d~b

dJ

d~b

T

� ~n

! 2

CAD

dS (3.14)

Term2 =
Z

s

�
dJ

d ~X s

� ~n
� 2

NODAL

dS (3.15)

Term3 =
�

dJ

d~b

� 2

CAD

(3.16)

Term4 =
�

dJ

d ~X s

� 2

NODAL

(3.17)

Thus, overall, we may rewrite eq.(3.13) in the symbolic form:

PE =

r
Term2
Term1

Term3
Term4

(3.18)
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3.3 Computation of PE

In this section, basic information regarding PE computation, such as the
management of the adjoint optimization solver results and the presentation
of PE terms in discrete form are given.

3.3.1 Prerequisites of PE

This paragraph presents all the prerequisites for the PE computation, includ-
ing sensitivity derivatives, normal unit vectors and section areas regarding
the geometry to be optimized. In whatever follows,Nb symbolizes the num-
ber of design variables andNs the number of surface nodes.

Nodal sensitivity derivatives

Nodal sensitivity derivatives dJ
d ~X s

are computed directly from the (continuous)
adjoint code for every surface node.

In this diploma thesis, this is used in tensor form as follows:

dJ
dxij

(3.19)

where,i = 1; : : : ;N s de�nes node's ID andj = 1; 2 de�nes the coordinates in
the Cartesian Space. The tensor consist ofNs lines each of which containing
the corresponding node's sensitivity derivatives in all directions of the domain
(x and y). This tensor is used directly in the computation of the PE terms
that refer to the nodal optimization (Term 2 & Term 4), and also for the
computation of CAD parameterization's sensitivity derivatives.

Sensitivity derivatives w.r.t. ~b

The sensitivity derivatives vector dJ
d~b

can be re-written as, dJ
dbk

. Indicator k is

the ID of the corresponding design variable. In~b, the design variables can
follow a suitable arrangement speci�ed by the user. According to (3.19), this
is computed using Einstein's convention as:

dJ
dbk

=
dJ
dxij

dxij

dbk
(3.20)
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Geometrical Data

Geometrical data refer to normal unit vectors as well as section's area around
nodes. Normal unit vector is provided as a tensorn ij , where i ,j indicators
follow the same convention as inx ij of (3.19). Section areas are provided as
an array, where each component of �Si refers to the corresponding node's ID.

3.4 PE Terms in Discrete form

The PE terms are written in discrete form, in the same order as computed
by the PE algorithm, as follows:

Term1 =
N sX

i =1

"
2X

j =1

"
NbX

k=1

�
dxij

dbk

dJ
dbk

� #

nij

#2

� Si (3.21)

Term2 =
N sX

i =1

"
2X

j =1

�
dJ
dij

nij

� 2
#

� Si (3.22)

Term3 =
NbX

k=1

�
dJ
dbk

� 2

(3.23)

Term4 =
N sX

i =1

"
2X

j =1

�
dJ

dxi j

� 2
#

(3.24)

The PE value �nally results from eq.(3.18).

Although the PE theory is developed and presented for 2D applications, its
generalization in 3D applications is straight forward and can be obtained
simply adapting the above sums.

3.5 PE evaluation details

As mentioned above, PE is a relative e�ciency of the selected parameteriza-
tion w.r.t. the e�ciency of the nodal parameterization. We expect it's values
to range from zero to one. As the PE value tends to 1, the potential of a
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CAD parameterization's optimization tends to that of the nodal optimization
which is considered to be the richest possible way to solve the problem.

The PE evaluation can be implemented regardless of whether a geometry
is designed using speci�c CAD software's features. The geometry's initial
design can be done using any CAD software. In this work, for geometries
that are not initially designed using a speci�c CAD parameterization, prior
to their shape optimization, a CAD parameterization can be generated by
best-�t procedures. All applications in this diploma thesis utilize NURBS
curves or Volumetric B-splines as CAD parameterization.

As an optimization loop goes on, the value of PE changes due to the si-
multaneously updated design variables. Changing their values during the
optimization leads to the deformation of the geometry to be optimized at
the end of each optimization cycle. In the following chapters, the latter will
be observed by evaluating the PE of di�erent parameterizations that produce
di�erent geometries for the same application.



Chapter 4

PE-studies-Understanding PE

This chapter elaborates on the computation of PE (as de�ned in chapter 3) in
applications of 2D external and internal aerodynamics. The purpose of this
chapter is to implement the PE theory in practice, study the PE behaviour
and provide the PE values of each application. To better understand the
PE behaviour, parametric studies regarding the PE value w.r.t. the number
of control points is conducted to evaluate the PE as parameterization gets
richer. This is examined in three di�erent applications, an isolated airfoil,
an S-bend duct and a stator blading of an axial compressor.

4.1 The isolated airfoil case

The objective function for all studies related to the isolated airfoil is drag.
The drag force D is de�ned as the integral of viscous and pressure stresses
over the surface of the airfoil. The drag due to the airfoil's shape is expressed
as a non-dimensional quantity, instead of the drag itself the drag coe�cient
(CD ) is used as the objective function:

J = CD =
D

1
2 �AU 2

1
=

R
S � (� � ij nj + pni ) r i dS

1
2 �AU 2

1
(4.1)

where:

A is the reference area. In any case is the airfoil chord, which is unit.

U1 is the far-�eld velocity magnitude (6m=s in an angle of attack of 2 deg),

� ij is the stress tensor,

25
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p is the \kinematic pressure" i.e. the pressure divided by the uid's density,

nk is the normal (to the airfoil walls) unit vector (pointing towards the
solid),

r i is the unit vector in the direction of the force, which coincides with the
direction of the far-�eld velocity.

The ow is decided to be laminar with Reynolds number equal to 1000;
though it would be more realistic to have a turbulent ow, this has noth-
ing to add regarding the studies on PE. For the primal and adjoint �elds
computations, as well as the sensitivity derivatives extraction, the Open-
FOAM software, is used. More information regarding the application's CFD
setup and results (from the point of view of the uid ow) can be found in
section B.1.

The selected geometry is the NACA 0012 symmetrical airfoil which will be
referred as the \reference" airfoil for the rest of this section. The airfoils of
this study are parameterized using two distinct NURBS curves per airfoil
side, generated based on the reference airfoil by a best-�t algorithm. In
the following tables and �gures the number of CPs given per case is always
for the total CPs of the airfoil (i.e. twice as high as the number of CPs per
airfoil side). The leading and trailing CPs of each side are �xed. More details
regarding the parameterization of the airfoils can be found in Appendix A.
An example of the airfoil parameterization produced by the best �t algorithm
is displayed in Figure 4.1.

Figure 4.1: NURBS parameterization of the reference airfoil using 16 CPs
in total.

The design variables in all cases are the x,y coordinates of the CPs that
are allowed to displace, i.e. excluding the �rst and last CP on each side.
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Therefore, the total number of design variables isNb = 2NCP � 8, where
NCP is the total number of CPs. The same applies for the surface nodes in
nodal parameterization.

Below, three parametric studies are presented:

ˆ Study 1: The PE values are computed and compared on the exact
same airfoil, with 14 to 24 CPs (through enrichment which keeps the
airfoil shape intact (see subsection A.2.1)). The shape of the studied
airfoil is produced from the best-�t procedure of the reference airfoil
utilizing 14 CPs in total which is the minimum number of the above, so
as to, then, create all the other parametrizations through enrichment.
These shapes di�er slightly from the reference airfoil.

ˆ Study 2: It is a similar study as the previous one. The only di�erence
is that the primal and adjoint codes run on the reference airfoil, even if
geometric sensitivities are computed on a slightly changed airfoil (that
of Study 1). This speeds up the computation but introduces a certain
incosistency.

ˆ Study 3: In this study, PE values, in the range of 12 to 24 CPs, are
also computed and compared. However, for each di�erent number of
CPs, a di�erent best-�t of the reference airfoil has been performed. As
a result airfoils are (slightly) di�erent from each other.

ˆ Study 4: In this study, the Individual PE of design variables is com-
puted for Cases 3 and 5 of Study 3.

The parameterizations used in Studies 1 and 2 are presented in �gures 4.2
and 4.3. As it can be observed, the distribution of CPs when enrichment
is used is di�erent compared to the corresponding parameterizations where
best-�t is performed so as to compute the best shape (i.e. the closest to the
reference airfoil) with each number of control nodes.

Study 1

Results are presented in Table 4.1 and Figure 4.4. It is observed that, as CAD
parameterization becomes richer, the PE value is monotonically increasing.
Particularly, the PE curve asymptotically converges to a maximum PE value.
Also, as expected, Terms 2 and 4, take on the exact same values in all
cases since the airfoil's shape is identical and these two refer to the nodal
parameterization (same nodes).



28 4. PE-studies-Understanding PE

Figure 4.2: Parameterizations of Study 1 using enrichment. The horizontal
axis of each plot refers to the x direction whereas the vertical to to y direction.
All dimensions are scaled with the chord-length.

Figure 4.3: Parameterizations of Study 2 using the best �t for each case's
parameterization. The horizontal axis of each plot refers to the x direction
whereas the vertical to to y direction. All dimensions are scaled with the chord-
length.
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Case ID NCP PE Term1 Term2 Term3 Term 4
1 14 0.7706 4.6838 0.003256 9.6668 0.3307
2 16 0.7808 3.9360 0.003256 8.9784 0.3307
3 18 0.7891 3.3322 0.003256 8.3491 0.3307
4 20 0.7960 2.8468 0.003256 7.7843 0.3307
5 22 0.8017 2.4545 0.003256 7.2805 0.3307
6 24 0.8066 2.1348 0.003256 6.8312 0.3307

Table 4.1: Study 1: Evolution of the PE values w.r.t the number of CPs.

Figure 4.4: Study 1: Results of the PE values w.r.t. the number of CPs.

Study 2

This study has a lower computational cost and, strictly speaking, is less
meaningful than Study 1. In fact, in this study, there is an inconsistency re-
garding the computation of nodal sensitivity derivatives and basis functions.
Speci�cally, the i th

0

and i th node of the parameterized and reference airfoil
respectively, are di�erent. Since CAD sensitivity derivatives are computed as
dJ
dx i

dx
0
i

dbk
, the chain rule is inconsistent as the two derivatives are computed on

di�erent nodes. The value of this study comes from the lower computational
cost it has and the fact that there is no need to implement a method that
adapts the internal grid to slightly changed boundaries.

In Table 4.2 and Figure 4.5 the results of the study are presented. The PE
curve has a similar form to that of Study 1, however with greater (though
"less accurate") PE values.
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Case ID NCP PE Term1 Term2 Term3 Term4
1 14 0.7823 4.6815 0.003262 9.6715 0.32632
2 16 0.7928 3.9351 0.003262 8.9859 0.32632
3 18 0.8014 3.3703 0.003262 8.9288 0.32626
4 20 0.8085 2.8467 0.003256 7.7840 0.33072
5 22 0.8144 2.4560 0.003262 7.2920 0.32630
6 24 0.8194 2.1360 0.003262 6.8430 0.32630

Table 4.2: Study 2: Evolution of the PE values w.r.t the number of CPs.

Figure 4.5: Study 2: Results of the PE values w.r.t. the number of CPs.

Study 3

In Table 4.3 and Figure 4.6 the results of this parametric study are presented.
Each row of Table 4.3 corresponds to a di�erent airfoil. For this reason, Term
2 and Term 4 get di�erent values in every case. However, for the NURBS
parameterizations with a total number of CPs greater than 14, the di�erences
in Terms 2 and 4 are minor. Moreover, as it can be observed in Term 1 to
Term 4 columns of Table 4.3, as NURBS parameterization becomes richer,
these four terms (constituents of the PE) are constantly decreasing. Despite
the decrease in Terms 1 and 3, their corresponding ratio becomes higher,
thus leading to higher PE values. Finally, by observing the last two columns
of Table 4.3, Term 3 values are greater than the corresponding Term 4 values
in all cases. However, this does not invalidate the working hypothesis that
nodal parameterization is considered to provide the greatest optimization
potential.
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The PE curve is monotonically increasing, converging to a maximum PE
value, similarly to the curves of Studies 1 and 2 in Figure 4.4 and Figure 4.5
respectively. In addition, the Figure 4.6 indicates that, the increase in the
PE value between Studies 1 and 2 is signi�cant. The latter is due to the
inability of the Case 1 parameterization to produce such a detailed airfoil
shape compared to the other cases of Study 3, due to its relatively poor
parameterization.

Case ID CPs No PE value Term1 Term2 Term3 Term4
1 12 0.5548 0.61697 0.0041706 1.14712 0.053753
2 14 0.7706 0.46838 0.0032556 0.99968 0.053072
3 16 0.7928 0.43725 0.0036246 0.99848 0.036260
4 18 0.8014 0.37028 0.0036246 0.92878 0.036260
5 20 0.8085 0.31641 0.0036246 0.86616 0.036260
6 22 0.8144 0.27287 0.0036246 0.81024 0.036260
7 24 0.8194 0.23735 0.0036244 0.76030 0.036258

Table 4.3: Study 3: Evolution of the PE values w.r.t the number of control
points. Each row corresponds to a slightly di�erent airfoil.

Figure 4.6: Study 3: Results of the PE values w.r.t. the number of CPs.

Study 4

So far, there was a single PE value characterizing the whole shape. This
time, an attempt is made to de�ne a new metric (IPE-Individual Parametric
E�ectiveness) that characterizes the e�ect of its design variable, rather than
all of them as a whole. To be more precise, the new metric will be denoted
by IPE k , where k is the design variable's ID.

The IPE computation requires two modi�cations in Terms 1 and 3 given in
eq.(3.21) and eq.(3.23), respectively. The �rst modi�cation is the substitution
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of the sum of the squared values of design variables sensitivity derivatives in
Term 3, with the squared value of thekth sensitivity derivative of each design
variable. The second modi�cation is the subtraction of the sum correspond-
ing to the design variables from eq.(3.21). The modi�ed terms can be written
as:

Term1k =
N sX

i =1

2X

j =1

�
dxij

dbk

dJ
dbk

� 2

� Si (4.2)

Term3k =
�

dJ
dbk

� 2

(4.3)

where all indices are the same as in eqs.(3.21)-(3.24). Then, the IPE of each
design variable is computed as:

IPE k =

r
Term2
Term1k

Term3k

Term4
(4.4)

For demonstration purposes, it was decided to present the IPE of design
variables of the Cases 3 (16CPs) and 5 (20 CPs) of Study 3 (Table 4.3). The
IPE values for both cases are presented in Table 4.4. Note that, as the x
and y coordinates of each control point are considered to be design variables,
each row of the Table 4.4 refers to a certain CP, containing the IPE values
for its x and y coordinates in separate columns. The CPs IDs range from 0 to
NCP � 1, whereNCP is the total number of CPs, starting from the pressure
side's �rst CP, to the suction side's last CP. The �rst half of the CPs of each
parameterization refers to the pressure side and the other half to its suction
side. Table 4.4 includes only the CPs the coordinates of which are considered
as design variables (i.e. are free to be displaced).

The IPE values in Table 4.4 regarding the y coordinates are greater than those
of the x coordinates in both cases. Therefore, the distributions of the IPE
values regarding x and y coordinates are plotted separately in Figure 4.7 and
Figure 4.8 respectively. The blue/continuous lines refer to Case 3, whereas
the red/dashed line to Case 5. Horizontal axis refers to the CPs ID and
vertical axis to the IPE values.

Both �gures 4.7 and 4.8 indicate that the peak IPE values for the x and y
coordinates appear at the second CP of the suction side of each airfoil. The
peak value of Case 3 corresponds to the 9th CP, whereas in Case 5 to the 11th

CP. The distribution of the IPE values w.r.t. the CPs number in both cases
is similar, except from the sections of their peak values in Figure 4.8. The
latter, is due to the most dense distribution of CPs in Case 5 compared to
Case 3, as the 2nd and 3rd CPs of the suction side in Case 5 are closer to the
leading edge of the airfoils(which is the area with the greatest optimization
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potential) than the corresponding CPs of Case 3.

16CPs parameterization 20CPs parameterization
CP's ID IPE X IPE Y CP's ID IPE X IPE Y

1 0.05345 0.34812 1 0.06279 0.32848
2 0.01995 0.34176 2 0.03408 0.32820
3 0.00418 0.33494 3 0.00947 0.31698
4 0.01965 0.34069 4 0.00688 0.31264
5 0.03080 0.35829 5 0.01812 0.31776
6 0.04037 0.39817 6 0.02672 0.32979
9 0.10015 0.59191 7 0.03403 0.34909
10 0.03857 0.55107 8 0.04119 0.39236
11 0.00184 0.45896 11 0.11841 0.56133
12 0.01389 0.35699 12 0.06191 0.56042
13 0.01739 0.25916 13 0.01975 0.50145
14 0.01332 0.17282 14 0.00371 0.42385
- - 15 0.01443 0.34381
- - 16 0.01751 0.26694
- - 17 0.01593 0.19561
- - 18 0.01030 0.13499

Table 4.4: Study 4: IPE values of the design variables of Cases 3 and 5 of
Study 3 (see Table 4.3).

Figure 4.7: Study 4: IPE values of the x coordinates of all CPs in Cases 3
and 5 of Study 3.
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Figure 4.8: Study 4: IPE values of the y coordinates of all CPs in Cases 3
and 5 of Study 3.

Finally, a comparison between the IPE and the CAD sensitivity derivatives
is made in �gures 4.9 and 4.10 of Case 5. In these �gures, the absolute values
of sensitivity derivatives are presented in both plots for better visualization.
Figure 4.9 refers to the x coordinates whereas the Figure 4.10 to the y coordi-
nates of CPs. The blue/continuous lines refer to the sensitivity derivatives,
whereas the red/dashed lines to the IPE values. As it can be seen, both
the IPEs and sensitivity derivatives curves follow a similar distribution and
communicate the same message regarding the optimization potential(i.e the
potential) of each design variable.

From the previous parametric studies we conclude that, as the NURBS
parameterization becomes richer, the PE value is monotonically becoming
higher. Therefore, as the number of CPs tends to the number of surface
nodes, the PE value should tend to 1. Consequently, if the NURBS curves
parameterization consist of, as many CPs as the nodes of the surface to be
optimized, the PE value should be equal to 1. In order to examine the afore-
mentioned, a simple case is introduced and explained in Appendix C. The
geometry to be optimizez in that case consists of as many CPs as the number
of surface nodes, resulting to a PE value which is practically equal to 1. This
case was introduced because the airfoil used in this chapter consists of 400
nodes, and it was unrealistic to generate a NURBS curves parameterization
having 400 CPs.
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Figure 4.9: Study 4: Comparison of the IPE values of x coordinates of CPs
for Case 5 to the absolute of the corresponding sensitivity derivatives.

Figure 4.10: Study 4: Comparison of the IPE values of y coordinates of CPs
for Case 5 to the absolute value of the corresponding sensitivity derivatives.
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4.2 The S-bend type duct case

The duct used in this application is composed by two non-aligned straight
sections, connected with a S-bend type section, which is the geometry to be
optimized.

The objective function for all studies related to the S-bend type duct is the
total pressure loss of the incompressible ow between the inlet and the outlet
of the entire duct (not just the S-bend section). The total pressure loss is
de�ned as the integral of the total pressures of the inlet and the outlet patches
of the duct, so it is practically the di�erence of the two integrals. Given the
di�erent sign of the normal velocities at the inlet and the outlet, this can be
written as:

J = �
Z

Si;o

�
p +

1
2

v2
k

�
vi ni dS (4.5)

where:

Si;o are the inlet and the outlet patches respectively,

p is the \kinematic pressure" (i.e.the pressure divided by the uid's density),

vi is the velocity vector,

ni is the normal unit vector (pointing outwards the inlet and outlet patch).

The ow is laminar at a Reynolds number equal to 1000. More information
regarding the CFD setup and results (from the point of view of the uid ow)
can be found in section B.2. In this application, the parametric studies will
be conducted using two di�erent ways for parameterizing the S-bend section:
Bezier curves and volumetric B-splines.

When Bezier parameterization is used, the upper and lower side of the S-bend
section are parameterized by the best-�t algorithm based on the existing
duct's geometry (reference duct). For the purpose of this chapter's studies,
it was decided to use equal number of CPs in both sides of the duct (upper
and lower), keeping the �rst and last CPs of each curve �xed. It must be
noted that, in the following tables and �gures, the number of CPs given per
case is always the total number of CPs used. An example of the S-bend's
Bezier parameterization is presented in Figure 4.11. More details regarding
the parameterization can be found in Appendix A.

The design variables are the x,y coordinates of the CPs that are allowed to
be displaced i.e. excluding the �rst and last CP on each side, resulting to
the total number of design variablesNb = 2NCP � 8, whereNCP is the total
number of CPs used per case.
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Figure 4.11: Bezier parameterization of the S-bend curved walls using 18
CPs.

When volumetric B-splines parameterization is used, a morphing box (which
is formed by the CPs grid) is introduced, the boundaries of which enclose the
S-bend section's geometry. The design variables of this application are the x,y
coordinates of the morphing box's CPs, excluding the two frontmost and two
rearmost morphing box's planes in the x direction which are considered �xed.
Therefore, the total number of design variables is, 2NCPy (NCPx � 4), where
NCPx and NCPy are the numbers of CPs in x and y direction respectively.
More information regarding the volumetric B-splines parameterization of this
application can be found in Appendix A. In the following tables and �gures
the total number of CPs per case will be given.

Below �ve parametric studies are presented.

ˆ Study 1: The PE values are computed and compared on the exact
same geometry with 22 to 32 CPs (through enrichment) using Bezier
curves. The shape is produced by the best-�t algorithm applied to
the reference S-bend section's existing geometry utilizing 22 CPs. It is
obvious that this shape is slightly di�erent than the reference duct.

ˆ Study 2: The PE values are computed and compared in the range of
18 to 40 CPs using Bezier curves. For each di�erent number of CPs, a
di�erent best-�t is performed resulting to a slightly di�erent duct.

ˆ Study 3: The IPE of the design variables is computed and compared
for the Cases 4 and 10 of study 2.

ˆ Study 4: Computation and comparison of PE values in the range of
25 to 45 CPs by increasing the number of CPs in the x direction, using
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volumetric B-splines.

ˆ Study 5: Computation and comparison of PE values in the range of
25 to 45 CPs by increasing the number of CPs in the y direction, using
volumetric B-splines.

Study 1

The results of the study are presented in Table 4.5 and Figure 4.12. The
"usual" increase in the PE value can be observed as CAD parameterization
becomes richer. Moreover, since the geometry in all cases is identical, the
values of Terms 2 and 4 remain the same since they refer to the (same)
nodal parameterization. It must be noted that, the curve of Figure 4.12,
although it appears to be almost linear, it has a minor curvature which leads
to asymptotic convergence of the curve to a maximum PE value when a large
number of CPs is used.

Case ID CPs No PE Term1 Term2 Term3 Term4
1 22 0.8175 2.6683E-14 3.0362E-16 5.3993E-13 7.0457E-14
2 24 0.8234 2.3645E-14 3.0362E-16 5.1198E-13 7.0457E-14
3 26 0.8293 2.1086E-14 3.0362E-16 4.8694E-13 7.0457E-14
4 28 0.8351 1.8919E-14 3.0362E-16 4.6443E-13 7.0457E-14
5 30 0.8406 1.7072E-14 3.0362E-16 4.4410E-13 7.0457E-14
6 32 0.8459 1.5487E-14 3.0362E-16 4.2566E-13 7.0457E-14

Table 4.5: Study 1: PE values by increasing the number of CPs.

Figure 4.12: Study 1: Results of PE values w.r.t. the number of CPs.
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Study 2

Table 4.6 and Figure 4.13 contain the results of this study. Each row of
Table 4.6, corresponds to a slightly di�erent shape of the S-bend duct. As
a result the values of Terms 2 and 4 are di�erent in every case. One may
notice that with more than 18 CPs, di�erences are too small. In addition,
despite the reduction in the values of Terms 1 and 3 as the parameterization
becomes richer, their ratio becomes higher, resulting to higher PE values as
well.

Case ID CPs No PE Term1 Term2 Term3 Term4
1 18 0.8056 3.2619E-14 2.8521E-16 5.7074E-13 6.6246E-14
2 20 0.8133 2.8477E-14 2.8465E-16 5.3633E-13 6.5931E-14
3 22 0.8193 2.5076E-14 2.8465E-16 5.0699E-13 6.5931E-14
4 24 0.8252 2.2221E-14 2.8461E-16 4.8065E-13 6.5923E-14
5 26 0.8310 1.9818E-14 2.8461E-16 4.5714E-13 6.5923E-14
6 28 0.8367 1.7783E-14 2.8461E-16 4.3599E-13 6.5923E-14
7 30 0.8422 1.6048E-14 2.8461E-16 4.1690E-13 6.5923E-14
8 32 0.8475 1.4559E-14 2.8461E-16 3.9957E-13 6.5922E-14
9 34 0.8525 1.3273E-14 2.8461E-16 3.8379E-13 6.5922E-14
10 36 0.8573 1.2155E-14 2.8461E-16 3.6934E-13 6.5923E-14
11 38 0.8618 1.1178E-14 2.8461E-16 3.5605E-13 6.5923E-14
12 40 0.8662 1.0317E-14 2.8461E-16 3.4379E-13 6.5922E-14

Table 4.6: Study 2: PE values by increasing the number of CPs.

Figure 4.13: Study 2: Results of PE values w.r.t. the number of CPs.
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From Figure 4.13, it is observed that the PE value increases simultaneously
with the increase in CPs number, reaching a maximum PE value for the
highest number of CPs. Moreover, the curves of Figure 4.12 and Figure 4.13,
have a similar form, while the PE values in the second one, are slightly higher.

Study 3

For demonstration purposes, the IPE values of the design variables of Case 4
(24 CPs) and Case 10 (36CPs) are presented. The IPE computation follows
the same approach as in Study 4 of section 4.1. The results are presented in
Table 4.7, where each row refers to a certain CP, containing the IPE values
of it's x and y coordinates in separate columns. The CPs IDs range from
0 to NCP � 1, whereNCP is the total number of CPs used to parameterize
the S-bend section, starting from the lower side's �rst CP to the upper side's
last CP. The �rst half of the CPs belong to the lower side and the other
half to the upper side of the S-bend. Table 4.7 contains only the CPs the
coordinates of which belong to the design space, i.e the �rst and last CP of
each curve are excluded.

In both cases, the IPE values of the y coordinates are greater than those of
x coordinates, even by one order of magnitude. Therefore, the IPE distri-
bution over the CPs will be presented separately for x and y coordinates in
Figure 4.14 and Figure 4.15 respectively. The blue/continuous lines refer to
Case 4, whereas, red/dashed lines to Case 10. The horizontal axis refers to
the CP's ID and the vertical axis to the IPE values. Curves of both cases fol-
low a similar distribution(for each direction x and y), where, the peak values
of Case 4 are slightly higher than the corresponding ones of Case 10. The
peak IPE values of CP's x coordinates appear at the 5th CP and 6th CP of
Cases 4 and 10 respectively, whereas the peak values of CP's y coordinates
appear at the 3rd and 5th CP of the aforementioned.

Finally, a comparison of the IPE values and the normalized absolute values
of sensitivity derivatives in case 4 can be made through �gures (4.16) and
(4.17) which refer to x and y coordinates of CPs respectively. Due to their
very small values, sensitivity derivatives are normalized with their maximum
values in order to be presented in the same plot as the IPE values. The
blue/continuous lines refer to the normalized CAD sensitivity derivatives
while the red/dashed lines to the IPE values. It is observed that both IPEs
and sensitivity derivatives follow a similar distribution and communicate the
same message regarding the inportance of each design variable.
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CP's ID IPE x IPE y CP's ID IPE x IPE y

1 2.26E-02 0.300564821 1 4.07E-03 0.215656037
2 5.63E-02 0.36582825 2 1.46E-02 0.217495718
3 8.87E-02 0.424164149 3 3.47E-02 0.266548017
4 9.72E-02 0.396143389 4 6.05E-02 0.332494794
5 7.60E-02 0.281908078 5 8.29E-02 0.375507912
6 4.11E-02 0.145990014 6 9.14E-02 0.365226005
7 1.30E-02 5.17E-02 7 8.17E-02 0.299282537
8 2.04E-04 2.33E-02 8 5.88E-02 0.202717974
9 2.18E-03 5.75E-02 9 3.27E-02 0.1091514
10 5.46E-04 0.14484628 10 1.20E-02 4.14E-02
13 6.64E-03 0.28068006 11 2.33E-04 5.34E-03
14 1.24E-02 0.188967354 12 3.96E-03 2.92E-03
15 2.08E-02 0.135964591 13 3.70E-03 1.16E-02
16 3.42E-02 0.127125692 14 1.80E-03 4.63E-02
17 5.17E-02 0.163693114 15 7.36E-06 9.95E-02
18 6.76E-02 0.231709648 16 2.34E-03 0.169066168
19 7.31E-02 0.297563726 19 2.62E-03 0.274282574
20 6.32E-02 0.321235302 20 5.50E-03 0.207819218
21 4.21E-02 0.285847989 21 7.85E-03 0.154790293
22 2.02E-02 0.219828774 22 1.07E-02 0.114410032
- - - 23 1.51E-02 8.85E-02
- - - 24 2.19E-02 7.99E-02
- - - 25 3.15E-02 9.08E-02
- - - 26 4.33E-02 0.121572416
- - - 27 5.49E-02 0.16805587
- - - 28 6.28E-02 0.219744791
- - - 29 6.35E-02 0.260924045
- - - 30 5.61E-02 0.276495322
- - - 32 2.73E-02 0.218248082
- - - 33 1.49E-02 0.169854355
- - - 34 6.23E-03 0.138483567

Table 4.7: Study 3: PE values of the design variables of Cases 4 and 10 of
Study 2 (see Table 4.6).
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Figure 4.14: Study 3: IPE values of each CP's x coordinate of Cases 4 and
10 of Study 2.

Figure 4.15: Study 3: IPE values of each CP's y coordinate of Cases 4 and
10 of Study 2.
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Figure 4.16: Study 3: Comparison of IPE values of CP's x coordinates in
Case 4 with the normalized absolute values of the corresponding sensitivity
derivatives.

Figure 4.17: Study 3: Comparison of IPE values of CP's y coordinates in
Case 4 with the normalized absolute values of the corresponding sensitivity
derivatives.

Study 4

In this study, the distribution of volumetric B-splines CPs in the x direction
varies, whereas keeping the distribution of CPs in y direction �xed. The
results are presented in Table 4.8 and Figure 4.18. Each row of Table 4.8



44 4. PE-studies-Understanding PE

refers to the exact same geometry, thus Terms 2 and 4 remain constant in all
cases. In each case, di�erent values of parametric coordinates are assigned at
the nodes of each case, when a di�erent number of CPs is used. It must be
noted that the basis function's degree equals to 3 for both x and y directions.
The PE behaviour seems to be similar with the previous studies regarding
the increase in the PE value as the CPs number increases. However the
increase rate of PE uctuates as parameterization becomes richer .

Case ID CPs No PE Term1 Term2 Term3 Term4
1 25 0.7262 6.6607E-17 2.8459E-16 2.3155E-14 6.5911E-14
2 30 0.7889 2.6519E-16 2.8459E-16 5.0196E-14 6.5911E-14
3 35 0.8072 3.3975E-16 2.8459E-16 5.8130E-14 6.5911E-14
4 40 0.8495 3.5171E-16 2.8459E-16 6.2245E-14 6.5911E-14
5 45 0.8545 3.2563E-16 2.8459E-16 6.0244E-14 6.5911E-14

Table 4.8: Study 4: PE values by increasing the number of volumetric B-
splines CPs.

Figure 4.18: Study 4: Results of PE values w.r.t. the number of volumetric
B-splines CPs.

Study 5

This study is the same as the previous one, however the number of CPs in
the y direction is altered in each case. The results of this study are presented
in Table 4.9 and Figure 4.19. Each case of this study corresponds to the
same exact shape of the duct. Moreover, the parametric coordinates of each
node vary between the di�erent cases. The results of this study con�rm the
increase in PE as parameterization becomes richer. The PE behaviour is
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similar to that of Study 2 which is also con�rmed by the form of the curve
in Figure 4.19. It must be noted that the PE values, in most of this study's
cases, are greater than the corresponding values of Study 4. Moreover, the
curve of Figure 4.19, unlike the PE curve of Figure 4.18, does not seem to
have turning points.

Case ID CPs No PE Term1 Term2 Term3 Term4
1 25 0.7262 6.6607E-17 2.8459E-16 2.3155E-14 6.5911E-14
2 30 0.7779 6.4696E-17 2.8459E-16 2.4447E-14 6.5911E-14
3 35 0.8191 5.9531E-17 2.8459E-16 2.4694E-14 6.5911E-14
4 40 0.8586 5.5708E-17 2.8459E-16 2.5039E-14 6.5911E-14
5 45 0.8852 5.1503E-17 2.8459E-16 2.4819E-14 6.5911E-14

Table 4.9: Study 5: PE values by increasing the number of volumetric B-
splines CPs.

Figure 4.19: Study 5: Results of PE values w.r.t. the number of volumetric
B-splines CPs.

4.3 The 2D compressor cascade case

In this case, the geometry to be optimized is a section of a 2D compressor
cascade. Only the section of a single blade airfoil is utilized alongside proper
periodic boundary conditions to properly simulate the ow. The objective
function is the total pressure losses between the inlet and the outlet of the
domain as explained in section 4.2.

Unlike the previous applications, here the ow is turbulent with a Reynolds
number of 7:17 � 105. The inlet velocity is 48m=s with an inlet ow angle
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of � 42 deg. More information regarding the CFD setup and results can be
found in section B.3.

In this application, the airfoil's geometry is parameterized using NURBS
curves based on the pre-designed airfoil, which will be referred as the \refer-
ence" airfoil for the rest of this section. The reference airfoil's pressure and
suction sides are parameterized separately by the best-�t algorithm where
the �rst two and last two CPs of each side are kept �xed. The latter is im-
plemented to maintain the continuity of the curve's shape and its gradient.
More details regarding the parameterization of the airfoil can be found in
Appendix A.

The design variables are the x,y coordinates (axial and peripheral direction
respectively) of the CPs that are allowed to be displaced (excluding the �rst
and last two CPs of each side), resulting to a total number of design variables
equal to Nb = 2NCP � 16, where,NCP is the total number of CPs. In all
the studies of this application, for each di�erent case, a di�erent best-�t
is performed resulting to slightly di�erent geometries. An example of the
blade's parameterization is presented in Figure 4.20.

Figure 4.20: NURBS parameterization of the blade airfoil using 50 CPs (25
on each side).

Below four parametric studies are presented.

ˆ Study 1: The PE values are computed and compared in the range of 45
to 89 CPs. In all cases of this study, the pressure side is parameterized
using more CPs than the suction side (5CPs). Due to the complexity
of the shape, the basis function degree is set equal to 3 in all cases for
a decent representation of the airfoil.

ˆ Study 2: It is the same with Study 1; though, in this study, the
suction side is parameterized using more CPs (5CPs). In this study, an
extra case of 95CPs is examined for better comparison with the cases
of Study 1.

ˆ Study 3: In this study, the PE values are computed and compared in
the range of 50 to 86 CPs, using equal number of CPs to parameterize
each side. Basis degree is set to 3.
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ˆ Study 4: It is the same study as the previous one, with basis degree
equal to 5 in all cases.

ˆ Study 5: The IPE values of Cases 5 and 9 of Study 1 will be computed
and compared.

Study 1

The results of this study are presented in Table 4.10 and Figure 4.21. Each
row of the Table 4.10, corresponds to a slightly di�erent airfoil. In this
study as a more rich parameterization is introduced in each case, the PE
value increases until reaching values near 1 in the cases utilizing more than
85 CPs. It is worth mentioning that despite the fact that a large number
of CPs is utilized for cases 1 to 7 the PE value remains low. Finally, as
parameterization becomes richer, Term1 values are decreased, whereas Term3
values are increased, resulting to the higher PE values. However, the values
of Terms 2 and 4 tend to uctuate constantly for di�erent number of CPs.

Case ID CPs No PE Term1 Term2 Term3 Term4
1 45 0.1379 275.9931 14.3666 3.1125E+05 5.1487E+05
2 49 0.2005 219.3089 11.5526 3.4740E+05 3.9769E+05
3 53 0.3204 195.9165 12.1389 4.6126E+05 3.5832E+05
4 57 0.4561 182.2819 14.9152 6.2462E+05 3.9175E+05
5 61 0.5985 157.5966 17.5031 8.0293E+05 4.4712E+05
6 65 0.6696 156.6502 19.4599 9.6429E+05 5.0758E+05
7 69 0.7360 143.8260 20.3854 1.0627E+06 5.4361E+05
8 73 0.7997 136.3793 21.4188 1.1880E+06 5.8872E+05
9 77 0.8383 128.9954 21.7172 1.2660E+06 6.1968E+05
10 81 0.8841 121.3475 20.5264 1.2861E+06 5.9828E+05
11 85 0.9433 120.0193 19.3905 1.3341E+06 5.6850E+05
12 89 0.9721 119.9799 18.6748 1.3450E+0.6 5.4584E+05

Table 4.10: Study 1: PE values while increasing the number of CPs.

Study 2

This study is similar to the previous one. The only di�erence from the
previous one is that, each case is parameterized using 5CPs extra for the
suction side. The results are presented in Table 4.11 and Figure 4.22. As can
be observed, a monotonic increase in PE value appears as more CPs are used
to parameterize the airfoil. Particularly, when utilizing more than 90CPs the
PE, tends to a value near 1. Moreover, with the increase in the CPs number,
the PE terms values have a similar behaviour with the previous study.
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Figure 4.21: Study 1: PE values w.r.t to the number of CPs.

Case ID CPs No PE Term1 Term2 Term3 Term4
1 45 0.2252 589.4759 13.8888 5.4680E+05 3.7266E+05
2 49 0.3052 501.5339 16.2390 7.0222E+05 4.1395E+05
3 53 0.3710 437.6374 18.2413 8.4953E+05 4.6755E+05
4 57 0.4376 382.9754 19.8402 1.0005E+06 5.2033E+05
5 61 0.4803 352.5986 21.2375 1.1252E+06 5.7492E+05
6 65 0.5157 321.7006 21.5877 1.2066E+06 6.0606E+05
7 69 0.5660 285.0782 20.9935 1.2596E+06 6.0391E+05
8 73 0.6023 277.5093 20.2117 1.3205E+06 5.9164E+05
9 77 0.6731 245.1013 18.9489 1.3391E+06 5.5318E+05
10 81 0.7624 233.0494 18.9847 1.4242E+06 5.3321E+05
11 85 0.8655 222.9479 21.8754 1.6250E+06 5.8812E+05
12 89 0.9537 204.1385 25.8147 1.8102E+06 6.7497E+05
13 95 0.9771 193.2559 29.9330 1.9476E+06 7.8447E+05

Table 4.11: Study 2: PE values while increasing the number of CPs.

Study 3

In each case of this study, the pressure and suction side are parameterized
using equal number of CPs with a basis degree of the NURBS curves equal to
3. The results of this study are presented in Table 4.12 and Figure 4.23.Likely
the previous studies, each row of Table 4.12 corresponds to a slightly di�erent
blade's shape. Each shape is parameterized with the same number of CPs
for its pressure and suction side using a basis degree for NURBS curves equal
to 3.

In this study, the behaviour of the PE is similar to that of the previous two
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Figure 4.22: Study 2: PE values w.r.t to the number of CPs.

cases, recon�rming thus the increase in PE values w.r.t. the CPs number.
Thus, the curve of Figure 4.23 has a similar shape with those of �gures
Figure 4.21 and Figure 4.22.

Case ID CPs No PE Term1 Term2 Term3 Term4
1 50 0.3407 254.8337 13.8157 5.4468E+05 3.7220E+05
2 58 0.5390 214.5645 18.5156 8.7399E+05 4.7636E+05
3 66 0.6614 191.0240 21.0249 1.1321E+06 5.6786E+05
4 74 0.7088 180.9139 21.0261 1.2604E+06 6.0620E+05
5 82 0.8235 167.1745 19.1705 1.3611E+06 5.5970E+05
6 86 0.9101 162.7588 19.0623 1.4282E+06 5.3706E+05

Table 4.12: Study 3: PE values while increasing the number of CPs.

Study 4

All the airfoils of this study are parameterized using equal number of CPs
in both sides. The only di�erence compared to the previous study is the
fact that the basis degree of NURBS curves equals to 5. Table 4.13 and Fig-
ure 4.24 include the study's results. Unlike all the previous studies regarding
this application, the PE curve of Figure 4.24, does not increase monotoni-
cally as CPs number increases. In fact, when the CPs number exceeds 74, PE
values are slightly reduced tending to a value of 0.6. All the aforementioned
are mainly due to the fact that the basis degree used for the NURBS curves,
equals to 5, which increase the complexity of the problem as more CPs may
a�ect each node of blade, limiting the values of PE when a large CPs number
is used.
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Figure 4.23: Study 3: PE values w.r.t to the number of CPs.

Case ID CPs No PE Term1 Term2 Term3 Term4
1 50 0.3210 229.8595 21.8510 6.8486E+05 6.5783E+05
2 58 0.4617 193.2732 18.1136 7.8214E+05 5.1859E+05
3 66 0.5591 171.9396 17.7068 8.5944E+05 4.9329E+05
4 74 0.6335 155.4414 22.7134 9.9746E+05 6.0189E+05
5 82 0.6242 139.7784 27.9312 1.0936E+06 7.8313E+05
6 86 0.6258 131.9050 28.4894 1.1106E+06 8.2477E+05

Table 4.13: Study 4: PE values while increasing the number of CPs.

Figure 4.24: Study 4: PE values w.r.t to the number of CPs.
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In Figure 4.25, the PE curves of Studies 1 and 2 are compared. The blue/con-
tinuous line refer to Study 1, whereas the red/dashed line to Study 2. First
of all, the curves do not have a similar form. In addition, for the parameter-
izations utilizing 57 CPs and more, the PE values of Study 1 are generally
greater compared to the corresponding cases of Study 2. The opposite applies
for the parameterizations with less than 57 CPs.

Figure 4.25: Comparison of PE values of Studies 1 & 2.

In Figure 4.26, the PE curves of Studies 3 and 4 are compared. The blue/-
continuous line refers to Study 3, whereas, the red/dashed line to Study 4.
As it can be observed from Figure 4.26 all PE values of Study 3 are greater
than those of Study 4. The latter is due to the fact that, in all cases of Study
4, more CPs have impact at each node of the geometry, which limits its PE
value.

Study 5

In this study, the IPE values are presented for Cases 5(61CPs) and 11(85Cps)
of Study 1. It is reminded that, the pressure side is parameterized using 5
more CPs than the suction side. The CP IDs range from 0 toNCP � 1, where
NCP is the total number of control points. For Case 5, the CPs whose IDs
range from 0 to 27 refer to the pressure side while the CPs IDs ranging from
28 to 60 refer to the suction side. In Case 11, CPs from 0 to 44 refer to
the pressure side whereas 45 to 84 refer to the suction side. The IPE values
corresponding to the x and y coordinates of the CPs that are allowed to be
displaced are plotted separately.

The IPE w.r.t. the x and y coordinates are presented in Figure 4.27 and
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Figure 4.26: Comparison of PE values of Studies 3 & 4.

Figure 4.28 respectively. It is worth mentioning that, unlike the previous
applications, the peak IPE values of the x coordinates are greater that the
peak values of y coordinates in both cases. The peak value of Case 5 in
Figure 4.27 can be found at the 35th CP which is the 8th CP of the suction
side corresponding to (x; y) = (0 :0139; � 0:0179). The peak value of Case
11 in Figure 4.27 can be found at the 47th CP which is the 3rd CP of the
suction side corresponding to (x; y) = ( � 0:000472; 0:00176). The peak value
of Case 5 in Figure 4.28 is at the 9th CP of its suction side corresponding to
(x; y) = (0 :0241; � 0:025), whereas the peak value of Case 11 can be found at
the 3rd CP of its suction side.

The CPs with the greatest impact on the optimization potential of the two
cases are located at di�erent coordinates, which means that they a�ect di�er-
ent regions of the airfoil. As a conclusion, the PE value and the optimization
potential in this application relies heavily on the distribution of CPs around
the airfoil.
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Figure 4.27: IPE values of Cases 5 & 11 CP's x coordinates.

Figure 4.28: IPE values of Cases 5 & 11 CP's y coordinates.
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Chapter 5

The PE into the optimization

loop

In this chapter, the PE will be studied from the perspective of the opti-
mization, based on the results of chapter 4. Various optimization loops are
conducted for all three applications, the results of which are compared by
also considering the corresponding PE values. Furthermore, the evolution of
PE during the optimization loops of each application of chapter 4 is studied
and presented too.

5.1 Optimization of the isolated airfoil

Aerodynamic shape optimization loops are performed for di�erent parame-
terizations of the isolated airfoil as introduced in section 4.1. The evolution
of PE during the optimization loop is recorded. Finally, optimization loops
using di�erent combinations of design variables based on their IPE values
are performed.

5.1.1 Optimization using di�erent parameterizations

Three cases are presented and compared, the geometries of which are param-
eterized using NURBS curves with a di�erent PE value each. The objective
function for all cases is the drag coe�cient (CD ). More details regarding the
objective function and the ow characteristics can be found in section 4.1.

The airfoils of Cases 1 and 2 are parameterized by performing a di�erent

55
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best-�t, based on the reference airfoil (section 4.1), using 14 and 20 CPs
respectively, where the di�erences in the reconstructed shapes are minor.
Moreover, the airfoil of Case 3 is produced through enrichment of the pa-
rameterization of the airfoil of Case 1 i.e. with 20 CPs in total. As a result,
the geometries of Cases 1 and 3 are identical.

Prior to running the optimization loop, it is important to introduce some
constraints in order to obtain a feasible solution regarding the airfoil's shape
and avoid a potential termination of the optimization procedure due to the
overlapping of the pressure and suction sides of the airfoil or the grid's nodes
due to their displacement. It must be noted that, these are applied in all
cases of this section.
The constraints are listed below:

ˆ The maximum reduction in the airfoil's surface area, compared to the
reference one, is set to 15%.

ˆ The maximum allowed di�erence in lift coe�cient ( CL ) from the initial
value is set to� 0:0001.

ˆ The moment coe�cient ( Cm ) value is bounded to� 1 � 10� 4, so that
the optimized airfoil is also trimmed.

ˆ The �rst and last two CP's over both sides of the airfoil remain �xed
during the entire optimization loop, in order to enforce C1 continuity of
the leading edge and avoid the overlapping of the pressure and suction
sides at the trailing edge.

The design variables are the x,y coordinates of the CPs which are not �xed,
resulting to the total number of design variables to beNb = 2NCP � 16,
whereNCP is the total number of CPs used to parameterize the airfoil.

The results are presented in Table 5.1 and Figure 5.1. Each row of Table 5.1
contains the total number of CPs used to parameterize the airfoil (NCP ), the
total number of design variables (Nb), the initial & �nal values of the objective
function(Jintial ,Jf inal ), the normalized �nal value(J normal

f inal ), and �nally the
associated PE value (of the initial geometry) of each case.

In Figure 5.1, the minor di�erences in the initial shape of Cases 1 and 2
airfoils reect on their initial J (CD ) values as well. Moreover, since this
chapter focuses on the optimization potential of each case, Figure 5.1 presents
the normalized objective function values of each.

What can be seen from Table 5.1 and Figure 5.1, is that, as the PE increases,
the optimization potential of the airfoil is increasing too. However the di�er-
ences in the objective function between the optimized airfoils are minor due
to the constraints applied in each case (which were necessary in order to avoid
the overlapping of the two sides). The same applies for each optimized airfoil
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and their corresponding initial ones. As a result, the maximum reduction in
the objective function (that of Case 2) is about 3:6% and the relative di�er-
ence between Case 1& 2 optimized airfoils is about 0:1%. In addition, the
optimization loop of each case, practically converges in the �rst four cycles,
which is due to the strict constraints applied in this application. Especially,
in Case 3, the objective function and the constraints are all converging by
the end of the 4th optimization cycle. In Cases 1 and 2, the di�erences in the
objective function after the 4th cycle are minor and the next optimization
cycles are needed only in order to meet the constraint.

Case No NCP Nb Jinit Jf inal J normal
f inal PEinitial

Case 1 14 12 0.060280 0.058166 0.96492 0.67100
Case 2 20 24 0.060290 0.058118 0.96397 0.72542
Case 3 20 24 0.060280 0.058122 0.96420 0.71485

Table 5.1: Isolated airfoil optimization: Optimization results of Cases 1,2
and 3.

Figure 5.1: Isolated airfoil optimization: Normalized objective function val-
ues during the optimization procedure of Cases 1,2 and 3.

During the previous chapters, all cases where associated with a single PE
value (the initial one). However during the optimization loop, as the airfoil's
shape changes and the design variables are updated in each cycle, the PE
values are changed too. Therefore, PE values are computed for certain cycles
of each case. In Cases 1 & 2, PE is computed for optimization cycles: 1,3,6
and 10, whereas in Case 3 for cycles: 1, 3 and 4. The evolution of the PE
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during the optimization procedure is presented in Figure 5.2. It is observed
that, during the optimization, the PE values are reduced by up to 36%, while
the PE curves are similar in all cases. Case 2 curve maintains the highest
value, followed by that of Case 3 and �nally by the curve of Case 1.

Figure 5.2: Isolated airfoil optimization: Evolution of the PE values during
the optimization.

The optimized geometries of each case are presented in Figure 5.3. Each
sub-�gure contains the optimized shape drawn with continuous lines, and
the initial shape of each case with the dashed lines.

The ow �elds (velocity's magnitude and kinematic pressure) of each case
are presented in �gures 5.4 to 5.6 for Cases 1,2 and 3, respectively. Each
�gure presents the ow �elds of the optimized geometry (bottom), accompa-
nied by the ow �elds of their initial airfoil (top). Velocity �elds are placed
on the left, whereas the pressure �elds are placed on the right of each �g-
ure. As it can be seen, in all cases the wake of the optimized geometries is
slightly reduced compared to that of their initial shape. Moreover the low
pressure area at the airfoils suction side is also reduced, resulting to a re-
duction of the pressure drag (as the airfoil is placed at a 2 deg angle to the
far-�eld velocity according to section 4.1). Finally, the area around the lead-
ing edge(stagnation point) of the airfoil is limited in the optimized geometries
�elds, leading to a further decrease in drag. All the optimized shapes induce
similar aerodynamic phenomena as their shapes di�erences are minor which
also validates the minor di�erences in the results of the optimization.



5.1. Optimization of the isolated airfoil 59

Figure 5.3: Isolated airfoil optimization: The shape of the optimized airfoil
of each case compared its corresponding initial one.

Figure 5.4: Isolated airfoil optimization: Flow �elds around Case 1 ini-
tial(top) and �nal(bottom) geometry.
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Figure 5.5: Isolated airfoil optimization: Flow �elds around Case 2 ini-
tial(top) and �nal(bottom) geometry.

Figure 5.6: Isolated airfoil optimization: Flow �elds around Case 3 ini-
tial(top) and �nal(bottom) geometry.
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5.1.2 Optimization using selected design variables

The airfoils of Cases 1 and 2, are optimized by selecting only the �ve most
e�ective design variables from the IPE values of the aforementioned cases.
The design variables with the highest optimization potential in each case are:

ˆ Case 1: The y coordinates of the 2nd ; 3rd ; 4th ; 9th and 10th CP.

ˆ Case 2: The y coordinates of the 7th ; 12th ; 13th ; 14th and 15th CP.

It is reminded that CPs IDs range from 0 toNCP � 1, where the �rst half
refer to pressure side and the second half to the suction side.

The importance of each design variable is shown in Figure 5.7 which is formed
by the IPE values of each case. Each part of the pie-chart �gure corresponds
to a single design variable, the size of which is proportional to its IPE value.
The most important design variables are marked with red colour, and as it
can be seen in both cases they occupy more than half of each pie-chart's area.

Figure 5.7: Isolated airfoil optimization: Comparison of the design variables
importance of Cases 1 and 2.

The results are presented in Table 5.2 and Figure 5.8. In Table 5.2, the
optimization results of each case when using all design variables are denoted
by Ja, whereas the results of using only the most e�ective design variables
of each case asJi . The blue/continuous line of Figure 5.8 refers to Case
1, whereas the red/dashed line to Case 2. As it can be observed, the most
important design variables of Case 1 result to a lower objective function value
compared to those of Case 2. The result is veri�ed through Figure 5.7, where
the IPE values of Case 1 most important design variables occupy a larger
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area in their pie-chart than these of Case 2. In addition to it's better solution,
Case 1 converges signi�cantly faster as it reaches it's �nal value by the end
of the 7th cycle compared to Case 2 which convergences after 15 optimization
cycles. Also, the �nal solution of Case 1Ji , is also better compared to its
Ja. The latter is maybe due to the fact that the gradient base optimization
when all the CPs (that are allowed to move) are used as design variables the
solution may converge to a local minimum resulting to a slightly increased
value of drag. On the contrary the last does not happen in Case 2, where the
optimization using only the most important parameters converges to a higher
value of drag. The aforementioned can be observed also from Figure 5.9.

Case ID Jinitial Jaf inal J normal
af inal

Ji f inal J normal
i f inal

Case 1 0.06029 0.05817 0.96499 0.05817 0.96476
Case 2 0.06029 0.05812 0.96397 0.05833 0.96755

Table 5.2: Isolated airfoil optimization: Optimization results of the Case 1
&2 airfoils using only the 5 most e�ective design variables in optimization.

Figure 5.8: Isolated airfoil optimization: Objective function values during the
optimization of the Case 1 &2 airfoils using only the 5 most e�ective design
variables.
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Figure 5.9: Isolated airfoil optimization: Comparison of Cases 1 & 2 when
the most important design variables are used with that of Cases 1 & 2 with all
the design variables.

5.1.3 Optimization using only the x or y coordinates

The �gures 4.7 and 4.8 of section 4.1, indicated that the IPE values of the y
coordinates are signi�cantly greater that those of the x coordinates in both
cases of �gures 4.7 and 4.8. Due to the latter, two cases are introduced
(Case 4 and Case 5), where two optimization loops will be performed. Both
cases utilize the same airfoil, that of Case 2 in subsection 5.1.1 and all the
constraints mentioned above. The design variables in Case 4 are considered
to be only the x coordinates of the CPs which are allowed to displace, whereas
Case 5 utilizes only their y coordinates. The results of each case alongside
those of Case 2, are presented and compared in Table 5.3 and Figure 5.10,
where only the normalized �nal values of objective function will be included
as the initial geometry is identical.

Case ID J normal
f inal

Case 2 0.9639707
Case 4 0.9629773
Case 5 0.9645456

Table 5.3: Isolated airfoil optimization: Comparison of optimization results
of Cases 2 and 4(x coordinates) and 5 (y coordinates).
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Figure 5.10: Isolated airfoil optimization: Comparison of objective function
values of Cases 2, and Cases 4(x coordinates) & 5 (y coordinates).

5.1.4 The impact of the Cm constraint

In Figure 5.11 the results of the optimization loop with and without the
Cm constraint are compared. The blue/continuous line refers to the Case 2
optimization(with Cm ) and the red/dashed line to Case 2 (Cm is not used).
As can be seen the introduction of the constraint reduces the objective func-
tion and reduces the convergence time too. However, after the third cycle,
it seems that the optimization is restrictive in terms of further drag reduc-
tion, as the latter practically remains the same until the convergence of the
constraints in the 15th cycle.

5.2 Optimization of the S-bend duct

The S-bend duct introduced in the previous chapter is optimized using two
di�erent parameterization methods, Bezier curves and volumetric B-splines.
Firstly, various optimizations are performed using Bezier curves in order to
identify the relation of PE and the optimization potential of the duct's shape.
Moreover, four optimizations are conducted using di�erent parameterizations
(Bezier and volumetric B-splines) which are associated with di�erent PE val-
ues. Finally, an optimization case using the x and y coordinates separately
as design variables is conducted to study the importance of each in an opti-
mization loop, see of Figure 4.14 and Figure 4.15.
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Figure 5.11: Isolated airfoil optimization: Comparison of Case 2 results with
and without the Cm constraint.

In this application, the only constraint imposed is that the �rst and last two
CPs of each side of the S-bend section, are �xed during the optimization when
Bezier parameterization is used, in order to maintain continuity of the shape,
and the derivative of each sides's curve at their �rst and last node. Similarly,
the �rst two and last two lines of the morphing box, in the x-direction are
kept �xed.

5.2.1 Relation of PE and duct's optimization potential

A parametric study is presented regarding the relation of PE with the op-
timization potential of each parameterization. For that reason, various op-
timization loops are performed using Bezier curves with di�erent number of
CPs. The CPs number ranges from 20 to 40 CPs, where in each case, a
di�erent best-�t is executed, resulting to slightly di�erent duct geometries.

The results of this study are presented in Figure 5.12. As the focus of this
study is on the optimization gains of each parameterization, only the normal-
ized values of the objective function are presented. The x-axis refers to the
CPs number used to parameterize each airfoil while the left y-axis refers to
the optimization results of each case and the right y-axis to the corresponding
PE value of each case(initial PE value). Figure 5.12 indicates that as the pa-
rameterization becomes richer and the PE value increases, the optimization
results become better. As a result, it con�rms that parameterizations with
higher PE values provide a better optimization results. It must be noted
that the aforementioned is mainly due to the minor di�erences of the S-bend
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duct geometry.

Figure 5.12: S-bend duct optimization: Parametric study of the optimization
solution and PE value w.r.t. the number of CPs.

5.2.2 Comparison of Bezier curves and volumetric B-

splines optimization potential

Four optimization cases are conducted utilizing Bezier curves for Cases 1 and
2 and volumetric B-splines for Cases 3 and 4. Cases 1 and 2 are parameterized
by a di�erent best-�t, based on the reference duct, using 20 and 40 CPs
respectively. The total number of design variables in each case (1&2) equals
to Nb = 2NCP � 16. Moreover, Cases 3 and 4 are parameterized using
volumetric B-splines using 135 and 90 CPs respectively with a basis degree
equal to 3 for both x and y direction. The total number of design variables in
Cases 3 and 4 equals to 25 and 10, respectively. It must be noted that both
geometries are identical; however, in each shape, the parametric coordinates
of its nodes are di�erent.

The results of each case are presented in Table 5.4 and Figure 5.13. Although
the geometries of Cases 1 and 2 are di�erent between them and with that of
Cases 3 and 4, their di�erences are not signi�cant. Therefore, the normalized
values of objective functions will be used to represent the objective function's
value in each optimization cycle.

Firstly, as it can be observed, the solution of Case 2 is better compared
to that of Case 1. Also Case 3 solution is better than Case 4. The �nal
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results of each study indicate that, despite the fact that di�erent methods
of parameterization are used in this study, as the initial PE value becomes
higher, the objective function is further reduced. Therefore, the initial PE
value in this application provides an indication of the optimization potential
of each case.

Case ID NCP Nb Jinitial Jf inal J normal
f inal PE

Case 1 20 24 7.1768E-07 6.382E-07 0.88704 0.8287
Case 2 40 64 7.1768E-07 6.270E-07 0.87372 0.8665
Case 3 45 25 7.1768E-07 6.355E-07 0.88553 0.8545
Case 4 30 10 7.1768E-07 6.377E-07 0.88853 0.7889

Table 5.4: S-bend duct optimization: Comparison of the optimization results
of Bezier and volumetric B-splines parameterizations w.r.t. their initial PE
value.

Figure 5.13: S-bend duct optimization: Comparison of the objective func-
tion's values during the optimization procedure for Bezier and volumetric B-
splines parameterizations.

In order to study the PE of each case during the optimization, the PE val-
ues are computed for certain cycles of each case's optimization loop. In
Cases 1 & 2, PE is computed after the execution of cycles: 1,2,3,6 and 10,
and in Cases 3 & 4 after cycles: 1,3,6 and 10. The evolution of PE during
the optimization for all cases is presented and compared in Figure 5.14. In
Cases 1 & 2, PE is further increased by the end of the 2nd cycle. Furthermore,
as optimization goes on, it is reduced constantly reaching a �nal value lower
than 0:05 in both cases. On the contrary, in Cases 3 & 4, the PE value is re-
duced constantly in the �rst six cycles. However, after the 10th optimization
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cycle, the PE values of Cases 3 and 4 are both increased, obtaining the values
of 0:697 and 0:870 respectively. Worth mentioning is that, the �nal PE value
of Case 4 (after the 10th cycle), is greater compared to its initial value and
also grater than the corresponding of Case 3. The latter does not mean that
the objective function of Case 4 should be lower compared to Case 3, it does
only indicate that the optimization potential of the Case 4 parmeterization
is closer to that of the nodal (which may be very low at that step of the
optimization), for duct's geometry as formed by the optimization loop in the
10th cycle.

Figure 5.14: S-bend duct optimization: Evolution of the PE values during
the optimization.

For demonstration purposes, only the velocity �eld of Case 2 optimized shape
is presented and compared to this of it's initial shape in �gure 5.15. The �elds
which refer to the initial shape are presented at the top, whereas the �elds of
the �nal shape at the bottom plot of each �gure. Firstly, in Figure 5.15, the
cross-section of the duct's curved section is increased, creating some valleys
at various locations. These valleys induce vortices that do not interrupt
the ow in the middle section of the duct, in fact they assist the ow to
maintain its velocity, unlike the initial shape of the duct, in which the ow
is forced to accelerate at the end of the curved section (due to a vortex
existence as observed in Figure 5.15). The increase in ow velocity increases
the total pressure losses as well. Therefore, the �nal geometry maintains a
lower mean value of the velocity which leads to lower total pressure losses.
Finally, although the vortices, in general, induce energy losses, in that case
are located into the valleys without a�ecting the mean ow heading towards
the outlet, resulting to generally lower total pressure losses.
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Figure 5.15: S-bend duct optimization: Case 2 velocity �eld of the initial
and optimized shape.

5.2.3 Optimization using only the x and y coordinates

From the IPE values of Case 1 design variables (see Figure 4.14 and Fig-
ure 4.15 blue/continuous curve), it was found that the IPE values of the
y coordinates are signi�cantly larger than those of the x coordinates. Two
optimization cases are performed (Case 5 and Case 6) using only the x coor-
dinates and the y coordinates of the CPs which are allowed to be displaced.
The results of each case are presented in Table 5.5 and Figure 5.16. As the
duct shapes in both cases are identical, only the normalized �nal values of
objective function are presented. It is observed that the result of Case 6 is
very close to that of Case 1 with a relative di�erence of about 0:2%. On
the contrary, the result of Case 5 is far from the previous two results with
a relative di�erence w.r.t. Case 1 equal to 7:9%. Also the di�erence in the
objective function for Case 5 compared to it's initial value is relatively small
as well. From the above, it is concluded that, the utilization of only the CP's
y coordinates as design variables may provide similar results to that of using
both the x and y coordinates.

The optimized shapes of the S-bend's curved section are presented in �gures
Figure 5.16 and Figure 5.17 for Cases 5 and 6 respectively. The continuous
lines represent the optimized geometry in each case, whereas the dashed lines
represent the initial shape of the S-bend curved section. As can be observed,
the shape of Case 5 is not modi�ed signi�cantly compared to that of Case 6
due to the lower IPE values of x coordinated.

The ow �elds are present for both cases 5 and 6 in Figure 5.18. Each
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Case ID NCP Nb Jnorm PE
Case 1 40 64 0.87607 0.8665
Case 5 40 32 0.94537 0.8356
Case 6 40 32 0.88720 0.6974

Table 5.5: S-bend duct optimization: Optimization of the duct using the
parameterization of Case 1, considering the x and the y coordinates as design
variables in Cases 5 & 6.

Figure 5.16: S-bend duct optimization: Comparison of the optimized and
initial geometry of Case 5.

Figure 5.17: S-bend duct optimization: Comparison of the optimized and
initial geometry of Case 6.
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�gure contains the initial geometries �eld at the top and the �nal-optimized
geometries �eld an the bottom. For each �gure, the left plots refer to Case
5 and the right plots to Case 6. The results of both �gures indicate that,
both optimizations opt to eliminate the low pressure areas at the curved
section of each duct. However, Case 6 is able to create the convex bumps,
which induce the e�ects described above in Case 2 resulted ow �elds. The
latter validates the indications of IPE values and the importance of the y
coordinates compared to the x coordinates in the optimization loop.

Figure 5.18: S-bend duct optimization: Cases 5 and 6 velocity (magnitude)
�elds.

5.3 Optimization of the 2D compressor cas-

cade

In this section, the airfoil of the 2D compressor cascade as presented in sec-
tion 4.3 is optimized using NURBS curves parameterization. In this section,
two optimization cases are presented and compared. Case 1 is parameterized
using 61 CPs whereas Case 2 using 69 CPs in total, in order to recon�rm
the increase in PE value as CPs number increases, and its impact in the
optimization of the compressor airfoil. One may observe that the di�erence
in CPs number is relatively small. However due to the large deformation of
the airfoil during the optimization loop which causes the overlapping of the
CPs near the leading and trailing edges, various CPs a�ecting these regions
must be �xed. The two parameterizations are selected so that the same CPs
are �xed in each case, leading to a more fair comparison.
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The constraints applied in this application is the conservation of the airfoil's
total surface area and keeping �xed the �rst and last four CPs of each side in
order to maintain the desired shape continuity between the pressure and the
suction side. Moreover in order to maintain the turning of the airow between
the leading and the trailing edge of the compressor airfoil (thus the static
pressure increase), more CPs are kept �xed in those regions. Speci�cally,
the �rst ten and last eight CPs of the pressure side alongside the �rst four
and last nine CPs of the suction side are kept �xed during the optimization.
Considering that the �xed CPs have the greatest IPE values, the resulted PE
value of each case is expected to be signi�cantly reduced compared to those
presented in section 4.3.

The results of both cases are presented in Table 5.6 and Figure 5.19. Firstly, it
can be seen that due to the constraints applied, the initial PE values of both
cases are signi�cantly reduced. Furthermore,it is observed that, the total
pressure losses in Case 2 are lower compared to Case 1 by almost 0:09m2=s2,
which is only about 1%. Moreover, the reduction in the objective function
in Case 2 is greater compared to that of Case 1 (as Case 2 initial J value is
higher). The above results, indicate that the optimization of Case 2 is more
e�ective compared to that of Case 1.

Case No NCP Nb Jinit Jf inal Jnormal PE
Case 1 61 60 9.77798 9.59732 0.98152 0.05826
Case 2 69 76 9.78580 9.50924 0.97174 0.12675

Table 5.6: Compressor cascade optimization: Results of Cases 1 & 2.

Figure 5.19: Compressor cascade optimization: Objective function's values
during the optimization procedure of the blade airfoil.

The evolution of PE values during the optimization in both cases is presented
in Figure 5.20. PE values are computed for the 1st ; 3rd ; 6th and 10th optimiza-
tion cycles. It is observed that the PE value of Case 2 remains higher during
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the entire optimization. Moreover, in both cases the PE value is reduced
until the 6 th cycle, where the PE of Case 1 continues to decrease whereas,
the PE value of Case 2 has a minor improvement by the end of the 10th cycle.

Figure 5.20: Compressor cascade Optimization: Evolution of PE during the
optimization loop.

A comparison of the initial and optimized geometry of each case's compressor
airfoil is presented in �gure Figure 5.21. The blue/continues line refers to the
optimized geometries whereas the red/dashed line to the initial shape of each
case's airfoil. As it can be seen, the di�erences of the initial and optimized
shapes in both cases are minor.

The ow �elds of each case's initial(top) and �nal(bottom) geometry are
presented in Figure 5.22. In each �gure, the plots on the left refer to Case 1,
whereas the plots on the right to Case 2.

The only observable di�erence between each cases initial and �nal �elds is
the reduction of the area around the leading edge's where velocity is zero,
which may contribute to the reduction in total pressure losses for each case.
Furthermore, from Figure 5.22, the aforementioned area (of high pressure)
around the leading edge, it is observed that, it expands on the pressure side of
each of the optimized airfoils. The latter may also contribute to the reduction
of total pressure losses. To conclude, the geometrical di�erences between the
optimized airfoils of Cases 1 and 2 are very small, which reects also on their
ow �elds di�erences as well.
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Figure 5.21: Compressor cascade Optimization: Comparison of the opti-
mized and the initial shape of each blade airfoil.

Figure 5.22: Compressor cascade Optimization: Pressure �elds of Cases
1(left) and 2(right).



Chapter 6

Summary-Conclusions

6.1 Summary

The purpose of this diploma thesis was the formulation, implementation and
study of the PE as a metric to rate the optimization potential of a CAD
parameterization. Also, to investigate ways of implementing PE (in various
forms) in shape optimization, based in gradient-based methods, in CFD.

In this diploma thesis, the geometries were parameterized using, NURBS
curves, Bezier-Bernstein and volumetric B-splines parameterizations. NURBS
and Bezier-Bernstein curves parameterize only the contours of the geometry
to be optimized using a best-�t, that produces slightly di�erent geometries
compared to the original. On the contrary, volumetric B-splines parameter-
ize, the contours and the internal grid as well(enclosed within the morphing
box boundaries), producing the exact same shape as the original. These
parameterizations are all formulated by analytic mathematical expressions
that produce smooth shapes by de�nition. Thus, no smoothing algorithm is
required.

Initially, the PE was de�ned as the ratio of the CAD parameterization's per-
formance gains w.r.t. that of the NODAL's (this abbreviation stands for
the case the optimization controls all surface nodes one-by-one). The per-
formance gains expressions, are derived from the steepest descent de�nition.
For a fair comparison between the CAD and NODAL parameterization in
each case, an appropriate condition for the ratio of steepest descent steps
(� CAD , � NODAL ) is introduced.

For the PE study, three applications were introduced, an isolated airfoil, an
S-bend type duct and a 2D compressor cascade (optimization of a single
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blade airfoil using periodic BC). The objective in the isolated airfoil case was
drag, whereas for the other problems total pressure losses. The isolated airfoil
and the compressor blade airfoil were parameterized using NURBS curves,
whereas the S-bend duct using both Bezier-Bernstein curves and volumetric
B-splines.

The investigation of the PE behaviour was conducted through the studies of
chapter 4, where the PE value is computed for di�erent number of CPs and
di�erent parameterization methods.

The PE results were assessed by the optimization results through various
optimization loops for each application. During these loops, the PE was
computed for certain cycles in order to investigate its evolution during the
optimization. The optimization cases of the isolated airfoil were all con-
strained to retain the CL and the volume within in prede�ned bounds com-
pared to the initial one, and the produced airfoil to be trimmed(Cm � 0).
The optimization runs include cases using di�erent parameterizations and
cases utilizing only certain parameters as design variables. In addition, a
parametric study was conducted using di�erent numbers of Bezier CPs to
compute the PE values and optimize the S-bend duct, aiming to identify the
relationship of the PE with the optimization results. Moreover, in order to
compare the two parameterization methods used in the S-bend duct, four
optimization runs were carried out, each associated with di�erent PE values.
Also, two optimization runs were performed using only the x and y coordi-
nates of a certain parameterization. The optimization of the blade's airfoil
was done by utilizing two cases, parameterized with di�erent number of CPs,
falling under the same constraints. The most important constraint was to
maintain the turning angle of the velocity from the leading to the trailing
edge, in order to maintain pressure rise. Also the volume of the blade's airfoil
was maintained the same during the entire optimization loop of each case.

6.2 Results-Conclusions

Firstly, all parametric studies regarding the dependence of the PE value on
the number of CPs indicated that, as the CAD parameterization becomes
richer, the PE value is monotonically increasing, converging asymptotically
to a maximum value. Moreover, it is proved that, as the PE value increases,
optimization results are better.

The comparison of Bezier and volumetric B-splines parameterization of the
S-bend duct, proved that parameterizations with higher PE values provide
better optimization results, irrespective of the utilized parameterization.

Furthermore, the PE values during the optimization for NURBS and Bezier
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parameterizations are reduced as optimization goes on. On the contrary,
for the volumetric B-splines parameterizations, the PE values do not have a
monotonic behaviour.

Moreover, it can be concluded that the IPEs of the design variables can
be used to select the most e�ective design variables in an optimization run
which may produce a solution close to that obtained by using all the design
variables. However, by selecting a prede�ned number of parameters based
only on their IPE values, the resulted solution may di�er signi�cantly from
that of the initial parameterization. Thus, prior to the design variables se-
lection, the impact of a single design variable must be investigated by using
the percentage of its IPE value w.r.t. the IPE values sum.

To conclude, the PE can be used to assist designers to select appropriate
parameterizations prior to an optimization cycle. Also, it may be used to
compare the optimization potential between di�erent parameterizatios. Low
values of PE indicate that enrichment or even a re-parameterization may
be needed in order to achieve a decent optimization potential. However, in
certain cases where strict constraints are applied, and a signi�cant amount of
CPs are �xed, the PE values may obtain very small values, even when large
amount of CPs are used.

6.3 Future Work

ˆ So far, in the presented parametric studies, the PE was controlled man-
ually (by stopping the optimization loop, checking the value of the PE,
making some decision on how to continue etc). Findings of the work
should lead to some automatic actions within the optimization loop.
So, future work can be focused on when (within the optimization loop)
PE should be recomputed, how this piece of information can be used
to improve the loop, etc.

ˆ It will be extremely interesting the notion of the PE and the way this
a�ects the reduction in the number of design variables to be used in a
population-based stochastic optimization method, such as the EA. The
optimization cost when using the EA is proportional to the number of
design variables and their combinations. As a result, the reduction in
potential combinations may reduce the number of (CFD) evaluations
needed until reaching the optimized solution.
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Appendix A

Geometry and parameterization
generation

In this diploma-thesis, the geometries are parameterzed using NURBS curves
and volumetric B-splines on the pregenerated 2D grids of each application.
Prior to any elaboration in the parameterization procedure, a short reference
regarding the 2D grids used in this diploma thesis is considered to be useful.

A.1 NURBS curves parameterization

NURBS curves are de�ned as:

~ri =
NX

k=0

Bk;p (ui ) ~Rk (A.1)

Bk;p(ui ) =
Nk;p(ui )wk

P N
k=0 Nk;p(ui )wk

(A.2)

Where:

~ri is the i th node's x,y coordinates vector,i = 1; : : : ; Ns,

~Rk is the kth CP's, x,y coordinates vector,k = 0; : : : ; N ,

Nk;p are the pth degree B-splines basis functions,

wk is the kth CP's weight,

ui is the parametric coordinate of thei th node,u; 2 [0; 1].
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The parameterization is applied based on the selected patches, i.e. the pres-
sure and suction side of the airfoils or the upper and lower side of the duct.
Initially each curve is parameterized by the implementation of a best-�t al-
gorithm, given the desired number of CPs, the basis functions degree, the
weights of each CP, the Cartesian and parametric coordinates of each curve.

Prior to the CP coordinates approximation, the basis functions values are
computed for each node based on its parametric coordinate. Then, by using
the basis functions values and the Cartesian coordinates of each node, a
mathematical system is formulated based on eq.(A.1), which is solved using
the Newton-Raphson method to compute the CP's coordinates.

In general, the curves generated by the computed CP's coordinates, provide
an approximation to the original geometry. Thus, a grid displacement proce-
dure is performed to displace the internal grid nodes and make them match
those produced by the NURBS curves. As a result, the simulated geometry
is modi�ed compared to the original. However, for an adequate number of
CPs, the parameterized geometry approaches the original geometry with a
satisfactory accuracy.

A comparison between the parameterized and the original geometry of the
isolated airfoil can be made through Figure A.1 and Figure A.2. In both
�gures, only the suction side of the airfoil is displayed in a scale that makes
di�erences between the parameterized and the original airfoil visible. The
blue/continuous lines refer to the parameterized (�tted) curves, whereas the
red/dashed lines to the original curve. The curve of Figure A.1 is parame-
terized using 6 CPs whereas that of Figure A.2 using 8 CPs. In Figure A.1
the di�erences between the two curves are clear. On the contrary, this does
not happen in Figure A.2, where the parameterized geometry reproduces the
original with a decent accuracy.

The distribution of CPs for both parameterizations(6 CPs and 8 CPs) is
demonstrated in Figure A.3, with the blue/continuous lines representing the
6 CP and the red/dashed lines the 8 CP parameterization. One may observe
that the x coordinates of the �rst and second CPs of the 6CPs parameteriza-
tion are di�erent, which implicates that, in the airfoil application the leading
edge of the parameterized airfoil will not have a C1 continuity.
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Figure A.1: Comparison of the NURBS curve (produced by the best-�t) using
6CPs with the original curve.

Figure A.2: Comparison of the NURBS curve (produced by the best-�t) using
8CPs with the original curve.
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Figure A.3: CPs distribution of the two NURBS parameterizations using
6CPs and 8CPs.

A.2 Bezier parameterization

The Bezier curves form a speci�c expression of the NURBS when all the CPs
weights equal to 1 and the basis functions degree equal toN , whereN + 1
is the total number of CPs. For completeness purposes the mathematical
derivation of Bezier is presented in this section. Bezier curves are given by
the following formulas([14]) in vectorial form:

��!
r (ui ) =

NX

i =0

~̂rkB N
k (ui ) (A.3)

B N
k (ui ) =

�
N
k

�
uk

i (1 � ui )N � k (A.4)

�
N
k

�
=

N !
k!(N � k)!

(A.5)

where:

~̂rk is the vector containing thex; y, coordinates of thekth CP, k = 0; : : : ; N ,

ui is the i th node's parametric coordinate,
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~r (ui ) is the vector containing thex; y coordinates of thei th node.

An example of the Bezier parameterization is presented in Figure A.4, where
the upper side of the S-bend duct's curved section is parameterized using 14
CPs.

Figure A.4: Bezier parameterization of the S-bend ducts upper side.

A.2.1 Enrichment of Bezier curves

When the enrichment algorithm is implemented, the number of CPs used
to parameterize each curve is increased by one, producing the exact same
geometry(identical surface nodes). If more CP insertions are desired, the
enrichment algorithm must be implemented sequentially until reaching the
desired number of CPs. Obviously, the degree of basis function's polynomial
is also increased by one.

The enrichment is implemented using the equations given by [1], can be
written as follows:

~R0 = ~r0 (A.6)

~Rn =
n

N + 1
~rn� 1 + (1 �

n
N + 1

) ~rn ; for 1 � n � N; (A.7)

~RN +1 = ~rN (A.8)

where:
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n is a counter that takes values:n = 0; : : : ; N + 1

N + 1 is the total CPs number if the intial parameterization,

~Rn is the coordinates vector of the enriched parameterization'snth CP,

~rn is the coordinates vector of the initial parameterization'snth CP.

Two examples of the parameterization enrichment are presented in �gures
A.5 and A.6. In the �rst example (S-bend duct's upper side), the initial
parameterization consist of 7CPs. When the enrichment algorithm is imple-
mented, the same curve is reproduced using 8CPs. In the second example
(airfoil's suction side), the initial parameterization consists of 9 CPs. Af-
ter the execution of the enrichment algorithm the exact same geometry is
parameterized using 10CPs.

Figure A.5: Enrichment of the parameterization for the S-bend's upper side.
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Figure A.6: Enrichment of the parameterization for the airfoil's suction side.

A.3 Volumetric B-splines parameterization

In this diploma thesis, volumetric B-splines parameterization method is used
only in the S-bend duct's application. A morphing box is introduced which
is composed by the CPs grid, enclosing the boundaries of the geometry to be
optimized. The morphing box's CPs are distributed in x,y directions using
I + 1; J + 1 CPs respectively, equally spaced in each direction. The mathe-
matical derivation of the Volumetric B-splines as given by [15] is derived as
follows:

~xm (u; v; w) =
IX

i =0

JX

j =0

Ui;pu (u)Vj;pv (v)P ij (A.9)

where:

~xm (u; v) is the Cartesian coordinates vector of themth node,

~P ij is the ij th CP's Cartesian coordinates vector,

u; v, are the parametric coordinates of the grid nodes,

U; V are the B-splines basis functions (forx; y directions),

pu; pv are the basis functions degree forU; V basis functions respectively.
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Unlike the NURBS parameterization, the volumetric b-splines parameterize
all the internal grid's nodes located within the boundaries of the morphing
box where a direct relation exist between the (x; y) and (u; v) coordinates of
each node. Therefore, given the CPs and contour nodal coordinates and the
basis functions degrees, the parametric coordinates can be computed with
machine accuracy. Then, a non-linear system of two equations is formulated
for each node and solved with Newton-Raphson, which involves the actual
mth node's coordinates with those given by Equation A.9 as:

~Rm = ~xm (u; v) � ~xm;r (A.10)

Where:

~Rm is the residual of the equations (x; y) for each node,

~xm (u; v) is the volumetric b-splines equation of themth node,

~xm;r is the (xr ; yr ) coordinates vector of themth node.
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