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Abstract

The potential of quantum computing for scientific and industrial breakthroughs is im-
mense, however, we are still in the Noisy Intermediate-Scale quantum (NISQ) era, where
the currently available quantum devices contain small numbers of qubits, are very sen-
sitive to environmental conditions and prone to quantum decoherence. Even so, exist-
ing NISQ computers have already been shown to outperform conventional computers on
specific problems and the key question is how to make use of today’s NISQ devices to
achieve quantum advantage in the field of computational science and engineering (CSE).
In this direction, this work proposes a hybrid computing formulation by combining quan-
tum computing with machine learning for accelerating the solution of parameterized linear
systems in NISQ devices. In particular, it focuses on the Variational Quantum Linear
Solver (VQLS), which is hybrid quantum- classical algorithm to solve linear systems that
employs a short-depth quantum circuit to efficiently evaluate a cost function related to
the system solution. The circuit consists of a quantum gate sequence (unitary operators)
that involves a set of tunable parameters. Then, well-established classical optimizers are
being utilized to tune the parameters of the sequence so as to minimize the cost function,
which is equivalent to finding the system solution at an acceptable level of accuracy. It is
demonstrated in this work that we can successfully employ machine learning tools such as
feed-forward neural networks and nearest-neighbor interpolation techniques to accelerate
the convergence of the VQLS algorithm towards the optimal values for the circuit param-
eters, when applied to parameterized linear systems that need to be solved for multiple
parameter instances. This of a great importance to the field of CSE as it paves the way
to accelerating the solution to almost all multi-query problems (uncertainty propagation,
parameter inference, optimization, sensitivity analysis etc.) as these essentially reduce to
the solution of a parameterized linear system.

Keywords

Quantum Computing, Variational Quantum Linear Solver, Quantum Linear System Prob-
lem, machine learning, parametric
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A classical computation is like a solo voice,
one line of pure tones succeeding each other.
A quantum computation is like a symphony,

many lines of tones interfering with one another.
— Seth Lloyd
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Chapter 1

Introduction

Recent advancements in quantum computing are paving the way for a new age in compu-
tation, promising to revolutionize several industry standards, including communications,
finance, chemistry, materials, artificial intelligence, cryptography etc., over the coming
decades. Upon that realization, an informal race is currently running among governments
as technological giants, startups and research centers compete in order to be the first
to grasp the holy grail of quantum computing, the so-called quantum supremacy. When
finally reached, quantum supremacy will mark a historical turning point upon which quan-
tum processors will be able to solve problems that no classical computer can in any feasible
amount of time. Though some have claimed to already have achieved this milestone, there
are also counter-claims that advise modesty, since that goal is still beyond our reach.

Figure 1.1. A wafer from D-Wave’s quantum annealer.

Quantum technology, still in its infancy, experiences a fast growth both in theoretical level,
as well as in terms of hardware and economy, as vast sums all over the world are being
invested in the developing industry. Many assert that even the so-called Noisy-Intermediate
Scale Quantum (NISQ) devices that we currently possess, could outperform conventional
computers in the near future. Specifically, NISQ devices are near-term quantum computers,
with a limited number of qubits, and too few physical qubits to implement robust error
correction schemes. Existing NISQ computers have already been shown to outperform
conventional computers on a limited set of problems designed specifically to fit quantum
computers’ capabilities.
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Chapter 1. Introduction

Algorithms running on these restricted devices may require only a small number of qubits,
show some degree of noise resilience, and are often cast as hybrid algorithms, where some
steps are performed on a quantum device and some on a conventional computer. In par-
ticular, the number of sequential operations, or quantum gates, must remain moderate, as
the longer a system is evolved, the more errors are introduced into the quantum state, and
the more likely it is to decohere. Due to these restrictions, there are limits on the scope
of algorithms that can be considered. The key technological question is therefore how to
make best use of today’s NISQ devices to achieve quantum advantage. Any such strategy
must account for the limited number of qubits, toppological limitations i.e. connectivity
between qubits, coherent and incoherent errors that limit quantum circuit depth.

In parallel, due to advancements in high-performance computing, which approaches fast the
exascale era, the field of computational science and engineering (CSE) is also exponentially
growing, being inextricably linked to the quest of solving problems of rising complexity. In
such environment, quantum computing is expected to bring tremendous breakthroughs to
this field. Even to this day, there are many critical problems that lay beyond our current
computational capabilities and are deemed intractable even for the world’s most advanced
supercomputers. Some examples are non-convex optimization problems, modeling physical
systems at multiple length and/or time scales, molecular modeling, robust design problems
and others. With quantum computing coming to the fore, there is a silver lining in the
computing world that one can finally solve such complex problems. Most field experts
agree that quantum computing has the potential to bring breakthroughs to almost all
aspects of CSE, from the most fundamental level of solving linear systems of equations up
to machine learning modeling.

1.1 Hybrid Quantum-Classical schemes

As mentioned earlier, current NISQ processors suffer immensely from hardware noise, while
quantum error correction — a wholesome of techniques that utilize noisy physical qubits,
to create virtual, error-tolerant ones— requires many qubits, orders of magnitude more
than the current availability. In principle, pure-quantum algorithms can be run on NISQ
devices, however the underlying noise limits decisively the size of solvable problems. For
example, HHL has been implemented with superconducting qubits [2, 3], nuclear magnetic
resonance [4] etc. to a linear system of size of 2 × 2. Alternative approaches like an
adiabatic-inspired algorithm [5] achieved on NMR a problem size of 8 × 8 which is — at
time of writing — the current record [6].

Even according to optimistic estimations, the NISQ era won’t end for at least two more
decades and, while new and better quantum devices emerge continuously, gates and qubits
are noisy for the time and this is something the scientific community has accepted. Along
these lines, new types of hybrid algorithms have emerged which are suited for the NISQ
era and combine both classical and quantum computational schemes. The main idea be-
hind hybrid schemes is to give part or most of the higher level computations to classical
CPUs, which are better-suited for such operations, and compute only critical tasks on
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1.1.1 Linear System solution using Quantum Computers

QPUs. Among hybrid schemes, the most notorious are the Variational Hybdrid Quantum-
Classical algorithms (VHQCAs or VQAs for simplicity) [7]. VHQCAs, such as the Vari-
ational Quantum Eigensolver, employ short-depth quantum circuits — thus avoiding er-
ror accumulations— in order to efficiently evaluate a cost function, which depends on
trainable parameters of a quantum gate sequence. The optimization strategy depends on
well-established classical schemes which minimize the aforementioned cost. For example,
Shor’s algorithm for prime factorization is not well-cuited for NISQ devices. In contrast a
VHQCA for factoring was introduced potentially making quantum factorizaton available
sooner [8].

It is important to specify that all VHQCAs are heuristic algorithms, making rigorous
complexity analysis rather complicated. Those familiar with machine learning, might find
similarities between VHQCAs and neural networks, since both deploy similar concepts such
as heuristic architectures, layers, trainable parameters, cost functions etc.

1.1.1 Linear System solution using Quantum Computers

CSE researchers have already started centering their attention on the development of quan-
tum variants for classical algorithms to solve engineering problems. An important first step
towards this direction can be found in the seminal work of Harrow et al. [9], where a quan-
tum algorithm, termed HHL after its creators, was first proposed for solving linear systems
of equations. While classical algorithms for solving an N × N linear system scale poly-
nomially in N , HHL algorithm scales logarithmically in N , which suggests that quantum
computers may provide exponential speedup for certain linear systems. This is a remark-
able feat with major implications in CSE, since almost all problems of engineering interest
are described by partial differential equations that are converted into linear systems of
equations using discretization schemes (finite elements, finite differences etc.). To be more
precise, the complexity of HHL, for a fixed precision ϵ in the solution, scales polynomially
in logN and κ, where κ is the condition number of the system matrix. Further improve-
ments to HHL have been introduced lately which have reduced its complexity to linear with
respect to κ [5, 10], polylogarithmic with respect to 1/ϵ [11, 12] and refined the algorithm
for dense matrices [13].

In terms of real life applications, HHL-like quantum solvers have only been applied to
small-scale, mostly illustrative problems such as 2× 2 linear systems [14, 15]. Despite the
fact that such problems could be trivially handled by classical computers, yet, these suc-
cessful experiments have certainly lent much support to the growing optimism for further
developments of quantum computations. The aforementioned HHL-like algorithms hold
great promise for the future, when large-scale quantum computers will exist having enough
qubits for quantum error correction. The timescale for such computers remains an open
question, but is typically estimated to be on the order of two decades.

On the other hand, currently existing commercial quantum computers may have a few
hundred noisy quantum processors, but with the maximum number of qubits rapidly in-
creasing by the day. Thus, a crucial question is how to make use of such NISQ computers.
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The most promising strategy comes from the previously mentioned VHQCAs. So far, vari-
ational schemes have been applied successfully in simulations [16], data compression [17]
and metrology [18], while in [1] the authors demonstrated that they can successfully solve
linear systems of medium scales. This work will focus on the last algorithm in particu-
lar, the Variational Quantum Linear Solver (VQLS) [1, 19]. The idea behind VQLS is to
employ a short-depth quantum circuit to efficiently evaluate a cost function related to the
system solution, but the circuit in this setting will consist of a quantum gate sequence that
involves a set of tunable parameters. Then, well-established classical optimizers are being
utilized to tune the parameters in the sequence so as to minimize the cost function, which
is equivalent to finding the system solution at an acceptable level of accuracy.

It must be noted, that unlike pure quantum algorithms of the HHL family, VQLS shows
only experimentally a polylogarithmic speed-up over classical solvers, as a theoretical com-
plexity analysis is considered challenging and has not been realized yet.

Based on this, early theoretical investigations on the application of quantum algorithms
in the context of the finite element method can already be found in the literature. In [20]
authors focused on the variant of the HHL algorithm proposed by [11] and proved that
the run times needed by quantum algorithms to achieve a predetermined solution accuracy
could be polynomially faster than the classical ones. Similarly, in [21] the application of the
HHL algorithm for the solution of finite element equations in electromagnetic problems is
demonstrated and in [22] it was applied to solve the equations of elasticity. The problems
studied in these works were extremely simplified, having very small dimensionality, and
still quite far from practical interest. On the other hand, the VQLS algorithm shows
greater promise at solving larger scale systems, as evidenced in [23] for the discretized heat
equation.

1.1.2 Solving ODEs with Quantum Computers

Linear ordinary differential equations (ODEs) describe a plethora of phenomena in science
and engineering and even nonlinear ODEs can be well approximated with linear ODEs
using linearization techniques. Hence efficient solution techniques for ODEs are a focal
point for researchers and scientists. In this regard, the solvers developed for linear systems
of algebraic equations could also be used to solve systems of linear ODEs, as shown in
[24]. However, it seems exponential speedups cannot be achieved by quantum algorithms
using the linear quantum problem as a subroutine. In [25], it was shown that HHL-
like algorithms used for ODEs are never faster than the best classical algorithms and an
alternative approach needs to be pursued. An answer to this problem can be found in
[26], where a novel gate-based quantum algorithm for solving ODEs was proposed based
on the Taylor expansion of the matrix exponential, which was shown to achieve superior
performance in running time. However, this idea could only be applied to problems with
constant excitation terms, which is very limiting in realistic scenarios.

An alternative approach for solving ODEs by combining quantum and classical algorithms
was proposed in [27]. This work manages to represent and solve high-order Runge-Kutta
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1.1.2 Solving ODEs with Quantum Computers

integration schemes as optimization problems on quantum annealers. Nevertheless, to
overcome the limitations of current quantum annealers, the authors adopt the hybrid
variational formulation found in the VQLS algorithm, where only a part of the problem
is run on the quantum device, while a post-processing stage is performed on a classical
computer to optimize the parameters in the variational algorithm. This method offers the
advantage that the associated computational costs scale more favorably with increasing
the integration order compared to classical computers, but it has only been demonstrated
on rudimentary examples.
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Chapter 2

Quantum Computing - Theoretical Prerequisites

As Quantum Computing is at present a well-established scientific field, extensive theory
shall not be covered in this thesis. As an extended introduction Quantum Information
theory is out of the scope of this work, the current chapter includes only a very brief
introduction to Dirac notation and Quantum Computing principles. Nevertheless, some
more advanced and rather specific theoretical concepts will be discussed, since they are
not part of basic quantum information theory textbooks.

For in-depth analysis and strict mathematical formulation, one of the most credible and
complete sources for introductory QC concepts is [28]. Another book recommended by the
author, especially for those familiar with computer science, is [29]. Besides the aforemen-
tioned sources, there is a plethora of material in the form of textbooks, lectures, courses
etc. which one can follow in order to get a solid basic-level understanding of the initially
peculiar concepts of Quantum Computing.

2.1 Dirac notation and Quantum Systems

Dirac notation is a mathematical framework derived from Quantum Mechanics and used to
represent vectors, matrices, and operations on these objects. While the classical column-
vector notation is common in linear algebra, it quickly becomes cumbersome in quantum
computing, especially when dealing with multiple qubits. Dirac notation, in contrast,
becomes handy and practical when dealing with vector subspaces and and tensor products,
hence is used almost exclusively in QC. In this section we will briefly consolidate the Dirac
notation how it is used to describe quantum computing systems.

2.1.1 Vectors

In standard notation, a vector is usually represented as

v =

[
a

b

]
,

where its components on some basis are often arranged as a column of its elements.
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In Dirac notation, vectors are represented as kets and more often than not, will be decom-
posed into a linear combination over some basis. A 2-dimensional vector for example, can
be written as

|ψ⟩ = a |0⟩+ b |1⟩ =

[
a

b

]
(2.1)

where |i⟩ is the basis vector of dimension i. Usually, the standard (computational) basis
is used

|0⟩ =

[
1

0

]
, |1⟩ =

[
0

1

]
,

2.1.2 Vector Operations

Tensor Product

The tensor product is a fundamental concept in quantum computing and plays a key role in
the representation of quantum states and quantum operations. It allows us to extend the
notion of a single qubit state to a multi-qubit state and to represent quantum operations
that act on multiple qubits simultaneously.

In Dirac notation, the tensor product of two vectors |ψ1⟩ and |ψ2⟩ is represented as |ψ1⟩ ⊗
|ψ2⟩. It is a new vector in a higher-dimensional Hilbert space that describes the joint state
of the two vectors. The components of the tensor product vector are given by

(|ψ1⟩ ⊗ |ψ2⟩)i,j = ψ1,iψ2,j . (2.2)

Here, ψ1,i and ψ2,j are the components of the vectors |ψ1⟩ and |ψ2⟩, respectively. The
tensor product of two vectors is a useful concept in quantum computing, as it allows us to
represent multi-qubit systems as vectors in a higher-dimensional Hilbert space.

Conjugate transpose

In classical vector notation the transpose of a vector v is usually written with its compo-
nents arranged as rows. To be precise though, since we deal with complex Hilbert spaces
in QC, we also need the complex conjugate of that vector

v† =
[
x∗ y∗ z∗

]
.

In Dirac notation, the same vector would be written as a bra

⟨v| = v† = (v∗)T . (2.3)
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Inner Product

The inner product of two vectors |ψ⟩ =
∑

i ψi |i⟩ and |ϕ⟩ =
∑

i ϕi |i⟩ is written as a bra-ket
combination

⟨ψ|ϕ⟩ =
∑
i

ψ∗
i ϕi = ⟨ϕ|ψ⟩∗ (2.4)

Outer Product

In a similar fashion, the outer product of the said vectors is a ketbra

|ψ⟩⟨ϕ| =
∑
i

∑
j

ψiϕ
∗
j |i⟩ ⟨j| (2.5)

2.1.3 Density Matrices

In quantum mechanics, a density matrix is a Hermitian, positive semi-definite matrix used
to represent the state of a quantum system. The density matrix provides a convenient and
complete description of the state of a quantum system, including information about both
the probability distribution of the system’s wavefunction and the coherence of its quantum
superpositions.

A density matrix ρ is defined as

ρ =
∑
i

pi |ψi⟩ ⟨ψi| , (2.6)

where pi are the probabilities of the state |ψi⟩.

It is important to note that the trace of the density matrix represents the total probability
of the system, and it must be equal to 1. That is,

Tr(ρ) =
∑
i

⟨ψi| ρ |ψi⟩ =
∑
i

pi = 1. (2.7)

In quantum computing, density matrices are often used to represent mixed states, which
are states that cannot be described by a single wavefunction. They are also used to describe
the state of a quantum system after it has undergone a measurement, as well as the state
of a quantum system when it is in a superposition of multiple states.

Trace distance

The trace distance is usually used as a metric on the space of density matrices and gives a
measure of distinguishability between two states. It is the quantum generalization of the
Kolmogorov distance for classical probability distributions.

The formal definition of trace distance is half the trace norm of the difference of the two
input matrices
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T (ρ, σ) :=
1

2
∥ρ− σ∥1 =

1

2
Tr

{√
(ρ− σ)†(ρ− σ)

}
. (2.8)

For the special case where ρ, σ are hermitian

T (ρ, σ) =
1

2
Tr

{√
(ρ− σ)2

}
=

1

2

∑
i

|λi|, (2.9)

where λi are the eigenvalues of the hermitian matrix (ρ− σ).

2.2 Quantum Systems

2.2.1 Single-qubit System

A single quantum-bit or qubit state can be described by a complex 2-dimensional vector

|ψ⟩ = a |0⟩+ b |1⟩ ∈ C2. (2.10)

under the restriction |a|2+ |b|2 = 1. All the possible states of a qubit form a 2-dimensional
Hilbert space H2

As seen by eq. (2.10), qubits are a really powerful generalization of classical bits. While
classical bits can only take two distinct values (0 or 1), qubits can range over a continuous
subspace of C2 and can simultaneously be in both the zero-state |0⟩ and the one-state
|1⟩. This property is known in quantum mechanics as superposition and mathematically
is described by the linear combination of two orthogonal states.

2.2.2 Multi-qubit systems

In quantum computing, a multi-qubit system is a system composed of multiple qubits. The
state of a multi-qubit system is described by a multi-qubit state vector, which is a vector
in a high-dimensional Hilbert space. The dimension of this space is given by the product
of the dimensions of the individual qubits, so for n qubits, the dimension of the Hilbert
space is 2n

From smaller systems

As an example, let us consider two single-qubit states |ψ⟩ , |ϕ⟩ ∈ H2. A 2-qubit system can
be constructed by the tensor product of these two states

|w⟩ = |ψ⟩ ⊗ |ϕ⟩ = |ψ⟩ |ϕ⟩ =

[
ψ0

ψ1

]
⊗

[
ϕ0

ϕ1

]
=


ψ0ϕ0

ψ0ϕ1

ψ1ϕ0

ψ1ϕ1

 ∈ H4. (2.11)
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This multi-qubit state |w⟩ can also be written as linear combination of basis states

|w⟩ = w00 |00⟩+ w01 |01⟩+ w10 |10⟩+ w11 |11⟩ , (2.12)

where wij = ψiϕj and ⟨w|w⟩ = 1

Though tensor products are fundamental to construct multi-qubit systems, one cannot
span a whole vector space with a single product, since they don’t introduce correlation.
The tensor product of 2 qubit states does indeed construct a multi-qubit system, but the
respective single-qubit subsystems remain statistically independent. Ultimately, one needs
the ability to correlate two quantum states, which is only achieved through entaglement.

In general, an n-qubit state can be written as

|ψ⟩ =
2n−1∑
i=0

ψi |i⟩ , (2.13)

under the normalization condition ⟨ψ|ψ⟩ =
∑2n−1

i=0 |ψi|2 = 1. The integer notation for basis-
vectors can be used interchangeably with the corresponding binary one e.g. |5⟩ instead of
|101⟩ and vice versa.

Entanglement

Quantum entanglement is a phenomenon in quantum mechanics where the quantum states
of two or more quantum systems are correlated in a way that cannot be explained by
classical mechanics. In quantum computing, entanglement plays a crucial role in many
quantum algorithms and protocols.

|0⟩ H
|00⟩+ |11⟩

|0⟩

Figure 2.1. Quantum Circuit realizing the maximally-entangled Bell state. Both qubits
start from zero state. The Hadamard gate is applied on the first qubit followed by a
controlled-NOT gate with the second qubit as target. Controlled operations introduce en-
tanglement.

One of the simplest examples of entanglement is the Bell state. The Bell state is a two-
qubit state that is maximally entangled and can be represented by the following equation
in Dirac notation:

1√
2
(|00⟩+ |11⟩). (2.14)

Here, |00⟩ and |11⟩ represent the states of the two qubits, and 1√
2

is a normalization factor.
The important feature of the Bell state is that the state of one qubit cannot be described
independently of the state of the other qubit i.e. cannot be written as a single tensor
product. This is a consequence of entanglement.
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2.2.3 Quantum Gates

Quantum gates are the basic building blocks of quantum circuits and serve as the analogues
of classical logic gates in classical computing. Quantum gates are unitary transformations
that manipulate the state of a quantum system and enable the implementation of quantum
algorithms.

A quantum gate is represented by a unitary matrix U , which acts on the state of a quantum
system described by the ket vector |ψ⟩. The action of the gate is given by

∣∣ψ′〉 = U |ψ⟩ . (2.15)

Common examples of single-qubit quantum gates include the Pauli X, Y , and Z gates, the
Hadamard gate H, the Phase gate P . An example of a single-qubit circuit is illustrated
in 2.2, where, starting from the zero-ket state, a Hadamard gate is applied, followed by
a Pauli Y -gate and finally a measurement. The measurement is the only non-unitary
operation in quantum computing which results with the qubit in either state |0⟩ or |1⟩.
There are also multi-qubit, controlled-gates that introduce correlation, or entanglement
in quantum-mechanical sense, such as the Controlled-NOT gate CX and the Toffoli gate
CCX. These gates, among others, can be combined to form more complex quantum
circuits that can perform a variety of quantum operations, including state preparation,
quantum state manipulation and quantum error correction. An example of a multi-qubit,
controlled gate is illustrated in in the circuit of Fig. 2.3, where the first qubit acts as
control-qubit and the rest n qubits as targets.

0
|0⟩ H Y

Figure 2.2. Single-qubit circuit with initial state |0⟩. A Hadamard gate is applied to the
qubit, followed by a Pauli-Y gate. The resulting state is |ψ⟩ = Y H |0⟩ = −i/

√
2(|0⟩ − |1⟩).

Finally, a measurement takes place which counts whether the result state is |0⟩. Due to the
Hadamard gate, the probability of measuring state |0⟩ is p(0) =

∣∣−i/√2
∣∣2 = 0.5

It is important to note that all quantum gates are reversible, meaning that the inverse of a
gate exists and can be used to undo the action of the gate. This is a fundamental property
of quantum gates and is in contrast to classical gates, which are typically irreversible.
Additionally, as mentioned, quantum gates must be unitary, meaning that they preserve the
normalization of the state vectors they operate on, and they must be efficient to implement
in a practical quantum computing setting. These two properties can be expressed with the
following restriction

U †U = 1 (2.16)
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0

n

|0⟩ H

|0⟩n U

Figure 2.3. Multi-qubit circuit with a controlled operation CU . U operator is applied in
the second n-qubit register only when the control (first from above) qubit has a |1⟩ compo-
nent.

2.3 Useful Quantum Circuits for this work

2.3.1 Inner Product as circuit

Given two quantum states |x⟩ , |y⟩, the goal is to compute the product ⟨x|y⟩ . Starting
from the state

|ψ0⟩ =
1√
2
(|0⟩ |x⟩+ eiϕ |1⟩ |y⟩) (2.17)

we apply a Hadamard gate on the first ancilla qubit

|ψ⟩ =(H ⊗ I) |ψ0⟩

=
1

2
(|+⟩ |x⟩+ eiϕ |−⟩ |y⟩)

=
1

2

(
|0⟩ (|x⟩+ eiϕ |y⟩) + |1⟩ (|x⟩ − eiϕ |y⟩

)
The probability of measuring 0 is

p(0) = ⟨ψ| (|0⟩⟨0| ⊗ I) |ψ⟩

=
1

4

(
⟨x|x⟩+ ⟨y|y⟩+ eiϕ ⟨x|y⟩+ e−iϕ ⟨y|x⟩

)
=
1

4

(
2 + 2Re

{
eiϕ ⟨x|y⟩

})
and finally

Re
{
eiϕ ⟨x|y⟩

}
= 1− 2p(0) (2.18)

Since ⟨x|y⟩ is in general a complex number we want to estimate both its real and imaginary

0

n

|0⟩ H S† H

|0⟩n Ux Uy

optional

Figure 2.4. Circuit for Inner product. The S† gate is added to the circuit when the
imaginary part of the inner product is needed. The circuits Ux, Uy evolve |0⟩n to the states
|x⟩ , |y⟩ respectively. The white-coloured control operation implies conditional on the |0⟩
state, instead of |1⟩.
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parts. This is achieved by proper selection of the initial phase parameter in 2.17. By setting
ϕ = 0 in we get Re ⟨x|y⟩ from 2.18. To get Im ⟨x|y⟩ we set ϕ = −π

2 respectively.

2.3.2 The Hadamard Test

The Hadamard test is a special case of the inner product computational scheme, which
computes the expected value ⟨ψ|U |ψ⟩.

0

n

|0⟩ H S† H

|ψ⟩ U

optional

Figure 2.5. Circuit for Hadamard Test. The S† gate is added to the circuit when the
imaginary part of the expectation value is needed.

2.3.3 Quantum Amplitude Estimation

Given an operator A dividing a system in two subspaces

A |0⟩ =
√
1− α |ψ0⟩+

√
α |ψ1⟩

amplitude estimation algorithms form a family of methods that estimate the amplitude of
the "good" state α = | ⟨ψ1|ψ1⟩ |2.

This task has first been investigated by Brassard et al. [30] in 2000 and their algorithm
uses a combination of the Grover operator and Phase estimation.

Theorem 2.1 (Amplitude Estimation [30]). There is a quantum algorithm called "Am-
plitude Estimation" which for any integer k > 0 takes as input a 2-state quantum system
|ψ⟩ and forms a unitary transformation Q = AS0A

†Sψ1, which is applied j times. The
algorithm outputs 0 ≤ α̃ ≤ 1, an estimate of α = ⟨ψ1|ψ1⟩, such that

|α̃− α| ≤ 2kπ

√
a(1− a)

M
+ π2

k2

M2

• with success probability at least 8/π2 when k = 1

• with probability greater than 1− 1
2(k−1) for k ≥ 2.

M is a dimension hyperparameter that controls precision.

m

n

|0⟩ QFTM QFT†
M

A |0⟩ Qj

Figure 2.6. Circuit for original Amplitude Estimation.
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2.4 The Quantum Linear System Problem

Linear systems of equations need no introduction. They are used excessively in most
areas of science and technology, including machine learning, solving differential equations,
computer graphics, signal processing and countless other engineering applications. Being
a subject of such importance, solving linear has been the cutting edge of computational
science even before the invention of classical computers. Thus, it came as no surprise
that as quantum computing hardware was — and still is — at its infancy, many quantum
algorithms for linear systems have already emerged.

It is known, that solving an N×N Linear System Problem (LSP) with a classical computer
scales polynomially in N . In contrast, as Harrow-Hassidim-Lloyd (HHL) showed [9], a
quantum algorithm scales logarithmically in N , suggesting that quantum computers can
provide an exponential speedup for certain linear system problems. As awe-inspiring as
that may sound at first, there is a number of limitations that must be taken int account.
First and foremost, all the algorithms of the HHL family - and most others- try to address
the Quantum Linear System Problem (QLSP), where the goal is to prepare a quantum
state |x⟩ that is proportional to a vector x that satisfies the original LSP.

Specifically, given the LSP

Ax = b, (2.19)

where A is an N ×N sparse hermitian matrix with condition number κ, b a sparse vector
and x the solution of the system, the QLSP is the respective system

A |x⟩ = |b⟩ , (2.20)

where A is a normalized version of A with spectral norm ∥A∥ ≤ 1 and |b⟩ = b
∥b∥ the

normalized right-hand side vector. We must strongly emphasize at this point that the LSP
and its QLSP counterpart are two distinct problems w.r.t their result and because the
latter does not offer direct access to the values of |x⟩ with better complexity, but rather
it’s assumed that the user is interested in applying an operator M to the solution. Thus,
the measurable result of the algorithm can only be a quantity ⟨x|M |x⟩ and not |x⟩ itself.

If both A and b are sparse the original HHL solves for |x⟩ in O(κ2 logN/ϵ) time. For
comparison, the most well-established classical algorithm the Conjugate-Gradient method
runs in O(Nsk), where s is the sparsity of A. The latter though gives the user direct
access to the solution vector, something that quantum algorithms cannot provide without
sacrificing their speedup. So, one should compare quantum linear system algorithms with
classical ones that also return summaries of the solution vector x†Mx, in which case a
time of O(N

√
k) can be achieved.
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The Variational Quantum Linear Solver

3.1 Summary

The Variational Quantum Linear Solver (VQLS) [1] is a Variational Hybrid Quantum-
Classical (VHQC) algorithm for linear systems of equations and specifically for the solution
of the Quantum Linear System Problem (QLSP), designed with NISQ devices in mind.
Given the LSP Ax = b and the equivalent QLSP A |x⟩ = |b⟩, the quantum part of the
algorithm uses a cost function which captures the similarity between vectors A |x⟩ and
|b⟩, by means of either a local or global hamiltonian. Classical optimization schemes can
be then utilized in order to minimize and finally terminate when a desired precision ϵ is
reached.

Although VQLS is heuristic and complexity analysis is considered quite challenging, the
authors provided numerical simulations indicating efficient scaling in κ, ϵ and N . Specifi-
cally, they found evidence of (at worst) linear scaling in κ, logarithmic scaling in 1/ϵ and
polylogarithmic scaling in N [1].

3.2 Overview

Figure fig. 3.1 shows a descriptive overview of the VQLS algorithm. The input to VQLS is

• an efficient gate sequence U that prepares the quantum state |b⟩ = U |0⟩ which is
proportional to the right-hand side vector b

• a linear decomposition of the normalized matrix A into unitaries of the form

A =
L∑
l=1

clAl, (3.1)

• A vector of parameters α

where Al are unitary matrices and cl complex numbers. Intuitively, this linear decompo-
sition into unitaries is essential to construct the required circuits since all quantum gates
are unitary operators themselves. Here, the following assumptions are made:
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1. L is only a polynomial function of the number of qubits, n

2. The QLSP matrix has finite condition number κ <∞ and its spectral norm satisfies
∥A∥ ≤ 1

3. Al unitaries can be implemented with efficient quantum circuits.

Information over efficient decomposition method for sparse A can be found at [1].

Figure 3.1. Schematic diagram of VQLS algorithm from [1]. The input to VQLS is
a matrix A written as a linear combination of unitaries Al and a short-depth quantum
circuit U which prepares the state |b⟩. The output of VQLS is a quantum state |x⟩ that
is approximately proportional to the solution of the linear system Ax = b. Parameters α
in the ansatz V (α) are adjusted in a hybrid quantum-classical optimization loop until the
cost C(α) (local or global) is below a user-specified threshold. When this loop terminates,
the resulting gate sequence V (αopt) prepares the state |x⟩ = x/∥x∥2, from which observable
quantities can be computed. Furthermore, the final value of the cost C(αopt) provides an
upper bound on the deviation of observables measured on |x⟩ from observables measured on
the exact solution.

As mentioned, in order to solve the QLSP one must prepare a state |x⟩ s.t. A |x⟩ is as
close as possible to |b⟩. In order to achieve that, VQLS employs an ansatz V (α) that
prepares a candidate solution |x(α)⟩ = V (α) |0⟩. Parameters α are given as input to
the quantum computer, which prepares |x(α)⟩ and runs an efficient quantum circuit that
estimates a cost function C(α). The value of the cost function quantifies how much the
proposed state A |x⟩ differs from the target state |b⟩. This value C(α) is then returned to
the classical computer which adjusts parameters α according to a classical optimization
algorithm, attempting to reduce the cost. The process is repeated until a termination
condition of the form C(α) ≤ γ is achieved, at which point VQLS outputs the solution
parameters αopt.

Finally, αopt can be used to prepare the solutions state |x(αopt)⟩ = V (αopt) |0⟩. Once the
solution state is achieved we can finally measure quantities of interest in order to extract
valuable information for the solution vector. The deviation of observable expectation values
from those of the exact solution can be upper bounded based on the cost function. Thus,
one can beforehand determine a desired error tolerance ϵ, where

ϵ =
1

2
∥ |x0⟩⟨x0| − |x(αopt⟩⟨x(αopt| ∥1 =

1

2
Tr

{√
(|x0⟩⟨x0| − |x(αopt⟩⟨x(αopt|)2

}
(3.2)

is the trace distance between the exact solution |x0⟩ and the approximate solution |x(αopt)⟩.
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This ϵ corresponds to a threshold value γ that the final cost C(α) must achieve.

3.3 Cost functions

At this point, we shall see how according to [1] the cost functions can be described as
expectation values of global or local Hamiltonians. To avoid cumbersome notation, we will
thereafter write |x(α)⟩ as |x⟩ or more often use |ψ⟩ = A |x⟩. The simplest cost function can
be constructed by taking the overlap of the projector |ψ⟩⟨ψ| with the subspace orthogonal
to vector |b⟩:

ĈG = Tr{|ψ⟩⟨ψ| (1 − |b⟩⟨b|)} = ⟨ψ|HG|ψ⟩ (3.3)

The second way to view this cost function is the expectation value of an effective Hamil-
tonian

HG = 1 − |b⟩⟨b| (3.4)

which is similar to the final Hamiltonian in [5]. The ĈG function is small if |ψ⟩ nearly
proportional to |b⟩ or if the norm of |ψ⟩ itself is small. The latter is not desired, so to
combat this, one can normalize by

CG =
ĈG
∥ψ∥2

=
⟨ψ|HG|ψ⟩
⟨ψ|ψ⟩

= 1− ∥ ⟨b|Ψ⟩ ∥2, (3.5)

where |Ψ⟩ = |ψ⟩√
⟨ψ|ψ⟩

is a normalized state.

As it is noted in the original article [1], global functions such as eq. (3.3) and eq. (3.5)
may introduce barren plateaus in the energy field, which leads to exponentially vanishing
gradients with respect to the number of qubits n [31]. For improved trainability as n grows
larger, the authors introduce local versions of the aforementioned costs

ĈL = ⟨ψ|HL|ψ⟩ (3.6)

CL =
ĈL

⟨ψ|ψ⟩
, (3.7)

where the effective Hamiltonian is

HL = U

1 − 1

n

n∑
j=1

|0j⟩⟨0j | ⊗ 1j̄

U †, (3.8)

where |0j⟩ is the zero state on qubit j and 1j̄ the identity on all qubits but qubit j. It is
also shown that the following inequalities apply

ĈL ≤ ĈG ≤ nĈL (3.9)

CL ≤ CG ≤ nCL, (3.10)

from which follows by the sandwich-theorem that CL = 0 ⇐⇒ CG = 0 and ĈL = 0 ⇐⇒
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ĈG = 0.

Figure 3.2. Comparison of local CL and global CG cost performance from [1]. In all
cases κ = 20. For each n ∈ {10, ..., 50}, the cost value versus the number of cost function
evaluations is plotted. As n increases it becomes increasingly hard to train to global cost
function. At n = 50, the optimization cannot significantly lower CG below a value of one.
On the other hand, CL is trainable for all values of n considered.

As one sees in fig. 3.2, as the number of qubits n increases the global cost function CG

becomes harder to optimize. Local cost CG, on the other hand, remains trainable no
matter how much n increases. It is hence recommended by the authors [1] that local cost
functions are used, at least for large-scale implementations.

3.3.1 Cost function bounds

As shown in [1], the following bounds hold for the cost functions:

ĈG ≥ ϵ2

κ2
, CG ≥ ϵ2

κ2 ⟨ψ|ψ⟩
, (3.11)

ĈL ≥ ϵ2

nκ2
, CL ≥ ϵ2

nκ2 ⟨ψ|ψ⟩
. (3.12)

These are useful because they can be used to define termination conditions for VQLS with
respect to the desired precision ϵ. The right-hand sides of eq. (3.11), eq. (3.12) can be used
as the γ quantity shown in fig. 3.1. Note that ⟨ψ|ψ⟩ ≤ 1, hence the ⟨ψ|ψ⟩ terms in the
denominators of the normalized cost function inequalities can be omitted, if one needs less
strict bounds. During execution though, since these terms are already computed, there is
no need to omit these terms.

Finally, by employing the operational meaning of the trace distance [28] it can be shown
that for any POVM element M,

ϵ ≥ D(M), (3.13)
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where
D(M) = |⟨x|M |x⟩ − ⟨x0|M |x0⟩| (3.14)

measures the difference of expectation values with respect to |x⟩ and |x0⟩. If M is in the
general case any Hermitian observable, eq. (3.13) becomes

ϵ ≥ D(M)

2|M |
(3.15)

and thus eq. (3.11) and eq. (3.12) are bounded by observable values.

3.4 Cost evaluation

In theory, all the aforementioned cost functions can be efficiently evaluated by the Hadamard
Test1 and then applying classical post-processing. The simplest term is the evaluation of
⟨ψ|ψ⟩ which, by considering the linear decomposition of the system matrix A =

∑
l clAl,

can be written as

⟨ψ|ψ⟩ =
L∑
ll′

clc
∗
l′βll′ (3.16)

where
βll′ = ⟨0|V †A†

l′AlV |0⟩ (3.17)

There are L(L − 1)/2 different terms in eq. (3.17) which can be estimated with the
Hadamard Test. This requires acting with V on |0⟩ and then using an ancilla as the
control qubit, applying CAl and then CA†

l′ , where CW stands for controlled-W operation.

If one wants to evaluate the global cost functions ĈG, CG, they will also need

|⟨b|ψ⟩|2 =
∣∣∣⟨0|U †AV |0⟩

∣∣∣2 = ∑
ll′

clc
∗
l′γll′ , (3.18)

where
γll′ = ⟨0|V †A†

l′U |0⟩ ⟨0|U †AlV |0⟩ . (3.19)

The γll are estimated by applying U †AlV to |0⟩ and then measuring the probability of
|0⟩ state. The rest L(L − 1)/2 terms where l ̸= l′ can be estimated with a Hadamard
Test. In [1], though, a novel circuit, the Hadamard-Overlap Test, is introduced for that
purpose which eliminates the need to control all the unitaries, at the expense of doubling
the number of qubits.

Finally, for ĈL, CL, one needs to estimate the terms

δjll′ = ⟨0|V †A†
l′U(|0j⟩⟨0j | ⊗ 1j̄)U

†AlV |0⟩ , (3.20)

where the global |0⟩⟨0| of eq. (3.19) has been substituted with its correspondent local
operator |0j⟩⟨0j |⊗1j̄ . The j subscript implies application of its operator to the j-th qubit,

1see section 2.3.2
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0
|0⟩ H S† H

|0⟩⊗n V (α) Al A†
l′

Working
register

optional

Figure 3.3. Hadamard Test used to compute coefficients βll′ = ⟨0|V †A†
l′AlV |0⟩ [1]. The

S† gate is added to the circuit when the imaginary part of the expectation value is needed.

while j̄ implies application to every other qubit but j.

By exploiting the fact that |0j⟩⟨0j | = 1
2(Zj + Ij), eq. (3.20) can be written as

δjll′ =
1

2

(
⟨0|V †A†

l′U
(
(Ij + Zj)⊗ Ij̄

)
U †AlV |0⟩

)
=

1

2
(βll′ + ζjll′), (3.21)

where
ζjll′ = ⟨0|V †A†

l′U
(
Zj ⊗ Ij̄

)
U †AlV |0⟩ (3.22)

This final version of eq. (3.20) is used to construct the circuit which estimates δjll′ .

0
|0⟩ H S† H

|0⟩⊗n V (α) Al U †

Z

U A†
l′

Working
register

optional

Figure 3.4. Hadamard Test used to compute ζill′ coefficients as indicated in eq. (3.22) [1].
Shown is the case for j = 1, when controlled-Z gate is applied to first qubit of working
register. The S† gate is added to the circuit when the imaginary part of the expectation
value is needed.

3.5 Ansatz

VQLS works by preparing the state |x⟩ = V (α) |0⟩. The unitary operator V (α) consists
of a sequence of gates with trainable continuous parameters α = (α1, . . . , αL) and can in
general be expressed as

V (α) = GkL(αL) . . . Gki(αi) . . . Gk1(α1). (3.23)

Quantum ansatzes are mostly empirical sequences of operations, quite similar to feed-
forward neural networks. The discrete parameters k = (kL, . . . , k1) encode the types of
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gates and their placement in the circuit i.e. the ansatz architecture. If k is constant, we
are referring to "fixed-structure" ansatz, since one optimizes only over α. Although less
versatile, fixed ansatzes are simpler than "variable-structure" ones, where one optimizes
with respect to k as well. Lastly, another type that can be employed is the Quantum
Alternating Operator Ansatz (QAOA) [32, 33], which is known to be universal as the
number of its layers tend to infinity [34, 35].

Ry Ry Ry Ry

Ry Ry Ry Ry Ry Ry Ry

Ry Ry Ry Ry Ry Ry Ry

Ry Ry Ry Ry Ry Ry Ry

Ry Ry Ry Ry Ry Ry Ry

Ry Ry Ry Ry

0 1 2 3

Figure 3.5. Fixed-structure layered Ansatz for V (a) [1]. Each layer introduces Ry(ai)-
rotations (exploration) and controlled-Z operations acting on alternating pairs of neigh-
bouring qubits (correlation). If the linear system is restricted to real numbers, Ry gates
are sufficient, since they don’t produce complex output. For fixed layer depth the number
of variational parameters scales as O(n). The example shows an ansatz with n = 6 qubits
(linear system with size 26 × 26) and three layers.

When dealing with real QPUs, it is wise to select hardware-efficient Ansatzes [36] using a
native gate set G = {Gk(α)} which also takes account the processor’s native topology.

3.6 Machine Learning Enhanced VQLS for parametric sys-
tems

As we mentioned earlier, VQLS is a variational quantum algorithm, which solves a QLSP by
minimizing a Hamiltonian loss function with the help of a quantum ansatz. The optimized
circuit parameters are then given as input to the ansatz which stores the solution of the
linear system in a quantum state. This state is finally used to extract quantities of interest,
usually in the form of an expectation operator. While that holds for the case of a single
QLSP, it is common that one needs to solve a series of correlated linear systems generated
by a distribution of physical parameters2. This is often the case in stochastic analysis and
optimization problems, where a multi-query exploration of the solution space is required.

In a multitude of applications, such as uncertainty propagation, parameter inference, op-
2not to be confused with VQLS ansatz parameters.
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timization, sensitivity analysis etc. it is required to produce sufficient number of samples
or solution datasets. These, in turn, require the solution of parametric linear systems, and
besides the often unavoidable, immense matrix sizes, one has to deal with an overwhelm-
ing number of LSP instances which often exceed available computational resources. While
quantum algorithms, and specifically VQLS, are expected to deal with the former chal-
lenge by exponentially reducing the computational complexity of individual LSPs, there
still remains space for further acceleration of the overall parametric problem.

In this regard, it is essential to derive efficient methods that exploit the continuity of
the LSP solution space with the respect to the parameters that produce the linear system,
hereafter called physical parameters p ∈ Rd. Starting from the linear system with equation
A(p) · x = b, with A(p) being the parametrized system matrix, x the solution sought
and b the right-hand side vector. The equivalent QLSP is the system with equation
A(p) |x⟩ = |b⟩. Finally, when a variational quantum algorithm such as VQLS is used as
solver, the system takes the form

A(p) |x(α)⟩ = |b⟩ , (3.24)

where α = (α1, . . . , αr) ∈ Rr the VQLS real parameter-vector and |x(α)⟩ the proposed
solution of the QLSP. Using the cost function from eq. 3.7 the optimal parameters are
obtained by the following minimization problem

αopt = argmin
α
C(p,α) = argmin

α
⟨Ψ(p,α)|HL|Ψ(p,α)⟩ , (3.25)

It is evident from eq. 3.25 that for every matrix A(p), a search over parametric space Rr

is required in order to reach the solution |x(αopt)⟩ which minimizes the Hamiltonian cost
CL.

Our proposed scheme uses a machine-learning model M : Rd → Rr in order to propose re-
fined initial guesses to the VQLS algorithm. Instead of letting the initial VQLS parameters
be random or constant, we take advantage of the assumed continuity of the cost function
C(p,α), so that for every physical parameter p, a refined initial guess α0 is proposed that
is as close as possible to the optimal ones ∥α0 −αopt∥ ≤ ϵ with some probability PM

depending on the chosen model. The acceptable error ϵ between the proposed and optimal
parameters is a hyperparameter for the overall scheme and depends on the value of the
training loss.

Since, in general, no training dataset will be available, one has to initially rely on the usual
workflow without refined initial parameter proposition i.e. αi

0 = S(pi) for i = 1, . . . , Ntrain

using some generic strategy S. Once the first optimal solutions are produced, the model
can be trained on the respective dataset (pi,αi

opt), i = 1, . . . , Ntrain. The trained model
thereafter proposes refined initial parameters αi

0 = M(pi) for i = Ntrain + 1, . . . , Ntotal.
Again, Ntrain is considered a hyperparameter which must be chosen to balance the trade-off
between accuracy and training-time.

In the model architecture context, in order to minimize training time without adding to the
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3.6 Machine Learning Enhanced VQLS for parametric systems

Figure 3.6. Computational workflow for the machine-learning-enhanced VQLS scheme for
parametric systems. Initially, in order to produce training data, one executes the process as
indicated by the solid-line arrows. Once enough training data have gathered, the machine-
learning model is trained with xi as input and αi as output. The computational scheme
thereafter changes (indicated by the dashed arrows) as the model now proposes initial VQLS
parameters αi, which are closer to the optimal, thus reducing the optimization cost of VQLS.

overall execution time, it is desirable to choose a ML model M with low complexity and
efficient scaling with respect to its output. In our scheme, the only hyperparameter that
can be controlled in this regard is the complexity of the ansatz V and more specifically
the dimension r of the ansatz parameter vector α. An ansatz that scales polynomially
with the number of qubits is desirable because it enables one to construct models that
remain efficient as the size of the system increases. Specifically, in our case r should scale
at most as O(poly(n)), where n the number of qubits required for the system, so that low-
complexity, efficient ML models are sustainable. Some known ansatzes with polynomial
qubit scaling include the Quantum Approximate Optimization Algorithm (QAOA) ansatz
[32] and the Hardware-Efficient ansatz [36].
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Numerical examples

To evaluate the performance of the proposed scheme we conducted the comparative exper-
iments described in the subsequent section. The quantum circuit simulations were driven
by the Qiskit open-source framework and specifically the statevector simulator [37]. The
matrix generator for the parametric 2n × 2n QLSP is chosen to be

A(p) =
1

ξ

I + 1

C

n∑
j,k=1

cij(p)(Xj ⊗ Zk)

 , (4.1)

where n is the number of effective qubits used in the circuit, cij(p) are coefficients that de-
pend on the physical parameters p and C, ξ are normalization constants. In both examples,
the physical parameters p = (p0, p1, p2)

T are uniformly distributed in a 3-dimensional unit
cube D : [0, 1]× [1, 2]× [3, 4]. At each example we compare pure VQLS schemes with ones
that fall under our paradigm. Since the circuits are simulated, the comparison is conducted
in relation to the required number of iterations to solve each instance of the parametric
system. The parametric QLSP is discretized into a total of Ntotal regular QLSPs, with
equations

A(pi)
∣∣x(αi)

〉
= |b⟩ , (4.2)

and i = 1, . . . , Ntotal. For all examples the right-hand side is set to |b⟩ = |0⟩ ∈ C2n and the
total number of solutions Ntotal = 1000.

4.1 Convergence and continuity

A main problem when using variational algorithms is that the Hamiltonian loss-functions
and especially their local versions are inherently non-convex which increases the probabil-
ity for different optimization paths with neighboring initial parameters to land astray at
completely different local-minima. Furthermore, quantum ansatzes are inherently periodic,
since most parametric quantum gates themselves are not bijective with respect to their pa-
rameters. In fact, quantum gates are essentially rotations with period of at most 4π and the
parameters themselves are rather angles of rotation in some complex Hilbert space. Thus,
when an ansatz is deployed, in general there is often a multitude of parameter values that
can produce the same state. Besides periodicity, an ansatz contains many different paths
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through which the quantum states are prepared, resulting in different quantum states that
may possess the same properties and more specifically the same probability distribution
when measured under a specific basis. Lastly, when dealing with real quantum processors,
the unavoidable hardware noise will most definitely propagate through the optimization
path resulting again in discontinuous optimal values.

Another source of discontinuities which may arise in low-qubit systems is over-parametrization
of the quantum ansatz. The required number of parameters to fully span an n-qubit sys-
tem’s Hilbert space is Nspan = O(2n), whereas the number of parameters of an efficient
ansatz usually scales as Nans = O(poly(n)). Hence, as n → ∞ more often than not the
optimization problem will be under-parametrized, since Nans << Nspan. In smaller sys-
tems, though, where the previous inequality is not guaranteed, one might eventually use
more parameters than required. This will lead to an underdetermined system with infinite
solutions w.r.t a portion of its parameters, giving optimizers more paths to explore, but
also more ways to diverge from previous strategies. A the simple illustrative example of
this behaviour can be seen in fig. 4.1. As shown in fig. 4.2 the choice of the optimizer also
plays an important role, since some optimizers are more likely to make jumps to differ-
ent local minima. Stochastic optimizers for example, will most certainly introduce more
discontinuities that deterministic ones.

From the above, it is apparent that in order to ensure precision and suffice to simple,
scalable model architectures, it is imperative to take into account any potential hindrances
posed by aforementioned discontinuities, which can obstruct training and prediction to a
substantial extent. Coherently, various classical optimizations schemes used in VQLS may
introduce different convergence behaviours with respect to the utilized algorithm. When
dealing with convergence alone, the only optimization property that matters is the execu-
tion time, where the fastest algorithm to reach a minimum loss, can be considered best for
the given problem. In our case though, continuity is of equal importance, since we seek to
not only reach a solution, but to force systems with close physical parameters pi,pj ∈ Rd

to produce output in the ansatz parameter space αi
opt,α

j
opt ∈ Rr in the same neighbour-

hood. An optimization algorithm that favours explorability instead of exploitation has a
higher chance to visit different local minima during the optimization of concurrent, similar
QLSPs and thus resulting in optimal parameter discontinuities with higher probability.
In the subsequent experiments, we were confined to gradient-free optimizers in order to
evaluate their sufficiency with respect to the potential discontinuities.
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4.1 Convergence and continuity

(a) Optimal parameter α0 w.r.t. physical parameter p for a 2 × 2
system requiring 1 parameter to span the Hilbert space.

(b) Optimal parameters α0, α1 w.r.t physical parameter p for a 2× 2
system.

Figure 4.1. Optimal ansatz parameters w.r.t physical parameteres for 2 × 2 single-qubit
system using the COBYLA method. The discontinuities in fig. 4.1a are due to the period-
icity of the non-convex Hamiltonian loss which allow jumps between different local minima.
In fig. 4.1b which has more than required ansatz parameters, the system becomes underde-
termined resulting in more discontinuities.
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(a) BFGS optimizer favouring exploitation.

(b) COBYLA optimizer favouring explorability.

Figure 4.2. Example of VQLS Hamiltonian loss CL for a 22×22 system per iteration. Note
that BFGS algorithm uses internal iterations which are not shown in order to approximate
the Hessian matrix.
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4.2 Example 1: two-qubit system

4.2 Example 1: two-qubit system

The first example consists of the QLSP in eq. 4.1 for n = 2, which results in a parametric
system of size 4×4, with the coefficients cij chosen as trigonometric functions of the physical
parameters p1, p2, p3. Three strategies were implemented: in the first two experiments the
basic VQLS scheme was used with constant, αi

0 = 0, and uniformly random, αi
0 ∼ U[0,1],

proposed initial parameters respectively, while in the third experiment a naive nearby
scheme was utilized, where the proposed initial parameters for each linear system were the
optimal parameters of the previous one αi

0 = αi−1
opt .

Ry(α0) Ry(α2)

Ry(α1)

Figure 4.3. Ansatz consisting of three parametric gates with angles αk, k = 0, 1, 2 for the
22 × 22 parametric QLSP example of 4.2.

For the solution of the systems a BFGS optimizer was used with numerical first and second
order derivatives approximation. In Fig. 4.8 one can see the joint probability distributions
of the optimal parameters αiopt,k for k = 0, 1, 2, i = 1, . . . , 1000 for the 22 × 22 example of
this section. In this example the dataset had no discontinuities which led to a trainable
ML model.

Figure 4.4. Pairwise joint probability distributions of optimal parameters αiopt,k, k =
0, 1, 2, i = 1, . . . , 1000 for example 4.2.
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The latter approach takes advantage of the continuity of the LSP and requires that pi are
mostly sorted at each dimension in order to avoid large gaps between the sought optimal
ansatz parameters. This scheme is quite efficient in the sense that it does not require any
training, Ntrain = 1, prior to its application and can be compared in a direct manner with
the base VQLS. Comparative results for the three methods are summarized in Fig. 4.3.
The boxplot shows the distribution of required iterations by BFGS optimizer for solving
one instance of the parametric QLSP described in 4.1.

Figure 4.5. Quartiles for the number of BFGS iterations required to solve an instance
A(pi)

∣∣x(αi)
〉
= |b⟩ where A(pi) ∈ C4×4. On the left is the pure-VQLS scheme with con-

stant initial ansatz parameters, in the middle a similiar approach but with random initial-
ization and on the right the naive nearby approach, where the proposed ansatz parameters
for each system is taken as the optimal of the previous. The speedup factor of the latter
over first two schemes based on their median values is S ≈ 1.9.
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4.3 Example 2: three-qubit system

Figure 4.6. Hamiltonian loss function CL w.r.t. input ansatz parameters α0, α1 for exam-
ple 4.2. We observe an intensive non-convex behariour and periodicity resulting in different
local minima which may hinder gradient-free optimization algorithms to consistently extract
continuous optimal solutions αi

opt across a multitude of similar linear systems.

4.3 Example 2: three-qubit system

For the second example, a three-qubit system was chosen, which results in a parametric
system of size 8 × 8, with the coefficients cij being polynomial functions of the physical
parameters pi. Three distinct strategies were compared, the first two as in example 4.2
i.e. a pure VQLS scheme with constant initial parameters and the naive nearby scheme.
Additionally, as a third approach a simple MLP with 2 hidden layers was trained in the first
Ntrain = 100 samples. In contrast to the nearby scheme, the order of solution-parameters
used for training must be shuffled for the best possible exploration of paramater-space.

Ry(α0) Ry(α2) Ry(α6)

Ry(α1) Ry(α3) Ry(α5) Ry(α7) Ry(α9)

Ry(α4) Ry(α8) Ry(α10)

Figure 4.7. Fixed-structure layered Ansatz with 11 parametric gates with angles αk, k =
0, . . . , 10 for the 23 × 23 parametric QLSP example of 4.2.

The 2-layered ansatz used for this example takes as input a vector α ∈ R11. Each angle
ak, k = 0, . . . , 10 is used as a parameter for the Ry gates which are structured as shown in
Fig. 4.7. For the solution of the systems a BFGS optimizer was used with numerical first
and second order derivatives approximation. In Fig. 4.8 one can see the joint probability
distributions of the optimal parameters αiopt,k for k = 0, 1, 2 and i = 1, . . . , 1000 for the
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23 × 23 example of this section. In this example the dataset had no discontinuities which
led to a trainable ML model.

Figure 4.8. Pairwise joint probability distributions of optimal parameters αiopt,k, k =
0, 1, 2, i = 1, . . . , 1000 for example 4.3. In this example there are no discontinuities result-
ing in easier training of ML models.

The numerical results of the three simulations are summarized in Fig. 4.9. For each
of the three schemes, the graph shows the quartile distribution of the number of BFGS
iterations required to reach a minimum Hamiltonian loss of at least Cmin

L = 10−12. The two
proposed methods had almost identical performance and using the medians as reference
required approximately 1/3 of the original-scheme iterations. Unlike expectations, the
MLP model didn’t outperform the naive Nearby method, with the mean square error,
after an initial drop, usually being trapped in plateaus which were difficult to overcome
without hyperparameter fine tuning, which should be avoided unless it can be automated
efficiently. Since our experiments were restricted to quantum simulations, we were quite
conservative in this regard. To our knowledge, unless one can use real quantum hardware
and time metrics, it is not apparent how to take into account and compare the required
MLP training time with respect to overall VQLS iterations. The assumption eventually
made was that by using scalable models and as N → ∞, which is the field quantum
algorithms are supposed to excel, the model training time will be negligible with respect
to the total solution time ttrain/ttotal → 0.

With regard to low MLP performance, one can assume that factors such as discontinu-
ities, which undermine the predictive ability of simple models played the most important
role. Furthermore, the majority of the optimized parameters dataset αi cannot be used
for training, as is common practice, since increasing the training data means that more
solutions will be generated using the base VQLS scheme which is slower.
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4.3 Example 2: three-qubit system

Figure 4.9. Quartiles for the number of BFGS iterations required to solve QLSP instance
A(pi)

∣∣x(αi)
〉
= |b⟩, where A(pi) ∈ C8×8. Like before, for the first experiment (left) the

pure-VQLS scheme was with constant initial ansatz parameters, and for the second (middle)
the naive nearby approach. For the last experiment (right) an MLP with 2 hidden-layers
was trained with optimized ansatz parameters αi for i = 1, . . . , Ntrain = 100. The last
two options seemingly provide the same level of acceleration with speedup factor over the
original algorithm being S ≈ 2.9 based on the median values.

Figure 4.10. Hamiltonian loss function CL w.r.t. input ansatz parameters α0, α1 for
example 4.3. As in the first example, the Hamiltonian is non-convex resulting in different
local minima, each one with similar loss values.
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4.4 Conclusions and future work

Quantum algorithms for Linear Systems promise to solve the QLSP in exponential speedup
over classical algorithms. Successfully solving a QLSP does not include the retrieval of the
information contained in the solution vector which is stored in an unobservable quantum
state. The extraction of solution properties is left to the respective application, which
means that if one needs the extract the whole solution vector, loses the quantum speedup.
It is, thus, important to note that quantum algorithms for linear systems are supposed to
be used as subroutines to other quantum algorithms which will take the solution state as
input and proceed to further operations.

Variational algorithms — specifically in our context VQLS algorithm — are designed for
the noisy qubits of the current NISQ era. In order to solve the QLSP, VQLS optimizes
classically a parametric ansatz w.r.t a quantumly computed Hamiltonian cost function.
Our proposed machine-learning scheme aims to accelerate the convergence of variational
quantum algorithms when they are utilized as solvers in parametric problems by taking
advantage of continuity. As a proof of concept, we showed that there is potential in that
direction, since we managed to achieve a speed-up factor of up to 2.9. In this regard, the
nearby shceme which combines both speed-up and simplicity seems to be preferable. We
also demonstrated that when using gradient-free solvers, and especially ones which favour
explorability, discontinuities in the optimal ansatz parameters emerge for various reasons,
most prominently due to non-convexity of Hamiltonian loss and periodicity of ansatzes
w.r.t. their paramaters. This considerably handicaps the performance of machine learning
models such as MLPs, a problem that should be addressed in the future in order to take
full advantage of modern ML models.

A natural next step in order to overcome those hindrances is to use exact gradient-informed
optimizers, which shall favour exploitation over exploration of parameter-space. Addition-
ally, using domain constraint optimizers will help alleviate discontinuities related to the
periodicity of the Hamiltonian. In particular, the use of natural gradient methods ini-
tially proposed in [38] for classical neural networks and their quantum counterparts [39]
may provide sufficient robustness to the optimation process and in this way addressing
the discontinuities originating from non-convex loss functions. An extensive evaluation of
transformation-preprocessing techniques may also help significantly in this regard. With-
out doubt, increasing the scale of the experiments will allow bigger training datasets and
will enable more complex, deeper machine learning models to be trained. Finally, exper-
iments with real quantum hardware noise must be conducted so that similar obstructive
phenomena are highlighted and addressed.
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List of Abbreviations

Q... Quantum ...
C... Classical ...
QC Quantum Computing
NISQ Noisy Intermediate-Scale Quantum
HQC Hybrid Quantum-Classical
LSP Linear System Problem
MCI Monte-Carlo Integration
POVM Positive Operator-Valued Measurement
PVM Projection-Valued Measurement
VQA Variatonal Quantum Algorithm
VHQCA Variatonal Hybrid Quantum-Classical Algorithm
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