

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ -ΜΗΧΑΝΙΚΩΝ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ / ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΔΑΙΣΙΑΣ

Επίπεδες Καμπύλες στο Γήινο Τριαξονικό Ελλειψοειδές

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Χριστίνα Φιλαρέτου

Επιβλέπων: Γεώργιος Πάνου Επίκουρος Καθηγητής Ε.Μ.Π.

Αθήνα, Μάρτιος 2023

NATIONAL TECHNICAL UNIVERSITY OF ATHENS SCHOOL OF RURAL, SURVEYING AND GEOINFORMATICS ENGINEERING DEPARTMENT OF TOPOGRAPHY / LABORATORY OF GEODESY

Plane Curves on the Earth's Triaxial Ellipsoid

DIPLOMA THESIS

Christina Filaretou

Supervisor: Georgios Panou Assistant Professor at N.T.U.A.

Athens, March 2023

Επίπεδες Καμπύλες στο Γήινο Τριαξονικό Ελλειψοειδές

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Χριστίνα Φιλαρέτου

Επιβλέπων: Γεώργιος Πάνου Επίκουρος Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή:

..... Γ. Πάνου

..... Μ. Τσακίρη

Επ. Καθηγητής Ε.Μ.Π. Καθηγήτρια Ε.Μ.Π.

..... Α. Σκοπελίτη

Επ. Καθηγήτρια Ε.Μ.Π.

Αθήνα, Μάρτιος 2023

..... Χριστίνα Φιλαρέτου

Διπλωματούχος Αγρονόμος και Τοπογράφος Μηχανικός – Μηχανικός Γεωπληροφορικής Ε.Μ.Π. Διπλωματούχος Πολιτικός Μηχανικός Ε.Μ.Π.

Copyright © Χριστίνα Φιλαρέτου, 2023. Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας διπλωματικής εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν στη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τη συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τη συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου.

Ευχαριστίες

Η παρούσα διπλωματική εργασία σηματοδοτεί το πέρας του δεύτερου κύκλου σπουδών μου, στη Σχολή Αγρονόμων και Τοπογράφων Μηχανικών – Μηχανικών Γεωπληροφορικής Ε.Μ.Π. Θεωρώ ότι είναι σημαντικό να ευχαριστήσω όσους συνέβαλαν με οποιονδήποτε τρόπο στην προσπάθειά μου αυτή.

Αρχικά, η εκπόνηση της εργασίας αυτής δε θα ήταν δυνατή χωρίς την καθοδήγηση του επιβλέποντος καθηγητή μου, κ. Γεωργίου Πάνου, Επίκουρου Καθηγητή Ε.Μ.Π. Θα ήθελα, λοιπόν, να τον ευχαριστήσω θερμά για την ευκαιρία που μου έδωσε να ασχοληθώ και, εν τέλει, να φέρω εις πέρας ένα θέμα απαιτητικό, αλλά παράλληλα ιδιαίτερα ενδιαφέρον επιστημονικά. Η βοήθεια που μου παρείχε καθ' όλη τη διάρκεια της συνεργασίας μας αποδείχθηκε καθοριστική για την επιτυχή μελέτη του θέματος και μου έδωσε τη δυνατότητα να εξερευνήσω νέους ορίζοντες.

Τέλος, θα ήθελα να ευχαριστήσω την οικογένειά μου, δίχως τη στήριξη της οποίας δεν θα είχα καταφέρει να αναδειχθώ διπλωματούχος για δεύτερη φορά και μάλιστα από μια Σχολή που φέρει το κύρος και την ποιότητα του Εθνικού Μετσόβιου Πολυτεχνείου.

Carpe diem

Χριστίνα Φιλαρέτου Αθήνα, Μάρτιος 2023

Περίληψη

Η τριαξονικότητα της Γης έχει αποδειχθεί ικανοποιητικά σε πολλές γεωδαιτικές μελέτες. Το γεγονός αυτό καθιστά την επιφάνεια του τριαξονικού ελλειψοειδούς ως μια καλύτερη προσέγγιση μιας φυσικής επιφάνειας αναφοράς. Οι επίπεδες καμπύλες πλεονεκτούν έναντι των γεωδαισιακών, όσον αφορά την ευκολία επίλυσής τους. Προκύπτουν από την τομή ενός τριαξονικού ελλειψοειδούς και ενός επιπέδου και έχει αποδειχθεί ότι, γενικά, είναι ελλείψεις. Στην παρούσα εργασία μελετάται το πρόβλημα υπολογισμού του μήκους τόξου μιας έλλειψης και του προσδιορισμού ενός σημείου άφιξης, μετά από δοθέν μήκος τόξου πάνω σε μια έλλειψη. Εφαρμόζεται τόσο μια αριθμητική, όσο και μια προσεγγιστική αναλυτική μέθοδος. Παράλληλα, δίνονται οι αναγκαίοι μετασχηματισμοί των συντεταγμένων του επιπέδου της τομής στον τρισδιάστατο χώρο και αντίστροφα. Επιπρόσθετα, προσδιορίζονται πέντε είδη τομών στο τριαξονικό ελλειψοειδές, μια κεντρική, δύο κάθετες και δύο μέσες κάθετες τομές. Επιπλέον, περιγράφονται οι αλγόριθμοι επίλυσης για το ευθύ και το αντίστροφο πρόβλημα των επίπεδων τομών στο τριαξονικό ελλειψοειδές και παρουσιάζεται η εφαρμογή της μεθόδου μέσω αριθμητικών πειραμάτων, η οποία μπορεί να εφαρμοστεί και σε άλλα ουράνια σώματα πέραν της Γης. Στη βιβλιογραφία η επίλυση προβλημάτων που προαναφέρθηκαν γίνεται με επαναληπτικές μεθόδους, για ένα πεπλατυσμένο σφαιροειδές. Στην εργασία αυτή, παρέχονται οι γενικότερες λύσεις για τα δύο προβλήματα, οι οποίες είναι εφαρμόσιμες για ένα πεπλατυσμένο σφαιροειδές και για οποιαδήποτε τομή, χωρίς να απαιτείται κάποια επαναληπτική διαδικασία.

Λέξεις κλειδιά: αντίστροφο πρόβλημα, γεωδαισιακή, ευθύ πρόβλημα, μήκος τόξου έλλειψης, τομή

Abstract

The triaxiality of the Earth has been satisfactorily demonstrated in many geodetic studies. This fact makes the triaxial ellipsoid surface a better approximation of a physical reference surface. Plane curves have an advantage over geodesics in terms of their ease of solution. They are produced by the intersection of a triaxial ellipsoid and a plane and are, in general, ellipses. In this work, the problem of calculating the arc length of an ellipse and determining an arrival point, after a given arc length on an ellipse, is studied. Both a numerical and an approximate analytical method are applied. At the same time, the necessary transformations of the coordinates of the section plane in the threedimensional space and vice versa are given. In addition, five kinds of sections on the triaxial ellipsoid are identified, one central, two normal and two mean normal sections. In addition, the solving algorithms for the direct and inverse problem of plane sections on the triaxial ellipsoid are described and the application of the method through numerical experiments is presented, which can be applied to other celestial bodies besides the Earth. In the literature, the solution of the aforementioned problems is done by iterative methods, for an oblate spheroid. In this paper, the most general solutions for both problems are provided, which are applicable for an oblate spheroid and for any section, without requiring any iterative procedure.

Keywords: arc length, geodesics, direct problem, inverse problem, section

Περιεχόμενα

Ευχαριστίες		vii
Περίληψη		ix
Abstract		xi
Κατάλογος Εικόνων		XV
Κατάλογος Πινάκων		xix
1. Εισαγωγή		1
1.1. Περιγραφή τ	ου προβλήματος	1
1.2. Βιβλιογραφι	κή ανασκόπηση	3
1.3. Κίνητρο - Πρ	ωτοτυπία	4
1.4. Χρήσιμοι μετ	ασχηματισμοί	5
1.4.1. Παραμε ⁻	τρικές συντεταγμένες	5
1.4.2. Ελλειψο	ειδείς συντεταγμένες	7
1.4.3. Γεωδαιτ	τικές συντεταγμένες	9
2. Τομή κεντρικού ε	λλειψοειδούς και επιπέδου	
2.1. Μήκος τόξου	έλλειψης	
2.1.1. Αριθμητ	ική μέθοδος	
2.1.2. Προσεγγ	γιστική αναλυτική μέθοδος	
2.2. Θέση σημείο	υ άφιξης	
2.2.1. Αριθμητ	ική μέθοδος	
2.2.2. Προσεγγ	γιστική αναλυτική μέθοδος	19
3. Προσδιορισμός ετ	τιπέδου	
3.1. Γωνία		
4. Αντίστροφο πρόβ	3λημα	
4.1. Περιγραφή τ	ου αλγορίθμου	
4.2. Αριθμητικά τ	ταραδείγματα και συγκρίσεις	
4.2.1. Πρώτο τ	τείραμα	
4.2.2. Δεύτερο	η πείραμα	
5. Ευθύ πρόβλημα		53
5.1. Περιγραφή τ	ου αλγορίθμου	53
5.2. Αριθμητικά τ	ταραδείγματα και συγκρίσεις	54
6. Συμπεράσματα κα	αι προτάσεις	63
Παράρτημα		
Βιβλιογραφία		

Κατάλογος Εικόνων

Εικόνα 1.1 : Ο ορισμός και οι συμβολισμοί των προβλημάτων	
(https://en.wikipedia.org/wiki/Earth_section_paths)	1
Εικόνα 1.3: Το πλέγμα των παραμετρικών συντεταγμένων (U, V) ανά 15° στην	
επιφάνεια του τριαξονικού ελλειψοειδούς με $\alpha_x = 10$, $\alpha_y = 9.8$ και $\alpha_z = 6$	6
Εικόνα 1.4 : Το πλέγμα των ελλειψοειδών συντεταγμένων (<i>B</i> , <i>L</i>) ανά 15° στην	
επιφάνεια του τριαξονικού ελλειψοειδούς με $\alpha_x = 10$, $\alpha_y = 9.8$ και $\alpha_z = 6$	8
Εικόνα 1.5 : Το πλέγμα των γεωδαιτικών συντεταγμένων (φ, λ) ανά 15° στην επιφάνε	ια
του τριαξονικού ελλειψοειδούς με $\alpha_x = 10$, $\alpha_y = 9.8 \ \kappa \alpha_l \ \alpha_z = 6$	10
Εικόνα 2.1: Γεωμετρία του προβλήματος της τομής ελλειψοειδούς και επιπέδου	11
Εικόνα 2.2 : Η έλλειψη και τα χαρακτηριστικά της στο επίπεδο της τομής	14
Εικόνα 3.1: Προσδιορισμός της εξίσωσης του επιπέδου	23
Εικόνα 3.2 : Κεντρική τομή (Deakin, 2010)	24
Εικόνα 3.3 : Κάθετες τομές (Deakin, 2009)	25
Εικόνα 3.4 : Ορισμός της μέσης κάθετης τομής ΙΙ (Feltens, 2009)	26
Εικόνα 3.5 : Τα μοναδιαία διανύσματα σε ένα τυχαίο σημείο του τριαξονικού	
ελλειψοειδούς	26
Εικόνα 4.1: Απεικόνιση κάθε επίπεδης καμπύλης και της γεωδαισιακής μεταξύ ενός	
ζεύγους σημείων	30
Εικόνα 4.2: Απεικόνιση κάθε επίπεδης καμπύλης μεταξύ ζευγών σημείων σταθερού	
μήκους γεωδαισιακής και κοινής αφετηρίας	35
Εικόνα 4.3 : Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακή	1
για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 15^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km	36
Εικόνα 4.4 : Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακή	1
για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 45^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km	36
Εικόνα 4.5 : Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακή	1
για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 90^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km	37
Εικόνα 4.6 : Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακή]
για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 135^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km	37
Εικόνα 4.7 : Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακή]
για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 165^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km	38
Εικόνα 4.8 : Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακή]
για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 15^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km	38
Εικόνα 4.9 : Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακή]
για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 45^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km	39
Εικόνα 4.10 : Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακ	τή
για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 90^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km	39
Εικόνα 4.11 : Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακ	τή
για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 135^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km	40
Εικόνα 4.12 : Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακ	τή
για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 165^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km	40
Εικόνα 4.13 : Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακ	τή
για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 15^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km	41
Εικόνα 4.14 : Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακ	τή
για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 45^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km	41
Εικόνα 4.15 : Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακ	τή
για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 90^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km	42

Εικόνα 4.16: Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακή
για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 135^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km 42
Εικόνα 4.17: Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακή
για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 165^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km 43
Εικόνα 4.18 : Απεικόνιση της διαφοράς της γωνίας α_1 στο σημείο P_1 κάθε καμπύλης με
τη γεωδαισιακή για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 15^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα
100 km
Εικόνα 4.19 : Απεικόνιση της διαφοράς της γωνίας α ₁ στο σημείο <i>P</i> ₁ κάθε καμπύλης με
τη γεωδαισιακή για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 45^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα
100 km
Γισό και 4 20 : Απεικόνιση της διαφοράς της γωνίας α _ε στο σημείο <i>Ρ</i> ε κάθε καμπύλης με
The second sec
$\frac{100 \text{km}}{100 \text{km}} = 5, v_1 = 0, u_1 = 90 \text{km} \cdot 5_{12} \text{and} 0 \text{m} \cdot \cos 10000 \text{km}, \mu e \text{pr} \mu a$
$F_{\rm U}$ όνα Α 21 : Απεικόνιση της διαφοράς της χωνίας α _υ στο σημείο Ρ . κάθε καμπύλης με
EIKOVA 4.21 . Anterkovioli ili oliapopus ili povias u_1 oto olipeto F_1 kate kapitovije pe
100 km
100 KIII
Εικονά 4.22 : Απεικονιση της οιαφοράς της γωνίας a_1 στο σημείο P_1 κάθε καμπυλής με
tη γεωδαίσιακη για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 165^\circ$ και s_{12} από 0 m εως 18000 km, με βημα
100 km
Εικόνα 4.23 : Απεικόνιση της διαφοράς της γωνίας α_1 στο σημείο P_1 κάθε καμπύλης με
τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 15^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα
100 km
Εικόνα 4.24 : Απεικόνιση της διαφοράς της γωνίας α_1 στο σημείο P_1 κάθε καμπύλης με
τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 45^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα
100 km
Εικόνα 4.25 : Απεικόνιση της διαφοράς της γωνίας α_1 στο σημείο P_1 κάθε καμπύλης με
τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 90^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα
100 km
Εικόνα 4.26 : Απεικόνιση της διαφοράς της γωνίας <i>α</i> 1 στο σημείο <i>P</i> ₁ κάθε καμπύλης με
τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $\alpha 1 = 135^\circ$ και s_{12} από 0 m έως 18000 km, με
βήμα 100 km
Εικόνα 4.27 : Απεικόνιση της διαφοράς της γωνίας α ₁ στο σημείο P ₁ κάθε καμπύλης με
τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 165^\circ$ και s_{12} από 0 m έως 18000 km, με
βήμα 100 km
 Εικόνα 4.28: Απεικόνιση της διαφοράς της γωνίας α1 στο σημείο Ρ1 κάθε καμπύλης με
τη γεωδαισιακή για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 15^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα
100 km
Εικόνα 4.29 : Απεικόνιση της διαφοράς της γωνίας α_1 στο σημείο P_1 κάθε καμπύλης με
The real matrix is a set of the real set of
100 km 49
Γ υό και 1 Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ
Γικόνα 4.50 . Απεικόνιση της σιαφοράς της γωνίας u_1 στο σημείο r_1 κασε καμπολής με τη χεωδαισιακή χια $U_1 = 65^\circ$ $V_2 = 0^\circ$ $\alpha_1 = 90^\circ$ και ε ₁ από 0 m έως 18000 km με βήμα
$100 \text{km} = 50^{\circ}, v_1 = 0^{\circ}, v_1 = 0^{\circ}, v_1 = 50^{\circ}, v_1 = 50$
100 km -30 μαζιμάτη της διακοροάς της μετά της
EIKOVA 4.51 : AIEIKOVIOI TIIS OLAPOPAS TIIS YWVIAS a_1 OTO OIJEEO P_1 KAGE KAHTUAIS HE
τη γεωσαισιακή για $v_1 = 05^\circ$, $v_1 = 0^\circ$, $\alpha_1 = 135^\circ$ και s_{12} απο 0 m εως 18000 km, με
pτμα του κm
Εικονα 4.32 : Απεικονιση της οιαφορας της γωνιας α_1 στο σημείο P_1 καθε καμπύλης με
τη γεωδαισιακή για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 165^\circ$ και s_{12} από 0 m έως 18000 km, με
βημα 100 km

Εικόνα 5.1 : Διαφορές της γεωδαισιακής απόστασης του σημείου άφιξης P ₂ της
κεντρικής και της κάθετης τομής με τη γεωδαισιακή
Εικόνα 5.2: Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P2
της κεντρικής και της κάθετης τομής με τη γεωδαισιακή για $U_1=5^\circ$, $V_1=0^\circ$, $lpha_1=15^\circ$
και $s_{12}~$ από 0 m έως 18000 km, με βήμα 100 km
Εικόνα 5.3 : Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P_2
της κεντρικής και της κάθετης τομής με τη γεωδαισιακή για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 45^\circ$
F_{12} uno 0 m εως 10000 km, με ρημα 100 km
EIKOVA 5.4 . Antikovion tav olapopav tijs readatotakijs ando tadijs too on μ_2 tris restrokkis kai tris kalstris toukis in verskalaraki via $U_1 = 5^{\circ} V_2 = 0^{\circ} \alpha_1 = 90^{\circ}$
r_{11} kev (pixit) kut (1) kut (1) kut (1) topits in figure (1) feaduloitain figure (1) $r_{11} = 3$, $v_{11} = 0$, $u_{11} = 50$
F_{12} από θ μη έως 10000 κμι, με μημα 100 κμι ματαγραγικάς απόστασης του σημείου P_{-}
The restriction of the temperature of temperature of the temperature of temperat
κ_{12} και κ_{12} από 0 m έως 18000 km, με βήμα 100 km
Εικόνα 5.6 : Απεικόνιση των διαφορών της νεωδαισιακής απόστασης του σημείου P_2
the kevtolkńc kal the kάθετης τομής με τη γεωδαισιακή για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 165^\circ$
Εικόνα 5.7: Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P ₂
της κεντρικής και της κάθετης τομής με τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 15^\circ$
και s ₁₂ από 0 m έως 18000 km, με βήμα 100 km 57
Εικόνα 5.8: Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P2
της κεντρικής και της κάθετης τομής με τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $a_1 = 45^\circ$
και s_{12} από 0 m έως 18000 km, με βήμα 100 km58
Εικόνα 5.9: Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P2
της κεντρικής και της κάθετης τομής με τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 90^\circ$
και s_{12} από 0 m έως 18000 km, με βήμα 100 km58
Εικόνα 5.10 : Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P_2
της κεντρικής και της κάθετης τομής με τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $a_1 =$
135° και s_{12} από 0 m έως 18000 km, με βήμα 100 km59
Εικόνα 5.11 : Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P_2
της κεντρικής και της κάθετης τομής με τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $\alpha_1 =$
165° και s_{12} από 0 m έως 18000 km, με βήμα 100 km
Εικόνα 5.12 : Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P_2
της κεντρικής και της καθέτης τομής με τη γεωδαισιακή για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 15^\circ$
Είκονα 5.13 : Απεικονίση των διαφορών της γεωδαίσιακης αποστασης του σημείου P_2
thς κεντρικής και thς καθέτης τομής με τη γεωδαίσιακη για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 45^\circ$
$Kal S_{12}$ and 0 m εως 18000 km, με βημα 100 km
EIROVA 5.14 : Allelkoviol two olaqopav tijs resolucitakijs allootaolijs too olipeloo P_2
$u_1 = 0^{-1}, u_1 = 0^{-1}, $
F_{12} από 0 m εως 10000 km, με ρημα 100 km
μανά 5.15 . Επεικονιση των σιαφορών της γεωσαιστακής αποστασής του σημείου F_2 της κεντρικής και της κάθετης τριής με τη χεωδαισιακή για $H_2 = 65^\circ V_2 = 0^\circ \alpha_1 = -$
135° και s ₁₂ από 0 m έως 18000 km με βήμα 100 km $0_1 = 05$, $v_1 = 0$, $u_1 = 61$
F_{IK6} γατιστη τως 10000 κm, με ρημα 100 κm μεταγρατικής απόστασης του σημείου P_{-}
The κεντοικής και της κάθετης τομής με τη γεωδαισιακή για $U_4 = 65^\circ$, $V_4 = 0^\circ$, $\alpha_4 = 0^\circ$
165° και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Κατάλογος Πινάκων

Πίνακας 4.1 : Αποτελέσματα μέγιστων τιμών διαφοράς μήκους s ₁₂ των καμπυλών i)
κεντρικής ii) πρώτης κάθετης iii) δεύτερης κάθετης iv) μέσης Ι κάθετης και v) μέσης ΙΙ
κάθετης τομής από τη γεωδαισιακή s^{geo}_{12} , για το αντίστροφο πρόβλημα με ζεύγη
σημείων $U_1 = 5^\circ$, 45°, 65°, $V_1 = 0^\circ$, $U_2 = 1^\circ$, 2°, 3°,, 85° και $V_2 = 45^\circ$, 85°, στο γήινο
τριαξονικό ελλειψοειδές
Πίνακας 4.2 : Αποτελέσματα μέγιστων τιμών διαφοράς μήκους s ₁₂ των καμπυλών i)
κεντρικής ii) πρώτης κάθετης iii) δεύτερης κάθετης iv) μέσης Ι κάθετης και v) μέσης ΙΙ
κάθετης τομής από τη γεωδαισιακή s^{geo}_{12} , για το αντίστροφο πρόβλημα με ζεύγη
σημείων $U_1 = 5^\circ$, 45°, 65°, $V_1 = 0^\circ$, $U_2 = 1^\circ$, 2°, 3°,, 85° και $V_2 = 125^\circ$, 165°, στο γήινο
τριαξονικό ελλειψοειδές
Πίνακας 4.3 : Αποτελέσματα μέγιστων τιμών διαφοράς μήκους s ₁₂ των καμπυλών i)
κεντρικής ii) πρώτης κάθετης iii) δεύτερης κάθετης iv) μέσης Ι κάθετης και v) μέσης ΙΙ
κάθετης τομής από τη γεωδαισιακή s^{geo}_{12} , για το αντίστροφο πρόβλημα με ζεύγη
σημείων $U_1 = 5^\circ, 45^\circ, 65^\circ, V_1 = 0^\circ, U_2 = -1^\circ, -2^\circ, -3^\circ, \dots, -85^\circ$ και $V_2 = 45^\circ, 85^\circ, στο$
γήινο τριαξονικό ελλειψοειδές
Πίνακας 4.4 : Αποτελέσματα μέγιστων τιμών διαφοράς μήκους s ₁₂ των καμπυλών i)
κεντρικής ii) πρώτης κάθετης iii) δεύτερης κάθετης iv) μέσης Ι κάθετης και v) μέσης ΙΙ
κάθετης τομής από τη γεωδαισιακή s_{12}^{geo} , για το αντίστροφο πρόβλημα με ζεύγη
σημείων $U_1 = 5^\circ, 45^\circ, 65^\circ, V_1 = 0^\circ, U_2 = -1^\circ, -2^\circ, -3^\circ, \dots, -85^\circ$ και $V_2 = 125^\circ, 165^\circ, στο$
γήινο τριαξονικό ελλειψοειδές
Πίνακας 4.5 : Αποτελέσματα μέγιστων τιμών διαφοράς γωνίας α_1 στο σημείο P_1 των
καμπυλών i) κεντρικής ii) πρώτης κάθετης iii) δεύτερης κάθετης iv) μέσης Ι κάθετης
και ν) μέσης ΙΙ κάθετης τομής από τη γεωδαισιακή a_1^{gco} , για το αντίστροφο πρόβλημα
με ζεύγη σημείων $U_1 = 5^\circ, 45^\circ, 65^\circ, V_1 = 0^\circ, U_2 = 1^\circ, 2^\circ, 3^\circ, \dots, 85^\circ$ και $V_2 = 45^\circ, 85^\circ, στο$
γήινο τριαξονικό ελλειψοειδές
Πίνακας 4.6 : Αποτελέσματα μέγιστων τιμών διαφοράς γωνίας α_1 στο σημείο P_1 των
καμπυλών 1) κεντρικής 11) πρώτης κάθετης 111) δευτερής κάθετης 1ν) μεσης Ι κάθετης
και v) μεσης ΙΙ καθετης τομης απο τη γεωδαισιακη a_1^{300} , για το αντιστροφο προβλημα
με ζεύγη σημείων $U_1 = 5^\circ, 45^\circ, 65^\circ, V_1 = 0^\circ, U_2 = 1^\circ, 2^\circ, 3^\circ, \dots, 85^\circ$ και $V_2 = 125^\circ, 165^\circ,$
στο γηινό τριαξονικό ελλειψοειδές
Πινακας 4.7 : Αποτελεσματα μεγιστων τιμών διαφοράς γωνίας α_1 στο σημείο P_1 των
καμπυλών 1) κεντρικής 11) πρώτης καθετής 111) δευτερής καθετής 1 \vee μεσης Γ καθετής
και V) μεσης Π καθετης τομης από τη γεωδαισιακή $a_1^{3/2}$, για το αντιστροφό προβλημα
$\mu \varepsilon \zeta \varepsilon \upsilon \gamma \eta \ \sigma \eta \mu \varepsilon \iota \omega \upsilon \ \upsilon_1 = 5^\circ, 45^\circ, 65^\circ, \nu_1 = 0^\circ, \upsilon_2 = -1^\circ, -2^\circ, -3^\circ, \dots, -85^\circ \ \kappa \alpha \iota \ \nu_2 = 45^\circ, 05^\circ, 05^$
45° , 85°, στο γηινο τριαξονικο ελλειψοειδες
Πινακας 4.8 : Αποτελεσματα μεγιστων τιμων διαφορας γωνιας α_1 στο σημείο P_1 των
καμπυλων 1) κεντρικής II) πρωτής καθετής III) δευτερής καθετής IV) μεσής Ι καθετής
και ν) μεσης 11 καθετης τομης από τη γεωσαισιακή a_1^2 , για το αντιστροφό προβλημα
με ζευγη σημειών $U_1 = 5^{-}, 45^{-}, 65^{-}, V_1 = 0^{-}, U_2 = -1^{-}, -2^{-}, -3^{-},, -85^{-}$ και $V_2 = 125^{0}, 125^{0}, -2^{-}, -3^{-},, -85^{-}$ και $V_2 = 125^{0}, -2^{-}, -3^{-},, -85^{-}$
125', 105', οτο γηινό τριαξονικό ελλειψοείδες

1. Εισαγωγή

1.1. Περιγραφή του προβλήματος

Αντικείμενο της παρούσας εργασίας είναι η επίλυση των προβλημάτων που έχουν καθιερωθεί στη βιβλιογραφία ως αντίστροφο και ευθύ για επίπεδες καμπύλες στην επιφάνεια του τριαξονικού ελλειψοειδούς. Συγκεκριμένα, τα δύο προβλήματα ορίζονται ως εξής (δες Εικόνα 1.1):

Αντίστροφο πρόβλημα:

Δοθεισών των συντεταγμένων δύο σημείων $P_1 = (x_1, y_1, z_1)$ και $P_2 = (x_2, y_2, z_2)$ πάνω στην επιφάνεια ενός τριαξονικού ελλειψοειδούς, να υπολογιστεί το μήκος τόξου s_{12} της έλλειψης που προκύπτει ως τομή του τριαξονικού ελλειψοειδούς με κάποιο επίπεδο και οι γωνίες α_1 και α_2 κατά τις οποίες η καμπύλη του επιπέδου της τομής τέμνει την καμπύλη σταθερής συντεταγμένης στην επιφάνεια στα σημεία P_1 και P_2 , αντίστοιχα.

<u>Ευθύ πρόβλημα:</u>

Δοθεισών των συντεταγμένων ενός σημείου αφετηρίας $P_1 = (x_1, y_1, z_1)$ πάνω στην επιφάνεια ενός τριαξονικού ελλειψοειδούς, της γωνίας α_1 κατά την οποία η καμπύλη του επιπέδου της τομής τέμνει την καμπύλη σταθερής συντεταγμένης στην επιφάνεια και του μήκους τόξου s_{12} της έλλειψης που προκύπτει ως τομή του τριαξονικού ελλειψοειδούς με κάποιο επίπεδο, να υπολογιστούν οι συντεταγμένες του σημείου άφιξης $P_2 = (x_2, y_2, z_2)$ και η γωνία α_2 .

Εικόνα 1.1: Ο ορισμός και οι συμβολισμοί των προβλημάτων (https://en.wikipedia.org/wiki/Earth_section_paths)

Σημειώνεται ότι, ανεξάρτητα των καμπυλόγραμμων συντεταγμένων (παραμετρικές, ελλειψοειδείς, γεωδαιτικές) που ορίζουν τις θέσεις των σημείων P_1 και P_2 , μπορούν να υπολογιστούν οι καρτεσιανές συντεταγμένες τους και αντίστροφα μέσω των τύπων της παραγράφου 1.4.

Για την επίλυση των παραπάνω προβλημάτων είναι θεμελιώδους σημασίας η αντιμετώπιση του προβλήματος της τομής ενός κεντρικού ελλειψοειδούς και ενός

επιπέδου. Τα κριτήρια για την επιλογή της κατάλληλης μεθοδολογίας είναι η απλότητα στη μαθηματική περιγραφή και η διασφάλιση της αριθμητικής ευστάθειας και ακρίβειας των αποτελεσμάτων, για εξισώσεις επιπέδων που έχουν γεωδαιτική σπουδαιότητα. Παραδοσιακά, οι ελλειψοειδείς τομές με γεωδαιτική σπουδαιότητα που συναντώνται στη βιβλιογραφία είναι οι εξής:

- Κεντρική τομή
- Κάθετη τομή
- Αντίστροφη κάθετη τομή
- Μέση κάθετη τομή Ι
- Μέση κάθετη τομή ΙΙ

Για την επίλυση του ευθέος και του αντιστρόφου προβλήματος εκτός των προηγούμενων επίπεδων καμπυλών χρησιμοποιούνται και οι γεωδαισιακές. Υπενθυμίζεται ότι, η γεωδαισιακή είναι η μοναδική καμπύλη με το μικρότερο μήκος που συνδέει δύο σημεία πάνω σε μια επιφάνεια.

Όσον αφορά τη γωνία α κατά την οποία η καμπύλη του επιπέδου της τομής τέμνει την καμπύλη σταθερής συντεταγμένης στην επιφάνεια, στην περίπτωση του τριαξονικού ελλειψοειδούς έχουμε πολλές επιλογές, ανάλογα με το πλέγμα των παραμετρικών καμπυλών που χρησιμοποιείται (παραμετρικές, ελλειψοειδείς, γεωδαιτικές).

Η δομή της παρούσας εργασίας οργανώνεται ως ακολούθως:

Στο Κεφάλαιο 2, περιγράφεται και αναλύεται το πρόβλημα της τομής ενός κεντρικού ελλειψοειδούς και ενός επιπέδου. Για το αποτέλεσμα της τομής, που αποδεικνύεται ότι γενικά είναι μία έλλειψη, εξετάζουμε τον τρόπο υπολογισμού του μήκους τόξου είτε με μια αριθμητική, είτε με μια προσεγγιστική αναλυτική μέθοδο. Αντίστροφα, με τις ίδιες μεθόδους υπολογίζεται η θέση ενός σημείου άφιξης από συγκεκριμένη αφετηρία μετά από δοθέν μήκος.

Στο Κεφάλαιο 3, περιγράφεται ο τρόπος προσδιορισμού της εξίσωσης του επιπέδου για τα είδη τομών που ενδιαφέρουν. Ακολούθως, δίνεται ο τρόπος με τον οποίο η γωνία *α* συνδέεται με τα μοναδιαία διανύσματα σε ένα σημείο πάνω στο τριαξονικό ελλειψοειδές.

Χρησιμοποιώντας το υπόβαθρο από τα προηγούμενα Κεφάλαια, στο Κεφάλαιο 4 περιγράφεται ο αλγόριθμος για την επίλυση του αντιστρόφου προβλήματος και εφαρμόζεται μέσω αριθμητικών πειραμάτων και συγκρίσεων. Αντίστοιχα, στο Κεφάλαιο 5 αναλύεται το ευθύ πρόβλημα.

Τέλος, στο Κεφάλαιο 6 παρουσιάζονται τα συμπεράσματα, σχολιάζονται τα αποτελέσματα της έρευνας και δίνονται προτάσεις για τη συνέχισή της.

1.2. Βιβλιογραφική ανασκόπηση

Η επίλυση του ευθέος και του αντιστρόφου προβλήματος για τις γεωδαισιακές στο τριαξονικό ελλειψοειδές παρουσιάζεται στις εργασίες των Panou (2013) και Panou και Korakitis (2019, 2020).

Με το μαθηματικό πρόβλημα της τομής ενός κεντρικού ελλειψοειδούς και ενός επιπέδου έχουν ασχοληθεί αρκετοί στη βιβλιογραφία, όπως οι Bell (1923), Ramberg (1976), Ferguson (1979), Gendzwill και Stauffer (1981), Gilbertson (2012), Bektas (2016), Klein (2012, 2017) και Orihuela (2022). Στις εργασίες των Ramberg (1976) και Gendzwill και Stauffer (1981) περιγράφεται η τομή με επίπεδο που διέρχεται από το κέντρο του ελλειψοειδούς, ενώ στις άλλες η τομή με τυχαίο επίπεδο. Εξετάζοντας την παραπάνω βιβλιογραφία και αναλύοντας τους τρόπους επίλυσης του προβλήματος της τομής, η παρούσα εργασία βασίζεται στις μεθοδολογίες που ακολουθούν οι Bell (1923), Gilbertson (2012) και Orihuela (2022).

Για τον υπολογισμό του μήκους τόξου μιας έλλειψης χρησιμοποιούνται: (i) αριθμητικές μέθοδοι και (ii) προσεγγιστικές αναλυτικές μέθοδοι. Η πρώτη κατηγορία εφαρμόζεται στις εργασίες των Williams (1996), Earle (2000), Deakin (2009), Tseng και Lee (2010), Deakin (2010), Sjöberg (2012), Gilbertson (2012) και Panou και Korakitis (2019), ενώ η δεύτερη κατηγορία στις εργασίες των Gan'shin (1969), Bowring (1971), Bowring (1984), Rapp (1991), Walwyn (1999), Earle (2008), Earle (2010), Pallikaris και Latsas (2009), Deakin (2012), Gilbertson (2012), Tseng et al. (2012), Deakin και Hunter (2013) και Orihuela (2022).

Όσον αφορά το είδος της τομής κυρίως στη βιβλιογραφία περιλαμβάνεται (i) η κεντρική τομή και (ii) η κάθετη τομή. Ενδεικτικά, για την πρώτη περίπτωση αναφέρονται οι εργασίες των Bowring (1984), Williams (1996), Walwyn (1999), Earle (2000), Pallikaris και Latsas (2009), Deakin (2010), Tseng και Lee (2010), Earle (2011), Deakin (2012), Sjöberg (2012) και Tseng et al. (2012), ενώ για τη δεύτερη περίπτωση οι εργασίες των Tienstra (1951), Bowring (1971) και Deakin (2009). Η κεντρική τομή ή η μέγιστη έλλειψη χρησιμοποιείται συνήθως στην πλοήγηση κατά αναλογία με το μέγιστο κύκλο. Από την άλλη μεριά, η κάθετη τομή συνδέεται με τη γεωδαιτική πρακτική των μετρήσεων αποστάσεων, όμως ως προς την κάθετη στο ελλειψοειδές.

1.3. Κίνητρο - Πρωτοτυπία

Για την επίλυση του ευθέος και του αντιστρόφου προβλήματος στην επιφάνεια του ελλειψοειδούς εκ περιστροφής, που είναι το διεθνές αποδεκτό μαθηματικό μοντέλο στη γεωδαισία, χρησιμοποιούνται οι γεωδαισιακές. Αναμφισβήτητα, τόσο θεωρητικά όσο και στον πρακτικό υπολογισμό τους πρόκειται για πολύπλοκες καμπύλες. Με αφορμή αυτό, ενθαρρύνεται η μελέτη και επίλυση των αντίστοιχων προβλημάτων για επίπεδες καμπύλες, που είναι σχετικά απλές. Σε καμία περίπτωση δεν επιδιώκεται η αντικατάσταση της επίλυσης μέσω γεωδαισιακών, που έχουν την ιδιότητα της μοναδικότητας, αλλά η απλούστευση των προβλημάτων.

Από τη βιβλιογραφική ανασκόπηση διαπιστώθηκε ότι, σε γενικές γραμμές, τα προβλήματα αντιμετωπίζονται μέσω μεθοδολογιών που αφορούν αποκλειστικά ένα είδος τομής (π.χ. κεντρική τομή). Όμως, υπάρχουν δύο σχετικά πρόσφατες εργασίες από τον Gilbertson (2012) και τον Orihuela (2022), οι οποίες αντιμετωπίζουν το πρόβλημα συνολικά για αρκετά είδη τομών αποκλειστικά στο ελλειψοειδές εκ περιστροφής. Το κλειδί στην προσπάθεια αυτή είναι η χρήση των καρτεσιανών συντεταγμένων.

Όσον αφορά τον τρόπο υπολογισμού του μήκους τόξου μιας έλλειψης, στη βιβλιογραφία εφαρμόζονται είτε αριθμητικές είτε προσεγγιστικές αναλυτικές μέθοδοι. Συνήθως, οι προσεγγιστικές αναλυτικές περιορίζονται σε ελλειψοειδή με σχετικά μικρές εκκεντρότητες, ώστε να είναι μικρός ο αριθμός των όρων των αναπτυγμάτων των σειρών. Αντίθετα, οι αριθμητικές μέθοδοι εφαρμόζονται γενικότερα, προσέχοντας τη συσσώρευση των αριθμητικών σφαλμάτων μέσω επιλογής κατάλληλου βήματος ολοκλήρωσης.

Σε αρκετές γεωδαιτικές μελέτες, όπως στην εργασία Panou et al. (2020), έχει αποδειχθεί πέρα από κάθε αμφιβολία η τριαξονικότητα της Γης. Το τριαξονικό ελλειψοειδές μπορεί να αποτελέσει ένα μαθηματικό μοντέλο που προσεγγίζει όσο το δυνατόν καλύτερα τη μορφή της Γης. Επομένως, κρίνεται αναγκαίο αλγόριθμοι οι οποίοι έχουν αναπτυχθεί για το ελλειψοειδές εκ περιστροφής να γενικευθούν στην περίπτωση του τριαξονικού ελλειψοειδούς.

Στην παρούσα εργασία, το ευθύ και το αντίστροφο πρόβλημα θα αντιμετωπιστεί στη γενικότερη μορφή του. Για την επίτευξη του στόχου αυτού, η επίλυση θα αφορά την επιφάνεια του τριαξονικού ελλειψοειδούς, με δυνατότητα εφαρμογής και σε ένα ελλειψοειδές εκ περιστροφής ή μια σφαίρα. Επίσης, η μεθοδολογία θα μπορεί να χρησιμοποιηθεί για όλα τα είδη των τομών που αναφέρονται στη βιβλιογραφία. Δηλαδή, πέραν της κεντρικής και των δύο κάθετων τομών, θα γενικευθούν οι ορισμοί των μέσων κάθετων τομών Ι και ΙΙ σύμφωνα με τους Gilbertson (2012) και Orihuela (2022), αντίστοιχα. Για να υπάρχει η δυνατότητα υλοποίησης και σε άλλα ουράνια σώματα, με διάφορες εκκεντρότητες, πέραν του γήινου τριαξονικού ελλειψοειδούς, θα χρησιμοποιηθούν τόσο αριθμητικές όσο και προσεγγιστικές αναλυτικές μέθοδοι. Καταλήγοντας, τονίζεται ότι οι αλγόριθμοι που αναπτύσσονται δεν χρησιμοποιούν κάποια επαναληπτική διαδικασία.

1.4. Χρήσιμοι μετασχηματισμοί

Δίνεται το τριαξονικό ελλειψοειδές, το οποίο σε καρτεσιανές συντεταγμένες έχει την εξίσωση:

$$\frac{x^2}{a_x^2} + \frac{y^2}{a_y^2} + \frac{z^2}{a_z^2} = 1, \quad 0 < a_z \le a_y \le a_x$$
(1.1)

όπου a_x , a_y και a_z είναι οι τρεις ημιάξονές του. Με βάση αυτούς ορίζονται οι γραμμικές εκκεντρότητες:

$$E_x = (a_x^2 - a_z^2)^{\frac{1}{2}}, \quad E_y = (a_y^2 - a_z^2)^{\frac{1}{2}}, \quad E_e = (a_x^2 - a_y^2)^{\frac{1}{2}}$$
(1.2)

όπου ισχύει $E_e^2 = E_x^2 - E_y^2$. Επίσης, ορίζονται οι πρώτες εκκεντρότητες:

$$e_x^2 = \frac{a_x^2 - a_z^2}{a_x^2}, \quad e_e^2 = \frac{a_x^2 - a_y^2}{a_x^2}.$$
 (1.3)

1.4.1. Παραμετρικές συντεταγμένες

Η μετατροπή παραμετρικών σε καρτεσιανές συντεταγμένες και αντίστροφα περιλαμβάνεται στην εργασία των π.χ. Panou και Korakitis (2020). Συγκεκριμένα, οι καρτεσιανές συντεταγμένες (x, y, z) ενός σημείου πάνω στην επιφάνεια του τριαξονικού ελλειψοειδούς λαμβάνονται από τις παραμετρικές (U, V) από τις ακόλουθες εκφράσεις:

$$x = \alpha_x \cos U \cos V \tag{1.4}$$

$$y = a_y \cos U \sin V = a_x \sqrt{1 - e_e^2} \cos U \sin V \tag{1.5}$$

$$z = a_z \sin U = a_x \sqrt{1 - e_x^2} \sin U \tag{1.6}$$

όπου
$$-π/2 ≤ U ≤ +π/2$$
 και $-π < V ≤ +π$.

Για απλότητα και χωρίς βλάβη της γενικότητας, υποθέτουμε πάντα ότι $x \ge 0$, $y \ge 0$ και $z \ge 0$, δηλαδή οι καρτεσιανές συντεταγμένες ενός δεδομένου σημείου στην επιφάνεια του τριαξονικού ελλειψοειδούς λαμβάνονται ως απόλυτες τιμές. Έπειτα, οι παραμετρικές συντεταγμένες λαμβάνονται από απλή αντιστροφή των εξισώσεων (1.4) έως (1.6). Ωστόσο, προτείνονται οι ακόλουθες εκφράσεις, οι οποίες έχουν μεγαλύτερη αριθμητική ευστάθεια:

$$U = \arctan\left[\frac{z\sqrt{1-e_e^2}}{\sqrt{x^2(1-e_e^2)+y^2}\sqrt{1-e_x^2}}\right]$$
(1.7)
 $\alpha v z\sqrt{1-e_e^2} \le \sqrt{x^2(1-e_e^2)+y^2}\sqrt{1-e_x^2}$

$$U = \frac{\pi}{2} - \arctan\left[\frac{\sqrt{x^2(1-e_e^2) + y^2}\sqrt{1-e_x^2}}{z\sqrt{1-e_e^2}}\right]$$
(1.8)
$$\alpha v \, z\sqrt{1-e_e^2} > \sqrt{x^2(1-e_e^2) + y^2}\sqrt{1-e_x^2}$$

όπου οι συμβάσεις όσον αφορά το σωστό τεταρτημόριο για το U εφαρμόζονται από το πρόσημο του z. Επιπρόσθετα, εκτός από την περίπτωση x = 0 και y = 0, όπου το V είναι απροσδιόριστο, έχουμε:

$$V = 2\arctan\left[\frac{y}{x\sqrt{1-e_e^2} + \sqrt{x^2(1-e_e^2) + y^2}}\right]$$

$$\alpha v \ y \le x\sqrt{1-e_e^2}$$
(1.9)

και

$$V = \frac{\pi}{2} - 2\arctan\left[\frac{x\sqrt{1-e_e^2}}{y+\sqrt{x^2(1-e_e^2)+y^2}}\right]$$
(1.10)
$$\alpha v \ y > \ x\sqrt{1-e_e^2}$$

όπου οι συμβάσεις αναφορικά με το σωστό τεταρτημόριο για το V εφαρμόζονται από το πρόσημο του x και του y.

Εικόνα 1.2: Το πλέγμα των παραμετρικών συντεταγμένων (U, V) ανά 15° στην επιφάνεια του τριαξονικού ελλειψοειδούς με $\alpha_x = 10$, $\alpha_y = 9.8$ και $\alpha_z = 6$.

ή

1.4.2. Ελλειψοειδείς συντεταγμένες

Οι καρτεσιανές συντεταγμένες (x, y, z) ενός σημείου στην επιφάνεια του ελλειψοειδούς λαμβάνονται από τις ελλειψοειδείς συντεταγμένες (B, L), μέσω των εκφράσεων που παρουσιάζονται στην εργασία π.χ. των Panou και Korakitis (2021) και έχουν ως εξής:

$$x = a_x \bar{B}^{\frac{1}{2}} \cos L \tag{1.11}$$

$$y = a_y \cos B \sin L \tag{1.12}$$

$$z = a_z \sin B \bar{L}^{\frac{1}{2}}$$
(1.13)

$$\bar{B} = \cos^2 B + \frac{E_e^2}{E_x^2} \sin^2 B$$
(1.14)

και

$$\bar{L} = 1 - \frac{E_e^2}{E_x^2} \cos^2 L.$$
(1.15)

Μια αναλυτική μέθοδος για την αντιστροφή των καρτεσιανών σε ελλειψοειδείς συντεταγμένες στην περίπτωση του τριαξονικού ελλειψοειδούς και σε αυτήν ενός πεπλατυσμένου σφαιροειδούς ($a_x = a_y$) αναπτύχθηκε στην εργασία των Panou και Korakitis (2021) και χρησιμοποιεί τους ακόλουθους τύπους:

$$B = \arctan\left[\left(\frac{z^2}{y^2}\frac{a_y^2}{a_z^2 L}\right)^{1/2} \sin L\right]$$

$$(1.16)$$

$$(5.16)$$

$$(5.16)$$

$$(5.16)$$

$$(5.16)$$

και

$$B = \frac{\pi}{2} - \arctan\left\{\frac{1}{2}\left[\overline{W} + \left(\overline{W}^2 + 4\frac{E_e^2}{E_x^2}\frac{y^2}{z^2}\frac{a_x^2}{a_y^2}\right)^{1/2}\right]\right\}^{1/2}$$

$$(1.17)$$

$$\delta\pi\sigma\nu\,\overline{W} = \frac{y^2}{z^2}\frac{a_x^2}{a_y^2} + \frac{E_y^2}{E_x^2}\frac{x^2}{z^2}\frac{a_x^2}{a_x^2} - \frac{E_e^2}{E_x^2}$$

Επίσης,

$$L = \frac{\pi}{2} - \arctan\left[\left(\frac{x^2}{y^2} \frac{a_y^2}{a_x^2 \bar{B}}\right)^{1/2} \cos B\right]$$
(1.18)

όπου
$$\bar{B} = \arctan\left[\left(\frac{z^2}{y^2}\frac{a_y^2}{a_z^2 \bar{L}}\right)^{1/2} \sin L\right]$$
ή

$$L = \arctan\left\{\frac{1}{2}\left[\overline{U} + \left(\overline{U}^2 + 4\frac{E_y^2}{E_x^2}\frac{z^2}{x^2}\frac{a_x^2}{a_y^2}\right)^{1/2}\right]\right\}^{1/2}$$

$$\delta\pi\sigma\upsilon\,\overline{U} = \frac{y^2}{x^2}\frac{a_x^2}{a_x^2} + \frac{E_e^2}{E_x^2}\frac{x^2}{a_x^2} - \frac{E_y^2}{E_x^2}.$$
(1.19)

Τέλος,

$$L = \frac{\pi}{2} - \arctan\left\{\frac{1}{2}\left[\bar{V} + \left(\bar{V}^2 + 4\frac{E_x^2}{E_y^2}\frac{x^2}{y^2}\frac{a_y^2}{a_x^2}\right)^{1/2}\right]\right\}^{1/2}$$

$$(1.20)$$

$$\delta\pi\sigma\nu\,\bar{V} = \frac{x^2}{y^2}\frac{a_y^2}{a_x^2} - \frac{E_e^2}{E_y^2}\frac{x^2}{y^2}\frac{a_y^2}{a_x^2} - \frac{E_x^2}{E_y^2}.$$

Στη συνέχεια, ξεκινώντας από τις δεδομένες καρτεσιανές συντεταγμένες (x, y, z) ως απόλυτες τιμές, ο αλγόριθμος εφαρμόζεται ως ακολούθως:

Αν $z \le x \le y$, υπολογίζεται αρχικά το L από την εξίσωση (1.19) και στη συνέχεια το B από την εξίσωση (1.16). Η περίπτωση που ισχύει y = 0 (δηλαδή το σημείο είναι πάνω στον άξονα x) εξαιρείται, αφού B = L = 0. Επίσης, αν $z \le y > x$, υπολογίζεται πρώτα το L από τη σχέση (1.20) και έπειτα το B από τη σχέση (1.16).

Aν z > y ≥ x, υπολογίζεται αρχικά το B από την έκφραση (1.17) και ακολούθως το L από την (1.18). Η περίπτωση που ισχύει y = 0 (δηλαδή το σημείο είναι πάνω στον άξονα z) εξαιρείται, αφού $B = L = \pi/2$. Ακόμη, αν z > y < x, το B υπολογίζεται από τη σχέση (1.17) και το L από τη σχέση (1.19).

Εικόνα 1.3: Το πλέγμα των ελλειψοειδών συντεταγμένων (*B*, *L*) ανά 15° στην επιφάνεια του τριαξονικού ελλειψοειδούς με $\alpha_x = 10$, $\alpha_y = 9.8$ και $\alpha_z = 6$.

1.4.3. Γεωδαιτικές συντεταγμένες

Η μετατροπή των γεωδαιτικών συντεταγμένων σε καρτεσιανές και αντίστροφα περιλαμβάνεται στην εργασία π.χ. των Panou και Korakitis (2022). Συγκεκριμένα, οι εκφράσεις από τις γεωδαιτικές (φ , λ) στις καρτεσιανές συντεταγμένες (x, y, z) ενός σημείου πάνω στην επιφάνεια του τριαξονικού ελλειψοειδούς είναι οι ακόλουθες:

$$x = N \cos\varphi \cos\lambda \tag{1.21}$$

$$y = N(1 - e_e^2)\cos\varphi\sin\lambda \tag{1.22}$$

$$z = N(1 - e_x^2)\sin\varphi \tag{1.23}$$

όπου

$$N = \frac{a_x}{\sqrt{1 - e_x^2 \sin^2 \varphi - e_e^2 \cos^2 \varphi \sin^2 \lambda}}$$
(1.24)

η ακτίνα καμπυλότητας της κύριας κάθετης τομής, ενώ $-\pi/2 \le \varphi \le +\pi/2$ το γεωδαιτικό πλάτος και $-\pi < \lambda \le +\pi$ το γεωδαιτικό μήκος.

Αντίστοιχα, το γεωδαιτικό πλάτος και το γεωδαιτικό μήκος υπολογίζονται μέσω των αναλυτικών τύπων:

$$\varphi = \arctan\left[\frac{(1-e_e^2)z}{(1-e_x^2)\sqrt{(1-e_e^2)x^2+y^2}}\right]$$
(1.25)

$$\alpha v (1 - e_e^2) z \le (1 - e_x^2) \sqrt{(1 - e_e^2) x^2 + y^2}.$$

Για λόγους αριθμητικής ευστάθειας, δίνεται η ακόλουθη παραλλαγή:

$$\varphi = \frac{\pi}{2} - \arctan\left[\frac{(1-e_x^2)\sqrt{(1-e_e^2)x^2 + y^2}}{(1-e_e^2)z}\right]$$
(1.26)

αν $(1 - e_e^2)z > (1 - e_x^2)\sqrt{(1 - e_e^2)x^2 + y^2}$. Οι συμβάσεις αναφορικά με το σωστό τεταρτημόριο για το γεωδαιτικό πλάτος φ εφαρμόζονται από το πρόσημο του z.

Αντίστοιχα, εκτός από την περίπτωση όπου x = 0 και y = 0, στην οποία το λ είναι απροσδιόριστο, ισχύουν τα εξής:

$$\lambda = 2\arctan\left[\frac{y}{(1-e_e^2)x + \sqrt{(1-e_e^2)x^2 + y^2}}\right]$$
(1.27)

$$\alpha v \, y \leq (1 - e_e^2) x$$

και

$$\lambda = \frac{\pi}{2} - 2\arctan\left[\frac{(1-e_e^2)x}{y + \sqrt{(1-e_e^2)x^2 + y^2}}\right]$$
(1.28)

αν $y > (1 - e_e^2)x$. Και στην περίπτωση αυτή, οι συμβάσεις αναφορικά με το σωστό τεταρτημόριο για το γεωδαιτικό μήκος λ εφαρμόζονται από τα πρόσημα των x και y.

Εικόνα 1.4: Το πλέγμα των γεωδαιτικών συντεταγμένων (φ , λ) ανά 15° στην επιφάνεια του τριαξονικού ελλειψοειδούς με $\alpha_x = 10$, $\alpha_y = 9.8$ και $\alpha_z = 6$.

2. Τομή κεντρικού ελλειψοειδούς και επιπέδου

Δοθέντος του ελλειψοειδούς της εξίσωσης (1.1) και της εξίσωσης του επιπέδου

$$n_x x + n_y y + n_z z = d \tag{2.1}$$

όπου $\mathbf{n} = (n_x, n_y, n_z)$ ένα μοναδιαίο κάθετο διάνυσμα στο επίπεδο και d η απόσταση του επιπέδου από την αρχή των αξόνων, αναζητούμε την καμπύλη που προκύπτει από την μεταξύ τους τομή. Ως γνωστόν, οι καμπύλες πάνω στην επιφάνεια του ελλειψοειδούς, που δημιουργούνται από την τομή ενός ελλειψοειδούς και ενός επιπέδου είναι, γενικά, ελλείψεις. Στην περίπτωση που το επίπεδο είναι κάθετο στην ευθεία που συνδέει δύο αντιδιαμετρικά ομφαλικά σημεία του τριαξονικού ελλειψοειδούς, η καμπύλη της τομής είναι κύκλος. Στη συνέχεια, παρουσιάζεται η απόδειξη.

Δίνονται δύο συστήματα συντεταγμένων (x, y, z) και (u, v, w), τα οποία παρουσιάζονται στην Εικόνα 2.1 και συνδέονται μεταξύ τους με τον παρακάτω πίνακα στροφής (Bell, 1923):

Εικόνα 2.1: Γεωμετρία του προβλήματος της τομής ελλειψοειδούς και επιπέδου

$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} -\frac{n_y}{n} & \frac{n_x}{n} & 0 \\ -\frac{n_x n_z}{n} & -\frac{n_y n_z}{n} & n \\ n_\chi & n_y & n_z \end{bmatrix}$$
(2.2)

όπου

$$n = \sqrt{n_x^2 + n_y^2}.\tag{2.3}$$

και ισχύει

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$
(2.4)

Αν n = 0, συνεπώς από την εξίσωση (2.1) z = d, δηλαδή το επίπεδο είναι παράλληλο στο επίπεδο xy και η τομή είναι μία έλλειψη της μορφής:

$$\frac{x^2}{a_p^2} + \frac{y^2}{a_q^2} = 1 \tag{2.5}$$

όπου

$$a_p = a_x A \tag{2.6}$$

$$a_q = a_y A \tag{2.7}$$

και

$$A = \sqrt{1 - \frac{d^2}{a_z^2}}$$
(2.8)

 $\mu\varepsilon \ 0 \le d \le a_z.$

Αν n > 0, τότε η εξίσωση της έλλειψης στο σύστημα συντεταγμένων (u, v, w) προκύπτει με την ακόλουθη διαδικασία. Αρχικά, αντιστρέφοντας την εξίσωση (2.4) ισχύει:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} r_{11} & r_{21} & r_{31} \\ r_{12} & r_{22} & r_{32} \\ r_{13} & r_{23} & r_{33} \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$
(2.9)

οπότε

$$x^{2} = r_{11}^{2}u^{2} + r_{21}^{2}v^{2} + r_{31}^{2}w^{2} + 2r_{11}r_{21}uv + 2r_{11}r_{31}uw + 2r_{21}r_{31}vw$$
(2.10)

$$y^{2} = r_{12}^{2}u^{2} + r_{22}^{2}v^{2} + r_{32}^{2}w^{2} + 2r_{12}r_{22}uv + 2r_{12}r_{32}uw + 2r_{22}r_{32}vw$$
(2.11)

$$z^{2} = r_{13}^{2}u^{2} + r_{23}^{2}v^{2} + r_{33}^{2}w^{2} + 2r_{13}r_{23}uv + 2r_{13}r_{33}uw + 2r_{23}r_{33}vw.$$
(2.12)

Αντικαθιστώντας στην εξίσωση (1.1) του ελλειψοειδούς και θεωρώντας w = d, που είναι η εξίσωση του επιπέδου στο σύστημα (u, v, w) ισχύει:

$$\frac{1}{a_x^2}(r_{11}^2u^2 + r_{21}^2v^2 + r_{31}^2w^2 + 2r_{11}r_{21}uv + 2r_{11}r_{31}uw + 2r_{21}r_{31}vw) + \frac{1}{a_y^2}(r_{12}^2u^2 + r_{22}^2v^2 + r_{32}^2w^2 + 2r_{12}r_{22}uv + 2r_{12}r_{32}uw + 2r_{22}r_{32}vw) + \frac{1}{a_z^2}(r_{13}^2u^2 + r_{23}^2v^2 + r_{33}^2w^2 + 2r_{13}r_{23}uv + 2r_{13}r_{33}uw + 2r_{23}r_{33}vw) = 1 \stackrel{w=d}{\Longrightarrow}$$

$$\left(\frac{r_{11}^2}{a_x^2} + \frac{r_{12}^2}{a_y^2} + \frac{r_{13}^2}{a_z^2}\right) u^2 + 2\left(\frac{r_{11}r_{21}}{a_x^2} + \frac{r_{12}r_{22}}{a_y^2} + \frac{r_{13}r_{23}}{a_z^2}\right) uv + \left(\frac{r_{21}^2}{a_x^2} + \frac{r_{22}^2}{a_y^2} + \frac{r_{23}^2}{a_z^2}\right) v^2 + 2d\left(\frac{r_{11}r_{31}}{a_x^2} + \frac{r_{12}r_{32}}{a_y^2} + \frac{r_{13}r_{33}}{a_z^2}\right) u + 2d\left(\frac{r_{21}r_{31}}{a_x^2} + \frac{r_{22}r_{32}}{a_y^2} + \frac{r_{23}r_{33}}{a_z^2}\right) v = 1 - d^2\left(\frac{r_{31}^2}{a_x^2} + \frac{r_{32}^2}{a_y^2} + \frac{r_{33}^2}{a_z^2}\right).$$

Η παραπάνω εξίσωση μπορεί να εκφραστεί ως εξής:

$$\rho_{uu}u^2 + \rho_{vv}v^2 + \rho_{uv}uv + \rho_u u + \rho_v v - \rho = 0$$
(2.13)

όπου

$$\rho_{uu} = \frac{r_{11}^2}{a_x^2} + \frac{r_{12}^2}{a_y^2} + \frac{r_{13}^2}{a_z^2} = \frac{n_y^2}{n^2 a_x^2} + \frac{n_x^2}{n^2 a_y^2} = \frac{1}{n^2} \left(\frac{n_y^2}{a_x^2} + \frac{n_x^2}{a_y^2} \right)$$
(2.14)

$$\rho_{\nu\nu} = \frac{r_{21}^2}{a_x^2} + \frac{r_{22}^2}{a_y^2} + \frac{r_{23}^2}{a_z^2} = \frac{n_x^2 n_z^2}{n^2 a_x^2} + \frac{n_y^2 n_z^2}{n^2 a_y^2} + \frac{n^2}{a_z^2} = \frac{n_z^2}{n^2} \left(\frac{n_x^2}{a_x^2} + \frac{n_y^2}{a_y^2} \right) + \frac{n^2}{a_z^2}$$
(2.15)

$$\rho_{uv} = 2\left(\frac{r_{11}r_{21}}{a_x^2} + \frac{r_{12}r_{22}}{a_y^2} + \frac{r_{13}r_{23}}{a_z^2}\right) = 2\left(\frac{n_x n_y n_z}{n^2 a_x^2} - \frac{n_x n_y n_z}{n^2 a_y^2}\right) = \frac{2n_x n_y n_z}{n^2} \left(\frac{1}{a_x^2} - \frac{1}{a_y^2}\right)$$
(2.16)

$$\rho_u = 2d\left(\frac{r_{11}r_{31}}{a_x^2} + \frac{r_{12}r_{32}}{a_y^2} + \frac{r_{13}r_{33}}{a_z^2}\right) = 2d\left(\frac{-n_x n_y}{na_x^2} + \frac{n_x n_y}{na_y^2}\right) = \frac{2dn_x n_y}{n} \left(\frac{1}{a_y^2} - \frac{1}{a_x^2}\right)$$
(2.17)

$$\rho_{\nu} = 2d\left(\frac{r_{21}r_{31}}{a_x^2} + \frac{r_{22}r_{32}}{a_y^2} + \frac{r_{23}r_{33}}{a_z^2}\right) = 2d\left(\frac{-n_x^2n_z}{na_x^2} - \frac{n_y^2n_z}{na_y^2} + \frac{nn_z}{a_z^2}\right) = 2dn_z\left(\frac{-n_x^2}{na_y^2} - \frac{n_y^2}{na_x^2} + \frac{n}{a_z^2}\right)$$
(2.18)

και

$$\rho = 1 - d^2 \left(\frac{r_{31}^2}{a_x^2} + \frac{r_{32}^2}{a_y^2} + \frac{r_{33}^2}{a_z^2} \right) = 1 - d^2 \left(\frac{n_x^2}{a_x^2} + \frac{n_y^2}{a_y^2} + \frac{n_z^2}{a_z^2} \right).$$
(2.19)

Διαιρώντας με ρ την εξίσωση (2.13) προκύπτει:

$$\frac{\rho_{uu}}{\rho}u^2 + \frac{\rho_{vv}}{\rho}v^2 + \frac{\rho_{uv}}{\rho}uv + \frac{\rho_u}{\rho}u + \frac{\rho_v}{\rho}v - 1 = 0$$

$$(2.20)$$

$$\dot{\eta}$$

$$c_{uu}u^2 + c_{vv}v^2 + c_{uv}uv + c_uu + c_vv - 1 = 0.$$
 (2.21)

Επομένως, από την εργασία Panou και Agatza-Balodimou (2021), οι συντεταγμένες του κέντρου της έλλειψης στο επίπεδο *uv* είναι

και ο συμμετρικός πίνακας

$$\mathbf{Q} = \begin{bmatrix} q_{uu} & q_{uv} \\ q_{uv} & q_{vv} \end{bmatrix} = D \begin{bmatrix} c_{uu} & c_{uv}/2 \\ c_{uv}/2 & c_{vv} \end{bmatrix}^{-1}$$
(2.23)

όπου

$$D = 1 + c_{uu}u_0^2 + c_{vv}v_0^2 + c_{uv}u_0v_0.$$
(2.24)

Η διαγωνοποίηση του πίνακα

$$\mathbf{Q} = \overline{\mathbf{R}}^{\mathrm{T}} \begin{bmatrix} a_p^2 & 0\\ 0 & a_q^2 \end{bmatrix} \overline{\mathbf{R}}$$
(2.25)

δίνει τους ημιάξονες a_p και a_q της έλλειψης, όπως επίσης και τον ορθογώνιο πίνακα στροφής

$$\overline{\mathbf{R}} = \begin{bmatrix} \overline{r}_{11} & \overline{r}_{12} \\ \overline{r}_{21} & \overline{r}_{22} \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$
(2.26)

από τον οποίο υπολογίζεται η γωνία στροφής θ . Από την αναλυτική διαγωνοποίηση του πίνακα **Q** προκύπτουν

$$a_p = \sqrt{\frac{1}{2} \left[q_{uu} + q_{vv} + \sqrt{(q_{uu} - q_{vv})^2 + 4q_{uv}^2} \right]}$$
(2.27)

$$a_q = \sqrt{\frac{1}{2} \left[q_{uu} + q_{vv} - \sqrt{(q_{uu} - q_{vv})^2 + 4q_{uv}^2} \right]}$$
(2.28)

$$\theta = \frac{1}{2} \arctan\left(\frac{2q_{uv}}{q_{uu} - q_{vv}}\right). \tag{2.29}$$

Μετά τον υπολογισμό της γωνίας θ απαιτείται διερεύνηση για την αναγωγή της στο σωστό τεταρτημόριο.

Εικόνα 2.2: Η έλλειψη και τα χαρακτηριστικά της στο επίπεδο της τομής

Μας ενδιαφέρει ο μετασχηματισμός από τις συντεταγμένες (p,q) στις (x, y, z). Αρχικά, γίνεται η μετατροπή από (p,q) σε (u, v) και στη συνέχεια από (u, v, w = d) σε (x, y, z), ως ακολούθως:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} r_{11} & r_{21} & r_{31} \\ r_{12} & r_{22} & r_{32} \\ r_{13} & r_{23} & r_{33} \end{bmatrix} \begin{bmatrix} u \\ v \\ d \end{bmatrix}.$$
 (2.31)

Συνεπώς, οι συντεταγμένες του κέντρου της έλλειψης (p = 0, q = 0) στο σύστημα (x, y, z) είναι:

$$\begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{21} & r_{31} \\ r_{12} & r_{22} & r_{32} \\ r_{13} & r_{23} & r_{33} \end{bmatrix} \begin{bmatrix} u_0 \\ v_0 \\ d \end{bmatrix}.$$
(2.32)

Παρόμοια, ο αντίστροφος μετασχηματισμός από τις συντεταγμένες (x, y, z) στις (p, q) γίνεται ως ακολούθως:

$$\begin{bmatrix} u \\ v \\ d \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
(2.33)

ή

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
(2.34)

άρα

2.1. Μήκος τόξου έλλειψης

Η εξίσωση της έλλειψης της τομής στο σύστημα pq έχει τη μορφή (δες Εικόνα 2.2):

$$\frac{p^2}{a_p^2} + \frac{q^2}{a_q^2} = 1 \tag{2.36}$$

η οποία γράφεται παραμετρικά ως:

$$p = a_p \cos\beta \tag{2.37}$$

$$q = a_q \sin\beta \tag{2.38}$$

όπου $0 \le \beta < 2\pi$ το παραμετρικό πλάτος. Αντίστροφα:

$$\beta = \arctan\left(\frac{a_p q}{a_q p}\right) = \operatorname{arccot}\left(\frac{a_q p}{a_p q}\right)$$
(2.39)

όπου μετά τον αριθμητικό υπολογισμό απαιτείται διερεύνηση για την αναγωγή της γωνίας β στο σωστό τεταρτημόριο. Ακολούθως, μας ενδιαφέρει ο υπολογισμός του μήκους τόξου μεταξύ δύο σημείων της έλλειψης, με παραμετρικά πλάτη β_1 και β_2 . Ο υπολογισμός αυτός μπορεί να πραγματοποιηθεί είτε με κάποια αριθμητική μέθοδο, είτε μέσω προσεγγιστικής αναλυτικής μεθόδου.

2.1.1. Αριθμητική μέθοδος

Από την παραμετρική εξίσωση της έλλειψης (εξισώσεις (2.37) και (2.38)), το μήκος τόξου μεταξύ δύο σημείων της έλλειψης με παραμετρικά πλάτη β_1 και β_2 υπολογίζεται από το ολοκλήρωμα:

$$s_{12} = \int_{\beta_1}^{\beta_2} \sqrt{\left(\frac{dp}{d\beta}\right)^2 + \left(\frac{dq}{d\beta}\right)^2} \, d\beta = \int_{\beta_1}^{\beta_2} \sqrt{a_p^2 \sin^2\beta + a_q^2 \cos^2\beta} \, d\beta. \tag{2.40}$$

Το παραπάνω ολοκλήρωμα μπορεί να γραφεί και σε όρους της $1^{\eta\varsigma}$ εκκεντρότητας:

$$\bar{e}_e^2 = \frac{a_p^2 - a_q^2}{a_p^2} \tag{2.41}$$

δηλαδή

$$s_{12} = a_p \int_{\beta_1}^{\beta_2} \sqrt{1 - \bar{e}_e^2 \cos^2\beta} \, d\beta.$$
(2.42)

Επίσης, μπορεί να γραφεί και σε όρους της 3ης εκκεντρότητας:

$$n_e = \frac{a_p - a_q}{a_p + a_q} \tag{2.43}$$

αφού

$$\bar{e}_e^2 = \frac{4n_e}{(1+n_e)^2} \tag{2.44}$$

επομένως

$$s_{12} = \frac{a_p}{1+n_e} \int_{\beta_1}^{\beta_2} \sqrt{1+2n_e+n_e^2-4n_e\cos^2\beta} \, d\beta.$$
(2.45)

Με τη βοήθεια της εξίσωσης (2.43) έχουμε
$$\frac{a_p}{1+n_e} = \frac{\alpha_p + \alpha_q}{2} \tag{2.46}$$

και από την τριγωνομετρική ταυτότητα $\cos^2\beta = (\cos 2\beta + 1)/2$, καταλήγουμε:

$$s_{12} = \frac{a_p + a_q}{2} \int_{\beta_1}^{\beta_2} \sqrt{1 + n_e^2 - 2n_e \cos 2\beta} \, d\beta.$$
(2.47)

Συνεπώς, το μήκος τόξου υπολογίζεται από το ολοκλήρωμα της παραπάνω εξίσωσης χρησιμοποιώντας μια οποιαδήποτε μέθοδο αριθμητικής ολοκλήρωσης για μια μεταβλητή, π.χ. μέθοδος Romberg, που περιγράφεται στην εργασία του Deakin (2009).

2.1.2. Προσεγγιστική αναλυτική μέθοδος

Ακολουθώντας αντίστοιχη διαδικασία με αυτήν που περιγράφεται στο βιβλίο των Deakin και Hunter (2013) για τον υπολογισμό του μήκους τόξου μεσημβρινού ως συνάρτηση του γεωδαιτικού πλάτους και χρησιμοποιώντας την εξίσωση (2.47), μπορούμε να υπολογίσουμε το μήκος τόξου έλλειψης ως συνάρτηση του παραμετρικού πλάτους β. Ενδεικτικά, αναφέρεται ότι χρειάζεται η ταυτότητα του Euler ως:

$$2\cos 2\beta = e^{i2\beta} + e^{-i2\beta} \tag{2.48}$$

όποτε το ολοκλήρωμα της εξίσωσης (2.47) γράφεται:

$$\int_{0}^{\beta} (1 - n_e e^{i2\beta})^{1/2} (1 - n_e e^{-i2\beta})^{1/2} d\beta.$$
(2.49)

Συνεπώς, χρησιμοποιώντας τη διωνυμική σειρά, το μήκος τόξου έλλειψης, ως συνάρτηση του παραμετρικού πλάτους *β*, υπολογίζεται ως:

$$s = s(\beta) = \frac{a_p + a_q}{2} [B_0 \beta + B_2 \sin(2\beta) + B_4 \sin(4\beta) + B_6 \sin(6\beta) + B_8 \sin(8\beta) + B_{10} \sin(10\beta) + B_{12} \sin(12\beta) + B_{14} \sin(14\beta) + \cdots]$$
(2.50)

ενώ το μήκος τόξου μεταξύ δύο σημείων της έλλειψης με παραμετρικά πλάτη β_1 και β_2 υπολογίζεται απλά ως:

$$s_{12} = s(\beta_2) - s(\beta_1) = \frac{a_p + a_q}{2} \{B_0(\beta_2 - \beta_1) + B_2[\sin(2\beta_2) - \sin(2\beta_1)] + B_4[\sin(4\beta_2) - \sin(4\beta_1)] + B_6[\sin(6\beta_2) - \sin(6\beta_1)] + B_8[\sin(8\beta_2) - \sin(8\beta_1)] + B_{10}[\sin(10\beta_2) - \sin(10\beta_1)] + B_{12}[\sin(12\beta_2) - \sin(12\beta_1)] + B_{14}[\sin(14\beta_2) - \sin(14\beta_1)] + \cdots\}$$
(2.51)

όπου

$$B_0 = 1 + \frac{1}{4}n_e^2 + \frac{1}{64}n_e^4 + \frac{1}{256}n_e^6 + \cdots$$
(2.52)

$$B_2 = -\frac{1}{2}n_e + \frac{1}{16}n_e^3 + \frac{1}{128}n_e^5 + \frac{5}{2048}n_e^7 + \cdots$$
(2.53)

$$B_4 = -\frac{1}{16}n_e^2 + \frac{1}{64}n_e^4 + \frac{5}{2048}n_e^6 + \cdots$$
(2.54)

$$B_6 = -\frac{1}{48}n_e^3 + \frac{5}{768}n_e^5 + \frac{7}{6144}n_e^7 + \cdots$$
(2.55)

$$B_8 = -\frac{5}{512}n_e^4 + \frac{7}{2048}n_e^6 + \cdots$$
 (2.56)

$$B_{10} = -\frac{7}{1280}n_e^5 + \frac{21}{10240}n_e^7 + \cdots$$
(2.57)

$$B_{12} = -\frac{7}{2048}n_e^6 + \cdots$$
 (2.58)

$$B_{14} = -\frac{33}{14336}n_e^7 + \cdots$$
 (2.59)

Με τις τρέχουσες υπολογιστικές δυνατότητες, οι όροι της παραπάνω σειράς λαμβάνονται εύκολα μέσω ενός συστήματος υπολογιστικής άλγεβρας, όπως το Maxima (2022). Προφανώς, η επιλογή του αριθμού των όρων εξαρτάται από τα μεγέθη των αξόνων της έλλειψης, την απαιτούμενη ακρίβεια και τις δυνατότητες του υπολογιστικού συστήματος. Συγκεκριμένα, ο όρος $n_e^7 = [(a_x - a_z)/(a_x + a_z)]^7 = 3.81 \cdot 10^{-20}$ είναι συμβατός με την τάξη μεγέθους του σφάλματος αποκοπής για αριθμητική διπλής ακρίβειας.

Ανεξάρτητα της μεθόδου υπολογισμού του μήκους τόξου μεταξύ δύο σημείων της έλλειψης με παραμετρικά πλάτη β_1 και β_2 , πρέπει να διασφαλιστεί ότι θα λαμβάνουμε πάντα θετικό αποτέλεσμα και το μικρότερο μήκος που συνδέει τα δύο σημεία πάνω στην έλλειψη. Για την επίτευξη των παραπάνω, διακρίνονται δύο περιπτώσεις (i) αν $\beta_2 - \beta_1 >$ π και (ii) αν $\beta_2 - \beta_1 \le π$. Στην 1^η περίπτωση, αν $\beta_2 < \beta_1$ τότε $\beta_1 = \beta_1$ και $\beta_2 = \beta_2 + π$, διαφορετικά $\beta_1 = \beta_2$ και $\beta_2 = \beta_1 + 2π$. Στη 2^η περίπτωση, αν $\beta_2 < \beta_1$ τότε $\beta_1 = \beta_2$ και $\beta_2 = \beta_1$, αλλιώς $\beta_1 = \beta_1$ και $\beta_2 = \beta_2$.

2.2. Θέση σημείου άφιξης

Έχοντας ως αφετηρία ένα σημείο της έλλειψης με παραμετρικό πλάτος β_1 ή συντεταγμένες (p_1, q_1) , μας ενδιαφέρει ο υπολογισμός της θέσης ενός σημείου άφιξης μετά από απόσταση s_{12} . Ο υπολογισμός των συντεταγμένων (p_2, q_2) ή του παραμετρικού πλάτους β_2 μπορεί να πραγματοποιηθεί είτε με κάποια αριθμητική μέθοδο, είτε μέσω προσεγγιστικής αναλυτικής μεθόδου, όπως αυτές που περιγράφονται στη συνέχεια.

2.2.1. Αριθμητική μέθοδος

Ακολουθώντας αντίστοιχη διαδικασία με αυτήν που περιγράφεται στην εργασία των Panou και Korakitis (2019) για την εξαγωγή των γεωδαισιακών εξισώσεων και την αριθμητική τους ολοκλήρωση στο τριαξονικό ελλειψοειδές, μπορούμε να γράψουμε τις ακόλουθες εξισώσεις για την έλλειψη:

$$\frac{d^2p}{ds^2} + \frac{h}{H}p = 0 ag{2.60}$$

$$\frac{d^2q}{ds^2} + \frac{h}{H}\frac{q}{1 - \bar{e}_e^2} = 0 \tag{2.61}$$

με τις εξής αρχικές συνθήκες

 $p_1 = p(s=0) \text{ kal } q_1 = q(s=0) \tag{2.62}$

$$\left. \frac{dp}{ds} \right|_1 = \frac{-q}{\sqrt{q^2 + \left(\frac{aq}{a_p}\right)^4 p^2}} \tag{2.63}$$

$$\left. \frac{dq}{ds} \right|_1 = \frac{p}{\sqrt{\left(\frac{ap}{aq}\right)^4 q^2 + p^2}} \tag{2.64}$$

Οι παραπάνω εξισώσεις γράφονται στη μορφή του συστήματος:

 $\frac{d}{ds}(p) = \frac{dp}{ds} \tag{2.65}$

$$\frac{d}{ds}\left(\frac{dp}{ds}\right) = -\frac{h}{H}p\tag{2.66}$$

$$\frac{d}{ds}(q) = \frac{dq}{ds} \tag{2.67}$$

$$\frac{d}{ds}\left(\frac{dq}{ds}\right) = -\frac{h}{H}\frac{q}{1-\bar{e}_e^2} \tag{2.68}$$

όπου

$$H = p^2 + \frac{q^2}{\left(1 - \bar{e}_e^2\right)^2} \tag{2.69}$$

$$h = \left(\frac{dp}{ds}\right)^2 + \frac{1}{1 - \bar{e}_e^2} \left(\frac{dq}{ds}\right)^2 \tag{2.70}$$

Το σύστημα αυτό μπορεί να ολοκληρωθεί στο διάστημα $[0, s_{12}]$ χρησιμοποιώντας μια αριθμητική μέθοδο, π.χ. Runge-Kutta 4^{ης} τάξης, που χρησιμοποιείται στην εργασία των Panou και Korakitis (2019). Το βήμα δs δίνεται από τον τύπο $\delta s = s/v$, όπου v ο αριθμός των βημάτων. Ο αριθμός αυτός εξαρτάται από την τάξη μεγέθους του μήκους.

2.2.2. Προσεγγιστική αναλυτική μέθοδος

Αντικαθιστώντας στην εξίσωση (2.50) την τιμή $\beta = \pi/2$ λαμβάνουμε το μήκος Q του ενός τετάρτου της έλλειψης:

$$Q = \frac{a_p + a_q}{2} \left(1 + \frac{1}{4} n_e^2 + \frac{1}{64} n_e^4 + \frac{1}{256} n_e^6 + \cdots \right) \frac{\pi}{2}$$
(2.71)

και εισάγοντας τη μεταβλητή

$$g = \frac{Q}{\pi/2} = \frac{a_p + a_q}{2} B_0 \tag{2.72}$$

ορίζουμε ως σ μια γωνιακή ποσότητα σε rad για την οποία ισχύει:

$$\sigma = \frac{s}{g} = \frac{2s}{(a_p + a_q)B_0}.$$
(2.73)

Η εξίσωση (2.73) μέσω της εξίσωσης (2.50) μπορεί να γραφεί ως συνάρτηση του παραμετρικού πλάτους β και δυνάμεων του n_e ως ακολούθως:

$$\sigma = \beta + \frac{B_2}{B_0} \sin(2\beta) + \frac{B_4}{B_0} \sin(4\beta) + \frac{B_6}{B_0} \sin(6\beta) + \frac{B_8}{B_0} \sin(8\beta) + \frac{B_{10}}{B_0} \sin(10\beta) + \frac{B_{12}}{B_0} \sin(12\beta) + \frac{B_{14}}{B_0} \sin(14\beta) + \dots$$
(2.74)

Χρησιμοποιώντας για τον όρο B_0 μια ειδική περίπτωση της διωνυμικής σειράς

$$(1+x)^{-1} = 1 - x + x^2 - x^3 + x^4 - \cdots$$
(2.75)

και το θεώρημα του Lagrange (π.χ. Osborne, 2013) για την αντιστροφή προκύπτει:

$$\beta = \sigma + D_2 \sin(2\sigma) + D_4 \sin(4\sigma) + D_6 \sin(6\sigma) + D_8 \sin(8\sigma) + D_{10} \sin(10\sigma) + D_{12} \sin(12\sigma) + D_{14} \sin(14\sigma) + \dots$$
(2.76)

όπου

$$D_2 = \frac{1}{2}n_e - \frac{9}{32}n_e^3 + \frac{205}{1536}n_e^5 - \frac{4879}{73728}n_e^7$$
(2.77)

$$D_4 = \frac{5}{16}n_e^2 - \frac{34}{96}n_e^4 + \frac{1335}{4096}n_e^6 \tag{2.78}$$

$$D_6 = \frac{29}{96} n_e^3 - \frac{75}{128} n_e^5 + \frac{2901}{4096} n_e^7 \tag{2.79}$$

$$D_8 = \frac{539}{1536} n_e^4 - \frac{2560}{2391} n_e^6 \tag{2.80}$$

$$D_{10} = \frac{3746}{7680} n_e^5 - \frac{28223}{18432} n_e^7 \tag{2.81}$$

$$D_{12} = \frac{38081}{61440} n_e^6 \tag{2.82}$$

$$D_{14} = \frac{459485}{516096} n_e^7. \tag{2.83}$$

Παρόμοια, οι όροι της παραπάνω σειράς λαμβάνονται σήμερα εύκολα μέσω ενός συστήματος υπολογιστικής άλγεβρας, όπως το Maxima (2022).

Από το γνωστό παραμετρικό πλάτος β_1 υπολογίζουμε το μήκος $s_1 = s(\beta_1)$ από την εξίσωση (2.50). Επιπλέον, από την εξίσωση (2.73) ισχύουν τα ακόλουθα:

$$\sigma_1 = \frac{2s_1}{(a_p + a_q)B_0} \tag{2.84}$$

και

$$\sigma_{12} = \frac{2s_{12}}{(a_p + a_q)B_0} \tag{2.85}$$

δηλαδή

$$\sigma_2 = \sigma_1 + \sigma_{12} = \frac{2(s_1 + s_{12})}{(a_p + a_q)B_0} \tag{2.86}$$

και επομένως

$$\beta_2 = \beta(\sigma_1 + \sigma_{12}) = \beta(\sigma_2) \tag{2.87}$$

που υπολογίζεται μέσω της εξίσωσης (2.76).

3. Προσδιορισμός επιπέδου

Γενικά, για τον προσδιορισμό ενός επιπέδου μπορεί να χρησιμοποιηθεί ένα σημείο με διανυσματική ακτίνα $\mathbf{r}_i = (x_i, y_i, z_i)$ και ένα μοναδιαίο κάθετο διάνυσμα $\mathbf{n} = (n_x, n_y, n_z)$, οπότε για το τυχαίο σημείο $\mathbf{r} = (x, y, z)$ του επιπέδου ισχύει (δες Εικόνα 3.1)

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_i) = 0 \tag{3.1}$$

ή

$$n_x x + n_y y + n_z z = d \tag{3.2}$$

όπου

$$d = n_x x_i + n_y y_i + n_z z_i. (3.3)$$

Εικόνα 3.1: Προσδιορισμός της εξίσωσης του επιπέδου

Για να αντιμετωπίσουμε συνολικά το πρόβλημα για όλες τις τομές που ενδιαφέρουν τη γεωδαισία, χρησιμοποιούμε δύο σημεία

$$\mathbf{r}_1 = (x_1, y_1, z_1) \tag{3.4}$$

και

$$\mathbf{r}_2 = (x_2, y_2, z_2) \tag{3.5}$$

που αποτελούν σημεία της επιφάνειας του τριαξονικού ελλειψοειδούς και ένα επιπλέον σημείο

$$\mathbf{r}_0 = (x_0, y_0, z_0). \tag{3.6}$$

Επίσης, ορίζουμε το μοναδιαίο κάθετο διάνυσμα στην επιφάνεια του τριαξονικού ελλειψοειδούς μέσω της εξίσωσης (1.1), ως

$$\mathbf{N} = \left(N_x, N_y, N_z\right) = \left(\frac{x}{H}, \frac{y}{(1 - e_e^2)H}, \frac{z}{(1 - e_x^2)H}\right)$$
(3.7)

όπου

$$H = \sqrt{x^2 + \frac{y^2}{\left(1 - e_e^2\right)^2} + \frac{z^2}{\left(1 - e_x^2\right)^2}}.$$
(3.8)

Το μοναδιαίο κάθετο διάνυσμα στο επίπεδο ορίζεται ως εξής:

$$\mathbf{n} = (n_x, n_y, n_z) = \frac{\mathbf{r}_{01} \times \mathbf{r}_{12}}{\|\mathbf{r}_{01} \times \mathbf{r}_{12}\|}$$
(3.9)

όπου

$$\mathbf{r}_{01} = \frac{\mathbf{r}_1 - \mathbf{r}_0}{\|\mathbf{r}_1 - \mathbf{r}_0\|} \tag{3.10}$$

$$\mathbf{r}_{12} = \frac{\mathbf{r}_2 - \mathbf{r}_1}{\|\mathbf{r}_2 - \mathbf{r}_1\|} \tag{3.11}$$

που προκύπτουν ανάλογα με το είδος της τομής που μας ενδιαφέρει. Συγκεκριμένα, ορίζουμε τις παρακάτω τομές:

Κεντρική τομή (μέγιστη έλλειψη)

Στην περίπτωση αυτή $\mathbf{r}_0 = (0, 0, 0)$ και d = 0.

Εικόνα 3.2: Κεντρική τομή (Deakin, 2010)

Κάθετη τομή (πρώτη κάθετη τομή)

Στην περίπτωση αυτή $\mathbf{r}_{01} = \mathbf{N}_1 = (N_{x_1}, N_{y_1}, N_{z_1})$ και $d = n_x x_1 + n_y y_1 + n_z z_1$.

Εικόνα 3.3: Κάθετες τομές (Deakin, 2009)

Αντίστροφη κάθετη τομή (δεύτερη κάθετη τομή)

Στην περίπτωση αυτή $\mathbf{r}_{01} = \mathbf{N}_2 = (N_{x_2}, N_{y_2}, N_{z_2})$ και $d = n_x x_2 + n_y y_2 + n_z z_2$.

Μέση κάθετη τομή Ι

Η τομή αυτή ορίζεται στο τριαξονικό ελλειψοειδές, όπως στον Gilbertson (2012) για το ελλειψοειδές εκ περιστροφής, χρησιμοποιώντας τη μέση τιμή των μοναδιαίων διανυσμάτων στα σημεία P_1 και P_2 , δηλαδή $\mathbf{r}_{01} = \frac{1}{2}(\mathbf{N}_1 + \mathbf{N}_2) = \frac{1}{2}(N_{x_1} + N_{x_2}, N_{y_1} + N_{y_2}, N_{z_1} + N_{z_2})$ και $d = n_x x_1 + n_y y_1 + n_z z_1$.

Μέση κάθετη τομή ΙΙ

Η τομή αυτή ορίζεται στο τριαξονικό ελλειψοειδές, όπως στον Orihuela (2022) για το ελλειψοειδές εκ περιστροφής, χρησιμοποιώντας τη μέση θέση των τομών των καθέτων στα σημεία P_1 και P_2 με το επίπεδο yz, δηλαδή $\mathbf{r}_0 = \left(0, -\frac{e'^2}{2}(y_1 + y_2), -\frac{e'^2}{2}(z_1 + z_2)\right)$ και $d = n_x x_1 + n_y y_1 + n_z z_1$, ενώ ορίζονται οι δεύτερες εκκεντρότητες του τριαξονικού ελλειψοειδούς ως

$$e_x^{\prime 2} = \frac{a_x^2 - a_z^2}{a_z^2}, \quad e_e^{\prime 2} = \frac{a_x^2 - a_y^2}{a_y^2}.$$
 (3.12)

Εικόνα 3.4: Ορισμός της μέσης κάθετης τομής ΙΙ (Feltens, 2009)

3.1. Γωνία

Περιγράφουμε τα μοναδιαία διανύσματα για μια επίπεδη καμπύλη γύρω από το σημείο (*x*, *y*, *z*) πάνω στο τριαξονικό ελλειψοειδές.

Εικόνα 3.5: Τα μοναδιαία διανύσματα σε ένα τυχαίο σημείο του τριαξονικού ελλειψοειδούς

Το εφαπτόμενο διάνυσμα στην καμπύλη της επίπεδης τομής ορίζεται ως

$$\mathbf{t} = (t_x, t_y, t_z) = \mathbf{n} \times \mathbf{N}. \tag{3.13}$$

Επίσης, μπορούμε να εκφράσουμε το διάνυσμα **t** συναρτήσει των μοναδιαίων διανυσμάτων **P** και **Q** (δες ορισμούς παρακάτω) και της γωνίας α μεταξύ της γραμμής σταθερού *V* και της καμπύλης της επίπεδης τομής ως εξής (π.χ. Panou και Korakitis, 2020):

 $\mathbf{t} = \mathbf{P} \sin \alpha + \mathbf{Q} \cos \alpha.$

Το μοναδιαίο διάνυσμα **Q** είναι εφαπτόμενο στη γραμμή σταθερού *V* και ορίζεται από τις εξισώσεις (1.4) έως (1.6) ως ακολούθως:

(3.14)

$$\mathbf{Q} = \left(q_x, q_y, q_z\right) = \left(-\frac{1}{G}\sin U\cos V, -\frac{1}{G}\sqrt{1 - e_e^2}\sin U\sin V, -\frac{1}{G}\sqrt{1 - e_x^2}\cos U\right)$$
(3.15)

όπου

$$G = \sqrt{1 - e_x^2 \cos^2 U - e_e^2 \sin^2 U \sin^2 V}.$$
(3.16)

Το μοναδιαίο διάνυσμα **P**, μη εφαπτόμενο στη γραμμή σταθερού *U*, μπορεί πλέον να υπολογιστεί ως το εξωτερικό γινόμενο των μοναδιαίων διανυσμάτων **Q** και **N**, δηλαδή

$$\mathbf{P} = \mathbf{Q} \times \mathbf{N} \tag{3.17}$$

ή

$$(p_x, p_y, p_z) = (q_y n_z - q_z n_y, q_z n_x - q_x n_z, q_x n_y - q_y n_x)$$
(3.18)

Επίσης, από το εσωτερικό γινόμενο της εξίσωσης (3.17), διαδοχικά με τα μοναδιαία διανύσματα **P** και **Q** και διαιρώντας τις εξισώσεις που προκύπτουν, υπολογίζεται η γωνία α κατά την οποία η καμπύλη του επιπέδου της τομής τέμνει την καμπύλη σταθερού παραμετρικού μήκους *V*:

$$\alpha = \arctan\left(\frac{\mathbf{P}\cdot\mathbf{t}}{\mathbf{Q}\cdot\mathbf{t}}\right) = \operatorname{arccot}\left(\frac{\mathbf{Q}\cdot\mathbf{t}}{\mathbf{P}\cdot\mathbf{t}}\right). \tag{3.19}$$

Με ανάλογο τρόπο μπορεί να υπολογιστεί η γωνία α κατά την οποία η καμπύλη του επιπέδου της τομής τέμνει την καμπύλη σταθερού ελλειψοειδούς μήκους *L* ή την καμπύλη σταθερού γεωδαιτικού μήκους *λ*. Ωστόσο, στο πλαίσιο της παρούσας εργασίας χρησιμοποιούμε μόνο ως αφετηρία της γωνίας α την καμπύλη σταθερού παραμετρικού μήκους *V*.

Είναι σημαντικό να τονιστεί ότι, στην περίπτωση επίλυσης του ευθέος προβλήματος το εφαπτόμενο διάνυσμα **t** αντικαθιστά το διάνυσμα \mathbf{r}_{12} στην εξίσωση (3.11).

4. Αντίστροφο πρόβλημα

Το αντίστροφο πρόβλημα μπορεί να εφαρμοστεί για όλα τα είδη των τομών που ορίστηκαν στο προηγούμενο κεφάλαιο. Ακολουθούν τα βήματα για την επίλυση του αντιστρόφου προβλήματος, καθώς και αριθμητικά παραδείγματα με συγκρίσεις τόσο μεταξύ των διαφορετικών τομών, όσο και με τη γεωδαισιακή.

4.1. Περιγραφή του αλγορίθμου

- Ανεξάρτητα των καμπυλόγραμμων συντεταγμένων (παραμετρικές, ελλειψοειδείς, γεωδαιτικές) που ορίζουν τις θέσεις των σημείων P₁ και P₂, υπολογίζονται οι καρτεσιανές συντεταγμένες τους και αντίστροφα μέσω των τύπων της παραγράφου 1.4.
- 2. Με γνωστές τις καρτεσιανές συντεταγμένες των σημείων $P_1 = (x_1, y_1, z_1)$ και $P_2 = (x_2, y_2, z_2)$ και τα μεγέθη των αξόνων του τριαξονικού ελλειψοειδούς a_x, a_y και a_z επιλέγεται το είδος της τομής, σύμφωνα με όσα περιγράφονται στο Κεφάλαιο 3.
- 3. Για κάθε τομή υπολογίζεται το κάθετο διάνυσμα στο επίπεδο της τομής $\mathbf{n} = (n_x, n_y, n_z)$ από τις εξισώσεις (3.9)-(3.11) και η ποσότητα *d*, δηλαδή προσδιορίζεται η εξίσωση του επιπέδου.
- 4. Από τα μεγέθη των αξόνων του τριαξονικού ελλειψοειδούς και την εξίσωση του επιπέδου υπολογίζονται οι παράμετροι της έλλειψης της τομής (u_0, v_0) , a_p , a_q και θ και το κέντρο της (x_0, y_0, z_0) στον τρισδιάστατο χώρο, σύμφωνα με όσα περιγράφονται στο Κεφάλαιο 2.
- 5. Από τις εξισώσεις (2.33)-(2.35) γίνεται ο μετασχηματισμός των καρτεσιανών συντεταγμένων των δύο σημείων (αφετηρίας και άφιξης) σε συντεταγμένες (p,q) στο σύστημα των αξόνων της έλλειψης. Ακολούθως, από την εξίσωση (2.39) υπολογίζονται τα παραμετρικά πλάτη β₁ και β₂ των δύο σημείων.
- 6. Το μήκος τόξου έλλειψης υπολογίζεται είτε με μια αριθμητική, είτε με μια προσεγγιστική αναλυτική μέθοδο σύμφωνα με όσα περιγράφονται στις παραγράφους 2.1.1. και 2.1.2., αντίστοιχα.
- Υπολογίζονται οι γωνίες α₁ και α₂ σύμφωνα με όσα περιγράφονται στην παράγραφο 3.1.

Σημειώνεται ότι, στην περίπτωση που τα σημεία P_1 και P_2 βρίσκονται πάνω στον Ισημερινό ισχύει n = 0, συνεπώς προκύπτει η έλλειψη της εξίσωσης (2.5) και το μήκος τόξου υπολογίζεται μεταξύ των παραμετρικών πλατών V_1 και V_2 , ενώ οι γωνίες α_1 και α_2 είναι ίσες με $\pi/2$.

4.2. Αριθμητικά παραδείγματα και συγκρίσεις

Στους αριθμητικούς υπολογισμούς που ακολουθούν έχουν χρησιμοποιηθεί οι άξονες του γήινου τριαξονικού ελλειψοειδούς $a_x = 6378172 \text{ m}$, $a_y = 6378102 \text{ m}$ και $a_z = 6356752 \text{ m}$, όπως έχουν προσδιοριστεί στην εργασία Panou et al. (2020). Ανεξάρτητα από τις καμπυλόγραμμες συντεταγμένες που χρησιμοποιούνται, η κύρια έλλειψη στο επίπεδο xzείναι κοινή και συνεπώς οι γωνίες των σημείων της προς οποιαδήποτε διεύθυνση έχουν την ίδια αφετηρία.

4.2.1. Πρώτο πείραμα

Για την αριθμητική εφαρμογή του αντιστρόφου προβλήματος χρησιμοποιούνται 510 ζεύγη τιμών (U_1, V_1) και (U_2, V_2) τα οποία δημιουργούν 510×5 = 2550 καμπύλες, μία για κάθε επίπεδη τομή που περιγράφεται στο Κεφάλαιο 3. Επιπλέον, για κάθε ζεύγος υπολογίζεται το μήκος s_{12}^{geo} και η γωνία α_1^{geo} με εφαρμογή του αλγορίθμου για την επίλυση του αντιστρόφου προβλήματος των γεωδαισιακών από την εργασία Panou (2013) (δες Εικόνα 4.1). Από τα αποτελέσματα, καταγράφονται οι διαφορές $s_{12} - s_{12}^{geo}$ μεταξύ του μήκους κάθε καμπύλης και της γεωδαισιακής. Στον Πίνακα 4.1 παρουσιάζονται οι μέγιστες διαφορές $s_{12} - s_{12}^{geo}$, το μήκος της γεωδαισιακής και το ζεύγος των σημείων στο οποίο εντοπίζονται. Παρομοίως, καταγράφονται οι διαφορές $\alpha_1 - \alpha_1^{geo}$ μεταξύ της γωνίας στο σημείο P_1 κάθε καμπύλης και της γεωδαισιακής. Στον Πίνακα 4.5 παρουσιάζονται οι μέγιστες διαφορές $s_{12} - s_{12}^{geo}$, η γωνία στο σημείο P_1 της γεωδαισιακής και το ζεύγος των σημείων στο οποίο εντοπίζονται.

Εικόνα 4.1: Απεικόνιση κάθε επίπεδης καμπύλης και της γεωδαισιακής μεταξύ ενός ζεύγους σημείων

Λαμβάνοντας υπόψη τα γεωμετρικά χαρακτηριστικά τόσο του τριαξονικού ελλειψοειδούς όσο και των υπό μελέτη καμπυλών, επαναλαμβάνουμε το παραπάνω πείραμα για τρεις επιπλέον περιπτώσεις. Τα αποτελέσματα παρουσιάζονται στους Πίνακες 4.2–4.4 για τα μήκη και στους Πίνακες 4.6–4.8 για τις γωνίες.

Πίνακας 4.1: Αποτελέσματα μέγιστων τιμών διαφοράς μήκους s_{12} των καμπυλών i) κεντρικής ii) πρώτης κάθετης iii) δεύτερης κάθετης iv) μέσης Ι κάθετης και v) μέσης ΙΙ κάθετης τομής από τη γεωδαισιακή s_{12}^{geo} , για το αντίστροφο πρόβλημα με ζεύγη σημείων $U_1 = 5^\circ$, 45°, 65°, $V_1 = 0^\circ$, $U_2 = 1^\circ$, 2°, 3°, ..., 85° και $V_2 = 45^\circ$, 85°, στο γήινο τριαξονικό ελλειψοειδές

			$max\delta s_{12} =$						$\max \delta s_{12} =$		
U_1		<i>s^{geo}</i> ₁₂ (m)	$s_{12} - s_{12}^{geo}$	U_2	V_2	U_1		s_{12}^{geo} (m)	$s_{12} - s_{12}^{geo}$	U_2	V_2
			(m)						(m)		
	i	7962864.6125	0.8745	1			i	9669329.0881	3.6345	1	
	ii	7962864.6125	0.3825	1			ii	9669329.0881	1.0141	1	
65°	iii	7962864.6125	0.8076	1	45°	65°	iii	9669329.0881	3.4264	1	85°
	iv	7962864.6125	0.0550	1			iv	9669329.0881	0.3066	1	
	v	7962864.6125	0.0547	1			v	9669329.0881	0.3050	1	
	i	5871417.4999	0.9057	9		45°	i	9068958.2612	5.9954	7	
	ii	6578273.3741	0.4912	1			ii	9538430.8547	1.6649	1	
45°	iii	6578273.3741	0.7946	1	45°		iii	9538430.8547	5.4468	1	85°
	iv	6578273.3741	0.0480	1			iv	9538430.8547	0.4798	1	
	v	6578273.3741	0.0479	1			v	9538430.8547	0.4782	1	
	i	6781320.3712	0.9658	54			i	9226109.5810	5.9646	43	
	ii	6914246.0190	0.6739	56			ii	9224862.5482	4.1060	46	
5°	iii	6651212.3448	0.3679	52	45°	5°	iii	9225233.9895	1.0967	48	85°
	iv	7118494.6536	0.0438	59			iv	9225453.8054	0.3960	44	
	v	7118494.6536	0.0436	59			v	9225453.8054	0.3948	44	

Πίνακας 4.2: Αποτελέσματα μέγιστων τιμών διαφοράς μήκους s_{12} των καμπυλών i) κεντρικής ii) πρώτης κάθετης iii) δεύτερης κάθετης iv) μέσης Ι κάθετης και v) μέσης ΙΙ κάθετης τομής από τη γεωδαισιακή s_{12}^{geo} , για το αντίστροφο πρόβλημα με ζεύγη σημείων $U_1 = 5^\circ$, 45°, 65°, $V_1 = 0^\circ$, $U_2 = 1^\circ$, 2°, 3°, ..., 85° και $V_2 = 125^\circ$, 165°, στο γήινο τριαξονικό ελλειψοειδές

		000	$\max \delta s_{12} =$					<i></i>	$\max \delta s_{12} =$		
U_1		s_{12}^{geo} (m)	$s_{12} - s_{12}^{geo}$	U_2	V_2	U_1		s_{12}^{geo} (m)	$s_{12} - s_{12}^{geo}$	U_2	V_2
			(m)						(m)		
	i	11461958.1377	6.2374	1			i	12573594.8834	1.2428	1	
	ii	11461958.1377	0.8036	1		65°	ii	12573594.8834	0.0732	1	
65°	iii	11461958.1377	5.9994	1	125°		iii	12573594.8834	1.2084	1	165°
	iv	11461958.1377	0.7981	1			iv	12573594.8834	0.2111	1	1
	v	11461958.1377	0.7946	1			v	12573594.8834	0.2103	1	
	i	12585892.7229	21.8005	1	125°	45°	i	14688599.4478	11.7297	1	
	ii	12585892.7229	1.1516	1			ii	14688599.4478	0.2238	1	
45°	iii	12585892.7229	20.6956	1			iii	14688599.4478	11.3041	1	165°
	iv	12585892.7229	3.7226	1			iv	14688599.4478	3.4408	1]
	v	12585892.7229	3.7144	1			v	14688599.4478	3.4361	1	
	i	12999189.1930	28.1860	30			i	17891119.1902	210.6253	7	
	ii	12906946.9160	19.5159	32			ii	17819488.9540	146.3175	8	
5°	iii	13885248.7405	1.6358	1	125°	5°	iii	18084346.4283	136.9114	4	165°
	iv	13173650.6510	5.3488	26			iv	17959380.7838	136.2955	6	
	v	13173650.6510	5.3460	26			v	17959380.7838	136.2955	6	

Πίνακας 4.3: Αποτελέσματα μέγιστων τιμών διαφοράς μήκους s_{12} των καμπυλών i) κεντρικής ii) πρώτης κάθετης iii) δεύτερης κάθετης iv) μέσης Ι κάθετης και v) μέσης ΙΙ κάθετης τομής από τη γεωδαισιακή s_{12}^{geo} , για το αντίστροφο πρόβλημα με ζεύγη σημείων $U_1 = 5^\circ$, 45°, 65°, $V_1 = 0^\circ$, $U_2 = -1^\circ, -2^\circ, -3^\circ, \dots, -85^\circ$ και $V_2 = 45^\circ$, 85°, στο γήινο τριαξονικό ελλειψοειδές

<i>U</i> ₁		<i>s₁₂^{geo}</i> (m)	$max\delta s_{12} = s_{12} - s_{12}^{geo}$ (m)	U ₂ -	<i>V</i> ₂	U ₁		<i>s₁₂^{geo}</i> (m)	$max\delta s_{12} = s_{12} - s_{12}^{geo}$ (m)	U ₂ _	<i>V</i> ₂
	i	9229879.6761	0.9243	11			i	11477844.6709	4.1163	17	
	ii	15190988.7207	9.2184	68		65°	ii	16193404.4713	40.5511	68	
65°	iii	14584257.9712	9.3039	62	45°		iii	15559542.3665	41.7847	60	85°
	iv	14277047.9851	0.4087	59	_		iv	14950740.2434	1.6795	53	
	v	14277047.9851	0.4087	59			v	14950740.2434	1.6778	53	
	i	6759319.8249	0.8561	1		45°	i	9695603.5096	5.7713	1	
	ii	12449434.5224	7.4776	61			ii	13838852.6570	35.7619	58	
45°	iii	11694636.2363	6.2232	53	45°		iii	13154452.0235	29.5106	47	85°
	iv	12261850.6434	0.3703	59			iv	13895801.0107	1.6639	59	
	v	12261850.6434	0.3700	59			v	13895801.0107	1.6619	59	
	i	8064036.9228	0.9739	58			i	10063917.8984	5.5740	49	
	ii	7914969.5094	1.3701	56			ii	10037185.4809	7.9022	47	
5°	iii	7477254.8252	0.8127	50	45°	5°	iii	9983660.9449	2.9226	43	85°
	iv	8064036.9228	0.0850	58			iv	10063917.8984	0.6212	49	
	v	8064036.9228	0.0847	58			v	10063917.8984	0.6188	49	

Πίνακας 4.4: Αποτελέσματα μέγιστων τιμών διαφοράς μήκους s_{12} των καμπυλών i) κεντρικής ii) πρώτης κάθετης iii) δεύτερης κάθετης iv) μέσης Ι κάθετης και v) μέσης ΙΙ κάθετης τομής από τη γεωδαισιακή s_{12}^{geo} , για το αντίστροφο πρόβλημα με ζεύγη σημείων $U_1 = 5^\circ$, 45°, 65°, $V_1 = 0^\circ$, $U_2 = -1^\circ, -2^\circ, -3^\circ, \dots, -85^\circ$ και $V_2 = 125^\circ$, 165°, στο γήινο τριαξονικό ελλειψοειδές

<i>U</i> ₁		<i>s₁₂^{geo}</i> (m)	$max\delta s_{12} = s_{12} - s_{12}^{geo}$ (m)	U ₂ _	<i>V</i> ₂	U ₁		<i>s₁₂^{geo}</i> (m)	$max\delta s_{12} = s_{12} - s_{12}^{geo}$ (m)	U ₂ -	<i>V</i> ₂
	i	15106407.0818	10.6048	35			i	18983002.3754	27.2140	59	
65°	ii	17590155.3612	133.1252	67		65°	ii	19309860.9779	739.9255	66	
	iii	17223415.8312	140.6524	60	125°		iii	19246743.6551	766.7666	63	165°
	iv	16303129.2325	5.4740	48			iv	18983002.3754	22.8659	59	
	v	16303129.2325	5.4614	48			v	18983002.3754	22.8440	59	
	i	13346852.3529	23.2220	8	125°	45°	i	18325560.7827	101.4876	35	
	ii	16024036.1776	132.9223	54			ii	18797362.1608	866.3530	49	
45°	iii	15559275.2132	113.5683	40			iii	18722360.9751	845.0210	41	165°
	iv	14442071.4989	6.5962	22			iv	18403910.6730	74.1407	36]
	v	14442071.4989	6.5796	22			v	18403910.6730	74.0700	36	
	i	13414682.4116	25.6505	37			i	17981064.0492	201.1893	16	
	ii	13484219.7660	36.1613	35			ii	18044258.4682	280.2299	15	
5°	iii	13341024.9843	2.8432	39	125°	5°	iii	18309908.3827	84.8665	1	165°
	iv	13484219.7660	5.8047	35			iv	17981064.0492	131.4404	16	
	v	13484219.7660	5.7957	35			v	17981064.0492	131.4265	16	1

Πίνακας 4.5: Αποτελέσματα μέγιστων τιμών διαφοράς γωνίας α_1 στο σημείο P_1 των καμπυλών i) κεντρικής ii) πρώτης κάθετης iii) δεύτερης κάθετης iv) μέσης Ι κάθετης και v) μέσης II κάθετης τομής από τη γεωδαισιακή α_1^{geo} , για το αντίστροφο πρόβλημα με ζεύγη σημείων $U_1 = 5^\circ$, 45°, 65°, $V_1 = 0^\circ$, $U_2 = 1^\circ$, 2°, 3°, ..., 85° και $V_2 = 45^\circ$, 85°, στο γήινο τριαξονικό ελλειψοειδές

		aro co	$\max \delta \alpha_{12} =$					<i><i>QPD</i> (</i> 2)	$\max \delta \alpha_{12} =$		
U_1		α_1^{goo} (°)	$\alpha_1 - \alpha_1^{geo}$	U_2	V_2	U_1		α_1^{goo} (°)	$\alpha_1 - \alpha_1^{geo}$	U_2	V_2
			(°)						(°)		
	i	131.7807105	0.0589197	1			i	93.9999355	0.1093836	1	
65°	ii	131.7807105	0.0204076	1			ii	93.9999355	0.0299669	1	
	iii	131.7807105	0.0569574	1	45°	65°	iii	93.9999355	0.1066010	1	85°
	iv	131.7807105	0.0182470	1			iv	93.9999355	0.0382323	1	
	v	131.7807105	0.0181937	1			v	93.9999355	0.0381383	1	
	i	117.8531198	0.0657774	10	45°	45°	i	92.6878185	0.1398152	1	
	ii	124.4826616	0.0253169	1			ii	92.6878185	0.0386728	1	
45°	iii	124.4826616	0.0623190	1			iii	92.6878185	0.1353387	1	85°
	iv	124.4826616	0.0184891	1			iv	92.6878185	0.0482699	1	
	v	124.4826616	0.0184523	1			v	92.6878185	0.0481972	1	
	i	32.1817479	0.0416289	50			i	48.2409075	0.0959815	42	
	ii	28.4064588	0.0318697	54			ii	44.2116658	0.0745634	46	
5° i	iii	33.1538173	0.0462752	49	45°	5°	iii	42.1969320	0.0745609	48	85°
	iv	39.2416325	0.0077007	43			iv	89.4122036	0.0080954	1	
	v	39.2416325	0.0077296	43			v	89.4122036	0.0080953	1	

Πίνακας 4.6: Αποτελέσματα μέγιστων τιμών διαφοράς γωνίας α_1 στο σημείο P_1 των καμπυλών i) κεντρικής ii) πρώτης κάθετης iii) δεύτερης κάθετης iv) μέσης Ι κάθετης και v) μέσης ΙΙ κάθετης τομής από τη γεωδαισιακή α_1^{geo} , για το αντίστροφο πρόβλημα με ζεύγη σημείων $U_1 = 5^\circ$, 45°, 65°, $V_1 = 0^\circ$, $U_2 = 1^\circ$, 2°, 3°, ..., 85° και $V_2 = 125^\circ$, 165°, στο γήινο τριαξονικό ελλειψοειδές

11		a geo (°)	$\max \left \delta \alpha_{12} \right = \alpha_{a} \alpha_{a}^{geo}$	11	V	11		a geo (°)	$\max \left \delta \alpha_{12} \right = \alpha_{a} \alpha_{a}^{geo}$	11	V
01		u ₁ ()	$\begin{array}{c} u_1 - u_1 \\ (^{\circ}) \end{array}$	02	V2	v_1		u ₁ ()	$\begin{array}{c} u_1 - u_1 \\ (^{\circ}) \end{array}$	02	V2
	i	57.1165476	0.1330909	1			i	16.2915989	0.0575169	1	
	ii	57.1165476	0.0226095	1		65°	ii	16.2915989	0.0050226	1	
65°	iii	57.1165476	0.1307729	1	125°		iii	16.2915989	0.0567745	1	165°
	iv	57.1165476	0.0539143	1			iv	16.2915989	0.0257784	1	
	v	57.1165476	0.0538086	1			v	16.2915989	0.0257357	1	
	i	62.7678880	0.2406098	1	125°	45°	i	20.2743137	0.1727843	1	
	ii	42.1937369	0.0188821	35			ii	19.9519220	0.0222759	2	
45°	iii	62.7678880	0.2348833	1			iii	20.2743137	0.1697186	1	165°
	iv	62.7678880	0.1078594	1			iv	20.2743137	0.0956746	1	
	v	62.7678880	0.1077531	1			v	20.2743137	0.0956126	1	
	i	54.5895856	0.2149542	28			i	55.6832377	0.8993556	5	
	ii	51.5088221	0.1710414	31			ii	53.0718634	0.7310205	6	
5°	iii	32.5477802	0.0634460	51	125°	5°	iii	61.4227739	0.7490368	3	165°
	iv	62.0448016	0.0752232	21			iv	55.6832377	0.7238395	5	
	v	62.0448016	0.0752068	21			v	55.6832377	0.7238395	5	

Πίνακας 4.7: Αποτελέσματα μέγιστων τιμών διαφοράς γωνίας a_1 στο σημείο P_1 των καμπυλών i) κεντρικής ii) πρώτης κάθετης iii) δεύτερης κάθετης iv) μέσης Ι κάθετης και v) μέσης ΙΙ κάθετης τομής από τη γεωδαισιακή a_1^{geo} , για το αντίστροφο πρόβλημα με ζεύγη σημείων $U_1 = 5^\circ$, 45°, 65°, $V_1 = 0^\circ$, $U_2 = -1^\circ$, -2° , -3° , ..., -85° και $V_2 = 45^\circ$, 85°, στο γήινο τριαξονικό ελλειψοειδές

<i>U</i> ₁		$lpha_1^{geo}$ (°)	$\max \begin{vmatrix} \delta \alpha_{12} = \\ \alpha_1 - \alpha_1^{geo} \end{vmatrix}$ (°)	U ₂	<i>V</i> ₂	U ₁		$lpha_1^{geo}$ (°)	$\max \begin{vmatrix} \delta \alpha_{12} = \\ \alpha_1 - \alpha_1^{geo} \end{vmatrix}$ (°)	U ₂	<i>V</i> ₂
	i	137.0634454	0.0611215	16			i	105.8402815	0.1221242	26	
	ii	160.7075930	0.1218149	73		65°	ii	142.6229310	0.2776818	71	
65°	iii	154.8239342	0.1747739	64	45°		iii	132.2801210	0.3784947	63	85°
	iv	146.6827569	0.0372727	46			iv	116.6028104	0.0799871	45	
	v	146.6827569	0.0372131	46			v	116.6028104	0.0798579	45	
	i	125.8158698	0.0643828	1		45°	i	94.0999209	0.1396495	1	
	ii	159.4258762	0.0960921	63			ii	142.1884328	0.2203884	60	
45°	iii	153.2248320	0.1469452	52	45°		iii	131.2013374	0.3125674	49	85°
	iv	145.5185059	0.0319097	37			iv	114.3373575	0.0697690	29	
	v	146.0204743	0.0318866	38			v	115.1101933	0.0696823	30	
	i	156.8404341	0.0332821	58			i	140.1646775	0.0786376	50	
	ii	153.6898263	0.0433887	54			ii	137.1853882	0.1009392	47	
5°	iii	147.9065671	0.0646434	47	45°	5°	iii	133.2132939	0.1138691	43	85°
	iv	139.8394310	0.0117680	38			iv	108.3655598	0.0097762	18	
	v	140.7762100	0.0117994	39			v	108.3655598	0.0097866	18	

Πίνακας 4.8: Αποτελέσματα μέγιστων τιμών διαφοράς γωνίας α_1 στο σημείο P_1 των καμπυλών i) κεντρικής ii) πρώτης κάθετης iii) δεύτερης κάθετης iv) μέσης Ι κάθετης και v) μέσης II κάθετης τομής από τη γεωδαισιακή α_1^{geo} , για το αντίστροφο πρόβλημα με ζεύγη σημείων $U_1 = 5^{\circ}, 45^{\circ}, 65^{\circ}, V_1 = 0^{\circ}, U_2 = -1^{\circ}, -2^{\circ}, -3^{\circ}, ..., -85^{\circ}$ και $V_2 = 125^{\circ}, 165^{\circ}$, στο γήινο τριαξονικό ελλειψοειδές

<i>U</i> ₁		$lpha_1^{geo}$ (°)	$\max \begin{vmatrix} \delta \alpha_{12} = \\ \alpha_1 - \alpha_1^{geo} \end{vmatrix}$ (°)	U ₂ -	<i>V</i> ₂	<i>U</i> ₁		$lpha_1^{geo}$ (°)	$\max \begin{vmatrix} \delta \alpha_{12} = \\ \alpha_1 - \alpha_1^{geo} \end{vmatrix}$ (°)	U ₂ _	<i>V</i> ₂
	i	80.1507206	0.2031489	42			i	60.5258455	0.4945274	60	
	ii	125.3004274	0.6141200	69		65°	ii	105.9451227	2.6522839	66	
65°	iii	110.5859064	0.7637450	63	125°		iii	87.7678337	2.8505402	64	165°
	iv	87.4509375	0.1545770	49			iv	60.5258455	0.4565799	60	
	v	87.4509375	0.1543814	49			v	60.5258455	0.4563761	60	
	i	74.9811431	0.2632220	15	125°	45°	i	59.1427403	0.7759755	37	
	ii	126.3807899	0.4950061	55			ii	111.8221273	2.2168416	48	
45°	iii	107.0711535	0.6212787	43			iii	79.3178430	2.3890523	42	165°
	iv	84.4706112	0.1617762	25			iv	62.4985483	0.6758914	38	
	v	84.4706112	0.1615918	25			v	62.4985483	0.6756085	38	
	i	130.6342959	0.1850290	37			i	125.9858114	0.8509348	15	
	ii	127.2996946	0.2311761	34			ii	123.1482473	1.0301186	14	
5°	iii	131.7309975	0.1214527	38	125°	5°	iii	74.9878391	0.6351291	1	165°
	iv	126.1735980	0.0550444	33			iv	125.9858114	0.6797750	15	
	v	126.1735980	0.0549584	33			v	125.9858114	0.6797403	15	

4.2.2. Δεύτερο πείραμα

Για καλύτερη ερμηνεία των διαφορών μεταξύ των επίπεδων καμπυλών και της γεωδαισιακής, με εφαρμογή του αλγορίθμου για την επίλυση του ευθέος προβλήματος των γεωδαισιακών από την εργασία Panou και Korakitis (2020), από κοινό σημείο αφετηρίας P_1 και σταθερή γωνία α_1^{geo} , υπολογίζονται οι θέσεις σημείων σταθερού μήκους γεωδαισιακής. Από τα ζεύγη της γεωδαισιακής που δημιουργούνται με κοινή αφετηρία και αυξανόμενο μήκος, υπολογίζονται οι διαφορές $\delta s_{12} = s_{12} - s_{12}^{geo}$ μεταξύ του μήκους κάθε καμπύλης και της γεωδαισιακής. Παρομοίως, καταγράφονται οι διαφορές $\delta \alpha_1 = \alpha_1 - \alpha_1^{geo}$ μεταξύ της γωνίας στο σημείο P_1 κάθε καμπύλης και της γεωδαισιακής. Τα αποτελέσματα απεικονίζονται στις Εικόνες 4.3–4.17 για τα μήκη και στις Εικόνες 4.18–4.32 για τις γωνίες.

Εικόνα 4.2: Απεικόνιση κάθε επίπεδης καμπύλης μεταξύ ζευγών σημείων σταθερού μήκους γεωδαισιακής και κοινής αφετηρίας

Εικόνα 4.4: Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $a_1 = 45^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.6: Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $a_1 = 135^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.7: Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $a_1 = 165^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.8: Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $a_1 = 15^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.9: Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $a_1 = 45^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.10: Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $a_1 = 90^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.12: Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $a_1 = 165^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.13: Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $a_1 = 15^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.14: Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $a_1 = 45^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.15: Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $a_1 = 90^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.16: Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $a_1 = 135^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.17: Απεικόνιση των διαφορών του μήκους κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $a_1 = 165^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.18: Απεικόνιση της διαφοράς της γωνίας α_1 στο σημείο P_1 κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 15^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.19: Απεικόνιση της διαφοράς της γωνίας α_1 στο σημείο P_1 κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 45^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.20: Απεικόνιση της διαφοράς της γωνίας α_1 στο σημείο P_1 κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 90^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.21: Απεικόνιση της διαφοράς της γωνίας α_1 στο σημείο P_1 κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 135^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.22: Απεικόνιση της διαφοράς της γωνίας α_1 στο σημείο P_1 κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 165^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.23: Απεικόνιση της διαφοράς της γωνίας α_1 στο σημείο P_1 κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 15^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.24: Απεικόνιση της διαφοράς της γωνίας α_1 στο σημείο P_1 κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 45^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.25: Απεικόνιση της διαφοράς της γωνίας α_1 στο σημείο P_1 κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 90^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.26: Απεικόνιση της διαφοράς της γωνίας α_1 στο σημείο P_1 κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 135^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.27: Απεικόνιση της διαφοράς της γωνίας α_1 στο σημείο P_1 κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 165^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.28: Απεικόνιση της διαφοράς της γωνίας α_1 στο σημείο P_1 κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 15^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.29: Απεικόνιση της διαφοράς της γωνίας α_1 στο σημείο P_1 κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 45^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.30: Απεικόνιση της διαφοράς της γωνίας α_1 στο σημείο P_1 κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 90^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.31: Απεικόνιση της διαφοράς της γωνίας α_1 στο σημείο P_1 κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 135^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 4.32: Απεικόνιση της διαφοράς της γωνίας α_1 στο σημείο P_1 κάθε καμπύλης με τη γεωδαισιακή για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 165^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km
5. Ευθύ πρόβλημα

Το ευθύ πρόβλημα μπορεί να εφαρμοστεί μόνο στην περίπτωση της κεντρικής και της (πρώτης) κάθετης τομής, μιας και δεν είναι γνωστές οι συντεταγμένες του σημείου άφιξης. Ακολουθούν τα βήματα για την επίλυση του ευθέος προβλήματος, καθώς και αριθμητικά παραδείγματα με συγκρίσεις τόσο μεταξύ των διαφορετικών τομών, όσο και με τη γεωδαισιακή.

5.1. Περιγραφή του αλγορίθμου

- Ανεξάρτητα των καμπυλόγραμμων συντεταγμένων (παραμετρικές, ελλειψοειδείς, γεωδαιτικές) που ορίζουν τη θέση του σημείου αφετηρίας P₁, υπολογίζονται οι καρτεσιανές συντεταγμένες του και αντίστροφα μέσω των τύπων της παραγράφου 1.4.
- 2. Με γνωστές τις καρτεσιανές συντεταγμένες του σημείου $P_1 = (x_1, y_1, z_1)$ και τα μεγέθη των αξόνων του τριαξονικού ελλειψοειδούς a_x , a_y και a_z επιλέγεται το είδος της τομής (κεντρική ή (πρώτη) κάθετη), σύμφωνα με όσα περιγράφονται στο Κεφάλαιο 3.
- Υπολογίζεται το εφαπτόμενο διάνυσμα t (εξίσωση (3.14)) βάσει όσων περιγράφονται στην παράγραφο 3.1., αφού προηγηθεί ο υπολογισμός των μοναδιαίων διανυσμάτων N, Q και P βάσει των εξισώσεων (3.7), (3.15) και (3.17), αντίστοιχα.
- 4. Για καθεμιά από τις δύο τομές, υπολογίζεται το κάθετο διάνυσμα στο επίπεδο της τομής $\mathbf{n} = (n_x, n_y, n_z)$ από τις εξισώσεις (3.9) και (3.10), ενώ το διάνυσμα \mathbf{r}_{12} αντικαθίσταται από το \mathbf{t} και τέλος η ποσότητα d, δηλαδή προσδιορίζεται η εξίσωση του επιπέδου.
- 5. Από τα μεγέθη των αξόνων του τριαξονικού ελλειψοειδούς και την εξίσωση του επιπέδου υπολογίζονται οι παράμετροι της έλλειψης της τομής (u_0, v_0) , a_p , a_q και θ και το κέντρο της (x_0, y_0, z_0) στον τρισδιάστατο χώρο, σύμφωνα με όσα περιγράφονται στο Κεφάλαιο 2.
- 6. Από τις εξισώσεις (2.33)-(2.35) γίνεται ο μετασχηματισμός των καρτεσιανών συντεταγμένων του σημείου P₁ σε συντεταγμένες (p,q) στο σύστημα των αξόνων της έλλειψης. Ακολούθως, από την εξίσωση (2.39) υπολογίζεται το παραμετρικό πλάτος β₁ του σημείου.
- 7. Το μήκος τόξου έλλειψης s₁ υπολογίζεται είτε με μια αριθμητική, είτε με μια προσεγγιστική αναλυτική μέθοδο σύμφωνα με όσα περιγράφονται στις παραγράφους 2.1.1. και 2.1.2., αντίστοιχα.
- Το παραμετρικό πλάτος β₂ του σημείου άφιξης P₂ υπολογίζεται από το γνωστό μήκος s₁₂ και μέσω του σ₂, σύμφωνα με όσα περιγράφονται στην παράγραφο 2.2.
- 9. Από τις εξισώσεις (2.37) και (2.38) γίνεται ο μετασχηματισμός του παραμετρικού πλάτους β_2 σε συντεταγμένες (p_2, q_2) στο σύστημα αξόνων της έλλειψης. Ακολούθως, από τις εξισώσεις (2.30) και (2.31) υπολογίζονται οι καρτεσιανές συντεταγμένες (x_2, y_2, z_2) του σημείου άφιξης P_2 .

- Οι καρτεσιανές συντεταγμένες του σημείου άφιξης P₂ μετατρέπονται σε καμπυλόγραμμες βάσει όσων αναφέρονται στην παράγραφο 1.4.
- Υπολογίζεται η γωνία α₂ σύμφωνα με όσα περιγράφονται στην παράγραφο 3.1, αφού προηγηθεί ο υπολογισμός του εφαπτόμενου διανύσματος t (εξίσωση (3.13)) και των μοναδιαίων διανυσμάτων N, Q και P βάσει των εξισώσεων (3.7), (3.15) και (3.17), αντίστοιχα.

Σημειώνεται ότι, στην περίπτωση που το σημείο P_1 βρίσκεται πάνω στον Ισημερινό και η γωνία α_1 είναι ίση με $\pi/2$, ισχύει n = 0, συνεπώς προκύπτει η έλλειψη της εξίσωσης (2.5) και η θέση του σημείου άφιξης έχει ως αποτέλεσμα το παραμετρικό πλάτος V_2 , ενώ η γωνία α_2 είναι ίση με $\pi/2$.

5.2. Αριθμητικά παραδείγματα και συγκρίσεις

Παρομοίως, στους αριθμητικούς υπολογισμούς που ακολουθούν έχουν χρησιμοποιηθεί οι άξονες του γήινου τριαξονικού ελλειψοειδούς $a_x = 6378172$ m, $a_y = 6378102$ m και $a_z = 6356752$ m, όπως έχουν προσδιοριστεί στην εργασία Panou et al. (2020). Ανεξάρτητα από τις καμπυλόγραμμες συντεταγμένες που χρησιμοποιούνται, η κύρια έλλειψη στο επίπεδο xz είναι κοινή και συνεπώς οι γωνίες των σημείων της προς οποιαδήποτε διεύθυνση έχουν την ίδια αφετηρία.

Για την περαιτέρω οπτικοποίηση των διαφορών της κεντρικής και της (πρώτης) κάθετης τομής με τη γεωδαισιακή, από κοινό σημείο αφετηρίας P_1 και σταθερή γωνία a_1 υπολογίζονται οι θέσεις σημείων σταθερού και ίδιου μήκους για κάθε καμπύλη, με εφαρμογή του ευθέος προβλήματος (δες Εικόνα 5.1). Ο αλγόριθμος για την επίλυση του ευθέος προβλήματος των γεωδαισιακών περιγράφεται στην εργασία Panou και Korakitis (2020). Οι διαφορές της γεωδαισιακής απόστασης δs_2 του σημείου άφιξης P_2 της κεντρικής και της (πρώτης) κάθετης τομής με τη γεωδαισιακή απεικονίζονται στις Εικόνες 5.2–5.16. Σημειώνεται ότι η γεωδαισιακή απόσταση μεταξύ των σημείων άφιξης υπολογίζεται μέσω του αλγορίθμου της εργασίας Panou (2013).

Εικόνα 5.1: Διαφορές της γεωδαισιακής απόστασης του σημείου άφιξης P_2 της κεντρικής και της κάθετης τομής με τη γεωδαισιακή

Εικόνα 5.2: Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P_2 της κεντρικής και της κάθετης τομής με τη γεωδαισιακή για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 15^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 5.3: Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P_2 της κεντρικής και της κάθετης τομής με τη γεωδαισιακή για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 45^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 5.4: Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P_2 της κεντρικής και της κάθετης τομής με τη γεωδαισιακή για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 90^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 5.5: Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P_2 της κεντρικής και της κάθετης τομής με τη γεωδαισιακή για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 135^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 5.6: Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P_2 της κεντρικής και της κάθετης τομής με τη γεωδαισιακή για $U_1 = 5^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 165^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 5.7: Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P_2 της κεντρικής και της κάθετης τομής με τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 15^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 5.8: Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P_2 της κεντρικής και της κάθετης τομής με τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 45^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 5.9: Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P_2 της κεντρικής και της κάθετης τομής με τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 90^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 5.10: Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P_2 της κεντρικής και της κάθετης τομής με τη γεωδαισιακή για $U_1 = 45^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 135^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 5.11: Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P_2 της κεντρικής και της κάθετης τομής με τη γεωδαισιακή για $U_1 = 45^\circ, V_1 = 0^\circ, \alpha_1 = 165^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 5.12: Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P_2 της κεντρικής και της κάθετης τομής με τη γεωδαισιακή για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 15^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 5.13: Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P_2 της κεντρικής και της κάθετης τομής με τη γεωδαισιακή για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 45^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 5.14: Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P_2 της κεντρικής και της κάθετης τομής με τη γεωδαισιακή για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 90^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 5.15: Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P_2 της κεντρικής και της κάθετης τομής με τη γεωδαισιακή για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 135^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

Εικόνα 5.16: Απεικόνιση των διαφορών της γεωδαισιακής απόστασης του σημείου P_2 της κεντρικής και της κάθετης τομής με τη γεωδαισιακή για $U_1 = 65^\circ$, $V_1 = 0^\circ$, $\alpha_1 = 165^\circ$ και s_{12} από 0 m έως 18000 km, με βήμα 100 km

6. Συμπεράσματα και προτάσεις

Στο πλαίσιο της παρούσας εργασίας, το ευθύ και το αντίστροφο πρόβλημα για επίπεδες καμπύλες αντιμετωπίστηκε στη γενικότερη μορφή του. Συγκεκριμένα, η μεθοδολογία μπορεί να χρησιμοποιηθεί για όλα τα είδη των τομών που αναφέρονται στη βιβλιογραφία. Επίσης, μπορεί να εφαρμοστεί για όλα τα είδη των επιφανειών (σφαίρα, ελλειψοειδές εκ περιστροφής, τριαξονικό ελλειψοειδές). Επιπλέον, μπορεί να υλοποιηθεί και σε άλλα ουράνια σώματα, με διάφορες εκκεντρότητες, πέραν του γήινου τριαξονικού ελλειψοειδούς. Τέλος, αντιμετωπίζει και το ευθύ και το αντίστροφο πρόβλημα χωρίς επαναληπτική διαδικασία, για διάφορα συστήματα συντεταγμένων.

Από τις αριθμητικές τιμές των Πινάκων 4.1 – 4.8 προκύπτει ότι η κεντρική τομή παρουσιάζει τη μέγιστη διαφορά μήκους και γωνίας με τη γεωδαισιακή, όταν το ένα σημείο έχει μικρό πλάτος, είτε πρόκειται για ζεύγη σημείων στο ίδιο ημισφαίριο είτε σε διαφορετικό. Οι δύο κάθετες τομές (πρώτη και αντίστροφη) παρουσιάζουν τη μεγαλύτερη διαφορά μήκους και γωνίας με τη γεωδαισιακή σε σημεία που είναι σχεδόν αντιδιαμετρικά και κοντά στους πόλους. Τέλος, οι δύο μέσες κάθετες τομές Ι και ΙΙ παρουσιάζουν τις μικρότερες διαφορές μήκους και γωνίας με τη γεωδαισιακή για τυχαία ζεύγη σημείων.

Από τα αποτελέσματα των παραπάνω Πινάκων διαπιστώνεται, επίσης, ότι οι μέσες κάθετες τομές Ι και ΙΙ διαφέρουν ελάχιστα μεταξύ τους, στην τάξη μεγέθους του χιλιοστού, για την περίπτωση του γήινου τριαξονικού ελλειψοειδούς. Προφανώς, πρέπει να διερευνηθεί περαιτέρω πότε αυξάνουν οι διαφορές αυτές μεταξύ τους και για ποιους άξονες τριαξονικού ελλειψοειδούς.

Για το αντίστροφο πρόβλημα, όπως παρουσιάζεται στα γραφήματα των Εικόνων 4.3 – 4.17, η τάξη μεγέθους της διαφοράς του μήκους της κεντρικής τομής με τη γεωδαισιακή, για μήκος $s_{12} = 18000$ km είναι 220 m. Για την (πρώτη) κάθετη τομή, για την αντίστροφη κάθετη και για τις μέσες κάθετες τομές Ι και ΙΙ είναι 350 m, 400 m και 140 m, αντίστοιχα. Παρόμοια, όπως παρουσιάζεται στα γραφήματα των Εικόνων 4.18 – 4.32, η τάξη μεγέθους της διαφοράς των γωνιών είναι για την κεντρική τομή 0.9 deg, για την (πρώτη) κάθετη τομή 1.1 deg, για την αντίστροφη κάθετη 1.5 deg και για τις μέσες κάθετες τομές Ι και ΙΙ είναι 11 είναι 3.0 m.

Για το ευθύ πρόβλημα, όπως παρουσιάζεται στα γραφήματα των Εικόνων 5.2 – 5.16, η τάξη μεγέθους της διαφοράς της γεωδαισιακής απόστασης του σημείου P_2 της κεντρικής τομής με τη γεωδαισιακή, για μήκος $s_{12} = 18000$ km, είναι 32 km. Για την (πρώτη) κάθετη τομή η αντίστοιχη διαφορά είναι 40 km.

Είναι κατανοητό ότι, μιας και οι επίπεδες τομές διαφέρουν ελάχιστα για δύο σημεία πάνω στο ελλειψοειδές, παρουσιάζει ενδιαφέρον η αναζήτηση των χαρτογραφικών προβολών που μπορούν να τις απεικονίσουν, ώστε να φαίνονται οι διαφορές τους (π.χ. plate careé και Mercator).

Αξίζει να σημειωθεί ότι, το ευθύ και το αντίστροφο πρόβλημα μπορούν να χρησιμοποιηθούν συνδυαστικά ως εξής: αρχικά να εφαρμοστεί το αντίστροφο πρόβλημα μεταξύ δύο σημείων ενδιαφέροντος και στη συνέχεια το ευθύ πρόβλημα για τον προσδιορισμό ενδιάμεσων σημείων.

Ως μελλοντική έρευνα, το ευθύ πρόβλημα μπορεί να γενικευθεί και για την αντίστροφη και για τις μέσες κάθετες τομές, μέσω μιας επαναληπτικής διαδικασίας, όπως αυτή που περιγράφεται στον Orihuela (2022) για το ελλειψοειδές εκ περιστροφής.

Παράρτημα

Παρακάτω δίνονται δύο συναρτήσεις σε Matlab Inverse_problem.m και Direct_problem.m, που αναπτύχθηκαν για την επίλυση του ευθέος και του αντιστρόφου προβλήματος για επίπεδες καμπύλες στο τριαξονικό ελλειψοειδές.

Matlab function Inverse_problem.m

```
%function [s12,angle1,angle2] = Inverse_problem(ax,ay,az,U1,V1,U2,V2)
clc
clear all
format long g
format compact
°/_____
%-- Ellipsoid --
ax = 6378172;
ay = 6378102;
az = 6356752;
%-- Point 1 --
phi1 = 85*(pi/180);
lambda1 = 0^{*}(pi/180);
[x1,y1,z1] = philambda2xyz(ax,ay,az,phi1,lambda1);
[U1,V1] = xyz2UV(ax,ay,az,x1,y1,z1);
[U1,V1] = coordinates_quadrant(x1,y1,z1,U1,V1);
%-- Point 2 --
phi2 = 65*(pi/180);
lambda2 = 165^{*}(pi/180);
[x2,y2,z2] = philambda2xyz(ax,ay,az,phi2,lambda2);
[U2,V2] = xyz2UV(ax,ay,az,x2,y2,z2);
[U2,V2] = coordinates_quadrant(x2,y2,z2,U2,V2);
۰<u>//</u>_____
%-- Section --
[nx,ny,nz,d] = Central\_section(x1,y1,z1,x2,y2,z2);
%[nx,ny,nz,d] = Normal_section(ax,ay,az,x1,y1,z1,x2,y2,z2);
%[nx,ny,nz,d] = Reciprocal_normal_section(ax,ay,az,x1,y1,z1,x2,y2,z2);
%[nx,ny,nz,d] = Mean_I_normal_section(ax,ay,az,x1,y1,z1,x2,y2,z2);
%[nx,ny,nz,d] = Mean_II_normal_section(ax,ay,az,x1,y1,z1,x2,y2,z2);
```

```
[u0,v0,ap,aq,theta] = Intersection(ax,ay,az,nx,ny,nz,d);
[x0,y0,z0] = pq2xyz(u0,v0,theta,nx,ny,nz,d,0,0);
```

```
%-- Plot --
Plot ellipse 2D(ap,aq,u0,v0,theta);
Plot_ellipsoid(ax,ay,az);
Plot_ellipse_3D(ap,aq,u0,v0,theta,nx,ny,nz,d);
plot3(x1,y1,z1,'o','MarkerEdgeColor','k','MarkerFaceColor','k','MarkerSize',6)
plot3(x2,y2,z2,'*','MarkerEdgeColor','k','MarkerFaceColor','k','MarkerSize',6)
%-- Points --
[p1,q1] = xyz2pq(nx,ny,nz,u0,v0,theta,x1,y1,z1);
[beta1] = pq2beta(ap,aq,p1,q1);
[p2,q2] = xyz2pq(nx,ny,nz,u0,v0,theta,x2,y2,z2);
[beta2] = pq2beta(ap,aq,p2,q2);
%-- Arc length --
[b1,b2] = correct_beta(beta1,beta2);
[s12] = arc_length_analytical(ap,aq,b1,b2);
%[s12] = arc_length_numerical(ap,aq,b1,b2);
%-- Angles --
[Pt1,Qt1,angle1] = angle(ax,ay,az,nx,ny,nz,x1,y1,z1,U1,V1);
[angle1] = angle_quadrant(Pt1,Qt1,angle1);
[Pt2,Qt2,angle2] = angle(ax,ay,az,nx,ny,nz,x2,y2,z2,U2,V2);
[angle2] = angle_quadrant(Pt2,Qt2,angle2);
%----- Print results -----
fprintf('\n-----')
fprintf('\nEllipse parameters:');
fprintf('\nu0 (m) = \%.10f',u0);
fprintf('\nv0 (m) = \%.10f',v0);
fprintf('\nap(m) = \%.10f',ap);
fprintf('\naq(m) = \%.10f',aq);
fprintf('\ntheta (deg) = \%.12f', theta*(180/pi));
fprintf('\nCenter in xyz:');
fprintf('\nx0 (m) = \%.10f',x0);
fprintf('\ny0 (m) = \%.10f',y0);
fprintf('\nz0 (m) = \%.10f',z0);
fprintf('\n-----')
fprintf('\ns12 (m) = \%.10f',s12);
fprintf('\nangle1 (deg) = \%.12f',angle1*(180/pi));
fprintf('\nangle2 (deg) = \%.12f',angle2*(180/pi));
fprintf('\n-----\n')
%-----
```

%end

Matlab function Direct_problem.m

```
%function [U2,V2,angle2] = Direct_problem(ax,ay,az,U1,V1,s12,angle1)
clc
clear all
format long g
format compact
%_____
%-- Ellipsoid --
ax = 6378172:
ay = 6378102;
az = 6356752;
%-- Point 1 --
phi1 = 85*(pi/180);
lambda1 = 0*(pi/180);
[x1,y1,z1] = philambda2xyz(ax,ay,az,phi1,lambda1);
[U1,V1] = xyz2UV(ax,ay,az,x1,y1,z1);
[U1,V1] = coordinates_quadrant(x1,y1,z1,U1,V1);
s12 = 3333016.0501380749;
angle1 = 12.693028724824*(pi/180);
°⁄_-----
%-- Section --
[nx,ny,nz,d] = Central_section_direct(ax,ay,az,x1,y1,z1,U1,V1,angle1);
%[nx,ny,nz,d] = Normal_section_direct(ax,ay,az,x1,y1,z1,U1,V1,angle1);
[u0,v0,ap,aq,theta] = Intersection(ax,ay,az,nx,ny,nz,d);
[x0,y0,z0] = pq2xyz(u0,v0,theta,nx,ny,nz,d,0,0);
%-- Plot --
Plot_ellipse_2D(ap,aq,u0,v0,theta);
Plot_ellipsoid(ax,ay,az);
Plot_ellipse_3D(ap,aq,u0,v0,theta,nx,ny,nz,d);
plot3(x1,y1,z1,'o','MarkerEdgeColor','k','MarkerFaceColor','k','MarkerSize',6)
%-- Point 1 --
[p1,q1] = xyz2pq(nx,ny,nz,u0,v0,theta,x1,y1,z1);
[beta1] = pq2beta(ap,aq,p1,q1);
%-- Arrival point --
[s1] = arc_length_analytical(ap,aq,0,beta1);
[beta2] = arrival_point_analytical(ap,aq,s1,s12);
[p2,q2] = beta2pq(ap,aq,beta2);
```

```
%Sub = 20000;
%[p,q,cc] = arrival_point_numerical(ap,aq,beta1,s12,Sub);
%p2 = p(end);
%q2 = q(end);
%[beta2] = pq2beta(ap,aq,p2,q2);
[x2,y2,z2] = pq2xyz(u0,v0,theta,nx,ny,nz,d,p2,q2);
plot3(x2,y2,z2,'*','MarkerEdgeColor','k','MarkerFaceColor','k','MarkerSize',6)
[U2,V2] = xyz2UV(ax,ay,az,x2,y2,z2);
[U2,V2] = coordinates_quadrant(x2,y2,z2,U2,V2);
[phi2,lambda2] = xyz2philambda(ax,ay,az,x2,y2,z2);
[phi2,lambda2] = coordinates_quadrant(x2,y2,z2,phi2,lambda2);
%--- Angle 2 ---
[Pt2,Qt2,angle2] = angle(ax,ay,az,nx,ny,nz,x2,y2,z2,U2,V2);
[angle2] = angle_quadrant(Pt2,Qt2,angle2);
%----- Print results -----
fprintf('\n-----')
fprintf('\nEllipse parameters:');
fprintf('\nu0 (m) = \%.10f',u0);
fprintf('\nv0 (m) = \%.10f',v0);
fprintf('\nap (m) = \%.10f',ap);
fprintf('\naq(m) = \%.10f',aq);
fprintf('\ntheta (deg) = \%.12f', theta*(180/pi));
fprintf('\nCenter in xyz:');
fprintf('\nx0 (m) = \%.10f',x0);
fprintf('\ny0 (m) = \%.10f',y0);
fprintf('\nz0 (m) = \%.10f',z0);
fprintf('\n-----')
fprintf('\nphi2 (deg) = %.12f',phi2*(180/pi));
fprintf('\nlambda2 (deg) = \%.12f', lambda2*(180/pi));
fprintf('\nangle2 (deg) = \%.12f',angle2*(180/pi));
fprintf('\n-----\n')
%-----
```

%end

Matlab function angle.m

function [Pt,Qt,angle] = angle(ax,ay,az,nx,ny,nz,x,y,z,U,V)

[Px,Py,Pz,Qx,Qy,Qz] = UV2PQ(ax,ay,az,x,y,z,U,V);

[Nx,Ny,Nz] = Normal(ax,ay,az,x,y,z);

```
[tx,ty,tz] = cross_product(nx,ny,nz,Nx,Ny,Nz);
[tx,ty,tz] = vector_norm(tx,ty,tz);
```

```
Pt = Px^{*}tx + Py^{*}ty + Pz^{*}tz;
Qt = Qx^{*}tx + Qy^{*}ty + Qz^{*}tz;
```

```
if abs(Pt) <= abs(Qt)
  angle = atan(Pt/Qt);
else
  angle = acot(Qt/Pt);
end</pre>
```

end

Matlab function angle_quadrant.m

```
function [angle] = angle_quadrant(Pt,Qt,angle)
if abs(Pt) <= abs(Qt)
  if Pt == 0
    if Qt == 0
      angle = 0;
    elseif Qt > 0
      angle = 0;
    else
      angle = pi;
    end
  elseif Pt > 0
    if Qt > 0
      angle = angle;
    else
      angle = angle+pi;
    end
  else
    if Qt > 0
      angle = angle+2*pi;
    else
      angle = angle+pi;
    end
  end
else
  if Qt == 0
```

```
if Pt > 0
    angle = pi/2;
else
    angle = 3*(pi/2);
end
elseif Qt > 0
    if Pt > 0
    angle = angle;
else
    angle = angle+2*pi;
end
else
    angle = angle+pi;
end
```

Matlab function arc_length_analytical.m

n = (ap-aq)/(ap+aq);

function [s12] = arc_length_analytical(ap,aq,b1,b2)

```
B0 = n^{6}/256 + n^{4}/64 + n^{2}/4 + 1;

B2 = (5^{n}n^{7})/2048 + n^{5}/128 + n^{3}/16 - n/2;

B4 = (5^{n}n^{6})/2048 + n^{4}/64 - n^{2}/16;

B6 = (7^{n}n^{7})/6144 + (5^{n}n^{5})/768 - n^{3}/48;

B8 = (7^{n}n^{6})/2048 - (5^{n}n^{4})/512;

B10 = (21^{n}n^{7})/10240 - (7^{n}n^{5})/1280;

B12 = -(7^{n}n^{6})/2048;

B14 = -(33^{n}n^{7})/14336;
```

```
s12 = ((ap+aq)/2)*(B0*(b2-b1)+B2*(sin(2*b2)-sin(2*b1))+B4*(sin(4*b2)-sin(4*b1))+B6*(sin(6*b2)-sin(6*b1))+B8*(sin(8*b2)-sin(8*b1))+B10*(sin(10*b2)-sin(10*b1))+B12*(sin(12*b2)-sin(12*b1))+B14*(sin(14*b2)-sin(14*b1)));
```

end

Matlab function arrival_point_numerical.m

function [p,q,cc] = arrival_point_numerical(ap,aq,beta1,s12,Sub)

e2 = 1-((aq*aq)/(ap*ap)); me2 = 1-e2;

[p1,q1] = beta2pq(ap,aq,beta1);

p1p = -q1/sqrt(q1*q1+me2*me2*p1*p1);q1p = p1/sqrt(q1*q1/(me2*me2)+p1*p1);

v1 = [p1,p1p,q1,q1p];

R = RungeKutta4_F(s12,Sub,v1,me2);

s = R(:,1); p = R(:,2); pp = R(:,3); q = R(:,4);qp = R(:,5);

cc = p.*p+(q.*q./me2)-ap*ap;

end

Matlab function beta2pq.m

function [p,q] = beta2pq(ap,aq,beta)

p = ap*cos(beta); q = aq*sin(beta);

end

Matlab function BL2xyz.m

function [x,y,z] = BL2xyz(ax,ay,az,B,L)

 $Ex2 = ax^*ax - az^*az;$ $Ee2 = ax^*ax - ay^*ay;$

 $Beta = \cos(B)*\cos(B) + (Ee2/Ex2)*\sin(B)*\sin(B);$ Lambda = 1-(Ee2/Ex2)*cos(L)*cos(L);

x = ax*sqrt(Beta)*cos(L); y = ay*cos(B)*sin(L); z = az*sin(B)*sqrt(Lambda);

end

Matlab function Central_section.m

function [nx,ny,nz,d] = Central_section(x1,y1,z1,x2,y2,z2)

a1 = x1;

```
a2 = y1;
a3 = z1;
[a1,a2,a3] = vector_norm(a1,a2,a3);
b1 = x2-x1;
b2 = y2-y1;
b3 = z2-z1;
[b1,b2,b3] = vector_norm(b1,b2,b3);
```

```
[nx,ny,nz] = cross_product(a1,a2,a3,b1,b2,b3);
[nx,ny,nz] = vector_norm(nx,ny,nz);
```

d = 0;

end

```
Matlab function Central_section_direct.m
```

function [nx,ny,nz,d] = Central_section_direct(ax,ay,az,x1,y1,z1,U1,V1,angle1)

[x1,y1,z1] = vector_norm(x1,y1,z1);

[Px1,Py1,Pz1,Qx1,Qy1,Qz1] = UV2PQ(ax,ay,az,x1,y1,z1,U1,V1);

tx1 = Px1*sin(angle1)+Qx1*cos(angle1); ty1 = Py1*sin(angle1)+Qy1*cos(angle1); tz1 = Pz1*sin(angle1)+Qz1*cos(angle1);

```
[nx,ny,nz] = cross_product(x1,y1,z1,tx1,ty1,tz1);
[nx,ny,nz] = vector_norm(nx,ny,nz);
```

d = 0;

end

Matlab function coordinates_quadrant.m

function [u,v] = coordinates_quadrant(x,y,z,u,v)

```
if z < 0
u = -u;
end
if x >= 0
if y >= 0
v = v;
else
```

```
v = -v;
end
else
if y >= 0
v = pi-v;
else
v = v-pi;
end
end
```

Matlab function correct_beta.m

```
function [b1,b2] = correct_beta(beta1,beta2)
if abs(beta2-beta1) > pi
 if beta2 < beta1
    b1 = beta1;
    b2 = beta2 + 2*pi;
  else
    b1 = beta2;
    b2 = beta1 + 2*pi;
  end
else
  if beta2 < beta1
    b1 = beta2;
    b2 = beta1;
  else
    b1 = beta1;
    b2 = beta2;
  end
end
```

end

Matlab function cross_product.m

function [c1,c2,c3] = cross_product(a1,a2,a3,b1,b2,b3)

c1 = a2*b3-a3*b2;c2 = -(a1*b3-a3*b1);c3 = a1*b2-a2*b1;

end

Matlab function Ellipse.m

```
function [s_max,s_min,w_max] = Ellipse(q11,q22,q12)
s_max = sqrt(0.5*((q11+q22)+sqrt((q11-q22)*(q11-q22)+4*q12*q12)));
s_min = sqrt(0.5^*((q11+q22)-sqrt((q11-q22)^*(q11-q22)+4^*q12^*q12)));
y = 2*q12;
x = q11-q22;
if abs(x==0) && abs(y==0)
  w = 0;
elseif abs(y) \le abs(x)
  w = atan(abs(y)/abs(x));
else
  w = acot(abs(x)/abs(y));
end
if x == 0
  if y \ge 0
    w = pi/2;
  else
    w = 3^{*}(pi/2);
  end
elseif y == 0
  if x > 0
    w = 0;
  else
    w = pi;
  end
else
  if x > 0
    if y > 0
     w = w;
    else
      w = 2*pi - w;
    end
  else
    if y > 0
      w = pi - w;
```

```
else
w = pi + w;
end
end
end
```

w_max = w/2;

end

Matlab function F.m

function dv = F(s,v,me2) H = v(1)*v(1)+v(3)*v(3)/(me2*me2); h = v(2)*v(2)+v(4)*v(4)/me2; hdH = h/H; dv = zeros(4,1); dv(1) = v(2); dv(2) = -hdH*v(1); dv(3) = v(4); dv(4) = -hdH*v(3)/me2;end Matlab function Intersection.m

function [u0,v0,ap,aq,theta] = Intersection(ax,ay,az,nx,ny,nz,d)

 $ax2 = ax^*ax;$ $ay2 = ay^*ay;$ $az2 = az^*az;$ Ax = 1/(ax2); Ay = 1/(ay2); Az = 1/(az2); $nx2 = nx^*nx;$ $ny2 = ny^*ny;$ $nz2 = nz^*nz;$

```
d2 = d^*d;
n = sqrt(nx2+ny2);
n2 = nx2 + ny2;
A = sqrt(1-Az^*d2);
°⁄_-----
if n == 0
  ap = ax^*A;
  aq = ay^*A;
  theta = 0;
  u0 = 0;
  v0 = 0;
else
  ruu = (1/n2)^{*}(Ax^{*}ny2 + Ay^{*}nx2);
  rvv = (nz2/n2)^{*}(Ax^{*}nx2 + Ay^{*}ny2) + Az^{*}n2;
  ruv = (2*nx*ny*nz/n2)*(Ax-Ay);
  ru = (2*d*nx*ny/n)*(Ay-Ax);
  rv = 2*d*nz*(Az*n-(Ax*nx2+Ay*ny2)/n);
  r = 1-d2*(Ax*nx2+Ay*ny2+Az*nz2);
  cuu = ruu/r; cvv = rvv/r; cuv = ruv/r; cu = ru/r; cv = rv/r;
  e = 4*cuu*cvv-cuv*cuv;
  f = 2^{*}cvv^{*}cu - cuv^{*}cv;
  g = -cuv^*cu + 2^*cuu^*cv;
  u0 = - f/e;
  v0 = -g/e;
  dd = 1 + cuu^{*}u0^{*}u0 + cvv^{*}v0^{*}v0 + cuv^{*}u0^{*}v0;
  quu = 4*dd*cvv/e;
  qvv = 4*dd*cuu/e;
  quv = -2*dd*cuv/e;
  [ap,aq,theta] = Ellipse(quu,qvv,quv);
end
```

Matlab function Mean_I_normal_section.m

```
function [nx,ny,nz,d] = Mean_I_normal_section(ax,ay,az,x1,y1,z1,x2,y2,z2)
```

```
[Nx1,Ny1,Nz1] = Normal(ax,ay,az,x1,y1,z1);
[Nx2,Ny2,Nz2] = Normal(ax,ay,az,x2,y2,z2);
```

a1 = 0.5*(Nx1+Nx2); a2 = 0.5*(Ny1+Ny2); a3 = 0.5*(Nz1+Nz2); [a1,a2,a3] = vector_norm(a1,a2,a3);

b1 = x2-x1; b2 = y2-y1; b3 = z2-z1; [b1,b2,b3] = vector_norm(b1,b2,b3);

[nx,ny,nz] = cross_product(a1,a2,a3,b1,b2,b3); [nx,ny,nz] = vector_norm(nx,ny,nz);

```
d = nx^{*}x1 + ny^{*}y1 + nz^{*}z1;
```

end

Matlab function Mean_II_normal_section.m

function [nx,ny,nz,d] = Mean_II_normal_section(ax,ay,az,x1,y1,z1,x2,y2,z2)

```
ex2 = 1-((az*az)/(ax*ax));
ee2 = 1-((ay*ay)/(ax*ax));
mex2 = 1-ex2;
mee2 = 1-ee2;
a1 = x1;
a2 = y1+(ee2/mee2)*(y1+y2)/2;
a3 = z1+(ex2/mex2)*(z1+z2)/2;
[a1,a2,a3] = vector_norm(a1,a2,a3);
b1 = x2-x1;
b2 = y2-y1;
b3 = z2-z1;
[b1,b2,b3] = vector_norm(b1,b2,b3);
[nx,ny,nz] = cross_product(a1,a2,a3,b1,b2,b3);
```

```
[nx,ny,nz] = vector_norm(nx,ny,nz);
```

```
d = nx^{*}x1 + ny^{*}y1 + nz^{*}z1;
```

Matlab function Normal.m

function [Nx,Ny,Nz] = Normal(ax,ay,az,x,y,z)

ex2 = 1-((az*az)/(ax*ax)); ee2 = 1-((ay*ay)/(ax*ax));

mex2 = 1-ex2; mee2 = 1-ee2;

```
H = sqrt(x*x+y*y/(mee2*mee2)+z*z/(mex2*mex2));
```

```
Nx = x/H;
Ny = y/(mee2*H);
Nz = z/(mex2*H);
```

end

Matlab function Normal_section.m

function [nx,ny,nz,d] = Normal_section(ax,ay,az,x1,y1,z1,x2,y2,z2)

```
[Nx1,Ny1,Nz1] = Normal(ax,ay,az,x1,y1,z1);
```

```
a1 = Nx1;
a2 = Ny1;
a3 = Nz1;
b1 = x2-x1;
b2 = y2-y1;
b3 = z2-z1;
[b1,b2,b3] = vector_norm(b1,b2,b3);
```

```
[nx,ny,nz] = cross_product(a1,a2,a3,b1,b2,b3);
[nx,ny,nz] = vector_norm(nx,ny,nz);
```

```
d = nx^{*}x1 + ny^{*}y1 + nz^{*}z1;
```

end

Matlab function Normal_section_direct.m

function [nx,ny,nz,d] = Normal_section_direct(ax,ay,az,x1,y1,z1,U1,V1,angle1)

[Nx1,Ny1,Nz1] = Normal(ax,ay,az,x1,y1,z1);

[Px1,Py1,Pz1,Qx1,Qy1,Qz1] = UV2PQ(ax,ay,az,x1,y1,z1,U1,V1);

tx1 = Px1*sin(angle1)+Qx1*cos(angle1); ty1 = Py1*sin(angle1)+Qy1*cos(angle1); tz1 = Pz1*sin(angle1)+Qz1*cos(angle1);

[nx,ny,nz] = cross_product(Nx1,Ny1,Nz1,tx1,ty1,tz1); [nx,ny,nz] = vector_norm(nx,ny,nz);

```
d = nx^{*}x1 + ny^{*}y1 + nz^{*}z1;
```

end

Matlab function philambda2xyz.m

function [x,y,z] = philambda2xyz(ax,ay,az,phi,lambda)

 $ex2 = 1-((az^*az)/(ax^*ax));$ $ee2 = 1-((ay^*ay)/(ax^*ax));$

Ν

ee2*cos(phi)*cos(phi)*sin(lambda)*sin(lambda));

ax/sqrt(1-ex2*sin(phi)*sin(phi)-

$$\begin{split} x &= N^* cos(phi)^* cos(lambda); \\ y &= N^* (1\text{-ee2})^* cos(phi)^* sin(lambda); \\ z &= N^* (1\text{-ex2})^* sin(phi); \end{split}$$

end

Matlab function Plot_ellipse_2D.m

function [] = Plot_ellipse_2D(ap,aq,u0,v0,theta)

beta = 0:1*(pi/180):2*pi;

p = ap.*cos(beta);q = aq.*sin(beta);

R = [cos(theta) sin(theta); -sin(theta) cos(theta)];

u = u0 + R(1,1)*p + R(2,1)*q;v = v0 + R(1,2)*p + R(2,2)*q;

plot(u,v,'o','MarkerEdgeColor','r','MarkerFaceColor','k','MarkerSize',2)

Matlab function Plot_ellipse_3D.m

function [] = Plot_ellipse_3D(ap,aq,u0,v0,theta,nx,ny,nz,d)

```
beta = 0:1*(pi/180):2*pi;
p = ap.*cos(beta);
q = aq.*sin(beta);
```

 $R = [\cos(\text{theta}) \sin(\text{theta}); -\sin(\text{theta}) \cos(\text{theta})];$

u = u0 + R(1,1)*p + R(2,1)*q;v = v0 + R(1,2)*p + R(2,2)*q;

n = sqrt(nx*nx+ny*ny);

x = (-ny/n).*u+(-nx*nz/n).*v+nx.*d; y = (nx/n).*u+(-ny*nz/n).*v+ny.*d;z = n.*v+nz.*d;

axis equal plot3(x,y,z,'o','MarkerEdgeColor','r','MarkerFaceColor','k','MarkerSize',2) grid on xlabel('x') ylabel('y') zlabel('z')

end

Matlab function Plot_ellipsoid.m

```
function [] = Plot_ellipsoid(ax,ay,az)
```

```
figure
[x,y,z] = ellipsoid(0,0,0,ax,ay,az,100);
surf(x,y,z,'FaceAlpha',0.5,'EdgeColor','none','FaceColor',[0.1 0.6 1.0]);
axis equal
hold on
```

end

```
Matlab function pq2beta.m
```

```
function [beta] = pq2beta(ap,aq,p,q)
if abs(ap*q) <= abs(aq*p)</pre>
  beta = atan(abs(ap*q)/abs(aq*p));
else
  beta = acot(abs(aq*p)/abs(ap*q));
end
if p == 0
  if q \ge 0
    beta = pi/2;
  else
    beta = 3^{*}(pi/2);
  end
elseif q == 0
  if p > 0
    beta = 0;
  else
    beta = pi;
  end
else
  if p > 0
    if q > 0
      beta = beta;
    else
      beta = 2*pi - beta;
    end
  else
    if q > 0
      beta = pi - beta;
    else
      beta = pi + beta;
    end
  end
end
end
```

Matlab function pq2xyz.m

function [x,y,z] = pq2xyz(u0,v0,theta,nx,ny,nz,d,p,q)

```
n = sqrt(nx*nx+ny*ny);
```

u = u0+cos(theta)*p-sin(theta)*q; v = v0+sin(theta)*p+cos(theta)*q; x = (-ny/n)*u+(-nx*nz/n)*v+nx*d; y = (nx/n)*u+(-ny*nz/n)*v+ny*d;z = n*v+nz*d;

end

Matlab function Reciprocal_normal_section.m

function [nx,ny,nz,d] = Reciprocal_normal_section(ax,ay,az,x1,y1,z1,x2,y2,z2)

```
[Nx2,Ny2,Nz2] = Normal(ax,ay,az,x2,y2,z2);
```

a1 = Nx2; a2 = Ny2; a3 = Nz2; b1 = x2-x1; b2 = y2-y1; b3 = z2-z1; [b1,b2,b3] = vector_norm(b1,b2,b3);

```
[nx,ny,nz] = cross_product(a1,a2,a3,b1,b2,b3);
[nx,ny,nz] = vector_norm(nx,ny,nz);
```

```
d = nx^{*}x^{2}+ny^{*}y^{2}+nz^{*}z^{2};
```

end

Matlab function RungeKutta4_F.m

function R = RungeKutta4_F(s,Sub,v1,me2)

 $s(i+1) = i^*ds;$ end

R = [s' w'];

end

Matlab function UV2PQ.m

function [Px,Py,Pz,Qx,Qy,Qz] = UV2PQ(ax,ay,az,x,y,z,U,V)

 $ex2 = 1-((az^*az)/(ax^*ax));$ $ee2 = 1-((ay^*ay)/(ax^*ax));$

dG = 1/sqrt(1-ex2*cos(U)*cos(U)-ee2*sin(U)*sin(U)*sin(V)*sin(V));

 $Qx = -\sin(U)^*\cos(V)^*dG;$ $Qy = -\operatorname{sqrt}(1-\operatorname{ee2})^*\sin(U)^*\sin(V)^*dG;$ $Qz = \operatorname{sqrt}(1-\operatorname{ex2})^*\cos(U)^*dG;$

[Nx,Ny,Nz] = Normal(ax,ay,az,x,y,z);

```
[Px,Py,Pz] = cross_product(Qx,Qy,Qz,Nx,Ny,Nz);
```

end

Matlab function UV2xyz.m

function [x,y,z] = UV2xyz(ax,ay,az,U,V)

 $ex2 = 1-((az^*az)/(ax^*ax));$ $ee2 = 1-((ay^*ay)/(ax^*ax));$

x = ax*cos(U)*cos(V); y = ax*sqrt(1-ee2)*cos(U)*sin(V); z = ax*sqrt(1-ex2)*sin(U);

end

Matlab function vector_norm.m

function [x,y,z] = vector_norm(x,y,z)

r = sqrt(x*x+y*y+z*z);

x = x/r;y = y/r; z = z/r;

end

Matlab function xyz2BL.m

```
function [B,L] = xyz2BL(ax,ay,az,x,y,z)
ax2 = ax^*ax;
ay2 = ay^*ay;
az2 = az^*az;
Ex2 = ax2-az2;
Ey2 = ay2-az2;
Ee2 = ax2-ay2;
x = abs(x);
y = abs(y);
z = abs(z);
x^{2} = x^{*}x;
y^{2} = y^{*}y;
z^{2} = z^{*}z;
M = (z2/y2)^*(ay2/az2);
N = 1/M;
P = (y2/x2)^*(ax2/ay2);
Q = 1/P;
if z \le y
  if y \le x
    if y == 0
       B = 0;
       L = 0;
    else
       U = P + (Ee2/Ex2)^{*}(z2/x2)^{*}(ax2/az2) - (Ey2/Ex2);
       L = \operatorname{atan}(\operatorname{sqrt}(0.5^{*}(U + \operatorname{sqrt}(U^{*}U + 4^{*}(\operatorname{Ey2/Ex2})^{*}P))));
       Lambda = 1 \cdot (Ee2/Ex2) \cdot cos(L) \cdot cos(L);
       B = atan(sqrt(M/Lambda)*sin(L));
    end
  else
    V = Q - (Ee2/Ey2) M - (Ex2/Ey2);
    L = acot(sqrt(0.5^{*}(V+sqrt(V^{*}V+4^{*}(Ex2/Ey2)^{*}Q))));
    Lambda = 1-(Ee2/Ex2)*cos(L)*cos(L);
    B = atan(sqrt(M/Lambda)*sin(L));
  end
```

```
else
  if x \le y
    if y == 0
       B = pi/2;
       L = pi/2;
    else
       W = N + (Ey2/Ex2)^*(x2/z2)^*(az2/ax2) - (Ee2/Ex2);
       B = acot(sqrt(0.5^{*}(W+sqrt(W^{*}W+4^{*}(Ee2/Ex2)^{*}N))));
       Beta = \cos(B) \cos(B) + (Ee2/Ex2) \sin(B) \sin(B);
       L = acot(sqrt(Q/Beta)*cos(B));
    end
  else
    W = (Ey2/Ex2)^{*}(x2/z2)^{*}(az2/ax2) + N-(Ee2/Ex2);
    B = acot(sqrt(0.5^{*}(W+sqrt(W^{*}W+4^{*}(Ee2/Ex2)^{*}N))));
    U = (Ee2/Ex2)^{*}(z2/x2)^{*}(ax2/az2) + P-(Ey2/Ex2);
    L = \operatorname{atan}(\operatorname{sqrt}(0.5^{*}(U + \operatorname{sqrt}(U^{*}U + 4^{*}(\operatorname{Ey2}/\operatorname{Ex2})^{*}P))));
  end
end
```

```
Matlab function xyz2philambda.m
```

```
function [phi,lambda] = xyz2philambda(ax,ay,az,x,y,z)
```

```
ex2 = 1 - ((az^*az)/(ax^*ax));
ee2 = 1 - ((ay^*ay)/(ax^*ax));
x = abs(x);
y = abs(y);
z = abs(z);
if (1-ee2)^{*}z \le (1-ex2)^{*}sqrt((1-ee2)^{*}(1-ee2)^{*}x^{*}x+y^{*}y)
  phi = atan(((1-ee2)*z)/((1-ex2)*sqrt((1-ee2)*(1-ee2)*x*x+y*y)));
else
  phi = 0.5*pi - atan(((1-ex2)*sqrt((1-ee2)*(1-ee2)*x*x+y*y))/((1-ee2)*z));
end
if (x == 0 \&\& y == 0)
  lambda = 0;
elseif y \leq = (1-ee2)^*x
  lambda = 2*atan(y/((1-ee2)*x+sqrt((1-ee2)*(1-ee2)*x*x+y*y)));
else
  lambda = 0.5*pi - 2*atan(((1-ee2)*x)/(y+sqrt((1-ee2)*(1-ee2)*x*x+y*y)));
end
```

Matlab function xyz2pq.m

function [p,q] = xyz2pq(nx,ny,nz,u0,v0,theta,x,y,z)

n = sqrt(nx*nx+ny*ny);

 $u = (-ny/n)^*x + (nx/n)^*y;$ v = (-nx*nz/n)*x+(-ny*nz/n)*y+n*z;

 $p = \cos(\text{theta})^*(u \cdot u0) + \sin(\text{theta})^*(v \cdot v0);$ $q = -\sin(\text{theta})^*(u \cdot u0) + \cos(\text{theta})^*(v \cdot v0);$

end

Matlab function xyz2UV.m

function [U,V] = xyz2UV(ax,ay,az,x,y,z) $ex2 = 1 - ((az^*az)/(ax^*ax));$ $ee2 = 1 - ((ay^*ay)/(ax^*ax));$ mex2 = 1-ex2;mee2 = 1-ee2;smex2 = sqrt(mex2);smee2 = sqrt(mee2); x = abs(x);y = abs(y);z = abs(z);r = sqrt(mee2*x*x+y*y);if $(z^*smee2) \le (r^*smex2)$ U = atan((z*smee2)/(r*smex2));else U = acot((r*smex2)/(z*smee2));end if (x==0 && y==0) V = 0;elseif y $\leq = (x^*smee2)$ V = 2*atan(y/(x*smee2+r));else V = 0.5*pi-2*atan((x*smee2)/(y+r));

end
Βιβλιογραφία

- Bektas S. (2016). Intersection of an ellipsoid and a plane. *International Journal of Research in Engineering and Applied Sciences*, 273–283. https://euroasiapub.org/wp-content/uploads/2016/09/27EASJune-3788-1.pdf
- Bell, R. J. T. (1923). An elementary treatise on coordinate geometry of three dimensions. Macmillan and Co. https://archive.org/details/elementarytreati00bellrich/mode/2up
- Bowring, B. R. (1971). The normal section Forward and inverse formulae at any distance. *Survey Review*, *21*(161), 131–136. https://doi.org/10.1179/sre.1971.21.161.131
- Bowring, B. R. (1984). The direct and inverse solutions for the great elliptic line on the reference ellipsoid. *Bulletin Géodésique*, *58*, 101–108. https://doi.org/10.1007/BF02521760
- Deakin R. E. (2009). *The normal section curve on an ellipsoid*. http://www.mygeodesy.id.au/documents/Normal%20Section.pdf
- Deakin R. E. (2010). *The great elliptic arc on an ellipsoid*. http://www.mygeodesy.id.au/documents/Great%20Elliptic%20Arc.pdf
- Deakin R. E. (2012). *Great elliptic arc distance*. http://www.mygeodesy.id.au/documents/Great%20Elliptic%20Arc%20Distance. pdf
- Deakin, R. E., & Hunter, M. N. (2013). *Geometric Geodesy Part A*. School of Mathematical and Geospatial Sciences, RMIT University, Melbourne, Australia. http://www.mygeodesy.id.au/documents/Geometric%20Geodesy%20A(2013).pdf
- Earle, M. A. (2000). A vector solution for navigation on a great ellipse. *Journal of Navigation*, *53*(3), 473–481. https://doi.org/10.1017/S0373463300008948
- Earle, M. A. (2008). Vector solutions for azimuth. *Journal of Navigation*, *61*(3), 537–545. https://doi.org/10.1017/S037346330800475X
- Earle, M. A. (2011). Accurate harmonic series for inverse and direct solutions for the great ellipse. *Journal of Navigation, 64*(3), 557–570. https://doi.org/10.1017/S037346331100004X
- Feltens, J. (2009). Vector method to compute the Cartesian (X, Y, Z) to geodetic (ϕ , λ , h) transformation on a triaxial ellipsoid. *Journal of Geodesy*, *83*(2), 129–137. https://doi.org/10.1007/s00190-008-0246-5
- Ferguson, C. C. (1979). Intersections of ellipsoids and planes of arbitrary orientation and position. *Journal of the International Association for Mathematical Geology*, *11*(3), 329–336. https://doi.org/10.1007/BF01034997
- Gan'shin V. N. (1969). *Geometry of the Earth Ellipsoid*. https://zenodo.org/record/32854#.Y_HzxHZByUk

- Gendzwill, D. J., & Stauffer, M. R. (1981). Analysis of triaxial ellipsoids: Their shapes, plane sections, and plane projections. *Journal of the International Association for Mathematical Geology*, *13*(2), 135–152. https://doi.org/10.1007/BF01031390
- Gilbertson, C. P. (2012). Earth section paths. *Navigation*, *59*(1), 1–7. https://doi.org/10.1002/navi.2
- Klein, P. P. (2012). On the ellipsoid and plane intersection equation. *Applied Mathematics*, *3*(11), 1634–1640. https://doi.org/10.4236/am.2012.311226
- Klein, P. P. (2017). Projection of the semi-axes of the ellipse of intersection. *Applied Mathematics*, *8*(9), 1320–1335. https://doi.org/10.4236/am.2017.89097
- Maxima, A Computer Algebra System (5.46.0). (2022). https://maxima.sourceforge.io/
- Orihuela, S. (2022). Earth section paths. Solution to the inverse and direct problems, and waypoints without iterations. *Geodesy and Cartography*, *48*(1), 1–10. https://doi.org/10.3846/gac.2022.13337
- Osborne, P. (2013). *The Mercator Projections*. https://zenodo.org/record/35392#.Y_IbeXZByUk
- Pallikaris, A., & Latsas, G. (2009). New algorithm for Great Elliptic Sailing (GES). *Journal of Navigation, 62*(3), 493–507. https://doi.org/10.1017/S0373463309005323
- Panou, G. (2013). The geodesic boundary value problem and its solution on a triaxial ellipsoid. *Journal of Geodetic Science, 3*(3). https://doi.org/10.2478/jogs-2013-0028
- Panou, G., & Agatza-Balodimou, A.-M. (2021). Direct and indirect estimation of the variance–covariance matrix of the parameters of a fitted ellipse and a triaxial ellipsoid. *Journal of Surveying Engineering*, 147(1). https://doi.org/10.1061/(ASCE)SU.1943-5428.0000342
- Panou, G., & Korakitis, R. (2019). Geodesic equations and their numerical solution in Cartesian coordinates on a triaxial ellipsoid. *Journal of Geodetic Science*, 9(1), 1– 12. https://doi.org/10.1515/jogs-2019-0001
- Panou, G., & Korakitis, R. (2020). The direct geodesic problem and an approximate analytical solution in Cartesian coordinates on a triaxial ellipsoid. *Journal of Applied Geodesy*, *14*(2), 205–213. https://doi.org/10.1515/jag-2019-0066
- Panou, G., & Korakitis, R. (2021). Analytical and numerical methods of converting Cartesian to ellipsoidal coordinates. *Journal of Geodetic Science*, *11*(1), 111–121. https://doi.org/10.1515/jogs-2020-0126
- Panou, G., & Korakitis, R. (2022). Cartesian to geodetic coordinates conversion on a triaxial ellipsoid using the bisection method. *Journal of Geodesy*, *96*(10), 66. https://doi.org/10.1007/s00190-022-01650-9
- Panou, G., Korakitis, R., & Pantazis, G. (2020). Fitting a triaxial ellipsoid to a geoid model. *Journal of Geodetic Science*, *10*(1), 69–82. https://doi.org/10.1515/jogs-2020-0105

- Ramberg, H. (1976). The strain in a sheet intersecting the strain ellipsoid at any angle. *Bulletin de La Société Géologique de France, S7-XVIII*(6), 1417–1422. https://doi.org/10.2113/gssgfbull.S7-XVIII.6.1417
- Rapp R. (1991). *Geometric Geodesy*. Ohio State University, Department of Geodetic Science and Surveying. http://hdl.handle.net/1811/24333
- Sjöberg, L. E. (2012). Solutions to the direct and inverse navigation problems on the great ellipse. *Journal of Geodetic Science*, *2*(3), 200–205. https://doi.org/10.2478/v10156-011-0040-9
- Tienstra, J. M. (1951). The normal section of the ellipsoid. *Bulletin Géodésique*, *19*, 7–21. https://doi.org/10.1007/BF02527401
- Tseng, W.-K., Guo, J.-L., Liu, C.-P., & Wu, C.-T. (2012). The vector solutions for the great ellipse on the spheroid. *Journal of Applied Geodesy*, *6*(2), 103–109. https://doi.org/10.1515/jag-2011-0014
- Tseng, W.-K., & Lee, H.-S. (2010). Navigation on a great ellipse. *Journal of Marine Science and Technology*, *18*(3), 369–375. https://doi.org/10.51400/2709-6998.1882
- Walwyn, P. R. (1999). The great ellipse solution for distances and headings to steer between waypoints. *Journal of Navigation*, *52*(3), 421–424. https://doi.org/10.1017/S0373463399008516
- Williams, R. (1996). The great ellipse on the surface of the spheroid. *Journal of Navigation, 49*(2), 229–234. https://doi.org/10.1017/S0373463300013333