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NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Abstract
Institute of Structural Analysis and Antiseismic Research

School or Civil Engineering

Doctor of Philosophy

Geometrically Non-Linear Beam Modeling of Wind Turbine Blades under Static and
Dynamic Loadings

by Anthoula PANTELI

In this thesis, three main studies are performed. The first study contains the investigation
in structural analysis of two geometrically non-linear beam models, the Simo-Reissner (SR)
and the Green-Lagrange (GL) beam models. These models are compared with each other
both theoretically and numerically. Moreover, the strain-invariant formulation, that accounts
for the numerical invariance of the internal elastic energy under a rigid-body rotation of the
finite element, is implemented for both approaches. This is a new development for the GL
beam model. The second study regards the investigation of two time integration algorithms,
which are considered as Newmark-type algorithms, for rigid-body dynamics with large 3D
rotations. In the third study, the geometrically exact SR beam model and one of the two
Newmark-type time integration scheme are integrated into the multi-body dynamics code
hGAST, for the aeroelastic analysis of the coupled wind turbine system. The results obtained
for the slender wind turbine blades are compared to those derived by the sub-body (SB)
technique, which is a method to capture the geometric non-linearity using the multi-body
concept at the body level combined with linear beam elements. Interesting conclusions are
extracted from this work. Regarding statics, it is shown that 1) because of the extra strain
terms of the GL beam model compared to the SR beam model, which contain the square of the
curvatures of the beam reference line, a different approximation of the axial and shear strain
measures inside the beam element is obtained, and 2) the invariant formulation, originally
proposed for the SR beam model, functions well for the GL beam model, too. Regarding
dynamics, the accuracy and stability of each time integration algorithm are depicted in the
response of the well-known example of the fast symmetrical top, either for short or long
simulation time. Finally, the results obtained for the coupled wind turbine system show
a very good behaviour of the geometrically exact beam modeling of the blades, for both
uniform and stochastic inflow conditions.
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Chapter 1

Introduction

1.1 Motivation

Wind energy is an important sustainable, renewable source of energy. This is converted into
mechanical power through wind turbines, which subsequently, turns electric generators to
produce electricity. An overview of wind energy and wind turbine design one could study in
Burton et al., 2001; Manwell, Mcgowan, and Rogers, 2009; Chiras, 2010. Currently, wind
energy technology development points towards larger rotors with thin, lightweight, and flex-
ible blades that are deployed offshore. Related to this, advanced numerical aero-mechanical
tools are required that can accurately predict the aeroelastic behaviour of such rotors. From
the structural point of view, their large size (e.g., a rotor can have a diameter that is about 180
m) results to the need of powerful numerical tools that can analyze slender, beam-like, struc-
tures which undergo large displacements. Current state-of-the-art in the aeroelastic analysis
of wind turbine blades is based on 1D beam modeling. They are preferable over 2D shell and
3D solid models, because they are cost effective and, for most applications, equally accurate
in predicting internal forces and moments along the blade structure. In Júnior et al., 2019, it
is shown that the beam model is in very good agreement with the shell model except from the
case of local buckling of a wind turbine blade, that cannot be predicted using a conventional
beam model (a generalized beam model could be used, instead, Argyridi, 2019).
The main subject of this work is the theoretical and numerical investigation of two beam
models that appear in the literature for simulating slender structural members that undergo
large translations and rotations. Based on this investigation, the main objective of this work
is the adoption of the most reliable beam model in the applications. Another objective is the
extension of the structural part of the comprehensive hydro-servo-aero-elastic code hGAST
developed at the Fluids Section of the Mechanical Engineering School of NTUA (Riziotis and
Voutsinas, 1997), for the coupled analysis of a wind turbine system. Two issues are involved
in this project: the one is the choice of an appropriate beam model to simulate the wind
turbine blades, and the other is the modification of the solution procedure to be consistent
with systems that undergo large 3D rotations. Therefore, the geometrically exact SR beam
model is integrated into the multi-body dynamics software hGAST, while the Newmark-type
time integration algorithm in Simo and Vu-Quoc, 1988 is used.
A typical wind turbine onshore configuration consists of five components, i.e., three blades,
a shaft and a tower, from which the blades can undergo large translations and rotations, while
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the strains are kept small. Couplings between the deformation states of tension, shear in two
directions, bending in two directions, and twist are present during their motion. Although the
SB technique, that captures this geometric non-linearity based on a multi-body concept, has
already been implemented into hGAST, an approach that is geometrically exact improves
the accuracy using a coarser discretization compared to the SB modeling. Moreover, this
approach can function on its own, without the need of a preceding work on a multi-body
formulation. Therefore, a geometrically exact beam model that satisfies the assumptions of
large displacements and small strains is chosen for the analysis of the coupled wind turbine
system. The geometrically exact term used for this formulation implies that ”the relation-

ships between the configuration and the strain measures are consistent with the virtual work

principle and the equilibrium equations at a deformed state regardless of the magnitude of

displacements and rotations”, as it is clarified in Crisfield and Jelenić, 1999.

1.2 State of the art

The beam models are used for the deformation and motion analysis of those structural mem-
bers whose cross-section dimensions are much smaller than the longitudinal one. Because of
this slenderness property, the 3D non-linear continuum mechanics problem may be decou-
pled into one 2D cross-section (usually linear) problem and one 1D geometrically non-linear
beam problem (Berdichevsky, 2009). In Hodges, 2006, the whole beam modeling process is
presented in detail. The derived one-dimensional element that is available in finite element
codes is simple use, and suitable for the engineering design, even for the design of complex
structural systems. Examples of such systems are found e.g., in civil, mechanical, aerospace,
marine and biological engineering. Applications can be the deployable tents, the large wind
turbine blades, the masts, the antennas, the tower cranes, etc., see e.g., Hinkelmann, Lumpe,
and Rothert, 1985.
The essential beam theory (rod theory) assumes that the cross-sectional plane remains planar
and rigid during deformation. A comprehensive study in the history of the rods’ mechan-
ics, including planar and spatial elastica investigated by the theorists and experimentalists of
almost 350 years of research, is given in Goss, 2003. Some improved theories include the
out-of-plane warping under both torsion and shear, and the in-plane warping (or distorsion),
see e.g., Petrov and Géradin, 1998; Simo and Vu-Quoc, 1991. The more recent, advanced
(or higher-order) beam theories assume additional cross-section deformation states (Dikaros,
2016). Higher-order kinematics of beams is also used in Silvestre, Camotim, and Silva, 2011;
Abambres, Camotim, and Silvestre, 2014, where the GBT (Generalized Beam Theory) is pre-
sented. Also, the GBT together with the ICM (Implicit Corotational Method) that takes into
account the geometric non-linearity is formulated in Miranda et al., 2017.
Focusing here on the geometrically non-linear beam modeling with planar and rigid cross-
sections, different three-dimensional working pairs that fully account for the internal elastic
energy are used to derive a geometrically non-linear 1D beam theory with small strains. In
Pai, Palazotto, and Greer, 1998, various strain and stress definitions for a geometrically non-
linear analysis are investigated, concluding that the Jaumann working pair (Pai and Nayfeh,
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1994; Hodges, 2006) is the most appropriate one. The other two most popular working pairs
are the first Piola-Kirchhoff stresses combined with displacement gradients (Simo, 1985)
and the second Piola-Kirchhoff stresses combined with Green-Lagrange strains (Sapountza-
kis and Dikaros, 2011; Bauchau, 2011). A theoretical and numerical comparison between
the 1D beam models starting from these working pairs, i.e., a) the SR beam model (Reissner,
1981; Simo, 1985) and b) the GL beam model (Bathe and Bolourchi, 1979; Dvorkin, Onate,
and Olivier, 1988) can be found in Panteli and Spiliopoulos, 2020. In most of the codes
employing a geometrically exact beam model, the deformation gradient tensor with the first
Piola-Kirchhoff stress tensor is used. This formulation has originally been presented in Simo,
1985 where the equivalent strain measures for the beam element are derived. Regarding the
numerical implementation, in Simo and Vu-Quoc, 1986a, the corresponding computational
aspects have been proposed, where the connection to the rotation manifold SO(3) is shown,
setting the ground for a mathematical explanation of the incremental non-linear analysis of
beams. A displacement-based finite element implementation is followed, as in most relevant
works.

As far as the numerical procedures are concerned, they can be separated into two categories
(Crisfield and Jelenić, 1999): the so called degenerate-continuum beam formulations (see
e.g., Bathe and Bolourchi, 1979; Dvorkin, Onate, and Olivier, 1988; Bathe, 1996; Crisfield,
1997) that start with the continuum equilibrium equations, and the direct 1D continuum mod-
els (see e.g., Reissner, 1972; Reissner, 1981; Simo, 1985; Simo and Vu-Quoc, 1986a and the
most recent works Sonneville, Cardona, and Brüls, 2014; Gaćeša, 2015; Gaćeša and Jelenić,
2015) that are derived directly from the resultant form of the differential equilibrium equa-
tions. In the first category, the approximated virtual work equation is given at an arbitrary
material particle of the cross-section, while in the second category, this equation is given at
the reference point of the beam.
Regarding the spatial discretization of the problem, much effort has been made in the recent
years for the development of an objective (or strain-invariant under superposed rigid-body
rotations of the beam element) and a path-independent finite element formulation. In Cr-
isfield and Jelenić, 1999, the way is paved for such investigations, where the topic is raised
for the SR beam element. In Jelenić and Crisfield, 1999, the same researchers propose a
discrete formulation that preserves the objectivity of the continuum problem and the his-
tory independence of its solution. The crucial point in Jelenić and Crisfield, 1999, which
should be applied to all formulations where the rotation parameters are involved, is to ensure
the consistency with the configuration space which is inhabited by the orthogonal tensors
describing the orientation of the cross-section, i.e., the 3D rotation group SO(3). For this
reason, the cross-section orientation matrix is decomposed into two matrices (decomposition
in a co-rotational manner): the one which describes the orientation of the element and the
one which describes the local cross-section rotation relatively to the element. To ensure the
strain invariance under a rigid-body rotation of the element, the implementation presented
in Jelenić and Crisfield, 1999 is used by some researchers in the wind energy sector (Beam-

Dyn Theory). Alternatively, the fixed pole formulation (Bottasso, Borri, and Trainelli, 2002)
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can be adopted that automatically guarantees the numerical invariance. Other finite element
developers who have done research on the 3D beam formulation regarding the invariance
properties of objectivity and path-independence, e.g., Romero and Armero, 2002, present the
directors, their variations and velocities, to be chosen as the nodal kinematic variables in dis-
crete dynamic equilibrium equations, instead of the corresponding rotations, their variations
and angular velocities; the same idea is presented in discrete static equilibrium equations for
the degenerate-continuum formulations in Bathe, 1996; Crisfield, 1997. Also, Betsch and
Steinmann, 2002 followed a similar formulation. The constraint equation imposed on the
directors, for the conservation of their orthonormality, retains the invariance of these mod-
els. Recently, a single map that belongs to the group SE(3) is used for the description of
beam kinematics. This means that these formulations do not split the motion of the material
particle into two parts, i.e., the displacement of the beam reference point and the rotation of
the cross-section. On the contrary, they treat the motion of the material particle as a whole,
see e.g., Bottasso and Borri, 1998. Some other works on this subject are given in Sonneville,
Cardona, and Brüls, 2014; Gaćeša, 2015; Gaćeša and Jelenić, 2015. The above finite element
procedures refer to shear-deformable rods. In case of shear-free Kirchhoff rods, that are used
to model very slender beams more efficiently, Meier, Popp, and Wall, 2014; Meier, Popp,
and Wall, 2015 have proposed an objective and path-independent formulation.

The state-of-the-art, that is included in the above literature, refers to rod-like beam structures
with solid and symmetric cross-sections. But, the wind turbine blades have a general-shaped
cross-section, i.e., an airfoil, constructed by an anisotropic and inhomogeneous material.
They are primarily made of composite materials that combine fibers with polymer resins to
form glass-or carbon-fiber-reinforced polymers (GFRP or CFRP). Therefore, an anisotropic
beam element is needed for their simulation that is independent from the way that the geo-
metric non-linearity is taken into account. Recent research is based on the investigation of
the appropriate shape functions a beam has to possess for capturing the material couplings
accurately, regardless of it is a linear or a non-linear one. For an anisotropic Timoshenko
beam element in 3D, the interested reader can see in Ghiringhelli, 1997; Bazoune, Khulief,
and Stephen, 2003; Luo, 2008; Kim, Hansen, and Branner, 2013; Stäblein and Hansen, 2016.

For studying the dynamics of beams, many algorithms for analyzing beams subjected to time
dependent loading are presented in the literature. They can roughly be separated into two
categories: to those that do not account for the conservation of the total energy and the mo-
mentum, and to those that they do retain the total energy and sometimes the total momentum,
too (conserving algorithms). The second type of algorithms are designed to be uncondition-
ally stable. The Newmark method given in Newmark, 1959 for linear systems, which is
extended to problems with large rotations by some researchers, is not conserving. Newmark-
type methods for non-linear systems are given e.g., in Simo and Vu-Quoc, 1988; Cardona
and Géradin, 1988; Ibrahimbegović and Mikdad, 1998; Mäkinen, 2001. Conserving time
integrators for non-linear beam problems are given in Simo, Tarnow, and Doblare, 1995 and
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Ibrahimbegović and Mamouri, 2002. Herein, two time integration algorithms from the liter-
ature are presented. These are given in: 1) Simo and Vu-Quoc, 1988, and 2) Mäkinen, 2001;
Cardona and Géradin, 1988. These algorithms share the following common feature: They
establish the equilibrium at the time instant tn+1, where the equation of the rate of angu-
lar momentum balance is solved, thus, they are both considered as Newmark-type schemes.
However, the motivation of studying both of them is that the first algorithm uses the New-
mark scheme for the angular velocities and accelerations, whereas the second algorithm uses
the Newmark scheme for the first and second derivatives of the rotation vector, respectively.

Regarding the structural dynamics part inside the framework of a multi-body dynamics soft-
ware, the comprehensive state-of-the-art tools for the coupled aero-elasto-dynamic analysis
of wind turbine systems use 1D structural members to simulate all flexible components of
the structure. According to Gambier and Balzani, 2019, there are several aero-elastic design
tools for the time domain analysis of wind turbines, some of which are commercial (e.g.,
Bladed from DNV GL, Hassan, 2011, Cp-Lambda, Bottasso and Croce, 2006-2015, from
Politecnico di Milano and HAWC2 from DTU, Larsen and Hansen, 2021), while other are
open source (e.g., FAST, Jonkman and Buhl, 2005, from National Renewable Energy Lab-
oratory). An overview of the most popular aeroelastic codes can be found in Wang, Liu,
and Kolios, 2016; Ageze, Hu, and Wu, 2017. One can divide these simulation tools into
two main categories, regarding the type of the 1D beam structural model used. The first
category employs 1D geometrically non-linear beam elements, e.g., latest versions of FAST
(Wang et al., 2017; BeamDyn Theory) and Cp-Lambda (Bauchau, Damilano, and Theron,
1995), while the second uses 1D linear beam elements combined with a multi-body approach
at the body level in order to capture the geometric non-linearity, e.g., HAWC2 and hGAST
(Riziotis and Voutsinas, 1997; Manolas, Riziotis, and Voutsinas, 2015; Bagherpour et al.,
2018; Manolas et al., 2020; Manolas, 2015). A comparison between the two approaches
can be found in Pavese et al., 2015 where benchmark cases of beams undergoing extreme
translations and rotations are analyzed in order to showcase that, in such extreme condi-
tions, a multi-body approach implemented at the component level can accurately predict the
elastic deflections. Another comparison between state-of-the-art aeroelastic tools adopting
the above two non-linear beam approaches is performed in Manolas et al., 2015 within the
course of INNWIND.EU project. The beam models employed, are found to well compare
against a 3D Finite Element Method (FEM) solver up to the seventh mode shape, consistently
predicting strong coupling effects. The models are also tested in static and dynamic/turbulent
calculations and overall good agreement is found, including cases where the bending-torsion
geometrically non-linear effect is triggered due to the high flap-wise deflections. It is worth
mentioning that for the beam modeling of wind turbine blades, which are made by compos-
ite materials, a pre-processor to compute the cross-sectional stiffness and inertia properties
along the length of the beam-like member is needed, based on either the FEM (Blasques,
2012; Yu et al., 2002a) or the thin lamination theory (Saravanos et al., 2006; Serafeim et al.,
2022).
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1.3 Contribution of the thesis

The thesis contributes to the clarification of several special issues that concern the develop-
ment of a geometrically non-linear beam model. This is achieved through the theoretical and
numerical investigation of two beam models that appear in the literature, which are used to
simulate slender members subjected to large translations and rotations. Another contribution
of this work is the extension of the existing multi-body dynamics code hGAST, with regard
to its structural dynamics part. The original version (Riziotis, Chaviaropoulos, and Voutsi-
nas, 1996; Riziotis and Voutsinas, 1997; Riziotis, 2003) used linear Euler-Bernoulli beam
theory. Since then hGAST went through several revisions and extensions. Inside the course
of the present thesis, a geometrically non-linear beam modeling is integrated into the hGAST
software that analyzes the coupled wind turbine system, for capturing the behaviour of the
blades imposed to wind loading. Considering the presence of large rotations as the degrees
of freedom of the system, the beam stiffness and inertia, and the solution procedure (the time
integration algorithm) should be consistent to the rotation manifold SO(3). Therefore, the
issues that had to be investigated are:

1. The beam models that are available in the literature, and also appropriate to capture
well the behaviour of the wind turbine blades; they undergo large translations and
rotations, but the strains are kept small.

2. The time integration algorithms that are available in the literature, and also appropriate
for geometrically non-linear problems with large rotations.

3. The extension of the multi-body dynamics code hGAST regarding the above two is-
sues: the geometrically-exact beam modeling and the consistency to the manifold
SO(3) of the time integration scheme.

Regarding the statics of beams, a comparative study between two models on the geomet-
rically non-linear beam modeling is presented. The kinematics refer to the essential the-
ory, known also as the Special Theory of Cosserat Rods (Antman, 2005). A degenerate-
continuum beam model (Dvorkin, Onate, and Olivier, 1988; Bathe, 1996) (that uses the
working pair Green-Lagrange strains/ second Piola-Kirchhoff stresses) is reduced to 1D af-
ter the integration in the cross-sectional domain has been performed analytically (see also
Chen and Agar, 1993 where the same concept is followed), and the derived model is then
compared to the 1D beam model that uses the SR strains and resultant stresses (Simo and
Vu-Quoc, 1986a; Jelenić and Crisfield, 1999; Reissner, 1981) (which has been derived from
the working pair displacement gradients/ first Piola-Kirchhoff stresses). To have a clear com-
parison between the GL and the SR beam model the idea to formulate the first one (Dvorkin,
Onate, and Olivier, 1988; Bathe, 1996) in 1D arose naturally. Also, various computational
advantages arise through the use of the 1D formulation as compared to the 3D formulation
(Chen and Agar, 1993). The two beam models, the SR and the GL beam models, that have
been developed starting from different three-dimensional working pairs, are compared, us-
ing an iterative and an invariant formulation. The numerical, strain invariant, treatment of
the rotational unknowns that has been originally proposed in Jelenić and Crisfield, 1999 is
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described on the manifold SO(3). This geometric illustration given on the rotation manifold
SO(3) clarifies the way of creating an invariant 3D beam element with large rotations: one
should refer to the same tangent space on SO(3) when interpolation is performed. The beam
models are used in a 3D geometrically non-linear analysis of a shear-deformable beam with
rigid cross-sectional plane. Note that shearing is included as a first refinement of the classical
Euler-Bernoulli theory (Yu et al., 2002b). Planar and spatial examples are solved, in order to
examine the performance of the beam models.
The novel aspects of this work are: 1) the 1D formulation of the beam model which uses
the GL strain tensor components so that is comparable to the SR beam model, 2) the demon-
stration of the numerical behaviour of this 1D model after incorporating an invariant update
procedure described on the rotation manifold SO(3), and 3) the comparison of the different
strain measures of the two beam models through the use of numerical examples.

Regarding the dynamics part of this work, the geometrically exact SR beam model is in-
corporated into the multi-body aeroelastic code hGAST for the analysis of the wind turbine
system. The original model is extended to general-shaped cross sections with inhomoge-
neous and anisotropic material. The default modeling option for highly flexible wind turbine
blades in hGAST is the SB modeling combined with the linear Timoshenko beam element
(Manolas, Riziotis, and Voutsinas, 2015), while in the past the second order Euler-Bernoulli
beam model, in which terms up to second order are retained (Hodges and Dowell, 1974), and
the fully non-linear shear deformable beam derived from 3D continuum with Green-Lagrange
strains and second Piola-Kirchhoff stresses (Dvorkin, Onate, and Olivier, 1988) were studied
(Manolas, Riziotis, and Voutsinas, 2015; Panteli, Manolas, and Spiliopoulos, 2016). In the
SB context, large deflections and rotations gradually build up, whereas non-linear dynamics
are introduced by imposing to each sub-body the deflections and rotations of preceding sub-
bodies as rigid body, non-linear motions. In this work, hGAST is being further improved
with the addition of a higher fidelity beam model, i.e., the geometrically exact SR beam
model, Simo, 1985; Simo and Vu-Quoc, 1986a. The improvement concerns the fact that as
non-linearities become more pronounced, the number of sub-bodies used in the multi-body
analysis needs to increase in order to accurately capture these effects, while the SR beam
model provides the same level of accuracy without increasing the spatial discretization. In
this regard, cases of excessive deflections of lightweight and highly flexible blades can be
dealt with, without needing to consider an overwhelming number of sub- bodies to achieve
the desired level of accuracy. The strain-invariant formulation presented in Jelenić and Cr-
isfield, 1999 and also investigated in Panteli and Spiliopoulos, 2020 is considered using the
same implementation details as in Jelenić and Crisfield, 1999. The tool is verified in statics
and dynamics against well-known benchmark examples that undergo large translations and
rotations. In statics, the verification is performed against the 45-degree cantilever subjected
to a fixed load at the tip (Bathe and Bolourchi, 1979), while the generality of the cross-section
is verified according to Bagherpour et al., 2018. In dynamics, the results presented herein
provide a comparison between the geometrically exact and the SB modeling in aeroelastic
computations for the DTU-10MW RWT. The comparisons between the two techniques, the
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geometrically exact and the multi-body approaches, result to the conclusion that both models
can predict the geometric non-linearity sufficiently, except from the torsion moment at the
root, and the angle of attack at the tip of the blade. It is shown that many sub-bodies are
necessary to predict the same deformation state as with the SR model. The novel aspects of
this work are the following:

1. A thorough assessment of the capabilities of the two most popular modeling options
amongst Wind Energy community is performed. The two options have been developed
within the same tool, as opposed to other similar works as in Pavese et al., 2015. The
obvious advantage of the above approach is that any deviations or uncertainties related
to the numerical details of the models (e.g., time integration scheme) or to modeling as-
sumptions (e.g., modeling of lumped properties such as the generator inertia or nacelle
mass) are eliminated.

2. The SR model is enriched with additional (non-diagonal) stiffness terms that account
for the generality of the cross-sectional shape, as well as for the heterogeneity and the
anisotropy of the material.

3. The SR model is enriched with extra inertial terms arising from the multi-body dynam-
ics formulation adopted to describe the coupled dynamic behavior of the wind turbine
system. Inertial terms due to the rigid-body or elastic motion of the previous bodies
are introduced in the geometrically exact beam model.

1.4 Outline

The present work is divided into three main parts. The first part (chapter 3) includes the
study of the two geometrically non-linear beam models theory in statics, the SR and the
GL beam models theory, and the comparison between them. Also, the invariant formulation
originally presented in Jelenić and Crisfield, 1999 is proposed to be incorporated into the GL
beam model in order to be consistent with the rotation manifold SO(3) at the implementation
level. The second part (chapter 4) includes the study of the two Newmark-type time integra-
tion algorithms in rigid-body dynamics; 1) the Simo’s & Vu-Quoc’s (Simo and Vu-Quoc,
1988), and 2) the Mäkinen’s (Mäkinen, 2001), together with Cardona’s & Géradin’s (Car-
dona and Géradin, 1988). In addition, the first algorithm is then used in dynamics of beams.
The third part (chapter 5) includes the application of the SR beam model and the Simo’s &
Vu-Quoc’s time integration algorithm in dynamics of the wind turbine system. Firstly, their
implementation into the multi-body dynamics code hGAST is verified against benchmark
examples, and secondly, the DTU-10MW RWT is analyzed.
Analytically, the thesis outline is as follows:
In chapter 2, some mathematical preliminaries on Lie groups are presented. The properties
of the rotation manifold SO(3) that are essential to develop a consistent to the configuration
step-by-step analysis for the beam element are given.
In chapter 3, the theory for the two geometrically non-linear beam models that are inves-
tigated in the present work, the SR and the GL beam models, is presented; a comparison
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between them is made regarding the strains that they use. The question that is given an effort
to be answered in this chapter, is the reason that the SR beam model prevails in the geo-
metrically non-linear regime with small strains against the GL beam model. Moreover, the
iterative and invariant implementations inside the framework of displacement-based finite el-
ements are explained, while the invariant formulation is also tested for the GL beam model
(the original work on the invariant formulation of the SR beam model is given in Jelenić and
Crisfield, 1999). These implementations refer to the way of treating the rotation parameters
inside the finite element framework. The superiority of the invariant formulation is shown
for both the SR and GL models through benchmark numerical examples.
In chapter 4, the two time integration algorithms, the Simo’s & Vu-Quoc’s and the Mäkinen’s
algorithms, for rigid-bodies with large 3D rotations, are investigated in order to use one of
them into the dynamics of beams. The superiority of the Simo’s & Vu-Quoc’s scheme regard-
ing stability, and the superiority of the Mäkinen’s scheme regarding accuracy are depicted in
the response of the well-known Lagrange’s top example. Moreover, the dynamics of beams
is presented for the SR beam model using the Simo’s & Vu-Quoc’s time integration scheme
for large rotations.
In chapter 5, the incorporation of the SR beam model and the modification of the Newmark-
type time integration algorithm for large rotations into the hGAST software is developed.
The coupled wind turbine system is analyzed under a uniform and stochastic inflow for the
onshore version of DTU 10-MW RWT.
In chapter 6, the overview of this work is presented, together with the ideas for further re-
search.
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Chapter 2

Mathematical preliminaries on Lie
groups

2.1 Introduction

The geometrically exact beam theory involves manipulation and computation in the 3D ge-
ometry. As it is clearly noted out in Eade, 2017, without a coherent framework for repre-
senting and working with 3D transformations these tasks are cumbersome. Transformations
must be composed, inverted, differentiated and interpolated. Lie groups address all these op-
erations in a thorough way. Lie theory was developed by the mathematician Marius Sophus
Lie in the 19th century. The theory is based on continuous groups; here the focus lies on
matrix Lie groups, i.e., groups whose elements are all matrices. From them the matrix Lie
group, SO(3), that corresponds to proper rotations in 3D is of interest.
In the present work, the configuration of the beam subjected to large rotations is R3×SO(3),
where SO(3) means the Special Orthogonal Group, the geometric structure of which is a
manifold. Geometric or structure preserving methods became important in the numerical
analysis from 1990’s. Along this line, the consistent to the geometry derivation of the beam
model, is important for its efficiency. [In several research works like in Sonneville, Cardona,
and Brüls, 2014; Gaćeša, 2015, instead of using the previous composition to describe the
kinematics, the Special Euclidean Group denoted by SE(3) is used, that is inspired by screw
theory, and expresses a general deformation map that "includes" the previous two, i.e. the
vector space R3 and the manifold SO(3), in one, i.e. the manifold SE(3).]
In the following, the properties of the SO(3), a) as a manifold, which is also differentiable

and b) as a matrix group, are presented. The sets that are in line with the above two def-
initions are called matrix Lie groups. Their description given in this chapter is necessary
to understand the numerical issues of large rotations. Among the literature given that is di-
rected to elementary issues of Lie groups is Hall, 2000, while a book directed to applications
in physics is Gilmore, 1974. In Mäkinen, 2008 and the references reported therein, one can
also read about the mathematical background of 3D rotations.
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2.2 The matrix Lie group SO(3)

The terminology SO(3) given to the rotation group means the Special Orthogonal group. In
a general case one could see it as SO(n); in the present work n = 2 or n = 3, meaning the
group of rotations in 2D or 3D, respectively. Focusing from now on to SO(3), its name is
consistent with its properties as follows

SO(3) = {Λ : R3 → R3‖ΛTΛ = I3, det(Λ) = 1} (2.1)

where I3 is the identity matrix in 3D and Λ is a 3 × 3 real matrix; that is a linear transfor-
mation of R3 which preserves the norm |(x, y, z)|2 = x2 + y2 + z2. The first property refers
to the orthogonality, that is also proven by the orthonormality of the column vectors that
consistitute the matrix Λ (Hall, 2000), i.e.,

3∑
l=1

ΛljΛlk = δjk, 1 ≤ j, k ≤ 3 (2.2)

where δjk is the Kronecker delta that is equal to 1 if j = k and equal to 0 if j 6= k. Indeed, in
the beam theory models presented in the following chapters, the rotation matrix Λ contains
in its columns the cross-section directors that are unit and normal to each other. The second
property refers to the characterization special, which means the proper rotation. If the corre-
sponding determinant is −1, then the matrix expresses a reflection, not a rotation. The group
that contains both rotations and reflections in 3D is the orthogonal group O(3), without the
’S’ in front of its name. Thus, SO(3) is a sub-group of the group O(3). The set of rotation
matrices SO(3) in eq. (2.1) is a matrix Lie group. Every matrix Lie group is a Lie group
which means that (Mueller, 2013)

- SO(3) is a differentiable (smooth) manifold, and simultaneously,

- SO(3) is a group

Without using formal mathematical terms, but a conceptual approach, the above two defini-
tions are given. From Manifold; Differentiable manifold,

FIGURE 2.1: The manifold M as a
union of charts U .

"Manifold is a topological space that locally resembles
Euclidean space near each point. As it is depicted in
fig. 2.1, any manifold M can be described by a collec-
tion of charts U , also known as an atlas."
"Differentiable manifold is a type of manifold that is
locally similar enough to a vector space to allow one
to do calculus. One may apply ideas from calculus
while working within the individual charts, since each
chart lies within a vector space to which the usual rules
of calculus apply. If the charts are suitably compatible
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(namely, the transition from one chart to another is dif-
ferentiable), then computations done in one chart are
valid in any other differentiable chart."

As far as the group definition is concerned, in Hall, 2000, one can read the definitions and
some examples of groups. SO(3) as a group is the set of rotations accompanied by the
product operation of the group, which is the matrix multiplication operation (or composition).
Given the set and the operation, there are four properties that must be satisfied for having a
group. These are:

1. Closure: The product of two elements of SO(3) is again an element of SO(3).

2. Associativity: For all Λ,R,A ∈ SO(3),

Λ (RA) = (ΛR)A (2.3)

3. Existence of an identity: There exists an element I3 in SO(3) such that for all Λ ∈
SO(3),

ΛI3 = I3Λ = Λ (2.4)

4. Existence of inverses: For all Λ ∈ SO(3), there existsR ∈ SO(3),

ΛR = I3 (2.5)

Since ΛA 6= AΛ for all Λ,A ∈ SO(3), the group is said to be non-commutative, or non-

abelian (Hall, 2000).

Collecting the properties of the differentiable manifold and the group, the rotation group
SO(3) as a real Lie group is defined as follows (Lie group; Hall, 2000): SO(3) as a real
Lie group is a real smooth manifold in which the group operation (the matrix multiplication
operation in this case) and inversion are smooth maps. Note that, while Lie groups are trans-
formation groups acting on manifolds, matrix Lie groups are linear transformations on vector
spaces (abelian groups that act on free vectors). For example, SO(3) acts on R3 as follows
(Mueller, 2013)

y = Λx,Λ ∈ SO(3),x ∈ R3

2.3 Parametrization of rotations

As it is depicted in fig. 2.2, rotations can be described by frame transformations (Mueller,
2013). The frame V that is fixed onto the body is called material and is moving together
with the body, while the frame e is the well-known inertial frame. LetXV = (ξ, η, ζ) be the
coordinates measured for a point of the body in the frame V , andXe = (x, y, z) be the coor-
dinates measured for the same point in the frame e. The relation between them is written as
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FIGURE 2.2: Transformation Λ from
the body-fixed V to the spatial frame

e.

Xe = ΛXV (2.6)

There are a variety of ways to represent rota-
tions, e.g., by orthogonal matrices with determi-
nant 1, by axis and rotation angle, by quater-
nions, as a sequence of three rotations (Euler an-
gles). In the present work, the axis-angle representa-
tion and the sequence of three rotations are of inter-
est.

2.3.1 Axis-angle representation

FIGURE 2.3: Axis - angle representa-
tion defined by the rotation vector θe.

The axis-angle representation of a rotation param-
eterizes a rotation in a 3D Euclidean space us-
ing two quantities: the unit vector e indicat-
ing the direction of the axis of rotation, and
the angle θ describing the magnitude of the
rotation about the axis (Axis-angle representa-

tion). In fig. 2.3, this type of representation
is shown, that is defined by the rotation vector
θe.

2.3.2 The Euler angles

The Euler angles, that have been introduced by Leonhard Euler, are three angles describing
the orientation or rotation of a body w.r.t. a fixed coordinate system. The three elemental ro-
tations may be extrinsic (rotations about the axes of the original coordinate system, which is
assumed to remain stationary), or intrinsic (rotations about the axes of the rotating coordinate
system, attached to the moving body, which changes its orientation after each elementary ro-
tation). In Argyris, 1982, there is an analysis of the procedure that is followed to elegantly
result to a transformation or rotation matrix in the case of multiple rotations about fixed or
follower axes. In the present work, the Euler angles in an intrinsic sense are used. The ele-
mentary rotations (that define 1-parameter subgroup of SO(3)) form the following matrices
about the 3 spatial axes,

Λ1 =

1 0 0

0 cosa1 −sina1

0 sina1 cosa1

 ; Λ2 =

 cosa2 0 sina2

0 1 0

−sina2 0 cosa2

 ; Λ3 =

cosa3 −sina3 0

sina3 cosa3 0

0 0 1


(2.7)
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One possibility to get the rotation matrix, that is depicted in fig. 2.2, is the following

Λ = Λ2Λ3Λ1 (2.8)

The above order of applying the rotations, taking into account that the elementary rotations
are performed about follower axes, means that e.g. in fig. 2.4, the cross-section of a beam
that is located along the ξ axis is firstly subjected to twist about the ξ axis (expressed by
Λ1), then it is subjected to bending about the ζ axis (expressed by Λ3), and finally it is
subjected to bending about the η axis (expressed by Λ2). In fig. 2.4, this concept is shown,
assuming that Ωξηζ is the material coordinate system and Oxyz is the spatial coordinate
system. Of course, this is not the only possibility to form a transformation matrix based on
Euler angles; the order is chosen depending on the physics of the problem that is analyzed.
The non-uniqueness of the resulting matrix is a disadvantage of the specific representation of
rotations.

(A) Rotation a1
about the ξ axis.

(B) Rotation a3
about the ζ′ axis.

(C) Rotation a2
about the η′′ axis.

FIGURE 2.4: Derivation of the transformation matrix.

2.4 Tangent space and Lie algebra of SO(3)

FIGURE 2.5: The tan-
gent space of a single
point x on a sphere.
A vector in this tangent
space represents a pos-
sible velocity at x (Tan-

gent space).

"In mathematics, the tangent space of a manifold generalizes to
higher dimensions the notion of tangent planes to surfaces in three
dimensions and tangent lines to curves in two dimensions. In dif-
ferential geometry, one can attach to every point x of a differen-
tiable manifold a tangent space - a real vector space that intuitively
contains the possible directions in which one can tangentially pass
through x. The elements of the tangent space at x are called the tan-
gent vectors at x. This is a generalization of the notion of a vector,
based at a given initial point, in an Euclidean space. The dimension
of the tangent space at every point of a connected manifold is the
same as that of the manifold itself. For example, if the given mani-
fold is a 2 - sphere, then one can picture the tangent space at a point
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as the plane that touches the sphere at that point and is perpendicu-
lar to the sphere’s radius through the point, fig. 2.5." (Tangent space)

Lie algebra (Mueller, 2013)
Restricting attention to matrix Lie groups simplifies the definition of the Lie algebra. To
define the Lie algebra, there is the need to define the Lie bracket first. Performing a Taylor
expansion of the rotation matrix Λ (eq. (2.8)) in terms of a = (a1, a2, a3), the following
expression is derived

Λ(a) = Λ(0) +
∑
i

aiXi +O
(
a2
)

(2.9)

Xi are called the generators of the Lie group SO(3). If c and c′ are two rotation vectors so
that Λ(c) = Λ(a)Λ(β) and Λ(c′) = Λ(β)Λ(a) then

Λ(a)Λ(β) = Λ(c) ≈ Λ(0) +
∑
i

ciXi (2.10)

Λ(β)Λ(a) = Λ(c′) ≈ Λ(0) +
∑
i

c′iXi (2.11)

The difference between these two matrices is written as

Λ(a)Λ(β)−Λ(β)Λ(a) =
∑
i,j

aiβj (XiXj −XjXi) =
∑
i

(
ci − c′i

)
Xi (2.12)

The matrix commutator in eq. (2.12) defines the Lie bracket on SO(3)

[Xi,Xj ] := XiXj −XjXi =
∑
k

ckijXk with ckij :=
(ck − c′k)
aiβj

(2.13)

ckij are the structure constants of the Lie algebra so(3) of the Lie group SO(3); ckij :=

εkij ,where εkij is the Levi-Civita symbol.

FIGURE 2.6: Geometric depiction of
the Lie algebra so(3) and the exponen-
tial map of the skew-symmetric matrix

A.

Definition
A finite-dimensional Lie algebra g is a finite-

dimensional vector space equipped with a Lie bracket

[·, ·] so that (Mueller, 2013)

1. X,Y ∈ g↔ [X,Y ] ∈ g

2. [X, aY + bZ] = [X, aY ] + [X, bZ] , a, b ∈
K = R,C (bilinearity)

3. [X,Y ] = − [Y ,X] (skew symmetry)

4. [X, [Y ,Z]] + [Y , [Z,X]] + [Z, [X,Y ]] = 0

(Jacobi identity)

Regarding the Lie algebra g of a Lie group G, this can be thought as the tangent space to
the identity element of G. For example, in the case of SO(3), the Lie algebra so(3) can be
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depicted as the tangent plane TI3SO(3) to the identity element I3 of SO(3) (fig. 2.6). The
generators of so(3) are the derivatives of the elementary rotation matrices (eq. (2.7)) about
each axis, evaluated at the identity,

G1 :=
ϑ

ϑa
Λ1|a=0 =

0 0 0

0 0 −1

0 1 0

 = ê1 (2.14)

G2 :=
ϑ

ϑa
Λ2|a=0 =

 0 0 1

0 0 0

−1 0 0

 = ê2 (2.15)

G3 :=
ϑ

ϑa
Λ3|a=0 =

0 −1 0

1 0 0

0 0 0

 = ê3 (2.16)

Since,
[êi, êj ] = ̂̂eiej = êi × ej

R3 is a Lie algebra with cross product as Lie bracket, isomorphic to so(3). Moreover,
eqs. (2.14) to (2.16) express the basis of so(3), thus, an element of so(3) can be represented
as a linear combination of the generators:

ω ∈ R3 7→ ω1G1 + ω2G2 + ω3G3 ∈ so(3) (2.17)

Therefore, to define the Lie algebra so(3) of the matrix Lie group SO(3), that is the linear
space of second order skew symmetric tensors (Romero, 2004)

so(3) := {Ω : R3 → R3‖Ω +ΩT = 0} (2.18)

Also, as it is shown in eq. (2.17), every skew tensorΩ has a unique associated vector,ω ∈ R3

called its axial vector, such that for all x ∈ R3 (Romero, 2004)

Ωx = ω × x (2.19)

where ′×′ denotes the vector product in R3. The general form ofΩ is

Ω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.20)

The matrices in the Lie algebra are not themselves rotations; the skew-symmetric matrices are
derivatives. An infinitesimal rotation matrix has the form I3 +Ωdθ, where dθ is vanishingly
small. In this case, the order in which infinitesimal rotations are applied is irrelevant. In other
words, the multiplication of infinitesimal rotation matrices is commutative.
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2.5 The exponential mapping - from Algebra to Group

In the theory of Lie groups, the exponential map is a map from the Lie algebra g to the Lie
groupGwhich allows to recapture the local group structure from the Lie algebra, Exponential

map (Lie theory), i.e.
exp : g→ G (2.21)

In the case of the matrix Lie groups, like the SO(3) rotation group, the definition of the
exponential map coincides with the matrix exponential that is given by the following series
expansion (see fig. 2.6 for a geometric illustration)

expA =

∞∑
k=0

Ak

k!
(2.22)

To compute the exponential map from so(3) to SO(3) without computing the full matrix
exponential, the Rodrigues’ rotation formula is used. This is the most important relation in
the 3D large rotations regime and is given as follows

Given a vector α and its norm α = ‖α‖ =
√
α2

1 + α2
2 + α2

3, the Rodrigues’ formula reads

R = I3 +
sinα

α
A+

1− cosα
α2

A2 (2.23)

where A is the 3 × 3 skew-symmetric matrix α̂ of the vector α. The properties of the
exponential mapping are collected in the following (Mueller, 2013)

• exp0 = I3

• expA is invertible, and (expA)−1 = exp(−A)

• exp(a+ b)A = exp aA exp bA

• if the Lie groupG is commutative (this is not the case for the SO(3)), i.e. AB = BA,
then exp(A+B) = exp(A) exp(B)

• if C is invertible, then C (expA)C−1 = exp
(
CAC−1

)
Verification of the Rodrigues’ formula

To verify that the RHS of eqs. (2.22) and (2.23) are identical, the trigonometric functions
in eq. (2.23) are expanded into series in α

R = I3 +

(
1− α2

3!
+
α4

5!
− ...+ (−1)n

α2n

(2n+ 1)!
± ...

)
A

+

(
1

2!
− α2

4!
+
α4

6!
− ...+ (−1)n

α2n

(2n+ 2)!
± ...

)
A2 (2.24)
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It is observed that

A3 = −α2A A4 = −α2A2 (2.25)

A5 = +α4A A6 = +α4A2 (2.26)

leading to the recurrence formulae

A2n−1 = (−1)n−1α2(n−1)A A2n = (−1)n−1α2(n−1)A2 (2.27)

By applying eq. (2.27) in eq. (2.24), the eq. (2.22) is deduced into the series in A (Ar-
gyris, 1982).

Remark on the implementation of the Rodrigues’ formula

Both functions of α appearing in eq. (2.23) have removable singularities at α = 0.
This should be taken into account, by e.g. including a test regarding the smallness of α
relative to a tolerance and replacing these functions by some truncated Taylor expansions
for small α (eq. (2.24)).

In case of using the axis/angle representation (fig. 2.3), and taking into account the generators
of so(3) in eqs. (2.14) and (2.16) the rotation matrix is given as follows

Λ(θe) = exp(θG1 e1 + θG2 e2 + θG3 e3) (2.28)

In case of using the 3 Euler angles, i.e. the 3 consecutive rotations a1, a2, a3 parametrization
(fig. 2.4), the rotation matrix is given by the matrix multiplication of 3 consecutive exponen-
tial mappings, which are

Λ1 = exp(a1G1); Λ2 = exp(a2G2); Λ3 = exp(a3G3) (2.29)

Thus,
Λ(a1, a2, a3) = exp(a2G2) exp(a3G3) exp(a1G1) (2.30)

2.6 Actions of the Lie group SO(3)

The compound rotation composed of successive rotations is also a rotation itself and induces
a Lie group structure with an underlying Lie algebra (Mäkinen, 2008). This can be met
in an iterative/incremental analysis where the corresponding iterative/incremental rotation is
applied on a specific orientation to give a new orientation. This composition of rotations can
be performed using two ways, taking advantage of the left and right actions of the Lie group.

Left action or Left translation: LΛ
(
∆Λmat.

)
= Λ∆Λmat. = Λexp

(
Θ̂
)

(2.31)

Right action or Right translation: RΛ
(
∆Λspat.

)
= ∆Λspat.Λ = exp

(
θ̂
)
Λ (2.32)
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(A) Left translation on SO(3).

(B) Right translation on SO(3).

FIGURE 2.7: Left and Right translations on SO(3).

where the infinitesimal rotation expressed by∆Λ is applied in a material and a spatial setting,
respectively. In the first case, the iterative/incremental material rotation vector, Θ, with
respect to the base point Λ ∈ SO(3) is used, while, in the second case the corresponding
spatial counterpart, θ, is used. The left action means that the orientationΛ is imposed on the
exponential map of the rotation vectorΘ, while the right action means that the orientationΛ
is employed first, and the exponential map of the rotation vector θ follows. This concept is
geometrically illustrated in fig. 2.7 during the time step [n, n+ 1] of a step by step analysis.
The manifold SO(3) is depicted together with the tangent spaces TI3SO(3), TΛnSO(3),
TΛn+1SO(3), either left or right, at the base points I3,Λn,Λn+1 ∈ SO(3), respectively. The
skew-symmetric matrices of the incremental rotation vectors, the material Θ and the spatial
θ rotation vectors, belong to the tangent spaces at Λn that changes in each incremental step.
The figures follow the presentation in Mäkinen, 2001; Mäkinen, 2008. The fig. 2.7a refers to
the material setting. It shows the observer (in blue color) to be in motion together with the
object, while he/she observes the change of the object’s orientation (or his/her orientation)
relative to the fixed (in green color) orientation. The rotation measured by the observer is
illustrated by the arrow that starts from the observer’s orientation (or object’s orientation)
(that is changing) and ends at the fixed orientation. The fig. 2.7b refers to the spatial setting.
It shows the observer (in green color) to be fixed at space and observes the object (in blue
color) that is rotating. The rotation measured by the observer is illustrated by the arrow that
starts from the observer’s orientation (that is fixed) and ends at the object’s orientation (that
is changing).
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The other two actions (the so-called inner automorphism and adjoint transformation, Mäki-
nen, 2008; Mueller, 2013) of the Lie group SO(3) are, in essence, the following very useful
relations:

∆Λspat. = Λ∆Λmat.Λ
T (inner automorphism) (2.33)

θ̂ = ΛΘ̂ΛT (adjoint transformation) (2.34)

Finally, the last action, the so-called adjoint action of SO(3) on its algebra results to a very
useful expression that is

AdΛ

(
θ̂
)

= Λθ̂ΛT = Λ̂θ (2.35)
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Chapter 3

Beam theory with large rotations and
its Finite Element formulation

3.1 Introduction

In this chapter, the main core of the thesis is presented. The two beam models that have been
investigated are presented in detail, and the differences between them are given. The first
model is called the Green-Lagrange (GL) model (Dvorkin, Onate, and Olivier, 1988; Bathe,
1996), while, the second model is called the Simo-Reissner (SR) model (Simo, 1985). Their
name refers to the type of strains they use. In the first case, a generalized axial/shear strain
and twist/bending vector is derived from the 3D GL strain tensor and its conjugate working
pair. In the second case, the SR generalized axial/shear strain and twist/bending vector is
used, which is derived from the 3D deformation gradient tensor and its conjugate working
pair. After the presentation of the theoretical analysis of the beam models, their numerical
implementation issues are given. These issues mainly concern the rotational degrees of free-
dom which ’inhabit’ onto a differentiable manifold in space, that has the resemblance to an
Euclidean space just in a small neighborhood of it. The mathematical background on Lie
groups described in chapter 2 is used for developing the displacement-based finite element
formulation of the beam models. A further manipulation is performed in linearization and
discretization procedures in order to have a strain-invariant implementation. To obtain the
so-called configuration-dependent shape functions resulting to the strain-invariance under a
rigid-body rotation of the element (Jelenić and Crisfield, 1999), the Lie algebra is performed
in the same tangent plane at each iteration of the incremental step. This technique is used for
the first time in the GL beam model and it is shown that it functions the same well as in the
SR beam model. Finally, the numerical results also include the iterative implementation, i.e.
the original implementation technique provided in Simo, 1985, to emphasize the superiority
of the invariant technique. The benchmark examples that are solved verify the integrity of
the code for both the non-linear beam models in the statics regime.
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3.2 Kinematics

The kinematics of a prismatic beam member, either curved or not, is given. The member is
decomposed into segments which are straight and have a double-symmetric compact cross-
section; any general shape may be used within the following assumptions, though, given that
the cross-sectional properties are defined at the outset. To simplify the comparative study
between the SR and the GL beam models, the properties associated with the non-symmetry
of the cross-section are not presented in this case. The kinematic assumptions are: 1) The
cross-section of the beam remains a rigid plane during deformation (Bernoulli hypothesis),
hence warping is not included. 2) Shear deformation is taken into account, and is assumed
constant in the cross-section as a consequence of the previous non-warping assumption. 3)
Small strains are assumed. The reference bases used in kinematics are (fig. 3.1)

• ej , j = 1− 3, is the fixed spatial basis of an orthogonal Cartesian coordinate system.

• Vi(ξ), i = 1 − 3, is the orthonormal moving basis, attached to each cross-section,
where ξ is the length variable along the line of the beam centroids (beam axis); η, ζ are
the cross-section coordinates measured in the system defined by the V frame. In the
deformed configurations, for instance, at time t + ∆t, the vector t+∆tV1 is normal to
the cross-section, while the vectors t+∆tV2, t+∆tV3 are collinear to its principal axes.
Since shear deformation is taken into account, the vector t+∆tV1 is not necessarily
tangent to the beam centroidal line.

FIGURE 3.1: Initial and deformed configurations of the beam.

3.2.1 Initial and deformed configurations

The cross-section orientation is expressed via the orthogonal transformation ξ → Λ(ξ) ∈
SO(3), SO(3) is the special orthogonal group, thus, the components of the moving basis
vectors 0V and t+∆tV at the initial and deformed at t+∆t states, respectively, are given by

0Vi(ξ) = 0Λji(ξ) ej
t+∆tVi(ξ) = t+∆tΛji(ξ) ej , i, j = 1− 3 (3.1)
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The configuration at t in fig. 3.1 appears just for completeness, since it is a converged state
in the numerical procedure followed in the present work.
The position vectors R and t+∆tr of an arbitrary material particle (ξ, η, ζ) of the beam are
given by

R(ξ, η, ζ) = R0(ξ) + 0Λ(ξ)
{

0 η ζ
}T

t+∆tr(ξ, η, ζ) = t+∆tr0(ξ) + t+∆tΛ(ξ)
{

0 η ζ
}T

(3.2)

where T is the transposition symbol, R0(ξ) and t+∆tr0(ξ) are the position vectors of the
beam reference point at the initial and deformed states, respectively, while the corresponding
orientation matrices, 0Λ and t+∆tΛ, are given by (see also eq. (2.23) where a similar form
of the same formula can be used)

Λ(ξ) = exp(α̂(ξ)) = cosαI3 +
sinα

α
α̂+

1− cosα
α2

α⊗α (3.3)

which takes as input either the orientation vector 0α, that expresses the initial cross-sectional
angles, or the orientation vector t+∆tα, that expresses the deformed cross-sectional angles at
t+∆t; I3 is the 3×3 identity matrix, α is the Euclidean norm of vectorα, α̂(ξ) is the skew-
symmetric matrix formed by the relation α̂(ξ) = −eijk α

keie
T
j ; eijk is the permutation symbol

and i, j, k = 1 − 3 (see chapter 2). The above formula is the well-known Euler-Rodrigues
formula (details of its derivation are given e.g. in Crisfield, 1997; Argyris, 1982).

The displacement vector t+∆tu of an arbitrary material particle (ξ, η, ζ) at t+∆t is equal to
the difference between the expressions in eq. (3.2), i.e.

t+∆tu(ξ, η, ζ) = t+∆tu0(ξ)+η
(
exp(t+∆tθ̂)− I3

)
0V2(ξ)+ζ

(
exp(t+∆tθ̂)− I3

)
0V3(ξ)

(3.4)
with components ui; i = 1− 3 w.r.t. the global basis e and uξ, uη, uζ w.r.t. the initial cross-
sectional basis 0V . In addition, t+∆tu0(ξ) = t+∆tr0(ξ) − R0(ξ) = u0i ei = u0ξ

0V1 +

u0η
0V2 + u0ζ

0V3, expresses the translation of the beam centroid, while (exp(t+∆tθ) −
I3) 0V2 = t+∆tV2(ξ) − 0V2 and (exp(t+∆tθ) − I3) 0V3 = t+∆tV3(ξ) − 0V3 express the
rotation between the initial and deformed states of the cross-section assigned to the beam
centroid; exp(t+∆tθ̂) with t+∆tθ = θi ei = θξ

0V1 + θη
0V2 + θζ

0V3 is given by eq. (3.3)
(superscript t+∆t has been omitted from the above components for convenience).

Along the above lines, the three-dimensional problem has been reduced to the problem of
determining 6 one-dimensional kinematic parameters (3 position components of the reference
line and 3 orientation components of the cross-section). The abstract configuration space Φ

of the rod can be formulated as (0L is the initial length of the beam):

Φ = {(r0,Λ), r0 : (0, 0L)→ R3,Λ : (0, 0L)→ SO(3)} (3.5)
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3.2.2 Perturbation of the deformed configuration at t+∆t

During the incremental/ iterative Newton-Raphson procedure, a perturbation of the unknown
configuration at t+∆t has to be performed, given that the configuration at t is known. Thus,

- The perturbed position of the centroidal line relative to t+∆tr0(ξ) is

t+∆t,εr0(ξ) = t+∆tr0(ξ) + ε δu0(ξ) (3.6)

where δu0(ξ) = δu0iei = δu0ξ
0V1 + δu0η

0V2 + δu0ζ
0V3; i = 1− 3 is a vector field,

interpreted, for ε > 0, as superposed infinitesimal displacement onto the centroidal
line (Simo and Vu-Quoc, 1986a).

- The perturbed orthogonal transformation relative to t+∆tΛ(ξ) is

t+∆t,εΛ(ξ) = exp
(
t+∆tθ̂(ξ) + εδθ̂(ξ)

)
0Λ(ξ) (3.7)

t+∆t,εΛ(ξ) = exp (εδΨ(ξ)) exp
(
t+∆tθ̂(ξ)

)
0Λ(ξ) (3.8)

where δθ̂(ξ) and δΨ(ξ) are skew-symmetric tensor fields, interpreted, for ε > 0, as
superposed infinitesimal rotation vector and spin, respectively, onto the moving frame
(Simo and Vu-Quoc, 1986a). Using eq. (3.8), and taking into account eq. (3.1), the
cross-section directors t+∆t,εVi are written as

t+∆t,εVi = exp(εδΨ(ξ))exp(t+∆tθ̂(ξ)) 0Vi(ξ); i = 1− 3 (3.9)

3.3 Simo-Reissner beam model

The widely known Simo-Reissner (SR) beam model is derived from the spatial-material
working pair quantities: the displacement gradients and the 1st Piola-Kirchhoff stresses. In
the following, the independent variable ξ is omitted from the RHS, for convenience. Also, (,)
denotes the spatial derivative relative to the ξ coordinate.

3.3.1 1D strain measures and stress resultants

The consistent 1D strain vectors naturally arise using the extended polar decomposition of
the deformation gradient tensor that is presented in Auricchio, Carotenuto, and Reali, 2008,
together with the principle of virtual work in terms of the 1st Piola-Kirchhoff stress tensor
and the variation of the deformation gradient tensor. The material axial/shear strain vector,
Γ (ξ), is given by Simo, 1985; Simo and Vu-Quoc, 1986a

Γ (ξ) = ΛT r0,ξ −


1

0

0

 (3.10)
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where Λ is the orientation matrix at the deformed state. The material twist/bending strain
vector, K(ξ), is given by the axial vector of the skew-symmetric tensor K̂(ξ) (Simo, 1985;
Simo and Vu-Quoc, 1986a)

K̂(ξ) = ΛTΛ,ξ (3.11)

The material is assumed homogeneous, isotropic and linear elastic. Thus, the material axi-
al/shear force and twist/bending moment vectors, F (ξ) andM(ξ), are defined as follows

F (ξ) = CFΓ Γ (3.12)

M(ξ) = CMKK (3.13)

where

CFΓ =

EA GAη

GAζ

 ; CMK =

GJt EIη

EIζ

 (3.14)

is the material setting of the constitutive tensors, E and G are the Young’s and shear modu-
lus, A, Aη and Aζ are the cross-section area and the two reduced cross-section areas in the
directions of principal axes of inertia, Jt is the torsional moment of inertia, while Iη and Iζ
are the two principal moments of inertia.

3.3.2 Principle of virtual work

The weak form of the equilibrium equation of the body at the perturbed state (t + ∆t, ε) is
given by∫

0L

(
t+∆t,εFj δ

t+∆t,εΓj + t+∆t,εMj δ
t+∆t,εKj

)
dξ = δt+∆t,εWext; j = ξ, η, ζ (3.15)

where 0L is the initial line length. The beam stress and virtual strain measures refer to
the material axes ξ, η, ζ at (t + ∆t, ε), while δt+∆t,εWext expresses the external virtual
work at (t+∆t, ε); t+∆t,εFj and t+∆t,εMj are the components of the material internal force
and moment vectors F (ξ) and M(ξ) given by eqs. (3.12) and (3.13), respectively, while
δt+∆t,εΓj and δt+∆t,εKj are the components of the virtual material strain vectors δΓ and
δK given by Simo, 1985; Simo and Vu-Quoc, 1986a

δΓ = ΛT
O
δγ(ξ) = ΛT

(
δr0,ξ + t+∆tr0,ξ × δψ

)
(3.16)

δK = ΛT
O
δκ(ξ) = ΛT δψ,ξ (3.17)

where the symbol O means the co-rotational derivative Continuum Mechanics, δr0 is given
by the directional derivative of eq. (3.6) w.r.t. ε, for ε = 0, and δψ is the axial vector of the
matrix δΨ (eq. (3.8)).

For the linearization of the internal virtual work given by eq. (3.15) about the configuration
at t+∆t, the reader is referred to the appendix A.1.
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3.4 Green-Lagrange beam model

In this section, the 1D formulation of a degenerate-continuum model (Dvorkin, Onate, and
Olivier, 1988; Bathe, 1996), where the working pair consists of material objects, the GL
strains and 2nd Piola-Kirchhoff stresses, is developed. In the following, the independent
variables ξ, η, ζ (in the 3D expressions) and ξ (in the 1D expressions) are omitted from the
RHS for convenience. Also, (,) denotes the spatial derivative relative to the ξ, η, ζ coordi-
nates.

3.4.1 Strains and stresses

The GL strain components are

εij(ξ, η, ζ) = 0.5

ui,j + uj,i︸ ︷︷ ︸
linear

+uk,iuk,j︸ ︷︷ ︸
non-linear

 ; i, j, k = ξ, η, ζ (3.18)

Because of the assumption that the cross-section shape does not change during deformation,
the non-vanishing components are εξξ, εξη, and εξζ , given w.r.t. the initial cross-sectional
frame 0V (Dvorkin, Onate, and Olivier, 1988).

The 2nd Piola-Kirchhoff stress components w.r.t. the initial cross-sectional basis 0V , because
of the assumption of homogeneous, isotropic and linear elastic material, are defined as

Sij(ξ, η, ζ) = Cijrs εrs; i, j, r, s = ξ, η, ζ (3.19)

where Cijrs is a fourth-rank tensor of material constants and εrs is given by eq. (3.18). Tak-
ing into account the assumption of the rigidity of the cross-section, and consequently, the
relations εηη = εζζ = εηζ = 0 for the vanishing components of the strains at the lateral
directions, the stress-strain law in Voigt notation is reduced to the following relation

Sξξ

Sξη

Sξζ

 =


E(1−ν)

(1+ν)(1−2ν) 0 0

0 kG 0

0 0 kG



εξξ

2εξη

2εξζ

 (3.20)

where E is the Young’s modulus, ν is the Poisson’s ratio, G = E
2(1+ν) is the shear modulus

multiplied by the shear correction factor k (e.g. Dvorkin, Onate, and Olivier, 1988). In this
work, the Young’s modulus E alone is used for the axial stress-strain relation.

3.4.2 Principle of virtual work

In a weak form, that is suitable for the FEM, the equilibrium equation of the body at (t+∆t, ε)
is given by Bathe, 1996

δWint(ξ, η, ζ) =

∫
0V

t+∆t,εSij δ
t+∆t,εεij d

0V = δt+∆t,εWext; i, j = ξ, η, ζ (3.21)
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where 0V is the initial volume, t+∆t,εSij are the 2nd Piola-Kirchhoff stress components given
by eq. (3.19), δt+∆t,εWext is the external virtual work, and δt+∆t,εεij are the virtual strain
components derived from eq. (3.18) as follows

δεij(ξ, η, ζ) = 0.5
(
δui,j + δuj,i + t+∆tuk,i δuk,j + δuk,i

t+∆tuk,j
)

; i, j, k = ξ, η, ζ

(3.22)
where δui are the virtual displacement components of an arbitrary material particle (ξ, η, ζ)

w.r.t. the initial cross-sectional basis 0V . The corresponding vector form is given in relation
with the unknown set of variables (δu0, δψ) as

δu(ξ, η, ζ) = δu0 + η
(
δψ × t+∆tV2

)︸ ︷︷ ︸
δV2

+ζ
(
δψ × t+∆tV3

)︸ ︷︷ ︸
δV3

(3.23)

where δu0, δV2 and δV3 are given after taking the directional derivative w.r.t. ε, for ε = 0,
of eqs. (3.6) and (3.9), respectively.

3.4.3 1D strain measures and stress resultants

The basic kinematic assumption of undeformable beam cross-sections (whose kinematics
are uniquely defined by the cross-section centroid position and orientation, see eqs. (3.2)
and (3.4), and the corresponding variation in eq. (3.23)) is inserted into the virtual work
terms of eq. (3.21). Based on this constrained virtual work expression, pairs of force/mo-
ment stress resultants as well as translational/rotational strain measures associated with the
resulting 1D beam theory are identified (the left superscript t+∆t,ε is omitted in the following
for convenience).

The terms of the internal virtual work equation (eq. (3.21)) in relation to normal (’n’) and
shear (’s’) stresses are

δWint,n(ξ, η, ζ) =

∫
0V

(Sξξ δεξξ) d
0V

eq. (3.19)
=

∫
0V

[(Eεξξ) δεξξ)] d
0V (3.24)

δWint,s(ξ, η, ζ) =

∫
0V

(Sξη 2δεξη + Sξζ 2δεξζ) d
0V

eq. (3.19)
=

∫
0V

[(kG 2εξη) 2δεξη + (kG 2εξζ) 2δεξζ ] d
0V (3.25)

Incorporating into eqs. (3.24) and (3.25) the expressions for strains and their variations,
eqs. (3.18) and (3.22), where the displacement gradients and their variations are given by
the differentiation along ξ, η, ζ of eq. (3.4) and eq. (3.23), respectively, the following terms
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arise

δWint,n(ξ, η, ζ) =∫
0L

{(
δu0ξ,ξ + uT0,ξ δu0,ξ

)︸ ︷︷ ︸
δΓξ(ξ)∫

0A
E
[(
u0ξ,ξ + 0.5uT0,ξ u0,ξ

)
+ η2

(
0.5V T

2,ξ V2,ξ

)
+ ζ2

(
0.5V T

3,ξ V3,ξ

)]
d0A︸ ︷︷ ︸

Fξ(ξ)

+
(
δV3ξ,ξ + uT0,ξ δV3,ξ + V T

3,ξ δu0,ξ

)︸ ︷︷ ︸
δKη(ξ)

∫
0A
Eζ2

(
V3ξ,ξ + uT0,ξ V3,ξ

)
d0A︸ ︷︷ ︸

Mη(ξ)

+
(
δV2ξ,ξ + uT0,ξ δV2,ξ + V T

2,ξ δu0,ξ

)︸ ︷︷ ︸
−δKζ(ξ)

∫
0A
Eη2

(
V2ξ,ξ + uT0,ξ V2,ξ

)
d0A︸ ︷︷ ︸

−Mζ(ξ)

+
(
V T

3,ξ δV3,ξ

)︸ ︷︷ ︸
δKη,nl,2(ξ)

∫
0A
E
[
ζ2
(
u0ξ,ξ + 0.5uT0,ξ u0,ξ

)
+ η2ζ2

(
0.5V T

2,ξ V2,ξ

)
+ ζ4

(
0.5V T

3,ξ V3,ξ

)]
d0A︸ ︷︷ ︸

MR1(ξ)

+
(
V T

2,ξ δV2,ξ

)︸ ︷︷ ︸
δKζ,nl,2(ξ)

∫
0A
E
[
η2
(
u0ξ,ξ + 0.5uT0,ξ u0,ξ

)
+ η4

(
0.5V T

2,ξ V2,ξ

)
+ η2ζ2

(
0.5V T

3,ξ V3,ξ

)]
d0A︸ ︷︷ ︸

MR2(ξ)

+
(
V T

3,ξ δV2,ξ + V T
2,ξ δV3,ξ

)︸ ︷︷ ︸
δKζη,nl,2(ξ)

∫
0A
Eη2ζ2

(
V T

2,ξ V3,ξ

)
d0A︸ ︷︷ ︸

MR3(ξ)

}
d0L (3.26)

δWint,s(ξ, η, ζ) =∫
0L

{(
δV2ξ + δuT0,ξ V2 + δV T

2 u0,ξ

)︸ ︷︷ ︸
δΓη(ξ)

∫
0A
kG
(
V2ξ + uT0,ξ V2

)
d0A︸ ︷︷ ︸

Fη(ξ)

+
(
δV3ξ + δuT0,ξ V3 + δV T

3 u0,ξ

)︸ ︷︷ ︸
δΓζ(ξ)

∫
0A
kG
(
V3ξ + uT0,ξ V3

)
d0A︸ ︷︷ ︸

Fζ(ξ)

+
(
δV T

3 V2,ξ + δV T
2,ξ V3

)︸ ︷︷ ︸
δKξ(ξ)

∫
0A
kG
(
η2 + ζ2

) (
V T

3 V2,ξ

)
d0A︸ ︷︷ ︸

Mξ(ξ)

}
d0L (3.27)

In eqs. (3.26) and (3.27), it is taken into account that:

1.
∫
0A η d

0A =
∫
0A ζ d

0A =
∫
0A ηζ d

0A =
∫
0A ζη

2 d0A =
∫
0A ζ

3 d0A =
∫
0A ζ

2η d0A =∫
0A η

3 d0A =
∫
0A η

3ζ d0A =
∫
0A ζ

3η d0A = 0, because the chosen reference sys-
tem ξηζ passes through the centroid of the cross-section, while η, ζ are the principal
axes of inertia; 0A is the cross-sectional area measured in the material frame 0V ,

2. 0V 2,ξ = 0V 3,ξ = 0, because there is no initial curvature,
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3. 0V T
2

0V1 = 0V T
3

0V1 = 0, because of the orthogonality property of the cross-section
directors (see section 2.2 for justifying this property),

4. the derivatives along ξ of the translational components, u0η,ξ, u0ζ,ξ, and of the cross-
section directors components, V2η,ξ, V3η,ξ and V3ζ,ξ, V3ζ,ξ, cancel out with their oppo-
sites.

5. the matrix
(
exp(θ̂)

)T (
exp(θ̂),ξ

)
is antisymmetric (Appendix A.2.2 in Gaćeša, 2015

for the proof), thus

V T
3 V2,ξ = 0V T

3

(
exp(θ̂)

)T (
exp(θ̂),ξ

)
0V2 = −0V2

T
(
exp(θ̂)

)T (
exp(θ̂),ξ

)
0V3 = −V T

2 V3,ξ

The internal forces i.e. the axial force Fξ along the ξ material axis and the shear forces Fη
and Fζ along the η and ζ material axes, are identified in eqs. (3.26) and (3.27), and defined
as follows

Fξ(ξ) =

∫
0A
Sξξ d

0A = EA (Γξ,l + Γξ,nl) + EIζ Kζ,nl,2 + EIηKη,nl,2 (3.28)

Fη(ξ) =

∫
0A
Sξη d

0A = kηGA (Γη,l + Γη,nl) (3.29)

Fζ(ξ) =

∫
0A
Sξζ d

0A = kζGA (Γζ,l + Γζ,nl) (3.30)

where Sξξ; Sξη; Sξζ are the stress components given by eq. (3.19), EA =
∫
0AE d

0A,
EIζ =

∫
0AEη

2 d0A, EIη =
∫
0AEζ

2 d0A, GA =
∫
0AGd

0A, kη, kζ are the shear cor-
rection factors, while the 1D strain measures Γξ,l; Γη,l; Γζ,l are the linear components along
the system ξηζ of the material axial/shear strain vector Γl which is given by

Γl(ξ) =


uT0,ξ(

exp(θ̂) 0V2

)T(
exp(θ̂) 0V3

)T
 0V1 (3.31)

and Γξ,nl; Γη,nl; Γζ,nl are the corresponding non-linear components of the material axial/s-
hear strain vector Γnl which is given by

Γnl(ξ) =


0.5uT0,ξ(

exp(θ̂) 0V2

)T(
exp(θ̂) 0V3

)T
 u0,ξ (3.32)

in which the subscripts l and nl means linear and non-linear, respectively; u0,ξ is the deriva-
tive along the material axis ξ of the translation vector of the centroid. Adding the eqs. (3.31)
and (3.32), the following material axial/ shear strain vector is derived (the variation of its
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components is identified in eqs. (3.26) and (3.27))

Γ (ξ) =


0.5

(
rT0,ξ r0,ξ − 1

)
(
exp(θ̂) 0V2

)T
r0,ξ(

exp(θ̂) 0V3

)T
r0,ξ

 (3.33)

where the relation r0,ξ = 0V1 + u0,ξ has been used; the axial strain term is different from
the corresponding SR term, i.e. Γξ = V T

1 r0,ξ − 1, while the shear strain terms are the same
(see eq. (3.10) for the definition of the material setting of the SR axial/shear strain vector).
Moreover, the contribution of curvatures square in the definition of axial force is not present
in the material form of eq. (3.12); these non-linear curvature strain measures Kζ,nl,2; Kη,nl,2

are (their variation are identified in eq. (3.26))

Kζ,nl,2(ξ) = 0.5
∣∣∣(exp(θ̂),ξ

)
0V2

∣∣∣2 (3.34)

Kη,nl,2(ξ) = 0.5
∣∣∣(exp(θ̂),ξ

)
0V3

∣∣∣2 (3.35)

where the derivative of the Rodrigues formula exp(θ̂),ξ is given in Ritto-Corrêa and Camo-
tim, 2002.

The internal moments , i.e. the twisting momentMξ about the ξ material axis and the bending
moments Mη and Mζ about the η and ζ material axes, are also identified in eqs. (3.26)
and (3.27), and defined as follows

Mξ(ξ) =

∫
0A

(Sξζ η − Sξη ζ) d0A = kξGIpKξ,nl,1 (3.36)

Mη(ξ) =

∫
0A
Sξξ ζ d

0A = EIη (Kη,l +Kη,nl,1) (3.37)

Mζ(ξ) = −
∫

0A
Sξξ η d

0A = EIζ (Kζ,l +Kζ,nl,1) (3.38)

where GIp =
∫
0AG(η2 + ζ2) d0A, kξ is the twist correction factor, while the 1D strain mea-

suresKη,l; Kζ,l are the linear components along the system ξηζ of the material twist/bending
strain vectorKl which is given by

Kl(ξ) =


0T(

exp(θ̂),ξ
0V3

)T
−
(
exp(θ̂),ξ

0V2

)T
 0V1 (3.39)
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and Kξ,nl,1; Kη,nl,1; Kζ,nl,1 are the corresponding non-linear components of the material
twist/bending strain vectorKnl,1 which is given by

Knl,1(ξ) =


(
exp(θ̂) 0V3

)T (
exp(θ̂),ξ

0V2

)
0

0

+


0T(

exp(θ̂),ξ
0V3

)T
−
(
exp(θ̂),ξ

0V2

)T
 u0,ξ (3.40)

Adding the eqs. (3.39) and (3.40), the following material twist/ bending strain vector is de-
rived (the variation of its components is identified in eqs. (3.26) and (3.27))

K(ξ) =


(
exp(θ̂) 0V3

)T (
exp(θ̂),ξ

0V2

)
rT0,ξ

(
exp(θ̂),ξ

0V3

)
−rT0,ξ

(
exp(θ̂),ξ

0V2

)
 (3.41)

in which the twist term is the same as the corresponding SR term, while the bending terms are
different, because for instance rT0,ξ

(
exp(θ̂),ξ

0V3

)
6= t+∆tV T

1

(
exp(θ̂),ξ

0V3

)
when shear

deformation is taken into account (see the axial vector of eq. (3.11) for the definition of the
material setting of SR twist/bending curvatures).
Moreover, a further contribution due to the geometric non-linear effects appears through the
following higher order term MR (e.g. Sapountzakis and Dikaros, 2011; Manolas, Riziotis,
and Voutsinas, 2015; Houbolt and Brooks, 1956)

MR(ξ) =

∫
0A
Sξξ (η2+ζ2) d0A = EIp (Γξ,l + Γξ,nl)+EIpζ Kζ,nl,2+EIpηKη,nl,2+EIζηKζη,nl,2

(3.42)
where EIp =

∫
0AE(η2 + ζ2) d0A, EIpζ =

∫
0AE(η2 + ζ2)η2 d0A, EIpη =

∫
0AE(η2 +

ζ2)ζ2 d0A, EIζη =
∫
0AEη

2ζ2 d0A, while the non-linear curvature strain measure Kζη,nl,2

that appears in this definition is (the variation of this component is identified in eq. (3.26))

Kζη,nl,2(ξ) =
(
exp(θ̂),ξ

0V2

)T (
exp(θ̂),ξ

0V3

)
(3.43)

Note that the higher order termMR can be written as a sum of the following three components
(in this way they appear in the virtual work equation (3.26))

MR1(ξ) = EIη Γξ + EIζηKζ,nl,2 + EIη2Kη,nl,2 (3.44)

MR2(ξ) = EIζ Γξ + EIζ2Kζ,nl,2 + EIζηKη,nl,2 (3.45)

MR3(ξ) = EIζηKζη,nl,2 (3.46)

where EIη2 =
∫
0AEζ

4 d0A and EIζ2 =
∫
0AEη

4 d0A.

1D virtual strain measures

The virtual strain measures δΓξ; δΓη; δΓζ that appear in eqs. (3.26) and (3.27) are the com-
ponents along the system ξηζ of the variation of the axial/shear strain vector Γ (eq. (3.33))
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δΓ =


rT0,ξ δr0,ξ

V T
2 (δr0,ξ + r0,ξ × δψ)

V T
3 (δr0,ξ + r0,ξ × δψ)

 (3.47)

Comparing eq. (3.47) to the corresponding SR virtual strain vector (eq. (3.16)), there is a
difference in the axial term, i.e. rT0,ξ δr0,ξ 6= V T

1 (δr0,ξ + r0,ξ × δψ), while the shear terms
are the same.
The virtual curvature measures δKξ; δKη; δKζ that appear in eqs. (3.26) and (3.27) are the
components along the system ξηζ of the variation of the twist/bending curvature vector K
(eq. (3.41))

δK =


V T

1 δψ,ξ

(V3 × r0,ξ)
T δψ,ξ + V T

3,ξ (δr0,ξ + r0,ξ × δψ)

−
[
(V2 × r0,ξ)

T δψ,ξ + V T
2,ξ (δr0,ξ + r0,ξ × δψ)

]
 (3.48)

where the relation (V2×V3)T = V T
1 has been used. Comparing eq. (3.48) to the correspond-

ing SR virtual curvature vector (eq. (3.17)), the bending terms are different, while the twist
term is the same. The additional virtual curvature measures δKη,nl,2; δKζ,nl,2; δKζη,nl,2

which are not present in the SR virtual strains definition are given as

δKη,nl,2 = (V3 × V3,ξ)
T δψ,ξ (3.49)

δKζ,nl,2 = (V2 × V2,ξ)
T δψ,ξ (3.50)

δKζη,nl,2 =
[
(V3 × V2,ξ)

T + (V2 × V3,ξ)
T
]
δψ,ξ (3.51)

Remark: The main difference between the SR and GL beam theories is that the strain com-
ponents in the GL beam theory include the quadratic terms in strains Γ and curvatures K,
which are not present in the SR beam theory. This is also stated in Géradin and Cardona,
2001; Linn, Lang, and Tuganov, 2013; Meier, Wall, and Popp, 2019, where the derivation
of the SR beam theory is shown, starting from the GL strains and following the small local
strain assumption. A theoretical connection between these two definitions of strain is also
given in Auricchio, Carotenuto, and Reali, 2008 (within the framework of the geometrically
non-linear beam modeling), and in Continuum Mechanics (within the framework of the con-
tinuum mechanics).

For the linearization of the internal virtual work given by eq. (3.21) about the configuration
at t+∆t, the reader is referred to the appendix A.2.
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3.5 External virtual work

The weak form of the external load part is written as follows (Jelenić and Crisfield, 1999)

δt+∆t,εWext(ξ) =

∫
0L

(
δuT0 f̃ + δψT m̃

)
dξ +

(
δuT0,IpI + δψTI tI + δuTJ pJ + δψTJ tJ

)
(3.52)

where f̃(ξ) and m̃(ξ) are force and moment loads and pI , tI , pJ , tJ are concentrated forces
and torques at ξ = 0 and ξ = 0L; I, J are the start and end nodes of a 2-noded beam element.
In case that the external load follows the deformation, the stiffening due to the change of the
load vector orientation should be taken into account. For e.g. a concentrated follower load
P = PjVj that is constant w.r.t. the moving frame, its material components Pj do not change
during the motion. But, to include it into the equilibrium equation, the load is written in its
spatial setting p as

p = ΛP (3.53)

where Λ expresses the load vector orientation.
By taking the directional derivative w.r.t. ε, with ε = 0, of each unknown of eq. (3.52), results
to the following relation, that is the linearized form of the external virtual work

dδt+∆tWext =

∫
0L

(
δuT0 df̃ + δψT dm̃

)
dξ +

(
δuTI dpI + δψTI dtI + δuTJ dpJ + δψTJ dtJ

)
=

∫
0L

{
δuT0

(
dψ × f̃

)
+ δψT

[
dψ ×Λ(S × F̃ )

]}
dξ

+ δuTI (dψI × pI) + δψTI [dψI ×ΛI(SI × PI)]

+ δuTJ (dψJ × pJ) + δψTJ [dψJ ×ΛJ(SJ × PJ)]

=

∫
0L

{
δuT0

(
−f̃ × dψ

)
+ δψT

[
−Λ(S × F̃ )× dψ

]}
dξ

+ δuTI (−pI × dψI) + δψTI [−ΛI(SI × PI)× dψI ]

+ δuTJ (−pJ × dψJ) + δψTJ [−ΛJ(SJ × PJ)× dψJ ] (3.54)

where

m̃
eq. (3.2)

=

∫
0A

[
(r − r0)× f̃

]
d0A =

∫
0A

[
(ΛX)× (ΛF̃ )

]
d0A (3.55)

=

∫
0A

[
Λ(X × F̃ )

]
d0A = Λ (S × F̃︸ ︷︷ ︸

M̃

) (3.56)

where M̃ is the external, distributed moment in its material setting, and

S =

∫
0A
X d0A,XT = {0 η ζ}T (3.57)

From eq. (3.54), one can see that in case of concentrated loads, there is no need to integrate
numerically along the length of the beam. In other words, the contribution to the stiffness
matrix comes from the DOF’s of the node where the load is applied.
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3.6 Numerical issues regarding rotations

In this section, the iterative, as originally proposed in Simo and Vu-Quoc, 1986a, and the
invariant, as originally proposed in Jelenić and Crisfield, 1999, formulations for the numerical
treatment of the rotational unknowns, which are used for the SR and the GL theories, are
discussed. A geometric description on the rotation manifold SO(3) is given to show how
to update and how to perturb the updated orientation for both techniques when a 2-noded
(with the start-node denoted by I , and the end-node denoted by J) beam element is used.
In the invariant technique, instead of the update to be performed w.r.t. the current cross-

sectional orientation, as it is done for the iterative case, this is performed w.r.t. the current
’intermediate’ elemental orientation.

3.6.1 Updated (trial) and perturbed orientation at t+∆t

Iterative formulation

FIGURE 3.2: Iterative formulation (Simo and
Vu-Quoc, 1986a): perturbation of the cross-
sectional orientation of the I− and J− nodes.

In fig. 3.2, the rotation manifold SO(3) is de-
picted together with the orientation of the cross-
sections assigned at the nodes I and J , ex-
pressed by t+∆tΛI and t+∆tΛJ , respectively.
The corresponding tangent planes are also il-
lustrated in addition with the tangent plane at
Identity I3. The two orientation matrices corre-
spond to the total rotation vectors ψI and ψJ of
the cross-sections, given as the axial vectors of
the skew-symmetric matrices ΨI and ΨJ shown
in the figure. To construct the perturbed orien-
tation, the spin vectors δψI and δψJ are used,
given as the axial vectors of the skew-symmetric matrices δΨI and δΨJ , respectively. There-
fore, the perturbed orientation t+∆t,εΛI and t+∆t,εΛJ , using eq. (3.8), are

t+∆t,εΛI = exp(εδΨI)
t+∆tΛI

t+∆t,εΛJ = exp(εδΨI)
t+∆tΛJ (3.58)

To find the variation of the orientation, δΛI and δΛJ , the directional derivative w.r.t. ε, for
ε = 0 is performed in eq. (3.58)

δΛI = δΨI
t+∆tΛI = δψI × t+∆tΛI

δΛJ = δΨJ
t+∆tΛJ = δψJ × t+∆tΛJ (3.59)

Inside the numerical procedure, the spin vectors δψI and δψJ need to be interpolated to
express the corresponding quantity at the Gauss point; this is no consistent to the geometric
structure of the rotation manifold, because the interpolated quantities do not belong at the
same tangent space. This inconsistency inputs a numerical error that is connected to the
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distorsion of the elastic strain energy when a rigid-body rotation of the beam element shows
up together with its elastic deformation.

Invariant formulation

In figs. 3.3a and 3.3b, the geometric structure, as a smooth manifold, of the rotation group
SO(3) is displayed, as previously. In fig. 3.3a, the update of the cross-sectional orientation

(A) (B)

FIGURE 3.3: Invariant formulation (Jelenić and Crisfield, 1999): (a) update
of the cross-sectional orientation of the I− and J− nodes, and (b) perturba-

tion of the cross-sectional orientation of the I− and J− nodes.

of the I− and J− nodes is shown. The green tangent planes correspond to two orientations,
the fixed and the deformed at t+∆t, expressed by the orientation matrices I3 (3× 3 identity
matrix), and t+∆tΛi; i = I, J , respectively, while the blue tangent plane corresponds to the
’intermediate’ orientation of the element, t+∆tΛR at t + ∆t (the right-subscript R means
Rigid, from the rigid-body rotation). The matrix that describes the cross-sections rotation,
ψi, is decomposed into a matrix that expresses the element rotation, ψR, and a matrix that
expresses the local (related to the element) cross-sections rotation, θL,i. To compute the
rotation at the Gauss point, the interpolation is employed just for the latter local rotations of
the nodes; this is allowable because this interpolation is performed in one Euclidean space
(the space denoted by the blue tangent plane at t+∆tΛR). The above geometric interpretation
is depicted in the following relation (Jelenić and Crisfield, 1999)

t+∆tΛ(ξ) = t+∆tΛR exp
(
θ̂L(ξ)

)
(3.60)

The order of the rotation matrices multiplication indicates that the local rotation components
are given w.r.t. the rotated ’follower’ axes VR instead of the fixed axes (Argyris, 1982), i.e.
exp

(
θ̂L

)
= ΛT (V ⊗VR)Λ = (e⊗V ) (V ⊗VR) (V ⊗e) = (e⊗VR) (V ⊗e) = ΛTRΛ

(the left-superscript t+∆t has been omitted for convenience).

To perform the eq. (3.60),
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- The ’intermediate’ orientation of the element, t+∆tΛR, has to be computed first. For
this reason, the relative orientation t+∆tΛIJ between the start- and end-node is com-
puted as follows (see also fig. 3.4, where t+∆t as left-superscript has been discarded
for convenience):

FIGURE 3.4: Reference frame corresponding to the rigid-body rotation of
the element.

t+∆tΛIJ = t+∆tΛTI
t+∆tΛJ (3.61)

Again, the reversed order of the rotation matrices multiplication indicates that the
relative rotation components are given w.r.t. the rotated ’follower’ basis VI . Us-
ing Spurrier’s algorithm (see Appendix B in Simo and Vu-Quoc, 1988, see also the
original papers in Klumpp, 1976; Spurrier, 1978), the relative rotation vector φIJ
is extracted from the corresponding rotation matrix t+∆tΛIJ . The rotation vector
that corresponds to the rigid-body rotation of the element w.r.t. the ’follower’ basis
VI is assumed to be equal to half of the relative rotation between the start and end
nodes, i.e. φrigid = 1

2φIJ . Thus, to compute the components of the orientation matrix
t+∆tΛR =

[
V1,R V2,R V3,R

]
(fig. 3.4) w.r.t. the fixed basis e the following relation

is used,
t+∆tΛR = t+∆tΛI exp

(
1

2
φ̂IJ

)
(3.62)

- The local rotation of the cross-sections assigned to each node remains to be computed.
The skew-symmetric matrices correspond to the local rotations for the start- and end-
node are θ̂L,I(ξ) = −1

2 φ̂IJ , θ̂L,J(ξ) = 1
2 φ̂IJ , respectively.

In fig. 3.3b, the perturbation of the cross-sectional orientation of the I− and J− nodes is
shown. In this invariant approach, instead of using the infinitesimal spins δψi; i = I, J

to perturb these orientations at t + ∆t (see section 3.6.1 that describes the iterative case),
these can be ’decomposed’ into the infinitesimal local rotations δθL,i, to perturb the element
orientation, and the infinitesimal spin δψR of the element, to perturb the cross-sectional
orientations, as it is indicated mathematically by the "chain rule" applied in eq. (3.60), i.e.
(Jelenić and Crisfield, 1999):

t+∆t,εΛ(ξ) = exp (εδΨR) t+∆tΛ(ξ) + t+∆tΛR exp
(
θ̂L(ξ) + εδθ̂L(ξ)

)
(3.63)
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where δΨR(ξ), δθ̂L(ξ) are skew-symmetric tensor fields, interpreted for ε > 0, as super-
posed infinitesimal spin of the element onto the cross-section moving frame at t + ∆t, and
superposed infinitesimal local rotation onto the element moving frame at t + ∆t, respec-
tively. Again, the interpolation of the infinitesimal local rotations δθL,i is employed in one
Euclidean space where these quantities belong to. Substituting eq. (3.8) into the LHS of
eq. (3.63), employing the directional derivative w.r.t. the scalar parameter ε onto eq. (3.63),
for ε = 0, and after some algebra, the desired relation between the three infinitesimal param-
eters, the total spins δψ(ξ), the element spins δψR and the local rotations δθL(ξ), is derived,
i.e. (Jelenić and Crisfield, 1999):

δψ(ξ) = δψR + t+∆tΛR T (θL(ξ)) δθL(ξ) (3.64)

where δψ(ξ), δψR ∈ R3 ∼= Tt+∆tΛSO(3), while δθL(ξ) ∈ R3 ∼= Tt+∆tΛRSO(3) and
T (θL(ξ)) δθL(ξ) ∈ R3 ∼= Tt+∆tΛSO(3) (where ∼= represents an isomorphism); by pre-
multiplying this expression with t+∆tΛR, the infinitesimal local rotation vector is given in
global components. Thus, eq. (3.64) makes sense as all its constituents refer to the same
Euclidean space (isomorphic to the spaces illustrated as green planes in fig. 3.3b) and have
global components. For the derivation of T (θL) (named as the tangential transformation
because it is a linear map between tangent spaces; e.g. blue and green tangent planes in
fig. 3.3) see Crisfield, 1997; Simo and Vu-Quoc, 1988; Cardona and Géradin, 1988

T (θL) =
sinθL
θL

I +
1− cosθL

θ2
L

θ̂L +
θL − sinθL

θ3
L

θL ⊗ θL (3.65)

Remark: For an objective (or strain-invariant) finite element formulation: 1) the nodal rota-
tion variables, that are going to be interpolated, have to refer to one Euclidean space that is
geometrically illustrated by one tangent plane on the rotation manifold SO(3), 2) the projec-
tion of the interpolated variables onto the manifold has to be done close enough to this tangent
plane. Otherwise, the computed internal elastic energy is distorted. For a path-independent

finite element formulation: the Euclidean space into which the linear algebra is employed,
expressed here by t+∆tΛR, is defined so as to be unaffected by the interpolation of previous
orientations, see eq. (3.62); moreover it refers to a ’virtual’ state which is constructed for
being just a convenient orientation (being close to the deformed cross-sectional orientations).

Remark: The spatial discretization of the rotational trial functions, i.e. the iterative spins
dψ, that appear in the linearized form of the internal virtual work can be performed using
either the classical Lagrangian shape functions (iterative formulation) or the configuration-
dependent shape functions (invariant formulation) the extraction of which is described in
Jelenić and Crisfield, 1999, based on the update concept presented in the same paper, and
also described on the rotation manifold here. For the second case, the element spin vector
dψR and the local cross-section rotation vector at the Gauss point dθhL are written w.r.t. the
nodal spin vectors dψi; i = 1, 2 for a 2-noded element (see also eq. (3.64)), where the
interpolation using the classical 0C Lagrange polynomials is perfomed for the nodal local
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rotation vectors dθL,i.

A note on two more formulations given in the literature

FIGURE 3.5: Incremental formulation.

A note is given for two more techniques that are
present in the literature, for completion; they are the
so-called incremental and total formulations. These
techniques treat the infinitesimal rotations δθ as ad-
ditive vectors (quantities which can be added to the
previous rotation vectors during the numerical up-
date procedure). Because this parameterization does
not reflect the real nature of rotations - they are
spins that have been transformed by the inverse of
the tangential transformation-, it is called a rota-
tion pseudo-vector parameterization. From the most
formulations based on the rotation pseudo-vector parameterization, the considerations
about objectivity (or strain-invariance) and/or path-independence in the discrete level
are missing. To illustrate this geometrically, in fig. 3.5, the orientation update from
t to t + ∆t and the infinitesimal rotation corrections (additive δθ̂ and spin δΨ )
at t + ∆t are depicted on the manifold SO(3) for an assumed IJ-noded element.
The blue tangent planes correspond to the deformed orientation at t (refers to the frame tV ),
while, the green tangent planes correspond to the deformed orientation at t + ∆t (refers to
the frame t+∆tV ), expressed by the orientation matrices tΛI , tΛJ and t+∆tΛI , t+∆tΛJ
respectively for each cross-section assigned to the nodes I and J. The interpolation of the
rotation parameters, θI , θJ and δθI , δθJ , which belong to the tangent spaces TtΛISO(3)

and TtΛJSO(3), will be employed without taking into consideration that these rotation pa-
rameters should refer to the same Euclidean space, geometrically illustrated by one tangent
plane onto the manifold SO(3). This leads to a non-objective formulation (see e.g. Crisfield
and Jelenić, 1999 for a mathematical proof). Still, referring to the planes TtΛISO(3) and
TtΛJSO(3) for updating the orientation, leads to a path-dependent formulation, because, the
spaces orientation that these planes represent depends on the interpolation history. The same
are valid for an iterative formulation where one refers to the very previous (not necessarily
converged) configuration to perform the update, as it is described in section 3.6.1.

FIGURE 3.6: Total formulation.

The total formulation (see fig. 3.6) results to be path-
independent. However, the non objectivity cannot be
overcome because the projection onto the manifold should
be done close enough to the tangent plane. Still, in case
that the initial orientation is not the same for all the cross-
sections (curved beam) there is the need to construct an
initial virtual orientation, same for all the cross-sections,
that expresses the space on which the interpolation is em-
ployed (this is the same idea presented in the invariant
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formulation by Jelenić and Crisfield, 1999 where this virtual orientation is updated within
each iteration).
Instead of the rotations, the cross-section directors could be chosen as the unknown param-
eters at the nodes (referring to the eq. (3.23), the interpolation is now employed for δV2(ξ)

and δV3(ξ) instead of δψ(ξ) or δθ(ξ)). Again, one should care for objectivity and path-
independence. The constraint equation imposed on the directors regarding the conservation
of their orthonormality, which is added in Romero and Armero, 2002 and Betsch and Stein-
mann, 2002, is a solution.

3.7 Spatial discretization method

According to FEM, a finite number of piecewise polynomial shape functionsH(ξ) are intro-
duced for the approximation of the solution fields. C0 continuous shape functions are used
for the displacement fields, i.e. u01, u02, u03 along the e1, e2, e3 axes, and θ1, θ2, θ3 about the
e1, e2, e3 axes (see fig. 3.1). The piecewise classification of the shape functions results from
the fact that they are not equal to zero into a limited length of the beam, and consequently,
they express one local distribution of the fields. After controlling locally each displacement
field, using the parameters (dof) and the piecewise shape functions, the discretization of the
problem is accomplished together with the transformation of the differential equations into
a system of algebraic equations. Because of the piecewise type of the shape functions, it is
possible for the equations to be written in a discrete form at the level of each element. There-
fore, inside one finite element ’e’, the approximated displacement field is written as follows:

ue(ξ) = He(ξ)de (3.66)

where ue(ξ) = [u01, u02, u03, θ1, θ2, θ3]T is the vector of the independent displacements
(unknown solution fields) along the element,

de =

u1
01, u

1
02, u

1
03, θ

1
1, θ

1
2, θ

1
3︸ ︷︷ ︸

node 1

, u2
01, u

2
02, u

2
03, θ

2
1, θ

2
2, θ

2
3︸ ︷︷ ︸

node 2

T

is the vector of the degrees of freedom (dof) of the element, He(ξ) is the shape function
matrix that, herein, contains the classical Lagrange polynomials. Depending on the type of
the shape functions, some techniques of countering for the locking problem may be used (see
three ways that counter the shear locking in Chapter 4 from Krenk, 2009). According to Luo,
2008, consistent shape functions can be used that couple the diplacements and rotations,
which are constructed from the analytical solution of the homogeneous (no external load)
equilibrium equations for a 3D Timoshenko beam. This coupling may be profitable when
the numerical locking (shear and membrane locking) phenomena occur, which are expected
to be more evident in initially curved beams. Also, by describing the motion using a unique
map [without splitting it into two parts - a map for the position and a map for the orientation],
the locking phenomena are minimized (Sonneville, Cardona, and Brüls, 2014).
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3.7.1 Approximation of the virtual quantities

By turning the beam into a N-noded finite element, the approximation of the distribution of
the virtual quantities δu(ξ) and δψ(ξ) along the element is defined as{

δu(ξ)

δψ(ξ)

}
.
=

{
δuh(ξ)

δψh(ξ)

}
= H i(ξ)

[
I 0

0 I

]
︸ ︷︷ ︸

Hi(ξ)

{
δui

δψi

}
(3.67)

where the approximated virtual quantities δuh(ξ) and δψh(ξ) are used. The shape func-
tions H i(ξ) are polynomials of degree N − 1, which satisfy the conditions: H i(ξj) = δij ,∑N

i=1H
i(ξ) = 1 ∀ ξ ∈ [0, L]; i, j = 1, ..., N where δij = 1 for i = j and δij = 0 otherwise.

The virtual quantities functions interpolated in this way are configuration independent.

3.7.2 Trial functions

In the iterative implementation described in section 3.6.1, the Bubnov-Galerkin method is
used. In this case, the trial functions are interpolated in the same way as the test functions.
In the invariant implementation described in the same section, the Petrov-Galerkin method
is used, where the trial functions are interpolated in a different way compared to the test
functions. In this case, the approximation of the displacement trial function [du(ξ), dψ(ξ)] ∈
R3 and its derivative, using the approximated displacement field [duh(ξ), dψh(ξ)] and its
derivative, is defined as

du(ξ)
.
= duh(ξ) = H i(ξ) dui

du′(ξ)
.
= duh

′
(ξ) = H i′(ξ) dui (3.68)

dψ(ξ)
.
= dψh(ξ) = H̃ i(ξ) dψi

dψ′(ξ)
.
= dψh

′
(ξ) = H̃ i′(ξ) dψi (3.69)

where H̃ i(ξ); i = 1, ..., N is a 3×3 matrix that contains the generalized shape functions for
the configuration dependent interpolation of the spin vector, as they are presented in Jelenić
and Crisfield, 1999 and more recently in Dukić, Jelenić, and Gaćeša, 2014.
Following Jelenić and Crisfield, 1999, where the way of constructing the configuration de-
pendent interpolation functions is analyzed, just the local rotations are interpolated, thus (see
eq. (3.64))

dψ(ξ)
.
= dψh(ξ) = dψR + t+∆tΛR T (θhL(ξ)) dθL,i (3.70)

where the variations dψR and dθL,i are given as follows

dψR =
[
∆ij
k

(
δkI + δkJ

)
ΛR vj Λ

T
R

]
dψi (3.71)

where ∆ij
k = δi1 δ

j
1 δ

1
k + ...+ δiN δ

j
N δ

N
k can be considered as a generalized Kronecker symbol

with ∆ij
k = 1 for i = j = k, otherwise ∆ij

k = 0; δkI,J = 1 for k = I, J , otherwise δkI,J = 0;
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i, j, k, I, J = 1...N , where N is the number of the nodes of the element.

vI =
1

2

(
I3 +

1

ΦIJ
tan

ΦIJ
4
Φ̂IJ

)
(3.72)

vJ =
1

2

(
I3 −

1

ΦIJ
tan

ΦIJ
4
Φ̂IJ

)
(3.73)

I3 is the identity matrix. eq. (3.70) can be inverted for any θL,i 6= ±2nπ; n ∈ N. Considering
that H i(ξj) = δij ; i = 1...N ,

dθL,i = T−1(θL,i)Λ
T
R (dψi − dψR) (3.74)

Inserting eq. (3.71) into eq. (3.74),

dθL,i = T−1(θL,i)Λ
T
R

{
dψi −

[
∆mj
k

(
δkI + δkJ

)
ΛR vj Λ

T
R

]
dψm

}
(3.75)

Finally, the insertion of eqs. (3.71) and (3.75) into eq. (3.70) gives the following configuration
dependent shape functions H̃ i(ξ); i = 1...N ; N is the number of the nodes.

H̃ i(ξ) =∆ij
k ΛR{(
δkI + δkJ

) [
I3 − T (θhL(ξ))H i(ξ)T−1(θL,i)

]
vj

+T (θhL(ξ))Hk(ξ)T−1(θL,j)
}
ΛTR (3.76)

where the tangential transformation T (θhL(ξ)) is given by eq. (3.65) for the approximated
local rotation vector θhL = H i(ξ)θL,i at t+∆t, while the inverse of the tangential transfor-
mation T−1(θL,i) that takes as input the local rotation vector θL,i of the nodes is given by
Ibrahimbegović, Frey, and Kožar, 1995

T−1(θL,i) =
θL,i/2

tan(θL,i/2)

(
I3 −

1

θ2
L,i

θL,i ⊗ θL,i

)
− 1

2
θ̂L,i +

1

θ2
L,i

θL,i ⊗ θL,i (3.77)

The derivative of the generalized shape functions is given as

H̃ i′(ξ) =∆ij
k ΛR{
−
(
δkI + δkJ

)[ d
dξ
T (θhL(ξ))H i(ξ)T−1(θL,i) + T (θhL(ξ))H i′(ξ)T−1(θL,i)

]
vj

+

[
d

dξ
T (θhL(ξ))Hk(ξ) + T (θhL(ξ))Hk′(ξ)

]
T−1(θL,j)

}
ΛTR (3.78)
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where d
dξT (θL) equals (Ritto-Corrêa and Camotim, 2002)

d

dξ
T (θL) = θTL θ

′
L

θL sinθL − 2 (1− cosθL)

θ4
L

θ̂L +
1− cosθL

θ2
L

θ̂′L

+
1

θ2
L

(
1− sinθL

θL

)(
θ̂Lθ̂

′
L + θ̂′Lθ̂L

)
+ θTLθ

′
L

3 sinθL − θL(2 + cosθL)

θ5
L

θ̂2
L

(3.79)

3.7.3 Residual vector and stiffness matrix

SR beam model

The residual vector and the stiffness matrix for the SR beam model are presented in Jelenić
and Crisfield, 1999, and are repeated here to facilitate the comparison between the SR and
GL beam models. Taking into account the virtual work equation in eq. (3.15) and writing it
into a matrix form, the residual vector g is given as the difference between the internal qk
and the external qe force vectors at time t+∆t as follows

t+∆tgi = qik − qie (3.80)

where i is the index that corresponds to the end-nodes I , J of the element. Taking into
account that the virtual quantities are interpolated using eq. (3.67)

t+∆tqik =

∫ L

0

[
H i′I 0

−H ir̂′0 H i′I

]{
ΛF

ΛM

}
dξ (3.81)

t+∆tqie =

∫ L

0

{
H if̃

H im̃

}
dξ + δiI

{
pI

tI

}
+ δiJ

{
pJ

tJ

}
(3.82)

where r′0 is the derivative along the beam length of the position vector of the reference point at
the deformed state, while F andM is the material setting of the internal forces and moments
given in eqs. (3.12) and (3.13). f̃ and m̃ are the external, distributed loads and moments,
while pI , pJ , tI , tJ are the external, concentrated loads and moments at the end-nodes I, J
of the element.

In the following, the linearized form of the internal virtual work given in appendix A.1 is
used to construct the stiffness matrix. Taking into account that the test and trial functions are
approximated according to eq. (3.67) and eqs. (3.68) and (3.69), respectively, the stiffness
matrix is

Kij
k =

∫ L

0


H i′ cfγHj′ H i′

(
cfγ r̂′0 − Λ̂F

)
H̃j

H i
(
Λ̂F − r̂′0cfγ

)
Hj′ H i

(
−r̂′0cfγ r̂′0 + r̂′0Λ̂F

)
H̃j

+H i′
{(
−Λ̂M

)
H̃j + cmκH̃j′

}
 dξ (3.83)

where cfγ and cmκ is the spatial setting of the constitutive matrices in eq. (3.14) given as
cfγ = ΛCFΓΛT and cmκ = ΛCMKΛT .
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This stiffness matrix corresponds to the invariant implementation, while, for computing the
stiffness matrix according to the iterative technique, one should use the classical Lagrangian
interpolation polynomials for both the test and trial functions.

GL beam model

The eqs. (3.26) and (3.27) are used to construct the internal force vector for the GL beam
model, while the linearization of the weak form of equilibrium equation given in appendix A.2
is used to construct the corresponding stiffness matrix. Same to the SR beam model, the GL
beam model is implemented with both an iterative and an invariant technique; the invariant
technique is presented in the following.
The residual force vector is

t+∆tgi = qik − qie (3.84)

where the internal force vector is written in two parts, qik and qik,m2 , resulting from the
internal force and moment vectors F and M with components given in eqs. (3.28) to (3.30)
and eqs. (3.36) to (3.38), and the higher-order moment vectorMR with components given in
eqs. (3.44) to (3.46), respectively. The external force vector qie is given in eq. (3.82).

t+∆tqik =

∫ L

0

[
H i′IΛm H i′IΛ

′
m2

−H ir̂′0Λm1 H i′I Λm3 −H ir̂′0Λ
′
m2

]{
F

M

}
dξ (3.85)

t+∆tqik,m2 =

∫ L

0

[
0 0

0 H i′I Λm4

]{
0

MR

}
dξ (3.86)

where the 3 × 3 matrices Λm = [r′0; V2; V3], Λm1 = [0; V2; V3], Λm2 = [0; V3; −V2],
Λm3 = [V1; V3 × r′0; −V2 × r′0], and Λm4 = [V3 × V ′3 ; V2 × V ′2 ; V3 × V ′2 + V2 × V ′3 ]

are used.
The material part of the stiffness matrix is

Kij
k,m =

∫ L

0

[
Kk,m(1, 1) Kk,m(1, 2)

Kk,m(2, 1) Kk,m(2, 2)

]
dξ (3.87)

where the 3× 3 sub-matricesKk,m(1, 1),Kk,m(1, 2),Kk,m(2, 1),Kk,m(2, 2) are given by

Kk,m(1, 1) =
[
H i′

(
ΛmC

FΓΛTm +Λ
′
m2C

MKΛT
′

m2

)
Hj′

]
(3.88)

Kk,m(1, 2) =

H i′
{(
ΛmC

FΓΛTm1 +Λ
′
m2C

MKΛT
′

m2

)
r̂′0

}
H̃j+

H i′
(
Λ

′
m2C

MKΛTm3

)
H̃j′

 (3.89)

Kk,m(2, 1) =

H i
{
−r̂′0

(
Λm1C

FΓΛTm +Λ
′
m2C

MKΛT
′

m2

)}
Hj′+

H i′
(
Λm3C

MKΛT
′

m2

)
Hj′

 (3.90)

Kk,m(2, 2) =


H i
{
−r̂′0

(
Λm1C

FΓΛTm1 +Λ
′
m2C

MKΛT
′

m2

)
r̂′0

}
H̃j+

H i′
{(
Λm3C

MKΛT
′

m2

)
r̂′0H̃

j +
(
Λm3C

MKΛTm3

)
H̃j′

}
−

H ir̂′0

(
Λ

′
m2C

MKΛTm3

)
H̃j′

 (3.91)
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A contribution, Kk,m2 , from the higher-order moment and curvature vectors is added to the
previous material stiffness.

Kk,m2 =

∫ L

0


H i′

r′0I
EIη 0 0

0 EIζ 0

0 0 0

ΛTm4

 H̃j′



+

H i′

Λm4

EIη2 EIζη 0

EIζη EIζ2 0

0 0 EIζη

ΛTm4

 H̃j′


 dξ (3.92)

The geometrically non-linear part of stiffnessKk,nl is

Kk,nl =

∫ L

0

[
Kk,nl(1, 1) Kk,nl(1, 2)

Kk,nl(2, 1) Kk,nl(2, 2)

]
dξ (3.93)

where the 3× 3 sub-matricesKk,nl(1, 1),Kk,nl(1, 2),Kk,nl(2, 1),Kk,nl(2, 2) are given by

Kk,nl(1, 1) = H i′ (FξI)Hj′ (3.94)

Kk,nl(1, 2) = H i′
(
−Λ̂m1F − Λ̂

′
m2M

)
H̃j +H i′

(
−Λ̂m2M

)
H̃j′ (3.95)

Kk,nl(2, 1) = H i
(
Λ̂m1F + Λ̂

′
m2M

)
Hj′ +H i′

(
Λ̂m2M

)
Hj′ (3.96)

Kk,nl(2, 2) = H i
(
r̂′0Λ̂m1F + r̂′0Λ̂

′
m2M

)
H̃j +H i′

([
−V1; 0; 0

]
M
)
× H̃j

+H i
(
r̂′0Λ̂m2M

)
H̃j′ +H i′

(
r̂′0Λ̂

′
m2M

)
H̃j (3.97)

A contribution, Kk,nl2 , form the higher-order moment and curvature vectors is added to the
previous geometric stiffness.

Kk,nl2 =

∫ L

0

[
0 0

0 H i′
{
−V̂3

(
Λ̂m5MR

)
− V̂2

(
Λ̂m1MR

)}
H̃j′

]
dξ (3.98)

where Λm5 = [V3; 0; V2].

Stiffness matrix from the contribution of the follower loading

From eq. (3.54) the stiffness matrix from the contribution of the external follower loading,
Kk,e, is derived.

Kk,e =

∫ L

0

0 H i
(
Λ̂F̃

)
H̃j

0 H i

(
Λ̂M̃

)
H̃j

 dξ +

[
0 Λ̂Pj

0 Λ̂Tj

]
(3.99)

wherePj and Tj are the external, concentrated follower loads and moments (in their material
setting) at the nodes j = I, J .



Chapter 3. Beam theory with large rotations and its Finite Element formulation 45

3.8 Solution procedure

To solve the geometrically non-linear problems in statics two methods are used, the load con-
trol method (load increments are imposed to the system) and the arc-length control method
(displacement increments, or, both load and displacement increments are imposed to the sys-
tem). Inside each increment of load or/and displacement, the full Newton-Raphson iteration
scheme is used to achieve convergence.

3.8.1 Load control method

In the load control method, an externally applied load is set as a target to be reached by the
structure. In fig. 3.7, the physical (blue line) and the numerical (black line) load-displacement

FIGURE 3.7: The load control method: full Newton-Raphson iteration
scheme for a single degree of freedom system.

paths are shown, together with the Newton-Raphson iteration scheme used to obtain the
numerical path. This path can be obtained using the load control method (the horizontal blue
lines show the target of the load) for a system with one degree of freedom. Let us take the
increment no. 2, which begins at the equilibrium point 1, and follow the iterations needed to
converge to the equilibrium point 2. Considering now that the system consists of more than
one degrees of freedom (the quantities shown in fig. 3.7 are tensors of order 1 or 2 instead of
order 0), the linearized equilibrium equation solved in the first iteration is given by

K
(0)
k,2 δu

(1)
2 = −g(0)

2 ⇔ δu
(1)
2 = −

(
K

(0)
k,2

)−1
g

(0)
2 (3.100)

where K(0)
k,2 is the tangent stiffness matrix in the first iteration (known), δu(1)

2 is the first

correction of the iterative unknown value, and g(0)
2 is the residual in the first iteration given

by g(0)
2 = q

(0)
k,2 − qe,2, where the internal force vector q(0)

k,2 equals to the externally applied
load vector qe,1 within a tolerance, and qe,2 is the external load vector set as a target for the
increment no. 2. The same is valid for the following iterations, 2 and 3, until the achievement
of convergence depending on the chosen criterion.
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The above linearized equilibrium equation, eq. (3.100), is obtained after the linearization of
the response of the finite element system about the conditions at the equilibrium point 2,
iteration 0. Specifically, after evaluating the conditions at the equilibrium point 1 which are
identical to them at the equilibrium point 2, iteration 0, a Taylor series expansion for the
out-of-balance load vector g(u) that is required to be equal to zero gives

g
(
u

(1)
2

)
︸ ︷︷ ︸
g
(1)
2

= 0⇔ g
(
u

(0)
2

)
︸ ︷︷ ︸
g
(0)
2

+

[
∂g

∂u

]∣∣∣∣
u
(0)
2︸ ︷︷ ︸

K
(0)
k,2

(
u

(1)
2 − u

(0)
2

)
︸ ︷︷ ︸

δu
(1)
2

+higher-order terms = 0⇔

K
(0)
k,2 δu

(1)
2 = −g(0)

2 (3.101)

where u is the unknown vector, and the higher-order terms are ommited. To find the displace-
ment vector at the end of the step 2, u2, all iterative corrections are added to the previous
converged displacement vector at the end of step 1, u1, as follows

u2 = u1 + δu
(1)
2 + δu

(2)
2 + δu

(3)
2 (3.102)

It is worth noting that the above two relations have to be modified when dealing with rota-
tional unknowns, since their characterization as "spins" give to them a "non-additive" feature.

3.8.2 Arc-length control method

FIGURE 3.8: A load-displacement
curve with snap-through A and snap-

back B points.

In fig. 3.8, the load-displacement curve contains snap-
through and snap-back points which are depicted as
A and B, respectively (Bonet and Wood, 1997; Pa-
padrakakis, 1998); at these points a dynamic snap hap-
pens to the points A’ and B’ under load control and dis-
placement control, respectively. In this case, the load
control method (where, imposing a fixed load incre-
ment, the displacement changes) is not suitable to trace
the path; even a displacement control method would
fail. Notice that if the curve contained just the point
A, the displacement control method (where, imposing a fixed displacement increment, the
load changes) would be efficient. To trace the path in these cases, where both the load and
the displacement change, the so-called arc-length control method is used; this method can be
reduced to the displacement control one. The implementation procedure that has been fol-
lowed is given by Ritto-Corrêa and Camotim, 2008, and is based in previous research works
such as Crisfield, 1981; Fafard and Massicotte, 1993; Souza Neto and Feng, 1999 with the
work of Riks, 1979 to be the first one for overcoming limit points. Further practical infor-
mation about the arc-length method one could also get from the FEM text books Bonet and
Wood, 1997; Papadrakakis, 1998; Borst et al., 2012b. The code is written in MATLAB (Arc

Length Matlab). In fig. 3.9, the basic concept of the method is given geometrically combined
with a full Newton-Raphson procedure inside each increment of load and displacement. For
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illustrating the method, 3 iterations are depicted in the 2nd increment. A constraint equation

FIGURE 3.9: The arc-length control method: full Newton-Raphson iteration
scheme for a single degree of freedom system.

is added to the equilibrium equation to solve for n+ 1 parameters, which are the n DOF’s of
the problem and the load parameter λ. This (spherical) constraint is geometrically presented
using the red circle with radius s in the graph, for one degree of freedom system. Notice that,
while in the load control method, the tangent line of the equilibrium path at a converged state
stops when the fixed load is reached (blue dashed line in fig. 3.7), in the arc-length control
method, the corresponding tangent line stops after intersecting the constraint surface (red cir-
cle in fig. 3.9). Considering now a system with more than one degrees of freedom, given that
the external load vector is usually written as a linear function of the load parameter λ, e.g.
qe = λ q̄e, q̄e is an input parameter that is called a basis loading, the residual force vector in
its continuous form is

g(u, λ) = qk(u)− λ q̄e (3.103)

where the second term could also depend on u in case of follower loading. The additional
equation is given by

L2 = ∆uT∆u+ ψ2∆λ = L̄2 (3.104)

where it is enforced that the second power of arc-length measure L2 is equal to the prescribed
value L̄2; ∆ means the incremental change and ψ2 is a scaling factor that renders the prod-
uct dimensionally consistent (Ritto-Corrêa and Camotim, 2008). The linearized equilibrium
equation is obtained, as previously, after the linearization of the response of the finite ele-
ment system about the conditions at, e.g., step 2, iteration 0. A Taylor series expansion for
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the out-of-balance load vector g(u, λ) that is required to be equal to zero gives

g
(
u

(1)
2 , λ

(1)
2

)
︸ ︷︷ ︸

g
(1)
2

= 0⇔ g
(
u

(0)
2 , λ

(0)
2

)
︸ ︷︷ ︸

g
(0)
2

+

[
∂qk
∂u

]∣∣∣∣
u
(0)
2︸ ︷︷ ︸

K
(0)
k,2

(
u

(1)
2 − u

(0)
2

)
︸ ︷︷ ︸

δu
(1)
2

−
[
∂ (λ q̄e)

∂λ

]
︸ ︷︷ ︸

q̄e

(
λ

(1)
2 − λ

(0)
2

)
︸ ︷︷ ︸

δλ
(1)
2

+higher-order terms = 0⇔

K
(0)
k,2 δu

(1)
2 − q̄e δλ

(1)
2 = −g(0)

2 (3.105)

where u is the unknown displacement vector, and the higher-order terms are ommited. The
solution of eq. (3.105) is written in the form

δu
(1)
2 = δu

(1)
2,qk

+ δλ
(1)
2 δu

(1)
2,qe

(3.106)

where the first and second terms are provided by the following system of equations

K
(0)
2 δu

(1)
2,qk

= −g(0)
2 (3.107)

K
(0)
2 δu

(1)
2,qe

= q̄e (3.108)

which stems from a decomposition of eq. (3.105). δλ is provided by the linearization of the
constraint relation in eq. (3.104). To update the global variables, the expressions that are used
are

u2 = u1 +∆u2; ∆u2 =
∑
i=1−3

(
δu

(i)
2,qk

+ δλ
(i)
2 δu

(i)
2,qe

)
(3.109)

λ2 = λ1 +∆λ2; ∆λ2 =
∑
i=1−3

(
δλ

(i)
2

)
(3.110)

3.8.3 Algorithm

In the framework of hGAST, the load control method is implemented to test several static
cases, whereas the arc-length control method is implemented in a separate code to verify the
geometrically non-linear modeling in cases with non-trivial equilibrium paths. In hGAST,
the new subroutines for statics are given with light green color in the flow chart (fig. 3.10),
while the subroutines given in a gray and a light magenta color existed before this work (the
variable nb_el refers to sub-bodies that is an entity used to divide the bodies in rigid-bodies,
and described further in chapter 5). These are:

• INITIA_el: It opens the input files and performs the initial computations. In case of SR
model, the following subroutines are called

– initializeTopologyData: It allocates and initializes the position vector and the
orientation matrix for the nodes of the elements of each sub-body (in case of SR
beam model, the number of sub-bodies is identical to the number of the bodies).
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FIGURE 3.10: Algorithm for statics in the framework of hGAST.

– initializeAnalysisData: It allocates and initializes the variables for the finite ele-
ment analysis.
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– preAnalysisProcessorTotalLagrange(nb_el): a) It computes the shape functions
and their first order derivatives. b) It computes the section angles and the initial
cross-section directors, for the nodes of the elements of each sub-body. c) It
initializes the output data.

– preAnalysisProcessorElemental(nb_el): a) It computes the Jacobian and its in-
verse for the integration points of the elements of each sub-body. b) It computes
the initial orientation matrix at the Gauss points.

• GELAST0: It computes the deflections resulting from a static analysis. In case of SR
model, the following subroutines are called

– fullNewtonRaphson: It performs the full Newton-Raphson iterations for each
load increment using the subroutines:

* externalStateStepPreprocessor(stepIndex): It computes the external loading
before each step.

* GELAST_init(stepIndex): It computes all the necessary matrices and vec-
tors which formulate the linearized equilibrium equation; this is solved us-
ing the load control method combined with a full Newton-Raphson iteration
scheme.

· MATRIX_el: The new subroutines that are written inside MATRIX_el

are: SimoElementStiffnessMatrixAndInternalForceVector and inertiaAnd-

DampingMatrices which contain the implementation of the Simo-Reissner
beam model.

· Time_Integrate: The linearized equilibrium equation is solved.

· update: This new subroutine is implemented to account for the multi-
plicative update of rotations, given that the development that is followed
uses spin (not the rotation vector that is additive to the previous rotation).

3.9 Numerical results

In this section, several numerical examples are presented in order to compare the two geo-
metrically non-linear beam formulations. In the first two examples, the planar problem is
considered, while, in the following examples, the spatial problem is considered as well. The
comparison between the two approaches concerns either the displacement and reaction com-
ponents or the approximation of the strain measures of the two beam models, i.e. the first
derived from the displacement gradients (SR model) and the second derived from the Green-
Lagrange strains (GL model). In addition, the behaviour of the proposed invariant GL model
is examined through the comparison to the invariant SR model. The iterative case for both
models is also presented for the 3D problems for completeness. In 2D case has no sense to
implement an invariant formulation since the one component of rotation that arises in 2D has
an additive character through the numerical procedure. The load control, the displacement
control and the arc-length control (Ritto-Corrêa and Camotim, 2008; Arc Length Matlab;
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Souza Neto and Feng, 1999; Borst et al., 2012a) methods are employed. A reduced numeri-
cal quadrature scheme with nG = 1 Gauss point has been applied. A full Newton-Raphson
iterative procedure is utilized. Convergence of the finite element solution is established when
either or both the relative residual and displacement norms are reduced to the tolerance δf
and δu respectively (Bathe, 1996; Jelenić and Crisfield, 1999), i.e.

100 ||t+∆tR− t+∆tF
(κ−1)
int ||2 < δf ||t+∆tR− tF int||2 (3.111)

where the LHS corresponds to the Euclidean norm of the out-of-balance load vector in itera-
tion κ, while the RHS corresponds to the Euclidean norm of the first residual of the load step.

100 ||du0i||2 < δu ||u0i||2 (3.112)

where the components du0i and u0i constitute the iterative and total nodal translation vector,
respectively; i = 1...3N , where N is the number of nodes.

3.9.1 2D pure bending rod

FIGURE 3.11: Pure bending rod: Problem
data.

A cantilever beam is subjected to an end mo-
ment as it is presented in Simo and Vu-Quoc,
1986a; Ibrahimbegović, Frey, and Kožar, 1995.
The properties used herein are presented in
fig. 3.11, where a circular cross-section is as-
sumed. The moment at the free end equals
M = EI 2π

l , so as the beam is rolled up into
a full closed circle. The number of the elements
used are 8. 213 load steps are employed inside
a load control method. Convergence of the finite element solution is established when
δf = δu = 10−6. The moment-translation plots are shown in fig. 3.12, together with the

(A) (B)

FIGURE 3.12: Pure bending rod: (a) end moment M1 vs. translations of the
tip using the SR and GL models, and (b) deformed shapes.
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selected deformed shapes until the rod becomes a full circle. The results seem to be very
similar for the SR and GL models. However, if one looks carefully into the values of the
displacements’ components, makes the following conclusion: a) the SR model gives exactly
u02 = −200 for the tip axial translation at the end of the analysis, whereas the GL model
does not (the corresponding value is u02 = −194.04); moreover, the GL model gives an
additional component of translation, u03 = 0.57 along the e3 axis, b) the SR model gives
exactly θ1 = 360o for the tip rotation at the end of the analysis, whereas the GL model does
not (the corresponding value is θ1 = 349.11o). The GL model gives different values of the
tip deformation because in this case, the neutral axis does not coincide with the centroidal
axis, thus, the centroidal axis has strains.

Remark (private communication with Gordan Jelenić): To explain further the difference be-
tween the SR and GL beam models in the pure bending problem, the definition of the strain
terms in 3D theory (Biot strain and Green-Lagrange strain, respectively) is given for a fiber
with initial length α

• Biot strain:

εB =
α+ dα− α

α
=

(ρ+ z)dφ− ρdφ
ρdφ

=
ρ+ z − ρ

ρ
= 1 +

z

ρ
− 1 =

z

ρ
(3.113)

where z is the distance between the neutral axis (that coincides to the centroidal axis)
and the fiber, ρ is the radius of curvature of the beam, dα is the difference in the length
of the fiber, and dφ is the corresponding angular difference (see fig. 3.13).

FIGURE 3.13: Pure bending rod: deformation of a fiber with initial length
α.

• Green-Lagrange strain:

εGL =
1

2

[(
α+ dα

α

)2

− 1

]
=

1

2

[(
ρ+ z

ρ

)2

− 1

]
=
z

ρ
+

1

2

(
z

ρ

)2

= εB+
1

2
(εB)2

(3.114)

Given that the internal force is zero, and writing the distance z between the fiber and
the neutral axis as z = z0 + z′, where z0 is the distance between the neutral axis and
the centroidal axis, and z′ is the distance between the centroidal axis and the fiber (see
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fig. 3.13), the following relation for the neutral axis is derived

N = E

∫
A
εGL dA = 0⇔ N = E

∫
A

(
z

ρ
+

z2

2ρ2

)
dA = 0⇔

E

ρ

(∫
A
z dA+

1

2ρ

∫
A
z2 dA

)
= 0⇔

∫
A
z′ dA︸ ︷︷ ︸
=0

+

∫
A
z0 dA︸ ︷︷ ︸
z0A

+
1

2ρ
(Iy +Az2

0) = 0⇔

A

2ρ
z2

0 +Az0 +
Iy
2ρ

= 0⇔ z2
0 + 2ρz0 +

Iy
A︸︷︷︸
i2y

= 0⇔ z0 = −ρ+
√
ρ2 − i2y

(3.115)

It is observed from eq. (3.115) that the neutral axis changes during deformation as a
function of the radius of curvature and the cross-section properties. Thus, the results
obtained on the centroidal axis are different between the two formulations since in the
SR formulation the neutral and centroidal axes coincide.

In line with the above explanation the SR model gives one curvature component Kh
η =

−3.14159−02, whereas the GL model predicts a different value of the curvature Kh
η =

−3.20503−02. At the same time an axial strain component Γ hξ = −9.82319−03 is computed
for the GL model.

3.9.2 2D buckling of a double-hinged right-angle frame

FIGURE 3.14: Doubled-hinged right-angle
frame: Problem data (as it is presented in

Souza Neto and Feng, 1999).

The planar example that concerns the buckling
of an elastic double-hinged right-angle frame
is studied. The frame is subjected to a trans-
verse (fixed) point load applied at one-fifth
of the horizontal bar length. This is a de-
manding 2-D problem that is chosen by sev-
eral researchers to assess, either the perfor-
mance of their proposed beam modeling (see
e.g. Simo and Vu-Quoc, 1986a; Betsch and
Steinmann, 2002; Sonneville, Cardona, and
Brüls, 2014; Gaćeša and Jelenić, 2015; Dukić,
Jelenić, and Gaćeša, 2014), or, their suggested
improvements on the arc-length method (see
e.g. Souza Neto and Feng, 1999; Ritto-
Corrêa and Camotim, 2008). The geomet-
ric and material data is shown in fig. 3.14.
The frame is discretized by 20 equally-sized two-noded beam elements (10 elements per each
bar). The input arc-length method parameters used are: a) arc radius = 3, b) desired itera-
tions = 20, c) cut step = 0.8, is the remaining percentage of the arc radius when the desired
number of iterations is reached, d) in the predictor and corrector steps, the selection root cri-
teria described in Ritto-Corrêa and Camotim, 2008 are chosen, e) in both the predictor and
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corrector steps, the cylindrical option is chosen. Convergence of the finite element solution
is established when δf = δu = 10−7.

FIGURE 3.15: Doubled-hinged right-angle
frame: Initial and deformed configurations.

Remark: It is important to use, inside each iter-
ation, an adaptive to the tracing of the equilib-
rium path incremental step, i.e. the size of the
arc-radius is modified depending either on a de-
sired number of iterations that is given in input,
or, on the number of iterations needed to con-
verge in the previous step. In the first case, the
step is cut when the desired number of iterations
is reached, while, in the second case, the step is
cut or amplified based upon the iterations num-
ber of the previous step (see relation 4.60 from
Borst et al., 2012b). The first option is chosen
here to employ a more conservative treatment,
by discarding the possible amplification of the step. Also, to avoid cutting the step size
when the discriminant of the constraint equation is negative, partial correctors are used in the
corrector step (Ritto-Corrêa and Camotim, 2008). In fig. 3.15, the light grey configuration

(A) Load-horizontal translation plot of the point C. (B) Load-vertical translation plot of the point C.

FIGURE 3.16: Doubled-hinged right-angle frame: Equilibrium paths of the
point C.

corresponds to the undeformed state, while, the dark blue configurations correspond to sev-
eral deformed states for different levels of the load factor, that are plotted as black points in
the equilibrium paths shown in figs. 3.16a and 3.16b. In these figures, the equilibrium paths
after 213 steps are depicted for the point C, where the load is applied, using the iterative im-
plementation of SR and GL models. The results are identical regarding either the horizontal
or the vertical translation of the point C.
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3.9.3 A verification 3D example: the 45-degree curved cantilever

This example has been proposed by Bathe and Bolourchi, 1979, while several researchers
have used it to assess the performance of their proposed beam models, see e.g. Dvorkin,
Onate, and Olivier, 1988; Simo and Vu-Quoc, 1986a; Sonneville, Cardona, and Brüls, 2014;
Gaćeša and Jelenić, 2015; Romero and Armero, 2002; Betsch and Steinmann, 2002. Thus,
the 45-degree curved cantilever subjected to a fixed load at the tip is studied in order to
confirm the performance of the SR andGLmodels in 3D. The geometric and material data is
shown in fig. 3.17a. The member is discretized by 8 equally-sized, two-noded straight beam
elements. Convergence of the finite element solution is established when δf = δu = 10−7.
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FIGURE 3.17: 45-degree curved cantilever: (a) problem data and (b) load-
vertical translation of the tip.

The graphs presented in figs. 3.17b, 3.18a and 3.18b have been derived using 10 load-steps,
although the problem has also been solved using 3 load-steps (see table 3.1). The equilibrium
path of the tip for the vertical translation u03 is depicted in fig. 3.17b for the SR andGLmod-
els, both for their invariant and iterative formulations. One may see that there is hardly any
difference between them. The same observations can be made from the figs. 3.18a and 3.18b,
where the translations and rotations along the length are shown. In table 3.1, the translational
components of the tip, u01; u02; u03, are given when the load has reached its final value, i.e.
600, for the invariant and iterative SR and GL formulations. The final translational com-
ponents are identical, either in the case of 10 steps, or in the case of 3 steps, for the SRinv.
and GLinv. models, while they are not exactly the same for their iterative formulations. This
observation verifies that the incorporation into the GL model of the configuration dependent
treatment of rotations, offers to this approach the invariance property of path-independence.
Moreover, the GL model converges to the correct solution in a similar number of iterations
compared to the SR one, and also, their iterative formulations converge to the solution in a
slightly smaller number of iterations compared to their invariant ones. Finally, in figs. 3.19a
and 3.19b one may see the approximation of the axial/ shear and twist/ bending strain mea-
sures along the length. The results for the SRinv. and SRiter. models coincide; the same
holds for the GLinv. and GLiter. models. The two components, the axial, Γ hξ , and one of the
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FIGURE 3.18: 45-degree curved cantilever: (a) translations and (b) rotations
along the length.

TABLE 3.1: 45-degree curved cantilever: final tip translation components.

formulation steps/iterations u01 u02 u03

SRinv. 10/73 −13.48243 / −23.47852 / 53.37099 /
3/43 −13.48243 −23.47852 53.37099

GLinv. 10/79 −13.48397 / −23.48420 / 53.37284 /
3/35 −13.48397 −23.48420 53.37284

SRiter. 10/66 −13.48745 / −23.47779 / 53.36930 /
3/41 −13.49192 −23.47703 53.36559

GLiter. 10/72 −13.48899 / −23.48348 / 53.37114 /
3/33 −13.48995 −23.48339 53.37090

two shear components, Γ hη , are different in the SR andGLmodels, either the invariant or the
iterative ones; the difference gradually becomes larger towards the support of the cantilever.
TheGLmodel presents a divergence from the zero value for both the axial and shear compo-
nents that is explained according to the remark of section 3.9.1. However, after the numerical
integration along the length, the global equilibrium is satisfied for all the models as it may
be seen in fig. 3.20. These distributions are very similar to the ones published in Sonneville,
Cardona, and Brüls, 2014. The terms that are responsible for this different behaviour of the
SR and GL models at the Gauss point are contained in Fξ, δKη and δKζ . In particular, they
are the second and third terms of eq. (3.28) and the second terms in the second and third
components of eq. (3.48). In figs. 3.21a and 3.21b, the iterative variant of the SR and GL
models with and without the above terms are shown; if one turns them off, the approximation
of the strain measures and the internal forces at the Gauss point shows hardly any difference
to that of the SR model. However, by omitting these terms one loses the consistency with
the 3D formulation, and this has an effect on an increased number of iterations for conver-
gence, e.g. the steps/iterations are 10/118 instead of 10/72 (table 3.1), for the GLiter. model.
Regarding the curvature components, they are very similar for all the models. Note that 16

and 32 elements have also been used, and the distribution of the strain measures along the
length does not change.
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FIGURE 3.19: 45-degree curved cantilever: approximation of the (a) axial/
shear and (b) twist/ bending strain measures along the length.
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FIGURE 3.20: 45-degree curved cantilever: nodal values of the axial/ shear
forces along the length.

3.9.4 A 3D single-element example

In order to further investigate the difference in the strain measures that was depicted in the
previous example, the single-element test in Jelenić and Crisfield, 1999 is chosen to be stud-
ied next. The element properties are shown in fig. 3.22a. The prescribed, end-point ψ1 and
ψ2 rotations, which are applied in one step, are shown in table 3.2. The second column in-
cludes the rotational components ψ1

i and ψ2
i , i = 1− 3 of each node 1, 2 without rigid-body

rotation, while the fourth column includes the corresponding rotational components ψ
′1
i and

ψ
′2
i with the superposed rigid-body rotation ψTR = [0.2 1.2 − 0.5]T . Convergence of the

finite element solution is established when the displacement norm is reduced to the tolerance
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FIGURE 3.21: 45-degree curved cantilever: approximation of the (a) axial/
shear strain measures and (b) internal forces along the length.

δu = 10−8.

TABLE 3.2: Single-element test: prescribed end-point rotations.

rotational components rotational components
ψ1,2 [rad] without rigid-body rotation ψ

′1,2 [rad] with rigid-body rotation

ψ1
1 1.00 ψ

′1
1 1.001456623324399

ψ1
2 −0.50 ψ

′1
2 0.346797425422351

ψ1
3 0.25 ψ

′1
3 −0.837171821005534

ψ2
1 −0.40 ψ

′2
1 0.088491486002004

ψ2
2 0.70 ψ

′2
2 1.933204771348018

ψ2
3 0.10 ψ

′2
3 −0.081866017889401

(A) (B) (C)

FIGURE 3.22: Single-element test: (a) problem data, and deformed config-
urations (b) without and (c) with superposed rigid-body rotation.

In figs. 3.22b and 3.22c, the deformed configurations without and with the superposed rigid-
body rotation are shown. The material strain measures at the middle of the element,Kh

ξ ; Kh
η ; Kh

ζ

and Γ hξ ; Γ hη ; Γ hζ , are computed for these configurations, see tables 3.3 and 3.4. In table 3.3,
the values of the material twist/ bending strain components are presented for the invariant
models (SRinv. and GLinv.) and the iterative ones (SRiter. and GLiter.). From the penul-
timate column it is concluded that the twist strain measure is exactly the same for the SR
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and GL models, either in their invariant or their iterative formulations. On the other hand,
there is a difference of about 7% for their two bending strain components (see eq. (3.41) and
the comments below). Note that the strain measures computed by the SRinv. and SRiter.
models, either before or after the superposed rigid-body rotation, are the same with the ones
reported in Jelenić and Crisfield, 1999, in contrast to the GL models. However, while in the
invariant formulations the values remain constant after the superposed rigid-body rotation,
in the iterative formulations they do not. This is to be expected, because for instance, for
the SR model the approximation of the material rotational strain vector is extracted by the
following tensor

K̂h = [Λh]T Λh,ξ
eq. (3.60)

=
[
ΛR exp(θ

h
L)
]T [

ΛR exp(θ
h
L)
]
,ξ

=
[
exp(θhL)

]T [
exp(θhL)

]
,ξ

(3.116)
which is unaffected by the rigid-element rotation. The same holds for the GL model. It is
shown here that the invariant formulation gives the capability to the GLinv. model not to
distort the internal state due to a superposed rigid-body rotation in contrast to the GLiter. one
(see the last column of the table).

TABLE 3.3: Single-element test: material twist/bending strain measures
without and with superposed rigid-body rotation.

without rigid-body rot. with rigid-body rot. (GLinv.)−(SRinv.)
(SRinv.)

100%

(SRinv.) / (GLinv.) (SRinv.) / (GLinv.) without / with
Kh
ξ −1.26383/− 1.26383 −1.26383/− 1.26383 0.00%/ 0.00%

Kh
η 1.27102/ 1.18210 1.27102/ 1.18210 −7.00%/− 7.00%

Kh
ζ −0.42294/− 0.39335 −0.42294/− 0.39335 −7.00%/− 7.00%

without rigid-body rot. with rigid-body rot. (GLiter.)−(SRiter.)
(SRiter.)

100% with-without
without 100%

(SRiter.) / (GLiter.) (SRiter.) / (GLiter.) without / with (SRiter.)/(GLiter.)

Kh
ξ −1.27465/− 1.27465 −1.26399/− 1.26399 0.00%/ 0.00% −0.84%/ − 0.84%

Kh
η 1.26756/ 1.17831 1.31371/ 1.22100 −7.04%/− 7.06% 3.64%/ 3.62%

Kh
ζ −0.40350/− 0.37509 −0.33751/− 0.31369 −7.04%/− 7.06% −16.35%/− 16.37%

TABLE 3.4: Single-element test: material axial/ shear strain measures with-
out and with superposed rigid-body rotation.

without rigid-body rotation with rigid-body rotation
(SRinv.) / (GLinv.) (SRinv.) / (GLinv.)

Γ hξ 0.00000/− 0.03522 0.00000/− 0.03522

Γ hη 0.00000/− 0.03363 0.00000/− 0.03363

Γ hζ 0.00000/ 0.01119 0.00000/ 0.01119

without rigid-body rotation with rigid-body rotation
(SRiter.) / (GLiter.) (SRiter.) / (GLiter.)

Γ hξ 0.00000/− 0.03514 0.00000/− 0.03578

Γ hη 0.00000/− 0.03379 0.00000/− 0.03478

Γ hζ 0.00000/ 0.01076 0.00000/ 0.00893

Finally, as far as the axial/ shear strain vector is concerned, in table 3.4 it is shown that in the
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SR models, this is equal to zero as expected. On the other hand, the GL models give a small
but no zero strain measure for all the components. These differences are also depicted at
the translations of the tip which are different from those computed using the Simo-Reissner
strains (see table 3.5). Again, the values for the SRinv. and SRiter. are the same to those
reported in Jelenić and Crisfield, 1999.

TABLE 3.5: Single-element test: translations at the second node without the
superposed rigid-body rotation.

(SRinv.) / (GLinv.) (SRiter.) / (GLiter.)
u01 −0.02408/− 0.05257 −0.02009/− 0.04919
u02 0.20094/ 0.15888 0.18605/ 0.14443
u03 −0.08490/− 0.08185 −0.07187/− 0.06924

3.9.5 A challenging 3D example: the deployable circular ring

Finally, the deployable circular ring which was first presented in Goto et al., 1992 to investi-
gate the elastic buckling phenomenon of a non-straight member is studied. This demanding
example is utilized to improve the ability of space structures to fold into small packages; it is
chosen here because it presents very large rotations in space. The structural model is shown
in fig. 3.23. The spatial frame e is placed at the centre of the ring. The ring has a radius
R = 20, and is fully supported at one point of its circumference, while at the antipodal point
P it is free to move and rotate just along and about the direction defined by the spatial basis
vector e1; at this point a moment M1 is applied or a prescribed rotation θ1 is imposed.

FIGURE 3.23: Circular ring: structural model.

A rectangular cross-section with width b and height h is tested; it belongs to the slender

region where h
b = 3 > 1.51, and the ring does transform into a new ring with a three

times smaller diameter Goto et al., 1992. The half model is analyzed. Two methods have
been used with identical results: a) applying the half moment combined with the arc-length
control method, and b) imposing a rotation of magnitude 2π combined with the displacement
control method. 16 elements are used. Both the relative residual and displacement norms are
considered as the convergence criteria, while the corresponding tolerance equals to 10−6.
In fig. 3.24a, the reaction moment-rotation curve at the antipodal point P is shown for the
SR and GL models, while in fig. 3.24b the deformed shapes at specific time instants that
correspond to the points of the graph 3.24a, marked as black, are shown. The results are very
similar for each of the two pairs, the SRinv. and GLinv., and the SRiter. and GLiter. beam
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(A) (B)

FIGURE 3.24: Circular ring with h
b = 3: (a) reaction moment M1 vs. rota-

tion θ1 of the point P using the SR andGLmodels, and (b) deformed shapes
at the selected points.

models. Moreover, these results are also similar to the ones of the reference solution Goto et
al., 1992. Regarding the last deformed shape, the structure equilibrates under a zero external
load. Indeed, in fig. 3.24a, it is shown that the last point of the graph corresponds to a zero
reaction moment. In the invariant implementation though, the values are −6.31× 10−11 and
−1.50×10−11, for the SR andGLmodels, respectively, while in their iterative formulations
the reaction moment has the small value of 3.52 × 10−03. This observation verifies the
invariance and non-invariance properties of the above two implementations. In the same
conclusion one would arrive by looking at the fig. 3.25a, where the final translations u03 along
the half circumference of the ring are plotted when a displacement control method has been
used. In this graph, one may see that there is no error in the invariant formulations (straight
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FIGURE 3.25: Circular ring with h
b = 3: (a) final translations u03, and (b)

final material bending curvature measure Kh
η along the half circumference.

line at zero), whereas for the iterative formulations there is a discrepancy, antisymmetric for
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the SR and GL models, with an almost coincident amplitude. As far as the strain measures
are concerned, two conclusions can be drawn observing the results in fig. 3.25b and fig. 3.26:

• in fig. 3.25b, the same pattern with this of fig. 3.25a is depicted, where the approxi-
mation at the Gauss point of the final material bending curvature Kh

η is given for the
two variants of the SR and GL beam models. This shows again the superiority of the
invariant formulation which does not distort the internal elastic state of the element due
to a superposed rigid-body rotation in contrast with the iterative one.

• in fig. 3.26, the approximation at the Gauss point of the final material axial strain Γ hξ
is shown along the length; there is a small deviation from zero for the GL models (in-
variant and iterative). On the other hand, using the SR models (invariant and iterative)
the material axial strain measure Γ hξ is exactly zero.
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FIGURE 3.26: Circular ring with h
b = 3: final material axial strain measure

Γhξ along the half circumference.

Finally, it is well-worth to notice that the iterations needed to converge to the correct solution
for the SR model when a displacement control method is used, with 200 steps to com-
plete the whole rotation 2π, are 1000 for the iterative formulation and 1058 for the invariant
formulation. The corresponding values for the GL beam model are 1270 and 1311 respec-
tively. The above has an effect on the computational cost, i.e. the iterative SR model needs
cputime = 619.3 units of time with the processor Intel Core i3 CPU M370 @2.40GHz × 4,
while the corresponding GL model needs a slightly increased time by ≈ 4%. The invariant
SR model needs cputime = 656.42 units of time, while the corresponding GL model needs
an increased time by ≈ 10%.

3.9.6 The 45-degree cantilever subjected to a follower load at the tip using the
SR model

The example in section 3.9.3 is examined again under a follower load at the tip, in order to
verify the code integrity when a configuration dependent excitation is considered. The model
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used is the SR with its invariant implementation. This step is necessary for proceeding into
the dynamics of beams and wind turbine blades subjected to the aerodynamic loading, in
chapters 4 and 5. To test the output, the results presented in Simo and Vu-Quoc, 1986a are
given as reference.
In fig. 3.27a, the equilibrium path is shown for the three components of the translation vector
at the tip. The reference results are also given after digitizing the corresponding graph in
Simo and Vu-Quoc, 1986a. In fig. 3.27b, the deformed configurations of the beam, which
correspond to the black points on the equilibrium path 3.27a, are depicted. It is observed that
the beam is twisted while the load is increasing in the bending direction. Due to the intense
twisting the translation u03 decreases after reaching its pick value when the load is 600. The
two curves, the SR and the reference one, have a slight difference after the pick at 600 for
the u01 and u03 translations which are the most affected components by the geometrically
non-linear couplings. On the other hand, the u02 component follows the same path for both
modelings. Because of the load that follows the configuration of the beam, the twist-bending
coupling is more dominated compared to the case of a fixed load at the tip (see section 3.9.3).
In fig. 3.28, the distribution of the translations and rotations along the length of the beam
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FIGURE 3.27: 45-degree cantilever subjected to a follower load at the tip:
(a) translations u01, u02, u03 of the tip vs. external load, and (b) deformed

shapes at the selected points.

is depicted for the cases of the follower and the fixed loading when the load has reached
the value 600. It is observed that the curve of the translation u03 when the load is follower
remains below the corresponding curve when the load is fixed, because of the bending-twist
coupling that is more pronounced in the case of the follower loading. The same phenomenon
is depicted in the curve for the translation u01 that has larger values along the length in
the follower case compared to the fixed case. This is because the beam is more triggered
to bending in e1 direction, that is a result from the twist of the configuration dependent
loading. It is worth mentioning that although there is also a difference in the distribution of
the axial translation u02, its value at the tip of the beam is almost the same for both modelings.
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FIGURE 3.28: 45-degree cantilever subjected to a follower load at the tip:
(a) translations u01, u02, u03, and (b) rotations θ1, θ2, θ3 along the length.

The twist angle θ2 is expected to be more pronounced in the case with the follower loading
compared to the fixed loading one, as it is depicted in fig. 3.28b. Moreover, for the other two
rotation components, the θ1 and θ3, of the follower loading case, their relation is changed
compared to the fixed loading case at almost the same point along the length of the beam.
Specifically, the θ1 rotation is getting larger than the corresponding rotation when the load is
fixed, whereas, the θ3 rotation is getting smaller compared to the same rotation in the fixed
loading case.

3.10 Conclusions

Two models for geometrically non-linear shear-deformable 3D beams with small strains that
are derived from different working pairs are compared. The first one is the Simo-Reissner
model (SR model), whereas the second one is the 1D formulation of a degenerate-continuum
beam model which uses the Green-Lagrange strains (GL model). The derivation was made in
a way so that one may have a clear comparison with the SR model. Two different (regarding
rotations) formulations, the iterative and the invariant, are tested within the framework of
these two models. The geometric illustration given on the rotation manifold SO(3) clarifies
the way of creating an invariant 3D beam element with large rotations: one should refer to
the same tangent space on SO(3) when interpolation is performed.
Four variants of a geometrically non-linear finite element formulation are derived (SR in-
variant, GL invariant, SR iterative, GL iterative) and used in 2D and 3D examples. The
numerical results compare the proposed invariant GL model to the other three finite element
formulations and the strain measures between the four of them. The main conclusions are:

- The GL model gives a different approximation compared to the SR model, due to the
extra strain terms. It is verified numerically that the SR model is better suited for a
finite-deformation small-strain beam theory.
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- The incorporation to the GL model of the update procedure that splits the rotation into
a rigid-body part and a local cross-sectional part, offers the invariance properties to this
beam formulation. This implementation may be combined with all the beam models
that use spin parameters as the rotational unknowns.

- The invariant formulation, either in the SR or in the GL model, is more suitable for
problems with 3D large rotations.

- The SR and GL beam models require similar computational cost to converge to the
correct solution.
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Chapter 4

Time integration scheme for
dynamics with large 3D rotations

4.1 Introduction

In this chapter, the objective is to formulate, implement and verify the dynamics of beams
for using the resulting code in the analysis of the wind turbine system. Prior to this, a pri-
mary investigation of two time integration schemes in the framework of large 3D rotations
is presented. Using the original Newmark integration scheme for structural dynamics, the
accuracy cannot be guaranteed in the context of large 3D rotations. The method as it was
proposed in Newmark, 1959 works well when accounting for the translational part of the
motion, but it has to be modified for correctly computing the contribution of the rotational
part; an extension to the rotation group SO(3) has to be developed (Simo and Vu-Quoc,
1988). For this reason, the rigid-body dynamics with large 3D rotations using two schemes is
investigated. A reference problem is selected which is the well-known example of fast sym-
metrical top (Goldstein, Poole, and Safko, 2000). In the next step, one of these two schemes
is chosen for the temporal discretization, and tested in benchmark examples of beams where
the FEM is used for the spatial discretization. The time integration algorithms of interest are
the following:

- the Simo’s & Vu-Quoc’s algorithm (Simo and Vu-Quoc, 1988)

- the Mäkinen’s (that is a non consistent) algorithm (Mäkinen, 2001), and a modification
of it, the Cardona’s & Géradin’s (that is a semi consistent) algorithm (Cardona and
Géradin, 1988). Moreover, a fully consistent option of the Mäkinen’s algorithm is
added.

The property of consistency refers to the way of constructing the tangent operator and the
update formula inside the iterative procedure, writing down the formulas that give the kine-
matics at tn+1 for two consecutive iterations and subtracting them. The above techniques
share the following common feature: They establish the equilibrium at the time instant tn+1,
where the equation of the rate of angular momentum balance is solved. Thus, they are con-
sidered as Newmark-type (Newmark, 1959) algorithms. However, the motivation of studying
both of them is that the first algorithm (Simo and Vu-Quoc, 1988) uses the Newmark scheme
for the angular velocities and accelerations, whereas the second algorithm (Mäkinen, 2001;
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Cardona and Géradin, 1988) uses the Newmark scheme for the first and second derivatives
of the rotation vector, respectively.

4.2 Rotational dynamics of a Rigid-Body - Equation of motion

The classical Euler’s equation for the rigid-body in convective (body or material) co-ordinates
(Arnold, 1989; Goldstein, Poole, and Safko, 2000) is:

JA+Ω × JΩ = ΛTm (4.1)

where J is the inertia tensor, A is the angular acceleration vector, Ω is the angular velocity
vector, all given in a material setting,Λ is the orientation tensor, andm is the applied torque
at the centre of mass in a spatial setting.
Together with the following initial conditions:

Λ|t=0 = Λ0 and Ω|t=0 = Ω0 (4.2)

the eq. (4.1) defines an initial value problem for (Λ(t), Ω(t)) in SO(3) × R3 (Simo and
Wong, 1991).

4.2.1 Discrete equation of motion - Residual

The material setting of the residual (that is the equation of motion written in an implicit form)
at the time instant tn+1 is written as a function of the incremental rotation vectorΘn+1

gn+1(Θn+1) = JAn+1(Θn+1)+Ωn+1(Θn+1)×JΩn+1(Θn+1)−ΛTn+1(Θn+1)m (4.3)

where An+1(Θn+1) is the angular acceleration vector at tn+1, Ωn+1(Θn+1) is the angular
velocity vector at tn+1, and Λn+1(Θn+1) is the orientation tensor at tn+1. In case of the
gravitational field, the components of the applied torque m w.r.t. the spatial axes change
with the orientation and they are given as

mn+1(Θn+1) = rn+1(Θn+1)× f = Λn+1(Θn+1) lE3︸ ︷︷ ︸
lV3,n+1(Θn+1)

×(−mg e3) (4.4)

where rn+1(Θn+1) = Λn+1(Θn+1) lE3 is the position vector of the centre of mass given in
a spatial setting, and f = −mg e3 is the gravitational load vector. In fig. 4.1, the kinematics
of the rigid-body is shown, and the reference axes that have been used above are depicted.
The RHS of eq. (4.1) can also be written as

Mn+1(Θn+1) = R× Fn+1(Θn+1) = lE3 ×ΛTn+1(Θn+1)(−mg e3) (4.5)

which is the applied torque in a material setting; R = lE3 is the position vector of the
centre of mass given in a material setting, and Fn+1(Θn+1) = ΛTn+1(Θn+1)(−mg e3) is
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FIGURE 4.1: Kinematics of the rigid-body.

the material counterpart of the gravitational load (it expresses the components of the load
f = −mg e3 onto the material axes).

4.2.2 Angular velocity and acceleration vectors for the Simo’s & Vu-Quoc’s
scheme

Angular velocity vector at tn+1

The angular velocity vector Ωn+1 at tn+1 is given in relation with the material, incremental
rotation vector Θn+1 at tn+1 and the converged angular velocity Ωn and acceleration An

vectors at tn, as

Ωn+1 =
γ

hβ
Θn+1 +

(
1− γ

β

)
Ωn + h

(
1− γ

2β

)
An︸ ︷︷ ︸

Ω′
n

(4.6)

where β, γ are the Newmark constants (Newmark, 1959) and h = tn+1− tn is the time step.
The last two terms that are written as a function of the kinematics at tn are defined asΩ′n.
The consistent update formula inside the iterative Newton-Raphson procedure is

Ω
(i+1)
n+1 −Ω

(i)
n+1 =

γ

hβ

(
Θ

(i+1)
n+1 −Θ

(i)
n+1

)
(4.7)

Angular acceleration vector at tn+1

The angular acceleration vector An+1 at tn+1 is given (as previously) in relation with the
material, incremental rotation vector Θn+1 at tn+1 and the converged angular velocity Ωn

and accelerationAn vectors at tn, as

An+1 =
1

h2β
Θn+1−

1

hβ
Ωn −

1

β

(
1

2
− β

)
An︸ ︷︷ ︸

A′
n

(4.8)

The last two terms that are written as a function of the kinematics at tn are defined as A′n.
The consistent update formula inside the iterative Newton-Raphson procedure is

A
(i+1)
n+1 −A

(i)
n+1 =

1

h2β

(
Θ

(i+1)
n+1 −Θ

(i)
n+1

)
(4.9)
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4.2.3 Angular velocity and acceleration vectors for the Mäkinen’s / Cardona’s
& Géradin’s scheme

The modified Newmark scheme presented in Mäkinen, 2001 is based on the fact that the
standard Newmark scheme is applied on the first and second derivatives of the material,
incremental rotation vector instead of the material, angular velocity and acceleration vectors.
However, in his work there is no a consistent formula for the angular velocity and acceleration
vectors that appears inside the incremental form of the equation of motion. In the following, a
semi consistent modification of the Mäkinen’s work is also presented, as it had been proposed
earlier by Cardona and Géradin, 1988. Moreover, a fully consistent version of the Mäkinen’s
scheme is added.
To have a relation between the first and second derivatives of the material, incremental rota-
tion vector, and the material, angular velocity and acceleration vectors respectively, the two
ways of evaluating the time derivative of the orientation matrix, Λ̇n+1, at tn+1 are taken into
account.

1. The first way to form the time derivative of the orientation matrix uses the material,
angular velocity vectorΩn+1 at tn+1, as

Λ̇n+1 = Λn+1Ω̂n+1 (4.10)

where Λn+1 is given by,

Λn+1 = Λnexp(Θ̂n+1), Λn is the orientation tensor at tn. (4.11)

2. The second way to form the time derivative of the orientation matrix uses the corre-
sponding derivative of the exponential map of the skew-symmetric matrix Θ̂n+1 of the
material, incremental rotation vectorΘn+1 at tn+1, as

Λ̇n+1 = Λn
d[exp(Θ̂n+1)]

dt
(4.12)

By equating eq. (4.10) and eq. (4.12), the relation between the material, angular velocity
vector, Ωn+1, and the first derivative of the material, incremental rotation vector, Θ̇n+1, is
derived, as

Ωn+1 = T Tn+1(Θn+1)Θ̇n+1 (4.13)

where T Tn+1(Θn+1) is the transpose of the tangential transformation given by

T Tn+1(Θn+1) = a1(Θn+1)I − a2(Θn+1)Θ̂n+1 + a3(Θn+1)Θn+1Θ
T
n+1 (4.14)

where a1(Θn+1), a2(Θn+1) and a3(Θn+1) are the trigonometric functions given in ap-
pendix B (see also Ritto-Corrêa and Camotim, 2002).
By differentiating eq. (4.13) w.r.t. time, the relation between the material, angular acceler-
ation vector and the first Θ̇n+1 and second derivatives Θ̈n+1 of the material, incremental
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rotation vector is derived as

An+1 =
d[T Tn+1(Θn+1)]

dt
Θ̇n+1 + T Tn+1(Θn+1)Θ̈n+1 (4.15)

where
d[T Tn+1(Θn+1)]

dt is given by

d[T Tn+1(Θn+1)]

dt
=− α2(Θn+1)

˙̂
Θn+1 + α3(Θn+1)(Θ̇n+1Θ

T
n+1 +Θn+1Θ̇

T
n+1)

+ b1(Θn+1)(ΘT
n+1Θ̇n+1)I − b2(Θn+1)(ΘT

n+1Θ̇n+1)Θ̂n+1

+ b3(Θn+1)(ΘT
n+1Θ̇n+1)Θn+1Θ

T
n+1 (4.16)

where b1(Θn+1), b2(Θn+1) and b3(Θn+1) are the trigonometric functions given in appendix B
(see also Ritto-Corrêa and Camotim, 2002).

Angular velocity vector at tn+1

Taking into account eqs. (4.6) and (4.13), the angular velocity vector at tn+1 is written as
follows

Ωn+1 = T Tn+1

 γ

hβ
Θn+1 +

(
1− γ

β

)
Θ̇n + h

(
1− γ

2β

)
Θ̈n︸ ︷︷ ︸

Θ̇n+1

 (4.17)

where Θ̇n, Θ̈n are the first and second derivatives of the rotation vector at the converged
time instant tn. Notice that they equal to the initial angular velocity and acceleration vectors,
respectively, i.e. Θ̇n = Ωn and Θ̈n = An.

- The Makinen’s update formula (that is non consistent) inside the iterative Newton-
Raphson procedure is

Ω
(i+1)
n+1 −Ω

(i)
n+1 =

γ

hβ

[
T

(i+1)
n+1

]T (
Θ

(i+1)
n+1 −Θ

(i)
n+1

)
(4.18)

- The Cardona’s & Géradin’s update formula (that is consistent) inside the iterative
Newton-Raphson procedure is

Ω
(i+1)
n+1 = [T

(i+1)
n+1 ]T

[
Θ̇

(i)
n+1 +

γ

hβ

(
Θ

(i+1)
n+1 −Θ

(i)
n+1

)]
︸ ︷︷ ︸

Θ̇
(i+1)
n+1

(4.19)

where
Θ̇

(i+1)
n+1 = Θ̇

(i)
n+1 +

γ

hβ

(
Θ

(i+1)
n+1 −Θ

(i)
n+1

)
(4.20)
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Angular acceleration vector at tn+1

Taking into account eqs. (4.8) and (4.15), the angular acceleration vector at tn+1 is written
as follows

An+1 =
[
Ṫn+1

]T
 γ

hβ
Θn+1 +

(
1− γ

β

)
Θ̇n + h

(
1− γ

2β

)
Θ̈n︸ ︷︷ ︸

Θ̇n+1

+

[Tn+1]T

 1

h2β
Θn+1 −

1

hβ
Θ̇n −

1

β

(
1

2
− β

)
Θ̈n︸ ︷︷ ︸

Θ̈n+1

 (4.21)

- The Makinen’s update formula (that is non consistent) inside the iterative Newton-
Raphson procedure is

A
(i+1)
n+1 −A

(i)
n+1 =

1

h2β

[
T

(i+1)
n+1

]T (
Θ

(i+1)
n+1 −Θ

(i)
n+1

)
+
γ

hβ

[
Ṫ

(i+1)
n+1

]T (
Θ

(i+1)
n+1 −Θ

(i)
n+1

)
(4.22)

- The Cardona’s & Géradin’s update formula (that is consistent) inside the iterative
Newton-Raphson procedure is

A
(i+1)
n+1 =

[
Ṫ

(i+1)
n+1

]T [
Θ̇

(i)
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γ

hβ
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(4.23)

where
Θ̈

(i+1)
n+1 = Θ̈

(i)
n+1 +

1

h2β

(
Θ

(i+1)
n+1 −Θ

(i)
n+1

)
(4.24)

4.3 Tangent operator

For the derivation of the tangent operator, the linearization of the residual has to be employed.
To linearize the residual, this is written at a perturbed state at time t + ε∆t, and then, the
directional derivative w.r.t. ε, for ε = 0, is performed. This procedure is given in appendix C.
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4.3.1 Tangent operator for the Simo’s & Vu-Quoc’s scheme - consistent lin-
earization

The tangent operator is given by adding its three constituents in eqs. (C.3), (C.12) and (C.24),
as

Kn+1 =

{
1

h2β
J +

γ

hβ
[(−JΩn+1(Θ))×+Ωn+1(Θ)× J ]

−mgl
[
−E3 ×ΞDΛTn+1

(e3)
]}

(4.25)

4.3.2 Tangent operator for the Mäkinen’s / Cardona’s & Géradin’s scheme -
non consistent linearization

The tangent operator is given by adding its three constituents in eqs. (C.4), (C.13) and (C.24),
as

Kn+1 =

{
1

h2β
J T Tn+1(Θ) +

γ

hβ
J Ṫ Tn+1(Θ)

+
γ

hβ

[
(−JΩn+1(Θ))× T Tn+1(Θ) + Ωn+1(Θ)× JT Tn+1(Θ)

]
−mgl

[
−E3 ×ΞDΛTn+1

(e3)
]}

(4.26)

4.3.3 Tangent operator for the Mäkinen’s / Cardona’s & Géradin’s scheme -
consistent linearization

The tangent operator is given by adding its three constituents in eqs. (C.11), (C.20) and (C.24),
as

Kn+1 =

{
J

(
ΞD2T Tn+1

(Θ, Θ̇) +
γ

hβ

d[T Tn+1(Θ)]

dt
+ΞDT Tn+1

(Θ, Θ̈) +
1

h2β
T Tn+1(Θ)

)

+ (−JΩn+1(Θ))×
(
ΞDT Tn+1

(Θ, Θ̇) +
γ

hβ
T Tn+1(Θ)

)

+ Ωn+1(Θ)× J
(
ΞDT Tn+1

(Θ, Θ̇) +
γ

hβ
T Tn+1(Θ)

)
−mgl

[
−E3 ×ΞDΛTn+1

(e3)
]}

(4.27)
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4.4 Algorithm

FIGURE 4.2: Algorithm for rotational
rigid-body dynamics.

The following algorithm has been implemented in
MATLAB and includes the time integration schemes
discussed above for the rotational rigid-body dynam-
ics, i.e. Simo’s & Vu-Quoc’s (1988), Makinen’s
(2001) (with non consistent linearization and update),
and Cardona’s & Géradin’s (1988) (with non consis-
tent linearization yet consistent update); the consistent
linearization and update is added. Notice that in all
algorithms, the update regarding the rotation is incre-
mental, whereas the update regarding the angular ve-
locities and accelerations is iterative. Moreover, the
setting of equilibrium is material, and the material ro-
tation vector is used as the unknown parameter. For the
implementation, the following tools have been used:
a) the quaternion algebra functions that are available
in Quaternions, together with b) the functions that are
available in Angle from rotation matrix. In fig. 4.2, the
main functions are given in a gray color, while the sec-
ondary functions are given in a light magenta color. These are:

• PrePro3DRigid: It performs the initial computations for each node before the time step
analysis, as follows

– Given the initial orientation matrix Λ1, it computes the initial material external
momentM1 from eq. (4.5).

– Given the initial material external moment M1, the mass moment of inertia J ,
the initial material angular velocity vector Ω1, it computes the initial material
acceleration vector by solving the equation of motion (eq. 4.1):
A1 = J−1 (M1 −Ω1 × JΩ1).

– If it is the case of Mäkinen’s / Cardona’s & Géradin’s scheme,

* By taking into account that the transpose of the tangential transformation
equals to the identity matrix when the incremental rotation vector equals to
zero, the first derivative of the rotation vector is set equal to Θ̇1 = A1 (see
eq. (4.13)).

* It computes the time derivative of the transpose of the tangential transforma-
tion using eq. (4.16).

* It computes the second derivative of the rotation vector using eq. (4.15), thus,
Θ̈1 = A1 − d

dt [T1]T Θ̇1 = A1.

– It computes the spatial angular momentum: π1 = Λ1Π1, where Π1 is the ma-
terial angular momentum given byΠ1 = J Ω1.
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– It initializes the iterative and incremental variables of the moving frame that are
going to be updated during iterations, and at the end of each time step, respec-
tively.

• dynamisAnalysisNewmarkNonLinear: It performs the time domain analysis with Newton-
Raphson iterations inside each time step, using the following functions

– rigidBodyExternalStateStepPreprocessor: It computes the predicted conditions
(at the first iteration of the time step), depending on the predictor type that is
chosen in the input.

* If it is the case of Simo’s & Vu-Quoc’s scheme, where it is assumed that
Θ

(i=0)
n+1 = 0,

· It computes the predicted acceleration vector A(i=0)
n+1 from eq. (4.9) as

A
(i=0)
n+1 = − 1

hβΩn − 1
β

(
1
2 − β

)
An.

· It computes the predicted velocity vectorΩ(i=0)
n+1 as follows: the eq. (4.8)

is written w.r.t. the incremental rotation vectorΘ(i=0)
n+1 , and the resulting

relation is substituted inside eq. (4.6):
Ω

(i=0)
n+1 = Ωn + h

[
(1− γ)An + γA

(i=0)
n+1

]
.

* If it is the case of Mäkinen’s / Cardona’s & Géradin’s scheme, where it is
assumed that

Θ̈
(i=0)
n+1 = 0 (4.28)

· By solving the system of eqs. (4.28), (C.6) and (C.15), the predicted
values of the incremental rotation vector and the first derivative of the
rotation vector are computed as follows

Θ
(i=0)
n+1 = hΘ̇n + h2

(
1

2
− β

)
Θ̈n (4.29)

and
Θ̇

(i=0)
n+1 = Θ̇n + h(1− γ)Θ̈n (4.30)

where, as it has been explained for the initial conditions, Θ̇n = Ωn (see
also eq. (4.13)), and Θ̈n = An− d

dt [Tn]T Θ̇n = An (see also eq. (4.15)).

· It computes the first derivative of the rotation vector Θ̇(i=0)
n+1 from eq. (4.30).

and the predicted angular velocity vector Ω(i=0)
n+1 from eq. (4.17) using

eq. (4.30).

· It computes the predicted angular acceleration vectorA(i=0)
n+1 from eq. (4.21)

using eqs. (4.28) and (4.30).

* It computes the orientation matrix based on the predicted incremental rota-
tion vector: Λ(i=0)

n+1 = Λn exp
(
Θ̂

(i=0)
n+1

)
.

* It computes the external moment in a material setting from the updated ori-
entation (see eq. (4.5)).

– rigidBodyInertiaMatrix: It computes the tangent operator and the inertia vector:
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* If it is the case of Simo’s & Vu-Quoc’s scheme, it computes the tangent
operator using eq. (4.25) and the inertia vector using the relation P (i)

n+1 =

JA
(i)
n+1 +Ω

(i)
n+1 × JΩ

(i)
n+1.

* If it is the case of Mäkinen’s / Cardona’s & Géradin’s scheme, it computes
the tangent operator either using the eq. (4.26) for a non consistent lineariza-
tion, or using the eq. (4.27) for a consistent linearization. Moreover, it com-
putes the inertia vector using the relationP (i)

n+1 = JA
(i)
n+1+Ω

(i)
n+1×JΩ

(i)
n+1.

– rigidBodyPostIterational: It performs the update:

* In case of using the rotation vector parameters, it updates the material incre-
mental rotation vector as

Θ
(i+1)
n+1 = Θ

(i)
n+1 +∆Θ (4.31)

and the orientation matrix as

Λ
(i+1)
n+1 = Λn exp

(
Θ

(i+1)
n+1

)
(4.32)

* In case of Simo’s & Vu-Quoc’s scheme, it updates the angular velocities and
accelerations using eqs. (4.53) and (4.58).

* In case of Mäkinen’s / Cardona’s & Géradin’s scheme, it updates the angular
velocities and accelerations as

1. It updates the first derivative of the material incremental rotation vector
using eq. (4.20).

2. It updates the second derivative of the material incremental rotation vec-
tor using eq. (4.24).

3. It computes the transpose tangential transformation using eq. (4.14) with
input parameter the updated material incremental rotation vector given
by eq. (4.31).

4. It computes the time derivative of transpose tangential transformation
using eq. (4.16) with input parameters the updated material incremental
rotation vector given by eq. (4.31) and the updated first derivative of the
material incremental rotation vector given by eq. (4.20).

5. It updates the angular velocities using eq. (4.19) for a consistent update,
while using eq. (4.18) for a non consistent update.

6. It updates the angular accelerations using eq. (4.23) for a consistent up-
date, while using eq. (4.22) for a non consistent update.

* It updates the material external moment.
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4.5 Example: The heavy symmetrical top (Lagrange’s top)

FIGURE 4.3: The heavy sym-
metrical top at its initial posi-

tion.

The time integration schemes that were described previously
have been applied to the well-known example of the heavy
symmetrical top with one point fixed; one can find the theo-
retical analysis of this problem in Arnold, 1989; Goldstein,
Poole, and Safko, 2000. The spatial e and material E refer-
ence axes that are used in the analysis are shown in fig. 4.3.
The inertia tensor in a material setting and the applied mo-
ment constant are:

J =

5 0 0

0 5 0

0 0 1

 , mgl = 20 (4.33)

The initial conditions (orientation and angular velocity) are:

Θ(t = 0) =

0.3

0

0

 , Ω(t = 0) =

 0

0

50

 (4.34)

In the following, the problem is solved with the Newmark parameters β = 0.25 and γ = 0.5,
while the tolerance is |R| < 10−6 for the absolute residual norm.

4.5.1 Investigation of the Simo’s & Vu-Quoc’s time integration scheme

The Simo’s & Vu-Quoc’s time integration scheme (1988) is investigated for a long simulation
time to make a conclusion regarding its stability. The problem is solved for 150 sec; this time
corresponds to 60 revolutions about the origin. The following figures show the nutation angle
response in the last 5 sec. The time step is gradually increased in relation with the time step
that gives the exact solution, i.e. 0.001 sec. In fig. 4.4a, the blue line corresponds to a time
step that is 10 times larger compared to the one which gives the reference solution (red line).
As the time step increases, the periodicity of the nutation angle w.r.t. time seems to retain
a good shape except from a) the peak of the oscillation that is getting smaller, and b) the
shift that is observed in the period. In figs. 4.4b and 4.4c, the same are valid for a time step
that is 20 times or even 40 times larger than the reference one, where the peak value of the
oscillation is getting even smaller. Finally, in fig. 4.4d the time step is enlarged to 0.1 sec;
still, a periodicity is retained. The code has been run for a time step until 5 sec, and the
conclusion is that the scheme does not blow up; it keeps the diagram bounded between two
constant values.
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(A) ∆t = 0.01 sec. (B) ∆t = 0.02 sec.

(C) ∆t = 0.04 sec. (D) ∆t = 0.1 sec.

FIGURE 4.4: Simo’s & Vu-Quoc’s time integration scheme (1988): angle of
nutation vs. time, depicted for the last 5 sec after a long simulation time t =

150 sec.

4.5.2 Investigation of the Mäkinen’s / Cardona’s & Géradin’s time integration
schemes

In this section, the approaches that are related to the research works of Mäkinen and Cardona
& Géradin, are investigated. The following versions of the scheme, that correspond to the
differences resulting from a consistent (or not) linearization and a consistent (or not) update
are:

- non consistent linearization - non consistent update (Mäkinen’s)

- non consistent linearization - consistent update (Cardona’s & Géradin’s)

- consistent linearization - consistent update (is added)

To make a conclusion regarding the stability of the schemes, the Lagrange’s top is solved
again for 150 sec. The increased time step is 0.01 sec, like previously in fig. 4.4a. Here,
the picture for the whole simulation time, i.e. the 60 revolutions about the origin, is given
in fig. 4.5a, where the linearization and the update are not consistent. The amplitude of the
oscillation is getting larger and larger with the time. If a zoom in the last 5 sec is made, in
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fig. 4.5b, a shift in the period is observed (the maximum of the exact solution happens at the
time where the minimum of the solution with∆t = 0.01 sec happens, and vice versa), which
is a behaviour that was also observed in the Simo’s & Vu-Quoc’s algorithm, in figs. 4.4a
to 4.4c. In figs. 4.5c and 4.5d, where the linearization is not consistent but the update is

(A) ∆t = 0.01 sec. (B) Zoom in the last 5 sec: ∆t = 0.01 sec.

(C) ∆t = 0.01 sec. (D) Zoom in the last 5 sec: ∆t = 0.01 sec.

FIGURE 4.5: Mäkinen’s (2001) / Cardona’s & Géradin’s scheme, non con-
sistent linearization / non consistent and consistent update: angle of nutation

vs. time for a long simulation time t = 150 sec.

consistent, the same "shape" - behaviour to the previous case is observed; the crucial dif-
ference is that the "blown up" issue is smaller than previously; the final extreme values of
the green line are about 0.4 and 0.28, whereas in the previous case the corresponding values
were about 0.5 and 0.05, respectively. In figs. 4.6a and 4.6b, where the linearization and the
update are consistent, exactly the same behaviour to the previous case (figs. 4.5c and 4.5d) is
observed. This is expected, because, even if the tangent operator has not been derived by an
exact linearization, the values of the results are not affected, once convergence is achieved.
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(A) ∆t = 0.01 sec. (B) Zoom in the last 5 sec: ∆t = 0.01 sec.

FIGURE 4.6: Consistent linearization / consistent update following the con-
cept from Mäkinen’s (2001) / Cardona’s & Géradin’s scheme: angle of nu-

tation vs. time for a long simulation time t = 150 sec.

4.5.3 Comparison between the Simo’s & Vu-Quoc’s and Makinen’s / Cardona’s
& Géradin’s schemes

The algorithms from Simo & Vu-Quoc (1988) and Mäkinen (2001) / Cardona & Géradin
(1988) are compared. In the following figs. 4.7a and 4.7b, the nutation and the precession an-
gles are depicted, for the first 1.5 sec which correspond about to the 1/10th of one revolution
about the origin (0.6 rad = 34.4 degrees angle of precession). The time step is 0.005 sec, 5

(A) Angle of nutation vs. time. (B) Precession angle vs. time.

FIGURE 4.7: Comparison between the time integration schemes for a short
simulation time t = 1.5 sec, time step: ∆t = 0.005 sec.

times larger than the reference time step (red line), that is 0.001 sec. In fig. 4.7a, the nutation
angle is shown. The start time instant corresponds to the initial nutation of 0.3 rad = 17.2

degrees. The upper bound of the nutation angle is about 0.3275 rad = 18.76 degrees. The
period of the oscillation (where the object completes one circle of nutation) is about 0.7 sec.
It is observed that the Mäkinen’s / Cardona’s & Géradin’s scheme (all types of green line)
gives a result that is more close to the exact solution than the Simo’s & Vu-Quoc’s scheme
(blue line). In fig. 4.7b, the precession angle is shown. It is shown that the same pattern of
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the precession angle is repeated every 0.7 sec which is the period of the nutation oscillation.
Again, the Mäkinen’s / Cardona’s & Géradin’s scheme (all types of green line) gives a more
accurate result than the Simo’s & Vu-Quoc’s scheme (blue line). In the following figures, a

(A) Incremental rotation vector vs. time. (B) Mechanical energy vs. time.

(C) Kinetic energy vs. time.
(D) Normalized spatial angular momentum term along

e1 vs. time.

(E) Normalized spatial angular momentum term along
e2 vs. time.

(F) Normalized spatial angular momentum term along
e3 vs. time.

FIGURE 4.8: Comparison between the time integration schemes for a simu-
lation time t = 10 sec, ∆t = 0.01 sec.

comparison is given between the 2 algorithms regarding their conservation properties. The
simulation time is 10 sec that corresponds to something less than one revolution about the
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origin, while the time step is 0.01 sec. In this case the incremental rotation vector is about
28.6 degrees per time step, as it is depicted in fig. 4.8a. In fig. 4.8b, the mechanical energy
is shown. It is observed that the upper bound of the Simo’s & Vu-Quoc’s scheme is identical
to the exact solution, while the Mäkinen’s / Cardona’s & Géradin’s scheme gives a result
towards a downward trend of the energy. In fig. 4.8c, the kinetic energy is shown. Again,
the Mäkinen’s / Cardona’s & Géradin’s scheme gives a result towards a downward trend of
the kinetic energy. Specifically, this oscillation is in front of the exact one, while in Simo’s
& Vu-Quoc’s algorithm the oscillation remains behind of the exact one. In figs. 4.8d to 4.8f,
the components of the spatial angular momentum, normalized w.r.t. its Euclidean norm, are
depicted. It is observed that the Mäkinen’s / Cardona’s & Géradin’s scheme follows the same
pattern to the nutation angle; it is more accurate compared to Simo’s and Vu-Quoc’s scheme
for a short simulation time, but it follows either an upward or a downward path during a long
simulation time.

4.6 Concluding remarks

The time integration schemes for rotational rigid-body dynamics that have been studied are:
a) Simo’s & Vu-Quoc’s (1988), and
b) 3 versions of Mäkinen’s / Cardona’s & Géradin’s algorithms,

- Mäkinen’s (non consistent linearization and update) (2001),

- Cardona’s & Géradin’s (non consistent linearization yet consistent update) (1988), and

- the consistent linearization and update is added.

These algorithms are considered as Newmark-type algorithms. The difference between them,
which is the motivation of their comparison in this work, is that the Newmark scheme is
applied on the angular velocities and accelerations in a), while this scheme is applied on the
first and second derivatives of the rotation vector in b). In the following, the conclusions that
came up from the numerical results of the heavy symmetrical top are summarized.
For a short simulation time:

* The versions of the non consistent and consistent update of Mäkinen’s / Cardona’s &
Géradin’s scheme give a more accurate result in large time step than the Simo’s &
Vu-Quoc’s algorithm.

* The Mäkinen’s / Cardona’s & Géradin’s algorithm presents a small shift in the period
that results the solution to be ahead of the exact one, whereas Simo’s & Vu-Quoc’s
algorithm gives a periodicity in oscillation that remains behind of the exact solution.

For a long simulation time:

* The Simo’s & Vu-Quoc’s scheme seems to be more stable than the 3 versions of Mäki-
nen’s / Cardona’s & Géradin’s algorithm.
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* The Cardona’s & Géradin’s scheme with the consistent update (either with a consistent
linearization or with a non consistent linearization) has a better behaviour regarding the
’blown-up’ issue than the Mäkinen’s scheme with the non consistent update.

* The 3 versions of Mäkinen’s / Cardona’s & Géradin’s scheme have important deficien-
cies regarding the conservation properties.

4.7 Dynamics of beams

Following the Simo’s & Vu-Quoc’s time integration scheme that was presented in the previ-
ous section, the dynamics of beams is examined for the geometrically exact SR beam model.
According to the kinematic assumptions (the deformation map is given in chapter 3), the
cross-section of the beam follows a rigid motion. For this motion, the velocity field is given
by

ṙ(ξ,X; t) = ṙ0(ξ; t) + Λ̇(ξ; t)X (4.35)

where ṙ0(ξ; t) = u̇(ξ; t) is the translational velocity of the reference centre, and X ={
0 η ζ

}T
are the material coordinates of an arbitrary material point. The time deriva-

tive of the rotation matrix Λ̇(ξ; t) can be given w.r.t. either the material Ω or the spatial ω
angular velocity vector.

Λ̇(ξ; t) = ΛΩ̂ = ω̂Λ (4.36)

The second time derivative of the rotation matrix in its material and spatial setting is also
given (it will be used in the equations of motion).

Λ̈(ξ; t) = Λ̇Ω̂ +Λ
¨̂
Ω = ΛΩ̂Ω̂ +ΛÂ (4.37)

Λ̈(ξ; t) = ω̂Λ̇+ ¨̂ωΛ = ω̂ω̂Λ+ α̂Λ (4.38)

4.7.1 Linear and Angular momentum vector

The total linear momentum vector, denoted by p(ξ,X; t), is defined as

p(ξ,X; t) :=

∫
0A
ρref ṙ d

0A
(4.35)

=

∫
0A
ρref

(
ṙ0 + Λ̇X

)
d0A⇔

p(ξ; t) := Am ṙ0︸ ︷︷ ︸
pu(t,ξ)

+ Λ̇Sm︸ ︷︷ ︸
pψ(t,ξ)

(4.39)

where the independent variables ξ; t are omitted from the RHS, for convenience, and ρref :
0A → R is the density in 0A. pu(ξ; t) is the linear momentum vector due to the linear
velocity of the reference point, pψ(ξ; t) is the linear momentum vector due to the angular
velocity of the reference point. In eq. (4.39), the following properties have been used

- Am(ξ) :=
∫
0A ρref d

0A is a scalar defined as the mass distribution along the beam.
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- Sm(ξ) :=
∫
0A ρrefXd0A is a vector defined as the first mass moment of inertia

relative to the reference axes 0V2 and 0V3 attached to the cross-section located at ξ.

The last term is not zero, Sm(ξ) 6= 0, because of the choice of the reference frame so that
the principal axes of inertia do not necessarily coincide to the reference axes.

Using the eqs. (3.2) and (4.35), the angular momentum vector, denoted by l(ξ,X; t), relative
to an arbitrary reference system of the cross-section, takes the following form in a spatial
setting (see Simo, 1985 and Simo and Wong, 1991, where the angular momentum vector is
given for rigid-bodies).

l(ξ,X; t) :=

∫
0A
ρref (r − r0)× ṙ d0A

eqs. (3.2)and (4.35)
=

∫
0A

[
ρref (ΛX)×

(
ṙ0 + Λ̇X

)]
d0A

(4.40)

where the independent variables ξ; t are omitted from the RHS, for convenience.
The angular momentum vector in eq. (4.40) is further written as,

l(ξ,X; t) =

∫
0A

[
ρref (ΛX × ṙ0) + ρref

(
ΛX × Λ̇X

)]
d0A (4.41)

The last term of eq. (4.41) expresses the total spatial angular momentum vector relative to
the principal axes of inertia, π(ξ,X; t), and is analyzed as

π(ξ,X; t) =

∫
0A

[
ρref

(
ΛX × Λ̇X

)]
d0A

(4.36)
=

∫
0A

[ρref (ΛX)× ω ×ΛX] d0A

(4.42)
The vector triple product property, known as Lagrange’s formula, is utilised, i.e.

Lagrange’s formula

for the vectors a, b, c:

a× (b× c) = (a · c)b− (a · b)c (4.43)

Thus, the eq. (4.42) is written as

π(ξ,X; t) =

∫
0A

{
ρref

[
(ΛX)TΛX

]
ω −

[
(ΛX)Tω

]
ΛX

}
d0A

=

∫
0A
ρref

{ [(
XTX

)
I3 −Λ

(
XXT

)
ΛT
]
ω
}
d0A

=

∫
0A
ρref

[
Λ
(
|X|2I3 −XXT

)
ΛT
]
ω d0A (4.44)

where the propertyΛTΛ = I3 is used, and,
(
XTX

)
I3 = Λ

(
XTX

)
I3Λ

T , becauseXTX

is a scalar quantity; I3 is the 3× 3 identity matrix.

Taking into account the definition of Sm(ξ) given previously, and

- J(ξ) :=
∫
0A ρref

[
|X|2I3 −XXT

]
d0A is the constant (material) 3 × 3 tensor of

the second mass moments of inertia relative to the reference axes 0V1, 0V2 and 0V3
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attached to the cross-section located at ξ. In componential form, the rotatory inertia is
written as

J(ξ) =

∫
0A
ρref


η

2 + ζ2 0 0

0 η2 + ζ2 0

0 0 η2 + ζ2

−
0 0 0

0 η2 ηζ

0 ηζ ζ2


 d0A

=

∫
0A
ρref

η
2 + ζ2 0 0

0 ζ2 −ηζ
0 −ηζ η2

 d0A (4.45)

[the integral in 0A of the underlined terms is zero if at least one of the two reference
axes is an axis of symmetry],

eq. (4.41) is written w.r.t. the length parameter ξ and the time t as

l(ξ; t) = (ΛSm)× ṙ0︸ ︷︷ ︸
lu(ξ;t)

+
(
ΛJΛT

)
ω︸ ︷︷ ︸

π(ξ;t)

(4.46)

where the following terms are recognized:

- lu(ξ; t) = (ΛSm) × ṙ0 that is zero if the reference axes concide with the principal
axes of inertia.

- π(ξ; t) =
(
ΛJΛT

)
ω = Itω is the total spatial angular momentum relative to the

principal axes of inertia; It = ΛJ ΛT is the time-dependent spatial inertia tensor.

After introducing the linear and angular momentum vectors, the governing differential equa-
tions of motion of a 3D beam in a spatial form can be given by (Simo and Vu-Quoc, 1988),

ϑ

ϑξ
n+ ñ = ṗ (4.47)

ϑ

ϑξ
m+

ϑr0

ϑξ
× n+ m̃ = l̇ (4.48)

where n,m are the internal force and moment vectors, ñ, m̃ are the external load and torque
vectors.

4.7.2 Weak form

In a spatial setting, the weak form of the inertia term of the residual is given by pre-multiplying
the RHS of the eqs. (4.47) and (4.48) with the test functions χ and φ and integrating along
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the length ξ of the beam, as follows

gi(r0,Λ,χ,φ) =

∫ L

0

(
χT

dp

dt
+ φT

dl

dt

)
dξ

eqs. (4.39)and (4.46)
=

∫ L

0

[
χT

(
Am

dr0

dt
+
dΛ̇

dt
Sm

)
+ φT

(
d[(ΛSm)× ṙ0]

dt
+
dπ

dt

)]
dξ

=

∫ L

0

{
χT
(
Am r̈0 + Λ̈Sm

)
+ φT

[
(Λ̇ Sm)× ṙ0 + (ΛSm)× r̈0 + π̇

]}
dξ

(4.49)

where the independent variables t, ξ are omitted, for convenience, and

π̇ = Λ
(
JA+ Ω̂JΩ

)
(4.50)

4.8 Temporal discretization

Regarding the rotational part of the motion, the Newmark scheme is employed on the angu-
lar velocity and acceleration vectors; not on the first and second derivatives of the rotation
vector. Regarding the translational part of the motion, the Newmark scheme is employed on
the first and second derivatives of the translation vector, as it is well-known.

The linear velocity vector at tn+1 is

u̇0,n+1 =
γ

hβ
(u0,n+1 − u0,n) +

(
1− γ

β

)
u̇0,n + h

(
1− γ

2β

)
ü0,n︸ ︷︷ ︸

u̇′
0,n

(4.51)

where β, γ are the Newmark constants (Newmark, 1959), h is the time-step tn+1 − tn, and
u̇0,n, ü0,n are the linear velocity and acceleration vectors of the reference point at the initial
time instant tn. The angular velocity vector at tn+1 is given by eq. (4.6). The consistent
update formula in the iterative N-R procedure is

u̇
(i+1)
0,n+1 − u̇

(i)
0,n+1 =

γ

hβ

(
u

(i+1)
0,n+1 − u

(i)
0,n+1

)
(4.52)

Ω
(i+1)
n+1 −Ω

(i)
n+1 =

γ

hβ

(
Θ

(i+1)
n+1 −Θ

(i)
n+1

)
=

γ

hβ
ΛTn

(
θ

(i+1)
n+1 − θ

(i)
n+1

)
=

γ

hβ
ΛTn

(
T

(i+1)
n+1

)−1
δψ

(4.53)

The tangential trasformation is given following the definitions that are presented in Ibrahim-
begović, Frey, and Kožar, 1995

T
(
θ

(i+1)
n+1

)
=
sinθ

θ
I +

1− cosθ
θ2

θ̂ +
θ − sinθ

θ3
θ ⊗ θ (4.54)

T
(
θ

(i+1)
n+1

)−1
=

θ/2

tan(θ/2)
I − 1

2
θ̂ +

1

θ2

[
1− θ/2

tan(θ/2)

]
θ ⊗ θ (4.55)



Chapter 4. Time integration scheme for dynamics with large 3D rotations 86

The linear acceleration vector at tn+1 is

ü0,n+1 =
1

h2β
(u0,n+1 − u0,n)− 1

hβ
u̇0,n −

1

β

(
1

2
− β

)
ü0,n︸ ︷︷ ︸

ü′
0,n

(4.56)

while the angular acceleration vector at tn+1 is given by eq. (4.8). The consistent update in
the iterative N-R procedure

ü
(i+1)
0,n+1 − ü

(i)
0,n+1 =

1

h2β

(
u

(i+1)
0,n+1 − u

(i)
0,n+1

)
(4.57)

A
(i+1)
n+1 −A

(i)
n+1 =

1

h2β

(
Θ

(i+1)
n+1 −Θ

(i)
n+1

)
=

1

h2β
ΛTn

(
θ

(i+1)
n+1 − θ

(i)
n+1

)
=

1

h2β
ΛTn

(
T

(i+1)
n+1

)−1
δψ

(4.58)

4.9 Linearization of the inertia term of the residual

The weak form of the inertia term of the residual in eq. (4.49) at the time instant tn+1,ε (that
is the perturbed state) is given as a function of the perturbed position vector and orienta-
tion matrix, r0,n+1,ε and Λn+1,ε, given abbreviated as r0,ε and Λε respectively, and the test
functions χ and φ, as follows

gi,ε(r0,ε,Λε,χ,φ) = gi1,ε(r0,ε,χ) + gi2,ε(r0,ε,Λε,χ) + gi3,ε(r0,ε,Λε,φ) + gi4,ε(Λε,φ)

(4.59)
where

gi1,ε(r0,ε,χ) =

∫ L

0

[
χT (Amü0,ε)

]
dξ (4.60)

gi2,ε(r0,ε,Λε,χ) =

∫ L

0

[
χT

(
ΛεΩ̂εΩ̂εSm +ΛεÂεSm

)]
dξ (4.61)

gi3,ε(r0,ε,Λε,φ) =

∫ L

0

[
φT

(
ΛεΩ̂ε Sm × u̇0,ε +Λε Sm × ü0,ε

)]
dξ (4.62)

gi4,n+1,ε(Λε,φ) =

∫ L

0

[
φT
(
Λε J Aε +ΛεΩ̂ε J Ωε

)]
dξ (4.63)

where ṙ0 = u̇0, r̈0 = ü0 and Ω̇ = A, and the eqs. (4.36) and (4.37) have been used.
Taking into account eq. (3.8) which gives the perturbed orientation relative to the spin vector
δψ, and, the perturbation of the incremental translation and the material angular velocity and
acceleration vectors given by

u0,ε = u0 + εδu0 (4.64)

Ωε = Ω + εδΩ (4.65)

Aε = A+ εδA (4.66)
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the eqs. (4.60) to (4.63) are written as

gi1,ε(r0,ε,χ) =

∫ L

0
χT [Am (ü0 + εδü0)] dξ (4.67)

gi2,ε(r0,ε,Λε,χ) =

∫ L

0
χT

[
exp(εδ̂ψ)Λ

(
Ω̂ + εδΩ̂

)(
Ω̂ + εδΩ̂

)
Sm+

exp(εδ̂ψ) Λ
(
Â+ εδÂ

)
Sm

]
dξ (4.68)

gi3,ε(r0,ε,Λε,φ) =

∫ L

0
φT

[
exp(εδ̂ψ)Λ

(
Ω̂ + εδΩ̂

)
Sm × (u̇0 + εδu̇0) +

exp(εδ̂ψ) ΛSm × (ü0 + εδü0)
]
dξ (4.69)

gi4,n+1,ε(Λε,φ) =

∫ L

0
φT
{
exp(εδ̂ψ)ΛJ (A+ εδA)

+ exp(εδ̂ψ)Λ
(
Ω̂ + εδΩ̂

)
J (Ω + εδΩ)

}
dξ (4.70)

For the linearization of the inertia term about the configuration at n + 1, the directional
derivative w.r.t. ε, for ε = 0, is employed in eqs. eq. (4.67) - 4.70, taking into consideration
eqs. (4.6), (4.8), (4.51) and (4.56). This procedure is given in appendix D.

4.9.1 Matrix form of the linearized inertia term

Proceeding into the formulation of the inertia matrix of the beam element, firstly, the eqs.
D.1, D.3, D.5, and D.8 are collected and written in a matrix form, and secondly, the dis-
cretization for the trial and test functions is performed by introducing the shape functions in
sections 3.7.1 and 3.7.2.

• The part of the inertia term that contains virtual accelerations is

Dgmi =

∫ L

0

{
χ

φ

}T
1

h2β

[
AmI3 −ΛŜmΛTnT−1(θn+1)

(ΛSm)× ΛJΛTnT
−1(θn+1)

]{
δu0

δψ

}
dξ (4.71)

• The part of the inertia term that contains virtual velocities is

Dgdi =

∫ L

0

{
χ

φ

}T
γ

hβ

[
03 Λ

(
ΩSTm − 2SmΩ

T +ΩTSmI3

)
ΛTnT

−1(θn+1)(
ΛΩ̂Sm

)
×

[
Λ
(
Ω̂J − ĴΩ

)
+
(
u̇0 ×ΛŜm

)]
ΛTnT

−1(θn+1)

]{
δu0

δψ

}
dξ

(4.72)

• The part of the inertia term that contains virtual displacements is

Dgki =

∫ L

0

{
χ

φ

}T [
03 − ˙̂pψ

03 − ˙̂π − ˙̂
lu

]{
δu0

δψ

}
dξ (4.73)

4.9.2 Inertia vector and matrix

To obtain the inertia vector and matrix for the 3D beam with large rotations, the shape func-
tions for the interpolation of the test and trial functions, the translation vector δu0 and the spin



Chapter 4. Time integration scheme for dynamics with large 3D rotations 88

vector δψ, are substituted into the matrix form of the linearized inertia terms in eqs. (4.71)
to (4.73). For the spin vector, the interpolation can be employed either in an iterative or in
an invariant way. Regarding the iterative variant, the same shape functions compared to the
unknown translation vector are used, i.e. linear interpolation for the 2-noded straight beam
elements. Regarding the invariant variant, the shape functions are configuration-dependent,
which refer to the rotated state of the beam element (see section 3.7.2). The test functions
are interpolated iteratively in both variants (see section 3.7.1).
Taking into account that the test functions are interpolated using eq. (3.67), the inertia vector
qim, where i is the index that corresponds to the nodes I , J of the element, is given at time
t+∆t as follows (see also eqs. (4.61) to (4.63) and (D.1))

t+∆tqim =

∫ L

0

 H i
[
(Amü0) +

(
ΛΩ̂Ω̂Sm +ΛÂSm

)]
H i
[(
ΛΩ̂ Sm × u̇0 +ΛSm × ü0

)
+
(
ΛJ A+ΛΩ̂ J Ω

)] dξ

(4.74)

The inertia matrix is given as follows, taking into account that the test and trial functions
are approximated according to eq. (3.67) and eqs. (3.68) and (3.69), respectively. See also
eqs. (D.1), (D.3), (D.5) and (D.8).

M ij =

∫ L

0

 H i
(
Am

1
h2β

I
)
Hj ...

H i
[
γ
hβ

(
ΛΩ̂Sm

)
+ 1

h2β
(ΛSm)

]
×Hj ...

 dξ

M ij =

∫ L

0


... H i

{
− ˙̂pψ +Λ

[
− 1
h2β
Ŝm + γ

hβ

(
ΩSTm − 2SmΩ

T +ΩTSmI3

)]
ΛTnT

−1(θn+1)+
}
H̃j

... H i
[
γ
hβ

(
u̇0 ×ΛŜm

)
ΛTnT

−1(θn+1)− ˙̂
lu

]
H̃j

+H i
{
− ˙̂π +Λ

[
γ
hβ

(
Ω̂J − ĴΩ

)
+ 1

h2β
J
]
ΛTnT

−1(θn+1)
}
H̃j

 dξ
(4.75)

Remark (private communication with Gordan Jelenić): It has to be stressed that no interpo-
lation is applied to angular velocities and accelerations in the above (see e.g. Jelenić and Cr-
isfield, 1999). In much of the research published, going back to Simo and Vu-Quoc, 1988, an
interpolation is applied to these quantities, but, this is in contradiction to any interpolation of
rotations and is thus bound to adversely affect Newton-Raphson convergence process. What
needs to be done, is the consistent interpolation (invariant or not) of rotations only, which then
uniquely defines the incremental rotation. Once this is computed at the dynamic integration
points, the angular velocities and accelerations are updated using eqs. (4.53) and (4.58).

4.10 Benchmark examples

In the following examples, a verification of the implementation of the inertia terms in 2D
and 3D SR beam element is employed, by comparing the results to reference ones from bib-
liography. For the comparison, the reference curves are digitized to give the points of the
plots. This step is essential in order to check the code before simulating the dynamics of
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the wind turbine system. Having as motivation the modeling of the wind turbine blades, the
selected examples, all presented in Simo and Vu-Quoc, 1988, are: 1) a spin-up maneuver
of a flexible beam that is imposed to an external displacement varying in time, 2) an elbow
cantilever subjected to a triangular load at the elbow, and 3) the Bathe’s & Bolourchi’s can-
tilever beam subjected to a follower load at the tip. The last two examples are imposed to
an external loading varying in time. The wind turbine blades, presented in the following
chapter, in correlation with these examples, are subjected to the rotational motion imposed
by the shaft and the vibration induced by the aerodynamic loading (i.e. a displacement and
a loading varying in time, respectively). Regarding the solution procedure, the Simo’s &
Vu-Quoc’s time integration method that was described previously is used, while the absolute
norm of the residual and displacement vectors are both used for the convergence of the full
Newton-Raphson scheme.

4.10.1 Spin-up maneuver of a flexible beam

FIGURE 4.9: Spin-up maneu-
ver of a flexible beam: Problem

data.

This example is chosen in order to verify the inclusion of the
inertia terms in 2D. The geometry and the integrated elastic
and inertia properties of the cross-section are given in fig. 4.9,
where a prescribed rotation at the pinned end is imposed (see
fig. 4.10). The mesh consists of 8 linear SR beam elements,
while 4 quadratic SR beam elements are used in the refer-
ence solution. This kind of motion of a cantilever beam is
very close to the rotational motion of a blade subjected to the
angular velocity of the shaft. This example was originally
proposed by Kane et al. and further analyzed in Simo and
Vu-Quoc, 1986b; Simo and Vu-Quoc, 1986c; Simo and Vu-
Quoc, 1988.

FIGURE 4.10: Spin-up maneu-
ver of a flexible beam: Pre-
scribed rotation ψ(t) in radians.

The imposed rotation is given in eq. (4.76) for a time period
t = 30 units of time, that is equivalent to about 135

2π = 21.5

revolutions of the beam.

ψ(t) =


6
15

[
t2

2 +
(

15
2π

)2 (
cos2πt

15 − 1
)]
rad, 0 ≤ t ≤ 15s

(6t− 45)rad, t > 15s

(4.76)
For the solution, the time step used is ∆t = 0.005 sec, while
the convergence tolerance for the norm of the absolute, resid-
ual and displacement vectors is 10−6. The response is de-
picted in figs. 4.11 and 4.12, where the time histories of the
translations and the rotation of the tip are given. To "exclude" the rigid-body rotation, these
displacement components are given w.r.t. the rotating frame (or the so-called shadow beam).
The results are very close to those reported in Simo and Vu-Quoc, 1988, depicted as Ref-

erence points in the plots. Initial translation and rotation components are present during the
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acceleration phase (t = 0−15s), where a lag in response is shown (see the negative values of
the translations in figs. 4.11a and 4.11b). After the acceleration phase, the centrifugal force
straightens the beam in the constant angular velocity phase (t > 15s) (Simo and Vu-Quoc,
1986c). In fig. 4.11a, the extension u01 of the beam w.r.t. the rotating frame, in the constant
angular velocity phase, is shown.

(A) (B)

FIGURE 4.11: Spin-up maneuver of a flexible beam: Tip translation compo-
nents vs. time.

FIGURE 4.12: Spin-up maneuver of a flexible beam: Tip rotation angle vs.
time.

Remark: Regarding the numerical implementation, three technical issues are given: 1) When
the problem is solved as 3D, the translation along the E3 axis and the rotations about the
longitudinalE1 and theE2 axes of the beam should be exactly zero. Thus, for not accounting
for the gBTC (geometric Bending Torsional Coupling) effect, both the twisting stiffness and
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the bending stiffness in the horizontal plane (formed by the axes E1 and E3) are given in
six orders larger compared to the bending stiffness in the vertical plane (formed by the axes
E1 and E2). 2) The residual force vector contains the force resulting from the difference of
the imposed rotations between the two time instants at the end and the beginning of the time
step, just in the first iteration of the Newton-Rapshon scheme (Jirasek, 2005). 3) The absolute
convergence criterion is preferred for the small values of rotation, because it functions better
than the relative one.

4.10.2 Elbow cantilever subjected to a triangular load at the elbow

FIGURE 4.13: Elbow cantilever: problem data.

This example is chosen to verify the im-
plementation of the inertia terms in 3D.
This is investigated in Simo and Vu-
Quoc, 1988, and it is studied further in Je-
lenić and Crisfield, 1999. The geometry
and material data are shown in fig. 4.13.
4 elements per leg are used. The external
load has a fixed direction along the global
z-axis, and it is applied at the elbow of the
structure. Throughout the analysis, the time step is ∆t = 0.25 and the convergence tolerance
is δf,abs = 10−7 and δu,abs = 10−10, for the residual and displacement vectors, respectively.
In the following graphs, the path of the tip and the elbow in e3 axis are depicted using
the SRinv. and the SRiter. beam models. The points from the graph given in Jelenić and
Crisfield, 1999 for the invariant formulation are also plotted for comparison. They are very
close to the response given by both implementations of the SR model.

(A) (B)

FIGURE 4.14: Elbow cantilever: Tip and elbow translational components
u03 vs. time.

Remark: As far as the numerical analysis is concerned, when the code runs for a longer
simulation time (not only 50 units of time) the matrices are spoiled at the time instant 61.25

for both implementations, i.e. the inertia, the stiffness, and the effective (inertia + stiffness)
matrices have some complex eigenvalues with a negative real part. Thus, the convergence
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is lost. The above problem may be an indication of numerical instability of Newmark’s
trapezoidal rule.

4.10.3 Bathe’s and Bolourchi’s cantilever subjected to a follower load at the
tip

FIGURE 4.15: Bathe’s and Bolourchi’s cantilever un-
der a follower load: Problem data.

This example is chosen to verify the im-
plementation of the inertia terms in 3D.
Moreover, a wind turbine blade subjected
to the follower load of aerodynamics nat-
urally comes as a next step after the
study of this benchmark. Bathe’s and
Bolourchi’s cantilever is a well-known
test case in the literature as a reference
example in a non-linear static analysis, to
verify the geometrically exact beam modeling. Here, the same member is used for a flutter
analysis as it is proposed in Simo and Vu-Quoc, 1988. The geometry and material data are
shown in fig. 4.15. Note that the rotatory inertia is exaggerated on purpose, in order to take
into account the inertia due to large rotations. 8 linear SR beam elements are used for the
mesh. The follower load is increased at the rate of 100 units per unit of time. Throughout
the analysis, the time step is ∆t = 0.1 and the convergence tolerance is δf,abs = 10−7 and
δu,abs = 10−10 for the residual and displacement vector, respectively. The analysis is per-
formed following two different technical options: a) a nodal update for the angular velocities
and accelerations is computed using the Newmark’s formulas, and then, the interpolation of
these nodal quantities is employed (Simo and Vu-Quoc, 1988), b) an interpolation of the
incremental material rotation vector is employed, and then, the update for the angular veloci-
ties and accelerations is computed at the Gauss point using the Newmark’s formulas (Jelenić
and Crisfield, 1999). In fig. 4.16, the two different treatments of the update of the angular
velocities and accelerations are used to evaluate the three translational components of the tip
and the number of Newton’s iterations. The results are given for the iterative interpolation. In
fig. 4.16a, it is shown that both techniques give the same translations, while in fig. 4.16b, it is
depicted that the accumulative number of Newton’s iterations are larger in case a) compared
to the case b). Thus, it is shown that the convergence process is improved when a consistency
w.r.t. the configuration is followed.

FIGURE 4.17: Bathe’s and
Bolourchi’s cantilever under a
follower load: Translations vs.
time for the SR iterative and in-

variant formulations.

Remark: For this specific case where ∆t = 0.1, the stiffness
matrix is not positive definite for several iterations of some
time steps beyond the time instant t = 10.6, for both the iter-
ative and invariant interpolations. This results to the overall
spoil of the matrices, i.e. the mass matrix, and consequently,
the effective matrix, at the time instant t = 18.1, for both
interpolations (fig. 4.17). The reason for this behaviour may



Chapter 4. Time integration scheme for dynamics with large 3D rotations 93

(A) Translations vs. time. (B) Accumulative number of Newton iterations vs. time.

FIGURE 4.16: Bathe’s and Bolourchi’s cantilever under a follower load: (a)
Translations vs. time, (b) Accumulative number of Newton iterations vs.
time, for non-consistent and consistent update of the angular velocities and

accelerations.

be that the Newmark trapezoidal rule is numerically unsta-
ble in the non-linear dynamics regime, like in the previous
example.



94

Chapter 5

Dynamics of the coupled wind turbine
system

5.1 Introduction

FIGURE 5.1: The branch of dy-
namic aero-elasticity.

In this chapter, the objective of the work is the incorporation
of the geometrically exact SR beam model into the multi-
body, hydro-servo-aero-elastic code hGAST. This is a gen-
eral simulation platform for analyzing the fully-coupled dy-
namic behaviour of the wind turbine system, which has been
developed at the Fluid Section of the Mechanical Engineer-
ing School of NTUA. The analysis performed belongs to the
branch of dynamic aero-elasticity, as it is clearly shown in
fig. 5.1, that studies the interactions between the inertial,

elastic, and aerodynamic forces occurring while an elastic

body is exposed to a fluid flow (Aeroelasticity). In Riziotis
and Voutsinas, 1997, the code is presented in its first version,
while in Manolas, Riziotis, and Voutsinas, 2015, the improved version of the code is used to
show the importance of geometric non-linearity to predict the blades’ deflections and loads
(especially, the twist angle should be as accurate as possible, because it affects significantly
the angle of incidence in aerodynamics). Regarding the modeling capabilities, the Horizontal
Axis WT and the Vertical Axis WT can be analyzed, with all the onshore and offshore sup-
port structures, and mooring lines. Regarding the analysis types, the static, the modal, and
the time domain analysis can be performed. The main modules of hGAST are:

- dynamics. A multi-body formulation is followed. This formulation is adopted from
robotics, and can concern large rigid-body motions. Each body follows the deforma-
tion from the other, previous bodies. Thus, the analysis is performed at the deformed
geometry, and the non-linear dynamic effects can be captured.

- elasticity. By incorporating the elasticity module, the whole system can be viewed
as a complex, flexible mechanism. Shear deformable geometrically non-linear beam
models are used. The current version of hGAST provides the capability to perform
the analysis using a linear Timoshenko beam model, combined with the SB modeling
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for capturing the non-linear effects. In SB modeling, the multi-body concept can be
further utilized at the one body level to account for large displacements (translations
and rotations). The improved version of hGAST resulting from the present work has
the ability to perform the analysis using the geometrically exact, SR beam model.

- aerodynamics. The wind loading is evaluated using the Blade Element Momentum
Theory (BEMT), or the vortex flow model, which is more sophisticated than BEMT,
and mostly targeted to the analysis of complex flow conditions that lie outside the range
of validity of the BEMT model (e.g., extreme shear, high yaw misalignment or partial
wake (Manolas et al., 2020; Manolas, Riziotis, and Voutsinas, 2014)). The BEMT
based method is exclusively used in the present work. It considers dynamic inflow
effects based on cylindrical wake approximation and skewed wake induced effects
due to yaw misalignment (Voutsinas, Riziotis, and Chaviaropoulos, 1997). It is also
combined with the ONERA (Petot, 1989) or the Beddoes Leishman (Hansen, Gaunaa,
and Madsen, 2004) dynamic stall model in order to account for local sectional unsteady
aerodynamic effects and dynamic stall conditions.

The hydrodynamics part of the code (not employed in the present work since the configura-
tions addressed concern onshore turbines) uses the methods based on linear potential theory
and Morison’s empirical equation. The controls refer primarily to the speed and pitch reg-
ulation, but also to load mitigation control features (Manolas et al., 2018a; Manolas et al.,
2018b). A built-in generic control library or an externally provided controller is called in
every time step. Such a subroutine independently solves the control equations and provides
the pitch and the generator demand values. For a detailed description of the available aerody-
namics, hydrodynamics and controls modeling within the hGAST solver the reader is cited
to Manolas et al., 2020; Manolas, 2015.
In the following, the structural dynamics is of interest, together with its implementation into
the multi-body framework.

5.2 General issues for the wind turbine blades

The wind turbine blades have a complex geometry. Information about the blades’ geometry
and their optimal design one could get from Burton et al., 2001. The blades constitute the
main parts of a wind turbine system, that are responsible to transform the wind energy to
electricity. The components of a wind turbine system are shown in fig. 5.2a; the first three
are the blades that are fixed at the so-called hub (the centre of the rotor), the fourth is the
shaft, while the fifth is the tower. The blade is modeled as a cantilever beam which is fixed
at the hub, and free at the other end. It has a hollow cross-section at its root, while airfoils
follow into the length beyond the region about the root. A typical airfoil is shown in fig. 5.2b.

To state the structural problem of the blades, the data used is summarized into the following:
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(A) Components of a wind turbine system. (B) Blade geometry and airfoil.

FIGURE 5.2: (a) The components of a wind turbine system, and (b) the
geometry and cross-section of a typical blade.

• Regarding the geometry, a pre-twisted and pre-curved beam with an airfoil cross-
sectional shape is given. The work presented herein refers to blades that are just pre-
twisted, that is an essential property for having an optimized power output.

• Regarding the material, fibre-reinforced composite materials have gained popularity
(despite their generally high cost) in high-performance products such as the blades,
that need to be lightweight (Composite material). A pre-processor, the BECAS (BEam
Cross section Analysis Software) package from DTU, that computes the generalized
properties of the cross-section (including geometry and material) is used, while the
procedure of computing them is not the focus of this work.

• Regarding the boundary conditions, a rotational fixed end is considered, that is mod-
eled through the multi-body formulation described in the following.

• Regarding the loading, the self weight, the wind loading, and the inertia forces are
taken into consideration; the offshore hydrodynamic and the earthquake forces are out
of scope of the present work. The loads are shown in a conceptual sense in fig. 5.3a
for a cantilever beam, that can be the blade model. The functions g1 and g2 refer to
the inertia terms that come from the oscillation and the rotational motion of the rotor
blades, respectively. The function f refers to the gravitational loading, while the last
two terms (the lift and the drag) result from the aerodynamics and act at the so-called
aerodynamic centre of the cross-section. A reference that explains how to compute
the wind loads according to the BEMT (that is the theory used in the present work)
is Hansen, 2008. In fig. 5.3b, the velocity triangle showing the induced velocities
and the lift and drag coefficients (CL and CD, respectively), used from the BEMT,
for a cross-section of the blade are depicted. U∞(1 − a) is the axial velocity, while
Ωr(1 + a′) is the circumferential velocity on the rotor. The axial induction factor
a expresses the reduction of the wind speed as it passes through the disk, while the
circumferential induction factor a′ the rotational trajectory which is added to the flow
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by the rotor (Manolas, 2015). α is the angle of attack between the direction of the
effective velocity Ueff and the blade’s chord. θt + θp is the sum of the local twist
angle and the blade’s pitch angle.

(A) Loads on the wind turbine blade. (B) The triangle of velocities.

FIGURE 5.3: (a) Loads on the wind turbine blade, and (b) the triangle of
velocities.

Regarding the response of the blades, non-linear, large translations and rotations, and small
strains appear. In this case, to predict the phenomena that arise, the equilibrium is estab-
lished at the deformed shape of the blades that is simply depicted in fig. 5.4a, and expressed
by the position vector r0 given in relation with the parameters u and θ. Details about the
geometrically exact SR beam element used to analyze the blades are given in chapter 3. The
phenomena need to be predicted are tension, bending and shear in two directions, torsion, and
their interactions. In fig. 5.4b, the corresponding deformation states are graphically shown
for a blade (Houbolt and Brooks, 1956). The interaction of these deformation modes are

(A) Undeformed and deformed shape of the cantilever
beam (that is the blade model).

(B) Deformation states need to be predicted from the
analysis of the blades.

FIGURE 5.4: (a) Undeformed and deformed shape of the cantilever beam,
and (b) deformation states predicted from the analysis of the blades.

explained by illustrating the blade at its deformed configuration. The bending-torsion cou-
pling is the most important interaction in blades’ dynamics because it affects significantly the
angle of attack through the change in the local twist angle of the blade; this is geometrically
explained in fig. 5.5. The torsion M2 results from the analysis of the blue, local bending mo-
ment M3 w.r.t. the system of the blade E. Note that the SR beam element takes into account
the shear deformation, an assumption that is crucial in modeling the blades that oscillate in
higher modes, because of the short wavelength of deformation (Hodges, 2006). A picture
of what is the meaning of the short wavelength is given in fig. 5.6, compared to the long

wavelength predicted by an Euler-Bernoulli beam element.
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FIGURE 5.5: The bending-torsion coupling effect.

(A) (B)

FIGURE 5.6: (a) Short wavelength of deformation predicted by a Timo-
shenko beam theory, and (b) long wavelength of deformation predicted by

an Euler-Bernoulli beam theory.

5.3 The Reference Wind Turbine (RWT)

In this section, the Reference Wind Turbine (RWT) for which the analyses presented in the
following are performed, is described. This is the DTU 10-MW RWT; its geometry and
material data is taken from Bak et al., 2013, where the generalized cross-sectional, structural
and inertia properties per unit length are given after computing them with BECAS. The main
distances in the overall geometry of the wind turbine are shown in fig. 5.7. These are the
length of the tower (115.63 m) and its cross-sectional dimensions for the top and the bottom
of it, the blade length (86.366 m), the hub and the nacelle properties, including the hub
elevation above the ground (119.00 m), the position of the centre of mass of the nacelle, and
the length of the shaft (7.10 m). The mass of the corresponding components are 628 kg for
the tower, 228 kg for the rotor (blades and hub), and 446 kg for the nacelle. The performance

FIGURE 5.7: The main distances in the overall geometry of the DTU 10-
MW RWT.
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curves of mechanical power and thrust are depicted in fig. 5.8. At 11.4 m/s, the machine
attains the rated power of 10 MW and the maximum thrust on the rotor. The characterization

(A) The mechanical power of the rotor in relation with
the wind speed.

(B) The thrust on the rotor in relation with the wind
speed.

FIGURE 5.8: (a) The mechanical power, and (b) the thrust on the rotor, in
relation with the wind speed.

of the modes and the corresponding frequencies of the wind turbine at standstill are given
in table 5.1. The cases free-fixed and free-free mean the different boundary conditions at the

TABLE 5.1: WT standstill frequencies at 0o pitch [Hz].

mode free-fixed free-free
1 1st tower bending side-side 0.249 0.257
2 1st tower bending fore-aft 0.252 0.252
3 1st symmetric rotor in-plane 0.506 1.774
4 1st asymmetric rotor out-of-plane (yaw) 0.581 0.580
5 1st asymmetric rotor out-of-plane (tilt) 0.635 0.635
6 1st symmetric rotor out-of-plane 0.729 0.713
7 1st asymmetric rotor in-plane (vertical) 0.925 0.925
8 1st asymmetric rotor in-plane (horizontal) 0.962 0.962
9 2nd asymmetric rotor out-of-plane (yaw) 1.504 1.504
10 2nd asymmetric rotor out-of-plane (tilt) 1.660 1.660
11 2nd symmetric rotor in-plane 1.877 3.726
12 2nd symmetric rotor out-of-plane 2.143 2.073
13 2nd tower bending side-side 2.394 2.301
14 2nd tower bending fore-aft 2.326 2.327
15 2nd asymmetric rotor in-plane (vertical) 2.612 2.608
16 2nd asymmetric rotor in-plane (horizontal) 2.935 2.935
17 3rd asymmetric rotor out-of-plane (yaw) 3.123 3.123
18 3rd asymmetric rotor out-of-plane (tilt) 3.617 3.616

ends of the drive train. In the first case, the two ends (at both the generator and hub sides)
are free to rotate, while in the second case, the generator side is fixed (the brake is enabled).
It is shown that the frequencies associated to the torsion of the shaft, i.e. the 1st and 2nd

symmetric rotor in-plane modes, are different between the two models. The shapes of the
first eight modes are depicted in figs. 5.9 to 5.12.
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(A) 1st bending mode of the tower (lateral). (B) 1st bending mode of the tower (fore-aft).

FIGURE 5.9: DTU 10-MW RWT: The shapes of the first two modes.

(A) 1st symmetric (collective) edge-wise mode / shaft
torsion.

(B) 1st asymmetric flap-wise mode (yaw).

FIGURE 5.10: DTU 10-MW RWT: The shapes of the third and fourth
modes.

(A) 1st asymmetric flap-wise mode (tilt). (B) 1st symmetric (collective) flap-wise mode.

FIGURE 5.11: DTU 10-MW RWT: The shapes of the fifth and sixth modes.
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(A) 1st asymmetric edge-wise mode (vertical). (B) 1st asymmetric edge-wise mode (horizontal).

FIGURE 5.12: DTU 10-MW RWT: The shapes of the seventh and eighth
modes.
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5.4 Multi-body formulation

FIGURE 5.13: Wind tur-
bine configuration.

The multi-body dynamics framework applied in hGAST is based
on the following concept. The fully coupled wind turbine is consid-
ered as a multi-component dynamic system having as components
the blades, the drive train and the tower, all approximated as Tim-
oshenko beam structures (fig. 5.13). Assembly of the above com-
ponents into the full system is carried out in the framework of the
so-call multi-body approach. It consists of considering each com-
ponent separately from the others, subjected to specific free-body
kinematic and loading conditions, imposed at the connection points
of the components. Regarding kinematics, each body is subjected to
the elastic motion of the preceding bodies as well as to prescribed
or controlled rigid-body motions. For example, at the connection
point between the blade and the shaft at the blade root, the elastic
deformation corresponding to the motion of the shaft and the tower
is imposed to the blade, which is also subjected to the pitch, azimuthal and yaw, rigid-body
rotations. Regarding dynamics, each body receives the internal forces and moments of the
body that is ahead of it, e.g., the tower receives the internal forces and moments from the
drive-train. In the multi-body dynamics context, a material (body) frame E is attached to
each body that follows the rigid-body rotations and translations of it (floating frame, Simo
and Vu-Quoc, 1986b; Simo and Vu-Quoc, 1986c). The kinematics of each body is firstly
written with respect to the spatial (inertial) frame e, and then, it is transformed to the material
(body) frame E, for incorporating it into the balance equations of the body. The dynamic
equations are integrated in time using the Newmark’s method following a Newton-Raphson
iterative procedure to get the solution of the non-linear problem.
The multi-body formulation is also extended to the component level. Highly flexible compo-
nents, such as the blades are divided into a number of interconnected “sub-bodies”, consid-
ered as an assembly of linear beam elements. Large translations and rotations gradually build
up, whereas non-linear dynamics are introduced by imposing to each sub-body the transla-
tions and rotations of preceding sub-bodies as rigid-body, non-linear motions. This approach
allows capturing the geometrically non-linear effects due to large deflections using linear
beam theory at the element level, but considering non-linear effects at the sub-body level
(Manolas, Riziotis, and Voutsinas, 2015). In fig. 5.14, the position vector with respect to the
inertial frame e of an arbitrary material particle on a cross-section of the elements along the
νth sub-body of the kth body is given by

rνG,k = Rk(qk; t) +Ak(qk; t) [Rν
k(qνk ; t) +Aν

k(qνk ; t) rνk ] (5.1)

where Rk(qk; t) and Ak(qk; t) are the position vector and the orientation matrix of the kth

body, given in e frame with respect to time t. The vector qk denotes the set of the multi-body
kinematic degrees of freedom containing elementary translations and rotations that define
the kinematics of the body frame due to the elastic and rigid-body motions of the preceding
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FIGURE 5.14: The kinematics for the SB modeling.

bodies. Similarly,Rν
k(qνk ; t) andAν

k(qνk ; t) are the position vector and the orientation matrix
of the νth sub-body, given in E frame of the kth body (red frame in fig. 5.14) with respect
to time t and qνk is the corresponding vector with the kinematic degrees of freedom that
expresses the motion of the preceding sub-bodies of the kth body. rνk is the position vector
of the beam reference point that is defined according to the linear Timoshenko beam theory
with respect to the frame E assigned to the νth sub-body (green frame in fig. 5.14). For a
detailed description of the linear Timoshenko beam and the SB modeling with fully populated
stiffness matrix the reader is cited to Manolas et al., 2020.

5.5 Geometrically exact non-linear beam formulation

5.5.1 Extension of the SR beam model to anisotropic beams

In this section, the SR beam model is enriched with the terms resulting from a fully-populated
constitutive matrix of the cross-section. The element presented in the following is suitable
to model general cross-sections where the reference point is not necessarily identical to the
centroid, and also, the reference axes are not necessarily identical to the principal axes of
area. This extension is necessary for simulating highly flexible wind turbine blades with
anisotropic composite material couplings undergoing large deformation.

Constitutive equations

The material is assumed inhomogeneous, anisotropic and linear elastic, while the cross-
section can have a general shape. Under these assumptions, the material axial/shear inter-
nal force and twist/bending internal moment vectors, F (ξ) and M(ξ), are given by a linear
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relation between the stress and stress-couple resultants and the strain measures as

F (ξ) = CFΓ Γ +CFKK

M(ξ) = CMΓ Γ +CMKK (5.2)

where the matricesCFΓ ,CFK ,CMΓ andCMK constitute the sub-matrices of the following
fully-populated constitutive matrix

C =

[
CFΓ CFK

CMΓ CMK

]
(5.3)

The underlined terms are added to the original formulation, together with the non-diagonal
terms from the sub-matrices CFΓ and CMK .
The constitutive matrix C is constant, thus, the infinitesimal change of eq. (5.2) is

dF (ξ) = CFΓ dΓ +CFK dK

dM(ξ) = CMΓ dΓ +CMK dK (5.4)

Weak form of the elastic term

The elastic part of the weak form of the equations of motion is

Gk =

∫
0L

(
χ′T ΛF − φT r̂′0ΛF + φ′T ΛM

)
dξ (5.5)

where the test functions, χ, φ are given in section 3.7.1, whileΛF ,ΛM is the spatial setting
of the internal force and moment vectors given in eq. (5.2). By taking the infinitesimal change
of each unknown of eq. (5.5), results in the following relation

dGk =

∫
0L

(χ′T dΛF + χ′T Λ dF

−φT dr̂′0ΛF − φT r̂′0 dΛF − φT r̂′0Λ dF

+φ′T dΛM + φ′T Λ dM) dξ (5.6)

where dr0 and dΛ are derived after employing the directional derivative w.r.t. ε, for ε = 0,
in eqs. (3.6) and (3.8) (interchanging δ with d), respectively

dr0(ξ) = du0 (5.7)

dΛ(ξ) = dψ ×Λ (5.8)

dψ is the axial vector of the matrix dΨ . Inserting into eq. (5.6) the eqs. (5.7) and (5.8), and
after some algebraic manipulations, the infinitesimal change of the elastic part of the weak



Chapter 5. Dynamics of the coupled wind turbine system 105

form is written in a matrix form as follows

dGk =

∫
0L


χ′

φ

φ′


 cfγ cfγ r̂′0 − Λ̂F cfκ

Λ̂F − r̂′0cfγ −r̂′0cfγ r̂′0 + r̂′0Λ̂F −r̂′0cfκ

cmγ −Λ̂M + cmγ r̂′0 cmκ



du′0
dψ

dψ′

 dξ (5.9)

where

cfγ = ΛCFΓ ΛT ; cfκ = ΛCFK ΛT (5.10)

cmγ = ΛCMΓ ΛT ; cmκ = ΛCMK ΛT (5.11)

The same relation to eq. (5.9) is derived following the virtual work method in a material
setting.

Stiffness matrix

By inserting into the linearized elastic term (eq. 5.9) of the virtual work equation the ap-
proximations of the test and trial functions (eqs. 3.67 - 3.69), the infinitesimal change of the
approximated elastic term of the weak form dGhk is

dGhk =

∫
L

0

〈H
i
′
(ξ)I 0

0 H i(ξ)I

0 H i
′
(ξ)I

 {χi
φi

}
︸ ︷︷ ︸

(9×6) (6×1)

〉T  cfγ cfγ r̂′0 − Λ̂F cfκ

Λ̂F − r̂′0cfγ −r̂′0cfγ r̂′0 + r̂′0Λ̂F −r̂′0cfκ

cmγ −Λ̂M + cmγ r̂′0 cmκ


︸ ︷︷ ︸

(9×9)
H i

′
(ξ)I 0

0 H̃ i(ξ)

0 H̃ i
′

(ξ)


{
dui

dψi

}
︸ ︷︷ ︸

(9×6) (6×1)

dξ (5.12)

from which the stiffness matrixKij
k is derived after some algebraic manipulation as

Kij
k =

∫ L

0

 H i′ cfγHj′ H i′{(cfγ r̂′0 − Λ̂F )H̃j + cfκH̃j′}
H i{(Λ̂F − r̂0c

fγ)Hj′}+H i′cmγHj′ H i{(−r̂′0cfγ r̂′0 + r̂′0Λ̂F )H̃j−r̂′0cfκH̃j′}
+H i′{(−Λ̂M + cmγ r̂′0)H̃j + cmκH̃j′}

 dξ
(5.13)

5.5.2 Inertial terms: incorporation into the multi-body dynamics code hGAST

Let E denote the material (rotating) frame attached to the body and V the cross-sectional
frame that is moving together with the beam following its deformation. V1 is the vector
that is normal to the cross-sectional area. ξ = {ξ η ζ}T defines the position of an arbitrary
material particle, where ξ is the arc-length variable along the length of the beam and η, ζ
are the cross-sectional coordinates. The configuration of the beam at the undeformed and the
deformed state is shown in fig. 5.15.
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FIGURE 5.15: Initial and deformed configurations of the beam.

Let R(q; t) and A(q; t) denote the position and orientation of the body with respect to the
inertial frame e. The position vector rG(q, ξ; t) of any arbitrary material particle ξ = {ξ η ζ}
of the beam with respect to the inertial frame at time t is given through eq. (5.1) by

rG(q, ξ; t) = R+Ar (5.14)

where the indices k, ν that appear in eq. (5.1) have been omitted from the expressions for
convenience. Note that eq. (5.1) reduces to eq. (5.14) when only one sub-body is considered
(i.e. ν = 1). r(ξ; t) is the position vector of the material particle with respect to the body
frame E given in eq. (3.2) for the SR beam model. The rotation matrixA(q; t) is parameter-
ized using the three Euler angles about follower axes (intrinsic Euler angles). The velocity
and acceleration vectors expressed in the body frame E are given by (Manolas, 2015)

(
AT ṙG

)
(q, q̇, ξ; t) = AT Ṙ+AT Ȧr + ṙ (5.15)(

AT r̈G
)

(q, q̇, ξ; t) = AT R̈+AT Är + 2AT Ȧṙ + r̈ (5.16)

where Ṙ(q, q̇, ξ; t), R̈(q, q̇, ξ; t) and Ȧ(q, q̇, ξ; t), Ä(q, q̇, ξ; t) are the first and the second
time derivatives of the position vector and the orientation of the body with respect to the
inertial frame e at time t. The first and second time derivatives of the position vector, ṙ and
r̈ respectively, of the material particle with respect to the body frame E at time t, are given
in section 4.7.
The time derivative of the linear momentum ṗ (q, q̇, q̈, ξ; t) expressed on the body frame E
is defined as

ṗtot (q, q̇, q̈, ξ; t) =

∫
0A
ρref

(
AT R̈+AT Är + 2AT Ȧṙ + r̈

)
d0A (5.17)
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where
ṗ (ξ; t) =

∫
0A
ρref r̈ d

0A = Amr̈0︸ ︷︷ ︸
ṗu

+ Λ̈Sm︸ ︷︷ ︸
ṗψ

(5.18)

eq. (5.18) expresses the time derivative of the linear momentum of any material particle (ξ)

with respect to the body frame E in case the multi-body terms (i.e. underlined terms in
eqs. (5.15) and (5.16) are omitted in eq. (5.17)), see section 4.7. ρref : 0A → R is the
density in 0A. ṗu(ξ; t) and ṗψ(ξ; t) are the time derivatives of the linear momentum vector
due to the linear and the angular acceleration of the reference point, respectively.
The weak form of the inertia terms with respect to the body frame E is given by

δWṗtot (q, q̇, q̈, ξ; t) =

∫
0L

(
δrT0 ṗtot

)
dξ (5.19)

where δr0 is the variation of the position vector of the reference center.
The time derivative of the angular momentum vector l̇tot (q, q̇, q̈, ξ; t) with respect to the
body frame E is given by

l̇tot (q, q̇, q̈, ξ; t) =

∫
0A
ρref

[(
Λ̇X

)
×
(
AT Ṙ+AT Ȧr + ṙ

)
+ (ΛX)×

(
AT R̈+AT Är + 2AT Ȧṙ + r̈

)]
d0A (5.20)

where in a similar manner

l̇ (ξ; t) =

∫
0A
ρref

[
˙

(r − r0)× ṙ
]
d0A =

∫
0A
ρref

(
Λ̇X × ṙ +ΛX × r̈

)
d0A

=
(
Λ̇Sm

)
× ṙ0 + (ΛSm)× r̈0︸ ︷︷ ︸

l̇u

+

∫
0A
ρref

(
ΛX × Λ̈X

)
d0A︸ ︷︷ ︸

l̇ψ

(5.21)

eq. (5.21) expresses the time derivative of the angular momentum of any material particle
ξ with respect to the body frame E without considering the multi-body terms. l̇u(ξ; t) and
l̇ψ(ξ; t) are the time derivatives of the angular momentum vector due to the linear and the
angular acceleration of the reference point, respectively.

lψ(ξ; t) = Itω (5.22)

is the total spatial angular momentum relative to the principal axes of inertia, see section 4.7.
The standard cross-sectional inertial properties considered in eqs. (5.20) to (5.22) are the
linear mass density Am(ξ), the first moment of inertia Sm(ξ) and the second moment of
inertia tensor J , while It(ξ; t) = ΛJΛT is the time-dependent second moment of inertia
(see also section 4.7).
The weak form of the inertial terms with respect to the body frame is given by

δWl̇tot
(q, q̇, q̈, ξ; t) =

∫
0L
δψT l̇tot dξ (5.23)
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where δψ is the spin vector that expresses the variation of the cross-sectional orientation (see
chapter 3).
For the linearization of the inertial terms the reader is referred to the appendix E.

5.6 Implementation details

• For the spatial discretization, the displacement-based finite elements are used. A
Newton-Raphson iterative procedure is employed to get the solution of the non-linear
problem. Convergence of the finite element solution is established when the absolute
maximum displacement norm is reduced to the tolerance δu,max.

• For both the SR and SB models, 2-noded elements are used with linear Lagrange in-
terpolating polynomials. Thus, a reduced Gauss integration (i.e. 1 Gauss point) is per-
formed to compute the stiffness matrix preventing the shear locking effect. It should
be noted that modified C1 Hermitian shape functions are considered by default in SB
beam model for the two bending displacements (Manolas et al., 2020). However, this
choice is made to eliminate the effect of the shape functions and to exclusively assess
the effect of the beam modeling on the beam response under large deformations.

• In the SR modeling, the angle-axis representation is used for the rotation of the cross-
sections, while, in the SB technique, the Euler angles in an intrinsic sense are used for
the rigid-body rotation of the sub-bodies. In the SB technique, the balance equations of
motion are written with respect to the frame of each SB and so the degrees of freedom
of the beam are computed with respect to this frame. Thus, the total translational
and rotational deformations with respect to the blade frame are derived through post-
processing.

• In the SR model, the spin vector δψ is used in the iterative process instead of the rota-
tion vector. Using this option, the linearization of the elastic term is simpler than using
a rotation vector parameterization, because of the absence of the tangential transfor-
mation in the computation of the stiffness matrix. In addition, this choice is in line
with the original formulation (Simo and Vu-Quoc, 1986a) and also convenient for the
strain-invariant implementation (Jelenić and Crisfield, 1999).

• The strain-invariance is an issue that is taken under consideration for retaining the
consistency with the rotation manifold SO(3) in the linearization and in the discretiza-
tion level (Jelenić and Crisfield, 1999; Panteli and Spiliopoulos, 2020). The SB model
automatically guarantees the strain-invariance of the solution. For the SR model, to en-
sure having a consistent approximation of large rotations, the orientation of the cross-
section is decomposed into the rotation of the element and into the local rotation with
respect to the element, while the discretization is employed just for the local rotations
(Jelenić and Crisfield, 1999; Dukić, Jelenić, and Gaćeša, 2014). The SR beam that has
been incorporated in hGAST follows exactly the formulation by Jelenić and Crisfield,
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1999, which preserves the objectivity of the adopted strain measures and the geometric
exactness of the theory.

5.7 Numerical results

Firstly, the implementation of the SR and SB models is verified on two static benchmark cases
with cantilever beams. The first is the well-known 45o curved beam (Bathe and Bolourchi,
1979), whereas the second is a prismatic beam with a hollow box-shaped cross-section of
inhomogeneous and anisotropic material. The second example is reported in Bagherpour
et al., 2018, where verification and validation of the SB model was performed regarding the
implementation of the non-diagonal terms of the cross-section constitutive matrix (arising
from the anisotropic character of the material) using public available numerical and experi-
mental data. Secondly, a wind turbine system is examined. The geometry and material data,
as well as the aerodynamic and control properties are taken from Bak et al., 2013 for the
DTU 10-MW Reference Wind Turbine (RWT). Three loading scenarios are considered. At
first, static load cases are performed to assess the non-linearity in the response of a real blade
structure. Then, time domain aeroelastic computations are presented for the isolated rotor
under uniform inflow and finally for the entire wind turbine system under stochastic inflow.
The BEMT based method in combination with the ONERA dynamic stall model is used in
all the simulations. These simulation examples are specifically selected with the aim i) to
verify the implementation of the newly developed SR model and ii) to compare the SR and
SB modeling options regarding their efficiency to capture the non-linear behaviour of slen-
der beams in statics and dynamics. For this comparison, the solution obtained by a dense
discretization of the SR model is considered as the exact one, with respect to which the rel-
ative percentage error is calculated. The reason is that the SB model converges to the SR
model as the discretization increases. This is justified theoretically as follows. The SB model
could be considered as an early version of a geometrically exact beam modeling, in which
the same kinematics to the SR model is applied from sub-body to sub-body (not from point
to point) along the body. In addition, in order to provide a quantitative measure of the non-
linearity of the addressed cases, the results of the linear Timoshenko beam model are added in
selected graphs in comparison to the SR and SB models. The centrifugal stiffening, bending-
tension coupling term is the only non-linear term considered in the above-mentioned linear
model as it considerably affects the overall stiffness and response frequency and therefore it
cannot be neglected. It is noted that all the above three modeling options are implemented
into hGAST, meaning that the same software framework is used for all of them. In the two
benchmark static cases, discretization-independent results are provided for the SB and the
SR model in order to i) numerically prove that the SB model converges to the SR model as
the discretization increases and ii) highlight the much denser discretization required in the
SB model to achieve the same accuracy (in highly non-linear cases with large deformations).
In both cases, the considered structural members are prismatic and thus no approximation
is performed for the cross-sectional properties, meaning that the numerical results are not
affected by the interpolation of the beam properties of the various FEM grids (i.e., number of
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elements) considered, as opposed to the case where the real wind turbine blade is analyzed.
In the latter case, the comparison between the two non-linear beam models aims at assessing
the effect of the beam fidelity with a reasonable number of elements (up to 69 elements are
considered per blade), rather than to compare grid independent solutions by the two models.

5.7.1 Verification of the geometrically non-linear beam models in benchmark
cases of two cantilevers

A 45o curved cantilever beam undergoing large deformations

The curved (45o circle arc) cantilever beam defined in Bathe and Bolourchi, 1979 is a well-
known benchmark test case that is herein used in verifying the implementation of the SR
and SB models within hGAST framework. It represents a highly non-linear problem with
large translations and rotations. The geometry and material data is shown in fig. 5.16. The
slenderness ratio of the beam is defined as ζ = l

r = 76.54
1 ≈ 77, where l is the arc-length of

the beam, and r is the characteristic dimension of the cross-section. The higher the ratio, the
higher the effect of the non-linearity is expected on the response. The beam is subjected to
a transverse load of 600 N at its tip with fixed direction along the e3 axis. The baseline dis-

FIGURE 5.16: 45-degree curved cantilever: problem data.

cretization of the beam considered in the present analysis consists of 8 equally spaced beam
elements for the SR model, and 8 equally spaced sub-bodies, with one element each, for the
SB model. It corresponds to the discretization adopted in Bathe and Bolourchi, 1979 and in
a number of subsequent papers that simulated the same test case e.g. Simo and Vu-Quoc,
1986a; Jelenić and Crisfield, 1999; Romero, 2008. Furthermore, higher number of elements
or sub-bodies is considered, i.e. 16, 32, 64 elements for the SR model and 16, 32, 64, 128,
256 sub-bodies (with one element per sub-body) for the SB model, with the aim to attain grid
independent solution for both modeling options. The tolerance used in the convergence of
the nonlinear beam equations is δu,max = 10−11 in all models.
In tables 5.2 and 5.3, the absolute values of the three translations (u01, u02, and u03) and
rotations (θ1, θ2, and θ3) at the tip of the beam are shown for the SR and SB models for
different number N of elements and sub-bodies, respectively. The translational components
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TABLE 5.2: 45-degree curved cantilever: translations at the tip for the SR,
SB and linear beam models for different discretization. Relative percentage

errors are defined with respect to the SR-64 solution.

N u01(m) err. (%) u02(m) err. (%) u03(m) err. (%)

Ref. Jelenić and Crisfield, 1999 8 −13.483 −0.88% −23.479 −0.34% 53.371 −0.19%

8 −13.482 −0.88% −23.479 −0.34% 53.371 −0.19%
SR 16 −13.574 −0.21% −23.540 −0.08% 53.449 −0.05%

32 −13.597 −0.04% −23.555 −0.02% 53.468 −0.01%
64 −13.603 −23.559 53.473

8 −12.426 −8.65% −23.746 0.80% 53.468 −0.01%
SB 16 −13.042 −4.12% −23.723 0.70% 53.471 0.00%

32 −13.329 −2.01% −23.659 0.42% 53.471 0.00%
64 −13.468 −0.99% −23.613 0.23% 53.472 0.00%
128 −13.537 −0.49% −23.588 0.12% 53.473 0.00%
256 −13.570 −0.24% −23.574 0.06% 53.474 0.00%

reported in Jelenić and Crisfield, 1999, for the baseline discretization (i.e. 8 elements), are
added in the first line for verification. As mentioned, the finite element formulation of the
SR beam theory used in the current work follows the strain-invariant formulation in Jelenić
and Crisfield, 1999 that preserves the geometric exactness of the theory. The solution using
the SR model with 64 elements is considered as the reference for computing the relative per-
centage errors.
As far as the solution with the 8 elements is concerned (table 5.2), the SR model gives very
satisfactory results in all directions compared to those reported in Jelenić and Crisfield, 1999.
It is noted that predictions of the SB model in e1 direction are not the same good, when using
the 8 elements discretization. More precisely, the error in the prediction of the u01 translation
by the SB model is -8.65% (-7.84% compared to [36]), while for the other two translations,
u02 and u03, an error less than 1% is obtained (+1.14% and +0.18% respectively compared
to Jelenić and Crisfield, 1999). It is shown that the translation in e1 direction, which is ex-
clusively triggered by geometrically non-linear effects, is better predicted by the SR model
when a coarse discretization is considered.The same conclusion is drawn when predictions
obtained using more than 8 elements (or sub-bodies), are compared to the reference solution
by the SR model using 64 elements. While the error for the SR model begins at -0.88% for
8 elements and becomes almost negligible (-0.04%) for a number of 32 elements, the corre-
sponding error of the SB model is -8.65% for 8 sub-bodies while an overwhelming number
of sub-bodies is required in order to make the error vanish (256 sub-bodies for an error of
-0.24%). On the other hand, the error for the translations u02 and u03 remain below 1% for
both models.
Regarding rotations, higher errors are noted in the prediction of θ3 angle when low numbers
of elements are considered, for the same reason mentioned above for the transverse trans-
lation u01. It is also noted that convergence of the SR results to the reference predictions
is much faster compared to the SB model. The latter requires an overwhelming number of
sub-bodies (i.e., 256) in order to obtain a moderate error at the level of 1.53%. Faster con-
vergence and much lower errors are obtained though for θ1 and θ2 angles, where non-linear
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TABLE 5.3: 45-degree curved cantilever: rotations at the tip for the SR,
SB and linear beam models for different discretization. Relative percentage

errors are defined with respect to the SR-64 solution.

N θ1(deg) err. (%) θ2(deg) err. (%) θ3(deg) err. (%)

8 58.308 0.33% −32.227 0.14% 3.333 −2.95%
SR 16 58.162 0.08% −32.192 0.03% 3.410 −0.70%

32 58.125 0.02% −32.183 0.01% 3.430 −0.14%
64 58.116 −32.181 3.434

8 57.699 −0.72% −33.372 3.70% 1.507 −56.13%
SB 16 57.865 −0.43% −32.739 1.74% 2.523 −26.53%

32 57.979 −0.24% −32.449 0.84% 2.993 −12.86%
64 58.043 −0.13% −32.312 0.41% 3.218 −6.31%
128 58.077 −0.07% −32.245 0.20% 3.328 −3.11%
256 58.095 −0.04% −32.212 0.10% 3.382 −1.53%

effects are less important.
In fig. 5.17, the distributions of the translations and rotations along the length of the beam
are shown. The graphs are given for the SR-64 elements and for the SB-256 sub-bodies, as

(A) Translations along the length. (B) Rotations along the length.

FIGURE 5.17: 45-degree curved cantilever: distribution of the translations
and rotations along the length, for the SR, the SB and the linear model.

well as for the linear beam model. Both the shape and the values are very similar for the two
non-linear beam models. For the considered symmetric cross-section, without anisotropic
composite material couplings, translations u01 and u02 are exclusively triggered by geomet-
rically non-linear effects due to bending-tension and bending-torsion couplings and conse-
quently they cannot be predicted by the linear beam model (zero spanwise distributions are
predicted). The translation u03 at the tip (in the direction of the load) is about 120% decreased
as compared to the linear model prediction, due to the bending-torsion coupling effect. As
far as rotations are concerned, the torsional deformation θ2 is triggered by the applied load
and it is due to the initial curvature of the reference line that gives rise to a twisting arm
with respect to the body frame E. This is a linear effect, which is apparently predicted by the
linear beam model. What is not considered though, is the reduction of the twisting moment
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due to bending-torsion coupling, which is proportional to the out-of-plane bending deforma-
tion u03. The linear model prediction for the tip torsional deformation is about 70% higher
as compared to that provided by the non-linear models. The bending angles θ1 and θ3 are
proportional to the associated deformations u03 and u01. The former is over predicted by the
linear model by 83%, while the latter attains zero value along the beam span similar to u01.

An anisotropic cantilever beam

This test case was originally investigated in Wang et al., 2014 to examine the ability of
BeamDyn to analyze a composite beam. BeamDyn is the beam module used in the FAST
code for modeling initially curved and twisted composite wind turbine blades undergoing
large deformations (Wang et al., 2017). It is based on the geometrically exact beam theory
by Hodges (Hodges, 2006) following the strain-invariant formulation in Jelenić and Crisfield,
1999. Regarding the FEM discretization, Legendre Spectral Finite Elements are used in case
prismatic beams with constant cross sectional properties are analyzed. In Bagherpour et al.,
2018, the anisotropic beam example was simulated in order to validate the fully populated
stiffness matrix implementation for the SB model. It is replicated herein in order to check and
verify the ability of the extended version of the SR beam model to capture the bending-twist
coupling effect. It is noted that this is an important structural coupling that is often leveraged
in modern wind turbine blades for passive load control purposes (Bagherpour et al., 2018). A
10m thin-walled cantilever beam with an anisotropic box-shaped cross-section is considered
(fig. 5.18), constructed by laminates that are placed in [±15o]6 and [±15o]3 angles along the
caps and the walls, respectively. The slenderness ratio of the beam is ζ = l

r = 10
0.953 ≈ 10.

FIGURE 5.18: Anisotropic beam: problem data.

The derivation of the cross-sectional properties is given in Yu et al., 2002b, whereas the fully
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populated constitutive matrix with respect to the local basis 0V is

C =



1368.17 0 0

0 88.56 0 0

0 0 38.78

16.96 17.61 0.351

sym. 59.12 0.37

141.47


103 (5.24)

where the sub-matrixC(1, 1)3×3 is measured in N , while the sub-matrixC(2, 2)3×3 is mea-
sured in Nm2. The bend-twist coupling (BTC) effect is accounted for through the non-
diagonal terms in the 4th line of the constitutive matrix that relates the torsion moment (M1)
to the bending curvatures (K2 and K3), with respect to the 0V frame. The beam is subjected
to a conservative transverse load of 150 N along the e3 axis at the tip (fig. 5.18). The tolerance
used in the convergence of the nonlinear beam equations is δu,max in all models. The trans-
lations and rotations at the tip with respect to the e basis predicted by the SR and SB models
are shown in tables 5.4 and 5.5 for different spatial discretizations (number of elements or
sub-bodies). The numerical results obtained by the software BeamDyn using two 5th order
Legendre Spectral Finite Elements (LSFE) are added in the first line for comparison (Wang
et al., 2014). Along with the absolute values of the elastic deflections, the relative differences
of the various solutions with respect to the SR solution using 64 elements (considered as the
reference) are also provided. For the SB model a maximum number of 256 sub-bodies are
considered (up to 64 sub-bodies were considered in Bagherpour et al., 2018). In tables 5.4
and 5.5, the translation u03 and the associated rotation θ1 are the main deformations driven
directly by the load applied along the e3 axis.

TABLE 5.4: Anisotropic beam: translations at the tip for the SR, SB and
linear beam models for different discretization. Relative percentage errors

are defined with respect to the SR-64 solution.

N u01(m) err. (%) u02(m) err. (%) u03(m) err. (%)

BeamDyn 2 0.0648 0.15% −0.0906 0.42% 1.2300 0.03%

8 0.0639 −1.27% −0.0895 −0.90% 1.2253 −0.35%
SR 16 0.0645 −0.31% −0.0901 −0.21% 1.2286 −0.08%

32 0.0647 −0.07% −0.0902 −0.04% 1.2295 −0.02%
64 0.0647 −0.0903 1.2297

8 0.0503 −22.36% −0.0884 −2.07% 1.2274 −0.18%
16 0.0575 −11.25% −0.0897 −0.58% 1.2296 0.00%

SB 32 0.0611 −5.63% −0.0901 −0.17% 1.2299 0.02%
64 0.0629 −2.81% −0.0902 −0.05% 1.2299 0.02%
128 0.0638 −1.40% −0.0902 −0.01% 1.2298 0.01%
256 0.0643 −0.70% −0.0903 0.00% 1.2298 0.01%

These two are well captured, even when considering 8 elements (in SR model) or 8
sub-bodies (in SB model). By increasing the number of elements for the SR model and sub-
bodies for the SB model, the error in the translation u03 is reduced to -0.02% and 0.01%,
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TABLE 5.5: Anisotropic beam: rotations at the tip for the SR, SB and lin-
ear beam models for different discretization. Relative percentage errors are

defined with respect to the SR-64 solution.

N θ1(deg) err. (%) θ2(deg) err. (%) θ3(deg) err. (%)

BeamDyn 2 10.3046 0.16% 10.5682 0.22% 0.2796 0.21%

8 10.2903 0.02% 10.5488 0.03% 0.2793 0.09%
SR 16 10.2889 0.00% 10.5463 0.01% 0.2792 0.07%

32 10.2885 0.00% 10.5457 0.00% 0.2792 0.06%
64 10.2886 10.5453 0.2790

8 10.2960 0.07% 10.5597 0.14% 0.3907 40.01%
SB 16 10.2913 0.03% 10.5497 0.04% 0.3349 20.02%

32 10.2895 0.01% 10.5468 0.01% 0.3070 10.03%
64 10.2888 0.00% 10.5459 0.01% 0.2931 5.04%
128 10.2885 0.00% 10.5456 0.00% 0.2861 2.55%
256 10.2884 0.00% 10.5454 0.00% 0.2827 1.30%

respectively. The corresponding error of the θ1 rotation vanishes in both models as the num-
ber of elements or sub-bodies increases. The shortening effect u02, that is a geometrically
non-linear effect, is well captured for 8 elements or sub-bodies and more; the correspond-
ing deviations start from about 1.00% for the SR model and 2.00% for the SB model, while
the SR model presents a higher convergence rate. The error in the prediction of the twist
angle (with respect to the SR-64 elements’ reference solution) is negligible, independent of
the model used or the number of elements/sub-bodies considered. This indicates that the
corresponding deformation is driven by the BTC effect (linear coupling term in the fully
populated constitutive matrix) rather than by geometrical non-linearity. The BTC effect is
predicted well by both models, confirming the consistent implementation of the fully popu-
lated constitutive matrix of the cross-section in the extended version of the SR model.
Regarding the secondary bending direction along the e1 axis, the non-zero values of the
translation u01 and rotation θ3 for the SR and SB models indicate geometrically non-linear
coupling effects. Deviations of the SR model predictions from the reference solution for the
different number of elements considered in the analysis are much smaller compared to those
of the SB model (for different number of sub-bodies). The distribution of the translation u01

along the beam length is depicted in fig. 5.19 for the different numbers of the sub-bodies in
comparison to the reference solution. To obtain the coupling in the e1 direction (both u01 and
θ3 values) at a reasonable level of accuracy 3% more than 64 sub-bodies are needed. It should
be mentioned though that u01 deflection is rather small both in absolute value ( 0.064m) but
also in comparison to deflection u03 (u03u01

≈ 19).

5.7.2 Analysis of the coupled DTU 10-MW RWT system

The DTU 10-MW RWT blade under static loading

In order to assess the non-linearity in the response of a real wind turbine blade structure,
static analyses of the DTU-10MW RWT blade are first performed under the action of a fixed
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FIGURE 5.19: Anisotropic beam: distribution of the translation u01 along
the length.

point force at the tip of the blade along the flap-wise direction E3 (see fig. 5.13 for the defi-
nition of the reference axes considered). The imposed load gradually increases from 25 kN
to 250 kN with a step of 25 kN. In figs. 5.20 to 5.22, the P − δ diagrams are depicted for
the SR, the SB, and the linear models. In SR simulations 69 elements are considered. SB
simulations are performed using 69 sub-bodies consisting of one element each. Linear beam
analyses are performed with the SB model considering that the whole blade consists of one
sub-body which is discretized by 69 finite elements.
As far as the translations are concerned, the results of the two non-linear models, the SR and
the SB, agree well. This implies that geometric non-linearities are well reproduced by both
models. Specifically, the response to the externally applied flap-wise load, mainly consisting
of a significant flap-wise translation component u03 (see fig. 5.21a), a smaller extension com-
ponent u02, obtained as a result of the blade shortening due to extreme bending (fig. 5.20b)
and an even smaller edgewise translation u01 (fig. 5.20a) mainly due to material flap/edge
coupling, is similarly predicted by both models. As deduced by the linear model predictions
in the same figures, the non-linear models are indispensable for the accurate prediction of the
blade deformation. As seen in fig. 5.21a, where the blade tip flap-wise translation is depicted,
beyond the 75 kN of load where the response is still linear up to 250 kN the deviation between
the non-linear and the linear models increases by a continuously growing rate, towards the
maximum of 16%. On the other hand, the shortening effect cannot be captured by the linear
model. In fig. 5.20a, the translation u01 in the edge-wise direction is a combined result of
the material (linear cross bending stiffness coupling term) and the geometrically non-linear
coupling; the second not being as important as the first though. Although the predicted by
the different models edge-wise deflections do not significantly deviate, the shape of their
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variation with the load is somewhat different. The linear model predicts a linear increase of
the edge-wise deflection with the load while the SR and SB models, both predict a nonlinear
variation.
As far as the rotations are concerned, in fig. 5.21b, the deviations between the linear and
the non-linear models in the prediction of the rotation θ1 follow a similar pattern as in the
translation u03. The corresponding maximum deviation between the non-linear and the linear
models, when the load reaches its maximum value of 250 kN, is 18%. On the other hand, in
fig. 5.22, a slight difference between the two non-linear approaches is noted in the rotations
θ2 and θ3. This difference vanishes as the number of sub-bodies is further increased (higher
than 69 sub-bodies used in the present study).

(A) Tip load vs. translation along the edge-wise direc-
tion.

(B) Tip load vs. translation along the longitudinal direc-
tion.

FIGURE 5.20: DTU 10-MW RWT blade under static loading: tip load vs.
translation along (a) E1 and (b) E2 axes.

(A) Tip load vs. translation along the flap-wise direction. (B) Tip load vs. rotation about the edge-wise direction.

FIGURE 5.21: DTU 10-MW RWT blade under static loading: tip load vs.
(a) translation along the E3 axis and (b) rotation about the E2 axis.
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(A) Tip load vs. rotation about the longitudinal direction. (B) Tip load vs. rotation about the flap-wise direction.

FIGURE 5.22: DTU 10-MW RWT blade under static loading: tip load vs.
translation along the (a) E2 and (b) E3 axes.

The DTU 10-MW RWT rotor under uniform inflow

The isolated rotor, consisting only of the three rotating blades, is examined under a uniform
inflow and the effect of gravity. In this case, the aerodynamic tower shadow effect is in-
cluded. The FEM mesh consists of 69 elements per blade for all beam models. In order to
better highlight what has already been observed in the previous sections, i.e., that SB pre-
dictions come closer to the SR predictions as the number of sub-bodies is increased, the SB
grids employing 9, 17 and 35 sub-bodies are all considered in addition to the fine grid of 69
sub-bodies. The aim of the comparison between the two non-linear beam models is to assess
the effect of the beam fidelity with a reasonable number of elements (up to 69 elements are
considered per blade), rather than to compare grid independent solutions by the two models.
Uniform inflow conditions are considered at the rated wind speed of 11.4 m/s, where the
deflections are expected to attain their maximum value (due to maximum thrust) and con-
sequently, non-linear effects will be more pronounced. The rotor is operated at the fixed
rotational speed of 9.6 rpm and at zero pitch angle (open loop operation, i.e., the controller
is not active), corresponding to average operating conditions at the rated wind speed. The
results are presented in terms of time histories, after the initial transients are damped.
In fig. 5.23, the torsion moment M2 at the root and the torsion angle θ2 at the tip of the
blade are shown. Both SR and SB models agree well in the predicted phase and mean
values of the two signals, while the SR model predicts higher variation amplitude of both
signals. However, as the number of sub-bodies of the SB model increases, the predicted by
the model amplitude converges towards the SR predictions. The linear model considerably
under-predicts the amplitudes of the variation of both the moment and the angle, while it pre-
dicts an almost zero mean value of the torsion moment and 0.3o higher mean torsion angle
(in absolute value). Regarding the flap-wise direction triggered by the thrust force due to the
wind inflow, in fig. 5.24, the flap-wise moment M1 at the root of the blade and the corre-
sponding deflection u03 at its tip are shown. In fig. 5.24a, the two non-linear models provide
very similar results. The small difference observed in the graph is measured less than 1%.
In fig. 5.24b, the mean value of the translation u03 is about the 10% of the rotor radius (for
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the DTU 10-MW RWT the rotor radius is 89.2 m) and it is well predicted by both non-linear
models (difference 0.6%). The reduced mean value compared to the linear model results
from the bending-twist coupling effect, and the same holds for the amplitude of the variation.
The increase in the amplitude of the twist angle in fig. 5.23b, gives rise to a decrease in the
amplitude of the flap-wise deflection in fig. 5.24b, which comes as a result of the change of
the effective angle of attack of the blade sections. As in the case of torsion, the more the
sub-bodies used the closer is the agreement of the two non-linear models (fig. 5.24).
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FIGURE 5.23: DTU 10-MW RWT RWT rotor under uniform inflow: time
series of blade torsion (a) root moment M2 and (b) tip angle θ2.
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FIGURE 5.24: DTU 10-MW RWT RWT rotor under uniform inflow: time
series of blade flap-wise (a) root moment M1 and (b) tip translation u03.

The DTU 10-MW RWT under turbulent (stochastic) inflow

The onshore version of the DTU 10-MW RWT is analyzed under a stochastic inflow. The
aim of the analysis is to assess the loads of the turbine in accordance with the specification of
the IEC 61400-1 standard (IEC, 2003-2004) and to identify differences in the predictions of
the various modeling options (linear, SB and SR models). Three realizations of 10 minutes
each are simulated per wind speed bin. For assessing the fatigue limit state (FLS), the design
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load case (DLC) 1.2 is considered, where a normal turbulence model (NTM) in normal oper-
ation is used. For assessing the ultimate limit state (ULS), the DLC 1.3 is considered where
an extreme turbulence model (ETM) in normal operation is used. Two additional cases are
examined for the ultimate load analysis, the DLC 6.1 and 6.2 considering the wind turbine in
idling mode under extreme wind conditions (EWM). The definition of the performed DLCs
is given in table 5.6. The wind turbine class is 1A that designates the category for higher

TABLE 5.6: The data associated with each DLC according to the IEC.

DLC Wind Wind Speed (m/s) Yaw Error Analysis SF Runs

1.2 NTM 05− 25, step = 2 0o FLS - 11× 3
1.3 ETM 11− 25, step = 2 0o ULS 1.35 8× 3
6.1 EWM 50 0o,±8o ULS 1.35 3× 3
6.2 EWM 50 ±15o,±30o, ULS 1.10 8× 3

±45o,±60o

turbulence characteristics. The effects of wind shear (shear exponent = 0.20), tower shadow
and wind inclination (= 8o) are considered according to IEC 61400-1 standard. The stochas-
tic wind inflow is based on the Kaimal spectrum and is generated in a polar grid consisting
of 64 x 32 points along the periphery and the radius, respectively. Wind velocities at given
positions are derived through linear interpolation. Furthermore, the wind turbine is operated
in closed loop (i.e. the controller is activated). The FEM mesh consists of 35 elements for
each blade (as previously) and of 20 elements for the tower. The sub-bodies discretization (in
the SB model) amounts 35 sub-bodies with one element each for the blades and 5 sub-bodies
with 4 elements each for the tower.
In table 5.7, the damage equivalent loads (DELs) of the wind turbine components are shown
for the SR, the SB and the linear model. The SR solution is chosen as the reference one,
compared to which the relative percentage differences are given for the SB and the linear
model. The DELs are computed assuming a lifetime of 20 years and 107 reference cycles.
The considered Wöhler coefficients are m = 10 for the blades, m = 8 for the shaft, and m =

TABLE 5.7: Fatigue loads (DEL’s) analysis results from DLC 1.2. Compar-
ison between the SR, SB-35 and linear beam models.

SR SB Lin.
Signal DEL (kNm) diff (%) diff (%)
Blades root edge-wise moment 28291 0.4 1.4
Blades root flap-wise moment 34378 0.2 −0.5
Blades root pitching moment 437 −1.6 −36.9
Shaft torque 4814 0.3 0.5
Shaft yawing moment at main bearing 30567 0.1 −1.7
Shaft tilt moment at main bearing 32447 0.2 −0.6
Tower base side-to-side bending moment 57516 4.7 4.6
Tower base fore-aft bending moment 118409 0.5 −0.5
Tower base yawing moment 29573 0.6 0.1

4 for the steel tower, whereas the Weibull parameters are C = 11.3 m/s and k = 2. Similar
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blade fatigue loads are predicted by all modeling options, except for the blades root pitching
moment where the deviation in relation to the SR approach is -37% for the linear model.
The SB model with 35 sub-bodies predicts slightly lower DEL (1.6%) being in-line with the
results of fig. 5.23. Slightly higher DELs are predicted by the linear and the SB model for
the tower base side-to-side bending moment (4.6-4.7%), while the DEL of the tower base
fore-aft bending moment, which is directly excited by the wind, is in good agreement for all
models (absolute value of relative percentage differences of 0.5% are obtained). The other
loads are very similar for both the SB and the linear model (absolute value of relative per-
centage differences are below 1.7%).
In table 5.8, the results of the ultimate load analysis are shown. The maximum absolute value

TABLE 5.8: Ultimate load analysis results from DLC 1.3, 6.1 and 6.2. Com-
parison between the SR, SB-35 and linear beam models.

SR SB Lin.
Signal (moments) Max Loa (kNm) diff (%) diff (%) DLC
Blades root edge-wise 31244 5.1 42.4 6.2− 30o

Blades root flap-wise 61240 0.3 2.4 1.3− 13m/s
Blades root pitching 934 4.0 −8.0 6.2− 330o, 315o, 8o

Blades root combined 64354 0.3 1.8 1.3− 13m/s
Shaft torque 16907 0.1 0.1 1.3− 25m/s
Shaft yawing at main bearing 52389 1.2 1.2 1.3− 25m/s
Shaft tilt at main bearing 59322 0.1 21.9 1.3− 25m/s (nl), 6.2− 30o (l)
Shaft combined at main bearing 64306 0.5 13.0 1.3− 25m/s (nl), 6.2− 30o (l)
Tower base side-to-side bending 460076 2.9 −2.2 6.2− 45o

Tower base fore-aft bending 327059 0.9 7.7 1.3− 13m/s (nl), 6.2− 30o (l)
Tower base yawing 54538 0.1 −0.6 1.3− 25m/s
Tower base combined 509105 4.2 11.3 6.2− 45o, 45o, 30o

of the moments is provided for the SR model, while for the SB and the linear model the rel-
ative percentage differences are given, as previously. Moreover, the DLC per load signal at
which the ultimate load occurs is presented in the last column (the DLC id and either the
wind speed for DLC 1.3 or the yaw misalignment for the idling DLCs 6.X). A single DLC is
provided in case it is the same for all beam models, while two DLCs are given in case there
are differences between the non-linear (nl) and the linear (l) modeling. For the two non-linear
models the driving DLCs are the same for all signals.
Differences between the two non-linear models do not exceed 5%. Higher absolute values
of relative percentage differences are obtained for the blade root edgewise and pitching mo-
ment and for the tower side-to-side and combined moment. What is common in all the above
signals is the driving DLC, which is the idling case DLC 6.2. Ultimate loads in idling mode
mostly appear when instabilities due to negative aerodynamic damping take place. Parked
or idling rotors, experiencing extreme wind speeds, are likely to encounter high angles of
attack within the post-stall region (Wang, Riziotis, and Voutsinas, 2017). Whether these high
angles of attack will appear depends on the inclination of the topography, the tilt angle of the
nacelle, as well as the yaw misalignment of the inflow, static or dynamic (due to the wind
turbulence). Such high angles of attack may give rise to stall-induced, edge-wise vibrations
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on the blades, which, on many occasions, drive the design loads. In this case, slightly differ-
ent loads between the two non-linear models may be predicted. Differences due to the model
fidelity may appear (i.e. the ability of the SB model to capture non-linear effects depends
on the number of sub-bodies considered), but also due to the stochastic nature of the idling
DLCs that cannot be completely eliminated by considering the same turbulent wind inflow.
This is because small accumulated differences in the rotor azimuth might give rise to differ-
ent loads due to the different wind velocity seen by the blades. Differences in the remaining
signals that are driven by the operational DLC 1.3 remain small, in the order of 1%.
On the contrary, significantly high differences between the predictions of the two non-linear
models versus the linear model are encountered. The highest deviation concerns the blade
root edgewise moment (42.4%), obtained in DLC 6.2 at 30o yaw misalignment. As men-
tioned, in this DLC, significant edgewise vibrations on the rotor appear that are over-predicted
by the linear beam model. The same holds for all the other loading signals that are affected
by the excessive blade (edge-wise) loading (i.e. the shaft tilt and combined moment and the
tower fore-aft and combined moment). For these signals, the ultimate value is obtained in
DLC 6.2 at 30o, which is different to the ones predicted by the non-linear models. It should
be mentioned that the three beam models share the same aero-dynamic module, i.e., the
BEMT based method combined with the ONERA dynamics stall model that is considered
in all the simulations of table 5.6. Consequently, the differences in the edgewise moments
in the present analyses are driven by the structural model considered. They are due to the
geometrically non-linear bending-tension coupling effect that cannot be accounted for by the
linear model. In the nonlinear models, tension force gradually increases as the blade bends
(i.e., when stall vibrations appear). As a result, virtual bending stiffening of the blade takes
place which has a relieving effect on edgewise vibrations. This implies that in the occurrence
of stall induced vibrations on parked or idling rotors, the loads predicted by a linear struc-
tural model are always more conservative than those obtained by a geometrically nonlinear
one. The second notable difference between the predictions of the two non-linear models
versus the linear model concerns the blade pitching moment (-8%) that has been sufficiently
discussed in the previous sections. It is due to the geometrically non-linear bending-torsion
coupling effect that cannot again be predicted by the linear model.
To further elaborate on the above findings, time series and power spectral density (PSD) plots
for selected load signals are presented in the sequel. Safety factors have not been considered
in the plots, as opposed to the loads in table 5.8. The analysis is exclusively focused on the
loads assessment, while expected differences in the deformations due to non-linear effects
have been discussed in the previous sections. In fig. 5.25, the time series and the PSD plot of
the blade root edgewise bending moment resulting from DLC 6.2 at 30o yaw misalignment
are shown. The time series demonstrate that the linear model significantly over-predicts the
moment amplitudes due to stall vibrations, while the two non-linear models predict very sim-
ilar load response. In the PSD plot, the frequency peak of the three rotor edgewise modes
(note the pitch setting of 90o in idling DLCs 6.X) and especially of the 1st edgewise asym-
metric mode at 0.8Hz are higher than the non-linear ones. In fig. 5.26, the pitching moment
of the blade at the root is shown from DLC 1.3 at 11m/s. This wind speed is close to the
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(A) (B)

FIGURE 5.25: DTU 10-MW RWT under stochastic inflow (DLC 6.2-30°):
(a) time series and (b) PSD of the blade root edgewise bending moment M3.

(A) (B)

FIGURE 5.26: DTU 10-MW RWT under stochastic inflow (DLC 1.3-
11m/s): (a) time series and (b) PSD of the blade root pitching moment M2.

(A) (B)

FIGURE 5.27: DTU 10-MW RWT under stochastic inflow (DLC 1.3-
11m/s): (a) time series and (b) PSD of the tower base side-side bending

moment M1.

rated speed of the DTU-10MW RWT (11.4m/s) and the highest flapwise deflections are an-
ticipated that give rise to the geometrically non-linear bending-torsion coupling effect. As
seen in previous sections the linear model predicts significantly lower moment amplitudes,
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while the non-linear models are in good agreement. The SB-35 model predicts slightly lower
moment amplitudes as compared to the SR model that can be increased by further increasing
the SB discretization. The PSD plot shows that the linear model under predicts all frequency
peaks, i.e. at the 1P, 2P and 3P excitation frequencies at 0.16Hz and its multiples, at the 1st
rotor in-plane asymmetric horizontal frequency at 0.96Hz and also at the 1st rotor edgewise
symmetric free-free frequency at 1.77Hz. In fig. 5.27, the tower base side-to-side bending
moment is presented for the same case (DLC 1.3 at 11m/s). Although the maximum value of
this load is depicted in DLC 6.2 at 45o yaw misalignment (see table 5.8), the selected plots
are included to demonstrate the obtained differences between the linear and the non-linear
modeling. During normal operation the side-side tower (and the rotor edgewise direction) is
low damped. Aerodynamic damping mainly affects the rotor flapwise and the tower fore-aft
direction. In the time series plot, the linear model predicts significantly higher load ampli-
tudes within the range 450-600s that mainly correspond to the frequency of the 1st tower
side-side bending mode at 0.25 Hz, as shown in the PSD plot.

5.8 Conclusions

In the present work, the geometrically exact SR beam model was integrated into the multi-
body dynamics aeroelastic code hGAST, following a strain-invariant implementation. Along
this line, the original beam model was enriched by the multi-body inertia terms. Moreover,
the SR beam model was extended to general-shaped cross-sections with anisotropic compos-
ite material couplings such as the material bend-twist coupling effect that is used in wind
turbine blades as a passive load control mechanism for loads mitigation. Numerical compar-
isons between the two most popular modeling options amongst Wind Energy community, the
SR model and the existing SB model, which predicts the geometric non-linearity through a
multi-body approach at the body level, were performed. The two models have been devel-
oped within the same tool, as opposed to other similar works. The obvious advantage of the
above approach is that possible deviations or uncertainties related to the numerical details of
the models and the modeling assumptions considered are eliminated. In addition, the results
of the linear Timoshenko beam model were added in selected cases to provide a quantitative
measure of the non-linearity.
Comparisons of the two non-linear beam models indicate that both modeling options can
accurately predict geometrically non-linear effects due to large deflections. Their main dif-
ference is that as non-linearities become more pronounced, the number of sub-bodies used in
the multi-body analysis need to increase in order to accurately capture these effects. On the
other hand, the SR beam model provides the same level of accuracy at all conditions (in terms
of the deflections) without increasing the spatial discretization. In SR model, the geometric
exactness is preserved at the beam level, as opposed to the SB model where the geometrically
non-linear effects are only accounted for at the connecting nodes of the multi-body formula-
tion. The almost perfect agreement of the grid independent solutions by the two models with
benchmark cases suggests that the SR beam model has been consistently incorporated within
hGAST and that both models are adequate for simulating highly flexible wind turbine blades
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with anisotropic composite material couplings undergoing large deformations. As far as the
IEC-based load analysis is concerned, the agreement of the two non-linear models is satis-
factory when a reasonable number of elements and sub-bodies is considered (35) that does
not however absolutely pursue grid independency. Specifically, in normal operation cases,
the SB model slightly over-predicts the ultimate loads ( 1%), whereas in idling cases (when
instabilities exist) the maximum difference is 5%. This is because the SR model achieves
discretization-independency faster (i.e., with lower number of elements).
Comparisons against the linear beam model indicate that the non-linear models predict higher
blade torsional moments during normal operation due to the bending-torsion coupling effect
that is mostly triggered near the rated wind speed where the flapwise deflections attain their
maximum value. The bending moments of the main turbine components are still well cap-
tured by the linear model during normal operation. On the contrary, the non-linear models
may predict lower design loads when stall-driven instabilities occur. For example, for the
DTU-10MW RWT considered in the present analysis, the ultimate design load of the blade
edgewise moment was over-predicted by the linear model (+42.4%) when the idling oper-
ation mode of the turbine was simulated under the 50-year storm conditions. The above
suggest that the linear models can be still used in the design/certification process of the main
turbine components, as non-linear effects marginally affect the loads. However when insta-
bilities do exist, the linear model is conservative as it omits the non-linear couplings that
tend to suppress instabilities. The linear model may only provide smaller loads in case the
non-linear coupling effect is pronounced and is significantly affecting the obtained load am-
plitude, as for example the blade pitching moment of the blade (near rated conditions) due to
the bending-torsion coupling effect.
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Chapter 6

Overview and outlook

6.1 Overview

The present thesis had three main objectives:

1. The study of two beam models that are available in the literature for solving spatial
beam-like structures, which are slender and undergo large translations and rotations,
but small strains.

2. The study of two time integration algorithms that are available in the literature for
solving problems with large rotations in time domain.

3. The extension of the multi-body dynamics, aeroelastic code hGAST regarding its struc-
tural dynamics part. This improvement refers to the incorporation of a geometrically
exact beam model for the simulation of the wind turbine blades, and the modification
of the solution procedure such as to be consistent with the rotation manifold SO(3).

With respect to the first objective, two models for geometrically non-linear shear deformable
3D beams with small strains that are derived from different working pairs are compared.
The first one is the Simo-Reissner model (Simo, 1985), whereas the second one is the 1D
formulation of a degenerate-continuum beam model which uses the Green-Lagrange strains
(Dvorkin, Onate, and Olivier, 1988). The derivation was made in a way so that one may have
a clear comparison with the SR model. Two different (regarding rotations) formulations, the
iterative and the invariant, are tested within the framework of these two models. The geomet-
ric illustration given on the rotation manifold SO(3) clarifies the way of creating an invariant
3D beam element with large rotations: one should refer to the same tangent space on SO(3)
when interpolation is performed. Four versions of a geometrically non-linear finite element
formulation are derived (SR invariant, GL invariant, SR iterative, GL iterative) and used in
2D and 3D examples. The numerical results compare the proposed invariant formulation of
the GL model to the other three finite element formulations and the strain measures between
the four of them. The main conclusions are the following: 1) It is verified numerically that
the model based on the Green-Lagrange strains gives a different approximation inside the
element compared to the model that uses the Simo-Reissner strains, because in this case the
neutral axis changes during deformation. 2) The incorporation to the GL model of the up-
date procedure that splits the rotation into a rigid-body part and a local cross-sectional part,
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offers the invariance properties to this beam formulation. This implementation may be com-
bined with all the beam models with small strains that use spin parameters as the rotational
unknowns. 3) The invariant formulation, either in the SR or in the GL model, is more suit-
able for problems with 3D large rotations. 4) The SR and GL beam models require similar
computational cost to converge to the correct solution.
With respect to the second objective, the following time integration schemes for rotational
rigid-body dynamics have been studied: a) Simo’s & Vu-Quoc’s (Simo and Vu-Quoc, 1988),
b) 3 versions of Mäkinen’s / Cardona’s & Géradin’s scheme (Mäkinen, 2001; Cardona and
Géradin, 1988)

- Mäkinen’s (non consistent linearization and update),

- Cardona’s & Géradin’s (non consistent linearization yet consistent update), and

- consistent linearization and consistent update.

The difference between these two algorithms, which is the motivation of their comparison in
this work, is that the Newmark scheme is applied on the angular velocities and accelerations
in the first algorithm, while this scheme is applied on the first and second derivatives of the
rotation vector in the second algorithm. The conclusions that came up from the numerical
results of the heavy symmetrical top are summarized.
For a short simulation time: The versions of a non consistent and consistent update of the
second scheme give a more accurate result in large time step than Simo’s & Vu-Quoc’s al-
gorithm. They also present a small shift in the period that results the solution to be ahead of
the exact one, whereas Simo’s & Vu-Quoc’s algorithm gives a periodicity in oscillation that
remains behind of the exact solution.
For a long simulation time: Simo’s & Vu-Quoc’s algorithm seems to be more stable than the
3 versions of Mäkinen’s / Cardona’s & Géradin’s algorithm. The scheme with the consis-
tent update (either with a consistent linearization or with a non consistent linearization) has
a better behaviour regarding the ’blown-up’ issue than the algorithm with the non consistent
update.

With respect to the third objective, the geometrically exact SR beam model has been incor-
porated into the multi-body dynamics, aeroelastic code hGAST, following a strain-invariant
implementation. The SR model has been extended to general-shaped cross-sections with an
inhomogeneous and anisotropic material. Comparisons between the SR and the SB model,
that predicts the geometric non-linearity through a multi-body approach at the body level, are
performed. Either the benchmark examples in statics, or the aeroelastic computations show
that the geometrically exact beam predicts the torsional deformation state more sufficiently
compared to the sub-body modeling. The last one needs many sub-bodies to converge to the
solution given by the SR model.
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6.1.1 Novelties

Statics of beam structural members is investigated. Through this thorough study, a new beam
model is proposed combining the theory that uses the Green-Lagrange strain measures and
the strain invariant formulation for the linearization of the weak form and the finite element
discretization. This model, the so-called GL model, results from a degenerate continuum for-
mulation after integrating analytically the cross-sectional integrals and defining appropriately
the elastic properties of the cross-section that appear in the resulting 1D equilibrium equa-
tions. Having the equations in 1D integration form derived, a linearization and discretization
procedure follow. A strain-invariant formulation is chosen to be applied in order to improve
the numerical performance of the beam model. Along this line, the error in strains induced
by a rigid-body rotation of the element disappears. This is depicted in the numerical results
given for the so-called GL invariant model in contrast to the original GL iterative model.
Furthermore, the numerical comparison between the GL and the SR models is for the first
time reported in the literature. This is depicted in the strain difference between the GL and
SR models that is computed at the Gauss point inside the finite element. On the other hand,
the theoretical comparison is presented in a consistent way, meaning that the derived gen-
eralized strains of the GL model are given in a vector form that is directly compared to the
corresponding vector form of the generalized strains used by the SR model.
Regarding dynamics, the investigation of a rigid-body dynamics example (the heavy sym-
metrical top) shows interesting properties of the two time integration algorithms that have
been studied. The distinct difference between these two Newmark-type schemes is that they
use different kinematic parameters inside the Newmark relations, i.e. the one uses the an-
gular velocities and accelerations, while the other uses the first and second derivatives of
the rotation vector. The accuracy and stability of the algorithms are depicted on the time
series graphs that show the response (nutation and precession angles, energy, momentum)
along time. This study constitutes a first step of a thorough comparison between these time
integration schemes that does not appear in the literature.
When the one of the two time integration schemes is applied on beam dynamics, the resulting
solution procedure can be used to solve the equation of motion of the wind turbine blades. In
this case, the original SR model is extended to include the couplings because of the generality
of the cross-sectional shape, as well as the heterogeneity and the anisotropy of the material.
The original SR model is also enriched by the inertia terms that are necessary for a multi-body
dynamics formulation. Its integration in the hydro-servo-aeroelastic tool hGAST constitutes
an improvement of the software, since, until now the sub-body technique has been used for
the modeling of the wind turbine blades. The sub-body technique is not a geometrically exact
one, in contrast to the SR modeling. Both techniques (the sub-body and the geometrically
exact one) are now included in the same multi-body dynamics framework for having a direct
comparison between them. This is presented for the first time in the literature; the obvious
advantage is that possible deviations or uncertainties related to the numerical details of the
models (e.g. time integration scheme), to modeling assumptions (e.g. modeling of lumped
properties such as the generator inertia or nacelle mass) or to the imposed external excitation
(e.g. calculation of aerodynamic loads) are eliminated.
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6.2 Outlook

There are several aspects of beam analysis worth exploring.

1. Further research can be performed in the direction of the generalization of the geomet-
rically exact beam theory models presented in this thesis. This means that additional
degrees of freedom should be added in order to capture the deformation of the cross-
section. The warping and distorsional phenomena predicted by such an advanced beam
model have already been presented in Argyridi, 2019 and similar references, thus, a
study that would combine this work with the geometrically exact GL or SR beam
models in their invariant (or even their iterative) form could be a very promising future
task.

2. As a result from the previous higher order beam theory implementation, the effect of
the end restraints can be investigated either in statics or in dynamics, since the stress
evaluation nearby the constraints could be achieved. Along this line, the local buckling
effects of a wind turbine blade could be studied.

3. Open questions in the field of the material non-linearity could also be answered. As it
is described above, the main advantage of using a general displacement field is that a
full stress and strain field can be obtained on each material point of the cross section
and, therefore, a large set of constitutive equations can be employed. As it is noted in
Hodges, 2006: Applications in civil engineering with steel-reinforced concrete demand
at least an elastic-plastic model. Most composites today tolerate larger shear strain and
is better treated with non-linear elastic models. Finally, the progress in the area of
visco-elasto-plasticity allows treatment of beams made of elastomers and contributes
to the modeling of damping in structures.

4. Another possible contribution in further works can be given by the extension of the
present formulation to coupled thermal-mechanics problems. Again, the constitutive
part should be altered for including the full thermodynamical laws in the theory and
the corresponding treatment in numerical simulations.

5. An extension of the present work to geometrically exact shell elements could also
be a very interesting future task. Shell elements is another type of structural elements
widely applied in several areas of engineering, e.g., in civil, aerospace, and mechanical
engineering.

6. Regarding the numerical part of the work, further research can be done on the structural
anisotropy with respect to the interpolation functions used when the constitutive matrix
of the cross-section is fully populated. The so-called linked interpolation could be
investigated, whereby the interpolations of the displacement field depends not only on
the nodal displacements, but also on the nodal rotations. Although a previous work
has been presented in the literature (Jelenić and Papa, 2011; Dukić and Jelenić, 2014;
Dukić, Jelenić, and Gaćeša, 2014), there are still open questions for higher-order beam
elements in non-linear analysis.
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7. To improve further the dynamics of beams, and also, the hydro-servo-aeroelastic tool
hGAST, the time integration algorithm could be upgraded in order to consider about the
total energy and momentum preservation. In this case, numerical instabilities can be
avoided, and therefore, the numerical results in large rotations regime can be improved.
In companion to the conservation properties of the time integration algorithm, the strain
invariance is an issue that is good to be considered, when the algorithm is applied on
beams.
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Appendix A

Linearization of the internal virtual
work about the configuration at t+∆t

A.1 Linearization of the internal virtual work for the SR beam
model

For the linearization of the internal virtual work about t+∆t, the directional derivative w.r.t.
ε, for ε = 0, is employed in eq. (3.15); at the same time, a conservative external loading is
assumed. Thus, the linearized equilibrium equation is derived as follows∫

0L

(
CFjk dΓk δΓj + CMjk dKk δKj

)
dξ +

∫
0L

(
t+∆tFj dδΓj + t+∆tMj dδKj

)
dξ

= t+∆tR−
∫

0L

(
t+∆tFj δΓj + t+∆tMj δKj

)
dξ; j, k = ξ, η, ζ (A.1)

where δΓj and δKj are the components of eqs. (3.16) and (3.17). By interchanging δ with d
one may have the corresponding expressions for the infinitesimal strains dΓk, dKk. CFjk and
CMjk are given by the components of eq. (3.14), while Fj andMj are given by the components
of eqs. (3.12) and (3.13). Finally, dδΓj and dδKj are derived by the infinitesimal change of
eqs. (3.16) and (3.17) w.r.t. the position r0 and the orientation Λ, see e.g. Krenk, 2009

dδΓj = δψT (Vi×) dr0,ξ − δrT0,ξ (Vi×) dψ + δψT
(
Vir

T
0,ξ − V T

i r0,ξI
)
dψ (A.2)

dδKj = −δψT,ξ(Vi×) dψ (A.3)

For dδΓj and dδKj with j = ξ, η, ζ, the vectors Vi with i = 1−3 are used, correspondingly.
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A.2 Linearization of the internal virtual work for the GL beam
model

For the linearization of the internal virtual work the directional derivative w.r.t. ε, for ε = 0,
is employed in eq. (3.21); at the same time, the external loading is assumed conservative.∫

0V
Cijrs dεrs δεij d

0V +

∫
0V

t+∆tSij dδεij d
0V =

t+∆tR−
∫

0V

t+∆tSij δεijd
0V ; i, j, r, s = ξ, η, ζ (A.4)

where dεrs are the infinitesimal strain components that are given by the same relations as the
virtual ones (eq. (3.22)) by interchanging δ with d, t+∆tSij is given by eq. (3.19), and dδεij
is derived by taking the infinitesimal change of eq. (3.22) w.r.t. the translation u0 and the
cross-sectional directors V2, V3.

Substituting into the eq. (A.4) the strain and stress definitions (eqs. (3.18) and (3.19)), the
virtual and infinitesimal strains (eq. (3.22)), and taking into account the 1D strain measures
(eqs. (3.33) to (3.35), (3.41) and (3.43)) and stress resultants (eqs. (3.28) to (3.30), (3.36)
to (3.38) and (3.42)), the following terms of the linearized, w.r.t. ε for ε = 0, 1D internal
virtual work equation are derived. The same result is derived after the linearization of the 1D
expressions (see eqs. (3.26) and (3.27)).

• Material (’mat’) stiffness terms in relation to normal (’n’) and shear (’s’) stresses that
result to the material stiffness matrix

dδWint,mat,n(ξ) =

∫
0V

(Cξξξξdεξξ δεξξ) d
0V

=

∫
0L
{EA (δΓξ dΓξ) + EIζ (δKζ dKζ + δΓξ dKζ,nl,2 + δKζ,nl,2 dΓξ)

+EIη (δKη dKη + δΓξ dKη,nl,2 + δKη,nl,2 dΓξ)

+EIη2 (δKη,nl,2 dKη,nl,2) + EIζ2 (δKζ,nl,2 dKζ,nl,2)

+ EIζη (δKζ,nl,2 dKη,nl,2 + δKη,nl,2 dKζ,nl,2 + δKζη,nl,2 dKζη,nl,2)} dξ
(A.5)

dδWint,mat,s(ξ) =

∫
0V

(2Cξηξηdεξη 2δεξη + 2Cξζξζdεξζ 2δεξζ) d
0V

=

∫
0L
{kηGA (δΓη dΓη) + kζGA (δΓζ dΓζ) + kξGIp (δKξ dKξ)} dξ

(A.6)

The infinitesimal strain measures dΓξ; dΓη; dΓζ , dKξ; dKη; dKζ and dKη,nl,2; dKζ,nl,2;
dKζη,nl,2 are given using the same relations with the virtual ones (eqs. (3.47) to (3.51)),
by interchanging δ with d.
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• Geometric (’geom’) stiffness terms in relation to normal (’n’) and shear (’s’) stresses
that result to the geometric stiffness matrix

dδWint,geom,n(ξ) =

∫
0V

(t+∆tSξξ dδεξξ) d
0V

=

∫
0L

(
t+∆tFξ dδΓξ + t+∆tMη dδKη + t+∆tMζ dδKζ+

t+∆tMR1 dδKη,nl,2 + t+∆tMR2 dδKζ,nl,2 + t+∆tMR3 dδKζη,nl,2

)
dξ

(A.7)

dδWint,geom,s(ξ) =

∫
0V

(
t+∆tSξη 2dδεξη + t+∆tSξζ 2dδεξζ

)
d0V

=

∫
0L

(
t+∆tFη dδΓη + t+∆tFζ dδΓζ + t+∆tMξ dδKξ

)
dξ (A.8)

where the components dδΓξ; dδΓη; dδΓζ , dδKξ; dδKη; dδKζ and dδKη,nl,2; dδKζ,nl,2;
dδKζη,nl,2 are derived by taking the infinitesimal change of eqs. (3.47) to (3.51) with
respect to the position r0 and the orientation Vi; i = 1− 3.

dδΓξ = δrT0,ξ dr0,ξ (A.9)

dδΓη = δrT0,ξ (−V2×) dψ + δψT (V2×) dr0,ξ + δψT (V2r
T
0,ξ − V T

2 r0,ξI) dψ

(A.10)

dδΓζ = δrT0,ξ (−V3×) dψ + δψT (V3×) dr0,ξ + δψT (V3r
T
0,ξ − V T

3 r0,ξI) dψ

(A.11)

dδKξ = δψT,ξ (−V1×)dψ (A.12)

dδKη = (δψT,ξ [V3×] + δψT [V3,ξ×]) dr0,ξ + δrT0,ξ ([−V3×] dψ,ξ + [−V3,ξ×] dψ)

+ δψT (V3r
T
0,ξ − V T

3 r0,ξI) dψ,ξ + δψT,ξ (V3r
T
0,ξ − V T

3 r0,ξI) dψ

+ δψT (V3,ξr
T
0,ξ − V T

3,ξr0,ξI) dψ (A.13)

dδKζ = (δψT,ξ [−V2×] + δψT [−V2,ξ×]) dr0,ξ + δrT0,ξ([V2×] dψ,ξ + [V2,ξ×] dψ)

− δψT (V2r
T
0,ξ − V T

2 r0,ξI) dψ,ξ − δψT,ξ (V2r
T
0,ξ − V T

2 r0,ξI) dψ

− δψT (V2,ξr
T
0,ξ − V T

2,ξr0,ξI) dψ (A.14)

dδKη,nl,2 = δψT,ξ (I − V3V
T

3 ) dψ,ξ (A.15)

dδKζ,nl,2 = δψT,ξ (I − V2V
T

2 ) dψ,ξ (A.16)

dδKζη,nl,2 = δψT,ξ
(
−V2V

T
3 − V3V

T
2

)
dψ,ξ (A.17)

Note that the infinitesimal change of the virtual spins, dδψ, has been ignored.



134

Appendix B

Trigonometric functions

B.1 α′s

α0(Θ) = cos(Θ), α1(Θ) =
sin(Θ)

Θ
, α2(Θ) =

1− cos(Θ)

Θ2
, α3(Θ) =

Θ − sin(Θ)

Θ3

(B.1)

B.1.1 α′s when Θ = 0

After evaluating the power series expansions for cos and sin, and substituting Θ = 0 into α′s

α0(Θ) = 1, α1(Θ) = 1, α2(Θ) =
1

2
, α3(Θ) =

1

6
(B.2)

B.2 b′s

b0(Θ) = −sin(Θ)

Θ
, b1(Θ) =

Θcos(Θ)− sin(Θ)

Θ3
, b2(Θ) =

Θsin(Θ)− 2 + 2cos(Θ)

Θ4
,

b3(Θ) =
3sin(Θ)− 2Θ −Θcos(Θ)

Θ5

(B.3)

B.2.1 b′s when Θ = 0

After evaluating the power series expansions for cos and sin, and substituting Θ = 0 into b′s

b0(Θ) = −1, b1(Θ) = −1

3
, b2(Θ) = − 1

12
, b3(Θ) = − 1

60
(B.4)
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B.3 c′s

c0(Θ) =
sin(Θ)−Θcos(Θ)

Θ3

c1(Θ) =
3sin(Θ)−Θ2sin(Θ)− 3Θcos(Θ)

Θ5

c2(Θ) =
8− 8cos(Θ)− 5Θsin(Θ) +Θ2cos(Θ)

Θ6

c3(Θ) =
8Θ + 7Θcos(Θ) +Θ2sin(Θ)− 15sin(Θ)

Θ7
(B.5)

B.3.1 c′s when Θ = 0

After evaluating the power series expansions for cos and sin, and substituting Θ = 0 into c′s

c0(Θ) =
1

3
, c1(Θ) =

1

15
, c2(Θ) =

1

90
, c3(Θ) =

1

630
(B.6)
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Appendix C

Linearization of the residual in the
rotational motion of a rigid-body

In the following, the material incremental rotation vector Θn+1 is written without the right
subscript n+1 for convenience.

C.1 Linearization of the residual for the Simo’s & Vu-Quoc’s and
Mäkinen’s / Cardona’s & Géradin’s schemes

The residual at a perturbed state is written as

gn+1(Θ + ε∆Θ) = JAn+1(Θ + ε∆Θ) +Ωn+1(Θ + ε∆Θ)× JΩn+1(Θ + ε∆Θ)

−Mn+1(Θ + ε∆Θ) (C.1)

where ∆Θ is a material vector field, interpreted for ε > 0, as superposed infinitesimal rota-
tion onto the moving frame at t = 0 (Simo’s and Vu-Quoc’s interpretation) or at tn (Maki-
nen’s, and Cardona’s and Géradin’s interpretation).
The directional derivative of the residual at a perturbed state is

Dgn+1(Θ, ∆Θ) =
d

dε

∣∣∣∣
ε=0

[gn+1(Θ + ε∆Θ)]

=J
d

dε

∣∣∣∣
ε=0

[An+1(Θ + ε∆Θ)]︸ ︷︷ ︸
DgAn+1

(Θ,∆Θ)

+
d

dε

∣∣∣∣
ε=0

[Ωn+1(Θ + ε∆Θ)× JΩn+1(Θ + ε∆Θ)]︸ ︷︷ ︸
DgΩn+1

(Θ,∆Θ)

− d

dε

∣∣∣∣
ε=0

[Mn+1(Θ + ε∆Θ)]︸ ︷︷ ︸
DgMn+1

(Θ,∆Θ)

(C.2)
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C.1.1 Simo’s & Vu-Quoc’s scheme: consistent linearization of the term that
includes the angular velocity

The consistent linearized form of the residual term related to the angular velocity is

DgΩn+1(Θ, ∆Θ) =
d

dε

∣∣∣∣
ε=0

[Ωn+1(Θ + ε∆Θ)]× JΩn+1(Θ)

+Ωn+1(Θ)× J d

dε

∣∣∣∣
ε=0

[Ωn+1(Θ + ε∆Θ)]

eq. (4.6)
=

(
γ

hβ

d

dε

∣∣∣∣
ε=0

[
(Θ + ε∆Θ) +Ω′n

])
× J Ωn+1(Θ)

+Ωn+1(Θ)× J
(
γ

hβ

d

dε

∣∣∣∣
ε=0

[
(Θ + ε∆Θ) +Ω′n

])
⇔

DgΩn+1(Θ, ∆Θ) =
γ

hβ
∆Θ × J Ωn+1(Θ) +Ωn+1(Θ)× J γ

hβ
∆Θ (C.3)

C.1.2 Mäkinen’s / Cardona’s & Géradin’s schemes: non consistent lineariza-
tion of the term that includes the angular velocity

Neither Mäkinen, 2001 nor Cardona and Géradin, 1988 presents the linearization process of
the part of the residual related to the angular velocity term. The modified / non consistent
linearized form of this term that is used in the current work, is given by

DgΩn+1(Θ, ∆Θ) =
γ

hβ
T Tn+1(Θ)∆Θ × JΩn+1(Θ) +Ωn+1(Θ)× J γ

hβ
T Tn+1(Θ)∆Θ

(C.4)

C.1.3 Mäkinen’s / Cardona’s & Géradin’s schemes: consistent linearization of
the term that includes the angular velocity

By employing the directional derivative on the perturbed formΩn+1(Θ+ε∆Θ) of eq. (4.17)

DΩn+1(Θ, Θ̇, ∆Θ) =
d

dε

∣∣∣∣
ε=0

[
T Tn+1(Θ + ε∆Θ)

]
Θ̇ + T Tn+1(Θ)∆Θ̇ (C.5)

where
Θ̇n+1 =

γ

hβ
Θn+1 +

(
1− γ

β

)
Θ̇n + h

(
1− γ

2β

)
Θ̈n (C.6)

and
∆Θ̇ =

γ

hβ
∆Θ (C.7)
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By taking into account the relation (19) from Ritto-Corrêa and Camotim, 2002, the direc-
tional derivative of the transpose of the tangential transformation matrix is given by

DT Tn+1(Θ, ∆Θ) =− α2(Θ)∆Θ̂ + α3(Θ)(∆ΘΘT +Θ∆ΘT )

+ b1(Θ)(ΘT∆Θ)I − b2(Θ)(ΘT∆Θ)Θ̂

+ b3(Θ)(ΘT∆Θ)ΘΘT (C.8)

The above relation is multiplied by Θ̇ in eq. (C.5). By taking into account the operator
ΞDT T (a) from Cardona and Géradin, 1988, the term d

dε

∣∣
ε=0

[
T Tn+1(Θ + ε∆Θ)

]
Θ̇ from

eq. (C.5) is written as

ΞDT Tn+1
(Θ, Θ̇) ·∆Θ =

(
α2(Θ)

˙̂
Θ + α3(Θ)(ΘT Θ̇)I + α3(Θ)(ΘΘ̇T )

+b1(Θ)(Θ̇ΘT )− b2(Θ)(Θ̂Θ̇ΘT )

+b3(Θ)(ΘT Θ̇)(ΘΘT )
)
∆Θ (C.9)

Thus, the eq. (C.5) is written as

DΩn+1(Θ, Θ̇, ∆Θ) =

[
ΞDT Tn+1

(Θ̇) +
γ

hβ
T T (Θ)

]
∆Θ (C.10)

From the above, the consistent linearized form of the residual term related to the angular
velocity is

DgΩn+1(Θ, Θ̇, ∆Θ)
eq. (C.2)

=
d

dε

∣∣∣∣
ε=0

[Ωn+1(Θ + ε∆Θ)]× JΩn+1(Θ)

+Ωn+1(Θ)× J d

dε

∣∣∣∣
ε=0

[Ωn+1(Θ + ε∆Θ)]

eq. (C.10)
=

[
ΞDT Tn+1

(Θ, Θ̇) +
γ

hβ
T Tn+1(Θ)

]
∆Θ × JΩn+1(Θ)

+Ωn+1(Θ)× J
[
ΞDT Tn+1

(Θ, Θ̇) +
γ

hβ
T Tn+1(Θ)

]
∆Θ ⇔

DgΩn+1(Θ, Θ̇, ∆Θ) =

[
(−JΩn+1(Θ))×

(
ΞDT Tn+1

(Θ, Θ̇) +
γ

hβ
T Tn+1(Θ)

)

+Ωn+1(Θ)× J
(
ΞDT Tn+1

(Θ, Θ̇) +
γ

hβ
T Tn+1(Θ)

)]
∆Θ (C.11)
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C.1.4 Simo’s & Vu-Quoc’s scheme: consistent linearization of the term that
includes the angular acceleration

The consistent linearized form of the residual term related to the acceleration is

DgAn+1(∆Θ)
eq. (4.8)

=
1

h2β
J

d

dε

∣∣∣∣
ε=0

[
(Θ + ε∆Θ) +A′n

]
=

1

h2β
J∆Θ (C.12)

C.1.5 Mäkinen’s / Cardona’s & Géradin’s schemes: non consistent lineariza-
tion of the term that includes the angular acceleration

The tangent operator that Mäkinen, 2001 has used is not presented in his work. On the
contrary, Cardona and Géradin, 1988 present the tangent operator, where they do not use
the second term (see below, eq. C.13) that includes the time derivative of the tangential
transformation, but only the first term.
The modified / non consistent linearized form of the residual term related to the angular
acceleration that is used in the current work, is

DgAn+1(Θ, Θ̇, ∆Θ) =
1

h2β
JT Tn+1(Θ)∆Θ +

γ

hβ
JṪ Tn+1(Θ)∆Θ (C.13)

C.1.6 Mäkinen’s / Cardona’s & Géradin’s schemes: consistent linearization of
the term that includes the angular acceleration

By employing the directional derivative on the perturbed formAn+1(Θ+ε∆Θ) of eq. (4.21)

DAn+1(Θ, Θ̇, Θ̈, ∆Θ) =
d

dε

∣∣∣∣
ε=0

[
d

dt

(
T Tn+1(Θ + ε∆Θ)

)]
Θ̇ +

d

dt

(
T Tn+1(Θ)

)
∆Θ̇+

d

dε

∣∣∣∣
ε=0

[
T Tn+1(Θ + ε∆Θ

]
Θ̈ + T Tn+1(Θ)∆Θ̈ (C.14)

where d
dt

(
T Tn+1(Θ)

)
is given by eq. (4.16), d

dε

∣∣
ε=0

[
T Tn+1(Θ + ε∆Θ)

]
Θ̈ is given by eq. (C.9)

where the first derivative of the rotation vector Θ̇ is substituted by the second derivative of
the rotation vector Θ̈, Θ̇ is given by eq. (C.6), ∆Θ̇ is given by eq. (C.7), while

Θ̈n+1 =
1

h2β
Θn+1 −

1

hβ
Θ̇n −

1

β

(
1

2
− β

)
Θ̈n (C.15)

∆Θ̈n+1 =
1

h2β
∆Θ (C.16)
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and, by taking into account eq. (21) from Ritto-Corrêa and Camotim, 2002, the directional
derivative of the time derivative of the transpose tangential transformation is written as

D2T Tn+1[Θ, Θ̇, ∆Θ] =
d

dε

∣∣∣∣
ε=0

[
d

dt

(
T Tn+1(Θ + ε∆Θ)

)]
=

α3(Θ)(Θ̇∆ΘT +∆ΘΘ̇T ) + b1(Θ)(Θ̇T∆Θ)I−

b2(Θ)
[
(ΘT Θ̇)∆̂Θ + (ΘT∆Θ) ˆ̇Θ + (Θ̇T∆Θ)Θ̂

]
+

b3(Θ)
[
(ΘT Θ̇)(∆ΘΘT +Θ∆ΘT )+

(ΘT∆Θ)(Θ̇ΘT +ΘΘ̇T ) + (Θ̇T∆Θ)ΘΘT
]

+

c1(Θ)(ΘT∆Θ)(ΘT Θ̇)I−

c2(Θ)(ΘT∆Θ)(ΘT Θ̇)Θ̂+

c3(Θ)(ΘT∆Θ)(ΘT Θ̇)ΘΘT (C.17)

By post-multiplying the above expression with Θ̇ as it appears in eq. (C.14) and re-arrange
the terms, the following expression is derived

ΞD2T Tn+1
(Θ, Θ̇) ·∆Θ =

d

dε

∣∣∣∣
ε=0

[
d

dt

(
T Tn+1(Θ + ε∆Θ)

)]
Θ̇ =(

α3(Θ)(Θ̇Θ̇T + Θ̇T Θ̇I) + b1(Θ)(Θ̇Θ̇T )+

b2(Θ)
[
(ΘT Θ̇) ˆ̇Θ − ( ˆ̇ΘΘ̇ΘT )− (Θ̂Θ̇Θ̇T )

]
+

b3(Θ)
[
(Θ̇Θ̇T )(ΘΘT ) + (ΘT Θ̇)((ΘΘ̇T ) + (ΘT Θ̇)I)+

(Θ̇ΘT +ΘΘ̇T )(Θ̇ΘT )
]

+

(c1(Θ)(Θ̇Θ̇T )−

c2(Θ)(Θ̂Θ̇Θ̇T )+

c3(Θ)(ΘT Θ̇)(ΘT Θ̇))ΘΘT
)
∆Θ (C.18)

Thus, eq. (C.14) is written as

DAn+1(Θ, Θ̇, Θ̈, ∆Θ) =

[
ΞD2T Tn+1

(Θ, Θ̇) +
γ

hβ

d[T T (Θ)]

dt

+ΞDT Tn+1
(Θ, Θ̈) +

1

h2β
T Tn+1(Θ)

]
∆Θ (C.19)

From the above, the consistent linearized form of the residual term related to the angular
acceleration is

DgAn+1(Θ, Θ̇, Θ̈, ∆Θ)
eqs. (C.2)and (C.19)

=
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J

[
ΞD2T Tn+1

(Θ, Θ̇) +
γ

hβ

d[T Tn+1(Θ)]

dt
+ΞDT Tn+1

(Θ, Θ̈) +
1

h2β
T Tn+1(Θ)

]
∆Θ

(C.20)

C.1.7 Linearization of the term that includes the applied torque in a material
setting

The linearized form of the term related to the external moment in a material setting is

DgMn+1(Θ, ∆Θ)
eq. (4.5)

= mgl
d

dε

∣∣∣∣
ε=0

[Λ(Θ + ε∆Θ)]T e3 ×E3

= mgl
d

dε

∣∣∣∣
ε=0

[
ΛT (Θ + ε∆Θ)

]
e3 ×E3 (C.21)

By taking into account the relation (18) from Ritto-Corrêa and Camotim, 2002, the direc-
tional derivative of the transpose of the orientation matrix is written as

DΛTn+1(∆Θ) =− α1(Θ)∆Θ̂ + α2(Θ)(∆ΘΘT +Θ∆ΘT ) + b0(Θ)(ΘT∆Θ)I

− b1(Θ)(ΘT∆Θ)Θ̂ + b2(Θ)(ΘT∆Θ)ΘΘT (C.22)

where b0(Θ) is the trigonometric function given at the appendix B (see also Ritto-Corrêa and
Camotim, 2002).
In eq. (C.21), the above relation (eq. (C.22)) is multiplied by e3. By taking into account the
operatorΞDΛT (a) from Ritto-Corrêa and Camotim, 2002, the term d

dε

∣∣
ε=0

[
ΛT (Θ + ε∆Θ)

]
e3

from eq. (C.21) is written as

ΞDΛTn+1
(e3)∆Θ =

[
α1(Θ)ê3 + α2(Θ)(ΘTe3)I + α2(Θ)(ΘeT3 ) + b0(Θ)(e3Θ

T )

−b1(Θ)(Θ̂e3Θ
T ) + b2(Θ)(ΘTe3)(ΘΘT )

]
∆Θ (C.23)

Therefore, the tangent operator related to the external moment is computed using the follow-
ing matrix that multiplies the unknown parameter ∆Θ

DgMn+1(Θ, ∆Θ) = mgl
[
−E3 ×ΞDΛTn+1

(e3)
]
∆Θ (C.24)
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Appendix D

Linearization of the residual in the
dynamics of beams

The following terms are written in such a way that the unknown quantities δu and δψ are
kept in the right. The Lagrange’s formula (or the triple cross product expansion eq. 4.43) is
used. The subscript n+1 is ommitted from the RHS for convenience.

Dgi1,n+1(δu0,χ) =

∫ L

0

[
χT
(
Am

1

h2β
I

)
δu0

]
dξ (D.1)

Dgi2,n+1(δu0, δΘ, δψ,χ) =

∫ L

0

[
χT

(
δψ ×ΛΩ̂Ω̂Sm +

γ

hβ
ΛδΘ̂Ω̂Sm +

γ

hβ
ΛΩ̂δΘ̂Sm

+ δψ ×ΛÂSm +
1

h2β
ΛδΘ̂Sm

)]
dξ (D.2)

Using eqs. 4.53 and 4.58, the linearized term D.2 is written as follows

Dgi2,n+1(δu, δψ,χ) =

∫ L

0
χT
{
− ˙̂pψ+

Λ

[
− 1

h2β
Ŝm +

γ

hβ

(
ΩSTm − 2SmΩ

T +ΩTSmI3

)]
ΛTnT

−1(θn+1)

}
δψ dξ

(D.3)

where the time derivative of the linear momentum because of the rotation, ṗψ(t, ξ) =
(
ΛΩ̂Ω̂Sm

)
+(

ΛÂSm

)
, is recognized.

Dgi3,n+1(δu0, δΘ, δψ,φ) =

∫ L

0

[
φT

(
δψ ×ΛΩ̂Sm × u̇0 +

γ

hβ
ΛδΘ̂Sm × u̇0

+
γ

hβ
ΛΩ̂Sm × δu0 + δψ ×ΛSm × ü0 +

1

h2β
ΛSm × δu0

)]
dξ (D.4)
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Using eqs. 4.53 and 4.58, the linearized term D.4 is written as follows

Dgi3,n+1(δu, δψ,φ) =

∫ L

0
φT
[
γ

hβ

(
ΛΩ̂Sm

)
+

1

h2β
(ΛSm)

]
× δu0

+φT
[
γ

hβ

(
u̇0 ×ΛŜm

)
ΛTnT

−1(θn+1)− ˙̂
lu

]
δψ dξ (D.5)

where the time derivative of the angular momentum because of the translation, l̇u(t, ξ) =(
ΛΩ̂Sm

)
× u̇0 + (ΛSm) × ü0, is recognized. This term that includes the l̇u(t, ξ) can be

analyzed further using the Lagrange’s formula, as follows[(
ΛΩ̂Sm

)
u̇T0 − u̇0

(
ΛΩ̂Sm

)T
+ (ΛSm)üT0 − ü0(ΛSm)T

]
δψ (D.6)

Analysis of the term γ
hβ

(
ΛδΘ̂S × u̇0

)
It is worth noting that the algebra followed for the manipulation of the term (Λ δΘ̂ Sm×
u̇0) to bring δΘ to the right, is given as

[Λ (δΘ × Sm)]× u̇0 = −u̇0 × [Λ (δΘ × Sm)] = u̇0 × [Λ (Sm × δΘ)]

= u̇0 × [(ΛSm)× (ΛδΘ)] = u̇0 ×
(
ΛŜmΛ

TΛδΘ
)

= u̇0 ×
(
ΛŜmδΘ

)
where the relations Λ̂Sm = ΛŜmΛ

T and ΛT Λ = I3; I3 is the 3× 3 identity matrix,
have been used.

Dgi4,n+1(δψ,φ) =

∫ L

0
φT
(
δψ ×ΛJ A+ΛJ

1

h2β
δΘ + δψ ×ΛΩ̂J Ω

+Λ
γ

hβ
δΘ̂JΩ +ΛΩ̂J

γ

hβ
δΘ

)
dξ (D.7)

Using eqs. 4.53 and 4.58, the linearized term D.7 is written as follows

Dgi4,n+1(δψ,φ) =

∫ L

0
φT
{
− ˙̂π +Λ

[
γ

hβ

(
Ω̂J − ĴΩ

)
+

1

h2β
J

]
ΛTnT

−1(θn+1)

}
δψ dξ

(D.8)

where the time derivative of the spatial angular momentum vector relative to the principal
axes of inertia, π(t, ξ) = Λ

(
JA+ Ω̂JΩ

)
, is recognized.
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Linearization of the inertial terms in
multi-body formulation

For the linear momentum, in a perturbed state t+ ε∆t, the eq. (5.19) is written as follows

δWṗtot,ε (q,ε, q̇,ε, q̈,ε, ξ; t) =

∫
0L

(
δrT0 ṗtot,ε

)
dξ =

∫
0L

[
δrT0

(
ṗ1
tot,ε + ṗ2

tot,ε

)]
dξ (E.1)

where the individual terms of the time derivative of the linear momentum ṗm,ε in the per-
turbed state are

ṗ1
tot,ε = M

[(
AT
ε R̈ε

)
+
(
AT
ε Äε

)
r0,ε + 2

(
AT
ε Ȧε

)
ṙ0,ε + r̈0,ε

]
ṗ2
tot,ε =

(
AT
ε Äε

)
ΛSm + 2

(
AT
ε Ȧε

)
Λ̇Sm + Λ̈Sm (E.2)

and manipulated separately in the following. In eq. (E.2), the perturbed position Rε and
orientationAε, appear. They are given as

Rε = R(q0) + εδR (E.3)

Aε = A(q0) + εδA (E.4)

whereR(q0) andA(q0) are the corresponding converged quantities in relation with the con-
verged vector q0 at the beginning of the time step, and δR = ϑR(q0)

ϑq δq, δA = ϑA(q0)
ϑq δq.

For the linearization of the above terms, the directional derivative w.r.t. ε for ε = 0 is em-
ployed. The Lagrange’s formula is used for the triple vector cross product. The linearization
of the termsAT

ε R̈ε,AT
ε Äε, andAT

ε Ȧε have already employed in a previous work (Manolas,
2015). The linearization of the first and second derivatives of A (or R) are repeated here,
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following the classical chain rule.

Ȧ(q) =
ϑA(q)

ϑq

ϑq

ϑt
'
[
ϑA(q0)

ϑqj
+
ϑ2A(q0)

ϑqjϑqk
δqk

] (
q̇0
j + δq̇j

)
' ϑA(q0)

ϑqj
q̇0
j +

ϑ2A(q0)

ϑqjϑqk
q̇0
j δqk +

ϑA(q0)

ϑqj
δq̇j

(E.5)

Ä(q) =
ϑ2A(q)

ϑ2q

ϑq

ϑt

ϑq

ϑt
+
ϑA(q)

ϑq

ϑ2q

ϑt2
'
[
ϑ2A(q0)

ϑqjϑqk
+

ϑ3A(q0)

ϑqjϑqkϑqm
δqm

] (
q̇0
k + δq̇k

) (
q̇0
j + δq̇j

)
+

[
ϑA(q0)

ϑqj
+
ϑ2A(q0)

ϑqjϑqk
δqk

] (
q̈0
j + δq̈j

)
'
(
ϑ2A(q0)

ϑqjϑqk
q̇0
kq̇

0
j +

ϑA(q0)

ϑqj
q̈0
j

)
+

(
ϑ3A(q0)

ϑqjϑqkϑqm
q̇0
kq̇

0
j δqm +

ϑ2A(q0)

ϑqjϑqk
q̈0
j δqk

)
+

(
ϑ2A(q0)

ϑqjϑqk
q̇0
kδq̇j +

ϑ2A(q0)

ϑqjϑqk
q̇0
j δq̇k

)
+
ϑA(q0)

ϑqj
δq̈j (E.6)

In hGAST, these terms are written in a systematic way as follows

Ȧ(q) = DA+DA0δq +A0δq̇ (E.7)

Ä(q) = DDA+DDA0δq +DA0δq̇ +A0δq̈ (E.8)

A similar concept is followed for the first and second derivatives of the position vector R of
the body’s origin. In the following, the linearization of the above terms are written shortly
for completeness, while the terms which contain the linearization of r0,ε and Λε are further
analyzed.

d

dε

∣∣∣∣
ε=0

(
ṗ1
tot,ε

)
= M

[
d
(
AT R̈

)
+ d

(
AT Ä

)
r0 + 2 d

(
AT Ȧ

)
ṙ0 +

(
AT Ä

)
δr0 + 2

(
AT Ȧ

)
δṙ0 + δr̈0

]
d

dε

∣∣∣∣
ε=0

(
ṗ2
tot,ε

)
= d

(
AT Ä

)
ΛSm + 2 d

(
AT Ȧ

)
Λ̇Sm +

(
AT Ä

)
δ̂ψΛSm

+ 2
(
AT Ȧ

)(
δ̂ψΛΩ̂Sm +ΛδΩ̂Sm

)
+ δ

(
Λ̈
)
Sm (E.9)

For the angular momentum, in a perturbed state t+ ε∆t, the eq. (5.23) is written as follows

δWl̇tot,ε
(q,ε, q̇,ε, q̈,ε, ξ; t) =

∫
0L
δψT l̇tot,ε dξ =

∫
0L
δψT

(
l̇1tot,ε + l̇2tot,ε + l̇3tot,ε + l̇4tot,ε

)
dξ

(E.10)
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where the individual terms of the time derivative of the angular momentum l̇tot,ε in the per-
turbed state are

l̇1tot,ε =
(
Λ̇εSm

)
×
(
AT
ε Ṙε +AT

ε Ȧεr0,ε + ṙ0,ε

)
l̇2tot,ε =

∫
0A
ρref

(
Λ̇εX

)
×
(
AT
ε ȦεΛεX

)
d0A

l̇3tot,ε = (ΛεSm)×
(
AT
ε R̈ε +AT

ε Äεr0,ε + 2AT
ε Ȧεṙ0,ε + r̈0,ε

)
l̇4tot,ε =

∫
0A
ρref (ΛεX)×

(
AT
ε ÄεΛεX + 2AT

ε ȦεΛ̇εX + Λ̈εX
)
d0A (E.11)

and manipulated separately in the following.

The terms l̇2tot and l̇4tot that contain the material particle coordinates X twice in their
components, need further manipulation, so that the second moment of inertia appears (ε
is omitted for convenience). For the term l̇4tot

l̇4tot =

∫
0A
ρref (ΛX)×

(AT Ä
)

︸ ︷︷ ︸
C

ΛX + 2AT ȦΛ̇X

 d0A

=

∫
0A
ρref (ΛX)×CΛX d0A+ 2

∫
0A
ρref

[
(ΛX)×

(
AT ȦΛΩ ×AT ȦΛX

)]
d0A

eq.(4.43)
=

∫
0A
ρref (ΛX)×CΛX d0A

+ 2

∫
0A
ρref

XT ΛTAT ȦΛ︸ ︷︷ ︸
K0coriol.

X

− (AT ȦΛXXTΛT
)AT ȦΛΩ d0A

(E.12)

In eq. (E.12), the first component is manipulated as,∫
0A
ρref (ΛX)×CΛX d0A =

∫
A
ρrefΛX̂ ΛTCΛ︸ ︷︷ ︸

K0centri.

X dA

= Λ


K(3, 2)J(3, 3)− (K(3, 3)−K(2, 2))J(2, 3)−K(2, 3)J(2, 2)

−K(1, 2)J(2, 3) +K(1, 3)J(2, 2)

−K(1, 2)J(3, 3) +K(1, 3)J(2, 3)


(E.13)

where X̂K0centri.X is written in componential form as

X̂K0centri.X =


K(3, 2)η2 + (K(3, 3)−K(2, 2))ηζ −K(2, 3)ζ2

K(1, 2)ηζ +K(1, 3)ζ2

−K(1, 2)η2 −K(1, 3)ηζ

 (E.14)
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In eq. (E.12), the second component is manipulated as,

l̇4tot =

∫
0A
ρref (ΛX)×

(
AT ȦΛΩ

)
×
(
AT ȦΛX

)
d0A

(eq.4.43)
= 2

∫
0A
ρref


XT ΛT

(
AT Ȧ

)
Λ︸ ︷︷ ︸

K0coriol.

X

− [AT ȦΛXXTΛT
]AT ȦΛΩ d0A

(E.15)

whereX is
X =

{
0 η ζ

}T
(E.16)

Thus, for the matrixK0coriol.

XT K0coriol.X = K0coriol.(2, 2) η2+K0coriol.(2, 3)ηζ+K0coriol.(3, 2)ηζ+K0coriol.(3, 3)ζ2

(E.17)
while

XXT =

0 0 0

0 η2 ηζ

0 ηζ ζ2

 (E.18)

From the above, eq. (E.15) is written as

l̇4tot = (K0coriol.(2, 2)J(3, 3)−K0coriol.(2, 3)J(2, 3)−K0coriol.(3, 2)J(3, 2) +K0coriol.(3, 3)J(2, 2)) I3︸ ︷︷ ︸
J0coriol.

−
(
AT Ȧ

)
Λ

0 0 0

0 J(3, 3) −J(2, 3)

0 −J(3, 2) J(2, 2)

ΛT (AT Ȧ
)
ΛΩ (E.19)

For the third component of l̇4tot see section 4.7. In l̇2tot, the term is manipulated as the
second term in eq. (E.12).

For the linearization of the terms in eq. (E.11), the directional derivative w.r.t. ε for ε =

0 is employed. The Lagrange’s formula is used for the triple vector cross product. The
linearization of the terms AT

ε Ṙε, AT
ε Ȧε, AT

ε R̈ε and AT
ε Äε have already employed in a

previous work. In the following, the linearization of the above terms are written shortly
for completeness, while the terms which contain the linearization of r0,ε and Λε are further
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analyzed

d

dε

∣∣∣∣
ε=0

(
l̇1tot,ε

)
=
[
δ̂ψΛΩ̂Sm +ΛδΩ̂Sm

]
×
(
AT Ṙ+AT Ȧr0 + ṙ0

)
+
(
ΛΩ̂Sm

)
×
[
d
(
AT Ṙ

)
+ d

(
AT Ȧ

)
r0 +AT Ȧδr0 + δṙ0

]
d

dε

∣∣∣∣
ε=0

(
l̇2tot,ε

)
=

∫
0A
ρref

{(
δ̂ψΛΩ̂X

)
×
(
AT ȦΛX

)
+
(
ΛδΩ̂X

)
×
(
AT ȦΛX

)
+
(
ΛΩ̂X

)
×
[
d
(
AT Ȧ

)
ΛX +AT Ȧδ̂ψΛX

]}
d0A

d

dε

∣∣∣∣
ε=0

(
l̇3tot,ε

)
=
(
δ̂ψΛSm

)
×
[(
AT R̈

)
+
(
AT Ä

)
r0 + 2AT Ȧṙ0 + r̈0

]
+ (ΛSm)×

[
d
(
AT R̈

)
+ d

(
AT Ä

)
r0 + 2 d

(
AT Ȧ

)
ṙ0

+
(
AT Ä

)
δr0 + 2AT Ȧδṙ0 + δr̈0

]
d

dε

∣∣∣∣
ε=0

(
l̇4tot,ε

)
=

∫
0A
ρ
{(
δ̂ψΛX

)
×
[(
AT Ä

)
ΛX + 2AT ȦΛ̇X + Λ̈X

]
+ (ΛX)×

[
d
(
AT Ä

)
ΛX + 2 d

(
AT Ȧ

)
Λ̇X

+
(
AT Ä

)
δ̂ψΛX + 2AT Ȧ

(
δ̂ψΛΩ̂X +ΛδΩ̂X

)
+ δ

(
Λ̈
)
X
]}

d0A

(E.20)

The Lagrange’s formula in eq. (4.43) is used to further manipulate the above linearized terms
which are connected to the elastic DOFs of the beam (the second and the fourth terms are
connected to a beam with a solid cross-section, while the first and the third terms are added
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to the previous when the beam has a general cross-section).

d

dε

∣∣∣∣
ε=0

(
l̇1tot,ε

)
=

[
Λ̇Sm

(
AT Ṙ+AT Ȧr0 + ṙ0

)T
−
(
AT Ṙ+AT Ȧr0 + ṙ0

)T
Λ̇SmI

]
δψ

+

[
ΛSm

(
AT Ṙ+AT Ȧr0 + ṙ0

)T
−
(
AT Ṙ+AT Ȧr0 + ṙ0

)T
ΛSm

]
ΛδΩ

+ d
(
AT Ȧ

)
ΛSm ×

(
AT Ṙ+AT Ȧr0 + ṙ0

)
+

[(
AT ȦΛSm

) (
AT Ṙ+AT Ȧr0 + ṙ0

)T
−
(
AT Ṙ+AT Ȧr0 + ṙ0

)(
AT ȦΛSm

)T]
AT Ȧδψ

+
(
AT ȦΛSm +ΛΩ̂Sm

)
×
[
d
(
AT Ṙ

)
+ d

(
AT Ȧ

)
r0 +

(
AT Ȧ

)
δr0 + δṙ0

]
d

dε

∣∣∣∣
ε=0

(
l̇2tot,ε

)
=

∫
0A
ρref

{[
Λ̇XXTΛT

(
AT Ȧ

)T
−
(
XTΛT

(
AT Ȧ

)T
Λ̇X

)
I

]
δψ

+

[
ΛXXTΛT

(
AT Ȧ

)T
−XTΛT

(
AT Ȧ

)T
ΛXI

]
ΛδΩ

+
(
Λ̇X

)
×
[
d
(
AT Ȧ

)
ΛX

]
+
[
XT Λ̇TAT ȦΛX −

(
AT ȦΛXXT Λ̇T

)
I
]
AT Ȧδψ

}
d0A

d

dε

∣∣∣∣
ε=0

(
l̇3tot,ε

)
=
[
ΛSma

T
MB − aTMBΛSm

]
δψ

+ (ΛSm)×
[
d
(
AT R̈

)
+ d

(
AT Ä

)
r0 + 2 d

(
AT Ȧ

)
ṙ0

+
(
AT Ä

)
δr0 + 2AT Ȧδṙ0 + δr̈0

]
; aMB = AT R̈

d

dε

∣∣∣∣
ε=0

(
l̇4tot,ε

)
=

∫
0A
ρref

{[
ΛXXTΛT

(
AT Ä

)T
−XTΛT

(
AT Ä

)T
ΛXI

]
δψ

+ 2

[
ΛXXT Λ̇T

(
AT Ȧ

)T
−XT Λ̇T

(
AT Ȧ

)T
ΛXI

]
δψ

+ (ΛX)×
[
d
(
AT Ä

)
ΛX + 2 d

(
AT Ȧ

)
Λ̇X + δ

(
Λ̈
)
X
]

+
[
XTΛT

(
AT Ä

)
ΛXI −

(
AT Ä

)
ΛXXTΛT

] (
AT Ä

)
δψ

+ 2
[
XTΛT

(
AT Ȧ

)
Λ̇XI −

(
AT Ȧ

)
Λ̇XXTΛT

] (
AT Ȧ

)
δψ

+2
[
XTΛT

(
AT Ȧ

)
ΛXI −

(
AT Ȧ

)
ΛXXTΛT

] (
AT Ȧ

)
ΛδΩ

}
d0A

(E.21)
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