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Abstract
The first formulation of the no-hair conjecture, first posed by Werner Israel and

reformulated by Bekenstein, states that black holes can be completely described only by
three parameters, the angular momentum, the mass and the electric charge, quantities
that can be measured asymptotically and are subject to a Gauss law. No other physical
quantities, to which “hair” gives some kind of a metaphor, should exist. Black holes
are uniquely determined by these three parameters, and other information about the
matter that formed the black hole ”disappears” behind the black hole’s event horizon,
being permanently inaccessible to external observers. An intuitive perspective is given
when we consider, in this context, the impact of the energy conditions. These energy
conditions imply ”reasonable impacts” on the underlined geometry from the presence of
matter and energy, in agreement with the gravitational equations of motion. There is
a close relation between the violation of the energy conditions and the hair of a black
hole. Hairy black holes solutions have been found in multiple cases. The introduction
of a negative cosmological constant or the coupling of a (pseudo-)scalar field with higher
order curvature terms are just some examples of cases where hair does exist. In all of
these cases, the energy conditions are violated, which gives us the physical intuition
that the evasion of the no-hair theorems is achived by the violation of these conditions.
Modified theories of gravity provide a great area to seek for ”hairy” solutions. In this
thesis, we examine the Chern Simons modified gravity, defined as the sum of the
Einstein-Hilbert action and a new, higher order correction. If a (pseudo-)scalar field
is directly coupled to curvature invariants, ”hairy” black holes can be generated. The
scalar hair is present due to the interaction with the underlined geometry. We seek for
a slowly rotating black hole solution dressed with axionic hair and we examine how
such a system violates the Null Energy Condition in the region outside the horizon.
We study the angular momentum of the axion-black hole system and the behaviour
of timelike geodesics around it, leading to a completely new behaviour of the effective
potential, which presents a repulsive nature for the counter rotating geodesics near the
horizon.
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Chapter 1

Introduction

After the gravitational collapse of a large enough star in the presence of any type of
matter and energy, the most general outcome is the Kerr-Newman black hole, completely
described only by three parameters, the angular momentum, the mass and the electric
charge, quantities that can be measured asymptotically and are subject to a Gauss law.
No other physical quantities, to which “hair” gives some kind of a metaphor, should
exist. This is a first formulation of the no-hair conjecture, first posed by Werner Israel [1]
and reformulated by Bekenstein’s considerations made in [2]. However, being the final
state of gravitational collapse, two black holes with the same mass, angular momentum
and charge, are indistinguishable in any way the one from the other, no matter what
was the original composition of the collapsed matter field. There is, consequently, an
information of the initial matter field hidden inside the black hole. So, a question
arises: can this information be extracted?

An intuitive perspective is given when we consider, in this context, the impact
of the energy conditions on the underlined geometry. These energy conditions [3] are
formed in such a way in order to capture the idea of the ”positiveness of the energy”,
or in other words, we demand ”reasonable impacts” on the underlined geometry from
the presence of matter and energy, in agreement with the gravitational equations of
motion. There is a close relation between the energy conditions and the hair of a black
hole. It seems that by challenging the validity of these conditions in specific cases, the
no-hair theorems are also called into question.

However, throughout the years, stationary black holes solutions with new global
charges (primary hair) or new non-trivial fields, determined by the standard global
charges (secondary hair) have been found ( [4–10] etc.). These solutions are known as
”hairy black holes”. Hairy black holes solutions have been found in multiple cases. The
introduction of a negative cosmological constant or the coupling of a (pseudo-)scalar
field with higher order curvature terms, as is the cases of the Gauss-Bonnet [8] or
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the Chern-Simons topological terms [5], are just some examples of various other cases
where hair does exist. In all of these cases, the energy conditions are violated, which
gives us the physical intuition that the evasion of the no-hair theorems is achived by
the violation of these conditions.

In particular, modified theories of gravity provide a great area to seek for ”hairy”
solutions. One of the features of these theories is the rôle of the existence of a
(pseudo)scalar field in a black hole background. In such theories, the scalar field
backreacts on the geometry and ”dresses” the black hole with hair. An example of
a gravity theory that contains higher order curvature terms is the Chern-Simons (CS)
theory [11]. The action of the Chern Simons modified gravity is defined as the sum of the
Einstein-Hilbert action and a new, parity violating correction. If a (pseudo-)scalar field
is directly coupled to curvature invariants, ”hairy” black holes can be generated. The
scalar hair is present due to the interaction with the underlined geometry. As mentioned
before, there is a strong relation between the violation of the energy conditions and
the formation of scalar hair in the region outside of the horizon of a black hole.

This thesis is orginised as follows: in Section 2 we see specific examples of no-
hair theorems, starting from Bekenstein’s no-scalar-hair conjecture and expanding to
other cases, following the same reasoning. In Section 2.2 and 2.2.1, we try to make
the considarations much more general, based on the violation of the energy conditions,
formulating a model-independant approach, relying only on the properties of an effective
energy momentum tensor and argue about the existence of hair or not. In Section 3,
we present the Chern Simons modified theory of gravity, seeking for a slowly rotating
Kerr-type black hole solution, dressed with axionic hair. In Section 3.3 we see how
such a system violates the Null Energy Condition in the region outside the horizon, due
to the existence of the axionic hair. We continue by studying the angular momentum of
the axion-black hole system in Section 3.4, and finally, in Section 3.5, we examine the
behaviour of timelike geodesics around the axionic black hole, leading to a completely
new behaviour of the effective potential, which presents a repulsive nature for the
counter rotating geodesics near the horizon.
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Chapter 2

No-hair theorems and Black hole
mechanics

2.1 No-hair theorems

Multiple no-hair theorems have been studied with interactions of black holes with matter
taken into consideration. The main attention was firstly turned to scalar fields, as the
most realistic candidates for dressing a black hole with hair. The no-hair theorems
excluded for a long time scalar fields, vector fields, spinors and abelian Higgs hair from
stationary black holes’ exterior region.

Bekenstein [2] was the first one to propose a no-(scalar)-hair theorem, ruling out a
large variety of coupled scalar fields as candidates, under some basic assumptions. The
statement that black holes have no-hair means that they can be dressed only by fields
that respect a Gauss-like law, like the electromagnetic field. ”Hair”, therefore, would
represent a new parameter required to describe the black hole, other than the mass, the
anglular momentum and the electric charge.

As we will refer extensively in what follows, hair, this new charge, could be
characterized as primary, if it induces a new independent parameter, or secondary, if it
depends on the already existing ones. In the second case, no-new charge is introduced,
but the alterations of the black hole’s spacetime are of utmost importance.

There are different approaches to prove a no-hair theorem for different cases.
Mainly, the arguments made concern the symmetries that the spacetime admits, the
finitiness of the energy momentum tensor and/or the agreement with the energy condi-
tions. We will present some basic cases and see how specific examples can be excluded
(or not), considering the existence of hair in the outside region of the black hole. The
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metric convention throughout this thesis (unless noted otherwise) is (- + + +).

2.1.1 Scalar-vacuum vs Electro-vacuum

We start by wondering what would be a distinction between an electric field and a
scalar field on a black hole spacetime? We start with the two actions

S =
1

4π

∫
d4x

√
−g
(
R

4
− 1

4
FµνF

µν

)
(2.1)

for the electro-vacuum, and also the scalar-vacuum, for a massless and real scalar field,
which is described by the action

S =
1

4π

∫
d4x

√
−g
(
R

4
− 1

2
∇µΦ∇µΦ

)
(2.2)

In both cases, the Schwarzschild metric of vacuum general relativity is a solution, with
Fµν = 0, ∇µΦ = 0, respectively. In Schwarzschild coordinates it reads (see appendix
1.1):

ds2 = −
(
1− 2M

r

)
dt2 +

dr2

1− 2M/r
+ r2(dθ2 + sin2 θdϕ2) (2.3)

Let’s now consider on the Schwarzschild background a test, spherically symmetric: i)
electric field, described by the potential A = ϕE(r)dt and the corresponding Maxwell
tensor F = dA = ∂µAν − ∂νAµ and ii) a scalar field which is described as Φ = Φ(r).
From the source-free Klein-Gordon and Maxwell equations, we get:

∇µF
µν = 0 ⇒ ∂rϕE(r) =

QE
r2

⇒ ϕE(r) = −QE
r

(2.4)

and for the scalar field:

□Φ(r) = 0 ⇒ ∂rΦ(r) =
QS
r2

(
1− 2M

r

)−1

⇒ Φ(r) =
QS
2M

ln
(
2M

r
− 1

)
(2.5)

where QE , QS are constants from integration.

Electric field: In the case of the electric field we have a regular solution on the
horizon and also outside the horizon. Also, the field sources an energy-momentum on
and outside the horizon given by

TEµν = FµαF
α

ν − 1

4
gµνFαβF

αβ , (2.6)

with its non-trivial components given as:

(TE)t t = (TE)rr = −
Q2
E

2r4
= −(TE)θθ = −(TE)ϕϕ . (2.7)
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Considering the backreaction of the electric field on the metric and solving the Einstein
equations Gµν = 2TEµν , we would get as we know the Reissner-Nordström black hole
solution, with the metric given by (see appendix 1.2):

ds2 = −
(
1− 2M

r
+
Q2
E

r2

)
dt2 +

dr2

1− 2M/r +Q2
E/r

2
+ r2(dθ2 + sin2 θdϕ2) (2.8)

A = −QE
r
dt (2.9)

The Reissner-Nordström black hole solution connects continuously with the Schwarzschild
solution and its horizon is regular as long as |QE | < M . We can compute this as the
electric flux on a closed 2-surface ∂Σ:

QE =
1

8π

∮
∂Σ
FµνdSµν (2.10)

where dSµν is the area element. We can choose ∂Σ as a r, t=constant surface at any r
outside the black hole due to the spherical symmetry of our case, and conclude afterall
that QE is the electric charge, obeying a Gauss law.

Scalar field: In the second case, we can check from eq.(2.5) that there is a di-
vergence as r → rH for the gradient of the scalar field, with rH = 2M the horizon,
which means that the scalar field Φ diverges logarithmically there. What is more, the
energy-momentum tensor given by

TSµν = ∂µΦ∂νΦ− 1

2
gµν∂αΦ∂

αΦ , (2.11)

also diverges at the horizon :

(TS)rr =
Q2
S

2r4

(
1− rH

r

)−1
= −(TS)t t = −(TS)θθ = −(TS)ϕϕ . (2.12)

The test field approximation we did for the electric field fails for the scalar field near
the horizon, no matter how small QS is. This is what provides a first indication that
a regular (on and outside the horizon), static and spherically symmetric solution of a
black hole with scalar hair does not exist, which connects in a continuous way to the
Schwarzschild solution.

One physical interpretation for the difference between the scalar and the electric
fields is related to the Gauss’s law which exists for the electric field and fails for the
scalar field. Thus, a regular electric field on the horizon and outside of it can be sourced
by charges that have fallen into the black hole. The existence, on the other hand, of
a non trivial scalar field outside the horizon, no matter how small it becomes near it,
implies an infinite pile up on the area of the horizon. This can be understood because
any finite scalar field outside the black hole area whould disperse to infinity or will
inevitably fall into the black hole, leaving no trace outside the black hole, because of
the absence of a Gauss’s law, as opposed to the case of the electric field
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2.1.2 Bekenstein’s no-scalar-hair theorem

In his 1995 paper [2], Bekenstein rules out a large class of scalar fields, as valid
candidates for dressing a black hole. He proved the no-hair theorem for black holes
dressed with a multicomponent scalar field. To sketch the proof, it starts in the simple
form of an action

Sψ = −1

2

∫ [
∇αψ∇αψ + V (ψ2)

]√
−gd4x (2.13)

for a static scalar field in a static black hole background. From Euler–Lagrange equa-
tions, we get

∂L

∂ψ
= ∂µ

∂L

∂(∂µψ)
=>

gab∇α∇βψ − ψV ′(ψ2) = 0

(2.14)

and integrating (2.14) over the exterior of the black hole at a given time t, and multiply
it by ψ, we get ∫ [

gabψ∇α∇βψ − ψ2V ′(ψ2)
]√

−gd3x = 0 (2.15)

which with partial integration and vanishing [ψ,∇ψ] boundary terms, we get∫ [
gab∇αψ∇βψ + ψ2V ′(ψ2)

]√
−gd3x = 0 (2.16)

where a, b are running over the space coordinates.

If V ′(ψ2) ≥ 0 everywhere and vanishes only at some discrete values ψj , then the ψ-
field must be constant at the outside region of the black hole, with ψ taking values from
the interval [0, ψj], so this rules out hair for the case of action (2.13). Objections were
made to Bekenstein’s argument. In particular, exponentially decaying scalar hair could
be attached to a spherical, static black hole. However, in some regions the condition
V ′(ψ2) ≥ 0 for the potential would be violated. We want to mention that the theorem
fails for any field violating the above condition.

Bekenstein challenged back these objections with the simple demonstration that a
positive-definite field energy density is enough to rule out black hole solutions with
scalar hair. The first step considered, is an action and a multiplet of scalar fields
(ψ, χ, ...) as

Sψ,χ,... = −
∫

E(K,J ,M, ..., ψ, χ, ...)
√
−gd4x (2.17)

where K = gαβ∇αχ∇βψ, J = gαβ∇αψ∇βψ, M = gαβ∇αχ∇βχ. Despite the generality
of the above action, we assume minimally coupled scalar fields.

We will consider only two fields, χ and ψ, since the generalization to more fields
is obvious. We now may assume that the energy density that the scalar field carries,
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is non-negative. We start from Tµν = 2√
−g

δS
δgµν and we end up with

T β
α = −Eδ β

α + 2

(
∂E
∂J

)
∇αψ∇βψ + 2

(
∂E
∂M

)
∇αχ∇βχ+

(
∂E
∂K

)
(∇αχ∇βψ +∇αψ∇βχ)

(2.18)
and the energy density for an observer with a 4-velocity Uµ is given by (UµUµ = −1):

ρ = TαβU
αUβ = E + 2

(
∂E
∂J

)
(∇αψU

α)2 + 2

(
∂E
∂M

)
(∇αχU

α)2+

2

(
∂E
∂K

)
(∇αχU

α∇βψU
β)

(2.19)

Now, suppose that the field admits a timelike Killing vector, as it should, for the case
of static black hole with scalar hair. For an observer moving along a Killing-vector,
∇αχU

α = 0, ∇αψU
α = 0, so we see from (2.19) that ρ = E and with the assumption of

positive energy density
ρ = E ≥ 0 (2.20)

Now, let’s consider a second observer moving with a relative 3-velocity to the Killing
observer. In a freely falling frame, co-moving momentarily with the first observer, we
have U0 = 1

(1−v2)1/2U , while U = v
(1—v2)1/2 . In the relativistic limit, the terms involving

derivatives in eq. (2.19) dominate E .

The conditions in this case for the positivity of the result of energy density yield

∂E
∂J

≥ 0,
∂E
∂M

≥ 0(
∂E
∂K

)2

≤ 4

(
∂E
∂J

)(
∂E
∂M

) (2.21)

We may now proceed to the theorem. As we said previously, the theorem concerns
an arbitrary number of coupled scalar fields, regarding the properties of the correspond-
ing energy-momentum tensor. The assumptions we are going to consider are:

▶ an asymptotically flat solution of the Einstein and scalar field equations with
characteristics of a static, spherically symmetric black hole. The metric outside
the horizon may be taken as ds2 = gαβdx

αdxβ = −evdt2+eλdr2+r2(dθ2+sin2θdϕ2)

▶ Assymptotic flatness: v = v(r), λ = λ(r) and λ, v ∼ O(1/r) as r → ∞

▶ Non-trivial scalar field: ψ = ψ(r) and χ = χ(r)

▶ Event horizon at r = rh where ev(rh) = e−λ(rh) = 0

▶ Tµν should be finite at r = rh and at r → ∞
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The conservation of the energy-momentum tensor is expressed as

∇νT
ν

µ =
1√
−g

∂λ(
√
−gT λ

µ )− 1

2
(∂µgαβ)T

αβ = 0 (2.22)

and so T r
r component is given by

[
√
−gT r

r ]′ −
√
−g1

2
(∂rgαβ)T

αβ = 0 (2.23)

where prime denotes ∂r = ∂
∂r . Another consequence of spherical symmetry is the fact

that T ν
µ should be diagonal and T θ

θ = T ϕ
ϕ . These conditions combined with the metric

determinant
√
−g = e

λ+v
2 r2sinθ lead to(

e
λ+v
2 r2T r

r

)′
− 1

2
e

λ+v
2 r2

[
v′T t

t + λ′T r
r +

4

r
T θ
θ

]
= 0 (2.24)

The λ’ terms cancel out and we get(
e

v
2 r2T r

r

)′
− 1

2
e

v
2 r2

[
v′T t

t +
4

r
T θ
θ

]
= 0 (2.25)

Now, looking at equation 2.18 and taking into account the symmetries, with ψ =
ψ(r) and χ = χ(r), we get T θ

θ = T ϕ
ϕ = T t

t = −E . Now, substituting in (2.25)
1
2e

v
2 r2

[
v′T t

t + 4
rT

θ
θ

]
= −

(
e

v
2 r2
)′

E so(
e

v
2 r2T r

r

)′
= −

(
e

v
2 r2
)′

E (2.26)

Now, with integration at the exterior of black hole of eq.(2.26) from rh to r we find

T r
r (r) = −e

− v
2

r2

∫ r

rh

(e
v
2 r2)′Edr (2.27)

We reached eq.(2.27) with the assumption that the boundary term at the horizon vanishes
because we have ev(rh) = 0 and Tµν is finite there. Now, after the differentiation of
eq.(2.25) we find

(T r
r )′ = −e−

v
2 r−2(e

v
2 r2)′(E + T r

r ) (2.28)

What is next, is the study of the behaviour of (T r
r )′ and T r

r near the horizon and
asymptotically.

Near the horizon

At the horizon ev(rh) = 0 and for r = rh + ϵ, ϵ << 1, we see that r2ev(rh) must
grow with r sufficiently for r = rh + ϵ, so (e

v
2 r2)′ is positive near the horizon, due to

the staticity of the spacetime and our chosen signature. So, taken into account the
positivity of E , we see from (2.27) that T r

r < 0 sufficiently near the horizon.
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Now lets see what happens for (T r
r )′ near the horizon. We start with eq.(2.18) and

find that under the previous assumptions becomes

E + T r
r = 2e−λ

[(
∂E
∂J

)
∇rψ∇rψ +

(
∂E
∂M

)
∇rχ∇rχ+

(
∂E
∂K

)
(∇rχ∇rψ)

]
(2.29)

and from the conditions of eq.(2.21) we ensure that E + T r
r ≥ 0 at the exterior re-

gion of our black hole, everywhere. So, from eq.(2.28) and from our discusion about
(e

v
2 r2)′ and e v

2 r2 being positive near and outside the horizon, we coclude that (T r
r )′ < 0

sufficiently near the horizon, just like T r
r . So, as a sum, sufficiently near and out-

side the horizon, both (T r
r )′ and T r

r should be negative, following our physical
assumptions.

Asymptotically

Asymptotically, we have that e
v(r)
2 → 1, since v = v(r) = O(1/r) and λ = λ(r) =

O(1/r) as r → ∞. When we put that in eq.(2.28) we easily conclude that, assymp-
totically, (T r

r )′ < 0. Now, for T r
r we will look at eq.(2.27). As we will see below, E

must behave as O(r−3) asymptotically, which is obtained from Einstein’s equation (see
eq.(2.30) and the explanation that follows). So, with e

v(r)
2 → 1 for r → ∞, the integral

in eq.(2.27) converges and the quantity under integration yields a negative result, so
T r
r , should be positive asymptotically, T r

r > 0. Summing up again, asymptotically,
T r
r > 0 and (T r

r )′ < 0.

Moving on, let’s analyse these results. We see that T r
r > 0 but also T r

r decreasing
asymptotically, since (T r

r )′ < 0, for large r. But, sufficiently near the horizon, we argued
that T r

r < 0. What it means is that at some intermediate interval [ra, rb], (T r
r )′ should

change its sign and also T r
r should become positive at some rc, ra < rc < rb and stay

positive at the corresponding interval [rc, rb]. We will show now that this result is a
source of contradiction, that ensures the no-hair theorem in the case of this analysis.

We continue with the (rr) and (tt) component of Einstein’s field equations

e−λ
(
r−2 − r−1λ′

)
− r−2 = 8πGT t

t = −8πGE (2.30)

e−λ
(
r−1v′ + r−2

)
− r−2 = 8πGT r

r (2.31)
The assymptotic flatness we have considered, requires λ = λ(r) = O(1/r), λ′ = O(1/r2)
and hence E = O(r−3), for large r.

From the first equation, by the substitution of (e−λr)′ = e−λ(1−rλ′) and integration
at the exterior of the horizon, with e−λ(rh) = 0, we get

e−λ = 1− 8πGr−1

∫ r

rh

Er2dr − rh
r

(2.32)

From eq.(2.32) it follows that eλ ≥ 1 throughout the black hole exterior region and
doesn’t change sign to respect the metric signature and the black hole behavior. From
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Figure 2.1: This is the Bekenstein no-hair theorem (red dotted lines imply the forbidden
interval). This is the minimum behaviour of T rr (there can exist multiple such forbidden
intervals).

the second, (rr), Einstein’s equation, we may rewrite it as

e−
v
2

r2
(e

v
2 r2)′ = 4πGrT r

r e
λ +

eλ + 3

2r
> 4πGrT r

r e
λ +

2

r
(2.33)

From our previous discussion about the behaviour of T r
r and (T r

r )′ near the
horizon and asymptotically, we argued that in an interval [rc, rb], T r

r > 0, and so
e−

v
2

r2
(e

v
2 r2)′ > 0 there. But, looking back to eq. (2.28) for (T r

r )′ we see that it would
mean that (T r

r )′ < 0 in this interval. But we found that this is the interval where (T r
r )′

has changed its sign and remains positive in [ra, rb]. So, here is the contradiction we
mentionned earlier, as shown in Figure(2.1). (T r

r )′ and T r
r can’t be both positive in

order to respect the Einstein’s equations. The only way that we can overcome this
contradiction, is to consider our fields ψ, χ, ... as constants everywhere in the black
hole exterior region and the values they should take, must make all components of T ν

µ

to vanish identically, such as E(0, 0, 0, ..., ψ, χ, ...) = 0. Such values should exist for a
trivial solution of the scalar equation be possible in free space. This is the solution
which serves as an asymptotic boundary condition in our case. The solution of black
hole then must be the Schwarzschild solution. Were the black hole magnetically and/or
electrically charged, the solution would be identically the Reissner-Norström black hole.
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2.1.3 No-hair for scalar tensor theories

As an extra step, let’s abandon the assumption of minimal coupling and consider a
scalar field non-minimally coupled to the geometry. The field equations, then, will
involve the curvature and the scalar field would be part of gravitational interactions
in this case. We will follow the arguments made by Saa in [12]. The purpose is to
exclude finite scalar hair for any static, asymptotically flat and spherically symmetric
black hole background for a system described by the action

S[g, ϕ] =

∫
d4x

√
−g {f(ϕ)R− h(ϕ)gµν∂µϕ∂νϕ} , (2.34)

and f(ϕ), h(ϕ) > 0. We will present a covariant method to generate solutions for the
system described by eq.(2.34). Such a method will be the central point in order to
formulate of the no-hair theorem in this case.

We will start from the minimally coupled case and use conformal transformations
to seek a relation between them. The minimally coupled case is described by the action

S̄[ḡ, ϕ̄] =

∫
d4x

√
−ḡ
{
R̄− ḡµν∂µϕ̄∂ν ϕ̄

}
. (2.35)

The equation of motion of eq.(2.34) are given as

f(ϕ)Rµν − h(ϕ)∂µϕ∂νϕ−∇µ∇νf(ϕ)−
1

2
gµν□f(ϕ) = 0 (2.36)

2h(ϕ)□ϕ+ h′(ϕ)gαβ∂αϕ∂βϕ+ f ′(ϕ)R = 0 (2.37)

where the prime denotes derivation with respect to ϕ (see appendix B for analytical
derivation of 2.36,2.37). Equations derived from (2.35) are

R̄µν − ∂µϕ̄∂ν ϕ̄ = 0 (2.38)

−
□ ϕ̄ = 0 (2.39)

Now, we continue with the conformal transformation we mentioned earlier, in order
to see how the two sets of solutions above are related. We consider a conformal
transformation gµν = Ω2gµν . Under such a conformal transformation, the curvature-
scalar will transform as¹

R(Ω2ḡµν) = Ω−2R̄− 6Ω−3
−
□ Ω (2.40)

¹The result R(Ω2ḡµν) = Ω−2R̄ − 6Ω−3
−
□ Ω comes under the assumption of 4-dimensional spacetime

and starting from the conformal transformation of Christoffel symbols as gab → Ω2gab so gab → Ω−2gab

we find that the Christoffel symbols become Γa
bc = 1

2
Ω−2gad

[
∂b(Ω

2gcd) + ∂c(Ω
2gbd)− ∂d(Ω

2gbc)
]
= Γa

bc +

Ω−1
[
δac∂b(Ω) + δab∂c(Ω)− gadgbcδ

a
c∂d(Ω)

]
and from Rρ

σµν = ∂µΓ
ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ

we find that Rρ
σµν = .... and continue with same steps for the curvature scalar R = gσνRρ

σρν to get
relation (2.40).
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and with the choice of f(ϕ) = Ω−2 we get
√
−g = Ω4√−ḡ ≡ [f(ϕ)]−2√−ḡ and that

f(ϕ)R(Ω2ḡµν) = [f(ϕ)]2R̄− 6f(ϕ)5/2
−
□ [f(ϕ)]−1/2. Substituting them to eq.(2.34) yields

S[Ω2ḡ, ϕ] =

∫
d4x

√
−ḡf(ϕ)]−2

[
f(ϕ)]2R̄− 6f(ϕ)5/2

−
□ [f(ϕ)]−1/2 − h(ϕ)f(ϕ)ḡµν∂µϕ∂νϕ

]
⇒

=

∫
d4x

√
−ḡ
[
R̄− 6f(ϕ)1/2

−
□ [f(ϕ)]−1/2 − h(ϕ)

f(ϕ)
ḡµν∂µϕ∂νϕ

]
⇒∫

d4x
√
−ḡ
[
R̄− 6f(ϕ)1/2ḡµν∇̄ν [∇̄µ(f(ϕ))

−1/2 − h(ϕ)

f(ϕ)
ḡµν∂µϕ∂νϕ

]
⇒∫

d4x
√
−ḡ
[
R̄+ 3f(ϕ)1/2ḡµν∇̄ν [(f(ϕ)

−3/2f ′(ϕ)∂µϕ]−
h(ϕ)

f(ϕ)
ḡµν∂µϕ∂νϕ

]
⇒

=

∫
d4x

√
−ḡ
[
R̄− 3

2

(
f ′(ϕ)

f(ϕ)

f ′(ϕ)

f(ϕ)

)
ḡµν∂µϕ∂νϕ− h(ϕ)

f(ϕ)
ḡµν∂µϕ∂νϕ

]
(2.41)

where, from line four to line five we used partial integration for the integral term
3f(ϕ)1/2ḡµν∇̄ν [(f(ϕ)

−3/2f ′(ϕ)∂µϕ] with ϕ, ∂ϕ = 0 at the boundary. Now, with d
dϕ lnf(ϕ) =

f ′(ϕ)
f(ϕ) we finally reach equation (2.42):

S[Ω2ḡ, ϕ] =

∫
d4x

√
−ḡ

{
R̄−

(
3

2

(
d

dϕ
ln f(ϕ)

)2

+
h(ϕ)

f(ϕ)

)
ḡµν∂µϕ∂νϕ

}
(2.42)

Now, defining the field ϕ̄(ϕ) to be

ϕ̄(ϕ) =

∫ ϕ

a
dξ

√
3

2

(
d

dξ
ln f(ξ)

)2

+
h(ξ)

f(ξ)
(2.43)

with a being arbitrary, we get that S[Ω2ḡ, ϕ(ϕ̄)] ≡ S[g, ϕ] = S̄[ḡ, ϕ̄]. With the positive-
definiteness of f(ϕ), h(ϕ), we can see that the right hand side of eq.(2.43) is a mono-
tonically increasing function, as ϕ increases. The result of all the above is that finally
we see that the transformation we choose earlier maps a solution of eq.(2.36,2.37) to a
unique solution of eq.(2.38,2.39). We can conclude. finally, keeping also in mind that
the aforementioned transformation is a symmetry preserving one, that if we know all
solutions (ḡµν , ϕ̄) with a given symmetry we automatically know all (gµν , ϕ) with the
same symmetry.

The general static, asymptotically flat and spherically symmetric solution (ḡµν , ϕ̄)
for the minimally coupled case has been found in [13] and reads

ϕ̄ =
√

2(1− λ2) lnR (2.44)

ds2 = ḡµνdx
µdxν = −R2λdt2 +

(
1− r20

r2

)2

R−2λ
(
dr2 + r2dΩ2

)
(2.45)
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where the above equations represent a two-parameter (λ, r0) family of solutions with
R = r−r0

r+r0
, with the values of λ being in the interval [−1, 1].

Now let’s analyse this result. The negative range of the values of λ, as shown
in [13], are negleted, because the solution would have a negative ADM mass, which
can be checked, keeping in mind that asymptitically the spacetime coincides with the
Schwarzschild solution, in the sense that (i.e. for λ = −1):

gtt = −
(
1− 2M

r

)
+O(r2) ⇒

2M

r
= 1−

(
r − r0
r + r0

)2

+O(r2) ⇒

M = − 2r2r0
r − r0

+O(r2) , which is negative for r > r0

(2.46)

For λ = 1, the solution becomes the exterior vacuum Schwarzschild solution
with the horizon located at r′0 = 4r0, which can be seen using the transformation
r′ = r

(
1 + r0

r

)2, since
r′2dΩ2 =

(
1− r20

r2

)2

R−2r2dΩ2 ⇒

r′ =
r + r0
r − r0

r2 − r20
r

⇒

r′ =
(r + r0)

2

r
= r(1 +

r0
r
)2

(2.47)

and we get the usual exterior vacuum Schwarzschild solution with the horizon at
r′0 = 4r0.

For 0 ≤ λ < 1, the above solution is not a black-hole due to fact that the r = r0
surface is not a horizon but represents a naked singularity. This can be verified by
calculating the scalar of curvature

R̄ =
8r20r

4

(r + r0)2(2+λ)
× 1− λ2

(r − r0)2(2−λ)
(2.48)

and observing that r = r0 is a curvature singularity, whilst the sign of gtt = −R2λ never
changes for r > r0, and so in this case, no-black hole solution exist, since no-horizon
is formed around the singularity.

Consequently, in total accordance with the original no-scalar-hair theorem, we see
the only solution representing a black-hole of eq.(2.44,2.45) is the one for which λ = 1
and consequently ϕ̄ = 0 from eq.(2.44), our usual Schwarzschild solution.

The properties of the conformal transformations we used for ϕ(r) lead us to the
conclusion that a solution with finite ϕ in the r = r0 surface is the one for which ϕ
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should be constant for r > r0. In this case, looking at 2.43, we see that ϕ̄ = 0 ⇒ ϕ = α,
for the integration to yield zero. So, the only valid solution is the (gµν , ϕ = α) and is
the known Schwarzschild solution.

To sum up, we conclude that the only asymptotically flat, static, and spherically
symmetric exterior solution of the system governed by the action

S =

∫
d4x

√
−g {f(ϕ)R− h(ϕ)gµν∂µϕ∂νϕ}

with f(ϕ), h(ϕ) > 0 and ϕ finite everywhere is the Schwarzschild solution.

A specific example of all the above is the Brans-Dicke theory, for which f(ϕ) = ϕ
and h(ϕ) = ω

ϕ which is described, at the original Jordan frame, by the action:

SJBD =

∫
d4x
√

−ĝ
[

1

16π

(
φR̂− ω0

φ
∇̂µφ∇̂µφ

)]
(2.49)

for which we can show that the only black-hole solution of with finite ϕ is the
Schwarzschild one, a theory that has been generilised also to the case of ω = ω(ϕ) [6].

2.1.4 Time-dependent scalar fields

Following the arguments made by Graham and Jha in [14], let’s consider a stationary,
asymptotically flat, four-dimensional spacetime. We will also assume that the spacetime
contains a scalar field and that the spacetime must also be axisymmetric. The metric
takes the following form

ds2 = −eµ(r,θ)dt2 + 2ρ(r, θ)dtdϕ+ eν(r,θ)dϕ2 + eA(r,θ)dr2 + eB(r,θ)dθ2 (2.50)

Now, considering the existence of a scalar field, let’s take the action

S =
1

4π

∫
d4x

√
−g
(
R

4
+ P (Φ, X)

)
(2.51)

,where the action depends only on scalar field’s first derivates and not to higher order
ones, but it can contain a kinetic term which is non-canonical, with X = −1

2∇αΦ∇αΦ.
Taking only the scalar field part of the action, Sϕ =

∫
d4x

√
−gP (Φ, X) and taking the

equations of motion, we get

∂P

∂Φ
= ∇α

∂P

∂X

∂X

∂(∂αΦ)
⇒

∇α

[
∂P

∂X
∇αΦ

]
+
∂P

∂Φ
= 0

(2.52)
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assuming that ∂P
∂X ̸= 0. The variation with respect to the metric for the scalar field part

of the action yields for the energy momentum tensor that

Tαb = − 2√
−g

δSϕ
δgµν

= − 2√
−g

δ[
√
−gL]
δgµν

= − 2√
−g

δ[
√
−gP (Φ, X)]

δgµν
=

− 2√
−g

(
−1

2
gαb

√
−g δg

µν

δgµν
P (Φ, X)

)
− 2√

−g
√
−g δP (Φ, X)

δgµν
=

gαbP (Φ, X)− 2
∂P (Φ, X)

∂X

δX

δgµν
⇒

Tαb = gαbP (Φ, X) +
∂P (Φ, X)

∂X
∇αΦ∇bΦ

(2.53)

For the metric in eq.(2.50), we can compute that the components (tr), (tθ), (rϕ), (θϕ) of
the Ricci tensor vanish

Rtr = Rtθ = Rrϕ = Rθϕ = 0 (2.54)

Now, with the above result. let’s move to the Einstein’s field equations Rab − 1
2gabR =

8πTab ⇒ Rab = 8π
(
Tab − 1

2gabT
)
which implies for the (tr), (tθ) components, that

Rtr = 8πTtr −
1

2
gtrT = 0 ⇒ Ttr = 0

⇒ gtrP (Φ, X) +
∂P (Φ, X)

∂X
∇tΦ∇rΦ = 0 ⇒ ∇tΦ∇rΦ = 0

and also Rtθ = 0 ⇒ ∇tΦ∇θΦ = 0

(2.55)

It’s clear from the above, keeping in mind ∂P
∂X ̸= 0, that considering Φ to be time

dependent, then it cannot depend upon the coordinates r and θ, so Φ = Φ(t, ϕ). The
following step is to see form eq.(2.52) that P can’t depend on Φ after all, that P = P (X).
Also, from eq.(2.53) we argue that Φ should have a linear dependence of time t and that’s
because being otherwise, we would have components of energy-momentum tensor Tαb
with explicit dependence on time. These assumption are important because if either of
them was false, then some components of the energy-momentum tensor will have explicit
time-dependence, which would alter the spacetime geometry from being stationary.

What is more, we can rule out the ϕ dependence of scalar field Φ. The axisymmetry
of our spacetime implies that Tαb can only be consistent with spacetime axisymmetry
if Φ has a linear dependence on ϕ, but ϕ being a periodic coordinate clearly would
make Φ-field to be a no-continuous, no-single-valued function, since Φ = αϕ+β would
make Φϕ=2π ̸= Φϕ=0. So we end up with the consideration of Φ = Φ(t), scalar field only
depends on time. We can now write the field as

Φ = αt+ β (2.56)

with α, β constants. We want now to show that the only compatible case with our
assumptions is the one for which α = 0. To do so, we return to our metric in eq.(2.50)
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and consider asymptotic flatness, µ(r, θ), ν(r, θ) → O(1r ) as r → ∞, so gtt → −1 as
r → ∞ and consequently, with the field given from (2.56) we have X → α2

2 . So, the
(tt), (rr) energy-momentum components behave asymptotically as

Ttt →∼ α2, Trr →∼ α2 (2.57)

For our spacetime to be asymptotically flat, these must tend to zero, which is satisfied,
for non-pathological solutions, when α = 0, since for α ̸= 0 and with the assumption
∂P
∂X ̸= 0 we have no-solution and the black cannot support scalar, time dependent hair.
For α = 0, the scalar field Φ is constant, something that ensures that the only case for
the field to exist in the black hole background, is when Φ = β, the field being constant
and the black hole possesses no scalar hair in this case.

We want to emphasize that this theorem does not apply to more than one scalar
fields, or to one or more complex scalar fields. This can be seen by considering Φ to
be complex, the scalar field part of the action in (2.51) and equations in (2.55) would
be replaced by

S =

∫
d4x

√
−gP (|Φ|2, Y )

∂(tΦ
∗∂r)Φ = 0, ∂(tΦ

∗∂θ)Φ = 0

(2.58)

where |Φ|2 = Φ∗Φ and Y = −∇αΦ∗∇αΦ where eq.(2.58) no longer implies ∂rΦ = 0 and
∂θΦ = 0 if we have ∂tΦ ̸= 0.

2.1.5 Examples of hairy black hole solutions

We may now continue with explicit examples of how, in multiple cases, hairy solutions
may occur and discuss how they would behave, depending on some physical assump-
tions we have to reconsider. We will sketch some examples for the cases where scalar
hair may occur, based on the violations of some previous assumptions, following the
arguments and the discussion made in [4].

Scalar field’s Potential not strictly positive:

As a simple example, let’s consider the electrostatic potential of eq.(2.5) Φ(r) = −QS
r

and considering the action of the form

S =
1

4π

∫
d4x

√
−g
(
R

4
− 1

2
∇µΦ∇µΦ− V (Φ)

)
(2.59)

we have from the Klein-Gordon equation that

∇µ∇µΦ− V ′(Φ) = 0 (2.60)
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where prime denotes differentiation with respect to Φ. As we can verify, the above is
a solution for a quintic potential of the form

V (Φ) = −λΦ5 < 0 (2.61)

We have considered a test scalar field in the Schwarzschild black hole background, so
we see that the verification of eq.(2.60) yields

QS =

(
2M

5λ

)1/3

< 0 (2.62)

where for QS → ∞, λ → 0. In particular, what we did now is that we constructed
a smooth configuration which, as can be checked, gives an energy-momentum tensor
which is regular at the horizon, and this happens because of the form of the potential
in eq.(2.61).

Conformal scalar vacuum:

We are interested in possible black hole solutions which support scalar hair, that
can continuously connect to the Schwarzschild solution. A simple question to pose is
whether there could be a hairy black hole that cannot connect to the Schwarzschild
one, with a non-diverging energy momentum tensor at the horizon. We consider the
conformal scalar vaccum action given by

S =
1

4π

∫
d4x

√
−g
(
R

4
− 1

2
∇µΦ∇µΦ− 1

12
RΦ2

)
(2.63)

The field equation for the scalar field is given by ∇µ∇µΦ−ΦR/6 = 0 and is invariant
under a local-conformal transformation, gµν → ĝµν = Ω2gµν and Φ → Φ̂ = Φ/Ω. It is
a special case of the theories we discussed in the subsection (2.1.3) for scalar-tensor
theories. A solution for this case has been found and has been widely discussed since.
It’s the Bocharova-Bronnikov-Melnikov-Bekenstein (BBMB) solution [9, 15], and it’s
given by a one-parameter family of solutions

ds2 = −
(
1− M

r

)2

dt2 +
dr2

(1−M/r)2
+ r2(dθ2 + sin2 θdϕ2) (2.64)

Φ =

√
3M

r −M
(2.65)

The parameter is obvisouly the mass M of the black hole. For M = 0 we recover
the Minkowski spacetime. For any other value of M we get the extremal Reissner-
Nordström black hole (see 1.2), where |QE | =M , with a regular horizon at r =M . This
is a hairy solution which does not connect to Schwarzschild one. Moreover, the scalar
field diverges at the horizon, even though the geometry is regular therein.
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▶ This kind of hair is called secondary hair, and it has to do with the fact that there
is no new independant parameter, since our scalar field Φ depends again to one
of the initial black hole parameters, the mass.

▶ The scalar hair would be called primary hair if it introduced a new, independent
parameter in order to describe the black hole solution.

▶ Secondary hair still have really important effects to the resulting geometry, due
to its backreaction. Secondary hair, therefore, has physical consequences since it
can induce a black hole geometry different from those of general relativity’s black
holes.

Scalar fields coupled to terms of higher order curvature:

A general theory of gravity, including all quadratic curvature invariants coupled
to a single scalar field would be written in the form

S =

∫
d4x

√
−g
(
f1(Φ)R

2 + f2(Φ)RµνR
µν + f3(Φ)RµνρσR

µνρσ

+f4(Φ)Rµνρσ
∗Rµνρσ

) (2.66)

where ∗Rµνρσ is the dual Riemann tensor, as we will see again in Section (3). Such
theories are motivated from very fundamental physics, such as in low-energy expan-
sions of string theory etc. Something intresting in these cases is that the modified
Einstein equations give us an effective energy momentum tensor that involves an extra
contribution due to the form of the action in eq.(2.66). This effective energy momentum
tensor often violates some energy condition, as we will discuss later. The violation of
these energy conditions is probably an important indication for the existence or not of
hairy solutions. In other words, the existence of these couplings with the higher order
curvature terms acts as a source in the resulting Klein-Gordon equation from the field’s
equation of motion, which frequently gives birth to no-hair theorems.

The general form of the action (2.66) reduces to known theories, choosing special
values for the parameters. For example, for f1 = αeγΦ, f2 = −4f1 and f3 = f1 we get
the the Einstein-Gauss-Bonnet-dilaton model, while for f1 = f2 = f2 = 0 and f4 = αΦ
we recover the Chern-Simons gravity, which would be the main focus of this thesis
later on.

2.2 Energy Conditions and Hairy Black Holes

As we said previously, the original form of the the Bekenstein’s work [2] concerns an
arbitrary number of coupled scalar fields, minimally coupled to gravity, and at most
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coupled the one with the other. However, now we will refer only to the properties of the
corresponding effective energy-momentum tensor, without reference to the Lagrangian
density that produces such a T effµν . This subtraction aims to make our considerations
quite more general, since any Lagrangian density that gives an energy-momentum
tensor with some kind of properties, will be excluded. We proceed by presenting the
basic features of energy conditions, and their physical intuition. We will also discuss
the relation between the violations of these energy conditions in multiple cases and the
existence or not of hair. There is a close relation between the energy conditions and
the existence of hairy black holes. Every hairy solution that has been proposed so far,
violates these energy contitions, something that challenges us to examine what’s the
underlying physics of such a behaviour.

Energy conditions

With the term of ”energy condition”, we roughly speak about a relation we demand
for the energy-momentum tensor of matter to satisfy in order to capture the idea of
”positive energy”. We demand, in other words, ”reasonable” effects on the underlined
geometry due to the existance of matter and energy. Such a simple and almost trivial
idea has great effect on our understanding of the structure of spacetimes. Sadly or not,
we have not a clear or profound understanding of the nature of such conditions, what
fundamental physics are involved or when they should be satisfied and when they should
not. It’s important to realize that the study of energy conditions and their violations in
general relativity physics can be proved very fruitful in multiple cases, regarding some
conceptual apsects of our theory. We move on with the energy conditions, following [3],
with some proofs about the origin of the arguments we present.

We consider an energy-momentum tensor Tµν and also the gravitational field equa-
tions

Rµν = κ2
(
Tµν −

1

2
gµνT

)
(2.67)

The energy conditions are the following:

▶ Weak Energy Condition (WEC): The energy density measured by any observer
with a timelike four-velocity tµ, is non-negative, which formally can be expressed
as

Tµνt
µtν ≥ 0, ∀ t : tµtµ < 0 (2.68)

▶ Null Energy Condition (NEC): Expresses the requirement that the geometry has
a focusing (attractive) effect on null geodesics,

Tµν l
µlν ≥ 0, ∀ l : lµlµ = 0 (2.69)

with lµ any null four-vector. This is a generalization of the weak energy condition.
The energy density may now be negative as long as there is a compensating positive
pressure.
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▶ Strong Energy Condition (SEC): Expresses the requirement that the geometry
has a focusing (attractive) effect on timelike geodesics.

Tµνt
µtν ≥ 1

2
gµνTt

µtν , ∀ t : tµtµ < 0 (2.70)

or, from Einstein equation, Rµνtµtν ≥ 0.

▶ Dominant Energy Condition (DEC): This energy condition refers to the current
density Jα = −Tαβtβ , (the energy-momentum current seen by an observer with
4-velocity tµ). This energy condition expresses essentially the statement that the
speed of the flow of energy cannot exceed that of light. So, Jα should remain
causal for all future directed timelike vectors tµ.

Tµνt
µtν ≥ 0, and TµνT

µ
αt
νtα ≤ 0, ∀ t : tµtµ < 0 (2.71)

Note that, the first restriction is just the weak energy condition, while the second
one ensures the causal structure of Jα.

We can see that, the above conditions satisfy some specific relations among them,
meaning that the one entails the other. With simle arguments about continuity to the
limiting values of the above inequalities, we get that :

▶ DEC −→ WEC −→ NEC

▶ SEC −→ NEC

while, usinh the same arguments, we find that the violation of the Null Energy Condi-
tion implies the violation of all energy conditions:

▶ NEC violation −→ DEC,SEC,WEC violation

Raychadhuri equations: Now, let’s make a step back, and briefly discuss about
the origin of these conditions, especially for the NEC and SEC [16]. We start with a one-
parameter family of geodesics, defining U which are denoted as the tangent vectors
of the geodesics and S, a vector tangent to the curves of constant parameter λ, which is
called the deviation vector. We can easily imply that the Lie bracket [U, S] = 0 which
is translated as Uβ∇βS

α = Sβ∇βU
α. Defining now a new tensor, Bαβ = ∇βUα, which

describes the evolution and the deformation of the deviation vector along the geodesic,
measuring in other words the failure of S to be parallelly transported along the geodesic,
we can find from the geodesic equation (with U being affinely parametrized) that:

Uβ∇βU
α = 0 ⇒ UβBα

β = 0 and

1

2
∇β(U

αUα) = UαBαβ = 0
(2.72)
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Figure 2.2: Pictorial representation of a geodesic congruence and of shear, expansion
and rotation.

The relative acceleration of the geodesics is given by

Aα = Uρ∇ρ(U
σ∇σS

α) where after some algebra

Aα = Uρ(∇ρ∇σU
α −∇σ∇ρU

α)Sσ →
Aα = RαβρσU

βUρSσ
(2.73)

where the last line gives the geodesic deviation equation: the relative acceleration be-
tween two neighboring geodesics should be proportional to the curvature. We continue
by considering a timelike geodesic congruence (U2 = −1), and expand our tensor Bµν
as

Bµν =
θ

3
Pµν + σµν + ωµν (2.74)

where Pµν is the projection tensor, σµν = B(µν) − θ
3Pµν and ωµν = B[µν]. The trace of

Bµν is given by Bµνg
µν = θ. The scalar θ is defined as the divergence of U , or as is

known, the expansion of the congruence. A positive θ value yields that the congruence
is expanding, while a negative one says that the congruence is contracting. σµν and
ωµν give the shear and the twist of the congruence respectively, as shown in Figuer 2.2.
To obtain the Raychadhuri equation for the timelike case we are studying, we want to
calculate the evolution of Bµν with respect to an affine parameter λ, which yields the
generilized form of the Raychadhuri equations:

d

dλ
Bµν = −Bρ

νBµρ −RµλνρU
λUρ (2.75)

where, taking the trace of eq.(2.75), we get

d

dλ
θ = −θ

2

3
− σµνσ

µν + ωµνωµν −RµνU
µUν (2.76)

In the above equation we have the vanishing of the twist ωµν using the Forbenius
theorem U[α∇βUγ] = 0 and also that the shear σµν has a spatial nature and so σµνσµν ≥
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0. The gravitation acts as an attractive force if the strong energy condition holds,
and the geodesics get focused as a result of this attraction ( ddλθ = −RµνUµUν ... ≤ 0).
This can be translated to RµνU

µUν ≥ 0 which is the geometric expression of the
Strong Energy Condition. The same procedure can be done for null geodesics, and
for a focusing effect on these null geodesics we will have Rµν lµlν ≥ 0, where lµlµ = 0,
yielding the geometric expression of the Null Energy Condition.

Moving on, as we said at the start of this chapter, we aim to make our consider-
ations more general, studying only the properties of the energy-momentum tensor Tµν
and not considering some specific action. The assumptions of Bekenstein in [2], which
we presented analytically in (2.1.2), rule out a large class of coupled scalar fields, mini-
mally coupled to gravity. The assumptions in [2] by Bekenstein, assume that the scalar
fields construct a conserved energy-momentum tensor, which defines a non-negative
energy density as measured by any observer of any timelike four-velocity, in other
words the Weak Energy Condition (WEC) is satisfied. We want to check what this
means for the components of Tµν without refering to a specific Lagrangian density at
all. The assumptions we are going to consider are:

▶ an asymptotically flat solution of the Einstein and scalar field equations with
characteristics of a static, spherically symmetric black hole. The metric outside
the horizon may be taken as

ds2 = gαβdx
αdxβ = −evdt2 + eλdr2 + r2(dθ2 + sin2θdϕ2) (2.77)

▶ Assymptotic flatness: v = v(r), λ = λ(r) = O(1/r) as r → ∞

▶ Nontrivial scalar field: ψ = ψ(r) and χ = χ(r)

▶ Event horizon at r = rh where ev(rh) = e−λ(rh) = 0

▶ Tµν should be finite at r = rh and at r → ∞

▶ From WEC validation : −T tt = E ≥ 0

▶ From NEC validation : J = E + T rr ≥ 0 and G = E + T θθ = E + T ϕϕ = 0

We consider a special case of non-violation of the NEC according to the tangential
direction, as we assume G = 0 and not the general case of G ≥ 0 (we will talk analytically
in Section (2.2.1) about when and how G ̸= 0). Like before, let us write the conservation
of an effective energy momentum tensor as

∇νT
ν

µ =
1√
−g

∂λ(
√
−gT λ

µ )− 1

2
(∂µgαβ)T

αβ = 0 (2.78)

Looking back to eqs.(2.27,2.28), we have

T r
r (r) = −e

− v
2

r2

∫ r

rh

(e
v
2 r2)′Edr

(T r
r )′ = −e−

v
2 r−2(e

v
2 r2)′(E + T r

r ) = −e−
v
2 r−2(e

v
2 r2)′J
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Studying again the sign of the above expressions near the horizon r = rh and asymp-
totically, we find that:

Near the horizon: From the arguments about asymptotic flatness and finiteness
of Tµν we have:

T r
r ≤ 0, if E ≥ 0, T r

r ≥ 0, if E ≤ 0

(T r
r )′ ≤ 0, if J ≥ 0, (T r

r )′ ≥ 0, if J ≤ 0
(2.79)

We see that for J ≤ 0 we have a violation of NEC, while for J ≥ 0 the NEC still
holds.

Asymptotically: Again, from asymptotic flatness we get that, (T r
r )′ asympototi-

cally behaves as
(T r
r )′ ≈ −2

r
J (2.80)

so, asymptotically

T r
r ≥ 0, if J ≥ 0, T r

r ≤ 0, if J ≤ 0

(T r
r )′ ≤ 0, if J ≥ 0, (T r

r )′ ≥ 0, if J ≤ 0
(2.81)

where, similarly, for J ≤ 0 we have a violation of NEC, while for J ≥ 0 the NEC still
holds.

In the subsection (2.1.2) we found that the (rr) component of Einstein’s field equa-
tions is given by

e−
v
2

r2
(e

v
2 r2)′ = 4πGrT r

r e
λ +

eλ + 3

2r
(2.82)

Substituting to the left hand side of the above relation the equation for (T r
r )′ which

yields (T r
r )′ = −e−

v
2 r−2(e

v
2 r2)′J , we get

−(T r
r )′

J
= 4πGrT r

r e
λ +

eλ + 3

2r
(2.83)

We mention here that the quantity G = E + T θ
θ = 0, something that has to do

with the radial nature of the fields and the minimally coupling with the gravity (we
will see later on how this assumption can be relaxed). Let’s see what are the possible
configurations of this analysis, looking closer to the behaviour of eq.(2.83).

⇒No NEC violation: J ≥ 0 −→ We have two cases for the sign of (T r
r )′

1. (T r
r )′ > 0 → T r

r < −e−λ eλ+3
8πGr2

→ T r
r cannot have positive values

2. (T r
r )′ < 0 → T r

r > −e−λ eλ+3
8πGr2

→ T r
r can have every value.
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⇒NEC violation: J ≤ 0 −→ Again we have two cases for the sign of (T r
r )′

1. (T r
r )′ > 0 → T r

r > −e−λ eλ+3
8πGr2

→ T r
r can have every value

2. (T r
r )′ < 0 → T r

r > −e−λ eλ+3
8πGr2

→ T r
r cannot have positive values

Now, let’s see the four combinations of the sings of E ,J :

▶ First case: E > 0, J > 0, which translates to

Near the horizon : (T r
r )′ ≤ 0 and T r

r ≤ 0

Asymptotically : (T r
r )′ ≤ 0 and T r

r ≥ 0
(2.84)

which is exactly the case we talked about in subsection 2.1.2 for Bekenstein’s
approach, which rules out a large class of scalar hair. So, in this case, hair does
not exist.

▶ Second case: E > 0, J < 0, which translates to

Near the horizon : (T r
r )′ ≥ 0 and T r

r ≤ 0

Asymptotically : (T r
r )′ ≥ 0 and T r

r ≤ 0
(2.85)

In this case, there is no forbidden region in order for T rr to be smoothly connected,
which means that this case allows hair to exist.

▶ Third case: E < 0, J > 0, which translates to

Near the horizon : (T r
r )′ ≤ 0 and T r

r ≥ 0

Asymptotically : (T r
r )′ ≤ 0 and T r

r ≥ 0
(2.86)

In this case, there is no NEC violation, which means that again there is no
restriction on the sign of T rr as (T rr)

′ ≤ 0 everywhere. This case also allows hair
to exist.

▶ Fourth case: E < 0, J < 0, which translates to

Near the horizon : (T r
r )′ ≥ 0 and T r

r ≥ 0

Asymptotically : (T r
r )′ ≥ 0 and T r

r ≤ 0
(2.87)

In this case, despite the NEC violation, for a smooth connection of T rr we must
have at least on region where T rr > 0 and (T rr)

′ < 0, (similar arguments as in
Bekenstein’s novel no-scalar-hair theorem, see (2.1.2)). So, in this case, hair does
not exist.

Let’s sum up the results (see Figures 2.3,2.4,2.5,2.6):
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Figure 2.3: E > 0 and J > 0: This is just the Bekenstein case (red dotted
lines→forbidden interval).

E > 0 and J > 0 Hair not allowed
E > 0 and J < 0 Hair could be allowed
E < 0 and J > 0 Hair could be allowed
E < 0 and J < 0 Hair not Allowed

The first case, is just Bekenstein’s approach and no hair is allowed. In the second case,
there is NEC violation, and consequently WEC is also violated. However, E ≥ 0, which
means that the energy density is non-negative for the static observer, but it is negative
for sure for fastly moving observers, by means of continuity, since the NEC is violated.
In this case, hair can be allowed. For the third case, there is no NEC violation, but
as E ≤ 0, there is a WEC violation. In this case, hair could be allowed. For the last
case, NEC and WEC is violated, with negative energy density for every observer, so
hair is not allowed. It seems that hair can be supported in cases where the static and
the fastly moving observers have a disagreement about the sign of the energy-density
E .

Let us remind that for all the above, we have two basic assumption: the finiteness
of the energy-momentum tensor Tµν and also that the angular part of the NEC is fixed
to be equal to zero (G = 0) and it does not violate the energy condition. We could
be much more thorough and consider the cases where G is not fixed or aboandon the
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Figure 2.4: E > 0 and J < 0: This is a case where hair might be allowed since no
constraints for the sign of T rr occured.

Figure 2.5: E < 0 and J > 0: This is a case where hair might be allowed since no
constraints for the sign of T rr occured.
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Figure 2.6: E < 0 and J < 0: This is a case where hair is not allowed, in the same
way as the Bekenstein’s case (red dotted lines→forbidden interval).

assumptions about spherical symmetry and/or asympotitical flatness.

2.2.1 Field coupled to higher order curvature terms

Let’s continue now with the same procedure, but now considering that G = E + T θ
θ ̸= 0.

The case of G = 0 in Bekenstein’s case is based on the fact that the fields in this case
are completely radial, where by a simple check of equation 2.18, we see that G = 0.
This is not the case if the field has an angular dependance, for example if we have a
θ- dependance of the field, or if we have to deal with a (pseudo-)scalar field coupled
to higher order curvature terms, where the effective energy momentum tensor does not
respect the equality G = 0. In the analysis below, since we assume spherical symmetry,
the θ− dependance would require a stationary and axisymmetric solution, so we in-
terpret this analysis for cases where we have higher order corrections, with our fields
coupled to higher order curvature terms.

The case of G ̸= 0 is an extra relaxation of the previous analysis and we start
again in the same way as in Bekenstein’s analysis, from the covariant divergence of
an effective EMT which now satisfies G ̸= 0.
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Starting from eq.(2.25), we have that(
e

v
2 r2T r

r

)′
− 1

2
e

v
2 r2

[
v′T t

t +
4

r
T θ
θ

]
= 0 ⇒(

e
v
2 r2T r

r

)′
=

1

2
e

v
2 r2

[
v′T t

t +
4

r
T t
t − 4

r
T t
t +

4

r
T θ
θ

]
⇒(

e
v
2 r2T r

r

)′
=

1

2
e

v
2 r2

[
−E(v′ + 4

r
) +

4

r
(E + T θ

θ )

]
⇒(

e
v
2 r2T r

r

)′
= −

[
e

v
2 r2
]′
E + 2e

v
2 rG ⇒

e
v
2 r2(T r

r )′ = −
[
e

v
2 r2
]′
(E + T r

r ) + 2e
v
2 rG ⇒

(T r
r )′ = −e

− v
2

r2

[
e

v
2 r2
]′
(E + T r

r ) +
2

r
G ⇒

(T r
r )′ = −

(
2

r
+
v′

2

)
J +

2

r
G

(2.88)

Integrating now at the exterior region, and remembering that ev(rh) = 0, we get:(
e

v
2 r2T r

r

)′
= −

[
e

v
2 r2
]′
E + 2e

v
2 rG ⇒

T r
r = −e

− v
2

r2

∫ r

rh

[[
e

v
2 r2
]′
E − 2e

v
2 rG

]
dr

(2.89)

Before moving on, let’s write down the (tt), (rr) and (θθ) components of the Einstein’s
field equations, where the metric is obviously given as before, by ds2 = gαβdx

αdxβ =
−evdt2 + eλdr2 + r2(dθ2 + sin2θdϕ2). So we have

(tt) component : e−λ
(
r−2 − r−1λ′

)
− r−2 = 8πGT t

t = −8πGE
(rr) component : e−λ

(
r−1v′ + r−2

)
− r−2 = 8πGT r

r

(θθ) component :
e−λ

(
−2λ′ + 2rv′′ + (2− rλ′) v′ + rv′2

)
4r

= 8πGT θ
θ

(2.90)

As we have already mentioned, for the asymptotic behaviour of E , T r
r , T

θ
θ , given

that asymptotically v, λ = O(1r ), we can see from the above equations (2.90) that

E ∼ O(r−3)

T r
r ∼ O(r−3)

T θ
θ ∼ O(r−3)

(2.91)

and consequantly

E ∼ O(r−3)

J ∼ O(r−3)

G ∼ O(r−3)

(2.92)
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Before moving on, it’s also important to mention that, near the horizon, the function
v(r) has a divergent derivative for r = rh, as we can check, since near the rh, v′(r) ∼ 1

r−rh
which means that v′ >> 1 for r → rh.

Near the horizon

From eq.(2.88), we get for (T r
r )′, remembering that v′(r) >> for r → rh, that

(T r
r )′ = −e

− v
2

r2

[
e

v
2 r2
]′
(E + T r

r ) +
2

r
G ⇒

(T r
r )′ = −

(
2

r
+
v′

2

)
J +

2

r
G ⇒

(T r
r )′ ≃ −v

′

2
J ⇒

(T r
r )′ = −v

′

2
(E + T r

r ) ⇒

(T r
r )′ =

v′

2

(
T t
t − T r

r

)
(2.93)

and also for T r
r we find from eq.(2.89) that (remembering ev(r) → 0 for r → rh)

T r
r = −e

− v
2

r2

∫ r

rh

[[
e

v
2 r2
]′
E − 2e

v
2 rG

]
dr ⇒

T r
r ≃ −e

− v
2

r2

∫ r

rh

v′r2

2
e

v
2 Edr ⇒

T r
r ≃ e−

v
2

r2

∫ r

rh

v′r2

2
e

v
2T t

t dr

(2.94)

Asymptotically

Again, making use of the asymptotic behaviour of our components, looking at
equations (2.91, 2.92), we have for (T r

r )′ that:

(T r
r )′ = −e

− v
2

r2

[
e

v
2 r2
]′
J +

2

r
G ⇒

(T r
r )′ = −

(
2

r
+
v′

2

)
J +

2

r
G ⇒

(T r
r )′ ≃ 2

r
(G − J ) ⇒

(T r
r )′ ≃ 2

r

(
T θ
θ − T r

r

)
(2.95)
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since, asymptotically, v′ ∼ O(r−2). For T r
r , we get

T r
r = −e

− v
2

r2

∫ r

rh

[(
2

r
+
v′

2

)
E − 2

r
G
]
dr ⇒

T r
r =

1

r2

∫ r

rh

2

r
(G − E) dr ⇒

T r
r =

1

r2

∫ r

rh

2

r
T θ
θ dr

(2.96)

Τhe (rr)-component of the Einstein’s equations, eq.(2.90), can be written as (see
Section 2.1.2, eq.(2.33)):

e−
v
2

r2
(e

v
2 r2)′ = 4πGrT r

r e
λ +

eλ + 3

2r
> 4πGrT r

r e
λ +

2

r
(2.97)

and looking back at eq.(2.88), we can express the above left hand side e−
v
2

r2
(e

v
2 r2)′ as

e−
v
2

r2
(e

v
2 r2)′ = −(T r

r )′

J
+

2

r

G
J

=
v′

2
+

2

r
(2.98)

and finally get that

− (T r
r )′

J
+

2

r

G
J
> 4πGrT r

r e
λ +

2

r
⇒

(T r
r )′

T t
t − T r

r

> 4πGrT r
r e

λ +
2

r

[
1−

T t
t − T θ

θ

T t
t − T r

r

]
⇒

(T r
r )′

T t
t − T r

r

> 4πGrT r
r e

λ +
2

r

[
T θ
θ − T r

r

T t
t − T r

r

] (2.99)

or, for T r
r and returning to the G,J -symbolism, we get :

T r
r <

e−λ

4πGr

[
(T r
r )′

T t
t − T r

r

− 2

r

(T θ
θ − T r

r )

(T t
t − T r

r )

]
⇒

T rr <
e−λ

4πGr

[
−(T r

r )′

J
+

2

r

G − J
J

]
⇒

T rr <
e−λ

4πGr

[
−(T r

r )′

J
+

2

r

G
J

] (2.100)

Now, let’s see what eq.(2.100) tells us. We start, assuming no-violation at all, so
J > 0, and G > 0. Looking at eq.(2.100), we get:

▶ For (T r
r )′ > 0, we see that there is no restriction for the values of T rr , while

the same happens even if (T r
r )′ < 0. This is something intresting, since with no-

violation of the energy conditions (J ,G > 0), there is the possibility of the existence
of hair, in the sense that T rr is not restricted in a specific range of values.
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Assuming now the violation as J < 0, we see that:

▶ Again, as long as G/J > 0, we get no constraint at all for the values of T rr , no
matter the sign of (T rr )

′, leaving again an open window regarding the existence of
hair

Something different happens when we assume that G/J < 0. For J > 0 and
(T rr )

′ > 0, we see that

T rr <
e−λ

4πGr

[
−(T r

r )′

J

]
(2.101)

which means that the positive values of T rr are restricted, which is the case of
Bekenstein no-hair. The same happens as long as J < 0 and (T rr )

′ < 0, reducing this
case too to Bekenstein’s no-hair theorem too.

To sum up the above, we have that:

▶ For J > 0 we have two cases:

1. (T rr )′ > 0, where we get:
G
J
> 0 −→ no constraint for the values of T rr

G
J

≤ 0 −→ Bekenstein′s case.

(2.102)

2. (T rr )′ < 0, where in this case we have no constraint for the values of T rr no
matter what the sing of G/J is.

▶ For J < 0 we have again two cases:

1. (T rr )′ > 0, where we have no constraint for the values of T rr no matter what
the sing of G/J is.

2. (T rr )′ < 0, where we get:
G
J
> 0 −→ no constraint for the values of T rr

G
J

≤ 0 −→ Bekenstein′s case.

(2.103)

As a discussion, it’s intresting that in each case, as long as the sing of G and J
is the same, we allow the possibility of hair to exist, in the sense that no constraints
occured regarding the sign of T r

r .

We can also check what the no-constraint case means for the behaviour of the
gtt component, based on equation (2.98) in order to reinforce or alter the Bekenstein’s
theorem in cases where we have to deal with higher order corrections in modified
gravity theories.
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Chapter 3

Chern-Simons modified gravity

3.1 Properties of Chern-Simons gravitational theory

Chern-Simons modified gravity is a 4-dimensional deformation of general relativity,
postulated by Jackiw and Pi [11]. The gravitational Chern-Simons term CS(Γ) is a
three-dimensional quantity

CS(Γ) =
1

4π2

∫
d3x εijk (

1

2
3Γpiq ∂j

3Γqkp +
1

3
3Γ

p
iq

3Γ
q
jr

3Γrkp). (3.1)

where the the superscript ”3” denotes three-dimensional quantities. The three-dimensional
Christoffel connection is constructed in the usual way via the metric tensor, which is
our fundamental dynamical variable.

A related four-dimensional quantity is the Chern-Simons topological current

Kµ = 2εµαβγ
[
1

2
Γσατ ∂β Γτγσ +

1

3
Γσατ Γ

τ
βηΓ

η
γσ

]
, (3.2)

which is proved to satisfy (see Appendix 3.3)

∂µK
µ =

1

2
R̃στ

µν Rτ σµν (3.3)

where Rτσµν is the four-dimensional Riemann tensor

Rτσµν = ∂ν Γτµσ − ∂µ Γτνσ +ΓτνηΓ
η
µσ − ΓτµηΓ

η
νσ, (3.4)

and R̃τ µν
σ is its dual

R̃τ µν
σ =

1

2
εµναβRτσαβ . (3.5)
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with εµναβ = ϵ̂µναβ
√
−g the covariant Levi-Civita tensor with upper indices, under the

convention that the symbol ϵ̂0123 = 1, or ϵ̂0123 = −1 etc.

Let’s mention here that the term R̃στ
µνRτ σµν , also known as the Pontryagin

density, is a parity violating term. Later on, we will consider the field b(x) as an
axion field, and that’s because, being a pseudo-scalar and transforming as b→ −b under
parity transformation, the coupling term bR̃R does not violate parity.

The action we choose as an extension to Einstein-Hilbert’s one is given by

I = 1

16πG

∫
d4x

(√
−gR+

1

4
bR̃R

)
=

1

16πG

∫
d4x

(√
−gR− 1

2
(∇µb)K

µ

)
(3.6)

where the second part of the equality comes from eq.(3.3) and from partial integration,
respecting the boundary conditions of vanishing b,∇b at the boundary. The variation
of the CS term gives a traceless symmetric, second-rank tensor, which we name the
four-dimensional Cotton tensor Cµν (see analytical derivation at Appendix 3.1,3.4):

δICS = δ
1

4

∫
d4x bR̃R ≡

∫
d4x

√
−gCµνδgµν = −

∫
d4x

√
−gCµνδgµν (3.7)

where, the Cotton tensor Cµν is given by

Cµν = − 1

2
√
−g

[
∇σb

(
εσµαβ∇αR

ν
β + εσναβ∇αR

µ
β

)
+∇σ∇τ b

(
R̃τµσν + R̃τνσµ

)]
(3.8)

or, we can prove (see Appendix 3.1) that

Cµν = −∇τ
∇σb

2
√
−g

(
R̃τµσν + R̃τνσµ

)
(3.9)

The deformed of Einstein’s field equations read

Gµν + Cµν = −8πGT µν (3.10)

The Bianchi identity forces ∇µG
µν = 0, while diffeomorphism invariance implies that

the energy-momentum tensor Tµν similarly satisfies ∇µT
µν = 0. But, we can check that

the covariant divergence for the four-dimensional Cotton tensor Cµν is not zero. The
divergence is analytically calculated in Appendix 3.2 and gives:

∇µC
µν =

∇νb

8
√
−g

R̃R (3.11)

So, we can always construct an effective EMT which satisfies ∇µT
µν
eff = 0, by means of

the Bianchi identity.

Now, let’s make a quick discussion about the confinement of the space of solutions
of this theory, since it will be proven very usefull for what follows. We follow the
arguments made in [17].
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The quantity b(x) of the previous relations is the Chern-Simons coupling field,
which is generally not constant, but a function of spacetime, thus it serves as a ”de-
formation”. If b =constant, Chern-Simons gravity reduces to General Relativity, which
can be easily seen, getting away of boundary terms and the vanishing of ∇b, for b =
constant.

When b(x) becomes finite, Chern-Simons gravity becomes significantly different
from GR. The quantity ∇b acts as an embedding coordinate, embedding a standard
3-dimensional theory to a 4-dimensional spacetime. The equation of motion for the
quantity b(x), which comes from the vanishing of the variation of action (3.6), yields:

□b(x) ∼ R̃R (3.12)

where □ = gαβ∇α∇β is the D’Alembertian operator. We recognize eq.(3.12) as the Klein-
Gordon equation, without a potential, in the presence of sourcing term, the Pontryagin
density term. We see now that the evolution of the b(x) coupling is not determined only
by its stress-energy tensor given below at eq,(3.13), but also by the spacetime curvature.
The stress-energy tensor is given by:

T bµν = ∇µb(x)∇νb(x)−
1

2
gµν(∇b(x))2 (3.13)

From the field equation (3.10), we get

∇µG
µν +∇µC

µν = −8πG∇µT
µν (3.14)

where ∇µG
µν vanishes identically by means of the Bianchi identity. What’s left is that

∇µT
µν ∼ ∇µC

µν ∼ R̃R (3.15)

where, the above equation, implies some kind of ”energy exchange” between b(x) and
the gravitational anomaly.

In the non-dynamical framework, where b = constant, the theory becomes con-
strained, because every solution must satisfy the condition (also known the Pontryagin
constraint) R̃R = 0. In the dynamical framework, the Pontryagin constraint is replaced
by the equation for the evolution of the field b(x) (eq. 3.12), which doesn’t impose a
direct constraint on the space of solutions, while it couples the evolution of the b(x) to
the field equations.

Another important aspect we shall mention, is that of vacuum solutions of CS
theory. Finding exact solutions, without any approximation technique, is always crucial,
and that’s why we will refer to two specific cases: i) Spherically Symmetric Spacetimes,
and ii) Kerr metric

Spherically Symmetric Spacetimes: We start by considering the most general,
spherically-symmetric spacetime. The line element of such a spacetime always leads to
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the vanishing of the Pontryagin density → R̃R = 0. This actually decouples the field
equations Gµν + Cµν = −8πGT µν , and gives Rµν = 0 and Cµν = 0.

For the non-dynamical framework, spherically symmetric line elements reduce our
theory to GR, cause of Cµν = 0. In the dynamical framework, one must also keep in
mind the evolution equation for b(x), which reduces to a wave-like equation without a
source and without a potential, □b(x) = 0. For decaying, well-defined solutions of the
above equation that will lead to a finite energy-momentum tensor and a good boundary
behaviour, the scalar field is forced to become constant, which again reduces CS gravity
to GR. Consequently, the Schwarzschild solution still holds by means of the validity of
the Birkhoff’s theorem in CS-gravity (the most general and spherically symmetric solution
for the vacuum Einstein field equations is the Schwarzschild metric).

Kerr metric: Considering the Kerr solution line element, we can check that the
Pontryagin constraint is not satisfied, since it leads to R̃R ̸= 0. Just because the Kerr
line element does not solve Chern-Simons gravity, it should not disappoint us since
a rotating black hole solution still can be found. It is actually an open question,
which specific modification of the Kerr solution can solve the deformed equations of
Chern-Simons modified gravity.

3.2 The search for local solutions: slowly rotating Kerr-type ax-
ionic black holes

The action we will consider so on, that’s giving the coupling of the axion field b to the
R̃R = RCS is the following:

S =

∫
d4x

√
−g

[
R

2κ2
− 1

2
(∂µb)(∂

µb)−AbRCS

]
(3.16)

where RCS is the Chern-Simons term RCS = 1
2R

µ
νρσR̃

ν ρσ
µ , where R̃τ µν

σ = 1
2 ε

µναβRτσαβ
is the dual of the Riemann tensor, εµναβ is the Levi-Civita tensor with upper indices,
κ = M−1

Pl is the inverse of the reduced Planck mass, b is a pseudoscalar translated as
the axion matter field and A is a parameter for the coupling of b(x) axion field to the
CS term with dimension of length (see Appendix D for the origin of such actions [18]).

The CS terms are accompanied by the axion field b, which, as we shall discuss
below, is in the weak approximation for slowly-rotating black holes of large mass M
compared to the Planck scale,

Mκ≫ 1 , (3.17)

which we will assume so on. Hence, in the limit of small angular momentum, our
slow-rotation approximations in which we keep terms of up to linear order in the black
hole angular momentum would be valid.
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In the spirit of the previous section, we derive the equations of motion from the
variation of the action (3.16) which reads (the variation of the Chern-Simons term is
derived analytically in Appendix 3.1):

δS = δSEH + δSb + δSCS = 0 ⇒
Gµν = κ2T bµν + 4κ2ACµν ,

□b = ARCS ,

(3.18)

where T bµν is the stress energy-momentum tensor associated with the kinetic term of
the axion matter field,

T bµν = ∇µb∇νb−
1

2
gµν(∇b)2 . (3.19)

The Cotton tensor Cµν is also derived in Appendix (3.1) and is given by

Cµν = −1

2
∇α
[
(∇βb)R̃αµβν + (∇βb)R̃ανβµ

]
. (3.20)

and the covariant divergence of Cµν , derived in Appendix (3.2), is given by

∇µC
µν = −1

4
(∇νb)RCS . (3.21)

The above result can be also recovered from the equations of motion. From the
Bianchi identity, ∇µGµν = 0, where Gµν ≡ Rµν − 1

2 gµν R is the Einstein tensor, and
with ∇µTµν = □b∇νb, we get that

0 = ∇µGµν = κ2∇µT bµν + 4κ2A∇µCµν , (3.22)

and consequently

0 = κ2□b∇νb+ 4κ2A∇µCµν =⇒ A RCS∇νb = −4A∇µCµν ⇒

∇µCµν = −1

4
(∇νb)RCS

(3.23)

We see that the covariant-conservation of energy-momentum tensor of the axion, T bµν ,
is violated, since ∇µT bµν does not vanish. Actually, we find that

∇µ T bµν = −4A∇µCµν = A
1

4
(∇νb)RCS . (3.24)

where we see that ∇µT bµν ∼ RCS . The latter implies an exchange of energy between the
axion matter field b and the gravitational spacetime background.

The goal from now on, is to find a slowly rotating Kerr-type black hole solution
of CS modified gravity, using perturbative arguments. Since the axion matter field b(x)
is a pseudo-scalar, it enforces an axial symmetry on the underlying spacetime. As we
said in the previous section, the RCS term identically vanishes for spherical symmetry
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and so the axion dynamics are forced to vanish and CS gravity reduces to GR. The
presence of the dynamical axion field and of axisymmetry motivates the search of
rotating solutions. We keep our analysis to the slowly rotating case, in leading order
for the angular momentum parameter a of our slowly-rotating spacetime.

In General Relativity, the geometry of a spinning massive black hole is described
by the Kerr metric, which is not the case of Chern-Simons modified gravity, as we
mentioned before. Spinning black hole solutions have been found, using slow-rotation
and small-coupling approximation [5, 7, 19, 20]. To understand how we will proceed,
we will sketch out how to get an approximate solution for a rotating black hole in
CS-modified gravity.

We discuss the slowly rotating case by considering the perturbation of a spherically
symmetric and static spacetime, given in general form by the ansatz

ds2 = −G(r)dt2 + F (r)dr2 − 2r2α sin2 θW (r)dtdϕ+ r2dΩ2 . (3.25)

where G(r), F (r),W (r) are functions of r. To make this more clear, starting from a
spherically symmetric and static spacetime, with ”(0)” denoting the zeroth order of the
pertubation, and with b(0) = 0 as a vacuum solution, we have

gµν = g(0)µν + g(1)µν , (3.26)
b = b(1) (3.27)

where g
(1)
µν and b(1) are at least first-order quantities of a the small parameter α of

the ansatz in eq.(3.25), which is the angular momentum parameter of our slow-rotation
case. This means that g(1)µν , b(1) are quantities of order ∼ O (α), that’s why we consider
the ansatz of eq.(3.25) . The axion field, actually, is excited by the curvature of the
spacetime, by means of the equations of motion for the evolution of b in eq.(3.18).

While for spherically symmetric spacetimes, the Chern-Simons term RCS vanishes
identically, this is not the case considering the pertubation and keeping terms up to
first order in the angular momentum O(α). Looking at eq.(3.18), from □b = ARCS , we
see that the order of the axion filed b should be b ∼ O(α), since the we keep only terms
of order O(α) for the Chern-Simons term RCS .

Looking at the Einstein equations (3.18) again, we see that the tt and rr components
of the gravitational equations of motion are satisfied in vacuum, and that’s because
the corrections of these components would be of order O(α2), which are ignored in our
approximation. This naturally means that the black hole background we consider is
similar to the Schwarzschild background for the (rr) and (tt) components by means of
the Birkhoff’s theorem, yielding that

G(r) =
1

F (r)
= 1− 2M

r
, M ≡ GM (3.28)
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with G = 8πκ−2 is the Newton’s gravitational constant. Therefore, any backreaction on
the background, due to the presence of the axion, will be encoded in the off-diagonal
metric components. We define

W (r) =
2M

r3
+ w(r) (3.29)

and try to extract the corrections w(r) on our slowly rotating spacetime (3.25), correc-
tions that are caused by the axionic backreaction on our background spacetime. We
express W (r) in this way in eq.(3.29) in order to recover the Kerr metric in the limit
of slow rotation parameter α, asymptotically.

We mention here, that, from Gµν = κ2T bµν+4κ2ACµν , we see that the CS correction
to the Einstein’s field equation in eq.(3.18) ACµν should also be of order Cµν ∼ O(α).
Therefore, when we take the specific black hole background, the CS correction to the
rotation of the black hole should be of order O(α). We mention here that we haven’t
considered, at any point so far, a small-coupling approximation, aiming to find a
solution for all the powers of the coupling parameter A.

We continue by presenting the steps for a solution of the D.E. that have occured,
also mentioning some important physical assumptions we have to consider along the
way. Using separation of variables we deduce that the axion field b may be written as

b = aAu(r)P1(cos θ) , (3.30)

where the P1(cos θ) comes from the observation that RR̃ ∼ cosθ in order O(α), and P1 is
the Legendre polynomial for the first order, which cancels the angular dependence on the
axionic equation of motion. We consider the tϕ component for the equations of motion
(3.18). We can obtain differential equations for (tt), (rr), (rθ), (θθ), (ϕϕ), (rϕ), (θϕ), (tr)
and (tθ) components of equations of motion (3.18) that give homogeneous differential
equations. For those components, it can be checked that we have Cµν ∼ O

(
α2
)
. Finally,

the only component yielding equations of order O(α) is the (tϕ) component. For this
component:

Gtϕ = κ2Ttϕ + 4Aκ2Ctϕ ,

where Ctϕ is calculated as

4Aκ2Ctϕ = −12A2κ2M(r − 2M)(ru′ − u)

r5
a sin2 θ +O(a2) . (3.31)

and Gtϕ is found to be

Gtϕ =
1

2
α sin2(θ)(r − 2M)

(
rw′′(r) + 4w′(r)

)
+O

(
α2
)

(3.32)

For Ttϕ, with a simple check of eq.(3.19), we can verify that it gives

Ttϕ ∼ O(α3) (3.33)
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So, from the equations of motion, we ignore the contribution of Ttϕ since we only keep
terms of order O(α) and get that:

Gtϕ = κ2Ttϕ + 4Aκ2Ctϕ ⇒
1

2
α sin2(θ)(r − 2M)

(
rw′′(r) + 4w′(r)

)
= −12A2κ2M(r − 2M)(ru′ − u)

r5
a sin2 θ ⇒(

r4w′′(r) + 4r3w′(r)
)
= −24A2κ2M(ru′ − u)

r2

(3.34)

and so, with
(
r4w′′(r) + 4r3w′(r)

)
= (r4w′)′, and with (ru′−u)/r2 = (u/r)′, we substitute

and finally get that: (u
r

)′
= − 1

24A2κ2M
(r4w′)′ .

Ιntegration of the above expression, and minimizing the integration constant for a
non-divergent axion, we get

u(r) = − r5w′

24A2κ2M
. (3.35)

Going back to the axionic equation □b = ARCS and plugging our results from
eq.(3.35), we end up with the following differential equation

αr2 cos θ
(
(28r − 50M)w′(r) + r2(r − 2M)w′′′(r) + r(12r − 22M)w′′(r)

)
24Aκ2M

=

24AαM sin θ cos θ
(
r4w′(r)− 6M

)
r7 sin θ

(3.36)

which, after simple algebra, leads to the D.E. :

r11(r − 2M)w′′′ + 2r10(6r − 11M)w′′ + (28r10 − 50Mr9 − 576A2κ2M2r4)w′

+3456A2κ2M3 = 0 .
(3.37)

To solve the above equation we consider a series expansion for the function w(r). For
the radial component of the axion field to asymptotically vanish, w′(r) needs to be at
least of order O(r−5) by means of eq.(3.35), which means that w(r) needs to be at least
of order O(r−4). This implies that, for the gtϕ component, the spacetime asymptotically
coincides with the one of the slow-rotation limit of the Kerr metric looking at eq.(3.29),
which will be of our use later on. We define w(r) in a non-closed form as

w(r) =

∞∑
n=4

dnM
n−2

rn
, (3.38)

where we introduce Mn−2 to maintain dn-coefficients dimensionless. So, we now have
to determine the coefficients dn (let us note that the series expansion of eq.(3.38) con-
verges for any value of r > 2M and any value of the dimensionless parameter γ given
by eq.(3.47)), as is analytically shown in Appendix F). As expected, the next step is to
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replace w with the above eq.(3.38) in eq.(3.37), and get that (see analytical derivation
at Appendix 5.1):

3456A2κ2M3 − 162M7d9 + 256M7d8 + 8M2d4r
5+

−1∑
n=−4

Mn+7
[
−(n+ 3)(n+ 6)(n+ 9)dn+9 + 2(n+ 4)2(n+ 8)dn+8

]
rn

+

∞∑
n=1

Mn+7
[
−(n+ 3)(n+ 6)(n+ 9)dn+9 + 2(n+ 4)2(n+ 8)dn+8

]
+ 576A2κ2Mn+3(n+ 3)dn+3

rn
= 0 .

(3.39)

In order for the left hand side of this equation to be zero for any r, all the
coefficients of the powers rn have to vanish. This leads us to the following equations

d4 = 0 ,

256d8 − 162d9 = −3456
A2κ2

M4

− (n+ 3)(n+ 6)(n+ 9)dn+9 + 2(n+ 4)2(n+ 8)dn+8 = 0 , for n = −1,−2,−3,−4

− (n+ 3)(n+ 6)(n+ 9)dn+9 + 2(n+ 4)2(n+ 8)dn+8 + 576
A2κ2

M4
(n+ 3)dn+3 = 0 for n ≥ 1 .

(3.40)
From the last line of the above equation, we can conclude that

dn =
2(n− 5)2(n− 1)

n(n− 6)(n− 3)
dn−1 +

576A2κ2

n(n− 3)M4
dn−6, for n ≥ 10 . (3.41)

which comes from the shift of n→ n− 9. From eq.(3.41), we see that d4, d5, d6, d7, d8, d9
must be known for the calculatation of the other coefficients. From eq.(3.40), we can
find that

d4 = d5 = 0 ,

−28d7 + 48d6 = 0 ,

−80d8 + 126d7 = 0 ,

256d8 − 162d9 = −3456
A2κ2

M4
.

(3.42)

We end up with four unknown coefficients, but with only three equations. So, we
need one more constraint, which we can extract from the the weak field limit,
which is valid asymptotically. Then, our metric background is the slow-rotation limit
of the Kerr spacetime, in order O(α). We can proceed in this way, since, by looking at
the correction function W (r) = 2M/r3 +w(r) and keeping in mind that w(r) ∼ r−4 for
large r, the term 2M/r3 dominates asymtotically and the background coincides with the
slow-rotation limit of the Kerr spacetime. Plugging such a background to the axionic
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equation of motion (3.18) □b = ARCS , we calculate:

□b = Aα cos θ [r(r − 2M)u′′(r) + 2(r −M)u′(r)− 2u(r)]

r2
+O

(
α2
)
, and

ARCS =
72AαM2 sin 2θ

r7sinθ
+O

(
α2
)
=

144AαM2 cos θ
r7

+O
(
α2
) (3.43)

and so, from □b = ARCS and after some simple algebra, we get a differential equation
for u(r), which reads:

−2u(r) + 2(r −M)u′(r) + (r2 − 2Mr)u′′(r) =
144M2

r5
, (3.44)

By solving eq.(3.44), we find that (see analytical derivation in Appendix 5.2):

u(r) = − 5

4Mr2
− 5

2r3
− 9M

2r4
. (3.45)

which gives the behaviour of the function u(r), and consequently of the axionic field b
(3.30). From eq.(3.35) and making use of eq.(3.38), we can expand the sum to its first
terms, up to r−4 terms, to get:

u(r) =
1

24A2κ2M

[
4d4M

2 +
5d5M

3

r
+

6d6M
4

r2
+

7d7M
5

r3
+

8d8M
6

r4

]
+O(1/r5) . (3.46)

and with a simple match of the coefficients of eq.(3.46) and eq.(3.45), we find that

d4 = d5 = 0 , d6 = −5γ2 , d7 = −60γ2

7
, d8 = −27γ2

2
, d9 = 0,

where γ2 =
A2κ2

M4
.

(3.47)

Now, making use again of eq.(3.41), we can check that for n ≥ 10, we get

d10 = d11 = 0 , d12, d13, d14 ∼ −γ4 , ....and so on for even powers of γ (3.48)

We write only temrs of order γ2, since the γ2n terms can be calculated via the
recurrence relation. This means that the correction function w(r) will be of order O(A2)
and, again, the terms of order O(A2n) can be calculated via eq.(3.41).

Then, our slowly rotating Kerr-like metric can be expressed as:

ds2 = −
(
1− 2M

r

)
dt2 +

dr2

1− 2M
r

+ r2 dΩ2 − 2 r2 a sin2 θW (r) dt dϕ , (3.49)

where the off-diagonal correction term reads

W (r) =
2M

r3
− A2κ2(189M2 + 120Mr + 70r2)

14r8
+O(A2n), with n ≥ 2 , (3.50)
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where the O(A2n)-terms can be found from eq.(3.41).

The axion can now be calculated by eq.(3.30) and eq.(3.35) in the same order of A
as

b = aA cos θ
(
− 5

4Mr2
− 5

2r3
− 9M

2r4

)
+O(Am), for m = 2n+ 1, n ∈ Z+, (3.51)

with Z+ the positive integers. The Cotton tensor contribution, in order O(α), can now
be found to be from eq.(3.31):

4κ2ACtϕ = a
r − 2M

2

∞∑
n=4

n(n− 3)dnM
n−2

rn+1
sin2(θ) , (3.52)

This contribution is negative for every r > 2M , because, as can be checked, the coeffi-
cients dn ≤ 0 for all n. The axionic hair of the black-hole, constitutes secondary hair
for our black hole solution, since it depends on the existing black hole parameters, the
mass M and the angular momentum α.

Let us mention here, that, throughout the above analysis, we have not considered
any kind of small coupling approximation. This means that we didn’t regard the
coupling A as a perturbative parameter, keeping only the first order quantities, as
we did for the angular momentum parameter. So, the solution can be expanded to every
power of the coupling A. This allows us to get arbitrary close to the black hole horizon.

3.3 Axionic Hair and the violation of energy conditions

As we presented in detail in Section 2.2, there is a close relation between the existence
or not of hairy black holes and with the violation of the energy conditions. In what
follows, we demostrate the violation of the Null Energy Condition for an effective energy
momentum tensor T effµν for which ∇µT effµν = 0. For our case, considering the action of
eq.(3.16), where, in order O(α), the only contribution comes from the (tϕ)-component,
where Ttϕ ∼ O(α3). So, the above relation reduces to

T efftϕ = 4κ2ACtϕ , in order O(α) (3.53)

which is calculated in eq.(3.52) and yields

T efftϕ = 4κ2ACtϕ = α
r − 2M

2

∞∑
n=4

n(n− 3)dnM
n−2

rn+1
sin2(θ) . (3.54)

The Ctϕ component contributes to the energy momentum tensor, and this contribution
is clearly negative for r > 2M , since dn < 0. To demonstrate the violation of the Null
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Figure 3.1: Behavior of Λ+ = T effµν lµ+l
ν
+/α at the equitorial plane θ = π/2 up to O(A2)

with respect to r.

Energy Condition in the way we argued in Section (2.2), we define the future directed
null vector

lµ± =

1, 0, 0,−
gtϕ
gϕϕ

±

√(
gtϕ
gϕϕ

)2

− gtt
gϕϕ

 . (3.55)

where, contracting with T effµν , we get

T effµν lµ±l
ν
± = ±α(r − 2M)3/2

2
sin θ

∞∑
n=4

n(n− 3)dnM
n−2

rn+5/2
+O(α2) . (3.56)

Equation (3.56) implies that T effµν lµ+l
ν
+ ≤ 0 and T effµν lµ−l

ν
− ≥ 0, where ”+” is for co-rotating

and ” − ” for the counter rotating case, whilst the equality holds for r = 2M . So, it is
clear that outside the horizon (r > 2M ), the Null Energy Condition is violated, expect
for the poles, θ = 0 and θ = π, where the contraction identically vanishes.

The violation of NEC has its origin to the axion coupling with the Chern-Simons
term RCS , and the Cotton tensor correction to the field equations of motion. For larger
values of this coupling, the deformation of the spacetime becomes more and more im-
portant and hence the violation of NEC gets stronger, as is shown in Figure(3.1), where
for larger values of γ, the NEC violation becomes more and more apparent. Stronger γ
means stronger coupling, and/or smaller mass M for the black hole. We also see that
the NEC reach its maximum value near the horizon, which is something we expected,
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since the axion ”lives” mostly near the horizon, and vanishes asymptotically. Black
holes with hair provide us an insightful understanding on which way the spacetime
deformation is achieved. The deformation occurs in such a way as to be permitted for
the axionic field to exist in the region outside the horizon.

3.4 Angular momentum of the Axionic Black Hole

In this chapter, we aim to derive the angular momentum of the axionic black hole.
Making use of the antisymmetries in the first and last two indices and the cyclic
property of the Riemann tensor Rµ[ναβ], we get:

Rµ[ναβ] =
1

3!
(Rµναβ −Rµανβ +Rµαβν −Rµβαν +Rµβνα −Rµνβα) =

2

3!
(Rµναβ +Rµαβν +Rµβνα) = 0

(3.57)

Contracting the above relation with the Killing vector that corresponds to the polar
isometry of our spacetime, ξ = ∂ϕ, and using the symmetry of the Riemannn tensor in
the change of the first two with the last two indices (Rµναβ = Rαβµν), we have that:

Rµναβξ
ν +Rµαβνξ

ν +Rµβναξ
ν = 0 ⇒

Rµναβξ
ν +Rβνµαξ

ν +Rναµβξ
ν = 0 ⇒

−[∇β ,∇α]ξµ − [∇α,∇µ]ξβ − [∇µ,∇β ]ξα = 0 ⇒
∇β∇αξµ −∇α∇βξµ +∇α∇µξβ −∇µ∇αξβ +∇µ∇βξα −∇β∇µξα = 0 ⇒

∇β (∇αξµ −∇µξα)−∇α (∇βξµ −∇µξβ)−∇µ (∇αξβ −∇βξα) = 0 ⇒
2∇β∇αξµ − 2∇α∇βξµ − 2∇µ∇αξβ = 0

[∇β ,∇α]ξµ = ∇µ∇αξβ ⇒
−Rµναβξν = −∇µ∇βξα ⇒

Rµναβξ
ν = ∇µ∇βξα

(3.58)

where, at the 6th line we used the antisymmetry coming from the Killing equation
∇µξν = −∇νξµ for the Killing vector ξ. Contracting the result of the above calculations
with gµα and using again the antisymmetry of the Killing equation, we get:

Rνβξ
ν = ∇µ∇βξ

µ = −∇µ∇µξβ (3.59)

or, as we will use it from now on, we have:

∇β∇βξα = −Rαβξβ , (3.60)

where Rαβ is the Ricci tensor. Integrating the above equation, we get∫
S
dΣα∇β∇βξα = −

∫
S
dΣαR

α
βξ
β . (3.61)
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where S is an hypersurface.

Now, we will make use of the Stokes’ theorem, and that’s because we will take
advantage of the antisymmetry of the tensor Bαβ = ∇βξα, by means of the Killing
equation ∇µξν = −∇νξµ. What Stokes’ theorem really does, is to relate the integral
of an n-form ω, in our case a 2-form, over a boundary, to the integral of exterior
derivative of this 2-form over the enclosed submanifold. It translates like this:∫

∂Σ
ω =

∫
Σ

dω (3.62)

or, in our case: ∫
S
dΣα∇β∇βξα =

∫
∂S
dΣαβ∇αξβ = −

∫
S
dΣαR

α
βξ
β . (3.63)

S is a 3-hypersurface, whith dΣα representing the 3-dimensional directed surface ele-
ment on S, whilst dΣαβ is the 2-dimensional directed surface element of the boundary
∂S, with ∂S being a 2-surface.

Now, let us proceed to the calculation of the angular momentum of our system [20].
We will use the Komar integrals, and to do so, we start with the conserved current
Jµ = Rµνξν , which gives

∇µJ
µ = Rµν∇µξ

ν + ξν∇µR
µν = 0 + ξν∇µ

(
Gµν +

1

2
gµνR

)
= ξν

1

2
gµνR = 0 (3.64)

where Rµν∇µξ
ν = 0 due to the symmetry of Ricci tensor in [µ, ν] and the antisymmetry

cause of the Killing equation of ∇µξ
ν = −∇νξ

µ, ∇µG
µν = 0 from the Bianchi identity

and also ξν
1
2g
µνR = 0, which can be easily proven, a relation that expresses that the

curvature remains constant along the Killing vector. The conservation of the current
Jµ implies the existence of a conserved charge corresponding to the Killing vector of
polar isometries, ξ = ∂ϕ. This charge, is the angular momentum J of the black hole,
given by

J =
1

8π

∫
∂S∞

dΣαβ∇αξβ (3.65)

where ∂S∞ is the two-sphere at infinity. The hypersurface S represents the exterior of
the black hole and we may express the boundary consisting of a 2-surface at spatial
infinity ∂S∞ and the event horizon H. So, we can write∫

∂S
dΣαβ∇αξβ =

∫
∂S∞

dΣαβ∇αξβ +

∫
H
dΣαβ∇αξβ (3.66)

and so, with the help of eq.(3.65) and eq.(3.63), we get

J =
1

8π

∫
∂S∞

dΣαβ∇αξβ =
1

8π

∫
∂S
dΣαβ∇αξβ − 1

8π

∫
H
dΣαβ∇αξβ ⇒

J = − 1

8π

∫
S
dΣαR

α
βξ
β − 1

8π

∫
H
dΣαβ∇αξβ

(3.67)
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where in the second line we used the relation of eq.(3.63). Using now the gravitational
equation of motion, and taking its trace, we can write the Ricci tensor with respect to
the effective energy momentum tensor, which we will write for simplicity as T effµν = Tµν .
So, we have

Rαβ = Tαβ − 1

2
δαβT (3.68)

and so, eq.(3.67) becomes

J = JMatter + JHorizon = − 1

8π

∫
S
dΣα

(
Tαβ − 1

2
δαβT

)
ξβ − 1

8π

∫
H
dΣαβ∇αξβ (3.69)

In the total absence of matter, we have Tµν = 0 and the total angular momentum is
J = JHorizon, which comes only from the black hole. This would be the Kerr vacuum
solution. Now, as is shown in eq.(3.69), we have two contribution to the total angular
momentum, as it would be measured at infinity. The term

JHorizon = − 1

8π

∫
H
dΣαβ∇αξβ (3.70)

represents the contribution from the rotating black hole, while the term

JMatter = − 1

8π

∫
S
dΣα

(
Tαβ − 1

2
δαβT

)
ξβ (3.71)

is representing the angular momentum contribution from the axionic matter field.

The slowly rotating Kerr like metric of our problem is

ds2 = −
(
1− 2M

r

)
dt2 +

dr2(
1− 2M

r

) + r2dΩ2 + 2gtϕ(r, θ)dtdϕ , (3.72)

where

gtϕ = −r2α sin2 θW (r) = −r2
(
2M

r3
+ w(r)

)
α sin2(θ) ⇒

gtϕ = −αsin2θ
(
2M

r
+ r2w(r)

)
≡ −αsin2θ

(
2M

r
+ y(r)

) (3.73)

where we redefined r2w(r) ≡ y(r).

Moving on, we have to perform the integrations, and to do so, we need to define
how the directed surface elements dΣαβ and dΣα should be expressed. We construct
the boundary ∂S by t, r = const and we will take the appropriate limits at the end
of the calculations, which should be valid by means of continuity. The two normal
one-forms are given by nµ = c1∂µt and σµ = c2∂µr, where c1, c2 are normalization
constants. The normalization is given by nµnµ = −σµσµ = −1. At order O(a), we have
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c1 = 1/c2 = ±
√
1− 2M/r. We choose c1 < 0 and c2 > 0, in order to have future and

outgoing orientation for the 2-surfaces. So, we get:

nµ = −
√
1− 2M

r
(∂t)µ ,

σµ =
1√

1− 2M
r

(∂r)µ .
(3.74)

The sing of c1 < 0 comes from our claim that the vector nµ should have the same,
positive (future) time direction as (∂t) = (1, 0, 0, 0)T , and so, since gtt < 0, for nµ = c1∂µt,
we get that c1 must have the negative sing. The same arguments for σµ, but now with
the positive grr we cunclude that c2 > 0.

Consequently, the surface element can be expressed as dΣαβ =
√
g(2)nασβd

2x,
where g(2) is the determinant of the induced 2-metric, and is found to be

√
g(2) =√

r4 sin2 θ = r2 sin θ. Also, ∇αξβ = gαµ∇µξ
β = gαµ∂µξ

β + gαµΓβµνξν = gαµΓβµϕξ
ϕ =

gαµΓβµϕ. So, we have for JHorizon that

JHorizon = − 1

8π

∫
H
dΣαβ∇αξβ = − 1

8π

∫ π

0
dθ

∫ 2π

0
dϕr2 sin θnµσνgµαΓναϕ . (3.75)

For our Kerr-like black hole of relation (3.25), we find

nµσνg
µαΓναϕ =

sin2 θ(−6M − 2ry + r2y′)a

2r2
. (3.76)

Substituting, we have

J = − 1

8π

∫ π

0
dθ

∫ 2π

0
dϕr2 sin θ sin

2 θ(−6M − 2ry + r2y′)a

2r2
⇒

J = −(−6M − 2ry + r2y′)a

16π

∫ π

0
sin3 θdθ

∫ 2π

0
dϕ ⇒

J =
(6M + 2ry − r2y′)a

8

∫ π

0
sin3 θdθ ⇒

J =
(6M + 2ry − r2y′)a

6
⇒

J =

[
1 +

2ry − r2y′

6M

]
Mα

(3.77)

For r → +∞, we obviously reproduce the result for the Kerr black hole, which is
Jr→∞ = Mα, since both y, y′ fall faster than r and r−2, respectively. For r = 2M , we
get the black hole’s angular momentum

JHorizon =

[
1 +

2ry(r)− r2y′(r)

6M

]
r=2M

Mα . (3.78)
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For the axionic field, we get with similar steps that:

JMatter = − 1

8π

∫
S
dΣα

(
Tαβ − 1

2
δαβT

)
ξβ = − 1

8π

∫
d3xn0

√
g(3)T tϕ , (3.79)

where g(3) is the determinant of the induced 3-metric at the t = const hypersurface and
is given by

√
g(3) =

√
r4 sin2 θ/

√
(1− 2M/r) = r2 sin θ/

√
1− 2M/r and with n0 = c1 =

−
√

1− 2M/r So, we have:

JMatter =
1

8π

∫ 2π

0
dϕ

∫ π

0
dθ

∫ ∞

2M
drr2 sin θT tϕ ⇒

JMatter =
1

4

∫ π

0
sin θdθ

∫ ∞

2M
drr2T tϕ

(3.80)

where we calculate that T tϕ up tp O(a) is given by

T tϕ =
1

2
sin2 θ

(
2y

r2
− y′′

)
α (3.81)

Substituting the above, we get

JMatter =
1

8
α

∫ π

0
sin3 θdθ

∫ ∞

2M

(
2y − r2y′′

)
dr ⇒

JMatter = −1

6
α

∫ ∞

2M

d

dr

(
r2y′ − 2ry

)
dr ⇒

JMatter = −α
6

[
r2y′ − 2ry

]∞
2M

(3.82)

and since r2y(r)′ → 0 and ry(r) → 0, as r → ∞, we finally end up with:

JMatter = −
[
2ry(r)− r2y(r)′

6M

]
r=2M

Mα . (3.83)

Thus, adding togenther JHorizon and JMatter, we find that the total angular momentum
yields:

J = JHorizon + JMatter =Mα (3.84)

This is an intresting result. We see that in accordance with the Kerr case, the total
angular momentum is equal to J =Ma, but now there is an important differentiation,
and it has to do with the non-trivial inner structure, consisting of the axionic
and of the black hole contribution to the angular momentum. The existence of
the dynamical axionic field implies the rotation of the background spacetime. So, the
axionic field causes in a way the rotation of the black hole. The γ parameter appearing
in eq.(3.47), given by γ2 = A2κ2/M4, measures the strength of the backreaction
on the background geometry, in the sense that the backreaction is stronger for an
increasing γ. The axion cloud around the black hole acquires an angular momentum
in such a way that the total angular momentum remains constant and equal to Ma, as
shown in Figure (3.2). This is a demonstration of the exchange of energy between the
axionic and the gravitational field.
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Figure 3.2: Total angular momentum for the system of the black hole and the axionic
matter field.
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3.5 Geodesics in slow-rotating Black Holes

In the following analysis, we study the effects of the perturbation parameter γ we
mentioned before, given by γ = Aκ/M2, and study its influence on the background
spacetime. It is this dimensionless parameter that appeared in the correction function
of the Kerr-like black hole solution we presented above, and captures the strength
of the axionic field backreaction on the geometry. We showed that the total angular
momentum still equals toMa, as in the Kerr case, with an important differantiation: the
existence of an internal structure consisting of the axionic and the black hole contribution.

We will demonstrate that for increasing γ, the contribution to the total angular
momentum coming from the black hole decreases, reaching a critical value for γ =
γcrit., after which, the axionic black hole starts to counter-rotate. Hence, the angular
momentum of the black hole may reach large values in magnitude, as long as the
Jtotal remains constant and equals to Mα. The slowly rotation approximation is still
valid cause of the aforementionned internal structure and the ”interaction” of the two
opossite systems, the black hole and the axionic field.

3.5.1 Geodesics in a Slowly Rotating Kerr Black Hole

We start by studying the motion of a particle around the Kerr black hole in the slow-
rotation limit, which is given by the line element:

ds2 = −
(
1− 2M

r

)
dt2 +

dr2(
1− 2M

r

) + r2dΩ2 + 2gtϕdtdϕ . (3.85)

where
gtϕ = −2Mα

r
sin2 θ (3.86)

The parameter α, defines the angular momentum of the black hole per unit mass derived
from the Komar integral. An axisymmetric and stationary spacetime, independent of
t, ϕ, admits the corresponding Killing vectors:

k = ∂t and ξ = ∂ϕ , (3.87)

with k being timelike and ξ being spacelike outside the black hole horizon. According
to these Killing vectors, there are three constants of motion, namely

E = −kµuµ → gttṫ+ gtϕϕ̇ = −E ,

Lz = ξµuµ → gtϕṫ+ gϕϕϕ̇ = Lz ,

gµνu
µuν = ϵ ,

(3.88)

where E is the energy, Lz the z-component of its angular momentum, assuming the
rotation is around the z-axis, and uµ is the tangent vector to the geodesic, with ϵ = −1
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for massive particles and ϵ = 0 for massless particles. From the first two constants of
motion, we have:

ṫ =
gtϕLz + gϕϕE

g2tϕ − gttgϕϕ
,

ϕ̇ = −
gtϕE + gttLz

g2tϕ − gttgϕϕ
,

(3.89)

while, substitution to the third one results in the equation

grr ṙ
2 + gθθθ̇

2 + gttṫ
2 + gϕϕϕ̇

2 + 2gtϕṫϕ̇− ϵ = 0 ⇒

grr ṙ
2 + gθθθ̇

2 +
L2
zgtt + E2gϕϕ + 2ELzgtϕ

gttgϕϕ − g2tϕ
− ϵ = 0 ,

where V E(r, θ) =
L2
zgtt + E2gϕϕ + 2ELzgtϕ

gttgϕϕ − g2tϕ
− ϵ .

(3.90)

In order to define the effective potential, we set ṙ = θ̇ = 0 and solve the equation
V E(r, θ) = 0 with respect to E, where the corresponding function can be interpreted as
our effective potential. We may rewrite V E(r, θ) as

V E(r, θ) = −
gϕϕE

2 + 2LzgtϕE + L2
zgtt + ϵ∆̃

∆̃
, (3.91)

where ∆̃ = g2tϕ− gttgϕϕ. The metric determinant is given by g = −grrgθθ
[
g2tϕ − gttgϕϕ

]
=

−grrgθθ∆̃. Since the metric determinant is negative, and grrgθθ > 0, we get ∆̃ > 0.
Setting now V E = 0 we extract a quadratic equation with respect to E, with the
solution given by:

V (±)(r, θ) = −
Lzgtϕ
gϕϕ

±

√
∆̃

gϕϕ

√
L2
z − ϵgϕϕ . (3.92)

and so eq.(3.90) becomes

grr ṙ
2 + gθθθ̇

2 =
(E − V (+))(E − V (−))

∆̃
. (3.93)

The left hand side of the above equation is non-negative and vanishes at the turning
points of the phase space at which E = V (+) or E = V (−).

For the slowly rotating case that we are considering here, the ergosphere in the
exterior region vanishes, coinciding with the event horizon at gtt = 0. This
implies that the energy of the particle is E = −kµuµ and is positive definite outside the
horizon, since the Killing vector remains timelike in the exterior region. It can easily
be checked, since, considering the ergosphere, the Killing vector k becomes spacelike
outside the event horizon (since it’s already spacelike at the event horizon and is timelike
at infinity) at: r2 − 2GMr + α2cos2θ = 0 ⇒ r = GM +

√
(GM)2 − α2cos2θ. In the slow

rotation limit for small α, this implies the vanishing of the ergosphere.

Focusing on the potential of eq.(3.92) we may conclude that V (−) can be eliminated
as a candidate, making the following arguments:
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1. Lzgtϕ < 0: Since gtϕ is negative, this case corresponds to particles co-rotating with
the black hole geometry. In this case, V (+) > 0 for all the exterior region, by a
simple check of eq.(3.92). Assuming V (−) ≥ 0 and setting ϵ = −1 for the timelike
case, we find that:

V (−)(r, θ) ≥ 0 ⇒

−
Lzgtϕ
gϕϕ

−

√
∆̃

gϕϕ

√
L2
z + gϕϕ > 0 ⇒

− Lzgtϕ >
√

∆̃
√
L2
z + gϕϕ

L2
zg

2
tϕ > ∆̃L2

z + ∆̃gϕϕ ⇒
gttL

2
z > g2tϕ − gttgϕϕ ⇒

L2
z <

g2tϕ
gtt

− gϕϕ , Not possible.

(3.94)

where the last line can’t be valid, and that’s because we consider gtt < 0, gtϕ < 0
and gϕϕ > 0 from our metric in eq.(3.85). The above tell us that V (−) < 0 and so
(E − V (−)) > 0, ∀E. Thus, the effective potential cannot be given in this case by
V (−) and should be given by V (+).

2. Lzgtϕ > 0: This case corresponds to counter rotating particles. Obviously, in this
case V (−) < 0 from eq.(3.92) and consequently (E − V (−)) > 0, ∀E. Making now
the assumtion that V (+) < 0, we get, like before, that: −gttL2

z < −∆̃, for ϵ = −1.
Since, ∆̃ > 0 outside the event horizon, we conclude that V (+) becomes negative
in a region defined by gtt > 0, which is in the inside region of the black hole. So,
we can interpret V (+) as the effective potential since the regions of motion are
determined by V (+) ≤ E.

We argued that V (+) must be the effective potential, given by:

Veff (r, θ) = −
Lzgtϕ
gϕϕ

+

√
∆̃

gϕϕ

√
L2
z − ϵgϕϕ , (3.95)

with the allowed motion confined in regions where E ≥ Veff (r, θ). Up to O(a) for the
line element of eq.(3.85), we have:

Veff (r, θ) =

√
r(r − 2M)(L2

z + r2 sin2(θ))

r2 sin(θ) +
2LzMa

r3
+O(a2) . (3.96)

which is plotted in the above Figures (3.3,3.4) taken from [20]:

A local maximum and a local minimum do appear, characterising bound orbits.
Our effective potential is θ-dependent, implying that the motion isn’t constrained on
a plane. We can draw the turning points at the θ−r with Veffective = E and E some
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Figure 3.3: Effective potential at the equatorial plane for timelike geodesics for the
slowly rotating Kerr metric. The parameter α is fixed to α = 0.1

Figure 3.4: Curves of Zero Velocity (CZV) for timelike geodesics. The plots are
evaluated for M = 1, α = 0.1 and E = 0.95 (for the left hand site) and E = 0.9633 (for
the right hand site).
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energy and then plot the corresponding contour plot, as we do in Fig. 3.3. The phase
space points of Veff = E defines curves of zero velocity (CZV), since the left hand side
of the equation enforces ṙ = θ̇ = 0. The graphs in the CZV figures were obtained for
a particle’s energy E = 0.95 (in units of its rest mass µ). Such particles can’t escape
to infinity. We mention here that whether a particle falls into the black hole or orbits
around it, depends on the initial conditions. There is a case in the graphs that yields
a region enclosed by an ellipse, in the exterior region, for which massive particles
are trapped there and they cannot escape to infinity nor fall into the black hole. For
counter-rotating trajectories (Lz < 0) the quality of the structure is the same.

3.5.2 Kerr-like Rotating Black Hole with Axionic-hair

Let’s continue with the same procedure, considering now the action (3.16):

S =

∫
d4x

√
−g

[
R

2κ2
− 1

2
(∂µb)(∂

µb)−AbRCS

]
(3.97)

Following the results of our previous analysis, we have the equations of motion given
by eq.(3.18):

δS = δSEH + δSb + δSCS = 0 ⇒
Gµν = κ2T bµν + 4κ2ACµν ,

□b = ARCS ,

(3.98)

The solution we discussed in Section 3.2, reads:

ds2 = −
(
1− 2M

r

)
dt2 +

dr2(
1− 2M

r

) + r2dΩ2 + 2gtϕ(r, θ)dtdϕ , (3.99)

with
gtϕ = −

(
2M

r
+ y(r)

)
α sin2(θ) , (3.100)

and

y(r) ≡ r2w(r) =
∞∑
n=4

dnM
n−2

rn−2
, (3.101)

The coefficients dn are given by:

dn =
2(n− 5)2(n− 1)

n(n− 6)(n− 3)
dn−1 +

576A2κ2

n(n− 3)M4
dn−6, for n ≥ 10 , (3.102)

where, as we explained:

d4 = d5 = 0 , d6 = −5γ2 , d7 = −60γ2

7
, d8 = −27γ2

2
, d9 = 0, (3.103)
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Figure 3.5: Effective potential at the equatorial plane for timelike geodesics for the
slowly rotating deformed Kerr metric. (γ = 0.5, α = 0.1)

with γ the dimensionless parameter

γ2 =
A2κ2

M4
, (3.104)

measuring how strong the axionic backreaction becomes on our geometry. The axion
field b reads:

b(r, θ) = −r
5(y/r2)′

24γ2M5
αA cos(θ) = αA cos θ

(
− 5

4Mr2
− 5

2r3
− 9M

2r4

)
+O(Am)

for m = 2n+ 1, n ∈ Z+

(3.105)

Since the function y(r) (and consequently w(r)) is expressed in terms of power series
of γ, the Kerr metric deformation depends both on the coupling constant A and on the
black hole mass M .

The function y(r) = r2w(r) exists due to the Kerr metric deformation; it results
from the backreacting axion field to the background spacetime. Looking at the deformed
metric now, given by eq.(3.99) and gtϕ given by eq.(3.100), the effective potential of the
geodesics is calculated to be:

Veff = V Kerr
eff +

Lzαy(r)

r2
(3.106)

Because of the alteration of the effective potential due to the y(r)-term, we expect to
see some kind of different behaviour concerning the orbits of particles (timelike in our
case) around the black hole. Plotting again the effective potential and the zero velocity
curves for increasing values of γ and for positive and negative angular momentum, we
get the Figures (3.5,3.6,3.7,3.8).

For γ = 2 we see something that differentiates. The effective potential starts to
behave in a repulsive way for the counter-rotating case, close to the horizon. What
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Figure 3.6: Effective potential at the equatorial plane for timelike geodesics for the
slowly rotating deformed Kerr metric. (γ = 1, α = 0.1)

Figure 3.7: Effective potential at the equatorial plane for timelike geodesics for the
slowly rotating deformed Kerr metric. (γ = 2, α = 0.1))
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Figure 3.8: Curves of Zero Velocity for rotating deformed Kerr metric of our case.
(γ = 2, α = 0.1)
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Figure 3.9: Total angular momentum for the system of the Black Hole and the axionic
matter field.

is more, there seems to appear new local minimum, implying bound orbits, close to
the horizon. Going too close to the horizon, the behaviour of the potential signifies
scattering for such particles, and they cannot fall into the black hole region.

In Figure 3.8 for the zero velocity curves, we can see this effect, where, far away
from the horizon, the behaviour is similar to the slowly rotating Kerr metric, but turning
points close to the horizon start to appear, preventing counter rotating particles to fall
into the black hole.

As we discussed in Section 3.4, the total angular momentum in the deformed
Kerr case equals to Ma, like the Kerr case, with an internal structure consisting of
two competitive systems, the axionic field and the black hole. After the calculations
performed, we see that for increasing γ, the black hole’s angular momentum starts to
decrease, where, for some critical value of γ = γcrit., the black hole’s angular momentum
vanishes. For γ > γcrit., the black hole starts to rotate in the opposite direction. Thus,
the two systems can obtain large angular momentum values in magnitude, as long as
the total angular momentum measured at infinity remains constant and equal to Mα,
like in the slowly rotating case. This is qualitatively illustrated in Figure 3.9, where we
see that because of the energy exchange of the two systems, the axionic field ”tends” to
rotate the black hole in the other way, as γ becomes stronger.
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Chapter 4

Outlook

The subject of this thesis was an analytical review, both physical and mathematical,
about the nature and the validity of the no-hair theorems and the examination of a
system consisting of a slowly rotating axionic black hole. We started by excluding the
possibility of hair for specific theories, following the reasonings made by Bekenstein’s
no-scalar-hair conjecture. We seeked to generilize these ideas and formulate a model
independant analysis, looking only at the properties of an effective energy momentum
tensor. The motivation of such a formulation originates from the insight that the
violation of the energy conditions is strongly related to the evasion of the no-hair
conjecture.

For Bekenstein’s basic assumption, which is the case of no-violation of the energy
conditions at all, no hair is allowed. We argued that hair might be allowed only for
the cases where WEC or NEC is violated, but not both. This means, that a black hole
might have hair, not just by the violation of the NEC or WEC. It seems that hair is
allowed in cases where the static and the fastly moving observers have a disagreement
about the sign of the energy-density.

The above calculations where based on the fact that G = E + T θ
θ = 0. We can

be more general and consider the cases where G ̸= 0, which is exaclty the case for an
effective energy momentum tensor if the field has a θ-dependance and/or is coupled to
higher order curvature terms. We argued that, as long as G/J ≥ 0, there is a possibility
for hair to exist.

In the second part of this thesis, we constructed a slowing rotating black hole,
considering an axion field coupled to the Chern-Simons geometric term. We seeked
an exact slow rotating Kerr-type black hole solution, ”dressed” with axionic hair. The
solution is expressed in analogy to the inverse powers of the radial distance from the
centre of the black hole. Such a behaviour allows us to go arbitrarily close to the
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horizon of the axionic black hole.

We constructed an effective energy momentum tensor and confirmed that the NEC
is violated in the outside region of the axionic black hole. NEC is violated in such a
way that the spacetime deformation around the horizon allows the axionic field to exist.
The violation is stronger near the horizon, which comes from the fact that the axion
”lives” mostly near the horizon, as it vanishes asymptotically. The violation becomes
more important as the coupling becomes stronger and stronger.

We continued by studying the angular momentum of the axion-black hole system.
The axionic matter in the outside region of the horizon acquires an angular momentum
in a way that the total angular momentum of the axionic black hole remains constant
and equals toMa. The system is characterised by a dimensionless parameter γ ∼ A/M2.
We found that, as γ increases, the black hole’s angular momentum decreases more and
more, reaching a critical value γcrit. beyond which it starts to counter-rotate, reaching
larger and larger values in magnitude. This is an effect of two competing systems, the
Kerr-like black hole and the axionic-matter rotating outside the horizon. As the coupling
gets stronger, the energy exchange between the axionic field and the gravitational field
increases.

Finally, we looked at the behaviour of the timelike geodesics around the axionic
black hole. Because of the alteration of the Kerr effective potential due to the y(r)-
term (the tϕ correction of our metric), we expected to witness a different behaviour
concerning the orbits of timelike particles around the black hole. Plotting the effective
potential and the zero velocity curves for increasing values of γ for positive and negative
angular momentum, we found that for γ = 2 the effective potential starts to behave in
a repulsive way for the counter-rotating case, close to the horizon. What is more, there
seems to appear new local minimum, implying bound orbits, close to the horizon.

This is a behaviour that we also find in the extreme case of the Kerr metric, but
this is not a right analogy. That’s because, in the extreme Kerr, we have to deal with
a highly rotating horizon in vacuum. representing a highly rotating effect. In our case,
we have a spacetime that remains slowly rotating (O(α)), but we have two competitive
systems that can reach larger and larger values of angular momentum, as long as
the total angular momentum of the spacetime remains constant. The violation of the
NEC, which is stronger near the horizon, is repsonsible for the repulsive nature of the
geometry concerning the counter rotating geodesics, something that motivates a more
thorough and in-depth investigation regarding these ”puzzling” energy conditions and
their relation to the existance of hairy black holes.

It’s important to study more thorough the case of G = E + T θ
θ > 0, in the spirit of

Bekenstein’s work in [2], and see if we can argue about the existence of hair in cases
of higher order corrections.

It would also be intresting, since in this thesis our study was restricted to a slowly-
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rotating black hole (O(α)), to extend this work for fastly rotating black hole, at least of
order O(α2) in the angular momentum parameter α, and see if this behaviour for the
counter rotating geodesics would still be valid.
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Appendix A

Black Hole Solutions

1.1 Schwarzschild Solution

We begin with the simplest case, the Schwarzschild solution, describing the spacetime
under the influence of a non-rotating, massive and spherically symmetric object. The
assumption we are going to make are the following:

1. The system under consideration is spherically symmetric.

2. We assume vacuum conditions (Tµν = 0), so the Einstein field equations become
Rµν −

1

2
gµνR = 0, or Rµν = 0.

3. A static spacetime; every metric component does not depend on time. The system
is static and invariant under time reversal t→ −t.

4. Metric signature used here is (+,-,-,-).

5. h̄ = c = 1

6. No vacuum energy.

We begin by diagonalising the metric, where we can easily see from symmetry assump-
tions that every metric component gµν = 0 for µ ̸= ν, leading to a metric of the form
ds2 = g00dt

2 + g11dr
2 + g22dθ

2 + g33dϕ
2.

Moving on, we can go further and see that for a constant t, θ, ϕ hypersurface,
g00 = B(r), a function of only one r-variable, which we can also show for g11 = −A(r).
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For t, r =constant, we recover the 2-sphere metric dl2 = r2(dθ2+sin2θdϕ2), so the metric
in of the form:

ds2 = B(r)dt2 −A(r)dr2 − r2(dθ2 + sin2θdϕ2) (A.1)

What we have to do now, is to compute each Christoffel symbol from

Γikl =
1

2
gim(∂lgmk + ∂kgml − ∂mgkl) (A.2)

in order to compute the Riemann curvature tensor

Rρσµν = ∂µΓ
ρ
νσ − ∂νΓ

ρ
µσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ (A.3)

We start with a first simplification of the calculations, by noticing that

1. every derivative with respect to t is zero

2. gµν = 0 and gµν = 0 for µ ̸= ν

3. the lower indices symmetry of the Christoffel symbols Γαµν = Γανµ

The only non-vanishing Christoffel symbols are the following (where prime U’, V’ de-
notes ∂rU, ∂rV ):

Γ0
01 = Γ0

10 =
B′

2B

Γ1
00 =

B′

2A

Γ1
11 =

A′

2A

Γ1
22 = − r

A

Γ1
33 = − r

A
sin2θ

Γ2
12 = Γ2

21 =
1

r
Γ2
33 = −cosθsinθ

Γ3
31 = Γ3

13 =
1

r

Γ3
32 = Γ3

23 =
cosθ

sinθ

Now, we move on by calculating the Ricci tensor, noticing that Rµν = 0 for µ ̸= ν

Rµν = Rρµρν = ∂µΓ
ρ
νρ − ∂ρΓ

ρ
µν + ΓσµρΓ

ρ
σν − ΓσµνΓ

ρ
σρ (A.4)

and also the Ricci scalar
R = gµνRµν (A.5)
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and substituting them into the Einstein field equations Rµν −
1

2
gµνR = 0. We find that

Rµν =


(−B

′′

2A
+
B′

2A
(
A′

A
+
B′

B
)− B′

rA
) 0 0 0

0 (
B′′

2B
− B′

4B
(
A′

A
+
B′

B
)− A′

rA
) 0 0

0 0 (−1− r

2A
(
A′

A
− B′

B
) +

1

A)
0

0 0 0 sin2θR22


(A.6)

and for the Ricci scalar we have

R = gµνRµν = g00R00 + g11R11 + g22R22 + g33R33 =
1

B
R00 −

1

A
R11 −

1

r2
R22 −

1

r2sin2θ
R22

(A.7)
and we get

R = Rµµ = − B′′

AB
+

A′B′

2BA2
+

(B′)2

2B2A
− 2B′

rAB
+

2A′

rA2
+

2

r2
(1− 1

A
) (A.8)

and so we can proceed with the componets of the field equations as follows:

R00 −
1

2
g00R = 0

R11 −
1

2
g11R = 0

R22 −
1

2
g22R = 0

R33 −
1

2
g33R = 0

THe above equations lead to

A′

rA2
+

1

r2
(1− 1

A
) = 0

− B′

rAB
+

1

r2
(1− 1

A
) = 0

−B
′

B
+
A′

A
− rB′′

B
+
rA′B′

2AB
+
r(B′)2

2B2
= 0

R22 +
r2

2
R = 0

Noticing that the first from the above equation is only in terms of A, we solve and get

A(r) =
1

1− C

r

(A.9)

and inserting this result to R11 −
1

2
g11R = 0 we find

B(r) = 1− C

r
(A.10)
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Finally, identifying C = 2GM from the weak field approximation, we get the
Schwarzschild solution to be

ds2 = (1− 2GM

r
)dt2 − (1− 2GM

r
)−1dr2 − r2(dθ2 + sin2θdϕ2) (A.11)

1.2 Reissner-Nordström solution

The Reissner–Nordström metric is a static solution of the Einstein–Maxwell field equa-
tions, corresponding to the gravitational field of a non-rotating, charged and spher-
ically symmetric body of mass M . Considering the Einstein-Maxwell action S =∫
d4x
√

|g|( R

16πG
− 1

4
FµνF

µν), we start with the field equations Rµν −
1

2
gµνR + gµνΛ =

8πGTµν , and the assumptions in this case are the following:

1. Charged point singularity in an otherwise empty space

2. Spherical symmetry and staticity

3. No vacuum energy

4. Metric signature used here is (+,-,-,-)

which gives us:

1. Varying S =
∫
d4x
√
|g|(−1

4
FµνF

µν) with respect to the metric we get for the

electromagnetic tensor Tµν = − 2√
|g|
δSEM
δgµν

= FαµF
αβgνβ −

1

4
gµνF

αβFαβ

2. Λ = 0

3. gµν = diag(B(r),−A(r),−r2,−r2sin2θ)

4. Aµ = (
Q

4πr
, 0, 0, 0)

Claclulating Christoffel symbols, we get from Γikl =
1
2g
im(∂lgmk + ∂kgml − ∂mgkl)
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Γ0
01 = Γ0

10 =
B′

2B

Γ1
00 =

B′

2A

Γ1
11 =

A′

2A

Γ1
22 = − r

A

Γ1
33 = − r

A
sin2θ

Γ2
12 = Γ2

21 =
1

r
Γ2
33 = −cosθsinθ

Γ3
31 = Γ3

13 =
1

r

Γ3
32 = Γ3

23 =
cosθ

sinθ

like the Schwarzschild case, and now, calculating Ricci tensor

Rµν = Rρµρν = ∂µΓ
ρ
νρ − ∂ρΓ

ρ
µν + ΓσµρΓ

ρ
σν − ΓσµνΓ

ρ
σρ (A.12)

and we find

Rµν =


(−B

′′

2A
+
B′

2A
(
A′

A
+
B′

B
)− B′

rA
) 0 0 0

0 (
B′′

2B
− B′

4B
(
A′

A
+
B′

B
)− A′

rA
) 0 0

0 0 (−1− r

2A
(
A′

A
− B′

B
) +

1

A)
0

0 0 0 sin2θR22


(A.13)

Now, before checking the Einstein equations, we calculate the electromagnetic tensor
Fµν and Fµν :

Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ (A.14)

where the latter equality comes from the anti-symmetry of the elecromagnetic tensor
and the symmetry of the lower indices of the Christoffel symbols. So, we go on and
find

F01 = −F10 = −∂1A0 = −∂r
Q

4πr
=

Q

4πr2
(A.15)

and the contravariant components are

F 01 = g00g11F01 = − Q

4πr2AB
, F 10 = g11g00F10 =

Q

4πr2AB
(A.16)

and we can now write Fµν and Fµν in the better form

74



Fµν =


0

Q

4πr2
0 0

− Q

4πr2
0 0 0

0 0 0 0
0 0 0 0

 (A.17)

and

Fµν =


0 − Q

4πr2AB
0 0

Q

4πr2AB
0 0 0

0 0 0 0
0 0 0 0

 (A.18)

What follows, is the computation of the stress energy momentum tensor Tµν , so we
start by calculating

FαβFαβ = F 01F01 + F 10F10 = − Q2

8π2r4AB
(A.19)

and from Tµν = FαµF
αβgνβ −

1

4
gµνF

αβFαβ we have:

T00 = Fα0F
αβg0β −

1

4
g00F

αβFαβ = − Q2

32π2r4A

T11 = Fα1F
αβg1β −

1

4
g11F

αβFαβ =
Q2

32π2r4B

T22 = Fα2F
αβg2β −

1

4
g22F

αβFαβ = − Q2

32π2r2AB

T33 = Fα3F
αβg3β −

1

4
g33F

αβFαβ = − sin2θQ2

32π2r2AB

or, in the same sense:

Tµν =



− Q2

32π2r4A
0 0 0

0
Q2

32π2r4B
0 0

0 0 − Q2

32π2r2AB
0

0 0 0 − sin2θQ2

32π2r2AB


(A.20)

and now we are ready to construct the field equations for the unknown metric functions
in order to find every component of our metric. Substituting the above into the Einstein
field equations, and working with the trace inverted equations (because stress energy
momentum tensor is traceless we get:

Rµν = 8πGTµν (A.21)
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from which we find

(−B
′′

2A
+
B′

2A
(
A′

A
+
B′

B
)− B′

rA
) = −8πG

Q2

32π2r4A

(
B′′

2B
− B′

4B
(
A′

A
+
B′

B
)− A′

rA
) = 8πG

Q2

32π2r4B

(−1− r

2A
(
A′

A
− B′

B
) +

1

A
) = −8πG

Q2

32π2r2AB

(−1− r

2A
(
A′

A
− B′

B
) +

1

A
) = −8πG

Q2

32π2r2AB

From the first two of the above equations, dividing the first by B and the second
by A and adding them together, we can easily show that A and B are multiplicative
inverses → A = B−1. Now, inserting this to the third equation, we get

1− rB′ −B =
GQ2

4πr2
(A.22)

and, demanding a solution of the form B(r) = 1 − 2MG

r
+ f(Q, r), because we

want to recover the Schwarzschild Solution as f(Q, r) → 0 for Q→ 0, we get

−rf ′(Q, r)− f(Q, r) =
GQ2

4πr2
(A.23)

and finally we get

f(Q, r) =
GQ2

4πr2
(A.24)

and we reached our solution, since we now can find

B(r) = 1− 2MG

r
+
GQ2

4πr2
, A(r) =

1

1− 2MG

r
+
GQ2

4πr2

(A.25)

and, afterall,

gµν =



1− 2MG

r
+
GQ2

4πr2
0 0 0

0 − 1

1− 2MG

r
+
GQ2

4πr2

0 0

0 0 −r2 0
0 0 0 −r2sin2θ


(A.26)

and the line element takes its final form:

ds2 = 1− 2MG

r
+
GQ2

4πr2
dt2 − 1

1− 2MG

r
+
GQ2

4πr2

dr2 − r2dθ2 − r2sin2θdϕ2 (A.27)
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1.3 Kerr solution

We consider a uniformly rotating black hole, described by a stationary and axisymmetric
spacetime. Stationarity is translated to a timelike Killing vector K for our spacetime,
while axisymmetry to a spacelike Killing vector R. Actually,

K = ∂t, R = ∂ϕ (A.28)

Enforcing these Killing vectors on our spacetime and consequently get a metric indepen-
dent of the t and ϕ coordinates. Another implication of stationarity and axisymmetry
is that the metric possesses the isometry of t → −t, ϕ → −ϕ. This implies that the
gtϕ component of the metric is not trivial, while the gtr, gtθ, grϕ, gθϕ components of the
metric need to be vanished. The general form of the metric with the above assumptions
reads

gµν =


gtt(r, θ) 0 0 gtϕ(r, θ)

0 grr(r, θ) grθ(r, θ) 0
0 grθ(r, θ) gθθ(r, θ) 0

gtϕ(r, θ) 0 0 gϕϕ(r, θ)

 (A.29)

We may use a coordinate transformation to enforce that the grθ components of the
metric vanish, by diagonalising the spacelike three-dimensional submatrix of (A.29).
So, the metric ansatz becomes:

ds2 = gtt(r, θ)dt
2 + 2gtϕ(r, θ)dtdϕ+ grr(r, θ)dr

2 + gθθ(r, θ)dθ
2 + gϕϕ(r, θ)dϕ

2 (A.30)

We continue with two physical assumptions :

1. The metric should be reduced to the Schwarzschild one when rotation goes to
zero.

2. Rotating bodies change in shape in the equatorial plane, away from the rotation-
axis. This suggest that we may start using ellipsoidal coordinates to describe our
case.

3. Metric signature used here is (-,+,+,+)

So, we have, for a parameter α, that:

x =
√
r2 + α2sinθcosϕ, y =

√
r2 + α2sinθsinϕ, z = rcosθ (A.31)

and the flat metric is of the form

ds2 = −dt2 + r2 + α2cos2θ

r2 + α2
dr2 +

(
r2 + α2cos2θ

)
dθ2 + (r2 + α2)sin2θdϕ2 (A.32)
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The next step, is to find a coordinate system (T, r, θ, ϕ), such that gTT is inverse
proportional to grr for the Schwarzschild metric limit to be visible in a clear way.
Noticing that grr = ρ2 = r2 + α2cos2θ, we may re-write:

−dt2 = −ρ
2

ρ2
dt2 = −

(
r2 + α2

ρ2

)
dt2 +

(
α2sin2θ

ρ2

)
dt2 (A.33)

while for the gϕϕ component we have

gϕϕdϕ
2 = (r2 + α2)sin2θdϕ2 =

ρ2

ρ2
(r2 + α2)sin2θdϕ2 =

(r2 + α2)2sin2θ

ρ2
dϕ2 − (r2 + α2)α2sin4θ

ρ2
dϕ2

(A.34)

So, rewritting the flat metric A.32 and after some algebra, we have

ds2 = −
(
r2 + α2

ρ2

)[
dt2 + α2sin4θdϕ2

]
+

(
ρ2

r2 + α2

)
dr2 + ρ2dθ2+

sin2θ

ρ2
[
(r2 + α2)2dϕ2 + α2dt2

] (A.35)

Now, by adding and subtracting the term 2αsin2θ r
2+α2

ρ2
dtdϕ, we end up with

ds2 = −
(
r2 + α2

ρ2

)
dT 2 +

(
ρ2

r2 + α2

)
dr2 + ρ2dθ2 +

sin2θ

ρ2
dΦ2 (A.36)

where
dT = dt− αsin2θdϕ, dΦ = (r2 + α2)dϕ− αdt (A.37)

and finally, for the case of a rotating black hole we have the metric

ds2 = −
(
r2 + k(r) + α2

ρ2

)[
dt− αsin2θdϕ

]2
+

(
ρ2

r2 + j(r) + α2

)
dr2 + ρ2dθ2+

sin2θ

ρ2
[
(r2 + α2)dϕ− αdt

]2 (A.38)

where let us explain the ”extra” terms k(r), j(r). The function k(r) at the gTT component
breaks staticity, while the mass terms contained in Schwarzschild metric enforce k(r)
and j(r) functions to be inserted as well. The existence of these two functions break
spherical symmetry down to axisymmetry.

The constraint that the above metric reduces to Schwarzschild in the limit of zero
rotation yields that

k(r) = j(r) = −2GMr (A.39)
Finally, after simple calculations, we have extracted the metric for Kerr black hole
in the Boyer-Lindquist coordinates, which is given by

ds2 = −
(
1− 2GMr

ρ2

)
dt2+

ρ2

∆
dr2+ρ2dθ2−4GMr

ρ2
αsin2θdtdϕ+

sin2θ

ρ2
[
(r2 + α2)2 − α2sin2θ∆

]
dϕ2

(A.40)
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where, for J the angular momentum of the black hole:

∆ = r2 − 2GMr + α2, ρ2 = r2 + α2cos2θ, α =
J

M
(A.41)

*Let’s mention here that the Kerr metric can be generilised to the Kerr-Newman
black hole, which contains also the electromagnetic charge, with ∆ = r2 − 2GMr +
α2 +G(Q2 + P 2) with Q and P are the electric and magnetic charges.
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Appendix B

Derivation of equations of motion
2.36,2.37

We start with the action (2.34)

S[g, ϕ] =

∫
d4x

√
−g [f(ϕ)R− h(ϕ)gµν∇µϕ∇νϕ] (B.1)

Now let us to concentrate in the variation gravitational part of the action . Variation
with respect to the metric, assuming that the ϕ-field is fixed, reads:

δgS[g, ϕ] =

∫
d4x

[
δ
√
|g|
[
f(ϕ)R− h(ϕ)(∇ϕ)2

]
+
√
|g| [f(ϕ)δR− h(ϕ)∇µϕ∇νϕδg

µν ]
]
(B.2)

we have, also, that

δ
√
|g| = −1

2

√
|g|gµνδgµν ,

δR = Rµνδg
µν + gµνδRµν .

(B.3)

Collecting terms together, we end up with

δgS[g, ϕ] =

∫
d4x
√

|g|δgµν
[
f(ϕ)Gµν − h(ϕ)

[
∇µϕ∇νϕ− 1

2
gµν(∇ϕ)2

]]
+ δgS̄ (B.4)

and
δgS̄ =

∫
d4x
√
|g| f(ϕ)gµνδRµν (B.5)

We know from Palatini equation that

δRµν = ∇λ

(
δΓλµν

)
−∇ν

(
δΓλµλ

)
(B.6)

with Γαµν = 1
2g
αλ (∂νgµλ + ∂µgνλ − ∂λgµν) the Christoffel symbols, and the components

of the Ricci tensor Rµν = ∂λΓ
λ
µν − ∂νΓ

λ
µλ + ΓλµνΓ

τ
λτ − ΓτµλΓ

λ
τν .
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The variation of eq.(B.5) can then be written as

δgS̄ =

∫
d4x
√
|g| f(ϕ)gµν

[
∇λ

(
δΓλµν

)
−∇ν

(
δΓλµλ

)]
(B.7)

Moving on, we have that

∇λ

(
f(ϕ)gµνδΓλµν

)
= ∇λf(ϕ)g

µνδΓλµν + f(ϕ)gµν∇λ

(
δΓλµν

)
∇ν

(
f(ϕ)gµνδΓλµλ

)
= ∇νf(ϕ)g

µνδΓλµλ + f(ϕ)gµν∇ν

(
δΓλµλ

) (B.8)

The full divergence terms in the left-hand-side of the above equationss are bound-
ary terms since they contribute an integral over the boundary of a volume under
integration, by virtue of the Gauss’ theorem. This means that the boundary terms may
be safely omitted since we require the vanishing of the surface integrals due to the
stationary action principle (vanishing of metric variations and of its first derivatives
on the boundary of the integration). So, we end up with

δgS̄ =

∫
d4x
√

|g|
[
∇νf(ϕ)g

µνδΓλµλ −∇λf(ϕ)g
µνδΓλµν

]
=∫

d4x
√
|g|∇λf(ϕ)

[
gµλδΓνµν − gµνδΓλµν

] (B.9)

where, we know that

δΓλµν = −1

2

[
gνσ∇µ(δg

λσ) + gµσ∇ν(δg
λσ)− gµσgντ∇λ(δgστ )

]
and also that

δΓλµλ = −1

2
gλσ∇µ(δg

λσ),

So, for the terms of eq. (B.9) we have

∇λf(ϕ)
[
gµλδΓνµν − gµνδΓλµν

]
= ∇λf(ϕ)

[
∇µ(δg

µλ)− gµν∇λ(δgµν)
]

(B.10)

and so
δgS̄ =

∫
d4x
√

|g|
[
∇νf(ϕ)∇µ (δg

µν)−∇λf(ϕ)gµν∇λ(δgµν)
]

(B.11)

where, folloing the same logic as before about the boundary behaviour of metric, we
have, after some algebra:

∇µ (∇νf(ϕ)δg
µν) = ∇µ∇νf(ϕ)δg

µν +∇νf(ϕ)∇µ (δg
µν),

∇λ (∇λf(ϕ)gµνδg
µν) = □f(ϕ)gµνδgµν +∇λf(ϕ)gµν∇λ(δgµν),

where the left hand side is a full divergence, whose integral vanishes by virtue of the
Gauss theorem, keeping in mind the requirement of stationary action principle. So, we
end up with
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δgS̄ =

∫
d4x
√

|g|δgµν(gµν□−∇µ∇ν)f(ϕ) (B.12)

So, going back to eq.(B.4) we have

δgS[g, ϕ] =

∫
d4x
√

|g|δgµν
[
f(ϕ)Gµν − h(ϕ)

[
∇µϕ∇νf(ϕ)−

1

2
gµν(∇ϕ)2

]]
+ δgS̄ =∫

d4x
√
|g|δgµν

[
f(ϕ)Gµν − h(ϕ)

[
∇µϕ∇νϕ− 1

2
gµν(∇ϕ)2

]
+ gµν□f(ϕ)−∇µ∇νf(ϕ)

]
(B.13)

which, setting δgS[g, ϕ] = 0 yields

f(ϕ)Gµν − h(ϕ)

[
∇µϕ∇νϕ− 1

2
gµν(∇ϕ)2

]
+ gµν□f(ϕ)−∇µ∇νf(ϕ) = 0 ⇒

gµνf(ϕ)Gµν = −h(ϕ)gµν∇µϕ∇νϕ+ gµν [gµν□f(ϕ)−∇µ∇νf(ϕ)] = 0 ⇒
−f(ϕ)R = −h(ϕ)(∇ϕ)2 + [□f(ϕ)− 4□ϕ] ⇒

f(ϕ)R = h(ϕ)(∇ϕ)2 + 3□f(ϕ)

(B.14)

so, from f(ϕ)Gµν = f(ϕ)Rµν − 1
2gµνf(ϕ)R we find

f(ϕ)Gµν − h(ϕ)

[
∇µϕ∇νϕ− 1

2
gµν(∇ϕ)2

]
+ gµν□f(ϕ)−∇µ∇νf(ϕ) = 0 ⇒

f(ϕ)Rµν −
1

2
gµνh(ϕ)(∇ϕ)2 −

3

2
gµν□f(ϕ) =

1

2
gµνh(ϕ)(∇ϕ)2 +∇µ∇νf(ϕ)− gµν□f(ϕ) ⇒

f(ϕ)Rµν − h(ϕ)∂µϕ∂νϕ−∇µ∇νf(ϕ)−
1

2
gµν□f(ϕ) = 0

(B.15)

where the last line is exactly the eq. of motion (2.36).

For eq.(2.37), starting from action (2.34)

S[g, ϕ] =

∫
d4x

√
−g [f(ϕ)R− h(ϕ)gµν∇µϕ∇νϕ] (B.16)

we have the Euler-Lagrange equations of motion

∂L

∂ϕ
= ∂µ

(
∂L

∂(∂µϕ)

)
(B.17)

from which we can easily derive eq. (2.37)

2h(ϕ)□ϕ+ h′(ϕ)gαβ∂αϕ∂βϕ+ f ′(ϕ)R = 0 (B.18)
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Appendix C

Mathematical properties of CS
action and Cotton tensor

3.1 Variation of Chern-Simons term

We use metric signature with one negative eigenvalue (−,+,+,+) and the Riemann
tensor is given as:

Rρσµν = ∂µΓ
ρ
νσ − ∂νΓ

ρ
µσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ (C.1)

and its dual
R̃τ µν

σ =
1

2
εµναβRτσαβ (C.2)

The topological current is expressed as

Kµ = 2εµαβγ
[
1

2
Γσατ ∂β Γτγσ +

1

3
Γσατ Γ

τ
βηΓ

η
γσ

]
, (C.3)

and the action reads:

I = 1

16πG

∫
d4x

(√
−gR+

1

4
bR̃R

)
=

1

16πG

∫
d4x

(√
−gR− 1

2
(∇µb)K

µ

)
(C.4)

We calculate the variation of the Chern-Simons term

ICS =
1

4

∫
bR̃Rd4x =

1

2

∫
b∇µK

µd4x = −1

2

∫
d4x(∇µb)K

µ (C.5)

δICS = −δ
∫
(∇µb)ε

µαβγ [
1

2
Γσατ∂β Γτγσ +

1

3
ΓσατΓ

τ
βηΓ

η
γσ]

= −
∫
(∇µb)ε

µαβγ [
1

2
δ(Γσατ )∂β Γτγσ +

1

2
Γσατ∂β (δΓτγσ) +

1

3
(δΓσατ )Γ

τ
βηΓ

η
γσ

+
1

3
Γσατ (δΓ

τ
βη)Γ

η
γσ +

1

3
ΓσατΓ

τ
βη(δΓ

η
γσ)]d

4x
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Rearranging the indices and using the antisymmetric properties of εµαβγ and the
symmetry at the lower indices of Christoffel symbols Γτβσ = Γτσβ we can write the 5
terms of the above result as:

1. εµαβγ 1
2 δ(Γ

σ
ατ )∂β Γτγσ

2. For the term→ εµαβγ 1
2 Γσατ∂β (δΓτγσ), we can get with partial integrtion, keeping

in mind the boundary conditions and hence that the first derivative of our field b
vanishes at infinity, we get that
εµαβγ 1

2 Γσατ∂β (δΓτγσ) = −1
2∂βΓ

σ
ατ (δΓ

τ
γσ)ε

µαβγ = −1
2∂γΓ

τ
βσδ(Γ

σ
ατ )ε

µαβγ ,
where in the last line we used the antisymmetric properties of εµαβγ and the
symmetry at the lower indices of Christoffel symbols Γτβσ = Γτσβ

3. εµαβγ 1
3 (δΓσατ )Γ

τ
βηΓ

η
γσ

4. For the term εµαβγ 1
3 Γσατ (δΓ

τ
βη)Γ

η
γσ we use same arguments as the second one,

where with partial inegration, index manipulation and symmtric-antisymmetric
properties we can re-write it as 1

3 ε
µαβγΓσατ (δΓ

τ
βη)Γ

η
γσ = −εµαβγ 1

3 Γηβσ(δΓ
σ
ατ )Γ

τ
γη

5. Similarly, εµαβγ 1
3 ΓσατΓ

τ
βη(δΓ

η
γσ) = −εµαβγ 1

3 ΓτγηΓ
η
βσ(δΓ

σ
ατ )

So, the relation for the variation of (C.5) can be written as:

δICS = −
∫

(∇µb)ε
µαβγ(δΓσατ )[

1

2
∂β Γτγσ −

1

2
∂γΓ

τ
βσ +

1

3
ΓτβηΓ

η
γσ −

1

3
ΓτγηΓ

η
βσ −

1

3
ΓτγηΓ

η
βσ]d

4x

(C.6)
Now, we add and remove to relation (C.6) the term 1

2(Γ
τ
βηΓ

η
γσ − ΓτγηΓ

η
βσ) where we do

that in order to create the Riemman tensor of (C.1) and have an expression of the
following form:

δICS = −
∫
(∇µb)ε

µαβγ(δΓσατ )(
1

2
Rτσγβ + terms) (C.7)

where with ”terms”, we mean the rest, which is:

εµαβγ [terms] = εµαβγ [
1

3
ΓτβηΓ

η
γσ −

1

3
ΓτγηΓ

η
βσ −

1

3
ΓτγηΓ

η
βσ −

1

2
(ΓτβηΓ

η
γσ − ΓτγηΓ

η
βσ)]

= εµαβγ(
1

6
ΓτβηΓ

η
γσ +

1

6
ΓτγηΓ

η
βσ) = εµαβγ(

1

6
ΓτβηΓ

η
γσ −

1

6
ΓτβηΓ

η
γσ) = 0

Where in the last line with β ⇐⇒ γ and using the antisymmetric properties of εµαβγ we
arrived at the conclusion that the contribution of this part of the variation vanishes,
and so we are left with:

δICS = −1

2

∫
(∇µb)ε

µαβγ(δΓσατ )R
τ
σγβd

4x (C.8)

The variation of the connection with respect to the metric tensor.

δΓσατ =
gσν

2
(∇αδgντ +∇τδgνα −∇νgατ ) (C.9)
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From (C.8,C.9) we get:

δICS = −1

4

∫
(∇µb)ε

µαβγRτσγβg
σν(∇αδgντ +∇τδgνα −∇νgατ ) (C.10)

an raising σ in the above relation we reach

δICS = −1

4

∫
(∇µb)ε

µαβγRτνγβ(∇αδgντ +∇τδgνα −∇νgατ )d
4x (C.11)

In (C.11), because of Rτνγβ antisymmetry in [τ, ν], the first term in parentheses does’n
contribute, and the last one can be written as −Rτνγβ∇νgατ = Rτνγβ∇τδgνα for the same
reason. So the last two terms do combine, and (C.11) becomes:

δICS = −1

2

∫
(∇µb)ε

µαβγRτνγβ(∇τδgνα)d
4x (C.12)

Now, moving on with partial integration and getting away of [b,∇µb] boundary terms,
(C.12) becomes:

δICS =
1

2

∫
∇τ [(∇µb)ε

µαβγRτνγβ ]δgνα)d
4x (C.13)

and because b is a scalar, ∇µ∇τ b = ∇τ∇µb and (C.13) becomes

δICS =
1

2

∫
(∇µ∇τ b)ε

µαβγRτνγβ + (∇µb)ε
µαβγ∇τR

τν
γβ ]δgνα)d

4x (C.14)

In the first term we use the Bianchi identity ∇τR
τν
γβ = ∇γR

ν
β −∇βR

ν
γ , while the second

integral can be written in terms of the dual Riemann tensor of (C.2). Thus, with β ⇐⇒ γ
we have εµαβγ(∇γR

ν
β − ∇βR

ν
γ) = 2εµαβγ∇γR

ν
β and with εµαβγRτνγβ = −εµαβγRτνµα =

−2R̃τνµα, equation C.14 becomes

δICS =

∫
[(∇µb)ε

µαβγ∇γR
ν
β − (∇µ∇τ b)R̃

τνµα]δgναd
4x (C.15)

or, we can start from equation C.13 and with partial integration and set equal to zero
[b,∇b] terms, we get

δICS = −1

2

∫
[(∇µb)ε

µαβγ∇τR
τν
γβ ]δgνα)d

4x (C.16)

and because of the symmetry in [ν, α] of the metric tensor, only the symmetric part of
Riemann dual tensor in these incices survives, hence:

δICS = −1

2

∫
[(∇µb)ε

µαβγ∇τR
τν
γβ ]δgνα)d

4x

= −
∫
[(∇µb)∇τ R̃

τνµα]δgνα)d
4x

= −1

2

∫
[(∇µb)∇τ (R̃

τνµα + R̃ταµν)]δgνα)d
4x

(C.17)
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and finally we have the two relation we need for the Cotton tensor, in the form above:

δICS = δ
1

4

∫
d4x bR̃R ≡

∫
d4x

√
−gCµνδgµν = −

∫
d4x

√
−gCµνδgµν (C.18)

where, with the same argument as before, because of the symmetry of the metric tensor,
only the symmetric part survives and hence:

Cµν = − 1

2
√
−g

[
∇σb

(
εσµαβ∇αR

ν
β + εσναβ∇αR

µ
β

)
+∇σ∇τ b

(
R̃τµσν + R̃τνσµ

)]
(C.19)

or, straightforward from C.13 we have

Cµν = −∇τ
∇σb

2
√
−g

(
R̃τµσν + R̃τνσµ

)
(C.20)

3.2 Covariant divergence of the Cotton tensor

We calculate the divergence of Cotton tensor Cµν , and we will start from the relation
C.20

Cµν = −∇τ
∇σb

2
√
−g

(
R̃τµσν + R̃τνσµ

)
Using the antisymmetry in [τ, µ] of R̃τµσν , we present ∇µC

µν as

∇µC
µν = −∇τ∇µ

∇σb

2
√
−g

R̃τνσµ + [∇τ ,∇µ]
∇σ

2
√
−g

(R̃τνσµ +
1

2
R̃τµσν) (C.21)

The first contribution to ∇µC
µν vanishes, by noting that there occurs

∇µ
∇σb

2
√
−g

R̃τνσµ =
∇µ∇σb

2
√
−g

R̃τνσµ +
∇σb

2
√
−g

εσµαβ∇µR
τν
αβ .

Since ∇µ∇σ is symmetric and R̃τνσµ is antisymmetric in [σ, µ], the first term on the right
is zero. The second one is also zero, owing to the Bianchi identity for the Riemann
tensor. The remainder of (C.21) involves the commutator of covariant derivatives, where
from

[∇λ,∇ν ]T
αβγδ = R α

λν κT
κβγδ +R β

λν κT
ακγδ +R γ

λν κT
αβκδ +R δ

λν κT
αβγκ (C.22)

calculating the quantities [∇τ ,∇µ]R̃
τνσµ and [∇τ ,∇µ]R̃

τµσν we get

∇µC
µν =

∇σb

2
√
−g

[(
R̃λνσµ +

1

2
R̃λµσν

)
Rτλµτ +R̃τλσµRνλµτ +

1

2
R̃τλσνRµλµτ

+R̃τνσλRµλµτ +
1

2
R̃τµσλRνλµτ

]
=

∇σb

2
√
−g

[
−
(
R̃λνσµ +

1

2
R̃λµσν

)
Rλµ+

(
R̃τνσλ +

1

2
R̃τλσν

)
Rλτ

+

(
R̃τλσµ +

1

2
R̃τµσλ

)
Rνλµτ

]
. (C.23)
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The quantities involving the Ricci tensor vanish owing to its symmetry. The last term
in brackets is expanded by using the antisymmetry of R̃τλσµ in [τ, λ]. Thus we are left
with

∇µC
µν =

∇σb

4
√
−g

[
R̃τλσµ

(
Rνλµτ −Rντµλ

)
+ R̃τµσλRνλµτ

]
=

∇σb

4
√
−g

[
R̃τλσµRνµλτ + R̃τµσλRνλµτ

]
=

∇σb

2
√
−g

R̃τλσµR ν
λτ µ. (C.24)

Cyclic properties of the Riemann tensor allow passage from one expression to the next
in (B.3b). Finally we use the identity

R̃τ σµ
λ Rλτνµ =

1

4
δσν

∗RR, (C.25)

to conclude that
∇µC

µν =
∇νb

8
√
−g

∗RR (C.26)

3.3 Proof for the Covariant divergence of the topological current

The topological current is expressed as

Kα = εαβγδ
[
Γκβλ ∂γ Γλδκ +

2

3
Γκβλ Γ

λ
γµΓ

µ
δκ

]
(C.27)

so, we calculate the covariant divergence:

∇αK
α = ∇α[ε

αβγδ[ Γκβλ∂γ Γλδκ +
2

3
ΓκβλΓ

λ
γµΓ

µ
δκ]

= εαβγδ[∂αΓ
κ
βλ∂γ Γλδκ + Γκβλ∂α∂γΓ

λ
δκ +

2

3
∂αΓ

κ
βλΓ

λ
γµΓ

µ
δκ+

2

3
Γκβλ∂αΓ

λ
γµΓ

µ
δκ +

2

3
ΓκβλΓ

λ
γµ∂αΓ

µ
δκ]

(C.28)

The term εαβγδΓκβλ∂α∂γΓ
λ
δκ vanishes cause ∂α∂γ is symmetric in [α, γ] while εαβγδ is

antisymmetric in these two indices. so, C.28 becomes

∇αK
α = εαβγδ[∂αΓ

κ
βλ∂γ Γλδκ +

2

3
∂αΓ

κ
βλΓ

λ
γµΓ

µ
δκ +

2

3
Γκβλ∂αΓ

λ
γµΓ

µ
δκ +

2

3
ΓκβλΓ

λ
γµ∂αΓ

µ
δκ] (C.29)

Following the same logic as for the variation of CS term above, we move one and rear-
range the 4 terms using index manipulation and symmetry-antisymmetry of connection
and Levi-Civita symbol, we can easily conclude that:
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1. εαβγδ∂αΓκβλ∂γ Γλδκ

2. εαβγδ 23∂αΓ
κ
βλΓ

λ
γµΓ

µ
δκ

3. εαβγδ 23Γ
κ
βλ∂αΓ

λ
γµΓ

µ
δκ = εαβγδ 23∂αΓ

κ
βλΓ

λ
γµΓ

µ
δκ

4. εαβγδ 23Γ
κ
βλΓ

λ
γµ∂αΓ

µ
δκ = εαβγδ 23∂αΓ

κ
βλΓ

λ
γµΓ

µ
δκ

So, C.29 becomes

∇αK
α = εαβγδ[∂αΓ

κ
βλ∂γ Γλδκ + 2∂αΓ

κ
βλΓ

λ
γµΓ

µ
δκ]

= εαβγδ[∂αΓ
κ
βλ∂γ Γλδκ + ∂αΓ

κ
βλΓ

λ
γµΓ

µ
δκ + ∂γΓ

κ
δλΓ

λ
αµΓ

µ
βκ]

(C.30)

where the last two terms come from the symmetry of εαβγδ∂αΓκβλΓλγµΓ
µ
δκ in αβ ⇐⇒ γδ.

Expanding each term using its antisymmetry to the relevant indices, we have

∇αK
α = εαβγδ[∂αΓ

κ
βλ∂γ Γλδκ + ∂αΓ

κ
βλΓ

λ
γµΓ

µ
δκ + ∂γΓ

κ
δλΓ

λ
αµΓ

µ
βκ]

=
1

4
εαβγδ[(∂αΓ

κ
βλ − ∂βΓ

κ
αλ)(∂γ Γλδκ − ∂δ Γλγκ)+

(∂αΓ
κ
βλ − ∂βΓ

κ
αλ)(Γ

λ
γµΓ

µ
δκ − ΓλδµΓ

µ
γκ)+

(∂γΓ
κ
δλ − ∂δΓ

κ
γλ)(Γ

λ
αµΓ

µ
βκ − ΓλβµΓ

µ
ακ)]

(C.31)

where we used antisymmetry of the terms in the parenthesis combined with εαβγδ in
α ⇐⇒ β and γ ⇐⇒ δ corespondingly. The next step, is to add the vanishing term
εαβγδΓκξαΓ

ξ
λβΓ

λ
σγΓ

σ
κδ, since it’s identically equal to zero, and expanding it, as well, in

antisymmetric properties of α⇐⇒ β and γ ⇐⇒ δ, we may write equation C.31 as

∇αK
α =

1

4
εαβγδ[(∂αΓ

κ
βλ − ∂βΓ

κ
αλ)(∂γ Γλδκ − ∂δ Γλγκ)+

(∂αΓ
κ
βλ − ∂βΓ

κ
αλ)(Γ

λ
γµΓ

µ
δκ − ΓλδµΓ

µ
γκ)+

(∂γΓ
κ
δλ − ∂δΓ

κ
γλ)(Γ

λ
αµΓ

µ
βκ − ΓλβµΓ

µ
ακ)+

(ΓκξαΓ
ξ
λβ − ΓκξβΓ

ξ
λα)(Γ

λ
σγΓ

σ
κδ − ΓλσδΓ

σ
κγ)]

(C.32)

And after some algebra, C.32 becomes

∇αK
α =

1

4
εαβγδ[(∂αΓ

κ
βλ + ΓκξαΓ

ξ
λβ − ∂βΓ

κ
αλ − ΓκξβΓ

ξ
λα)·

(∂γ Γλδκ + ΓλσγΓ
σ
κδ − ∂δ Γλγκ − ΓλσδΓ

σ
κγ)]

(C.33)

which is written with the help of the Riemann tensor as

∇αK
α =

1

4
εαβγδRκλαβR

λ
κγδ (C.34)

or, remembering that R̃τ µν
σ = 1

2 ε
µναβRτσαβ , we arrive the desired result:

∇αK
α =

1

2
RκλαβR̃

λ αβ
κ (C.35)
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3.4 Traceless Cotton Tensor

As we found in equation C.20, the cotton tensor is

Cµν = −∇τ
∇σb

2
√
−g

(
R̃τµσν + R̃τνσµ

)
(C.36)

and we want to calculate gµνCµν which yields

gµνC
µν = −∇τ

∇σb

2
√
−g

gµν

(
R̃τµσν + R̃τνσµ

)
= −∇τ

∇σb

4
√
−g

(
gµνR

τµ
αβε

αβσν + gµνR
τν
αβε

αβσµ

)
= −∇τ

∇σb

2
√
−g

(
Rτµαβε

αβσµ

)
= ∇τ

∇σb

2
√
−g

(
Rτµαβε

µαβσ

)
= 0

(C.37)

where the last equality comes from Riemann tensor symmetries, in particular Rτ[µαβ] =
0. where [...] denotes complete antisymmetrization of the corresponding indices, which
immediately implies that Rτµαβεµαβσ = 0.

→Proof of right hand of C.18∫
d4x

√
−gCµνδgµν = −

∫
d4x

√
−gCµνδgµν (C.38)

We have that

δgρλ = −gνλgµρδgµν (C.39)

so it is straightforward to show that∫
d4x

√
−gCµνδgµν = −

∫
d4x

√
−gCµνδgµν (C.40)

with simple subtitution of C.39.
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Appendix D

Origin of action of eq.(3.16)

Actions like eq.(3.16) are inspired from bosonic string theory, where the lowest energy
ground state consists of a spin-0 scalar dilaton field, a symmetric traceless graviton
tensor field, gµν = gνµ and a spin-1 antisymmetric tensor field Bµν = Bνµ, where
µ, ν = 0....D−1 and D = 4 the spacetime dimension of the string after compactification.
In 4 dimensions, Bµν has the U(1) symmetry:

Bµν → Bµν + ∂µθν − ∂νθµ , µ, ν = 0, 1, 2, 3 (D.1)

where θµ are gauge parameters. Thus, the action will respect the same symmetry,
depending only on the field strength tensor of Bµν , which is expressed by:

Hνµρ = ∂[µBνρ] = ∂µBνρ + ∂ρBµν + ∂νBρµ (D.2)

and also satisfies the Bianchi identity

∂[σHµνρ] = 0 (D.3)

where with [...] we mean antisymmetrisation of the respected indices. The effective
4-dimensional action becomes:

S =

∫
d4x

√
−g
(
R

2κ2
− 1

6
HνµρH

νµρ + ...

)
(D.4)
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where ... denote higher-derivative terms. Calculating the Euler-Lagrange equations of
motion we have:

∂L
∂Bαβ

= ∂µ

[
∂L

∂(∂µBαβ)

]
⇒

0 = ∂µ

[
−1

3
Hκλρ ∂Hκλρ

∂(∂µBαβ)

]
⇒

0 = ∂µ

[
Hκλρ∂κBλρ + ∂ρBκλ + ∂λBρκ

∂(∂µBαβ)

]
⇒

0 = ∂µ

[
Hκλρ(δµκδ

α
λδ

β
ρ + δµλδ

α
ρ δ

β
κ + δµρ δ

α
κ δ

β
λ)
]
⇒

0 = ∂µ

(
Hµαβ +Hβµα +Hαβµ

)
(D.5)

There is a duality of the field strength and an (axion-like) pseudoscalar field b(x), Thus,
we can express the field strength tensor as Hνµρ = Nϵµνρσ∂

σb(x), where ϵµνρσ is the
Minkowski space-time totally antisymmetric Levi-Civita symbol. The Bianchi identity
becomes

ϵµνρσ∂σHµνρ = 0 (D.6)

We proceed by considering the above relation, the Bianchi identity, as a constraint,
with the help of a Lagrange multiplier, which is our field b(x), and we write again the
action of equation D.4 as:

S =

∫
d4x

√
−g
(
R

2κ2
− 1

6
HνµρH

νµρ + b(x)ϵµνρσ∂σHµνρ...

)
(D.7)

where, with partial integration of the last part of the above expression including the
field b(x), and keeping in mind the boundary conditions and therefore that the field
and its first derivative vanish at spatial infinity, we get:

S =

∫
d4x

√
−g
(
R

2κ2
− 1

6
HνµρH

νµρ − ϵµνρσ∂σb(x)Hµνρ...

)
(D.8)

Expressing now the field strength tensor as Hνµρ = Nϵµνρλ∂
λb(x), we have that:

ϵµνρσ∂σb(x)Hµνρ =

ϵµνρσ∂σb(x)Nϵµνρλ∂
λb(x) =

6Nδσλ∂σb(x)∂
λb(x) =

6N∂σb(x)∂
σb(x)

(D.9)

where, in 3rd line, we used the indentity ϵµνρσϵµνρλ = 6δσλ. So, the action now becomes:

S =

∫
d4x

√
−g
(
R

2κ2
− 1

6
HνµρH

νµρ − 6N∂σb(x)∂
σb(x)...

)
⇒

S =

∫
d4x

√
−g
(
R

2κ2
− 6N∂σb(x)∂

σb(x)...

) (D.10)
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However, in string theory, in the extra dimensional space, there are gauge and
gravitational anomalies. These anomalies are expressed through the modification of
the field strength Hνµρ by adding the Chern-Simons three-forms:

H = dB + c1Ω
L − c2Ω

Y (D.11)

where c is a positive constant, d denotes partial differentiation with antisymmetri-
sation and ΩL and ΩY are the gravitational (”Lorentz”, L) and gauge (Y) anomalous
counterterms given as:

ΩL =

(
ωα∂γωβ +

2

3
ωαωβωγ

)(
dxα ∧ dxβ ∧ dxγ

)
(D.12)

ΩY =

(
Aα∂γAβ +

2

3
AαAβAγ

)(
dxα ∧ dxβ ∧ dxγ

)
(D.13)

where ∧ is the wedge product, A denotes the Yang-Mills gauge field and ωα is the one
form spin-connection.

This modification leads to the altered Bianchi identity, which takes the form:

dH = Tr [c1R ∧R+ c2F ∧ F ] (D.14)

or, in the component form:

ϵµνρσ∇σHµνρ = c1RµνρσR̃
µνρσ + c2FµνρσF̃

µνρσ (D.15)

where F = dA + A ∧ A is the Yang-Mills field strength tensor, R = dω + ω ∧ ω is
the curvature 2-form and ϵµνρσ the Levi-Civita symbol. Assuming that A = 0 and
consequently F = 0, we shall perform the same procedure as before, adding now to the
action the quantity b(x)

[
ϵµνρσ∇σHµνρ − c1RµνρσR̃

µνρσ
]
and the action (D.4) now takes

the following form:

S =

∫
d4x

√
−g
(
R

2κ2
− b(x)

[
ϵµνρσ∇σHµνρ − c1RµνρσR̃

µνρσ
]
...

)
⇒

S =

∫
d4x

√
−g
(
R

2κ2
− 6N∂σb(x)∂

σb(x) + c1b(x)RµνρσR̃
µνρσ...

) (D.16)

where in the second line we used the result derived before adding the correction terms,
that ϵµνρσ∂σb(x)Hµνρ = 6N∂σb(x)∂

σb(x). Fixing the normalization constant N to have
a canonical kinetic term for the axionic field b(x) and ignoring the higher derivatives
terms denoted in the above action by (...), we reach:

S =

∫
d4x

√
−g
(
R

2κ2
− 1

2
∂σb(x)∂

σb(x) + c1b(x)RµνρσR̃
µνρσ

)
(D.17)

which is general form of the action we considered in eq.(3.16).
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Appendix E

Derivation and Solution of the
Differential Equation

5.1 Derivation of eq.(3.39)

We start from eq.(3.37):

r11(r − 2M)w′′′ + 2r10(6r − 11M)w′′ + (28r10 − 50Mr9 − 576A2κ2M2r4)w′

+3456A2κ2M3 = 0 .
(E.1)

where, for w(r) and its derivatives we have:

▶
w(r) =

∞∑
n=4

dnM
n−2

rn
, (E.2)

▶
w′(r) = −

∞∑
n=4

ndnM
n−2

rn+1
, (E.3)

▶
w′′(r) =

∞∑
n=4

n(n+ 1)dnM
n−2

rn+2
, (E.4)

▶
w′′′(r) = −

∞∑
n=4

n(n+ 1)(n+ 2)dnM
n−2

rn+3
, (E.5)

Putting the above and decompoising the terms of eq.(E.1), we have:
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▶ The first term r11(r − 2M)w′′′ becomes:

r11(r − 2M)w′′′ = −
∞∑
n=4

n(n+ 1)(n+ 2)dnM
n−2

rn−9
+

∞∑
n=4

2n(n+ 1)(n+ 2)dnM
n−1

rn−8

(E.6)

▶ The second term 2r10(6r − 11M)w′′ becomes:

2r10(6r − 11M)w′′ =

∞∑
n=4

12n(n+ 1)dnM
n−2

rn−9
−

∞∑
n=4

22n(n+ 1)dnM
n−1

rn−8
(E.7)

▶ The third term (28r10 − 50Mr9 − 576A2κ2M2r4)w′ becomes:

(28r10 − 50Mr9 − 576A2κ2M2r4)w′ = −
∞∑
n=4

28ndnM
n−2

rn−9
+

∞∑
n=4

50ndnM
n−1

rn−8
+

∞∑
n=4

576A2κ2M2ndnM
n

rn−3

(E.8)

Performing now the shift n→ m+ 9, the above relations become:

▶ The first term r11(r − 2M)w′′′ becomes:

r11(r − 2M)w′′′ = −
∞∑

m=−5

(m+ 9)(m+ 10)(m+ 11)dm+9M
m+7

rm
+

∞∑
m=−5

2(m+ 9)(m+ 10)(m+ 11)dm+9M
m+8

rm+1

(E.9)

▶ The second term 2r10(6r − 11M)w′′ becomes:

2r10(6r − 11M)w′′ =

∞∑
m=−5

12(m+ 9)(m+ 10)dm+9M
m+7

rm

−
∞∑

m=−5

22(m+ 9)(m+ 10)dm+9M
m+8

rm+1

(E.10)

▶ The third term (28r10 − 50Mr9 − 576A2κ2M2r4)w′ becomes:

(28r10 − 50Mr9 − 576A2κ2M2r4)w′ = −
∞∑

m=−5

28(m+ 9)dm+9M
m+7

rm
+

+
∞∑

m=−5

50(m+ 9)dm+9M
m+8

rm+1
+

∞∑
m=−5

576A2κ2M2(m+ 9)dm+9M
m+9

rm+6

(E.11)
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The next step is to bring all the above sums to the form of ∼ r−m. So, making the
relative shifts, we get :

▶ The first term r11(r − 2M)w′′′ becomes:

r11(r − 2M)w′′′ = −
∞∑

m=−5

(m+ 9)(m+ 10)(m+ 11)dm+9M
m+7

rm
+

∞∑
m=−4

2(m+ 8)(m+ 9)(m+ 10)dm+8M
m+7

rm

(E.12)

▶ The second term 2r10(6r − 11M)w′′ becomes:

2r10(6r − 11M)w′′ =

∞∑
m=−5

12(m+ 9)(m+ 10)dm+9M
m+7

rm

−
∞∑

m=−4

22(m+ 8)(m+ 9)dm+8M
m+7

rm

(E.13)

▶ The third term (28r10 − 50Mr9 − 576A2κ2M2r4)w′ becomes:

(28r10 − 50Mr9 − 576A2κ2M2r4)w′ = −
∞∑

m=−5

28(m+ 9)dm+9M
m+7

rm
+

+
∞∑

m=−4

50(m+ 8)dm+8M
m+7

rm
+

∞∑
m=1

576A2κ2M2(m+ 3)dm+3M
m+3

rm

(E.14)

Now, extracting from the above sums the terms for m = −5 and for m = 0, we have
for these terms that:

−120d4M
2r5 − 990d9M

7 + 240d4M
2r5 + 1080d9M

7 − 112d4M
2r5 − 252d9M

7+

1440M7d8 − 1584d8M
7 + 400d8M

7 = 8M2d4r
5 − 162d9M

7 + 256d8M
7

(E.15)
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and the rest is the sums from m = −4 to m = −1 and from m = 1 to m → ∞. So,
eq.(E.1) will be:

0 = 8M2d4r
5 − 162d9M

7 + 256d8M
7 + 3456A2κ2M3−

−1∑
m=−4

(m+ 9)(m+ 10)(m+ 11)dm+9M
m+7

rm
+

−1∑
m=−4

12(m+ 9)(m+ 10)dm+9M
m+7

rm
−

−1∑
m=−4

28(m+ 9)dm+9M
m+7

rm
+

−1∑
m=−4

2(m+ 8)(m+ 9)(m+ 10)dm+8M
m+7

rm
−

−1∑
m=−4

22(m+ 8)(m+ 9)dm+8M
m+7

rm
+

−1∑
m=−4

50(m+ 8)dm+8M
m+7

rm
−

−(...The same sums but with m from m = 1 to m→ ∞...)+

+
∞∑
m=1

576A2κ2(m+ 3)dm+3M
m+3

rm

(E.16)

Putting the sums from m = −4 → −1 and from m = 1 → ∞ together, the above relation
becomes:

0 = 8M2d4r
5 − 162d9M

7 + 256d8M
7 + 3456A2κ2M3+

−1∑
m=−4

Mm+7

rm
[dm+9(m+ 9) (−28 + 12(m+ 10)− (m+ 10)(m+ 11))

+ dm+8(m+ 8) (50− 22(m+ 9) + 2(m+ 9)(m+ 10))]

+
∞∑
m=1

Mm+7

rm
[dm+9(m+ 9) (−28 + 12(m+ 10)− (m+ 10)(m+ 11))

+ dm+8(m+ 8) (50− 22(m+ 9) + 2(m+ 9)(m+ 10))]

+

∞∑
m=1

A2κ2576(m+ 3)dm+3M
m+3

rm

(E.17)

where, it’s a simple task to show that

(−28 + 12(m+ 10)− (m+ 10)(m+ 11)) = −m2 − 9m− 18 = −(m+ 3)(m+ 6)

and that

(50− 22(m+ 9) + 2(m+ 9)(m+ 10)) = 2m2 + 16m+ 32 = 2(m+ 4)2
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So, we finally reach the form of the relation of eq.(3.39), which is given by:

3456A2κ2M3 − 162M7d9 + 256M7d8 + 8M2d4r
5+

−1∑
m=−4

Mm+7
[
−(m+ 3)(m+ 6)(m+ 9)dm+9 + 2(m+ 4)2(m+ 8)dm+8

]
rm

+

∞∑
m=1

Mm+7
[
−(m+ 3)(m+ 6)(m+ 9)dm+9 + 2(m+ 4)2(m+ 8)dm+8

]
+ 576A2κ2Mm+3(m+ 3)dm+3

rm
= 0 .

(E.18)

5.2 Solution of DE eq.(3.44)

In this Appendix, we solve eq.(3.44) given by:

−2u(r) + 2(r −M)u′(r) + (r2 − 2Mr)u′′(r) =
144M2

r5
, (E.19)

The first step is to solve the homogeneous ODE,

−2u(r) + 2(r −M)u′(r) + (r2 − 2Mr)u′′(r) = 0 . (E.20)

We note that a particular solution is u1 = c1

(
r −M

M

)
. We may use this solution to

simplify the ODE via u = u1(r)z(r). Then, our simplified expression reads

1

M

[
2(M2 − 4Mr + 2r2)z′ + r(2M2 − 3Mr + r2)z′′

]
= 0 , (E.21)

which implies that

(ln z′) =
∫

8Mr − 2M2 − 4r2

(r − 2M)(r −M)r
dr = − ln[r(r − 2M)(r −M)2] + c2

=⇒ z′ =
c2

r(r − 2M)(r −M)2

z =
c2

(r −M)M2
+

c2
2M3

ln
[
1− 2M

r

]
+ c3 ,

which means that the homogeneous solution to the ODE is

uh = c1u1(r) + c2u2(r) , (E.22)

where
u1(r) =

(
r −M

M

)
, u2(r) = 1 +

1

2M
(r −M) ln

[
1− 2M

r

]
. (E.23)
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In order to find the complete solution, we will make use of the method of variation
of parameters. We consider that the general solution of the differential equation is
expressed as

u(r) = C1(r)u1(r) + C2(r)u2(r) . (E.24)

Then, C1(r), C2(r) can be solved by the system

C ′
1(r)u1(r) + C ′

2(r)u2(r) = 0 , (E.25)

C ′
1(r)u

′
1(r) + C ′

2(r)u
′
2(r) =

144M2

r5(r2 − 2Mr)
. (E.26)

Therefore, [
C ′
1

C ′
2

]
=

1

W

[
u′2 −u2
−u′1 u1

] [
0

144M2

r5(r2−2Mr)

]
, (E.27)

where W denotes the Wronskian of our solutions. The system can be easily solved to
yield that

C1(r) =
81M

2r4
− 5

r3
− 15

4Mr2
− 15

4M2r
+ ln

(
1− 2M

r

)
6(4r − 3M)

r4
− 15

8M3
ln
(
1− 2M

r

)
+ c1 ,

(E.28)

C2(r) =
36M

r4
− 48

r3
+ c2 . (E.29)

Making use of (E.22), we find that the complete solution reads

u(r) = −c1 + c2 −
15

4M3
− 9M

2r4
− 5

2r3
− 5

4Mr2
+ c1

r

M
+

ln
(
1− 2M

r

)[
15

8M3
− c2

2

]
+ ln

(
1− 2M

r

)[
c2r

2M
− 15r

8M4

] (E.30)

In order to cancel the divergent terms, we fix the integration constants to c1 = 0 and
c2 =

15

4M3
and we find that the asymptotic solution of the axion reads

u(r) = −9M

2r4
− 5

2r3
− 5

4Mr2
. (E.31)
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Appendix F

Proof of Convergence of the series
3.38

We have for the tϕ-component that:

gtϕ = r2
(
−2M

r3
− w(r)

)
a sin2(θ) ≡

(
−2M

r
− w̃(r)

)
a sin2(θ), w̃(r) =

∞∑
n=4

dnM
n−2

rn−2
,

(F.1)
where dn is determined by the following recurrence relation:

dn =
2(n− 5)2(n− 1)

n(n− 6)(n− 3)
dn−1 +

576γ2

n(n− 3)
dn−6, for n ≥ 10 , (F.2)

and initial conditions:

d4 = d5 = 0 , d6 = −5γ2 , d7 = −60γ2

7
, d8 = −27γ2

2
, d9 = 0 (F.3)

with γ ∈ R. We restrict ourselves in the exterior to horizon region r ≥ 2M .

For notational convenience and brevity we redefine r → r/M , hence

w̃(r) =

∞∑
n=4

dn
rn−2

. (F.4)

Below we shall prove the convergence of this sum for all r ≥ 2 for all γ ∈ R.

To this end, we first note that dn ≤ 0 , ∀n. Thus, we define the sequence cn = −dn,
for which cn ≥ 0, ∀n. Then, in terms of cn, we have:

w̃(r) = −
∞∑
n=4

cn
rn−2

(F.5)
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where
cn = ancn−1 + bncn−6, for n ≥ 10 , (F.6)

with
an =

2(n− 5)2(n− 1)

n(n− 6)(n− 3)
bn =

576γ2

n(n− 3)
, (F.7)

and initial conditions:

c4 = c5 = 0 , c6 = 5γ2 , c7 =
60γ2

7
, c8 =

27γ2

2
, c9 = 0 (F.8)

Let us define the sequence:

Σ̃N =

N∑
n=4

cn
rn−2

As cn/rn−2 are non-negative, Σ̃N is an increasing sequence, meaning Σ̃N+1 ≥ Σ̃N , ∀N ∈
N.

For increasing sequences, the following theorem exists:

Theorem: An increasing sequence tends either to a finite limit or to +∞.

Hence, a necessary and sufficient condition for the convergence of Σ̃ is the demon-
stration that it is bounded, i.e. that there exists a finite, positive number N , such that:

Σ̃ =
∞∑
n=4

cn
rn−2

≤ N

Statement 1: If
∑∞

n=4
cn

2n−2 converges, then
∑∞

n=4
cn
rn−2 converges ∀r ≥ 2.

Suppose that
∑∞

n=4
cn

2n−2 ≤ K, where K finite. For r > 2 → 1/rn−2 < 1/2n−2 →
cn/r

n−2 ≤ cn/2
n−2 ∀n ≥ 4, where the equality holds in the case of cn = 0. Thus,

∞∑
n=4

cn
rn−2

≤
∞∑
n=4

cn
2n−2

⇒
∞∑
n=4

cn
rn−2

≤ K

which means that
∑∞

n=4
cn
rn−2 converges ∀r > 2.

Hence, according to the above statement 1, we should establish the convergence of
the infinite series

Σ =

∞∑
n=4

cn
2n−2
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For an and bn, we have:

1) an → 2, as n→ +∞
2) bn → 0, as n→ +∞

i.e. an and bn both converge.

Below, we use the mathematical result that a sequence, say sn, is convergent, i.e.
tends to a finite limit s as n → ∞, implies that sn is bounded This implies that, since
an, bn are convergent, in view of the above result, they are bounded, meaning that there
exist k1, k2, such that

|an| ≤ k1 and |bn| ≤ k2 ∀n ∈ N (F.9)

Statement 2: The sequence cn is bounded by induction.

Suppose that there exists a subsequence cN−6, ...cN−1, for some N , that is bounded,
i.e. there exists N ′, such that

|cN−6|, |cN−5|, ..., |cN−1| ≤ N ′

.
Then, using the triangle inequality

|cN | ≤ |aN ||cN−1|+ |bN ||cN−6| ⇒ |cN | ≤ (k1 + k2)N
′ ⇒|cN | ≤ M̃ ,

where M̃ = (k1 + k2)N
′ finite.

Thus, as the corresponding subsequence exists for N = 10, as c4, ..., c9 are finite,
by induction, there exists finite D, such that

|cn| ≤ D, ∀n ≥ 10

concluding that cn is bounded ∀n ≥ 4.

Thus, as cn is bounded and non-negative, there exists D > 0, such that:

0 ≤ cn ≤ D , ∀ n ≥ 4

Thence,

Σ =
∞∑
n=4

cn
2n−2

≤ D
∞∑
n=4

(
1

2

)n−2

or

Σ ≤ D
∞∑
n=2

(
1

2

)n
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For the geometric series, we know that
∞∑
n=0

xn =
1

1− x
, for − 1 < x < 1

Thus, for x = 1/2, it is easy to show that:

∞∑
n=2

(
1

2

)n
=

1

2

which implies

Σ =

∞∑
n=4

cn
2n−2

≤ D
2
,

i.e., the infinite series Σ is bounded.

This proves the required result, that the sum w̃(r), and thus w(r) ((3.38)), converges
∀r ≥ 2M and ∀γ ∈ R.
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