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ΠΕΡΙΛΗΨΗ

Οι πρόσφατες εξελίξεις στον τομέα των υπηρεσιών εντοπισμού θέσης (GPS) και η
εξάπλωση των εφαρμογών της γεωπληροφορικής έχουν ως αποτέλεσμα τη δημιουργία
πληθώρας δεδομένων με τη μορφή ακολουθιών από σημεία ενδιαφέροντος, αξιοθέατα
κλπ. ΄Ενα σύνολο τέτοιων ακολουθιών το ονομάζουμε συλλογή διαδρομών. Σε πολλές
εφαρμογές οι συλλογές διαδρομών παρουσιάζουν ένα ενδιαφέρον χαρακτηριστικό: ενη-
μερώνονται συχνά είτε με την προσθήκη νέων διαδρομών, είτε με τη διαγραφή ή και την
επέκταση υπαρχόντων. Στα πλαίσια της διατριβής αυτής μελετάμε τρία προβλήματα στα
οποία μια τέτοια δυναμική συλλογή διαδρομών είναι διαθέσιμη και στόχος είναι η εύρεση
ενός μονοπατιού, δηλαδή μιας ακολουθίας σημείων, που να ικανοποιεί δοσμένους περι-
ορισμούς. Το πρώτο πρόβλημα αφορά σε μεγάλες συλλογές τουριστικών διαδρομών και
το ζητούμενο είναι η εύρεση ενός μονοπατιού που να συνδέει δύο αξιοθέατα ή σημεία
ενδιαφέροντος και να συνδυάζει σημεία αποκλειστικά από τις προτεινόμενες διαδρομές
της συλλογής. Το δεύτερο πρόβλημα απαντάται στον τομέα της παροχής υπηρεσιών
παραλαβής και παράδοσης πακέτων από εταιρίες ταχυμεταφορών. Μια τέτοια εταιρία
κατασκευάζει και διατηρεί καθημερινά μία συλλογή διαδρομών. Τα οχήματα του στόλου
της εταιρίας ακολουθούν αυτές τις διαδρομές για να εξυπηρετήσουν τα αιτήματα των
πελατών. Ωστόσο κατά τη διάρκεια της ημέρας νέα αιτήματα καταφθάνουν σε τυχαίες
χρονικές στιγμές και το ζητούμενο είναι να βρεθούν μονοπάτια που συνδυάζουν τις
υπάρχουσες διαδρομές για να παραληφθούν και να παραδοθούν τα νέα πακέτα με τη
μικρότερη αύξηση στα λειτουργικά έξοδα της εταιρίας. Τέλος, το τρίτο πρόβλημα
σχετίζεται με τη μετακίνηση στο οδικό δίκτυο μιας πόλης. Ας φανταστούμε μία ομάδα
οδηγών που καταγράφουν τις καθημερινές μετακινήσεις τους με το αυτοκίνητο στην
πόλη. Με αυτό τον τρόπο κατασκευάζεται μία συλλογή διαδρομών που ορίζει ένα
ασφαλή και έμπιστο τρόπο μετακίνησης, με άλλα λόγια ένα ‘γνωστό’ κομμάτι του
οδικού δικτύου. Γι΄ αυτό το λόγο κάθε φορά που ένας οδηγός θέλει να μεταβεί
από ένα σημείο της πόλης σε ένα άλλο συμβουλεύεται αυτήν τη συλλογή διαδρομών
και επιζητά ένα μονοπάτι ώστε να κινηθεί όσο το δυνατό περισσότερο στο ‘γνωστό’
κομμάτι του δικτύου αλλά ταυτόχρονα ο συνολικός χρόνος που θα χρειαστεί να μην
είναι μεγαλύτερος κατά ένα ποσοστό από τη διάρκεια του συντομότερου μονοπατιού.
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ABSTRACT

The recent advances in the infrastructure of Geographic Information Systems
(GIS), and the proliferation of the GPS technology, have resulted in the abundance
of geodata in the form of sequences of spatial locations representing points of interest
(POIs), landmarks, waypoints etc. We refer to a set of such sequences as route
collection. In many applications, the route collections are frequently updated as
new routes are continuously created and included, or existing ones are extended or
even deleted. This thesis studies three problems where given a frequently updated
route collection the goal is to find a path, i.e., a sequence of spatial locations, that
satisfies a number of constraints. According to the first problem a large collection of
touristic routes is available and the goal is find a path that connects two landmarks
through locations contained in the routes. Second, we focus on the pickup and
delivery problems that appear in various logistics and transportation scenarios. A
company that offers pickup and delivery services has already scheduled its fleet of
vehicles to follow a collection of routes for servicing a number of customer requests.
However during the day, new ad-hoc requests arrive at arbitrary times, and the
objective is to find sequences of locations from the vehicle routes, i.e., paths, for
picking up and delivering the new objects, and minimizing at the same time the
company’s expenses. Finally, we consider the problem of providing driving directions
from one location of a city to another. In this context a collection of vehicle routes
is constructed using everyday driving data on the road network of the city. This
collection provides a trusted and “familiar” way of driving through the city, in other
words it defines a “known” part of the city’s network. The drivers consult the
collection whenever they want to travel from one location to another, seeking for a
path such that they will drive as less time as possible outside the known part of the
road network without significantly increasing, at the same time, the total duration
of their journey compared to the fastest way, i.e., the shortest path.
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Chapter 1

Introduction

Nowadays, several applications involve storing and querying large volumes of data
sequences. For instance, the recent advances in the infrastructure of Geographic In-
formation Systems (GIS), and the proliferation of the GPS technology, have resulted
in the abundance of geodata in the form of sequences of spatial locations represent-
ing points of interest (POIs), waypoints etc. We refer to a set of such sequences as
route collection. The characteristics of a route collection vary with respect to the
application requirements and its context. In some cases, routes are the only type
of data available while in other cases, a graph, e.g., a road network, is primarily
available and the routes are created by means of traversing this graph. Further, in
some scenarios the routes are directly created and provided by the users whereas in
other cases, they are generated after preprocessing the available data. Finally, in
many applications, the route collections are frequently updated as new routes are
continuously created and included, or existing ones are extended or even deleted. In
the following we discuss three examples of route collections.

National Technical
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Academy

University
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ParliamentCathedral
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Entrance
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Zappeion

route r

route r

Figure 1.1: Two touristic routes in the city of Athens.

As a first example, consider people who visit Athens and use GPS-enabled de-
vices to track their sightseeing. At the end of each day or after they return back
home, they create routes through interesting places they visited, either manually,
or employing works like [74]. Figure 1.1 shows two touristic routes in Athens. The
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first, r1, starts from the National Technical University of Athens and ends at
the Museum of Acropolis. The second, r2, starts from the Omonia Square and
ends at the Acropolis Entrance. Web sites such as www.ShareMyRoutes.com and
www.TravelByGPS.com maintain a huge collection of routes, like the above, with
POIs from all over the world. These collections are frequently updated as users
continuously share new interesting routes.
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ra

rb

n9

n3

n4

n5

ns

ne

n1

n2

pickup

n6

n8

n7

delivery

Figure 1.2: A pickup and delivery scenario.

Another example of route collections appear in logistics and transportation sce-
narios, and particularly, in the context of pickup and delivery services offered by a
courier company. A transportation request is defined as picking up an object (e.g.,
package, person, etc.) from one location and delivering it to another; hence the
name. Given a set of customer requests, the company constructs a collection of
routes that will be followed by its vehicle fleet to pickup and deliver the objects.
However, during the day new ad-hoc requests arrive at arbitrary times and thus, the
company needs to update the existing vehicle routes in order to satisfy them. Fig-
ure 1.2 illustrates such a pickup and delivery scenario. The vehicles routes ra(n1, n2),
rb(n3, n4, n5, n6) and r3(n7, n8, n9) are already defined by the company when a new
customer request for picking up an object from location ns and delivering at ne,
arrives.

As a final example of route collections, consider a group of people that track
their every day movement with their cars. Given the road network of a city, the
movement of a vehicle is captured by a sequence of road intersections, in other words
by a route. Then, these people share their driving data and thus, a collection of
vehicle routes is defined. This route collection can be viewed as a trusted way of
driving through the city, which is frequently updated as people make their way to
previously unknown parts of the city or identify better ways for reaching already
known locations. The drivers consult this shared route collection whenever they
want to travel from one location of the city to another.
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1.1 Motivation

Given the availability of route collections such as the aforementioned, new challenges
in the field of answering path queries arise. First, it is interesting to examine whether
path queries traditionally related to graphs can be posed on route collections, and
even more importantly, if the evaluation of these queries can be enhanced by the
special characteristics of the routes. For instance, we could think a route as a set
of precomputed answers. Consider the collection of Figure 1.1. A fundamental
graph query we could pose on the route collection is the reachability query: “Is
there a sequence of interesting locations connecting Academy to Zappeion?”. The
answer to the reachability query is of course simply “yes” or “no” but this not the
case with the path query “Find a sequence of interesting locations from Academy to
Zappeion”. An answer to this query could be the sequence of locations or simply
the path: Academy, University of Athens (changing from r1 to r2 ), Parliament,
Zappeion. Note that a path query such as the latter is more general than the
reachability query since its answer for two locations ns and nt also determines that
nt is reachable from ns, while the converse does not hold.

A route collection can be trivially transformed to a graph; hence, path and
reachability queries can be evaluated using standard graph search techniques. Such
methods follow one of two paradigms. The first employs graph traversal methods,
such as depth-first search. The second compresses the graph’s transitive closure,
which contains reachability information, i.e., whether a path exists between any
pair of nodes. Both paradigms share their strengths and weaknesses. While the
latter techniques are the fastest, they are mostly suitable for datasets that are not
frequently updated, or when the updates are localized, since they require expensive
precomputation. On the other hand, the former are easily maintainable, but are
slow as they may visit a large part of the graph.

Another arising challenge is to formulate existing non-graph problems that in-
volve a route collection as path queries on the routes. To this end, we focus on pickup
and delivery problem and especially on its dynamic version. Consider the pickup and
delivery scenario in Figure 1.2. The problem of picking up a new object at location
ns and delivering it at ne can be formulated as a query seeking for a sequence of lo-
cations from the vehicle routes, i.e., a path, that minimizes the company’s expenses.
To identify this path, we may have to transfer the object of the request among the
company’s vehicles and in many cases extend the existing routes to pass through
the pickup and the delivery locations. For instance, as a possible solution to the
problem in Figure 1.2, the vehicle following ra makes a detour to pickup the object
at location ns. Then, the two vehicles following routes ra and rc make a detour at
locations n2 and n7, respectively, to reach a rendezvous location where the object
is transfered to the second vehicle. Finally, the vehicle on rc delivers the object
to its destination, ne, performing another detour at location n9. For most of the
works that target dynamic pickup and delivery problems, like the above, the rule of
thumb is to apply a two-phase local search algorithm to heuristically determine a
good request-to-vehicles assignment.

As a final challenge, even new graph queries inspired by the existence of a route
collection can be introduced. For example, consider the collection of vehicle routes
constructed using every day driving data in the road network of a city. The problem
of providing driving directions from one location of the city to another is a well-
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studied problem and usually it is solved as a shortest path problem. However, given
a share collection of vehicle routes and therefore, a trusted way of driving through
the city, we introduce a new path query that captures the actual way people drive
through a city. Particularly, people tend to follow roads they use in their every day
life or roads that have followed in the past. In addition, even when they want to
drive to a location for the first time, they usually ask their friends to recommend
a “good” and safe way. In other words, very often, a driver prefers a trusted and
familiar way for moving through a city over the fastest way. The answer to a query,
like the above, is a sequence of locations such that a driver will drive as mush
time as possible on road segments contained in the routes of the collection without
significantly increasing, at the same time, the total duration of his journey compared
to the fastest way, i.e., the shortest path.

This dissertation presents a framework for the evaluation of path queries over
route collections that are frequently updated. The framework involves a set of
algorithms for query evaluation and a set of indexing schemes on the routes. In
addition, appropriate updating procedures for these schemes are introduced.

1.2 Contributions

Based on the above observations, the contributions of this thesis include the follow-
ing:

1. We target path query evaluation on large disk resident route collections like
the ones containing touristic routes, that are frequently updated. The up-
dates involve additions and deletions of routes. Given two locations ns and
nt the path query, denoted by PATH, returns a sequence of locations contained
solely on the existing routes of the collection. We introduce two evaluation
paradigms that enjoy the benefits of search algorithms (i.e., fast index mainte-
nance) while utilizing transitivity information to terminate the search sooner.
In addition, efficient indexing schemes and appropriate updating procedures are
also introduced. The proposed framework, i.e., the indices and the traversal
policies, constitutes the basis for applying our work to other types of queries
under various constraints. An extensive experimental evaluation verifies the
advantages of our methods compared to conventional graph-based search. The
methodology discussed and the results obtained appear in [8, 12, 13, 14].

2. We formulate dynamic Pickup and Delivery with Transfers (dPDPT) as a path
problem. For this purpose, we introduce a conceptual graph, called dynamic
plan graph that captures all possible actions for picking an object and deliver-
ing it to the destination with respect to the existing vehicle routes. Then, we
define two cost metrics, termed operational and customer cost, that capture
both the company’s and the customer’s viewpoints of the problem, respec-
tively, and propose a methodology that identifies the solution computing the
shortest path on the dynamic plan graph with respect to these costs. An exten-
sive experimental analysis demonstrates that our method is significantly faster
than a two-phase local search method inspired by the related work, while the
quality of the solution is only marginally lower. The methodology discussed
and the results obtained appear in [9, 11].
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3. We introduce the Most Trusted Near Shortest Path (MTNSP) as a preferable
way of driving through a city when a collection of trusted vehicle routes is
available. For this purpose, we define the notion of the known graph as a
subgraph of the road network that is constructed merging the available trusted
routes. We also define two costs for a path between two locations on the road
network, measuring the total traveling time needed and the total time spent
outside the known graph. Finally, we propose a methodology for identifying
the path that has the lowest total time outside the known graph among the
paths with length, at most α times larger than the length of the shortest path,
as the answer to a MTNSP query. An extensive experimental analysis shows
the advantage of our methodology compared to a label-setting algorithm that
exploits the euclidean distance of the network intersections to prune its search
space. The methodology discussed and the results obtained appear in [10].

1.3 Outline

The remainder of this thesis is structured as follows.
Chapter 2 presents our framework for evaluating path queries on large disk res-

ident route collections that are frequently updated, and an extensive experimental
evaluation that compares our methods against conventional graph-based search.

Chapter 3 presents our methodology for solving the dynamic Pickup and Delivery
with Transfers as a shortest path problem, and an extensive experimental analysis
that compares our method against a two-phase local search method inspired by the
related work.

Chapter 4 presents our methodology for identifying the Most Trusted Near Short-
est Path, and an extensive experimental analysis that compares our methodology
against a label-setting algorithm which exploits the euclidean distance of the network
intersections to prune its search space.

Finally, Chapter 5 concludes the discussion of this thesis summarizing its con-
tributions, and presents possible extensions and ideas for future work.
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Chapter 2

Evaluating Path Queries

Given the availability of large route collections, the problem of identifying paths over
a route collection arises frequently. Assuming a route collection and two nodes, ns

and nt, the path query returns a path, i.e., a sequence of nodes, that connects ns

to nt. The path query is closely related to the reachability query, which is widely
studied in the literature. However, a path query identifies a path from ns to nt,
while a reachability query answers only if such a path exists. Thus, an answer to a
path query for nodes ns and nt provides an answer also to their reachability query,
while the converse does not hold.

This chapter targets path query evaluation on large disk resident route collections
that are frequently updated. Updates involve additions and deletions of routes. A
route collection can be trivially transformed to a graph; hence, path queries can
be evaluated using standard graph techniques. Such methods follow one of two
paradigms. The first employs graph traversal methods, such as depth-first search.
The second compresses the graph’s transitive closure, which contains reachability
information, i.e., whether a path exists between any pair of nodes. Both paradigms
share their strengths and weaknesses. While the latter techniques are the fastest,
they are mostly suitable for datasets that are not frequently updated, or when the
updates are localized, since they require expensive precomputation. On the other
hand, the former are easily maintainable, but are slow as they may visit a large part
of the graph.

Based on these observations, the contributions of our work in this chapter can
be summarized as follows:

(1) We propose two generic search-based paradigms that exploit transitivity in-
formation within the routes, and differ in their expansion phase. For each
route that contains the current search node, the route traversal search, ex-
pands the search considering all successor nodes in a route, while the link
traversal search considers only the next link, i.e., the next node shared with
another route. Both paradigms terminate when they reach a route that leads
to the target, and are faster than conventional search.

(2) We introduce two basic indexing schemes on a route collection. R-Index
associates every node with the routes that contain it, while T -Index captures
all possible transitions among routes.

(3) We present two algorithms that follow the route traversal paradigm. RTS

employs the R-Index of the route collection while RTST uses T -Index to
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achieve earlier termination of the search.

(4) We present three algorithms that follow the link traversal paradigm. LTS

employs an augmented variant of R-Index and features a similar termination
condition to RTS. Similarly, LTST has a stronger condition based on the
T -Index. The LTS-k algorithm forgoes the high storage and maintenance
cost of T -Index and features a tunable termination condition, which is at
least as strong as that of LTS and can become as strong as that of LTST.

(5) We discuss efficient maintenance techniques as routes are added and deleted
from the collection.

(6) We carry out a thorough experimental study demonstrating that the link
traversal search methods always outperform the route traversal ones and a
conventional graph traversal algorithm. Finally, among the link traversal
search methods, LTS-k is shown to offer the best trade-off between efficiency
and maintenance cost.

The remainder of this chapter is structured as follows. Section 2.1 reviews rele-
vant bibliography in detail. Section 2.2 formally defines the problem of evaluating
path queries over route collections. Section 2.3 discusses route traversal search,
and Section 2.4 introduces the link traversal search paradigm. Then, Section 2.5
discusses maintenance of the index structures under frequent updates of the route
collection. Finally, Section 2.6 demonstrates our experimental results and Section 2.7
concludes the chapter.

2.1 Related Work

Techniques for evaluating path/reachability queries follow two paradigms: (1) search-
ing, and (2) encoding the graph’s transitive closure (TC). Searching methods deal
with path queries, while TC methods primarily target reachability queries. As we
discuss next, some of the TC techniques can be extended to evaluate path queries.
Table 2.1 summarizes the related work in terms of the: (1) graph type supported,
(2) support for reachability query, (3) support for path query, and (4) capacity to
handle updates.

Searching. The simplest way to evaluate path queries is to traverse the graph
at query time exploiting a search algorithm, e.g., depth-first or breadth-first search
[27]. This approach has minimum space requirements, since it only needs to store the
adjacency lists of the graph. In addition, the adjacency lists can be easily updated.
On the other hand, in the worst case, it may need to visit all nodes of the graph to
answer a query.

Encoding the TC. The transitive closure (TC) of a graph G(N,E) is the graph
G∗(N,E∗), where an edge (ni, nj) is in E∗ if a path from ni to nj exists in G. Using
TC a reachability query can be answered in constant time. However, even though
efficient algorithms for computing the TC have been proposed, e.g., [2, 50, 39],
the computation and storage cost are prohibitive for large disk-resident graphs.
Therefore, various methods compress the TC.
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category method graph reachability path maintenance

type query query

searching depth/breadth-first all types yes yes update adjacency
search [27] lists

TC encoding

2-hop [22, 23] all types, yes by including not discussed
but small first-edge

HOPI [64, 65] all types yes partially based on
method of [64]

geometric [20] and
graph partitioning DAG yes not discussed not discussed
2-hop [21]
updatable 2-hop [15] DAG yes not discussed based on

node-separation
3-hop [40] DAG yes not discussed not discussed
interval labelling [1] DAG yes by computing gaps in postorder

ancestors numbers
dual labeling [72] DAG yes not discussed not discussed
GRIPP [71] all types yes by computing not discussed

descendants
path-cover [41] DAG yes not discussed not discussed

Table 2.1: Summary of related work on handling reachability and path queries on graphs.

2-hop [22, 23] identifies a set of nodes, called centers, that best capture the
reachability information of a graph as intermediates. Thus, for each node n, the
method constructs a list Lin[n] with the centers that can reach n and another Lout[n]
with those reachable from n. To determine the existence of a path from ns to nt,
it checks if Lout[ns] and Lin[nt] have a common center. To identify the path, along
with the center nc, the first node in the path from n (resp. nc) to nc (resp. n) must
also be stored.

Computing the optimal 2-hop scheme is NP-hard. The work in [22] and [23]
presents an approximation algorithm based on set covering [43] that constructs a
2-hop scheme larger by a logarithmic O(log|N |) factor than the optimal one, but
it still requires the computation of the TC. Therefore, this approach cannot be
applied to large graphs. In addition, the work does not handle frequent updates.
Compared to 2-hop our methodology is less efficient in evaluating path queries, but
is significantly cheaper to construct and maintain.

HOPI [64, 65] reduces the construction time of 2-hop by exploiting graph par-
titioning. This approach works well for forests with few connections between the
different sub-graphs, e.g., collections of XML documents. Updates are handled
by applying the construction method of [64]. HOPI is able to find elements, e.g.,
book, citation, author, in an XML document that match XPath expressions, e.g.,
//book//citation//author (where “//” is the ancestor-descendant operator). How-
ever, the focus of the work is to identify these elements and not detect the full path
on the XML documents that contains them.

There is a number of works that transform the input graph to a DAG by replacing
each strongly connected component with a super node. For example, [20] proposes
a geometric-based method and [21] another one based on graph partitioning for the
efficient construction of 2-hop. [40] proposes the 3-hop indexing scheme. The basic
idea is to use a chain of nodes, instead of a single node, to encode the reachability
information. [1] proposes a labeling scheme that assigns to each node a sequence of
intervals, based on the postorder traversing of graph’s spanning tree. Updates are
handled by leaving gaps in postorder numbers. Although not discussed, path queries
can be answered on the DAG by computing the ancestors of the target node. The
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idea in [41] is to partition the graph into a set of paths and then use the path-tree
cover, instead of assigning the intervals based on the graph’s spanning tree. [72]
proposes dual-labeling for sparse graphs. [15] introduces the updatable 2-hop based
on the node-separation property.

All the above techniques cannot evaluate path queries as the initial graph is
collapsed. On the other hand, the GRIPP scheme [71] for graphs (not only DAGs)
assigns to each node an interval label. Although not discussed, path queries can be
answered by finding the descendants of the source node of the query. However, [71]
does not handle frequent updates.

2.2 Problem Definition

This section formally defines the path query and introduces the basic notation that
will be used in the rest of the chapter.

Let N denote a set of nodes, e.g., POIs, waypoints, etc.

Definition 2.1 (Route). A route r(n1, . . . , nk) over N is a sequence of distinct
nodes (n1, . . . , nk) ∈ N .

We denote the set of nodes in a route r as nodes(r), and its length as Lr =
|nodes(r)|.

Definition 2.2 (Route collection). A route collection R over N is a set of routes
{r1, . . . , rm} over N .

We denote all nodes in a route collection as nodes(R).

Definition 2.3 (Link). A node in nodes(R) is called link if it is contained in at
least two routes in R.

Example 2.1. Figure 2.1(a) illustrates a route collection R = {r1, r2, r3, r4, r5}.
Nodes a, b, c, d, f, s, t are links.

(a) Route collection R (b) Routes graph GR

Figure 2.1: A route collection R, an answer to PATH(s, t), and routes graph GR.

Definition 2.4 (Path). A path on a route collection R is a sequence of distinct nodes
(n1, . . . , nk) ∈ nodes(R), such that for every pair of consecutive nodes (ni, ni+1), ni+1

is the immediate successor of ni in some route of R.
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Note that a path may involve parts of routes from R.

Definition 2.5 (PATH query). Let R be a route collection, and ns and nt be two
nodes in nodes(R). The path query PATH(ns, nt) returns a path from ns to nt on R.

Example 2.2. Consider the route collection in Figure 2.1(a). Path (s, w, a, c, d, f,
y, t) is an answer to query PATH(s, t), constructed by (1) visiting the nodes w and a
after s in r3, then, (2) using link a to change from route r3 to r2 and visit c and d,
and finally, (3) using link d to change from route r2 to r1, and visit f , y and the
target t.

A route collection R can be easily mapped to a graph by merging all routes in
R.

Definition 2.6 (Routes graph). The routes graph of a route collection R is a labeled
directed graph GR(N,E), where N = nodes(R), and an edge (ni, nj, rk) ∈ E if there
exists a route rk ∈ R with nj immediately after ni.

Example 2.3. The collection R in Figure 2.1(a) is mapped to routes graph GR in
Figure 2.1(b). The different line styles of the edges denote the five routes in R.

Storing the route identifiers as labels is necessary to handle deletions. Therefore,
multiple edges between two nodes may exist, e.g., (t, s, r1) and (t, s, r5) in Exam-
ple 2.3. Note that connectivity from t to s is only lost when both routes are removed
from the collection.

2.3 Route Traversal Search

Section 2.3.1 presents the R-Index on route collections and details the RTS algo-
rithm. Section 2.3.2 outlines the RTST algorithm that additionally exploits infor-
mation about the transitions among routes stored in the T -Index structure. Sec-
tion 2.3.3 presents a detailed complexity analysis.

2.3.1 The RTS algorithm

The Route Traversal Search (RTS) algorithm has the following key features. First, it
traverses nodes in a manner similar to depth-first search. However, when expanding
the current search node nq, RTS considers all successor nodes for each route that
includes nq. Second, it employs a termination check, based on the reachability
information within the routes, to considerably shorten the search. Both principles
depend on the inverted file R-Index on the route collection which associates a node
with the routes that contain it.

Definition 2.7 (R-Index). Given a route collection R and a node ni ∈ nodes(R),
routes[ni] is the ordered list of 〈rj : oij〉 entries for all routes rj that include ni at
their oij-th position, sorted on the route identifier rj. R-Index contains the lists
routes[ni] for all ni ∈ nodes(R).

Example 2.4. Table 2.2 illustrates the R-Index for the routes shown in Fig-
ure 2.1(a).
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node routes[] list

a 〈r2 :3〉, 〈r3 :3〉
b 〈r2 :2〉, 〈r4 :1〉
c 〈r2 :4〉, 〈r4 :3〉
d 〈r1 :1〉, 〈r2 :5〉
f 〈r1 :2〉, 〈r4 :4〉
g 〈r3 :4〉
s 〈r1 :5〉, 〈r3 :1〉, 〈r5 :2〉
t 〈r1 :4〉, 〈r5 :1〉
v 〈r2 :1〉
w 〈r3 :2〉
x 〈r2 :6〉
y 〈r1 :3〉
z 〈r4 :2〉

Table 2.2: The R-Index for the route collection R.

Algorithm RTS

Input: nodes ns and nt of a route collection R, R-Index
Output: a path from ns to nt

Parameters:

stack Q: // the search stack
set H: // contains all nodes pushed in Q
set A: // contains the direct ancestor of each node in H

Method:

1. push ns to Q;

2. insert ns in H

3. while Q is not empty do

4. pop nq from Q; // pop current search node nq

5. if there is a route rc ∈ R containing nq before nt then

return ConstructPath(ns, nq, nt,A, rc);

6. for each entry 〈ri :oqi〉 in routes[nq] do

7. let nr be the node after nq in ri;

8. while nr /∈ H do // access each node nr after nq

// in r until the first nr node

// contained in H

9. push nr to Q;

10. insert nr in H;

11. insert 〈n−
r , nr〉 in A; // where n−

r is the direct

// ancestor of nr in ri
12. let nr be the next node in ri;

13. end while

14. end for

15. end while

16. return null;

Figure 2.2: The RTS algorithm.

Figure 2.2 illustrates the pseudocode of the RTS algorithm. The algorithm takes
as inputs: a route collection R, the R-Index, the source ns and target node nt and
returns a path from ns to nt, if one exists, or null otherwise. The algorithm uses the
following data structures: (1) a search stack Q, (2) a history set H, which contains
all nodes that have been pushed in Q, and (3) an ancestor set A, which stores the
direct ancestor of each node in Q. H is used to avoid cycles during the traversal,
and A to extract answer paths. Note that RTS visits each node once and, thus,
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there is a single entry per node in A.

RTS proceeds similarly to depth-first search. Initially, the stack Q and H con-
tain source node ns, while A is empty (Lines 1–2). Then, the algorithm proceeds
examining the contents of the stack (Lines 3–15). At each iteration, RTS pops a
single node nq from Q on Line 4, and then, it checks the termination condition on
Line 5. The algorithm terminates when there exists a route rc that contains both
nq and target nt, such that nt comes after nq. Specifically, to check if the above
condition holds, RTS looks for entries 〈rc : oqc〉 and 〈rc : otc〉 in lists routes[nq] and
routes[nt] of R-Index respectively, such that oqc < otc. The procedure is similar to a
merge-join, as both routes[nq] and routes[nt] lists are sorted by the route identifier,
that finishes when a common route rc is found.

If such a common route rc is identified, the search terminates and the answer
path is extracted by the ConstructPath procedure. Specifically, starting from nq,
ConstructPath uses the ancestor information of A to backtrack to source ns con-
structing (ns, . . . , nq) path. Then, it concatenates path (ns, . . . , nq) with the part of
route rc from nq up to nt. During concatenation, the procedure ensures that each
node is contained only once in the answer path.

If a common route rc is not found, RTS expands the search retrieving routes[nq]
and considering all routes that contain nq (Lines 6–14). For each such route ri and
for each node nr after nq in ri that is not in H (i.e., it has never been pushed in Q)
the algorithm performs the following tasks. Node nr is pushed in Q and inserted in
H. In addition, the entry 〈n−

r , nr〉, where n−
r is the direct ancestor of nr in route ri,

is inserted in A. The fact that only new nodes are inserted in Q, ensures that RTS
avoids cycles.

Example 2.5. We illustrate the RTS algorithm for the PATH(s, t) query on the route
collection of Figure 2.1(a) using the R-Index presented in Table 2.2. Initially, we
have: Q = {s}, H = {s} and A = {}. At the first iteration, RTS pops s from Q and
checks for termination joining lists routes[s] = {〈r1 : 5〉, 〈r3 : 1〉, 〈r5 : 2〉} of current
search node s with routes[t] = {〈r1 : 4〉, 〈r5 : 1〉} of target t. The join identifies
common route entries, i.e., r1 and r5, but in both cases s is after t and therefore,
RTS needs to further search the collection.

Node s is contained in routes r1, r3 and r5. When processing r1(d, f, y, t, s) and
r5(t, s), the algorithm does not add anything to Q, H and A since there are no nodes
after s. When processing r3(s, w, a, g), the algorithm adds to Q and H, nodes w, a
and g, and to A, pairs 〈s, w〉, 〈w, a〉 and 〈a, g〉. After the fourth iteration, we have

Q = {w, c, d},

H = {s, w, a, g, c, d, x} and

A = {〈s, w〉, 〈w, a〉, 〈a, g〉, 〈a, c〉, 〈c, d〉, 〈d, x〉}.

At the fifth iteration, d is popped. Then, RTS joins lists routes[d] = {〈r1 :1〉, 〈r2 :
5〉} with routes[t] = {〈r1 : 4〉, 〈r5 : 1〉} and identifies entries 〈r1 : 1〉, 〈r1 : 4〉 in the
common route r1. Since in r1, d is before t, the search terminates successfully. The
answer path (s, w, a, c, d, f, y, t) is the concatenation of (s, w, a, c, d) (the path from
s to current search node d, constructed using A) and (d, f, y, t) (the part of r1 that
connects d to target t).
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route trans[] list of route in GT

r1 〈r2, d :1 :5〉, 〈r3, s :5 :1〉, 〈r4, f :2 :4〉, 〈r5, t :4 :1〉, 〈r5, s :5 :2〉
r2 〈r1, d :5 :1〉, 〈r3, a :3 :3〉, 〈r4, b :2 :1〉, 〈r4, c :4 :3〉
r3 〈r1, s :1 :5〉, 〈r2, a :3 :3〉, 〈r5, s :1 :2〉
r4 〈r1, f :4 :2〉, 〈r2, b :1 :2〉, 〈r2, c :3 :4〉
r5 〈r1, t :1 :4〉, 〈r1, s :2 :5〉, 〈r3, s :2 :1〉

Table 2.3: T -Index for the transition graph of Figure 2.3.

2.3.2 The RTST algorithm

RTST expands the search similar to RTS, but employs a stronger termination check
based on the transitions between routes. This additional reachability information is
modeled by the transition graph GT , and is explicitly materialized in the T -Index
structure.

Definition 2.8 (Transition graph). The transition graph of a route collection R is
a labeled undirected graph GT (R,ET ), where its vertices are the routes in R, and a
labeled edge (ri, rj, nℓ) exists in ET if ri and rj share a link node nℓ.

Intuitively, an edge (ri, rj , nℓ) in the GT denotes that all nodes in ri before link
nℓ can reach those after nℓ in rj, and vice versa, i.e., all nodes in rj before nℓ can
reach those after nℓ in ri.

Example 2.6. Figure 2.3 illustrates the transition graph for the route collection of
Figure 2.1(a).

r1 (d, f, y, t, s)
r2 (v, b, a, c, d, x)
r3 (s, w, a, g)
r4 (b, z, c, f)
r5 (t, s)

Figure 2.3: Transition graph for the route collection R.

The transition graph is stored in a modified adjacency list representation denoted
as T -Index.

Definition 2.9 (T -Index). Given a route collection R, for each route ri ∈ R,
trans[ri] is the ordered list of 〈rj, nℓ :oℓi :oℓj〉 entries for all (ri, rj , nℓ) edges of GT ,
where oℓi and oℓj denote the position of the link nℓ in routes ri and rj, respectively.
The entries are sorted on the route identifier rj solving ties with oℓi. T -Index
contains the lists trans[ri] for all routes ri ∈ R.

Example 2.7. Table 2.3 illustrates the T -Index for the GT graph presented in
Figure 2.3.
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Algorithm RTST

Input: nodes ns and nt of a route collection R, R-Index, T -Index
Output: a path from ns to nt

Parameters:

stack Q: // the search stack
set H: // contains all nodes pushed in Q
set A: // contains the direct ancestor of each node in H

Method:

1. push ns to Q;

2. insert ns in H

3. insert 〈ns,∅〉 in A;

4. while Q is not empty do

5. pop nq from Q;

6. for each entry 〈ri :oqi〉 in routes[nq] do

7. if there is an edge (ri, rj , nℓ) in GT such that rj contains nt before link nℓ and ri contains nℓ after nq then

return ConstructPath(ns, nq , nt,A, ri :oℓi, rj :oℓj);

8. let nr be the node after nq in ri;

9. while nr /∈ H do // access each node nr after nq

// in r until the first nr node

// contained in H

10. push nr to Q;

11. insert nr in H;

12. insert 〈n−
r , nr〉 in A; // where n−

r is the direct

// ancestor of nr in ri
13. let nr be the next node in ri;

14. end while

15. end for

16. end while

17. return null;

Figure 2.4: The RTST algorithm.

Figure 2.4 illustrates the pseudocode of the RTST algorithm. RTST proceeds
similar to RTS, but involves a different termination check on Line 7. For each route
ri that contains the current search node nq, it checks if there exists an edge (ri, rj, nℓ)
in GT such that rj contains target nt, link nℓ is after nq in ri, and nℓ is before nt in
rj.

If the above hold, then a path from nq to target nt via link nℓ exists, and thus a
path from source ns to nt can be found using ConstructPath. To perform this check
RTST scans lists trans[ri] and routes[nt] from T -Index and R-Index, respectively,
similar to a merge-join as both lists are sorted on the route identifier. The scan
terminates when entries 〈rj , nℓ :oℓi :oℓj〉 of trans[ri] and 〈rj :otj〉 of routes[nt] match,
i.e., when the following conditions are satisfied:

(1) the entries correspond to the same route rj,

(2) ri contains link nℓ after nq, i.e., oℓi > oqi, and

(3) rj contains nℓ before nt, i.e., oℓj < otj

Finally, note that compared to RTS, ConstructPath for RTST also requires routes
ri, rj and the positions of the via-link oℓi, oℓj in them, so as to compose the answer
path.

Example 2.8. Consider query PATH(s, t) on the route collection in Figure 2.1(a)
indexed by the R-Index of Table 2.2 and T -Index of Table 2.3. The first two
iterations of the RTST algorithm are identical to those of RTS in Example 2.5.
Then, the third iteration processes a. According to R-Index, a is contained in
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routes r2(v, b, a, c, d, x) and r3(s, w, a, g). To check the termination condition for r2,
RTST joins list trans[r2] of T -Index with routes[t] of R-Index. This results in the
common route r1 (condition (1)) with link d of (r2, r1, d) edge contained after a in
r2 (condition (2)) and before target t in r1 (condition (3)). Thus, the answer path
is (s, w, a, c, d, f, y, t).

2.3.3 Complexity analysis

Given a route collection R, let |R| denote the number of routes, |N | = nodes(R)
the number of distinct nodes, and Lr the length of a route, assuming all routes have
equal length. In the following , we assume that a disk page can store BN nodes, BR

routes[] entries, and BT trans[] entries.

R-Index. The R-Index structure contains an entry for each node in every route,

for a total of |R| · Lr entries. Therefore, it occupies O
(

|R|·Lr

BR

)

pages. For the

construction of R-Index, the entire collection must be accessed at a cost of O( |R|·Lr

BN
)

I/Os, while the index must be stored at a cost of O
(

|R|·Lr

BR

)

I/Os. An important

factor in the performance of the algorithms is the size, in terms of entries, |routes[]|
of a R-Index list. In the average case, each list has the same number of entries, i.e.,

O
(

|R|·Lr

|N |

)

. In the worst case, a node can be contained in all routes, i.e., the routes[]

list has O (|R|) entries. In the sequel, we assume the average case holds.

T -Index. Consider the routes[ni] list that contains an entry for each route ni

belongs to. This node contributes O(|routes[ni]|
2) pairs of intersecting routes, and

thus as many T -Index entries. Consequently, the total number of entries in T -Index

is O
(

|R|2·L2
r

|N |

)

, while each list contains O
(

|R|·L2
r

|N |

)

entries on average. The T -Index

occupies O
(

|R|2·L2
r

|N |·BT

)

pages. Its construction requires accessing the entire R-Index

for a cost of O
(

|R|·Lr

BR

)

I/Os, and writing the index on disk for O
(

|R|2·L2
r

|N |·BT

)

I/Os.

RTS and RTST. At each iteration, after node nq is popped, RTS and RTST perform
two tasks. The first is to insert new nodes in the search stack and is common in
both methods. This task requires retrieving the entire list routes[nq] at a cost of

O
(

|R|·Lr

|N |·BR

)

I/Os, and then retrieving all routes contained in routes[nq] for a cost of

O
(

|R|·Lr

|N | · Lr

BN

)

I/Os.

The second task is the termination condition. RTS and RTST need to retrieve the
routes[nt] list of the target incurring O

(

|R|·Lr

|N |·BR

)

I/Os. RTST additionally retrieves

the trans[ri] list of T -Index for each route ri contained in routes[nq], at a cost of

O
(

|R|·Lr

|N |
· |R|·L2

r

|N |·BT

)

I/Os.

Aggregating for |N | nodes in the worst case scenario, RTS needs O
(

|R|·Lr

BR
+ |R|·L2

r

BN

)

I/Os and RTST requires O
(

|R|·Lr

BR
+ |R|·L2

r

BN
+ |R|2·L3

r

|N |·BT

)

I/Os.
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2.4 Link Traversal Search

Section 2.4.1 discusses the shortcomings of the algorithms in Section 2.3, and pro-
poses the link traversal search paradigm that overcomes them. Then, Sections 2.4.2,
2.4.3, 2.4.4 present three novel methods based on this paradigm. Section 2.4.5 dis-
cusses their complexity.

2.4.1 The link traversal search paradigm

Although the algorithms of Section 2.3 perform fewer iterations than conventional
depth-first search on the route collection graph GR, they share three shortcomings.
First, they perform redundant iterations by visiting non-links. To understand this,
consider that the current search node nq is not a link and belongs to a single route
ri. Further, assume that the algorithm has visited nℓ, which is the link immediately
before nq. Observe that if the termination condition does not hold at nℓ, then it
neither holds at nq. To make matters worse, retrieving routes[nq] is pointless as it
contains a single route ri in which all nodes after nq are already in the stack.

The second shortcoming is that the termination check is expensive. For cur-
rent search node nq, recall that both RTS and RTST retrieve lists routes[nq] and
routes[nt] from R-Index, while RTST additionally retrieves all lists trans[ri] from
T -Index for each ri included in routes[nq]. This cost is amplified by the number of
iterations, as the algorithms perform the check for every node popped.

The final shortcoming is due to the traversal policy. For each route that the cur-
rent search node belongs to, the algorithms insert into the stack route subsequences
that contain a very large number of nodes. This increases the space requirements
of Q (and consequently of sets H, A). More importantly, however, some of these
nodes may never be visited, which results to redundant I/Os incurred to retrieve
them.

The next subsections introduce three methods, LTS, LTST and LTS-k, that follow
the link traversal search paradigm. To deal with the first shortcoming, all algorithms
avoid visiting non-link nodes and conceptually traverse the reduced routes graph
G−

R(N
−, E−) of the route collection, where N− ⊆ nodes(R) contains all links, and

E− contains all labeled directed edges (ni, nj, rk) such that there exists a route
rk ∈ R in which nj is the link immediately following ni. Note that G−

R is not
explicitly materialized, and is introduced to better illustrate the link traversal search
paradigm. For example, Figure 2.5 shows the reduced routes graph G−

R for the
collection R of Figure 2.1(a). Observe the differences between GR in Figure 2.1(b)
and the reduced routes graph G−

R.
In the sequel, we assume that the source and target nodes are always links.

Otherwise, we set as source (resp. target) the link immediately following (resp.
preceding) it; if no such link exists, then no path can be found. 1 Under this
assumption, a PATH(ns, nt) query on R is equivalent to finding a path from ns to nt

in G−
R, and replacing each (ni, nj , rk) edge in the answer, with the subsequence from

ni to nj of route rk.
To tackle the second shortcoming, the algorithms reduce the cost of the termina-

tion check by precomputing a target list of routes, and checking if the current search

1A special case arises when both ns and nt are in the same route and no link between them
exists.
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r1 (d, f, y, t, s)
r2 (v, b, a, c, d, x)
r3 (s, w, a, g)
r4 (b, z, c, f)
r5 (t, s)

Figure 2.5: Reduced routes graph for the route collection R.

node belongs in one of them. This eliminates the recurring I/Os for the check, at
the expense of a pre-processing cost for assembling the target list. Regarding the
third shortcoming, the traversal policy of the new paradigm dictates that at each
iteration only the links immediately after the current search node are inserted in the
stack, exactly like a depth-first search on G−

R.

2.4.2 The LTS algorithm

The Link Traversal Search (LTS) algorithm features a termination condition equiv-
alent to that of RTS: the search stops as soon as LTS visits a node (link) that lies
on the same route with the target. To traverse the routes and check for termi-
nation, the algorithm employs an augmented inverted file on the route collections,
termed R-Index+, which associates a node with the routes that contain it and the
immediately following link.

Definition 2.10 (R-Index+). Given a route collection R and a node ni ∈ nodes(R),
routes+[ni] is the ordered list of 〈rj :oij , n

+
i 〉 entries for all routes rj that include ni

at their oij-th position, where n+
i is the link immediately following ni in rj if one

exists, or ∅ otherwise. The entries are sorted on the route identifier rj. R-Index+

contains the lists routes+[ni] for all ni ∈ nodes(R).

Example 2.9. Table 2.4 illustrates the R-Index+ for the routes shown in Fig-
ure 2.1(a).

Note that the R-Index+ contains lists for non-link nodes as well, so that a link
immediately following a non-link source or immediately preceding a non-link target
can be identified, as discussed in Section 2.4.1.

Figure 2.6 presents the pseudocode of the LTS algorithm for evaluating a PATH(ns,
nt) query. Similar to RTS, it uses stack Q, and sets H and A. Initially, Q contains
the source ns (Line 1). LTS constructs a target list T that contains entries 〈ri :oti〉
for all routes that contain the target nt (Lines 3–5). Then, LTS proceeds iteratively
(Lines 6–16) until Q is depleted. At each iteration, assuming the current search link
popped from the stack is nq (Line 7), LTS examines each entry of routes+[nq] (Lines
8–15).

The algorithm terminates if there exists an entry in T indicating that nq lies
before nt on a common route (Line 9), a condition which is identical to that of
RTS. In that case, ConstructPath composes an answer path using the information
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node routes+[] list

a 〈r2 :3, c〉, 〈r3 :3,∅〉
b 〈r2 :2, a〉, 〈r4 :1, c〉
c 〈r2 :4, d〉, 〈r4 :3, f〉
d 〈r1 :1, f〉, 〈r2 :5,∅〉
f 〈r1 :2, t〉, 〈r4 :4,∅〉
g 〈r3 :4,∅〉

s
〈r1 :5,∅〉, 〈r3 :1, a〉,
〈r5 :2,∅〉

t 〈r1 :4, s〉, 〈r5 :1, s〉
v 〈r2 :1, b〉
w 〈r3 :2, a〉
x 〈r2 :6,∅〉
y 〈r1 :3, t〉
z 〈r4 :2, c〉

Table 2.4: The R-Index+ for the route collection R.

Algorithm LTS

Input: ns, nt, R-Index+

Output: a path from ns to nt if it exists, null otherwise
Parameters:

stack Q: the search stack
set H: contains all nodes pushed in Q
set A: contains the direct ancestor link of each node in H
list T : stores all routes that contain target nt

Method:

1. push ns to Q;

2. insert ns in H;

3. for each entry 〈ri :oti, n
+
t 〉 in routes+[nt] do

4. insert 〈ri :oti〉 in T ;

5. end for

6. while Q is not empty do

7. pop nq from Q;

8. for each entry 〈ri :oqi, n
+
q 〉 in routes+[nq] do

9. if there is an entry 〈ri :oti〉 in T such that oqi<oti then

return ConstructPath(ns, nq , nt,A, ri :oti);

10. if n+
q /∈ H then

11. push n+
q to Q;

12. insert n+
q in H;

13. insert 〈nq :ri :oqi, n
+
q 〉 in A;

14. end if

15. end for

16. end while

17. return null;

Figure 2.6: The LTS algorithm.

in A. Otherwise, if the next link node n+
q has not been previously visited, it is

pushed in the stack and in H. Further, the entry 〈nq : ri : oqi, n
+
q 〉 is inserted in A

indicating that n+
q is reached from nq following route ri. The position oqi is used

by ConstructPath to quickly identify the subroute of ri between links nq and n+
q if

required, as explained in Section 2.4.1.

Example 2.10. We illustrate LTS for PATH(s, t) using the R-Index+ of Table 2.4.
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Initially, LTS accesses routes+[t] and constructs the target list T = {〈r1 :4〉, 〈r5 :1〉}.
At the first iteration, LTS pops s from Q and retrieves list routes+[s] that con-

tains three entries. The termination check (Line 9) for entries 〈r1 : 5,∅〉 and
〈r5 : 2,∅〉 fails, since the entries about r1 and r5 in T does not match (s is not
before t). Q, H and A do not change as there is no link after s in r1 and r5. The
check for 〈r3 : 1, a〉 also fails as there is no entry for r3 in T . LTS inserts the link
a into Q and H, and the pair 〈s : r3 : 1, a〉 into A, and thus: Q = {a}, H = {s, a},
and A = {〈s :r3 :1, a〉}.

LTS proceeds expanding a and then c. After the third iteration we have:

Q = {d, f},

H = {s, a, c, d, f}, and

A = {〈s :r3 :1, a〉, 〈a :r2 :3, c〉, 〈c :r2 :4, d〉, 〈c :r4 :3, f〉}.

At the next iteration, f is popped and LTS retrieves list routes+[f ]. The entry
〈r1 :2, t〉 matches the corresponding 〈r1 :4〉 in T , since route r1 contains the current
search node f before target t. Thus, LTS terminates the search and uses A to identify
a sequence of links (〈s :r3 :1〉, 〈a :r3 :∗〉, 〈a :r2 :3〉, 〈c :r2 :∗〉, 〈c :r4 :3〉, 〈f :r4 :∗〉, 〈f :r1 :
2〉, 〈t :r1 : 4〉) that leads to the target. 〈a :r2 : 3〉 denotes that a is at position 3 in r2;
the symbol ∗ implies that the position can be inferred. After retrieving the required
parts of these routes, the path (s, w, a, c, f, y, t) is constructed.

2.4.3 The LTST algorithm

The Link Traversal Search with Transitions (LTST) algorithm enforces a stronger
termination check than LTS using the transition graph of the route collection. In
particular, the LTST algorithm, similar to RTST, finishes when it reaches a node
that is closer than two routes away from the target. To achieve this, LTST uses
information from the T -Index, discussed in Section 2.3.2.

Figure 2.7 presents the pseudocode of the LTST algorithm, which is similar to
that of LTS. The basic difference is in the contents of the target list T (Lines 3–
8), which allow LTST to terminate sooner. The algorithm retrieves list routes+[nt]
from R-Index+ and accesses T -Index to retrieve lists trans[ri] for all routes ri
in routes+[nt]. Just like LTS, it inserts into T all routes that contain the target
(Line 4). Moreover, LTST includes all routes rj that can lead to nt via some link
nℓ that resides on the same route ri with nt (Line 6). Intuitively, this implies that
T contains routes (ri’s) that directly lead to the target, and, in addition, routes
(rj’s) that intersect with them (provided that the intersection occurs before nt).
Therefore, T includes all routes that are less than two routes away from the target.

An entry of T has the form 〈rj : oℓj, ri : oℓi〉, which means that route rj leads
to the target nt in route ri via some link nℓ that lies at the oℓj-th position in rj
and at the oℓi-th position in ri before nt. An entry 〈ri :oti,∅〉 implies that route ri
contains the target nt (see Line 4). Note that the first item in the pair is used in
the termination check, while the second in the construction of the answer path.

LTST terminates if current search node nq lies on a route ri that leads, via some
link nℓ, to a route rj that contains the target. Specifically, the algorithm checks
if there exist entries 〈ri : oℓi, rj : oℓj〉 in T and 〈ri : oqi, n

+
q 〉 in routes+[nq] such

that oqi < oℓi (Line 12). Note that based on its construction, the target list may
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Algorithm LTST

Input: ns, nt, R-Index+, T -Index
Output: a path from ns to nt if it exists, null otherwise
Parameters:

stack Q: the search stack
set H: contains all nodes pushed in Q
set A: contains the direct ancestor link of each node in H
list T : stores routes that contain nt and their intersecting routes

Method:

1. push ns to Q;

2. insert ns in H;

3. for each entry 〈ri :oti, n
+
t 〉 in routes+[nt] do

4. insert 〈ri :oti,∅〉 in T ;

5. for each entry 〈rj , nℓ :oℓi :oℓj〉 in trans[ri] do

6. if oℓi<oti then

insert 〈rj :oℓj , ri :oℓi〉 in T ;

7. end for

8. end for

9. while Q is not empty do

10. pop nq from Q;

11. for each entry 〈ri :oqi, n
+
q 〉 in routes+[nq] do

12. if there is an entry 〈ri :oℓi, rj :oℓj〉 in T such that oqi<oℓi then

return ConstructPath(ns, nq , nt,A, ri :oℓi, rj :oℓj);

13. if n+
q /∈ H then

14. push n+
q to Q;

15. insert n+
q in H;

16. insert 〈nq :ri :oqi, n
+
q 〉 in A;

17. end if

18. end for

19. end while

20. return null;

Figure 2.7: The LTST algorithm.

contain multiple entries for the same route ri corresponding to different via-links nℓ.
However, as the termination check suggests, it suffices to retain only the entry with
the latest via-link, i.e., that with the highest oℓi. A final subtle difference with LTS

is that ConstructPath requires routes ri, rj and the positions of the via-link oℓi, oℓj
in them, so as to compose the answer path.

Example 2.11. Consider PATH(s, t) and R-Index+ and T -Index, shown in Ta-
bles 2.4 and 2.3, respectively. First, LTST retrieves routes+[t] from R-Index+,
which contains two routes r1 and r5. Then, it retrieves the corresponding lists
trans[r1] and trans[r5] from T -Index, and constructs the target list T = {〈r1 :
4,∅〉, 〈r2 :5, r1 :1〉, 〈r3 :1, r5 :2〉, 〈r4 :4, r1 :2〉, 〈r5 :1,∅〉}.

The first iteration of LTST is identical to that in Example 2.10. At the second
iteration, LTST pops link a and retrieves list routes+[a] from R-Index+. The first
entry 〈r2 :3, c〉 in this list matches the entry 〈r2 :5, r1 :1〉 in the target list, since in r2
node a lies at position 3 before some node nℓ at position 5 that leads to the target via
route r1 (at this point LTST does not know that nℓ corresponds to d). Therefore, the
search terminates and LTST identifies a sequence of links (〈s :r3 :1〉, 〈a :r3 :∗〉, 〈a :r2 :
3〉, 〈∗ :r2 : 5〉, 〈∗ :r1 : 1〉, 〈t :r1 :∗〉) that leads to the target; the symbol * indicates that
the node or its position can be inferred. After retrieving the required parts of routes
r1, r2 and r3, the answer path (s, w, a, c, d, f, y, t) is constructed.
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2.4.4 The LTS-k algorithm

The LTST algorithm terminates as soon as the current search node is within two
routes from the target. This strong termination condition is possible due to the
information stored in T -Index. However, the size of T -Index is quadratic with
respect to the number of routes, which makes it impractical for large collections.

This section presents the LTS-k algorithm that operates without the T -Index,
and features a tunable termination condition based on parameter k. Particularly,
LTS-k stops when it reaches a route ri that leads via link nℓ to a route rj containing
the target nt, with the requirement that nℓ is at most k links before nt in rj. Note
that when k is set to 0, the algorithm reduces to LTS. On the other hand, for a
sufficiently high k value (larger than the maximum number of links in any route),
LTS-k terminates when it visits a node that is less than two routes from nt, exactly
like LTST. In this case, however, LTS-k spends more time compiling the target list
compared to LTST, since the latter has access to T -Index that materializes the
transition information between any two routes.

LTS-k, shown in Figure 2.8, requires R-Index+ (but not T -Index), and the
parameter k. Since LTS-k only differs from LTST in the target list construction, we
only detail this process that involves two phases (Lines 3–17).

In the first phase (Lines 3–12), LTS-k constructs a list L with all links that are
within k links from the target in some route, including nt itself (Line 4). To find
these nodes, the algorithm retrieves all routes that contain nt (Line 5) and inserts
into L the k links before nt (if they exist) in each route (Lines 6–11). An entry of
L has the form 〈nℓ, ri :oℓi〉, which means that link nℓ lies in the same route ri with
target nt and is within k links away from it. Note that although a link in L may
appear in multiple routes, LTS-k only keeps a single entry per link.

At this point we make two important notes. First, LTS-k must distinguish be-
tween links and non-link nodes, when retrieving a route. Therefore, the algorithm
needs to keep in main memory either a compressed bitmap of length equal to the
number of nodes, or a hash index storing only the links, in the case when the col-
lection has much fewer links than nodes.

Second, L is not the set of all links that are within k links from the target.
Rather, L contains a subset of only those links that are in the same route with
nt, primarily for efficiency reasons. In order to reach all links within k links from
nt, the algorithm would need to perform a breadth-first search starting from nt

following the reverse edges of the conceptual reduced routes graph G−
R. Since G−

R is
not materialized, this operation would have to retrieve a much larger set of routes.

Subsequently, in the second phase (Lines 13–17), the algorithm scans list L and
uses the R-Index+ to insert into T all routes that contain a link of L. Similar to
LTST, LTS-k retains a single entry 〈rj :oℓj , ri :oℓi〉 per route, that of the highest via
position oℓj .

Example 2.12. We illustrate the LTS-1 algorithm (k=1) for the PATH(s, t) query
on the collection of Figure 2.1(a) using the R-Index+ presented in Table 2.4.

Initially, the algorithm constructs the list of links L that are within one link from
t. It accesses routes+[t] = {〈r1 : 4, s〉, 〈r5 : 1, s〉} and retrieves routes r1 and r5 at
positions 4 and 1, respectively. Moving backwards in r1, LTS-1 identifies f as the one
link before t; route r5 contains no nodes before t. Therefore, L = {〈t, r1 :4〉, 〈f, r1 :2〉}
contains an entry for the target t and f .
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Algorithm LTS-k
Input: ns, nt, k, R-Index+

Output: a path from ns to nt if it exists, null otherwise
Parameters:

stack Q: the search stack
set H: contains all nodes pushed in Q
set A: contains the direct ancestor link of each node in H
list L: stores all links that are within k links from nt in some route
list T : stores all routes that contain a node in L

Method:

1. push ns to Q;

2. insert ns in H;

3. for each entry 〈ri :oti, n
+
t 〉 in routes+[nt] do

4. insert 〈nt, ri :oti〉 in L;

5. retrieve route ri and let oℓi = oti;

6. for m = 1 up to k do

7. repeat // make oℓi point at the previous link in ri
8. let oℓi = oℓi − 1;

9. until nℓ is a link;

10. insert 〈nℓ, ri :oℓi〉 in L;

11. end for

12. end for

13. for each entry 〈nℓ, ri :oℓi〉 in L do

14. for each entry 〈rj :oℓj, n
+

ℓ
〉 in routes+[nℓ] do

15. insert 〈rj :oℓj, ri :oℓi〉 in T ;

16. end for

17. end for

18. while Q is not empty do

19. pop nq from Q;

20. for each entry 〈ri :oqi, n
+
q 〉 in routes+[nq] do

21. if there is an entry 〈ri :oℓi, rj :oℓj〉 in T such that oqi<oℓi then

return ConstructPath(ns, nq , nt,A, ri :oℓi, rj :oℓj);

22. if n+
q /∈ H then

23. push n+
q to Q;

24. insert n+
q in H;

25. insert 〈nq :ri :oqi, n
+
q 〉 in A;

26. end if

27. end for

28. end while

29. return null;

Figure 2.8: The LTS-k algorithm.

Subsequently, LTS-1 accesses the lists routes+[t] = {〈r1 : 4, s〉, 〈r5 : 1, s〉} and
routes+[f ] = {〈r1 :2, t〉, 〈r4 :4,∅〉} for the two links in L. Then, it creates the target
list that contains an entry for each route r1, r4 and r5: T = {〈r1 : 4,∅〉, 〈r4 : 4, r1 :
2〉, 〈r5 :1,∅〉}.

The first two iterations of LTS-1 are the same as those of LTS. At the third
iteration, LTS-1 pops link c and accesses list routes+[c] = {〈r2 : 4, d〉, 〈r4 : 3, f〉}
from R-Index+. The second entry matches the entry 〈r4 : 4, r1 : 2〉 in T , since c
is on r4 before position 4. Therefore, the algorithm identifies a sequence of links
(〈s : r3 : 1〉, 〈a : r3 : ∗〉, 〈a : r2 : 3〉, 〈c : r2 : ∗〉, 〈c : r4 : 3〉, 〈∗ : r4 : 4〉, 〈∗ : r1 : 2〉, 〈t : r1 : ∗〉) that
leads to the target. After retrieving the required parts of routes r1, r2, r3 and r4, the
answer path (s, w, a, c, f, y, t) is constructed.

Note that for k=2, the list L would also contain link d. In that case, the target
list of LTS-2 would be exactly the same as that in Example 2.11, and LTS-2 would
proceed identically to LTST.
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2.4.5 Complexity analysis

We use the notation introduced in Section 2.3.3. In addition, we assume that a disk
page contains B+

R routes+[] entries.

R-Index+. The analysis is similar to R-Index, substituting BR with B+
R.

LTS, LTST and LTS-k. Evaluating a PATH query according to the link traversal
search paradigm consists of two phases. In the first, the target list T is constructed,
while in the second the collection is traversed.

The second phase is identical for all algorithms. At each iteration, after node nq

is popped, they access the routes+[nq] at a cost of O
(

|R|·Lr

|N |·B+

R

)

I/Os. Note that the

termination condition of the link traversal search algorithms incurs no I/O cost.

In the first phase, all algorithms retrieve list routes+[nt] at a cost of O
(

|R|·Lr

|N |·B+

R

)

I/Os. In addition, LTST retrieves from T -Index the trans[] lists for each route in

routes+[nt] at a cost of O
(

|R|2·L3
r

|N |2·BT

)

I/Os. On the other hand, LTS-k retrieves each

route referenced in routes+[nt] with O
(

|R|·Lr

|N | · Lr

BN

)

I/Os, and then for each route it

reads the routes+[] list of the k nodes before the target with O
(

k · |R|·Lr

|N |
· |R|·Lr

|N |·B+

R

)

I/Os.
Aggregating for |N | nodes in the worst case traversal scenario, LTS requires

O
(

|R|·Lr

|N |·B+

R

+ |R|·Lr

B+

R

)

I/Os, LTST requires O
(

|R|·Lr

|N |·B+

R

+ |R|2·L3
r

|N |2·BT
+ |R|·Lr

B+

R

)

I/Os, and LTS-

k requires O
(

|R|·Lr

|N |·B+

R

+ |R|·L2
r

|N |·BN
+ k · |R|2·L2

r

|N |2·B+

R

+ |R|·Lr

B+

R

)

I/Os.

2.5 Updating Route Collections

Section 2.5.1 discusses the case when new routes are added in the collection, while
Section 2.5.2 addresses deletions. Section 2.5.3 analyzes the complexity of our up-
date mechanism. Note that all index structures are stored as inverted files on sec-
ondary storage. To handle frequent updates, we perform lazy updates, deferring
propagation of changes to the disk by maintaining additional information in main
memory. Then, at some time, a batch update process reflects all changes to the disk
resident indices. Insertions are handled by merging memory-resident information
with disk-based indices [75], while deletions require rebuilding of the affected lists.

2.5.1 Insertions

To support lazy updating for an insertion, we maintain a main memory list for each
disk resident list affected. The main memory lists contains two types of entries. An
entry prefixed with the + symbol is new and must be added to the disk-based list.
An entry prefixed with the ± symbol exists on disk but must be updated.

Indices are updated in two phases. Buffering updates the memory resident lists
and occurs online every time a new route is inserted in the collection. Flushing
propagates all changes to the disk-based indices and is thus executed periodically
offline. Between two flushing phases, the algorithms must also take into account
the main memory lists. When retrieving a disk-based list: (1) all main memory
(+ and ±) entries are also considered, and (2) all disk-based entries that have a
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corresponding ± main memory entry are ignored. In the following, we detail the
two phases for each of the three indices used.

R-Index . Assume that a new route ri arrives. Then, for each node nj at position
oji in ri, insert the entry +〈ri:oji〉 at the end of the main memory list routesM [nj ]
(the list may need to be constructed if it does not exist). Note that buffering requires
no disk access.

In the flushing phase, each main memory list routesM [nj ] is merged with the
corresponding disk-based list routes[nj]. Recall that entries in routes[nj] are sorted
ascending on the route identifier. Therefore, since all entries in routesM [nj] are
about new routes, the merging operation simply requires appending routesM [nj ] at
the end of routes[nj].

R-Index+. Assume that ri is added to the collection. For each node nj in ri
main memory lists routes+M are created similar to the buffering phase of R-Index.
However, an additional step is required, as the next link information in some entries
may change. This is necessary when a node nj in the newly added route ri becomes
a link. Let rk be the only route that nj belonged to before the update, and let n−

j

(resp. n+
j ) denote the link immediately before (resp. after) nj in rk. Then, when ri

is added, all nodes in rk after n−
j and before nj should have node nj as their next

link, instead of n+
j .

After inserting a new route ri, a node nj of ri becomes a link, if nj already
appears in the collection but is not a link. Thus, to detect this case, we use the
main memory data structure for distinguishing links from non-link nodes discussed
in Section 2.4.4. In case nj becomes a link, we retrieve the route rk and identify all
nodes after n−

j and before nj , where n
−
j is the first link before nj . For each such node

nm, we insert into the main memory list routes+M [nm] the entry ±〈rk :omk, nj〉.
In the flushing phase, if an R-Index+ list contains only entries with the plus

sign, it is simply appended at the end of the corresponding disk resident list, similar
to the case of R-Index. On the other hand, a routes+M [nm] list that contains
entries prefixed with ± must update those in routes[nm]; this operation is similar
to a merge-join of the two lists, as both are sorted on the route identifier.

T -Index . As before, assume that a new route ri arrives. For each link nj at
position oji in ri retrieve the R-Index (or R-Index+) lists from disk and main
memory. Then, for each entry 〈rk:ojk〉 (ri 6= rk) in these lists: (1) insert the entry
+〈rk, nj :oji:ojk〉 at the end of the main memory list transM [ri], and (2) insert the
entry +〈ri, nj:ojk:oji〉 at the end of the main memory list transM [rk]. Note that the
buffering phase for T -Index requires retrieving from disk routes[nj] for each link in
ri that is not new.

The flushing phase merges each memory resident list with the corresponding on
the disk. Similar to the case of R-Index, as the list transM [rj ] of an old route
rj contains only entries about new routes, transM [rj] is appended at the end of
trans[rj ]. Finally, the list transM [ri] of a newly added route ri has no counterpart
on the disk, and thus it becomes the disk-based list trans[ri].

2.5.2 Deletions

Deletions need different treatment compared to insertions, as many entries across
multiple lists are affected. Identifying them would require a large number of disk
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accesses. Therefore, a buffering phase does not occur when a route deletion arrives.
Rather, a list is maintained that contains all routes deleted since the last flushing.
Then, during the execution of a search, retrieved entries that contain a deleted route
are simply discarded. This design choice may influence the performance of the link
traversal search algorithms, mainly because the demotion of a link to a non-link
node is not captured and thus non-link nodes may be visited. However, the deletion
of a node is captured and hence the correctness of all algorithms is not affected.
Next, we detail the flushing phase, which rebuilds the affected lists, for each index.

R-Index and R-Index+. For each deleted route ri, retrieve the corresponding route
from disk. For each node nj of ri, retrieve the list routes[nj ] (or routes

+[nj]) and
delete the entry corresponding to ri. During this process, the main memory data
structure for distinguishing links from non-link nodes is updated.

T -Index . Flushing of T -Index occurs in parallel to flushing R-Index/R-Index+.
Assume that the routes[nj ] (or routes

+[nj ]) list for the node nj of the deleted route ri
is considered. Then, for each non-deleted entry 〈rk :ojk, n

+
j 〉 in the list, retrieve from

T -Index the list trans[rk] and remove from it the entry concerning ri. Additionally,
delete the entire list trans[ri].

2.5.3 Complexity analysis

We use the notation introduced in Section 2.3.3 and 2.4.5.

Insertions. We assume that |RI| new routes are inserted in the existing route
collection R containing |NI| nodes. The worst case scenario is when |NI| is a subset
of the nodes |N | contained in the existing collection R.

For R-Index, buffering incurs no cost. In flushing, we read the last of the pages
containing routes[ni], for each node ni in |NI |, at a total cost of O (|NI|) I/Os.

Then, we append the entries regarding the new routes writing O
(

|RI |·Lr

BR

)

pages on

disk.
For R-Index+, buffering incurs O

(

L2
r

BN

)

I/Os for each new route. Specifically,

we assume that, in the worst case, every node nj in a new route ri becomes a link,
and thus, we retrieve the routes+[nj ] list containing only one route, rk, at a cost of

one I/O, and then, retrieve rk at a cost of O
(

Lr

BN

)

I/Os. We distinguish between

the |N+
I | nodes whose routes+M [] list contain only entries prefixed with +, and the

|N+,±
I | nodes with both + and ± prefixed entries. When flushing R-Index+, for

the |N+
I | nodes, we read |N+

I | and write O
(

|N+
I | ·

|RI |·Lr

|NI |

)

pages similar to flushing

R-Index, while for the |N+,±
I | nodes, we retrieve their entire routes+[] list from disk

at a total cost of O
(

|R|·Lr

|N |·B+

R

· |N+,±
I |

)

I/Os and write O
((

|R|·Lr

|N | + |RI |·Lr

|NI |

)

·
|N+,±

I
|

B+

R

)

pages. Thus, flushing R-Index+ requires reading O
(

|N+
I |+

|R|·Lr

|N |·B+

R

· |N+,±
I |

)

and

writing O
(

|N+

I
|·|RI |·Lr

|NI |
+
(

|R|·Lr

|N | + |RI |·Lr

|NI |

)

·
|N+,±

I
|

B+

R

)

pages.

Regarding T -Index, buffering requires O
(

|R|·L2
r

|N |·BR

)

I/Os for each new route since

we retrieve the routes[] for each of the Lr nodes in the route. After buffering
occurs, assume that for |Raff| of the old routes, connections with the new routes are
identified. Therefore, for these |Raff| routes, flushing requires reading |Raff| pages
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and writing O
(

|Raff| ·
|RI |·L

2
r

|NI |·BT

)

. On the other hand for the new routes, we need

to write O
(

|RI |
BT

·
(

|RI |·L2
r

|NI |
+ |R|·L2

r

|N |

))

pages. To sum up, flushing T -Index requires

reading |Raff| and writing O
(

|Raff| ·
|RI |·L

2
r

|NI |·BT
+ |RI |

BT
·
(

|RI |·L
2
r

|NI |
+ |R|·L2

r

|N |

))

pages.

Deletions. In the presence of deletions, buffering incurs no I/O cost for any in-
dex. On the other hand, flushing for R-Index (resp. R-Index+) requires reading

O
(

Lr

BN
+ Lr ·

|R|·Lr

|N |·BR

)

(resp. O
(

Lr

BN
+ Lr ·

|R|·Lr

|N |·B+

R

)

) pages for each deleted route ri,

to retrieve ri and the routes[] (resp. routes+[]) list for each of the Lr contained

nodes. Then, it requires writing O
(

Lr ·
|R|·Lr

|N |·BR

)

(resp. O
(

Lr ·
|R|·Lr

|N |·B+

R

)

) pages for

the updated routes[] (resp. routes+[]) lists. Finally, flushing T -Index requires

reading and writing O
(

Lr ·
|R|·Lr

|N | · |R|·L2
r

|N |·BT

)

pages for each deleted route.

2.6 Experimental Analysis

Section 2.6.1 details the setting, while Sections 2.6.2, 2.6.3 and 2.6.4 evaluate index
construction, querying and index maintenance, respectively, of all methods.

2.6.1 Setup

We study the route traversal methods, RTS and RTST, and the link traversal algo-
rithms, LTS, LTST and LTS-k. To gauge performance we compare against conven-
tional depth-first search (DFS) on the reduced routes graph G−

R. All algorithms are
written in C++ and compiled with gcc. The evaluation is performed on a 3 Ghz
Intel Core 2 Duo CPU with 4GB RAM running Debian Linux.

We generate synthetic route collections varying the following parameters (Table
2.5): (1) the number of routes in the collection, |R|, (2) the route length, Lr, (3)
the number of distinct nodes in the routes, |N |, and (4) the links/nodes ratio α. In
each experiment, we vary one of the parameters while we keep the others to their
default values.

parameter values default value

|R| 20K, 50K, 100K, 200K, 500K 100K
Lr 3, 5, 10, 20, 50 10
|N | 20K, 50K, 100K, 200K, 500K 100K
α 0.2, 0.4, 0.6, 0.8, 1 0.6

Table 2.5: Experimental parameters

2.6.2 Index size and construction cost

For each method, we measure the time spent to construct the necessary indices and
their storage requirement. Table 2.6 shows the indices employed by each method.

Varying the number of routes |R|. The disk space requirement of the R-Index/
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input method name index

reduced routes graph G−
R DFS adjacency lists

route
collection

RTS R-Index
RTST R-Index & T -Index
LTS R-Index+

LTST R-Index+ & T -Index
LTS-k R-Index+

Table 2.6: Methods for evaluating PATH queries
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Figure 2.9: Indices space consumption.

R-Index+, employed by RTS, LTS, LTS-k, and DFS, 2 depends primarily on the
number of nodes |N | (which determines the number of lists routes[]/routes+[]) and
not on |R| (which affects the length of the lists). Hence, Figure 2.9(a), shows
that the space for these methods remains constant. Note that RTS and LTS/LTS-k
exhibit the same space consumption, in terms of disk pages, although an R-Index+

compared to an R-Index entry contains additional information.

On the other hand, as |R| increases, the number of edges in the transition graph,

2In fact, DFS operates on the adjacency lists of the reduced routes graph, where a list contains
for each adjacent link the routes it belongs to and its position in them; thus, an adjacency list
contains equivalent information to the corresponding R-Index+ list.
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Figure 2.10: Indices construction time.

and thus the size of the T -Index employed by RTST and LTST, quickly increases.
The values above the RTST line quantify the difference between RTST and RTS

(and between LTST and LTS/LTS-k), which corresponds to the T -Index size. The
construction time for all indices, shown in Figure 2.10(a), increases as the collection
becomes larger. The values above the RTST line measure the time required for
building T -Index only. Note that for |R| = 500K the construction time of T -Index
increases modestly compared to the six-fold increase of the index size. This occurs
because the majority of the T -Index pages are written sequentially on the disk. 3

Varying the route length Lr. The space consumption of the R-Index/R-Index+

does not change with Lr, as shown in Figure 2.9(b). This is because, as explained
in the context of Figure 2.9(a), the number of routes[]/routes+[] lists remains fixed
and while the lists become longer they still fit within the same number of pages. In
contrast, the space for RTST and LTST increases rapidly with Lr, since GT , encoded
by T -Index, becomes denser.

The construction times for RTST and LTST in Figure 2.10(b) increase modestly
with Lr, although T -Index becomes much larger. This occurs because the number
of random accesses (that depends on the number of trans[] lists) remains constant,
as the increase in T -Index’s size is due to its lists occupying more pages. Recall,

3On our system, a sequential access is around 350 times faster that a random one.
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that the contents of a list are written sequentially on disk.

Varying the number of nodes |N |. The number of routes[]/routes+[] lists de-
pends on |N | and thus the total size of the R-Index/R-Index+ scales linearly as
shown in Figure 2.9(c). Increasing the number of nodes, while |R| and Lr remain
fixed, causes an increase in the number of links (in absolute values). This makes each
link appear fewer times in the routes and thus the number of edges in GT decreases.
The space requirement of T -Index decrease from 960MB to its minimum 400MB (1
page for each of the 100K routes). Figure 2.10(c) shows that the construction time
for all methods increases with |N | due to the increase of the R-Index/R-Index+

size.

Varying the links/nodes ratio α. The space required for R-Index/R-Index+

depends on the number of nodes |N | and not on the links/nodes ratio, hence the
constant lines in Figure 2.9(c). As the number of links increases (|R| and Lr re-
main fixed), the transition graph becomes sparser, as explained in the context of
Figure 2.9(c); this accounts for the decrease in the space T -Index occupies from
700MB to 400MB. Figure 2.10(d) shows that the construction times for all indices
are unaffected by α.

2.6.3 Evaluating PATH queries

We study the efficiency of the proposed methods for processing PATH queries. All
reported values are the averages taken by posing 5, 000 distinct queries. Note that
in Sections 2.6.3.1 and 2.6.3.2 all considered queries have an answer, i.e., a path
exists; the case of queries with no answer is investigated in Section 2.6.3.3.

2.6.3.1 Route vs link traversal search

We compare the route traversal search methods RTS and RTST against the basic
link traversal search algorithm LTS in terms of the execution time, while varying
|R|, Lr, |N | and α in Figures 2.11(a), (b), (c) and (d), respectively.

Varying the number of routes |R|. As |R| increases, finding a path between
two nodes becomes easier. This is exhibited by RTST and LTS in Figure 2.11(a). In
contrast, the execution time of RTS increases with |R| as it performs more iterations
compared to RTST, which has a stronger termination condition, and to LTS, which
only visits links.

Varying the route length Lr. The same observations hold when the route length
increases in Figure 2.11(b). The performance of RTS deteriorates faster, since, in
addition to requiring more iterations, each iteration costs more, as RTS inserts in
the stack longer subsequences of routes.

Varying the number of nodes |N |. When |N | increases, finding a path becomes
harder, as shown in Figure 2.11(c). The advantage of RTST over RTS decreases with
|N |, because the benefit of a stronger termination condition diminishes as the total
execution time is dominated by the number of iterations required. The advantage
of LTS over RTS decreases because the benefit of traversing the links diminishes as
each link is contained in fewer routes. Note that even for large |N |, not examined
in this experiments set, RTS can never outperform LTS as they employ the same
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Figure 2.11: Link vs route traversal search: execution time.

termination condition and RTS will always need more iterations than LTS. The
same argument carries to RTST compared to LTST.

Varying the links/nodes ratio α. When the links/nodes ratio increases, there are
more links in the collection, but each of them appears in fewer routes. In particular,
when α=0.2 the link frequency, i.e., the (average) number of routes in which it
appears, is 46, and becomes 10 when α=1. In general, as the ratio increases it
becomes harder to find a path. Hence, as α increases LTS needs more iterations
to reach the target, and its execution time increases. It is important to notice the
behavior of RTS and RTST. At each iteration and after a link is popped, these
algorithms need to retrieve as many routes as the link frequency. This implies that
the cost per iteration decreases with α. On the other hand, since the number of
iterations increases, the total execution time increases slightly for small α values,
but ultimately decreases.

When α = 1, all nodes are links (the reduced routes graph G−
R reduces to the GR

graph) and thus LTS visits exactly the same nodes with RTS. Still LTS is around
8.6 times faster, as it performs fewer accesses per iteration. As before, the argument
applies to LTST (not shown in the figure), which outperforms RTST even in this
extreme setting.
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2.6.3.2 Link traversal search vs DFS

In the following sets of experiments, we investigate the performance of LTS, LTST
and LTS-k (k is set to 1, 3 and 5), using depth-first search DFS as the baseline.

To better understand the algorithms’ behavior, we distinguish two phases when
processing a PATH(ns, nt) query: initialization and core. In the first phase, all meth-
ods need to retrieve the first link n−

t before nt (resp. n+
s after ns) when the target

(resp. source) is not a link, as discussed in Section 2.4.1. In addition, the link traver-
sal search methods assemble the target list T by accessing the index structures. The
core phase involves traversing the nodes and checking for termination.

In each setting, we measure the average value of: (1) the total execution time,
(2) the cost of the initialization phase in terms of I/O operations, (3) the size of the
target list in KBs, and (4) the number of iterations, i.e., nodes visited, during the
core phase.

DFS ⋆ LTS � LTS-1 + LTS-3 × LTS-5 △ LTST ♦
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Figure 2.12: Link traversal search vs DFS: varying number of routes.

Varying the number of routes |R|. As |R| increases, every link is contained in
more routes and the number of iterations decreases, as shown in Figure 2.12(d). In
the initialization phase (after retrieving the links following the source and preceding
the target, if necessary), LTS retrieves only routes+[nt] and assembles the target
list; this has a constant cost as shown in Figure 2.12(b). On the other hand, LTS-k
and LTST retrieve multiple routes+[] and trans[] lists, respectively, depending on
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the number of routes a link appears in. Since this factor increases with |R|, the
initialization cost also increases.

Similar observations apply for the size of the target list T , which increases for all
methods as the G−

R graph becomes denser; see Figure 2.12(c). LTST has the largest
while LTS has the smallest T . In comparison, the target list size for the LTS-k
methods increases with k and ranges between that of LTS and LTST (recall that
LTS-0 corresponds to LTS). However, all LTS-k methods have higher initialization
costs compared to LTST, because the latter has access to the T -Index. Note that
the size of the target list T portrays the strength of the termination condition;
compare the trends in Figures 2.12(c) and 2.12(d). Among the link traversal search
methods, LTS has the weaker and LTST the stronger termination condition.

Putting the cost of the two phases together, we reach the following conclusions.
The total execution time of DFS and LTS decreases with |R|, with LTS becoming
up to one order of magnitude faster, as shown in Figure 2.12(a). Similarly, the
processing time of LTST and LTS-k decreases rapidly up to 100K routes, and LTST

becomes more that two orders of magnitude faster than DFS. On the other hand,
when the collection contains more that 100K routes (while the number of nodes
and route length remain fixed) the initialization cost of the LTST, LTS-k methods
dominates the total time, as less than 10 iterations are required to find a path.
Hence the execution time slightly increases for these methods.
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Figure 2.13: Link traversal search vs DFS: varying route length.
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Varying the route length Lr. Figure 2.13 illustrates the impact of varying Lr

on evaluating PATH queries. As Lr increases, every link is contained in more routes
and the reduced G−

R graph becomes more dense. Therefore, all algorithms exhibit
the same trends as in Figure 2.12. Note that LTS becomes the fastest method for
Lr = 50 outperforming DFS by almost two orders of magnitude.
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Figure 2.14: Link traversal search vs DFS: varying number of nodes.

Varying the number of nodes |N |. Figure 2.14 studies the effect of increasing
|N |, while the number of routes in the collection and route length remain fixed. As
|N | increases, even though the number of links increases, each of them is contained
in fewer routes. Therefore, the reduced routes graph G−

R becomes sparser, which
means that finding a path becomes harder. This is verified in Figure 2.14(c), which
depicts that the target list decreases with |N |, and in Figure 2.14(d), which shows
that more nodes are visited as |N | increases.

Subsequently, the initialization cost of LTST and LTS-k decreases with |N |. As
explained in the context of Figure 2.12, since LTS accesses a single routes+[] list, its
initialization cost is independent of the number of nodes.

The total execution time of DFS and LTS increases with |N |, as they perform
more iterations. This also holds for LTST, LTS-k for collections of more than 100K
nodes. For fewer nodes, the initialization cost of LTST, LTS-k (see Figure 2.14(b))
dominates the total execution time, which decreases. In the worst case, LTS and
LTST are 1.6 and 16 times, respectively, faster than DFS.
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DFS ⋆ LTS � LTS-1 + LTS-3 × LTS-5 △ LTST ♦
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Figure 2.15: Link traversal search vs DFS: varying links/nodes ratio.

Varying the links/nodes ratio α. As α increases the link frequency decreases and
finding a path becomes more difficult, as shown in Figure 2.15(d). For the reasons
discussed in the case of varying |N |, the target list of all methods decreases with |N |
(see Figure 2.15(c)), and the initialization cost of LTST and LTS-k decreases (see
Figure 2.15(b)). Correspondingly, the total execution time increases for DFS and
LTS, while it first decreases and ultimately increases for LTST and LTS-k.

2.6.3.3 PATH queries with no answer

We study the performance of LTS, LTST and LTS-k compared to DFS for queries
that return no answer, i.e., no path exists between the source and the target. The
collections in this section, induce a reduced routes graph with two components
that share no edge. We perform 5, 000 PATH queries selecting the source from one
component and the target from the other so that a path never exists.

Figures 2.16(a) and 2.16(b) display the total execution time and the cost of
the initialization phase while the number of routes varies. In accordance to Fig-
ure 2.12(b), the initialization cost of LTST and LTS-k increases with |R|, while that
of LTS remains fixed. In the core phase, all methods perform the same iterations,
traversing all links in the component of the source. The number of links in the com-
ponent do not change with |R|. Furthermore, since the execution time is dominated
by the traversal cost, all methods require around 250 seconds to determine that a
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Figure 2.16: PATH queries with no answer: execution time and initialization cost.

path does not exist, as shown in Figure 2.16(b). The total execution time of LTST
and LTS-k, slightly increases with |R| due to the higher initialization cost. In the
worst case, the overhead is less than 1.3%.

Figures 2.16(c) and 2.16(d) repeat the measurements while the number of nodes
varies. As before, the execution time is dominated by the cost of the core phase,
which is identical for all methods. However, since the number of nodes in the source
component increases, the performance of all methods degrades with N . In the worst
case, when N = 20K, LTS-5 is about 6% slower than DFS.

2.6.4 Index maintenance

In this section, we evaluate the performance of all methods in terms of (1) the cost
of the buffering phase, (2) the cost of the flushing phase, and (3) the performance
hit introduced by not immediately updating the indices, while routes are added and
deleted from a collection initially containing 50K routes of length Lr = 10 and 100K
nodes with the fraction of α = 0.6 being links.

At the buffering phase, each insertion and deletion is treated independently.
Thus, we only discuss the case of a single update. All methods require no disk
access for a deletion. RTS performs no I/O for an insertion. DFS, LTS, and LTS-k
must retrieve for each node in the new route that becomes a link, its other route;
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Figure 2.17: Updating route collections.

with Lr = 10 and α = 0.6, this costs 4 random I/Os (and maybe a few sequential
I/Os). RTST and LTST (in addition to the operations needed by LTS) must retrieve
from disk the routes[]/routes+[] list for each link in the route; with Lr = 10 and all
nodes becoming links this costs 10 random I/Os (and maybe a few sequential I/Os).

Figure 2.17(a) shows the cost of the flushing phase as we vary the number of up-
dates from 1, 000 to 20, 000; the ratio of insertions to deletions is fixed to 75%/25%.
The values above the RTST (resp. LTST) line measure the time required for updat-
ing T -Index only. The cost of all methods increases sublinearly justifying our lazy
updates strategy. Note that the flushing cost of DFS, LTS, LTS-k is higher than
the cost of RTS due to the additional pages retrieved when nodes become links.
The same observations hold for LTST and RTST. An important observation is that
for more than 15, 000 updates, the flushing cost for the R-Index/R-Index+ based
methods is higher than building the indices from scratch. On the other hand, even
when 20, 000 updates occur (40% of |R|), the flushing cost for the T -Index based
methods is lower than the cost of rebuilding indices.

Figure 2.17(b) investigates the cost for 10, 000 updates as we vary the inser-
tions/deletions ratio. When the number of deletions increases, the GT contains
fewer edges and the cost to update T -Index becomes smaller. As before, the values
above the RTST (resp. LTST) line measure the time required for updating T -Index
only.

37



Finally, we study how our lazy updating strategy affects the performance of all
methods. To quantify this, we investigate two scenarios: the first assumes that the
flushing phase has been performed, and the second assumes the opposite. Intuitively,
the former simulates the ideal scenario where all updates are immediately reflected
on the disk resident indices. We perform 5, 000 PATH queries and measure the relative
performance of each method, i.e., its execution time in the second scenario divided
by that of the first.

Figure 2.17(c) shows the performance hit as we vary the number of updates while
the insertions/deletions ratio is fixed to 75%/25%. The execution time of all methods
increases with the number of updates but stays within 13% of the execution time in
the ideal scenario. Figure 2.17(d) keeps the number of updates fixed to 10, 000 and
varies the insertions/deletions ratio. In this setting, the performance hit of the RTS
and RTST becomes more pronounced as the number of deletions increases. Note
that it is possible for a method to execute faster when the flushing has not been
performed, as parts of the disk-based indices are kept in memory. This appears in
Figure 2.17(d) at the 100%/0% insertions/deletions ratio.

2.7 Conclusions

In this chapter, we considered the problem of evaluating path queries on large disk-
resident routes collections that are frequently updated. We introduced two generic
search-based paradigms, route traversal search and link traversal search, that ex-
ploit local transitivity information to expedite path query evaluation. The involved
index structures and their maintenance strategies are designed to cope with frequent
updates.
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Chapter 3

Dynamic Pickup and Delivery
with Transfers

The family of pickup and delivery problems covers a broad range of optimization
problems that appear in various logistics and transportation scenarios. Broadly
speaking, these problems look for an assignment of a set of transportation requests
to a fleet of vehicles in a way that satisfies a number of constraints and at the same
time minimizes a specific cost function. In this context, a transportation request is
defined as picking up an object (e.g., package, person, etc.) from one location and
delivering it to another; hence the name.

In its simplest form, the Pickup and Delivery Problem (PDP) only imposes two
constraints. The first, termed precedence, naturally states that pickup should occur
before delivery for each transportation request. The second, termed pairing, states
that both the pickup and the delivery of each transportation request should be
performed by the same vehicle. The Pickup and Delivery Problem with Transfers
(PDPT) [28, 53] is a PDP variant that eliminates the pairing constraint. In PDPT,
objects can be transferred between vehicles. Transfers can occur in predetermined
locations, e.g., depots, or in arbitrary locations as long as the involved vehicles are
in close proximity to each other at some time. We refer to the latter case as transfer
with detours, since the vehicles may have to deviate from their routes.

Almost every pickup and delivery problem comes in two flavors. In static, all
requests are known in advance and the goal is to come up with the best vehicle
routes from scratch. On the other hand, in dynamic, a set of vehicle routes, termed
the static plan, has already been established. Then, additional requests arrive ad
hoc, i.e., at arbitrary times, and the plan must be modified to satisfy them. While
algorithms for static problems can also solve the dynamic counterpart, they are
rarely used as they take a lot of time to execute. Instead, common practice is
to apply two-phase local search algorithms. In the first phase, a quick solution is
obtained by assigning each standing request to the vehicle that results in the smallest
cost increase. In the second phase, the obtained solution is improved by reassigning
requests.

This chapter proposes a methodology for the dynamic Pickup and Delivery Prob-
lem with Transfers (dPDPT). Although works for the dynamic PDP can be extended
to consider transfers between vehicles, to the best of our knowledge, this is the first
work targeting dPDPT. Our solution processes requests independently, and does not
follow the two-phase paradigm. Satisfying a request is treated as a shortest path
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problem in a conceptual graph. Intuitively, the object must travel from the pickup
to the delivery location following the vehicles’ routes and schedules.

Based on these observations, the contributions of our work in this chapter can
be summarized as follows:

(1) We formulate dPDPT as a graph problem. For this purpose, we introduce
a conceptual graph, called dynamic plan graph that captures all possible
actions for picking up a package and delivering it to the destination.

(2) To satisfy a dPDPT request, we compute the shortest path p on the dynamic
plan graph considering the operational and the customer cost of p. The
operational cost Op measures the additional time (total delay), with respect
to the static plan, incurred by the vehicles in order to accommodate the
solution p. The customer cost Cp is the delivery time of the object. These
costs are in general conflicting, as they represent two distinct views. For
example, the path with the earliest delivery time may require significant
changes in the schedule of the vehicles and cause large delays on the static
plan. In contrast, the path with the smallest operational cost could result
in late delivery. In this work, we consider the operational cost as more
important; the customer cost is used to solve ties.

(3) We show that computing the shortest path, according to the operational and
the customer cost, on the dynamic plan graph is not straightforward. The
reason is that the weights of the edges depend on both the operational and
customer cost of the path that led to this edge.

(4) We show, contrary to other time-dependent networks, that the dynamic plan
graph does not exhibit the principle of optimality, which is necessary to
apply efficient Bellman-Ford or Dijkstra-like algorithms. Hence, we have
to enumerate all possible paths, and for this purpose, we introduce the SP

algorithm.

(5) We come up with a breakdown of the operational cost in two new cost met-
rics, and introduce the modified dynamic plan graph. The current operational
cost O∗

p is the delay incurred by the vehicle currently carrying the package.
The residual operational cost OR

p is the delay incurred by all other vehicles.
Then, we show that the modified dynamic plan graph exhibits the princi-
ple of optimality, which allows us to eliminate paths and dealing with the
shortcomings of SP. To this end, we present the SPM algorithm.

(6) We perform an extensive experimental analysis verifying the advantage of
SPM over SP and demonstrating that SPM is significantly faster than a two-
phase local search method adapted for dPDPT, while the quality of the solution
is only marginally lower.

The remainder of this chapter is organized as follows. Section 3.1 reviews related
work in detail. Section 3.2 formally defines dynamic Pickup and Delivery with
Transfers. Section 3.3 introduces the dynamic plan graph and Section 3.4 proposes
the SP algorithm. Then, Section 3.5 introduces the modified dynamic plan graph
and Section 3.6 proposes the SPM algorithm that efficiently solves dPDPT. Finally,
Section 3.7 presents an extensive experimental evaluation and Section 3.8 concludes
this work.
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3.1 Related Work

Our work in this chapter is related to pickup and delivery, and to shortest path
problems.

Pickup and Delivery Problem. In the Pickup and Delivery Problem (PDP)
objects must be transported by a fleet of vehicles from a pickup to a delivery location
with the minimum cost, under two constrains: (1) pickup occurs before delivery
(precedence), and (2) pickup and delivery of an object is performed by the same
vehicle (pairing). PDP is NP-hard since it generalizes the well-known Traveling
Salesman Problem (TSP). Exact solutions employ column generation [32, 68, 73],
branch-and-cut [26, 62] and branch-and-cut-and-price [61] methodologies. On the
other hand, the heuristics for the approximation methods take advantage of local
search [4, 49, 53, 63].

Other PDP variations introduce additional constraints. For instance, in the
Pickup and Delivery Problem with Time Windows (PDPTW), pickups and deliveries
are accompanied with a time window that mandates when the action can take place.
In the Capacitated Pickup and Delivery Problem (CPDP), the amount of objects a
vehicle is permitted to carry at any time is bounded by a given capacity. In the
Pickup and Delivery Problem with Transfers (DPDT), studied in this paper, the
pairing constraint is lifted. [28] proposes a branch-and-cut strategy for DPDT. [53]
introduces the Pickup and Delivery Problem with Time Windows and Transfers
and employs a local search optimization approach. In all the above problems, the
transportation requests are known in advance, hence they are characterized as static.
A formal definition of static PDP and its variants can be found in [6, 25, 56].

Almost all PDP variants also have a dynamic counterpart. In this case, a set of
vehicle routes, termed the static plan, has already been established, and additional
requests arrive ad hoc, i.e., at arbitrary times. Thus, the plan must be modified to
satisfy them. A survey on dynamic PDP can be found in [5]. Typically, two-phase
local search methods are applied for the dynamic problems. The first phase applies
an insertion heuristic [58], whereas the second employs tabu search [33, 51, 52]. To
the best of our knowledge our work is the first to address the dynamic Pickup and
Delivery Problem with Transfers (dPDPT).

Shortest Path Problem and its variants. Bellman-Ford and Dijkstra are the
most well-known algorithms for finding the shortest path between two nodes in a
graph. The ALT algorithms [34, 35, 57] perform a bidirectional A* search and exploit
a lower bound of the distance between two nodes to direct the search. To compute
this bound they construct an embedding on the graph. There exist a number of
materialization techniques [3, 42, 44] or encoding/labeling schemes [19, 22] that can
be used to efficiently compute the shortest path. Both the ALT algorithms and the
materialization and encoding methods are mostly suitable for graphs that are not
frequently updated, since they require expensive precomputation.

In multi-criteria shortest path problems the quality of a path is measured by
multiple metrics, and the goal is to find all paths for which no better exists. Al-
gorithms are categorized into three classes. The methods of the first class (e.g.,
[18]) apply a user preference function to reduce the original multi-criteria problem
to a conventional shortest path problem. The second class contains the interactive
methods (e.g., [36]) that interact with a decision maker to come up with the answer
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path. Finally, the third class includes label-setting and label-correcting methods
(e.g., [37, 47, 70]). These methods construct a label for every path followed to reach
a graph node. Then, at each iteration, they select the path with the minimum cost,
defined as the combination of the given criteria, and expand the search extending
this path.

In time-dependent shortest path problems the cost of traveling from node ni to
nj in a graph (e.g., the road network of a city) depends on the departure time
t from ni. [24] is the first attempt to solve this problem using a Bellman-Ford
based solution. However, as discussed in [31], Dijkstra can also be applied for this
problem, as long as the earliest possible arrival time at a node is considered. In
the context of transportation systems, the FIFO (a.k.a. non-overtaking) property
of a road network is considered as a necessity in order to achieve an acceptable
level of complexity. According to this property delaying the departure from a graph
node ni to reach nj cannot result in arriving earlier at nj. However, even when the
FIFO property does not hold it is possible to provide an efficient solution [30, 55]
by properly adjusting the weights in graph edges [30].

3.2 Problem Definition

Section 3.2.1 provides basic definitions and introduces the dynamic Pickup and De-
livery Problem with Transfers. Section 3.2.2 details the actions allowed for satisfying
a request and their costs.

3.2.1 Definitions

Assume that a company has already scheduled its fleet of vehicles to service a number
of requests. We refer to this schedule as the static plan, since we assume that it is
given as input. The static plan consists of a set of vehicles following some routes; we
overload notation ra to refer to both a vehicle and its route. The route of a vehicle ra
is a sequence of distinct spatial locations, where each location ni is associated with
an arrival time Aa

i and a departure time Da
i . Note that the requirement for distinct

locations within a route is introduced to simplify notation and avoid ambiguity when
referring to a particular location. Besides, if a vehicle visits a location multiple
times, its route can always be represented as a set of distinct-locations routes. The
difference Da

i −Aa
i is a non-negative number; it may be zero indicating that vehicle

ra just passes by ni, or a positive number corresponding to some service at ni, e.g.,
pickup, delivery, mandatory stop, etc. For two consecutive locations ni and nj on
ra, the difference Aa

j −Da
i ≥ 0 corresponds to the travel time from ni to nj.

An ad-hoc dPDPT request is a pair of locations ns and ne, signifying that a package
must be picked up at ns and be delivered at ne. In order to complete a request, it
is necessary to perform a series of modifications to the static plan. There are five
types of modifications allowed, termed actions : pickup, delivery, transport, transfer
without detours, and transfer with detours. Each action, described in detail later,
results in the package changing location and/or vehicle. A sequence of actions is
called a path. If the initial and final location of the package in a path are ns and ne,
respectively, the path is called a solution to the request.

There are two costs associated with an action. The operational cost measures the
time spent by vehicles in order to perform the action, i.e., the delay with respect to
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Figure 3.1: Actions allowed for satisfying a dPDPT request.

the static plan. The customer cost represents the time when the action is completed.
Furthermore, the operational cost Op of a path p is defined as the sum of operational
costs for each action in the path, and the customer cost Cp is equal to the customer
cost of the final action in p. Therefore, for a solution p, Op signifies the company’s
cost in accommodating the request, while Cp determines the delivery time of the
package according to p.

Any monotonic combination (e.g., weighted sum, product, min, max, average
etc.) of the two costs could be a meaningful measure for assessing the quality of a
solution. In the remainder of this chapter, we assume that the operational cost is
more important, and that the customer cost is of secondary importance. Therefore,
a path p is preferred over q, if Op < Oq, or Op = Oq ∧ Cp < Cq. Equivalently, we
may define the combined cost of a path p as:

cost(p) = M · Op + Cp , (3.1)

where M is a sufficiently large number (greater than the largest possible customer
cost divided by the smaller possible operational cost) whose sole purpose is to assign
greater importance to the operational cost. Based on this definition, the optimal
solution is the one that has the lowest combined cost, i.e., the minimum customer
cost among those that have the least operational cost. The dynamic Pickup and
Delivery with Transfers (dPDPT) problem is to find the optimal solution path.

3.2.2 Actions

It is important to note that, throughout this chapter, we follow the convention that
an action is completed by vehicle ra at a location ni just before ra departs from ni.
Since ra can have multiple tasks to perform at ni according to the static plan, this
convention intuitively means that we make no assumptions about the order in which
a vehicle performs its tasks. In any case, the action will have concluded by the time
ra is ready to depart from ni.
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Consider a path p with operational and customer costs Op and Cp, respectively.
Further, assume that the last action in p results in the package being onboard vehicle
ra at location ni. Let p′ denote the path resulting upon performing an additional
action E on p. In the following, we detail each possible action E, and the costs of
the resulting path p′, denoted as Op′, Cp′, which may depend on the current path
costs Op, Cp.

Pickup

The pickup action involves a single vehicle, ra, and appears once as the first
action in a solution path. Hence, initially the package is at the pickup location ns

of the request, p is empty, and Op = Cp = 0.
We distinguish two cases for this action. First, assume that ns is included in the

vehicle’s route, and let Aa
s , D

a
s denote the arrival and departure times of ra at ns

according to the static plan. In this case, the pickup action is denoted as Ea
s . No

modification in ra’s route is necessary, and thus there is zero additional operational
cost for executing Ea

s . The customer cost for the resulting path p′ becomes equal to
the scheduled (according to the static plan) departure time Da

s from ns; without loss
of generality, we make the assumption that the request arrives at time 0. Therefore,

Op′ = 0
Cp′ = Da

s

}

for p′ = Ea
s . (3.2a)

In the second case, the pickup location ns is not in the ra route. Let ni be a
location in the ra route that is sufficiently close to ns; then, ra must take a detour
from ni to ns. A location is sufficiently close to ns if the detour is short, i.e., its
duration, denoted as T a

si, is below some threshold (a system parameter). Hence, it
is possible that a sufficiently close location does not exists for route ra; clearly, if no
such location exists for any route, then the request is unsatisfiable. When such a
ni exists, the pickup action is denoted as Ea

si. Figure 3.1(a) shows a pickup action
with detour. The solid line in the figure denotes the vehicle route ra and the dashed
line denotes the detour performed by ra from ni to ns to pickup the package. The
operational cost of a pickup action with detour is equal to the delay T a

si due to the
detour. The customer cost of p′ is the scheduled departure time from ni incremented
by the delay. Therefore,

Op′ = T a
si

Cp′ = Da
i + T a

si

}

for p′ = Ea
si. (3.2b)

Delivery

The delivery action involves a single vehicle, ra, and appears once as the last
action in a solution path. Similar to pickup, two cases exist for this action. In the
first case, ne appears in the route ra, and delivery is denoted as Ea

e . The costs for
path p′ are shown in Equation 3.3a. In the second case, a detour of length T a

ie at
location ni is required, and delivery is denoted as Ea

ie. Figure 3.1(b) presents an Ea
ie

delivery action with detour. The costs for p′ are shown in Equation 3.3b, where we
make the assumption that it takes T a

ie/2 time to travel from ni to ne.

Op′ = Op

Cp′ = Cp

}

for p′ = pEa
e . (3.3a)
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Op′ = Op + T a
ie

Cp′ = Cp + T a
ie/2

}

for p′ = pEa
ie. (3.3b)

Transport
The transport action involves a single vehicle, ra, and corresponds to the car-

rying of the package by a vehicle between two successive locations on its route.
Figure 3.1(c) illustrates such a transportation action from location ni to nj onboard
vehicle ra. As assumed, path p results in the package being onboard ra at location
ni. The transport action, denoted as Ea

ij , has zero operational cost, as the vehicle
is scheduled to move from ni to nj anyway. The customer cost is incremented by
the time required by vehicle ra to travel from ni to nj and finish its tasks at nj .
Therefore,

Op′ = Op

Cp′ = Cp +Da
j −Da

i

}

for p′ = pEa
ij. (3.4)

Transfer without detours
The transfer without detours action, denoted as Eab

i , involves two vehicles, ra
and rb, and corresponds to the transfer of the package from ra to rb at a common
location ni, e.g., a depot, drop-off/pickup point, etc. For example, Figure 3.1(d)
shows such a transfer action via the common location ni. Let A

b
i , D

b
i be the arrival

and departure times of vehicle rb at location ni. We distinguish three cases.
In the first, the last action in path p concludes after vehicle rb arrives and before

it departs from ni, i.e., A
b
i ≤ Cp ≤ Db

i . Since there is no delay in the schedule of
vehicles, the action’s operational cost is zero, while the customer cost of the resulting
path p′ becomes equal to the scheduled departure time of rb from ni. Therefore,

Op′ = Op

Cp′ = Db
i

}

for p′ = pEab
i , if Ab

i ≤ Cp ≤ Db
i . (3.5a)

In the second case, the last action in path p concludes before vehicle rb arrives
at ni, i.e., Cp < Ab

i . For the transfer to proceed, vehicle ra must wait at ni until rb
arrives. The operational cost is incremented by the delay, which is equal to Ab

i −Cp.
On the other hand, the customer cost becomes equal to the scheduled departure
time of rb from ni. Therefore,

Op′ = Op+Ab
i−Cp

Cp′ = Db
i

}

for p′ = pEab
i , if Cp < Ab

i . (3.5b)

In the third case, the last action in p concludes after vehicle rb is scheduled
to depart from ni, i.e., Cp > Db

i . This implies that rb must wait at ni until the
package is ready for transfer. The delay is equal to Cp − Db

i , which contributes to
the operational cost. The customer cost becomes equal to the delayed departure of
rb from ni, which coincides with Cp. Therefore,

Op′ = Op+Cp−Db
i

Cp′ = Cp

}

for p′ = pEab
i , if Cp > Db

i . (3.5c)

Transfer with detours
Consider distinct locations ni on ra and nj on rb. Assume that short detours from

ni and nj are possible, i.e., the detour durations are below some threshold, and that
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they have a common rendezvous point. The transfer with detours action, denoted
as Eab

ij , involves the two vehicles, ra and rb, and corresponds to the transportation
of the package on vehicle ra via the ni detour to the rendezvous location, its transfer
to vehicle rb, which has taken the nj detour, and finally its transportation to nj .
Figure 3.1(e) illustrates a transfer action between vehicles ra and rb via a detour to
their common rendezvous point nc. Notice the difference with Figure 3.1(d) where
the transfer action occurs without a detour. To keep the notation simple, we make
the following assumptions: (1) the ni detour travel time of ra is equal to that of the
nj detour of rb, denoted as T ab

ij ; and (2) it takes T ab
ij /2 time for both ra and rb to

reach the rendezvous location.
Similar to transferring without detours, we distinguish three cases. In the first,

the package is available for transfer at the rendezvous location, at time Cp + T ab
ij /2,

after the earliest possible and before the latest possible arrival of rb, i.e., A
b
j+T ab

ij /2 ≤
Cp + T ab

ij /2 ≤ Db
j + T ab

ij /2. Both vehicles incur a delay in their schedule by T ab
ij .

Therefore,
Op′ = Op+2·T ab

ij

Cp′ = Db
j+T ab

ij

}

for p′ = pEab
ij , if A

b
j ≤ Cp ≤ Db

j . (3.6a)

In the second case, the package is available for transfer before the earliest possible
arrival of rb at the rendezvous location, i.e., Cp + T ab

ij /2 < Ab
j + T ab

ij /2. Vehicle ra
must wait for Ab

j − Cp time. Therefore,

Op′ = Op+Ab
j−Cp+2·T ab

ij

Cp′ = Db
j+T ab

ij

}

for p′ = pEab
ij , if Cp < Ab

j. (3.6b)

Finally, in the third case, the package is available for transfer after the latest
possible arrival of rb at the rendezvous location, i.e., Cp + T ab

ij /2 > Db
j + T ab

ij /2.
Vehicle rb must wait for Cp −Db

j time. Therefore,

Op′ = Op+Cp−Db
j+2·T ab

ij

Cp′ = Cp+T ab
ij

}

for p′ = pEab
ij , if Cp > Db

j . (3.6c)

3.3 The Dynamic Plan Graph

We construct a weighted directed graph, termed dynamic plan graph and denoted
by GR, in a way that a sequence of actions corresponds to a simple path on this
graph. A vertex of the graph corresponds to a spatial location. In particular, a
vertex V a

i represents the spatial location ni of route ra. Additionally, there exist
two special vertices, Vs and Ve, which represent the request’s pickup and delivery,
respectively, locations. Therefore, five types of edges exist:

(1) A pickup edge Ea
si connects Vs to V a

i , and represents a pickup action by
vehicle ra with a detour at ni. Edge E

a
ss from Vs to V a

s (two distinct vertices
that correspond to the same spatial location ns) represents the case of pickup
with no detour.

(2) A delivery edge Ea
ie connects V a

i to Ve, and represents a delivery action by
vehicle ra with a detour at ni. Edge Ea

ee from Ve to V a
e represents the case

of pickup with no detour.
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Pickup Delivery Transport

w(Ea
si) = 〈T a

si, D
a
i +T a

si〉
(3.7)

w(Ea
ie) = 〈T a

ie, T
a
ie/2〉

(3.8)
w(Ea

ij) = 〈0, Da
j−Da

i 〉
(3.9)

Transfer

w(Eab
ij ) =







〈2·T ab
ij , D

b
j−Cp+T ab

ij 〉, if Ab
j ≤ Cp ≤ Db

j

〈Ab
j−Cp+2·T ab

ij , D
b
j−Cp+T ab

ij 〉, if Cp < Ab
j

〈Cp−Db
j+2·T ab

ij , T
ab
ij 〉, if Cp > Db

j .
(3.10)

Table 3.1: Edge weights of the dynamic plan graph.

(3) A transport edge Ea
ij connects V a

i to V a
j , and represents a transport action

by ra from ni to its following location nj on the route.

(4) A transfer without detours edge Eab
i connects V a

i to V b
i , and represents a

transfer from ra to rb at common location ni.

(5) A transfer with detours edge Eab
ij connects V a

i to V b
j , and represents a transfer

from ra to rb at a rendezvous location via detours at ni and nj .

Based on the above definitions, a simple path on the graph is a sequence of distinct
vertices that translates into a sequence of actions. Further, a solution for the request
is a path that starts from Vs and ends in Ve.

The final issue that remains is to define the weights W of the edges. We assign
edge E a pair of weights w(E) = 〈wO(E), wC(E)〉, so that wO(E) (resp. wC(E))
corresponds to the operational (resp. customer) cost of performing the action asso-
ciated with the edge E. Recall from Section 3.2.2 that the costs of the last action
in a sequence of actions depends on the total costs incurred by all previous ac-
tions. Consequently, the weights of an edge E from V to V ′ are dynamic, since they
depend on the costs of the path p that lead to V . Assuming Op and Cp are the
costs of p, and Op′ and Cp′ those of path p′ = pE upon executing E, we have that
w(E) = 〈Op′−Op, Cp′−Cp〉. Table 3.1 summarizes the formulas for the weights of
all edge types; note that the weights for actions with no detours are obtained by
setting the corresponding T value to zero. In the formulas, Ab

j , D
a
i , D

a
j and Db

j have
fixed values determined by the static plan. On the other hand, Cp depends on the
path p that leads to V a

i .
Clearly, a path from Vs to Ve that has the lowest combined cost according to

Equation 3.1 is an optimal solution.

Proposition 3.1. Let R be a collection of vehicles routes and (ns, ne) be a dPDPT

request over R. The solution to the request is the shortest path from vertex Vs to Ve

on the dynamic plan graph GR with respect to cost() of Equation 3.1.

Example 3.1. Figure 3.2(a) pictures a collection of vehicle routes R = {ra(n1, n3),
rb(n2, n6), rc(n4, n8, n9)}, and the pickup ns and the delivery location ne of a dPDPT
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Figure 3.2: A collection of vehicles routes R, a dPDPT request (ns, ne) over R, and the
dynamic plan graph GR. The solid lines denote the vehicle routes/transport edges while
the dashed lines denote the pickup, delivery and transfer with detour actions/edges.

request. Locations n1 on route ra and n2 on rb are sufficiently close to location ns

and thus, pickup actions Ea
s1 and Eb

s2 are possible. Similar, the Ec
9e delivery action

is possible at location n9 on route rc. Finally, we also identify two transfer actions,
Eac

34 and Ebc
68, as locations n3, n4 and n6, n8 have common rendezvous points n5 and

n7, respectively.

To satisfy the dPDPT request (ns, ne) we define the dynamic plan graph GR in
Figure 3.2(b) containing vertices Vs, V

a
1 , V

b
2 , . . . , Ve. Notice that the graph does not

include any vertices for the rendezvous points n5 and n7. Dynamic plan graph GR

contains two paths from Vs to Ve which means that there two different ways to satisfy
the dPDPT request: p1(Vs, V

a
1 , V

a
3 , V

c
4 , V

c
8 , V

c
9 , Ve) and p2(Vs, V

b
2 , V

b
6 , V

c
8 , V

c
9 , Ve). Next,

assume, for simplicity, that the detour cost is equal to T for all possible actions. Fur-
ther, consider paths p′1(Vs, V

a
1 , V

a
3 ) and p′2(Vs, V

b
2 , V

b
6 ), i.e., just before the transfer of

the package takes place, and assume that Ac
4 < Cp′1 < Dc

4 and Cp′2 > Dc
8 hold. Note,

that the operational cost of the two paths is exactly the same, i.e., Op′1 = Op′2 = T ,
coming from the pickup of the package at ns. Now, according to Equation 3.10 and
after the transfers Eac

34 and Ebc
68 take place, we get path p′′1 = p′1E

ac
34 and p′′2 = p′2E

bc
68

with Op′′1 = 3 · T < Op′′2 = 3 · T + Cp′2 − Dc
8, and therefore, cost(p′′1) < cost(p′′2).

Finally, since no other transfer incurs in order to delivery the package, this holds
also for paths p1 and p2, i.e., cost(p1) < cost(p2), and thus, the solution to the
dPDPT request (ns, ne) is path p1(Vs, V

a
1 , V

a
3 , V

c
4 , V

c
8 , V

c
9 , Ve) with Op1 = 4 · T and

Cp1 = Dc
9 +

3·T
2
.
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3.4 The SP Algorithm

According to Proposition 3.1, the next step is to devise an algorithm that computes
the two-criterion shortest path w.r.t. cost() on the dynamic plan graph. Unfortu-
nately, the dynamic weights of the edges in the graph violate the subpath optimality ;
that is, the lowest combined cost path from Vs to Ve that passes through some ver-
tex V may not contain the lowest combined cost path from Vs to V . The following
theorem supports this claim.

Theorem 3.1. The dynamic plan graph does not have subpath optimality for any
monotonic combination of the operational and customer costs.

Proof. Let p, q be two paths from Vs to V a
i , with costs Op, Cp and Oq, Cq, re-

spectively, such that Op < Oq and Cp < Cq, which implies that for any monotonic
combination of the operational and customer costs, p has lower combined cost than
q. Let p′ and q′ be the paths resulting after traversing a transfer without detours
edge Eab

i .
Assume that Cp < Cq < Ab

i , so that the second case of Equation 3.10 applies for
the weight w(Eab

i ) (setting T ab
ij = 0). Then, Op′ = Op+Ab

i −Cp, Oq′ = Oq+Ab
i −Cq,

and Cp′ = Cq′ = Db
i . Assuming that Op − Cp > Oq − Cq, we obtain that Oq′ < Op′.

Therefore, for any monotonic combination that considers both costs, q′’s combined
cost is lower that that of p′’s.

As a result, efficient algorithms based on the subpath optimality, e.g., Dijkstra
and Bellman-Ford cannot be employed to compute the shortest path on the dynamic
plan graph. In contrast, an exhaustive enumeration of all paths from Vs to Ve is
necessary, and for this purpose, we introduce a label-setting algorithm called SP.
Note that, in the sequel, we only discuss the case when actions occur with detours
as it is more general.

The SP algorithm has the following key features. First, similar to all algorithms
for multi-criteria shortest path, it may visit a vertex V a

i more than once following
multiple paths from the initial vertex Vs. For each of these paths p, the algorithm
defines a label in the form of 〈V a

i , p, Op, Cp〉, where Op is the operational and Cp the
customer cost of path p as introduced in Section 3.3. Second, at each iteration, SP
selects the label 〈V a

i , p, Op, Cp〉 with the currently selected path p having the lowest
combined cost cost(p), and expands the search considering the outgoing edges from
V a
i on the dynamic plan graph GR. If vertex V a

i has an outgoing delivery edge Ea
ie,

SP identifies a path from initial vertex Vs to final Ve called candidate solution. The
candidate solution is an upper bound to the final solution and it is progressively
improved until it becomes equal to the final. The role of a candidate solution is
twofold; it triggers the termination condition and prunes the search space. Finally,
the algorithm terminates the search when cost(p) of the path p with the lowest
combined cost, is equal to or higher than cost(pcand) of the current candidate solution
pcand which means that neither p or any other path at future iterations can be better
than current pcand.

Figure 3.3 illustrates the pseudocode of the SP algorithm. SP takes as inputs:
a dPDPT request (ns, ne) and the dynamic plan graph GR of a collection of vehicle
routes R. It returns the shortest path from Vs to Ve on GR with respect to cost().
The algorithm uses the following data structures: (1) a priority queue Q, (2) a path
pcand, and (3) a list T . The priority queue Q is used to perform the search by storing
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Algorithm SP

Input: dPDPT request (ns, ne), dynamic plan graph GR

Output: shortest path from Vs to Ve w.r.t. cost()
Parameters:

priority queue Q: the search queue sorted by cost() in ascending order
path pcand: the candidate solution to the dPDPT request
list T : the target list

Method:

1. construct pickup edges Ea
si;

2. construct delivery edges Ea
ie;

3. for each pickup edge Ea
si(Vs, V a

i ) in GR do

push label 〈V a
i , Ea

si, T
a
si, D

a
i +Ta

si〉 to Q;

4. for each delivery edge Ea
ie(V

a
i , Ve) in GR do

insert 〈V a
i , Ta

ie, T
a
ie/2〉 in T ;

5. while Q is not empty do

6. pop label 〈V a
i , p,Op, Cp〉 from Q;

7. if cost(p) ≥ cost(pcand) then return pcand;

8. ImproveCandidateSolution(pcand,T , 〈V a
i , p,Op, Cp〉);

9. for each outgoing transport Ea
ij or transfer edge Eab

ij in GR do

10. extend path p and create p′;

11. compute Op′ and Cp′ ;

12. if cost(p′) < cost(pcand) then

ignore path p′;

13. else

14. push label 〈V ′, p′, Op′ , Cp′ 〉 to Q where V ′ is the last vertex in p′;

15. end if

16. end for

17. end while

18. return pcand if exists, otherwise null;

Figure 3.3: The SP algorithm.

every label 〈V a
i , p, Op, Cp〉 to be checked, sorted by cost(p) in ascending order. The

target list T contains entries of the form 〈V a
i , T

a
ie, T

a
ie/2〉, where V

a
i is a vertex of the

dynamic plan graph involved in a delivery edge Ea
ie, List T is used to construct or

improve the candidate solution pcand.

The execution of the SP algorithm involves two phases: the initialization and the
core phase. In the initialization phase (Lines 1–4), SP first creates the pickup Ea

si

and delivery edges Ea
ie on the dynamic plan graph GR. For this purpose it identifies

each location ni on every vehicle route ra that is sufficiently close to pickup location
ns (resp. delivery ne), i.e., the duration T a

si (resp. T a
ie) of the detour from ns to ni

(resp. ni to ne) is below some threshold (a system parameter). Then, the algorithm
initializes the priority queue Q adding every vertex V a

i involved in a pickup edge Ea
si

on GR and constructs the target list T . In the core phase (Lines 5–17), the algorithm
performs the search. It proceeds iteratively popping, first, the label 〈V a

i , p, Op, Cp〉
from Q on Line 6. Path p has the lowest cost(p) value compared to all others paths
in Q. Next, SP checks the termination condition (Line 7). If the check succeeds, i.e.,
cost(p) ≥ cost(pcand), then current candidate pcand is returned as the final solution.

If the termination condition fails, the algorithm first tries to improve candidate
solution pcand calling the ImproveCandidateSolution(pcand, T , 〈V a

i , p, Op, Cp〉) function
on Line 8. The function checks if the target list T contains an entry 〈V a

i , T
a
ie, T

a
ie/2〉

for the vertex V a
i of the current label and constructs the path pEa

ie from Vs to Ve.
If cost(pEa

ie) < cost(pcand) then a new improved candidate solution is identified and
thus, pcand = pEa

ie. Finally, SP expands the search considering all outgoing transport
and transfer edges from V a

i onGR (Lines 9–16). Specifically, the path p of the current

50



label is extended to p′ = pEa
ij (transport edge) or to p′ = pEab

ij (transfer edge), and
the operational Op′ and the customer cost Cp′ of the new path p′ are computed
according to Equations 3.9 and 3.10. Then, on Line 12, the algorithm determines
whether p′ is a “promising” path and thus, it must be extended at a future iteration,
or it must be discarded. The algorithm discards path p′ if cost(p′) ≥ cost(pcand)
which means that p′ cannot produce a better solution than current pcand. Otherwise,
p′ is a “promising” path, and SP inserts label 〈V ′, p′, Op′, Cp′〉 in Q where V ′ is the
last vertex in path p′.

Example 3.2. We illustrate the SP algorithm using Figure 3.2. To carry out the
search we make the following assumptions, similar to Example 3.1. The detour cost
is equal to T for all edges. For the paths p′1(Vs, V

a
1 , V

a
3 ) and p′2(Vs, V

b
2 , V

b
6 ), i.e., just

before the transfer of the package takes place, Ac
4 < Cp′1 < Dc

4 and Cp′2 > Dc
8 hold.

Finally, we also assume that Da
1 < Da

3 < Db
2 < Db

6.
First, SP initializes the priority queue Q = {〈V a

1 , (Vs, V
a
1 ), T,D

a
1 + T 〉, 〈V b

2 ,
(Vs, V

b
2 ), T,D

b
2+T 〉} and constructs the target list T = {〈V c

9 , T, T/2〉}. Note that the
leftmost label in Q always contains the path with the lowest cost() value. At the first
iteration, the algorithm pops label 〈V a

1 , (Vs, V
a
1 ), T,D

a
1+T 〉, considers transport edge

Ea
13, and pushes 〈V a

3 , p
′
1(Vs, V

a
1 , V

a
3 ), T,D

a
3+T 〉 to Q. Next, at the second iteration,

SP pops label 〈V a
3 , p

′
1(Vs, V

a
1 , V

a
3 ), T,D

a
3+T 〉 from Q, considers the transfer edge Eac

34,
and pushes 〈V c

4 , p
′′
1(Vs, V

a
1 , V

a
3 , V

c
4 ), 3 · T,D

c
4 + T 〉 to Q (remember Ac

4 < Cp′1 < Dc
4).

The next two iterations are similar, and thus, after the fourth iteration we have:

Q = {〈V c
4 , p

′′
1(Vs, V

a
1 , V

a
3 , V

c
4 ), 3 · T,D

c
4 + T 〉, and pcand = null

〈V c
8 , p

′′
2(Vs, V

b
2 , V

b
6 , V

c
8 ), 3 · T + Cp′2−Dc

8, Cp′2 + T 〉}

Now, at the next two iterations, SP expands path p′′1 considering transport edges E
c
48

and Ec
89 as Op′′1 < Op′′2. Therefore, at the seventh iteration, the algorithm pops label

〈V c
9 , (Vs, V

a
1 , V

a
3 , V

c
4 , V

c
8 , V

c
9 ), 3·T,D

c
9+T 〉 from Q. Since the target list T contains an

entry for vertex V c
9 , SP identifies candidate solution pcand = p1(Vs, V

a
1 , V

a
3 , V

c
4 , V

c
8 ,

V c
9 , Ve) with Op1 = 4 · T and Cp1 = Dc

9 +
3·T
2
. Finally, assuming without loss of

generality that Db
6 > Dc

8 also holds and therefore, Cp′2 −Dc
8 = Db

6 + T − Dc
8 >

T , at the eighth iteration, the algorithm pops 〈V c
8 , p

′′
2(Vs, V

b
2 , V

b
6 , V

c
8 ), 3 · T + Cp′2−

Dc
8, Cp′2 + T 〉 and terminates the search because Op′′2 = 3 · T + Cp′2−Dc

8 > 4 · T =
Op1 and thus, cost(p′′2) > cost(p1). The solution to the dPDPT request (ns, ne) is
p1(Vs, V

a
1 , V

a
3 , V

c
4 , V

c
8 , V

c
9 , Ve).

3.5 The Modified Dynamic Plan Graph

According to Theorem 3.1, it is possible that a path q with high costs leads to a better
solution than a path p with lower costs; hence q cannot be eliminated. However,
there exist cases when q can be safely pruned as it definitely cannot contribute a
better solution than p. A simple example of such a case is when, for each vehicle, q
incurs a delay greater than what p incurs. Clearly, operational and customer costs
are higher for q. Additionally, any path that extends q in some way is worse than
the path obtained by extending p in that same way.

Motivated by this observation, we seek a breakdown of the operational cost in a
manner that allows us to eliminate paths, circumventing thus Theorem 3.1. Consider
a path p that ends in vertex V a

i . We define two new cost metrics. The current
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Pickup Delivery Transport

w(Ea
si) = 〈T a

si, 0〉 (3.11)
w(Ea

ie) = 〈T a
ie/2, T

a
ie/2〉
(3.12)

w(Ea
ij) = 〈0, 0〉 (3.13)

Transfer

w(Eab
ij ) =







〈T ab
ij −O∗

p, T
ab
ij +O∗

p〉, if Ab
j≤Da

i +O∗
p≤Db

j

〈T ab
ij −O∗

p, T
ab
ij +Ab

j−Da
i 〉, if Da

i +O∗
p < Ab

j

〈T ab
ij +Da

i −Db
j , T

ab
ij +O∗

p〉, if Da
i +O∗

p > Db
j

(3.14)

Table 3.2: Edge weights of the modified dynamic plan graph.

operational cost O∗
p is the delay incurred by the vehicle, ra in this example, currently

carrying the package. The residual operational cost OR
p is the delay incurred by all

other vehicles.

Obviously, for any path, the operational cost Op is the sum of these costs, i.e.,
Op = OR

p + O∗
p. Furthermore, observe that, according to Equations 3.2a – 3.6c, the

customer cost Cp is determined only by the delay in the schedule of the current
vehicle, i.e., Cp = Da

i + O∗
p. Therefore, any combined cost, including the one used

throughout this work (Equation 3.1), can be rewritten using the current and residual
operational costs.

Consider the modified dynamic plan graph denoted by G∗
R that has the same

vertices and edges, but modified weight, compared to the dynamic plan graph. The
modified weight of an edge E, is defined as the pair w′(E) = 〈w∗(E), wR(E)〉, so
that w∗(E) (resp. wR(E)) is the current (resp. residual) operational cost of action
E. The formulas for the modified weights for all types of edges are summarized in
Table 3.2; note that the weights for actions with no detours are obtained by setting
the corresponding T value to zero.

According to the next theorem, the graph with these modified weights exhibits
subpath optimality. Therefore, the dPDPT problem can be solved using efficient
algorithms, which we discuss in the following section.

Theorem 3.2. The modified dynamic plan graph has subpath optimality for any
monotonic combination of the operational and customer costs.

Proof. First, note that any monotonic combination of the operational and customer
costs can be written as a monotonic combination of the current and residual oper-
ational costs. Let p, q be two paths from Vs to V a

i , with current and residual oper-
ational costs O∗

p, O
R
p and O∗

q , O
R
q , respectively, such that O∗

p < O∗
q and OR

p < OR
q .

This implies that for any monotonic combination of these two costs, p has lower
combined cost than q.

Assume p′ and q′ are the paths after traversing a transfer without detours edge
Eab

i ; the transfer with detours edge proof is similar, while the proof for all other
edges is trivial. We must prove that, in all possible cases, denoted as Cases I–III,
for p, q, the statement O∗

p′ < O∗
q′ and OR

p′ < OR
q′ is true; note that to obtain the
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equations for the transfer without detours edge Eab
i from Equation 3.14, set T ab

ij = 0
and j = i.

Assume that Case I applies for p; thus, the current and residual operational
costs of p′ become O∗

p′ = 0, OR
p′ = OR

p + O∗
p. If Case I applies for q, q′’s costs

become O∗
q′ = 0, OR

q′ = OR
q +O∗

q ; clearly the statement is true. Case II cannot apply

for q, since Da
i + Or

q > Da
i + Or

p ≥ Ab
i . If Case III applies for q, q′’s costs become

O∗
q′ = O∗

q+Da
i −Db

i , O
R
q′ = OR

q +O∗
q . The statement is true, because Or

q+Da
i −Db

i > 0
in Case III.

Now, assume that Case II applies for p; thus, the costs of p′ become O∗
p′ = 0,

OR
p′ = OR

p +Ab
i−Da

i . If Case I applies for q, q
′’s costs become O∗

q′ = 0, OR
q′ = OR

q +O∗
q .

The statement is true, because Ab
i ≤ Da

i +Or
q in Case I. If Case II applies for q, q′’s

costs become O∗
q′ = 0, OR

q′ = OR
q + Ab

i − Da
i , and the statement is clearly true. If

Case III applies for q, q′’s costs become O∗
q′ = O∗

q + Da
i − Db

i , O
R
q′ = OR

q + O∗
q .

Regarding the current operational cost, observe that Da
i +O∗

q > Db
i in Case III, and

thus O∗
q > Db

i − Da
i ≥ Ab

i − Da
i . Regarding the residual operational cost, observe

that Da
i + O∗

q > Db
i in Case III. Therefore, the statement is true.

Finally, assume that Case III applies for p; thus, the costs of p′ become O∗
p′ =

O∗
p + Da

i − Db
i , O

R
p′ = OR

p + O∗
p. Only Case III can apply for q and so q′’s costs

become O∗
q′ = O∗

q +Da
i −Db

i , O
R
q′ = OR

q +O∗
q ; clearly, the statement is true.

3.6 The SPM Algorithm

Following Theorem 3.2, we introduce the SPM algorithm that efficiently solves the
dPDPT problem. Similar to SP, SPM is a label-setting algorithm that computes the
solution to a dPDPT request identifying the shortest path from vertex Vs to Ve on the
modified dynamic plan graph G∗

R, with respect to cost() as defined in Equation 3.1.
The SPM algorithm has similar key features to SP but it considers some ad-

ditional optimizations. Thus, for a path p from the initial vertex Vs to a vertex
V a
i found, it defines a label in the form of 〈V a

i , p, O
∗
p, O

R
p 〉, where O∗

p is the current
operational cost and OR

p is the residual operational cost of path p as introduced in
Section 3.5. Note that the operational Op and the customer cost Cp are not included
in the label since they can be computed at any time using O∗

p and OR
p . However, in

order to speedup the search, SPM does not consider the labels of all the paths to
a vertex V a

i , like SP does. It only stores the labels of the most “promising” paths.
A path p(Vs, . . . , V

a
i ) is less “promising” than another q(Vs, . . . , V

a
i ) if extending p

can never provide a better solution than extending q. Further, similar to SP, at
each iteration, SPM selects the label 〈V a

i , p, O
∗
p, O

R
p 〉 with the lowest combined cost

cost(p), identifies a candidate solution path pcand if V a
i has an outgoing delivery

edge Ea
ie, and then, expands the search considering the outgoing edges from V a

i on
the modified dynamic plan graph G∗

R. During this expansion phase, for every newly
created path (Vs, . . . , V

′), SPM determines whether p′ is a “promising” path con-
sidering not only current candidate answer pcand (like SP does), but also the most
“promising” paths from Vs to V ′ constructed at previous iterations. This enables
SPM to further prune the search space compared to SP. Finally, SPM terminates
the search, similar to SP, when cost(p) of the currently selected path p with the
lowest combined cost, is equal to or higher than cost(pcand) of the current candidate
solution pcand which means that neither p or any other path at future iterations can
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be better than current pcand.

Algorithm SPM

Input: dPDPT request (ns, ne), modified dynamic plan graph G∗
R

Output: shortest path from Vs to Ve w.r.t. cost()
Parameters:

priority queue Q: the search queue sorted by cost() in
ascending order

path pcand: the candidate solution to the dPDPT request
list T : the target list
set P[V a

i ]: the most “promising” paths to each vertex V a
i

contained in labels in Q

Method:

1. construct pickup edges Ea
si;

2. construct delivery edges Ea
ie;

3. for each pickup edge Ea
si(Vs, V a

i ) in G∗
R

do

4. push label 〈V a
i , Ea

si, T
a
si, 0〉 to Q;

5. insert entry 〈Ta
si, 0〉 in P[V a

i ];

6. end for

7. for each delivery edge Ea
ie(V

a
i , Ve) in G∗

R do

insert 〈V a
i , Ta

ie/2, T
a
ie/2〉 in T ;

8. while Q is not empty do

9. pop label 〈V a
i , p,O∗

p, O
R
p 〉 from Q;

10. if cost(p) ≥ cost(pcand) then return pcand;

11. ImproveCandidateSolution(pcand,T , 〈V a
i , p,O∗

p , O
R
p 〉);

12. for each outgoing transport Ea
ij or transfer edge Eab

ij in G∗
R do

13. extend path p and create p′;

14. compute O∗
p′

and OR
p′
;

15. let V ′ be the last vertex in p′;

16. if exists entry 〈O∗
q , O

R
q 〉 in P[V ′] with O∗

p′
≥ Q∗

q and OR
p′

≥ QR
q then

ignore path p′;

17. else if cost(p′) < cost(pcand) then

ignore path p′;

18. else

19. push label 〈V ′, p′, Op′∗, O
R
p′
〉 to Q;

20. insert entry 〈O∗
p′
, OR

p′
〉 in P[V ′];

21. delete each entry 〈O∗
q , O

R
q 〉 from P[V ′] where O∗

p′
≤ Q∗

q and OR
p′

≤ QR
q and its corresponding labels

from Q;

22. end if

23. end for

24. end while

25. return null;

Figure 3.4: The SPM algorithm.

Figure 3.4 illustrates the pseudocode of the SPM algorithm. SPM takes as inputs:
a dPDPT request (ns, ne) and the modified dynamic plan graph G∗

R of a collection of
vehicle routes R. It returns the shortest path from Vs to Ve on G∗

R with respect to
cost(). Similar to SP, the algorithm uses (1) a priority queue Q, (2) a path pcand,
and (3) a target list T , but also (4) a set P[V a

i ] for each vertex V a
i contained in the

labels inserted in Q, The set P[V a
i ] contains entries in the form of 〈O∗

p, O
R
p 〉 for each

“promising” path p from Vs to V a
i found so far. The entries in P[V a

i ] are used to
prune the non “promising” paths to vertex V a

i , constructed during the search.

The execution of the SPM algorithm is similar to SP involving an initialization
(Lines 1–7) and a core phase (Lines 8–24). Since, SPM only differs from SP in the
expansion of the search during the core phase (Lines 12–23), we detail this process.
Consider a path p′(Vs, . . . , V

a
i , V

′) created after extending path p of the current label
〈V a

i , p, O
∗
p, O

R
p 〉. SPM discards path p′ if either of the following holds:
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(1) P[V ′] contains an entry 〈O∗
q , O

R
q 〉 such that O∗

p′ ≥ Q∗
q and OR

p′ ≥ QR
q (Line

16)

(2) cost(p′) ≥ cost(pcand) (Line 17)

Following Case (1) p′ cannot contribute a better solution than q, whereas with
Case (2) p′ cannot produce a better solution than current pcand. Note that the SP

algorithm considers only Case (2). If neither Case (1) or (2) holds, p′ is a “promising”
path, and SPM inserts label 〈V ′, p′, O∗

p′, O
R
p′〉 in Q and entry 〈O∗

p′, O
R
p′〉 in P[V ′]. In

addition, on Line 21, the algorithm updates P[V ′] removing every entry 〈O∗
q , O

R
q 〉

with O∗
p′ ≤ Q∗

q and OR
p′ ≤ QR

q , and the corresponding labels in Q, since such path q
will never contribute a better solution than p′.

Example 3.3. We illustrate the SPM algorithm and discuss its differences with SP

using Example 3.2. Recall that we make the following assumptions: (1) the detour
cost is equal to T for all edges, (2) for paths p′1(Vs, V

a
1 , V

a
3 ) and p′2(Vs, V

b
2 , V

b
6 ), i.e.,

just before the transfer of the package takes place, Ac
4 < Cp′1 < Dc

4 and Cp′2 > Dc
8

hold, and (3) Da
1 < Da

3 < Db
2 < Db

6. Finally, also remember that the leftmost label
in the priority queue Q always contains the path with the lowest cost() value.

First, SPM initializes the priority queue Q = {〈V a
1 , (Vs, V

a
1 ), T, 0〉, 〈V

b
2 , (Vs, V

b
2 ),

T, 0〉} and constructs the target list T = {〈V c
9 , T/2, T/2〉}. In addition, we have

P[V a
1 ] = {〈T, 0〉} and P[V b

2 ] = {〈T, 0〉}. Note that path (Vs, V
a
1 ) has lowest cost()

compared to (Vs, V
b
2 ) because Da

1 < Db
2. At the first four iterations, SPM proceeds

similar to SP and thus, after the fourth iteration and considering edges Ea
13, E

ac
34,

Eb
26 and Ebc

68 we have:

Q = {〈V c
4 , p

′′
1(Vs, V

a
1 , V

a
3 , V

c
4 ), T, 2 · T 〉,

〈V c
8 , p

′′
2(Vs, V

b
2 , V

b
6 , V

c
8 ), T + Cp′2−Dc

8, 2 · T 〉}
P[V a

1 ] = {〈T, 0〉}, P[V b
2 ] = {〈T, 0〉}, P[V a

3 ] = {〈T, 0〉}, P[V c
4 ] = {〈T, 2 · T 〉}

P[V b
6 ] = {〈T, 0〉}, P[V c

8 ] = {〈T + Cp′2−Dc
8, 2 · T 〉}

pcand = null

Note that from O∗
p′′1

, OR
p′′1

, O∗
p′′2

and OR
p′′2

, we get Op′′1 = 3 · T , Cp′′1 = Dc
4 + T ,

Op′′2 = 3 · T + Cp′2 − Dc
8 and Cp′′2 = Cp′2 + T , i.e., the costs computed for path p′′1

and p′′2 also by SP in Example 3.2.
Next, at the fifth iteration, the algorithm pops label 〈V c

4 , p
′′
1(Vs, V

a
1 , V

a
3 , V

c
4 ), T, 2 ·

T 〉, considers transport edge Ec
48 and creates path p′′′1(Vs, V

a
1 , V

a
3 , V

c
4 , V

c
8 ) with O∗

p′′′1
=

T and OR
p′′′1

= 2 · T . Since P[V c
8 ] is not empty, P[V c

8 ] = {T + Cp′2 −Dc
8, 2 · T 〉},

p′′′1 is not the only path leading to V c
8 . SPM compares p′′′1(Vs, V

a
1 , V

a
3 , V

c
4 , V

c
8 ) with

p′′2(Vs, V
b
2 , V

b
6 , V

c
8 ) and determines that p′′′1 is more “promising” than p′′2 as O∗

p′′2
>

O∗
p′′′1

and OR
p′′2

= OR
p′′′1

(recall that Cp′2 > Dc
8). Thus, the algorithm inserts the

entries in Q and P[V c
8 ] for path p′′′1 and, removes the entries for p′′2. So after the

fifth iteration, we have:

Q = {〈V c
8 , p

′′′
1(Vs, V

a
1 , V

a
3 , V

c
4 , V

c
8 ), T, 2 · T 〉}

P[V a
1 ] = {〈T, 0〉}, P[V b

2 ] = {〈T, 0〉}, P[V a
3 ] = {〈T, 0〉}, P[V c

4 ] = {〈T, 2 · T 〉}
P[V b

6 ] = {〈T, 0〉}, P[V c
8 ] = {〈T, 2 · T 〉}

pcand = null

Note that at the same iteration, Q for SP also contained the label 〈V c
8 , p

′′
2(Vs, V

b
2 ,

V b
6 , V

c
8 ), 3 · T + Cp′2−Dc

8, Cp′2 + T 〉 for path p′′2.
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Finally, at the seventh iteration SPM depletes Q popping label 〈V c
9 , (Vs, V

a
1 , V

a
3 ,

V c
4 , V

c
8 , V

c
9 ), T, 2 · T 〉 from Q and since the target list T contains an entry for vertex

V c
9 , it identifies final solution pcand = p1(Vs, V

a
1 , V

a
3 , V

c
4 , V

c
8 , V

c
9 , Ve) with Op1 = 4 · T

and Cp1 = Dc
9 +

3·T
2
. Note that SP did not terminate at the seventh iteration as its

queue was not empty, i.e., Q = {〈V c
8 , p

′′
2(Vs, V

b
2 , V

b
6 , V

c
8 ), 3 · T +Cp′2−Dc

8, Cp′2 + T 〉}.

3.7 Experimental Evaluation

In this section, we present an experimental study of our methodology for solving
dynamic Pickup and Delivery Problem with Transfers. We compare our methods
against HTT, a rival method inspired by [53]. All methods are written in C++ and
compiled with gcc. The evaluation is carried out on a 3Ghz Core 2 Duo CPU with
4GB RAM running Debian Linux.

3.7.1 The HTT method

Satisfying dPDPT requests with HTT involves two phases. In the first phase, for every
new dPDPT request, the method includes the pickup ns and the delivery location
ne in two vehicle routes rs and re, respectively. If ns and ne are included in the
same route then a solution without a transfer of the package is identified otherwise
the package will be transferred from vehicle rs to re. To determine the vehicle
routes rs and re, HTT employs the cheapest insertion heuristic. Particularly, first, it
examines every vehicle route rs (resp. re) and for each pair of consecutive locations
ni and ni+1 in rs (resp. re), that form an insertion “slot”, it computes the detour
cost DS = dist(ni, ns) + dist(ns, ni+1)− dist(ni, ni+1) for inserting pickup ns (resp.
delivery ne) in between ni and ni+1. The detour cost DS signifies the extra time
vehicle rs (resp. re) must spend and therefore, it increases the total operational cost.
Then, HTT considers every pair of routes rs and re and determines the minimum
detour cost for transferring the package from rs to re; if rs = re the detour cost
is of course zero. The idea is similar to the transfer with detour action introduced
in Section 3.3. Finally, HTT selects the best overall combination of actions, i.e.,
including pickup ns in vehicle route rs, delivery ne in re and transferring the package
from rs to re, that minimizes the increase of the total operational cost.

The second phase of HTT takes place periodically after k requests are satisfied
during the first phase. It involves a tabu search improvement procedure that reduces
the total operating cost. At each iteration, the tabu search considers every satisfied
request and calculates what would be the change (increase or decrease) in the total
operational cost removing the request from its current vehicle route (resp. pair of
routes in case a transfer is considered) and inserting it to another route or pair
of routes. Then, the tabu search selects the request with the best combination of
removal and insertion, and performs these actions. Finally, the selected combination
is characterized as tabu and cannot be executed for a number of future iterations.

3.7.2 Setup

To conduct our experiments, we consider the road networks of two cities; Oldernburg
(OL) with 6,105 spatial locations and Athens (ATH) with 22,601 locations. First,
we generate random pickup and delivery requests at each network and exploit the
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Figure 3.5: SPM vs HTT at the OL road network.

HTT method to construct collections of vehicle routes varying either the number of
routes |R|, from 100 to 1000, or the number of requests |Reqs| involved, from 200
to 2000. Then, for each of these route collections, we generate 500 random dPDPT

requests and employ our best method SPM, and the HTT rival method to satisfy
them. For HTT, we introduce three variations HTT1, HTT3 and HTT5 such that
the tabu search is invoked once (after 500 requests are satisfied), three times (after
170) and five times (after 100), respectively. In addition, each time the tabu search
is invoked, it performs 10 iterations. For each method, we measure (1) the increase
in the total operational cost of the vehicles after all 500 requests are satisfied and
(2) the total time needed to identify the solution to all the requests. Finally, note
that we store both the road network and the vehicle routes on disk.

3.7.3 Experiments

Examining Figures 3.5 and 3.6 we make the following observations. The SPM

method requires significantly less time to satisfy the 500 ad-hoc dPDPT requests,
for all the values of the |Reqs| and |R| parameters, and for both the underlying road
networks. In fact, when varying |R|, SPM is always one order of magnitude faster
than all three HTT variants. In contrast, SPM results in slightly increased total
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Figure 3.6: SPM vs HTT at the ATH road network.

operational cost compared to HTT, in most of the cases, and especially for large
road networks as ATH. However, this advantage of HTT comes with a unavoidable
trade-off between the increase of the total operational cost and the time needed to
satisfy the ad-hoc dPDPT requests. The more often HTT employs the tabu search,
the lower the increase of the total operational cost of the vehicles is. But, on the
other hand, since each iteration of the tabu search needs to examine every route and
identify the best reassignment for all the existing requests, the total time of HTT5
is higher than the time of HTT3 and HTT1.

Finally, we notice that as the number of pickup and delivery requests |Reqs|
involved in the initial static plan increases, satisfying the 500 ad-hoc dPDPT requests,
either with HTT or SPM, results in a lower increase of the total operational cost
but the total time needed to satisfy these requests increases. Notice that this is true
regardless of the size of the underlying road network. As |Reqs| increases and while
|R| remains fixed, the vehicle routes contain more spatial locations. This provides
more insertion “slots” and enables both HTT and SPM to include the pickup and
the delivery location of a dPDPT request with a lower cost. On the other hand, HTT
slows down since it has to examine the reassignment of more requests during the
tabu search, and SPM needs more time because the modified dynamic plan graph
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is larger. Similar observations can be made in case of varying the number of routes
|R| and the HTT method.

3.8 Conclusions

In this chapter, we studied the dynamic Pickup and Delivery Problem with Transfers
(dPDPT). This is the first work addressing the dynamic flavor of the problem. We
propose a methodology that formulates dPDPT as a graph problem and identifies
the solution to a request as the shortest path from a node representing the pickup
location to that of the delivery location. Our experimental analysis shows that our
method is able to find dPDPT solutions significantly faster than a two-phase local
search algorithm that allows at most one transfer, while the quality of the solution
is only marginally lower.
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Chapter 4

Most Trusted Near Shortest Path

Identifying the shortest path (SP) on a graph is a fundamental and well-studied
problem in the literature. In fact, there exist numerous other problems and applica-
tions that employ the computation of SP in the core of their methodology. Providing
driving directions is an example of such applications. Particularly, many car naviga-
tion and route planning systems recommend the shortest path as the preferable way
of driving from one location of a city to another. However, the shortest path is not
always the most preferable way of driving around a city. To this end, in the context
of transportation systems, works like [30, 55] consider a dynamic counterpart of SP,
called time-dependent shortest path (a.k.a. time-dependent fastest path). In this
case, the cost of traveling from a location ni to another nj on the road network
depends on the departure time from ni. For instance, driving through large roads
like a freeway that connects the suburbs to the city center, takes more time in the
morning hours than using the same road at night. Thus, the recommended path
changes with respect to the time of the day a driver asks for directions.

Although computing the time-dependent SP may provide better driving direc-
tions than SP, they both fail to capture the actual way people drive around a city.
Specifically, people tend to follow roads they already know and use in their every
day driving e.g., to their work place, to their children’s school etc., or roads that
have followed in the past. In addition, even when they want to drive to a location
for the first time, they usually ask their friends to recommend a “good” and safe
way. In both cases, the goal is to avoid specific roads which, for example, are ei-
ther included in high crime areas, or more likely to become dangerous in case of
bad weather conditions, or have increased traffic. Thus, very often, a driver would
rather follow a trusted and familiar way to move around the city over the fastest
way.

Based on the above observations, the contributions of our work in this chapter
can be summarized as follows:

(1) We introduce the Most Trusted Near Shortest Path (MTNSP) as a preferable
way of driving around a city when a collection of trusted routes is available.
For this purpose, we first define the notion of the known graph as a subgraph
of the road network that is constructed merging the available trusted routes.
Then, we seek for a path on the road network such that a driver will drive as
less time as possible outside the known graph without significantly increasing,
at the same time, the total duration of his journey compared to the fastest
way, i.e., the shortest path.
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(2) We define two costs for a path p between any pair of nodes ns and nt on the
road network. The length Lp of p measures the total traveling time from ns

to nt. The unknown time Up of path p measures the total time spend outside
the known graph. The MTNSP between two nodes ns to nt is the path p that
has the lowest unknown time Up among the paths with length Lp, at most α
times larger than the length of the shortest path from ns to nt.

(3) We propose a methodology for identifying MTNSP that involves an offline
and an online processing phase. The offline processing phase constructs an
embedding E on the road network that efficiently indexes the distances of
the network intersections and the time spend outside the known graph, i.e.,
the unknown time. Then, during the online phase a label-setting algorithm,
called TRUSTME, employs the embedding in order to prune the search space
and thus, speedup the evaluation of the MTNSP queries.

(4) We perform an extensive experimental analysis demonstrating the advantage
of our methodology compared to a label-setting algorithm that exploits the
euclidean distance of the network intersections to prune its search space.

The remainder of this chapter is organized as follows. Section 4.1 reviews the
related work, and then, Section 4.2 provides an overview of the space embedding
techniques. Section 4.3 formally defines the problem of the Most Trusted Near
Shortest Path, and Section 4.4 presents our methodology for solving it. Finally,
Section 4.5 presents an extensive experimental evaluation and Section 4.6 concludes
this work.

4.1 Related Work

Our work in this chapter is related to graph embedding techniques and to shortest
path problems.

Embedding techniques. In domains with a computationally expensive distance
function, significant speed-ups can be obtained by embedding objects into another
space and using a more efficient distance function, such as one of the Minkowski
metrics. For instance, several methods have been proposed to embed a space into
the Euclidean space [7, 38].

For graph problems, the Lipschitz embedding with singleton reference sets called
landmarks or reference nodes is a widely adopted embedding technique. The basic
idea is to precompute the distances of each graph node to every of the k landmarks
selected and then, represent a node by a k-dimensional vector. This technique
has been employed in the field of computer networks in many applications such as
round-trip propagation and transmission delay [29, 54, 60, 69], and furthermore, in
the field of spatial networks, for speeding up the evaluation of proximity [45, 46] and
kNN [66] queries, and the computation of shortest path [34, 35] and of multi-criteria
shortest path [47]. However, there exist very few works, e.g., [59], that deal with
the important issue of how to select the landmarks for the embedding.

Shortest path problem and its variants. Bellman-Ford and Dijkstra are the
most well-known algorithms for finding the shortest path between two nodes in a
graph. The ALT algorithms [34, 35, 57] perform a bidirectional A* search and exploit
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a lower bound of the distance between two nodes to direct the search. There exist a
number of materialization techniques [3, 42, 44] or encoding/labeling schemes [19, 22]
that can be used to efficiently compute the shortest path. Both the ALT algorithms
and the materialization and encoding methods are mostly suitable for graphs that
are not frequently updated, since they require expensive precomputation.

In multi-criteria shortest path problems the quality of a path is measured by
multiple metrics, and the goal is to find all paths for which no better exists. Al-
gorithms are categorized into three classes. The methods of the first class (e.g.,
[18]) apply a user preference function to reduce the original multi-criteria problem
to a conventional shortest path problem. The second class contains the interactive
methods (e.g., [36]) that interact with a decision maker to come up with the answer
path. Finally, the third class includes label-setting and label-correcting methods
(e.g., [37, 47, 70]). These methods construct a label for every path followed to reach
a graph node. Then, at each iteration, they select the path with the minimum cost,
defined as the combination of the given criteria, and expand the search extending
this path.

Finally, in near-shortest path problem the goal is to identify the paths whose
length is within a factor of 1 + ǫ of the shortest-path length for some user-specified
ǫ ≥ 0. [16] is among the first works that focus on the near-shortest path adopting
ideas from dynamic programming to come up with a solution. Later, [17] extend
this solution to speed up the computation of the near-shortest paths.

4.2 Background on Space Embedding Techniques

Let (S, dS) be a finite metric space where S is a finite set of objects and dS : S×S →
R

+ is a distance metric over S. The embedding, or transformation, of the finite metric
space (S, dS) into a vector space (Rk, dr) is a mapping E : S → R

k where k is the
dimensionality of the vector space and dr is one of the Minkowski metrics in R

k.
Formally:

dr(x, y) =

[

k
∑

i=1

|xi − yi|
r

]1/r

where xi and yi are the i-th coordinates of points x and y in space, respectively,
and r is the order of the Minkowski metric. For instance, when r = 1 the metric
is known as the Manhattan distance and when r = 2 is known as the Euclidean
distance.

The objective of an embedding is to provide a fast and computationally simple
dr function such that dS(x, y) ∼= dr(E(x), E(y)). In other words, the distance be-
tween two objects x and y in the original metric space should be close enough to the
distance between their corresponding embedded points E(x) and E(y) in the embed-
ding space. The quality of an embedding E is measured by means of the distortion
and the stress. The distortion specifies the maximum difference between distance
functions dS and dr, and it is equal to c1 · c2 with c1, c2 > 1, when it is guaranteed
that for the embedding E :

dS(x, y)

c1
≤ dr(E(x), E(y)) ≤ c2 · dS(x, y)
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for all pairs of objects x, y ∈ S. Stress represents the overall deviation in the distance
and is defined as:

stress =

∑

x,y∈S (d
r(E(x), E(y))− dS(x, y))

2

∑

x,y∈S (dS(x, y))
2

The optimum dr function generates zero stress, equivalent to no distortion (i.e.,
c1 = c2 = 1).

In Section 4.4.1, we discuss how the Lipschitz embedding technique can be em-
ployed for computing the Most Trusted Near Shortest Path.

4.3 Problem Definition

This section formally defines the problem of computing theMost Trusted Near Short-
est Path and introduces the basic notation that will be used in the rest of the chapter.

First, we define the notion of a network graph that represents the road network
of a city.

Definition 4.1 (Network graph). The network graph is an undirected weighted
graph GN(N,E,W ) where N is a set of nodes that represent the intersections of a
road network, E ⊂ N × N is a set of edges that represent the road segments con-
necting the network’s intersections, and function W : E → R

+ associates each edge
(ni, nj) to a positive real number denoting the traveling time between the intersections
represented by nodes ni and nj.

Given two nodes ni and nj in a network graph GN their network distance
dN(ni, nj) is defined as the total traveling time of the shortest path from ni to
nj or vice versa on GN .

Consider a group of people that track their every day movement on the road and
then, share their driving data. Given the network graph GN of a city, the movement
of a vehicle is captured by a sequence of graph nodes, termed route, and the shared
collection of such routing data defines a subgraph of the network graph, called known
graph.

Definition 4.2 (Known graph). Let GN (N,E,W ) be a network graph and R be a
collection of available routes. The known graph GK(NU , EU) is a subgraph of GN

where the set of nodes NK ⊂ N contains a node n if n is included in a route of R,
and the set of edges EK ⊂ E contains an edge (ni, nj) if a route of R has a pair of
consecutive nodes (ni, nj) or (nj , ni).

The known subgraph GK of a network graph GN provides a trusted and familiar
way of driving around the city. Therefore, the drivers consult GK whenever they
want to travel from one location of the city to another. Normally, e.g., if the group
of people does not contain any taxi drivers, the known graph is smaller then the
network graph GN . The rest of the network graph is consider as unknown and
driving through its nodes and its edges is avoided as much as possible.

Definition 4.3 (Unknown graph). Let GN(N,E,W ) be a network graph and GK(NK ,
EK) be a known subgraph of GN . The unknown graph GU(NU , EU) w.r.t. to GK is a
subgraph of GN where NU ⊂ N is the set of nodes and the set of edges EU = E \EK

contains every edge (ni, nj) not contained in GK.
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Figure 4.1: An example of a network graph GN , a known subgraph GK of GN , and the
unknown subgraph GU of GN w.r.t. GK

Note that the unknown graph is not necessarily connected; it may be composed
by a number of disconnected small graphs. This is because people tend to drive
through the segments of large roads like freeways while they avoid the small local
roads connected to them.

Example 4.1. Consider the network graph GN in Figure 4.1(a). Based on the routes
available, the known subgraph GK of GN in Figure 4.1(b) is defined. Consequently,
Figure 4.1(c) shows the unknown subgraph GU of GN w.r.t. GK . Notice that nodes
n1, n5, n6 and n7 are contained in both GK and GU , whereas every edge of the
network graph GN is contained only in one of the subgraphs.

Given two nodes ns and nt on GN , a path is a sequence of nodes (ns, . . . , nt) on
GN that represents a way of driving from ns to nt. There are two costs associated
with a path p(ns, . . . , nt). The length Lp of p measures the total traveling time
from ns to nt and it is defined as the sum of the edge weights w(ni, ni+1) for every
consecutive pair of nodes ni and ni+1 in p. The unknown time Up of path p measures
the total time spend for moving on the unknown graph GU , and it is defined as the
sum of the weights w(ni, ni+1) for every edge (ni, ni+1) of GU included in p.

Assume that a driver wants to go from node ns to nt of a network graph GN and
that a known subgraph GK of GN is available. Based on the previous definitions,
the driver seeks for a path p(ns, . . . , nt) on GN such that he will drive as less time
as possible on the unknown graph GU but, in addition, this will not significantly
increase the total duration of his journey compared to the fastest way, i.e., the
shortest path from ns to nt. This is the intuition behind the Most Trusted Near
Shortest Path query.

Definition 4.4 (MTNSP query). Let GN be a network graph, GK be a known subgraph
of GN and GU be the unknown subgraph of GN w.r.t. GK. The Most Trusted
Near Shortest Path query denoted by MTNSP(ns, nt, α) returns the path p(ns, . . . , nt)
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from ns to nt that has the lowest unknown time Up among the paths of length,
Lp ≤ α · dN(ns, nt).

Example 4.2. Consider the network graph GN in Figure 4.1(a) and the known GK

and the unknown graph GU in Figure 4.1(b) and Figure 4.1(c) respectively. Assume
that a driver poses query MTNSP(ns, nt, 1.1), i.e., he wants to go from node ns to nt

on GN traveling as less time as possible on the unknown graph GU , and he wants
his journey to be at most 10% longer than the fastest way.

The shortest (fastest) path from ns to nt on GN is sp(ns, n1, n2, n3, n4, nt) with
Lsp = 20 = dN(ns, nt) and Usp = 17, since the driver has to follow edges (n1, n2),
(n2, n3), (n3, n4) and (n4, nt) on GU . This means that a path p on GN is acceptable by
the driver only if Lp ≤ 22. Thus, the answer to the query is p1(ns, n1, n2, n6, n7, n4, nt)
with Lp1 = 22 and Up1 = 12. Note that p1 does not have the lowest unknown time
compared to all paths from ns to nt; path p2(ns, n1, n6, n7, n4, nt) has Up2 = 4, but p2
is not acceptable as Lp2 = 28 > 22.

4.4 Evaluating MTNSP Queries

Our methodology for answering MTNSP queries involves an offline and an online
processing phase.

4.4.1 Offline processing

Consider a network graph GN , a known subgraph GK of GN and the unknown
subgraph GU of GN w.r.t. GK . The key idea of the offline processing phase is to
efficiently index the network distances on GN and the time spend on GU in order
to speedup the evaluation of MTNSP queries during the online phase. The proposed
indexing scheme should meet the following two objectives:

(1) Provide a lower and an upper bound of the network distance dN(ni, nj), for
every pair of nodes ni and nj in GN .

(2) Provide a lower and an upper bound of the unknown time for every path
p(ni, . . . , nj) between two nodes ni and nj in GN .

We adopt an approach similar to the Lipschitz embedding technique with sin-
gleton reference sets, called landmarks (a.k.a. reference nodes) which in our case
are the nodes contained in the known graph GK(NK , EK). Particularly, for each
node ni in the network graph, we precompute all the shortest paths from ni to every
landmark nℓj , and store (1) the network distance dN(ni, nℓj ) and (2) the lowest un-
known time among these shortest paths. Thus, every node ni in GN is represented
by the embedding E on GN as a (2× k) vector:

E(ni) =







dN(ni, nℓ1) Ui,ℓ1
...

...
dN(ni, nℓk) Ui,ℓk







where k = |NK | and Ui,ℓj is the lowest unknown time of the shortest paths from ni

to landmark nℓj .
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N
NK ns n1 n5 n6 n7

ns 0 3 9 11 18
n1 3 0 6 8 15
n2 8 5 2 3 10
n3 15 12 9 10 3
n4 17 14 11 8 1
n5 9 6 0 5 12
n6 11 8 5 0 7
n7 18 15 12 7 0
nt 20 17 14 11 4

Table 4.1: Distances to every landmark.

N
NK ns n1 n5 n6 n7

ns 0 0 0 8 8
n1 0 0 0 8 8
n2 5 5 2 3 3
n3 12 12 9 3 3
n4 14 14 11 1 1
n5 0 0 0 5 5
n6 8 8 5 0 0
n7 8 8 5 0 0
nt 17 17 14 4 4

Table 4.2: Lowest unknown time of the shortest paths to every landmark.

Example 4.3. Consider the network graph GN , the known subgraph GK and the
unknown subgraph GU in Figure 4.1. We construct the embedding E on GN selecting
nodes ns, n1, n5, n6 and n7 as landmarks, i.e., the nodes in GK. Table 4.1 and
Table 4.2 show the distances of every node ni in GN to each landmark nℓj and
the lowest unknown time among the shortest paths (ni, . . . , nℓj), respectively. For
instance, node n1 is represented as the following vector:

E(n1) =













3 0
0 0
6 0
8 8
15 8













Note that in the case of landmark n7 there exist two shortest paths from n1 to n7,
p1(n1, n2, n6, n7) with Lp1 = 15 and Up1 = 8, and p2(n1, n2, n3, n4, n7) with Lp2 = 15
and Up2 = 15, but we only consider p1 as it has the lowest unknown time.

Next, we discuss how the lower and the upper bound of the network distance
between two nodes can be determined using the embedding E on GN . The idea is
to exploit the triangle inequality for any three nodes in GN .
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Proposition 4.1 (Lower and upper bound of network distance). Let GN(N,E,W )
be a network graph, GK(NK , EK) be a known subgraph of GN , and E be the embedding
on GN using the nodes in NK as landmarks. For every pair of nodes ns and nt in
GN , the following hold:

dN(ns, nt) ≥
k

max
i=1

|dN(ns, nℓi)− dN(nt, nℓi)|

and

dN(ns, nt) ≤
k

min
j=1

{dN(ns, nℓj ) + dN(nt, nℓj)}

where nodes nℓi and nℓj are two landmarks, and k = |NK |.

Proof. The bounds can be directly deduced from the fact that the network distance
on GN is a metric, and therefore, it satisfies the triangle inequality for any three
nodes ns, ni and nt in GN :

dN(ns, nt) ≥ |dN(ns, ni)− dN(nt, ni)|

and
dN(ns, nt) ≤ dN(ns, ni) + dN(nt, ni)

We denote the lower and the upper bound of the network distance dN(ns, nt) as
dN(ns, nt) and dN(ns, nt), respectively.

Finally, we present how the lower Up and the upper bound Up of the unknown

time for a path p(ns, . . . , nt) on network graph GN is determined. Observe that
the unknown time Up of this path cannot be greater than the network distance
dN(ns, nt). In fact, the worst case Up = dN(ns, nt) occurs only when p contains only
edges from the unknown subgraph GU and therefore, we obtain Up = dN(ns, nt) as
the upper bound for the unknown time Up. Yet, we can have a better bound for Up

considering the path p′ of length equal to the upper bound of the network distance
dN(ns, nt), i.e., Lp′ = dN(ns, nt). This path passes through a landmark nℓj such that

dN(ns, nt) = dN(ns, nℓj) + dN(nt, nℓj) and thus, the upper bound of the unknown

time of path p is Up = Us,ℓj +Ut,ℓj , where Us,ℓj (Ut,ℓj ) is the lowest unknown time of
the shortest paths from ns (nt) to landmark nℓj .

On the other hand, it is not straightforward how to find a lower bound for Up.
However this is possible when ns is contained in the known subgraph GK and not
in the unknown GU , and nt is in GU but not in GK . In this case, there must exist a
path from ns to nt via some landmark nℓj that lies on the border of the known and
unknown subgraphs. This landmark must be the closest to ns landmark, and thus,
the network distance dN(ns, nℓj) is a lower bound to Up . Since the network has no
direction, the reverse, i.e., when ns and nt are interchanged, also holds.

Proposition 4.2 (Lower bound of unknown time). Let GN (N,E,W ) be a network
graph, GK(NK , EK) be a known subgraph of GN , GU(NU , EU) be the known sub-
graph of GN w.r.t. GK , and E be the embedding on GN using the nodes in GK as
landmarks. Given two nodes ns and nt in GN , the following holds for every path
p(ns, . . . , nt) on GN :

Up ≥











mink
j=1 dN(ns, nℓj), if ns ∈ GU and ns /∈ GK , and nt ∈ GK and nt /∈ GU

mink
j=1 dN(nt, nℓj), if ns ∈ GK and ns /∈ GU , and nt ∈ GU and nt /∈ GK

0, otherwise

68



where nℓj is a landmark and k = |NK |.

Proof. For simplicity, we prove only the case when ns ∈ GU and nt ∈ GK . Assume
that there exists a landmark n′ 6= nℓj with dN(ns, n

′) > dN(ns, nℓj) and for the
unknown time of path p′(ns, . . . , n

′), Up′ < Us,ℓj holds. Since, nℓj is the nearest

landmark to ns w.r.t. the network distance
(

dN(ns, nℓj ) = mink
i=1 dN(ns, nℓi)

)

, the
shortest path from ns to nℓj does not contain any other landmark, and therefore,
Us,ℓj = dN(ns, nℓj ). Similarly, since n′ is the nearest landmark to ns w.r.t. the un-
known time, also path p′ does not contain any other landmark, and Up′ = dN(ns, n

′).
Thus, from Up′ < Us,ℓj we have dN(ns, n

′) < dN(ns, nℓj) which cannot be true.

4.4.2 Online processing

During the online processing phase, we employ a label setting algorithm, termed
TRUSTME, to answer a MTNSP(ns, nt, α) query. The algorithm has the following
key features. First, it may visit a node n in a network graph GN more than once
following multiple paths from source ns. For each of these paths p(ns, . . . , n), a label
〈n, p, Lp, Up〉 is defined, where Lp is the length of the path and Up is its unknown
time. This is similar to the algorithms for multi-criteria shortest path as there exist
two costs associated with a path on GN . However, in order to speedup the search,
TRUSTME retains, for every node n, the labels of the most “promising” paths from
ns to n. Second, the algorithm computes an upper bound of the unknown time for
the answer path when either the target nt is reached or Proposition 4.3, described
below, can be applied. This estimation is progressively improved during the search
until it becomes equal to the unknown time of the answer path. Finally, TRUSTME

traverses the network graph w.r.t. the Lp cost. Thus, at each iteration it selects
the label 〈nq, pq, Lpq , Upq〉 with the lowest length cost and expands the path pq con-
sidering every (nq, n) edge in GN . During this expansion phase, TRUSTME exploits
the upper and the lower bound of both the network distance and the unknown
time, provided by the embedding on the network graph, in order to discard the non
“promising” paths and prune the search space.

Proposition 4.3 (Upper bound of MTNSP). Let pSOL be the answer path to query
MTNSP(ns, nt, α) and p(ns, . . . , ni) be a path from ns to node ni. The following holds
for path pSOL:

UpSOL ≤











Up + Up′ , if Lp ≤ dN(ns, nt) and Lp + dN(ni, nt) ≤ α · Lp or

Lp > dN(ns, nt) and Lp + dN(ni, nt) ≤ α · dN(ns, nt)

∞, otherwise

where Up′ is the upper bound of the unknown time for a path p′(ni, . . . , nt).

Proof. In order for Up+Up′ to be a upper bound for the unknown time of the answer
path pSOL, it must also hold that its length, upper bounded by Lp + dN(ni, nt), is
lower than α · dN(ns, nt). This is straightforward in the second case, i.e., when Lp ≥
dN(ns, nt). In the first case, i.e., when Lp < dN(ns, nt) and Lp + dN(ni, nt) ≤ α ·Lp,
we need to prove that Lp + dN(ni, nt) < α · dN(ns, nt) also holds. This however is
true because from Lp < dN(ns, nt) and α > 1 we get α · Lp < α · dN(ns, nt).
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Algorithm TRUSTME

Input: MTNSP(ns, nt, α), network graph GN , embedding E of GN

Output: path p(ns, . . . , nt) on GN with lowest Up and Lp ≤ α · dN (ns, nt)
Parameters:

priority queue Q: the search queue sorted by Lp in ascending order
set P[n]: the most “promising” paths to each node n contained in a label of Q
path pcand: a candidate answer path to the MTNSP query

cost L: an upper bound for dN (ns, nt)

cost U : an upper bound for the unknown time of the answer path

Method:

1: L = dN (ns, nt);

2: U = ∞;

3: push label 〈ns, (ns), 0, 0〉 to Q;

4: insert entry 〈0, 0〉 in set P[ns]

5: while Q is not empty do

6: pop label 〈nq , pq, Lpq , Upq 〉 from Q;

7: UpdateCandidateAnswerAndBounds(〈nq , pq, Lpq , Upq 〉, pcand, L, U);

8: for each edge (nq, n) in GN do

9: create path p = pq ∪ (nq , n) = (ns, . . . , nq, n);

10: let Un be the lower bound of the unknown time for a path (n, . . . , nt);

11: if Lp + dN (n, nt) > α · L then

ignore path p;

12: else if L < Lp + dN (n, nt) ≤ α · L and Up + Un > U then

ignore path p;

13: else if exists entry 〈Lp′ , Up′ 〉 in P[n] with Lp′ ≤ α · L and Lp ≥ Lp′ and Up ≥ Up′ then

ignore path p;

14: else

15: push label 〈n, p,Lp, Up〉 to Q;

16: insert entry 〈Lp, Up〉 in P[n];

17: delete every entry 〈Lp′ , Up′〉 in P[n] where Lp′ ≥ Lp and Up′ ≥ Up and the corresponding labels

18: in Q;

19: end if

20: end for

21: end while

22: return pcand;

Figure 4.2: The TRUSTME algorithm.

Figure 4.2 illustrates the pseudocode of the TRUSTME algorithm. TRUSTME

takes as inputs: a MTNSP(ns, nt, α) query, a network graph GN and the embedding E
on GN , and returns the answer path to the query. The algorithm uses the following
data structures: (1) a priority queue Q, (2) a set P[n] for each node n contained
in the labels inserted in Q, (3) a path pcand, and (4) costs L and U . The priority
queue Q is used to perform the search storing every label 〈n, p, Lp, Up〉 to be checked,
sorted by Lp in ascending order. The set P[n] contains entries in the form of 〈Lp, Up〉
for each “promising” path p from ns to n found. The entries in P[n] are used to
prune the non “promising” paths to node n constructed during the search. Cost
L is an upper bound of the network distance dN(ns, nt). Initially, L is equal to
dN(ns, nt), given by the embedding E , and after computing the shortest path from
ns to nt, it becomes equal to dN(ns, nt). Finally, cost U is an upper bound of the
unknown time for the answer path. Initially, U is set to∞ and during the search it is
progressively improved. Both L and U are employed to prune the non “promising”
paths constructed during the search.

The TRUSTME algorithm proceeds as follows. On Lines 1–4, it initializes the
costs L and U , the priority queue Q with label 〈ns, (ns), 0, 0〉 for source node ns

and set P[ns]. Then, it iteratively examines the contents of Q (Lines 5–21) un-
til the queue is depleted. Each iteration involves the following three steps. First,
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the label 〈nq, pq, Lpq , Upq〉 with the lowest Lpq cost is popped from Q on Line 6.
Next, TRUSTME invokes the UpdateCandidateAnswerAndBounds procedure (Line 6)
to update the candidate answer path pcand and costs L and U . UpdateCandidateAn-
swerAndBounds considers two cases.

First, if node nq of current label 〈nq, pq, Lpq , Upq〉 is the target nt then a path
p(ns, . . . , nt) is found. The first path ever identified by UpdateCandidateAnswerAnd-

Bounds is always the shortest path from source ns to target nt since TRUSTME

traverses the graph w.r.t. the Lp cost in ascending order. Thus, in this case, bound
L is set to dN(ns, nt). For every path pq(ns, . . . , nt) found (including the shortest
path), Upq is compared against current upper bound U . If Upq ≤ U then a new
candidate answer path is identified, pcand = pq and therefore, current upper bound
U is improved, U = Upq . On other hand, if node nq of current label is not target
nt, UpdateCandidateAnswerAndBounds employs Proposition 4.3 to compute an up-
per bound of the unknown time for an answer path through node nq, and if it is
necessary the current upper bound U is properly updated.

Finally, on Lines 8–20, TRUSTME expands the search considering every (nq, n)
edge on the network graph GN . Specifically, first, path pq(ns, . . . , nq) is extended
to create p(ns, . . . , nq, n). Then, on Lines 10–19, the algorithm determines whether
p is a “promising” path and thus, it must be extended at a future iteration, or it
must be discarded. Path p is discarded in three cases:

(1) if Lp+dN(n, nt) > α ·L, i.e., the extension of path p towards target nt would
have length at least equal to Lp + dN(n, nt) which exceeds the constraint
imposed by the MTNSP query (Line 11),

(2) if L < Lp+ dN(n, nt) ≤ α ·L cand Up+Un > U , where Un is the lower bound
of the unknown time for a path (n, . . . , nt) computed using Proposition 4.2.
In this case, path p is acceptable w.r.t. to its length but even the lower
bound of the unknown time Up + Un needed to reach the target is higher

than current upper bound U (Line 12), and

(3) if set P[n] contains an entry 〈Lp′, Up′〉 such that Lp ≥ Lp′ and Up ≥ Up′, i.e.,
extending path p will not ever contribute a better solution than extending p′

(Line 13).

Otherwise, p is a “promising” path, and TRUSTME inserts label 〈n, p, Lp, Up〉 in Q
and entry 〈Lp, Up〉 in P[n]. In addition, on Line 16, the algorithm updates set P[n]
removing every entry 〈Lp′, Up′〉 with Lp′ ≥ Lp and Up′ ≥ Up, and the corresponding
labels in Q, since such path p′ will never contribute a better solution than p.

Example 4.4. We illustrate TRUSTME for query MTNSP(ns, nt, 1.3) using the graphs
and the embedding of Example 4.3 with nodes ns, n1, n5, n6 and n7 as landmarks.
In addition, recall from Example 4.2 that dN(ns, nt) = 20.

Initially, we have priority Q = 〈ns, (ns), 0, 0〉, set P[ns] = {〈0, 0〉}, and costs
L = dN(ns, nt) = 20 and U = ∞. At the first iteration, the algorithm pops label
〈ns, (ns), 0, 0〉. After considering edge (ns, n1) in GN , it inserts label 〈n1, (ns, n1), 3, 0〉
in Q and entry 〈3, 0〉 in set P[n1]. Similar, at the second iteration, label 〈n1, (ns, n1),
3, 0〉 is popped from Q and TRUSTME considers edges (n1, ns), (n1, n2), (n1, n5) and
(n1, n6). Particularly:
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• For edge (n1, ns), the created path (ns, n1, ns) of length 6 and unknown time 0
is discarded due to the entry 〈0, 0〉 in P[ns].

• For edge (n1, n2), the label 〈n2, (ns, n1, n2), 8, 5〉 is pushed to Q and the entry
〈8, 5〉 is inserted in P[n2].

• For edge (n1, n5), the label 〈n5, (ns, n1, n5), 9, 0〉 is pushed to Q and the entry
〈9, 0〉 is inserted in P[n5].

• For edge (n1, n6), the created path (ns, n1, n6) of length 17 is discarded since
17 + dN(n6, nt) = 17 + 11 = 28 > 1.3 · L = 26.

Thus, after the second iteration we have:

Q = {〈n2, (ns, n1, n2), 8, 5〉, 〈n5, (ns, n1, n5), 9, 0〉}
P[ns] = {〈0, 0〉}, P[n1] = {〈3, 0〉}, P[n2] = {〈8, 5〉}, P[n5] = {〈9, 0〉}
L = 20

U = ∞

Note that the leftmost label in Q always contains the path with the lowest Lp cost.

TRUSTME proceeds similarly and at the tenth iteration label 〈7, p(ns, n1, n2, n6, n7),
18, 8〉 is popped from Q. For landmark node n7 we have Lp = 18 < dN(ns, nt) and
Lp + dN(n7, nt) = 22 < 1.3 · Lp = 23.4. Following Proposition 4.3 an upper bound
of the unknown time for the answer path is found, U = Up + Un7

= 12. Thus, after
the tenth iteration we have:

Q = {〈n4, (ns, n1, n2, n3, n4), 17, 14〉, 〈n7, (ns, n1, n2, n6, n7), 18, 8〉,
〈n3, (ns, n1, n5, n2, n3), 18, 9〉, 〈n7, (ns, n1, n5, n2, n6, n7), 21, 5〉}

P[ns] = {〈0, 0〉}, P[n1] = {〈3, 0〉}, P[n2] = {〈8, 5〉, 〈11, 2〉},
P[n3] = {〈15, 12〉, 〈18, 9〉}, P[n4] = {〈17, 14〉, 〈19, 9〉}, P[n5] = {〈9, 0〉},
P[n6] = {〈11, 8〉, 〈14, 5〉}, P[n7] = {〈18, 8〉, 〈21, 5〉}, P[nt] = {〈20, 17〉}
L = 20
U = 12

TRUSTME proceeds similarly and at the thirteenth iteration label 〈nt, (ns, n1, n2, n3,
n4, nt), 20, 17〉 is popped from Q. This means that the shortest path from source ns

to nt is identified, and therefore, L = dN(ns, nt) = 20. On the other hand, the upper
bound U is not improved since current U = 12 < 17.

Finally, at the seventeenth iteration, the algorithm empties Q popping label
〈nt, (ns, n1, n5, n2, n6, n7, n4, nt), 25, 9〉, and identifies answer path (ns, n1, n5, n2, n6,
n7, n4, nt) of length 25 and unknown time 9.

4.5 Experimental Analysis

Section 4.5.1 details the setting of our analysis, while Section 4.5.2 compares our
method for evaluating MTNSP queries against a rival method, called SP−EUCLIDEAN.
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4.5.1 Setup

To conduct our experiments, we consider the road network of the city of San Joaquin
County (TG) which contains 18, 263 intersections and 23, 874 road segments con-
necting them. Then, we generate a number of known graphs for the network graph
of TG. The idea is the following.

Normally, i.e., if we exclude professionals like taxi drivers, people drive around
specific locations on the road network of a city. For instance, they move around the
location of their house, their work place, their children’s school etc. In other words,
a driver is familiar with the road segments on specific parts of the city, or simply
with specific neighborhoods. To capture this behavior, we identify 50 neighborhoods
on the TG road network employing a conventional clustering method that considers
the euclidean distance of the road intersections. Next, we construct a set of known
graphs varying the number of familiar neighborhoods |H| from 3 to 30. For each
value of |H| we select the nodes of the familiar graph and generate random routes,
i.e., sequence of nodes, to define the edges of the known graph. Finally, to enrich the
diversity of the known graphs, we adopt three strategies for selecting their nodes:

(S1) All the nodes in the |H| neighborhoods are contained in the known graph
(Figure 4.3). In this case, the |H| neighborhoods are selected such that they
are situated at the same part of the city, e.g., at the south suburbs.

(S2) All the nodes included in the shortest paths between the centers of the |H|
neighborhoods are contained in the known graph (Figure 4.4). The center
of a neighborhood is the closest intersection to the cluster centroid, w.r.t.
the euclidean distance.

(S3) All the nodes in the |H| neighborhoods and the nodes included in the short-
est paths between the centers are contained in the known graph (Figure 4.5).

4.5.2 Experiments

To the best of our knowledge, this is the first work that deals with MTNSP queries.
Therefore, there is no ready-to-use method coming from the literature.

As a simple and straightforward solution we could follow a brute force approach;
implement a label-setting algorithm that constructs almost every path between the
source ns and the target node nt, and finally, return the answer. Of course, after
finding the shortest path, we would have both the network distance dN(ns, nt) and
an upper bound for the unknown time of the answer path, and thus, we could discard
non “promising” paths. However, without any estimation at least for the minimum
time needed to reach the target, i.e., a lower bound of the Lp cost, this solution
cannot be used in practice for real-world road networks like TG. To this end, we
introduce two enhancements that significantly reduce the execution time, and devise
the SP−EUCLIDEAN method. First, we consider the euclidean distance of any two
nodes ni and nj in the network graph which provides a lower bound of their network
distance dN(ni, nj). Yet, this lower bound can be used only after the shortest path
and the network distance between the source and the target node of the query is
computed. So, the idea for the second enhancement is to employ Dijkstra algorithm
at the beginning of the SP−EUCLIDEAN method to compute dN(ns, nt). Although
Dijkstra introduces an additional computational cost, we notice that the benefit
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Figure 4.3: S1 strategy: all the nodes in the neighborhoods are contained in the known
graph.

from being able to prune non “promising” paths during the expensive search for the
answer to the MTNSP query, is large enough to speed up the entire process.

We implement both TRUSTME and SP−EUCLIDEAN methods in C++ and com-
pile them with gcc. The evaluation is performed on a 3 Ghz Intel Core 2 Duo CPU
with 4GB RAM running Debian Linux. We generate 1, 000 random MTNSP(ns, nt, α)
queries and employ TRUSTME and SP−EUCLIDEAN to compute the answer paths,
varying at the same time the α factor from 1.1 to 1.5. For each method, we measure
(1) the total time needed to answer a query (sub-figures (a) and (c)), and (2) the
maximum size of the priority queue in KBs (sub-figures (b) and (d)). Note that
when varying the number of familiar neighborhoods |H| we retain factor α fixed at
1.3, and when varying α, |H| = 5. Finally, also note that we store both the network
graph and its embeddings on disk.

Examining Figures 4.3, 4.4 and 4.5, we make the following observations. Method
TRUSTME outperforms SP−EUCLIDEAN. In fact, on some datasets, the TRUSTME

method is over two times faster than SP−EUCLIDEAN. Similarly, TRUSTME always
needs less space in main memory to store the priority queue of the search, than
SP−EUCLIDEAN. The advantage of TRUSTME over SP−EUCLIDEAN was expected
due to the following two reasons. The first and most important reason is related
to the way each method prunes the search space. SP−EUCLIDEAN discards a path
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Figure 4.4: S2 strategy: all the nodes included in the shortest paths between the centers
of the neighborhoods are contained in the known graph.

only w.r.t. its length, i.e., using the lower bound of the time needed to reach the
target nt and the network distance dN(ns, nt). On the other hand, TRUSTME also
employs the lower and the upper bound of the unknown time to reach nt. Second, the
embedding on a network graph gives a better estimation of the distance between two
nodes compared to the euclidean distance of the nodes, especially as the number
of familiar neighborhoods |H| increases, and thus, the number of landmarks also
increases.

Finally, we discuss in detail the behaviour of TRUSTME and SP−EUCLIDEAN

methods when varying parameters |H| and α.

Varying the number of familiar neighborhoods |H|. As a general observation
for both the methods, we notice that as the number of familiar neighborhoods |H|
increases, initially, the execution time per query increases too. But, when becoming
larger than a specific value of |H|, usually 5 or 10, the execution time goes down,
regardless the strategy we have employed to construct the known graphs. In fact
this is the case also for the priority queue size when varying |H|. The reason for
this behaviour is the following. For small values of |H| where the known subgraph
is much smaller than the network graph, the search traverses mainly the unknown
subgraph resembling to a shortest path search w.r.t. to the unknown time. In other
words, given a node n most of the paths p reaching n from the source node ns have
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Figure 4.5: S3 strategy: all the nodes in the neighborhoods and the nodes included in the
shortest paths between the centers are contained in the known graph.

Up ≈ Lp, and therefore, they can be easily discarded exploiting the lower bound
estimation of Lp and the network distance dN(ns, nt) (resp. SP−EUCLIDEAN) or
the upper bound dN(ns, nt) (resp. TRUSTME). As |H| increases, more paths pass
through the known subgraph. Thus, there exist a lot of “promising” paths that
must be extended forcing both methods to perform more iterations. On the other
hand, for large values of |H|, i.e., usually larger than 10, the methods are forced
to traverse mainly the known subgraph, which covers a large part of the network
graph. In this case the search resembles to a shortest path w.r.t. to the time spend
on the known subgraph.

Finally, we also notice that when employing the S1 (Figure 4.3) or the S2 strat-
egy (Figure 4.4) for selecting the nodes in the known graphs, and with |H| = 3,
SP−EUCLIDEAN is nearly as efficient as TRUSTME for answering a MTNSP query.
In both these cases, the known graph contains very few nodes which means the
embedding of the network graph cannot provide good estimations (lower and upper
bounds) of the network distance and the unknown time.

Varying the factor α. As factor α increases we notice that both TRUSTME and
SP−EUCLIDEAN require more time to answer a MTNSP query. This is expected since
the constraint regarding the length of the answer path compared to the length of the
shortest path becomes less strict and therefore, there exist more “promising” paths
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to be extended during the search. Finally, TRUSTME requires more space in main
memory for its search queue as α increases, while the size of SP−EUCLIDEAN’s
queue remains the same. This is because for SP−EUCLIDEAN the largest queue
size is witnessed during the execution of the Dijkstra algorithm and not during the
search of the answer path to the MTNSP query. Remember that the computational
cost of Dijkstra only depends only on the size of the network graph and not on α

4.6 Conclusions

In this chapter, we introduced the Most Trusted Near Shortest Path (MTNSP) as a
preferable way of driving through a city when a collection of trusted routes is avail-
able. For this purpose, we first defined the notion of the known graph as a subgraph
of the road network that is constructed merging the available trusted routes. Then,
we defined MTNSP as the problem of identifying the path p on the road network with
the lowest time spend outside the known graph among the paths with length, at
most α times larger than the length of the shortest path. Finally, we proposed a
methodology for identifying MTNSP that involves the offline construction of an em-
bedding on the road network, and a label-setting algorithm, called TRUSTME, that
employs the embedding in order to speedup the evaluation of the MTNSP queries.
Our experimental analysis shows that our method is able to find MTNSP faster than
a label-setting algorithm that exploits the euclidean distance of the network inter-
sections to prune its search space.
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Chapter 5

Conclusions and Future Work

This thesis presents a framework for the evaluation of path queries over route col-
lections that are frequently updated. The framework involves a set of algorithms
for query evaluation and a set of indexing schemes on the routes. In addition,
appropriate updating procedures for these schemes are introduced.

5.1 Summary

Initially, we targeted path query evaluation on large disk resident route collections
like the ones containing touristic routes. Such collections are frequently updated
since new routes are added or existing ones are deleted. Given two locations ns

and nt the path query, denoted by PATH, returns a sequence of locations contained
solely on the existing routes of the collection. We introduced the route and the link
traversal evaluation paradigms that enjoy the benefits of search algorithms (i.e.,
fast index maintenance) while utilizing transitivity information to terminate the
search sooner. In addition, we introduced the R-Index and the T -Index of a route
collection and presented appropriate updating procedures. The proposed framework,
i.e., the indices and the traversal policies, constitutes the basis for applying our
work to other types of queries under various constraints. An extensive experimental
evaluation verified the advantages of our methods compared to conventional graph-
based search.

Next, we studied the problem of dynamic Pickup and Delivery with Transfers
(dPDPT). To the best of our knowledge this is the first work that targets the dynamic
version of this problem and in addition, the first time such a problem is formulated as
a path query. For this purpose, we introduced the dynamic plan graph that captures
all possible actions for picking up an object and delivering it to the destination
with respect to the existing vehicle routes. Then, we defined the operational and
the customer cost of a path, that capture both the company’s and the customer’s
viewpoints of the problem, respectively, and proposed algorithms SP and SPM that
identify the solution computing the shortest path on the dynamic plan graph with
respect to these costs. An extensive experimental analysis demonstrated that our
method is significantly faster than a two-phase local search method inspired by the
related work, while the quality of the solution is only marginally lower.

Finally, we introduced the Most Trusted Near Shortest Path (MTNSP) as a prefer-
able way of driving through a city when a collection of trusted vehicle routes is avail-
able. For this purpose, we defined the known subgraph of the road network that
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represents the familiar and trusted part of the network. Then, for a path between
two network locations, we defined its length and its unknown time that measure
the total traveling time needed and the total time spent outside the known graph,
respectively. We proposed a methodology that identifies the path having the lowest
unknown time among the paths with length, at most α times larger than the length
of the shortest path, as the answer to a MTNSP query. An extensive experimental
analysis showed the advantage of our methodology compared to a label-setting al-
gorithm that exploits the euclidean distance of the network intersections to prune
its search space.

5.2 Future Work

During the course of this dissertation, we have identified the following interesting
aspects that we propose as future work:

• In the context of touristic route collections, we plan to extend our work to
evaluate queries similar to trip planning [48] and optimal sequenced route [67]
queries. Specifically, consider a set of classes C such that each location in a
route is an instance of a class in C. For example a location is an instance of
classes C = {Museum, Stadium,Restaurant}. An interesting query is to find
a path between two given locations that passes first through a Museum, then
a Stadium and finally a Restaurant.

• Another challenge in the context of touristic routes is to combine query eval-
uation with keyword search. For example, instead of specific locations, the
source and the target of a query could be given as a set of keywords, or in the
query discussed in the previous paragraph, we could seek for the path that
passes through a Restaurant with a description relevant to “sea food, lobster”
keywords.

• In the context of the dynamic Pickup and Delivery problem with Transfers, an
interesting challenge is to adopt ideas from the evaluation framework presented
in Section 2 for PATH queries. Recall that the SP and the SPM algorithms
identify a candidate solution only when they reach a vertex of graph that has
a delivery edge. However, exploiting an R-Index or a T -Index on the vehicle
routes of the collection, we could identify a candidate solution earlier in the
search, and thus, boost the satisfaction of a dPDPT request.

• Another direction for dPDPT is to consider additional constraints like the vehicle
capacity or the existence of predefined time windows. As an example for the
latter case, a customer requests that the object pickup and delivery takes place
within specific time periods of the day.

• For the problem of Most Trusted Near Shortest Path, we plan to extend the
scheme computed during the offline processing phase such that we can effi-
ciently handle updates like additions or deletions of routes. The intuition is
the following. Adding or removing routes affects only the known graph while
the network graph remains unchanged. In practice, the changes in the known
graph involve adding or deleting edges. Thus, for every pair of a graph node
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ni and a landmark nℓj , we have to update the unknown time Up for all shortest
paths p(ni, . . . , nℓj) precomputed for the embedding scheme, and determine,
if needed, which is the shortest path (ni, . . . , nℓj) with the lowest unknown
time. For this purpose, we could employ an inverted index on the precom-
puted shortest paths such that when an edge is added to or deleted from the
known graph, we can easily identify the shortest paths that involve this edge
and update their unknown time.

• Finally, for both the dPDPT and the MTNSP problems we plan to conduct a
detailed complexity analysis similar to PATH.
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Εξωτερικός Κριτής
• SIGMOD, CIKM, SSTD, TPDL (2011)

• ICDE (2010)

• VLDB, EDBT, CIKM, BPM (2009)

• JIR (2008)

• PCI, PersDL (2007)

• PSI, DaWaK, HDMS (2006)

• DEXA, EC-Web, I3E, ICWS (2005)

Συμμετοχή σε Επιτροπές
• CIKM Posters (2011)

Δημοσιεύσεις
1. Panagiotis Bouros, Dimitris Sacharidis, Theodore Dalamagas, Spiros Skiadopou-

los and Timos Sellis, Evaluating Path Queries over Frequently Updated
Route Collections, IEEE Transactions on Knowledge and Data Engineering
(TKDE). (to appear)

2. Panagiotis Bouros, Dimitris Sacharidis, Theodore Dalamagas and Timos Sellis,
Dynamic Pickup and Delivery with Transfers, in Proceedings of the 12th
International Symposium on Spatial and Temporal Databases (SSTD’11), Min-
neapolis, MN, USA, August 24-26, 2011.

3. Manolis Terrovitis, Panagiotis Bouros, Panos Vassiliadis, Timos Sellis and Nikos
Mamoulis, Efficient Answering of Set Containment Queries for Skewed
Item Distributions, in Proceedings of the 14th International Conference on Ex-
tending Database Technology (EDBT’11), Uppsala, Sweden, March 21-25, 2011.

4. Panagiotis Bouros and Yannis Vassiliou, Evaluating Path Queries over Route
Collections, in Proceedings of the PhD Workshop in conjunction with the 26th
IEEE International Conference on Data Engineering (ICDE’10), Long Beach,
California, USA, March 5, 2010.

91



5. Panagiotis Bouros, Spiros Skiadopoulos, Theodore Dalamagas, Dimitris Sacharidis
and Timos Sellis, Evaluating reachability queries over path collections, in
Proceedings of the 21st Proceedings International Conference on Scientific and
Statistical Database Management (SSDBM’09), New Orleans, Louisiana USA,
June 2-9, 2009.

6. Panagiotis Bouros, Theodore Dalamagas, Spiros Skiadopoulos and Timos Sellis,
Evaluating “Find a Path” Reachability Queries, in Proceedings of the
Workshop on Spatial and Temporal Reasoning in conjunction with the 18th Eu-
ropean Conference on Artificial Intelligence (ECAI’08), Patras, Greece, July 22,
2008.

7. Dimitris Sacharidis, Panagiotis Bouros, and Timos Sellis, Caching Dynamic
Skyline Queries, in Proceedings of the 20th Proceedings International Con-
ference on Scientific and Statistical Database Management (SSDBM’08), Hong
Kong, China, July 9-11, 2008.

8. Theodore Dalamagas, Panagiotis Bouros, Theodore Galanis, Magdalini Eirinaki
and Timos Sellis, Mining User Navigation Patterns for Personalizing
Topic Directories, in Proceedings of the 9th ACM International Workshop
on Web Information and Data Management (WIDM’07) in conjunction with the
16th ACM International Conference on Information and Knowledge Management
(CIKM’07), Lisbon, Portugal, November 9, 2007.

9. Panagiotis Bouros, Aggeliki Fotopoulou and Nicholas Glaros, An interactive
environment for creating and validating syntactic rules, in Proceedings
of the 5th International Conference on Recent Advances in Natural Language
Processing (RANLP’05), Borovets, Bulgaria, September 21-23, 2005.

10. Aggeliki Koukoutsaki, Theodore Dalamagas, Timos Sellis and Panagiotis Bouros,
PatMan: A Visual Database System to Manipulate Path Patterns and
Data in Hierarhical Catalogs, in Proceedings of the International Workshop of
the EU Network of Excellence DELOS on Audio-Visual Content and Information
Visualization in Digital Libraries (AVIVDiLib’05), Cortona, Italy, May 4-6, 2005.

11. Panagiotis Bouros, Theodore Dalamagas, Timos Sellis and Manolis Terrovitis,
PatManQL: A language to manipulate patterns and data in hierar-
chical catalogs, in Proceedings of the 1st International Workshop on Pattern
Representation and Management (PaRMa’04) in conjunction with the 9th Inter-
national Conference on Extending Database Technology (EDBT’04), Heraklion,
Crete, Greece, March 18, 2004.

Παρουσιάσεις

1. Παναγιώτης Μπούρος, Δημήτρης Σαχαρίδης, Θοδωρής Δαλαμάγκας και Τίμος Σελ-
λής, Δυναμικό Πρόβλημα Παραλαβών και Παραδόσεων με Μετα-φορτώσεις, στο 10ο Ελληνικό Συμπόσιο Διαχείρισης Δεδομένων (ΕΣΔΔ΄11),
Αθήνα, Ελλάδα, 17-18 Ιούνιου, 2011.

92



2. Μανώλης Τερροβίτης, Παναγιώτης Μπούρος, Πάνος Βασιλειάδης, Τίμος Σελλής
και Νίκος Μαμουλής, Αποδοτική Αποτίμηση Ερωτήσεων Εγκλεισμούγια Ανομοιογενείς Κατανομές Αντικειμένων, στο 10ο Ελληνικό Συμπό-
σιο Διαχείρισης Δεδομένων (ΕΣΔΔ΄11), Αθήνα, Ελλάδα, 17-18 Ιούνιου, 2011.

3. Παναγιώτης Μπούρος, Σπύρος Σκιαδόπουλος, Θεόδωρος Δαλαμάγκας, Δημήτρης
Σαχαρίδης και Τίμος Σελλής, Αποτίμηση ερωτημάτων προσέγγισης σεσυλλογές μονοπατιών, στο 8ο Ελληνικό Συμπόσιο Διαχείρισης Δεδομένων
(ΕΣΔΔ΄09), Αθήνα, Ελλάδα, 31 Αύγουστου - 1 Σεπτεμβρίου 2009.

4. Δημήτρης Σαχαρίδης, Παναγιώτης Μπούρος και Τίμος Σελλής, Ενδιάμεση απο-θήκευση δυναμικών ερωτημάτων κορυφογραμμών, στο 7ο Ελληνικό
Συμπόσιο Διαχείρισης Δεδομένων (ΕΣΔΔ΄08), Ηράκλειο, Κρήτη, Ελλάδα, 28-29
Ιουλίου, 2008.

Εργασιακή Εμπειρία

• Biovista Knowledge Management for Life Sciences, Ελλάδα (2006)
Μηχανικός λογισμικού - Database optimization
Performance enhancement of BEA search engine core, MySQL server tuning,
ανάλυση και βελτιστοποίηση Βάσης Δεδομένων και ερωτημάτων
Υλοποίηση αρχείου ανεστραμμένου ευρετηρίου (Inverted File) με βάση τη Berke-
ley DB
(MySQL, Berkeley DB, C/C++)

• Ινστιτούτο Επεξεργασίας του Λόγου, Ελλάδα (2001-2005)
Μηχανικός λογισμικού - Τμήμα Ηλεκτρονικής Λεξικογραφίας
Συμφωνία, έξυπνος διορθωτής κειμένου
Κανόνες για συντακτική ανάλυση κειμένου
Περιβάλλον αυτόματης κατασκευής και ελέγχου κανόνων της Συμφωνίας
(C++, Visual Basic, SQL, Programming onWord, DLL creation, DAO, ODBC,
ACCESS, PrimeBase)

• iLang Γλωσσική Καινοτομία, Ελλάδα (2004-2005)
Μηχανικός λογισμικού
Μελέτη και ανάπτυξη εφαρμογής ηλεκτρονικής έκδοσης θησαυρού
(Visual Basic, XML, XSLT, MS Access)

Τεχνικές Ικανότητες

• Προγραμματισμός: C/C++, Java

• Λειτουργικά Συστήματα: Linux, Unix, MacOS, iOS, Windows

• Συστήματα Διαχείρισης Βάσεων Δεδομένων: MySQL, PostgreSQL,
Berkeley DB, MS SQL Server, Oracle, PrimeBase

Ξένες Γλώσσες

• Αγγλικά (Cambridge Proficiency)

93



• Γαλλικά (Delf)

Ενδιαφέροντα

Ταξίδια, κινηματογράφος, μουσική, κιθάρα, basketball

94


