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Περίληψη 

Τα τελευταία χρόνια, ο τομέας του Deep Learning (DL) έχει γνωρίσει μεγάλη 

πρόοδο, καθώς παρατηρείται μια τάση προς τη χρήση μοντέλων DL για πολλές 

εφαρμογές. Ένας μεγάλος αριθμός εφαρμογών εστιάζει στην επεξεργασία εικόνας και 

πιο συγκεκριμένα, πάνω στο instance segmentation, το οποίο έχει αποκτήσει μεγάλη 

δημοτικότητα λόγω της προόδου των πιο πρόσφατων μελετών. 

Ένας πολύ σημαντικός τομέας που αποτελεί σημαντικό μέρος της ανθρώπινης 

ζωής και ενσωματώνει καθημερινά νέες τεχνολογίες είναι ο τομέας της γεωργίας. Η 

υιοθέτηση νέων τεχνολογιών κατέστησε δυνατή τη συλλογή μεγάλου όγκου δεδομένων 

που απαιτούνται για την εκπαίδευση των πολύπλοκων αρχιτεκτονικών, όπως αυτών του 

DL. Μεταξύ των δεδομένων διαφόρων μορφών, οι εικόνες των καρπών που 

καλλιεργούνται είναι ένα από τα πιο κοινά δεδομένα που συλλέγονται στη γεωργία. Η 

ικανότητα ανίχνευσης και εξαγωγής πληροφοριών για τους καλλιεργούμενους καρπούς 

μέσω εικόνων είναι υψίστης σημασίας για τους γεωργικούς στόχους καλύτερης 

ποιότητας και ποσότητας των καλλιεργειών. 

Από τις πολλές περιπτώσεις στη γεωργία, η καλλιέργεια των μανιταριών έχει 

αποδειχθεί μια πολύ τεχνική διαδικασία που απαιτεί τη χρήση όλων των διαθέσιμων 

μέσων συλλογής πληροφοριών κατά την ανάπτυξή τους, προκειμένου να επιτευχθεί 

καλύτερη απόδοση και ποιότητα. Επιπλέον, τα μανιτάρια στη φύση παρουσιάζουν μια 

ενδιαφέρουσα περίπτωση για τον εντοπισμό νέων ειδών, την παρακολούθηση του 

μικροκλίματος μιας περιοχής και τη δυσκολία εντοπισμού των μανιταριών εικόνες με 

πολύπλοκα φόντα φυσικού περιβάλλοντος στην εικόνα. 

Σε αυτή τη διπλωματική εργασία, συλλέχθηκαν δύο σύνολα δεδομένων 

μανιταριών και χειροκίνητα δημιουργήθηκαν μάσκες για την υλοποίηση instance 

segmentation. Το ένα σύνολο δεδομένων περιλαμβάνει συστάδες μανιταριών Pleurotus, 

που καλλιεργούνται σε τεχνητό περιβάλλον και το άλλο περιέχει διαφορετικά είδη 

μανιταριών σε φυσικά περιβάλλοντα. Μοντέλα instance segmentation τελευταίας 

τεχνολογίας εκπαιδεύτηκαν και δοκιμάστηκαν πάνω σε αυτά τα σύνολα δεδομένων 

προκειμένου να εξαχθούν πολύτιμες πληροφορίες σχετικά με την απόδοσή τους και τον 

τρόπο με τον οποίο τα διαφορετικά χαρακτηριστικά αυτών των δύο συνόλων 

δεδομένων επηρεάζουν τα αποτελέσματα. Τα αριθμητικά και απεικονιστικά 

αποτελέσματα μεταξύ των μοντέλων παραθέτονται και παρουσιάζεται σύγκριση τους. 

Τα συμπεράσματα αυτής της εργασίας είναι ότι τα χαρακτηριστικά ενός συνόλου 

δεδομένων και ο όγκος των διαθέσιμων δεδομένων για εκπαίδευση έχουν μεγάλο ρόλο 

στην απόδοση ενός μοντέλου. Ωστόσο, πιο σύνθετα μοντέλα που μπορούν να εξάγουν 

καλύτερα χαρακτηριστικά από τα αρχεία εισόδου και να τα διαδώσουν με πιο 

αποτελεσματικό τρόπο στα διάφορα δομικά στοιχεία της αρχιτεκτονικής τους μπορούν 

να επιτύχουν καλά αποτελέσματα ακόμη και με μικρό αριθμό διαθέσιμων δεδομένων. 
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Abstract 

In the recent years, the domain of Deep Learning (DL) has experienced a great 

progress, as a trend towards the use of DL models for many applications is observed. A 

great number of applications is implemented on image processing and more recently 

the task of instance segmentation has gained great popularity due to breakthroughs in 

the latest studies.  

A very important domain, that is a crucial part of the human life and integrates 

every day new technologies, is the domain of agriculture. The adoption of new 

technologies has made possible the collection of great amounts of data that are required 

to train the complex architectures of DL. Among the data of various formats, images of 

crops, that are cultivated, are one of the most common data collected in agriculture. The 

ability to detect and extract information for the cultivated crops through images is of 

paramount importance for the agricultural targets of better crops’ quality and quantity. 

From the many agricultural cases, the cultivation of mushrooms has proven to 

be a very technical process, that requires the use of all the available means to collect 

information during their growth, in order to achieve better yield and quality. Moreover, 

mushrooms in nature present an interesting case for identifying new species, monitoring 

the micro-climate and the difficulty of finding mushroom instances in natural complex 

backgrounds. 

In this thesis, two mushroom datasets were collected and manually annotated for 

the task of instance segmentation. One dataset includes Pleurotus mushroom clusters, 

cultivated in a controlled environment and the other contains different mushroom 

species in natural environments. State-of-the-art instance segmentation models were 

finetuned and tested on these datasets in order to extract valuable information regarding 

their performance and how the different characteristics of these two datasets affect the 

results. Arithmetic and imaging results are provided and comparison between the 

models is presented. 

The conclusions of this work are that the dataset’s characteristics and the amount 

of available data for training exert a great role in the performance of a model. However, 

more complex models that can extract better information and circulate it in a more 

efficient way through their different components can achieve good results even with 

small number of available data.  
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1 Introduction 
 

In the recent years, a trend towards the use of Deep Learning (DL), a sub-domain 

of machine learning (ML), is being observed. DL is constituted from more complex and 

larger models than the traditional ML. This complexity leads to the requirement of 

greater amounts of data for the training. However, a well-trained DL model in most 

cases will outperform a traditional ML model [1]. Many applications of DL models have 

been observed in various domains, with one of them being the important domain of 

agriculture, where tasks of yield prediction, crop management, growth analysis, disease 

detection among others are being explored [1]. At the same time, the technology 

advancement of the recent years introduced the use of many sensors in agriculture, 

enabling the extensive data collection [2]. 

The combination of better achievable results from DL models and the ability to 

collect large amounts of data, has led to many DL implementations in agriculture in 

general, but also specifically in controlled environment agriculture (CEA) [3]. As both 

natural environment and crop production environment are complex environments 

regarding background, elements present and illumination among others, the need for 

proper and robust detection and localization of crops/fruits in these environments 

becomes apparent. This need can be fulfilled utilizing DL models, as they are able to 

learn complex patterns and features in the images and detect the targeted crops in 

challenging conditions. The accurate localization can be considered as the first part of 

a series of applications, for example species classification, growth monitoring and yield 

estimation. Moreover, in CEA, the detailed detection can be integrated in disease 

monitoring and automated robotic harvesting applications.  

The first steps in the detection and localization utilized Computer Vision (CV) 

methods with human-designed features extractors based on color, shape and textual 

characteristics [4,5,6,7,8]. The extracted features were analyzed by traditional ML 

models for example SVM [5,9,10] and Artificial Neural Networks [5,11]. These 

implementations produced good results for the dataset they analyzed but cannot be 

generalized in different illumination settings and backgrounds, due to the manually 

engineered features. An advantage of DL over ML is the more effective feature 

extraction from raw data done in an automatic manner [1]. This feature extraction 

advantage results to DL models outperforming their ML counterparts in agriculture 

applications of image processing [1]. Researchers started to shift their focus on 
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implementing DL architectures to image processing to achieve superior overall results 

in areas such as fruit detection and counting [12,13,14,15,16,17,18]. Many of these 

studies are using the two very popular object detection architecture families of Faster 

R-CNN [19] and You Only Look Once (YOLO)[20], which dominated the object 

detection domain and are the basis for many other developed models to this day.  

However, after the breakthrough publication of Mask R-CNN [21], a DL 

architecture that expanded the object detection of Faster R-CNN into an instance 

segmentation architecture, many studies integrated Mask R-CNN and custom variations 

of it to instance segmentation task in agriculture, as well as other implementations of 

instance segmentation architectures. Fruit detection is the most popular task of the 

instance segmentation in agriculture, as many studies focus in detecting and localizing 

fruits for example apple [22], strawberry [23], mango [24] and grapes [25] among 

others.  

 Yu et al. [23] used vanilla Mask R-CNN to find strawberries and classify 

them to two classes (ripe, unripe). The high accuracy of the localization was then 

utilized for position estimation of the strawberries, allowing their collection from a 

harvesting robot. Perez-Borrero et al. [26] modified Mask R-CNN in order to create a 

lighter architecture for strawberry detection with lower inference time (achieved 10 fps 

vs. vanilla 5 fps) for potential use in robotic harvesting. In his next attempt to develop 

a faster architecture, Perez-Borrero et al. [27] implemented a custom architecture based 

on UNet fully convolutional network combined with a grouping and filtering algorithm, 

outperforming his previous work, meeting the precision and speed requirements needed 

for real-time harvesting systems.  

 Gene-Mola et al. [28] aimed on constructing precise 3D apple 

localization, using Mask R-CNN architecture for the 2D image analysis before applying 

structure-from-motion (SfM) photogrammetry. Despite the good results for the instance 

segmentation part, the whole implementation was deemed unfit for real-time robotic 

harvesting as it presented high processing times for the 3D analysis. In an effort to 

develop a real-time robotic harvesting application, Kang et al. [29] implemented a 

custom single-stage instance segmentation architecture, based on the YOLO models 

family, with a lighter backbone network, achieving robust and efficient results.

 Experimenting with the offline task of detecting apple flowers in different 

growth stages, Tian et al. [22] proposed a custom architecture, combining an extended 

version of Mask R-CNN, namely Mask Scoring R-CNN, with a U-Net backbone, which 

https://doi.org/10.48550/arXiv.1506.01497
https://doi.org/10.48550/arXiv.1506.01497
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.48550/arXiv.1703.06870
https://doi.org/10.48550/arXiv.1506.01497
https://doi.org/10.48550/arXiv.1903.00241
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outperformed other state-of-the-art models. Shen et al. [30] proposed a new backbone 

network, introducing an attention mechanism and dense up-sampling convolution, in 

order to improve the performance of Mask R-CNN on problems introduced by 

illumination, occlusion conditions and the variability of grape cluster shape in the 

dataset. 

Regardless of the examined crop/fruit, robotic application of localizing and 

harvesting was taken into consideration in many of the recent studies. Ganesh et al. [31] 

proposed the combined use of RGB and HSV images from a Mask R-CNN model for 

improved localization of oranges on trees, for robotic harvesting. Liu et al. [32] utilizing 

Mask R-CNN, proposed a custom implementation for cucumber localization in a 

greenhouse, taking into account the color and the shape of the target crop. The results 

achieved were compared with other state-of-the-art architectures, outperforming them. 

Moving away from the Mask R-CNN, Chen et al. [33], created a custom autoencoder 

architecture, based on VGG16 network, applying it on a synthetic dataset of sweet 

pepper images. Santos et al. [25] introduced Embrapa dataset, containing images of 

grape clusters for instance segmentation. A comparison between two architectures of 

the YOLO family and Mask R-CNN, to examine the performance on the new dataset, 

with Mask R-CNN presenting superior results compared to the YOLO models. An end-

to-end vision system for mango picking robot was designed by Zheng et al. [24] 

integrating a Mask R-CNN model inside a framework of detecting the fruits and then 

locating picking points for the harvesting robot. The model was proven robust against 

various illuminations and complex image backgrounds. Wang et al. [34] developed a 

custom implementation using Mask R-CNN as the baseline model. A comparison was 

made on a dataset of multiple fruits, with the proposed model achieving better results 

compared to other instance segmentation models. Extending an object detection 

architecture, Jia et al. [35], developed FoveaMask, an instance segmentation 

architecture in which the dependency on anchor boxes, a characteristic of the Mask R-

CNN family, is eliminated and an attention mechanism is utilized. The model was 

trained on a dataset comprised of immature green apples and persimmon, achieving 

better results compared with 11 different types of detection and segmentation models. 

 One of the most significant concerns in agriculture disease control [36], 

as disease outbreaks can diminish the yield and/or the quality of any cultivar at any 

environment. Detecting diseases through images has become a task of paramount 

importance in terms of rapid reaction and disease countermeasures. Instance 

https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.5281/zenodo.3361736
http://dx.doi.org/10.3390/s18082674
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segmentation architectures not only can detect the area of interest but also, classify the 

disease and extract geometrical information through the detailed instance mask being 

created. Afzaal et al. [37] used Mask R-CNN to detect disease on strawberries and to 

classify the detected areas into 7 disease classes. Different data augmentation 

techniques are explored and a new custom strawberry disease dataset is presented. 

Tassis et al. [38] developed a three-part framework with Mask R-CNN as the first part, 

responsible for identifying and segmenting green leaves, while the next parts detected 

disease areas and classified them between five diseases. With the introduction of a new 

dataset for disease detection on grape clusters and leaves, Rossi et al. [39] applied Mask 

R-CNN and Recursively Refined R-CNN (architecture in the family of  Mask R-CNN) 

with good results, to prove the validity of their dataset. 

Despite the many recent studies incorporating instance segmentation for 

fruit/crop detection in robotic harvesting, disease detection and growth analysis, to the 

best of our knowledge little to no such work has been recorded so far on mushrooms. A 

gap is identified, in applying instance segmentation on images of mushroom both in 

natural environment and in production farms.  

Mushrooms are an important part of our ecosystem due to their nutritional value, 

medicinal properties, and potential as a sustainable and eco-friendly crop [40]. They 

can be found in the natural environment [41,42] but also, cultivated in dedicated 

mushroom farms [43,44,45]. Regarding the natural environment, different mushrooms 

species can be found in areas where specific conditions are ideal for their growth [46]. 

Mushroom detection and localization in a natural environment present an important first 

task that can help scientists and conservationists to track, classify and study different 

mushroom species, as well as help ordinary people define their edibility [47]. However, 

detection in natural environments involves challenging conditions such as bad lighting 

conditions, complex background or wide variety of changes in mushroom shape and 

size due to different species.  

On the other hand, the nutritional value of the mushrooms has increased the 

demand for big amounts for consumption. World production of cultivated, edible 

mushrooms has increased more than 30-fold since 1978, which is combined with an 

increase in per capita consumption at a relatively rapid rate [48]. Some of the most 

widespread mushrooms are several species of the genus Pleurotus. These are of 

particular interest because their production accounts to ca. 30% of the total, 

corresponding to the fastest growing and most profitable section of the mushroom 

https://doi.org/10.1007/978-3-030-89128-2_46
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market [49]. The production involves four main steps: preparation of substrate, 

inoculation, incubation and fruiting, [50], that are highly dependent on environmental 

parameters, mainly temperature, humidity and CO2 concentration in the growing rooms 

[51]. These factors exert a great effect on both growth and yield, thus the correlation 

between environmental parameters and the visual growth through collected images is 

of great importance. Unlike the fruiting bodies of other mushrooms, those of oyster 

mushrooms grow in clusters, which make them more difficult to measure their growth 

based on cap size and stipe length. This fact demands as a first step to detect and monitor 

the mushroom clusters and the individual instances that comprise them. 

For both aforementioned mushroom cases, the existence of big amounts of data 

is necessary to achieve the required detection result. An abundance of mushroom 

images in natural environments that can be found in public datasets [52], including a 

great variety of mushroom species images. In the case of mushroom cultivation in 

dedicated farms, the special conditions, under which the cultivation is conducted, render 

it a very technical process and represents a special case of CEA. This controlled 

environment is protected and allows a space with precisely regulated environmental and 

cultural variables to produce yield in a more efficient way, by adopting the use of 

advanced technology. The use of sensors and actuators, which are located inside the 

structure to properly monitor the crop/microclimate interaction, control environmental 

parameters, manage cultivation factors and collect mushroom growth data. Many 

different types of sensors and IoT implementations were reported in the recent literature 

[53,54], including cameras for image acquisition. In this way, data can be collected, 

creating large data banks that contain environmental and most importantly, image data 

from inside the cultivation installations. 

This thesis will explore the implementation of different instance segmentation 

DL architectures with the aim of detecting mushroom instances on two datasets with 

different characteristics. The instance detection is a useful first step in extracting fine-

grained information, for example the number of individual mushrooms comprising a 

cluster, the shape and the size among others. This information can be useful for bigger 

applications, exploring yield prediction and monitoring mushroom growth with 

correlation on the environmental variables inside the production environment, or 

localizing mushrooms in natural environments and classify them as edible or not. 

The rest of the thesis is structured as follows. In chapter 2, the two datasets are 

presented and information is given regarding their images and the annotation task. The 
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DL architectures that are used are described in chapter 3. In chapter 4, the results are 

presented and discussed and finally, in chapter 5s, conclusions and suggestions for 

future work are made. 
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2 Datasets 

2.1 Pilze dataset 

The first dataset is comprised of oyster mushroom clusters (Pleurotus ostreatus 

(Jacq. Ex Fr.) P. Kumm). It was created using sets of images acquired from a commercial 

mushroom farm in June 2022 at Pilze-Nagy Ltd (Budapest, Hungary). Images of 

unharvested mushroom clusters were carefully acquired at different angles using the 

dual 12MP camera system of an iPhone 12 mobile phone with a high resolution of 

4032x3024 pixels. Field photography mainly occurred during the daytime under 

artificial lighting conditions, capturing in detail every single mushroom in a cluster. A 

total of 200 RGB images including different sizes, shapes and distribution densities of 

raw oyster mushrooms in clusters were captured. Attention was given in capturing 

images of the clusters from all sides. In Figure 1, the mushroom farm is shown as well 

as three images from the horizontal, bottom and top views. 

 

Figure 1 Mushroom farm (a) with artificial lighting. Three sample mushroom cluster 

images from the collected dataset at different angles: front (b), bottom (c), top (d) 

views obtained from a real production environment.  
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Moreover, in the dataset exist clusters with different numbers of individual 

mushrooms, ranging from numbers smaller than 10 up to even more than 30. In Figure 

2, two clusters with different number of mushroom instances are presented. 

(a)        (b) 

Figure 2 Mushroom cluster with small (a) and large (b) number of mushroom 

instances. 

 

As it can be observed from both Figures 1 and 2, many instances are semi-

occluded. The visible fraction of some mushrooms is relatively small, posing a 

challenge for the instance segmentation task.  

Figure 3 Mushroom cluster for top view before and after annotation. 

 

The collected raw oyster mushroom dataset was processed into formats that can 

be used to train and evaluate deep neural network architectures. After image acquisition, 

the regions of oyster mushroom clusters in the images were manually annotated using 

an open-source image and video annotation tool (CVAT: Computer Vision Annotation 

Tool), creating the labels required for model training, validation and testing. 

https://www.cvat.ai/
https://www.cvat.ai/
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Specifically, the mushrooms in the images were carefully annotated, defining the 

boundaries of the individual mushrooms present in each image (Figures 3 and 4). This 

process resulted in a collection of user-defined masks for each mushroom that was 

considered as an instance of interest for the segmentation.  

Figure 4 Mushroom cluster for bottom view before and after annotation. On the right 

image the points used to define the borders of a mushroom instance are visible. 

 

The annotated dataset was exported and saved in COCO data format. The dataset 

was divided into three subsets, 75% of the data were randomly selected for training, 

10% of the data for validation and 15% of the data for testing. 

2.2 Google V6 dataset 

Open Images is a dataset of ~9M images annotated with image-level labels, 

object bounding boxes, object segmentation masks, visual relationships, and localized 

narratives [52]. Overall, there are 19,958 distinct classes with image-level labels. 

However, this number is slightly higher than the number of human-verified labels. 

Trainable classes are those with at least 100 positive human-verifications in the V6 

Figure 5 Original mushroom annotation from V6 google dataset for instance 

segmentation task. 
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training set. Based on this definition, 9,605 classes are considered trainable and 

machine-generated labels cover 9,034 of these. For this thesis, the class “mushroom” 

was extracted from the dataset, for the segmentation task subset. The annotation of the 

mushroom dataset was not extensive or in the correct format for the training of the 

models (Figure 5) and the need arose for the annotation of the dataset from scratch.  

The class “mushroom” contained many different mushrooms species, in contrast 

to the other dataset that is used in this thesis. Furthermore, some of the images inside 

the dataset contained images from artificial or cooked mushrooms. These images were 

filtered out of the dataset as the purpose was to examine the detailed detection and 

localization of mushroom instances in natural environment. In Figure 6 are presented 

images from different mushroom species contained in the dataset. 

 

Figure 6 Example mushroom images from V6 google dataset for instance 

segmentation task.  

 

From a total number of almost 1500 mushroom images, 1407 were used after the 

filtering of artificial mushrooms, very low-resolution images and mushrooms in 
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artificial environments. The V6 dataset has the data split by default in train, validation 

and test sets. After the elimination of the aforementioned bad samples, 1238 (~88%), 

39 (~3%) and 130 (~9%) images were used respectively for train, validation and test 

set. The eliminated images where proportional of the size of each set, without affecting 

the final percentage of each set. The resolution of the images never exceeds 1024x1024. 

The different mushroom species contained in the dataset, introduce a great 

variance of number, shape and colors in the images. Some mushroom images are single 

instances, for example, in Figure 6.f, while other mushroom species grow in compact 

clusters where the instances cannot be distinguished easily, as it can be seen from Figure 

6.c, leading to the characterization of the whole cluster as a mushroom instance. 

Regarding the shape of the mushrooms, it is visible from Figure 6.b and 6.e, how 

different can be the instance of a mushroom for different species. All this complexity 

can be a difficult task, even for a DL architecture. Another important factor that adds 

complexity in the instance segmentation task is the background in each image. In some 

cases, for example in Figure 6.a, the background is very distinct from the mushrooms, 

as the colors are different. This is not the case for Figure 6.f, where the colors of the 

background are very similar with the ones of the mushroom instance inside the image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Mushroom images before and after annotation. On the right images the points 

used to define the borders of a mushroom instance are visible. 
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The annotation of this dataset was conducted in a similar fashion as the previous 

dataset, using the online CVAT tool. The mask of each mushroom instance was 

manually and carefully defined in a time-consuming procedure. In Figure 7, examples 

of annotated images from the V6 dataset are presented. 
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3 Instance segmentation architectures 
For the instance segmentation task on mushroom instances in this thesis, the 

open-source object detection toolbox based on PyTorch named MMDetection [55] was 

utilized. It is a part of the OpenMMLab project. MMDetection contains and supports 

many popular and state-of-the-art architectures for object detection, instance 

segmentation and panoptic segmentation. Moreover, the toolbox contains weights for 

more than 200 pre-trained networks, making the toolbox an instant solution if the 

available dataset is not big enough to train an architecture from scratch. One of the most 

important advantages of MMDetection is that many simple modular components of a 

typical object detection/instance segmentation frameworks are implemented. With 

selecting and combining them, custom pipelines or a custom model can be built. Also, 

building a new detector framework on top of an existing framework and comparing its 

performance is easily possible with this toolbox’s benchmarking capabilities. 

For this thesis, six instance segmentation architectures where selected, trained 

and tested on the two aforementioned mushroom datasets. The models were pretrained 

on COCO dataset, with only the final parts of each architecture being finetuned with 

the training set of the datasets. The training and testing of each dataset were done 

independently from each other, with the aim of examining how each architecture could 

perform on artificial and natural environments for mushroom detection. The six 

architectures will be discussed in further detail in the following sub-chapters. The first 

one is Mask R-CNN, on which other four are based on. Moreover, some of these 4 Mask 

R-CNN based architectures are extensions of each other. 

All the examined architectures have as their first part a feature extractor 

component or else named backboned network. This network is responsible for 

extracting features from the initial input data provided to the network. Usually, this is 

comprised of a pre-trained CNN model such as ResNet [56]. For five out of the six 

architectures, two different pre-trained backbones were examined, one that had fewer 

layers or was based on a simpler model and one that had more layers or was based on 

more complex model, giving the name “light” and “heavy” respectively to the whole 

model. These architectures were selected among many, that were provided by the 

toolbox, based on their accuracy on the benchmark dataset of COCO, but also with 

respect to the ability that hardware demands could be met by the available system. The 

only architecture that was not examined with two different backbones was DetectorRS 

[57], due to hardware limitations for the provided “heavy”. The one DetecoRS 
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architecture used is categorized as “light”. Another quantitative differentiating factor 

between the “light” and “heavy” models is the amount of GPU RAM memory that the 

models required to run, with the “light” models demanding a lot less than the “heavy” 

ones.  

Finally, the computer hardware configuration used for image processing and 

model training in this experiment is as follows: CPU: AMD Ryzen Threadripper 1950X 

16-Core Processor 3.40 GHz; GPU: NVIDIA GeForce RTX 3090 (24 GB memory); 

RAM: 64 GB; SSD: 512G. The network model is trained under Windows 10 

Professional 64-bit operating system. The next sub-chapters will present the 

architectures used and highlight differences and similarities between them. 

 

3.1 Mask R-CNN 

Mask R-CNN is considered as a breakthrough in the domain of instance 

segmentation, expanding the object detection architecture of Faster R-CNN [33], with 

the inclusion of a fully convolutional network (FCN) for semantic segmentation. This 

model is part of the family of the two-stage detection models, where the first step is 

comprised from a model tasked with the extraction of the regions of interest (ROIs), 

while the second step is the classification and the detailed localization of the object 

inside each ROI. Overall, the architecture of Mask R-CNN can be divided into three 

parts, if the feature extractor part is considered as a distinct part (else it can be 

considered as part of stage 1), as it can be seen in figure 8. 

 
Figure 8 Mask R-CNN architecture, divided into distinct parts. 

The first part of the network, namely the backbone, is acting as a feature extractor 

for the input image, with convolutional neural networks (CNNs) being utilized in an 

FCN architecture. In Mask R-CNN case, the backbone is comprised of a ResNet [56] + 

Feature Pyramid Network (FPN) [58] network, which is visualized in Figure 9. ResNet 

architecture is can effectively solve the gradient vanishing problem of deeper 

architectures with many layers, making possible the use of multi-layers networks (for 
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example ResNet50, ResNet101). Moreover, ResNet is a bottom-up architecture, which 

detects low-level features (in the first layers) and high-level features (in the last layers). 

With the introduction of the FPN, the backbone achieves the integration of a top-down 

architecture, combining effectively low- and high-level features in a multi-scale feature 

fusion.  

The output of the backbone is a feature map, that is used from the second part of 

the network, namely the Region Proposal Network (RPN). RPN is tasked with finding 

objects inside the image, through the feature map, by using a set of boxes with 

predefined size and scale, named anchors. The anchors are being slid through the feature 

map and at each location try to decide whether they contain a possible object or not, 

after comparing it with the ground truth data. The output of RPN is the collection of all 

anchors, with two additional values, the anchor class (foreground or background) and 

the coordinates of the bounding box of the anchor. The anchors with the highest 

confidence of containing an object are selected in order to alleviate the computation 

cost of processing all the anchors.  

Figure 9 FPN architecture [58], divided into distinct parts. The left part of the 

architecture is a backbone network (usually ResNet or similar implementation) and 

the right part is the FPN addition. Depending on the application one or more of the 

“predict” stages can be utilized as feature from the following components of an 

architecture. 

The third and final part is comprised of the Region of Interest (ROI) Align 

component and the object detection/mask generation branches. ROI Align is responsible 

for extracting the features of the feature map (produced from the backbone) that are 

contained in the proposed regions of the RPN and transforming them into fix-sized 

arrays for standardized processing. The fix-sized arrays are then pass through two 

branches producing on one end, the final class prediction and bounding box coordinates 
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(box head branch) and on the other end the pixel-wise mask of the detected instance 

(mask branch). 

In this thesis, two different backbones have been examined, to give insight how 

different feature extractors can affect the results. The first backbone, belonging in the 

aforementioned category of “light” models, was comprised from a ResNet network of 

50 layers combined with an FPN, while the second backbone, in the “heavy” category, 

was comprised of a ResNeXt [59] network of 101 layers with 32x8d (cardinality x 

bottleneck width) combined with an FPN. The models used were pretrained on COCO 

dataset and finetuning was done on the stage 2 of the architecture using the two 

mushroom datasets. 

3.2 Mask Scoring R-CNN (MS R-CNN) 

Mask Scoring R-CNN [60] is an extension of the Mask R-CNN architecture. The 

main difference between Mask R-CNN and Mask Scoring R-CNN is the addition of a 

scoring branch that is used to predict the quality of the instance segmentation mask. 

This branch can be visually seen in Figure 10, with the name of MaskIoU head. 

The MaskIoU head aims to estimate the IoU between the predicted mask and its 

ground truth mask. The input of this component is concatenation of feature from RoI 

Align layer and the predicted mask and generates a score for each mask, indicating the 

quality of the mask. This score is computed by multiplying the predicted MaskIoU and 

classification score. Thus, mask score is aware of both semantic categories and the 

instance mask completeness [60]. This allows the model to distinguish between high- 

Figure 10 Mask Scoring R-CNN architecture, divided into distinct parts [60]. 

quality and low-quality masks, and to only keep the high-quality masks for better 

training. 
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Two different backbones have been examined for this architecture. The first 

backbone, considered “light”, was comprised from a ResNet network of 50 layers 

combined with an FPN, while the second backbone, in the “heavy” category, was 

comprised of a ResNeXt [59] network of 101 layers with 64x8d (cardinality x 

bottleneck width) combined with an FPN. The models used were pretrained on COCO 

dataset and finetuning was done on the three heads of the architecture that are visible in 

Figure 8. 

3.3 Cascade Mask R-CNN 

Cascade Mask R-CNN [61] is a state-of-the-art object detection and instance 

segmentation algorithm that improves upon the Mask R-CNN architecture. The main 

idea behind Cascade Mask R-CNN is to break down the object detection and instance 

segmentation task into multiple stages, or cascades, each with a different IoU threshold. 

The stages are trained sequentially, using the output of a stage as training set for the 

next.  Training with small IoU threshold results in noisy samples, and training with large 

thresholds degrades the performance because of overfitting and low-quality region 

proposals at inference compared to training. Moreover, models trained using specific 

IoU thresholds might be suboptimal when evaluated on other IoU thresholds or region 

proposals of different level of IoU threshold is given. The use of different IoU thresholds 

for the training of the model can solve these problems and improve the overall 

performance. 

In Figure 11, the difference between the architectures of Mask R-CNN and 

Cascade Mask R-CNN is shown. B* are the bounding box regressors, S* are the mask 

predictor, C* are classifiers, I is the input image, H* are network heads. 

 

Figure 11 Comparison between Mask R-CNN (a) and Cascade Mask R-CNN (b) [61] 

The Cascade Mask R-CNN is comprised of three specialized regressors, each 

trained with an increasing IoU, the selected values by the authors being [0.5, 0.6, 0.7] 
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for each regressor. The predicted bounding boxes were forwarded to the next regressor 

in the pipeline in order to provide a stronger baseline for producing the new bounding 

boxes with the stricter IoU. It was shown that the use of the previous regressor’s 

bounding box generally improved the quality of the next stage objects proposal. This 

improvement led to the conclusion that increasing IoU threshold can be used for training 

to achieve better results. Even though results are produced from all three regressors, the 

outputs of the last one is regarded as the final result. 

Two different backbones have been examined for this architecture. The first 

backbone, considered “light”, was comprised from a ResNet network of 50 layers 

combined with an FPN, while the second backbone, in the “heavy” category, was 

comprised of a ResNeXt [59] network of 101 layers with 64x4d (cardinality x 

bottleneck width) combined with an FPN. The models used were pretrained on COCO 

dataset and finetuning was done on the heads of each of the three regressors. More 

specifically the three H* parts of the architecture that are visible in Figure 9b. 

3.4 Hybrid Task Cascade (HTC) 

Hybrid Task Cascade (HTC) [62] is a state-of-the-art deep learning architecture 

for object detection and instance segmentation. It is an extension of the Cascade Mask 

R-CNN architecture and is considered a multi-stage object detector that uses a cascaded 

architecture to improve the performance of the object detection and instance 

segmentation tasks.  

In Figure 12, the difference between the architectures of Cascade Mask R-CNN 

and HTC is shown. B* are the bounding box regressors, M* are the mask predictors, S 

is the semantic branch and F is the extracted feature map from the backbone. 

 

Figure 12 Comparison between Cascade Mask R-CNN (a) and Hybrid Task Cascade 

(b) [62] 

The authors of HTC identified and tried to improve two specific parts of Cascade 

Mask R-CNN. The first part of the update of the architecture has to do with the mask 

heads. The new implementation had direct connections between the mask branches of 
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the cascade part. This strengthens the flow of information between the mask task across 

all the stages, leading to a progressive refinement of masks, instead of just predicting 

the masks on progressively refined bounding boxes. Regarding the mask heads, another 

update was that each mask prediction is done utilizing the updated bounding boxes 

predicted from the previous stage. This interleaved execution was found to yield better 

results than executing the bounding box and mask prediction in parallel. 

The second update was the introduction of a new branch which predicts pixel-

wise semantic segmentation for the whole image. This branch is implemented with FCN 

and is jointly trained with the other branches. The combination of this semantic 

segmentation information with the bounding box and mask features produces better 

predictions, as it is easier to distinguish between the objects and the background area, 

even if the background is more cluttered and complex than usual. 

Even though HTC is heavier than Cascade Mask R-CNN, the more complete 

implementation has led to better results on benchmark datasets, for example COCO 

Dataset. 

Two different backbones have been examined for this architecture. The first 

backbone, considered “light”, was comprised from a ResNet network of 50 layers 

combined with an FPN, while the second backbone, in the “heavy” category, was 

comprised of a ResNeXt [59] network of 101 layers with 64x4d (cardinality x 

bottleneck width) combined with an FPN. The models used were pretrained on COCO 

dataset and finetuning was done on the bounding box, mask and semantic components 

of each of the three regressors. More specifically the three M*, the three B* and the S 

components of the architecture that are visible in Figure 10b. 

3.5 DetectoRS 

DetectoRS [63] is a state-of-the-art object detection algorithm that aims in the 

improvement of the backbone of instance segmentation architectures. The original 

implementation was incorporated in an HTC architecture significantly improving the 

results. 

The improvements of the backbone come into two scales, as the authors describe 

them. The first one is on the macro-level, proposing a Recursive Feature Pyramid (RFP) 

network. This network builds on the aforementioned FPN, by adding extra feedback 

connections from the layers of the FPN to the bottom-up backbone layers (usually a 

ResNet or similar implementation), as it shown in Figure 13. 
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Figure 13 Recursive Feature Pyramid (RFP) [63] 

In Figure 13a the original FPN network is shown, with connections only from 

the bottom-up part to the top-down part. By adding connections the opposite way 

(Figure 13b), the whole architecture becomes recursive and in can be unfolded as in 

Figure 13c, leading to the architecture looking at the images twice or more. This 

approach recursively enhances the original FPN leading to the creation of better feature 

representations. 

The second update was done on the micro-level, as the authors describe it. More 

specifically, each 3x3 convolutional layer in the ResNet backbone was converted to a 

Switchable Atrous Convolution (SAC) layer. This layer controls the dilation of the 

kernel used by adding zeros between the kernel values, effectively enlarging the field-

of-view. With this technique an object of the same class but with different size can be 

detected more easily, using the same convolutional weights without adding increasing 

the existing parameters. In Figure 14, the SAC intuition is presented. 

Figure 14 Switchable Atrous Convolution (SAC) layer logic [63]. 
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In Figure 14, the red convolution kernel is the default convolution with 3x3 

kernel, while the green convolution kernel has been dilated using 0 between the kernel 

values. As it can be seen, with the dilated convolution bigger objects can be detected 

roughly with efficiency using the same kernel. The selection mechanism, controlling 

which convolution result will be forwarded, is dependent on the input image and the 

location examined, leading to the model being able to be trained to adapt to different 

scales as needed. 

 For this architecture, only one configuration was explored, combining an 

HTC with ResNet50 as its backbone. As described earlier, the ResNet backbone was 

updated with the RFP and SAC. A provided implementation of the MMDetection 

toolbox of a backboned comprised from an HTC with a ResNet101 was exceeding the 

available hardware capacities and could not be examined. The final parts of the 

architecture that were finetuned are the same parts described in sub-chapter 3.4 for the 

HTC architecture and not the updated parts of the backbone.  

  

3.6 Evaluation 

Performance metrics such as precision (P), recall (R) and F1-score were used to 

quantitatively evaluate the detection performance. All detection results were divided 

into four types: true positive (TP), false positive (FP), true negative (TN) and false 

negative (FN), where 𝑇𝑃 is the number of oyster mushrooms detected correctly, 𝐹𝑃 is 

the number of oyster mushrooms detected incorrectly, and 𝐹𝑁 is the number of raw 

oyster mushrooms missed in the cluster. Precision (P) and recall (R) are defined as 

follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(

(1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(

(2) 

To illustrate how these performance metrics were computed in this work, the 

Intersection over Union (IoU) is defined in equation 3 and Figure 4. The IoU score 

ranges from 0.0 to 1.0 and IoU > 0.5 with the ground truth is generally regarded as a 
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good prediction. In addition, the confidence score of a bounding box reflects how likely 

the box contains a single mushroom. 

With the selection of a specific threshold for both the IoU and the Confidence, 

each prediction will be considered as a True Positive (TP, correct prediction) if both 

values are greater than the respective thresholds. Following the same logic, a prediction 

will be considered as a False Positive (FP, erroneous prediction) if both values are lesser 

than the thresholds. The greater the values of these two metrics, the more accurate is the 

prediction made from the model. 

The standard COCO metrics were used to evaluate network performance. The 

mean average precision (mAP) was calculated as the mean of all classes (in this case 

only one mushroom class) over 10 IoU thresholds, starting from 0.5 to 0.95 with a step 

size of 0.05. In addition, AP50 represents the calculation under the IoU = 0.50, whereas 

AP75 is a stricter metric and represents the calculation under the IoU = 0.75.   

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 

(

(3) 

 

 

F1-score is defined as the harmonic mean of precision and recall instead of the 

common arithmetic mean. The result is always a number between 0 and 1, with values 

closer to 1 indicating better overall performance of the model. The formula used for its 

calculation is the following: 

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(

(4) 
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4 Results and Discussion 
 

In this chapter, the results of the experiments made on both datasets will be 

presented. The Pilze dataset will be examined first, by presenting the results of all 

architectures in a table and then comments will be made. Then selected images from the 

test set will be presented in order to highlight good and bad detection performance and 

compare the results between the “light” and “heavy” implementations of the same 

architecture, but also between different architectures. The same approach will be 

followed for the V6 Google dataset. Finally, overall comments on the performance of 

the architectures will be made, taking into account the characteristics of each dataset. 

4.1 Pilze dataset results 

All models were trained for a total of 15 epochs. It should be noted that after the 

10th epoch, the models showed little or no improvement, hence this checkpoint was 

selected for the final testing of the architectures. The learning rate for the finetuning 

was set at 0.001 and all the models were pre-trained on COCO Dataset. 

Table 1 Performance comparison between the architectures on Pilze dataset. Red 

indicates the best results column-wise. 

Architecture Backbone 

 

 

AP50 

 

Precision 

AP75 

 

 

mAP 

Recall F1 score 

Mask R-CNN 
light 0.921 0.766 0.685 0.731 0.707 

heavy 0.912 0.815 0.710 0.750 0.729 

MS R-CNN 
light 0.851 0.705 0.638 0.675 0.660 

heavy 0.837 0.742 0.656 0.685 0.670 

Cascade Mask 

R-CNN 

light 0.825 0.702 0.625 0.663 0.643 

heavy 0.817 0.732 0.642 0.676 0.659 

HTC 
light 0.911 0.772 0.689 0.738 0.716 

heavy 0.876 0.794 0.698 0.738 0.717 

DetecoRS 
light 0.912 0.818 0.724 0.773 0.748 

heavy - - - - - 
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The results of Table 1 show that, regarding the AP50 metric, the light models 

achieve better results, while the AP75 is better on heavy models. The simpler features 

extracted from a light backbone perform better with a more lenient restriction of IoU 

than the more complex from a heavy backbone. However, when stricter IoU thresholds 

are placed, the more sophisticated features of the heavy models outperform the light 

ones. The logical assumption would be that the more complex backbones would 

produce more informative features that would benefit the model in all cases, leading to 

heavy models producing better results in all AP metrics. This phenomenon has to do 

with the amount of available data, which in this dataset is relatively low, in comparison 

with the V6 Google Dataset (chapter 4.2). The overall metrics of mAP, Recall and their 

product, F1-score, show that the heavy models outperform their light counterparts, as 

the stricter threshold of IoUs are used. 

By examining the results of each architecture, it obvious that Mask R-CNN 

performed very well, despite being the older and simpler architecture of all. It was able 

to detect the majority of the mushroom instances with decent masks as it will be shown 

in the next few Figures. The performance achieved by Mask R-CNN will be regarded 

as the baseline for the comparisons and the comments that will follow. The architectures 

of MS R-CNN and Cascade Mask R-CNN reported worse performance than the simpler 

Mask R-CNN. Especially Cascade Mask R-CNN achieved the worst performance 

among all the architectures. This fall of performance can be attributed to the 

introduction of more parameters that need to be trained, but at the same time the amount 

of training data and the feature extraction ability and information flow of the 

architectures remained the same. In other words, bigger architectures were trained with 

the same training power of extracted from the dataset. 

As described in Chapter 3, MS R-CNN introduced a new branch used for 

applying a score on the mask produced by a classic Mask R-CNN architecture. This 

extra branch is comprised of new trainable weights, that were finetuned with the Pilze 

dataset. However, the feature extractor component of the architecture was the same as 

with Mask R-CNN, while no extra data was introduced in the training process. In an 

similar manner, Cascade Mask R-CNN has three instead of one Mask R-CNN head 

component (comprised from classification + bounding box branch and mask branch), 

as each one of these three head components is trained with a different IoU threshold. 

Despite the 3x times more trainable weights introduced, the feature extractor component 
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of Cascade Mask R-CNN remained the same as the one Mask R-CNN has and no more 

training data was included during the training.  

By examining these three architectures not only as a whole, but examining 

distinctively light and heavy models in each one of them, it is obvious and stated before, 

that using a more complex feature extractor component (heavy models) improves the 

performance. However, the number of the newly introduced weights in both MS R-

CNN and Cascade Mask R-CNN cannot be counterbalanced, as both heavy models of 

these two architectures perform worse than the light model of the simple Mask R-CNN. 

Meaning that using just deeper feature extraction backbones do not give enough training 

power to the architecture. This setback can be overcome with two solutions, 

introduction of more data to counterbalance the extra parameters or modify the 

architecture to increase information flow and achieve even better feature extraction. 

The architecture of HTC shows great improvement when is compared to both 

MS R-CNN and Cascade Mask R-CNN, but almost similar to Mask R-CNN. This is 

happening even though is based on the Cascade Mask R-CNN (using three heads) and 

despite using the same amount of training data with the same feature extraction 

backbone. This improvement can be attributed to the new connections between the mask 

heads and the new added branch for the extra segmentation, as described in chapter 4.4. 

This improvement in architecture has allowed a better flow of information on the final 

stages and components, even though the extracted feature map from the backbone has 

not changed. 

From all the architectures, DetecoRS has the best performance as not only has 

the improved information flow of HTC but also with the updates in its backbone 

(described in chapter 3.5) it is able to produce even better-quality feature map. The 

combination of better feature maps and better information flow leads to the best results 

overall, surpassing the both light and heavy models of the simple Mask R-CNN 

architecture, despite the low amount of available data for training.  

Based on the results of Table 1, the behavior of these architectures can be 

predicted in the scenario where sufficient amount of training data was available. As all 

the architectures are descendances of the original Mask R-CNN, integrating further 

updates, it is expected all of them to have better performance, following the official 

results of each of the authors on benchmark datasets. MS R-CNN introduces an 

improvement module in a different direction than the three multi-stage, cascade logic 

architectures of Cascade Mask R-CNN, HTC and DeterctoRS. Based on the collected 
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results of the MMDetection toolbox, the performance of MS R-CNN is similar to the 

performance of Cascade Mask R-CNN and both of them better than the simple Mask 

R-CNN. Regarding the three multi-stage architectures, each of them improves on 

deficiencies of the previous one, resulting in DetectoRS performing best among them, 

followed by HTC and finally Cascade Mask R-CNN. 

A better understanding, on how each of the architectures performed, can 

achieved through visualizing and comparing the predictions on the test set. The different 

shades of green color in the images refer to different detected mushroom instances and 

it is not a measure of confidence or accuracy of the models regarding their prediction. 

In order to present in a better and more efficient way the prediction images, the 

numbering of the images will correspond to a specific model (light or heavy) of an 

architecture as follows: 

(a) = original image 

(b) = light Mask R-CNN 

(c) = heavy Mask R-CNN 

(d) = light MS R-CNN 

(e) = heavy MS R-CNN 

(f) = light Cascade Mask R-CNN 

(g) = heavy Cascade Mask R-CNN 

(h) = light HTC 

(i) = heavy HTC 

(j) = DetectoRS 

In the following Figures, different results on the test set will be presented and 

commented. It is important to state the mushroom instances of this dataset are more 

homogenous than the V6 dataset. Here, only the species of Pleurotus is detected, in an 

artificial environment with specific and similar characteristics between the images. The 

black background of the plastic cover of the substrate makes easier the detection and 

segmentation of mushrooms which naturally have a much brighter color. The other 

background which can have slightly similar texture or color with the mushrooms does 

not appear to be a problem as all the models do not mistake any background for 

mushrooms. Moreover, the shape of the mushroom instances is quite similar albeit in 

different sizes and mature levels. The immature mushrooms are not detected as they 

were not included in the annotation of the dataset. The mature mushrooms that are of 

bigger shape are more easily identified, especially if they are adequately lighted. 

However, there is a significant number of mature instances that either are not detected 

or masked with low quality masks of arbitrary shapes. 
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Figure 15 Mushroom cluster, sub-lighted area and arbitrary masks. DetectoRS best 

overall results. 
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Figure 16 Good performance but problems with occluded, sub-light and neighboring 

instances observed. 
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In Figure 15, the overall performance of all the architectures was quite good, 

given the numerous instances included in the cluster and the extend of occlusion and 

sub-lighting of some samples. With the exception of DetectoRS, Figure 15.j, the other 

models produced at some extend masks with arbitrary shapes as it can be easily 

distinguished in Figures 15.a-g. All of the models failed to detect the mushrooms on the 

bottom right of the cluster, something that can be attributed to the bad lighting of these 

specific instances. Moreover, throughout the cluster some highly occluded mushrooms 

could not be identified by the small parts that were visible, a behavior reported by all 

the models. Finally, a secondary mushroom cluster on the top right of the image is not 

detected at all, something that is desirable as the focus should be at one cluster per 

image. In Figure 17, the dark area of the cluster is shown for some architectures, 

resulting in the mushroom instances not being able to be detected, due to low light 

conditions. 

Figure 17 Low light instances failed to be correctly detected. Heavy Mask R-CNN (a), 

light Cascade Mask R-CNN (b), DetectoRS (c) 

Examining Figure 16, the overall performance of the models was good regarding 

most of the big instances. However, smaller occluded instances throughout the cluster 

were not detected by the models. More specifically, different models could not identify 

different instances that other models could. Furthermore, the instances on the right area 

of the cluster, that are not sufficiently light, unlike the mushrooms on the rest of the 

cluster, are not detected by any of the models. Finally, it was observed that some models 

fused two distinct instances under a single mask, mistaking two bordering mushrooms 

as one, Figures 16.b,d,h,j. In Figure 18, the problematic area of the bordering 

mushrooms is shown for some of the architectures that fail to distinguish between the 

two instances. 
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Figure 18 Original image with two mushroom instances (a), light Mask R-CNN 

produced mask (b), light HTC produced mask. 

Another example of good performance of all the architectures can be seen in 

Figure 20. In this case, all of the models detected all of the depicted mushrooms with 

few exceptions of masks having arbitrary shapes. The only two models that were not 

able to detect a small mushroom instance at the bottom of the cluster are light MS R-

CNN (Figure 20.d) and light Cascade Mask R-CNN (Figure 20.f). 

A similar case with many similar problems observed, as in Figure 16, can be seen 

in Figure 21. The difference in that image is that there is no light problem but the many 

of the models split a single mushroom instance into two with their produced masks. 

This can be seen in Figures 21.b,c,d,f,g,h at the bottom of the cluster, where a mushroom 

has grown upside down. Figure 19 shows a zoomed version of the mushroom instance 

for a couple of architectures that fail to correctly detect it. Overall, both models of Mask 

R-CNN architecture, detect most of the occluded instances but introduce some arbitrary 

masks in other more well-defined instances. 

Figure 19 Original image with one mushroom instance (a), heavy Mask R-

CNN produced mask (b), light HTC produced mask. 
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Figure 20 Overall good performance by all architectures. 
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Figure 21 Decent performance but problems with occluded and splitting one 

mushroom instance to two is observed. 
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In both Figures 23 and 24 it can be observed that both models of Mask R-CNN 

produce the best results among all the other models. They are able to detect and produce 

fairly good masks for almost all of the mushroom instances. An interesting observation 

is that they are able to produce masks even for the smaller instances in the bottom of 

the cluster in Figure 23 even though the other models, even DetectoRS cannot. Also, in 

Figure 24, while both Mask R-CNN and DetectoRS identify accurately the mushroom 

instances in the big cluster, only Mask R-CNN is able to detect many of the smaller 

mushrooms in the secondary cluster at the bottom of the image. 

Finally, in Figure 25, the performance of DetectoRS is superior to all the other 

models, producing good quality masks without overlapping or arbitrary shapes. All the 

other architectures cannot achieve that and even falsely split an instance on the right 

side of the cluster into two instances. Even though DetectoRS misses some of the 

smaller instances at the bottom of the cluster compared to both Mask R-CNN models, 

the mask quality compensated that drawback. In Figure 22 a more detailed comparison 

between the arbitrary masks produced from some architectures and the well-shaped 

masks of DetectoRS can be seen. 

Figure 22 Arbitrary masks produced by light MS R-CNN (a) and light Cascade Mask 

R-CNN, while good quality masks by DeterctoRS (c). 
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Figure 23 Overall good performance, both Mask R-CNN models detect smaller 

instances at the bottom of the cluster. 



 
40 

 

 

Figure 24 Overall decent performance from both Mask R-CNN and DetectoRS, but 

only the former detects smaller mushroom instances. 
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Figure 25 DetectoRS producing better results without arbitrary masks. 
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4.2 V6 Google dataset results 

All models were trained for a total of 15 epochs. It should be noted that after the 

10th epoch, the models showed little or no improvement, hence this checkpoint was 

selected for the final testing of the architectures. The learning rate for the finetuning 

was set at 0.001 and all the models were pre-trained on COCO Dataset. 

Table 2 Performance comparison between the architectures on V6 Google dataset. 

Red indicates the best results column-wise. 

Architecture Backbone 

 

 

AP50 

 

Precision 

AP75 

 

 

mAP 

Recall F1 score 

Mask R-CNN 
light 0.870 0.744 0.670 0.739 0.703 

heavy 0.888 0.770 0.693 0.759 0.725 

MS R-CNN 
light 0.854 0.724 0.658 0.730 0.692 

heavy 0.874 0.771 0.688 0.744 0.715 

Cascade Mask  

R-CNN 

light 0.864 0.737 0.665 0.733 0.697 

heavy 0.869 0.766 0.678 0.739 0.707 

HTC 
light 0.873 0.747 0.671 0.764 0.714 

heavy 0.878 0.764 0.691 0.773 0.730 

DetecoRS 
light 0.889 0.774 0.707 0.784 0.744 

heavy - - - - - 

One of the first comments on the numerical results of the V6 Google dataset is 

that all the heavy models outperform their light counterparts. This can be attributed to 

the more complex backbones of the heavy ones, that execute better the task of feature 

extraction, providing better information for the rest of the architecture. As expected, 

DetectoRS architecture produced the best results in all metrics due to the extensive 

updates on the whole architecture.  

Even though the total number of data is bigger than the other dataset, the same 

observation can be done regarding the performance of the architectures based on the 

available data and the number of parameters that must be finetuned with regard to the 

extracted feature maps and flow of information. This observation extends on both light 

and heavy models of each architecture. 
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The performance of Mask R-CNN can be considered as the base performance. 

Then, by introducing updates in the architectures of MS R-CNN and Cascade Mask R-

CNN, the respective heads have more parameters to be finetuned, but the power of the 

feature extractor remains the same. However, this is not the case for HTC and 

DetectoRS. On the one hand, HTC manages to slightly outperform Mask R-CNN due 

to higher recall, as the mAP is almost similar. On the other hand, DetectoRS light model 

is able to outperform both light and heavy models of Mask R-CNN architecture.  

A better understanding of the performance of each architecture can achieved 

through visualizing and comparing the predictions on the test set. An important 

information for the upcoming figures is that the differences in the green color of each 

mushroom instance indicate a difference mushroom and has nothing to do with the 

confidence or the accuracy of the models regarding their prediction. In order to present 

in a better and more efficient way the prediction images, the numbering of the images 

will correspond to a specific model (light or heavy) of an architecture as follows: 

(a) = original image 

(b) = light Mask R-CNN 

(c) = heavy Mask R-CNN 

(d) = light MS R-CNN 

(e) = heavy MS R-CNN 

(f) = light Cascade Mask R-CNN 

(g) = heavy Cascade Mask R-CNN 

(h) = light HTC 

(i) = heavy HTC 

(j) = DetectoRS 

From the many results of the test set, the most notable will be presented and 

discussed, including different kinds of performances from the architectures. In some 

cases, all of the models managed to successfully segment the image, while on others 

they all failed. This has to do with the mushroom(s) that is/are inside the image. In other 

cases, the simpler models produced mediocre results while the more complex were able 

to visually outperform them. In most of the cases, the exact borderline between different 

instances or between an instance and the background is not detected. However, as this 

is an exploratory analysis and the task at hand is not critical (e.g. segmentation of human 

anatomy in surgical operation), the accuracy of the borderlines with an error of some 

pixels is considered enough. Moreover, in order to detect this small misalignment of 

produced masks and the actual mushroom instances, extreme zoom is needed. 
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Figure 26 Good detection performance by all models. 
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In Figure 26, a case where all the models performed very well on the instance 

segmentation task is presented. All the instances are detected, including those on the 

foreground and in the background. For the semi-occluded instances were visible only 

the upper part of the mushrooms (cups) but all of the models were able to detect them 

an accurate way. Furthermore, some far smaller instances, in the right and in the bottom 

areas of the image, are also accurately detected. The only small part of the image that 

most of the models have missed is on the center-right mushroom instance where the 

stalk of the mushroom is detected in a complete way only by light MS R-CNN in Figure 

26.d and by DetectoRS in Figure 26.j. Between those two, DetectoRS has detected the 

stalk at its full. Overall, in this image the correct number of the instances is detected 

and with a very good accuracy for each individual mask. 

An interesting case can be seen in Figure 27. Here all of the models were able to 

detect and differentiate between the mushroom instances and the background. However, 

this was not the case for the border detection between the two mushroom instances that 

exist in the image. At one side they are in contact with each other, presenting a difficult 

task for the models to work on. As it can be seen most of the models produced 

overlapping masks, that from little to big extend intruded into the other instance. The 

only model that managed to overcome this difficult situation is DetectoRS in Figure 

27.j. From all the other models only heavy Mask R-CNN produced decent masks but 

still a small, overlapped area can be observed. Overall, despite the quality of the masks 

all the models managed to detect all of the mushroom instances existing in the image. 

Another example of the supremacy of DetectoRS can be seen in Figure 28 as it 

was the only architecture able to detect and produce detailed masks, Figure 28.j. The 

other architectures struggled, producing masks with arbitrary shapes, as it can be seen 

in Figures 28.b,d, combined more than one actual mushroom instances in one mask, 

Figures 28.e,g or missed some mushroom instances, Figures 28.f,h. The only model that 

produced results close to the ones from DetectoRS were heavy HTC, a result that is 

logical as this model was second in overall performance as it is stated in Table 2. The 

performance of DetectoRS is further proved in Figure 29, where it was the only model 

able to detect the depicted mushroom instances in Figure 29.j. This example was one of 

the hardest based on the similarity between background and instances with respect to 

the color and texture. The improved implementation of DetectoRS feature extractor 

backbone, combined with the information flow provided on the heads of the architecture 

was able to solve the difficult task of segmenting the two mushroom instances. 

Surprisingly, the light Mask R-CNN model was able to fairly detect one out of two 

mushroom instances while other models, with better overall results from Table 2, could 

not. 
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Figure 27 Dual mushrooms with overlapping produced masks from most models. 
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Figure 28 Arbitrary masks and detection oversight by most models except DetectoRS. 
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Figure 29 Dual mushrooms with complex background, DetectoRS good performance. 
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Despite the good overall performance of all the models and more specifically the 

DetectoRS’, there were cases where all of them were not able to successfully segment 

all the instances in an image. This can be seen in Figures 30 and 31, where to different 

kind of mushrooms are depicted. In Figure 30, distinct mushroom instances, but with 

arbitrary shapes, are packed together creating a cluster. However, the borders between 

the instances are not always well defined and occlusion exists. None of the models was 

able to find all the instances in the image, especially the ones on the top of the cluster. 

Regarding the mushrooms in the front of the cluster and at the center of the image, all 

the architectures struggled to produce high quality masks, creating masks with even 

more arbitrary shapes than the mushroom instances and sometimes missing specific 

instances. Overall, only DetectoRS was the model with the best result creating higher 

quality masks for the mushroom instances that was able to identify. 

Another example is shown in Figure 31, where the mushroom instances are 

multiple smaller mushrooms with the classic shape with a cup and a stalk. In this image, 

even if the mushroom shapes are more standardized, the problems of very small 

instances and occlusion lead to many instances not being detected. This is a 

phenomenon noticed in all the examined models. However, the difference in the 

performance compared to Figure 31, is that the more well-defined shape of this 

mushroom species facilitates the creation of better masks. So, even if some instances 

were not detected, the ones that actually detected were provided relatively good quality 

masks. 

A case where the architectures struggle collectively is shown in Figure 32. In this 

image the depicted mushroom can be considered a cluster-like instance. Nevertheless, 

there are distinct parts of the mushroom cluster that can be falsely detected as individual 

instances from a network, even if the whole cluster should be considered as one entity. 

From all the models, only heavy MS R-CNN, managed to produce a mask containing 

most of the depicted cluster, but smaller overlapping ones were also produced. If more 

mushroom of this shape were included during training, the models could have 

performed better. Finally, in a similar case in Figure 33, only the heavy models of each 

architecture, plus the DetectoRS, were able to correctly identify and segment the whole 

mushroom cluster as one instance. On the other hand, the light models could not identify 

the cluster at all or falsely detected smaller parts of it as individual mushrooms. 
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Figure 30 Arbitrary mushrooms instances in cluster leading to lower quality masks 

and detection performance. 
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Figure 31 Many smaller mushroom instances with well-defined shape, resulting in 

better quality masks but missing detection of some instances. 
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Figure 32 Mushroom cluster considered as one instance proving difficult task for all 

architectures. 
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Figure 33 Mushroom cluster correctly detected as one instance by all heavy models. 
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4.3 Overall notes 

Despite the bigger number of images in V6 Google dataset, the performance of 

the architectures is overall slightly worse than the Pilze dataset and this has to do with 

the nature of the datasets. On the one hand, Pilze dataset has fewer images, which is a 

drawback, but the target mushroom class is well defined and uniform in shape/color, 

the background is less complex and the images are of much higher resolution 

(4032x3024). On the other hand, V6 Google dataset has more images, but the target 

mushroom class is not uniform as there are many different mushrooms species with 

different shape/color/size, the background in nature is more complex and the images are 

of lower resolution (up to 1024x1024). 

In both datasets, the two architectures of MS R-CNN and Cascade Mask R-CNN 

do not manage to perform better than the simple Mask R-CNN due to the low amount 

of data available for finetuning the updated head architectures that have more 

parameters, in the same manner as described in section 4.1 for Pilze dataset. However, 

the difference in the results is not as obvious in the V6 Google dataset due to the larger 

number of available images for training, introducing more information to the models. 
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5 Conclusions – Future work – Acknowledgments 
In this thesis, instance segmentation was implemented on two dataset, testing 5 

different architectures. One of the architectures was the breakthrough model of Mask 

R-CNN, while the rest are based on it with specific expansion on different parts of the 

architecture. For each architecture (except DetectoRS), two different models were 

tested, with their difference located in the feature extraction backbone, where a lighter 

and heavier network was used with regard to the depth and the implementation. All of 

the above models were pre-trained from COCO Dataset, but their final stages were 

finetuned on the two datasets of this thesis, in an independent manner. The two datasets 

were comprised of mushroom images, with the first being a collection of Pleurotus 

clusters inside a mushroom farm (Pilze dataset), while the second being a collection of 

different mushroom species in natural environment (V6 Google dataset). 

The experiments conducted showed that the task of instance segmentation on 

mushroom instances in both controlled and natural environment is valid. All of the 

architectures managed a performance ranging from acceptable to good. The 

characteristics of the datasets played an important role in the quality of the results. The 

dataset of the controlled environment was more homogenous, with only one mushroom 

species included and with high resolution images. However, the total number of images 

contained was relatively small. This has led to architectures that expanded the baseline 

architecture of Mask R-CNN at the final stages (which were finetuned in this thesis) 

with extra parameters to produce worse results (MS R-CNN, Cascade Mask R-CNN). 

On the other hand, architectures that expanded Mask R-CNN’s architecture in its all 

extend (HTC, DetectoRS), showed same or improved results despite the small training 

set. The dataset of natural environment showed the same behavior with the previous 

dataset, but the underperformance of the architectures was not so apparent, as more data 

were available for the training. The slightly worse overall performance of the 

architectures on this dataset is attributed to the inclusion of many different species of 

mushrooms and the low resolution images. This counterbalanced the bigger number of 

training images. 

Both numerical and visual results showed that the more complex and newer 

models can achieve very good results, if they are provided with big amounts of data. 

More specifically, the DetectoRS has managed to produce the best results in both cases 

even with small number of training images. If more training data is available then it is 

expected for that architecture to perform even better with a greater margin from the 
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others. However, if small number of data is available, simpler architectures with less 

trainable parameters can perform as well and even better than more complex and 

extended models. This becomes apparent with Mask R-CNN architecture in the Pilze 

dataset, outperforming most architectures and slightly underperforming against 

DetectoRS. 

This thesis sets the ground for further possible work in this direction. Following 

are some suggestions for further work: 

1) Expansion of the used datasets with more samples to validate the observed 

behavior of the models. 

2) For a specific species of mushroom, find/create dataset for instance segmentation 

that also classifies instances as mature or immature. 

3) Create model that except from instance segmentation, classifies the species of 

the detected mushrooms. So far, these two tasks are examined independently. 

4) Examine more state-of-the-art architectures and compare them with the Mask R-

CNN family of models. 

5) Develop customized instance segmentation architecture based on any of the 

examined architectures of this thesis. 

6) Examine the use of the presented or other instance segmentation architectures 

for robotic applications on mushroom collection. 
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