National Technical University of Athens
School of Mechanical Engineering

Fluids Section

Parallel CFD & Optimization Unit

Computational Cost Reduction and Stabilization of Solvers of
the Continuous Adjoint Method in Aerodynamic Shape
Optimization, with or without Uncertainties

PhD Thesis

Themistoklis Skamagkis

Supervisor: Kyriakos C. Giannakoglou,
Professor NTUA

Athens, 2023






National Technical University of Athens
School of Mechanical Engineering

Fluids Section

Parallel CFD & Optimization Unit

Computational Cost Reduction and Stabilization of Solvers of
the Continuous Adjoint Method in Aerodynamic Shape
Optimization, with or without Uncertainties

PhD Thesis

Themistoklis Skamagkis

Examination Committee:

1. K. Giannakoglou (Supervisor)*,
Professor, NTUA, School of Mechanical Engineering

2. K. Mathioudakis®,
Professor, NTUA, School of Mechanical Engineering

3. V. Riziotis™,
Associate Professor, NTUA, School of Mechanical Engineering

4. S. Voutsinas,
Professor, NTUA, School of Mechanical Engineering

5. D. Bouris,
Professor, NTUA, School of Mechanical Engineering

6. I. Nikolos,
Professor, TUC, School of Production Engineering and Management

7. G. Papadakis,
Assistant Professor, NTUA, School of Naval Architecture and Marine
Engineering
* Member of the Advisory Committee.

Athens, 2023






Abstract

The objective of this thesis is the development and assessment of techniques for
the reduction of the computational cost of gradient-based aerodynamic shape
optimization for flows that exhibit mild unsteadiness and/or in the presence of
uncertainties. All these techniques are based on the continuous adjoint method
and have been developed in the OpenFOAM environment, as a complement to
the adjoint solver developed and made publicly available by the Parallel CFD &
Optimization Unit of the National Technical University of Athens (PCOpt/NTUA).
They are first validated in academic cases and are later used for aerodynamic
shape optimization in industrial applications.

It is well known that adjoint-based shape optimization using unsteady
solvers is costly and/or memory demanding. For this reason, it is sparingly used
in real-world applications. When mild unsteadiness is present, steady primal
and adjoint solvers can be used instead provided that convergence difficulties
are properly treated. In this thesis and for this type of applications, the steady
primal and the corresponding (continuous) adjoint solvers are both stabilized by
implementing the Recursive Projection Method (RPM), a stabilization method for
iterative procedures. Upon completion of the optimization using steady solvers,
unsteady re-evaluations of the optimized solutions should normally be used to
confirm a reduction in the time-averaged objective function. Thus, shape
optimization costs less, even by an order of magnitude, than an optimization
using unsteady adjoint. This approach is further tested in flows with vortex
shedding wherein steady flow solutions are computed with the help of the RPM.
Although vortex shedding problems can be optimized with steady solvers,
optimization using unsteady adjoint cannot be avoided. However, the latter
starts with a good initialization, computed by the steady solvers, and this
reduces a lot the overall CPU cost.

In complex cases, the convergence difficulties of the primal and adjoint
solvers are far more prevalent. For instance, the RPM may not necessarily
ensure convergence of the adjoint solver on its own. This might be due to the
lack of good grid quality, often in applications involving complex geometries (e.g.
a car with wheels, side mirrors, surface details etc.), or the existence of many
unstable modes causing rapid divergence of the solver. To overcome this
difficulty, the controlled damping of the Adjoint Transposed-Convection (ATC)
term in the adjoint momentum equations is occasionally employed along with
the RPM. In the literature, the damping or, even, elimination of the ATC term is
frequently used for the stabilization of continuous adjoint solvers. The effect of
this treatment on the computed Sensitivity Derivatives (SDs) is studied in cases
in which the RPM, on its own, makes the adjoint solver converge.
Controlled /mild ATC damping (if needed), as applied in this thesis, proves to be
harmless and greatly contributes to robustness. On the contrary, the
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uncontrolled damping or, even, elimination of the ATC, an action that would
have been required in the absence of the RPM, may become harmful. In
addition, the RPM stabilization helps avoiding the solution of the adjoint
equations based on averaged primal fields.

In the second part, this thesis tackles aerodynamic shape optimization in the
presence of uncertainties. In such problems, Uncertainty Quantification (UQ)
techniques are used to measure the effect of uncertain variables on a Quantity of
Interest (Qol). The inclusion of UQ in a shape optimization loop may noticeably
increase the computational cost. Two UQ methods, namely the First-Order
Second-Moment (FOSM) and the Adjoint-assisted Polynomial Chaos Expansion
(APCE) are studied. Both FOSM and APCE compute the first two statistical
moments (mean value and standard deviation) of the Qol and the objective
function to be minimized is their weighted sum. Gradient-based optimization
with such an objective function requires mixed derivatives of the Qol with
respect to the design and uncertain variables. However, in practice, only the
projection of the matrix of mixed derivatives on some vectors needs to be
computed, instead of the matrix itself. These projections are herein exploited in
both UQ methods to reduce the CPU cost, yielding projected counterparts of
these two methods. Their key point is that the cost of computing the projected
matrix of mixed derivatives does not scale with the number of either the design
or the uncertain variables.

In the projected FOSM (pFOSM), the cost per optimization cycle with gradient-
based methods is 4 Equivalent Flow Solutions (EFS), i.e. as if the flow equations
are solved 4 times. The cost of the projected APCE (pAPCE) is equal to 4L EFS
(L is the number of collocation points needed in the regression). The gain in CPU
cost is significant even if only a few uncertain variables are involved. The pAPCE
method is more expensive than pFOSM but computes more accurate statistical
moments. Over and above to some laminar flow problems, pFOSM and pAPCE
are demonstrated in aerodynamic shape optimization problems with turbulent
flows, solved using the Spalart-Allmaras model and its adjoint.

The industrial applications involve aerodynamic shape optimization of
ground vehicles using steady solvers and the RPM and of an aircraft wing in the
presence of flow uncertainties, to assess pFOSM and pAPCE.

Keywords: Aerodynamic Shape Optimization, Continuous Adjoint, Robust
Design Optimization, Recursive Projection Method, Stability, Adjoint
Transposed-Convection,  Uncertainty Quantification, = Polynomial Chaos
Expansion, OpenFOAM
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MepiAnyn

I &1daktopikr) SuatpiBr) avamruooovial TEXVIKEG JE OKOMO T Heiworn Ttou
UTIOAOY10TIKOU KOOTOUG aAlTloKPpATIK®V HeBodwv Bedtiotoroinong poppng otnv
agpodUVANIKT], Y1d POEG HE NITa XPOVIKY aotdBela 1)/kat pe aBeBaiotnteg. ‘OAeg o1
TeEXVIKEG Baoilovial otn ouvexr) ouluyr] pEBodo kat avartuxbnkav oe mep1BAAAov
OpenFOAM, cuprmAnpePATIKA ToU eTUAUTH 0ULUYOV EEI0M0EDV AVOlXTHG IpooBaong
o ormoiog €xel avarrtuyxBei amd ) Movdada I[TapdAAnAng YmoAoylotukng
Peuotobuvapikng & BeAtotoroinong tou EMII. Apxikd, yivetat ruotornoinon teov
TEXVIKOV 0g aradnpaikég Kalt akoAoubel 1) Xpr)on toug o BlOPNXavViKES EPAPHOVEG.

H ouduyrg 1€6060g yia Xpovikd Pn-povipioug erMAUTEG £XE1 PEYAAEG ATIATTNOELG
0€ UTIOAOYIOTIKO KOOTOG 1)/Katl amobrjkeuor O6edopévav. lNa auvtd xatr &ev
Xpnotporoteitat ouxva otr BeAtiotonoinon popdng oe Blopnyavikég epappoyeg. Ot
POVI01 EMMAUTEG TPWIEUOUOROV KAl OUUYOV €§1000E®V UITOPOUV, KATd MEPITROT),
va Ypnowponolnfouv otav 1 por| nmapouotladel nra XPoviky actdfeia. Xin diatpiBn
auvt] epappodetat 1 MéBodog Avadpopikev IIpoBoAev (Recursive Projection
Method, RPM) yia v avilpetnmnon 1oV SUGKOAIOV OUYKALONG TOU rapoucialouv
01 XPOVIKA POVIHOL ITP@TEVoVIEG Kat (ouveyelg) ouduyeig emAuteg AOYy® TG XPOVIKIG
aotdBelag g pong. Me 10 mépag g BeAtiotonoinong pe POVIPHOUG €mMAUTEG, Ol
BeAdtiotoroinpéveg  Avoelg  ermavaglodoyouvidl  AO  UN-HOVIHOUS  ETMAUTEG
TIPWIEVOVIOG TIPOBANIATOS Yia va emBeBai®bei n Pelnon Tou XPOoVIKOU PECOU T®V
ouvaptoewv otoxou. 'Etol, n BeAtiotornoinon yiveral pe UmoAOy10TIKO KOOTOG ®G
KAl Katd pia tadn peyeboug xapnAotepo anod Ot pe XPovika pn-povipioug ermAUTeg.
H texvikn aut) xpnowporoteitat emiong yia BeAtiotonoinorn popPrig 0 PoEg OITOU
ekAuvoviat otpoBldot. Ilapott Prmopouv va UMoAoylotouv Bedtiwpéveg Avoelg yla
TETO10U £160UG poEg pe povipoug emAuteg, 6ev propel ev t€Ael va anodeuxOel evag
Bpoxog Bedtioromoinong pe HPn-povipoug ermAuteg.  To OUVOAIKO KOOTOG, OH®G,
HelveTal xpnoponolwviag tn BeAtiotortomnpévn AUon pe HOVILIOUG ETTAUTEG QG
apxwornoinon ya tr BeAtiotonoinon pe pn-povipous.

Ze 10 TIOAUTIAOKEG £PAPHOYEG, Ol OUOKOAlEG OUYKAIONG TRV HOVII®V
MIPWIEVOVI®V Kal oUlUyaV emAUT®V, akopa kat pe v RPM, eival mmoAu mo £vioveg.
Attia ylia autd priopet va eivatl n mootnIa T0U MAEYHATOS YUP® ATIO TIEPITTAOKEG
YEQUETPieg 1) 1) Umapsn mANOopag 18100UXVOTTOV TOU IIPOKAAOUV Tr) Ypryopn
artokAon Tou ouduyoug  eImAuT). [Mpokewiévou va arogeuxbouv TtETo1a
npoBAnpata, xpnoworoleitat (sermmutAéov g RPM) eAdeyyxopevn amooBeon ing
Zuluyoug Avaotpodns Zuppetadopdg (Adjoint Transposed-Convection, ATC), evog
O0pou mou epgaviletal ot ouvexeig ouluyeig elomoelg oppng. H amooBeon 1
analoudpr] AUTOU TOU OPOU XPNOlHoTolEital ouxva ot BiBAoypadia yia 1n
otaBeporoinon ouvexwv ouluymv ermAutewv. Meletdral, 6w, 1 enibpaon mou €xet
autn 1 MIPAKTIKY OtV aKpiBela 1oV mapayoyev eualobnoiag os meputtioelg Orovu 1
RPM ermtuyxdavel amo povn g t otabeporoinon tou ouluyoug ermdutn. H
edeyxopevn amnooBeon g ATC (sepoocov amatteital) amodelkvUetdl TIPAKTIKA
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aBAabric Kal OUVEIOPEPEL ONUAVIIKA OtV €Uotdfeld 1oV oulUymv EMAUTOV.
AvtiBeta, n avegédeykin andoBeon tou opou aroucia g RPM eivat apketd ouyxvd
eru¢nuua.  Emiong, xapw g RPM, amogeuyetat n emiduorn ouluyov e§1000e@v
Bao1opEvV Ot HPEOT T TOV PN-OUYKATHIEVOV TIPROTEUOVI®V TTEdinV.

To O6eutepo okéAog g SratpBrig adopd v agpoduvapiky] Bedtiorornoinon
popdpng umo aBeBaidoinieg. e t€tola mpoBAnpata, 1mpocdlopiletal MOoOTKA 1)
anokpilon pag Ioodinrag Eviiagpépovrog (Quantity of Interest, Qol) wg mpog éva
ouvolo petaBAntov aBsBaidtnrag pe g Asyopeveg pebodoug Iloootikoroinong
ABeBaiottag (Uncertainty Quantification, UQ). Autd auidvel onpavukd to
UTIOAOY10TIKO KOOTOG £vog Bpoyxou BeAtiotomnoinong. Xpnotportotouvial ot pébodot
[Mpodtng-Tdgng AceUtepng-Porig  (First-Order Second-Moment, FOSM) «kat
Avartuypatog IMoAuwvupikou Xdoug urmoBonBoupevou amod tn Zuduyny MéBobdo
(Adjoint-assisted Polynomial Chaos Expansion, APCE) yia tov unoAoyiopo tev
600 MPATOV OTATIOTIKOV POTIOV (P€0NG TIPS KAl TUTIKLG artokAtong) piag Qol. To
otafpiopévo abpolopa auteV TV POTIOV XPNOTHONOoIETAl ®G oUuvAapTtnor otoxog. ['a
Hla tétola ouvaptnorn, n BeAtiotomnoinon pe nmapay®wyoug euaiobnoiag amattel g
HIKTEG TIapaymyous s Qol wg mpog 11g petaBAntég oxedlaopou katl aBeBaiotntag.
KaBaog, opwg, apkel povo o umodoylopdg g 1mpoBoArig ToU PNIP®OU TOV HUIKIOV
napayoyev oe OSiwavuopata, avarrtuocoviat duo pébodotl BeAdtiotoroinong pe
poBoAég, ot pFOSM kat pAPCE, oe avuotoiyia pe tg uo pebodoug UQ mou
nipoavapepdnkav. Baoikod kEpHog amod tn xprion tov pebodwv mpoBoAng sival g
10 KOOTOG UTIOAOYIOHOU TOU TIPOBEBANPEVOU PNIPOOU HIKIOV TIAPAYOY®V Oev
augavetat pe o mMAn0og twv petabAntav aBeBalotntag 1) oxedlacpou.

Zunv pFOSM, 10 KkO6010¢ ava KukAo Bedtotoroinong eivat ico pe 4
YroAoyilotikég Movadeg (Equivalent Flow Solutions, EFS), g 6nAadn va Atuvetat to
poBAnua pong 4 gopég. v pAPCE, 10 k6otog eivat ico pe 4L EFS (L sival to
mAnbog 1OV onpeiov SetypatoAnyiag otnv madwvdpopnon).  To képdog eival
ONMAVIIKO aKOPA KAl yld PiKkpo mAnfog petabAntov aBeBatdtntag. H pAPCE éxet
peyadutepo umodoylotiké Kootog aro tyv pFOSM, adld uroloyilel otatiotikég
pOTIEG pe peyaAutepn akpiBeia. Ot dUo pébodotl mapouoiddovial oe mpoBArpata
agpoduvapikig BeAtiotonoinong Hopedrig yia OIPRIEG Kal TupBmdelg posg.  Xug
tedevtaieg, 1 emiduor yiveral pe Xpron Tou povieAou tupbng teov Spalart-Allmaras
Kal g ouduyoug tou e§ionmong.

Ot Blopnyavikég epappoyeg neptdapBavouv v agpoduvapiky BeAtiotonoinon
HOPO®NG OXNUAT®OV EITiyelag PeTadopdg Pe XP1Oon HOVIPI®V ETNAUTOV 0 ouvduaopno
pe v RPM kat plag mépuyag aspookdadoug rapouoia aBeBalot|tov g 11pog Tig
ouvOnkeg pong pe xpron 1wv pFOSM kat pAPCE.

Aggerg RAed1a: Agpoduvapikn Beltiotonoinon Moporig, Zuvexng Zuluyng
MeéBobog, ZtBapog Zyxediaopog, MeBodog Avadpopikev IIpoBoAov, Euotabeia
Elonoewv, Zuluyng Avdotpopn Zuppetagopd, Ilocotkorioinon ABeBaidtntag,
Avarrtuypa IToAvevupikou Xdaoug, OpenFOAM
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Chapter 1

Introduction

Optimization is an integral part of the design process and, following the
advancements in technology and the increase in computational power of recent
years, computer simulations have become a standard tool for aiding engineers
towards optimizing designs across multiple fields. All of this is supported by the
numerical methods that have been developed for solving the Partial Differential
Equations (PDEs) that describe the physics of the problem at hand. In the field
of fluid mechanics, after years of intensive research, Computational Fluid
Dynamics (CFD) has become more competent and is nowadays routinely used to
test new designs, enhance the engineer’s understanding of the underlying
physical phenomena and complement existing skills and approaches for design.
This has been followed by the combination of control theory with CFD for inverse
design and optimization of aerodynamic components. The attractiveness of
simulation-driven design lies in the promise of lower cost compared to
established design practices. However, significant challenges are still present
and relate to the efficiency, robustness and fidelity of the numerical methods
and models; for the methods to be of practical use, shorter turnaround times are
important. This thesis contributes to the development of faster, more robust and
efficient methods and practices for CFD-based optimization, even in the
presence of uncertainties.

The three main components that drive an optimization are the objective
function, the constraints and the design variables. To compute the objective
function value, the so-called primal problem is solved, which, in mechanics,
often involves the solution of a set of governing PDEs i.e. the primal equations.
In CFD-based optimization, the primal equations correspond to the flow PDEs
and the objective function is usually a surface or a field integral whose value
depends on the so-computed flow variables, also referred to as the primal ones.
It is usual for the constraint functions to be of this form as well. The design
variables serve as an input to the primal problem. The goal of the optimization
method is to compute the design variables that minimize or maximize the
objective function while meeting the constraints. The same optimization
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methods can be used either for minimization or maximization since
maximization problems can be formulated as minimization ones, as adopted
throughout this thesis for all optimization problems.

Optimization, within a field of mechanics, can be broadly classified in two
categories, depending on whether the topology or the shape of a design component
is being optimized. The design variables are essentially different between these two
types. Topology optimization mostly involves the distribution of a material within
the design space. A typical example from CFD could be a heat exchanger with
predefined inlet and outlet sections that is initially regarded as a box filled with
solid or fluid and, gradually, fluid or solid regions emerge and eventually form
an interconnected system of ducts. Shape optimization on the other hand begins
with a pre-defined connectivity pattern or follows from a topology optimization loop
and seeks to find the optimal shape of the design. Recent advances even combine
these two types of optimization in structural applications [17, 101]. This thesis
deals only with shape optimization problems. However, the developed methods
and tools can readily be extended to topology optimization, too.

In shape optimization, the choice of the design variables plays a crucial role.
In case the surface is somehow parameterized, its shape is controlled by a few
design variables. @ The parameterization of the surface offers ease of its
manipulation and/or deformation, usually with guaranteed surface smoothness.
Widespread, general-purpose techniques are Non-uniform Rational B-Splines
(NURBS) [124] or free-form deformation with Volumetric B-Splines (VBS) [67, 88,
118] to name a few. Some techniques can be used to parameterize the volume as
well and offer more flexibility in the manipulation of the computational grid.
Other techniques may additionally include engineering information, such as the
PARSEC parameterization, introduced by [144], which is customized for airfoils.
The parameters of these techniques serve as the design variables which are
modified to effectively control the shape. Each technique offers different
advantages and disadvantages. A few non-restrictive guidelines are offered for
determining what constitutes a successful technique in a comprehensive review
on multidisciplinary shape optimization by [137]. In nodal-based optimization,
the design variables are themselves the nodal coordinates of the surface and a
richer design space can be explored because the surface nodes are controlled
directly. However, it may be more difficult to impose geometric constraints and
the independent displacement of each node may lead to irregular shapes. A
regularization function is wusually employed to ensure smoothness and
manufacturability of the optimized shape. For more details on nodal-based
shape optimization, [8] offers a review on latest developments for various
applications including CFD. In most applications, surface morphing is usually
accompanied by grid deformation and re-adjustment to the new surface instead
of regenerating the grid.

Optimization is further -classified into stochastic and deterministic,



depending on the strategy used to find the optimal values of the design variables
[103]. Stochastic optimization incorporates randomness in order to heuristically
find the optimum. Compared to deterministic methods, there is a greater chance
at finding the global optimum even without running the search for an infinitely
long time [152]. Stochastic optimization is frequently performed using
population-based Evolutionary Algorithms (EAs) which mimic natural Darwinian
evolution. A population of candidate solutions (i.e. sets of design variables) is
initialized randomly and is improved iteratively, with each iteration representing
a generation, following a “survival of the fittest” strategy. In each generation, the
candidate solutions are evaluated, the best ones are withheld in the population,
the worst ones are discarded and new ones are generated by combining features
from the best ones through evolution operations such as crossover and
mutation. The iterations finally converge to better solutions. Optimization
problems with many objectives and constraints are easily handled by the EAs.
On the other hand, in case the number of design variables is great, the EAs
require many generations to find better solutions and this also increases the
number of evaluations of candidate solutions. Thus, the optimization
turnaround time can be high in case CFD is involved in these evaluations.
Various techniques are used to reduce the turnaround time. Parallel EAs [1406]
take advantage of parallel computer architectures to perform the evaluations
concurrently. Distributed EAs split the population in clusters, called demes or
islands, and use variations of the evolution operations in each one (higher
mutation probability, elitism etc). Hierarchical EAs comprise more than one level
of distributed EAs and use a different evolution strategy or problem
parameterization in each level [41]. Additionally, meta-models, produced with
various techniques, are frequently used which operate as cheap surrogate
functions that can significantly speed up the evaluation process. Numerous PhD
theses [35, 62, 60, 9, 71, 77, 31, 61], completed at the Parallel CFD &
Optimization Unit of the National Technical University of Athens (PCOpt/NTUA),
made contributions to the above techniques and the development of the
Evolutionary Algorithms SYstem (EASY) software. Stochastic methods are
beyond the scope of this thesis and will not be addressed any further.
Deterministic refers to gradient-based optimization. @ The gradients of
objective functions and constraints with respect to (w.r.t.) design variables, also
known as Sensitivity Derivatives (SDs), are used to identify search directions in
the design space and drive the optimization. By using a search direction instead
of a stochastic strategy, the optimization loop may converge fast to a local
optimum. The faster convergence is the main advantage of gradient-based
methods over stochastic ones. Using gradient information, constraints are
enforced efficiently. One limitation of gradient-based methods involves the
computation of globally optimal solutions. Gradients provide only local
information about the design space landscape and, as such, optimization
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algorithms converge to solutions that are only locally optimal. To find a global
optimum, gradient-based optimization loops may need to be performed from
multiple starting points.  Additionally, gradient-based methods may face
difficulties in handling problems with discontinuities. An example for this can be
found in [69] in which a constraint function was discontinuous close to points of
interest and a blending function had to be used to overcome this problem. This
thesis deals exclusively with gradient-based methods.

1.1 Methods for Computing Gradients

The key component of a gradient-based optimization loop is the computation of the
gradients of objective functions and constraints. For an optimization software to
be of practical of use, these gradients need to be computed with sufficient accuracy
and at a low cost. Comprehensive reviews on methods for computing gradients
in aerodynamic optimization are given by [89, 123]. This section reviews existing
methods for computing gradients, finally leading up to the adjoint method.

The most straightforward way for computing SDs of a function is to use
Finite Differences (FDs), wherein the design variables are perturbed using a
small step size and the difference quotient yields the derivative. Well-known
issues of this method are the truncation errors, caused by a big step size, and
the round-off cancellation errors, caused by a smaller-than-needed step size.
The step size is, in general, difficult to determine. It usually involves
trial-and-error or a convergence study and a different step size might be needed
for each design variable. Furthermore, to minimize cancellation errors, the
primal equations’ residuals need to be reduced by many orders of magnitude,
something not always possible in more difficult-to-solve problems. An interesting
result, [46], showed that, in more complex cases, two distinct derivative values
may be computed with FDs if some conditions, such as the initial solution, are
different between the two computations. An alternative, the complex step
method, can avoid cancellation errors [6] by computing the FDs after perturbing
the design variables in the complex plane. However, it requires serious
investment in code development since the CFD code must be rewritten using
complex variables. Most importantly, the computational cost of these two
methods is proportional to the number of design variables and their use is
prohibitive in practical applications.

Another method is Direct Differentiation (DD) with which the primal PDEs
are differentiated w.r.t. the design variables and a series of new systems of
equations are derived. These are solved for the derivatives of the primal fields
w.r.t. the design variables. The objective function SDs are given from an
expression that involves the aforementioned derivatives of primal variables.
There are two approaches for this method, a continuous and a discrete one,
depending on whether the primal equations are differentiated in continuous
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form or after their discretization [123]. Irrespective of the approach followed,
there is a system of equations that is as costly to solve as the primal problem for
each design variable. Although this method avoids the errors of FDs, its cost is
also proportional to the number of design variables. It might be preferred in case
the objective and constraint functions are, in total, more than the design
variables, although this is rarely the case in engineering applications.

In contrast, the adjoint method computes the required gradients at a cost
that is (for all practical reasons) independent of the number of design variables
[116]. It is essentially a method of Lagrange multipliers. The primal PDEs are
the constraints and the Lagrangian function is formulated using these
constraints and the adjoint variables which have the role of Lagrange
multipliers. Much like in DD, there are two variants of the adjoint method, a
continuous and a discrete one. In continuous adjoint, the Lagrangian function is
developed using the continuous form of the primal equations’ residuals and the
adjoint PDEs are first derived and, then, discretized and numerically solved to
compute the adjoint variables. In the discrete counterpart, the adjoint equations
are directly derived from the Lagrangian developed using the discretized primal
residuals. Discrete and continuous adjoint approaches have been compared in
[95]. Examples of adjoint methods for aerodynamic optimization can be found in
the literature [116, 89].

The gradient is always perpendicular to the iso-surfaces of the objective
function in the design space and points in the direction of greatest increase
whereas its negative in the direction of greatest decrease. An optimization
algorithm uses the gradient to determine a search direction in the design space
and take a step along this direction to update the design variables. This step
reduces the value of the objective function. A simple method for unconstrained
optimization, referred to as steepest descent, takes a step along the direction of
the negative gradient. @ Well known issues of this method are its slow
convergence, especially in the vicinity of the optimum. The step length is either
user-defined or can be computed using line search methods which, however,
require additional evaluations of the objective function. The slow convergence of
steepest descent is due to the lack of curvature information in the scheme. To
converge faster, Newton methods use the Hessian matrix, which includes
curvature information in the form of second-order derivatives of the objective
function. However, the computation of the Hessian matrix is rather costly.
Methods to compute it, compared to existing ones, have been proposed in [111,
110, 109, 112, 119] and use a combination of adjoint and DD techniques. To
avoid these computations, quasi-Newton methods such as the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [12] are employed which
rely on approximations of the Hessian matrix instead. In the BFGS, the inverse
of the Hessian matrix is approximated using gradient information from previous
optimization cycles.
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For constrained optimization, these methods are modified to use constraint
gradients as well in order to determine a search direction within the feasible
design space, allowed by the constraints. This is done by transforming the
constrained optimization problem to an unconstrained one and minimize an
augmented Lagrangian function defined through the use of Lagrange multipliers,
one for each constraint function. Steepest descent methods are combined with a
projection technique [133, 134] that uses the gradients of constraints in order to
define a search direction that is tangent to the iso-surfaces of the constraint
functions. An alternative that has much faster convergence and is more suitable
for non-linear optimization problems relies on Sequential Quadratic
Programming (SQP) techniques [103]. In the SQP, a quadratic model of the
objective function is adopted, the constraints are linearized and a series of
quadratic optimization sub-problems are solved using Newton’s method.
Practical applications of SQP use quasi-Newton approximations of the Hessian of
the quadratic model. To handle inequality constraints, the SQP can be combined
with an active-set or interior-point strategy. For more information, the reader is
referred to [103]. Quasi-Newton methods have faster convergence rate but
require the computation of accurate gradients and may fail in case the Hessian
matrix is non-singular.

1.2 The Adjoint Method in Shape Optimization

In aerodynamic shape optimization, a continuous adjoint formulation was first
devised for Stokes flow [125] and, later on, for inviscid incompressible flows
[126]. The applications presented relied on the solution of the potential flow
equations. In [53], a continuous adjoint formulations was derived for inviscid
compressible flows that was suitable for CFD applications. In a series of
publications that followed in later years, computational results using this
method were presented. The shape optimization applications ranged from airfoils
[128, 55] to wing-body airplane configurations [129] and full aircraft optimization
[130, 127] using the compressible Euler equations solved on multi-block
structured grids. The extension of the method for the full Navier-Stokes
equations followed in [54]. All of these developments spearheaded the adjoint
method and led to its widespread use in aerodynamic shape optimization. For
incompressible laminar flows, a continuous adjoint formulation was presented
by [7] wherein the primal and adjoint equations were solved on unstructured
grids using artificial compressibility. The continuous adjoint method was
extended to turbulent flows by the PCOpt/NTUA group, for the first time in the
literature, in [169] using the Spalart-Allmaras turbulence model. The derivation
of adjoint PDEs for more turbulence models followed [170, 120, 118, 65].

In earlier publications, the gradient expression comprised field integrals that,
after discretization, contained the derivatives of grid coordinates w.r.t. design
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variables, also known as grid sensitivities. These quantify the contribution of
grid deformation to the objective function’s value. To compute them, FDs are
frequently used, the design variables are perturbed and the grid is deformed
using the method or algorithm of choice. Thus, the computational cost scales
with the number of design variables. This formulation is referred to in this thesis
as the Field Integral (FI) adjoint. To overcome this cost, a new formulation based
only on surface integrals was developed, first for structured grids [7, 56] and,
later, for unstructured ones simultaneously by [57, 108]. This new formulation
is referred to as the Surface Integral (SI) adjoint. The FI and SI formulations are
mathematically equivalent. Although the new formulation was more efficient,
second-order spatial derivatives of flow velocities had to be computed on the
boundaries of the computational domain. In practice, these could be computed
consistently on structured grids, as was the case in [7], however, on
unstructured ones, the formulation was impractical. For this reason, the surface
integral that involved grid sensitivities was largely omitted following a series of
assumptions. This meant that the influence of grid deformation on the objective
function was ignored. Due to this omission, discrepancies between the two
formulations could be observed. This problem was more prevalent on coarser
grids, as noted by a number of authors [7, 80, 81]. The FI formulation was more
accurate than the SI one based on the previous simplifying assumptions. For the
case of continuous adjoint, a solution was proposed by the PCOpt/NTUA group
in [66] which developed the adjoint to the grid displacement model PDEs. By
considering these adjoint equations, grid sensitivities were accounted for, at a
cost that did not scale with the number of design variables and the accuracy of
surface-based gradient expressions was recovered. The new formulation was
referred to as the Enhanced Surface Integral (E-SI) formulation.

Discrete adjoint formulations can be derived with different ways. The earliest
formulations followed “hand-differentiation” of the discrete primal residuals. In
this way, the equations are adjoint to the discretized primal ones, discretization
schemes are taken into account and the computed SDs are expected to be in
very good agreement with FDs. In later years, to avoid the laborious task of
“hand differentiation”, discrete adjoint codes were frequently generated by
Automatic Differentiation (AD) tools [43]. Such tools practically apply the chain
rule to the series of arithmetic operations performed by the solution algorithm of
the primal solver and automatically differentiate it. The summation of all parts
of the chain rule yields the SDs. If the chain rule is applied in forward mode, the
differentiated code corresponds to a discrete DD whereas the reverse mode
corresponds to the discrete adjoint [89]. One technique for AD is code
transformation, in which the chain rule is automatically differentiated and a new
code is generated. Another technique uses operator overloading, applicable only
to computer programming languages that support object-oriented programming,
in which new data structures are used and the operations between them are



8 1. Introduction

overloaded allowing the storage and accumulation of the partial derivatives of the
chain rule automatically [100]. Modern AD methods can increase the efficiency
through the use of expression templates [3]. Frequently, some approximations
are made to simplify the development of discrete adjoint and reduce its memory
overhead; their effect has been studied in [23]. For instance, it is not uncommon
to eliminate (to some extent) terms from the adjoint equations that cause
instability in real-world applications. The first discrete adjoint formulation using
second-order spatial discretization schemes was developed for the first time by
[24, 25], using “hand-differentiation” and was used for 2D and 3D applications.
AD was used to develop discrete adjoint solvers for incompressible flows, solved
using segregated [14, 135, 48] and coupled [27] pressure-based schemes.

Implementing an efficient and robust iterative scheme for the solution of the
adjoint equations is important. In continuous adjoint, due to the similarity of
primal and adjoint PDEs, iterative techniques used for solving the former can be
used in solving the latter. In discrete adjoint, assuming that the formulation is
consistent (i.e. all terms in the discrete primal residuals are differentiated
without any simplifications), then, the Jacobian matrix in the adjoint system is
the transpose of the Jacobian of the primal equations’ residuals. As such, it
inherits the eigenvalues of the latter. This is a welcome trait because it suggests
that the adjoint iteration will be converging whenever the primal one does.
However, a consistent differentiation by itself does not necessarily suffice for the
adjoint solver to have the same asymptotic rate of convergence as the primal one
[22]. To achieve this duality between the two solvers, the iterative scheme used
by the primal solver must also be taken into account and this was first
demonstrated in [34]. Duality-preserving solvers were developed by others as
well, with either AD [3, 70] or the complex-step method in a Jacobian-free
manner [48] or with graph-coloring to form the transposed Jacobian matrix
[102].

In continuous adjoint, achieving duality is much more involved. Since the
primal PDEs are differentiated in continuous form, the influence of the solution
scheme employed to solve them is ignored. For example, the Semi-Implicit
Method for Pressure-Linked Equations (SIMPLE) [122] family of algorithms is
frequently used to solve the incompressible Navier-Stokes equations. The
continuity equation is satisfied by deriving and solving a Poisson-type equation
for the flow pressure. The derivation of the Poisson equation for pressure is
carried out in a discrete sense. In continuous adjoint, it is the momentum and
continuity equations that are differentiated and processed and the solution
scheme is not taken into account. Despite this, practical experience has shown
that even with continuous adjoint, the adjoint solver is much more likely to
converge if based on a converged primal solution. On the other hand, divergence
of the adjoint solver is a usual occurrence when the iterative scheme of the
preceding primal solver stalls and residuals oscillate, such as in cases with flow
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unsteadiness [22, 2]. This will become relevant in the following sections.

1.2.1 The Adjoint for Unsteady Flows

Despite its attractive features, in unsteady flows, the adjoint method faces a major
setback. The unsteady adjoint equations need to be solved backwards in time and
require the instantaneous primal fields to be available at each time-step of the
adjoint solver. This noticeably increases storage requirements and/or CPU costs.
For this reason, adjoint methods were developed for solution in the frequency
domain [97, 98]. This is a viable approach in flows with periodicity or in case
the unsteadiness is dominated by a handful of frequencies, however, for purely
transient problems, time-domain solutions cannot be avoided.

Early applications used techniques and workarounds to reduce the memory
overhead. In time-domain, continuous and discrete adjoints for inviscid flows
were used in [96] for shape optimization whereas a discrete adjoint for viscous
flows was developed and used in [136]. In the latter, a form of time-coarsening
of the primal solution snapshots was used, whereby the storage of every other
time-step solution was skipped, and the adjoint equations were solved using a
larger time step. The effect of deforming grids from one time instant to the next
was included in [84, 85] for fully coupled aeroelastic simulations in periodic flows
for 2D applications and, later, extended for 3D in [90]. For these applications, the
primal fields were stored on the hard disk and read to memory when it was time
to be used by the adjoint solver. For real-world applications, if disk storage is not
an option, the use of the check-pointing technique [44, 159] is a popular option.
Instead of storing all snapshots, only specific instants are stored at a number of
check-points. In order for the adjoint solver to march backwards in time, from
one check-point to the next (located earlier in time), the intermediate primal fields
are re-computed by integrating the primal PDEs forward in time from the earlier
check-point to the current one. In this way, storage requirements are relaxed at
the expense of extra CPU cost for the re-computation of the intermediate primal
fields; therefore, it is up to the user to choose the number of check-points and
control this trade-off. An example of this method can be found in [135] which
used AD to construct an adjoint for unsteady incompressible flows with a Large
Eddy Simulation code.

Other alternatives include the decomposition of the array of primal-field
snapshots. For example, [160, 164] used Proper Orthogonal Decomposition
(POD) with Singular Value Decomposition (SVD) or Gram-Schmidt
orthogonalization and [18] used Principal Component Analysis to compress the
data to be stored. These methods can be seen as reduced-order models for the
accurate primal solution time-history. The PCOpt/NTUA has made a number of
contributions to the development of such methods. In [153], the CPU cost of the
POD was reduced by updating the decomposed matrices as the time-integration
progresses with an incremental SVD. In [86], significant memory reductions were
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achieved through the synergistic use of the ZFP library for compressing
floating-point arrays and the incremental Proper Generalized Decomposition
method, both of which were then combined with check-pointing in [87] for
increased effectiveness.

1.2.1.1 Convergence Difficulties Due to Flow Unsteadiness

Although all of the aforementioned methods have effectively enabled the use of
unsteady-based adjoint for a wider number of applications, in real-world
engineering problems, the CPU cost of the optimization with unsteady solvers
can still be prohibitively expensive [106]. This is true even by assuming that
storage requirements have been overcome without extra CPU cost. For this
reason, in cases exhibiting mild unsteadiness, the use of a steady-state solver is
often preferred, especially when the flow in the sought optimal solution is
expected to be less-time varying or even steady. The same holds for shapes
generating vortical flow patterns, that are expected to be suppressed at the end
of the optimization. This process is a common practice in industrial shape
optimization in which a RANS equations’ solver is used to compute quasi-steady
solutions to a problem that is known to be unsteady [75], occasionally followed
by the re-evaluation of the optimized solutions using an Unsteady RANS
(URANS) equations’ solver or any other high-fidelity simulation tool [115].

However, the use of steady-state solvers in cases with mild unsteadiness (or,
even, cases with vortex shedding), often encountered in flows past bluff bodies,
usually leads to significant convergence difficulties for both the primal and
adjoint solvers. The steady-state flow solver may not converge and the adjoint
solution is led to stalling or divergence [22, 2] as a consequence of the former.
This dependence of the adjoint solver on the convergence of the primal one was
discussed in the previous section as well. These implications are also reported in
[74] which, in addition, demonstrated that the objective function value computed
by averaging the results of an unsteady simulation might be far from that of a
steady solution. The same holds for the adjoint-based sensitivities. Nevertheless,
averaging the solutions of a steady solver over the last few iterations, using a
steady adjoint on that field to compute the SDs, and, then, using these SDs in
the optimization might result to a better value of the objective function that can
be verified by re-evaluating it with an unsteady flow solver. This is a choice
made purely with computational cost considerations in mind, at the user’s
responsibility.

Regarding continuous adjoint, in specific, convergence difficulties often
manifest themselves through or are attributed to the so-called Adjoint
Transposed-Convection (ATC) term [106] (see section 2.4.1), emerging in the
adjoint momentum equations. For the latter, the most frequently used remedy is
the damping of the ATC close to the wall, either totally or selectively, on a
cell-by-cell basis, using an appropriate sensor [106, 63]. This can be seen as a
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trade-off between accuracy and robustness of the adjoint method.

Convergence difficulties of the adjoint equations render the optimization
procedure ineffective or, in some cases, even impossible. In this thesis, the
Recursive Projection Method (RPM) [143], a stabilization method for iterative
procedures, is used to deal with the aforementioned convergence difficulties. The
RPM splits the solution space in two subspaces which contain the unstable and
stable modes of the Jacobian matrix of the iterative scheme, the one being the
orthogonal complement of the other. It, then, performs an additional Newton
step within the unstable subspace while retaining the original iterative scheme
on its complement. A precursor to the RPM was originally developed in [58],
requiring though the Jacobian of the Fixed-point Iteration (FPI) scheme to be
symmetric. Beyond that, in [83], a number of RPM variants were derived and a
thorough analysis of the algorithm and its convergence properties was provided.

In the literature, the application of the RPM was successfully extended to the
acceleration and stabilization of flow and adjoint solvers. In [42], it was used to
accelerate a dual time-stepping Navier-Stokes code for compressible flows by
improving the convergence of the pseudo-time iterations. In [59], the RPM
contributed to the acceleration of a coupled pressure-based multigrid solver for
the steady flow equations of incompressible fluids. It was also used for the
stabilization of linearized compressible flow solvers [13] as well as the discrete
adjoint to the Navier-Stokes equations for compressible fluids [22, 2].

The proper treatment of Differential-Algebraic Equations (DAEs) with the
RPM was studied in the theses of [79, 154]. The algebraic constraints were firstly
transformed to Ordinary Differential Equations before the RPM could be applied
to find steady solutions of the system. An alternative approach for handling
DAEs with the RPM was shown in [73] in which the constraints were treated as
“very fast evolving” equations. The algebraic variables corresponding to these
constraints could, thus, be treated by the RPM directly, without additional
considerations. This is the approach followed in this thesis for these types of
variables, such as the fluid volume fluxes passing through the faces of the finite
volumes used by the SIMPLE algorithm.

An implementation of the RPM was first developed by the PCOpt/NTUA for the
adjoint solver of the adjointOptimisation library in a previous PhD thesis [64]. It
was used only to assist the convergence of adjoint solvers in academic cases and in
the shape optimization of a ground vehicle. In all these cases, adjoint solvers used
“pseudo-steady” primal solutions, averaged over the last iterations of the stalled
primal solver. This thesis goes one step further by making use of both stabilized
steady-state primal and adjoint solvers. Also, the algorithm was slightly modified
to better suit the SIMPLE solution scheme and improvements were made to the
algorithm that computes the unstable subspace basis. More information on this
in section 3.1.

The RPM is well suited to problems such as those this thesis is dealing with
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since it can handle instabilities due to flow unsteadiness. Furthermore, its
implementation is non-intrusive in nature, treating the underlying iterator as a
black box and leaving the outcome unaffected [143]. In view of the above, the
RPM provides a means to potentially stabilize the adjoint equations without
affecting the SDs. Using the RPM, an investigation is carried out regarding the
use of the two techniques mentioned, the use of flow-field averaging and ATC
damping, which overcome convergence issues by introducing assumptions or by
tampering with the equations themselves.

1.3 Aerodynamic Shape Optimization Under Uncertainties

In practical applications, there is a degree of uncertainty related to the boundary
conditions which might be beyond the designer’s control. As a result, it might
happen that whenever the optimization is performed for fixed boundary
conditions, the optimized shapes might not perform well when these conditions
change [69, 21]. Robust Design Optimization (RDO) methods solve optimization
problems while accounting for uncertainties [11, 140].

A key part of RDO is the Uncertainty Quantification (UQ) of the model output
(a.k.a. the Quantity of Interest (Qol)). In the absence of uncertainties, the Qol
would act as the objective function. Following a probabilistic approach,
uncertainties are incorporated into the model by associating a Probability
Density Function (PDF) to each uncertain variable. The uncertainties are, then,
propagated through the model computing the Qol. Therefore, in the presence of
uncertainties, the Qol is treated as a statistical quantity and the optimization
objective becomes a function of its statistical moments. Usually, the first two
statistical moments, the mean value and standard deviation, are of interest. The
objective function is frequently cast in the form of the weighted sum of these two
statistical moments, see [119] for an example. Various UQ methods have been
developed, including, though not limited to, the computationally exhaustive
Monte Carlo (MC) method [26], the Method of Moments (MoM) [158, 47] and
intrusive or non-intrusive Polynomial Chaos Expansion (PCE) techniques [161,
163]. More information can be found in [158], for a more general description of
uncertainty analysis methods in CFD with applications. A recent review of RDO
in aerodynamic applications can be found in [52]. An overview of UQ with PCE
in CFD is given in [99] and more details on sampling techniques for
non-intrusive PCE with least-squares in [45].

With the MC, the software that computes the Qol is treated as a “black-box”.
A great number of value-sets of uncertain variables are chosen, the MC replicates,
and the Qol is sampled for these value-sets. The statistical moments are computed
based on the results of this sampling. The MC is easy to implement and quantifies
the effect of the joint PDF of the uncertain variables directly. Different uncertain
variables may be governed by different types of PDFs but the MC may handle all



1.3. Aerodynamic Shape Optimization Under Uncertainties 13

of them. The drawback is that, usually, a great number of Qol evaluations, each
one corresponding to a call to the CFD solver, might be necessary for the accurate
computation of the statistical moments. For this reason, alternative methods are
sought that are more efficient.

A usual alternative which follows a more intrusive approach is to linearize the
Qol about the mean values of the uncertain variables using a Taylor series
expansion up to a certain order. The MoM is, then, used on the linearized
quantity. Depending on the order of terms retained in the Taylor expansion, a
variety of methods are derived, the most common among them are the
First-Order Second-Moment (FOSM) and Second-Order Second-Moment (SOSM)
methods. The latter includes second-order terms and offers higher accuracy;
however, it requires more computations and is less straightforward to
implement. Both involve the computation of derivatives of the Qol w.r.t.
uncertain variables. If FOSM is combined with the adjoint method, the required
gradients can be computed at minimal cost.

A popular approach to UQ is the PCE method. It relies on polynomial
expansions to model the propagation of uncertainty from an input to the Qol. Its
main advantage is the capability to model uncertainties up to an arbitrary order.
It was introduced in [161] for Gaussian processes, using Hermite polynomials as
basis functions, and generalized for non-Gaussian processes in [163]. The
polynomial basis comprises different polynomials for each type of PDF which are
chosen to be orthogonal to each other. Lately, PCE methods that handle
arbitrary probability distributions without being restricted to parametric ones
have been developed [104]. They are data-driven and can construct a polynomial
basis on the fly, allowing the adaptation of the PCE to arbitrary distributions.
UQ problems that are closer to real-world applications can be tackled in this
way.

PCE methods can be either intrusive or non-intrusive. In intrusive PCE (iPCE),
the governing PDEs are projected on an orthogonal polynomial basis and are, then,
solved to compute PCE coefficients for the flow variables. In non-intrusive PCE,
the Qol is expressed as a polynomial expansion of the uncertain variables and
least-squares regression or quadrature rules are used to compute the polynomial
coefficients; applications in fluid mechanics can be found in [51, 50]. Regression-
based PCE may profit from the adjoint method which provides the derivatives of
the Qol w.r.t. all the uncertain variables, at the cost of 1 Equivalent Flow Solution
(EFS)!, at each collocation point and, thus, additional equations to be satisfied in
the regression system [132, 4, 32]. In this way, less collocation points over the
uncertain space are needed and a great amount of local information per point fills
this gap; the gain is a reduction in the number of EFS needed in UQ, compared
to standard PCE methods.

In the literature, examples of RDO in aerodynamics can be found in recent

'EFS is the computational cost unit and 1 EFS corresponds to the solution of the flow equations.
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years. In [167], a non-intrusive PCE (niPCE) method was combined with Particle
Swarm Optimization to optimize the shape of an NLF airfoil by accounting for
uncertainties in the Mach number. Sudden increases in drag, observed with
fluctuations in the Mach number that were encountered in the shape optimized
without accounting for uncertainties, were minimized. In [141], a series of NACA
4-digit airfoils were optimized using niPCE under geometric and farfield
uncertainties. Adjoint methods have also been used with UQ in RDO. An
example can be found in the work of [139] which used niPCE with the
Karhunen-Loéve expansion to model geometric uncertainties. In [142], niPCE
was combined with an intrusive approach applied only for the quantities
required by the adjoint to reduce the computational cost of the RDO.

Various contributions have been made by the PCOpt/NTUA to RDO based on
PCE and/or the MoM. For PCE, in [113], the shape of two airfoils was optimized
in the presence of uncertainties related to the flow conditions using an iPCE of
the primal equations and the adjoint method. The continuous adjoint was
formulated with two different ways, by developing either the adjoint to the iPCE
of the primal PDEs or the iPCE to the adjoint PDEs without uncertainties. In
[36], iPCE methods were used for shape optimization in Conjugate Heat Trasfer
applications under environmental and manufacturing uncertainties. = With
respect to the MoM, in [119], a combination of DD and adjoint methods were
used to perform shape optimization under uncertainties related to the boundary
conditions using the SOSM method. To do so, third-order derivatives of the Qol
w.r.t. to design and uncertain variables had to be computed. The combination of
DD and adjoint has proved to be the most efficient way of computing them, thus
far. In a recent paper by the PCOpt/NTUA, the projected FOSM (pFOSM) method
[30], derived from the FOSM method, for solving optimization problems in fluid
mechanics under uncertainties was presented, for laminar flows. In
gradient-based optimization based on pFOSM, mixed derivatives (w.r.t. design
and uncertain variables) of the Qol are involved. The pFOSM method profits
from the computation of matrix (of these mixed derivatives) -vector products at
the cost of 2 EFS only. The key point of pFOSM is that its cost per optimization
cycle is no more than 4 EFS, irrespective of the number of uncertain variables.
This cost corresponds to the solution of the primal and adjoint systems of
equations (2 EFS) plus the solution of two systems that result from the so-called
DD of the above equations w.r.t. the uncertain variables and their subsequent
projection onto an appropriate vector (2 more EFS). A realistic assumption is
made that the cost of solving either the adjoint or one system resulting from the
DD of the primal or adjoint equations is 1 EFS.

The goal of this thesis is two-fold. The first goal is to develop the pFOSM
method for turbulent flows, by extending the work done in [30]. The second and
most important goal is to present a novel method based on the Adjoint-assisted
Polynomial Chaos Expansion (APCE) in RDO exhibiting low computational cost,
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for laminar and turbulent flows. In an APCE-based optimization, the objective
function gradient involves mixed derivatives, since a quantity that includes
derivatives of the Qol w.r.t. the uncertain variables must be differentiated w.r.t.
the design variables. If computed, these mixed derivatives increase the cost of an
RDO cycle based on APCE significantly, thus reducing the cost benefits of APCE
in UQ. To this end, an RDO method is set-up herein, aptly named projected
APCE (pAPCE), that makes use of the projected matrix of mixed derivatives of a
Qol onto appropriate vectors, similarly to pFOSM, in order to minimize the
weighted sum of its first two statistical moments. The advantages of pAPCE are
that (a) it is based on a high-fidelity UQ method, (b) it uses a reduced number of
EFS to compute the objective function in the presence of uncertainties,
compared to standard regression-based PCE, and (c) it computes the gradient of
this objective function w.r.t. the design variables by just doubling the cost of the
UQ itself.

1.4 Adjoint Methods developed by the PCOpt/NTUA

The current work expands upon existing adjoint-based optimization methods
developed by the PCOpt/NTUA throughout a number of PhD theses. Adjoint
methods were developed either within the OpenFOAM [105] environment or in
the in-house GPU-enabled PUMA CFD solver. Some of these methods are made
publicly available in the adjointOptimisation library of OpenFOAM, via OpenCFD.

First developments were made in the thesis of Papadimitriou [107]. A
continuous adjoint formulation was derived that was valid for any type of grid,
for inviscid and viscous flows [108]. The sensitivity computations involved only
boundary integrals for objective functions defined as surface or field integrals.
The method was used for optimization of thermal turbomachinery cascades and
external aerodynamic applications. Additionally, a discrete adjoint method was
used to perform a posterriori analysis of objective functionals and perform grid
adaptation to achieve pre-defined accuracy. Finally, gradients computed by the
adjoint method were used, in addition to objective function values, to train an
artificial neural network to be used as a surrogate evaluation model in an
EA-based optimization.

The following theses developed continuous adjoint methods within the
OpenFOAM environment. In Zymaris’ thesis [168], continuous adjoint
formulations were developed for flows solved using turbulence models for the
first time in the literature. The development of adjoint PDEs involved the
differentiation of this turbulence models w.r.t. design variables. This was done
for the Spalart-Allmaras one-equation model in OpenFOAM and the applications
involved cases in which the boundary layer was fully resolved to the wall [169].
On coarser grids, the use of wall functions introduces some challenges in the
derivation of boundary conditions (BCs) with the continuous adjoint but these
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were overcome through the use of the so-called adjoint wall function [170], a
concept developed for the k — e turbulence model. The frequently used
frozen-turbulence assumption was scrutinized and its detrimental effects were
highlighted. The developed methods were used in flow control optimization
problems [171].

In Papoutsis-Kiachagias’ thesis [114], the adjoint wall functions technique
was extended to the Spalart-Allmaras model [118]. Additionally, the continuous
adjoint to the Launder-Sharma low-Re k£ — ¢ turbulence model was derived [120].
Additionally, the adjoint to the Hamilton-Jacobi equation was developed to
account for variations of the field of distances from nearest walls, used by the
Spalart-Allmaras model. A continuous adjoint method was further developed for
the RANS in the rotating reference frame for the design of hydraulic
turbomachines [117]. Finally, combinations of DD and adjoint methods were
used to compute third-order mixed derivatives w.r.t. design and environmental
variables for shape optimization under uncertainties with the SOSM method
[119]. Applications involved optimal flow control, topology optimization and,
lastly, shape optimization of real car geometries.

In the PhD thesis of Kavvadias [64], the continuous adjoint to the k—w SST
turbulence model, with or without wall functions, was developed [65].
Additionally, the Grid Displacement Model (GDM) PDEs were considered in the
Lagrangian formulation and adjoint counterparts were derived. It was assumed
that grid displacement obey the Laplace equation. With this, a new sensitivities
expression was derived that included only surface integrals without loss in
accuracy and was a step-up from previous ones [66]. The new formulation
accounted for the influence of grid deformation on the objective function without
resorting to excessive computations of grid sensitivities throughout the whole
domain. Additionally, the adjoint to the Multiple Reference Frame was developed
for optimization of flows with rotor-stator interactions and a continuous adjoint
for the URANS equations which made use of the check-pointing technique.
Finally, the RPM was programmed and was used to stabilize an adjoint solver for
shape optimization of a passenger car geometry.

In Gkaragkounis’ thesis, the E-SI adjoint was further investigated by using
different GDMs although a Laplace equation was used to develop the adjoint to
the GDM PDEs. It was shown that this assumption can indeed be used without
any serious harm to the computed SDs for a great number of GDMs [39]. A
continuous adjoint method was developed for conjugate heat transfer problems
[37]. Previous findings regarding the proper treatment of grid sensitivities were
re-confirmed in these problems. A new adjoint-assisted technique for Pareto
front tracing for multi-objective optimization problems was developed [38].
Lastly, shape optimization in the presence of environmental and manufacturing
uncertainties was performed using an intrusive PCE method.

In the following theses, the developed adjoint methods were implemented in
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PUMA. In Asouti’s thesis [9], both the discrete and continuous adjoint were
developed for low-Mach flows solved by preconditioning the compressible
Navier-Stokes equations [10]. In Zervogiannis’ thesis [165], a
“hand-differentiated” discrete adjoint solver was developed for shape
optimization in internal and external aerodynamics involving turbulent flows.
Focus was laid on hybrid grids and methods for a posteriori analysis were
improved to cover hybrid grids as well. Additionally, the method for computing
first- and second-order derivatives of the objective function, presented in a series
of publications by the PCOpt/NTUA [111, 110, 109, 112], was extended to
turbulent flows and was combined with a quasi-Newton strategy for higher
efficiency [166]. In Kontoleontos’ thesis [71], the continuous adjoint method for
incompressible flows was extended to heat transfer problems and the
Spalart-Allmaras adjoint approach was developed for topology optimization
problems [72]. In Tsiakas’ thesis [149], the continuous adjoint method was
developed for compressible flows. The formulation was based on both surface
and field integrals and enhanced parameterization techniques were developed for
turbomachines and transonic wings. In the thesis of Monfaredi [92], a
continuous adjoint method for minimizing sound radiation modelled with the
Ffwocs-Williams and Hawkings acoustic analogy was developed [93].
Aeroacoustic shape optimization was performed for airfoils, achieving
omni-directional noise reduction, as well as for the geometry of an aero-engine
intake. Additionally, adjoint methods based on the cut-cell technique were
developed in the PhD thesis of Samouchos [138]. The method was developed on
an in-house cut-cell CFD solver. It was extended in the thesis of Vrionis [157] for
multiphase flows [155] and topology optimization [156].

1.5 Thesis Objectives and Outline

The thesis is developed along two main axes, expanding upon previous work on the
continuous adjoint method; the first one is dealing with stability issues of flow and
adjoint solvers caused by (usually mild) flow unsteadiness and the second one with
the development of RDO techniques. The reduction in the computational cost of
shape optimization, either with or without uncertainties, including problems with
mild unsteadiness, is the main goal of the developed techniques. All methods were
programmed in the OpenFOAM CFD toolbox.

In Chapter 2, the continuous adjoint method is presented for shape
optimization governed by the RANS equations for turbulent flows modelled with
the Spalart-Allmaras. This forms the basis for all the methods developed in the
following chapters.

Chapter 3 includes a presentation of the RPM and the SIMPLE algorithm for
the solution of incompressible flows. Some peculiarities of SIMPLE in relation
to the RPM are discussed. Apart from tackling the stabilization problem itself,
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the common practice of using steady solvers in flows that exhibit some level of
unsteadiness, the feasibility of this approach and its cost-benefits are discussed
in this chapter. The effects of flow-field averaging and ATC damping on the SDs
are additionally evaluated. The proposed technique is demonstrated in 2D shape
optimization problems. To help draw conclusions, the cases presented involve
vortex shedding flows.

Chapter 4 presents the pFOSM and the newly developed pAPCE methods for
shape optimization in the presence of uncertainties. Each of them can be seen
as an extension of a UQ technique (FOSM or APCE) which are already in use
and account for objective functions combining statistical moments of the Qol.
Both are extended for turbulent flows with the inclusion of the Spalart-Allmaras
model in the framework. A key point of the RDO framework presented in this
thesis is the ability to compute the gradient of the RDO objective function at a
cost that is almost equal to the cost of UQ. RDO problems for external and internal
aerodynamics are solved using both methods.

The newly developed methods and proposed techniques are validated in
academic cases and, then, used to solve a number of industrial applications.
Chapter 5 demonstrates both the RPM and the RDO framework in industrial
applications. These include aerodynamic shape optimization of ground vehicles
using steady solvers and the RPM and of an aircraft wing, in the presence of
farfield uncertainties, using pFOSM and pAPCE.



Chapter 2

The Continuous Adjoint Method

In this chapter, the continuous adjoint method for problems governed by the
incompressible Reynolds-Averaged Navier-Stokes (RANS) equations is presented.
The one-equation Spalart-Allmaras turbulence model [145] is used to effect
closure in turbulent flows. The geometry and grid parameterization techniques,
used in this thesis are presented in this chapter.

2.1 Flow Equations and the Primal Problem

The steady-state RANS equations for an incompressible fluid flow, with the
Spalart-Allmaras model equation and a PDE for computing distances, are

RP — _SZ —0 2.1a)
Rf:ngiz—ngJr;fi:O, i=1,2(,3) (2.1b)
R”:uig—gz_aii {":fﬁgﬂ—% (gZ)Zﬁ (D — P)=0 2.1¢)
RA:ai (giA)—A%—lzo (2.1d)

where v; are the fluid velocity components, p the pressure divided by the fluid
kinematic viscosity of the fluid, respectively. Equations 2.1a and 2.1b are the
continuity and momentum equations, respectively, whereas eq. 2.1c is the
Spalart-Allmaras turbulence model PDE which is solved for the model variable .
This turbulence model makes use of the field of distances of cell-centers from the
nearest solid walls, A, computed by solving the Hamilton-Jacobi equation [150],
eq. 2.1d. P and D in eq. 2.1c are the turbulence production and destruction

density, 7;; = (v+14) (%—i— ) the stresses and v and v, are the bulk and eddy
J
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terms, respectively, which are given by
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The eddy viscosity is computed by v, =7 f,,, . Other constants used are ¢, =0.66666,
k=0.41, ¢, =0.1355, ¢y =0.622, ¢, =0.3, ¢y =2, ¢, =7.1 and ¢;5;, stands for the
Levi-Civita permutation symbol. Equations 2.1a to 2.1d together constitute the
primal equations.

In all problems to follow, the computational domain €2 is bounded by a possible
combination of the following types of boundaries: inlet (Sj), outlet (Sp), solid walls
(Sw) and symmetry planes (Ss), along which the following boundary conditions
(BCs)
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are imposed. In Equation 2.3, d()/0n is the normal derivative, in the direction of
the surface normal unit vector n pointing outwards and ¢/ and ¢” are two unit
vectors, parallel to S. The first one, t/, is chosen arbitrarily and the second results
from t"=nxt’. Also, v,y =v;n; and Vi) =t

2.2 Mathematical Background

The adjoint method computes the gradient of an objective function F' w.r.t. a set
of design variables b,, n € [1, N], at a cost that does not scale with N. For the
presentation of the continuous adjoint formulation, a distinction must be made
between operators 6(.)/db, and O(.)/0b,. For an arbitrary flow quantity
o= (b, (b)), 6®/6b, represents the total derivative of ® w.r.t. to b and stands
for the total rate of the variation in ® due to a variation in b,,. This variation in ®
is caused by the deformation of the domain boundary, in turn due to db,, which
affects both the flow itself and the location which ¢ corresponds to. On the other
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hand, 0®/0b,, is the partial derivative of ¢ w.r.t. b and measures only the local
rate of change of ® due to a variation in b,; it accounts only for changes in the
flow caused by the boundary deformation, at a stationary point within the flow.
These two derivatives are connected through

5b 9D 9D Sy

Sbn Oy D Oby 2-4)

which is similar to the Lagrangian versus Eulerian description of derivatives of flow
quantities w.r.t. time. From the discrete point of view, 09 /0b,, does not account for
the displacement of internal grid nodes, dxj, caused by the boundary deformation.
Partial derivatives w.r.t. b and spatial gradients of ¢ permute

o (0P o (00
— =)= == (2.5)
ob,, \ Oz; Ox; \ Oby,
which is not the case for the total derivatives. The total derivatives of the spatial
derivatives of @, after considering eqs. 2.4 and 2.5, are given by [108]
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2.3 Definition and Differentiation of the Objective Function

Throughout this work, the objective function F' is a surface integral over different
boundaries. A generic expression is used

F:/stznlds (2.7]
S

Equation 2.7 is differentiated w.r.t. b and since the integrand F; in eq. 2.7 is
considered to be a function of all primal variables, the chain rule is used leading
to
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Stresses are considered as extra primal variables so as to allow the derivation of
boundary conditions for the adjoint system of equations later on. The last surface
integral expresses the contribution from the derivatives of the area/length of the
boundary cell faces’ surfaces to 6F'/db,. In eq. 2.8, the derivatives of the flow
variables w.r.t. b are required to compute all integrals. The cost of computing
them for all b,, is proportional to N and this is overcome by the adjoint method.
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2.4 Lagrangian Function and its Differentiation

Starting point for the adjoint formulation is the definition of the Lagrangian
function,

L=F+ / (W/RY+qRP+U,R” +A,R™Y) dQ (2.9)
Q

using the residuals of egs. 2.1a to 2.1d and a set of Lagrange multipliers or adjoint
variables’ fields. The latter are u;, ¢, v, and A, which are the adjoint to v;, p, U
and A, respectively. The primal equations’ residuals act as constraints since they
must be satisfied in all optimization cycles. Because of this, the gradient of L is
equal to that of F'. Equation 2.9 is differentiated w.r.t. b, yielding

v p v A
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and requires the differentiation of the primal equations’ residuals.

2.4.1 Differentiation of the Mean-Flow Equations

For the differentiation of the following terms, within volume integrals that contain
spatial gradients of primal variables, eq. 2.6 is used in addition to the Green-
Gauss theorem. The differentiation of the continuity equation, eq. 2.1a, follows in
detail and the rest of the terms are only briefly presented:
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In eq. 2.11, the last term on the right-hand-side (r.h.s.) involves (in the discrete
sense) the spatial gradient of grid sensitivities (dxy/db,). The differentiation of
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eq. 2.1b yields
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where 7%

a=+u) (g;’l + 81}7) are the adjoint stresses. The third integral on the

r.h.s. of eq. 2.12 contributes to the adjoint to the Spalart-Allmaras model equation.

2.4.2 Differentiation of the Turbulence Model and the

Hamilton-Jacobi Equation

The differentiation of the Spalart-Allmaras equation’s residual yields
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where
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Finally, the term including the Hamilton-Jacobi equation residual yields
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2.5 The Field Adjoint Equations

All terms resulting from the differentiation of egs. 2.1a to 2.1d and 2.8 in the
previous sections are re-arranged and aggregated into multipliers of the
derivatives of flow variables and geometric quantities w.r.t. b. Thus,
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In order to overcome the computation of the primal variables’ derivatives w.r.t. b,
the following terms within the first four volume integrals of eq. 2.16 are set to zero,
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giving rise to the Field Adjoint Equations (FAE) to be solved for u;, ¢, v, and A,,.
The term marked with ATC on the r.h.s. of eq. 2.18b is the so-called Adjoint
Transposed-Convection (ATC) term, oftentimes responsible for most of the
convergence issues encountered in the solution of the adjoint equations. A
frequently used "remedy” for this is the damping of the ATC close to the wall
using an appropriate sensor however, excessive damping is sometimes required
to secure convergence and this can have a negative impact on the optimization.
This issue is dealt with in Chapter 3. Terms within the first five surface integrals
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of eq. 2.16 are
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and are examined on a case-by-case basis for the Sp, S;, Sy and Sg boundaries
taking into account the BCs of the primal PDEs.

2.6 The Adjoint Boundary Conditions

The adjoint BCs are derived mainly by setting the multipliers of the primal
variables’ derivatives to zero, so as to eliminate the surface integrals in eq. 2.16
that contain them, and overcome the computation of these costly quantities,
following a similar procedure as the derivation of the FAE. Along some
boundaries, these surface integrals may vanish automatically due to the BCs of
the flow equations or since derivatives of geometric quantities w.r.t. b over
non-parameterized boundaries are zero. The procedure for deriving the adjoint
BCs is thoroughly presented in [114, 64, 36]. Here, these expressions are briefly
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presented below.
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For the adjoint velocity, BCs are expressed in terms of the normal component,
Uy = u;n;, and two tangential ones, u ) = uitf and w gy = uitff , defined as in the
BCs for v along Sg in Equation 2.3.

2.7 The FI Adjoint Formulation

Finally, after satisfying all BCs in eq. 2.20 and solving eqgs. 2.18a to 2.18d, the
SDs can be computed by
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where ¢,y )= 872 —2Enning, Oy tu>— aT tItan and so forth.

Using the objective function’s gradlent, a correction is computed for b, based
on a variety of update methods available in the literature, and the
parameterized /controlled boundary is displaced. The internal grid nodes are
displaced using a Grid Displacement Model (GDM) and the optimization restarts.
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GDMs could either be algebraic or based on solving PDEs for the displacement
field.

The expression in eq. 2.21 involves derivatives of geometric quantities w.r.t. b
which need be computed on the controlled/parameterized boundaries SWP. Most
of these terms can be computed easily, most often through closed-form
expressions resulting from the parameterization. The volume integral on the
r.h.s. of eq. 2.21 involves the computation of grid sensitivities throughout the
whole domain. Integrals that involve grid sensitivities quantify the sensitivity of
the objective function to the displacement of the boundary and interior grid
nodes. The cost of computing these volume integrals differs depending on the
parameterization. It might be low if the derivatives are given by closed-form
expressions, or high if FDs are used. In the latter case, the design variables are
perturbed, one at a time, using a predetermined step size, the controlled
boundary is displaced accordingly and the internal grid is adapted to the new
boundaries using the GDM. After this, grid sensitivities are computed
throughout the whole domain. Since this is done for each b, separately, the cost
scales with N. This formulation for the SDs that involves volume integrals of
grid sensitivities is the so-called Field Integral (FI) adjoint, see [66].

2.8 The E-SI Adjoint

In order to overcome the computation of grid sensitivities throughout the whole

domain, an alternative formulation for the SDs was first proposed in [66] by

considering the adjoint to the GDM. For the internal grid nodes, it is assumed

that their displacements m; can be described by a set of Laplacian PDEs (GDM)
82m2-

RM™= =0 =1,2(,3 2.22
(3 axJQ ’ v Y (7 ) ( )

The residual of eq. 2.22 is appended to the Lagrangian function,
L=F+ / (W RY+qRP+ U R” + AR +mERT™) dSQ2 (2.23)
Q

where m; are field components adjoint to the components of . Equation 2.23
is again differentiated. The procedure is the same as the one presented in
section 2.2, for the residuals of egs. 2.1a to 2.1d, and leads to eq. 2.21 but with
the addition of terms that result from the differentiation of eq. 2.22. Following
[36], these are

IR™ 5 [Om; omg  ow; *me dxy,
— 0= —)d —d ——EZPI0 (2.24
/Qm 3by, / i (axj) 5 ) o, 5, T a2 ab, " B
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The displacement field is written in terms of the current grid coordinates. The grid
sensitivities refer to the current nodes that are displaced after updating b. The
Green-Gauss theorem is used on the following term (see eq. 2.21) to yield

(5$k L T &Ek /i 5xk
/Q(A FAL) o (56)619 /(Ajk+¢4j)n35bd5 [ (Al AL e
(2.25)

By grouping together the multipliers of grid sensitivities within volume
integrals in eqgs. 2.24 and 2.25, the SDs expression becomes

/Rm %dm/m " (8m1>ds OFsi, 0%k gy / Fg, (7id5)
S

oz, p@xk ' ob,, w, ob,,
ox om¢  ox
T k k ._k
+/5W§A +A%) gy —dS— / ax] ds
d(nin;) o(t]th
+ / (Un) = Dinyimy) Tis 5. LdS— [ (Gunyerny) T 5. ds
SWp SWp

o(ti"tlh) o(tft})

—/ (Ggryemy) Ti—2= 50, dsS— / (Qemyry +Daryry) i 5. ds (2.26)
SWp SWZ’

In order to eliminate the first volume integral in eq. 2.26, the following term is set
to zero, giving rise to the adjoint to the GDM field equation,

mo azma a
Ry = 8x2k_a_xj(“4§k+“4fk):0> k=1,2(,3) (2.27)

J

for which the corresponding BCs are

mé=0 (2.28)

(2

so as to eliminate the surface integral involving % <86m1> in eq. 2.26. After solving
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eq. 2.27, in addition to eqs. 2.18a to 2.18d, a final SDs expression is derived

5L oF OFs; dr §(n:dS)
= =] = kot | py, 2M2)
0bn|g_s; 0bn|g_g; Jsu, duy. " 3b, swp T by
/SWEA +AJI€) ny—=— (5b ——dS— /'SWp 8[Ej st
d(nin;) o(tit})
+ / () = Seayimy) T 505 / (Duryry) T 545
Swy Swy,
6<t[[tff) 6<t£[t])
- / (Seemym) 7oy 5p A5~ / (St +ienyem) mi—5p-=dS
SWp Swp

(2.29)

that uses only surface integrals of grid sensitivities. The Laplacian GDM of eq. 2.22
and its adjoint are assumed even in cases where the grid is displaced using a
different GDM model. In [39], this was shown to be a harmless assumption. This
alternative adjoint formulation is referred to as the Enhanced Surface Integral (E-
SI) adjoint [66], a step-up from a previous formulation [114], based on surface
integrals only, that however totally neglects integrals of grid sensitivities.

Depending on the parameterization, grid sensitivities may be computed
throughout () using closed-form relations. In that case, eq. 2.21 becomes
efficient to use. Otherwise, to avoid the costly computation of the volume
integral in eq. 2.21, eq. 2.29 is used instead. This will become clear in the
following section.

2.9 Parameterization Techniques

The parameterization techniques used in this thesis are described in the following
sections.

2.9.1 Volumetric B-Splines

The surface to be optimized, as well as the part of the grid that surrounds or is
contained within it, is parameterized and deformed with the help of Volumetric B-
Splines (VBS). A number of control points (CPs) are arranged around the surface
in a 3D lattice, the shape of which may not necessarily be a parallepiped. Let n,,
n, and n,, be the number of CPs along each of the 3 main directions of the lattice.
This lattice forms a morphing box (an example is shown in fig. 2.1) and for the
grid and surface points contained within this box, the relationship between each
grid point’s coordinates and those of the CPs is given by

zi(u, v, w) = Ugp, (W)Vip, (0) W, (w) X F™ (2.30)
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Figure 2.1: A VBS morphing box example. The U section of a duct is parameterized
in 3D. The following coloring of CPs is adopted throughout the whole thesis: The
CPs in red, populating the outer layers of the rectangular lattice, are not allowed to
move throughout the optimization. The shape of the paremeterized surface changes
by moving the green (inner) CPs. Left: The initial shape of the duct. Right: The one
optimized for minimized total pressure losses between the inlet and outlet of the duct.

where u, v, w are parametric coordinates, U, V, W are a set of basis functions of
polynomial degrees p,,, p,, P (NOt necessarily the same for each basis function). X;
are the coordinates of the CPs and serve as the design variables. Indices k, [ and
m correspond to the location of each CP in the 3 principal directions spanned by
the lattice, respectively, and together define the ID of each CP. The basis functions
are defined using the Cox-de Boor formula [124], written here only for U

1 ift,<u< tiv1
Ugolu)=
k’o( ) {0 otherwise

u — tz tz wtl — U

Uk:pu (u) = Uk:pu*1<u) + Tout Uk+17pu*1<u) (2'31)
ti"'pu - tl ti+pu+1 - ti“’pu
where t; are the p,+n,+1 elements of a knot vector
1 N, —1

t=10,...,0,0, —,...,——,1,1,.... 1 2.32
) ) Y ) Nu7 Y Nu Y Y ) ) ( ]

Pu Pu

where N, = n, — p, + 1. U, u, k are substituted with V,v,[ or W, w, m in egs. 2.31
and 2.32 to get the formula for V' and W.
For a given set of basis functions and CPs, the parametric coordinates u, v, w
satisfy
RS = Uy, (W)Vip, (0) W, (0) XF™ — 2, = 0 (2.33)

This constitutes a 3 X 3 non-linear system which is solved for each grid node
independently, using the Newton-Raphson method. The parametric coordinates
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are thus computed and their values are kept constant during the optimization.
Once the CPs are displaced, the coordinates of the new grid points can directly
be computed using eq. 2.30. Since Xi]C M stand for the design variables b,,, the
computation of grid sensitivities is straightforward: eq. 2.30 is differentiated
w.r.t. b, yielding g%: for the grid points enclosed by the morphing box. This
makes the use of the FI adjoint more efficient in case VBS parameterization is
used.

In many problems, this thesis is dealing with, bound constraints are placed on
the CPs of the morphing box, to prevent a CP from crossing the bisectors formed
by this CP and its immediate neighbours:

k—1,l,m k,,m k,lm k+1,0,m
X sty +X sty X 30y +X sty
1 1 S Xf,l,m S 1 1
2 2
k,—1,m k,J,m k,l,m k,H1,m

(2.34)

In case some of the CPs cross each other, it is possible that the deformed grid
becomes invalid. The bound values are updated between consecutive optimization
cycles once after the CPs have been moved.

2.9.2 PARSEC

PARSEC is a common method, developed by [144], for airfoil parameterization.
The parameters are described in fig. 2.2. The y coordinate of any point on the
upper (suction) or lower (pressure) sides of the airfoil, is given by

6
Yup= Y Qi *® (2.35)
=1

6
Yo=Y tigor’ "7 (2.36)
=1
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Parameter Description

TLE LE radius

Xup Upper crest x coordinate
Yip Upper crest y coordinate
Cup Upper crest curvature
X Lower crest x coordinate
Y, Lower crest y coordinate
Clo Lower crest curvature
Yre TE offset from z axis
AYrg TE thickness

drg TE direction

arg TE wedge angle

Figure 2.2: PARSEC parameters reference and description. “TE” and “LE” are the
trailing and leading edges, respectively.
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where the coefficients «; ,, and «;;, depend on the PARSEC parameters and are
found by solving the system

1 1 1 1 1 1 1 up Yrp + 8%e
1 5 7 9 11
Xip Xip Xip Xip Xip Xup Q2,up Yup
1 3 5 7 9 11 __ arg
3 5 5 3 3 5 Q3up | tan(dTE 2 )
1v=3 3v3 Byvs 7Tys 9vs llyz N
2 2 2 2 2 2
3 1 1 1 5 7
lyv 2 3y 2 15 2 15 v 2 63 v 2 99 v 2
_ZXup ZXup IXup IXup IXup IXup a5,up Cup
1 0 0 0 0 0 | [ V2rie

(2.37)
1 1 1 1 1 1 Q1o Yrp — 822
1 3 5 7 9 11
2 2 2 2 2 2
Xlo Xlo Xlo Xlo Xlo Xlo Q210 YEO
1 3 5 7 9 11 aTE
3 5 3 3 5 2 | |sie| _ [tan(drp + %5F)
1 1 3 5 7 9 =
1 2 3 2 5 2 7 2 9 2 11 2
EXlo §Xl0 EXZO §Xlo §Xlo 7Xlo Q4.lo 0
3 1 1 1 5 7
1yv™2 3y 2 1Ly2 1Ly2 63y2 99v2
_ZXZO ZXlo ZXZO ZXlo ZXZO 4 Xlo Q5.0 Clo
1 0 0 0 0 0 | |asw Ve
(2.38)

In this thesis, the design variables are the coefficients «; ,, and «; . In case the
trailing edge is sharp and kept fixed throughout the optimization, such as in

section 4.3.1, oy 4, and oy, are equal to each other and only 10 out of 12 design

variables are effectively used. Grid sensitivities are computed analytically,

through eq. 2.35, only on the boundary. For computing them throughout the
computational domain, as required by the FI adjoint, FDs are used. Each one of
the PARSEC coeflicients are perturbed by &, the boundary and the grid are
displaced using a GDM and grid sensitivities are computed for all grid nodes.

The E-SI adjoint totally avoids this and is the method of choice with this
parameterization technique.



Chapter 3

Stabilization of Steady Flow and Adjoint
Solvers in the Presence of Unsteadiness

This chapter presents the Recursive Projection Method (RPM) which is used to
stabilize the steady-state continuous adjoint and its corresponding primal solver,
both built-in to OpenFOAM'’s adjointOptimisation library. In the cases involved,
convergence difficulties of both solvers emerge due to flow unsteadiness.

First, it is investigated whether steady-state flow solvers and their adjoints,
which are enabled to converge using the RPM, can indeed support shape
optimization in flows that exhibit mild to moderate unsteadiness. To answer this
question, the RPM stabilization is also used for optimization in cases that push
the utilization of steady-state solvers to an extreme, such as in the case of vortex
shedding; then, the so-optimized geometries are re-assessed using a URANS
equations’ solver. In such extreme cases, the optimized solutions, computed
using steady solvers with the help of the RPM, are not expected to coincide with
the local minima or extrema that would have been computed if an optimization
using URANS was performed. For these cases, the optimized solutions,
computed using steady solvers, are used as starting points for a URANS-based
shape optimization loop which, as it will be seen in this chapter, allows the
optimization to reach an optimized solution faster.

Finally, since the RPM allows for the stabilization of the adjoint equations
without severing any terms, a reference adjoint solution can be computed. For
the problems examined in this thesis, this reference solution is unattainable
otherwise and offers a means of evaluating the effect of ATC treatments on the
accuracy of SDs. Similarly, another widely used workaround for whenever the
flow solver cannot fully converge, either due to unsteadiness or not, relies on
averaging “pseudo-steady” flow fields and using them as input to the adjoint
solver. The effect of this workaround is assessed by comparing optimized
solutions computed using this technique and fully converged primal and adjoint
solvers via the RPM.

The chapter is outlined as follows: The RPM is presented first and some
practical aspects of its implementation are given. The SIMPLE algorithm, used

35
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by OpenFOAM to solve the incompressible Navier-Stokes equations is, then,
presented and is related to the way the RPM treats the divergence of iterative
schemes. Then, the use of the RPM for the stabilization of steady primal and
adjoint solvers is demonstrated in academic test-cases in order to showcase its
capabilities and to assess the aforementioned treatments.

3.1 The Recursive Projection Method

The RPM was developed [143] for the purpose of treating the convergence
difficulties of Fixed-point Iteration (FPI) schemes,

Ut =gU™m) (3.1)

where UcR” is the array of (primal or adjoint) unknowns and n the iteration
counter. The convergence properties of such a scheme can be deduced from the
magnitudes of the eigenvalues of the Jacobian matrix g—g. If all the eigenvalues
lie within the unit disk, in the complex plane, the scheme is expected to converge
to the solution (or fixed-point) U*. The opposite is expected to happen even if
only the largest eigenvalue in magnitude exceeds unity [40]. In such a case and
under certain conditions, the RPM may be able to force eq. 3.1 to converge to a
solution. This is done by means of a stabilized scheme that incorporates a
Newton iteration contained within the subspace formed out of the directions in
which the solution diverges. Throughout this text, an important distinction is
made whenever the evaluation of Jacobian matrices takes place at U*. This is
because the mathematical tools used in the analysis of the convergence of
operations such as eq. 3.1, as well as the properties of the stabilized scheme
devised by the RPM, are valid only within an area of R that is (arbitrarily) close
to U*. The “*” superscript is used to distinguish whenever claims involving the
Jacobian matrices at U* are made.

First, the method needs to approximate an orthonormal basis V,, € RV» for
the subspace spanned by the N,, in total, eigenvectors associated with the
dominant eigenvalues of g—g* i.e. the ones largest in magnitude. For the purpose
of stabilization only, it is sufficient for V), to contain only the diverging modes i.e.
the ones associated with eigenvalues that are greater than unity. Two subspaces
of RY are defined: the invariant unstable subspace P, for which V,, forms a basis,
and its orthogonal complement Q. The significance of the invariance property of
[P will become apparent in the following pages. For now, it is assumed that N, is
fixed and known although, within the RPM algorithm, V), is formed incrementally
during the solution of the primal/adjoint equations with /N, being initially zero
and, then, growing as diverging and slowly decaying modes are gradually
appended to V,,. What the method considers to be P and Q changes throughout
the course of the solution. The diverging modes initially belong to Q but, as they
are appended to V},, Q shrinks whereas P grows instead.
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Using V,,, projection matrices P € R and Q € R™¥ from R" onto P and Q,
respectively, are defined through the following relations

P:%‘/;)T, Q:]_‘/;)‘/;)T:‘/;]‘/;Ty ‘/:1 6(@]VXNq (32)
where N,= N —N,,, and have the following properties

P=pP", P*=P P+Q=I
Q=Q", Q*=Q, PQ=0 (3.3)

The columns and rows of each one are orthogonal to the rows and columns of the
other. Using P and (), U is decomposed into

U=U,+U, (3.4)
where

U,=PU cP (3.5a)

Uq:QU eQ (3.5b)

namely the unstable and stable parts of the solution, respectively. P and () are
used on the r.h.s. of eq. 3.1 to yield G, = PG and G, = ()G. Using this
decomposition, the recursion of eq. 3.1 is split in two constituents,

U]&n—i—l) =G, (Ulgn)’ Uq(n)) (3.6a)
Uq(n+1) =G, (UZS"), Uq(”)) (3.6b)

The decomposition induced by egs. 3.6a and 3.6b is the equivalent of eq. 3.1 and
describes the evolution of the solution within the two subspaces. Both
components, U, and U,, are inputs to egs. 3.6a and 3.6b but each one is now
inspected separately. Equation 3.6a is responsible for the evolution of the
unstable branch of the solution. If U, is kept fixed, eq. 3.6b is able to converge.
The practical outcome of this is that treatments can be applied separately.
Starting from re-writing eq. 3.6a as g(U,,U,) =G,(U,,U,)—U, =0, a first order
Taylor expansion is formed

dg (n)

AU
oU, P

oG ("
=G,(U".U,) -U" - (1 —~ 8Up ) uimt-uliMm=0 3.7
p

and the main idea behind the RPM is to substitute eq. 3.6a with a Newton-Raphson
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step

n+1) n n
Ui =nNUm, UM

(n) 0G,™\ " () 7MY _p7(n)
=U" + U, (G, (UM, Um)-Um) (3.8)

Thus, a new stabilized scheme is derived with which eq. 3.8 is used to solve for U,

while the standard solver is retained for U,. In eq. 3.8, ggp

restriction of 57 aG to the subspace P, and is equal to PaGP The rows and columns
of this prOJected matrix belong to P. It should not be viewed as the one holding

the partial derivatives of G|, w.r.t. U, derived using the chain rule, 2 aU ng ggp

and differentiating U in eq. 3.4 w.r.t. to U, since the latter yields 3 a—U = 1. The

is referred to as the

derivatives in 0G,
U,

only in dlrectlons within P. This is more easily seen with PaGP %CI';? V;,VT The

columns of p V contain directional derivatives within P and VT combines these

are concerned with how the projection of G on P varies w.r.t. U

columns to form ggp. Variations in the components of U that are in Q vanish
after the projection on Vp.

The original and stabilized schemes are now compared. The analysis of the
convergence of the two schemes can provide insight only close to the solution U*.
A first-order Taylor expansion of G about U*,

0G*

(n)y — Tl S ORI 5
GU")=GU") + 50 (U™ —U*) (3.9)

recalling that U*=G(U") at the solution, yields

Ut —Ur= gg (U™ —U) (3.10)

The following variables are defined to represent U, and U, in reference to the
bases V,, and V,, respectively,

¢p:‘/pTU7 ’prGRN” (3.11)
Y, =V, U, 1, ERN (3.12)

from which U, =V,4, and U, = V1), are retrieved. The properties in eq. 3.3 are



3.1. The Recursive Projection Method 39

T
recalled and eq. 3.10 is left-multiplied by [Vp Vq} to yield

Ayt [ T OG* 172
=, V] o (v v |7 | au®
Aw(gnﬂ) . ral U pq VqT
[ roG* 0G*1, | [ AL
[vrasy, vrsery) [aw
oG * 8G * (n)
Viao Vo Viao Va| [Ava

_[wragv v (sl -
0 VIEW,| [Agl”

q

The top row corresponds to eq. 3.6a whereas the bottom one to eq. 3.6b. The

term VQT%*V;? in eq. 3.13 vanishes due to P being an invariant subspace of %*.

This property dictates that any vector that belongs to P remains within this
subspace after multiplication with %*. Since each column vector of V), (or P)

resides in P 8—G*Vp also belongs to P. Consequently, yToc*y — (or Qg—S*P =0)

’ P
due to the or‘(gklljogonality of Q and P. Subspaces formgdagut of eigenvectors of a
matrix have this property by default and, as the diverging modes of % are used
in the construction of V), this property is ensured. This extends to generalized
eigenvectors and Schur vectors of a matrix as well; the latter are used to
construct V, in the implementation of the RPM in this thesis. The elimination of
the lower left block in eq. 3.13 leaves a block-diagonal system where the
G *

eigenvalues of %* are shared between the two diagonal blocks. Block V;)TW Vo
Gy

*
is the representation of 57* in RY»*Ne | contains the diverging modes of g—g and
P

is responsible for the divergence of 1, (or U,). On the other hand, the block

* . - . . . 9G, *
Vng—g V;, contains the remaining eigenvalues and is the representation of 77
q

RMe*Na From eq. 3.13, it is apparent that keeping 1, fixed will cause 9, to

in

converge.
Once eq. 3.8 is introduced, eq. 3.13 becomes

AP T+ (I =V, (VTG Y, ) (1-VI 28"y, YT 28"y, || Ayl

_ p p p p
Awénﬂ) 0 V;]Tg_g*vq Al/)én)
|0 U=V V) VSV | A 3.14
0 V55 Vi Ay

I ON * ON * NpxN,
The terms on the upper row are the projections of au, and su, on RY»*r and

RNe*Nv respectively. The upper left block vanishes at U* and the spectrum of the
block matrix in eq. 3.14 is within the unit disk in the complex plane. From this
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point, [143] shows that this result extends to a region of RY close to U*, and in
[83] the discussion is extended to include errors in the approximation to V;D and
higher-order terms neglected in [143].

To arrive at this conclusion for the stabilized scheme, the assumption that
P is an invariant subspace of g—g* was essential. An additional assumption is

0Gy * oG
that (I — 50" 50"

on the unit circle. This happens at so-called bifurcation points [16] where the
steady state switches from stable to unstable or vice versa, such as when due to
an increase in the Reynolds number, the flow around a cylinder switches from
steady to periodic. Under these assumptions, eqs. 3.6b and 3.8 combined can
converge to U*, even under circumstances in which the original scheme diverges.

Equation 3.8 is derived using an expansion of g in eq. 3.7 solely about U,. If
an expansion about U, and U, is used instead,

ES
) has an inverse. This is not the case if an eigenvalue of lies

—1
o o (1-57) (G v S an ) s

an equation to better estimate UIEHH) can be derived. The last term on the r.h.s. of

eq. 3.15, %AUq, is expensive to compute. The computation might be overcome
by substituting the following FD scheme,
0G,
U AU, =G, (U, U +AU,) -G, (U,, U,) (3.16)
q

in eq. 3.15 and arriving at

~1
0G,™
(n+1) _ () _ 7 () r(n) _Um
U™ =U0"+ (I a0, G, (U, UM +AU,)-U, (8.17)
The term on the r.h.s. of eq. 3.17 is evaluated by keeping U, fixed and performing
iterations restricted inside Q. In fact, the number of iterations that can be used
might be greater than one, providing an updated estimate for U, to be used by the
P-contained Newton iteration for improved convergence rate.

3.1.1 Cost Reduction of the Newton Iteration

Gy
U,
in eq. 3.1. Because the Newton iteration, eq. 3.8, is contained within [P and N,
is usually small compared to the size of the problem at hand, the cost of this

inversion can be made negligible by performing all linear operations in R» using

In eq. 3.8, the inversion of (I — ) costs as much as performing the recursion
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1,. Thus, eq. 3.8 becomes

it =0+ (1= H,) ™ (VG (U™) —4)) (5.18)
where oG
Hp:‘/pT%V;” HpeRNPXNP (3.19)

Inverting (/ —H,) in eq. 3.18 is trivial in case N, <N. Once the new 1), iterate is
computed, U, is retrieved through U, = V,7,. The computation of H, is done in
two steps. Directional derivatives of G w.r.t. U are computed first in a matrix-free
fashion using first- or second-order accurate FDs,

0G_\  GU™ +¢V,,)— GU™)
(8va)i_ 2 (3.20a)
(n) ) — M) — eV,
(gg‘%) Sl +E%’Z)2€G(U = (3.20b)

The resulting matrix %V}a is left-multiplied by VpT to yield H,. Each time V), is
computed/updated, H, must be computed anew and is used for the remainder of
the solution until V,, changes again. An LU decomposition of [ — H,, is thus used
to solve eq. 3.18. The step size ¢ is chosen following the formulas in [5]. The use
of FDs cannot be circumvented because, as it will be seen in section 3.1.3, g—g
is not available and matrix-vector products cannot be computed through typical
multiplication.

3.1.2 Basis Construction

Until this point, V), was assumed to be known though, in practice, the sought
eigenspace must be computed. There are numerous numerical techniques for
approximating invariant subspaces of a matrix in the literature [40]. Most usually,
a variant of the power method is used, wherein a series of matrix-vector products
are formed between % and a suitable initial estimation of V;) (e.g. in [83], subspace
iterations are used to approximate V}). After enough iterations, V), converges to
the dominant eigenspace of %. In [143], the computation of these matrix-vector
products is avoided by using the U, iterates. After a Taylor expansion of G,

around U, and U,, with second-order terms neglected,
G (U +AUS Y U+ AU ) — G (U, Ul Y)

p p
_ 0G, oG,
- U, ou,

AU+ —ZLAUMY  (3.21)
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the second term on the r.h.s. of eq. 3.21 vanishes. By denoting

AU =G, (U V+AU D, U+ AU ) - G(Uf =, Ul )

n+1
—y g (3.22)

the recursion of eq. 3.21 unrolls to

G, \"
AUé’”z(?U") AU (3.23)
q

Thus, AUq(") results from powers of matrix multiplying AUq(O) and

q
au,
recursively approximates the dominant eigenvector of an A number of

consecutive Uy, iterates is used to form the matrix D e RY XN a where

D=|AU{" AUMY oAU (3.24)

that has not been included in P. Before V, is formed, % and 8U‘1 coincide.
Once the subspace that contains diverging modes is approximated and completed,
the algorithm locks onto slowly decaying ones. Letting the recursion in eq. 3.6b
advance U, and yield D as a by-product of the solution process itself is how the
RPM avoids the computation of matrix-vector products in the construction of V.

Assuming convergence of AU, in eq. 3.23, the column vectors of D are not
expected to be linearly independent. A Rank-revealing QR factorization [15] of D
follows. The purpose of such a factorization is to reveal the rank of a matrix by
producing an R factor that has diagonal elements in descending order of
magnitude. A gap in magnitude between two consecutive diagonal elements
emerges and indicates the point beyond which the orthogonalization produces
almost zero vectors (in floating point arithmetic) due to linear dependency of the
matrix’s columns. This factorization is produced here using a row-oriented
Modified Gram-Schmidt procedure with column pivoting [40]. In practice, the
diagonal elements of the ? factor are inspected and, if R?;; >Cx R, 11 +1, then the
first < columns of the () factor are appended to V,. Ck is referred to as the Krylov
acceptance criterion and is a user-defined parameter. Once the basis is updated,
a number of smoothing iterations, based on the stabilized scheme, are performed
before the check is performed again. This allows the recursion in eq. 3.23 to
converge, otherwise new additions to V), will most likely be inaccurate.

Solving the Eigenvalue Problem for H, may provide some useful insight for
refining V), with a projection step, described in what follows. Each
eigenvector/value pair (2, \) of H, corresponds to a pair (V,z, \) of BGP
aGp

Instead

of eigenvectors, Schur vectors s (for /) and Vs (for ) can be used due to
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their increased numerical stability and lesser sensitivity to numerical errors [40].
The real Schur decomposition of H,,

H, = SYs” (3.25)

is computed where S € R"™*™ is an orthogonal matrix whose column vectors are
the s. Equation 3.25 transforms ), to a quasi-upper triangular block form Y, i.e.
the Schur form of H,, where 1-by-1 or 2-by-2 matrix blocks are produced for real
or pairs of imaginary eigenvalues, respectively. The eigenvalues of these blocks
are the same as the ones of /1, and can easily be computed. The decomposition
in eq. 3.25 is performed using tools provided by OpenFOAM which make use of
the QR algorithm, the implementation for which is loosely based on [162]. For
each pair (s, \), two criteria are used to refine V,: First, the accuracy of V,, can be
evaluated using the expression gg Vpz = AV, z. This checks whether V,, is invariant.
If not, the basis suffers from low accuracy. This could be the case due to errors
introduced from the FDs in eqs. 3.20 or because the sequence in eq. 3.23 might
not have sufficiently converged. Secondly, it is of importance to keep the size of
P as low as possible, not to damage the performance of the RPM. Therefore, it
might be preferable to exclude modes that correspond to eigenvalues that do not
cause divergence but were picked up by the algorithm nonetheless. The following

checks

0G
aUVz AVpz

can be performed simultaneously, where C, » are user-defined thresholds. For the
eigenpairs that do not meet these criteria, their corresponding Schur vectors are
extracted from S. After th1s With the remaining N, ones, S € R™M and the

< Cl, ”)\H > CQ (3.26)

A clear problem of the above process is the slow convergence of the power
method in eq. 3.23. The rate of convergence of power iterations strongly relies on
how well-separated the eigenvalues of (,f]q are. This is clearly described in [40]
(pp 357-363). When many diverging modes exist, the eigenvalues are usually
clustered around the edges of the unit circle in the complex plane and the power
method cannot provide an accurate representation of V,, a situation reported in
[2] with the RPM. The rate deteriorates even further if the initial V;D estimate is
not “rich” in the directions of the dominant eigenmodes in RY. Apart from
reduced solver performance, caused by a greater number of smoothing iterations
that take place between consecutive basis updates, the slow convergence of
eq. 3.23 may prevent the RPM from treating stability due to an inaccurate V. An
alternative to eq. 3.23 is to use subspace iterations with projection, see
Algorithm 1. In this case, the initial estimate for 1}, can be the matrix D or a
number of U snapshots. With this algorithm, a greater number of modes can be
computed at once however, the iterations of Algorithm 1 can still be slow to
converge for the same reasons as the ones in eq. 3.23. A more sophisticated
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version of this algorithm, which used various techniques that accelerated its
convergence, was the method of choice in [83]. However, in that case, the
Jacobian matrix was available within the code. Since % is never entirely
available in the solution schemes employed in this thesis, matrix-vector
products in Algorithm 1 need to be performed using FDs, with a significant toll
on the performance. In some more difficult cases, a few subspace iterations were
optionally used on the modes computed through eq. 3.21, to improve the

accuracy of the basis and enhance the convergence of the stabilized scheme.

Algorithm 1 Subspace iterations with projection

1: Compute %Vp

2: repeat
3: Orthonormalize g—g with Modified Gram-Schmidt
4V, %y
Y U ’p
5. H,« V9%V,
6: Compute H, = SY ST and order eigenvalues in descending order
G G
7. Vo< VS, 55V < 55 VeSS
8: until convergence of all Ny \

The overall RPM implementation is shown in Algorithm 2.
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Algorithm 2 RPM

1: repeat
2: Ul +— GU™) (eq. 3.1)

3 RRQR of D (eq. 3.24)

4 if Rz‘ﬂ; >CKRZ'+1,H—1 then update ‘/p

5: N, « size(V},)

6: Compute ggv (egs. 3.20)

7 i Al

8 = Sy ST

o: V;) < V,S based on criteria in eq. 3.26
10: end if

11: if NV, > 0 then use stabilized scheme:

12: P «~Vvium

13: Uyt « Ut-v,vIut

14: for [ = 27 ORP]V[ do

15: Ut — G(Vyapy”, Uy

16: Ut « U=V, VIUt

17: end for

18: S (1 H,) T (VU -y
lo: U(n-I—l - V1,b (n+1)
20: Uur+) gttt
21: else
22: Ut Ut

23: end if
24: n=n+1
25: until convergence

3.1.3 The SIMPLE Algorithm and the RPM

The primal problem is governed by the incompressible Navier-Stokes equations.
The main difficulty in solving these equations is the absence of an equation with
p as its primary variable; eqgs. 2.1b are solved for the components of v and
eq. 2.1a serves as a kinematic constraint for v. This constraint must be satisfied
by computing an appropriate p field. To do this, the flow solver in OpenFOAM
makes use of the SIMPLE algorithm [122] in which a type of Poisson equation is
derived to be solved for p right after the solution of eqs. 2.1b and the
computation of an intermediate velocity field. The new pressure field is used to
correct the velocity field and satisfy eq. 2.1a. The adjoint equations use a similar
algorithm. In this section, the SIMPLE algorithm employed by OpenFOAM is
presented and brought into the form of eq. 3.1. With respect to the primal
equations, the RPM is concerned only with egs. 2.1a to 2.1c whereas eq. 2.1d is
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solved at a pre-processing step, within each optimization cycle, and is completely
decoupled from the rest.
The Navier-Stokes equations, in a fully discretized form, are

V1
M —G| |v b
= , U= |Dy (3.27)
D 0 D 0
V3

where M is a matrix that encompasses the discretization of the convective and
diffusive terms in egs. 2.1b, G and D are the discretization of the spatial gradient
of p and the divergence operator for v, respectively. The r.h.s. b of the momentum
equations encompasses terms that are treated explicitly as source terms, such
as the non-orthogonal correction term of the velocity gradient or the transposed
velocity gradient in the discretization of the shear stress tensor. The overbars in
V13 and p denote the discretized fields of the velocity components and pressure.
These are now all vectors whose components are stored at the cell centers of the
finite volume elements. Due to the non-linear nature of egs. 2.1b, the solution
of eq. 3.27 is iterative. The linearization is performed about the current iterate
which is used to construct M. For example, the discretization of the convection
term in eq. 2.1b over a finite volume V yields,

#faces

Qv;v; —(n)_(n+1)
/Va—;dV:/SvjnjvidS: Z Qbf Uif (328)
J f=1

where ¢ are the fluid volume fluxes, passing through and stored at each cell face
f. 5 implicitly depends on v and P of the current iteration and the volume fluxes
of the previous one. The summation of 5 over the faces should be equal to zero (to
a tolerance) after solving the Poisson equation for p, thus satisfying the discrete
form of the continuity equation. M is a lower block triangular, rather than block
diagonal (one diagonal block for each v coordinate component) matrix because
once v, is computed, it is used in the computation of U5 and both of them for v3.
The zero lower-right block on the left-hand-side of eq. 3.27 makes the iterative
solution of this system difficult.

T
Strung together, all the unknown variables form U=|y? p” ET ineq. 3.1.

Following the direct application of the RPM to DAEs in [73], the algebraic variable
@ is included in U as an additional unknown. If omitted from U and treated
as a dependent variable, it should be adjusted consistently whenever the RPM
manipulates U, such as during the computation of FDs with eq. 3.20. With the
approach followed in this thesis, this step is avoided. The discrete v field should
be included here as well but, since turbulence model equations are solved after
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the solution of egs. 2.1a and 2.1b, it is omitted to simplify the analysis.

The momentum equations are solved using 1_9(”) and a(n) and the momentum
predictor, @', is computed. This intermediate velocity field satisfies the
momentum but is not divergence-free. Let v’, p' and 5/ be corrections that need

to be added to !, p™ and aT, respectively, in order for them to satisfy both the
momentum and continuity equations,

a(n—kl):af +$/(n) (3.29c¢)

In the original SIMPLE algorithm, an equation is derived with which p’, as well as
any other correction, are computed. Using eq. 3.29b, eq. 3.27 is written in terms
of 7"tV and p'™,

M 0| |T M1g| |o0tY Gp"+b
= (3.30)

D -S||0 I AR 0

where S = DM™1G. In practice, the full computation of S is prohibitive. Various
approximations can be used instead in SIMPLE and its variants such as the
SIMPLEC algorithm. Equation 3.30 is essentially an LU decomposition of
eq. 3.27, in which the lower block triangular system is solved first

M 0 ol Gp™ +b

= (8.31)
D —-S ﬁ’(n) 1)
followed by the solution of the upper block triangular system
7 Mg| |onty v
= (3.32)
1) T P ™

These two steps are described in more detail.
First, the momentum equations are written by splitting M in a diagonal
component .4 and denoting

H[®)=(A-M)T (3.33)

the off-diagonal part multiplying v. Using eq. 3.33, the discretized momentum

equations are
Av—H(v)=Gp+b (3.34)
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and v is expressed as
v=A"H((@®)-A'Gp+A'b (3.35)
At each iteration of the flow solver, the momentum equations are solved for o' first

Mz =—Gp™ +b™ (3.36)

Obviously, o' =o' (6("),13(”),6(”)) = o/ (U™) where the old iterates 7™ and a(n)
contribute to terms in M or b. In order to derive a relation between v’ and P/,

eq. 3.35 is written for ' and 7"V,

o) = AT H (5 ) — A7 gp ) (Y (3.37h)

and eq. 3.37a is subtracted from eq. 3.37b. An assumption is made that M,
A and b do not change significantly from iteration to iteration. Additionally, the
difference between H (7"*!)) and H (7') is assumed to be negligible compared to
the pressure correction term. The result is

v=—A"'Gp (3.38)

Next, the divergence operator is applied to eq. 3.29c requiring the net summation
of all fluxes passing from the faces of a cell to be zero, Da(nﬂ) =0, in order to
satisfy the continuity equation. The substitution of eqgs. 3.37a and 3.38 in the

divergence of eq. 3.29c leads to

D" —pg' + D™
=DTo +DT5™
—DTA'H@)-DTA'Gp"™ —DT A 'gp'™
=DTA'H (@) -DT A 'gp" Y (3.39)

where 7 is a matrix representing the act of interpolating variables stored at the
cell centers to faces. The equation to be solved for 1_9(”“) is

Sp"t) =DT A H (v (3.40)

where S\:DTA’lg and the inverse of M has been approximated by .A~!. This is
the discrete form of the Poisson equation derived for p.! T can be chosen so as
to implement the Rhie-Chow interpolation [131] and couple the p values of cells

!The semi-discretized form would lead to a Poisson-type equation: V- (%Vp) where ap

denotes the diagonal coefficients of M for each cell-center P.
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straddling a face. More details on how this is implemented within OpenFOAM
can be found in [94]. The computation of 1_9(”“) is followed by the update of the
velocity field

o) = A H (v — A~ gp Y (3.41)

and the volume fluxes

—(n+1

¢

Once this is done, M is assembled again and the iteration begins anew. Until
convergence is achieved, all the linear systems are solved using lenient
tolerances. Strict tolerances decrease performance and are of no use because
upon convergence, all equations will be satisfied either way. An exception is
made whenever directional FDs are computed using eqs. 3.20.

The update of all variables can be written explicitly in terms of U™, To do
this, o' =o' (U™) is used and all the (n + 1) iterates are substituted in egs. 3.40
to 3.42, leading to

):TA*H(#)—TA*Q;—?‘”“) (3.42)

s = A H (o) - A GS ' DT A H(3) =G\(U™) (3432
B+ :‘SA‘_lD’TA_lH(ET) = Gz(U(")) (3.43b)
" =TA ' H®)-TAGS'DTA'H®")  =G5(U™)  (3.430)

Equations 3.43a to 3.43c bring the SIMPLE algorithm into the form of eq. 3.1

T
with G = [GIT Gg G:{] . Any particular approximations made by different

implementations of the algorithm can be included by modifying each one of the
matrices involved in eqs. 3.43. In practice, the inverse matrices in eqgs. 3.43
cannot be computed and the solution procedure follows the segregated
approach. For this reason, the Jacobian matrix g—g is not available and the FD
schemes in egs. 3.20 are used to compute f,. A similar algorithm is used for the
solution of the adjoint equations and its analysis leads to similar considerations.

The RPM has been developed as a wrapper around the solvers of the
adjointOptimisation library of OpenFOAM. Depending on the case, the RPM
could be used in the numerical solution of the primal and/or adjoint PDEs,
excluding eqs. 2.1d and 2.18d which are decoupled from the rest and, usually,

their solution does not face convergence issues.

3.1.4 Flow-Field Averaging and Damping of the ATC Term

In complex applications, either exhibiting unsteadiness or not, the RPM may not
always be sufficient to stabilize the primal or the adjoint solver on its own. The
main cause for this is the difficulty in forming accurate approximations to V.
Apart from the problem of clustered eigenvalues mentioned in section 3.1.2, the
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mode-tracking algorithm of the RPM in eq. 3.21 relies on the evolution of the
equations to gradually form V). If the eigenvalues causing divergence are too high
in number or too large in value, which is often encountered in the solution of
the adjoint equations in complex cases, the equations diverge rapidly leaving no
room for the RPM to stabilize them. Also, due to the non-linearity of the flow
equations, g—lG] changes from one iteration to the next, thus, upon stagnation of
the flow equations’ residuals, eq. 3.21 may never adequately converge due to an
ever-changing matrix on its r.h.s..

Whenever the flow equations cannot converge, despite the assistance of the
RPM, averaging over a user-defined number of iterations gives the “pseudo-steady”
primal fields about which the adjoint equations are linearized. This is considered
to yield a better solution estimate overall, rather than just using the last snapshot
of the primal solver. This use of either an averaged flow field or the last solution
snapshot of the non-converged flow solver breaks the original assumption made
in eq. 2.9 regarding the flow equations’ residuals.

In case divergence occurs in the solution of the adjoint equations, despite the
use of the RPM, the ATC term requires damping. This is implemented by using a
field, L = L(x), that multiplies the ATC term in eq. 2.18b. To cope with
divergence issues, L is set to O at the first cell off the solid boundaries, whereas
L = 1 everywhere else. Then, a few smoothing iterations create a smooth
transition from O to 1. Smoothing is done by interpolating the values of L from
the cell centers to the faces of finite volumes and, then, assigning the average of
face values to the cell centers. 2 to 5 smoothing iterations are typically enough,
meaning that only the first 2 to 5 rows of cells off the walls are affected. This
treatment secures enough iterations for the RPM to form the unstable subspace.
The role of the RPM still remains pivotal because, without it, in cases exhibiting
unsteadiness, excessive ATC damping would be required in order to stabilize the
steady adjoint equations.

The impact of flow averaging and ATC damping on the SDs is assessed in the
cases that follow.

3.2 Stabilization of Steady Solvers for 2D Shape Optimization

Shape optimization was performed for two cases involving 2D vortex shedding
flows. Flow unsteadiness hindered the convergence of the steady primal and
adjoint solvers and, in both cases, the RPM was used to stabilize them. In these
cases, from a physical standpoint, the periodic flow is the one naturally
occurring. The steady flow field on the other hand, described by the steady-state
Navier-Stokes equations and obtained numerically with the help of the RPM,
represents an equilibrium state of the flow. Such a steady-state model proves to
have great value in supporting an optimization loop at a lower cost.
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3.2.1 Shape Optimization of a 2D Cylinder

The flow around a circular cylinder undergoes a Hopf bifurcation and switches
from steady to periodic at Re ~ 47 [33]. The first case is concerned with the
minimization of the drag coefficient (Cp) of such a cylinder at Re = 140 which
corresponds to a periodic flow. Formally, in order to optimize the cylinder shape
by adequately modelling the physics of the flow, it would be necessary to use an
unsteady flow solver, average C'p over the (generally, unknown) period of vortex
shedding and use an unsteady adjoint solver. Since, though, the optimization
method is expected to minimize the body’s frontal area by squeezing it in the
transversal to the flow direction, in order to suppress vortex shedding, after the
first few cycles, the flow around the modified shape will become steady, justifying
the use of steady (primal and adjoint) solvers.

The flow and adjoint equations were solved on a grid with 46080 quadrilateral
elements; a VBS morphing box was used for the parameterization, both shown in
fig. 3.1. An equality constraint on the body area/volume V (to retain its initial
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Figure 3.1: Cylinder Optimization. Left: Computational grid. Right: 11 x 10 VBS
morphing box for the parameterization of the geometry and enclosed grid. CPs in
red remained fixed throughout the optimization whereas green ones were allowed to
move.

value V'®) was imposed and the SQP technique of [103] was used for updating the
design variables. The values of C'p w.r.t. Re, computed using the steady solver
are shown in fig. 3.2 and are compared with reference values from the literature,
in the Re € [20,200] range. The steady solution underestimated Cp which was
affected by unsteadiness past a certain Re number. After Re ~ 130, solving the
flow equations around the initial geometry using a steady solver without the RPM
resulted to the system of equations reaching limit cycle oscillations.

Using the RPM, convergence was made possible at Re = 140 and the
so-computed flow fields were used to solve the adjoint equations which also
failed to converge without the RPM (fig. 3.3). The setup for the RPM varied
between the two solvers. In the solution of the primal equations, the RPM was
activated after the first 500 iterations and the update of the V), basis with new
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Figure 3.2: Cylinder Optimization. C'p of the circular cylinder versus Re. Reference
Cp values were compiled using tabulated data from [20, 147, 29] and are the result
of steady solutions obtained with various methods. Values beyond Re = 120 were
digitized from [29]. The time-averaged C'p values were digitized from [121]. The grey-
shaded region of the plot corresponds to the Re range in which the RPM had to be
used in order for the SIMPLE solver to converge.
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Figure 3.3: Cylinder Optimization. Left: Residuals of the primal equations. Right:
Residuals of the adjoint equations, solved after having stabilized the primal ones by
means of the RPM. The geometric mean of the residuals of all variables is shown in
all plots.

modes was performed every 500 iterations. In the adjoint solution, this was
activated after the first 100 iterations and basis update occurred every 1000
iterations. The size of D in eq. 3.24 was 5 and the 6 latest U, iterates were used
to estimate the basis for P in each case, according to the method described in
section 3.1.2. During the primal solution, the RPM identified 2 modes
responsible for divergence and 3 stable, yet slowly decaying, modes which were
appended to V},, improving the convergence rate for the latter part of the solution;
for the adjoint problem, 2 diverging modes were used by the RPM to form V/,.
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Figure 3.4: Cylinder Optimization. Regions (non whitish) where ATC damping was
applied. Left: Within the span of 5 cell rows from the solid wall (which proved enough
for convergence only in the presence of the RPM). Right: Almost throughout the whole
domain in order to stabilize the adjoint equations without the RPM. L becomes zero
at the first row of cells from the solid wall eliminating the ATC and gradually increases
to one further within the domain.

After being able to get converged solutions to both the primal and adjoint
equations on the starting geometry, despite vortex shedding, an optimization
loop was initiated. Although, in this case, convergence of the adjoint equations
was achieved solely through the use of the RPM, there are examples (see section
5.2) in which the RPM could not provide stability on its own, so ATC damping
was additionally needed. Therefore, it was of interest to assess the impact of this
damping in this case, where the RPM could ensure convergence. Damping was
performed by means of 5 smoothing iterations and the resulting L multiplier
field can be seen in fig. 3.4. SDs computed using the adjoint method were
compared to FDs, fig. 3.5, and errors in the adjoint SDs are quantified in Table
3.1. The adjoint sensitivities were in good agreement with FDs, with or without
damping the ATC and this indicates that mild ATC damping is acceptable. Note
that, without using the RPM, an excessive amount of 500 smoothing iterations
was required, leading to significantly different SDs, even with opposite signs for
some of the CPs, (see fig. 3.5 for the SDs & fig. 3.4 for L field). This difference in
the number of smoothing iterations highlights the difference between mild and
excessive ATC damping and demonstrates the extent which the ATC should be
eliminated to, in order to get converged results without the use of the RPM
(which depends on the case).

Shape optimization proceeded using the RPM for both the primal and adjoint
sets of equations. After 20 optimization cycles, C'p was decreased by 39.8% and
the volume constraint was eventually satisfied (1 > V /Vg > 0.9999), fig. 3.6.
Around the initial shape, the time-averaged value of Cp of the unsteady CFD
solution was 1.345 whereas the one computed with the RPM-assisted steady
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Figure 3.5: Cylinder Optimization. C'p SDs w.r.t. the x (left) and y (right) coordinates
of the VBS CPs. The RPM stabilized the primal solvers in all cases, even for FD
computations. The adjoint equations were stabilized by the RPM except for the case
in which excessive ATC damping was used. Mild and excessive ATC damping were
caused by means of 5 and 500 smoothing iterations on L, respectively (see fig. 3.4).
All SDs plotted in this figure made use of steady primal (and adjoint) solvers. For
FDs, a step size ¢ =107% was used.

Table 3.1: Cylinder Optimization. Adjoint SDs and FDs (same parametric study as

in fig. 3.5). Differences are expressed as WNO% as well as by the angles

between the gradient vectors in degrees. Mild ATC damping is harmless whereas
excessive one introduces significant errors.

With RPM With RPM & Mild ATC Damping Excessive ATC Damping, Without RPM

Difference 12% 13% 97%
Angle (°) 0.4 0.4 15
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Figure 3.6: Cylinder Optimization. Evolution of the objective function and constraint.
Left: Cp. Right: Volume constraint expressed as percentage difference from the
target value.
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Figure 3.7: Cylinder Optimization. Geometries before and after the C'p minimization
using the full ATC model and the RPM and mild ATC damping and the RPM.

solver was 0.96; this was a significant difference which vanished in the
optimized solution, as the flow became steady, with Cp = 0.58. The same
optimization was performed using the RPM and mild ATC damping. The objective
function value was reduced by the same degree and mild ATC damping led to
indiscernible differences in the optimized shapes, fig. 3.7. The flow fields around
the initial and optimized shapes are plotted in fig. 3.8.
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Figure 3.8: Cylinder Optimization. Top: Steady flow streamlines around the

initial shape (cylinder), computed using the RPM. Bottom: Streamlines around the
optimized shape with suppressed vortex shedding.

3.2.2 Shape Optimization of an Isolated Airfoil

This section is dealing with the optimization of an isolated NACAOO12 airfoil for
min. Cp and max. C,. The laminar flow around this airfoil at Re=1000 has been
studied in the literature at various farfield flow angles [78, 76]. By increasing the
angle, the flow switches from steady to unsteady, the onset of unsteadiness being
at ax ~ 8°. From this point onward, vortices begin shedding in the wake of the
airfoil.

First, a comparative study between the computed objective function values
of the steady and unsteady simulations on the NACAOO12 airfoil was performed.
Computations were carried out in the range of a,, € [0°,20°]. Cp and C|, were
computed using both a steady and an unsteady solver, the latter followed by time-
averaging, fig. 3.9. Since the time period of the coefficients’ oscillations changes
with o, the time series was filtered using a Hanning window in order to correctly
compute the time-averaged values. Beyond a certain «,,, the RPM was necessary
for the stabilization of the steady flow solver. For o, > 8°, the time-averaged values
of the coefficients were greater than those computed by the stabilized steady solver.

The airfoil was optimized at o, = 20°. The optimization was purposefully
performed at such a high «, in order to generate unsteadiness for assessing the
capabilities and the extent of the use of the RPM. With a,,=20°, the primal solver
definitely required RPM stabilization to converge. Compared to the previous
case, herein the flow remained unsteady even after the optimization and this
made the use of the RPM even more necessary. The CPs of the VBS morphing



3.2. Stabilization of Steady Solvers for 2D Shape Optimization 57

0.45 1.0
040 L Kurtulus 2015 —— 0.9 - Liu et al. 2012 —©—
Unsteady @ 0.8 Unsteady @
0.35 Steady O 0.7 Steady O
0.30 0.6
CD C|_ 0.5
0.25 DI:l[] 0.4 1
0.20 =] 0.3
0.2
0.15 0.1
0.10 0
0 50 10° 15° 20° 0 59 10° 15° 20°
(0 9 Ol

Figure 3.9: NACAOO12 airfoil. Aerodynamic coefficients computed by the unsteady
flow solver and the RPM-assisted steady flow solver. Left: C'p. Right: (. Reference
points were digitized from [78, 76].

Figure 3.10: NACAOO12 airfoil. Left: Computational grid close to the airfoil. Right:
5x5 VBS morphing box parameterizing the airfoil geometry and enclosed grid. CPs
in red remained fixed throughout the optimization whereas green ones could be
displaced.

box parameterizing the airfoil contour and part of the grid close to it are shown
in fig. 3.10. Constraints were imposed, keeping the cross-sectional area of the
airfoil V' within £0.1% of its initial value V® throughout the optimization, in
addition to the bound constraints of eq. 2.34 on the morphing box CPs. These
constraints were imposed using the interior-point SQP method [103].

The RPM stabilized the flow equations’ solver and, the adjoint solvers, based
on the so-computed steady flow for both targets C'p and (', could not converge
without the RPM. Using the RPM, the adjoint solvers were able to converge without
damping the ATC for both quantities. The convergence of all these solvers is shown
in fig. 3.11. The RPM was activated after the first 1000 iterations in the primal
solution and after 150 iterations in each adjoint run; 15 and 5 solution snapshots
were used for the flow and adjoint solvers, respectively, in order to construct the V,,
basis. Divergence of the flow equations was due to 2 diverging modes; 4 diverging
modes were identified during the solution of both systems of adjoint equations
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Figure 3.11: NACAOO12 airfoil. Geometric mean of residuals. Top: Residuals of the
primal equations. Bottom: Residuals of the adjoint equations for Cp (left) and Cp,
(right). All adjoints were based on the flow fields obtained using the RPM stabilization.

and, additionally, the RPM picked up a few stable modes as well which enhanced
the convergence rate. Overall, for the adjoint equations, the size of V, ranged from
2 to 4, in all optimization cycles.

The same study on the effect of ATC damping was carried out, as in section
3.2.1, which re-confirmed previous findings and conclusions, see fig. 3.12 and
Table 3.2. Indeed, mild ATC damping does not affect the accuracy of the adjoint
sensitivities. The field of L, indicating the regions of ATC damping, is shown in
fig. 3.13. Additionally, SDs computed using the “pseudo-steady” averaged flow
field are also plotted. The SDs computed using the latter were very close to the
accurate ones.

Shape optimization proceeded for both objectives at a,,=20°. The RPM was
first used both for the primal and the adjoint solvers, without any damping for
the ATC. An optimization loop was also performed for each objective using the
mild ATC damping technique in conjunction with the RPM for the solution of the
adjoint equations. Additionally, to assess the effect of the “pseudo-steady”
averaging of flow fields used in other cases, the optimization runs were
performed using this technique as well. An averaged objective function value
was, thus, computed (/) and the RPM was used only to get a converged adjoint
solution. Upon completion of all optimization loops, results were re-evaluated
using the unsteady flow solver. The time-dependent aerodynamic coefficients
were averaged over ~10 vortex shedding periods, for each new design. The
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Figure 3.12: NACAOO12 airfoil. Top: Cp SDs w.r.t. to the z (left) and y (right)
coordinates of the CPs. Bottom: C}, SDs. 5 and 300 smoothing iterations were used
in the cases of mild and excessive ATC damping, respectively. “Flow-avg.” indicates
SDs computed by averaging the flow fields of the last 1000 iterations of the steady
flow solver, followed by an adjoint solution the divergence of which was treated with
the RPM.
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Table 3.2: NACAO0012 airfoil. Adjoint SDs and FDs (as in fig. 3.12) for Cp and CT.
The SD error due to excessive ATC damping was much higher than in the cylinder
case and the same holds for the direction to which the SDs point to in the design

space.

Excessive ATC
. With RPM & Mild Flow-avg. and . .
With RPM ATC Damping RPM for Adjoint Damping, Without
RPM
Cp
Difference 13% 12% 16% 295%
Angle (°) 2.7 2.5 4.1 141.5
Cr
Difference 2.7% 2.6% 2.9% 42.7%
Angle (°) 1.5 1.4 1.6 18.8

0 0.5 1

Figure 3.13: NACAOO12 airfoil. Regions where ATC damping was applied. Left: Mild
ATC damping within the span of 5 cell rows close to the wall. Right: Excessive ATC
damping, throughout most of the domain in order to stabilize the adjoint equations
without the RPM.
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Figure 3.14: NACAOO12 airfoil. Convergence of the optimization loop for min. Cp.
Top-Left: Cp or Cp ,ys. Bottom-Left: Cp re-evaluated at the end of each cycle using
URANS. Bottom-Right: Volume constraint. Black dashed lines indicate the +0.1%
range. Sol(“technique”) in the legend key stands for the optimized solution computed
using “technique”.

vortex shedding period was different in each design. Instead of re-adjusting the
time-averaging window for each design, a Hanning window was used to minimize
the influence of the time series tail.

For min. Cp, the convergence of the objective functions, as well as the
time-averaged ones, is plotted in fig. 3.14; Cp was reduced by 2.6% and Cp by
7%. Results were then compared with an unsteady-based shape optimization,
shown in fig. 3.15. Despite the reduction achieved in Cp with the RANS-based
optimization, there was still room for improvement, possible only with an
unsteady adjoint. However, computational time was saved by starting the
unsteady-based optimization loop from the one optimized with the RPM-assisted
steady solver. In that case, for the sake of comparison, the optimization was
started using the final position of the CPs and the airfoils were not parameterized
anew. Following this approach, there was a ~40% cost reduction, assuming that
the cost of the initialization based on steady runs is negligible compared to even
a single unsteady computation. In this case, the steady optimization loop using
the full ATC model and the RPM for both solvers was concluded within less than
one CPU hour whereas one URANS-based optimization cycle required
approximately 2 CPU hours, both running on 4 processors (AMD® EPYC 7452
32-Core Processor). The final shapes are compared in fig. 3.16.
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Figure 3.15: NACAOO012 airfoil. Convergence of the optimization loop for min.
Cp. Left: Cp. Right: Volume constraint within the acceptance tolerance. All
optimizations start from different airfoils, namely the NACAOO12 airfoil and the ones
at the end of the optimization runs shown in fig. 3.14.
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Figure 3.16: NACAO012 airfoil. Top: Airfoils optimized for min. C'p using steady-
state solvers (fig. 3.14). Bottom: Airfoils optimized for min. C'p using unsteady

solvers (fig. 3.15).
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Figure 3.17: NACAOO12 airfoil. Convergence of the optimization loop for max. C7,.
Top-Left: (', or C[, 4. Bottom-Left: (', re-evaluated at the end of each cycle using
URANS. Bottom-Right: Volume constraint within the acceptance tolerance.

For max. C;, the convergence of C; and C] is plotted in fig. 3.17; O} was
increased by 28.9% and C} by 30.5%. Time-averaged objectives were indeed
increased despite the use of steady solvers for the optimization. In contrast to
the optimization for min. Cp, the performance of the optimized airfoil was very
close to the one computed by a URANS-based shape optimization, shown in
fig. 3.18.

In contrast to the previous case in section 3.2.1, vortex shedding was present
around the optimized shapes and unsteady re-evaluations of the latter were
performed. Even by optimizing the shape using steady solvers, the unsteady
re-evaluations revealed a significant gain in the time-averaged objective function
value. During the final stages of the optimization for min. Cp, using the steady
solver, minor reductions in Cp took place; however, the unsteady re-evaluations
showed that Cp could not further be improved and took on a higher value
instead. This is the usual limitation of all optimization methods that rely upon a
lower-accuracy model to perform the search and, at the end, re-evaluate the
optimal solution with a high-fidelity model. Since the gap between the two
models is usually not negligible, small refinements cannot always be reconfirmed
by the higher-fidelity model. To improve the time-averaged objective functions
further, a URANS-based shape optimization had to be performed. However, even
for a purely unsteady case such as this one, there was a significant cost
reduction by using steady solvers to compute a good starting point for the
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Figure 3.18: NACAOO12 airfoil. Convergence of the optimization loop for max. CJ.
Left: (1. Right: Volume constraint within acceptance tolerance.
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Figure 3.19: NACAOO12 airfoil. Top: Airfoils optimized for max. Cp using steady-
state solvers (fig. 3.17). Bottom: Airfoils optimized for max. C; using unsteady

solvers (fig. 3.18).
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URANS-based shape optimization.
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Chapter 4

Shape Optimization in the Presence of
Uncertainties

In a Robust Design Optimization (RDO) problem, there are uncertain variables
c € RM which, alongside b, serve as input to the model. Their effect is propagated
to the Quantity of Interest (Qol) which is now treated as a statistical quantity.
Usually, the RDO deals with the minimization/maximization of the expression

J = pp +wop 4.1)

where pp and op are the mean value and standard deviation of the Qol F',
respectively, and w weights the two statistical moments.

The role of an Uncertainty Quantification (UQ) method is to compute pp and
or. In the problems this thesis is dealing with, a probabilistic approach is
adopted where all ¢,, are assumed to follow a certain (known) type of probability
distribution, and are uncorrelated.

4.1 Uncertainty Quantification Methods

4.1.1 The Method of Moments

In the Method of Moments (MoM), the Qol is expanded around the mean values p
of c,

F
F(p+ Ac) = F(p) + oF Acy, + O (AC?) (4.2)

0Cm | eepy

Retaining only first-order terms in eq. 4.2 gives rise to a First-Order
Second-Moment (FOSM) method, according to which the mean value of F' is

67
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given by

FOSM / ¢)de

_ fi <cm—um>hc<c>] hele)de
:F(u)/ h,(c)dc + ;C—i /_ CEocm—,um)hc(c)alc (4.3)

where h,(c) is the PDF of c. The variance of [’ is equal to

+oo

(7Y = | (Fle) = e hele)de

[e.e]

= / +0;7(c)2hc (c)de — 2 / +O§r(c)hc(c)dc + 1 / +O}(c)hc(0)dc

[e.o] —00 o0

= [ hele)de + 27w o

H [ en = mineteyie

SF §F] [+ o
S| [ e e = mhel@de ~ 2ueF () [ ho(ede
0Cm 0¢; ], J oo -
SF| [+ , [T
— 2y — 5 / (Cm — tm)he(c)de + MF/ h.(e)de (4.4)
m " —00 —00

For symmetric PDFs, such as those used in this thesis, the first integral on the
r.h.s. of eq. 4.3 is equal to 1 whereas the second one vanishes. Also, the first,
fourth and the last integral on the r.h.s. of eq. 4.4 cancel out whereas the second
and fifth ones vanish. Thus, in FOSM, the statistical moments of the Qol

i M = F () (4.52)
0F | OF
o\ FOSM) \/ sl 5| Ko (4.5b)
Cm i 06 I,
where F' and are computed at the mean values of ¢,, and
+00
i = | (en = tm)les = mi)he(e)de (4.6)

is the covariance matrix of ¢ and is diagonal in case ¢, are uncorrelated or
symmetric in the more general case. The diagonal elements depend on the type
of the probability distribution. For the Gauss normal distribution, each m-th

diagonal element is equal to ¢2,. For bounded PDFs, the integrals in egs. 4.3



4.1. Uncertainty Quantification Methods 69

and 4.4 are accounted for within the corresponding bounds, instead of
[—00, +00].

To compute o with eq. 4.5b, (;Sc—i are required. These are computed efficiently
by the adjoint method making the cost of UQ with FOSM, per optimization cycle,
to be equal to 2 EFS.

4.1.2 The Polynomial Chaos Expansion

According to the PCE method, for any candidate shape (i.e. a different value-set of
b), the Qol is approximated by

F(b,c(C))~ g Ve (<) (4.7)

where o, are the PCE coefficients, ¥, are multivariate orthogonal polynomials
and ¢ are standardized random variables for which ¢ = ¢(¢), depending on the
parameterization of the probability distribution. The basis W comprises
multivariate polynomials of zeroth up to a user-defined degree, Opcp, referred to
as the PCE order. Each multivariate polynomial in the basis is a product of M
univariate ones. For each c,,, there is a sequence of Opcp + 1 orthogonal
univariate polynomials, one for each degree. These are chosen from the Askey
scheme depending on the type of probability distribution [163]. For each
polynomial degree, from zero till Opcp, univariate polynomials from each
sequence are combined so that their products yield a set of multivariate
polynomials of that degree. For each degree, many multivariate polynomials,
orthogonal to each other, may result from these combinations, depending on M.
Thus, from the theory of combinatorics, the number of terms retained on the
r.h.s. of eq. 4.7 is Q = %. To accurately model the effects of higher order
terms in the model computing F', a higher Opcp is used. For this value-set of b,
the statistical moments of F' result from [163]

Hp =Qg (4.8a)
Q-1
o= 1> a2|w, |2 (4.8b)
q=1
where .
MW= [ (¢ 4.9

is the h,-norm of the orthogonal polynomials.
To compute the coefficients «,, in standard regression-based PCE, after
evaluating I’ at L value-sets of ¢,, (collocation points), the system Aa = f, with
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Figure 4.1: An example of Latin Hypercube Sampling for 2 uncertain variables for a
uniform probability distribution. 10 collocation points are used. Each direction was
split into 10 segments and within any of the so-defined sub-areas, one point at most
was randomly chosen. The user only defines the number of collocation points.

A€R*@ and f €RE, is assembled. In more detail, the system has the following
form

Uo(¢M) ... Woa(¢) o F(cW)
: . : : = : (4.10)
To(¢P) .. oK) | [ag- F(c®)
X \qf,—/

The L collocation points are generated using a sampling technique. Latin
Hypercube Sampling [91] is used in this thesis. This sampling technique
operates by splitting the cumulative PDF into equiprobable segments and
randomly instantiating each uncertain variable within each segment. In 2D, the
set of uncertain variables forms a latin square i.e. a square whose elements
appear only once in each row and column. Random permutations are applied to
the elements in the set so as to re-combine them as in fig. 4.1. Alternative
methods for choosing collocation points exist and could substitute this method.
In case one has access to the adjoint method with which the derivatives of F’
w.r.t. ¢,, can be computed at the cost of 1 EFS, irrespective of M, extra data per
collocation point may become available in the form of these derivatives. With more
data, the total number of collocation points can be reduced. Since the additional
data are computed at the cost of 1 EFS per collocation point, the total cost of
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UQ is also reduced. This is the main idea the Adjoint-assisted Polynomial Chaos
Expansion (APCE) method is based upon. Starting from eq. 4.7, M additional
equations per collocation point are derived in the form of

OF dem i

Scm O

oy

J=1M

ER , 4.11)

q=0

Using eq. 4.11 at L collocation points leads to the formation of Ca =g with C' €
REMXQ and g € RMM, written in an expanded form as

- - . -
e (cW) o 1(4"<1 )] e g ()
0% (¢(1)) g1 (C(l)) o Ocm OF (1))
aCu 9 0 dCnr Sem
: : 4.12)
oV¥g_ Cm
G (¢H) e (CP) | |ag S g (cth)
2g (¢(L)) W (((L)) Oem SE (L))
LOCm oCnm i LOCr dem i
& 9
The combination of egs. 4.10 and 4.12 leads to the system
Da=p (4.13)

where D € RIM+DXQ and g € REM*D | Matrix D and vector 3 are formed by
stacking the matrices A and C and vectors f and g from egs. 4.10 and 4.12, so
that

and 3= !

C g

D= (4.14)

For known PDFs, all the elements of A and C are available from closed-form
relations of orthogonal polynomials and their derivatives.

The system of eq. 4.13 is solved using least squares. The gradients of F' w.r.t.
Cm, required on the r.h.s. of eq. 4.13, are computed using the (continuous) adjoint
method. For each value-set of ¢,,, 1+ M equations are assembled into the above
system at the cost of 2 EFS. The cost of UQ with APCE is equal to 2L. Compared
to standard PCE, eq. 4.10, a smaller L is used by including M additional data
per collocation point. The higher the M value, the higher the gain from including
the adjoint method into the APCE framework. This will be elaborated further in
section 4.2.3.
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The least-squares solution is given by
a=GB=(D'D)'D'B
-1
A f
— [AT C«T] [AT CT] (4.15)
C g
Both the FOSM and APCE methods require the values of F' and 0F'/dc,,, though
at different points in the uncertain space.

An example is given to show the gain from APCE compared to standard PCE.
Consider the polynomial function,

fxy, To,23) = 2} + 4o123 + 23 + 202 + 3xp + 21 + 1 (4.16)

and uncertain variables: x; ~ N (1,2), 2o ~ N (2,0.5), 23 ~ N(0.5,1). To relate
these results to CFD problems, assume that 1 time unit (1 EFS in case this was
a CFD problem) is required to compute f and 1 time unit is spent by the adjoint
method to compute all 3 components of the gradient of f w.r.t. x1, 5 and 3.
Using Opcr = 4, the oy and V¥, of the PCE expansion in eq. 4.7 can accurately
reconstruct f, since this is a 4th-order polynomial. Thus, the statistical moments
of f can be computed up to machine accuracy, provided that enough collocation
points are used. By increasing L (and, thus, the cost), 1y and oy, computed using
standard PCE or APCE, converge to their analytical values, as shown in fig. 4.2.
The takeaway from fig. 4.2 is that APCE requires fewer time units than standard
PCE to accurately compute 1 and oy by using fewer collocation points.

| I APCE —o 1800 il h“ H ADCE o
500 ‘ Analytical — - - - 1600 NN " Analytical — - - -
#I . 1400 |- ‘H Il “1
Jip A scesecscssesacseseol 1200 ImAIBASl
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L 800 ffiof} l i
‘ . 400 R
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Time units Time units

Figure 4.2: The statistical moments .y and o of f, eq. 4.16, computed with PCE
and APCE. The z axis corresponds to time units (equivalent to EFS in CFD).
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4.2 Gradient-based Optimization under Uncertainties

For gradient-based optimization, fb‘] needs to be computed. Equation 4.1 is thus
differentiated w.r.t. b,
0by, 0by, 0by,

In the case of FOSM, by substituting eqs. 4.5 in eq. 4.17 (and dropping the u
subscript for simplicity), one gets

(4.17)

6. (FOSM) — 5F ol SF 6F
ob,, ob,, ob,, dCp, Oc; J
_oF n w 4] <5F oF )
~ b, [SF oF 8b, \ d¢,, 0c; ™
2 EE’Cm] ¢ CJ
_oF . w 2F OF n 0F &6°F
~ Ob,, Qg%FOSM) 0Cm0by, 8¢ Ocy, 0c;0by,
oF w 2F OF
ob,, U%FOSM) dCm0by, 0c;
B oF N w »2F 4.18)
b, %FOSM "6 0by, '
where SF
LFOSM) —jc (4.19)
oc;
According to eq. 4. 18, 2 o and 51) need to be computed in addition to Wthh
is involved in U}FOSM) If all components in % were to be computed, usmg a

combination of Direct Differentiation (DD) and adjoint techniques, the cost of the
computation would scale with the minimum of M and N [119], which is usually
equal to M in typical RDO problems in fluid mechanics (since N > M, in general).
In [30], instead of ; 02 5‘2 » Zma o2 5Fb was computed directly at a cost that does not
scale with M. The method was named projected FOSM (pFOSM) as it computes
the projected matrix of mixed derivatives. This projection technique is described

in section 4.2.2.




74 4. Shape Optimization in the Presence of Uncertainties

On the other hand, in PCE, by substituting eqgs. 4.8 into eq. 4.17 one gets

Q-1

> allv,?

q=1

504 ( 9
AN A
b by, ol )
2@ o] W, |
Q-1
dayg w 26%
= 200, || W
5o+ gorro ;f( v, P55

Q-1
_ dag AL L
_EJFUJZ ( 5 \PCE) E

q=1 F

(4.20)

The unknown quantities ‘; can be computed by differentiating eq. 4.15 w.r.t. b,,

bn

yielding
Yo% (56 'p 5B
— D™D
5bn 5b ( ) 5b
1 ﬁ
= a7 c7] ar o] | (4.21)
C o9
Sbn
where ~ _
dcy  62F
a1 6cm6bn( W)
Cm 2
f?T}:L (c(l)) gCM 56(;51271 (C(l))
of _ og _ : 4.22)
dby, " 0b, '
Cm 2
o (e®) 5 Fomr ()
Ocm  O°F L
| OCar 5cmdbr (c! )>_
To compute 5? , both 5F and 3 —— are required for each value-set of ¢,,. In

PCE, the C and

computed for each value-set of c,,.

In APCE however, derivatives ——

blocks are absent from eq. 4.21 and, thus, only W need be

_8%F
5CmObn

are additionally needed for each value-set of ¢,,, for the current Value set of b,,, in

order to compute 5= oL

SF
For Sbr?

the adjomt method is used, as in chapter 2.

In section 4.2.1,



4.2. Gradient-based Optimization under Uncertainties 75

adjustments are made to the adjoint formulation of chapter 2 for the
computation of fC—F. Regarding the appearance of W in eq. 4.21, the
projection technique is used to overcome the computation of the mixed
derivatives matrix. To this end, eqs. 4.20 and 4.21 are developed further in
section 4.2.2 so as to derive expressions for z,, 552 5o products for each
collocation point, much like the ones in eq. 4.18. The proposed projected APCE
(PAPCE) method benefits from similar matrix-vector products as pFOSM. Note

that the projection vector z,, is different between pFOSM and pAPCE.

4.2.1 Computation of First-order Derivatives

The first-order derivatives of F' w.r.t. both b,, and c,, are computed by solving the
same adjoint equations, with the same boundary conditions at the cost of 1 EFS
per collocation point. The method was presented in chapter 2 for the SDs of F
w.r.t. b. For the SDs of [’ w.r.t. ¢, eq. 2.7 is differentiated w.r.t. ¢,,,

oF :\/<8Fsﬂ 5Uk 8F57i (Sp 8F5,i 5Tkj 8F57¢ ov +8F3J) nZdS (423)

ocm Ovg 6cy,  Op 6cpy OTij Ocyy OV Ocpy Ocyy,

The Lagrangian in eq. 2.9 is differentiated w.r.t. ¢,, and the procedure described
in section 2.4 is again followed, leading to

op — 0v
q Voo~
5cm /R 5cmdQ+ ‘ §cm /R §cmdQ

+/ Bcpé—pds+/ Bev 2Y: d8+/ ger 0T dS+/BC”5_”dS
S S o 0 S

Cm Cm " Cm Cm
+ aFS’inidS—/ ’”‘“(””)ni 0 (a”)ds (4.24)
S acm S Co 5Cm 8J}Z

The derivatives of A w.r.t. ¢,, are absent since, in the present cases, ¢ does not
affect the shape of any boundary. After the elimination of the volume integrals in
eq. 4.24, through the solution of the adjoint equations, this expression becomes

L
d / Ber 2P gs s / Bev 2V ggy / ser Ui gg / 5" 2 4s
S S

5c 0Cm " dCm Yoc, 0Cpm
v aFS”nidS—/ ValvtV), 0 (8”) ds (4.25)
S 8C’m S Co (SCm al’l

The BC terms on the r.h.s. of eq. 4.25 are the same ones as in egs. 2.19a to 2.19d
and the same adjoint BCs are used as the ones in eqgs. 2.20 for the solution of
the adjoint equations, derived in section 2.6. Through these BCs, the surface
integrals in eq. 4.25 are eliminated across boundaries where the derivatives of
the flow variables w.r.t. c¢,, cannot be computed. For the remaining integrals,



76 4. Shape Optimization in the Presence of Uncertainties

these either vanish (in case the flow equations’ BCs are not affected by c,,) or
(across boundaries where the relation between the flow and uncertain variables is
known) these are directly computed. Expressions for particular Qols and types of
uncertain variables are given in Appendix A.

4.2.2 The Projection Technique

The projection technique which overcomes the computation of the mixed
derivatives’ matrix is presented in this section. Since, in this thesis, the
uncertain variables do not affect any geometrical quantity, the differentiation of
eq. 2.21 w.r.t. ¢, yields

B / 5 (an,i)niéﬁ o / 5Fs, §(n:dS)
Fr sy, 0Cm\ Ok by, Sw, 0¢m  Oby
SAL 6ALN O (6
0%k 4
+/Q(5cm+5cm axj(abn)d

+ / —[(U<n>—¢<n><n>)%’] 5 dS
S n

3 F
¢ 0b,,

Wpécm
5 S(tith) 5 o(t"t])
_/;WPE (¢<t1><t1>7ij> 6[): dS_/SWpE <¢(tH>(tH>7-ij> (Sbnj dsS
5 o(t't])
_/S g |: ((b<t11><t1> +¢<t1><t11>) TZ]:|_ 6—b J dS (426)

for the FI adjoint, and

:/ i(an’i)ni%dS—k/ dFs,; 0(n;dS)
E—SI Swpécm Oy, oby, Sw, oc,  O0b,

(5«4][}6 ) fk 5ZEk ) 8mg (S.Tk
- /SW( Sem | Sem |50, /SWPE ( oz, ) " 55,

" F
0¢,,0b,

T /S . 0Cm { () = Bimyim) Tz’j] 5o, ds
5 S(tth) 5 ot
_/SWPE <¢(t1)(t1)7-ij) 5()”] dsS— SWP_(SCm (¢<t11)<t11)7ij) 5[)”] dS
5 o(tf't])
_/S —5cm |: ((b(tﬂ)(tf)‘i_(b(tf)(tU)) Tij:|_ 5b_n] ds (4.27)

p
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for the E-SI adjoint. In eqgs. 4.26 and 4.27, the following terms result from the
differentiation of eqs. 2.17a and 2.17b w.r.t. ¢,

5-/4]Lk: dq Ov; ‘ 9 (dv;\  ou; Qup - Ou; v, a [ oy
0¢y,  O0cy Oxr Oz \ 0, oc,

v Ui — v,
T8¢y Oxy " Oxy OCm, ! Oxy,

_ 57—% (%i _a 0 51)1' i (5Uz 67’,-j T 0 57’1‘]‘
0C, Ox}, Tij 0z \ 0¢y, 0C, OXL i oz, \ 0c,,
du; Op 0 op
0Cy, 0T}, 4 oxy, (5cm (4.282)
) Tk 0V OV bv; OV 0 (W U O (vivOv
J v; J — U 0; +
SCm 5 J &Ek (5cm oxy, T0xk \ dc,y, oc,, Oy, o Ox;

+178 1 (5V+51/ ov —H/Na v+v 0 ov
YOz |0 \de  SCm Ox; “Oxp | o Ox; \ocy,

1 /ov v\ v Ov v+v O [ov,\ Ov v+vdy, O ov
0y  OCp ) Ox; Oxy o 0x; \dcy, ) Oxy o Oz 0z, \dcy,

2y, 60, OV O 2cp,0n O (5;) v 2,0, OV O (5;)
- - +

o 0cCy Oxj Oxy, o O0x; \dcp ) Oy o Oz 0z \ ocp,
1 Vg~ - OV . 0C,, Y, C.Y, &Y ov;
— || — w— | CY,+v,v (Y, C, 1y, —
w {(5cmy+y 5cm) v y( q50m+ 0Cm w2 5cm)] €aj Oxy,
NNC’wY a [ v 25A OA OA (4.28D)
—UgUV—Y €ii—— .
TV A \ S OCm 83:] &vj
Equations 4.26 and 4.27 involve 52’;, (S‘Z—fﬂ, %, gg‘;, 5‘2—‘;, %, ‘;?—7:. The above-

mentioned derivatives can be computed by differentiating the primal and adjoint
equations w.r.t. ¢, and solving the so-derived DD systems [30]. For each of the
primal and adjoint systems of equations, M new systems are formulated in total,
one for each c,, component.

Putting this into the context of (standard) APCE and recalling from eq. 4.22 that

56525) are needed at the L collocation points, a cost of 2M L EFS would be required

to compute them, over and above to the 2L EFS needed to compute L and fci
To obtain 2~ 5b , the total cost sums up to (2 + 2M)L EFS. Inspired by pFOSM this

dependency on M is eliminated by computing projections onto suitable vectors,

i.e. Zms 525;; , instead of ; ‘5 F . Indeed, the product of G and 5b , after regrouping
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the terms on the r.h.s. of eq. 4.21, yields

-1

sae 6 A L
- :G_’B — [AT CT} [AT CT] 8bn
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L l L l Cm
> Yo F(e®) + lel K1 e ()

Here, %‘,) and /i( ) represent blocks of GG that multlply ( (l)) and %CC’" 50‘;5) (c(l)),
respectively. Equatlon 4.29 can, then, be written as

L

Yo" oF )y Ocm, 5 F
o =2 WE(C()” 00D, oty ) 459
L n m
5°F Ocm

The mixed derivatives’ matrix 55~ is projected onto r; % @ which differ for each

value-set of ¢ and each «, component. Therefore though the dependency on M is

eliminated, the cost of computing x; %ccm - 6b still scales with (). By substituting
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eq. 4.30 into eq. 4.20, we get

5(10 = wag||Vy|* 1% day
55 PC’E) ob,,
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po PCE qJ 8C; 6¢m0by,

(4.31)

where k) and z,&? are quantities and projection vectors’ components (different
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from the one used in pFOSM), respectively, and read

v,
{ + Z (waqzuc’};)“ ’Yq ) } (4.32a)
Q 1
waog || W oc,n,
{HOJ + Z ( qJUCE ol (M) } 5_Cg (4.32Db)

In eq. 4.31, 5b are projected onto z,, and 2, =—— Ser ‘52F can be computed at a cost

that is 1ndependent of both M and Q in much the same way as in pFOSM [30].
Guided by eq. 4.31, if w = Zms— 5 , the projected mixed derivatives’ matrix

becomes
52F OFs; Oxy ~ 8(nydS) N L
_ et Fo . : . Q
i pramk s+ /SWPS,, S +/Q(Ajk+Ajk)a (&) )d

+/ [<a<n>_$<">< >>T” N <“<n>—¢<n><n>)ﬂj}&%ﬁ)ds
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-\ 0L
/ 925 Iy (1Y Tig =+ g25 ¢y tH>TZj> ds
. 55,

~ o)
/SWP|:<¢ Iy ( ¢(t1>(tU)>Tij + <¢(tH>(tI>+¢<t1)<tH>>Tij:| 5bn] dsS
(4.33)
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SWp
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for the FI adjoint, and

. _O°F [ OFs, ‘%ds / 7. 0(midS)
" 5Ot | 5sr s, Ori b S, 3o
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(4.34)

for the E-SI adjoint, wherein .Z and -’ka depend on v;, D, Ty, 1/5 U, q, 5@(’ T
A Applying the operator z,, =— S ( ) to egs. 2.1a to 2.1c and 2.18a to 2.18c yields
the systems of projected DD prlmal and adjoint equations to be solved for the
projections of the derivatives of the primal and adjoint variables. The system
of projected DD primal equations (excluding the projected DD Hamilton-Jacobi

equation which is not required since, herein, fA =0) is

ﬁp:_%zo (4.35a)
65(73‘
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cb222+(D P)o+(D — P)5=0 (4.350)

o O0x; 0z,
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where the differentiation of the terms in eq. 2.2 results to

~
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with BCs from the differentiation of eq. 2.3 w.r.t. ¢,,, and the subsequent projection

on z,,
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The system of projected DD adjoint equations is
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and the terms resulting from the differentiation of the terms in eq. 2.14
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with BCs resulting from the differentiation of eq. 2.20

~

~ OFs; .y aFSk OFsr

Uy = N tin “ngting 1=1,11
o1 = =g, e ) = g iy o mtna =1

07 = A

— =0 o =0, A, =0

on Y

_ _ __C, o0 OFs;

50 = 0T oty 184y Doy 7G5~ (75?) o "

1/~ . = o~ C,w 0
—— |:<VaV—|—Val/> C,+v,v (Cw——w>} €qjk Ukeqh =0, [=1,1I
w

w Ox;
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Equatlons 4.35a to 4.35c are solved for v;, p and 7 whereas egs. 4.37a to 4.37d
for u;, q, v, and A with 7 = (v+1,) (a”’ —I—BUJ) and 7} = (V—f—Vt)(aul +8u]> The
additional terms in egs. 4.35a to 4.35c and 4.37a to 4.37d, compared to the
corresponding ones in [30], originate from the differentiation of the terms in the
Spalart-Allmaras model, its adjoint and the adjoint to the Hamilton-Jacobi
equation. Through this inclusion, both pAPCE and pFOSM can be used for
turbulent flows resolved via this turbulence model. In the E-SI adjoint, the
following equation is additionally solved

me 82 a 1L AT
R aﬁ ~ 9 (A o+ A‘k> (4.39)

7 J

with BCs
mg =0 (4.40)

along all boundaries.
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4.2.3 Overview of the Gradient-based RDO Using pFOSM and
PAPCE

To assess the cost of performing the RDO with the pFOSM and pAPCE methods,
the following must be taken into account.

Firstly, the mathematical development of previous sections assumes that only
one adjoint system of equations needs to be solved which, as it will be seen in
the following sections, is not the case when additional flow-related constraints
are imposed. If n,, adjoint problems are to be solved, the cost per cycle of pFOSM
is equal to 14 3n, EFS (1 primal, n, adjoint, 2n, DD-then-projected primal and
adjoint systems of equations).

In the case of pAPCE, the cost per cycle is equal to (1+3n,)L, and L should be
at least such that () equations are assembled for the solution of eq. 4.15. Since ()
increases with M and Opcg, so does L and, hence, the cost of performing the RDO
with pAPCE. Usually, in regression-based PCE, an oversampling ratio r,; is chosen
so that r,s() equations become available for least-squares regression [45, 51, 132,
4, 32, 148, 167]. This ratio may vary depending on the case; for example [51,
167] suggest r,s > 2 to achieve acceptable accuracy, although an even lower ratio
might yield acceptable results. Consequently, without gradient information, in

standard PCE, L = ros%’c—w, whereas with gradient information in the APCE,

=385 %1 and, as such, the APCE reduces the total number of EFS
required for UQ. Thus far, the drawback of its use in the RDO was the emergence
of the mixed derivatives, the computational cost of Wthh was alleviated by using
the pAPCE and making the cost of computing z,, ——— 5 5b independent of M and N,
for each collocation point. Without the projection technique, the cost of using
APCE in the RDO would have been equal to (1+n,)(1+M)L EFS.

Evidently, the greater the value of M, the greater the gain from the projection
technique in either method. An example for this is shown in fig. 4.3.

The algorithms for pFOSM and pAPCE are illustrated below:

1[.] denotes the ceiling operation
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Figure 4.3: Left: UQ cost per cycle with standard PCE and APCE as a function of
M. Right: RDO cost with standard PCE, APCE without the projection technique
implemented in pAPCE. The y-axis is measured in EFS and the cost scales with M.
These costs correspond to 7,; = 5 for the least-squares system computing the PCE
coefficients, Opcrp = 2 and n, = 1. Without the projection of pAPCE, the UQ cost-
benefits of APCE are counteracted in RDO. The assumption made is that the number
of uncertain variables is greater than that of the Qols.

Algorithm 3 pFOSM

Algorithm 4 pAPCE

1: Initialize b,,

2: repeat

3: Solve Primal equations (1 EFS)

4: Solve Adjoint equations (n,
EFS) and compute (%, 5‘55 -

5. Compute urp and op via
egs. 4.5 and z,, in eq. 4.18

6: Solve DD Primal equations (n,,
EFS)

7: Solve DD Adjoint equations (n,,
EFS)

8: Compute zmgi—f%, egs. 4.33

9: Compute %, eq. 4.18

10: Update b,

11: until convergence

o

10:
11:
12:
13:
14:
15:
16:
17:

Nas e

Initialize b,, and L sets of ¢,,
repeat
for [+ 1,L do
Solve Primal equations (1 EFS)
end for
for [+ 1,L do
Solve Adjoint equations (n, EFS) and
compute %([),%(Z)
end for
Solve system 4.13 and compute pup and
o via eqgs. 4.8 and zr(rll)
for/ + 1,L do
Solve DD Primal equations (n, EFS)
Solve DD Adjoint equations (n, EFS)
Compute zm(sc‘:—gm(l), egs. 4.33
end for
Compute
Update b,
until convergence

in eq. 4.31

57

56, €4 4.20
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4.3 Robust Design Optimization Applications

A series of shape optimization problems, including uncertainties, are solved
using both pFOSM and pAPCE. Some aspects of both methods are demonstrated
and discussed. Validations of the methods are shown for computing SDs for all
parameterization techniques used.

First, airfoil shape optimization problems are solved with Cp as the Qol. In all
cases, uncertainties are related to the farfield flow velocity magnitude v, and angle
0~ and both follow normal distributions. Additional constraints are imposed on
ttc, and the cross-sectional area of the airfoil V. In one case, the mean value of
the pitching moment coefficient (y.¢,,) is also constrained. Target values for these
constraints are denoted by the superscript ®.

The first case deals with the use of the developed pAPCE method. Some aspects
of its use, such as the choice of Opcp and L are discussed and a parametric study
for both is carried out. The value of L directly affects the cost of (p)APCE. Code
verification for Qol SDs w.r.t. ¢,, and statistical moments’ SDs w.r.t. b,, follows
for turbulent flows. Additionally, it is also of interest to assess the effect of the
projected mixed derivatives’ matrices in eq. 4.31. As it will be seen, these matrices
and the first-order derivatives do not contribute equally to the SDs of the statistical
moments, depending on the statistical moment at hand or the Qol. In case their
contribution is small, compared to that of the first-order derivatives, they could be
omitted. Since a significant portion of the RDO cost with pAPCE comes from their
computation, this omission can significantly reduce this cost. Finally, the RDO
results are compared with the outcome of an optimization without uncertainties
which is performed at v, = 1., and o = o, Teferred to, from now on, as the
“nominal conditions”.

The next cases compare pFOSM and pAPCE. For this purpose, the statistical
moments, computed with the FOSM and APCE methods, are compared with MC
using an adequate number of replicates (which is, thus, expensive), decided based
on parametric studies which are omitted. Then, the results of the optimization
under uncertainties performed with both pFOSM and pAPCE are presented and
the accuracy and computational cost of the two methods are discussed.

The last case demonstrates the use of the projection technique in a problem
with M > 2. It shows the shape optimization of a duct with many inlet sections.
A probability distribution is assigned to the velocity magnitude (practically, the
Reynolds number) of each inlet section.

4.3.1 Shape Optimization of an Isolated Airfoil Using pAPCE

The starting shape was the NACAOO12 airfoil. Its contour was parameterized using
PARSEC-11 (see section 2.9.2). With a fixed trailing edge position, this problem
had N =10 design variables. The mean values and standard deviations of o, and
Voo WETe [lo, =4°, 04, =0.6" and p, =60 m/s, o, =10 m/s, respectively. A high
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value of o, was chosen in order to make this case study more challenging since
the SD of Cp w.r.t. to a, was much greater than the one w.r.t. v,, and UQ would
otherwise be dominated by it. A grid of about 43,000 cells, with structured-like
quadrilateral elements close to the airfoil and triangular ones elsewhere, was used.
Equality constraints were imposed on /¢, , V and pi¢,,. In this case, the constraint
targets ,ua and VV® were computed on the starting airfoil whereas /chM =0.

First, the statistical moments of the 3 aerodynamic coefficients were
computed using APCE with Opcp in the range of 1 to 5 and L up to 50; results
are shown in fig. 4.4. By increasing L, the statistical moments stabilized around
a certain value and, as L increased beyond a certain point, only small deviations
were observed within a small margin for all Opcg. Beyond L =10, no significant
gain was observed. For L =10, the PCE coeflicients are shown in Table 4.1. The
mean value is equal to oy and the remaining coefficients contribute to the
standard deviation. There were non-negligible PCE coefficients that emerged by
setting Opcgp = 2. Beyond that point, for higher Opcpg, the magnitudes of the
newly added coefficients in the PCE decayed by almost one order of magnitude.
In this case, values of Opcg =2 and L = 10 were decided for the RDO, since no
significant gain was observed with higher Opcp or L values.

Table 4.1: RDO Case 1. PCE coefficients computed with L =10. As Opcp increases,
more coefficients are involved in the expansion (eq. 4.7) but their values gradually
decay. ag is equal to the mean value and the standard deviation involves all the rest.

‘ Opce=0 ‘ Opcep=1 ‘ Opce=2 ‘ Opce=3
PCE Coefficients: ‘ o) ‘ [e%1 [ ‘ Qg Qy s ‘ g oy ag o)
Cp 0.0133 6.7e-4 -3.4e-4 | 7.3e-5 -6.5e-6 5.6e-5 | 1.5e-6 -3.2e-6 1.6e-6 -l.le-5
CL 0.4063 | 0.0601 0.0012 | -2.4e-4 2.5e-4 -2.0e-4 | -6.0e-5 4.3e-5 -6.3e-5 3.8e-5
Cy -0.0029 | -5.4e-4 1.3e-4 | -1.9e-5 3.4e-5 -1.9e-5|-6.7e-6 -2.4e-6 -1.4e-5 1.7e-6

The derivatives of C'p, Cf and Cy; w.r.t. b, and ¢,,, computed with the adjoint
method, are shown in fig. 4.5 and are compared with FDs. The same comparison
for the derivatives of the statistical moments, computed with pAPCE, is shown in
fig. 4.6. All derivatives in figs. 4.5 and 4.6 are in good agreement with FDs. It
was also of interest to assess the effect of the mixed derivatives in eq. 4.31. Their
omission did not affect the SDs of the mean values of all coefficients; however,
this was not true when J included op. For the purpose of imposing constraints
on /¢, and [ic,, only, the computation of the projected matrix of mixed derivatives,
and, thus the solution of the projected-then-differentiated systems was avoided for
these Qols. The same was done for the RDO with J=py¢,,.

First, an optimization run was performed for the minimization of C'p while
imposing constraints on C; and (', instead of their statistical moments, all
computed at the “nominal conditions”. Three optimizations under uncertainties
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C)s. Adjoint SDs are compared with reference FDs. In FD computations, each b,, or
¢ was perturbed by e =1076.

followed, one with w =0 and the others with w =3 and w = 6. The values of all
Qols are shown in fig. 4.7. After each optimization run, MC simulations with
2000 samples were performed to validate the solutions of pAPCE. The
optimization at the “nominal conditions” decreased Cp by 0.89% while keeping
Cp and V constant and practically setting C); to zero. Table 4.2 shows the
statistical moments of the three aerodynamic coefficients computed for the
starting shape and the three optimized airfoils. Per cent reductions/increases in
itc, and oc,, are also provided. The MC results re-confirmed that the statistical
moments were indeed reduced/increased, albeit by a slightly different factor
between each run. All constraints were satisfied within acceptable engineering
thresholds. PDFs of all aerodynamic coefficients, computed through MC, are
shown in fig. 4.8. The shift of the median of the PDF of C; around O is evident
from the plot. The probability of lower Cp was also slightly increased.

Between the two uncertain variables, the Qols were more sensitive to a,. Two
plots of (', and C); versus C)p, are shown in fig. 4.9, corresponding to the range
of a from 3° to 5°. Cp decreased close to the “nominal conditions” but, as o
increased, the performance deteriorated, especially for the airfoil optimized for
J= HCp-

The optimized airfoils for J = Cp and J = p¢,, were very close to each other
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Table 4.2: RDO Case 1. Statistical moments of C'p, C';, and C) for the starting and 3
optimized airfoils. The “min(J)” on the left column indicates the objective function for
which the three airfoils were optimized. Statistical moments were computed with
MC and APCE. The per-cent change in the values of these moments due to the
optimization is shown below, measured both w.r.t. to MC and APCE.

Jic;, values ocy, values pe, values oc, values [ic,, values oc,, values
Geometries evaluated MC APCE MC APCE MC APCE MC APCE MC APCE MC APCE
NACA0012 0.01334 0.01333 7.40e-4 7.58e-4 0.40717 0.40633 0.06063 0.06013 -2.93e-3 -2.91e-3 5.31e-4 5.59e-4
min(uc,) 0.01323 0.01322 7.74e-4 7.95e-4 0.40719 0.40633 0.06190 0.06137 <lle-4l <lIle-4l 4.88e-4 4.34e-4

min(uc, + 30¢,) 0.01330 0.01329 7.36e-4 7.55e-4 0.40714 0.40635 0.05851 0.05796 <lle-4l <lle-4l 4.33e-4 4.67e-4
min(uc, + 60c)p) 0.01340 0.01339 7.14e-4 7.33e-4 0.40709 0.40632 0.05624 0.05570 <lle-4l <lle-4l 1.03e-3 1.08e-3

Jicp, % change o¢,, % change
min(uc,) -0.82 -0.82 4.59 4.88
min(uc, + 30¢,) -0.29 -0.30 -0.54 -0.39
min(uco, + 60c)p) 0.44 0.45 -3.51 -3.29
-1 -3
10 1o
55 2

4
12 125 13 135 14 145 12 12,5 13 135 14 145
Cp Cp

NACA0012 + min(Cp) + min(uCD) min(uCD+30CD) Amin(uCD+600D)

Figure 4.9: RDO Case 1. Left: (' versus Cp. Right: (' versus Cp. The points
were computed over the o € [3,5]° range, with a 0.5° step, for the NACA0012 airfoil
and the 4 ones optimized for “min(J)”.
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(fig. 4.10). This was expected since the derivatives for the two objectives were
also very close, figs. 4.5 and 4.6. All airfoils were slightly thinner close to the
leading edge and thicker along their middle section. The optimized airfoils for
J = pe, +30¢, and J = ¢, +60c, had a progressively thicker trailing edge
wedge. The pressure and skin friction coefficients’ plots are shown in fig. 4.11.
The coefficients were computed at the “nominal conditions”. All airfoils had a
milder positive pressure gradient along their suction side but skin friction
deviated from one another along the last 20% of the chord. Overall, the
optimization prioritized the creation of an airfoil with zero C'y; and lower Cp.
Regarding the cost of the constrained optimization with uncertainties, with
Opcg =2 and M = 2, 10 PCE coefficients need be computed. APCE with L =10
corresponds to an oversampling ratio of 7, = 3 due to the use of adjoint
gradients. To achieve the same ratio, standard regression-based PCE (which
excludes gradient information) would have required L = 30. With L = 30,
standard PCE would have required 120 EFS for the RDO (1 primal and 3 adjoint
systems of equations at 30 collocation points). With the pAPCE method, the cost
is equal to 100 EFS per cycle (solution of the primal and 3 adjoint systems of
equations plus 3 DD-then-projected primal and adjoint systems for each one of
the 10 collocation points). Without the projection technique, the cost would have
been equal to 120 EFS. By omitting the computation of the projected matrix of
mixed derivatives of pc, and pic,, for imposing the relevant constraints, the cost
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Figure 4.11: RDO Case 1. Left: Pressure coefficient. Right: Skin-friction coefficient.
The coefficients were computed along the two sides of the NACAOO12 airfoil and those
optimized for “min(J)”. Continuous and dashed lines correspond to the pressure and
suction sides, respectively.

of the RDO with pAPCE was 60 EFS and, for the case of J = jc,, the cost
became 40 EFS.

4.3.2 A Comparison of pFOSM and pAPCE

Two airfoil shape optimization problems were solved using both pFOSM and
PAPCE. The case published in [30], demonstrating the use of pFOSM in a
laminar flow was revisited (with some changes, though) and, then, a turbulent
flow case followed. VBS parameterized the airfoil contours and deformed the
CFD grids during the optimization. Inequality constraints were imposed on fic,
and V requiring that they should be greater than or equal to their initial values
ua and V' (this differs from the equality constraint used in [30]). Additionally,
the bounding constraints in eq. 2.34 were applied on the x and y coordinates of
the CPs of the VBS morphing boxes. The design variables were updated using
the SQP method incorporating an interior-point method strategy [103] for
handling inequalities.

4.3.2.1 Shape Optimization in Laminar Flows

The airfoil shape in fig. 4.12, studied also in [30], was optimized by minimizing
tc, and oc,,, this time by using and comparing both the pAPCE and pFOSM
methods. The chord-based Reynolds number was e = 3000 (calculated using
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Figure 4.12: RDO Case 2. Airfoil optimized using pFOSM and pAPCE and VBS
morphing box. Red/green CPs remained frozen/active throughout the optimization.
The = — y coordinates of the internal (green) CPs act as the N = 16 x 2 = 32 design
variables.

I,.) and the flow was simulated as a laminar one using a hybrid grid of about
54000 quadrilateral (structured-like layers around the airfoil contour) and
triangular elements (elsewhere). As for the uncertain variables, their mean
values were p, = 1 m/s, p,, = 4° and their standard deviations were
Ove, = 0.15 m/s, 0, = 0.5°, both following normal distributions. Mesh and
Reynolds number were the same with [30]. Differences existed in the imposed
constraints on ¢, and V and, also, the displacements of the CPs were
constrained which was not the case in [30]. Over and above, the statistical
moments of the uncertain variables took on different values and the VBS
morphing box was different. Due to all these differences, the pFOSM solution
was re-computed and its results, included in this thesis, were different than
those of [30].

UQ results computed with FOSM, APCE for Opcp € [1,5] and L € [4:20] and
MC are presented in fig. 4.13. With Opcg > 2, the error in both puec, and o¢,,
based on the results of MC, seems to be sufficiently low for most of the values
of L. Therefore, it was decided to use Opcgp =2 and L = 7 for the optimization,
since no significant gain in accuracy was observed for higher Opcg or L values.
APCE computed statistical moments (the standard deviation, in particular) more
accurately than FOSM. According to [82], accuracy issues in FOSM (and, thus,
pFOSM) are expected when the ratio of standard deviation to the mean value of the
uncertain variables, a.k.a. Coeflicient of Variation (CV), is high. In the examined
case, C'V, = 15% and CV,_ = 12.5%. By switching to a case with higher CV
values, namely C'V, = 30% and CV,_ = 40%, and re-running the UQ, fig. 4.13
(bottom), both FOSM and APCE became less accurate; the drop in accuracy was
more visible in FOSM. With the exception of ¢, computations with higher CVs,
the APCE results were close to or within the confidence interval bounds computed
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Figure 4.14: RDO Case 2. Convergence of objective functions and constraints in
the RDO with pFOSM and pAPCE (Opcg=2, L =7) for three different J. Top-Left:
ic,- Top-Right: oc,, Bottom-Left: o, constraint. Bottom-Right: V' constraint.
“Sol(J,method)” stands for the solution/airfoil of an optimization targeting min. J,
performed using “method”.

by the MC, in contrast to the FOSM results which laid beyond the interval bounds.
Compared to FOSM, a SOSM MoM could provide more accurate results; however,
a gradient-based optimization relying on SOSM requires the computation of third-
order derivatives of the Qol which greatly increases the complexity of the method.

Two optimization runs under uncertainties were performed with C'V, = 15%
and C'V,_ = 12.5% using both pFOSM and pAPCE (Opcp=2, L = 7). The first
run aimed at minimizing only /., and the second only o¢,,. Although minimizing
only o¢,, may have little practical benefits, runs with J = ¢, or J =o¢,, help to
draw useful conclusions. Convergence plots of the runs are shown in fig. 4.14, the
optimized airfoils are illustrated in fig. 4.15, whereas fig. 4.16 shows the pressure
and skin friction coefficients for the initial and optimized airfoils.

With J = pc,,, the curvature of the airfoil suction side became smaller and a
decrease in C; was observed along that side, fig. 4.16. At the same time, pressure
dropped more along the suction side. With J = o¢,, 0¢, was slightly reduced
but jc,, increased instead. In order for o¢,, to be reduced, the airfoil thickness



4.3. Robust Design Optimization Applications 101

0.08 —

/ e
0.06 /,/’_/.7 i
D —— N\
0.04 /.‘/,A TSN N
/ 2
0.02 1/ \\\
( AN Initial —-—-
y O /__,/_,—,—--—-h» SoI(pCD,pFOSM)
\ /);f/ Sol(oCD,pFOSM)

0.02 ¢ \ ‘/'/f/‘,- Sol(jic_,PAPCE) —.—.
004 IS e Sol(oc_PAPCE) —.—.
-0. l%\.._-._.s._ - ‘/"/,r

0.06 N~ =S

-0.08

0 0.2 0.4 0.6 0.8 1
- — X
___.g.-:;=:=:=:Ei=:=:=:sas::;=:=_
O" -i. -
_-=-'§-""'"\_"-
-\-ﬁ;: ___________ ='E:EEE£=:’-
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increased retarding the formation or minimizing the effect of the adverse pressure
gradient on the suction side, fig. 4.16. The increased thickness and camber also
made the airfoil less sensitive to changes in a,. The increase in yc, might be due
to the flow separation occurring close to 40% of the chord on the optimized airfoil,
fig. 4.16.

Re-evaluating the statistical moments of C of all optimized shapes using MC,
Table 4.3, re-confirmed the reduction in the objective functions’ values. Using
the moments computed by MC as reference values, APCE was consistently more
accurate than FOSM which underestimated o, both for the initial and optimized
geometries. Additionally, the per-cent changes estimated by APCE were slightly
closer to MC than FOSM. Nevertheless, the shapes and, thus, the performances
of the airfoils optimized using pFOSM and pAPCE were very close to each other.
Figure 4.17 shows the PDF of Cp and C}, computed by MC, on the initial and all
optimized airfoils.

Finally, fig. 4.18 shows the relation between Cp and ('}, and both uncertain
variables around their nominal values and within the [—20 : 20] range for the
initial shape (figures corresponding to the optimized shapes show similar trends
and are omitted). Linear fitting was performed for all curves. Although the
coefficients of determination, in fig. 4.18, show good correlation for the linear
model, especially for 'y and a, it can visually be deduced that the curves do
not exhibit a perfectly linear behavior. This apparently small deviation from
linearity could perhaps explain the differences in accuracy observed between
FOSM, which uses a linear approximation for the Qol and retains only first-order
terms, and APCE with Opcg=2.

For the cost of the optimization using the pFOSM method, this was equal to 5
EFS per cycle; for the more accurate pAPCE (Opcgp=2, L=7), this went up to 49
EFS. The cost of the latter includes the solution of the adjoint system computing
the gradient of ('}, as one of the constraints involved i, , and the solution of
the projected DD primal and adjoint systems that computed the derivatives of jic,
w.r.t. b,. To compute the derivatives of ji, w.r.t. b,,, in pFOSM, only one additional
adjoint system must be solved (4+1=5 EFS). If J = ji¢,,, the pFOSM optimization is
essentially the same as an optimization at the mean flow conditions that does not
account for uncertainties, see eq. 4.18, and its cost per optimization cycle is only
3 EFS (one primal and two adjoint systems’ solutions). However, with the pAPCE
method, the derivatives of either j, or pc, w.r.t. b, require Zm&:(:—(San and the
projected DD primal and adjoint systems still need to be solved. This makes the
PFOSM method faster than pAPCE. Nevertheless, the additional computational
cost of the latter compensates for the increased UQ accuracy, based on the results
shown in fig. 4.13, Table 4.3 and the discussion above. On the other hand, the
re-evaluations with the pAPCE and MC methods of all the airfoils optimized using
the pFOSM in Table 4.3 indicate that, despite its lower accuracy, the quality of
the outcome of the optimization is re-confirmed by UQ methods of higher fidelity.
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Table 4.3: RDO Case 2. Statistical moments of C'p for the initial and 6 optimized
airfoils. All moments were re-evaluated using the MC (3000 replicates), FOSM and
APCE, irrespective of which of them was used in the optimization. In the second half
of the table, the corresponding error, computed using the MC as reference, and value
changes w.r.t. the initial airfoil are shown. Figures in bold denote that optimization
and re-evaluation used the exact same method.

Le,, values oc,, values
Geometries evaluated MC FOSM APCE MC FOSM APCE
Initial 0.07093 0.07003 0.07078 5.506e-3 4.929e-3 5.415e-3

Sol(ic,, ,pFOSM) 0.06997 0.06906 0.06983 5.531e-3 4.939e-3 5.434e-3
Sol(c,, .pPAPCE) 0.06998 0.06907 0.06984 5.531e-3 4.938e-3 5.433e-3
Sol(o¢,, ,pFOSM) 0.07388 0.07298 0.07373 5.395e-3 4.886e-3 5.341e-3

Sol(o¢,, ,.pAPCE) 0.07412 0.07322 0.07396 5.396e-3 4.892e-3 5.346e-3
fcp, % errors (w.r.t. MC) ocp, % errors (w.r.t. MC)
Initial 1.26 0.21 10.47 1.65
Sol(uc,, .pFOSM) 1.30 0.20 10.71 1.76
Sol(ic,, . pAPCE) 1.30 0.20 10.72 1.76
Sol(o¢,,, pFOSM) 1.21 0.20 9.43 0.98
Sol(o¢,, . pAPCE) 1.21 0.21 9.34 0.93
e, % change oc, % change
Sol(ic, . pFOSM) -1.35 -1.38 -1.34 0.45 0.20 0.35
Sol(uc,, .pAPCE) -1.33 -1.37 -1.32 0.45 0.18 0.33
Sol(oc,, ., pFOSM) 4.15 4.21 4.16 -2.01 -0.87 -1.36
Sol(o¢,, . pAPCE) 4.49 4.55 4.49 -1.99 -0.75 -1.27
Hc, values oc, values
Initial 0.15825 0.15788 0.15758 0.02568 0.02396 0.02461

Sol(uc,, ,pFOSM) 0.15792 0.15786 0.15724 0.02468 0.02332 0.02363
Sol(ic,, . pPAPCE) 0.15824 0.15816 0.15756 0.02481 0.02343 0.02376
Sol(o¢,,, pFOSM) 0.15647 0.15790 0.15595 0.02064 0.01975 0.02075
Sol(o¢,, .pAPCE) 0.15807 0.15943 0.15756 0.02080 0.01993 0.02090
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Figure 4.17: RDO Case 2. PDFs of Cp and C}, computed by MC. Top: Cp Bottom:
C'L. The distributions were computed on the initial airfoil and the ones optimized with
pFOSM and pAPCE for J = ¢, and J=o0¢,,, respectively, using 3000 replicates.
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Figure 4.18: RDO Case 2. Variations of C'p and C}, around the nominal values of
the uncertain variables for the initial shape computed within the [—20 : 20] interval.
Left: v. Right: a,. Linear regression is included; the coefficient of determination
R is greater than 0.982 for all lines.

4.3.2.2 Shape Optimization of the Fauvel 14% Airfoil

The extension of pFOSM and pAPCE to turbulent flows is demonstrated in the
shape optimization of the isolated Fauvel 14% thickness airfoil [151] in a
turbulent flow with Re=10°, based on . The grid consisted of approximately
48000 quadrilateral and triangular cells. The airfoil contour and the VBS
morphing box are shown in fig. 4.19. The mean values of the uncertain variables
were f,, = 15 m/s and pu,, = 8 and their standard deviations were
Ov. =0.75 m/s and o, =0.8°, respectively. Following an analysis similar to that
of section 4.3.1, it was chosen that Opcg=2 and L=8.

The SDs of the statistical moments of C'p, and (' are shown in figs. 4.20
and 4.21, where comparisons are made between adjoint SDs and FDs. These are
the derivatives of eq. 4.1 and are computed by setting J = ji¢,, and J = o¢,. For
each perturbation of the CPs in FD, u¢, and o¢, were computed by solving the
UQ problem either with the FOSM or APCE method (eq. 4.13). The omission of
the mixed derivatives from the gradient led to similar considerations as in

7 9
4 5
1 2

Figure 4.19: RDO Case 3. Fauvel 14% airfoil contour and 5 X 5 VBS morphing
box. Red/green CPs remained frozen/active throughout the optimization. The x — y
coordinates of the internal (green) CPs act as the N =9 x2=18 design variables.
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Figure 4.20: RDO Case 3. Derivatives of statistical moments of Cp w.r.t. b, i.e. the
z- and y-coordinates of the free-to-move CPs (numbered in fig. 4.19). Left: For the z
coordinate. Right: For the y coordinate. Top: (i, Bottom: o¢,. Plots on the left
and right correspond to x and y components of CPs, respectively. A step value equal
to 10~%m was used in FD computations.

section 4.3.1 for pAPCE, and alleviated the cost of computing the gradients of
ficy, and ficy, .

Three shape optimization runs under uncertainties were performed, with
min. uc,, pcp, +20c, and e, + 60c, as the target, in each case. Shape
optimization results can be seen in fig. 4.22. Additionally, UQ for Cp was
performed using APCE (Opcp =2, L = 8), FOSM and MC, for the initial and all
optimized shapes. The results of UQ, along with the reductions achieved
through the optimization, are shown in Table 4.4. MC re-confirmed that the
objective functions were indeed reduced in all cases and, once again, the
computations were accurate enough for yc, with both methods; however, it was
re-confirmed that APCE is more accurate in computing o¢,. For min.
tcp, + 60¢c,, the optimization with pAPCE achieved a slightly greater reduction in
both jic,, and o¢,, than pFOSM. This greater reduction could also be seen when
the result was re-evaluated with all methods shown in Table 4.4. This was not
observed in the case of the other objectives, however, as seen in fig. 4.22. This
might be due to the optimization not having fully “converged”, in contrast to the
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Figure 4.21: RDO Case 3. Derivatives statistical moments of Cj, w.r.t. b, and FDs
computed using ¢ =107% m. Left: SDs w.r.t. the 2 coordinate. Right: SDs w.r.t. the
y coordinate. Top: uc,. Bottom: o¢; .

run for min. e, + 6o¢, which required approximately 160 optimization cycles
to complete. Figure 4.23 shows the initial and optimized shapes. In the cases
with J = e, + 60¢,, the two methods led to visibly different optimized shapes.
Figure 4.24 shows the pressure and skin friction coefficients of the initial and
optimized airfoils. The decrease in C; after z/c ~ 0.65, observed on the initial
airfoil, was not that great over the optimized airfoils, the only exception being the
one optimized for J = ¢, + 60¢,, over which the flow separated after z/c~0.8.
In fig. 4.25, the PDFs of both aerodynamic coefficients are shown. The
simultaneous reductions in ji¢,, and o¢, were visible in all cases except for the
one with J = p¢,, + 60¢,, where pic,, was increased. With J = jic,,, the likelihood
of lower Cp values increased, compared to the initial PDF, and the right tail of
the distribution was severed, thus reducing oc,. The latter also occured with
J= ¢, + 60, but the “centroid” of the PDF was shifted towards higher values.
Some conclusions can be drawn from the work presented in this section. The
PFOSM method requires less EFS for shape optimization than pAPCE. On the
other hand, pAPCE is able to compute statistical moments more accurately. To
gain the most out of pAPCE, a study should be performed to determine adequate
values for L and Opcp and ensure a good response from the PCE. The computation
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Table 4.4: RDO Case 3. Statistical moments of C'p for the initial and 4 optimized
airfoils. All moments are re-evaluated using MC (2000 replicates), FOSM and APCE,
irrespective of which of them was used in the optimization. The corresponding error,
computed via comparisons with MC (reference), and value changes w.r.t. the initial
airfoil are shown below them. Figures in bold denote that the same method is used
in both the optimization and the re-evaluation.

Hep 9Cp
Geometries MC FOSM APCE MC FOSM APCE
Initial 0.02197 0.02185 0.02183 1.937e-3 2.059e-3 1.985e-3
Sol(uc, . pFOSM) 0.02161 0.02152 0.02148 1.746e-3 1.884e-3 1.804e-3
Sol(/c,, .pPAPCE) 0.02164 0.02155 0.02151 1.746e-3 1.884e-3 1.804e-3

Sol(ic, + 20¢,,pFOSM) 0.02182 0.02173 0.02169 1.713e-3 1.848e-3 1.769e-3
Sol(uc, + 20¢,,pAPCE) 0.02189 0.02180 0.02175 1.722e-3 1.858e-3 1.778e-3
Sol(uc, + 6oc, . pFOSM) 0.02285 0.02280 0.02272 1.377e-3 1.496e-3 1.444e-3
Sol(ic, + 60¢c, . pAPCE) 0.02308 0.02304 0.02295 1.327e-3 1.455e-3 1.395e-3

e, % errors (w.r.t. MC) ocp, % errors (w.r.t. MC)

Initial 0.54 0.63 6.29 2.47

Sol(iic,, . pFOSM) 0.41 0.60 7.90 3.32

Sol(ic,, .pAPCE) 0.41 0.60 7.90 3.32

Sol(uc, + 20¢,,pFOSM) 0.41 0.59 7.88 3.26

Sol(uc,, + 20¢,,,pAPCE) 0.41 0.63 7.89 3.25

Sol(uc,, + 60¢, . pFOSM) 0.21 0.56 8.64 4.86

Sol(uc, + 6oc, . pAPCE) 0.17 0.56 9.64 5.12

e, % change ocp, % change

Sol(uc,, ,pFOSM) -1.63 -1.51 -1.60 -9.86 -8.49 -9.11

Sol(ic,, .pAPCE) -1.50 -1.37 -1.46 -9.86 -8.49 -9.11
Sol(uc,, + 20¢,,,pFOSM) -0.68 -0.54 -0.64 -11.56 -10.24 -10.88
Sol(ic, + 20¢,,pAPCE) -0.36 -0.22 -0.36 -11.09 -9.76 -10.42
Sol(uc,, + 60¢c,,pFOSM) 4.00 4.34 4.07 -28.91 -27.34 -27.25

Sol(uc, + 6oc, . pAPCE) 5.05 5.44 5.13 -31.49 -29.33 -29.72
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Figure 4.22: RDO Case 3. Convergence of the optimization loops performed with
pFOSM and pAPCE (Opcg =2 and L=8). Top-Left: /i, . Top-Right: o¢,,. Bottom-
Left: pc, constraint. Bottom-Right: V' constraints. Both inequality constraints
were finally met.

of unnecessary PCE coefficients can be avoided by using an accurate enough PCE
of lower order. The use of approximate gradients with pAPCE also reduces the CPU
cost and this is especially beneficial in case the Qols are more than the uncertain
variables. For the aerodynamic optimization cases dealt with in this chapter, the
results of pFOSM and pAPCE were very close to each other which was most likely
due to the prevalence of lower order terms in the FOSM and PCE approximations.
As seen from the PDF plots, the changes in the airfoil shapes had a noticeable effect
on the PDF of the aerodynamic coefficients. The cost reduction gained by the use
of projections was up to 33%, depending on the case, even with two uncertain
variables.
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4.3.3 Scalability of the Projection Technique

In this section, a shape optimization problem with 5 uncertain variables was set
up and solved with pAPCE. The shape of a network comprising ducted sections
and a middle-section compartment, shown in fig. 4.26, were optimized for min.
total pressure losses, F;, between the five inlets leading to the middle compartment
and the outlet. The walls of some of the ducts and the middle compartment were
parameterized using NURBS curves, see fig. 4.26. The uncertainty pertained to
the flow velocity magnitude at the five inlets. The Reynolds numbers for all inlet
sections correspond to laminar flows. At S;, and Sy,, [, = 5-10_3m/ s and o,, =
1073m/s. At S, py, =4-107m/s and o,, = 5-10"*m/s. At S;, and Sr., fty, =
4-1073m/s and ¢,, =10"3m/s.

The optimization was performed using pAPCE for min. J = pup, +60p,. It was
chosen that Opcg = 2 and L = 6. SDs w.r.t. the coordinates of NURBS CPs are
shown in fig. 4.27. The reduction in the statistical moments is shown in fig. 4.28.
Both moments were reduced by 33% to 36%. The optimized shapes are shown in
fig. 4.29. Ducted sections were inflated causing flow deceleration (not shown) in
the optimized shape. The total pressure difference between the outlet and inlets,

y s, b

T !

Figure 4.26: RDO Case 4. A network of ducts with five inlet sections and one outlet.
Green/red patches correspond to the inlets/outlet. A few of the walls of the ducts and
the compartment were parameterized with NURBS curves. Green CPs of the NURBS
were allowed to be displaced during the optimization, red ones remained fixed.
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Figure 4.28: RDO Case 4. Convergence of the optimization loop with pAPCE. Left:
up,. Right: op,. All values are normalized w.r.t. their initial ones.

computed at the mean values of the uncertain variables, was visibly decreased.
With 5 uncertain variables and Opcp = 2, there exist 21 PCE coefficients to
be computed. For shape optimization with pAPCE, using L =6, only 24 EFS per
cycle were needed. Without the projection technique, the cost per cycle would
have been equal to 72 EFS. The profit from using adjoint gradients in UQ with
APCE, compared to standard PCE, is shown in fig. 4.30. Statistical moments
computed with MC were used as the reference values. At least 21 EFS would have
to be spared by standard PCE to accurately compute both statistical moments
due to the existence of the 21 PCE coefficients. With APCE, these moments were
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up, +60p,. The total pressure field, computed at the mean values of the uncertain
variables, is shown for both shapes.
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Figure 4.30: RDO Case 4. Statistical moments of F; versus the EFS required to
compute them with standard PCE and APCE. Values are compared with MC (5000
replicates). Left: yp,. Right: op,.

computed using only 12 EFS with some loss in accuracy in op, (approximately
3%), w.r.t. the results of the MC.

An optimization without uncertainties was also carried out. The initial
geometry, the one optimized with pAPCE and the one optimized without
uncertainties were re-evaluated using the MC. Based on these re-evaluations,
both optimization runs reduced pp, by ~33% and op, was reduced by 35.6%
using pAPCE and by 34.1% in the optimization without uncertainties.



Chapter 5

Industrial Applications

This chapter presents the use of the methods developed in chapters 3 and 4 to
industrial applications. In sections 5.1 and 5.2, the RPM is used to assist
convergence of steady flow and adjoint solvers for shape optimization in
automotive applications followed by re-evaluations of the optimized solutions
with URANS solvers. In section 5.3, pFOSM and pAPCE are used to optimize a
wing with symmetric cross section and minimize C'p through a distribution of a
twist angle along its span.

5.1 Shape Optimization of a Car Spoiler and Diffuser

The spoiler and diffuser sections of a car [116] were optimized for min. C'p. The
flow had a Re ~ 8.8 - 10°, based on the length of the car. The grid consisted of
1.2 - 105 cells and two VBS morphing boxes, shown in fig. 5.1, were used for the
parameterization of the spoiler and diffuser of the car. The vehicle speed was equal
to 33m/s. The BCs imposed on the wheels modeled their rotation by assigning
an angular velocity which, upon contact with the ground, caused the peripheral
velocity at the surface of the wheels to be equal to the speed of the car. The design
variables were updated using the conjugate gradient method [28].

The flow equations’ residuals, shown in fig. 5.2, initially stagnated. The RPM
assisted the solver in reducing the flow equations’ residuals for up to 3 orders of
magnitude from the point where stagnation began. Beyond this point, the
residuals and the objective function still oscillated but to a much smaller extent.
The objective function was converged up to the 5th significant digit. The RPM
was activated after 2000 iterations and 400 iterations were allowed to pass
before the addition of new modes. Based on the so-computed primal fields, the
adjoint equations diverged and were stabilized by combining the RPM with two
smoothing iterations on L for damping the ATC. For the adjoint solution, the
RPM was activated after 600 iterations and 500 iterations were used in between
consecutive basis augmentations. 15 flow/adjoint solution snapshots were used
in both cases for the construction of D (eq. 3.24).
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Figure 5.1: Shape Optimization of a Car. Views of the car geometry. Two 10 x9x9
VBS morphing boxes were used to parameterize the spoiler area and the diffuser of
the car.

With this setup, the optimization began and after 11 cycles, Cp was reduced
by 4.8%, shown in fig. 5.3. Beyond this point, the displacement of the morphing
boxes’ CPs created an invalid grid and the optimization loop could not proceed any
further. The resulting shape is shown in fig. 5.4. The diffuser section was pulled
outwards whereas the side section of the spoiler was pushed inwards and the top
side downwards. Re-evaluations using URANS were performed for 3 of the 11
geometries. A time-integration window of 2 sec. was used for the computation of
Cp. Although the RANS-based solution greatly underestimated the value of the
objective function, the achieved reduction in Cp was 4.9%, which was not that far
from the value computed by the RANS-based solver.

Regarding the cost, 11 optimization cycles required approximately 4.5 hours
on 156 processors (Intel® Xeon® CPU E5-2620 v2, 2.10GHz) using the RPM and
steady solvers. Indicatively, with this particular time-integration window, the
URANS flow solver required approximately 15 hours to complete a single flow
analysis on the same hardware.
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Figure 5.2: Shape Optimization of a Car. Top: Flow equations’ residuals. Middle:
Convergence of C'p after the use of the RPM. (' still oscillates but only within a small
margin (5th significant digit). Bottom: Geometric mean of the adjoint equations’
residuals, solved with the RPM and mild ATC damping. The adjoint solution is based
on the RPM-stabilized flow-fields.
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Figure 5.3: Shape Optimization of a Car. Left: Cp minimization within 11
optimization cycles and Cp from URANS re-evaluations of the initial design and after
the end of the 4th and 11th optimization cycles. Right: Instantaneous C'p within the
integration time-window for the URANS re-evaluation. All values were normalized
w.r.t. the ones of the initial design.
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Figure 5.4: Shape Optimization of a Car. Split comparison between the initial and
optimized exterior of the car along the plane aligned with the streamwise direction
of the flow. The initial is portrayed in grey whereas the optimized is colored by
the cumulative normal displacement field where positive and negative displacement
values indicate inwards and outwards displacement of the car surface, respectively.
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5.2 Shape Optimization of a Motorbike Fairing

In this section, the fairing of a motorbike was optimized for min. CpA (A is the
motorbike frontal surface) computed over the entire vehicle. The flow had a Re~
2.6 - 10%, based on the length of the motorbike. The grid consisted of 14-10° cells
and a 7x7x7 VBS morphing box was used for the parameterization of the fairing
and the enclosed grid around it; this is shown in fig. 5.5 along with the overall
geometry.

The complexity of the geometry and of the generated grid, as well as the
unsteadiness of the flow, made it difficult for the flow solver to converge even
with the RPM. The workaround was to average the “pseudo-steady” flow fields
which represented a better approximation to the flow, compared to just using
one instantaneous flow solution about which the adjoint equations were
linearized. The flow equations were solved for a total number of 2000 iterations
and the flow fields were averaged over the last 500. These averaged fields were
used as the “pseudo-steady” flow solution the adjoint solver was based on; the
adjoint solver diverged too, as a result of flow unsteadiness combined with large
values of the ATC term close to the motorbike surface. Divergence occurred
rapidly, during the very first iterations of the adjoint solver, and the RPM was
unable to form the required unstable subspace. To assure convergence, the RPM
was combined with mild ATC damping. Based on the assessments carried out in
sections 3.2.1 and 3.2.2, such an approach seems to be minimally invasive,
w.r.t. the accuracy of the SDs. Although mild ATC damping could not achieve
stability on its own, this treatment secured a window of iterations for the RPM
which was enough to stabilize the adjoint solver. The regions where the ATC was
damped can be seen in fig. 5.6.

Using both the RPM and the mild damping of the ATC, an optimization was

Figure 5.5: Motorbike case. Geometry and VBS morphing box parameterizing the
surface points of the fairing and the enclosed grid. Only the green CPs were allowed
to move during the optimization.
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Figure 5.6: Motorbike case. Regions of ATC damping. The value of L, plotted along
the symmetry plane of the motorbike, ranges from O to 1; 5 smoothing iterations were
used. The shaded regions correspond to cells where the ATC was damped.
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Figure 5.7: Motorbike case. Left: Convergence of Cp A during the shape optimization
of the fairing within 9 optimization cycles. CpA from re-evaluations of the initial, an
intermediate (4th cycles) and the optimized (9th cycle) geometries are also plotted.
Both CpA and CpA were reduced. Right: CpA time history from the 3 URANS re-
evaluations mentioned above.

conducted using the conjugate gradient method. After 9 optimization cycles, Cp A
decreased by 4.6%, fig. 5.7, exclusively through modifications in the fairing shape,
made visible in fig. 5.8. The RPM was activated after 1000 iterations and the check
for updating the basis occurred every 500 iterations using 15 solution snapshots
all the while. The size of 1}, ranged from 1 to 3, except for one cycle where the
basis increased to 7. The objective function was re-evaluated using an unsteady
solver for 1 sec. and Cp A was averaged over a period of 0.7 sec., which proved
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Figure 5.8: Motorbike case. Left: Pressure distribution on the initial (left) and
optimized (right) motorbikes. Frontal view. Right: Mean flow velocity magnitude on

the symmetry plane, normal to the spanwise direction of the flow, around the initial
(top) and optimized (bottom) geometries.

to be long enough for the statistical convergence of CpA. Figure 5.7 shows that
both solvers gave a very close estimate of the objective function’s value. Cp A was
indeed decreased by a similar factor as CpA.

In this case, the adjoint solver, enhanced by a combination of the RPM and
mild ATC damping, supported shape optimization with steady solvers at a cost
and memory requirements which were much lower than the ones of the unsteady
solvers. Indicatively, 9 cycles required approximately 20 hours on 156 processors
(Intel® Xeon® CPU E5-2620 v2, 2.10GHz). This was, approximately, also the cost
of a single unsteady optimization cycle, based on the compressed full storage of
the entire flow series, using the scheme presented in [86].

So, in these two cases (sections 5.1 and 5.2) which represent best-case
scenarios with an almost zero overhead for the unsteady adjoint solver, the CPU
cost of a single steady and unsteady optimization cycle differ by one order of
magnitude. Nevertheless, the outcome of this comparison may change
significantly depending on how storage requirements of the unsteady adjoint
solver are handled (e.g. use of check-pointing, compression algorithms [86, 87],
reduced-order models, etc), on the duration of integration of the flow equations
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and the number of modes identified by the RPM. Regarding the latter, the extra
cost of the RPM implementation heavily depends upon the size of the V), basis
which is involved in the matrix-vector products that take place within each
iteration of the steady solver. With the implementation of the RPM used in this
work, the increase in CPU time required to perform each solver iteration may
range between 10% and 40%, depending on the size of V,, which, in this case,
ranged from 3 to 7 vectors. However, an increase in size is often accompanied by
an increased convergence rate for the solver and, overall, this is an affordable
cost to pay in order to get an otherwise unattainable solution.

5.3 Wing Shape Optimization

This stands for one of the AIAA Aircraft Design Optimization Discussion Group
(ADODG) cases (namely Case 3 [49]). These cases were developed as
benchmarks for the validation and comparison of shape optimization tools. The
objective, in this case, is the reduction of C'p only through modifications of the
twist distribution of the wing about the axis passing through the trailing edge,
under constraints on C} and, sometimes, (), as well. The twist angle is
distributed across the wing along the spanwise direction. Although originally
developed as an application for inviscid transonic flow, the case was studied
under different conditions in [70] and the flow was modelled as an
incompressible one, for the purpose of comparing two discrete adjoint solvers,
namely ADflow [1] and DAFoam (OpenFOAM-based) [19]. Here, the optimization
was carried out under the assumption that v,, and o, followed normal
distributions with p, = 50m/s, o, = 10m/s and p,., = 5°, 0., = 1°. Both
pFOSM and pAPCE were used to do this.

The grid file used to produce the results for this thesis was drawn from the
database in [68]. The geometry was created by extruding the NACAOO12 cross
sectional area along the spanwise direction and adding a tip at the end. The case
had a Re=1.1-10% and A. = 0.27 (chord length squared times the spanwise length
without the wing-tip [49]). VBS were used to parameterize the wing surface, the
CPs of which can be seen in fig. 5.9 along with an outline view of the computational
grid. Each plane of CPs was twisted about the axis that coincides with the leading
edge of the wing. By varying the twist angle of each plane, the twist was distributed
along the wing span.

SDs of statistical moments of C'p and C, w.r.t. b, are shown in fig. 5.10. Based
on these results, in the case of pAPCE and for the purpose of imposing constraints
on ¢, , as well as for pc, minimization only, mixed derivatives (eq. 4.20) were
neglected, saving significant computational time. Slight differences were expected
in the optimized wings between the two methods due to the differences between
the SDs of o¢,,.

RDO was carried out using both pFOSM and pAPCE using values of w (eq. 4.1)



5.3. Wing Shape Optimization 123

Figure 5.9: ADODG3 Wing Case. Top: Overview of the wing and grid. Bottom:
VBS morphing box enclosing the wing to be optimized. Views are: the wing at an
arbitrary angle (top), the wing tip (middle) and the front of the wing. Each plane of
CPs, perpendicular to the spanwise direction, rotated rigidly about the axis passing
through the leading edge of the wing. Green CPs were the ones to be twisted about
whereas red ones were situated exactly on the symmetry patch of the grid and
remained fixed throughout the optimization.
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Figure 5.10: ADODG3 Wing Case. SDs of statistical moments of C'p and C, w.r.t.
b, i.e. the twist angles of the planes of CPs (fig. 5.9). Top: Cp. Bottom: (. Left:
Mean values. Right: Standard deviations.

from O to 6 with a step of 1. With pAPCE, Opcg =3 and L = 8. The SQP method
was used to impose an equality constraint on jc, and /chL was chosen equal to the
initial value. The convergence of the optimization loop, only for the cases with w =
0, w =3 and w = 6, is shown in fig. 5.11. The optimization runs required between
30 and 60 optimization cycles to complete. The ji, constraint was satisfied within
an acceptable =10~* threshold. The two RDO methods yield different estimated
values, both for pc, and o¢, (also for ;). The optimized wings are shown in
fig. 5.12. All the optimized solutions, with both pFOSM and pAPCE, were re-
evaluated with MC using 1000 replicates. A Pareto front was formed in the ¢, —
oc, space, shown in fig. 5.13. The optimized solutions computed with pAPCE
slightly dominated the ones computed with pFOSM within a selected region of the
front. More points would be required to draw a conclusion for the rest of it. The
cost of the optimization was equal to 5 EFS with pFOSM and 40 EFS with pAPCE.
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Figure 5.11: ADODG3 Wing Case. Shape optimization loop convergence. Top-Left:
e, Top-Right: oc,. Bottom-Left: uc,. The convergence shown corresponds to
optimization runs performed using pFOSM and pAPCE for J = uc,,. J = uc, +30¢,,
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Figure 5.12: ADODG3 Wing Case. Frontal views of the optimized wings computed
using pFOSM and pAPCE with J = puc, and J = uc,, + 30Cp.
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Chapter 6

Closure

This PhD thesis expands previous work in the PCOpt Unit of NTUA on aerodynamic
shape optimization based on the continuous adjoint method. The contributions
pertain to two distinct areas:

* The treatment of convergence difficulties of steady primal (flow) and
(continuous) adjoint solvers, caused by flow unsteadiness.

* Cost reduction of shape optimization in the presence of uncertainties.

Common theme among these two areas is the focus on the reduction of the
computational cost of the optimization. The methods are not restricted to shape
optimization and can very well be applied to other areas of CFD-based
optimization, such as topology optimization. Although the two subjects are
presented independently, they can also be used synergistically, depending on the
application. For each one of the two areas, a recapitulation of the major steps
taken into this thesis follows, followed by conclusions, findings and discussion.

6.1 Conclusions, Findings and Discussion

6.1.1 Stabilization of Steady Primal and Adjoint Solvers

The first section of the thesis dealt with the convergence difficulties of steady
primal and adjoint solvers, commonly encountered in gradient-based
aerodynamic shape optimization problems in which the flow exhibits
unsteadiness. In case the unsteadiness in these problems is mild, steady solvers
can be used to avoid the large computational overhead associated with unsteady
ones in optimization loops. A stabilization method, called the Recursive
Projection Method (RPM), was used to make the steady primal and adjoint
solvers converge. Additionally, two existing and widely used remedies for
overcoming the aforementioned convergence difficulties were sometimes
combined with the RPM for increased efficiency and robustness. The first one
involves the solution of the adjoint equations based on “pseudo-steady” primal
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fields, averaged over a number of iterations of a stalled primal solver. The second
one involves the damping of the ATC, a term that appears in the adjoint
momentum equations and is a frequent cause of divergence of continuous
adjoint solvers. On their own, these remedies may damage the accuracy of the
SDs. This impact was assessed with the help of the RPM, thanks to which
“correct” reference steady solutions were made available for both primal and
adjoint solvers. Following this assessment, some guidelines were derived.

The RPM can be used to assist the convergence of primal solvers in
aerodynamic shape optimization with flows that exhibit mild unsteadiness and,
even, vortex shedding. The implementation of the RPM ensures the minimization
of the residuals of the primal PDEs and, thus, flow-field averaging can be
avoided. In addition, adjoint solvers can also be stabilized by the RPM and this
enables their use in the optimization loop. From a purely physical standpoint, in
optimization problems such as the ones examined in this thesis, the objective is
the time-averaged aerodynamic force acting on a surface within the flow. By
using steady solvers, stabilized with the RPM, the turnaround time for this kind
of optimization problems can become one order of magnitude less than that of
URANS-based optimization, as shown in sections 5.1 and 5.2. Instead of the
time-averaged aerodynamic coefficient, the optimization minimizes the
coefficient computed with the stabilized steady primal solver. Although the
values of these two objective functions may vary, the re-evaluation of the
optimized solutions with an unsteady primal solver can verify the optimization
outcome and the reduction of the time-averaged objective function. Most
importantly, the objective function reduction percentages computed by the
steady and unsteady solvers can be very close to each other. Even when
unsteady-based adjoint cannot be avoided, shape optimization with steady
solvers can significantly reduce the CPU time by providing a better initialization
for the URANS-based optimization loop. This is observed in optimization of
vortex-shedding flows in section 3.2.2. Although the use of steady solvers in
such cases seems counter-intuitive, the proposed methodology operates well in
case the objective function is defined using time-averaged quantities.

In applications involving complex geometries, such as in section 5.2 (fairing,
wheels, exhaust etc), it might be difficult to generate a good-quality grid and, also,
maintain it throughout the optimization. On top of this, flow unsteadiness may be
caused by an excessive number of unstable modes that are difficult to track and
handle with the RPM. Together, these issues amplify the convergence difficulties
of steady solvers. A major problem in such complex cases is that the adjoint solver
may diverge rapidly, before the RPM can do anything to stabilize it. This problem
can be overcome by assisting the RPM with a controlled damping of the ATC term.
According to the findings of this thesis, the use of mild ATC damping, in synergy
with the RPM, increases the robustness of the adjoint solver. This approach is
not to be confused with the previous strategy, the uncontrollable damping of the



6.1. Conclusions, Findings and Discussion 129

ATC, which has a detrimental effect on the SDs. The role of the RPM still remains
pivotal because, without it, an excessive ATC damping would have been required to
stabilize the adjoint solvers with unforseen consequences on the accuracy of the
computed gradients. Similarly, thanks to the RPM, the use of “pseudo-steady”
primal solutions is largely avoided although, in the cases studied in this thesis,
this technique did not cause any significant damage to the optimization.

6.1.2 Shape Optimization in the Presence of Uncertainties

Setting aside the issues of solver stabilization, the second section of this thesis
dealt with shape optimization using gradient-based methods in the presence of
uncertainties. The cost of this optimization can increase dramatically as more
uncertain variables become involved. A framework was developed to reduce this
cost. Within this framework, two distinct methods were presented for the
minimization of objective functions expressed as a weighted sum of the two
statistical moments, the mean value and standard deviation, of a Qol. These
methods were treated as extensions of existing UQ techniques. Gradient-based
optimization relying on these two UQ methods involved the computation of a
matrix of mixed derivatives of Qols w.r.t. design and uncertain variables. Their
costly computation was overcome by computing projections of this matrix on
vectors instead and this projection technique was the main idea behind the two
methods. This technique was facilitated by the solution of two systems of PDEs
resulting from the differentiation of the primal and adjoint PDEs w.r.t. uncertain
variables and their subsequent projection on appropriate vectors. Both methods
were used to optimize the shape of aerodynamic bodies while taking
uncertainties related to the farfield boundary conditions into account.

The first method is called pFOSM and was derived from a first-order Method of
Moments. It uses the (continuous) adjoint method to compute the two statistical
moments of the Qol at a low cost. In pFOSM, the optimization can be performed
by solving only four systems of PDEs at a cost that is equivalent to solving four
times the flow equations, per optimization cycle. As seen in section 4.2.3, the
cost of computing the projected matrix of mixed derivatives and, thus, the cost of
pFOSM, is independent of the number of design and uncertain variables.

The second method, called pAPCE, is based on Polynomial Chaos
Expansions. It makes use of the continuous adjoint method to reduce the
number of collocation points involved in regression-based PCE. Compared to
standard PCE, fewer systems of PDEs need to be solved. Additionally, thanks to
the projection technique, the optimization cost of pAPCE is equivalent to solving
four systems of flow PDEs times the number of collocation points, per
optimization cycle. For each collocation point, the projected matrix of mixed
derivatives is computed at a cost that is independent of the number of design
and uncertain variables. A significant cost reduction can be achieved if
approximate sensitivities are computed by totally omitting the mixed derivatives,
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irrespective of the projection. In sections 4.3.1 and 4.3.2.2, this is seen to be
harmless in case only gradients of the mean value of a Qol are required, such as
when imposing constraints on the mean values of aerodynamic forces and
moments. Thus, in case working with approximate derivatives is not an issue,
mixed derivatives can be ignored for higher efficiency. In both methods,
flow-related constraints should be accounted for in the costs mentioned above.
In turbulent flows, the adjoint to the turbulence model equation(s) are involved
in the developed methods; none of them made the “frozen” turbulence
assumption.

Both pFOSM and pAPCE can benefit a lot from the use of projections. The
key point of the developed framework is the ability to compute the gradient of
objective functions at a cost that is almost equal to the cost of UQ. Overall, pAPCE
is more costly than pFOSM but at the same time more accurate in the computation
of statistical moments. It is therefore up to the designer to choose between the
PFOSM for efficiency or pAPCE for accuracy.

6.2 Novel Contributions

* The computational cost reduction of shape optimization for incompressible
flows with mild unsteadiness through the treatment of convergence
difficulties of the steady primal and adjoint solvers by the RPM. It is also
seen how the cost of an unsteady-based optimization loop for a vortex
shedding flow can be reduced if a preceding optimization loop is performed
to compute a better initialization point using the proposed approach.

* The assessment of widely used remedies for overcoming the convergence
difficulties of primal and adjoint solvers, such as flow-field averaging and
ATC damping, w.r.t. the accuracy of the SDs. Thanks to the RPM
stabilization (which gave reference solutions to compare with), practical
guidelines are derived: Only a mild ATC damping, effective only in synergy
with the RPM, is harmless whereas excessive damping should be avoided.
Flow-field averaging does not seem to have such a negative effect but can
totally be avoided in many cases with the RPM.

¢ The development and presentation, for the first time in the literature, of a
new method, referred to as pAPCE, shape optimization under uncertainties
with lower cost than standard regression-based non-intrusive PCE. The
new method allows the computation of the mean value and standard
deviation of a Qol at a reduced cost, compared to standard
regression-based PCE, thanks to the inclusion of gradient information
without though suffering a costly penalty in the computation of statistical
moments’ sensitivities. A combination of adjoint and direct differentiation
along with a projection technique were used to achieve this outcome.
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* The extension of both pAPCE and pFOSM methods for use in turbulent
flows, modelled using the Spalart-Allmaras turbulence model. To this end,
the Spalart-Allmaras model PDE and its adjoint were differentiated w.r.t.
uncertain variables (related to farfield flow conditions).
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6.4 Future Work

For the RPM:
* Further automate the choice of parameters such as the Krylov criterion.

* Assess the combination of the RPM with block-coupled primal or
block-coupled adjoint solvers for enhanced stability and ease of computing
the unstable subspace basis through direct use of the Jacobian matrix.

For the projection technique:

¢ Extension of the projection method to SOSM where higher-order terms
appear.

¢ Investigate whether pAPCE can benefit from better sampling techniques.

* Combine the projection technique with variants of APCE available in the
literature.

* Extend the projection technique for other turbulence models the adjoint of
which are available in the adjointOptimisation library or exist in-house.



Appendix A

Adjoint Boundary Conditions for Specific
Objective Functions

This appendix gives the forms of the adjoint BCs, the SDs in eqs. 2.21, 2.29
and 4.23 and the projected matrices of mixed derivatives in egs. 4.26 and 4.27
for the objective functions (or Qols) utilized in this thesis.

A.1 Force

In the external aerodynamics where the objective function is the aerodynamic
coefficient of the force exerted on Sy, this is equal to

Sw

where n is the normal to the surface unit vector pointing outwards of the fluid
domain and r = Fm, where 7 is a unit vector aligned with the force
component which is of interest; A, denotes a reference area or length, depending
on the dimensions of the problem. For airfoils, this is equal to the length of the
airfoil chord. The adjoint BCs are

0 -
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The SDs expressions become,
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for the E-SI adjoint. With the farfield-flow angle and velocity magnitude as the
uncertain variables, the sensitivities are equal to
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A.2 Moment

The moment coeflicient, in external aerodynamics, is equal to
F:/ (P8} —7i3) mj (. — ) riegadS (A.10)
Sw

where r=7r m with 7 a unit vector corresponding to the rotation axis passing
from 7; and /. denotes a reference length. The adjoint BCs are the same as in
eq. A.1 with the exception of
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The SDs expressions become,
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for the E-SI adjoint. With the farfield-flow angle and velocity magnitude as the
uncertain variables, the sensitivities are equal to
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The projected mixed derivatives matrix is equal to
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for the E-SI adjoint.

A.3 Total Pressure Losses

The total pressure losses, expressing the loss of power in the flow as it moves from
the inlets to the outlets of the flow domain, is equal to
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The adjoint BCs are
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for the E-SI adjoint. With the inlet velocity magnitude as the uncertain variable,
the sensitivities are equal to
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MepiAnyn

I &1daktopikr) SuatpiBr) avamruooovial TEXVIKEG JE OKOMO T Heiworn Ttou
UTIOAOY10TIKOU KOOTOUG aAlTloKPpATIK®V HeBodwv Bedtiotoroinong poppng otnv
agpodUVANIKT], Y1d POEG HE NITa XPOVIKY aotdBela 1)/kat pe aBeBaiotnteg. ‘OAeg o1
TeEXVIKEG Baoilovial otn ouvexr) ouluyr] pEBodo kat avartuxbnkav oe mep1BAAAov
OpenFOAM, cuprmAnpePATIKA ToU eTUAUTH 0ULUYOV EEI0M0EDV AVOlXTHG IpooBaong
o ormoiog €xel avarrtuyxBei amd ) Movdada I[TapdAAnAng YmoAoylotukng
Peuotobuvapikng & BeAtotoroinong tou EMII. Apxikd, yivetat ruotornoinon teov
TEXVIKOV 0g aradnpaikég Kalt akoAoubel 1) Xpr)on toug o BlOPNXavViKES EPAPHOVEG.

H ouduyrg 1€6060g yia Xpovikd Pn-povipioug erMAUTEG £XE1 PEYAAEG ATIATTNOELG
0€ UTIOAOYIOTIKO KOOTOG 1)/Katl amobrjkeuor O6edopévav. lNa auvtd xatr &ev
Xpnotporoteitat ouxva otr BeAtiotonoinon popdng oe Blopnyavikég epappoyeg. Ot
POVI01 EMMAUTEG TPWIEUOUOROV KAl OUUYOV €§1000E®V UITOPOUV, KATd MEPITROT),
va Ypnowponolnfouv otav 1 por| nmapouotladel nra XPoviky actdfeia. Xin diatpiBn
auvt] epappodetat 1 MéBodog Avadpopikev IIpoBoAev (Recursive Projection
Method, RPM) yia v avilpetnmnon 1oV SUGKOAIOV OUYKALONG TOU rapoucialouv
01 XPOVIKA POVIHOL ITP@TEVoVIEG Kat (ouveyelg) ouduyeig emAuteg AOYy® TG XPOVIKIG
aotdBelag g pong. Me 10 mépag g BeAtiotonoinong pe POVIPHOUG €mMAUTEG, Ol
BeAdtiotoroinpéveg  Avoelg  ermavaglodoyouvidl  AO  UN-HOVIHOUS  ETMAUTEG
TIPWIEVOVIOG TIPOBANIATOS Yia va emBeBai®bei n Pelnon Tou XPOoVIKOU PECOU T®V
ouvaptoewv otoxou. 'Etol, n BeAtiotornoinon yiveral pe UmoAOy10TIKO KOOTOG ®G
KAl Katd pia tadn peyeboug xapnAotepo anod Ot pe XPovika pn-povipioug ermAUTeg.
H texvikn aut) xpnowporoteitat emiong yia BeAtiotonoinorn popPrig 0 PoEg OITOU
ekAuvoviat otpoBldot. Ilapott Prmopouv va UMoAoylotouv Bedtiwpéveg Avoelg yla
TETO10U £160UG poEg pe povipoug emAuteg, 6ev propel ev t€Ael va anodeuxOel evag
Bpoxog Bedtioromoinong pe HPn-povipoug ermAuteg.  To OUVOAIKO KOOTOG, OH®G,
HelveTal xpnoponolwviag tn BeAtiotortomnpévn AUon pe HOVILIOUG ETTAUTEG QG
apxwornoinon ya tr BeAtiotonoinon pe pn-povipous.

Ze 10 TIOAUTIAOKEG £PAPHOYEG, Ol OUOKOAlEG OUYKAIONG TRV HOVII®V
MIPWIEVOVI®V Kal oUlUyaV emAUT®V, akopa kat pe v RPM, eival mmoAu mo £vioveg.
Attia ylia autd priopet va eivatl n mootnIa T0U MAEYHATOS YUP® ATIO TIEPITTAOKEG
YEQUETPieg 1) 1) Umapsn mANOopag 18100UXVOTTOV TOU IIPOKAAOUV Tr) Ypryopn
artokAon Tou ouduyoug  eImAuT). [Mpokewiévou va arogeuxbouv TtETo1a
npoBAnpata, xpnoworoleitat (sermmutAéov g RPM) eAdeyyxopevn amooBeon ing
Zuluyoug Avaotpodns Zuppetadopdg (Adjoint Transposed-Convection, ATC), evog
O0pou mou epgaviletal ot ouvexeig ouluyeig elomoelg oppng. H amooBeon 1
analoudpr] AUTOU TOU OPOU XPNOlHoTolEital ouxva ot BiBAoypadia yia 1n
otaBeporoinon ouvexwv ouluymv ermAutewv. Meletdral, 6w, 1 enibpaon mou €xet
autn 1 MIPAKTIKY OtV aKpiBela 1oV mapayoyev eualobnoiag os meputtioelg Orovu 1
RPM ermtuyxdavel amo povn g t otabeporoinon tou ouluyoug ermdutn. H
edeyxopevn amnooBeon g ATC (sepoocov amatteital) amodelkvUetdl TIPAKTIKA



vi

aBAabric Kal OUVEIOPEPEL ONUAVIIKA OtV €Uotdfeld 1oV oulUymv EMAUTOV.
AvtiBeta, n avegédeykin andoBeon tou opou aroucia g RPM eivat apketd ouyxvd
eru¢nuua.  Emiong, xapw g RPM, amogeuyetat n emiduorn ouluyov e§1000e@v
Bao1opEvV Ot HPEOT T TOV PN-OUYKATHIEVOV TIPROTEUOVI®V TTEdinV.

To O6eutepo okéAog g SratpBrig adopd v agpoduvapiky] Bedtiorornoinon
popdpng umo aBeBaidoinieg. e t€tola mpoBAnpata, 1mpocdlopiletal MOoOTKA 1)
anokpilon pag Ioodinrag Eviiagpépovrog (Quantity of Interest, Qol) wg mpog éva
ouvolo petaBAntov aBsBaidtnrag pe g Asyopeveg pebodoug Iloootikoroinong
ABeBaiottag (Uncertainty Quantification, UQ). Autd auidvel onpavukd to
UTIOAOY10TIKO KOOTOG £vog Bpoyxou BeAtiotomnoinong. Xpnotportotouvial ot pébodot
[Mpodtng-Tdgng AceUtepng-Porig  (First-Order Second-Moment, FOSM) «kat
Avartuypatog IMoAuwvupikou Xdoug urmoBonBoupevou amod tn Zuduyny MéBobdo
(Adjoint-assisted Polynomial Chaos Expansion, APCE) yia tov unoAoyiopo tev
600 MPATOV OTATIOTIKOV POTIOV (P€0NG TIPS KAl TUTIKLG artokAtong) piag Qol. To
otafpiopévo abpolopa auteV TV POTIOV XPNOTHONOoIETAl ®G oUuvAapTtnor otoxog. ['a
Hla tétola ouvaptnorn, n BeAtiotomnoinon pe nmapay®wyoug euaiobnoiag amattel g
HIKTEG TIapaymyous s Qol wg mpog 11g petaBAntég oxedlaopou katl aBeBaiotntag.
KaBaog, opwg, apkel povo o umodoylopdg g 1mpoBoArig ToU PNIP®OU TOV HUIKIOV
napayoyev oe OSiwavuopata, avarrtuocoviat duo pébodotl BeAdtiotoroinong pe
poBoAég, ot pFOSM kat pAPCE, oe avuotoiyia pe tg uo pebodoug UQ mou
nipoavapepdnkav. Baoikod kEpHog amod tn xprion tov pebodwv mpoBoAng sival g
10 KOOTOG UTIOAOYIOHOU TOU TIPOBEBANPEVOU PNIPOOU HIKIOV TIAPAYOY®V Oev
augavetat pe o mMAn0og twv petabAntav aBeBalotntag 1) oxedlacpou.

Zunv pFOSM, 10 KkO6010¢ ava KukAo Bedtotoroinong eivat ico pe 4
YroAoyilotikég Movadeg (Equivalent Flow Solutions, EFS), g 6nAadn va Atuvetat to
poBAnua pong 4 gopég. v pAPCE, 10 k6otog eivat ico pe 4L EFS (L sival to
mAnbog 1OV onpeiov SetypatoAnyiag otnv madwvdpopnon).  To képdog eival
ONMAVIIKO aKOPA KAl yld PiKkpo mAnfog petabAntov aBeBatdtntag. H pAPCE éxet
peyadutepo umodoylotiké Kootog aro tyv pFOSM, adld uroloyilel otatiotikég
pOTIEG pe peyaAutepn akpiBeia. Ot dUo pébodotl mapouoiddovial oe mpoBArpata
agpoduvapikig BeAtiotonoinong Hopedrig yia OIPRIEG Kal TupBmdelg posg.  Xug
tedevtaieg, 1 emiduor yiveral pe Xpron Tou povieAou tupbng teov Spalart-Allmaras
Kal g ouduyoug tou e§ionmong.

Ot Blopnyavikég epappoyeg neptdapBavouv v agpoduvapiky BeAtiotonoinon
HOPO®NG OXNUAT®OV EITiyelag PeTadopdg Pe XP1Oon HOVIPI®V ETNAUTOV 0 ouvduaopno
pe v RPM kat plag mépuyag aspookdadoug rapouoia aBeBalot|tov g 11pog Tig
ouvOnkeg pong pe xpron 1wv pFOSM kat pAPCE.

Aggerg RAed1a: Agpoduvapikn Beltiotonoinon Moporig, Zuvexng Zuluyng
MeéBobog, ZtBapog Zyxediaopog, MeBodog Avadpopikev IIpoBoAov, Euotabeia
Elonoewv, Zuluyng Avdotpopn Zuppetagopd, Ilocotkorioinon ABeBaidtntag,
Avarrtuypa IToAvevupikou Xdaoug, OpenFOAM



Arpoviopla

APCE

ATC
BC
CFD
CPs
EFS
FDs
FOSM
pAPCE
PCE
PDE
pFOSM

RANS
RPM
SDs
ug
URANS

Avarttuypa IToAuevupikou Xdaoug urtoBon0oupevou amo 1)
Zuluyr) MéBodo

Yuluyng Avdaotpodn Zuppetagopd
Optakr) ZuvOnkn

Yrodoytotikr) PeuotoSuvapikn
Znpeia EAéyxou

Yrodoytotikr) Movada
[Tenepaopéveg Aladpopeg
[Mpong-Tdagng Acutepng-Porg
nipoBeBAnuévn APCE

Avarttuypa IToAduevupikou Xdoug
Mepikn Atagopikt] E€iowon
nipoBeBAnuévn FOSM

[Toootnta Evdiadépovtog
Reynolds-Averaged Navier-Stokes
MéBobog Avabpopikev [TpoBoAmv
[Mapaywyotl Evawobnoiag
IMoootikomoinon ABeBatotr|tev
Unsteady RANS

Oyxkikég B-Splines



ii

IIeplexopeva

1 Ewayoyn
1.1 Zmoxotrat Aopn NG AATP®BG . . . v v v v o e e e e e

2 H Zuvexng Zuluyng MéOodog

3 Ztabepomnoinon Movipov EmAutov IIapoucia Xpovikig AotaBsiag tng
Porig
3.1 H Mé¢Bodog Avadpopikev [TpoBoAdv . . . . . . . . . .. ...
3.2 BelAuotonoinon Mop@¢ng Mepovopévng Agpotopi|g - .« . . . . .. . .

4 BesAtlotonoinon Mop¢ng uno ABeBaldotnteg
4.1 HTexvik I[IpoBOANG . . . . . . . . . o o ittt e e e e e e e
4.2 BelAtotonoinon Mop@ng tng Mepovopévng Fauvel 14% Agpotoung umo
ABEBAIOTITEG  + v v v v v v e e e e e e e e e e e e e e e e e

5 Buopnyavikég Epappoyég
5.1 BelAuotonoinon Mopgpng ErmBatikou Oxnpatog . . . . . . . . . . . . .
5.2 BeAuotonoinon Mop¢rg Avepobwpaka MotooukAétag . . . . . . . . .
5.3 BeAuotonoinon Mopgrg ITtépuyag uro ABeBadtnteg . . . . . . . . . .

6 Zuvoyn-Iupnecpaopata
6.1 Zrowela [lpwtoturtiag . . . . . . . . . o 0oL
6.2 Anpooieuoeig kat [Tapouoidaoceig oe Atebvr) Eiotnpovikd Iepodika kat
TUVESDIA . . . v vt e e e e e e e e e e e e e e e
6.3 Ilpotaoceig yua MeAdovukn Epyaocia . . . . . . o .00 o000

BiBAoypadia

11
14

16

18
19
21
23

25
26

27
28

28



Kepaiawo 1

Ewcaywyr)

H BeAtiotonoinon pe peBodoug CFD eivar mAéov avarmooracto TUNPA TG
6ladikaoiag oxedlaopol OXeTK®OV  BlOPNXAVIKOV  £PAPHOYOV. Zuvduadet
aplOunukeg pebooug eriduong twv e§1000e®V Por|g e pebodoug BeAtiotoroinong.
[Mapd v eupeia Xprjon aviewv v pebodwv otov oxediaopod, e§akodoubBouv va
UTIAPXOUV  ONUAVIIKEG — TIPOKANOEIG, ot oroieg  oyxetidoviar  pe WMV
ATIOTEAEOUATIKOTNTA, TNV €UOTAbsia Katl v akpiBela tov apldunuikeov pebodaov Kat
povtédav. Tlpokepuévou ot péBodot va eival XpnotikEg, eival ONUAVIIKL) 1] EMMTEUSH
HIKPOTEPROV XPOVOV OlEKTIEPAINONG TRV BEATIOTOTIO|OE®V. Aut] n 6uatpib
oupBdAAel otV avamntudn taxUTteEP®V, £UoTtabV KAl arnotedeopatik®v pebodwv rat
MPAKTIKOV yla BeAtiotonoinorn pe BorBeia tng CFD, akopn kat uro aBeBaitdotnteg.

Z1n BeAtiotortoinon, Siakpivovial Ipia KUpla otolxeia: n ouvaptnon otoxXou, Ot
eploplopol Katl ot petaBAntég oxediaopou. Ta tov umoAoylopod Ing TIPAS TS
ouUVAPTNONG OTOXOU, €rMAUOVIAL 01 £§100W0E1S PONG, 11 AAARG o1 Tipwtevouoeg PDES,
pe xpnon aplunukev pebodov. Ot pebodor mou avamtuxbnkav ot Satpibr)
EVIAOOOVIAL OTI§ AITIOKPATIKEG PeOB60Ug BeATioTOMOINONG, O1 OTIOIEG XP1O110TTIOI0UV
11g SDs 10V ouvaptros®v OTOX0U KAl MEPIOPIOP®V. YTdpxouv diapopeg 1€Bodot
IIOU XPNO1HOIIolouUvVIal yld Tov umoloylopo tov SDs [13, 21], avapeoa 1oug 1
ouluyrng péBodog, 1O KOOTOG TG oroiag eivat ave§dpinto tou MAnboug TV
petaBAntov oxedlaopou [19]. Me ) ouduyr) pébodo, avarmruoostal Kat, KATOmy,
ermAvetal éva ouotnpa ouduywv e§100oenVv yia tig ouduyeig petaBAntég. To KOOTOG
€MAUONG AUTOU TOU OUOCTHAtog eival 1008Uvapo pe 10 KOOTOG £riiduong tov
MPETEVOUOWV €§1000ewv KAl Ba moocotkoroteitar wg pia EFS. Ilapabdeiypata
ouluyav peBodov yia aegpoduvapikr] Bedtiotomnoinon upmopouv va BpebBouv oin
B18Aoypagia [19, 13].

H 6watpiBr) aocyoAeitat povo pe npoBAnpata BeAtiotornoinong popdng, mapott ot
P€B0dO1 TIou avartuxOnkav eivatl yevikotepng Xpronsg. Xpenotpornotouvial TEXVIKESG
mapaperponoinong plag ermagaveilag, onwg ivat ot NURBS, [22] 1] kat tou oykou
TAUTOXPOVeG, onwg ot VBS [7, 12, 20]. Katd n BeAtiotomoinon popdng piag
AepoOTOPnG, Xpnotporoleital emiong kat n texvikyy PARSEC [25], tng ormoiag ot
MAPAPETPOl TEPIKAEIOUV XAPAKINPIOTIKEG TANPOPOPIES yia T YeERUEpia plag



2 1. Elcayeyn

AgPOTOPUNG.

1.1 XZtoyxot xat Aoun tng Awatpiéng

H 6tatpi8r) avartiooetatl oe §U0 OKEAD, emeKTEivoviag nPonyoupeveg S18aKTOPIKEG
duatpBég [32, 17, 6, 2] mave ot ouvexry ouduyr péBodo. To MPOTO OKEAOG
AOXOAEITAl PE TV AVIIPEININON TOV OUOKOAIOV OUYKAIONG TOV XPOVIKA HOVII®OV
TIPWIEVOVI®OV KAl IOV AVIIOTOIX®V OUVEX®V OUUYROV EMAUTOV Of TIEPIUTIOCELS OTIOU
autég Tpokadouvial amnod (ocuvnOwg NIma) XPovikr actdbeia tng porg. Ot ermAuteg
auvtoi eivat pépog g adjointOptimisation 618A1001kng mou avartuxOnke anod v
PCOpt/NTUA ka1 eivat eAevBepng xpriong. To e¥tepo 0kEAOG APOpdA TNV AVATTTUEY
TEXVIKQV BeATiotoroinong unod aBeBaiointeg. H peiwon tou uroloylotikou KOotoug
g Bedtiotomoinong popdng, He 1 Xwpig aBeBaioinieg, ocupnepldapBavopévav
PoBANPATEOV Pe Nrua XPovikr aotdbela, eivat 0 KUPLOG OTOX0G T®V TEXVIKOV ITOU
avarttuxOnkav. ‘OAeg ot péBodot mpoypappatiotnkav oty epyadeodnkn CFD tou
OpenFOAM [16].

Zto Kegpdldawo 2, mapouoiadetal n ouvexng ouluyrg pébodog yia mpoBAnpata
Bedtiotoroinong popeng rou diérnoviat aro tg povipeg RANS efionoslg.  H
avdlduon g tupBng yivetal pe xpnon tou poviedou tupBng twv Spalart-Allmaras.
To kedpdAalo autd arotedet ) Bdon yla 6Aeg tig peBodoug mou avartioooviatl ota
enopeva.

To KegpaAaio 3 mepidapBavel pia rnapouciaocr tou adyopifpou g MeBodou
Avadpopikav I[TpoBoAwv (Recursive Projection Method, RPM) mou xpnotponoteitat
yla I otafeportoinon 1oV POVIPHeV MTPROTEVOVIOV KAl ouduyov ermAutav. [Tépa amo
10 {pa v SUOKOAI)V OUYKAIONG ITOU IApouUctadouv Ol POVIHoLl emAUTeEg Katd
Vv eIiAUcn XPOVIKA UN-HOVII®OV pOowV, TIBETAl TO0 €pOTNIA TOU KATA TTOCO0 1 KON
TIPAKTIKI] NG XPNONG HOVIN®V €MMAUTOV yla BeAtiotornoinon oe TEToleg poEg eivat
arotedeopatikr.  Egetddoviat n okorupotnta autfg tng IPOCEYYIong Kat tad
OKOVOUIKA OQEAN ard tn xpnon wg. Erumdéov, adiodoyeital n emibpaocn mou €xet
n anooBeon g ATC otig SDs pe 1 Borbeia tng RPM. H mpotevopevn TeEXVIKY
napouotaetat oe 2D mpoBAfjpata BeAtiotonoinong popers.  a v eayoyn
ouprniepacpdtav, mnapouotadovial MmpoBAnpata pPe PoEg OTlg OIoieg €KAUOVIAL
otpoBiiot.

To Kegpadawo 4 mapouctdder tg peboboug pFOSM  kat pAPCE  yua
BeAtiotortoinon oxnuatog napoucia aBeBatotniev. Kabepid amd autég pmopet va
OewpnOel  eméktaon  plag  undpyouoag  peBodou UQ.  Zuykekppéva,
Xpnotporoouviat ot péBodot FOSM kat APCE. H BeAtiotomnoinon yivetat yua
ouvaptnoelg OtoXouU mou ouvdudalouv TG OTaTlotkEG poreg piag Qol. Katl ot 6uo
enekteivovial  yla  twpBwdelg poég pe 1 oupnepiAnyn  tou  povigdou
Spalart-Allmaras oto mAaiolo. To Baowkod xapaxtnplotikéd 1wv pFOSM kat pAPCE
etvat ) 6uvatdtnta uroAoyiopou twv SDs g ouvAaptnong otoXou Hpe KOoTog oXedov
{00 pe 1w KoOotog g UQ xdapwv g XPHong Mag TEXVIKNG TPOoBOANG.



[Mapouoialovial mpoBAnpata agpoduvapikng BeAtiotonoinong urno aBeBalotnieg Kat
pe ug duo pebodoug.

Ztwo KepdAao 5 nmapouoialovrat n xpnon g RPM kat tov pFOSM kat pAPCE
oe BlOUNXAVIKEG EPAPHIOVES. Ze autég mepllapBavoviar 1 agpOdUVANIKI)
BeAtiotorioinon mg Hopdrig oxnNuaI®v edagoug, XPNOHOTIOIOVTAG
otabeportotnpévoug  povipoug  ermAuteg kat v RPM, kat puag mrépuyag
agpookdagoug, rapoucia aBeBatotnwv, xpnowponowwviag t1ig pFOSM kat pAPCE.

Kepaiawo 2

H Zuvexng Zuluyng M£Oodog

e auto 1o KepaAaio, TIapouctadetal ) ouvexng ouluyng 1€6060g yia poBAnata rou
diermovrat anod tg aocuprtieoteg RANS e§io0oelg. Ot xpovika povipeg RANS e€lowoetg,
padi pe myv §ioworn poviédou Spalart-Allmaras [26] kat pia PDE yia tov urtoAoyiopo
arnootacs®v, eivat

RP = —SZ =0 2.1a)
szngzz—gzj+§§izo, i=1,2(,3) (2.1b)
R’”“:vl-g—z_aii {’:532]—% <(§Z>2+D (D — P)=0 2.10)
RA:ai (giA>—A%—1:0 (2.1d)

OTT0U ¥; €lval 01 OUVIOTMOOEG TG TAXUTNTAG TOU PEUCTOU, P 1) Tieon diaipepévn) Pe tv

r . o 81;7: ij ' '
ITUKVOTITA TOU PEUCTOU, T;j = (V—H/t) 5= T3, ) Ol taoeg Kat v Kat vy givat to
J i

KIVIMATIKO poiko Kat tupBndeg 1§0deg tou peuctou, avtiototxa. Ot e§lonoeig 2.1a
Kkat 2.1b eivat ot €§1000e1§ CUVEXELIAG KAl OPUNG, avtiotolxa, eve n 5. 2.1c eivat
PDE tou poviédou tupBng tov Spalart-Allmaras mou ermAuvstat yia t) petaBAnm) v.
To poviedo autd xpnowporolei 1o 1Medio IOV ATIOOTACE®V IOV KEVIPOV TV
UIMOAOY10TIKOV KEAIQV arnd ta rmAnotéotepa oteped toixopata, A, rnou unoloyietat
e v eridvon ng e§lomong Hamilton-Jacobi [27], 2.1d. Zwv €§. 2.1c, ot P xat D
etvat 0pol mapaymyng Kat Kataotpopng tupbng, aviiotoixa, mou divoviat oto [24].
To tupBnhdeg 1§wdeg urnodoyidetat amnod ) oxéon v = vf,,. Ot uniddouteg otabepég



4 2. H Zuvexnig Zuduyng M£6obdog

etvat ¢, =0.66666, k =0.41, ¢, =0.1355, cpe =0.622, ¢y, =0.3, cyy =2, ¢, =7.1 Kat
€k €tvat to oupBodo evaldayng Levi-Civita. ‘OAeg padi, ot e§iowoeig 2.1 arotedouv
TG IPWTEVOUOEG ECIOMOETG.

Y& 0Aa ta mpoBArjpata mou akodouBouv, 1o UTIoAOY10TIKO Xwpio {2 mepikAsictat
arto Toug £E1g turoug opinv: eicodot (S)), €§odot (Sp), oteped toxmpata (Sy) kat
erineda oupperpiag (Ss), yia ta oroia woyxvouv ot €§ng BCs

dp . 0A

S[Z'U:’U[,a—nzo,g:l/[,%:l
. = = _— = —:1
S0 on 0. p O’@n O’@n
SW:vl:o,@zo,ﬁ:o,Azo
on
0v ) B ov OA
Ss.l)(n)—o, on 0 for [ I,II, on 0, on 0, on 0 (2.2)

Ty &8 2.2, n mapayeyog J()/On vurodoyiletal katd ) kateuBuvor TOU
povadlaiou kdaBetou oy empdvela tou opiou Savuopatog 1, TO oroio eivat
IIPOCAVATOAIOHEVO TIPOG TO £ERTEPIKO Tou Xwpiou. Ta ¢! kat 7 eival 6Uo povadiaia
Stavuopata, apdAAnda pe 10 S. To mpoto, !, opiletal aubépatta kat 1o devtepo
npokutttel ano t'=n xt!. Eniong, V(ny =0;N; KAl v<t,> :vitﬁ.

IMa mv avarnudn g ouvexoug cuduyoug pnebodou, opidetal mpoTa n oUVAPTN o)
Lagrange,

£:F+/ (WRY+qRP+U,R”+A,R™Y) dQ2 (2.3)
Q

XPNOHOIToI)VIAg Td UMOAOUTA TV e§1000enVv 2.1 Kat éva oUvoAo TOAAATTAAC1A0T®V
Lagrange 1] aAAog ouluywv petaBAntov. AUTéEG eivatl ot u;, ¢, Uy Kat A,, katd
avriotolyia pe g mpeTtevouosg NetaBAntég v;, p, ¥ kat A. Emeidn) ta urnoloirna tov
IPWIEVOUOWV £§1000e®V teivouv oto pundév, ot SDs mg L oG mpog éva oUvoAo
petaBAntov oxediaopou b,, pe n € [1, N|, wouvial pe auvtég ing F. H €§. 2.3
dragpopidetal wg rpog g b, kat divet

£—5—F+/ ‘6Rf+ 5Rp+u~ 6RD+A ORZ dS) (2.4)
bn 0by S0\ 50, T Ten, TV, T 6n, ‘

K1 0 UITOAOY1010G NG arattel ) §1apopion 10V MPOTEVOUCHV ESLONTEDV.
Kdavovtag 1o avdamtuypa ya 1§ mapaymyousg TV UITOAOUTI®OV T®V MIPOTIEUOUC®V



PDEs, 6nng kat otg diatpiBeg [32, 17, 6, 2], egdywviat ot ouluyeig niebiakég PDEs,
8uz~
8@»

ov; Ou 08 dq _ 0w & (. C, o
RZ Uja—xl— jg_q,’j_ a +axz+ 8_%_8_1'1 (VQVU}/}EJ‘M> =0 s Z—1,2(,3)
——

RI—

0 (2.5a)

ATC
(2.5b)
o O D (vEDORN 10700 2 0 (L 00
T ox;, Ox; ¢y O ¢, Ox; Ox; ¢y Ox; Ve ox;
i Co f, 24 (90 0% | 5 (p_py—g (2.5¢)
e 018 Ox; Ox; ¢ N '
RA“:—Zi A, oA +0,vCA=0 (2.5d)
ox; axz

o1 oroieg ermAvovial yia g u;, ¢, Vs Kat A,. O 6pog pe orpavorn ATC oto 6egi
pélog g €§. 2.5b eivar n emovopadopevn Zuluyng Avaotpodrn XuUpHETapopd
(Adjoint Transposed-Convection, ATC) mou, ouxvd, gubuvetal yla ta meploootepa
npoBAnuata ouUyKAloNg Tou mapouoctadoviat Katd IV €mAuon v ouluyov
eSlonoewv. Xug eslomoelg 2.5, ot 6pot (5, C, rat Cx Kal Ol OplaKeg ouvOnKeg
propouv va Bpebouv oto [19]. Auvoviag 1§ e§lonoetg 2.5, o1 SDs tng F' propouv va
UTIOAOY10TOUV Ao v akoAoubn oxéon

oL oF 0Fs; Oz d(n;dS) / 0 [dxy
— = = ni—dS+ | Fs; ds)
5o s 0|y S5, Oi S0 / S, (At s 5
d(nin;) 5(t1t1)
+ / (i) = Sty ) T, =S~ / (0 en) Ti—g5 =S
Sw, Sw,
5(tIItII> 5(t{1t1)
_/ (¢<tﬂ>(tﬂ>) 7-7/] 5b dS / (¢<tﬂ>(t1>+¢<tl>(tll>) TZ] 5b J dS
Sw, Sw,
(2.6)
OIT0U ¢<n><n>:8§ NN, qb(tz)(tzz)— e ’“tltﬂnk Kal out® kabedng. Ermiong, ot 6pot



6 3. Ztabepornoinon Movipev EmmiAutev Iapouoia Xpovikng Aotdabelag tng Porng

Al ®ar AT ivoviar oto [18].

Kepadawo 3

Ztafsponoinon Movipwv Emvtov
IIapouoia Xpovikyg ActaOeiag tng Porg

Auto 10 Kepdlato mapouotddel v RPM [23] pe v omoia avupetonidoviat ot
OUOKOAlEG OUYKAIONG TOV XPOVIKA HOVIP®V EMAUT®OV POTKOV KAl CUVEX®OV OUlUY®V
eC1000E®V, 01 O1101eg epdavidoviatl oe pogg e (frma) Xpovikn aotdbeia.

Atepeuvdtal 1o Katd roéco o1 PLOVIPOol eIMAUTEG PONG Katl Ol avtiototyot ouduyelg,
o1 ortoiotl £€xouv otabeporowBei pe v RPM, priopouv mpdypatt va urootnpi§ouy )
BeAtiotoroinon POPPNS 0 POEG HE NITlA £0G PETPLA XPOVIKY aotdbeta. H xprjon toug
O€ TET01EG TIEPUTINOELS Yivetal Kabapd yia Adyoug e§oikovounong kootoug. Ta v
£CAYOYT) OUUITEPAONAT®YV, XPNotpornotouvial rapadeiypata BeAtiotonoinong oe pogg
otig ortoieg ekAvovtal otpoBidot riocw arod oteped oopata. Ot BeAtiotonoupéveg pe
POVII0UG eTTIAUTEG YEMHETPIEG ertavadioloyouvtatl Xprotporotoviag ermAuteg URANS
eCLOOOEDV.

TéAog, 6ebopévou 611 n RPM ermutpénet ) otaBepornoinorn towv culuyov emMAUTOV
X®pig v analoidpn 6pwv, Propel va urodoylotel pia ouduyrg Avon avagopdg. Ta
1a npoBAnpata nou eetadovial o autnv m diatpBn, autn n Avon eivat aduvato va
urodoytotel xwpig tpv RPM. H Auvon avagopag arotedei éva péco agloddynong tng
enMidpaong twv tEXVIKOV g arnooBeong g ATC Kat tng Xpnong TV IpeevovIiov
“néowv nediov” ov akpibela tov SDs. H emidpaon tov texvikav autev aglodoyeitat
ouykpivovtag 11 SDs mou umoloyidoviat pe ) 6orfela avt®v 1oV TEXVIK®OV £Vavil
1wV SDs 1ou uroAoyiotmkav pe tg Auoelg avadopdg. Autr) i a§lodoynon Ba dooet
XpHotpa mopiopata yia tov Xeplopd duokoAotepnv rpoBAnpatev (BA. 5.2) omou 1)
RPM 6a ouvduaotel pe frua anooBeor g ATC yia audnuévn euotddeia.

3.1 H M£600o6og Avadpopirov IIpoBoArv

H RPM avamtuxbnke aro toug [23] kat eivar pia pébodog orabeporoinong
EMAVAANTITIKOV OXNPATOV TG HOopPr§

Ut =GgU™) 3.1)
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érmou U € RY eivar éva Stavuopa tov (Mpetevoviov 1 ouluydv) ayvoot@v otnv
n-ootn) enavdAnyn. To katd mooo Ba cuykAivel éva T€TO10 emavaAnmuikd oxnpa
eCaptatatl and tug 6otpég ou lakwbiavou pntpwou %. Edv 6Aeg ot 1810tipég
€XOUV TN MIKPOTEPNS TG Povadag, To oXNHa AVAapEVETAl va OUYKAivel ot Auon
U*. To avtiBeto avapéveral va oupBel akoun Kat av povo n peyaduteprn oty oe
péyebog umepBaivel tn povada [3]. Xe pia 1€T010 TIEPIMIOON KAl UTIO OPLOPEVEG
ouvOnkeg, n RPM unopet va e§avaykdoet 1o oxfjpa mg €§. 3.1 va ouykAivel oe pa
Auon.

Apxikd, n pébodog mpénet va mpooeyyioet pla opboxkavovikn Bdon V), €
yla tov unoxopo 1ou opi¢ouv ta N, 18o06taviopata rou oxeti¢oviat pe tig 1810T1ég
mg g—g rou etvat peyaAutepeg anoé 1 povada. Opidoviat Svo unoxopot ou RY: o
avaAoiwtog aotabng uroxwpog P, yia tov omoio n V), anoteAei Bdon kat 1o opboywvio
ovprAnpepda tou Q. Xpnowonowvtag m V), opidoviat ot mivaxeg 1ipoBoAng arno tov
RY otoug P xat Q, avriotoxa, €06 TOV AKOAOUB®V CXE0EDV

RNXNP

P:V;?‘/pT’ Q:[_‘/pv;)T:‘/q‘/;ZT, ‘/q GQNXNq (32)

orou N, = N—N,,. OtotrjAeg Kat ot ypappég tou P eivat opBoyavieg mpog TG ypappég
Kat TG otmieg tou (). To N, eivat apxika pndév kat, otr ouvéxela, avgavetat Kabmg
ta 161081avuopata mou MPOoKAAOUV ATIOKA10N 1/KaAl apyr] OUYKA10TN TIPOCAPTOVIAL
otadiakd otn V,. Ta 181061aviopata mou MmPoKaAlouv ardKA0n AaviKOUV apXikd
otov Q, aAAd, kabwg nipootiBeviat otn V,,, o Q ouppkvavetat evod o P avgaverat.

H U avadvetat oe U =U,+ U, 6nov U, =PU € P xat U, =QU € Q eivat ot
aotabeig kat evotabeig ouviotwoeg tng Avorng, avtiototxa. Ot P kat () epappdloviat
Kat oto 6e§i pédog g €§. 3.1 yia va dwoovv G, = PG ka1t G, = QG. Me autdv tov
dlaxwplopo, 1o ernavaAnmuko oxfpa mg 8. 3.1 ypdgetal oe U0 CUVIOTWOEG,

U}gn+1) :Gp (UZS”), U(E")) (3.3a)
Uq(n—i—l) -G, (U("), U(”)) (3.3b)

p q

H €. 3.3a euBuvetat yua mv anokAon. H Baowkn 16éa miow arnod v RPM eivatl )
avukataotaon mg €. 3.3a pe éva Brjpa Newton-Raphson,

—1
. . 0G,"™ n) 77 n
op-ve (1-52") (@ U -u) e

Yuvbudlovtag Tg e§lonoelg 3.4 kat 3.3b 1mpoxurtel €va  otabeporotnpévo
eENMAvaAnImukoe oxnpa pe to oroio n &§. 3.4 ermAvetat yua myv U, eveo n €§. 3.3b
xpnoworoteitat ya mv U,. Me auté 1o oxnpa, n RPM urnopet va 8onbroet 1
OUYKA10T] EMAUTOV TTOU ATTOKAIVOUV. ZNHPAVIIKO POAO yld TV €ITEUSH AUTOU TOU
oxortoU £xel 0 axkpiBng urodoyopog g Baong V,,. Ilepioocdtepeg mAnpodopieg yia
TG TPOUroBEoelg OUYKAIONG TOU OTAOEPOTIONPEVOU  EMAVAANTITIKOU  OXIATOG
dtvoviat oug [23, 10]. To Newton Brjpa propet va exktedeotei oe TOAU XapnAo
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KOOT0G, UTO Vv 1PoUnobeon 1 6itdaotaon tou P va eival oxeukd pikprn, He oV
TPOTIO TTOU TIapouctddetatl amo toug [23].

3.2 BeAtwotonoinon Mop¢prig Mepovopévng AspoTtopng

Edw yivetat BeAtiotornoinon ng pepovopévng NACAOO12 agpotopng pe OKOIO 1)
peiwon tou Cp kat avdnon tou C'. H otpwtr] por) yUpem ard auty) v agpotoun) yia
Re = 1000 é€xer pedewnbet ot BwBAoypagia [9, 8], oe dapopeg ywvieg ng
adlatapaking pong, Q. I'a yovieg peyadutepeg amo ., 8%, eppavidetal éviovn
anokoAAnon, mnpokaldeitat €rkAuon otpoBidev Kat 1 pon yiveratr pn-povipn.
Ixormpa, n BeAuotornoinon yivetat yua a. = 20°. H napaperporoinon tng
agpotopng eytve pe VBS katl unidpyel £vag reploplopog rmou anayopevet ta CPs va
kaBaAnoouv. Emiong, spappootnke évag meploplopog oto £pBadov tng KABetng
ermgavelag g agpotopns V, datnpwviag mv eviog +0.1% tng apXikng wng tpPng
V® xat n BeAtiotornoinon £ytve pe ) pébodo ISQP [15].

H RPM niétuxe ) otabeporoinon tou poOvVipou AUty pOong Kdl, £MENd, TV
HovVipev ermAutov ouduyov e§lonosav yia ta Cp kat Cf. Apxikd, pedem)dnke 1)
enibpaon g anooBeong g ATC kat g Xprjons IOV MPOTEVOVIOV “NEorV TEdinv”
KAatd Vv emAuon v ouluyov e§lonoenv oty akpiBela tov SDs. H 6uakpion
avdapeoa onv fria kat ave§Edeykn anooBeon g ATC ¢aivetat oto oxnpa 3.1. Me
frua anooBeon ng ATC, n xpnon g RPM eivat anapaitnin ya ) oUyKALON TOV
ouluyov srmdutov. H avefédeykin amodoBeon tng ATC eivat 6co ypeialoviat ot
ouduyeig emMAUTEG TIPOKEIPEVOU va OUYKAivouv Xwpig ) Borbeia tng RPM. O1 SDs
¢aivovtal oto oxnpa 3.2. H nma andoBeon tng ATC bev €xel apvnuiky emidpaon
otV akpiBela tov SDs. Emiong, xpnowponowwviag petevovia “péoa nedia”, ot SDs
etvatl oAU KOVId 0TI OMOTEG TIHES. AVTioTolXa OUPIEPACHUATA IIPOKUITIOUV KAl O
AaAAeg mepirttwoelg aAdd kat yia ug SDs tou (', 0g auty] tnv mepinworn ot ormoieg,
opwg, mapaleinoviat.

H ouyxkAion tou Cp katd ) Bedtiotornoinor, 1 oroia npaypatorofnke eite
Xpnowonoioviag povo v RPM eite o ouvbuaopo pe TS UTIOAOITEG TEXVIKEG,
¢aivetat oo oxnua 3.3. To (Cp pewbnke katd 2.6%. Me 10 téAog g
BeAtiotoroinong, 0Aeg o1 Auoelg ertavadlodoynOnkav arod évav pn-povipo ermiut, o
ort010g PavEP®OE PEIWOT) TOU Cp katd 7%. H BeAtiotonoinon npaypatonoonke
KAl Y€ PN-POVIPoUS €rmAUTeg, 1A ATOTEAéopata g oroiag ¢aivoviat oto oxnpa
3.4. Xpnoyononviag ©g onpeio ekkivnong tn BeAtiotonoinpévn AUon Pe PoViIoug
ermAuteg kat v RPM, n) BeAtiotornoinon pie pn-povipioug eKTEAE0TNKE YPNYOPOTEPd.

Ze autv v nepintoon, n BeAtiotonoinon pe Pn-povipioug ermAuteg dsv propouoe
ev téAel va anodeuyBel. 'Opwg, 10 KOOTOG TG BedtioTonoinong pe pn-povipioug
HE100NKe ONPAVIIKA XPNOTHOIo®vIag ) Auon tng BeAtiotonoinong pe HOvVioug
®G onueio ekKivnong. Auto 1o KOotog Pelwbnke katd 40% akoloubwvtag avtnyv v
MPAKTIKI], Aoyaptadoviag Ott 10 KOotog BeAtiotoroinong pe POVIpoug eriAuteg
Evavil autou HE  PN-povipoug  elval  OUYKPITIKA — APEANTEO. Avtictoixa
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Figure 3.1: NACAOO12 asgpotopr]. Ileploxég amooBeong g ATC. Aprotepa: ‘Hrua
arooBeon g ATC ota 5 mpota kedld prpootd ard tov toixo. Asgfia: Avefédeykin
anooBeon g ATC mpokepiévou va ermteuyBel otabBepomnoinon 1wV oulUymVv EMAUTOV
Xwpig ) BorBsia tng RPM.

1o~ 1o
0.6 3
0.5
2
0.4 . /
0.3 H
c 02 c 0!/ & a
2 Q fa g,
© 0.1 . © L7
p B8 ot -
Q 0 e Q
° 01 J v 2t
-0.4 = 4
_05 1 5 1 1 1
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
ID of CP ID of CP
With RPM —@— With RPM & Mild ATC Damping — > -
Flow-avg. & RPM for Adj. —[=}-- Excessive ATC Damping, Without RPM
FDs

Figure 3.2: NACAOO12 aepotopry. SDs twou Cp wg mpog ug = (apiotepd) xat
y (6e§1d) ouvietaypéveg twv CPs. O &eiking “Flow-avg” uriobnAover 1ig SDs 1ou
urtoloyiotnkav xpnowpornowoviag tr péon tpr v 1000 tedsutaiov nediov tou pn-
OUYKAIEVOU TIP@OTEVOVTOG eTIAUTY (Xwpig 6A8. ) BorBsia tng RPM) eve o avtiototyog
ouduyng erAUTNG oUVEKAVE He T BorBeia tng RPM.
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23.8 Optimized using:
23.7 With RPM —@—
23.6 With RPM & Mild ATC Damping -
235 Flow-avg & RPM for Adj.
Cp 234
D 233 URANS re-eval of:
23'2 Sol(With RPM) —H—
: Sol(Flow-avg & RPM for Adj.)
23.1
0.6
425 . 04
>
]
F 42.0 i 0.2 |
D415 > 0@t P
2
41.0 -0.2
pos L1 a0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
# Optimization Cycles # Optimization Cycles

Figure 3.3: NACAOO12 aepotopr]. ZUykAton Bpoxou BeAtiotonoinong yla peiowon tou
Cp. Ave-Aprotepa: Cp 1) Cp avg (Urodoyiopévo pe mpetevovia “péoa nedia”). Kateo-
Apiotepa: Enavafioddynon tou Cp yia kaBe kUkAo Bedtiotonoinong e évav URANS
ermmAvt). Katw-Ag§ia: Ilepropiopdg oto V. To Sol(“texvikny”) ot Agdavia enetrynong
untoSnA®vel 0Tt 1] AUOT UTOAOYIOTNKE XP1OH0IIOIOVIAS TV EKACTOTE “TEXVIKT)”.

OUNIEPACHATA TPOKUITIOUV KAl yia tr) BeAtiotornoinon pe otdxo v avinon twou Cf.
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(V-V)IVg %

Cp
ffffffff S sommn ] Sge \
- Pema~09060000001 o o A A A
38 | | | | | | | | -0.20 | | | | | | | |
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
# Optimization Cycles # Optimization Cycles
Optimized using URANS starting from:
NACA0012 —©-- Sol(Flow-Avg & RPM for Adj.)
Sol(With RPM) —H—

. _,--“‘

Optimized using URANS starting from:
Sol(With RPM) NACAOQQL? == = =

Sol(Flow-avg & RPM for Adj.)

Figure 3.4: NACAOO12 aepotour). Bpodyog BeAtiotonoinong pe pn-povipoug ermAUteg
via peioon tou Cp. Ave-Apiotepa: Cp. Ave-Asfia: Ilepopopdg oo V. H
Bedtiotoroinon gekivast kaBe Qopd ard AdAn agpotour]. Autég eivar n (apXikn)
NACAOO12 katl autég mou uroloyiotmkav oto 1€Aog tov Bpoxwv BeATiotonoinong mou
¢aivovrat oto oxnpa 3.3. Katw: BeAtuotonoinuéveg Ye@HIETPieg.

Kepaiawo 4

BeAtiotonoinon Mopgng uno ABsBarotnteg

Ze mpoBAfjpata BeAtiotorioinong pop¢rng umnod aBeBaidinieg, opidetat Eéva oUvoAo
petaBAntov aBeBatotnag, ot ¢ € RM. H Qol eivat mAéov pia otoxaotikr moodtnta,
€XEL P€ON TIUN [ KAl TUTTIKY ATOKALOT O, KAl I OUVAPTI 0L OTOX0U £ival AoV 1)
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TTAPAKAT®
J=pup+wop 4.1)

orou w éva Bapog rou otabpidetl tig dUo otatiotikég poreg. Ymeitoepyxoviat pEBodot

UQ 1@V 01010V 0 OKOTTOG £ival 0 UTOAOYI0HOG T®V fip KAl Op. L autiy 1) datpibr,

ol ¢, oxetiovial pe 11§ ouvOnKeg Pong, aKOAoUuBoUvV KAVOVIKI] KAtavopr] Kail dev

urnapxel ouoxEtion petadu toug. Xpnotporolouviat ot pébodot FOSM kat APCE.
Katd ) pébodo FOSM [29, 4], o1 otatiotkég porég divovrat aro

0F | OF
it O =P () xar ol OT = \/ den| 3o | fomi “.2)
Cm |y, 0G|,
orou n F' kat ot (;‘C—i urtoAoyidovtal otig PEOEG TIHES TRV Cppy KAL
+00
i = | (e = tm)les = mi)h()de (4.3)

eival To pNIP®o ouvd1aoTIOPAS TOV ¢, TO OTTo10 £ival H1ay®VIo O TIEPIIIOOT OTIOU O1 Cyy,
, , SF , . . ,
dev ouoyetidovtat petagu toug. Ot Sor urtodoyidovtat pe tn ouveyxr ouduyn pebodo

oe Kootog piag EFS ermmdéov tng ermiduong tov e§lowoenv porg. IIpokepévou va
5J

yivel BeAtiotoroinon pe auvtfv ) pébodo, xpetadoviat ot 5, Tou bivovtatl ano v
MAPAKAT® GXEOT

0J OF w §2F OF

ob, b, U%FOSM) 3¢, 0b,, de;

[Mapatnpeitat 61 6w apkei povo o UOAoy10HoOg NG IPOBOANG TOU PNTPOOU E(ji;n

EMAvV® ot €va diavuopda 2,. O UmoAoylopog Tou PUNntpeou propet va anodeuydet
unodoyidovtag autrv v npoBoArn. Autr eival n 8aon g pFOSM [1], n omoia
ouvduddel v teXVikn poBoAng pe 1 FOSM.

Me 1t pébodo pn-napegpBatikou  Avarntuypatog  [MoAuwvupikou  Xdoug
(Polynomial Chaos Expansion, PCE) [30, 31], n [’ avarttiooetatl g

F(b,c(¢))~ O‘quq(o (4.5)

orou «, etvat ot ouvtedeotég tou PCE, ¥, etvat moAudiaotata opboymvia oAveovupa
kat ¢ eivatl tunoroinpéveg tuxaieg petaBAntég yia ug onoieg woxvet e = ¢(€), avaloya
He Tov TUIo ng Katavoung rmeaviottag. To mAnbog tov ouviedeotwv o, eivat ) =



13

(Opce+M)!

Opc Ml - O1 otatotikEg porteg divoviat ano

Q-1

ue P =ag xar ol = 1S a2 v, (4.6)
q:
Orou
2 oo
10, )2= / W60 (C)d .7

etvat n katd-h, voppa 1oV opboyodvieav ITOAUGVIH®V.

Na tov umoldoywopd twv a4, Xpnowponoleitar maAwvdpounon pe eddaxiota
TEIPAYOVA, £XOVIAG MPAOTA UToAoyioel Tig Tipég g F' oe L onpeia deiypatoAnyiag,
addddoviag Tig TIHES TRV ¢, BE Baon v texviky Latin Hypercube Sampling [14],
oe autv 1 6watpBry. Me ) ouduyn p€bodo, mou umnoAoyidet T1g gc—i o€ KOOTOG 11ag
EFS, aveidputa tou mAnboug M, eivar duvatry n ouddoyr reploodtepng
rmAnpogopiag ava onpeio detypatoAnwiag. Me M ermudéov e€lomoelg yia 1o
poBAnpa elayiotwv tepaywvev, 1o mAnbog L propel va pewwbel. Autn eivat 1
Baoikn 16¢a miow ard ) pébodo APCE. Alapopgavetatl Aowrtdv to ovotnpa Da =3,
pe D € REMHDXQ wq1 3 € REMHD 10 onoio o avarttuypévn popdrn eivat

To(CD) ... W 1 (¢W) F(cW)
Wo(¢H) ... g (¢W) F(c™)
OVo_ Cm
U e GOl Gom IT (cV)
. . . 0 .
' S e ' 4.8
0o (¢(1)) g1 (¢@) ’ Do OF (0(1)) (+8)
Cmr T O g1 OCn 6cm
oVgo_ Cm
Qa(cw) .. Paa (e e SF (ol
%(C(L)) 0Vg_1 (C(L)) Ocpy, OF (C(L))
\_3CM T 9Car 4 \_QCJ\/I dcm ay
D 5

Kadl EMMAUETAL PE EAAYX10TA TETPAY®VA.
I'a tn BeAtiotomnoinor, XPelddetal 0 UTTOAOYION0G TG TIAPAKAT® TTI0COTNTAS

Q-1
6J dag wa|[¥,)|* day,
F
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Ot 1oootnteg (;;ﬂ = (DTD) 'pT gf , TPOKUITIouv Stadopiloviag t Avon tou
ouotpatog g 5. 4.8. Kdavoviag 10 avarmtuypd, IPOKUITEL TEAIKA 1 MAPAKATR
EkPpaon

L

6 &~ OF 52F
I (Ul N 0! @ U]
S ;‘k o (c )+sz P (c®) (4.10)

()

orou ta kY xat zy eival mooduteg Kat ouVIOTMOOES S1AVUORATGOV TPOBOALS

(Blagpopetikég anod autég tg pFOSM), aviiotolxa, Kal gUmeplEXovial Peca OTov
, ~1

nivaxa (DTD) " DT.

4.1 H Texvikn IIpoBoAng
Ma tov urnoloylopo tou mpoBeBAnpévou untpoou otg edlowoelg 4.4 kat 4.10,

Sagopitetat n €€. 2.6 ©g 1MPOG ¢, Kal ektedeital n 1poBoAr) ndve oto z,. Eav

Y = zmi—i, oupBoAidetal pia mpoBeBAnuévn TapAy®yog Hlag moootntag, TOTE 1)

EKPPaoT yla 1o IpoBeBANPEVO NNTPMO PIKIOV MAPAYOY®V divetal aro

OFs; Oz ~ 0(n;dS) / e\ O [0y
= ni—2d ) . 0 R el i) I /9
sw, 0Tk Oby St /sw,, o Q(Aﬂk+Aﬂ’f> 95\ db,

+/ {<a<n>_$<n>< >>7_ij + <u<">_¢<n><n>)/fij]5(§gjj)d5

52 F
2y —————
0Cm0by, | oy

N\ O(tt))
¢ tI tI sz + ¢ tI tI>TZ]) 5b dS
Swp "
S(t el
gb LTy Y Tig + gy tH>7-2j> ds
SWP 0b,
~ . ]ot)
/ {(qﬁ ¢y ( ¢<t1><t11>)7—ij + (¢<t11><t1>+¢<t1><tII>>TiJ:| 5b J dS
Swp "

(4.11)

/\T . , PSP~ <P
orou ot 6pot A ik xat A ik eCaptavial amno tg PetabAnteg v;, D, Tijs Vs Uiy G5 Vo, Ty,

A,. Tia tov unodoylopo toug, egayoviat PDEs Siagopiloviag g e§iowoeig 2.1, ot

-~
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ortoieg divouv

R (4.122)
0z
RY =7, — =0 =1,2 4.12b
i =Y 81']- +U] 6xj 891,‘]- +833'1 ’ ! ’ ( )
B 07 ov 0 |v+vov| o |v+v o
"Oox; Ox; Ox;| o Ox;| Ox; | o Oz
20, OV ov
D—-P D-P 0 4.12
o Oz, 8xj+( )IH_( 7= ( c)
Kat 2.5 ot orntoieg divouv
~ ou.
Ri=—2 (4.13a)
Ox;

pu_g Ov, 00 L O0W 0w 0T 0G = OV ov
! J 8QZ'Z J afEl J 827]' J 8:16]- 817]' 81‘, 0331

0 -~ Cw&\) 8vk
g (i |7 479) Coriiw (8- S22 | anirion)
_C,

0 w 0"Uk i -
~om ( v— eqjkameqlz) =0 i=1,2(,3) (4.13b)

J

L N A AN R VA
Y Oz Y Or; Oz, o 0z Oz, o Oz,
10v, 00 107, a§+2c,,2 o (= a§+~a§
- _ Vg Vo
o 0x; 0r; o00zr;0x; o Oxj 0z, Ox;
—|—<I/aV+l/a > s —f-Val/G
8% ou; % N dv; +% ou; ( Ov; n v,
81/ Or; \Ox;  Ox; ov Ox; \Oz; O,
814 Gul (9@ (9@ =D~ =
— D—-P D—-Pyv,= 4.1
+ 55 o, <a$j + ami)ﬂ )Vat( JWa=0 (4.13¢)
—~ A ~~ N o~
R 990 (A a_) +(ﬁﬁ;+ﬁaa> O+ 57,Ca =0 (4.13d)
Ox; \ "0z,

‘OAot o1 urtoAotrtot 6pot otig e§lonoelg 4.12 kat 4.13 kat ot avtiotoixeg BCs toug
propouv va Bpebouv oto [24].

To kootog ava KuUxkAo Bedtiotornoinong twv pFOSM kat pAPCE avalduetat oto
[24]. Yrmobétoviag Ot umapyouv n, ouctpatd cuduyev e§10W0E®V TIOU TIPETIEL Va
emAUO0UV, 10 KOOTOG avd KUkAo BeAtiotomnoinong pe v pFOSM eivat ico pe 1+
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3n, EFS (1 npwtevov pdBAnua, n, ocuotpata culuywv e§lonoewyv, 2n, ouotrpata
dlapoplopévev Kat énetta rmpoBeBANPEVOV TPETEVOUOKHV KAl CULUYOV e§1000emV). Me
Vv pAPCE, 1o kootog givat ico pe (1+3n,)L.

4.2 BeAtiotonoinon Mopong tng Mspovopévng Fauvel 14%
Agpotopng uno ABeBairotnteg

Ebdw napouoiadetal n enékraon twv pPFOSM kat pAPCE og tupBadeig poég. T'vetat
BeAtiotoroinon popdng g pepovepévng Fauvel 14% aegpotoprg [28] yia peiwon
OV otatotikev porv tou Cp unod V' kat pe, peyadutepa 1 ioa 1@V apXikoOv T0Ug
Tpov. Ot petaBAntég aBeBatdtntag frav 10 PETPO TG TaXUTNIAS Vs, KAl I YeVia
(e TNG adlatapaxtng pong. H por) eixe Re = 10°, Bdoet tng p,.. xat to mAéypa
artotedovuviav ano repinou 48000 keAd. H agpotopr) nmapaperportor)dnke pe VBS,
10 KOUTi rapaperponoinong gpaivetat oto oxrpa fig. 4.1. I'a 1ig ipég aBeBaiotntag,
foo, = 15 m/s rat p,,, = 8 kat ot turukég aroxrrioeg o, = 0.75 m/s xat o, =
0.8°, avtiotoixa. AkolouBwmviag pila MAPAPETIPIKY PEAETN Opola pe autrnv oto [24],
ermAéxOnkav o1 napaxkdaww napdpetpot yia v pAPCE, Opcr =2 xat L=38.

10 oxfua 4.2, gpaivovrat ot SDs tov otatotikwv portwv tou C'p urodoyilopéveg
pe g pFOSM xkat pAPCE. Autég ouykpivoviat pe Ienepaopéveg Atagpopég (Finite
Differences, FDs) ka1 8piokovtal oe KaAr) ouppavia. Ot petaBAntég oxedlaopou eival
ot ouvtetaypéveg twv CPs twv VBS. T'a kabe audopeiwon tov CPs otig FDs, ermvestat
éva ipoBAnpa UQ eite pe n FOSM ette pe tnv APCE. To oxnua 4.2 dsiyvel kat SDs
untodoytlopéveg pe v pAPCE ayvooviag opeg MANPeeg Tig PIKIEG TAapay®youg otV
€. 4.10. 'Onwg gpaivetal, autr) n rapddewyn ivat aBlabng otav urnodoyidoviat SDs
NG pEong TIPS v Qols eve TautdXpova PEIDVEL TO KOOTOG UTIOAOY1opoU SDs g
péong tpng pe v pAPCE oto poo. Ilapopola oupniepdopata poKUIITouV Kat yid
TG SDs dAAeV agpoSUVAPIK®V CUVIEAECTOV O1 OTIOlEG OI®G TTapaleinmovart.

[Mpaypatonowr|bnkav 3 KUkAotl Bedtiotonoinong pe otdxo tn peinon tev o,
tep 200, KAt o, +60¢c,, oe kaBe nepimwon. Ta anotedéopata gaivoviat oto
oxfijpa 4.3. Ot BeAuotonoinpéveg agpotopég gaivoviar oo oxnpa 4.4. Ta v
nepinwon onov J = pc, + 60¢,,, o1 6Uo pébodot apayouv dapopetikd oxrpaTd.

7 9
4 5
1 2

Figure 4.1: Fauvel 14% aepotopr). Ilepiypappa tng agpotoprig Kat to 5 X 5 Koutl
napaperporoinong VBS. Kokkwva/mpaocwva CPss pévouv otaBepd/kivouvial Katd tn
BeAtiotoroinon.
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Figure 4.2: Fauvel 14% agpotour]. SDs tov otatioukev porev t1ou C'p ©g Tpog TG
(aprotepd) kat y (6e€1d) ouvietayuéveg twv CPs (apiOunuéva oto oxfjua fig. 4.1). Ave:
tep, - Kata: oc,,. To péyebog tou Brjpatog kata g FDs ntav ico pe 10 5m.
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Figure 4.3: Fauvel 14% aepotopr). Ilopeia tov BeAtiotonorjoenv pe 1ig pFOSM kat
PAPCE (Opcre =2 and L=28). Apiotepa: jic,. Aefra: oc,,.
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0.1
0.08 Fauvel —-—-
0.06 N \;.\ Sol(jic,,PFOSM)
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Figure 4.4: Fauvel 14% agpotopr). [Meprypappata g ApXIKNG KAl TRV
BeAuotorounpévav agpotopwv pe tg pFOSM and pAPCE (Opcgr =4 kat L = 8) pe
ouvaptroelg otoxou J =puc,,, J = o, + 200, xar J = pc, + 6oc,.

Kepaiawo 5

Blopnyavikeég Epappoyeg

To kepadaio auto Apouctadel Vv epappoyn TV pebodov mou avamtuxdnkav ota
Kepalaia 3 kat 4 oe epappoyeg Blopnxavikou turou. Ztig evotnteg 5.1 kat 5.2, n
RPM xpnowonoteitat yia va Bonbrjoet 1 OUYKAON MPROTIEVOVIOV KAl OUUy®V
eMAUTOV otr) BeATiotonoinon popPng o€ EPAPPOYES Yia TV autokivito8lopnyavia.
AxoAouBouv ernavadiodoynoelg tov Avoswv pe URANS ermduteg. Tty evotnta 5.3,
ot pFOSM and pAPCE yxpnoiporiolouviatl yia BeAtiotornoinon piag mepuyag pe
ouppetpikn Statoprn pe oxkorod 1 peiwon tou Cp Katavépoviag ) otpéyrn otnv
IEPUYA KATA TO EKIETAOPA TNG.
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Figure 5.1: BeAtiotornoinon popdng ermbatikou oxnpatog. 'emperpia tou oxnpatog Kat
2 koutia niapapetponioinong 10 x9x 9 VBS. Ta npaciva CPs kivouviat eve ta KOKKva
pévouv otaBepad.

5.1 BeAtiotonoinon Mop¢rg EmBatirkou Oxnpatog

To oxnpa mou @gaivetat oo oxnpa fig. 5.1 mapaperporoir}Onke pe VBSs kat
BeAtiotonoyOnke yia peiwon tou Cp. Eivat Re ~ 8.8 - 10°, Bdoet tou pnkoug tou
oxfpatog, to mAéypa repieiye 1.2 - 10° xeAwd xat n taxvtnta Tou oxHaTog Hrav ion
ne 33m/s.

H RPM otaBeporoinoe toug ermAUteg MPKOTEVOUO®V KAl OUUYWV £§1000E®V, Ot
oroiol €wg MPOoTveg aréxkAwvav. Ta tov ouduyr emAutn, Ypnotpornou)dnke
ouvdbuaotika Hma anooBeon g ATC, emnpeddoviag povo 1a mpeta 2 KeAld
HIpootd arod ta oteped totxowpata. Méoa oe 11 kukAoug Bedtuiotornoinong, o Cp
pewbnke kata 4.8%, onwg ¢aiverar oto oxnua 5.2. Twa g 3 amd ug 11
YEQUETpieg, £yive emavadloddoynon twv Auvoswv pe URANS ermduteg, ot oroiot
pavépwoav peiwon tou Cp katd 4.9%, MOAU KOVIA OV EKTIINOIN IOV £800E O
otaBeportonpévog Povipog emAutng. Ot BeAtiotoroupéveg PopPeg paivovial oto
oxfjpa 5.3. lNa 11 kukAoug Beduotoroinong, xpslaoinkav 4.5 opeg oe 156
enefepyaoctés (Intel® Xeon® CPU E5-2620 v2, 2.10GHz) pe otabspornoinpuévoug
anté v RPM povipoug ermduteg. Evdeiktuikd, yia 1o tapabupo 0AoKANp®ong 1mou
¢aivetal oto oxfpa 5.2, xpsaoinkav 15 opeg mpokeEvou va yivel pia ¢popda 1
eriidvon tov URANS eglowoenmv otoug i610ug eneSepyaotég (mAnbog kat turog).
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Figure 5.2: BeAtiotornoinon poper|g eruBatikov oxfjpatog. Aptotepa: Meiwon tou Cp
péoa oe 11 xUuKAoug BeAtiotoroinong kat Cp uroAoytopévog pe URANS eruduteg. Agdua:
Zuypwaio Cp eviog tou napabupou odoxkAnpwong tov URANS enavadiodoyrioewv. ‘Oleg
o1 TIEG eivatl S1alpepIéveg Pe TIG AVTioTOIXEG APXIKEG.
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Figure 5.3: BeAuotonoinon popgng ermbatukoy oxApatog. XUYKPlon Hetady g
apx1kng (yrpl Kat tedikng yewperpiag tou oxnpatog. H topr yiverar otov dfova
ouppetpiag. Xt1o BeATOTOMOUPEVO OXNHa (paivovial Ol HETATONIoES IOV KOPBmv ToU
EMPAVEIAKOU TALYHATOG, HE KOKKIVO TTPOG TO E0WTEPIKO, PE UITAE TIPOG TO EEWTIEPIKO TOU

OX1NRatog.
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5.2 BeAtiotonoinon Mop¢ng Avepofmpara MotooukAETag

[Mpaypatomnoteital BeAtiotomnoinon Popdng ToU avepobmpaka 11ag POTOOUKALTAG yia
peioon tou Cp A (6rou A sivat n eprpoodia srugdveia) tng potoocukAétag. O apiBuog
Re~2.6 - 10%, to mAéypa anotedovvrav amo 14-10° keAdid xkal xprnowpono)Onke éva
TXT7X7 kouti mapapetrpornoinong pe VBS yia v mapaperponoinon tou avepodopakra,
oxnua 5.4.

H meputdokointa tng YEOHETPiag Kal NG porng €Kave SUOKOAN 1 OUYKA10L TOU
IPWOTEVOVIOG eITIAUTY, akopn kat pe v RPM. T'a autov tov Aoyo, uroloyiotnkav
Ol PE0eg TIPEG TV TEdIOV TOU PETPIDG CUYKAIPEVOU TPOIEVOVIOG EIMAUTH KAl
Xpnowornomdnkav yla v eriduon v ouluyov e§lonoemv. O ouluyng ermAuing
otaBeporto)Onke pe xprjon g RPM kat tng fmag anooBeong tg ATC, kata v
OTI0la EMNPEEACTNKAV POVO Td 5 TIPWTA KEA1A PIIPOOoTA ATio 10 otepeo Toixapa. 'Etot,
10 C'p A pewbnke kata 4.6%, oxfua 5.5 petd ano 9 kukAoug BeAtiotoroinong. Ot
aldayég ot yewperpia gpaivoviat oto oxnpa 5.6.

O1 9 kUkAo1 BeAtiotoroinong, xpnowpornotwviag v RPM kat frma andoBeon g
ATC, xpetdotxav 20 dpeg o 156 eneepyaotég (Intel® Xeon® CPU E5-2620 v2,
2.10GHz). Autod nrav TEPIMOU TO KOOTOG EKTEAEONG €VOG HOVO KUKAOU
BeAti0TOITOINONG XPNOTHOIIOIOVIAG UI-HOVIHOUG eIAUTEG, UToBEToviag neg oAa ta
npeIevovia nedia anodnrevoviav ot PV, XOPIS EMITAE0V KOOTOG, CUPRGOVA HE
TOV TPOII0 MOV mapouoctaoctnke otoug [11]. Kat otg 6o mepumimoelg tov Vot eV
5.2 xat 5.1, 10 UMOAOY1OTIKO KOOTOG BeATioTOmoinong pe HOVIPOUG €ImAUTEG,
otaBeporoinuévoug pe v RPM, fjtav touddyiotov pia taén peyéboug Hikpotepo
ano ot Ha anartouce 1 XPr o JN-PIOVIH®V ETTAUTOV.

Figure 5.4: BeAtiotonoinon popdng avepobopaka potoocukAétag. Memperpia kat kouti
napaperponoinong. Movo ta npdowva CPs petakivouviav katd tr BeAtiotonoinon.
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Figure 5.5: BeAtiotornoinon poppng avepobmpaka potocukAétag. Aplotepd: ZUYKALOT
wou CpA xatd i Behuotoroinon. To CpA enavadiodoynbnke amd pn-povipoug
EMAUTEG OTIG APXIKEG VEMUETPIEG KAl autég Tou 40U Kat 90U KUKAOU BeAtiotonoinong.
Aefia: Adypappa xpovooelpdg tou C'p A evidg tou apadupou 0AOKANP®ONG KATA TIg
3 enavagiodoynoeig pe URANS ermAuteg.
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Figure 5.6: Beluotoroinon popdrig avepobwpaxka POTOCUKALTag.  Aplotepd:

Katavopr| miieong otnv sunpocdia oyn ng apXikng (apiotepd) kat Bedtiotonoupévng

(6e€1d) potoouxkAétag. Agfra: Méon tpr) g tayxuttag pong oto erinedo ocuppetpiag

G YEDUETPlag YUP® AId TNV apX1KI) Katl BeATIOTONONPEVT YE@UETPIA.
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5.3 BeAtiotonoinon Mopo¢rng IItépuyag uno ABeBairotnteg

Avutr) n epappoyn Baoiletal oe pia ano ta napadetypata tou AIAA Aircraft Design
Optimization Discussion Group (ADODG) (n mnepimioon 3 [5]), ta ormoia
avartuxOnkav pe oxkomd 1 dnuioupyia mpoBAnpdatov avapopdsg yia KoOOIKEG
BeAtlotomnoinong. Ztoxog eivat n peiwon tou Cp AMOKAL10TIKA PE0® TNS KATAVOUTG
G OTPEYNG TG ITIEPUYAS YUP® A0 ASova Iou S1EpXETAl Ao Vv aKPn EKPUYHS.
Eb®, n 6Bedtiotomoinon yiveratr umoBEtoviag TG Ol PETABANTEG Vs KAl (e
aroAouBoUV Kavovikég Katavopés ue f,, = 50m/s, o, = 10m/s xat o, = 5°,
Ou., =1°. XpnowonowiOnkav ot pFOSM kat pAPCE yia 1) BeAtiotoroinon).

H yeoperpia kat ta CPs tou Koutlou mapaperponoinong ¢aivoviat oto oxnpa
5.7. Eivat Re=1.1 - 10% xa1 n em@pdvela adtactatonoinong g omob¢Akouoag yia
tov urtodoytopo tou Cp frav A, = 0.27 [5].

H BeAtiotoroinon popong pe tig pFOSM kat pAPCE éyive yia tipég w (e§. 4.1)
arto 0 €wg 6 pe Brpa 1. Ta v pAPCE, Opcp =3 xkat L = 8. Xpnoworofnke n
péBodog Sequential Quadratic Programming [15] ywa v epappoyr &vog
IEPIOPIOPOU OtV THI) TOU [ic, . N omoia T€0nke ion pe v Tiarn 10U OtV apXlKI)
mepuya. Xto oxnpa 5.8 ¢aivovial ot BeAtiotoroupéveg kat pe tig 6uo pebodoug
rmépuyeg yia w oo pe 0, 3 kat 6. T'a oAeg g BeAtiotonoupéveg Auoetg, Eyilve
a&lodoynorn toug pe ) pébodo Monte Carlo ypnowonowviag 1000 6etypata. Ta

Figure 5.7: Beltiotornoinon popong g ADODGS3 mtépuyag. Kouti mapapetportoinong
pe VBS kat oweig g meépuyag. Kade erminedo and CPs mepiotpépetal yupe arod agova
oU S1€pyetal anod v akpn ekpuyng g nepuyas. Ta kokkiva CPs mou Bpioxkoviat
€MAvVe oto eninedo ocuppelpiag mapapévouy akivta.
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Sol(uc,, pFOSM)

Sol(uc, pAPCE)

Sol(uc, + 30¢,,pFOSM)

Sol(ug, + 30c,.pAPCE)

Sol{uc, + 60, pFOSM)

Sol{uc, + 60c,.pAPCE)

Figure 5.8: BeAuotonoinon poporng tmg ADODGS mtépuyag. Epmpoobia oyn tev
BeAtioTononpévav mrepuyinv vnodoyiopévev pe t1ig pPFOSM kat pAPCE pe ouvaptrositg
otoxou J = pc, xkatJ = pco, +30Ch.

arnotedéopata gaivovratl oto oxnua 5.9 orou oxnuatiouv éva pétwno Pareto oto
erinedo pc, — oc,. To pétwno nou napayet n pAPCE eivat euputepo kat 600 ano
1§ AUOElg KUPlapXoUV £l TV aviiotolxwv mou tapnyaye n pFOSM. ®a
Xpetadovtav meploootepa onpeia MPOKEIPEVOU va e§axBouv ouprnepaopata yia OAeg
TG TePlox€g Tou petwrou. To kootog BeAtiotonoinong nrav ico pe 5 EFS pe wmyv
pPFOSM xat 40 EFS pe v pAPCE.
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Figure 5.9: BeAuotonoinon popong mg ADODGS miépuyag. Méwwno Pareto tov
BeAtiotoroupévaev Avceav oto ertinedo puc, — oc,. Ta 8Uo pétwna vnodoyiotnkav pe
11g pFOSM xkat pAPCE 6pag ta onpeia oto diaypappa ernavagiodoyrdnkav pe t pebodo
Monte Carlo (1000 &etypata).

Ke¢dpalawo 6

Tovoyn-Tupnepdaocpata

H 6watpBr) enekteivel mponyoupeveg pebodoug asgpoduvapikng Bedtiotornoinong
popdng rou otnpidovial oty ouveyxr] ouduyr) pEBodo. Or cuveloPpopég apopouv dUo
6lakpitoug topeig:

¢ Tnv aviipet®morn SUOKOAIOV CUYKAL0NG TOV POVIHGV MTPETIEVOVIRV (POTKOV) Kat
(ouvexmv) culuyaV EMAUTOV, 01 OTIOIEG TIPOKAAOUVIAL ATIO 1] XPOVIKI] aotdbeia
mg po1|S.
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* Tr BeAtuotorioinon umno aBeBalotnteg.

O1 pébodotl mou avamuyxbnkav £€Xouv ®¢ KOO TAPOVOHRAOTY] T HEI®on Tou
UTIOAOY10TIKOU KOOToUG g BeAtiotoroinong. Ot pébodot eival yevikng xprong, dev
nieplopidovial oe mpoBArjpata BeAtioTomnoinong popepng Kat Propouv KdAaAdiota va
Xxpnowonoinfouv oe dAloug Topeig BeAtotonoinong pe 1 CFD, onwg,
BeAtlotoroinon tomodoyiag.  Emiong, mapdéu n mapouciaocn tov pefodwv €ytve
Sexwpilotd, o1 péBodot priopouv va cuvbuaoctouv.

6.1 XItoixeia [Ipwtotuniag

* H peiwon 10U umoloylouikou Kootoug tng Bedtiotomoinong popdnsg ya
CQOUUTTIEOTEG POEG TIOU TIAPOUOIAdOUV NIid XPOVIKN aotdbela PEow NG
AVTIPETIOITONG TV OUOKOAI®WV OUYKAIONG TOV HOVIH®V IPRTEUOUCRNV KAl
ouluyov edlowoenv pe xprnion g RPM. Emiong, 6eiyvetal mog propest va
pewwbel 10 KOOTOG £vOog Bpoxou Bedtiotoroinong, BaclOpévou 0e XPOVIKA
HN-povVipIoug €TTMAUTEG, O POEG OTOU €KAUOVIAlL OTpoBilAol, av rmponynOet
BeATioTOTTIOINON 1€ OTABEPOTIOINIEVOUG POVIIOUG ETIAUTEG.

* 'Eywve aloddynon 61adedopévav teXVIK@OV TMOU XPNOolHomoouvial yla TV
urepBaon v SUOKOAIMV CUYKAIONG TOV IIPAOTEVOVI®V KAl OULUY®V ETTMAUTOV
®G TIPOg TNV arkpiBeia tov SDs. AUTEG €ival 1 XPHOn TPKATIEVOVI®OV “PUEC®V
nediov”’ kat n anooBeon g ATC. IIpoékuyav ta €§rg MPAKTKA ropiopata
and 1w xpnon s RPM: H Ama amodoBeon g ATC, n omoia eivat
ATIOTEAEOPATIKY] POvVo oe ouvépyela pe tv RPM, eivar aBAabrig, eve n
ave§edeykin anooBeon TpErnet va anodevyetat. H xprion tov mpeievoviov
“Déowv ebiav” dev paivetal va €Xe1 TOGO APVNTIKO ATIOTEAEOHA, OP®G, PIopel
va anodeuyOel evieddg oe TTOAAEG mepuTi®Ooetg pe v RPM.

* H avamuén kat mapouoiaocn, yla rpoty ¢opd ot Bi8Aoypadia, piag veéag
pebodou, mou ovopaldetar pAPCE, yuwa Bedtotonoinon popdpng umod
aBeBalotneg pe  XAPNAOtEPO KOOTOG OUYKPLWVOPEVI] HE TO  KAAOIKO
pn-ntapepBatiko PCE rou Baoidetatl oe maAvdpopnon. To xapndotepo KOotog
ETIITUYXAVETAL Xapn ot oupnepidnyn SDs tng Qol wg mpog 11g petaBAntég
aBeBaidtntag, vrtodoylopéveg pe ) ouduyr) pébodo, oty taAvépopion, dixwg
Op®G va yivetat danavnpog 0 UToAOYIoH0G TV SDS TV OTATIOTIKOV POTI®V.
Auto erutuyyavetat pe tov ouvduaopo g ouduyoug pebodou kat tng eubeiag
dlapoplong pe pa teEXVIKY IPoBoAnG.

* H enéxktaon v 600 pebodwv pAPCE kat pFOSM oe tupBmdetg pogg, o1 oroieg
EIMAUOVIAL PE XPON TOU Poviédou tupbng twv Spalart-Allmaras. T'a tov
okoro auto, tooo 1 PDE tou poviédou 6oo kat 1 ouduyng tng dadopiotnkav
®G TIPOG T1§ petaBAntég aBeBarotntag (rtou oxeti{ovial pe TG ouvOrKeg porg).
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6.2 Anpooieuoeilg kat Ilapouoiaosig oe AeOvyy Ermmotnpovika
IIeprodika kat Zuvedpla
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Applications in steady and unsteady shape optimization in fluid
mechanics”. 8th OpenFOAM Conference, Digital Event, October 13-15,
2020.

e E.M. Papoutsis-Kiachagias, M. Farhikhteh, T. Skamagkis and K.C.
Giannakoglou. “Aerodynamic Shape Optimization of the MEXICO Wind
Turbine Blade using the Continuous Adjoint Method”. EUROGEN 2021,
14th International Conference on Evolutionary and Deterministic Methods

for Design, Optimization and Control, online from Athens, Greece, June
28-30, 2021.

e EM. Papoutsis-Kiachagias, K. T. Gkaragkounis, A.-S.I. Margetis,
T. Skamagkis, V.G. Asouti and K.C. Giannakoglou.
“adjointOptimisationFoam: An OpenFOAM-based Framework for
Adjoint-assisted Optimization”. EUROGEN 2021, 14th International
Conference on Evolutionary and Deterministic Methods for Design,
Optimization and Control, online from Athens, Greece, June 28-30, 2021.

¢ Th. Skamagkis, E.M. Papoustis-Kiachagias, K.C. Giannakoglou.
“Adjoint-Based Aerodynamic Shape Optimization for Turbulent Flows in
the Presence of Uncertainties Using the Method of Moments and
Projections”. 17th OpenFOAM Workshop, Cambridge, UK, 11-14 July,
2022.

* Th. Skamagkis, E.M. Papoutsis-Kiachagias, K.C. Giannakoglou.
“Aerodynamic  Shape Optimization Under Uncertainties using
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Adjoint-assisted PCE and Projections.” ASMO-UK 12 / ASMO-Europe 1 /
ISSMO Conference on Engineering Design Optimization, Leeds, UK, 18-19
July, 2022.

6.3 IIpotaoceig yia MeAdovtikn Epyaocia
I'a v RPM:
¢ [Iepattépe autopatonoinon g emAoyng MAPAPETPROV.

¢ Yuvbuaopog g RPM pe évav oculeuypévo nmpwtevovia 1] oudeuypévo ouluyr)
EMMAUT yla au§npévn euotdbela Kal eUKOAia Otov UOAOy1oud tou actaboug
UTIOX®POoU Je areubeiag xprjon tou lakmBiavou pnrpwou.

IMa v texviky npoBoAng:

* Yuvbuaopog g 1eEXVIKNG TpoBoAng pe 1 pebodo Oeutepov pomev e
akpiBela &evutepng tagng (Second-order second-moment, SOSM) o6rou
eppavidovial 6pot avatePnNS tAgng.

* Algpeuvnon 10U Katd 1oco 1 péBodog pAPCE pmopel va enwdeAnBel amo 1n
XP1ON KAAUTEPROV TEXVIKWV SerypatoAnyiag.

* Yuvbuaopog 1ng TEXVIKIG TMPoBoAng pe mapaddayeg g pAPCE mou eivat
61a0¢o11eg otn BBAoypadia.

¢ Enéxktaon g TEXVIKNG IMPOBOANG yla Xprjon pe dddla povieda tupbng ot
ouduyeig emAUTEG TOV omoiwv eivatl 61abéotpot, eite otV avoiytng PooBaong
elte ov owkela, adjointOptimisation 618A1001K1).
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