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Abstract

In this thesis we investigate the physics of magnetic monopoles and search for self-gravitating models
that correspond to magnetic monopoles with structure. The main goal of this work is the construction of
monopole models that predict magnetic monopoles with reduced mass, which may be detected in current
or future colliders. First of all, we present the electromagnetic duality and the idea of the symmetrization
of Maxwell’s equations, which imply the existence of magnetic monopoles. Then, to get a sense of the in-
teractions of magnetic monopoles with charged matter, we examine classical and quantum electromagnetic
systems, which consist of an electrically charged particle and particles with magnetic charge. Additionally,
we present the Dirac model of magnetic monopoles and the corresponding Dirac strings. Moreover, we
examine the Dirac quantization condition, which provides an elegant explanation of the electric charge
quantization. Also, we investigate the solutions of the Schrödinger, Pauli and Dirac equations consider-
ing a Coulomb-like magnetic field. Furthermore, upon considering the topological roots of the magnetic
charge, we investigate some monopole models. For instance, we present the ’t Hooft-Polyakov monopole
solution of the Georgi-Glashow model and explicitly prove the topological origin of the conservation of the
corresponding magnetic charge. The mass of the ’t Hooft-Polyakov monopole must be reduced in order for
the magnetic monopole to be detected in current or future colliders. Therefore, we consider self-gravitating
global models, since the self-gravitational interaction and the independence of the scalar fields from gauge
symmetries may reduce the mass of the monopoles. The simplest self-gravitating global monopole model
is the Barriola-Vilenkin model, which predicts unstable monopoles with negative mass. Consequently, we
present a string inspired magnetic monopole model derived from a self-gravitating global monopole model
with Kalb-Ramond torsion. This model predicts magnetic monopoles with structure, positive mass and
a very interesting mechanism, which implies the regularisation of the corresponding curvature singularity
and the stability of the model. The aforementioned regularisation mechanism is a tool of high impor-
tance in the research of self-gravitating monopoles. Subsequently, we phenomenologically investigate the
structured-particle solutions of the above model by determining the mass and radius of the monopole core.
Finally, we impose a lower limit on the monopole mass, considering recent results from the ATLAS and
MoEDAL experiments at the LHC. In the appendix of this thesis, we include comments on some papers
that deal with the application of the Newman-Janis algorithm or some corresponding modified algorithms
to the global monopole model.





Περίληψη

Σε αυτή τη διατριβή διερευνούμε τη φυσική των μαγνητικών μονοπόλων και αναζητούμε self-gravitating
μοντέλα που αντιστοιχούν σε μαγνητικά μονόπολα με εσωτερική δομή. Ο κύριος στόχος αυτής της εργασίας

είναι η κατασκευή μοντέλων μονοπόλων που προβλέπουν μαγνητικά μονόπολα με μειωμένη μάζα, τα οποία

μπορούν να ανιχνευθούν σε υπάρχοντες ή μελλοντικούς επιταχυντές. Αρχικά, παρουσιάζουμε το electro-
magnetic duality και την ιδέα της συμμετρικοποίησης των εξισώσεων του Maxwell, που συνεπάγεται την
ύπαρξη των μαγνητικών μονοπόλων. Στη συνέχεια, για να έχουμε μια αίσθηση των αλληλεπιδράσεων των μα-

γνητικών μονοπόλων με τη φορτισμένη ύλη, εξετάζουμε κλασσικά και κβαντικά ηλεκτρομαγνητικά συστήματα

που αποτελούνται από ένα ηλεκτρικά φορτισμένο σωματίδιο και σωματίδια με μαγνητικό φορτίο. Επιπλέον,

παρουσιάζουμε το μοντέλο του Dirac για τα μαγνητικά μονόπολα και τα Dirac strings. Επιπρόσθετα,
εξετάζουμε τη συνθήκη κβαντισμού του Dirac, η οποία παρέχει μια κομψή εξήγηση της κβάντωσης του
ηλεκτρικού φορτίου. Επίσης, διερευνούμε τις λύσεις των εξισώσεων Schrödinger, Pauli και Dirac λαμβάνο-
ντας υπόψη ένα μαγνητικό πεδίο τύπου Coulomb. ΄Εχοντας διερευνήσει τη βασική φυσική των μαγνητικών
μονοπόλων και εξετάζοντας τις τοπολογικές ρίζες του μαγνητικού φορτίου, μελετάμε ορισμένα μοντέλα μο-

νοπόλων. Για παράδειγμα, παρουσιάζουμε το μαγνητικό μονόπολο ’t Hooft-Polyakov, το οποίο αποτελεί
λύση του μοντέλου Georgi-Glashow και αποδεικνύουμε ρητά την τοπολογική προέλευση της διατήρησης του
αντίστοιχου μαγνητικού φορτίου. Η μάζα του μονοπόλου ’t Hooft-Polyakov πρέπει να μειωθεί προκειμένου
το μαγνητικό μονόπολο να μπορεί να ανιχνευθεί στους τρέχοντες ή σε μελλοντικούς επιταχυντές. Ως εκ

τούτου, επικεντρωνόμαστε σε self-gravitating global μοντέλα, καθώς η self-gravitational αλληλεπίδραση
και η ανεξαρτησία των βαθμωτών πεδίων από gauge συμμετρίες μπορεί να μειώσει τη μάζα των μονοπόλων.
Το απλούστερο self-gravitating global μοντέλο είναι το μοντέλο Barriola-Vilenkin, το οποίο προβλέπει
ασταθή μονόπολα με αρνητική μάζα. Συνεπώς, παρουσιάζουμε ένα μοντέλο μαγνητικού μονοπόλου εμπνευ-

σμένο από τη θεωρία χορδών, το οποίο προέρχεται από ένα self-gravitating global μοντέλο μονοπόλου με
Kalb-Ramond torsion. Αυτό το μοντέλο προβλέπει μαγνητικά μονόπολα θετικής μάζας με εσωτερική δομή
και έναν πολύ ενδιαφέροντα μηχανισμό, που συνεπάγεται το regularisation της αντίστοιχης curvature sin-
gularity και τη σταθερότητα του μοντέλου. Ο προαναφερθείς μηχανισμός εξομάλυνσης είναι ένα εργαλείο
υψηλής σημασίας για την έρευνα self-gravitating μονοπόλων. Στη συνέχεια, διερευνούμε φαινομενολογικά
τις σωματιδιακές λύσεις με δομή του παραπάνω μοντέλου προσδιορίζοντας τη μάζα και την ακτίνα του πυρήνα

του μονοπόλου. Τέλος, επιβάλλουμε ένα χαμηλότερο όριο στη μάζα του μονοπόλου, λαμβάνοντας υπόψη τα

πρόσφατα αποτελέσματα από τα πειράματα ATLAS και MoEDAL στον LHC. Στο παράρτημα της παρούσας
διπλωματικής εργασίας, συμπεριλαμβάνουμε κάποια σχόλια πάνω σε ορισμένες εργασίες που αφορούν την

εφαρμογή του αλγορίθμου Newman-Janis ή ορισμένων αντίστοιχων αλγορίθμων στο self-gravitating global
μοντέλο Barriola-Vilenkin.
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Preface

In this thesis, we present the main properties of the magnetic monopoles and some theories, which involve
them.

To be more precise, the hypothesis of the magnetic monopole existence yields some additional properties
to some classical theories. Therefore, in the first and the second chapter, we describe the electromagnetic
interaction between an electrically charged particle and a magnetic monopole, through the perspective of
classical electromagnetism and quantum mechanics. Also, it is very interesting that, in many cases, the
magnetic charge corresponds to the topological properties of the theory. Hence, in the third chapter, we
present a brief introduction to the topology, which provides us with the necessary tools in order to find
the topological roots of the magnetic charge. Moreover, using the topological properties of the monopole,
we describe the construction of some monopole theories. In particular, in the fourth chapter, we search
for magnetic monopole solutions of the Georgi-Glashow model, which is a gauge SU(2) symmetric theory
in flat space-time. The magnetic monopole, which corresponds to this theory, is named ’t Hooft-Polyakov
monopole. In the fifth chapter, we present the self-gravitating global monopole solutions of the Barriola-
Vilenkin model. Furthermore, in the sixth chapter, we search for magnetic monopoles from self-gravitating
global monopoles with Kalb-Ramond torsion. Additionally, we examine this model phenomenologically
and present an elegant mechanism for the regularisation of the model’s curvature singularity, from which
spontaneously corresponds the stability of the monopole. This is a string-inspired theory. Finally, in the
appendix, among other supplementary notes, we present a discussion on the application of the Newman-
Janis algorithm to the global self-gravitating monopole model.

The resources, which mainly inspired this thesis, are the book of Yakov M. Shnir "Magnetic Monopoles"
[1], the thesis of dr.Nikos Chatzifotis "Magnetic Monopoles" [2] and the original papers of Nick E. Mavro-
matos and Sarben Sarkar "Magnetic Monopoles from Global Monopoles in the presence of a Kalb-Ramond
Field" [3] and "Regularised Kalb-Ramond Magnetic Monopole with Finite Energy" [4].
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Chapter 1

Magnetic Monopoles: A classical theory
approach

First of all, it is essential to describe the innovating ideas, which lead to the hypothesis of the magnetic
monopole existence. The main idea is the symmetrization of Maxwell’s equations. This is possible, if
we assume the existence of a magnetic charge. Then, the equations are invariant under the dual trans-
formations, which replace the electric with the magnetic charge and vice-versa. The extended Maxwell’s
equations lead to a new electromagnetic interaction between an electrically charged particle and a magnetic
monopole.

Furthermore, as it is known, the scalar and vector electromagnetic potentials play a fundamental role
in the physics of electromagnetic systems. A theory described by these potentials has four degrees of
freedom. The gauge fixing and the equations of motion decrease the degrees of freedom from four to two.
That is why the electromagnetic field has two degrees of freedom (two polarizations of the light) and the
photon may have spin ±1. This electromagnetic structure works well, describing numerous phenomena in
the perspective of classical mechanics, quantum mechanics and quantum electrodynamics. Additionally,
the scalar and vector potential form the gauge field, which corresponds to the U(1) gauge symmetry
of electromagnetism. Dirac’s pioneering idea was to describe the magnetic induction of the magnetic
monopoles using the curl of a vector field, as it is customary in classical electromagnetism. However, due
to the existence of the magnetic monopoles, the vector potential has a singularity along a semi-infinite
string, called the Dirac string.

1.1 Electromagnetic duality
Let us start our discussion from the hypothesis of the symmetric Maxwell’s equations of the form:

∇E⃗ = ρe (1.1)

∇B⃗ = ρg (1.2)

∇× E⃗ = −j⃗g −
∂B⃗

∂t
(1.3)

∇× B⃗ = j⃗e +
∂E⃗

∂t
(1.4)

Note that the free Maxwell’s equations (ρe = ρg = 0 and j⃗e = j⃗g = 0⃗) are invariant under global O(2)
transformations [1]: (

E⃗′

B⃗′

)
=

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)(
E⃗

B⃗

)
(1.5)

The free Maxwell’s equations can be written using the electromagnetic tensor as follows:

∂νF
µν = 0 (1.6)

∂ν F̃
µν = 0 (1.7)

2



where the equations (1.6) are the Euler-Lagrange equations of the system and the equations (1.7) are
implied by the Bianchi identity ∂[αFβγ] = 0, where the brackets [...] denote the total antisymmetrization
of the respective indices. Also, the tensor F̃µν = 1

2ϵµνρσF
ρσ is the dual tensor of Fµν , where ϵµνρσ is the

total antisymmetric Levi-Civita tensor defined as:

ϵµ1µ2...µn
=
√
|g|ϵ̃µ1µ2...µn

(1.8)

Similarly, the Levi-Civita tensor with upper indices reads:

ϵµ1µ2...µn =
1√
|g|
ϵ̃µ1µ2...µn (1.9)

where g is the determinant of the metric and ϵ̃µ1µ2...µn
is the Levi-Civita tensor density, which reads:

ϵ̃µ1µ2...µn =


+1 if µ1µ2...µnis an even permutation of 0123...(n− 1)

−1 if µ1µ2...µnis an odd permutation of 0123...(n− 1)

0 otherwise
(1.10)

and

ϵ̃µ1µ2...µn =


−1 if µ1µ2...µnis an even permutation of 0123...(n− 1)

+1 if µ1µ2...µnis an odd permutation of 0123...(n− 1)

0 otherwise
(1.11)

Additionally, it is evident that the electromagnetic tensor satisfies the Bianchi identity (1.7) due to the
absence of a magnetic charge (ρg = 0). Later on, when we work with magnetic monopole solutions, the
right side of the equation (1.7) will not be zero and, instead, will be equal to the topological current, or the
torsion current due to the Kalb-Ramond term in the model of chapter 6. The conservation of topological
current has topological roots and yields the conservation of the magnetic charge.

The aforementioned transformation (1.5) can be expressed via the electromagnetic tensor as follows
[1]: (

F ′
µν

F̃ ′
µν

)
=

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)(
Fµν

F̃µν

)
(1.12)

Another representation of this transformation reads:

F⃗ = E⃗ + iB⃗ −→ F⃗ ′ = eiθ(E⃗ + iB⃗) (1.13)

where θ is an arbitrary angle, which is called dual angle. To be more precise, the choice of θ = −π/2 leads
to the interchange of the electric and the magnetic field:

E⃗ −→ B⃗ and B⃗ −→ −E⃗ (1.14)

Also, there is a straightforward consequence of the aforementioned form of the transformation, which is
the energy and the momentum invariance:

E =
1

2
|F⃗ |2 =

1

2
(E⃗2 + B⃗2) and P⃗ =

1

2i
(F⃗ ∗ × F⃗ ) = E⃗ × B⃗ (1.15)

It is very important to examine the corresponding transformation of the Lagrangian density of the E/M
field:

L = −1

4
FµνF

µν −→ L′ = −1

4
(cos(θ)Fµν − sin(θ)F̃µν)

2 ⇒

L −→ L′ = −1

4

(
cos2(θ)FµνF

µν + sin2(θ)F̃µν F̃
µν − sin(2θ)Fµν F̃

µν
)

Considering the definition of the dual electromagnetic tensor (F̃µν =
1

2
ϵµνρσF

ρσ), we have:

F̃µν F̃
µν =

1

4
ϵµνρσϵ

µνκλF ρσFκλ =
1

4

[
− 2(δ κ

ρ δ λ
σ − δ λ

ρ δ κ
σ )
]
F ρσFκλ ⇒

F̃µν F̃
µν = −FµνF

µν

3



where we used the identity ϵµνρσϵ
µνκλ = −2(δ κ

ρ δ λ
σ − δ λ

ρ δ κ
σ ). Therefore, the transformation of the

Lagrangian density yields:

L −→ L′ = −1

4

(
cos(2θ)FµνF

µν − sin(2θ)Fµν F̃
µν
)

(1.16)

It is crucial to prove that the action remains invariant under this transformation. Considering Fµν =
∂µAν − ∂νAµ, which identically satisfies Bianchi identity, we obtain:

Fµν F̃
µν = (∂µAν − ∂νAµ)F̃

µν = 2(∂µAν)F̃
µν = 2∂µ(Aν F̃

µν)− 2Aν(∂µF̃
µν) ⇒

Fµν F̃
µν = ∂µ(2Aν F̃

µν) (1.17)

where we used the Bianchi identity (1.7). The term Fµν F̃
µν is a total derivative, as a result, it does not

contribute to the dynamical equations of the fields. Consequently, the examined transformation acts like
a canonical transformation on the action of the system. This confirms the invariance of the system.

Now, let us assume that we have electric and magnetic charge distributions. Then, the Maxwell’s
equations (1.1-1.4) can be written as:

∇(E⃗ + iB⃗) = ρe + iρg and ∇× (E⃗ + iB⃗)− i
∂

∂t
(E⃗ + iB⃗) = i(⃗je + i⃗jg) (1.18)

Hence, upon considering the previously examined transformations and an equivalent interchange between
electric and magnetic charges, we construct the dual transformations:

F⃗ = E⃗ + iB⃗ −→ F⃗ ′ = eiθ(E⃗ + iB⃗) and q = e+ ig −→ q′ = eiθ(e+ ig) (1.19)

Maxwell’s equations remain invariant under the global dual transformations (1.19). The fact that the
dual transformations connect the electric and the magnetic charges means that we do not have a two-
charge electromagnetic theory. For instance, for θ = −π/2 the dual transformation yields e −→ g with
the constraint Q = |q| = const.. Note that the charge Q is the experimental invariant, since it is the
dual-invariant charge.

The form of the electromagnetic tensor is not trivial in the case of a magnetic monopole, where the
Bianchi identity is not satisfied. Therefore, in such a case, the invariance of the electromagnetic action
can be explicitly proven after the determination of the electromagnetic tensor. A dual symmetric theory
that predicts magnetic monopoles, such as those we discuss later on, also predicts electric monopoles, in
the case of a non-fixed dual angle.

1.2 Classical electromagnetic scattering
In this section, we present the properties of a system consisting of an electrically charged particle and
a magnetic monopole (or a dyon, which has both electric and magnetic charge) [1]. In this discussion,
we consider that the magnetic monopole is always located at the point r⃗ = 0⃗, hence it produces a static
Coulomb-like field.

1.2.1 Classical scattering on a Magnetic Monopole
First of all, let us consider that the monopole has only magnetic charge, g. Then, the corresponding
magnetic induction satisfies the equation (1.2), where the magnetic charge distribution is:

ρg = 4πgδ(3)(r⃗) (1.20)

Demanding that the magnetic induction vanishes at infinity, the solution of equation (1.2), considering
equation (1.20), is:

B⃗ = g
r⃗

r3
(1.21)

This is a static Coulomb-like field. The Lorentz force, which acts on an electrically charged particle, with
charge e, which moves in the external field (1.21), reads:

m¨⃗r = e ˙⃗r × B⃗ =
eg

r3
( ˙⃗r × r⃗) (1.22)

where the dot denotes the total derivative with respect to time. The scalar product of equation (1.22)
with the velocity ˙⃗r of the charged particle yields:
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E =
1

2
m ˙⃗r 2 = const. and | ˙⃗r| = u = const. (1.23)

The kinetic energy of the particle is conserved. Similarly, the scalar product of equation (1.22) with the
position ˙⃗r of the charge implies:

r⃗ · ˙⃗r = u2t (1.24)

The solution of equation (1.24) reads:

r =
√
u2t2 + b2 (1.25)

where b is the minimum distance between the charge and the monopole. From equation (1.24) we obtain
the first interesting result. There are no closed orbits in the charge-monopole system, since, only at the
moment t = 0, the position vector r⃗ of the particle becomes perpendicular to the velocity vector ˙⃗r of the
particle.

In the subsequent steps we determine the conserved angular momentum. The particle’s angular mo-
mentum reads:

˜⃗
L = r⃗ ×m ˙⃗r (1.26)

d

dt
˜⃗
L =

d

dt
(r⃗ ×m ˙⃗r) = r⃗ ×m¨⃗r

(1.22)
=⇒

d

dt
˜⃗
L =

eg

mr3
(
˜⃗
L× r⃗) (1.27)

It is obvious that the particle’s angular momentum vector is not conserved. On the contrary, the magnitude
of the angular momentum is conserved. Upon taking the scalar product of equation (1.27) with ˜⃗

L, we
obtain:

d

dt
˜⃗
L2 = 0 ⇒

| ˜⃗L| = L̃ = const. (1.28)

Consequently, we have:

L̃ = L̃(t = 0) = r⃗(t = 0)×m ˙⃗r(t = 0)

Note that, for t = 0, from equation (1.24) it is yielded that r⃗ ⊥ ˙⃗r and from equation (1.25) it is yielded
that r(t = 0) = b. Therefore:

L̃ = mub (1.29)

Using the identity A⃗× (B⃗ × C⃗) = B⃗(A⃗ · C⃗)− C⃗(A⃗ · B⃗), from equation (1.27) we obtain:

d

dt
˜⃗
L =

eg

mr3
(r2 ˙⃗r − r⃗(r⃗ ˙⃗r)) = eg

(
1

r
˙⃗r − r⃗

2r3
dr2

dt

)
= eg

(
1

r
˙⃗r − r⃗

r2
ṙ

)
⇒

d

dt
˜⃗
L = eg

d

dt

(
r⃗

r

)
(1.30)

Defining the generalized angular momentum

L⃗ =
˜⃗
L− egr̂ (1.31)

we observe that:

d

dt
L⃗ = 0 (1.32)

Therefore, the generalized angular momentum is conserved. It is straightforward that the magnitude of L⃗
is conserved.

L2 = (mub)2 + (eg)2 (1.33)
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It is essential to determine the source of the second term of the generalized angular momentum (−egr̂).
In order to do so, we calculate the angular momentum of the electromagnetic field:

˜⃗
Leg =

1

4π

∫
d3r′

(
r⃗ ′ × S⃗

)
=

1

4π

∫
d3r′

[
r⃗ ′ × (E⃗ × B⃗)

]
=

g

4π

∫
d3r′

[
r⃗ ′ × (E⃗ × r⃗)

] 1

r′3
⇒

˜⃗
Leg =

g

4π

∫
d3r′

[
E⃗

r′
− r⃗ ′

r′3
(r⃗ ′E⃗)

]
Note that ∇′

( 1

r′

)
= − r⃗ ′

r′3
. Therefore:

˜⃗
Leg =

g

4π

∫
d3r′

[
E⃗

r′
+∇′

( 1

r′

)
(r⃗ ′E⃗)

]
integration by parts

=⇒

˜⃗
Leg =

g

4π

∫
d3r′

[
E⃗

r′
− 1

r′
∇′(r⃗ ′E⃗) +∇′(r̂′E⃗)

]
Using the identities ∇′(r⃗ ′E⃗) = r⃗ ′ × (∇′ × E⃗) + E⃗ × (∇′ × r⃗ ′) + (r⃗ ′∇′)E⃗ + (E⃗∇′)r⃗ ′, ∇′ × r⃗ ′ = 0, the
equation ∇′ × E⃗ = 0 (1.3) and the fact that (E⃗∇′)r⃗ ′ = E⃗, we obtain:

˜⃗
Leg =

g

4π

∫
d3r′(E⃗∇′)r̂′ =

g

4π

[
x̂

∫
d3r′(E⃗∇′)

x′

r′
+ ŷ

∫
d3r′(E⃗∇′)

y′

r′
+ ẑ

∫
d3r′(E⃗∇′)

z′

r′

]
=

g

4π

[
x̂

∫
d3r′∇′

(
x′E⃗

r′

)
+ ŷ

∫
d3r′∇′

(
y′E⃗

r′

)
+ ẑ

∫
d3r′∇′

(
z′E⃗

r′

)]
− g

4π

∫
d3r′r̂′(∇′E⃗)

From Gauss’s theorem we obtain:
∫
d3r′∇′

(
x′E⃗

r′

)
=
∮
∞ da⃗′

x′E⃗(r′ → ∞)

r′
= 0, where we assume E⃗(r′ →

∞) = 0⃗. We perform similar calculations for the cases y, z. Finally, considering the equation ∇′E⃗ =
4πeδ(3)(r⃗ − r⃗′) (1.1), the angular momentum of the E/M field reads:

˜⃗
Leg = −egr̂ (1.34)

Consequently, the extra term in the expression of the generalized angular momentum (1.31) is the angular
momentum of the electromagnetic field. It is very interesting that the term (1.34) does not vanish even if
the two particles remain stationary. Note that this case is examined above, because we ignore the magnetic
induction produced by the moving electric charge.

Furthermore, it is possible to determine the trajectory of the electrically charged particle. The inner
product of the generalized angular momentum (1.31) and the radial unit vector r̂ reads:

L⃗ · r̂ = −eg (1.35)

Hence, due to the fact that the generalized angular momentum is a constant vector, we deduce that the
charged particle’s trajectory lies on the surface of a cone, with an axis of symmetry along the vector −L⃗
and a cone angle θ, which can be determined as follows:

|L⃗ · r̂| = eg ⇒

cos(θ) =
eg

L
=

eg√
(mub)2 + (eg)2

(1.36)

Also, with straight forward calculations we obtain:

sin(θ) =
L̃

L
=

mub√
(mub)2 + (eg)2

(1.37)

tan(θ) =
L̃

eg
=
mub

eg
(1.38)

cot(θ) =
eg

L̃
=

eg

mub
(1.39)

Additionally, the inner product of the orbital and generalized angular momentum yields:
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L⃗ · ˜⃗L = L̃2 = (mub)2 = const. (1.40)

which means that the vector of the particle’s orbital angular momentum is precessing on the surface of a
cone with an axis of symmetry along the constant vector L⃗ and a cone angle θ̃, which reads:

L⃗ · ˜⃗L = L̃2 ⇒

cos(θ̃) =
L̃

L
= sin(θ) =

mub√
(mub)2 + (eg)2

and θ̃ =
π

2
− θ (1.41)

The charged particle’s velocity vector may be written as follows:

−r⃗ × ˜⃗
L = −r⃗ × L⃗ = −r⃗ × (r⃗ ×m ˙⃗r) = −mr⃗(r⃗ ˙⃗r) +m ˙⃗rr2 ⇒

˙⃗r = ṙr̂ +
L⃗× r⃗

mr2
= ω⃗ × r⃗ + ṙr̂ (1.42)

where ω⃗ =
L⃗

mr2
is the particle’s angular velocity. Also, from equation (1.25), we can calculate the radial

velocity ṙ.

ω⃗(t) =
L⃗

mr2(t)
=

L⃗

m(u2t2 + b2)
, ṙ(t) =

u√
1 +

(
b
ut

)2 and r(t) =
√
u2t2 + b2 (1.43)

Note that:

ω⃗(t→ ±∞) = 0⃗ , ṙ(t→ ±∞) = u , r(t→ ±∞) → +∞

|ω⃗|(t = 0) =

√
(mub)2 + (eg)2

mb2
, ṙ(t = 0) = 0 , r(t = 0) = b (1.44)

At this point, we can make some useful observations. Let us assume that the charged particle comes from
+∞ and moves radially. Then, it approaches the monopole up to a minimum distance r = b. Subsequently,
it returns to +∞, moving radially towards a different direction from the initial one. This process describes
the scattering of an electrically charged particle on a static magnetic monopole. The angle between the
initial and the final direction of the monopole defines the scattering angle Θ, which will be calculated later
on. An interesting observation is that the conditions ω⃗(t→ ±∞) = 0⃗ , ṙ(t→ ±∞) = u and rmin = b ̸= 0
yield that the trajectory of the particle does not form a conic section. At the extreme case, where b = 0,
we obtain L̃ = 0, hence, the particle moves only radially towards the monopole.

Searching for the scattering angle Θ, we first calculate the magnitude of the angular velocity ω⃗, around
the axis defined by the vector L⃗.

ω = ϕ̇ =
L

mr2
=
L

m

1

u2t2 + b2
ϕ(t=0)=0
=⇒

ϕ(t) =
L

m

∫ t

0

dt′

u2t′2 + b2
=

L

mb2

∫ t

0

dt′(
1 +

ut′

b

)2

Upon setting tan(ξ) =
ut

b
⇒ dt =

b

u

dξ

cos2(ξ)
we obtain:

ϕ(t) =
L

mbu

∫ arctan

(
ut

b

)
0

dξ =
L

L̃
arctan

(
ut

b

)
⇒

ϕ(t) =
1

sin(θ)
arctan

(
ut

b

)
(1.45)

The equation (1.45) explicitly proves that the trajectory is not a closed orbit. Also, we can calculate the
total angle ∆ϕ on the plane, which is perpendicular to the vector L⃗.
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∆ϕ = ϕ(t→ +∞)− ϕ(t→ −∞) =
π

sin(θ)
(1.46)

Without loss of generality we may consider that the vector −L⃗ is parallel to the unit vector ẑ. Thus, we
calculate the unit vector of the velocity for r → ±∞:

v⃗(t→ ±∞) = |ṙ|(±r̂(t→ ±∞)) ⇒

v̂(t→ ±∞) =
(
± sin(θ)cos

(∆ϕ
2

)
, sin(θ)sin

(∆ϕ
2

)
, ±cos(θ)

)
(1.47)

Consequently, the scattering angle Θ is calculated as follows:

cos(Θ) = v̂(+∞) · v̂(−∞) = −sin2(θ)cos2
(∆ϕ

2

)
+ sin2(θ)sin2

(∆ϕ
2

)
− cos2(θ) ⇒

cos(Θ) = 2sin2(θ)sin2
( π

2sin(θ)

)
− 1 and cos

(Θ
2

)
= sin(θ)

∣∣∣sin( π

2sin(θ)

)∣∣∣ (1.48)

Finally, the previous analysis may lead to a very useful result, which is the effective cross-section of the
charged particle’s scattering on the magnetic monopole. Similarly to Rutherford scattering, the effective
cross-section takes the form [1]:

dσ

dΩ
=
∣∣∣ b db

dcos(Θ)

∣∣∣ (1.49)

where b is the impact parameter. We have to calculate the differential db:

cos(θ) =
eg√

(mub)2 + (eg)2
⇒

−sin(θ)dθ = − eg(mu)2b db(√
(mub)2 + (eg)2

)3 ⇒

sin(θ)dθ =
(mu)2

(eg)2
cos3(θ)b db⇒

b db =
(eg)2

(mu)2
sin(2θ)dθ

2 cos4(θ)
(1.50)

Also, taking into account the contributions from all values of the impact parameter or equivalently from
all values of the cone angle (0 ≤ θ ≤ π/2), the differential cross-section reads:

dσ

dΩ
=
∑
θi

(eg)2

(mu)2
1

2 cos4(θ)

∣∣∣ sin(2θ)dθ
sin(Θ)dΘ

∣∣∣ (1.51)

The differential cross-section (1.51) is singular for Θ = π and dΘ
dθ = 0. In the subsequent steps we

examine these spacial cases. For back scattering (glory scattering), we consider Θ = π ⇒ sin(Θ) = 0,
which means that the differential cross-section is singular. Upon substituting Θ = π into equation (1.48),
we obtain:

sin(θ)sin
( π

2sin(θ)

)
= 0

If the cone is not degenerated (θ ̸= 0, π), the above equation has the following solutions:

sin(θn) =
1

2n
, n ∈ N (1.52)

Some critical values of the cone angle (solutions of the equation (1.52)) are [1]: θ1 = 0.5236, θ2 =
0.2527, θ3 = 0.1674, ... .

In the second case, dΘ
dθ = 0 (rainbow scattering), we consider Θ ̸= 0, π and we calculate:

dΘ

dθ
= 0 ⇒ dcos(Θ)

dθ
= 0

(1.48)
=⇒
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2sin(θ)cos(θ)sin2
( π

2sin(θ)

)
− 2sin2(θ)sin

( π

2sin(θ)

)
cos
( π

2sin(θ)

) πcos(θ)
2sin2(θ)

= 0 ⇒

tan

(
π

2sin(θn)

)
=

π

2sin(θn)
, n ∈ N (1.53)

Also, some critical values of the cone angle (solutions of the equation (1.53)) are [1]: θ1 = 0.3571, θ2 =
0.2048, θ3 = 0.1446, ... .

Last but not least, for small scattering angles (Θ → 0), from equation (1.48) we obtain θ → π/2.
Therefore, we can set (Θ ≈ π − 2θ). Hence, we have:

Θ ≈ sin(Θ) ≈ sin(π − 2θ) = sin(2θ) = 2sin(θ)cos(θ)
(1.36)
=⇒
(1.37)

Θ ≈ 2
egmub

(mub)2 + (eg)2
= 2

eg

mub

1

1 +
( eg

mub

)2
Upon considering cos(θ → π/2) → 0, from equation (1.36) we obtain:

eg√
(mub)2 + (eg)2

→ 0 ⇒ 1√(mub
eg

)2
+ 1

→ 0 ⇒

eg

mub
→ 0

Summarizing, the scattering angle approximately reads:

Θ ≈ 2
eg

mub
(1.54)

We have assumed that Θ ≈ π−2θ, hence cos(θ ≈ π/2) = 0−(θ−π/2) ≈ Θ
2 , sin(2θ) ≈ sin(π−Θ) = sin(Θ)

and dΘ
dθ = −2. Consequently, the equation (1.51) yields:

dσ

dΩ
≈
(
2eg

mu

)2
1

Θ4
(1.55)

which is analogous to Rutherford formula for low energy scattering.

1.2.2 Classical scattering on a Dyon
In this subsection, we generalize the previous case considering that the magnetic monopole has also electric
charge, i.e., it is a dyon. In particular, we examine a classical non-relativistic scattering of an electrically
charged particle, with charge e, on a static dyon having both electric "Q" and magnetic "g" charges. We
consider eQ < 0, in order for bound orbits to be obtained. The analysis is similar to the previous case.

The Lorentz force that acts on the electrically charged particle reads:

m¨⃗r = eQ
r⃗

r3
− eg

r3
(r⃗ × ˙⃗r) (1.56)

Thus, due to the fact that the extra term (eQ r⃗
r3 ) is parallel to r̂, the analysis which corresponds to the

angular momentum is exactly the same. Hence, we summarize the main relations:

dL⃗

dt
= 0⃗, L⃗ =

˜⃗
L− egr̂,

˜⃗
L = r⃗ ×m ˙⃗r, L =

√
L̃2 + (eg)2 (1.57)

L⃗ · r̂ = −eg = const. < 0 ⇒

cos(θ) =
eg
L = eg√

L̃2+(eg)2

sin(θ) = L̃
L = L̃√

L̃2+(eg)2

(1.58)

|L̃| = L̃ = const. (1.59)

Upon taking the inner product of the particle’s velocity vector with equation (1.56), we calculate the
conserved energy:

m ˙⃗r · ¨⃗r = eQ

r3
r⃗ · ˙⃗r − eg

r3
�����:0
˙⃗r(r⃗ × ˙⃗r)

˙⃗r(r⃗× ˙⃗r)=0
======

eQ

r2
ṙ ⇒
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d

dt

(
1

2
m ˙⃗r2 +

eQ

r

)
= 0 ⇒

E =
1

2
m ˙⃗r2 +

eQ

r
=

1

2
mṙ2 +

L̃2

2mr2
+
eQ

r
= const. (1.60)

where we recognise the extra Coulomb term. Then, we solve this equation with respect to the radial
velocity:

ṙ = ±
√

2

m

√
E +

|eQ|
r

− L̃2

2mr2
E<0
=⇒

bound motion

t =

√
m

2|E|

∫
rdr√

−r2 + |eQ|r
|E| − L̃2

2m|E|

(1.61)

where we considered negative total energy, due to the Coulomb term and the assumption eQ < 0. The
condition E < 0 implies bound trajectories. If we set:

a =
|eQ|
2|E|

, b =
L̃√

2m|E|
, ϵ =

√
1− b2

a2
=

√
1− 2|E|L̃2

me2Q2
(1.62)

we have:

t =

√
m

2|E|

∫
rdr√

a2 − b2 − (r − a)2
=

√
m

2|E|

∫
rdr√

a2ϵ2 − (r − a)2
(1.63)

Subsequently, we introduce the variable ξ, such that:

r = a
(
1− ϵ cos(ξ)

)
⇒ dr = aϵ sin(ξ)dξ (1.64)

ξ = arccos

(
a− r

aϵ

)
(1.65)

Hence, we obtain:

t =

√
ma2

2|E|

∫
(1− ϵcos(ξ))sin(ξ)dξ√

1− cos2(ξ)
⇒

t =

√
ma2

2|E|
[ξ − ϵ sin(ξ)] =

√
ma2

2|E|

(
arccos

(
a− r

aϵ

)
− ϵ sin

[
arccos

(
a− r

aϵ

)])
(1.66)

As we did in the previous case, where Q = 0, we assume that ẑ is parallel to L⃗, thus, the angular velocity
reads:

ω⃗ =
L⃗

mr2
⇒ ω =

dϕ

dt
=

L

mr2
⇒

dϕ
(
r(t)

)
dt

=
L

mr2
⇒ dr

dt

dϕ

dr
=

L

mr2
⇒ dϕ

dr
=

L

mr2
dt

dr
⇒

dϕ

dr
=

L√
2m

1

r2
√
−|E|+ |eQ|

r − L̃2

2mr2

⇒

ϕ(r) =
L√
m|eQ|

∫
dr

r2

√
− 2|E|

|eQ| r
2+2r− L̃2

m|eQ|
r2

⇒

ϕ(r) =
LL̃

m|eQ|
1

ϵ

∫
dr

r2

√(
1− 2|E|L̃2

me2Q2

)
r2−r2+ 2L̃2

m|eQ| r−
(

L̃2

m|eQ|

)2
ϵ2r2

ϵ=

√
1− 2|E|L̃2

me2Q2

=⇒
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ϕ(r) =
LL̃

m|eQ|ϵ

∫
dr

r2

√
1−

(
r− L̃2

m|eQ|
ϵr

)2
(1.67)

To its end, we introduce the variable ξ as follows:

cos(ξ) =
r − L̃2

m|eQ|

ϵr
⇒ sin(ξ)dξ =

L̃2

ϵm|eQ|
dr

r2
⇒ dr = r2

ϵm|eQ|
L̃2

sin(ξ)dξ (1.68)

Thus, we obtain:

ϕ(r) =
L

L̃

∫
���sin(ξ)dξ

�������√
1− cos2(ξ)

=
L

L̃
ξ,


L̃
L = sin(θc)

ξ = arccos

(
−r+ L̃2

m|eQ|
ϵr

)
(1.69)

Hence, the azimuthal angle satisfies the following equation:

cos
(
ϕ(r)sin(θc)

)
=

−r + L̃2

m|eQ|

ϵr
(1.70)

Consequently, a charged particle in a dyon field, considering bound orbit, moves along an ellipse with
semi-axes a, b and eccentricity ϵ [1]. Additionally, the elliptic trajectory lies on the surface of a cone, with
axis of symmetry along −L⃗ and cone angle θc. It is very interesting that there is a precession of the orbit.
For ϕ(rmin) = 0, we have cos

(
ϕ(rmin)sin(θc)

)
= 1, while for ϕ(r) = 2π, we have cos

(
ϕ(r)sin(θc)

)
̸= 1 ⇒

r ̸= rmin, since 0 < sin(θc) < 1. Therefore, we obtain ϕ(r > rmin) = 2π, which means that after a
complete term the charged particle does not return to the initial position, i.e., we have a precession angle.
We calculate the precession angle as follows:

ϕ(rmin)sin(θc) = 2π ⇒

ϕ(rmin) =
2π

sin(θc)

thus, the precession angle reads

∆ϕ = ϕ(rmin)− 2π
(1.58)
=⇒

∆ϕ = 2π

(
L

L̃
− 1

)
(1.71)

1.3 Dirac Magnetic Monopole
A self-consistent electromagnetic theory with magnetic monopoles, which respects the results correspond-
ing to the classical and quantum electromagnetic theories without magnetic monopoles, must be described
by the four-potential Aµ. However, a dual symmetric model may be structured by considering either the
electric field or the magnetic induction as the curl of the vector potential A⃗. This becomes obvious, upon
considering the dual transformation (1.12) of the electromagnetic tensor. In this section we prove that
the vector potential, in presence of a magnetic monopole, is singular along a string, which is called Dirac
string. The Dirac string is not observable, and hence, we need to somehow eliminate it. Interestingly, in
chapter 3, trying to overcome the problematic situation due to the Dirac string, we prove that the magnetic
charge seems to have topological origins. In fact, in chapter 4, where we discuss the ’t Hooft-Polyakov
magnetic monopole, we explicitly prove that the magnetic charge has topological roots. Additionally, if
the models that predict magnetic monopoles are dual symmetric, which means that the term Fµν F̃

µν is
a total derivative, these models also predict electric monopoles, and more importantly, the corresponding
electric charge has topological roots. Note that the models examined in this thesis effectively provide
magnetic monopole solutions, which are particles with structure. In fact, there are not dual symmetric
actions that predict magnetic monopoles as elementary particles.
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1.3.1 Vector potential of a Dirac Monopole
In this section, we make the usual assumption, according which we can write the magnetic induction as
B⃗ = ∇× A⃗.

Considering a magnetic monopole theory, the solution of equation ∇B⃗g = ρg (1.2), where ρg =
4πgδ(3)(r⃗) reads:

B⃗g = g
r⃗

r3
(1.72)

where g is the magnetic charge. Hence, due to the identity ∇(∇× A⃗) = 0, we cannot write B⃗g = ∇× A⃗

for every point r⃗ in space. Instead, we may consider a field B⃗, which satisfies the equation ∇B⃗ = 0, for
every r⃗, and can be written as B⃗ = ∇× A⃗. Additionally, let us assume that there is a field h⃗, such that
the field B⃗ reads [5]:

B⃗ = B⃗g + gh⃗ = ∇× A⃗ (1.73)

Upon considering the equations ∇B⃗g = 4πgδ(3)(r⃗) and ∇B⃗ = 0, the field h⃗ satisfies the following equation:

∇h⃗ = −4πδ(3)(r⃗) (1.74)

It is evident that we can find a vector potential A⃗, which satisfies equation B⃗g = ∇× A⃗ everywhere except
a line, which extends from the origin to infinity. The vector potential A⃗ is singular along this line, which

is called Dirac string (D.S.). Thus, the fields B⃗ and h⃗ are singular along the Dirac string, while B⃗g = g
r⃗

r3
is singular only at the origin. The gradient theorem allows us to solve the equation (1.74) as follows:

h⃗(r⃗) = −4π

∫
D.S

δ(3)(r⃗ − r⃗ ′)dr⃗ ′ (1.75)

where the integration is along the Dirac string. Let us consider, without loss of generality, that the Dirac
string is extended along the positive semi-axis z. Then, equation (1.75) yields:

h⃗(r⃗) = −4πẑδ(x)δ(y)

∫ +∞

0

dz′δ(z − z′) ⇒ξ=z−z′

h⃗(r⃗) = −4πẑδ(x)δ(y)

∫ z

−∞
dξδ(ξ) ⇒

h⃗(r⃗) = −4πẑδ(x)δ(y)Θ(z) (1.76)

where Θ(z) is the Heaviside step function. The field (1.76) satisfies the equation (1.74), since dΘ(z)
dz = δ(z).

Also, it is crucial to calculate the vector potential A⃗. The curl of equation (1.73) yields:

∇× (∇× A⃗) = ∇(∇A⃗)−∇2A⃗ = ∇× B⃗g + g∇× h⃗

The equation (1.72) implies ∇× B⃗g = 0. Upon choosing the Coulomb gauge ∇A⃗ = 0, we obtain:

∇2A⃗ = −g∇× h⃗ (1.77)

Considering that ∇2 1

|r⃗ − r⃗ ′|
= −4πδ(3)(r⃗ − r⃗ ′), the usual solution of the equation (1.77) reads:

A⃗(r⃗) =
g

4π

∫
∇′ × h⃗(r⃗ ′)

|r⃗ − r⃗ ′|
d3r′ (1.78)

The curl of the field (1.76) reads:

∇× h⃗ = −4πΘ(z)(δ(x)
dδ(y)

dy
x̂− dδ(x)

dx
δ(y)ŷ) (1.79)

Upon substituting equation (1.79) into equation (1.78), we obtain:

A⃗(r⃗) = −g
∫ +∞

0

dz′
[
x̂

∫ +∞

−∞
dy′

dδ(y)/dy√
x2 + (y − y′)2 + (z − z′)2

− ŷ
∫ +∞

−∞
dx′

dδ(x)/dx√
(x− x′)2 + y2 + (z − z′)2

]
⇒
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A⃗(r⃗) = −g
∫ +∞

0

dz′
−yx̂+ xŷ[

r2 − z2 + (z − z′)2
]3/2 = −g(ẑ × r⃗)

z + r

r(r2 − z2)
⇒

A⃗(r⃗) = −g
r

ẑ × r⃗

r − (r⃗ẑ)
(1.80)

More generally we can write:

A⃗(r⃗) = −g
r

n̂× r⃗

r − (r⃗n̂)
(1.81)

where n̂ is the unit vector along the Dirac string. The vector potential (1.81) is called Dirac potential
and plays a fundamental role in the magnetic monopole theories. Equation (1.81) confirms that the vector
potential is singular along the Dirac string. Also, we can explicitly confirm that B⃗g = ∇× A⃗ = g r⃗

r3 , away
from the Dirac string, using the form (1.80) to represent the vector potential.

Later on, it will be very interesting to write the vector potential as follows [1]:

A⃗(r⃗) = −g(1 + cos(θ))∇ϕ (1.82)

where θ is the polar angle and ϕ is the azimuthal angle. The gradient of ϕ reads:

∇ϕ =
(
− sin(ϕ)

rsin(θ)
,
cos(ϕ)

rsin(θ)
, 0
)
=

1

rsin(θ)
êϕ (1.83)

Upon substituting equation (1.83) into equation (1.82), the equation (1.80) is confirmed. Furthermore,
the equation (1.82) yields that the vector potential can be written as follows:

A⃗(r⃗) = (1 + cos(θ))
−i
e
U−1∇U , where U = e−iegϕ (1.84)

This result is the first step in order to find the nature of the magnetic monopoles. This becomes more
obvious in the next subsection.

Additionally, we have to clarify that the field B⃗ = B⃗g+gh⃗ does not have any physical meaning, since it
is not observable. Thus, the Dirac string, which produces field h⃗, is not observable. Therefore, in section
3.2, we need to construct a non-singular vector potential using the gauge form of the vector potential
in equation (1.84). Nevertheless, we will briefly examine a potential physical system which produces the
field B⃗. This system consists of a solenoid along the Dirac string, at the edge of which exists a magnetic
monopole. The solenoid produces the field gh⃗, while the monopole produces the field B⃗g. The total field
B⃗ (1.73) satisfies the equation ∇B⃗ = 0, which means that the total magnetic flux over a closed surface,
with the monopole located at its centre, vanishes. This statement can be explicitly proven as follows:

Φg =

∮
dσ⃗B⃗g = 4πg (1.85)

ΦD.S. = g

∮
dσ⃗h⃗ = −4πg (1.86)

Φtotal = Φg +ΦD.S. = 0 (1.87)

1.3.2 Transformations of the Dirac string
As we mentioned before, the equation (1.84) plays a fundamental role in our discussion, because it is in a
form of a gauge transformation U ∈ U(1), where U = e−iegϕ.

Let us assume the gauge transformation U = eieλ(r⃗) ∈ U(1) that acts on the vector potential as follows:

A⃗ −→ A⃗′ = A⃗− i

e
U−1∇U ⇒

A⃗ −→ A⃗′ = A⃗+∇λ(r⃗) (1.88)

It is very important that away from the Dirac string, where B⃗g = ∇× A⃗, the vector potentials A⃗′ and A⃗
correspond to the same magnetic induction, since ∇× (∇λ(r⃗)) = 0.

Additionally, we need to determine the changes that occur in the Dirac string. Let us denote vector
potential (1.80) as A⃗S , because it is regular to the south region of the x − y plane. Upon imposing a
specific gauge transformation U = e2iegϕ on A⃗S , we obtain:
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A⃗S −→ A⃗N = A⃗S + 2g∇ϕ = −g
r

ẑ × r⃗

r − (r⃗ẑ)
+

2g

rsin(θ)
êϕ ⇒

A⃗S −→ A⃗N = −g
r

−yx̂+ xŷ

r − z
+

2g

rsin(θ)
êϕ =

g

r

sin(θ)sin(ϕ)x̂− sin(θ)cos(ϕ)ŷ

1− cos(θ)
+

2g

rsin(θ)
êϕ ⇒

A⃗S −→ A⃗N =
g

r
(1 + cos(θ))

sin(θ)sin(ϕ)x̂− sin(θ)cos(ϕ)ŷ

sin2(θ)
+

2g

rsin(θ)
êϕ ⇒

A⃗S −→ A⃗N =
g

r
(1 + cos(θ))

sin(ϕ)x̂− cos(ϕ)ŷ

sin(θ)
+

2g

rsin(θ)
êϕ = −g

r

1 + cos(θ)

sin(θ)
êϕ +

2g

rsin(θ)
êϕ ⇒

A⃗S −→ A⃗N =
g

r

1− cos(θ)

sin(θ)
êϕ (1.89)

The vector potential A⃗N is singular at θ = π, i.e., the gauge transformation has turned the singularity
from the positive z semi-axis to the negative z semi-axis. Note that limθ→0

1−cos(θ)
sin(θ) = limθ→0

sin(θ)
cos(θ) = 0.

Consequently, it is very interesting that the gauge transformations rotate the Dirac string. The fact that
the gauge transformations leave the observable magnetic induction B⃗g invariant, but they change the
direction of the Dirac string, proves explicitly that the Dirac string has no physical meaning. Also, this
statement points out that it is crucial to avoid the Dirac strings. The formalism to do that is described in
section 3.2 and leads to the Dirac quantization condition and the topological roots of the magnetic charge.

Finally, note that the gauge transformation U = e2iegϕ ∈ U(1) acts like the parity operator P on the
vector potential A⃗. For instance [1]:

A⃗S −→ PA⃗S =
g

r

1− cos(θ)

sin(θ)
êϕ = A⃗N

A⃗S −→ A⃗S − i

e
U−1∇U = A⃗N (1.90)

Note that A⃗N ̸= ±A⃗S , hence the A⃗ is not an eigenfunction of the parity operator P . We can define the
generalized space reflection P, which reads:

A⃗ −→ PA⃗ = PA⃗S +
i

e
U−1∇U = A⃗ (1.91)

where U = e2iegϕ. Therefore, the vector potential A⃗ transforms as a pseudo-vector under the generalized
space reflection.

1.4 Dynamical symmetries of the charge-monopole system
In this section we present the symmetries of the charge-monopole system and the corresponding conserved
quantities. The Lagrangian of the model reads:

L =
1

2
m ˙⃗r2 + e ˙⃗rA⃗ (1.92)

where A⃗ is defined by equation (1.81). The Dirac string lies along an arbitrary unit vector n̂. The spacial
variation r⃗(t) → r⃗(t) + δr⃗(t) ⇒ ˙⃗r(t) → ˙⃗r(t) + ˙δr⃗(t), assuming that the initial and final values of the
variation vanish δr⃗(ti) = δr⃗(tf ) = 0, leads to the action variation of the form:

δS =

∫ tf

ti

dt
(
m ˙⃗rδ ˙⃗r + e(δ ˙⃗r)A⃗+ e ˙⃗rδA⃗

)
⇒

δS =

∫ tf

ti

dt

(
m
d

dt
( ˙⃗rδr⃗)−m¨⃗rδr⃗ + e

d

dt
(δr⃗A⃗)− eδr⃗

dA⃗

dt
+ e ˙⃗r(δr⃗∇)A⃗

)
⇒ (1.93)

δS = m
[
˙⃗rδr⃗
]tf
ti

+ e
[
δr⃗A⃗

]tf
ti

−
∫ tf

ti

dt δr⃗
(
m¨⃗r − e[ ˙⃗r × B⃗]

)
(1.94)
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In equation (1.93) we considered that dA⃗
dt = ∂A⃗

∂t + ( ˙⃗r∇)A⃗ = ( ˙⃗r∇)A⃗ and that e( ˙⃗r(δr⃗∇)A⃗ − δr⃗( ˙⃗r∇)A⃗) =

e( ˙⃗r× B⃗). Let us focus on the equation (1.94), where it is obvious that the term m
[
˙⃗rδr⃗
]tf
ti

vanishes due to
the assumption δr⃗(ti) = δr⃗(tf ) = 0. If we had considered an ordinary system without magnetic monopoles,
the term e

[
δr⃗A⃗

]tf
ti

would have vanished too, hence the ordinary Euler Lagrange equations m¨⃗r = e[ ˙⃗r × B⃗]
would have appeared. If we examine a system with a magnetic monopole, we need to be extra careful,
because of the singularity of the vector potential (1.81) along the Dirac string. This is an issue, since, if
one of the points r⃗i and r⃗f is located on the Dirac string, the term e

[
δr⃗A⃗

]tf
ti

does not necessarily vanish.
Therefore, we need to be careful with the subsequent steps, where we are searching for conserved quantities.

Let us perform a radius-vector transformation δr⃗ = ω⃗ × r⃗ = ω(n̂× r⃗), where ω is infinitesimally small
and n̂ is the unit vector along the Dirac string. We consider this direction of the variation in order to
avoid the aforementioned problematic situation. Additionally, it is evident that the direction of the Dirac
string is arbitrary, as proven in subsection 1.3.2, hence, the examined transformation can be considered as
general. It is obvious that the system is symmetric under this transformation. Noether’s theorem yields
that the corresponding conserved quantity is the following:

(n̂× r⃗)
∂L

∂ ˙⃗r
= (n̂× r⃗)(m ˙⃗r + eA⃗) = const. (1.95)

In the next few lines we perform the calculation of (n̂× r⃗)(m ˙⃗r + eA⃗), considering equation (1.81):

(n̂× r⃗)(m ˙⃗r + eA⃗) = n̂(r⃗ ×m ˙⃗r)− eg

r

(r⃗ × n̂)2

r − (r⃗n̂)
= n̂(r⃗ ×m ˙⃗r)− eg

r

n̂([r⃗ × n̂]× r⃗)

r − (r⃗n̂)
=

n̂(r⃗ ×m ˙⃗r) +
eg

r

r⃗(r⃗n̂)− n̂r2

r − (r⃗n̂)
n̂ = n̂(r⃗ ×m ˙⃗r) +

eg

r

(r⃗n̂)2 − r2

r − (r⃗n̂)
=

n̂(r⃗ ×m ˙⃗r)− eg

r
(r + r⃗n̂) = n̂

[
(r⃗ ×m ˙⃗r)− ger̂

]
− eg = const.⇒

n̂
[
(r⃗ ×m ˙⃗r)− ger̂

]
= const.⇒(1.31)

n̂L⃗ = const. (1.96)

Upon considering that the unit vector n̂ is arbitrary, as we mentioned before, we obtain that the conserved
quantity is the generalized angular momentum (1.31).

L⃗ = const. (1.97)

This result confirms the calculations in section 1.2.
Subsequently, let us perform the time translation t → t + δt ⇒ r⃗ → r⃗ + ˙⃗rδt. The Lagrangian (1.92)

remains invariant under this transformation. From Noether’s theorem it follows that the corresponding
conserved quantity reads:

E = ˙⃗r
∂L

∂ ˙⃗r
=

1

2
m ˙⃗r2 = const. (1.98)

The conserved quantity is the kinetic energy, as we expected from the calculations in subsection 1.2.1.
So far, the charge-monopole system seems to be completely analogous to an ordinary charge-charge

system, taking into account the symmetries. Nonetheless, the system with the magnetic monopole has
some additional symmetries, which form the group of dynamical symmetry. The kinetic energy of the
charged particle in the monopole field is a total time derivative also under transformation of dilatation
δr⃗ = v⃗t − r⃗/2 and the special conformal transformation δr⃗ = v⃗t2 − r⃗t [1][6][7]. The generators of these
transformations are the following:

D = Ht− m

4
[(r⃗v⃗) + (v⃗r⃗)] and K = −Ht2 + 2Dt+

mr2

2
(1.99)

where H is the Hamiltonian of the system. The generators (1.99), together with the Hamiltonian, form
the algebra of the conformal group SO(2, 1) [1]:

[H,D] = iH , [D,K] = iK , [H,K] = 2iD (1.100)

which is the group of dynamical symmetry of the non-relativistic charge-monopole system. Note that, the
invariance of a theory with respect to a transformation involving a time dependence does not lead to the
existence of a new integral of motion, but introduces some constraints on the configuration space of the
classical system.
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Chapter 2

Magnetic Monopoles: A quantum
theory approach

The hypothesis of the existence of the magnetic monopoles leads to an elegant explanation of the quan-
tization of the electric charge. Therefore, it is essential to present some arguments, in the perspective of
quantum mechanics, for the charge quantization condition, called Dirac quantization condition. In the
next chapter, we prove the Dirac quantization condition using topological arguments. In this chapter, we
examine the Spin-statistics theorem in a magnetic monopole or dyon theory and we solve Schrödinger,
Pauli and Dirac equations for an electrically charged particle in an external monopole field.

2.1 Charge quantization condition
The Dirac quantization condition can be derived in various ways. Let us consider a charged particle in an
external monopole field. The Lagrangian of the system reads:

L =
1

2
m ˙⃗r2 + e ˙⃗rA⃗ (2.1)

which under a gauge U(1) transformation of the form U = eieλ(r⃗) yields:

δL = e ˙⃗r ∇λ(r⃗) = e
dλ(r⃗(t))

dt
(2.2)

where we used equation (1.88). Consequently, the action of the system is transformed as follows:

δS =

∫ T

0

dt δL = e
[
λ(r⃗)

]T
0

(2.3)

The transition amplitude ∼ eiS defined by the corresponding path integral must be a gauge invariant
quantity [1]. Thus, the parameter of the transformation must satisfy the following equation:

eδλ = 2πn , n ∈ Z (2.4)

Let us consider the gauge transformation U = e2iegϕ, which rotates the Dirac string. Also, upon considering
that the particle traces a closed orbit around the Dirac string, we obtain that ϕ(T ) = ϕ(0) + 2π. Hence,
the quantization condition (2.4) yields:

eg =
n

2
, n ∈ Z (2.5)

This is called Dirac’s charge quantization condition [8].
Additionally, we may prove equation (2.5) by considering the Schrödinger equation of the aforemen-

tioned system, which reads:

Ĥψ(r⃗) = Eψ(r⃗) ⇒ − 1

2m
(∇− ieA⃗)2ψ(r⃗) = Eψ(r⃗) (2.6)

The solution of equation (2.6) reads:

ψ(r⃗) = ψ0(r⃗)e
ie

∫ r⃗
r⃗0

A⃗(r⃗ ′)dr⃗ ′
(2.7)
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where ψ0(r⃗) is the solution of the free Schrödinger equation. The wave-function ψ(r⃗) must be a single-
valued function and as a result the complex phase must satisfy the following equation:

e

∮
ℓ

A⃗(r⃗ ′)dr⃗ ′ = 2πn , n ∈ Z (2.8)

where contour ℓ is a closed loop around the Dirac string. In the case we consider the contour ℓ as an
infinitesimally small loop around the Dirac string, the vector potential A⃗ describes the field gh⃗(r⃗) from
equation (1.73), which corresponds to the solenoid along the Dirac string. Thus, we can use the Stokes’
theorem in order to calculate the integral (2.8).

e

∮
ℓ

A⃗(r⃗ ′)dr⃗ ′ = e

∫
(∇× A⃗)da⃗ = eg

∫
h⃗da⃗

(1.76)
= −4πeg = 2πn⇒

eg =
n

2
, n ∈ Z (2.9)

which is once again the Dirac quantization condition.
Another interesting aspect, connected with the Dirac quantization condition, is the quantization of

the generalized angular momentum (1.31). If we assume that the orbital angular momentum L̃ = r⃗ × π⃗
has integer eigenvalues as usual, then the equation (2.9) yields that the generalized angular momentum
L⃗ =

˜⃗
L − egr̂ has semi-integer eigenvalues. This can be clarified by proving that the components of the

generalized angular momentum satisfy the algebra [Li, Lj ] = iϵijkLk. Upon considering the canonical
commutation relations:

[xi, xj ] = 0 , [pi, pj ] = 0 , [xi, pj ] = iδij , i j = 1, 2, 3 (2.10)

we calculate the commutations [xi, πj ] and [πi, πj ], where π⃗ = p⃗− eA⃗(x⃗):

[xi, πj ] = [xi, pj ]− e[xi, Aj(X⃗)] = iδij − 0 ⇒

[xi, πj ] = iδij (2.11)

[πi, πj ] = [pi, pj ]− e[pi, Aj(x⃗)]− e[Ai(x⃗), pj ] + e2[Ai(x⃗), Aj(x⃗)] ⇒

[πi, πj ] = ie∂iAj − ie∂jAi ⇒

[πi, πj ] = ie(δimδjn − δinδjm)∂mAn ⇒

[πi, πj ] = ie ϵijkϵkmn∂mAn ⇒

[πi, πj ] = ie ϵijk

(
∇× A⃗

)
k

(2.12)

where we used Ehrenfest theorem:

[pi, f(x⃗)] = −i∂f(x⃗)
∂xi

(2.13)

and the identity:

ϵijkϵkmn = δimδjn − δinδjm (2.14)

Subsequently, we calculate the commutation [Li, Lj ]:

[Li, Lj ] =
[
ϵiabxaπb − eg

xi
r
, ϵjcdxcπd − eg

xj
r

]
⇒

[Li, Lj ] = ϵiabϵjcd[xaπb, xcπd]− eg ϵiabxa

[
πb,

xj
r

]
+ eg ϵjcdxc

[
πd,

xi
r

]
Upon considering the relations

[
πb,

xj
r

]
= −i δbj

r
+ i

xjxb
r3

, ϵiabxaxb = 0 and the identity [AB,CD] =

A[B,C]D + [A,C]BD + CA[B,D] + C[A,D]B, we obtain:
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[Li, Lj ] = ϵiabϵjcd(−iδcbxaπd + iδadxcπb)− 2egi ϵijk
xk
r

+ ϵiabϵjcd ie ϵbck

(
∇× A⃗

)
k
xaxc =

iϵiabϵjcd(xaπc − xcπa)− 2egi ϵijk
xk
r

+ ϵiabϵbck ie ϵjcd

(
∇× A⃗

)
k
xaxc

(2.14)
=

i(xiπj − xjπi)− 2egi ϵijk
xk
r

+ ie ϵijcxc

(
∇× A⃗

)
k
xk =

iϵijkϵkabxaπb − 2egi ϵijk
xk
r

+ ie ϵijcxc

[(
∇× A⃗

)
r⃗

]
(1.72)
=⇒
(1.73)

[Li, Lj ] = iϵijkLk + ieg ϵijkxk (⃗h · x⃗) (2.15)

Note that for vanishing magnetic charge (g = 0), equation (2.15) corresponds to the regular commutation
relation of the angular momentum. In the non-trivial case (g ̸= 0), we observe that the field, produced by
the solenoid along the Dirac string, adds an extra unnatural term to the regular commutation relation of
the angular momentum. This term is unnatural, since the Dirac string is not observable. In the next few
lines we calculate the commutation relation between the components of the generalized angular momentum
and the Hamiltonian operator H = π⃗

2M :

[Li, H] =

[
ϵijkxjπk − eg

xi
r
,
πaπa
2M

]
=
ϵijk
2M

[xjπk, πaπa] +
eg

2M

[
πaπa,

xi
r

]
=

i
ϵijk
2M

(
e ϵkab(∇× A⃗)bxjπa + πkπaδja + e ϵkab(∇× A⃗)bπaxj + πaπkδja

)
+

eg

2M

(
πa

[
πa,

xi
r

]
+
[
πa,

xi
r

]
πa

)
=

ie

2M

(
(r⃗B⃗)πi −XjBiπj + πi(r⃗B⃗)− (π⃗r⃗)Bi

)
+ i

eg

2M

(
− πi

1

r
+ πa

xaxi
r3

− 1

r
πi +

xaxi
r3

πa

)
(1.72)
=⇒
(1.73)

[Li, H] =
ieg

2M

(
(r⃗h⃗)πi − xjhiπj + πi(r⃗h⃗)− (π⃗r⃗)hi

)
(2.16)

Similarly to the previous case, for vanishing magnetic charge (g = 0), equation (2.16) yields the conserva-
tion of the regular angular momentum. In the non-trivial case (g ̸= 0), the field of the solenoid refuses the
conservation of the generalized angular momentum. As we mentioned before, the solenoid and the Dirac
string are not observable, and therefore, we need to fix the problematic behavior of the operators L⃗ and H,
which is caused by the singularity of the vector potential along the Dirac string. According to Schwinger
[9], the singular operator products are correctly defined by point splitting. Thus, we may regularise the
operators, avoiding their singularities. According to this method, the operators read [5] [10]:

H = lim
|ε⃗|→0

3

mε2

(
1− e−i p⃗ε⃗

2 Ee−i p⃗ε⃗
2

)
(2.17)

Li = lim
|ε⃗|→0

ϵijkxj
3εk
iε2

(
1− e−i p⃗ε⃗

2 Ee−i p⃗ε⃗
2

)
(2.18)

with

E = exp

[
ie

∫ r⃗+ ε⃗
2

r⃗− ε⃗
2

A⃗(ξ⃗)dξ⃗

]
(2.19)

In appendix A we prove that, if the vector potential is regular, the average of the operators (2.17) and
(2.18) over all directions of the parameter ε⃗ corresponds to the standard Hamiltonian operator

(
H = π⃗2

2M =

(p⃗−eA⃗(r⃗))2

2M

)
and the angular momentum (L⃗ = r⃗ × π⃗), respectively. If the vector potential is singular, the

equations (2.17) and (2.18) may be considered as definitions. Additionally, using the regularized operators
(2.17) and (2.18), the commutation relations yield:

[Li, Lj ] = iϵijkLk (2.20)

[Li, H] = 0 (2.21)
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Note that the problem, caused by the singularity along the Dirac string, is fixed.
The Dirac quantization condition (2.9) is supported by many arguments, but the origin of this relation

lies in the topological roots of the magnetic charge. This discussion takes place in chapter 3. Note that
the quantization of the charges by the relation (2.9) has nothing in common with the standard approach
to quantization, since the charges do not appear as the discrete part of the spectrum of eigenvalues of a
Hermitian operator. Instead, the Dirac quantization condition has topological roots. The suggestion by
Dirac was that a monopole provides a beautiful explanation to the problem of the quantization of the
electric charge. It is well known that all charged particles have electric charges that are proportional to
the minimal charge of an electron. Then, if there is a monopole somewhere in the universe, even one such
object placed anywhere would be enough to explain the quantization of electric charges according to (2.9)
[1]. Taking into account the quarks, we have to impose that all charged particles have electric charge
proportional to one-third of the electron’s charge. This assumption leads to some states with charges
4/3, 5/3, ... , which correspond to some exotic electrically charged structures. These representations
should either be ignored or considered to describe exotic particle/distributions beyond the standard model.

2.2 Spin-statistics theorem in a Magnetic Monopole theory

The extra term of the angular momentum T⃗ = egr̂, which appears in the charge-monopole system, can
take both integer and half-integer values, due to the Dirac quantization condition (2.9). This result yields
some very interesting properties of the magnetic monopole systems. For instance, a bound system of two
dyons may follow Fermi-Dirac or Boss-Einstein statistics, depending on Dirac quantization condition.

Hence, an essential result is the generalisation of the spin-statistics theorem. Let us consider the
Hamiltonian operator of an electrically charged particle in the monopole field, which reads:

He = − 1

2Me

[
∇e − iegA⃗(r⃗e − r⃗g)

]2 (2.22)

The theory is dual invariant. Considering the dual transformation (θ = −π/2):

e→ g , g → −e , Aµ → Ãµ (2.23)

the Hamiltonian yields:

He → Hg = − 1

2Mg

[
∇g + ieg

˜⃗
A(r⃗g − r⃗e)

]2 (2.24)

The explicit form of the dual vector potential ˜⃗
A can be recovered from the conservation of the total

momentum, which corresponds to the translation invariance of the theory. The particles’ momentum
reads:

Mev⃗e = p⃗e − egA⃗(r⃗e − r⃗g) and Mg v⃗g = p⃗g − eg
˜⃗
A(r⃗g − r⃗e) (2.25)

The system of the particles is considered isolated. Therefore, equations (2.25) are compatible with the
conservation of momentum of the whole system, p⃗e + p⃗g = 0 only if A⃗(r⃗) =

˜⃗
A(−r⃗). Thus, the vector

potential and its dual potential are connected with the following gauge transformation:

A⃗(r⃗) −→ A⃗(r⃗) +∇λ(r⃗) = A⃗(−r⃗) = ˜⃗
A(r⃗) (2.26)

Hence, the Hamiltonian (2.24) reads:

Hg = − 1

2Mg

[
∇g + iegA⃗(r⃗e − r⃗g)

]2 (2.27)

Note that the gauge transformation (2.26) corresponds to the transformation e2iegϕ, as we mention in
section 1.3. Therefore transformation (1.88) yields:

A⃗(r⃗)− A⃗(−r⃗) = i

e
U−1∇U , where U = e2iegϕ (2.28)

Let us consider a system of two identical dyons with electrical and magnetic charges e and g at r⃗1 and
r⃗2, respectively. Obviously, a permutation of these particles cannot change any physical observable. Thus,
the only thing that can happen is that the wave function of the system picks up an additional phase factor
eiπa. The effect of two consecutive interchanges is the same as that of no interchange. Thus e2iπa = 1 ,
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i.e., eiπa = 1 (Bose-Einstein statistics) or eiπa = −1 (Fermi-Dirac statistics). Considering equations (2.22)
and (2.27), the total Hamiltonian reads:

H = − 1

2M

(
∇1−iegA⃗(r⃗1−r⃗2)+iegA⃗(r⃗2−r⃗1)

)2
− 1

2M

(
∇2−iegA⃗(r⃗2−r⃗1)+iegA⃗(r⃗1−r⃗2)

)2
+V (e2)+V (g2)

(2.29)

with V (e2) =
e2

|r⃗1 − r⃗2|
and V (g2) =

g2

|r⃗1 − r⃗2|
Upon substituting transformation (2.28) into equation (2.29), we obtain:

H = − 1

2M

(
∇+ 2ig2e∇ϕ

)2
− 1

2M

(
∇− 2ig2e∇ϕ

)2
+

e2 + g2

|r⃗1 − r⃗2|
∇2ϕ=0
=⇒

H = − 1

2M
(∇2

1 +∇2
2) + V (q2) , where q =

√
g2 + e2 (2.30)

Note that, as it was expected, the total Hamiltonian (2.30) of the system is dual invariant, due to the dual
invariant charge q. Additionally, under the transformation (2.28) the wave-function changes as follows:

ψ(r⃗) −→ e2iegϕψ(r⃗) (2.31)

The Hamiltonian (2.10) remains invariant under the interchange of the two dyons (r⃗1 → r⃗2 ⇒ r⃗ → −r⃗ ⇒
ϕ→ ϕ+ π). Under this transformation, the wave-function change as follows:

e2iegϕψ(r⃗) −→ e2iegπe2iegϕψ(r⃗)

The Dirac quantization condition (2.9) demands:

e2iegϕψ(r⃗) −→ einπe2iegϕψ(r⃗) , n ∈ Z (2.32)

The equation (2.32) yields a very interesting result:

for n = 1, 3, ... ϕ(r⃗) → −ϕ(r⃗) Fermi-Dirac statistics

for n = 0, 2, ... ϕ(r⃗) → ϕ(r⃗) Boss-Einstein statistics (2.33)

Thus, the standard spin-statistics theorem is fulfilled, but a system of two identical dyons may satisfy
Bose-Einstein as well as Fermi-Dirac statistics.

2.3 Quantum mechanical description of a charge-monopole system
In this section, we examine the system charge-monopole through the Schrödinger equation. The corre-
sponding solutions include a very interesting generalisation of the spherical harmonics, which is explicitly
defined later on.

2.3.1 The Generalized Spherical Harmonics
Let us consider once again the system of an electrically charged particle in an external monopole field.
The Lagrangian of this system reads:

L =
1

2
m ˙⃗r 2 + e ˙⃗rA⃗ (2.34)

The conjugate momentum is defined as follows:

p⃗ =
∂L

∂ ˙⃗r
= m ˙⃗r + eA⃗ (2.35)

The Legendre transformation of the Lagrangian yields the Hamiltonian of the system:

H = p⃗ · ˙⃗r − L⇒

H =
π⃗2

2M
, with π⃗ = p⃗− eA⃗ (2.36)
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Also, we consider the vector potential (1.89):

A⃗(r⃗) =
g

r

1− cos(θ)

sin(θ)
êϕ (2.37)

It is useful to write momentum π⃗ as follows:

π⃗ = π⃗r + π⃗⊥ ⇒ π⃗ = p⃗r + π⃗⊥ (2.38)

where we noticed that π⃗r is identical to p⃗r, since A⃗ is parallel to êϕ and perpendicular to êr. Therefore,
the Hamiltonian (2.36) reads:

H =
p⃗2r
2M

+
π⃗2
⊥

2M
=

p⃗2r
2M

+

( r⃗ × π⃗

r

)2
2M

=
p⃗2r
2M

+

(
L⃗+ egr̂

)2
2Mr2

⇒

H =
p⃗2r
2M

+
L2 − µ2

2Mr2
, with µ = eg (2.39)

where the generalized angular momentum is defined as L⃗ = r⃗ × π⃗ − egr̂ and satisfies the equation (1.35)
L⃗ · r̂ = r̂ · L⃗ = −eg. Upon using definition p⃗ = −i∇, we define the following operators:

p2r = − 1

r2
∂

∂r

(
r2
∂

∂r

)
(2.40)

considering

L⃗ = r⃗ × π⃗ − µr̂ = r⃗ × p⃗− er⃗ × A⃗− µr̂

and

r⃗ × p⃗ = −ir⃗ ×∇ = −iêϕ
∂

∂θ
+ i

êθ
sin(θ)

∂

∂ϕ
, r⃗ × A⃗ = −g 1− cos(θ)

sin(θ)
êθ

we obtain

L⃗ =
êθ

sin(θ)

[
i
∂

∂ϕ
+ µ(1− cos(θ))

]
− iêϕ

∂

∂θ
− µêr (2.41)

and

L2 = − 1

sin2(θ)

(
sin(θ)

∂

∂θ

[
sin(θ)

∂

∂θ

]
+
[ ∂
∂ϕ

− iµ(1− cos(θ))
]2)

+ µ2 (2.42)

also considering

êr = cos(θ)êz + sin(θ)êρ and êθ = −sin(θ)êz + cos(θ)êρ

we obtain

L3 = −i ∂
∂ϕ

− µ (2.43)

Note that in the ordinary case, where µ = 0, the operator L⃗ corresponds to the ordinary angular momentum
operator. The solutions of the Schrödinger equation Hψ(r⃗) = Eψ(r⃗), where the operator H is given by
the equation (2.39), may be written as follows:

ψ(r⃗) = Fkℓ̃(r)Yµℓm(θ, ϕ) (2.44)

where Yµℓm(θ, ϕ) are the eigenfunctions of the generalized angular momentum, called generalized spherical
harmonics. In the subsequent steps we determine the explicit form of the generalized spherical harmonics.

The operators L2 and L3 have common eigenfunctions [1], considering the Dirac quantization condition.
The eigenfunctions of the operator L3 are:

L3f(ϕ) = mf(ϕ) ⇒ −i∂f
∂ϕ

= (m+ µ)f(ϕ) ⇒

fµm(ϕ) = Aei(µ+m)ϕ , with eigenvalues m : µ+m ∈ Z and µ =
n

2
, n ∈ Z (2.45)
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The quantization condition µ+m ∈ Z is imposed, since function fµm(ϕ) must be single-valued. The fact
that the operators L2 and L3 have common eigenfunctions yields that the form of Yµℓm(θ, ϕ) reads:

Yµℓm(θ, ϕ) = Pµℓm(cos(θ))ei(µ+m)ϕ (2.46)

Let us solve the eigenvalue equation of the L2 operator:

L2Yµℓm(θ, ϕ) = λYµℓm(θ, ϕ) ⇒

(
− (1− x2)

d2

dx2
+ 2x

d

dx
+

(m+ µx)2

1− x2
+ µ2

)
Pµℓm(x) = λPµℓm(x) (2.47)

where we have set x = cos(θ). Upon separating the singularities x = ±1, we may write the solution as
follows:

Pµℓm(x) = (1− x)
−
µ+m

2 (1 + x)
−
µ−m

2 F (x) (2.48)

Upon substituting ansatz (2.48) into equation (2.47), we obtain:

(1− x2)
d2F (x)

dx2
+ 2
[
m+ (µ− 1)x

]dF (x)
dx

− (µ2 − µ− λ)F (x) = 0 (2.49)

If we introduce variable z =
1 + x

2
, we obtain:

z(1− z)F ′′ +
[
c− (a+ b+ 1)z

]
F ′ − abF = 0

with c = m− µ+ 1 , ab = µ2 − µ− λ , a+ b+ 1 = 2(1− µ) (2.50)

This is the hypergeometric equation. Demanding finite solutions, we set a = −n, where n = 0, 1, 2, ....
Hence, considering the arguments for single-valued generalized spherical harmonics, presented in [11], the
eigenvalues of the generalized angular momentum read:

λ = ℓ(ℓ+ 1) , with ℓ = n+ |µ| , n = 0, 1, 2, ... (2.51)

Equation (2.51) yields that ℓ and µ must be simultaneously integers or half-integers. Additionally, we
have:

ℓ = |µ|, |µ|+ 1, |µ|+ 2, ... > 0 (2.52)

Upon summarizing the solutions of the eigenvalue equation, we obtain:

Yµℓm(θ, ϕ) = Nµℓm(1− cos(θ))
−
µ+m

2 (1 + cos(θ))
−
µ−m

2 P−µ−m, −µ+m
ℓ+m (cos(θ))ei(µ+m)ϕ (2.53)

These are the generalized spherical harmonics, where P a,b
n are the Jacobi polynomials:

P a,b
n (x) =

(−1)n

2nn!
(1− x)−a(1 + x)−b d

n

dxn

(
(1− x)a+n(1 + x)b+n

)
(2.54)

Additionally, normalisation factor Nµℓm reads:

Nµℓm = 2m
(
(2ℓ+ 1)(ℓ−m)!(ℓ+m)!

4π(ℓ− µ)!(ℓ+ µ)!

) 1
2

(2.55)

Note that, in the vanishing magnetic charge case (µ = 0), the generalized spherical harmonics are reduced
to the standard spherical harmonics.

Additionally, we can define raising and lowering generators L+ and L−, respectively, according to the
standard procedure:

L± = L1 ± iL2 (2.56)

where

L1 = cot(θ)cos(ϕ)
[
i
∂

∂ϕ
+ µ(1− cos(θ))

]
+ i sin(ϕ)

∂

∂θ
− µ sin(θ)cos(ϕ)
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L2 = cot(θ)sin(ϕ)
[
i
∂

∂ϕ
+ µ(1− cos(θ))

]
− i cos(ϕ)

∂

∂θ
− µ sin(θ)sin(ϕ) (2.57)

thus

L± = e±iϕ
[
± ∂

∂θ
+ i cot(θ)

∂

∂ϕ
− µ

sin(θ)

1 + cos(θ)

]
(2.58)

Upon considering algebra (2.20), we obtain:

L±L∓ = L2 − L2
3 ± L3 (2.59)

Consequently, we can prove the following standard relation:

L±Yµℓm(θ, ϕ) =
√
ℓ(ℓ+ 1)−m(m± 1)Yµℓm±1(θ, ϕ) (2.60)

2.3.2 Solutions of the Schrödinger equation
In order for the solution of the Schrödinger equation Hψ(r⃗) = Eψ(r⃗) to be completed, we need to solve
the radial part of the equation. Upon substituting equations (2.39), (2.40), (2.44) and L2Yµℓm(θ, ϕ) =
ℓ(ℓ+ 1)Yµℓm(θ, ϕ) into Schrödinger equation, we obtain:

− 1

2M

[
1

r2
∂

∂r
− ℓ(ℓ+ 1)− µ2

r2

]
Fkℓ̃(r) = EFkℓ̃(r) (2.61)

Introducing the parameter k =
√
2ME and the variable x = kr, equation (2.61) yields:

d2

dx2
Fkℓ̃ +

2

x

d

dx
Fkℓ̃ +

(
1− ℓ(ℓ+ 1)− µ2

x2

)
Fkℓ̃ = 0 (2.62)

If we set

ℓ̃(ℓ̃+ 1) = ℓ(ℓ+ 1)− µ2 ⇒

ℓ̃ =

√(
ℓ+

1

2

)2
− µ2 − 1

2
(2.63)

and consider finite solution at r = 0, the solution is given by the spherical Bessel functions:

Fkℓ̃(r) =
1

k

√
2

π
jℓ̃(kr) (2.64)

The asymptotic r → +∞ behaviour of function (2.64) reads:

Fkℓ̃(r) ≈
1

r
sin(kr − πℓ

2
) (2.65)

It is very interesting that, considering equation (2.52), we observe that the effective potential in equation
(2.61) is always repulsive,

Veff (r) =
ℓ(ℓ+ 1)− µ2

2Mr2
(2.66)

which means that there is no bound state in the spectrum of a monopole and a spinless charged particle.
It is an analogous situation with the classical scattering of a charged particle on a monopole, discussed in
section 1.2, where there are no closed trajectories.

Similarly to the previous case, we consider a charge-dyon system. The angular dependence of the
corresponding wave-function is still given by the generalized spherical harmonics. Nevertheless, the radial
part of the Schrödinger equation reads:

− 1

2M

[
1

r2
∂

∂r
− ℓ(ℓ+ 1)− µ2

r2

]
FNℓ̃(r) +

eQ

r
FNℓ̃(r) = EFNℓ̃(r) (2.67)

where Q is the electric charge of the dyon and
eQ

r
is an attractive Coulomb-interaction term, if we consider

eQ < 0. Considering E < 0 and the ansatz
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FNℓ̃(r) = e−krrℓ̃ρNℓ̃(r) (2.68)

where k =
√
2M |E|, the equation (2.67) reads:

r
d2

dr2
ρNℓ̃(r)+2(ℓ̃2+1−kr) d

dr
ρNℓ̃(r)+2(M |eQ|−kℓ̃−k)ρNℓ̃(r)+

ℓ̃(ℓ̃+ 1)− ℓ(ℓ+ 1) + µ2

r
ρNℓ̃(r) = 0 (2.69)

Note that, if we consider ℓ̃ =
√
(ℓ+ 1

2 )
2 − µ2 − 1

2 , the solution is regular at r = 0. Additionally, the
solution is given by the confluent hypergeometric function:

ρNℓ̃(r) = 1F1(−N ; 2ℓ̃+ 2; 2kr) (2.70)

where N = 0, 1, 2, ... is a radial quantum number, which reads:

N =
M |eQ|
k

− ℓ̃− 1 , and therefore ENℓ̃ = − M(eQ)2

2(N + ℓ̃+ 1)2
(2.71)

where ENℓ̃ is the spectrum of the bound states of the system. The ground state reads ℓ = 1
2 , N = 0, µ = 1

2 ,
which is doubly degenerated (m = ± 1

2 ). In order to conclude, the solution of the radial Schrödinger
equation reads:

FNℓ̃(r) = C (kr)ℓ̃e−kr
1F1(−N ; 2ℓ̃+ 2; 2kr) (2.72)

where [1]:

C =
2ℓ̃+1

[
MeQΓ(−N ; 2ℓ̃+ 2; 2kr)

] 1
2

(N !)
1
2 (N + ℓ̃+ 1)Γ(2ℓ̃+ 2)

(2.73)

For Q = 0, equation (2.64) can be recovered. Finally, the effective potential

Veff (r) =
ℓ(ℓ+ 1)− µ2

2Mr2
− |eQ|

r
(2.74)

allows the existence of bound states with negative energy, as we proved explicitly. This result is analogous
to that recovered in the subsection 1.2.2, where we proved that the classical charge-dyon system has bound
trajectories.

2.4 Charge-Monopole system in the Pauli approximation
The Pauli equation is a low energy limit of the Dirac equation and describes fermions, whose spin interacts
with an external magnetic field. In our case, which is the charge-monopole system, the external magnetic
field is the monopole field. The non-relativistic Pauli equation reads:

Hψ(r⃗) = − 1

2M

[
σ⃗(∇− ieA⃗)

]2
ψ(r⃗) = Eψ(r⃗) (2.75)

Upon considering the identity (σ⃗a⃗)(σ⃗a⃗) = a⃗⃗b+ iσ⃗(⃗a× b⃗), the Hamiltonian (2.75) yields:

Hψ(r⃗) =

[
(σ⃗π⃗)2

2M

]
ψ(r⃗) =

[
π⃗2

2M
+

iσ⃗

2M
(π⃗ × π⃗)

]
ψ(r⃗) (2.76)

Additionally, the spin operator reads S⃗ =
σ⃗

2
, while the cross product of the momentum π⃗ is π⃗ × π⃗ = ieB⃗.

Hence, equation (2.76) implies:

Hψ(r⃗) =

[
π⃗2

2M
− e

M
S⃗B⃗

]
ψ(r⃗) (2.77)

where the term − e
M S⃗B⃗ corresponds to the interaction between the spin s = 1

2 of the particle and the
external magnetic field. Note that the gyromagnetic ratio predicted by the Pauli equation is γ = 2.

The operator of the total angular momentum is defined as follows:

J⃗ = L⃗+ S⃗ = r⃗ × π⃗ − egr̂ + S⃗ (2.78)
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The operator of the total angular momentum commutes with the Hamiltonian operator (2.77). Note that:

J2 = L2 + 2L⃗S⃗ +
3

4
(2.79)

The conservation of the total angular momentum (2.78) leads to some very interesting results [1]. Let
us consider a minimal value of the parameter µ = 1

2 , which is consistent with the charge quantization
condition. Then, the ground state is a spherically symmetric s-wave with zero angular momentum J⃗ = 0⃗,
since the orbital angular momentum vanishes and the extra term of the generalized angular momentum is
canceled by the spin vector, i.e., S⃗−µr̂ = 0⃗. The latter condition means that the spin angular momentum
S⃗ has the same length as the extra angular momentum −µr̂, and these vectors are anti-parallel. The
subtle point here is that the direction of the vector −µr̂ is given by the unit radial vector, with direction
from the monopole to the charged particle. Therefore, if the charged particle manages to go through the
core of the monopole, this component of the angular momentum must invert its direction. However, the
total angular momentum is conserved, which means that the spin of the charged particle must also change
its direction in order to compensate for the inversion of −µr̂. However, if we consider the Dirac, or the
Pauli equation, which describes a mass-less particle interacting with a monopole, the helicity is a conserved
quantum number labeling the states. Therefore, the Hamiltonian of the system of a mass-less spin-1/2
charged particle and a monopole is not self-adjoint at the origin for the s-wave states. Thus, the theory
becomes pathological [12][13]. We may fix this problem, if we suppose that there is an unknown mechanism
inside the monopole core, according which, when an electron enters the monopole core, some process of
non-electrodynamical nature leads, for example, to the conjugation of the electron charge e→ −e. Then,
there is no need to consider the spin-flip scattering of the electron on the monopole, the amplitude of
which is not well defined in the s-wave.

2.4.1 Dynamical supersymmetry of the electron-monopole system
In section 1.4 we mention the dynamical SO(2, 1) symmetry of the non-relativistic charge-monopole system.
The addition of spin-1/2 makes the system invariant under the transformations of the dynamical conformal
supergroup OSp(1, 2).

The spin-1/2 degrees of freedom can be represented via the three-dimensional anti-commuting Grass-
mann variables ξi, where {ξi, ξj} = δij . Let us define the operator

Si = − i

2
ϵijkξjξk (2.80)

which satisfies the same algebra with the spin operator. In the next few lines we prove this statement.
The commutation of the spin operators reads:

[Si, Sj ] =
i2

4
ϵiabϵjcd[ξaξb, ξcξd]

We use the identity

[AB,CD] = A{B,C}D − C{D,A}B −AC{B,D}+ {A,C}DB (2.81)

and obtain

[Si, Sj ] =
i2

4
ϵiabϵjcd(ξaξdδbc − ξcξbδda − ξaξcδbd + ξdξbδac) =

i2

4
ϵiabϵjdb(−ξaξd + ξdξa − ξaξd + ξdξa) =

i2

2
(δijδad − δidδja)(ξdξa − ξaξd) =

− i
2

2
(ξiξj − ξjξi) = − i

2

2
ϵijkϵkabξaξb ⇒

[Si, Sj ] = i ϵijkSk (2.82)

The equation (2.82) represents the algebra of Spin operators. It is very interesting that the irreducible
two-dimensional representation of Clifford’s algebra of ξi variables is ξi = σi√

2
. Hence, the representation

of operator S⃗ reads:

Si = − i

2
ϵijk

σjσk
2
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using the algebra of Pauli matrices [σi, σj ] = 2i ϵijkσk we have

Si = − i

4
ϵijkσkσj +

1

2
ϵjkaϵijkσa

and considering the identity ϵjkaϵijk = 2δia, we obtain

Si =
σi
2

(2.83)

Indeed, the operator (2.80) represents the Spin operator. Note that ξ⃗ = (ξ1, ξ2, ξ3) can be considered as a
vector under the rotation group. Substituting the operator (2.80) and the monopole field (1.21) into the
Hamiltonian (2.77) we obtain:

H =
π⃗2

2M
+ i

µ

2Mr3
ϵijkriξjξk (2.84)

The corresponding Lagrangian reads:

L =
1

2
M ˙⃗r2 +

1

2
(ξ⃗

˙⃗
ξ) + eA⃗ ˙⃗r − i

µ

2Mr3
ϵijkriξjξk (2.85)

Also, the total angular momentum is:

Ji = ϵijkMrj ṙk − µr̂ − i

2
ϵijkξjξk (2.86)

Note that the Lagrangian (2.85) transforms as a scalar under spatial rotations. The conjugate momentum
of ˙⃗r and ˙⃗

ξ read:

p
(r)
i =

∂L

∂ṙi
=Mṙi + eAi and p

(ξ)
i =

∂L

∂ξ̇i
=
ξi
2

(2.87)

The Hamilton’s equation for ξi is:

ξ̇i =
∂H

∂p
(ξ)
i

=
iµ

Mr3
ϵijkrjξk (2.88)

The equation (2.88) describes the classical spin precession in the monopole field [1].
Furthermore, let us consider the following supertransformations [1]:

Q : ri −→ ri +
iε√
M
ξi , ξi −→ ξi − ε

√
Mṙi (2.89)

S : ri −→ ri +
itη√
M
ξi , ξi −→ ξi − η

√
M(tṙi − ri) (2.90)

where ε and η are anti-commuting Grassmannian transformation parameters. Transformations Q and S
change the Lagrangian (2.85) by a total time derivative, hence, they form a dynamical supersymmetry.
The corresponding conserved Noether supercharges reads [1][14]:

Q =
√
M ˙⃗rξ⃗ and S = −tQ+

√
Mr⃗ξ⃗ (2.91)

Operators Q and S complete the set of generators of the conformal group (1.100). All the charges commute
with the operator of the total angular momentum J⃗ [1]. Thus, the complete set of generators of the
dynamical group form the following algebra:

[H,D] = iH [D,K] = iK [H,K] = 2iD
[H,S] = −iQ [K,Q] = iS [K,S] = 0
[H,Q] = 0 [D,Q] = − i

2Q [D,S] = i
2S

{Q,Q} = 2H {Q,S} = −2D {S, S} = 2K

(2.92)

In Appendix B we present some proofs of the above relations. The quadratic Casimir operator of the
supergroup OSp(1, 1) reads [14]:

J 2 =
1

4

(
i[Q,S]− 1

2

)2 ≡ 1

4
C2 (2.93)

where
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C = σ⃗(J⃗2 + µr̂)− 1

2
(2.94)

Note that if the eigenvalues of the operator of the total angular momentum J⃗2 are denoted by j(j+1), the

eigenvalues of the Casimir operator J 2 are ℓ̃
4 , where ℓ̃ =

√
(j + 1

2 )
2 − µ2. Thus, since the eigenstates of

the commuting operators J⃗2, J3 and C transform under some irreducible representation of the supergroup
OSp(1, 1), we can determine the spectrum of the Pauli equation in the presence of a magnetic monopole
immediately [14]. However, in the next subsection we find the spectrum of the monopole-spin-1/2 particle
system by solving the eigenvalue problem directly.

2.4.2 Generalized spinor harmonics
Similarly to the Schrödinger equation case, the solutions of the angular part of the Pauli equation are
some generalized spherical harmonics, called generalized spinor harmonics.

The eigenvalues of the generalized angular momentum depend on the quantum number ℓ, defined in
subsection 2.3.1, equation (2.52). The minimum value of ℓ is ℓmin = µ. Equivalently, the minimum value
of the quantum number of the total angular momentum J⃗2 = (L⃗+S⃗)2 reads j = µ± 1

2 and depends on spin.

i) Generalized spinor harmonics for j ≥ µ+ 1
2

Upon substituting operator (2.40) into the Hamiltonian (2.77), we obtain:

H = − 1

2Mr2
∂

∂r

(
r2
∂

∂r

)
+

1

2Mr2

[
L2 − µ2 − µ(σ⃗ · r̂)

]
(2.95)

Let us define a generalization of the parity operator of the spinors [1]:

K = σ⃗(r⃗ × π⃗) = σ⃗(L⃗+ µr̂) (2.96)

In the next few lines we prove that the operator (2.96) can represent the angular part of the Hamiltonian
operator:

K2 =
[
σ⃗(r⃗ × π⃗)

]2
Considering the identity (σ⃗ · a⃗)(σ⃗ · a⃗) = a⃗ · b⃗+ iσ⃗(⃗a× b⃗), we have

K2 = L̃2 + i σ⃗(r⃗ × π⃗)× (r⃗ × π⃗) = L̃2 + i σiϵijkϵjabraπbϵkcdrcπd

Substituting the identity (2.14) into the equation, we obtain:

K2 = L̃2 + i σiϵjabraπbriπj

where we used the commutative property of ri and the anti-commutative property of the indices of the
Levi-Civita symbol. Considering the standard commutation [ri, πj ] = iδij , we have:

K2 = L̃2 + i r⃗(π⃗ × π⃗)(σ⃗ · r⃗)− σiϵijkrjπk

Finally, upon substituting relations π⃗ × π⃗ = ieB⃗ and L⃗ =
˜⃗
L− µr̂ into the above equation, we obtain:

K2 = L2 − µ2 − µ(σ⃗ · r⃗)− σ⃗(r⃗ × π⃗) ⇒

K2 +K = L2 − µ2 − µ(σ⃗ · r̂) (2.97)

It is very important that the operator K commutes with the operators H, J2, J3, L
2 and σ⃗ · L⃗ [1].

Our goal is to determine the eigenfunctions of K operator. The common eigenfunctions of the operators
J2 = (L⃗+ S⃗)2, J3 and L2 are:

Φ
(1)
µjmj

(θ, ϕ) =

√ j+mj

2j Yµ, j− 1
2 , mj− 1

2
(θ, ϕ)√

j−mj

2j Yµ, j− 1
2 , mj+

1
2
(θ, ϕ)

 (2.98)

with eigenvalues
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J2 : j(j + 1) , where j = ℓ+ 1
2

J3 : mj

L2 : ℓ(ℓ+ 1)
(2.99)

and

Φ
(2)
µjmj

(θ, ϕ) =

−
√

j−mj+1
2j+2 Yµ, j+ 1

2 , mj− 1
2
(θ, ϕ)√

j+mj+1
2j+2 Yµ, j+ 1

2 , mj+
1
2
(θ, ϕ)

 (2.100)

with eigenvalues

J2 : j(j + 1) , where j = ℓ− 1
2

J3 : mj

L2 : ℓ(ℓ+ 1)
(2.101)

The eigenvalues of the operators L2 and J3 are easily verified since:

L2Yµ,ℓ,mℓ
(θ, ϕ) = ℓ(ℓ+ 1)Yµ,ℓ,mℓ

(θ, ϕ) and L3Yµ,ℓ,mℓ
(θ, ϕ) = mℓYµ,ℓ,mℓ

(θ, ϕ) (2.102)

Also, the range of the quantum number j reads:

Φ
(1)
µjmj

(θ, ϕ) : j − 1

2
= ℓ ≥ µ and Φ

(2)
µjmj

(θ, ϕ) : j +
1

2
= ℓ ≥ µ (2.103)

The functions (2.98) and (2.100) are also eigenfunctions of operator σ⃗ · L⃗, since:

σ⃗ · L⃗Φ(1)
µjmj

(θ, ϕ) =

(
L3 L−
L+ −L3

)
Φ

(1)
µjmj

(θ, ϕ)

Considering equations (2.56), (2.60) and (2.102), we obtain:

σ⃗ · L⃗Φ(1)
µjmj

=


(
(mj − 1

2 )
√

j+mj

2j +
√
(j − 1

2 )(j +
1
2 )− (mj +

1
2 )(mj − 1

2 )
√

j−mj

2j

)
Yµ, j− 1

2 , mj− 1
2(

(mj +
1
2 )
√

j−mj

2j +
√
(j − 1

2 )(j +
1
2 )− (mj +

1
2 )(mj − 1

2 )
√

j+mj

2j

)
Yµ, j− 1

2 , mj+
1
2

 =

σ⃗ · L⃗Φ(1)
µjmj

=


(
(mj − 1

2 )
√

j+mj

2j +
√
(j −mj)(j +mj)

√
j−mj

2j

)
Yµ, j− 1

2 , mj− 1
2(

(mj +
1
2 )
√

j−mj

2j +
√
(j −mj)(j +mj)

√
j+mj

2j

)
Yµ, j− 1

2 , mj+
1
2

⇒

σ⃗ · L⃗Φ(1)
µjmj

(θ, ϕ) = (j − 1

2
)Φ

(1)
µjmj

(θ, ϕ) (2.104)

Similarly, we can prove that:

σ⃗ · L⃗Φ(2)
µjmj

(θ, ϕ) = −(j +
3

2
)Φ

(2)
µjmj

(θ, ϕ) (2.105)

Also, it is essential to verify the eigenvalues of the total angular momentum. The definition (2.78) yields:

J2 = L2 + 2L⃗S⃗ + S2 = L2 + σ⃗ · L⃗+
3

4
(2.106)

Thus, we obtain:

J2Φ
(1)
µjmj

(θ, ϕ) =
(
ℓ(ℓ+ 1) + j − 1

2
+

3

4

)
Φ

(1)
µjmj

(θ, ϕ)
ℓ=j− 1

2=
(
j2 − 1

4
+ j − 1

2
+

3

4

)
Φ

(1)
µjmj

(θ, ϕ) ⇒

J2Φ
(1)
µjmj

(θ, ϕ) = j(j + 1)Φ
(1)
µjmj

(θ, ϕ)

similarly, for Φ
(2)
µjmj

(θ, ϕ), we have:

J2Φ
(2)
µjmj

(θ, ϕ) =
(
ℓ(ℓ+ 1)− j − 3

2
+

3

4

)
Φ

(2)
µjmj

(θ, ϕ)
ℓ=j+ 1

2=
(
j2 + 2j +

3

4
− j − 3

2
+

3

4

)
Φ

(2)
µjmj

(θ, ϕ) ⇒
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J2Φ
(2)
µjmj

(θ, ϕ) = j(j + 1)Φ
(2)
µjmj

(θ, ϕ)

In order to determine the eigenfunctions of operator K, we need to find how the operator σ⃗ · r̂ changes
spinors Φ

(1)
µjmj

and Φ
(2)
µjmj

.

σ⃗ · r̂Φ(1)
µjmj

(θ, ϕ) =

√
4π

3

(
Y010

√
2Y01−1

−
√
2Y011 Y010

)√ j+mj

2j Yµ, j− 1
2 , mj− 1

2
(θ, ϕ)√

j−mj

2j Yµ, j− 1
2 , mj+

1
2
(θ, ϕ)


where Y010(θ, ϕ) =

√
3
4π cos(θ) and Y01±1(θ, ϕ) = ∓

√
3
8π sin(θ)e

±iϕ. Thus, we obtain:

σ⃗ · r̂Φ(1)
µjmj

(θ, ϕ) = AΦ
(1)
µjmj

(θ, ϕ) +BΦ
(2)
µjmj

(θ, ϕ) (2.107)

similarly

σ⃗ · r̂Φ(2)
µjmj

(θ, ϕ) = BΦ
(1)
µjmj

(θ, ϕ)−AΦ
(2)
µjmj

(θ, ϕ) (2.108)

where

A = − µ

j + 1
2

and B = −

√
(j + 1

2 )
2 − µ2

j + 1
2

= −
√

1−A2 (2.109)

Hence, we recognise the eigenfunctions of the operators K = σ⃗L⃗+ µσ⃗r̂, J2 and J3:

Ω
(1)
µjmj

(θ, ϕ) =
1

2

(√
1−A+

√
1 +A

)
Φ

(1)
µjmj

(θ, ϕ)− 1

2

(√
1−A−

√
1 +A

)
Φ

(2)
µjmj

(θ, ϕ) (2.110)

Ω
(2)
µjmj

(θ, ϕ) =
1

2

(√
1−A−

√
1 +A

)
Φ

(1)
µjmj

(θ, ϕ) +
1

2

(√
1−A+

√
1 +A

)
Φ

(2)
µjmj

(θ, ϕ) (2.111)

which are the generalized spinor harmonics. It can be proven that:

σ⃗ · r̂Ω(1)
µjmj

(θ, ϕ) = −Ω
(2)
µjmj

(θ, ϕ) (2.112)

σ⃗ · r̂Ω(2)
µjmj

(θ, ϕ) = −Ω
(1)
µjmj

(θ, ϕ) (2.113)

Consequently, we obtain:

KΩ
(1)
µjmj

(θ, ϕ) = (−1 + ℓ̃)Ω
(1)
µjmj

(θ, ϕ) (2.114)

and

KΩ
(2)
µjmj

(θ, ϕ) = (−1− ℓ̃)Ω
(2)
µjmj

(θ, ϕ) (2.115)

where

ℓ̃ =

√(
j +

1

2

)2
− µ2 (2.116)

Note that ℓ̃
2 is the eigenvalue of Casimir operator (2.93).

ii) Generalized spinor harmonics for j = µ− 1
2

In this case, relation (2.103) yields that only one angular spinor is non-vanishing. Therefore, we have:

Ω
(3)

µ,µ− 1
2 ,mj

(θ, ϕ) = Φ
(2)

µ,µ− 1
2 ,mj

(θ, ϕ) (2.117)

which satisfies the following equations:

KΩ
(3)

µ,µ− 1
2 ,mj

(θ, ϕ) = −Ω
(3)

µ,µ− 1
2 ,mj

(θ, ϕ) (2.118)

and

(σ⃗ · r̂)Ω(3)

µ,µ− 1
2 ,mj

(θ, ϕ) = Ω
(3)

µ,µ− 1
2 ,mj

(θ, ϕ) (2.119)
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2.4.3 Solutions of the radial Pauli equation
The Hamiltonian (2.95), considering equation (2.97), can be written as follows:

H = − 1

2Mr2
∂

∂r

(
r2
∂

∂r

)
+
K2 +K

2Mr2
(2.120)

Upon considering solutions of the form:

ψ(1)(r⃗) = R
(1)

kℓ̃
(r)Ω

(1)
µjmj

(θ, ϕ) (2.121)

and the fact that (2.114):

(K2 +K)Ω
(1)
µjmj

(θ, ϕ) = ℓ̃(ℓ̃− 1)Ω
(1)
µjmj

(θ, ϕ) (2.122)

the radial part of Pauli equation reads:

− 1

2M

[
d2

dr2
+

2

r

d

dr
− ℓ̃(ℓ̃− 1)

r2

]
R

(1)

kℓ̃
(r) = ER

(1)

kℓ̃
(r) (2.123)

A regular solution of the above equation is given by the modified Bessel function of order ℓ̃− 1
2 :

R
(1)

kℓ̃
(r) =

√
k

r
Jℓ̃− 1

2
(kr) , k =

√
2ME (2.124)

Similarly, considering a solution of the form:

ψ(2)(r⃗) = R
(2)

kℓ̃
(r)Ω

(2)
µjmj

(θ, ϕ) (2.125)

and the equation (2.114):

(K2 +K)Ω
(2)
µjmj

(θ, ϕ) = ℓ̃(ℓ̃+ 1)Ω
(2)
µjmj

(θ, ϕ) (2.126)

we obtain the following radial equation:

− 1

2M

[
d2

dr2
+

2

r

d

dr
− ℓ̃(ℓ̃+ 1)

r2

]
R

(2)

kℓ̃
(r) = ER

(2)

kℓ̃
(r) (2.127)

with regular solution:

R
(2)

kℓ̃
(r) =

√
k

r
Jℓ̃+ 1

2
(kr) , k =

√
2ME (2.128)

Note that, close to the origin, we have R(1)(r) ∼ ar−ℓ̃ + brℓ̃−1. Supposing j ≥ µ + 1
2 ⇒ ℓ̃ > 1, where

R(1)(r) is not vanishing, and demanding regular solution at r = 0, we obtain R(1)(0) = 0. This result
corresponds to magnetic mirror effect described in subsection 1.2.1.

Considering j = µ− 1
2 ⇒ ℓ̃ = 0, the radial equation reads:

− 1

2M

[
d2

dr2
+

2

r

d

dr

]
R

(3)

k,µ− 1
2

(r) = ER
(3)

k,µ− 1
2

(r) (2.129)

with solution:

R
(3)

k,µ− 1
2

(r) =
1√
π

e±ikr

r
, k =

√
2ME (2.130)

The asymptotic behaviour of the above solution at the origin is ∼ 1
r , which means that it is not compatible

with a smooth boundary condition at the origin. The reason is that the Pauli Hamiltonian is not self-
adjoint over the complete space of eigenfunctions, since [1]:

(ψ(3), Hψ(3)) ̸= (Hψ(3), ψ(3)) (2.131)

This case corresponds to a charge falling down on the monopole. Note that the states 1, 2, with j ≥ µ+ 1
2 ,

transform under a representation of the supergroup OSp(1, 1). However, the eigenvalues of the Casimir
operator, corresponding to the states with j = µ − 1

2 , vanish and the supercharges Q and S are not
self-adjoint. Consequently, the group of dynamical symmetry consists of the group SO(2, 1), in the case
j = µ− 1

2 .
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2.5 Relativistic quantum mechanical description of a charge-monopole
system

In this section we represent a relativistic description of the charge-monopole system. First of all, we solve
the corresponding Dirac equation:

Hψ(r⃗) = Eψ(r⃗) (2.132)

where H is the Dirac Hamiltonian operator:

H = α⃗π⃗ +Mβ = α⃗(p⃗− eA⃗) +Mβ = −iα⃗(∇− ieA⃗) +Mβ (2.133)

where

αi = γ0γi =

(
0 σi
σi 0

)
, β = γ0 =

(
1 0
0 −1

)
, H =

(
M −iσ⃗(∇− ieA⃗)

−iσ⃗(∇− ieA⃗) −M

)
(2.134)

Note that the above Hamiltonian commutes with the total angular momentum (2.78), hence we can
immediately write the eigenfunctions of H:

ψ(1)(r⃗) =
1

r

(
F (1)(r)Ω

(1)
µjmj

(θ, ϕ)

iG(1)(r)Ω
(2)
µjmj

(θ, ϕ)

)
and ψ(2)(r⃗) =

1

r

(
F (2)(r)Ω

(2)
µjmj

(θ, ϕ)

iG(2)(r)Ω
(1)
µjmj

(θ, ϕ)

)
, for j ≥ µ+

1

2
(2.135)

and

ψ(3)(r⃗) =
1

r

(
F (3)(r)Ω

(3)
µjmj

(θ, ϕ)

iG(3)(r)Ω
(3)
µjmj

(θ, ϕ)

)
, for j = µ− 1

2
(2.136)

Helicity operator σ⃗ · π⃗ = σ⃗(∇− ieA⃗) acts on these functions as follows [1]:

(σ⃗ · π⃗)F (1)(r)Ω
(1)
µjmj

(θ, ϕ) =
(
− d

dr
− 1

r
+
ℓ̃

r

)
F (1)(r)Ω

(2)
µjmj

(θ, ϕ)

(σ⃗ · π⃗)F (2)(r)Ω
(2)
µjmj

(θ, ϕ) =
(
− d

dr
− 1

r
− ℓ̃

r

)
F (2)(r)Ω

(1)
µjmj

(θ, ϕ)

(σ⃗ · π⃗)F (3)(r)Ω
(3)
µjmj

(θ, ϕ) =
( d
dr

+
1

r

)
F (3)(r)Ω

(3)
µjmj

(θ, ϕ) (2.137)

where ℓ̃ =
√
(j + 1

2 )
2 − µ2 are the eigenvalues of Casimir operator (2.93). Also, functions G(i) satisfy

similar equations to the above. Consequently, the radial part of the Dirac equation reads [1]:(
d
dr − ℓ̃

r

)
F (1)(r) = (M + E)G(1)(r)(

d
dr + ℓ̃

r

)
G(1)(r) = (M − E)F (1)(r)

⇒
G(1)(r) =

√
r
kJℓ̃+ 1

2
(kr)

F (1)(r) =
√
kr

E−M Jℓ̃− 1
2
(kr)

(2.138)

(
d
dr + ℓ̃

r

)
F (2)(r) = (M + E)G(2)(r)(

d
dr − ℓ̃

r

)
G(2)(r) = (M − E)F (2)(r)

⇒
F (2)(r) =

√
r
kJℓ̃+ 1

2
(kr)

G(2)(r) =
√
kr

E+M Jℓ̃− 1
2
(kr)

(2.139)

where k =
√
E2 −M2 > 0.

d
drF

(3)(r) = −(E +M)G(3)(r)
d
drG

(3)(r) = (E −M)F (3)(r)

}
⇒

F
(3)
1 (r) = 1

k

√
2
π sin(kr + δ)

G
(3)
1 (r) = − 1

E+M

√
2
π cos(kr + δ)

(2.140)

or
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F
(3)
2 (r) = 1

E−M

√
2
π cos(kr + δ)

G
(3)
2 (r) = 1

k

√
2
π sin(kr + δ)

(2.141)

where the phase shift "δ" is an arbitrary parameter. Summarizing the results in the third case, we obtain
[1]:

ψ
(3)
1 (r⃗) =

1

kr

√
2

π
χ1(r)Ω

(3)
µjmj

(θ, ϕ), with χ1(r) =

(
sin(kr + δ)

−i k
E+M cos(kr + δ)

)
(2.142)

ψ
(3)
2 (r⃗) =

1

kr

√
2

π
χ2(r)Ω

(3)
µjmj

(θ, ϕ), with χ2(r) =

(
k

E−M cos(kr + δ)

i sin(kr + δ)

)
(2.143)

Note that the solutions (2.138) and (2.139), in cases one and two respectively, satisfy the boundary
conditions F (1,2)(0) = G(1,2)(0) = 0. On the contrary, in case three, solutions (2.142) and (2.143) behave
as 1

r at the origin, as in the case of Pauli equation.

2.5.1 Zero modes and the Witten effect
In case three, the radial part of the Hamiltonian operator that acts on spinors χ(r) can be written as
follows:

H0 =

(
M −i d

dr

−i d
dr −M

)
= −iγ5

d

dr
+Mβ (2.144)

where we consider the Dirac-Pauli representation of γ5 and β. Let us set:

χ(r) =

(
F (r)
iG(r)

)
(2.145)

then the corresponding Dirac equation reads:

H0χ(r) = H0

(
F (r)
iG(r)

)
= Eχ(r) (2.146)

Note that, as in the Pauli equation case, the Hamiltonian H0 is not Hermitian at the origin. A self-adjoint
extension of the Hamiltonian can be constructed [15] by imposing non-trivial self-consistent boundary
conditions. This implies interesting physical consequences [16], for instance, the helicity operator is not
Hermitian and is no longer conserved, as we explicitly prove later on.

(χ,H0χ)− (H0χ, χ) = i χ†(0)γ5χ(0) = i
[
χ†
+(0)χ+(0)− χ†

−(0)χ−(0)
]
=

−
[
F ∗(0)G(0)−G∗(0)F (0)

]
= 0 (2.147)

where

χ±(r) =
1

2
(1± γ5)χ(r) (2.148)

As usual, χ+ and χ− are eigenstates of chirality with positive and negative eigenvalues respectively. In
order for the equation (2.147) to be satisfied, the boundary conditions must connect the states χ+ and
χ−, e.g.:

χ−(0) = eiθχ+(0) (2.149)

where θ is an arbitrary angular parameter. The equation (2.147) directly yields:

F ∗(0)

G∗(0)
=
F (0)

G(0)
(2.150)

which means that F (0)
G(0) is real. Thus, the boundary condition may be written as follows [17][16]:

F (0) = G(0) tan
(θ
2
+
π

4

)
(2.151)

Upon substituting equation (2.151) into equation (2.142), we obtain:
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χ(0) ∝

 sin
(

θ
2 + π

4

)
−i k

E+M cos
(

θ
2 + π

4

) (2.152)

Considering a massless spin-1/2 particle in the monopole field and imposing the aforementioned bound-
ary condition on the solution χ(r), the angular parameter θ can be explained as a chiral rotation of the
initial wave function (2.140)[16]:

χθ(r) ∼ ei
θ
2 γ5

 sin
(
kr + π

4

)
−icos

(
kr + π

4

) =

 sin
(
kr + θ

2 + π
4

)
−icos

(
kr + θ

2 + π
4

) (2.153)

Then, we decompose spinor χ(r) into plane waves propagating in both directions

χ(r) = ei
θ
2
1 + i

2
√
2

(
1
1

)
eikr − e−i θ

2
1− i

2
√
2

(
1
−1

)
e−ikr (2.154)

and we observe that helicity changes, as we promised, when a particle passes through the origin and
the phase swift is given by the term eiθ, as expected from equation (2.149). Note that although the
Hamiltonian (2.144) commutes with the operator γ5, its eigenfunctions depend on an arbitrary phase θ,
which is a CP violating parameter [1]. Indeed, for states of the third type, the CP inversion is defined
as CP : χ(r) → γ5χ

∗(r). However, in the massless case, the model is invariant under chiral rotations
χ→ eieγ5θ

′
χ, which shift the value of this parameter as θ → θ + θ′, and in particular allows us just to set

it to zero. Therefore the physical observables are independent on the value of θ in the absence of a chiral
anomaly.

In the massive case, the eigenfunctions of the Hamiltonian, which satisfy the aforementioned boundary
conditions, can be written as follows:

χθ(r) =
k√

E(E −Msin(θ))

[
χ1(r)cos

(θ
2
+
π

4

)
+ i χ2(r)sin

(θ
2
+
π

4

)]
, with E =

√
k2 +M2 > 0 (2.155)

ξθ(r) =
k√

|E|(|E| −Msin(θ))

[
χ1(r)cos

(θ
2
+
π

4

)
+ i χ2(r)sin

(θ
2
+
π

4

)]
, with E = −

√
k2 +M2 < 0

(2.156)
where χ1 and χ2 are defined in (2.142) and (2.143). In the case cos(θ) < 0, there is a family of solutions
[16]:

χθ(r) ∼

 sin
(

θ
2 + π

4

)
−i cos

(
θ
2 + π

4

) e−kr (2.157)

where

E =Msin(θ) and k =M |cos(θ)| (2.158)

From equation (2.158) arises a case with great interest. For θ = 0, π, we have a state with zero energy,
named zero mode of the Dirac operator whose appearance is connected with the index theorem [18][19].
This mode is part of the complete set of eigenfunctions of the Hamiltonian and cannot be neglected
[1]. Note that unlike the massless case, the eigenfunctions with negative energy obviously violate the
CP symmetry of the theory, since chiral rotations of the wave functions no longer leave the Hamiltonian
invariant. If we still demand the theory to remain CP invariant, the value of θ must be fixed to θ = 0 or
θ = π. However, the physical content of these cases is different. The point is that the existence of the
fermionic zero mode on the monopole background transforms a monopole into a dyon [1]. This unexpected
statement must be proven explicitly.

We can obtain the wave-function (2.155), upon imposing a chiral rotation on the χ(r):

χ(r) → χθ(r) = ei
Q5
2 θχ = ei

θ
2

∫
drj05(r)χ (2.159)

where jµ5 (r) = χ†(r)γ0γ5γ
µχ(r) is the chiral current and Q5 =

∫
drj05(r) is the chiral charge, i.e., the

generator of the chiral rotations. Let us consider the following commutation relation [1]:

[j0(x), j05(x)] = i
e2

2π2
B⃗∇δ(x− y) (2.160)
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where j0 = eχ†χ is the density of the electric charge of the charged particle and B⃗ is the external monopole
field. It is obvious that the vacuum expectation value of density j0 vanishes, since there are no electrically
charged particles in the vacuum state. Let us act with a chiral rotation on the vacuum state:

e−i θ
2Q5j0(0)ei

θ
2Q5 = j0(0) + i

θ

2
[j0(0), Q5] = j0(0) + i

θ

2

∫
dr[j0(0), j05(r)] ⇒

e−i θ
2Q5j0(0)ei

θ
2Q5 = j0(0)− e2θ

4π2

∫
drB⃗∇δ(r) = j0(0) +

e2θ

4π2
∇B⃗(0) = j0(0) +

e2gθ

π
δ(0) ⇒

< 0|e−i θ
2Q5j0(0)ei

θ
2Q5 |0 >= e2gθ

π
δ(0) ⇒

< 0|Q|0 >= eθ

2π
n , with n ∈ Z (2.161)

where we used the Dirac quantization condition (2.9), the equation (2.160) and

e−sABesA = B − s[A,B] +O(s2) ,

∇B⃗ = 4πgδ(r⃗)

The equation (2.161) yields that we observe electric charge at the origin, in absences of the electrically
charged particle. Hence, a magnetic monopole interacting with a fermionic field transforms into a dyon
with electric charge proportional to θ. This effect is called Witten effect.

Finally, let us suppose that there is a reason of non-electrodynamical nature that demands θ = 0. In
this case, we encounter the problem of the self-adjointness of the Hamiltonian, since the solutions of the
equations (2.140) become regular at the origin. In the special case E = 0, we have [1]:

F (r) = G(r) =
1√
2
e−

kµ
2Mr−Mr (2.162)

2.5.2 Generalisation of the Dirac quantization condition
We can generalize the Dirac quantization condition by considering a dyon-dyon system. Assuming that
the dyons’ electric and magnetic charges are (e1, g1) and (e2, g2) respectively, the extra term of the
generalized angular momentum reads:

L⃗dd = (e1g2 − g1e2)r̂ (2.163)

The quantization condition for angular momentum L⃗dd is [20][21]

e1g2 − g1e2 = n , n ∈ Z (2.164)

Note that the above formula is dual invariant.
Let us discuss Dirac’s statement, according to which, if there is a magnetic monopole in the universe

with magnetic charge g, then it is enough to explain the quantization of the electric charge. Indeed, if we
consider a single magnetic monopole, with magnetic charge g, the equation (2.164) yields:

e = ne0 , with e0 =
1

g
and n ∈ Z (2.165)

where e0 = 1
g is the elementary electric charge.

We can also prove the quantization of the magnetic charge [22]. Let us consider two states, one with
elementary electric charge (e0, 0) and a second with magnetic charge and a possible arbitrary electric
charge (e, g). Then quantization condition (2.164) yields:

g =
n

n0
g0 , with g0 =

n0
e0

and n ∈ Z (2.166)

where g0 is the minimum magnetic charge and n0 is a positive number that depends on the particular
choice of the model. For instance, the Dirac quantization condition is recovered for n0 = 1

2 [1].
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Chapter 3

Topological description of the magnetic
charge

Probably the most interesting aspect of magnetic monopoles is their topological properties. In appendix
D we describe some notions of differential geometry and topology, which are useful for the understanding
of magnetic monopole physics. In particular, we define topological space, homeomorphism, differentiable
manifold, diffeomorphism etc. In this chapter, we briefly discuss the connection between the homotopic
n-loops and the topology of the monopole systems. Also, we present the formalism of magnetic monopoles
without strings and the corresponding charge quantization condition.

3.1 Homotopy groups
Homotopy groups and more specifically homotopic loops play a fundamental role in our discussion, which
leads to the topological roots of magnetic charge [1].

Let us consider two topological spaces and an "one-way" map ϕ1 : X → Y , which has no inverse. If
there is another map ϕ2 : X → Y and the function ϕ1(x) can be continuously deformed into ϕ2(x), i.e.,
there is a continuous family of functions f(x, t), x ∈ X, t ∈ [0, 1], f : X×[0, 1] → Y , where f(x, 0) = ϕ1(x)
and f(x, 1) = ϕ2(x), the map ϕ1 is homotopic to ϕ2. The family of functions f(x, t) is called a homotopy.

Note that if ϕ1(x) is homotopic to ϕ2(x) and ϕ2(x) is homotopic to ϕ3(x), then ϕ1(x) is homotopic to
ϕ3(x). Thus, the space of continuous maps from X to Y is divided into equivalence classes.

Two topological spaces X and Y are said to be homotopically equivalent, if there exist continuous maps
f : X → Y and g : X → Y that satisfy: (i) f ◦ g is homotopic to IY (an identity on the space Y ,
IY (y) = y) and (ii) g ◦ f is homotopic to IX (an identity on the space X, IX(x) = x).

We present two useful examples of homotopic spaces:

1) Let X = Rn \ {0} and Y = Sn−1. Also, let the maps f and g be f : Rn \ {0} → Sn−1 via
x⃗→ f(x⃗) = x̂ = x⃗

|x⃗| , where |x⃗| ≠ 0, and g : Sn−1 → Rn \ {0} via x̂→ g(x̂) = λx̂, where λ ∈ R \ {0}. Then

f ◦ g(x̂) = x̂ = IY (x̂) and g ◦ f(x⃗) = λx̂

We need to prove that g ◦ f(x⃗) = λx̂ is homotopic to IX . Considering the homotopy F : X × [0, 1] → X:

F (x⃗, t) = tx⃗+ (1− t)λx̂⇒

F (x⃗, 0) = g ◦ f(x⃗) and F (x⃗, 1) = IX(x⃗)

Therefore, g ◦ f(x⃗) = λx̂ is homotopic to IX . Thus, Rn \ {0} and Sn−1 are homotopically equivalent.

2) Let X = S1 and Y be the set of unimodular complex numbers: Unδ(θ) = ei(nθ+δ) ∈ Y . Also, let
the maps f and g be f : X → Y via n̂(θ) → f(n̂(θ)) = ei(nθ+δ) = Un,δ(θ), where θ ∈ [0, 2π), and
g : Y → X via Un,δ(θ) → g(Un,δ(θ)) = n̂(−iLn(Un,δ(θ))

n − δ
n ) = n̂(θ), where θ ∈ [0, 2π).

For n = 1 and arbitrary δ ∈ R we obtain:

f ◦ g(U1,δ(θ)) = U1,δ(θ) = IY (U1,δ(θ)) and g ◦ f(n̂(θ)) = n̂(θ) = IX(n̂(θ))

Consequently, S1 and the set of unimodular complex numbers are homotopically equivalent.
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A very important fact is that the maps f : X → Y via n̂(θ) → f(n̂(θ)) = ei(nθ+δ) = Un,δ(θ), for fixed
n ∈ Z and different δ ∈ R, constitute a homotopy class. Proof:

Let us consider the maps f0(θ) = ei(nθ+δ0) and f1(θ) = ei(nθ+δ1) and the continuous family of func-
tions F : X × [0, 1] → Y , such that F (θ, t) = ei(nθ+(1−t)δ0+tδ1). We observe that F (θ, 0) = f0(θ) and
F (θ, 1) = f1(θ). Therefore, the maps f for fixed n ∈ Z and different δ ∈ R form a homotopy class.

Each homotopy class is characterised by the integer n. Note that for θ ∈ [0, 2π), using the map f(θ),
we cover the unit circle in the complex plane n times. Therefore, we refer to integer n as winding number,
which is a characteristic of the homotopy class.

Additionally, for a given diffeomorphism f : S1 → S1 the winding number reads:

n =
i

2π

∫ 2π

0

dθf(θ)
∂

∂θ
f−1(θ) ∈ Z (3.1)

Note that the winding number plays the role of topological charge (magnetic charge) in monopole theories.
Furthermore, the notions simply connected manifold and linearly connected manifold are very impor-

tant for our discussion. The simply connected manifolds satisfy the following properties:

i) Any two points of the given manifold can be connected by a continuous curve.
ii) Any closed curve (loop) can be shrunk continuously to a point.

The linearly connected manifolds satisfy only property (i). For instance, simply connected manifold is
R2 and linearly connected manifolds are S1 and R2 \ {0}. Note that a single-valued function f in some
region of a linearly connected manifold can be continued to the whole space along paths connecting the
points of this region with any other point. The condition for f to be single-valued requires that for any
two points x0 and x, continuations of f(x0) along any path connecting these two points must give the
same result, f(x). To be more precise, the continuation along any closed curve going through x0 must
lead to the initial f(x0). This is automatically true if any two paths connecting x0 and x are homotopic.

We are ready to define the most important notion of our discussion, the class of homotopic loops. A
loop in a topological manifold X can be defined as a continuous map (curve) γ(t) : I → X, such that
γ(0) = γ(1) = x0 ∈ X, where t ∈ I = [0, 1] is the parameter along the loop. The point x0 is called a base
point of the loop γ(t). Two loops α(t) and β(t) based at the same point are homotopic if the one loop can
be continuously deformed into the other, i.e., there is a continuous map H(t, s) : [0, 1]× [0, 1] → X, with
s, t ∈ [0, 1], such that H(0, s) = H(1, s) = x0 and H(t, 0) = α(t), H(t, 1) = β(t). The set of loops with the
same base point, which are connected by the homotopy H, is called class of homotopic loops.

It is very interesting that a class of homotopic loops equipped with a binary operation does not
constitute a group. We can prove this statement explicitly. Let us consider the binary operation:

(β ◦ α)(t) =
{

α(2t) , 0 ≤ t ≤ 1
2

β(2t− 1) , 1
2 < t ≤ 1

(3.2)

where α(t) and β(t) belong to the same class of homotopic loops [α], with α(0) = β(0) = α(1) = β(1) = x0.
The inverse element α−1(t) is a loop with opposite direction of α(t) and can be defined as follows:

α−1(t) = α(1− t) (3.3)

The unit element reads:

I(t) = x0 ,∀t ∈ [0, 1] (3.4)

Let us calculate the element α−1 ◦ α(t):

(α−1 ◦ α)(t) =
{

α(2t) , 0 ≤ t ≤ 1
2

α(2− 2t) , 1
2 < t ≤ 1

̸= I(t) (3.5)

The result (3.5) yields that the class of homotopic loops [α] equipped with the binary operation (3.2) does
not form a group. In fact, if we consider a class of homotopic loops [α] in a linearly connected manifold,
like R2 \ {0}, and additionally that loops [α] are located around the origin (winding number n ̸= 0), then
we obtain I /∈ [α], α−1 /∈ [α] and α−1 ◦ α /∈ [α], since I and α−1 ◦ α always belong to the same class of
homotopic loops with winding number n = 0 and α−1 belongs to the class of homotopic loops with an
opposite winding number from [α]. Since I /∈ [α], α−1 /∈ [α] and α−1 ◦ α /∈ [α], the class of homotopic
loops [α] equipped with the binary operation (3.2) does not form a group. Let us prove that the loops I
and α−1 ◦α always belong to the same class of homotopic loops with winding number n = 0. Considering
the following homotopy :
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H(t, s) =

{
α(2ts) , 0 ≤ t ≤ 1

2
α
(
(2− 2t)s

)
, 1

2 < t ≤ 1
(3.6)

we obtain:

H(t, 0) = x0 = I(t) and H(t, 1) = (α−1 ◦ α)(t) (3.7)

and

H(0, s) = x0 and H(1, s) = x0 (3.8)

Also, the class of homotopic loops [I] has winding number n = 0, since the unit element does not perform
any turning around the origin.

However, a very essential fact is that the complete set of the classes of homotopic loops in a topological
manifold X equipped with the binary operation (3.2) satisfies all the group axioms. Such a group is
called first homotopy group π1(X). In particular, [α−1] ◦ [α] = [α−1 ◦α] = [I], with [α], [α−1], [I] ∈ π1(X).
Group axioms closure and associativity are trivially satisfied. It is obvious that, if X is a simply connected
manifold, group π1(X) is trivial, since it consists of one element [α] = [I]. Also, if X is a non-simply
connected manifold, group π1(X) is non-trivial. For instance, let us consider X = S1, then π1(X) consists
of the classes of homotopic loops corresponding to winding numbers n ∈ Z, usually denoted as π1(S1) = Z.

A straightforward generalization of the 1-loops to the n-dimensional case provides the higher rank
homotopy group πn(X). We define a n-loop in the topological manifold X as a continuous map of a sphere
Sn into X. The set [ϕi] (classes of homotopic n-loops), where ϕi : Sn → X, equipped with a binary
operation similar to (3.2), forms the group πn(X). Finally, it seems reasonable that, if we consider X = Sn,
we obtain:

πn(S
n) = Z (3.9)

3.2 Magnetic monopoles without strings and the quantization con-
dition through homotopic loops

As we mention is section 1.3, the Dirac strings, along which the Dirac potential (1.80) is singular, are
unobservable, i.e., they have no physical meaning. We can avoid the existence of the non-physical Dirac
strings, and hence, we can prove that the Dirac quantization condition (2.5) has topological roots.

We can divide the manifold R3 \ {0} (magnetic monopole at the origin) into two slightly overlapping
hemispheres (north RN and south RS), where the vector potential reads:

A⃗ =

{
A⃗N = g

r
1−cos(θ)
sin(θ) êϕ , θ ∈

[
0, π2 + ε

]
A⃗S = − g

r
1+cos(θ)
sin(θ) êϕ , θ ∈

[
π
2 − ε, π

] (3.10)

where we used the definitions (1.80) and (1.89). Note that the vector potential (3.10) has no Dirac strings,
but it is not continuous at θ = π

2 . Hence, we consider the overlapping region θ ∈ [π2 − ε, π2 + ε], 0 < ε≪ 1,
where the potential (3.10) takes either the one or the other form. Thus, the potential (3.10) corresponds
to the magnetic monopole field everywhere in R3 \ {0}.

Note that the potentials A⃗N and A⃗S are connected with the gauge transformation U(ϕ) = e2iegϕ,
under which A⃗S → A⃗N . Let us consider a particle moving around the overlapping region RN ∩ RS . The
monopole field in region RN ∩ RS is independent of the choice of the potential’s form. Therefore, the
wave-function ψN = U(ϕ)ψS = e2iegϕψS describes the system as well as wave-function ψS does. Also, the
wave-function ψN = e2iegϕψS must be single-valued, hence we obtain that:

eg =
n

2
with n ∈ Z (3.11)

which is the Dirac quantization condition.
Let us consider the gauge transformation U(ϕ) as a map U : R2 → X via Un(r⃗) = einϕ, where X is the

set of unimodular complex numbers and R2 ⊂ R3, for θ = π
2 . Note that Un(r⃗) is mapping a loop in R2

around the magnetic monopole to a loop in X, which belongs to a homotopy class with winding number
n. Hence, the charge quantization and the quantum number "n" have topological roots. The loops in R2

need to be around the magnetic monopole in order for the gauge transformation Un(r⃗), with n ̸= 0, to
be symmetry of the system. Therefore, the loops in R2 are not homotopic with the unit element. Thus,
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we conclude that manifold R2 is non-simply connected and that the magnetic monopole is a topological
singularity. That is why, in the beginning of our discussion, we considered the manifold R3 \ {0}.

This aspect of magnetic monopole theories is the key for many models, such as the models that we
discuss in chapters 4, 5 and 6. In these theories, we consider a Higgs triplet as a 2-loop from R3 \ {0} to
S2. The solution of the equations of motion with winding number n = 0, corresponds to normal systems
without magnetic monopoles. On the contrary, the solutions with winding number n ̸= 0 correspond to
models with magnetic or global monopoles. These results are compatible with the Dirac quantization
condition (3.11). The global monopoles are presented in chapter 5.
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Chapter 4

’t Hooft-Polyakov Monopole

As we describe in chapter 3, we may construct monopole models by considering field theories with an extra
contribution of a Higgs triplet, which may be stabilized due to a self-interacting potential. In particular,
we consider the Georgi-Glashow model, which is a global SU(2) gauge theory, which includes a Higgs
scalar triplet and an E/M field. The Higgs triplet may be considered as an n-loop on the spherical surface
with its radius being the stabilized magnitude of the triplet. If the n-loop belongs to a homotopy class with
winding number n ̸= 0, the corresponding solutions have monopole properties, i.e., the solution for the
E/M field is a magnetic monopole solution (Coulomb-like field). The corresponding magnetic monopole is
called ’t Hooft-Polyakov monopole [23].

4.1 Georgi-Glashow model
The Georgi-Glashow model corresponds to a non-abelian gauge theory, SU(2) invariant, in the adjoint
representation. The Lagrangian density of the model reads:

L = −1

4
F a
µνF

a µν +
1

2
(D

µ
Φ)a(DµΦ)a − V (ΦTΦ) (4.1)

where a = 1, 2, 3 and Φ a scalar Higgs triplet:

Φ =

ϕ1ϕ2
ϕ3

 (4.2)

The Higgs triplet (4.2) is scalar, since the SU(2) transformations in the adjoint representation are real
(Appendix C). Also, D

µ
is the covariant derivative:

D
µ
= I∂µ − ieAa

µT
a (4.3)

where Aa
µ are the gauge SU(2) bosons and T a are the generators of the SU(2) group. The double-line is

used to declare matrices, to avoid a heavy indices notation. Additionally, the tensor F a
µν reads:

F a
µν = ∂µA

a
ν − ∂νA

a
µ + eϵabcA

b
µA

c
ν (4.4)

Note that the English indices a, b, c denote vector components in a 3-dimensional euclidean space, therefore,
it makes no difference whether we have upper or lower English indices. Also, ϵabc is the Levi-Civita symbol
with ϵ123 = 1. Additionally, V (ΦTΦ) is the Higgs potential:

V (ΦTΦ) =
λ

4
(ΦTΦ− η2)2 =

λ

4
(ΦaΦa − η2)2 (4.5)

Due to the fact that we work in the adjoint representation of the SU(2) group, we can write the
Lagrangian density (4.1) in a more convenient form, in order to examine the SU(2) invariance. The Lie
algebra of the SU(2) group reads:

[T a, T b] = i ϵabcT
c (4.6)

As we mention in Appendix C, the adjoint representation of the generators of a Lie group corresponds to
the structure constants of the Lie algebra:
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(T a
adj)

bc = −i ϵabc (4.7)

Thus, the covariant derivative (4.3) reads:

(Dµ)
ab = δab∂µ − eϵabcA

c
µ (4.8)

Then, the covariant derivative of the Higgs triplet reads:

(D
µ
Φ)a = ∂µΦ

a + eϵabcA
b
µΦ

c ⇒ (4.9)

(D
µ
Φ)aT a = ∂µΦ

aT a + eT aϵabcA
b
µΦ

c

The equation (4.6) yields ϵabcT a = −i[T b, T c]. Hence we have:

(D
µ
Φ)aT a = ∂µΦ

aT a − ie[T b, T c]Ab
µΦ

c ⇒

DµΦ = ∂µΦ− ie[Aµ,Φ] (4.10)

where

DµΦ = (D
µ
Φ)aT a , Φ = ΦaT a and Aµ = Aa

µT
a (4.11)

Also, we define the tensor Fµν as follows:

Fµν = T aF a
µν (4.12)

To sum up, the Lagrangian (4.1) in the SU(2) adjoint representation can be written as follows:

L = −1

2
Tr
(
FµνF

µν
)
+ Tr

(
(DµΦ)(D

µΦ)
)
− V (ΦTΦ) (4.13)

In the next few lines, considering that the generators of the SU(2) group, on the fundamental rep-
resentation, satisfy the equation Tr

(
T aT b

)
= δab

2 , we prove that the equation (4.13) yields the equation
(4.1). Note that the generators in the adjoint representation satisfy Tr

(
T aT b

)
= 2δab. This means that

we need to change some coefficients in (4.13), in order to correspond to (4.1) in the adjoint representation.
However, this is not necessary, since the Lagrangian density (4.13) will be used only to examine the SU(2)
invariance of the model. Thus, the equation (4.13) yields:

L = −1

2
Tr
(
T aF a

µνT
bF b µν

)
+ Tr

(
(D

µ
Φ)aT a(DµΦ)bT b

)
− V (ΦTΦ) =

−1

2
F a
µνF

b µνTr
(
T aT b

)
+ (D

µ
Φ)a(DµΦ)bTr

(
T aT b

)
− V (ΦTΦ) ⇒

L = −1

4
F a
µνF

a µν +
1

2
(D

µ
Φ)a(DµΦ)a − V (ΦTΦ)

which is the Lagrangian density (4.1).

4.1.1 SU(2) symmetry of the Georgi–Glashow Model
It is essential to explicitly prove the SU(2) invariance of the model. It is more efficient to use the Lagrangian
density (4.13).

First of all, we need to determine how the components of the model are transformed under the trans-
formations of the SU(2) adjoint representation. A transformation of the Lie group, U ∈ SU(2), reads:

U = eieθ
aTa

, U = I+ieδθaT a and U−1 = U† = e−ieθaTa

, U−1 = U† = I−ieδθaT a for δθa ≪ 1 (4.14)

The Higgs triplet is transformed as follows:

Φ −→ Φ′ = U Φ (4.15)

As usual we demand:
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D
µ
Φ −→ D′

µ
Φ′ = U D

µ
Φ ⇒

(I∂µ − ieA′a
µ T

a)U Φ = U (I∂µ − ieAa
µT

a)Φ ⇒

(∂µU)Φ− ieA′a
µ T

a U Φ = −ieAa
µU T a Φ ⇒ (∂µU)− ieA′a

µ T
a U = −ieAa

µU T a ⇒

A′
µ = A′a

µ T
a = UAµU

−1 − i

e
(∂µU)U−1 (4.16)

which also means that:

D
µ
−→ D′

µ
= U D

µ
U−1 (4.17)

Moreover, we can calculate the transformation of Φ (4.11):

Φ −→ Φ′ = Φ′mTm ⇒

(Φ′)bc = (δmn + ieδθa(T a
adj)

mnΦn(Tm
adj)

bc =

(−i ϵnbc − ieδθaϵamnϵmbc)Φ
n =

(
− i ϵnρσδbρδcσ + ieδθa(δabδnc − δacδnb)

)
Φn =

(
− i ϵnρσδbρδcσ + ieδθa(δabδnc − δanδbc + δanδbc − δacδnb)

)
Φn =

(
− i ϵnρσδbρδcσ + ieδθaϵσacϵσbn + ieδθaϵρabϵρnc

)
Φn =

(
− i ϵnρσδbρδcσ + ieδθaϵaσcϵnρσδρb − ieδθaϵρabϵnρσδcσ +O(δθ2)

)
Φn =

(δbρ + eδθaϵabρ)(−i ϵnρσ)Φn(δσc − eδθaϵaσc) ⇒

(Φ′)bc = (I+ ieδθaT a)bρ(ΦnTn)ρσ(I− ieδθaT a)σc ⇒

Φ −→ Φ′ = UΦU−1 (4.18)

Considering equations (4.17) and (4.18), it is obvious that:

DµΦ −→ (DµΦ)
′ = UDµΦU

−1 (4.19)

Furthermore, in order to determine the transformation of F a
µν , we need to calculate [D

µ
, D

ν
]Φ:

[D
µ
, D

ν
]Φ = D

µ
D

ν
Φ−D

ν
D

µ
Φ =

(I∂µ − ieAa
µT

a)(I∂ν − ieAb
νT

b)Φ− µ↔ ν a↔ b =

−ieT b(∂µA
b
ν)Φ− e2T aT bAa

µA
b
νΦ+ ieT a(∂νA

a
µ)Φ + e2T bT aAb

νA
a
µΦ =

−ie(∂µAa
ν − ∂νA

a
µ)T

aΦ− e2Ab
µA

c
ν [T

b, T c]Φ = −ie(∂µAa
ν − ∂νA

a
µ + e ϵabcA

b
µA

c
ν)T

aΦ ⇒

Fµν ≡ F a
µνT

a =
i

e

[
D

µ
, D

ν

]
(4.20)

Consequently, equations (4.17) and (4.20) yield:

Fµν −→ F ′
µν = UFµνU

−1 (4.21)

In order to conclude, considering equations (4.15), (4.19) and (4.21), we examine the SU(2) invariance of
the Lagrangian density (4.13):
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L −→ L′ = −1

2
Tr
(
F ′
µνF

′µν
)
+ Tr

(
(DµΦ)

′(DµΦ)′
)
− V (Φ′TΦ′) ⇒

L′ = −1

2
Tr
(
UFµνF

µνU−1
)
+ Tr

(
U(DµΦ)(D

µΦ)U−1
)
− V (ΦTUTU Φ′) ⇒

L′ = L

where UT = U† = U−1, since the SU(2) transformations in the adjoint representation are real. Conse-
quently, the Georgi-Glashow model is SU(2) invariant.

4.1.2 Equations of motion
We calculate the Euler-Lagrange equations of motion for the fields of the Georgi-Glashow model, using
the Lagrangian density (4.1). The equations of motion for the Higgs triplet read:

∂µ
∂L

∂∂µΦa
− ∂L
∂Φa

= 0 (4.22)

We calculate:

∂µ
∂L

∂∂µΦa
= ∂µ(D

µΦ)a

where we used equation (4.9), and

∂L
∂Φa

= −e ϵabcAb
ν(D

νΦ)c − λΦa(ϕbϕb − η2)

Therefore, equation (4.22) yields:

∂µ(D
µΦ)a + e ϵabcA

b
ν(D

νΦ)c + λΦa(ϕbϕb − η2) = 0 ⇒

(D
µ
DµΦ)a = −λΦa(ϕbϕb − η2) (4.23)

Subsequently, the equations of motion for the gauge fields read:

∂µ
∂L

∂∂µAa
ν

− ∂L
∂Aa

ν

= 0 (4.24)

We calculate:

∂µ
∂L

∂∂µAa
ν

= −∂µF a µν

and

∂L
∂Aa

ν

= −1

2
F b ρσ ∂

∂Aa
ν

(e ϵbcdA
c
ρA

d
σ) + (DµΦ)b

∂

∂Aa
ν

(e ϵbcdA
c
µΦ

d) =

−e
2
ϵbcdF

b ρσ(δcaδ
ν
ρA

d
σ + δadδ

ν
σA

c
ρ) + (DµΦ)be ϵbcdδacδ

ν
µΦ

d =

−e
2
(ϵbadF

b νσAd
σ + ϵbcaF

b ρνAc
ρ) + e(DνΦ)bϵbadΦ

d ⇒

∂L
∂Aa

ν

= −eϵbadF b νσAd
σ + e(DνΦ)bϵbadΦ

d

Therefore, equation (4.24) yields:

−∂µF a µν + eϵbadF
b νσAd

σ − e(DνΦ)bϵbadΦ
d = 0

µ↔ν
=⇒

∂νF
a µν + eϵadbA

d
σF

b µσ − e(DµΦ)bϵbadΦ
d = 0 ⇒

DνF
a µν = e ϵabcΦ

b(DµΦ)c (4.25)
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4.1.3 Energy of the system
We consider flat space-time with the convention ηµν = diag(1,−1,−1,−1). Then, the energy density of
the system is described by the component T 00 of the stress–energy tensor, which reads:

Tµν =
2√
−g

δSM

δgµν
(4.26)

where gµν = ηµν , g is the determinant of the metric tensor and SM is the action corresponding to matter.
In our case SM =

∫
d4x

√
−gL.

δSM =

∫
d4xδ(

√
−gL) =

∫
d4x
(
δ(
√
−g)L+

√
−gδL

)
(4.27)

The variation of the determinant reads:

δ
√
−g = −

√
−g 1

2
gµνδg

µν (4.28)

Also, we need to calculate the variation of the Lagrangian density (4.1)

δ(F a
µνF

a µν) = δ(gµκgνλF a
µνF

a
κλ) = F a

µνF
a
κλ(δg

µκgνλ + gµκδgνλ) = (F a
µκF

a
νλg

κλ + F a
λνF

a
κµg

λκ)δgµν ⇒

δ(F a
µνF

a µν) = 2F a
µκF

a
νλg

κλδgµν (4.29)

and

δ
(
(D

µ
Φ)a(DµΦ)a

)
= (D

µ
Φ)a(D

ν
Φ)aδgµν (4.30)

Upon summarizing the equations (4.27), (4.28), (4.29) and (4.30), we obtain:

δSM =

∫
d4 xδ(

√
−gL) =

∫
d4x

√
−g
2

(
− gµνL − F a

µκF
a
νλg

κλ + (D
µ
Φ)a(D

ν
Φ)a

)
δgµν (4.31)

We substitute equation (4.31) into equation (4.26) and we obtain:

Tµν = −gµνL − F a
µλF

a λ
ν + (D

µ
Φ)a(D

ν
Φ)a (4.32)

Subsequently, we calculate the total energy of the system:

E =

∫
d3x T 00 (4.33)

Note that T 00 = T00 = T 0
0 for gµν = ηµν = diag(1,−1,−1,−1).

E =

∫
d3x

(
− L− F a

0λF
a λ
0 + (D

0
Φ)a(D

0
Φ)a

)
=∫

d3x
(1
4
F a
µνF

a µν − 1

2
(D

µ
Φ)a(DµΦ)a + V (ΦTΦ)− F a

0iF
a i
0 + (D

0
Φ)a(D

0
Φ)a

)
=

∫
d3x

(1
4
(F a

0iF
a 0i + F a

i0F
a i0 + F a

ijF
a ij)− 1

2
(D

0
Φ)a(D

0
Φ)a +

1

2
(D

i
Φ)a(D

i
Φ)a + V (ΦTΦ)

−F a
0iF

a 0i + (D
0
Φ)a(D

0
Φ)a

)
⇒

E =

∫
d3x

(
− 1

2
F a
0iF

a 0i +
1

4
F a
ijF

a ij +
1

2
(D

0
Φ)a(D

0
Φ)a +

1

2
(D

i
Φ)a(D

i
Φ)a + V (ΦTΦ)

)
where i, j = 1, 2, 3. Note that:

F a
0iF

a 0i = −E⃗a · E⃗a (4.34)

and
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Ba
i =

1

2
ϵijkF

a jk ⇒ B⃗a · B⃗a =
1

2
F a
ijF

a ij (4.35)

where i, j = 1, 2, 3. Considering equations (4.34) and (4.35), the total energy reads:

E =

∫
d3x

(1
2
E⃗aE⃗a +

1

2
B⃗aB⃗a +

1

2
(D

0
Φ)a(D

0
Φ)a +

1

2
(D

i
Φ)a(D

i
Φ)a + V (ΦTΦ)

)
(4.36)

Let us consider a static system ∂
∂t = 0. The Stress-energy tensor is gauge invariant, hence the total energy

is gauge invariant. Thus, we fix the gauge Aa
0 = 0. Then, the total energy reads:

E =

∫
d3x

(1
2
B⃗aB⃗a +

1

2
(D

i
Φ)a(D

i
Φ)a + V (ΦTΦ)

)
(4.37)

Consequently, the total energy (4.37) becomes minimum when:

(D
i
Φ)a = 0, F a

ij = 0 and ΦaΦa = η2 (4.38)

4.1.4 Spontaneous symmetry breaking
The total energy becomes minimum in the case < 0|ΦaΦa|0 >= η2. Without loss of generality we can
choose:

< 0|Φ|0 >=

0
0
η

 (4.39)

Also, we can consider the Higgs triplet as variations around the minimum (4.39):

Φ =

 χ1

χ2

η + ξ

 (4.40)

such that:

< 0|χ1|0 >=< 0|χ2|0 >=< 0|ξ|0 >= 0 (4.41)

The vacuum state |0 > must stay invariant under the symmetry transformations, i.e. the generators of the
symmetry must act on |0 > as T a|0 >= 0. The generators of the SU(2) group in the adjoint representation
read:

T 1
adj = −i

0 0 0
0 0 1
0 −1 0

 , T 2
adj = −i

0 0 −1
0 0 0
1 0 0

 , T 3
adj = −i

 0 1 0
−1 0 0
0 0 0

 (4.42)

Note that:

T 1,2
adj < 0|Φ|0 > ̸= 0 and T 3

adj < 0|Φ|0 >= 0 (4.43)

which means that two generators break the symmetry. This is called spontaneous symmetry breaking.
Also, we have a remaining U(1) symmetry with generator T 3. Thus, we have the following symmetry
breaking pattern:

SU(2) −→ U(1)

3 generators −→ 1 generator (4.44)

From the Goldstone theorem it follows that there are two massless Goldstone bosons corresponding to the
fields χ1 and χ2, since < 0|χ1|0 >=< 0|χ2|0 >= 0. Also, there is a massive Higgs boson corresponds to
the field ϕ(x) = η + ξ(x), since < 0|ϕ(x)|0 >= η ̸= 0.

Let us count the degrees of freedom of the model. Before the spontaneous symmetry breaking, we have
three massless SU(2) gauge bosons with two degrees of freedom each (4 − 1 from the equations of motion
− 1 from the gauge symmetry) and three real scalars with one degree of freedom each, i.e., nine degrees
of freedom in total. After spontaneous symmetry breaking, the three vector fields have three degrees
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of freedom each, since the gauge symmetry is broken, thus we have twelve degrees of freedom in total.
This inconsistency is regularized with a proper gauge fixing. We can choose a gauge such that the two
Goldstone bosons are eliminated and two of the gauge bosons, which correspond to generators that break
the symmetry, become massive. Hence, the degrees of freedom after the spontaneous symmetry breaking
remain nine. The gauge fixing yields:

Φ =

 0
0

η + ξ

 (4.45)

We can explicitly determine the masses of the fields from the square terms of the Lagrangian after the
symmetry breaking.

D
µ
Φ = −ieAa

µT
a

0
0
η

+ ... = −ηe

 0 A3
µ −A2

µ

−A3
µ 0 A1

µ

A2
µ −A1

µ 0

0
0
1

+ ... = ηe

 A2
µ

−A1
µ

0

+ ... (4.46)

and

V (Φ) =
λ

4

(
(η + ξ)2 − η2

)2
=
λ

4

(
2ηξ + ξ2

)2
+ ... = λη2ξ2 + ... (4.47)

substituting equations (4.46) and (4.47) into the Lagrangian density (4.1), we obtain:

L =
1

2
e2η2A1

µA
1µ +

1

2
e2η2A2

µA
2µ − λη2ξ2 + ... (4.48)

From equation (4.48) we identify the masses of the fields:

MA1 =MA2 = eη, MA3 = 0 and MHiggs =
√
2λη (4.49)

The gauge boson A3
µ, corresponding to the remaining symmetry U(1), remains massless, after spontaneous

symmetry breaking. Therefore, the boson A3
µ plays the role of the electromagnetic potential.

The operator of the conserved electric charge is the generator of the remaining U(1) symmetry:

D
µ
= −ieA3

µT
3 ⇒ Q = eT 3 (4.50)

Note that:

Q

 0
0

ϕHiggs

 = 0 ⇒ QHiggs = 0 (4.51)

It is interesting that the gauge bosons A1
µ and A2

µ are not eigenstates of the electric charge Q. However,
a linear combination of A1

µ and A2
µ is eigenstate of the electric charge. To be more precise, let us set:

W±
µ =

1√
2
(A1

µ ∓ iA2
µ) and T± =

1√
2
(T 1 ∓ iT 2) (4.52)

where:

[T 3, T±] = ∓T± (4.53)

Then, we obtain:

D
µ
= −ieW+

µ T
− − ieW−

µ T
+ − ieA3

µT
3 + ... (4.54)

Consequently, we have:

|A3 >= A3
µT

3|0 > ⇒ Q|A3 >= 0 ⇒ QA3 = 0 (4.55)

and

|W± >=W±
µ T

∓|0 > ⇒ Q|W± >= ±e|W± > ⇒ QW± = ±e (4.56)

where we used the equation: T 3|0 >= 0. Note that the electromagnetic field is chargeless, as it should be.
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4.2 Monopole solution of the Georgi-Glashow model
The classical vacuum of the Georgi-Glashow model is degenerated, since V (Φ) = 0 ⇒ |Φ| = η, i.e., the
set of vacuum values of the Higgs field forms a sphere S2

vac of radius η in a 3-dimensional isotopic space.
All points of the sphere are equivalent, because there is a well-defined SU(2) gauge transformation that
connects them.

In section 4.1 we consider the Higgs field as a map Φ : R3 −→ S2
vac with winding number n = 0,

since we consider Φ = constant. Therefore, there are no magnetic charges. In this section, we search for
magnetic monopole solutions [23].

4.2.1 Topological classification of the solutions
Let us consider solutions with the property |Φ(r → ∞)| = η. In particular, we search for a mapping
Φ : S2

∞ → S2
vac, where S2

∞ is the boundary of the 3-dimensional euclidean space. This map is characterized
by a winding number π2(S

2) = Z. We may consider a solution with winding number n = 1, which
asymptotically behaves as follows:

Φa(r → ∞) → η
ra

r
(4.57)

It is obvious that |Φ(r → ∞)| = η. Note that, since Φ⃗(r → ∞) = ηr̂, a single turn around S2
∞ corresponds

to a single close path (2-loop) in S2
vac, which confirms that n = 1.

It is very important that the state (4.57) cannot collapse to the global minimum state Φ = (0, 0, η),
since these two states belong to different classes, n = 1 and n = 0 respectively, and this results in the
energy becoming infinite if we try to continuously deform the one into the other.

We may determine the form of the gauge bosons by considering minimum total energy, with the
constraint n = 1, which means that DiΦ = 0 (4.38). For r → ∞ we obtain:

DiΦ = 0 ⇒ η∂i
ra

r
+ eη ϵabcA

b
i

rc

r
= 0 ⇒

δia
r

− rira

r3
= −e ϵabcAb

i

rc

r
⇒

(δiaδkl − δikδal)r
krl = −er2ϵabcAb

ir
c ⇒

ϵilbϵakbr
krl = er2ϵakbA

b
ir

k

Then, a particular solution reads:

Aa
i =

1

e
ϵaij

rj

r2
, r → +∞ (4.58)

where a, i, j = 1, 2, 3. Note that the gauge is fixed Aa
0 = 0. Additionally, we can calculate the non-Abelian

magnetic field as follows:

Ba
k =

1

2
ϵkliF

a
li (4.59)

where F a
li is given in (4.4).

ϵkli∂lA
a
i = ϵkli

1

e
ϵaij∂l

rj

r2
=(2.14) 1

e
(−δkaδjl + δjkδal)

(δia
r2

− 2
rira

r4

)
⇒

ϵkli∂lA
a
i = −2

e

rkra

r4
(4.60)

also we calculate:

e ϵkliϵabcA
b
lA

c
i =

1

e
ϵkliϵabcϵblmϵcin

rm

r2
rn

r2
=(2.14) 1

e
(δkbδim − δmkδib)(δiaδbn − δanδbi)

rm

r2
rn

r2
=

1

e

(
δknδam + δkmδan

)
=

1

e

(rark
r4

+
rkra

r4

)
⇒
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e ϵkliϵabcA
b
lA

c
i =

2

e

rkra

r4
(4.61)

Upon substituting equations (4.4), (4.60) and (4.61) into equation (4.59), we obtain:

Ba
k =

1

2
ϵkli(∂lA

a
i − ∂iA

a
l + eϵabcA

b
lA

c
i ) = ϵkli∂lA

a
i +

e

2
ϵkliϵabcA

b
lA

c
i ⇒

Ba
i = −1

e

rira

r4
(4.62)

Furthermore, in the section 4.1, if we had fixed the vacuum expectation value of the gauge triplet
in a different way, e.g., < 0|Φ|0 >= (η1, η2, η3), with ηiηi = η2, the remaining U(1) symmetry would
have not described rotations around z-axis with generator T 3, instead, it would have described rotations
with generator Φ̂aT a = Φa

η T
a. Upon considering this case, the operators of the electric charge and the

electromagnetic field are:

Q =
e

η
ΦaT a and AEM

µ =
1

η
ΦaAa

µ (4.63)

Considering expressions (4.63), let us express the gauge bosons Aa
µ in terms of AEM

µ and the Higgs
triplet. Upon minimizing the total energy, we have:

DiΦ = 0 ⇒ ∂iΦ
a + e ϵabcA

b
iΦ

c = 0 ⇒ (4.64)

ϵakl∂iΦ
a = −e (δkbδlc − δkcδlb)A

b
iΦ

c ⇒ ϵaklΦ
k∂iΦ

a = −e ΦbAb
iΦ

l + e |Φ|2Al
i

For |Φ|2 = η2 and AEM
µ = 1

ηΦ
aAa

µ we obtain:

Aa
µ =

Φa

η
AEM

µ − 1

η2e
ϵabcΦ

b∂µΦ
c (4.65)

We define the electromagnetic tensor:

Fµν ≡ Φa

η
F a
µν (4.66)

and we calculate it:

Φa

η
F a
µν =

1

η
(Φa∂µA

a
ν − Φa∂νA

a
µ + eΦaϵabcA

b
µA

c
ν) =

∂µ

(Φa

η
Aa

ν

)
− ∂ν

(Φa

η
Aa

µ

)
− 1

η
Aa

ν∂µΦ
a +

1

η
Aa

µ∂νΦ
a +

1

η
eΦaϵabcA

b
µA

c
ν

(4.64)
=

AEM
µ = 1

ηΦaAa
µ

∂µA
EM
ν − ∂νA

EM
µ − 1

η
Aa

ν∂µΦ
a (4.65)

=⇒
∂µ|Φ|=0

Fµν ≡ Φa

η
F a
µν = ∂µA

EM
ν − ∂νA

EM
µ − 1

η3e
ϵabcΦ

a∂µΦ
b∂νΦ

c (4.67)

Note that, for winding number n = 0, the equation (4.67) yields:

FEM
µν = ∂µA

EM
ν − ∂νA

EM
µ (4.68)

The electromagnetic strength tensor (4.68) satisfies the Bianchi identity, therefore the model does not
consist of magnetic monopoles. However, for winding number n ̸= 0, the electromagnetic strength tensor
(4.67) does not satisfy the Bianchi identity, as we prove in the next subsection. Hence, for winding number
n ̸= 0 there exist magnetic monopoles.

Additionally, due to the non-Abelian gauge symmetry of the system, the electromagnetic strength
tensor Fµν is somehow arbitrary and it can be written as [3]:

fµν = Φ̂aF a
µν − 1

e
ϵabcΦ̂

aDµΦ̂
bDνΦ̂

c (4.69)
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4.2.2 Topological current
In the next few lines we explicitly prove that the electromagnetic strength tensor (4.67) does not satisfy
the Bianchi identity.

∂[aFbc] = ∂aFbc + ∂cFab + ∂bFca =
1

2
ϵabcσϵ

σµνρ∂µFνρ (4.70)

The dual electromagnetic strength tensor is defined as:

F̃µν =
1

2
ϵµνρσF

ρσ (4.71)

where ϵµνρσ is the Levi-Civita tensor defined in (1.8).

∂ν F̃µν =
1

2
ϵµνρσ∂

ν(∂ρAσ
EM − ∂σAρ

EM − 1

η3e
ϵabcΦ

a∂ρΦb∂σΦc) ⇒

∂ν F̃µν =
1

2e
ϵµνρσϵabc∂

νΦ̂a∂ρΦ̂b∂σΦ̂c = kµ (4.72)

For kµ ̸= 0, the Bianchi identity is not satisfied and the theory consists of magnetic monopoles.
We define kµ as the topological current. Note that

∂µkµ = 0 (4.73)

due to the antisymmetric property of the Levi-Civita tensor. Consequently, the topological current is
conserved. This result is very interesting, since there are no symmetries and Noether currents that yield
the above conservation. The conserved topological current (4.72) has topological origins. This argument
is strengthened by calculating the corresponding conserved charge:

k0 =
1

2e
ϵ0νρσϵabc∂

νΦ̂a∂ρΦ̂b∂σΦ̂c =
1

2e
ϵmnkϵabc∂

mΦ̂a∂nΦ̂b∂kΦ̂c ⇒

Qk =
1

2e
ϵmnkϵabc

∫
d3x∂mΦ̂a∂nΦ̂b∂kΦ̂c =

1

2e
ϵmnkϵabc

∫
d3x∂m

(
Φ̂a∂nΦ̂b∂kΦ̂c

)
⇒

Qk =
1

2e
ϵmnkϵabc

∫
d3x∂mΦ̂a∂nΦ̂b∂kΦ̂c =

1

2e
ϵmnkϵabc

∫
d3x∂m

(
Φ̂a∂nΦ̂b∂kΦ̂c

)
⇒

Qk =
1

2e
ϵmnkϵabc

∫
S2
∞

dSmΦ̂a∂nΦ̂b∂kΦ̂c (4.74)

Note that Φ̂a(r → ∞) → ra

r on the surface S2
∞, hence the above integral does not vanish.

Let us consider a map (2-loop) S2 −→ S2, where the coordinates for the first sphere are θ, ϕ and for
the second sphere are α(θ, ϕ), β(θ, ϕ). The winding number is given by a similar equation to (3.1), which
reads [1]:

n =
1

4π

∫
d2Ω

sin(α)

sin(θ)

(∂α
∂θ

∂β

∂ϕ
− ∂β

∂θ

∂α

∂ϕ

)
=

1

4π

∫
dθdϕ sin(α)

(∂α
∂θ

∂β

∂ϕ
− ∂β

∂θ

∂α

∂ϕ

)
(4.75)

Upon substituting the unit vectors ê(r⃗) =
(
sin(α)cos(β), sin(α)sin(β), cos(α)

)
into the above equation,

we obtain [1]:

n =
1

8π
ϵijkϵabc

∫
dSiê

a∂j ê
b∂kê

c (4.76)

As we mentioned before, the Higgs triplet is a mapping Φ : S2
∞ −→ S2

vac. Consequently, comparing the
equations (4.74) and (4.76), we observe that:

Qk =
4π

e
n, n ∈ Z (4.77)

This wonderful result explicitly shows that the conserved topological charge is proportional to the winding
number, which determines the topological properties of the Higgs triplet as a mapping from S2

∞ to S2
vac.

Note that 4πn is the total solid angle of the covering of the S2
vac during the mapping.
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4.2.3 Magnetic induction of the magnetic monopole
Last but not least, we need to calculate the magnetic induction corresponding to (4.67) for r −→ ∞, in
order to determine the magnetic charge of the magnetic monopole, whose existence is testified by equation
(4.72).

Bk =
1

2
ϵkijFij =

1

2
ϵkijF

a
ij

Φa

η
= Ba

k

Φa

η

(4.57)
=⇒
(4.62)

B⃗(r → ∞) =
1

e

r⃗

r3
(4.78)

This is the magnetic field of a monopole with magnetic charge g = 1
e . Note that, if we set g = Qk

4π and
substitute into equation (4.77), we obtain:

eg = n, n ∈ Z (4.79)

which is an analog to the Dirac quantization condition in the non-Abelian case. If we set the winding
number n = 1 in the equation (4.79) we have g = 1

e , which is exactly the magnetic charge of the corre-
sponding magnetic monopole. Finally, note that the magnetic charge is conserved, since it is proportional
to the conserved topological charge.
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Chapter 5

Self-Gravitating Global Monopole

Some models predict monopoles, as finite self-gravitating objects with structure. These solutions may not
correspond to magnetic monopoles, since there is no need for the model to include electromagnetic fields.
For instance, we can consider a system of a self-gravitating scalar Higgs triplet within a self-interacting
Higgs potential. In this case, we obtain monopole solutions, if we consider the Higgs triplet as a 2-loop
with winding number n = 1. A model with these properties is the Barriola-Vilenkin model [24].

5.1 Barriola-Vilenkin model
The Barriola-Vilenkin model is described by the following Lagrangian density [24]:

L =
√
−g
(1
2
∂µχ

a∂µχa − λ

4
(χaχa − η2)2 −R

)
(5.1)

where χa, a = 1, 2, 3, forms a scalar triplet, which parameterizes the spontaneous breaking of the global
O(3) symmetry of the system down to a global O(2), due to the self-interacting Higgs potential −λ

4 (χ
aχa−

η2)2. Also, gµν is the 4-dimensional space-time metric tensor, g is the determinant of the metric and R is
the Ricci scalar for the metric gµν . Note that we use the conventions:

Signature of the metric: (+,−,−,−) (5.2)

Riemann tensor: Rλ
µνσ = ∂νΓ

λ
µσ + Γρ

µσΓ
λ
ρν − (ν ↔ σ) (5.3)

Ricci tensor: Rµσ = Rλ
µλσ (5.4)

Ricci scalar: R = gµνRµν (5.5)

Einstein tensor: Gµν = Rµν − 1

2
gµνR (5.6)

As we discuss in chapters 3 and 4, if we consider the scalar triplet as a map (2-loop) from S2
∞ to S2

vac

with winding number n ̸= 0, we obtain monopole solutions. In this chapter we fix n = 1 and we are
searching for spherical symmetric solutions of the form:

χa(r⃗) = ηf(r)
xa

r
, with f(r → ∞) = 1 (5.7)

5.1.1 Equations of motion
First of all, we need to determine the equations of motion. Note that the equations of motion of the scalar
triplet are satisfied by the ansatz (5.7). Additionally, the Einstein field equations read:

Gµν = 8πGTµν (5.8)

where

Stress-Energy tensor: Tµν =
2√
−g

δSχ

δgµν
(5.9)
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In the next few lines we determine the components of the Stress-Energy tensor. First of all, we calculate
the variation of the action corresponding to the scalar triplet.

δSχ =

∫
d4x
[
(δ
√
−g)

(1
2
∂µχ

a∂µχa − λ

4
(χaχa − η2)2

)
+

√
−g
2

∂µχ
a∂νχ

aδgµν
]

where:

δ
√
−g = −

√
−g 1

2
gµνδg

µν (5.10)

Therefore, we obtain:

δSχ =

∫
d4x

√
−g
2

[
− gµν

(
L√
−g

+R

)
+ ∂µχ

a∂νχ
a

]
δgµν (5.11)

Upon substituting equation (5.11) into equation (5.9), we obtain:

Tµν = −gµν
(

L√
−g

+R

)
+ ∂µχ

a∂νχ
a

or

Tµν = − gµν

2 ∂ρχ
a∂ρχa + gµν

λ
4 (χ

aχa − η2)2 + ∂µχ
a∂νχ

a

(5.12)

The most general static metric with spherical symmetry can be written as follows [24]:

ds2 = B(r)dt2 −A(r)dr2 − r2(dθ2 + sin2(θ)dϕ2) (5.13)

with the usual relation between the spherical coordinates, r, θ and ϕ, and the "Cartesian" coordinates xa.
The equation (5.13) yields:

gµν
.
=


B(r) 0 0 0
0 −A(r) 0 0
0 0 −r2 0
0 0 0 −r2sin2(θ)

 (5.14)

and

gµν
.
=


1

B(r) 0 0 0

0 − 1
A(r) 0 0

0 0 − 1
r2 0

0 0 0 − 1
r2sin2(θ)

 (5.15)

We need to write the components of the scalar triplet in terms of the spherical coordinates.

χ1(r⃗) = ηf(r)sin(θ)cos(ϕ), χ2(r⃗) = ηf(r)sin(θ)sin(ϕ) and χ3(r⃗) = ηf(r)cos(θ) (5.16)

then we obtain:

∂ρχ
a∂ρχa = gρσ∂ρχ

a∂σχ
a =

− 1

A(r)
η2f ′2(r)− 1

r2
η2f2(r)

(
cos2(θ)cos2(ϕ) + cos2(θ)sin2(ϕ) + sin2(θ)

)
− 1

r2sin2(θ)
η2f2(r)

(
sin2(θ)sin2(ϕ) + sin2(θ)cos2(ϕ)

)
⇒

∂ρχ
a∂ρχa = gρσ∂ρχ

a∂σχ
a = − 1

A(r)
η2f ′2(r)− 2

r2
η2f2(r) (5.17)

and

χa(r⃗)χa(r⃗) = η2f2(r) (5.18)

Thus, we calculate the non-trivial components of the stress-energy tensor.
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Ttt =
B(r)

2A(r)
η2f ′2(r) +

B(r)

r2
η2f2(r) +B(r)

λ

4
(η2f2(r)− η2)2 ⇒

Ttt =
B(r)

2A(r)
η2f ′2(r) +

B(r)

r2
η2f2(r) +B(r)

λ

4
η4(f2(r)− 1)2 (5.19)

Trr = −1

2
η2f ′2(r)− A(r)

r2
η2f2(r)−A(r)

λ

4
(η2f2(r)− η2)2 + η2f ′2(r) ⇒

Trr =
1

2
η2f ′2(r)− A(r)

r2
η2f2(r)−A(r)

λ

4
η4(f2(r)− 1)2 (5.20)

Tθθ = − r2

2A(r)
η2f ′2(r)− η2f2(r)− r2

λ

4
(η2f2(r)− η2)2 + η2f2(r) ⇒

Tθθ = − r2

2A(r)
η2f ′2(r)− r2

λ

4
η4(f2(r)− 1)2 (5.21)

similarly

Tϕϕ = Tθθ sin
2(θ) (5.22)

5.1.2 Asymptotic solutions of the equations of motion
Let us consider the monopole to be a finite object, which is contained within a core. In flat space-time
the monopole core has size δ ∼ λ−

1
2 η−1 and its mass is Mcore ∼ λη4δ3 ∼ λ−

1
2 η [24]. For η ≪ mp, where

mp is the Planck mass, the gravity does not change significantly the structure of the monopole at small
distances, hence the flat space-time estimates of δ and Mcore still approximately apply [24]. Outside the
core, where we suppose that r > δ ≫ Planck length, we obtain that f(r) ≈ 1 and

T t
t = T r

r =
η2

r2
and T θ

θ = T ϕ
ϕ = 0 (5.23)

The components Gtt and Grr, considering the metric ansatz (5.14), read:

Gtt = −B(r)
A(r)−A2(r)− rA′(r)

r2A2(r)
(5.24)

and

Grr =
B(r)−A(r)B(r)− rB′(r)

r2B(r)
(5.25)

For B(r) = A−1(r) and f(r) = 1, we obtain:

Gtt = −A(r)−A2(r)− rA′(r)

r2A3(r)
(5.26)

and

Grr =
A(r)−A2(r)− rA′(r)

r2A(r)
(5.27)

Note that the components tt and rr of the Einstein field equation (5.8) are the same. Therefore, it is
convenient to solve only the tt equation:

Gtt = 8πGTtt ⇒

−A(r)−A2(r)− rA′(r)

r2A3(r)
= 8πG

η2

A(r)r2
⇒

B(r) = A−1 = 1− 8πGη2 − 2GM

r
(5.28)

where M is a constant of integration. Summarizing the results, the metric reads:
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ds2 =

(
1− 8πGη2 − 2GM

r

)
dt2 − dr2

1− 8πGη2 − 2GM
r

− r2(dθ2 + sin2(θ)dϕ2), r > δ (5.29)

Note that the Schwarzschild metric is obtained in the unbroken phase η → 0. If we introduce the rescale
t→ (1− 8πGη2)−

1
2 t′ and r → (1− 8πGη2)

1
2 r′, in the asymptotic limit r → ∞, the metric reads:

ds2 = dt′2 − dr′2 − (1− 8πGη2)r′2(dθ2 + sin2(θ)dϕ2), r > δ (5.30)

which is a Minkowski metric with a conical deficit solid angle ∆Ω = 32π2Gη2 [3]. The metric (5.30) is not
flat, since the Ricci scalar reads:

R = − 16πGη2

r(1− 8πGη2)
(5.31)

The corresponding deficit solid angle is predicted by many models of self-gravitating monopoles and appears
to be a fundamental feature of the global monopole systems. The deficit solid angle leads to Einstein rings,
which may have a cosmological impact on CMB.

5.2 The effective mass of the self-gravitating global monopole
Let us make the very generous assumption that the metric (5.29) describes space-time even inside the
monopole core. We can estimate monopole mass considering a Schwarzschild-like metric [24]:

B(r) = 1− 2GM ′

r
(5.32)

Also, the rest-mass M ′ of the monopole reads:

M ′ =

∫
dx3

√
−gT t

t (5.33)

where √
−g = r2sin(θ) ⇒ d3x

√
−g = r2sin(θ)drdθdϕ (5.34)

and

T t
t =

1

2A(r)
η2f ′2(r) +

1

r2
η2f2(r) +

λ

4
η4(f2(r)− 1)2 (5.35)

Thus, the equation (5.34) yields:

M ′(r) = 4πη2
∫ r

0

dr′r′2
( 1

2A(r′)
f ′2(r′) +

1

r′2
f2(r′) +

λ

4
η2(f2(r′)− 1)2

)
⇒

M ′(r) = 4πη2r + 4πη2
∫ r

0

dr′r′2
(
f ′2(r′)

2A(r′)
+
f2(r′)− 1

r′2
+
λ

4
η2(f2(r′)− 1)2

)
(5.36)

Upon substituting equation (5.36) into equations (5.32) we obtain:

B(r) = 1− 8πGη2 − 2G

r
4πη2

∫ r

0

dr′r′2
(
f ′2(r′)

2A(r′)
+
f2(r′)− 1

r′2
+
λ

4
η2(f2(r′)− 1)2

)
(5.37)

Then, if we compare the equations (5.28) and (5.37), we have:

M(r) = 4πη2
∫ r

0

dr′r′2
(
f ′2(r′)

2A(r′)
+
f2(r′)− 1

r′2
+
λ

4
η2(f2(r′)− 1)2

)
(5.38)

Upon considering that the mass of the monopole M , as seen from outside the core, is contained in a core
of radius δ and that f(r < δ) ≈ 0, f ′(r < δ) ≈ 0, we obtain:

M = 4πη2
∫ δ

0

dr′
(
− 1 +

λ

4
η2r′2

)
⇒

M = −4πη2δ +
4π

3
δ3
λη4

4
(5.39)
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Note that for δ ∼ λ−
1
2 η−1(flat space-time), the equation (5.39) yields:

M = −4πηλ−
1
2 +

π

3
λ−

1
2 η ⇒

M = −11π

3
λ−

1
2 η (5.40)

This is a very interesting result, since negative mass implies repulsive forces. Additionally, solutions with
negative mass carry no horizons. Note that T t

t ≈ λη4

4 for f(r < δ) = 0, hence the equation (5.39) yields:

M =
4π

3
δ3T t

t − 4πη2δ ⇒

M = VcoreT
t

t − deficit angle term < 0 (5.41)

Also note that

M ′(δ) = VcoreT
t

t =
π

3
λ−

1
2 η ∼ λ−

1
2 η ∼Mcore (5.42)

Concluding the results, although monopole’s rest-mass is positive and similar to the flat space-time solution
(Mcore ∼ λ−

1
2 η in flat space-time), the self-gravitational interaction of the monopole implies negative ADM

mass for the monopole metric. Additionally, this result can be obtained, even if we are more careful about
our assumption about the inner space of the monopole core.

5.3 Repulsive gravitational effects
Let as do the approximation [25]:

f(r)

{
0 , r < δ
1 , r > δ

(5.43)

Then, inside the core (r < δ), we have:

Tµν = gµν
λ

4
η4 (5.44)

Therefore, the Einstein field equations read:

Gµν = gµν2πGλη
4 (5.45)

The equations (5.45) correspond to a de Sitter space-time with positive cosmological constant:

Λ = 2πGλη4 > 0 (5.46)

Thus, the metric inside the core reads:

ds2 =
(
1− Λr2

3

)
dt2 − dr2

1− Λr2

3

− r2(dθ2 + sin2(θ)dϕ2), r < δ (5.47)

Outside the core (r > δ), the metric is given by the equation (5.29). On the monopole core bounds, the
metric must satisfy the Israel conditions [26], i.e., it must be continuous and its first derivative must be
continuous. These conditions yield:

1− 2πG
3 λη4δ2 = 1− 8πGη2 − 2GM

δ

− 4πG
3 λη4δ = 2GM

δ2

}
⇒

δ = 2λ−
1
2 η−1 and M = −16π

3
λ−

1
2 η < 0 (5.48)

Note that the radius of the core and the monopole mass are similar to those calculated before. A more
accurate calculation, using computational methods, without the approximation (5.43), in paper [25], yields:

M = −6πλ−
1
2 η < 0 (5.49)

which is also a similar result. The interpretation of the negative monopole mass is that the global self-
gravitating monopole provides vacuum energy that induces repulsive gravitational effects. This interpreta-
tion is consistent with the monopole being an entity with complicated structure rather than an elementary
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particle-like excitation. Subsequently, the monopole has an expanding (Λ > 0) core surrounded by space-
time with negative "Schwarzschild" mass, which has repulsive nature. Hence, it seems that the monopole,
as a structured-particle, cannot be stabilized.
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Chapter 6

Magnetic monopoles from
self-gravitating global monopoles with
Kalb-Ramond torsion

The models described in chapters 4 and 5 provide monopole solutions, which are not able to be detected
in the current large hadron collider (LHC).

The Georgi-Glashow model discussed previously does not correspond to the phenomenologically correct
model describing Nature [27]. However, embedding the Standard Model group to larger Grand Unified
Theory (GUT) groups, which implies the existence of monopoles, we determine the mass of the monopole,
which depends on the mass of the gauge boson of the GUT and the GUT gauge group coupling. The typical
mass scales of such a monopole varies in the range 1014 − 1016GeV [27]. Consequently, such monopoles
cannot be produced in current colliders, and one can only search cosmically for them, but their density
must be extremely dilute due to inflation [27].

Furthermore, some recommended solutions to the hierarchy problem that rely neither on supersym-
metry nor on technicolor, propose the existence of new dimensions at a millimeter [28][29][30]. This
consideration lowers the Planck scale of gravitational physics to the order of TeV and thus, in principle,
gravitational effects may become observable at the LHC. In particular, micro-black holes can be produced
and decay rapidly [3]. Therefore, a self-gravitational interaction may reduce the mass of the monopole,
which may be observable at LHC.

Nevertheless, the global self-gravitating monopole of the Barriola-Vilenkin model has negative mass.
Such a construction with negative mass would not apply to collider physics.

In this chapter, we present a model of a self-gravitating global monopole, having included additional
fields, which allow for a positive mass solution. Note that the corresponding magnetic monopole has
structure (core, etc). We shall call such structures "bag-models".

6.1 Description of the model
Let us consider a model of a self-gravitating global monopole with Kalb-Ramond torsion. The O(3) global
symmetric Lagrangian density of the model reads [3]:

L =
√
−g
[
1

2
∂µχ

a∂µχa−λ
4
(χaχa−η2)2−R+1

2
∂µΦ∂

µΦ−V (Φ)− 1

12
e−2γΦHρµνH

ρµν−1

4
e−γΦfµνf

µν

]
(6.1)

In the following lines we describe the components of the above Lagrangian density.

1) First of all, we have a self-gravitating system, hence gµν is the corresponding metric, g is the de-
terminant of the metric and R is the Ricci scalar for gµν .

2) We seek monopole solutions. Thus, the system includes a triplet of scalar fields in the adjoint rep-
resentation of the O(3) group and a self-interaction Higgs potential, which allows the triplet to play the
role of mapping from S2

∞ to S2
vac with winding number n ̸= 0. The corresponding Higgs parameter deter-

mines the deficit angle of the monopole metric and implies a cosmological constant inside the core of the
monopole, which regularises the corresponding singularity at the origin.
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3) In order for the monopole to be a magnetic monopole, an E/M field strength fµν should contribute
to the system. Since the corresponding monopole is global, there are no couplings between the particles
and the E/M field. Therefore, the particles are not electrically charged. It is very interesting that the
corresponding magnetic monopole will not be an elementary particle, instead it will be a combination
(bag-model) of all the components of the Lagrangian density (6.1), which will effectively have a magnetic
charge, whose source will be the “Kalb-Ramond torsion” charge, after the spontaneous symmetry breaking
of the global O(3) symmetry of the system, due to the scalar triplet.

4) The antisymmetric Kalb-Ramond tensor field strength Hρµν and the field Φ are included to the model
in order to succeed a positive mass solution for the magnetic monopole. The Kalb-Ramond field strength
can be written as

Hρµν = ∂[ρBµν] (6.2)

where the brackets [...] denote total antisymmetrization of the respective indices and Bµν is the spin-1
Kalb-Ramond gauge field (antisymmetric 2-form). In some (closed) string theories [31], the field Bµν

appears in the massless spectrum. For the bosonic gravitational part of low-energy string effective actions,
the Kalb-Ramond field strength can be thought of as providing a source of torsion [32][33]. Recently
[34], in string-inspired effective theories, there are considered some cosmological implications of a dual
formulation of a time-dependent four-dimensional Kalb-Ramond field, in connection with the generation
of matter-antimatter asymmetry in universe. In four space-time dimensions, the dual of the Kalb-Ramond
field strength is a pseudoscalar axion-like field, which reads

Hµνλ = e2Φϵ σ
µνλ ∂σb (6.3)

where ϵµνλσ is the Levi-Civita tensor defined in (1.8). In our discussion we use the dual formulation (6.3).

5) It is also necessary to introduce the O(3)-singlet scalar field Φ, which is stabilised to a constant value
via potential V (Φ). We can consider the model (6.1) in two ways [3]:

i) As a string-inspired theory, where Φ is the dilaton (spin-0 part of the gravitational massless string
multiplet), and in principle its stabilisation could be guaranteed by an appropriate (string-loop induced)
dilaton potential V (Φ). In this case γ = 1.

ii) As a theory with an ultra-heavy scalar field Φ, independent of string theory, which is stabilised by
its own potential V (Φ). In this case γ = 0. Therefore, the scalar field Φ is only gravitationally coupled to
the other scalar and gauge fields of the model.

Note that the Kalb-Ramond field has a “Kalb-Ramond torsion” charge, which is appeared as an axion-
charge in this model, since we use the dual formulation (6.3). The existence of a field like Φ is necessary,
because it plays the role of the link between the Kalb-Ramond field and the E/M field and leads to the
connection between the magnetic and the “Kalb-Ramond torsion” charges.

In summary, in this chapter we present a model, in four-dimensional space-time, according to which
the gravitation in the presence of Maxwell and Kalb-Ramond axion-like fields (the latter being the dual of
the field strength of a spin-one antisymmetric tensor field in the massless gravitational multiplet of string
theories [32][33]) can lead to a magnetic monopole with strength determined by the Kalb-Ramond charge.

6.2 Equations of motion
The first step in our analysis is the determination of the equations of motion. The Euler-Lagrange equations
for the scalar triplet read:

∂µ
∂L

∂∂µχa
− ∂L
∂χa

= 0 ⇒

∂µ(
√
−ggµν∂νχa) +

√
−gλχa(χbχb − η2) = 0 ⇒

gµν∂µ∂νχ
a +

1√
−g

∂µ(
√
−ggµν)∂νχa = −λχa(χbχb − η2) (6.4)

The variation of the action with respect to Bµν reads:
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δS = −
∫
d4x

√
−g
6

e−2γΦHρµνδHρµν

where

δHρµν = δ∂[ρBµν] = ∂ρ(δBµν) + ∂ν(δBρµ) + ∂µ(δBνρ)

note that [∂µ, δ] = 0, then we integrate by parts the variation δS

δS = −
∫
d4x ∂ρ

[√
−g
6

e−2γΦHρµνδBµν

]
+ ρ− µ− ν rotation +

+

∫
d4x ∂ρ

[√
−g
6

e−2γΦHρµν

]
δBµν + ρ− µ− ν rotation

The integrals of the derivatives are equal to zero, since the fields vanish at infinity. Also, note that we
have Hρµν = Hνρµ = Hµνρ by definition. Therefore, the variation of the action yields:

δS =

∫
d4x ∂ρ

[√
−g
2

e−2γΦHρµν

]
δBµν

Considering δS = 0 for arbitrary δBµν , we obtain:

∂ρ
[√

−ge−2γΦHρµν
]
= 0 ⇒

∂ρ(e
−2γΦHρµν) +

1√
−g

∂ρ(
√
−g)e−2γΦHρµν = 0

We need to calculate the derivative ∂ρ(
√
−g). By the definition of the determinant we know that:

g =
1

4!
ϵ̃abcdϵ̃κλµνgaκgbλgcµgdν ⇒

∂ρ(g) =
4

4!
ϵ̃abcdϵ̃κλµνgaκgbλgcµ∂ρgdν

(1.9)
=⇒

1

g
∂ρ(g) = − 1

3!
ϵabcdϵabcξg

ξν∂ρgdν ⇒ϵabcdϵabcξ=−6δ d
ξ

1

g
∂ρ(g) = gµν∂ρgµν ⇒

∂ρ(
√
−g) = 1

2

√
−ggµν∂ρgµν (6.5)

Upon considering that Γµ
ρµ = 1

2g
µν∂ρgµν , we have

∂ρ(
√
−g) =

√
−gΓµ

ρµ (6.6)

Upon substituting equation (6.6) into equation of motion of Bµν , we obtain

∂ρ(e
−2γΦHρµν) + Γξ

ρξe
−2γΦHρµν = 0 ⇒

∂ρ(e
−2γΦHρµν) + e−2γΦΓρ

ρξH
ξµν + e−2γΦΓµ

ρξH
ρξν + e−2γΦΓν

ρξH
ρµξ = 0

since Γµ
ρξH

ρξν = Γν
ρξH

ρµξ = 0, due to the fact that Bµν = −Bνµ and Γµ
ρξ = Γµ

ξρ. Thus, we have

∇ρ(e
−2γΦHρµν) = 0 (6.7)

This equation is identically satisfied by the axion-like particle (6.3):

∇ρ(ϵ
ρνλσ∂σb) = ∂ρ(ϵ

ρνλσ∂σb) + Γρ
ρξϵ

ξνλσ∂σb+ Γν
ρξϵ

ρξλσ∂σb+ Γλ
ρξϵ

ρνξσ∂σb
(1.9)
=

−
√
−g
−g

Γξ
ρξ ϵ̃

ρνλσ∂σb+ ϵρνλσ∂ρ∂σb+ Γρ
ρξϵ

ξνλσ∂σb =
(1.9) −Γρ

ρξϵ
ξνλσ∂σb+ Γρ

ρξϵ
ξνλσ∂σb = 0
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Hence, the corresponding term of the Lagrangian (6.1) reads:

L = −
√
−g
12

e−2γΦHρµνH
ρµν + ... = −

√
−g
12

e2γΦϵρµνλϵ
ρµνκgσλ∂σb∂κb+ ...⇒ϵρµνλϵ

ρµνκ=−6δ κ
λ

L =

√
−g
2

e2γΦgµν∂µb∂νb+ ... (6.8)

Similarly to the previous case, the variation with respect to the E/M field yield:

∂µ
[√

−ge−γΦfµν
]
= 0 ⇒

∂µ(e
−γΦfµν) +

1√
−g

∂µ(
√
−g)e−γΦfµν = 0

(6.6)
=⇒

∂µ(e
−γΦfµν) + Γρ

µρe
−γΦfµν = 0 ⇒

∂µ(e
−γΦfµν) + e−γΦΓµ

µρf
ρν + e−γΦΓν

µρf
µρ = 0

Note that fµν is antisymmetric, hence Γν
µρf

µρ = 0. Thus, we obtain:

∇µ(e
−γΦfµν) = 0 (6.9)

The equations of motion for the metric tensor correspond to the Einstein field equations:

Gµν = gNTµν (6.10)

where Gµν is the Einstein tensor (5.6), Tµν is the stress-energy tensor (5.9) and gN = 8πG, where G is
the gravitational constant. Finally, we determine the dilaton equation of motion, which is appropriate to
calculate in the case γ = 1.

∂µ
∂L
∂∂µΦ

− ∂L
∂Φ

= 0 ⇒

∂µ∂
µΦ+

∂V (Φ)

∂Φ
− e2Φ∂µb∂

µb− 1

4
e−Φfµνf

µν = 0

Note that we are interested in cases in which the dilaton is stabilised to a constant value Φ = Φ0 for which

∂V (Φ)

∂Φ

∣∣∣
Φ=Φ0

= 0 and V (Φ0) = 0 (6.11)

Then, we obtain:

e2Φ∂µb∂
µb+

1

4
e−Φfµνf

µν −O
(∂V (Φ)

∂Φ

)
−O(∂µΦ) = 0 (6.12)

This is the dilaton equation, which relates the Kalb-Ramond axion-like field to the E/M field strength.
This constraint links the Kalb-Ramond torsion charge with the magnetic charge of the magnetic monopole
in the string-inspired case (γ = 1). In the non-string case, the dilaton equation is trivial and the constraint
is not imposed. Nevertheless, an appropriate modification of the E/M field strength, in the spirit of the ’t
Hooft-Polyakov model, involving the axion-like particle and the dilaton, can be constructed. Surprisingly,
this solution of the equation (6.9) also links the Kalb-Ramond torsion charge with the magnetic charge.

6.2.1 Anätze of the solutions of the equations of motion
First of all, in order to solve the equations of motion, we need to determine the stress-energy tensor. The
variation of the action, ignoring the Ricci scalar term, reads:

δSM =

∫
d4x δ

[√
−g
(
1

2
gµν∂µχ

a∂νχ
a − λ

4
(χaχa − η2)2 +

1

2
gµν∂µΦ∂νΦ− V (Φ)+

+
1

2
e2γΦgµν∂µb∂νb−

1

4
e−γΦgµνgρσfµρfνσ

)]
⇒
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δSM =

∫
d4x

[
δ(
√
−g)

(
L√
−g

+R

)
+

√
−g
(
δgµν

2
∂µχ

a∂νχ
a +

δgµν

2
∂µΦ∂νΦ+

δgµν

2
e2γΦ∂µb∂νb−

1

4
e−γΦ(δgµνgρσ + gµνδgρσ)fµρfνσ

)]
Note that from equation (6.5) we can read:

δ
√
−g =

√
−g
2

gµνδgµν (6.13)

Also, the equation δ(gµρgρν) = 0 yields:

δgρσ = −gρµgσνδgµν (6.14)

Thus, we have:

δ
√
−g = −

√
−g
2

gµνδg
µν (6.15)

Upon substituting equation (6.15) into the variation of the action, we obtain:

δSM =

∫
d4x

√
−g
2

[
− gµν

(
L√
−g

+R

)
+ ∂µχ

a∂νχ
a + ∂µΦ∂νΦ+ e2γΦ∂µb∂νb− e−γΦgρσfµρfνσ

]
δgµν

Hence, considering a stabilized dilaton field, the stress-energy tensor (5.9) reads:

Tµν = −gµν
(

L√
−g

+R

)
+ ∂µχ

a∂νχ
a + e2γΦ∂µb∂νb− e−γΦgρσfµρfνσ (6.16)

Let us suppose that the model describes a static, non-rotating and self-gravitating monopole. In this
case, the metric is static and spherical symmetric. Thus we consider the following ansatz for the metric:

gµν
.
=


B(r) 0 0 0
0 −A(r) 0 0
0 0 −r2 0
0 0 0 −r2sin2(θ)

 (6.17)

and

gµν
.
=


1

B(r) 0 0 0

0 − 1
A(r) 0 0

0 0 − 1
r2 0

0 0 0 − 1
r2sin2(θ)

 (6.18)

Moreover, we seek an E/M field strength fµν compatible with the solution (4.67) of the ’t Hooft-
Polyakov model. Note that for r → ∞, the equation (4.67) yields that the non-vanishing components of
fµν are:

fθϕ = −fϕθ ∝ sin(θ) (6.19)

Therefore, we introduce the ansatz:

fµν
.
=


0 0 0 0
0 0 0 0
0 0 0 2rsin(θ)W (r)
0 0 −2rsin(θ)W (r) 0

 (6.20)

and we expect W (r → ∞) ∼ 1
r . Additionally, it is essential to prove that the ansatz (6.20) satisfies the

equation (6.9). For a stabilized Φ we obtain:

∇µf
µν = 0 ⇒

∂µf
µν + Γµ

µρf
ρν + Γν

µρf
µρ = 0 ⇒
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∂µf
µν + Γµ

µρf
ρν = 0

It is obvious that for ν = 0, 1 the above equation is satisfied identically. Upon substituting the metric
ansatz (6.17) into the above equation, we obtain:

for ν = 2

∂ϕf
ϕθ + (Γt

tϕ + Γr
rϕ + Γθ

θϕ + Γϕ
ϕϕ)f

ϕθ = 0

which is identically satisfied, since ∂ϕfϕθ = 0 and Γt
tϕ = Γr

rϕ = Γθ
θϕ = Γϕ

ϕϕ = 0.

for ν = 3

∂θf
θϕ + (Γt

tθ + Γr
rθ + Γθ

θθ + Γϕ
ϕθ)f

θϕ = 0

where Γt
tθ = Γr

rθ = Γθ
θθ = 0 and Γϕ

ϕθ = cot(θ), hence:

∂θf
θϕ + cot(θ)fθϕ = 0 (6.21)

We need to calculate fθϕ:

fθϕ = gθθgϕϕfθϕ ⇒

fθϕ =
1

r4sin2(θ)
2rsin(θ)W (r) ⇒

fθϕ =
2W (r)

r3sin(θ)
(6.22)

We substitute fθϕ into equation (6.21) and we have

− cos(θ)

sin2(θ)

2W (r)

r3
+
cos(θ)

sin(θ)

2W (r)

r3sin(θ)
= 0

Consequently, the ansatz (6.20) satisfies the equation (6.9). Additionally, if W (r) ̸= r3, the E/M field
strength (6.20) does not satisfy the Bianchi identity. Thus, we have a magnetic monopole solution. The
assumption W (r) ̸= r3 is reasonable, since a model with fµν(r → ∞) → ∞ seems strange.

Then, we can calculate the corresponding magnetic induction:

Ba =
1

2

ηabc√
−g

fbc (6.23)

where ηabc is the 3-dimensional Levi-Civita symbol with η123 = 1. Also, according the equation (6.17), we
have:

√
−g =

√
B(r)A(r)r2sin(θ) (6.24)

Therefore, the only non-vanishing component of the magnetic induction reads:

Br =
2rsin(θ)W (r)√
B(r)A(r)r2sin(θ)

⇒

Br =
1√

B(r)A(r)

2W (r)

r
(6.25)

As we emphasized earlier, a monopole solution corresponds to the existence of a mapping with winding
number n ̸= 0. In particular, we cause the spontaneous symmetry breaking of the global O(3) symmetry,
upon considering the Higgs triplet as a mapping from S2

∞ to S2
vac with winding number n = 1. The proper

ansatz for the triplet reads:

χa = ηf(r)
xa

r
(6.26)

with the constraint f(r → ∞) → 1.
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Subsequently, we suppose that the axion-like ansatz is b(r⃗) = b(r), to be compatible with the spher-
ically symmetric metric assumption. Thus, we substitute the anätze (6.17), (6.20) and (6.26) into the
Einstein field equation (6.10) and we obtain:

For the tt component:

Gtt =
B(r)

r2A2(r)
(−A(r) +A2(r) + rA′(r)) (6.27)

Ttt = −B(r)

(
L√
−g

+R

)
(6.28)

Upon considering the stabilized dilaton Φ = Φ0 = 0 and the equation (6.11), we have

L√
−g

+R =
1

2
gµν∂µχ

a∂νχ
a − λ

4
(χaχa − η2)2 +

1

2
gµν∂µb∂νb−

1

4
fµνf

µν (6.29)

where

1

2
gµν∂µb(r)∂νb(r) = − 1

2A(r)
b′2(r) (6.30)

also we calculate gµν

2 ∂µχ
a∂νχ

a

χ1(r⃗) = ηf(r)sin(θ)cos(ϕ), χ2(r⃗) = ηf(r)sin(θ)sin(ϕ) and χ3(r⃗) = ηf(r)cos(θ) (6.31)

gµν
2
∂µχ

a∂νχ
a = −1

2

( 1

A(r)
∂rχ

a∂rχ
a +

1

r2
∂θχ

a∂θχ
a +

1

r2sin2(θ)
∂ϕχ

a∂ϕχ
a
)
=

−η
2

2

(
f ′2(r)

A(r)
+
f2(r)

r2
+
f2(r)

r2

)
⇒

gµν
2
∂µχ

a∂νχ
a = −η

2

2

(
2
f2(r)

r2
+
f ′2(r)

A(r)

)
(6.32)

and

χa(r⃗)χa(r⃗) = η2f2(r) (6.33)

finally we have to determine the last term of (6.29)

−1

4
fµνf

µν = −1

2
fθϕf

θϕ = −1

2
2r sin(θ)W (r)

2W (r)

r3sin(θ)
⇒

−1

4
fµνf

µν = −2W 2(r)

r2
(6.34)

Upon summarizing the equations (6.30), (6.32), (6.33) and (6.34), the equation (6.29) yields:

L√
−g

+R = −η
2

2

(
2
f2(r)

r2
+
f ′2(r)

A(r)

)
− λη4

4
(f2(r)− 1)2 − 1

2A(r)
b′2(r)− 2W 2(r)

r2
(6.35)

Thus, the tt component of the stress-energy tensor (6.28) reads:

Ttt = B(r)

[
2W 2(r)

r2
+

1

2A(r)
b′2(r) +

η2

2

(
2
f2(r)

r2
+
f ′2(r)

A(r)

)
+
λη4

4
(f2(r)− 1)2

]
(6.36)

Consequently, the tt component of the Einstein field equations (6.10) yields:

−A(r) +A2(r) + rA′(r)

gNA2(r)
= 2W 2(r) +

r2

2A(r)
b′2(r) +

η2

2

(
2f2(r) +

r2f ′2(r)

A(r)

)
+
λη4

4
(f2(r)− 1)2r2

(6.37)

For the rr component:
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Grr =
B(r)−B(r)A(r) + rB′(r)

r2B(r)
(6.38)

Trr = A(r)

(
L√
−g

+R

)
+ ∂rχ

a∂rχ
a + ∂rb∂rb (6.39)

where

∂rχ
a∂rχ

a = η2f ′2(r) (6.40)

Hence, we have

Trr = A(r)

[
− η2

2

(
2
f2(r)

r2
+
f ′2(r)

A(r)

)
− λη4

4
(f2(r)− 1)2 − 1

2A(r)
b′2(r)− 2W 2(r)

r2

]
+ η2f ′2(r) + b′2(r) ⇒

Trr = A(r)

[
− 2W 2(r)

r2
+

1

2A(r)
b′2(r)− η2

2

(
2
f2(r)

r2
− f ′2(r)

A(r)

)
− λη4

4
(f2(r)− 1)2

]
(6.41)

Thus, the rr component of the Einstein field equations (6.10) yields:

B(r)−B(r)A(r) + rB′(r)

gNA(r)B(r)
= −2W 2(r) +

r2

2A(r)
b′2(r)− η2

2

(
2f2(r)− r2f ′2(r)

A(r)

)
− λη4

4
(f2(r)− 1)2r2

(6.42)

For the θθ component:

Gθθ = − r

4A(r)

[
2
A′(r)

A(r)
+ r

B′2(r)

B2(r)
+ r

A′(r)B′(r)

A(r)B(r)
− 2

(
B′(r)

B(r)
+ r

B′′(r)

B(r)

)]
(6.43)

Tθθ = r2
(

L√
−g

+R

)
+ ∂θχ

a∂θχ
a +

1

r2sin2(θ)
(fθϕ)

2 (6.44)

where

∂θχ
a∂θχ

a = η2f2(r) (6.45)

and

1

r2sin2(θ)
(fθϕ)

2 =
1

r2sin2(θ)
4r2sin2(θ)W 2(r) ⇒

1

r2sin2(θ)
(fθϕ)

2 = 4W 2(r) (6.46)

Upon substituting the above equations into equation (6.44), we have:

Tθθ = r2
[
− η2

2

(
2
f2(r)

r2
+
f ′2(r)

A(r)

)
− λη4

4
(f2(r)− 1)2 − 1

2A(r)
b′2(r)− 2W 2(r)

r2

]
+ η2f2(r) + 4W 2(r) ⇒

Tθθ = 2W 2(r)− r2

2A(r)
b′2(r)− η2

2

r2f ′2(r)

A(r)
− λη4

4
(f2(r)− 1)2r2 (6.47)

Thus, the θθ component of the Einstein field equations (6.10) yields:

r
4gNA(r)

[
2A′(r)

A(r) + rB
′2(r)

B2(r) + rA
′(r)B′(r)
A(r)B(r) − 2

(
B′(r)
B(r) + rB

′′(r)
B(r)

)]
=

−2W 2(r) + r2

2A(r)b
′2(r) + η2

2
r2f ′2(r)
A(r) + λη4

4 (f2(r)− 1)2r2

(6.48)
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Furthermore, we cannot determine the axion-like field b(r) via the equation of motion (6.7), since this
equation is satisfied trivially from (6.3). Nevertheless, due to the definition (6.2), the Kalb-Ramond field
strength satisfies the Bianchi identity:

ϵµνλρ∂ρHµνλ = ϵµνλρ∂ρ∂[µBνλ] = 0 (6.49)

which yields:

ϵµνλρ∂ρHµνλ = 0 ⇒ ϵµνλρ∂ρ(ϵ
σ

µνλ ∂σb(r)) = 0 ⇒

ϵµνλρ∂ρ(
√
−gϵ̃µνλσgσα∂αb(r)) = 0 ⇒

ϵµνλρϵ̃µνλσ

(
∂ρ(

√
−g)gσα∂αb(r) +

√
−g∂ρ(gσα)∂αb(r) +

√
−ggσα∂ρ∂αb(r)

)
= 0

(6.5)
=⇒

ϵµνλρϵµνλσ

(1
2
gκξ∂ρ(gκξ)g

σα∂αb(r) + ∂ρ(g
σα)∂αb(r) + gσα∂ρ∂αb(r)

)
= 0

ϵµνλρϵµνλσ=−6δ ρ
σ=⇒

1

2
gκξ∂ρ(gκξ)g

ρα∂αb(r) + ∂ρ(g
ρα)∂αb(r) + gρα∂ρ∂αb(r) = 0 ⇒

1

2
gκξ∂r(gκξ)g

rr∂rb(r) + ∂r(g
rr)∂rb(r) + grr∂r∂rb(r) = 0

(6.17)
=⇒

− b′(r)

2A(r)

(
B′(r)

B(r)
+
A′(r)

A(r)
+

4

r

)
+
A′(r)

A2(r)
b′(r)− 1

A(r)
b′′(r) = 0 ⇒

1

2

(
B′(r)

B(r)
− A′(r)

A(r)

)
r2b′(r) + 2b′(r)r + r2b′′(r) = 0 ⇒

1

2

√
B(r)

A(r)

B′(r)A(r)−B(r)A′(r)

A(r)B(r)
r2b′(r) +

√
B(r)

A(r)
b′(r)(r2)′ +

√
B(r)

A(r)
r2b′′(r) = 0 ⇒

1

2

√
A(r)

B(r)

B′(r)A(r)−B(r)A′(r)

A2(r)
r2b′(r) +

√
B(r)

A(r)
b′(r)(r2)′ +

√
B(r)

A(r)
r2b′′(r) = 0 ⇒

(√
B(r)

A(r)

)′

r2b′(r) +

√
B(r)

A(r)
b′(r)(r2)′ +

√
B(r)

A(r)
r2b′′(r) = 0 ⇒

d

dr

(√
B(r)

A(r)
r2b′(r)

)
= 0 ⇒

b′(r) =
ζ

r2

√
A(r)

B(r)
(6.50)

where ζ is a constant of integration.
Finally, we substitute the ansatz (6.26) into equation (6.4), which is the equation of motion of the

scalar triplet.

gµν∂µ∂νχ
a +

1√
−g

∂µ(
√
−ggµν)∂νχa = −λχa(χbχb − η2)

a=3
=⇒

grr∂r∂rχ
3 + gθθ∂θ∂θχ

3 +
1√
−g

∂µ(
√
−g)gµν∂νχ3 + ∂µ(g

µν)∂νχ
a = −λ(χbχb − η2)χ3 (6.31)

=⇒
(6.5)

− 1

A(r)
ηf ′′(r)cos(θ) +

1

r2
ηf(r)cos(θ) +

1

2
gρσ∂µ(gρσ)g

µν∂νχ
3 + ∂µ(g

µν)∂νχ
a = −λ(χbχb − η2)χ3 ⇒

− 1

A(r)
ηf ′′(r)cos(θ) +

1

r2
ηf(r)cos(θ) +

1

2
gρσ∂r(gρσ)g

rr∂rχ
3 +

1

2
gρσ∂θ(gρσ)g

θθ∂θχ
3+
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+∂r(g
rr)∂rχ

a = −λ(χbχb − η2)χ3 (6.33)
=⇒

− 1

A(r)
ηf ′′(r)cos(θ) +

1

r2
ηf(r)cos(θ)− η

2A(r)
f ′(r)cos(θ)

(
B′(r)

B(r)
+
A′(r)

A(r)
+

4

r

)
+

+
η

2r2
f(r)sin(θ)

2r2sin(θ)cos(θ)

r2sin2(θ)
+ η

A′(r)

A2(r)
f ′(r)cos(θ) = −λη3(f2(r)− 1)f(r)cos(θ) ⇒

f ′′(r)

A(r)
− f(r)

r2
+

f ′(r)

2A(r)

(
B′(r)

B(r)
+
A′(r)

A(r)
+

4

r

)
− f(r)

r2
− A′(r)

A2(r)
f ′(r) = λη2(f2(r)− 1)f(r) ⇒

f ′′(r)

A(r)
− 1

2A(r)

(
A′(r)

A(r)
− B′(r)

B(r)
− 4

r

)
f ′(r)− 2f(r)

r2
= λη2(f2(r)− 1)f(r) (6.51)

Later on it will be useful to use rescaled dimensionless variables:

W (r) → W (r)
√
gN

, r → √
gNr, b(r) → b(r)

√
gN

and η → η
√
gN

(6.52)

The equations satisfied by these rescaled variables are the same as (6.37), (6.42) and (6.48) but with gN
replaced by 1.

6.2.2 Asymptotic solutions of the equations of motion
In this subsection, we solve the equations (6.37), (6.42), (6.48) and (6.51) in two asymptotic regions,
r → 0 and r → ∞. The existence of the full interpolating solution is assumed and based on continuity in
space. In both regions, to leading order, we require B(r)A(r) ≃ 1, which is compatible with the far field
(Newtonian) limit. In particular, the presence of a non-trivial antisymmetric Kalb-Ramond field strength
and of the scalar triplet field with non-trivial vacuum expectation value η, implies modifications in the
equation B(r)A(r) ≃ 1, which read

B(r)A(r) ≃ 1 +O(r2), r → 0 (6.53)

B(r)A(r) ≃ 1 +O(
1

r2
), r → ∞ (6.54)

and are crucial for the consistency of the solutions. In the region r → ∞, where B(r)A(r) ≃ 1 + O( 1
r2 ),

equation (6.50) yields:

b′(r) ≃ ζ

r2
⇒

b(r) = −ζ
r
+ ... (6.55)

Consequently, we can recognize ζ as the "axion-charge", or even better as the "Kalb-Ramond torsion
charge". In the string-inspired case (γ = 1), through the dilaton equation (6.12), and in the non-string
case (γ = 0), through the ultra-heavy scalar, the axion-charge is connected with the magnetic charge. The
corrections (6.53) and (6.54) are necessary in the case we seek magnetic monopole solutions, since if we
suppose B(r)A(r) = 1 ⇒ A′(r)

A(r) = −B′(r)
B(r) everywhere is space, the equations (6.37) and (6.42) yield:

r2

A(r)

[
(ηf ′(r))2 + b′2(r)

]
= 0 (6.56)

which means that necessarily we have ζ = 0 and, as a result, we have vanishing magnetic charge. Thus,
the modifications (6.53) and (6.54) contribute to a consistent magnetic monopole solution.

The leading order assumption B(r)A(r) ≃ 1 is used in many non-trivial black-hole solutions. For
instance, for the Reissner–Nordström (R-N) black hole solution, the metric is [35]:

ds2 = ∆dt2 − dr2

∆
− r2dΩ2 (6.57)
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where ∆ = 1− 2GM
r + Gµ2

r2 , with µ the magnetic charge and M the mass of the black hole. The R-N black
hole is not singular at the horizons, since the apparent singularities are coordinate artefacts. In our case,
due to the corrections (6.53) and (6.54), we obtain deformed RN-type solutions, but for small monopole
mass the singularity at r = 0 is naked. Nevertheless, the naked singularity is shielded inside the monopole
core, since we consider a "bag-model". Furthermore, an extra assumption implies a positive cosmological
constant observed within the core, which regularises the singularity. This aspect is presented in section
6.3.

Because of the use of scaled dimensionless variables, when r is of O(1) the physical r is of the order
of the Planck length. At this scale the equations cannot be expected to be valid because of quantum
gravity corrections; hence, in order to be able to estimate the magnetic energy of our monopole, we put
the effective Planck length as a lower distance cut-off; in the estimate we will use expressions for our
dependent variables which represent their leading asymptotic behaviour for r → 0 and r → ∞.

Considering a RN-type metric and the leading term of B(r)A(r) ≃ 1 in the limit r → 0, we have

B(r) ∼ p(r)

r2
and A(r) ∼ r2

p(r)
, r → 0 (6.58)

and

f(r) = f0r, r → 0 (6.59)

which is compatible with a vanishing scalar triplet at the origin. Considering the equations (6.50), (6.58)
and (6.59) we have

b′2(r) =
ζ2

r4
r4

p2(r)
=

ζ2

p2(r)
, A′(r) =

2r

p(r)
− r2p′(r)

p2(r)
, B′(r) =

p′(r)

r2
− 2p(r)

r3
and

B′(r)

B(r)
= −A

′(r)

A(r)
(6.60)

then the equation (6.37) yields

1 +
r2

p(r)
− r

p′(r)

p(r)
= 2

W 2(r)r2

p(r)
+

ζ2r2

2p2(r)
+ η2f20

r4

p(r)
+
η2

2
f20 r

2 +
λη4

4
(f20 r

2 − 1)2r2
r2

p(r)
(6.61)

and the equation (6.48) yields

r

4

[
4
A′(r)

A(r)
− 2r

B′′(r)

B(r)

]
= −2W 2(r)A(r) +

r2

2
b′2(r) +

η2

2
r2f ′2(r) +A(r)

λη4

4
(f2(r)− 1)2r2 ⇒

2− r
p′(r)

p(r)
− r2

2

p′′(r)

p(r)
+ 2r

p′(r)

p(r)
− 3 = −2

W (r)2

p(r)
r2 +

ζ2

2p2(r)
r2 +

η2f20
2

r2 +
λ

4
η4(f20 r

2 − 1)2r2
r2

p
⇒

−1 + r
p′(r)

p(r)
− r2

2

p′′(r)

p(r)
= −2

W (r)2

p(r)
r2 +

ζ2

2p2(r)
r2 +

η2f20
2

r2 +
λ

4
η4(f20 r

2 − 1)2r2
r2

p(r)
(6.62)

Then, we add equation (6.62) to the equation (6.61) and we obtain:

r2

p(r)
− r2

2

p′′(r)

p(r)
=

ζ2r2

p2(r)
+ η2f20

r4

p(r)
+ η2f20 r

2 +
λ

2
η4(f20 r

2 − 1)2r2
r2

p(r)
⇒

1− p′′(r)

2
=

ζ2

p(r)
+ η2f20 r

2 + η2f20 p(r) +
λ

2
η4r2(f20 r

2 − 1)2 ⇒

1− p′′(r)

2
=

ζ2

p(r)
+ η2f20 (r

2 + p(r)) +
λ

2
η4r2(f20 r

2 − 1)2 (6.63)

The above equation cannot be solved without approximation; on the right-hand side of (6.63), in the
denominator of the term proportional to ζ2, we consider p(r) to be approximately a non-zero constant p0.
Then, the solution of the equation reads:

p(r) = c1cos(
√
2f0ηr) + c2sin(

√
2f0ηr) +

Z(r)

2f40 η
4p0

(6.64)
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Where:

Z(r) = η2
(
− 2ζ2f20 − 90f20λp0r

2 + 12λp0 + 4f20 p0
)

+η4
(
− 2f40 p0r

2 − 12f20 p0λr
2 + 15f40 p0λr

4 + p0λ
)

+η6
(
− f20 p0λr

2 + 2f40 p0λr
4 − f60 p0λr

6
)
+ 90λp0

Note that the approximation f(r) = f0r is compatible with the equation (6.51), in the limit r → 0.
Additionally, since η is small (on assuming that the symmetry breaking scale is much smaller than the
Planck scale), p(r) is well approximated by a constant near r = 0. Then, we keep the expression [3]

B(r) ∼ p0
r2

with p0 = const. and r → 0 (6.65)

Furthermore, we seek the next-to-leading order corrections in the product A(r)B(r), which are induced
by the antisymmetric Kalb-Ramond field strength and the non-trivial vacuum expectation value of the
scalar fields. We assume that:

B(r)A(r) = 1 + ε(r), for r → 0 (6.66)

where ε(r → 0) → 0. Then, the equation (6.66) implies:

A′(r)

A(r)
= −B

′(r)

B(r)
+

ε′(r)

1 + ε(r)
(6.67)

Upon substituting equations (6.59), (6.65) and (6.67) into equations (6.37) and (6.42), and adding them,
we obtain:

r

A(r)

(
A′(r)

A(r)
+
B′(r)

B(r)

)
=
b′2(r)r2

A(r)
+ η2

r2f20
A(r)

⇒

rB(r)

1 + ε(r)

ε′(r)

1 + ε(r)
= B(r)

r2

1 + ε(r)

ζ2

r4
1 + ε(r)

B2(r)
+B(r)η2

r2f20
1 + ε(r)

⇒

ε′(r)

(1 + ε(r))2
=
ζ2

p20
r +

η2f20
1 + ε(r)

r (6.68)

Note that η2 1
1+ε(r) ≃ η2(1− ε(r)) ≃ η2, since η is small. Therefore, we have

ε′(r)

(1 + ε(r))2
=

(
ζ2

p20
+ η2f20

)
r (6.69)

which can be solved as follows:

− 1

1 + ε(r)
=

1

2

(
ζ2

p20
+ η2f20

)
r2 + C

We want ε(0) = 0 ⇒ C = −1. Also, for r → 0 we have − 1
1+ε(r) ≃ −1 + ε(r). Hence we obtain

ε(r) =

(
ζ2

2p20
+
η2f20
2

)
r2 (6.70)

Subsequently, we can determine W (r) in the region r → 0 by considering the non-vanishing term in
the equation (6.37). For the calculations we may consider the full expression of B(r) function in the unit
system (6.52): B(r) = 1 − 2M

r + p0

r2 , which is compatible with the RN-type metric. However, the mass
term does not contribute to the W (r) in the limit under consideration.

−A(r) +A2(r) + rA′(r)

A2(r)
= 1 +− B(r)

1 + ε(r)
− rB′(r)

1 + ε(r)
+
rB(r)ε′(r)

(1 + ε(r))2
=

= 1−B(r) + ε(r)B(r)− rB′(r) + rε(r)B′(r) + rB(r)ε′(r)− 2rB(r)ε(r)ε′(r) =

= 1− 1 +
2M

r
− p0
r2

+
ζ2

2p0
+
η2f20 p0

2
− 2M

r
+ 2

p0
r2

− ζ2

p0
− η2f20 p0 +

ζ2

p0
+ η2f20 p0 +O(r) =

=
p0
r2

+
ζ2

2p0
+
η2f20 p0

2

(6.37)
=⇒
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p0
r2

+
ζ2

2p0
+
η2f20 p0

2
= 2W 2(r) +

r2

2A(r)
b′2(r) +

η2

2

(
2f2(r) +

r2f ′2(r)

A(r)

)
+
λη4

4
(f2(r)− 1)2r2 ⇒

p0
r2

+
ζ2

2p0
+
η2f20 p0

2
= 2W 2(r) +

r2

2A(r)
b′2(r) +

η2

2

(
2f2(r) +

r2f ′2(r)

A(r)

)
+
λη4

4
(f2(r)− 1)2r2 ⇒

p0
r2

+
ζ2

2p0
+
η2f20 p0

2
= 2W 2(r) +

r2

2A(r)
b′2(r) +

η2

2

r2f20
A(r)

+O(r) (6.71)

Note that

r2

2A(r)
b′2(r) =

r2

2A(r)

ζ2

r4
A(r)

B(r)
=

ζ2

2r2
1

1− 2M
r + p0

r2

≃ ζ2

2p0

and

η2

2

r2f20
A(r)

=
η2r2f20

2

B(r)

1 + ε(r)
=
η2f20 p0

2
+O(r)

Consequently, the equation (6.71) implies:

p0
r2

+
ζ2

2p0
+
η2f20 p0

2
= 2W 2(r) +

ζ2

2p0
+
η2f20 p0

2
⇒

W 2(r) =
p0
2r2

+O(r) (6.72)

This is a very important result, as well as predictable, since the corresponding magnetic induction is
proportional to W (r), hence the magnetic charge is proportional to √

p0. Therefore, the charge-term of
the RN-type metric is proportional to the square of the magnetic charge, as it should be. The normalisation
factor is fixed in the string-inspired case (γ = 1). Also, W (r) ∝ 1

r , as we noticed earlier.
Let us focus on the non-string framework (γ = 0). In this case, the equation (6.12) does not contains the

axion-like field and the E/M field strength. The correlation between the axion-charge and the magnetic
charge is explicitly confirmed, if we consider an expression of the E/M field strength similar to the ’t
Hooft-Polyakov model (4.67). Under this consideration, the term of the E/M field strength that makes
non-vanishing the dual current (4.72) consist of the fields that contribute to the magnetic monopole
structure. In the ’t Hooft-Polyakov model we have only the scalar triplet, while in our model we have
the Kalb-Ramond field strength Hρµν , the ultra-heavy scalar Φ, which is singlet under the global O(3)
group, and the scalar triplet χa. Thus, we can write the term that contributes to the topological current
as follows:

fµν = −HρσκΦ
ρ∂µΦ

σ∂νΦ
κ (6.73)

where

Φµ = (Φ, χ1, χ2, χ3) (6.74)

and

Hρµν = ϵρµνσg
σξ∂ξb(r) (6.75)

We can determine an explicit expression for the E/M field strength:

fµν = −ϵρσκλgλξ∂ξb(r)Φρ∂µΦ
σ∂νΦ

κ ⇒

fµν =
b′(r)

A(r)
ϵρσκrΦ

ρ∂µΦ
σ∂νΦ

κ

We consider that the ultra-heavy scalar Φ is stabilized in a non-zero value Φ0, due to the self-interacting
potential V (Φ). Then, we obtain:

fµν =
b′(r)

A(r)
ϵtrσκΦ

0∂µΦ
σ∂νΦ

κ ⇒
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fµν =
ζ

r2

√
−g√

B(r)A(r)
ϵ̃trσκΦ

0∂µΦ
σ∂νΦ

κ ⇒

fµν = ζsin(θ)ϵ̃trσκΦ
0∂µΦ

σ∂νΦ
κ

Finally, if we consider that the triplet Φa defines a S3-spatial coordinate set (ηf(r), θ, ϕ) which maps the
SO(3) internal space to the three-space, the non-vanishing components of the E/M field strength read:

fθϕ = −fϕθ = ζηΦ0sin(θ) (6.76)

Comparing with the equation (6.20), we obtain:

W (r) =
ζηΦ0

2r
(6.77)

This equation is valid everywhere in space. The corresponding magnetic induction reads:

B⃗(r⃗) =
ζηΦ0

r2
r̂ (6.78)

The above equation is valid in the limits r → 0 and r → ∞, where B(r)A(r) = 1. The interpretation
of this amazing result is that a system of an axion-like field with axion-charge −ζ, an ultra-heavy scalar
field stabilised at a non-zero value and a scalar triplet which acts as a map with winding number n = 1,
effectively form a magnetic monopole, whose magnetic charge g = ζηΦ0 is determined by the axion-charge
via the ultra-heavy particle.

In the context of the string-inspired low energy theory (γ = 1), the dilaton equation (6.12) adds a
constraint to the system. Thus, without loss of generality, the value of the constant Φ0 can be fixed at
Φ0 = 0. Hence, the dilaton equation implies:

∂µb∂
µb+

1

4
fµνf

µν = 0 ⇒

− 1

A(r)
b′2(r) +

1

4
fµνf

µν = 0 ⇒

−ζ
2

r4
1

B(r)
+

1

4
fµνf

µν = 0

Note that the spatial part of the E/M field strength yields: 1
4fijf

ij = 1
2 (B

r)2A(r). Therefore, we obtain:

1

2
(Br)2A(r) =

ζ2

r4
1

B(r)
⇒

Br =
1√

B(r)A(r)

√
2ζ

r2
(6.79)

Note that this expression is valid everywhere in space. In the extreme case, where A(r)B(r) = 1, we
obtain:

Br =

√
2ζ

r2
(6.80)

The magnetic charge reads:

g =
√
2ζ (6.81)

Additionally, the equation (6.25) implies:

Br =
2W (r)

r
=

√
2ζ

r2
⇒

W (r) =
ζ√
2r

(6.82)

Finally, upon comparing the above equation with the equation (6.72) we have
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W (r) =

√
p0√
2r

=
ζ√
2r

⇒

p0 = ζ2 (6.83)

The equations (6.81) and (6.83) explicitly prove that the magnetic charge is determined by the axion-
charge and that the charge-term of the RN-type metric is proportional to the square of the magnetic
charge.

In order to finish the small-r analysis we need to prove that the ansatz f(r) = f0r is compatible with
the equation of motion (6.51) at the limit r → 0, where B(r) ∼ p0

r2 :

f ′′(r)

A(r)
− 1

2A(r)

(
A′(r)

A(r)
− B′(r)

B(r)
− 4

r

)
f ′(r)− 2f(r)

r2
= λη2(f2(r)− 1)f(r)

O(r3)
=⇒

f ′′(r) =
2− λη2

p0
r2 (6.84)

These equations can be solved in terms of parabolic cylinder functions which are analytic in the neigh-
bourhood of r = 0 [3]. A solution exists, which (for small r) is proportional to r + r3

3p0
. Therefore,

f(r) = f0r +O(r3), hence we have a consistent ansatz.
Additionally, let us proceed with the large-r case. We consider the ansatz

B(r)A(r) = 1 +
ε0
r2

(6.85)

where ε0 = const. ∈ R. The above equation yields

A′(r)

A(r)
= −B

′(r)

B(r)
− 2ε0

r3
(6.86)

Also, in the region r → ∞, a compatible expression of B(r) for a monopole model implies a deficit angle:

B(r) ∼ 1 + β1 +
β2
r

+
β3
r2
, for r → ∞ (6.87)

Additionally, we consider the asymptotic ansatz:

f(r) = 1− α1

r2
+ δ(r), with α1 = const. (6.88)

The 1
r -order of the equation (6.51) yields [3]:

α1 =
1

λη2
(6.89)

Moreover, considering as leading order ∼ 1
r in the equation (6.37), we obtain [3]:

β1 = −η2 < 0 (6.90)

Hence, the term corresponding to the deficit angle is negative, as it was in the global monopole model
in chapter 5. Furthermore, the equation (6.51), upon ignoring terms of 1

r2 -order, implies a differential
equation with respect to δ(r) [3]:

(1− η2)δ′′(r) +
2

r
(1− η2)δ′(r)− 2λη2δ(r) = 0 (6.91)

whose solution reads:

δ(r) =
1

r
e
−η

√
2λ

1−η2 r (6.92)

This is a decaying solution, exponentially small and can be ignored. Additionally, upon adding the
equations (6.37) and (6.42), we obtain:

ε0 = − ζ2

2(1− η2)2
(6.93)

Also, similarly to the small-r case, the equation (6.37) implies:
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W 2(r) ≃ 1

2r2

(
β3 +

1

λ

)
(6.94)

which solves the equation (6.48). Upon using the string-inspired analysis, we have

β3 = ζ2 − 1

λ
(6.95)

Finally, we compare the metric ansatz (6.87) with the RN metric and we determine β2

β2 = −2M (6.96)

where M is the ADM mass of the monopole. The next sections are devoted to the determination of the
mass of the monopole.

6.3 The total rest-energy of the monopole
The total rest-energy of the magnetic monopole (rest-mass of the particle) reads:

E =

∫ ∫ ∫
T t
t r

2sin(θ)drdθdϕ (6.97)

Upon substituting equation (6.36) into the above equation, we obtain:

E(r) = 4π

∫ r

0

dr′ r′2
[
2W 2(r′)

r′2
+

1

2A(r′)
b′2(r′) +

η2

2

(
2
f2(r′)

r′2
+
f ′2(r′)

A(r′)

)
+
λη4

4
(f2(r′)− 1)2

]
(6.98)

From now on it is convenient to use the following approximation of the metric for every r:

B(r) = 1− 8πGη2 − 2mG

r
+

8πGp0
r2

(6.99)

and

B(r)A(r) ≈ 1 (6.100)

Equivalently, we may use again dimensionless variables (8πG = 1) [4]:

B(r) = 1− η2 − 2M

r
+
p0
r2

(6.101)

where

p0 = ζ2 , M ≡ m

8π
and r → r√

8π
(6.102)

In this units r, M and η are dimensionless quantities (or, equivalently, expressed in reduced Planck mass
scale units, in which the Planck mass is MP = ℓ−1

P =
√
8π, with ℓP the Planck length.

Also, note that the associated with (6.99) and (6.100) Ricci scalar reads:

R = −16πGη2

r2
(6.103)

which is singular at the origin. The curvature singularity at the origin corresponds to the non-vanishing
deficit angle 8πGη2. For η ≪ 1 we will prove that M < |ζ|, hence there are no R-N horizons. The naked
singularity is shielded inside the monopole core. Under specific circumstances, which are discussed later
on, the naked singularity is spontaneously regularised, due to an effective positive cosmological constant
at the origin. This cosmological constant takes place in the region where χa(r → 0) → 0. Consequently, as
we discuss later on, a more detailed analysis in the region (r → 0), which includes the origin, corresponds
to a de Sitter space-time and not to a singular RN-like space-time. Thus, the mass of the monopole must
be concentrated inside a spherical shell around the de Sitter region. We may assume that this region is
determined by the approximation r ≫ 1, where f(r) = 1−corrections ̸= 0. Additionally, it is evident that
the integral (6.98), from a radius δ ≫ 1 to infinity, divergences. It is an expected result, since the SO(3)
triplet do not vanish in infinity. Therefore, we consider a cut-off Lc and our model becomes a bag-model.
Hence, the monopole mass is distributed inside a spherical shell with radii δ, Lc, where 1 ≪ δ < Lc. We
may write the inner radius as
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δ = aLc , with a < 1 (6.104)

Considering the monopole mass in flat space-time (Mcore ∼ λ−
1
2 η), for η ≪ 1, gravity is expected not

to change dramatically the structure of the monopole at small distances. Nevertheless, considering the
equations (6.88) and (6.89) and the radius of the monopole core in flat space-time (δflat ∼ λ−

1
2 η−1), we

obtain:

f(δflat) = 1− λ−1η−2

δ2flat
= 0 ̸= 1 (6.105)

Hence, the radius Lc of the monopole core in the examined model differs significantly from the flat space-
time case, i.e. Lc ≫ δflat.

Let us proceed with the calculation of the rest-mass of the monopole in the case r → ∞, η ≪ 1, λ≫ 1,
Lc > δ ≫ 1 and δ = aLc. We will need the equations (6.50), (6.82), (6.88), (6.89), (6.92), (6.100) and
(6.101), which we summarize hear:

W (r) =
ζ√
2r

, A(r)B(r) ≈ 1 , A(r) ≈ B(r) ≈ 1

b′(r) =
ζ

r2
, f(r) = 1− 1

λη2r2
, f2(r)− 1 ≈ − 2

λη2r2
(6.106)

Thus, the rest-mass of the monopole reads:

E = 4π

∫ Lc

aLc

dr r2
[
3ζ2

2r4
+
η2

2

(
2

r2
− 4

λη2r4
+

4

λ2η4r6

)
+
λη4

4

4

λ2η4r4

]
⇒

E ∼ 4π

∫ Lc

aLc

dr

[
3ζ2

2r2
+ η2 − 2

λr2
+

1

λr2

]
⇒

E ∼ 4π

∫ Lc

aLc

dr

[
3ζ2

2r2
+ η2 − 1

λr2

]
⇒

E ∼ 1− a

a

[
6πζ2 − 4π

λ

]
1

Lc
+ 4πη2(1− a)Lc (6.107)

Note that due to the large λ, which ensures that the scalar fields χa approach their vacuum expectation
values, the right-hand-side of (6.107) is practically independent of the coupling λ. In this case we have:

E ∼ 1− a

a

6πζ2

Lc
+ 4πη2(1− a)Lc (6.108)

We may determine the core radius Lc by minimizing the total energy:

1− a

a

6πζ2

L2
c

= 4πη2(1− a) ⇒

L2
c =

3ζ2

2aη2
⇒

Lc =

√
3

2

|ζ|√
aη

(6.109)

Thus, upon substituting equation (6.109) into equation (6.108), we obtain:

E ∼ 6π

√
2

3

1− a√
a
η|ζ|+ 4π

√
3

2

1− a√
a
η|ζ| ⇒

E ∼ 4
√
6π

1− a√
a
η|ζ| (6.110)

Finally, we may prove that there are no R-N horizons in our model:

1− 2M

r
+
ζ2

r2
= 0 ⇒
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r± =M

(
1±

√
1− ζ2

M2

)
(6.111)

Note that:

M ≤ E ∼ 4
√
6π

1− a√
a
η|ζ| η≪1

=⇒

M < |ζ| (6.112)

Consequently, there are no R-N horizons. Note that we use symbol E for the rest-mass, in order to avoid
the confusion with the Schwarzschild mass M , which differs from the total mass as we prove later on. In
the following section we present the regularisation procedure of the naked R-N singularity.

6.4 Regularisation of the curvature singularity
It is very interesting that the rest-mass of the monopole (6.110) is not fully determined. The parameters
η and ζ must be determined experimentally. Hence, we have a remaining unknown parameter, a. This
parameter will be determined by a regularisation of the curvature singularity at the origin.

6.4.1 Effective cosmological constant
As we mentioned before, our analysis for the region around the origin is uncompleted. To be more precise,
near the origin it is possible to be generated effectively a positive cosmological constant. Therefore, at
the region of the origin we have a de Sitter space-time instead of a singular RN-like space-time. The
inspiration for the subsequent discussion comes from the strongly coupled string theory, which might be
expected near the origin, due to the strong gravity in this region. Thus, the string coupling reads gs(r →
0) = eΦ(r→0) ≫ 1. In other words the dilaton field Φ, near the origin, is stabilised at a very large value,
due to the self-interacting potential V (Φ). Consequently, the terms − 1

12e
−2ΦHρµνH

ρµν − 1
4e

−Φfµνf
µν

of the Lagrangian (6.1) vanish near the origin. Additionally, note that χa(r → 0) → 0. Therefore, the
stress-energy tensor (6.16) reads:

Tµν = gµν
λη4

4
(6.113)

Hence, the corresponding Einstein field equations are:

Gµν = gµν2πGλη
4 (6.114)

Thus, we recognise the positive cosmological constant:

Λ = 2πGλη4 > 0 (6.115)

which is similar to the case of the self-gravitating global monopole described in chapter 5. Consequently,
we may consider a region around the origin with radius δ ≫ 1 (Planck length scale), where the space-time
is de Sitter with cosmological constant (6.115). Additionally, note that the region between the radii δ and
Lc is the shell, which contains the most of the monopole mass. In this region, the metric has the form of a
R-N space-time with an angular deficit proportional to the global SO(3) spontaneous symmetry breaking
scale η2, equations (6.99) and (6.100). Outside the core of radius Lc, which is sufficiently large compared
to the Planck length, the metric is approximately Minkowski-like with deficit angle 8πGη2. We depict the
structure of the self-gravitating magnetic monopole in figure 6.1. Note that, the fact that the metric is
not asymptotically Minkowski, due to the deficit angle, does not violate the Birkhoff’s theorem, since the
scalar SO(3) triplet does not vanish in infinity.

6.4.2 Israel conditions
The cut-off radius δ, for the de Sitter space-time, can be determined by employing the Israel procedure [26]
based on matching of two spherical regions in space described by different metrics. First of all, the system
seems to be consistent, since the de Sitter space-time extents to the region where we approximately have
A(r)B(r) ≈ 1 + O( 1

r2 ). Hence, the matching of the de Sitter and RN-like metrics is possible. Moreover,
we assume that the two regions (R-N with deficit angle and de Sitter) are separated by a thin shell, on
which the stress-energy tensor vanishes and, as a result, no energy flows through the boundary surface at
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Figure 6.1: The magnetic monopole structure. Around the origin, in the region with radius δ ≫ 1, the
space-time is de Sitter. The most of the monopole mass is concentrated inside the thin spherical shell with
radii Lc > δ ≫ 1. In this region the space-time is R-N with deficit angle. Outside the monopole core, i.e.
for r > Lc, the spacetime is Minkowski with deficit angle.

r = δ. The Israel conditions demand the continuity of the metric and its derivatives on the thin shell. Let
us apply Israel conditions to our case. The metric of our model can be written as follows:

ds2reg = f(r)dt2 − dr2

f(r)
− r2

(
dθ2 + sin2(θ)dϕ2

)
(6.116)

where

f(r) = B1(r)Θ(δ − r) +B(r)Θ(r − δ) (6.117)

with

B1(r) = 1− Λr2

3
(6.118)

and B(r) given by equation (6.101). In our static case, the Israel conditions read:

B1(r = δ) = B(r = δ)

d
drB1(r)

∣∣∣
r=δ

= d
drB(r)

∣∣∣
r=δ

(6.119)

Hence, we can determine the radius δ and the Schwarzschild mass M .

B1(r = δ) = B(r = δ) ⇒

Λ

3
δ2 = η2 +

2M

δ
− ζ2

δ2
⇒

δ(Λ) =
η√
2Λ

(
1 +

√
1 +

4ζ2Λ

η4

) 1
2

≈ Λ− 1
4

√
|ζ| > 0 (6.120)

The above approximation ( 4ζ
2Λ
η4 ≫ 1) needs to be examined in every case separately. Also, we have

d

dr
B1(r)

∣∣∣
r=δ

=
d

dr
B(r)

∣∣∣
r=δ

⇒

2M(Λ) = −2Λ

3
δ3(Λ) +

2ζ2

δ(Λ)
(6.121)

We denote the parameters as functions of the cosmological constant, since we want to emphasize that some
results will be independent from Λ. Note that, if we ignore Kalb-Ramond term (ζ = 0), the monopole
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will not be magnetic and will have negative mass. Hence, there will be repulsive forces and the monopole
will not be able to be stabilised. This case is similar to that examined in chapter 5. Thus, for sufficiently
large ζ2, indeed Kalb-Ramond torsion and the mechanism that contributes to the existence of the effective
magnetic charge solve the problem of the negative mass. Moreover, note that the cosmological constant
(6.115) depends on the parameter η. Hence, the scalar SO(3) triplet and the corresponding Higgs self-
interacting potential contribute to the regularisation of the naked singularity.

Then, we substitute the cosmological constant (6.115), in units 8πG = 1, into equation (6.120), while
we consider the conditions λ ≫ 1, |ζ| ≫ 1, λζ2 ≫ 1, η2 ≪ 1 and λη2 ≪ 1, which are consistent with the
aforementioned discussion, and we obtain:

δ =
√
2λ−

1
2 η−1

(
1 +

√
1 + ζ2λ

) 1
2 ⇒

δ ≈
√
2λ−

1
2 η−1|ζ| 12λ 1

4 ⇒

δ ≈
√
2λ−

1
4 η−1|ζ| 12 =

√
2
|ζ|
η
(ζ2λ)−

1
4 ≫ 1 (6.122)

Note that δ ≫ 1 as we expected. Furthermore, we calculate the Schwarzschild mass M of the monopole:

M ≈ −λη
4

12
2

3
2
|ζ|3

η3
(ζ2λ)−

3
4 + ζ2

η√
2|ζ|

(ζ2λ)
1
4 ⇒

M ≈ (
1√
2
− 1

3
√
2
)|ζ|η(ζ2λ) 1

4 ⇒

M =
m

8π
≈ 0.47|ζ|η(ζ2λ) 1

4 > 0 (6.123)

Note that M
η ∼ |ζ|(ζ2λ) 1

4 ≫ 1, hence M ≫ η, in other words, the Schwarzschild mass M of the monopole
is much greater than the SO(3) spontaneous symmetry breaking scale.

Moreover, we can determine the parameter a:

a =
δ

Lc
=

√
2
|ζ|
η
(ζ2λ)−

1
4

√
2

3

√
aη

|ζ|
⇒

a(Λ) =
2

3
ζ−2η2δ2(Λ) =

4

3
(ζ2λ)−

1
2 ≪ 1 (6.124)

Note that although a≪ 1, it is evident that δ ≫ 1, as we expected. Upon substituting equation (6.124)
into equation (6.110), the rest-mass reads:

E(Λ) ∼ 8π

√
6

2

η|ζ|√
a(Λ)

= 8π
3

2

ζ2

δ(Λ)
, for a≪ 1 (6.125)

E ∼ 8π 1.06(ζ2λ)
1
4 η|ζ| (6.126)

Hence, we compare it with the Schwarzschild mass (6.123) of the monopole and we obtain:

E
m

= 2.26 (6.127)

Due to the angular deficit 8πGη2 in the asymptotic space-time and the gravitational binding energy of the
system, the mass coefficient appearing in the gravitational potential is different from the total rest-energy,
which in a flat space-time would be considered as the total monopole rest mass. This violation of the Weak
Equivalence Principle is related with the invalidity of the Birkhoff’s theorem, due to the deficit angle, as
well as, it is correlated with the fact that the examined monopole is a finite structured object.
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6.5 The effective mass of the monopole
In this section, we discuss the concept of the effective mass according to the work [36], which is equivalent
with the calculation of the Komar integral for the Killing vector ∂t. First of all, let us examine the case
of the Reissner-Nordström space-time. In such a case, the charge, like the mass, induces curvature of
space-time. In our case, the existence of the magnetic charge acts proportionally. Considering a spherical
surface of radius R and centre at R-N singularity location, we may define two kind of "effective mass": the
effective mass enclosed by the spherical surface (M Int

Eff ) and the effective mass associated with the exterior
region (MExt

Eff ). The M Int
Eff can be calculated by the Whittaker’s theorem [36][37]:

M Int
Eff =

1

4π

∮
v2

dv2V,in
i , ni = (V, 0, 0) (6.128)

where, in spherical polars, dv2 = δ2sin(θ)dθdϕ and V 2 denotes the temporal component of the metric
tensor, as defined by the invariant line element ds2 = V 2dt2 − gijdx

idxj . Particularly, in the case of the
R-N metric we have:

V 2 = 1− 2M

r
+
Q2

r2
(6.129)

where M is the Schwarzschild mass and Q the charge. Hence, V reads:

V =
(
1− 2M

r
+
Q2

r2

) 1
2

(6.130)

Thus, from equation (6.128), for r = R, we obtain:

M Int
Eff =M − Q2

R
(6.131)

Note that the result is identical with the one obtained by the corresponding Komar integral. Similarly,
MExt

Eff is calculated in [36]:

MExt
Eff =

Q2

R
(6.132)

Subsequently, we may calculate the total effective mass

MTot
Eff =M Int

Eff +MExt
Eff =M (6.133)

which is the Schwarzschild mass (ADM mass) of the R-N metric. It is interesting that the effective mass
M Int

Eff appears in the expression for the radial acceleration of a neutral test particle falling into the R-N
black hole [36]:

d2r

dτ2
= − 1

r2

(
M − Q2

r

)
(6.134)

where τ is the proper time. Note that the gravitational field varies with the distance r and becomes
repulsive when the effective mass M − Q2

r becomes negative, i.e. when r < Q2

M .
Considering our model, we must point out that the hypothesis of a bag-model is actually not a choice

but a necessity, since the exterior total rest-energy of the monopole divergences due to the deficit angle
η2. Let us consider as M Int

Eff the effective mass contained in the de Sitter region r < δ. Then we recognise:

V =
(
1− 1

3
Λr2

) 1
2

(6.135)

Hence, using Whittaker’s theorem [36][37] we calculate:

M Int
Eff (Λ) = −1

3
Λδ3 < 0 (6.136)

The negative value of the M Int
Eff was expected, since the positive cosmological constant implies repulsive

forces. Considering the equation (6.121) we may write:

M Int
Eff (Λ) =M(Λ)− ζ2

δ(Λ)

Λ=λη4

4=
(6.120)(6.121)

−1

2
M(Λ) (6.137)

If we require that the sum of both exterior and interior effective masses should equals the Schwarzschild
mass (6.123), i.e. the ADM mass, the MExt

Eff reads:
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MExt
Eff (Λ) =

ζ2

δ(Λ)
=

3

2
M(Λ) (6.138)

The result MExt
Eff (Λ) = ζ2

δ(Λ) is a consistent result with the R-N case for any value of the cosmological

constant. The total rest-energy (6.126) in the units (6.102), for Λ = λη4

4 , is written as follows:

E = 1.06(ζ2λ)
1
4 η|ζ| = 2.26M (6.139)

It is very interesting that, comparing the total rest-energy (6.125) with MExt
Eff , for any value of Λ, we have:

E(Λ) = 1.5MExt
Eff (Λ) (6.140)

The last result is valid for any value of the cosmological constant with the restriction a ≪ 1. Note that
the total rest-energy of the monopole in the spherical shell is larger than the effective mass in the region
exterior to the core (E > MExt

Eff ). This can be attributed to the non-zero contributions of the Kalb-Ramond
axion-like field b(r⃗) and the electromagnetic fields to the energy functional E , as well as the gravitational
self-binding energy [4] and the non-vanishing scalar triplet at infinity. Under the assumptions that the
components of the total momentum vector of the system are zero and the object is considered "quasi-
static", which means that there is no significant energy present in the form of gravitational waves, then
the monopole’s effective mass m̃ can be defined as (in units of the speed of light in vacuum):

m̃ = Etotal + Ebinding (6.141)

where the binding energy satisfies the inequality: Ebinding < 0, due to the repulsive nature of the self-
gravitating scalar triplet, which is examined in chapter 5. In our case, for large core radius, the criterion
of (approximate) space-time flatness, along with the other assumptions, is satisfied; one may thus identify
Etotal = E and m̃ = MExt

Eff . Hence, the fact that the total rest-energy is larger than the exterior effective
mass is naturally explained. We also note that, for us, the role of the infalling neutral matter is played
by the Kalb-Ramond axion-like pseudoscalar field, which thus will accumulate on the surface of radius δ,
since it is on this surface that the radial acceleration will vanish.

In order to conclude, in view of the negative effective mass contributions of the de Sitter regulator,
the Weak Equivalence Principle, where one would equate the total rest-energy E with the inertial mass,
fails. However, this should be expected for gravitating extended objects, as is our case, given that the
Weak Equivalence Principle characterises point-like masses. Note that the total rest-energy and MExt

Eff are
of the same order of magnitude, therefore we can conclude that our monopole moves similarly to a point
particle.

6.6 Satisfaction of the Weak Equivalence Principle
The Weak Equivalence Principle can be accomplished by regulating the cosmological constant. Let us
assume that the dilaton potential takes a non-zero value near the origin, as such:

E =MExt
Eff and MExt

Eff =
ζ2

δ
(6.142)

In order for the equation (6.142) to be satisfied, we need to work with a cosmological constant that
corresponds to a ≈ 1, otherwise the satisfaction of the equation (6.140) is inevitable. Thus, we introduce
a modified cosmological constant:

Λ(ξ) =
ξ2

4
λη4 > 0 , ξ ∈ R (6.143)

in the units 8πG = 1. Then:

δ(ξ) ≈ Λ− 1
4 (ξ)

√
|ζ| =

√
2

1√
|ξ|

|ζ|
η
(ζ2λ)−

1
4 ≫ 1 (6.144)

M(ξ) = −
√
2

6
η
√

|ξ||ζ|(ζ2λ) 1
4 +

|ζ|
√
|ξ|√
2

η(ζ2λ)
1
4 ⇒

m(ξ) = 8π

√
2

3

√
ξη|ζ|(ζ2λ) 1

4 (6.145)
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Hence, the parameter a reads:

a(ξ) =
δ(ξ)

Lc
=

√
2

1√
|ξ|

|ζ|
η
(ζ2λ)−

1
4

√
2

3

√
a(ξ)η

|ζ|
⇒

a(ξ) =
2

3

η2

ζ2
δ2(ξ) =

4

3|ξ|
(ζ2λ)−

1
2 (6.146)

As we proved earlier, if we suppose that a ≪ 1, the ratio (6.140) remain invariant. In this case, the
weak equivalence principle cannot me satisfied. This is a consistent result, because the assumption a≪ 1
corresponds to a monopole that differs significantly from a point-like particle. Hence, the parameter a
needs to satisfy the condition a ≈ 1, which implies a thin shell, which contains most of the mass of the
monopole. Upon substituting equation (6.146) into equation (6.110), the rest-mass reads:

E ∼ 4
√
6π

1− a√
a
η|ζ| ⇒

E ∼ 8π
3

2

ζ2

δ(ξ)

(
1− 4

3|ξ|
(ζ2λ)−

1
2

)
(6.147)

Note that we did not use the approximation (6.125). Thus, in the units 8πG = 1, we have:

E ∼ 3

2

(
1− 4

3|ξ|
(ζ2λ)−

1
2

)
MExt

Eff (6.148)

Consequently, the equation (6.142) is satisfied if we demand:

|ξ| = 4(ζ2λ)−
1
2 ≪ 1 (6.149)

Note that |ξ| ≪ 1 ⇒ a = 1
3 ≈ 1. Consequently, the Weak Equivalence Principle is satisfied when the

monopole mass is contained in an extremely thin shell, or, in other words, when the monopole looks
like a point-particle. Additionally, we need to check the validity of the approximation (6.120). Note that
Λ = 4η4

|ζ| , hence 4ζ2Λ
η4 = 16, which is one order of magnitude larger than the Planck scale "1". Consequently,

the approximation is questionable. Nevertheless, the result makes physical sense, which can be formulated
as follows: for a small enough value of the cosmological constant, the shell, which contains the most of the
mass of the monopole, becomes extremely thin, hence the monopole acts like a point-like particle and the
Weak Equivalence Principle is approximately satisfied.

Finally, it is essential to point out that this choice of regularisation scheme [4] is consistent with a
negative dilaton potential in the de Sitter region, where the string theory (the Ultra-Violet (UV) completion
of our low energy model) is strongly coupled and such a potential might be generated, for instance, through
non-perturbative string-loop corrections. Outside the de Sitter region, where the gravity is weakened and,
string theory is weakly coupled and our low energy model is an effective description of the dynamics, the
tree level dilaton potential vanishes due to arguments based on conformal invariance [32][33]. Thus, the
asymptotic solutions, which are valid outside the de Sitter region, are not affected.

6.7 Quantization of the magnetic charge and experimental con-
straints of the model

The quantization of the magnetic charge g, which is proportional to the torsion charge ζ, may be yielded by
the standard Dirac argument [38], which considers the gauge transformations of the quantum relativistic
wave-function ψ of an electron field (with electric charge e) in the presence of the Dirac-string singular
vector potential A(r) for the monopole magnetic field B⃗ (with B⃗ = ∇A⃗). Upon requiring that the wave-
function is single-valued under the appropriate (singular) gauge transformations, we obtain the Dirac
quantization condition:

g e =
n

2
, n ∈ Z (6.150)

Hence, the torsion charge 6.81 satisfies the following quantization rule:

ζ e =
n

2
√
2
, n ∈ Z (6.151)
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Furthermore, considering the lowest magnetic charge (n = 1 ⇒ ζ = 1
2
√
2
) and the current bounds on

the (scalar) monopole mass at the LHC, from ATLAS [39] and MoEDAL [40] experiments, we impose a
lower limit on the value of the monopole rest-mass (6.126):

E ∼ 5.6λ
1
4 η > 790 GeV (6.152)

where λ ≫ 1 and η ≪ MP . Note that the mass limits for the monopoles are not very reliable, given that
these experimental limits are based on Drell-Yan or photon-fusion processes, which are approximations
that are not valid due to the strong magnetic coupling of a magnetic monopole. Moreover, the production
cross section for magnetic monopoles might be strongly suppressed for monopoles with structure, like the
ones relevant to this Thesis.

6.8 Conclusions
Searching for models that predict magnetic monopoles with reduced positive mass, which may be detected
in current or future colliders, we consider a string inspired model with Kalb-Ramond torsion [3] and
investigate its solutions in the spirit of the ’t Hooft-Polyakov [23] and Barriola-Vilenkin [24] models. Thus,
we determine a self-gravitating global solution, which corresponds to a "bag-model" with a Coulomb-like
magnetic field. Consequently, we determine the magnetic charge of the corresponding magnetic monopole,
which is proportional to the torsion charge. Despite the fact that the Higgs triplet, in the examined model,
plays the role of a 2-loop with winding number n ̸= 0, the quantization condition of the topological charge
does not correspond to the quantization condition of the ’t Hooft-Polyakov case. This is because the
term that violates the Bianchi identity depends on either the axion-like field, the ultra-heavy scalar and
scalar triplet, in the γ = 0 case, or the axion-like field, in the γ = 1 case. Therefore, an electromagnetic
strength tensor of the form (4.67) cannot be obtained. Nevertheless, the charge quantization condition is
yielded by the standard Dirac argument [38]. Additionally, the naked curvature singularity of the model
is regularized [4], if we consider a de Sitter core inside the magnetic monopole. Hence, upon imposing
the Israel conditions [26], we can write the radius and the ADM mass of the magnetic monopole with
respect to the parameters η and λ. These parameters may be determined experimentally. For instance,
we impose a lower limit on the magnetic monopole mass by considering the recent results from ATLAS
[39] and MoEDAL [40] experiments.

Finally, we cannot help but mention that, in our recent paper [41], we prove that the Barriola-Vilenkin
model [24] may get a positive mass if we consider it embedded in a higher curvature gravity. To be more
precise, we focus on a recently developed model of Pedro G. S. Fernandes [42], which includes a conformally
coupled scalar field by only requiring conformal invariance of the scalar field equation of motion and not
of the action. Hence, the theory incorporates a scalar-Gauss-Bonnet sector with a coupling parameter
α. In our original work, we discuss self-gravitating global O(3) monopole solutions, associated with the
spontaneous breaking of the O(3) symmetry down to a global O(2), in the above extended Gauss-Bonnet
theory of gravity in (3 + 1)-dimensions. Thus, we determine self-gravitating monopole solutions and
regularize their curvature singularity by considering a de Sitter core inside the monopole. Then, upon
imposing the Israel conditions [26], we determine the radius of the de Sitter core and the ADM mass of
the global monopole, which is positive. Therefore, inside the de Sitter core we have repulsive forces, while
outside the core we have attractive forces. Consequently, considering these forces, the monopole seems to
be stable, however a detailed stability analysis is pending.
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Appendix A

Point splitting method

We may explicitly prove that the equation (2.17) for regular vector potential reduces to standard Hamilto-
nian, if we take its average over all directions of the parameter ε⃗. Since, A⃗ is regular and ε→ 0, equation
(2.19) implies:

E = exp

[
ie

∫ r⃗+ ε⃗
2

r⃗− ε⃗
2

A⃗(ξ⃗)dξ⃗

]
= exp

[
ie(ε⃗ · A⃗(r⃗))

]
(A.1)

Also, we need to expand the exponentials in equation (2.17) up to the second order of ε⃗:

1− e−i p⃗ε⃗
2 Ee−i p⃗ε⃗

2 ≈ 1−
(
1− i

p⃗ · ε⃗
2

− (p⃗ · ε⃗)2
8

)(
1 + ieA⃗ · ε⃗− e2

2
(A⃗ · ε⃗)2

)(
1− i

p⃗ · ε⃗
2

− (p⃗ · ε⃗)2
8

)
⇒

1− e−i p⃗ε⃗
2 Ee−i p⃗ε⃗

2 ≈ iπ⃗ · ε⃗+ (p⃗ · ε⃗)2

2
− e

2
(A⃗ · ε⃗)(p⃗ · ε⃗)− e

2
(p⃗ · ε⃗)(A⃗ · ε⃗) + e2

2
(A⃗ · ε⃗)2 + ... (A.2)

Then, in order to take the average of (2.17) over all directions of the parameter ε⃗, we integrate on the
surface of a sphere with radius |ε⃗|:

H =
3

mε2

[ ∫ 2π

0

∫ 1

−1

ε2dcos(θ)dϕ
]−1

∫ 2π

0

∫ 1

−1

(
1− e−ip⃗ε⃗Ee−ip⃗ε⃗

)
ε2dcos(θ)dϕ (A.3)

In the subsequent steps we calculate each term of the equation (A.3) separately. Without loss of generality,
we consider that ẑ is parallel to π⃗ and we have:

3

4πmε4
i

∫ 2π

0

∫ 1

−1

(π⃗ · ε⃗)ε2dcos(θ)dϕ =
3

4πmε4
2πiε3|π⃗|

∫ 1

−1

cos(θ)dcos(θ) = 0 (A.4)

Additionally, considering that ẑ is parallel to p⃗, we obtain:

3

4πmε4

∫ 2π

0

∫ 1

−1

(p⃗ · ε⃗)2

2
ε2dcos(θ)dϕ =

3

4mε2

∫ 1

−1

p2ε2cos2(θ)dcos(θ) ⇒

3

4πmε4

∫ 2π

0

∫ 1

−1

(p⃗ · ε⃗)2

2
ε2dcos(θ)dϕ =

p⃗2

2m
(A.5)

Subsequently, in order to integrate the third term of the expansion (A.2), we consider that ẑ is parallel
to p⃗ and that A⃗ = (A⃗·p⃗)p⃗

p2 + A⊥x̂, which implies that x̂ is parallel to A⃗⊥. Hence, we have the equation:

A⃗ · ε⃗ = (A⃗·p⃗)
p ε cos(θ) +A⊥ε sin(θ)cos(ϕ). Thus, we obtain:

− e
2

3
4πmε4

∫ 2π

0

∫ 1

−1
(A⃗ · ε⃗)(p⃗ · ε⃗)ε2dcos(θ)dϕ =

− e
2

3
4πmε2

[ ∫ 2π

0

∫ 1

−1
(A⃗ · p⃗)ε2cos2(θ)dcos(θ)dϕ+

�����������������: 0∫ 2π

0

∫ 1

−1
A⊥pε

2sin(θ)cos(ϕ)dcos(θ)dϕ

]
⇒

−e
2

3

4πmε4

∫ 2π

0

∫ 1

−1

(A⃗ · ε⃗)(p⃗ · ε⃗)ε2dcos(θ)dϕ = −e(A⃗ · p⃗)
2m

(A.6)
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Similarly, the integration of the forth term of the expansion (A.2) reads:

−e
2

3

4πmε4

∫ 2π

0

∫ 1

−1

(p⃗ · ε⃗)(A⃗ · ε⃗)ε2dcos(θ)dϕ = −e(p⃗ · A⃗)
2m

(A.7)

Finally, we calculate the last term of (A.2) by considering that ẑ is parallel to A⃗:

e2

2

3

4πmε4

∫ 2π

0

∫ 1

−1

(A⃗ · ε⃗)2ε2dcos(θ)dϕ =
3e2

4mε4
A⃗ 2ε4

∫ 1

−1

cos2dcos(θ)dϕ⇒

e2

2

3

4πmε4

∫ 2π

0

∫ 1

−1

(A⃗ · ε⃗)2ε2dcos(θ)dϕ =
(eA⃗)2

2m
(A.8)

Upon substituting equations (A.2), (A.4), (A.5), (A.6), (A.7) and (A.8) into equation (A.3), we obtain:

H =
π⃗2

2m
, with π⃗ = p⃗− eA⃗ (A.9)

The average of the regularised angular momentum (2.18), over all directions of parameter ε⃗, is calculated
similarly, providing the standard angular momentum, in the case where A⃗ is regular. Let us present the
calculations. Note that, in this case, the only non-vanishing term of the expansion (A.2) is iπ⃗ · ε⃗, due to
the imposition of the limit |ε⃗| → 0. Hence, the average of the angular momentum (2.18) reads:

Li =
3

4πiε4
ϵijkxj

∫ 2π

0

∫ 1

−1

εk

(
1− e−i p⃗ε⃗

2 Ee−i p⃗ε⃗
2

)
ε2dcos(θ)dϕ⇒

Li =
3

4πε2
ϵijkxj

∫ 2π

0

∫ 1

−1

εk(π⃗ · ε⃗)dcos(θ)dϕ (A.10)

Note that εk = (ε1, ε2, ε3), where:

ε1 = ε sin(θ)cos(ϕ)

ε2 = ε sin(θ)sin(ϕ)

ε3 = ε cos(θ)

(A.11)

Also, it is useful to set

Ik =

∫ 2π

0

∫ 1

−1

εk(π⃗ · ε⃗)dcos(θ)dϕ with k = 1, 2, 3 (A.12)

and calculate the three components separately.

I1 = ε2
∫ 2π

0

∫ 1

−1

sin(θ)cos(ϕ)
(
π1sin(θ)cos(ϕ) + π2sin(θ)sin(ϕ) + π3cos(θ)

)
dcos(θ)dϕ⇒

I1 =
4π

3
π1ε

2 (A.13)

Similarly, the remaining two components read:

I2 =
4π

3
π2ε

2 (A.14)

I3 =
4π

3
π3ε

2 (A.15)

Upon substituting Ik = 4π
3 πkε

2 into equation (A.10), we obtain:

Li =
3

4πε2
ϵijkxj

4π

3
πkε

2 ⇒

L⃗ = r⃗ × π⃗ (A.16)

which is the desirable result, in case we assume a regular vector potential. Otherwise, if the vector potential
is singular, equations (2.17) and (2.18) are considered as definitions of the respective operators, in order
for the commutative relations (2.20) and (2.21) to be satisfied.
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Appendix B

Superalgebra OSp(1, 1)

Let us prove some of the relations (2.92). To be more precise, in the next few lines, we verify the anti-
commutation relations between the generators of the supertransformations, which are given in equation
(2.91). It would be useful to summarize the generators of the supergroup OSp(1, 1):

Q =
√
M ˙⃗r · ξ⃗ , S = −tQ+

√
Mr⃗ · ξ⃗

H = π⃗2

2M − i µ
2Mr3 ϵijkriξjξk

D = Ht− M
4 (r⃗ · ˙⃗r + ˙⃗r · r⃗) , K = −Ht2 + 2Dt+ Mr⃗2

2

(B.1)

where µ = eg. Let us verify relation {Q,Q} = 2H. We will use the following identity:

{AB,CD} = A[B,C]D +AC{B,D} − [A,C]DB + C[D,A]B (B.2)

Hence, we have:

{Q,Q} =M{ṙiξi, ṙjξj}
(B.2)
= M

(
˙⃗r2 − ξjξi[ṙi, ṙj ]

) (2.12)
=⇒

π⃗=M ˙⃗r

{Q,Q} =
π⃗2

M
− ξjξi

ie

M
ϵijkBk

{ξi,ξj}=δij
=⇒

B⃗=g r⃗
r3

{Q,Q} = 2
( π⃗2

2M
− i

µ

2Mr3
ϵijkriξjξk

)
(B.1)
=⇒

{Q,Q} = 2H (B.3)

Moreover, we may verify relation {Q,S} = −2D.

{Q,S} = −t{Q,Q}+ {πiξi, rjξj}
(B.2)
=⇒
(B.3)

{Q,S} = −2tH + π⃗r⃗ + i(ξ⃗)2
(ξ⃗)2=( σ⃗√

2
)2= 3

2

=⇒
(B.3)

{Q,S} = −2tH +
1

2
(2π⃗ · r⃗ + iδii)

[xi,πj ]=iδij
=⇒

{Q,S} = −2
(
tH − M

4
(r⃗ · ˙⃗r + ˙⃗r · r⃗)

)
(B.1)
=⇒

{Q,S} = −2D (B.4)

Finally, we will prove that {S, S} = 2K.

{S, S} = t2{Q,Q} − 2
√
M{Q, rjξj}+M{riξi, rjξj} ⇒

{S, S} = 2t2H − 2t{riξi, πjξj}+M{riξi, rjξj}
(B.2)
=⇒
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{S, S} = 2t2H − 2triπjδij + 2tiξjξiδij +Mrirjδij ⇒

{S, S} = 2t2H − 2tr⃗π⃗ + tiδii +Mrirjδij
[ri,πj ]=iδij

=⇒

{S, S} = −2t2H + 4t2H − tr⃗π⃗ − tπ⃗r⃗ +Mrirjδij
(B.1)
=⇒

{S, S} = −2t2H + 4tD +Mrirjδij
(B.1)
=⇒

{Q,S} = 2K (B.5)
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Appendix C

Lie groups

The Lie groups are groups, as also differentiable manifolds, with the property that the group operations are
compatible with the smooth structure. To be more precise, the group elements are smooth differentiable
functions of some finite set of parameters θa ∈ R, and the group operation "⊙" depends smoothly on those
parameters. A typical element of a Lie group can be represented as a "matrix valued complex phase":
g = g(θ1, ..., θn) = eiθaT

a ≡ eiθ⃗T⃗ , a = 1, ..., n, where θa are continuous parameters. Note that any typical
element of a Lie group is continuously connected to the identical element. The T a are called generators
of the Lie group, since any element of the Lie group, continuously connected to the identity element, can
be constructed by them.

Algebra is a vector space V = {U i} equipped with a binary operation "⊙" corresponding to a linear
superposition of the algebra elements: U i⊙U j = f ijkU

k. The coefficients f ijk are called structure constants.
Algebra Lie is an algebra, whose elements are the generators of the Lie group and the corresponding

binary operation is the commutation of the generators: [T a, T b] = ifabcT
c, where the structure constant

is completely antisymmetric. If the metric of the Lie group is Euclidean, it does not matter if the indices
are up or down. Additionally, the associativity property of the group implies the Jacobi identity:

[[T a, T b], T c] + [[T c, T a], T b] + [[T b, T c], T a] = 0 (C.1)

Let us consider a Lie group with generators T a, a = 1, ..., n. Then, a representation of the group in
the form of n× n matrices can be the following:

(T a)bcadjoint = −ifabc (C.2)

Consequently, it can be proven that the structure constants, i.e. (T a)bcadjoint, satisfy the Lie algebra.
Firstly, we may prove a relation between the fabc, which corresponds to the Jacobi identity (C.1). Hence,
the equation (C.1) implies:

[[T a, T b], T c] + [[T c, T a], T b] + [[T b, T c], T a] = 0 ⇒

(
if bciifaij + if caiif bij + ifabiif cij

)
T j = 0

i↔c⇒

f bicfacj + f iacf bcj + fabcf icj = 0 (C.3)

Subsequently, we calculate the commutative relation [T a
adj , T

b
adj ] as follows:

[T a
adj , T

b
adj ]

ij = (−ifaik)(−if bkj)− (−if bik)(−ifakj) (C.3)
= ifabc(−if cij) ⇒

[T a
adj , T

b
adj ]

ij = ifabc(T c
adj)

ij (C.4)

Note that, if the examined Lie group is the group SU(2), the structure constants are represented by the
standard Levi-Civita symbol. In this case, the adjoint representation of the group has purely complex
generators. Hence, the elements of the group (U(θ1, θ2, θ3) = eiθaT

a

, with θa ∈ R) have real components.
Therefore, we have U† = UT .

84



Appendix D

Notions of Topology

In the next few lines we present some notions of differential geometry and topology [1][35].

A topological space is a set X, endowed with a topology T . A topology is a family of open subsets
{Ui}i∈I ⊆ X, which obey:

i) X ∈ T and ∅ ∈ T
ii) if K is any finite subcollection of I, the family {Uk}k∈K satisfies

⋂
k∈K Uk ∈ T

iii) if J is any (maybe infinite) subcollection of I, the family {Uj}j∈J satisfies
⋃

j∈J Uk ∈ T

A topological space is called Hausdorff, if for every p, q ∈ X, there exist neighborhoods Up, Uq ∈ T
such that p ∈ Up, q ∈ Uq and Up ∩ Uq = ∅.

A homeomorphism between topological spaces X and X̂ is a map f : X̂ → X, which is

i) injective (or one-to-one): for p ̸= q ⇒ f(p) ̸= f(q)
ii) surjective (or onto): for every p ∈ X, there is a p̂ ∈ X̂ such that f(p̂) = p
Functions which are both injective and surjective are called bijective. This ensures that they have an
inverse f−1 : X → X̂.
iii) bicontinuous: Both f and its inverse f−1 are continuous. To define a notion of continuity, the proper-
ties of topological space is needed. A homeomorphism f is continuous if for all U ∈ X, f−1(U) ∈ X̂

An n-dimensional differentiable manifold is a Hausdorff topological space M equipped with a family of
pairs {(Ui, ϕi)} under the constraint

⋃
i Ui =M such that:

i) M is locally homeomorphic to Rn by the mapping ϕi : Ui → U ′
i , with U ′

i an open subset of Rn

ii) Given two overlapping Ui, Uj (Ui ∩ Uj ̸= ∅), the map ψij = ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj) is

smooth (also called infinitely differentiable or C∞)
The maps ϕi are calls charts and allow us to assign a coordinate system on the manifold. The map ψij is
called transition function and acts as a coordinate transformation.

Similarly, a complex manifold is locally homeomorphic to Cn and the corresponding transition function
is holomorphic, i.e. is complex differentiable in a neighbourhood of each point in a domain in complex
coordinate space Cn. A complex function f(x, y) = u(x, y)+iv(x, y) is holomorphic, if and only if, Cauchy-
Riemann equations are satisfied throughout the domain we are dealing with.

Let f : M → N be a map from an m-dimensional manifold M to an n-dimensional manifold N . Thus,
a point p ∈ M is mapped to a point f(p) ∈ N , namely f : p → f(p). Taking a chart (U, ϕ) on M and
(V, ψ) on N , where p ∈ U and f(p) ∈ V , f takes the coordinate representation ψ ◦ f ◦ ϕ−1 : Rm → Rn. If
ψ ◦ f ◦ ϕ−1 is C∞ to the coordinates Rm, then f is said to be differentiable (smooth) at p ∈M .

Let f : M → N be a homeomorphism (f, f−1 are continuous) and (U, ϕ), (V, ψ) be charts on M ,
N respectively. If the representation of f , ψ ◦ f ◦ ϕ−1, is invertible, i.e. the map ϕ ◦ f−1 ◦ ψ−1 exists, and
both ψ ◦ f ◦ ϕ−1 and ϕ ◦ f−1 ◦ψ−1 are C∞, then f is called diffeomorphism and manifold M is said to be
diffeomorphic to manifold N .
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Biholomorphism is an equivalent notion to diffeomorphism, between two complex manifolds X and Y .
If the map ϕ : X → Y and its inverse ϕ−1 : Y → X are holomorphic maps, we can say that the manifolds
X and Y are isomorphic. Such a map is called biholomorphism.

Note that, if the manifold X is homeomorphic to the manifold Y , which is homeomorphic to the manifold
T , the composition of these two maps makes X homeomorphic to T . Thus, all topological manifolds can
be divided into equivalence classes.

A curve in an m-dimensional manifold M is a map c : (a, b) → M , where (a, b) ⊂ R is an open in-
terval, such that a < 0 < b. Let λ be a parameter in the interval (a, b), then we can parameterise the
curve as c(λ). On a chart (U, ϕ), the parameter λ has the coordinate presentation x = ϕ ◦ c : R → Rm.

A function on an m-dimensional manifold M is a smooth map f : M → R. The set of all smooth
functions on M is denoted by C∞(M). On a chart (U, ϕ), the coordinate presentation of f is given by
f ◦ ϕ−1 : Rm → R, which is a real-valued function of m variables.
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Appendix E

Non-coordinate bases

It is often convenient to use the tetrad orthonormal basis [35]. A natural basis for the tangent space Tp(M)
at a point p is given by the partial derivative with respect to that point, ê(µ) = ∂µ. Similarly, a basis for
the cotangent space T ∗

p is given by the gradient of the coordinate function, θ̂(µ) = dxµ. However, we can
introduce a set of orthonormal basis vectors ê(a), indexed by a Latin letter to remind that they are not
related to any coordinate system. If the canonical form of the metric is written ηab, which represents the
Minkowski metric in a Lorentzian space-time, we demand the inner product of our vectors to be

g(ê(a), ê(b)) = ηab (E.1)

We can express our old basis vectors ê(µ) = ∂µ in terms of the new ones:

∂µ = e a
µ ê(a) (E.2)

The components e a
µ form an n×n invertible matrix. We may refer to e a

µ as tetrad. The components eµa
of the inverse ê(µ) = dxµ = eµaê

(a) satisfy the following equation:

∂µdx
ν = e a

µ eνb(ê(a), ê
(b)) = δ ν

µ ⇒ e a
µ eνbδ

b
a = δ ν

µ ⇒

e a
µ eνa = δ ν

µ (E.3)

which also yields:

eµbe
a

µ eνa = eνb ⇒ (eµbe
a

µ )eνa = δ a
b eνa ⇒

eµbe
a

µ = δ a
b (E.4)

Additionally, the definition of the tetrad basis implies:

g(ê(a), ê(b)) = ηab ⇒ gµν(dx
µ, ê(a))(dx

ν , ê(b)) = ηab ⇒ gµνe
µ
ce

ν
d(ê

(c), ê(a))(ê
(d), ê(b)) = ηab ⇒

gµνe
µ
ae

ν
b = ηab (E.5)

which means that the metric in the tetrad basis reads:

g = gµνdx
µdxν = gµνe

µ
aê

(a)eνbê
(b) ⇒

g = ηabê
(a)ê(b) (E.6)

The inverse properties imply:

gµνe
µ
ae

ν
b = ηab ⇒ gµνe

µ
aδ

ν
ρ = ηabe

b
ρ ⇒ gµρe

µ
a = ηabe

b
ρ ⇒

δ ξ
µ eµa = gξρηabe

b
ρ ⇒ eξa = gξρηabe

b
ρ ⇒

eµa = gµνηabe
b

ν (E.7)
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Note that we can raise and lower the Greek indices using the metric representation gµν and the Latin
indices using the metric representation ηµν . Let V = V µ∂µ be a vector. We may write the components of
the vector in the tetrad basis representation:

V = V µ∂µ = V µe a
µ ê(a) ⇒

V a = V µe a
µ and V µ = eµaV

a (E.8)

Similarly, let ω = ωµdx
µ be a cotangent vector, whose components in the tetrad basis representation read:

ω = ωµdx
µ = ωµe

µ
aê

(a) ⇒

ωa = ωµe
µ
a and ωµ = e a

µ ωa (E.9)

Finally, we can explicitly prove that the Latin indices of vectors can be raised and lowered by the metric
representation ηµν :

g(V, V ) = V aV bηcd(ê(a), ê
(c))(ê(b), ê

(d)) = V aV bηcdδ
c

a δ
d

b = V aV bηab ⇒

Va = ηabV
b (E.10)
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Appendix F

Newman-Janis algorithm

We present Newman-Janis algorithm [43] as a four-step procedure for generating new solutions of Einstein’s
equations from known static spherically symmetric ones [44].

Let (t, r, θ, ϕ) be a coordinate system assigned to a point p of a manifold M and (∂t, ∂r, ∂θ, ∂ϕ) be the
basis tangent vectors of Tp(M). A general, static and spherical symmetric metric tensor G0 ∈ T 0

2,p(M)
may be given by:

G0 = G(r)dt2 − 1

F (r)
dr2 −H(r)dΩ2 (F.1)

This is our static spherically symmetric seed line element to use as a seed for the rotating one.
Let us consider that the manifold M is embedded in a four-complex-dimensional manifold CM [45],

with coordinates za = (t, x, z, y) and z̄a = (t̄, x̄, ȳ, z̄) or equivalently za = (t, r, θ, ϕ) and z̄a = (t̄, r̄, θ̄, ϕ̄).
Additionally, we introduce a Hermitian metric h on the complex manifold M. A hermitian 2-form on a
complex vector space V , which is also a real vector space (of twice the dimension), is a map h : V ×V → C,
which is C-linear in its first argument, and such that h(v1, v2) = h(v2, v1) for all v1, v2 ∈ V . It follows that
h is C-anti-linear in its second argument. Let us write the line element as the real part of the hermitian
metric:

ds2 =
1

2
(hµν̄dz

µdz̄ν̄ + hµ̄νdz̄
µ̄dzν) = gµνdz

µdz̄ν (F.2)

Hence, the metric in our case is generalized as follows:

G0 = G(r)dtdt̄− 1

F (r)
drdr̄ −H(r)dθdθ̄ −H(r)sin2(θ)dϕdϕ̄ (F.3)

where G(r), F (r) and H(r) are functions from C to R. For instance, the generalization of Schwarzschild
metric reads

ds2 = F (r)dtdt̄− 1

F (r)
drdr̄ − rr̄dθdθ̄ − rr̄sin2(θ)dϕdϕ̄ (F.4)

where

F (r) = 1−M
(1
r
+

1

r̄

)
= 1− 2MRe[r]

|r|2
(F.5)

It is obvious that, if we consider real coordinates the solution is reduced to the standard Schwarzschild
metric. Note that the complexification 2

r → 1
r + 1

r̄ works in the case of Schwarzschild seed but it is not
generally the suitable choice. For instance, if we have a metric with a deficit angle, e.g. the metric of a
global self-gravitating monopole system, the complexification 2

r → 1
r + 1

r̄ does not work, as we discuss in
Appendix G. In this case, we may examine modified Newman-Janis algorithms, as the one developed by
Mustapha Azreg-Aϊnou in [46].

Under the consideration of a complex manifold, the Newman-Janis algorithm arises spontaneously,
since we consider a complex transformation of the coordinates in order to obtain real t, r, θ, ϕ. In the
following four steps, we conclude the algorithmic procedure.

Step 1. Eddington-Finkelstein coordinates

Let us consider the following coordinate transformation to outgoing Eddington-Finkelstein coordinates
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f1 : (t, r, θ, ϕ) → (u, r, θ, ϕ) (F.6)

which is defined by the relation

du = dt− dr√
G(r)F (r)

(F.7)

⇒
√
G(r)dt =

√
G(r)du+

dr√
F (r)

⇒ (F.8)

G(r)dtdt̄ = G(r)dudū+

√
G(r)

F (r)
dūdr +

√
G(r)

F (r)
dudr̄ +

drdr̄

F (r)
(F.9)

Hence, the metric, induced by the mapping f1, can be written as follows:

GS = G(r)dudū+

√
G(r)

F (r)
dūdr +

√
G(r)

F (r)
dudr̄ −H(r)dθdθ̄ −H(r)sin2(θ)dϕdϕ̄ (F.10)

Step 2. Complexification of the vector space

We can turn any real vector space V into a complex vector space V C by forming the set V ×V of all pairs
of (Ea, Eb), where Ea, Eb are orthonormal basis vector of V , by expressing the complex basis as Ea + iEb.
As such, we can construct a set of vectors forming a basis in TC

p (M). In particular, we may construct a
vector orthonormal tetrad basis, denoted by ea = ∂a = (∂t̃, ∂r̃, ∂θ̃, ∂ϕ̃) and eā = ∂ā = (∂¯̃t, ∂¯̃r, ∂ ¯̃θ, ∂ ¯̃

ϕ
), using

the following tetrad fields. The orthonormal one-forms can easily be found to read:

dt̃ =
√
G(r)dt =

√
G(r)du+ dr√

F (r)

dr̃ = dr√
F (r)

dθ̃ =
√
H(r)dθ

dϕ̃ =
√
H(r)sin(θ)dϕ

(F.11)

Similarly, the conjugate one-forms are determined. Thus, the corresponding tetrad field in the Eddington-
Finkelstein representation reads:

ea = eaµdx
µ ⇒

eaµ =


√
G(r) 1√

F (r)
0 0

0 1√
F (r)

0 0

0 0
√
H(r) 0

0 0 0
√
H(r)sin(θ)

 (F.12)

Then, using the relation eµa = gµνηabe
b

ν we may find that:

e µ
a =


1√
G(r)

0 0 0

− 1√
G(r)

√
F (r) 0 0

0 0 1√
H(r)

0

0 0 0 1√
H(r)sin(θ)

 (F.13)

which, by the definition ∂a = e µ
a ∂µ yields:
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∂t̃ =
1√
G(r)

∂u

∂r̃ = − 1√
G(r)

∂u +
√
F (r)∂r

∂θ̃ = 1√
H(r)

∂θ

∂ϕ̃ = 1√
H(r)sin(θ)

∂ϕ

(F.14)

Similarly, we determine the conjugate tetrad basis. Note that G(r), F (r), H(r), e µ
a and eaµ take real

values. Also, it is obvious that the tetrad fields satisfy their definition: gµνeµaeνb = ηab. Additionally, it
is obvious that e a

µ eνa = δ ν
µ and eµbe

a
µ = δ a

b .
Using the above results and considering that the angular coordinates θ, ϕ are real, we may represent

the metric by the following linear combinations of orthonormal vectors, denoted by (L, L̄,N, N̄ ,M, M̄):

L = 1√
F (r)

(∂t̃ + ∂r̃) = ∂r and L̄ = ∂r̄

N =

√
F (r)

2 (∂t̃ − ∂r̃) =
√

F (r)
G(r)∂u − F (r)

2 ∂r and N̄ =
√

F (r)
G(r)∂ū − F (r)

2 ∂r̄

M =
√
2
2 (∂θ̃ + i∂ϕ̃) =

√
2

2
√

H(r)
∂θ + i

√
2

2sin(θ)
√

H(r)
∂ϕ

M̄ =
√
2
2 (∂θ̃ − i∂ϕ̃) =

√
2

2
√

H(r)
∂θ − i

√
2

2sin(θ)
√

H(r)
∂ϕ

(F.15)

where the point is that, since ∂θ and ∂ϕ are real, we turn vector M into a complex vector via the additional
i. Note that the inverse metric tensor reads:

G−1
S =

√
F (r)

G(r)
∂u ⊗ ∂r̄ +

√
F (r)

G(r)
∂ū ⊗ ∂r − F (r)∂r ⊗ ∂r̄ −

1

H(r)
∂θ ⊗ ∂θ −

1

H(r)sin2(θ)
∂ϕ ⊗ ∂ϕ (F.16)

Hence, the inverse metric tensor may be written as follows:

G−1
S = LµN̄ν∂µ ⊗ ∂ν̄ + L̄µNν∂µ̄ ⊗ ∂ν −MµM̄ν∂µ ⊗ ∂ν̄ −MνM̄µ∂µ̄ ⊗ ∂ν (F.17)

Using the tetrad notation introduced by Newman and Penrose

Zµ
a = (Lµ, Nµ,Mµ, M̄µ), with a = 1, 2, 3, 4

we can write its components in Eddington-Finkelstein coordinates as follows:

Lµ = δ µ
1

Nµ =

√
F (r)

G(r)
δ µ
0 − F (r)

2
δ µ
1

Mµ =

√
2

2
√
H(r)

δ µ
2 + i

√
2

2
√
H(r)sin(θ)

δ µ
3

Also, note that the components of the null tetrad vector satisfy the relations:

LµL
µ =MµM

µ = NµN
µ = 0, LµN

µ = −MµM̄µ = 1, LµM
µ = NµM

µ = 0

Similarly for the conjugate vectors.

Step 3. Rotated Eddington-Finkelstein coordinates

We introduce the rotated Eddington-Finkelstein coordinates by the mapping

f2 : (u, r, θ, ϕ) → (uR, rR, θR, ϕR) (F.18)
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through the transformation

uR = u− ia cos(θ) = ū+ ia cos(θ)

rR = r + ia cos(θ) = r̄ − ia cos(θ)

θR = θ

ϕR = ϕ

(F.19)

Let us suppose that the new coordinates (uR, rR, θR, ϕR) are real. The system of the basis vectors
(∂u, ∂r, ∂θ, ∂ϕ) transforms via f2 as follows:

∂u = ∂ū = ∂uR

∂r = ∂r̄ = ∂rR

∂θ = ia sin(θ)(∂uR
− ∂rR) + ∂θR

∂ϕ = ∂ϕR

(F.20)

Then, the set of basis vectors (L, L̄,N, N̄ ,M, M̄) read:

LR = L̄R = ∂rR

NR = N̄R =
√

B(rN ,θR)
A(rN ,θR)∂uR

− B(rN ,θR)
2 ∂rR

MR =
√
2

2
√

Ψ(rN ,θR)

(
ia sin(θN )∂uR

− ia sin(θN )∂rR + ∂θR + i
sin(θR)∂ϕR

)
M̄R =

√
2

2
√

Ψ(rN ,θR)

(
− ia sin(θN )∂uR

+ ia sin(θN )∂rR + ∂θR − i
sin(θR)∂ϕR

)
(F.21)

where the fields A(rN , θR), B(rN , θR) and Ψ(rN , θR) are the associated metric components of the original
G(r), F (r) and H(r) given by the relations:

A(rN , θR) = G(rN − ia cos(θN )), B(rN , θR) = F (rN − ia cos(θN )) and

Ψ(rN , θR) = H(rN − ia cos(θN ))
(F.22)

In this step arises a very important fact about Newman-Janis algorithm. If we know the suitable complex-
ification of the functions of r, e.g. 1

r etc, after the transformation rN = r+ ia cos(θ) we know exactly the
form of the functions A(rN , θR), B(rN , θR) and H(rN , θR), otherwise we have to determine these functions
solving the Einstein equations, as proposed in [46]. Continuing the process as described by Newman and
Janis, the metric in contravariant form reads

G−1
R = −a2sin2(θR)

Ψ(rN ,θR) ∂uR
⊗ ∂uR

+ 2

√
B(rN ,θR)Ψ(rN ,θR)+a2

√
A(rN ,θR)sin2(θR)

Ψ(rN ,θR)
√

A(rN ,θR)
∂uR

⊗ ∂rR

−2 a
Ψ(rN ,θR)∂uR

⊗ ∂ϕR
− Ψ(rN ,θR)B(rN ,θR)+a2sin2(θR)

Ψ(rN ,θR) ∂rR ⊗ ∂rR + 2 a
Ψ(rN ,θR)∂rR ⊗ ∂ϕR

− 1
Ψ(rN ,θR)∂θR ⊗ ∂θR − 1

Ψ(rN ,θR)sin2(θR)∂ϕR
⊗ ∂ϕR

(F.23)

which yields the following line element

GR = A(rN , θR)du
2
R + 2

√
A(rN ,θR)
B(rN ,θR)duRdrR − 2a sin2(θR)

(
A(rN , θR)−

√
A(rN ,θR)
B(rN ,θR)

)
duRdϕR

−2a sin2(θR)
√

A(rN ,θR)
B(rN ,θR)drRdϕR −Ψ(rN , θR)dθ

2
R

−sin2(θR)

[
Ψ(rN , θR) + a2sin2(θR)

(
2
√

A(rN ,θR)
B(rN ,θR) −A(rN , θR)

)]
dϕ2R

(F.24)
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Step 4. Boyer-Lindquist coordinates

In order to bring the metric into the known Boyer-Lindquist coordinate system, we need the mapping

f3 : (uR, rR, θR, ϕR) → (T,R,Θ,Φ) (F.25)

defined through

duR = dT + Y (R)dR

drR = dR

dθR = dΘ

dϕR = dΦ+ Z(R)dR

(F.26)

The only non-vanishing off-diagonal element of a metric of a rotating black hole is gTΦ. Therefore, upon
requiring gTR = gRΦ = 0, the fields Y (R) and Z(R) read:

Y (R) = −
√
B(rR, θR)Ψ(rR, θR) + a2sin2(θR)

√
A(rR, θR)√

A(rR, θR)(B(rR, θR)Ψ(rR, θR) + a2sin2(θR))
(F.27)

Z(R) = − a

B(rR, θR)Ψ(rR, θR) + a2sin2(θR)
(F.28)

In order for the coordinate transformation to be integrable, Y (R) and Z(R) must be functions of R only,
for obvious reasons. Hence, the complexifications of 1

r and r2 are consistent with the transformations f2
and f3 if Y , Z are functions of R only. In the Appendix G we prove that, if the metric has a deficit angle
and we choose the complexifications 2

r → 1
r + 1

r̄ and r2 → rr̄, the corresponding functions are: Y (R,Θ)
and Z(R,Θ). Therefore, in this case, the aforementioned complexification is not consistent. In appendix
G, we modify the usual complexification and other arbitrary steps of the algorithm, in order to obtain a
solution for the rotating global monopole. In the usual case, where the above complexification is valid,
using the above transformation, we find that our sought after line element reads:

GBL = A(R,Θ)dT 2 + 2a sin2(Θ)

(√
A(R,Θ)
B(R,Θ) −A(R,Θ)

)
dTdΦ− Ψ(R,Θ)

B(R,Θ)Ψ(R,Θ)+a2sin2(Θ)dR
2

−Ψ(R,Θ)dΘ2 − sin2(Θ)

[
Ψ(R,Θ) + a2sin2(Θ)

(
2
√

A(R,Θ)
B(R,Θ) −A(R,Θ)

)]
dΦ2

(F.29)

Finally, we examine the validity of the algorithm, using as seed the Schwarzschild metric:

ds2 = F (r)dtdt̄− 1

F (r)
drdr̄ − rr̄dθdθ̄ − rr̄sin2(θ)dϕdϕ̄ (F.30)

Hence, we have

G(r) = F (r) = 1− 2MRe[r]

|r|2
and H(r) = rr̄ (F.31)

where we considered the usual complexification. Note that G(r), F (r) and H(r) are functions from C to
R, as we promised. Then, functions A(rN , θR), B(rN , θR) and Ψ(rN , θR) read

A(R,Θ) = B(R,Θ) = 1− 2MR

R2 + a2cos2(Θ)
and Ψ(R,Θ) = R2 + a2cos2(Θ) (F.32)

Thus, functions Y (R) and Z(R) read

Y (R) = − R2 + a2

R2 + a2 − 2MR
(F.33)

Z(R) = − a

R2 + a2 − 2MR
(F.34)
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which are functions of R coordinate only, hence the coordinate transformation f3 is well defined. Conse-
quently, the rotating metric reads

GBL =

(
1− 2MR

R2+a2cos2(Θ)

)
dT 2 + 4MRa2sin2(Θ)

R2+a2cos2(Θ) dTdΦ− R2+a2cos2(Θ)
R2+a2−2MR dR

2

−(R2 + a2cos2(Θ))dΘ2 −
(
R2 + a2 + 2MRa2sin2(Θ)

R2+a2cos2(Θ)

)
sin2(Θ)dΦ2

(F.35)

which is the metric of a Kerr black hole, with a = J
M , where J is the angular momentum of the rotating

black hole and M is the mass of the black hole.
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Appendix G

Failure of the Newman-Janis algorithm
to apply to the global monopole model

The Newman-Janis algorithm [43] succeeds to provide valid solutions in the Kerr and the Kerr-Newman
cases. The roots of the validity of the algorithm, in these cases, remains unknown. Nevertheless, it is
reasonable to consider that applying the algorithm to other theories could be fruitful. Unfortunately, we
will prove that the Newman-Janis algorithm fails to generalise metrics with deficit angle. There is a series of
papers [47][48][49] that argue about the application of the Newman-Janis algorithm to the self-gravitating
global monopole case. Hence, it is essential for our work to comment these papers. Since, we will prove
that the regular algorithm fails to generalise the metric of the self-gravitating global monopole system,
we will examine the validity of the modified Newman-Janis algorithm referred in [48] and developed by
Mustapha Azreg-Aϊnou in [46]. However, in the global monopole case, this method does not properly work
either, as we will prove later on. Then, we will try some modifications to the aforementioned methods,
without any consistent results.

First of all, the first steps described by the Newman-Janis algorithm and the process [46] are identical.
Hence, let us try to generalise the metric of the non-rotating global monopole (5.29) to the case of a rotating
global monopole, in the region r > δ ≫ Planck length, using the modified Newman-Janis algorithm [46].

Thus, from the metric (5.29) we identify the functions

F (r) = G(r) = 1− 8πGη2 − 2GM

r
and H(r) = r2 (G.1)

Then, considering a four-complex-dimensional manifold CM [45], with coordinates za = (t, x, y, z) and
z̄a = (t̄, x̄, ȳ, z̄) or equivalently za = (t, r, θ, ϕ) and z̄a = (t̄, r̄, θ̄, ϕ̄), the metric is generalized into

G0 = G(r)dtdt̄− 1

F (r)
drdr̄ −H(r)dθdθ̄ −H(r)sin2(θ)dϕdϕ̄ (G.2)

where G(r), F (r) and H(r) are functions from C to R. In contrast with the standard Newman-Janis
algorithm [43] we do not fix the complexification of 1

r and r2, for reasons that will be clarified in the
following steps. The only constraint imposed on G(r), F (r) and H(r) is that, if the coordinate r takes real
values, these functions are defied as (G.1) and the metric reduces to (5.29).

Subsequently, we consider the following coordinate transformation to outgoing Eddington-Finkelstein
coordinates

f1 : (t, r, θ, ϕ) → (u, r, θ, ϕ) (G.3)

which is defined by the relation

du = dt− dr√
G(r)F (r)

(G.4)

Then, we calculate the transformed components of the metric:√
G(r)dt =

√
G(r)du+

dr√
F (r)

⇒

G(r)dtdt̄ = G(r)dudū+

√
G(r)

F (r)
dūdr +

√
G(r)

F (r)
dudr̄ +

drdr̄

F (r)
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Hence, the metric, induced by the mapping f1, can be written as follows:

GS = G(r)dudū+

√
G(r)

F (r)
dūdr +

√
G(r)

F (r)
dudr̄ −H(r)dθdθ̄ −H(r)sin2(θ)dϕdϕ̄ (G.5)

Furthermore, let us consider real coordinates θ, ϕ. Then, the six-basis vectors, of the corresponding
complex vector space, may be written as follows:

L =
1√
F (r)

(∂t̃ + ∂r̃) = ∂r and L̄ = ∂r̄ (G.6)

N =

√
F (r)

2
(∂t̃ − ∂r̃) =

√
F (r)

G(r)
∂u − F (r)

2
∂r and N̄ =

√
F (r)

G(r)
∂ū − F (r)

2
∂r̄ (G.7)

M =

√
2

2
(∂θ̃ + i∂ϕ̃) =

√
2

2
√
H(r)

∂θ + i

√
2

2sin(θ)
√
H(r)

∂ϕ (G.8)

M̄ =

√
2

2
(∂θ̃ − i∂ϕ̃) =

√
2

2
√
H(r)

∂θ − i

√
2

2sin(θ)
√
H(r)

∂ϕ (G.9)

where we used the tetrad basis (Appendix E) ∂t̃, ∂r̃, ∂θ̃, ∂ϕ̃ and the corresponding conjugate basis. Con-
sidering the vectors ∂θ and ∂ϕ as real, the inverse metric tensor reads:

G−1
S =

√
F (r)

G(r)
∂u ⊗ ∂r̄ +

√
F (r)

G(r)
∂ū ⊗ ∂r − F (r)∂r ⊗ ∂r̄ −

1

H(r)
∂θ ⊗ ∂θ −

1

H(r)sin2(θ)
∂ϕ ⊗ ∂ϕ (G.10)

Hence, the inverse metric tensor may be written as follows:

G−1
S = LµN̄ ν̄∂µ ⊗ ∂ν̄ + L̄µ̄Nν∂µ̄ ⊗ ∂ν −MµM̄ ν̄∂µ ⊗ ∂ν̄ − M̄ µ̄Mν∂µ̄ ⊗ ∂ν (G.11)

Note that the metric has the form of the real part of a Hermitian tensor [45]:

G−1
S = gµν̄∂µ ⊗ ∂ν̄ + gµ̄ν∂µ̄ ⊗ ∂ν (G.12)

where gµν̄ = LµN̄ ν̄ −MµM̄ ν̄ .
Moreover, we want to express the metric in real coordinates. Thus, we introduce the rotated Eddington-

Finkelstein coordinates by the mapping

f2 : (u, r, θ, ϕ) → (uR, rR, θR, ϕR) (G.13)

where (uR, rR, θR, ϕR) are real. This complex transformation is arbitrary, if we do not fix the transforma-
tion f3 and the complexification of 1

r and r2. The transformation f3 will be performed later on, in order
to bring the metric into the known Boyer-Lindquist coordinate system. The complexification of 1

r , r2 and
the transformations f2 and f3 must be fixed in such a way that implies a metric with the only off-diagonal
component to be gtϕ. Since, we have not determined the complexification of 1

r and r2, we can fix the
transformation f2 through the usual relations

uR = u− ia cos(θ) = ū+ ia cos(θ) (G.14)

rR = r + ia cos(θ) = r̄ − ia cos(θ) (G.15)

θR = θ (G.16)

ϕR = ϕ (G.17)

Continuing the procedure, the system of the basis vectors (∂u, ∂r, ∂θ, ∂ϕ) transforms via f2 as

∂u = ∂ū = ∂uR
(G.18)

∂r = ∂r̄ = ∂rR (G.19)
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∂θ = ia sin(θ)(∂uR
− ∂rR) + ∂θR (G.20)

∂ϕ = ∂ϕR
(G.21)

Then, the set of basis vectors (L, L̄,N, N̄ ,M, M̄) read:

LR = L̄R = ∂rR (G.22)

NR = N̄R =

√
B(rN , θR)

A(rN , θR)
∂uR

− B(rN , θR)

2
∂rR (G.23)

MR =

√
2

2
√
Ψ(rN , θR)

(
ia sin(θN )∂uR

− ia sin(θN )∂rR + ∂θR +
i

sin(θR)
∂ϕR

)
(G.24)

M̄R =

√
2

2
√
Ψ(rN , θR)

(
− ia sin(θN )∂uR

+ ia sin(θN )∂rR + ∂θR − i

sin(θR)
∂ϕR

)
(G.25)

where the fields A(rN , θR), B(rN , θR) and Ψ(rN , θR) are the associated metric components of the original
G(r), F (r) and H(r) given by the relations:

A(rN , θR) = G(rN − ia cos(θN )), B(rN , θR) = F (rN − ia cos(θN )) and

Ψ(rN , θR) = H(rN − ia cos(θN )) (G.26)

In this step arises the difference between the Newman-Janis algorithm [43] and the procedure described in
[46] (we call it modified Newman-Janis algorithm). In Newman-Janis algorithm, where the complexification
of the functions of r is fixed a priori, the functions A(rN , θR), B(rN , θR) and Ψ(rN , θR) are known. In
the modified Newman-Janis algorithm we have not yet fixed the complexification of 1

r and r2, hence the
functions A(rN , θR), B(rN , θR) and Ψ(rN , θR) are unknown. Subsequently, the metric in the contravariant
form reads

G−1
R = −a

2sin2(θR)

Ψ(rN , θR)
∂uR

⊗∂uR
+2

√
B(rN , θR)Ψ(rN , θR) + a2

√
A(rN , θR)sin

2(θR)

Ψ(rN , θR)
√
A(rN , θR)

∂uR
⊗∂rR−2

a

Ψ(rN , θR)
∂uR

⊗∂ϕR

−Ψ(rN , θR)B(rN , θR) + a2sin2(θR)

Ψ(rN , θR)
∂rR ⊗ ∂rR + 2

a

Ψ(rN , θR)
∂rR ⊗ ∂ϕR

− 1

Ψ(rN , θR)
∂θR ⊗ ∂θR − 1

Ψ(rN , θR)sin2(θR)
∂ϕR

⊗ ∂ϕR
(G.27)

which yields the following line element

GR = A(rN , θR)du
2
R + 2

√
A(rN , θR)

B(rN , θR)
duRdrR − 2a sin2(θR)

(
A(rN , θR)−

√
A(rN , θR)

B(rN , θR)

)
duRdϕR−

−2a sin2(θR)

√
A(rN , θR)

B(rN , θR)
drRdϕR −Ψ(rN , θR)dθ

2
R−

−sin2(θR)

[
Ψ(rN , θR) + a2sin2(θR)

(
2

√
A(rN , θR)

B(rN , θR)
−A(rN , θR)

)]
dϕ2R (G.28)

In the last step of the algorithm, we bring the metric into the known Boyer-Lindquist coordinate system
via the mapping

f3 : (uR, rR, θR, ϕR) → (T,R,Θ,Φ) (G.29)

defined through

duR = dT + Y (R)dR (G.30)
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drR = dR (G.31)

dθR = dΘ (G.32)

dϕR = dΦ+ Z(R)dR (G.33)

We introduce the above transformation, with Y (R) and Z(R) to be determined later on, in order for
the only non-vanishing off-diagonal element of the metric to be gTΦ. This consideration ensures the
axisymmetry of the metric. Note that the off-diagonal components of the form gΘµ are identically zero.
Hence, we solve the system of equations gTR = 0 and gRΦ = 0 with respect to Y (R) and Z(R) and we
have:

Y (R) = −
√
B(rR, θR)Ψ(rR, θR) + a2sin2(θR)

√
A(rR, θR)√

A(rR, θR)(B(rR, θR)Ψ(rR, θR) + a2sin2(θR))
(G.34)

Z(R) = − a

B(rR, θR)Ψ(rR, θR) + a2sin2(θR)
(G.35)

In this step arises the problem of the Newman-Janis algorithm. In order for the coordinate transfor-
mation to be integrable, Y (R) and Z(R) must be functions of R only. In the Newman-Janis algorithm,
the complexifications 2

r → 1
r + 1

r̄ and r2 → rr̄ are fixed. Hence, equation (G.1) yields

F (r) = G(r) = 1− 8πGη2 −M
(1
r
+

1

r̄

)
= 1− 8πGη2 − 2MRe[r]

|r|2
and H(r) = |r|2 (G.36)

Therefore, the functionsA(rN , θR), B(rN , θR) and Ψ(rN , θR) are fixed. Thus, considering equations (G.26),
(G.31) and (G.32) they read

A(R,Θ) = B(R,Θ) = F (R− ia cos(Θ)) ⇒

A(R,Θ) = B(R,Θ) = 1− 8πGη2 − 2GMR

R2 + a2cos2(Θ)
(G.37)

and

Ψ(R,Θ) = H(R− ia cos(Θ)) ⇒

Ψ(R,Θ) = R2 + a2cos2(Θ) (G.38)

Upon substituting equations (G.37) and (G.38) into equation (G.34) and (G.35), we obtain

Y (R,Θ) = − R2 + a2

R2 + a2 − 8πGη2R2 − 2GMR− 8πGη2a2cos2(Θ)
(G.39)

Z(R,Θ) = − a

R2 + a2 − 8πGη2R2 − 2GMR− 8πGη2a2cos2(Θ)
(G.40)

Note that the functions Y (R,Θ) and Z(R,Θ) depend on Θ coordinate, due to the non-vanishing Higgs
parameter η, which determines the deficit angle. Consequently, the transformation f3 is not valid and
the Newman-Janis algorithm cannot yield consistent results in this case, where we have a deficit angle.
Consequently, the papers [47] and [49] do not present valid results. However, the work [48] propose to use
the modified Newman-Janis algorithm [46] in order to determine the metric of a rotating self-gravitating
global monopole. Hence, let us proceed further with these method and examine its validity.

The problem with the Newman-Janis algorithm is that it imposes the fixing of the complexification of
1
r , r2 and the transformations f2, f3, without a consistent way. The modified Newman-Janis algorithm
[46] proposes to fix the transformations f2, f3, but not the complexification of 1

r , r2 a priori. Hence, up
to this step, we cannot determine the functions A(R,Θ), B(R,Θ) and Ψ(R,Θ). Instead, we can require
that these functions have the following form:

A(R,Θ) =
F (R)H(R) + a2cos2(Θ)

(K(R) + a2cos2(Θ))2
Ψ(R,Θ) and B(R,Θ) =

F (R)H(R) + a2cos2(Θ)

Ψ(R,Θ)
(G.41)
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where

K(R) ≡

√
F (R)

G(R)
H(R) (G.42)

Note that the functions A(R,Θ), B(R,Θ) are not fully determined, since they depend on Ψ(R,Θ), which
is still unknown. Nevertheless, upon substituting (G.41) into equations (G.34) and (G.35) we have

Y (R) = − K(R) + a2

F (R)H(R) + a2
and Z(R) = − a

F (R)H(R) + a2
(G.43)

Note that Y (R) (G.34) and Z(R) (G.35) bring metric (G.28) into the desirable form (the only non-vanishing
component is gtϕ). Additionally, demanding the functions A(R,Θ) and B(R,Θ) to satisfy equation (G.41),
the fixed transformation f3 is valid, since Y (R) and Z(R) (G.43) depend only on R.

The main idea of this method is that a part of the arbitrariness of the Newman-Janis algorithm is
described by Ψ(R,Θ), which will be determined by solving the Einstein equations. Note that, in order for
this method to be valid, the equation (G.26) must be satisfied. This is not an issue, since we can fix the
complexification of F (r) and G(r) even in different ways, in order for the equations (G.26) and (G.41) to
be simultaneously satisfied. However, note that this method is not as general as it is considered in [46],
since for any form of the function K(R) the equations (G.34) and (G.35) are satisfied. The only restriction
remains that the equations (G.26) and (G.41) have to be simultaneously satisfied. Hence, a part of the
arbitrariness of the Newman-Janis algorithm is described by K(R), which has been fixed in the modified
Newman-Janis algorithm. Consequently, when we will prove that the modified Newman-Janis algorithm
described in [46] fails to apply to the global monopole system, we will examine some modifications to the
K(R) function.

Note that the modified Newman-Janis algorithm is supposed to work, up to this step, for every metric
of the form (G.2), since we have not substituted equations (G.1) yet. Subsequently, the transformation f3
(G.29) implies the following form of the metric:

GBL = A(R,Θ)dT 2 + 2a sin2(Θ)

(√
A(R,Θ)

B(R,Θ)
−A(R,Θ)

)
dTdΦ− Ψ(R,Θ)

B(R,Θ)Ψ(R,Θ) + a2sin2(Θ)
dR2−

−Ψ(R,Θ)dΘ2 − sin2(Θ)

[
Ψ(R,Θ) + a2sin2(Θ)

(
2

√
A(R,Θ)

B(R,Θ)
−A(R,Θ)

)]
dΦ2 (G.44)

or equivalently, upon substituting A(R,Θ) and B(R,Θ) from (G.41), we obtain

GBL = Ψ(R,Θ)

[
F (R)H(R)+a2cos2(Θ)
(K(R)+a2cos2(Θ))2 dT 2 + 2a sin2(Θ) K(R)−F (R)H(R)

(K(R)+a2cos2(Θ))2 dTdΦ−

− 1
F (R)H(R)+a2 dR

2 − dΘ2 −
[
1 + a2sin2(Θ) 2K(R)−F (R)H(R)+a2cos2(Θ)

(K(R)+a2cos2(Θ))2

]
sin2(Θ)dΦ2

] (G.45)

The above metric can be written in a Kerr-like form:

ds2 =
Ψ(r, θ)

ρ2(r, θ)

[(
1− 2f(r)

ρ2(r, θ)

)
dt2 − ρ2(r, θ)

∆(r)
dr2 +

4af(r)sin2(θ)

ρ2(r, θ)
dtdϕ− ρ2(r, θ)dθ2 − Σ(r, θ)sin2(θ)

ρ2(r, θ)
dϕ2
]

(G.46)
or

ds2 =
Ψ(r, θ)

ρ2(r, θ)

[
∆(r)

ρ2(r, θ)
(dt− a sin2(θ)dϕ)2 − ρ2(r, θ)

∆(r)
dr2 − ρ2(r, θ)dθ2 − sin2(θ)

ρ2(r, θ)

(
adt− (K(r) + a2)dϕ

)2]
(G.47)

where we have use the notation (T,R,Θ,Φ) → (t, r, θ, ϕ) and we have set:

ρ2(r, θ) ≡ K(r) + a2cos2(θ) (G.48)
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f(r) ≡ K(r)− F (r)H(r)

2
(G.49)

∆(r) ≡ F (r)H(r) + a2 (G.50)

Σ(r, θ) ≡ (K(r) + a2)2 − a2∆(r)sin2(θ) (G.51)

Let us summarize the results. Metrics (G.45), (G.46) and (G.47) are not fully determined, since the
function Ψ(r, θ) remains unknown. However, the ansatz (G.45), of a rotating system with seed metric
(G.2), is not the most general possible, since there are still some steps, of the modified Newman-Janis
algorithm [46], fixed without a consistent way. Nevertheless, we have not fixed yet the complexification of
1
r and r2. Hence, the arbitrariness of the aforementioned complexification leads to an arbitrary function
Ψ(r, θ), which may be determined, if we suppose that the metric must satisfy Einstein field equations.
Consequently, this is a more natural way to fix the complexification of 1

r and r2, than the a priori fixing
according the regular Newman-Janis algorithm. It is very interesting that the form of the metric in
Boyer-Lindquist coordinates is general, i.e. it does not describe a particular model, since we have not
yet substituted the components of the seed metric. Hence, the modified Newman-Janis algorithm can
potentially be a useful tool in determining an ansatz of a rotating generalization of a metric.

Let us apply the modified Newman-Janis algorithm in the self-gravitating global monopole case, where
we have:

K(r) = r2 (G.52)

ρ2(r, θ) = r2 + a2cos2(θ) (G.53)

2f(r) = 8πη2r2 + 2Mr (G.54)

∆(r) = (1− 8πη2)r2 − 2Mr + a2 (G.55)

Σ(r, θ)

ρ2(r, θ)
= r2 + a2 +

8πη2r2 + 2Mr

ρ2(r, θ)
a2sin2(θ) (G.56)

Hence, the ansatz of the metric reads:

ds2 = Ψ(r,θ)
r2+a2cos2(θ)

[(
1− 8πη2r2+2Mr

r2+a2cos2(θ)

)
dt2 − r2+a2cos2(θ)

(1−8πη2)r2−2Mr+a2 dr
2 + 2a sin2(θ)(8πη2r2+2Mr)

r2+a2cos2(θ) dtdϕ

−(r2 + a2cos2(θ))dθ2 −
(
r2 + a2 + 8πη2r2+2Mr

r2+a2cos2(θ)a
2sin2(θ)

)
dϕ2
] (G.57)

Note that inside the square parenthesis, for η2 = 0, the metric reduces to the Kerr metric. The comment-
paper [48] propose as a solution of the Einstein equation the function:

Ψ(r, θ) = r2 + a2cos2(θ) (G.58)

Also, in the same paper, it is pointed out that this solution must be checked through the Einstein equations.
This is a reasonable solution, since the proportional factor of the square parenthesis equals to 1, hence
for η2 = 0 we obtain the Kerr metric. Note that, for r > δ ≫ Planck-length, the rθ component of the
Einstein equation reads:

Gr,y = 0 ⇒

−6a2yΨ2(r, y)K ′(r) + 3(a2y2 +K(r))2Ψ(0,1)(r, y)Ψ(1,0)(r, y)− 2(a2y2 +K(r))2Ψ(r, y)Ψ(1,1)(r, y) = 0
(G.59)

where we considered (5.12) with f(r) = 1, y = cos(θ), K ′(r) = dK
dr and Ψ(1,1)(r, y) = d2Ψ

drdy . Note that
the above equation, for K(r) = r2, is satisfied by Ψ(r, y) = r2 + a2y2. However, the remaining non-trivial
Einstein equations do not satisfied by Ψ(r, y) = r2 + a2y2, neither in the far-r approximation nor in the
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slowly rotating approximation. For convenience, we present the tϕ component of the Einstein equations
in the aforementioned approximations:

−8πη2

r2
a sin2(θ) = 0 (G.60)

Therefore, the solution (G.58) fails to satisfy the Einstein equations. However, we may try to solve the
Einstein equations in order to determine the function Ψ(r, y). Note that our solution has some constraints:
for η2 = 0 our metric reduces to Kerr metric, hence we suppose Ψ(r, y) = r2 + a2y2 + η2f(r, y), also for
a = 0 the metric reduces to the non-rotating case, therefore we may have Ψ(r, y) = r2+a2y2+η2a2b(r, y).
Additionally, since the metric must not divergence at r → ∞, the function b(r, y) is up to first order with
respect to r. Nonetheless, the Ψ(r, y) = r2 + a2y2 + η2a2b(r, y) does not satisfy Einstein equations, even
for the O(η3) approximation.

Note that, the Kerr space-time asymptotically (r → ∞ and r ≫ a) is similar to the flat Minkowski
space-time. It is reasonable to consider that the metric of the rotating self-gravitating global monopole
may asymptotically be similar to the Minkowski space-time with deficit angle:

ds2 = (1− 8πη2)dt2 − dr2

1− 8πη2
− r2(dθ2 + sin2(θ)dϕ2) (G.61)

Considering Ψ(r, y) ∼ r2 for r → ∞, r ≫ a, the ansatz (G.57) reads:

ds2 = (1− 8πη2)dt2 − dr2

1− 8πη2
− r2(dθ2 + sin2(θ)dϕ2) + 2a sin2(θ) 8πη2dtdϕ (G.62)

Note that the off-diagonal component is non-zero. If we demand that, in this limit, the metric reads
(G.61), we need to modify the procedure [46] with a consistent way. As we mentioned before, the function
K(r) given in (G.42) is not the most general. Hence, if we consider that K(r) reads

K(r) ≡

√
F (r)

G(r)
H(r)− 8πη2H(r) (G.63)

the ansatz (G.45) remains unchanged. Upon substituting the known functions into (G.45), we obtain
the off-diagonal component: gtϕ = a sin2(θ)2Mr

b2r2+a2cos2(θ) , hence for r → ∞ we have gtϕ = 0. Additionally, for
η2 = 0 ⇒ b = 1, we obtain Kerr solution. However, the corresponding metric is not valid, since it is
not reduced to the non-rotating metric when a = 0. Consequently, the Newman-Janis algorithm [43], the
procedure [46] and some simple modifications of [46] do not apply to the global self-gravitating monopole
model.
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