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Περίληψη

Οι σύγχρονοι κώδικες για την αποτίμηση των κατασκευών, παρέχουν προτάσεις και κατευθυντή-
ριες γραμμές για τη χρήση μεθόδων επίλυσης χρονοϊστορίας στα πλαίσια των αναλύσεων. Ωστόσο,
η προσομοίωση μεγάλων κατασκευών στο πεδίο του χρόνου μπορεί να καταστεί υπολογιστικά ασύμ-
φορη. Επομένως, δημιουργείται μια ανάγκη για νέες, ταχείες και υψηλής πιστότητας μεθόδους επί-
λυσης. Οι μέθοδοι Μείωσης Τάξης Προσομοιώματος (MOR), οι οποίες προσεγγίζουν μεγάλα υπο-
λογιστικά μοντέλα με υποκατάστατα χαμηλότερης τάξης, αποτελούν μια ελκυστική επιλογή προς
ικανοποίηση αυτής της ανάγκης. Οι τεχνικές Μείωσης Τάξης Προσομοιώματος χωρίζονται στις κα-
τηγορίας εκ των υστέρων και εκ των προτέρων. Η πρώτη κατηγορία, αφορά σε τεχνικές, που κα-
τασκευάζουν το προσομοίωμα μειωμένης τάξης (ROM) μετά τη διενέργεια ορισμένων επιλύσεων
του συστήματος και προσφέρονται ιδιαίτερα για την εφαρμογή σε προσομοιώματα που εξαρτώνται
από λίγες παραμέτρους, αλλά έχουν διαθέσιμο μεγάλο πλήθος παρατηρήσεων. Η δεύτερη κατηγορία
αφορά σε μεθόδους οι οποίες βασίζονται στη φυσική που διέπει το εκάστοτε πρόβλημα και συνθέτουν
το προσομοίωμα μειωμένης τάξης χωρίς την ανάγκη προ-υπολογισμένων λύσεων του συστήματος.
Αντιπροσωπευτικό παράδειγμα της δεύτερης κατηγορίας αποτελεί η μέθοδος του Ιδιο-Γενικευμένου
Διαχωρισμού (Proper Generalized Decomposition - PGD), η οποία και αναλύεται στην παρούσα με-
ταπτυχιακή εργασία.

Η μέθοδος PGD βασίζεται πάνω στην έννοια των αναπαραστάσεων χωριζωμένων μεταβλητών. Το
άγνωστο πεδίο μετατοπίσεων, αναζητείται στη μορφή ενός αθροίσματος δυαδικών/τανυστικών γινο-
μένων χωρικών και χρονικών διανυσμάτων εμπλούτισης, επονομαζόμενα PGD-μορφές και μορφώνε-
ται μέσω επαναλήψεων εμπλούτισης. Στα πλαίσια της δυναμικής των κατασκευών, η PGD μπορεί να
χρησιμοποιηθεί ως ένας μη-επαυξητικός επιλύτης σε ολόκληρο το χωροχρονικό πεδίο στο οποίο ορί-
ζεται το εκάστοτε πρόβλημα. Ο επαυξητικός φορμαλισμός της μεθόδου Newmark για τη χρονική ολο-
κλήρωση των εξισώσεων κίνησης, προβάλλεται σε μια ισοδύναμη μη-επαυξητική του μορφή. Έτσι,
το δυναμικό σύστημα αντιπροσωπεύεται από μία μόνο αλγεβρική χωροχρονική εξίσωση. Κατ’ αυτόν
τον τρόπο οι απαιτήσεις σε μνήμη και αποθηκευτικό χώρο, καθώς και οι υπολογιστικοί χρόνοι μπο-
ρούν να μειωθούν. Η ακρίβεια, η αποδοτικότητα, καθώς και τα όρια της προσέγγισης PGD-Newmark
αναδεικνύονται μέσα από αριθμητικά παραδείγματα. Τέλος, εξάγονται συμπεράσματα σχετικά με την
εξέλιξη των χωρικών και χρονικών διανυσμάτων εμπλούτισης κατά τη σύγκλιση, τη συνολική από-
δοση της μεθόδου, καθώς και την επιρροή διαφόρων αλγοριθμικών παραμέτρων στη συμπεριφορά
σύγκλισης.
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Abstract

Modern codes for structural assessment provide recommendations and guidelines
on the use of time-history solution procedures as a feasible analysis route. Unfortu-
nately, analyzing large scale structures in the time domain is computationally taxing.
Hence, a requirement is identified for rapid, yet high fidelity, solution procedures.
Model Order Reduction (MOR), i.e., the approximation of large computational mod-
els with significantly smaller ones, is an attractive option towards this objective.
MOR methods are divided into a-posteriori and a-priori methods. The former in-
cludes techniques that build the Reduced Order Model (ROM) after computing some
solutions of the system and is especially useful when the model has a relatively small
number of parameters but many observations. The latter methods rely solely on the
physics that govern the problem and construct the ROM without the need of pre-
computing any solution. A representative example of the a-priori methods is the so
called Proper Generalized Decomposition (PGD), which is considered in this thesis.

The PGD builds on the concept of separated representations. The unknown dis-
placement field is sought in the form of a sum of dyadic products of spatial and tempo-
ral vectors, called PGD modes and is iteratively assembled by enrichments. Within
the framework of structural dynamics, the PGD can be used as a non-incremental
solver in the entire space-time domain. The incremental Newmark time integration
scheme is cast into its space-time equivalent and the dynamic system is represented
by only one algebraic space-time equation. In this manner, memory/storage require-
ments as well as computational runtimes could be reduced. The accuracy, efficiency
as well as the limits of the PGD-Newmark space-time approach are demonstrated via
numerical benchmarks. Several conclusions are drawn regarding the evolution of
the spatial and temporal enrichment vectors during convergence, the overall perfor-
mance of the approach as well as the influence of some algorithmic implementation
parameters on the convergence behavior.

Keywords

Reduced Order Model, Proper Generalized Decomposition (PGD), Earthquake
Engineering, Structural Dynamics
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Chapter 1

INTRODUCTION

1.1 Motivation and Problem Statement
Although the computer speed and memory capacity continue to double every 18 months (Moore’s
law), the phenomenon that the demand of computer storage and speed will always exceed existing
capabilities has been consistently demonstrated in finite element analysis during the past half century,
as brilliantly stated by Qu in [7]. The remarkable progress in computer capabilities has rendered the
resolution of problems involving millions of unknowns an ordinary task. This progress, combined
with decades of research in numerical analysis, have yielded an extensive range of computational
tools that can predict the behavior of complex structures and mechanical systems.

However, many scientific and engineering problems, to this day, remain intractable either because
of their numerical complexity, or because of requirements (e.g. memory, time) that make them unaf-
fordable, even for today’s advancement in computational technologies. Some examples of demand-
ing elastodynamic problems. For example, haptic feedback applications for surgical simulators [8],
micro/nano-electromechanical systems (MEMS/NEMS), dynamic data-driven applications [9] and
optimization frameworks in industrial and structural design, are but a few very demanding structural
dynamics problems.

A key issue in structural dynamics is the evaluation of the response time history of engineering
structures subjected to transient excitations. To this end, there exist many conventional methods, in-
cluding analytic strategies (for linear systems) and incremental (step-by-step) time integration schemes
[1]. Models in structural dynamics, consist of a system of governing differential equations describing
the system, supplemented by boundary conditions, which are usually discretized in space with the Fi-
nite Element Method (FEM), leading to an Ordinary Differential Equation (ODE) that is to be solved
in the time domain. Next, implicit or explicit time integration schemes are used for the temporal
discretization of the evolution problem. Employing a fine spatial mesh for accuracy and choosing a
small time step to avoid instability issues (especially for explicit schemes), results in a system of a very
large number of degrees of freedom, inevitably increasing the demand for memory, time and energy
resources. Conventional time integration schemes (e.g. CDM, Newmark, HHT) differ in the way the
temporal derivatives of the displacement field are approximated. Their common ground, however, is
a resulting recursive formula that is solved via an incremental solution procedure.

An alternative, non-incremental approach, would be to cast the incremental solution procedure
over the entire space-time domain. Then, the resulting problem would amount to the solution of a
linear systemwith a dimension equal to the product of the spatial and temporal dimensions of the initial
problem. The solution of this linear system, would yield the entire space-time field. In [10], finite
elements have been applied simultaneously in space and time. In [11], Hughes et. al introduced the
application of space-time finite elements in elastodynamics and structural dynamics. Later, space-time
finite elements were employed for elastodynamics analyses on structured and unstructured meshes in
[12]. The space-time FEM approach has also been applied in many different engineering problems
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Figure 1.1: Analysis computational cost with and without MOR

such as contact mechanics [13], multiscale modelling [14] and fluid-structure interaction [15], among
others.

Despite the many computational tools available, the need for novel numerical strategies, that can
potentially decrease computational costs and/or memory requirements by exploiting today’s compu-
tational resources in a more efficient way, is always an important task. There is an evident incli-
nation/interest towards low dimensional descriptions/surrogates that can approximate the full order
model as accurately as possible.

1.2 Model Order Reduction (MOR)
Model Order Reduction (MOR), i.e. the approximation of large computational models with sig-
nificantly smaller ones, constitutes a promising tool towards this task. It is because of the above-
mentioned computational bottlenecks, that structural dynamics has been one of the first fields of engi-
neering practice where MOR has been employed. The classic method of Modal Superposition ([27])
can be viewed as a sort of MOR. In [16], system eigenmodes are used in order to reduce the number
of degrees of freedom in nonlinear dynamics applications. To find sufficiently accurate solutions with
significantly lower computational costs, several approximation methods and MOR strategies have
been proposed in the literature. In general, they can be divided into methods that require offline com-
putations to achieve online speedups, termed a posteriori and methods that not need any offline step,
termed a priori. Fig.1.1 illustrates the online/offline cost for different MOR approaches.

The a posteriori methods, also referred to as projection-based or data-driven, build the Reduced
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Order Model (ROM) using computed snapshots or empirical realizations of the system. In essence,
projection-basedMOR techniques rely on the analysis of system snapshots to define a lower dimension
vector space and the projection of the governing equations onto this low dimension vector space. The
original degrees of freedom of the model (e.g. FEM nodal displacements) are swapped with an as
much as possible reduced number of generalized coordinates that adequately describe the eigenmodes
the contain the most ”energy” of the autocorrelation matrix of the snapshots. The most prominent a
posteriori approach is the Proper Orthogonal Decomposition (POD). The POD technique has been
developed and re-discovered in many branches of science under different names such as Principal
Component Analysis and Karhunen-Loève Decomposition in signal processing, but also Hotelling
transform, Eckart-Young theorem and Singular Value Decomposition (SVD) in linear algebra and
Empirical Modal Analysis in structural dynamics (see [17] for more). In structural dynamics, the
POD is used to determine the dominant motion patterns for an optimal low-order description of linear
and nonlinear systems ([28], [26]). The transformation into the low order subspace depends on the
derived POD modes obtained from the system snapshots. Its performance, for the case of transient
excitations mainly depends on the snapshot time period [30], [29].

A priori methods build the ROM without the need of precomputing any solution of the problem.
These techniques are based on knowledge of the governing equations. A representative example of a
priori MOR is the Proper Generalized Decomposition [22]. The key point of the PGD is the concept
of separated representations. The problem solution which is usually a multivariate function, is sought
in the form of a sum of products of simpler, univariate functions.

As stated in [17], the origin of the PGD can be traced back to the radial loading step within the
LArge Time INcrement (LATIN) method proposed by Ladevèze [31], as a space-time separated rep-
resentation in non-incremental structural mechanics solvers. The term was first coined by Chinesta
et al. and was developed in [32] and [33], where a novel solution method for non-Newtonian fluid
models in high-dimensional phase spaces has been developed. Their work was soon identified to be
a generalization of Ladevèze’s work. Subsequently the PGD has been introduced as a solution/MOR
method for many different scientific areas such as the solution of Helmholtz equations [34], mag-
netostatics [35], Boltzmann and Fokker-Planck equations [36], steady flows [43], contact problems
[37], multiscale analyses [39], [40], shape optimization [38], virtual surgery simulations [41] and even
real-time simulations on e-books in the context of augmented learning [42]. Lately, it has also found
application in lattice structure problems [44] and brittle fracture with random field parameters [45].

In the field of structural dynamics, it has seen a wide variety of uses under different settings.
In [46], the PGD is used as an efficient black-box integrator for solid dynamics, that computes a
multi-parametric solution field, considering analyses parameters (e.g. initial conditions) as extra co-
ordinates. In [47], the PGD is used for the space-time resolution of elastoplastic problems. The work
of Boucinha et al. [19] was the first to propose a tensorial formulation of various time integration
schemes (including the Newmark scheme) within a non-incremental solution procedure. The PGD
allows one to consider the entire problem simultaneously in space and time, while using conventional
spatial discretization strategies (e.g. FEM). Bamer et al. applied the Newmark tensorial PGD formu-
lation to linear structural dynamics [21]. Shirafkan et al. implemented the PGD space-time approach
to the quasistatic analysis of elastoplastic structures and physically interpreted the spatial and temporal
modes, for which the coined the term PGD modes.

One key benefit of a separated representation of the solution field, is that it drastically reduces com-
puter memory and storage requirements, especially when a few PGD modes can accurately represent
the system solution (see Fig.1.2). Furthermore, in the PGD framework, the dimension and complexity
of the problem scales linearly with the number of state space1 dimensions, instead of exponentially.

Given the aforementioned advantages, one can conclude that the PGD can enact two distinct roles
within a computational mechanics framework, depending on the nature of the solution field:

1The term state space refers to the vector space of all state variables of a system under consideration, i.e. generalized
coordinates, system parameters etc.
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Figure 1.2: Solution field memory/storage requirements for PGD, mPGD = nenr(nDOFs+nt), and FEM, mFEM =
nDOFsnt

1. Known Field: For a solution field that has already been computed using conventional methods,
the PGD can act as a compression algorithm, achieving minimum storage requirements.

2. Unknown Field. For an unknown solution field, the PGD can act as a MOR method, mitigating
the problem of high computational costs.

The concept of the PGD, as well as the space-time PGD-Newmark formulation are presented in detail
in Chapter 3.

(a) FEM (b) PGD

Figure 1.3: Discretization of one 3D domain (FEM) vs three 1D domains (PGD)
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1.3 Scope of the Thesis
The scope of this thesis is the methodological presentation of the Newmark-PGD space-time formula-
tion and the investigation of applicability to linear structural dynamics. The method is demonstrated
by means of numerical benchmarks of 3 different models. The convergence behavior, accuracy and
numerical efficiency is presented, as well as the limits of the approach. The evolution of the spatial
enrichment vectors is investigated during convergence and compared to the linear modes of vibration.
This work aims to answer the following questions:

1. Does the PGD space-time approach yield accurate results for linear structural dynamics prob-
lems?

2. Is the approach able to accelerate the analyses?

3. Is there any memory/storage requirement reduction achieved?

4. Can the spatial PGD modes be related to the linear modes of vibration?

To this end, the following steps were carried out:

• Extensive literature research of the PGD method.

• Development of MATLAB code for the dynamic analysis of structures.

• Development of MATLAB code for the algorithmic implementation of the PGD space-time
approach.

1.4 Thesis Layout
After this introductory chapter, this work is structured as follows. Chapter 2 presents the mathemati-
cal formulation of elastodynamics and the conventional Newmark method for solving the equation of
motion. In Chapter 3, the Proper Generalized Decomposition (PGD) is presented in detail, the sepa-
rated representation principles are given and the PGD-Newmark space-time approach is formulated.
Chapter 4 contains the numerical benchmarks used for the validation of the method and Chapter 5
concludes with some remarks and proposals for future work. Some brief Tensor Algebra definitions
are included in Appendix A.
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Chapter 2

DYNAMIC ANALYSIS OF STRUCTURES

2.1 Introduction
Apart from static loads, engineering structures may be subjected to dynamic loads, that is, loads whose
magnitude as well as direction of action and/or position may vary with time. Therefore, the funda-
mental objective of structural dynamics is the analysis of the response of a given structure undergoing
dynamic loads. Two key facts differentiate dynamic from static analysis. The first, is the temporal
variance of the loads, hence the dependence of the deformations and the stresses on time. The second
one is that the position of the structural material points changes with time, so, apart from displace-
ment, they have velocity and acceleration. Inasmuch as the structure has mass, the acceleration of
the material points produces inertial forces that constitute additional loading, and therefore cannot be
ignored.

In this chapter, the problem for the dynamic analysis of structures will be formulated for continuous
structures, discretized as systems with a finite number of Degrees of Freedom (DOFs) at the nodes
of the given structure. The equations of motion will be stated for a linear Multi-Degree-of-Freedom
(MDOF) system and then the Newmark direct time integration scheme will be presented.

2.2 Problem Formulation

2.2.1 Elastodynamics

Γ

ΓD

Ω

Figure 2.1: Deformable domain Ω, with volume V , subjected to boundary conditions.

7
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Point of departure, for the initial boundary value problem (IBVP) of conventional elastodynamics,
is the linear momentum balance equation at a material point of a body , in the time domain (0,T].

∇·σ+b= ρü, in Ω× (0,T], (2.1)

where σ(x, t) is the second order Cauchy stress tensor, ∇ ·σ represents the divergence of the stress
tensor [5], b is the vector field of body forces andu(x, t) is the displacement vector field. With ρ(x)we
define the density of the material within the bodyΩ. Dirichlet boundary conditions are defined on the
surface ΓD and Neumann boundary conditions are defined on surface ΓN ofΩ (Fig.2.1), respectively,
as:

u= ū, on ΓD × (0,T] (2.2)

σ ·n= t̄, on ΓN × (0,T] (2.3)

where t̄ is the external surface tractions vector and n is the normal to the boundary surface vector. The
initial conditions are a displacement field and a velocity field at time instant t = 0.

u(x,0)=u0, in Ω (2.4)

u̇(x,0)= v0, in Ω (2.5)

In a Galerkin approximation manner, multiplying Eq. (2.1) by a kinematically admissible vector
field w= δu (often called weight/test function or virtual displacement), and integrating over the entire
body volume Ω, one gets:

∫
Ω

[
∇·σ

]
·wdV +

∫
Ω

b ·wdV =
∫
Ω
ρü ·wdV (2.6)

Performing a partial integration of the first term and making use of the divergence theorem leads
to the weak form of the IBVP (including the boundary conditions): (for the sake of simplicity, math-
ematic manipulations are omitted but the procedure can be found in [4], [5])

∫
Ω
ρδu · üdV +

∫
Ω
δϵ :σdV =

∫
Ω
δu ·bdV +

∫
ΓN

δu · t̄dΓN (2.7)

where ϵ is the strain tensor and t̄ is the boundary tractions vector field.
For the spatial discretization ofΩ the Finite Element Method (FEM) is employed. Adopting shape

(interpolation) functions 1 , whose coefficients are arranged in matrix N(el), the displacement field
within each element u(el) and its 2nd temporal derivative, as well as the arbitrary virtual displacement
are expressed, respectively, in terms of the nodal displacement vector u(el)

(nodal) as:

u(el) =N(el)u(el)
(nodal) (2.8)

1Lagrange polynomials are commonly adopted.
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ü(el) =N(el)ü(el)
(nodal) (2.9)

δu(el) =N(el)δu(el)
(nodal) (2.10)

Equivalently, the element strain field ϵ(el) = 1
2

(
∇u(el)+∇u(el)T

)
and the virtual strain field δϵ(el)

are expressed via the element nodal displacement vector as:

ϵ(el) =B(el)u(el)
(nodal) (2.11)

δϵ(el) =B(el)δu(el)
(nodal) (2.12)

where B(el) is an element strain-displacement matrix, containing the derivatives of the shape functions
N(el).

Inserting Eq. (2.8) - (2.12) into the weak form Eq. (2.7) leads to a spatially discretized form of the
Principle of Virtual Work for an element with volume V (el), occupying a domain Ω(el).

δu(el)


(∫

Ω(el)
N(el)TρN(el)dV (el)

)
︸ ︷︷ ︸

M(el)

ü(el)

+
(∫

Ω(el)
B(el)TσdV (el)

)
︸ ︷︷ ︸

f(el)int

+
(∫

Ω(el)
N(el)TbdV (el)

)
︸ ︷︷ ︸

b(el)

+
(∫

ΓN

N(el)T t̄dΓN

)
︸ ︷︷ ︸

f(el)ext

= 0

(2.13)

Next, in a general FEM fashion, an operation is defined, and performed over all elements, that
casts the local element properties(matrices, coordinates, etc.) to a global structural formulation 2.
Hence, the Principle of Virtual Work is expressed in global form for the entire system:

δu


(∫

Ω
NTρNdV

)
︸ ︷︷ ︸

M

ü+
(∫

Ω
BTσdV

)
︸ ︷︷ ︸

fint

+
(∫

Ω
NTbdV

)
︸ ︷︷ ︸

b

+
(∫

ΓN

NT t̄dΓN

)
︸ ︷︷ ︸

fext

= 0 (2.14)

2Details on the specifics of the global assembly operation can be found in [1].
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where M ∈Rns×ns is the global mass matrix of the system, fint ∈Rns is the global internal force vector,
b ∈ Rns is the global body force vector and fext ∈ Rns is the global external force vector. The number
of Degrees of Freedom (DOFS), which depends on the discretization, is denoted by ns.

Under a Linear Elasticity regime, the stress-strain constitutive relation (Hooke’s law) is expressed
in tensorial form as:

σi j = Ci jklϵkl (2.15)

where Ci jkl is the 4th order elasticity (or stiffness) tensor, containing the elastic moduli (or material
properties). Using the underline convention (see Appendix A), Eq. (2.15) can be written in matrix
form as:

σ=C : ϵ (2.16)

Isolating the element internal force vector from Eq. (2.13) and substituting stress and strain terms,
according to Eq. (2.16) and Eq. (2.11) respectively, leads to:

f(el)int =
(∫

Ω(el)
B(el)TCB(el)dV (el)

)
u(el) =K(el)u(el) (2.17)

where K(el) is the local element stiffness matrix. Assembly of all element stiffness matrices leads to
the global stiffness matrix of the system K ∈Rns×ns .

The requirement for the Principle of Virtual Work to hold for any virtual displacement, leads to
the equation of motion of the system:

Mü+Ku+b+ fext = 0 (2.18)

2.2.2 Equation of motion
The problem of determining the dynamic response of a system is mathematically described by the
following initial value problem (IVP), where the right hand side is the sum of the external and the
body force vectors.

Mü(t)+Cu̇(t)+Ku(t)= f(t)
u(t0)=u0

u̇(t0)= u̇0

(2.19)

where: M is the mass matrix, K the stiffness matrix, C the Rayleigh damping matrix ([1]), u the nodal
displacement vector, u̇ the nodal velocity vector, ü the nodal acceleration vector and f the external
force vector. Eq. (2.19), can be alternatively written as:

FI(t)+FD(t)+FE(t)− f(t)= 0, (2.20)

where FI(t)=Mü(t) are the inertial forces, FD(t)=Cu̇(t) the damping forces and FE(t)=Ku(t) the
linear elastic restoring forces

The equation of motion of a vibrating system Eq. (2.19) written in the form of Eq. (2.20) expresses
the equilibrium condition of all the forces acting upon the system, that is the external excitation forces
and the internal resistance forces, at a particular time instant t.
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The equilibrium condition for a dynamic, linear elastic, damped system, subjected to seismic ex-
citation, with ns degrees of freedom is expressed in matrix form as:

Mü(t)+Cu̇(t)+Ku(t)=−Mrüg(t), (2.21)

where M is the (ns × ns) mass matrix, K the (ns × ns) stiffness matrix, C the (ns × ns) damping
matrix, u the (ns×1) nodal relative displacement vector, üg the ground acceleration and r the (ns×1)
influence vector, that expresses the spatial distribution of the external excitation, over the discretized
computational domain.

Mathematically, Eq. (2.21) represents a system of linear 2nd order differential equations, the so-
lution of which can be computed via any conventional method of solving ODEs with constant coef-
ficients. Such conventional methods, however, can be particularly computationally taxing, especially
when the order of the coefficient matrices is high. Within a Finite Element Analysis (FEA) setting, the
system matrices are usually characterized by a sparse and banded matrix structure. This fact entails
the use of numerical methods, tailored to engineering problems, that exploit this sparsity.

The solution techniques that are commonly adopted are the Modal Superposition Method, the
Direct Numerical Integration Schemes, the Response Spectrum Analysis (RSA) and the Frequency
Domain Analysis. In the current work, the linear elastic analyses are carried out via direct numerical
integration of the equations of motion.

2.3 Newmark Method - Incremental Solution Approach
Point of departure for the Newmark scheme are the Taylor series expansion relations for the displace-
ment, the velocity and the acceleration at time instant t+∆t:

u(t+∆t)=u(t)+∆tu̇(t)+ ∆t2

2!
ü(t)+ ∆t3

3!
...u (t)+ ∆t4

4!
....u (t)+·· · (2.22)

u̇(t+∆t)= u̇(t)+∆tü(t)+ ∆t2

2!
...u (t)+ ∆t3

3!
....u (t)+·· · (2.23)

ü(t+∆t)= ü(t)+∆t
...u (t)+ ∆t2

2!
....u (t)+·· · (2.24)

Rearranging equation Eq. (2.24),

∆t
...u (t)= ü(t+∆t)+−ü(t)− ∆t2

2!
....u (t)+·· · (2.25)

and substituting Eq. (2.25) in Eq. (2.22) and Eq. (2.23) yields the following expressions:

u(t+∆t)=u(t)+∆tu̇(t)+ ∆t2

2!
ü(t)+ ∆t2

3!

[
ü(t+∆t)− ü(t)− ∆t2

2!
....u (t)−·· ·

]
+ ∆t4

4!
....u (t)+·· · (2.26)

u̇(t+∆t)= u̇(t)+∆tü(t)+ ∆t2

2!
ü(t)+ ∆t2

2!

[
ü(t+∆t)− ü(t)− ∆t2

2!
....u (t)−·· ·

]
+ ∆t3

3!
....u (t)+·· · (2.27)
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Truncating 4th and higher order terms from the above equations, one gets the following finite difference
approximations:

u(t+∆t)≈u(t)+∆tu̇(t)+ ∆t2

6

[
ü(t+∆t)+2ü(t)

]
(2.28)

u̇(t+∆t)≈ u̇(t)+ ∆t
2

[
ü(t+∆t)+ ü(t)

]
(2.29)

These relations are implicit, in the sense that, in order to determineu(t+∆t) and u̇(t+∆t), ü(t+∆t)
is required. But, the accelerations ü(t+∆t) cannot be computed without u(t+∆t) and u̇(t+∆t). Let
us note here, that the above manipulations, eliminated 3rd order temporal derivative terms and the
method has thus accuracy of the order of ∆t4 ....u (t).

The above procedure is called the linear acceleration method, since the 3rd temporal derivative of
u is eliminated. If the rate of change of the acceleration within a time step is indeed constant, then
the approximation of truncating 4th and higher order terms from the Taylor series expansions does not
affect the accuracy of the solution.

According to the Newmark method [18], the displacements and the velocities within the current
time step are computed by integrating the corresponding expression for the acceleration, assuming its
linear variation within the time step. After this integration, the finite difference expressions of the
Newmark scheme for the displacement and the velocity are the following:

u(t+∆t)≈u(t)+∆tu̇(t)+∆t2
[(

1
2
−β

)
ü(t)+βü(t+∆t)

]
(2.30)

and

u̇(t+∆t)≈ u̇(t)+∆t[(1−γ)ü(t)+γü(t+∆t)] (2.31)

where β and γ, 3 are parameters that are determined based on the desired accuracy and stability of the
numerical integration.

The most commonly known cases of the Newmark scheme are the linear acceleration method and
the constant - average accelerationmethod. First, Newmark proposed, as an unconditionally stable and
implicit method, the average acceleration method, which results from setting the parameters γ = 1/2
and β= 1/4 in Eq. (2.30) and Eq. (2.31). The linear acceleration method is acquired by setting γ= 1/2
and β = 1/6, whereas choosing γ = 1/2 and β = 0 reduces the Nemwark scheme to the well known
Central Difference Method (CDM).

For the linear dynamic analysis case, if 2β≥ γ≥ 1/2, then the Newmark method is unconditionally
stable, i.e. regardless of the time step ∆t. Also, the method is conditionally stables for values of
γ< 1/2. For γ= 1/2 themethod is at least 2nd order accurate 4 . Figures 2.2a and 2.2b depict graphically
the constant and linear acceleration approximations respectively. The acceleration within a time step,
ü(τ), is integrated twice with respect to τ to compute the velocity and displacement.

Substituting Eq. (2.30) and 2.31 in Eq. (2.21) (when expressed for time instant t+∆t) and per-
forming some algebra, yields the following:

k̂u(t+∆t)= p̂(t+∆t) (2.32)

3In the literature, many authors, instead of β and γ [3], make use of the letters α(=β) and δ(= γ) [2]
4We note, for the approximation usol of the exact solution u, that it is ν-order accurate, if the error E := |u−usol| is

proportionate to ∆tν of the numerical procedure, i.e.: E := |u−usol| ≤ C(∆t)ν, where C: a constant dependent on ∆t.
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Figure 2.2: Acceleration variation for the Newmark method

with

k̂=
[

1
β∆t2 + γ

β∆t
C+K

]
(2.33)

and

p̂(t+∆t)= fext(t+∆t)+[
1

β∆t2 M+ γ

β∆t
C

]
u(t)+[

1
β∆t

M+ γ−β

β
C

]
u̇(t)+[

1−2β
2β

M+ γ−2β
2β

C
]

ü(t)

(2.34)

Eq. (2.32) is solved in each time increment, given the system parameters M, K, C, the algorithmic
parameters β, γ and the current state of the system at time t described by u(t), u̇(t), ü(t).

Thus, having computed the displacement at time t+∆t:

u(t+∆t)= p̂(t+∆t)/k̂ (2.35)

all that remains is to determine the velocity and acceleration. First, Eq. (2.30) is solved for ü(t+∆t)
and from the acquired relation, u̇(t+∆t) is expressed, through Eq. (2.31), in terms5 of u(t+∆t).

Though this procedure, the equation of motion is solved incrementally for the entire duration of
the problem. Next, a pseudo-algorithm for the Newmark scheme is provided (Algorithm 1). The
integration constants in line 3 of Algorithm 1 are computed as:

c0 = 1
β∆t2 c1 = γ

β∆t c2 = 1
β∆t

c3 = 1
2β −1 c4 = γ

β
−1 c5 = ∆t

2

(
γ

β
−2

)
c6 =∆t(1−γ) c7 = γ∆t

(2.36)

5For the analytical expressions, see algorithm 1.



14

and the effective force vector, in line 6 of Algorithm 1, as:

f̂(t+∆t)= f(t+∆t)+M[c0u(t)+ c2u̇(t)+ c3ü(t)]+C[c1u(t)+ c4u̇(t)+ c5ü(t)] (2.37)

Algorithm 1 Newmark Integration Scheme
INPUT: K,M,C,f
OUTPUT: u j, u̇ j, ü j, for j = 1 : nt

1: initial conditions: u(0), u̇(0), ü(0)
2: select: ∆t,β,γ such that: γ≥ 0.5β≥ 0.25(0.5+γ)2

3: compute: integration constants ← c1, c2, c3, c4, c5, c6
4: compute: effective stiffness ← K̂=K+ c0M+ c1C
5: for j = 0 : nt −1 do ▷ ( j+1≡ t+∆t)
6: compute: effective force vector ← f̂(t+∆t)
7: solve: K̂u(t+∆t)= f̂(t+∆t)
8: compute: velocities at t+∆t ← u̇(t+∆t)= u̇(t)+ c6ü(t)+ c7ü(t+∆t)
9: compute: accelerations at t+∆t ← ü(t+∆t)= c0[u(t+∆t)−u(t)]− c2u̇(t)− c3ü(t)
10: end for



Chapter 3

PROPER GENERALIZED
DECOMPOSITION (PGD)

3.1 PGD Principles

3.1.1 Separated Representations
The Proper Generalized Decomposition (PGD) is constructed upon a very old idea, i.e. the method
of separation of variables or Fourier method for partial differential equations. The novelty lies in the
ability of the PGD to construct sums of separated functions a priori, i.e. without any prior knowledge
on the solution nor the need for costly computer simulations or snapshots. Hence, it can be viewed as
an a priori approach to reduced-order modelling.

To begin with, consider a (computational) problem defined in a D-dimensional space for the un-
known field u(x1, . . . , xD). Coordinates xi may denote any physical coordinate (space, time, etc.) but
also any problem parameters such as material parameters or boundary conditions. The key idea of the
PGD, is that the solution for (x1, . . . , xD) ∈Ω1 ×·· ·×ΩD is sought in the form of:

u(x1, . . . , xD)=
∞∑

i=1
F1

i (x1) . . .FD
i (xD) (3.1)

The PGD yields an approximate solution u(N) in separated form

u(N)(x1, . . . , xD)=
N∑

i=1
F1

i (x1) . . .FD
i (xD) (3.2)

where both the number of summands (from now on called enrichments) N and functions F j
i (x j) are

unknown a priori. Eq. (3.2) is called a separated representation (also known as finite sum decompo-
sition) of the solution u. The separated representation resembles the classical separation of variables
used for solving Partial Differential Equations (PDEs) analytically (only in the limited cases when
this is at all possible). Furthermore, Eq. (3.2) is stated without loss of generality, in the sense that any
polynomial can be expressed in that form. It is worth noting here, that, in general, the nonlinear nature
of the representation Eq. (3.2) constitutes a computational burden.

To demonstrate the gain from using separated representations, we consider a 2D example, show-
cased in [6]. Assume that the sought solution of a 2D problem is given by u(x, y)= xn ym. Attempting
to approximate the solution using standard Lagrange polynomial approximation, one must consider
all monomials up to degree n+m.

15
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u(n+m)(x, y)=
n+m∑
i=1

i∑
j=1

αi− j, jxi− j y j (3.3)

Thus, an accurate approximation using Lagrange polynomials involves the calculation of (n+m)(n+m+1)
2

weight terms αi− j, j. Nevertheless, inspecting the solution, one can easily conclude that only one non-
zero coefficient is to be obtained, i.e. an,m = 1.

On the contrary, the separated representation

u(N)(x, y)=
N∑

i=1
Fx

i (x)F y
i (y) (3.4)

would capture the solution with only one term, i.e. N = 1, Fx
1 (x)= xn, F y

2 (y)= ym.

3.1.2 Successive Enrichment Procedure
From the aforementioned, one can conclude that the PGD approximation Eq. (3.2) is a sum of N
functional products (enrichments), each involving D different functions F j

i (x j). This approximation is
constructed by successive enrichment, computing each functional product sequentially. At a particular
enrichment step n+1, with all previous functions F j

i≤n(x j) as given, one must compute the current
new product of the D unknown functions F j

n+1(x j). Hence, a 1D problem can be defined in Ω j for
each one of the D functions F j

n+1(x j).
In practice, this is achieved by invoking the weak form of the problem under consideration. In a

general computational manner, to determine these functions F j
n+1(x j), a discrete nonlinear algebraic

system of equations is to be solved. This nonlinearity arises regardless of the character of the initial
problem and stems from the fact that we seek one or more products of functions. This implies that
iterations are needed within each enrichment step.

To cope with this, very simple techniques have demonstrated to provide very good results both in
terms of accuracy and convergence. Throughout the PGD literature [22], greedy algorithms have been
employed, allowing the computation of one finite sum at a time, and within each greedy algorithm
step, naive linearization strategies (e.g. fixed point iterations) are applied. Throughout this work a
Fixed Point Algorithm is employed, that will be briefly presented in Section 3.3.

Within a Finite Element setting the computational domain is descretized using a mesh over each
coordinate spaceΩ j. Using conventional mesh based methods, the unknowns (degrees of freedom) to
be determined are in general∝ MD , where M is the number of nodes used to discretize each coordinate
space. But employing the PGD approach, the number of unknowns is N ×M×D (see Fig.1.2).

3.1.3 From POD to PGD-Based Model Order Reduction
Model Order Reduction (MOR) methods have found vast applications in engineering problems, espe-
cially for solving transient dynamic models in spatial domains that involve a large number of degrees
of freedom and very fine temporal discretization.

Assume the response of a transient model u(x, t) defined in space (x ∈ Ω) and time (t ∈ (0,T]).
Using standard mesh based techniques, the discrete solution is calculated at M nodal points and nt
time instants, provided that nt is large enough to satisfy convergence and stability criteria.

Within a finite element setting, acquiring the solution requires in general the solution of a linear
system of dimension nDOF = f (M), at each time instant, where nDOF is the number of degrees of
freedom. It is thus evident that the computational complexity of the solution procedure scales with
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M · nt. Many computational bottlenecks, such as domain complexity or/and convergence and sta-
bility constraints can require extremely fine spatial and temporal discretization respectively. This in
turn, scales the computational complexity and renders the solution unaffordable or even unattainable.
Hence, Model Order Reduction techniques constitute an attractive tool to surpass such computational
barriers.

3.1.3.1 Relevant Information from Solution Data

The Proper Orthogonal Decomposition (POD) is an established MOR technique that allows circum-
venting the above mentioned difficulties when the problem solution lives in a subspace of dimension
smaller than that of the original discrete problem.

Assuming that the solution u(x, t) is known at the nodal points of the spatial mesh for nt time
instants, one can define a snapshot matrix as:

Q=


u(1)

1 u(2)
1 . . . u(nt)

1
u(1)

2 u(2)
2 . . . u(nt)

2... ... . . . ...
u(1)

nDOF u(2)
nDOF . . . u(nt)

nDOF

 (3.5)

where each column represents a solution vector at a particular time instant. Next, what is known as
the snapshot two-point correlation matrix can be defined as:

C=QQT (3.6)

which is symmetric and positive definite.
The main objective of the POD method is to obtain the most characteristic structure ϕ(x) among

the solution vectors u(x, t j), ∀ j ∈ [1,nt]. To this end, the following scalar quantity is to be maximized:

κ=
∑nt

j=1

[∑nDOF
i=1 ϕiui, j

]2∑nDOF
i=1 (ϕi)2

(3.7)

where ϕi is the i− component of vector ϕ and ui, j is the i− component of the solution vector at time
instant j.

The above maximization (Eq. (3.7)), mathematically amounts to, either solving the following
eigenvalue problem for the correlation matrix:

Cϕ=λϕ (3.8)

or performing a Singular Value Decomposition (SVD)1 directly on the snapshot matrix Q 2.

Q=UΣVT (3.9)

The Reduced Order Model (ROM) is then constructed by defining a reduced basis that is spanned
by a selected small number, nr , of eigenvectors (Eq. (3.8)) (or left singular vectors (Eq. (3.9))). The

1The SVD of a matrix yields matrices U and V whose columns contain the left and right singular vectors and a sparse
matrix Σ whose main diagonal contains the singular values.

2The singular values svi of matrix Q are equal to the eigenvalues λi of matrix QQT
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dimension nr of the subspace is chosen such that most of the solution relevant information is retained.
Various criteria exist for this choice, such as the selection of the nr eigenvectors ϕ(i) associated with
the eigenvalues that belong in an interval [max(αi)/Z,max(αi)), where Z is a large enough number
(e.g. 108), or choosing as many first left singular vectors as are the singular values whose normalized
sum is greater than 99% (∑nr

i=1
svi

max(svi)
≥ 99%).

Thus, a matrix that maps the original solution to the computed subspace is defined as:

Φ= (
ϕ(1) ϕ(2) . . . ϕ(nr) )

(3.10)

For many applications nr has been found much lower than the initial dimension of the problem.
Within an explicit incremental (time-stepping) scheme, given the solution u( j) at time t j, the so-

lution at the next time instant is acquired by solving a linear algebraic system in the form of:

G( j)u( j+1) =H( j) (3.11)

Approximating solution u( j+1) in the subspace spanned by the basis Φ

u( j+1) ≈Φq( j+1) (3.12)

the reduced order model equation is obtained as:

G( j)Φq( j+1) =H( j)

ΦTG( j)Φq( j+1) =ΦTH( j) (3.13)

Thus, the subspace solution vector is acquired by solving an algebraic system of size nr instead of
nDOF . This is generally preferred, especially when nr ¿ nDOF , which is the case for numerous
applications.

An important dispute rises, regarding the point of the entire procedure presented above. This is
none other than the fact that the ROM is built a posteriori using already computed solutions of the
evolution field. Two beneficial approaches are mainly considered to answer this. The first consists of
solving the Full Order Model over a short time interval (snapshot window) allowing for the extraction
of the characteristic structure of the solution field that defines the ROM. The latter is then solved over
larger time intervals, leading to computing time savings. The other approach consists of solving the
original model over the entire time interval and then employing the corresponding ROM to efficiently
solve similar problems (in terms of slight variations in material parameters or boundary conditions).

3.1.3.2 Motivation for an A Priori Space-Time Separated Representation

The previous section clearly illustrates the value of MOR. However, the ideal scenario would be to be
able to build a reduced order basis a priori, without the reliance on the precomputed solution of the
initial model. The accuracy of the ROM solution could then be assessed and, if deemed necessary, the
reduced basis would be enriched to improve accuracy [22]. The Proper Generalized Decomposition,
as also previously mentioned, efficiently pairs with this scenario.

The above POD procedure yields one more interesting remark, that being the fact that an accurate
solution approximation can often be written as a separated representation involving a few number of
terms. Especially when the solution field evolution is smooth, the ordered eigenvalues (or singular
values) display a rapid decay. Hence, the evolution of the field can be approximated by a low number,
nr, of modes since most of the system energy is preserved with them. Consequently, the space-time
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dependent solution can be approximated by sum of a small number of functional products, with one
function depending on the space coordinates and the other one on time.

u(x, t)=
nr∑
i=1

u(i)
s (x)u(i)

t (t) (3.14)

where us(x) denote the spatial modes and ut(t) the temporal modes. As mentioned in Section 3.1.1,
separated representations like Eq. (3.14) are at the core of the PGD.

3.2 Separating Physical Space and Time

3.2.1 Continuous Space-Time Decomposition
For the sake of intuitiveness, attention is given to Fig.3.1, which showcases the continuous (Fig.3.1a)
space-time response surface for the transverse displacement Uz(x, t) of a plane cantilever subjected
to a sinusoidal excitation at its free end, as well as its descretized representation Uz(xi, t j) (Fig.3.1b).
The goal is to determine this space-time response surface employing a strategy that does not proceed

� �

Ω

� �� � �

�� �

�	 �

�
�

�

(a) Continuous representation

� �� �� ��

�� ��

�� ��

�� ��

	 ��

�
�

�

Ω

(b) Discrete representation

Figure 3.1: Illustration of a plane cantilever beam in the space-time framework: Ω× (0,T]

in a step-by-step manner but rather determines the evolution at once.
Starting from the continuous system description, we aim to express the space-time counterparts of

all the response quantities and operators of the system. Using Eq. (3.1) and Eq. (A.2), we can express
the response surface as:

U(x, t)=
∞∑

enr=1
[us(x)⊗ut(t)](enr) (3.15)

where us is a spatial vector function, ut a temporal scalar function and "⊗ " represents the tensor
product of functionals.

From Eq. (3.15), the expressions for the velocity and acceleration field become:

U̇(x, t)=
∞∑

enr=1
[us(x)⊗ u̇t(t)](enr) (3.16)
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Ü(x, t)=
∞∑

enr=1
[us(x)⊗ üt(t)](enr) (3.17)

Equivalently to the response parameter fields, a space-time decomposition for the excitation vector
field can also be defined:

F(x, t)=
∞∑

enr=1
[fs(x)⊗ f t(t)](enr) (3.18)

The system stiffness represents a functional linear operator, mapping the space of displacements
onto the space of force fields. Considering a purely static problem, it provides the resulting force at a
position x1 from a displacement imposed at a position x2. It may be viewed as the Green’s function
(or kernel) (x,x′, t) 7→ K(x,x′, t) of a functional operator u 7→ f , such that:

f (x1, t)=
∫
Ω

K(x1,x2, t)u(x2, t) (3.19)

Therefore, in the space-time framework, the stiffness operator can be viewed as a rank three tensor
that is decomposed into space and time components as follows:

K(x1,x2, t)=
∞∑

enr=1
[Ks(x1,x2)⊗kt(t)](enr) (3.20)

Space-time decompositions for the mass and damping operators are expressed equivalently to the
stiffness.

3.2.2 Discrete Space-Time Decomposition
In its discrete representation, the space-time response solution is sought on a structured mesh with ns
degrees of freedom and nt time instants. It is represented by a ns ×nt matrix U:

U= [
u1, . . . ,unt

] ∈Rns×nt (3.21)

The discrete counterparts of the spatial and temporal functions are represented by the column vectors:

us ∈Rns ,ut ∈Rnt (3.22)

Thus, using the PGD approximation (Eq. (3.2)), Eq. (3.15) in its discrete form is written as the sum-
mation of N tensor (or dyadic) products:

U(N) =
N∑

enr=1
u(enr)

s ⊗u(enr)
t (3.23)

where the discrete counterpart of the tensor product in each summand is the tensor product of vectors
or dyadic product (see Eq. (A.9)). The number of summands, N, required for an exact representation
of U by the sum of dyadic vector products can be upper-bounded by the number of spatial degrees of
freedom times the number of time steps, i.e. E ≤ ns×nt. It is the ultimate goal of the PGD to yield an
approximation of the space-time displacement matrix, while preserving the required level of accuracy.
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Equivalently to Eq. (3.16) and 3.17, the approximations for the discrete representations of the
velocity and acceleration response fields are written as:

U̇(N) =
N∑

enr=1
u(enr)

s ⊗ u̇(enr)
t (3.24)

Ü(N) =
N∑

enr=1
u(enr)

s ⊗ ü(enr)
t (3.25)

As discussed in 3.2.1, the stiffness operator in the space-time framework is viewed as a rank three
tensor3, that depends on two spatial variables and one temporal variable. The discrete counterparts of
functions Ks(x,x′) and kt(t) are:

Ks ∈Rns×ns ,kt ∈Rnt (3.26)

and the discrete representation of their tensor product is defined as:

Ks ⊗kt ∈Rns×ns×nt (3.27)

The space-time stiffness is therefore given by

K=
N∑

enr=1
K(enr)

s ⊗k(enr)
t (3.28)

In the same manner, the space-time mass and space-time Rayleigh damping are defined respectively
as:

M=
N∑

enr=1
M(enr)

s ⊗m(enr)
t (3.29)

C=
N∑

enr=1
C(enr)

s ⊗c(enr)
t (3.30)

Regarding linear elastodynamics, stiffness, mass and consequently damping operators are time
invariant. Therefore, the 3rd order tensors are computed by only one dyadic product summand.

K=Ks ⊗kt (3.31)

M=Ms ⊗mt (3.32)

C=Cs ⊗ct (3.33)

3The underline convention used for the tensors is omitted for all tensors of rank 2 and below.
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For this special case, the temporal functions of the system operators are reduced to a constant vector
and thus the spatial functions are equal to the well known stiffness, mass and damping matrices:

kt =mt = ct = ones(nt,1) (3.34)

Ks ≡K, Ms ≡M, Cs ≡C (3.35)

where ones(nt,1) denotes a column vector in Rnt , whose components are all equal to one.
Finally, the equation of motion Eq. (2.19) can be written for the solution approximation, under the

space-time formalism, as:

(Ms ⊗mt)

(
N∑

enr=1
u(enr)

s ⊗ ü(enr)
t

)
+

(Cs ⊗ct)

(
N∑

enr=1
u(enr)

s ⊗ u̇(enr)
t

)
+

(Ks ⊗kt)

(
N∑

enr=1
u(enr)

s ⊗u(enr)
t

)
=Fext

(3.36)

where Fext = [fext,1...fext,nt]. Since mass, damping and stiffness terms are time invariant, they can be
moved inside the respective sums. Then, employing property Eq. (A.10) leads to:

N∑
enr=1

(
Msu(enr)

s

)
⊗

(
mt ◦ ü(enr)

t

)
+

N∑
enr=1

(
Csu(enr)

s

)
⊗

(
ct ◦ u̇(enr)

t

)
+

N∑
enr=1

(
Ksu(enr)

s

)
⊗

(
kt ◦u(enr)

t

)
=Fext

(3.37)

Taking into account Eq. (3.34), we get:

mt ◦ üt = üt

ct ◦ u̇t = u̇t

kt ◦ut =ut

(3.38)

and thus, Eq. (3.37) is reduced into a simplified version that contains only rank 2 tensors:

MsÜ(N) +CsU̇(N) +KsU(N) =Fext (3.39)

In the next section, the □s subscript can be omitted by employing Eq. (3.35) and the □(N) superscript
is omitted for simplicity.
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3.3 Space-Time Newmark - Non Incremental Solution Approach
In this section, the Newmark scheme will be cast into the space-time framework via a tensorial for-
mulation, first introduced (in a general manner) in [19] and lately implemented in [21]. Starting from
the discretized equation of motion, the residual force vector4, corresponding to a particular time step
j, is defined as:

r(u j+1)=Mü j+1 +Cu̇ j+1 +Ku j+1 − fext, j+1 (3.40)

where j = 0, ...,nt −1 is the current time step.
Since we are dealing with linear analyses, the system matrices are constant and independent of the

configuration of the structure. We can thus express a matrix column-wise composed of the residual
vectors at all time steps as:

R=MÜ+CU̇+KU−Fext (3.41)

Next, the Newmark scheme will be applied, enabling us to express the space-time velocity, U̇, and
acceleration, Ü, matrices as functions of the displacements U and the initial conditions, u0, u̇0. First,
for the sake of simplicity, we change the time step notation: u(t+∆t) ≡ u j+1, and so the Newmark
equations Eq. (2.31) and Eq. (2.30) are rearranged as:

(u̇ j+1 − u̇ j)+
(−γ∆tü j+1 + (γ−1)∆tü j

)= 0 (3.42)

(u j+1 −u j)+ (−∆tu̇ j)+
(
−β∆t2ü j+1 +

(
β− 1

2

)
∆t2ü j

)
= 0 (3.43)

In order to formulate the space-time Newmark scheme, the following linear combination of all couples
of successive displacement vectors:

∆u j+1(c1, c2)= c1u j+1 + c2u j (3.44)

with j = 0, ...,nt −1, must be expressed in matrix form as:

∆U(c1, c2)= [
∆u1(c1, c2) · · ·∆unt(c1, c2)

]=UAT(c1, c2)+u0α
T(c2) (3.45)

where the coefficients c1, c2 ∈R depend on the Newmark constants and the time step. The auxiliary
coefficient matrices are defined as:

A(c1, c2)=



c1 0 0 0 . . . 0
c2 c1 0 0 . . . 0
0 c2 c1 0 . . . 0
... . . . . . . ...
0 . . . 0 c2 c1 0
0 . . . 0 0 c2 c1


∈Rnt×nt (3.46)

4Since the exact solution is approximated, a residual internal force naturally appears.
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α(c2)=



c2
0
0
...
0
0


∈Rnt (3.47)

Space-time equivalents for Eq. (3.42), Eq. (3.43) are also expressed by employing Eq. (3.45):

∆U̇(1,−1)+∆Ü(−γ∆t, (γ−1)∆t)= 0 (3.48)

∆U(1,−1)+∆U̇(0,−∆t)+∆Ü
(−β∆t2, (β−0.5)∆t2)= 0 (3.49)

With the aid of Eq. (3.46) and Eq. (3.47), we define some specific auxiliary ”Alpha” matrices and
vectors as:

A1 =A(1,−1) α1 =α(−1)
A2 =A(0,−∆t) α2 =α(−∆t)

A3 =A
(−β∆t2, (β−0.5)∆t2) α3 =α

(
(β−0.5)∆t2)

A4 =A(−γ∆t, (γ−1)∆t) α4 =α((γ−1)∆t)

(3.50)

Hence, Eq. (3.48) and Eq. (3.49) take the final form:

U̇AT
1 + u̇0α

T
1 + ÜAT

4 + ü0α
T
4 = 0 (3.51)

UAT
1 +u0α

T
1 + U̇AT

2 + u̇0α
T
2 + ÜAT

3 + ü0α
T
3 = 0 (3.52)

where the initial acceleration is computed from:

Mü0 = fext,0 −Cu̇0 −Ku0 (3.53)

Inserting Eq. (3.51) and Eq. (3.52) in Eq. (3.40) for the residual matrix and performing some
grouping operations, leads to a set of algebraic equations that only depend on the displacements U:

R(U)=MUY−CUW+KU−L= 0 (3.54)

In the above equations, matrices Y,W,L are defined as:

Y=AT
1 D−1H, W=AT

1 D−1 (3.55)
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L=Fext +M
[
−u0α

T
1 + u̇0

(
αT

1

(
AT

4

)−1
AT

3 −αT
2

)
+ ü0

(
αT

4

(
AT

4

)−1
AT

3 −αT
3

)]
D−1H

+M
[
u̇0α

T
1

(
AT

4

)−1 + ü0α
T
4

(
AT

4

)−1
]

−C
[
−u0α

T
1 + u̇0

(
αT

1

(
AT

4

)−1
AT

3 −αT
2

)
+ ü0

(
αT

4

(
AT

4

)−1
AT

3 −αT
3

)]
D−1 (3.56)

where:

D=AT
2 −AT

1
(
AT

4
)−1 AT

3 , H=AT
1

(
AT

4
)−1 (3.57)

In the PGD framework (Sec.3.1.2), the space-time response solution at the mth enrichment, U(m)

is divided into the already evaluated m−1 known enrichments and the current mth summand to be
calculated:

U(m) =
m−1∑

enr=1
u(enr)

s ⊗u(enr)
t +u(m)

s ⊗u(m)
t =U(m−1) +u(m)

s ⊗u(m)
t (3.58)

Substituting Eq. (3.58) into the space-time equation of motion Eq. (3.54) yields:

M
[
U(m−1) +u(m)

s ⊗u(m)
t

]
Y−C

[
U(m−1) +u(m)

s ⊗u(m)
t

]
W+K

[
U(m−1) +u(m)

s ⊗u(m)
t

]
−L= 0 (3.59)

The above equation Eq. (3.59) has two unknowns, the spatial enrichment vector um
s and the temporal

enrichment vector um
t .

For the presented formulation, the Fixed-Point Algorithm with Picard iterations [24] is used to
compute each spatial and temporal enrichment. The solution procedure has an inherent recursive
nature, so in reality, iterations are performed until convergence is achieved and a new set of spatial
and temporal modes is acquired. In Fig. 3.2 a 1D illustration of the fixed-point algorithm to compute
a coupled pair of unknown functions is given.

Within the fixed-point algorithm solution procedure, at a particular iteration k, multiplying the
left hand side of Eq. (3.59), which would be R

(
U(m−1) + ku(m)

s ⊗ k−1u(m)
t

)
, by

(
k−1u(m)

t

)
leads to a

projection into space, which produces the Space Problem, whereas multiplying Eq. (3.59) by
(

ku(m)
s

)
leads to a projection into time, which produces the Time Problem.

The solution of the Space Problem (line 7 of Algorithm 2), is computed by solving the following
linear system:

Es

(
ku(m)

s

)
=bs (3.60)

with the corresponding coefficient matrix and right hand side written as:

Es =
((

k−1u(m)
t

)T
Y

(
k−1u(m)

t

))
M

−
((

k−1u(m)
t

)T
W

(
k−1u(m)

t

))
C

+
((

k−1u(m)
t

)T (
k−1u(m)

t

))
K

(3.61)
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Figure 3.2: 1D illustration of the fixed-point algorithm

bs =
(
L−MU(m−1)Y+CU(m−1)W−KU(m−1)

)(
k−1u(m)

t

)
(3.62)

In a similar manner, the solution of the Time Problem (line 8 of Algorithm 2), is computed by
solving the following linear system:

Et

(
ku(m)

t

)
=bt (3.63)

with the corresponding coefficient matrix and right hand side written as:

Et =
((

ku(m)
s

)T
M

(
ku(m)

s

))
YT

−
((

ku(m)
s

)T
C

(
ku(m)

s

))
WT

+
((

ku(m)
s

)T
K

(
ku(m)

s

))
It

(3.64)

bt =
(
L−MU(m−1)Y+CU(m−1)W−KU(m−1)

)(
ku(m)

s

)
(3.65)

where It ∈Rnt×nt is the temporal identity matrix.
Next, a pseudo-algorithm for the Newmark-PGD non-incremental solution procedure is provided

(Algorithm 2).



27

Algorithm 2 PGD Solution Scheme
INPUT: K,M,C,f
OUTPUT: U
1: select: solver parameters ← mmax, kmax, ϵ f p, ϵenr
2: select: initialization case ▷ Different cases investigated in Sec.4.2
3: initialize: space and time modes ← U(0) =u(0)

s ⊗u(0)
t

4: for m = 1 : mmax do ▷ ENTER enrichment loop
5: initialize: 0u(m)

s ← ku(m−1)
s , 0u(m)

t ← ku(m−1)
t

6: for k = 1 : kmax do ▷ ENTER fixed point loop
7: ku(m)

s ← solve: Eq. (3.60)
8: ku(m)

t ← solve: Eq. (3.63)
9: if ‖kU(m) − k−1U(m)‖2 < ϵ f p then ▷ Check f.p. convergence
10: u(m)

s := ku(m)
s

11: u(m)
t := ku(m)

t
12: break;
13: end if
14: end for ▷ EXIT fixed point loop
15: if ‖R(U(m))‖2 < ϵenr then ▷ Check enrichment convergence
16: break;
17: end if
18: end for ▷ EXIT enrichment loop
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Chapter 4

NUMERICAL SIMULATIONS

In this chapter, several numerical benchmarks are presented to validate the performance of the space-
time PGD framework, in terms of robustness, accuracy and efficiency, but also to point out the limits
of the presented methodology.

4.1 Single-Degree-of-Freedom System

As a first example, the response of a single-degree-of-freedom (SDOF) system is analyzed, consid-
ering three different excitation scenarios. First a harmonically excited system (Case 1) and then a
system subjected to an impulsive load (Case 2). All results are compared with the solution acquired
via the conventional Newmark method and, for the special cases where it exists, with an analytical
solution.

4.1.1 Harmonic Excitation

First, a harmonically excited SDOF oscillator is examined. The model and excitation properties are
presented in Fig. 4.1.

� �

�

� �

� �

�

Model Proper�es Excita�on Proper�es

� ] � 0 0

� 4 2 kN
m � 0 = 0

= 1 sec , 	
= 1 rad 0 = 10 kN
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= , ( = �	
 � = 0sin(	 �

Figure 4.1: SDOF Case 1: Model

For this case of a damped SDOF system with ”at rest” initial conditions, there exists an analytical
expression for the total solution which is given by:

29
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u(t)= eξωn t [A cos(ωD t)+Bsin(ωD t)]︸ ︷︷ ︸
utransient

+[
C cos(ωpt)+D sin(ωpt)

]︸ ︷︷ ︸
usteady state

(4.1)

where:

ωD =ωn

√
1−ξ2

C = p0

k
1− (ωp/ωn)2

[1− (ωp/ωn)2]2 + [2ξ(ωp/ωn)]2

D = p0

k
−2ξ(ωp/ωn)

[1− (ωp/ωn)2]2 + [2ξ(ωp/ωn)]2

A =−D

B = Aξ−C(ωp/ωn)√
1−ξ2

(4.2)

Consequently the analytical expressions for the velocity and acceleration are acquired with differen-
tiation with respect to time as:

u̇(t)= ξωnutransient+ωD [−A sin(ωD t)+Bcos(ωD t)] eξωn t︸ ︷︷ ︸
u̇transient

+ωp
[−C sin(ωpt)+D cos(ωpt)

]︸ ︷︷ ︸
u̇steady state

(4.3)

and

ü(t)= ütransient+ üsteady state (4.4)

where

ütransient = ξωnu̇transient

+ξωnωD [−A sin(ωD t)+Bcos(ωD t)] eξωn t

+ω2
D [−A cos(ωD t)−Bsin(ωD t)] eξωn t

(4.5)

üsteady state =ω2
p
[−C cos(ωpt)−D sin(ωpt)

]
(4.6)

Fig. 4.2 depicts the comparison of the computed numerical response via the Newmark method and the
PGD versus the analytical solution. As expected, only one enrichment with two fixed point iterations
is enough to compute the response of the SDOF system with sufficient accuracy. The L2−norms of
the displacement, velocity and acceleration errors, between the Newmark and the PGD solution, are
respectively: 8.75e−09, 5.42e−08, 1.74e−06.
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Figure 4.2: SDOF Case 1: Response
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4.1.2 Impulsive Excitation
In this subsection, the SDOF model, depicted in Fig. 4.3 is analyzed.

Model Proper es Excita on Proper es

� 1 [t] 0 0

4 2 kN
m

0 0

1 sec , ��= 1 rad/sec
��=�

	 = m ,

1 = �

= 	 = 	 sin �� , 
1

	 = , (
1,

�

	( )

�(�)

�


1

Figure 4.3: SDOF Case 2: Model

For this case of an undamped SDOF system, subjected to an impulsive load (e.g. blast load), the
analytical solution for the displacement assumes the following form:

u(t)=


utransient︷ ︸︸ ︷

u0 cos(ωnt)+
(

u̇0

ωn
− p0

k
ρ

1−ρ2

)
sin(ωnt)+

usteady state︷ ︸︸ ︷
p0

k
1

1−ρ2 sin(ωpt) , 0≤ t ≤ τ1

u(τ1)cos(ωnt)+ u̇(τ1)
ωn

sin(ωnt) , τ1 ≤ t

(4.7)

where ρ =ωp/ωn
Consequently, the velocity and acceleration are respectively:

u̇(t)=


u̇transient︷ ︸︸ ︷

ωn

(
−u0 sin(ωnt)+

(
u̇0

ωn
− p0

k
ρ

1−ρ2

)
cos(ωnt)

)
+

u̇steady state︷ ︸︸ ︷
ωp

p0

k
1

1−ρ2 cos(ωpt) , 0≤ t ≤ τ1

ωn

(
−u(τ1)sin(ωnt)+ u̇(τ1)

ωn
cos(ωnt)

)
, τ1 ≤ t

(4.8)

ü(t)=


ütransient︷ ︸︸ ︷

−ω2
nutransient+

üsteady state︷ ︸︸ ︷(−ω2
pusteady state

)
, 0≤ t ≤ τ1

−ω2
n

(
u(τ1)cos(ωnt)+ u̇(τ1)

ωn
sin(ωnt)

)
, τ1 ≤ t

(4.9)

The results are shown in Fig. 4.4. Once again, only one enrichment with two Picard iterations
yields an accurate response. The L2−norms of the displacement, velocity and acceleration errors,
between the Newmark and the PGD solution, are respectively: 3.21e−08, 2.10e−07, 1.05e−05.
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Figure 4.4: SDOF Case 2: Response
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4.2 2D Frame
In this section, the three-storey single-bay 2D frame, depicted in Fig. 4.5, is analyzed. The three
excitation scenarios presented in the bottom table of Fig. 4.5 are considered. Both beams and columns
are discretized using five Euler-Bernoulli 2D beam elements. The first six eigenmodes of the structure
are shown in Fig. 4.6.
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Figure 4.5: 2D Frame: Model and excitation cases

Φ1 Φ2 Φ3

Φ4 Φ5
Φ6

Figure 4.6: 2D Frame: Eigenmodes 1−6

The first 6 corresponding eigenfrequencies are given below:
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

ω1 = 28.988
ω2 = 121.055
ω3 = 259.626
ω4 = 355.481
ω5 = 407.517
ω6 = 431.006

 (4.10)

An important aspect of the algorithmic implementation of the formulation presented in Sec.3.3 is
the initial ”guess” that is provided (line 2 of Algorithm 2). In this section, several different cases of
spatial and temporal PGD mode initialization will be tested, in order to investigate their influence on
the overall performance of the space-time framework. The only limitation for the initialization modes
is that their norms must not be zero, in order for the algorithm to begin the iterations (without any
singularities).

4.2.1 Harmonic Excitation-Resonance
First, the 2D frame of Fig. 4.5 is harmonically excited. The ground acceleration, depicted in Fig.
4.7, has a frequency equal to the first eigenfrequency of the structure. The time step is chosen equal
to: dt = 0.01 [sec]. As expected, the response of the structure will be resonant. For the mass matrix,
the consistent mass approach is adopted and for the Rayleigh damping matrix of the structure, the
damping ratios for the first two eigenmodes are chosen equal to 5%. For the result comparison, the
horizontal displacement of the top left node is selected as a reference degree of freedom (see Fig. 4.5).
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Figure 4.7: 2D Frame - Resonance: Ground acceleration

4.2.1.1 Case 1: Arbitrary-1 Spatial and Temporal Initialization

For this excitation, three scenarios for the spatial and temporal initializations will be considered. The
first combination, termed Arbitrary-1, is an arbitrary initialization for both the spatial and the temporal
modes. Arbitrary-1 initializations are considered as vectors with zero entries, apart from the first one
which is taken equal to 10−c, where c = 10.

Thus, for this particular model with 128 unconstrained degrees of freedom and the time domain
discretized into 500 time steps, the initial spatial and temporal are given as:
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u(0)
s = zeros(128,1), and u(0)

s (1)= 10−10

u(0)
t = zeros(500,1), and u(0)

t (1)= 10−10 (4.11)

where zeros(nL,nC) denotes the MATLAB command for an array with nL lines, nC columns and
all entries equal to zero.

Fig. 4.9 depicts the response obtained from the conventional incremental Newmarkmethod and the
approximate solution of the PGDwith two enrichments. Also, for the sake of comparison, the solution
obtained from a reduced basis approximation of the system, constructed using as many eigenvectors
as enrichments performed, as basis vectors, is also depicted. It is evident that the first enrichment
of the PGD does not yield any response, but the second enrichment shows very good accuracy. The
only noticeable deviation of the PGD from the Newmark reference solution appears in the transient
response part of the acceleration, which is also the case for the reduced modal basis approximation.
As showcased in Fig. 4.9c, one more enrichment corrects this small error.

The convergence of the space-time residual, in terms ofmatrix norm, against the increasing number
of enrichments is shown with the red line in Fig. 4.8. The blue line of Fig. 4.8. depicts the ratio of the
time required for the PGD solution, over the time required for the incremental Newmark approach.
An acceptable level accuracy is obtained by only two enrichments, accompanied by a speed-up of
2.0208 in terms of analysis runtime.

Table 4.1: 2D Frame Resonance-Case 1: Runtime Speed-up

Number of enrichments tPGD
tNewmark

Speed-up
1 0.1911 5.2316
2 0.4949 2.0208
3 0.8103 1.2341
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Figure 4.8: 2D Frame Resonance-Case 1: Convergence and relative runtimes
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4.2.1.2 Case 2: Arbitrary-2 Spatial and Temporal Initialization

Next, as a second arbitrary initialization, termed Arbitrary-2, the initial spatial and temporal modes
are chosen as vectors with all entries equal to 10−c, where c = 10 (see Eq. (4.12)).

u(0)
s = zeros(128,1)+10−10

u(0)
t = zeros(500,1)+10−10 (4.12)

Table 4.2: 2D Frame Resonance-Case 2: Runtime Speed-up

Number of enrichments tPGD
tNewmark

Speed-up
1 0.5011 1.9958
2 0.8420 1.1876
3 1.1718 0.8534

Fig. 4.12 depicts the response comparison for the incremental Newmark, the PGD, as well as
the modal analysis. Here, the first enrichment yields very good accuracy, surpassing the algorithmic
initialization barrier of the previous subsection. It also worth mentioning here, that the normalized
first spatial mode,

(
u(1)

s

|u(1)
s |2

)
, is equal to the first normalized eigenmode of the system,

(
ϕ(1)

s

|ϕ(1)
s |2

)
The convergence of the space-time residual, in terms ofmatrix norm, against the increasing number

of enrichments is shownwith the red line in Fig. 4.11. The blue line of Fig. 4.11. depicts the ratio of the
time required for the PGD solution, over the time required for the incremental Newmark approach. An
acceptable level accuracy is obtained by only one enrichment, accompanied by a speed-up of 1.9958
in terms of analysis runtime.
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Figure 4.11: 2D Frame Resonance-Case 2: Convergence and relative runtimes



40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-3

-2

-1

0

1

2

3
10-5

Newmark
PGD-1
PGD-2
Modal

(a) Displacement

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
10-3

(b) Velocity

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-4

-3

-2

-1

0

1

2

3

4

5

6
10
-3

Newmark

PGD-1

PGD-2

PGD-3

(c) Acceleration

Figure 4.12: 2D Frame Resonance-Case 2: Response
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4.2.1.3 Case 3: Static Spatial and Arbitrary-1 Temporal Initialization

Finally, the same analysis is performed, but the spatial initialization is now selected as the solution
displacement vector of the system, subjected to the static load showed in Fig. 4.14.

Figure 4.14: 2D Frame Resonance-Case 3: Reference static analysis

Convergence and runtime results are shown in Fig. 4.15 and Table 4.3. The results for two PGD
enrichments, the conventional Newmark and the modal analysis using 3 eigenmodes as a reduced
basis are shown in Fig. 4.16.

It is evident that initiliazing the spatial mode with a vector that roughly resembles the response
of the first eigenmode of the structure, accelerates the convergence of the PGD solution, compared to
Case 1, and yields accurate results with just one enrichment. The one-enrichment solution however,
still can’t accurately approximate the transient part of the acceleration response.

Table 4.3: 2D Frame Resonance-Case 3: Runtime Speed-up

Number of enrichments tPGD
tNewmark

Speed-up
1 0.4749 2.1055
2 0.8246 1.2127
3 1.1801 0.8474
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Figure 4.15: 2D Frame Resonance-Case 3: Convergence and relative runtimes
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Figure 4.16: 2D Frame Resonance-Case 3: Response



44

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-8

-6

-4

-2

0

2

4

6

8
10
-3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-1.5

-1

-0.5

0

0.5

1

1.5
10
-5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-10

-8

-6

-4

-2

0

2

4

6

8
10
-7

Figure 4.17: 2D Frame Resonance-Case 3: PGD Spatial
(

u(m)
s

|u(m)
s |2

)
and Temporal

(
u(m)

t

|u(m)
s |2

)
Modes



45

4.2.2 Impulsive Excitation
Next, the 2D frame of Fig. 4.5 is subjected to an impulsive external load, depicted in Fig. 4.18a, whose
expression is given in the second line of the bottom table of Fig. 4.5. All other system properties
remain the same. The time step is chosen equal to: dt = 5e−04 [sec]. For the result comparison, the
vertical displacement of node #42 is selected as a reference degree of freedom (see Fig. 4.5).
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Figure 4.18: 2D Frame Impulse: Excitation, Convergence and Runtimes

4.2.2.1 Case 1: Arbitrary-2 Spatial and Temporal Initialization

First, Arbitrary-2 initialization for both the spatial and the temporal modes is considered. For this
particular excitation case, the initial modes are given similarly to Eq. (4.12), except for the length of
the temporal mode, which is equal to 2000.

Response results for 2 PGD enrichments are shown in Fig. 4.20. Even though the excitation
induces rather localized response patterns, the PGD approximation is very accurate with only one
enrichment. Modal analysis results using 3 eigenvectors as a reduced basis are also included for
comparison. Contrary to the PGD, the modal decomposition cannot yield accurate results using a
small number of eigenvectors, which is expected since the external impulsive load produces higher
mode effects. For an accurate approximation, the minimum number of eigenvectors for the modal
reduced basis is found to be equal to 10. Convergence and runtime results are shown in Table 4.4 and
Fig. 4.18b. It is noted here, that in terms of runtime, the PGD does not achieve any significant gain
in this example. The PGD modes are shown in Fig. 4.19, where it is clear that the first spatial mode
represents a localized response pattern.

Table 4.4: 2D Frame Impulse-Case 1: Runtime Speed-up

Number of enrichments tPGD
tNewmark

Speed-up
1 0.9744 1.0263
2 1.4327 0.6980
3 2.0521 0.4873



46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-2.5

-2

-1.5

-1

-0.5

0

0.5
10
-3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-10

-8

-6

-4

-2

0

2

4
10
-4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

1

1.5
10
-4

Figure 4.19: 2D Frame Impulse-Case 1: PGD Spatial
(

u(m)
s

|u(m)
s |2

)
and Temporal

(
u(m)

t

|u(m)
s |2

)
Modes



47

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-12

-10

-8

-6

-4

-2

0

2
10-4

Newmark
PGD-1
PGD-2
Modal

(a) Displacement

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

(b) Velocity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-10

-8

-6

-4

-2

0

2

4

6

8

(c) Acceleration

Figure 4.20: 2D Frame Impulse-Case 1: Response
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4.2.2.2 Case 2: Static Spatial and Arbitrary-1 Temporal Initialization

In this subsection, the 3 storey frame is again excited with the impulsive load of Fig. 4.18a, but the
initial spatial mode is chosen as the solution displacement vector, acquired from the static analysis of
the structure subjected to a vertical load on the reference node #42 (see Fig. 4.21).

Figure 4.21: 2D Frame Impulse-Case 2: Reference static analysis

Same as in the previous benchmark, the PGD yields accurate results with just one enrichment.
A not particularly significant runtime speed-up is also accomplished by using one enrichment, as
showcased in Table 4.5 and Fig. 4.22. The corresponding spatial and temporal modes are shown in
Fig. 4.23, and the response comparison in Fig. 4.24.

Table 4.5: 2D Frame Impulse-Case 2: Runtime Speed-up

Number of enrichments tPGD
tNewmark

Speed-up
1 0.8950 1.1174
2 1.3716 0.7291
3 1.9690 0.5079
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Figure 4.22: 2D Frame Impulse-Case 2: Convergence and relative runtimes
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Figure 4.24: 2D Frame Impulse-Case 2: Response
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4.2.3 Transient Excitation
Finally, the 2D frame is subjected to the 1995 Kobe earthquake (Fig. 4.25). Arbitrary-2 initialization
for both the spatial and the temporal modes is chosen. The time step is chosen equal to: dt = 0.01
[sec] and the record duration is 20 [sec]. Thus, the initial mode vectors are the given by Eq. (4.12).
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Figure 4.25: 2D Frame Transient: Kobe ground acceleration [23]

For this excitation, the PGD once again yields accurate response with one enrichment (Fig. 4.28).
A speed-up is achieved by using up to 2 enrichments(Fig 4.26, Table 4.6). The corresponding spatial
modes, depicted in Fig. 4.27, resemble the low frequency eigenmodes of the structure.

Table 4.6: 2D Frame Transient: Runtime Speed-up

Number of enrichments tPGD
tNewmark

Speed-up
1 0.5449 1.8350
2 0.9272 1.0785
3 1.1465 0.8722
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Figure 4.26: 2D Frame Transient: Convergence and relative runtimes
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Figure 4.28: 2D Frame Transient: Response
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For this example, as an error metric, as well as a convergence indicator, the Frobenius norm of
the global displacement error matrix, is investigated. To that end, the algorithm is set to run for 20
enrichments. To define the global displacement error matrix (which can also be seen as the trace of
the covariance matrix of the space-time displacement matrix), we first define the two point correlation
matrix of the difference between the displacementmatrix via theNewmarkmethod and the PGD space-
time displacement matrix.

CU = (UNewmark−UPGD) (UNewmark−UPGD)T (4.13)

The temporal average of the square root of CU yields the global displacement error matrix:

ϵU = 1
nt

CU
1
2 (4.14)

Fig. 4.29 showcases the convergence behavior of the global error for two values of the fixed point
algorithm tolerance.
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Figure 4.29: Global error convergence

4.3 3D Frame
As a final benchmark, the 3D frame structure of Fig. 4.30 is analyzed, using the Kobe earthquake
excitation of Fig. 4.25.
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Figure 4.30: 3D Frame: Model

Fig. 4.31 showcases the space-time residual convergence and the response comparison for the
floor displacement along the x−axis is given in Fig. 4.32. The PGD with Arbitrary-2 initialization
again yields results with just one enrichment. The analysis is carried out using both the lumped mass
and the consistent mass approach. The relative results (between Newmark and PGD) are similar but
it is worth noting that the PGD runtime using the lumped mass approach is 51% of the PGD runtime
considering a consistent mass matrix, whereas the lumped mass Newmark solution runtime is 81% of
the consistent mass Newmark runtime. This fact states that the efficiency of the PGD can be influenced
by the ”structure” characteristics of the system matrices (e.g. sparsity, bandwidth, etc).
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Figure 4.31: 3D Frame Transient: Convergence
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Figure 4.32: 3D Frame Transient: Response



Chapter 5

CONCLUSIONS AND FUTUREWORK

5.1 Summary - Conclusions
In this thesis, a Proper Generalized Decomposition(PGD)-based space-time formulation of the New-
mark time integration scheme for linear structural dynamics is presented. The PGD approach is used
to cast the incremental solution scheme into its non-incremental space-time equivalent. The latter pro-
duces a system of two coupled space and time equations, which is solved using a greedy algorithm,
namely a fixed point algorithm with Picard iterations. The displacement field is sought in a separated
representation form, i.e. a product of spatial and temporal modes. Thus, the solution of the initial
boundary value problem in the entire space-time domain is iteratively constructed via enrichments
until convergence is achieved.

The presented formulation is demonstrated and verified via several numerical benchmarks. Dur-
ing convergence, the occurring spatial modes (spatial response patterns of the analyzed structure) and
temporal modes (time series of specific frequencies) are investigated. First, two single-degree-of-
freedom (SDOF) systems, whose analytical solution is available, are considered. The PGD solver
yields very accurate results when compared to the conventional Newmark scheme as well as the ana-
lytical solution.

As the main benchmark model, a 3-storey 2D frame structure is chosen and analyzed using dif-
ferent excitations. Harmonically exciting the structure with a ground acceleration whose frequency
matches the first eigenfrequency of the structure produces a resonant response. The PGD yields ac-
curate results with only one enrichment. In this particular case, the computed spatial PGD mode
normalized with its L2 norm is equal the structures L2 normalized first eigenmode. Frequency anal-
ysis of the corresponding first temporal PGD mode yields a dominant frequency equal to the first
eigenfrequency of the structure.

Next, an impulsive (half-sine) point load is applied. The PGD is able to capture the localized de-
formation pattern within the first enrichment. The spatial PGD modes contain both local and global
response behaviors induced by the impulse. This fact states an advantage of the PGD over the tradi-
tional approach of modal truncation, as its computed modes adapt to the structural response patterns.
Furthermore, data-driven approaches like the Proper Orthogonal Decomposition (POD) are also out-
performed, since the localized deformation patterns need to be captured in the data used to compute
the reduced order basis in order to be predicted by the reduced order model.

Finally, the structure is excited with a seismic ground acceleration. Once again, one enrichment
is enough to adequately approximate the system response. The first few spatial PGD modes reveal a
high correlation with the structure first few, low frequency, linear modes of vibration.

The benchmarks conclude with the analysis of the 1-story 3D frame. The system mass matrix is
assembled both using the lumped mass approach and the consistent mass approach. Comparison of
the PGD runtimes for this example showcases an important acceleration of the PGD algorithm when
lumped masses are considered, which is not the case for the conventional Newmark method.
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Several remarks regarding the algorithmic implementation of the formulation are summarized be-
low.

• Accuracy is achieved with a small number of enrichments for different excitation scenarios.

• The PGD approach can accelerate the analysis runtimes.

• Memory requirements (for processing) and storage requirements (for storing) the solution are
reduced, thanks to the separated representation of the solution field.

• The PGD spatial modes can be correlated with the structure eigenmodes.

• Good convergence behavior of the solution procedure is observed.

• The algorithmic parameters, mainly the fixed point convergence tolerance has an important
influence on the algorithm’s accuracy and convergence behavior.

Concluding, the presented approach follows a solution procedure that differs from the conventional
step-by-step methods. Its computational efficiency mainly depends on the number of enrichments
performed, but also on the algorithmic parameters and the internal numerical strategies involved. In
some cases, a speed-up factor of two was achieved. However, the PGD’s possibilities, as well as its
limits, within space-time structural dynamics problems, are yet to be discovered.

5.2 Future Research
The following are research directions that could greatly extend/improve the current work:

1. Extension of the space-time formulation to problems involvingmaterial and/or geometrical non-
linearities (e.g. history-dependent material behavior, large deformations, nonlinear boundary
conditions).

2. Application of the space-time formulation to a wide variety of structural dynamics problems
and investigation of its applicability/performance.

3. Integration of numerical analysis procedures, other than the fixed point algorithm, for solving
the coupled space-time equations (e.g. family of Newton methods).

4. Following in the footsteps of [19], establishment of space-time formulations for other implic-
it/explicit time integration schemes (e.g. CDM, Bathe, HHT-α) and investigation of their effi-
ciency.

5. Integration of new strategies within the current formulation, that could reduce the computational
cost while preserving good convergence behavior. One goal could be to provide new techniques
for assembling/representing the space-time matrices of the algorithm, whose dimension can be-
come very high when dealing with fine spatial and temporal meshes. Furthermore, alternatives
to the serial nature of the successive enrichment procedure should be investigated, making its
deployment on parallel computing platforms possible.



Appendix A

Tensor Algebra Definitions

In this section, some basic operations from tensor and multilinear algebra are presented ([25]). The
ultimate goal is applying a tensor formulation, onto the equations governing structural dynamics, to
construct (or identify) space-time structural system operators. The notation incorporated in this work
for the tensors is the ”abstract index notation” as well as the ”underline convention”. Thus, A≡Ai is
a 1st order 1 tensor, A≡Ai j is a 2nd order tensor etc..

First, the tensor product ⊗ is defined as:

A=Q⊗W⇔Ai j =Qi ⊗W j (A.1)

or using matrix and vector algebra notation (similarly to the definition of the Kronecker product)

Q⊗W=

 Q1W
...

QnQ W

 (A.2)

Next, the single tensor contraction ”·” between a 2nd order and a 1st order tensor is defined as:

A ·Q=W (A.3)

and the double contraction ”:” between a 4th order and a 2nd order tensor as:

A : Q=W (A.4)

The double contraction between two 2nd order tensors can be viewed as the inner product between
them and using Einstein’s summation convention, we write:

Q : W=Q i jWi j (A.5)

From Eq. (A.1) and Eq. (A.4), we can consider a 4th order tensor as a linear (or better yet bilinear)
mapping between two 2nd order tensors:

(
Q⊗W

)
: Z=X⇔Q i jWkl Z jl = X ik (A.6)

1Terms order and rank are used without distinction.
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Additionally, the definitions for the dyadic, the outer (for column vectors) and the tensor product
of two vectors are given respectively as:

A= ab (A.7)

A= abT (A.8)

A= a⊗b (A.9)

where A ∈Rm×n, a ∈Rm, b ∈Rn. It is noted that definitions Eq. (A.7), Eq. (A.8) and Eq. (A.9) are
equivalent and the only the notation differs.

Next, a proof is provided, for the following property of the product between a 3rd order tensor and
a 2nd order tensor.

KU=
(
K

s
⊗kt

)(
us ⊗ut

)= (
K

s
us

)
⊗ (

kt ◦ut
)

(A.10)

where ◦ denotes the component-wise product. The aim is to employ this property for the product
between a decomposed 3rd order tensor that represents a space-time system operator and the corre-
sponding decomposed 2nd order tensor space-time response quantity.

Using the abstract index notation, the components of a 3rd order system operator tensor (e.g. stiff-
ness) are written as:

K i jk = K i j(tk)= (Ks)i j(kt)k (A.11)

and the components of a 2nd order system response tensor (e.g. displacement) are written as:

U jk = u j(tk)= (us) j(ut)k (A.12)

The product between the stiffness tensor and the displacement tensor yield the components:

ns∑
j=1

K i j(tk)u j(tk)=
ns∑
j=1

(Ks)i j(kt)k(us) j(ut)k ⇒
ns∑
j=1

K i j(tk)u j(tk)=
ns∑
j=1

(Ks)i j(us) j(kt)k(ut)k ⇒
ns∑
j=1

K i j(tk)u j(tk)= (Ksus)i(ktut)k

(A.13)

The left hand sides of Eq. (A.13) are the components of the product KU whereas the right hand side

of the third line of Eq. (A.13) represents the components of the term:
(
K

s
us

)
⊗ (

kt ◦ut
)
. Combining

the first part of Eq. (A.10) and the last line of Eq. (A.13) yields the proof of the property.
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