

 Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών

και Μηχανικών Υπολογιστών

ΔΠΜΣ ΕΔΕΜΜ

Evaluating deep instance segmentation methods

for mushroom detection on proximate sensing

datasets

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

 ΧΑΡΙΣΗΣ ΧΡΗΣΤΟΣ

Επιβλέπων : Καράντζαλος Κωνσταντίνος

Αναπληρωτής Καθηγητής Ε.Μ.Π.

Αθήνα, Φεβρουάριος 2023

 Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών

και Μηχανικών Υπολογιστών

ΔΠΜΣ ΕΔΕΜΜ

Evaluating deep instance segmentation methods

for mushroom detection on proximate sensing

datasets

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

 ΧΑΡΙΣΗΣ ΧΡΗΣΤΟΣ

Επιβλέπων : Καράντζαλος Κωνσταντίνος

Αναπληρωτής Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 23η Φεβρουαρίου 2023.

.

Κωνσταντίνος Καράντζαλος

Αναπλ. Καθηγητής Ε.Μ.Π.

 .

Αθανάσιος Βουλόδημος

 Επίκουρος Καθηγητής Ε.Μ.Π.

Αθήνα, Φεβρουάριος 2023

.

Δημήτριος Αργυρόπουλος

 Assistant Professor UCD

1

.

Χρήστος Χαρίσης

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Χαρίσης Χρήστος, 2023.

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας,

εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση,

αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής

φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το

παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό

σκοπό πρέπει να απευθύνονται προς τον συγγραφέα. Οι απόψεις και τα συμπεράσματα

που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και δεν πρέπει να

ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου

Πολυτεχνείου.

2

Περίληψη

Τα τελευταία χρόνια, ο τομέας του Deep Learning (DL) έχει γνωρίσει μεγάλη

πρόοδο, καθώς παρατηρείται μια τάση προς τη χρήση μοντέλων DL για πολλές

εφαρμογές. Ένας μεγάλος αριθμός εφαρμογών εστιάζει στην επεξεργασία εικόνας και

πιο συγκεκριμένα, πάνω στο instance segmentation, το οποίο έχει αποκτήσει μεγάλη

δημοτικότητα λόγω της προόδου των πιο πρόσφατων μελετών.

Ένας πολύ σημαντικός τομέας που αποτελεί σημαντικό μέρος της ανθρώπινης

ζωής και ενσωματώνει καθημερινά νέες τεχνολογίες είναι ο τομέας της γεωργίας. Η

υιοθέτηση νέων τεχνολογιών κατέστησε δυνατή τη συλλογή μεγάλου όγκου δεδομένων

που απαιτούνται για την εκπαίδευση των πολύπλοκων αρχιτεκτονικών, όπως αυτών του

DL. Μεταξύ των δεδομένων διαφόρων μορφών, οι εικόνες των καρπών που

καλλιεργούνται είναι ένα από τα πιο κοινά δεδομένα που συλλέγονται στη γεωργία. Η

ικανότητα ανίχνευσης και εξαγωγής πληροφοριών για τους καλλιεργούμενους καρπούς

μέσω εικόνων είναι υψίστης σημασίας για τους γεωργικούς στόχους καλύτερης

ποιότητας και ποσότητας των καλλιεργειών.

Από τις πολλές περιπτώσεις στη γεωργία, η καλλιέργεια των μανιταριών έχει

αποδειχθεί μια πολύ τεχνική διαδικασία που απαιτεί τη χρήση όλων των διαθέσιμων

μέσων συλλογής πληροφοριών κατά την ανάπτυξή τους, προκειμένου να επιτευχθεί

καλύτερη απόδοση και ποιότητα. Επιπλέον, τα μανιτάρια στη φύση παρουσιάζουν μια

ενδιαφέρουσα περίπτωση για τον εντοπισμό νέων ειδών, την παρακολούθηση του

μικροκλίματος μιας περιοχής και τη δυσκολία εντοπισμού των μανιταριών εικόνες με

πολύπλοκα φόντα φυσικού περιβάλλοντος στην εικόνα.

Σε αυτή τη διπλωματική εργασία, συλλέχθηκαν δύο σύνολα δεδομένων

μανιταριών και χειροκίνητα δημιουργήθηκαν μάσκες για την υλοποίηση instance

segmentation. Το ένα σύνολο δεδομένων περιλαμβάνει συστάδες μανιταριών Pleurotus,

που καλλιεργούνται σε τεχνητό περιβάλλον και το άλλο περιέχει διαφορετικά είδη

μανιταριών σε φυσικά περιβάλλοντα. Μοντέλα instance segmentation τελευταίας

τεχνολογίας εκπαιδεύτηκαν και δοκιμάστηκαν πάνω σε αυτά τα σύνολα δεδομένων

προκειμένου να εξαχθούν πολύτιμες πληροφορίες σχετικά με την απόδοσή τους και τον

τρόπο με τον οποίο τα διαφορετικά χαρακτηριστικά αυτών των δύο συνόλων

δεδομένων επηρεάζουν τα αποτελέσματα. Τα αριθμητικά και απεικονιστικά

αποτελέσματα μεταξύ των μοντέλων παραθέτονται και παρουσιάζεται σύγκριση τους.

Τα συμπεράσματα αυτής της εργασίας είναι ότι τα χαρακτηριστικά ενός συνόλου

δεδομένων και ο όγκος των διαθέσιμων δεδομένων για εκπαίδευση έχουν μεγάλο ρόλο

στην απόδοση ενός μοντέλου. Ωστόσο, πιο σύνθετα μοντέλα που μπορούν να εξάγουν

καλύτερα χαρακτηριστικά από τα αρχεία εισόδου και να τα διαδώσουν με πιο

αποτελεσματικό τρόπο στα διάφορα δομικά στοιχεία της αρχιτεκτονικής τους μπορούν

να επιτύχουν καλά αποτελέσματα ακόμη και με μικρό αριθμό διαθέσιμων δεδομένων.

3

Abstract

In the recent years, the domain of Deep Learning (DL) has experienced a great

progress, as a trend towards the use of DL models for many applications is observed. A

great number of applications is implemented on image processing and more recently

the task of instance segmentation has gained great popularity due to breakthroughs in

the latest studies.

A very important domain, that is a crucial part of the human life and integrates

every day new technologies, is the domain of agriculture. The adoption of new

technologies has made possible the collection of great amounts of data that are required

to train the complex architectures of DL. Among the data of various formats, images of

crops, that are cultivated, are one of the most common data collected in agriculture. The

ability to detect and extract information for the cultivated crops through images is of

paramount importance for the agricultural targets of better crops’ quality and quantity.

From the many agricultural cases, the cultivation of mushrooms has proven to

be a very technical process, that requires the use of all the available means to collect

information during their growth, in order to achieve better yield and quality. Moreover,

mushrooms in nature present an interesting case for identifying new species, monitoring

the micro-climate and the difficulty of finding mushroom instances in natural complex

backgrounds.

In this thesis, two mushroom datasets were collected and manually annotated for

the task of instance segmentation. One dataset includes Pleurotus mushroom clusters,

cultivated in a controlled environment and the other contains different mushroom

species in natural environments. State-of-the-art instance segmentation models were

finetuned and tested on these datasets in order to extract valuable information regarding

their performance and how the different characteristics of these two datasets affect the

results. Arithmetic and imaging results are provided and comparison between the

models is presented.

The conclusions of this work are that the dataset’s characteristics and the amount

of available data for training exert a great role in the performance of a model. However,

more complex models that can extract better information and circulate it in a more

efficient way through their different components can achieve good results even with

small number of available data.

4

Ευχαριστίες

Αρχικά, θα ήθελα να ευχαριστήσω τον κ. Κωνσταντίνο Καράντζαλο ο οποίος

ήταν ο επιβλέπων και μου έδωσε την δυνατότητα να εκπονήσω την διπλωματική

εργασίας μου, καθώς και για την κατανόηση και τη βοήθεια που μου προσέφερε σε όλα

τα στάδια του μεταπτυχιακού.

Επίσης, θα ήθελα να ευχαριστήσω θερμά τον κ. Δημήτριο Αργυρόπουλο για τη

βοήθεια και την καθοδήγησή του εντός και εκτός αυτής της διπλωματικής εργασίας.

Παράλληλα, θα ήθελα να ευχαριστήσω τους συναδέλφους της εταιρείας SCiO, στην

οποία εργάζομαι, για την κατανόηση και την υποστήριξή τους καθ’ όλη τη διάρκεια του

μεταπτυχιακού προγράμματος.

Τέλος, θα ήθελα να ευχαριστήσω τους γονείς μου, αλλά και φίλους μου οι οποίοι

υπήρξαν δίπλα μου κατά τη διάρκεια της μεταπτυχιακής μου πορείας, βοηθώντας με ο

καθένας με το δικό του τρόπο σε καλές και κακές στιγμές.

Χαρίσης Χρήστος,

Αθήνα, Φεβρουάριος 2023

5

Content table

Περίληψη ... 2

Abstract .. 3

Ευχαριστίες .. 4

Content table ... 5

1 Introduction ... 6

2 Datasets ... 12

2.1 Pilze dataset ... 12

2.2 Google V6 dataset ... 14

3 Instance segmentation architectures... 18

3.1 Mask R-CNN .. 19

3.2 Mask Scoring R-CNN (MS R-CNN) .. 21

3.3 Cascade Mask R-CNN .. 22

3.4 Hybrid Task Cascade (HTC) ... 23

3.5 DetectoRS ... 24

3.6 Evaluation .. 26

4 Results and Discussion ... 28

4.1 Pilze dataset results ... 28

4.2 V6 Google dataset results .. 41

4.3 Overall notes .. 54

5 Conclusion-Future work-Acknowledgements 55

6 References ... 57

Figures catalog .. 64

Tables catalog .. 65

6

1 Introduction

In the recent years, a trend towards the use of Deep Learning (DL), a sub-domain

of machine learning (ML), is being observed. DL is constituted from more complex and

larger models than the traditional ML. This complexity leads to the requirement of

greater amounts of data for the training. However, a well-trained DL model in most

cases will outperform a traditional ML model [1]. Many applications of DL models have

been observed in various domains, with one of them being the important domain of

agriculture, where tasks of yield prediction, crop management, growth analysis, disease

detection among others are being explored [1]. At the same time, the technology

advancement of the recent years introduced the use of many sensors in agriculture,

enabling the extensive data collection [2].

The combination of better achievable results from DL models and the ability to

collect large amounts of data, has led to many DL implementations in agriculture in

general, but also specifically in controlled environment agriculture (CEA) [3]. As both

natural environment and crop production environment are complex environments

regarding background, elements present and illumination among others, the need for

proper and robust detection and localization of crops/fruits in these environments

becomes apparent. This need can be fulfilled utilizing DL models, as they are able to

learn complex patterns and features in the images and detect the targeted crops in

challenging conditions. The accurate localization can be considered as the first part of

a series of applications, for example species classification, growth monitoring and yield

estimation. Moreover, in CEA, the detailed detection can be integrated in disease

monitoring and automated robotic harvesting applications.

The first steps in the detection and localization utilized Computer Vision (CV)

methods with human-designed features extractors based on color, shape and textual

characteristics [4,5,6,7,8]. The extracted features were analyzed by traditional ML

models for example SVM [5,9,10] and Artificial Neural Networks [5,11]. These

implementations produced good results for the dataset they analyzed but cannot be

generalized in different illumination settings and backgrounds, due to the manually

engineered features. An advantage of DL over ML is the more effective feature

extraction from raw data done in an automatic manner [1]. This feature extraction

advantage results to DL models outperforming their ML counterparts in agriculture

applications of image processing [1]. Researchers started to shift their focus on

7

implementing DL architectures to image processing to achieve superior overall results

in areas such as fruit detection and counting [12,13,14,15,16,17,18]. Many of these

studies are using the two very popular object detection architecture families of Faster

R-CNN [19] and You Only Look Once (YOLO)[20], which dominated the object

detection domain and are the basis for many other developed models to this day.

However, after the breakthrough publication of Mask R-CNN [21], a DL

architecture that expanded the object detection of Faster R-CNN into an instance

segmentation architecture, many studies integrated Mask R-CNN and custom variations

of it to instance segmentation task in agriculture, as well as other implementations of

instance segmentation architectures. Fruit detection is the most popular task of the

instance segmentation in agriculture, as many studies focus in detecting and localizing

fruits for example apple [22], strawberry [23], mango [24] and grapes [25] among

others.

 Yu et al. [23] used vanilla Mask R-CNN to find strawberries and classify

them to two classes (ripe, unripe). The high accuracy of the localization was then

utilized for position estimation of the strawberries, allowing their collection from a

harvesting robot. Perez-Borrero et al. [26] modified Mask R-CNN in order to create a

lighter architecture for strawberry detection with lower inference time (achieved 10 fps

vs. vanilla 5 fps) for potential use in robotic harvesting. In his next attempt to develop

a faster architecture, Perez-Borrero et al. [27] implemented a custom architecture based

on UNet fully convolutional network combined with a grouping and filtering algorithm,

outperforming his previous work, meeting the precision and speed requirements needed

for real-time harvesting systems.

 Gene-Mola et al. [28] aimed on constructing precise 3D apple

localization, using Mask R-CNN architecture for the 2D image analysis before applying

structure-from-motion (SfM) photogrammetry. Despite the good results for the instance

segmentation part, the whole implementation was deemed unfit for real-time robotic

harvesting as it presented high processing times for the 3D analysis. In an effort to

develop a real-time robotic harvesting application, Kang et al. [29] implemented a

custom single-stage instance segmentation architecture, based on the YOLO models

family, with a lighter backbone network, achieving robust and efficient results.

 Experimenting with the offline task of detecting apple flowers in different

growth stages, Tian et al. [22] proposed a custom architecture, combining an extended

version of Mask R-CNN, namely Mask Scoring R-CNN, with a U-Net backbone, which

https://doi.org/10.48550/arXiv.1506.01497
https://doi.org/10.48550/arXiv.1506.01497
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.48550/arXiv.1703.06870
https://doi.org/10.48550/arXiv.1506.01497
https://doi.org/10.48550/arXiv.1903.00241

8

outperformed other state-of-the-art models. Shen et al. [30] proposed a new backbone

network, introducing an attention mechanism and dense up-sampling convolution, in

order to improve the performance of Mask R-CNN on problems introduced by

illumination, occlusion conditions and the variability of grape cluster shape in the

dataset.

Regardless of the examined crop/fruit, robotic application of localizing and

harvesting was taken into consideration in many of the recent studies. Ganesh et al. [31]

proposed the combined use of RGB and HSV images from a Mask R-CNN model for

improved localization of oranges on trees, for robotic harvesting. Liu et al. [32] utilizing

Mask R-CNN, proposed a custom implementation for cucumber localization in a

greenhouse, taking into account the color and the shape of the target crop. The results

achieved were compared with other state-of-the-art architectures, outperforming them.

Moving away from the Mask R-CNN, Chen et al. [33], created a custom autoencoder

architecture, based on VGG16 network, applying it on a synthetic dataset of sweet

pepper images. Santos et al. [25] introduced Embrapa dataset, containing images of

grape clusters for instance segmentation. A comparison between two architectures of

the YOLO family and Mask R-CNN, to examine the performance on the new dataset,

with Mask R-CNN presenting superior results compared to the YOLO models. An end-

to-end vision system for mango picking robot was designed by Zheng et al. [24]

integrating a Mask R-CNN model inside a framework of detecting the fruits and then

locating picking points for the harvesting robot. The model was proven robust against

various illuminations and complex image backgrounds. Wang et al. [34] developed a

custom implementation using Mask R-CNN as the baseline model. A comparison was

made on a dataset of multiple fruits, with the proposed model achieving better results

compared to other instance segmentation models. Extending an object detection

architecture, Jia et al. [35], developed FoveaMask, an instance segmentation

architecture in which the dependency on anchor boxes, a characteristic of the Mask R-

CNN family, is eliminated and an attention mechanism is utilized. The model was

trained on a dataset comprised of immature green apples and persimmon, achieving

better results compared with 11 different types of detection and segmentation models.

 One of the most significant concerns in agriculture disease control [36],

as disease outbreaks can diminish the yield and/or the quality of any cultivar at any

environment. Detecting diseases through images has become a task of paramount

importance in terms of rapid reaction and disease countermeasures. Instance

https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.5281/zenodo.3361736
http://dx.doi.org/10.3390/s18082674

9

segmentation architectures not only can detect the area of interest but also, classify the

disease and extract geometrical information through the detailed instance mask being

created. Afzaal et al. [37] used Mask R-CNN to detect disease on strawberries and to

classify the detected areas into 7 disease classes. Different data augmentation

techniques are explored and a new custom strawberry disease dataset is presented.

Tassis et al. [38] developed a three-part framework with Mask R-CNN as the first part,

responsible for identifying and segmenting green leaves, while the next parts detected

disease areas and classified them between five diseases. With the introduction of a new

dataset for disease detection on grape clusters and leaves, Rossi et al. [39] applied Mask

R-CNN and Recursively Refined R-CNN (architecture in the family of Mask R-CNN)

with good results, to prove the validity of their dataset.

Despite the many recent studies incorporating instance segmentation for

fruit/crop detection in robotic harvesting, disease detection and growth analysis, to the

best of our knowledge little to no such work has been recorded so far on mushrooms. A

gap is identified, in applying instance segmentation on images of mushroom both in

natural environment and in production farms.

Mushrooms are an important part of our ecosystem due to their nutritional value,

medicinal properties, and potential as a sustainable and eco-friendly crop [40]. They

can be found in the natural environment [41,42] but also, cultivated in dedicated

mushroom farms [43,44,45]. Regarding the natural environment, different mushrooms

species can be found in areas where specific conditions are ideal for their growth [46].

Mushroom detection and localization in a natural environment present an important first

task that can help scientists and conservationists to track, classify and study different

mushroom species, as well as help ordinary people define their edibility [47]. However,

detection in natural environments involves challenging conditions such as bad lighting

conditions, complex background or wide variety of changes in mushroom shape and

size due to different species.

On the other hand, the nutritional value of the mushrooms has increased the

demand for big amounts for consumption. World production of cultivated, edible

mushrooms has increased more than 30-fold since 1978, which is combined with an

increase in per capita consumption at a relatively rapid rate [48]. Some of the most

widespread mushrooms are several species of the genus Pleurotus. These are of

particular interest because their production accounts to ca. 30% of the total,

corresponding to the fastest growing and most profitable section of the mushroom

https://doi.org/10.1007/978-3-030-89128-2_46

10

market [49]. The production involves four main steps: preparation of substrate,

inoculation, incubation and fruiting, [50], that are highly dependent on environmental

parameters, mainly temperature, humidity and CO2 concentration in the growing rooms

[51]. These factors exert a great effect on both growth and yield, thus the correlation

between environmental parameters and the visual growth through collected images is

of great importance. Unlike the fruiting bodies of other mushrooms, those of oyster

mushrooms grow in clusters, which make them more difficult to measure their growth

based on cap size and stipe length. This fact demands as a first step to detect and monitor

the mushroom clusters and the individual instances that comprise them.

For both aforementioned mushroom cases, the existence of big amounts of data

is necessary to achieve the required detection result. An abundance of mushroom

images in natural environments that can be found in public datasets [52], including a

great variety of mushroom species images. In the case of mushroom cultivation in

dedicated farms, the special conditions, under which the cultivation is conducted, render

it a very technical process and represents a special case of CEA. This controlled

environment is protected and allows a space with precisely regulated environmental and

cultural variables to produce yield in a more efficient way, by adopting the use of

advanced technology. The use of sensors and actuators, which are located inside the

structure to properly monitor the crop/microclimate interaction, control environmental

parameters, manage cultivation factors and collect mushroom growth data. Many

different types of sensors and IoT implementations were reported in the recent literature

[53,54], including cameras for image acquisition. In this way, data can be collected,

creating large data banks that contain environmental and most importantly, image data

from inside the cultivation installations.

This thesis will explore the implementation of different instance segmentation

DL architectures with the aim of detecting mushroom instances on two datasets with

different characteristics. The instance detection is a useful first step in extracting fine-

grained information, for example the number of individual mushrooms comprising a

cluster, the shape and the size among others. This information can be useful for bigger

applications, exploring yield prediction and monitoring mushroom growth with

correlation on the environmental variables inside the production environment, or

localizing mushrooms in natural environments and classify them as edible or not.

The rest of the thesis is structured as follows. In chapter 2, the two datasets are

presented and information is given regarding their images and the annotation task. The

11

DL architectures that are used are described in chapter 3. In chapter 4, the results are

presented and discussed and finally, in chapter 5s, conclusions and suggestions for

future work are made.

12

2 Datasets

2.1 Pilze dataset

The first dataset is comprised of oyster mushroom clusters (Pleurotus ostreatus

(Jacq. Ex Fr.) P. Kumm). It was created using sets of images acquired from a commercial

mushroom farm in June 2022 at Pilze-Nagy Ltd (Budapest, Hungary). Images of

unharvested mushroom clusters were carefully acquired at different angles using the

dual 12MP camera system of an iPhone 12 mobile phone with a high resolution of

4032x3024 pixels. Field photography mainly occurred during the daytime under

artificial lighting conditions, capturing in detail every single mushroom in a cluster. A

total of 200 RGB images including different sizes, shapes and distribution densities of

raw oyster mushrooms in clusters were captured. Attention was given in capturing

images of the clusters from all sides. In Figure 1, the mushroom farm is shown as well

as three images from the horizontal, bottom and top views.

Figure 1 Mushroom farm (a) with artificial lighting. Three sample mushroom cluster

images from the collected dataset at different angles: front (b), bottom (c), top (d)

views obtained from a real production environment.

13

Moreover, in the dataset exist clusters with different numbers of individual

mushrooms, ranging from numbers smaller than 10 up to even more than 30. In Figure

2, two clusters with different number of mushroom instances are presented.

(a) (b)

Figure 2 Mushroom cluster with small (a) and large (b) number of mushroom

instances.

As it can be observed from both Figures 1 and 2, many instances are semi-

occluded. The visible fraction of some mushrooms is relatively small, posing a

challenge for the instance segmentation task.

Figure 3 Mushroom cluster for top view before and after annotation.

The collected raw oyster mushroom dataset was processed into formats that can

be used to train and evaluate deep neural network architectures. After image acquisition,

the regions of oyster mushroom clusters in the images were manually annotated using

an open-source image and video annotation tool (CVAT: Computer Vision Annotation

Tool), creating the labels required for model training, validation and testing.

https://www.cvat.ai/
https://www.cvat.ai/

14

Specifically, the mushrooms in the images were carefully annotated, defining the

boundaries of the individual mushrooms present in each image (Figures 3 and 4). This

process resulted in a collection of user-defined masks for each mushroom that was

considered as an instance of interest for the segmentation.

Figure 4 Mushroom cluster for bottom view before and after annotation. On the right

image the points used to define the borders of a mushroom instance are visible.

The annotated dataset was exported and saved in COCO data format. The dataset

was divided into three subsets, 75% of the data were randomly selected for training,

10% of the data for validation and 15% of the data for testing.

2.2 Google V6 dataset

Open Images is a dataset of ~9M images annotated with image-level labels,

object bounding boxes, object segmentation masks, visual relationships, and localized

narratives [52]. Overall, there are 19,958 distinct classes with image-level labels.

However, this number is slightly higher than the number of human-verified labels.

Trainable classes are those with at least 100 positive human-verifications in the V6

Figure 5 Original mushroom annotation from V6 google dataset for instance

segmentation task.

15

training set. Based on this definition, 9,605 classes are considered trainable and

machine-generated labels cover 9,034 of these. For this thesis, the class “mushroom”

was extracted from the dataset, for the segmentation task subset. The annotation of the

mushroom dataset was not extensive or in the correct format for the training of the

models (Figure 5) and the need arose for the annotation of the dataset from scratch.

The class “mushroom” contained many different mushrooms species, in contrast

to the other dataset that is used in this thesis. Furthermore, some of the images inside

the dataset contained images from artificial or cooked mushrooms. These images were

filtered out of the dataset as the purpose was to examine the detailed detection and

localization of mushroom instances in natural environment. In Figure 6 are presented

images from different mushroom species contained in the dataset.

Figure 6 Example mushroom images from V6 google dataset for instance

segmentation task.

From a total number of almost 1500 mushroom images, 1407 were used after the

filtering of artificial mushrooms, very low-resolution images and mushrooms in

16

artificial environments. The V6 dataset has the data split by default in train, validation

and test sets. After the elimination of the aforementioned bad samples, 1238 (~88%),

39 (~3%) and 130 (~9%) images were used respectively for train, validation and test

set. The eliminated images where proportional of the size of each set, without affecting

the final percentage of each set. The resolution of the images never exceeds 1024x1024.

The different mushroom species contained in the dataset, introduce a great

variance of number, shape and colors in the images. Some mushroom images are single

instances, for example, in Figure 6.f, while other mushroom species grow in compact

clusters where the instances cannot be distinguished easily, as it can be seen from Figure

6.c, leading to the characterization of the whole cluster as a mushroom instance.

Regarding the shape of the mushrooms, it is visible from Figure 6.b and 6.e, how

different can be the instance of a mushroom for different species. All this complexity

can be a difficult task, even for a DL architecture. Another important factor that adds

complexity in the instance segmentation task is the background in each image. In some

cases, for example in Figure 6.a, the background is very distinct from the mushrooms,

as the colors are different. This is not the case for Figure 6.f, where the colors of the

background are very similar with the ones of the mushroom instance inside the image.

Figure 7 Mushroom images before and after annotation. On the right images the points

used to define the borders of a mushroom instance are visible.

17

The annotation of this dataset was conducted in a similar fashion as the previous

dataset, using the online CVAT tool. The mask of each mushroom instance was

manually and carefully defined in a time-consuming procedure. In Figure 7, examples

of annotated images from the V6 dataset are presented.

18

3 Instance segmentation architectures
For the instance segmentation task on mushroom instances in this thesis, the

open-source object detection toolbox based on PyTorch named MMDetection [55] was

utilized. It is a part of the OpenMMLab project. MMDetection contains and supports

many popular and state-of-the-art architectures for object detection, instance

segmentation and panoptic segmentation. Moreover, the toolbox contains weights for

more than 200 pre-trained networks, making the toolbox an instant solution if the

available dataset is not big enough to train an architecture from scratch. One of the most

important advantages of MMDetection is that many simple modular components of a

typical object detection/instance segmentation frameworks are implemented. With

selecting and combining them, custom pipelines or a custom model can be built. Also,

building a new detector framework on top of an existing framework and comparing its

performance is easily possible with this toolbox’s benchmarking capabilities.

For this thesis, six instance segmentation architectures where selected, trained

and tested on the two aforementioned mushroom datasets. The models were pretrained

on COCO dataset, with only the final parts of each architecture being finetuned with

the training set of the datasets. The training and testing of each dataset were done

independently from each other, with the aim of examining how each architecture could

perform on artificial and natural environments for mushroom detection. The six

architectures will be discussed in further detail in the following sub-chapters. The first

one is Mask R-CNN, on which other four are based on. Moreover, some of these 4 Mask

R-CNN based architectures are extensions of each other.

All the examined architectures have as their first part a feature extractor

component or else named backboned network. This network is responsible for

extracting features from the initial input data provided to the network. Usually, this is

comprised of a pre-trained CNN model such as ResNet [56]. For five out of the six

architectures, two different pre-trained backbones were examined, one that had fewer

layers or was based on a simpler model and one that had more layers or was based on

more complex model, giving the name “light” and “heavy” respectively to the whole

model. These architectures were selected among many, that were provided by the

toolbox, based on their accuracy on the benchmark dataset of COCO, but also with

respect to the ability that hardware demands could be met by the available system. The

only architecture that was not examined with two different backbones was DetectorRS

[57], due to hardware limitations for the provided “heavy”. The one DetecoRS

19

architecture used is categorized as “light”. Another quantitative differentiating factor

between the “light” and “heavy” models is the amount of GPU RAM memory that the

models required to run, with the “light” models demanding a lot less than the “heavy”

ones.

Finally, the computer hardware configuration used for image processing and

model training in this experiment is as follows: CPU: AMD Ryzen Threadripper 1950X

16-Core Processor 3.40 GHz; GPU: NVIDIA GeForce RTX 3090 (24 GB memory);

RAM: 64 GB; SSD: 512G. The network model is trained under Windows 10

Professional 64-bit operating system. The next sub-chapters will present the

architectures used and highlight differences and similarities between them.

3.1 Mask R-CNN

Mask R-CNN is considered as a breakthrough in the domain of instance

segmentation, expanding the object detection architecture of Faster R-CNN [33], with

the inclusion of a fully convolutional network (FCN) for semantic segmentation. This

model is part of the family of the two-stage detection models, where the first step is

comprised from a model tasked with the extraction of the regions of interest (ROIs),

while the second step is the classification and the detailed localization of the object

inside each ROI. Overall, the architecture of Mask R-CNN can be divided into three

parts, if the feature extractor part is considered as a distinct part (else it can be

considered as part of stage 1), as it can be seen in figure 8.

Figure 8 Mask R-CNN architecture, divided into distinct parts.

The first part of the network, namely the backbone, is acting as a feature extractor

for the input image, with convolutional neural networks (CNNs) being utilized in an

FCN architecture. In Mask R-CNN case, the backbone is comprised of a ResNet [56] +

Feature Pyramid Network (FPN) [58] network, which is visualized in Figure 9. ResNet

architecture is can effectively solve the gradient vanishing problem of deeper

architectures with many layers, making possible the use of multi-layers networks (for

20

example ResNet50, ResNet101). Moreover, ResNet is a bottom-up architecture, which

detects low-level features (in the first layers) and high-level features (in the last layers).

With the introduction of the FPN, the backbone achieves the integration of a top-down

architecture, combining effectively low- and high-level features in a multi-scale feature

fusion.

The output of the backbone is a feature map, that is used from the second part of

the network, namely the Region Proposal Network (RPN). RPN is tasked with finding

objects inside the image, through the feature map, by using a set of boxes with

predefined size and scale, named anchors. The anchors are being slid through the feature

map and at each location try to decide whether they contain a possible object or not,

after comparing it with the ground truth data. The output of RPN is the collection of all

anchors, with two additional values, the anchor class (foreground or background) and

the coordinates of the bounding box of the anchor. The anchors with the highest

confidence of containing an object are selected in order to alleviate the computation

cost of processing all the anchors.

Figure 9 FPN architecture [58], divided into distinct parts. The left part of the

architecture is a backbone network (usually ResNet or similar implementation) and

the right part is the FPN addition. Depending on the application one or more of the

“predict” stages can be utilized as feature from the following components of an

architecture.

The third and final part is comprised of the Region of Interest (ROI) Align

component and the object detection/mask generation branches. ROI Align is responsible

for extracting the features of the feature map (produced from the backbone) that are

contained in the proposed regions of the RPN and transforming them into fix-sized

arrays for standardized processing. The fix-sized arrays are then pass through two

branches producing on one end, the final class prediction and bounding box coordinates

21

(box head branch) and on the other end the pixel-wise mask of the detected instance

(mask branch).

In this thesis, two different backbones have been examined, to give insight how

different feature extractors can affect the results. The first backbone, belonging in the

aforementioned category of “light” models, was comprised from a ResNet network of

50 layers combined with an FPN, while the second backbone, in the “heavy” category,

was comprised of a ResNeXt [59] network of 101 layers with 32x8d (cardinality x

bottleneck width) combined with an FPN. The models used were pretrained on COCO

dataset and finetuning was done on the stage 2 of the architecture using the two

mushroom datasets.

3.2 Mask Scoring R-CNN (MS R-CNN)

Mask Scoring R-CNN [60] is an extension of the Mask R-CNN architecture. The

main difference between Mask R-CNN and Mask Scoring R-CNN is the addition of a

scoring branch that is used to predict the quality of the instance segmentation mask.

This branch can be visually seen in Figure 10, with the name of MaskIoU head.

The MaskIoU head aims to estimate the IoU between the predicted mask and its

ground truth mask. The input of this component is concatenation of feature from RoI

Align layer and the predicted mask and generates a score for each mask, indicating the

quality of the mask. This score is computed by multiplying the predicted MaskIoU and

classification score. Thus, mask score is aware of both semantic categories and the

instance mask completeness [60]. This allows the model to distinguish between high-

Figure 10 Mask Scoring R-CNN architecture, divided into distinct parts [60].

quality and low-quality masks, and to only keep the high-quality masks for better

training.

22

Two different backbones have been examined for this architecture. The first

backbone, considered “light”, was comprised from a ResNet network of 50 layers

combined with an FPN, while the second backbone, in the “heavy” category, was

comprised of a ResNeXt [59] network of 101 layers with 64x8d (cardinality x

bottleneck width) combined with an FPN. The models used were pretrained on COCO

dataset and finetuning was done on the three heads of the architecture that are visible in

Figure 8.

3.3 Cascade Mask R-CNN

Cascade Mask R-CNN [61] is a state-of-the-art object detection and instance

segmentation algorithm that improves upon the Mask R-CNN architecture. The main

idea behind Cascade Mask R-CNN is to break down the object detection and instance

segmentation task into multiple stages, or cascades, each with a different IoU threshold.

The stages are trained sequentially, using the output of a stage as training set for the

next. Training with small IoU threshold results in noisy samples, and training with large

thresholds degrades the performance because of overfitting and low-quality region

proposals at inference compared to training. Moreover, models trained using specific

IoU thresholds might be suboptimal when evaluated on other IoU thresholds or region

proposals of different level of IoU threshold is given. The use of different IoU thresholds

for the training of the model can solve these problems and improve the overall

performance.

In Figure 11, the difference between the architectures of Mask R-CNN and

Cascade Mask R-CNN is shown. B* are the bounding box regressors, S* are the mask

predictor, C* are classifiers, I is the input image, H* are network heads.

Figure 11 Comparison between Mask R-CNN (a) and Cascade Mask R-CNN (b) [61]

The Cascade Mask R-CNN is comprised of three specialized regressors, each

trained with an increasing IoU, the selected values by the authors being [0.5, 0.6, 0.7]

23

for each regressor. The predicted bounding boxes were forwarded to the next regressor

in the pipeline in order to provide a stronger baseline for producing the new bounding

boxes with the stricter IoU. It was shown that the use of the previous regressor’s

bounding box generally improved the quality of the next stage objects proposal. This

improvement led to the conclusion that increasing IoU threshold can be used for training

to achieve better results. Even though results are produced from all three regressors, the

outputs of the last one is regarded as the final result.

Two different backbones have been examined for this architecture. The first

backbone, considered “light”, was comprised from a ResNet network of 50 layers

combined with an FPN, while the second backbone, in the “heavy” category, was

comprised of a ResNeXt [59] network of 101 layers with 64x4d (cardinality x

bottleneck width) combined with an FPN. The models used were pretrained on COCO

dataset and finetuning was done on the heads of each of the three regressors. More

specifically the three H* parts of the architecture that are visible in Figure 9b.

3.4 Hybrid Task Cascade (HTC)

Hybrid Task Cascade (HTC) [62] is a state-of-the-art deep learning architecture

for object detection and instance segmentation. It is an extension of the Cascade Mask

R-CNN architecture and is considered a multi-stage object detector that uses a cascaded

architecture to improve the performance of the object detection and instance

segmentation tasks.

In Figure 12, the difference between the architectures of Cascade Mask R-CNN

and HTC is shown. B* are the bounding box regressors, M* are the mask predictors, S

is the semantic branch and F is the extracted feature map from the backbone.

Figure 12 Comparison between Cascade Mask R-CNN (a) and Hybrid Task Cascade

(b) [62]

The authors of HTC identified and tried to improve two specific parts of Cascade

Mask R-CNN. The first part of the update of the architecture has to do with the mask

heads. The new implementation had direct connections between the mask branches of

24

the cascade part. This strengthens the flow of information between the mask task across

all the stages, leading to a progressive refinement of masks, instead of just predicting

the masks on progressively refined bounding boxes. Regarding the mask heads, another

update was that each mask prediction is done utilizing the updated bounding boxes

predicted from the previous stage. This interleaved execution was found to yield better

results than executing the bounding box and mask prediction in parallel.

The second update was the introduction of a new branch which predicts pixel-

wise semantic segmentation for the whole image. This branch is implemented with FCN

and is jointly trained with the other branches. The combination of this semantic

segmentation information with the bounding box and mask features produces better

predictions, as it is easier to distinguish between the objects and the background area,

even if the background is more cluttered and complex than usual.

Even though HTC is heavier than Cascade Mask R-CNN, the more complete

implementation has led to better results on benchmark datasets, for example COCO

Dataset.

Two different backbones have been examined for this architecture. The first

backbone, considered “light”, was comprised from a ResNet network of 50 layers

combined with an FPN, while the second backbone, in the “heavy” category, was

comprised of a ResNeXt [59] network of 101 layers with 64x4d (cardinality x

bottleneck width) combined with an FPN. The models used were pretrained on COCO

dataset and finetuning was done on the bounding box, mask and semantic components

of each of the three regressors. More specifically the three M*, the three B* and the S

components of the architecture that are visible in Figure 10b.

3.5 DetectoRS

DetectoRS [63] is a state-of-the-art object detection algorithm that aims in the

improvement of the backbone of instance segmentation architectures. The original

implementation was incorporated in an HTC architecture significantly improving the

results.

The improvements of the backbone come into two scales, as the authors describe

them. The first one is on the macro-level, proposing a Recursive Feature Pyramid (RFP)

network. This network builds on the aforementioned FPN, by adding extra feedback

connections from the layers of the FPN to the bottom-up backbone layers (usually a

ResNet or similar implementation), as it shown in Figure 13.

25

Figure 13 Recursive Feature Pyramid (RFP) [63]

In Figure 13a the original FPN network is shown, with connections only from

the bottom-up part to the top-down part. By adding connections the opposite way

(Figure 13b), the whole architecture becomes recursive and in can be unfolded as in

Figure 13c, leading to the architecture looking at the images twice or more. This

approach recursively enhances the original FPN leading to the creation of better feature

representations.

The second update was done on the micro-level, as the authors describe it. More

specifically, each 3x3 convolutional layer in the ResNet backbone was converted to a

Switchable Atrous Convolution (SAC) layer. This layer controls the dilation of the

kernel used by adding zeros between the kernel values, effectively enlarging the field-

of-view. With this technique an object of the same class but with different size can be

detected more easily, using the same convolutional weights without adding increasing

the existing parameters. In Figure 14, the SAC intuition is presented.

Figure 14 Switchable Atrous Convolution (SAC) layer logic [63].

26

In Figure 14, the red convolution kernel is the default convolution with 3x3

kernel, while the green convolution kernel has been dilated using 0 between the kernel

values. As it can be seen, with the dilated convolution bigger objects can be detected

roughly with efficiency using the same kernel. The selection mechanism, controlling

which convolution result will be forwarded, is dependent on the input image and the

location examined, leading to the model being able to be trained to adapt to different

scales as needed.

 For this architecture, only one configuration was explored, combining an

HTC with ResNet50 as its backbone. As described earlier, the ResNet backbone was

updated with the RFP and SAC. A provided implementation of the MMDetection

toolbox of a backboned comprised from an HTC with a ResNet101 was exceeding the

available hardware capacities and could not be examined. The final parts of the

architecture that were finetuned are the same parts described in sub-chapter 3.4 for the

HTC architecture and not the updated parts of the backbone.

3.6 Evaluation

Performance metrics such as precision (P), recall (R) and F1-score were used to

quantitatively evaluate the detection performance. All detection results were divided

into four types: true positive (TP), false positive (FP), true negative (TN) and false

negative (FN), where 𝑇𝑃 is the number of oyster mushrooms detected correctly, 𝐹𝑃 is

the number of oyster mushrooms detected incorrectly, and 𝐹𝑁 is the number of raw

oyster mushrooms missed in the cluster. Precision (P) and recall (R) are defined as

follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(

(1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(

(2)

To illustrate how these performance metrics were computed in this work, the

Intersection over Union (IoU) is defined in equation 3 and Figure 4. The IoU score

ranges from 0.0 to 1.0 and IoU > 0.5 with the ground truth is generally regarded as a

27

good prediction. In addition, the confidence score of a bounding box reflects how likely

the box contains a single mushroom.

With the selection of a specific threshold for both the IoU and the Confidence,

each prediction will be considered as a True Positive (TP, correct prediction) if both

values are greater than the respective thresholds. Following the same logic, a prediction

will be considered as a False Positive (FP, erroneous prediction) if both values are lesser

than the thresholds. The greater the values of these two metrics, the more accurate is the

prediction made from the model.

The standard COCO metrics were used to evaluate network performance. The

mean average precision (mAP) was calculated as the mean of all classes (in this case

only one mushroom class) over 10 IoU thresholds, starting from 0.5 to 0.95 with a step

size of 0.05. In addition, AP50 represents the calculation under the IoU = 0.50, whereas

AP75 is a stricter metric and represents the calculation under the IoU = 0.75.

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛

(

(3)

F1-score is defined as the harmonic mean of precision and recall instead of the

common arithmetic mean. The result is always a number between 0 and 1, with values

closer to 1 indicating better overall performance of the model. The formula used for its

calculation is the following:

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(

(4)

28

4 Results and Discussion

In this chapter, the results of the experiments made on both datasets will be

presented. The Pilze dataset will be examined first, by presenting the results of all

architectures in a table and then comments will be made. Then selected images from the

test set will be presented in order to highlight good and bad detection performance and

compare the results between the “light” and “heavy” implementations of the same

architecture, but also between different architectures. The same approach will be

followed for the V6 Google dataset. Finally, overall comments on the performance of

the architectures will be made, taking into account the characteristics of each dataset.

4.1 Pilze dataset results

All models were trained for a total of 15 epochs. It should be noted that after the

10th epoch, the models showed little or no improvement, hence this checkpoint was

selected for the final testing of the architectures. The learning rate for the finetuning

was set at 0.001 and all the models were pre-trained on COCO Dataset.

Table 1 Performance comparison between the architectures on Pilze dataset. Red

indicates the best results column-wise.

Architecture Backbone

AP50

Precision

AP75

mAP

Recall F1 score

Mask R-CNN
light 0.921 0.766 0.685 0.731 0.707

heavy 0.912 0.815 0.710 0.750 0.729

MS R-CNN
light 0.851 0.705 0.638 0.675 0.660

heavy 0.837 0.742 0.656 0.685 0.670

Cascade Mask

R-CNN

light 0.825 0.702 0.625 0.663 0.643

heavy 0.817 0.732 0.642 0.676 0.659

HTC
light 0.911 0.772 0.689 0.738 0.716

heavy 0.876 0.794 0.698 0.738 0.717

DetecoRS
light 0.912 0.818 0.724 0.773 0.748

heavy - - - - -

29

The results of Table 1 show that, regarding the AP50 metric, the light models

achieve better results, while the AP75 is better on heavy models. The simpler features

extracted from a light backbone perform better with a more lenient restriction of IoU

than the more complex from a heavy backbone. However, when stricter IoU thresholds

are placed, the more sophisticated features of the heavy models outperform the light

ones. The logical assumption would be that the more complex backbones would

produce more informative features that would benefit the model in all cases, leading to

heavy models producing better results in all AP metrics. This phenomenon has to do

with the amount of available data, which in this dataset is relatively low, in comparison

with the V6 Google Dataset (chapter 4.2). The overall metrics of mAP, Recall and their

product, F1-score, show that the heavy models outperform their light counterparts, as

the stricter threshold of IoUs are used.

By examining the results of each architecture, it obvious that Mask R-CNN

performed very well, despite being the older and simpler architecture of all. It was able

to detect the majority of the mushroom instances with decent masks as it will be shown

in the next few Figures. The performance achieved by Mask R-CNN will be regarded

as the baseline for the comparisons and the comments that will follow. The architectures

of MS R-CNN and Cascade Mask R-CNN reported worse performance than the simpler

Mask R-CNN. Especially Cascade Mask R-CNN achieved the worst performance

among all the architectures. This fall of performance can be attributed to the

introduction of more parameters that need to be trained, but at the same time the amount

of training data and the feature extraction ability and information flow of the

architectures remained the same. In other words, bigger architectures were trained with

the same training power of extracted from the dataset.

As described in Chapter 3, MS R-CNN introduced a new branch used for

applying a score on the mask produced by a classic Mask R-CNN architecture. This

extra branch is comprised of new trainable weights, that were finetuned with the Pilze

dataset. However, the feature extractor component of the architecture was the same as

with Mask R-CNN, while no extra data was introduced in the training process. In an

similar manner, Cascade Mask R-CNN has three instead of one Mask R-CNN head

component (comprised from classification + bounding box branch and mask branch),

as each one of these three head components is trained with a different IoU threshold.

Despite the 3x times more trainable weights introduced, the feature extractor component

30

of Cascade Mask R-CNN remained the same as the one Mask R-CNN has and no more

training data was included during the training.

By examining these three architectures not only as a whole, but examining

distinctively light and heavy models in each one of them, it is obvious and stated before,

that using a more complex feature extractor component (heavy models) improves the

performance. However, the number of the newly introduced weights in both MS R-

CNN and Cascade Mask R-CNN cannot be counterbalanced, as both heavy models of

these two architectures perform worse than the light model of the simple Mask R-CNN.

Meaning that using just deeper feature extraction backbones do not give enough training

power to the architecture. This setback can be overcome with two solutions,

introduction of more data to counterbalance the extra parameters or modify the

architecture to increase information flow and achieve even better feature extraction.

The architecture of HTC shows great improvement when is compared to both

MS R-CNN and Cascade Mask R-CNN, but almost similar to Mask R-CNN. This is

happening even though is based on the Cascade Mask R-CNN (using three heads) and

despite using the same amount of training data with the same feature extraction

backbone. This improvement can be attributed to the new connections between the mask

heads and the new added branch for the extra segmentation, as described in chapter 4.4.

This improvement in architecture has allowed a better flow of information on the final

stages and components, even though the extracted feature map from the backbone has

not changed.

From all the architectures, DetecoRS has the best performance as not only has

the improved information flow of HTC but also with the updates in its backbone

(described in chapter 3.5) it is able to produce even better-quality feature map. The

combination of better feature maps and better information flow leads to the best results

overall, surpassing the both light and heavy models of the simple Mask R-CNN

architecture, despite the low amount of available data for training.

Based on the results of Table 1, the behavior of these architectures can be

predicted in the scenario where sufficient amount of training data was available. As all

the architectures are descendances of the original Mask R-CNN, integrating further

updates, it is expected all of them to have better performance, following the official

results of each of the authors on benchmark datasets. MS R-CNN introduces an

improvement module in a different direction than the three multi-stage, cascade logic

architectures of Cascade Mask R-CNN, HTC and DeterctoRS. Based on the collected

31

results of the MMDetection toolbox, the performance of MS R-CNN is similar to the

performance of Cascade Mask R-CNN and both of them better than the simple Mask

R-CNN. Regarding the three multi-stage architectures, each of them improves on

deficiencies of the previous one, resulting in DetectoRS performing best among them,

followed by HTC and finally Cascade Mask R-CNN.

A better understanding, on how each of the architectures performed, can

achieved through visualizing and comparing the predictions on the test set. The different

shades of green color in the images refer to different detected mushroom instances and

it is not a measure of confidence or accuracy of the models regarding their prediction.

In order to present in a better and more efficient way the prediction images, the

numbering of the images will correspond to a specific model (light or heavy) of an

architecture as follows:

(a) = original image

(b) = light Mask R-CNN

(c) = heavy Mask R-CNN

(d) = light MS R-CNN

(e) = heavy MS R-CNN

(f) = light Cascade Mask R-CNN

(g) = heavy Cascade Mask R-CNN

(h) = light HTC

(i) = heavy HTC

(j) = DetectoRS

In the following Figures, different results on the test set will be presented and

commented. It is important to state the mushroom instances of this dataset are more

homogenous than the V6 dataset. Here, only the species of Pleurotus is detected, in an

artificial environment with specific and similar characteristics between the images. The

black background of the plastic cover of the substrate makes easier the detection and

segmentation of mushrooms which naturally have a much brighter color. The other

background which can have slightly similar texture or color with the mushrooms does

not appear to be a problem as all the models do not mistake any background for

mushrooms. Moreover, the shape of the mushroom instances is quite similar albeit in

different sizes and mature levels. The immature mushrooms are not detected as they

were not included in the annotation of the dataset. The mature mushrooms that are of

bigger shape are more easily identified, especially if they are adequately lighted.

However, there is a significant number of mature instances that either are not detected

or masked with low quality masks of arbitrary shapes.

32

Figure 15 Mushroom cluster, sub-lighted area and arbitrary masks. DetectoRS best

overall results.

33

Figure 16 Good performance but problems with occluded, sub-light and neighboring

instances observed.

34

In Figure 15, the overall performance of all the architectures was quite good,

given the numerous instances included in the cluster and the extend of occlusion and

sub-lighting of some samples. With the exception of DetectoRS, Figure 15.j, the other

models produced at some extend masks with arbitrary shapes as it can be easily

distinguished in Figures 15.a-g. All of the models failed to detect the mushrooms on the

bottom right of the cluster, something that can be attributed to the bad lighting of these

specific instances. Moreover, throughout the cluster some highly occluded mushrooms

could not be identified by the small parts that were visible, a behavior reported by all

the models. Finally, a secondary mushroom cluster on the top right of the image is not

detected at all, something that is desirable as the focus should be at one cluster per

image. In Figure 17, the dark area of the cluster is shown for some architectures,

resulting in the mushroom instances not being able to be detected, due to low light

conditions.

Figure 17 Low light instances failed to be correctly detected. Heavy Mask R-CNN (a),

light Cascade Mask R-CNN (b), DetectoRS (c)

Examining Figure 16, the overall performance of the models was good regarding

most of the big instances. However, smaller occluded instances throughout the cluster

were not detected by the models. More specifically, different models could not identify

different instances that other models could. Furthermore, the instances on the right area

of the cluster, that are not sufficiently light, unlike the mushrooms on the rest of the

cluster, are not detected by any of the models. Finally, it was observed that some models

fused two distinct instances under a single mask, mistaking two bordering mushrooms

as one, Figures 16.b,d,h,j. In Figure 18, the problematic area of the bordering

mushrooms is shown for some of the architectures that fail to distinguish between the

two instances.

35

Figure 18 Original image with two mushroom instances (a), light Mask R-CNN

produced mask (b), light HTC produced mask.

Another example of good performance of all the architectures can be seen in

Figure 20. In this case, all of the models detected all of the depicted mushrooms with

few exceptions of masks having arbitrary shapes. The only two models that were not

able to detect a small mushroom instance at the bottom of the cluster are light MS R-

CNN (Figure 20.d) and light Cascade Mask R-CNN (Figure 20.f).

A similar case with many similar problems observed, as in Figure 16, can be seen

in Figure 21. The difference in that image is that there is no light problem but the many

of the models split a single mushroom instance into two with their produced masks.

This can be seen in Figures 21.b,c,d,f,g,h at the bottom of the cluster, where a mushroom

has grown upside down. Figure 19 shows a zoomed version of the mushroom instance

for a couple of architectures that fail to correctly detect it. Overall, both models of Mask

R-CNN architecture, detect most of the occluded instances but introduce some arbitrary

masks in other more well-defined instances.

Figure 19 Original image with one mushroom instance (a), heavy Mask R-

CNN produced mask (b), light HTC produced mask.

36

Figure 20 Overall good performance by all architectures.

37

Figure 21 Decent performance but problems with occluded and splitting one

mushroom instance to two is observed.

38

In both Figures 23 and 24 it can be observed that both models of Mask R-CNN

produce the best results among all the other models. They are able to detect and produce

fairly good masks for almost all of the mushroom instances. An interesting observation

is that they are able to produce masks even for the smaller instances in the bottom of

the cluster in Figure 23 even though the other models, even DetectoRS cannot. Also, in

Figure 24, while both Mask R-CNN and DetectoRS identify accurately the mushroom

instances in the big cluster, only Mask R-CNN is able to detect many of the smaller

mushrooms in the secondary cluster at the bottom of the image.

Finally, in Figure 25, the performance of DetectoRS is superior to all the other

models, producing good quality masks without overlapping or arbitrary shapes. All the

other architectures cannot achieve that and even falsely split an instance on the right

side of the cluster into two instances. Even though DetectoRS misses some of the

smaller instances at the bottom of the cluster compared to both Mask R-CNN models,

the mask quality compensated that drawback. In Figure 22 a more detailed comparison

between the arbitrary masks produced from some architectures and the well-shaped

masks of DetectoRS can be seen.

Figure 22 Arbitrary masks produced by light MS R-CNN (a) and light Cascade Mask

R-CNN, while good quality masks by DeterctoRS (c).

39

Figure 23 Overall good performance, both Mask R-CNN models detect smaller

instances at the bottom of the cluster.

40

Figure 24 Overall decent performance from both Mask R-CNN and DetectoRS, but

only the former detects smaller mushroom instances.

41

Figure 25 DetectoRS producing better results without arbitrary masks.

42

4.2 V6 Google dataset results

All models were trained for a total of 15 epochs. It should be noted that after the

10th epoch, the models showed little or no improvement, hence this checkpoint was

selected for the final testing of the architectures. The learning rate for the finetuning

was set at 0.001 and all the models were pre-trained on COCO Dataset.

Table 2 Performance comparison between the architectures on V6 Google dataset.

Red indicates the best results column-wise.

Architecture Backbone

AP50

Precision

AP75

mAP

Recall F1 score

Mask R-CNN
light 0.870 0.744 0.670 0.739 0.703

heavy 0.888 0.770 0.693 0.759 0.725

MS R-CNN
light 0.854 0.724 0.658 0.730 0.692

heavy 0.874 0.771 0.688 0.744 0.715

Cascade Mask

R-CNN

light 0.864 0.737 0.665 0.733 0.697

heavy 0.869 0.766 0.678 0.739 0.707

HTC
light 0.873 0.747 0.671 0.764 0.714

heavy 0.878 0.764 0.691 0.773 0.730

DetecoRS
light 0.889 0.774 0.707 0.784 0.744

heavy - - - - -

One of the first comments on the numerical results of the V6 Google dataset is

that all the heavy models outperform their light counterparts. This can be attributed to

the more complex backbones of the heavy ones, that execute better the task of feature

extraction, providing better information for the rest of the architecture. As expected,

DetectoRS architecture produced the best results in all metrics due to the extensive

updates on the whole architecture.

Even though the total number of data is bigger than the other dataset, the same

observation can be done regarding the performance of the architectures based on the

available data and the number of parameters that must be finetuned with regard to the

extracted feature maps and flow of information. This observation extends on both light

and heavy models of each architecture.

43

The performance of Mask R-CNN can be considered as the base performance.

Then, by introducing updates in the architectures of MS R-CNN and Cascade Mask R-

CNN, the respective heads have more parameters to be finetuned, but the power of the

feature extractor remains the same. However, this is not the case for HTC and

DetectoRS. On the one hand, HTC manages to slightly outperform Mask R-CNN due

to higher recall, as the mAP is almost similar. On the other hand, DetectoRS light model

is able to outperform both light and heavy models of Mask R-CNN architecture.

A better understanding of the performance of each architecture can achieved

through visualizing and comparing the predictions on the test set. An important

information for the upcoming figures is that the differences in the green color of each

mushroom instance indicate a difference mushroom and has nothing to do with the

confidence or the accuracy of the models regarding their prediction. In order to present

in a better and more efficient way the prediction images, the numbering of the images

will correspond to a specific model (light or heavy) of an architecture as follows:

(a) = original image

(b) = light Mask R-CNN

(c) = heavy Mask R-CNN

(d) = light MS R-CNN

(e) = heavy MS R-CNN

(f) = light Cascade Mask R-CNN

(g) = heavy Cascade Mask R-CNN

(h) = light HTC

(i) = heavy HTC

(j) = DetectoRS

From the many results of the test set, the most notable will be presented and

discussed, including different kinds of performances from the architectures. In some

cases, all of the models managed to successfully segment the image, while on others

they all failed. This has to do with the mushroom(s) that is/are inside the image. In other

cases, the simpler models produced mediocre results while the more complex were able

to visually outperform them. In most of the cases, the exact borderline between different

instances or between an instance and the background is not detected. However, as this

is an exploratory analysis and the task at hand is not critical (e.g. segmentation of human

anatomy in surgical operation), the accuracy of the borderlines with an error of some

pixels is considered enough. Moreover, in order to detect this small misalignment of

produced masks and the actual mushroom instances, extreme zoom is needed.

44

Figure 26 Good detection performance by all models.

45

In Figure 26, a case where all the models performed very well on the instance

segmentation task is presented. All the instances are detected, including those on the

foreground and in the background. For the semi-occluded instances were visible only

the upper part of the mushrooms (cups) but all of the models were able to detect them

an accurate way. Furthermore, some far smaller instances, in the right and in the bottom

areas of the image, are also accurately detected. The only small part of the image that

most of the models have missed is on the center-right mushroom instance where the

stalk of the mushroom is detected in a complete way only by light MS R-CNN in Figure

26.d and by DetectoRS in Figure 26.j. Between those two, DetectoRS has detected the

stalk at its full. Overall, in this image the correct number of the instances is detected

and with a very good accuracy for each individual mask.

An interesting case can be seen in Figure 27. Here all of the models were able to

detect and differentiate between the mushroom instances and the background. However,

this was not the case for the border detection between the two mushroom instances that

exist in the image. At one side they are in contact with each other, presenting a difficult

task for the models to work on. As it can be seen most of the models produced

overlapping masks, that from little to big extend intruded into the other instance. The

only model that managed to overcome this difficult situation is DetectoRS in Figure

27.j. From all the other models only heavy Mask R-CNN produced decent masks but

still a small, overlapped area can be observed. Overall, despite the quality of the masks

all the models managed to detect all of the mushroom instances existing in the image.

Another example of the supremacy of DetectoRS can be seen in Figure 28 as it

was the only architecture able to detect and produce detailed masks, Figure 28.j. The

other architectures struggled, producing masks with arbitrary shapes, as it can be seen

in Figures 28.b,d, combined more than one actual mushroom instances in one mask,

Figures 28.e,g or missed some mushroom instances, Figures 28.f,h. The only model that

produced results close to the ones from DetectoRS were heavy HTC, a result that is

logical as this model was second in overall performance as it is stated in Table 2. The

performance of DetectoRS is further proved in Figure 29, where it was the only model

able to detect the depicted mushroom instances in Figure 29.j. This example was one of

the hardest based on the similarity between background and instances with respect to

the color and texture. The improved implementation of DetectoRS feature extractor

backbone, combined with the information flow provided on the heads of the architecture

was able to solve the difficult task of segmenting the two mushroom instances.

Surprisingly, the light Mask R-CNN model was able to fairly detect one out of two

mushroom instances while other models, with better overall results from Table 2, could

not.

46

Figure 27 Dual mushrooms with overlapping produced masks from most models.

47

Figure 28 Arbitrary masks and detection oversight by most models except DetectoRS.

48

Figure 29 Dual mushrooms with complex background, DetectoRS good performance.

49

Despite the good overall performance of all the models and more specifically the

DetectoRS’, there were cases where all of them were not able to successfully segment

all the instances in an image. This can be seen in Figures 30 and 31, where to different

kind of mushrooms are depicted. In Figure 30, distinct mushroom instances, but with

arbitrary shapes, are packed together creating a cluster. However, the borders between

the instances are not always well defined and occlusion exists. None of the models was

able to find all the instances in the image, especially the ones on the top of the cluster.

Regarding the mushrooms in the front of the cluster and at the center of the image, all

the architectures struggled to produce high quality masks, creating masks with even

more arbitrary shapes than the mushroom instances and sometimes missing specific

instances. Overall, only DetectoRS was the model with the best result creating higher

quality masks for the mushroom instances that was able to identify.

Another example is shown in Figure 31, where the mushroom instances are

multiple smaller mushrooms with the classic shape with a cup and a stalk. In this image,

even if the mushroom shapes are more standardized, the problems of very small

instances and occlusion lead to many instances not being detected. This is a

phenomenon noticed in all the examined models. However, the difference in the

performance compared to Figure 31, is that the more well-defined shape of this

mushroom species facilitates the creation of better masks. So, even if some instances

were not detected, the ones that actually detected were provided relatively good quality

masks.

A case where the architectures struggle collectively is shown in Figure 32. In this

image the depicted mushroom can be considered a cluster-like instance. Nevertheless,

there are distinct parts of the mushroom cluster that can be falsely detected as individual

instances from a network, even if the whole cluster should be considered as one entity.

From all the models, only heavy MS R-CNN, managed to produce a mask containing

most of the depicted cluster, but smaller overlapping ones were also produced. If more

mushroom of this shape were included during training, the models could have

performed better. Finally, in a similar case in Figure 33, only the heavy models of each

architecture, plus the DetectoRS, were able to correctly identify and segment the whole

mushroom cluster as one instance. On the other hand, the light models could not identify

the cluster at all or falsely detected smaller parts of it as individual mushrooms.

50

Figure 30 Arbitrary mushrooms instances in cluster leading to lower quality masks

and detection performance.

51

Figure 31 Many smaller mushroom instances with well-defined shape, resulting in

better quality masks but missing detection of some instances.

52

Figure 32 Mushroom cluster considered as one instance proving difficult task for all

architectures.

53

Figure 33 Mushroom cluster correctly detected as one instance by all heavy models.

54

4.3 Overall notes

Despite the bigger number of images in V6 Google dataset, the performance of

the architectures is overall slightly worse than the Pilze dataset and this has to do with

the nature of the datasets. On the one hand, Pilze dataset has fewer images, which is a

drawback, but the target mushroom class is well defined and uniform in shape/color,

the background is less complex and the images are of much higher resolution

(4032x3024). On the other hand, V6 Google dataset has more images, but the target

mushroom class is not uniform as there are many different mushrooms species with

different shape/color/size, the background in nature is more complex and the images are

of lower resolution (up to 1024x1024).

In both datasets, the two architectures of MS R-CNN and Cascade Mask R-CNN

do not manage to perform better than the simple Mask R-CNN due to the low amount

of data available for finetuning the updated head architectures that have more

parameters, in the same manner as described in section 4.1 for Pilze dataset. However,

the difference in the results is not as obvious in the V6 Google dataset due to the larger

number of available images for training, introducing more information to the models.

55

5 Conclusions – Future work – Acknowledgments
In this thesis, instance segmentation was implemented on two dataset, testing 5

different architectures. One of the architectures was the breakthrough model of Mask

R-CNN, while the rest are based on it with specific expansion on different parts of the

architecture. For each architecture (except DetectoRS), two different models were

tested, with their difference located in the feature extraction backbone, where a lighter

and heavier network was used with regard to the depth and the implementation. All of

the above models were pre-trained from COCO Dataset, but their final stages were

finetuned on the two datasets of this thesis, in an independent manner. The two datasets

were comprised of mushroom images, with the first being a collection of Pleurotus

clusters inside a mushroom farm (Pilze dataset), while the second being a collection of

different mushroom species in natural environment (V6 Google dataset).

The experiments conducted showed that the task of instance segmentation on

mushroom instances in both controlled and natural environment is valid. All of the

architectures managed a performance ranging from acceptable to good. The

characteristics of the datasets played an important role in the quality of the results. The

dataset of the controlled environment was more homogenous, with only one mushroom

species included and with high resolution images. However, the total number of images

contained was relatively small. This has led to architectures that expanded the baseline

architecture of Mask R-CNN at the final stages (which were finetuned in this thesis)

with extra parameters to produce worse results (MS R-CNN, Cascade Mask R-CNN).

On the other hand, architectures that expanded Mask R-CNN’s architecture in its all

extend (HTC, DetectoRS), showed same or improved results despite the small training

set. The dataset of natural environment showed the same behavior with the previous

dataset, but the underperformance of the architectures was not so apparent, as more data

were available for the training. The slightly worse overall performance of the

architectures on this dataset is attributed to the inclusion of many different species of

mushrooms and the low resolution images. This counterbalanced the bigger number of

training images.

Both numerical and visual results showed that the more complex and newer

models can achieve very good results, if they are provided with big amounts of data.

More specifically, the DetectoRS has managed to produce the best results in both cases

even with small number of training images. If more training data is available then it is

expected for that architecture to perform even better with a greater margin from the

56

others. However, if small number of data is available, simpler architectures with less

trainable parameters can perform as well and even better than more complex and

extended models. This becomes apparent with Mask R-CNN architecture in the Pilze

dataset, outperforming most architectures and slightly underperforming against

DetectoRS.

This thesis sets the ground for further possible work in this direction. Following

are some suggestions for further work:

1) Expansion of the used datasets with more samples to validate the observed

behavior of the models.

2) For a specific species of mushroom, find/create dataset for instance segmentation

that also classifies instances as mature or immature.

3) Create model that except from instance segmentation, classifies the species of

the detected mushrooms. So far, these two tasks are examined independently.

4) Examine more state-of-the-art architectures and compare them with the Mask R-

CNN family of models.

5) Develop customized instance segmentation architecture based on any of the

examined architectures of this thesis.

6) Examine the use of the presented or other instance segmentation architectures

for robotic applications on mushroom collection.

Acknowledgements

The collection of the aforementioned Pilze dataset was funded by the ICT-AGRI-

FOOD ERA-NET project MUSHNOMICS and was financially supported by the

Department of Agriculture, Food and the Marine (DAFM) in Ireland, Grant Agreement

number 2020EN506.

57

6 References

[1] A. Kamilaris, F.X. Prenafeta-Boldú, Deep learning in agriculture: a survey

Comput. Electron. Agric., 147 (2018), pp. 70-90

[2] Ayaz M., Ammad-Uddin M., Sharif Z., Mansour A., Aggoune E.-H.M.,

(2019) Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk,

IEEE Access, 7, art. no. 8784034, pp. 129551 - 129583, DOI:

10.1109/ACCESS.2019.2932609

[3] Ojo MO, Zahid A. Deep Learning in Controlled Environment Agriculture: A

Review of Recent Advancements, Challenges and Prospects. Sensors. 2022;

22(20):7965. https://doi.org/10.3390/s22207965

[4] Juan Wu, Bo Peng, Zhenxiang Huang, Jietao Xie. Research on Computer

Vision-Based Object Detection and Classification.6th Computer and Computing

Technologies in Agriculture (CCTA),Oct 2012, Zhangjiajie, China.pp.183-188,

10.1007/978-3-642-36124-1_23

[5] A. Gongal, S. Amatya, M. Karkee, Q. Zhang, K. Lewis, 2015, Sensors and

systems for fruit detection and localization: A review, Comput. Electron. Agric., 116

(2015), pp. 8-19, 10.1016/j.compag.2015.05.021

[6] Guo-Quan Jiang and Cui-Jun Zhao, "Apple recognition based on machine

vision," 2012 International Conference on Machine Learning and Cybernetics, Xi'an,

China, 2012, pp. 1148-1151, doi: 10.1109/ICMLC.2012.6359517.

[7] J. Lu, N. Sang, 2015, Detecting citrus fruits and occlusion recovery under

natural illumination conditions, Comput. Electron. Agric., 110 (2015), pp. 121-130

[8] H. Lu, Z. Cao, Y. Xiao, Y. Li, Y. Zhu, 2016, Region-based colour modelling

for joint crop and maize tassel segmentation Biosyst. Eng., 147 (2016), pp. 139-150

[9] Kurtulmuş, F., Kavdir I. 2014. Detecting corn tassels using computer vision

and support vector machines. Expert Systems with Applications, 41, 7390-7397.

[10] Y. Xu, K. Imou, Y. Kaizu, K. Saga, 2013, Two-stage approach for detecting

slightly overlapping strawberries using HOG descriptor, Biosyst. Eng., 115 (2) (2013),

pp. 144-153, 10.1016/J.BIOSYSTEMSENG.2013.03.011

58

[11] Bargoti, Suchet and James Patrick Underwood. “Image classification with

orchard metadata.” 2016 IEEE International Conference on Robotics and Automation

(ICRA) (2016): 5164-5170.

[12] Mureşan, Horea and Oltean, Mihai. "Fruit recognition from images using

deep learning" Acta Universitatis Sapientiae, Informatica, vol.10, no.1, 2018, pp.26-42.

https://doi.org/10.2478/ausi-2018-0002

[13] P. Lin and Y. Chen, "Detection of Strawberry Flowers in Outdoor Field by

Deep Neural Network," 2018 IEEE 3rd International Conference on Image, Vision and

Computing (ICIVC), Chongqing, China, 2018, pp. 482-486, doi:

10.1109/ICIVC.2018.8492793.

[14] P.A. Dias, A. Tabb, H. Medeiros Apple flower detection using deep

convolutional networks Comput. Ind., 99 (2018), pp. 17-28,

10.1016/j.compind.2018.03.010

[15] Liu G, Nouaze JC, Touko Mbouembe PL, Kim JH. YOLO-Tomato: A

Robust Algorithm for Tomato Detection Based on YOLOv3. Sensors. 2020; 20(7):2145.

https://doi.org/10.3390/s20072145

[16] Kuznetsova A, Maleva T, Soloviev V. Using YOLOv3 Algorithm with Pre-

and Post-Processing for Apple Detection in Fruit-Harvesting Robot. Agronomy. 2020;

10(7):1016. https://doi.org/10.3390/agronomy10071016

[17] S. Parvathi, S. Tamil Selvi Detection of maturity stages of coconuts in

complex background using Faster R-CNN model Biosyst. Eng., 202 (2021), pp. 119-

132, 10.1016/j.biosystemseng.2020.12.002

[18] Sa I, Ge Z, Dayoub F, Upcroft B, Perez T, McCool C. DeepFruits: A Fruit

Detection System Using Deep Neural Networks. Sensors. 2016; 16(8):1222.

https://doi.org/10.3390/s16081222

[19] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards

Real-Time Object Detection with Region Proposal Networks. In Advances in Neural

Information Processing Systems (NIPS).

[20] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once:

Unified, Real-Time Object Detection," in 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016 pp. 779-788. doi:

10.1109/CVPR.2016.91

59

[21] He, K., Gkioxari, G., Dollár, P., & Girshick, R.B. (2017). Mask R-CNN.

2017 IEEE International Conference on Computer Vision (ICCV), 2980-2988.

[22] Y. Tian, G. Yang, Z. Wang, E. Li, Z. Liang Instance segmentation of apple

flowers using the improved mask R–CNN model Biosystems Eng., 193 (2020), pp. 264-

278, 10.1016/j.biosystemseng.2020.03.008

[23] Yang Yu, Kailiang Zhang, Li Yang, Dongxing Zhang, Fruit detection for

strawberry harvesting robot in non-structural environment based on mask-RCNN,

Comput. Electron. Agric., 163 (April) (2019), Article 104846,

10.1016/j.compag.2019.06.001

[24] C. Zheng, P. Chen, J. Pang, X. Yang, C. Chen, S. Tu, Y. Xue, A mango

picking vision algorithm on instance segmentation and key point detection from RGB

images in an open orchard, Biosyst. Eng., 206 (2021), pp. 32-54,

10.1016/j.biosystemseng.2021.03.012

[25] Santos T.T., de Souza L.L., dos Santos A.A., Avila S., Grape detection,

segmentation, and tracking using deep neural networks and three-dimensional

association, Comput. Electron. Agric., 170 (2020), Article 105247

[26] Perez-Borrero, I., Marin-Santos, D., Gegundez-Arias, M.E., & Cortes-

Ancos, E., 2020. A fast and accurate deep learning method for strawberry instance

segmentation. Comput. Electron. Agric. 178, 105736, 10.1016/j.compag.2020.105736.

[27] Perez-Borrero, I., Marin-Santos, D., Vasallo-Vazquez, M.J. et al. A new

deep-learning strawberry instance segmentation methodology based on a fully

convolutional neural network. Neural Comput & Applic 33, 15059–15071 (2021).

https://doi.org/10.1007/s00521-021-06131-2

[28] Gené-Mola J., Sanz-Cortiella R., Rosell-Polo J.R., Morros J.-R., Ruiz-

Hidalgo J., Vilaplana V., Gregorio E., Fruit detection and 3D location using instance

segmentation neural networks and structure-from-motion photogrammetry, Comput.

Electron. Agric., 169 (2020), Article 105165

[29] H. Kang, C. Chen, Fruit detection, segmentation and 3D visualisation of

environments in apple orchardsm, Computers and Electronics in Agriculture, 171

(February) (2020), Article 105302, 10.1016/j.compag.2020.105302

60

[30] Shen L, Su J, Huang R, Quan W, Song Y, Fang Y and Su B (2022) Fusing

attention mechanism with Mask R-CNN for instance segmentation of grape cluster in

the field. Front. Plant Sci. 13:934450. doi: 10.3389/fpls.2022.934450

[31] P. Ganesh, K. Volle, T.F. Burks, S.S. Mehta, Deep orange: Mask R-CNN

based orange detection and segmentation, IFAC PapersOnLine, 52 (30) (2019), pp. 70-

75, 10.1016/j.ifacol.2019.12.499

[32] X. Liu, D. Zhao, W. Jia, W. Ji, C. Ruan and Y. Sun, "Cucumber Fruits

Detection in Greenhouses Based on Instance Segmentation," in IEEE Access, vol. 7,

pp. 139635-139642, 2019, doi: 10.1109/ACCESS.2019.2942144.

[33] Chen C., Li B., Liu J., Bao T., Ren N., Monocular positioning of sweet

peppers: An instance segmentation approach for harvest robots, Biosyst. Eng., 196

(2020), pp. 15-28

[34] Wang S, Sun G, Zheng B, Du Y. A Crop Image Segmentation and Extraction

Algorithm Based on Mask RCNN. Entropy. 2021; 23(9):1160.

https://doi.org/10.3390/e23091160

[35] W. Jia, Z. Zhang, W. Shao, S. Hou, Z. Ji, G. Liu, X. Yin, FoveaMask: A fast

and accurate deep learning model for green fruit instance segmentation, Comput.

Electron. Agric., 191 (2021), p. 106488

[36] Liakos KG, Busato P, Moshou D, Pearson S, Bochtis D. Machine Learning

in Agriculture: A Review. Sensors. 2018; 18(8):2674.

https://doi.org/10.3390/s18082674

[37] Afzaal U, Bhattarai B, Pandeya YR, Lee J. An Instance Segmentation Model

for Strawberry Diseases Based on Mask R-CNN. Sensors. 2021; 21(19):6565.

https://doi.org/10.3390/s21196565

[38] Tassis L.M., de Souza J.E.T., Krohling R.A., A deep learning approach

combining instance and semantic segmentation to identify diseases and pests of coffee

leaves from in-field images, Comput. Electron. Agric., 186 (2021), Article 106191

[39] Rossi, L., Valenti, M., Legler, S.E., Prati, A. (2022). LDD: A Grape Diseases

Dataset Detection and Instance Segmentation. In: Sclaroff, S., Distante, C., Leo, M.,

Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP

2022. Lecture Notes in Computer Science, vol 13232. Springer, Cham.

61

[40] J.A. Bonet, M. Palahí, C. Colinas, T. Pukkala, C.R. Fischer, J. Miina, J.

Martínez de Aragón. Modelling the production and species richness of wild mushrooms

in pine forests of the Central Pyrenees in northeastern Spain. Canadian Journal of Forest

Research. 40(2): 347-356. https://doi.org/10.1139/X09-198

[41] Bonet, J.A., GonzÁlez-Olabarria, J.R. & Martínez De Aragón, J. Mushroom

production as an alternative for rural development in a forested mountainous area. J.

Mt. Sci. 11, 535–543 (2014). https://doi.org/10.1007/s11629-013-2877-0

[42] Bonet, J.A., Pukkala, T., Fischer, C.R. et al. Empirical models for predicting

the production of wild mushrooms in Scots pine (Pinus sylvestris L.) forests in the

Central Pyrenees. Ann. For. Sci. 65, 206 (2008). https://doi.org/10.1051/forest:2007089

[43] Modeling and comparison of fuzzy and on/off controller in a mushroom

growing hall. Measurement, 90:127–134, 2016.

[44] G. M. Fuady, A.H. Turoobi, M. N. Majdi, M. Syaiin, R.Y. Adhitya, Isa

Rachman, F. Rachman, M. A. P. Negara, A. Soeprijanto, and R.T. Soelistijono. Extreme

learning machine and back propagation neural network comparison for temperature and

humidity control of oyster mushroom based on microcontroller. In 2017 International

Symposium on Electronics and Smart Devices (ISESD), pages 46–50, 2017.

[45] Jennifer de la Cruz-del Amen and Jocelyn Flores Villaverde. Fuzzy logic-

based controlled environment for the production of oyster mushroom. In 2019 IEEE

11th International Conference on Humanoid, Nanotechnology, Information Technology,

Communication and Control, Environment, and Management (HNICEM), pages 1–5,

2019.

[46] Karavani et al., 2018 A. Karavani, M. De Cáceres, J.M. de Aragón, J.A.

Bonet, S. de-Miguel Effect of climatic and soil moisture conditions on mushroom

productivity and related ecosystem services in Mediterranean pine stands facing climate

change Agric. For. Meteorol., 248 (2018), pp. 432-440.

[47] Jitdumrong Preechasuk, Orawan Chaowalit, Fuangfar Pensiri, and Porawat

Visutsak. 2020. Image Analysis of Mushroom Types Classification by Convolution

Neural Networks. In Proceedings of the 2019 2nd Artificial Intelligence and Cloud

Computing Conference (AICCC 2019). Association for Computing Machinery, New

York, NY, USA, 82–88. https://doi.org/10.1145/3375959.3375982

62

[48] Royse, D. J., Baars, J., & Tan, Q. (2017). Current overview of mushroom

production in the world. Edible and Medicinal Mushrooms, 5-13.

[49] Jegadeesh Raman, Kab-Yeul Jang, Youn-Lee Oh, Minji Oh, Ji-Hoon Im,

Hariprasath Lakshmanan, and Vikineswary Sabaratnam. Cultivation and nutritional

value of prominent ipleurotus/i spp.: An overview. Mycobiology, 49(1):1–14,

November 2020.

[50] Carmen S´anchez. Cultivation of pleurotus ostreatus and other edible

mushrooms. Applied Microbiology and Biotechnology, 85(5):1321–1337, December

2009.

[51] Marcelo Barba Bellettini, Fernanda Assump¸c˜ao Fiorda, Helayne

Aparecida Maieves, Gerson Lopes Teixeira, Suelen ´Avila, Polyanna Silveira Hornung,

Agenor Maccari J´unior, and Rosemary Hoffmann Ribani. Factors affecting mushroom

pleurotus spp. Saudi Journal of Biological Sciences, 26(4):633–646, May 2019.

[52] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S.

Kamali, S. Popov, M. Malloci, A. Kolesnikov, T. Duerig, and V. Ferrari. The Open

Images Dataset V4: Unified image classification, object detection, and visual

relationship detection at scale. IJCV, 2020.

[53] Rakiba Rayhana, Gaozhi Xiao, and Zheng Liu. Internet of things

empowered smart greenhouse farming. IEEE Journal of Radio Frequency

Identification, 4(3):195–211, September 2020.

[54] Mohamed Rawidean Mohd Kassim, Ibrahim Mat, and Ismail Mat Yusoff.

Applications of internet of things in mushroom farm management. In 2019 13th

International Conference on Sensing Technology (ICST), pages 1–6, 2019.

[55] Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W.,

Liu, Z., Xu, J. et al. (2019). MM Detection: Open MM Lab Detection Toolbox and

Benchmark. arXiv.org. https://arxiv.org/abs/1906.07155. Last accessed 14 December

2022.

[56] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for

image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

63

[57] Siyuan Qiao, Liang-Chieh Chen, and Alan Yuille. Detectors: Detecting

objects with recursive feature pyramid and switchable atrous convolution. arXiv

preprint arXiv:2006.02334, 2020.

[58] Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., & Belongie, S.

(2017). Feature Pyramid Networks for Object Detection. 2017 IEEE Conference on

Computer Vision and Pattern Recogni-tion (CVPR).

[59] Xie, S., Girshick, R., Dollar, P., Tu, Z., & He, K. (2017). Aggregated residual

transformations for deep neural networks. 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR).

[60] Huang, Z., Huang, L., Gong, Y., Huang, C., & Wang, X. (2019). Mask

Scoring R-CNN. 2019 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 6402-6411.

[61] Cai, Z., & Vasconcelos, N. (2019). Cascade R-CNN: High Quality Object

Detection and Instance Segmentation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 43, 1483-1498.

[62] Chen, K., Pang, J., Wang, J., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z.,

Shi, J., Ouyang, W., Loy, C.C., & Lin, D. (2019). Hybrid Task Cascade for Instance

Segmentation. 2019 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 4969-4978.

[63] Qiao, S., Chen, L., & Yuille, A.L. (2020). DetectoRS: Detecting Objects

with Recursive Feature Pyramid and Switchable Atrous Convolution. 2021 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), 10208-10219.

64

Figures catalog

Figure 1 Mushroom farm with artificial lighting and three sample mushroom cluster images from the

collected dataset at different angles. page 12

Figure 2 Mushroom cluster with small (a) and large (b) number of mushroom instances. page 13

Figure 3 Mushroom cluster for top view before and after annotation. page 13

Figure 4 Mushroom cluster for bottom view before and after annotation. page 14

Figure 5 Original mushroom annotation from V6 google dataset for instance segmentation task. page

14

Figure 6 Example mushroom images from V6 google dataset for instance segmentation task. page 15

Figure 7 Mushroom images before and after annotation. page 16

Figure 8 Mask R-CNN architecture, divided into distinct parts. page 19

Figure 9 FPN architecture [58], divided into distinct parts. page 20

Figure 10 Mask Scoring R-CNN architecture, divided into distinct parts. page 21

Figure 11 Comparison between Mask R-CNN (a) and Cascade Mask R-CNN (b). page 22

Figure 12 Comparison between Cascade Mask R-CNN (a) and Hybrid Task Cascade (b). page 23

Figure 13 Recursive Feature Pyramid (RFP). page 25

Figure 14 Switchable Atrous Convolution (SAC) layer logic. page 25

Figure 15 Mushroom cluster, sub-lighted area and arbitrary masks. DetectoRS best overall results. page

32

Figure 16 Good performance but problems with occluded, sub-light and neighboring instances

observed. page 33

Figure 17 Low light instances failed to be correctly detected. Heavy Mask R-CNN (a), light Cascade

Mask R-CNN (b), DetectoRS (c) page 34

Figure 18 Original image with two mushroom instances (a), light Mask R-CNN produced mask (b),

light HTC produced mask. page 35

Figure 19 Original image with one mushroom instance (a), heavy Mask R-CNN produced mask (b),

light HTC produced mask. page 35

Figure 20 Overall good performance by all architectures. page 36

Figure 21 Decent performance but problems with occluded and splitting one mushroom instance to two

is observed. page 37

65

Figure 22 Arbitrary masks produced by light MS R-CNN (a) and light Cascade Mask R-CNN, while

good quality masks by DeterctoRS (c). page 38

Figure 23 Overall good performance, both Mask R-CNN models detect smaller instances at the bottom

of the cluster. page 39

Figure 24 Overall decent performance from both Mask R-CNN and DetectoRS, but only the former

detects smaller mushroom instances. page 40

Figure 25 DetectoRS producing better results without arbitrary masks. page 41

Figure 26 Good detection performance by all models. page 44

Figure 27 Dual mushrooms with overlapping produced masks from most models. page 46

Figure 28 Arbitrary masks and detection oversight by most models except DetectoRS. page 47

Figure 29 Dual mushrooms with complex background, DetectoRS good performance. page 48

Figure 30 Arbitrary mushrooms instances in cluster leading to lower quality masks and detection

performance. page 50

Figure 31 Many smaller mushroom instances with well-defined shape, resulting in better quality masks

but missing detection of some instances. page 51

Figure 32 Mushroom cluster considered as one instance proving difficult task for all architectures. page

52

Figure 33 Mushroom cluster correctly detected as one instance by all heavy models. page 53

Tables catalog

Table 1 Performance comparison between the architectures on Pilze dataset. Red indicates the best

results column-wise. page 28

Table 2 Performance comparison between the architectures on V6 Google dataset. Red indicates the

best results column-wise. page 42

