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Doctor of Philosophy

Thermophysical Modelling of Cryogenic 4He, 3He and mixtures. Modelling of
cryocoolers near absolute zero.

by George-Rafael domenikos

The aim of the author of this thesis has been to provide a theoretical foundation for the
workings of fluids and superfluids at temperatures close to absolute zero, with an added
emphasis on the physical and thermodynamical behavior of Helium in its two isotopes,
while offering new knowledge and explaining some of the phenomena occurring at these
temperatures. The existing knowledge about the behaviors of superfluids has been doc-
umented, giving an up-to-date understanding of their workings. New equations of state
that have been in greater agreement with the available experimental data have been es-
tablished for both isotopes. A different approach to the explanation of superfluidity has
been formed as a part of this work, where by splitting the partition function into an ideal
and non-ideal part, a macroscopic connection between the phenomena of superfluidity and
the Bose-Einstein condensation is presented. This approach has been used in conjunc-
tion with the previously defined EOS to showcase its validity when compared with the
experimental data and then used to extend the reach of these EOS below their limiting
threshold of the lowest values of the experimental data.

This theoretical work has been the foundation for the development of applications
in the forms of novel cryocooler designs and their simulation in CFD environments for
achieving temperatures near absolute zero. A modelization of a Superfluid Stirling Re-
frigerator (SSR) reaching temperatures down to 0.3K has been established, where 1D and
3D simulations for this design have been carried out. In particular, a model for handling
superfluids within the ANSYS Fluent software has been established, which showcases how
the presented EOS can be inserted in the program. Furthermore, it displays the applica-
tion of superfluids in a CFD environment for the first time. By this simulation there has
been no need for the usual simplifications used in models relating to supefluids, neglecting
many of their behaviors. Thus, the results that have been produced seem to be in better
agreement with the existing experimental data. This model has also been used to find the
optimal working conditions of this type of cryocoolers as well as to present their cooling
power-to-rpm and efficiency-to-rpm behaviors.
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Chapter 1

Introduction

1.1 Low Temperature Thermodynamics
Since the very beginning of science many have searched into the concept of tempera-
ture even as early as Aristotle who, through his works Meteorology (Mϵτϵoρoλoγικα)
and On the Universe (Πϵρι Koσµoυ), tried to set an understanding about the nature of
temperature. Of course, these first tries in explaining the mysteries of temperature were
flawed in many areas, but do provide great insight on how a human interacts with such
concepts. For centuries only empirical scales of temperature could be used, which while
helpful in the everyday life and many applications, lacked the ability to conceive many
hidden phenomena in the nature of temperature. The first absolute temperature scale
was offered by Lord Kelvin [1] when the nature of absolute zero was theoretically shown
and as such for the first time humanity acknowledged one of the limits of temperature.
The Kelvin temperature scale differed in its core from the previous temperature scales as
it had been the first one that was defined through the kinetic theory of particles rather
than macroscopical observations of materials. Much more recently, it was shown that
temperature also has a highest limit in the form of the Planck Temperature (1032K), after
the discovery of quantum mechanics and relativity, though these higher temperatures are
not within the scope of this research.

In the late 19th and early 20th centuries, after this establishment of the absolute tem-
perature a "race" to absolute zero began with many scientists and researchers trying to
achieve lower and lower temperatures by the liquefaction of different gases. Zygmunt
Florenty Wróblewski was the one to liquefy Nitrogen in 1883 and Hydrogen in 1885 and
Heike Kamerlingh Onnes being the first to liquefy Helium in 1908. Helium had been
known even at that time to be the element with the lowest boiling point of all. After the
creation of liquid Helium, attempts were made to reach even lower temperatures with it
and maybe achieve absolute zero or its solidification. When further attempts to cool He-
lium were made it was quickly discovered that below a certain temperature, liquid Helium
did not behave as a normal fluid. This different behavior was first discovered by Pyotr
Kapitsa [2], John F. Allen, and Don Misener [3] in 1937. This was the phenomenon of
superfluidity, a phenomenon for which many different theories and models were formed
over the 20th century as to finally reach a mathematical and physical explanation of its
behaviors. This phenomenon has so far been observed only in the two isotopes of Helium
and has also been theorized to be true in parahydrogen (spin isomer of Hydrogen) without
thus far having an experimentally proven existence in this element.

The phenomenon of superfluidity was quickly thought of having some relation with
the theoretical state of matter being the Bose-Einstein condensate (BEC). This theoret-
ical, up to that point of time, state of matter had been predicting that at low enough
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temperatures all the particles of an ideal gas, obeying the Bose-Einstein statistics, would
be at the same energy state. This means that being quantum particles they are governed
by the same wave function, and therefore they all behave in a singular but quantum
way. Accordingly, one would expect that if such a BEC was ever to be formed quantum
behaviors could be observed macroscopically in the system. Some of these quantum be-
haviors include the free flow of the particles of the fluid, given the no interactions between
them as they all are at the ground state. Hereto, this fact in combination with the low
temperature restriction in both cases seemed to be directly connecting superfluidity with
Bose-Einstein condensation. However, this connection was only theoretical, since the rest
of the criteria for a BEC were not met by Helium, as even at its superfluid state inter-
atomic interactions do take place. A different degenerated model based on the ideal of
Bose-Einstein condensates needed to be formed. The existence of BECs had for nearly
all the 20th century been only theoretical, only to be experimentally proven by Anderson
et al [4] in 1995. In their work it was for the first time proven that a BEC does occur
as they experimentally showed by cooling dilute alkaline gases in the temperature range
of pK. This was a remarkable achievement in the field of cryogenics as now the fifth
state of matter, namely the BEC, was experimentally verified to exist for the first time.
The BECs that have been produced to this day have achieved temperatures even lower,
with the current lowest achieved temperature being at 38pK [5]. Those experiments, in
addition to great theoretical insight about the behaviors near absolute zero, also provided
the technical knowledge about achieving these temperatures by the use of laser trapping,
an unprecedented method able to cool a few thousands of atoms to such low temperatures
[6].

In the second half of the 20th century more research was put into the thermodynamic
behaviors of cryogenic elements and materials as many applications in need of these tem-
perature ranges began to arise. One of the most important of such applications has been
superconductivity. Superconductors are metals that, when at a low enough temperature,
exhibit zero electric resistance. Elemental superconductors such as copper enter their
superconducting phase at around 1.8K. Thus, a lot of research was put into both under-
standing the mechanics and the physics behind the phenomenon of supercoductivity and
its possible relation with superfluidity. Furthermore, scientist and engineers also worked
towards the development of cryocoolers that could achieve those temperatures for be-
ing able to capitalize on the phenomenon of superconductivity. Other applications that
present the need for such low temperatures include particle detectors, as the levels of
accuracy needed are so high that even the thermal noise of higher temperatures is orders
of magnitude higher than the values themselves. Lastly, one modern application that
actually requests the existence of nearly the lowest possible temperatures is the quantum
computer. The chipset of a quantum computer works with q-bits (or quantum bits) that
need to keep their quantum nature in order to be able to use the phenomenon of super-
position. Using this attribute, the q-bits can participate in multiple calculations at the
same time, which makes this type of computers infinitely faster than current supercom-
puters. To achieve the aforementioned behavior the wavefunction of the q-bits cannot be
allowed to collapse by having any interaction whatsoever with outside forces, including
thermal interactions. For this reason, the chipset of quantum computers needs to be held
at temperatures lower than 1mK.
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1.2 Helium
Helium is the substance with the lowest known boiling point, at 4.2K, and is known to
form a superfluid. Also, Helium does not solidify ever under atmospheric pressure. Solid
Helium can form but this can only be achieved at pressures of around 22atm. Thus,
Helium is the only known substance to not have a triple point. The fact that it remains
a liquid at such low temperatures gives it the ability to form a superfluid. Also, the
existence of a supersolid has been theorized and some experimental data that support its
existence exist. This is something that is still very controversial and many researchers on
the subject disagree about its existence. The superfluid has some unique behaviors that
differentiate it from a normal fluid, but not so far as for it to be described as new state
of matter. The most obvious difference in the behavior of the superfluid is that it has
zero viscosity, meaning that it can flow freely only under the force of its own inertia and
surface tension.

Superfluidity as a phenomenon in Helium is a major part of this thesis, but a brief
introduction to the nature and study of superfluidity over the years will also be provided
here. From the beginning of the discovery of superfluidity in Helium-4 it was suggested
that the nature of the phenomenon ought to be closely related to the Bose-Einstein con-
densation. The first explanations by Tisza [7] tried to introduce a two fluid model, where
one part of the liquid Helium-4 (referred in this approach as the superfluid part) was
behaving like a BEC and the rest of the liquid behaved like a normal fluid. While this
theorization had merit as an idea, it failed to mathematically comply with the require-
ments of Bose-Einstein condensation given the interatomic interactions in Helium and
as such no complete theory, nor equation of state was produced following this approach.
The great insight on the behavior and physics of superfluids came by London and Landau,
who showed that superfluidity as a phenomenon can be explained by studing the quantum
excitations of the liquid. They also showcased that beyond a temperature threshold not
enough energy exists in parts of the fluid for a percentage of the particles to achieve any
excitation levels above the ground state and thus be able to interact. The thermodynamic
behavior of the superfluid is attributed only to its excitations, which are formulated as
different particles, called quasiparticles. Hence, this approach is sometimes for the sake
of time referred to as the quasiparticle approach. This approach has been massively more
successful than the two-fluid approach, as it is able to describe the exact physical behavior
of superfluid Helium-4 and through experimental values for the energies of the quasipar-
ticles it can produce the equations of state for Helium-4, currently used in most cryogenic
applications. The only drawback that one might point out in this theory is its relative
failure to directly connect superfluidity with Bose-Einstein condensation, although some
might argue that this entire method is nothing more than a degenerated Bose-Einstein
condensation theory for strongly interacting fluids. In this work a possible theory di-
rectly connecting the phenomenon of superfluidity with a theoretical non-degenerated
Bose-Einstein condensation will be presented in following sections.

In all of the above Helium-4 is kept in mind as the sole isotope of Helium due to its
overwhelmingly higher natural abundance [8], with it accounting for more than 99.9%
of all natural Helium. Despite this, a second naturally stable isotope of Helium exists,
Helium-3. This isotope has very different properties and has been seen to also have
massive importance in cryogenic applications. Helium-3 consists of two protons and one
neutron in its core. Given the half-integer spin of these hadrons the Helium-3 isotope
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also has half-integer spin and therefore obeys the Fermi-Dirac statistics instead of the
Bose-Einstein statistics that the Helium-4 does. This means any ideas about connections
theoretical or practical to Bose-Einstein condensation needed to be heavily reworked upon.
To understand the nature of superfluidity in Helium-3, knowledge from the subject of
superconductivity was drawn. In a few words, for a metal to become a superconductor,
the electron gas within it forms a Bose-Einstein condensate. The electrons also have half-
integer spin. To overcome this problem the BCS theory of Cooper pairs was formed [9].
In this theory, simply put, pairs of fermions are considered to be entangled, giving the
pair an integer spin, and making it behave as a boson. Using this fact, the Bose-Einstein
condensation of these pairs is derived showing that a BEC indeed forms in the electron gas.
A similar approach to this has been used to explain the behavior in Helium-3 although
mathematically it has not been so rigorously studied as the superfluidity in Helium-4. In
this study a more in-depth mathematical approach about this Bose-Einstein condensation
in Helium-3 will be presented, showcasing that in Helium-3 too a theoretical connection
between Bose-Einstein condensation and superfluidity can be established.

This difference in the statistical/physical behavior of Helium-3 means that its ther-
modynamic behaviors are also very different than the ones of Helium-4. The lambda
transition to superfluidity in Helium-3 is in the order of 10−3K in comparison to the
2.17K lambda temperature of Helium-4. This has great significance in cryogenic appli-
cations and cooling cycles. The excitations in Helium-4 have been almost completely
eradicated below 1 K, meaning that its potential to be used as a cooling medium has
been completely depleted. This is not the case for Helium-3 which remains a normal fluid
until much lower temperatures. Thus, for cooling devices concerning temperatures below
1 K the use of Helium-3 is almost mandatory.

In addition to the two pure isotopic liquids of Helium, their mixture is also commonly
used in cryogenic apparatuses. The difference between the lambda temperatures of the
two isotopes means that in the mixture there are bound to be at least 3 phases. The first
phase will be with both isotopes being in a normal fluid form, the second for the mixture
to be below the lambda line of Helium-4 (with the Helium-4 part being a superfluid and
the Helium-3 being a normal fluid) and a third case where both are superfluids. Due
to the extremely low temperature requirements for Helium-3 to become a superfluid the
mixture is never used when superfluid Helium-3 temperatures are reached. Near the
lambda line of Helium-3, the Helium-4 will have been thermodynamically inert for three
orders of magnitude in the temperature scale. Experiments have shown that added to
these regions, one other region exists, referred to as the forbidden region. In this region
the mixture cannot form and it is split into two different parts of some fixed available
consistencies, a phenomenon that actually proves to be of great use in many applications.
The behavior of the mixture will be studied extensively in following chapters.

1.3 Cryocoolers
In modern years a need for temperatures close to absolute zero in many applications has
arisen. Applications of common use (like MRI scanners) to extremely high tech ones (like
the CERN supercollider) require very low temperatures to operate. For these temper-
atures to be achieved many scientists have worked towards creating cooling machines,
which, with their corresponding working media, are able to create such low temperature
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environments. This field of cooling to low temperatures is generally referred to as cryo-
genics, including anything from liquid air to superfluid Helium. In this thesis the term
cryogenics is going to be used when referring to temperatures of liquid Helium and below,
as even liquid nitrogen, one of the most well known cryogenic media, actually exists in
temperatures nearly two orders of magnitudes higher than superfluid Helium-4 [10].

For temperatures down to the lambda point of Helium-4, ≈ 2.18K, usual cooling
methods and thermodynamic cycles can apply like the Joule-Thomson expansion [11], the
reverse Brayton cycle [12], mixed processes like the Claude cycle [13] etc. At temperatures
below the lambda line of Helium-4 a lot of differentiations need to be made for the different
thermodynamic cycles and traditional cooling methods to apply, due to the significantly
different behaviors of the superfluid compared to the normal fluid as a working medium.
One key feature that all the cooling machines below the lambda point must take into
account is the zero viscosity of the superfluid and as such extreme care must be taken in
order to prevent it from leaking. Additionally, from a thermodynamics point of view, the
diminishing effectiveness of the superfluid needs to be accounted for, especially below 1
K, where despite Helium-4 remaining in a liquid form it is actually very close to being
thermodynamically inert. Usual cycles for cooling apparatuses below the lambda point
include the Joule-Thomson expansion, with little modification due to its nature as a
process, the superfluid Stirling refrigerators (SSR), the dilution cycles and some other
applications of lesser use. The superfluid Stirling refrigerator is an apparatus similar to a
standard Stirling refrigerator with a specific difference in the design of the piston. At each
piston a superleak is introduced, allowing only the superfluid part of the Helium to flow
through it and therefore altering the distribution and consistency of the working medium
at each step of the cycle. This procedure is used with a mixture of Helium-3 and Helium-
4, for establishing a constant working medium in the form of Helium-3, which is not a
superfluid in these temperature ranges. The SSR cryocoolers can achieve temperatures of
around 0.3 K. For temperatures below this threshold the dilution cycle is generally used.
The dilution cycle uses a Helium 3-4 mixture capitalizing on the inability of the mixture
to exist in the forbidden region and creating cooling by the split of the two isotopes.
Dilution comes the closest from all the traditional thermodynamic procedures to absolute
zero with it being able to reach temperatures in the spectrum of 10−3K or 10−4K in some
applications.

While the apparatuses like the SSRs and Joule-Thompson coolers are mostly used
for larger scale cryogenic cooling, usually implemented to superconductors or large scale
detectors, the dilution cycle is used for smaller applications. These smaller in size ap-
plications are to be of key importance in the years to come. The main application that
the dilution cooler applies to is the cooling of quantum computers with all the current
experimental ones running dilution refrigerators as their coolers.

Achieving temperatures below even the capabilities of dilution cooling is possible but
requires completely different approaches and currently cannot be achieved for larger scales.
According to the current literature no industrial or marketable need exists for such low
temperatures, with the only applications of them being in experimental physics and es-
pecially in the formation of pure Bose-Einstein condensates, at temperatures in the mil-
lionths or lower of a K. These temperatures are achieved by the method known as laser
cooling [6]. In laser cooling a laser trap is set and a few thousands of atoms are enclosed
within it. Then the bounds of the trap are progressively lowered allowing only the higher
energy atoms to escape from the trap. This procedure leads, when the bounds are lowered
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enough, to a small percentage of the initial particles still remaining in the trap. These
particles are the ones of the lowest temperature. The temperatures that can be achieved
by this method are so low that the remaining particles are in the 5th state of matter, be-
ing a Bose-Einstein condensate. This technology is very interesting but given that these
temperatures have no real applications and are not within the scope of an engineer, it will
not be discussed further in this work.

1.4 Aim and Format of this study
Through this study the reader will receive a comprehensive description of the modelling of
cryogenic Helium in both its pure isotopic forms and as a mixture, as well as be presented
with the workings of Helium as a cryogenic cooling medium in applications aiming to
achieve temperatures close to absolute zero. The sequence of the chapters is such as
for the reader to be able to comprehend the workings of the models without much prior
knowledge about cryogenic thermodynamics and physics.

For the description of any cooling apparatus to be initiated the first step is to have
a clear view and understanding for the working medium. Thus, this study sets off to
describe the behaviors of Helium at low temperatures. After the equations of state are
derived, the models for the cryocoolers are developed and their results are shown. The
thought sequence and methodology used in this work is briefly discussed below showcasing
the main points of each of the chapters.

Chapter 2 - Physics of Superfluids
In Chapter 2 an initial explanation of the phenomenon of superfluidity is given, aiming
for the reader to acquire an introductory understanding about the different approaches
that have been used to describe superfluids and for them to comprehend the strengths
and weaknesses of each theory. The two fluid-approach is discussed mathematically in
this chapter and the equivalent Appendix A, while the mathematical description of the
quasiparticle approach will be discussed in much greater detail in a later part of the study.

Chapter 3 - Helium 4
In Chapter 3 the presentation of the equations of state for Helium is initiated, describing
the EOS of Helium-4 in this chapter. Firstly, an analysis of the quasiparticle approach
based on the neutron scattering data of Brooks and Donnelly [14] is presented. Through
this analysis equations describing the energies of the quasiparticles are developed which
are shown to be of much greater accuracy compared to the ones of the literature. Following
this, the thermodynamic variables are calculated through the energies of the quasiparti-
cles using models statistical mechanics. These values are compared to the NIST database,
where it is seen that this approach does not provide results of adequate accuracy. For
this reason, a complete dataset for the data of Helium-4 is created based on connecting
the data from different phases of many studies. Then an extensive code is developed to
create a dynamic equation of state able to describe Helium-4 at cryogenic temperatures
through all of its phases with an accuracy higher than other models published in the
literature and being in the form of a continuous equation that is accurate in both values
and derivatives able to correlate and thermodynamic variables with one-another. Using
this, the first multiphase thermodynamic maps of Helium-4 are presented.
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Chapter 4 - Entropic Lambda Transition
Over chapters 2 and 3 one will be able to understand two basic problems with the current
understanding of superfluid Helium-4. Firstly, there is a general lack of a macroscopic and
useful description of superfluidity in Helium and that due to this reason the available data
and the presented equations of state of other studies have been limited to the experimen-
tal available data only, meaning that there is currently no description of Helium-4 below
the temperature of 0.1K. These two issues are addressed in Chapter 4. In this chapter, a
novel model connecting the macroscopical and microscopical view of the system is created
and presented. Through this model two key observations can be made. Firstly, that by
splitting the partition function into two parts, an interacting and an ideal, the superfluid
transition in the overall Helium-4 to a theoretical Bose-Einstein condensation of the ideal
part can be directly correlated. Then by calculating also the interacting part through the
energies of the interactions one can have a theoretical description for the thermodynamic
values of superfluid Helium-4 based on the values of the entropy calculated theoretically
and as such being able to describe values going down even to absolute zero. Throughout
this part it is shown that the behaviors of the model down to absolute zero have been
the ones expected, as it predicts the coinciding of the isothermal and the isentropic lines,
the zero entropy of the ideal part, which will have been totally condensed at 0K, as well
as the existence of an interatomic potential at absolute zero, which has been theorised
previously by London. Given this approach the data for below 0.1K have been created
and inserted to the EOS of chapters 3 and later in 6.

Chapter 5 - Helium 3
Following the study of Helium-4 the study of the other stable isotope of Helium is pre-
sented, Helium-3. In Chapter 5 initially an equation of state of liquid Helium-3 is pre-
sented. Following the equation of state, the approach for the superfluid transition view
through the partition function and the entropy is implemented on Helium-3. Unfortu-
nately due to the scarcity of Helium-3 as a substance not a lot of experimental data are
available and as such the implementation in Helium-3 with the available data cannot be
as comprehensive as the one done in Helium-4. Despite this, through this method, the
matching of the BEC temperature of the ideal part of the Helium-3 with the lambda tran-
sition point to superfluidity is shown. Additionally, during this process the BCS theory
of Cooper pairs is implemented on Helium-3, where it is shown that the R2 universal con-
stant of superconductivity holds true, meaning that the application of this theory holds
sense in Helium-3.

Chapter 6 - Helium 3-4 Mixture
Having completed the equations of state of the two Helium isotopes and explained the
physical differences between them, the equation of state and thermodynamic maps of the
Helium 3-4 mixture are set as the aim of the next chapter, Chapter 6. In this chapter
firstly the different phases that the mixture can exist in while at cryogenic temperature
are explained. Then, by combining the data from the literature and using the equations
of state for the pure isotopes from the previous chapters, a full database for the values of
the different thermodynamic values is formed. Based on this form, a set of equations is
derived for each of the variables, with the full code being presented in Appendix C. It can
be seen that the accuracy of these equations is very high, and based on them a full set of
thermodynamic maps of the Helium 3-4 mixture is presented. Due to the 3 independent
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variables being the temperature, pressure and concentration of the mixture, an actual
map would be 4-dimensional, something that is difficult to be presented in 2D in this
study. For this reason, it is depicted as a series of 3D and 2D contour plots, some aiming
to give the exact values and some others focusing on showcasing the overall behavior of
the mixture. Additionally, while working on the mixture, the equation of the osmotic
pressure is derived, which will end up being a very important part of the applications in
cryocoolers using Helium 3-4 mixture as their working medium. Lastly, to aid in simu-
lations using a cryogenic Helium 3-4 mixture the correlation between the overall volume
of the mixture and the sum of the volumes of the two isotopes was found, where it was
shown that this correlation is small, a fact that is heavily capitalized upon in the CFD
simulations of the next chapters.

Chapter 7 - Solid Helium
In the previous chapter the research and models were focused on the fluid phases of He-
lium. A solid phase of Helium also exists, forming at pressures around 25 atm. Since
the early days of the discovering of superfluidity people have questioned about the ex-
istence of other phases in Helium. The most commonly discussed is supersolid Helium.
Up to this point it is not certain in the scientific community whether supersolidity is an
actual phenomenon in Helium or a misinterpretation of some experimental results. Two
experiments claim to have actually produced a supersolid. The first experiment in 2004
by Kim [15] was seen under great doubt in the scientific community and supersolidity re-
mained a very questionable phenomenon. More recently in 2018 a second experiment was
performed [16] which also showcased the existence of supersolidity. This experiment has
been more widely accepted, though the uncertainty for the phenomenon still exists. This
research does not take part in trying to determine whether supersolidity exists or not, but
a theory is offered about the explanation of supersolidity if it is found to actually exist.
In this theory the difference of the moment of inertia of the supersolid is explained as a
superfluid of the vacuums of the crystal lattice of solid Helium. Inverse particles to the
Helium atoms are theorized and then their BEC condensation temperature is calculated,
showing that this would lead to a drop of the moment of inertia similar to the one shown
in the experiments. This is not a complete theory of supersolidity by any sort but the
calculations done under it so far have shown promise and given the latest experimental
results, it seems to be worth pursuing further.

Chapter 8 - Superfluid Stirling Refrigerator 1D
Having established the equations of state for both the Helium-3 and Helium-4 isotopes now
different cooling apparatuses that aim to achieve cryogenic temperatures can be studied
and simulated. The main focus of this research will be around superfluid Stirling refrig-
erators. The superfluid Stirling refrigerator is similar to a standard Stirling cooler with
some key differences considering the handling of the superfluid, as they will be discussed
in greater detail in Chapter 8. Studying the literature, one will be able to see that the
simulation and experimental data given for these apparatuses are scarce and most impor-
tantly in those simulations of the cryocoolers many simplifications are done in order to
bypass the problems created from working with superfluids. Such simplifications include
not working with the full EOS for the Helium mixture and assuming Helium-3 to be an
ideal gas and the only cooling medium of the system, while the effects of the Helium-4
are neglected and it is considered totally thermodynamically inert. In this research I will
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initiate from these assumptions and move forward towards much more realistic models
working with the full equations of the Helium mixture and considering all the phenomena
like the osmotic pressure and the superfluid ratio of the mixture. Firstly, a simplified
model of an 1D single Stirling cooler is used with the medium being solely the Helium-3,
using the isothermal model. This is done to compare to the existing simulations. Then,
it is investigated how much deviation occurs between the isothermal model and the adi-
abatic model of the cooler, where it is seen that indeed the two models provide almost
identical results. Then, conforming with the needs that have arisen in other studies as
well, due to the lack of knowledge of the regenerative properties of the materials, a model
of a dual Stirling refrigerator is developed and presented. In this model the regenerator
is replaced with a common heat exchanger between two Stirling coolers, referred to as
the recuperator. In the first attempt the approach of only the Helium-3 as an ideal gas
for the working medium is used, and based on this the ideal phase difference between
the two coolers and the cooling power and efficiency are calculated. Then, the procedure
of developing models using the full equations of state of the mixture and the isotopes is
developed. Firstly, again the 1D single cryocooler code is designed using the full EOS.
It is seen in this that the phenomena are much more complex and due to this the code
developed is much more elaborate and CPU bound, because it has to solve using the very
extensive equations of the EOS. Lastly, the most accurate 1D simulation for the dual
superfluid Stirling refrigerator with the full EOS is developed and shown. Through the
models working with the EOS of the mixture, interesting results occur, such as the ovaloid
behavior of the concentration of the mixture compared to the pressure or volume and the
increase of the concentration value simultaneously in all the volumes of the machine. Also
the efficiency and the cooling power are again calculated showing the effect of previously
undocumented phenomena like the osmotic pressure and the dependency on the mixing
properties of the two isotopes.

Chapter 9 - Superfluid Stirling Refrigerator 3D
The last major chapter of this study is Chapter 9. In this chapter to try and model the
superfluid Stirling refrigerator in the best possible way a full 3D simulation was developed
in ANSYS Fluent, where multiple cases were run in order to describe the full behavior of
the machine and cross-validate with the 1D results. This has been to our knowledge the
first published model of a superfluid description in a CFD environment. To achieve, this
firstly a 3D schematic of the apparatus is drawn and then the important part of introduc-
ing the EOS to the ANSYS software is addressed. This is done in different steps, as it is
explained in chapter 9, with the main idea being to use the small dependence of the vol-
ume to the consistency so as to find this consistency of the mixture, given the temperature
and pressure, and then find in this way the energy values for that point. Through this,
multiple cases are run where the optimal phase difference is found, being shown that it is
close to the optimal phase difference produced by the 1D model. Also, it was established
that the behavior of the flows was very similar in both models. Having established the
optimal phase difference, an optimization for the rotational speed of the cooler was done,
where a frequency of around 10Hz has been shown to produce the optimal results for
efficiency and cooling power. Based on these cases the cooling power-to-frequency and
efficiency-to-frequency have also been calculated and presented.
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Chapter 2

Physics of Superfluids

Before one sets off to explain the superfluidity in Helium, first the basic mathematical
concepts of superfluidity need to be explained to a certain depth, as for the reader to be
able to understand the new concepts that will be introduced later in this study.

2.1 The two approaches to superfluidity

2.1.1 The two-fluid approach

In an effort to understand the peculiar behavior of liquid Helium below the lambda tem-
perature the physicists, London and Tisza, established the idea that the superfluid has
a direct connection to Bose-Einstein condensation. This idea was first proposed by Lon-
don [17], who suggested that there was a direct connection between superfluidity and
Bose-Einstein condensation. This idea was then further endorsed by Tisza in his works
[7, 18, 19]. This connection between the two phenomena was phrased differently by the
two scientists, with them agreeing on the central idea but not getting to the same con-
clusions. Tisza strongly suggested that a real Bose-Einstein condensate formed inside the
superfluid, where one part of the liquid was in a BEC state and a second one remained
a normal fluid. The position of London was to suggest that the superfluid itself was ac-
tually a degenerated form of a BEC. After years of many more scientists contributing to
this matter, it is now known that the idea of London is much closer to reality than the
suggestions of Tisza. In his later works London [20, 21] presented his finalized theory in
the workings of superfluid Helium.

To understand the procedure of London one must first not work with Helium directly
but refer to the ideal Bose gas, as this is the only possible candidate for the formation
of a BEC. An ideal gas has the property of having no interatomic interactions. Ideal
gases can be of two forms, the Fermi-Dirac ideal gas and the Bose-Einstein ideal gas .
In the first case, due to the Pauli exclusion principle, a continuous behavior is followed
going towards absolute zero, whilst in the case of Bose-Einstein ideal gases it is seen that a
discontinuity appears in a specific temperature. This temperature, Tc, is the temperature
of the formation of a Bose-Einstein condensate, and through its calculation one can further
understand the physics of this state of matter. This Tc is:

Tc =
h2

2πmk
(

N

2.612V
)
2
3 (2.1)

The calculation of this temperature, as well as the definitions and behaviors of the
Bose-Einstein and Fermi-Dirac statistics are shown in Appendix A.



12 Chapter 2. Physics of Superfluids

As shown in the calculations presented in Appendix A the distribution of the particles
will be:

N =
2πV

h3
(2m)3

∫ ∞

0

√
E

e( E
kT

+ µ)− 1
dE = V (

2πmkT

h2
)
3
2F 3

2
(µ) (2.2)

with F being a modified Riemann zeta function defined as:

Fx(y) =
1

Γ(x)

∫ ∞

0

ux−1

eu+y − 1
du

with Γ being the standard gamma function Γ(x) =
∫∞
0
e−yyx−1dy. The F function is seen

to be matching the ζ-function when the x=0.
So the distribution function can be re-written as:

N =
1

eµ − 1
+N(

T
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)
3
2

F 3
2
(µ)
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2
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Therefore, one can now differentiate the thermodynamic behaviors of the ideal Bose
gas according to the Tc. Below the critical temperature (T<Tc) the occupational number
is:

n = n0 = N [1− (
T

Tc
)
3
2 ]. (2.3)

Above the critical temperature one can find the occupational number by using the for-
mulation F 3

2
(µ) = ζ(3

2
)(Tc/T )

3
2 into Eq. 2.2.

Similarly, with the calculations for the occupational numbers, as seen in the work of
London [20], the rest of the thermodynamic variables like the specific heat or the free
energy can be calculated to be different above and below the critical temperature.

This approach provides an understanding about the behavior of an ideal Bose gas
near and below its critical temperature, and is the foundation for the work of London
on the subject. Despite this, Helium in either of its two isotopic forms, is not an ideal
gas and this method cannot apply. Tisza and London applied great effort to try and
directly connect the phenomenon of superfluidity with Bose-Einstein condensation to no
avail. Their work, however, provided an excellent mathematical insight to the workings of
superfluid Helium and it was able to predict behaviors such as the second sound (Helium
due to superfluidity exhibits multiple forms of sound).

2.1.2 The quasiparticle approach

The second and nowadays accepted method of describing superfluids was put forward by
Landau [22, 23]. In this theory the behavior of superfluid Helium is explained by studying
the quantum interactions between the particles and forfeiting any connections with Bose-
Einstein condensation. In fact, Landau in his work was emphatically denying the existence
of Bose-Einstein condensation within the superfluid. The quasiparticle approach is based
on the excitations of the Helium atoms which are then described as different quantum
particles. This theory draws heavily from the theory of phonons in crystals [24]. A phonon
is nothing more than an oscillation, or a standing wave, within the lattice of any material.
This wave has a specific wavefunction and energy. In the quantum realm the particles
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are described by these two factors, their energy and their wavefunction. Therefore, one
could readily assume the properties of a particle for these waves. (From an engineer’s
perspective such an assumption might seem farfetched but within the science of quantum
mechanics this kind of assumptions are solid and ubiquitously used, constantly providing
experimental results verifying their validity.) Landau used the phonons to describe the
linear interactions of the particles of the system, but Helium being a fluid and not a solid,
could not be completely defined by those linear interactions. In any liquid non-laminar
flow occurs, forming vortices. This is something that also happens in superfluid Helium as
well, although in the case of superfluids vortices are vastly different than the typical ones
someone might expect knowing from the fluid mechanics of regular fluids 1. To account for
this extra degree of freedom in the lattice waves of the superfluid, Landau coined the idea
of rotons. Rotons are also theoretical particles associated this time with the rotational
movements within the fluid. Lastly, one can readily understand that occasions where
both kinds of movements occur will take place in the system. For these instances Landau
introduced the maxons, the kind of quasiparticles with the highest energies of the three.
Based on the energy of the quasiparticles this approach has been extremely effective in
describing the behaviors of superfluid Helium-4, as all the modern EOSs used are based
on this method. The procedure to gain the thermodynamic values from the quasiparticles
is based on the distribution of their energies and it will be shown in detail in following
chapters. The basis of this method has been the energies of the quasiparticles, which can
be experimentally measured.

Chapter 2 - Nomenclature
Tc Bose-Einstein Condensation Temperature
h Plank’s constant
m Atomic mass
k Boltzmann constant
N Number of atoms
V Volume
E Energy
µ Chemical potential
F(x) Modified Riemann Zeta function
Γ(x) Gamma function
n Occupational number

1In a superfluid quantum vortices occur, meaning that they behave like point vortices moving through
the superfluid and not like a total vortice incorporating all the fluid, even if rotational velocity is given
to the entire system [25]
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Chapter 3

Helium 4

3.1 Theoretical Equation of State
In this chapter the Equation of state for Helium 4 below its boiling point will be estab-
lished. The multiple approaches towards the EOS are going to be presented based either
on the theoretical quasiparticle approach or on the existing experimental data. The the-
oretical quasiparticles approach of the EOS is to be based on the works of Landau [22]
and Brooks et al [14]. Also, the works of McCarty in [26, 27] and Arp [28, 29] have been
used to provide reference data for the EOS and the produced results.

3.1.1 Quasiparticle model

The boiling point of Helium 4 is at 4.2 K, but the lambda point is around 2.18 K depending
on the pressure. Below the lambda point is where the superfluid begins forming. Below
this point to describe the thermodynamic properties of the superfluid the quasiparticle
approach is implemented, where the excitations of the particles are used to define the
macroscopical thermodynamic data. These quasiparticles have been seen experimentally
to follow an energy spectrum in the form shown below in figure 3.1.

The goal of this figure, which has been verified further since its first appearance by
more modern experimental procedures and results, is to showcase the energy of the quasi-
particles in a way that can be capitalized upon by using models of statistical physics in
order to compute the thermodynamic data of the superfluid. Another reason why this
kind of figure is highly successful in that undertaking is that, as it will be presently shown,
it can be used to directly correlate the energy of the quasiparticles, and therefore all the
thermodynamic values being byproducts of this, to the temperature and pressure.

The data used for the figure of Donnelly and Brooks as presented have been based on
the tables of Wilks [30], but since their first publication the authors have suggested for
this procedure to be adjusted and redone when more recent and accurate data become
available. Thus, one of the aims of this chapter is to use the modern data from NIST to
replicate this work and create a more accurate equation of the energies of the quasiparti-
cles. The data that will be used to verify the values of the energies of the quasiparticles
are taken from the most recent data from NIST [31] and the work of Donnelly [32] in
1998.

3.1.2 Theoretical approach of the quasiparticles

Studying the excitations in Helium 4 as described by Landau and the rest of the researchers
of the quasiparticle theory it can be safely assumed that these excitations, being based
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Figure 3.1: The energy of the quasiparticles to the their momentum is
shown schematically. (a) is the phonon region, (b) the maxon peak, (c) the

roton minimum. Source [22]

on weakly-interacting Helium-4 atoms, obey the Bose-Einstein statistics.

n(p, T, P ) =
1

h3
e−(

E(p,T,P )
T

−1)−1

, (3.1)

with n being the occupational number, p the momentum, T the temperature, P the
pressure and h the Planck’s constant. From this equation it can be seen that there is a
direct connection between the occupational number and the energy of the quasiparticles.
The quasiparticles have been categorized according to their energies into three classes.

Phonon energy

In Fig. 3.2 the first linear area of the graph is the phonon line, then there is the maxon
peak followed by the roton minimum. From the roton minimum onward the number
density of the excitations gets very high and it can be shown that the Bose-Einstein
statistics actually degenerate to Maxwell-Boltzmann statistics (as shown in A.1). The
study of the experimental data for the quasiparticles will initiate with the phonon line.
With the momentum closing to zero. Based on the theoretical predictions of Freenberg
[34] it can be seen that the correlation between the energy and the momentum is linear
with:

lim
p→

E(p, T, P ) = u1p

with u1 being the speed of sound (more specifically the speed of the first sound), the
value of which can be found using the distribution function at zero if one new perfectly
the distribution function, or by the use of experimental data as done in this work. It needs
to be stated at his point that this linearity of the phonon energy might be problematic
in higher temperatures and as such this will be addressed when the new distribution
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Figure 3.2: The energy of the quasiparticles in K to their momentum in
Å−1. The energies of the quasiparticles are given by the work of Yarnell et
al [33] by using neutron scattering to verify the energies of the excitations.

Source [14]

function is made by not forcing a linearity but by only introducing the equivalent boundary
conditions to the system and let it free.

Maxon energy

Moving from the phonon line the maxon peak ought to be studied. Donnelly and Brooks
in [14] provide a simple equation describing the maxons:

Eρ = E0 + E1ρ+ E2ρ
2 + E3ρ

3 (3.2)

with ρ referring to the density and the values E0...E3 given in Table.3.1

E0 E1 E2 E3

−216.5672 3998.6005 −23028.6027 44199.7232

Table 3.1: Values for eq.3.2 coefficients from [14]

This equation given by Donnelly and Brooks is capable of roughly describing the
energy data for the maxons but when compared to the experimental data [14] it is seen
that discrepancies occur and a better overall equation can be constructed having a higher
accuracy as it will be shown.

Using the data for the maxon energies a polynomial equation of the following form is
established:

Emaxon =
6∑

i=0

6∑
j=0

(Cmi+1,j+1T
iP j) + Emin (3.3)

with Cm being the coefficients given in table B.1. The temperature must be inserted in
K and the pressure in atm for the product of the function to be in K.
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Figure 3.3: The deviations of the values of eq. 3.3 compared to the values
of NIST [14]

. The mean deviation is found to be 8.113E − 08%, the correlation coefficient is
r = 0.9999996207 and the coefficient of determination r2 = 0.9999992413

To verify the validity of this equation the deviation of its values to the experimental
values is shown in Fig. 3.3

The accuracy of this equation is deemed excellent and much higher than the accuracy
of eq.3.2 when compared to the same data set. Thus, the eq.3.3 will be used for the energy
of the maxons.

Roton energy

Following this the rest of the energy spectrum needs to be defined. The roton minimum
as it had been theorized by Landau and was seen experimentally, ought to be adequately
described by a parabola.

Eroton = ∆+
(p− po)

2

2µ
(3.4)

with ∆ being the minimum energy of the rotons, µ the apparent mass of the rotons near
that energy and po the momentum near that minimum point. These three are referred to
as the Landau parameters and define the roton minimum. The po according to Dietrich’s
study [35] on neutron scattering is initially dependent only on the density:

po(ρ) = 3.64h̄(ρ10−3)
1
3 (3.5)

the po is calculated in Å−1 and the density must be inserted in g/cm3. The ∆ and µ can
be correlated according to Dietrich’s work as:

∆0 = k(973.6969ρ)
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µ0 = (0.32− 1.103ρ)

with the ∆0 and µ0 being the values for T=0 K, and they can be correlated to higher
temperatures as using the formulation:

µ(ρ, T )

µ0(ρ)
=

∆(ρ, T )

∆0(ρ)

The roton minimum ∆ can also be directly calculated given some macroscopic variables
of the medium by:

∆(ρ, T ) = ∆0(ρ)− kT
ρn
ρ
(1− a′Nr

T
), (3.6)

with Nr being the roton number density, ρn the normal fluid density (it will be shown
later in this study that not all Helium 4 instantly becomes a superfluid when the lambda
point is past and as such the differentiation between the normal fluid density and the
superfluid density) and a′ = 8.75× 10−23Kcm3 (a modified Avogadro’s number to fit the
units of the equation).

The equations above have been studied by Donnelly and Brooks and have been found
to have deviations of the order of 20%. For this reason, in their work [14] they have
created a least square regression to the data for better results on the energy of the rotons.
The equations of [14] on the rotons are not presented in this work and one should refer
to the original paper for their exact formation but their errors against the experimental
data are being checked and have been seen to be accurate at temperatures below 1K but
have a much greater loss of accuracy going towards the lambda point as it can be seen
from the equivalent graphs 3.4.

It can be seen that while the deviations are lower than Dietrich’s 20% it is certainly
possible to improve on this equation. Thus, a polynomial regression is undertaken for the
experimental data in the following form:

∆ =
6∑

i=0

6∑
j=0

(C∆i+1,j+1T
iP j) (3.7)

µ =
6∑

i=0

6∑
j=0

(Cµi+1,j+1T
iP j) (3.8)

The values for the C∆ and Cµ are shown in appendix B. From the figure below it can be
seen that this set of equations provides a much higher accuracy than the original least
square ones.
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a)

b)

Figure 3.4: (a) deviations of [14] least square approximation for the ro-
ton energy gap. The mean deviation for the energy gap is −4.583%. (b)
deviations of [14] least square approximation for the roton mass. The mean
deviation for the roton mass is 61.58%. This high deviation is mostly seen
at higher temperatures where the roton population much more scarce, at
lower temperatures the equation behaves better although it can still be seen
to have relatively high deviations. The correlation coefficients for the en-
ergy gap and the roton mass are r = 0.8759 and r = −0.4820 respectively,

while the determination coefficients are r2 = 0.7672 and r2 = 0.2323
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a)

b)

Figure 3.5: (a) deviations of eq.3.7 regression for the roton energy gap.
The mean deviation is seen to be 1.173E− 04%, with the relative standard
error being 5.243E − 03%. (b) deviations of eq.3.8 regression for the roton
mass. The correlation coefficients for the energy gap and the roton mass
are r = 0.99988 and r = 0.99989 respectively, while the determination

coefficients are r2 = 0.99976 and r2 = 0.99978

Comparing the figures 3.4 and 3.5 it can be seen that the equations provided in this
work provide an accuracy that is orders of magnitudes better than the original equations.
Thus these much improved equations are used in the calculations.

Following this one can now calculated with very good accuracy the values for the roton
energy gaps and the roton mass as they are presented in below:



22 Chapter 3. Helium 4

a) b)

Figure 3.6: (a) roton energy gap from eq.3.7 for pressures from 1 to 24
atm. (b) roton effective mass from eq.3.8 for pressures from 1 to 24 atm.

Total energy spectrum

Having now the equations for the energies of all the three types of quasiparticles one can
initiate the formation of the entire energy spectrum.

According to Donnelly and Brooks the energy dissipation will be increasing by a less-
ening degree until reaching the double ∆ value with a momentum p’.

Ep(p) = 2∆− αe
−a

p′−p

with a and α constants that need to be found. By reviewing even the latest data for
the energy of the quasiparticles it can be seen that the region above the roton minimum
around 2.15 Å−1 is of very little importance for the thermodynamic data as if one sees the
distribution function of the system they would observe directly that nearly no particles
are in this energy condition. As such, it is supposed that a linear behavior is followed from
the point where the function reaches a derivative equal to the velocity of the first sound.
To describe the full energy spectrum of the quasiparticles the presented method is loosely
based on the method of Brooks in [14] but with the new equations for the individual
energies and resetting the boundary conditions and data to fit the latest experimental
values from NIST. The function to describe the energy will be an 8th degree polynomial
based on the momentum with its coefficients depending on the temperature and pressure
of the system.

E(p, T, P ) = u1(T, P )p+a3(T, P )p
3+a4(T, P )p

4+a5(T, P )p
5+a6(T, P )p

6+a7(T, P )p
7+a8(T, P )p

8

(3.9)
The ai are coefficient functions that will be determined during the solution of the system.
The u1 being the velocity of sound has been measured experimentally. Its values from
[31, 27, 14] are combined to an overall set of data that are self consistent and cover all



3.1. Theoretical Equation of State 23

the temperature and pressure spectrum. Based on this data an equation for the velocity
of the first sound is derived:

u1 =
6∑

i=0

6∑
j=0

(Cu1i+1,j+1T
iP j) (3.10)

with the values of the Cu1 are given in Appendix B, giving values in m/s for the velocity.
Again when comparing to the experimental data it can be seen that this equation has
great accuracy as seen below:

Figure 3.7: Deviation of eq.3.10 against the experimental data from [31,
27, 14]. The correlation coefficient is r = 0.9912 and the determination

coefficient is r2 = 0.9824

When noticing this graph, it is interesting to see that higher deviations are observed
at higher temperatures which is counter-intuitive at first glance. Firstly, one needs to also
see that even these higher deviations are extremely small with most being less than 0.2%.
The reason that this happens is that the speed of sound has more diverging values as the
temperature increases and the interactions between the Helium-4 atoms also increase due
to the phonon-roton interactions. Having now the values for the speed of sound one can
continue to solve for the coefficients of the energies of the quasiparticles. The boundary
conditions of the are the following:

1) the linearity of the phonon energy at zero

d

dp
E(0, T, P ) = u1(T, P )

2) the energy of the phonons being zero when they are stationary

E(0, T, P ) = 0

3)The maxon peak being located at pm = 1.1Å−1

E(pm, T, P ) = Emaxon(T, P )
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d

dp
E(pm, T, P ) = 0

4) the roton minimum being located at po

E(po, T, P ) = ∆(T, P )

d

dp
E(po, T, P ) = 0

d2

dp2
E(po, T, P ) =

1

µ

5) linearity after the roton minimum

d

dp
E(pc, T, P ) = u1(T, P )

with pc being:

pc(T, P ) = µ(T, P )u1(T, P )mHe4h̄
−110−10 + po(T, P ) (3.11)

in Å−1. For consistency within the calculations the units of the speed of sound need to

be changed: u′′1(T, P ) = u1(T, P )
h̄

k
1010 from [m/s] to [KÅ−1]. Thus, the overall system

of equations can be written as:

pmu′′
1 (T,P )+a3p3m+a4p4m+a5p5m+a6p6m+a7p7m+a8p8m=Emaxon(T,P )

u′′
1 (T,P )+3a3p2m+4a4p3m+5a5p4m+6a6p5m+7a7p6m+8a8p7m=0

po(T,P )u′′
1 (T,P )+a3po(T,P )3+a4po(T,P )4+a5po(T,P )5+a6po(T,P )6+a7po(T,P )7+a8po(T,P )8=∆(T,P )

u′′
1 (T,P )+3a3po(T,P )2+4a4po(T,P )3+5a5po(T,P )4+6a6po(T,P )5+7a7po(T,P )6+8a8po(T,P )7=0

6po(T,P )a3+12po(T,P )2a4+20po(T,P )3a5+30po(T,P )4a6+42po(T,P )4a7+56po(T,P )6a8=
1

µ(T,P )

u′′
1 (T,P )+3a3pc(T,P )2+4a4pc(T,P )3+5a5pc(T,P )4+6a6pc(T,P )5+7a7pc(T,P )6+8a8pc(T,P )7=u′′

1 (T,P )

For this system to be solved it is written in a matrix form:

A(T, P ) =


p3m p4m p5m p6m p7m p8m
3p2m 4p3m 5p2m 6p5m 7p6m 8p7m

po(T, P )
3 po(T, P )

4 po(T, P )
5 po(T, P )

6 po(T, P )
7 po(T, P )

8

3po(T, P )
2 4po(T, P )

3 5po(T, P )
2 6po(T, P )

5 7po(T, P )
6 8po(T, P )

7

6po(T, P ) 12po(T, P )
2 20po(T, P )

3 30po(T, P )
4 42po(T, P )

4 56po(T, P )
6

3pc(T, P )
2 4pc(T, P )

3 5pc(T, P )
2 6pc(T, P )

5 7pc(T, P )
6 8pc(T, P )

7


(3.12)
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B(T, P ) =



Emaxon(T, P )− u′′1(T, P )pm
−u′′1(T, P )

∆(T, P )− po(T, P )u
′′
1(T, P )

−u′′1(T, P )
1

µ(T, P )

h̄21020

k mHe4

0


(3.13)

Thus, the solution of this system is given by:

R(T, P ) = A(T, P )−1B(T, P ) (3.14)

and the overall solution for the energies of the quasiparticles will be calculated by:

E(p, T, P ) = u′′1(T, P ) +
8∑

i=3

(pi R(T, P )i−2) (3.15)

Observing the behavior of this equation in the following figure it can be seen that while
the function behaves as expected in most of the spectrum there is no linearity after the
roton minimum beyond the point of reaching the speed of sound.

Figure 3.8: Energy to momentum diagram for the quasiparticles for T=1
K and P=5 atm without including the linearity corrections beyond the roton

minimum

To overcome this the previous equation is re-written as:

E(p, T, P ) =

{
u′′1(T, P )p+

∑8
i=3(p

i R(T, P )i−2) if p < pc(T, P )

u′′1(T, P )(p− pc(T, P )) + (u′′1(T, P )pc(T, P ) +
∑8

i=3(pc(T, P )
i R(T, P )i−2)) otherwise

(3.16)
This equation when compared to the provided equation by Brooks et al in [14] offers
multiple advantages. Firstly it is shown that the energies of the phonons the maxons



26 Chapter 3. Helium 4

and the rotons are much closer to the real experimental values than the ones in the
work of Brooks. Additionally, when Brooks et al solve their equivalent system for the
coefficients they supposed fixed coefficients and solved the system multiple times providing
the solutions for these coefficients. In this method the set of equations and the equivalent
code provides a solution to every set of temperatures and pressures without the need
for any interpolation between the values of the coefficients. Below the diagrams of the
solutions of the energies of the quasiparticles at different temperatures and pressures are
presented.

Figure 3.9: Energy to momentum diagram for the quasiparticles P=0 atm
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Figure 3.10: Energy to momentum diagram for the quasiparticles for
P=10 atm

Figure 3.11: Energy to momentum diagram for the quasiparticles for
P=20 atm
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3.1.3 Theoretical Thermodynamic Properties

Having the values for the energy of the quasiparticles, now the derivation of the ther-
modynamic data can be initiated. Firstly, some properties at the vapor pressure of the
Helium-4 are used from the work of Donnelly and Barenghi [32]. The procedure for the
properties directly taken from the work of Donnelly is included in Appendix B.

Having the vapor pressure density and the isobaric expansion coefficient from the
eq.B.1 and eq.B.5 respectively the following diagrams present their values.

Figure 3.12: The vapor pressure density according to eq.B.1 from the
work of [32]

Figure 3.13: The isobaric expansion coefficient according to eq.B.5 from
the work of [32]
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Having the isobaric expansion coefficient at the vapor pressure in order to compute
the density outside of the vapor pressure the additional variable of the isothermal com-
pressibility is needed. For this variable experimental data exist from NIST [14], upon
which a regression is made to provide and equation for this coefficient.

kt(T, P ) =
6∑

i=0

6∑
j=0

(Ckt i+1,j+1T
iP j) (3.17)

with the Ckt coefficients given in Appendix B with values of the isothermal compressibility
factor being in cm2 dyn = 10m2/N . From the tables of [26, 27, 14] it can be seen that
below around 1.5 K the density can be considered to be a factor only of pressure and not
of temperature. This fact will be further showcased in a next part of this work where the
full equations and maps from the experimental data are presented. Initiating from

dv =
dv

dT
dT +

dv

dP
dP

it can be transformed to
dv = a v dT − P kt dP

with a = 1
V

dV
dT

. If one now assumes the volume only as a product of pressure for a steady
temperature it would be:

dV (P ) = −P kt dP

so the volume in terms of the pressure would be:

V (P ) = −
∫ P

0

P kt dp

For the specific volume in terms of both the temperature and pressure one can make use
of both the variables of the isothermal compressibility and the isobaric expansion as:

v(T, P ) =
1

ρ(T )
e


∫ T

0
a(T )dT∫ P

0
k(T, P )dP


(3.18)

One can now calculate the deviation of this theoretical equation for the specific volume
against the experimental data from NIST.
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a) b)

Figure 3.14: The deviations of the values calculated from eq.3.18 against
the experimental NIST data, in terms of T in (a) and P in (b). The
correlation coefficient is r = 0.99897 and the determination coefficient is

r2 = 0.99794

From the Fig.3.14 it can be seen that despite the theoretical nature of this equation
it is capable of describing in very high accuracy the values of the specific volume of the
actual Helium-4.

Now, having the equations for the energy of the quasiparticles and the equation for
the density of Helium-4 by using the equations of statistical mechanics as first mentioned
by Landau [22].

S =
V k

2π2

∫ ∞

0

(
n(q, T, P )E(q, T, P )

kT
+ ln(1 + n(q, T, P )

)
q2dq (3.19)

Cv =
V

2π2

∫ ∞

0

[
E(p, T, P )

(
(
∂n(p, T, P )

∂T
)P,q − a(T, P )

q

3
(
∂n(p, T, P )

∂q
)P,T

)]
q2dq (3.20)

In the work of Donnelly and Brooks [14] more similar equations are used to describe
the rest of the thermodynamic properties, but they have a form relying to values at
zero temperature that needs to be established first. For this reason in this work the
theoretical part of the thermodynamic properties is to be established by just using the
equations 3.19 and 3.20 based on the density and the energy of the quasiparticles which
are already known.

By using the standard thermodynamic relations from these two equations one can
derive a fundamental equation for Helium-4. Firstly, the enthalpy can be defined as:

dH = TdS + V dP

and then the Gibbs free energy can be written as:

G(T, P ) = H(T, P )− T S(T, P ) (3.21)

As such one has derived the G(T,P) function, which is a fundamental equation and
can be used to derive all the remaining thermodynamic properties. Now the accuracy of
these equations needs to be checked against the experimental values to verify its validity.
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First the validity of eq.3.19 is seen through plotting it against the experimental data from
NIST in a normal and a log scale and presenting its deviation values.

Figure 3.15: eq.3.19 results against the NIST data from [14, 26, 28]

Figure 3.16: eq.3.19 results against the NIST data from [14, 26, 28] in
logarithmic scale
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Figure 3.17: % deviations eq.3.19 results against the NIST data from
[14, 26, 28]. The mean deviation is −7.86%. The correlation coefficient is

r = 0.842 and the determination coefficient is r2 = 0.7089.

The values that the entropy of Helium-4 changes in the couple of degrees between 0.1
and 2.1 K, as it can be seen from the graphs, are within 8 orders of magnitude. Given this
one could suggest that the results of these equations are accurate enough to represent the
data for the entropy. In higher temperatures, above 1K, it is seen through figures 3.15
and 3.17, that the provided equation has results that are adequate to describe the entropy
of superfluid Helium-4. At lower temperatures one can see through figures 3.16 and 3.17
that the results of eq.3.19 do not so strictly adhere to the NIST data and deviations a
little higher than 10% occur. Overall, the behavior of the equation of the entropy, given
the difference in the orders of magnitude, is considered to be acceptable. However, to
validate this method, one must not forget that the entropy has been directly computed,
and other values that are then derived from it would lead to possibly higher deviations.
For this reason the behaviors and the deviations of the Gibbs free energy are also checked.



3.1. Theoretical Equation of State 33

Figure 3.18: eq.3.21 results against the NIST data from [14, 26, 28]

Figure 3.19: eq.3.21 results against the NIST data from [14, 26, 28] in
logarithmic scale
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Figure 3.20: % deviations eq.3.21 results against the NIST data from [14,
26, 28]. The mean deviation is 39.24%.

Observing the figures 3.18, 3.19 and 3.20 a similar behavior to the entropies can be
seen but intensified. The values change again 8 orders of magnitude from 0.1 to 2.1 K
with eq.3.21 providing excellent results above 1 K but results that one would have to be
extra careful when using it below that threshold. One can see that this equation can be
used at a certain degree to provide accurate data for the Gibbs free energy given some
care about not exceeding temperatures below 1 K but as a fundamental equation one also
needs to check its potential to derive the rest of the thermodynamic data then the errors
mean that its use must be limited to understanding the behaviors of the system and not
at describing the exact values.

Figure 3.21: % deviations of applying the eq.3.19 to find the specific heat

as Cv = T
∂

∂T
S and checking its results against the NIST data from [14,

26, 28]. The mean deviation is −19.2%



3.2. Numerical Equation of State 35

This trend follows on the rest of the thermodynamic variables like the Helmholtz free
energy and the enthalpy.

3.2 Numerical Equation of State
The inability to theoretically deduce the thermodynamic variables of the superfluid Helium-
4, especially going towards absolute zero, is a fact that has been known to the researchers
of the subject for many years. Even noble tries with extensive codes like the HEPAK
from NIST [36] have been known to have a limiting value well above 1 K for the data they
produce. For this reason, within this work a new and extensive code has been developed
and published in [37].

The main goal of the code developed and presented in this chapter has been to create
a very accurate and continuous equation of state for Helium-4 below 4.2 K. This equation
of state must be accurate at all regions and additionally must be continuous and not be
split up into different equations for different regions. This last part is of great importance
for the applications of this equation. Through many cryogenic applications it can be seen
that the lack of a continuous and accurate EOS for cryogenic Helium-4 in the literature
leads to many assumptions being made and simulations not being able to cover different
phases of the substance.

For this kind of equation to be established, a total data set for trustworthy values of
all the thermodynamic values of Helium-4 needed to be established first. For this reason
the data from the works of [38, 26, 27, 28, 36, 31, 14, 32] have been collected, cross
referenced and transformed to be in the same units covering overall all the areas from 0
to 4.2 K. The procedure for acquiring the values below 0.1 K will be extensively shown in
a following chapter of this work based on the previously published work of the author in
[38], while their values have been already incorporated to the numerical code presented
in this chapter.

This set of data will be shortly utilized to form all the values for the equation of state.
Before undertaking this procedure though, firstly the bounds between the different phases
need to be set.

3.2.1 Lambda Line

Through the literature many equations for the Lambda line exist, the most notable ones
being the ones of Arp and McCarty [29, 31], as they are the ones most widely used
depending on the needed variables. At this point of the study the equation of McCarty
would make more sense to be used as it is defined in terms of pressure, while Arp’s equation
is in terms of density. Studying the equation given by [31] compared to the actual values
it is seen that while this equation is of good quality and accuracy the authors determined
that a better one could be established of the form:

Tλ(P ) = a+ b cos(c P + d) (3.22)
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a 1.759438110219911
b 5.237757610459909 -01
c 2.988936852213499 -02
d 6.435211650071271 -01

Table 3.2: Coefficients for eq.3.22

The pressure is in atmospheres and the coefficients are given in Table.3.2. Below the
deviations from the NIST values of this equation compared to McCarty’s equation are
shown.

Figure 3.22: The deviations of the equations of the lambda line from [29,
31] respectively

3.2.2 Vapor Line

Considering the border between the liquid and the gas phase of Helium-4 one can study the
works of McCarty [27] or Ortiz Vega [39]. In this work a different approach was used but
utilizing the Wagner equation [40] for the vapor pressure and conforming it to McCarty’s
NIST data. The critical point of Helium-4 is at Tc = 5.1953K and Pc = 0.22746atm
(referring to the classical thermodynamical critical point, not the Tc of the Bose-Einstein
condensation). According to the Wagner equation:

F (T ) = a1(1− T ) + a2(1− T )1.5 + a3(1− T )1.25 + a4(1− T )2.8 (3.23)

dF (T ) = a1 + 1.5a2(1− T )0.5 + 1.25a3(1− T )0.25 + 2.8a4(1− T )1.8 (3.24)

with the ai values given in Table.3.3
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a1 -3.8357
a2 1.7062
a3 -0.71231
a4 1.0862

Table 3.3: Coefficients for eq.3.23

The coefficients of Table.3.3 have been derived from using Wagner’s equation against
McCarty’s data [31]. So, following the known procedure for acquiring the vapor pressure:

ln(Pr) =
F (T )

T

dln(Pr) =
dF (T )T − F (T )

T 2

Psr(T ) = e
(
F (T )

T
)

and so, the vapor pressure according to the Wagner equation can be written as:

Ps(T ) = Psr(
T

Tc
)Pc (3.25)

with its behavior being the expected one as seen in the following figure:

Figure 3.23: Vapor pressure values according to Wagner’s equation

Now to verify the validity of this equation a comparison with the NIST data is made
where the deviations are presented as following:
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Figure 3.24: Vapor pressure errors according to equation eq.3.25 against
the NIST [31] data, with the mean deviation being 3.77%

As it can be seen from the figure 3.24 the equation has an overall very good behavior,
with some slightly higher error values below 2K. This fact is not concerning as for Helium-
4 to be in a gaseous state below this temperature the pressure must be extremely low,
something that is not realistic in any application or scenario.

3.2.3 Melting Line

The next boundary phase of the Helium-4 map is the solid to liquid line, or the melting
line. This line has been studied and an equation for its produced by McCarty in 1998 [31]
which is deemed to have great accuracy and therefore is being used in this work as well.

Pmelt(T ) = α +
θ T η

κη + T η
(3.26)

with the coefficients being given in the Table.3.4

α 2.384032197235548×101

θ 7.3637042310090629×101

η 6.025643026329004
κ 2.573459220492934

Table 3.4: Coefficients for the melting line equation 3.26

3.2.4 Superfluid Equations

The formation of the total equation of state will initiate by forming different equations
for the different phases of the Helium-4 and then these equations will be connected to a
single continuous one capable of describing all the different phases.

Especially in the superfluid region it is exceedingly difficult to describe directly all the
values of the thermodynamic variables without any loss of accuracy since the different
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variables like the entropy or the Gibbs free energy are seen to change around 8 orders of
magnitude within 1.5 K temperature difference. The equation of state that is to be formed
will have the pressure and temperature as independent variables as these are usually the
variables that are known in the different systems that this equation might be expected to
describe.

The data that are available for this equation to be based upon in terms of temperature
and pressure are with small enough intervals that a regression can be tried out, but the
difference in the orders of magnitudes negates any ability of using a single regression for
the whole range (0.1K to the lambda line).

This code aims to be able to describe with great accuracy both the values and the
derivatives of all the properties of cryogenic Helium-4. Going towards absolute zero all the
energy variables have an exponential behavior which leads to their orders of magnitude
to be drastically changing. For this reason, it is not possible to describe with a single
equation any of the energy variables through the entire range of cryogenic Helium, both
above and below the lambda line, with adequate accuracy. Thus, a dynamic code has
been created. In this code the combined set of the data is used and when the user
requests a value from the equation, then the code creates the equation of state in the
neighborhood of the requested point, achieving very high accuracy as well as continuity.
To do that the code does two consecutive regressions, one over the pressure and one over
the temperature in terms of which it takes multiple neighboring isobaric lines of data in
terms of temperature. Then, in every isobaric line, it creates a new equation to create
new points on the wanted isothermal line. Afterwards, it uses those points and creates
a second equation of constant temperature in terms of pressure which is then used to
create the wanted value. After this, the derivatives are checked to verify the smoothness
of the function made for the neighborhood. If the derivatives are seen not to be in
agreement with their respectively correlated thermodynamic values then the code redoes
the procedure opting for polynomials of lesser degrees to achieve better smoothness. The
full code is presented in Appendix B section B.2. The results of the aforementioned code
are presented below:

Figure 3.25: The deviations of the calculated entropy compared to the
NIST values for the superfluid. The mean deviation is 7.495E − 03%



40 Chapter 3. Helium 4

Figure 3.26: The deviations of the calculated enthalpy compared to the
NIST values for the superfluid. The mean deviation is 3.978E − 04%

Figure 3.27: The deviations of the calculated density compared to the
NIST values for the superfluid. The mean deviation is 1.627E − 07



3.2. Numerical Equation of State 41

Figure 3.28: The deviations of the calculated specific heat under constant
volume compared to the NIST values for the superfluid. The mean deviation

is 2.795E − 03

From the graphs above it can be seen that the provided code offers a great accuracy
with errors <2% the range of the values. Despite this apparent accuracy for an equation
of state to hold validity it must be able to cross-correlate the resulting values between
them. For this reason, the equation of the entropy and Gibbs free energy is used as a
basis for the enthalpy and the specific heat under constant volume to be recalculated to
then be compared to the original data and the ones directly calculated by the code.

The specific heat is calculated as:

Cv = T
dS

dT
(3.27)
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Figure 3.29: Comparison of the NIST values to the values provided by the
code and the values as calculated by 3.27. The mean deviation is −0.064%,
the correlation coefficient is r = 0.99932 and the coefficient of determination

is r2 = 0.99864

The enthalpy is calculated as:

H = G+ T S (3.28)
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Figure 3.30: Comparison of the NIST values to the values provided by
the code and the values as calculated by 3.28, the correlation coefficient is

r = 0.99996 and the coefficient of determination is r2 = 0.99991

From the figures 3.29,3.30 it can be seen that this set of provided equations are able to
not only calculated the data points of the superfluid with great accuracy but also provide
an excellent correlation between the different thermodynamic properties enabling the
calculations of each one using other through the standard the thermodynamic equations
and the Maxwell relations.

3.2.5 Normal Fluid Equations

The following region whose equations are needed to be calculated is the normal fluid
region. This region might seem initially to be of a simpler nature than the superfluid
region as it is closer to the thermodynamic behaviors of usual media, but one need not
forget that near the lambda line many properties like the specific heat are exhibiting
exceedingly high values and cause a discontinuity, something that is then observed to all
the rest of the thermodynamic variables as well. For this reason, a similar code to the one
described in the previous section is used as to achieve the maximum possible accuracy.

Below are presented the results of the code compared to the NIST data for two different
pressures:
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For a lower pressure of 1 atm:

Figure 3.31: The deviations of the calculated values compared to the
NIST values for the normal fluid at a pressure of 1 atm
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For a higher pressure of 8 atm:

Figure 3.32: The deviations of the calculated values compared to the
NIST values for the normal fluid at a pressure of 8 atm

From the graphs of the figures 3.31,3.32 it is seen that through this code a direct
replication of the data points is achieved.

Again, the cross correlation between the different thermodynamic variables ought to
be checked. For this the specific heat under constant volume is checked as the most ill
behaving of all the variables given its tendency to extremely high values near the lambda
point.
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Figure 3.33: Comparison of the NIST values to the values provided by
the code and the values as calculated by 3.27 for the normal fluid

As it can be seen through the figure 3.33 the accuracy of even the calculated from
the entropy Cv values is extremely high verifying the validity of the results of the current
equation of state.

3.2.6 Combined equations

Having the specific equations for the Helium-4 in the different sections is key in being
able to understand and model its behavior, but for many applications and in the uses of
many apparatuses the Helium-4 transitions between one or more of its phases need to be
also described. For this reason, it is of great significance to create an overall system of
continuous and derivable equations that bridge the existing gaps between the phases in
the literature.

To achieve this unification a code has been developed where a function is dynamically
created for each wanted temperature conforming to the values and derivatives above and
below the lambda line. This dynamic setting of the equations ensures that there is a
great accuracy at every case since the created equation is 2D instead of 3D, which is
what would have to be in the case that the code was not dynamic and there would be a
much greater loss of accuracy compared to the values. The code for the unification of the
thermodynamic values above and below the lambda line is presented in B.

By using this created code one can provide the overall results and compare the accuracy
with the experimental values by NIST.

For the presented plots below, because no data were available to the exact same
pressures for the superfluid and the liquid, it was decided to plot the data for the pressure
of the superlfuid and then include in the graph the values for the closest available pressure
for the liquid. In the deviation diagrams the exact pressures have been used for both the
liquid and the superfluid as different deviation graphs are given and as such the exact
results for the deviations of the overall equation in each of the areas can be seen there.
Two cases are presented for all the thermodynamic data, one of a lower pressure of 2.5
bars and one of a higher pressure of 20 bars to showcase the efficacy of this code in both
ends of the pressure spectrum.
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For the pressure of 2.5 bar

Figure 3.34: Calculated entropy compared to the NIST values
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Figure 3.35: Calculated density compared to the NIST values
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Figure 3.36: Calculated enthalpy compared to the NIST values

For the pressure of 20 bar
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Figure 3.37: Calculated density compared to the NIST values
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Figure 3.38: Calculated entropy compared to the NIST values
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Figure 3.39: Calculated enthalpy compared to the NIST values
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Figure 3.40: Calculated Cv compared to the NIST values

For the rest of the pressure spectrum the data is also calculated and presented in
Appendix B. As it can be seen from these graphs as well as the graphs of the appendix
is that the accuracy of the provided EOS is very high and it can be used for applications
that require extremely small margins of error especially given the extreme difference in
the in the orders of magnitudes of the values especially at lower temperatures. The mean
deviations, the correlating coefficients and the coefficients of determinations for all the
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variables for different pressures are shown in the table below.

Mean Deviations (%) P=2.5 atm P=10 atm
Superfluid Liquid Superfluid Liquid

Density -4.48E-03 -7.55E-05 9.82E-03 7.26E-03
Entropy -2.34E-04 -1.97E-03 -4.49E-01 -2.42E-03
Enthalpy -4.10E-01 -1.64E-03 -1.34E+00 -6.74E-03
Cv 2.44E-01 -5.78E-01 -5.60E-01 -5.10E-02

P=17.5 atm P=20 atm
Superfluid Liquid Superfluid Liquid

Density 5.92E-03 9.65E-03 4.00E-03 2.10E-02
Entropy -2.65E-04 6.42E-04 -2.74E-04 -3.05E-03
Enthalpy -5.50E-01 -7.50E-02 -7.23E-01 2.30E-02
Cv 2.20E+00 -5.02E-01 2.28E+00 -5.86E-01

Table 3.5: Mean deviation (%) of the different thermodynamic variables
against the NIST data for different pressures

P=2.5 atm P=2.566 atm
Superfluid Normal Fluid

r r^2 r r^2
Density 0.99876 0.99752 0.99998 0.99997
Entropy 1 1 0.99998 0.99997
Enthalpy 0.99666 0.99333 0.99999 0.99999
Cv 0.92744 0.86014 0.97549 0.95158

P=17.5 atm P=17.760 atm
Superfluid Normal Fluid

r r^2 r r^2
Density 0.99862 0.99723 0.99995 0.9999
Entropy 1 1 0.99997 0.99994
Enthalpy 0.99499 0.99 0.99999 0.99998
Cv 0.91982 0.84607 0.97202 0.94482
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P=10 atm P=9.869 atm
Superfluid Normal Fluid

r r^2 r r^2
Density 0.99683 0.99367 0.99998 0.99996
Entropy 0.99638 0.99277 0.99997 0.99994
Enthalpy 0.99139 0.98285 0.99999 0.99998
Cv 0.90456 0.81823 0.97521 0.95103

P=20 atm P=19.74 atm
P=20 atm Superfluid Normal Fluid

r r^2 r r^2
Density 0.99928 0.99856 0.99993 0.99986
Entropy 1 0.99999 0.99997 0.99994
Enthalpy 0.99207 0.98419 0.99999 0.99998
Cv 0.89872 0.8077 0.97089 0.94263

Table 3.6: Correlation coefficients and coefficients of determination for
the calculated data against the NIST values

3.2.7 Superfluid percentage in Helium-II

In addition to the thermodynamic properties of the fluid and the superfluid, one variable
that is very important in any cryogenic engineering application is the percentage of super-
fluid below the Lambda line. Helium-4 does not all become a superfluid instantly at the
lambda line, but it becomes a mixture of a superfluid and normal fluid. It is important
for the exact superfluid percentage of the mixture to be known, as in any application that
makes use of a superleak [41, 42, 43] only the superfluid part flows through and therefore
is imperative to know its amount. Because the percentage of the superfluid does not
directly correlate to the thermodynamic data, and for one to achieve such a correlation
there would be a need to dive into the quantum mechanics of superfluidity, something
that is out of the scope of this part of the study. Thus, the equation of the percentage of
the superfluid presented here is a separate equation from the model created and should be
used for its applications in engineering examples and not for deriving any deeper physical
meanings. The equation form is based on the data of NIST as given in [14] and a sigmoid
form was found to be the best for describing the data.

R(T, P ) =
a1

(1 + ea2−a3T )(1 + ea4−a5T )
(3.29)

with the coefficients being:

a1 1.759438110219911×101

a2 5.237757610459909 ×10−1

a3 2.988936852213499×10−2

a4 6.435211650071271×10−1

Table 3.7: Coefficients for the superfluid percentage equation 3.29

The results of the above equation are presented below.
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Figure 3.41: Superfluid percentage in Helium-II

The percentage of the superfluid increases while the temperature lowers, while reach-
ing almost 100% when near the temperature of 1K. This phenomenon is very important
and interesting both from a theoretical point of view as it will be discussed in the follow-
ing chapter concerning the physics of superfluidity in Helium-4 and in the applications
chapters especially for Superfluid Stirling Refrigerators.
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3.2.8 Helium 4 Maps

Having completed the EOS for Helium 4 now the opportunity to create a full thermody-
namic map for this working medium has arisen. Such a thermodynamic map does not
exist in the literature due to the fact that there are no available full equations of state
describing the Helium-4 through all of its phases. The maps that are to be presented are
in terms of pressure and temperature. This is not usual in the presentations of thermo-
dynamic maps, but it is chosen here for some important reasons. Firstly, through a P-T
diagram the lambda line can be easily seen giving a connection to the lambda line graphs
that one is used to studying when dealing with superfluid Helium. Additionally, if the
more usual S-H diagram was chosen then the results would be very clattered as at these
temperatures, and especially below the lambda line, as it will be seen the isenthalpic and
isentropic lines, nearly converge.

In this map for Helium-4 (figure 3.42) one can clearly see the phases changes through
the solidus and liquidus lines as well as the lambda transition through the lambda line.
In addition, to these transitions the isochoric, isenthalpic and isentropic lines are being
presented. As mentioned before, it can be seen that the isentropic and isenthalpic lines
nearly converge especially below the lambda line. Moreover, one can notice that below
around 1.5 K the behavior of the density seems to only be in terms of the pressure and
has little to no correlation to the temperature. At the end of the book the full tables with
the calculated data for Helium-4 are presented.
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Figure 3.42: Helium-4 Thermodynamic Map
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3.2.9 Polynomial Equation

This full code is designed as to be able to derive the properties of Helium with a very
high accuracy through all of its phases, but as one can understand sometimes this much
accuracy especially in applications with a wider temperature range is not needed, and the
format of the code makes it mathematically extensive meaning that repeated calculations
with it can require intense computing. This is something that can be overcome in smaller
applications but in many CFD applications where computing power is of the essence and
and this much accuracy is not required one could benefit more by using a less accurate
but faster set of equations that can be more easily inserted to a CFD environment. For
those reasons a polynomial equation is formed for the mostly used variables being the
enthalpy, the density and the entropy.

The polynomials are of the following form:

S(T, P ) =
6∑

i=0

6∑
j=0

Ai+1,j+1 T
i P j (3.30)

H(T, P ) =
6∑

i=0

6∑
j=0

Bi+1,j+1 T
i P j (3.31)

ρ(T, P ) =
6∑

i=0

6∑
j=0

Ci+1,j+1 T
i P j (3.32)

The values for the A,B,C are given in the tables of Appendix B. The convergence
of the above equations is not as great as the resulting ones from the initial program
these equations are able to describe the behavior of the system to an adequate degree
with a standard error for eq. 3.30 for the entropy to be 0.081, for the eq. 3.31 for the
enthalpy 0.067 and for the eq. 3.32 for the density to be 0.037. Due to this lesser accuracy
of the polynomials compared to the extended code, it is advised that these polynomial
equations are used in applications where temperature differences above 0.5K take place,
as with these differences even an error of 10% would significantly affect the outcome
due to the big differences between the values especially in lower temperatures. In cases
where smaller temperature differences are achieved or where there is an emphasis on the
behavior at temperatures below 0.5 K it is advised to directly use the full code with its
much greater accuracy.

3.3 Conclusions of Helium 4 Chapter
In this chapter a comprehensive gathering of all the available data for Helium-4 at cryo-
genic temperatures has been undertaken. First of all, a theoretical equation of state
has been developed based on the quasiparticle approach to superfluidity. Through this
part of the study the equations for the energies of the quasiparticles are determined and
presented, achieving greater accuracy to the experimental results compared to previous
publications on the subject. In addition to this a full mathematical description for the
energy model of the Helium-4 quasiparticles has been presented that does not require
a direct input of the experimental data. Following this, the quasiparticle energy model
is being used to calculate the thermodynamic variables of superfluid Helium-4. While



60 Chapter 3. Helium 4

this is seen to be possible through using the equations provided by Donnelly, the overall
outcomes are not accurate enough when compared to the experimental data to be able
to be directly used in applications. In addition to this, the fact that this model requires
the solution of multiple differential equations for its solution means that it is very time
consuming (and CPU bound computationally) if it is to be used in any instances where
a large number of data points is needed to be generated.

Given these shortcomings of the theoretical quasiparticle model, it is suggested that
this model is used mainly to describe the physics of the system and a new numerical
model is developed and presented in order to describe with much greater accuracy all the
available data. This numerical model is such that is able to describe all the phases of
Helium-4 below its liquefaction as well as the transitions between them. To achieve that
the data points for both the fluid and the superfluid are cross-correlated a full and cohesive
table of Helium data from different sources that are self consistent has been developed.
Based on this set of data a new numerical code has been created to fit the data. One key
aspect that needed to be solved in this part of the study is the very big differences in the
orders of magnitude of the values when approaching absolute zero. Taking for example
the entropy which experiences an 8 orders of magnitude drop from the lambda line to
0.1K. To overcome this hindrance, the code developed is dynamic, creating every time the
EOS for the neighborhood of the requested point as to have great accuracy without the
need of describing points far away that would be orders of magnitude larger or smaller
and therefore lessen the accuracy of the system. This also means that since this code is
based on the data from NIST, at any point in the future when newer or better data arise,
one can simply insert these data in the code and proceed to have a very accurate equation
of state for Helium-4 based on the new data. In addition to this code, a polynomial form
of the EOS is also given which would be able to be used for applications requiring less
accuracy. Those polynomials could be used a code that would work faster and without
the need of handling all the data points for its use.

This work contains the so far fullest equation of state for cryogenic Helium-4 as it is the
only one that is able to transverse between different regions, predict the transitions and
have an overall accuracy that is higher than any previously published ones. In addition,
the results of this EOS are cross-correlated with each other and it is shown that the
provided values do not only achieve a mathematical accuracy but the derivatives are also
accurate to a point where one could utilize one of the values like the Gibbs free energy
with the temperature and pressure and create all the rest of the variables.

Using this equation of state the first full thermodynamic map of Helium-4 is created
and presented.
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Chapter 3 - Nomenclature
n Occupational number
h Plank’s constant
p Momentum
T Temperature
P Pressure
E Energy of quasiparticles
u1 Speed of 1st sound
ρ Density
∆ Roton energy gap
µ Roton mass
po Momentum at Lambda point
kt Isothermal compressibility
v Specific volume
S Specific entropy
H Specific enthalpy
Cv Specific heat under constant volume
G Specific Gibbs free energy
Tλ Lambda transition temperature
Ps Vapor pressure
Pmelt Melting line pressure
R Superfluid ratio
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Chapter 4

Entropic Lambda Transition

4.1 Low Temperature behavior of Helium
Helium is a substance that has been studied extensively during the last 100 years and
it presents some very remarkable and interesting properties and behaviors in both high
and low temperatures. At higher temperature its nature as an inert gas with a small
atomic weight gives it properties that are very near to an ideal gas, to the point that
at normal temperatures there is no need to differentiate its equation of state from the
one of the ideal gas. At lower temperatures the behavior of Helium acquires even more
interesting attitudes in many ways. Firstly, Helium is the only known substance that
never solidifies under atmospheric pressure and has the lowest bowling point of any gas
at 4.2 K under atmospheric pressure [44]. This means that Helium remains a liquid even
at absolute zero under atmospheric pressure and only forms a solid at higher pressures
[45]. The fact that a liquid exists so near absolute zero leads to some very different
behaviors and characteristics compared to gases at normal higher temperatures. The key
differentiation of Helium is that it undergoes the lambda transition and forms a superfluid.
A superfluid is a phase where the liquid being in a superfluid form has zero viscosity [46],
and presents interesting thermodynamic behaviors as well, like a major rise in the heat
capacity and an abrupt slope change in the entropy at the lambda point [26]. Superfluid
Helium has been a subject of many studies over the years, with various attempts to
describe and explain its behavior. The first ideas considering the behavior of superfluid
Helium have had a concern around its relation to Bose-Einstein condensates, with which
a superfluid shares some properties. Like a Bose-Einstein condensate a superfluid can
flow freely and it is thermodynamically inert below a certain temperature (however, it
needs to be mentioned here that whereas the Bose-Einstein condensate can be described
as completely thermodynamically, inert the superfluid can be considered, especially at its
higher temperature ranges, only as approximately thermodynamically inert).

The first physical explanation for the phenomenon of superfluidity was the two-fluid
approach by Tisza [7]. This approach stated that the superfluid consisted of two parts,
one part that was the completely inert and free-flowing superfluid (very similar to a Bose-
Einstein condensate in concept) and the second part was a normal fluid. The mixture
of the two made up the Helium-II, which is what the phase below the lambda line in
Helium-4 is referred to. This approach had great merit in explaining the behaviors of
the superfluids and giving an adequate physical explanation of their formation, but its
mathematical model seemed unable to provide an equation of state that described the
experimental values of the superfluid. Then a second approach, by London [17], forwent
the assumption of the two fluids and described the behavior of superfluid Helium both
physically and mathematically through the quasiparticle approach. Landau [22] described
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the thermodynamic behaviors of the superfluid in a quantum manner, with the quasipar-
ticles being the excitations within the fluid. By studying these excitations of the different
types of quasiparticles this approach has been seen to be able to fully describe the behav-
ior of Helium in its superfluid form mathematically. The only apparent drawback of this
approach is that due to its affinity in the quantum realm it provides an explanation that
is more difficult to understand macroscopically and completely forgoes any connection
with Bose-Einstein condensation.

While Bose-Einstein condensation is a phenomenon that is not directly used in the
quasiparticle approach of describing superfluidity, this approach is also based on the fact
that when the system does not have enough energy for its particles to overcome the energy
gap and get to an excited state from the ground state then these particles do not interact
with their neighboring ones. As such for the superfluid, the particles within the energy
distribution of a given temperature that are able to get to excited states do interact
with others and thus form the quasiparticles (the quasiparticles are nothing more than
particles describing the different kinds of interactions between the Helium atoms). This
phenomenon of particles staying in the ground state, while not directly correlated with
Bose-Einstein condensation, gave the authors the idea for this study where a model is
presented that correlates the superfluid transition with the Bose-Einstein condensation
that ought to happen if only the non-interacting part of the liquid existed.

This procedure demands a framework of the equations that govern the statistical
behavior of Helium. Helium has two stable isotopes, being Helium-3 and Helium-4 [8],
which due to their different spins have vastly different statistical behaviors with one being
a fermion and the other a boson. Thus, the statistical models for the two isotopes have to
be very different. Especially in the case of Helium-3, given its fermionic nature the model
that is used to described its thermodynamic statistical behavior is heavily based on the
BCS theory [9] of a pair of fermions getting entangled and forming a Cooper pair with
properties similar to a boson, obeying Bose-Einstein statistics. Through this approach it
is shown in this work that the lambda transitions in both Helium-4 and Helium-3 match
to a great degree the Bose-Einstein condensation temperatures of their non-interacting
parts.

4.2 Defining the Statistical Mechanics of the System
Before setting off to provide the reader with the model for the statistical behavior of
the isotopes of Helium it is deemed helpful to provide a concise subsection defining the
variables and their nature used in the model. This statistical description has been based
on the courses of Prof. Leonard Sussking of Calc.Tech.

Assume a system having i possible states (as a state one can consider any possible
outcome of the system), with i = 1 . . . n. P (i) will be the possibility of the system
appearing in the i state, with P (i) ≥ 0 with the sum of all the probabilities being equal
to 1.

∑
i P (i) = 1.

According to these probabilities one can define the entropy for the information of the
system. The entropy, statistically speaking, is only a measure that corresponds with the
ignorance on the system, the higher the ignorance the higher the entropy. One very basic
definition of the entropy can be: S = log(M), where M is a variable representing our
ignorance of the system. A more robust definition of the informational entropy is given
by the Shannon entropy [47] where the entropy is defined as:
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S = −
∑
i

P (i)lnP (i) (4.1)

This approach to entropy is mostly used in areas of information theory. In the physics
realm the possibilities are rarely this discreet or dependent to only one variable. A more
physical approach to this definition would be define the entropy in a phase-space.

S =

∫
P (p, x)lnP (p, x) (4.2)

where P(p,x) is the probability of a particle being in a specific state in the phase space
of position x and momentum p.

In even very simple physical or thermodynamical systems the large amounts of possi-
bilities leads for the integral of the entropy to get to extremely high values making its use
cumbersome in applications. For this reason, the Carnot entropy which is defined using
the Boltzmann’s constant as:

SCarnot = kS = −k
∑
i

P (i)lnP (i) = −klnΩ (4.3)

Based on the definition of the probability distribution and on the fact that it is by
default normalized it can be seen that

∑
P (i)Ei = Ei where Ei is the energy distribution.

Now the problem that needs to be tackled at this point is to be able to find the proba-
bility distribution in terms of the entropy. For this reason, the method of the Lagrange
multipliers is to be used.

Mathematically this correlation between the entropy and the probability distribution
can be seen through the system of:

S(P1, P2, . . . ) = −
∑
i

PilnPi

∑
P (i) = 1

∑
P (i)Ei = Ei

and with the Lagrange multipliers implemented this system can be transformed as:

S(P1, P2, . . . ) = −
∑
i

PilnPi

G1 =
∑

P (i)− 1

G2 =
∑

P (i)Ei − Ei

Now, minimizing the entropy in terms of the probability distribution one can write:

S∗(P ) = S(P ) + α G1 + β G2
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S∗ =
∑
i

PilnPi + α
∑
i

Pi + β
∑
i

PiEi

by differentiating the above, according to Fermat’s theorem of stationary points it
would be equal to zero at the minimal value:

∂S∗

∂Pi

= lnPi + 1 + α + β Ei = 0

lnPi = −(1 + α)− βEi

=> Pi = e−(1+α)e−βEi

Now we write Z = e1+α, and therefore the probability distribution can be written as:

Pi =
1

Z
e−βEi (4.4)

In addition to this we know that
∑

i Pi = 1, so:

Z(β) =
∑
i

e−βEi , (4.5)

is defined as the partition function. Also we had that
∑

i PiEi = Ei and as such:∑
i

1

Z
e−βEiEi = E

By differentiating 4.5 over β:
dZ

dβ
=
d
∑

i e
−βEi

dβ

1

Z

dZ

dβ
= −

∑
i

1

Z
e−βEiEi (4.6)

So overall we can write that:

E(β) = −∂lnZ
∂β

(4.7)

Applying this to the definition of the entropy we can get:

S = −
∑
i

PilnPi = −
∑ 1

Z
e−βEiln(

1

Z
e−βEi) =

=
∑
i

1

Z
e−βEi(βEi + lnZ) =

= β
∑
i

PiEi +
1

Z
lnZ

∑
i

e−βEi =

= βE + lnZ

(4.8)

Differentiating the result of 4.8 one gets:
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dS = βdE + Edβ +
dlnZ(β)

dβ
dβ = βdE

So it comes that:
β =

S

E
, (4.9)

but also we know that
dE = TdS =>

S

E
=

1

T
(4.10)

Thus, by combining equations 4.9 and 4.10 it is derived that:

β =
1

T
(4.11)

By following the above procedure, the definitions for all the basic statistical variables
have arisen as they are summed up in the table below:

Pi =
1

Z
e−βEi Probability distribution

Z =
∑

i e
−βEi Partition function

E = −∂lnZ
∂β

Energy

T =
1

β
Temperature

S = βE + lnZ Entropy

Table 4.1: Definitions of fundamental variables of statistical mechanics

Having defined the basic functions and variables of the statistical mechanics to be used
in this model, readily one can initiate their application in a model. Initiating, the above
mechanics are to be applied in an ideal gas. This application of the statistical mechanics
to an ideal gas might at first seem simplistic and not related to Helium which, especially
at these temperatures, is not an ideal gas, but later in this chapter it will be showcased
that the behavior of the ideal gas holds a very significant meaning in understanding and
describing superfluidity in Helium.

Assume a collection of N particles in a 3 dimensional space V with their values being
defined by their position and momentum. Thus, the partition function will be written as:

Z =

∫
eβ

∑3N
n=1

p2n
2md3Nx d3Np (4.12)

The equation above can be transformed by changing the position integral as:
∫
d3x =

V N

N !
. The N! as the denominator is used as to not count the same particle multiple times.

Z =
V N

N !
(

∫
e−

β
2m

p2)3N
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calculating the integral one gets:

Z =
V N

N !
(

√
2mπ

β
)3N

To simplify this formula, we can use the Stirling’s approximation for the factorial and
get:

Z =
V N

NNe−N
(

√
2mπ

β
)3N

Z = (
e

ρ
)N(

2mπ

β
)
3N
2 (4.13)

with ρ = N
V

the particle density. Following this the energy can be calculated as:

E = −∂lnZ
∂β

=
3

2
N T

So by this one can calculate the standard form of the energy of an ideal gas.

4.3 Calculation of the partition function of Helium
The model that is being shown in this study showcases a novel approach where by calcu-
lating the partition function of Helium it will be shown that the lambda transition can
be seen to be very clearly manifesting in the ideal part of the system and correspond to
a theoretical Bose-Einstein condensation of the system.

4.3.1 Partition Function of Real gas

The difference between a real gas and an ideal gas is based on the difference that in the
real gas there are interactions between the particles while in the ideal gas this is not the
case. So for a real system the energy is defined as the sum of the kinetic energy and the
potential energy of the particles.

The energy for a single particle will be:

ϵ(r, p) =
p̂2

2m
+ U(r), (4.14)

where it is seen that the kinetic part is based on the momentum operator p̂ (with m
being the atomic mass) and the potential part on the potential energy U in terms of the
interatomic distance r. This is the case for a single atom, but to describe the entirety of
the gas one would need to find the energy of all the particles, which is the sum of the
individual energies as seen in Eq. 4.15:

E =
N∑

n=1

p̂2

2m
+

∑
n>m

U(|xn − xm|), (4.15)

with N being the total number of atoms in the gas and |xn − xm| being the distance
between the nth and the mth.

Integrating over all the possible positions of the two particles one gets:
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∫
dx31dx

3
2U(|x1 − x2|) = V Uo

So knowing the energy one can define the partition function based on 4.1. The sum of
the partition function due to the large number of atoms in any gas can be transformed to
a an integral, where one must integrate over all the i, where the i are the two independent
variables of the system p-momentum and x-position so for three dimensions one must
integrate three times to cover all of them. Thus, the partition function is written as:

Z =

∫
d3Np d3Nx

N !
eβ

∑
n

p2

2m eβ
∑

n>m U(x) (4.16)

Z =
1

N !

∫
eβ

p2

2M d3Np

∫
eβU(dn)d3Nx

Z =

∫
V Ne−β p2

2m

N !
d3Np

∫
e−βU(r)

V N
d3Nr. (4.17)

Equation 4.17 is a key result, as one can see that the first term of the equation, being∫
V Ne−β

p2

2m

N !
d3Np, is the partition function of the ideal gas as it was calculated before and

the second term,
∫

e−βU(r)

V N d3Nr does not contain any kinetic parts and therefore only refers
to the interacting part of the system.

As such the partition function can be written in the form:

Z = Zideal Zinteracting (4.18)

and based on the definition of the entropy through 4.1 one sees that the entropy is
written as:

S = Sideal + Sinteracting (4.19)

4.3.2 Entropy of Bose-Einstein condensate

Generally, as mentioned before the reason why Bose-Einstein condensation is not a phe-
nomenon directly applied to Helium is because Helium is not an ideal Bose gas and has
interactions between its particles. If one stops thinking of Helium as one entirety but
sees it as two different entities as it is seen through this demonstration of the partition
function it can be seen that the equations 4.18, 4.19. These two are not suggested to be
actual different fluids but this is used only as a mathematical method that gives some
very key advantages into the description of the superfluid. The work presented below has
already been published in the paper [38] by the author at IMECE2021, where it received
the Edward F. Obert Award for outstanding paper in thermodynamics.

Studying the ideal part of the system one can readily reach a simple but important
conclusion. This term represents an ideal gas and in this case being based in Helium its
particles are bosonic. This means that this term represents an ideal Bose gas.

For describing of the Entropy and Partition Function of the ideal Bose gas the works
of Svidinsky et al. and Kim et al. at [48, 49] are being used. Through the paper [48],
also based on the work of Scully et al. [50], it has been described theoretically and
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verified numerically that when referring to an ideal Bose gas below a point of the critical
temperature ( around 0.8 Tc based on the particle density) the Ground State of the system
does not play a part in the entropy of the ideal system. This is being done by assuming
the entropy of the ideal gas being first a aggregate of the entropies of each individual
particle and the entropy of the correlations between the particles as:

Sideal = Sind + Scorr (4.20)

Each individual particle can be thought of being either in the ground state or an
excited state. Thus, their entropy will be the sum of the entropies of the ground state
and the excited states.

Sind = Sground + Sexc (4.21)

So overall the entropy can be written as:

Sideal = Sground + Sexc + Scorr (4.22)

In a Bose-Einstein condensate all the particles are in the ground state and as such
there are no correlations between them because they do not possess adequate energy to
interact to their neighbors. This means that in the equation Eq. 4.22 the terms Sexc and
Scorr must cancel out as not to have an effect on the overall entropy based on the physics
of the system. This something that makes physical sense but can also be mathematically
shown as done in the numerical calculations of [48], where in a Bose-Einstein condensate
the entropy of the ground state particles is calculated and seen to cancel out with the
entropy of the correlations, so in the term of this work it means that:

Sground = −Scorr (4.23)

When an ideal Bose-gas exists below its critical temperature then it forms a Bose-
Einstein condensate. Not all the gas instantly goes through the transition and with
equations 4.23, 4.22 one can calculate the entropy of the condensate through the entropy
of the excitations. To evaluate this entropy on the ideal part the canonical ensemble
method is going to be used. The Hamiltonian of the particles is:

Ĥ =
N∑
i=1

(
p̂2

2m
+

1

2
mω2r⃗2

)
, (4.24)

with the potential energy of the particle in the ideal Bose gas being:

U(µ, T, ω) = kT
∑
i,j,k

ln(1− e
h̄
T
ω(i+j+k)+ µ

kT ) (4.25)

with k being the Boltzmann constant, h being Planck’s constant with h̄ = h
2π

and µ
the chemical potential. Since we are referring to the ideal part of the system then that
means that the chemical potential will be zero, µ = 0. The i, j, k indices refer to the
3-dimensional space. For simplifying the potential equation the Bose function is used,
defined as:

ga(z) =
1

(a− 1)!

∫ +∞

0

xa−1

z−1ex − 1
dx (4.26)
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with z being the fugacity and a referring to the dimensionality of the system. Thus,
the entropy of the canonical ensemble of an ideal Bose gas will be:

Scanonical = k

(
kT

h̄ω

)3

(4g4(z)−
µ

kT
g3(z)) (4.27)

The critical temperature [51] of an ideal Bose gas, is calculated in this manner to be:

Tc =
h̄ω

k
(
N

g3(1)
)
1
3 , (4.28)

and the entropy below this temperature will be transformed from Eq. 4.27 as:

SBEC = k(
kT

h̄ω
)3g4(1). (4.29)

A Bose-Einstein condensate will be formed but this, as in normal gases, will not take
place instantly in all the particles of this theoretical gas. Due to the inert nature of Bose-
Einstein condensates the thermodynamic properties of the gas are mainly governed by
the particles not in this state. The number of these particles will be:

N∗ = (
h̄ω

kT
)3g3(1). (4.30)

So by using the equations 4.27, 4.29 and 4.30 the full entropy of the ideal part of the
system is calculated.

This entropy can also be described by using the grand-canonical ensemble of the system
instead of the canonical ensemble by implementing some key differentiations. The entropy
of the ground state will be excluded as it is expected to be zero and the chemical potential
will again be zero. The fact that the entropy of the ground state needs to be neglected
is explained physically by understanding that by referring to an ideal Bose gas below the
Tc then the particles in the ground state will be condensed into a BEC and as such will
all occupy the same state providing a zero entropy, or with the mathematical simulation
offered by [48]. Thus, the entropy of the grand-canonical ensemble will be:

SGC = −k ∂

∂T
(T

∞∑
ν=1

ln(1− e−
ϵν
kT )) (4.31)

One now expects that this entropy ought to be the same as the entropy of the exci-
tations in the canonical ensemble calculated below the critical temperature Tc, but one
should also consider the effect of Eq. 4.30. By performing the calculations for the two
different model the results that arise can be seen in the Figure 4.1. This differentiation
of the entropy of the excitations of the canonical ensemble to the entropy of the grand
canonical ensemble has a very significant physical meaning. In the way that the equation
for the entropy of the grand canonical ensemble is written it is assumed that the entropy
of the ground state bares no significance. This is true for the entropy in the canonical
ensemble as well but excluding the values of the N∗ particles which are not in the BEC
state yet. This effect is more prevalent near Tc and lessens when the temperature lowers.
This behavior also relates to the behavior seen in the works of [50],[49] and [48] where
it is shown that this relation between a similarly defined grand canonical ensemble and



72 Chapter 4. Entropic Lambda Transition

entropy of excitations can be derived by running the numerical model for the entropy of
the ground state of a Bose-Einstein condensate.

Figure 4.1: The entropy of the canonical ensemble for the excitations is
shown in the blue line and the entropy of the modified grand canonical
ensemble is shown in the orange line. It can be seen that they converge

until around T
Tc = 0.8

This can also be viewed by observing the probability distribution function for the
particles in the ground state being:

Figure 4.2: The probability distribution of the Ground State of the ideal
Bose gas calculated from the equation Entropy of the Ground State
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4.4 Combining the ideal and non ideal parts to Helium-
4 and comparing to the experimental data

Through the provided calculations for the total entropy and the entropy of the ideal
part one can expect that the ideal part will have an important effect on the overall
thermodynamic behavior, especially considering the tendency of Helium to be a weakly
interacting gas. To use the equations provided and apply them to Helium-4 they must
first denormalised. For denormalising these equations one must first use the Bose-Einstein
condensation temperature. One option would be for one to use the equation 4.28. Whilst
this equation is sufficient to describe the behavior, the fact that it makes use of the number
of particles N makes it troublesome in its thermodynamic uses for big and unknown
numbers N. For this reason, the version A.1 will be used utilizing the particle density
instead of the particles themselves. To remind the reader the used equation of the Tc is:

Tc =
h2

2πmk
(

N

2.612V
)
2
3 .

Having the values for the particle density from the equation of state described in
the previous chapter 3, one can readily calculate that the Tc will be in the range of
2.9-3 K depending on the temperature. On this point one can calculate the transition
point as seen in 4.1 and through the mathematical models of [48] will be in the range of
0.8Tc ≈ 2.2K. This is a key result at this point as it showcases that the point where the
ideal part transitions to the BEC in its ground state is very close to the lambda point
of the full Helium-4. The result of this is that as far as the ground state of the ideal
part is concerned, below this point the particles are on the ground state and obeying a
Bose-Einstein distribution and as such they are condensed into a BEC. The forming of
this condensate means that only the excited particles of the ideal part are responsible
for the thermodynamic behavior. At this point one must be careful and not assume a
formation of a BEC in the full Helium-4 as this is not the case. This BEC can be seen
to be theoretically forming in the ideal part of the system and this can be used as a
useful tool to study the transformation from normal fluid to superfluid with the energy
transition of the ideal part of the gas.

Additionally, as it was shown in the figure 3.41 the transition to superfluidity is not
something that happens instantly. This phenomenon is something that can also be clearly
seen in the particles that enter the BEC phase in the ideal part as described by equation
4.30. From an energy state point of view this model counts on the property of the bosonic
in nature particles of the system that allows them to exist simultaneously in the same
state and when below the Tc in the ground state, to Bose-Einstein condense. Thus, by
observing figure 4.2 one can see that the number of particles in the ground state transition
very close to the lambda temperature of the full Helium-4, hence why the formation of
the BEC initiates at around 0.8 of the Tc. In addition to this, not all particles are in the
ground state which means that only a percentage of the properties of the ideal gas will
amount to the properties of the full gas at each temperature.

Through this method it is seen that the contributing parts to the final entropy of
the Helium-II are the entropy of the excitations of the ideal part and the entropy of
the interacting part. The understanding of this is that the partition function and the
entropy, and therefore all the thermodynamic variables, are based on the excitations of
the crystallic structure of the system, them either being excitations of the individual
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particles in the ideal part or interactions between different particles in the interacting
part.

Figure 4.3: Comparison of the calculated values for the Entropy of ideal
Bose Helium gas with the Entropy Values from NIST in order to highlight

the common transition at around 2.2 K

As it can be seen and through the graph above the transitioning point of the entropy
of the ideal part directly correlates to the lambda point of the superfluid. To get an even
clearer view of this phenomenon and also verify the self-coherence of the mode the specific
heat capacity under constant volume is being calculated for the ideal part and compared
to the one for the superfluid from the provided equation of state based on the NIST data.
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Figure 4.4: Comparison of the calculated values for the specific heat
under constant volume of ideal Bose Helium gas with the Entropy Values
from NIST in order to highlight the common transition at around 2.2 K

Through the figures 4.3 and 4.4 it is clear that there exist a significant correlation
between the transition to superfluidity in the Helium-4 and the transition to a theoretical
Bose-Einstein condensation in its ideal part.

4.5 Extrapolating the model to lower temperatures and
deriving the interatomic potential

By having calculated the thermodynamic values for the full Helium-4 through the equation
of state in the previous chapter based on the NIST data and now having calculated the
entropy values for the ideal part of the system it is now straightforward to calculate the
entropy of the interacting part of the system and through that find the results of the
interatomic potential. Thus, through equation 4.19 one can get:
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Figure 4.5: Entropies of interactions in 4He and excitations of the ground
state compared to the overall Entropy from the EOS and the NIST data

below the Lambda transition

Through having now the function and the values for the interacting part through the
interatomic potential of Helium-4 the rest of the thermodynamic data below 0.1K, as
missing from the NIST experimental values, can now be theoretically derived.
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Figure 4.6: Equivalent to figure 4.5 with logarithmic axis for a clearer
view going towards absolute zero

Figure 4.7: Equivalent to figure 4.5 with logarithmic x-axis centered to-
wards the values closer to absolute zero
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By plotting the entropy from the ideal part and the entropy through the potential of
the interacting part it can be seen that the entropy and its derivative as closing to absolute
zero are also zero, conforming to the 3rd law of thermodynamics and as such providing a
further validation of this model which is seen to agree with both the experimental values
at higher temperatures and the theoretically expected behaviors near absolute zero.

Figure 4.8: The percentage of contribution of the Entropy because of the
ideal part over the total Entropy

Figure 4.9: The percentage of contribution of the Entropy because of the
potential over the total Entropy
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T (K)
Entropy Entropy Entropy Entropy Percentage

ideal to totalNIST data Calculated data eq. (9) Ideal eq.14 of Interactions
(kJ/kgK) (kJ/kgK) (kJ/kgK) (kJ/kgK)

1.00E-03 - 1.86E-11 0.00E+00 1.86E-11 1.31E-08
9.00E-03 - 5.90E-09 1.30E-15 5.90E-09 2.20E-05
1.70E-02 - 3.67E-08 5.89E-14 3.67E-08 1.61E-04
2.50E-02 - 1.13E-07 5.96E-13 1.13E-07 5.26E-04
3.30E-02 - 2.56E-07 3.15E-12 2.56E-07 1.23E-03
4.10E-02 - 4.87E-07 1.16E-11 4.87E-07 2.38E-03
4.90E-02 - 8.25E-07 3.38E-11 8.25E-07 4.09E-03
5.70E-02 - 1.29E-06 8.37E-11 1.29E-06 6.47E-03
6.50E-02 - 1.91E-06 1.84E-10 1.91E-06 9.63E-03
7.30E-02 - 2.70E-06 3.69E-10 2.70E-06 1.40E-02
8.10E-02 - 3.68E-06 6.89E-10 3.68E-06 1.90E-02
8.90E-02 - 4.87E-06 1.21E-09 4.87E-06 2.50E-02
9.70E-02 - 6.29E-06 2.03E-09 6.29E-06 3.20E-02
1.00E-01 - 6.89E-06 2.44E-09 6.89E-06 3.50E-02
3.00E-01 1.80E-04 1.80E-04 1.78E-06 1.79E-04 9.86E-01
5.00E-01 8.07E-04 8.07E-04 3.81E-05 7.69E-04 4.72E+00
7.00E-01 2.39E-03 2.39E-03 2.87E-04 2.10E-03 1.20E+01
9.00E-01 8.03E-03 8.03E-03 1.30E-03 6.73E-03 1.61E+01
1.10E+00 2.90E-02 2.90E-02 4.32E-03 2.50E-02 1.48E+01
1.30E+00 8.50E-02 8.50E-02 1.20E-02 7.30E-02 1.38E+01
1.50E+00 2.01E-01 2.01E-01 2.80E-02 1.73E-01 1.38E+01
1.70E+00 3.96E-01 3.96E-01 5.90E-02 3.37E-01 1.49E+01
1.90E+00 7.22E-01 7.22E-01 1.15E-01 6.07E-01 1.59E+01
2.10E+00 1.24E+00 1.24E+00 2.09E-01 1.03E+00 1.69E+01

Table 4.2: Showing the values and contributions of each part of the
Entropy to the total Entropy at temperatures from 0.001K to near Lambda

By observing figures 4.8 and 4.9 and Table 4.2 one can see that going towards absolute
zero the entropy the effect that the interacting part has to the total entropy is ever increas-
ing leading to ever increasing values and eventually leading to representing 100% of the
entropy near 0K. Through this one can see that the effect of the excitations diminishes as
this is represented in the entropy of the ideal part, and completely disappears at 0K. This
is physically sound as near absolute zero no excitations are expected to be existing and
therefore no entropy could arise through them, something that this methodology seems to
be inherently predicting and mathematically describing. Additionally, by following these
results one can deduce that even at absolute zero an interatomic potential ought to exist
between the particles of Helium-4. This is something that is also known to be true and
conforms with the experiments and predictions of London.
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Figure 4.10: Interatomic potential for Helium-4 atoms based on the works
of London [20, 17]

4.6 Conclusions of Entropic Lambda Transition Chap-
ter

Through the above it was seen that finding the partition function of the Helium-4 near
and below the lambda line and studying the effects of the superfluidity as a phenomenon
on the partition function and the behavior of the entropy could greatly aid in the un-
derstanding of the phenomena themselves and provide a clearer macroscopical view of
superfluidity without the need to dive too deeply in the quantum realm. By considering
the interacting and ideal parts of Helium-4 as a product in the partition function and then
transferring this to the entropy, one could now implement the Bose-Einstein statistics to
the ideal part and figure out the Bose-Einstein condensation temperature. Through this,
the entropy of the ideal part is derived and accordingly based on the existing EOS for the
full Helium-4 the entropy of the interacting part was found. By following this method
and splitting the partition function to an ideal and an interacting part one can study and
predict the different behaviors of the two parts and how superfluid transition impacts
their behaviors. The lambda transition on the superfluid was seen to be almost exactly
matching the shift to Bose-Einstein condensation in the ideal part. This showcases that
the connection between superfluidity and pure Bose-Einstein condensation is something
that can be studied also through the macroscopic variables giving an advantage to its
understanding for any engineering applications. By using this method one could model
and predict the behavior of a superfluid by just using the thermodynamic variables of
an ideal gas based on it and not have to extensively solve all the quantum mechanics of
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the system. This approach by no means aim to replace existing theories of superfluid-
ity in Helium-4 but it does offer a view that can be deemed very helpful in applications
and an overall understanding between the macroscopical and the microscopical views of
superfluids.

In addition to the fact that this method offers a more macroscopical view of superfluid-
ity it can also be interpreted in a way that bridges the gap between the two-fluid approach
and the quasiparticle approach to superfluids. In essence, by splitting mathematically the
system into two parts, one being fully non-interacting and the second being interacting
one can correlate this to the two-fluid model, where the Helium-II is considered to be
a mixture of a non-interacting and an interacting liquid. Additionally, when calculating
the entropies on this model it was shown that the entropy that arises is based on either
the excitations of the individual particles or of their interactions. This can hint towards
the quasiparticle approach as in both methods the thermodynamics of the system are
only described through the excitations and state that the non-excited particles play no
part in the overall system. The excitations of the single particles can be translated to
the phonons, which are linear excitations of the lattice, with the interacting excitations
of the system being the rotons (as when quantum vortices are created in the superfluid
meaning an excitation that affects more than one particles interacting with each other).
Overall, it can be seen that this macroscopical approach of the entropic transition to su-
perfluidity provides an understanding which connects parts of both the existing theories
of superfluidity.

So far this method has only been applied to superfluid Helium-4, but in later chapters
it will be shown how this can be applied to other superfluids as well.
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Chapter 4 - Nomenclature
S Entropy
P(i) Probability
p Momentum
x Position
k Boltzmann constant
Ω Macrostate
Ei Energy of macrostate
G Lagrange multiplier
Z Partition function
β Inverse temperature
T Temperature
N Number of atoms
V Volume
m Atomic mass
ρ Density
ϵ Energy of single atom
U Potential energy
H Hamiltonian
µ Chemical potential
ω Natural frequency
h Plank’s constant
ga Bose function
N∗ Number of non-condensed particles
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Chapter 5

Helium 3

As mentioned in previous chapters Helium as an element has two naturally occurring
stable isotopes. The first and by far most common one is Helium-4 which has been
studied extensively so far in this research. In addition to this isotope also Helium-3 exists.
Helium-3 is a much rarer isotope being less than 0.001% of all natural Helium and an even
smaller percentage on earth. Helium-3 consists of two protons and one neutron in its core.
This means that Helium-3 has a total spin of 3

2
being half-integer. As a particle with half-

integer spin Helium-3 is a fermion in contrast to the bosonic Helium-4. Normally, the spin
difference between the isotopes play no important role in the thermodynamic behavior of
elements. This is because for all the rest of the elements the thermodynamics used are at
significantly higher temperatures. Being at higher temperatures the Maxwell-Boltzmann
statistics are used for their mechanics which do not differentiate on the spin. In the case of
Helium, which remains a liquid near absolute zero where quantum interactions are having
significant effects, one can no longer use the Maxwell-Boltzmann distribution and has to
rely on the quantum distribution functions. The functions being the Bose-Einstein and
the Fermi-Dirac (as shown in appendix A) are dependent on the spin of the particles. As
such, this difference of the kind of spin between Helium-3 and Helium-4 leads to a vastly
different behavior between them.

At higher temperatures due to the reliance on the Maxwell-Boltzmann distribution
there is no differentiation between the two isotopes and as such at higher temperatures
the equations of state do not differentiate between them.

At lower temperatures Helium-3 also forms a superfluid. This fact might initially
seem as counter-intuitive as superfluidity is known to be a degenerated form of Bose-
Einstein condensation. For a substance to form any kind of Bose-Einstein condensate or
equivalent behavior it is given that it has to be made out of bosons. Helium-3 though,
is fermionic. But Helium-3 does form a superfluid as the experiments have shown. The
physics behind the formation of superfluids in fermionic gases and in general Bose-Einstein
condensates of fermions are of great interest and a lot of work has been put over the years
by many scientists to explain this behavior. In general, the idea behind the Bose-Einstein
condensation in fermionic gases is based on the BCS theory of Cooper pairs [9],[52].
This theory has had great success in explaining the formation of BEC in electron gases
explaining the phenomenon of superconductivity. In this work, in the later parts of this
chapter, this theory is applied to Helium-3, where it is shown that when it is combined
with the entropic approach as developed for Helium-4, it leads to results helping in a
better understanding of superfluidity in Helium-3 as well.

While Helium-3 becomes liquid at the same temperature as Helium-4, it remains a
normal liquid until very low temperatures, in the regions of 0.001K where its lambda
transition occurs. Any superfluid is progressively more thermodynamically inert as its
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temperature lowers. This means that Helium-4 at temperatures below 0.3-0.4K is almost
completely thermodynamically inert and as such it cannot be used effectively as a working
medium for cryocoolers below these temperatures. Because of the fact that Helium-3 has
a significantly lower lambda temperature it can be used as a working medium for cooling
apparatuses at temperatures as low as around 0.0005K. This is the working medium
used for the lowest possible temperatures achieved through traditional thermodynamic
processes without the need for exotic means like laser cooling

In recent years, other than its applications in cryogenics Helium-3 has found extensive
applications as a fuel in nuclear fusion [53]. The reliance of all ultra low temperature
cryogenic apparatuses to Helium-3, combined with its high demand as a fusion fuel and
given its very low natural percentage means that it is an exceedingly rare element and its
price has seen an extensive rise in recent years.

5.1 Equation of State for Liquid Helium-3
As with Helium-4 working with Helium-3 means that first of all a working equation of
state needs to be established. In this case the available data for the thermodynamic
behavior of Helium-3 are much more scarce than the ones for Helium-4.

The equation of state used at this part of the study is based on the works of Huang
and Arp [54, 55]. For the full process behind the derivation and implantation of the
mathematics of this model one is advised to read directly the references provided.

The based equation for the Helmholtz free energy is given by Huang and Arp as:

A

RTc
(δ, τ) = C1ln(δ)

+ (C2δ
−4t−1 + C3δ

−1t−2 + C4δ
−2t−3 + C5δ

−2t−4)

+
[
(C6ln(δ) +

13∑
i=7

Ciδ
i−6) + (

19∑
i=14

Ciδ
i−14)τ(ln(τ)− 1)

+ (C20τ
3 + C21τ

5 + C22τ
8 + C23τ

9)

+ δ−2(C24τ
2 + C25τ

4 + C26τ
6 + C27τ

8 + C28τ
9)
]
(e−δ2 − 1)

+ C29δ
2τ 4e−(δ2+τ2)

(5.1)

where τ = T
Tc

and δ = ρ
ρc

. The C values are given in the table 5.1 below.
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i C i C i C
1 -3.570E-01 11 8.840E-01 21 4.380E-01
2 -3.300E-03 12 -1.010E-01 22 -8.480E-01
3 9.971E-06 13 5.471E-03 23 5.790E-01
4 1.719E-06 14 -7.625E+00 24 1.579E+00
5 -2.651E-08 15 1.641E+01 25 1.095E+00
6 1.414E+01 16 -1.369E+01 26 -3.815E+00
7 8.332E+00 17 5.708E+00 27 6.720E+00
8 -2.133E+01 18 -1.187E+00 28 -4.020E+00
9 1.333E+01 19 9.800E-02 29 3.800E-02
10 -4.492E+00 20 -1.000E-01

Table 5.1: coefficients for eq. 5.1

Based on this equation one can calculating the rest of the thermodynamic properties
as following:

The atomic mass of Helium-3 is:

M = 3.016
g

mol

The critical temperature is:

Tc = 3.3157K

The critical density is:

ρc = 41.191
kg

m3

And the specific universal gas constant:

RM =
R

M

Thus, by using the Maxwell relations the rest of the thermodynamic values can be calcu-
lated as:

Helmholtz free energy:

A(ρ, T ) =
A

RTc
(
T

Tc
,
ρ

ρc
)RTc (5.2)

Pressure:

P (ρ, T ) =
ρ2

1.01325 ∗ 102
(
d

dρ
A(ρ, T )) (5.3)
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Internal Energy:

U(ρ, T ) = A(ρ, T )− T (
d

dT
A(ρ, T )) (5.4)

Enthalpy:

H(ρ, T ) = U(ρ, T ) + ρ(
d

dT
A(ρ, T )) (5.5)

Entropy:

S(ρ, T ) = −(
d

dT
A(ρ, T )) (5.6)

Gibbs free energy:

G(ρ, T ) = H(ρ, T )− T S(ρ, T ) (5.7)

Isochoric specific heat:

Cv(ρ, T ) = −T ( d
2

dT 2
A(ρ, T )) (5.8)

Isobaric specific heat:

Cp(ρ, T ) = Cv(ρ, T ) +
T

ρ2
( d
dT
P (ρ, T )2

d
dρ
P (ρ, T )

(5.9)

Gamma constant:

γ(ρ, T ) =
Cp(ρ, T )

Cv(ρ, T )
(5.10)

Speed of sound:

W (ρ, T ) = [(2ρ
d

dρ
A(ρ, T ) + ρ2

d2

dρ2
A(ρ, T )γ(ρ, T )] (5.11)

Compressibility factor:

z(ρ, T ) =
P (ρ, T )

ρ R T
(5.12)

To further validate the results of these equations their outcomes are checked against
the existing data of [56, 57, 58, 59].
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Figure 5.1: Cp values based on equation 5.9

Figure 5.2: Cv values based on equation 5.8
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Figure 5.3: Entropy values based on equation 5.6

Figure 5.4: Enthalpy values based on equation 5.5
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a)

b)

Figure 5.5: Cv comparison to figure from Huang’s work. Subfigure (b) is
taken form Huang’s work [54] for comparison reasons

In addition to the specific heat under constant volume the isobaric compressibility
factor is calculated and checked as:

ap(ρ, T ) =

d
dρ

d
dT
A((ρ, T )

2
(
d

dρ
A(ρ, T )) + ρ

d2

dρ2
A(ρ, T ) (5.13)

This equation is provided by [54] but when checked for its results directly it is seen that
while it is theoretically correct the resulting values differ significantly from the expected
ones. As such the isobaric compressibility is calculated in a different manner as:
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ap(T, P ) =
1

v(T, P )

d

dT
v(T, P ) (5.14)

Based on the equation 5.14 it can be seen that the behavior of the results is the
expected one from the graph below:

a)

b)

Figure 5.6: Isobaric compressibility comparison to figure from Huang’s
work. Subfigure (b) is taken form Huang’s work [54] for comparison reasons
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5.2 Entropic Transition in Helium-3
In the previous chapter for Helium-4 a novel model was proposed for the description of
its superfluidity based on the transition of the ideal part of the partition function and
the entropy. This approach provided great results for Helium-4 and one can suppose that
it provides an overall view for superfluidity if it can be seen to be applied with similar
success to other superfluids as well. The only other known superfluid for which data exists
is Helium-3. As such this split of the partition function approach will be implemented to
Helium-3.

5.3 Basic Mathematics of BCS theory
For one to understand the nature of Bose-Einstein condensation in fermionic gases one
needs to understand the BCS theory of Cooper pairs. A simplified model of the basic
concepts of this theory is provided below, as for the reader to be able to mathematically
understand and reconstruct the model for Helium that will be shown in the next section.

The BCS theory is based on the quantum mechanics problem of a Cooper pair. A
Cooper pair can be any pair of fermionic particles. In the general literature Cooper pairs
are mainly referred to pairs of electrons, but one can implement the same approach for
any fermion, like a Helium-3 atoms. As such in this section the problem will be solved
generally for a pair of generic fermions.

Consider two fermions in a potential well with its Schrodinger equation being:

[−
h̄2∇2

x1

2m
−

h̄2∇2
x2

2m+ V (|x1 − x2|)
]Ψ(x1, x2) = EΨ(x1, x2) (5.15)

where Ψ is the wavefunction, x the positions of the two fermions and E the energy. To
make the solution of the system easier, the equation is changed to the system of center
mass, where it can be written as:

[− h̄
2∇2

R

2mtot

− h̄2∇2
r

2mreduced

+ V (r)]Ψ(R, r) = EΨ(R, r) (5.16)

with R = 0.5(x1+x2), r = |x1−x2|, mtot = 2m and mreduced =
m
2
, with m being the mass

of the fermion. Easily it can be seen that the solution of the equation above will be of
the form:

Ψ(R, r) = ψ(r)eiKR (5.17)

So by applying to the Schrodinger equation one can find the eigenvalues as:

[− h̄2∇2
r

2mreduced

+ V (r)]ψ(r) = (E − h̄2K2

2mtot

)ψ(r) (5.18)

By applying the Fourier transform one gets a new modified wave-function as:

∆ = (E − 2ϵ)ψ (5.19)

Based on the solutions of the equation above on can find the density of states per spin
given the eigenvalues of the system as:
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ρ(ϵ) =
m

3
2

√
2h̄3π2

√
ϵ (5.20)

and by as such the wavefunction can be written as:

∆ =
V0∆m

3
2

√
2h̄3π2

∫ ω

0

√
ϵ

2ϵ− E
(5.21)

By setting the E = 0− one can get the bound state of an attractive potential and get
the minimum value for the potential as:

V0 =

√
2h̄3π2

m
3
2
√
ω

(5.22)

By applying the above to a many fermion system one introduces the concept of the
fermi density as:

1 = V0ρF

∫ h̄ω

0

dϵ√
ϵ2 +∆2

0

(5.23)

following this one can calculate the critical transition temperature as:

Tc =
2eγE

π

h̄ω

k
e
− 1

V0ρF (5.24)

where γ is Euler’s constant.
Now having these values one can calculate the R2 universal ratio for superconductors

as:

R2 =
∆C

γTc
=

12

7ζ(3)
≈ 1.43 (5.25)

5.4 BCS Theory on Helium-3
The second natural and stable isotope of Helium is Helium-3. Helium-3 has also been
known to form a superfluid but its behavior has been experimentally seen to be differ-
ent from Helium-4 especially considering the temperature of the Lambda transition to
superfluidity. The reason for this different behavior of Helium-3 is that it is fermionic in
contrast to the bosonic Helium-4 due to having one less neutron in its core. This means
that the Bose-Einstein statistics cannot be used for the description of Helium-3. Despite
this, Helium-3 does exhibit superfluidity. This again has been explained microscopically
with the quasiparticle approach in Helium-3, but even less information exists about the
correlation of Bose-Einstein condensation in Helium-3 compared to Helium-4. An at-
tempt to showcase the relation between Bose-Einstein condensation and the superfluidity
in Helium-3 will be attempted by combining the previous approach for Helium-4, referring
to the split of the partition function and the entropy to an ideal and a non-ideal part,
with the BCS theory of cooper pairs in the electrons of superconductors [9].

Again, in Helium-3 interactions exist between the particles and as such one cannot
readily apply the cooper pairing solution to achieve Bose-Einstein condensation in the
system, as such condensation cannot occur under these circumstances. But by splitting
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again the partition function and the entropy using the same method as in the Eq. 4.22,4.17
one can derive a term for the ideal part of Helium-3 that has no interatomic interactions.

This term still cannot be considered an ideal Bose gas as its particles being fermions
obey the Fermi-Dirac statistics. This will be addressed by applying the BCS theory
of Cooper pairs, where a pair of fermions entangle and behave similarly to a boson.
Therefore, the cooper pairs, being bosonic in their behavior and having no interactions
between them form an ideal Bose gas. Thus, a temperature is found where this ideal Bose
gas condenses into a BEC [60]. Without getting into very much detail about the different
types of Cooper pairs [61] the simplest case of weak coupling will be assumed, with the
mass of the pair being the 2m3He as shown to be the case with a deviation of less than
0.1% by [52].

Thus, following the method described for Helium-4, one can again derive and use the
equations for the entropy and the partition function from the canonical or gran canonical
ensemble with the differentiation of using the mass of a cooper pair of Helium-3 atoms
instead of the mass of Helium-4. Also, now the number density ought to be established
as it can no longer be directly derived from the density of Helium-3 but to calculate it
one needs to take into account the density of the cooper pairs in the gas. The exact
density of the cooper pairs in Helium-3 is difficult to be evaluated precisely, without a
very extensive microscopical model (something that is deemed outside of the scope of this
research) especially given the lack of published experimental data on the matter. However,
a very good estimate of this density can be gained by studying the work of Matsuo in
[62] for the density of cooper pairs of neutrons, where by assuming an energy 3 times
higher than a neutron for a specific temperature, due to the atomic mass of Helium-3
being approximately 3 times the mass of a neutron, one can derive that the density of the
cooper pairs in Helium-3 can be in the order of magnitude of ρ/ρ3He ≈ 10−4 compared to
the normal density.

By applying the statistical model of chapter 4 and the data of chapter 5 one can
derive, similarly to Helium-4, the temperature values for the transition of the ideal part
to a theoretical state of Bose-Einstein condensate as:

Tc =
2πh̄2

m̂k
(

N̂

V ζ(3
2
)
)
2
3 , (5.26)

where N̂ is the number of cooper pairs in the gas, with the N̂/V term calculated from the
spacial density of the cooper pairs from [62] with a used value of ρ/ρ0 ≈ 10−4 (ρ being the
spacial density for the cooper pairs in the ideal part of Helium-3 and ρ0 the normal density
of Helium-3) and m̂ = 2m3He according to [52]. The density ρ for Helium-3 is taken from
[54]. Despite [54] not offering data for temperatures near and below the lambda point
as far as the density is concerned, one can safely say that at these temperatures the
density has very little to no dependence on the temperature and is mainly defined from
the pressure, something that can be seen if one observes the behavior of the temperature
of Helium-4 from [14] from above the lambda point to near zero, where the density in
the P-T diagram is seen to be represented by lines parallel to the temperature axis. So,
the calculation has be done for a value of ρ = 0.081g/cm3. Thus, the result one gets
from this calculation from Eq. 5.26 is a temperature of Tc ≈ 0.0023K. This comes to
match the order of magnitude of the Tλ ≈ 0.0025K depending on the pressure [61].
Due to the limited available data for the thermodynamic values or a full equation of
state for Helium-3 near and below the lambda point, one cannot present the graphs of
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the entropies of the ideal and non-ideal parts as done in Helium-4. For the validation
of the fact that in Helium-3 the lambda point co-exists with the point of Bose-Einstein
condensation of its ideal part what can only be done so far is to rely on the calculation
of the two temperatures.

In the field of superconductors the BCS theory predicts 3 universal ratios [63] that have
been theoretically described and have been also experimentally verified for the different
superconductors. Thus, for the theory that the ideal part of Helium-3 forms a theoretical
Bose-Einstein condensate through the cooper pairs to hold merit, then the universal ratios
of BCS should also apply in this case. The ratio R2 from [63] is being examined with its
definition being:

R2 =
∆C

γTc
=

12

7ζ(3)
≈ 1.43, (5.27)

where ∆ is the energy gap, defined in [61] as ∆ = kTc(1− T
Tc
)
1
2 , k the Boltzmann constant.

The term γ a separate function defined as γ = 2π2k2ρF
3

with ρF being the density of states

per spin ρF = m
3
2√

2h̄3π2

√
EF in terms of the Fermi energy EF = h̄2

2m
(3π2N

V
), and for this

application we have N = N̂ and m = m̂ = 2m3He. C is the specific heat whose value is
given by [64].

Overall, by performing the calculations mentioned above we get a value of R2 = 1.382.
This value is not exactly the 1.43 expected for the R2 universal ratio but it is within a
margin of error that it is considered by the author acceptable given the small assumptions
that had to be made during the calculations due to the lack of data for different values.
Thus, it can be seen that when the BCS theory is applied to the ideal part of the Helium-3
isotope then, as with Helium-4, one can see the start of the formation of a Bose-Einstein
condensate within the theoretical ideal part to co-exist and almost directly match the
lambda transition (the transition from fluid to superfluid) of the real gas. Additionally, in
Helium-3 it is seen that the BCS theory holds true for the ideal part of it as the universal
constant that the BCS theory predicts is actually confirmed within a very small margin
of error, meaning that the formation of cooper pairs and the formation of a BEC in this
part of the gas holds true. The work of this chapter concerning the application of the
etnropic transition to Helium-3 has been published by the author in [65].

5.5 Helium-3 Chapter conclusions
In this chapter a full model for Helium-3 has been presented. Firstly, the difference
between the Helium-3 and Helium-4 isotopes is explained based on their spin difference.
Continuing on the work of Huang [54] an equation of state for Helium-3 is being presented.
The procedure initiates from the equation of Arp and Huang for the Helmholtz free energy
and then the Maxwell relations and thermodynamic definitions are applied to this equation
to create a full set of equations and data describing all the thermodynamic values for
Helium-3.

The next step of the study of Helium-3 has been to apply to it the approach developed
in the Entropic lambda transition chapter 4. The reasoning behind this is firstly to try
and validate the theory by applying it to a second superfluid other than Helium-4 and
secondly to define a theoretical model able to describe the behaviors of Helium-3 and
superfluid Helium-3 at extremely low temperatures.
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The model had to be significantly differentiated from its first application in Helium-4
due to the fermionic behavior of the isotope. To overcome this, knowledge from the field
of superconductivity was used, where the BCS theory was implemented to showcase how
the Helium-3 atoms could form Cooper pairs and behave like bosons. As such one is able
to apply the entropic split to an ideal and a non-ideal part to Helium-3 and showcase that
the ideal part, through the BCS theory of Cooper pairs, would Bose-Einstein condense
very close to the lambda temperature of Helium-3 further validating the model, as it
exhibits the same behavior as in Helium-4 despite the fermionic nature and the need for
the application of the BCS theory.

In addition to predicting the lambda transition of Helium-3, this model has also been
able to correctly predict the universal R2 ratio of superconductivity, showcasing the correct
application of the BCS theory to the system. The only drawback of this application is that
due to the very limited data of the thermodynamic values for Helium-3 one is not able to
define the values for the interacting part of the entropy and the partition functions and as
such the full theoretical model for the thermodynamic values going below 0.0001K, where
the experimental data ends, is not possible. Despite this fact, the rest of the results have
shown that this theory is viable in this system, and if in future these needed data arise,
then this model would be able to predict the very low temperature behavior approaching
absolute zero as done in Helium-4.

Chapter 5 - Nomenclature
A Helmholtz free energy
R Gas constant
Tc Critical temperature
M Molar mass
ρc Critical density
αp Isobaric compressibility
m Atomic mass
x Position
h Plank’s constant
Ψ Wavefunction
r,R Distance
∆ Fourier transformed wavefunction
ϵ,E Energy
ω Natural frequency
R2 Universal ratio of superconductivity
ζ Riemann’s zeta function
ρF Fermi Density
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Chapter 6

Helium 3-4 Mixture

The two stable isotopes of Helium are Helium-3 and Helium-4. Their physical and chem-
ical properties are usually similar and in most application one equation of state is used
for both isotopes. As it was discussed though in previous chapters at lower temperatures
their behaviors significantly differ. The different behavior of the bosonic Helium-4 to the
fermionic Helium-3 lead to some interesting overall behaviors when the two are combined.
First of all, one needs to understand that the instances where one finds themselves work-
ing with a pure isotopic gas are rare and in most cases a mixture of the two isotopes
is used. This is usually mitigated by the fact that the natural percentage of Helium-4
is around 99.9996% meaning that if one works with natural Helium, they need not care
much about the Helium-3 percentage. In applications, though, where temperatures be-
low 0.5K are required the use of Helium-3 is mandatory. Pure Helium-3 is exceedingly
expensive and difficult to obtain and contain in its pure form due to its reliance to high
vacuum apparatuses in order not to lose even small parts of this expensive substance.
In reality the working medium that is used in most ultra low temperature refrigeration
cycles is a Helium-3 Helium-4 mixture enriched in Helium-3. As it will be discussed in
later chapters concerning those thermodynamic cycles the enrichment of the mixture can
as low in values as 1-2% to much higher in the order of 30-40%.

Helium-4 undergoes the lambda transition at around 2.1 K while Helium-3 becomes
a superfluid at around 0.001K. This means that when a mixture of the two exists in low
temperatures, the two isotopes might be in different phases, which is really important
to understand and describe for the study and use of the mixture. Due to this fact most
models that exist in the literature, similarly to the models for the pure isotopes, limit
themselves to specific regions staying clear of any phase transitions. This is a fact that is
even more problematic for Helium 3-4 mixture at it is primarily used for cooling devices
that work in different phases during their cycles. The usual approach to this, as it will be
discussed further in the SSR chapter, is to consider Helium-4 completely inert and only
work based on Helium-3. The approach is deemed problematic as it negates the ability
to take into account the thermodynamic interactions of the superfluid Helium-4 due to
the phonon-roton interactions at temperature above 0.8 K. For this reason, this study
partially aims to develop a full EOS for the Helium 3-4 mixture that is continuous through
the different phases and can be used to reproduce with high accuracy the experimental
data and be of a form usable enough to be able to be inserted in CFD environments for
simulations with the full mixture as the working medium.
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6.1 Helium 3-4 Mixture phases
.

The different temperatures for the lambda transitions of the two isotopes lead into
different phases of the mixture that give it very different properties depending on the
phase it is in.

The regions are defined by the lambda line (λ) and the two sigma lines (σ+ , σ−).These
regions based on the phase transitions of the system are the following:

• Helium-3: Normal Fluid, Helium-4: Normal fluid. The area defined above the λ and
σ+ lines, where both isotopes behave as normal fluids. This region is the easiest
to understand and model as both of the two isotopes are above their lambda lines
and behave like normal fluids. In this region the properties of both isotopes are not
affected by their spin since they are above their lambda lines and therefore obey the
Maxwell-Boltzmann statistics and thus the equation of state for this region is the
most straightforward to derive.

• Helium-3: Normal Fluid, Helium-4: Superfluid. Above the σ− and below the λ line
exists the area where 3He is a normal fluid and 4He is a superfluid. This region exists
below the lambda line of Helium-4 (2.1K) and above the lambda line of Helium-3
(0.001K). This is the most commonly used region for cryocoolers that work with the
mixture as they capitalize on the fact that despite being at very low temperatures a
part of the system is not in a superfluid phase and as such the mixture is much less
thermodynamically inert than what pure Helium-4 would be at these temperatures.

• Helium-3: Superfluid, Helium-4: Superfluid. This is the area below the λ line
of Helium-3, which by default means that the temperatures are below the λ line
of Helium-4 as well. In this region both isotopes are superfluids. This region,
though, is not generally of use. The temperatures are too low and the Helium-4
becomes only a problem on the system as it has absolutely no thermodynamic value.
Thus, at temperatures of this magnitude (applications for which are very limited)
pure Helium-3 is used and that only for cooling near the lambda line. In reality
cryocoolers that want to achieve temperatures a lot lower than 0.001 K, forfeit the
use of Helium altogether and opt for exotic types of cooling like laser trapping. For
these reasons in most works in the literature this region is not mentioned at all.

• Forbidden region. This is the region below the σ+ and σ− lines. While this is an area
where one ought to technically expect the Helium 3-4 mixture to be able to exist,
experiments have shown that the mixture actually cannot exist in this region and it
gets separated into two parts with different consistencies in the end of the σ lines.
This region is of great interest from an engineering point of view and its applications
will be discussed more in following chapters especially considering superleaks and
dilution cooling, due to the separation that it mandates on the system, which can
be used effectively for types of cooling. This existence of the forbidden region is
based on the conservation of the 3rd law of thermodynamics. The physics behind
the formation of this forbidden region are of great interest but are not within the
scope of this work to explore further, as they are deemed not to be able to provide
engineering benefits since the outcomes of the phenomena are very well understood
and extensively described.
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Figure 6.1: Region map of Helium 3-4 Mixture

The regions can be observed in the figure below:

6.2 Mixture Equation of State

6.2.1 Thermodynamic Data He3-4

The aim of this part of this work is to create a full equation of state of the mixture to
be able to properly utilize it as a working media as one would for a normally behaving
mixture like in [66]. This equation of state must achieve great accuracy on the existing
experimental data covering all the regions of the cryogenic Helium 3-4 mixtures. To
achieve that the first order of work would be to collect and unify all the reliable existing
experimental and overall produced data on cryogenic Helium mixtures for all the regions.

Before setting off to use directly the data for the mixture, the data for the pure
substances are to be used, as they will be needed greatly not only in the limit areas but
also the mixture itself, as it will be shown through the equations later. The data for the
Helium-4 are based on the equation of state provided in chapter 3 and published in the
paper [37]. The data for Helium-3 are based on the equations developed on chapter 5 and
on the data of Huang [54, 55].

Concerning the He3-4 mixture one of the earlier publications containing the thermody-
namic data and the phase separation diagram are [67] with [68] describing the tri-critical
point and [69] for the phase separation lines. For more dilute mixtures the data of [70]
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are referenced and for higher pressures the study of [71] is used. Some of the aforemen-
tioned studies do include equations of state for one or more regions, especially the work
of Chaurdy, but the extensively theoretical calculations used make these equations not
ideal for engineering studies.

In addition to the thermodynamic data to adequately describe the Helium 3-4 mixture
some other properties need to be mentioned as well, the most important of which is the
osmotic pressure. The osmotic pressure is of great significance in all the apparatuses that
make use of the Helium 3-4 mixtures and especially the ones that using superleaks, where
the derivation of the osmotic pressure is mandatory as it will be shown in later chapters.
The data from the osmotic pressure are based on the works of Arp and Salmela at [29]
and [72].

The data gathered from all the sources mentioned are transformed and correlated in
order to be in the same units and then checked for self-consistency with one-another.
Based on this data a full set of equations is developed governing the Helium 3-4 mixture
from 0.1 K to the Lambda line of Helium-4.

6.2.2 Zero Pressure equations

Before initiating the fitting of the data to the numeric code the thermodynamic values for
the zero pressure are to be defined. The calculation of these data is based on the work of
Chaudry [71]. A significant differentiation of this work to the work of Chaudry is that in
order to achieve much better accuracy the EOS of state of the current work of chapters 3
and 5 are used, gaining significantly better results.

Firstly, the equations for the phase transitions are defined as:

xd(T ) = xt − 0.209148
T − Tt

T − Tt − 0.080280
+ 0.960222(T − Tt) + 0.549920(T − Tt)

2 (6.1)

xc(T ) = xt − 0.746805(T − Tt)− 0.180743(T − Tt)
2 + 0.316170(T − Tt)

3 (6.2)

Tλ(x) = Tt − 2.320259(x− xt)− 1.023726(x− xt)
2 (6.3)

with Tt = 0.867K and xt = 0.674.
For given the equation of state for both the pure substances, one can use the following

equation for the mixing term of the He3-4 mixture based on the work of Kuerten as:

Vr(x, T, P ) =
3∑

i=0

3∑
j=0

[xiT j(+V r11(i,j)P
1 + V r12(i,j)P

2 + V r2i,j
1

P + pvr
] (6.4)

with Vr1 and Vr2 being:

V r10 =


0.139 −4.933 −4.474 −17.764
−2.568 40.218 21.103 −17.586
0.511 −83.296 42.536 −2.742
3.985 16.617 32.248 −21.867


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V r11 =


−0.071 2.043 1.971 1.212
0.898 −13.571 1.238 0.334
−0.199 18.304 −9.101 7.526
−1.372 2.396 −18.727 7.804


V r11 =


0.01 −0.164 −0.277 0.078
−0.06 0.973 0.289 −0.364
−0.026 −0.924 −0.644 0.538
0.136 −0.543 2.287 −1.345


V r2 =


−1.165 −8.229 −5.791 62.108
−4.505 24.649 −104.817 8.141
10.159 31.641 29.678 4.32
−11.354 4.229 −81.74 32.624


So the overall molar volume for the mixture is calculated as:

v(x, T, P ) = x v3(T, P ) + (1− x)v4(T, P ) + x(1− x)Vr(x, T, P ) (6.5)

where v3(T, P ) is given by the inverse of eq.5.3 and v4(T, P ) is given by eq.3.18. In both
cases the relevant unit transformations need to be done as for the results to be given in
molar volumes respectively by using the molar masses of Helium-3 and Helium-4.

6.2.3 Numeric Equations for He3-4 Mix EOS

To derive the equations for different thermodynamic variables code for fitting high de-
gree polynomials in terms of the consistency, the temperature and the pressure is devel-
oped.The consistency and temperature and obligatory to be used in the equations, and as
for the third variable the pressure was chosen instead of the specific volume or density as
given the difference in the atomic weight of the two isotopes only molar variables could
be given which would in turn would also have to rely on the consistency, leading to just
using the pressure as a better overall solution.

The equations used are given in the Appendix C. The results of the numeric equations
for the Helium 3-4 mixture are presented below.

The entropy is calculated as:
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Figure 6.2: Entropy values for numerical mix equation at pressures of 1
and 10 atm.

Figure 6.3: Entropy equation deviation from the used values.
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The enthalpy is calculated as:

Figure 6.4: Enthalpy values for numerical mix equation at pressures of 1
and 10 atm.

Figure 6.5: Enthalpy equation deviation from the used values.
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The molar volume is calculated as:

Figure 6.6: Molar volume values for numerical mix equation at pressures
of 1 and 10 atm.

Figure 6.7: Molar volume equation deviation from the used values.
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The accuracy of the equations provided is high and they can be suggested for use even
in applications where very high levels of accuracy are needed.

6.2.4 Osmotic Pressure

The phenomenon of osmotic pressure is usually associated with mixtures that contain
different substances. Isotopic mixtures usually present behaviors that resemble pure sub-
stances due to the similar behavior of their isotopes. The osmotic pressure describes the
difference in pressure that occurs when a fluid is forced through a membrane where one
of its substances is able to flow through but the others are not. The need of the system
to retain an overall thermodynamic balance leads to this pressure difference based on the
consistencies of the mixtures at the two sides. Usually, two isotopes of the same substance
should always either pass or be blocked by the same membrane. Typically, at higher tem-
peratures this also applies to Helium. But at low temperatures when the lambda point
is reached then one of the isotopes of Helium (He4) becomes a superfluid. This transfor-
mation to superfluid means that Helium-4 will have no viscosity, meaning that it will be
able to pass through porous media that would otherwise block its pass. The temperature
difference of the two lambda lines leads to the Helium-3 part of the mixture still being a
normal fluid. As such this part of the mixture would be unable to pass through the same
porous medium that the superfluid Helium-4 passes through. As such when a Helium
mixture at these temperatures is forced through such a medium and only Helium-4 passes
through it means that a consistency difference between the two sides of the membrane
will be formed and as such osmotic pressure occurs in the mixture. This phenomenon
is very important in describing the thermodynamic and fluid mechanics behavior of low
temperature Helium as many cryogenic apparatuses utilize the concepts of superleaks,
which are exactly porous media allowing the superfluid part to pass through and blocking
the normal fluid [73].

Based on the values given by Landau in [70] a numerical equation is formed describing
the existing values with high accuracy as it will be displayed in the figure below.

A 3-variable polynomial interpolation of 4th degree is used with its coefficients given
in C.
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Figure 6.8: Osmotic Pressure deviations presented against Helium-3 ratio

Figure 6.9: Osmotic Pressure deviations presented against Temperature
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6.2.5 Volume dependence on consistency

In most engineering applications, especially in simulations done in CFD environments,
finding the consistency of the mixture at each point of the simulation can prove to be
exceedingly difficult if not impossible in some cases. In an apparatus that is simulated in
a CFD environment the variable that is always known to the user is the volume of the
apparatus. In applications where one uses a pure substance, by getting the variables of the
pressure, the volume and the temperature from the CFD model the thermodynamic values
can be calculated. In the case of a mixture, it is impossible to calculate the thermodynamic
values if one does not know the consistency at each point of the simulation. In the cases of
working with cryocoolers with a Helium 3-4 mix, besides the pressure and the temperature,
what is also known is the total volume in the different regions of the machine. By knowing
this total volume and knowing the available masses of Helium-3 in the system, it means
that if one is able to show a low association of the molar volume with the consistency, then
given the existing volumes of the apparatus and the Helium-3 mass one would be able to
derive the consistency only by the volume. As it can be seen from the graph below, indeed
the relation between the consistency and the volume is low. This is found by comparing
the values for the total molar volume of the mixture to the sum of the molar volumes of
the two substances.

Figure 6.10: Showcasing the deviations between calculating the molar
volume through the full equation and calculating it as the sum of the molar

volume of the two pure isotopes 3He and 4He

Given these results, in applications concerning Helium mixtures with enrichment up
to 25% it is observed that the mixing part of the equation is often neglected and the
consistency variable is found directly from the sum of the pure molar volumes of the
isotopes. This method based on the presented results ought to provide minimal errors
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compared to using the full molar volume equation. A similar method to this is used in
the paper of the author [42] where the results were shown to be consistent with the full
theoretical model presented in [43].

6.3 Helium Mixture Thermodynamic Maps
For any set of Equations of state for a substance it is important and useful for the ther-
modynamic maps to be presented. This is something easily done in the cases of pure
substances as there are only two independent variables on the systems. In a case of a
mixture the number of independent variables is three. In the first case two independent
variables lead to a 3D graph which can be properly defined in 2D as a contour plot. In the
case of the mixtures with the 3 independent variables the occurring graph would be in 4D.
Such a graph is difficult to be displayed in 2 dimensions. In this work the 4 dimensional
thermodynamic maps of the Helium 3-4 mixture are to be presented in different ways.

Firstly, a sequence of contour plots of T and x axes for different pressures at each
graph are presented. These kinds of displays can be beneficial for displaying parts of
thermodynamic cycles.

This way of representing the 4D graph gives a good understanding about the numerical
values but it lacks the ability to contain full thermodynamic cycles and showcase the
dependency of all the energy derived variables to the pressure. For these reasons the
maps are also presented in a different way.

A 4D diagram can also be represented as a 3D contour plot, meaning a surface with
the coloring representing the 4th dimension. By doing this, one is able to showcase
the dependence of all the thermodynamic variables on the temperature, pressure and
consistency independent values. The 3D contour plot containing the enthalpy and the
entropy is presented below:
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Figure 6.11: He3-4 mixture contour for P=1 bar
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Figure 6.12: He3-4 mixture contour for P=5 bar
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Figure 6.13: He3-4 mixture 3D contour map

In the previous graph one can see the different contour lines and their values through
color of the enthalpy and entropy for some pressures. In addition, the lambda lines are
also present on the graph for helping one understand how the enthalpy and entropy are
affected through the transitions of the lambda lines.

Just by observing the values of the graphs compared to the values of the graphs of
pure Helium-4 one can see that below the lambda line in the mixture the enthalpy and
the entropy do not asymptotically go to zero, as they did in pure Helium-4, but their
values remain significantly higher. This is to be expected because of the existence of
Helium-3. As mentioned before Helium-3 does not become a superfluid until much lower
in the temperature range and as such it creates a much higher thermodynamic activity
potential compared to the nearly inert Helium-4 superfluid and the overall values remain
significantly higher than Helium-4.

For one to understand even further the thermodynamic behavior of the mixture more
3D contour plots are presented below showcasing the behavior of the basic thermody-
namic values with much higher sampling density for the pressure the consistency and the
temperature.
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6.3.1 Entropy Contours
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Figure 6.14: He3-4 mixture 3D map with contours of Entropy

Through the entropy diagrams it is seen that the entropy is heavily based on the tem-
perature and much less on the pressure. This is consistent with the behavior of the pure
substances and it is based on the fact that the entropies remain in the same range for all
the different pressures. In addition to this it is seen that the entropy also has value that
are a lot higher when it is close to the lambda line.



114 Chapter 6. Helium 3-4 Mixture

For a more detailed view of the entropy a series of 2D contours for different temper-
atures and pressures are presented where the isentropic lines are shown as for one to be
able to get directly the values for the graph.

Firstly, the contours under constant pressure where the phase transition lines are
presented:

Figure 6.15: He3-4 mixture 2D contour of Entropy for P=2 bar

Figure 6.16: He3-4 mixture 2D contour of Entropy for P=10 bar
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Also, the contours under constant temperatures are presented.

Figure 6.17: He3-4 mixture 2D contour of Entropy for T=0.5K

Figure 6.18: He3-4 mixture 2D contour of Entropy for T=1K
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Figure 6.19: He3-4 mixture 2D contour of Entropy for T=1.5K

6.3.2 Enthalpy Contours

Enthalpy 3D contours
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Figure 6.20: He3-4 mixture 3D map with contours of Enthalpy

In contrast to the entropy, the enthalpy is seen to be much more correlated to the
pressure than it is to the temperature. The correlation to the temperature this time is less
severe. When compared to the entropy it is seen that in both cases the difference in values
on both the entropy and the enthalpy through the temperature range is similar in terms of
percentage but while the entropy remains mostly consistent when the pressure changes,
the enthalpy changes significantly with the pressure changes. This can be seen even
more clearly through the detailed 2D contours for different temperatures and pressures
presented below. (At the end of the book the full tables with the calculated data for
Helium 3-4 mixture are presented.)

Firstly, the contours under constant pressure where the phase transition lines are
presented:
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Figure 6.21: He3-4 mixture 2D contour of Enthalpy for P=2 bar

Figure 6.22: He3-4 mixture 2D contour of Enthalpy for P=10 bar



120 Chapter 6. Helium 3-4 Mixture

Also, the contours under constant temperatures are presented.

Figure 6.23: He3-4 mixture 2D contour of Enthalpy for T=0.5K

Figure 6.24: He3-4 mixture 2D contour of Enthalpy for T=1K



6.3. Helium Mixture Thermodynamic Maps 121

Figure 6.25: He3-4 mixture 2D contour of Enthalpy for T=1.5K

6.3.3 Molar volume contours

Molar volume 3D contour plots
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Figure 6.26: He3-4 mixture 3D map with contours of Molar volume

When studying the diagrams for the molar volumes it is seen that the values are
strongly correlated to all three variables being highly dependent in the consistency, the
temperature and the pressure.

Firstly, the contours under constant pressure where the phase transition lines are
presented:

Figure 6.27: He3-4 mixture 2D contour of Molar Volume for P=2 bar
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Figure 6.28: He3-4 mixture 2D contour of Molar Volume for P=10 bar

Also the contours under constant temperatures are presented.

Figure 6.29: He3-4 mixture 2D contour of Molar Volume for T=0.5K
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Figure 6.30: He3-4 mixture 2D contour of Molar Volume for T=1K

Figure 6.31: He3-4 mixture 2D contour of Molar Volume for T=1.5K

6.3.4 Chemical Potential

In addition to the energy variable and the volume another variable that is considered to be
very useful in applications of Helium 3-4 mixtures is the chemical potential. In applications
like the dilution coolers for instance where one has to solve the control volumes after
the mixing chamber under a steady chemical potential [74, 75]. Thus, one need accurate
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equations for the chemical potential as well. In a similar manner as the previous equations
the equation for the chemical potential is created (its coefficients are given in Appendix
C. Based on the provided equation the 4D maps seen as 3D contours are presented below.
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Figure 6.32: He3-4 mixture 3D map with contours of chemical potential
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6.3.5 Full Helium 3-4 Mix Maps

Combining the equations from all the above one can create the full maps for the Helium
3-4 mixture as:

Figure 6.33: He3-4 mixture full contour map for P=2 bar. Green lines:
Molar volume (cm3/mol), Yellow lines: Enthalpy (J/mol), Blue lines: En-

tropy (J/molK), Black lines: Phase transitions

Figure 6.34: He3-4 mixture full contour map for P=10 bar. Green lines:
Molar volume (cm3/mol), Yellow lines: Enthalpy (J/mol), Blue lines: En-

tropy (J/molK), Black lines: Phase transitions
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6.4 Conclusions on Helium 3-4 Mixture chapter
In this chapter the behavior of the Helium 3-4 mixture is explained and described. First
of all, its different regions are described showcasing the different phases that occur due to
the different lambda transition temperatures of the two Helium isotopes.

As done in Helium 4, the aim of the study presented in this chapter has been to create
a full, continuous and accurate equation of state describing the thermodynamical values
of the mixture. Firstly, the thermodynamic data were collected from the different sources
and combined to a single data set. Then, using this set of data in accordance with the
equations of state for the two pure isotopes of Helium, a numerical model was created in
order to describe the thermodynamic values of the system.

In addition to the standard thermodynamic values also the osmotic pressure has been
evaluated. The values of the osmotic pressure are of great significance to the applications
of the Helium 3-4 mixtures, as most cryogenic applications using it also make use of
superleaks. These superleaks lead to a different concentration of Helium-3 in the two
occurring mixtures, thus creating the osmotic pressure. As it will be seen in following
chapters this pressure has very significant results in the behavior of cryogenic machinery
working with Helium 3-4 mixture.

Moreover, when determining the values for the volume, some extra calculations were
done to find out the dependence of the volume to the concentration of the mixture. This
was done because in many applications it might be problematic to find the consistency of
the mixture for the different parts of the machines used, but by showcasing this very low
dependence of the volume on the consistency, one can evaluate the consistency inversely by
using the volume of the two pure isotopes aggregated and getting a value nearly identical
to the actual volume of the system.

For the numerical equations of the system a different difficulty arose than when com-
pared to Helium-4. The existence of Helium-3 in the mixture means that even at very low
temperatures the system is not in a total superfluid form and as such its thermodynamic
values like the entropy and the enthalpy are significantly higher than the ones of pure
Helium-4 and no very large changes in the orders of magnitude arise. The problem in
this case is that the equation needs three independent variables instead of two. For this
reason, a new fitting model had to be developed where polynomial equations with a big
number of terms and high order were used. Utilising these equations, a full description
of the Helium 3-4 mixture was achieved providing excellent results to the thermodynamic
values as well as their derivatives needed for the correlations.

Using this equation of state full maps of the Helium 3-4 mixture have also been created
and provided. A Helium 3-4 thermodynamic map would have to be 4 dimensional to
account for the 3 independent variables. To account for that the provided maps are in
two forms, one a sequence of 2D contours for different pressure and a 3D contour with
the coloring showcasing the 4th value of the system.
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Chapter 7

Solid Helium

Helium is the only known substance that remains a liquid even near absolute zero. Despite
that, experiments have shown that at higher temperatures it is possible for Helium to form
a solid. This offers another unique situation as it leads to an absence of a triple point,
meaning that there is no single temperature and pressure point where the gaseous, liquid
and solid phases can coexist [76].

As it can be seen from the thermodynamic map 3.42 of Helium-4, Helium forms
a solid at really low temperatures at pressures of around 24 atm. Helium when solid
forms a crystallic solid with different crystal formations (bcc, ecc, fcc) depending on the
temperatures and pressures.

Since the first discoveries of superfluidity scientists have been theorizing about the
existence of a possible supersolid. For nearly a century there had been no evidence for
such a phase. Since beginning of the 21st century though, there has been a major shift
as some experiments [15, 45] have occurred claiming to have achieved supersolidity. The
cryogenic community has been greatly polarised on these results with many researchers
refusing to accept the existence of supersolidity as a phase in Helium as a result of the 2004
experiment. Many different explanations have been implemented instead of supersolidity
to explain the aforementioned results. Despite this, the scientists who initially authored
the first paper and did the experiment remain strongly in their position stating that it is
evidence of a supersolid phase. Explanations on these models have been given like in [77].

Personally I have also developed my own theory of supersolidity about an explanation
of the given results of the 2004 experiments, and presented it as a technical presentation
at the 27th - International Cryogenics Engineering Conference at Oxford, UK in 2018,
where the reactions were mixed with some of the participants being in favor of the results
and others declining the effort as they viewed the original experiment as false.

Unfortunately, the timing was not favorable as only a little while after this presenta-
tion was done a new experiment occurred and published in Physical Review [16] where
even stronger evidence had been found supporting the existence of supersolidity. In this
experiment a comparison was done between solid Helium-4 and Helium-3 and showcased
that the difference in their behaviors was greater than the calculated one, meaning that
the Helium-4 must have formed a supersolid.

At the present moment the consensus of the scientific community seems to be much
more in favor of the existence of supersolidity in Helium-4. The model created to explain
the supersolid in Helium-4 as a superfluid of the vacancies in the crystal is shown below.
This work takes no part in proving or disproving supersolidity, but only aims to provide
the basis of a viable supersolid theory of Helium-4 provided that a supersolid does actually
form.
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7.1 Supersolid Helium
In this part of the study the is aim to give a simple but adequate description of the
mechanism that leads to the formation of a supersolid. The supersolid is a proposed state
for helium, theorized since the early days of the studies of superfluidity and cryogenics of
Helium. Despite this, supersolidity keeps being an elusive phenomenon that has only very
recently observed in an experiment, with some critics even arguing that the results of the
experiment might be able to be described by other phenomena, the main argument against
this theory being the existence of vacancies at near zero temperatures. This experiment is
the one conducted by Eun-Seong Kim and Moses Chan at Pennsylvania State University
[45]. The proposed theory so far about the explanation of supersolidity attributes this
behavior to the superflow of vacancies within the lattice form by the solid helium. This
unobstructed flow leads to a differentiation of the moment of inertia of the solid helium, as
the vacuums of the lattice move freely within it. This theory has been generally accepted
to be the one to describe the supersolid phenomena, but its studies have not converged
to a single mathematical theory known to explain this behavior. The current research
points to mostly two different ways to approach this issue, either approaching it strictly
macroscopically, or microscopically with extensive codes solving the quantum equations
for all the particles. The presented point of view consists of the same theory, i.e. the
movement of the vacancies to create a superfluid within the lattice, but the solution
of the physical problem operates in a different way. The aim at the beginning of this
research was to develop a way to describe the supersolid behavior through superfluidity,
as the behavior of superfluid helium is already well defined and understood. The first
hindrance faced, was that by following the two-fluid approach for superfluidity, i.e. the
Bose-Einstein Condensate existing within the fluid and explaining its behavior, was that
the vacancies could not be described with a straightforward wavefunction so as to solve the
quantum problem for their Bose-Einstein Condensation. The idea behind this approach
is the following. Each helium atom within the lattice can be readily described with a
wavefunction. Therefore, the vacancies should be areas without a wavefunction. For a
position with a vacancy, I assume that the zero wavefuction is not actually an absence of
a wavefunction, but the overlay of the wavefunction of a particle that ought to have this
spot, had the vacancy not been there, and another opposite wavefunction of a hypothetical
particle, whose total sum is zero. By this train of thought we have those new hypothetical
particles with the opposite wavefunction of the Helium ones in every place where there
is a vacancy within the lattice. So, we have the information about their wavefunctions,
hence being able to find their lambda temperature.

Formation of vacancies in the quantum lattice. The first part of our approach
is to be able to describe the structure of the lattice in a quantum level. For that the
first part is to be able to find the positioning and distance of the atoms relative to one
another’s. To achieve this, we use the known potential for the Helium as a Lenard-Jones
potential, as provided in the work of Aziz et al [78].

So the potential will be of the form:

U(r) = 4ϵ[(
σ

r
)12 − (

σ

r
)6] (7.1)

The above is the potential for one single Helium-4 atom. In this case more than one
atoms partake in the system. In the overall lattice the local minima that will be formed
will most often than not be the positions for the Helium atoms. As such, if one assumes
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Figure 7.1: Lennard Jones Potential for Helium 4

a uniform structure in the solid then the potential that one atom would have to cross
in order to move from one local minimum position to a neighboring one would be the
same for all directions. As such a new potential needs to be formed that will be able
to describe the two local minima locations. This potential will be a modified version of
Aziz’s Helium-4 potential having the following form:

Udouble(r) = +ϵ[(
rm
r
)12 − 2(

rm
r
)6] + ϵ[(

rm
2rm + d− r

)12 − 2(
rm

2rm + d− r
)6] (7.2)

where d is the interatomic distance of the structure, calculated by the density of the solid.

Figure 7.2: Double potential for Helium 4

Now having the potential one can proceed to solve the Schrodinger equation for the
wavefunction of the system.
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d2

dx2
Ψ = (V (x)− E)

2m

h̄
Ψ (7.3)

Now some points on the potential need to be established as to showcase the possible
locations of the particles and as such it is deemed better for the potential to centered
around 0.

Figure 7.3: Centered Double potential for Helium 4

Now solving the Schrodinger equation one gets the following solutions:

Ψ1 = Aei α(x)x +Be−i α(x)x

Ψ2 = Ce− α(x)x

Ψ3 = Dei α(x)x + Ee−i α(x)x

(7.4)

where Ψ1 is the solution between -b and -a, Ψ2 between -a and a and Ψ3 between a and
b, with a=2000 angstrom and b=3400 angstrom.

α is a function defined as:

α =

√
2m

V (x)− E(T )

h̄2

Now to proceed solving the equation one needs to adjust for the continuity of the wave
function based on the following boundary conditions.
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Ψ1(−a) = Ψ2(−a)
d

dx
Ψ(−a) = d

dx
Ψ(−a)

Ψ2(a) = Ψ3(a)

d

dx
Ψ2(a) =

d

dx
Ψ3(a)

Ψ1(−b) = Ψ3(b)

Through solving this system one can get the wavefunctions of the different positions.
The formation of a supersolid is based on the idea that the vacancies in the matrix

move in a certain manner which will be discussed shortly, but first one needs to find the
vacancies in the crystal. The vacancies are expected to be formed in two ways, one through
thermal excitations, and secondly, because this is a quantum system, also the formations
through quantum tunneling need to be addressed, which is why the wavefunctions needed
to have been evaluated. The thing that we now need to evaluate as the first part in our
approach to supersolidity is the number of vacancies formed inside the lattice. For this
part of the research we will assume no imperfections of Helium 3 in the crystallic structure.
So, the way that imperfections form inside the crystal is due to the movement of atoms
inside the potential of the lattice. As said, we assume that only the neighboring particle
have an effect and with all the particles being the same the potential will be repetitive for
each position of the crystal. The atoms inside the crystal can move in two different ways,
first by thermodynamically acquiring enough energy in order to pass over the potential
barrier, or by tunneling through the barrier.

The probability for vacancies to be formed thermally are calculated based on the
temperature as given by [79]:

fthermal(u, T ) = 4π(
M

2πRT
)
3
2u2e

−Mu2

−2RT (7.5)

And the probability of quantum tunneling occurring will be:

ftunnel =

∫ b

a
Ψ3(x, T )Ψ3(x, T )∫ b

a
Ψ1(x, T )Ψ1(x, T )

(7.6)

The particles form a Maxwell-Boltzmann distribution as they themselves do not con-
dense to a condensate state, so even if the Bose-Einstein distribution was used, it would
degenerate to the same results for these energies. So, using the energy of the atoms and
the barrier of the potential we calculate the number of atoms with an energy high enough
to surpass it. Summing the two parts up, the total probability of vacancy formation is
given as:

ξ(T ) = ftunnel(T ) + fthermal(T ) (7.7)

To have some numerical examples, for a temperature of 0.2K we have a percentage of
0.102.

Movement of the vacancies We want to calculate the properties, and especially
the moment of inertia of the quantum crystal when it forms a supersolid. According to
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most theories a supersolid forms as the vacancies of the crystal BE condense and move
freely through the lattice. We first of all want to find the temperature at which the
vacancies BE condense. In order to do so we must act as if the vacancies have a specific
wavefunction. That generally is approached by viewing the wavefunctional behavior of
the whole lattice and doing very intense calculations using difficult mathematical tools
and time-consuming programs, without gaining much insight of the physical aspect of the
problem. We will approach this problem in a different, more straightforward manner. We
will first assume a crystallic matrix with no vacancies. Each particle of the matrix has
each own wavefunction. In order then to create the vacancies we will assume particles
with wave functions opposite to the ones of the Helium particle, hence when they are
in the same space with the Helium atoms of the matrix then basically there will be a
vacuum. These particles will move without any interference with the Helium atoms, but
when they are not in a BE condensate phase they will be impaired by the [78] interatomic
potential. That is supposed to mean that these particles are subjects of the interatomic
forces by the potential, as are the Helium atoms, they have to move for these vacuums to
be formed, but the potential itself is not changing by the appearance of these particles,
nor do they attract or push any of the atoms of the matrix, they merely the make them
nonexistent as long as they are in the same coordinates. So overall, we will have for these
particles a potential well with infinite potential barriers at the end of the crystal, and the
interatomic potential within the crystal, in an overlayed form, basically doing without the
diverging terms. For a random position the wavefunction of the inverse particle would
be the opposite of the Ψ1 + Ψ3 function of the particles above. We make the initial
assumption that as the Ψ3 wavefunction is already 1 order of magnitude smaller than the
Ψ1, in the case of a many particle system like the one pictured in the potential above,
the particles that are further away will have a negligible wavefunction. So, the inverse
particle will have to have the following wavefunction.

Ψvac(x, T ) = −Ψ1(x, T )−Ψ3(x, T ) (7.8)

These particles are obliged to have the opposite properties of the particles of the ma-
trix, being He4 atoms, therefore their spin would have to be also integer, so it can be
safely said that they obey Bose-Einstein statistics. The system will Bose-Einstein Con-
dense when an atom gets off the ground state for the first time so the critical temperature
will be:
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Figure 7.4: Relation of the Tc temperature to the number of particles

Having done the calculations above, we can see that for a given pressure the BE
condensation temperature seems to be lessening as the number of particles increases, which
seems counter intuitive. But we must take into account that with the current approach
the number of particles is irrelevant to their interatomic distance, as this is derived earlier
in the code and then the code runs with it as a constant. So, with that train of thought
the fact that the BE temperature decreases with the number of particles makes sense as
for a condensate to form with more particles, then the interatomic potential has a higher
energy, which in turns means that the wavefunctions are with greater frequency, and
therefore lower wavelength, so they need to be at an even lower energy for the condensate
to form. Additionally, the approach must confirm the fact that with a smaller interatomic
distance the BE condensation temperature has to be higher. In order to check that we
have to run the code again, firstly by putting a lower pressure in the derivation of the
interatomic distance, then solve again the S.Eq. for the wavefunction, and finally redo the
BE condensation part, while carefully applying the term V(0,d(Nl,P)) as the potential
numerically in order for the program to be able to proceed. Doing that we can see that
with an increase in pressure there is a decrease in the BE condensation temperature as
we would expect.

Comparison with the experimental results of [45]
The theory produced above, as seen, produces some logical results with values close to
the ones that one would expect. But in order to be able to check the validity of the theory
we want to compare it to the known experimental results. For this, we will use the results
of Kim et al. paper [45]. For this part of the study, we will check the general validity
of our results to check the deviation from the experiment, and not try to replicate the
experimental results at this point, as it is not the point of this paper. Follow up work
on this paper will be to fine tune all the inputs and replicate the exact results of Kim’s
experiment, if it found through this study that this theory is capable even at this early
stage to produce results close to the experiment. The first order of business is to find out
the percentage of the atoms that are below the critical temperature. The atoms have the
same temperature of the hypothetical particles, so using this temperature we find the ξ
number of vacancies about to be condensed.
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Calculation of the zero point energy for n=1

E(n, L, d) =
n2π2h̄2

2m
− Vcenter(L, d)k (7.9)

Also, we need to consider that each vacuum can condense with its neighboring ones. In this
experiment a vycor crystal is used in the torsional pendulum to create a higher number
of vacuums. A conservative estimate according to the literature should be sufficiently
larger than the original number of vacancies. Also, we need to consider that a particle
can only condense with a neighboring one, so assuming a BCC structure for this part
of the research we find an 0.8 chance of having such a neighbor. For gathering the first
results we assume that the superflow of the vacancies in the solid helium is such that we
basically don’t need to account for it at all in the moment of inertia. This means that
replicating the oscillation with and without this difference in the moment of inertia we
can find the difference in the periods and compare it to Kim’s experimental results.

As such now the moment of inertia for the full Helium compared to the Helium minus
the vacancy part are calculated as:

Tfull = 2π

√
IHe + Ivycor

G
(7.10)

T ∗ = 2π

√
IHe + Ivycor − IHexvac

G
(7.11)

where xvac is the percentage of the vacancies that are into a BEC state. Calculating
the difference of the resonant period between the two we can see that their difference is
around 1000ns and changing according to the temperature with the big incline being near
the critical temperature. The results of these calculations are reassuring, despite being
off the exact experimental values, as they are close enough to give us the green light to
move forward with this idea to try in the future to exactly replicate this experiment. It
seems that this point of view of the subject has a lot of merit, as it offers the ability to
study with great detail and to use the existing knowledge of the superfluid helium thus
making the study of the superflow easier. In future studies, we will further develop this
approach and now that the theory is comprised, focused on the exact replication of the
experimental result to see if this theory is confirmed or needs some alterations.

7.2 Conclusions on the Solid/Supersolid Helium chap-
ter

In this chapter a brief dive into the physics of solid Helium has been presented. Solid
Helium being probably one of the most exotic solids in existence has caused no small deal
of controversy for its behaviors. Recent experiments have suggested that under the right
circumstances solid Helium undergoes a phase transition and forms a new phase of matter,
called a supersolid. This is not something that it is set in stone in the cryogenic and
scientific community in general, but 2018 experiments greatly strengthened this position.
In this chapter a model for the explanation of this supersolid behavior has been proposed.

The basic idea of a supersolid is that the vacancies that are formed in the lattice
form some kind of superfluid that is able to freely move. To describe this superfluid in
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this study the following method has been proposed. One needs to study the vacancies
not as empty space but as superposition of a Helium atom and a hypothetical inverse
Helium atom having the opposite wavefunction to the atom mentioned, so that the total
wavefunction will be zero. By doing this, one is able to study these inverse particles
on their own, and by them being mirror particles of Helium atoms and as such bosons,
find their condensation temperature. So overall by finding an estimate for the number of
vacancies of the system and applying the aforementioned method, results that resemble
the ones of the experiments are seen to arise.

Chapter 7 - Nomenclature
U Potential Energy
r Distance
ϵ,E Energy
Ψ Wavefunction
V(x) Potential
m Atomic mass
h Plank’s constant
f, probability of vacancy formation
Tfull Moment of inertia with no vacancies
T ∗ Reduced moment of inertia
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Chapter 8

Superfluid Stirling Refrigerator 1D

8.1 Introduction to Stirling cryocooling
As mentioned in previous chapters there are many uses that require extremely low tem-
peratures for their applications. For this reason, there are many apparatuses that are used
in order to cool down to temperatures approaching even absolute zero. Many cryogenic
applications make use of nitrogen, oxygen of hydrogen. The above can be used to reach
low temperatures that are used often in medical and material-processing applications but
all of the aforementioned elements become solidified at temperatures not near absolute
zero, negating then as candidates for closing to absolute zero and working on applications
at this temperature range. The only known substance that remains in a non-solid form
at temperatures this close to zero is Helium. In the previous chapters we have gone into
great detail into explaining the working and behaviors of Helium throughout both its
isotopes and their mixture as well as the different phases it exists in.

One of the main machines that is used for cooling Helium is Stirling coolers. Stirling
coolers are used at higher temperatures as well working with Helium, but the can also
work with liquid Helium and superfluid Helium as well. The effectiveness of Stirling
refrigerators close to absolute zero is significant compared to other means of cooling, and
in the past two decades some a new variation of Stirling engines has been introduced that
can be used to more effectively cool Helium to temperatures down to near even 0.3 K.

8.1.1 The Stirling cycle

The Stirling cycle is one or the most basic cycles in thermodynamics and aims to be an
implementation of the Carnot cycle. Stirling engines or coolers are comprised of 5 volumes
in them. The expander, the cooler, the regenerator the heater and the compressor. The
usual mechanical synthesis of a Stirling machine comprises of 2 opposed pistons connected
to a crankshaft with the regenerator connecting the top of them. A simple view of the
Stirling engine can be seen through the graph below.
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Figure 8.1: Schematic of basic Stirling refrigerator

The basic steps of the Stirling cooling cycle are the following.

• Isothermal compression: The compressor piston moves towards the regenerator
while the expander piston remains close to the regenerator. The excess heat of
the fluid is dumped into the hot reservoir.

• Isochoric Cooling: Both pistons move towards the right (in the view of the figure
8.1) and the fluid is being cooled leaving its heat in the regenerator.

• Isothermal expansion: The compressor piston remains close to the regenerator while
the expander piston moves away from it. Heat is being drawn from the cold reservoir
into the fluid.

• Isochoric Heating. Both pistons move towards the left with the fluid regaining the
heat previously left in the regenerator.

.
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8.1.2 The Superfluid Stirling Refrigerator

The standard Stirling engine is capable of cooling Helium down to its liquefaction point
and even beyond that working with liquid Helium. Below the lambda temperature a
standard Stirling refrigerator begins to quickly fail as a cooling apparatus. This is because
below this temperature a superfluid begins to form, which due to its lack of viscosity,
cannot be contained through the piston seals and escapes the cylinders.

The nature of the superfluid initially seems to hinder the potential of the Stirling appa-
ratus as a cryocooler, but with some key modifications it can be show that the formation
of the superfluid can be deemed as beneficial for the overall cycle. The initial models
were presented by Brisson et al [80] and then implemented further in [81, 82, 83]. In this
new formation of the Stirling cryocooler the idea is that a superleak [41] is included in
each of the pistons. The working medium in such a machine is a Helium 3-4 mixture
usually enriched in Helium-3. As the mixture exists in lower temperatures the superfluid
Helium-4 part flows freely through the superleak while the normal fluid Helium is confined
into the normal working volumes of the Stirling engines. This kind of cryocoolers initiate
from temperatures below the lambda line and lead down to temperature in the range
of 0.3 K. One key point that needs to be mentioned in this type of refrigerators is the
importance of the Helium-3 part especially at lower temperatures. Because Helium-4 is
in its superfluid form and is progressively more thermodynamically inert as it approaches
absolute zero the bulk of the thermodynamic work is applied by the Helium-3 part. This
is the reason why these apparatuses work with enriched Helium 3-4 mixtures. At temper-
atures above 1 K not all Helium-4 has become a superfluid and such as the interacting
parts of it cannot freely pass through the superleak. This phenomenon while subtle is
important to incorporate in the modelling of the systems. Most models that so far exist
in the literature actually forgo the interactions of the Helium-4 part altogether but this is
problematic especially when being above 1.2-1.3 K and nearing the lambda line. Lastly,
the phenomenon of the osmotic pressure needs to be included in such a model, in addition
to the difference in the composition of the mixture before and after the superleak lead to
the formation of the osmotic pressure difference between them.

8.2 Single ideal gas isothermal Stirling cryocooler
The kind of cryocoolers can be simulated ranging from simpler models to much more
elaborate ones. For starting of the study the simplest of the possible models is presented,
describing a Single ideal gas isothermal Stirling cryocooler. This model includes assump-
tions that will be then re-evaluated on later models based on their behavior on this one.
This work is part of the paper [43] of the author of this work.

Firstly, one needs to set the temperature range, that being from 0.4 to 1K. This
temperature range is selected as to stay clear of the phonon-roton interaction tempera-
ture range for Helium-4. This will be something followed throughout the study of these
cryocoolers.

In this case, the Helium-4 is considered to be completely thermodynamically inert
and neglected as a part of the working medium and also that Helium-3 behaves like an
ideal gas. Both of these assumptions are not too accurate representations but are able to
provide results that help understand to a reasonable degree the behavior of the system.
These exact assumptions have been also made by Patel and Brisson in their works.
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Figure 8.2: A simple schematic of a Superfluid Stirling refrigerator form
Brisson’s et al work in [81]
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The sizing of the cooler is based on the following geometry:

Vclc 11.537 cm3 compressor clearance
Vcle 8.061 cm3 expander clearance
Vswc 18.744 cm3 swept volume cooler
Vswe 35.48 cm3 swept volume expander
Vk 35.48 cm3 cooler
Vr 12.118 cm3 regenerator
Vh 5.36 cm3 heater

Table 8.1: Geometry of 1D single Stirling, the naming definitions are
based on the standardized definitions of Urieli [84]

The equations of the different volumes are calculated as:

Vc(θ) = Vclc +
1

2
Vswc(1 + cos(θ)) (8.1)

Ve(θ) = Vcle +
1

2
Vswc(1 + cos(θ +

π

2
)) (8.2)

V (θ) = Vc(θ) + Ve(θ) + Vk + Vr + Vh (8.3)

According to the ideal gas law the pressure can be calculated and normalised as:

P

NR
(θ) = (

Vc(θ)

Tk
+
Vr
Tr

+
Ve(θ

Th
) (8.4)

In the isothermal Stirling model the work being put into the system is equal to the
cooling power of the cooler:

Wc(θ) =

∫ 2π

0

P

NR
(θ)

d

dθ
Vc(θ)dθ (8.5)

One of the most important parts of modelling Stirling coolers is the modelling of the
regenerator. At this part of the study the simplest model is to be assumed where the
regenerator is a single cell with a steady temperature being calculated as:

Tr =
Tk − Th

ln(Tk

Th
)

(8.6)

To check these equations for an initial validity a run is being done and compared to
[81, 82] with a temperature range of 1 to 3 K. (This temperature range is used only for
comparison reasons and is overall deemed invalid for this work due to running through
different phases of Helium without properly adjusting the model. In this particular case
due to the Helium-4 being neglected and Helium-3 being thought of as an ideal gas these
limitations could be neglected in the work of Patel and Brisson).
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Figure 8.3: Comparizon of Normalised Cooling Power to Temperature
Ratio results of this studies calculation and [82]

As it can be expected the gained behavior is identical to the work of Patel.

8.3 Single ideal gas adiabatic Stirling refrigerator
Given the description of the isothermal model now one needs to evaluate whether the
assumption of a isothermal model is possible. To do that a more detailed description is
underdone, using an adiabatic model for the cooler based on the works of Rogdakis et al
[85, 86].

The geometry of the machine remains the same as described in Table8.1 with a fre-
quency of f=1.6Hz

Given that so far no pressure losses are assumed the pressure will be the same for all
the volumes of the machine at each angle of the crankshaft.

P (θ) =
M R

Vc(θ)
Tk

+ Vk

Tk
+ Vr

Tr
+ Vh

Th
+ Ve(θ)

Th

(8.7)

Based on the ROBOAN code developed in [87] by Rogdakis, Antonakos and Borbilas
the behavior of the cycle is being determined. Through this analysis one can determine
how the temperatures of the expander and the compressor are affected when their behavior
is changed from being isothermal to being adiabatic.
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Figure 8.4: Hot piston temperature fluctuations

Figure 8.5: Hot piston temperature fluctuations evolution over 6 cycles
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Figure 8.6: Cold piston temperature fluctuations

Figure 8.7: Cold piston temperature fluctuations evolution over 6 cycles

From the graphs above one can see that there are fluctuations of the temperatures
of the pistons compared to their steady temperatures from the isothermal model. But if
one is to investigate more closely the values, they would see that these fluctuations are
extremely small, something that can be even more easily seen in the graph below plotting
the high and low temperatures comparatively.
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Figure 8.8: Piston temperature fluctuations plotted for both hot and cold
piston

Overall, it can be seen from the above plots that the variation of the temperatures
of the pistons compared to the temperatures of the isothermal model is minimal when
compared to the variation of temperatures during the cycle. The fluctuations are of
the order of 0.15%. Because of this negligible difference the cooling outcomes of both the
isothermal and adiabatic models is the almost exactly the same. This behavior is believed
to be based on two facts. One, the cycle has a relatively low frequency meaning that
there is enough time for the pistons to reach thermal equilibrium with their environment
and behave more like the isothermal model. Through some tests run in the same code
it was seen that even if one was to drastically raise the frequency this behavior remains
unchanged to a very significant degree. This behavior is attributed to the fact that at such
low temperatures with a small temperature differentiation between the Th and the Tk
the deviations of the temperature and the pressure are not enough to cause a substantial
difference in the temperatures of the compressor and the expander. This fact can be easily
understood if one runs the same model for the same geometry and frequency at higher
temperatures. If Th=300K and Tk=1000K then with everything else remaining the same
the fluctuations caused are of the order or 16%, or two orders of magnitudes larges than
before.

For these reasons one concludes that the results of the isothermal and adiabatic model
do not differ at such low temperatures and as such following this the isothermal model is
to be used.

8.4 Dual Ideal gas Stirling refrigerator
One of the key points of Stirling coolers is the regenerator as it is responsible of doing most
of the heat transfer on the working medium during the cycle. Usually when developing
Stirling engine, a great deal of care is given into designing the best possible regenerator.
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Figure 8.9: Dual Stirling schematic given by Brisson’s work at [80]

In our case, the temperatures as such that the regenerative properties of most materials
are not known to any significant degree. For this reason, a workaround is used to the use of
a regenerator. What is available for these temperatures are the heat transfer properties for
some materials. For this reason, to utilize this fact and overcome the lack of knowledge
for the regenerative properties the designed machine consists of two conjoined Stirling
coolers fused to have a common regenerator. This is not a regenerator anymore but only
a heat exchanger. The two Stirling machines operate with a phase difference such that
counter flow occurs during the cycle in the system and the two currents exchange their
heats with each other negating the need for a regenerator. This heat exchanger will be
from this point onward refer to as the recuperator.

The flows in the recuperator as one can understand are of the utmost significance for
the good working of this apparatus and special care needs to be given when the phase
difference between the two coolers is chosen. One can understand that three kinds of flow
are possible in the recuperator.

• Counterflow: where the two sides of the recuperator from the two Stirling machines
have opposite flows. This is the optimal working condition as one flow goes from the
cold side towards the hot and the other from the hot to the cold, thus exchanging
heats during their paths.

• Neutral Parallel Flow: This is the case where both currents flow from the cold
side to the hot. In this scenario the two currents do not exchange significant amounts
of heat with each other and they are eventually dumped with the cold box temper-
ature in the hot side. This is easily addressed by introducing heat from the hot box,
and given the ease of heating at these temperatures this occurrence while not ideal
for producing cooling is of no negative importance to the overall workings of the
apparatus.

• Destructive Parallel Flow: This is the scenario where both currents run from
the hot side to the cold side and therefore deposit heat in the cold box. This is



8.4. Dual Ideal gas Stirling refrigerator 151

catastrophic for the cycle as the heat dumped in the cold box for even a few degrees
with this flow is able to completely cancel out and even reverse all the cooling power
of the cycle, as the heat is deposited to the cold box. For this reason measures need
to be taken to make sure that this kind of flow does not occur at all in the cycle.

It is clear through the description of this system that the two sides exchange heat
with one another in order to complete the Stirling cycle. The amounts of heat exchanged,
assuming for this point of the study the recuperator to be an ideal heat exchanger, must
be equal. The mass flows that occur will be different at each side and thus one side
will amount to the greater mass flow and lesser temperature difference, and the opposite
(high temperature difference and lower mass flow) will occur on the opposite side. The
side with the greatest of the two mass flows is not and cannot be determined from the
previous conditions of the system, thus the code developed address has to address this
issue. To surmount this problem, at every time step, a greater flow is assumed at one of
the two sides and then the unknown exit temperature is found. If the temperature found
is beyond of the temperature range of the isothermal model, then the initial assumption
is wrong and therefore the opposite is used. Having the temperatures and mass flows the
rest of the thermodynamic data of the cycle are determined. As far as the phase difference
is concerned in their works Patel and Brisson assumed a 180 deg phase difference. This
is going to be the initiating point of this study, and later this phase difference is to be
optimised.

Figure 8.10: Volumes of the two coolers during the cycle for an 180 deg
phase difference
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Figure 8.11: Derivatives of the volumes over the angle of the two coolers
during the cycle for an 180 deg phase difference

Initiating the code from some known conditions for each point the pressure ration
between it and the next needs to be found and it is determined as:

rp(θ, Trp, T rn) =

Vc(θ)
Tk

+ Vk

Tk
+ Vr

Trp
+ Vh

Th
+ Ve(θ)

Th

Vc(θ+1)
Tk

+ Vk

Tk
+ Vr

Trn
+ Vh

Th
+ Ve(θ+1)

Th

(8.8)

and the pressure difference normalised to the pressure can be written as:

dP

P
(θ, Trp, T rn) = rp(θ, Trp, T rn)− 1 (8.9)

Now the masses for the different volumes as well as the mass transfers need to be
calculated:

For the compressor:

mc(θ, Trp, T rn) =

Vc(θ)
Tk∑

Vi

Ti
(θ, Trn)

(8.10)

Dmc(θ, Trp, T rn) = mc(θ, Trp, T rn)(
dP

P
(θ, Trp, T rn) +

dVc(θ)

Vc(θ)
) (8.11)

For the cooler:

mk(θ, Trp, T rn) =

Vk

Tk∑
Vi

Ti
(θ, Trn)

(8.12)

Dmk(θ, Trp, T rn) = mk(θ, Trp, T rn)(
dP

P
(θ, Trp, T rn)) (8.13)
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For the heater:

mh(θ, Trp, T rn) =

Vh

Th∑
Vi

Ti
(θ, Trn)

(8.14)

Dmh(θ, Trp, T rn) = mh(θ, Trp, T rn)(
dP

P
(θ, Trp, T rn)) (8.15)

For the expander:

me(θ, Trp, T rn) =

Ve(θ)
Th∑

Vi

Ti
(θ, Trn)

(8.16)

Dme(θ, Trp, T rn) = mc(θ, Trp, T rn)(
dP

P
(θ, Trp, T rn) +

dVe(θ)

Ve(θ)
) (8.17)

By using the above the mass remaining on the normalised recuperator can be found:

mr(θ, Trp, T rn) = 1−mc(θ, Trp, T rn)−mk(θ, Trp, T rn)−mh(θ, Trp, T rn)−me(θ, Trp, T rn)
(8.18)

So overall the mass flows can be determined as:

gAck(θ, Trp, T rn) = −Dmc(θ, Trp, T rn) (8.19)

gAkr(θ, Trp, T rn) = −(Dmc(θ, Trp, T rn) +Dmk(θ, Trp, T rn)) (8.20)

gAhe(θ, Trp, T rn) = Dme(θ, Trp, T rn) (8.21)

gArh(θ, Trp, T rn) = Dmh(θ, Trp, T rn) +Dme(θ, Trp, T rn) (8.22)

All the functions defined above are for the one of the two Stirling coolers, a similar set
for the second cooler using its different volumes is defined.

Now that the functions have been defined the solution of the system can initiate:
For θ = 1: Trp = Tk−Tc

ln(
Tk
Tc

)

For θ = 2:
Suppose that m < m∗. The exit temperature is found solving on the energy conser-

vation in the recuperator when the flow is from the hot to the cold on cooler 1 and from
the cold to the hot side on cooler 2. Cooler 1 functions are the regularly defined ones and
cooler 2 are the ones with the * notation:

gAkr(θ, Trp,
Tk − Th

ln(Tk

Th
)
) + gAhr(θ, Trp,
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)
) +mr(θ, Trp,
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)
))(Tk − Th) =
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)
) + gAhr∗(θ, Trp,
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Th

)
) +mr∗(θ, Trp,

Tkout∗ − Th

ln(Tkout∗
Th

)
))

(8.23)
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The exit temperature is calculated and if it is higher than the high temperature for
the cycle then the initial assumption was not valid and therefore the opposite assumption
has to hold true. In this case the system that needs to be solved is the foollowing:

gAkr(θ, Trp,
Tk − Thout

ln( Tk

Thout
)
) + gAhr(θ, Trp,

Tk − Thout

ln( Tk

Thout
)
) +mr(θ, Trp,

Tk − Thout

ln( Tk

Thout
)
))(Tk − Thout)ϵ =

= (Tk − Th)(gAkr∗(θ, Trp,
Tk − Th

ln(Tk

Th
)
) + gAhr∗(θ, Trp,

Tk − Th

ln(Tk

Th
)
) +mr∗(θ, Trp,

Tk − Th

ln(Tk

Th
)
))

(8.24)

Now the two systems for the flows of the opposite direction need to be addressed,
where the flow is from the cold to the hot side in cooler 1 and from the hot to the cold
side in cooler 2.

Assuming m < m∗:

gAkr(θ, Trp,
Tk − Th

ln(Tk

Th
)
) + gAhr(θ, Trp,

Tk − Th

ln(Tk

Th
)
) +mr(θ, Trp,

Tk − Th

ln(Tk

Th
)
))(Tk − Th) =

= ϵ(Tk − Thout∗)(gAkr∗(θ, Trp,
Tk − Thout∗

ln( Tk

Thout∗
)
) + gAhr∗(θ, Trp,

Tk − Thout∗

ln( Tk

Thout∗
)
) +mr∗(θ, Trp,

Tk − Thout∗

ln( Tk

Thout∗
)
))

(8.25)

and if the assumption is seen to be incorrect then the system solved will be:

gAkr(θ, Trp,
Tkout − Th

ln(Tkout

Th
)
) + gAhr(θ, Trp,

Tkout − Th

ln(Tkout

Th
)
) +mr(θ, Trp,

Tkout − Th

ln(Tkout

Th
)
))(Tkout − Th)ϵ =

= (Tk − Th)(gAkr∗(θ, Trp,
Tk − Th

ln(Tk

Th
)
) + gAhr∗(θ, Trp,

Tk − Th

ln(Tk

Th
)
) +mr∗(θ, Trp,

Tk − Th

ln(Tk

Th
)
))

(8.26)

The energy conservation equations are solved at each step as to gain the temperatures
of the system and then be able to calculate the pressure and the rest of the thermodynamic
data. The X argument in the functions for the second cooler is implemented in the code
signifying the phase difference so in later points, the optimal phase difference can be
found. The code that has been used to solve this apparatus is presented in Appendix D.1

Using this code, the resulting exit temperatures for the two machines in an 180 deg
phase difference can be seen in the graph below:
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Figure 8.12: Exit temperatures of the recuperator

In the graph one can see that the exit temperatures fluctuate in the expected way,
meaning that the exit temperature of the cold side is always higher than the Th, except
for the two times in each cycle (seen between the valleys in the graphs above) where the
first type of parallel flow occurs and the temperatures are set to Th and Tk.

Given these temperatures one can calculate the temperature of the recuperator.
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Figure 8.13: Temperature of the recuperator

The results of the code are understandable and expected but to further check the
validity one can check the mass flows throughout the cycle and verify that the overall
mass is preserved. In the graph below it can be seen that this is the case and the mass is
preserved at every point of the cycle.
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Figure 8.14: Normalized masses during the cycle

The pressure at each point of the cycle can be found as:

P

M
=

R∑
Vi

Ti
(θ, Tr)

(8.27)

and the mean pressure would be:

P

M
=

∑360
θ=2

P
M
M

360
(8.28)

To observe the behavior of the system better on can look into the mass flow rate graph
for the recuperator.
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Figure 8.15: Mass flow rate for the recuperator for 18 deg phase difference

What can be seen from this graph, is that no destructive parallel flow occurs in the
system.

The works of the pistons will be the same as the heats exchanged and are found as:

qc = wc =
360∑
θ=2

(
P

M

dVc
θ

(θ)) (8.29)

qe = we =
360∑
θ=2

(
P

M

dVe
θ

(θ)) (8.30)

Now having the thermal behavior of the system, one is able to calculate its cooling
power. To calculate this cooling power in a simple isothermal Stirling model one would
simply use the work of the expander. But is this case, one has to take into account the
cooling power lost for all the instances when the fluid exits the recuperator on the cold
side with a temperature higher that the Th. For this reason, for all those cases the extra
heat from the fluid is taken into account as if it has been dumped in the cold box. This
lost cooling power is calculated as:
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In addition to this lost cooling potential the code needs to also be able to account for
the cooling potential lost in the cases when parallel flow might occur, thus a second loss
must be calculated as:

So overall the cooling power for 180 deg phase difference will be:

q = qe + q∗e + qlost + qlost∗ + qregen + qregen∗ = 0.073W/kg (8.31)

And the COP of the system is found as:

COP =
qe + q∗e + qlost + qlost∗ + qregen + qregen∗

w + w∗ = 45.66% (8.32)

As previously stated, the efficiency and overall behavior of the cycle depend to the
phase difference of the two coolers. Thus, any phase difference where destructive parallel
flow is being detected in the system needs to be excluded. The phase differences for which
destructive parallel flow does not occur are between X=152. . . 209 deg. Within this range,
the cooler will produce cooling power. Following this, the optimum phase difference is
sought after based on achieving the best efficiency for the cooler. For that reason, the
code has designed from the beginning to be able to work with a variable phase difference.
One can see the behavior of the system based on the phase difference on the graph below.
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Figure 8.16: COP to phase difference graph. Beyond the red dash lines
on the left and the right of the figure are the regions where destructive
parallel flow occurs. The COP Carnot is also shown in the figure as the

blue dashed line being COPCarnot = 66.6%

This graph showcases that the 180 deg phase difference is a safe choice when the flows
are concerned but it is quite an ineffective solution as it is quite near the bottom of the
COP curve. By choosing another phase difference one can achieve a significantly better
efficiency for the system. The optimal value is seen to be at 152 deg where COP (152o) =
53.074%. As expected in all circumstances the COP is lesser than the COP of the Carnot
cycle in this temperature range. At this point to make it easier for the reader to utilise
these results and not have to run the entire code to get the results a polynomial is fitted
to simulate the behavior of the COP to the phase difference.

COPtot(x) = −1.5202 + 3.8188x− 4.6364x2 + 2.0603x3 − 3.0831x4 (8.33)

The calculations above as it can be seen in equations 8.23-8.26 contain an ϵ term that
has not been explicitly discussed so far. This term is there to signify the losses from the
materials in the recuperator acting as a heat exchanger. The recuperator of the modelled
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system is made by a Kapton covered Epoxy. The heat conductivity of this material at
cryogenic temperatures is given by Rondeaux and Barucci in [88, 89]. Using the NTU
method the behavior of the system for a given efficiency is derived. Based on the data for
the heat convectivity for Kapton-Epoxy and Helium at these temperatures, the efficiency
of the recuperator is calculated to be ϵ = 98, 7%. The equivalent NTU would be NTU=75
and the COP=53.024% for X=152 deg phase difference. For ease of use of the reader an
polynomial regression of the COP to NTU correlation is also provided.

COP (NTU) = −3.326× 10−10NTU4 + 4.11× 10−7NTU3 − 8.504× 10−5NTU2

+ 6.864× 10−3NTU + 52.822
(8.34)

Figure 8.17: Optimum phase difference COP for different NTU

It can be seen from the graph that as the NTU increases so does the COP, until
stabilizing near a final value for ϵ = 100%.
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8.5 Single Superfluid Stirling Helium 3-4 Mixture
The previously presented model was comprehensive in the explanation of the machine and
its behavior but it was very simplistic in the essence of the working medium. It assumed
that Helium-4 is completely inert, that Helium-3 is an ideal gas, that they have no mixing
interactions and it forgoes the phenomenon of the osmotic pressure. All these issues are
important to be addressed. So far, no study from any other author has attempted to use
a full model of Helium for such a modelling of an superfluid Stirling refrigerator. During
this research, a first attempt had been made into describing the full model given the values
for the Helium 3-4 mixture and published in [43]. That study presents a valid model for
the behavior of Helium 3-4 mixtures based on the EOS of Chaudhry [71]. That equation
of state though had not been ideal and the model had some limitations. Continuing that
work the same model was then improved by using the full equation of state of the Helium
3-4 mixture as described in 6 and published in [90].

The geometry of the apparatus remains the same as before but this time using only
one Stirling machine. The solution of the system is similar with some key differences that
have arisen due to working with the mixture as they will be described below.

First of all two new volumes will have to be included in the system, being the regions
behind the pistons where the superfluid Helium-4 can leak through. To find these volumes
the swept volume of the piston is used and they are defined as:

V ′
c (θ) = Vc(0)− Vc(θ) (8.35)

V ′
e (θ) = Ve(270)− Ve(θ) (8.36)

So the volume in the inside of the system where all the Helium-3 and part of the
Helium-4 exist is:

V in(θ) = Vc(θ) + Vk + Vr + Vh + Ve(θ) (8.37)

Now the masses for the different volumes need to be established as:

m′
c(θ, x, P ) =

V ′
c (θ)

vHe4(Tk, P − Posm(x, Tk, P ))
(8.38)

The vHe4 is derived from the equation given by the code in B.4. The Posm refers to the
osmotic pressure though the eq. C.1.

mc(θ, x, P ) =
Vc(θ) + Vk
v(x, Tk, P )

(8.39)

The v(x, T, P ) refers to the equation 6.5.

mr(θ, x, P ) =
Vr

v(x, Tr, P )
(8.40)

me(θ, x, P ) =
Ve(θ) + Vh
v(x, Tk, P )

(8.41)

m′
e(θ, x, P ) =

V ′
e (θ)

vHe4(Th, P − Posm(x, Tk, P ))
(8.42)



8.5. Single Superfluid Stirling Helium 3-4 Mixture 163

While the previous case was based on normalized values, in this case it is seen beneficial
to work with actual values. A Helium 3-4 mixture with a 33% enrichment has been chosen
(close to the 30% used by [83]) with m3=1.5 mol and m4=3 mol.

To find the pressure for a given state of concentrations of the system one uses the mass
equation as:

m3+m4 = mc′(θ, xc, P )+mc(θ, xc, P )+mr(θ, xr, P )+me(θ, xe, P )+me
′(θ, xe, P ) (8.43)

Now similar to the code presented in the previous section the following code is created
and used based on a similar train of thought as before to solve the system for the full
mixture. The full code is presented in Appendix D.2.

Given the developed code the machine is simulated produces the following results.

Figure 8.18: Volumes of the compressor and expander against the Pres-
sure
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Figure 8.19: Volumes of the outside of the pistons against the Pressure

From these graphs it can be seen that despite the introduction of the different volumes
and the superleaks the oval-shaped P-V diagram of the Stirling engines is still applied.

The above are behaviors that are expected and are present in all simulations of Stirling
engines. One outcome that brings significant interest is the plot between the Helium-3
concentration and the volume. As seen in the figures below one can see that the oval
shape presents itself on this kind of graph as well. This outcome is important as based on
these results it seems to be describing a behavior present of any Stirling machine working
with a mixture.
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Figure 8.20: Helium-3 concentration against the volume in the expander

Figure 8.21: Helium-3 concentration against the volume in the compressor

Through the simulation one can see how the Helium-3 concentration and mass is
evolving in the cycle.
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Figure 8.22: Mass in the expander

Figure 8.23: Helium-3 concentration in the expander

Now in codes simulating such machines usually it takes some cycles for the code to
converge. This is usually the case as the numerical equations are not solved directly but
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initial guesses are augmented until they are converged to the final value. The format of
this code is such that this is not the case and the equations for the energy and mass in
both the ideal and the full He3-4 mix codes are directly solved. This leads to the system
directly converging to the correct values without the need of multiple cycles. This can
be seen in even more clearly in the following plot where it is shown that even in the first
three cycles there are no deviations between the values.

Figure 8.24: Convergence of the cycles of Helium 3-4 superfluid Stirling

In this case when one wants to calculate the energy values of the system the EOS
again needs to be used and the different heat exchanges based on the enthalpy H(x, T, P )
given in eq. C.1.

Qe =
362∑
θ=3

(me(θ)H(xe(θ), Th, P (θ))−me(θ − 1)H(xe(θ − 1), Th, P (θ − 1)) (8.44)

Qk =
362∑
θ=3

(mc(θ)H(xc(θ), Tk, P (θ))−mc(θ − 1)H(xc(θ − 1), Tk, P (θ − 1)) (8.45)
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Q′
c =

362∑
θ=3

(m′
c(θ)H(x′c(θ), Tk, P (θ))−m′

c(θ − 1)H(x′c(θ − 1), Tk, P (θ − 1)) (8.46)

Qe =
362∑
θ=3

(me(θ)H(xe(θ), Th, P (θ))−me(θ − 1)H(xe(θ − 1), Th, P (θ − 1)) (8.47)

Based on the above the efficiency can now be evaluated similarly as before for a
COP=29.2% and a cooling power of Q=2.4mW.

Through the results one can see that his application has values that are lower than
the ideal model. This is expected though to be the case as in the previous simulation the
phenomenon of the osmotic pressure and the interactions of the Helium-4 part had been
completely neglected.

8.6 Dual Superfluid Stirling Helium 3-4 Mixture
Following the previous analysis, the next step is to implement the same EOS to the dual
Stirling refrigerator.

The base difference between the code used here and the original code for the dual
isothermal Stirling with the ideal gas is that the enthalpy is directly calculated through
the equation of state and at each point other than the exit temperatures and the pressure
also the concentration needs to evaluated at each of the volumes of the apparatus.

The v(x, T, P ) refers to the equation 6.5. The vHe4 is derived from the equation given
by the code in B.4. The Posm refers to the osmotic pressure though the C.1. The enthalpy
H(x, T, P ) is given in C.1.

The geometry of the engine is the same as given in table 8.1 applied to the two
conjoined Stirling engines. The volumes outside the pistons are given as:

V ′
c (θ) = Vc(0)− Vc(θ) (8.48)

V ′
e (θ) = Ve(270)− Ve(θ) (8.49)

Vc(θ) = Vclc +
1

2
Vswc(1 + cos(θ)) (8.50)

Ve(θ) = Vcle +
1

2
Vswc(1 + cos(θ +

π

2
)) (8.51)

V ∗
c
′(θ) = V ∗

c (0)− V ∗
c (θ) (8.52)

V ∗
e
′(θ) = V ∗

e (270)− V ∗
e (θ) (8.53)

V ∗
c (θ,X) = Vclc +

1

2
Vswc(1 + cos(θ +X)) (8.54)
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V ∗
e (θ,X) = Vcle +

1

2
Vswc(1 + cos(θ +

π

2
+X)) (8.55)

where X is the phase difference between the two engines.
The masses of the volumes of the system are defined similarly as in equations 8.56,

8.57, 8.58, 8.59, 8.60 and thus they are not repeated. In addition to these equations their
equivalent for the second Stirling engine are introduced as:

m∗
c
′(θ, x, P,X) =

V ∗
c
′(θ,X)

vHe4(Tk, P − Posm(x, Tk, P ))
(8.56)

m∗
c(θ, x, P,X) =

V ∗
c (θ,X) + Vk
v(x, Tk, P )

(8.57)

m∗
r(θ, x, P,X) =

Vr
v(x, Tr, P )

(8.58)

m∗
e(θ, x, P,X) =

V ∗
e (θ,X) + Vh
v(x, Tk, P )

(8.59)

m∗
e
′(θ, x, P,X) =

V ∗
e
′(θ,X)

vHe4(Th, P − Posm(x, Tk, P ))
(8.60)

Now the mass differences for the volumes are defined as:

Dmc(θ, xcn, Pn, xcp, Pp) = mc(θ, xcn, Pn)−mc(θ − 1, xcp, Pp) (8.61)

Dme(θ, xen, Pn, xep, Pp) = me(θ, xen, Pn)−me(θ − 1, xep, Pp) (8.62)

Dmr(θ, xrn, Pn, T rn, xrp, T rp, Pp) = mr(θ, xrn, Pn, T rn)−mr(θ − 1, xrp, T rp, Pp) (8.63)

Dm′
e(θ, Pn, Pp) = m′

e(θ, Pn)−m′
e(θ − 1, Pp) (8.64)

Dm′
c(θ, Pn, Pp) = m′

c(θ, Pn)−m′
c(θ − 1, Pp) (8.65)

and with the equivalent in the second Stirling cooler being:

Dm∗
c(θ, xcn, Pn, xcp, Pp, X) = m∗

c(θ, xcn, Pn, X)−m∗
c(θ − 1, xcp, Pp, X) (8.66)

Dm∗
e(θ, xen, Pn, xep, Pp, X) = m∗

e(θ, xen, Pn, X)−m∗
e(θ − 1, xep, Pp, X) (8.67)

Dm∗
r(θ, xrn, Pn, T rn, xrp, T rp, Pp, X) = m∗

r(θ, xrn, Pn, T rn, X)−m∗
r(θ − 1, xrp, T rp, Pp, X)

(8.68)
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Dm′∗
e (θ, Pn, Pp, X) = m′∗

e (θ, Pn, X)−m′∗
e (θ − 1, Pp, X) (8.69)

Dm′∗
c (θ, Pn, Pp, X) = m′∗

c (θ, Pn, X)−m′∗
c (θ − 1, Pp, X) (8.70)

The mass flows between the volumes are defined as:
Through the hot piston:

gAoc(θ, Pn, Pp) = Dm′
c(θ, Pn, Pp) (8.71)

gA∗
oc(θ, Pn, Pp, X) = Dm′∗

c (θ, Pn, Pp, X) (8.72)

From the compressor to the recuperator.

gAcr(θ, xcn, Pn, xcp, Pp) = Dmc(θ, xcn, Pn, xcp, Pp) +Dm′
c(θ, Pn, Pp) (8.73)

gA∗
cr(θ, xcn, Pn, xcp, Pp, X) = Dm∗

c(θ, xcn, Pn, xcp, Pp, X) +Dm′∗
c (θ, Pn, Pp, X) (8.74)

From the recuperator to the expander:

gAre(θ, xen, Pn, xep, Pp) = Dme(θ, xcn, Pn, xcp, Pp)−Dm′
e(θ, Pn, Pp) (8.75)

gA∗
re(θ, xen, Pn, xep, Pp, X) = −Dm∗

e(θ, xen, Pn, xep, Pp, X) +Dm′∗
e (θ, Pn, Pp, X) (8.76)

Through the cold piston:

gAoe(θ, Pn, Pp) = −Dm′
e(θ, Pn, Pp) (8.77)

gA∗
oe(θ, Pn, Pp, X) = −Dm′∗

e (θ, Pn, Pp, X) (8.78)

For solving the system again, one needs to determine at each point the side where
the greater mass flow occurs. To get this information the same method as the ideal
dual Stirling is applied with assuming one having the greater flow and the confirming or
rejecting the initial assumption based on the exit temperatures of the recuperator.

Assume that m < m∗. A system of nine equations and nine variables is formed. The
subscript "p" refers to the previous θ−1 step and "pp" to the double previous θ−2. The
variables containing the "A" are the unknowns of the system that need to be found.

Energy conservation at the recuperator.

gAcr(θ − 1, xcp, Pp, xcpp, Ppp)H(PA, Tk, xrA)

− gAre(θ − 1, xep, Pp, xepp, Ppp)H(PA, Th, xrA) =

gA∗
cr(θ − 1, x∗cp, P

∗
p , x

∗
cpp, P

∗
pp)H(PA∗, Tk, xrA∗)

− gA∗
re(θ − 1, x∗ep, P

∗
p , x

∗
epp, P

∗
pp)H(PA, ThoutA∗, xrA∗)

(8.79)

Helium 3 conservation cooler 1.

m3 = xcAmc(θ, xcA, PA)+xrAmr(θ, xrA,
Tk − Th

ln(Tk
Th

)
, PA)+xeAme(θ, xeA, PA) (8.80)
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Helium 4 conservation cooler 1.

m4 = (1− xcA)mc(θ, xcA, PA) + (1− xrA)mr(θ, xrA,
Tk − Th

ln(Tk
Th

)
, PA)

+ (1− xeA)me(θ, xeA, PA) +m′
c(θ, PA) +m′

e(θ, PA)

(8.81)

Helium 3 conservation cooler 2.

m3 = xcA∗m∗
c(θ, xcA

∗, PA∗)+xrA∗m∗
r(θ, xrA

∗,
Tk − ThoutA∗

ln( Tk
ThoutA∗ )

, PA∗)+xeA∗m∗
e(θ, xeA

∗, PA∗)

(8.82)
Helium 4 conservation cooler 2.

m4 = (1− xcA∗)m∗
c(θ, xcA

∗, PA∗) + (1− xrA∗)m∗
r(θ, xrA

∗,
Tk − ThoutA∗

ln( Tk
ThoutA∗ )

, PA∗)

+ (1− xeA∗)m∗
e(θ, xeA

∗, PA∗) +m′∗
c (θ, PA

∗) +m′∗
e (θ, PA

∗)

(8.83)

Helium 4 mass conservation at expander cooler 1.

(1− xeA)me(θ, xeA, PA)− (1− xep)me(θ − 1, xep, Pp) =

m′
e(θ, PA)−m′

e(θ − 1, Pp) + (1− xrA)mr(θ, xrA,
Tk − Th

ln(Tk
Th

)
, PA)− (1− xrp)mr(θ − 1, xrp, T rp, Pp)

(8.84)

Helium 4 mass conservation at compressor cooler 1.

(1− xcA)mc(θ, xcA, PA)− (1− xcp)mc(θ − 1, xcp, Pp) =

m′
c(θ, PA)−m′

c(θ − 1, Pp) + (1− xrA)mr(θ, xrA,
Tk − Th

ln(Tk
Th

)
, PA)

− (1− xrp)mr(θ − 1, xrp, T rp, Pp)

(8.85)

Helium 4 mass conservation at expander cooler 2.

(1− xeA∗)m∗
e(θ, xeA

∗, PA∗)− (1− x∗ep)m
∗
e(θ − 1, x∗ep, P

∗
p ) =

m′∗
e (θ, PA

∗)−m′∗
e (θ − 1, P ∗

p ) + (1− xrA∗)m∗
r(θ, xrA

∗,
Tk − ThoutA∗

ln( Tk
ThoutA∗ )

, PA∗)

− (1− x∗rp)m
∗
r(θ − 1, x∗rp, T r

∗
p, P

∗
p )

(8.86)

Helium 4 mass conservation at compressor cooler 2.

(1− xcA∗)m∗
c(θ, xcA

∗, PA∗)− (1− x∗cp)m
∗
c(θ − 1, x∗cp, P

∗
p ) =

m′∗
c (θ, PA

∗)−m′∗
c (θ − 1, P ∗

p ) + (1− xrA∗)m∗
r(θ, xrA

∗,
Tk − ThoutA∗

ln( Tk
ThoutA∗ )

, PA∗)

− (1− x∗rp)m
∗
r(θ − 1, x∗rp, T r

∗
p, P

∗
p )

(8.87)

Solving the above one gets the consistency of the mixture at each of the volumes
(xc, xr, xe, x∗c , x∗r, x∗e, the exit temperature of the recuperator of cooler 2 Thout∗ and the
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pressures of the two coolers P, P ∗.
If the exit temperature is evaluated to be outside the temperature range then the

initial assumption was wrong and the new system for m > m∗ needs to be defined and
solved.

Energy conservation at the recuperator.

gAcr(θ − 1, xcp, Pp, xcpp, Ppp)H(PA, Tk, xrA)

− gAre(θ − 1, xep, Pp, xepp, Ppp)H(PA, Th, xrA) =

gA∗
cr(θ − 1, x∗cp, P

∗
p , x

∗
cpp, P

∗
pp)H(PA∗, Tk, xrA∗)

− gA∗
re(θ − 1, x∗ep, P

∗
p , x

∗
epp, P

∗
pp)H(PA, ThoutA∗, xrA∗)

(8.88)

Helium 3 conservation cooler 1.

m3 = xcA mc(θ, xcA, PA) + xrA mr(θ, xrA,
Tk − ThoutA

ln( Tk
ThoutA

)
, PA) + xeA me(θ, xeA, PA)

(8.89)
Helium 4 conservation cooler 1.

m4 = (1− xcA)mc(θ, xcA, PA) + (1− xrA)mr(θ, xrA,
Tk − ThoutA

ln( Tk
ThoutA

)
, PA)

+ (1− xeA)me(θ, xeA, PA) +m′
c(θ, PA) +m′

e(θ, PA)

(8.90)

Helium 3 conservation cooler 2.

m3 = xcA∗m∗
c(θ, xcA

∗, PA∗)+xrA∗m∗
r(θ, xrA

∗,
Tk − Th

ln(Tk
Th

)
, PA∗)+xeA∗m∗

e(θ, xeA
∗, PA∗)

(8.91)
Helium 4 conservation cooler 2.

m4 = (1− xcA∗)m∗
c(θ, xcA

∗, PA∗) + (1− xrA∗)m∗
r(θ, xrA

∗,
Tk − Th

ln(Tk
Th

)
, PA∗)

+ (1− xeA∗)m∗
e(θ, xeA

∗, PA∗) +m′∗
c (θ, PA

∗) +m′∗
e (θ, PA

∗)

(8.92)

Helium 4 mass conservation at expander cooler 1.

(1− xeA)me(θ, xeA, PA)− (1− xep)me(θ − 1, xep, Pp) =

m′
e(θ, PA)−m′

e(θ − 1, Pp) + (1− xrA)mr(θ, xrA,
Tk − ThoutA

ln( Tk
ThoutA

)
, PA)

− (1− xrp)mr(θ − 1, xrp, T rp, Pp)

(8.93)

Helium 4 mass conservation at compressor cooler 1.

(1− xcA)mc(θ, xcA, PA)− (1− xcp)mc(θ − 1, xcp, Pp) =

m′
c(θ, PA)−m′

c(θ − 1, Pp) + (1− xrA)mr(θ, xrA,
Tk − ThoutA

ln( Tk
ThoutA

)
, PA)

− (1− xrp)mr(θ − 1, xrp, T rp, Pp)

(8.94)
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Helium 4 mass conservation at expander cooler 2.

(1− xeA∗)m∗
e(θ, xeA

∗, PA∗)− (1− x∗ep)m
∗
e(θ − 1, x∗ep, P

∗
p ) =

m′∗
e (θ, PA

∗)−m′∗
e (θ − 1, P ∗

p ) + (1− xrA∗)m∗
r(θ, xrA

∗,
Tk − Th

ln(Tk
Th

)
, PA∗)

− (1− x∗rp)m
∗
r(θ − 1, x∗rp, T r

∗
p, P

∗
p )

(8.95)

Helium 4 mass conservation at compressor cooler 2.

(1− xcA∗)m∗
c(θ, xcA

∗, PA∗)− (1− x∗cp)m
∗
c(θ − 1, x∗cp, P

∗
p ) =

m′∗
c (θ, PA

∗)−m′∗
c (θ − 1, P ∗

p ) + (1− xrA∗)m∗
r(θ, xrA

∗,
Tk − Th

ln(Tk
Th

)
, PA∗)

− (1− x∗rp)m
∗
r(θ − 1, x∗rp, T r

∗
p, P

∗
p )

(8.96)

The code above it conceptually very similar to the one defined for the ideal dual
Stirling. One issue that one faces when having to solve these systems of equations is that
due to having to solve over the equations of state which are really complicated functions.
This means that even by using different numerical models for the solution it is very
difficult to gain correct and continuous results at every angle of the system. In the graphs
presented below it will be seen that the overall behavior of the system is resembling the
behavior of the dual ideal Stirling model but there is a lot of noise in the data as at many
points the numerical algorithms fail for a solution.

The full code for the solution of the system is shown in Appendix D.3.

Figure 8.25: Pressure to total volume in 1D dual SSR with Helium 3-4
mix at cooler 1 with 180 deg phase difference
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Figure 8.26: Pressure to total volume in 1D dual SSR with Helium 3-4
mix at cooler 2 with 180 deg phase difference

The two graphs above one can see that the typical structure of a Stirling machine
exists, but the graph is a lot noisier than the previous examples. This is because the code
cannot correctly solve the equations numerically at all points. Despite the noise if one
is to observe these graphs as well as the following ones it can be seen that the overall
behavior of the system is mostly correct.

To understand more about the behavior of the system one needs to further look into
the evolution of the concentration of Helium-3 in the different parts of the system.



8.6. Dual Superfluid Stirling Helium 3-4 Mixture 175

Figure 8.27: Helium-3 concentration to angle in 1D dual SSR with Helium
3-4 mix at cooler 1 with 180 deg phase difference

It can be seen that the Helium-3 ratio of the system increases and peaks ones at
each cycle. This is the case not only in the recuperator but also on the expander and
the compressor as well with the consistency peaking around the same values. At first
this might sound counter intuitive as all the areas seem to be increasing their Helium-3
concentration at once. To understand this one needs to simply view this behavior in
comparison with the volume. As seen in the graph depicting the Helium-3 consistencies
at each of the regions as well as the volume as the cycle evolves, the concentrations are
maximized when the total volume enclosed between the pistons is minimized. This now
explains the behavior because as this volume is minimized more Helium-4 is out of this
volume while all the Helium-3 is still concentrated there. As such this means that the
overall concentration of Helium-3 in the system is expected to rise.
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Figure 8.28: Helium-3 concentration in Y1 axis, Enclosed Volume between
the pistons in Y2 axis against the angle in 1D dual SSR with Helium 3-4

mix at cooler 1 with 180 deg phase difference

Due to the difficulty of the code to provide exact solutions for all the points of the
system, while the solution is adequate for one to understand the overall behavior the
energy outcomes are not ideal to be based upon for the calculation of the cooling power
as would have trouble calculate accurate values for the work given that the pressure has
significant deviations. The best solution was gained by using the Levenberg-Marquardt
method [91].

Working similarly to eq.8.31 and 8.32 the cooling power and the COP can be calculated
in a similar manner to the previous chapter as they need to be established for the case
of the mixture as well like in normal working media like in [92, 93]. The values gained
by these calculations are: q=0.051 W/kg and COP=34.2%. These values are lower than
the ideal model which is to be expected due to the losses due to the osmotic pressure and
the overall better description of the system. In any case the outcomes of this code for the
cooling power and the COP are not suggested to be directly used due to the difficulties
of the solving the code. If a new numerical method is used to be able to solve all the
equations for all the points, then it would be advised for the code to be re-run.

In the following chapter an even more accurate representation of the model is to be
presented where a full CFD 3D analysis is proposed giving results that are much more
accurate not only numerically but being able to describe more adequately all the physical
phenomena as well.
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8.7 Conclusions on the 1D Superfluid Stirling Refrig-
erator chapter

In this chapter the knowledge gathered in the previous parts of this study considering
the EOS of Helium in its different forms is being applied to an important engineering
application.

Stirling cryocoolers are used in many cryogenic applications able to reach very low
temperatures. Usually Stirling engines work with Helium gas as working medium. Other
than that, they can to work with fluid Helium as well. A problem, though, arises when
the temperatures reach levels below the lambda temperature of Helium-4. At these tem-
perature ranges Helium-4 becomes a superfluid. This is problematic for the working of
the Stirling cooler as firstly the zero viscosity of the superfluid makes it able to escape
the pistons and additionally as the temperature lowers the Helium-4 becomes more and
more thermodynamically inert and as such more ineffective as a working medium. For
this reason, a different variant of the Stirling refrigerator is studied.

The key differences of the two variants are based on the introduction of superleaks to
the pistons and the use of an enriched in Helium-3 Helium mixture. At each of the pistons
a superleak is introduced which enables the superfluid part of the mixture to flow through
but blocks the normal fluid part. Usually this means that the Helium-3 is blocked by the
vycor glass superleak and superfluid Helium-4 passes through. The enriched mixture is
used as to give the machine more cooling potential even at temperatures that are well
below 1K, where usually the Helium-4 would not be able to function at all as a cooling
medium.

To describe this kind of Superfluid Stirling Refrigerator (SSR) multiple models have
been established and presented in this study, considering all the different phenomena.

Firstly, the simplest case is described for a single Stirling cryocooler working based on
the Schmidt model, where the working medium is simplified to superfluid Helium-4 being
considered completely inert and the Helium-3 considered to be behaving like an ideal gas.
These assumptions have been made in that subsection of the chapter basically to initiate
the study of the problem and compare the setup to other such models of the literature
which have all done similar assumptions in their description.

Then, trying to reduce the number of assumptions used in the model, the isothermal
and adiabatic models are both simulated for the 1D ideal system. It is figured out that at
these temperature ranges in the 1D model the adiabatic and isothermal model produce
almost the same results with minimal deviations between them. As such, it is shown that
in 1D Stirling models of these temperature ranges, irrespective of the rotational speed,
the isothermal model is sufficient for describing the system.

Moving forward one needs to start accounting for the losses in the machine. In a
typical Stirling machine, the regenerator is due for the largest parts of the losses. In
this temperature range, though, the regenerative properties of materials are unknown
and therefore no accurate regeneration models can be produced. For this reason, a dual
Stirling setup is used, where two Stirling coolers are conjoined, connected in the area
formerly of the regenerator which is now replaced by a heat exchanger, referred to as
the recuperator. The two coolers are working with a phase difference so that counterflow
occurs in the recuperator and the two streams exchange heat the same as to one stream
would to a normal regenerator. Solving this model in 1D a code was developed that is
able to find which side stream has the greater mass flow and which the higher temperature
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difference. Based on this the full evolution of the cycle is produced. Then the cooling
potential and the efficiency of the cycle are determined making sure to account for the
losses due to the different kind of flows that occur during the cycle.

As mentioned, the two Stirling coolers work in a phase difference. In the literature
this phase difference is always set to 180 deg. In this study, it was decided to investigate
this phase difference and find its optimal value. By rerunning the simulation for various
phase differences, the limits for the minimum and maximum phase difference are found as
well as the optimal phase difference of the system. By doing this simulation it was seen
that the 180 deg phase difference, while being a safe choice as it stayed well clear of any
kind of destructive parallel flow, it actually produces a very low efficiency for the cycle
and it is advised against using it in such cryocoolers.

All the existing models in the literature have worked with the aforementioned assump-
tions for the working medium. While these assumptions do produce an overall image for
the behavior of the system, in all actuality, they are gross simplifications of the physics
and thermodynamics of cryogenic Helium and as such it is considered that an accurate
model would have to work with the full EOS for Helium. Thus, throughout this study, the
first models of Superfluid Stirling Refrigerators have been implemented and published.

The equations of state used are the ones developed for Helium-3 Helium-4 and their
mixtures in the previous chapters. Following a similar trend with the ideal model, firstly a
single Stirling refrigerator is modeled. This model is presented mostly as to showcase the
basic Stirling cooling behaviors working with the full Helium 3-4 mixture. The outcomes
of this model are similar in their behavior to that of the ideal gas ones though their values
are different, as now phenomena like the osmotic pressure and the interactions between
the two isotopes are taken into account. In addition, by running this model one can see
that the plot of the concentration of the mixture to the volume is of great interest at
it presents an ovaloid behavior similar to the one expected by the pressure to volume
diagram.

Following this the full model for the dual Stirling refrigerator with the full Helium 3-4
equation of state was produced and presented. This was a similar model in concept to the
one developed for the ideal gas but it is seen to be much more mathematically intensive, as
for each point of a cycle two 9x9 non linear systems need to be solved containing multiple
terms of variables like the enthalpy, the density and the specific heat, which are defined
by equations with more than 200 terms each respectively. This leads to some noise and
clutter in the solution phase space, especially solving for the pressure. Despite this, one
is more than able to acquire significant information about the working of the system from
this model. The concentration of Helium-3 is seen to be increasing in all volumes at the
same time, being correlated mostly to the overall volume enclosed between the pistons
which hold all the available Helium-3. Overall, it can be seen that the efficiency and the
cooling power of this apparatus when compared to the ones of the ideal model are lower to
a degree which is expected because different losses like the ones from the osmotic pressure
are now incorporated in the system.
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Chapter 8 - Nomenclature
V Volume
P Pressure
N Number of particles
R Gas constant
Qc,Wc Cooling power
θ Angle of crankshaft
rp Pressure ratio
mx Mass in the x-volume
Dmx Mass difference in the x-volume
gAxy Mass flow between x and y volumes
COP Coefficient of performance
x Helium 3 concentration
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Chapter 9

Superfluid Stirling Refrigerator 3D
CFD

The superfluid Stirling models that have been provided thus far are able to describe the
phenomena and provide an adequate understanding of the cooling power and efficiency
of the system. Despite this, as it can be understood, being models in a single dimension
they can never provide a full representation of the system.

To fully understand and validate the results of the modelling of such cryocoolers all
the phenomena need to be incorporated in a simulation. Many phenomena especially
considering the fluid dynamics of the system in three dimensions are not able to ever be
properly described through an one dimensional model. In models of apparatuses working
on higher temperatures empirical mathematical models exist for describing the flow in
the regenerators etc, something that is absent in this temperature range.

For this reason, as the final part of the description of the Superfluid Stirling Refrig-
erator it was designed and simulated in a 3D CFD environment. The chosen software
for undertaking such a project has been ANSYS Fluent. This software was chosen for
multiple reasons. First of all, a lot of literature and knowledge exists in the design of
normal Stirling coolers in ANSYS Fluent, something that was useful in many instances
within the project. In addition, when compared to other software like Solidworks, it was
seen that the ANSYS Fluent gave the user a greater freedom into introducing parts to
the simulations through direct code in C++. That was very important as phenomena
of superfluidity would need to be incorporated in the system, something not originally
designed by the developers and as such the user interface would not be able to address.

So presented in this part of the study are the workings and the results of an SSR
through the ANSYS Fluent CFD modeling software. As in the previous models the core
principle of this system is the superfluid phase of Helium 4 at temperatures below the
lambda line. The designed superfluid Stirling refrigerator works in the same manner as
before, meaning like a typical Stirling cooler with the addition of superleaks at the piston-
heads. These superleaks block normal Helium but let Superfluid Helium pass through
freely. Again, because only Helium-4, due to their difference in the lambda temperature
will be in its superfluid range and be the one passing through the superleaks.

In previous 1D models of other researchers an approximation has been made for sim-
plicity, assuming that the Helium 4 being a superfluid, is totally thermodynamically inert
and is of insignificant thermodynamical value to the system, while the Helium-3 is used as
an ideal gas. These are assumptions that are addressed in this work and instead of using
such simplifications more complete models of Helium are used. In this simulation also in-
stead of a single Stirling engine, again based on the lack of knowledge for the recuperative
properties of the material, a dual Stirling machine is designed.
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9.1 Description of the 3D system
The designed apparatus is based on the dual cryocooler presented in chapter 8. Since
this has been, to our knowledge, the first ever model containing superfluids in a CFD
environment a simplified version of the recuperator was designed which consists only of
two passages, one accounting for each machine. In designing this recuperator, special care
was taken into keeping the volumes and the surface areas unchanged despite the changed
geometry of the system. The reason behind choosing a simple over a more complex
geometry for the recuperator, which might have provided better results, is that the fluid
dynamics of the superfluids are very complex. In the current model a laminar flow was
aimed for all of the flows in the recuperator. In superfluid turbulent flow is exceedingly
difficult to model as it is described by the existence of quantum vortices, something that
at this point was deemed unnecessary to be implemented in the CFD program. The
simulated cryocooler is depicted in the figure below.

In schematic 9.1, the different volumes/spaces of the apparatus are shown, with black
for the one cryocooler (Machine 1) and red for the other one (Machine 2). To provide
an easier understanding of the system and in order to correlate its operation with that
of a Stirling cryocooler, each of the two channels of the recuperator are indicated as a
regenerator (R-1 and R-2) in this part of the study. In subfigure (b) of 9.1 a view of the
front part of the engine, as well as a close view of the recuperator are shown in the two
below sketches of Figure 1 (left and right respectively). The heat exchanger next to the
expander is the heater, despite that it is of lower temperature compared to the cooler.
This is because as for the terms of the cooler’s geometry and operation to be in accordance
with these of a standard Stirling Engine. Moreover, it can be thought of as describing the
heat being drained from the cold box and transferred towards the system. As such, the
terms “heater” and “cooler” do not strictly describe the temperatures of the two volumes
but whether heat is absorbed from the environment or rejected from the cooler to the
equivalent box. A simple design was chosen for the two heaters and the two coolers as
their function is not complex. The fluid enters the recuperator from the heater or cooler
through a passage.

The geometry of the system is presented in the following table. All the data, such as
volumes and wet areas, are the same for the two machines so only one set of geometric
data needs to be presented to describe the apparatus.
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a)

b)

Figure 9.1: Design of cryocooler system.
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Compressor
Swept volume 17.74 cm3
Clearance volume 8 cm3
Diameter 47.5 mm
Cooler
Volume 15.88 cm3
Length 8.9 mm
Heater
Volume 12.44 cm3
Length 9.1 mm
Expander
Swept volume 9.39 cm3
Clearance volume 11.62 cm3
Diameter 41.6 mm
Recuperator channel - Regenerator
Volume 21.18 cm3
Wetted area 101.6 cm2
Length 200 mm
Width 2.38 mm

Table 9.1: Geometry of the Stirling refrigerator

The volumes compressor and the expander are obviously changing throughout the
cycle. The table above describes their initial values at the start of the cycle. For the
values during the cycle the volumes are defined by user defined functions inserted in the
system. The UDFs for the different runs of the system are a given in the Appendix E.

For the simplest case of a 180 deg phase difference between the two coolers the volumes
are showcased below:
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Figure 9.2: Volume fluctuations of cooler 1

Figure 9.3: Volume fluctuations of cooler 2 with 180 deg difference
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9.2 Setup and Simulation
To create the mesh of the system some in-built tools of the ANSYS Fluent software
were used. By utilizing the different options, it was concluded that the best results are
achieved by using the ANSYS Mesh calculator. The used grid consisted of about 4620000
nodes and 972000 elements, as seen in figure 9.4. The grid quality though has improved
compared to the first publication of this study in [42], by using hexahedral elements on
the pistons and the heaters and coolers, but not limiting the system in the recuperator.
This ends up giving a grid quality of close to 84%, improved from the prior 75%. By
previous work of the authors Rogdakis et al [94], these numbers are deemed satisfactory
to produce noteworthy results.

Figure 9.4: Generated computational mesh from ANSYS Fluent Mesh
generator

The designed cooler of the simulation runs at a frequency of 1 Hz, or 60 rpm. In
most of the CFD simulations related to Stirling Engines a turbulent model is suggested,
due to the turbulent flow even at relatively low rotational speed [85]. However, as the
operating frequency is very low in conjunction to the extremely low temperatures and
the simplicity of the geometry the laminar model was selected. The high temperature of
the cycle as before is Tk=1K and the low Th=0.4K. For the adjacent walls of the heat
exchanges are set to have constant temperatures in the program equal to Tk and Th
respectively. In order for the wall temperatures to be constantly in the desired values,
external convection is applied to the system. The temperature of the respective freestream
is equal to the desired temperatures (0.4 and 1 K for heaters and coolers respectively).
A heat transfer coefficient of a large value is implemented between the heat exchanger
wall and the external freestream (103-104 W/(m2·K)) for the temperature to steady. In
addition, because of the cryogenic low temperatures the default properties for the working
gas of the program cannot be applied. The viscosity, conductivity of He-3 was obtained
by [71]. As for the heat capacity and the density tables created by the EOS defined
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in chapter 6 were inserted in the program. All the solid parts (walls) we defined to be
made of a Kapton Epoxy composite. The properties of Kapton and Epoxy in the studied
temperatures were as previously defined by the values by [88] and [89]. Each cycle is
divided in 5760 timesteps. This means that every degree of crank angle is divided into
16 timesteps. The timestep size is equal to 1.736E-04 s. Based on the work of Rogdakis,
Bitsikas et al[94] it was deemed that smaller timesteps lead to faster convergence and
more accurate solutions. Because of the low frequency, each cycle is divided in a high
number of timesteps so that the timestep is kept to a small value. Results were obtained
every 0.5 deg. The data, along with parameters related to the simulation are listed in the
table below.

Model Laminar
Freezing freestream temperature 0.4 K
Cooler freestream temperature 1 K
Frequency 1 Hz
Solver Type Pressure-Based
Algorithm (Pressure-Velocity Coupling) SIMPLE

Spatial Discretization

Gradient Least Squares Cell Based
Pressure Second Order
Momentum Second Order Upwind
Turbulent Kinetic Energy First Order Upwind
Turbulent Dissipation Rate First Order Upwind
Energy Second Order Upwind

Time Step Discretization Second Order Implicit

Residuals

Continuity 5E-04
X-velocity 5E-04
Y-velocity 5E-04
Z-velocity 5E-04
Energy 1E-08
k 1E-03
ϵ 1E-03

Number of time steps per cycle 5760
Time step 1.736E-04 sec
Iterations per time step 100

Table 9.2: Solution parameters

9.3 Optimization of the calculating procedure
The first runs for this case closely followed the initial trials presented in [42]. In these first
runs a large number of steps and iterations had been chosen as to assure that the machine
would be described and calculated for in enough detail. Each 360° cycle was decided
to be divided in 5760 timesteps of 1.736E-04s each, with 100 computing iterations per
time step. This setup, while it provided results very close to the expected ones from the
1D model, was extremely time consuming. Thus, for faster convergence of the steady
state multiple initializations during different stages (leading to uncertainties about how
many cycles would occur before the steady state would have been reached in a fully
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simulated scenario) as running many cycles would be all but impossible due to the very
time-consuming calculations. For this reason, now that many cases needed to be run, since
accurate results existed from the full-scale time-consuming computation, it was decided
that the calculating procedure ought to be optimized and made a faster. The mesh was
initially changed but it was quickly seen that any simplification in the meshing would
directly result in the divergence from the previous results and loss of mesh quality. Thus,
the iterations and timesteps were investigated. Firstly, the convergence per iteration
was studied and it was seen that typically 5 to 10 were enough to reach a convergence
of more than 99% per timestep, therefore 10 timesteps were used for all calculations
afterwards. Secondly the timesteps were the final part to be investigated. The variation
of the timesteps, especially considering the changes in the speed of the machine that are
going to be run in the different cases, had to be investigated per case, as to achieve both
adequate convergence with the previous results but also make sure that as the speed is
increased no negative volumes occur in the mesh causing the program to crash. Therefore,
the timesteps used where from 10E-03 s to 5E-03s with the number of timesteps ranging
from 500 to 2000 depending on the Hz of the case as to make sure that multiple cycles
are computed, enough to reach the steady state of the system. Overall, this procedure
provided results that were almost directly identical to the initial setup while taking a
fraction of the time to compute reducing the overall duration of the calculations by over
80%.

9.4 Results and Phase difference optimization
The aforementioned model has been run for different phase differences in order to study
the behavior and outcomes of the cycle and cross-validate the results of the 1D model for
the optimal phase difference.

9.4.1 Case - 180 deg phase difference 1Hz

This is the initial case where the two Stirling coolers run one directly opposite of the
other. This symmetry of the cycle though can be seen not to be directly translated to the
mass flow or the mean pressure plots. The volumes of the different regions of the cooler
as found as:
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Figure 9.5: Volumes for 180 degree phase difference

The mean pressure of the system is:

Figure 9.6: Mean pressure for the two coolers for 180 deg phase difference
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While the pressure for the different part is:

Figure 9.7: Pressure for the different volumes of cooler 1 for 180 degree
phase difference

In addition to the pressure the pressure drop is also found for the run of the system.
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Figure 9.8: Pressure drop for 180 deg phase difference

The temperatures of the system can be seen to have a similar behavior to the 1D
adiabatic example.
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Figure 9.9: Temperatures of the apparatus for 180 deg phase difference

To understand the behavior of the system probably the most important values to look
at on each of the cases is the mass flows. The mass flow for this plot can be seen as:
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Figure 9.10: Mass flow rate in the recuperator for 180 degree phase dif-
ference

As it can be seen from this graph no destructive parallel flow occurs a result similar
to the one of the 1D model.

The machine is seen to be converging after the first cycle and by getting the energy
data from the program the cooling power and efficiency can be calculated.

COP (180deg, 1Hz) =
Qh

Wtot

= 25.88% (9.1)
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9.4.2 Case - 140 deg phase difference 1Hz

0.005s timestep duration, 1600 timesteps

 

Figure 9.11: Mass flow rate in the recuperator for 140 degree phase dif-
ference

In this case, as it is expected from the 1D previous simulation destructive parallel flow
occurs in the cycle and therefore the COP is expected to be much lower, as it is the case:

COP (140deg, 1Hz) =
Qh

Wtot

= 11.2% (9.2)

This difference is to be expected as near the 2.6s point it can be seen that both flow
rates are positive, meaning that the fluid in both coolers is moving from the hot side to
the cold side and dumping ll the heat in the cold box, canceling a great part of the overall
cooling power of the cycle.
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9.4.3 Case - 152 deg phase difference 1Hz

0.005s timestep duration, 1600 timesteps.
In this scenario the 152 deg phase difference is checked. This particular case is checked

as in the 1D simulation it was shown that at 152 deg phase difference the optimal COP
appeared.

 

Figure 9.12: Mass flow rate in the recuperator for 152 degree phase dif-
ference

In the 3D simulation of this phase difference it can be seen that the behavior of the
cycle is much better than the previous one of 140 degrees but in this cycle as well a very
small amount of destructive parallel flow is detected again around the 2.6s point. This
time the value. In this case the parallel flow is small enough that the system produces an
adequate amount of cooling power despite this, but as it will be shown in the next cases
when no parallel flow occurs the cooling power and efficiencies are even higher.

COP (152deg, 1Hz) =
Qh

Wtot

= 26.4% (9.3)
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9.4.4 Case - 160 deg phase difference 1Hz

0.005s timestep duration, 1600 timesteps
The next case of 160 deg phase difference raises the phase difference a bit to try and

completely block any formation of the destructive parallel flow.

 

Figure 9.13: Mass flow rate in the recuperator for 160 degree phase dif-
ference

In this case it can be seen that absolutely no parallel flow occurs and therefore the
cooling potential and the efficiency are seen to be greater than the previous cases.

COP (160deg, 1Hz) =
Qh

Wtot

= 30.2% (9.4)
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9.4.5 Case - 200 deg phase difference 1Hz

0.005s timestep duration, 1600 timesteps
When recalling on the behavior of the COP in the 1D model one remembers its

parabolic behavior, centered around the 180 deg mark. As such, cases with phases differ-
ence higher than 180 deg need to also be checked.

 

Figure 9.14: Mass flow rate in the recuperator for 200 degree phase dif-
ference

In this case it can be seen that neutral parallel flow occurs in the system.

COP (200deg, 1Hz) =
Qh

Wtot

= 29.8% (9.5)

Through the calculation of the efficiency in this case one can clearly see that the effect of
the nuetral parallel flow in the system is minimal.
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9.4.6 Phase optimization results

Through the presented plots above one can see that the 180 deg phase difference produces a
low overall efficient but as one too far away from it, where destructive parallel flow occurs.
Thus, the parabolic trend keeps hold in the 3D simulation as it can be seen through the
graph and the table below. Two differences here that ought to be mentioned between this
model and the 1D simulation. The limits for the avoidance of the destructive parallel flow
are smaller, from 152 to 160 deg and from 209 to 200 deg. Additionally, the efficiencies
are quite a smaller than the 1D model. These differences are to be expected as in a
3D simulation all effects that have to do with the fluid dynamics and heat transfer are
being calculated and accounted for, rather than the limiting view, or complete inability
to predict in some cases, through the 1D model. Overall, the fact that the same type of
curve for the COP arises is a result that is satisfactory as both models converge to it.

 

Figure 9.15: Comparison of the 1D results (red line and black dots) to
the 3D results (purple dots) for the COP to the various Phase differences
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Phase Difference (deg) COP (%)
140 11.2
152 26.4
160 30.2
170 27.6
180 25.8
190 27.1
200 29.8

Table 9.3: Phase difference to COP values

9.5 Operational speed optimization
After finding the optimal phase difference for the 3D model, the next step of this study of
the model is to evaluate rotation speed which the Stirling cooler is most effective at. For
doing this, one has to take into account multiple criteria when calculating the different
cases. First of all, as the speed increases, the system will behave closer to the adiabatic
model instead of the isothermal, since generally with the increase of speed in Stirling
engines one tends more to the adiabatic model than to the isothermal [84]. In the CFD
model this is not an issue as, through the way that the system is modelled, its behavior is
based on the adiabatic model from the beginning as seen in figure 9.9, where the standard
adiabatic behavior is displayed, similar to 8.5 but with a higher temperature fluctuation.

This fact in most cases only has an impact on the COP of the cooler because of the
different heat transfer in the heater and cooler, but in our case a more serious consideration
arises. Helium 4, which is the bulk of the Helium in the machine, is said to be fluid-
dynamically inert as a superfluid (meaning non-viscus and in the ground state) and despite
being considered non-inert thermodynamically, the code still doesn’t account for its fluid
dynamics behavior as it is considered to be fully a superfluid. When the temperature gets
higher and closer to the lambda line, the quasiparticles of the superfluid begin experiencing
noticeable interactions and therefore the assumptions of superfluidity for the entirety of
Helium-4 cannot hold true based on eq.3.29, and the whole system thermodynamically, as
well as mechanically due to the superleaks, would have to be defined again and redesigned
to account for these interactions.

Moreover, one must also be careful when applying the higher speeds as the turbulence
might start occurring. If turbulence occurs, its description in the superfluid is increasingly
difficult becoming even a point of study among researchers even today, as quantum vortices
occur according to [94]. A description of such a phenomenon while theoretically possible,
would be very difficult at this point to integrate into a CFD simulation and would add
so much complexity that the solution by the program, if at all possible, through such a
setup, would be extremely time consuming.

Based on the EOS of Helium-4 that has been presented in this study 3.41, one can see
that even with the overreach of temperature from the Tk reaching up to nearly 1.3K, the
superfluid ratio is around 95% there. Given the run simulations presented below it was
established that in the region of up to 30Hz the temperatures do not exceed the value
of 1.4K and therefore the effects of the phonon-roton interaction do not occur. This is
because even at 1.4K the superfluid ratio is 94.2% for the given pressure from eq.3.29 and
the working medium stays at a temperature range above 1.2K for a very small amount
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of the cycle 9.9. For the case studies mentioned below the effect normal fluid part of
Helium-II should be easily negligible. For operating speeds above 30Hz this should be
checked again as the speed rises and so do the deviations of the temperature.

Moving on, different cases are again going to be simulated in order to find the optimal
working speed of the machine regarding the COP as well as power. The previous study
has shown the optimal phase difference to be 160 deg, and thus this is the one that is
going to be used in the rest of the cases. Due to the different speeds of the pistons now,
one has to alter the timesteps and iterations of every case in order to stay clear of negative
volumes occurring in the matrix of the program during the evaluations and causing an
error.

9.5.1 Case - 160 deg phase difference 2Hz

2Hz, 0.005 s timestep duration, 800 timesteps

 

Figure 9.16: Mass flow rate in the recuperator for 160 degree phase dif-
ference at 2Hz
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9.5.2 Case - 160 deg phase difference 10Hz

Figure 9.17: Mass flow rate in the recuperator for 160 degree phase dif-
ference at 10Hz
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9.5.3 Case - 160 deg phase difference 15Hz

Figure 9.18: Mass flow rate in the recuperator for 160 degree phase dif-
ference at 15Hz
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Figure 9.19: Mass flow rate in the recuperator for 160 degree phase dif-
ference at 20Hz

As it can be seen for the plots showcasing the mass flow of the different cases for the
rotational speeds of the coolers the overall apparatus reaches a convergence quite quickly.
In fact, one can observe that the convergence of the cycle seems to be always taking place
around the 0.5s mark. While the number of cycles differs based on the rotational speed
the overall time seems to be relatively constant for the convergence of the system.
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9.6 3D simulation overall results
Based on all the run cases now one can observe the overall behavior of this cooler and
find the optimum working conditions for it as well as the create the power and efficiency
curves.

Speed (Hz) COP (%) Cooling Power (mW)
1 30.2 0.542
2 29.7 0.842
5 36 1.569
10 38.2 2.219
15 32 2.086
20 28.1 2.374

Table 9.4: Speed COP and Cooling power values for the different cases

 

Figure 9.20: Cooling power to operational speed plot
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Figure 9.21: COP to operational speed plot

From the diagrams above, judging from the COP and power the optimal speed for
the cryocooler is chosen to be at 10Hz, where the power is nearly at its maximum value
and the COP, seeing it clearly from the trendline, is also at its maximum and decreasing
rapidly as one increases the speed. As the COP reaches its maximum value at 10Hz and
the power is at almost maximum as well at that speed it was chosen to not increase the
operating to more than 20Hz as to also negate the danger of running into turbulent flows
which, as mentioned, the current model is not able to simulate.
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9.7 Conclusions of the 3D Superfluid Stirling Refriger-
ator chapter

In this chapter the work for simulating as accurately as possible the superfluid Stirling
refrigerator is continued. No 1D model would ever be able to describe all the thermody-
namical and fluid behavior in a apparatus. For this reason, it was decided for a full 3D
CFD simulation of the system to be undertaken.

The ANSYS Fluent software was chosen to be used for designing and simulating the
system. This software was chosen based on its ability to design and solve complex geome-
tries and accept user defined functions used for incorporating the data for the description
of the superfluid. To our knowledge currently this work and the publications of the author
are the only published simulations of a system in a CFD environment with a superfluid
as a working medium.

Over this project, first the geometry was designed and then the mesh and grid of the
system were set. Having set the geometry, the moving parts are introduced with the
UDFs, as well as the data for the thermodynamics of the superfluid. Additionally, using
directly the program’s interface, the heat transfer properties of the materials used were
introduced.

Running this simulation, the values for the pressures and the temperatures throughout
the system were gained, as well as the pressure drops. Overall, by using this data the
cooling power and efficiency of the cycle were calculated. Through this scenario it was seen
that at a 3D simulation the behavior of the system more closely resembles an adiabatic
Stirling behavior than an isothermal one due to the fluctuations of the temperatures at
the cooler and the heater.

Thus, a fully working design for the CFD analysis of an SSR was created and its
values seem to be in general agreement with the expected ones. Using this design, it was
decided to run some case studies in order to find the optimal phase difference and working
conditions of the machine.

For doing this, firstly, different simulations were run for the various phase differences
between the engines. The results of these runs were in excellent agreement with the
1D code validating both the parabolic behavior of the efficiency compared to the phase
difference and the limits for the destructive parallel flow occurring and canceling out
a large part of the cooling potential of the cycle. It was found that the optimal phase
difference was at 160 deg, very close to the 152 deg predicted by the 1D model. Afterwards,
more simulations were run considering the speed of the cooler. In the available literature
all the 1D models that exist run at or near 1Hz. Thus, the initial simulation was also run
at 1Hz. Following that it was decided to run the cooler at higher speeds and study its
behaviors.

It was seen that at higher speeds it took the system more cycles to converge to a steady
state, but it was also observed that the total amount of time needed to reach this steady
state remained relatively unchanged in the order of 0.5s. Through these calculations
the first Cooling power-to-Speed curve and COP-to-Speed curve of such an engine were
produced. It was seen through them that the optimal rotational speed of the cooler is
at around 10Hz. This is because at this speed the efficiency is near its maximum and
the cooling power is of a value near the maximum, too. The simulations were capped at
20Hz and not moved to higher speeds as to avoid greater fluctuations of the temperatures
something that would mean that the phonon-roton interactions would have to be taken
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into account and turbulence might start to form in the system. Even so, it is seen through
the efficiency to speed graph that the trendline suggests a lowering efficiency value with
any further increase of the rotational speed and as such it is expected that even if one
were to incorporate the aforementioned phenomena in the system, it would be seen that
higher rotational speed would lead to a worse overall performance.





209

Chapter 10

Innovation Points of the study

This work has been in a large part basic research, as through it a lot of new knowledge
was produced in order to bridge gaps in the existing literature and to create applied the-
oretical physics concepts in never attempted before engineering applications. In the first
steps of this research the initial aim was to go through the equations of state for Helium
and then using them to dive deeper in the engineering applications. It was quickly discov-
ered, though, that despite the existing work in the study of Helium, the field of Helium
cryogenics is not well defined and documented. Superfluidity as a phenomenon, while it
is well documented in its macroscopical behaviors and also explained in a microscopical
manner, lacks to a high degree a connection of the two. Additionally, when the EOS
of the different Helium isotopes and their mixture is concerned, while a lot of knowl-
edge exists, there has been no overall consistent equation of state governing the different
phases of Helium, nor a physical statistical model that can be implemented to describe
the behaviors of both the fluid and the superfluid. This can be seen even more clearly if
one is to look into the literature for the thermodynamic maps at cryogenic temperatures.
Despite the many existing EOS of state for the different regions one is not able to find
an overall map based on an overall equation of state for either Helium-4 nor the Helium
3-4 mixture. For this reason a very big part of this research was dedicated to creating the
needed models and equations and create an overall baseline for working with Helium at
cryogenic temperatures.

In particular, the innovation points considering the thermophysical modelling of He-
lium in this research have been:

• Collecting and analysing all the available data for Helium-4 from the literature,
cross-correlating them and developing a full set of reliable and self consistent data
covering all the phases of Helium-4 below its liquefaction point.

• Creating an equation of state based on this dataset, which is accurate to a degree
much higher than any previously published attempts and able to describe all the
phases of Helium-4. This equation of state is consistent with not only the thermo-
dynamic values but also the different derivatives, and therefore able to generate the
fundamental equations for Helium-4.

• Using this equation of state to create the first thermodynamic map of cryogenic
Helium-4, including properties like the superfluid ratio as for it to be in a useful
form for engineering applications. The early stage of the work in the Helium-4 EOS
has been presented in the International Cryogenic Engineering Conference - Interna-
tional Cryogenic Material Conference ICEC27-ICMC2018 (An improved Equation
of State for Superfluid Helium 4). The later stages of this work containing the full
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equation of state and thermodynamic maps have been presented at IMECE2021 and
published by AMSE (Continuous Equation of State and Thermodynamic Maps for
Cryogenic Helium 4)

• Creating a full statistical model cryogenic Helium-4 and describing the transition to
superfluidity through the partition function and entropy giving a thermodynamic
and statistical connection between the microscopic and macroscopic view of super-
fluidity as well as bridging the two-fluid approach with the quasiparticle approach
of superfluidity. This work has been presented at IMECE2021 and published by
ASME where it received the Edward F. Obert award for an outstanding paper in
thermodynamics (Studying the Superfluid Transformation in Helium 4 through the
Partition Function and Entropic Behavior).

• Creating a statistical model for superfluidity in Helium-3 by applying the BCS
theory of Cooper pairs in conjunction with the entropic approach developed for
Helium-4. The final version of the entropic approach to superfluidity of Helium-4
and the application to Helium-3 is published in the Journal of Energy Resourses
Technology of the ASME (Thermodynamic Correlation of the Entropy of Bose-
Einstein Condensation transition to the lambda points of Superfluids).

• Gathering all the available data for the Helium 3-4 mixture and creating an overall
self-consistent dataset. Then based on this dataset a continuous EOS describing all
the different phases and phenomena including the osmotic pressure able to be used
in high accuracy applications has been created. Using this equation of state the first
thermodynamic maps of Helium 3-4 mixtures have been created and published. This
work has been presented at IMECE2021 and published by ASME (Thermodynamic
Behavior and Equation of State for Cryogenic Helium 3-4 Mixtures)

• Developing a novel physical model for a different approach to supersolidity and
describing up to a point the behaviors and the results of experiments claiming to
have observed supersolidity in solid Helium. This work has been presented in the
International Cryogenic Engineering Conference - International Cryogenic Material
Conference ICEC27-ICMC2018 (A different approach at solid and supersolid He-
lium).

Through the above it can be seen that a considerable amount of basic research has been
done and a significant amount of knowledge produced in the area of the thermophysical
behavior of cryogenic Helium.

The second part of this dissertation is concerned with applying this knowledge to
engineering applications. More specifically, different versions of cryocoolers have been
designed and modeled aiming to achieve temperatures as low as 0.3K. The modelling of
cryocoolers at these temperatures is an area with limited knowledge especially considering
the full simulations, and in most cases grossly simplified models are used to describe
them. As such a basic aim of this research has been to produce a model that is much
more accurate than the existing ones and describe these cryocoolers to a more advanced
degree. Emphasis has been given not only on the final results of the models and the
behaviors of the Stirling cryocoolers but also to the in-depth description, understanding
and application of different phenomena taking place in the realm of superfluids when
applied to engineering applications and models. As such the innovation points and novel
ideas and concepts of this research considering the cryocoolers have been:
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• Showcasing that at these temperature ranges the isothermal models seem to be
converging with the adiabatic ones of the Stirling cycle

• Creating a full model of a superfluid Stirling refrigerator in 1D incorporating the
full equation of state of the Helium 3-4 mixture, including the phenomenon of the
osmotic pressure at the superleaks.

• Finding the optimal phase difference for the superfluid Stirling refrigerator appara-
tus and give a thorough explanation through the flows and cooling outcomes of the
model. This work has been presented in the IMECE2019 and published by ASME
(Thermodynamic modelling of superfluid Stirling cryocoolers).

• Creating the first published 3D CFD simulation of a cryocooler with a superfluid
as a working medium. Using the ANSYS Fluent software the Helium 3-4 mixture
properties have been introduced to the system and with some key modifications,
such as being able to find the concentration of the mixture using the low depen-
dency of the volume on the consistency of the mixture, solving for the full cycle
and convergence of the system. This work has been presented in IMECE2019 and
published by ASME (Computational Analysis of Cryogenic Stirling Refrigerator).

• Using the ANSYS Fluent CFD software to run different models for superfluid Stir-
ling cryocoolers and finding their optimal working conditions considering the phase
difference as well as the rotational speed. Through these simulations the first cool-
ing power-to-rpm and efficiency-to-rpm curves for a superfluid Stirling cryocooler
have also been produced. This work is currently under submission for publication
(Computational Analysis, 3D Simulation and Optimization of Superfluid Stirling
Cryocooler).

Overall it can be seen that also in the area of crycoolers a significant amount of new
knowledge has been gained from this research considering not only the direct applications
of the models, such as showcasing a very accurate model of a Stirling cryocooler in a CFD
environment able to reach temperatures for cooling type-II elemental superconductors or
be part of a cryocooler for a quantum computer. Also some very key aspects and methods
that one can utilize are showcased in order to work with superfluids as working media in
low temperature engineering applications.
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Chapter 11

Conclusions and Discussion

After reading this study the reader hopefully will have gained an in-depth understanding
about cryogenic Helium, its physics, different phases and its applications as a working
medium for cryocoolers. Through the first parts of this study the full equation of state
for Helium-4 has been presented. It is seen that during this work equations for the
energies of the quasiparticles have been derived that are of a much higher accuracy than
the existing ones. All the available data have been interconnected into an overall self-
consistent dataset. Based on this dataset a dynamic code for the equation of state is
developed, where the provided accuracy is seen to be much higher than any existing
equations in the literature and most importantly it covers all the different phases of
cryogenic Helium-4.

While researching the behavior of superfluid Helium-4 a full statistical model for the
thermodynamic behavior of it as superfluid has been developed. This novel model has
given the opportunity to describe the phenomenon of superfluidity macroscopically and
also it can be seen to bridge the two existing but separate theories of superfluidity, the
two-fluid approach and the quasiparticle approach. Furthermore, as it was seen through
this model, the connection between superfluidity and Bose-Einstein condensation has been
shown as the lambda transition is seen to correspond with the Bose-Einstein condensa-
tion temperature of the theoretical ideal part of the Helium-4. Thus, the general idea
stating that superfluidity is a degenerated form of Bose-Einstein condensation is seen to
be confirmed in this way as the superfluid is described as an aggregate of a Bose-Einstein
condensate part and an interacting part. Also, through this procedure the existence of
an interatomic potential at absolute zero is shown confirming the predictions of London.

The same principles are applied to Helium-3, where using a different mathematical
model the BCS theory of Cooper pairs is applied first and then the statistical behavior of
the ideal and non-ideal parts of the Cooper pair gas are described. Based on this it is shown
that the lambda transition of Helium-3 as well, can be predicted through this method
and also the R2 universal constant of superconductivity is almost directly predicted,
supporting the correctness of the application of this theory in Helium-3. Unfortunately,
compared to Helium-4 there is a massive shortage of available data for Helium-3 due to
its rarity. Thus, the full thermodynamic analysis of the model considering the entropic
transitions cannot be at this point computed. When new data arises, this part of the
research will be continued, in order to pursue further knowledge about the applications
of the procedure to Helium-3 and if all the phenomena as in Helium-4 are conserved an
escalation of this model to a full model for predicting superfluidity can be formed.

Superfluids have been an intricate and controversial area of study with great dis-
agreements between respected scientists considering their workings and physical expla-
nations. This controversiality about superfluidity has subsided as, microscopically, the
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phenomenon has been explained in the past decades. An even more controversial issue
in the cryogenic community of Helium has arisen in recent years, though, the issue of
supersolidity. Supersolidity has been theorised for many years, but has only be proposed
to have been experimentally observed in 2004. This experiment has had a great number
of doubts placed upon it by members of the cryogenic community, while it has been seen
as success by others. During this study a theory about supersolid Helium has been cre-
ated and was presented by the author in the world’s biggest cryogenic conference, causing
some controversy there as well, where support was shown by some of the most esteemed
scientists in the field, but also reactions saying that the theory is based on a wrong exper-
iment were expressed. The timing was not been in our favor as only a few months after
this presentation a new experiment had arisen which further supported the existence of
supersolidity. The developed model has been presented in this study but due to the still
high controversiality of the issue it was decided to leave the completion of the full model
for a later date, when the waters around supersolidity will have settled. It is the opinion
of the author that this time is not far, as the results of the latest experiments are such that
leave little doubt about the supersolidity. Thus following this dissertation, the author will
continue to pursue the explanation of superfluidity as a phenomenon and apply the theory
to the results of the latest experiments to establish or maybe even disprove the efficacy
of the theory. Thus far, the presented theory of supersolidity stating that a supersolid
is formed due to the formation of a superfluid of the vacuums of the crystallic lattice of
solid Helium-4 has shown promising results against the data of the 2004 experiment.

Natural Helium as it has been mentioned, consists of the two isotopes of Helium-3
and Helium-4. The two isotopes as it has been seen have vastly different behaviors. Also,
they have vastly different natural percentages as well with Helium-4 being massively more
abundant. Helium-3 becomes a superfluid at much lower temperatures and as such it is
of much greater value for some applications. The number of applications that work with
solely Helium-3 as their working medium are few and far between due to its prices. Also,
its use as a fuel for nuclear fusion driving this price even higher means that there is a
dire need to replace pure Helium-3 as a sole working medium in the cryogenic community.
For this reason, mixtures of Helium enriched with Helium-3 are used and especially in
applications below the lambda line of Helium-4 are highly dependent on Helium-3 to
achieve their cooling power. Thus, in this research a thorough gathering, sorting and
correlation of all of the available data for Helium 3-4 mixtures is done in order to develop
a full set of equations of state and thermodynamic maps for mixture. This equation of
state is not only based on the existing data for Helium 3-4 mixtures but also uses the
previously developed equations of state for the pure Helium-3 and Helium-4 isotopes,
achieving in this way much greater accuracy to the real values compared to other existing
equations, while it is continuous through the various phases of the mixture. Special care
was given to make this equation of state usable for simulations and CFD applications,
where variables like the superfluid ratio, the chemical potential and the osmotic pressure
have been included. Based on this equation the first full set of thermodynamic maps for
Helium 3-4 mixtures have been created and published, where it has been presented in this
study a sequence of 3D and 2D contour in order to depict a 4-dimensional picture in 2
dimensions.

At that point of the study the equations of state of both the isotopes and the mixture
were established as well as the physical behaviors of the different substances. As such the
final part of this study could be initiated, where these extended models, very accurately
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describing the behavior of cryogenic Helium, could be implemented into applications.
The chosen application that this study has focused on has been the superfluid Stirling
refrigerator where a full and comprehensive analysis has been presented. The present
analysis can also provide invaluable knowledge about how one can handle and model
cryogenic Helium and superfluids in general in fluid mechanics simulations and introduce
them in computing software like ANSYS or Solidworks.

The first part of the cryocooler simulations has been to follow the footsteps of previous
researchers and modeling an 1D single isothermal Stirling cooler with an ideal gas as its
working medium. It is the opinion of the author that such a model, while it has been
repeatedly published by researchers working on SSRs is deeply flawed and offers little
valuable information, as it can be seen when its results are compared to later and much
more accurate models of this study. The reason that it has been included in this study
has merely been as a starting point, where the initial data could be compared to previous
attempts. Following this, the deviations between the adiabatic and isothermal models of
a Stirling cooler at these temperatures are investigated where it was shown that very little
difference exists between them and as such the isothermal model will be used from that
step onward.

Due to the lack of the data for the regenerative properties of the materials at such
low temperatures a different design of Stirling cooler is used where two opposed Stirling
coolers are used connected with a heat exchanger replacing the regenerator. Based on
this design models, the SSR’s behavior has been presented initiating with the ideal gas
model followed by the first published model of a CFD simulation using the full equation
of state for the Helium 3-4 mixture. During these models the optimal phase difference
has been found as well as the efficiency and the cooling power of each apparatus.

In the last part of the study this simulation was moved even more forward where a
full 3D CFD model was designed and simulated in ANSYS Fluent. To our knowledge
this has been the first published model of any superfluid ever being modeled in a CFD
software. Within this model phenomena that have been previously impossible to describe
are shown, for instance the effects of the osmotic pressure and the mixing properties. Also
based on this simulation, the first cooling power-to-rpm and efficiency-to-rpm curves have
been derived and presented finding the optimal working points for such a cooler.

Overall, it is hoped that the reader will have gained an in-depth understanding about
the working of cryogenic Helium and this work can serve as a reference point for equations
of state, data points as well as methodologies for working with Helium and superfluids in
general. Additionally, through the application of the full model of cryogenic Helium to
the SSRs hopefully the reader will have a complete understanding of these apparatuses,
while in parallel they will have understood how cryogenic Helium and superfluid can be
worked with and included in simulations of other applications as well.
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Chapter 12

Future work

This being a dissertation focused on basic research, it has countless possibilities for further
elaboration and future applications. Some of the key points that are suggested to be
followed by anyone reading this research and seeking to move it forward are the following.

• Utilize the partition function method further on Helium-3 and based on the De-
bye’s theory attempt to theoretically describe all the thermodynamic variable of
superfluid Helium-3 without the need for experimental data. When experimental
data become available verify the results and use this data to produce directly all
the thermodynamic values and interatomic potential through the partition function
approach as in Helium-4.

• Utilize the partition function method in Helium-4 to find the exact function of the
interatomic potential and then try to derive the total energies of the excitations
based on both the ideal and non-ideal part as to create the spectrum of energies for
the excitations and compare that to the quasiparticle energy spectrum.

• Use the provided equations of states for other types of cryocoolers like dilution refrig-
erators and attempt to create models that reach temperatures as close to absolute
zero as possible by using Helium.

• Create a model for a hybrid Stirling cryocooler where it utilizes a superleak on the
cold side, with the heater temperature being below the lambda line, and a standard
piston on the hot side with the cooler being just below the liquefaction temperate
of Helium, as to be able to cool industrially bought liquid Helium to very low
temperatures.

During the latest parts of this research, I have been selected as the lead researcher
for NTUA’s basic research program (PEVE) through which in the following years all
of the above will be addressed. Through this program the aim for the future of this
research is to utilize the gathered knowledge from the equations of state and the Stirling
cryocoolers to create closed cooling system able to initiate from the temperature of 4K
of industrially bought liquid Helium and reach temperatures in the range of 0.001K,
used to cool the chipsets of quantum computers, adding a final stage of dilution cooling
and a possible Joule-Thomson expansion cooler after the Stirling cryocoolers in order
to reach this temperature. Thus, it is seen that this dissertation has provided a very
solid foundation and has set the most important points for continuing and applying this
knowledge into cryogenic engineering applications at temperatures near absolute zero.
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Appendix A

Appendix of Physics of Superfluidity

Bose-Einstein Statistics
The Bose-Einstein distribution function is:

f(E) =
1

Ae
E
kT − 1

with f being the probability of a particle having energy E, and A a constant based on the
nature of the particles described.

Maxwell-Boltzmann Statistics
The Bose-Einstein distribution function is:

f(E) =
1

Ae
E
kT

with f being the probability of a particle having energy E, and A a constant based on the
nature of the particles described.

Fermi-Dirac Statistics
The Fermi-Dirac distribution function is:

f(E) =
1

e
E−EF

kT + 1

with f being the probability of a particle having energy E.
Temperature of Bose-Einstein Condensation

Assume an ideal gas obeying Bose-Einstein statistics in a finite closed box. For the
volume of the box one can the Hamiltonian:

H =
h̄2

2m

d2

dV 2

given this the time independent Schrodinger equation of the particles of the gas will be
of the form:

HΨ(r)− VoΨ(0) = EΨ(r)

Given the closed nature of the box one assumes the wavefuntions of the particles to be
stationary waves, with Dirichlet boundary conditions. Thus, the solution of the differential
equation will be:

Ψ(r) =
eirkr√
V
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Figure A.1: The probabilities for the three distribution functions

with kr =
2πm
L

(L being the length of the box) and by applying the boundary conditions
the energy can be found to be:

Ekr =
h̄2kr
2m

The Bose-Einstein distribution function for the particles will be:

N =
∞∑
n=0

1

e
Ekr

−µ

kT
−1

So the thermodynamical limit for the box:

N =
V

(2π)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1

e
Ekr

−µ

kT
−1
dkxdkydkz

Now assuming the box being spherical the equation above will be transformed into:

N

V
=

1

(4π)2
(
2m

h̄2
)
3
2

∫ ∞

0

√
Ekr

e
Ekr

−µ

kT
−1
dEkr

The phase density will:

ρph =
N

V
λ3T
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with λT being the de Broglie wavelength λT =
√

2πh̄2

mT
. So overall the phase density can

be calculated to be:

ρph =
2√
π

∫ ∞

0

√
Ekr

e
Ekr

−µ

kT
−1
dEkr

the limit of this phase density for the ideal gas with µ = 0 will be:

ρph =
2√
π

∫ ∞

0

√
Ekr

e
Ekr
kT

−1
dEkr = ζ(

3

2
)

with ζ being the Riemann ζ-function. The number of particles given their distribution
will can be written as:

N = N0 +
∞∑
n=1

1

e
Ekr
kT

−1

withN0 the number of particles in the ground state. Thus, using the de Broglie wavelength
for a phase density ρph > ζ(3

2
):

N = N0 +
2V√
πλ3T

∫ ∞

0

√
Ekr

e
Ekr
kT − 1

dEkr

or
N0 = N − V (

mkT

2πh̄2
)
3
2 ζ(

3

2
)

The transition to from BEC will happen for the first time (looking through an increasing
temperature arrow starting from absolute zero) when not all the particle will be in their
ground state. Solving for the temperature, one derives the eq.2.1:

Tc =
h2

2πmk
(

N

2.612V
)
2
3 . (A.1)
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Table for eq.3.3

1.123408 0.1902787 -0.01761074 0.001091368 -4.59351E-05 1.13375E-06 -1.19834E-08
0.023223 -0.00711 0.003685531 -0.00068585 5.56792E-05 -2.06339E-06 2.86518E-08
-0.10864 0.0304943 -0.0153843 0.002837224 -0.000229825 8.52232E-06 -1.1856E-07
0.233912 -0.056693 0.027787271 -0.00507474 0.000410349 -1.52402E-05 2.1262E-07
-0.26255 0.04906 -0.02397552 0.004381054 -0.000355565 1.3273E-05 -1.86174E-07
0.15944 -0.019591 0.009828061 -0.00181317 0.000148341 -5.5807E-06 7.88448E-08
-0.04973 0.0027587 -0.00153111 0.000288909 -2.39296E-05 9.09228E-07 -1.29554E-08

Table B.1: Values for 3.3

B.1 Vapor pressure appendix
Summarizing the work of of Donnelly and Barenghi [32] the equations for the vapor
pressure for liquid Helium-4 are given by:

a′ =

[
−7.57537
6.87483

]
× 10−3

b′ =



3.79937
1.86557
4.88345

0
0
0
0


× 10−3

m =


−1.26935
7.12413
−16.7461
8.75342

× 10−5

a′′ =

[
−7.94605
5.07051

]
× 10−3
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b′ =



−30.3511
−10.2326
−3.00636
0.240720
−2.45749
1.53454

−0.308182


× 10−3

The density at 0 is: ρo = 0.1451397 and at lambda ρλ = 0.1461087 at Tλ = 2.1768.

ρ(T ) = ρo +
4∑

i=1

(miT
+1)

ρ′(T ) = ρλ + ρλ(
2∑

i=1

(a′i(T − Tλ)
iln(|T − Tλ)) +

7∑
i=1

(b′i(T − Tλ)
i

ρ′′(T ) = ρλ + ρλ(
2∑

i=1

(a′′i (T − Tλ)
iln(|T − Tλ)) +

7∑
i=1

(b′′i (T − Tλ)
i

So according to the work of Donnelly and Barenghi [32] the density of the vapor
pressure for the different areas is given by:

ρvp =


ρo(T )× 103 if T ≤ 1.344

ρ′(T )× 103 if 1.344 < T ≤ Tλ

ρ′′(T )× 103 if Tλ < T ≤ 5

(B.1)

Following the isobaric expansion coefficient is calculated as:

s =



−0.117818
1.64045
−6.18750
13.4293
−11.3971
1.53454
2.94176


× 10−3

ao(T ) =
6∑

i=1

(siT
i) (B.2)

a′(T ) =
−ρλ
ρ′(T )

(a′1 + b′1 + a′1ln(|T − Tλ)

+ (a′2 + 2b′2)(T − Tλ) + 2a′2(T − Tλ)ln(|T − Tλ)

+
7∑

i=3

i b′i(T − Tλ)
i−1

(B.3)
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a′′(T ) =
−ρλ
ρ′(T )

(a′′1 + b′′1 + a′′1ln(|T − Tλ)

+ (a′′2 + 2b′′2)(T − Tλ) + 2a′′2(T − Tλ)ln(|T − Tλ)

+
7∑

i=3

i b′′i (T − Tλ)
i−1

(B.4)

avp =


ao(T ) if T ≤ 1.344

a′(T ) if 1.344 < T ≤ Tλ

a′′(T ) if Tλ < T ≤ 5

(B.5)

B.2 Superfluid EOS code
The code used for create the different variables of the EOS for superfluid Helium-4 is
presented below.

The code is written in the computing software Mathcad 15. Two needed functions are
defined: RegN(x,X) = −e(interp(RN(X),X⟨1⟩,X⟨2⟩,x) andRN(X) = regress(X⟨1⟩, ln(−X⟨2⟩), 15),
with x being the variable, X being the a two column input matrix, with the temperature
in the first column and the wanted variable (entropy, enthalpy etc) in the second column.
"Regress" is the regression function in Mathcad and 15 stands for a 15th degree polyno-
mial. "Interp" is the Mathcad function that takes the result of "regress" and puts it in
an equation form.

The first variable to be describe is the Gibbs free energy as the temperature and the
pressure are its natural values and as such it is a fundamental equation.
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Figure B.1: Gibbs free energy code for superfluid region
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Then the entropy is calculated.

Figure B.2: Entropy code for superfluid region
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The code for the enthalpy:

Figure B.3: Enthalpy code for superfluid region
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The code for the density:

Figure B.4: Density code for superfluid region
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The code for the specific heat under constant volume:

Figure B.5: Cv code for superfluid region
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The code for the specific heat under constant pressure:

Figure B.6: Cp code for superfluid region
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The code for the superfluid ratio:

Figure B.7: Superfluid ratio percentage code

B.3 Normal fluid EOS code
The code used for create the different variables of the EOS for normal fluid region of
Helium-4 is presented below.

The internal energy is calculated as:
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Figure B.8: Internal energy code for normal fluid region
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Then the entropy is calculated.

Figure B.9: Entropy code for normal fluid region
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The code for the enthalpy:

Figure B.10: Enthalpy code for normal fluid region
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The code for the density:

Figure B.11: Density code for normal fluid region
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The code for the specific heat under constant volume:

Figure B.12: Cv code for normal fluid region
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The code for the specific heat under constant pressure:

Figure B.13: Cp code for normal fluid region
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B.4 Lambda line bridging code

B.4.1 Density lambda unification

A third degree polynomial is used for the modelling between the the fluid and the super-
fluid.

dρ(T, P ) =
∂ρ(T, P )

∂T
(B.6)

dρliq(T, P ) =
∂ρliq(T, P )

∂T
(B.7)

To solve the equation of the values and the differentials above and below the lambda
line the following system is used:

Aρ(Tlow, Thigh) =


T 3
low T 2

low Tlow 1
3T 2

low 2Tlow 1 0
T 3
high T 2

high Thigh 1
3T 2

high 2Thigh 1 0



B(Tlow, Thigh, P ) =


ρ(Tlow, P )
dρ(Tlow, P )
ρliq(Thigh, P )
dρliq(Thigh, P )


sol(Tlow, Thigh, P ) = Aρ(Tlow, Thigh)

−1 B(Tlow, Thigh, P ) (B.8)

Using the above the following code is used for the different pressures.
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Figure B.14: code for unifying the density above and below the lambda
line

The reasoning behind splitting the code code into different section for the pressures
is to assure a greater accuracy on the lambda line which is heavily dependent on the
pressure. One can observe the continuous and differentiable behavior of the provided
equation in the figure below.
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Figure B.15: Density of Helium-4 for 10 atm

B.4.2 Entropy lambda unification

A third degree polynomial is used for the modelling between the the fluid and the super-
fluid.

dS(T, P ) =
∂S(T, P )

∂T
(B.9)

dSliq(T, P ) =
∂Sliq(T, P )

∂T
(B.10)

To solve the equation of the values and the differentials above and below the lambda
line the following system is used:

AS(Tlow, Thigh) =


T 3
low T 2

low Tlow 1
3T 2

low 2Tlow 1 0
T 3
high T 2

high Thigh 1
3T 2

high 2Thigh 1 0



B(Tlow, Thigh, P ) =


S(Tlow, P )
dS(Tlow, P )
Sliq(Thigh, P )
dSliq(Thigh, P )


sol(Tlow, Thigh, P ) = AS(Tlow, Thigh)

−1 B(Tlow, Thigh, P ) (B.11)

Using the above the following code is used for the different pressures.
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Figure B.16: code for unifying the entropy above and below the lambda
line
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Figure B.17: Density of Helium-4 for 10 atm

B.4.3 Specific Heat under constant volume lambda unification

A third degree polynomial is used for the modelling between the the fluid and the super-
fluid.

dCv(T, P ) =
∂Cv(T, P )

∂T
(B.12)

dCvliq(T, P ) =
∂Cvliq(T, P )

∂T
(B.13)

To solve the equation of the values and the differentials above and below the lambda
line the following system is used:

ACv(Tlow, Thigh) =


T 3
low T 2

low Tlow 1
3T 2

low 2Tlow 1 0
T 3
high T 2

high Thigh 1
3T 2

high 2Thigh 1 0



B(Tlow, Thigh, P ) =


Cv(Tlow, P )
dCv(Tlow, P )
Cvliq(Thigh, P )
dCvliq(Thigh, P )





244 Appendix B. Appendix for Helium 4

sol(Tlow, Thigh, P ) = ACv(Tlow, Thigh)
−1 B(Tlow, Thigh, P ) (B.14)

Using the above the following code is used for the different pressures.

Figure B.18: code for unifying the Cv above and below the lambda line
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Figure B.19: Density of Helium-4 for 15 atm

B.4.4 Specific Heat lambda under constant pressure unification

A third degree polynomial is used for the modelling between the the fluid and the super-
fluid.

dCp(T, P ) =
∂Cp(T, P )

∂T
(B.15)

dCpliq(T, P ) =
∂Cpliq(T, P )

∂T
(B.16)

To solve the equation of the values and the differentials above and below the lambda
line the following system is used:

ACp(Tlow, Thigh) =


T 3
low T 2

low Tlow 1
3T 2

low 2Tlow 1 0
T 3
high T 2

high Thigh 1
3T 2

high 2Thigh 1 0



B(Tlow, Thigh, P ) =


Cp(Tlow, P )
dCp(Tlow, P )
Cpliq(Thigh, P )
dCpliq(Thigh, P )


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sol(Tlow, Thigh, P ) = ACp(Tlow, Thigh)
−1 B(Tlow, Thigh, P ) (B.17)

Using the above the following code is used for the different pressures.

Figure B.20: code for unifying the Cp above and below the lambda line
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Figure B.21: Density of Helium-4 for 2.5 atm

B.4.5 Enthalpy lambda unification

A third degree polynomial is used for the modelling between the the fluid and the super-
fluid.

dH(T, P ) =
∂H(T, P )

∂T
(B.18)

dHliq(T, P ) =
∂Hliq(T, P )

∂T
(B.19)

To solve the equation of the values and the differentials above and below the lambda
line the following system is used:

AH(Tlow, Thigh) =


T 3
low T 2

low Tlow 1
3T 2

low 2Tlow 1 0
T 3
high T 2

high Thigh 1
3T 2

high 2Thigh 1 0



B(Tlow, Thigh, P ) =


H(Tlow, P )
dH(Tlow, P )
Hliq(Thigh, P )
dHliq(Thigh, P )


sol(Tlow, Thigh, P ) = AH(Tlow, Thigh)

−1 B(Tlow, Thigh, P ) (B.20)
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Using the above the following code is used for the different pressures.

Figure B.22: code for unifying the enthalpy above and below the lambda
line
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Figure B.23: Density of Helium-4 for 1 atm
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Below the rest of the graphs for the pressure spectrum of the equations of Helium-4
as continued from Chapter 3 are presented.

For the pressure of 10 atm

Figure B.24: Calculated density compared to the NIST values
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Figure B.25: Calculated entropy compared to the NIST values
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Figure B.26: Calculated enthalpy compared to the NIST values
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Figure B.27: Calculated Cv compared to the NIST values

For the pressure of 17.5 atm
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Figure B.28: Calculated density compared to the NIST values
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Figure B.29: Calculated entropy compared to the NIST values
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Figure B.30: Calculated enthalpy compared to the NIST values
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Figure B.31: Calculated Cv compared to the NIST values
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Coefficients A,B,C for equations 3.30,3.31,3.32.

A 1 2 3 4
1 1.0412277277778E-01 -2.4034933851993E-01 8.3420461018326E-02 -1.3067751932983E-02
2 -4.2024128116990E-01 2.2147290494175E+00 -7.5954548090200E-01 1.1808622774893E-01
3 -1.8008327680543E-02 -4.6623082782179E+00 1.5777521759029E+00 -2.4409535120981E-01
4 3.1677074801942E-01 3.9658021221151E+00 -1.3227378988727E+00 2.0389721497284E-01
5 2.1693492776641E-02 -1.5955770110885E+00 5.2412055176278E-01 -8.0411575271253E-02
6 -4.6329216676061E-02 3.0342211687491E-01 -9.8251944905298E-02 1.4988565125295E-02
7 6.5493480253451E-03 -2.2017962183576E-02 7.0344906396709E-03 -1.0662535672353E-03

Table B.2: Eq. 3.30 coefficients

A 5 6 7
1 1.0315470478363E-03 -3.9845530153053E-05 5.9868188679111E-07
2 -9.2750822997147E-03 3.5690990290860E-04 -5.3462399853747E-06
3 1.9125773602930E-02 -7.3490383775172E-04 1.0997723133852E-05
4 -1.5953832063294E-02 6.1272302211458E-04 -9.1684391765032E-06
5 6.2768817903458E-03 -2.4076570344077E-04 3.6001532163667E-06
6 -1.1660717729045E-03 4.4633304579506E-05 -6.6646406884662E-07
7 8.2609264865491E-05 -3.1532052673936E-06 4.6991052967232E-08

Table B.3: Eq. 3.31 coefficients

B 1 2 3 4
1 1.4328199251724E+02 2.4995182375956E+00 -1.9691702007769E-01 1.4131158408264E-02
2 1.5246809650510E+01 -4.9905708275271E+00 8.0860946946091E-01 -4.7309787217245E-02
3 -3.5463444458474E+01 9.9869388349003E+00 -1.3232801491867E+00 2.9586598515696E-02
4 3.3588281392551E+01 -8.7491781510819E+00 9.6909536730676E-01 1.6566209162436E-02
5 -1.4635531338950E+01 3.8959603262452E+00 -4.0976388795732E-01 -1.1897752626895E-02
6 2.9377340295461E+00 -8.5576640491163E-01 9.8107559496876E-02 7.0079896038729E-04
7 -2.2531934915833E-01 7.3727962093781E-02 -9.7744627718597E-03 2.4994169031560E-04

Table B.4: Eq. 3.32 coefficients

B 5 6 7
1 -4.8810989574191E-04 5.4456493846956E-06 2.4775287775952E-08
2 1.1268019904603E-05 7.7803412170458E-05 -1.7094203667516E-06
3 5.4533860540646E-03 -3.6130216627714E-04 6.3098524998090E-06
4 -8.3649481042780E-03 4.5293008011676E-04 -7.4885240804019E-06
5 4.0849423106936E-03 -2.1573530624796E-04 3.5580031254531E-06
6 -7.2454695792515E-04 4.0734059020416E-05 -6.9006411568451E-07
7 3.4576496875657E-05 -2.4193932229523E-06 4.3861314027288E-08
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C 1 2 3 4
1 -1.7697638754163E-01 -4.7534858770845E-02 7.6844591319251E-03 -9.8042324943453E-07
2 2.3901960784721E+00 6.2877945111706E-01 -1.1054768669661E-01 4.2247641419138E-03
3 -6.0059837182230E+00 -1.8183422908258E+00 3.5547564968312E-01 -2.6225406188548E-02
4 4.9161826205907E+00 2.0290829674619E+00 -4.2950443004419E-01 4.1589064818976E-02
5 -1.4183603969816E+00 -1.0164525745529E+00 2.2604466746005E-01 -2.4713508724054E-02
6 1.4732212320390E-01 2.3010527934455E-01 -5.2901530525594E-02 6.1501667545121E-03
7 -1.7518592443086E-03 -1.9320062576618E-02 4.5462035567394E-03 -5.4715845570318E-04

C 5 6 7
1 -6.6457497218259E-05 4.5071431055277E-06 -9.0647515101144E-08
2 3.6121066524305E-04 -3.3678548553402E-05 7.3462240505830E-07
3 5.7793594208609E-04 1.8775464638763E-05 -7.4819311886524E-07
4 -2.0441693903292E-03 4.6080113182283E-05 -3.2971050592579E-07
5 1.4533865417391E-03 -4.3342591896604E-05 5.1362521802549E-07
6 -3.8805088189195E-04 1.2534639933226E-05 -1.6243159310253E-07
7 3.5727267699850E-05 -1.1941551136084E-06 1.6003152059373E-08
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Appendix Helium 3-4 Mixture

C.1 Numerical Equations of Thermodynamic Mix data
The form of the equation used for the polynomial for the different thermodynamic vari-
ables is given by the following code:

a)

b)

Figure C.1: Code for the polynomial: subfigure (a) gives the text form,
subfigure (b) gives the Mathcad equation form for the enthalpy. C is the

table of coefficients.

where the deg refers to the degree of the polynomial with x1, x2, x3 being the variables
used, in this case being x, T ,P.

The overall code for a 5 degree polynomial will be presented in general to showcase it in
general. For space and repetition reasons only the code for the enthalpy is to be presented.
For the rest of the variables the reader can use the provided code in C.1 combined with
the tables given for the coefficients for each of the variables. The coefficients are at each
time derived using the CurveExpert software by inserting the equation and the wanted
data.

General Equation Form:
Eq(5) = +c1∗x10∗x20∗x30+c2∗x10∗x20∗x31+c3∗x10∗x20∗x32+c4∗x10∗x20∗x33+

c5∗x10∗x20∗x34+c6∗x10∗x20∗x35+c7∗x10∗x21∗x30+c8∗x10∗x21∗x31+c9∗x10∗x21∗x32+
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c10∗x10∗x21∗x33+c11∗x10∗x21∗x34+c12∗x10∗x21∗x35+c13∗x10∗x22∗x30+c14∗x10∗x22∗
x31+c15∗x10∗x22∗x32+c16∗x10∗x22∗x33+c17∗x10∗x22∗x34+c18∗x10∗x22∗x35+c19∗
x10∗x23∗x30+c20∗x10∗x23∗x31+c21∗x10∗x23∗x32+c22∗x10∗x23∗x33+c23∗x10∗x23∗
x34+c24∗x10∗x23∗x35+c25∗x10∗x24∗x30+c26∗x10∗x24∗x31+c27∗x10∗x24∗x32+c28∗
x10∗x24∗x33+c29∗x10∗x24∗x34+c30∗x10∗x24∗x35+c31∗x10∗x25∗x30+c32∗x10∗x25∗
x31+c33∗x10∗x25∗x32+c34∗x10∗x25∗x33+c35∗x10∗x25∗x34+c36∗x10∗x25∗x35+c37∗
x11∗x20∗x30+c38∗x11∗x20∗x31+c39∗x11∗x20∗x32+c40∗x11∗x20∗x33+c41∗x11∗x20∗
x34+c42∗x11∗x20∗x35+c43∗x11∗x21∗x30+c44∗x11∗x21∗x31+c45∗x11∗x21∗x32+c46∗
x11∗x21∗x33+c47∗x11∗x21∗x34+c48∗x11∗x21∗x35+c49∗x11∗x22∗x30+c50∗x11∗x22∗
x31+c51∗x11∗x22∗x32+c52∗x11∗x22∗x33+c53∗x11∗x22∗x34+c54∗x11∗x22∗x35+c55∗
x11∗x23∗x30+c56∗x11∗x23∗x31+c57∗x11∗x23∗x32+c58∗x11∗x23∗x33+c59∗x11∗x23∗
x34+c60∗x11∗x23∗x35+c61∗x11∗x24∗x30+c62∗x11∗x24∗x31+c63∗x11∗x24∗x32+c64∗
x11∗x24∗x33+c65∗x11∗x24∗x34+c66∗x11∗x24∗x35+c67∗x11∗x25∗x30+c68∗x11∗x25∗
x31+c69∗x11∗x25∗x32+c70∗x11∗x25∗x33+c71∗x11∗x25∗x34+c72∗x11∗x25∗x35+c73∗
x12∗x20∗x30+c74∗x12∗x20∗x31+c75∗x12∗x20∗x32+c76∗x12∗x20∗x33+c77∗x12∗x20∗
x34+c78∗x12∗x20∗x35+c79∗x12∗x21∗x30+c80∗x12∗x21∗x31+c81∗x12∗x21∗x32+c82∗
x12∗x21∗x33+c83∗x12∗x21∗x34+c84∗x12∗x21∗x35+c85∗x12∗x22∗x30+c86∗x12∗x22∗
x31+c87∗x12∗x22∗x32+c88∗x12∗x22∗x33+c89∗x12∗x22∗x34+c90∗x12∗x22∗x35+c91∗
x12∗x23∗x30+c92∗x12∗x23∗x31+c93∗x12∗x23∗x32+c94∗x12∗x23∗x33+c95∗x12∗x23∗
x34+c96∗x12∗x23∗x35+c97∗x12∗x24∗x30+c98∗x12∗x24∗x31+c99∗x12∗x24∗x32+c100∗
x12∗x24∗x33+c101∗x12∗x24∗x34+c102∗x12∗x24∗x35+c103∗x12∗x25∗x30+c104∗x12∗x25∗
x31+c105∗x12∗x25∗x32+c106∗x12∗x25∗x33+c107∗x12∗x25∗x34+c108∗x12∗x25∗x35+
c109∗x13∗x20∗x30+c110∗x13∗x20∗x31+c111∗x13∗x20∗x32+c112∗x13∗x20∗x33+c113∗
x13∗x20∗x34+c114∗x13∗x20∗x35+c115∗x13∗x21∗x30+c116∗x13∗x21∗x31+c117∗x13∗x21∗
x32+c118∗x13∗x21∗x33+c119∗x13∗x21∗x34+c120∗x13∗x21∗x35+c121∗x13∗x22∗x30+
c122∗x13∗x22∗x31+c123∗x13∗x22∗x32+c124∗x13∗x22∗x33+c125∗x13∗x22∗x34+c126∗
x13∗x22∗x35+c127∗x13∗x23∗x30+c128∗x13∗x23∗x31+c129∗x13∗x23∗x32+c130∗x13∗x23∗
x33+c131∗x13∗x23∗x34+c132∗x13∗x23∗x35+c133∗x13∗x24∗x30+c134∗x13∗x24∗x31+
c135∗x13∗x24∗x32+c136∗x13∗x24∗x33+c137∗x13∗x24∗x34+c138∗x13∗x24∗x35+c139∗
x13∗x25∗x30+c140∗x13∗x25∗x31+c141∗x13∗x25∗x32+c142∗x13∗x25∗x33+c143∗x13∗x25∗
x34+c144∗x13∗x25∗x35+c145∗x14∗x20∗x30+c146∗x14∗x20∗x31+c147∗x14∗x20∗x32+
c148∗x14∗x20∗x33+c149∗x14∗x20∗x34+c150∗x14∗x20∗x35+c151∗x14∗x21∗x30+c152∗
x14∗x21∗x31+c153∗x14∗x21∗x32+c154∗x14∗x21∗x33+c155∗x14∗x21∗x34+c156∗x14∗x21∗
x35+c157∗x14∗x22∗x30+c158∗x14∗x22∗x31+c159∗x14∗x22∗x32+c160∗x14∗x22∗x33+
c161∗x14∗x22∗x34+c162∗x14∗x22∗x35+c163∗x14∗x23∗x30+c164∗x14∗x23∗x31+c165∗
x14∗x23∗x32+c166∗x14∗x23∗x33+c167∗x14∗x23∗x34+c168∗x14∗x23∗x35+c169∗x14∗x24∗
x30+c170∗x14∗x24∗x31+c171∗x14∗x24∗x32+c172∗x14∗x24∗x33+c173∗x14∗x24∗x34+
c174∗x14∗x24∗x35+c175∗x14∗x25∗x30+c176∗x14∗x25∗x31+c177∗x14∗x25∗x32+c178∗
x14∗x25∗x33+c179∗x14∗x25∗x34+c180∗x14∗x25∗x35+c181∗x15∗x20∗x30+c182∗x15∗x20∗
x31+c183∗x15∗x20∗x32+c184∗x15∗x20∗x33+c185∗x15∗x20∗x34+c186∗x15∗x20∗x35+
c187∗x15∗x21∗x30+c188∗x15∗x21∗x31+c189∗x15∗x21∗x32+c190∗x15∗x21∗x33+c191∗
x15∗x21∗x34+c192∗x15∗x21∗x35+c193∗x15∗x22∗x30+c194∗x15∗x22∗x31+c195∗x15∗
x22∗x32+c196∗x15∗x22∗x33+c197∗x15∗x22∗x34+c198∗x15∗x22∗x35+c199∗x15∗x23∗
x30+c200∗x15∗x23∗x31+c201∗x15∗x23∗x32+c202∗x15∗x23∗x33+c203∗x15∗x23∗x34+
c204∗x15∗x23∗x35+c205∗x15∗x24∗x30+c206∗x15∗x24∗x31+c207∗x15∗x24∗x32+c208∗
x15∗x24∗x33+c209∗x15∗x24∗x34+c210∗x15∗x24∗x35+c211∗x15∗x25∗x30+c212∗x15∗
x25∗x31+c213∗x15∗x25∗x32+c214∗x15∗x25∗x33+c215∗x15∗x25∗x34+c216∗x15∗x25∗x35
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For the enthalpy specifically the specific equation used, including the coefficients, is:

H(x, T, P ) = −0.079284∗T 0 ∗P 0 ∗x0+10.076656∗T 0 ∗P 0 ∗x1+−69.72213∗T 0 ∗P 0 ∗
x2+210.402783∗T 0∗P 0∗x3+−253.924167∗T 0∗P 0∗x4+103.314602∗T 0∗P 0∗x5+3.27498∗
T 0 ∗P 1 ∗x0+0.475766∗T 0 ∗P 1 ∗x1+23.087939∗T 0 ∗P 1 ∗x2+−132.136613∗T 0 ∗P 1 ∗x3+
218.028038∗T 0∗P 1∗x4+−110.221046∗T 0∗P 1∗x5+−0.555089∗T 0∗P 2∗x0+−0.546722∗
T 0 ∗P 2 ∗ x1 +−3.233962 ∗T 0 ∗P 2 ∗ x2 +45.810516 ∗T 0 ∗P 2 ∗ x3 +−91.815686 ∗T 0 ∗P 2 ∗
x4+51.072871∗T 0 ∗P 2 ∗x5+0.166067∗T 0 ∗P 3 ∗x0+−0.145248∗T 0 ∗P 3 ∗x1+1.027247∗
T 0 ∗P 3 ∗x2+−8.419012∗T 0 ∗P 3 ∗x3+16.431625∗T 0 ∗P 3 ∗x4+−9.251559∗T 0 ∗P 3 ∗x5+
−0.019757∗T 0∗P 4∗x0+0.039605∗T 0∗P 4∗x1+−0.112447∗T 0∗P 4∗x2+0.546657∗T 0∗P 4∗
x3+−1.045255∗T 0∗P 4∗x4+0.610878∗T 0∗P 4∗x5+0.000807∗T 0∗P 5∗x0+−0.002163∗
T 0 ∗P 5 ∗x1+0.003462 ∗T 0 ∗P 5 ∗x2+−0.006848 ∗T 0 ∗P 5 ∗x3+0.013863 ∗T 0 ∗P 5 ∗x4+
−0.009835∗T 0∗P 5∗x5+0.546297∗T 1∗P 0∗x0+−68.5214∗T 1∗P 0∗x1+356.118375∗T 1∗
P 0 ∗x2+−1012.988417∗T 1 ∗P 0 ∗x3+1194.1079∗T 1 ∗P 0 ∗x4+−469.13684∗T 1 ∗P 0 ∗x5+
−4.060499∗T 1 ∗P 1 ∗x0+−14.1703∗T 1 ∗P 1 ∗x1+−4.107869∗T 1 ∗P 1 ∗x2+454.639331∗
T 1∗P 1∗x3+−951.712527∗T 1∗P 1∗x4+527.557268∗T 1∗P 1∗x5+4.559952∗T 1∗P 2∗x0+
8.258493∗T 1∗P 2∗x1+−48.958289∗T 1∗P 2∗x2+−54.317628∗T 1∗P 2∗x3+271.294431∗
T 1∗P 2∗x4+−186.054291∗T 1∗P 2∗x5+−1.452354∗T 1∗P 3∗x0+2.467917∗T 1∗P 3∗x1+
−4.419436∗T 1 ∗P 3 ∗x2+21.954008∗T 1 ∗P 3 ∗x3+−44.189293∗T 1 ∗P 3 ∗x4+26.868989∗
T 1 ∗P 3 ∗ x5 +0.17689 ∗ T 1 ∗P 4 ∗ x0 +−0.673862 ∗ T 1 ∗P 4 ∗ x1 +1.912354 ∗ T 1 ∗P 4 ∗ x2 +
−2.725658∗T 1∗P 4∗x3+1.974614∗T 1∗P 4∗x4+−0.785359∗T 1∗P 4∗x5+−0.007337∗T 1∗
P 5∗x0+0.037736∗T 1∗P 5∗x1+−0.110572∗T 1∗P 5∗x2+0.092039∗T 1∗P 5∗x3+0.040545∗
T 1∗P 5∗x4+−0.048188∗T 1∗P 5∗x5+−1.232049∗T 2∗P 0∗x0+174.776938∗T 2∗P 0∗x1+
−345.489429∗T 2∗P 0∗x2+460.321047∗T 2∗P 0∗x3+−259.8126∗T 2∗P 0∗x4+−19.773507∗
T 2 ∗P 0 ∗x5+13.816402∗T 2 ∗P 1 ∗x0+47.009207∗T 2 ∗P 1 ∗x1+−351.97022∗T 2 ∗P 1 ∗x2+
229.928713∗T 2∗P 1∗x3+549.352738∗T 2∗P 1∗x4+−507.465776∗T 2∗P 1∗x5+−15.583572∗
T 2∗P 2∗x0+−6.529397∗T 2∗P 2∗x1+265.353853∗T 2∗P 2∗x2+−638.737366∗T 2∗P 2∗x3+
508.399383∗T 2∗P 2∗x4+−101.421966∗T 2∗P 2∗x5+4.986333∗T 2∗P 3∗x0+−17.568207∗
T 2∗P 3∗x1+20.888305∗T 2∗P 3∗x2+45.844374∗T 2∗P 3∗x3+−111.390473∗T 2∗P 3∗x4+
54.671768∗T 2∗P 3∗x5+−0.609887∗T 2∗P 4∗x0+3.628525∗T 2∗P 4∗x1+−10.201071∗T 2∗
P 4∗x2+5.328177∗T 2∗P 4∗x3+10.827429∗T 2∗P 4∗x4+−8.733605∗T 2∗P 4∗x5+0.025379∗
T 2 ∗P 5 ∗x0+−0.190862∗T 2 ∗P 5 ∗x1+0.61817∗T 2 ∗P 5 ∗x2+−0.459637∗T 2 ∗P 5 ∗x3+
−0.458156∗T 2∗P 5∗x4+0.457227∗T 2∗P 5∗x5+1.351115∗T 3∗P 0∗x0+−167.914114∗T 3∗
P 0∗x1+−211.856654∗T 3∗P 0∗x2+1669.493892∗T 3∗P 0∗x3+−2506.656131∗T 3∗P 0∗x4+
1203.321462∗T 3∗P 0∗x5+−22.656113∗T 3∗P 1∗x0+−25.16501∗T 3∗P 1∗x1+671.107627∗
T 3 ∗P 1 ∗x2+−1638.496256∗T 3 ∗P 1 ∗x3+1381.524549∗T 3 ∗P 1 ∗x4+−345.888277∗T 3 ∗
P 1 ∗x5+24.860501∗T 3 ∗P 2 ∗x0+−43.02926∗T 3 ∗P 2 ∗x1+−347.974872∗T 3 ∗P 2 ∗x2+
1466.157599∗T 3∗P 2∗x3+−1880.771412∗T 3∗P 2∗x4+769.656786∗T 3∗P 2∗x5+−7.880647∗
T 3∗P 3∗x0+42.994526∗T 3∗P 3∗x1+−72.187477∗T 3∗P 3∗x2+−112.664053∗T 3∗P 3∗x3+
348.359525∗T 3 ∗P 3 ∗x4+−196.309867∗T 3 ∗P 3 ∗x5+0.960076∗T 3 ∗P 4 ∗x0+−7.52529∗
T 3∗P 4∗x1+22.485926∗T 3∗P 4∗x2+−12.001286∗T 3∗P 4∗x3+−24.986067∗T 3∗P 4∗x4+
20.86821∗T 3∗P 4∗x5+−0.039865∗T 3∗P 5∗x0+0.375448∗T 3∗P 5∗x1+−1.294318∗T 3∗P 5∗
x2+1.132764∗T 3∗P 5∗x3+0.663992∗T 3∗P 5∗x4+−0.832172∗T 3∗P 5∗x5+−1.025378∗
T 4∗P 0∗x0+78.003436∗T 4∗P 0∗x1+316.070743∗T 4∗P 0∗x2+−1542.77666∗T 4∗P 0∗x3+
2085.808375∗T 4∗P 0∗x4+−927.600404∗T 4∗P 0∗x5+16.778198∗T 4∗P 1∗x0+−19.76783∗
T 4∗P 1∗x1+−427.45675∗T 4∗P 1∗x2+1478.072768∗T 4∗P 1∗x3+−1705.050059∗T 4∗P 1∗
x4+647.381441∗T 4∗P 1∗x5+−17.901959∗T 4∗P 2∗x0+64.116094∗T 4∗P 2∗x1+153.213347∗
T 4∗P 2∗x2+−1081.945179∗T 4∗P 2∗x3+1628.229158∗T 4∗P 2∗x4+−740.855775∗T 4∗P 2∗
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x5+5.612295∗T 4∗P 3∗x0+−39.178278∗T 4∗P 3∗x1+80.982682∗T 4∗P 3∗x2+62.554425∗
T 4∗P 3∗x3+−279.545571∗T 4∗P 3∗x4+168.662986∗T 4∗P 3∗x5+−0.679971∗T 4∗P 4∗x0+
6.281515∗T 4∗P 4∗x1+−19.80332∗T 4∗P 4∗x2+13.39954∗T 4∗P 4∗x3+16.705611∗T 4∗P 4∗
x4+−15.835904∗T 4∗P 4∗x5+0.02814∗T 4∗P 5∗x0+−0.302971∗T 4∗P 5∗x1+1.089293∗T 4∗
P 5∗x2+−1.096423∗T 4∗P 5∗x3+−0.276605∗T 4∗P 5∗x4+0.557039∗T 4∗P 5∗x5+0.489816∗
T 5∗P 0∗x0+−15.962987∗T 5∗P 0∗x1+−64.635971∗T 5∗P 0∗x2+297.946578∗T 5∗P 0∗x3+
−385.747103∗T 5∗P 0∗x4+165.800722∗T 5∗P 0∗x5+−4.481864∗T 5∗P 1∗x0+13.469388∗
T 5∗P 1∗x1+88.202119∗T 5∗P 1∗x2+−398.658555∗T 5∗P 1∗x3+522.151594∗T 5∗P 1∗x4+
−218.821857∗T 5∗P 1∗x5+4.681183∗T 5∗P 2∗x0+−23.389649∗T 5∗P 2∗x1+−15.746118∗
T 5∗P 2∗x2+263.807135∗T 5∗P 2∗x3+−442.511328∗T 5∗P 2∗x4+212.379534∗T 5∗P 2∗x5+
−1.453789∗T 5 ∗P 3 ∗x0+11.794221∗T 5 ∗P 3 ∗x1+−27.536012∗T 5 ∗P 3 ∗x2+−8.126265∗
T 5 ∗P 3 ∗x3+70.874497∗T 5 ∗P 3 ∗x4+−45.428218∗T 5 ∗P 3 ∗x5+0.175263∗T 5 ∗P 4 ∗x0+
−1.796194∗T 5∗P 4∗x1+5.895694∗T 5∗P 4∗x2+−4.77108∗T 5∗P 4∗x3+−3.436153∗T 5∗
P 4∗x4+3.925871∗T 5∗P 4∗x5+−0.007231∗T 5∗P 5∗x0+0.084741∗T 5∗P 5∗x1+−0.313966∗
T 5 ∗ P 5 ∗ x2 + 0.349259 ∗ T 5 ∗ P 5 ∗ x3 + 0.01235 ∗ T 5 ∗ P 5 ∗ x4 +−0.125135 ∗ T 5 ∗ P 5 ∗ x5
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Coefficients for the enthalpy equation:

i C i C i C i C i C
1 -0.0790 51 -48.9580 101 10.8270 151 16.7780 201 -27.5360
2 10.0770 52 -54.3180 102 -8.7340 152 -19.7680 202 -8.1260
3 -69.7220 53 271.2940 103 0.0250 153 -427.4570 203 70.8740
4 210.4030 54 -186.0540 104 -0.1910 154 1478.0000 204 -45.4280
5 -253.9240 55 -1.4520 105 0.6180 155 -1705.0000 205 0.1750
6 103.3150 56 2.4680 106 -0.4600 156 647.3810 206 -1.7960
7 3.2750 57 -4.4190 107 -0.4580 157 -17.9020 207 5.8960
8 0.4760 58 21.9540 108 0.4570 158 64.1160 208 -4.7710
9 23.0880 59 -44.1890 109 1.3510 159 153.2130 209 -3.4360
10 -132.1370 60 26.8690 110 -167.9140 160 -1082.0000 210 3.9260
11 218.0280 61 0.1770 111 -211.8570 161 1628.0000 211 -0.0072
12 -110.2210 62 -0.6740 112 1669.0000 162 -740.8560 212 0.0850
13 -0.5550 63 1.9120 113 -2507.0000 163 5.6120 213 -0.3140
14 -0.5470 64 -2.7260 114 1203.0000 164 -39.1780 214 0.3490
15 -3.2340 65 1.9750 115 -22.6560 165 80.9830 215 0.0120
16 45.8110 66 -0.7850 116 -25.1650 166 62.5540 216 -0.1250
17 -91.8160 67 -0.0073 117 671.1080 167 -279.5460
18 51.0730 68 0.0380 118 -1638.0000 168 168.6630
19 0.1660 69 -0.1110 119 1382.0000 169 -0.6800
20 -0.1450 70 0.0920 120 -345.8880 170 6.2820
21 1.0270 71 0.0410 121 24.8610 171 -19.8030
22 -8.4190 72 -0.0480 122 -43.0290 172 13.4000
23 16.4320 73 -1.2320 123 -347.9750 173 16.7060
24 -9.2520 74 174.7770 124 1466.0000 174 -15.8360
25 -0.0200 75 -345.4890 125 -1881.0000 175 0.0280
26 0.0400 76 460.3210 126 769.6570 176 -0.3030
27 -0.1120 77 -259.8130 127 -7.8810 177 1.0890
28 0.5470 78 -19.7740 128 42.9950 178 -1.0960
29 -1.0450 79 13.8160 129 -72.1870 179 -0.2770
30 0.6110 80 47.0090 130 -112.6640 180 0.5570
31 0.0008 81 -351.9700 131 348.3600 181 0.4900
32 -0.0022 82 229.9290 132 -196.3100 182 -15.9630
33 0.0035 83 549.3530 133 0.9600 183 -64.6360
34 -0.0068 84 -507.4660 134 -7.5250 184 297.9470
35 0.0140 85 -15.5840 135 22.4860 185 -385.7470
36 -0.0098 86 -6.5290 136 -12.0010 186 165.8010
37 0.5460 87 265.3540 137 -24.9860 187 -4.4820
38 -68.5210 88 -638.7370 138 20.8680 188 13.4690
39 356.1180 89 508.3990 139 -0.0400 189 88.2020
40 -1013.0000 90 -101.4220 140 0.3750 190 -398.6590
41 1194.0000 91 4.9860 141 -1.2940 191 522.1520
42 -469.1370 92 -17.5680 142 1.1330 192 -218.8220
43 -4.0600 93 20.8880 143 0.6640 193 4.6810
44 -14.1700 94 45.8440 144 -0.8320 194 -23.3900
45 -4.1080 95 -111.3900 145 -1.0250 195 -15.7460
46 454.6390 96 54.6720 146 78.0030 196 263.8070
47 -951.7130 97 -0.6100 147 316.0710 197 -442.5110
48 527.5570 98 3.6290 148 -1543.0000 198 212.3800
49 4.5600 99 -10.2010 149 2086.0000 199 -1.4540
50 8.2580 100 5.3280 150 -927.6000 200 11.7940

Table C.1: Enthalpy coefficients
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For the entropy and the molar volume a similar approach has been used, using the
regress and interp functions of Mathcad for initial results and the equation from the
code provided above for even better accuracy.

For the entropy the coefficients are:

i C i C i C i C
1 343.276 51 1329 101 -0.046 151 -6.706
2 3.939 52 -3193 102 0.278 152 20.084
3 -264.222 53 3586 103 -0.728 153 -31.463
4 1032 54 -750.051 104 0.36 154 26.934
5 3.207 55 -66.186 105 -0.039 155 -11.918
6 -0.413 56 -33.338 106 -0.078 156 2.137
7 -11.186 57 -0.0001141 107 3.281 157 -1.023
8 -2040 58 -0.00007891 108 -20.245 158 15.273
9 -240.64 59 0.002574 109 41.512 159 -89.065
10 -656.874 60 -0.023 110 -37.608 160 279.199
11 -0.369 61 -0.003118 111 16.071 161 -511.754
12 -0.064 62 0.0005922 112 -2.676 162 560.462
13 2.482 63 0.043 113 24.439 163 -358.779
14 -0.643 64 0.149 114 20.98 164 123.342
15 13.441 65 -0.065 115 -79.032 165 -17.515
16 -10.918 66 0.006797 116 279.411
17 2846 67 -0.038 117 -433.714
18 -2665 68 -1.593 118 329.333
19 3915 69 1.16 119 -110.647
20 -738.833 70 0.006516 120 10.99
21 0.006037 71 -0.146 121 1.814E-06
22 0.004283 72 -0.901 122 8.048E-07
23 0.064 73 18.334 123 -3.508E-05
24 -3.8 74 -32.885 124 0.0005604
25 1.207 75 18.142 125 1.088E-05
26 -0.474 76 -2.167 126 -0.0000211
27 19.105 77 -0.707 127 -0.003921
28 -32.388 78 -309.412 128 -0.001366
29 18.258 79 623.838 129 0.000629
30 0.571 80 -534.428 130 9.527E-06
31 -2616 81 -160.454 131 0.008997
32 5122 82 308.639 132 0.02
33 -6242 83 -174.354 133 -0.008818
34 1418 84 51.04 134 0.001297
35 77.037 85 -0.00004701 135 -0.0004738
36 0.004062 86 0.000003629 136 0.025
37 -0.0001269 87 0.00003144 137 -0.131
38 -0.007496 88 -0.003078 138 0.075
39 0.072 89 0.001572 139 -0.032
40 -0.122 90 -0.00000692 140 0.011
41 0.028 91 0.042 141 -2.284E-05
42 1.649 92 -0.019 142 -0.148
43 0.377 93 0.0001269 143 0.456
44 -0.531 94 -0.0001914 144 -0.534
45 0.279 95 -0.215 145 0.612
46 -11.141 96 0.07 146 -0.506
47 1.253 97 0.025 147 0.247
48 21.537 98 -0.003012 148 -0.055
49 -19.803 99 -0.0001055 149 0.058
50 4.628 100 0.409 150 0.8

Table C.2: Entropy coefficients
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And the coefficients for the molar volume are:

i C i C i C i C
1 -14.734 51 -130.646 101 -1.486 151 3.522
2 -1.509 52 324.984 102 -2.692 152 -7.869
3 8.315 53 -84.007 103 -0.181 153 8.848
4 -8.523 54 -94.816 104 -0.038 154 -5.443
5 1.417 55 50.064 105 0.019 155 1.725
6 0.15 56 -3.38 106 11.028 156 -0.211
7 1.691 57 -4.31E-04 107 -1.121 157 17.151
8 -3.811 58 4.07E-05 108 8.315 158 3.88
9 16.255 59 1.04E-03 109 -6.387 159 -28.074
10 12.281 60 -0.05 110 7.729 160 82.14
11 2.218 61 5.45E-03 111 -3.206 161 -139.093
12 0.038 62 1.57E-03 112 0.394 162 144.054
13 -2.112 63 0.593 113 -2.831 163 -89.712
14 22.597 64 -0.049 114 12.345 164 30.878
15 -46.516 65 0.023 115 -40.362 165 -4.521
16 10.578 66 -6.62E-03 116 96.664
17 -75.352 67 -2.315 117 -133.254
18 257.197 68 -0.079 118 93.604
19 -216.581 69 -1.993 119 -34.051
20 48.142 70 0.688 120 5.302
21 -0.027 71 -0.081 121 3.59E-05
22 4.99E-04 72 -4.922 122 -2.16E-05
23 -0.089 73 15.767 123 9.11E-04
24 4.301 74 12.096 124 -0.017
25 -4.305 75 -6.914 125 -1.04E-03
26 -0.67 76 -0.19 126 -1.19E-04
27 -51.928 77 0.716 127 0.174
28 98.271 78 33.826 128 0.011
29 -22.294 79 -61.817 129 3.37E-03
30 3.352 80 -69.168 130 4.65E-05
31 177.521 81 113.887 131 -1.133
32 -518.717 82 -50.596 132 -0.062
33 333.005 83 10.599 133 -0.034
34 -37.601 84 -1.878 134 -1.11E-03
35 -16.307 85 -4.43E-04 135 -1.26E-04
36 4.04E-03 86 1.03E-04 136 4.698
37 -1.45E-03 87 -3.77E-03 137 0.211
38 0.04 88 0.057 138 0.152
39 -0.373 89 0.013 139 -1.89E-03
40 -0.013 90 1.62E-03 140 9.37E-03
41 -0.037 91 -0.47 141 -1.39E-03
42 -0.994 92 -0.146 142 -11.978
43 2.737 93 -0.051 143 -0.563
44 2.126 94 6.90E-06 144 -0.47
45 -0.251 95 2.273 145 0.483
46 35.529 96 0.714 146 -0.454
47 -69.88 97 0.586 147 0.185
48 3.284 98 -3.20E-03 148 -0.032
49 2.412 99 2.73E-03 149 16.701
50 -1.379 100 -6.581 150 0.582

Table C.3: Molar volume coefficients
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Lastly the coefficients for the chemical potential equation are:

-1.76200E+05 -2.26900E+03 2.40816E+02 -6.76900E+03
-4.70700E+04 -4.10400E+03 -1.33389E+02 1.32400E+04
5.41300E+05 -1.88000E+05 -2.96923E+02 -1.36500E+04
-1.45400E+06 1.83500E+05 3.58298E+02 7.47200E+03
1.05400E+04 -7.36700E+04 -1.02074E+02 -1.97100E+03
2.04600E+03 1.59500E+04 -5.82668E+02 1.78494E+02
1.12300E+05 -2.80000E-02 4.09600E+03 -7.90930E+01
1.41200E+06 -3.90000E-02 -1.35900E+04 1.12200E+03
5.83600E+05 9.13000E-01 2.14100E+04 -6.76900E+03
-6.20900E+04 -7.22900E+00 -1.73800E+04 2.24900E+04
-7.48560E+01 -2.04200E+00 6.88300E+03 -4.42200E+04
-1.14220E+01 1.83000E-01 -1.02600E+03 5.22700E+04
-5.24600E+03 7.00070E+01 8.29261E+02 -3.62400E+04
-8.84700E+04 -3.63000E+00 -1.09300E+04 1.35400E+04
-2.84700E+04 8.50200E+00 4.99800E+04 -2.09700E+03
5.91841E+02 5.12200E+00 -1.07200E+05
-5.63400E+05 -4.42553E+02 1.17900E+05
-7.49800E+05 1.21900E+03 -6.70100E+04
1.48200E+05 -1.24100E+03 1.75000E+04
5.99600E+03 3.97245E+02 -1.31100E+03
-2.94780E+01 1.14350E+01 2.86100E-04
-4.10800E+00 2.87113E+02 9.79000E-05
1.51129E+02 -2.59400E+03 -4.12200E-03
3.79700E+03 8.84800E+03 6.00000E-02
2.55347E+02 -7.50300E+03 5.33900E-03
2.75626E+02 2.43500E+03 -1.20000E-02
2.08600E+04 -3.37801E+02 -2.78000E-01
4.05300E+04 5.00500E+03 -4.48000E-01
-1.66900E+04 -4.08800E+04 5.22000E-01
4.59200E+03 1.14500E+05 -7.10000E-02
6.52300E+04 -1.18400E+05 -1.13400E+00
3.80300E+05 5.55200E+04 7.47500E+00
-3.51900E+03 -6.86800E+03 -8.87700E+00
-6.98300E+04 -2.39400E+03 2.47300E+00
6.69300E+03 4.84400E-03 -2.47000E-01
1.89900E+00 -6.71700E-04 1.36920E+01
2.22000E-01 6.00000E-02 -3.72090E+01
-8.84000E-01 -1.33600E+00 2.44190E+01
-1.41784E+02 -1.81000E-01 3.08150E+01
3.94240E+01 4.40000E-02 -3.20010E+01
-1.92640E+01 1.18760E+01 8.58500E+00
-3.96657E+02 5.93000E+00 -1.39540E+01
-1.25400E+03 -4.26600E+00 -1.78313E+02
8.72989E+02 1.09000E+00 9.09071E+02
-3.94670E+02 -4.40760E+01 -1.73500E+03
2.24500E+03 -9.34960E+01 1.53200E+03
-2.11100E+04 1.03365E+02 -6.45349E+02
1.00500E+04 -4.30110E+01 1.03802E+02
-1.69371E+02 3.46000E+00 -1.19807E+02
-8.52011E+02 1.00482E+02 1.64800E+03

Table C.4: Chemical potential coefficients
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C.2 Osmotic Pressure Coefficients
The coefficients for the 4th degree polynomial for the equation of the osmotic pressure
are:

i C i C
1 -9.01E-11 18 1.71E-10
2 5.16E-08 19 0
3 -5.34E-08 20 0.054
4 9.57E-12 21 0.025
5 -2.15E-12 22 -0.388
6 9.03E-11 23 2.294
7 2.07E-08 24 -1.825
8 7.87E-11 25 2.624
9 -3.33E-10 26 -3.334
10 -5.36E-15 27 13.924
11 -1.23E-15 28 36.478
12 1.15E-12 29 -55.704
13 -2.88E-11 30 2.39
14 -5.27E-12 31 5.735
15 7.75E-13 32 -16.822
16 -3.56E-09 33 6.815
17 -3.99E-11 34 45.397
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Appendix D

Appendix 1D Superfluid Stirling
Refregerator

D.1 Mathcad code for 1D isothermal ideal SSR
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Figure D.1: Mathcad code for 1D isothermal ideal SSR
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D.2 1D mix Single Stirling Mathcad code
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Figure D.2: Mathcad code for 1D single Stirling with Helium 3-4 mix
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D.3 Mathcad code for 1D dual mix SSR
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Figure D.3: code for 1D dual SSR with Helium 3-4 mix
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Appendix E

Appendix for 3D Superfluid Stirling
Refrigerator

User defined functions for the movements of the pistons used in the ANSYS Fluent soft-
ware.

Al l UDFs
140 1Hz
#inc lude "udf . h"
#inc lude "math . h"
DEFINE_CG_MOTION(piston_comp_1_new , dt , ve l , omega , time , dtime )
{

r e a l pi ,w, hz ;
p i =3.141592653589793238462643383279;
hz=1;
w=2∗pi ∗hz ;

r e a l Vswc , Apc ;
Vswc=17.74∗pow(10 , −6);
Apc=17.74∗pow(10 , −4);

r e a l Ve ;
Ve=(Vswc∗w/(2∗Apc ) )∗ s i n (w∗ time ) ;

;

v e l [0 ]=Ve ;
v e l [ 1 ]=0 ;
v e l [ 2 ]=0 ;

}
#inc lude "udf . h"
#inc lude "math . h"
DEFINE_CG_MOTION(piston_comp_2_140 , dt , ve l , omega , time , dtime )
{

r e a l pi ,w, hz ,T;
p i =3.141592653589793238462643383279;
hz=1;
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w=2∗pi ∗hz ;
T=1/hz ;

r e a l Vswc , Apc ;
Vswc=17.74∗pow(10 , −6);
Apc=17.74∗pow(10 , −4);

r e a l Ve ;
Ve=−(Vswc∗w/(2∗Apc ) )∗ s i n (w∗( time+T/2 . 5 7 142 ) ) ;

;

v e l [0 ]=Ve ;
v e l [ 1 ]=0 ;
v e l [ 2 ]=0 ;

}
#inc lude "udf . h"
#inc lude "math . h"
DEFINE_CG_MOTION(piston_exp_1a_new , dt , ve l , omega , time , dtime )
{

r e a l pi ,w, hz ,T;
p i =3.141592653589793238462643383279;
hz=1;
T=1/hz ;
w=2∗pi ∗hz ;

r e a l Vswe , Ape ;
Vswe=9.39∗pow(10 , −6);
Ape=13.61∗pow(10 , −4);

r e a l Ve ;
Ve=(Vswe∗w/(2∗Ape ) )∗ s i n (w∗( time+T/4 ) ) ;

;

v e l [0 ]=Ve ;
v e l [ 1 ]=0 ;
v e l [ 2 ]=0 ;

}
#inc lude "udf . h"
#inc lude "math . h"
DEFINE_CG_MOTION( piston_exp_2a_140 , dt , ve l , omega , time , dtime )
{
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r e a l pi ,w, hz ,T;
p i =3.141592653589793238462643383279;
hz=1;
T=1/hz ;
w=2∗pi ∗hz ;

r e a l Vswe , Ape ;
Vswe=9.39∗pow(10 , −6);
Ape=13.61∗pow(10 , −4);

r e a l Ve ;
Ve=−(Vswe∗w/(2∗Ape ) )∗ s i n (w∗( time+T/2.5714+T/4 ) ) ;

;

v e l [0 ]=Ve ;
v e l [ 1 ]=0 ;
v e l [ 2 ]=0 ;

}

160 1Hz
#inc lude "udf . h"
#inc lude "math . h"
DEFINE_CG_MOTION(piston_comp_1_new , dt , ve l , omega , time , dtime )
{

r e a l pi ,w, hz ;
p i =3.141592653589793238462643383279;
hz=1;
w=2∗pi ∗hz ;

r e a l Vswc , Apc ;
Vswc=17.74∗pow(10 , −6);
Apc=17.74∗pow(10 , −4);

r e a l Ve ;
Ve=(Vswc∗w/(2∗Apc ) )∗ s i n (w∗ time ) ;

;

v e l [0 ]=Ve ;
v e l [ 1 ]=0 ;
v e l [ 2 ]=0 ;

}
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#inc lude "udf . h"
#inc lude "math . h"
DEFINE_CG_MOTION(piston_comp_2_140 , dt , ve l , omega , time , dtime )
{

r e a l pi ,w, hz ,T;
p i =3.141592653589793238462643383279;
hz=1;
w=2∗pi ∗hz ;
T=1/hz ;

r e a l Vswc , Apc ;
Vswc=17.74∗pow(10 , −6);
Apc=17.74∗pow(10 , −4);

r e a l Ve ;
Ve=−(Vswc∗w/(2∗Apc ) )∗ s i n (w∗( time+T/2 . 5 7 142 ) ) ;

;

v e l [0 ]=Ve ;
v e l [ 1 ]=0 ;
v e l [ 2 ]=0 ;

}
#inc lude "udf . h"
#inc lude "math . h"
DEFINE_CG_MOTION(piston_exp_1a_new , dt , ve l , omega , time , dtime )
{

r e a l pi ,w, hz ,T;
p i =3.141592653589793238462643383279;
hz=1;
T=1/hz ;
w=2∗pi ∗hz ;

r e a l Vswe , Ape ;
Vswe=9.39∗pow(10 , −6);
Ape=13.61∗pow(10 , −4);

r e a l Ve ;
Ve=(Vswe∗w/(2∗Ape ) )∗ s i n (w∗( time+T/4 ) ) ;

;

v e l [0 ]=Ve ;
v e l [ 1 ]=0 ;
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ve l [ 2 ]=0 ;

}
#inc lude "udf . h"
#inc lude "math . h"
DEFINE_CG_MOTION( piston_exp_2a_140 , dt , ve l , omega , time , dtime )
{

r e a l pi ,w, hz ,T;
p i =3.141592653589793238462643383279;
hz=1;
T=1/hz ;
w=2∗pi ∗hz ;

r e a l Vswe , Ape ;
Vswe=9.39∗pow(10 , −6);
Ape=13.61∗pow(10 , −4);

r e a l Ve ;
Ve=−(Vswe∗w/(2∗Ape ) )∗ s i n (w∗( time+T/2.5714+T/4 ) ) ;

;

v e l [0 ]=Ve ;
v e l [ 1 ]=0 ;
v e l [ 2 ]=0 ;

}

180 1Hz
#inc lude "udf . h"
#inc lude "math . h"
DEFINE_CG_MOTION(piston_comp_1_new , dt , ve l , omega , time , dtime )
{

r e a l pi ,w, hz ;
p i =3.141592653589793238462643383279;
hz=1;
w=2∗pi ∗hz ;

r e a l Vswc , Apc ;
Vswc=17.74∗pow(10 , −6);
Apc=17.74∗pow(10 , −4);

r e a l Ve ;
Ve=(Vswc∗w/(2∗Apc ) )∗ s i n (w∗ time ) ;
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;

v e l [0 ]=Ve ;
v e l [ 1 ]=0 ;
v e l [ 2 ]=0 ;

}
#inc lude "udf . h"
#inc lude "math . h"
DEFINE_CG_MOTION(piston_comp_2_140 , dt , ve l , omega , time , dtime )
{

r e a l pi ,w, hz ,T;
p i =3.141592653589793238462643383279;
hz=1;
w=2∗pi ∗hz ;
T=1/hz ;

r e a l Vswc , Apc ;
Vswc=17.74∗pow(10 , −6);
Apc=17.74∗pow(10 , −4);

r e a l Ve ;
Ve=−(Vswc∗w/(2∗Apc ) )∗ s i n (w∗( time+T/2 . 5 7 142 ) ) ;

;

v e l [0 ]=Ve ;
v e l [ 1 ]=0 ;
v e l [ 2 ]=0 ;

}
#inc lude "udf . h"
#inc lude "math . h"
DEFINE_CG_MOTION(piston_exp_1a_new , dt , ve l , omega , time , dtime )
{

r e a l pi ,w, hz ,T;
p i =3.141592653589793238462643383279;
hz=1;
T=1/hz ;
w=2∗pi ∗hz ;

r e a l Vswe , Ape ;
Vswe=9.39∗pow(10 , −6);
Ape=13.61∗pow(10 , −4);
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r e a l Ve ;
Ve=(Vswe∗w/(2∗Ape ) )∗ s i n (w∗( time+T/4 ) ) ;

;

v e l [0 ]=Ve ;
v e l [ 1 ]=0 ;
v e l [ 2 ]=0 ;

}

#inc lude "udf . h"
#inc lude "math . h"
DEFINE_CG_MOTION( piston_exp_2a_140 , dt , ve l , omega , time , dtime )
{

r e a l pi ,w, hz ,T;
p i =3.141592653589793238462643383279;
hz=1;
T=1/hz ;
w=2∗pi ∗hz ;

r e a l Vswe , Ape ;
Vswe=9.39∗pow(10 , −6);
Ape=13.61∗pow(10 , −4);

r e a l Ve ;
Ve=−(Vswe∗w/(2∗Ape ) )∗ s i n (w∗( time+T/2.5714+T/4 ) ) ;

;

v e l [0 ]=Ve ;
v e l [ 1 ]=0 ;
v e l [ 2 ]=0 ;

}

160 10Hz
#inc lude "udf . h"
#inc lude "math . h"
DEFINE_CG_MOTION(piston_comp_1_new , dt , ve l , omega , time , dtime )
{

r e a l pi ,w, hz ;
p i =3.141592653589793238462643383279;
hz=1;
w=2∗pi ∗hz ;
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r e a l Vswc , Apc ;
Vswc=17.74∗pow(10 , −6);
Apc=17.74∗pow(10 , −4);

r e a l Ve ;
Ve=(Vswc∗w/(2∗Apc ) )∗ s i n (w∗ time ) ;

;

v e l [0 ]=Ve ;
v e l [ 1 ]=0 ;
v e l [ 2 ]=0 ;

}
#inc lude "udf . h"
#inc lude "math . h"
DEFINE_CG_MOTION(piston_comp_2_140 , dt , ve l , omega , time , dtime )
{

r e a l pi ,w, hz ,T;
p i =3.141592653589793238462643383279;
hz=1;
w=2∗pi ∗hz ;
T=1/hz ;

r e a l Vswc , Apc ;
Vswc=17.74∗pow(10 , −6);
Apc=17.74∗pow(10 , −4);

r e a l Ve ;
Ve=−(Vswc∗w/(2∗Apc ) )∗ s i n (w∗( time+T/2 . 5 7 142 ) ) ;

;

v e l [0 ]=Ve ;
v e l [ 1 ]=0 ;
v e l [ 2 ]=0 ;

}
#inc lude "udf . h"
#inc lude "math . h"
DEFINE_CG_MOTION(piston_exp_1a_new , dt , ve l , omega , time , dtime )
{

r e a l pi ,w, hz ,T;
p i =3.141592653589793238462643383279;
hz=1;
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T=1/hz ;
w=2∗pi ∗hz ;

r e a l Vswe , Ape ;
Vswe=9.39∗pow(10 , −6);
Ape=13.61∗pow(10 , −4);

r e a l Ve ;
Ve=(Vswe∗w/(2∗Ape ) )∗ s i n (w∗( time+T/4 ) ) ;

;

v e l [0 ]=Ve ;
v e l [ 1 ]=0 ;
v e l [ 2 ]=0 ;

}
#inc lude "udf . h"
#inc lude "math . h"
DEFINE_CG_MOTION( piston_exp_2a_140 , dt , ve l , omega , time , dtime )
{

r e a l pi ,w, hz ,T;
p i =3.141592653589793238462643383279;
hz=1;
T=1/hz ;
w=2∗pi ∗hz ;

r e a l Vswe , Ape ;
Vswe=9.39∗pow(10 , −6);
Ape=13.61∗pow(10 , −4);

r e a l Ve ;
Ve=−(Vswe∗w/(2∗Ape ) )∗ s i n (w∗( time+T/2.5714+T/4 ) ) ;

;

v e l [0 ]=Ve ;
v e l [ 1 ]=0 ;
v e l [ 2 ]=0 ;

}
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Appendix Helium 4 Data

In this appendix the calculated data for Helium-4 based on the equation of state of chapter
3 are presented.
SF stands for Superfluid phase, NF stands for Normal Fluid phase.



T(K) P(atm) S(kJ/kgK) H(kJ/kg) ρ(kg/m3) Phase - T (K) P (atm) S (kJ/kgK) H (kJ/kg) ρ (kg/m3) Phase. 
0 0 4.49E-06 2.37E-05 2.23E-08 SF 2.6 10 1.88E+00 3.54E+00 1.65E+00 NF

0.05 0 1.94E-06 5.19E-06 2.42E-06 SF 2.65 10 1.91E+00 3.62E+00 1.63E+00 NF
0.1 0 6.89E-06 4.18E-06 2.06E-05 SF 2.7 10 1.94E+00 3.71E+00 1.61E+00 NF
0.15 0 2.31E-05 6.25E-06 6.90E-05 SF 2.75 10 1.97E+00 3.79E+00 1.60E+00 NF
0.2 0 5.47E-05 1.18E-05 1.61E-04 SF 2.8 10 2.00E+00 3.88E+00 1.60E+00 NF
0.25 0 1.04E-04 2.33E-05 3.11E-04 SF 2.85 10 2.03E+00 3.96E+00 1.61E+00 NF
0.3 0 1.80E-04 4.41E-05 5.34E-04 SF 2.9 10 2.06E+00 4.05E+00 1.62E+00 NF
0.35 0 2.87E-04 7.80E-05 8.36E-04 SF 2.95 10 2.09E+00 4.14E+00 1.65E+00 NF
0.4 0 4.27E-04 1.29E-04 1.23E-03 SF 3 10 2.12E+00 4.23E+00 1.68E+00 NF
0.45 0 5.91E-04 2.03E-04 1.72E-03 SF 3.05 10 2.15E+00 4.32E+00 1.72E+00 NF
0.5 0 7.75E-04 3.04E-04 2.37E-03 SF 3.1 10 2.18E+00 4.42E+00 1.76E+00 NF
0.55 0 9.96E-04 4.43E-04 3.23E-03 SF 3.15 10 2.21E+00 4.52E+00 1.80E+00 NF
0.6 0 1.29E-03 6.33E-04 4.47E-03 SF 3.2 10 2.24E+00 4.62E+00 1.84E+00 NF
0.65 0 1.69E-03 8.99E-04 6.31E-03 SF 3.25 10 2.28E+00 4.73E+00 1.88E+00 NF
0.7 0 2.28E-03 1.28E-03 9.17E-03 SF 3.3 10 2.31E+00 4.83E+00 1.92E+00 NF
0.75 0 3.12E-03 1.85E-03 1.40E-02 SF 3.35 10 2.34E+00 4.95E+00 1.95E+00 NF
0.8 0 4.31E-03 2.70E-03 2.10E-02 SF 3.4 10 2.38E+00 5.06E+00 1.98E+00 NF
0.85 0 5.95E-03 3.99E-03 3.20E-02 SF 3.45 10 2.41E+00 5.18E+00 2.00E+00 NF
0.9 0 8.19E-03 5.96E-03 4.80E-02 SF 3.5 10 2.45E+00 5.30E+00 2.02E+00 NF
0.95 0 1.10E-02 8.89E-03 7.20E-02 SF 0 11 2.72E-07 2.65E-04 4.95E-08 SF

1 0 1.50E-02 1.30E-02 1.04E-01 SF 0.05 11 6.30E-07 3.37E-06 1.19E-06 SF
1.05 0 2.10E-02 1.90E-02 1.45E-01 SF 0.1 11 2.93E-06 1.78E-06 8.77E-06 SF
1.1 0 2.90E-02 2.80E-02 1.97E-01 SF 0.15 11 9.86E-06 2.66E-06 2.98E-05 SF
1.15 0 3.90E-02 3.90E-02 2.60E-01 SF 0.2 11 2.36E-05 5.10E-06 7.00E-05 SF
1.2 0 5.20E-02 5.30E-02 3.36E-01 SF 0.25 11 4.57E-05 1.01E-05 1.38E-04 SF
1.25 0 6.70E-02 7.20E-02 4.26E-01 SF 0.3 11 7.91E-05 1.93E-05 2.41E-04 SF
1.3 0 8.60E-02 9.50E-02 5.34E-01 SF 0.35 11 1.27E-04 3.48E-05 3.82E-04 SF
1.35 0 1.07E-01 1.25E-01 6.58E-01 SF 0.4 11 1.90E-04 5.86E-05 5.69E-04 SF
1.4 0 1.33E-01 1.61E-01 7.99E-01 SF 0.45 11 2.71E-04 9.31E-05 8.30E-04 SF
1.45 0 1.63E-01 2.05E-01 9.56E-01 SF 0.5 11 3.77E-04 1.44E-04 1.24E-03 SF
1.5 0 1.99E-01 2.57E-01 1.13E+00 SF 0.55 11 5.24E-04 2.21E-04 1.95E-03 SF
1.55 0 2.40E-01 3.18E-01 1.33E+00 SF 0.6 11 7.44E-04 3.48E-04 3.24E-03 SF
1.6 0 2.88E-01 3.90E-01 1.57E+00 SF 0.65 11 1.09E-03 5.64E-04 5.58E-03 SF
1.65 0 3.39E-01 4.74E-01 1.85E+00 SF 0.7 11 1.65E-03 9.40E-04 9.74E-03 SF
1.7 0 3.96E-01 5.72E-01 2.17E+00 SF 0.75 11 2.54E-03 1.59E-03 1.70E-02 SF
1.75 0 4.60E-01 6.89E-01 2.53E+00 SF 0.8 11 3.94E-03 2.68E-03 2.80E-02 SF
1.8 0 5.37E-01 8.26E-01 2.93E+00 SF 0.85 11 6.08E-03 4.45E-03 4.40E-02 SF
1.85 0 6.29E-01 9.84E-01 3.36E+00 SF 0.9 11 9.19E-03 7.18E-03 6.70E-02 SF
1.9 0 7.29E-01 1.16E+00 3.86E+00 SF 0.95 11 1.40E-02 1.10E-02 9.70E-02 SF
1.95 0 8.29E-01 1.37E+00 4.48E+00 SF 1 11 1.90E-02 1.70E-02 1.36E-01 SF

2 0 9.38E-01 1.60E+00 5.21E+00 SF 1.05 11 2.70E-02 2.50E-02 1.85E-01 SF
2.05 0 1.10E+00 1.89E+00 5.90E+00 SF 1.1 11 3.70E-02 3.50E-02 2.45E-01 SF

0 1 2.71E-06 2.56E-05 2.39E-08 SF 1.15 11 4.90E-02 4.90E-02 3.18E-01 SF
0.05 1 1.50E-06 4.83E-06 2.23E-06 SF 1.2 11 6.40E-02 6.70E-02 4.05E-01 SF
0.1 1 6.26E-06 3.80E-06 1.87E-05 SF 1.25 11 8.20E-02 8.90E-02 5.10E-01 SF
0.15 1 2.10E-05 5.69E-06 6.29E-05 SF 1.3 11 1.04E-01 1.17E-01 6.35E-01 SF
0.2 1 4.98E-05 1.08E-05 1.47E-04 SF 1.35 11 1.31E-01 1.53E-01 7.82E-01 SF
0.25 1 9.55E-05 2.13E-05 2.85E-04 SF 1.4 11 1.63E-01 1.96E-01 9.53E-01 SF
0.3 1 1.64E-04 4.03E-05 4.90E-04 SF 1.45 11 1.99E-01 2.49E-01 1.14E+00 SF
0.35 1 2.62E-04 7.14E-05 7.69E-04 SF 1.5 11 2.42E-01 3.11E-01 1.35E+00 SF
0.4 1 3.90E-04 1.19E-04 1.13E-03 SF 1.55 11 2.90E-01 3.85E-01 1.58E+00 SF
0.45 1 5.44E-04 1.86E-04 1.59E-03 SF 1.6 11 3.44E-01 4.70E-01 1.84E+00 SF
0.5 1 7.24E-04 2.81E-04 2.20E-03 SF 1.65 11 4.05E-01 5.69E-01 2.15E+00 SF
0.55 1 9.44E-04 4.10E-04 3.03E-03 SF 1.7 11 4.75E-01 6.88E-01 2.54E+00 SF
0.6 1 1.23E-03 5.89E-04 4.23E-03 SF 1.75 11 5.57E-01 8.29E-01 2.99E+00 SF
0.65 1 1.63E-03 8.42E-04 6.06E-03 SF 1.8 11 6.50E-01 9.94E-01 3.46E+00 SF
0.7 1 2.19E-03 1.21E-03 8.94E-03 SF 1.85 11 7.53E-01 1.18E+00 3.96E+00 SF
0.75 1 2.99E-03 1.77E-03 1.40E-02 SF 1.9 11 8.68E-01 1.40E+00 4.62E+00 SF
0.8 1 4.14E-03 2.62E-03 2.10E-02 SF 2.05 11 1.39E+00 2.43E+00 6.12E+00 SF
0.85 1 5.76E-03 3.92E-03 3.20E-02 SF 2.1 11 1.45E+00 2.55E+00 3.23E+00 NF



T(K) P(atm) S(kJ/kgK) H(kJ/kg) ρ(kg/m3) Phase - T (K) P (atm) S (kJ/kgK) H (kJ/kg) ρ (kg/m3) Phase. 
0.9 1 8.02E-03 5.90E-03 4.90E-02 SF 2.15 11 1.50E+00 2.67E+00 2.26E+00 NF
0.95 1 1.10E-02 8.88E-03 7.30E-02 SF 2.2 11 1.55E+00 2.78E+00 1.88E+00 NF

1 1 1.60E-02 1.30E-02 1.05E-01 SF 2.25 11 1.60E+00 2.88E+00 1.73E+00 NF
1.05 1 2.10E-02 1.90E-02 1.47E-01 SF 2.3 11 1.65E+00 2.98E+00 1.68E+00 NF
1.1 1 2.90E-02 2.80E-02 1.99E-01 SF 2.35 11 1.69E+00 3.07E+00 1.66E+00 NF
1.15 1 3.90E-02 3.90E-02 2.63E-01 SF 2.4 11 1.72E+00 3.16E+00 1.66E+00 NF
1.2 1 5.20E-02 5.40E-02 3.40E-01 SF 2.45 11 1.76E+00 3.25E+00 1.66E+00 NF
1.25 1 6.80E-02 7.30E-02 4.32E-01 SF 2.5 11 1.80E+00 3.33E+00 1.65E+00 NF
1.3 1 8.60E-02 9.70E-02 5.40E-01 SF 2.55 11 1.83E+00 3.41E+00 1.63E+00 NF
1.35 1 1.09E-01 1.26E-01 6.66E-01 SF 2.6 11 1.86E+00 3.50E+00 1.61E+00 NF
1.4 1 1.35E-01 1.63E-01 8.08E-01 SF 2.65 11 1.89E+00 3.58E+00 1.59E+00 NF
1.45 1 1.65E-01 2.07E-01 9.67E-01 SF 2.7 11 1.92E+00 3.66E+00 1.58E+00 NF
1.5 1 2.01E-01 2.60E-01 1.14E+00 SF 2.75 11 1.95E+00 3.74E+00 1.57E+00 NF
1.55 1 2.43E-01 3.22E-01 1.35E+00 SF 2.8 11 1.98E+00 3.83E+00 1.57E+00 NF
1.6 1 2.90E-01 3.94E-01 1.58E+00 SF 2.85 11 2.01E+00 3.91E+00 1.58E+00 NF
1.65 1 3.42E-01 4.79E-01 1.86E+00 SF 2.9 11 2.04E+00 4.00E+00 1.60E+00 NF
1.7 1 4.00E-01 5.79E-01 2.19E+00 SF 2.95 11 2.07E+00 4.08E+00 1.63E+00 NF
1.75 1 4.66E-01 6.97E-01 2.56E+00 SF 3 11 2.10E+00 4.17E+00 1.66E+00 NF
1.8 1 5.44E-01 8.35E-01 2.96E+00 SF 3.05 11 2.13E+00 4.27E+00 1.70E+00 NF
1.85 1 6.35E-01 9.95E-01 3.40E+00 SF 3.1 11 2.16E+00 4.36E+00 1.74E+00 NF
1.9 1 7.34E-01 1.18E+00 3.91E+00 SF 3.15 11 2.19E+00 4.46E+00 1.78E+00 NF
1.95 1 8.38E-01 1.38E+00 4.52E+00 SF 3.2 11 2.22E+00 4.56E+00 1.82E+00 NF

2 1 9.53E-01 1.62E+00 5.25E+00 SF 3.25 11 2.26E+00 4.66E+00 1.86E+00 NF
2.05 1 1.11E+00 1.92E+00 5.97E+00 SF 3.3 11 2.29E+00 4.77E+00 1.89E+00 NF
2.15 1 1.54E+00 2.84E+00 1.03E+01 SF 3.35 11 2.32E+00 4.88E+00 1.92E+00 NF
2.2 1 1.62E+00 3.02E+00 4.59E+00 NF 3.4 11 2.35E+00 4.99E+00 1.95E+00 NF
2.25 1 1.69E+00 3.18E+00 3.07E+00 NF 3.45 11 2.39E+00 5.10E+00 1.98E+00 NF
2.3 1 1.76E+00 3.33E+00 2.54E+00 NF 3.5 11 2.42E+00 5.22E+00 2.00E+00 NF
2.35 1 1.82E+00 3.46E+00 2.33E+00 NF 0 12 3.78E-07 3.82E-04 6.70E-08 SF
2.4 1 1.87E+00 3.59E+00 2.23E+00 NF 0.05 12 6.31E-07 3.40E-06 1.18E-06 SF
2.45 1 1.92E+00 3.71E+00 2.17E+00 NF 0.1 12 2.77E-06 1.68E-06 8.30E-06 SF
2.5 1 1.97E+00 3.82E+00 2.12E+00 NF 0.15 12 9.33E-06 2.51E-06 2.82E-05 SF
2.55 1 2.01E+00 3.93E+00 2.07E+00 NF 0.2 12 2.23E-05 4.83E-06 6.63E-05 SF
2.6 1 2.05E+00 4.04E+00 2.03E+00 NF 0.25 12 4.33E-05 9.56E-06 1.30E-04 SF
2.65 1 2.09E+00 4.14E+00 2.00E+00 NF 0.3 12 7.49E-05 1.83E-05 2.28E-04 SF
2.7 1 2.13E+00 4.25E+00 1.99E+00 NF 0.35 12 1.20E-04 3.30E-05 3.62E-04 SF
2.75 1 2.17E+00 4.35E+00 1.98E+00 NF 0.4 12 1.80E-04 5.55E-05 5.39E-04 SF
2.8 1 2.21E+00 4.46E+00 1.99E+00 NF 0.45 12 2.57E-04 8.83E-05 7.91E-04 SF
2.85 1 2.25E+00 4.58E+00 2.00E+00 NF 0.5 12 3.59E-04 1.37E-04 1.20E-03 SF
2.9 1 2.29E+00 4.69E+00 2.01E+00 NF 0.55 12 5.02E-04 2.12E-04 1.91E-03 SF
2.95 1 2.33E+00 4.81E+00 2.03E+00 NF 0.6 12 7.20E-04 3.38E-04 3.23E-03 SF

3 1 2.37E+00 4.93E+00 2.04E+00 NF 0.65 12 1.07E-03 5.56E-04 5.67E-03 SF
3.05 1 2.41E+00 5.06E+00 2.06E+00 NF 0.7 12 1.64E-03 9.40E-04 1.00E-02 SF
3.1 1 2.45E+00 5.19E+00 2.08E+00 NF 0.75 12 2.56E-03 1.61E-03 1.70E-02 SF
3.15 1 2.50E+00 5.32E+00 2.10E+00 NF 0.8 12 4.01E-03 2.74E-03 2.90E-02 SF
3.2 1 2.54E+00 5.46E+00 2.12E+00 NF 0.85 12 6.23E-03 4.57E-03 4.60E-02 SF
3.25 1 2.58E+00 5.61E+00 2.15E+00 NF 0.9 12 9.46E-03 7.41E-03 6.90E-02 SF
3.3 1 2.63E+00 5.75E+00 2.18E+00 NF 0.95 12 1.40E-02 1.20E-02 1.00E-01 SF
3.35 1 2.68E+00 5.91E+00 2.21E+00 NF 1 12 2.00E-02 1.80E-02 1.40E-01 SF
3.4 1 2.72E+00 6.06E+00 2.25E+00 NF 1.05 12 2.80E-02 2.60E-02 1.90E-01 SF
3.45 1 2.77E+00 6.22E+00 2.28E+00 NF 1.1 12 3.80E-02 3.60E-02 2.52E-01 SF
3.5 1 2.82E+00 6.38E+00 2.32E+00 NF 1.15 12 5.10E-02 5.10E-02 3.26E-01 SF
0 2 9.30E-07 2.75E-05 2.56E-08 SF 1.2 12 6.60E-02 6.90E-02 4.14E-01 SF

0.05 2 1.05E-06 4.47E-06 2.05E-06 SF 1.25 12 8.50E-02 9.20E-02 5.20E-01 SF
0.1 2 5.64E-06 3.42E-06 1.69E-05 SF 1.3 12 1.07E-01 1.20E-01 6.47E-01 SF
0.15 2 1.89E-05 5.13E-06 5.68E-05 SF 1.35 12 1.34E-01 1.56E-01 7.98E-01 SF
0.2 2 4.48E-05 9.74E-06 1.33E-04 SF 1.4 12 1.66E-01 2.01E-01 9.74E-01 SF
0.25 2 8.67E-05 1.92E-05 2.58E-04 SF 1.45 12 2.04E-01 2.54E-01 1.17E+00 SF
0.3 2 1.49E-04 3.65E-05 4.46E-04 SF 1.5 12 2.47E-01 3.19E-01 1.38E+00 SF
0.35 2 2.37E-04 6.49E-05 7.02E-04 SF 1.55 12 2.96E-01 3.94E-01 1.61E+00 SF



T(K) P(atm) S(kJ/kgK) H(kJ/kg) ρ(kg/m3) Phase - T (K) P (atm) S (kJ/kgK) H (kJ/kg) ρ (kg/m3) Phase. 
0.4 2 3.52E-04 1.08E-04 1.04E-03 SF 1.6 12 3.52E-01 4.80E-01 1.88E+00 SF
0.45 2 4.97E-04 1.70E-04 1.46E-03 SF 1.65 12 4.14E-01 5.82E-01 2.20E+00 SF
0.5 2 6.73E-04 2.57E-04 2.03E-03 SF 1.7 12 4.87E-01 7.04E-01 2.60E+00 SF
0.55 2 8.92E-04 3.77E-04 2.82E-03 SF 1.75 12 5.70E-01 8.49E-01 3.06E+00 SF
0.6 2 1.18E-03 5.44E-04 3.99E-03 SF 1.8 12 6.65E-01 1.02E+00 3.52E+00 SF
0.65 2 1.56E-03 7.86E-04 5.81E-03 SF 1.85 12 7.70E-01 1.21E+00 4.02E+00 SF
0.7 2 2.09E-03 1.15E-03 8.72E-03 SF 1.9 12 8.89E-01 1.43E+00 4.78E+00 SF
0.75 2 2.86E-03 1.69E-03 1.30E-02 SF 2 12 1.33E+00 2.29E+00 1.17E+01 SF
0.8 2 3.97E-03 2.54E-03 2.10E-02 SF 2.05 12 1.39E+00 2.42E+00 4.74E+00 NF
0.85 2 5.57E-03 3.85E-03 3.20E-02 SF 2.1 12 1.45E+00 2.54E+00 2.78E+00 NF
0.9 2 7.85E-03 5.85E-03 5.00E-02 SF 2.15 12 1.50E+00 2.65E+00 2.07E+00 NF
0.95 2 1.10E-02 8.87E-03 7.40E-02 SF 2.2 12 1.55E+00 2.76E+00 1.78E+00 NF

1 2 1.60E-02 1.30E-02 1.07E-01 SF 2.25 12 1.59E+00 2.86E+00 1.67E+00 NF
1.05 2 2.20E-02 2.00E-02 1.49E-01 SF 2.3 12 1.64E+00 2.95E+00 1.63E+00 NF
1.1 2 3.00E-02 2.80E-02 2.02E-01 SF 2.35 12 1.68E+00 3.04E+00 1.63E+00 NF
1.15 2 4.00E-02 4.00E-02 2.66E-01 SF 2.4 12 1.71E+00 3.13E+00 1.63E+00 NF
1.2 2 5.30E-02 5.40E-02 3.44E-01 SF 2.45 12 1.75E+00 3.21E+00 1.63E+00 NF
1.25 2 6.80E-02 7.40E-02 4.37E-01 SF 2.5 12 1.78E+00 3.30E+00 1.62E+00 NF
1.3 2 8.70E-02 9.80E-02 5.47E-01 SF 2.55 12 1.82E+00 3.38E+00 1.60E+00 NF
1.35 2 1.10E-01 1.28E-01 6.74E-01 SF 2.6 12 1.85E+00 3.46E+00 1.58E+00 NF
1.4 2 1.36E-01 1.65E-01 8.17E-01 SF 2.65 12 1.88E+00 3.54E+00 1.56E+00 NF
1.45 2 1.68E-01 2.10E-01 9.77E-01 SF 2.7 12 1.91E+00 3.62E+00 1.55E+00 NF
1.5 2 2.04E-01 2.63E-01 1.16E+00 SF 2.75 12 1.94E+00 3.70E+00 1.54E+00 NF
1.55 2 2.45E-01 3.25E-01 1.36E+00 SF 2.8 12 1.97E+00 3.78E+00 1.55E+00 NF
1.6 2 2.92E-01 3.99E-01 1.60E+00 SF 2.85 12 2.00E+00 3.86E+00 1.56E+00 NF
1.65 2 3.45E-01 4.84E-01 1.88E+00 SF 2.9 12 2.02E+00 3.95E+00 1.58E+00 NF
1.7 2 4.04E-01 5.85E-01 2.21E+00 SF 2.95 12 2.05E+00 4.03E+00 1.60E+00 NF
1.75 2 4.72E-01 7.04E-01 2.58E+00 SF 3 12 2.08E+00 4.12E+00 1.64E+00 NF
1.8 2 5.51E-01 8.44E-01 2.99E+00 SF 3.05 12 2.11E+00 4.21E+00 1.67E+00 NF
1.85 2 6.41E-01 1.01E+00 3.44E+00 SF 3.1 12 2.14E+00 4.31E+00 1.72E+00 NF
1.9 2 7.40E-01 1.19E+00 3.95E+00 SF 3.15 12 2.17E+00 4.40E+00 1.76E+00 NF
1.95 2 8.46E-01 1.40E+00 4.57E+00 SF 3.2 12 2.20E+00 4.50E+00 1.80E+00 NF

2 2 9.68E-01 1.64E+00 5.30E+00 SF 3.25 12 2.24E+00 4.60E+00 1.83E+00 NF
2.05 2 1.12E+00 1.94E+00 6.04E+00 SF 3.3 12 2.27E+00 4.71E+00 1.87E+00 NF
2.15 2 1.54E+00 2.72E+00 8.17E+00 SF 3.35 12 2.30E+00 4.81E+00 1.90E+00 NF
2.2 2 1.61E+00 2.90E+00 4.17E+00 NF 3.4 12 2.33E+00 4.92E+00 1.93E+00 NF
2.25 2 1.68E+00 3.07E+00 2.89E+00 NF 3.45 12 2.36E+00 5.04E+00 1.95E+00 NF
2.3 2 1.75E+00 3.21E+00 2.40E+00 NF 3.5 12 2.40E+00 5.15E+00 1.97E+00 NF
2.35 2 1.80E+00 3.35E+00 2.21E+00 NF 0 13 4.96E-07 4.77E-04 6.19E-08 SF
2.4 2 1.85E+00 3.47E+00 2.13E+00 NF 0.05 13 6.26E-07 3.36E-06 1.09E-06 SF
2.45 2 1.90E+00 3.58E+00 2.10E+00 NF 0.1 13 2.63E-06 1.60E-06 7.87E-06 SF
2.5 2 1.95E+00 3.69E+00 2.08E+00 NF 0.15 13 8.85E-06 2.39E-06 2.67E-05 SF
2.55 2 1.99E+00 3.79E+00 2.06E+00 NF 0.2 13 2.12E-05 4.58E-06 6.29E-05 SF
2.6 2 2.03E+00 3.89E+00 2.03E+00 NF 0.25 13 4.11E-05 9.07E-06 1.24E-04 SF
2.65 2 2.07E+00 3.99E+00 2.00E+00 NF 0.3 13 7.11E-05 1.74E-05 2.17E-04 SF
2.7 2 2.11E+00 4.08E+00 1.96E+00 NF 0.35 13 1.14E-04 3.14E-05 3.44E-04 SF
2.75 2 2.15E+00 4.18E+00 1.94E+00 NF 0.4 13 1.71E-04 5.28E-05 5.13E-04 SF
2.8 2 2.18E+00 4.28E+00 1.92E+00 NF 0.45 13 2.45E-04 8.40E-05 7.57E-04 SF
2.85 2 2.22E+00 4.39E+00 1.91E+00 NF 0.5 13 3.42E-04 1.30E-04 1.16E-03 SF
2.9 2 2.26E+00 4.50E+00 1.92E+00 NF 0.55 13 4.82E-04 2.04E-04 1.88E-03 SF
2.95 2 2.29E+00 4.61E+00 1.94E+00 NF 0.6 13 6.99E-04 3.29E-04 3.24E-03 SF

3 2 2.33E+00 4.72E+00 1.97E+00 NF 0.65 13 1.05E-03 5.50E-04 5.78E-03 SF
3.05 2 2.37E+00 4.84E+00 2.00E+00 NF 0.7 13 1.64E-03 9.44E-04 1.00E-02 SF
3.1 2 2.41E+00 4.97E+00 2.04E+00 NF 0.75 13 2.59E-03 1.64E-03 1.80E-02 SF
3.15 2 2.45E+00 5.10E+00 2.08E+00 NF 0.8 13 4.10E-03 2.81E-03 3.00E-02 SF
3.2 2 2.49E+00 5.24E+00 2.11E+00 NF 0.85 13 6.39E-03 4.71E-03 4.70E-02 SF
3.25 2 2.54E+00 5.38E+00 2.15E+00 NF 0.9 13 9.74E-03 7.64E-03 7.10E-02 SF
3.3 2 2.58E+00 5.52E+00 2.18E+00 NF 0.95 13 1.40E-02 1.20E-02 1.03E-01 SF
3.35 2 2.62E+00 5.67E+00 2.20E+00 NF 1 13 2.10E-02 1.80E-02 1.44E-01 SF
3.4 2 2.67E+00 5.82E+00 2.23E+00 NF 1.05 13 2.90E-02 2.60E-02 1.96E-01 SF



T(K) P(atm) S(kJ/kgK) H(kJ/kg) ρ(kg/m3) Phase - T (K) P (atm) S (kJ/kgK) H (kJ/kg) ρ (kg/m3) Phase. 
3.45 2 2.71E+00 5.98E+00 2.24E+00 NF 1.1 13 3.90E-02 3.80E-02 2.59E-01 SF
3.5 2 2.76E+00 6.14E+00 2.26E+00 NF 1.15 13 5.20E-02 5.20E-02 3.34E-01 SF
0 3 4.45E-08 3.42E-05 3.15E-08 SF 1.2 13 6.80E-02 7.10E-02 4.24E-01 SF

0.05 3 8.14E-07 4.23E-06 1.92E-06 SF 1.25 13 8.70E-02 9.40E-02 5.31E-01 SF
0.1 3 5.12E-06 3.11E-06 1.53E-05 SF 1.3 13 1.10E-01 1.23E-01 6.60E-01 SF
0.15 3 1.72E-05 4.66E-06 5.17E-05 SF 1.35 13 1.37E-01 1.60E-01 8.15E-01 SF
0.2 3 4.08E-05 8.87E-06 1.21E-04 SF 1.4 13 1.70E-01 2.05E-01 9.95E-01 SF
0.25 3 7.92E-05 1.75E-05 2.36E-04 SF 1.45 13 2.09E-01 2.61E-01 1.20E+00 SF
0.3 3 1.36E-04 3.33E-05 4.08E-04 SF 1.5 13 2.53E-01 3.26E-01 1.42E+00 SF
0.35 3 2.16E-04 5.94E-05 6.45E-04 SF 1.55 13 3.04E-01 4.03E-01 1.65E+00 SF
0.4 3 3.22E-04 9.92E-05 9.54E-04 SF 1.6 13 3.60E-01 4.92E-01 1.92E+00 SF
0.45 3 4.57E-04 1.57E-04 1.35E-03 SF 1.65 13 4.24E-01 5.96E-01 2.25E+00 SF
0.5 3 6.26E-04 2.37E-04 1.89E-03 SF 1.7 13 4.98E-01 7.21E-01 2.66E+00 SF
0.55 3 8.38E-04 3.48E-04 2.65E-03 SF 1.75 13 5.85E-01 8.71E-01 3.13E+00 SF
0.6 3 1.11E-03 5.07E-04 3.80E-03 SF 1.8 13 6.82E-01 1.04E+00 3.60E+00 SF
0.65 3 1.48E-03 7.40E-04 5.64E-03 SF 1.85 13 7.88E-01 1.24E+00 4.12E+00 SF
0.7 3 2.00E-03 1.09E-03 8.61E-03 SF 1.9 13 9.12E-01 1.47E+00 4.96E+00 SF
0.75 3 2.76E-03 1.64E-03 1.30E-02 SF 2 13 1.33E+00 2.28E+00 8.97E+00 SF
0.8 3 3.86E-03 2.49E-03 2.10E-02 SF 2.05 13 1.39E+00 2.41E+00 3.99E+00 NF
0.85 3 5.47E-03 3.82E-03 3.30E-02 SF 2.1 13 1.45E+00 2.52E+00 2.49E+00 NF
0.9 3 7.80E-03 5.87E-03 5.10E-02 SF 2.15 13 1.50E+00 2.63E+00 1.94E+00 NF
0.95 3 1.10E-02 8.95E-03 7.50E-02 SF 2.2 13 1.54E+00 2.73E+00 1.71E+00 NF

1 3 1.60E-02 1.30E-02 1.09E-01 SF 2.25 13 1.59E+00 2.83E+00 1.63E+00 NF
1.05 3 2.20E-02 2.00E-02 1.51E-01 SF 2.3 13 1.63E+00 2.92E+00 1.60E+00 NF
1.1 3 3.00E-02 2.90E-02 2.05E-01 SF 2.35 13 1.67E+00 3.01E+00 1.60E+00 NF
1.15 3 4.00E-02 4.00E-02 2.70E-01 SF 2.4 13 1.70E+00 3.09E+00 1.60E+00 NF
1.2 3 5.30E-02 5.50E-02 3.49E-01 SF 2.45 13 1.74E+00 3.17E+00 1.60E+00 NF
1.25 3 6.90E-02 7.50E-02 4.44E-01 SF 2.5 13 1.77E+00 3.25E+00 1.59E+00 NF
1.3 3 8.80E-02 9.90E-02 5.55E-01 SF 2.55 13 1.80E+00 3.33E+00 1.57E+00 NF
1.35 3 1.11E-01 1.30E-01 6.83E-01 SF 2.6 13 1.83E+00 3.41E+00 1.55E+00 NF
1.4 3 1.39E-01 1.67E-01 8.28E-01 SF 2.65 13 1.86E+00 3.49E+00 1.53E+00 NF
1.45 3 1.70E-01 2.13E-01 9.90E-01 SF 2.7 13 1.89E+00 3.57E+00 1.52E+00 NF
1.5 3 2.07E-01 2.67E-01 1.17E+00 SF 2.75 13 1.92E+00 3.65E+00 1.52E+00 NF
1.55 3 2.48E-01 3.30E-01 1.38E+00 SF 2.8 13 1.95E+00 3.73E+00 1.52E+00 NF
1.6 3 2.95E-01 4.04E-01 1.61E+00 SF 2.85 13 1.98E+00 3.81E+00 1.53E+00 NF
1.65 3 3.48E-01 4.90E-01 1.90E+00 SF 2.9 13 2.01E+00 3.90E+00 1.55E+00 NF
1.7 3 4.09E-01 5.92E-01 2.23E+00 SF 2.95 13 2.04E+00 3.98E+00 1.58E+00 NF
1.75 3 4.79E-01 7.13E-01 2.61E+00 SF 3 13 2.07E+00 4.07E+00 1.62E+00 NF
1.8 3 5.59E-01 8.54E-01 3.03E+00 SF 3.05 13 2.10E+00 4.16E+00 1.65E+00 NF
1.85 3 6.49E-01 1.02E+00 3.49E+00 SF 3.1 13 2.13E+00 4.25E+00 1.69E+00 NF
1.9 3 7.48E-01 1.20E+00 4.00E+00 SF 3.15 13 2.16E+00 4.35E+00 1.74E+00 NF
1.95 3 8.57E-01 1.42E+00 4.61E+00 SF 3.2 13 2.19E+00 4.44E+00 1.77E+00 NF

2 3 9.83E-01 1.66E+00 5.34E+00 SF 3.25 13 2.22E+00 4.54E+00 1.81E+00 NF
2.15 3 1.53E+00 2.82E+00 6.56E+00 NF 3.3 13 2.25E+00 4.65E+00 1.85E+00 NF
2.2 3 1.60E+00 2.97E+00 3.67E+00 NF 3.35 13 2.28E+00 4.75E+00 1.88E+00 NF
2.25 3 1.67E+00 3.11E+00 2.66E+00 NF 3.4 13 2.31E+00 4.86E+00 1.91E+00 NF
2.3 3 1.72E+00 3.25E+00 2.26E+00 NF 3.45 13 2.34E+00 4.97E+00 1.93E+00 NF
2.35 3 1.78E+00 3.37E+00 2.10E+00 NF 3.5 13 2.38E+00 5.08E+00 1.95E+00 NF
2.4 3 1.83E+00 3.49E+00 2.05E+00 NF 0 14 6.27E-07 5.50E-04 3.42E-08 SF
2.45 3 1.88E+00 3.60E+00 2.03E+00 NF 0.05 14 6.15E-07 3.26E-06 9.18E-07 SF
2.5 3 1.92E+00 3.71E+00 2.01E+00 NF 0.1 14 2.50E-06 1.52E-06 7.50E-06 SF
2.55 3 1.96E+00 3.81E+00 2.00E+00 NF 0.15 14 8.43E-06 2.27E-06 2.55E-05 SF
2.6 3 2.00E+00 3.91E+00 1.97E+00 NF 0.2 14 2.02E-05 4.37E-06 5.98E-05 SF
2.65 3 2.04E+00 4.01E+00 1.94E+00 NF 0.25 14 3.91E-05 8.64E-06 1.18E-04 SF
2.7 3 2.08E+00 4.11E+00 1.91E+00 NF 0.3 14 6.78E-05 1.66E-05 2.07E-04 SF
2.75 3 2.12E+00 4.22E+00 1.88E+00 NF 0.35 14 1.09E-04 2.99E-05 3.28E-04 SF
2.8 3 2.15E+00 4.32E+00 1.86E+00 NF 0.4 14 1.63E-04 5.03E-05 4.89E-04 SF
2.85 3 2.19E+00 4.42E+00 1.86E+00 NF 0.45 14 2.33E-04 8.02E-05 7.26E-04 SF
2.9 3 2.23E+00 4.53E+00 1.86E+00 NF 0.5 14 3.28E-04 1.25E-04 1.13E-03 SF
2.95 3 2.26E+00 4.63E+00 1.88E+00 NF 0.55 14 4.65E-04 1.98E-04 1.86E-03 SF



T(K) P(atm) S(kJ/kgK) H(kJ/kg) ρ(kg/m3) Phase - T (K) P (atm) S (kJ/kgK) H (kJ/kg) ρ (kg/m3) Phase. 
3 3 2.30E+00 4.74E+00 1.90E+00 NF 0.6 14 6.82E-04 3.22E-04 3.27E-03 SF

3.05 3 2.34E+00 4.86E+00 1.94E+00 NF 0.65 14 1.04E-03 5.47E-04 5.91E-03 SF
3.1 3 2.37E+00 4.97E+00 1.98E+00 NF 0.7 14 1.64E-03 9.51E-04 1.10E-02 SF
3.15 3 2.41E+00 5.09E+00 2.02E+00 NF 0.75 14 2.62E-03 1.67E-03 1.90E-02 SF
3.2 3 2.45E+00 5.22E+00 2.06E+00 NF 0.8 14 4.19E-03 2.89E-03 3.10E-02 SF
3.25 3 2.49E+00 5.34E+00 2.10E+00 NF 0.85 14 6.57E-03 4.86E-03 4.90E-02 SF
3.3 3 2.53E+00 5.47E+00 2.14E+00 NF 0.9 14 1.00E-02 7.89E-03 7.40E-02 SF
3.35 3 2.57E+00 5.61E+00 2.17E+00 NF 0.95 14 1.50E-02 1.20E-02 1.07E-01 SF
3.4 3 2.61E+00 5.75E+00 2.19E+00 NF 1 14 2.10E-02 1.90E-02 1.49E-01 SF
3.45 3 2.65E+00 5.89E+00 2.21E+00 NF 1.05 14 3.00E-02 2.70E-02 2.02E-01 SF
3.5 3 2.69E+00 6.04E+00 2.23E+00 NF 1.1 14 4.00E-02 3.90E-02 2.66E-01 SF
0 4 5.48E-08 4.55E-05 4.19E-08 SF 1.15 14 5.40E-02 5.40E-02 3.43E-01 SF

0.05 4 7.79E-07 4.09E-06 1.85E-06 SF 1.2 14 7.00E-02 7.30E-02 4.34E-01 SF
0.1 4 4.71E-06 2.87E-06 1.41E-05 SF 1.25 14 8.90E-02 9.70E-02 5.43E-01 SF
0.15 4 1.59E-05 4.29E-06 4.77E-05 SF 1.3 14 1.13E-01 1.27E-01 6.75E-01 SF
0.2 4 3.76E-05 8.18E-06 1.12E-04 SF 1.35 14 1.41E-01 1.64E-01 8.33E-01 SF
0.25 4 7.31E-05 1.62E-05 2.18E-04 SF 1.4 14 1.75E-01 2.11E-01 1.02E+00 SF
0.3 4 1.26E-04 3.08E-05 3.78E-04 SF 1.45 14 2.14E-01 2.67E-01 1.22E+00 SF
0.35 4 2.00E-04 5.50E-05 5.99E-04 SF 1.5 14 2.60E-01 3.34E-01 1.45E+00 SF
0.4 4 2.98E-04 9.20E-05 8.86E-04 SF 1.55 14 3.11E-01 4.13E-01 1.69E+00 SF
0.45 4 4.24E-04 1.45E-04 1.26E-03 SF 1.6 14 3.69E-01 5.04E-01 1.97E+00 SF
0.5 4 5.81E-04 2.20E-04 1.77E-03 SF 1.65 14 4.34E-01 6.11E-01 2.30E+00 SF
0.55 4 7.81E-04 3.25E-04 2.51E-03 SF 1.7 14 5.11E-01 7.39E-01 2.73E+00 SF
0.6 4 1.04E-03 4.77E-04 3.66E-03 SF 1.75 14 6.00E-01 8.93E-01 3.21E+00 SF
0.65 4 1.41E-03 7.03E-04 5.53E-03 SF 1.8 14 6.99E-01 1.07E+00 3.70E+00 SF
0.7 4 1.92E-03 1.05E-03 8.60E-03 SF 1.85 14 8.08E-01 1.27E+00 4.25E+00 SF
0.75 4 2.68E-03 1.60E-03 1.40E-02 SF 1.9 14 9.37E-01 1.51E+00 5.15E+00 SF
0.8 4 3.80E-03 2.47E-03 2.20E-02 SF 2 14 1.33E+00 2.28E+00 6.54E+00 SF
0.85 4 5.46E-03 3.84E-03 3.40E-02 SF 2.05 14 1.39E+00 2.39E+00 3.29E+00 NF
0.9 4 7.87E-03 5.96E-03 5.20E-02 SF 2.1 14 1.44E+00 2.50E+00 2.22E+00 NF
0.95 4 1.10E-02 9.13E-03 7.80E-02 SF 2.15 14 1.49E+00 2.61E+00 1.81E+00 NF

1 4 1.60E-02 1.40E-02 1.11E-01 SF 2.2 14 1.54E+00 2.71E+00 1.64E+00 NF
1.05 4 2.20E-02 2.00E-02 1.55E-01 SF 2.25 14 1.58E+00 2.80E+00 1.59E+00 NF
1.1 4 3.10E-02 2.90E-02 2.08E-01 SF 2.3 14 1.62E+00 2.89E+00 1.57E+00 NF
1.15 4 4.10E-02 4.10E-02 2.75E-01 SF 2.35 14 1.66E+00 2.97E+00 1.58E+00 NF
1.2 4 5.40E-02 5.60E-02 3.55E-01 SF 2.4 14 1.69E+00 3.06E+00 1.58E+00 NF
1.25 4 7.00E-02 7.60E-02 4.51E-01 SF 2.45 14 1.73E+00 3.14E+00 1.58E+00 NF
1.3 4 9.00E-02 1.01E-01 5.63E-01 SF 2.5 14 1.76E+00 3.22E+00 1.56E+00 NF
1.35 4 1.13E-01 1.32E-01 6.93E-01 SF 2.55 14 1.79E+00 3.29E+00 1.54E+00 NF
1.4 4 1.41E-01 1.70E-01 8.40E-01 SF 2.6 14 1.82E+00 3.37E+00 1.53E+00 NF
1.45 4 1.73E-01 2.16E-01 1.00E+00 SF 2.65 14 1.85E+00 3.45E+00 1.51E+00 NF
1.5 4 2.10E-01 2.71E-01 1.19E+00 SF 2.7 14 1.88E+00 3.53E+00 1.50E+00 NF
1.55 4 2.52E-01 3.35E-01 1.39E+00 SF 2.75 14 1.91E+00 3.61E+00 1.49E+00 NF
1.6 4 3.00E-01 4.10E-01 1.63E+00 SF 2.8 14 1.94E+00 3.69E+00 1.50E+00 NF
1.65 4 3.53E-01 4.97E-01 1.92E+00 SF 2.85 14 1.96E+00 3.77E+00 1.51E+00 NF
1.7 4 4.15E-01 6.00E-01 2.25E+00 SF 2.9 14 1.99E+00 3.85E+00 1.53E+00 NF
1.75 4 4.86E-01 7.23E-01 2.64E+00 SF 2.95 14 2.02E+00 3.93E+00 1.56E+00 NF
1.8 4 5.67E-01 8.67E-01 3.07E+00 SF 3 14 2.05E+00 4.02E+00 1.59E+00 NF
1.85 4 6.58E-01 1.03E+00 3.54E+00 SF 3.05 14 2.08E+00 4.11E+00 1.63E+00 NF
1.9 4 7.59E-01 1.22E+00 4.06E+00 SF 3.1 14 2.11E+00 4.20E+00 1.67E+00 NF
1.95 4 8.70E-01 1.44E+00 4.67E+00 SF 3.15 14 2.14E+00 4.29E+00 1.71E+00 NF

2 4 9.99E-01 1.69E+00 5.40E+00 SF 3.2 14 2.17E+00 4.39E+00 1.75E+00 NF
2.15 4 1.53E+00 2.79E+00 5.57E+00 NF 3.25 14 2.20E+00 4.49E+00 1.79E+00 NF
2.2 4 1.59E+00 2.94E+00 3.39E+00 NF 3.3 14 2.23E+00 4.59E+00 1.83E+00 NF
2.25 4 1.65E+00 3.07E+00 2.56E+00 NF 3.35 14 2.26E+00 4.69E+00 1.86E+00 NF
2.3 4 1.71E+00 3.20E+00 2.20E+00 NF 3.4 14 2.29E+00 4.80E+00 1.88E+00 NF
2.35 4 1.76E+00 3.32E+00 2.05E+00 NF 3.45 14 2.32E+00 4.91E+00 1.91E+00 NF
2.4 4 1.81E+00 3.43E+00 1.98E+00 NF 3.5 14 2.36E+00 5.02E+00 1.93E+00 NF
2.45 4 1.86E+00 3.54E+00 1.96E+00 NF 0 15 7.58E-07 6.24E-04 6.51E-09 SF
2.5 4 1.90E+00 3.65E+00 1.94E+00 NF 0.05 15 6.05E-07 3.17E-06 7.47E-07 SF



T(K) P(atm) S(kJ/kgK) H(kJ/kg) ρ(kg/m3) Phase - T (K) P (atm) S (kJ/kgK) H (kJ/kg) ρ (kg/m3) Phase. 
2.55 4 1.94E+00 3.75E+00 1.92E+00 NF 0.1 15 2.38E-06 1.44E-06 7.13E-06 SF
2.6 4 1.98E+00 3.85E+00 1.90E+00 NF 0.15 15 8.02E-06 2.16E-06 2.43E-05 SF
2.65 4 2.02E+00 3.95E+00 1.88E+00 NF 0.2 15 1.92E-05 4.15E-06 5.68E-05 SF
2.7 4 2.05E+00 4.05E+00 1.85E+00 NF 0.25 15 3.72E-05 8.22E-06 1.13E-04 SF
2.75 4 2.09E+00 4.14E+00 1.83E+00 NF 0.3 15 6.45E-05 1.58E-05 1.97E-04 SF
2.8 4 2.13E+00 4.24E+00 1.82E+00 NF 0.35 15 1.03E-04 2.85E-05 3.12E-04 SF
2.85 4 2.16E+00 4.34E+00 1.82E+00 NF 0.4 15 1.55E-04 4.79E-05 4.65E-04 SF
2.9 4 2.20E+00 4.45E+00 1.83E+00 NF 0.45 15 2.22E-04 7.64E-05 6.96E-04 SF
2.95 4 2.23E+00 4.55E+00 1.84E+00 NF 0.5 15 3.13E-04 1.20E-04 1.10E-03 SF

3 4 2.27E+00 4.66E+00 1.87E+00 NF 0.55 15 4.48E-04 1.91E-04 1.84E-03 SF
3.05 4 2.30E+00 4.77E+00 1.90E+00 NF 0.6 15 6.65E-04 3.16E-04 3.29E-03 SF
3.1 4 2.34E+00 4.88E+00 1.94E+00 NF 0.65 15 1.03E-03 5.43E-04 6.03E-03 SF
3.15 4 2.37E+00 4.99E+00 1.98E+00 NF 0.7 15 1.64E-03 9.59E-04 1.10E-02 SF
3.2 4 2.41E+00 5.11E+00 2.02E+00 NF 0.75 15 2.66E-03 1.70E-03 1.90E-02 SF
3.25 4 2.45E+00 5.23E+00 2.05E+00 NF 0.8 15 4.28E-03 2.96E-03 3.20E-02 SF
3.3 4 2.49E+00 5.36E+00 2.09E+00 NF 0.85 15 6.75E-03 5.00E-03 5.10E-02 SF
3.35 4 2.52E+00 5.49E+00 2.12E+00 NF 0.9 15 1.00E-02 8.14E-03 7.60E-02 SF
3.4 4 2.56E+00 5.62E+00 2.15E+00 NF 0.95 15 1.50E-02 1.30E-02 1.10E-01 SF
3.45 4 2.60E+00 5.76E+00 2.17E+00 NF 1 15 2.20E-02 1.90E-02 1.53E-01 SF
3.5 4 2.64E+00 5.90E+00 2.19E+00 NF 1.05 15 3.10E-02 2.80E-02 2.07E-01 SF
0 5 6.51E-08 5.69E-05 5.22E-08 SF 1.1 15 4.20E-02 4.00E-02 2.73E-01 SF

0.05 5 7.44E-07 3.96E-06 1.78E-06 SF 1.15 15 5.50E-02 5.50E-02 3.51E-01 SF
0.1 5 4.31E-06 2.62E-06 1.29E-05 SF 1.2 15 7.20E-02 7.50E-02 4.44E-01 SF
0.15 5 1.45E-05 3.92E-06 4.36E-05 SF 1.25 15 9.20E-02 9.90E-02 5.56E-01 SF
0.2 5 3.45E-05 7.49E-06 1.03E-04 SF 1.3 15 1.16E-01 1.30E-01 6.90E-01 SF
0.25 5 6.70E-05 1.48E-05 2.00E-04 SF 1.35 15 1.45E-01 1.68E-01 8.51E-01 SF
0.3 5 1.16E-04 2.82E-05 3.48E-04 SF 1.4 15 1.79E-01 2.16E-01 1.04E+00 SF
0.35 5 1.84E-04 5.05E-05 5.52E-04 SF 1.45 15 2.20E-01 2.74E-01 1.25E+00 SF
0.4 5 2.75E-04 8.47E-05 8.19E-04 SF 1.5 15 2.66E-01 3.42E-01 1.48E+00 SF
0.45 5 3.91E-04 1.34E-04 1.17E-03 SF 1.55 15 3.19E-01 4.23E-01 1.73E+00 SF
0.5 5 5.37E-04 2.04E-04 1.65E-03 SF 1.6 15 3.77E-01 5.15E-01 2.01E+00 SF
0.55 5 7.24E-04 3.02E-04 2.37E-03 SF 1.65 15 4.45E-01 6.25E-01 2.36E+00 SF
0.6 5 9.75E-04 4.47E-04 3.52E-03 SF 1.7 15 5.23E-01 7.57E-01 2.79E+00 SF
0.65 5 1.33E-03 6.67E-04 5.42E-03 SF 1.75 15 6.15E-01 9.16E-01 3.28E+00 SF
0.7 5 1.84E-03 1.01E-03 8.60E-03 SF 1.8 15 7.17E-01 1.10E+00 3.79E+00 SF
0.75 5 2.60E-03 1.57E-03 1.40E-02 SF 1.85 15 8.28E-01 1.30E+00 4.38E+00 SF
0.8 5 3.75E-03 2.46E-03 2.20E-02 SF 1.9 15 9.63E-01 1.56E+00 5.34E+00 SF
0.85 5 5.45E-03 3.86E-03 3.50E-02 SF 2 15 1.34E+00 2.27E+00 5.26E+00 SF
0.9 5 7.93E-03 6.04E-03 5.40E-02 SF 2.05 15 1.39E+00 2.38E+00 2.86E+00 NF
0.95 5 1.10E-02 9.32E-03 8.00E-02 SF 2.1 15 1.44E+00 2.49E+00 2.04E+00 NF

1 5 1.60E-02 1.40E-02 1.14E-01 SF 2.15 15 1.49E+00 2.59E+00 1.72E+00 NF
1.05 5 2.30E-02 2.10E-02 1.58E-01 SF 2.2 15 1.53E+00 2.68E+00 1.59E+00 NF
1.1 5 3.10E-02 3.00E-02 2.12E-01 SF 2.25 15 1.57E+00 2.77E+00 1.55E+00 NF
1.15 5 4.20E-02 4.20E-02 2.79E-01 SF 2.3 15 1.61E+00 2.86E+00 1.55E+00 NF
1.2 5 5.50E-02 5.70E-02 3.60E-01 SF 2.35 15 1.65E+00 2.94E+00 1.56E+00 NF
1.25 5 7.10E-02 7.70E-02 4.57E-01 SF 2.4 15 1.68E+00 3.02E+00 1.56E+00 NF
1.3 5 9.10E-02 1.03E-01 5.72E-01 SF 2.45 15 1.71E+00 3.10E+00 1.55E+00 NF
1.35 5 1.15E-01 1.34E-01 7.03E-01 SF 2.5 15 1.75E+00 3.18E+00 1.54E+00 NF
1.4 5 1.43E-01 1.73E-01 8.52E-01 SF 2.55 15 1.78E+00 3.26E+00 1.52E+00 NF
1.45 5 1.76E-01 2.20E-01 1.02E+00 SF 2.6 15 1.81E+00 3.33E+00 1.50E+00 NF
1.5 5 2.14E-01 2.75E-01 1.20E+00 SF 2.65 15 1.84E+00 3.41E+00 1.48E+00 NF
1.55 5 2.56E-01 3.40E-01 1.41E+00 SF 2.7 15 1.87E+00 3.49E+00 1.47E+00 NF
1.6 5 3.04E-01 4.16E-01 1.65E+00 SF 2.75 15 1.89E+00 3.56E+00 1.47E+00 NF
1.65 5 3.59E-01 5.04E-01 1.94E+00 SF 2.8 15 1.92E+00 3.64E+00 1.48E+00 NF
1.7 5 4.21E-01 6.09E-01 2.28E+00 SF 2.85 15 1.95E+00 3.72E+00 1.49E+00 NF
1.75 5 4.92E-01 7.33E-01 2.67E+00 SF 2.9 15 1.98E+00 3.80E+00 1.51E+00 NF
1.8 5 5.75E-01 8.79E-01 3.12E+00 SF 2.95 15 2.01E+00 3.89E+00 1.54E+00 NF
1.85 5 6.68E-01 1.05E+00 3.60E+00 SF 3 15 2.04E+00 3.97E+00 1.58E+00 NF
1.9 5 7.70E-01 1.24E+00 4.12E+00 SF 3.05 15 2.06E+00 4.06E+00 1.61E+00 NF
1.95 5 8.83E-01 1.46E+00 4.72E+00 SF 3.1 15 2.09E+00 4.15E+00 1.65E+00 NF



T(K) P(atm) S(kJ/kgK) H(kJ/kg) ρ(kg/m3) Phase - T (K) P (atm) S (kJ/kgK) H (kJ/kg) ρ (kg/m3) Phase. 
2 5 1.01E+00 1.72E+00 5.46E+00 SF 3.15 15 2.12E+00 4.24E+00 1.69E+00 NF

2.05 5 1.16E+00 2.37E+00 2.33E+00 SF 3.2 15 2.15E+00 4.34E+00 1.73E+00 NF
2.1 5 1.41E+00 2.53E+00 4.41E+00 SF 3.25 15 2.18E+00 4.43E+00 1.77E+00 NF
2.15 5 1.48E+00 2.68E+00 5.22E+00 NF 3.3 15 2.21E+00 4.53E+00 1.80E+00 NF
2.2 5 1.55E+00 2.82E+00 4.61E+00 NF 3.35 15 2.24E+00 4.63E+00 1.84E+00 NF
2.25 5 1.61E+00 2.96E+00 3.60E+00 NF 3.4 15 2.27E+00 4.74E+00 1.86E+00 NF
2.3 5 1.66E+00 3.08E+00 2.75E+00 NF 3.45 15 2.30E+00 4.85E+00 1.89E+00 NF
2.35 5 1.72E+00 3.20E+00 2.19E+00 NF 3.5 15 2.34E+00 4.96E+00 1.91E+00 NF
2.4 5 1.77E+00 3.32E+00 1.85E+00 NF 0 16 8.67E-07 7.00E-04 1.85E-08 SF
2.45 5 1.81E+00 3.43E+00 1.67E+00 NF 0.05 16 5.89E-07 3.07E-06 7.85E-07 SF
2.5 5 1.86E+00 3.54E+00 1.60E+00 NF 0.1 16 2.28E-06 1.38E-06 6.83E-06 SF
2.55 5 1.90E+00 3.65E+00 1.60E+00 NF 0.15 16 7.68E-06 2.07E-06 2.32E-05 SF
2.6 5 1.94E+00 3.75E+00 1.64E+00 NF 0.2 16 1.84E-05 3.97E-06 5.44E-05 SF
2.65 5 1.98E+00 3.86E+00 1.71E+00 NF 0.25 16 3.56E-05 7.87E-06 1.08E-04 SF
2.7 5 2.02E+00 3.96E+00 1.79E+00 NF 0.3 16 6.18E-05 1.51E-05 1.89E-04 SF
2.75 5 2.06E+00 4.06E+00 1.87E+00 NF 0.35 16 9.91E-05 2.73E-05 2.98E-04 SF
2.8 5 2.10E+00 4.16E+00 1.92E+00 NF 0.4 16 1.49E-04 4.59E-05 4.47E-04 SF
2.85 5 2.13E+00 4.26E+00 1.95E+00 NF 0.45 16 2.13E-04 7.33E-05 6.73E-04 SF
2.9 5 2.17E+00 4.37E+00 1.96E+00 NF 0.5 16 3.02E-04 1.16E-04 1.07E-03 SF
2.95 5 2.21E+00 4.47E+00 1.96E+00 NF 0.55 16 4.36E-04 1.86E-04 1.84E-03 SF

3 5 2.24E+00 4.58E+00 1.93E+00 NF 0.6 16 6.55E-04 3.12E-04 3.34E-03 SF
3.05 5 2.28E+00 4.69E+00 1.91E+00 NF 0.65 16 1.03E-03 5.45E-04 6.21E-03 SF
3.1 5 2.31E+00 4.80E+00 1.89E+00 NF 0.7 16 1.66E-03 9.74E-04 1.10E-02 SF
3.15 5 2.35E+00 4.91E+00 1.87E+00 NF 0.75 16 2.72E-03 1.74E-03 2.00E-02 SF
3.2 5 2.38E+00 5.03E+00 1.87E+00 NF 0.8 16 4.40E-03 3.05E-03 3.30E-02 SF
3.25 5 2.42E+00 5.15E+00 1.89E+00 NF 0.85 16 6.96E-03 5.17E-03 5.30E-02 SF
3.3 5 2.46E+00 5.27E+00 1.92E+00 NF 0.9 16 1.10E-02 8.42E-03 7.90E-02 SF
3.35 5 2.49E+00 5.39E+00 1.96E+00 NF 0.95 16 1.60E-02 1.30E-02 1.14E-01 SF
3.4 5 2.53E+00 5.52E+00 2.01E+00 NF 1 16 2.30E-02 2.00E-02 1.58E-01 SF
3.45 5 2.57E+00 5.65E+00 2.08E+00 NF 1.05 16 3.20E-02 2.90E-02 2.14E-01 SF
3.5 5 2.61E+00 5.78E+00 2.15E+00 NF 1.1 16 4.30E-02 4.10E-02 2.81E-01 SF
0 6 7.60E-08 6.82E-05 1.02E-07 SF 1.15 16 5.70E-02 5.70E-02 3.61E-01 SF

0.05 6 7.14E-07 3.81E-06 1.77E-06 SF 1.2 16 7.40E-02 7.70E-02 4.55E-01 SF
0.1 6 4.03E-06 2.45E-06 1.21E-05 SF 1.25 16 9.40E-02 1.02E-01 5.68E-01 SF
0.15 6 1.36E-05 3.66E-06 4.08E-05 SF 1.3 16 1.19E-01 1.33E-01 7.06E-01 SF
0.2 6 3.23E-05 7.00E-06 9.60E-05 SF 1.35 16 1.49E-01 1.73E-01 8.72E-01 SF
0.25 6 6.27E-05 1.39E-05 1.88E-04 SF 1.4 16 1.84E-01 2.21E-01 1.07E+00 SF
0.3 6 1.08E-04 2.64E-05 3.26E-04 SF 1.45 16 2.25E-01 2.81E-01 1.28E+00 SF
0.35 6 1.72E-04 4.74E-05 5.18E-04 SF 1.5 16 2.73E-01 3.51E-01 1.51E+00 SF
0.4 6 2.58E-04 7.95E-05 7.69E-04 SF 1.55 16 3.27E-01 4.33E-01 1.76E+00 SF
0.45 6 3.67E-04 1.26E-04 1.10E-03 SF 1.6 16 3.87E-01 5.29E-01 2.06E+00 SF
0.5 6 5.05E-04 1.91E-04 1.56E-03 SF 1.65 16 4.56E-01 6.41E-01 2.42E+00 SF
0.55 6 6.83E-04 2.86E-04 2.28E-03 SF 1.7 16 5.37E-01 7.78E-01 2.87E+00 SF
0.6 6 9.26E-04 4.26E-04 3.44E-03 SF 1.75 16 6.31E-01 9.40E-01 3.37E+00 SF
0.65 6 1.27E-03 6.43E-04 5.41E-03 SF 1.8 16 7.36E-01 1.13E+00 3.89E+00 SF
0.7 6 1.79E-03 9.92E-04 8.74E-03 SF 1.85 16 8.51E-01 1.34E+00 4.61E+00 SF
0.75 6 2.57E-03 1.56E-03 1.40E-02 SF 1.95 16 1.28E+00 2.15E+00 9.78E+00 SF
0.8 6 3.75E-03 2.48E-03 2.30E-02 SF 2 16 1.34E+00 2.26E+00 4.10E+00 NF
0.85 6 5.52E-03 3.94E-03 3.70E-02 SF 2.05 16 1.39E+00 2.37E+00 2.46E+00 NF
0.9 6 8.10E-03 6.21E-03 5.60E-02 SF 2.1 16 1.44E+00 2.47E+00 1.87E+00 NF
0.95 6 1.20E-02 9.60E-03 8.20E-02 SF 2.15 16 1.48E+00 2.57E+00 1.63E+00 NF

1 6 1.70E-02 1.50E-02 1.17E-01 SF 2.2 16 1.52E+00 2.66E+00 1.54E+00 NF
1.05 6 2.30E-02 2.10E-02 1.62E-01 SF 2.25 16 1.56E+00 2.75E+00 1.52E+00 NF
1.1 6 3.20E-02 3.10E-02 2.17E-01 SF 2.3 16 1.60E+00 2.83E+00 1.53E+00 NF
1.15 6 4.30E-02 4.30E-02 2.85E-01 SF 2.35 16 1.64E+00 2.91E+00 1.53E+00 NF
1.2 6 5.60E-02 5.90E-02 3.67E-01 SF 2.4 16 1.67E+00 2.99E+00 1.54E+00 NF
1.25 6 7.30E-02 7.90E-02 4.65E-01 SF 2.45 16 1.70E+00 3.07E+00 1.53E+00 NF
1.3 6 9.30E-02 1.05E-01 5.81E-01 SF 2.5 16 1.74E+00 3.15E+00 1.52E+00 NF
1.35 6 1.17E-01 1.37E-01 7.15E-01 SF 2.55 16 1.77E+00 3.22E+00 1.50E+00 NF
1.4 6 1.46E-01 1.76E-01 8.67E-01 SF 2.6 16 1.80E+00 3.30E+00 1.48E+00 NF



T(K) P(atm) S(kJ/kgK) H(kJ/kg) ρ(kg/m3) Phase - T (K) P (atm) S (kJ/kgK) H (kJ/kg) ρ (kg/m3) Phase. 
1.45 6 1.79E-01 2.24E-01 1.04E+00 SF 2.65 16 1.82E+00 3.37E+00 1.46E+00 NF
1.5 6 2.18E-01 2.81E-01 1.23E+00 SF 2.7 16 1.85E+00 3.45E+00 1.45E+00 NF
1.55 6 2.61E-01 3.47E-01 1.44E+00 SF 2.75 16 1.88E+00 3.52E+00 1.45E+00 NF
1.6 6 3.10E-01 4.24E-01 1.68E+00 SF 2.8 16 1.91E+00 3.60E+00 1.46E+00 NF
1.65 6 3.65E-01 5.14E-01 1.96E+00 SF 2.85 16 1.94E+00 3.68E+00 1.47E+00 NF
1.7 6 4.28E-01 6.20E-01 2.31E+00 SF 2.9 16 1.96E+00 3.76E+00 1.49E+00 NF
1.75 6 5.01E-01 7.46E-01 2.72E+00 SF 2.95 16 1.99E+00 3.84E+00 1.52E+00 NF
1.8 6 5.85E-01 8.95E-01 3.17E+00 SF 3 16 2.02E+00 3.93E+00 1.56E+00 NF
1.85 6 6.80E-01 1.07E+00 3.65E+00 SF 3.05 16 2.05E+00 4.01E+00 1.59E+00 NF
1.9 6 7.84E-01 1.26E+00 4.17E+00 SF 3.1 16 2.08E+00 4.10E+00 1.63E+00 NF
1.95 6 8.99E-01 1.49E+00 4.82E+00 SF 3.15 16 2.11E+00 4.19E+00 1.67E+00 NF
2.05 6 1.36E+00 2.39E+00 6.35E+00 SF 3.2 16 2.14E+00 4.29E+00 1.71E+00 NF
2.1 6 1.43E+00 2.54E+00 4.74E+00 SF 3.25 16 2.16E+00 4.38E+00 1.75E+00 NF
2.15 6 1.49E+00 2.69E+00 4.48E+00 NF 3.3 16 2.19E+00 4.48E+00 1.78E+00 NF
2.2 6 1.56E+00 2.82E+00 3.80E+00 NF 3.35 16 2.22E+00 4.58E+00 1.81E+00 NF
2.25 6 1.61E+00 2.95E+00 3.03E+00 NF 3.4 16 2.26E+00 4.68E+00 1.84E+00 NF
2.3 6 1.67E+00 3.07E+00 2.44E+00 NF 3.45 16 2.29E+00 4.79E+00 1.87E+00 NF
2.35 6 1.72E+00 3.19E+00 2.05E+00 NF 3.5 16 2.32E+00 4.90E+00 1.89E+00 NF
2.4 6 1.76E+00 3.30E+00 1.83E+00 NF 0 17 9.76E-07 7.76E-04 3.06E-08 SF
2.45 6 1.81E+00 3.40E+00 1.71E+00 NF 0.05 17 5.73E-07 2.97E-06 8.23E-07 SF
2.5 6 1.85E+00 3.51E+00 1.66E+00 NF 0.1 17 2.18E-06 1.32E-06 6.53E-06 SF
2.55 6 1.89E+00 3.61E+00 1.65E+00 NF 0.15 17 7.34E-06 1.98E-06 2.22E-05 SF
2.6 6 1.93E+00 3.71E+00 1.67E+00 NF 0.2 17 1.76E-05 3.80E-06 5.21E-05 SF
2.65 6 1.97E+00 3.80E+00 1.71E+00 NF 0.25 17 3.41E-05 7.53E-06 1.03E-04 SF
2.7 6 2.01E+00 3.90E+00 1.76E+00 NF 0.3 17 5.91E-05 1.45E-05 1.81E-04 SF
2.75 6 2.04E+00 4.00E+00 1.80E+00 NF 0.35 17 9.48E-05 2.61E-05 2.85E-04 SF
2.8 6 2.08E+00 4.10E+00 1.83E+00 NF 0.4 17 1.42E-04 4.39E-05 4.28E-04 SF
2.85 6 2.11E+00 4.19E+00 1.85E+00 NF 0.45 17 2.04E-04 7.02E-05 6.51E-04 SF
2.9 6 2.15E+00 4.29E+00 1.87E+00 NF 0.5 17 2.91E-04 1.11E-04 1.05E-03 SF
2.95 6 2.18E+00 4.39E+00 1.87E+00 NF 0.55 17 4.23E-04 1.81E-04 1.83E-03 SF

3 6 2.21E+00 4.50E+00 1.87E+00 NF 0.6 17 6.44E-04 3.08E-04 3.39E-03 SF
3.05 6 2.25E+00 4.60E+00 1.86E+00 NF 0.65 17 1.02E-03 5.46E-04 6.39E-03 SF
3.1 6 2.28E+00 4.71E+00 1.86E+00 NF 0.7 17 1.68E-03 9.89E-04 1.20E-02 SF
3.15 6 2.32E+00 4.82E+00 1.87E+00 NF 0.75 17 2.77E-03 1.79E-03 2.10E-02 SF
3.2 6 2.35E+00 4.93E+00 1.88E+00 NF 0.8 17 4.52E-03 3.15E-03 3.50E-02 SF
3.25 6 2.39E+00 5.05E+00 1.91E+00 NF 0.85 17 7.18E-03 5.34E-03 5.40E-02 SF
3.3 6 2.42E+00 5.17E+00 1.94E+00 NF 0.9 17 1.10E-02 8.70E-03 8.10E-02 SF
3.35 6 2.46E+00 5.29E+00 1.98E+00 NF 0.95 17 1.60E-02 1.40E-02 1.17E-01 SF
3.4 6 2.50E+00 5.41E+00 2.02E+00 NF 1 17 2.30E-02 2.10E-02 1.64E-01 SF
3.45 6 2.53E+00 5.54E+00 2.07E+00 NF 1.05 17 3.30E-02 3.00E-02 2.21E-01 SF
3.5 6 2.57E+00 5.67E+00 2.12E+00 NF 1.1 17 4.40E-02 4.30E-02 2.90E-01 SF
0 7 8.69E-08 7.96E-05 1.52E-07 SF 1.15 17 5.90E-02 5.90E-02 3.71E-01 SF

0.05 7 6.83E-07 3.66E-06 1.77E-06 SF 1.2 17 7.60E-02 7.90E-02 4.66E-01 SF
0.1 7 3.74E-06 2.28E-06 1.12E-05 SF 1.25 17 9.70E-02 1.05E-01 5.81E-01 SF
0.15 7 1.26E-05 3.41E-06 3.79E-05 SF 1.3 17 1.22E-01 1.37E-01 7.22E-01 SF
0.2 7 3.00E-05 6.52E-06 8.95E-05 SF 1.35 17 1.52E-01 1.77E-01 8.94E-01 SF
0.25 7 5.83E-05 1.29E-05 1.75E-04 SF 1.4 17 1.89E-01 2.27E-01 1.09E+00 SF
0.3 7 1.01E-04 2.46E-05 3.04E-04 SF 1.45 17 2.31E-01 2.88E-01 1.31E+00 SF
0.35 7 1.61E-04 4.42E-05 4.84E-04 SF 1.5 17 2.80E-01 3.60E-01 1.55E+00 SF
0.4 7 2.40E-04 7.42E-05 7.19E-04 SF 1.55 17 3.35E-01 4.44E-01 1.80E+00 SF
0.45 7 3.43E-04 1.18E-04 1.03E-03 SF 1.6 17 3.97E-01 5.42E-01 2.10E+00 SF
0.5 7 4.73E-04 1.79E-04 1.48E-03 SF 1.65 17 4.68E-01 6.58E-01 2.49E+00 SF
0.55 7 6.43E-04 2.69E-04 2.18E-03 SF 1.7 17 5.51E-01 7.98E-01 2.96E+00 SF
0.6 7 8.78E-04 4.05E-04 3.36E-03 SF 1.75 17 6.48E-01 9.65E-01 3.45E+00 SF
0.65 7 1.22E-03 6.20E-04 5.39E-03 SF 1.8 17 7.55E-01 1.16E+00 3.98E+00 SF
0.7 7 1.74E-03 9.71E-04 8.87E-03 SF 1.85 17 8.75E-01 1.38E+00 4.84E+00 SF
0.75 7 2.54E-03 1.55E-03 1.50E-02 SF 1.95 17 1.28E+00 2.14E+00 7.45E+00 SF
0.8 7 3.76E-03 2.50E-03 2.40E-02 SF 2 17 1.34E+00 2.25E+00 3.43E+00 NF
0.85 7 5.59E-03 4.01E-03 3.80E-02 SF 2.05 17 1.39E+00 2.36E+00 2.20E+00 NF
0.9 7 8.28E-03 6.37E-03 5.80E-02 SF 2.1 17 1.43E+00 2.45E+00 1.74E+00 NF



T(K) P(atm) S(kJ/kgK) H(kJ/kg) ρ(kg/m3) Phase - T (K) P (atm) S (kJ/kgK) H (kJ/kg) ρ (kg/m3) Phase. 
0.95 7 1.20E-02 9.89E-03 8.50E-02 SF 2.15 17 1.48E+00 2.55E+00 1.56E+00 NF

1 7 1.70E-02 1.50E-02 1.21E-01 SF 2.2 17 1.52E+00 2.63E+00 1.50E+00 NF
1.05 7 2.40E-02 2.20E-02 1.66E-01 SF 2.25 17 1.56E+00 2.72E+00 1.49E+00 NF
1.1 7 3.30E-02 3.10E-02 2.22E-01 SF 2.3 17 1.59E+00 2.80E+00 1.50E+00 NF
1.15 7 4.40E-02 4.40E-02 2.91E-01 SF 2.35 17 1.63E+00 2.88E+00 1.51E+00 NF
1.2 7 5.80E-02 6.00E-02 3.74E-01 SF 2.4 17 1.66E+00 2.96E+00 1.52E+00 NF
1.25 7 7.50E-02 8.10E-02 4.73E-01 SF 2.45 17 1.69E+00 3.03E+00 1.51E+00 NF
1.3 7 9.50E-02 1.07E-01 5.90E-01 SF 2.5 17 1.72E+00 3.11E+00 1.49E+00 NF
1.35 7 1.20E-01 1.40E-01 7.26E-01 SF 2.55 17 1.75E+00 3.18E+00 1.47E+00 NF
1.4 7 1.49E-01 1.80E-01 8.82E-01 SF 2.6 17 1.78E+00 3.26E+00 1.46E+00 NF
1.45 7 1.83E-01 2.28E-01 1.06E+00 SF 2.65 17 1.81E+00 3.33E+00 1.44E+00 NF
1.5 7 2.22E-01 2.86E-01 1.25E+00 SF 2.7 17 1.84E+00 3.41E+00 1.43E+00 NF
1.55 7 2.66E-01 3.53E-01 1.46E+00 SF 2.75 17 1.87E+00 3.48E+00 1.43E+00 NF
1.6 7 3.16E-01 4.32E-01 1.70E+00 SF 2.8 17 1.90E+00 3.56E+00 1.44E+00 NF
1.65 7 3.72E-01 5.23E-01 1.99E+00 SF 2.85 17 1.92E+00 3.64E+00 1.45E+00 NF
1.7 7 4.36E-01 6.31E-01 2.34E+00 SF 2.9 17 1.95E+00 3.72E+00 1.47E+00 NF
1.75 7 5.10E-01 7.59E-01 2.76E+00 SF 2.95 17 1.98E+00 3.80E+00 1.50E+00 NF
1.8 7 5.96E-01 9.11E-01 3.23E+00 SF 3 17 2.01E+00 3.88E+00 1.54E+00 NF
1.85 7 6.92E-01 1.09E+00 3.71E+00 SF 3.05 17 2.03E+00 3.97E+00 1.58E+00 NF
1.9 7 7.98E-01 1.29E+00 4.22E+00 SF 3.1 17 2.06E+00 4.05E+00 1.61E+00 NF
1.95 7 9.16E-01 1.51E+00 4.93E+00 SF 3.15 17 2.09E+00 4.14E+00 1.65E+00 NF
2.05 7 1.37E+00 2.42E+00 1.04E+01 SF 3.2 17 2.12E+00 4.24E+00 1.69E+00 NF
2.1 7 1.44E+00 2.57E+00 5.07E+00 SF 3.25 17 2.15E+00 4.33E+00 1.73E+00 NF
2.15 7 1.51E+00 2.70E+00 3.73E+00 NF 3.3 17 2.18E+00 4.43E+00 1.76E+00 NF
2.2 7 1.56E+00 2.83E+00 2.99E+00 NF 3.35 17 2.21E+00 4.53E+00 1.79E+00 NF
2.25 7 1.62E+00 2.96E+00 2.46E+00 NF 3.4 17 2.24E+00 4.63E+00 1.82E+00 NF
2.3 7 1.67E+00 3.07E+00 2.12E+00 NF 3.45 17 2.27E+00 4.73E+00 1.85E+00 NF
2.35 7 1.72E+00 3.18E+00 1.92E+00 NF 3.5 17 2.30E+00 4.84E+00 1.87E+00 NF
2.4 7 1.76E+00 3.28E+00 1.81E+00 NF 0 18 1.16E-06 8.63E-04 4.70E-08 SF
2.45 7 1.81E+00 3.38E+00 1.75E+00 NF 0.05 18 5.60E-07 2.88E-06 8.45E-07 SF
2.5 7 1.85E+00 3.48E+00 1.72E+00 NF 0.1 18 2.09E-06 1.27E-06 6.26E-06 SF
2.55 7 1.88E+00 3.57E+00 1.71E+00 NF 0.15 18 7.04E-06 1.89E-06 2.12E-05 SF
2.6 7 1.92E+00 3.67E+00 1.71E+00 NF 0.2 18 1.68E-05 3.64E-06 5.00E-05 SF
2.65 7 1.96E+00 3.76E+00 1.71E+00 NF 0.25 18 3.26E-05 7.21E-06 9.90E-05 SF
2.7 7 1.99E+00 3.85E+00 1.72E+00 NF 0.3 18 5.67E-05 1.39E-05 1.73E-04 SF
2.75 7 2.02E+00 3.94E+00 1.73E+00 NF 0.35 18 9.09E-05 2.50E-05 2.73E-04 SF
2.8 7 2.06E+00 4.04E+00 1.74E+00 NF 0.4 18 1.36E-04 4.20E-05 4.12E-04 SF
2.85 7 2.09E+00 4.13E+00 1.75E+00 NF 0.45 18 1.96E-04 6.74E-05 6.31E-04 SF
2.9 7 2.12E+00 4.22E+00 1.77E+00 NF 0.5 18 2.80E-04 1.08E-04 1.03E-03 SF
2.95 7 2.16E+00 4.32E+00 1.78E+00 NF 0.55 18 4.12E-04 1.77E-04 1.84E-03 SF

3 7 2.19E+00 4.42E+00 1.80E+00 NF 0.6 18 6.36E-04 3.06E-04 3.45E-03 SF
3.05 7 2.22E+00 4.52E+00 1.82E+00 NF 0.65 18 1.03E-03 5.50E-04 6.60E-03 SF
3.1 7 2.25E+00 4.63E+00 1.84E+00 NF 0.7 18 1.70E-03 1.01E-03 1.20E-02 SF
3.15 7 2.29E+00 4.73E+00 1.86E+00 NF 0.75 18 2.84E-03 1.84E-03 2.20E-02 SF
3.2 7 2.32E+00 4.84E+00 1.89E+00 NF 0.8 18 4.66E-03 3.25E-03 3.60E-02 SF
3.25 7 2.36E+00 4.95E+00 1.92E+00 NF 0.85 18 7.41E-03 5.53E-03 5.60E-02 SF
3.3 7 2.39E+00 5.07E+00 1.96E+00 NF 0.9 18 1.10E-02 9.00E-03 8.40E-02 SF
3.35 7 2.43E+00 5.19E+00 1.99E+00 NF 0.95 18 1.70E-02 1.40E-02 1.21E-01 SF
3.4 7 2.46E+00 5.31E+00 2.03E+00 NF 1 18 2.40E-02 2.10E-02 1.69E-01 SF
3.45 7 2.50E+00 5.44E+00 2.06E+00 NF 1.05 18 3.40E-02 3.10E-02 2.28E-01 SF
3.5 7 2.54E+00 5.56E+00 2.10E+00 NF 1.1 18 4.60E-02 4.40E-02 2.98E-01 SF
0 8 1.07E-07 9.80E-05 1.48E-07 SF 1.15 18 6.10E-02 6.10E-02 3.81E-01 SF

0.05 8 6.60E-07 3.53E-06 1.65E-06 SF 1.2 18 7.80E-02 8.20E-02 4.77E-01 SF
0.1 8 3.50E-06 2.13E-06 1.05E-05 SF 1.25 18 1.00E-01 1.08E-01 5.95E-01 SF
0.15 8 1.18E-05 3.18E-06 3.55E-05 SF 1.3 18 1.26E-01 1.41E-01 7.40E-01 SF
0.2 8 2.81E-05 6.10E-06 8.37E-05 SF 1.35 18 1.57E-01 1.82E-01 9.17E-01 SF
0.25 8 5.46E-05 1.21E-05 1.64E-04 SF 1.4 18 1.94E-01 2.33E-01 1.12E+00 SF
0.3 8 9.43E-05 2.31E-05 2.85E-04 SF 1.45 18 2.38E-01 2.96E-01 1.35E+00 SF
0.35 8 1.50E-04 4.14E-05 4.54E-04 SF 1.5 18 2.88E-01 3.70E-01 1.58E+00 SF
0.4 8 2.25E-04 6.96E-05 6.75E-04 SF 1.55 18 3.44E-01 4.56E-01 1.84E+00 SF



T(K) P(atm) S(kJ/kgK) H(kJ/kg) ρ(kg/m3) Phase - T (K) P (atm) S (kJ/kgK) H (kJ/kg) ρ (kg/m3) Phase. 
0.45 8 3.22E-04 1.10E-04 9.72E-04 SF 1.6 18 4.07E-01 5.56E-01 2.15E+00 SF
0.5 8 4.44E-04 1.69E-04 1.41E-03 SF 1.65 18 4.80E-01 6.75E-01 2.56E+00 SF
0.55 8 6.07E-04 2.55E-04 2.11E-03 SF 1.7 18 5.66E-01 8.20E-01 3.04E+00 SF
0.6 8 8.37E-04 3.87E-04 3.31E-03 SF 1.75 18 6.65E-01 9.91E-01 3.53E+00 SF
0.65 8 1.18E-03 6.01E-04 5.40E-03 SF 1.8 18 7.76E-01 1.19E+00 4.12E+00 SF
0.7 8 1.71E-03 9.57E-04 9.04E-03 SF 1.95 18 1.29E+00 2.14E+00 5.42E+00 SF
0.75 8 2.52E-03 1.55E-03 1.50E-02 SF 2 18 1.34E+00 2.24E+00 2.83E+00 NF
0.8 8 3.78E-03 2.53E-03 2.50E-02 SF 2.05 18 1.39E+00 2.34E+00 1.97E+00 NF
0.85 8 5.69E-03 4.11E-03 3.90E-02 SF 2.1 18 1.43E+00 2.43E+00 1.63E+00 NF
0.9 8 8.47E-03 6.55E-03 6.00E-02 SF 2.15 18 1.47E+00 2.52E+00 1.50E+00 NF
0.95 8 1.20E-02 1.00E-02 8.80E-02 SF 2.2 18 1.51E+00 2.61E+00 1.47E+00 NF

1 8 1.80E-02 1.50E-02 1.24E-01 SF 2.25 18 1.55E+00 2.69E+00 1.47E+00 NF
1.05 8 2.50E-02 2.30E-02 1.70E-01 SF 2.3 18 1.59E+00 2.77E+00 1.48E+00 NF
1.1 8 3.40E-02 3.20E-02 2.27E-01 SF 2.35 18 1.62E+00 2.85E+00 1.49E+00 NF
1.15 8 4.50E-02 4.50E-02 2.97E-01 SF 2.4 18 1.65E+00 2.92E+00 1.50E+00 NF
1.2 8 5.90E-02 6.20E-02 3.81E-01 SF 2.45 18 1.68E+00 3.00E+00 1.49E+00 NF
1.25 8 7.60E-02 8.30E-02 4.81E-01 SF 2.5 18 1.71E+00 3.07E+00 1.47E+00 NF
1.3 8 9.70E-02 1.09E-01 6.00E-01 SF 2.55 18 1.74E+00 3.14E+00 1.45E+00 NF
1.35 8 1.22E-01 1.43E-01 7.39E-01 SF 2.6 18 1.77E+00 3.22E+00 1.43E+00 NF
1.4 8 1.52E-01 1.84E-01 8.98E-01 SF 2.65 18 1.80E+00 3.29E+00 1.42E+00 NF
1.45 8 1.87E-01 2.33E-01 1.08E+00 SF 2.7 18 1.83E+00 3.37E+00 1.41E+00 NF
1.5 8 2.26E-01 2.92E-01 1.27E+00 SF 2.75 18 1.86E+00 3.44E+00 1.41E+00 NF
1.55 8 2.71E-01 3.60E-01 1.49E+00 SF 2.8 18 1.88E+00 3.52E+00 1.42E+00 NF
1.6 8 3.22E-01 4.40E-01 1.73E+00 SF 2.85 18 1.91E+00 3.60E+00 1.43E+00 NF
1.65 8 3.79E-01 5.34E-01 2.02E+00 SF 2.9 18 1.94E+00 3.67E+00 1.46E+00 NF
1.7 8 4.45E-01 6.44E-01 2.38E+00 SF 2.95 18 1.97E+00 3.76E+00 1.49E+00 NF
1.75 8 5.21E-01 7.74E-01 2.81E+00 SF 3 18 1.99E+00 3.84E+00 1.52E+00 NF
1.8 8 6.08E-01 9.29E-01 3.29E+00 SF 3.05 18 2.02E+00 3.92E+00 1.56E+00 NF
1.85 8 7.06E-01 1.11E+00 3.76E+00 SF 3.1 18 2.05E+00 4.01E+00 1.60E+00 NF
1.9 8 8.14E-01 1.31E+00 4.29E+00 SF 3.15 18 2.08E+00 4.10E+00 1.64E+00 NF
2.1 8 1.45E+00 2.59E+00 5.28E+00 NF 3.2 18 2.11E+00 4.19E+00 1.67E+00 NF
2.15 8 1.52E+00 2.72E+00 3.04E+00 NF 3.25 18 2.13E+00 4.28E+00 1.71E+00 NF
2.2 8 1.57E+00 2.84E+00 2.25E+00 NF 3.3 18 2.16E+00 4.38E+00 1.74E+00 NF
2.25 8 1.62E+00 2.96E+00 1.95E+00 NF 3.35 18 2.19E+00 4.48E+00 1.77E+00 NF
2.3 8 1.67E+00 3.07E+00 1.83E+00 NF 3.4 18 2.22E+00 4.58E+00 1.80E+00 NF
2.35 8 1.72E+00 3.17E+00 1.79E+00 NF 3.45 18 2.25E+00 4.68E+00 1.83E+00 NF
2.4 8 1.76E+00 3.27E+00 1.79E+00 NF 3.5 18 2.28E+00 4.78E+00 1.86E+00 NF
2.45 8 1.80E+00 3.36E+00 1.78E+00 NF 0 19 1.42E-06 9.62E-04 6.77E-08 SF
2.5 8 1.84E+00 3.46E+00 1.77E+00 NF 0.05 19 5.51E-07 2.80E-06 8.50E-07 SF
2.55 8 1.87E+00 3.54E+00 1.76E+00 NF 0.1 19 2.01E-06 1.22E-06 6.01E-06 SF
2.6 8 1.91E+00 3.63E+00 1.73E+00 NF 0.15 19 6.76E-06 1.82E-06 2.04E-05 SF
2.65 8 1.94E+00 3.72E+00 1.70E+00 NF 0.2 19 1.62E-05 3.49E-06 4.81E-05 SF
2.7 8 1.97E+00 3.81E+00 1.68E+00 NF 0.25 19 3.14E-05 6.93E-06 9.51E-05 SF
2.75 8 2.01E+00 3.89E+00 1.66E+00 NF 0.3 19 5.45E-05 1.33E-05 1.66E-04 SF
2.8 8 2.04E+00 3.98E+00 1.66E+00 NF 0.35 19 8.74E-05 2.40E-05 2.63E-04 SF
2.85 8 2.07E+00 4.07E+00 1.66E+00 NF 0.4 19 1.31E-04 4.04E-05 3.97E-04 SF
2.9 8 2.10E+00 4.16E+00 1.68E+00 NF 0.45 19 1.89E-04 6.50E-05 6.14E-04 SF
2.95 8 2.13E+00 4.25E+00 1.70E+00 NF 0.5 19 2.72E-04 1.04E-04 1.02E-03 SF

3 8 2.16E+00 4.35E+00 1.73E+00 NF 0.55 19 4.04E-04 1.74E-04 1.85E-03 SF
3.05 8 2.19E+00 4.45E+00 1.77E+00 NF 0.6 19 6.31E-04 3.05E-04 3.54E-03 SF
3.1 8 2.23E+00 4.55E+00 1.81E+00 NF 0.65 19 1.03E-03 5.56E-04 6.84E-03 SF
3.15 8 2.26E+00 4.65E+00 1.86E+00 NF 0.7 19 1.74E-03 1.03E-03 1.30E-02 SF
3.2 8 2.29E+00 4.76E+00 1.90E+00 NF 0.75 19 2.92E-03 1.90E-03 2.30E-02 SF
3.25 8 2.32E+00 4.87E+00 1.94E+00 NF 0.8 19 4.81E-03 3.37E-03 3.70E-02 SF
3.3 8 2.36E+00 4.98E+00 1.97E+00 NF 0.85 19 7.67E-03 5.73E-03 5.80E-02 SF
3.35 8 2.39E+00 5.10E+00 2.00E+00 NF 0.9 19 1.20E-02 9.32E-03 8.70E-02 SF
3.4 8 2.43E+00 5.22E+00 2.03E+00 NF 0.95 19 1.70E-02 1.50E-02 1.25E-01 SF
3.45 8 2.46E+00 5.34E+00 2.05E+00 NF 1 19 2.50E-02 2.20E-02 1.74E-01 SF
3.5 8 2.50E+00 5.46E+00 2.07E+00 NF 1.05 19 3.50E-02 3.20E-02 2.35E-01 SF
0 9 1.36E-07 1.23E-04 8.98E-08 SF 1.1 19 4.70E-02 4.50E-02 3.07E-01 SF



T(K) P(atm) S(kJ/kgK) H(kJ/kg) ρ(kg/m3) Phase - T (K) P (atm) S (kJ/kgK) H (kJ/kg) ρ (kg/m3) Phase. 
0.05 9 6.45E-07 3.44E-06 1.43E-06 SF 1.15 19 6.20E-02 6.30E-02 3.91E-01 SF
0.1 9 3.29E-06 2.00E-06 9.86E-06 SF 1.2 19 8.10E-02 8.40E-02 4.89E-01 SF
0.15 9 1.11E-05 2.99E-06 3.34E-05 SF 1.25 19 1.03E-01 1.11E-01 6.10E-01 SF
0.2 9 2.65E-05 5.74E-06 7.87E-05 SF 1.3 19 1.29E-01 1.45E-01 7.59E-01 SF
0.25 9 5.14E-05 1.14E-05 1.54E-04 SF 1.35 19 1.61E-01 1.87E-01 9.42E-01 SF
0.3 9 8.88E-05 2.17E-05 2.69E-04 SF 1.4 19 1.99E-01 2.40E-01 1.15E+00 SF
0.35 9 1.42E-04 3.90E-05 4.28E-04 SF 1.45 19 2.44E-01 3.04E-01 1.38E+00 SF
0.4 9 2.13E-04 6.56E-05 6.37E-04 SF 1.5 19 2.96E-01 3.80E-01 1.61E+00 SF
0.45 9 3.03E-04 1.04E-04 9.20E-04 SF 1.55 19 3.53E-01 4.68E-01 1.88E+00 SF
0.5 9 4.20E-04 1.60E-04 1.35E-03 SF 1.6 19 4.18E-01 5.71E-01 2.21E+00 SF
0.55 9 5.77E-04 2.42E-04 2.05E-03 SF 1.65 19 4.94E-01 6.94E-01 2.63E+00 SF
0.6 9 8.03E-04 3.73E-04 3.27E-03 SF 1.7 19 5.82E-01 8.42E-01 3.11E+00 SF
0.65 9 1.15E-03 5.87E-04 5.45E-03 SF 1.75 19 6.83E-01 1.02E+00 3.62E+00 SF
0.7 9 1.68E-03 9.48E-04 9.25E-03 SF 1.8 19 7.99E-01 1.22E+00 4.31E+00 SF
0.75 9 2.52E-03 1.56E-03 1.60E-02 SF 1.9 19 1.24E+00 2.02E+00 1.14E+01 SF
0.8 9 3.83E-03 2.57E-03 2.60E-02 SF 1.95 19 1.29E+00 2.12E+00 4.34E+00 NF
0.85 9 5.81E-03 4.21E-03 4.10E-02 SF 2 19 1.34E+00 2.22E+00 2.46E+00 NF
0.9 9 8.70E-03 6.75E-03 6.20E-02 SF 2.05 19 1.38E+00 2.32E+00 1.80E+00 NF
0.95 9 1.30E-02 1.10E-02 9.10E-02 SF 2.1 19 1.43E+00 2.41E+00 1.55E+00 NF

1 9 1.80E-02 1.60E-02 1.28E-01 SF 2.15 19 1.47E+00 2.49E+00 1.45E+00 NF
1.05 9 2.60E-02 2.30E-02 1.75E-01 SF 2.2 19 1.51E+00 2.58E+00 1.44E+00 NF
1.1 9 3.50E-02 3.30E-02 2.33E-01 SF 2.25 19 1.54E+00 2.66E+00 1.45E+00 NF
1.15 9 4.60E-02 4.60E-02 3.03E-01 SF 2.3 19 1.58E+00 2.73E+00 1.46E+00 NF
1.2 9 6.10E-02 6.30E-02 3.89E-01 SF 2.35 19 1.61E+00 2.81E+00 1.48E+00 NF
1.25 9 7.80E-02 8.50E-02 4.91E-01 SF 2.4 19 1.64E+00 2.89E+00 1.48E+00 NF
1.3 9 1.00E-01 1.12E-01 6.12E-01 SF 2.45 19 1.67E+00 2.96E+00 1.47E+00 NF
1.35 9 1.25E-01 1.46E-01 7.53E-01 SF 2.5 19 1.70E+00 3.03E+00 1.45E+00 NF
1.4 9 1.55E-01 1.87E-01 9.15E-01 SF 2.55 19 1.73E+00 3.10E+00 1.43E+00 NF
1.45 9 1.91E-01 2.38E-01 1.10E+00 SF 2.6 19 1.76E+00 3.18E+00 1.42E+00 NF
1.5 9 2.31E-01 2.98E-01 1.30E+00 SF 2.65 19 1.79E+00 3.25E+00 1.40E+00 NF
1.55 9 2.77E-01 3.68E-01 1.52E+00 SF 2.7 19 1.82E+00 3.32E+00 1.39E+00 NF
1.6 9 3.29E-01 4.50E-01 1.77E+00 SF 2.75 19 1.84E+00 3.40E+00 1.39E+00 NF
1.65 9 3.88E-01 5.45E-01 2.07E+00 SF 2.8 19 1.87E+00 3.47E+00 1.40E+00 NF
1.7 9 4.54E-01 6.57E-01 2.43E+00 SF 2.85 19 1.90E+00 3.55E+00 1.42E+00 NF
1.75 9 5.32E-01 7.91E-01 2.86E+00 SF 2.9 19 1.93E+00 3.63E+00 1.44E+00 NF
1.8 9 6.21E-01 9.50E-01 3.34E+00 SF 2.95 19 1.95E+00 3.71E+00 1.47E+00 NF
1.85 9 7.21E-01 1.13E+00 3.83E+00 SF 3 19 1.98E+00 3.79E+00 1.50E+00 NF
1.9 9 8.31E-01 1.34E+00 4.38E+00 SF 3.05 19 2.01E+00 3.88E+00 1.54E+00 NF
2.05 9 1.39E+00 2.44E+00 1.05E+01 SF 3.1 19 2.04E+00 3.96E+00 1.58E+00 NF
2.1 9 1.45E+00 2.57E+00 4.47E+00 NF 3.15 19 2.06E+00 4.05E+00 1.62E+00 NF
2.15 9 1.51E+00 2.70E+00 2.74E+00 NF 3.2 19 2.09E+00 4.14E+00 1.65E+00 NF
2.2 9 1.57E+00 2.82E+00 2.12E+00 NF 3.25 19 2.12E+00 4.23E+00 1.69E+00 NF
2.25 9 1.62E+00 2.93E+00 1.87E+00 NF 3.3 19 2.15E+00 4.33E+00 1.72E+00 NF
2.3 9 1.66E+00 3.04E+00 1.77E+00 NF 3.35 19 2.18E+00 4.42E+00 1.76E+00 NF
2.35 9 1.71E+00 3.14E+00 1.75E+00 NF 3.4 19 2.21E+00 4.52E+00 1.79E+00 NF
2.4 9 1.75E+00 3.23E+00 1.74E+00 NF 3.45 19 2.24E+00 4.62E+00 1.81E+00 NF
2.45 9 1.79E+00 3.32E+00 1.74E+00 NF 3.5 19 2.27E+00 4.73E+00 1.84E+00 NF
2.5 9 1.82E+00 3.41E+00 1.73E+00 NF 0 20 1.67E-06 1.06E-03 8.85E-08 SF
2.55 9 1.86E+00 3.50E+00 1.71E+00 NF 0.05 20 5.41E-07 2.72E-06 8.55E-07 SF
2.6 9 1.89E+00 3.58E+00 1.69E+00 NF 0.1 20 1.92E-06 1.16E-06 5.76E-06 SF
2.65 9 1.92E+00 3.67E+00 1.67E+00 NF 0.15 20 6.49E-06 1.74E-06 1.96E-05 SF
2.7 9 1.96E+00 3.75E+00 1.65E+00 NF 0.2 20 1.55E-05 3.35E-06 4.61E-05 SF
2.75 9 1.99E+00 3.84E+00 1.63E+00 NF 0.25 20 3.01E-05 6.64E-06 9.13E-05 SF
2.8 9 2.02E+00 3.93E+00 1.63E+00 NF 0.3 20 5.23E-05 1.28E-05 1.59E-04 SF
2.85 9 2.05E+00 4.01E+00 1.63E+00 NF 0.35 20 8.39E-05 2.31E-05 2.52E-04 SF
2.9 9 2.08E+00 4.10E+00 1.65E+00 NF 0.4 20 1.26E-04 3.87E-05 3.82E-04 SF
2.95 9 2.11E+00 4.19E+00 1.67E+00 NF 0.45 20 1.82E-04 6.25E-05 5.97E-04 SF

3 9 2.14E+00 4.29E+00 1.71E+00 NF 0.5 20 2.63E-04 1.01E-04 1.01E-03 SF
3.05 9 2.17E+00 4.38E+00 1.75E+00 NF 0.55 20 3.95E-04 1.71E-04 1.86E-03 SF
3.1 9 2.20E+00 4.48E+00 1.79E+00 NF 0.6 20 6.26E-04 3.03E-04 3.62E-03 SF



T(K) P(atm) S(kJ/kgK) H(kJ/kg) ρ(kg/m3) Phase - T (K) P (atm) S (kJ/kgK) H (kJ/kg) ρ (kg/m3) Phase. 
3.15 9 2.24E+00 4.58E+00 1.83E+00 NF 0.65 20 1.04E-03 5.62E-04 7.08E-03 SF
3.2 9 2.27E+00 4.69E+00 1.87E+00 NF 0.7 20 1.77E-03 1.06E-03 1.30E-02 SF
3.25 9 2.30E+00 4.79E+00 1.91E+00 NF 0.75 20 3.00E-03 1.95E-03 2.30E-02 SF
3.3 9 2.33E+00 4.90E+00 1.95E+00 NF 0.8 20 4.97E-03 3.48E-03 3.90E-02 SF
3.35 9 2.37E+00 5.02E+00 1.98E+00 NF 0.85 20 7.93E-03 5.93E-03 6.00E-02 SF
3.4 9 2.40E+00 5.13E+00 2.00E+00 NF 0.9 20 1.20E-02 9.64E-03 9.00E-02 SF
3.45 9 2.44E+00 5.25E+00 2.03E+00 NF 0.95 20 1.80E-02 1.50E-02 1.29E-01 SF
3.5 9 2.47E+00 5.38E+00 2.05E+00 NF 1 20 2.60E-02 2.30E-02 1.80E-01 SF
0 10 1.65E-07 1.49E-04 3.20E-08 SF 1.05 20 3.60E-02 3.30E-02 2.43E-01 SF

0.05 10 6.29E-07 3.35E-06 1.20E-06 SF 1.1 20 4.90E-02 4.70E-02 3.16E-01 SF
0.1 10 3.08E-06 1.88E-06 9.24E-06 SF 1.15 20 6.40E-02 6.40E-02 4.01E-01 SF
0.15 10 1.04E-05 2.80E-06 3.14E-05 SF 1.2 20 8.30E-02 8.70E-02 5.01E-01 SF
0.2 10 2.48E-05 5.38E-06 7.37E-05 SF 1.25 20 1.06E-01 1.14E-01 6.25E-01 SF
0.25 10 4.82E-05 1.07E-05 1.45E-04 SF 1.3 20 1.33E-01 1.49E-01 7.79E-01 SF
0.3 10 8.33E-05 2.04E-05 2.53E-04 SF 1.35 20 1.66E-01 1.93E-01 9.67E-01 SF
0.35 10 1.33E-04 3.67E-05 4.02E-04 SF 1.4 20 2.05E-01 2.47E-01 1.18E+00 SF
0.4 10 2.00E-04 6.17E-05 5.98E-04 SF 1.45 20 2.51E-01 3.12E-01 1.41E+00 SF
0.45 10 2.85E-04 9.80E-05 8.69E-04 SF 1.5 20 3.03E-01 3.90E-01 1.65E+00 SF
0.5 10 3.96E-04 1.51E-04 1.29E-03 SF 1.55 20 3.62E-01 4.80E-01 1.92E+00 SF
0.55 10 5.47E-04 2.30E-04 1.99E-03 SF 1.6 20 4.29E-01 5.86E-01 2.26E+00 SF
0.6 10 7.68E-04 3.58E-04 3.24E-03 SF 1.65 20 5.07E-01 7.12E-01 2.71E+00 SF
0.65 10 1.11E-03 5.72E-04 5.49E-03 SF 1.7 20 5.97E-01 8.65E-01 3.19E+00 SF
0.7 10 1.65E-03 9.39E-04 9.45E-03 SF 1.75 20 7.02E-01 1.05E+00 3.70E+00 SF
0.75 10 2.52E-03 1.57E-03 1.60E-02 SF 1.8 20 8.21E-01 1.26E+00 4.50E+00 SF
0.8 10 3.87E-03 2.62E-03 2.70E-02 SF 1.9 20 1.24E+00 2.01E+00 7.59E+00 SF
0.85 10 5.92E-03 4.32E-03 4.30E-02 SF 1.95 20 1.29E+00 2.11E+00 3.40E+00 NF
0.9 10 8.93E-03 6.95E-03 6.50E-02 SF 2 20 1.34E+00 2.21E+00 2.13E+00 NF
0.95 10 1.30E-02 1.10E-02 9.40E-02 SF 2.05 20 1.38E+00 2.30E+00 1.65E+00 NF

1 10 1.90E-02 1.60E-02 1.32E-01 SF 2.1 20 1.42E+00 2.39E+00 1.47E+00 NF
1.05 10 2.60E-02 2.40E-02 1.79E-01 SF 2.15 20 1.46E+00 2.47E+00 1.41E+00 NF
1.1 10 3.60E-02 3.40E-02 2.38E-01 SF 2.2 20 1.50E+00 2.55E+00 1.41E+00 NF
1.15 10 4.80E-02 4.80E-02 3.10E-01 SF 2.25 20 1.54E+00 2.63E+00 1.43E+00 NF
1.2 10 6.20E-02 6.50E-02 3.96E-01 SF 2.3 20 1.57E+00 2.71E+00 1.45E+00 NF
1.25 10 8.00E-02 8.70E-02 5.00E-01 SF 2.35 20 1.60E+00 2.78E+00 1.46E+00 NF
1.3 10 1.02E-01 1.15E-01 6.23E-01 SF 2.4 20 1.63E+00 2.85E+00 1.46E+00 NF
1.35 10 1.28E-01 1.49E-01 7.67E-01 SF 2.45 20 1.66E+00 2.93E+00 1.45E+00 NF
1.4 10 1.59E-01 1.91E-01 9.32E-01 SF 2.5 20 1.69E+00 3.00E+00 1.43E+00 NF
1.45 10 1.95E-01 2.43E-01 1.12E+00 SF 2.55 20 1.72E+00 3.07E+00 1.41E+00 NF
1.5 10 2.36E-01 3.04E-01 1.32E+00 SF 2.6 20 1.75E+00 3.14E+00 1.40E+00 NF
1.55 10 2.83E-01 3.76E-01 1.55E+00 SF 2.65 20 1.78E+00 3.21E+00 1.38E+00 NF
1.6 10 3.36E-01 4.59E-01 1.80E+00 SF 2.7 20 1.81E+00 3.29E+00 1.38E+00 NF
1.65 10 3.96E-01 5.56E-01 2.11E+00 SF 2.75 20 1.83E+00 3.36E+00 1.38E+00 NF
1.7 10 4.64E-01 6.71E-01 2.48E+00 SF 2.8 20 1.86E+00 3.43E+00 1.39E+00 NF
1.75 10 5.43E-01 8.08E-01 2.91E+00 SF 2.85 20 1.89E+00 3.51E+00 1.40E+00 NF
1.8 10 6.34E-01 9.70E-01 3.40E+00 SF 2.9 20 1.91E+00 3.59E+00 1.42E+00 NF
1.85 10 7.36E-01 1.16E+00 3.90E+00 SF 2.95 20 1.94E+00 3.67E+00 1.45E+00 NF
1.9 10 8.48E-01 1.37E+00 4.46E+00 SF 3 20 1.97E+00 3.75E+00 1.49E+00 NF
2.05 10 1.39E+00 2.43E+00 7.62E+00 SF 3.05 20 2.00E+00 3.83E+00 1.52E+00 NF
2.1 10 1.45E+00 2.56E+00 3.71E+00 NF 3.1 20 2.02E+00 3.92E+00 1.56E+00 NF
2.15 10 1.51E+00 2.68E+00 2.46E+00 NF 3.15 20 2.05E+00 4.00E+00 1.60E+00 NF
2.2 10 1.56E+00 2.80E+00 1.98E+00 NF 3.2 20 2.08E+00 4.09E+00 1.64E+00 NF
2.25 10 1.61E+00 2.91E+00 1.79E+00 NF 3.25 20 2.11E+00 4.18E+00 1.67E+00 NF
2.3 10 1.65E+00 3.01E+00 1.72E+00 NF 3.3 20 2.14E+00 4.28E+00 1.71E+00 NF
2.35 10 1.70E+00 3.10E+00 1.70E+00 NF 3.35 20 2.16E+00 4.37E+00 1.74E+00 NF
2.4 10 1.74E+00 3.20E+00 1.70E+00 NF 3.4 20 2.19E+00 4.47E+00 1.77E+00 NF
2.45 10 1.77E+00 3.29E+00 1.70E+00 NF 3.45 20 2.22E+00 4.57E+00 1.79E+00 NF
2.5 10 1.81E+00 3.37E+00 1.69E+00 NF 3.5 20 2.25E+00 4.67E+00 1.82E+00 NF
2.55 10 1.84E+00 3.46E+00 1.67E+00 NF
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Appendix G

Appendix Helium 3-4 Mixture Data

In this appendix the calculated data for Helium 3-4 based on the equation of state of
chapter 6 are presented.



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.05 0.1 1 0.649 3.6 26.076 0.95 1.5 5 11.385 22.295 32.302
0.1 0.1 1 0.802 3.514 26.399 1 1.5 5 10.335 21.987 32.693
0.15 0.1 1 0.705 3.387 26.75 0.05 0.1 6 0.497 16.754 26.275
0.2 0.1 1 0.587 3.297 27.107 0.1 0.1 6 0.668 16.841 26.579
0.25 0.1 1 0.559 3.267 27.454 0.15 0.1 6 0.566 16.9 26.874
0.3 0.1 1 0.653 3.29 27.784 0.2 0.1 6 0.421 16.999 27.164
0.35 0.1 1 0.853 3.35 28.097 0.25 0.1 6 0.348 17.152 27.453
0.4 0.1 1 1.116 3.431 28.396 0.3 0.1 6 0.381 17.344 27.742
0.45 0.1 1 1.391 3.52 28.688 0.35 0.1 6 0.512 17.559 28.034
0.5 0.1 1 1.626 3.608 28.983 0.4 0.1 6 0.702 17.782 28.33
0.55 0.1 1 1.781 3.687 29.286 0.45 0.1 6 0.908 18.006 28.632
0.6 0.1 1 1.835 3.748 29.604 0.5 0.1 6 1.086 18.228 28.939
0.65 0.1 1 1.787 3.784 29.941 0.55 0.1 6 1.201 18.448 29.251
0.7 0.1 1 1.661 3.794 30.294 0.6 0.1 6 1.237 18.66 29.566
0.75 0.1 1 1.504 3.791 30.657 0.65 0.1 6 1.194 18.859 29.883
0.8 0.1 1 1.38 3.808 31.019 0.7 0.1 6 1.092 19.044 30.197
0.85 0.1 1 1.362 3.896 31.364 0.75 0.1 6 0.97 19.226 30.505
0.9 0.1 1 1.515 4.113 31.676 0.8 0.1 6 0.879 19.437 30.803
0.95 0.1 1 1.866 4.469 31.934 0.85 0.1 6 0.874 19.73 31.089

1 0.1 1 2.369 4.839 32.123 0.9 0.1 6 0.993 20.155 31.362
0 0.2 1 0.046 2.99 25.841 0.95 0.1 6 1.235 20.717 31.629

0.05 0.2 1 0.994 3.147 26.112 1 0.1 6 1.522 21.265 31.901
0.1 0.2 1 1.39 3.189 26.432 0.05 0.2 6 0.981 16.354 26.286
0.15 0.2 1 1.54 3.202 26.778 0.1 0.2 6 1.419 16.566 26.588
0.2 0.2 1 1.614 3.229 27.132 0.15 0.2 6 1.601 16.759 26.885
0.25 0.2 1 1.696 3.279 27.482 0.2 0.2 6 1.7 16.973 27.18
0.3 0.2 1 1.818 3.345 27.821 0.25 0.2 6 1.799 17.212 27.476
0.35 0.2 1 1.978 3.416 28.149 0.3 0.2 6 1.93 17.464 27.773
0.4 0.2 1 2.162 3.486 28.467 0.35 0.2 6 2.093 17.715 28.072
0.45 0.2 1 2.349 3.551 28.778 0.4 0.2 6 2.277 17.96 28.374
0.5 0.2 1 2.523 3.614 29.087 0.45 0.2 6 2.465 18.198 28.678
0.55 0.2 1 2.67 3.674 29.399 0.5 0.2 6 2.642 18.435 28.984
0.6 0.2 1 2.786 3.731 29.719 0.55 0.2 6 2.8 18.674 29.291
0.65 0.2 1 2.877 3.778 30.048 0.6 0.2 6 2.937 18.916 29.598
0.7 0.2 1 2.957 3.812 30.386 0.65 0.2 6 3.057 19.154 29.903
0.75 0.2 1 3.045 3.833 30.732 0.7 0.2 6 3.171 19.383 30.206
0.8 0.2 1 3.164 3.854 31.082 0.75 0.2 6 3.296 19.6 30.506
0.85 0.2 1 3.329 3.896 31.429 0.8 0.2 6 3.444 19.817 30.801
0.9 0.2 1 3.535 3.982 31.77 0.85 0.2 6 3.619 20.055 31.094
0.95 0.2 1 3.731 4.093 32.102 0.9 0.2 6 3.801 20.334 31.388

1 0.2 1 3.792 4.093 32.429 0.95 0.2 6 3.926 20.631 31.695
0 0.3 1 0.057 2.994 25.813 1 0.2 6 3.855 20.788 32.031

0.05 0.3 1 1.132 3.136 26.091 0 0.3 6 9.42E-03 16.02 25.977
0.1 0.3 1 1.732 3.244 26.402 0.05 0.3 6 1.126 16.349 26.279
0.15 0.3 1 2.094 3.339 26.733 0.1 0.3 6 1.765 16.625 26.575
0.2 0.3 1 2.345 3.432 27.071 0.15 0.3 6 2.164 16.894 26.87
0.25 0.3 1 2.549 3.522 27.408 0.2 0.3 6 2.453 17.17 27.165
0.3 0.3 1 2.733 3.603 27.741 0.25 0.3 6 2.692 17.45 27.461
0.35 0.3 1 2.908 3.671 28.067 0.3 0.3 6 2.909 17.722 27.76
0.4 0.3 1 3.076 3.726 28.385 0.35 0.3 6 3.113 17.979 28.06
0.45 0.3 1 3.239 3.772 28.699 0.4 0.3 6 3.305 18.219 28.362
0.5 0.3 1 3.401 3.818 29.009 0.45 0.3 6 3.49 18.451 28.664
0.55 0.3 1 3.567 3.873 29.319 0.5 0.3 6 3.673 18.683 28.966
0.6 0.3 1 3.746 3.94 29.631 0.55 0.3 6 3.859 18.926 29.268
0.65 0.3 1 3.943 4.018 29.948 0.6 0.3 6 4.058 19.185 29.568
0.7 0.3 1 4.163 4.101 30.27 0.65 0.3 6 4.275 19.454 29.866
0.75 0.3 1 4.408 4.181 30.598 0.7 0.3 6 4.513 19.728 30.162
0.8 0.3 1 4.667 4.255 30.933 0.75 0.3 6 4.772 19.996 30.456
0.85 0.3 1 4.916 4.327 31.276 0.8 0.3 6 5.036 20.256 30.749
0.9 0.3 1 5.105 4.396 31.633 0.85 0.3 6 5.279 20.512 31.043



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.95 0.3 1 5.136 4.431 32.014 0.9 0.3 6 5.443 20.767 31.345

1 0.3 1 4.846 4.305 32.437 0.95 0.3 6 5.432 20.987 31.665
0 0.4 1 0.051 3.027 25.783 1 0.3 6 5.082 21.032 32.02

0.05 0.4 1 1.244 3.166 26.068 0 0.4 6 7.17E-03 16.046 25.979
0.1 0.4 1 2.019 3.339 26.37 0.05 0.4 6 1.231 16.381 26.274
0.15 0.4 1 2.565 3.509 26.683 0.1 0.4 6 2.034 16.72 26.566
0.2 0.4 1 2.981 3.665 27.001 0.15 0.4 6 2.61 17.06 26.858
0.25 0.4 1 3.317 3.8 27.321 0.2 0.4 6 3.059 17.395 27.151
0.3 0.4 1 3.596 3.91 27.641 0.25 0.4 6 3.429 17.717 27.447
0.35 0.4 1 3.831 3.993 27.957 0.3 0.4 6 3.74 18.017 27.744
0.4 0.4 1 4.038 4.056 28.27 0.35 0.4 6 4.006 18.291 28.043
0.45 0.4 1 4.229 4.107 28.579 0.4 0.4 6 4.238 18.541 28.344
0.5 0.4 1 4.422 4.158 28.886 0.45 0.4 6 4.451 18.778 28.645
0.55 0.4 1 4.633 4.224 29.192 0.5 0.4 6 4.66 19.014 28.945
0.6 0.4 1 4.873 4.31 29.497 0.55 0.4 6 4.88 19.264 29.245
0.65 0.4 1 5.149 4.417 29.804 0.6 0.4 6 5.125 19.534 29.544
0.7 0.4 1 5.457 4.536 30.114 0.65 0.4 6 5.4 19.821 29.842
0.75 0.4 1 5.782 4.655 30.429 0.7 0.4 6 5.701 20.118 30.138
0.8 0.4 1 6.095 4.761 30.753 0.75 0.4 6 6.012 20.411 30.433
0.85 0.4 1 6.347 4.842 31.094 0.8 0.4 6 6.305 20.69 30.728
0.9 0.4 1 6.46 4.887 31.461 0.85 0.4 6 6.532 20.947 31.025
0.95 0.4 1 6.318 4.864 31.873 0.9 0.4 6 6.621 21.178 31.328

1 0.4 1 5.747 4.672 32.359 0.95 0.4 6 6.464 21.354 31.645
0 0.5 1 0.05 3.029 25.761 1 0.4 6 5.902 21.367 31.991

0.05 0.5 1 1.354 3.193 26.053 0 0.5 6 0.017 16.046 25.981
0.1 0.5 1 2.273 3.438 26.347 0.05 0.5 6 1.346 16.409 26.27
0.15 0.5 1 2.973 3.686 26.643 0.1 0.5 6 2.285 16.82 26.559
0.2 0.5 1 3.538 3.91 26.943 0.15 0.5 6 3.006 17.234 26.849
0.25 0.5 1 4.007 4.102 27.245 0.2 0.5 6 3.594 17.635 27.141
0.3 0.5 1 4.398 4.26 27.549 0.25 0.5 6 4.087 18.012 27.436
0.35 0.5 1 4.728 4.387 27.854 0.3 0.5 6 4.504 18.359 27.732
0.4 0.5 1 5.013 4.487 28.159 0.35 0.5 6 4.855 18.672 28.031
0.45 0.5 1 5.273 4.572 28.464 0.4 0.5 6 5.158 18.957 28.331
0.5 0.5 1 5.529 4.655 28.768 0.45 0.5 6 5.429 19.224 28.631
0.55 0.5 1 5.802 4.749 29.07 0.5 0.5 6 5.689 19.486 28.933
0.6 0.5 1 6.102 4.861 29.372 0.55 0.5 6 5.956 19.755 29.235
0.65 0.5 1 6.433 4.991 29.674 0.6 0.5 6 6.243 20.039 29.538
0.7 0.5 1 6.785 5.128 29.978 0.65 0.5 6 6.552 20.336 29.841
0.75 0.5 1 7.132 5.256 30.287 0.7 0.5 6 6.873 20.637 30.144
0.8 0.5 1 7.432 5.354 30.607 0.75 0.5 6 7.184 20.925 30.446
0.85 0.5 1 7.623 5.402 30.946 0.8 0.5 6 7.444 21.184 30.748
0.9 0.5 1 7.62 5.384 31.319 0.85 0.5 6 7.6 21.403 31.049
0.95 0.5 1 7.307 5.276 31.75 0.9 0.5 6 7.576 21.576 31.351

1 0.5 1 6.521 5.017 32.273 0.95 0.5 6 7.275 21.688 31.657
0 0.6 1 0.043 3.02 25.745 1 0.5 6 6.561 21.678 31.975

0.05 0.6 1 1.446 3.229 26.044 0 0.6 6 0.021 16.036 25.982
0.1 0.6 1 2.478 3.545 26.33 0.05 0.6 6 1.45 16.445 26.264
0.15 0.6 1 3.299 3.866 26.612 0.1 0.6 6 2.497 16.926 26.551
0.2 0.6 1 3.988 4.156 26.895 0.15 0.6 6 3.332 17.411 26.84
0.25 0.6 1 4.58 4.411 27.18 0.2 0.6 6 4.035 17.876 27.131
0.3 0.6 1 5.091 4.631 27.47 0.25 0.6 6 4.642 18.312 27.425
0.35 0.6 1 5.533 4.82 27.764 0.3 0.6 6 5.167 18.718 27.721
0.4 0.6 1 5.921 4.983 28.062 0.35 0.6 6 5.62 19.091 28.02
0.45 0.6 1 6.275 5.128 28.362 0.4 0.6 6 6.015 19.435 28.319
0.5 0.6 1 6.615 5.264 28.664 0.45 0.6 6 6.369 19.756 28.621
0.55 0.6 1 6.958 5.402 28.966 0.5 0.6 6 6.701 20.064 28.926
0.6 0.6 1 7.315 5.547 29.268 0.55 0.6 6 7.027 20.368 29.233
0.65 0.6 1 7.682 5.695 29.57 0.6 0.6 6 7.355 20.675 29.542
0.7 0.6 1 8.044 5.836 29.874 0.65 0.6 6 7.685 20.98 29.854
0.75 0.6 1 8.369 5.947 30.182 0.7 0.6 6 8 21.272 30.168



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.8 0.6 1 8.609 6.005 30.501 0.75 0.6 6 8.274 21.534 30.482
0.85 0.6 1 8.701 5.986 30.841 0.8 0.6 6 8.463 21.745 30.793
0.9 0.6 1 8.561 5.875 31.217 0.85 0.6 6 8.515 21.895 31.101
0.95 0.6 1 8.089 5.664 31.655 0.9 0.6 6 8.363 21.981 31.4

1 0.6 1 7.152 5.339 32.19 0.95 0.6 6 7.93 22.011 31.69
0 0.7 1 0.031 3.014 25.734 1 0.6 6 7.121 21.974 31.97

0.05 0.7 1 1.52 3.275 26.036 0 0.7 6 9.65E-03 16.03 25.981
0.1 0.7 1 2.631 3.654 26.315 0.05 0.7 6 1.531 16.49 26.256
0.15 0.7 1 3.538 4.033 26.584 0.1 0.7 6 2.657 17.031 26.54
0.2 0.7 1 4.325 4.379 26.851 0.15 0.7 6 3.573 17.572 26.829
0.25 0.7 1 5.024 4.693 27.121 0.2 0.7 6 4.364 18.089 27.121
0.3 0.7 1 5.649 4.979 27.398 0.25 0.7 6 5.069 18.581 27.416
0.35 0.7 1 6.208 5.242 27.682 0.3 0.7 6 5.698 19.05 27.712
0.4 0.7 1 6.711 5.483 27.973 0.35 0.7 6 6.258 19.493 28.009
0.45 0.7 1 7.171 5.704 28.27 0.4 0.7 6 6.758 19.91 28.31
0.5 0.7 1 7.603 5.908 28.572 0.45 0.7 6 7.209 20.302 28.613
0.55 0.7 1 8.02 6.099 28.876 0.5 0.7 6 7.625 20.673 28.919
0.6 0.7 1 8.425 6.279 29.182 0.55 0.7 6 8.015 21.025 29.231
0.65 0.7 1 8.811 6.441 29.488 0.6 0.7 6 8.384 21.36 29.548
0.7 0.7 1 9.159 6.573 29.795 0.65 0.7 6 8.726 21.673 29.87
0.75 0.7 1 9.433 6.653 30.106 0.7 0.7 6 9.02 21.951 30.196
0.8 0.7 1 9.587 6.653 30.426 0.75 0.7 6 9.237 22.175 30.522
0.85 0.7 1 9.56 6.551 30.766 0.8 0.7 6 9.336 22.326 30.846
0.9 0.7 1 9.284 6.338 31.141 0.85 0.7 6 9.271 22.391 31.16
0.95 0.7 1 8.68 6.028 31.574 0.9 0.7 6 8.992 22.381 31.458

1 0.7 1 7.657 5.659 32.102 0.95 0.7 6 8.45 22.325 31.73
0 0.8 1 0.028 3.015 25.728 1 0.7 6 7.595 22.273 31.968

0.05 0.8 1 1.593 3.333 26.03 0.05 0.8 6 1.603 16.547 26.248
0.1 0.8 1 2.756 3.761 26.3 0.1 0.8 6 2.781 17.135 26.53
0.15 0.8 1 3.717 4.18 26.556 0.15 0.8 6 3.745 17.713 26.82
0.2 0.8 1 4.572 4.569 26.809 0.2 0.8 6 4.598 18.268 27.114
0.25 0.8 1 5.36 4.934 27.066 0.25 0.8 6 5.381 18.807 27.409
0.3 0.8 1 6.089 5.287 27.331 0.3 0.8 6 6.103 19.336 27.706
0.35 0.8 1 6.762 5.629 27.606 0.35 0.8 6 6.767 19.853 28.004
0.4 0.8 1 7.379 5.956 27.892 0.4 0.8 6 7.373 20.351 28.304
0.45 0.8 1 7.947 6.261 28.187 0.45 0.8 6 7.925 20.823 28.607
0.5 0.8 1 8.471 6.537 28.49 0.5 0.8 6 8.427 21.263 28.915
0.55 0.8 1 8.955 6.783 28.797 0.55 0.8 6 8.883 21.668 29.23
0.6 0.8 1 9.399 6.993 29.108 0.6 0.8 6 9.29 22.034 29.553
0.65 0.8 1 9.791 7.162 29.42 0.65 0.8 6 9.636 22.353 29.883
0.7 0.8 1 10.107 7.275 29.733 0.7 0.8 6 9.9 22.612 30.219
0.75 0.8 1 10.315 7.311 30.048 0.75 0.8 6 10.053 22.792 30.558
0.8 0.8 1 10.371 7.246 30.371 0.8 0.8 6 10.058 22.877 30.892
0.85 0.8 1 10.225 7.06 30.709 0.85 0.8 6 9.879 22.858 31.214
0.9 0.8 1 9.828 6.755 31.076 0.9 0.8 6 9.487 22.756 31.511
0.95 0.8 1 9.13 6.37 31.495 0.95 0.8 6 8.863 22.628 31.768

1 0.8 1 8.082 5.996 31.997 1 0.8 6 8.004 22.582 31.967
0 0.9 1 0.051 3.03 25.729 0 0.9 6 0.014 16.055 25.983

0.05 0.9 1 1.687 3.408 26.024 0.05 0.9 6 1.695 16.626 26.242
0.1 0.9 1 2.882 3.877 26.285 0.1 0.9 6 2.903 17.251 26.522
0.15 0.9 1 3.874 4.326 26.528 0.15 0.9 6 3.891 17.853 26.815
0.2 0.9 1 4.778 4.748 26.768 0.2 0.9 6 4.782 18.435 27.112
0.25 0.9 1 5.637 5.163 27.013 0.25 0.9 6 5.624 19.015 27.411
0.3 0.9 1 6.458 5.583 27.268 0.3 0.9 6 6.427 19.602 27.709
0.35 0.9 1 7.236 6.007 27.536 0.35 0.9 6 7.185 20.194 28.007
0.4 0.9 1 7.961 6.423 27.818 0.4 0.9 6 7.891 20.775 28.306
0.45 0.9 1 8.629 6.813 28.113 0.45 0.9 6 8.538 21.327 28.608
0.5 0.9 1 9.235 7.159 28.417 0.5 0.9 6 9.121 21.836 28.915
0.55 0.9 1 9.777 7.452 28.729 0.55 0.9 6 9.636 22.29 29.23
0.6 0.9 1 10.246 7.682 29.046 0.6 0.9 6 10.073 22.68 29.555



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.65 0.9 1 10.63 7.843 29.364 0.65 0.9 6 10.417 22.998 29.89
0.7 0.9 1 10.903 7.923 29.684 0.7 0.9 6 10.647 23.232 30.233
0.75 0.9 1 11.038 7.905 30.004 0.75 0.9 6 10.734 23.365 30.581
0.8 0.9 1 10.998 7.771 30.328 0.8 0.9 6 10.651 23.384 30.925
0.85 0.9 1 10.747 7.508 30.661 0.85 0.9 6 10.373 23.289 31.254
0.9 0.9 1 10.256 7.13 31.016 0.9 0.9 6 9.891 23.11 31.552
0.95 0.9 1 9.503 6.702 31.41 0.95 0.9 6 9.214 22.931 31.798

1 0.9 1 8.483 6.366 31.871 1 0.9 6 8.382 22.913 31.968
0 1 1 0.101 3.064 25.737 0 1 6 0.068 16.098 25.985

0.05 1 1 1.814 3.511 26.021 0.05 1 6 1.827 16.737 26.235
0.1 1 1 3.035 4.021 26.269 0.1 1 6 3.055 17.398 26.517
0.15 1 1 4.048 4.5 26.5 0.15 1 6 4.052 18.022 26.814
0.2 1 1 4.989 4.958 26.728 0.2 1 6 4.966 18.628 27.117
0.25 1 1 5.909 5.426 26.962 0.25 1 6 5.854 19.248 27.421
0.3 1 1 6.813 5.919 27.21 0.3 1 6 6.725 19.895 27.722
0.35 1 1 7.685 6.432 27.473 0.35 1 6 7.566 20.563 28.021
0.4 1 1 8.507 6.939 27.753 0.4 1 6 8.36 21.226 28.319
0.45 1 1 9.262 7.41 28.048 0.45 1 6 9.09 21.856 28.617
0.5 1 1 9.935 7.817 28.356 0.5 1 6 9.741 22.426 28.921
0.55 1 1 10.517 8.142 28.673 0.55 1 6 10.301 22.919 29.233
0.6 1 1 10.996 8.374 28.996 0.6 1 6 10.757 23.321 29.555
0.65 1 1 11.357 8.507 29.322 0.65 1 6 11.091 23.625 29.89
0.7 1 1 11.579 8.536 29.647 0.7 1 6 11.284 23.823 30.235
0.75 1 1 11.64 8.454 29.971 0.75 1 6 11.312 23.904 30.587
0.8 1 1 11.514 8.248 30.294 0.8 1 6 11.154 23.862 30.937
0.85 1 1 11.179 7.918 30.62 0.85 1 6 10.799 23.701 31.273
0.9 1 1 10.625 7.489 30.956 0.9 1 6 10.252 23.462 31.575
0.95 1 1 9.855 7.046 31.317 0.95 1 6 9.548 23.25 31.82

1 1 1 8.899 6.779 31.726 1 1 6 8.755 23.271 31.976
0 1.1 1 0.167 3.12 25.751 0 1.1 6 0.154 16.164 25.983

0.05 1.1 1 1.972 3.648 26.018 0.05 1.1 6 1.999 16.883 26.227
0.1 1.1 1 3.227 4.206 26.252 0.1 1.1 6 3.25 17.586 26.511
0.15 1.1 1 4.263 4.724 26.471 0.15 1.1 6 4.255 18.236 26.816
0.2 1.1 1 5.242 5.23 26.689 0.2 1.1 6 5.189 18.873 27.129
0.25 1.1 1 6.222 5.764 26.916 0.25 1.1 6 6.117 19.54 27.44
0.3 1.1 1 7.203 6.343 27.158 0.3 1.1 6 7.048 20.253 27.747
0.35 1.1 1 8.162 6.951 27.419 0.35 1.1 6 7.962 20.999 28.047
0.4 1.1 1 9.067 7.55 27.699 0.4 1.1 6 8.829 21.742 28.342
0.45 1.1 1 9.89 8.096 27.996 0.45 1.1 6 9.624 22.441 28.636
0.5 1.1 1 10.61 8.551 28.309 0.5 1.1 6 10.324 23.06 28.933
0.55 1.1 1 11.211 8.887 28.632 0.55 1.1 6 10.911 23.574 29.237
0.6 1.1 1 11.678 9.096 28.962 0.6 1.1 6 11.369 23.971 29.551
0.65 1.1 1 12 9.178 29.295 0.65 1.1 6 11.683 24.245 29.878
0.7 1.1 1 12.163 9.137 29.625 0.7 1.1 6 11.836 24.396 30.219
0.75 1.1 1 12.151 8.979 29.951 0.75 1.1 6 11.811 24.423 30.57
0.8 1.1 1 11.952 8.702 30.271 0.8 1.1 6 11.597 24.325 30.923
0.85 1.1 1 11.558 8.316 30.585 0.85 1.1 6 11.189 24.112 31.264
0.9 1.1 1 10.971 7.856 30.897 0.9 1.1 6 10.605 23.832 31.575
0.95 1.1 1 10.214 7.421 31.218 0.95 1.1 6 9.89 23.599 31.83

1 1.1 1 9.334 7.23 31.565 1 1.1 6 9.126 23.649 31.994
0 1.2 1 0.238 3.207 25.769 0 1.2 6 0.252 16.263 25.976

0.05 1.2 1 2.152 3.822 26.017 0.05 1.2 6 2.196 17.068 26.214
0.1 1.2 1 3.455 4.438 26.237 0.1 1.2 6 3.481 17.819 26.504
0.15 1.2 1 4.53 5.008 26.445 0.15 1.2 6 4.505 18.504 26.82
0.2 1.2 1 5.559 5.578 26.655 0.2 1.2 6 5.466 19.181 27.145
0.25 1.2 1 6.605 6.196 26.877 0.25 1.2 6 6.439 19.904 27.467
0.3 1.2 1 7.664 6.873 27.118 0.3 1.2 6 7.427 20.689 27.781
0.35 1.2 1 8.702 7.583 27.379 0.35 1.2 6 8.403 21.513 28.084
0.4 1.2 1 9.676 8.273 27.661 0.4 1.2 6 9.328 22.33 28.377
0.45 1.2 1 10.547 8.883 27.964 0.45 1.2 6 10.166 23.085 28.664



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.5 1.2 1 11.288 9.363 28.282 0.5 1.2 6 10.89 23.734 28.95
0.55 1.2 1 11.879 9.686 28.613 0.55 1.2 6 11.48 24.247 29.24
0.6 1.2 1 12.311 9.844 28.95 0.6 1.2 6 11.921 24.616 29.539
0.65 1.2 1 12.575 9.85 29.289 0.65 1.2 6 12.201 24.843 29.853
0.7 1.2 1 12.669 9.723 29.623 0.7 1.2 6 12.312 24.94 30.181
0.75 1.2 1 12.589 9.482 29.948 0.75 1.2 6 12.245 24.914 30.524
0.8 1.2 1 12.332 9.141 30.261 0.8 1.2 6 11.993 24.774 30.874
0.85 1.2 1 11.901 8.717 30.558 0.85 1.2 6 11.56 24.532 31.221
0.9 1.2 1 11.309 8.247 30.842 0.9 1.2 6 10.962 24.232 31.546
0.95 1.2 1 10.58 7.832 31.117 0.95 1.2 6 10.243 23.983 31.825

1 1.2 1 9.76 7.697 31.394 1 1.2 6 9.474 24.027 32.021
0 1.3 1 0.326 3.359 25.79 0 1.3 6 0.356 16.434 25.964

0.05 1.3 1 2.354 4.06 26.019 0.05 1.3 6 2.404 17.322 26.198
0.1 1.3 1 3.722 4.74 26.225 0.1 1.3 6 3.737 18.123 26.497
0.15 1.3 1 4.853 5.375 26.425 0.15 1.3 6 4.796 18.847 26.827
0.2 1.3 1 5.949 6.024 26.631 0.2 1.3 6 5.799 19.572 27.168
0.25 1.3 1 7.074 6.739 26.852 0.25 1.3 6 6.825 20.357 27.504
0.3 1.3 1 8.215 7.523 27.094 0.3 1.3 6 7.871 21.214 27.826
0.35 1.3 1 9.326 8.334 27.359 0.35 1.3 6 8.9 22.109 28.133
0.4 1.3 1 10.352 9.102 27.648 0.4 1.3 6 9.865 22.984 28.423
0.45 1.3 1 11.247 9.754 27.958 0.45 1.3 6 10.722 23.772 28.701
0.5 1.3 1 11.979 10.232 28.285 0.5 1.3 6 11.442 24.422 28.972
0.55 1.3 1 12.531 10.508 28.624 0.55 1.3 6 12.006 24.906 29.242
0.6 1.3 1 12.898 10.585 28.968 0.6 1.3 6 12.406 25.222 29.52
0.65 1.3 1 13.086 10.491 29.312 0.65 1.3 6 12.639 25.387 29.81
0.7 1.3 1 13.102 10.266 29.648 0.7 1.3 6 12.706 25.426 30.117
0.75 1.3 1 12.957 9.947 29.969 0.75 1.3 6 12.607 25.362 30.444
0.8 1.3 1 12.66 9.563 30.27 0.8 1.3 6 12.342 25.207 30.786
0.85 1.3 1 12.218 9.132 30.545 0.85 1.3 6 11.913 24.971 31.137
0.9 1.3 1 11.642 8.681 30.793 0.9 1.3 6 11.325 24.679 31.482
0.95 1.3 1 10.943 8.293 31.015 0.95 1.3 6 10.598 24.417 31.799

1 1.3 1 10.14 8.166 31.216 1 1.3 6 9.768 24.397 32.058
0 1.4 1 0.488 3.634 25.811 0 1.4 6 0.52 16.744 25.952

0.05 1.4 1 2.606 4.422 26.022 0.05 1.4 6 2.651 17.71 26.185
0.1 1.4 1 4.037 5.175 26.218 0.1 1.4 6 4.03 18.563 26.494
0.15 1.4 1 5.235 5.887 26.414 0.15 1.4 6 5.134 19.333 26.841
0.2 1.4 1 6.412 6.628 26.621 0.2 1.4 6 6.191 20.11 27.2
0.25 1.4 1 7.625 7.446 26.846 0.25 1.4 6 7.276 20.955 27.553
0.3 1.4 1 8.851 8.332 27.095 0.3 1.4 6 8.379 21.873 27.887
0.35 1.4 1 10.026 9.229 27.37 0.35 1.4 6 9.45 22.819 28.197
0.4 1.4 1 11.087 10.048 27.669 0.4 1.4 6 10.433 23.721 28.484
0.45 1.4 1 11.98 10.704 27.99 0.45 1.4 6 11.281 24.503 28.75
0.5 1.4 1 12.671 11.137 28.327 0.5 1.4 6 11.964 25.113 29.002
0.55 1.4 1 13.152 11.324 28.676 0.55 1.4 6 12.472 25.529 29.246
0.6 1.4 1 13.429 11.284 29.027 0.6 1.4 6 12.806 25.763 29.493
0.65 1.4 1 13.523 11.068 29.374 0.65 1.4 6 12.979 25.851 29.75
0.7 1.4 1 13.459 10.742 29.708 0.7 1.4 6 13.006 25.838 30.026
0.75 1.4 1 13.262 10.365 30.02 0.75 1.4 6 12.895 25.761 30.327
0.8 1.4 1 12.949 9.975 30.303 0.8 1.4 6 12.649 25.637 30.655
0.85 1.4 1 12.528 9.586 30.549 0.85 1.4 6 12.261 25.459 31.008
0.9 1.4 1 11.991 9.198 30.754 0.9 1.4 6 11.711 25.219 31.377
0.95 1.4 1 11.318 8.842 30.914 0.95 1.4 6 10.971 24.944 31.749

1 1.4 1 10.469 8.651 31.031 1 1.4 6 10.007 24.774 32.101
0 1.5 1 0.834 3.994 25.81 0 1.5 6 0.901 17.144 25.933

0.05 1.5 1 2.961 4.909 26.012 0.05 1.5 6 3.039 18.223 26.167
0.1 1.5 1 4.412 5.774 26.207 0.1 1.5 6 4.426 19.161 26.49
0.15 1.5 1 5.66 6.597 26.407 0.15 1.5 6 5.557 20.004 26.858
0.2 1.5 1 6.914 7.451 26.622 0.2 1.5 6 6.661 20.849 27.239
0.25 1.5 1 8.214 8.378 26.859 0.25 1.5 6 7.8 21.755 27.61
0.3 1.5 1 9.518 9.356 27.122 0.3 1.5 6 8.947 22.719 27.958



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.35 1.5 1 10.746 10.307 27.412 0.35 1.5 6 10.04 23.683 28.275
0.4 1.5 1 11.821 11.13 27.728 0.4 1.5 6 11.013 24.564 28.558
0.45 1.5 1 12.684 11.732 28.065 0.45 1.5 6 11.817 25.284 28.81
0.5 1.5 1 13.306 12.056 28.416 0.5 1.5 6 12.429 25.795 29.038
0.55 1.5 1 13.689 12.095 28.776 0.55 1.5 6 12.849 26.089 29.251
0.6 1.5 1 13.857 11.893 29.134 0.6 1.5 6 13.098 26.202 29.458
0.65 1.5 1 13.853 11.531 29.482 0.65 1.5 6 13.207 26.196 29.673
0.7 1.5 1 13.721 11.107 29.81 0.7 1.5 6 13.208 26.141 29.908
0.75 1.5 1 13.503 10.704 30.106 0.75 1.5 6 13.121 26.09 30.173
0.8 1.5 1 13.221 10.367 30.363 0.8 1.5 6 12.946 26.056 30.478
0.85 1.5 1 12.872 10.09 30.569 0.85 1.5 6 12.656 26.005 30.83
0.9 1.5 1 12.418 9.822 30.719 0.9 1.5 6 12.19 25.868 31.228
0.95 1.5 1 11.777 9.505 30.806 0.95 1.5 6 11.446 25.576 31.671

1 1.5 1 10.814 9.147 30.829 1 1.5 6 10.277 25.139 32.148
0.05 0.1 2 0.59 6.117 27.243 0.05 0.1 7 0.457 19.366 25.99
0.1 0.1 2 0.758 6.07 27.608 0.1 0.1 7 0.633 19.48 26.29
0.15 0.1 2 0.672 5.984 27.995 0.15 0.1 7 0.529 19.572 26.579
0.2 0.1 2 0.557 5.935 28.388 0.2 0.1 7 0.379 19.706 26.86
0.25 0.1 2 0.525 5.944 28.778 0.25 0.1 7 0.298 19.892 27.14
0.3 0.1 2 0.608 6.005 29.16 0.3 0.1 7 0.323 20.116 27.421
0.35 0.1 2 0.793 6.101 29.534 0.35 0.1 7 0.445 20.358 27.706
0.4 0.1 2 1.038 6.217 29.901 0.4 0.1 7 0.627 20.605 27.995
0.45 0.1 2 1.294 6.342 30.267 0.45 0.1 7 0.827 20.852 28.291
0.5 0.1 2 1.512 6.466 30.636 0.5 0.1 7 1 21.097 28.592
0.55 0.1 2 1.654 6.584 31.013 0.55 0.1 7 1.114 21.341 28.898
0.6 0.1 2 1.701 6.687 31.401 0.6 0.1 7 1.152 21.578 29.206
0.65 0.1 2 1.653 6.768 31.8 0.65 0.1 7 1.113 21.803 29.516
0.7 0.1 2 1.532 6.826 32.207 0.7 0.1 7 1.017 22.016 29.822
0.75 0.1 2 1.385 6.874 32.618 0.75 0.1 7 0.902 22.228 30.121
0.8 0.1 2 1.271 6.943 33.023 0.8 0.1 7 0.816 22.47 30.411
0.85 0.1 2 1.261 7.088 33.41 0.85 0.1 7 0.811 22.794 30.688
0.9 0.1 2 1.41 7.365 33.769 0.9 0.1 7 0.92 23.252 30.953
0.95 0.1 2 1.74 7.787 34.087 0.95 0.1 7 1.138 23.844 31.212

1 0.1 2 2.196 8.229 34.36 1 0.1 7 1.379 24.416 31.476
0.05 0.2 2 0.961 5.644 27.295 0.05 0.2 7 0.97 18.999 26.007
0.1 0.2 2 1.377 5.727 27.657 0.1 0.2 7 1.416 19.237 26.302
0.15 0.2 2 1.55E+00 5.782 28.04 0.15 0.2 7 1.602 19.46 26.59
0.2 0.2 2 1.635 5.853 28.432 0.2 0.2 7 1.702 19.707 26.876
0.25 0.2 2 1.728 5.947 28.825 0.25 0.2 7 1.802 19.978 27.162
0.3 0.2 2 1.856 6.057 29.214 0.3 0.2 7 1.933 20.262 27.45
0.35 0.2 2 2.019 6.173 29.6 0.35 0.2 7 2.098 20.543 27.74
0.4 0.2 2 2.204 6.286 29.981 0.4 0.2 7 2.283 20.817 28.033
0.45 0.2 2 2.39 6.396 30.359 0.45 0.2 7 2.473 21.084 28.328
0.5 0.2 2 2.564 6.505 30.738 0.5 0.2 7 2.653 21.35 28.625
0.55 0.2 2 2.712 6.612 31.118 0.55 0.2 7 2.814 21.619 28.923
0.6 0.2 2 2.833 6.718 31.503 0.6 0.2 7 2.955 21.891 29.221
0.65 0.2 2 2.931 6.816 31.892 0.65 0.2 7 3.081 22.161 29.518
0.7 0.2 2 3.02 6.902 32.285 0.7 0.2 7 3.202 22.422 29.812
0.75 0.2 2 3.119 6.975 32.68 0.75 0.2 7 3.333 22.673 30.103
0.8 0.2 2 3.247 7.047 33.072 0.8 0.2 7 3.485 22.923 30.39
0.85 0.2 2 3.417 7.141 33.46 0.85 0.2 7 3.663 23.195 30.675
0.9 0.2 2 3.617 7.28 33.841 0.9 0.2 7 3.842 23.509 30.961
0.95 0.2 2 3.793 7.446 34.219 0.95 0.2 7 3.958 23.84 31.258

1 0.2 2 3.816 7.504 34.605 1 0.2 7 3.867 24.025 31.581
0 0.3 2 0.011 5.44 26.969 0.05 0.3 7 1.117 18.994 26.008

0.05 0.3 2 1.101 5.626 27.299 0.1 0.3 7 1.763 19.298 26.296
0.1 0.3 2 1.721 5.775 27.653 0.15 0.3 7 2.166 19.596 26.582
0.15 0.3 2 2.102 5.913 28.024 0.2 0.3 7 2.458 19.903 26.868
0.2 0.3 2 2.371 6.051 28.404 0.25 0.3 7 2.7 20.214 27.155
0.25 0.3 2 2.591 6.188 28.789 0.3 0.3 7 2.921 20.517 27.444



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.3 0.3 2 2.788 6.318 29.174 0.35 0.3 7 3.128 20.805 27.735
0.35 0.3 2 2.973 6.433 29.557 0.4 0.3 7 3.324 21.076 28.026
0.4 0.3 2 3.148 6.535 29.939 0.45 0.3 7 3.512 21.338 28.319
0.45 0.3 2 3.317 6.629 30.318 0.5 0.3 7 3.697 21.601 28.611
0.5 0.3 2 3.485 6.724 30.696 0.55 0.3 7 3.886 21.875 28.903
0.55 0.3 2 3.657 6.828 31.074 0.6 0.3 7 4.087 22.165 29.194
0.6 0.3 2 3.841 6.947 31.451 0.65 0.3 7 4.306 22.466 29.484
0.65 0.3 2 4.046 7.076 31.829 0.7 0.3 7 4.546 22.771 29.771
0.7 0.3 2 4.274 7.21 32.207 0.75 0.3 7 4.806 23.07 30.057
0.75 0.3 2 4.524 7.34 32.586 0.8 0.3 7 5.072 23.362 30.342
0.8 0.3 2 4.788 7.463 32.966 0.85 0.3 7 5.315 23.652 30.628
0.85 0.3 2 5.036 7.583 33.35 0.9 0.3 7 5.48 23.942 30.92
0.9 0.3 2 5.216 7.701 33.743 0.95 0.3 7 5.469 24.199 31.228
0.95 0.3 2 5.23 7.787 34.157 1 0.3 7 5.12 24.278 31.565

1 0.3 2 4.91 7.717 34.613 0.05 0.4 7 1.222 19.023 26.009
0 0.4 2 9.36E-03 5.471 26.966 0.1 0.4 7 2.03 19.391 26.293

0.05 0.4 2 1.215 5.654 27.299 0.15 0.4 7 2.609 19.759 26.577
0.1 0.4 2 2.005 5.868 27.647 0.2 0.4 7 3.061 20.125 26.862
0.15 0.4 2 2.57E+00 6.081 28.006 0.25 0.4 7 3.433 20.478 27.149
0.2 0.4 2 3.001 6.284 28.373 0.3 0.4 7 3.748 20.809 27.437
0.25 0.4 2 3.352 6.467 28.745 0.35 0.4 7 4.017 21.114 27.727
0.3 0.4 2 3.644 6.626 29.122 0.4 0.4 7 4.252 21.395 28.018
0.35 0.4 2 3.891 6.759 29.499 0.45 0.4 7 4.466 21.662 28.309
0.4 0.4 2 4.106 6.869 29.877 0.5 0.4 7 4.676 21.929 28.6
0.45 0.4 2 4.305 6.968 30.254 0.55 0.4 7 4.896 22.209 28.891
0.5 0.4 2 4.504 7.069 30.63 0.6 0.4 7 5.139 22.508 29.18
0.55 0.4 2 4.719 7.183 31.005 0.65 0.4 7 5.411 22.825 29.47
0.6 0.4 2 4.964 7.318 31.378 0.7 0.4 7 5.707 23.151 29.758
0.65 0.4 2 5.243 7.475 31.749 0.75 0.4 7 6.015 23.472 30.045
0.7 0.4 2 5.553 7.643 32.119 0.8 0.4 7 6.305 23.779 30.332
0.75 0.4 2 5.879 7.809 32.49 0.85 0.4 7 6.53 24.069 30.62
0.8 0.4 2 6.19 7.961 32.863 0.9 0.4 7 6.621 24.335 30.912
0.85 0.4 2 6.436 8.088 33.245 0.95 0.4 7 6.471 24.551 31.213
0.9 0.4 2 6.539 8.181 33.645 1 0.4 7 5.925 24.605 31.535
0.95 0.4 2 6.383 8.209 34.079 0 0.5 7 8.81E-04 18.648 25.732

1 0.4 2 5.793 8.076 34.575 0.05 0.5 7 1.34 19.05 26.011
0 0.5 2 0.014 5.471 26.965 0.1 0.5 7 2.283 19.491 26.292

0.05 0.5 2 1.329 5.679 27.304 0.15 0.5 7 3.006 19.935 26.574
0.1 0.5 2 2.26 5.965 27.647 0.2 0.5 7 3.596 20.365 26.859
0.15 0.5 2 2.975 6.257 27.996 0.25 0.5 7 4.091 20.773 27.145
0.2 0.5 2 3.554 6.529 28.352 0.3 0.5 7 4.509 21.15 27.433
0.25 0.5 2 4.035 6.771 28.714 0.35 0.5 7 4.863 21.495 27.722
0.3 0.5 2 4.438 6.978 29.081 0.4 0.5 7 5.167 21.811 28.012
0.35 0.5 2 4.777 7.153 29.453 0.45 0.5 7 5.439 22.109 28.304
0.4 0.5 2 5.069 7.301 29.828 0.5 0.5 7 5.698 22.4 28.596
0.45 0.5 2 5.334 7.433 30.204 0.55 0.5 7 5.962 22.699 28.889
0.5 0.5 2 5.594 7.563 30.58 0.6 0.5 7 6.243 23.011 29.183
0.55 0.5 2 5.868 7.704 30.955 0.65 0.5 7 6.545 23.335 29.478
0.6 0.5 2 6.169 7.862 31.328 0.7 0.5 7 6.859 23.662 29.774
0.65 0.5 2 6.499 8.038 31.7 0.75 0.5 7 7.161 23.975 30.069
0.7 0.5 2 6.848 8.221 32.069 0.8 0.5 7 7.414 24.261 30.363
0.75 0.5 2 7.191 8.393 32.439 0.85 0.5 7 7.566 24.51 30.654
0.8 0.5 2 7.484 8.535 32.812 0.9 0.5 7 7.545 24.719 30.943
0.85 0.5 2 7.667 8.627 33.195 0.95 0.5 7 7.256 24.874 31.229
0.9 0.5 2 7.654 8.657 33.599 1 0.5 7 6.57 24.91 31.517
0.95 0.5 2 7.331 8.605 34.043 0 0.6 7 8.45E-03 18.636 25.738

1 0.5 2 6.538 8.411 34.555 0.05 0.6 7 1.449 19.086 26.011
0 0.6 2 0.013 5.46 26.964 0.1 0.6 7 2.5 19.599 26.288

0.05 0.6 2 1.426 5.712 27.308 0.15 0.6 7 3.336 20.112 26.569
0.1 0.6 2 2.469 6.071 27.649 0.2 0.6 7 4.04 20.606 26.853



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.15 0.6 2 3.302 6.437 27.991 0.25 0.6 7 4.648 21.074 27.139
0.2 0.6 2 4.002 6.776 28.339 0.3 0.6 7 5.174 21.51 27.426
0.25 0.6 2 4.604 7.081 28.693 0.35 0.6 7 5.629 21.915 27.715
0.3 0.6 2 5.123 7.35 29.054 0.4 0.6 7 6.025 22.29 28.006
0.35 0.6 2 5.571 7.587 29.422 0.45 0.6 7 6.379 22.642 28.298
0.4 0.6 2 5.964 7.796 29.796 0.5 0.6 7 6.708 22.98 28.593
0.45 0.6 2 6.32 7.986 30.173 0.55 0.6 7 7.029 23.314 28.891
0.5 0.6 2 6.66 8.166 30.552 0.6 0.6 7 7.351 23.648 29.193
0.55 0.6 2 7.002 8.348 30.931 0.65 0.6 7 7.672 23.978 29.497
0.6 0.6 2 7.355 8.536 31.31 0.7 0.6 7 7.977 24.295 29.804
0.65 0.6 2 7.717 8.727 31.687 0.75 0.6 7 8.24 24.581 30.111
0.7 0.6 2 8.073 8.91 32.062 0.8 0.6 7 8.42 24.818 30.415
0.75 0.6 2 8.39 9.064 32.437 0.85 0.6 7 8.467 24.997 30.712
0.8 0.6 2 8.621 9.163 32.815 0.9 0.6 7 8.318 25.119 30.997
0.85 0.6 2 8.702 9.188 33.201 0.95 0.6 7 7.9 25.192 31.264
0.9 0.6 2 8.555 9.126 33.608 1 0.6 7 7.124 25.206 31.509
0.95 0.6 2 8.079 8.974 34.053 0.05 0.7 7 1.532 19.132 26.007

1 0.6 2 7.149 8.722 34.562 0.1 0.7 7 2.663 19.704 26.282
0 0.7 2 4.35E-03 5.453 26.962 0.15 0.7 7 3.579 20.273 26.563

0.05 0.7 2 1.505 5.757 27.311 0.2 0.7 7 4.371 20.819 26.846
0.1 0.7 2 2.626 6.179 27.65 0.25 0.7 7 5.076 21.341 27.132
0.15 0.7 2 3.54E+00 6.604 27.988 0.3 0.7 7 5.706 21.841 27.418
0.2 0.7 2 4.338 7 28.33 0.35 0.7 7 6.268 22.317 27.706
0.25 0.7 2 5.045 7.364 28.68 0.4 0.7 7 6.769 22.766 27.997
0.3 0.7 2 5.675 7.7 29.038 0.45 0.7 7 7.22 23.19 28.29
0.35 0.7 2 6.237 8.009 29.404 0.5 0.7 7 7.634 23.592 28.588
0.4 0.7 2 6.741 8.295 29.779 0.55 0.7 7 8.02 23.973 28.891
0.45 0.7 2 7.2 8.558 30.159 0.6 0.7 7 8.383 24.337 29.2
0.5 0.7 2 7.629 8.803 30.544 0.65 0.7 7 8.716 24.676 29.515
0.55 0.7 2 8.041 9.035 30.931 0.7 0.7 7 9 24.978 29.834
0.6 0.7 2 8.44 9.255 31.318 0.75 0.7 7 9.206 25.226 30.153
0.65 0.7 2 8.818 9.458 31.705 0.8 0.7 7 9.296 25.402 30.469
0.7 0.7 2 9.157 9.63 32.09 0.85 0.7 7 9.225 25.496 30.772
0.75 0.7 2 9.421 9.749 32.474 0.9 0.7 7 8.948 25.521 31.054
0.8 0.7 2 9.564 9.79 32.859 0.95 0.7 7 8.42 25.508 31.302
0.85 0.7 2 9.528 9.731 33.251 1 0.7 7 7.6 25.504 31.504
0.9 0.7 2 9.247 9.568 33.657 0.05 0.8 7 1.604 19.188 26.004
0.95 0.7 2 8.646 9.319 34.094 0.1 0.8 7 2.786 19.807 26.276

1 0.7 2 7.642 9.029 34.585 0.15 0.8 7 3.751 20.411 26.557
0 0.8 2 3.03E-03 5.456 26.959 0.2 0.8 7 4.604 20.994 26.841

0.05 0.8 2 1.581 5.816 27.31 0.25 0.8 7 5.386 21.563 27.127
0.1 0.8 2 2.754 6.288 27.649 0.3 0.8 7 6.11 22.124 27.413
0.15 0.8 2 3.72E+00 6.756 27.985 0.35 0.8 7 6.775 22.673 27.7
0.2 0.8 2 4.586 7.194 28.325 0.4 0.8 7 7.383 23.204 27.989
0.25 0.8 2 5.378 7.61 28.673 0.45 0.8 7 7.936 23.709 28.282
0.3 0.8 2 6.109 8.01 29.031 0.5 0.8 7 8.438 24.182 28.581
0.35 0.8 2 6.781 8.397 29.398 0.55 0.8 7 8.892 24.618 28.887
0.4 0.8 2 7.396 8.766 29.776 0.6 0.8 7 9.295 25.014 29.202
0.45 0.8 2 7.959 9.11 30.162 0.65 0.8 7 9.635 25.361 29.525
0.5 0.8 2 8.477 9.426 30.554 0.7 0.8 7 9.891 25.647 29.854
0.55 0.8 2 8.954 9.709 30.95 0.75 0.8 7 10.034 25.853 30.185
0.6 0.8 2 9.39 9.958 31.349 0.8 0.8 7 10.03 25.963 30.511
0.65 0.8 2 9.771 10.165 31.748 0.85 0.8 7 9.845 25.974 30.822
0.7 0.8 2 10.077 10.316 32.145 0.9 0.8 7 9.453 25.905 31.102
0.75 0.8 2 10.274 10.39 32.54 0.95 0.8 7 8.84 25.816 31.335
0.8 0.8 2 10.319 10.364 32.934 1 0.8 7 8.012 25.811 31.498
0.85 0.8 2 10.166 10.221 33.33 0 0.9 7 2.03E-03 18.652 25.752
0.9 0.8 2 9.767 9.965 33.733 0.05 0.9 7 1.695 19.266 26.002
0.95 0.8 2 9.078 9.643 34.155 0.1 0.9 7 2.906 19.921 26.273

1 0.8 2 8.059 9.353 34.615 0.15 0.9 7 3.893 20.549 26.555



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0 0.9 2 0.026 5.474 26.959 0.2 0.9 7 4.782 21.156 26.841

0.05 0.9 2 1.678 5.895 27.308 0.25 0.9 7 5.623 21.764 27.128
0.1 0.9 2 2.883 6.409 27.647 0.3 0.9 7 6.426 22.383 27.414
0.15 0.9 2 3.882 6.907 27.984 0.35 0.9 7 7.186 23.006 27.7
0.2 0.9 2 4.79 7.38 28.324 0.4 0.9 7 7.895 23.621 27.987
0.25 0.9 2 5.65 7.843 28.674 0.45 0.9 7 8.545 24.209 28.278
0.3 0.9 2 6.47 8.309 29.034 0.5 0.9 7 9.131 24.753 28.575
0.35 0.9 2 7.243 8.775 29.406 0.55 0.9 7 9.647 25.242 28.881
0.4 0.9 2 7.963 9.23 29.789 0.6 0.9 7 10.084 25.666 29.197
0.45 0.9 2 8.622 9.656 30.182 0.65 0.9 7 10.427 26.017 29.524
0.5 0.9 2 9.22 10.038 30.583 0.7 0.9 7 10.652 26.28 29.86
0.55 0.9 2 9.753 10.366 30.99 0.75 0.9 7 10.734 26.442 30.199
0.6 0.9 2 10.212 10.633 31.401 0.8 0.9 7 10.643 26.489 30.534
0.65 0.9 2 10.584 10.831 31.813 0.85 0.9 7 10.359 26.422 30.852
0.7 0.9 2 10.847 10.948 32.223 0.9 0.9 7 9.873 26.272 31.134
0.75 0.9 2 10.971 10.968 32.63 0.95 0.9 7 9.2 26.124 31.358
0.8 0.9 2 10.921 10.872 33.032 1 0.9 7 8.388 26.136 31.495
0.85 0.9 2 10.665 10.652 33.431 0 1 7 0.058 18.694 25.756
0.9 0.9 2 10.174 10.323 33.828 0.05 1 7 1.827 19.377 25.999
0.95 0.9 2 9.435 9.958 34.23 0.1 1 7 3.056 20.067 26.271

1 0.9 2 8.451 9.707 34.649 0.15 1 7 4.05 20.714 26.557
0 1 2 0.078 5.513 26.96 0.2 1 7 4.959 21.344 26.848

0.05 1 2 1.808 6.004 27.306 0.25 1 7 5.844 21.99 27.138
0.1 1 2 3.04 6.56 27.645 0.3 1 7 6.714 22.667 27.425
0.15 1 2 4.058 7.088 27.984 0.35 1 7 7.557 23.366 27.71
0.2 1 2 5 7.594 28.329 0.4 1 7 8.355 24.064 27.994
0.25 1 2 5.917 8.109 28.683 0.45 1 7 9.09 24.731 28.28
0.3 1 2 6.815 8.645 29.05 0.5 1 7 9.748 25.34 28.572
0.35 1 2 7.679 9.195 29.429 0.55 1 7 10.315 25.872 28.873
0.4 1 2 8.491 9.737 29.82 0.6 1 7 10.776 26.314 29.186
0.45 1 2 9.234 10.241 30.222 0.65 1 7 11.114 26.656 29.511
0.5 1 2 9.896 10.681 30.634 0.7 1 7 11.308 26.89 29.847
0.55 1 2 10.467 11.039 31.053 0.75 1 7 11.334 27.005 30.19
0.6 1 2 10.935 11.305 31.476 0.8 1 7 11.172 26.993 30.531
0.65 1 2 11.284 11.475 31.901 0.85 1 7 10.81 26.86 30.855
0.7 1 2 11.496 11.542 32.323 0.9 1 7 10.255 26.645 31.143
0.75 1 2 11.547 11.498 32.741 0.95 1 7 9.544 26.453 31.369
0.8 1 2 11.413 11.332 33.151 1 1 7 8.753 26.484 31.5
0.85 1 2 11.075 11.044 33.55 0 1.1 7 0.151 18.762 25.755
0.9 1 2 10.524 10.663 33.938 0.05 1.1 7 2.003 19.525 25.994
0.95 1 2 9.772 10.283 34.316 0.1 1.1 7 3.251 20.255 26.269

1 1 2 8.854 10.101 34.691 0.15 1.1 7 4.249 20.927 26.562
0 1.1 2 0.148 5.574 26.962 0.2 1.1 7 5.175 21.584 26.86

0.05 1.1 2 1.971 6.146 27.303 0.25 1.1 7 6.098 22.275 27.155
0.1 1.1 2 3.235 6.751 27.642 0.3 1.1 7 7.026 23.015 27.446
0.15 1.1 2 4.273 7.316 27.987 0.35 1.1 7 7.94 23.792 27.73
0.2 1.1 2 5.249 7.868 28.339 0.4 1.1 7 8.813 24.57 28.01
0.25 1.1 2 6.221 8.444 28.703 0.45 1.1 7 9.616 25.309 28.289
0.3 1.1 2 7.192 9.06 29.08 0.5 1.1 7 10.326 25.971 28.572
0.35 1.1 2 8.137 9.701 29.469 0.55 1.1 7 10.926 26.531 28.863
0.4 1.1 2 9.028 10.329 29.872 0.6 1.1 7 11.397 26.974 29.166
0.45 1.1 2 9.837 10.903 30.286 0.65 1.1 7 11.722 27.294 29.482
0.5 1.1 2 10.543 11.386 30.71 0.7 1.1 7 11.884 27.49 29.812
0.55 1.1 2 11.13 11.754 31.141 0.75 1.1 7 11.864 27.556 30.152
0.6 1.1 2 11.586 11.997 31.576 0.8 1.1 7 11.648 27.492 30.494
0.65 1.1 2 11.897 12.116 32.013 0.85 1.1 7 11.233 27.307 30.825
0.7 1.1 2 12.051 12.115 32.447 0.9 1.1 7 10.634 27.044 31.124
0.75 1.1 2 12.032 11.997 32.874 0.95 1.1 7 9.9 26.816 31.366
0.8 1.1 2 11.827 11.762 33.288 1 1.1 7 9.114 26.85 31.514
0.85 1.1 2 11.432 11.419 33.686 0 1.2 7 0.258 18.864 25.747



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.9 1.1 2 10.851 11.008 34.063 0.05 1.2 7 2.205 19.713 25.983
0.95 1.1 2 10.113 10.634 34.416 0.1 1.2 7 3.483 20.49 26.264

1 1.1 2 9.272 10.525 34.745 0.15 1.2 7 4.496 21.193 26.567
0 1.2 2 0.224 5.665 26.963 0.2 1.2 7 5.446 21.887 26.875

0.05 1.2 2 2.154 6.325 27.298 0.25 1.2 7 6.409 22.63 27.18
0.1 1.2 2 3.465 6.986 27.641 0.3 1.2 7 7.392 23.44 27.475
0.15 1.2 2 4.538 7.601 27.993 0.35 1.2 7 8.368 24.294 27.759
0.2 1.2 2 5.559 8.212 28.358 0.4 1.2 7 9.299 25.146 28.035
0.25 1.2 2 6.592 8.866 28.735 0.45 1.2 7 10.149 25.944 28.305
0.3 1.2 2 7.635 9.573 29.127 0.5 1.2 7 10.889 26.641 28.575
0.35 1.2 2 8.654 10.308 29.531 0.55 1.2 7 11.498 27.207 28.849
0.4 1.2 2 9.608 11.019 29.948 0.6 1.2 7 11.959 27.632 29.134
0.45 1.2 2 10.461 11.651 30.376 0.65 1.2 7 12.261 27.915 29.434
0.5 1.2 2 11.185 12.157 30.814 0.7 1.2 7 12.389 28.066 29.749
0.55 1.2 2 11.761 12.508 31.258 0.75 1.2 7 12.333 28.089 30.078
0.6 1.2 2 12.181 12.701 31.706 0.8 1.2 7 12.085 27.988 30.416
0.65 1.2 2 12.436 12.746 32.153 0.85 1.2 7 11.644 27.773 30.753
0.7 1.2 2 12.524 12.661 32.596 0.9 1.2 7 11.026 27.481 31.07
0.75 1.2 2 12.439 12.464 33.03 0.95 1.2 7 10.27 27.219 31.343
0.8 1.2 2 12.18 12.168 33.446 1 1.2 7 9.452 27.217 31.539
0.85 1.2 2 11.752 11.79 33.84 0 1.3 7 0.37 19.039 25.734
0.9 1.2 2 11.168 11.369 34.204 0.05 1.3 7 2.418 19.971 25.969
0.95 1.2 2 10.458 11.014 34.531 0.1 1.3 7 3.74 20.795 26.259

1 1.2 2 9.675 10.958 34.815 0.15 1.3 7 4.784 21.535 26.575
0 1.3 2 0.314 5.822 26.964 0.2 1.3 7 5.772 22.273 26.896

0.05 1.3 2 2.357 6.568 27.294 0.25 1.3 7 6.784 23.073 27.212
0.1 1.3 2 3.729 7.292 27.643 0.3 1.3 7 7.823 23.95 27.513
0.15 1.3 2 4.855 7.967 28.008 0.35 1.3 7 8.851 24.874 27.799
0.2 1.3 2 5.937 8.651 28.389 0.4 1.3 7 9.823 25.785 28.069
0.25 1.3 2 7.042 9.392 28.786 0.45 1.3 7 10.694 26.619 28.327
0.3 1.3 2 8.16 10.196 29.197 0.5 1.3 7 11.436 27.323 28.579
0.35 1.3 2 9.245 11.021 29.62 0.55 1.3 7 12.026 27.869 28.831
0.4 1.3 2 10.246 11.803 30.056 0.6 1.3 7 12.456 28.253 29.09
0.45 1.3 2 11.118 12.469 30.501 0.65 1.3 7 12.72 28.487 29.362
0.5 1.3 2 11.83 12.967 30.954 0.7 1.3 7 12.816 28.592 29.652
0.55 1.3 2 12.366 13.27 31.411 0.75 1.3 7 12.738 28.587 29.962
0.6 1.3 2 12.722 13.382 31.87 0.8 1.3 7 12.482 28.478 30.291
0.65 1.3 2 12.903 13.33 32.327 0.85 1.3 7 12.045 28.268 30.631
0.7 1.3 2 12.917 13.151 32.777 0.9 1.3 7 11.43 27.976 30.972
0.75 1.3 2 12.772 12.881 33.212 0.95 1.3 7 10.65 27.679 31.294
0.8 1.3 2 12.478 12.546 33.628 1 1.3 7 9.738 27.574 31.57
0.85 1.3 2 12.043 12.164 34.014 0 1.4 7 0.536 19.353 25.72
0.9 1.3 2 11.478 11.766 34.363 0.05 1.4 7 2.667 20.363 25.956
0.95 1.3 2 10.798 11.436 34.663 0.1 1.4 7 4.034 21.236 26.257

1 1.3 2 10.029 11.386 34.906 0.15 1.4 7 5.119 22.017 26.588
0 1.4 2 0.478 6.107 26.962 0.2 1.4 7 6.156 22.801 26.926

0.05 1.4 2 2.61 6.939 27.292 0.25 1.4 7 7.225 23.656 27.255
0.1 1.4 2 4.04 7.733 27.652 0.3 1.4 7 8.317 24.591 27.565
0.15 1.4 2 5.227 8.479 28.036 0.35 1.4 7 9.386 25.563 27.851
0.2 1.4 2 6.383 9.245 28.44 0.4 1.4 7 10.376 26.502 28.115
0.25 1.4 2 7.57 10.078 28.861 0.45 1.4 7 11.241 27.335 28.358
0.3 1.4 2 8.763 10.972 29.297 0.5 1.4 7 11.951 28.007 28.587
0.35 1.4 2 9.906 11.872 29.745 0.55 1.4 7 12.493 28.496 28.809
0.4 1.4 2 10.935 12.693 30.203 0.6 1.4 7 12.868 28.811 29.033
0.45 1.4 2 11.799 13.356 30.668 0.65 1.4 7 13.084 28.983 29.268
0.5 1.4 2 12.468 13.802 31.138 0.7 1.4 7 13.15 29.052 29.522
0.55 1.4 2 12.931 14.014 31.61 0.75 1.4 7 13.07 29.046 29.802
0.6 1.4 2 13.198 14.009 32.079 0.8 1.4 7 12.841 28.975 30.114
0.65 1.4 2 13.287 13.838 32.542 0.85 1.4 7 12.448 28.823 30.456
0.7 1.4 2 13.225 13.563 32.994 0.9 1.4 7 11.863 28.572 30.827



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.75 1.4 2 13.035 13.241 33.428 0.95 1.4 7 11.051 28.236 31.216
0.8 1.4 2 12.732 12.907 33.837 1 1.4 7 9.971 27.939 31.607
0.85 1.4 2 12.324 12.572 34.211 0 1.5 7 0.917 19.76 25.701
0.9 1.4 2 11.803 12.239 34.54 0.05 1.5 7 3.059 20.88 25.94
0.95 1.4 2 11.15 11.942 34.813 0.1 1.5 7 4.434 21.833 26.254

1 1.4 2 10.33 11.826 35.017 0.15 1.5 7 5.545 22.68 26.603
0 1.5 2 0.839 6.48 26.941 0.2 1.5 7 6.626 23.526 26.96

0.05 1.5 2 2.977 7.439 27.28 0.25 1.5 7 7.744 24.436 27.304
0.1 1.5 2 4.424 8.34 27.659 0.3 1.5 7 8.877 25.412 27.625
0.15 1.5 2 5.655 9.189 28.07 0.35 1.5 7 9.965 26.401 27.914
0.2 1.5 2 6.879 10.058 28.505 0.4 1.5 7 10.944 27.321 28.17
0.25 1.5 2 8.143 10.988 28.959 0.45 1.5 7 11.767 28.098 28.396
0.3 1.5 2 9.406 11.96 29.428 0.5 1.5 7 12.41 28.681 28.598
0.35 1.5 2 10.591 12.9 29.907 0.55 1.5 7 12.872 29.062 28.783
0.4 1.5 2 11.625 13.714 30.393 0.6 1.5 7 13.171 29.272 28.963
0.45 1.5 2 12.453 14.313 30.883 0.65 1.5 7 13.335 29.367 29.15
0.5 1.5 2 13.047 14.645 31.373 0.7 1.5 7 13.387 29.411 29.357
0.55 1.5 2 13.41 14.705 31.859 0.75 1.5 7 13.342 29.445 29.597
0.6 1.5 2 13.568 14.538 32.338 0.8 1.5 7 13.192 29.473 29.882
0.65 1.5 2 13.563 14.225 32.805 0.85 1.5 7 12.9 29.448 30.224
0.7 1.5 2 13.439 13.858 33.254 0.9 1.5 7 12.392 29.286 30.63
0.75 1.5 2 13.234 13.516 33.68 0.95 1.5 7 11.556 28.904 31.104
0.8 1.5 2 12.97 13.241 34.074 1 1.5 7 10.234 28.289 31.646
0.85 1.5 2 12.643 13.023 34.428 0.05 0.1 8 0.455 21.877 25.851
0.9 1.5 2 12.21 12.812 34.732 0.1 0.1 8 0.633 22.021 26.14
0.95 1.5 2 11.592 12.555 34.973 0.15 0.1 8 0.526 22.148 26.415

1 1.5 2 10.655 12.27 35.14 0.2 0.1 8 0.369 22.32 26.682
0.05 0.1 3 0.549 8.813 27.004 0.25 0.1 8 0.279 22.541 26.946
0.1 0.1 3 0.722 8.803 27.353 0.3 0.1 8 0.294 22.796 27.21
0.15 0.1 3 0.637 8.753 27.714 0.35 0.1 8 0.405 23.065 27.477
0.2 0.1 3 0.519 8.742 28.078 0.4 0.1 8 0.579 23.336 27.749
0.25 0.1 3 0.479 8.787 28.44 0.45 0.1 8 0.771 23.606 28.026
0.3 0.1 3 0.551 8.882 28.798 0.5 0.1 8 0.939 23.873 28.308
0.35 0.1 3 0.721 9.01 29.152 0.55 0.1 8 1.051 24.139 28.595
0.4 0.1 3 0.95 9.155 29.505 0.6 0.1 8 1.088 24.399 28.885
0.45 0.1 3 1.19 9.307 29.858 0.65 0.1 8 1.052 24.648 29.175
0.5 0.1 3 1.395 9.46 30.216 0.7 0.1 8 0.962 24.884 29.462
0.55 0.1 3 1.528 9.608 30.58 0.75 0.1 8 0.852 25.118 29.742
0.6 0.1 3 1.57 9.743 30.952 0.8 0.1 8 0.771 25.381 30.014
0.65 0.1 3 1.522 9.859 31.331 0.85 0.1 8 0.764 25.725 30.273
0.7 0.1 3 1.406 9.955 31.715 0.9 0.1 8 0.863 26.201 30.521
0.75 0.1 3 1.267 10.042 32.098 0.95 0.1 8 1.054 26.811 30.761
0.8 0.1 3 1.161 10.154 32.473 1 0.1 8 1.244 27.395 31.005
0.85 0.1 3 1.154 10.342 32.833 0.05 0.2 8 0.994 21.56 25.858
0.9 0.1 3 1.299 10.665 33.171 0.1 0.2 8 1.443 21.824 26.139
0.95 0.1 3 1.609 11.133 33.484 0.15 0.2 8 1.629 22.078 26.413

1 0.1 3 2.022 11.619 33.773 0.2 0.2 8 1.728 22.357 26.684
0.05 0.2 3 0.948 8.341 27.047 0.25 0.2 8 1.825 22.661 26.953
0.1 0.2 3 1.375 8.458 27.394 0.3 0.2 8 1.955 22.974 27.223
0.15 0.2 3 1.553 8.551 27.753 0.35 0.2 8 2.117 23.284 27.495
0.2 0.2 3 1.65 8.659 28.117 0.4 0.2 8 2.301 23.584 27.768
0.25 0.2 3 1.749 8.792 28.483 0.45 0.2 8 2.49 23.878 28.043
0.3 0.2 3 1.881 8.941 28.849 0.5 0.2 8 2.67 24.171 28.32
0.35 0.2 3 2.045 9.094 29.213 0.55 0.2 8 2.833 24.468 28.598
0.4 0.2 3 2.23 9.244 29.575 0.6 0.2 8 2.976 24.768 28.876
0.45 0.2 3 2.417 9.391 29.938 0.65 0.2 8 3.105 25.065 29.153
0.5 0.2 3 2.591 9.536 30.3 0.7 0.2 8 3.23 25.353 29.428
0.55 0.2 3 2.741 9.682 30.665 0.75 0.2 8 3.366 25.629 29.701
0.6 0.2 3 2.866 9.827 31.032 0.8 0.2 8 3.523 25.904 29.971
0.65 0.2 3 2.971 9.966 31.4 0.85 0.2 8 3.703 26.2 30.239



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.7 0.2 3 3.068 10.093 31.77 0.9 0.2 8 3.88 26.539 30.51
0.75 0.2 3 3.175 10.208 32.138 0.95 0.2 8 3.986 26.894 30.79
0.8 0.2 3 3.31 10.321 32.504 1 0.2 8 3.875 27.1 31.094
0.85 0.2 3 3.482 10.456 32.865 0 0.3 8 1.27E-03 21.183 25.57
0.9 0.2 3 3.677 10.635 33.224 0.05 0.3 8 1.139 21.565 25.851
0.95 0.2 3 3.838 10.841 33.587 0.1 0.3 8 1.786 21.894 26.126

1 0.2 3 3.832 10.936 33.97 0.15 0.3 8 2.19 22.22 26.398
0.05 0.3 3 1.091 8.321 27.052 0.2 0.3 8 2.48 22.556 26.669
0.1 0.3 3 1.72 8.504 27.392 0.25 0.3 8 2.722 22.897 26.94
0.15 0.3 3 2.111 8.678 27.742 0.3 0.3 8 2.943 23.229 27.212
0.2 0.3 3 2.391 8.855 28.098 0.35 0.3 8 3.15 23.544 27.484
0.25 0.3 3 2.621 9.032 28.458 0.4 0.3 8 3.346 23.843 27.757
0.3 0.3 3 2.83E+00 9.201 28.82 0.45 0.3 8 3.534 24.132 28.03
0.35 0.3 3 3.019 9.356 29.182 0.5 0.3 8 3.719 24.422 28.302
0.4 0.3 3 3.201 9.497 29.544 0.55 0.3 8 3.907 24.724 28.574
0.45 0.3 3 3.375 9.631 29.906 0.6 0.3 8 4.106 25.041 28.846
0.5 0.3 3 3.548 9.765 30.267 0.65 0.3 8 4.324 25.369 29.116
0.55 0.3 3 3.725 9.91 30.627 0.7 0.3 8 4.564 25.699 29.385
0.6 0.3 3 3.914 10.069 30.986 0.75 0.3 8 4.824 26.023 29.654
0.65 0.3 3 4.124 10.239 31.344 0.8 0.3 8 5.091 26.339 29.923
0.7 0.3 3 4.356 10.414 31.701 0.85 0.3 8 5.336 26.653 30.193
0.75 0.3 3 4.611 10.584 32.057 0.9 0.3 8 5.503 26.97 30.471
0.8 0.3 3 4.876 10.746 32.412 0.95 0.3 8 5.494 27.256 30.761
0.85 0.3 3 5.123 10.905 32.771 1 0.3 8 5.147 27.364 31.077
0.9 0.3 3 5.297 11.061 33.139 0.05 0.4 8 1.239 21.596 25.846
0.95 0.3 3 5.299 11.186 33.529 0.1 0.4 8 2.048 21.99 26.117

1 0.3 3 4.962 11.153 33.963 0.15 0.4 8 2.626 22.385 26.388
0.05 0.4 3 1.204 8.348 27.056 0.2 0.4 8 3.076 22.778 26.659
0.1 0.4 3 2.002 8.595 27.389 0.25 0.4 8 3.447 23.159 26.93
0.15 0.4 3 2.573 8.844 27.73 0.3 0.4 8 3.762 23.518 27.203
0.2 0.4 3 3.016 9.084 28.076 0.35 0.4 8 4.031 23.85 27.475
0.25 0.4 3 3.376 9.308 28.427 0.4 0.4 8 4.265 24.158 27.748
0.3 0.4 3 3.677 9.507 28.783 0.45 0.4 8 4.478 24.452 28.021
0.35 0.4 3 3.93E+00 9.68 29.14 0.5 0.4 8 4.684 24.745 28.293
0.4 0.4 3 4.153 9.83 29.499 0.55 0.4 8 4.9 25.051 28.565
0.45 0.4 3 4.357 9.969 29.858 0.6 0.4 8 5.138 25.376 28.836
0.5 0.4 3 4.56 10.108 30.217 0.65 0.4 8 5.403 25.716 29.108
0.55 0.4 3 4.779 10.262 30.574 0.7 0.4 8 5.694 26.064 29.379
0.6 0.4 3 5.025 10.437 30.929 0.75 0.4 8 5.997 26.407 29.65
0.65 0.4 3 5.306 10.631 31.282 0.8 0.4 8 6.283 26.736 29.922
0.7 0.4 3 5.616 10.838 31.633 0.85 0.4 8 6.508 27.048 30.195
0.75 0.4 3 5.94 11.041 31.983 0.9 0.4 8 6.602 27.343 30.471
0.8 0.4 3 6.248 11.23 32.335 0.95 0.4 8 6.463 27.591 30.754
0.85 0.4 3 6.488 11.394 32.692 1 0.4 8 5.936 27.681 31.052
0.9 0.4 3 6.584 11.525 33.065 0 0.5 8 0.013 21.195 25.576
0.95 0.4 3 6.422 11.595 33.467 0.05 0.5 8 1.357 21.627 25.842

1 0.4 3 5.829 11.507 33.923 0.1 0.5 8 2.3 22.094 26.111
0 0.5 3 1.46E-03 8.123 26.734 0.15 0.5 8 3.021 22.564 26.38

0.05 0.5 3 1.319 8.37 27.062 0.2 0.5 8 3.609 23.021 26.651
0.1 0.5 3 2.256 8.69 27.391 0.25 0.5 8 4.103 23.455 26.923
0.15 0.5 3 2.977 9.017 27.723 0.3 0.5 8 4.52 23.86 27.195
0.2 0.5 3 3.563 9.327 28.062 0.35 0.5 8 4.873 24.232 27.468
0.25 0.5 3 4.052 9.608 28.406 0.4 0.5 8 5.175 24.575 27.742
0.3 0.5 3 4.461 9.856 28.755 0.45 0.5 8 5.444 24.898 28.016
0.35 0.5 3 4.81E+00 10.071 29.109 0.5 0.5 8 5.698 25.216 28.291
0.4 0.5 3 5.102 10.258 29.465 0.55 0.5 8 5.955 25.538 28.567
0.45 0.5 3 5.371 10.428 29.823 0.6 0.5 8 6.228 25.874 28.845
0.5 0.5 3 5.632 10.596 30.182 0.65 0.5 8 6.52 26.219 29.124
0.55 0.5 3 5.906 10.773 30.54 0.7 0.5 8 6.823 26.565 29.404
0.6 0.5 3 6.205 10.968 30.896 0.75 0.5 8 7.116 26.897 29.684



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.65 0.5 3 6.532 11.18 31.251 0.8 0.5 8 7.363 27.203 29.963
0.7 0.5 3 6.877 11.398 31.603 0.85 0.5 8 7.512 27.475 30.239
0.75 0.5 3 7.213 11.605 31.955 0.9 0.5 8 7.496 27.712 30.511
0.8 0.5 3 7.498 11.781 32.309 0.95 0.5 8 7.222 27.903 30.777
0.85 0.5 3 7.673 11.909 32.668 1 0.5 8 6.565 27.981 31.039
0.9 0.5 3 7.655 11.979 33.043 0 0.6 8 0.021 21.186 25.575
0.95 0.5 3 7.331 11.973 33.447 0.05 0.6 8 1.467 21.668 25.836

1 0.5 3 6.548 11.834 33.903 0.1 0.6 8 2.519 22.206 26.102
0 0.6 3 2.93E-03 8.11 26.737 0.15 0.6 8 3.353 22.744 26.371

0.05 0.6 3 1.42 8.4 27.066 0.2 0.6 8 4.055 23.264 26.641
0.1 0.6 3 2.466 8.793 27.392 0.25 0.6 8 4.661 23.758 26.913
0.15 0.6 3 3.303 9.194 27.72 0.3 0.6 8 5.187 24.222 27.185
0.2 0.6 3 4.009 9.571 28.053 0.35 0.6 8 5.64 24.654 27.458
0.25 0.6 3 4.616 9.914 28.392 0.4 0.6 8 6.034 25.056 27.733
0.3 0.6 3 5.139 10.224 28.738 0.45 0.6 8 6.384 25.434 28.009
0.35 0.6 3 5.59E+00 10.5 29.089 0.5 0.6 8 6.708 25.797 28.289
0.4 0.6 3 5.984 10.747 29.445 0.55 0.6 8 7.021 26.155 28.571
0.45 0.6 3 6.34 10.973 29.804 0.6 0.6 8 7.333 26.51 28.858
0.5 0.6 3 6.679 11.189 30.165 0.65 0.6 8 7.642 26.861 29.148
0.55 0.6 3 7.018 11.406 30.528 0.7 0.6 8 7.935 27.196 29.44
0.6 0.6 3 7.366 11.628 30.89 0.75 0.6 8 8.187 27.499 29.733
0.65 0.6 3 7.721 11.852 31.251 0.8 0.6 8 8.359 27.756 30.023
0.7 0.6 3 8.068 12.068 31.612 0.85 0.6 8 8.402 27.957 30.304
0.75 0.6 3 8.375 12.253 31.971 0.9 0.6 8 8.257 28.109 30.571
0.8 0.6 3 8.596 12.386 32.331 0.95 0.6 8 7.856 28.22 30.817
0.85 0.6 3 8.669 12.446 32.695 1 0.6 8 7.116 28.277 31.033
0.9 0.6 3 8.519 12.426 33.07 0 0.7 8 0.01 21.181 25.574
0.95 0.6 3 8.049 12.325 33.467 0.05 0.7 8 1.551 21.716 25.829

1 0.6 3 7.141 12.137 33.907 0.1 0.7 8 2.682 22.313 26.093
0.05 0.7 3 1.5 8.443 27.066 0.15 0.7 8 3.596 22.905 26.36
0.1 0.7 3 2.625 8.898 27.39 0.2 0.7 8 4.387 23.476 26.63
0.15 0.7 3 3.545 9.359 27.716 0.25 0.7 8 5.09 24.024 26.9
0.2 0.7 3 4.343 9.792 28.047 0.3 0.7 8 5.719 24.551 27.171
0.25 0.7 3 5.052 10.194 28.384 0.35 0.7 8 6.28 25.054 27.444
0.3 0.7 3 5.683 10.569 28.729 0.4 0.7 8 6.779 25.531 27.719
0.35 0.7 3 6.246 10.917 29.08 0.45 0.7 8 7.228 25.982 27.997
0.4 0.7 3 6.75E+00 11.239 29.437 0.5 0.7 8 7.637 26.409 28.281
0.45 0.7 3 7.205 11.537 29.799 0.55 0.7 8 8.016 26.815 28.57
0.5 0.7 3 7.63 11.816 30.165 0.6 0.7 8 8.37 27.201 28.866
0.55 0.7 3 8.037 12.081 30.535 0.65 0.7 8 8.692 27.561 29.168
0.6 0.7 3 8.428 12.333 30.906 0.7 0.7 8 8.965 27.883 29.473
0.65 0.7 3 8.797 12.567 31.277 0.75 0.7 8 9.16 28.149 29.78
0.7 0.7 3 9.125 12.77 31.648 0.8 0.7 8 9.241 28.344 30.081
0.75 0.7 3 9.378 12.919 32.018 0.85 0.7 8 9.165 28.462 30.368
0.8 0.7 3 9.51 12.992 32.387 0.9 0.7 8 8.892 28.515 30.631
0.85 0.7 3 9.466 12.969 32.756 0.95 0.7 8 8.38 28.539 30.856
0.9 0.7 3 9.184 12.848 33.13 1 0.7 8 7.595 28.577 31.028
0.95 0.7 3 8.595 12.655 33.515 0.05 0.8 8 1.62 21.774 25.824

1 0.7 3 7.624 12.437 33.927 0.1 0.8 8 2.803 22.415 26.085
0.05 0.8 3 1.577 8.5 27.062 0.15 0.8 8 3.765 23.041 26.352
0.1 0.8 3 2.754 9.006 27.387 0.2 0.8 8 4.616 23.647 26.62
0.15 0.8 3 3.725 9.508 27.713 0.25 0.8 8 5.397 24.241 26.89
0.2 0.8 3 4.588 9.983 28.044 0.3 0.8 8 6.119 24.828 27.159
0.25 0.8 3 5.379 10.437 28.382 0.35 0.8 8 6.785 25.405 27.43
0.3 0.8 3 6.109 10.875 28.728 0.4 0.8 8 7.392 25.964 27.704
0.35 0.8 3 6.778 11.299 29.081 0.45 0.8 8 7.944 26.497 27.983
0.4 0.8 3 7.39 11.702 29.441 0.5 0.8 8 8.444 26.997 28.269
0.45 0.8 3 7.95E+00 12.08 29.808 0.55 0.8 8 8.894 27.46 28.562
0.5 0.8 3 8.46 12.428 30.181 0.6 0.8 8 9.291 27.881 28.865
0.55 0.8 3 8.93 12.743 30.558 0.65 0.8 8 9.623 28.252 29.176



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.6 0.8 3 9.356 13.022 30.939 0.7 0.8 8 9.871 28.559 29.493
0.65 0.8 3 9.728 13.259 31.322 0.75 0.8 8 10.004 28.786 29.811
0.7 0.8 3 10.023 13.44 31.705 0.8 0.8 8 9.992 28.918 30.123
0.75 0.8 3 10.208 13.545 32.086 0.85 0.8 8 9.802 28.952 30.417
0.8 0.8 3 10.243 13.55 32.465 0.9 0.8 8 9.411 28.911 30.678
0.85 0.8 3 10.084 13.442 32.839 0.95 0.8 8 8.81 28.854 30.888
0.9 0.8 3 9.687 13.231 33.21 1 0.8 8 8.009 28.884 31.022
0.95 0.8 3 9.014 12.967 33.579 0 0.9 8 6.83E-03 21.207 25.576

1 0.8 3 8.036 12.753 33.953 0.05 0.9 8 1.707 21.852 25.82
0 0.9 3 0.014 8.122 26.736 0.1 0.9 8 2.917 22.527 26.08

0.05 0.9 3 1.674 8.579 27.058 0.15 0.9 8 3.901 23.175 26.347
0.1 0.9 3 2.883 9.126 27.382 0.2 0.9 8 4.787 23.803 26.616
0.15 0.9 3 3.883 9.659 27.711 0.25 0.9 8 5.625 24.434 26.885
0.2 0.9 3 4.789 10.167 28.046 0.3 0.9 8 6.428 25.078 27.154
0.25 0.9 3 5.645 10.666 28.388 0.35 0.9 8 7.188 25.729 27.422
0.3 0.9 3 6.46 11.168 28.738 0.4 0.9 8 7.898 26.373 27.694
0.35 0.9 3 7.228 11.669 29.096 0.45 0.9 8 8.55 26.99 27.971
0.4 0.9 3 7.941 12.157 29.461 0.5 0.9 8 9.137 27.564 28.255
0.45 0.9 3 8.594 12.614 29.834 0.55 0.9 8 9.654 28.083 28.55
0.5 0.9 3 9.184 13.027 30.213 0.6 0.9 8 10.09 28.537 28.855
0.55 0.9 3 9.708 13.386 30.599 0.65 0.9 8 10.43 28.916 29.171
0.6 0.9 3 10.158 13.683 30.989 0.7 0.9 8 10.651 29.206 29.495
0.65 0.9 3 10.52 13.911 31.383 0.75 0.9 8 10.727 29.393 29.821
0.7 0.9 3 10.773 14.059 31.777 0.8 0.9 8 10.63 29.464 30.142
0.75 0.9 3 10.886 14.11 32.17 0.85 0.9 8 10.34 29.421 30.442
0.8 0.9 3 10.828 14.046 32.558 0.9 0.9 8 9.851 29.297 30.705
0.85 0.9 3 10.567 13.861 32.936 0.95 0.9 8 9.182 29.174 30.906
0.9 0.9 3 10.081 13.577 33.302 1 0.9 8 8.383 29.205 31.018
0.95 0.9 3 9.362 13.27 33.652 0 1 8 0.063 21.253 25.578

1 0.9 3 8.422 13.097 33.986 0.05 1 8 1.836 21.964 25.818
0 1 3 0.067 8.162 26.736 0.1 1 8 3.063 22.673 26.079

0.05 1 3 1.807 8.689 27.052 0.15 1 8 4.051 23.336 26.348
0.1 1 3 3.041 9.278 27.377 0.2 1 8 4.955 23.984 26.619
0.15 1 3 4.057 9.838 27.711 0.25 1 8 5.836 24.651 26.889
0.2 1 3 4.994 10.379 28.054 0.3 1 8 6.704 25.352 27.157
0.25 1 3 5.904 10.927 28.404 0.35 1 8 7.548 26.078 27.424
0.3 1 3 6.793 11.495 28.761 0.4 1 8 8.348 26.805 27.692
0.35 1 3 7.648 12.077 29.126 0.45 1 8 9.088 27.504 27.964
0.4 1 3 8.451 12.649 29.499 0.5 1 8 9.751 28.147 28.244
0.45 1 3 9.185 13.182 29.878 0.55 1 8 10.324 28.714 28.534
0.5 1 3 9.839 13.652 30.265 0.6 1 8 10.791 29.191 28.836
0.55 1 3 10.401 14.04 30.658 0.65 1 8 11.134 29.569 29.151
0.6 1 3 10.859 14.338 31.057 0.7 1 8 11.33 29.836 29.475
0.65 1 3 11.2 14.54 31.46 0.75 1 8 11.356 29.982 29.805
0.7 1 3 11.403 14.639 31.865 0.8 1 8 11.19 29.999 30.13
0.75 1 3 11.446 14.627 32.267 0.85 1 8 10.821 29.891 30.436
0.8 1 3 11.306 14.495 32.661 0.9 1 8 10.258 29.697 30.705
0.85 1 3 10.965 14.243 33.042 0.95 1 8 9.539 29.518 30.911
0.9 1 3 10.42 13.907 33.402 1 1 8 8.742 29.548 31.02
0.95 1 3 9.689 13.584 33.733 0 1.1 8 0.16 21.324 25.575

1 1 3 8.815 13.477 34.028 0.05 1.1 8 2.014 22.115 25.814
0 1.1 3 0.141 8.223 26.734 0.1 1.1 8 3.255 22.862 26.078

0.05 1.1 3 1.973 8.832 27.044 0.15 1.1 8 4.244 23.547 26.352
0.1 1.1 3 3.237 9.468 27.372 0.2 1.1 8 5.161 24.219 26.628
0.15 1.1 3 4.271 10.064 27.714 0.25 1.1 8 6.077 24.928 26.901
0.2 1.1 3 5.238 10.646 28.068 0.3 1.1 8 7.002 25.689 27.17
0.25 1.1 3 6.198 11.252 28.43 0.35 1.1 8 7.917 26.492 27.435
0.3 1.1 3 7.156 11.896 28.799 0.4 1.1 8 8.794 27.3 27.698
0.35 1.1 3 8.089 12.563 29.174 0.45 1.1 8 9.605 28.073 27.963
0.4 1.1 3 8.967 13.218 29.556 0.5 1.1 8 10.327 28.774 28.235



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.45 1.1 3 9.764 13.819 29.944 0.55 1.1 8 10.939 29.375 28.515
0.5 1.1 3 10.46 14.331 30.338 0.6 1.1 8 11.423 29.861 28.807
0.55 1.1 3 11.039 14.729 30.738 0.65 1.1 8 11.761 30.226 29.112
0.6 1.1 3 11.487 15.005 31.144 0.7 1.1 8 11.933 30.464 29.43
0.65 1.1 3 11.792 15.159 31.554 0.75 1.1 8 11.92 30.57 29.755
0.7 1.1 3 11.939 15.194 31.966 0.8 1.1 8 11.704 30.54 30.08
0.75 1.1 3 11.916 15.111 32.374 0.85 1.1 8 11.282 30.381 30.393
0.8 1.1 3 11.708 14.912 32.773 0.9 1.1 8 10.669 30.133 30.673
0.85 1.1 3 11.313 14.608 33.155 0.95 1.1 8 9.91 29.903 30.897
0.9 1.1 3 10.739 14.24 33.509 1 1.1 8 9.093 29.908 31.032
0.95 1.1 3 10.019 13.92 33.824 0 1.2 8 0.274 21.429 25.565

1 1.1 3 9.218 13.884 34.085 0.05 1.2 8 2.22 22.307 25.805
0 1.2 3 0.221 8.315 26.729 0.1 1.2 8 3.488 23.098 26.075

0.05 1.2 3 2.159 9.011 27.033 0.15 1.2 8 4.487 23.811 26.357
0.1 1.2 3 3.468 9.702 27.366 0.2 1.2 8 5.424 24.517 26.641
0.15 1.2 3 4.532 10.344 27.721 0.25 1.2 8 6.377 25.274 26.92
0.2 1.2 3 5.539 10.981 28.09 0.3 1.2 8 7.355 26.102 27.191
0.25 1.2 3 6.556 11.658 28.468 0.35 1.2 8 8.331 26.981 27.455
0.3 1.2 3 7.58 12.387 28.852 0.4 1.2 8 9.268 27.864 27.713
0.35 1.2 3 8.582 13.142 29.241 0.45 1.2 8 10.129 28.699 27.969
0.4 1.2 3 9.52 13.875 29.635 0.5 1.2 8 10.885 29.439 28.227
0.45 1.2 3 10.359 14.53 30.032 0.55 1.2 8 11.515 30.055 28.491
0.5 1.2 3 11.072 15.063 30.434 0.6 1.2 8 11.999 30.534 28.765
0.55 1.2 3 11.641 15.446 30.841 0.65 1.2 8 12.323 30.873 29.052
0.6 1.2 3 12.055 15.674 31.251 0.7 1.2 8 12.472 31.078 29.353
0.65 1.2 3 12.307 15.757 31.666 0.75 1.2 8 12.431 31.151 29.665
0.7 1.2 3 12.392 15.713 32.081 0.8 1.2 8 12.188 31.091 29.985
0.75 1.2 3 12.307 15.557 32.492 0.85 1.2 8 11.741 30.904 30.302
0.8 1.2 3 12.05 15.302 32.893 0.9 1.2 8 11.1 30.62 30.6
0.85 1.2 3 11.624 14.964 33.274 0.95 1.2 8 10.303 30.337 30.859
0.9 1.2 3 11.047 14.588 33.622 1 1.2 8 9.422 30.271 31.051
0.95 1.2 3 10.354 14.284 33.923 0 1.3 8 0.392 21.608 25.551

1 1.2 3 9.603 14.295 34.159 0.05 1.3 8 2.437 22.569 25.794
0 1.3 3 0.313 8.474 26.722 0.1 1.3 8 3.746 23.405 26.072

0.05 1.3 3 2.362 9.255 27.021 0.15 1.3 8 4.772 24.151 26.366
0.1 1.3 3 3.729 10.006 27.364 0.2 1.3 8 5.743 24.895 26.661
0.15 1.3 3 4.841 10.703 27.735 0.25 1.3 8 6.741 25.705 26.948
0.2 1.3 3 5.904 11.405 28.123 0.3 1.3 8 7.772 26.598 27.224
0.25 1.3 3 6.986 12.162 28.522 0.35 1.3 8 8.799 27.544 27.487
0.3 1.3 3 8.08 12.979 28.927 0.4 1.3 8 9.778 28.486 27.738
0.35 1.3 3 9.143 13.818 29.333 0.45 1.3 8 10.665 29.361 27.981
0.4 1.3 3 10.124 14.614 29.741 0.5 1.3 8 11.429 30.117 28.221
0.45 1.3 3 10.98 15.3 30.149 0.55 1.3 8 12.048 30.723 28.461
0.5 1.3 3 11.68 15.823 30.559 0.6 1.3 8 12.511 31.173 28.708
0.55 1.3 3 12.209 16.159 30.97 0.65 1.3 8 12.81 31.476 28.967
0.6 1.3 3 12.562 16.309 31.383 0.7 1.3 8 12.937 31.651 29.24
0.65 1.3 3 12.744 16.301 31.798 0.75 1.3 8 12.884 31.708 29.531
0.7 1.3 3 12.761 16.169 32.212 0.8 1.3 8 12.641 31.648 29.837
0.75 1.3 3 12.622 15.947 32.621 0.85 1.3 8 12.198 31.468 30.157
0.8 1.3 3 12.334 15.659 33.019 0.9 1.3 8 11.553 31.176 30.479
0.85 1.3 3 11.906 15.321 33.397 0.95 1.3 8 10.712 30.835 30.792
0.9 1.3 3 11.349 14.967 33.74 1 1.3 8 9.703 30.625 31.076
0.95 1.3 3 10.682 14.686 34.032 0 1.4 8 0.558 21.927 25.539

1 1.3 3 9.935 14.697 34.254 0.05 1.4 8 2.687 22.964 25.786
0 1.4 3 0.477 8.764 26.712 0.1 1.4 8 4.039 23.846 26.075

0.05 1.4 3 2.612 9.63 27.011 0.15 1.4 8 5.104 24.628 26.382
0.1 1.4 3 4.034 10.445 27.367 0.2 1.4 8 6.12 25.413 26.69
0.15 1.4 3 5.202 11.207 27.76 0.25 1.4 8 7.171 26.272 26.987
0.2 1.4 3 6.333 11.982 28.174 0.3 1.4 8 8.253 27.218 27.269
0.25 1.4 3 7.49 12.821 28.599 0.35 1.4 8 9.319 28.212 27.532



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.3 1.4 3 8.653 13.719 29.028 0.4 1.4 8 10.317 29.183 27.776
0.35 1.4 3 9.768 14.622 29.456 0.45 1.4 8 11.201 30.062 28.004
0.4 1.4 3 10.772 15.451 29.881 0.5 1.4 8 11.939 30.794 28.219
0.45 1.4 3 11.616 16.129 30.302 0.55 1.4 8 12.519 31.356 28.429
0.5 1.4 3 12.272 16.599 30.719 0.6 1.4 8 12.938 31.752 28.639
0.55 1.4 3 12.729 16.843 31.134 0.65 1.4 8 13.201 32.011 28.858
0.6 1.4 3 12.995 16.882 31.546 0.7 1.4 8 13.311 32.165 29.092
0.65 1.4 3 13.091 16.761 31.956 0.75 1.4 8 13.268 32.237 29.349
0.7 1.4 3 13.039 16.541 32.364 0.8 1.4 8 13.06 32.226 29.634
0.75 1.4 3 12.861 16.275 32.765 0.85 1.4 8 12.663 32.106 29.953
0.8 1.4 3 12.571 15.994 33.155 0.9 1.4 8 12.041 31.843 30.306
0.85 1.4 3 12.175 15.709 33.525 0.95 1.4 8 11.149 31.438 30.691
0.9 1.4 3 11.665 15.421 33.862 1 1.4 8 9.934 30.988 31.103
0.95 1.4 3 11.022 15.171 34.15 0 1.5 8 0.935 22.345 25.524

1 1.4 3 10.214 15.107 34.369 0.05 1.5 8 3.08 23.487 25.775
0 1.5 3 0.847 9.143 26.686 0.1 1.5 8 4.441 24.443 26.076

0.05 1.5 3 2.988 10.133 26.993 0.15 1.5 8 5.531 25.284 26.398
0.1 1.5 3 4.422 11.051 27.37 0.2 1.5 8 6.588 26.124 26.722
0.15 1.5 3 5.628 11.907 27.791 0.25 1.5 8 7.685 27.032 27.033
0.2 1.5 3 6.82 12.776 28.238 0.3 1.5 8 8.804 28.015 27.323
0.25 1.5 3 8.046 13.7 28.696 0.35 1.5 8 9.887 29.024 27.587
0.3 1.5 3 9.27 14.664 29.156 0.4 1.5 8 10.874 29.98 27.824
0.35 1.5 3 10.42 15.598 29.611 0.45 1.5 8 11.717 30.809 28.034
0.4 1.5 3 11.422 16.412 30.057 0.5 1.5 8 12.394 31.462 28.222
0.45 1.5 3 12.225 17.021 30.493 0.55 1.5 8 12.902 31.93 28.393
0.5 1.5 3 12.803 17.374 30.919 0.6 1.5 8 13.256 32.24 28.558
0.55 1.5 3 13.16 17.47 31.335 0.65 1.5 8 13.479 32.442 28.725
0.6 1.5 3 13.322 17.351 31.743 0.7 1.5 8 13.589 32.592 28.907
0.65 1.5 3 13.327 17.096 32.144 0.75 1.5 8 13.593 32.721 29.119
0.7 1.5 3 13.22 16.792 32.539 0.8 1.5 8 13.473 32.82 29.374
0.75 1.5 3 13.036 16.515 32.925 0.85 1.5 8 13.179 32.827 29.688
0.8 1.5 3 12.794 16.301 33.3 0.9 1.5 8 12.627 32.642 30.077
0.85 1.5 3 12.485 16.137 33.656 0.95 1.5 8 11.69 32.159 30.554
0.9 1.5 3 12.066 15.972 33.985 1 1.5 8 10.194 31.337 31.132
0.95 1.5 3 11.454 15.757 34.271 0.05 0.1 9 0.487 24.148 26.078

1 1.5 3 10.518 15.516 34.497 0.1 0.1 9 0.661 24.325 26.34
0.05 0.1 4 0.542 11.507 26.732 0.15 0.1 9 0.546 24.491 26.588
0.1 0.1 4 0.713 11.532 27.061 0.2 0.1 9 0.38 24.7 26.826
0.15 0.1 4 0.621 11.52 27.392 0.25 0.1 9 0.28 24.954 27.061
0.2 0.1 4 0.494 11.546 27.722 0.3 0.1 9 0.285 25.237 27.294
0.25 0.1 4 0.442 11.628 28.051 0.35 0.1 9 0.387 25.529 27.529
0.3 0.1 4 0.499 11.757 28.377 0.4 0.1 9 0.553 25.821 27.766
0.35 0.1 4 0.654 11.914 28.703 0.45 0.1 9 0.737 26.11 28.009
0.4 0.1 4 0.868 12.086 29.029 0.5 0.1 9 0.9 26.398 28.255
0.45 0.1 4 1.094 12.264 29.358 0.55 0.1 9 1.008 26.683 28.506
0.5 0.1 4 1.287 12.441 29.691 0.6 0.1 9 1.045 26.963 28.759
0.55 0.1 4 1.411 12.613 30.031 0.65 0.1 9 1.01 27.231 29.013
0.6 0.1 4 1.449 12.775 30.376 0.7 0.1 9 0.924 27.483 29.264
0.65 0.1 4 1.401 12.92 30.725 0.75 0.1 9 0.819 27.729 29.51
0.7 0.1 4 1.289 13.046 31.076 0.8 0.1 9 0.74 28.001 29.747
0.75 0.1 4 1.155 13.165 31.423 0.85 0.1 9 0.73 28.35 29.973
0.8 0.1 4 1.055 13.311 31.763 0.9 0.1 9 0.816 28.829 30.187
0.85 0.1 4 1.05 13.534 32.089 0.95 0.1 9 0.976 29.439 30.393
0.9 0.1 4 1.187 13.891 32.399 1 0.1 9 1.11 30.021 30.597
0.95 0.1 4 1.476 14.392 32.693 0 0.2 9 0.021 23.499 25.788

1 0.1 4 1.848 14.9 32.98 0.05 0.2 9 1.047 23.896 26.053
0.05 0.2 4 0.967 11.053 26.758 0.1 0.2 9 1.492 24.188 26.306
0.1 0.2 4 1.397 11.205 27.085 0.15 0.2 9 1.673 24.472 26.553
0.15 0.2 4 1.577 11.332 27.417 0.2 0.2 9 1.767 24.781 26.795
0.2 0.2 4 1.675 11.477 27.75 0.25 0.2 9 1.861 25.112 27.034



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.25 0.2 4 1.775 11.647 28.085 0.3 0.2 9 1.987 25.45 27.273
0.3 0.2 4 1.906 11.832 28.419 0.35 0.2 9 2.146 25.783 27.511
0.35 0.2 4 2.07 12.019 28.754 0.4 0.2 9 2.327 26.105 27.75
0.4 0.2 4 2.253 12.202 29.089 0.45 0.2 9 2.514 26.42 27.99
0.45 0.2 4 2.44 12.381 29.425 0.5 0.2 9 2.692 26.736 28.23
0.5 0.2 4 2.614 12.558 29.761 0.55 0.2 9 2.853 27.055 28.471
0.55 0.2 4 2.766 12.736 30.099 0.6 0.2 9 2.995 27.379 28.713
0.6 0.2 4 2.894 12.914 30.438 0.65 0.2 9 3.125 27.699 28.953
0.65 0.2 4 3.003 13.087 30.777 0.7 0.2 9 3.253 28.006 29.193
0.7 0.2 4 3.106 13.249 31.116 0.75 0.2 9 3.392 28.299 29.432
0.75 0.2 4 3.219 13.399 31.452 0.8 0.2 9 3.552 28.587 29.67
0.8 0.2 4 3.359 13.546 31.785 0.85 0.2 9 3.734 28.894 29.908
0.85 0.2 4 3.532 13.715 32.115 0.9 0.2 9 3.909 29.244 30.149
0.9 0.2 4 3.722 13.926 32.446 0.95 0.2 9 4.004 29.61 30.399
0.95 0.2 4 3.87 14.161 32.786 1 0.2 9 3.87 29.827 30.67

1 0.2 4 3.84 14.275 33.154 0 0.3 9 0.05 23.517 25.763
0 0.3 4 9.36E-03 10.778 26.436 0.05 0.3 9 1.185 23.918 26.017

0.05 0.3 4 1.11 11.04 26.754 0.1 0.3 9 1.828 24.271 26.266
0.1 0.3 4 1.742 11.256 27.076 0.15 0.3 9 2.225 24.623 26.511
0.15 0.3 4 2.137 11.462 27.402 0.2 0.3 9 2.511 24.984 26.755
0.2 0.3 4 2.42 11.674 27.73 0.25 0.3 9 2.75 25.349 26.997
0.25 0.3 4 2.654 11.886 28.062 0.3 0.3 9 2.968 25.703 27.238
0.3 0.3 4 2.864 12.092 28.395 0.35 0.3 9 3.173 26.04 27.479
0.35 0.3 4 3.061 12.283 28.729 0.4 0.3 9 3.367 26.359 27.718
0.4 0.3 4 3.246 12.459 29.064 0.45 0.3 9 3.552 26.669 27.957
0.45 0.3 4 3.424 12.626 29.399 0.5 0.3 9 3.733 26.982 28.194
0.5 0.3 4 3.599 12.795 29.733 0.55 0.3 9 3.917 27.306 28.431
0.55 0.3 4 3.78E+00 12.974 30.066 0.6 0.3 9 4.112 27.644 28.667
0.6 0.3 4 3.972 13.167 30.398 0.65 0.3 9 4.326 27.992 28.902
0.65 0.3 4 4.185 13.372 30.729 0.7 0.3 9 4.563 28.34 29.138
0.7 0.3 4 4.42 13.58 31.057 0.75 0.3 9 4.821 28.679 29.375
0.75 0.3 4 4.676 13.784 31.384 0.8 0.3 9 5.088 29.008 29.613
0.8 0.3 4 4.941 13.978 31.711 0.85 0.3 9 5.334 29.334 29.855
0.85 0.3 4 5.186 14.169 32.04 0.9 0.3 9 5.504 29.665 30.104
0.9 0.3 4 5.355 14.356 32.379 0.95 0.3 9 5.498 29.969 30.367
0.95 0.3 4 5.35 14.511 32.741 1 0.3 9 5.153 30.098 30.654

1 0.3 4 5.005 14.502 33.147 0 0.4 9 0.041 23.539 25.738
0 0.4 4 8.06E-03 10.81 26.436 0.05 0.4 9 1.277 23.957 25.986

0.05 0.4 4 1.22 11.07 26.752 0.1 0.4 9 2.079 24.372 26.233
0.1 0.4 4 2.018 11.349 27.068 0.15 0.4 9 2.651 24.79 26.479
0.15 0.4 4 2.591 11.629 27.387 0.2 0.4 9 3.096 25.205 26.724
0.2 0.4 4 3.037 11.902 27.71 0.25 0.4 9 3.464 25.608 26.968
0.25 0.4 4 3.401 12.16 28.036 0.3 0.4 9 3.776 25.988 27.211
0.3 0.4 4 3.706 12.395 28.365 0.35 0.4 9 4.042 26.34 27.454
0.35 0.4 4 3.965 12.603 28.696 0.4 0.4 9 4.272 26.667 27.695
0.4 0.4 4 4.191 12.788 29.028 0.45 0.4 9 4.48 26.981 27.935
0.45 0.4 4 4.398 12.96 29.361 0.5 0.4 9 4.68 27.294 28.175
0.5 0.4 4 4.603 13.134 29.693 0.55 0.4 9 4.887 27.619 28.413
0.55 0.4 4 4.82E+00 13.321 30.024 0.6 0.4 9 5.116 27.962 28.652
0.6 0.4 4 5.069 13.528 30.353 0.65 0.4 9 5.372 28.319 28.891
0.65 0.4 4 5.348 13.755 30.681 0.7 0.4 9 5.654 28.681 29.131
0.7 0.4 4 5.656 13.993 31.006 0.75 0.4 9 5.949 29.036 29.372
0.75 0.4 4 5.976 14.227 31.33 0.8 0.4 9 6.232 29.376 29.614
0.8 0.4 4 6.279 14.445 31.656 0.85 0.4 9 6.457 29.701 29.859
0.85 0.4 4 6.514 14.64 31.986 0.9 0.4 9 6.557 30.011 30.109
0.9 0.4 4 6.606 14.803 32.328 0.95 0.4 9 6.429 30.283 30.365
0.95 0.4 4 6.442 14.907 32.697 1 0.4 9 5.922 30.401 30.635

1 0.4 4 5.855 14.851 33.111 0 0.5 9 0.051 23.541 25.713
0 0.5 4 0.016 10.811 26.439 0.05 0.5 9 1.391 23.995 25.958

0.05 0.5 4 1.334 11.095 26.752 0.1 0.5 9 2.328 24.482 26.204



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.1 0.5 4 2.27 11.445 27.064 0.15 0.5 9 3.042 24.971 26.451
0.15 0.5 4 2.991 11.802 27.378 0.2 0.5 9 3.625 25.449 26.697
0.2 0.5 4 3.578 12.143 27.695 0.25 0.5 9 4.115 25.904 26.942
0.25 0.5 4 4.069 12.458 28.017 0.3 0.5 9 4.529 26.329 27.187
0.3 0.5 4 4.481 12.74 28.342 0.35 0.5 9 4.879 26.721 27.432
0.35 0.5 4 4.828 12.989 28.67 0.4 0.5 9 5.176 27.082 27.676
0.4 0.5 4 5.126 13.21 29.001 0.45 0.5 9 5.437 27.424 27.92
0.45 0.5 4 5.396 13.413 29.333 0.5 0.5 9 5.682 27.759 28.165
0.5 0.5 4 5.657 13.613 29.665 0.55 0.5 9 5.928 28.099 28.411
0.55 0.5 4 5.929 13.822 29.998 0.6 0.5 9 6.189 28.45 28.659
0.6 0.5 4 6.224 14.048 30.329 0.65 0.5 9 6.467 28.809 28.908
0.65 0.5 4 6.546 14.29 30.66 0.7 0.5 9 6.758 29.166 29.158
0.7 0.5 4 6.883 14.536 30.989 0.75 0.5 9 7.04 29.508 29.41
0.75 0.5 4 7.211 14.771 31.318 0.8 0.5 9 7.279 29.822 29.661
0.8 0.5 4 7.488 14.974 31.647 0.85 0.5 9 7.427 30.107 29.911
0.85 0.5 4 7.655 15.133 31.98 0.9 0.5 9 7.418 30.362 30.156
0.9 0.5 4 7.634 15.236 32.324 0.95 0.5 9 7.161 30.579 30.396
0.95 0.5 4 7.314 15.269 32.689 1 0.5 9 6.535 30.69 30.63

1 0.5 4 6.551 15.173 33.092 0 0.6 9 0.056 23.54 25.687
0 0.6 4 0.017 10.8 26.44 0.05 0.6 9 1.499 24.042 25.931

0.05 0.6 4 1.434 11.127 26.75 0.1 0.6 9 2.545 24.598 26.177
0.1 0.6 4 2.479 11.548 27.06 0.15 0.6 9 3.373 25.154 26.423
0.15 0.6 4 3.315 11.977 27.371 0.2 0.6 9 4.071 25.693 26.669
0.2 0.6 4 4.02 12.384 27.685 0.25 0.6 9 4.674 26.207 26.914
0.25 0.6 4 4.627 12.76 28.003 0.3 0.6 9 5.196 26.69 27.16
0.3 0.6 4 5.15 13.103 28.326 0.35 0.6 9 5.646 27.142 27.406
0.35 0.6 4 5.602 13.412 28.653 0.4 0.6 9 6.034 27.562 27.653
0.4 0.6 4 5.996 13.692 28.983 0.45 0.6 9 6.377 27.958 27.902
0.45 0.6 4 6.351 13.95 29.316 0.5 0.6 9 6.692 28.339 28.155
0.5 0.6 4 6.687 14.197 29.651 0.55 0.6 9 6.993 28.712 28.411
0.55 0.6 4 7.021 14.444 29.988 0.6 0.6 9 7.291 29.081 28.67
0.6 0.6 4 7.362 14.694 30.325 0.65 0.6 9 7.585 29.444 28.933
0.65 0.6 4 7.709 14.947 30.663 0.7 0.6 9 7.864 29.789 29.199
0.7 0.6 4 8.046 15.188 31.002 0.75 0.6 9 8.103 30.1 29.465
0.75 0.6 4 8.342 15.4 31.339 0.8 0.6 9 8.266 30.366 29.727
0.8 0.6 4 8.552 15.559 31.677 0.85 0.6 9 8.306 30.58 29.982
0.85 0.6 4 8.618 15.65 32.016 0.9 0.6 9 8.168 30.751 30.222
0.9 0.6 4 8.466 15.665 32.359 0.95 0.6 9 7.786 30.889 30.441
0.95 0.6 4 8.006 15.608 32.714 1 0.6 9 7.082 30.982 30.63

1 0.6 4 7.129 15.473 33.091 0 0.7 9 0.039 23.542 25.664
0 0.7 4 6.43E-03 10.792 26.439 0.05 0.7 9 1.579 24.094 25.906

0.05 0.7 4 1.514 11.17 26.746 0.1 0.7 9 2.705 24.706 26.151
0.1 0.7 4 2.638 11.652 27.053 0.15 0.7 9 3.615 25.314 26.396
0.15 0.7 4 3.556 12.139 27.362 0.2 0.7 9 4.402 25.902 26.64
0.2 0.7 4 4.351 12.601 27.676 0.25 0.7 9 5.102 26.469 26.884
0.25 0.7 4 5.057 13.035 27.994 0.3 0.7 9 5.729 27.015 27.129
0.3 0.7 4 5.687 13.442 28.316 0.35 0.7 9 6.287 27.537 27.375
0.35 0.7 4 6.248 13.822 28.643 0.4 0.7 9 6.782 28.033 27.625
0.4 0.7 4 6.748 14.176 28.974 0.45 0.7 9 7.224 28.502 27.878
0.45 0.7 4 7.202 14.505 29.309 0.5 0.7 9 7.624 28.946 28.138
0.5 0.7 4 7.623 14.814 29.648 0.55 0.7 9 7.993 29.369 28.403
0.55 0.7 4 8.02E+00 15.108 29.99 0.6 0.7 9 8.334 29.769 28.675
0.6 0.7 4 8.406 15.387 30.336 0.65 0.7 9 8.643 30.141 28.953
0.65 0.7 4 8.766 15.648 30.683 0.7 0.7 9 8.901 30.473 29.234
0.7 0.7 4 9.082 15.876 31.033 0.75 0.7 9 9.084 30.748 29.515
0.75 0.7 4 9.323 16.051 31.382 0.8 0.7 9 9.155 30.954 29.79
0.8 0.7 4 9.444 16.15 31.73 0.85 0.7 9 9.077 31.085 30.051
0.85 0.7 4 9.393 16.157 32.075 0.9 0.7 9 8.809 31.159 30.287
0.9 0.7 4 9.112 16.075 32.417 0.95 0.7 9 8.315 31.21 30.485
0.95 0.7 4 8.539 15.93 32.757 1 0.7 9 7.564 31.28 30.629



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
1 0.7 4 7.607 15.773 33.099 0 0.8 9 0.018 23.55 25.645
0 0.8 4 2.09E-04 10.795 26.439 0.05 0.8 9 1.642 24.152 25.885

0.05 0.8 4 1.589 11.227 26.739 0.1 0.8 9 2.821 24.805 26.129
0.1 0.8 4 2.764 11.758 27.045 0.15 0.8 9 3.779 25.445 26.372
0.15 0.8 4 3.732 12.285 27.355 0.2 0.8 9 4.626 26.066 26.615
0.2 0.8 4 4.591 12.788 27.67 0.25 0.8 9 5.404 26.677 26.857
0.25 0.8 4 5.378 13.271 27.989 0.3 0.8 9 6.124 27.282 27.099
0.3 0.8 4 6.104 13.74 28.313 0.35 0.8 9 6.788 27.878 27.345
0.35 0.8 4 6.77 14.195 28.641 0.4 0.8 9 7.393 28.457 27.595
0.4 0.8 4 7.378 14.63 28.974 0.45 0.8 9 7.94 29.009 27.851
0.45 0.8 4 7.932 15.038 29.312 0.5 0.8 9 8.435 29.527 28.115
0.5 0.8 4 8.438 15.415 29.655 0.55 0.8 9 8.877 30.008 28.388
0.55 0.8 4 8.90E+00 15.758 30.003 0.6 0.8 9 9.265 30.445 28.67
0.6 0.8 4 9.32 16.066 30.356 0.65 0.8 9 9.586 30.831 28.96
0.65 0.8 4 9.681 16.33 30.714 0.7 0.8 9 9.823 31.151 29.255
0.7 0.8 4 9.965 16.536 31.074 0.75 0.8 9 9.947 31.391 29.549
0.75 0.8 4 10.139 16.666 31.435 0.8 0.8 9 9.926 31.536 29.835
0.8 0.8 4 10.164 16.699 31.794 0.85 0.8 9 9.733 31.585 30.102
0.85 0.8 4 9.998 16.622 32.145 0.9 0.8 9 9.345 31.564 30.336
0.9 0.8 4 9.604 16.45 32.484 0.95 0.8 9 8.756 31.531 30.517
0.95 0.8 4 8.95 16.235 32.807 1 0.8 9 7.982 31.584 30.625

1 0.8 4 8.016 16.086 33.11 0 0.9 9 0.021 23.574 25.63
0 0.9 4 0.019 10.815 26.44 0.05 0.9 9 1.721 24.23 25.87

0.05 0.9 4 1.684 11.306 26.733 0.1 0.9 9 2.928 24.913 26.113
0.1 0.9 4 2.891 11.877 27.038 0.15 0.9 9 3.906 25.571 26.355
0.15 0.9 4 3.886 12.433 27.351 0.2 0.9 9 4.787 26.212 26.596
0.2 0.9 4 4.786 12.966 27.669 0.25 0.9 9 5.622 26.859 26.836
0.25 0.9 4 5.636 13.493 27.993 0.3 0.9 9 6.423 27.52 27.076
0.3 0.9 4 6.445 14.024 28.32 0.35 0.9 9 7.182 28.189 27.32
0.35 0.9 4 7.207 14.554 28.652 0.4 0.9 9 7.891 28.852 27.568
0.4 0.9 4 7.914 15.071 28.987 0.45 0.9 9 8.541 29.49 27.825
0.45 0.9 4 8.562 15.559 29.328 0.5 0.9 9 9.127 30.085 28.091
0.5 0.9 4 9.147 16.001 29.674 0.55 0.9 9 9.641 30.625 28.368
0.55 0.9 4 9.664 16.39 30.027 0.6 0.9 9 10.073 31.099 28.655
0.6 0.9 4 10.107 16.716 30.386 0.65 0.9 9 10.408 31.497 28.953
0.65 0.9 4 10.461 16.973 30.752 0.7 0.9 9 10.623 31.806 29.256
0.7 0.9 4 10.704 17.148 31.122 0.75 0.9 9 10.693 32.01 29.56
0.75 0.9 4 10.808 17.226 31.493 0.8 0.9 9 10.591 32.099 29.855
0.8 0.9 4 10.741 17.191 31.86 0.85 0.9 9 10.297 32.074 30.128
0.85 0.9 4 10.476 17.038 32.216 0.9 0.9 9 9.807 31.968 30.362
0.9 0.9 4 9.994 16.792 32.552 0.95 0.9 9 9.141 31.861 30.536
0.95 0.9 4 9.294 16.535 32.858 1 0.9 9 8.355 31.9 30.623

1 0.9 4 8.398 16.427 33.123 0 1 9 0.073 23.623 25.618
0 1 4 0.071 10.856 26.441 0.05 1 9 1.846 24.342 25.858

0.05 1 4 1.816 11.416 26.726 0.1 1 9 3.066 25.055 26.102
0.1 1 4 3.047 12.027 27.031 0.15 1 9 4.046 25.726 26.345
0.15 1 4 4.056 12.608 27.35 0.2 1 9 4.944 26.384 26.586
0.2 1 4 4.984 13.172 27.676 0.25 1 9 5.819 27.064 26.825
0.25 1 4 5.885 13.744 28.006 0.3 1 9 6.685 27.78 27.063
0.3 1 4 6.765 14.338 28.34 0.35 1 9 7.528 28.523 27.304
0.35 1 4 7.612 14.947 28.676 0.4 1 9 8.329 29.27 27.55
0.4 1 4 8.408 15.547 29.015 0.45 1 9 9.071 29.99 27.804
0.45 1 4 9.136 16.109 29.359 0.5 1 9 9.737 30.657 28.069
0.5 1 4 9.784 16.609 29.707 0.55 1 9 10.313 31.249 28.344
0.55 1 4 10.341 17.029 30.063 0.6 1 9 10.783 31.753 28.632
0.6 1 4 10.795 17.358 30.426 0.65 1 9 11.128 32.157 28.93
0.65 1 4 11.13 17.592 30.797 0.7 1 9 11.326 32.451 29.236
0.7 1 4 11.327 17.722 31.173 0.75 1 9 11.351 32.623 29.543
0.75 1 4 11.363 17.741 31.551 0.8 1 9 11.183 32.662 29.842
0.8 1 4 11.217 17.639 31.925 0.85 1 9 10.81 32.574 30.12



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.85 1 4 10.874 17.421 32.284 0.9 1 9 10.241 32.396 30.36
0.9 1 4 10.333 17.123 32.618 0.95 1 9 9.513 32.222 30.537
0.95 1 4 9.618 16.847 32.91 1 1 9 8.706 32.237 30.626

1 1 4 8.784 16.802 33.144 0 1.1 9 0.171 23.698 25.604
0 1.1 4 0.148 10.919 26.441 0.05 1.1 9 2.022 24.494 25.846

0.05 1.1 4 1.983 11.559 26.717 0.1 1.1 9 3.254 25.243 26.094
0.1 1.1 4 3.243 12.215 27.025 0.15 1.1 9 4.232 25.931 26.34
0.15 1.1 4 4.267 12.829 27.352 0.2 1.1 9 5.139 26.61 26.583
0.2 1.1 4 5.221 13.43 27.689 0.25 1.1 9 6.047 27.328 26.823
0.25 1.1 4 6.169 14.057 28.03 0.3 1.1 9 6.967 28.103 27.061
0.3 1.1 4 7.114 14.723 28.373 0.35 1.1 9 7.881 28.921 27.3
0.35 1.1 4 8.036 15.413 28.716 0.4 1.1 9 8.761 29.749 27.543
0.4 1.1 4 8.905 16.094 29.06 0.45 1.1 9 9.577 30.546 27.792
0.45 1.1 4 9.696 16.724 29.406 0.5 1.1 9 10.307 31.274 28.05
0.5 1.1 4 10.387 17.266 29.756 0.55 1.1 9 10.929 31.907 28.319
0.55 1.1 4 10.962 17.698 30.112 0.6 1.1 9 11.425 32.428 28.599
0.6 1.1 4 11.408 18.01 30.475 0.65 1.1 9 11.775 32.829 28.89
0.65 1.1 4 11.711 18.2 30.847 0.7 1.1 9 11.957 33.104 29.19
0.7 1.1 4 11.857 18.271 31.225 0.75 1.1 9 11.951 33.245 29.492
0.75 1.1 4 11.831 18.224 31.606 0.8 1.1 9 11.738 33.245 29.791
0.8 1.1 4 11.621 18.06 31.983 0.85 1.1 9 11.312 33.109 30.073
0.85 1.1 4 11.224 17.79 32.345 0.9 1.1 9 10.685 32.872 30.322
0.9 1.1 4 10.654 17.459 32.678 0.95 1.1 9 9.902 32.633 30.519
0.95 1.1 4 9.947 17.183 32.963 1 1.1 9 9.049 32.594 30.636

1 1.1 4 9.176 17.2 33.176 0 1.2 9 0.291 23.806 25.585
0 1.2 4 0.232 11.012 26.437 0.05 1.2 9 2.231 24.688 25.833

0.05 1.2 4 2.172 11.738 26.706 0.1 1.2 9 3.486 25.479 26.087
0.1 1.2 4 3.473 12.448 27.019 0.15 1.2 9 4.47 26.191 26.34
0.15 1.2 4 4.523 13.104 27.357 0.2 1.2 9 5.392 26.899 26.588
0.2 1.2 4 5.514 13.754 27.709 0.25 1.2 9 6.334 27.662 26.831
0.25 1.2 4 6.513 14.445 28.065 0.3 1.2 9 7.305 28.499 27.071
0.3 1.2 4 7.521 15.191 28.42 0.35 1.2 9 8.279 29.392 27.308
0.35 1.2 4 8.509 15.966 28.773 0.4 1.2 9 9.219 30.295 27.546
0.4 1.2 4 9.436 16.721 29.123 0.45 1.2 9 10.09 31.156 27.788
0.45 1.2 4 10.268 17.404 29.471 0.5 1.2 9 10.86 31.93 28.036
0.5 1.2 4 10.977 17.969 29.821 0.55 1.2 9 11.508 32.585 28.291
0.55 1.2 4 11.545 18.389 30.174 0.6 1.2 9 12.013 33.109 28.555
0.6 1.2 4 11.96 18.658 30.534 0.65 1.2 9 12.36 33.497 28.83
0.65 1.2 4 12.216 18.784 30.902 0.7 1.2 9 12.529 33.751 29.113
0.7 1.2 4 12.305 18.783 31.277 0.75 1.2 9 12.505 33.871 29.402
0.75 1.2 4 12.222 18.669 31.656 0.8 1.2 9 12.271 33.851 29.692
0.8 1.2 4 11.967 18.454 32.032 0.85 1.2 9 11.82 33.69 29.976
0.85 1.2 4 11.543 18.153 32.395 0.9 1.2 9 11.159 33.411 30.242
0.9 1.2 4 10.968 17.813 32.729 0.95 1.2 9 10.32 33.101 30.474
0.95 1.2 4 10.28 17.546 33.013 1 1.2 9 9.371 32.955 30.652

1 1.2 4 9.547 17.601 33.221 0 1.3 9 0.413 23.987 25.566
0 1.3 4 0.327 11.174 26.431 0.05 1.3 9 2.451 24.95 25.821

0.05 1.3 4 2.375 11.984 26.693 0.1 1.3 9 3.744 25.783 26.083
0.1 1.3 4 3.731 12.749 27.014 0.15 1.3 9 4.751 26.524 26.345
0.15 1.3 4 4.824 13.455 27.368 0.2 1.3 9 5.703 27.266 26.601
0.2 1.3 4 5.866 14.164 27.739 0.25 1.3 9 6.686 28.076 26.851
0.25 1.3 4 6.926 14.929 28.113 0.3 1.3 9 7.706 28.974 27.093
0.3 1.3 4 7.999 15.755 28.484 0.35 1.3 9 8.731 29.933 27.331
0.35 1.3 4 9.044 16.608 28.849 0.4 1.3 9 9.714 30.895 27.564
0.4 1.3 4 10.012 17.423 29.206 0.45 1.3 9 10.613 31.8 27.795
0.45 1.3 4 10.86 18.135 29.557 0.5 1.3 9 11.397 32.595 28.027
0.5 1.3 4 11.557 18.692 29.904 0.55 1.3 9 12.044 33.251 28.262
0.55 1.3 4 12.088 19.069 30.252 0.6 1.3 9 12.539 33.758 28.501
0.6 1.3 4 12.448 19.267 30.604 0.65 1.3 9 12.872 34.126 28.748
0.65 1.3 4 12.639 19.31 30.962 0.7 1.3 9 13.033 34.366 29.003



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.7 1.3 4 12.666 19.23 31.327 0.75 1.3 9 13.008 34.484 29.268
0.75 1.3 4 12.537 19.059 31.698 0.8 1.3 9 12.781 34.476 29.542
0.8 1.3 4 12.257 18.817 32.07 0.85 1.3 9 12.338 34.326 29.825
0.85 1.3 4 11.833 18.52 32.431 0.9 1.3 9 11.665 34.032 30.111
0.9 1.3 4 11.277 18.2 32.769 0.95 1.3 9 10.762 33.642 30.396
0.95 1.3 4 10.609 17.951 33.061 1 1.3 9 9.649 33.31 30.671

1 1.3 4 9.863 17.992 33.281 0 1.4 9 0.576 24.31 25.552
0 1.4 4 0.489 11.47 26.422 0.05 1.4 9 2.7 25.346 25.815

0.05 1.4 4 2.623 12.363 26.683 0.1 1.4 9 4.035 26.22 26.087
0.1 1.4 4 4.03 13.188 27.015 0.15 1.4 9 5.078 26.992 26.36
0.15 1.4 4 5.176 13.951 27.39 0.2 1.4 9 6.072 27.768 26.627
0.2 1.4 4 6.279 14.725 27.783 0.25 1.4 9 7.104 28.622 26.885
0.25 1.4 4 7.408 15.563 28.18 0.3 1.4 9 8.172 29.569 27.133
0.3 1.4 4 8.546 16.463 28.571 0.35 1.4 9 9.233 30.572 27.371
0.35 1.4 4 9.638 17.373 28.95 0.4 1.4 9 10.236 31.565 27.599
0.4 1.4 4 10.626 18.217 29.316 0.45 1.4 9 11.135 32.477 27.818
0.45 1.4 4 11.461 18.919 29.669 0.5 1.4 9 11.9 33.258 28.029
0.5 1.4 4 12.114 19.425 30.012 0.55 1.4 9 12.516 33.881 28.236
0.55 1.4 4 12.577 19.716 30.35 0.6 1.4 9 12.979 34.351 28.44
0.6 1.4 4 12.856 19.809 30.688 0.65 1.4 9 13.29 34.692 28.647
0.65 1.4 4 12.968 19.75 31.03 0.7 1.4 9 13.448 34.931 28.862
0.7 1.4 4 12.934 19.593 31.379 0.75 1.4 9 13.446 35.082 29.09
0.75 1.4 4 12.774 19.387 31.734 0.8 1.4 9 13.263 35.134 29.338
0.8 1.4 4 12.499 19.161 32.094 0.85 1.4 9 12.867 35.049 29.615
0.85 1.4 4 12.111 18.92 32.452 0.9 1.4 9 12.211 34.778 29.927
0.9 1.4 4 11.601 18.666 32.794 0.95 1.4 9 11.238 34.297 30.284
0.95 1.4 4 10.949 18.439 33.104 1 1.4 9 9.881 33.677 30.692

1 1.4 4 10.124 18.391 33.355 0 1.5 9 0.943 24.739 25.539
0 1.5 4 0.864 11.856 26.403 0.05 1.5 9 3.089 25.875 25.809

0.05 1.5 4 3.003 12.868 26.666 0.1 1.5 9 4.437 26.816 26.092
0.1 1.5 4 4.42 13.79 27.017 0.15 1.5 9 5.504 27.639 26.378
0.15 1.5 4 5.599 14.64 27.417 0.2 1.5 9 6.535 28.461 26.658
0.2 1.5 4 6.758 15.498 27.839 0.25 1.5 9 7.609 29.358 26.928
0.25 1.5 4 7.95 16.412 28.264 0.3 1.5 9 8.71 30.337 27.184
0.3 1.5 4 9.141 17.369 28.678 0.35 1.5 9 9.785 31.352 27.425
0.35 1.5 4 10.262 18.303 29.075 0.4 1.5 9 10.776 32.331 27.649
0.4 1.5 4 11.244 19.128 29.452 0.45 1.5 9 11.637 33.2 27.854
0.45 1.5 4 12.036 19.761 29.807 0.5 1.5 9 12.345 33.912 28.041
0.5 1.5 4 12.612 20.153 30.146 0.55 1.5 9 12.897 34.457 28.213
0.55 1.5 4 12.977 20.301 30.471 0.6 1.5 9 13.306 34.859 28.373
0.6 1.5 4 13.155 20.247 30.79 0.65 1.5 9 13.591 35.165 28.529
0.65 1.5 4 13.184 20.064 31.109 0.7 1.5 9 13.763 35.421 28.689
0.7 1.5 4 13.104 19.835 31.432 0.75 1.5 9 13.821 35.649 28.868
0.75 1.5 4 12.948 19.63 31.764 0.8 1.5 9 13.736 35.826 29.08
0.8 1.5 4 12.728 19.478 32.106 0.85 1.5 9 13.448 35.874 29.346
0.85 1.5 4 12.432 19.363 32.454 0.9 1.5 9 12.856 35.67 29.688
0.9 1.5 4 12.014 19.23 32.802 0.95 1.5 9 11.816 35.081 30.134
0.95 1.5 4 11.385 19.028 33.136 1 1.5 9 10.137 34.032 30.714

1 1.5 4 10.414 18.784 33.437 0.05 0.1 10 0.403 26.887 25.464
0.05 0.1 5 0.533 14.138 26.518 0.1 0.1 10 0.582 27.105 25.735
0.1 0.1 5 0.701 14.197 26.831 0.15 0.1 10 0.473 27.311 25.997
0.15 0.1 5 0.602 14.222 27.14 0.2 0.1 10 0.314 27.555 26.252
0.2 0.1 5 0.465 14.285 27.445 0.25 0.1 10 0.221 27.838 26.505
0.25 0.1 5 0.401 14.404 27.748 0.3 0.1 10 0.235 28.145 26.758
0.3 0.1 5 0.445 14.565 28.051 0.35 0.1 10 0.346 28.459 27.012
0.35 0.1 5 0.586 14.752 28.354 0.4 0.1 10 0.519 28.772 27.269
0.4 0.1 5 0.786 14.95 28.661 0.45 0.1 10 0.711 29.084 27.529
0.45 0.1 5 1.001 15.151 28.972 0.5 0.1 10 0.882 29.399 27.794
0.5 0.1 5 1.184 15.351 29.288 0.55 0.1 10 0.998 29.716 28.062
0.55 0.1 5 1.303 15.547 29.609 0.6 0.1 10 1.044 30.031 28.333



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.6 0.1 5 1.339 15.734 29.934 0.65 0.1 10 1.02 30.335 28.604
0.65 0.1 5 1.292 15.906 30.261 0.7 0.1 10 0.944 30.623 28.874
0.7 0.1 5 1.184 16.061 30.588 0.75 0.1 10 0.849 30.902 29.138
0.75 0.1 5 1.056 16.211 30.91 0.8 0.1 10 0.777 31.202 29.393
0.8 0.1 5 0.96 16.39 31.223 0.85 0.1 10 0.767 31.575 29.637
0.85 0.1 5 0.955 16.647 31.523 0.9 0.1 10 0.839 32.077 29.868
0.9 0.1 5 1.083 17.037 31.81 0.95 0.1 10 0.966 32.712 30.085
0.95 0.1 5 1.35 17.567 32.088 1 0.1 10 1.036 33.321 30.295

1 0.1 5 1.68 18.093 32.368 0.05 0.2 10 1.001 26.68 25.47
0.05 0.2 5 0.986 13.712 26.531 0.1 0.2 10 1.451 27.006 25.729
0.1 0.2 5 1.418 13.895 26.842 0.15 0.2 10 1.638 27.324 25.985
0.15 0.2 5 1.598 14.056 27.153 0.2 0.2 10 1.742 27.664 26.24
0.2 0.2 5 1.696 14.237 27.463 0.25 0.2 10 1.846 28.023 26.493
0.25 0.2 5 1.794 14.442 27.773 0.3 0.2 10 1.984 28.385 26.746
0.3 0.2 5 1.924 14.661 28.085 0.35 0.2 10 2.156 28.74 26.999
0.35 0.2 5 2.087 14.882 28.397 0.4 0.2 10 2.348 29.087 27.251
0.4 0.2 5 2.27 15.096 28.712 0.45 0.2 10 2.545 29.43 27.504
0.45 0.2 5 2.456 15.305 29.027 0.5 0.2 10 2.731 29.777 27.757
0.5 0.2 5 2.631 15.513 29.344 0.55 0.2 10 2.9 30.133 28.01
0.55 0.2 5 2.786 15.722 29.663 0.6 0.2 10 3.05 30.496 28.263
0.6 0.2 5 2.917 15.931 29.981 0.65 0.2 10 3.187 30.856 28.517
0.65 0.2 5 3.03E+00 16.137 30.299 0.7 0.2 10 3.322 31.204 28.77
0.7 0.2 5 3.14 16.332 30.614 0.75 0.2 10 3.469 31.534 29.023
0.75 0.2 5 3.259 16.515 30.927 0.8 0.2 10 3.636 31.856 29.276
0.8 0.2 5 3.402 16.696 31.236 0.85 0.2 10 3.822 32.196 29.529
0.85 0.2 5 3.576 16.899 31.542 0.9 0.2 10 3.996 32.579 29.785
0.9 0.2 5 3.762 17.142 31.851 0.95 0.2 10 4.08 32.982 30.05
0.95 0.2 5 3.898 17.405 32.171 1 0.2 10 3.92 33.242 30.332

1 0.2 5 3.846 17.538 32.522 0 0.3 10 0.012 26.266 25.211
0 0.3 5 0.023 13.408 26.21 0.05 0.3 10 1.146 26.699 25.464

0.05 0.3 5 1.129 13.705 26.52 0.1 0.3 10 1.791 27.085 25.717
0.1 0.3 5 1.763 13.952 26.827 0.15 0.3 10 2.194 27.468 25.971
0.15 0.3 5 2.159 14.19 27.134 0.2 0.3 10 2.489 27.86 26.225
0.2 0.3 5 2.444 14.435 27.443 0.25 0.3 10 2.739 28.252 26.478
0.25 0.3 5 2.68 14.682 27.753 0.3 0.3 10 2.969 28.632 26.73
0.3 0.3 5 2.894 14.921 28.064 0.35 0.3 10 3.185 28.993 26.981
0.35 0.3 5 3.093 15.146 28.378 0.4 0.3 10 3.389 29.339 27.231
0.4 0.3 5 3.282 15.355 28.692 0.45 0.3 10 3.582 29.678 27.479
0.45 0.3 5 3.463 15.555 29.007 0.5 0.3 10 3.767 30.022 27.726
0.5 0.3 5 3.641 15.756 29.321 0.55 0.3 10 3.954 30.382 27.972
0.55 0.3 5 3.824 15.967 29.634 0.6 0.3 10 4.15 30.759 28.217
0.6 0.3 5 4.02 16.193 29.947 0.65 0.3 10 4.365 31.146 28.462
0.65 0.3 5 4.234 16.43 30.257 0.7 0.3 10 4.602 31.531 28.707
0.7 0.3 5 4.471 16.671 30.565 0.75 0.3 10 4.863 31.906 28.954
0.75 0.3 5 4.728 16.906 30.871 0.8 0.3 10 5.133 32.269 29.205
0.8 0.3 5 4.993 17.133 31.176 0.85 0.3 10 5.384 32.631 29.46
0.85 0.3 5 5.236 17.355 31.483 0.9 0.3 10 5.558 33 29.723
0.9 0.3 5 5.402 17.575 31.8 0.95 0.3 10 5.557 33.348 30.001
0.95 0.3 5 5.393 17.759 32.138 1 0.3 10 5.212 33.53 30.301

1 0.3 5 5.044 17.774 32.516 0 0.4 10 6.93E-03 26.276 25.211
0 0.4 5 0.02 13.441 26.207 0.05 0.4 10 1.242 26.727 25.461

0.05 0.4 5 1.235 13.739 26.512 0.1 0.4 10 2.045 27.176 25.713
0.1 0.4 5 2.034 14.048 26.815 0.15 0.4 10 2.621 27.626 25.965
0.15 0.4 5 2.608 14.358 27.118 0.2 0.4 10 3.074 28.073 26.218
0.2 0.4 5 3.055 14.663 27.423 0.25 0.4 10 3.453 28.505 26.471
0.25 0.4 5 3.421 14.953 27.73 0.3 0.4 10 3.775 28.913 26.723
0.3 0.4 5 3.729 15.221 28.04 0.35 0.4 10 4.051 29.292 26.974
0.35 0.4 5 3.991 15.462 28.352 0.4 0.4 10 4.288 29.647 27.224
0.4 0.4 5 4.22 15.68 28.664 0.45 0.4 10 4.5 29.991 27.472
0.45 0.4 5 4.429 15.885 28.978 0.5 0.4 10 4.7 30.336 27.72



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.5 0.4 5 4.636 16.091 29.29 0.55 0.4 10 4.905 30.695 27.966
0.55 0.4 5 4.856 16.309 29.602 0.6 0.4 10 5.129 31.073 28.212
0.6 0.4 5 5.102 16.548 29.913 0.65 0.4 10 5.378 31.465 28.458
0.65 0.4 5 5.379 16.805 30.221 0.7 0.4 10 5.655 31.86 28.706
0.7 0.4 5 5.683 17.072 30.529 0.75 0.4 10 5.946 32.248 28.955
0.75 0.4 5 5.999 17.336 30.834 0.8 0.4 10 6.227 32.62 29.207
0.8 0.4 5 6.296 17.583 31.141 0.85 0.4 10 6.455 32.979 29.463
0.85 0.4 5 6.527 17.808 31.45 0.9 0.4 10 6.563 33.329 29.724
0.9 0.4 5 6.616 18.004 31.77 0.95 0.4 10 6.449 33.649 29.993
0.95 0.4 5 6.454 18.141 32.109 1 0.4 10 5.961 33.827 30.276

1 0.4 5 5.878 18.117 32.487 0 0.5 10 0.022 26.27 25.209
0 0.5 5 0.028 13.443 26.206 0.05 0.5 10 1.362 26.758 25.459

0.05 0.5 5 1.348 13.767 26.507 0.1 0.5 10 2.3 27.28 25.711
0.1 0.5 5 2.284 14.147 26.806 0.15 0.5 10 3.02 27.804 25.963
0.15 0.5 5 3.004 14.532 27.106 0.2 0.5 10 3.611 28.316 26.215
0.2 0.5 5 3.591 14.903 27.409 0.25 0.5 10 4.11 28.803 26.466
0.25 0.5 5 4.082 15.249 27.714 0.3 0.5 10 4.535 29.259 26.717
0.3 0.5 5 4.496 15.564 28.022 0.35 0.5 10 4.892 29.681 26.969
0.35 0.5 5 4.845 15.845 28.332 0.4 0.5 10 5.194 30.072 27.221
0.4 0.5 5 5.145 16.098 28.644 0.45 0.5 10 5.457 30.445 27.473
0.45 0.5 5 5.415 16.334 28.956 0.5 0.5 10 5.699 30.811 27.725
0.5 0.5 5 5.675 16.564 29.27 0.55 0.5 10 5.939 31.183 27.978
0.55 0.5 5 5.945 16.803 29.584 0.6 0.5 10 6.189 31.566 28.233
0.6 0.5 5 6.236 17.058 29.898 0.65 0.5 10 6.457 31.956 28.489
0.65 0.5 5 6.551 17.328 30.211 0.7 0.5 10 6.737 32.343 28.746
0.7 0.5 5 6.88 17.601 30.524 0.75 0.5 10 7.01 32.714 29.004
0.75 0.5 5 7.199 17.862 30.836 0.8 0.5 10 7.244 33.059 29.262
0.8 0.5 5 7.468 18.093 31.148 0.85 0.5 10 7.394 33.376 29.519
0.85 0.5 5 7.629 18.281 31.462 0.9 0.5 10 7.393 33.672 29.773
0.9 0.5 5 7.605 18.418 31.782 0.95 0.5 10 7.156 33.94 30.023
0.95 0.5 5 7.294 18.489 32.114 1 0.5 10 6.561 34.113 30.269

1 0.5 5 6.554 18.434 32.471 0 0.6 10 0.032 26.263 25.204
0 0.6 5 0.029 13.435 26.204 0.05 0.6 10 1.477 26.801 25.457

0.05 0.6 5 1.449 13.802 26.5 0.1 0.6 10 2.526 27.393 25.708
0.1 0.6 5 2.494 14.252 26.797 0.15 0.6 10 3.361 27.986 25.958
0.15 0.6 5 3.328 14.708 27.095 0.2 0.6 10 4.067 28.562 26.207
0.2 0.6 5 4.031 15.144 27.396 0.25 0.6 10 4.68 29.111 26.456
0.25 0.6 5 4.637 15.55 27.7 0.3 0.6 10 5.212 29.629 26.706
0.3 0.6 5 5.16 15.924 28.007 0.35 0.6 10 5.669 30.113 26.957
0.35 0.6 5 5.612 16.265 28.316 0.4 0.6 10 6.062 30.566 27.211
0.4 0.6 5 6.006 16.576 28.628 0.45 0.6 10 6.405 30.994 27.468
0.45 0.6 5 6.36 16.866 28.942 0.5 0.6 10 6.715 31.406 27.728
0.5 0.6 5 6.694 17.143 29.259 0.55 0.6 10 7.008 31.81 27.992
0.55 0.6 5 7.023 17.418 29.577 0.6 0.6 10 7.294 32.21 28.259
0.6 0.6 5 7.358 17.697 29.897 0.65 0.6 10 7.575 32.602 28.53
0.65 0.6 5 7.696 17.975 30.219 0.7 0.6 10 7.841 32.975 28.801
0.7 0.6 5 8.022 18.242 30.542 0.75 0.6 10 8.068 33.314 29.072
0.75 0.6 5 8.306 18.478 30.865 0.8 0.6 10 8.224 33.608 29.339
0.8 0.6 5 8.506 18.664 31.187 0.85 0.6 10 8.264 33.855 29.598
0.85 0.6 5 8.564 18.783 31.507 0.9 0.6 10 8.136 34.065 29.844
0.9 0.6 5 8.412 18.833 31.826 0.95 0.6 10 7.775 34.255 30.069
0.95 0.6 5 7.965 18.819 32.145 1 0.6 10 7.108 34.407 30.269

1 0.6 5 7.121 18.733 32.469 0 0.7 10 0.018 26.262 25.2
0 0.7 5 0.017 13.43 26.201 0.05 0.7 10 1.562 26.849 25.455

0.05 0.7 5 1.529 13.846 26.491 0.1 0.7 10 2.694 27.498 25.705
0.1 0.7 5 2.652 14.357 26.785 0.15 0.7 10 3.611 28.144 25.952
0.15 0.7 5 3.567 14.869 27.084 0.2 0.7 10 4.407 28.771 26.197
0.2 0.7 5 4.36 15.358 27.385 0.25 0.7 10 5.118 29.378 26.441
0.25 0.7 5 5.064 15.821 27.689 0.3 0.7 10 5.755 29.961 26.687
0.3 0.7 5 5.692 16.258 27.996 0.35 0.7 10 6.32 30.519 26.937



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.35 0.7 5 6.252 16.669 28.305 0.4 0.7 10 6.82 31.049 27.193
0.4 0.7 5 6.751 17.054 28.618 0.45 0.7 10 7.262 31.551 27.454
0.45 0.7 5 7.203 17.414 28.933 0.5 0.7 10 7.659 32.028 27.723
0.5 0.7 5 7.62 17.754 29.253 0.55 0.7 10 8.02 32.482 27.998
0.55 0.7 5 8.015 18.076 29.576 0.6 0.7 10 8.35 32.913 28.279
0.6 0.7 5 8.39 18.383 29.904 0.65 0.7 10 8.645 33.314 28.564
0.65 0.7 5 8.74 18.669 30.236 0.7 0.7 10 8.891 33.673 28.852
0.7 0.7 5 9.045 18.922 30.57 0.75 0.7 10 9.062 33.976 29.137
0.75 0.7 5 9.274 19.121 30.906 0.8 0.7 10 9.126 34.21 29.414
0.8 0.7 5 9.384 19.246 31.239 0.85 0.7 10 9.046 34.374 29.676
0.85 0.7 5 9.326 19.282 31.567 0.9 0.7 10 8.786 34.487 29.913
0.9 0.7 5 9.046 19.235 31.884 0.95 0.7 10 8.312 34.586 30.115
0.95 0.7 5 8.488 19.135 32.187 1 0.7 10 7.596 34.709 30.268

1 0.7 5 7.596 19.032 32.472 0.05 0.8 10 1.627 26.903 25.455
0 0.8 5 6.92E-03 13.434 26.2 0.1 0.8 10 2.812 27.593 25.704

0.05 0.8 5 1.601 13.904 26.482 0.15 0.8 10 3.779 28.272 25.947
0.1 0.8 5 2.776 14.462 26.774 0.2 0.8 10 4.635 28.934 26.186
0.15 0.8 5 3.741 15.013 27.073 0.25 0.8 10 5.424 29.586 26.425
0.2 0.8 5 4.596 15.541 27.377 0.3 0.8 10 6.155 30.232 26.666
0.25 0.8 5 5.379 16.051 27.683 0.35 0.8 10 6.826 30.866 26.914
0.3 0.8 5 6.102 16.55 27.991 0.4 0.8 10 7.436 31.481 27.17
0.35 0.8 5 6.766 17.035 28.301 0.45 0.8 10 7.986 32.068 27.435
0.4 0.8 5 7.371 17.5 28.614 0.5 0.8 10 8.478 32.621 27.71
0.45 0.8 5 7.923 17.939 28.931 0.55 0.8 10 8.915 33.134 27.994
0.5 0.8 5 8.426 18.347 29.253 0.6 0.8 10 9.295 33.604 28.288
0.55 0.8 5 8.885 18.72 29.58 0.65 0.8 10 9.606 34.02 28.587
0.6 0.8 5 9.296 19.056 29.915 0.7 0.8 10 9.832 34.37 28.888
0.65 0.8 5 9.65E+00 19.347 30.255 0.75 0.8 10 9.947 34.639 29.186
0.7 0.8 5 9.922 19.579 30.601 0.8 0.8 10 9.92 34.814 29.472
0.75 0.8 5 10.085 19.734 30.948 0.85 0.8 10 9.724 34.896 29.737
0.8 0.8 5 10.1 19.792 31.292 0.9 0.8 10 9.341 34.912 29.968
0.85 0.8 5 9.928 19.745 31.627 0.95 0.8 10 8.767 34.921 30.15
0.9 0.8 5 9.536 19.608 31.943 1 0.8 10 8.019 35.014 30.265
0.95 0.8 5 8.898 19.438 32.229 0.05 0.9 10 1.707 26.978 25.46

1 0.8 5 8.004 19.345 32.475 0.1 0.9 10 2.92 27.698 25.708
0 0.9 5 0.023 13.456 26.2 0.15 0.9 10 3.906 28.395 25.946

0.05 0.9 5 1.694 13.983 26.474 0.2 0.9 10 4.796 29.079 26.179
0.1 0.9 5 2.9 14.579 26.765 0.25 0.9 10 5.64 29.768 26.412
0.15 0.9 5 3.89 15.157 27.067 0.3 0.9 10 6.45 30.47 26.649
0.2 0.9 5 4.784 15.713 27.375 0.35 0.9 10 7.218 31.179 26.893
0.25 0.9 5 5.629 16.266 27.684 0.4 0.9 10 7.933 31.88 27.148
0.3 0.9 5 6.433 16.824 27.995 0.45 0.9 10 8.588 32.555 27.414
0.35 0.9 5 7.192 17.384 28.307 0.5 0.9 10 9.174 33.186 27.693
0.4 0.9 5 7.897 17.931 28.621 0.55 0.9 10 9.687 33.761 27.985
0.45 0.9 5 8.542 18.45 28.938 0.6 0.9 10 10.115 34.271 28.286
0.5 0.9 5 9.124 18.924 29.261 0.65 0.9 10 10.445 34.703 28.595
0.55 0.9 5 9.639 19.344 29.59 0.7 0.9 10 10.655 35.046 28.906
0.6 0.9 5 10.077 19.701 29.928 0.75 0.9 10 10.72 35.284 29.212
0.65 0.9 5 10.425 19.988 30.275 0.8 0.9 10 10.613 35.406 29.505
0.7 0.9 5 10.661 20.191 30.629 0.85 0.9 10 10.317 35.415 29.773
0.75 0.9 5 10.756 20.296 30.985 0.9 0.9 10 9.827 35.343 30.001
0.8 0.9 5 10.681 20.288 31.339 0.95 0.9 10 9.167 35.268 30.171
0.85 0.9 5 10.41 20.165 31.68 1 0.9 10 8.391 35.327 30.264
0.9 0.9 5 9.929 19.954 31.995 0 1 10 0.054 26.339 25.201
0.95 0.9 5 9.243 19.738 32.268 0.05 1 10 1.833 27.09 25.466

1 0.9 5 8.384 19.682 32.48 0.1 1 10 3.058 27.839 25.714
0 1 5 0.075 13.498 26.202 0.15 1 10 4.044 28.55 25.95

0.05 1 5 1.825 14.094 26.466 0.2 1 10 4.948 29.25 26.179
0.1 1 5 3.054 14.728 26.758 0.25 1 10 5.831 29.972 26.407
0.15 1 5 4.056 15.329 27.065 0.3 1 10 6.704 30.73 26.639



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.2 1 5 4.975 15.912 27.38 0.35 1 10 7.555 31.513 26.88
0.25 1 5 5.868 16.507 27.696 0.4 1 10 8.364 32.3 27.133
0.3 1 5 6.742 17.127 28.011 0.45 1 10 9.112 33.059 27.399
0.35 1 5 7.584 17.763 28.326 0.5 1 10 9.783 33.764 27.679
0.4 1 5 8.377 18.393 28.64 0.55 1 10 10.363 34.396 27.973
0.45 1 5 9.103 18.987 28.957 0.6 1 10 10.836 34.94 28.277
0.5 1 5 9.751 19.521 29.278 0.65 1 10 11.183 35.384 28.589
0.55 1 5 10.307 19.975 29.607 0.7 1 10 11.382 35.718 28.903
0.6 1 5 10.76 20.339 29.945 0.75 1 10 11.408 35.929 29.212
0.65 1 5 11.093 20.607 30.293 0.8 1 10 11.239 36.007 29.507
0.7 1 5 11.286 20.77 30.651 0.85 1 10 10.864 35.954 29.776
0.75 1 5 11.317 20.819 31.013 0.9 1 10 10.29 35.805 30.005
0.8 1 5 11.165 20.747 31.373 0.95 1 10 9.554 35.649 30.175
0.85 1 5 10.817 20.558 31.719 1 1 10 8.736 35.658 30.267
0.9 1 5 10.275 20.292 32.036 0 1.1 10 0.159 26.415 25.199
0.95 1 5 9.57 20.053 32.302 0.05 1.1 10 2.015 27.244 25.471

1 1 5 8.764 20.05 32.492 0.1 1.1 10 3.249 28.028 25.722
0 1.1 5 0.156 13.563 26.202 0.15 1.1 10 4.229 28.756 25.958

0.05 1.1 5 1.995 14.239 26.457 0.2 1.1 10 5.138 29.476 26.185
0.1 1.1 5 3.249 14.916 26.752 0.25 1.1 10 6.05 30.235 26.41
0.15 1.1 5 4.262 15.546 27.067 0.3 1.1 10 6.976 31.051 26.64
0.2 1.1 5 5.205 16.163 27.391 0.35 1.1 10 7.896 31.909 26.878
0.25 1.1 5 6.141 16.808 27.717 0.4 1.1 10 8.783 32.777 27.129
0.3 1.1 5 7.077 17.496 28.04 0.45 1.1 10 9.608 33.614 27.393
0.35 1.1 5 7.992 18.213 28.358 0.5 1.1 10 10.348 34.384 27.671
0.4 1.1 5 8.858 18.922 28.674 0.55 1.1 10 10.98 35.061 27.961
0.45 1.1 5 9.648 19.584 28.989 0.6 1.1 10 11.487 35.629 28.262
0.5 1.1 5 10.341 20.163 29.306 0.65 1.1 10 11.848 36.079 28.569
0.55 1.1 5 10.919 20.633 29.63 0.7 1.1 10 12.04 36.403 28.878
0.6 1.1 5 11.368 20.985 29.963 0.75 1.1 10 12.042 36.592 29.182
0.65 1.1 5 11.675 21.216 30.308 0.8 1.1 10 11.833 36.637 29.473
0.7 1.1 5 11.822 21.326 30.663 0.85 1.1 10 11.405 36.538 29.741
0.75 1.1 5 11.796 21.315 31.026 0.9 1.1 10 10.768 36.324 29.974
0.8 1.1 5 11.583 21.184 31.389 0.95 1.1 10 9.962 36.085 30.159
0.85 1.1 5 11.182 20.944 31.74 1 1.1 10 9.07 36.006 30.278
0.9 1.1 5 10.608 20.642 32.061 0 1.2 10 0.289 26.525 25.191
0.95 1.1 5 9.903 20.394 32.328 0.05 1.2 10 2.233 27.439 25.473

1 1.1 5 9.145 20.44 32.512 0.1 1.2 10 3.487 28.265 25.73
0 1.2 5 0.246 13.659 26.197 0.15 1.2 10 4.468 29.016 25.968

0.05 1.2 5 2.187 14.42 26.445 0.2 1.2 10 5.388 29.764 26.197
0.1 1.2 5 3.479 15.148 26.745 0.25 1.2 10 6.329 30.566 26.423
0.15 1.2 5 4.515 15.816 27.071 0.3 1.2 10 7.301 31.442 26.652
0.2 1.2 5 5.489 16.478 27.409 0.35 1.2 10 8.279 32.373 26.89
0.25 1.2 5 6.473 17.183 27.748 0.4 1.2 10 9.227 33.316 27.138
0.3 1.2 5 7.469 17.946 28.08 0.45 1.2 10 10.109 34.219 27.398
0.35 1.2 5 8.448 18.743 28.404 0.5 1.2 10 10.894 35.039 27.67
0.4 1.2 5 9.371 19.527 28.721 0.55 1.2 10 11.559 35.745 27.952
0.45 1.2 5 10.203 20.243 29.033 0.6 1.2 10 12.085 36.324 28.241
0.5 1.2 5 10.916 20.846 29.344 0.65 1.2 10 12.453 36.772 28.534
0.55 1.2 5 11.491 21.31 29.658 0.7 1.2 10 12.644 37.087 28.827
0.6 1.2 5 11.916 21.626 29.981 0.75 1.2 10 12.637 37.266 29.116
0.65 1.2 5 12.181 21.801 30.316 0.8 1.2 10 12.414 37.298 29.395
0.7 1.2 5 12.278 21.847 30.663 0.85 1.2 10 11.963 37.177 29.66
0.75 1.2 5 12.202 21.776 31.021 0.9 1.2 10 11.284 36.915 29.903
0.8 1.2 5 11.948 21.599 31.382 0.95 1.2 10 10.405 36.584 30.117
0.85 1.2 5 11.521 21.33 31.736 1 1.2 10 9.385 36.357 30.294
0.9 1.2 5 10.939 21.014 32.065 0 1.3 10 0.42 26.704 25.182
0.95 1.2 5 10.243 20.766 32.345 0.05 1.3 10 2.462 27.7 25.476

1 1.2 5 9.504 20.832 32.544 0.1 1.3 10 3.751 28.568 25.741
0 1.3 5 0.344 13.827 26.189 0.15 1.3 10 4.751 29.345 25.985



x T(K) P(bar) S(J/molK) H(J/mol) V(cm3/mol) - x. T (K) P (bar) S (J/molK) H (J/mol) V (cm3/mol)
0.05 1.3 5 2.391 14.67 26.432 0.2 1.3 10 5.695 30.124 26.218
0.1 1.3 5 3.734 15.45 26.739 0.25 1.3 10 6.672 30.97 26.448
0.15 1.3 5 4.81 16.162 27.081 0.3 1.3 10 7.689 31.904 26.68
0.2 1.3 5 5.831 16.877 27.436 0.35 1.3 10 8.715 32.899 26.919
0.25 1.3 5 6.871 17.649 27.79 0.4 1.3 10 9.705 33.9 27.165
0.3 1.3 5 7.928 18.488 28.134 0.45 1.3 10 10.618 34.849 27.42
0.35 1.3 5 8.962 19.359 28.466 0.5 1.3 10 11.421 35.695 27.682
0.4 1.3 5 9.925 20.201 28.784 0.55 1.3 10 12.094 36.41 27.949
0.45 1.3 5 10.773 20.947 29.091 0.6 1.3 10 12.62 36.985 28.217
0.5 1.3 5 11.478 21.547 29.392 0.65 1.3 10 12.987 37.425 28.485
0.55 1.3 5 12.021 21.973 29.693 0.7 1.3 10 13.181 37.74 28.751
0.6 1.3 5 12.396 22.227 29.999 0.75 1.3 10 13.185 37.932 29.013
0.65 1.3 5 12.605 22.328 30.316 0.8 1.3 10 12.978 37.986 29.271
0.7 1.3 5 12.649 22.306 30.647 0.85 1.3 10 12.537 37.879 29.528
0.75 1.3 5 12.533 22.187 30.992 0.9 1.3 10 11.841 37.594 29.784
0.8 1.3 5 12.261 21.989 31.347 0.95 1.3 10 10.879 37.158 30.044
0.85 1.3 5 11.836 21.725 31.703 1 1.3 10 9.661 36.699 30.314
0.9 1.3 5 11.27 21.427 32.044 0 1.4 10 0.584 27.026 25.178
0.95 1.3 5 10.581 21.183 32.349 0.05 1.4 10 2.714 28.094 25.484

1 1.3 5 9.808 21.215 32.586 0.1 1.4 10 4.045 29 25.758
0 1.4 5 0.506 14.13 26.18 0.15 1.4 10 5.078 29.804 26.011

0.05 1.4 5 2.638 15.054 26.42 0.2 1.4 10 6.059 30.612 26.252
0.1 1.4 5 4.03 15.889 26.738 0.25 1.4 10 7.079 31.497 26.489
0.15 1.4 5 5.153 16.653 27.098 0.3 1.4 10 8.139 32.475 26.728
0.2 1.4 5 6.232 17.426 27.474 0.35 1.4 10 9.198 33.511 26.97
0.25 1.4 5 7.336 18.264 27.847 0.4 1.4 10 10.206 34.542 27.216
0.3 1.4 5 8.453 19.169 28.207 0.45 1.4 10 11.12 35.502 27.465
0.35 1.4 5 9.531 20.093 28.546 0.5 1.4 10 11.909 36.34 27.713
0.4 1.4 5 10.513 20.962 28.866 0.55 1.4 10 12.559 37.032 27.958
0.45 1.4 5 11.349 21.7 29.167 0.6 1.4 10 13.064 37.583 28.197
0.5 1.4 5 12.013 22.253 29.455 0.65 1.4 10 13.421 38.013 28.428
0.55 1.4 5 12.492 22.601 29.736 0.7 1.4 10 13.628 38.345 28.653
0.6 1.4 5 12.794 22.761 30.019 0.75 1.4 10 13.668 38.585 28.875
0.65 1.4 5 12.932 22.771 30.31 0.8 1.4 10 13.516 38.713 29.102
0.7 1.4 5 12.925 22.684 30.616 0.85 1.4 10 13.126 38.675 29.344
0.75 1.4 5 12.788 22.541 30.94 0.9 1.4 10 12.442 38.404 29.616
0.8 1.4 5 12.527 22.367 31.282 0.95 1.4 10 11.39 37.85 29.939
0.85 1.4 5 12.142 22.161 31.636 1 1.4 10 9.89 37.048 30.337
0.9 1.4 5 11.618 21.923 31.994 0 1.5 10 0.937 27.469 25.172
0.95 1.4 5 10.934 21.688 32.336 0.05 1.5 10 3.098 28.631 25.49

1 1.4 5 10.057 21.605 32.637 0.1 1.5 10 4.445 29.598 25.774
0 1.5 5 0.885 14.524 26.164 0.15 1.5 10 5.501 30.446 26.038

0.05 1.5 5 3.021 15.563 26.404 0.2 1.5 10 6.516 31.292 26.29
0.1 1.5 5 4.422 16.489 26.738 0.25 1.5 10 7.572 32.211 26.539
0.15 1.5 5 5.575 17.332 27.121 0.3 1.5 10 8.659 33.215 26.789
0.2 1.5 5 6.705 18.181 27.521 0.35 1.5 10 9.727 34.26 27.039
0.25 1.5 5 7.867 19.087 27.917 0.4 1.5 10 10.721 35.276 27.287
0.3 1.5 5 9.033 20.043 28.295 0.45 1.5 10 11.596 36.195 27.53
0.35 1.5 5 10.136 20.987 28.645 0.5 1.5 10 12.332 36.972 27.763
0.4 1.5 5 11.108 21.835 28.967 0.55 1.5 10 12.925 37.599 27.981
0.45 1.5 5 11.9 22.506 29.261 0.6 1.5 10 13.386 38.098 28.182
0.5 1.5 5 12.489 22.951 29.532 0.65 1.5 10 13.731 38.513 28.365
0.55 1.5 5 12.875 23.167 29.79 0.7 1.5 10 13.966 38.883 28.537
0.6 1.5 5 13.083 23.19 30.042 0.75 1.5 10 14.08 39.219 28.706
0.65 1.5 5 13.147 23.091 30.299 0.8 1.5 10 14.037 39.486 28.889
0.7 1.5 5 13.104 22.946 30.57 0.85 1.5 10 13.76 39.585 29.109
0.75 1.5 5 12.979 22.816 30.863 0.9 1.5 10 13.135 39.371 29.4
0.8 1.5 5 12.782 22.725 31.184 0.95 1.5 10 11.998 38.677 29.801
0.85 1.5 5 12.493 22.647 31.534 1 1.5 10 10.136 37.386 30.364
0.9 1.5 5 12.058 22.523 31.91
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3.1 The energy of the quasiparticles to the their momentum is shown schemati-
cally. (a) is the phonon region, (b) the maxon peak, (c) the roton minimum.
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