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EYXAPIZTIEZ

Oa BeAa KaTapxnVv Vo EUXAPLOTHOW OAOUG OGOUG CUVEBAAOV LE OTOLoVENTIOTE
TPOTO OTNV EMITUXA EKMOVNON QUTAG TNG METAMTUXLAKNAG €pyaciag. Oa MmpEmeL va
guxaplotnow Bepuad tov KUpLo Kwvotavtivo ImnAtdémoudo Kabnynt Tou TUAMOTOC
MoAttikwv Mnyavikwv Tou EBvikou MetooBlou MoAutexveiou yla tnv emiPAedn aUTAG
NG LETATTUXLOKNG EpyQOiag.

‘Htav navta Stab£0uog va Lou TPOoPEPEL TIC YVWOELC KAL TNV EUTIELPLO TNC VLA TNV
BaButepn katavonon tTwv Paclkwv gvvolwv Tou SlampaypateVeTal n mapovaoa
petantuylakn dtatplpn. H empovn tou, n kabBodriynon Tou Katl Kupiwg n akepaltdtnta
TOU XQPOKTHPA TOU QMOTEAECAV TOUG BacLkoug MUAWVEG yLa tnv opBr diekmepaiwon
NG epyaociag pou.

Emiong, Ba nBela va euxaplotiow Oeppd TOUug KABNYNTEC TNG OXOANC TOU
TuAuoatog MNoAttikwv Mnxavikwyv tou EMIM mou pe kaBodriynoav ta Vo autd xpovia
TOU METAMTUXLAKOU OTO TOAU evlladEpov Kol €UpPU OVTLKEIUEVO TOU TIOALTIKOU
HNXAVLKOU.

Y€ aUTO To onpeio BéAw va avadEépw avOpwoug, EKTOC TOU OTEVOU aKkadnUaikoU
nieptBailovtog, mou umnpéav onuoavtikol ool otn {wn pou, mpoaodidovrag tnv
OTOLTOVUEVN LOOPPOTTLAL.

BéBawa, To peyaAUTEPO €UXOPLOTW TO OPEIAW OTOUC YOVEIC HOU, TWV OTOLWV N
ToTN OTLE SUVATOTNTEC LOU QNMOTEAECE OPWYOG OE OAOUG TOUG OTOXOUC KOl T OVELPA
pou. Tnv mapouoa epyacia TNV adlepwvw otn UNTEPA Hou, n omola dev elval mia v
wn.

®OeBpoudplog, 2023
TootouAidn BaolAikn
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EONIKO METZOBIO ITOAYTEXNEIO

XXOAH ITOAITIKON MHXANIKQN
EPTAXTHPIO ETATIKHZ KAI ANTIZEIZEMIKQON EPEYNQN

METAMNTYXIAKH AIATPIBH

«AAyopLOpot Eniluong EAacTonmAaoTIKWY ZUCTNHLATWV»

BaolAtkr) TootouAidn

EruBAEnwv: KaBnyntig Kwvotavtivog ZnnAtomouAog

NEPINAHWH

ZKOTIOG TNG TTOPOUOAG METATITUXLAKAG Epyaciag elval va meplypa el AEMTOUEP WG
TG OPLOUNTIKEG TEXVIKEG, OL Omoleg xpnowlomolouvtal otn Bswpia kal avdAuon
MIKPWV Kol MEYAAWV Tapapopdwoswyv  EAACTIKWY KOL OVEAACTIKWY OTEPEWV
OWMATWV HE TN HEBO0SO Twv Temepacpévwy otolxeiwv. 18laitepn eudaon Sidetal
otnv mapaywyn Kat eptypadn St1apopwv KOTACTATIKWY VOUWY TWV LOVIEAWV AOyw
N YPOMUIKOTNTAG UAWkOU- e  Bdaon tn  dawopevoloylky €laotikotnTa,
€ENAOTOTAQOTIKOTNTA KOl Xpnolpomowwvtag Olddopeg TEPUTTWOEL; KPLTNPLwv
Slappong mou xpnoLpomolouvTal yla Tov MPocSLlopLoPO TOU KATA OGOV €val UALKO
€XEL AOTOXNOEL TTAAOTIKA 1} KATA TIOCO €XEL UTLEPPBEL TO TTAACOTIKO OpLo SLappong, Kabwg
KOL YLOL TIC OXETIKEG OPLOUNTIKEC SLadlKaoleC KAl TO TPOKTIKA {NTAUATA TIOU
TIPOKUTITOUV O€ QUTEC OTav €rmAUOVTAL UTOAOYLOTIKA. To gUpog mou efetaletal
EeKWVAEL A0 TO PBOOKO OTELPOEAAXLOTO LOOTPOTIO KOl oUVEXI(EL OE TILO TIEPUITAOKEG
Bewpieg memepacuévwy TopapopPwWoswy, OcUUTEPNAUPAVOUEVNC KOl  TNG
aviootpormiag. Ol aplOUNTIKEG QUTEC TEXVLKEG UAomololvtal pe tn Ponbslwa tou
Aoylopkol tou Ansys, kKaBwg kal Tou open-source code Aoylopikou, MSolve kal
napatiBetal olykplon Twv U0 avaAUCEWV pe Ta SU0 AUTA AOYLOULKA.

H apBuntikn emiluon tou povtéhou emAéxOnke va emAuBel kal pe t BonBela
TOU AoyLlopkou MSolve, Aoyw tnG mMOAUTTAOKOTNTAC AUTOU TOU TIPOBAALOTOG KoL TOUC
oAyopiBuoug BeAtiotomolnong, xpnoLUomol)Bnke aUTO TO LOXUPO UTIOAOYLOTLKO
epyaleio, mou e€aoddAioe tnv emiluon oPKETA TIOAUTIAOKWVY TIPOBANUATWY UE TNV
KaAUTepn Suvath akpifela ota AmOTEAECHUATA KAl TO HULKPOTEPO XPOVIKO KOOTOC yLa
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NV €UPECN TWV {NTOUUEVWV HeYEBWV. TEAKOC 0TOXOG ATAV Va YiVEL EMKUPWON Kal
emaAnBeuon TwV TEALKWV QMOTEAECUATWY yla EAEYXO TNG opBOTNTAC TOUG KOl TWV
napadoxwv mou BewprOnkav yla tnv emiluon Tou.

OLKUPLEG £VVOLEC TTOU cUVEEoVTaL PE TN GALVOUEVOAOYLKN TTAQCTIKOTNTA IOV Elval
oveéaptntn omo Tov XpOvo slodyovtol €dw. ApXLKA, HEAETOUVIOL TA KPLTApLa
Stappong Von Mises, Tresca, Mohr Coulomb, Drucker Prager, pall pe TOUC
S1abeb0EVOUC KOVOVECG PONC TIAQCTIHOTNTOG KoL VOLLOUG KPATUVONG. TN CUVEXELQ,
El0AYOUME TIGC PBOOWKEC aplOunTikég peBodoug mou amattouvtal ywo T Alon
TIEMEPACUEVWY OTOLXELWV TWV TPOBANUATWY OPXLKAC OPLOKAG TIUAG HUE HOVTEAQ
€A\AOTOTAQOTIKWY UALKWV. Ol epappoyEC Tou HovtEAou von Mises TO00 e LoOTpOoTn
000 KOl HME WULKT LOOTPOTUKN/KIVNTIKI) OKApuvon meplypadovtal AEMTOUEPWC.
Emetta, n mapoloa UETOMTUXLOKN Epyaoio €0TIAlEL 0TN AEMTOUEPN TteEpLypadr TNG
epappoyn¢ Twv PACIKWY HOVTEAWV TAQCTIKOTNTOC He BAon Ta Kpttripla Slapporng
Tresca, Mohr—Coulomb kat Drucker—Prager. OAe¢ QUTEG OL TIEPUTTWOELG KPLTNPLWV
Slappong exouv edpapuootel og SoKipLo KUBLKOU OXAMOTOG TIAKTWEVO 0T BAon Tou
dokwiiou kat otn Sievbuvon Z=0, ywa u, =u, =u, = 0. H efwtepwr dpoption
epapuoletal otnv Avw emiPavela Tou KUBou katakopudpa HEcw 100 pn YPOUMULKWY
Bnuatwy Kot eivot povotovikr). Emiong, ol 18Lleg MepUMTWOELG XpnoLomotnonkay ya
va emAUBel kal pe avakukAlopevn ¢option emiBaliovrag dnAadn s€wteplkn
doption péow 400 pn ypapkwv Bnuatwy (Peudoduvapikn avaiuon), Kabwg emiong
Tipaypatonolnonkav Kot SUVOULKEG avaAUOEl Tou (6lou HOVTEAOU TOOO yla
LOOTPOTILKI) 000 KOlL YLOL CUVOUQCUEVN TIEPLTITWON KPATUVON G TOU KOTOLOTATIKOU VOOU
TOU UALKOU Kol edpoappolovtoc SUVOULKA TPLYWVIKA Suvapun HE XPOVIKO Brua
dt=0.1sec, kaBw¢ kat dt=0.05sec, pe epoppoyr TOu HEYLOTOU KATA AMOAUTH TLUA
doptiou TN xpovikn otyun T1=10sec, ekteAwvtag eAsUBOepn TAAGVTWAON TN XPOVLKNA
oty T2=20sec kat oAokAfpwon TnG avaAluong tn xpovikn oty T3=30sec. OL §vUo
OUTEG TIEPUTTWOELS SUVAULKAG dOPTLONG, OOV UTIAPXEL aAAQyr) LOVO OTO XPOVLKO
BAua, eetaotnkav pe okomd va ouykplBel n akpifela twv Svo AVcswv
XPNOLLOTIOLWVTOG TO AOYLOMLKO avolxtou kwdika MSolve kat To eUmopLlkd AOyLOULKO
Ansys.

Mo TNV €kmoOvnon TNG UETATTUXLOKAG SLatplBg, otn ocuveExela apouaotalovial
Baolkol povoagovikol KataoTatikol VOUoL okupodepatog kot xaAuBa. Ta UALKA auTtd
vloBetouvtal ouvnBwg otav mpokettal va afloAoynBel n tkavotnta evog eppadou
Slatopng N eival evowpatwpeva o€ otolxelo 6okoU MOAUCTPWHATLKAG Bewpnong.
OUOCLOOTLKA LEAETWVTOL N YPOUULKEG AVAAUCELG OE KATAOTATIKOUG VOULOUG UALKWY,
oLomoiot eivatl KatdAAnAoLyLa TV MPOooopoiwaon TG KUKALKAG amokpLong XaAuBa kat
OKUPOSEUATOC Yyl TNV  TEeplmTtwon  tplodldotatwy  otolxeiwv  dokou
MOAUOTPWHATIKAG Beswpnong Paowlopeva otn UEBodO Twv  Suvapewv.
Mapouolaloupe mpwTta To Sypapikd Hoviélo, n omola eival n mo amAr Bswpnon
yla povteAomoinon Tou €VIOXUTLKOU UALKOU Ttou Sopikou xaAuPa, evw &ivel tnv
armapaitntn puBulon yw v Tapouciaon Twv BOepeAlwdwv WBLOTATWY HLOG
HOVOaOVIKNG (0 — €) OXEONG. ZTN OUVEXEL, XPNOLLOTIOLOUVTOL TILO TIPOXWPNHEVOL
KATAOTATIKOL VOUOL UALKWV yla Tov XaAuBa wg eVIOXUTIKO UALKO, oL omoio gival To
kpttnplo dappong Masing , to Ramberg Osgood, Menegotto Pinto with Filippou
isotropic hardening (steel model with damage modulus). l'a T TPOCOUOLWOELS TWV
VWV OKUPOSEHATOC eMIAEXONKE TO TpoTmomolnpeévo poviého Kent and Park[8], mou
elval QLo opKETA QAR OXEon LKAV VA TIOPEXEL ETMOPKN OTMOTEAECHOTA YLO TLG

TootouAibn Baotdikn ix
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TIEPLOCOTEPEC EDAPUOYEG AVTLOELOHULKIC UNXOVLKAG. ZUYKEKPLUEVA, TOL LOVTEAQ TTIOU
pueAetnOnkav eival évag tplodlaotatog mpoBoAog maktwuévocg otn StevBuvon Z=0,
ywa u, =u, =u, = 0, tonoBetwvrag 5 iveg xaAuBa otnv avw emiddvela kat 25 iveg
XGAuBa otnv katw emipavela. H dtakpitomoinon amoteAeitat anod dvo otoeia. H
e€wtepkn $OpTION €lval LOVOTOVLIKA Kol povoaovikn epappolopevn Katakopuda
otnV avw emidavela tou pofolou péow 20 kot 100 Bnuatwy avtiotolya, Kabwg Kot
otnv mepimtwon tn¢g dtafovikng ¢poptiong péow 20 kat 100 BNUATWY OUOLWE PE TNV
TIPONYOUHEVN TEPIMTWON WC TO UTIOAOUTA YEWUETPLKA XOPOAKTNPLOTIKA. AKOUN
HEAETAONKE Kal N MepmTwon tng apdimaktng Sokou Kal MAAL Pe Ta (5Lo YEWUETPLKA
XOPOKTNPLOTIKA KOl OUVOPLOKEG OUVONKEC Yl TN HOVOTOVLKH Kol HOVOOEOVLIKN
doptTion Kal emMPOoHeTa EMAUONKAV KOL OL TIEPUTTWOEL, QAVOKUKALLOUEVNG
doptiong. OL emMAUOELC €XOUV TpayUaTOmoLlnNOel XPNOLUOTIOWWVTAC TO AOYLOULKO
MSolve KaBwg Kal To EUMoPLKO AOYLOULKO ANSys TIPOKELUEVOU Vol cUYKPLBoUV oL Vo
AUOELG TOOO OTN LOVOTOVLKA 000 Kal 0TNV avakKUKALOpevn doption.

TEAOG, LEAETAONKE O KATAOTATLKOC VOUOG EAQCTOTMAQOTIKWY TIPOUOLWHUATWY TOU
Kavvadas and Amorosi, e okomo TtV neplypadr TG LNXAVIKAG OUUNEPLPOPAG TWV
eSadkwv UVAKWV avefoptnTwg tou pubuol mapapopdwons. H epyactnplokn
Slepelvnon Twv edadlkwv UAKKwY HAVEPWVOUV LA EVIOVO  UN-YPOUULKN,
oVLOOTPOTN cupmnepldpopd. ApKeTEG GopEC evdEXeTaL va epdavicouv xaldapwon
aKOpa Kal Katdppeuon TG dopng tou edadikou Lotou. H pnxavikn cupnepidopd Twv
YEWUALKWY SLEPELUVAONKE aPXLKA O €pyaoTnpPlako eminedo o€ avapoOYAEUMEVA
ebadikad UALKA (Le TTOOOOTO uypaciag Kovid oto oplo udapotntag). Emumpdobeta
HNXAVIKA XQAPOKTNPLOTLKA TipoTddnkav e okomod tng BeAtiwon tng mpoPAenopevng
OUUTEPLOPAG TWV KOTOOTATIKWY TIPOCOMOWWHATWY, evtomilovtag tOo0 oTnv
nieplypadn TNG avIooTPOTILAG 000 KOL 0TNV EVTOVA OVEAAOTIKH oUUTtEPLPOPA KATA TNV
SLapKeLa aVOKUKALKWY GOPTICEWV. ZUYKEKPLUEVQ, T LOVTEAQ TTOU LEAETAONKaV lvat
€VOL MOVTEAO KUPBLKOU OXNUATOG TIOKTWHEVO OTn BAon Tou, XPNOLUOTIOLWVIAG oAV
TieEnepaopéva otolxeia ta eaedpikd otolxela oxtw KOuPBwv. H e€wtepikn dodption
miou e€etaletal elval apxLkd LOVOTOVIKA Katakopudn Kot edpapuolOpevn otnv Avw
erupaveLla tou povtélou peow 100 Bnudtwy (load steps), kaBwg kat otnv mepimtwon
NG AVaKUKALLOMEVNG POpTLoNG KaTakOopudn Kot epapuoldpevn otny Avw emtdavela
Tou KUPBou péow 400 Bnuatwv (load steps). OL emAUoEeLg €xouv TipaypatomnolnBel
XPNOLLOTIOLWVTAG TO AOYLOULIKO MSolve kaBwg kal to €UMOpLlkd AOYLOULKO Ansys
TIPOKELPEVOU va. ouykplBoUv ol SUo AUCEL( TOGO OTn HMOVOTOVIK 000 KOl oTtnv
ovVaKUKALZOpEVN dopTLoN.

NEEELG KAELOLA

Kataotatikég oxéoelg, Von Mises isotropic/kinematic hardening, Tresca,Mohr-
Coulomb, Drucker-Prager, fiber3Dbeam, Spacone-Filippou Masing, Stypapitkd UALKO
Ramberg-Osgood, Menegotto Pinto, Kent and Park
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SUPERVISOR: PROFESSOR KONSTANTINOS SPILIOPOULOS

ABSTRACT

The purpose of this master's thesis is to describe in detail the numerical techniques
used in the theory and analysis of small deformations of elastic and inelastic solids
using the finite element method. Particular emphasis is placed on the derivation and
description of various constitutive laws of the models due to material nonlinearity -
based on phenomenological elasticity, elastoplasticity by using various cases of yield
criteria where it is determined whether a material has fractured or exceeded yield
strength - as well as for the associated numerical procedures and the practical issues
that arise in them when solved computationally. The range covered goes from basic
infinitesimal isotropic to more sophisticated finite strain theories, including
anisotropy. These numerical techniques are implemented with the aid of the
commercial software packages, Ansys Workbench, as well as the open-source
software code, MSolve, and a comparative study and analysis is presented between
Ansys Workbench and MSolve. The results were plotted graphically. For the finite
element simulations in nonlinear constitutive relations, the fiber beam - column
model for nonlinear analysis of reinforced concrete structures, the commercial
software package Ansys Workbench was selected. Due to the complexity of the
problem of material nonlinearity and the description of nonlinear constitutive
relations as well as the cyclic loading incorporating plasticity and the Bauschinger
effect, a powerful computational tool was used, MSolve software, which solved quite
complex problems with higher accuracy in the results and less computational time and
cost that other commercial software packages.
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The main concepts associated with time-independent phenomenological plasticity

are introduced here. First, the Von Mises, Tresca, Mohr Coulomb, Drucker Prager yield
criteria are studied, along with the popular plastic flow rules and hardening laws.
Then, we introduce the basic numerical methods required for the finite element
solution of initial boundary value problems with elastoplastic material models.
Applications of the von Mises model with both isotropic and mixed
isotropic/kinematic hardening are described thoroughly. This master's thesis focuses
on the detailed description of the application of the plasticity models based on the
Tresca, Mohr—Coulomb and Drucker—Prager vyield criteria. All these cases of yield
criteria have been applied to a cubic specimen fixed at the base of the specimen and
in the Z=0 direction, for u, = u,, = u, = 0. The external loading is applied to the top

surface of the cube vertically through 100 non-linear steps and is monotonic. Also, the
same cases were used to solve with cyclic loading i.e. imposing external loading
through 400 non-linear steps (pseudodynamic analysis), as well as dynamic analyzes
of the same model were carried out for both isotropic and combined case of material
constitutive law hardening and applying dynamic triangular force with time step
dt=0.1sec, as well as dt=0.05sec, applying the maximum absolute value load at time
T1=10sec, performing free oscillation at time T2=20sec and completing the analysis at
time moment T3=30sec. These two cases of dynamic loading, where there is only a
change in the time step, were examined in order to compare the accuracy of the two
solutions using the open-source software MSolve and the commercial software Ansys.

Basic uniaxial constitutive laws of concrete and steel are then presented for the
development of the master's thesis. These materials are usually adopted when the
capacity of a cross-sectional area is to be evaluated or incorporated into a multi-layer
beam element. Essentially, nonlinear analysis in constitutive laws of materials are
studied, which are suitable for simulating the cyclic response of steel and concrete for
the case of three-dimensional force-based fiber beam elements. We first present the
bilinear model, which is the simplest consideration for modeling the reinforcing
material of structural steel, while providing the necessary setup to present the
fundamental properties of a uniaxial (o - €) relationship. Then, more advanced
constitutive laws of materials are used for steel for the case of fiber beam elements,
which is the Masing yield criterion, Ramberg Osgood, Menegotto Pinto with Filippou
isotropic hardening (steel model with damage modulus). For the simulations of the
concrete fibers we present the modified Kent and Park [] model, which is a rather
simple relationship able to provide sufficient results for most earthquake engineering
applications. Specifically, the studied models are a three-dimensional cantilever fixed
in the Z=0 direction, for u, = u, = u, = 0., with 5 steel fibers on the upper surface
and 25 steel fibers on the lower surface. Discretization consists of two elements. The
external loading is monotonic and uniaxial applied vertically to the upper surface of
the cantilever through 20 and 100 steps respectively, as well as in the case of biaxial
loading through 20 and 100 steps similarly to the previous case as the rest of the
geometric characteristics. The case of the clamped beam was also studied with the
same geometric characteristics and boundary conditions for monotonic and uniaxial
loading, and additionally the cases of cyclic loading were also solved. The solutions
have been carried out using MSolve software as well as the commercial Ansys
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software in order to compare the two solutions under both monotonic and cyclic

loading.

Finally, the constitutive law of elastoplastic models of Kavvadas and Amorosi was
studied, in order to describe the mechanical behavior of soil materials regardless of
the rate of deformation. The experimental investigation of soil materials shows a
strongly non-linear, anisotropic behavior. Several times they may show relaxation or
even collapse of the soil tissue structure. The mechanical behavior of geomaterials
was initially investigated at the experimental level in disturbed soil materials (with a
moisture content close to the water limit). Additional mechanical features were
proposed in order to improve the predicted behavior of the simulations as far as the
constitutive relations are concerned, identifying both the description of the anisotropy
and the strongly inelastic behavior during cyclic loading. In particular, the models
studied are a cubic model fixed at its base, using eight-node hexahedral elements as
finite elements. The external loading considered is initially monotonic vertical and
applied to the upper surface of the model through 100 load steps, as well as in the
case of the cyclic loading vertical and applied to the upper surface of the cube through
400 load steps. The solutions have been carried out using MSolve software as well as
the commercial Ansys software so as to compare the two solutions under both
monotonic and cyclic loading.

Keywords

Constitutive relations, Von Mises isotropic/kinematic hardening, Tresca,Mohr-
Coulomb, Drucker-Prager, fiber3Dbeam, Spacone-Filippou Masing, bilinear hardening,
Ramberg-Osgood, Menegotto Pinto, Kent and Park

TootouAibn Baotdikn xiii



"AAyopiBuol ErtiAuong EAactonAaotikwy JuoTnudtwy"

CHAPTER 1*

1. INTRODUCTION

1.1 Aim and scope

Recent advances in the field of computation technology and increased
requirements in the field of earthquake engineering have led to the development and
implementation of highly efficient beam-column elements capable of tracking the
hysteretic behavior of Reinforced Concrete (RC) structures. The aim of this dissertation
is to model beam-column behavior in a computationally effective manner, reliably
revealing the overall response of RC members subjected to cyclic loading. In this
respect, plasticity and damage are considered in the predominant longitudinal
direction allowing for the derivation of a fiber finite element model.

Constitutive relationships are the heart of material nonlinear analysis. These
models provide the mathematical relationships that describe the material and
obviously govern the nonlinear analysis. Constitutive relationships is a wide topic and
often their mathematical formulation is too complicated since the actual response of
a material may also be complicated. The choice of a material model depends on the
structure and the type of finite elements chosen to discretized the structure. For
example, if three-dimensional solid elements are chosen, the material models should
be able to consider all components of the stress tensor. On the other hand, fiber-based
beam elements are able to account for only one component of the stress tensor, the
longitudinal stress, ox, which is parallel to the axis of the element. When it comes to
beam elements, lumped plasticity elements are very commonly adopted in
engineering practice. In the case of lumped plasticity elements, the constitutive
behaviour is expressed through moment-rotation (or moment-curvature)
relationships. In this chapter we focus on uniaxial stress-stain (o -€) relationships
suitable for fiber elements or section analysis. In the following chapters, basic uniaxial
constitutive relationships are presented. These materials are commonly adopted
when assessing the capacity of a cross-section or are embedded in fiber beam-column
elements. Rather, than discussing all materials available, the aim of the following
chapters is to present the underlying concepts and then introduce materials suitable
for simulating the cyclic response of steel and concrete. Note that the materials
discussed always receive as input the strain € and give as output the strain o (o = f(g)).
Although there is no fundamental restriction to have models of the € = f(o) form, the
structure of FE software make the use of such materials considerably and
unnecessarily more complicated. In the sections that follow, we first present the
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bilinear model that is available in every nonlinear analysis software. This model is the
most common choice when it comes to modelling reinforcing or structural steel, while
it gives the necessary setting for presenting the fundamental properties of a uniaxial
(o - €) relationship. As a more advance material for steel, we also discuss the model
of Menegotto and Pinto []. For the simulations of the concrete fibers we present the
modified Kent and Park] model, which is a rather simple relationship able to provide
sufficient results for most earthquake engineering applications. . Basically, the theory
of plasticity is concerned with solids that, after being subjected to a loading
programme, may sustain permanent (or plastic) deformations when completely
unloaded. In particular, this theory is restricted to the description of materials (and
conditions) for which the permanent deformations do not depend on the rate of
application of loads and is often referred to as rate-independent plasticity. Materials
whose behaviour can be adequately described by the theory of plasticity are called
plastic (or rate-independent plastic) materials. A large number of engineering
materials, such as metals, concrete, rocks, clays and soils in general, may be modelled
as plastic under a wide range of circumstances of practical interest. The origins of the
theory of plasticity can be traced back to the middle of the nineteenth century and,
following the substantial development that took place, particularly in the first half of
the twentieth century, this theory is today established on sound mathematical
foundations and is regarded as one of the most successful phenomenological
constitutive models of solid materials. The remainder of the chapters focuses on the
detailed description of the plasticity models most commonly used in engineering
analysis: the models of Tresca, von Mises, Mohr—Coulomb and Drucker—Prager. The
corresponding yield criteria are described in the next chapters. Then, plastic flow rules
and hardening laws are addressed, respectively, in the following sections. Obviously,
due to the mathematical complexity of such constitutive theories, an exact solution to
boundary value problems of practical engineering interest can only be obtained under
very simplified conditions. The existing analytical solutions are normally restricted to
perfectly plastic models and are used for the determination of limit loads and steady
plastic flow of bodies with simple geometries (Chakrabarty, 1987; Hill, 1950; Lubliner,
1990; Prager, 1959; Skrzypek, 1993). The analysis of the behaviour of elastoplastic
structures and soils under more realistic conditions requires the adoption of an
adequate numerical framework capable of producing approximate solutions within
reasonable accuracy. The Finite Element Method is by far the most commonly adopted
procedure for the solution of elastoplastic problems. Since the first reported
applications of finite elements in plasticity in the mid-1960s, a substantial
development of the related numerical techniques has occurred. Today, the Finite
Element Method is regarded as the most powerful and reliable tool for the analysis of
solid mechanics problems involving elastoplastic materials and is adopted by the vast
majority of commercial software packages for elastoplastic stress analysis.

Practical application of the theory and procedures introduced, including a complete
description of the algorithms and corresponding subroutines of the Ansys program
and open source code Msolve, is then made to the particular case of the von Mises
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model with nonlinear isotropic hardening. The choice of this model is motivated here
by the simplicity of its computational implementation. A set of numerical examples is
also presented. Further application of the theory is made at the end of the chapters
to a mixed isotropic/kinematic hardening version of the von Mises model. This model
is also included in the Ansys program and Msolve. Application to the Tresca, Mohr—
Coulomb and Drucker— Prager models is also examined in this master thesis.

Some general schemes for numerical integration of elastoplastic constitutive
equations have been reviewed together with related issues such as the computation
of consistent tangent operators and error analysis. To illustrate such concepts, the von
Mises model — the simplest of the models discussed in this master thesis — has been
used as an example and the corresponding implicit elastic predictor/return-mapping
algorithm, together with the associated consistent tangent, have been derived in
detail for the isotropic and mixed hardening cases. Namely, the models discussed here
are: the Von Mises model with isotropic, kinematic and mixed hardening law with
nonlinear constitutive equations (tabular data) the Tresca model, the Mohr-Coulomb
model and the Drucker Prager model. The associative plastic flow rule is adopted for
the Tresca model whereas, for the Mohr—Coulomb and Drucker—Prager models, the
generally non-associated laws are considered. The algorithms for integration of the
corresponding elastoplastic constitutive equations derived here are specialisations of
the elastic predictor/return mapping scheme based on the fully implicit discretisation
of the plastic corrector equations. The associated consistent tangent moduli are also
derived in detail and an error analysis based on iso-error maps is presented for each
model considered. We remark that the only new concept concerns the computational
treatment of singularities (corners) in the yield surface. At the beginning of each of the
main sections, a table has been added indicating the location of flowcharts, pseudo-
code and MSolve source code of the relevant computational procedures as well as iso-
error maps for the particular material model of interest. Applications of the numerical
procedures derived in the main sections are illustrated in the last section by means a
comprehensive set of benchmarking numerical examples.

Finally, Ansys Workbench was used in this work. Ansys Workbench is a specialized
software that is widely used for finite element analysis and offers comprehensive
solutions to a wide range of engineering problems. At the same time, due to the
complexity of the problem, a powerful computational tool was used, and in particular
an open source code that ensured better accuracy in the results with less
computational time and cost to find the required quantities and it is MSolve software.
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1.2 Structure of

In this section, it is

the dissertation

presented the structure of the master thesis and the chapters are

described concisely as follows:

Chapter 2°

General elastoplastic constitutive model and Force-based

fiber element

- Chapter3°:
- Chapter4©:
- Chapter5°:
- Chapter6°:

- Chapter7°:

Ansys Software- Problem Statement and Description

Open source code MSolve
Benchmark Numerical Examples -Results- Comparison Of The Results

Conclusions

Appendix
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CHAPTER 2

2. GENERAL ELASTOPLASTIC CONSTITUTIVE MODEL -
FORCE - BASED FIBER ELEMENT

2.1 The bilinear stress-strain relationship

Basic material models, such as the bilinear model, can be seen as a set of rules that determine: (i) the elastic
behaviour, (ii) when the material yields (yield criterion), (iii) the behaviour of the material in the inelastic range,
after yielding (flow rule), and (iv) rules regarding the behaviour of the material under cyclic load reversals. For
a simple bilinear model, the behaviour prior yielding is described by Hooke’s law with an elastic slope equal to
the modulus of elasticity E. The yield point is defined by the yield stress oy or the yield strain gy = oy/E. After
yielding, i.e. when o > oy, the slope of the monotonic o —€ curve is that of the tangent modulus, ET . When the
tangent modulus is equal to zero (Er = 0), the material is called elastic-perfectly plastic. The main advantage of
the bilinear model is that its parameters can be easily obtained from simple lab tests, or can be estimated form
the nominal material propertiesl . The o - € relationship of the bilinear model is shown in the following figure.
The tangent, post-yield modulus Er is a function of the initial modulus of elasticity E and is defined with the aid

of the hardening ratio b:

Er =bE

thus when b = 0 the material is elastic-perfectly plastic. Instead of the hardening ratio b, often the post yield
stiffness is determined with the aid of the hardening ratio H. The hardening ratio H is defined as the slope of
the curve of the plastic strain epl versus stress o. The plastic strain epl is equal to epl = € —gy, while gpl = 0 if the
material is elastic. Hence, we define:

o = He,

When the material yields, € 2 ey and epl # 0, a small increment of the strain A € will produce a stress increment
Aoc:

Ao =ErAe
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Furthermore, the total strain consists of two parts, the elastic and the inelastic strain:

€= €4+ &y

Then, we have:

and we obtain:

or

The expressions above provide the relationship between ET, b and H. Once one of these parameters is known
we can calculate the rest of them. This is useful since although all software offer the option of a bilinear model,
the implementation may be differ and either ET , b or H may have to be provided as input. Some very useful
relationships relating A € with Ao and A epl can be further derived:
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Note that both E and H were assumed linear, but this is merely a simplifying assumption, suitable for many
applications. The bilinear stress-strain relationship is also the basis of many constitutive formulations. Another
common relationship is the Ramberg-Osgood [] material. This material is also used extensively and is based on
the expression:

(6] o \P
v

where a and B are model constants to be calibrated through experimental tests. This expression is nonlinear
and hence may be less appealing compared to the bilinear model.

2.2 Cyclic behavior

When the material is in the elastic range (|€| < g,), all strains are reversible, meaning that unloading is also
elastic. This means that the material has a “perfect” memory and will unload following the same path as in the
loading case. However, after yielding only the elastic part of the strain can be recovered. This implies that once
the strain exceeds the yield strain, if unloading occurs then the material will follow a path parallel to the elastic
path with slope E. Moreover, once further loading in the opposite direction, the material will yield again, but at
a stress lesser than the initial yield stress o,. The phenomenon of yielding at a stress less than oy when loading
in the opposite direction, is known as Bauschinger effect and is a fundamental property of steel materials.
Common approaches for modelling the cyclic behaviour of steel materials include the kinematic and the
isotropic hardening model. The two models are shown in the following figure. When a pure isotropic material is
adopted, the Bauschinger effect is neglected and the yield stress of the last reversal point is used to obtain the
yield stress of the subsequent cycles. Isotropic hardening results to constantly increasing the size of the
hysteretic loop. On the other hand, kinematic hardening assumes that when loading in the opposite direction,
the new yield stress d,, is obtained if we subtract from the stress at the point of unloading or the quantity 2o.
The pure kinematic hardening model does not change the size of the hysteretic loop but simply translates its
centre. A model that combines kinematic and isotropic hardening is a mixed model. The three models are
discussed in detail in the sections that follow, but it is the kinematic model that is most commonly adopted for
structural and earthquake engineering applications.
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Isotropic (left) and kinematic (right) hardening.
The same strain history is applied and the two models produce different stress-strain hysteretic

loops. Although in the case of the kinematic model the shape of loop remains unaltered and bounded,
in the isotropic model the loops expand and become bigger in every cycle.
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Example: stress-strain hysteretic loop using the bilinear model with pure kinematic and pure isotropic hardening.
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According to the isotropic hardening model the yield stress &, of every cycle depends on the accumulated plastic strain

Eplt

(.i'_\‘ == qﬂ} + H‘E:p{

Therefore, the radius of the yield surface increases as function of the effective plastic strain and is proportional to the
plastic modulus. When a stress reversal occurs, the yield stress will be:

In order to implement the model, let’s assume that at time i the state of the material is known, as we can see it from the
following picture. This implies that
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Figure 2.2.1: Elastic trial step and calculation of stress Gi.1.
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the strain & and the stress ¢; are known and that we want to determine the stress o;; after a strain increment Ag, We
also know the fundamental properties of the material, i.e. its yield stress 0,9 and the modulii E and H. Furthermore, we
define &, ; as a state variable, meaning that it is a variable that is stored and updated in every step. The implementation
in a computer code is simple and includes an elastic trial step in order to calculate the elastic stress O;:

G.n‘.l'..f = 0',' +EA£

We also calculate the quantity g:
q = |d¢*.’.e'| — Oy,

where
bE
Oy = Oy0+HEp ; = Oy0+ m'e;n’,i

If g < 0 the material is elastic and it is plastic when g > 0. In the elastic case, we simply set 0; = Oy ; and €y ;11 = Epy .
If the material is plastic, we update the plastic strain and the stress at i + 1 as:

_a _q(i-b)
E+H E
Oipl = Celi— EAE;)!.{

Agy,

The equation above provides the value of g;,; and is schematically explained in Figure 2.2.1. Supposing that the state of the
material is known at point (a) which has coordinates &;,0; . After the elastic increment, we calculate the total elastic stress o
which is shown as (B) in Figure 2.2.1. If the material is elastic, the elastic stress is the correct stress o.i, otherwise the elastic
stress is corrected subtracting the quantity EAgp, which moves us back to point (8) (Fig. 2.2.1). The stress value at (8) is O,
equal to the correct stress of point y that has coordinates &i.1, 0is1. Furthermore, the plastic strain €, is updated (gp,is1=
€p1,i+A€p) and stored. Finally, the tangent modulus is updated as:

The bilinear model with pure kinematic hardening is often used for modelling the cyclic behaviour of steel structures or
for modelling the steel reinforcement, since it implicitly considers the Bauschinger effect. According to the kinematic
hardening model, in every cycle the yield stress g, depends on the last reversal point oy:

6-_\‘ = Op — 20’_\{]

In the kinematic hardening model, the elastic range remains constant and its center moves parallel to the hardening curve.
The equation above implies that the maximum and the minimum stress values lie on two lines parallel with a line with
slope equal to bE that passes through the origin. This means that the hysteretic loop will always have the same size and
shape and will translate within the bounds of these two lines.
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Figure 2.2.2: Bilinear model with kinematic hardening: definition of the back stress a, (center of the elastic region).

In order to implement the model, in every load increment we define the “center” of the elastic region with the aid of a
stress value a also termed “back-stress”. The definition of a is shown in Figure 2.2.2 for two different pairs of (€,0) values.
Therefore, the center of the loop lies on a straight line that passes from the origin and its location is updated in every
increment using the expression:

Oy = O + Sg”(nr')HAE;}H

bE
= 0+ Sg”(ﬂf}mﬂ(?pm

where sgn(n;) is used to take into consideration the correct sign and is based on n, a parameter discussed a few lines below.
We can otherwise calculate q; if the stress a; and the strain €; are known. When the material is plastic, a; is equal to the
current stress minus the yield stress, i.e. a; = 0i —0,,0 (Fig. 2.2.2, point (i+1)). Furthermore, a; lies on the intersection of two
straight lines. The first line has slope bE and passes from the origin and the second line has slope E and passes from (&i ,0oi)
(Figure 2.2.2). Once we solve the two linear equations we obtain q; as:

b
bh—1

O = (O'J'_ng)

The first condition is valid only when the material is plastic, while the second condition is always valid. Therefore, ai is
obtained as:

b
bh—1

o = max [Ur' — 0y,0: (oi —Eg)

We also define the shifted stress n in order to determine if the material has yielded or not:

n=0i—0o
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The condition of yielding is defined with the aid of n as follows:
q = |r|'a'+]| — Oy

As in the isotropic model, a trial step is first performed in order to obtain o,; ;. We then determine if the material has yielded
with the aid of the above equation, where n = a,,;; — ;. If the material is elastic 0; = 0, ; and E=E, else the current stress is
obtained as in the isotropic model, using the formula:

O; = Opli — EAE;}F

. . bE . .
If we prefer storing a, we can use equation ;1 = a; + sgn(n;) EAST’“ to update its value. The tangent modulus is

updated with the aid of equation:

ac [E, g¢<o0
Ey=—=—=
bE, q>0

Materials in nature often show combined isotropic and kinematic hardening. When this is the case, the yield stress initially
increases due to plastic hardening, but it decreases when the direction of strain changes. In order to combine kinematic
and isotropic hardening, a new parameter, §, that varies from 0 to 1 is introduced. & interpolates the two hardening
models with the aid of the expressions:

Oyitl = Oy, +6-H 'AE‘N
01 = 0G+sgn(n)-(1-8)-H-Ag,

When &6 = 0 the model becomes pure kinematic, while when & = 1 it is pure isotropic. In the mixed model, the plastic strain
and back stress a are updated and stored at each load increment.

A different approach for combining isotropic and kinematic hardening was proposed by Filippou et al. [2]. Isotropic
strain hardening is accounted in a pure kinematic hardening formulation by shifting the position of the yield asymptote
before evaluating the new asymptote intersection point after a strain reversal. The shift is effected by moving the initial
asymptote by a stress shift parallel to its direction. This idea was initially introduced by Stanton and Mc Niven [12],
while Filippou er al. [2] proposed shifting the yield stress &, by the quantity:

e,
O = Oy (E_i = 052) >0
k.

where g,is the absolute value of the maximum strain at the point of load reversal, a; determines the amplitude of isotropic
hardening and a; is the strain beyond which the isotropic hardening is taken into consideration. Parameters a; and a; may
receive different values in tension and in compression and thus the above equation becomes:

owﬁu.\'hm = oy (% - D!g) >0
,

s
Emin )
- 0
| ) >

v

conp.
sh

= 0,063 (
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o, O, O, Oy are to be determined experimentally, while the strains &,,,, and &,,;, correspond to the strains during a
load reversal to a positive or a negative load branch, respectively. Some common values for o and a5 are 0.01 —0.025,
while for o and oy a possible range of values is 2 —7 [3].

2.2.1 Example: hysteretic stress-strain history

Obtain the hysteretic loop for a steel material with f, = 500MPa, E = 200GPa and hardening ratio b = 3%. As-
sume that the model has only kinematic hardening and use the strain history: € = [0,0.46_‘.,28_\\, 1.5, —0.58_\-] —
[0,0.00100,0.00500,0.00375,—0.00125].

x10

stress, o (kPa)
o

-/

-8 -A -2 0 2 & 6
strain, e x10°

Figure 2.2.1.1: Stress-strain hysteretic loop using the bilinear model with pure kinematic
hardening.

The stress-strain curve obtained is shown in Figure 4.6. Every point of the curve refers to a different phenomenon,
showing in this very simple example the behaviour of the bilinear model with kinematic hardening.

» point I: the material is elastic, since &) < &, thus 0y = Eg; = 0.001 x 200 = 0.2GPa.

e point 2: the material yields & > &,, thus 6; = 0,9+ b(& — &) = 0, +0.03 x 200 x (2— 1) x &, = 0.515GPa.

e point 3: the material unloads elastically since Ag = €3 — & < 0, therefore 63 =03+ E x Ag =0.515+200 x (1.5—
2) x & =0.265GPa.

e point 4: Yielding when loading in the opposite direction is observed in this step. First we calculate the yielding
strain and stress for loading in the opposite direction, & and o, respectively. Therefore, & = & — 20, /E and
Oy = 02 —20y. The stress at point 4 will be: 63 = oy +bE (&5 — s).‘) = —0.49GPa.

The Matlab script is shown below, while Figure 2.2.1.1 shows the stress-strain history obtained
using the function discussed in Section of kinematic hardening.

We will use a longer strain history: €=[0,0.5ey, €y,1.7¢y,0.5¢€y,0.2¢y,0.7€y,0.1€y,-0.2¢y,
-gy,-1.2gy,-.2¢ey,0.4€y,0.9¢y,3€y,3¢ey,1.5¢ey,0.5ey,-2¢ey,—-£y,0,0.5¢y].

cle; close all; clear;

% input data

Fsy = 500000; Eo = 200+1076; b = 0.01

ey = Fsy/Eo;

epsilon = [0, 0.5sey, ey, l.Tsey, 0.5xey, O.Zsey, 0.7+ay, O.leey, ...
-0.2vay, -ey, -1l.2-ey, —.2+ey, O.4*ey, 0.9+ey, 3+ey, 3rey, l.5=ey, ...
O.5+ay, —2+ey, -2y, 0,0.5+ay] ;

2igs= zeros(size(epsilon));
for i=2:length (epsilon)

sigsP = sigs(i-1); % strain of previous step
epssP = epsilon(i-1); % stress of previous step
depss = epsilon(i) — epssP; % gtrain of previous step

[sigs{i),Es{i) |=bilinearKin (Fsy,EBo,b,epssP, sigsP,depss) ;
end
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In Opensees the bilinear model can be found as Steel01 model. Otherwise the elastic-perfectly plastic material Elas-
ticPP assuming zero hardening is assumed. The program also offers the option of a linear elastic material using the
Elastic material. Steel01 model receives a, &, o, 044 as optional input variables in order to consider combine mixed
hardening. These models are offered with the aid of the following commands:

uniaxialMaterial Elastic $matTag $E <$eta> <$Eneg>
uniaxialMaterial ElasticPP $matTag $E $epsyP <$epsyN $eps0$>
uniaxialMaterial SteelOl $matTag $Fy $EO0 $b <$al $a2 $a3 Sa4s>

Any computer analysis software can be used for testing any stress-strain material. The idea is simply to introduce
a single truss element with unit area A = 1 and unit length L = 1. One end of the truss element is fixed, while on the
end that is free to move we impose a displacement history. Since A = L = 1, the imposed displacements can be seen
as strains, while the axial forces produced can be seen as stresses. The following script, borrowed from the program
manual, can thus be used. The script reads the displacement history from a file named pattern.txt that contains the
strain values in a single column.

wipe

model BasicBuilder -ndm 1 -ndf 1
¥ Define nodes

node 1 0.0

node 2 1.0

fix 1 1

#uniaxialMaterial Steel0l $matTag $Fy $EO0 $b
uniaxialMaterial Steel0l 1 500000 2e8 0.1

# Define truss element with unit area
# tag ndI ndJ A matTag
element truss 1 1 2 1.0 1

set dt 1.0; # Increment between data points
set filename pattern.txt; # Filename containing data points

pattern Plain 1 "Series -dt $dt -filePath $filename " (
# node dof value

sp211.0

}

# Record nodal displacements (same as strains since truss length is 1.0)
recorder Node -file dispOut.txt -time -node 2 -dof 1 disp

# Record truss force (same as stress since truss area is 1.0)

recorder Element -file forceOut.txt -time -ele 1 forces

system UmfPack
constraints Penalty 1.0el2 1.0el2
numberer RCM

# Set increment in load factor used for integration

# Does not have to be the same as dt used to read in displacement pattern
set dl $dt

integrator LoadControl $dl 1 $dl $dl

test NormDispIncr 1.0e-6 10

algorithm Newton

analysis Static

analyze 22

TootouAibn Baoidikn 14



"AAyoptSuot Eniduonc EAaotonAaotikwy Suothudtwy”

2.3 The model of Menegotto and Pinto for steel reinforcement

The bilinear model is the most common option for the analysis of steel structures or for modeling sieel reinforcement.
We also present the Menegotio-Pinto model [7] which is a more elaborate relationship that is also often used for
modelling steel. The Menegotto-Pinto model is an explicit ¢ = f{£) relationship that is based on a simple relationship.
The model is able to give good results for both steel reinforcement and structural steel, provided that it has been
calibrated accordingly.

The backbone of the Menegotto-Pinto model is given by the relationship:

% . (1= 3 % — *
o =be +7( b)gl uagz—g 5 KoL o =25
(1+E.R)E &, =&, g,—0,

This equation provides a curved transition from a straight-line asymptote with slope E to another asymptote with slope Er = bE (Figure
2.3.1, lines (a) and (b) respectively). Parameters €0 and oo are the stress and the strain at the point where two asymptotes of the
branch under consideration meet (Figure 2.3.1, point A), while & and or denote the stress and the strain at the point where the last
strain reversal with stress of equal sign took place (Figure 2.3.1, point B). This point denotes the beginning of a reloading branch. R is
the curvature parameter that controls the transition from the elastic to the hardening branch. At every load reversal €o, oo, € and or
are updated.

Figure 2.3.1: Stress-strain relationship of the Menegotto-Pinto model.

The curvature parameter R depends on the strain difference between the current asymptote intersection point and
the previous load reversal point with maximum or minimum strain depending on the corresponding steel stress [2]. The
shape of the transition curve allows a good representation of the Baushinger effect. The expression for R takes the form:
Ri=Ro—(c1&,:/(c2+&p)), where £, ; is the plastic excursion at the current semicycle, defined as: §,; = &,; — €,
where:

G0 — Ori-1
Ei=8&i-1+——F—

Ry is the value of R during the first loading and has to be experimentally determined together with ¢; and ¢;. Typical
values are Ry = 20, ¢; = 18.5 and ¢ = 0.15.

The above equations require some further clarification with a set of rules for unloading and reloading for the case of a
generalized load history; when partially unloading and then reloading back, often the Menegotto-Pinto relationship may
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overestimate the stress value. Since the memory of the model is limited to the previous step, Filippou et al. [2] proposed
to limit the memory of the stress—strain history to four controlling curves: (i) the monotonic envelope, (ii) the ascending
upper branch curve originating at the reversal point with smallest & value, (iii) the descending lower branch curve
originating at the reversal point with largest € value, (iv) the current curve originating at the most recent reversal point.
The reader interested in the Menegotto-Pinto model can find more details in reference [2]. In Opensees, the bilinear
model can be found as Steel01 model. Otherwise the elastic-perfectly plastic material ElasticPP assuming zero hardening
is assumed. The program also offers the option of a linear elastic material using the Elastic material. Steel01 model
receives al, a2, a3, a4 as optional input variables in order to consider combined mixed hardening. These models are
offered with the aid of the following commands: The Menegotto-Pinto model is available in OpenSees as Steel02 model.
The model can be adopted using the command:

uniaxialMaterial Steel02 $matTag S$Fy SE $Sb SRO $cl $c2 <Sal $a2 $a3 Sad>

where Fy, EO and b have already been defined for the bilinear steel model and RO, c1, c2 are the parameters to control
the transition from elastic to plastic branches. OpenSees also gives the option to allow for isotropic hardening using the
approach presented in [2]. Isotropic hardening is therefore considered using the optional parameters al, a2,a3 and a4
discussed in section mixed kinematic and isotropic hardening.

R:Ro—a—'é

& +s

where £ is the variable, which is updated in each strain reversal. R, comes from R for the case of first load
increment only and a1, a; are the constants, where are measured experimentally together with the Ro. The
variable € remains constant when it exists partial unloading.

Furthermore,

- elastic modulus
- hardening modulus
- curvature control parameter [

P

- curvature control parameter I1

t'-?:‘k h

- curvature control parameter I11

- normalized plastic strain variable

Q Uw

™

- total current stress and strain

]

- stress and strain where the asymptotes of the curve intersect

x

aa
®

- stress and strain at the last load reversal

Usually: b=H=0.02
The variable € is defined as follows:

¢ = ‘(‘5- "‘S.r)/gol

Where

E,‘":f;/E
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and:
(e.~¢.)

,which is the plastic strain from the previous load step. For the Steel Material we have the following values respectively:

£, ua = 0.002

‘5‘."'_1;&:}';;,_].!P = 008
£ = [0.08/0.002| = 40
a, =18
a, = 0.13
R, = 20
Upm=H'£+[.f:y+H~[|£;"_ ‘ ! "':,|+fyﬂ
c
y T »
ATy (95
Sy |
r’f apm&"%g:E'(g—sr)_'-gr /:
| :’, 6:-0 ’rl, =e
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St v O =H 8‘{.}:4’1‘] [8‘,’\: |_D;’MTMJ]

Figure 2: Geometric relations used to obtain the intersect of the asymptotes
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Also, it is considered as:
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Generally, we have:

CONCRETE

*
% s +b-E*

o*= e*(2-£%) <1
o*= o (1-at’+a) 51

o*=(1-b) (+¢'

~ RC) = nr%}g

Figure (a) Figure (b)

Also, this simulation is extended by Filippou et al. (1983) with the addition of some permutation of the asymptotes to take
into account the isotropic strain hardening. The shift of the asymptote was assumed to depend on the current maximum
plastic strain in the form:

where €max is the absolute maximum strain the time of reverse, €y, o, the strain and the stress during the yielding
and as, o4 are the constants, which are measured by experiments.
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Tootpomikij kparoven pafidov (and Filippou et al. 1983).

The specific model according to Menegotto Pinto for steel not considering the isotropic hardening in both compression and
tension obtains values, which are equal to a;=a3=0 and a;=04=1. In case isotropic hardening in compression is taken into
account, then the usual values are a;=0.01 and a,=7, while in the case of isotropic hardening in tension, then the proposed
values of the parameters experimentally are: a3=0.01, as well as a,=7.

2.3.1 Uniaxial material laws for concrete

Many of models for modelling the cyclic behaviour of concrete can be found in the literature. We will focus on uniaxial
relationships since general-purpose beam elements account only for the principal strain ex. Among the various models
proposed, some of well-known uniaxial laws are those proposed by Kent and Park [8], Sheikh and Uzumeri [11], Mander
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et al. [6], and Madas and Elnashai [5]. These relationships are able to consider the effect of the transverse reinforcement
on the uniaxial stress-strain relationship though the passive confinement model of Mander et al. [6] that is also
recommended in Eurocode 2 [1]. First, we present a fundamental stress-strain monotonic relationship for concrete
derived from first principles. Subsequently we discuss the model proposed by Kent and Park as modified by Scott et al.
[10]. This is a relatively simple relationship able to provide sufficient results for a wide range of applications.

2.3.2 The modified Kent-Park model

The modified Kent-Park model is based on the model initially proposed by Kent and Park [8] and latter modified by Scott
et al. [10] in order to account for the passive confinement due to the transverse reinforcement. Although there are several
models available, the modified Kent-Park model combines simplicity with accurate results and was therefore chosen in
order to demonstrate a simple concrete model. The model is also available in the material library of Opensees as the
Concrete01 model. Opensees also offers the Concrete02 model which differs from Concrete01 in the sense that is does
not consider the tensile strength of concrete. The discussion that follows can be found in reference [2]. According to the
Kent-Park model, the stress-strain relationship of concrete in compression consists of three branches:

Kf! 26/50—(8/30)2> e<g

T=N KT —Z(e—so)) >02Kf, g<e<sg,
0.2K f! g, <&

where g, = 0.002K, and
Psfin
K=14——
I,
3+0.297

z=n.5-*(-—
"\14557 1000

4+0.75p: /T [ 55 — n_mzﬁ)

where £ is the concrete strain corresponding to the crushing stress (maximum stress), K is a factor that accounts for the
effect of passive confinement, multiplying the maximum stress and assumed equal to 1 for the concrete cover. Z is the
slope of the descending branch (strain softening), J! is the concrete crushing strength in MPa, f, ; is the yield strength
of the transverse reinforcement in MPa and p; is the ratio of the volume of the stirrups over the volume of the confined
concrete core. i’ is the height of the confined concrete core and s, is the spacing of the transverse reinforcement. For
the confined concrete, the ultimate concrete strain £, can be conservatively estimated with the aid of Eq. 4.43, setting
o = 0.2K f!. Otherwise the expression that can be used is:

ﬂﬁjptﬁ i

£y = 0.004 4 300

For the concrete cover, when £, is exceeded the stress becomes equal to 0.2, while £, can be assumed approximately
equal to 0.005 [2]. When unloading and reloading. the stress-strain relationship follows the following rules:

() unloading takes place along a straight line that connects & (strain at unloading) with &, that lies on the horizontal
axis and is calculated as:
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g J0.145(g /&)’ +0.13e, /ey & /en <2
g | 0.707(e/6—2)+0834 & /gy >2

The first branch of Eq. 4.47 was proposed by Karsan and Jirsa [4] and relates the strains along the envelope with a
quadratic relationship. The second brach was latter added to Eq. 4.47 since for large strains the initial equation was
not producing realistic stress values.

TEPIFQEFPEYD Fruphase

Kf. il e II]H:|'Ji(5f|'Ilh.‘|'II rFKu[uflﬁr.p-::

Figure 2.3.2: Behaviour of the concrete model during loading and unloading.

(ii) The tensile capacity of concrete is neglected, since it does influence the response once concrete cracking occurs.
(iii) when reloading in compression, the stress is zero as long as the strain is less than the strain of full unloading. Once
this value is exceeded, reloading occurs following the path of unloading, but with opposite sign. In real life, the
unloading-reloading path is never the same, assuming it is similar has a small effect on the response obtained.

(iv) The slope E of the stress-strain curve is obtained from Eq. 4.43, thus:

2Kfl(1l—¢gfe0) e<8g
F=—e—=4x2 R S
E,<E

For the first load step, we assume that Ey = 2(K /7 /&), while for the unloading branch:

E= Gr."ll-rl'-‘r — 'Epj £ — Ep = m'.-'FE[]
Eq Er—Ep < G/ En

where @, is the siress at the point where unloading starts.

Figure 2.3.3 shows the behaviour of the modified Kent-Park model for a sinusoidal strain history of increasing amplitude.
This model does not account for the number of cycles and hence does not consider the energy absorbed in every cycle.
This parameter is important, but its study is beyond the scope of this book. The parameters assumed for the Concrete01
model in the following examples are: fpc = 29MPa, ecO = 0.2%, fpcu = 0.20 fc and ecu = 0.4%. The model is tested in
OpenSees using the truss element script and the following lines:
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#uniaxiaiMaterial Concretell $matTag $fpc SepscO $fpou Sepsy
uniaxiaiMaterial Concrete(l 1 -Z2000 -0.002 [expr -0.Z2+20000] -0.004

stress, o (kPa)

strain, x10°

Figure 2.3.3: The modified Kent-Park model.

2.3.3 Force-based fiber element

Force-based elements, also known as Aexibility elements, have been proposed by several researchers [18, 19, 15, 21].
This theory allows the use of a single beam-column element per member'. Compared to the commonly adopted
displacement-based elements, this approach improves considerably the accuracy and the efficiency of the analysis.
In order to determine the element resisting forces, force-based elements introduce an additional iterative process at
the element level, known as element-state determination phase. The element-state determination process complicates
the implementation of the force-based concept and, therefore, the formulation is not straightforward as in the case of
displacement-based elements.

The accuracy of force-based elements depends on the use of force interpolation functions in order to calculate the
section forces from the nodal forces, as opposed to displacement-based elements that calculate section deformations
from the nodal displacements. Force interpolation functions (b, ) are always “exact”, since the axial forces are constant
and the bending moments are linear. Compared to rotations which localize when the section yields. this this funda-
mental difference allows to circumvent the need for a denser mesh at the critical regions. However, all finite element
codes are stiffness based. in the sense that we apply forces and we receive as output displacements. This complicates
considerably the process since the element forces are not known beforehand. Furthemore, most material laws receive
strains as input and not stresses.

In the basic coordinate system, the element forces are denoted 8 and v are the element basic displacements. In the
displacement formulation we were calculating the section deformations d,..(x) from the basic displacements v. On
the other hand, force-based elements calculate, at an arbitrary cross-section v, the section forces Dy (x) from the
element basic forces 8§ = Ky v as follows:
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Dy = byl
N

X 0
[ x] [ {1-;,1 wL}] i:i

where b, is the matrix of force interpolation functions, M, M> are the moments at the beam ends and N is the axial
force within the member. Equation 8.2 implies that M(x) = (1 —x/L)M; + (x/L)M>. Calculating the section forces is

preferable compared to section displacements, since the bending moment diagram is always exact along the beam as

opposed to displacements and curvatures.
With the aid of the Virtual Work Principle we obtain:

Whasic = Wi, = av TE = .[L[‘. EEI o, dAdx

where
fﬁf_g-q._.ddz Ed:;, /asﬂrdﬁ. Ed,,,_,l}m_ﬁd L bi(x)
A

Eliminating the section forces 8, the element displacements in the basic system will be:

¥= fh';"[xjdm.dx
L

In the displacement-based formulation we integrate the section forces (Eq. 7.1()) to obtain the basic forces. Here this
operation is not possible since we integrate the displacements v instead. This complicates the element formulation as
the internal forces, necessary for the equilibrium check, are not available. To overcome this problem an additional step

known as element-sate determination is necessary,
The stiffness matrix is calculated from the inverse of the basic flexibility matrix Ky = I:"'J;,l~ as follows:

F 23 a" — a" ad]ff — a",’ adm. al}m_. ; F = hj_f h d
b E = adi:'n'.' as a ad_ll',pr aDie’r_‘ as e a __[ et *

where f,,,. is the section flexibility matrix, f,,, = k.. The stiffness matrix in the local coordinate system is obtained

as in T.hé displacement-based element (Eq. 7.15):

K, =bK,b’

When the element is elastic, the flexibility matrix is simpliﬁ-.ad2 o

= L -
e 0
EA
F=fhff.hd= i el
N i ¢ Lger Dy €Y 0 3E] 6El
6 k. I
L GEI 3E[ A

If Fy is inversed, we obtain the elastic element stiffness matrix of the displacement-based formulation
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2.3.4 Numerical integration

For the force-based element we prefer the Gauss-Lobatto quadrature. The commonly adopted Gauss quadrature will
also yield sufficient results in most cases, but experience has shown that Gauss-Lobatto quadrature performs better
in this case. The primary difference of the two quadrature methods is that the Gauss-Lobatto method introduces as
sections of integration the two beam ends where the bending diagram receives its maximum values. This 15 why
Gauss-Lobatto guadrature outperforms Gauss gquadrature in the case of force-based elements. The integration is thus
written:

I figp—l
[ 1@ =wis-D+waf()+ Y, wi f(&)
i h=2

while the weights and the position of the ngp Gauss points are given in Table 8.1. The weight values at the two
ends are small, but this is the location that the moment is maximum and therefore this integration scheme is more
efficient. The mimimum number of integration points is three, while as a rule-of-thump we use four Gauss-Lobatto
points with the force-based element. In principle Gauss-Lobatto quadrature is accurate for polynomials of order up
o 3 % ngp — 2. Note that in the case of the force-based element, we integrate the element flexibility matrix and the
section deformations (rather than the stiffness matrix and the element forces).

Force-based elements suffer from the so-called localization effects, which appear only in the case of softening response
(e.g. reinforced concrete members). Localization effects depend on the number of integration points and result to loss
of objectivity, which in the case of nonlinear static analysis appears as a loss of objectivity around the limit-point. * This
is because damage localizes at the relerence volume of the first contol point aod as g resull denser discretization Teads
to fictitious steeper softening branches. Several researchers have proposed ([6. 1, 17, 2]) regularization technigues in
order to amend the problem and obtain an objective response. In the absence of a more sophisticated regularization
scheme, the number of integration points may be selected so that the plastic hinge length is approximately equal to
actual plastic hinge length. In force-based elements. we consider the as plastic hinge length the distance of the Gauss
points at the member ends with their nearby sections, while several formulas that estimate the plastic hinge length can
be found in the literature for both steel and RC sections.

In the standard stiffness approach (displacement-based approach) the section deformations d,.. can be directly ob-
tained from the nodal displacements. In a flexibility-based element this task is performed iteratively:

Ad,,. =k_ AD,,. = Ad,,. = k_!b,(x)AS =

148

Adgee = kb (x)FyAv

According to Petrangelli and Ciampi [15], different element formulations have been proposed [18, 21], based on
Equation 8.9. Early efforts were based on different forms of shape functions, with the “variable shape functions™ of
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Zeris and Mahin [21] to be a very accurate approach. However, the use of such shape functions does not satisfy sirictly
the equilibrium along the beam, although the numerical problems that arise are not significant. To overcome this
problem, a procedure initially proposed by Ciampi and Carlesimo [5] has been refined by Spacone er al. [18. 19] and
was applied to a fibre-based. beam-column element. This approach is here discussed, guaranteeing that equilibrium is
always strictly satisfied even for highly nonlinear, or softening. problems. An alternative approach that requires a single
element iteration and satisfies equilibrium with the aid of the Newton-Raphson scheme was proposed by Neuenhofer
and Filippou [12].

The first step of the iterative procedure is to determine the vector of the basic forces from the Cartesian nodal dis-
placements. Then using the force interpolation functions by, the section forces are obtained and subsequently corrected
in agreement with the constitutive law of the fibres. The residual section forces are then multiplied with the section
flexibility and integrated along the element length to obtain the element residual displacements. The iterative process
at the element level is terminated when the residual deformations are minimized following an energy convergence
criterion. This is procedure is described step-by-step below.

For every element, we calculate the increment of the section forces AD,,,. and then the section deformations as

Ad!(x) =k L(x)AD! (x)
@/ (x) =d,_y(x) + Ad/(x)

Knowing the section deformations, we update the section forces and the section stiffness and subsequently we calculate
for every integration section the residual forces D)y, and deformations r,:

D}(x) =D/ (x)— D/ (x)
rr{rf_x} = k:,:fr}ﬂfr{'rl’

the section deformations are then integrated to obtain the residual element displacements:
v;" = j;_h,fx]lrj{_r}dx

If v, is not zero, we set v = —v, and perform iterations at the member level. Note that in Eq. 8.10 we need to invert
the section stiffness and calculate the fiber strains throuph the section deformations. This is due to the fact that almost
all constitutive @ — £ relationships receive as input strains and output stresses.
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A comprehensive review on the progress made in the past years on beam element formulations for members subjected
to high shear can be found in [4]. One of the early developments was that of Vecchio and Collins [20] who introduced a
dual-section analysis procedure where the element is discretized to layers, while iterations are performed for each layer
until the internal equilibrium between adjacent sections is satisfied. This approach i1s limited to 2D problem. Bairan
and Mari [3] extended the previous formulation to 3D cases by introducing an asymptotic approximation of the total
energy. For RC members, Petrangeli er al. [14] proposed a flexibility-based, shear-deformable beam element where
the longitudinal strain, £,, and the shear strain, t,,. are obtained from the element kinematics, while the transverse
strain, &, is calculated through lateral equilihriuni between steel and concrete fibres. This formulation is combined
with a biaxial law for concrete using the components of the two-dimensional strain tensor. Saritas and Filippou [16]
presented a force-based formulation for the seismic assessment of steel structures also using a multi-dimensional
material law, but their study is limited to two-dimensional problems and has been demonstrated on simple academic
examples only, while Navarro er al. [11] presented a formulation for concrete beams under combined loading. Marini
and Spacone [10] also presented a flexibility-based. shear-deformable beam element where a separate constitutive law
for the shear component was adopted. This is clearly a simplifying assumption but maintains all the advantages of
fibre beam elements in terms of robusiness and simplicity of the material laws. This approach was already discussed
in Chapter 5. Below we discus the generic approach proposed by Papachristidis er al. [13].

The implementation of 3D material laws in beam elements is a challenging task. Any material law that refers to the
three dimensional case can be used with the beam element formulation that we discussed here. The section kinemations
have been already presented in Chapter 5. The constitutive matrix C relates the increments of strains and stresses as:

dag=0C4e

For the general 3D case the six components of the stress tensor dip corresponds to the 6 x 6 material matrix, Cip.
Finite elements that inherently contain special stress constraints, such as plates, shells and beams usually are restricted
to simplified one- or two-dimensional constitutive laws. However, complicated materials are often described in the
3D continuum, thus hampering their application to these “structural™ tyvpe of elements. In order to incorporate a 3D
material law in such elements, local or global algorithms have been proposed in the past [7. 8, 9]. These algorithms
impose a zero-stress condition to the components of the stress tensor that according to the element formulation are,
or should be, equal to zero. For a beam in space the stress components @,,, 0... T., are assumed zero and thus they

are considered not active, while C is a 3 x 3 matrix corresponding to the active Oy, Ty, Tiz. In this study, we adopt
a local iteration algorithm so that for every fibre the non-active stresses are always set to zero. The algorithm is local
in the sense that iterations are performed on the fibre level until the unknown stresses are set to zero, thus does not
require any additional history variables, as opposed to global iteration procedures, such as the one proposed for shell
structures [7], which operates on the element level. Clearly local algorithms can be easily implemented within any
general-purpose FE code such as beam-column elements, as shown in [9].

For a beam in space, the non-active stresses are @y, O;;, Ty, While for a 2D problem o, is the only non-active stress.
The active components are the remaining elements of the 3D tensor. If the non-active components that need to be set
to zero are denoted with the subscript n and the active components with s, the incremental constitutive relationship is
partitioned as follows:

do=Cde=

ﬁlﬂml - Cmm Cmar ﬁgm
ﬁd" - C.r.u'n C.r.uu EEH

According to the local plane stress algorithm the C constitutive matrix of Equation ?? is obtained by condensing
Cip to the active stresses:
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C=Cum— C"”,C;: Coam

The algorithm is iterative and refers to every control point or integration-fibre. The constitutive matrix C is updated
using all the components of the strain vector, 5&,, and &&,. The component &&,, is directly calculated through the
incremental-iterative analysis, while €&, is obtained from the second equation of Eq. 8.13, assuming that d@,=0.
Thus. for the j* iteration:

e =g~y 5e!
-1
de,=—-C,, o8y

The above algorithm is general in application and can be combined with every material law that refers to the full
engineering stress vector, e.g with a J» plasticity material [13].

2.3.5 One -dimensional constitutive model

A simple mathematical model of the uniaxial experiment discussed in the previous section is formulated in what
follows. In spite of its simplicity the one-dimensional constitutive model contains all the essential features that
form the basis of the mathematical theory of plasticity. At the outset, the original stress—strain curve, that
resulted from the loading programme described in the previous section, is approximated by the idealised
version. The assumptions involved in the approximation are summarised in the following. Firstly, the difference
between unloading and reloading curves (segments ZoO1 and O1Y; of Figure 2.3.5.1) is ignored and points Zo and
Y1, that correspond respectively to the beginning of unloading and the onset of plastic yielding upon subsequent
reloading, are assumed to coincide. The transition between the elastic region and the elastoplastic regime is
now clearly marked by a non-smooth change of slope (points Yo and Y1). During plastic yielding, the stress—strain
curve always follows the path defined by OgYoY1Z1. This path is normally referred to as the virgin curve and is
obtained by a continuous monotonic loading from the initial unstressed state Oo. Under the above assumptions,
after being monotonically loaded from the initial unstressed state to the stress level oo, the behaviour of the
bar between states O1 and Y1 is considered to be linear elastic, with constant plastic strain, €p, and yield limit,

0o. Thus, within the segment 01Y1, the uniaxial stress corresponding to a configuration with total strain € is given
by:

Y

Figure 2.3.5.1: Uniaxial tension experiment with ductile metals.
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where E denotes the Young’s modulus of the material of the bar. Note that the difference
between the total strain and the current plastic strain, € — &P, is fully reversible; that is,
upon complete unloading of the bar, € — £” is fully recovered without further evolution of
plastic strains. This motivates the additive decomposition of the axial strain described in the
following section.

Z,

_—
slope E¥

— slope £

mir

0,
.;".J

Figure 2.3.5.2: Uniaxial tension experiment. Mathematical model.

One of the chief hypotheses underlying the small strain theory of plasticity is the decompo-
sition of the rotal strain, ¢, into the sum of an elastic (or reversible) component, £¢, and a

plastic (or permanent) component, =¥,

where the elastic strain has been defined as

=Ff — s

Following the above definition of the elastic axial strain, the constitutive law for the axial
stress can be expressed as
g=F % (6.4)
The next step in the definition of the uniaxial constitutive model is to derive formulae
that express mathematically the fundamental phenomenological properties enumerated in
Section 6.1. The items 1 and 2 of Section 6.1 are associated with the formulation of a yield
criterion and a plastic flow rule, whereas item 3 requires the formulation of a hardening law.
These are described in the following.
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The existence of an elastic domain delimited by a yield stress has been pointed out in item 1
of Section 6.1. With the introduction of a yield function, P, of the form

O(o, 0y) = |o| — 0y, (6.5)

the elastic domain at a state with uniaxial yield stress o, can be defined in the one-
dimensional plasticity model as the set

&={o| (o, 0,) <0}, (6.6)
or, equivalently, the elastic domain is the set of stresses o that satisfy
lo| < oy. (6.7)

Generalising the results of the uniaxial tension test discussed, it has been assumed in the
above that the yield stress in compression is identical to that in tension. The corresponding
idealised elastic domain is illustrated in Figure 6.3.

It should be noted that, at any stage, no stress level is allowed above the current yield
stress, 1.e. plastically admissible stresses lie either in the elastic domain or on its boundary
(the yield limit). Thus, any admissible stress must satisfy the restriction

&(o, 0y) <0. (6.8)

For stress levels within the elastic domain, only elastic straining may occur, whereas on its
boundary (at the yield stress), either elastic unloading or plastic yielding (or plastic loading)
takes place. This yield criterion can be expressed by

If®(0,0)) <0 => ¥ =0,
£ =0 for elastic unloading, (6.9)

If &(0,0,)=0 =
éP#0 for plastic loading.

G
elastic il it
domain

-«—
compression

Figure 2.3.5.3: Uniaxial model. Elastic domain.
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Expressions (6.9) above have defined a criterion for plastic yielding, i.e. they have set the
conditions under which plastic straining may occur. By noting in Figure 6.3 that, upon
plastic loading, the plastic strain rate £” is positive (stretching) under tension (positive o) and
negative (compressive) under compression (negative o), the plastic flow rule for the uniaxial
model can be formally established as

£P = 4 sign(o), (6.10)
where sign is the signum function defined as
) +1 ifa>0
51gn(a)={_l _— (6.11)

for any scalar a and the scalar 7 is termed the plastic multiplier. The plastic multiplier is
non-negative,

¥ 20, (6.12)
and satisfies the complementarity condition
& y=0. (6.13)

The constitutive equations (6.10) to (6.13) imply that, as stated in the yield criterion (6.9), the
plastic strain rate vanishes within the elastic domain, i.e.

D<) =>5=0=> &P =0, (6.14)

and plastic flow (£” # 0) may occur only when the stress level o coincides with the current
yield stress
lo|=0y = &=0 = 42>0. (6.15)
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Expressions (6.8), (6.12) and (6.13) define the so-called loading/unloading conditions of
the elasticplastic model; that is, the constraints

<0, %20, 42=0, (6.16)

establish when plastic flow may occur.

6.2.5. THE HARDENING LAW

Finally, the complete characterisation of the uniaxial model is achieved with the introduction
of the hardening law. As remarked in item 3 of Section 6.1, an evolution of the yield stress
accompanies the evolution of the plastic strain. This phenomenon, known as hardening, can

be incorporated into the uniaxial model simply by assuming that, in the definition (6.5) of @,
the yield stress o, is a given function

oy = a,(e7) (6.17)

of the accumulated axial plastic strain, 7. The accumulated axial plastic strain is defined as

t
e‘"E/ |£7| de, (6.18)
0

thus ensuring that both tensile and compressive plastic straining contribute to 7. Clearly, in
a monotonic tensile test we have

EP =¢gP, (6.19)
whereas in a monotonic compressive uniaxial test,
&P = —¢gP, (6.20)
The curve defined by the hardening function o (7) is usually referred to as the hardening
curve (Figure 6.4).
From the definition of &7, it follows that its evolution law is given by
& = |&¥|, (6.21)

which, in view of the plastic flow rule, is equivalent to

# =4, (6.22)

TootouAibn BaotAikn 30



"AAyoptSuot Eniduonc EAaotonAaotikwy Suothudtwy”

o
o\
c,(e")
—a
hardening slope, H
6.\
0 g

g’
Figure 2.3.5.4: One-dimensional model. Hardening curve.

|. Elastoplastic split of the axial strain

2. Uniaxial elastic law
a=E:"

3. Yield function
Bla, oy = |a| — oy

4. Plastic flow rule
£F = sign{o)

5. Hardening law
ay = ay(£¥)

=75

. Loading/unloading criterion

d<0, 420 B=10

So far, in the uniaxial plasticity model introduced above, the plastic multiplier, 4, was left
indeterminate during plastic yielding. Indeed, expressions (6.12) and (6.13) just tell us that
vanishes during elastic straining but may assume any non-negative value during plastic flow.
In order to eliminate this indetermination, it should be noted firstly that, during plastic flow,
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the value of the yield function remains constant
d =0, (6.23)

as the absolute value of the current stress always coincides with the current yield stress.
Therefore, the following additional complementarity condition may be established:

d4=0 (6.24)
which implies that the rate of ¢ vanishes whenever plastic yielding occurs (% # 0),

=0, (6.25)

and, during clastic straining, (4 = 0), ¢ may assume any value. Equation (6.25) is called the
consistency condition. By taking the time derivative of the yield function (6.5), onc obtains

& =sign(o) o — H &, (6.26)

where H is called the hardening modulus, or hardening slope, and is defined as (refer to
Figure 6.4)

doy,
F.
Under plastic yielding, equation (6.25) holds so that onc has the following expression for the
stress rate

H=H()= (6.27)

sign(o) &6 = H &r. (6.28)
From the clastic law, it follows that
o= E(s - ¢°). (6.29)

Finally, by combining the above expression with (6.22), (6.28) and (6.10), the plastic
multiplier, 4, is uniquely determined during plastic yielding as

sign(o) € = =k |£]- (6.30)

Y=U+E H+E

6.2.8. THE ELASTOPLASTIC TANGENT MODULUS

Let us now return to the stress—strain curve of Figure 6.2. Plastic flow at a generic yield limit
produces the following tangent relation between strain and stress

og=E7¢, (6.31)

where E*? is called the elastoplastic tangent modulus. By combining expressions (6.31),
(6.29), the flow rule (6.10) and (6.30) the following expression is obtained for the elastoplastic

tangent modulus
P EH (6.32)
T E+H o
Equivalently, the hardening modulus, #, can be expressed in terms of the clastic modulus

and the clastoplastic modulus as
E*P

H=T—%=&

(6.33)
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A mathematical model of a uniaxial tension experiment with o doctile metal has been
described in the previous section. As already mentioned, the one-dimensional equations
contain all basic components of a general elastoplastic constitutive model;

# the elastoplastic strain decomposition;

& an elastic law;

& & vield criterion. stated with the use of o vield function:

# a plastic How rule defimng the evoluiion of the plastic strumn; and
» 1 hardening law, charactensing the evolution of the yield limit.

The generalisation of these concepts for application in two- and three-dimensional situations
5 described in this section.

Following the decomposition of the wmiaxial strain grven in the previous section, the
comesponding generalisation is obtained by splitting the strain fenser, £, into the sum of
an elastic component, =, and a plastic component, =7; that is,

E=£%4 P, (6341

The tensors €% and £* are known, respectively, as the elastic strain tensor and the plastic
strain fensor. The corresponding rate form of the additive split reads

E=g"+£EF. (6.35)
Mote that (6.35) together with the given initial condition
elty) = e*(tg) +”(tn) (6.36)

at a (pseudo-fime £, 15 eguivalent to (634 )

The formulation of general dissipative models of solids within the framework of thermody-
namics with an idernal vanable has been addressed in Section 3.5 of Chapter 3. Recall that
the free energy potential plays a crucial role in the derivation of the model and provides the
constitutive law for stress, The starting point of the theories of plasticity treated in this book
is the assumption that the free energy. 1, is a function

Wi, £, a),

of the total strain, the plastic strain (taken as an mternal varable) and a set o of mternal
variables associated with the phenomenon of hardening. It is usual to assume that the free
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energy can be split as

V(e e, a) = v (e — ) + vF(a)
= () + v¥'(a) (6.37)
into a sum of an clastic contribution, ¢, whose dependence upon strains and internal

variables appears only through the elastic strain, and a contribution due to hardening, ¢'F.
Following the above expression for the free energy, the Clausius-Duhem inequality reads

(a-ﬁav‘):é°+a:é"—At620, (6.38)
ds

where
A=pavtjoa (6.39)

is the hardening thermodynamical force and we note that —o is the thermodynamical force
associated with the plastic strain while the symbol * indicates the appropriate product
between A and &. The above inequality implies a general clastic law of the form

_ Oy

so that the requirement of non-negative dissipation can be reduced to
TP, A; &, &) 2 0, (6.41)
where the function T#, defined by
TPo, A e’ a)=0:e" - Ara, (6.42)

is called the plastic dissipation function.

This chapter is focused on materials whose clastic behaviour is linear (as in the uniaxial
mode] of the previous section) and isotropic. In this case, the clastic contribution to the free
energy is given by

AV (e)=%€":D:¢€"
=Geh:es+ 3 K(5) (6.43)

where D is the standard isotropic elasticity tensor and G and K are, respectively the
shear and bulk moduli. The tensor €5 is the deviatoric component of the clastic strain and
sy, = tr[e] is the volumetric clastic strain. Thus, the general counterpart of uniaxial elastic
law (6.4) is given by

o=D":¢&"
=2G Ef‘ + K E:, I (6.44)
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Recall that in the umaxial yield criterion it was established that plastic Aow may occur when
the uniaxial stress attains a critical value. This principle could be expressed by means of a
yield function which 15 negative when only elastic deformations are possible and reaches
zero when plastic flow 1s imminent. Extension of this concept to the three-dimensional case
is obtained by stating that plastic How may occur only when

bie, A)=1D. i6.45)

where the scalar yield function, @, is now a function of the stress fensor and a set A of
hardening thermodynamical forces. Analogously to the umiaxial case, a yield function defines
the elastic domain as the set

&=1{o |Pla. A) <0} (6.46)
of stresses for which plastic yielding 1s not possible. Any stress lying in the elastic domain
or on its boundary 1s said to be plastically admissible. We then define the set of plastically
admissible stresses (or plasiically admissible domain) as

&= {o|dle, A) <0}, (6.47)

The yield locus, i.e. the set of stresses for which plastic yielding may occur, 15 the boundary
of the elastic domain, where ®{o, A) = 0. The yield locus in this case 15 represented by a
hypersurface in the space of stresses. This hypersurface is termed the yield surface and is
defined as

F={o|dle. A)=0}. (6.48)

The complete characterisation of the general plasticity model requires the definition of the
evolution laws for the internal vanables, Le. the vanables associated with the dissipative
phenomena. In the present case, the intemal variables are the plastic strain tensor and the
sel ov of hardening vanables. The following plastic flow rule and hardemng law are then
postulated

£F =4 (6.49)
o= H, (6.50)
where the tensor
N=Nle. A) (6.51)
1s termed the flow vector and the function
H=Ho A) (6.52)

15 the generalised hardening modulus which defines the evolution of the hardening vanables.
The evolution equations (6.49) and (6.50) are complemented by the loading/unloading

conditions
&< 520, Py=0, (6.53)

that define when evolution of plastic strains and internal variables (4 # 1) may occur.
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1. Additive decompaosition of the strain tensor

g=g"+ &', Elty)=e(ty)+E" (k)
2. Free-energy function
th=wE", o)
where x is a set of hardening internal variables
3. Constitutive equation for & and hardening thermodynamic forces A

- i b
='f1 = cem—
P be F oa
4. Yield function
& =dio. A}

5. Plaztic flow rule and hardening law

E" =+ Nia, A)

o=+ Hia A)

6. Loadingfunloading criterion

<0, =0, 50=0

In the formulation of multidimensional plasticity models, it is often convenicnt to define the
flow rule (and possibly the hardening law) in terms of a flow (or plastic) potential. The starting
point of such an approach is to postulate the existence of a flow potential with general form

V= ¥(o, A) (6.54)

from which the flow vector, IV, is obtained as

v
N= 0_ (6.55)
do
If the hardening law is assumed to be derived from the same potential, then we have in
addition v
=, 6.56
A (6.56)
When such an approach s adopted, the plastic potential, W, 1s required to be a non-negative
convex function of both o and A and zero-valued at the origin,

w(0,0) =0. (6.57)

These restrictions ensure that the dissipation inequality (6.41) is satisfied a priori by the
evolution equations (6.49) and (6.50).

Associative flow rule

As we shall see later, many plasticity models, particularly for ductile metals, have their yield
function, ¥, as a flow potential, i.c.
V=, (6.58)

Such models are called associative (or associated) plasticity models.
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Here we extend to the multidimensional case the procedure for the determination of the plastic
multiplier, 4, described in Section 6.2.7 for the one-dimensional plasticity model. Following
the same arguments employed in Section 6.2.7, the starting point in the determination of 7 is
the consideration of the additional complementarity equation

$4 =0, (6.59)
which implies the consistency condition
b=0 (6.60)

under plastic yielding (when 4 # 0). By differentiating the yield function with respect to time,
we obtain 8 o

. [ P .

<b—-a—a.a O—A*A. (6.61)

By taking into account the additive split of the strain tensor, the clastic law and the plastic
flow rule (6.49), we promptly find the obvious rate form

G=D":(6—£&")=D": (-4 N). (6.62)

This, together with the definition of A in terms of the free-energy potential (refer to
expression (6.39)) and the evolution law (6.50), allow us to write (6.61) equivalently as

. 0% . . _.p ab _yr
4’——00.0.(5 e)+—aA*p—aa2 * Q.

2 b gy
=0—0.D.(€_“’N)+10_A*p0a2 * H. (6.63)

Finally, the above expression and the consistency condition (6.60) lead to the following closed
formula for the plastic multiplier

2 OP/do:D": &
b = / e : . (6.64)
P[00 : D" : N — 00 [OA % pi2yr f0a? « H
In the clastic regime, the rate constitutive equation for stress reads simply
g=D":¢&. (6.65)

Under plastic flow, the corresponding rate relation can be obtained by introducing expres-
sion (6.64) into (6.62). The rate equation reads

o=D":¢, (6.66)
where D7 is the elastoplastic tangent modulus given by

(D°: N) @ (D* : 99 /do)

P _ DE
o o d9/do : D" : N — Q0 [IA % p2yYr[da? « H'

(6.67)

In obtaining the above expression, we have made use of the fact that the symmetry (refer to
cquation (2.87), page 29) of the elasticity tensor implies

db/do:DF: =D :0d/do: E. (6.68)

The fourth-order tensor D? is the multidimensional generalisation of the scalar modulus
EeP associated with the slope of the uniaxial stress-strain curve under plastic flow. In the
computational plasticity literature, D*? is frequently referred to as the continutm elastoplastic
tangent operator.

Remark 6.1 (The symmetry of D”). Note that if the plastic flow rule is associative, i.c.
if N= d®/do, then the continuum clastoplastic tangent operator is synunetric. For models
with non-associative plastic flow, D? is generally unsymmetric.

It should be noted that expressions (6.55) and (6.56) only make scnse 1f the potential W
is differentiable. When that happens, the flow vector, IV, can be interpreted as a vector
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N

Isosurfaces of
¥(-.A)

Figure 6.5. The flow vector. Smooth potential.

normal to the iso-surfaces of function W in the space of stresses (with fixed A). A schematic
representation of IV in this case is shown in Figure 6.5. The generalised modulus, H, can be
interpreted in a completely analogous way.

The requirement of differentiability of the flow potential is, however, too restrictive and
many practical plasticity models are based on the usc of a non-differentiable W. Specific
examples are given later in this chapter. For a more comprehensive account of such theories
the reader is referred to Duvaut and Lions (1976), Eve et al. (1990) and Han and Reddy
(1999). In such cases, the function ¥ is called a pseudo-potential or generalised potential
and the formulation of the cvolution laws for the internal variables can be dealt with by
introducing the concept of subdifferential sets, which generalises the classical definition of
derivative.!

Subgradients and the subdifferential

Let us consider a scalar function y : 2" — . The subdifferential of y at a point Z is the sct
oy(z)={s€R" |y(z)—y(&@)2s-(x-z), Yz €R"}. (6.69)

If the set dy is not empty at &, the function y is said to be subdifferentiable at Z. The elements
of Qy are called subgradients of y. If the function y is differentiable, then the subdifferential
contains a unique subgradient which coincides with the derivative of ¥,

oy = {(‘:z_y} (6.70)

A schematic illustration of the concept of subdifferential is shown in Figure 6.6 for n = 1.
In this case, when y is subdifferentiable (but not necessarily differentiable) at a point Z, the
subdifferential at that point is composed of all slopes s lying between the slopes on the right
and left of Z (the two one-sided derivatives of y at ).
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Figure 6.6. The subdifferential of a convex function.

Plastic flow with subdifferentiable flow potentials

Assume now that the (pscudo-) potential ' is a subdifferentiable function of & and A. At
points where W is non-differentiable in &, the isosurfaces of W in the space of stresses contain
asingularity (corner) where the normal direction is not uniquely defined. A typical situation is
schematically illustrated in Figure 6.7 where two distinet normals, N and [N, are assumed
to exist. In this case, the subdifferential of ¥ with respect to &, denoted Jp'1, is the sct of
vecetors contained in the cone defined by all lincar combinations (with positive cocfficients)
of N, and N,. The generalisation of the plastic flow rule (6.49) is obtained by replacing
expression (6.55) for the flow vector with

NEO,Y, 6.71)

i.c. the flow vector iV is now assumed to be a subgradient of W. Analogously, the evolution
law (6.50) for & can be generalised with the replacement of the definition (6.56) by

He -0, (6.72)

At this point, it should be remarked that differentiability of W with respect to the stress
tensor is violated for some very basic plasticity models, such as the Tresca, Mohr-Coulomb
and Drucker-Prager theories to be scen later. Therefore, the concepts of subgradient and
subdifferential sets introduced above are important in the formulation of evolution laws
for &P.

An altemative definition of the plastic flow rule with non-smooth potentials, which
incorporates a wide class of models, is obtained as follows. Firstly assume that a finire
number, n, of distinct normals (Vy, Na, . . ., V,,) is defined at a generic singular point of an
isosurface of W'. In this case, any subgradient of ¥ can be written as a lincar combination

Nt +e2Na2+ - -+ en Ny,
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Figure 6.7. The flow vector. Non-smooth potential.

with non-negarive cocflicients ¢y, ¢;. . . . , ¢,..¥ Based on this observation, the flow rule (6.49)
can be generalised as

=3 %N, 6.73)

=l

with all n plastic multipliers required to be non-negative
%20, i=1,...,n (6.74)

The generalisation of the plastic flow law, in this format, was originally proposed by Koiter
(1953).

Multisurface models

The above concepts are particularly useful in defining evolution laws for mudrisurface
plasticity models. In a generic multisurface model, the elastic domain is bound by a ser of
n surfaces in the space of stresses which intersect in a non-smooth fashion. In this case, n
yicld functions (95, ¢ =1,..., n) are defined so that cach bounding surface is given by an
cquation

(o, A)=0. (6.75)

The clastic domain in this case rcads
&=l |ble,A)<0, i= l....,n}, (6.76)

and the yicld surface, i.c. the boundary of & is the set of all stresses such that @;(er, A) =0
for at least one i and & ;(e, A) < 0 for all other indices j # .

Assuming associativity (¥ = @), the situation discussed previously, where the subgradient
of the flow potential is a linear combination of a finite number of normals, is recovered. Thus,
the plastic flow rule can be written in the general form (6.73) with the normals being defined
here as P

N;= —. (6.77)
do

In the present case, the standard loading/unloading criterion (6.53) is replaced by the
generalisation

®; <0, 420, P®4:=0, (6.78)

which must hold for each i =1,...,n. Note that summation on repeated indices is not
implied in the above law.
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The general constitutive model for elastoplastic materials has been established in the previous
section. There, the yield criterion has been stated in its general form, without reference to any
particular criteria. In this section, some of the most common yield criteria used in engineering
practice are described in detail; namely, the criteria of Tresca, von Mises, Mohr-Coulomb and
Drucker-Prager.

6.4.1. THE TRESCA YIELD CRITERION

This criterion was proposed by Tresca (1868) to describe plastic yielding in metals. The
Tresca yield criterion assumes that plastic yielding begins when the maximum shear stress
reaches a critical value.

Recall the spectral representation of the stress tensor,
3
== Z oi e e, (6.79)
i=1

where o; are the principal stresses and e; the associated unit eigenvectors, and let oy, and
Omin De, respectively, the maximum and minimum principal stresses

Omax = Max(e), 02, 03);

. (6.80)
Omin = min(e), 02, 03).
The maximum shear stress, 7o, is given by
Tmax — '%(am:xx - amin)- (6.81)

According to the Tresca criterion, the onset of plastic yielding is defined by the condition
-'i'(amax = Omin) = Ty (a)- (6.82)

where 7, is the shear yield stress, here assumed to be a function of a hardening internal
variable, a, to be defined later. The shear yield stress is the yield limit under a state of pure
shear.
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In view of (6.82), the yield function associated with the Tresca yield criterion can be
represented as
B(0) = $(Omax = Tmia) = 7(@), (6.83)
with the onset of yielding characterised by ¥ = 0. Alternatively, the Tresca yield function
may be defined as
®(0) = (Omax = Tmin) — ay(ﬂ), (6.84)

where o, is the uniaxial yield stress
Ty =27, (6.85)

that is, it is the stress level at which plastic yielding begins under uniaxial stress conditions.
That oy is indeed the uniaxial yield stress for the Tresca theory can be established by noting
that, when plastic yielding begins under uniaxial stress conditions, we have

Omax = Oy,  Omin = 0. (6.86)

The substitution of the above into (6.82) gives (6.85). The elastic domain for the Tresca
criterion can be defined as

E&={o|¥(o,0a,) <0}. (6.87)

Pressure-insensitivity

Due to its definition exclusively in terms of shear stress, the Tresca criterion is pressure
insensitive, that is, the hydrostatic pressure component,

p=julo] =3 (o1 + 02+ a3), (6.88)

of the stress tensor does nor affect yielding. Indeed, note that the superposition of an arbitrary
pressure, p*, on the stress tensor does not affect the value of the Tresca yield function

B(o +p*I) = B(o). (6.89)

We remark that the von Mises criterion described in Section 6.4.2 below is also pressure-
insensitive. This property is particularly relevant in the modelling of metals as, for these
materials, the influence of the hydrostatic stress on yielding is usually negligible in practice.

Isatropy

One very important aspect of the Tresca criterion is its isofropy (a property shared by the
von Mises, Mohr—Coulomb and Drucker-Prager criteria described in the following sections).

Note that, since ¥ in (6.83) or (6.84) is defined as a function of the principal stresses,
the Tresca yield function is an isotropic function of the stress tensor (refer to Section A.1,
page 731, for the definition of isotropic scalar functions of a symmetric tensor), i.e. it satisfies

B(o) = B(QoQ™) (6.90)

for all rotations @Q; that is, rotations of the state of stress do not affect the value of the yield
function.

At this point, it is convenient to introduce the following definition: A plastic yield criterion
is said to be isotropic if it is defined in terms of an isotropic yield function of the stress tensor.
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Graphical representation

Since any isotropic scalar function of a symmetric tensor can be described as a function of
the principal values of its argument, it follows that any iso-surface (i.e. any subset of the
function domain with fixed function value) of such functions can be graphically represented
as a surface in the space of principal values of the argument. This allows, in particular, the
yield surface (refer to expression (6.48), page 150) of any isotropic yield criterion to be
represented in a particularly simple and useful format as a three-dimensional surface in the
space of principal stresses.

-Vip

(a) (b)

von Mises

Tresca

o] a,

Figure 6.9. (a) The w-planc in principal stress space and, (b) the 7-plane representation of the Tresca
and von Mises yield surfaces.
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In principal stress space, the Tresca yield surface, i.e. the set of stresses for which ¢ =0,
is graphically represented by the surface of an infinite hexagonal prism with axis coinciding
with the hydrostatic line (also known as the space diagonal), defined by o) = 09 = 3. This
is illustrated in Figure 6.8. The elastic domain (for which ¢ < 0) corresponds to the interior
of the prism. Due to the assumed insensitivity to pressure, a further simplification in the
representation of the yield surface is possible in this case. The Tresca yield surface may
be represented, without loss of generality, by its projection on the subspace of stresses
with zero hydrostatic pressure component (o) + o2 + o3 = (). This subspace is called the
deviatoric plane, also referred to as the w-plane. It is graphically illustrated in Figure 6.9(a).
Figure 6.9(b) shows the 7-plane projection of the Tresca yield surface.

Multisurface representation

Equivalently to the above representation, the Tresca yield criterion can be expressed by means
of the following six yield functions

Oy(r, o)) =1 =3 — Ay
®a(o,0,) =02 — 01— 0,

P3(0,0)) =02 ~0, 0,

(6.91)
Py(0,0)) =03 -0, ~0,
P5(o, 0y) =03 — 02— 0y
g (o, dy) =0) =02~ 0y,
so that, for fixed o, the equation
‘I’,‘(d, dy) =0 (692)

corresponds to a plane in the space of principal stresses foreachi=1,...,6 (Figure 6.10).
In the multisurface representation, the elastic domain for a given o,, can be defined as

&= {a|di(o,0,)<0,i=1,...,6}. (6.93)

Definitions (6.87) and (6.93) are completely equivalent. The yield surface — the boundary of
&'~ is defined in this case as the set of stresses for which ®;(o, o, ) = 0 for at least one i with
®;(o,0,) <Oforj#i.

Invariant representation

Alternatively to the representations discussed above, it is also possible to describe the yield
locus of the Tresca criterion in terms of stress invariants. In the invariant representation,
proposed by Nayak and Zienkiewicz (1972) (see also Owen and Hinton 1980, and Crisfield
1997), the yield function assumes the format

¢ =2\/Jcosb -0, (6.94)
where .J, = J5(8) is the invariant of the stress deviator, s, defined by

Jr=-his)=birls®) = Lo:a= 4 sl (6959
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Figure 6.10. The Tresca criterion. Multisurface representation in principal stress space.

Recall that the stress deviator is given by
s=o - i(tro)l (6.96)
The Lode angle, 0, is a function of the deviatoric stress defined as

% sin™! (%ﬁi) . (6.97)

2J;

0

where J3 is the third principal invariant of stress deviator®
Jy = Iy(s) = det s = X tr(s)™. (6.98)

The Lode angle is the angle, on the deviatoric plane, between s and the nearest pure shear
line (a pure shear line is graphically represented in Figure 6.11). It satisfies
0y w

- <0< r3 (6.99)
Despite being used often in computational plasticity, the above invanant representation results
in rather cumbersome algorithms for integration of the evolution equations of the Tresca
model. This is essentially due to the high degree of nonlineanty introduced by the trigono-
metric function involved in the definition of the Lode angle. The multisurface representation,
on the other hand, is found by the authors to provide an optimal parametnisation of the
Tresca surface which results in a simpler numencal algorithm and will be adopted in the
computational implementation of the model addressed in Chapter 8.

TootouAibn BaotAikn 45



"AAyoptSuot Enilvonc EAactonAaotikwyv Zugtnuatwy”

Also appropriate to describe plastic yielding in metals, this criterion was proposed by
von Mises (1913). According to the von Mises criterion, plastic yielding begins when
the J» stress deviator invariant reaches a critical value. This condition is mathematically
represented by the equation

Jz = R(a), (6.100)

where R is the cnitical value, here assumed to be a function of a hardening internal vaniable,
a, 1o be defined later.

The physical interpretation of the von Mises criterion is given in the following. Since the
elastic behaviour of the matenals described in this chapter is assumed to be linear elastic, the
stored elastic strain-energy at the genenic state defined by the stress o can be decomposed as
the sum

Ve = 5 + ¥, (6.101)
of a distortional contnbution,
g 1 1
pvd:‘-)c.s:s:EJg, (6.102)
and a volumetric contribution,
ph= R (6.103)

where G and K are, respectively, the shear and bulk modulus. In view of (6.102), the
von Mises criterion is equivalent to stating that plastic yielding begins when the distortional
elastic strain-energy reaches a critical value. The cormresponding critical value of the
distortional energy is

1

= R.

G

It should be noted that, as in the Tresca criterion, the pressure component of the stress tensor
does not take part in the definition of the von Mises criterion and only the deviatoric stress
can influence plastic yielding. Thus, the von Mises criterion is also pressure-insensitive.

In a state of pure shear, i.¢. a state with stress tensor

o

Jo =12, (6.105)

Thus, a yield function for the von Mises criterion can be defined as

O(o) =/ Jos(o)) = 7, (6.106)

where 7, = / Rtis the shear yield stress. Let us now consider a state of uniaxial stress:

L= I =]
oo
o000

] , (6.104)

we have, s = o and

a 0 0
[e]=1]0 0 0Of. (6.107)
0 00
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In this case, we have

%a 0 0
s]=|0 -3 O (6.108)
0 0 =30
and
Jr =102 (6.109)

The above expression for the Jy-invaniant suggests the following alternative definition of the
von Mises yield function:
O(o) = qlo) — oy, (6.110)

where oy = V31 is the uniaxial yield stress and
q9(e) = /3 Ja(s(0)) (6.111)

is termed the von Mises effective or equivalent stress. The uniaxial and shear yield stresses
for the von Mises criterion are related by

oy = V37, (6.112)

Note that this relation differs from that of the Tresca criterion given by (6.85). Obviously, due
to its definition in terms of an invariant of the stress tensor, the von Mises yield function is an
isotropic function of .

The von Mises and Tresca criteria may be set to agree with one another in either uniaxial
stress or pure shear states. If they are set by using the yield functions (6.84) and (6.110) so
that both predict the same uniaxial yield stress o, then, under pure shear, the von Mises
criterion will predict a yield stress 2/v/3 (& 1.155) times that given by the Tresca criterion.
On the other hand, if both criteria are made to coincide under pure shear (expressions (6.83)
and (6.106) with the same 7y), then, in uniaxial stress states, the von Mises cniterion will
predict yielding at a stress level /3/2 (2 0.866) times the level predicted by Tresca’s law.

The yield surface (¢ = 0) associated with the von Mises criterion is represented, in the
space of principal stresses, by the surface of an infinite circular cylinder, the axis of which
coincides with the hydrostatic axis. The von Mises surface is illustrated in Figure 6.8 where
it has been set to match the Tresca surface (shown in the same figure) under uniaxial stress.
The comresponding =-plane representation is shown in Figure 6.9(b). The von Mises circle
intersects the vertices of the Tresca hexagon. The yield surfaces for the von Mises and
Tresca critenia set to coincide in shear is shown in Figure 6.11. In this case, the von Mises
circle is tangent to the sides of the Tresca hexagon. It is remarked that, for many metals,
experimentally determined yield surfaces fall between the von Mises and Tresca surfaces.
A more general model, which includes both the Tresca and the von Mises yield surfaces as
particular cases (and, in addition, allows for anisotropy of the yield surface), is described in
Section 10.3.4 (starting page 427).

6.4.3. THE MOHR-COULOMB YIELD CRITERION

The critena presented so far are pressure-insensitive and adequate to describe metals. For
materials such as soils, rocks and concrete, whose behaviour is generally charactenised by
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Figure 6.11. Yicld surfaces for the Tresca and von Mises criteria coinciding in pure shear.

a strong dependence of the yield limit on the hydrostatic pressure, appropriate description
of plastic yielding requires the introduction of pressure-sensitivity. A classical example of
a pressure-sensitive law is given by the Mohr—Coulomb yield criterion described in the
following.

The Mohr—Coulomb criterion is based on the assumption that the phenomenon of
macroscopic plastic yielding is, essentially, the result of frictional sliding between material
particles. Generalising Coulomb’s friction law, this criterion states that plastic yielding begins
when, on a plane in the body, the shearing stress, T, and the normal stress, o,,, reach the
critical combination

T=c-—0ptang, (6.113)

where c is the cohesion and ¢ is the angle of internal friction or frictional angle. In the above,
the normal stress, oy, was assumed tensile positive.

The yield locus of the Mohr-Coulomb criterion is the set of all stress states such that there
exists a plane in which (6.113) holds. The Mohr-Coulomb yield locus can be easily visualised
in the Mohr plane representation shown in Figure 6.12. Itis the set of all stresses whose largest
Mohr circle, i.e. the circle associated with the maximum and minimum principal stresses
(Omax and omin, respectively), is tangent to the critical line defined by 7 = ¢ - g, ang.
The elastic domain for the Mohr-Coulomb law is the set of stresses whose all three Mohr
circles are below the cntical line. From Figure 6.12, the yield condition (6.113) is found o
be equivalent to the following form in terms of principal stresses

Tmax ; Tmin cosd=c-— (Um.\x ; Omin s Tmax ;‘ Tmin sin ¢) tan &, (6.114)

which, rearranged, gives
(Cmax = Tmin) + (Tmax + Omin) Sin @ =2 ¢ cos . (6.115)

In view of (6.115), a yield function expressed in terms of the principal stresses can be
immediately defined for the Mohr-Coulomb criterion as

P(o, ¢) = (Fmax — Omin) + (Fmax + Omin) sine — 2 ¢ cos 6. (6.116)
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T

T=c¢ -0, tan ¢ (critical line)

Figure 6.12. The Mohr-Coulomb criterion. Mohr plane representation.

Due to its definition in terms of principal stresses, this yield function is an isotropic function
of o. The corresponding yield surface (9 =0) is a hexagonal pyramid aligned with the
hydrostatic axis and whose apex is located at

p=ccoto (6.117)

on the tensile side of the hydrostatic axis. The Mohr-Coulomb surface is illustrated in
Figure 6.13. Its pyramidal shape, as opposed to the prismatic shape of the Tresca surface, is
a consequence of the pressure-sensitivity of the Mohr—Coulomb criterion. It should be noted,
however, that both criteria coincide in the absence of intemal friction, i.e. when ¢ = (. Asno
stress state is allowed on the outside of the yield surface, the apex of the pyramid (point A in
the figure) defines the limit of resistance of the material to tensile pressures. Limited strength
under tensile pressure is a typical characteristic of materials such as concrete, rock and soils,
to which the Mohr-Coulomb criterion is most applicable.

Multisurface representation

Analogously to the multisurface representation of the Tresca criterion, the Mohr-Coulomb
criterion can also be expressed by means of six functions:

P(o,c)=0y -3+ (01 +03)sind—2¢ cosd

Py(o,c)=09 — 03+ (02 +03)sind—2¢ cos

Pyo,c)=0; oy | (02 | al)nfno: 2¢ coe.o 6.118)

Pyo,c)=03 -0+ (03+0y)sind—-2c cosd

Ps(o,c) =03 — o2+ (0a+02)sind —2¢ cosd

Ig(0,€c) =0y =0p+ (0y +03)8in0 =2 ¢ cos 0,

whose roots, ¢,(o, ¢) =0 (for fixed ¢), define six planes in the principal stress space.
Each plane contains one face of the Mohr-Coulomb pyramid represented in Figure 6.13.
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Figure 6.13. The Mohr-Coulomb yicld surface in principal stress space.

The definition of the elastic domain and the yield surface in the multisurface representation
is completely analogous to that of the Tresca critenion.

Invariant representation

Analogously to the invanant representation (6.94) of the Tresca criterion, the Mohr-Coulomb
yield function can be expressed as (Owen and Hinton 1980, and Crisfield 1997):

D= (coso - % sin 0 sin é) VJa(8) + p(o) sing — ¢ cos é, (6.119)
where the Lode angle, 0, is defined in (6.97). As for the Tresca model, in spite of its
frequent use in computational plasticity, the invariant representation of the Mohr-Coulomb
surface renders more complex numerical algorithms so that the multisurface representation is
preferred in the computational implementation of the model described in Chapter 8.

6.4.4. THE DRUCKER-PRAGER YIELD CRITERION

This criterion has been proposed by Drucker and Prager (1952) as a smooth approximation o
the Mohr-Coulomb law. It consists of a modification of the von Mises criterion in which an
extra term is included to introduce pressure-sensitivity. The Drucker-Prager criterion states
that plastic yielding begins when the J, invariant of the deviatoric stress and the hydrostatic
stress, p, reach a critical combination. The onset of plastic yielding occurs when the equation

Va(s)+np=¢, (6.120)
is satisfied, where 7 and € are matenial parameters. Represented in the principal stress space,
the yield locus of this criterion is a circular cone whose axis is the hydrostatic line. For p = 0,
the von Mises cylinder is recovered. The Drucker-Prager cone is illustrated in Figure 6.14.
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-63 -

=0 \J;:

Figure 6.14. The Drucker-Prager yield surface in principal stress space.

In order to approximate the Mohr-Coulomb yield surface, it is convenient to define the
Drucker-Prager yield function as

P(o, c) = J2(s(o)) + nplo) =€ e, (6.121)

where ¢ is the cohesion and the parameters 17 and £ are chosen according to the required
approximation to the Mohr-Coulomb criterion. Note that the isotropy of the Mohr-Coulomb
yield function follows from the fact that it is defined in terms of invaniants of the stress
tensor (J2(s) and p). Two of the most common approximations used are obtained by making
the yield surfaces of the Drucker-Prager and Mohr-Coulomb critena coincident either at
the outer or inner edges of the Mohr-Coulomb surface. Coincidence at the outer edges is

obtained when .
6 sin@ 6 cos o

1= G -snd) ° BE-sng)’ (6.122)

whereas, coincidence at the inner edges is given by the choice

— 6 sin @ o 6 cos o
V3 (3 +sing)’ V3(3+sing)

The outer and inner cones are known, respectively, as the compression cone and the
extension cone. The inner cone matches the Mohr-Coulomb criterion in uniaxial tension and
biaxial compression. The outer edge approximation matches the Mohr—Coulomb surface in
uniaxial compression and biaxial tension. The w-plane section of both surfaces is shown in
Figure 6.15. Another popular Drucker-Prager approximation to the Mohr-Coulomb criterion
is obtained by forcing both criteria to predict identical collapse loads under plane strain
conditions. In this case (the reader is referred to Section 4.7 of Chen and Mizuno (1990) for

(6.123)
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derivation) the constants 7 and £ read

. 3 tan o - 3
= VO+12 tan e~ VO+12 tan‘ o

For all three sets of parameters above, the apex of the approximating Drucker-Prager cone
coincides with the apex of the corresponding Mohr-Coulomb yield surface. It should be
emphasised here that any of the above approximations to the Mohr—Coulomb criterion can
give a poor description of the material behaviour for certain states of stress. Thus, according
to the dominant stress state in a particular problem to be analysed, other approximations may
be more appropriate. For instance, under plane stress, which can be assumed in the analysis
of structures such as concrete walls, it may be convenient (o use an approximation such that
both criteria match under, say, uniaxial tensile and uniaxial compressive stress states. For
the Mohr-Coulomb criterion to fit a given uniaxial tensile strength, f7, and a given uniaxial
compressive strength, f7, the parameters ¢ and ¢ have to be chosen as

(6.124)

¢=sin'l(;':;;',), c=%tan¢. (6.125)
[S t c t

The corresponding Drucker-Prager cone (Figure 6.16) that predicts the same uniaxial failure
loads is obtained by setting

3 sin¢ 2cos0
= . £= 1 6.126
U SR o

Its apex no longer coincides with the apex of the onginal Mohr-Coulomb pyramid. For
problems where the failure mechanism is indeed dominated by uniaxial tension/compression,
the above approximation should produce reasonable results. However, if for a particular
problem, failure occurs under biaxial compression instead (with stresses near point fj,
of Figure 6.16), then the above approximation will largely overestimate the limit load,
particularly for high ratios f./f{ which are typical for concrete. Under such a condition,
a different approximation (such as the inner cone that matches point f; ) needs to be adopted
to produce sensible predictions. Another useful approximation for plane stress, where the
Drucker-Prager cone coincides with the Mohr—Coulomb surface in biaxial tension (point
ft.) and biaxial compression (point f;_), is obtained by setting
_ 3 sing 2cos0

0-2\/§t 6—\/5'

Drucker-Prager approximations to the Mohr-Coulomb criterion are thoroughly discussed by
Chen (1982), Chen and Mizuno (1990) and Zienkiewicz et al. (1978).

(6.127)

6.5.1. ASSOCIATIVE AND NON-ASSOCIATIVE PLASTICITY

It has already been said that a plasticity model is classed as associative if the yield function,
&, is taken as the flow potential, i.e.
v =d. (6.128)
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Figure 6.15. The w.plane section of the Mobr-Coulomb surface and the Drucker-Prager approxima.
toas.

Figure 6.16 Plxne stress. Drucker-Prager approximation matching the Mohr-Coulomb surface in
umaxial tensioa and unixxial compressioa
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Any other choice of flow potential charactedses a nom-associative (0t non-associated)
plasticity model.

In associative models, the evolution equations for the plastic strain and hardening variables
are given by

p_ . 0%
&= e (6.129)
> ob

Associativity implies that the plastic steain rate is a tensor normal 10 the yield surface in the

space of stresses. In the generalised case of non-smooth yield surfaces, the flow vector is a
subgradient of the yield function, i.e. we have

&=4N; Ned,d. (6.131)
In non-associative models, the plastic strain rate is not normal to the yield surface in general.

6.5.2. ASSOCIATIVE LAWS AND THE PRINCIPLE OF MAXIMUM PLASTIC
DISSIPATION

It can be shown that the associative laws are a consequence of the principle of maximum
plastic dissipation. Before stating the peinciple of maximum plastic dissipation, recall that
for a state defined by a bardening force A, the admissible stress states are those that satisly
P(e, A) < 0. Thus, it makes sense to define

of = {(o, A) | #(o, A) < 0} (6.132)

as the set of all admissible pairs (combinations) of stress and hardening focce. The principle
of maximum dissipation postulates that among all admissible pairs (o*, A*) € &, the actual
state (o, A) maximises the dissipation function (6.42) for a given plastic strain rate, &¥, and
rate & of hardening internal variables. The principle of maximum plastic dissipation requires
that, for given (27, &),

TP(a, A; 8%, &) = TP(0", A”; &7, &), V (07, A°) € o, (6.133)

In other words, the actual state (o, A) of stress and hardening force i a solution (o the
following constrained optimisation peoblem:
maximise TP(o*, A*, &% &)
(6.134)
subjectto®(e*, A¥) <0.

The Kihn-Tucker optimality conditions (Luenberger, 1973, Chapter 10) for this optimisation
problem are precisely the associative plastic flow rule (6.129), the associative hardening
rule (6.130) and the loading/unloading conditions

B(e, A) <0, 420, Blo,A)y=0. (6.135)

TootouAibn BaotAikn

54



"AAyoptSuot Enilvonc EAactonAaotikwyv Zugtnuatwy”

Remark 6.2, The postulate of maximum plastic dissipation, and e corresponding asso-
crative Jaws, are not universal. Based on physical considerations, maximwn dissipation
has been shown 1o hold jo ceystal plasticity and is particulacly successful wihsen applied 10
the descraprion of ioetals. Nevertheless, for many matenals, panicularly soils and granulae
materials in general, associanve Jaws feequently do not coreespond (o experineantsl evidence.
Jo such cases. the maximuin dissipation postulate s cleardy oot applicable and tls use of
oon-assocmtive laws is essential.

6.53. CLASSICAL FLOW RULES
The Prandil-Reuss equations

The Pranhil-Reuss plasucity law is the flow rule obuined by wking the von Mises vield
functioa (6.110) as the flow porential. The corresponding flow vector is givea by

N= o= = —|\/i%a)| = /3 ] (6.136)

and the flow cule cesulis in "
P =3 S — 6.137
#=1ig Gt

Here, it should be noted tat e Prandil-Reuss Oow vector is e denvative of an isolropic
scalar fuonctioa of a symmetnce easoe = e von Mises yield function. Thus (cefer 10
Section A.1.2, page 732, where the deavauve of isotropic fuactions of Uus 1ype & discussed),
N aod o wre coaxial, i.e. the principal dicections of N comeide with those of . Due 10 1he
pressure-inseasitivity of Uie voo Mises yield function, 1be plasuc Dow veclor is deviatoric.
The Praohil-Reuss flow vector is a tensor parallel 1o the deviatonice projection s of the stress
tensoc. 16 prancipal stress representanon is depicied in Figure 6.17. The Prandu-Reuss ule
is ususlly emploved in conjunction with Uie von Mises criterion and te resulting plasicay
maodel is referred 10 as the voa Mises associsive model or, sioply, Uie voa Mises model.

Associative Tresca

The associmive Teesca flow cule vtlises whe yield functon (6.84) as the flow polential. Since
@ here is also an isowopic function of o, e cie of pladic stain has e suoe peincipal
directions as o. The Teesca vield function is dilfecentiable when the three principal stresses
are distioct (o # 02 # og) and oon-dilferentiable whea two principal sieesses coincide (a1
e edges of e Tresca hexagoaal pasin). Heace, he Tresca associative plastic low cule is
seoecally expressed as

ef = -}N, (6.138)
where NV & a subgeadieat of e Tresca functioca
N € ded. (6.139)
Jts multisurfoce-based cepresemanon ceads
i 0
O,
o 3 = ) hectiad
é’—ng —§7 = (6.140)
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Figure 6.17. The Prundtl-Reuss flow vectoc.

with the yield functions ; defined by (6.91). Each vector N is normal to the plane defined
by &; =0.

The above flow rule can be altematively expressed as follows. Firstly assume, without loss
of generality, that the principal stresses are oedered as oy 2> 02 2 o3, so that the discussion
can be concentrated on the sextant of the w-plane illusteated in Figure 6.18. Theee different
possibilities have to be considered in this sextant:

(a) yielding at a stress state on the side (main plane) of the Tresca hexagoa (P, =0,%, <0
and &g < 0);

(b) yielding from the right comer, R ($y =0, &4 = 0 and , < 0); and
(¢) Yielding from the left comer, L (dy =0, P, =0and &4 <0).

When the stress is oa the side of the hexagon, only one multiplier may be non-zero and the
plastic fow rule reads
& =4N° (6.141)

where the flow vector is the noemal 1o the plane &4 = (), given by

£ Jab J
N EN‘=8—;-=8—0(¢r,—a’)

=e1 Qe —e3@ ey, (6.142)

with e; denoting the eigenvector of o associated with the principal stress ;. In deriving the
last right-hand side of (6.142), use has been made of the expression (A.27) of page 736 for
the derivative of an eigenvalue of a symmetsic tensor.

Atthe right and left corners of the hexagon, where two planes intersect, two multipliers
may be noa-zero. Thus, the plastic flow equation is

P =4"N"+4" N> (6.143)
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Figure 6.18 The associalive Tresca fow rule.

The vector N* is the normal 10 the plane By =0, already defined. In the right corner
(cepeated minimum principal stress), the secoad vectoe, N, is nonoal 10 the plane bg =0
and is obtained analogously 1o (6.142) as

N'=N"=¢;®e; —e2®ea. (6.143)

In the left corner (repeated maximum principal stress), N8, is normal 10 the plane &, =0,
NP=N?=e:@e1 —e3®es. (6.145)

[t should be noted thay, as for the Prandtl-Reuss wule, whe plasiic flow peedicted by the
associatve Teesca Jaw is volume-preserving. Indeed, onote that, in the above, we have travially

tr N*=tr N¥=0. (6.146)

This is dee to the pressure-insensitivity of the Tresca yield functioa.

Associative and non-associative Mohr-Cotlomb

In 1he assocmtive Mobe-Coulomb law, the Mohr-Coulomb yield function (6.116) is adopted
as the flow potential. [1s molusurface representation is based oa the yield functions (6.118).
The Oow rule, which requires consideration of the intersections between the yield surfaces,
is derived in a manoer analogous (o the Tresca law descabed above. However, it should be
ooted that in addition 10 the edge singulanties, the present surface has an exira singulanty in
its apex (Figure 6.13). Plastic yielding may theo take place from a face, from an edge or from
the apex of the Molr-Coulomb pyramid.

Again, in the derivation of the flow rules at faces and edges, it is convenient 10 assuine
that the principal stieesses are ordeced &8 oy > 02 > o3 o that, without loss of generality, the
analysis can be reduced to a single sextant of a cross-sectioa of the Mohr-Coulomb pyeamid
as illustrated in Figure 6.19. The situmion is ideatical to Teesca's (Figure 6.18) except that
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Figure 6.19. The Mobr-Coulomb Sow rule; (3) faces and edges, and (b) apex.

the normal vectors N ® and IN'® are no longer deviatoeic, i.e. they have a non-zero component
along the hydrostatic axis (the vectoes shown in Figure 6.19 are deviatoric projectioas of the

acrual noemals). For plastic yielding from the face, the fow rule is given by
& =4N°" (6.147)
where N° is noemal 1o the plane &y =0,

N = e =a—z_ [os — o3 + (o3 + o) sin ¢]
=(1+singd)e; @®ey — (1 —singd)es ® es. (6.148)
At the corners, the above flow rule is replaced by
&P =4"N°"+4* N (6.149)

Attbe righs (extension) coener, R, the second vector, N®, is normal to the plane & =0 and
is given by

NP=(1+sing)e; ey — (1 —sing) e, © e, (6.150)
whereas, at the left (compression) corner, L, the teasoe N'* is normal 10 the plane $, =0,
Nt=(1+sing)es@ ey —(1 —sing) ey © 5. (6.151)

At the apex of the Mohr-Coulomb surface, all six planes intersect and, therefore, six
noemals are defined and vp to six plastic muoltapliers may be pon-zero. This situstion is
schematically illustrated in Figure 6.19(b). The plastic strain rate tensor lies within the
pyramid defined by the six normals:

[
&= Z 4 N-. (6.152)
=1
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[tis important to note that, due 10 the pressure sensitivity of the Molr-Coulomb craterion,
the associative Mohr-Coulomb rule predicts a non-zero volumetric plastic straining. This is in
coalrast 10 the Prandul-Reuss and associative Tresca laws The volumetric component of the
plastic strain rate in the associative Mohlr-Coulomb law can be obtained by expanding (6.152)
in principal stress space taking into account the definitioas of N°. This gives

."l
2P p ¥
1 a 0 3 3 0 a -
egl=|0 a a 0 3 3| |21 (6.153)
el 3 3 0 a a o] |l
3 4
3
where
a=1+sing, F=-1+snd. (6.1549)
The above trivially yields
6
d=g+B+4=2sin6) 4. (6.155)

As all 4'°s are non-negative, the volumetnce plastic stran rate is positive and, therefore,
dilatant. The pbenomenon of dilatancy during plastic flow is observed for many materi-
als, particulardy geomatenals. However, the dilatancy predicted by the associative Mohr—
Coulomb law is often excessive. To overcome this peoblem, it is necessary 10 use a non-
associated flow rule in conjunction with the Mohr-Coulomb eniterion. The noa-associsted
Mohr-Coulomb baw adopts, as fow potential, a Mohr-Coulomb yield function with the
frictional angle & replaced by a different (smaller) angle ¢, The angle ¢ is called the dilarancy
angle and the amount of dilation predacted is propoctional to its sine. Note that for y» = 0, the
plastac fow becomes purely deviatoric and the flow rule reduces 1o the associative Tresea law.

Associative and non-associative Drucker-Prager

The associative Drucker-Prager model employs as flow potential the yield function defined
by (6.121). To denve the corresponding flow rule, one should note fiest that the Drucker—
Prager function is singular at the apex of the yield surface and is smooth anywhere else.
Thus, two situatioas need (o be coasidered:

(a) plastic yielding 3 (smooth portion of) the cone surface; and
(b) plastic yielding at the apex.

Al the cone surface, where the Drucker-Prager yield function s differentiable, the flow
vector is obtained by simply differentiating (6.121) which gives (Figure 6.2(Xa))
1 n

N= s+21, (6.156)
2\ als) 3

U << o that is, we define

Y(o, c) = /Ja(s(o)) + 3 p. (6.162)
where 7) is obtained by replacing ¢ with @ in the definitzon of i given by (6.122);. (6.123),
or (6.124),. In other words,

6 ssn vy

V3 (3 —siny)’
when the outer cone approximation 1o the Molhr—Coulomb criterion is employed. When the
nnes cone approximation is used,

(6.163)

=

6 s3n

i (6.164)
V3 (3 +siny)

7

whereas, for the plane strain match,

3 tany

n= ——
VO + 12 tan® ¢

The non-mssociated Drucker-Prager flow vector differs from its associated counterpart
only in the volumetric component which, for the noa-associated case, reads

(6.165)

N_= 5. (6.166)

If the dilstancy angle of the non-associative potential is chosen as ¢ = 0, then the volumetric
compoonent, N, vanishes and the flow rule redueces 1o the Prandtl-Reuss law that predicts
volume-preserving plastic flow (refer 10 Fagure 6.20(a)).
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\ axw

(a) & X
%

Figore 6.20. The Drucker-Prager flow vector: (3) cone surface. and (b) apex.

where 57 is given by (6.122)4, (6.123) or (6.124);, according 10 the chosen approximation (o
the Mohr-Coulomb surface. The Oow rule is then

" =45 N. (6.157)

The deviatoric/volumetric decomposition of the Drucker-Prager flow vectore gives

1
Ni=———=3s, N.=1. (6.158)
2/ ha(s)
Al the apex singulanty, the flow vectoe 1s an element of the subdifferential of the yield

function (6.121):
Ned,b. (6.159)

It lies within the complementary cone to the Drucker-Prager yield surface, 1.e. the cone
whose wall is noemal 10 the Drucker-Prager cone illustrated in Figure 6.20(b). From standard
properies of subdifferentials (Rockafellar, 1970; Rockafellar and Wets, 1998) it can be
established that the deviatocichvolumetnac split of NN in this case is given by

Ng€dePg, Nu= 1, (6.160)

where d, = ,/J,(sj. Expressions (6.157), (6.158) and (6.160) result in the following rate of
(dilatant) volumetnic plastic strain foe the associative Drucker-Prager fow rule:

=9 (6.161)

This expression is analogous to (6.155).

Similarly to the assocmtive Mohr-Coulomb flow rule, the often excessive dilatancy
predicted by the associated rule m the present case i1s avoided by using a non-associated
law. The non-associative Drucker-Prager law is obtained by adopling. as the flow potential,
a Drucker-Prager vield function with the factional angle ¢ replaced by a dilstancy angle

V<< o that is, we define

VYo, c) = /Ja(s(e)) + i p. (6.162)
where 7 is obtained by replacing ¢ with ¢» in the definitzon of i given by (6.122);, (6.123),
or {(6.124),. In other words,

6 sy
V3(3—siny)’
when the outer cone approximation 1o the Mohr—-Coulomb criterion is employed. When the
InNer Cone Approxunation is used,

(6.163)

=

P 6 sy ) (6.162)
\.; 3(3+sny)
whereas, for the plane strain match,
M (6.165)

VO+ 12 tan® ¢

The non-msociated Drucker-Prager flow vector differs from its associated counterpart
only in the volumetric component which, foe the noa-associated case, reads

N_= 3. (6.166)

If the dilstancy angle of the non-associative potential is chosen as ¢ = 0, then the volumetric
compooent, N, vanishes and the flow rule reduces 1o the Prandtl-Reuss law that predicts
volume-preserving plastic flow (refer 10 Figure 6.20(a)).
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A material model is said to be pesfecily plestic i wer Sarderning s allowed, that is, the yicld
stress level does nof depend in any way on the degree of plastification. In this case. the yield
surface remains fixed regardless of any deformation process the matenial may experience
and. in a uniaxial test, the elastoplasoe modulus, E°, vanishes. In the von Mises, Tresca,
Drucker—Prager and Mohr—Coulomb models descrbed above, perfect plasticity comesponids
o 8 comstamt uniaxial vield stress, o, (or constant cohesion, o). Figure 6.21 shows the siress—
sirain curve of a typical unaxial cyclic (ension—compression) test with a perfectly plastic

o uniaxial

E,=0 evelic rest

[ fixed yield surface

Figure 6.21. Perfect plasticity. Uniaxial test and w-plane representation.

von Mises model along with the corresponding m-plane representation of the yield surface.
Perfectly plastic models are particularly suvitable for the analysis of the stability of structures
and soils and are widely employed in engineering practice for the determination of limit loads
and safety factors.

A plasticity model is said to be isotropic hardening if the evolution of the yield surface is
such that, at any state of hardening, it corresponds to a uniform (isotropic) expansion of the
initial yield surface, without translation. The uniaxial model described in Section 6.2 is a
typical example of an isotropic hardening model. For that model, the elastic domain expands
equally in tension and compression during plastic flow. For a multiaxial plasticity model
with a von Mises yield surface, isotropic hardening corresponds to the increase in radius of
the von Mises cylinder in principal stress space. This, together with a typical stress-strain
curve for a uniaxial cyclic test for an isotropic hardening von Mises model is illustrated in
Figure 6.22.

The choice of a suitable set (denoted ex in Section 6.3) of hardening internal variables
must be obviously dependent on the specific characteristics of the material considered. In
metal plasticity, for instance, the hardening internal variable is intrinsically connected with
the density of dislocations in the crystallographic microstructure that causes an isotropic
increase in resistance to plastic flow. In the constitutive description of isotropic hardening,
the set e normally contains a single scalar variable, which determines the size of the yield
surface. Two approaches, strain hardening and work hardening, are particularly popular in
the treatment of isotropic hardening and arc suitable for modelling the behaviour of a wide
range of materials. These are described below.

Strain hardening

In this casc the hardening internal state variable is some suitably chosen scalar measure of
strain. A typical example is the von Mises ¢ffective plastic strain, also referred to as the
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uniaxial
evclic 1est

Figure 6.22. Isotropic hardening. Uniaxial test and w-plane representation.

von Mises equivalent or accumulated plastic strain, defined as

t 1
EPE/(; ,/%a:éi’a:/o ‘/gnel’nd:. (6.167)

The above definition generalises the accumulated axial plastic strain (6.18) (page 145) of the
one-dimensional model to the multiaxially strained case. Its rate evolution equation reads

#=f1ere0= \f2 )10, (6.168)

or, equivalently, in view of the Prandt-Reuss flow equation (6.137),
=4 (6.169)

Accordingly, a von Mises isotropic strain-hardening model is obtained by letting the uniaxial
yield stress be a function of the accumulated plastic strain:

oy = oy(¥). (6.170)

This function defines the strain-hardening curve (or strain-hardening function) that can be
obtained, for instance, from a uniaxial tensile test.

Behaviour under uniaxial stress conditions

Under uniaxial stress conditions the von Mises model with isotropic strain hardening
reproduces the behaviour of the one-dimensional plasticity model discussed in Section 6.2
and summarised in Box 6.1 (page 146). This is demonstrated in the following. Let us assume
that both models share the same Young’s modulus, E, and hardening function o, = o, (Z7).
Clearly, the two models have identical uniaxial elastic behaviour and initial yield stress.
Hence, we only need to show next that their behaviour under plastic yielding is also identical.
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Under a uniaxial stress state with axial stress o and axial stress rate & in the direction of the
base vector e, the matnix representations of the stress tensor and the stress rate tensor in the
three-dimensional model are given by

1 00 1 00
[]=c |0 0 0|, [o]=6|0 0 O (6.171)
0 00 0 00
The corresponding stress deviator reads
1 0 0
[s]=3c 10 =% 0 (6.172)
0 0 -3
In this case, the Prandtl-Reuss flow equation (6.137) gives
1 0 0
[EF]=¢"10 -2 0|, (6.173)
0 0 -3
where
éP =4 sign(o) (6.174)

is the axial plastic strain rate. Note that the above expression coincides with the one-
dimensional plastic flow rule (6.10). Now, we recall the consistency condition (6.60), which
must be satisfied under plastic flow. In the present case, by taking the derivatves of the
von Mises yield function (6.110), with o, defined by (6.170), we obtain

b=N:0-H#=0, (6.175)

where IV = ¢ /o is the Prandi-Reuss flow vector (6.136) and H = H(2”) is the hard-
ening modulus defined in (6.27). To conclude the demonstration, we combine (6.175)
with (6.136), (6.171)2 and (6.172) to recover (6.28) and, then, following the same arguments
as in the one-dimensional case we find that, under uniaxial stress conditions, the isotropic
strain hardening von Mises model predicts the tangential axial stress—strain relation

EH :
E+H™

which is identical to equation (6.31) of the one-dimensional model.

(6.176)

Work hardening

In work-hardening models, the variable defining the state of hardening is the dissipated plastic
work,Y w?, defined by

¢
w"E/ o:eldl. (6.177)
0
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O
w = u’ 4+ w P

Figure 6.23. The plastic work.

In a uniaxial test, for instance (Figure 6.23), the total work w necessary to deform the material
up to point P is given by the total area under the corresponding stress—strain curve. Part of this
work, w*, is stored in the form of elastic energy and is fully recovered upon elastic unloading.
The remaining (shaded) area, w?, is the plastic work. It corresponds to the energy dissipated
by the plactic mechanisme and eannot he recavered From the definition of wP i evolution
equation is given by

wf =o: &P (6.178)

An isotropic work-hardening von Mises model is obtained by postulating
oy = oy(wP). (6.179)

This defines the work-hardening curve (or work-hardening function).

Equivalence between strain and work hardening

Under some circumstances, the strain-hardening and work-hardening descriptions are equiv-
alent. This is shown in the following for the von Mises model with associative flow
rule (6.137).

The substitution of (6.137) into (6.178), together with the identity /3/2||s| = o, valid
for the von Mises model under plastic flow, gives

uf = oy &, (6.180)
of, equivalently, -
E - O’y . (6. 181 )

As o, is strictly positive (o, > 0), the above differential relation implies that the mapping
between wP and &P is one-to-one and, therefore, invertible so that

wP = wP () (6.182)

and
&P =P (uwP). (6.183)
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This allows any given strain-hardening function of the type (6.170) to be expressed as an
equivalent work-hardening function,

oy(?) = ay(wP) = oy (£ (wP)), (6.184)

and any given work-hardening function of the type (6.179) to be expressed as an equivalent
strain-hardening function,

oy (wP) = 6,(7) = o, (WP(e)). (6.185)

Expressions (6.184) and (6.185) establish the equivalence between the strain and work-
hardening descriptions for the von Mises model with associative flow rule.

Linear and nonlinear hardening

A model is said to be linear hardening if the strain-hardening function (6.170) is linear, i.e.
if it can be expressed as
o (&¥) =0y, + HEP, (6.186)

with constant oy, and H. The constant oy, is the initial yield stress, i.e. the uniaxial yield
stress at the initial (virgin) state of the material, and H is called the linear isotropic hardening
modulus. Any other hardening model is said to be nonlinear hardening. Note that perfect
plasticity (defined in Section 6.6.1) is obtained if we set 5 = 0 in (6.186).

It should also be noted that a linear work-hardening function corresponds in general to an
equivalent nonlinear strain-hardening function (i.e. a nonlinear hardening model). This can
be easily established by observing that (6.181) defines a nonlinear relation between w¥ and
£P if o, is not a constant.

When the yield surfaces preserve their shape and size but translate in the stress space as a
rigid body, kinematic hardening is said to take place. It is frequently observed in experiments
that, after being loaded (and hardened) in one direction, many materials show a decreased
resistance (o plastic yielding in the opposite direction (Lemaitre and Chaboche, 1990). This
phenomenon is known as the Bauschinger effect and can be modelled with the introduction
of kinematic hardening. A number of constitutive models have been proposed to describe
elastoplastic behaviour under cyclic loading conditions (Lemaitre and Chaboche, 1990; Mréz,
1967: Skrzypek, 1993). The typical result of a uniaxial cyclic test showing the Bauschinger
effect is illustrated in Figure 6.24. The evolution of a kKinematically hardening von Mises-type
vield surface (in the deviatoric plane) used to model the phenomenon is shown alongside. The
yield function for the kinematically hardening model is given by

P(e, B) = /3 Ja(nle, B)) - oy, (6.208)

o, B)=s(c)- (6.209)

is the relative stress tensor, defined as the difference between the stress deviator and the
symmetric deviatoric (stress-like) tensor, 3, known as the back-stress tensor. Note that, by
definition, the relative stress is deviatoric. The back-stress tensor is the thermodynamical
force associated with Kinematic hardening and represents the translation (Figure 6.24) of the
yield surface in the space of stresses. The constant o, in (6.208) defines the radius of the yield
surface. When 8 =0, we have 1y = s and the yield surface defined by & = 0 is the isotropic
von Mises yield surface with uniaxial yield stress o,,.

It is important to observe that, unlike the isotropically hardening von Mises model, the
yield function ¢ defined by (6.208) is not an isotropic function of the stress tensor for
kinematically hardened states (3 # 0). The function (6.208) is an isotropic function of the
relative stress, 7). Analogously to expression (6.208), it is possible to introduce Kinematic
hardening in other plasticity models simply by replacing o with a relative stress measure,
defined as the difference o — 3, in the definition of the corresponding yield function.

where
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o unfaxtal
cyclic test
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Figure 6.24. Kinematic hardening and the Bausdhinger effect. Uniaxial test and m-plane representation.
Loading in one direction results in decreased resistance to plastic yielding in the opposite direction.

Plastic flow rule with kinematic hardening

The von Mises model with kinematic hardening is used in conjunction with an associative
flow rule. The flow vector in this case reads

ad n
Nz om= /32 6210
3~ VI S

and we have the following plastic strain rate equation:
& =4 N=4/3L 6211
=i A

This rule extends the Prandtl-Reuss equation to account for kinematic hardening. Note that
the plastic flow is in the direction of the (deviatoric) relative stress, 1, and coincides with the
Prandtl-Reuss equation if 3 = 0.

Prager’s linear kinematic hardening

To complete the definition of the kinematic hardening plasticity model, evolution equations
for B arc required. One of the most commonly used laws is Prager's linear kinematic
hardening rule, where the rate evolution equation for 3 is given by

A=dHiP =4, [é Hale (6212)
. ‘/: liml
The material constant /{ is the linear kinematic hardening modulus.

Behaviour under monotonic uniaxial stress loading

For monotonic loading under uniaxial stress conditions, the stress-strain behaviour of the
model defined by equations (6.208), with constant o, = 7., (6.211) and (6.212) and initial
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state of hardening defined by 3 =0 is identical to the behaviour of the purcly isotropic
hardening von Mises model with lincar hardening curve (6.186) and initial state of hardening
& =0. Itis assumed in this statement that both models share the same Young's modulus, E.
Under the above conditions, it is clear that both models have the same clastic behaviour and
uniaxial yield stress, o, . To show that their plastic behaviour also coincides, let us consider
again a uniaxial test with loading in the direction of the base vector e;. In this case, the
stress, stress rate and stress deviator tensors have the matrix representations given in (6.171)
and (6.172). Now note that the integration of the rate equation (6.212) with initial condition
B=0(.c.7= 5)and 5 as in (6.172) gives a back-stress tensor of the form

1 0 0]
B=8f0-% 0], (6213)
0 0 -3
where 3 is the axial back-stress component. With the above, we obtain for the relative stress
tensor " .
1 0 0
(Ml=n(0-3 0}, (6214)
0 0 -3
where
n=3%-3 (6215)
is the axial relative stress. From (6.212) and (6.214) we obtain
. 1 0 0
B]=2H0H |0 -+ 0, (6.216)
0 0 -3

where ¥ is the axial plastic strain rate given by
é" = 4 sign(n). (6217)

Now, by recalling (6.60) and specialising (6.61) for the present case we have that, under
plastic yielding, the following consistency condition must be satisfied:

.

After some straightforward tensor algebra, taking into account (6.171)2 and the above
expressions for 3, 3, the definition of 1, and the identity

o ad 3 n
o %% v (6219)
a8~ "9 V2wl
equation (6.218) yiclds
o= He'. (6.220)
Then, with the introduction of the clastoplastic split of the axial strain rate, together with the
equation
&= E¢¢, (6.221)
of the lincar elastic model under uniaxial stress conditions, into (6.220), we obtain
EH
=—2%, 6.222
B e

which coincides with the stress rate equation (6.176) of the von Mises isotropic strain-
hardening model with constant /1. To complete the demonstration, let us assume that the
uniaxial loading is monotonic, i.c. we have cither £ > 0 or £ < () throughout the entire loading
process. In this case, the integration of (6.222) having the initial yield stress (o, for both
models) as the initial condition produces the same stress—strain curve as the isotropic model.
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CHAPTER 3

3. Ansys Software- Problem Statement and Description

3.1 Introduction

In this chapter, it is represented different cases of nonlinear constitutive laws of
the yield criteria of Von Mises with bilinear hardening, isotropic, kinematic and mixed
hardening, Tresca, Mohr -Coulomb, Drucker-Prager. Also, it is examined the
constitutive model for structured soils (MSS) especially the soil interaction with
Kavvadas Clays yield criterion and the uniaxial material for concrete and steel
especially the 3d fiber beam and force-based fiber element utilizing Ramberg Osgood,
Menegotto Pinto, Kent and Park for both monotonic and cyclic loading cases. Then, it
is thoroughly described the way that data given to Ansys Workbench, like the
geometry of the structure-model, the boundary conditions, the assumptions of the
nonlinear constitutive laws and the solver that used.

3.2 Problem Statement

For Von Mises model

0,000 2,500 5,000 (m) ZA X
| —SaSaaaaaa— S

1,250 3,750
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Triangle Surface Mesher Program Controlled
Topology Checking Yes
Finch Tolerance Please Define
Generate Pinch on Refresh No

= | Statistics
Modes 27
Elements 8
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Steps | Time [s] [_ [A] Equivalent Stress (Min) [Pa] |r' [B1 Equivalent Stress (Max) [Pa] |[" ¥ Directional Deformation (Min) [m] ||" [C] Directional Deformation (Max) [m]
1 1,6-002 1,4585e+005 . 1-3,1303e-004
1 26002 3,1506e~005 06e+005 | -6,941e-004
1 3,6-002 4.7781e-005 .mt»s
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a3 011 1,7477e+006 | 1,7477e+006 |-3,8621e-003 |-3,8621e-003
® new_material_2 /@
Fatigue Data at zero mean stress comes from 1998 ASME BPV Code, Section 8, Div 2, Table 5-110.1 ~
Density 78500 kg/m®
¥ Isotropic Elasticity
Derive from Young's Medulus and Poisson's Ratio
Young's Modulus Be+08 Pa
Poisson's Ratio 0,30000
Bulk Modulus £,6667e+028 Pa
Shear Modulus 3,076%9¢+08 Pa
Tde+7
Multilinear Isotropic Hardening i
S Na+hA W
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Figure 3.2.1: Geometry of the structure

3D Fiber Beam- Force based fiber element
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% General_Materials. xm

Multilinear Kinemabc Hardening

Fatigue Data at zero mean stress

comes from 1998 ASME BPV Code,
Section 8, Div 2, Table 5-110,1

T Structural Steel

=2 General_Materials. xm

Fatigue Data at zero mean stress
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Section 8, Div 2, Table 5-110.1
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Engineering Data: Material View

@ Rebars-Non-Linear Steel /@
Derive from Young's Modulus and Poisson's Ratio
Young's Modulus 21e+11 Pa
Poisson's Ratio 0,30000
Bulk Modulus 1,75e+11 Pa
Shear Modulus 8,076%+10 Pa

T5e+8

Multilinear Isotropic Hardening L

2 Ceen 1.0e-3
Isotropic Secant Coefficient of Thermal Expansion 1,2e-05 1/°C
Compressive Ultimate Strength 74753e+08 Pa
Compressive Yield Strength 2,75e+08 Pa

[BBe-T
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Concrete-Linear

Structural
“|sotropic Elasticity
Derive from
Young's Modulus
Poisson's Ratio
Bulk Modulus
Shear Modulus

Young's Modulus and Poisson's Ratio
3e+10 Pa
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Analysis Type

&= Edit Step 3 #E0T)

Marme: Heating Step
Type: Heat transfer

Basic | Incrementation | Other

Type: @ Automatic ©) Fixed

Maximum nurber of increments: | 100
Initial Minimum  Maximum

Increment size: |1 1E-005 1

Max. allowable emissivity change per increment: | 0.1

Mesh of fiber beam element
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3.3 3D Mesh of Classical Finite Elements

Hexa8

The elements used to simulate the structure in the present case are 3D finite elements with linear
elastic material properties. The generation of finite elements for the analysis of vectors whose
intensive state corresponds to 3D elasticity can easily be used from the 2D elasticity elements by
adding the z-coordinate and the corresponding displacement w. Specifically, regarding the modeling
of the cubic specimen, three-dimensional 8-node finite elements were used where the reference
system and numbering of nodes is shown in Figure 3.3.1 and the coordinates of the nodes as well
as the numbering of the nodes is counter-clockwise. Also, Solid 185 type was selected from the
Ansys finite element library (Figure 3.3.1).

Hexahedron:

v
S 2
I\ - A

| | +=—=|=—= | => 1
O=——4=—=\--1 |
S b W
% %X X
\ w oA

Figure 3.3.1: 3D Hexa8 FE
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SOLID185 Homogeneous Structural Solid Element Description

SOLID185 Structural Solid is suitable for modeling general 3-D solid structures. It allows for prism, tetrahedral, and pyramid degenerations when used in irregular regions. Various element technologies such
as B-bar, uniformly reduced integration, and enhanced strains are supported.

Figure 185.1: SOLID185 Homogeneous Structural Solid Geometry

M op
S
1 KL
]
Prism Option

<

gl
Tetrahedral Option -
not recommended

B

Pyramid Option -

not recommended

KEYOPT(2)

Element technology:

g
Full integration with B method (default)
s
Uniform reduced integration with hourglass control
.
Enhanced strain formulation
3
Simplified enhanced strain formulation
KEYOPT(3)

Layer construction:

.u =
Structural Solid {default) -- nonlayered
1 i
Layered Solid (not applicable to SOLID185 Structural Solid)
KEYOPT(6)

Element formulation:

ﬂ i
Use pure displacement formulation {default)
1 o
Use mixed formulation
KEYOPT(15)

PML absorbing condition:

ﬂ .

Do not include PML absorbing condition (default)
1 i

Include PML absorbing condition
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KEYOPT(16)

Steady state analysis flag:
0--
Steady state analysis disabled (default)
;P
Enable steady state analysis
KEYOPT(17)
Extra surface output:
0--
Basic element solution (default)
4--

Surface solution for faces with nonzero pressure

SOLID185 Homogeneous Structural Solid Element Technology

When enhanced strain formulation (KEYOPT(2) = 2) is selected, the element introduces nine internal (user-inaccessible) degrees of freedom to handle shear locking, and four internal degrees of freedom to handle volumetric locking.
For more information, see Element Technologies.

SOLID185 Homogeneous Structural Solid Output Data

The solution output associated with the element is in two forms:

+ Nodal displacements included in the overall nodal solution

+ Additional element output as shown in Table 185.1: SOLID185 Homogeneous Structural Solid Element Output Definitions

Several items are illustrated in Figure 185.2: SOLID185 Homogeneous Structural Solid Stress Output. See Element Table for Variables Identified By Sequence Number and The Item and Sequence Number Table in this document for more information.

Figure 185.2: SOLID185 Homogeneous Structural Solid Stress Output

?
0

¥ T
X (]

Stress directions shown are for global directions.

The subroutine for Hexa8 from Ansys Apdl Commands is the following:

ET,matid,SOLID185
ETCONTROL,off,ON
KEYOPT,matid,1,0
KEYOPT,matid,2,0
KEYOPT,matid,3,0
KEYOPT,matid,4,0
KEYOPT,matid,5,0
KEYOPT,matid,6,0
KEYOPT,matid,7,0
KEYOPT,matid,8,0
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CHAPTER 4t

4. OPEN SOURCE CODE MSOLVE

4.1 General

The numerical solution of the composite material model was chosen to be solved
with the help of the MSolve software, due to the complexity of this problem, the
optimization algorithms as well as the generation of meshes, this powerful
computational tool was used, which ensured the solution of quite complex problems
with the best possible accuracy in the results and the least time cost to find the
requested sizes. The final goal was to validate and verify the final results to check their
correctness and the assumptions considered for its solution.

4.1.1 Flow chart

In this section, a general flow chart is presented that summarizes the process — algorithm
followed to calculate the force-displacement curve and all the initial conditions and
assumptions taken to solve it.

Therefore, it follows:

trial
On+1

On+1

- >
E;l En En+1 E
—
Ag,
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1. Database at x € B : {£], a,. ¢.}.
2. Given strain fieldat x € B : g,41 = &, + Asg,.
3. Compute elastic trial stress and test for plastic loading

onit = E (snpr — £8)

toal ,__ _ trial
En+| =04 — 4n
ial . il

IF fi* <0 THEN
Elastic step:set (e), , = I{-:ILEIlikl & EXIT

n+1
ELSE
Plastic step: Proceed to step 4.
ENDIF
4. Return mapping
trial
Ay = B >0
E +[K + H]
Outt = opyy — Ay E sign(&])

ey = &l + Ay sign(&})

trial

Gn+1 ‘= qn + Ay H sign(&, 7))

Qe = oy + Ay

Figure 4.1.1.1: Flow ChartRepresentation

Stress vs strain (isotropic Hardening)

600

-0.008 -0.006 -0.004 -0.002 0.002 0.004 0.006 @.008

-200

-400 r

/ " e00|

TootouAibn Baoidikn



"AAyoptSuot EniAvuonc EAactonAaotikwy Suothudtwy'

!

Stress vs strain (combined Hardening)
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Stress vs strain (isotropic Hardening)
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4.1.2 Methodology of MSolve Software

General humerical integration algorithm for elastoplastic constitutive equations

The importance of the state-updating procedure within the overall finite element scheme has
been stressed in Chapter 4. In the case of path-dependent materials, such as elastoplastic
materials, the updating scheme usually requires the formulation of a numerical algorithm for
integration of the corresponding rate constitutive equations, This requirement stems from the
fact that analytical solutions to the initial value problem defined by the elastoplastic equations
are generally not Known for complex strain paths, An important point that one should bear
in mind regarding the formulation of state-updating procedures is that the accuracy of the
overall finite element scheme depends crucially on the accuracy of the particular numerical
algorithm adopted. This section describes a numerical procedure for integration of the general
elastoplastic model of Section 6.3, The strategy presented here is later specialised and applied
to the von Mises model in Section 7.3. Specialisation to the other basic plasticity models
of Chapter 6, e, the Tresca, Mohr-Coulomb and Drucker-Prager models, is presented in
Chapier 8 and its plane stress implementation is addressed in Chapier 9. Further applications
of the algorithms deseribed in the present chapter are made in Chapter 10, in the context
of advanced plasticity models, and in Chapter 12, where the numerical implementation of
damage mechanics models 15 discussed,

7.2.1. THE ELASTOPLASTIC CONSTITUTIVE INITIAL VALUE PROBLEM

Consider a point p of a body % with constitutive behaviour described by the general
elastoplastic model of Box 6.2 (page 151). Assume that at a given (pseudo- time ¢ the elastic
strain, £°(fy ), the plastic strain tensor, £7(tg ), and all elements of the set ex(ig) of hardening
internal variables are known at point p. Furthermore, let the motion of 3 be prescribed
between ty and a subsequent instant, T, Clearly, the prescribed motion defines the history
of the strain tensor, (¢ ), at the material point of interest between instants £y and T'. The basic
elastoplastic constitutive initial value problem at point p 1s stated in the following.

Problem 7.1 (The elastoplastic constitutive initial value problem). Given the initial values
£"(ty) and ex(ty) and given the history of the strain tensor, £(t). t € [tg, T, find the functions
=5(t), alt) and §(1) for the elastic strain, hardening internal variables set and plastic
multiplier that satisfy the reduced general elastoplastic constitutive equations

E"(L) =&(t) — F(t) Nier(t), A(L))

(7.6)
alt) =y(t) Hia(t), A(f))
F(t) =0, Do), Alt)) <0, () B{e(t), Alt))=0 (7.7)
for each instant t € [ty, T, with
o | o
et} =pEL. Alt)=p Bal, (7.8)

Remark 7.1. We refer to the system of differential equations (7.6) as reduced in that 1
is obtained from the model of Box 6.2 by incorporating the plastic flow eguation into the
additive strain rate decomposition. In this way, the plastic strain does not appear explicitly in
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the system and the only unknowns are the elastic strain, the set of hardening internal variables
and the plastic multiplier. Note that with the solution () of Problem 7.1 at hand, the history
of the plastic strain tensor is obtained from the trivial relation

eP(t) = e(t) — (1), (7.9)

so that the history of all variables involved in the definition of the elastoplastic model of
Box 6.2 is determined.

As alrecady mentioned, exact solutions to Problem 7.1, when yield functions and flow rules
such as the ones described in the previous chapter are adopted, may only be obtained for
very simple prescribed strain histories. Even in such cases, the derivation of the analytical
solutions is normally cumbersome. For complex deformation paths, which are more likely to
occur in realistic engineering problems, analytical solutions are not available in general and
the adoption of a numerical technique to find an approximate solution becomes absolutely
essential. A general framework for the numerical solution of the constitutive initial value
problem of clastoplasticity is described below.
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Solution of the incremental problem

Due to the presence of the discrete complementarity condition (7.11), the solution of the
incremental elastoplastic problem (7.10)—(7.12) does not follow directly the conventional
procedure for standard initial value problems (i.c. initial value problems without equations of
the type (7.7)). Nevertheless, as we shall see, the solution scheme in the present case remains
rather simple with the discrete complementarity condition giving rise to a two-step algorithm
derived in the following.

Firstly, note that (7.11); allows only for the two (mutually exclusive) possibilitics
enumerated below:

1. Null incremental plastic multiplier,
Ay =0. (7.15)

In this case there is no plastic flow or evolution of internal variables within the
considered interval [t,,, t,+1), i.c. the step is purely clastic. The constraint (7.11)3 is
automatically satisfied, €}, . ; and a,,+1 are given by

e ot
en+1 = En + AE

Q41 = Oy (7 16)

and, in addition, the constraint
q’(”u-}-h An+l) S 07 (7 17)

must hold, where 0,41 and A, 4 are functions of €5, ,, and A, +; defined through
the potential relations (7.12).

2. Strictly positive plastic multiplier,
Ay > 0. (7.18)
In this case, €}, .4, a,+1 and A~y satisfy

Efl'*'l - efx + Ae — A‘T N(U,.+1, Au+l)

7.19
Ap41 = Oy S o A‘)‘ H(a'ni»la An+l) ( )
and (7.11) combined Wwith (7.11)3 result in the constraint
‘b(a'".*.l, A,|+1) = (). (7.20)
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The nature of the above problem motivates the establishment of a (conceptually very simple)
two-step algorithm in which the two possible sets of equations are employed sequentially and
the final solution is selected as the only valid one. The strategy adopted is the following:

(a)

(b)

The Elastic Trial Step.
Firstly, we assume that the first of the above two situations (A~ = ) occurs; that is,
we assume that the step [t,,, t,4+1) is elastic. The solution given by (7.16), which is not
necessarily the actual solution to Problem 7.2, will be called the elastic trial solution,
and will be denoted )

ettt =gl + Ae

trial (7.21)

au-{-l = Q.

The corresponding stress and hardening force will be called the elastic trial stress and
elastic trial hardening force, given by

ial ay | trial 30 e
Oui1 =P o o nt1 =P 5~ N (1.22)
n n

The above variables are collectively called the elastic trial state. Now note that, to be
the actual solution, the clastic trial state has, in addition, to satisfy (7.17). We then
proceed as follows. If "

Ptrial = P(gtrial, AVH) <0, (7.23)

that is, if the elastic trial state lies within the elastic domain or on the yield surface, it
is accepted as a solution to Problem 7.2. In this case, we update

(a1 = ()i (7.24)

and the algorithm is terminated. Otherwise, the elastic trial state is not plastically
admissible and a solution to Problem 7.2 must be obtained from the plastic corrector
step described below.

The Plastic Corrector Step (or Return-Mapping Algorithm).

The only option left now is to solve the system (7.19)-(7.20) of algebraic equations
subject to the constraint (7.18). Using the elastic trial state definition above, we rewrite
the algebraic system equivalently as

E::l-i-l - E::,:ilal - A') N(o'n-l-ls An+l)
Qppl = a:‘r.:-a: + A') H(O',,+1, An+l) (7-25)

q’("n-}-le An-}-l) - 01
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(a) (b)

Ly - oy

plastic
correclor

predicior Cent N\PO.A,)=0

elastic
domain at r,

“anl.a)-o

Figure 7.1. Geoeral retum mapping schemes. Geometne interpeetation: (3) hardening plasticity: and
(b) perfect plasticity.

which are, of course, complemented with the potential relations (7.12). The plastic
corrector stage of the algorithm then consists in finding a solution €5, ,, ax,, .y and Ay
for (7.25) that satisfics

Ay >0. (7.26)

Remark 7.2. The procedure of item (b) above possesses an appealing geometric interpreta-
tion as illustrated in Figure 7.1. Consider the yicld surface at the elastic trial state. The clastic
trial stress, @b 4, in this case lics outside the plastically admissible domain (i.c. neither in
the clastic domain nor on the yicld surface). Upon solution of the algebraic system (7.25),
cquation (7.25) 3, which is commonly referred to as the plastic consistency equation, ensures
that the stress, @,,41, at the end of the interval [£,,, tw41] lics on the updated yicld surface; that
is, the clastic trial stress refurns to the yield surface so that plastic consistency is re-established
in the updated state. In the case of perfect plasticity, ot retums to a fixed surface. Duc to
this interpretation the procedure of item (b) is referred to as the refum mapping algorithm
and (7.25) are called the retum mapping equations. The first algorithm of this type appears
to have been the radial returm method proposed in the pioncering work of Wilkins (1964).

Sumtmary of the overall procedure

In summary, the application of an Euler difference scheme to find an approximate solution
of the constitutive initial value problem of clastoplasticity — Problem 7.1 — has resulted in a
numerical algorithm that involves two steps: the elastic predictor, in which the evolution
problem is solved as if the material were purely clastic within the interval considered,
followed by the rerum mapping, which accounts for plastic flow and cnforces plastic
admissibility. The return mapping procedure is exccuted only if the clastic trial state violates
plastic admissibility. The schematic diagram of Figure 7.2 shows the main steps in the
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Figure 7.2, From the initial value peoblem of elastoplasticity 10 the elastic peedictoc/return-mapping
integration algonithm. Schematic diagram.

derivation of the ovenall integration algorithm. The algorithm described above has been
obtained by adopting, in particular, the backward Euler scheme to discretise clastoplastic
constitutive cquations and is, therefore, termed the backward, fully implicis or simply implicit
clastic predictor/retum mapping scheme. This algorithm is conveniently summarised in
Box 7.1 in pscudo-code format. We remark that different discretisation schemes may be used
instead, cach onc resulting in a different retum mapping algorithm, but all having the same
clastic predictor step. Alternatives to the backward Euler-based algorithm will be discussed
in Section 7.2.7.

7.2.4. SOLUTION OF THE RETURN-MAPPING EQUATIONS

Let us now focus on the solution of the retum mapping equations. It should be noted that the
algebraic system (7.25) is generally nonlincar and, in addition, has to be solved subjected to
the constraint (7.26). The procedure commonly adopted in practice is quite simple. Firstly,
the algebraic system (7.25) is solved on its own, i.c. without regard for the constraint
cquation (7.26), by some iterative procedure. If the found solution satisfies (7.26), then it
is accepted as a solution to Problem 7.2, Note that if no solution exists with strictly positive
incremental plastic multiplicr, then Problem 7.2 does not have a solution.

As far as the iterative procedure for the solution of the retum-mapping equations is con-
cerned, the standard Newton-Raphson scheme is often an optimal choice and will be adopted
exclusively throughout this book (and in the clastoplastic implementations of the HYPLAS
program). This choice is motivated mainly by the quadratic rates of convergence achieved
by this method which, as a general rule, results in very computationally efficient return
mapping procedures. Altemative techniques, such as quasi-Newton procedures in gencral,
could be used instead. The main argument in favour of these methods is normally based on
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Figure 7.3. The fully implacit retum mapping. Geometnic interpretation foe materials with linzar elastic
response.

of plastically admissible stresses. With the energy norm defined by
lello = Vo D) :a. (7.30)
and the associated measure of disfrance between two gencric stress states given by
Ao, o) =|o, —alo. (7.31)
the updated stress is the admissible stress that lics closess to the clastic trial stress, i.c.
7,1 = arg{ Eéi?,[d(a, i) | & (7.32)

n+l
The interpretation of the implicit retum mapping as a closest point projection of the trial stress
remains valid for lincarly hardening materials provided that a suitable definition of distance
in the space of stress and hardening forees is introduced (sce Simo er al. (1988b) for details).
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(i) Criven the elavric friod sote, set k= 0 ol
| [ rial (=] E— trial
= A=
imi) Perdorm cutting-plane iteration

Ar=alt, [N, Jort N, el .l Y,

+ Hln.u;'. o iF..f.l| » N:.II_:I. = Elnn-ls. « H

ol =all -8y DN BN s H L

Al _ A'""_:._ - A |Fi.~;.| .N:\. _G* ‘H |i

{ini) Cheek converpence

IF b AN e, THEN update

sl kr=Ek+ 1 and GO TO (g}

-.l||

J}

Tusr =, Ansr= A0
Enes =EMELLi ARk s =Cliﬂ'.-4_|-A:.h_::-5
el =Ensa—Eg 13 wl EXIT

ELSE

ealvlal —-e..+Ae

sptrial | o
Sngl T &
=Kt sl =20t

trial teial | _trial
Gusr = -an+l L

(1) Check plastic admissibility
IF gt =y (2£17) <0
THEN set (-Jnsr:= ()84 and EXIT
(1) Retum mappang. Solve the equation
AN =) 3G Ay —oy(Fh +Aq) =0

variables

Pnst —P:.".; Bupr = (1 - 'z:';f‘)s:‘u:ll
Onss:=8ner +Pusr 4
SR P Pt |
S =8+ 45y
(v) EXIT

(i) Elastic predictor. Given A€ and the state vanables at £,,, evaluste the elastic trial state

for A~ using the Newtoa-Raphson method - GOTO Box 7.4 - and update the state

%t by means of the following incremental constitutive function:
Ay 662

n+l

. o Lriad

Ons) = Tnsa(EF, ;:i"l = [D‘. - !.{[d»""") Wl‘l 141 o

where  is the Heaviside step function defined as

) 1 ifa>0
H(a) = ., for any scalar a,
0 ifa<0

|4 is the deviatoric projection tensor defined by (3.94) (page 59),
aisint = \fFlatitl =26\ Fresui

= giril(en i) = 26 /3 I 230,

(7.93)

(7.94)

(7.95)
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(1) Initialse ileraton counter, & = (), set instial guess for Ay
A)’w' =0
and comresponding ressdual (yield function value)
b= quis — oy(&)
(1) Perfoem Newton-Raphson steration

doy

H = — (hardening skope)
(l:' l:‘_;’
ddb g e
= e—= =30~ H  (residual denivative)
dA~y
Avy:=Ay - r i (new guess foc Ay)

(i1i) Check for convergence

=gy = 3G Ay - ay(Z + Ay)

IF |$)<eer THEN RETURNtoBox 7.3
(iv) GOTO (1)

i i the value of the yield function at the elastic trial state:

Dl = guisi(er, gotit) = glrinl(en i) — ay(e2),
and

Ay =Aq(eh, er M

(7.96)

(7.97)

is the implicit function of €5 47" and £%, defined as the solution of the consistency cqua-

tion (7.91).

Clearly, (7.93) defines @, as an implicit function of the elastic trial strain and £2.

Equivalently, since €5, f,,'i“' = Ep+1 — €, WC May write

an-}-l - &n-&l(sr‘v E:, en+l) = arul-l(é::v en+l - E:: -

(7.98)

For a given state at £,,, the functions (7.93) and (7.98) express the updated stress as implicit
functions, respectively, of the clastic trial stress and the total clastic strain at ¢, .
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It should be noted that the only source of nonlincarity in the von Mises retum-mapping
cquation (7.91) is the hardening curve, defined by the given function o, = o (7). For linear
hardening matenials, this function is lincar and is expressed by

ay(¥) =0+ H P, (7.99)

where oy is the initial yicld stress of the virgin material and # is the (constant) hardening
modulus. In such cases, (7.91) reads

PAY) =gl —3C Ay = oo+ (4 + Ay) H) =0 (7.100)
and the incremental plastic multiplier can be obtained in closed form as
.t,lriul

Thus, for lincarly hardening von Miscs materials, the above closed expression replaces the
Newton-Raphson algorithm of Box 7.4 in the retum-mapping procedure.
In the case of perfect plasticity (H = 0), the expression for Ay reads

.:,lriul
G
The geometric interpretation of the fully implicit algorithm for the perfectly plastic von Miscs

model is illustrated in Figure 7.10. In this case, the updated stress is simply the projection of

the clastic trial stress onto the fixed yield surface along its radial direction. It is the closess
point projection of the trial stress onto the yicld surface.
d

Ay =

(7.102)

The explicit incremental constitutive function

Under the assumption of lincar hardening, we substitute the explicit formula (7.101) for
A« into (7.93) and obtain, after a straightforward manipulation, the following incremental
constitutive function for the updated stress:

Tnel = 0,.4.)(5::‘_‘;%", 5:
6G? e .
[D‘ T m( "q;’; = )L,] getrial, (7.103)

In contrast to the general case (7.93), @,.+1 in the above definition is an explicir function.
We remark, however, that explicit incremental constitutive functions are obtainable in the
context of implicit integration algorithms only under very special circumstances (such as
lincar hardening in the present case). For more realistic models, such functions are usually
implicit.
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fwed yield surface

Figure 7.10. The perfectly plastic voa Mises model. Geometne interpeetation of the implicit retumn-
mapping scheme as the closest point projection alyorithm.

hardening
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n,,,. sampling points

(IEf'la')

Figure 7.11 Piccewise linear hardening.
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74.1. CONSISTENT TANGENT OPERATORS IN ELASTOPLASTICITY

As shown in Section 7.2, clastoplastic materials require in general some kind of numerical
integration algorithm to update the stress tensor. Basically, given the known internal variable
set &, and the new prescribed total strain £.41 as input, cach of the general integration
procedures described in Section 7.2 will deliver the updated stress &, ;) as the result of the
application of a particular numerical algorithm (sce diagram of Figure 7.12). This defines an
algoritlimic incremental constitutive function, &, for the stress tensor with general form

o, =0, &,.) (7.108)

Algorithmic functions of this type have been first referred to in Section 4.2.1 (page 95).
in the formulation of incremental boundary value problems with general path-dependent
material models. Specific examples of incremental constitutive functions have been obtained
carlier in this chapter for the fully implicit clastic predictor/retum-mapping implementation
of the von Mises model with isotropic strain hardening. Expressions (7.93, 7.98) show
the comresponding (implicit) incremental constitutive function for the model with nonlincar
hardening and expression (7.103) shows the particular (explicit) format obtained under lincar
hardening.

Within a Joad increment [f,,, tn41], the internal variable set @, given as argument of &
is fixed. Only the guesses for the total strain, £, ., — associated with the guesses for the
displacement ficld, u,, ;. —change during the global Newton-Raphson equilibrium iterations
(refer 1o Section 4 7, fram page Q4 for details an the glohal Newton—Raphcon procedore) In
other words, within cach global load increment, the stress o, 41 delivered by the integration
algorithm is a function of the total strain tensor only. This function — (@, €ns1) With
fixed a,, — defines a path-independent stress/strain relation within the interval [, tns1),
cquivalent to a (nonlinecar) elastic law. The consistent tangent moedulus in this case is precisely
the derivative of this equivalent nonlincar elastic law:
dan+l ‘9&

= — (7.109)

D=
dsn'ol asll#-l .

i.c. it is the derivative of the algorithmic function & with respect o €,41 With a, held
constant.
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Figure 7.12. The algonithmic constitutive function for the stress tensor.

At this point, it is worth remarking that, in the context of the multiplicative finite
strain plasticity framework discussed in Chapter 14, no measure of rforal nonlincar strain
analogous to €x41 is used (or nceded) in the definition of clastoplastic constitutive models.
An elastic frial strain measure (analogous to the infinitesimal tensor €f, 71*'), however, does
appear naturally in the formulation of the corresponding clastic predictor/retum-mapping

schemes. Clearly, since €741 = £,,., — €2, the incremental constitutive function for &,
can always be expressed equivalently as'!

Oni1 = O(an, €41V = d(an, et + €2), (7.110)
in terms of the clastic trial strain and the intemal variable setat ¢,,, and we also have the trivial
identity

de do

= P = dest ™

(7.111)

for the consistent tangent operator. To make the material presented here formally valid also

for the large-strain casc addressed in Chapter 14 (where a total strain tensor is not defined),
we shall adopt in what follows the rightmost term of (7.111) as the definition of consistent
tangent operator. ¥

The elastic and elastoplastic tangents

Before going into further details, it is worth remarking at this point that the algorithmic
function & is non-differentiable in gencral. This is clearly seen by noting the presence of
the Heaviside step function - a non-differentiable function - in definition (7.93), (7.98) of
the incremental constitutive law for the implicitly integrated von Mises model with nonlincar
isotropic strain hardening. For states lying within the clastic domain, i.c. states corresponding
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Figure 7.12. The algornithmic constitutive functioa for the stress tensor.

At this point, it is worth remarking that, in the context of the multiplicative finite
strain plasticity framework discussed in Chapter 14, no mecasure of foral nonlincar strain
analogous to €x41 is used (or nceded) in the definition of clastoplastic constitutive models.
An elastic trial strain measure (analogous to the infinitesimal tensor €5, 1), however, does
appear naturally in the formulation of the corresponding clastic predictor/retum-mapping
schemes. Clearly, since ef.f:i“’ = &,,.1 — €5, the incremental constitutive function for &, .,
can always be expressed equivalently as'!

Ons1 = (@, VM) = d(an, €54 +€h), (7.110)

in terms of the clastic trial strain and the intemal variable set at ¢, , and we also have the trivial
identity

_ 0 0o
S e ey
for the consistent tangent operator. To make the material presented here formally valid also
for the large-strain case addressed in Chapter 14 (where a total strain tensor is not defined),
we shall adopt in what follows the rightmost term of (7.111) as the definition of consistent
tangent operator. ¥

D (7.111)

The elastic and elastoplastic tangents

Before going into further details, it is worth remarking at this point that the algorithmic
function & is non-differentiable in gencral. This is clearly scen by noting the presence of
the Heaviside step function — a non-differentiable function - in definition (7.93), (7.98) of
the incremental constitutive law for the implicitly integrated von Mises model with nonlincar
isotropic strain hardening. For states lying within the clastic domain, i.c. states corresponding
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Figure 7.13. The tangent moduli consistent with elastic predictodretum-mapping inlegration algo-
nithins.

to @' < 0in (7.93), (7.98), any infinitesimal change of total strain can only be clastic, with
the stress &,,.41 evolving along the (smooth) elastic curve (sce graphical representation of the
uniaxial stress case in Figure 7.13). In this case the function & is differentiable. At states with
«pteind = (), the function & is also differentiable if the hardening curve is smooth. Infinitesimal
changes of €441 Will move the stress along the clastoplastic part of the incremental stress—
strain curve. However, at states with 0% = ) in (7.93, 7.98) - where the Heaviside step
function is non-differentiable - cither clastic unloading or plastic straining may occur in
the incremental constitutive Jaw. The incremental constitutive function is obviously non-
differentiable in this case. The tangent modulus D is not uniquely defined and two tangent
stress—strain relations exist: an elaszic tangent rclation, defined for clastic unloading, and an
elastoplastic tangent relation, defined for plastic loading. Consider the one-dimensional case
illustrated in Figure 7.13. Even though & is non-differentiable its two one-sided derivatives
- the elasiic and the elastoplastic tangents — are well defined. In the multidimensional case,
these are gencralised respectively as the clastic tangent modulus, D, and the clastoplastic
consistent tangent modulus, D*P. The clastic tangent is associated with the clastic predictor
procedure whereas the clastoplastic tangent is related to the plastic corrector (retum-mapping)
procedure. Clearly, when assembling the tangent stiffness matrix required by the Newton-
Ruplown ilcrative proceduie fur the global xrencental cquilibiivm problem, Uk appropriate
choice of tangent operator must be made.

The elastic tangent

If the stress is inside the clastic domain (9™ < 0) or if it is on the yicld surface (P! = ()
and clastic unloading is assumed to occur, the tangent modulus D consistent with any of the
integration algorithms previously discussed is simply given by

o=o“sp%, (7.112)
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For clastoplastic materials whose elastic response is linear, such as the von Mises model
and all other models described in Chapter 6, the elastic consistent tangent is the standard
clasticity operator (7.107).

The elastoplastic tangent: the derivative of an implicit function

If the stress is on the yield surface, i.c. @il % () or "l = and it is assumed that
further plastic Joading is going to occur, then the tangent operator is called the elastoplastic
consistent tangent and is denoted DP. It is important to emphasise here that clastoplastic
consistent tangent operators cannot be derived for the cutting-plane algorithm (refer to
Remark 7.6, page 208) so that the discussion that follows is restricted to the families of clastic
predictor/retum-mapping procedures based on the gencralised midpoint and trapezoidal
algorithms.

Crucial to the derivation of the clastoplastic consistent tangent moduli is the obscervation
that under plastic yiclding, the outcome &,,+1 of any member of the families of generalised
midpoint and trapczoidal integration algorithms is the solution of a noalincar system of
algebraic cquations in the plastic corrector (retum-mapping) procedure. The system solved in
the retum mapping depends on the particular algorithm adopted. In this case, it is clear that
@41 is defined implicidy through the corresponding nonlinear system. Note, for example,
that the term Ay in (7.93) is an implicit function of €5, Y1 (or £,,+1) defined as the solution
of an algebraic nonlincar equation. In other words, the updated stress @,y is an implicis

Junction of the clastic trial strain ef,f,,‘{“’ in this case. Thus, the consistent tangent operator
.
trind
el Y

is simply the derivazive of the implicit function defined by the return-mapping equations and
is derived by following the standard procedure for differentiation of implicit functions.

As an illustration of the above concepts, the clastoplastic tangent consistent with the fully
implicit algorithm for the von Mises model is derived below.

7.4.2. THE ELASTOPLASTIC CONSISTENT TANGENT FOR THE VON MISES
MODEL WITH ISOTROPIC HARDENING

The implicit clastic predictor/return-mapping algorithm for the von Mises model has been
described in detail in Section 7.3. There, it was remarked that from the computational
point of view the implementation of the von Mises model is the simplest described in
this book. In this section, the clastoplastic tangent operator consistent with the von Mises
implicit return mapping is derived step by step. The idea is to use this algorithm as an
example to provide the reader with a clear picture of the procedure for the derivation of
clastoplastic consistent tangent operators. The simplicity of this particular return-mapping
scheme avoids the complications associated with more complex models/algorithms. The
derivation of clastoplastic tangent operators consistent with the implicit return mapping for
general plasticity models is addressed later, in Section 7.4.4. The application of the generic
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procedure to the isotropically hardening von Mises model, which offers an alternative route
to the derivation presented below, is described in Section 7.4.5.

The incremental algorithmic constitutive function for the implicitly integrated von Miscs
model with nonlinear isotropic strain hardening is given by (7.93). Under plastic flow, i.c.
when the return-mapping procedure is used, the update formula for &, reads

i3 A" 6(' lt L
dn+l = [ — Tﬂ'd] "_“_l ', (7.“3)

where A is the solution of the return-mapping equation of the algorithm (Box 7.3),
P(Aq) = g4 - 3G Ay — a,(&h + Ay) = 0. (7.114)
In the above, the clastic trial von Mises effective stress, g4, is the function of the clastic
trial strain defined by (7.95). The clastoplastic consistent tangent modulus for the present
model/algorithm combination is obtained by differentiating (7.113).
A straightforward application of tensor differentiation rules to (7.113) gives

80“_._1 D" — Ay GG? 662 - teial OA‘[

Dot trial trind d T Al Cd ned @ » Leial
8en+l qn-;-l npl aen+l

trind
NEC—
(atma)) der i

From (7.95) and relation (2.139) (page 36), for the tensor norm derivative, we obtain
trind

e’e‘";.;, =2G\/3 N, (7.116)

where we have conveniently defined the unit flow vector

= 2 3":‘: E‘im::
Nn#l = J:Nn-bl - - = — (7.'[7)
" sl Regaill

and we have made use of the trivial identity: €54 : 1, = 5%, when applying the chain

rule. Further, the differentiation of the implicit equation (7.114) for A+, taking (7.116) into
account gives

a A‘y _ 1 8()"""
Jectrid = 3G + H dertim
2G
=Gt F N (7.118)
where 1 is the slepe of the hardening eurve:
doy
H=— : (7.119)
der L -

Finally, by substituting (7.1 16) and (7.118) into (7.115), we obtain, after a straightforward
manipulation making use of (7.95) and definition (7.117), the following expression for the
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clastoplastic tangent operator consistent with the implicit return-mapping scheme for the
isotropically hardening von Mises maodel:
Ay 6G2

. 2 Ay 1 . =
MP 3 « _— ~ ' » - — ': -
=0t (q::::.' 30+") Ve O

20(1- 2239),,

n+l
+ GG'*(

Ay 1

gl T 3G+ H

) Nr:-&-l':‘)l-vu#l +KI®L (7.[20)

It should be noted that the operator D™ in the present case, i.c. for this particular model
and numcrical integration algorithm is symmerric. The symmetry of consistent clastoplastic
tangent operators will be further commented upon in Section 7.4.6. In the HYPLAS program,
the above tangent operator is computed in subroutine CTVM. Its implementation is described
in detail in Section 7.4.3.

Remark 7.8. Within the global (equilibrium) Newton-Raphson scheme, the value of Ay,
4" and H, as well as the incremental unit flow vector, N1, that take part in (7.120) are
those obtained for the Gauss point of interest in the retum-mapping procedure of the previous
global iteration. For the first itcration of any global load increment, A« is zero.

The continuum tangent operator

The concept of tangent operators in plasticity has been initially discussed in Sections 6.2.8
and 6.3.8 (from pages 147 and 153, respectively) in the time-continuum setting. In Sec-
tion 6.3.8, the comresponding clastoplastic conzimuun tangent operator has been derived for
the generic multi-dimensional plasticity model. Its closed form is given by expression (6.67).
Let us now particularise this formula for the von Mises model with isotropic strain hardening.
Firstly we consider (6.187)-(6.192). In this casc we have

’,_82&."" _ L Pgr Ox

Dt Tomt o

With the above, together with (6.194) and the associative flow vector definition (6.136) for
the von Mises model, we find that expression (6.67) particularises in the following format:

a (D*: N)® (D*: N)

N:D":N+H '

-, (7.121)

D = D" (7.122)

where we have used the subsceript *c” to emphasise that the above operator is the continuum
tangent modulus. With D* defined by (7.107), and taking into considcration the fact that for
the von Mises model V is a deviatoric tensor, we have

D°: N=2G N. (7.123)
In addition, using (6.136), it follows that
N:D": N=3G. (7.124)

TootouAibn BaotAikn 104



"AAyopuduot Eniduong EAagtonAaotikwy Suotnudtwy”
By introducing these results into (7.122), we obtain the following explicit expression for the
continuum tangent operator for the von Mises model with isotropic strain hardening:

' 62 . .
D" } 2
D =D —3(:+HN@N, (7.125)

where JV is the unit flow vector at the current state.

Remark 7.9. The difference between the clastoplastic consistent tangent operator and its
continuum counterpart above lics only in the terms that contain A% in expression (7.120).
Note that we may write

. : Ay 6G?
D" =D — —:-;- (= Nt ® N p)- (7.126)
g1

If A7y is set to zero (as in the first iteration of any load increment), the continuum tangent is
recovered. This fact (Ortiz and Martin, 1989) is a mere consequence of the consistency of the
numerical method (backward Euler-based in the present case) adopted in the discretisation of
the time-continuum clastoplasticity equations. For lange steps, when the value of A« is Jarge,
the difference between the continuum and the consistent operator can be substantial. In such
cases, the use of the continuum tangent in the assemblage of the stiffness matrix results in a
dramatic degradation of the convergence rate of the global iterative procedure. Clearly, if the
continuum tangent is used in conjunction with the return-mapping scheme, then the global
itcrative procedure is nof the Newton-Raphson algorithm. In this case, the global iterations
arc a form of approximation to the Newton-Raphson scheme. Early implicit clastoplastic
implementations (Owen and Hinton, 1980) relied exclusively on the use of the continuum
tangent operator. The use of the consistent tangent operator in this context was introduced by
Simo and Taylor (1985).

(i) Elastic predictor. Given A€ and the state vaniables at £, evaluste the elastic trial state

entidi=eh + Ae

sptrial -p, ral
:n-l — nel T a.\
= Kttt st :=2Ge5UY
trial | trial /- um
Noe1 = 8n=t — O, qn-x =4/3z 117 iy |

(i) Check plastic admissibility
IFGS — oyt <0
THEN set ()ns::=(-)¥5 and EXIT

(i) Retumn Solve the equation for A~y

Ty = 3GAY = B(Eh + A + B —ay(Eh + A7) =0
where 3, = 3(£7) and update
o=+ Ay Baar=8E)
nuul
B.,=8, +‘/-(?..-. ?)”m'::

trial

3 M-
Pri1 =P 8agr = 8UY - 2G Ay m
Tnsz
Onsr:=8np1+pmna d; &= Lan+l +l!,:.".u I
26 3

(v) EXIT
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Under plastic flow (@i« > (), the algorithmic incremental constitutive function (7.202)
gives

- A r(' o Lal A
Fuir = [D %.:r l.;] oty gl J;r ': B.. (7.208)
net u+

The clastoplastic consistent tangent operator for the present case is obtained by differentiating
the above relation. The derivation follows closely that presented in Section 7.4.2 (from
page 232) for the isotropic hardening-only model.

The differentiation of (7.208) gives

DTnir _ oo Ay GG 3G i, 0Dy

N T e
Al} ,(' ial o 8')::.“[]
+Fm)_g Ml @ FoeiraT (7.209)
n+l

where we have made use of the connection ¥ = 26 1y : ¢4 — 8,.. The derivative of the
trial relative effective stress is obtained analogously to (7.1 16). The corresponding expression
in the present case has the same format as (7.116), i.c.

l.lul
s - °0\/- Nu, (7.210)
rn+l
with the unit flow vector here defined as

Iy rind

Nn n&l 211
= T i

The incremental plastic multiplicr derivative is obtained by differentiating the return-mapping
cquation (7.199) with respect to €5 1. This gives

DAy 1 i
Dertin 3G + H* + HY getlriv

26 ‘/3 .
T ———— — = .2 2
Gy Tm Y2 P

Then, with the substitution of (7.210) and (7.212) into (7.209) we obtain, after a straightfor-
ward algebra taking (7.194) and (7.211) into account, the following closed-form expression
for the clastoplastic consistent tangent operator:

; A 662 Ay 1 | |
il = A i '2 n e = ’
or=p ~ il (q:.';:: 3G + m.m.) Nom@ N,
\~ 27
2('( '“/_d) ly
Dnil
+6G2 oy _ : Nup1t@Nun +KIQI (7.213)
’l:.'i“f 3G + H* 4 nt nt i 2
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s ral decomposition of the
astic tdal stress — oblain:

o™ and ¢ (i=123)
with

"t g

check
consistency:

o= o= a () > cm?

process is elaslic — updale:
NO

(')...'::('):‘:l’

and exit

ly cne-veclor retum mappi
mln plane — oblan: Eain

Ay and g, (i=1.20)

check validiy
of ene-vector rétum:

a,z0, 20,?

YES

ly two-veclor relum map 10
gr%pdale ocormer (rght o? eft) -
obtain:

Ay",Ay" and g, (i=123)

assemble updabed slress lensor:
Ty = i‘ o, cDe
n

and other slate varables, and exit

TootouAibn BaotAikn 107



"AAyoptSuot Enilvuonc EAactonAaotikwy Zugtnuatwy”

(i) Elastic predictor. Given A€ and the state variables at £,,, evaluste the elastic trial state
eV :=et +Ag; M =ah

trinl trial trinl . o trial
,‘n’: =K 3:-:|-|- nnn’p“l =2G &0

(i) Spectral decompasition of 8 (rowtine SPDEC2). Compute
A gt s el g e (i=1,2,3)
(i1i) Cleck plastic admissibility

> Ltrial trial - trinl
IF " — =y

—oy(Eh) <0
THEN set (-Juer = ()51 and EXIT
(1) Retum mapping
(iv.a) Retum to main plane - GOTO Box 8.2
(ivh) Check validity of mam plane returm
IF 5, 2 &2 2 sy THEN retumn is valid - GOTO (v)
(v.c) Retum to comer
Rl 4 5™ 244 5 0
THEN apply return 1o right coener - GOTO Box 8.3
ELSE apply retum to left comer - GOTO Box 8.3
(v) Assemble updated steess

Pugr = l’n“‘-‘ll

Tpey = Z]:. (3 + papr) € €&
andl updste clastic strain

. 1 I«
En-! = )(- Snert 7 3 L :‘:—‘ll I

(vi) EXIT

(i) Setatial guess foe Ay
Avy:=0
ard corresponding ressdual (yield function value)

& oo ‘Illl al IUIA| -y Er‘)

(1) Perf Newton-Rapl

da.,
azr

d:= :l—gl;_’ = =40 = H  (residual derivative)

H:= (hardening skope)

LAY

A'; = A'{ - % (new guess foe A'})
(i) Check for convergence
Bo= s - s - 4G Ay -y (3R + A7)
IF |¢I et THEN  update
sy =N - 26 Ay
e
3= S8 426 Ay
2 b1 =8 Ay
and RETURN to Box 8.1
(iv) GOTO (in)
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(i) Setinitial guess foe A" and Ay
and coeresponding resadual
‘l'“ =2 ON(EM )
R" o)

trial trial
T 5 {5, s for right comer

where

Sfag™N-g™ = ) y
st for left comer

(1i) Perfoom Newtca-Raplson iterstion
By :=A"+ A"

=R+ Dy (update &)

He= d . (hardening slope)
.
b b

as*  ad* |7 |-26-n -sG-n

new goess foe Ay® and A~
(o] = 7] 8]
Ar® Ar® [
(i1i) Clack for convergence
[ ] [ —2G{2A* + AY) - a..(et:-.)]
e = 2G(AY" +2A9") — ay(&* 1)

IF &2+ [dY <6,y THEN updste

dA-"  dA4e (-G - H =26 - ]l]

m = g = 2G(AY + A
&2 = a8 R 2GASY for right comer
&= ‘.l‘rlsl + 2GA'/‘

&= ng""' - 2G A"
a2 = At~ 2GAY for left coener

&= a8 4 2G(AY* + AY)

and RETURN to Box 8.1
(iv) GOTO (is)
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speciral docomposition of e
clashic ¥rial ztress - cbtan:
¢’ and ¢ (i=12)
wtth
a“ 20204

chock
conzslency:

o} o} (a7 a7 “")sin 0

~2e(EN o n 6,7

NO

apply onc-vocior roturn
uf %n plano - cbar e

Ay and @, (=1 2:3)

check valdily
of cnaweclor retum:

precoss ks clastic - update:

(=)

and oxit

c, 20, 2a,?

apply twowvocior retum map 1o
appeopnalo ecgo (nght of lok) -
obtunc

At Ay* and g (=1.2)

chock valdity

of twawvectee rotum? YES

6,20, 20,7

apply rotum mapping 1o apax
- o

Ael'  and o, Gis1,2)

assomble updated stoss lorsor:
3
«,..:-_)'_" a, eDe,
and clher slate varidblos, and cxit
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{1} Elaste predicior. Ciiven A and the spabe varabhes st i ., evaliste 1he elovic triod chare

EntY = En + Ac: oy =k
il = 20 e + K
{8} Spectral decosnposition of o™ (ruline SFOECE). Compule
cr:':” - r.!';rIlI E'r.r:r"" amd By [i=123d)
{int) Check plastic sdmizsibiliy
| e I e T - I i [ ]
THEN sot (-hnee = ()" and EXIT

(1%} Retwm mappong

(iva) Retorn o main plane - GOTO Box 8.5
(tvh) Check validiy of mum plane returm
IF og = vz 2 oy THEN retum is valid - GOTO (v)

{iv.c) Return to edge

IF [1 — sin 42 )og
THEM apply returm o righl edge - GOTO Box 8.6
ELSE apply retum to keft edge - GOTO Box 8.6
(vl Check vahdsty of edge neturn
IF g = o3 7 g THEN riehiirn 58 witlid - GOTD (v
(iv.e} Retorn w apex — GOTO Box 8.7

v} Assemnble updated siress lensor

Zpirial

§9% 2 (1 4 sin wo )t

trial _ gt

=0

a
=Y me ge,
=1

1) Ser matal guess for Ay

A= 1% P = ::';_.
and eormesponding neadual (yeeld Tunction value)
o Tt o - i B i 7T R e T o R

i Perform Newton-Raphson tleration lor Ae

H= FI { bl sBope
dEP |
el
i N
b= e — A1 + 5 sin @ sin &) (oesidimb dervaive)
— 4K sinfxing— 4K CLEC o
Ay = —bfd {update A )

fink) Check lor cunvergence

P42 oo e Ay

&

o
“n

gyt
— ML+ %.‘iill.l.':-du @) +4K sin dEan vl
—!.El'l:::':_ljl-:umﬂ

IF b < e THEN

S I_.'_:ila and

b

[
ainel update elastic slrain my = = [+ i et + 2R sin w]dn
. . St aa =g+ 1%(:’ — 2K sim o Ay
Enet ™= e Fne1 T ETA 1 ay = 4 PG - Tain ) — 2K sin g Ay
i BXIT anid RETURM 1o Box 8.4
i) GO )
(i) Setinitial guess for A7® and A7*
Ay =0, AY:=0; .=
and coeresponding ressdual
) [5° - 2e()casé
[&n*’] - ["’ — 2¢(25) cos ¢]
M e ot oy 4 (o1 4 o) in 6
s {a‘,"“‘ — o™ 4 (o4 £ o) sing  right edge
o™ — oy 4 (ot + oY) sin g lelt edge
(1) Perform Newtoa-Raph for Av" and A~
H:= :?_: ”

i

a:=4G(1 -I:}‘m osin ) + 4K sin

{2(:(1 + $ind + sing — £ sing

2G(1 — sind — siug — & sing

resadual deavative matnx:
[ b 9b°
DAY DAY

d:= r 5
l ab* o
DA~ DAY
new guess for A+° and At

Al [Ae] ., [#°
A*.‘] = :\7"]"’ ['f'“]

_] —a—4H cos* ¢
B —b—4H cos* &

osny
sing’) + 4K singsiny  right edge
sing’) + 4K singsiny  leflt edge

—b—AH cos* ¢
—a—4H cos* o
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(i) Setimtial guess for A=f
Al :=0;

=
s

and coeresponding residual (refer to equation (8.85))

r:=c(%) cot & — pii

(1) Perform Newtoa-Raphson iterstion

H= . (hardening slope)
wel
d:= HLoculo + K (residual denvative)
sy
A=A -r/d (updste AsY)

(i) Compute new residual and check for comvergence
&.,=8+ :+:A:5
Pasr = P:.':‘:I - KA
ri=ofE i) cot ¢ = pasa
IF |r| € et THEN  update

01 1= 02:= 03 =P

and RETURN to Box 8.4

(1v) GOTO (in)

compute elastic tnal stress:

i
Gt = D*: 5

NIEET + el
el >eu?

)=

and exit

process is elastic update:

apply one-veclor retum mapping
1o smooth part of cone - cblain:
Ay &d o, ¢

check vakdity
of one-veclor return:

\TGE -Gay 2 09

NO
apply retum mapping 10 apex
- oblain:
Ae?  and g,

date other state variabl
and exit
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(1) Set imtial guess for A~y
Avy:=0, &,.,=4

and corresponding resdual (vield function value)

ne

Put1 = pupy — K ij Ay
and RETURN to Box 8.8
(iv) GOTO (11)

b= \:".l.-:n:.':‘:' tnpuys — Ec(Eh)
(1) Perform Newton-Raphson iteration for An
de
H:= ] (hardening slope)
dz¥ |,
dd . . .
d:= =" -G = K- £ H  (resdual denvative)
dA~
Avy:=Ay-d/d (new guess for Av)
(1) Check convergence
S n+EAy
&= \ J1(827%) = GAy + n (p"™ = K i) Ay) — £ (2
IF |®| <ews THEN  updste
( G Ay ) triald
Bpey =[] — cop—— )5,y
"-'J._‘sun.;l,

»

"t

E. Irin.l om= E- & AE P trial fp— 2

"t . . “ner .

t e v o trind trial = s _w trial
8,51 =26 €3,y Puyr =K el 0

(1) Check plastic admissibility

trial trial ¢

IF \’ l_-l'ﬂ_"‘;‘i )+ N Prss —
THEN st (Jnes == ()% and EXIT

fzptrialy -
of 7 ) <
SAS, 0

(111) Return mapping
(2) Retum to smooth poetion of cone ~ GOTO Box 8.9
(b) Check vahdaty
IF \,".l_- (8) -G A7 >0
THEN return is valid - GOTO (iv)
(¢) Retum to apex - GOTO Box 8.10

(iv) Update elastic strain

(v) EXIT

(1) Elastc predictor. Given A€ and the state vanables at £, evaluate the elastic trial state

MENEGOTTO-PINTO STEEL MODEL
WITH FILIPPOU ISOTROPIC HARDENING
steel model with damage modulus

O0O00O0

implicit none

O 0

calling and return arguments

real*8 sfixpr(10),shstvP(10),shstv(10)
real*8 epssP,sigsP,depss,sigs,Est
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fixed properties

real*8 fsy,es1,b,r0,a1,a2,a3,a4,es2,epy

history variables

real*8 epmin,epmax,epex,ep0,s0,epr,sr
integer kon

local variables

integer i,
real*8 epss,sst,qi,r,e,dsde,epm

clear output variables
sigs =0.d0
Est=0.d0

retrieve steel fixed material properties

fsy = sfixpr(2)
es1 = sfixpr(3)
b = sfixpr(4)
r0 = sfixpr(5)
a1l = sfixpr(6)
a2 = sfixpr(7)
a3 = sfixpr(8)
a4 = sfixpr(9)

calculate other fixed material properties

es2 =b%es1
epy = fsyl/es1

retrieve steel history variables

epmin = shstvP(1)

epmax = shstvP(2)

epm = dmax1(dabs(epmin),dabs(epmax))
epex = shstvP(3)

ep0 = shstvP(4)

sO = shstvP(5)

epr = shstvP(6)

sr = shstvP(7)

kon = int(shstvP(8))

calculate current strain
epss = epssP + depss

Menegotto-Pinto model

-------- check for virgin steel

if(kon.eq.0) then
if(depss.eq.0.0d0) then
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sigs =0.d0
est = es1
goto 200
endif
epmax = epy
epmin = -epy
epm = epy
if(depss.lt.0.0d0) then
kon =2
ep0 =-epm
sO0 = -fsy
epex = -epm
endif
if(depss.gt.0.0d0) then
kon =1
ep0 =epm
sOQ =fsy
epex = epm
endif
endif

if(depss.eq.0.0d0) goto 100

if(kon.eq.2.and.depss.gt.0.0d0) then

kon =1
epr = epss-depss
sr = sigsp

if(epr.lt.epmin) epmin = epr

epm = dmax1(dabs(epmin),dabs(epmax))

sst = fsy*a3*(epm/epy-a4)

sst = dmax1(sst,0.0d0)

ep0 = (sr + es2*epy - (es1*epr + fsy + sst))/(es2-es1)
s0 =fsy + sst + es2*(ep0-epy)

epex = epmax

endif

if(kon.eq.1.and.depss.1t.0.0d0) then
kon =2
epr = epss-depss
sr = sigsp
if(epr.gt.epmax) epmax = epr
epm = dmax1(dabs(epmin),dabs(epmax))
sst = fsy*a3*(epm/epy-a4)
sst = dmax1(sst,0.0d0)
ep0 = (sr + fsy + sst - (es1*epr + es2*epy))/(es2-es1)
sO0 = es2*(epO+epy) - fsy - sst
epex = epmin
endif

100 continue

gi = dabs((epex-ep0)/epy)

r =r0- (a1*qi)/(a2+qi)

e = (epss-epr)/(ep0-epr)

sigs = b*e + (1.0d0-b)*e/(1.0d0+dabs(e)**r)**(1/r)
sigs = sigs*(s0-sr)+sr

dsde = b + (1.0d0-b)*(1.0d0-dabs(e)**r/(1.0d0+dabs(e)**r))
&  /(1.0d0+dabs(e)™r)**(1/r)

est = dsde*(s0-sr)/(ep0-epr)

C
Cc
C

transfer all variables to history vector
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200 continue
shstv(1) = epmin

shstv(2) = epmax
shstv(3) = epex
shstv(4) = ep0
shstv(5) = s0
shstv(6) = epr
shstv(7) = sr
shstv(8) = dble(kon)
return

end

B. MONTI — NUTI MODEL (modified for the case of partial unloading)

SUBROUTINE STMDL9
c
C***********************************************************************
¢ This subroutine calculates the stress at a monitoring point for
¢ the material model of Monti and Nuti [1992].
c

C***********************************************************************
C
IMPLICIT UNDEFINED (A-Z)

REAL*8 Fsy,Es0,bOp,L,D,R0,A1,A2,P ! material properties

REAL*8 bOn ! dependent on material properties

REAL*8 epssP,sigsP,epss0,sigs0,csimax,dsigsK,dsigsl,epssr,sigsr,R,kon,epss,sigs,Est
REALI*8 alpha,beta,eoa,soa,era,sra,eob,sob,erb,srb,Ra,Rb,omega

logical corr

¢ local variables
REAL*8 zero,one,dum1,dum2,a5,a6
REAL*8 depss,csi,epsrat
REAL*8 Esh,b
REAL*8 gammap,fi,dsigsKI
REAL*8 FR,epscor

INTEGER i,j
o [ COMMONBLOCKS J.....cccoecenee
COMMON /M_S9/ Fsy,Es0,bOp,L,D,R0,A1,A2,P,bOn,

+ epssP,sigsP,epss0,sigs0,csimax,dsigsK,dsigsl,epssr,sigsr,R,kon,epss,sigs,Est,Corr
COMMON /M_S91/ alpha,beta,eoa,soa,era,sra,eob,sob,erb,srb,Ra,Rb,omega

¢ normalise A2
A2 = A2*Fsy/EsO

¢ calculate other fixed material properties
if (L/D.gt.5) then
bOn = 3d-3*(5-L/D)
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else
bOn = b0p
end if

zero = 0.d0
one =1.d0

o

calculate increment of current strain

depss = epss - epssP

o

assign the current value for hardening ratio

if (depss.gt.zero) then
b =b0p

else
b =b0n

endif

check for virgin steel:
if kon=0 set the initial yield stress and strain

o000

if (kon.eq.0) then
if (depss.gt.zero) then
kon =1
else
kon = -1
endif
epss0 = kon*Fsy/EsOTMP
sigs0 = kon*Fsy
R =RO
endif

(¢}

correction in case of partial unloading

if (corr) then

epscor = 0.05*abs(epssr)
if (omega.eq.0) then

if (abs(depss).It.(epscor).and.kon*depss.It.0)then

omega=1
eoa=epss0
soa=sigs0
alpha=epssP
era=epssr
sra=sigsr
Ra=R

goto 1400
endif

endif

if (omega.eq.1) then
if (kon*depss.It.0) then
omega=3
eob=epss0
sob=sigs0
beta=epssP
erb=epssp
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srb=sigsp
Rb=R
else

if (abs(alpha-epss).gt.(epscor)) omega =0

goto 1400
endif
endif

if (omega.gt.1) then

if (omega.eq.3) then
omega=4
goto 20
endif

if (kon*depss.lt.zero) omega=omega+1

continue
kon=depss/abs(depss)

if (int(omega/2.) .eq. omega/2.) then

if (kon.It.0) then
if (epss.lt.alpha) then

epssO=eoa
sigsO=soa
epssr=era
sigsr=sra
omega=0
R=Ra
goto 1500
endif
if (epss.gt.beta) then
epssO0=eob
sigsO=sob
epssr=erb
sigsr=srb
omega=0
R=Rb
goto 1500
endif
sigs=sigsp+depss*Est
goto 2000
endif

if (kon.gt.0) then

if (epss.gt.alpha) then

epssO=eoa

sigsO=soa
epssr=era
sigsr=sra

omega=0

R=Ra

goto 1500

endif

if (epss.lt.beta) then

epssO0=eob
sigsO=sob
epssr=erb
sigsr=srb
omega=0
R=Rb
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goto 1500
endif

sigs=sigsp+depss*Est
goto 2000

endif
else
if (kon.1t.0) then
if (epss.gt.alpha) then

epssO=eoa

sigsO=soa
epssr=era
sigsr=sra

omega=0

R=Ra

goto 1500

endif

if (epss.lt.beta) then
epssO0=eob
sigsO=sob
epssr=erb
sigsr=srb
omega=0
R=Rb
goto 1500
endif

sigs=sigsp+depss*Est
goto 2000
endif

if (kon.gt.0) then

if (epss.lt.alpha) then

epssO=eoa

sigsO=soa
epssr=era
sigsr=sra

omega=0

R=Ra

goto 1500

endif

if (epss.gt.beta) then
epssO0=eob
sigsO=sob
epssr=erb
sigsr=srb
omega=0
R=Rb
goto 1500
endif

sigs=sigsp+depss*Est
goto 2000

endif
endif
endif
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endif

1400 continue

C

Cc
Cc
C
C

in case of load reversal: store the last load reversal point
and calculate the stress and strain (sigs0 and epss0) at the
new intersection between elastic and strain hardening asymptote

if (depss*kon.le.zero) then

update index for loading/unloading
if (kon.eq.1) then

kon = -1

Esh = bOp*EsOTMP
else

kon = 1

Esh = bOn*EsOTMP
endif

plastic excursion
csi = epssP - epss0
if (csi*kon.gt.0.d0) csi=0.d0  !!'non funziona per la prova ciclica!!

additional plastic excursion
if (dabs(csi).gt.csimax) then
gammap = (dabs(csi) - csimax)*dsign(1d0,csi)
else
gammap = 0.d0
end if

update last inversion point
epssr = epssP
sigsr = sigsP

double plastic work during previous semicycle
fi = csi*(sigsr-sigs0)

maximum plastic excursion of previous semicycle
csimax = dmax1(csimax,dabs(csi))

stress variation due to csi and gammap
accounting for the presence of buckling
if (L/D.le.5) then
dsigsK = dsigsK + Esh*csi
dsigsl = dsigsl + dabs(Esh*gammap)*dsign(1d0,fi)
dsigsKIl = P*dsigsK + (1-P)*dsigsl*dsign(1d0,-csi)
else
dsigsK = dsigsK + Esh*gammap
dsigsl = dsigsl + dabs(Esh*csi)*dsign(1d0,fi)
dsigsKIl = P*dsigsK + (1-P)*dsigsl*dsign(1d0,-csi)
end if
calculate degrading stiffness due to buckling
if (depss.gt.zero) then
if (L/D.gt.5) then
a5 =1+ (5-L/D)/7.5
a6 =-1000*csi**2
EsOTMP = EsOTMP*(a5 + (1-a5)*exp(a6))
end if
endif
calculate new yield stress
sigs0 = Fsy*dsign(1d0,-csi) + dsigsKI

calculate new yield strain
epss0 = epssr + (sigs0-sigsr)/EsOTMP
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update curvature of branch

accounting for the presence of buckling
R = fR(L/D,depss,R0,A1,A2,csimax)
endif

calculate current stress sigs

1500 continue

Cc

normalized strain
epsrat = (epss-epssr)/(epss0-epssr)

current stress

dum1 = one + dabs(epsrat)**R

dum2 = dum1**(1/R)

sigs = b*epsrat +(one-b)*epsrat/dum2
sigs = sigs*(sigs0-sigsr) + sigsr

(¢}

calculate appropriate stiffness

Est = b + (one-b)/(dum1*dum2)
Est = Est*(sigs0-sigsr)/(epss0-epssr)

2000 continue

C

RETURN
END

C
C

function for variation of R

function fR (snell,depss,R0,A1,A2,csimax)
implicit none

real*8 snell,depss,R0,A1,A2,csimax,fR,fr1
real*8 Rb,R0b,R1b,A1b,A2b,dum1

dum1=A2+csimax
if (dum1.eq.0.d0) then

fR=R0
else
fR = RO - (A1*csimax)/(A2+csimax)
endif
if (snell.gt.5.and.depss.1t.0) then
ROb = 0.2*(snell-5) ! minimum value
Alb=A1+1

A2b = A2¥1000
R1b = RO - 2*(snell-5) ! maximum value
if (R1b.It.ROb) R1b = ROb
if (dum1.eq.0.d0) then
fR1= RO0b
else
Rb = RO0b + (A1b*csimax)/(A2b+csimax)
fR1= dmin1(Rb,R1b)
endif
end if
if (fR1.gt.fR) fR = fR1
end
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KEDAAAIO 5

5. NUMERICAL EXAMPLES RESULTS — COMPARISON

5.1 NUMERICAL EXAMPLES

Von Mises yield criterion Examples
Example 1

Hexa 8 Box 2mX2mX2m with elements 1mX1mX1m, E=800000 Kpa, v=1/3,
_pl
0,0=5000 Kpa, Only isotropic hardening with curve o,, = 0,,0€°001 discrete for

values of £,; [0,0,001] with step 107°. Boundary conditions full fixed supports
in the bottom of the box (i. e. for Z=0 u, = u,, = u, = 0). Loading in the upper

surface of the box in the vertical direction (100 Non linear increments) as
follows

X Y VA Amount
(KN)

0 0 2 -3750
0 1 2 -7500
0 2 2 -3750
1 0 2 -7500
1 1 2 -15000
1 2 2 -7500
2 0 2 -3750
2 1 2 -7500
2 2 2 -3750

Monitor output dof is for point
X Y VA
1 1 2

TootouAibn Baoidikn 122



"AAyoptSuot EnidAuonc EAaotonAaotikwy Suothudtwy”

In Z direction (Number 41 of Dof and number 52 in suitesparse solver)
Load Displacement Curve (Max Relative Divergence from Ansys 6% found
in 15t step the rest are in the vicinity of 1%)

Only Isotropic Hardening

1,20E+00

1,00E+00

8,00E-01

—(C3D8

6,00E-01
——— C3D8SRI

Load factor

Abaqus

Msolve
4,00E-01

2,00E-01

0,00E+00
0,00E+00 2,00E-02 4,00E-02 6,00E-02 8,00E-02 1,00E-01 1,20E-01

Displacement

Von Mises Only Isotropic Non Linear Hardeningl

1.2

o
o0

Msolve

LoadFactor
o
()]

Ansys

©
~

0.2

0 0.01 0.02 0.03 0.04 0.05 0.06
Displacement
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Example 2
The hardening now is kinematic hardening with the formula (kPa)

a= % «(1—e7r7"") =180808.11517296+ (1 — e~897¢"")

Load Displacement Curve (Max Relative Divergence from Ansys 12% found in
1t step the rest are in the vicinity of 4%)

Kinematic hardening

Msolve

Tithog afova
o
w

Ansys

0 0.01 0.02 0.03 0.04

Tithog afova

Example 3

The hardening is now the combined hardening of the isotropic hardening law and
the kinematic hardening law of the examples 1 and 2
Load Displacement Curve (Max Relative Divergence from Ansys 13% found in

15t step the rest are in the vicinity of 2%)
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1.2

0.8

0.6

Load factor

0.4

0.2

0 0.005

Combined hardening

0.01 0.015

0.02

0.025

Displacement

Comparison of hardenings

1.2

Load factor
o o
[e)] (o]

o
>

0.2

o
o
o
=

Comparison of hardenings

0.02

0.03
Displacement

0.04

0.03 0.035 0.04

Msolve isotropic

Msolve kinematic

Msolve combined

0.06
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Example 4

Hexa 8 Box 2mX2mX2m with elements 1ImX1mX1m, E=800000 Kpa,
v=1/3, 0,0=5000 Kpa, Combined isotropic hardening with curve o, =

_pl.
0,,0€001 discrete for values of £,; [0,0,005] with step 107°. The kinematic

hardening with the formula (kPa)
a= ]9, «(1— e77e") =180808.11517296+ (1 — e897¢"")

Boundary conditions full fixed supports in the bottom of the box (i. e. for
Z=0 u, = u, = u, = 0). Dynamic symmetric triangle with time step dt=0,1
s, time of peak load T1=10s, time of free oscillation T2=20s and end of
analysis at T3=30s. Consistent mass matrix with density p=25 Mgr/m3 and
Rayleigh Coefficients a=0,35 (mass matrix), b=0,003. Loading in the upper
surface of the box in the vertical direction (100 Non linear increments) as
follows

X Y Z Amount (KN)
0 0 2 -3750
0 1 2 -7500
0 2 2 -3750
1 0 2 -7500
1 1 2 -15000
1 2 2 -7500
2 0 2 -3750
2 1 2 -7500
2 2 2 -3750
Monitor output dof is for point

X Y VA

1 1 2

In Z direction (Number 41 of Dof and number 52 in suitesparse solver)
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Time history Curve

Cyclic Von Mises Combined (dt=0,1)

0.04
0.035
0.03
0.025

0.02
Msolve

0.015

Ansys

Displacement

0.01
0.005

-0.005

Combined Non Linear Hardening (dt=0,05)

0.04
0.035
0.03
0.025
0.02

Msolve
0.015

Displacement

Ansys
0.01

0.005

-0.005
Time (s)

Comparison of time steps accuracy

Peak Msolve Ansys
0,1 0,034404 0,035 1,703179
0,05 0,034404 0,034512 0,313358
End Msolve Ansys
0,1 0,00134 0,001286 -4,17941
0,05 0,000868 0,000851 -1,94076
Example 5

As the example 4 but with only isotropic hardening
Time history Curve
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Cyclic Von Mises Isotropic

0.04
0.035
0.03

% 0.025
E 00
r_;v;- 0.015 Msolve
2 oo01 Ansys
0.005
0
0.005 O 10 20 30 40
Time
Example 6
Hexa 8 Box 2mX2mX2m with elements ImX1mX1m, E=800000 Kpa, v=1/3,

Spl
0,0=5000 Kpa, Combined isotropic hardening with curve o, = 0,,ye0%001

discrete for values of Epl [0,0,001] with step 107°. The kinematic hardening
with the formula (kPa)

a= 5 + (1 - e77*"") =180808.11517296+ (1 — e~87*"")
Boundary conditions full fixed supports in the bottom of the box (i. e. for Z=0
U, = u, = u, = 0). Dynamic symmetric triangle with time step dt=0,1 s, time of
peak load T1=10s, time of free oscillation T2=20s and end of analysis at T3=30s.
Consistent mass matrix with density p=25 Mgr/m?3 and Rayleigh Coefficients
a=0,35 (mass matrix), b=0,003. Loading in the upper surface of the box in the
vertical direction (100 Non linear increments) as follows

X Y VA Amount
(KN)

0 0 2 -3750
0 1 2 -7500
0 2 2 -3750
1 0 2 -7500
1 1 2 -15000
1 2 2 -7500
2 0 2 -3750
2 1 2 -7500
2 2 2 -3750
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The aforementioned static loads are subjected to pressure loading-unloading-
reverse loading-reverse unloading

Monitor output dof is for point

X Y Z

1 1 2

In Z direction (Number 41 of Dof and number 52 in suitesparse solver)

Load Displacement Curve (Max Relative Divergence from Ansys 13% found in
15t step the rest are in the vicinity of 5%)

Cyclic Combined Hardening

1.2

1
0.8
0.6
0.4
0.2
0

Ansys

l_@ad factor

001 002 003 004 005 ——MSolve

-0.8

Displacement

Example 7

As Example 6 but with only isotropic hardening and no kinematic hardening
Load Displacement Curve (Max Relative Divergence from Ansys 19% found in
Cyclic reverse the rest are in the vicinity of 1%)
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Cyclic Isotropic Hardening

1.5

Ansys

0.08 Msolve

0.08

Load factor

-1.5
Displacement

Example 8

As Example 6 but with only kinematic hardening and the peak nodal loads are

the ones of Example 6 multiplied by 0.35
Load Displacement Curve (Max Relative Divergence from Ansys 10% found in

15t step the rest are in the vicinity of 4%)

Cyclic Kinematic Hardening
1.5

1

3]
2
(S]
&
= Ansys
«0.015 0.01 0.015
S -0.5 Msolve
-1
-1.5
Displacement
130
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Tresca yield criterion Examples
Example 1

Hexa 8 Box 2mX2mX2m with elements ImX1mX1m, E=800000 Kpa, v=1/3,
pl
d,,0=150 Kpa, Only isotropic hardening with curve g, = 20,,7e°°0t discrete for

values of &,,; [0,0,001] with step 107°. Boundary conditions full fixed supports
in the bottom of the box (i. e. for Z=0 u, = u, = u, = 0). Loading in the upper
surface of the box in the vertical direction (100 Non linear increments) as
follows

X Y VA Amount
(KN)

0 0 2 -375
0 1 2 -750
0 2 2 -375
1 0 2 -750
1 1 2 -1500
1 2 2 -750
2 0 2 -375
2 1 2 -750
2 2 2 -375

Monitor output dof is for point

X Y z
1 1 2

In Z direction (Number 41 of Dof and number 52 in suitesparse solver)
Load Displacement Curve and Comparison with Mohr Coulomb with ¢=4=0
which should be very close referring to the yield surfaces
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Load factor
o o o
N w IS

o©
-

0.2
0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

Load factor

0.6

0.5

0.4

0.3

Load factor

0.2

0.1

o

0.001

0.0005

0.0005

Comparison Tresca

0.002 0.003
Displacement

0.004

Tresca Linear Hardening

0.001

Displacement

0.0015

Abaqus

Tresca

Msolve Mohr Coulomb

$=0,y=0

Msolve

Ansys

0.002

Tresca Non Linear Hardening

0.001

0.0015 0.002
Displacement

0.0025

0.003

Msolve Tresca

Abaqus

Ansys_Tresca

0.0035
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Tresca Cyclic Loading

1.5

. 0.5
o
=
(S)
O
© Msolve
9 -0.0008 -0.0006 -0.0004 -0.000 0.0002 0.0004 0.0006 0.0008 —— Ansys
-0.5
-1
-1.5

Displacement

TootouAibn BaotAikn 133



"AAyoptSuot EnidAuonc EAaotonAaotikwy Suothudtwy”

Mohr Coulomb yield criterion Examples
Example 1

Hexa 8 Box 2mX2mX2m with elements ImX1mX1m, E=800000 Kpa, v=1/3,
Epl
Y=30°, $=30° cy=150 Kpa, Only isotropic hardening with curve ¢ = cye0001

discrete for values of Epl [0,0,001] with step 107%. Boundary conditions full
fixed supports in the bottom of the box (i. e. for Z=0 u, = u, = u, = 0).
Loading in the upper surface of the box in the vertical direction (100 Non linear
increments) as follows

X Y VA Amount
(KN)

0 0 2 -375
0 1 2 -750
0 2 2 -375
1 0 2 -750
1 1 2 -1500
1 2 2 -750
2 0 2 -375
2 1 2 -750
2 2 2 -375

Monitor output dof is for point

X Y Z
1 1 2

In Z direction (Number 41 of Dof and number 52 in suitesparse solver)
Load Displacement Curve

TootouAibn Baoidikn 134



"AAyoptSuot Enilvonc EAactonAaotikwyv Zugtnudatwy”

Comparison of Mohr Coulomb

1,00E+00
9,00E-01
8,00E-01
7,00E-01
6,00E-01
5,00E-01
4,00E-01
3,00E-01
2,00E-01
1,00E-01
0,00E+00
0,00E400  1,00E-03  2,00E-03  3,00E-03  4,00E-03

TitAog d€ova

MSolve

Tithoc dEova

Abaqus

Mohr Coulomb Non Linear Hardening

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Msolve

Load factor

Ansys

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035

o

Displacement

Mohr Coulomb Linear Hardening

0.6
0.5
0.4

0.3
Msolve

Load factor

0.2

Ansys
0.1

0.0005 0.001 0.0015 0.002 0.0025

o

Displacement
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Mohr Coulomb Non Linear Hardening

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Msolve

Load factor

Abaqus

0 0.001 0.002 0.003 0.004

Displacement
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Mohr Coulomb Cyclic Loading

1.2

Msolve

Load factor

Ansys

0.0015

0.0005 0.002

-0.001 -0.0005 0.001

Displacement

Drucker Prager yield criterion Examples

Example 1

Hexa 8 Box 2mX2mX2m with elements ImX1mX1m, E=800000 Kpa, v=1/3,

P=30°, $=30° ¢,=150 Kpa, Outer Cone approximation of Mohr Coulomb,
6 sin 23 _ 6 siny 23 6 Cos @ 6

BG-sing) 5’ T Ba=sin) 5’ § = 5

thatisn = FGosin = 3

Only isotropic linear hardening with curve hardening modulus H =100000
Kpa Boundary conditions full fixed supports in the bottom of the box (i. e.
for Z=0 u, =u, = u, = 0). Loading in the upper surface of the box in the

vertical direction (100 Non linear increments) as follows

X Y VA Amount
(KN)

0 0 2 -375
0 1 2 -750
0 2 2 -375
1 0 2 -750
1 1 2 -1500
1 2 2 -750
2 0 2 -375
2 1 2 -750
2 2 2 -375
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Monitor output dof is for point

X Y Z
1 1 2

In Z direction (Number 41 of Dof and number 52 in suitesparse solver)

Load Displacement Curve

Drucker Prager Non Linear Hardening
Comparison of Cones Approximation

0.8
3]
C 0.6
2 Msolve Outer Cone
Ee]
o 0.4
9 Msolve Mohr Coulomb
0.2 P Msolve Inner Cone
0 <
0 0.001 0.002 0.003 0.004
Displacement
Drucker Prager Linear Hardening
0.7
0.6
_ 05
o
T 04
2 Msolve
T 03
9 Matlab
0.2
Abaqus
0.1
0

0.001 0.002 0.003 0.004

Displacement

o
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Drucker Prager Linear Hardening Outer Cone

0.7
0.6
0.5
0.4

0.3 Ansys

Load factor

0.2 Msolve

0.1

0 0.0005 0.001 0.0015 0.002 0.0025

Displacement

Drucker Prager Non Linear Hardening Outer Cone

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Ansys

Load factor

Msolve

0.001 0.002 0.003 0.004

Displacement

o
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-0.002

-0.0025

-0.0015

Drucker Prager Outer Cone Cyclic Loading

1.2

0.8
0.6
0.4

0.2

0.001 0.0015 0.002

-0.001  -0.0005 0.0005

-1

Displacement

0.0025
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Kavvadas Clays yield criterion Examples
Example 1

Hexa 8 Box 2mX2mX2m with elements ImX1mX1m, compressibility factor
k=0.5%0.008686, critical state line inclination ¢=0.733609251, £=0.05, Initial
Stresses only hydrostatic -1000 KPa (compression), Niso=2.15, virgin inclination
factor A=10*k constant, n=1/3=>» 2G/Kbulk=0,75, a*=400 Kpa, ainitial=1600
Kpa, that means Binitial=4 and Bres=1. Tuning factors nvp,ngp=75 zvp,zqp=0.
Lambdal and gamma that are constants employed for the interpolation of the
Plastic Yield Envelope Plastic hardening modulus are Lambdal=5 and
gamma=1. Also, v=1.627(specific volume) and the initial stresses are the ones
of the center of PYE in the beginning of the loading. Center of yield surface is
the initial stresses of hydrostatic component only. Boundary conditions full
fixed supports in the bottom of the box (i. e. for Z=0 u, = u, = u, = 0).
Loading in the upper surface of the box in the vertical direction (100 Non linear
increments) as follows

X Y VA Amount
(KN)
0 0 2 -0,375
0 1 2 -0,750
0 2 2 -0,375
1 0 2 -0,750
1 1 2 -1,500
1 2 2 -0,750
2 0 2 -0,375
2 1 2 -0,750
2 2 2 -0,375

Monitor output dof is for point

X Y z
1 1 2

In Z direction (Number 41 of Dof and number 52 in suitesparse solver)
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Load Displacement Curve and Comparison with Mohr Coulomb with ¢==0

which should be very close referring to the yield surfaces. (Max Relative
Divergence from Ansys % )

Kavvadas Clays Monotonic Loading

=
[N}

[N

o
o0

Msolve

Load Factor
o
()]

°
~

Ansys

©
()

o

0 0.00002 0.00004 0.00006 0.00008 0.0001 0.00012

Displacements

Example 2

Exactly as Example 1 but with Cyclic loading in the upper surface of the box in
the vertical direction (100 Non linear increments/path total 400 increments)
with Load-Unload-Reverse load-Reverse unload path as follows

X Y VA Amount
(KN)
0 0 2 -0,375
0 1 2 -0,750
0 2 2 -0,375
1 0 2 -0,750
1 1 2 -1,500
1 2 2 -0,750
2 0 2 -0,375
2 1 2 -0,750
2 2 2 -0,375

Monitor output dof is for point

X Y z

1 1 2
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In Z direction (Number 41 of Dof and number 52 in suitesparse solver)
Load Displacement Curve. (Max Relative Divergence from Ansys %)

Kavvadas Clays Cyclic Loading

1.5

1

0.5

Msolve

Load Factor

0.00005 0.0001 0.00015

-0.00015 -0.0001  -0.00005

e ANSY'S

-1.5
Displacement

FiberBeam3D with Masing yield criterion Examples

Example 1

Cantilever with L=10m, Section Area A=b x h =0,25x0,25. Upper Fibers with
thickness of b t,=0.05 (5 fibers) and Fibers with thickness of h t,=0.01 (25
Fibers). The discretization consists of two elements of 5 m each with Young’s
modulus E=210 GPa, tangent Young’s modulus Et=21GPa, v=0,3, 0,=275
MPa. The loading is monotonic, uniaxial in the upper surface of the cantilever
in the vertical direction (20 increments and 100 increments respectively)
with magnitude of P=150 KN.

The Masing yield criterion is actually a pure kinematic hardening

Boundary conditions full fixed supports at the left of the beam (i. e. for Z=0
U, =u, =u, = 0).

Load Displacement Curve (Max Relative Divergence from Ansys 0.9% found
in comparison to MSolve).

TootouAibn Baoidikn 143



"AAyoptSuot EnidAuonc EAaotonAaotikwy Suothudtwy”

FiberBeam3D

160
140
120

100

a 80 —@— Msolve

60 —@— Ansys

40

20

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8

2xnua 1: P-u with 20 increments as loading

FiberBeam3D

160
140
120

100

a 80
—@— Ansys

60 —@— Msolve
40
20
0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
u
Zxnua 2: P-u with 100 increments as loading
Example 2

Cantilever with L=10m, Section Area A=b x h =0,25x0,25. Upper Fibers with
thickness of b t,=0.05 (5 fibers) and Fibers with thickness of h t,=0.01 (25
Fibers). The discretization consists of two elements of 5 m each with Young's
modulus E=210 GPa, tangent Young’'s modulus Et=21GPa, v=0,3, 6,=275
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MPa. The loading is monotonic, biaxial in the upper surface of the cantilever

in the horizontal and vertical direction (20 increments and 100 increments
respectively) with magnitude of Px=75KN= P, at its right edge.

The Masing yield criterion is actually a pure kinematic hardening

Boundary conditions full fixed supports at the left of the beam (i. e. for Z=0
U, =u, =u, =0).

Load Displacement Curve (Max Relative Divergence from Ansys 1.5% found
in comparison to MSolve).

FiberBeam3D

160
140
120

100

a 80 —@— Msolve

60 —@— Ansys

40

20

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
u

P-u with 20 increments as loading

l?
2
’J

For the clamped beam of the figure with rectangular shape bXh=0,2X0,4
mxm. Fibers with thickness of b t,=0.04 (5 fibers) and Fibers with thickness
of h t,=0,016 (25 Fibers). The discretization consists of two elements of 2,5
m each with Young’s modulus E=210 GPa, tangent Young’s modulus
Et=21GPa, v=0,3, 6,,=275 MPa. Monotonic loading and cyclic loading of 3000
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KN with 100 increments The Masing yield criterion is actually a pure

kinematic hardening

Boundary conditions full fixed supports (i. e. for x=0 and x=5 m u, = u, =
u, = 0).

Load Displacement Curve (Max Relative Divergence from Ansys 1,43% and

1,59% respectively found in comparison to MSolve less than 1% the

corresponding errors for Opensees).

FiberClampedBeam3D
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FiberClampedBeam3D
3500
3000
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o ’ - - Ansys

1500
— MSolve

1000 OpenSees

500

0 0,002 0,004 0,006 0,008 0,01

FiberClampedBeam3D
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= 1000

—— MSolve
)
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1000

OpenSees
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Example 4

For the previous case of the clamped beam with rectangular shape
bXh=0,2X0,4 mxm. Fibers with thickness of b t,=0.04 (5 fibers) and Fibers
with thickness of h tn= 0,016 (25 Fibers). The discretization consists of two
elements of 2,5 m each with Young’s modulus E=210 GPa, tangent Young’s
modulus Et=21GPa, v=0,3, 6,,=275 MPa. Monotonic loading, biaxial in the
upper surface of the clamped beam in the horizontal and vertical direction
(100 increments) with magnitude of P,=3300KN= P, at its centre of the
beam and cyclic loading of P,=3300KN= Py at its centre of the beam with
4*20 increments.

The Masing yield criterion is actually a pure kinematic hardening

Boundary conditions full fixed supports (i. e. for x=0 and x=5 m u, = u,, =
u, = 0).
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Also the same analysis was conducted with P,=1400KN= P,

Load Displacement Curve (Max Relative Divergence from Ansys 1,43%
and 1,59% respectively found in comparison to MSolve less than 1% the
corresponding errors for Opensees).

FiberClampedBeam3DBiaxial
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FiberClampedBeam3DBiaxial
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Fiber Clamped Beam Py=Pz=1400 KN
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Example 5

For the previous case of the clamped beam with rectangular shape
bXh=0,2X0,4 mxm. Fibers with thickness of b t,=0.04 (5 fibers) and Fibers
with thickness of h tn= 0,016 (25 Fibers). The discretization consists of two
elements of 2,5 m each with Young’s modulus E=210 GPa, tangent Young’s
modulus Et=21GPa, v=0,3, 6,,=275 MPa. Cyclic loading, biaxial in the upper
surface of the clamped beam in the horizontal and vertical direction (100
increments) with magnitude of P,=1250KN= P, at its centre of the beam
and cyclic loading of P,=1250KN= P, at its centre of the beam with 4*20
increments.

&pl
Only isotropic hardening with curve o, = oyoew_pOl discrete for values of
gpr [0,0,001] with step 107°. Boundary conditions full fixed supports (i. e.
for x=0 and x=5 mu, = u,, = u, = 0).
Load Displacement Curve (Max Relative Divergence from Ansys 1,43% and
1,59% respectively found in comparison to MSolve less than 1% the
corresponding errors for Ansys).
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Isotropic Non Lirlmear Hardening Fiber Beam 3D

0,8
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0,4
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O Load factor
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Z 02
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-0,6 —Msolve
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Example 6

For the previous case of the clamped beam with rectangular shape
bXh=0,2X0,4 mxm. Fibers with thickness of b t,=0.04 (5 fibers) and Fibers
with thickness of h t,= 0,016 (25 Fibers). The discretization consists of two
elements of 2,5 m each with Young’s modulus E=210 GPa, tangent Young’s
modulus Et=21GPa, v=0,3, 0,,=275 MPa. Cyclic loading, biaxial in the upper
surface of the clamped beam in the horizontal and vertical direction (100
increments) with magnitude of P,=1000KN= P, at its centre of the beam and
cyclic loading of P,=1000KN= P, at its centre of the beam with 4*20
increments.

Only  kinematic  hardening  with curve a(Kpa) =275000(1 —
e~ 097x1000%5p1) discrete for values of &, [0,0,001] with step 107°.
Boundary conditions full fixed supports (i. e. for x=0 and x=5 m u, = u,, =
u, = 0).

Load Displacement Curve (Max Relative Divergence from Ansys 1,43% and
1,59% respectively found in comparison to MSolve less than 1% the
corresponding errors for Ansys).
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Kinematic Non Linear Hardening Fiber Beam 3D
1
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Example 7

For the previous case of the clamped beam with rectangular shape
bXh=0,2X0,4 mxm. Fibers with thickness of b t,=0.04 (5 fibers) and Fibers
with thickness of h tn= 0,016 (25 Fibers). The discretization consists of two
elements of 2,5 m each with Young’s modulus E=210 GPa, tangent Young’s
modulus Et=21GPa, v=0,3, 0,,=275 MPa. Cyclic loading, biaxial in the upper
surface of the clamped beam in the horizontal and vertical direction (100
increments) with magnitude of P,=850KN= P, at its centre of the beam and
cyclic loading of P,=850KN= P, at its centre of the beam with 4*20

increments.
Epl
Combined hardening with isotropic hardening curve o, = 0,,e0%001

discrete for values of &, [0,0,001] with step 10~® and kinematic
hardening curve a(Kpa) = 275000(1 — e~897*1000*ep1)  (iscrete for
values of Epl [0,0,001] with step 1076. Boundary conditions full fixed
supports (i. e. for x=0 and x=5 m u,, = u,, = u, = 0).

Load Displacement Curve (Max Relative Divergence from Ansys 1,43% and
1,59% respectively found in comparison to MSolve less than 1% the
corresponding errors for Ansys).
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Combined Non Lir}lear Hardening Fiber Beam 3D
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Example 8

For the previous case of the clamped beam with rectangular shape
bXh=0,2X0,4 mxm. Fibers with thickness of b t,=0.04 (5 fibers) and Fibers
with thickness of h th= 0,016 (25 Fibers). The discretization consists of two
elements of 2,5 m each with Young’s modulus E=210 GPa, Poissons
coefficient v=0,3, yield stress 0,0=275 MPa. Cyclic loading, biaxial in the
upper surface of the clamped beam in the horizontal and vertical direction
(100 increments) with magnitude of P,=1500KN= Py at its centre of the beam
and cyclic loading of P,=1500KN= Py at its centre of the beam with 4*20
increments.

Only isotropic hardening with curve o, = Gyoe(gpl*l) , Where A=
20 (consistency parameter), discrete for values of &, [0,0.1] with step
107°. Boundary conditions full fixed supports (i. e. for x=0 and x=5 m u, =
u, =u, = 0).

Load Displacement Curve (Max Relative Divergence from Ansys 5,08%
respectively found in comparison to MSolve).
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Isotropic Non Linear Hardening Fiber Beam 3D
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Example 9

For the previous case of the clamped beam with rectangular shape
bXh=0,2X0,4 mxm. Fibers with thickness of b t,=0.04 (5 fibers) and Fibers
with thickness of h th= 0,016 (25 Fibers). The discretization consists of two
elements of 2,5 m each with Young’s modulus E=210 GPa, v=0,3, 6,,(=275
MPa. Cyclic loading, biaxial in the upper surface of the clamped beam in the
horizontal and vertical direction (100 increments) with magnitude of
P,=1500KN= Py at its centre of the beam and cyclic loading of P,=1500KN=

P, at its centre of the beam with 4*20 increments.

0.003 0.004 0.005

0.006

——— MSolve

Ansys

Only kinematic hardening with curve a(Kpa) = %(1 — e 11l =
1

31638000
277,32

(1 — e~277:32*pl) where C;, y; parameters associated with

the magnitude and rate of backstress component account for the
decrease in theinitial yield stress for mild structural steels, discrete for
values of &,, [0,0.1] with step 107°. Boundary conditions full fixed

supports (i. e. for x=0 and x=5 m u,, = u,, = u, = 0).

Load Displacement Curve (Max Relative Divergence from Ansys 3,94%

respectively found in comparison to MSolve).
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Kinematic Non Linear Hardening Fiber Beam 3D
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Example 10

For the previous case of the clamped beam with rectangular shape
bXh=0,2X0,4 mxm. Fibers with thickness of b t,=0.04 (5 fibers) and Fibers
with thickness of h tn= 0,016 (25 Fibers). The discretization consists of two
elements of 2,5 m each with Young’s modulus E=210 GPa, v=0,3, 0,,=275
MPa. Cyclic loading, biaxial in the upper surface of the clamped beam in
the horizontal and vertical direction (100 increments) with magnitude of
P,=1500KN= Py at its centre of the beam and cyclic loading of P,=1500KN=
P, at its centre of the beam with 4*20 increments.

Combined hardening with isotropic hardening curve o,, = Gyoe(‘gpl*’l) )
where A = 20 (consistency parameter), discrete for values of
epr [0,0.1] with step 107% and kinematic hardening curve a(Kpa) =

S — emrirepry = 203890 (1 _ o-277328p1)  where (C, (KPa), Y,
V1 277,32

parameters associated with the magnitude and rate of backstress
component account for the decrease in the initial yield stress for mild
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structural steels, discrete for values of ¢, [0,0.1] with step 107°,

Boundary conditions full fixed supports (i. e. for x=0 and x=5 m u,, =
u, =u, = 0).
Load Displacement Curve (Max Relative Divergence from Ansys 3,86%
respectively found in comparison to MSolve).

Combined Non Linear Hardening Fiber Beam 3D
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Example 11

For the previous case of the clamped beam with rectangular shape bXh=0,2X0,4
mxm. Fibers with thickness of b t,=0.04 (5 fibers) and Fibers with thickness of h
th= 0,016 (25 Fibers). The discretization consists of two elements of 2,5 m each
with Young’s modulus E=210 GPa, v=0,3, 0,,=300 MPa (initial yield stress).
Cyclic loading, biaxial in the upper surface of the clamped beam in the horizontal
and vertical direction (100 increments) with magnitude of P,=1000KN= Py at its
centre of the beam and cyclic loading of P,=1000KN= P, at its centre of the beam
with 4*100 increments.

o o

Ramberg Osgood curve £t = = + q(
E Syo
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exponent and it is equal to n=2,821670429, which controls the hardening of the
material, as if “n” increases, the hardening ratio will be decreased respectively
and a = a,rf5:=0,2%=0,002 (commonly used value) referred as “yield offset”.
Boundary conditions full fixed supports at the left of the beam (i. e. for Z=0 u, =
u, =u, = 0).

Load Displacement Curve (Max Relative Divergence from Ansys 1 % found in
comparison to MSolve).

12 Cyclic Ramberg Osgood

1 4
prd
y
S d /
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! — Opensees
/

MSolve
y 4
4 J//
/
/

0.2 /

0 0.001 0.002 0.003 0.004 0.005
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[e]

© Load gfgactor o

Comparison of MSolve and Opensees for a certain amount of the numerical
damping value
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Cyclic Ramberg Osgood
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Comparison of MSolve and Opensees for different values of the numerical damping
ratio
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Cyclic Ramberg Osgood
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Comparison of MSolve and Opensees for different values of the numerical damping
ratio
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KEDAAAIO 6

6 CONCLUSIONS

6.1 GENERAL CONCLUSIONS

The purpose of this master's thesis is to describe in detail the numerical techniques
used in the theory and analysis of small deformations of elastic and inelastic solids
using the finite element method. Particular emphasis is placed on the derivation and
description of various constitutive laws of the models due to material nonlinearity -
based on phenomenological elasticity, elastoplasticity by using various cases of yield
criteria where it is determined whether a material has fractured or exceeded vyield
strength - as well as for the associated numerical procedures and the practical issues
that arise in them when solved computationally. The range covered goes from basic
infinitesimal isotropic to more sophisticated finite strain theories, including
anisotropy. These numerical techniques are implemented with the aid of the
commercial software packages, Ansys Workbench, as well as the open-source
software code, MSolve, and a comparative study and analysis is presented between
Ansys Workbench and MSolve. The results were plotted graphically. For the finite
element simulations in nonlinear constitutive relations, the fiber beam - column
model for nonlinear analysis of reinforced concrete structures, the commercial
software package Ansys Workbench was selected. Due to the complexity of the
problem of material nonlinearity and the description of nonlinear constitutive
relations as well as the cyclic loading incorporating plasticity and the Bauschinger
effect, a powerful computational tool was used, MSolve software, which solved quite
complex problems with higher accuracy in the results and less computational time and
cost that other commercial software packages. Several numerical examples have done
utilizing Von Mises, Tresca, Mohr-Coulomb, Drucker Prager with nonlinear hardening
especially the constitutive law has an exponential form both for monotonic and cyclic
loading. Also, the second case has to do with force-based three-dimensional fiber
beam utilizing Masing yield criterion, Ramberg Osgood, Menegotto Pinto and Kent
Park model for both monotonic and cyclic loading. The third case that is examined is
the soil interaction, Kavvadas Clays yield criterion, which it describes and evaluates a
critical-state incremental-plasticity model for structured soils (MSS). The model
simulates the engineering effects of processes causing structure development (pre-
consolidation, ageing, cementation, etc.) and structure degradation (remoulding by
volumetric and/or deviatoric straining), such as high stiffness and strength at the
intact states, appreciable reduction of stiffness and strength during destructuring, and
the evolution of stress-induced and structure-induced anisotropy. A novel feature of
the model is the treatment of pre-consolidation as a structure-inducing process and
the unified description of all such processes via the BSE. The proposed model
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distinguishes the concepts of “yielding' (i.e. the onset of irreversible deformation upon
reaching the PYE) and the onset of major de-structuring which occurs when the BSE is
engaged. Thus, the model avoids the large elastic domain of critical state models and
permits the development of irreversible strains even for small variations of the stress

levels.

v' For the first case of yield criteria for monotonic and cyclic loading:

Peak
0,1
0,05
End
0,1
0,05

Because of the material nonlinearity, which has to do with the hardening law
that was used, and it was in an exponential form, we could conclude that if
we use as input more and more tabular data as stress and strains the
behavior of the constitutive law between the two software, Ansys and
Msolve, coincides. Actually, the yield point, the critical load in monotonic and
the reversal load in cyclic arises to be of the same magnitude.

i.Load Displacement Curve (Max Relative Divergence from Ansys 6% found in

1t step the rest are in the vicinity of 1%) for the von mises yield criterion of
nonlinear isotropic hardening. As for nonlinear kinematic hardening, Load
Displacement Curve (Max Relative Divergence from Ansys 12% found in 1
step the rest are in the vicinity of 4%) and for the case of mixed nonlinear
hardening, we have that Load Displacement Curve (Max Relative Divergence
from Ansys 13% found in 1t step the rest are in the vicinity of 2%)

iii. The same behavior is observed for the transient analysis, the time history

curve has:
Msolve Ansys
0,034404 0,035 1,703179
0,034404 0,034512 0,313358
Msolve Ansys
0,00134 0,001286 -4,17941
0,000868 0,000851 -1,94076

iv. Load Displacement Curve (Max Relative Divergence from Ansys 13% found

in 1% step the rest are in the vicinity of 5%)

v. For the cyclic loading, the comparison between the Msolve and Ansys

software for the constitutive law of nonlinear isotropic, kinematic and
combined hardening are Load Displacement Curve (Max Relative Divergence
from Ansys 19% found in Cyclic reverse the rest are in the vicinity of 1%),
Load Displacement Curve (Max Relative Divergence from Ansys 10% found in
1t step the rest are in the vicinity of 4%) and the Load Displacement Curve
(Max Relative Divergence from Ansys 13% found in 1t step the rest are in the
vicinity of 5%) respectively.

vi. As for Tresca model, we have Load Displacement Curve and Comparison

with Mohr Coulomb with ¢=¢=0 which should be very close referring to the
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yield surfaces. (Max Relative Divergence from Ansys 7,5% found in 15 step

the rest are in the vicinity of 1%) for monotonic loading and Load
Displacement Curve. (Max Relative Divergence from Ansys 3%) for cyclic
loading in the upper surface of the box in the vertical direction (100 Nonlinear
increments/path total 400 increments) with Load-Unload-Reverse load-
Reverse unload path.

vii.  As for Mohr -Coulomb model, we have Load Displacement Curve (Max
Relative Divergence from Ansys 7% found in 15t step the rest are in the vicinity
of 1%) for monotonic loading and Load Displacement Curve. (Max Relative
Divergence from Ansys 2%) for cyclic loading in the upper surface of the box
in the vertical direction (100 Nonlinear increments/path total 400
increments) with Load-Unload-Reverse Load-Reverse unload path.

viii.  As for Drucker Prager model, we have Load Displacement Curve (Max
Relative Divergence from Ansys 7% found in 1% step the rest are in the vicinity
of 4%) for monotonic loading and the Load Displacement Curve. (Max
Relative Divergence from Ansys 1%) for cyclic loading in the upper surface of
the box in the vertical direction (100 Nonlinear increments/path total 400
increments) with Load-Unload-Reverse load-Reverse unload path.

v' For the case of 3D fiber-beam forced-based element the conclusions are: In the present
master thesis, the limitations of the original Masing model and recent modifications of this
model have been used to analyse the monotonic and cyclic stress—strain response. The
following points same been demonstrated:

i.  Masing-type models correlate directly with the microstructure
established in deformed materials, and the discrete yield levels can
account for the Bauschinger effect.

ii. The cyclic stress—strain response under variable amplitude loading
conditions can be predicted from Masing-type models even for
materials that show non-Masing behaviour in constant amplitude
loading tests.

iii. Relationships between the various Masing-type models and the Ramberg—
Osgood interpretation of stress—strain response can be established which
allow calculation of parameters such as the energy expenditure and the
stored elastic energy during monotonic and cyclic loading, respectively. In
particular, a link has been established between the Ramberg—Osgood
strength (A) and cyclic hardening (b) parameters.
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iv.  Load Displacement Curve (Max Relative Divergence from Ansys 0.9%
found in comparison to MSolve) for the case of nonlinear isotropic
hardening for monotonic loading. Load Displacement Curve (Max
Relative Divergence from Ansys 0.9% found in comparison to MSolve)
for the case of nonlinear kinematic hardening for monotonic loading.
Load Displacement Curve (Max Relative Divergence from Ansys 1,43%
and 1,59% respectively found in comparison to MSolve less than 1% the
corresponding errors for Opensees) for the case of nonlinear mixed

hardening constitutive law for Monotonic loading, biaxial in the upper

surface of the clamped beam in the horizontal and vertical direction
(100 increments) with magnitude of P,=3300KN= Py at its centre of the
beam and cyclic loading of P,=3300KN= Py at its centre of the beam with
4*20 increments.

V. Load Displacement Curve (Max Relative Divergence from Ansys 5,08%
respectively found in comparison to MSolve) for Only isotropic
hardening with curve o, = cyoe(gpl*’l) , Where A = 20 (consistency
parameter), discrete for values of €;,; [0, 0.1] with step 107°. Boundary
conditions full fixed supports (i. e. for x=0 and x=5 m u,, = u,, = u, = 0)
for cyclic loading, biaxial in the upper surface of the clamped beam in
the horizontal and vertical direction (100 increments) with magnitude
of P,=1500KN= Py at its centre of the beam and cyclic loading of
P,=1500KN= Py at its centre of the beam with 4*20 increments.

vi.  Load Displacement Curve (Max Relative Divergence from Ansys 3,94%

respectively found in comparison to MSolve) for only kinematic
31638000(
277,32

hardening with curve a(Kpa) = %(1 — e N*épl) =
e~ 27732*p1) where C,,y, parameters associated with the magnitude
and rate of backstress component account for the decrease in the initial
yield stress for mild structural steels, for cyclic loading, biaxial in the
upper surface of the clamped beam in the horizontal and vertical
direction (100 increments) with magnitude of P,=1500KN= Py at its
centre of the beam and cyclic loading of P,=1500KN= Py at its centre of
the beam with 4*20 increments.

vii.  Load Displacement Curve (Max Relative Divergence from Ansys 3,86%
respectively found in comparison to MSolve) for Combined hardening
with isotropic hardening curve o, = Gyoe(gpl*"l) , Where A=
20 (consistency parameter), discrete for values of £, [0,0.1] with step
107 and kinematic hardening curve a(Kpa) = %(1 — e 1*Epl) =

31638000 (
277,32

with the magnitude and rate of backstress component account for the

— e7277.32*ep1) where C; (KPa),y; parameters associated

decrease in the initial yield stress for mild structural steels for cyclic
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loading, biaxial in the upper surface of the clamped beam in the
horizontal and vertical direction with magnitude of P,=1500KN= Py at its
centre of the beam with 4*20 increments.
viii. Load Displacement Curve (Max Relative Divergence from Ansys 1 %
found in comparison to MSolve) for Ramberg Osgood curve £t = % +
al 7
Oyo
to n= 2,821670429, which controls the hardening of the material for
Cyclic loading, biaxial in the upper surface of the clamped beam in the

)", where n is material strain-hardening exponent and it is equal

horizontal and vertical direction (100 increments) with magnitude of
P,=1000KN= Py at its centre of the beam and cyclic loading of
P,=1000KN= Py at its centre of the beam with 4*100 increments for three
different numerial damping (amplitude decay factor), where it is
concluded that in cyclic loading mainly we observe that there is a
convergence in critical loading and the behavior of the constitutive law
where there is difference in the duration of reverse loading and reverse
unloading between MSolve and Ansys (17%).

Finally, it is worth recalling some considerations concerning the possible nu-
merical dissipation produced by the alporithm. As long as the method is
stable, v = 1 implies no numerical dissipation for physically undamped New-
rrark :m-l.l::.u_].»‘ wherene for - > _|, numerical dissipation & introuced reducing
accuracy to first order. When 1:!4'.1:['.'.1.]‘1:1-&'[&1'.5 3 and < azsume velues 03025 and
0.6 respectively, the methed iz snid to be damped,

ix. For the case of Kavvadas clays yield criterion we have: the descriprion
and evaluation for a critical-state incremental-plasticity model for
structured soils (MSS). The model simulates the engineering effects of
processes causing structure development (pre-consolidation, ageing,
cementation, etc.) and structure degradation (remoulding by volumetric
and/or deviatoric straining), such as high stiffness and strength at the
intact states, appreciable reduction of stiffness and strength during de-
structuring, and the evolution of stress-induced and structure-induced
anisotropy. A novel feature of the model is the treatment of pre-
consolidation as a structure-inducing process and the unified
description of all such processes via the BSE. The proposed model
distinguishes the concepts of ‘yielding' (i.e. the onset of irreversible
deformation upon reaching the PYE) and the onset of major de-
structuring which occurs when the BSE is engaged. Thus, the model
avoids the large elastic domain of critical state models and permits the
development of irreversible strains even for small variations of the
stress levels. Other features of the MSS model include (a) a general-
purpose damage-type mechanism which can model the structure
degradation induced by volumetric and deviatoric strains (b) stress- and
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bond-induced anisotropy as well as memory of the stress history,

achieved by recording the offset of the two model surfaces from the
isotropic axis-these characteristics are gradually erasable (fading
memory) as the surfaces move and the material state adapts to more
recent stressing (c) formulation in a tensorial space consisting of the
isotropic axis and the deviatoric hyper-plane -this formulation ensures
the generality required for incorporation in finite element codes
without losing the geometrical insight of the triaxial p-q plane, and it
facilitates the modelling of shear strength anisotropy by decoupling the
shear strength parameters in the various shearing modes (triaxial, plane
strain, simple shear, etc.), thus permitting independent control of the
shear strength in these modes (d ) downward compatibility with the
MCC model when all structural and anisotropic features are turned off -
furthermore, these features can be turned on and off according to the
type of the available test data, thus adapting the level of predictive
sophistication to the available data.

X. Load Displacement Curve and Comparison with Mohr Coulomb with
d=y=0 which should be very close referring to the yield surfaces. (Max
Relative Divergence from Ansys 0.86% for monotonic loading.

Xi. Load Displacement Curve. (Max Relative Divergence from Ansys is about
~1%) for cyclic loading in the upper surface of the box in the vertical
direction (100 Nonlinear increments/path total 400 increments) with
Load-Unload-Reverse load-Reverse unload path.

To summarize that, for all the three cases that we examined, it was concluded
that: Essentially, we had a verification and validation of the correctness of the results
for all cases of nonlinear material hardening of all constitutive laws that are studied in
this master thesis for both monotonic and cyclic loading case.

Exactly similar results were obtained through MSolve, which means that
identification and absolute convergence of the results were achieved.
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7.2 NOTATION

BSE

¢ (or ¢;)

dot (over a symbol)
e

e (superscript)
G/K

p (superscript)
PYE

(> ¥)

bond strength envelope

eccentricity of the BSE and the PYE
infinitesimal increment of this quantity

void ratio

elastic component of strain

elastic shear parameter in poro-elasticity
function of the BSE

function of the PYE

clasto-plastic modulus

unit second-order tensor

overconsolidation ratio

plastic component of strain

plastic yield envelope

scalar stress deviator

auxiliary scalar quantity (defined in Appendix 2)
tensonal stress deviator

deviatoric stress components

auxiliary scalar quantity (defined in Appendix 2)
size of the BSE

elastic shear parameter in hyper-elasticity
parameter controlling the variation of the elasto-
plastic modulus (H)

excess pore pressure

strain tensor

volumetric strain

scalar deviatoric strain

volumetric and deviatoric structure degradation
parameters

steady-state deviatoric structure degradation/
hardening parameter

poro-clastic compressibility

hyper-elastic compressibility

intrinsic compressibility

mean effective stress

maximum vertical pre-consolidation pressure
vertical consolidation pressure

effective stress tensor

coordinates of the centre of the BSE in the stress
space

coordinates of the centre of the PYE in the stress
space

ratio of the sizes of the BSE and PYE
parameters controlling the evolution of material
anisotropy
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