
NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ARTIFICIAL INTELLIGENCE AND LEARNING SYSTEMS LABORATORY

DATA SCIENCE AND MACHINE LEARNING

Development of a Complete Marine Data
Science Pipeline:

From Data Collection to Model Deployment

A thesis written in the Artificial Intelligence and Learning Systems
Laboratory in partial fulfillment of the requirements for the completion of

the Data Science and Machine Learning Postgraduate Studies
Programme.

Written by
Spyros Rigas

Supervised by
Prof. S. Kollias

Co-Supervised by
Dr. P. Tzouveli

Athens, March 2023

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ARTIFICIAL INTELLIGENCE AND LEARNING SYSTEMS LABORATORY

DATA SCIENCE AND MACHINE LEARNING

Development of a Complete Marine Data
Science Pipeline:

From Data Collection to Model Deployment

Written by
Spyros Rigas

Supervised by
Prof. S. Kollias

Co-Supervised by
Dr. P. Tzouveli

Examined and evaluated by the Advisory Committee on March 3rd, 2023.

(Signature) (Signature) (Signature)

. .
Prof. S. Kollias Prof. G. Stamou Asst. Prof. A. Voulodimos

Athens, March 2023

© 2023 Spyros Rigas

I hereby declare that this thesis is my own original work and, to the best of my knowledge and belief,

it does not breach copyright or other intellectual property rights of a third party, or contain mate-

rial previously published or written by a third party, except where this is appropriately cited through

full and accurate referencing. Additionally, the present thesis does not contain material which to a

substantial extent has been accepted for the qualification of any other degree or diploma of a univer-

sity or other institution of higher learning, or substantial portions of third party copyright material.

Copying, storage and distribution of this work, in whole or in part, for commercial purposes is strictly

prohibited. Reproduction, storage and distribution is permitted only for non-profit, educational or

research purposes. It is stressed that the contents of this thesis do not represent the official positions

of the School, the Department, the Supervisors or the Advisory Committee.

(Signature)

.

Spyros Rigas

If I were to give a summary of the tendency of our times, I would say, Quantity. The

multitude, the mass spirit, dominates everywhere, destroying quality. Quantity, instead

of adding to life’s comforts and peace, has merely increased man’s burden.

E. Goldman, 111 years ago

ΠΕΡΙΛΗΨΗ

Η εφαρμογή τεχνικών της επιστήμης δεδομένων και της μηχανικής μάθησης στη
ναυτιλία έχει αναδειχθεί ως ένας πολλά υποσχόμενος ερευνητικός τομέας με ση-
μαντικό δυναμικό για τη βελτίωση της απόδοσης των πλοίων και τη διασφάλιση
ασφαλών ναυτιλιακών επιχειρήσεων, λόγω της πληθώρας των δεδομένων που δη-
μιουργούνται από διάφορους αισθητήρες και συστήματα. Παρά το δυναμικό αυτό,
η ναυτιλία έχει καθυστερήσει να υιοθετήσει την ψηφιοποίηση και την εφαρμογή
προηγμένων τεχνικών ανάλυσης. Η παρούσα εργασία αποτελεί ένα βήμα προς την
κατεύθυνση της τεχνολογικής εξέλιξης και της αυτοματοποίησης στη ναυτιλία, πα-
ρουσιάζοντας μια προσέγγιση για την ανίχνευση ανωμαλιών στα συστήματα των
πλοίων μέσω εφαρμογής της μηχανικής μάθησης.

Πιο συγκεκριμένα, εξετάζεται η εφαρμογή αλγορίθμων ανίχνευσης μονομεταβλη-
τών και πολυμεταβλητών ανωμαλιών, με στόχο την παρακολούθηση των συστημάτων
των πλοίων και την ανίχνευση πιθανών προβλημάτων πριν αυτά καταστούν κρίσιμα.
Συγκεκριμένα, χρησιμοποιείται ένα μοντέλο συνελικτικού νευρωνικού δικτύου με
Spectral Residuals (SR-CNN) για την ανίχνευση μονομεταβλητών ανωμαλιών, ενώ
για την ανίχνευση πολυμεταβλητών ανωμαλιών χρησιμοποιείται μια προηγμένη έκ-
δοση του μοντέλου ανίχνευσης πολυμεταβλητών ανωμαλιών σε χρονοσειρές μέσω
νευρωνικών δικτύων γράφων με attention (MTAD-GAT) της Microsoft.

Στο πλαίσιο της μελέτης αναπτύσσονται τρία διαφορετικά είδη συνόλων δεδομέ-
νων για την εκπαίδευση και την αξιολόγηση της απόδοσης των μοντέλων: ένας τύ-
πος συνόλων δεδομένων με τεχνητά εισαγόμενες ανωμαλίες που χρησιμοποιούνται
για την προ-εκπαίδευση και την αξιολόγηση των μοντέλων πριν την έκδοσή τους
(deployment), ένας τύπος συνόλων συνθετικών δεδομένων χρονοσειρών τα οποία
χρησιμοποιούνται για την αξιολόγηση της εκφραστικότητας των μοντέλων, χρησι-
μοποιώντας είδη ανωμαλιών με τα οποία τα μοντέλα δεν έχουν έρθει σε επαφή, και
ένας τύπος συνόλων δεδομένων που περιέχουν τα δεδομένα που εκπέμπονται από
τους εν λειτουργία αισθητήρες των πλοίων.

Στην εργασία αναλύεται επίσης η διαδικασία data engineering που ακολουθείται
για την κατασκευή ενός πλήρους pipeline, το οποίο περιλαμβάνει την εισαγωγή
δεδομένων, όλους τους απαραίτητους υπολογισμούς, την αποθήκευση των δεδομέ-
νων και την έκδοση των μοντέλων. Αυτό επιτυγχάνεται αξιοποιώντας τις προηγμένες

i

δυνατότητες των υπολογισμών σε υπολογιστικό νέφος (cloud computing) και ειδι-
κότερα τις υπηρεσίες που παρέχονται από το οικοσύστημα υπολογιστικού νέφους
Azure της Microsoft.

Τα αποτελέσματα που προκύπτουν από την εκπαίδευση και αξιολόγηση των μο-
ντέλων στο σύνολο δεδομένων με τις τεχνητά εισαγόμενες ανωμαλίες δείχνουν πόσο
πολλά υποσχόμενη είναι η προτεινόμενη προσέγγιση στην ανίχνευση ανωμαλιών
σε διαφορετικούς τύπους δεδομένων και συνθηκών. Αξιοσημείωτο είναι το γεγονός
πως σε δύο περιπτώσεις τα μοντέλα καταφέρνουν να ανιχνεύσουν ανώμαλη συ-
μπεριφορά σε δύο συστήματα πλοίων χρησιμοποιώντας την πραγματική ροή από
τους αισθητήρες τους: κατόπιν επιθεωρήσεων από μηχανικούς που ακολούθησαν
μερικές ημέρες μετά τις προβλέψεις των μοντέλων, αυτές συσχετίστηκαν με παρα-
τηρήσιμες βλάβες στα αντίστοιχα συστήματα των πλοίων. Η εργασία αυτή παρέχει
αξιόλογες πληροφορίες για τη δυνατότητα της μηχανικής μάθησης να επανασχε-
διάσει τον τρόπο με τον οποίο πραγματοποιούνται οι ναυτιλιακές επιχειρήσεις και
προσφέρει κατευθύνσεις για μελλοντικές έρευνες στον τομέα.

ΛΕΞΕΙΣ�ΚΛΕΙΔΙΑ

ναυτιλιακές επιχειρήσεις, δεδομένα χρονοσειρών, ανίχνευση ανωμα-

λιών, SR-CNN, νευρωνικά δίκτυα γράφων με attention, μεταβαλλόμενοι

αυτοκωδικοποιητές, κατασκευή συνόλου δεδομένων, υπολογισμοί στο

cloud, data engineering

ii

Abstract

Theapplication of data science andmachine learning techniques to themaritime industry

has emerged as a promising field with significant potential for improving vessel perfor-

mance and ensuring safe marine operations, due to the abundance of data generated by

various sensors and systems. Despite this potential, the industry has been slow to em-

brace digitalization and the application of advanced analytics. This thesis represents a

step towards the direction of automation in the maritime industry, presenting an ap-

proach for detecting anomalies in shipboard systems through the application of machine

learning.

More specifically, the deployment of univariate and multivariate anomaly detection algo-

rithms is studied, with the aim of monitoring the health of vessel systems and identifying

potential issues before they become critical. The Spectral Residual Convolutional Neural

Network model is used for univariate anomaly detection, while an advanced version of

Microsoft’s Multivariate Time-Series Anomaly Detection via Graph Attention Network

model is used for multivariate anomaly detection.

As part of the study, three separate dataset types are developed to train and evaluate the

performance of the anomaly detection models: a family of datasets with artificially in-

duced anomalies that is used for the pre-training and evaluation of the models before

deployment, a family of synthetic time-series datasets which is utilized to evaluate the ex-

pressivity of the trained models using unseen types of anomalies and a family of datasets

corresponding to the operational sensor data feed.

Thework also includes a comprehensive analysis of the data engineering process followed

for the construction of a complete pipeline, which involves the ingestion of data, all nec-

essary computations, data storing and models serving. This is achieved by leveraging the

advancements in cloud computing and in particular the features and services provided

by Microsoft’s Azure Cloud Ecosystem.

The results achieved from training and evaluating the models in the artificially induced

anomalies dataset demonstrate howpromising the proposed approach in detecting anoma-

lies in different types of data and settings is. Importantly, two instances of the deployed

models are able to detect anomalous behaviour in two vessel systems using their sensors’

live feed and consequent inspections by engineers on-board validate the models’ predic-

tions. This thesis provides valuable insights into the potential for machine learning to

iii

revolutionize the way marine operations are conducted, and offers a roadmap for future

research in the field.

Keywords
marine operations, time-series data, anomaly detection, SR-CNN, graph
attention networks, variational autoencoders, dataset construction,
cloud computing, data engineering

iv

Acknowledgements

The completion of the present thesis would have been nothing but fiction, were it not for

some people to whom I owe my heartfelt gratitude.

First and foremost, I would like to thank my main supervisor, Prof. S. Kollias, for trust-

ing me with the thesis’ topic and agreeing to supervise it. My thesis would not have been

possible without the guidance and mentorship of my Co-supervisor, Dr. P. Tzouveli,

whose insights and encouragement have been invaluable. I would also like to thank the

members of my thesis committee, Prof. G. Stamou and Asst. Prof. A. Voulodimos, who

generously shared their time to read and review this work.

I am indebted to my friends and family for their unwavering support and especially my

partner, Pinelopi. I am also thankful to Prof. P. Mavropoulos; although our relationship

began as a purely academic one during my earlier Physics studies, Phivos has become

a dear friend of mine, who has helped and guided me numerous times along the road.

This list could not leave out the wonderful friends I made during my studies in the DSML

programme, to whom I am grateful for their companionship throughout this journey.

Finally, I am truly indebted to SeaQuest Marine Technologies for trusting me to concep-

tualize and organize the project presented here and for providing me with the resources

required for its realization. In addition, I owe a special thanks to Alex, my colleague and

friend, who provided insightful suggestions about color combinations and other aspects

related to the figures, which were tailor-made for the purposes of the present thesis. Last

but not least, I would like to thank “Captain Nick” for his constant support, guidance and

friendship.

v

vi

Contents

1 Introduction 1

1.1 Thesis Scope & Structure . 2

1.2 Related Works . 3

2 Theoretical Framework & Algorithms 5

2.1 Univariate Anomaly Detection . 6

2.1.1 Spectral Residuals & Saliency Maps . 6

2.1.2 The SR-CNN Model . 8

2.2 Multivariate Anomaly Detection . 10

2.2.1 Graph Neural Networks . 10

2.2.1.1 Graph Attention Networks . 12

2.2.1.2 Static vs Dynamic Attention . 14

2.2.2 Gated Recurrent Unit Networks . 16

2.2.3 Variational Autoencoders . 19

2.2.3.1 VAE Decoder: A Generative Model 20

2.2.3.2 VAE Encoder: An Inference Model 22

2.2.4 Piecing Everything Together: the MTAD-GATv2 Model 25

3 Data Collection & Datasets 29

3.1 Sensors and Studied Systems . 29

3.2 Data Collection . 33

3.3 Constructed Datasets . 35

3.3.1 Dataset Type #1: Controlled Anomaly Simulation 35

3.3.2 Dataset Type #2: Synthetically Generated Time-Series 38

3.3.3 Dataset Type #3: Operational Vessel Data 40

4 Cloud Data Engineering 41

4.1 Azure Cloud Ecosystem & Solution Architecture . 41

4.2 Data Ingestion . 43

4.3 Delta Lake & Medallion Architecture . 46

4.4 Computations & Serving . 47

vii

5 Implementation & Results 51

5.1 Models Implementation . 51

5.2 Pre-Training & Evaluation . 53

5.2.1 Evaluation of the SR-CNN Models . 55

5.2.2 Pre-Training of the MTAD-GATv2 Models 59

5.3 Expressivity Evaluation . 63

5.4 Fine-Tuning and Case Studies . 65

5.4.1 Case #1: Cracks on Scrubber Towers . 65

5.4.2 Case #2: Shaft Misalignment in Motor-Pump Systems 67

6 Conclusion 69

6.1 Outlook . 70

Appendix 71

A. Different Types of Attention . 71

B. VAE ELBO Calculation . 74

C. Anomaly Distribution for Dataset Type #1 . 76

References 80

viii

1Introduction

The maritime sector is a crucial player in global trade and commerce, with ships being the backbone

of the transportation of goods and passengers across oceans on a daily basis. Evidently, ensuring

the smooth operation of these vessels is paramount to the efficiency and reliability of the industry.

With the growth by leaps and bounds that the fields of Internet of Things (IoT), Big Data and Ma-

chine Learning have seen in the past few years [1,2], there is enormous potential to optimize the per-

formance of vessels and improve safety, thus fundamentally transforming the way marine operations

are conducted. Despite these advances in technology, the maritime sector has been slow to embrace

digitalization [3], missing out on opportunities to improve efficiency and reduce operational costs.

A modern ship is a highly complex system, comprising hundreds of systems and sub-systems lo-

cated in different locations and serving a variety of purposes. As such, one of themost promising ways

to harness the power of technology is to automate the processes that monitor the health condition of

these systems and alert engineers and stakeholders whenever certain actions need to be taken for their

maintenance or possible repairs. In the past, this task was performed through periodic inspections

and engineering checks, a highly non-scalable practice that could only be parallelized by increasing

the number of engineers on board [4]. To address this limitation, some vessels began incorporating

sensors to automate the monitoring process and established rule-based alerting systems [5,6] based on

sensor readings. For instance, by defining a certain width threshold, a sensor monitoring a steel pipe’s

width is able to transmit an alert if its readings drop below said threshold. Of course, this rule-based

approach has its own limitations, including the inability to analyze multiple signals and make deci-

sions based on combined component behavior. Additionally, this approach is very naive and requires

a prior understanding of the system’s behaviour in each specific environment (the rules cannot be set

arbitrarily), which is almost never the case. Finally, data from normal operating conditions may be

continuously collected, however data from known faults are substantially rarer, especially if they are

labeled.

A more advanced way to automate this process of monitoring and alerting is through the imple-

mentation of anomaly detection machine learning algorithms [7]. These algorithms are designed to

identify deviations from a learnable normal behavior, which could indicate potential problems before

they cause costly disruptions in the operation of the vessel. A major advantage of this approach is that

it can be done through the analysis of single sensors, as well as by monitoring the health of multiple

sensors that may be located on a single system. Additionally, no prior knowledge of the systems is

required, as long as there are available data, and the data vectors themselves do not necessarily need

1

Thesis Scope & Structure2

to be labeled. Of course, there are still challenges that need to be addressed, such as the handling of

noisy and incomplete data, or ensuring the privacy and security of collected data. The application of

anomaly detection in the marine industry is still in its early stages. Nevertheless, there is increasing

interest in using machine learning to analyze data from ships and identify potential problems before

they occur [8–14]. The digitalization of the shipping industry and the application of machine learning

in marine operations holds great promise, and some may argue that it is long overdue.

1.1 Thesis Scope & Structure

The present thesis investigates the application of machine learning in the field of marine operations.

The focus is on the application of algorithms andmachine learningmodels to detect anomalies in data

collected from sensors installed on vessels, which provide various parameters related to the health

of systems, such as temperature and vibration readings. The objective of the study is to streamline

the process of anomaly detection, making it faster and more accurate through the use of machine

learning models. The study aims to demonstrate the feasibility of using machine learning in a real-

world scenario, where large amounts of data are generated continuously at large scales. The scope of

the thesis includes the design and implementation of a complete pipeline that ingests, pre-processes

and stores the data collected from the sensors, as well as trains and deploys the machine learning

algorithms. This pipeline is based on cloud services, which allow for scalability and efficient processing

of the data. The study also includes a thorough evaluation of the performance of the machine learning

models and provides insights into the challenges and opportunities in this field.

The structure of the thesis is organized in a clear and concise manner to provide a comprehensive

understanding of the subject. Chapter 2 lays the foundation by introducing the theoretical framework

of anomaly detection, covering both univariate and multivariate approaches. It provides a detailed

examination of the machine learning models and algorithms used throughout this work, including a

formal description of eachmethod. Chapter 3 focuses on the data used in the experiments. It provides

an overview of the sensors used to collect the data, the data collection process, as well as the result-

ing datasets used to train and evaluate the machine learning models. Chapter 4 covers the technical

aspects of the machine learning operations and data engineering. It describes the cloud services and

pipelines used for all the involved stages, from data ingestion and pre-processing to the deployment

of the trained models. Chapter 5 delves into the implementation and training of the machine learn-

ing models. It presents the experiments performed with the trained models, and provides a detailed

discussion of the results. This chapter is critical in understanding the models’ performance and the

validity of the applied methods. Finally, Chapter 6 provides a conclusion to the study, summarizing

the results and their implications. It also includes an outlook for future work, proposing potential

avenues for further research and development.

Introduction 3

1.2 Related Works

The use of anomaly detection algorithms in monitoring systems on vessels is an evolving field. De-

spite the growing interest in this area, a large volume of related work has been done by companies

operating in the maritime sector, rather than academic institutions. As a result, much of the research

and development being conducted in this field is proprietary, and not readily available to the public.

For this reason, there are limited publicly available publications on the subject of monitoring systems

on vessels and alerting through anomaly detection algorithms in real-world scenarios.

Among the publicly available ones, some studies have demonstrated the effectiveness of anomaly

detection in themaritime industry by utilizing a series of different algorithms. Ellefsen et al. [10] train a

Variational Autoencoder on carefully pre-processed data in order to classify velocity and acceleration

measurements from autonomous ferries as anomalous or regular. Brandsæter et al. [8] employ Auto

Associative Kernel Regression (AAKR) [15] for signal reconstruction and the sequential probability ra-

tio test [16] for anomaly detection on data from sensors that cover different aspects of vessel operations.

The same authors also develop a cluster based version of the same algorithms [9] to perform anomaly

detection on diesel engine-related data, such as engine speed and power or bearing temperature. Last

but not least, Kim et al. [11] propose an ensemble-based method for anomaly detection, including a se-

ries of different algorithms, such as Local Outlier Factor (LOF) [17] or Locally Selective Combination

in Parallel Outlier Ensembles (LSCP) [18].

Other studies do not focus on the machine learning models as their primary research point, but

rather on the different types of shipboard systems they can monitor and detect anomalies on, such

as engines or generators. Qu et al. [13] focus on diesel engines, which are the main driving force for

various civil ships, and perform anomaly detection on vibration data using deep learningmodels such

as Recurrent Neural Networks or Autoencoders. Velasco-Gallego and Lazakis [14] perform anomaly

detection on data composed of 14 features and acquired from sensors on diesel generators, using

similar machine learning models.

Finally, very recently researchers turned their eye to explainable anomaly detection in maritime

environments. Acknowledging the existence of several different anomaly detection algorithms, most

of which are unsupervised due to the limited volume of available labeled data, they try to combine

anomaly detection with explainable AI in order to be able to explain why models classify specific

data instances as anomalies and measure the influence of individual features to the classification. For

instance, Kim et al. [12] adopt the Shapley Additive exPlanations [19] (SHAP) framework and combine

it with clustering methods to identify anomalies and specify which sensor is mainly responsible for

them in each case.

It is worthmentioning that a considerable volume of studies have been performed on similar topics

or fields and can be readily applied to the maritime sector. For instance, research has been done on

the use of machine learning algorithms for predictive maintenance and anomaly detection in other

industrial sectors, such as aviation [20], automotive [21] and power generation [22]. These studies provide

Related Works4

valuable insights into the potential benefits and challenges of implementing these technologies in a

complex, real-world environment.

2Theoretical Framework & Algorithms

As explained in the introductory part of the present thesis, through continuous monitoring and anal-

ysis it is possible to identify unexpected events or rare occurrences in data that are obtained from

sensors installed on various systems on vessels. These may indicate decreased efficiency or lead to

equipment failures, resulting in significant financial losses for stakeholders. The early detection of

these “anomalies” enables prompt action to be taken in order to mitigate or completely prevent the

occurrence of issues. For example, the detection of an abnormal increase in a motor’s temperature at

an early stage allows an on-site engineer to activate redundancy measures, thereby preventing further

overheating and potential equipment failure.

This process of identifying patterns or behaviors in data that deviate from the norm is known as

anomaly detection (or outlier detection). The earliest forms of anomaly detection were based on sim-

ple statistical methods, such as the use of moving averages and standard deviation-based tests [23–25].

However, with the growth of big data, more sophisticated methods for anomaly detection were devel-

oped in order to allow for the analysis of large and complex datasets [7].

One of the main challenges with the task of anomaly detection is that anomalies are by definition

rare events, and it is often difficult to find a sufficient number of labeled examples in order to per-

form it in a supervised manner. Furthermore, the definition of what constitutes an anomaly can vary

depending on the application or the context, making it difficult to create a consistent set of labeled

examples. For this reason, especially in industry applications where a single business scenario might

require millions of labeled time-series data, unsupervised approaches are usually preferred. Nonethe-

less, when the availability of data allows anomaly detection algorithms to be trained in a supervised

manner, their results tend to be more accurate.

This chapter presents a thorough analysis of the algorithms utilized for anomaly detection on the

datasets that are presented in the following chapter. These algorithms are classified into two main

categories, based on the number of features they analyze: univariate anomaly detection (UVAD) al-

gorithms, which are used to identify anomalies in the time-series of a single feature, and multivariate

anomaly detection (MVAD) algorithms, which are used to detect anomalies in the time-series of mul-

tiple features. While the UVAD algorithm of choice is unsupervised by default, the MVAD algorithm

can be applied in both an unsupervised and supervised setting.

5

Univariate Anomaly Detection6

2.1 Univariate Anomaly Detection

The class of UVAD algorithms consists of models that attempt to identify anomalies in a single time-

series. The problem can be formally stated as follows: given an input vector x = [𝑥1, 𝑥2, … , 𝑥𝑇] ∈ ℝ𝑇 ,

a UVAD algorithm produces an output vector y = [𝑦1, 𝑦2, … , 𝑦𝑇], where 𝑦𝑖 ∈ {0, 1}, indicating
whether the value 𝑥𝑖 constitutes an anomaly (𝑦𝑖 = 1) or not (𝑦𝑖 = 0).

In the context of marine operations, UVAD is applied to the readings of each individual sensor. As

such, a network of sensors would in general require a network of UVAD models - one for each sensor.

The UVAD algorithm used for the purposes of the present thesis is known as the Spectral Residual

Convolutional Neural Network (SR-CNN) [26].

2.1.1 Spectral Residuals & Saliency Maps

Saliency maps are frequently used in the domain of computer vision [27,28] and can be obtained by

calculating the spectral residuals (SR) [29] of images. Images are equivalent to time-series, in the sense

that an image is an ordered sequence of pixels, while a time-series is an ordered sequence of values at

specific timestamps. Therefore, methods that have proved to be efficient in one domain can usually

be used in the other, mutatis mutandis. The main idea of the SR UVAD is that the tasks of UVAD and

visual saliency detection share a lot of common elements, since the anomaly points are usually salient

in the visual perspective.

Given an input time-series x, the first step in acquiring the corresponding saliency map is the

calculation of itsDiscrete Fourier Transform (DFT) using the Fast Fourier Transform (FFT) algorithm.

Supposing that𝒯 is theDFToperator andω is the frequencies vector, the Fourier spectrum’s amplitude

and phase spectra can be calculated as

𝐴 (ω) = Re [𝒯 (x)] and 𝑃 (ω) = Im [𝒯 (x)] , (2.1)

respectively. Next, the log-representation of the amplitude spectrum is given by

ℒ (ω) = log [𝐴 (ω)] , (2.2)

where amplitudes that are equal to zero are ignored (for example, set equal to zero). Using the log-

representation, the averaged spectrum, 𝒜 (ω), can be approximated(1) as

𝒜 (ω) = h𝑞 ⊛ ℒ (ω) , (2.3)

i.e. the convolution of ℒ (ω) by a filter h𝑞, where

h𝑞 = 1
𝑞 [1, 1, 1, … , 1] ∈ ℝ𝑞. (2.4)

(1) Strictly speaking, Eq. (2.3) is only an approximation. However, the averaged curve usually indicates a local linearity and
therefore adopting a local average filter to approximate its shape is more than reasonable.

Theoretical Framework 7

The filter h𝑞 is represented as a 𝑞 × 1 vector in Eq. (2.4), since ℒ (ω) is the log-representation of the

amplitude spectrum of a sequence vector (time-series). In the equivalent computer vision problem,

where the sequence would correspond to an image, the filter would be represented as a 𝑞 × 𝑞 matrix.

The parameter 𝑞 corresponds to one of the model’s hyper-parameters.

The spectral residual, ℛ (ω), of the spectrum is obtained by subtracting the averaged spectrum

from the log-representation:

ℛ (ω) = ℒ (ω) − 𝒜 (ω) . (2.5)

In the context of image data, the spectral residual is supposed to contain the “innovation” of an image,

in the sense that all redundant visual information has been removed (or at least significantly reduced)

by the subtraction of Eq. (2.5). For this reason, in terms of time-series data, the spectral residual

contains the “novelties” of the time-series expressed as discrete values in the frequency domain. The

saliency map is then simply the corresponding information as expressed in the spatial domain:

𝑆 (x) = ‖𝒯−1 {exp [ℛ (ω) + i𝑃 (ω)]} ‖ (2.6)

Evidently, 𝒯−1 in Eq. (2.6) is the inverse DFT operator. Note that the phase spectrum of the time-

series is preserved during this process and that all information regarding anomalies comes from the

amplitude spectrum. Figure 2.1 depicts an example of how saliency maps highlight anomalies in a

time-series.

Original time-series
Saliency map
Anomalies

Figure 2.1: Theupper line corresponds to the original time-series, while the lower line corresponds to its saliency
map (both lines have been min-max scaled). Anomalies are marked with red.

The upper line of Fig. 2.1 corresponds to a time-series containing a small number of peaks and valleys

that can be identified as anomalies even by visual inspection, while the lower line corresponds to its

saliency map, obtained as explained through Eqs. (2.1) - (2.6). The saliency map is mainly composed

Univariate Anomaly Detection8

of a somewhat homogeneous region of values, but also shows a small number of peaks, the locations

of which coincide with the locations of the original time-series’ peaks and valleys.

The way the peaks of the saliency map of Fig. 2.1 are classified as anomalies follows a simple, yet

robust rule:

𝑦𝑖 = {0, if 𝑆(𝑥𝑖)− ̅𝑆(𝑥𝑖)
̅𝑆(𝑥𝑖) ≤ 𝜏

1, else
, (2.7)

where

̅𝑆 (x) = h𝑧 ⊛ 𝑆 (x) (2.8)

is defined as the averaged saliency, similarly to how the averaged spectrum was defined in Eq. (2.3).

The rule of Eq. (2.7) states that if the percentage difference between the saliency 𝑆 (𝑥𝑖) at point 𝑥𝑖
and the averaged saliency ̅𝑆 (𝑥𝑖) is higher than a selected threshold, 𝜏 , then this point is classified as

an anomaly. Note that in this case 𝑧 ≠ 𝑞 is another hyper-parameter which determines the number,

𝑧, of preceding points to be considered for a local averaging of the saliency (in general, 𝑧 > 𝑞). As for

the threshold, 𝜏 , it is the last of the model’s hyper-parameters and must be calibrated independently

for each sensor’s readings, depending on the desired sensitivity.

2.1.2 The SR-CNN Model

While the threshold utilized by the SR algorithm can be fine-tuned per sensor to yield results which

are more than satisfactory, an even more sophisticated decision rule can be constructed using dis-

criminative models. The main idea is to use the unlabeled time-series data in order to automatically

construct a synthetic labeled dataset and then use the latter for supervised learning (a process that

shares common elements, but is not equivalent to self-supervised learning).

More specifically, the original time-series is scanned using a sliding time-window of width 𝑤 and

a step 𝛽 such that the step is smaller than the time-window (𝛽 < 𝑤), resulting in overlapping sliding

windows. The data points within each window are treated as normal values and up to(2) 𝜅 points are

randomly chosen so that they can be artificially transformed into anomalies using the transformation

𝑥𝑖 → 𝑥𝑖 + (̅𝑥𝑖 + 𝜇) ⋅ (1 + 𝜎2) ⋅ 𝑟, (2.9)

where 𝑟 ∼ 𝒩 (0, 1), 𝜇 and 𝜎 are each window’s mean and standard deviation, respectively, and

̅𝑥𝑖 = [h𝑤 ⊛ x]𝑖 (2.10)

is the local average of all points preceding 𝑥𝑖. This process, which is illustrated in Fig. 2.2, creates

a labeled dataset of time-series data which are segments of the original input that contain artificially

injected anomalies.

(2) For example, if 𝜅 = 20, then one time window may contain 17 artificial anomalies, while another one might contain 3.

Theoretical Framework 9

Original time-series

Selected time window Injected anomalies

Figure 2.2: Top: the original time-series. Bottom: The selected timewindow’s data (left) and the injected anoma-
lies within this window (right).

The features that are extracted from this dataset are the saliency maps, using the steps described

in Eqs. (2.1) - (2.6), while the labels are 1 for the injected anomalies and 0 for all other points. All that

is left to do at this point is the supervised training of a discriminative model and among the best can-

didates for this, with proven efficiency on saliency detection on image data [30–32], are Convolutional

Neural Networks (CNNs). While one single CNN architecture cannot be expected to yield optimal

results for all types of sensor data, there are a few universal rules: in all cases, the first 1-dimensional

convolutional layer’s kernel’s size must be equal to 𝑤, i.e. the sliding window’s length. In addition,

fully connected linear layers should be stacked at the end of the convolutional layers, with the final

layer (of size 𝑤) having a sigmoid activation. The main components of the complete SR-CNN model

described in the present section are schematically represented in the flowchart of Fig. 2.3.

TIME-SERIES
INPUT

INPUT
SEGMENTATION

ANOMALY
INJECTION

SPECTRAL
RESIDUALS

SALIENCY
MAPS

1-D
CONVOLUTIONS

FULLY-CONNECTED
LAYERS

SIGMOID
OUTPUT

3 DAYS
AFTER
SYSTEM
DELIVERY

Spectral Residuals &
Saliency Maps Extraction Supervised Learning:

Convolutional Neural Network

Figure 2.3: A complete flowchart depicting the complete SR-CNN model, from the saliency maps’ extraction,
to the CNN’s supervised learning.

Multivariate Anomaly Detection10

2.2 Multivariate Anomaly Detection

When it comes to uncorrelated sensors (i.e. themonitoring of uncorrelated features), while UVAD is a

perfectly reasonable approach, its scalability becomes a significant challenge as the number of sensors

increases. Even if their lifecycle maintenance is handled by good MLOps practices, one instance of a

UVAD model for each sensor in a network of hundreds or thousands of sensors is computationally

costly and inefficient. One could argue that this issue can be addressed by grouping sensors together

based on the system they are monitoring, or depending on the type of feature they are recording.

An example of the former approach would be a vessel with 6 engines, where an ensemble of UVAD

models deployed using the feed of one engine’s sensors could possibly be sufficient to make accurate

predictions on the readings from the other 5 engines’ sensors as well. As for the latter approach,

by grouping sensors of different types together, one universal UVAD model per type could provide

satisfactory results (for example, one UVAD model for all thermal sensors).

Despite the potential for reducing computational costs and “model bookkeeping” by implement-

ing these ideas, and even if this is accomplished without making compromises on model accuracy, a

significant limitation still arises in the case of correlated sensors. A fundamental principle in Statisti-

cal Physics states that a system’s expected behaviour cannot be determined by examining the influence

of each of its components individually, without taking their interactions into account. In the words

of P. W. Anderson, more is different [33]. Based on this idea, in a network of sensors that monitor a

system, the health status of the entire system is not reflected by the health status of each individual

sensor, but rather by mutual information about the whole network. For instance, sudden perturba-

tions in a single sensor’s readings do not necessarily imply changes on the system as a whole and vice

versa. This is where Multivariate Anomaly Detection (MVAD) enters the stage.

MVAD aims at detecting anomalies in multidimensional data by analyzing dependencies among

sequences of multiple features. It solves both the issue of bookkeeping when handling a large number

ofmodels as well as the physical problem ofmissing the interactions between a number of features that

are not taken into consideration when analyzing each feature individually. While there is a plethora

of approaches when it comes to algorithms designed to solve the problem of MVAD [34–36], one of the

most effective among them is perhaps also the most intuitive: the process of decomposing a system

into its constituents along with their interactions can be represented by a graph. Consequently, Graph

Neural Networks (GNNs) are a perfect candidate for solving this problem. Note that the final MVAD

model used for the purposes of the present study is not itself a GNN, however GNNs are a very impor-

tant part of its architecture. For this reason, the following sub-sections are devoted to a short overview

of the constituents of the final MVAD model, starting with GNNs.

2.2.1 Graph Neural Networks

Themotivation for the development of GNNs came from the abundance of problems that involve data

whose structure can be represented in the form of graphs: social networks analysis, molecular struc-

ture prediction and language syntax trees, to name but a few. The first application of neural networks

Theoretical Framework 11

to graph-structured data involved the use of recursive neural networks to process data represented as

directed acyclic graphs [37]. However, the term “Graph Neural Network” was not coined until almost

a decade later, when Gori et al. [38] introduced GNNs as a generalization of recursive neural networks

that can deal with a broader set of families of graphs, such as cyclic or undirected graphs. Scarselli

et al. [39] and Gallicchio et al. [40] further elaborated on these ideas, with their collective work falling

today into the category of Recurrent Graph Neural Networks (RecGNNs) [41]. RecGNNs consist of an

iterative process, where neighbour information is propagated in an iterative manner until equilibrium

(message passing), with the purpose of learning a target node’s representation.

While the ideas that led to the development of RecGNNs were revolutionary, the models them-

selves have numerous limitations, with scalability being perhaps the most significant among them [42].

RecGNNs are based on iterative processes that are computationally demanding and involve a number

of parameters that increases as the graph grows. Additionally, RecGNNs suffer from limited expres-

sivity, as they fail to capture more complex relationships between nodes in a graph [43]. These obser-

vations, along with the desire to expand the notion of convolution to data that cannot be represented

in grid-like structures, led to the development of Graph Convolutional Networks (GCNs). Besides,

CNNs had already seen tremendous success in a range of problems spanning from image classifica-

tion [44] to machine translation [45]. Research on GCNs is often divided into two main streams: the

spectral-based and the spatial-based approaches.

As far as spectral-based approaches are concerned, Bruna et al. [46] and their pioneering work

introduced a graph convolution based on spectral graph theory. More specifically, the convolution

operation is performed in the spectral domain, i.e. on the eigenvectors of the graph Laplacian which

are used to define the graph’s Fourier basis. Τhis approach is not without issues, however most of

them were addressed by subsequent works. For example, the original spectral GCN led to spatially

non-localized filters. Furthermore, the explicit eigendecomposition of the graph Laplacian imposed

certain computational constraints. Nonetheless, it was found that the filters can be spatially localized

either by proper reparameterizations [47], or by restricting the filters to operate in a nearest-neighbour

setting [48], while approximations of the Laplacian could remove the need for solving the correspond-

ing eigenvalues-eigenvectors problem exactly [49]. Despite these efforts and without denying the suc-

cess of spectral GCN models on various tasks [50–52], a problem that appears to be inherent in this

spectral-based approach is that it leads to filters that depend on the Fourier basis, which in turn de-

pends on the graph itself. Consequently, spectral GCNs have inherent limitations when it comes to

their capacity, as they cannot easily generalize to graphs with different structures.

When it comes to spatial-based approaches, their research started earlier compared to spectral-

based ones, with the work of Micheli [53]. In spatial GCNs, convolutions are defined directly on the

graph, operating on groups of nodes within given neighbourhood sizes. Obviously, this creates the

problem of properly defining operators that combine the weight sharing property of CNNs and the

ability to work with neighbourhoods of different sizes. Various suggestions have been made regard-

ing this problem, for instance separating weight matrices for different nodes depending on their de-

gree [54], or sampling a neighbourhood of fixed size for each node and then performing specific aggre-

Multivariate Anomaly Detection12

gations over it [55]. These approaches (especially the latter example) have indeed yielded impressive

performance scores across numerous tasks, however a significant limitation of them is that the neigh-

bours of each node are treated in a uniform manner, i.e. without taking into account cases where

nodes are not influenced equally by all neighbours.

2.2.1.1 Graph Attention Networks

It becomes evident that, despite the fact that GCNs made several steps towards extending the notion

of convolutions from grids to graphs, each approach faces its own shortcomings. By combining their

issues, one may define the “ideal” convolution-like operation as one having the following properties:

(1) satisfactory complexity (especially when it comes to temporal complexity); (2) learning scalability

(the cardinality of the algorithm’s set of parameters should not depend on the graph’s size); (3) high

capacity (a trained model should be able to generalize to unseen graphs of varying structures); (4)

spatial localization (the convolution operation should be performed on a node’s neighbourhood); and

(5) expressivity (the algorithm should be able to capture more complex relationships between neigh-

bouring nodes and would therefore need to assign different influence scores on each neighbour). Fig.

2.4 provides a schematic representation of what one such desirable operation would look like.

vi u i

Figure 2.4: The desirable equivalent of convolutional operations on graph nodes.

Heavily influenced by the unprecedented breakthroughs of attentionmechanisms [56,57] on virtually all

sequence-based tasks, Veličković et al. [58] introduced an attention-based graph model, in an attempt

to define the aforementioned ideal convolution-like operation. The building block of this architecture

is known as a graph attentional layer and 1 or more such layers stacked together construct a Graph

Attention Network (GAT).

The input to a graph attentional layer is a set of node vectors, v = {v1, … , v𝑘}, with v𝑖 ∈ ℝ𝑇 ,

where 𝑘 is the number of nodes and 𝑇 is the number of elements per node vector. In the context of

time-series data, each node may correspond to a single feature and 𝑇 is equal to the total number of

time steps. This input layer produces a new set of node vectors, u = {u1, … , u𝑘}, with u𝑖 ∈ ℝ𝑇 ′ ,

where 𝑇 ′ is in general different from 𝑇 , but the cardinalities of v and u are equal. These new node

vectors essentially correspond to higher-level features, similarly to how a CNN transforms its input in

Theoretical Framework 13

the context of grid-structured data. Given the graph’s adjacency matrix, A, the original node vectors

are transformed as

u𝑖 = 𝜎 (W ⋅
𝑘

∑
𝑗=1

𝐴𝑖𝑗𝛼𝑖𝑗v𝑗) , (2.11)

where 𝜎 (x) is the logistic sigmoid function and W ∈ ℝ𝑇 ′×𝑇 is the weight matrix that corresponds

to one of the graph attentional layer’s learnable parameters. The presence of the adjacency matrix’s

elements in Eq. (2.11) ensures that only linked nodes are taken into account for this convolution-like

operation, since 𝐴𝑖𝑗 = 1 only if (𝑖, 𝑗) is an existing edge and 0 otherwise. As for 𝛼𝑖𝑗, it corresponds

to the neighbourhood-normalized version of the self-attention coefficients and it is given by

𝛼𝑖𝑗 = softmax (𝑒𝑖𝑗) = exp (𝑒𝑖𝑗)
∑𝑚 𝐴𝑖𝑚 exp (𝑒𝑖𝑚) , (2.12)

where 𝑒𝑖𝑗 are the original self-attention coefficients. These indicate the importance of node 𝑗’s features
to node 𝑖 and are usually calculated as

𝑒𝑖𝑗 = 𝐴𝑖𝑗 LeakyReLU (a ⋅ [W ⋅ v𝑖 ⊕ W ⋅ v𝑗]) , (2.13)

where ⊕ denotes vector concatenation and a ∈ ℝ2𝑇 ′ is a weight vector which parameterizes the feed-

forward neural network that serves as the attention mechanism. In fact, due to the appearance of 𝐴𝑖𝑗
in all equations, the attention is known asmasked attention, since it allows each node to attend only to

its linked nodes, without dropping the structural information about the graph. A bias vector may also

be included before applying the LeakyReLU nonlinearity, however bias vectors are omitted through-

out this analysis for brevity. Additionally, the negative slope of the LeakyReLU is one of the model’s

hyper-parameters, though in literature it is usually set equal to 0.2. In general, the self-attention co-

efficients can occur through any attention mechanism of the form

𝑒𝑖𝑗 = 𝑓 (w𝑙 ⋅ v𝑖,w𝑟 ⋅ v𝑗) , (2.14)

where 𝑓 ∶ ℝ𝑇 ′ × ℝ𝑇 ′ → ℝ. Nonetheless, ever since Veličković et al. suggested Eq. (2.13), most

implementations and related works have been using this specific attention mechanism, which became

synonymous with graph attention.

The aforementioned equations can be generalized in order to account for multi-head attention,

which acts as a regularization factor: by extending the weight matrix to a tensor W ∈ ℝ𝑇 ′×𝑇 ×𝑀 ,

where 𝑀 is the number of attention mechanisms that are employed, Eq. (2.13) becomes

𝑒𝑛
𝑖𝑗 = 𝐴𝑖𝑗 LeakyReLU (a ⋅ [W𝑚 ⋅ v𝑖 ⊕ W𝑚 ⋅ v𝑗]) , (2.15)

where W𝑚 ∈ ℝ𝑇 ′×𝑇 is the weight matrix associated with the 𝑚-th attention mechanism. Similarly,

the normalized attentions are given by applying a softmax filter to the results of Eq. (2.15). As for how

the node vectors are updated, Eq. (2.11) assumes the form

Multivariate Anomaly Detection14

u𝑖 =
𝑀

⨁
𝑚=1

[𝜎 (W𝑚 ⋅
𝑘

∑
𝑗=1

𝐴𝑖𝑗𝛼𝑚
𝑖𝑗 v𝑗)], (2.16)

where now u𝑖 ∈ ℝ𝑇 ′×𝑀 , as long as the graph attentional layer is not the final layer of the GAT, since

it is more sensible to perform some kind of aggregation (mainly averaging) instead of concatenation

on the prediction layer’s outputs. In this case, the transformed node vectors are given by

u𝑖 = 𝜎 (1
𝑀

𝑀
∑
𝑚=1

W𝑚 ⋅
𝑘

∑
𝑗=1

𝐴𝑖𝑗𝛼𝑚
𝑖𝑗 v𝑗) . (2.17)

These two different ways of transforming the original node vectors through multi-head attention are

depicted in Fig. 2.5.

vi uivi

ui
1

ui
2

Attention Concatenation Attention Averaging

Figure 2.5: Depiction of concatenation (left) and averaging (right) in the case ofmulti-head attention for𝑀 = 2.

Apart from multi-head attention, it is worth noting that applying dropout [59] to the self-attention co-

efficients also serves as an efficient regularizer, especially in problems with small training datasets [58].

Returning to the five properties discussed regarding “ideal” convolution-like operations on graph,

it becomes clear that the attention-based approach of Veličković et al. respects all of them: (1) the time

complexity of a graph attentional layer with single-head attention is 𝒪 (𝑁𝑉 𝑇 𝑇 ′ + 𝑁𝐸𝑇 ′), where 𝑁𝑉
and 𝑁𝐸 are the number of graph nodes and edges, respectively, the self-attention layer’s operation is

parallelizable across all edges and the computation of output features is parallelizable across all nodes;

(2) the number of parameters is fixed and independent of the graph’s node/edge count; (3) the attention

mechanism does not depend on global graph structure and is therefore applicable to any type of graph;

(4) the operation is spatially localized by default, since only linked nodes attend to each other; and (5)

the resulting model is more expressive than GCNs, thanks to its inherent ability to assign different

influence scores (attention) to different neighbours.

2.2.1.2 Static vs Dynamic Attention

As was the case with other models before it, the application of this self-attention mechanism to GNNs

led to breakthroughs in a number of different tasks and datasets [60,61]. Additionally, it paved the road

for the development of novel GAT-like architectures to tackle new, challenging problems [62–64]. It

was not until 2022, when Brody et al. [65] presented their work, that the expressivity of GATs was first

characterized as limited, despite being better than its predecessors’.

Theoretical Framework 15

The authors argue that GATs do not compute the expressive type of attention they call dynamic

attention, but rather a restricted, static form of attention. Their argument is that, given a specific query,

any attention-basedmodel should be able to “focus” on themost relevant input, which is only possible

by “decaying” other inputs, i.e. assigning a lower score to these inputs. By adopting the terminology of

Vaswani et al. [57], the authors prove that the attentionmechanism utilized by GATs leads to a selection

of keys regardless of the query. As a result, this mechanism hinders the model’s expressivity in cases

where the relevance of each key highly depends on the corresponding query. The formal proof of these

statements along with a mathematical formulation of the concepts of static and dynamic attention can

be found in Appendix A.

More specifically, the issue in GATs can be traced in Eq. (2.13), where the layers W and a are

applied consecutively and could therefore be collapsed into a single linear layer without any deforma-

tional impact on the model’s architecture. As a solution to this issue, Brody et al. suggest a simple

modification in the order of internal operations: the input node vectors are concatenated before ap-

plying the W layer and the nonlinearity is applied before applying the a layer. Eq. (2.13) can then be

rewritten as

𝑒𝑖𝑗 = 𝐴𝑖𝑗 a ⋅ LeakyReLU (W ⋅ [v𝑖 ⊕ v𝑗]) , (2.18)

where now W ∈ ℝ2𝑇 ′×2𝑇 (3). While this change in order of operations may seem trivial at first

sight, drawing the neural network that corresponds to each attention mechanism reveals their key

differences (see Fig. 2.6).

vi vj

eij

vi vj

eij

Static Attention Mechanism Dynamic Attention Mechanism

Figure 2.6: Feedforward network for the calculation of static attention (left) and dynamic attention (right) in
the case where 𝑇 = 3 and 𝑇 ′ = 5.

Theneural network that corresponds to the static attentionmechanism proposed in the GAT architec-

ture is indeed equivalent to a single layer, while the neural network that corresponds to the dynamic

(3) In fact, there is no practical reason in setting the number of rows of W equal to 2𝑇 ′, since 𝑇 ′ is an arbitrary dimension
independent of the original input. By renaming 2𝑇 ′ → 𝑇 ′, one simply makes a change of variables with absolutely no
impact on the framework. Nonetheless, this notation makes it easier to draw parallels between GAT and GATv2 and this
is why it is adopted.

Multivariate Anomaly Detection16

attention mechanism is equivalent to a Multiple Layer Perceptron (MLP). As a result, the latter at-

tention mechanism is strictly more expressive, since this advanced GAT - which the authors named

GATv2 - is a universal approximator [66].

An issue with Eq. (2.18) is that it does not allow a direct inference of the new form of Eq. (2.11),

i.e. the new transformation rule for the original node vectors, since the dimensions of W in GATv2

are different compared to the ones in GAT. For this reason, Eq. (2.18) can be equivalently written as

𝑒𝑖𝑗 = 𝐴𝑖𝑗 a ⋅ LeakyReLU (w𝑙 ⋅ v𝑖 + w𝑟 ⋅ v𝑗) , (2.19)

wherew𝑟,w𝑙 ∈ ℝ2𝑇 ′×𝑇 andW is simply the augmentation ofw𝑙 andw𝑟, i.e. W = (w𝑙|w𝑟). Now, one

can readily rewrite Eq. (2.11) as

u𝑖 = 𝜎 (w𝑟 ⋅
𝑘

∑
𝑗=1

𝐴𝑖𝑗𝛼𝑖𝑗v𝑗) . (2.20)

For completeness, it is mentioned that in the case of multi-head attention, Eq. (2.19) is generalized to

𝑒𝑚
𝑖𝑗 = 𝐴𝑖𝑗 a ⋅ LeakyReLU (w𝑚

𝑟 ⋅ v𝑖 + w𝑚
𝑟 ⋅ v𝑗) (2.21)

and Eq. (2.20) is generalized to

u𝑖 =
𝑀

⨁
𝑚=1

[𝜎 (w𝑚
𝑟 ⋅

𝑘
∑
𝑗=1

𝐴𝑖𝑗𝛼𝑚
𝑖𝑗 v𝑗)] (2.22)

for intermediate layers of a GATv2 and to

u𝑖 = 𝜎 (1
𝑀

𝑀
∑
𝑚=1

w𝑚
𝑟 ⋅

𝑘
∑
𝑗=1

𝐴𝑖𝑗𝛼𝑚
𝑖𝑗 v𝑗) (2.23)

for the output layer of a GATv2.

2.2.2 Gated Recurrent Unit Networks

Apart from GNNs, another integral part of the final MVAD model’s architecture is the Recurrent

Neural Network (RNN) [67,68] that utilizes Gated Recurrent Unit (GRU) cells. Before diving into the

specifics of GRUs, it’s important to give a short overview of RNNs, which are a type of neural network

designed to process sequential data such as speech or text - a problem that can’t be handled by con-

ventional feedforward neural networks. They achieve this via the use of feedback connections that

allow them to maintain an internal state known as the hidden state that can be updated at each time

step. This allows RNNs to take into account the context of the input, making themwell suited for tasks

involving sequential data.

The basic structure of the RNN starts with an input x = (x1, x2, … , x𝑇) ∈ ℝ𝑇 ×𝐹 , where x𝑡 ∈ ℝ𝐹

is the input vector’s element at time step 𝑡, which is simply a 𝐹 -dimensional feature vector. This input

is sequentially processed by the so-called cell (in the case of vanilla RNNs, the cell consists of a single

smooth, bounded function, such as the logistic sigmoid or hyperbolic tangent) in order to produce

Theoretical Framework 17

a hidden state vector h = (h1, h2, … , h𝑇) ∈ ℝ𝑇 ×𝑑, where 𝑑 is the dimension of each hidden state

vector element, also known as hidden dimension. The hidden dimension is often one of the hyper-

parameters in the network’s architecture. Note that, optionally, the RNN may include an output apart

from the hidden state vector. In order to illustrate how the RNN processes the input sequence step by

step, a helpful visualization trick involves unrolling it through time, as shown in Fig. 2.7.

=

hh 1 h2 h3 hT

xx 1 x2 x3 xT

Figure 2.7: Unrolling Recurrent Neural Networks (RNNs) through time.

At each time step 𝑡, the RNN takes the x𝑡 element from the input vector and updates its hidden state

using this input and the previous time step’s hidden state. The update rule for the vanilla RNN is

h𝑡 = 𝑓(W ⋅ [x𝑡 ⊕ h𝑡−1]), (2.24)

where W ∈ ℝ𝑑×(𝐹+𝑑) is the matrix containing the learnable weights and 𝑓 is an activation function

(usually the logistic sigmoid or hyperbolic tangent). Note that a bias can also be incorporated in the

rule of Eq. (2.24) by adding a vector b ∈ ℝ𝑑 in the activation function’s argument, however in what

follows biases will be omitted for brevity, as was done in previous sections. Another important remark

is that h0 is set equal to the null vector in order to calculate h1 at time step 𝑡 = 1.
The major among the shortcomings of vanilla RNNs is that they cannot be trained to capture

long-term dependencies using gradient-based optimization strategies, due to the problem of vanish-

ing gradients [69]. This is a consequence of the fact that the content of the hidden state is completely

overwritten at each time step, even though the hidden state at time step 𝑡 is calculated based on the

hidden state at time step 𝑡 − 1. As a result, the effect of long-term dependencies is hidden by the ef-

fects of short-term dependencies [70]. This issue can be addressed either by devising different learning

algorithms [71], or by introducing gating mechanisms inside the cell that allow the network to selec-

tively update or preserve its hidden state, thus allowing it to effectively capture both short-term and

long-term dependencies. As far as the latter approach is concerned, the two most well-known gated

cells are the Long Short-Term Memory (LSTM) [72] and the Gated Recurrent Unit (GRU) [73].

The main difference between LSTMs and GRUs is the number of gates they use. LSTMs use three

gates, an input gate, an output gate, and a forget gate, whileGRUsuse only two gates, an update gate and

a reset gate. In a nutshell, the LSTM’s gates are used to control the flow of information into, out of, and

within the cell state of the LSTM, while the update gate of the GRU controls howmuch of the previous

hidden state to retain, and its reset gate controls how much of the new input to let through. Both cells

have been successful in a wide range of applications such as natural language processing [74,75], speech

Multivariate Anomaly Detection18

recognition [76], and machine translation [77,78], so the choice of which one to use always depends on

the specific task and the type of data being used. Experimentally, it has been found that LSTMs tend to

perform better on tasks that highly prioritize remembering long-term dependencies, while GRUs tend

to be more computationally efficient [70] and perform well on tasks that require the model to quickly

adapt to changing input [79].

Based on this comparison and for reasons that become clearer in Section 2.2.4, the final MVAD

model utilizes the RNN with a GRU cell as part of its architecture. Fig. 2.8 depicts the GRU cell and

the update rule it follows to perform updates on the hidden state at each time step.

1-

1-

t
σ

reset update

σ

pointwise
addition

multiplication by -1 and
pointwise addition of 1

pointwise
multiplication

t tanh
activationσ sigmoid

activation

concatenation

ht-1 ht

xt

Figure 2.8: Schematic representation of the Gated Recurrent Unit (GRU) cell.

At time step 𝑡, the update and reset gates are calculated as

z𝑡 = 𝜎(W𝑧 ⋅ [x𝑡 ⊕ h𝑡−1]) and r𝑡 = 𝜎(W𝑟 ⋅ [x𝑡 ⊕ h𝑡−1]), (2.25)

respectively, where W𝑧/𝑟 ∈ ℝ𝑑×(𝐹+𝑑) is the matrix containing the learnable weights associated with

the update/reset gate. Using these gates, a candidate hidden state vector element is defined as

n𝑡 = tanh (W𝑛 ⋅ [x𝑡 ⊕ r𝑡 ∘ h𝑡−1]), (2.26)

where ∘ denotes the Hadamard product (pointwise multiplication) andW𝑛 ∈ ℝ𝑑×(𝐹+𝑑) is the matrix

containing the learnableweights associatedwith the candidate hidden state vector element. The reason

why this quantity is known as the candidate hidden state vector element is because the actual hidden

state vector element is given by

h𝑡 = (1 − z𝑡) ∘ h𝑡−1 + z𝑡 ∘ n𝑡, (2.27)

which is an update rule analogous to the one of Eq. (2.24).

Eq. (2.27) shows that the hidden state vector element at time step 𝑡 is a linear interpolation between

the previous time step’s hidden state vector element and the current step’s candidate hidden state vector

element. In addition, this equation clarifies why z𝑡 is called the update gate, since it is the vector that

quantifies how much the previous hidden state vector element needs to update its content. In the

extreme case where z𝑡 = 𝟘, no update occurs and therefore all hidden state vector elements are equal

Theoretical Framework 19

to the null vector (since h0 = 𝟘 by convention). Similarly, the reset gate quantifies how much the

previous hidden state vector element is taken into account for the calculation of the candidate hidden

state vector element. In the extreme case where r𝑡 = 𝟘, the network effectively becomes a feedforward

one, since each time the cell encounters a new item from the sequence, it treats it as if it is the first

one, ignoring all previous input. Finally, in the extreme case where z𝑡 = 𝟙 and r𝑡 = 𝟙, the network is

effectively equivalent to a vanilla RNN and the vanishing gradients problem resurfaces.

2.2.3 Variational Autoencoders

The last missing piece of the MVAD model’s architecture is a structure known as the Variational Au-

toencoder [80,81] (VAE), however it is first worth providing a short summary of “traditional” Autoen-

coders [82] (see Fig. 2.9).

Encoder Decoder

x z x̂

Figure 2.9: Schematic representation of an autoencoder. Deterministic variables are placed inside rhombi.

Autoencoders are deep neural network architectures whose main purpose is to learn a representation

for a set of input data, in order to perform a series of tasks, such as feature engineering [83] (for example,

dimensionality reduction), compression [84] (for example, in the case of image data), or data genera-

tion [85] (for example, to enrich limited datasets), to name but a few. Given an input vector x ∈ ℝ𝑑, the

left part of the autoencoder (known as the encoder) learns a low-dimensional latent representation

z ∈ ℝ𝐿 for it, where typically 𝐿 ≪ 𝑑. This low-dimensional layer is also known as the bottleneck.

Then, the right part of the autoencoder (known as the decoder) tries to reconstruct x from z, since the

objective of the model is to create an output ̂x ∈ ℝ𝑑 as close as possible to the original input: ̂x ≈ x.

It is stressed that these structures are presented herein in a completely abstract way, precisely because

they do not correspond to specific architectures; their architecture depends on the type of input data

and task. For instance, in a generative autoencoder for image data, the encoder usually uses CNN

layers followed by linear layers, while the decoder utilizes linear layers followed by CNN layers.

It is important to note at this point that the traditional autoencoder is a purely deterministicmodel:

feeding the model with a specific input x0, the output will always be ̂x0. In this sense, the VAE can be

seen as the probabilistic extension of an autoencoder, where the encoder’s and decoder’s outputs are

not single values, but rather parameters of probability distributions from which the z and ̂x, respec-
tively, are sampled. A schematic representation of the VAE can be seen in Fig. 2.10, where z and ̂x are

not deterministic anymore (and therefore not placed inside rhombi), but instead are sampled from the

distributions that are parameterized by the probabilistic encoder’s and decoder’s outputs (a procedure

represented with dashed lines). Following Girin et al. [86], the formal presentation of the VAE is split

into two main parts: one including the details of its decoder, which acts as a generative model, and

one including the details of its encoder, which corresponds to an inference model.

Multivariate Anomaly Detection20

Probabilistic
Encoder

x z x̂

µ
φ

σφ

Probabilistic
Decoder

µ
θ

σθ

Figure 2.10: Schematic representation of a VAE. Dashed lines represent a sampling process. The general VAE
architecture is not limited to specific probability distributions, however in the present example the encoder and
decoder outputs are parameters for Gaussian distributions, indexed by 𝜙 and 𝜃, respectively.

2.2.3.1 VAE Decoder: A Generative Model

The VAE decoder corresponds to a Deep Latent Variable Model (DLVM), i.e. a latent variable model

whose distribution is parameterized by a deep neural network. It is a generative model, since it takes

care of the reconstruction of the probability distribution of the input vector, based on the value of

the latent variable. In fact, it can be considered as a generalization of generative mixture models with

continuous latent variables instead of discrete ones [81]. More formally, it is defined by

𝑝𝜃 (x, z) = 𝑝𝜃 (x|z) 𝑝 (z) , (2.28)

where 𝜃 denotes the set of parameters of the conditional distribution 𝑝𝜃 (x|z)(4) and 𝑝 (z) corresponds

to the prior distribution of the latent variable. While the latent variable’s prior distribution can in

general also depend on its own set of parameters, the most common choice for it is an isotropic 𝐿-

dimensional Gaussian,

𝑝 (z) = 𝒩 (z; 𝟘, 𝟙) . (2.29)

This is due to the fact that, as long as the functions parameterized by the 𝜃-parameters are expressive

enough (which is always the case with deep neural networks), the shape of the prior distribution does

not really matter [87]. As for the conditional distribution, any probability distribution function can be

used(5), depending on the nature of the input vector, x. Nonetheless, a common choice is a Gaussian

distribution with a diagonal covariance matrix, Σ𝜃 (z) = diag ({𝜎(𝑖) 2
𝜃 (z)}

𝑑

𝑖=1
):

𝑝𝜃 (x|z) = 𝒩 (x; μ𝜃 (z) ,Σ𝜃 (z)) =
𝑑

∏
𝑖=1

𝒩 (𝑥(𝑖); 𝜇(𝑖)
𝜃 (z) , 𝜎(𝑖) 2

𝜃 (z)), (2.30)

where μ𝜃 ∶ ℝ𝐿 → ℝ𝑑 and σ𝜃 ∶ ℝ𝐿 → ℝ𝑑
+ are deep neural network functions of the latent variable (for

example, MLPs) parameterized by the 𝜃-parameters (for example, weights and biases).

(4) Strictly speaking, the decoder is defined by 𝑝𝜃 (̂x, z), since using the same variable name at both the input and output is
an abuse of notation. However, it is justifiable in the present case, where the objective is to reproduce the input variable’s
distribution in the output.

(5) For example, it has been found that Gamma distributions are a good choice in the case of audio data [88].

Theoretical Framework 21

When it comes to the training of the decoder, it amounts to optimizing the parameters 𝜃 so that

the Kullback-Leibler (KL) divergence between the original data distribution, 𝑝∗ (x), and the model

distribution, 𝑝𝜃 (x) is minimized:

min
𝜃

{𝐷KL(𝑝∗ (x) ‖ 𝑝𝜃 (x))} ⟺ min
𝜃

{𝔼𝑝∗(x)[log 𝑝∗ (x) − log 𝑝𝜃 (x)]}

⟺ max
𝜃

{𝔼𝑝∗(x)[log 𝑝𝜃 (x)]} (2.31)

Eq. (2.31) indicates that the minimization of the KL divergence is equivalent to a Maximum Likeli-

hood Estimation (MLE) for the model distribution, i.e. the marginal likelihood:

𝑝𝜃 (x) = ∫ 𝑝𝜃 (x|z) 𝑝 (z) 𝑑z. (2.32)

In practice, the original data distribution 𝑝∗ (x) is never known, however one can assume that the

training dataset X = {x𝑛 ∈ ℝ𝑑}𝑁
𝑛=1 consists of 𝑁 independent and identically distributed (i.i.d.)

data vectors sampled from 𝑝𝜃 (x). In this case, the expectation of Eq. (2.31) can be replaced by the

Monte Carlo estimate

max
𝜃

{ 1
𝑀

𝑀
∑
𝑚=1

log 𝑝𝜃 (x𝑚)} . (2.33)

The issue with this expression is that the marginal likelihood which is present in Eq. (2.33) is analyt-

ically intractable, since the integral of Eq. (2.32) involves a highly non-linear function of z (because

the parameters of the conditional distribution are generated from a deep neural network). That said,

the standard approach is to utilize Expectation-Maximization (EM) variational algorithms [89]: these

leverage the latent variable nature of the model to maximize a lower bound of the intractable marginal

log-likelihood [90], which depends on the posterior distribution of the latent variable.

More formally, let ℱ denote a variational family defined as a set of probability distribution func-

tions over the latent variable z. For any variational distribution 𝑞 (z) ∈ ℱ, one may re-write the

marginal log-likelihood as

log 𝑝𝜃 (x𝑛) = 𝔼𝑞(z) [log 𝑝𝜃 (x)] = 𝔼𝑞(z) [log (𝑝𝜃 (x, z)
𝑝𝜃 (z|x))]

= 𝔼𝑞(z) [log (𝑝𝜃 (x, z)
𝑞 (z)

𝑞 (z)
𝑝𝜃 (z|x))]

= 𝔼𝑞(z) [log (𝑝𝜃 (x, z)
𝑞 (z))]

⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℒ(𝜃,𝑞(z);x)

+ 𝔼𝑞(z) [log (𝑞 (z)
𝑝𝜃 (z|x))]

⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐷KL(𝑞(z) ‖ 𝑝𝜃(z|x))

, (2.34)

where the second term is the KL divergence between 𝑞 (z) and the posterior 𝑝𝜃 (z|x), and the first

term, ℒ (𝜃, 𝑞 (z) ; x), is referred to in literature as the evidence lower bound (ELBO). Based on the

Multivariate Anomaly Detection22

fact that any KL divergence is non-negative, it becomes evident that the ELBO is a lower bound on

the marginal log-likelihood, i.e.

log 𝑝𝜃 (x) ≥ ℒ (𝜃, 𝑞 (z) ; x) , (2.35)

with the equality holding only when the variational distribution 𝑞 (z) is exactly equal to the posterior.

Based on Eq. (2.35), instead of focusing on maximizing the marginal log-likelihood, one may focus

on maximizing the ELBO, first with respect to 𝑞 (z) (E-step) and then with respect to 𝜃 (M-step). Of

course, Eq. (2.34) indicates that the E-step involves finding the variational distribution 𝑞 (z) in the

family ℱ that best approximates the true posterior 𝑝𝜃 (z|x) according to the KL divergence:

𝑞∗ (z) = argmax
𝑞∈ℱ

ℒ (𝜃, 𝑞 (z) ; x) = argmin
𝑞∈ℱ

𝐷KL(𝑞 (z) ‖ 𝑝𝜃 (z|x)). (2.36)

If the variational family ℱ is unconstrained, the solution to the E-step is trivially given by the exact

posterior distribution, i.e. 𝑞∗ (z) = 𝑝𝜃 (z|x). Note that this optimal distribution over z is actually

conditioned on x, therefore henceforth the notation 𝑞 (z|x) will be used instead of 𝑞 (z). However, the

intractability of the marginal likelihood leads to an intractability of the posterior distribution, which

in turn hinders any attempt at solving the E-step analytically. To tackle this issue, the variational family

ℱ is constrained by being re-defined as a set of variational distributionswith a certain parametric form

𝑞𝜆 (z|x), where the 𝜆-parameters govern the shape of the distribution. This is known as variational

inference [90]. The ELBO thus becomes a function of both the decoder’s parameters, 𝜃, as well as the

variational parameters, 𝜆:

ℒ (𝜃, 𝜆; x) = 𝔼𝑞𝜆(z|x) [log 𝑝𝜃 (x, z) − log 𝑞𝜆 (z|x)] . (2.37)

What is more, the E-step of Eq. (2.36) reduces to the problem of optimizing the 𝜆-parameters as

𝜆∗ = argmax
𝜆

ℒ (𝜃, 𝜆; x) = argmin
𝜆

𝐷KL(𝑞𝜆 (z|x) ‖ 𝑝𝜃 (z|x)). (2.38)

2.2.3.2 VAE Encoder: An Inference Model

In general, given a dataset of i.i.d. data vectors X = {x𝑛 ∈ ℝ𝑑}𝑁
𝑛=1, one needs to find the param-

eters Λ = {𝜆𝑛}𝑁
𝑛=1 of the variational distributions 𝑞𝜆𝑛

(z𝑛|x𝑛), for 𝑛 = 1, … , 𝑁 . This is done by

maximizing the total ELBO

ℒ (𝜃, Λ;X) =
𝑁

∑
𝑛=1

ℒ (𝜃, 𝜆𝑛; x𝑛), (2.39)

which is the sum of the local ELBO defined in Eq. (2.37) over each vector in X. Evidently, this proce-

dure is costly for large datasets, which is why an even stronger assumption can bemade when defining

the variational family: all variational distributions 𝑞𝜆𝑛
(z𝑛|x𝑛) share a common set of parameters, 𝜙,

which is introduced through an inference model 𝑓𝜙 that satisfies

Theoretical Framework 23

𝜆𝑛 = 𝑓𝜙 (x𝑛) . (2.40)

This is known as amortized variational inference and it introduces a single model which is used to

map each observation x𝑛 to a local variational parameter, 𝜆𝑛. This stronger assumption effectively

transforms the variational distributions as well as the ELBO itself into functions of 𝜙:

ℒ (𝜃, 𝜙;X) =
𝑁

∑
𝑛=1

𝔼𝑞𝜙(z𝑛|x𝑛) [log 𝑝𝜃 (x𝑛, z𝑛) − log 𝑞𝜙 (z𝑛|x𝑛)]. (2.41)

Therefore, the optimization of the set of local variational parameters, Λ, is equivalent to the optimiza-

tion of the shared set of inference model parameters, 𝜙. This inference model corresponds to the

VAE’s encoder and, similar to the decoder, it corresponds to a DLVM. A common (however not the

only) choice for it is

𝑞𝜙 (z|x) = 𝒩 (z; μ𝜙 (x) ,Σ𝜙 (x)) =
𝐿

∏
𝑖=1

𝒩 (𝑧(𝑖); 𝜇(𝑖)
𝜙 (x) , 𝜎(𝑖) 2

𝜙 (x)), (2.42)

i.e. a Gaussian distribution with Σ𝜙 (x) = diag ({𝜎(𝑖) 2
𝜙 (x)}

𝑑

𝑖=1
). In this expression, μ𝜙 ∶ ℝ𝑑 → ℝ𝐿

and σ𝜙 ∶ ℝ𝑑 → ℝ𝐿
+ are deep neural network functions of the input variable (for example, MLPs)

parameterized by the 𝜙-parameters (for example, weights and biases).

Returning to the ELBO of Eq. (2.41), by using Bayes’ theorem it can be equivalently written as

ℒ (𝜃, 𝜙;X) =
𝑁

∑
𝑛=1

𝔼𝑞𝜙(z𝑛|x𝑛) [log 𝑝𝜃 (x𝑛|z𝑛) + log 𝑝 (z𝑛) − log 𝑞𝜙 (z𝑛|x𝑛)]

=
𝑁

∑
𝑛=1

𝔼𝑞𝜙(z𝑛|x𝑛) [log 𝑝𝜃 (x𝑛|z𝑛)]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Reconstruction accuracy

−
𝑁

∑
𝑛=1

𝐷KL(𝑞𝜙 (z𝑛|x𝑛) ‖ 𝑝 (z𝑛))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Regularization term

. (2.43)

The first term of Eq. (2.43) is the reconstruction accuracy that represents the average accuracy of re-

constructing the distribution parameters of the original input’s distribution, while the second term

acts as a regularizer that enforces the approximate posterior distribution to be close to the prior. In

practice, when using Gaussian priors as in Eq. (2.29), this term forces different entries of z to be

independent and encode a different characteristic of the input data [86]. For most commonly cho-

sen distributions, the regularization term has an analytical expression as a function of 𝜃 and 𝜙 (see

Appendix B for the example of Gaussian prior and posterior), though the same can’t be said for the

reconstruction accuracy term, where the expectation taken with respect to the approximate posterior

renders it analytically intractable. As a result, it is approximated using a Monte Carlo estimate with

𝑀 i.i.d. samples from 𝑞𝜙 (z𝑛|x𝑛), similarly to what was done in Eq. (2.33):

ℒ (𝜃, 𝜙;X) ≃
𝑁

∑
𝑛=1

1
𝑀

𝑀
∑
𝑚=1

log 𝑝𝜃 (x𝑛|z𝑛,𝑚) −
𝑁

∑
𝑛=1

𝐷KL(𝑞𝜙 (z𝑛|x𝑛) ‖ 𝑝 (z𝑛)). (2.44)

Multivariate Anomaly Detection24

In the standard VAE methodology [80] the approximated ELBO of Eq. (2.44) is optimized using

gradient-based optimization techniques to learn the generative and inference model parameters: the

encoder and decoder DLVMs are cascaded and the sets of 𝜃- and 𝜙-parameters are jointly estimated

from the training dataset(6). In terms of the gradient descent technique, the gradient of ℒ (𝜃, 𝜙;X)
with respect to 𝜃 can be easily computed using the backpropagation algorithm. However, backpropa-

gation cannot be applied for the gradient with respect to 𝜙, because the aforementioned sampling op-

eration from the approximate posterior distribution is not differentiable. To bypass this issue, Kingma

and Welling [80] proposed a so-called reparameterization trick: the sample z𝑛,𝑚 is reparameterized as

z𝑛,𝑚 = μ𝜙 (x𝑛) + diag {σ2
𝜙 (x𝑛)}1/2

ε𝑚, (2.45)

where ε𝑚 is a sample drawn from an L-dimensional standard Gaussian distribution,

ε𝑚 ∼ 𝒩 (𝟘, 𝟙) , (2.46)

which does not depend on 𝜙. This trick essentially transfers the stochastic nature of the procedure

from z𝑛,𝑚 to a new stochastic node, since z𝑛,𝑚 can be seen as a deterministic function of 𝜙, x𝑛 and

ε𝑚. As such, the ELBO becomes differentiable with respect to 𝜙 and the backpropagation algorithm

can be utilized. This procedure is illustrated in the computation graphs of Fig. 2.11.

Reparameterized formOriginal form

z

L

x

z

L

φ εxφ

Figure 2.11: Illustration of the reparameterization trick performed to enable backpropagation, where deter-
ministic variables are placed inside rhombi and stochastic variables are placed inside circles. The dashed arrows
correspond to the calculation of gradients with respect to 𝜙 during backpropagation, which can only be done
in the reparameterized form.

Closing the discussion on VAEs, it is worth noting that the gradient of the approximated ELBO given

by Eq. (2.44) with respect to 𝜙 is an unbiased estimate of the gradient of the exact ELBO [81]. This

allows using very few samples during the training of theVAE (even setting𝑀 = 1 is a valid choice [80]),

as long as the training is done in a mini-batch setting (for example, with stochastic gradient descent)

and a sufficiently large number of mini-batches is used.

(6) Note that this is different from an EM algorithm, which would alternatively optimize the ELBO with respect to 𝜙 and 𝜃
in the E- and M-step, respectively.

Theoretical Framework 25

2.2.4 Piecing Everything Together: the MTAD-GATv2 Model

Having formally defined all the constituents of the final MVAD model, this chapter’s final section is

devoted to a thorough presentation of its full architecture. The model is based on Microsoft’s Multi-

variate Time-Series Anomaly Detection via Graph Attention Network (MTAD-GAT) [91] and is called

MTAD-GATv2. In a nutshell, the model treats each univariate time-series in a sensor network as an

individual feature and tries to perform anomaly detection bymodelling both the correlations between

different features, as well as the temporal dependencies within each time-series.

The length of themultivariate time-series, 𝑇 , is taken to be equal to the total number of timestamps

available for the longest univariate time-series and all operations involved in the model’s architecture

are performed in a sliding window setting, with constant length Δ𝑡. First, the pre-processed time-

series for each feature (details on the pre-processing are provided in the following chapter) passes

through a 1-dimensional convolutional layer, in order to extract high-level information as a type of

local feature engineering. The outputs of this convolutional layer are then processed by two parallel

GATv2 layers, hence the name of the model(7): a feature-oriented GATv2 layer and a time-oriented

GATv2 layer.

For the feature-oriented GATv2 layer, the multivariate time-series within a sliding window is con-

sidered as a complete graphwhere each node corresponds to a certain feature and each edge represents

the relationship between two features. This allows the GATv2 layer to detect multivariate correlations

without any prior knowledge, as the relationships between nodes are carefully captured through the

dynamic attention mechanism. On the other hand, the time-oriented GATv2 layer considers all the

timestamps within each sliding window as a complete graph, with each node corresponding to a fea-

ture vector at a given timestamp. This allows the model to capture all temporal dependencies in the

time-series, similarly to how a transformer [56] utilizes self-attention to model a sequence of words.

Feature-oriented GATv2

k features

T timestamps

v
,

v
,

v
,T

v
,

v
k,

v
,

v
,T

v
k,

v
k,T

Time-oriented GATv2

k features

T timestamps

v
,

v
,

v
,T

v
,

v
k,

v
,

v
,T

v
k,

v
k,T

v

v

vk

v v v
T

Figure 2.12: The node vectors corresponding to the feature-oriented (left) and time-oriented (right) GATv2
layers. For this illustration Δ𝑡 = 𝑇 has been assumed.

More formally, in the feature-oriented GATv2 layer, each node is represented by a node vector

v𝑖 = {𝑣𝑖,𝑡}
Δ𝑡
𝑡=1, where 𝑣𝑖,𝑡 is the value for the 𝑖-th feature at time step 𝑡. For a total of 𝑘 nodes,

(7) In the original work by Zhao et al. [91] regular GAT layers are applied, which have the limitations discussed in Section
2.2.1.2 due to the calculation of static instead of dynamic attention

Multivariate Anomaly Detection26

the final output of this layer is a 𝑘 × 𝑇 matrix, where each row is a 𝑇 -dimensional vector representing

the GATv2 layer’s output for a single node. In the time-oriented GATv2 layer, each node is repre-

sented by a node vector v𝑡 = {𝑣𝑡,𝑖}
𝑘
𝑖=1, where 𝑣𝑡,𝑖 is the value at time step 𝑡 corresponding to the 𝑖-th

feature. For a total of 𝑇 timestamps, the final output of this layer is a 𝑇 × 𝑘 matrix, where each row is

a 𝑇 -dimensional vector representing the GATv2 layer’s output for a single node(8). The node vectors

utilized by each GATv2 layer can be seen in Fig. 2.12.

The transposed 𝑘 × 𝑇 output of the feature-oriented GATv2 layer, the 𝑇 × 𝑘 output of the time-

oriented GATv2 layer and the original input of the layers (the 1-dimensional convolutional layer’s

output) are then concatenated to a single 𝑇 × 𝐹 matrix, where 𝐹 = 3𝑘. Each row of this matrix

corresponds to a 𝐹 -dimensional feature vector which fuses the original input’s information with the

feature-based and temporal dynamic attention scores. This concatenated product is then fed to a GRU

layer of hidden dimension 𝑑, in order to capture sequential patterns and long-term dependencies in

the time-series. As was discussed in Section 2.2.2, LSTMnetworks are better at capturing such depen-

dencies. Nevertheless, GRU networks are computationally more efficient and, most importantly, they

perform better when the model needs to adapt to changing input. In the present case, the parameters

associated with the attention mechanisms of the GATv2 layers are learnable, therefore the output of

these layers - which is part of the GRU layer’s input - changes with every training epoch.

The final part of the MTAD-GATv2 architecture corresponds to a forecasting-based model and a

reconstruction-based model, which work in parallel using the GRU’s output. The former is utilized

so that the model can make predictions for the value at the next timestamp, while the latter is used

to capture the data distribution of the entire multivariate time-series. The chosen models are a MLP

for the forecasting process and a VAE with bottleneck dimension 𝐿 for the reconstruction. Note that

in this case the VAE’s objective is not to reconstruct a vector similar to the GRU’s output, but rather

to reconstruct a vector similar to the input time-series’ 𝑘-dimensional feature vector. For this reason,

while the GRU’s output is 𝑑-dimensional, the dimension of the VAE’s decoder’s output must be taken

equal to 𝑘(9). The architecture of the full MTAD-GATv2 model is depicted in Fig. 2.13.

During the training process, the learnable parameters from both models are updated simultane-

ously and the loss function is defined as the sum of both optimization targets:

ℒ = ℒ𝑓 + ℒ𝑟, (2.47)

where ℒ𝑓 and ℒ𝑟 are the loss functions associated with the forecasting and the reconstruction model,

respectively. During inference, at a given timestamp, the MLP provides a prediction ̂x = { ̂𝑥𝑖}
𝑘
𝑖=1,

where ̂𝑥𝑖 is the predicted value for the 𝑖-th feature. On the other hand, the VAE receives the actual

(8) Note that, following the original paper presenting the MTAD-GAT, in the present work the mapping ℝ𝑇/𝑘 → ℝ𝑇/𝑘 is
also chosen for the feature-/time-oriented GATv2 layer, respectively. Nonetheless, this is not a limitation by design of the
GATv2 as seen in Section 2.2.1.1, which means that the mappings can be generalized to ℝ𝑇 → ℝ𝑇 ′ and ℝ𝑘 → ℝ𝑘′ .

(9) Another viewpointwould be to consider the fullMTAD-GATv2model as aVAE,where the encoder consists of everything
other than the forecasting model and the decoder model. Then, the dimension of the VAE’s input would be equal to the
dimension of its output.

Theoretical Framework 27

Time-Series Input

1D Convolution

Gated Recurrent Unit

Time-oriented GATv2Feature-oriented GATv2

Variational AutoencoderMultiple Layer Perceptron

Output

Figure 2.13: Architecture of the MTAD-GATv2 model.

measured value of each feature, 𝑥𝑖, and tries to reconstruct it, with its decoder producing an output

vector r = {𝑟𝑖}
𝑘
𝑖=1, where 𝑟𝑖 is the reconstructed value for the 𝑖-th feature. The final output of the

Multivariate Anomaly Detection28

model is an overall inference score, which is the sum of the inference score per feature, given by

𝑠 =
𝑘

∑
𝑖=1

𝑠𝑖 =
𝑘

∑
𝑖=1

| ̂𝑥𝑖 − 𝑥𝑖| + 𝛾 |𝑥𝑖 − 𝑟𝑖|
1 + 𝛾 , (2.48)

where 𝛾 is a hyper-parameter that weights the relative contribution of the reconstruction and forecast-

ing process to the final score. This score takes into account the squared error between the prediction of

the forecastingmodel and the actualmeasurement, in order to quantify the former’s deviation from the

latter. Additionally, it considers the absolute error between the measurement and the reconstructed

value, to quantify the probability of generating a non anomalous value, given the approximated dis-

tribution of the time-series. Finally, if the overall score surpasses a certain threshold, then the value

at the corresponding timesmtamp is classified as an anomaly.

While this threshold can be considered a hyper-parameter and an optimal value for it can be in-

vestigated by experimentation, a Peak Over Threshold (POT) [92] approach is utilized to choose the

threshold automatically. In a nutshell, the POT algorithm starts by choosing an initial threshold

to identify anomalies in the data, using either domain knowledge or statistical methods (the 95-

percentile of the original data is used for the purposes of this work). Given this threshold, the al-

gorithm identifies the excesses over the threshold and then models them using a Generalized Pareto

Distribution (GPD). The GPD is used to model the tail behavior of the distribution, which is where

the “extreme values” are expected to be located. Given the estimated parameters of the GPD, the

anomaly threshold is re-set (the 95-th percentile of the estimated distribution is chosen). This pro-

cess is repeated iteratively until convergence; the convergence criterion chosen here is 𝛿𝜏 ≤ 5 ⋅ 10−3,

where 𝛿𝜏 is the difference between two consecutive threshold choices. The code implementation of

the POT algorithm used in the MTAD-GATv2 model is the one written by A. Siffer [93].

3Data Collection & Datasets

The marine industry delivers a rich playground for machine learning and data science, as it generates

large amounts of data from various sources, including sensor data, navigation data, and environmental

data. These data come in different forms and structures, providing diverse datasets that can be used

to train and evaluate machine learning models. Among the different types of data generated by the

marine industry, sensor data is particularly important for the safe and efficient operation of vessels and

offshore platforms. Sensor data includes, but is not limited to, time-series data from various sources

such as temperature, pressure, vibration, and other environmental sensors. These data are used to

monitor the performance of equipment and detect any potential issues before they become critical.

As explained in the previous chapters, collecting such data is crucial in order to perform anomaly

detection, identify potential issues and provide early warning signs before they escalate into serious

problems. The purpose of the present chapter is to present the different types of sensors used to collect

the data that are utilized for the training and evaluation of the anomaly detection algorithms discussed

in Chapter 2. In addition, a short overview of the data collection process is given. Finally, the three

different custom datasets developed for the purposes of the study are discussed in detail.

3.1 Sensors and Studied Systems

The availability of large amounts of data is ideal for the development and improvement of predictive

models. However, in practical applications, it is not always possible or cost-effective to gather data

from every possible source. In the context of monitoring vessel systems, it is necessary to carefully

consider which systems and parameters tomonitor, and howmany sensors to use, in order to optimize

the balance betweendata availability and cost. To this end, it is important to focus on systems forwhich

there is a good understanding of the common problems that occur, and to prioritize the monitoring

of key parameters that are known to have the greatest impact on the performance and reliability of

these systems. By doing so, it is possible to gather the most relevant data and use them to develop

effective predictive models that can help to improve the performance and safety of vessel operations.

Based on this, the scope of the work presented herein covers the monitoring of four system types(10):

Motor-Pump systems, Stern tubes, Pipes and Scrubber Towers.

(10)They are referred to as “system types” instead of “systems”, since a single instance thereof may be present in several
locations of the vessel. In other words, monitoring system A means that all instances of this system on the vessel are
monitored, regardless of their location or the larger system that they are a part of.

29

Sensors and Studied Systems30

Motor-pump systems refer to the combination of a motor and a pump that work together to trans-

fer fluids or other materials. They are closely related and interdependent components, which is why it

is necessary to study them together in order to understand their performance. Motor-pump systems

are essential in a vessel and are used for a variety of purposes, including fuel transfer, bilge pumping,

cooling systems, and fire-fighting systems. Their monitoring is important in order to ensure their

proper functioning and detect potential issues as soon as possible, thus maintaining the safety and

performance of the vessel. The fact that motor-pump systems are components of numerous other

larger shipboard systems further justifies why they correspond to one of the four monitored system

types. A basic outline of a motor-pump system can be seen in Fig. 3.1(11).

(2)(3)
(4)(5)

(7)

(8) (6)

(1)

Motor

Coupling

Pump

Figure 3.1: Outline of a motor-pump system connected through a coupling. Arrows typically depict the fluids’
flow direction. Red points indicate the locations where sensors are placed.

The motor-pump system depicted in the figure above is connected through a coupling which serves

as a flexible joint transmitting power from the motor to the pump while allowing for small misalign-

ments between the two components. This type of system typically involves the motor and pump being

mounted on separate bases, with the motor providing the necessary power to drive the pump and the

coupling helping absorb vibrations and prevent wear and tear.

The red circles in the figure indicate the approximate locations where the sensors used to monitor

eachmotor-pump system are placed. A vibration sensor is placed on the motor’s shaft (1), followed by

a temperature sensor (2) and a current sensor (3). Their outputs are units of displacement (specifically

millimeters), degrees in the Fahrenheit scale and amperage, respectively. Vibration sensors are also

placed on the coupling between the motor and the pump (4), as well as on the pump’s casing (5).

Additionally, a tachometer is placed near the pump’s impeller (6), in order to measure its speed (in

rpm). Finally, two Coriolis flow meters are placed in the pump’s discharge (7) and suction sides (8),

yielding measurements of fluid flow in liters per minute.

The second monitored system type is the stern tube, an outline of which can be seen in Fig. 3.2.

Many vessels have a single stern tube, however several cargo ships and oil tankers may have multiple

(11)Note that Fig. 3.1, as well as other similar figures, depicts oversimplifications of the actual systems, whose architecture is
obviously more complex.

Data Collection & Datasets 31

(1)(3)

(4)

(7)

(5)

(2)
(8)

(6)

Figure 3.2: Outline of a vessel’s stern tube, with emphasis on its oil supply line. Arrows depict the direction of
the oil’s flow. Red points indicate the locations where sensors are placed.

stern tubes to accommodate multiple propeller shafts, which can provide increased propulsion power

and redundancy in case of failures. A stern tube system is a component of the propulsion system that

supports the propeller shaft and provides a sealed surface for its rotation. It typically consists of one

or more pairs of bearings, which are used to support the propeller shaft and reduce friction between

the shaft and the stern tube, allowing the propeller to rotate freely. Additionally, a stern tube contains

seals, with the aim of preventing water from entering the stern tube, providing a barrier between the

sea and the ship’s hull. Another very important component is the lubrication system, which helps to

reduce friction and wear on the bearings and the propeller shaft, ensuring that the propeller can rotate

smoothly and efficiently.

A pair of temperature sensors (1), (2) and vibration sensors (3), (4) is placed on each pair of

bearings, in order to monitor the alignment of the stern tube’s shaft. A rather severe issue that can

occur due to several reasons, such as leaks in the shaft seals, leaks in the oil supply system, or failures

of the oil return system, is water ingress into the stern tube. Measurements of oil pressure and oil flow

rate can help detect water ingress into the stern tube system, through changes in these parameters’

measurements. For instance, if the oil pressure decreases or the oil flow rate decreases, this could

indicate that water is entering the system and displacing the oil. For this reason, a pressure transducer

(5), (6) and a Coriolis flow meter (7), (8) are placed in the oil supply line of the lubrication system, in

order to measure the oil’s pressure (in atm) and flow (in liters per minute), respectively.

Another system type that is monitored for the purposes of the work presented herein is the com-

mon steel pipe, which is obviously a component of most shipboard systems (see Fig. 3.3). The main

issue with steel pipes is the occurrence of corrosion, which can lead to severe leaks and damage if left

unchecked. It is therefore crucial to monitor the width of the pipe using corrosion sensors, which can

measure both the external (1) and internal (2) width of the pipe (inmillimeters). It has been found that

corrosion usually originates from areas of the pipe where the pipe’s radius changes, due to the abrupt

change of the fluid’s velocity (continuity equation), which is why it suffices to place corrosion sensors

only in such areas. Other important features of steel pipes that require monitoring are the fluid’s flow

Sensors and Studied Systems32

(1)

(5) (4)(3)

(2)

Figure 3.3: Outline of a generic steel pipe with variable radius. Arrows typically depict the fluids’ flow direction.
Red points indicate the locations where sensors are placed.

rate and its pH, in order to ensure that there are no leaks into or out of the pipe, in pipes carrying

hazardous materials or pipes feeding other sensitive systems that could be damaged from the influx of

acidic fluids. This is why two Coriolis flow meters are placed in the pipe’s inlet (3) and outlet (4), and

a pH-meter is placed in the interior of the pipe (5). It is worth mentioning that thermistors were also

considered, due to their low cost compared to more expensive sensors used to measure temperature,

such as the thermocouples used in stern tubes and motors. Nevertheless, their use was dismissed after

realizing how vulnerable they are when exposed to somewhat extreme environments that are usually

found in several vessel locations.

The final system type studied is the scrubber tower (commonly referred to simply as “scrubber”),

an outline of which can be seen in Fig. 3.4. Scrubber towers are commonly used in maritime and in-

dustrial applications to remove pollutants from exhaust gases. They work by passing the exhaust gases

through a series of chambers or scrubber elements, where the pollutants are captured and removed

from the gas stream. This helps to reduce the emissions of harmful pollutants, such as sulfur oxides

(SOx), nitrogen oxides (NOx) and particulate matter, which are produced by the combustion of fuels.

(1)

(2)
(3)

(4)

(6)

(8)

(9)

(7)

(5)

Figure 3.4: Outline of a cylindrical scrubber tower. Arrows typically depict the fluids’ flow direction. Red points
indicate the locations where sensors are placed.

In order to detect possible fouling or scaling in the interior of the scrubber, 2 pressure sensors are

placed near its inlet (1) and outlet (2): clogging due to scaling and fouling can be detected by measur-

Data Collection & Datasets 33

ing pressure gradients. For the same reason, a conductivity sensor (yielding measurements of μS/cm)

is placed in the scrubber tower’s interior (3). One of the most common problems in scrubbers are

thermal shocks, which occur when there is a sudden change in temperature within the scrubber sys-

tem. They can be caused by a variety of factors, including changes in the temperature of the scrubbing

solution or fluctuations in the temperature of the exhaust gases. The sudden expansion or contraction

of the scrubber components due to temperature changes can cause stress that exceeds the material’s

strength, leading to cracks and other types of damage. In order to monitor the function of the scrub-

bers, 6 thermocouples (4)-(9) are placed on its shell: 2 closer to its bottom part and the remaining 4

in a helix around its center (Fig. 3.4 is a 2-dimensional projection, so the helix is not visible).

3.2 Data Collection

Unlike in many research cases where datasets are readily available, the collection of data in an in-

dustrial setting is a complex and challenging task that requires specialized knowledge and expertise.

Real-world scenarios involve a significant amount of effort and resources to gather information, which

is often collected through the deployment of properly configured data acquisition systems, ensuring

accurate and reliable data collection. This section gives a short overview of this process, a schematic

representation of which can be seen in Fig. 3.5.

Figure 3.5: Schematic representation of the data collection process, from receiving and properly processing the
sensor readings, to transmitting them to the cloud.

The first step is the ingestion of sensor readings on the egde, i.e. on the vessel. This is done by us-

ing several programmable logic controllers (PLCs), on the input/output (I/O) modules of which the

sensors are physically connected. A PLC is a type of computer that is designed to control industrial

processes, such as production lines or automation systems. PLCs are widely used in industrial control

applications due to their ability to handle a wide range of inputs and outputs, perform complex con-

trol algorithms and communicate with other devices such as sensors and human-machine interfaces.

They are also known for their ruggedness, reliability and ability to operate in harsh environments,

which is why they are an ideal choice for marine operations. PLCs are programmed using specialized

programming languages, and they typically include a number of built-in functions that can be used

Data Collection34

to control and monitor industrial processes. Examples of such programming languages are ladder

logic [94], function block diagrams (FBD) [95], or sequential function charts (SFC) [96].

Once a network of sensors is connected to a PLC’s I/O modules (typically one PLC is used per

monitored system), these modules are configured to the appropriate input type, range and scaling to

match the sensors being used. This involves setting up the I/O modules to use the appropriate voltage

or current levels and performing all necessary signal conditioning to ensure accurate and reliable read-

ings from the sensors. Then, the PLC is programmed to read the data from the sensors and perform

any necessary processing before storing them in appropriate data structures. As far as this processing

is concerned, there are two types of required operations that the PLC must perform.

To explain the first type of operation, it is important to note at this point that for many monitored

systems some features are measured by two sensors instead of one. This is done to ensure availability

in case of sensor failures, which is more common for some sensor types than others and hence is

taken as a preventive measure for these specific sensor types (vibration measurements are the most

typical example of this). In these cases, the PLC is programmed to process the input sensor data,

either by logging the mean value of the two readings as a single measurement in case both sensors are

operational, or by isolating the failed sensor’s measurements and logging only the operational sensor’s

readings in case one of them has malfunctioned. As for the second type of operation, it corresponds

to adding required metadata to each sensor’s readings, apart from the timestamp on which they were

taken and their value. These metadata include the name of the sensor that yielded the corresponding

measurement(12), as well as an ON/OFF indication. This indication is necessary so that when the

data are analyzed, they can be filtered depending on whether the system was operational during the

measurement (ON indication) or not (OFF indication)(13). The ON/OFF indication is acquired by

having a separate status input (a digital input connected to a simple switch) connected to the PLC.

In industrial control systems, themethod of data transmission is a crucial consideration: onemust

determine whether the data will be transmitted in real-time via a streaming scenario or collected and

sent in batches. Streaming involves the continuous transfer of data in real-time, while batch transmis-

sion involves the collection of data over a certain period of time, and then sending the accumulated

data in one go. For vessels, which may not always have a constant internet connection, batch trans-

mission is the preferred option. In this scenario, the PLC collects and stores the data and sends it out

in batches at predetermined intervals or when an internet connection is available. This ensures that

data is still captured and transmitted, even if a continuous connection is not present.

With the data properly processed and stored in batches using the discussed method, the final

step is their transmission into the cloud. As discussed in more detail in Chapter 4, the ingestion of

the data once they reach the cloud is performed by Microsoft Azure’s IoT Hub [97] service. For this

(12)Theoretically, this is not necessary, as a PLC’s channel is in a one-to-one correspondence with the feature that it logs from
the connected sensor. Nonetheless, for reasons that will become clearer in Chapter 4, it is considerably easier to create
data pipelines on the cloud when the data explicitly include information about the sensor’s name.

(13)Shipboard systems are not always operational, however they are still monitored evenwhen offline. For example, if specific
valves are closed, there is no fluid flow from a pipe and therefore no valuable flow measurements.

Data Collection & Datasets 35

reason, a secure and reliable connection is established between all PLCs and the Azure IoTHub, using

the MQTT protocol. MQTT stands for Message Queuing Telemetry Transport and it is a lightweight

publish/subscribemessaging protocol that is commonly used for transmitting data from IoTdevices to

servers. One advantage of usingMQTT is its efficiency and low overhead, making it well suited for use

in resource-constrained environments such as those found inmany IoT devices. Additionally, MQTT

provides a flexible and scalable way to transmit data from a large number of devices to a centralized

hub like Azure IoT Hub. In the case presented herein, where data is sent in batches from a PLC to

Azure IoT Hub, the PLC is configured as an MQTT client and uses the MQTT protocol to publish

messages containing the sensor readings and other relevant data to separate devices entities of the IoT

Hub. The IoT Hub, acting as an MQTT broker, receives these messages and corresponds to the entry

point of a cloud-based data pipeline.

3.3 Constructed Datasets

Closing the present chapter, an overview of the three dataset types used in this study is provided. It

must be stated at this point that the term “dataset type” is used to refer to three different “families”

of datasets. For example, the first “dataset type” described in what follows actually consists of four

separate datasets. However, these datasets’ use is different compared to the use of datasets that are

discussed later, which is why they are grouped into a single dataset type.

3.3.1 Dataset Type #1: Controlled Anomaly Simulation

The first dataset type consists of four individual datasets which are called pre-training datasets. Each

of these datasets corresponds to one monitored system from the ones discussed in Section 3.1. Their

features along with their descriptions can be seen in Tables 3.1 - 3.4.

Feature Description

VibM vibration on motor’s shaft

TempM motor temperature

CurrM motor current

VibC vibration on coupling

VibP vibration on pump’s casing

Speed pump impeller speed

FlowOut flow from pump discharge

FlowIn flow into pump suction

Table 3.1: Pre-training dataset for motor-pump systems.

Obviously, a machine learning model is best trained using historical instances of the data that it is

asked to provide inference results for. When historical data are not available, a common practice is

Constructed Datasets36

Feature Description

Bear1Temp1 first temperature measurement of the first bearing pair

Bear1Temp2 second temperature measurement of the first bearing pair

Bear1Vib1 first vibration measurement of the first bearing pair

Bear1Vib2 second vibration measurement of the first bearing pair

Pressure1 oil pressure in first inlet of lubrication system

Pressure2 oil pressure in second inlet of lubrication system

Flow1 oil flow in first inlet of lubrication system

Flow2 oil flow in second inlet of lubrication system

Table 3.2: Pre-training dataset for stern tube systems.

Feature Description

ExtWidth external measurement of pipe width

IntWidth internal measurement of pipe width

FlowIn fluid flow in the pipe’s inlet

FlowOut fluid flow in the pipe’s outlet

pH Measurement of fluid pH

Table 3.3: Pre-training dataset for pipe systems.

Feature Description

PressureIn pressure near scrubber tower’s inlet

PressureOut pressure near scrubber tower’s outlet

Cond conductivity measurement in scrubber tower’s interior

TempB1 first temperature measurement near the scrubber tower’s base

TempB2 second temperature measurement near the scrubber tower’s base

TempC1 first temperature measurement of the helix

TempC2 second temperature measurement of the helix

TempC3 third temperature measurement of the helix

TempC4 fourth temperature measurement of the helix

Table 3.4: Pre-training dataset for scrubber tower systems.

to collect data until a significant volume is concentrated, manually label them and then use them for

training. However, in an industrial setting, this approach is impractical for two reasons: firstly, it re-

Data Collection & Datasets 37

quires a significant amount of time, which is translated into loss of profit for a company’s stakeholders.

Secondly, and most importantly, anomalies are by definition rare events, which means that in order

to collect timestamps that are labeled as anomalous, the aforementioned time is multiplied by a large

factor.

To mitigate this challenge, before installing sensors on vessels and deploying machine learning

models for anomaly detection, one instance of each system discussed in Section 3.1 is purchased and

sensors are installed on it to collect data as explained in the previous sections. This is done in dry

dock(14) facilities, thus providing a controlled environment in which the systems can operate in con-

ditions that simulate (as best as possible) real-world vessel conditions, while also allowing engineers

to induce artificial anomalies, so that labeled datasets can be constructed. It goes without saying that

the data acquired in this manner are not ideal. Isolating each system from its environment artificially

removes possible correlations between different systems. Additionally, stressing the systems to induce

artificial anomalies in order to acquire timestamps that are labaled as anomalous has its limitations;

for instance, a pipe cannot be artificially corroded in a given time window and a scrubber tower can-

not suffer a thermal shock and then return to a normal operating condition without repairs. Finally,

caution is required so as not to create temporal correlations that do not occur in real-world scenarios

(for instance, inducing a series of anomalies once every day can lead to the creation of some sort of un-

realistic periodicity). Nonetheless, pre-training models on data acquired from the exact same sensors

that are installed on vessels and provide the real-time data feed for anomaly detection is significantly

“better than nothing”.

As far as dataset details are concerned, the systems are monitored for a total of 17 days, with a

measurement granularity (frequency of sensor measurements) of 30 seconds for every feature. This

leads to the creation of time-series with 48960 labeled timestamps. The following table (Table 3.5)

presents the contamination factor (the percentage of anomalies) for each system’s dataset.

System Number of induced anomalies Contamination Factor

Motor-pump system 2306 4.71%

Stern tube 1842 3.76%

Pipe 2893 5.91%

Scrubber tower 2566 5.24%

Table 3.5: Contamination factor of each multivariate time-series dataset.

Note that these contamination factors correspond to the multivariate time-series’ labelling and not

that of individual features. For example, in a pipe system, even if the ExtWidth feature’s time-series

appears normal in a given timewindow (its label is 0 in this window), if the readings for the pH feature’s

(14)Dry docks are large structures that are used to lift vessels out of the water so that maintenance and repairs can be carried
out on their hulls, propellers and other parts.

Constructed Datasets38

time-series correspond to anomalous events (its label is 1 in this window), then the pipe system is con-

sidered to be in an anomalous state (thus the multivariate time-series’ label is 1 in this window). This

example is depicted in Fig. 3.6. Of course, the labels for each feature individually are also included in

the datasets, in order to allow for the evaluation of both univariate and multivariate anomaly detec-

tion algorithms. The feature-wise distribution of anomalies over each multivariate time-series can be

found in Appendix C.

0

1 ExtWidth labels

0

1 pH labels

0

1 Collective labels

Figure 3.6: Example of how individual features’ labels are used to create labels for the entire multivariate time-
series corresponding to a system.

3.3.2 Dataset Type #2: Synthetically Generated Time-Series

The second dataset type comprises univariate and multivariate time-series datasets of 10000 times-

tamps each, which are used to evaluate the expressivity of the models trained on the previously in-

troduced pre-training datasets. These datasets’ time-series are synthetically generated by using noisy

periodic functions (namely sine and cosine waves, square pulses and ECG-like pulses, with added

Gaussian noise) as a base time-series model and injecting them with different types of anomalies in

order to test the algorithms’ performance on data that are both unseen and generated from distribu-

tions which are different compared to the ones of the training data. This is why periodic functions are

used as a base model: most of the features of the monitored shipboard systems do not exhibit periodic

behaviour or show patterns of periodicity. Note that extremum anomalies are included in all datasets.

To create the datasets of this type, scripts based on the GutenTAG tool of the TimeEval project [98]

are developed. There are 8 different anomaly types which are injected into the base time-series: (1)

amplitude and (2) frequency anomalies (which alter the wave’s/pulse’s amplitude and frequency, re-

spectively), (3) extremum anomalies (which correspond to global or local minima ormaxima injected

Data Collection & Datasets 39

Figure 3.7: Examples of each anomaly type taken into consideration for the development of the synthetically
generated time-series datasets.

in the normal time-series), (4) pattern anomalies (which inject patterns of waves/pulses that are dif-

ferent from the ones used in the base time-series), (5) variance anomalies (where the Gaussian noise

is increased), (6) platform anomalies (which create plateaus somewhere in the time-series), (7) mean

anomalies (which correspond to vertical displacements of the time-series) and (8) creeping anomalies

(which introduce effects that gradually alter the base time-series’ pattern over time). These different

Constructed Datasets40

anomaly types are depicted in Fig. 3.7, where the base time-series corresponds to sine waves. Addi-

tionally, table 3.6 provides details for the different datasets constructed for this purpose, including a

dataset ID, the number of its features (thus making a distinction between univariate and multivariate

time-series), the periodic function used as a base model, the types of injected anomalies, as well as the

contamination factor.

ID Features Base Model Anomalies Contamination Factor

U1 1 sine wave (1), (2), (5) 5%

U2 1 cosine wave (1), (4), (6) 5%

U3 1 square pulse (4), (7) 5%

U4 1 ECG pulse (6), (8) 8%

M1 8 all (1), (2), (4), (6) 5.2%

M2 8 all (1), (2), (4), (5) 4.5%

M3 5 all (6), (8) 7.6%

M4 9 all (6), (7), (8) 7.8%

Table 3.6: Datasets of synthetically generated time-series.

It is stressed at this point that these datasets are developed to test the expressivity of already trained

models. As a result, the number of features for each multivariate dataset is fixed, depending on the

type ofmodel that is to be tested: datasets of 8, 8, 5 and 9 features are developed forMVADmodels pre-

trained on the dataset of motor-pump systems, stern tubes, pipes, and scrubber towers, respectively.

Note that the granularity of data is not relevant in this case, however it is taken to be equal to 30

seconds, for uniformity reasons.

3.3.3 Dataset Type #3: Operational Vessel Data

The final dataset type consists of datasets constructed from the real-world data that are transmitted

from sensors installed on operational vessels. For the purposes of the present thesis, the data of a single

vessel are taken into account, however the project described herein concerns in general numerous

vessels, of different types, from several companies. The studied vessel is a cruise liner with 6 diesel

engines and therefore has 6 scrubber towers. Additionally, 19 different pipe systems are monitored

(including the pipes that lead to the scrubber towers), as well as 28 different motor-pump systems

(the vessel has more than 100). Including the single stern tube, this amounts to a total of 54 datasets,

which are continuously appended with new data as they arrive in batches. By the time of writing the

present thesis, each dataset contains features with more than 170000 entries, corresponding to more

than 2 months of constant data feed. The sensors’ measurement granularity is 10 seconds, however,

as explained in the next chapter, by taking the median of 3 consecutive measurements as a single data

point, the granularity effectively becomes equal to 30 seconds, as in the case of the pre-training data.

4Cloud Data Engineering

In the field of machine learning and data science, having access to well-curated datasets is critical

to the development and evaluation of models. However, in real-world applications, collecting and

preparing data for analysis can present significant challenges. This is particularly true in the context

of maritime operations, where the use of sensors to gather information about the health condition of

vessel systems requires a robust and efficient data pipeline.

The process of managing data in a production environment is referred to as Data Engineering. It

encompasses the design, development and maintenance of the necessary infrastructure and processes

for collecting, transforming and preparing data for use with machine learning models or other algo-

rithms. The challenge of Data Engineering is to efficiently handle the complexities of large and diverse

datasets, making sure that the data is processed in a way that is suitable for analysis.

The use of cloud infrastructure, such as the Azure Cloud Ecosystem [99] which is used in the work

presented herein, can simplify the process of Data Engineering by providing scalability and reliability

for handling the complexities of data ingestion, transformation, andmodeling. This allows Data Engi-

neering to be streamlined, enabling the creation of a robust and efficient data pipeline. Presenting the

followed practices and used services for the construction of this pipeline as a unified Azure solution

is the aim of this chapter.

4.1 Azure Cloud Ecosystem & Solution Architecture

The Azure Cloud Ecosystem, developed by Microsoft, is a comprehensive cloud computing platform

that provides organizations with scalable and reliable services for their data processing and analysis

needs. With its wide range of services for data analysis andmachine learning, one can build and deploy

complex data-driven applications in a flexible and efficient manner.

One of themost significant benefits of the Azure Cloud Ecosystem is its scalability. Azure provides

a flexible infrastructure that can accommodate changing demands, making it ideal for organizations

with dynamic data processing needs. This is exactly the case with maritime operations, where the

number of sensors, vessels or even client companies can change drastically in a single day. Regard-

less of the size of one’s data processing needs, Azure provides the necessary infrastructure to support

these demands. Additionally, Azure offers a range of data storage options, including structured and

unstructured data, making it easy to store and access large and complex datasets, such as sensor data

41

Azure Cloud Ecosystem & Solution Architecture42

from vessel systems. With the ability to scale as needed, organizations can avoid the costs and limita-

tions of traditional on-premises data centers and focus on their core business operations.

Another critical aspect of the Azure Cloud Ecosystem is its reliability. Azure provides high avail-

ability and disaster recovery features, ensuring that data is always available and protected, which are

particularly important for organizations that rely on their data for critical business operations. This is

exactly the case with the studied problem, where anomaly detection is performed to identify potential

malfunctions and system failures or indications thereof. Azure also offers a wide range of security

features, including data encryption, access control and network security, to ensure that data is pro-

tected from unauthorized access. With the assurance of data security and availability, organizations

can focus on their core business operations and avoid the costs and complexities of managing their

own data centers.

Its open and flexible architecture is another key feature of the Azure Cloud Ecosystem. Azure

supports a wide range of programming languages and platforms, making the integration of existing

systems and tools with the Azure platform easy. Additionally, Azure provides numerous Application

Programming Interfaces (APIs) and Software Development Kits (SDKs), making it easy for organi-

zations to automate their data processing and analysis tasks. In the present work, the Python SDK is

utilized to create and manage a series of different services. This allows efficiently organizing all data

processing and analysis workflows for maritime operations, reducing the time and resources required

to manage these processes.

The Azure Cloud Ecosystem also provides several services for data analysis and machine learn-

ing, which can be used to build and deploy complex data-driven applications. Additionally, Azure

provides services for data ingestion, pre-processing and modeling, making it easy to create end-to-

end data pipelines for the analysis of sensor data from vessel systems, streamlining all aspects of data

operations. One key feature of Azure that supports all of these functionalities is the integration of

Databricks [100], a powerful and collaborative platform for big data processing and machine learning.

The Databricks platform offers a user-friendly interface, collaborative features, and the ability to scale

to meet dynamic demands, making it ideal when working with large and complex datasets. Azure

Databricks [101] integrates with other Azure services and tools, offering organizations a seamless and

efficient solution for their data processing and analysis needs. With its comprehensive capabilities

and robust architecture, Azure Databricks is a valuable tool for organizations seeking to gain valuable

insights into their operations and optimize their processes.

The full architecture of the solution developed in Azure for the requirements of the work pre-

sented in this thesis can be seen in Fig. 4.1. It can be divided into four main groups of resources,

each serving a specific purpose in the data pipeline: Data Ingestion (a group handling the ingestion

of the data transmitted from the vessel), Data Storage (a group controlling the storage of the data into

different tiers), Computations (a group containing the services that handle the orchestration of com-

putations with the processed data) and Serving (a group for the services that serve the final results). In

addition to these resource groups, there is an extra group seen in Fig. 4.1, titled Logging and Security.

Cloud Data Engineering 43

IoT Sensors Stream Analytics

IoT Hub

Device Provisioning
Service

Monitor Active Directory Key Vault

Delta Lake

Bronze Silver Gold

Data Lake
Gen 2

Kubernetes
Service

Databricks

PostgreSQL
Database

Web App

Data Ingestion

Logging and Security

Computations

Data Storage Serving

Figure 4.1: Architecture of the Azure solution.

This group includes three main Αzure components that are used globally, outside the scope of indi-

vidual resource groups. The first among them is Azure Monitor [102], which is a monitoring service

allowing the collection, analysis and action on telemetry data received from a variety of resources and

applications, in order to optimize the performance and availability of their workloads. The second

is the Azure Active Directory [103], which is an access management service allowing organizations to

securely manage user access and authentication to cloud-based resources and applications. The third

is the Azure Key Vault [104], which allows organizations to store and manage sensitive information,

such as cryptographic keys, passwords, and certificates, in a centralized and highly secure manner.

4.2 Data Ingestion

The solution’s architecture is described in the order in which the data pipeline’s events take place,

starting from the transmitting of sensor data from the vessel all the way to serving the final results.

This means that the first resource group under consideration is the one handling the ingestion of the

transmitted data, which includes the Azure IoT Hub, the Azure Stream Analytics [105] and the Azure

IoT Hub Device Provisioning Service [106] components.

As mentioned in the previous chapter, the Azure IoT Hub service is the entry point of the data

pipeline where the batch data collected from the sensors and transmitted from the PLC devices are

queued for ingestion and storing. It provides secure communication channels for devices to com-

municate with the cloud and also provides secure storage for device identities and credentials. This

ensures that only authorized devices can communicate with the cloud, and that communications be-

tween devices and the cloud are protected from unauthorized access. Another important feature of

Azure IoT Hub is its scalability, as it is designed to handle large numbers of devices, and provides

features such as partitioning and load balancing to ensure that the IoT Hub can handle the scale and

complexity of large IoT deployments.

Data Ingestion44

For the purposes of the work presented here, a single IoT Hub component is used per company.

The partition number, which determines the number of parallel processing nodes that are used to

handle the workload of the IoT Hub, is set equal to 10, however it can be increased or decreased

as needed to accommodate changes in the scale of the deployment. All messages received by the IoT

Hub are retained for 7 days (which is also configurable) before being automatically deleted, as a backup

measure in case a part relevant to the storing of the data further down the data pipeline fails. Finally,

using built-in endpoints, IoTHub’s message routing feature allows all receivedmessages to be directed

to storage layers (containers inside Azure Blob Storage [107]), in a time-optimized and secure manner.

More specifically, the message routing feature ingests data, transforms them into avro(15) files and

then routes them to blob storage containers to be saved temporarily (for 7 days) using the format

{iothub}/{partition}/{YYYY}/{MM}/{DD}/{HH}/{mm},

where {iothub} corresponds to the company’s IoT Hub, {partition} corresponds to the partition

number and {YYYY}/{MM}/{DD}/{HH}/{mm} is a datetime format. Unfortunately, this format used

from IoT Hub’s message routing options is not ideal: in order to perform analytics and train machine

learning models, a single sensor’s(16) data need to be isolated from data points obtained from other

sensors. Additionally, a directory-like hierarchy needs to be applied, separating the time-series of

different sensors from different systems, belonging to different system types and different vessels, thus

optimizing the way queries can be performed on the data during pre-processing or analysis. A way

to achieve this would be to include additional fields in the above format, such as metadata from the

received data messages. Nonetheless, at the time of writing the present thesis, there is no way of

specifying one such custom format. For this reason, the Azure Stream Analytics (ASA) service is used

to reorganize the ingested data and save them in the desired hierarchical format in another container.

ASA is a fully managed, real-time data streaming service whose central building blocks are called

ASA Jobs. AnASA job is a continuous real-time data processing unit that receives input data from one

or more sources, performs a series of transformations and outputs results to one or more destinations.

As the name suggests, it is ideal for streaming scenarios and can be used for data analysis besides data

ingestion. However, in the scenario described herein, it simply acts as a helper for the data ingestion

process that handles the storing of data in a custom format, while leaving all other aspects of the

process to IoT Hub. While using both IoT Hub and ASA might seem redundant at first sight, it is

important to note that they are complementary to each other: IoT Hub can’t handle the required data

formatting and ASA cannot provide the reliability, availability and safety of batch data ingestion from

the PLC devices that IoT Hub provides.

(15)Avro is a binary data serialization format that is widely used in big data and data processing applications, since it provides
compact, efficient and highly interoperable data serialization capabilities, as well as high-level data schema evolution
metadata.

(16) In general, a sensor can providemore than onemeasurement formore than one feature. However, as explained inChapter
3, each sensor deployed for this project measures only a single feature, which is why the words “sensor” and “feature” are
used in this text interchangeably.

Cloud Data Engineering 45

As explained in Section 3.2, each sensor reading comes with the corresponding timestamp, as

well as metadata regarding the status of the sensor’s system (ON or OFF) and the sensor’s name. The

sensor’s name is a string formatted as

{vessel}/{location}/{system}/{feature},

where {vessel} corresponds to a specific vessel’s name or ID, {location} corresponds to a moni-

tored system’s type (one of four system types discussed in Chapter 3), {system} corresponds to the ID

of the specific system (for example system No. 5, out of 19 monitored pipe systems) and {feature}
corresponds to the measured feature (one of the features shown in Tables 3.1 - 3.4). This allows one

to define the container where IoT Hub redirects messages as avro files as an ASA job source; then,

whenever a new file appears, or an existing file is appended in this source, the job checks each row’s

metadata and sends (by copying) the data point to a destination container in which data are organized

using the {vessel}/{location}/{system}/{feature} format. This is done by writing queries

in ASA’s SQL-like query language.

Stream AnalyticsIoT Hub

Device Provisioning
Service

Data Lake
Gen 2Blob Storage

Figure 4.2: Data ingestion process using IoT Hub, DPS, ASA and Storage containers.

Closing the discussion on data ingestion, it is worth mentioning that each IoT Hub Device is in a

one-to-one correspondence with a sensor of a monitored shipboard system. This means that for the

single vessel that is used as a case study for the present thesis, the total number of required registered

devices is given by

𝑁𝐷 = 28 ⋅ 8⏟
motor-pump systems

+
stern tube

⏞1 ⋅ 8 + 19 ⋅ 5⏟
pipes

+
scrubber towers

⏞6 ⋅ 9 = 381. (4.1)

This indicates that the total number of devices that need to be registered in IoT Hubs is a number of

𝒪 (102), multiplied by the total number of vessels per company and the total number of companies.

It becomes evident that a scalable solution for registering large numbers of devices with IoT Hubs is

required and this is where the IoT Hub Device Provisioning Service (DPS) enters the stage. The DPS

acts as an intermediary between the devices and an IoT Hub and automates the process of register-

ing devices with IoT Hub, ensuring security and consistency and eliminating the need for manual

configuration of each device. Fig. 4.2 provides a synopsis of the described ingestion process’ flow.

Delta Lake & Medallion Architecture46

4.3 Delta Lake & Medallion Architecture

As discussed, the destination of the ASA job that transforms and arranges the data in a suitable format

is a data storage container with hierarchical structure, which is part of a wider storage service known

as Azure Data Lake Storage Gen 2 [108] (ADLS2). ADLS2 is a cloud-based data lake that provides a

comprehensive solution for managing big data, designed to handle both structured and unstructured

formats. In general, data lakes are an evolution of traditional databases which provide a more flexi-

ble, scalable and reliable way of managing big data. Unlike databases, which are designed to handle

structured data, data lakes allow organizations to store and process both structured and unstructured

data in their raw form. They also provide a cost-effective solution for big data management, as they

are built on a shared infrastructure and can be scaled as needed.

While data lakes have revolutionized the way organizations store and manage big data, they are

not without their challenges: slow and complex data ingestion processes, lack of data governance and

data management capabilities, difficulty in ensuring data reliability and consistency, to name but a

few. These issues limit the full potential of data lakes and make it arduous for organizations to derive

meaningful insights from their data. To address these challenges, Delta Lake [109], a new generation of

data lake technology, offers a more sophisticated solution and provides a more streamlined approach

to data management and processing.

Azure Delta Lake is an open-source storage format that provides ACID transactions, data ver-

sioning and schema enforcement to data lakes, built on top of ADLS2. Through its support for ACID

transactions, it ensures that data is always consistent and accurate. This is achieved by implementing a

transaction log that keeps track of all changesmade to the data, allowing for undo and redo operations.

This makes Delta Lake particularly useful in cases where data is being written and read concurrently,

as is the case with the previously discussed ingestion process, ensuring that data remains consistent

even in the face of errors or failures. As far as versioning is concerned, Delta Lake makes it easier to

revert to previous versions of the data if necessary and enables users to track the evolution of the data

over time. This feature is particularly useful in cases where data is being updated frequently, as it pro-

vides a way to keep track of changes and ensure that the data remains accurate. Finally, with schema

enforcement, which helps to ensure that the data remains consistent and conforms to a specific format,

data quality issues that can arise from inconsistent data formats are prevented. In addition to these

features, Delta Lake also provides a number of performance optimizations that make it faster and

more efficient than traditional data lake technologies. For example, Delta Lake supports columnar

storage formats, such as Parquet, which enable faster and more efficient processing of big data.

TheDelta Lake platform provides a robust and scalable solution for data management in themod-

ern data landscape. However, simply storing data in a Delta Lake does not guarantee its quality or

reliability. For the purposes of the work presented herein, the medallion architecture is adopted on

top of the Delta Lake platform. This is a three-layer approach to data storage that takes into account

the varying quality of the data being stored. The medallion architecture provides a flexible and scal-

Cloud Data Engineering 47

able solution for managing data throughout their lifecycle, from raw and unprocessed data to highly

curated and reliable information (see Fig. 4.3).

Bronze

Raw Ingestion Filtered, Cleaned
Augmented

Business-level
Aggregates

Silver Gold

Figure 4.3: The three-layer medallion architecture built on the Delta Lake platform.

The first data layer of this architecture is the bronze tier, which is designed to hold the raw, un-

processed data that is ingested using the process described in the previous section. This layer is used

for storing large amounts of data in a cost-effective manner, with no pre-processing and no quality

checks. Its primary purpose is to provide a centralized repository for all ingested data, with practically

infinite retention period (be reminded that the data ingested into the Blob Storage using IoT Hub re-

main there only for a limited number of days as a safety measure, so access in historical raw data is

only possible through this bronze layer).

The second layer is the silver tier, which corresponds to a curated data layer used for storing data

that has been processed and transformed to meet the quality standards required for use in analytics

and machine learning applications. Essentially, this layer holds the data that have been transformed

from their raw form into a more usable format. For the purposes of the work presented in this thesis,

each sensor’s newly ingested raw data are aggregated by selecting the median of every three sensor

measurements to be used as a single data point. This is how the granularity of the real-time datasets is

artificially set equal to 30 seconds, while the granularity of the sensors’ measurements is 10 seconds.

Additionally, the raw data are also pre-processed for the purposes of machine learning (only min-max

normalization is applied so far, which is discussed in the next section). The processed data are then

appended in dataframe-like structures supported by the Delta Lake format, with every sensor’s data

corresponding to a single dataframe.

The third and final layer of the medallion architecture is the gold tier and it is used for storing the

output data of machine learning algorithms and in general data that are to be used for reports or to be

served in applications and dashboards. This layer provides fast and efficient access to the data stored

in it, which are stored in a format that is optimal depending on their use case.

4.4 Computations & Serving

Themedallion architecture discussed above describes how the different tiers of data are organized and

stored based on their “quality”, however it is also important to discuss how each layer is populated and

how the data that populate it are curated or generated. Azure Databricks is the service that takes care

Computations & Serving48

of most of this orchestration, thanks to its wide array of tools for processing and transforming data,

including Spark for big data processing and an integrated Delta Lake platform.

As far as the bronze tier is concerned, since it is populated by ASA using the process described in

Section 4.2, Databricks is used only to read the ingested data and process them before saving them to

the silver tier layer. Specifically, using the Spark engine, Databricks performs the aggregation required

to reduce the granularity of the data (taking the median of every 3 values as a data point). Then, the

Spark engine also takes care of additional transformations, namely a min-max normalization of the

data. Min-max normalization, also known as feature scaling, performs a linear transformation 𝑥 → ̃𝑥
on the original data in order to create scaled data in the range (0, 1). The transformation is given by

̃𝑥(𝑖,𝑡) = 𝑥(𝑖,𝑡) − 𝑥(𝑖)
min

𝑥(𝑖)
max − 𝑥(𝑖)

min

, (4.2)

where the 𝑖 and 𝑡 superscripts correspond to the 𝑖-th feature and 𝑡-th time step, respectively, and

𝑥(𝑖)
min/𝑥(𝑖)

max are the 𝑖-th feature’s minimum and maximum values, respectively. These minimum and

maximum values are obtained from the pre-training datasets, as the normalization performed on the

real-time datamust be identical to the one performed for the pre-training ones. Finally, using theDelta

Lake format, Databricks appends the transformed data to existing dataframes, with each dataframe

corresponding to an individual sensor (or, equivalently, feature).

When it comes to the gold tier, it stores data that are generated using the deployed machine learn-

ingmodels, which perform inference on the silver tier’s pre-processed data. WhileDatabricks provides

a comprehensive and integrated platform for machine learning development and deployment, it is not

always the best fit for every use case; in some cases, it may be necessary to leverage other technolo-

gies. In the present case, the combination of Docker [110], Kubernetes [111] and FastAPI [112] is utilized

to carry out the machine learning operations and populate the gold tier.

Docker allows the packaging of the pre-trained machine learning models and all relevant depen-

dencies into a container image, making it easy to distribute and run the models in a consistent, re-

producible environment. Kubernetes, which is provided as an Azure service, provisions a platform

for deploying and managing such containers in a scalable and reliable manner. This is crucial in the

present scenario, where a single container image corresponding to the pre-trainedmodel for a specific

shipboard system needs to be distributed to several containers, so that each machine learning model

instance can be fine-tuned and used to monitor all different instances of the same shipboard system.

This fine-tuning, which is discussed in detail in Chapter 5, along with the inference and possible eval-

uation of the models is achieved by creating task-specific endpoints, which can be called from other

applications (in this case, Databricks). This is where FastAPI is utilized, as it is a web framework that

provides a simple and efficient way to serve machine learning models as web services.

All of the steps described in the present section are automated and orchestrated using Databricks

Jobs, a feature of Databricks that enables the scheduling, running and monitoring of the execution of

long-running, complex, batch-oriented workloads. Jobs can be triggered by time, event, or API and

can be scheduled to run at specific intervals, such as daily or weekly. In the case of the data pipeline

Cloud Data Engineering 49

discussed herein, the first trigger is activated when ASA ingests new data files into the bronze tier. All

the other steps, from data processing to machine learning operations, are triggered and executed as a

series of orchestrated jobs, with each job being triggered only after the successful completion of the

previous one. This not only streamlines the process, but also ensures that each step is executed in the

correct order, reducing the risk of errors and increasing overall efficiency.

Before closing the present chapter, it is worthmentioning how the results that are stored in the gold

tier are served. The final job in the aforementioned pipeline of Databricks Jobs concerns serving the

contents of the gold tier in a PostgreSQL [113] database, also hosted on Azure. PostgreSQL is an open-

source relational database management system known for its strong reliability and advanced features,

such as data integrity, indexing and query optimization. This database is connected to the back-end

of a dashboard web application, which offers visualizations of the real-time data feed (whenever new

batches are ingested), as well as the inference results of the machine learningmodels. One could think

of this PostgreSQL database as the database duplicate of the gold tier layer of the ADLS2 and therefore

question its necessity in the overall solution architecture. Nonetheless, it is important to note two key

points that render both the gold tier and the database important. Firstly, isolating different parts of the

whole project is considered a good practice, not only for debugging, but also for security reasons. As

a result, using both the gold layer and the SQL database ensures that the web application is kept out of

immediate connection to the data pipeline. Secondly, and most importantly, the web application does

not offer the visualization of historical data that go arbitrarily back in time, but rather has a threshold

of 3 months. This means that the SQL database does not keep all of the contents of the gold tier layer,

but rather only the values with timestamps that belong in this time range. This makes queries on the

web application significantly faster, as the number of data points that are considered during lookup

are orders of magnitude higher in the data lake, compared to the database.

Computations & Serving50

5Implementation & Results

Having established the theoretical background and the datasets used for training and evaluating all

models, and also having presented the data engineering process, this final part of the present thesis

discusses the implementation of the anomaly detection models and their results on all three datasets.

5.1 Models Implementation

As far as the implementation of the SR-CNN model is concerned, for the extraction of saliency maps

the values 𝑞 = 3 and 𝑧 = 21 are chosen for the hyper-parameters corresponding to the filters h𝑞
and h𝑧, which are related to the averaged spectrum and averaged saliency map, respectively. These

are also the values suggested by the authors in the original SR-CNN paper [26]. As for the CNN, it is

implemented in Python using the PyTorch [114] library. The synthetic dataset generated for the train-

ing of the CNN is constructed by scanning the original time-series in a sliding window with size

𝑤 = 400, a choice different compared to the one in the original paper. The scanning step is taken

equal to 𝛽 = 100, so that the sliding windows are overlapping. As far as the 𝜅-parameter is concerned,

it is not considered universal for all instances of the SR-CNN model; depending on the dataset where

each model instance is evaluated, 𝜅 is chosen so that 𝜅/2𝑤 is approximately equal to the dataset’s

contamination factor(17).

The CNN’s architecture comprises three 1-dimensional convolutional layers with zero padding,

unit kernel(18) and unit stride and output channels of dimension 𝑤, 2𝑤 and 4𝑤, in this order. The

convolutional layers’ outputs are thenflattened andpassed over two fully connected layerswith outputs

8𝑤 and𝑤, in this order. Each layer is followed by aReLUnonlinearity, except for the final layerwhich is

followed by a logistic sigmoid activation, since the final outputs need to be interpreted as probabilities

(or scores). Additionally, batch normalization is used after each convolution and before ReLU, as it

helps alleviate the problem of the internal covariate shift [115].

Finally, regarding the network’s training, a constant number of 30 epochs is chosen. An early stop-

pingmechanism [116] could be adopted, however experiments showed that imposing L2 regularization

(17)This is because in a window with size 𝑤 where up to 𝜅 points are chosen as anomalies, the mean number of chosen
anomalies is 𝜅/2. For instance, for 𝑤 = 400, in a dataset with a contamination factor of 3%, 𝜅 is taken to be approxi-
mately equal to 24.

(18)A univariate time-series can either be seen as a 𝑇 -dimensional sequence of a single channel, or as a 1-dimensional item
of 𝑇 channels. The latter viewpoint is adopted in this case.

51

Models Implementation52

is more than sufficient to avoid overfitting. The loss function is obviously binary cross entropy and it

is optimized using PyTorch’s Stochastic Gradient Descent (SGD) optimizer. The learning rate, 𝑙𝑟 (𝑒),
is adjustable per epoch 𝑒, following the rule

𝑙𝑟 (𝑒) = 𝑙𝑟0 ⋅ (1
2)

⌊𝑒/10⌋
, (5.1)

where 𝑙𝑟0 is the initial value of the learning rate and ⌊𝑎/𝑏⌋ corresponds to integer division of 𝑎 by 𝑏.
For all model instances, 𝑙𝑟0 is taken equal to 10−3.

Moving on to the MTAD-GATv2 model for MVAD tasks, it is also implemented in Python using

the PyTorch library. A significant portion of the code is based on the implementation by ML4ITS [117],

even though their model is not an accurate representation of Microsoft’s MTAD-GAT [91] (which is

what significantly differentiates it from thework presented here). As in the case of the SR-CNNmodel,

a sliding window approach is followed here as well, with window size Δ𝑡 = 400.
For the first part of themodel’s architecture, the output channel’s dimension for the 1-dimensional

convolutional layer is set equal to its input channel’s dimension (i.e. the number of features, 𝑘) and

a kernel of size 10 is chosen for the convolution operation. A ReLU nonlinearity is also added as

the activation of this single convolutional layer. Regarding the GATv2 layers, their details are dis-

cussed thoroughly in Section 2.2.4, however it is worth mentioning that a dropout layer with dropout

probability equal to 0.25 is also added in the neural network that calculates the attention vectors, for

regularization purposes. As is common practice, the LeakyReLU nonlinearity’s slope is taken equal

to 0.2. The concatenated outputs of the two GATv2 layers and the 1-dimensional convolutional layer

are fed to a single GRU layer with hidden dimension 𝑑 = 150; the code allows for the addition of

multiple GRU units (and the introduction of in-between dropout layers for regularization), however

experiments showed that this does not lead to noticeable accuracy improvements.

For the second part of the MTAD-GATv2 model’s architecture, the MLP corresponding to the

forecasting model is chosen to include three hidden layers of sizes 𝑑, 2𝑑 and 𝑑, in this order. The input

layer and all hidden layers are followed by dropout layers with dropout probability equal to 0.25,
which is in turn followed by a ReLU activation. As for the VAE used as the reconstruction model, the

prior’s, as well as the encoder’s and decoder’s distributions are taken to be Gaussians with diagonal

covariance matrices (see Eqs. (2.29), (2.30) and (2.42) from Chapter 2). In fact, following the original

MTAD-GAT paper, the standard Gaussian distribution is chosen for the prior and the decoder. The

deep learning models chosen for the encoder’s generative task and the decoder’s inference task are

CNNs. More specifically, the encoder consists of 3 sequential 1-dimensional convolutional layers with

ReLU activations, output channel dimensions 𝑑, 2𝑑 and 4𝑑, in this order, kernels of size 4, strides of

2 and unitary padding. The convolutional layers’ outputs are then flattened and duplicated, since

the encoder’s multivariate Gaussian distribution with a diagonal covariance matrix is parametrized

by one 𝐿-dimensional vector of means and one 𝐿-dimensional vector of variances. Consequently,

each duplicate passes through two fully connected layers with hidden dimension 𝑑 and bottleneck

Implementation & Results 53

dimension 𝐿 = 10. As for the decoder, its architecture is the inverse(19) of the encoder’s architecture,

with the exception of its final layer: since the VAE’s objective is to reconstruct the original time-series’

feature vector, an additional convolutional layer is applied, with output channel dimension equal to 𝑘
and same kernel, stride and padding sizes.

As far as the MTAD-GATv2 model’s training is concerned, the loss function is the sum of the

forecasting and reconstruction error given by Eq. (2.47). The loss function chosen for the forecasting

model is the MSE, while the loss function corresponding to the VAE’s reconstruction error is the

opposite of the approximated ELBO of Eq. (2.43) (the ELBO needs to be maximized, so its opposite

needs to be minimized). This expression is greatly simplified in the case of Gaussian priors, encoders

and decoders, especially given that the decoder’s distribution is the standard Gaussian (see Appendix

B for detailed calculations). For a given (measured) feature vector x = {𝑥𝑖}
𝑘
𝑖=1 at time step 𝑡, if the

forecasting output is denoted by ̂x = { ̂𝑥𝑖}
𝑘
𝑖=1 and the reconstruction output is denoted by r = {𝑟𝑖}

𝑘
𝑖=1,

then the overall loss function at time 𝑡 can be written as

ℒ (𝑡) =
𝑘

∑
𝑖=1

(𝑥𝑖 − ̂𝑥𝑖)
2

⏟⏟⏟⏟⏟⏟⏟
ℒ𝑓(𝑡)

+ 1
2

𝑘
∑
𝑖=1

(𝑥𝑖 − 𝑟𝑖)
2 + 1

2
𝐿

∑
𝑖=1

(𝜎2
𝜙,𝑖 + 𝜇2

𝜙,𝑖) − 1
2

𝐿
∑
𝑖=1

log 𝜎2
𝜙,𝑖

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℒ𝑟(𝑡)

, (5.2)

where 𝜇𝜙,𝑖 and 𝜎2
𝜙,𝑖 are the 𝑖-th elements of the 𝐿-dimensional mean and variance vectors, respec-

tively. The optimizer used to minimize this loss function is SGD, with an adjustable learning rate that

follows Eq. (5.1), with 𝑙𝑟0 = 10−3. All model instances are trained using an early stopping mecha-

nism, with patience threshold equal to 14.

A final point of discussion concerns the MTAD-GATv2 model’s inference, and specifically the 𝛾
hyper-parameter. As discussed in the original MTAD-GAT paper, if 𝛾 is set between 0.4 and 1.0, no
significant differences in predictive power are observed for the trained models on Microsoft’s TSA

dataset [91]. Without thorough investigation, but by performing a limited number of experiments, this

is also confirmed in the case of all 4 pre-training datasets, thus 𝛾 is set equal to 0.8 (as in the original

paper) for all MTAD-GATv2 model instances.

5.2 Pre-Training & Evaluation

Following the implementation, the first part of the experimental procedure concerns the pre-training

of the MTAD-GATv2 models using the pre-training dataset for each monitored system, as well as

their evaluation on a subset of data reserved for this purpose. As far as the SR-CNN model is con-

cerned, since it is trained in an unsupervised manner, the pre-training dataset is used in its entirety

for evaluation.

(19)For the convolutional layers of the PyTorch implementation, this means that if the encoder’s layers are Conv1d ob-
jects, then the decoder’s layers are ConvTranspose1d objects where the in_channels of the one corresponds to the
out_channels of the other and vice-versa.

Pre-Training & Evaluation54

The formalism used herein is that a dataset’s samples classified as non anomalous (labeled with

0) or anomalous (labeled with 1) by an anomaly detection model are split into four categories: 00
(samples that are not anomalous and are classified as such), 01 (samples that are not anomalous but

are classified as anomalous), 10 (samples that are anomalous but are classified as non anomalous) and

11 (samples that are anomalous and are classified as such). Based on this, a confusion matrix can be

assigned to each model’s predictions:

CF = ⎛⎜
⎝

00 01

10 11
⎞⎟
⎠

(5.3)

Given this confusion matrix, a number of different evaluation metrics can be defined:

• Accuracy: the proportion of correctly classified samples among all samples, i.e.

Accuracy = 00 + 11
00 + 01 + 10 + 11

(5.4)

• Recall: the proportion of correctly predicted anomalies among all actual anomalies, i.e.

Recall = 11
10 + 11

(5.5)

• Precision: the proportion of correctly predicted anomalies among all predicted anomalies, i.e.

Precision = 11
01 + 11

(5.6)

• F1-Score: the harmonic mean of Recall and Accuracy, i.e.

F1-Score = 2 ⋅ 11
01 + 10 + 2 ⋅ 11

(5.7)

Among these metrics, accuracy is the least reliable one, due to how highly imbalanced the utilized

datasets are: by definition, anomaly detection concerns rare events, therefore non anomalous data

are much more common compared to anomalous events. As a result, a model that classifies all re-

ceived samples as non anomalous is expected to have satisfactory accuracy, while in practice it is the

worst model imaginable for the task(20). For this reason, in what follows, emphasis is given on Recall,

Precision and especially F1-Score.

Another metric that is utilized for the evaluation of the MTAD-GATv2 model instances is the

Receiver Operating Characteristic (ROC) curve, which depicts a model’s predictions’ true positive

rate (sensitivity) against the corresponding false positive rate (1 - specificity) at different threshold

settings (in MTAD-GATv2 the threshold is automatically assigned using the POT algorithm, so to

extract the ROC curve this threshold is variedmanually). A ROC curve provides a way to evaluate and

compare the performance of differentmodel instances by considering the trade-off between sensitivity

and specificity. The area under the ROC curve (AUC) is a commonly used metric for evaluating the

performance of models such as anomaly detectors. A perfect model’s ROC curve has an AUC of 1,

while the random classifier’s ROC curve has an AUC of 0.5.

(20)For instance, in a dataset with a contamination factor of 5%, one such model’s accuracy would be 95%, however the
model would fail to identify any anomalies.

Implementation & Results 55

5.2.1 Evaluation of the SR-CNN Models

As far as the SR-CNN model’s instances are concerned, the pre-training datasets are used only for a

preliminary evaluation thereof. For this purpose, separate instances of the model are self-trained as

explained in Section 2.1.2 using the entirety of the available time-series’ timestamps for each feature

individually. Figs. 5.1 - 5.4 depict the confusion matrices corresponding to the predictions for each

Figure 5.1: Feature-wise confusion matrices for the motor-pump systems with the SR-CNN model.

Feature Accuracy Recall Precision F1-Score

VibM 99.98% 78.79% 96.30% 86.67%

TempM 99.81% 71.23% 95.41% 81.57%

CurrM 99.66% 70.04% 95.41% 80.78%

VibC 99.81% 71.38% 95.50% 81.70%

VibP 99.88% 69.66% 95.38% 80.52%

Speed 99.81% 66.80% 95.43% 78.59%

FlowOut 99.62% 74.22% 95.38% 83.48%

FlowIn 99.93% 70.54% 96.34% 81.44%

Table 5.1: Feature-wise evaluation metrics for the motor-pump systems with the SR-CNN model.

Pre-Training & Evaluation56

feature, while Tables 5.1 - 5.4 provide the values for all evaluation metrics(21). As expected, the ac-

curacy metric provides no valuable information regarding the UVAD models’ performance, with all

instances achieving higher than 99% results. Additionally, the precision of all instances is higher than

Figure 5.2: Feature-wise confusion matrices for the stern tube with the SR-CNN model.

Feature Accuracy Recall Precision F1-Score

Bear1Temp1 99.45% 66.58% 95.35% 78.41%

Bear1Temp2 99.78% 65.97% 95.48% 78.03%

Bear1Vib1 99.96% 66.10% 97.50% 78.79%

Bear1Vib2 99.82% 65.67% 95.62% 77.86%

Pressure1 99.98% 65.62% 95.45% 77.78%

Pressure2 99.82% 69.32% 95.31% 80.26%

Flow1 99.86% 68.81% 95.86% 80.12%

Flow2 99.98% 56.00% 100.00% 71.79%

Table 5.2: Feature-wise evaluation metrics for the stern tube with the SR-CNN model.

(21)Note that the inclusion of the evaluation metrics is technically redundant, as the confusion matrices themselves offer all
the information required for their extraction.

Implementation & Results 57

95%, indicating that the models do not tend to misdiagnose anomalies. This renders the recall and

F1-Score as the only suitable metrics for evaluation. More specifically, the relatively low recall scores

point to the UVADmodels’ difficulty in recognizing all of the datasets’ anomalies. As for the F1-Score,

itsmean value for themotor-pump systems’ pre-training dataset is 81.84%, itsmean value for the stern

tube’s pre-training dataset is 77.88%, its mean value for the pipes’ pre-training dataset is 81.37% and

its mean value for the scrubber towers’ pre-training dataset is 80.51%.

Figure 5.3: Feature-wise confusion matrices for the pipe systems with the SR-CNN model.

Feature Accuracy Recall Precision F1-Score

ExtWidth 99.74% 71.75% 95.35% 81.88%

IntWidth 99.58% 70.66% 95.32% 81.16%

FlowIn 99.80% 72.31% 95.28% 82.22%

FlowOut 99.70% 70.77% 95.27% 81.21%

pH 99.24% 69.55% 95.26% 80.40%

Table 5.3: Feature-wise evaluation metrics for the pipe systems with the SR-CNN model.

At first sight, these results might seem unimpressive and can be attributed to the UVAD models’

inherent inability in identifying important intra-feature correlations, which are strongly present in this

work’s datasets. Nevertheless, it must be stressed that, unlike in most other works regarding anomaly

detection, the results presented herein are obtained via a one-to-one evaluation of predicted labels, as

is common in the evaluation of classification models. In particular, anomaly detection algorithms are

usually evaluated using a neighbourhood evaluation scheme, where an anomaly prediction is rendered

as correct even when the timestamp on which it is predicted is not the exact timestamp, 𝑡, when the

anomaly occured, but lies within a neighbourhood 𝛿𝑡 around 𝑡. Another approach is to use a sliding

Pre-Training & Evaluation58

window scheme (different from the one used for training), where the evaluation considers a sequence

of consecutive time intervals and calculates the proportion of correctly predicted anomalies within

each interval. Here, anomalies are considered correctly predicted only when the prediction is made

on the exact timestamp with an anomaly label, which is why the recall score appears so low. This is

Re
gu

la
r

An
om

al
ie

s

4.9e+04 6

51 1.3e+02

UVAD evaluation for PressureIn

4.8e+04 20

1.8e+02 4e+02

UVAD evaluation for PressureOut

4.9e+04 1

16 25

UVAD evaluation for Cond

Re
gu

la
r

An
om

al
ie

s

4.9e+04 1

7 24

UVAD evaluation for TempB1

4.9e+04 8

56 1.6e+02

UVAD evaluation for TempB2

4.8e+04 17

1.5e+02 3.6e+02

UVAD evaluation for TempC1

Regular Anomalies

Re
gu

la
r

An
om

al
ie

s

4.9e+04 7

83 1.5e+02

UVAD evaluation for TempC2

Regular Anomalies

4.9e+04 5

57 1.1e+02

UVAD evaluation for TempC3

Regular Anomalies

4.8e+04 21

1.7e+02 4.3e+02

UVAD evaluation for TempC4

10000

20000

30000

40000

10000

20000

30000

40000

10000

20000

30000

40000

10000

20000

30000

40000

10000

20000

30000

40000

10000

20000

30000

40000

10000

20000

30000

40000

10000

20000

30000

40000

10000

20000

30000

40000

Figure 5.4: Feature-wise confusion matrices for the scrubber towers with the SR-CNN model.

Feature Accuracy Recall Precision F1-Score

PressureIn 99.88% 72.13% 95.65% 82.24%

PressureOut 99.60% 69.72% 95.27% 80.52%

Cond 99.97% 60.98% 96.15% 74.63%

TempB1 99.98% 77.42% 96.00% 85.71%

TempB2 99.87% 74.07% 95.24% 83.33%

TempC1 99.66% 70.55% 95.45% 81.14%

TempC2 99.82% 64.68% 95.60% 77.16%

TempC3 99.87% 66.07% 95.69% 78.17%

TempC4 99.60% 71.38% 95.38% 81.66%

Table 5.4: Feature-wise evaluation metrics for the scrubber towers with the SR-CNN model.

Implementation & Results 59

done for two main reasons; firstly, it is important to evaluate the models as if there is no degree of

uncertainty regarding the anomalies’ timestamps, so that a lower threshold of their performance can

be known before their deployment - in other words, “it’s better to be safe than sorry”. Secondly, the

datasets include a series of point anomalies (mainly extrema), therefore it is important that themodels

recognize them as such exactly when they occur.

5.2.2 Pre-Training of the MTAD-GATv2 Models

Moving on to theMTAD-GATv2model’s instances, which is themain reason the pre-training datasets

were developed, the results for their training and evaluation can be seen in what follows: Figs. 5.5, 5.7,

5.9 and 5.11 depict the loss functions during the models’ training, Figs. 5.6, 5.8, 5.10 and 5.12 show

the results’ confusion matrices and Tables 5.5 - 5.8 present the corresponding evaluation metrics.

0 10 20 30 40 50 60

Mean loss per epoch: training

f

r

0 10 20 30 40 50 60

Mean loss per epoch: validation

f

r

Figure 5.5: Loss functions for the training and validation of the MTAD-GATv2 model for the motor-pump
systems.

Figure 5.6: ROC curve & confusion matrix for the motor-pump systems’ MTAD-GATv2 model.

Accuracy Recall Precision F1-Score

98.81% 78.45% 95.41% 86.10%

Table 5.5: Evaluation metrics for the MTAD-GATv2 model for the motor-pump systems.

Pre-Training & Evaluation60

Since each MTAD-GATv2 model instance is trained by minimizing the joint loss function of Eq.

(5.2), which corresponds to a forecasting loss function, ℒ𝑓 , and a reconstruction loss function, ℒ𝑟,

the figures portray both individual loss functions as well as their sum, as far as the models’ training

(left) and validation (right) are concerned. The vertical dashed red line signals the epoch where the

early stopping mechanism is activated and training is terminated, due to a constant increase in valida-

tion losses. The reason why some graphs show ℒ𝑓 higher than ℒ𝑟 (or vice-versa), with this relevant

positioning also changing in some cases as the number of epochs increases, is simply because some-

times the losses corresponding to the forecasting’s optimization are higher compared to the ones that

correspond to the reconstruction’s optimization (or vice-versa).

0 20 40 60 80 100

Mean loss per epoch: training

f

r

0 20 40 60 80 100

Mean loss per epoch: validation

f

r

Figure 5.7: Loss functions for the training and validation of the MTAD-GATv2 model for the stern tube.

Figure 5.8: ROC curve & confusion matrix for the stern tube’s MTAD-GATv2 model.

Accuracy Recall Precision F1-Score

98.86% 73.18% 95.33% 82.80%

Table 5.6: Evaluation metrics for the MTAD-GATv2 model for the stern tube.

Unlike in the case of UVAD models, the ROC curves obtained from the MVAD models’ results

are also depicted in this section. The AUC is higher than 86.17% in all cases, which might not seem

Implementation & Results 61

optimal at first sight(22), however one must keep in mind the one-to-one evaluation process previ-

ously discussed, as well as the fact that the pre-training datasets are custom datasets developed for the

very specific requirements of the present work and cannot be easily compared to commonly available

datasets used for anomaly detection benchmarking. As far as the shapes of the curves are concerned,

the fact that they are steep at the beginning and then start moving horizontally signifies that the posi-

tive (anomalies) and negative (regular data) classes are well separated for a given range of thresholds.

This happens because the corresponding samples are well separated in the feature space and themodel

is able to exploit this separation to make accurate predictions.

0 10 20 30 40

Mean loss per epoch: training

f

r

0 10 20 30 40

Mean loss per epoch: validation

f

r

Figure 5.9: Loss functions for the training and validation of the MTAD-GATv2 model for the pipe systems.

Figure 5.10: ROC curve & confusion matrix for the pipe systems’ MTAD-GATv2 model.

Accuracy Recall Precision F1-Score

98.98% 86.86% 95.41% 90.94%

Table 5.7: Evaluation metrics for the MTAD-GATv2 model for the pipe systems.

(22) In the original MTAD-GAT paper it is stated that the AUC of ROC curves is not chosen as an evaluation metric, as
all models yield AUCs which are higher than 97%. Nonetheless, it is also stated that the used datasets concern only
continuous (and not point) anomalies, where the correct detection of a single anomaly renders the whole segment of
anomalies as correctly detected.

Pre-Training & Evaluation62

As regards the other evaluation metrics, it is worth noting that the confusion matrices are given

here normalized, since the exact support of each area can be inferred from the existing knowledge

of the total number of samples and contamination factors (in the case of UVAD models, the exact

anomaly distribution across features is not given beforehand, with the exception of the graphs of Ap-

pendix C, which is why each individual support is depicted as an absolute number). The recall and

F1-Scores achieved by the MVAD model instances are significantly better compared to the UVAD

ones, perhaps with the exception of the stern tube’s dataset. Obviously, this can be attributed to the

fact that the architecture of the MVAD-GATv2 model is such that it allows the inclusion and proper

weighing of intra-feature correlations using the feature-oriented GATv2 layers and their dynamic at-

tention mechanisms.

0 10 20 30 40 50 60 70

Mean loss per epoch: training

f

r

0 10 20 30 40 50 60 70

Mean loss per epoch: validation

f

r

Figure 5.11: Loss functions for the training and validation of the MTAD-GATv2 model for the scrubber towers.

Figure 5.12: ROC curve & confusion matrix for the scrubber towers’ MTAD-GATv2 model.

Accuracy Recall Precision F1-Score

98.77% 80.63% 95.26% 87.34%

Table 5.8: Evaluation metrics for the MTAD-GATv2 model for the scrubber towers.

Implementation & Results 63

5.3 Expressivity Evaluation

With the pre-trained MVAD models readily available, the next part of the experimental process con-

cerns their evaluation on the synthetic time-series datasets. Again, when it comes to UVAD models,

their results do not provide information about their expressivity, as they are self-trained anew on the

new time-series. Instead, they simply indicate how good the SR-CNNmodel is in identifying different

types of anomalies in periodic data. The evaluation results for each SR-CNN instance can be seen in

the confusion matrices of Fig. 5.13 for each univariate dataset, as well as in Table 5.9.

Figure 5.13: Confusion matrices for the SR-CNN model on the univariate datasets.

Dataset Accuracy Recall Precision F1-Score

U1 99.19% 88.20% 95.25% 91.59%

U2 99.14% 87.00% 95.39% 91.00%

U3 99.55% 95.60% 95.41% 95.50%

U4 98.83% 89.62% 95.47% 92.46%

Table 5.9: Evaluation metrics for the SR-CNN model on the univariate datasets.

The results are considerably better compared to the results for the pre-training datasets. This can be

attributed to the fact that the synthetically generated time-series are based on periodic functions with

relatively small variance, so learning this periodic behaviour and then classifying divergences from

this periodicity as anomalies (especially when they correspond to well-defined types of anomalies, as

Fine-Tuning and Case Studies64

is the case for the time-series in these datasets) is quite simple for a CNN model to achieve.

As for the MVAD models, their results can be seen in Fig. 5.14 and Table 5.10.

Figure 5.14: Confusion matrices for the MTAD-GATv2 model on the multivariate datasets.

Dataset Accuracy Recall Precision F1-Score

M1 98.13% 67.31% 95.37% 78.92%

M2 98.11% 60.67% 95.79% 74.29%

M3 97.53% 70.92% 95.40% 81.36%

M4 97.20% 67.44% 95.29% 78.98%

Table 5.10: Evaluation metrics for the MTAD-GATv2 model on the multivariate datasets.

As expected, the results for theMTAD-GATv2model instances are not as promising as the ones for the

SR-CNN.Thefirst reason concerns the fact that the anomalies present in these datasets are “mathemat-

ical”, in the sense that many of them can’t be expected to appear in real-world problems (for example,

a uniform, constant shift for all values in a given time window does not have physical significance).

The other reason is that the distributions from which the regular time-series data are generated in

these datasets (periodic functions) are completely different compared to the distributions that gen-

erate the real-world sensor data. Besides, these are the reasons why these datasets were generated as

an expressivity challenge. All things considered, a mean recall of 66.49% and an average F1-Score of

78.39% are satisfactory, especially given how the evaluation is performed (the one-to-one evaluation

scheme described in the previous section).

Implementation & Results 65

5.4 Fine-Tuning and Case Studies

The final and perhaps most interesting part of this chapter concerns the findings using the real-world

data transmitted fromoperational vessels equippedwith sensors. Before investigating two case studies,

it is worth mentioning that the SR-CNN model is not utilized for inference, as it is costly and inferior

to the MTAD-GATv2 model. Additionally, the MTAD-GATv2 pre-trained model instances are not

directly deployed for inference after their training. Instead, a fine-tuning procedure is first followed,

essentially equivalent to transfer learning.

First, approximately 10000 values (about 4 days of data feed) are extracted from the time-series

data transmitted from each system’s sensors. Then, the data are cleaned from possible anomalies

(which are extremely rare in such short windows of operation), by applying the SR technique presented

in Section 2.1.1. The threshold, 𝜏 , required for the rule of Eq. (2.7) is defined by an iterative POT pro-

cess similar to the one applied for the automatic inference threshold calculation of the MTAD-GATv2

model. This effectively creates a set of mini time-series containing non anomalous data, on which the

pre-trained models are fine-tuned for a total of 15 epochs.

As discussed, while the pre-training datasets are a good way to train models in a supervised man-

ner, the conditions on which their data are collected do not accurately represent real-world vessel

conditions and operation. As a result, this fine-tuning is essential, so that the models can capture ad-

ditional information regarding the distributions from which the real-time data are generated. There

are several different ways to perform this fine-tuning process as far as themodels’ learnable parameters

are concerned [118–120]. The approach followed here concerns freezing all learned parameters except

for some of the final layers of the forecasting and reconstruction models and retraining them with a

learning rate of 5 ⋅ 10−5.

With the fine-tuned models deployed on Kubernetes as explained in Chapter 4 and performing

inference on received data, after 2 months (by the time of writing the present thesis) of data transmis-

sion, several alerts of detected anomalies have been published by themodels. The twomost significant

among them, whichwere verified by engineers who performed follow-up checks on the corresponding

systems, are discussed in what follows.

5.4.1 Case #1: Cracks on Scrubber Towers

The first verified anomaly detection event concerns a scrubber tower system. As explained in Chapter

3, the most common problem with scrubber towers are cracks and damages that occur due to thermal

shocks, which are in turn caused by sudden changes in temperature. Fig. 5.15 depicts three segments

of the pre-processed time-series obtained from the TempB1 feature’s sensors (the situation is similar for

the other temperature-related features, which is why depicting only one suffices). The vertical dashed

lines indicate the beginning and the end of the scrubber tower’s heating process, which is a crucial

part of its operation, and the segments have been positioned in a way such that the beginning of the

heating process is common in all three. In the first segment, the heating process is done smoothly, over

a certain period of time (smooth heating). In the second segment the heating process is done over a

Fine-Tuning and Case Studies66

smaller time-window and less smoothly (the curve is almost linear, hence the title linear heating). In

the third segment, the heating process is finished at almost half the time compared to the first and

in a very sharp manner (sharp heating). The MTAD-GATv2 model correctly identifies the behaviour

shown in the second and third segment as a series of anomalies: more than 3/5 of the second segment’s

area within borders is recognized as anomalous, while the entirety of the area within borders of the

third segments is recognized as anomalous.

Smooth Heating
Borders

Linear Heating
Borders

Sharp Heating
Borders

Figure 5.15: Three different segments portraying the depicting a scrubber tower’s heating process over different
time windows, with different behaviours.

Figure 5.16: Visual inspection of cracks on the studied scrubber tower.

It is important to note that the analysis of these segments is made possible thanks to the ON/OFF

metadata discussed in Section 4.2. The scrubber towers are not always in operating mode, but are

activated (ON state) and de-activated (OFF state) depending on which engine is used (the studied

vessel is a cruise liner with six diesel engines) and on whether they are needed or not. However, the

sensors attached on them receive and transmitmeasurements for all themonitored features evenwhen

the scrubber towers are not in operation. It is evident that the data gathered while a scrubber tower is

in its ON state come from a different distribution compared to the ones gathered while the scrubber

Implementation & Results 67

tower is in its OFF state. Therefore, filtering the data on this key is essential for the MTAD-GATv2

model to be able to recognize anomalous events during the scrubber tower’s operation(23).

Interestingly, about two weeks after the MTAD-GATv2 model first reported the anomalous be-

haviour of this scrubber tower (which was most likely due to bad operation practices), an engineer

performed an inspection on the tower. Among the findings of the inspection were two small cracks

on the tower (see Fig. 5.16), which were most likely the result of thermal shocks caused by the non-

smooth heating of the scrubber towers during operation.

5.4.2 Case #2: Shaft Misalignment in Motor-Pump Systems

The second case study corresponds to a monitored motor-pump system and is a great example of why

MVAD algorithms are necessary to detect anomalies in scenarios such as the studied one. Fig. 5.17

portrays segments of the time-series for the VibM, TempM and CurrM features extracted from a motor-

pump system’s sensors. While the values have been removed from the axes for privacy reasons, note

that the three time-series share the same time axis, i.e. vertical slices thereof correspond to the system’s

feature vector at a given timestamp.

VibM
Event

TempM
Event

CurrM
Event

Figure 5.17: Multivariate anomaly detection of an event that propagates across features.

First, the time-series segment corresponding to the VibM feature shows a very slight shift which is

almost inconceivable by a visual inspection and is followed by values with larger variance compared

to the previous ones. A few timestamps later, a sharp increase in temperature can be seen; while the

(23)Without this filtering and due to the fact that the alternation between ON and OFF states is not periodic, it is very likely
that the algorithm would identify the scrubber tower’s operational states as continuous anomalies.

Fine-Tuning and Case Studies68

absolute value of the temperature does not change significantly, a phase-transition-like behaviour is

clear. Before this transition is complete, another transition seems to appear for the current, although

in a different way (i.e. with a different functional dependence). Upon inspection, it was found that

the motor’s shaft was slightly misaligned, which is what caused this series of highly correlated events.

Note that in Fig. 5.17 the events have been highlighted after the fact, as an interpretation of what

happened (some sort of labeling). TheMTAD-GATv2model identified the event as an anomaly before

it propagated to the temperature and current features. Of course the anomaly score assigned to the

event while it was only present in the VibM feature was smaller compared to the anomaly score it

assigned to the event once it became visible in the other two features (almost equal to maximum).

6Conclusion

In this thesis, an approach for detecting anomalies in shipboard systems through the application of

machine learning was presented. Specifically, UVAD and MVAD algorithms were deployed with the

purpose ofmonitoring the health of vessel systems and identifying potential issues before they became

critical. The Spectral Residual Convolutional Neural Network (SR-CNN) model was used for univari-

ate anomaly detection, while an advanced version of Microsoft’s Multivariate Time-Series Anomaly

Detection via Graph Attention Network (MTAD-GAT) model was used for multivariate anomaly de-

tection. The most significant improvement on Microsoft’s original model concerned the addition of

GATv2 layers, which compute dynamic instead of static attention (MTAD-GATv2).

Three separate dataset types were developed to train the MVAD models, evaluate their perfor-

mance and compare it to the performance of the self-trained SR-CNN instances. The first among

them contained datasets with artificially induced anomalies for pre-training theMVADmodels which

would be deployed to monitor four different types of shipboard systems: motor-pump systems, stern

tubes, pipes and scrubber towers. The second dataset type consisted of synthetic time-series datasets

which contained 8 different types of anomalies injected on 4 different types of base periodic functions,

with the aim of evaluating the expressivity of the trained MVAD models using unseen types of data

and anomalies. The third and final type of dataset comprised the time-series extracted from the feed

of the sensors installed on operational vessels.

Additionally, a comprehensive analysis of the data engineering process was conducted, thoroughly

explaining the development of a complete data pipeline on the cloud using Microsoft’s Azure Ecosys-

tem. Thefirst part of this pipeline concerned the batch ingestion of the transmitted sensor data into the

cloud through IoT Hubs and their organization into containers and directories in a query-optimized

way using Stream Analytics. Then, the storing of the data using the Delta Lake format was discussed,

including an introduction of the medallion architecture, where data is logically organized in multi-

ple layers, with each layer representing a different step in the data processing pipeline. Finally, the

role of computation services such as Databricks - both in data engineering and in machine learning -

was investigated, before describing the pipeline’s exit point where results are served on a PostgreSQL

database at the back-end of a dashboard web application.

The results from training and evaluating the models on the first type of datasets demonstrated the

promising nature of the proposed approach. Using a one-to-one evaluation scheme, similar to a clas-

sification problem, the MVAD models seemed to perform quite well for all used metrics: accuracy,

69

Outlook70

recall, precision, F1-Score and AUC of ROC curves. On the other hand, the UVAD instances no-

ticeably outperformed the pre-trained MVAD models on the second type of datasets, since the latter

were not trained on data from similar distributions or types of anomalies, while the former were self-

trained on each synthetic time-series separately. The most important result, however, was the MVAD

models’ achievement in identifying two cases of anomalous behavior in the time-series of a vessel’s

live data feed: cracks on a scrubber tower system caused by sharp increases in temperature and the

misalignment of a motor’s shaft in a motor-pump system. After the detection of these anomalies, they

were validated by inspections performed by engineers onboard.

6.1 Outlook

This work represents a significant step forward in the digitalization and automation of the marine in-

dustry, through the utilization ofmachine learning algorithms for anomaly detection in vessel systems.

Nonetheless, there are still challenges to be addressed and opportunities for further development. As

far as the studied models are concerned, a possible avenue for future work is replacing the VAE model

in the MTAD-GATv2 architecture with another, perhaps less sophisticated model (such as a GRU-

based reconstruction model) in favor of computational efficiency, as long as it does not come at the

expense of predictive accuracy. Besides, this was the reason a MLP was used as the forecasting model

instead of more complex architectures such as LSTMs or Conv-LSTMs, which were tested but did not

yield noticeably better results. In this case, it is also worth exploring the use of GATs instead of GAT

layers (i.e. collections of GAT layers instead of single ones).

As far as the datasets are concerned, a significant improvement would be to use the datasets of the

real-time data feed collected from sensors on operational vessels for the pre-training of the MTAD-

GATv2 model instances. Of course, this requires the labeling of millions of data points, which is a

highly parallelizable, yet time-consuming task. For this reason, a direction worth exploring is the

automatic labeling of the datasets by using either deterministic algorithms or machine learning [121].

Another possible step could be towards designing richer datasets for the evaluation of the models’

expressivity, for example using Generative Adversarial Networks (GANs), such as the TGAN-AD [122],

which is an anomaly detector itself, however its architecture can be used for generative tasks.

Last but not least, when it comes to the Data Engineering process, the data pipeline that handles

the ingestion, storing, processing and serving of the data should be enriched with additional practices

concerning the machine learning operations: scheduled model re-training, continuous re-evaluation

on new data as they become available, hyper-parameter re-tuning, to name but a few. The most well

known framework suitable for such operations is MLflow [123], which is an open source platform that

helps manage the machine learning lifecycle. MLflow is ideal for the work presented here, since it

also offers the possibility to create endpoints for the machine learning models and is compatible with

Databricks workspaces, thus rendering the use of FastAPI and Kubernetes Clusters redundant.

Appendix

A. Different Types of Attention

Asmentioned in Section 2.2.1.2, Brody et al. [65] define two different types of attention. If the attention

mechanism always weighs one key at least as much as any other key regardless of the query, then this

attention mechanism is static. More formally:

Definition A.1: A family of scoring functions ℱ ⊆ (ℝ𝑑 × ℝ𝑑 → ℝ) computes static scoring for a

given set of key vectors 𝕂 = {k1, … , kℓ} ⊂ ℝ𝑑 and query vectors ℚ = {q1, … , q𝑛} ⊂ ℝ𝑑, if for every

𝑓 ∈ ℱ there exists a “highest scoring” key 𝑗𝑓 ∈ [ℓ] such that for every query 𝑖 ∈ [𝑛] and key 𝑗 ∈ [ℓ]
it holds that 𝑓 (q𝑖, k𝑗𝑓

) ≥ 𝑓 (q𝑖, k𝑗). A family of attention functions computes static attention given

𝕂 and ℚ, if its scoring function computes static scoring, possibly followed by monotonic normalization,

such as softmax.

In the above definition, ℓ and 𝑛 are the cardinalities of 𝕂 and ℚ, respectively, 𝑑 is the dimension of the

key/query vectors and [𝑠] = {1, … , 𝑠} ⊂ ℕ. Following this definition, one may prove the following

theorem:

Theorem A.1: A GAT layer computes static attention for any set of node representation vectors

𝕂 = ℚ = {v1, … , v𝑘}.

Recall that a GAT layer is described by Eqs. (2.11) - (2.13). To prove Theorem A.1, consider a graph

modeled by a GAT layer with some learnedW and a layers and having node vectors {v1, … , v𝑘}. The

a vector can be written as the concatenation a = [a𝑙 ⊕ a𝑟] ∈ ℝ2𝑇 ′ , with a𝑙, a𝑟 ∈ ℝ𝑇 ′ . Then, Eq. (2.13)

assumes the form

𝑒𝑖𝑗 = 𝐴𝑖𝑗 LeakyReLU (a𝑙 ⋅ W ⋅ v𝑖 + a𝑟 ⋅ W ⋅ v𝑗) . (A.1)

Since [𝑘] is finite, there exists a node 𝑗𝑓 ∈ [𝑘] such that a𝑟 ⋅ W ⋅ v𝑗𝑓
is maximal among all nodes

𝑗 ∈ [𝑘]. Due to the monotonicity of LeakyReLU and softmax, for every query node 𝑖 ∈ [𝑘], the

node 𝑗𝑓 also leads the maximal value of its attention distribution {𝛼𝑖𝑗 | 𝑗 ∈ [𝑘]}. It follows directly

from Definition A.1 that the GAT computes only static attention. Note that in the case of multi-head

attention, Theorem A.1 holds for each head separately: every attention head 𝑚 ∈ [𝑀] has a specific

node that maximizes {a𝑟 ⋅ W𝑚 ⋅ v𝑗 | 𝑗 ∈ [𝑘]} and the output is the concatenation/average of 𝑀 static

attention heads.

Due to the limitations of static attention discussed in Section 2.2.1.2, Brody et al. suggest a more

expressive form of attention, which they call dynamic attention:

71

Different Types of Attention72

Definition A.2: A family of scoring functions ℱ ⊆ (ℝ𝑑 × ℝ𝑑 → ℝ) computes dynamic scoring for

a given set of key vectors 𝕂 = {k1, … , kℓ} ⊂ ℝ𝑑 and query vectors ℚ = {q1, … , q𝑛} ⊂ ℝ𝑑, if for any

mapping 𝜙 ∶ [𝑛] → [ℓ] there exists a 𝑓 ∈ ℱ such that 𝑓 (q𝑖, k𝜙(𝑖)) > 𝑓 (q𝑖, k𝑗), for any query 𝑖 ∈ [𝑛]
and any key 𝑗 ∈ [ℓ] with 𝑗 ≠ 𝜙 (𝑖). A family of attention functions computes dynamic attention given 𝕂
and ℚ, if its scoring function computes dynamic scoring, possibly followed by monotonic normalization,

such as softmax.

This definition indicates that, unlike static attention, dynamic attention can select every key 𝜙 (𝑖) using

the query 𝑖 by making 𝑓 (q𝑖, k𝜙(𝑖)) maximal in {𝑓 (q𝑖, k𝑗) | 𝑗 ∈ [ℓ]}. Based on this definition, the

following theorem regarding GATv2 can be proven:

TheoremA.2: AGATv2 layer computes dynamic attention for any set of node representation vectors

𝕂 = ℚ = {v1, … , v𝑘}.

Recall that a GATv2 layer is described by Eqs. (2.19), (2.20), however for the following proof instead

of Eq. (2.19) the equivalent Eq. (2.18) will be referenced. To prove Theorem A.2, consider a graph

modeled by a GATv2 layer, having node vectors {v1, … , v𝑘}. Additionally, let 𝜙 ∶ [𝑘] → [𝑘] be any

arbitrary function that maps [𝑘] → [𝑘] and define 𝑔 ∶ ℝ2𝑇 → ℝ as

𝑔 (x) = {1, if ∃ 𝑖 ∶ x = [v𝑖 ⊕ v𝜙(𝑖)]
0, else

. (A.2)

Next, define a continuous function 𝑔𝑐 ∶ ℝ2𝑇 → ℝ such that it is equal to 𝑔 only for the 𝑘2 inputs

[v𝑖 ⊕ v𝑗], with 𝑖, 𝑗 ∈ [𝑘], i.e.

𝑔𝑐 ([v𝑖 ⊕ v𝑗]) = 𝑔 ([v𝑖 ⊕ v𝑗]) , ∀𝑖, 𝑗 ∈ [𝑘]. (A.3)

There is an infinite number of continuous functions that satisfy Eq. (A.3), since 𝑘2 is finite. Now, by

design, for every node 𝑖, 𝑗 ∈ [𝑘] with 𝑗 ≠ 𝜙 (𝑖),

1 = 𝑔𝑐 ([v𝑖 ⊕ v𝜙(𝑖)]) > 𝑔𝑐 ([v𝑖 ⊕ v𝑗]) = 0 (A.4)

holds. Consequently, by defining the scoring function

𝑒 (v𝑖, v𝑗 ; W, a) = 𝐴𝑖𝑗 a ⋅ LeakyReLU (W ⋅ [v𝑖 ⊕ v𝑗]) , (A.5)

the universal approximation theorem [66] states that 𝑒 can approximate 𝑔𝑐 for any compact subset of

ℝ2𝑇 . This part clarifies the need to define 𝑔𝑐: the universal approximation theorem concerns only

continuous functions and 𝑔 is not. Nonetheless, since the theorem ensures that 𝑒 can approximate 𝑔𝑐,

then 𝑒 also approximates 𝑔 in the 𝑘2 chosen points as a special case. Therefore, for any sufficiently

small 𝜖 > 0, there exist parameters W and a such that for all nodes 𝑖, 𝑗 ∈ [𝑘] with 𝑗 ≠ 𝜙 (𝑖),

𝑒 (v𝑖, v𝜙(𝑖) ; W, a) > 1 − 𝜖 > 0 + 𝜖 > 𝑒 (v𝑖, v𝑗 ; W, a) (A.6)

Appendix 73

holds, thus proving that 𝑒 computes dynamic scoring. Finally, due to the increasing monotonicity

of softmax, this result implies that that 𝛼 is an attention function which by Definition A.2 computes

dynamic attention, thus concluding the proof of Theorem A.2. For completeness, it is stated that in

the case of multi-head attention Theorem A.2 holds for each head separately (every attention head

𝑚 ∈ [𝑀] computes dynamic attention).

VAE ELBO Calculation74

B. VAE ELBO Calculation

In the present Appendix the approximated ELBO of Eq. (2.44) is calculated analytically for the Gaus-

sian distributions of Eqs. (2.29), (2.30) and (2.42). As far as the reconstruction accuracy is concerned,

assuming 𝑀 = 1 based on the reasoning presented in Section 2.2.3.2, it is equal to

𝑁
∑
𝑛=1

log 𝑝𝜃 (x𝑛|z𝑛) =
𝑁

∑
𝑛=1

log 𝒩 (x𝑛; μ𝜃 (z𝑛) ,Σ𝜃 (z𝑛))

= −𝑁𝑑
2 log (2𝜋) − 𝑁

𝑑
∑
𝑖=1

log 𝜎(𝑖)
𝜃 (z𝑛) − 1

2
𝑁

∑
𝑛=1

𝑑
∑
𝑖=1

[𝑥(𝑖)
𝑛 − 𝜇(𝑖)

𝜃 (z𝑛)]
2

𝜎(𝑖) 2
𝜃 (z𝑛)

, (B.1)

where

Σ𝜃 (z𝑛) = diag ({𝜎(𝑖) 2
𝜃 (z𝑛)}

𝑑

𝑖=1
) . (B.2)

Excluding additive constants, Eq. (B.1) is essentially the squared Mahalanobis distance between the

input and the decoder’s output, summed over all input data points. Dividing this expression by 𝑁 and

requiring that the covariance matrix of the Gaussian distribution be the identity matrix, transforms it

into half the mean-squared error (MSE) between the input dataset and the decoder’s output.

Moving on to the regularization term, the KL divergence can be written as

− 𝐷KL(𝑞𝜙 (z𝑛|x𝑛) ‖ 𝑝 (z𝑛)) = ∫ 𝑞𝜙 (z𝑛|x𝑛) [log 𝑝 (z𝑛) − log 𝑞𝜙 (z𝑛|x𝑛)] 𝑑z𝑛

= ∫ 𝑞𝜙 (z𝑛|x𝑛) log 𝑝 (z𝑛) 𝑑z𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑇1

− ∫ 𝑞𝜙 (z𝑛|x𝑛) log 𝑞𝜙 (z𝑛|x𝑛) 𝑑z𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑇2

, (B.3)

where

𝑇1 = − 𝐿
2 log (2𝜋) − 1

2 ∫ z2
𝑛 𝒩 (z𝑛; μ𝜙 (x𝑛) ,Σ𝜙 (x𝑛)) 𝑑z𝑛 = −𝐿

2 log (2𝜋) −

− 1
2 ∫ [(z𝑛 − μ𝜙 (x𝑛))2 − μ2

𝜙 (x𝑛) + 2z𝑛 ⋅ μ𝜙 (x𝑛)] 𝒩 (z𝑛; μ𝜙 (x𝑛) ,Σ𝜙 (x𝑛)) 𝑑z𝑛

= − 𝐿
2 log (2𝜋) − 1

2
𝐿

∑
𝑖=1

[𝜎(𝑖) 2
𝜙 (x𝑛) − 𝜇(𝑖) 2

𝜙 (x𝑛) + 2𝜇(𝑖) 2
𝜙 (x𝑛)]

= − 𝐿
2 log (2𝜋) − 1

2
𝐿

∑
𝑖=1

[𝜎(𝑖) 2
𝜙 (x𝑛) + 𝜇(𝑖) 2

𝜙 (x𝑛)] (B.4)

Appendix 75

and

𝑇2 = − 𝐿
2 log (2𝜋) −

𝐿
∑
𝑖=1

log 𝜎(𝑖)
𝜙 (x𝑛) −

− 1
2 ∫

𝐿
∑
𝑖=1

[𝑧(𝑖) − 𝜇(𝑖)
𝜙 (x𝑛)]

2

𝜎(𝑖) 2
𝜙 (x𝑛)

𝒩 (z𝑛; μ𝜙 (x𝑛) ,Σ𝜙 (x𝑛)) 𝑑z𝑛

= − 𝐿
2 log (2𝜋) −

𝐿
∑
𝑖=1

log 𝜎(𝑖)
𝜙 (x𝑛) − 𝐿

2 , (B.5)

with

Σ𝜙 (x𝑛) = diag ({𝜎(𝑖) 2
𝜙 (x𝑛)}

𝑑

𝑖=1
) . (B.6)

As a result, the regularization term becomes

−
𝑁

∑
𝑛=1

𝐷KL(𝑞𝜙 (z𝑛|x𝑛) ‖ 𝑝 (z𝑛)) = 𝑁𝐿
2 +

𝑁
∑
𝑛=1

𝐿
∑
𝑖=1

log 𝜎(𝑖)
𝜙 (x𝑛)−

− 1
2

𝑁
∑
𝑛=1

𝐿
∑
𝑖=1

[𝜎(𝑖) 2
𝜙 (x𝑛) + 𝜇(𝑖) 2

𝜙 (x𝑛)]. (B.7)

Finally, dividing by 𝑁 to average over all dataset vectors and ignoring constant terms, the averaged

approximated ELBO becomes

̄ℒ (𝜃, 𝜙;X) = −
𝑑

∑
𝑖=1

log 𝜎(𝑖)
𝜃 (z𝑛) − 1

2𝑁
𝑁

∑
𝑛=1

𝑑
∑
𝑖=1

[𝑥(𝑖)
𝑛 − 𝜇(𝑖)

𝜃 (z𝑛)]
2

𝜎(𝑖) 2
𝜃 (z𝑛)

−

− 1
2𝑁

𝑁
∑
𝑛=1

𝐿
∑
𝑖=1

[𝜎(𝑖) 2
𝜙 (x𝑛) + 𝜇(𝑖) 2

𝜙 (x𝑛)] + 1
𝑁

𝑁
∑
𝑛=1

𝐿
∑
𝑖=1

log 𝜎(𝑖)
𝜙 (x𝑛). (B.8)

Anomaly Distribution for Dataset Type #176

C. Anomaly Distribution for Dataset Type #1

This Appendix contains the ground truth labels for each feature of the first type of datasets, i.e. how a

multivariate time-series’ anomalies are distributed across features.

0

1
Full Time-Series

0

1
VibM

0

1
TempM

0

1
CurrM

0

1
VibC

0

1
VibP

0

1
Speed

0

1
FlowOut

0

1
FlowIn

Figure C.1: Features’ anomaly distribution for the pre-training dataset of the motor-pump systems.

Appendix 77

0

1
Full Time-Series

0

1
Bear1Temp1

0

1
Bear1Temp2

0

1
Bear1Vib1

0

1
Bear1Vib2

0

1
Pressure1

0

1
Pressure2

0

1
Flow1

0

1
Flow2

Figure C.2: Features’ anomaly distribution for the pre-training dataset of the stern tube.

Anomaly Distribution for Dataset Type #178

0

1 Full Time-Series

0

1 ExtWidth

0

1 IntWidth

0

1 FlowIn

0

1 FlowOut

0

1 pH

Figure C.3: Features’ anomaly distribution for the pre-training dataset of the pipes.

Appendix 79

0

1
Full Time-Series

0

1
PressureIn

0

1
PressureOut

0

1
Cond

0

1
TempB1

0

1
TempB2

0

1
TempC1

0

1
TempC2

0

1
TempC3

0

1
TempC4

Figure C.4: Features’ anomaly distribution for the pre-training dataset of the scrubber towers.

References

[1] A. Nawaz, S. Ahmed, H. A. Khattak, V. Akre, A. Rajan, and Z. A. Khan. Latest Ad-

vances in Interent Of Things and Big Data with Requirments and Taxonomy. Seventh

International Conference on Information Technology Trends, pages 13–19, 2020. DOI:

10.1109/ITT51279.2020.9320892.

[2] A. Artemenko. Keynote: Advances and Challenges of Industrial IoT. IEEE International Con-

ference on Pervasive Computing and Communications Workshops and Other Affiliated Events,

pages 526–526, 2021. DOI: 10.1109/PerComWorkshops51409.2021.9431146.

[3] E. Tijan, M. Jović, S. Aksentijević, and A. Pucihar. Digital Transformation in the Maritime

Transport Sector. Technological Forecasting and Social Change, 170:120879–120894, 2021. DOI:

10.1016/j.techfore.2021.120879.

[4] I. Lazakis, K. Dikis, A. L. Michala, and G. Theotokatos. Advanced Ship Systems Condition

Monitoring for Enhanced Inspection, Maintenance and Decision Making in Ship Operations.

Transportation Research Procedia, 14:1679–1688, 2016. DOI: 10.1016/j.trpro.2016.05.133.

[5] M. Constapel, P. Koch, and H.-C. Burmeister. On the Implementation of a Rule-Based System

to Perform Assessment of COLREGs Onboard Maritime Autonomous Surface Ships. Journal

of Physics: Conference Series, 2311, 2022. DOI: 10.1088/1742-6596/2311/1/012033.

[6] J. Han, Xu Li, and T. Tang. EnergyManagement Using a Rule-Based Control Strategy ofMarine

Current Power System with Energy Storage System. Journal of Marine Science and Engineering,

9, 2021. DOI: 10.3390/jmse9060669.

[7] A. B. Nassif, M. A. Talib, Q. Nasir, and F. M. Dakalbab. Machine Learning for Anomaly

Detection: A Systematic Review. IEEE Access, 9:78658–78700, 2021. DOI: 10.1109/AC-

CESS.2021.3083060.

[8] A. Brandsæter, G. Manno, E. Vanem, and I. K. Glad. An Application of Sensor-Based Anomaly

Detection in the Maritime Industry. IEEE International Conference on Prognostics and Health

Management, pages 1–8, 2016. DOI: 10.1109/ICPHM.2016.7811910.

[9] A. Brandsæter, E. Vanem, and I. K. Glad. Cluster Based Anomaly Detection with Applications

in the Maritime Industry. International Conference on Sensing, Diagnostics, Prognostics, and

Control, pages 328–333, 2017. DOI: 10.1109/SDPC.2017.69.

80

https://doi.org/10.1109/ITT51279.2020.9320892
https://doi.org/10.1109/ITT51279.2020.9320892
https://doi.org/10.1109/PerComWorkshops51409.2021.9431146
https://doi.org/10.1016/j.techfore.2021.120879
https://doi.org/10.1016/j.techfore.2021.120879
https://doi.org/10.1016/j.trpro.2016.05.133
https://doi.org/10.1088/1742-6596/2311/1/012033
https://doi.org/10.3390/jmse9060669
https://doi.org/10.1109/ACCESS.2021.3083060
https://doi.org/10.1109/ACCESS.2021.3083060
https://doi.org/10.1109/ICPHM.2016.7811910
https://doi.org/10.1109/SDPC.2017.69

References 81

[10] A. L. Ellefsen, P. Han, Xu Cheng, F. T. Holmeset, V. Æsøy, and H. Zhang. Online Fault

Detection in Autonomous Ferries: Using Fault-Type Independent Spectral Anomaly Detec-

tion. IEEE Transactions on Instrumentation and Measurement, 69:8216–8225, 2020. DOI:

10.1109/TIM.2020.2994012.

[11] D. Kim, S. Lee, and J. Lee. An Ensemble-Based Approach to Anomaly Detection in Marine

Engine Sensor Streams for Efficient Condition Monitoring and Analysis. Sensors, 20, 2020.

DOI: 10.3390/s20247285.

[12] D. Kim, G. Antariksa, M. P. Handayani, S. Lee, and J. Lee. Explainable Anomaly De-

tection Framework for Maritime Main Engine Sensor Data. Sensors, 21, 2021. DOI:

10.3390/s21155200.

[13] C. Qu, Z. Zhou, Z. Liu, and S. Jia. Predictive Anomaly Detection for Marine Diesel Engine

Based on Echo State Network and Autoencoder. Energy Reports, 8:998–1003, 2022. DOI:

10.1016/j.egyr.2022.01.225.

[14] C. Velasco-Gallego and I. Lazakis. RADIS: A Real-Time Anomaly Detection Intelligent System

for Fault Diagnosis of Marine Machinery. Expert Systems with Applications, 204, 2022. DOI:

10.1016/j.eswa.2022.117634.

[15] P. Baraldi, F. Di Maio, P. Turati, and E. Zio. Robust signal reconstruction for condition mon-

itoring of industrial components via a modified Auto Associative Kernel Regression method.

Systems and Signal Processing, 60-61:29–44, 2015.

[16] S. Cheng and M. Pecht. Using cross-validation for model parameter selection of sequen-

tial probability ratio test. Expert Systems with Applications, 39:8467–8473, 2012. DOI:

10.1016/j.eswa.2012.01.172.

[17] M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander. LOF: Identifying density-based local

outliers. ACM SIGMOD Record, 29:93–104, 2000. DOI: 10.1145/335191.335388.

[18] Y. Zhao, Z. Nasrullah, M. K. Hryniewicki, and Z. Li. LSCP: Locally selective combination in

parallel outlier ensembles. Proceedings of the 2019 SIAM International Conference on DataMin-

ing, pages 585–593, 2019. DOI: 10.1137/1.9781611975673.66.

[19] S. M. Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions. Pro-

ceedings of the 31st International Conference on Neural Information Processing Systems, pages

4768–4777, 2017.

[20] L. Basora, X. Olive, and T. Dubot. Recent Advances in Anomaly Detection Methods Applied

to Aviation. Aerospace, 6, 2019. DOI: 10.3390/aerospace6110117.

https://doi.org/10.1109/TIM.2020.2994012
https://doi.org/10.1109/TIM.2020.2994012
https://doi.org/10.3390/s20247285
https://doi.org/10.3390/s21155200
https://doi.org/10.3390/s21155200
https://doi.org/10.1016/j.egyr.2022.01.225
https://doi.org/10.1016/j.egyr.2022.01.225
https://doi.org/10.1016/j.eswa.2022.117634
https://doi.org/10.1016/j.eswa.2022.117634
https://doi.org/10.1016/j.eswa.2012.01.172
https://doi.org/10.1016/j.eswa.2012.01.172
https://doi.org/10.1145/335191.335388
https://doi.org/10.1137/1.9781611975673.66
https://doi.org/10.3390/aerospace6110117

References82

[21] C. Derse, M. el Baghdadi, O. Hegazy, U. Sensoz, H. Nur Gezer, and M. Nil. An Anomaly

Detection Study on Automotive Sensor Data Time Series for Vehicle Applications. Sixteenth

International Conference on Ecological Vehicles and Renewable Energies, pages 1–5, 2021. DOI:

10.1109/EVER52347.2021.9456629.

[22] M. Ibrahim, A. Alsheikh, F. M. Awaysheh, and M. D. Alshehri. Machine Learning Schemes for

Anomaly Detection in Solar Power Plants. Energies, 15, 2022. DOI: 10.3390/en15031082.

[23] J. W. Tukey. Comparing Individual Means in the Analysis of Variance. Biometrics, 5:99–114,

1949. DOI: 10.2307/3001913.

[24] F. E. Grubbs. Sample Criteria for Testing Outlying Observations. The Annals of Mathematical

Statistics, 21:27–58, 1950. DOI: 10.1214/aoms/1177729885.

[25] P. Whittle. Hypothesis Testing in Time Series Analysis. Journal of the Royal Statistical Society,

Series A, 114:579, 1951. DOI: 10.2307/2981095.

[26] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang, J. Tong, and Q. Zhang.

Time-Series Anomaly Detection Service at Microsoft. Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery &DataMining, pages 3009–3017, 2019. DOI:

10.1145/3292500.3330680.

[27] A. Saju and H. N. Suresh. Object Detection in Real Time Images Using Saliency Mapping

Technique. 2nd International Conference on Intelligent Computing, Instrumentation and Control

Technologies, 1:221–226, 2019. DOI: 10.1109/ICICICT46008.2019.8993345.

[28] P. Mukherjee, B. Lall, and A. Shah. Saliency Map Based Improved Segmentation.

IEEE International Conference on Image Processing, pages 1290–1294, 2015. DOI:

10.1109/ICIP.2015.7351008.

[29] X. Hou and Z. Liqing. Saliency Detection: A Spectral Residual Approach. IEEE Conference on

Computer Vision and Pattern Recognition, pages 1–8, 2007. DOI: 10.1109/CVPR.2007.383267.

[30] G. R. Moreno, M. Niranjan, and A. Prugel-Bennett. Saliency Map on Cnns for Protein Sec-

ondary Structure Prediction. IEEE International Conference on Acoustics, Speech and Signal

Processing, pages 1249–1253, 2019. DOI: 10.1109/ICASSP.2019.8683603.

[31] Y. Iwashima, J. Wang, and Y. Yashima. Full Reference Image Quality Assessment by CNN Fea-

ture Maps and Visual Saliency. IEEE 8th Global Conference on Consumer Electronics, pages

203–207, 2019. DOI: 10.1109/GCCE46687.2019.9015318.

[32] W.Qinglan. SaliencyMaps-BasedConvolutionalNeuralNetworks for Facial ExpressionRecog-

nition. IEEE Access, 9:76224–76234, 2021. DOI: 10.1109/ACCESS.2021.3082694.

[33] P.W. Anderson. More Is Different: Broken Symmetry and the Nature of the Hierarchical Struc-

ture of Science. Science, 177:393–396, 1972. DOI: 10.1126/science.177.4047.393.

https://doi.org/10.1109/EVER52347.2021.9456629
https://doi.org/10.1109/EVER52347.2021.9456629
https://doi.org/10.3390/en15031082
https://doi.org/10.2307/3001913
https://doi.org/10.1214/aoms/1177729885
https://doi.org/10.2307/2981095
https://doi.org/10.1145/3292500.3330680
https://doi.org/10.1145/3292500.3330680
https://doi.org/10.1109/ICICICT46008.2019.8993345
https://doi.org/10.1109/ICIP.2015.7351008
https://doi.org/10.1109/ICIP.2015.7351008
https://doi.org/10.1109/CVPR.2007.383267
https://doi.org/10.1109/ICASSP.2019.8683603
https://doi.org/10.1109/GCCE46687.2019.9015318
https://doi.org/10.1109/ACCESS.2021.3082694
https://doi.org/10.1126/science.177.4047.393

References 83

[34] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G. Shroff. LSTM-Based

Encoder-Decoder for Multi-Sensor Anomaly Detection. ICML Anomaly Detection Workshop,

2016. DOI: 10.48550/arXiv.1607.00148.

[35] Q. Ding, S. Liu, B. Zhou, H. Shen, and X. Cheng. Multi-Scale Anomaly Detection for Big Time

Series of Industrial Sensors. arXiv pre-print, 2022. DOI: 10.48550/arXiv.2204.08159.

[36] T.-A. Pham, J.-H. Lee, and Park C.-S. MST-VAE: Multi-Scale Temporal Variational Autoen-

coder for Anomaly Detection in Multivariate Time Series. Applied Sciences, 12:10078, 2022.

DOI: 10.3390/app121910078.

[37] A. Sperduti and A. Starita. Supervised Neural Networks for the Classification of Structures.

IEEE Transactions on Neural Networks, 8:714–735, 1997. DOI: 10.1109/72.572108.

[38] M. Gori, G. Monfardini, and F. Scarselli. A New Model for Learning in Graph Domains.

IEEE International Joint Conference on Neural Networks, 2:729–734, 2005. DOI: 10.1109/I-

JCNN.2005.1555942.

[39] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and Monfardini G. The graph

neural network model. IEEE Transactions on Neural Networks, 20:61–80, 2009. DOI:

10.1109/TNN.2008.2005605.

[40] C. Gallicchio and M. Alessio. Graph Echo State Networks. International Joint Conference on

Neural Networks, pages 1–8, 2010. DOI: 10.1109/IJCNN.2010.5596796.

[41] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A Comprehensive Survey on Graph

Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 32:4–24, 2021.

DOI: 10.1109/TNNLS.2020.2978386.

[42] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel. Gated Graph Sequence Neural

Networks. In 4th International Conference on Learning Representations, 2016. DOI:

10.48550/arXiv.1511.05493.

[43] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How Powerful are Graph Neural Networks? In 7th

International Conference on Learning Representations, 2019. DOI: 10.48550/arXiv.1810.00826.

[44] T. Guo, J. Dong, H. Li, and Y. Gao. Simple Convolutional Neural Network on Image Classi-

fication. IEEE 2nd International Conference on Big Data Analysis, pages 721–724, 2017. DOI:

10.1109/ICBDA.2017.8078730.

[45] S. P. Singh, A. Kumar, H. Darbari, L. Singh, A. Rastogi, and S. Jain. Machine Translation Using

Deep Learning: An Overview. International Conference on Computer, Communications and

Electronics, pages 162–167, 2017. DOI: 10.1109/COMPTELIX.2017.8003957.

https://doi.org/10.48550/arXiv.1607.00148
https://doi.org/10.48550/arXiv.2204.08159
https://doi.org/10.3390/app121910078
https://doi.org/10.1109/72.572108
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/IJCNN.2010.5596796
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.48550/arXiv.1511.05493
https://doi.org/10.48550/arXiv.1511.05493
https://doi.org/10.48550/arXiv.1810.00826
https://doi.org/10.1109/ICBDA.2017.8078730
https://doi.org/10.1109/ICBDA.2017.8078730
https://doi.org/10.1109/COMPTELIX.2017.8003957

References84

[46] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral Networks and Locally Connected

Networks on Graphs. In 2nd International Conference on Learning Representations, 2014. DOI:

10.48550/arXiv.1312.6203.

[47] M. Henaff, J. Bruna, and LeCun Y. Deep convolutional networks on graph-structured data.

CoRR, 2015. DOI: 10.48550/arXiv.1506.0516.

[48] T. N. Kipf and M. Welling. Semi-Supervised classification with graph convolutional networks.

CoRR, 2016. DOI: 10.48550/arXiv.1609.02907.

[49] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional Neural Networks on Graphs

with Fast Localized Spectral Filtering. In Proceedings of the 30th International Conference on

Neural Information Processing Systems, pages 3844–3852, 2016.

[50] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein. CayleyNets: Graph Convolutional Neural

Networks With Complex Rational Spectral Filters. IEEE Transactions on Signal Processing, 67:

97–109, 2019. DOI: 10.1109/TSP.2018.2879624.

[51] S. Wan, C. Gong, P. Zhong, Bo Du, L. Zhang, and J. Yang. Multiscale Dynamic Graph Convo-

lutional Network for Hyperspectral Image Classification. IEEE Transactions on Geoscience and

Remote Sensing, 58:3162–3177, 2020. DOI: 10.1109/TGRS.2019.2949180.

[52] S. Asif and S. Sumitra. Spectral Graph Convolutional Neural Networks in the Context of Reg-

ularization Theory. IEEE Transactions on Neural Networks and Learning Systems, pages 1–12,

2022. DOI: 10.1109/TNNLS.2022.3177742.

[53] A. Micheli. Neural Network for Graphs: A Contextual Constructive Approach. IEEE Transac-

tions on Neural Networks, 20:498–511, 2009. DOI: 10.1109/TNN.2008.2010350.

[54] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, and

R. P. Adams. Convolutional Networks on Graphs for Learning Molecular Fingerprints. In

Advances in Neural Information Processing Systems, volume 28, 2015.

[55] W. L. Hamilton, R. Ying, and J. Leskovec. Inductive Representation Learning on Large Graphs.

In Proceedings of the 31st International Conference on Neural Information Processing Systems,

pages 1025–1035, 2017.

[56] D. Bahdanau, K. Cho, and Y. Bengio. Neural Machine Translation by Jointly Learning to Align

and Translate. In 3rd International Conference on Learning Representations, 2015.

[57] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-

sukhin. Attention is All you Need. In Advances in Neural Information Processing Systems,

volume 30, 2017.

[58] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph Attention

Networks. CoRR, 2017. DOI: 10.48550/arXiv.1710.10903.

https://doi.org/10.48550/arXiv.1312.6203
https://doi.org/10.48550/arXiv.1312.6203
https://doi.org/10.48550/arXiv.1506.0516
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.1109/TSP.2018.2879624
https://doi.org/10.1109/TGRS.2019.2949180
https://doi.org/10.1109/TNNLS.2022.3177742
https://doi.org/10.1109/TNN.2008.2010350
https://doi.org/10.48550/arXiv.1710.10903

References 85

[59] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A Simple

Way to Prevent Neural Networks from Overfitting. The Journal of Machine Learning Research,

15:1929–1958, 2014.

[60] Z. Sun, A. Harit, J. Yu, A. I. Cristea, and N. Al Moubayed. A Generative Bayesian Graph Atten-

tion Network for Semi-Supervised Classification on Scarce Data. International Joint Conference

on Neural Networks, pages 1–7, 2021. DOI: 10.1109/IJCNN52387.2021.9533981.

[61] B. Gaudel, D. Guan, W. Yuan, D. Shrestha, B. Chen, and Y. Tu. A Generative Bayesian Graph

AttentionNetwork for Semi-SupervisedClassification on ScarceData. BigData, pages 137–147,

2021. DOI: 10.1007/978-981-16-0705-9_10.

[62] Bo Jiang, D. Lin, J. Tang, and B. Luo. Data Representation and Learning With Graph Diffusion-

Embedding Networks. IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 10406–10415, 2019. DOI: 10.1109/CVPR.2019.01066.

[63] W. Jingyi and Z. Deng. A Deep Graph Wavelet Convolutional Neural Network for Semi-

Supervised Node Classification. International Joint Conference on Neural Networks, pages 1–8,

2021. DOI: 10.1109/IJCNN52387.2021.9533634.

[64] Y. Zhu, J. Wang, J. Zhang, and K. Zhang. Node Embedding and Classification

with Adaptive Structural Fingerprint. Neurocomputing, 502:196–208, 2022. DOI:

10.1016/j.neucom.2022.05.073.

[65] S. Brody, U. Alon, and E. Yahav. How Attentive are Graph Attention Networks? In 10th Inter-

national Conference on Learning Representations, 2022. DOI: 10.48550/arXiv.2105.14491.

[66] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,

signals and systems, 2:303–314, 1989. DOI: 10.1007/BF02551274.

[67] D. E. Rumelhart and J. L. McClelland. Learning Internal Representations by Error Propagation.

In Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations,

chapter 8, pages 318–362. MIT Press, 1987.

[68] M. I. Jordan. Serial Order: A Parallel Distributed ProcessingApproach. Advances in Psychology,

121:471–495, 1997. DOI: 10.1016/S0166-4115(97)80111-2.

[69] Y. Bengio, P. Simard, and P. Frasconi. Learning Long-Term Dependencies with Gradi-

ent Descent Is Difficult. IEEE Transactions on Neural Networks, 5:157–166, 1994. DOI:

10.1109/72.279181.

[70] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent

neural networks on sequence modeling. NIPS Workshop on Deep Learning, 2014. DOI:

10.48550/arXiv.1412.3555.

https://doi.org/10.1109/IJCNN52387.2021.9533981
https://doi.org/10.1007/978-981-16-0705-9_10
https://doi.org/10.1109/CVPR.2019.01066
https://doi.org/10.1109/IJCNN52387.2021.9533634
https://doi.org/10.1016/j.neucom.2022.05.073
https://doi.org/10.1016/j.neucom.2022.05.073
https://doi.org/10.48550/arXiv.2105.14491
https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/S0166-4115(97)80111-2
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://doi.org/10.48550/arXiv.1412.3555
https://doi.org/10.48550/arXiv.1412.3555

References86

[71] J. Martens and I. Sutskever. Learning Recurrent Neural Networks with Hessian-Free Optimiza-

tion. Proceedings of the 28th International Conference on Machine Learning, pages 1033–1040,

2011.

[72] A. Graves. Generating Sequences With Recurrent Neural Networks. arXiv pre-print, 2014.

DOI: 10.48550/arXiv.1308.0850.

[73] K. Cho, B. vanMerriënboer, D. Bahdanau, and Y. Bengio. On the Properties of Neural Machine

Translation: Encoder–Decoder Approaches. Proceedings of SSST-8, EighthWorkshop on Syntax,

Semantics and Structure in Statistical Translation, pages 103–111, 2014. DOI: 10.3115/v1/W14-

4012.

[74] L. Yao andG. Yazhuo. An Improved LSTMStructure forNatural Language Processing. IEEE In-

ternational Conference of Safety Produce Informatization, pages 565–569, 2018. DOI: 10.1109/I-

ICSPI.2018.8690387.

[75] N.Habbat, H. Anoun, and L. Hassouni. Combination of GRU andCNNDeep LearningModels

for Sentiment Analysis on French Customer Reviews Using XLNet Model. IEEE Engineering

Management Review, pages 1–9, 2022. DOI: 10.1109/EMR.2022.3208818.

[76] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio. Light Gated Recurrent Units for Speech

Recognition. IEEE Transactions on Emerging Topics in Computational Intelligence, 2:92–102,

2018. DOI: 10.1109/TETCI.2017.2762739.

[77] G. Tiwari, A. Sharma, A. Sahotra, and R. Kapoor. English-Hindi Neural Machine Translation-

LSTM Seq2Seq and ConvS2S. International Conference on Communication and Signal Process-

ing, pages 871–875, 2020. DOI: 10.1109/ICCSP48568.2020.9182117.

[78] J. Singh, S. Sharma, and J. Briskilal. Natural Language Processing Based Machine Translation

for Hindi-English Using GRU and Attention. International Conference on Applied Artificial

Intelligence and Computing, pages 965–969, 2022. DOI: 10.1109/ICAAIC53929.2022.9793214.

[79] R. Jozefowicz, W. Zaremba, and I. Sutskever. An Empirical Exploration of Recurrent Network

Architectures. Proceedings of the 32nd International Conference on Machine Learning, pages

2342–2350, 2015.

[80] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. arXiv pre-print, 2013. DOI:

10.48550/arXiv.1312.6114.

[81] D. P. Kingma and M. Welling. An Introduction to Variational Autoencoders. Foundations and

Trends in Machine Learning, 12:307–392, 2019. DOI: 10.1561/2200000056.

[82] G. E. Hinton and R. R. Salakhutdinov. Reducing the Dimensionality of Data with Neural Net-

works. Science, 313:504–507, 2006. DOI: 10.1126/science.1127647.

https://doi.org/10.48550/arXiv.1308.0850
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.1109/IICSPI.2018.8690387
https://doi.org/10.1109/IICSPI.2018.8690387
https://doi.org/10.1109/EMR.2022.3208818
https://doi.org/10.1109/TETCI.2017.2762739
https://doi.org/10.1109/ICCSP48568.2020.9182117
https://doi.org/10.1109/ICAAIC53929.2022.9793214
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.1561/2200000056
https://doi.org/10.1126/science.1127647

References 87

[83] Q. Fournier and D. Aloise. Empirical Comparison between Autoencoders and Traditional Di-

mensionality Reduction Methods. IEEE Second International Conference on Artificial Intelli-

gence and Knowledge Engineering, pages 211–214, 2019. DOI: 10.1109/AIKE.2019.00044.

[84] Q. Li and C. Yang. Learning to Compress Using Deep AutoEncoder. 57th Annual Aller-

ton Conference on Communication, Control, and Computing, pages 930–936, 2019. DOI:

10.1109/ALLERTON.2019.8919866.

[85] S. Ghaffarzadegan, H. Bořil, and J. H. L. Hansen. Generative Modeling of Pseudo-Whisper

for Robust Whispered Speech Recognition. IEEE/ACM Transactions on Audio, Speech, and

Language Processing, 24:1705–1720, 2016. DOI: 10.1109/TASLP.2016.2580944.

[86] L. Girin, S. Leglaive, X. Bie, J. Diard, T. Hueber, and X. Alameda-Pineda. Dynamical Variational

Autoencoders: A Comprehensive Review. Foundations and Trends in Machine Learning, 15:1–

175, 2021. DOI: 10.1561/2200000089.

[87] A. Asperti, D. Evangelista, and E. Loli Piccolomini. A Survey onVariational Autoencoders from

a Green AI Perspective. SN Computer Science, 2, 2021. DOI: 10.1007/s42979-021-00702-9.

[88] L. Girin, F. Roche, T. Hueber, and S. Leglaive. Notes on the use of variational autoencoders

for speech and audio spectrogram modeling. 22nd International Conference on Digital Audio

Effects, pages 1–8, 2019.

[89] R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental, sparse, and

other variants. Learning in Graphical Models, pages 355–368, 1998. DOI: 10.1007/978-94-011-

5014-9_12.

[90] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to vari-

ational methods for graphical models. Machine Learning, 37:183–233, 1999. DOI:

10.1023/A:1007665907178.

[91] H. Zhao, Y. Wang, J. Duan, C. Huang, D. Cao, Y. Tong, B. Xu, J. Bai, J. Tong, and Qi Zhang.

Multivariate Time-Series AnomalyDetection via GraphAttentionNetwork. IEEE International

Conference on Data Mining, pages 841–850, 2020. DOI: 10.1109/ICDM50108.2020.00093.

[92] A. Siffer, P.-A. Fouque, A. Termier, and C. Largouet. Anomaly Detection in Streams with Ex-

treme Value Theory. Proceedings of the 23rd ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, pages 1067–1075, 2017. DOI: 10.1145/3097983.3098144.

[93] A. Siffer. OmniAnomaly. https://github.com/NetManAIOps/OmniAnomaly, 2016.

[94] N. P. DeGuglielmom, S. M. S. Basnet, and D. E. Dow. Introduce Ladder Logic and Pro-

grammable Logic Controller (PLC). Annual Conference Northeast Section, pages 1–5, 2020.

DOI: 10.1109/ASEENE51624.2020.9292646.

https://doi.org/10.1109/AIKE.2019.00044
https://doi.org/10.1109/ALLERTON.2019.8919866
https://doi.org/10.1109/ALLERTON.2019.8919866
https://doi.org/10.1109/TASLP.2016.2580944
https://doi.org/10.1561/2200000089
https://doi.org/10.1007/s42979-021-00702-9
https://doi.org/10.1007/978-94-011-5014-9_12
https://doi.org/10.1007/978-94-011-5014-9_12
https://doi.org/10.1023/A:1007665907178
https://doi.org/10.1023/A:1007665907178
https://doi.org/10.1109/ICDM50108.2020.00093
https://doi.org/10.1145/3097983.3098144
https://github.com/NetManAIOps/OmniAnomaly
https://doi.org/10.1109/ASEENE51624.2020.9292646

References88

[95] D.-A. Lee, J. Yoo, and J.-S. Lee. Guidelines for the Use of Function Block Diagram in Reactor

Protection Systems. 21st Asia-Pacific Software Engineering Conference, 1:135–142, 2014. DOI:

10.1109/APSEC.2014.29.

[96] M. Kocánek and P. Balda. General Sequential Function Charts Editor. 12th Inter-

national Carpathian Control Conference, pages 191–194, 2011. DOI: 10.1109/Carpathi-

anCC.2011.5945845.

[97] Azure IoT Hub. https://learn.microsoft.com/en-us/azure/iot-hub/, 2016. Ac-

cessed: 2023-01-16.

[98] P. Wenig, S. Schmidl, and T. Papenbrock. TimeEval: A Benchmarking Toolkit for Time Series

AnomalyDetectionAlgorithms. Proceedings of theVLDBEndowment, 15(12):3678–3681, 2022.

DOI: 10.14778/3554821.3554873.

[99] Microsoft Azure. https://azure.microsoft.com/, 2008. Accessed: 2023-02-16.

[100] Databricks. https://www.databricks.com/, 2013. Accessed: 2023-02-16.

[101] Azure Databricks. https://learn.microsoft.com/en-us/azure/databricks/, 2018.
Accessed: 2023-02-16.

[102] AzureMonitor. https://learn.microsoft.com/en-us/azure/azure-monitor/, 2018.
Accessed: 2023-02-16.

[103] Azure AD. https://learn.microsoft.com/en-us/azure/active-directory/, 2008.
Accessed: 2023-02-16.

[104] AzureKeyVault. https://learn.microsoft.com/en-us/azure/key-vault/, 2015. Ac-

cessed: 2023-02-16.

[105] Azure Stream Analytics. https://learn.microsoft.com/en-us/azure/
stream-analytics/, 2015. Accessed: 2023-02-16.

[106] Azure IoT Hub Device Provisioning Service. https://learn.microsoft.com/en-us/
azure/iot-dps/, 2017. Accessed: 2023-02-16.

[107] Azure Blob Storage. https://learn.microsoft.com/en-us/azure/storage/blobs/,
2008. Accessed: 2023-02-16.

[108] Azure Data Lake Storage Gen 2. https://learn.microsoft.com/en-us/azure/
storage/blobs/data-lake-storage-introduction, 2018. Accessed: 2023-02-16.

[109] Delta Lake. https://docs.delta.io/latest/index.html, 2017. Accessed: 2023-02-16.

[110] Docker. https://www.docker.com/, 2013. Accessed: 2023-02-16.

https://doi.org/10.1109/APSEC.2014.29
https://doi.org/10.1109/APSEC.2014.29
https://doi.org/10.1109/CarpathianCC.2011.5945845
https://doi.org/10.1109/CarpathianCC.2011.5945845
https://learn.microsoft.com/en-us/azure/iot-hub/
https://doi.org/10.14778/3554821.3554873
https://azure.microsoft.com/
https://www.databricks.com/
https://learn.microsoft.com/en-us/azure/databricks/
https://learn.microsoft.com/en-us/azure/azure-monitor/
https://learn.microsoft.com/en-us/azure/active-directory/
https://learn.microsoft.com/en-us/azure/key-vault/
https://learn.microsoft.com/en-us/azure/stream-analytics/
https://learn.microsoft.com/en-us/azure/stream-analytics/
https://learn.microsoft.com/en-us/azure/iot-dps/
https://learn.microsoft.com/en-us/azure/iot-dps/
https://learn.microsoft.com/en-us/azure/storage/blobs/
https://learn.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-introduction
https://learn.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-introduction
https://docs.delta.io/latest/index.html
https://www.docker.com/

References 89

[111] Azure Kubernetes Service. https://learn.microsoft.com/en-us/azure/aks/, 2018.

Accessed: 2023-02-16.

[112] FastAPI. https://fastapi.tiangolo.com/, 2018. Accessed: 2023-02-16.

[113] PostgreSQL. https://www.postgresql.org/, 1986. Accessed: 2023-02-16.

[114] A. Paszke, S. Gross, F.Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,

B. Steiner, Lu Fang, J. Bai, and S. Chintala. PyTorch: An Imperative Style, High-Performance

Deep Learning Library. https://dl.acm.org/doi/10.5555/3454287.3455008, 2019.

[115] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training by Reduc-

ing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine

Learning, volume 37, pages 448–456, 2015. DOI: 10.48550/arXiv.1502.03167.

[116] G. Raskutti, M. J. Wainwright, and B. Yu. Early Stopping for Non-Parametric Regression: An

Optimal Data-Dependent Stopping Rule. 49th Annual Allerton Conference on Communication,

Control, and Computing, pages 1318–1325, 2011. DOI: 10.1109/Allerton.2011.6120320.

[117] W. Kvaale and A. Øvrebø Harstad. ML4ITS - Machine Learning for Irregular Time Series.

https://github.com/ML4ITS/mtad-gat-pytorch, 2021.

[118] M. A. Wani and S. Afzal. A New Framework for Fine Tuning of Deep Networks. 16th IEEE

International Conference on Machine Learning and Applications, pages 359–363, 2017. DOI:

10.1109/ICMLA.2017.0-135.

[119] A. Ramdan, A. Heryana, A. Arisal, R. B. S. Kusumo, and H. F. Pardede. Transfer Learning and

Fine-Tuning for Deep Learning-Based Tea Diseases Detection on Small Datasets. International

Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications, pages 206–

211, 2020. DOI: 10.1109/ICRAMET51080.2020.9298575.

[120] Z. Cai and C. Peng. A Study on Training Fine-Tuning of Convolutional Neural Networks.

13th International Conference on Knowledge and Smart Technology, pages 84–89, 2021. DOI:

10.1109/KST51265.2021.9415793.

[121] T. Fredriksson, D. I.Mattos, J. Bosch, andH.H. Olsson. An Empirical Evaluation of Algorithms

for Data Labeling. IEEE 45th Annual Computers, Software, and Applications Conference, pages

201–209, 2021. DOI: 10.1109/COMPSAC51774.2021.00038.

[122] L. Xu, K. Xu, Y. Qin, Y. Li, X. Huang, Z. Lin, N. Ye, and X. Ji. TGAN-AD: Transformer-

Based GAN for Anomaly Detection of Time Series Data. Applied Sciences, 12, 2022. DOI:

10.3390/app12168085.

https://learn.microsoft.com/en-us/azure/aks/
https://fastapi.tiangolo.com/
https://www.postgresql.org/
https://dl.acm.org/doi/10.5555/3454287.3455008
https://doi.org/10.48550/arXiv.1502.03167
https://doi.org/10.1109/Allerton.2011.6120320
https://github.com/ML4ITS/mtad-gat-pytorch
https://doi.org/10.1109/ICMLA.2017.0-135
https://doi.org/10.1109/ICMLA.2017.0-135
https://doi.org/10.1109/ICRAMET51080.2020.9298575
https://doi.org/10.1109/KST51265.2021.9415793
https://doi.org/10.1109/KST51265.2021.9415793
https://doi.org/10.1109/COMPSAC51774.2021.00038
https://doi.org/10.3390/app12168085
https://doi.org/10.3390/app12168085

References90

[123] A. Chen, A. Chow, A. Davidson, A. DCunha, A. Ghodsi, S. A. Hong, A. Konwinski, C. Mewald,

S. Murching, T. Nykodym, P. Ogilvie, M. Parkhe, A. Singh, F. Xie, M. Zaharia, R. Zang,

J. Zheng, and C. Zumar. Developments in MLflow: A System to Accelerate the Machine Learn-

ing Lifecycle. Proceedings of the Fourth International Workshop on Data Management for End-

to-End Machine Learning, pages 1–4, 2020. DOI: 10.1145/3399579.3399867.

https://doi.org/10.1145/3399579.3399867

	Introduction
	Thesis Scope & Structure
	Related Works

	Theoretical Framework & Algorithms
	Univariate Anomaly Detection
	Spectral Residuals & Saliency Maps
	The SR-CNN Model

	Multivariate Anomaly Detection
	Graph Neural Networks
	Graph Attention Networks
	Static vs Dynamic Attention

	Gated Recurrent Unit Networks
	Variational Autoencoders
	VAE Decoder: A Generative Model
	VAE Encoder: An Inference Model

	Piecing Everything Together: the MTAD-GATv2 Model

	Data Collection & Datasets
	Sensors and Studied Systems
	Data Collection
	Constructed Datasets
	Dataset Type #1: Controlled Anomaly Simulation
	Dataset Type #2: Synthetically Generated Time-Series
	Dataset Type #3: Operational Vessel Data

	Cloud Data Engineering
	Azure Cloud Ecosystem & Solution Architecture
	Data Ingestion
	Delta Lake & Medallion Architecture
	Computations & Serving

	Implementation & Results
	Models Implementation
	Pre-Training & Evaluation
	Evaluation of the SR-CNN Models
	Pre-Training of the MTAD-GATv2 Models

	Expressivity Evaluation
	Fine-Tuning and Case Studies
	Case #1: Cracks on Scrubber Towers
	Case #2: Shaft Misalignment in Motor-Pump Systems

	Conclusion
	Outlook

	Appendix
	A. Different Types of Attention
	B. VAE ELBO Calculation
	C. Anomaly Distribution for Dataset Type #1

	References

