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ABSTRACT 
 
In the field of Medical Imaging, the recent years special attention has been given to 
Magnetic Resonance Imaging (MRI). MR imaging is a non-invasive imaging modality 
capable of producing cross-sectional images with high spatial resolution. Unlike 
Computed tomography (CT) the nature of the acquisition does not employ ionising 
radiation. However, MRI acquisitions are characterized by long scan time (acquisition 
time) which is directly related to the number of samples acquired in the k-space. Being 
able to reduce the acquisition time will help increase patient satisfaction, reduce 
several artifacts (mainly motion), and finally reduce in overall the medical costs. The 
main initiative on reducing the scan time from a software perspective, is Compressed 
Sensing (CS) optimization [1]-[3] according to which given some constraints that are 
fulfilled we can reconstruct highly undersampled images. Following the success of 
deep learning (DL) in a wide range of applications, neural networks based on CS 
optimization have received significant interest for accelerating MR acquisitions and 
reconstruction strategies. In CS signal reconstruction, the iterative algorithm unrolled 
over a deep neural network. The basic strategy is to train the network to learn the 
weights (CNN kernels) for dealising undersampled MR images from a large dataset 
containing pairs of aliased and dealiased images. In this work, we are motivated from 
the 2D Deep Cascaded CNN-Network (DCNN) [4]. DCNN mainly consists of two 
blocks the CNN and the Data Consistency block, operating on the image and k-space 
(sampling domain) respectively, linked by a regularization term which adjusts the data 
fidelity based on the noise level of the acquired measurements. In this work, we 
introduce an improved regularization for the data consistency term in two novel 
settings, a learnable regularization parameter per k-space slice and a spatially 
learnable regularization parameter. We show that the introduced regularization is 
independent of the CNN block architecture used and can be incorporated in any DL-
CS based optimization network setting. We show that the employment of the proposed 
regularization in any DL-CS based network highly improves the reconstruction 
performance without adding any computational burden to the network.  
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Chapter 1  
 

Introduction  
 

1.1 Motivation   
 
In the field of Medical Imaging in recent years special attention has been given to 
Magnetic Resonance Imaging (MRI). MR imaging is a non-invasive imaging modality 
which unlike Computed tomography (CT) the nature of the acquisition does not employ 
ionising radiation. By manipulating the main magnetic field (𝐵0), the gradient coils 
(𝐺𝑥/𝐺𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 , 𝐺𝑦/𝐺𝑝ℎ𝑎𝑠𝑒 , 𝐺𝑥 / 𝐺𝑠𝑙𝑖𝑐𝑒) and the radiofrequency coils (𝑅𝐹) are capable of 

producing cross-sectional images with high soft-tissue contrast which again 
distinguished it from CT and ultrasound. However, MRI acquisitions are characterized 
by long scan time which is a crucial drawback for the clinical application. The 
acquisition time which is directly related to the number of samples acquired in the k-
space is a lengthy process which not only increases the patient discomfort and the 
resulted motion artifacts but also increases the scanning cost since fewer patients can 
be scanned per day. The main approaches on reducing the acquisition time came with 
the introduction of parallel imaging (PI) [4]-[5] and Compressed Sensing (CS) [1]-[3] 
from a hardware and software perspective respectively. PI, for 2-3-fold accelerated 
acquisitions, relies on the information provided by multiple receiver coils that are 
sensitive to different parts of the object and can operate in both image and k-space.   
CS is a collection of algorithms that aim to recover signals from undersampled 
measurements assuming the following: firstly, the images must have a sparse 
representation in some transform domain (wavelet, curvelet, dictionary learning, etc.) 
[7]-[8]. Secondly, the measurements between the sampling and the sparsity domain 
should be performed in an incoherent manner to guarantee an attainable unique 
solution. Finally, under the latter assumptions, images can be reconstructed from a 
broad category of nonlinear optimisation iterative algorithms [9]-[11]. 
Following the success of deep learning (DL) in a wide range of applications (image 
classification, image segmentation etc.) [12]-[13], neural networks based on CS 
optimization have received significant interest for accelerating MR acquisitions and 
reconstruction strategies. The main power of deep architectures stands in the fact 
that they can extract features and build representations without the need of hand-
crafting algorithms per case as in the CS framework.  In CS signal reconstruction, 



the iterative algorithm unrolled over a deep neural network. The basic strategy is to 
train a network to learn the weights (CNN kernels) for dealising undersampled MR 
images from a large dataset containing pairs of aliased and dealiased images. 
 
 In this work, we get motivated from the 2D Deep Cascaded CNN-Network (DCNN) 
[4]. DCNN mainly consists of two blocks the CNN and the Data Consistency block, 
operating on the image and k-space (sampling domain) respectively, linked by a 
regularization term which adjusts the data fidelity based on the noise level of the 
acquired measurements. It can be viewed as a de-aliasing problem in the image 
domain under the CNN block guided by the DC block for consistency with the sampled 
data which imitates the iterative reconstruction through the cascade of the sequential 
CNNs [4]. In the following chapters, we focus on the interconnection term 𝜆 which 
adjusts the reconstruction based on the two terms. We introduce an improved 
regularization for the data consistency term in two novel settings, a learnable 
regularization parameter per k-space slice and a spatially learnable regularization 
parameter. We show that the introduced regularization is independent of the CNN 
block architecture used and can be incorporated in any DL-CS based optimization 
network setting. We show that the compatibility of the proposed regularization in any 
DL-CS based network highly improves the reconstruction performance without adding 
any computational burden to the network.  
 
 

1.2 Outline  
In the following paragraph, the organization of the thesis is presented.  
 
Chapter 2: provides an overview of the background field of MRI on which we are 
applying the DL reconstruction frameworks on the later chapters.   
 
Chapter 3: focuses on the explanation of the framework we are going to build our 
reconstruction. The initial ideas on which this sort of reconstructions are based and 
the mathematical formulation on the derived architectures.  
 
Chapter 4: all the materials and methods used for this work are presented. The used 
dataset, the novel parts of this work as well as some notations used on the result 
section.  
 
Chapter 5: our results are presented for all the conducted experiments.  
 
Chapter 6: the findings of our research are discussed in parallel with the origin of this 
initiative. Remarks on our future directions are discussed as well as the optimal target 
of our venture.  

 
 
 
 



 
 
 
 
 
 
 
 
Chapter 2:   
 
Introduction  
 

2.1 Radiology Evolution 
 
The field of Radiology is based on all the medical imaging modalities that can produce 
visual representations of the internal structures of the body for both diagnosis and 
treatment. It is among the most significant medical disciplines as it plays a crucial role 
in the development of public health. The most critical point for the initiation of the field 
was the accidental discovery of ‘X-rays’ by Roentgen in 1895 [15].  During the next 
year (1986) Becquerel and Curies discovered radium the future of nuclear medicine, 
and within a couple of years the basic technics of radiography were established. The 
“nuclear induction” as it was first described during the WWII by Bloch and Purcell, 
awarded them with the Noble Prize in 1952 for the nuclear magnetic precision 
measurements. In 1949 Bloch and Bloembergen discovered that a signal can be 
detected when a sample is placed in a magnetic field, excited it by a radiofrequency 
pulse (RF) of specific frequency. In 1949 the first ever NMR sequence described by 
Hahn, stated that you can repeatedly detect an NMR signal at a delayed time by using 
a second RF pulse (Spin Echo/Hahn sequence). Following the development of the 
SONAR radar during WWII, the ultrasound came up in 1950, involving non ionising 
radiation for non-invasive imaging based on the Doppler effect. The next big 
technological discovery in nuclear medicine came in the 1958 when Anger developed 
the gamma camera which used in tomographic imagine and more specifically in 
SPECT single photon emission computed tomography and PET, positron emission 
tomography. In 1959 Singer from Berkeley proposed the NMR as a non-invasive tool 
to measure the blood flow. In 1967 Hounsfield invented the first CT-scanner using X-
rays in the EMI central research laboratories for which in 1979 awarded with the Nobel 
prize. In 1971 Damadian discovered that different mouse tumours lead in different 
relaxation times in comparison with the normal tissue. In 1973 Lauterbur using 
magnetic field gradients, proposed that using a back-projection reconstruction as in 
CT, could distinguish between NMR signals originating from different anatomical 
locations. In 1974 Mansfield invented the selective excitation or the synthesis of 



tomographic image slices (2003 Nobel Prize) and in 1975 the Ernst’s group invented 
the 2D- Fourier transform imaging (2D FT) (1991 Nobel Prize). The first practical 2D 
imaging method was invented in 1980 by Edelstein and Hutchison. Finally, the first 
human head image was published in 1978 by Clow and Young [16]. In 1989 Ramsey 
a pioneer in spectroscopy developed the theory for the chemical shift on NMR which 
first described by Rabu in 1944. Lastly, in 2002 Wuthrich established the NMR 
spectroscopy based on which we can represent 3-D structures of biological 
macromolecules in solutions [14].  
Radiology is a continuously growing field which demands a high dedication and follow 
up from the specialists in the field to be able to stay in line. With the booming 
developments and improvements on all the imaging methods several incurable 
diseases can be better approached, described, and comprehended.  
 

 

 

 
 
 
 
 
  

 

fig.2.1: LEFT: First medical X-ray by Wilhelm Roentgen of his wife Anna Bertha 
Ludwig’s hand [15]. RIGHT: The 1st MR image of human brain using 0.1T MRI 
obtained in 1978 by two groups of researchers at EMI Laboratories [16.] 

Fig.2.2: Nobel Prize winners in NMR: a) Purcell – NMR Relaxation b) 
Bloch – Nuclear Magnetic Precision measurements c) Bloembergen – 
Electrons have Fixed Energy d) Ernst – Spectroscopy e) Lauterbur & f) 
Mansfield basis for MRI invention. [14] 



2.2 MRI Overview 
 
 

Magnetic resonance imaging (MRI) is based on the alterations induced when certain 
atoms are placed in a magnetic field. Atoms with an odd number of protons possess 
a nuclear spin angular moment and therefore exhibit the MR phenomenon. 
 

 In MRI by alternating the magnetic field, the magnetic moments are excited and the 
induced magnetic field as the atoms relax back to equilibrium is captured. The nature 
of MR signal is based on the interaction of the spins with three types of magnetic fields: 
a) the main field 𝐵0, b) the radiofrequency field 𝐵1 and c) the linear gradient fields 𝐺 
[17].  
 

 
Fig.2.3: All the main magnetic fields are illustrated. The main magnetic field 𝐵0, 𝐵1, the 𝐺𝑦 / 𝐺𝑝ℎ𝑎𝑠𝑒 and the 𝐺𝑥 / 

𝐺𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦. 

 

 
MRI development is based on its predecessor modality, the Nuclear Magnetic 
Resonance (NMR), mainly used for chemical and physical analysis as it is still today. 
The nuclear term in the acronym results from the fact that the whole function of the 
method is based on the magnetic field interactions of the nucleus. The Hydrogen 
atoms mainly (other atoms can also be measured), under specific circumstances, 
generate electric signals which can be utilised for several imaging applications. [18]-
[19].  MRI is among the most widely used technics to probe the human body. In MRI 
the subject is not exposed to ionizing radiation as in CT, X-rays or PET and the data 
acquisitions does not involve any invasive procedure, thus it is considered the safer 
imaging methodology available in our days [20]-[21].  
 
Since different tissues will react at different rates depending on their chemical 
composition or molecular structure several imaging applications are available using 
MRI. In biological matter since most of the body consists of H20 the most sensitive 
signal is produced by the H atoms. Other atoms such as phosphorus (31P) are of 



interest for the metabolism but from now on we most commonly assume H proton 
imaging when we referred to MRI.  
 
MRI has a wide range of applications in medical diagnosis and can show distinct 
organs or tissue features with high quality and good contrast, under different settings. 
Using MRI we can obtain information for the Anatomy, the Connectivity, the Activity or 
even the Chemical structure of soft tissues as well as information about the blood flow 
in the vessels. More specifically, there are four different submodalities under the 
umbrella of MRI.  
 
 
A. sMRI: structural or anatomical MRI. The most recognizable and applied modality, 
employed to examine the anatomy and pathology of the brain providing images for 
clinical radiological reporting.  
 
B. dMRI: diffusion MRI. This is an MRI method that measures molecular diffusion in 
biological tissues. As molecules interact with many different obstacles as they diffuse 
throughout tissues, dMRI provides insight into the microscopic details of tissue 
architecture [ref]. One of the earliest applications of dMRI was Diffusion Tensor 
Imaging (DTI) a 3D visualization of white matter tracts using tractography algorithms 
[22]-[23]. 
 
C. fMRI: functional MRI. In fMRI the brain activity is measured during a cognitive task 
or at rest by detecting changes associated with blood flow. Cerebral blood flow and 
neuronal activation are coupled (Oxy/Deoxygenated blood)- BOLD contrast. Through 
the blood flow (hemodynamic response) related to the energy used by the brain cells, 
several functions can be captured through the activation areas that the blood flow 
followed in the brain. [24]  
 
D. Spectroscopy MRI: It is used to measure biochemical changes in the brain, 
especially in the presence of tumours or other malignancies. The chemical 
composition between normal and abnormal tissues is compared, capturing several 
metabolites or products of metabolism, the constitution of the tissue is determined.   
 
The main drawback of MRI is the long imaging time [25] which results in an inherently 
slow imaging modality. Due to that the subject is required to remain motionless in a 
tight environment which on one hand reduces subject’s compliance, mainly in 
paediatric populations and on the other hand MRI acquisitions are characterized from 
many artifacts, especially but not only motion related.  
To deal with the inherently slow acquisitions mainly two methods have been 
introduced for imaging acceleration. The first one is parallel imaging which is a 
hardware-based method, and it relies on capturing information through multiple coils, 
sensitive to different part of the object, simultaneously.  Depending on the amount of 
the available coils it can reach up to 2- or 3-fold acceleration [5],[26]. On the other 
hand, Compressed Sensing (CS) is a software-based technic which aim to recover 
signals from undersampled measurements given that some constraints are fulfilled 
based on mathematical formulations using non-linear reconstruction schemes [27]-
[28]. Based mainly on the CS methodology and the iterative reconstruction schemes, 
the recent years the introduction of Deep Learning in the field is seeking to accelerate 

https://www.sciencedirect.com/science/article/pii/B9780123983893000029
https://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging
https://mayfieldclinic.com/pe-mrspectroscopy.htm


further the diagnostic capabilities of MRIs both during acquisition but also in the 
postprocessing stage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2.4: Structural/Anatomical MRI images of brain anatomy. Current application 
to measure the thickness of the cortex. Cortical thickness changes occur after a 
pathology (stroke) or after repeated exposure to particular experiences. [28] 

 

Fig.2.5: DTI to measure microscopic movement of water in the brain. DTI can be 
used to evaluate the integrity of the white matter in the brain. On the right image 
the effect of a stroke is shown where fewer fibers are present on the side of the 
stroke [28].  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  
  
  
  
  
  
  
  
 
 
2.3 MRI System 
 
The MRI system mainly consists of the following parts: 

a. The magnet  
b. Radiofrequency Coils  
c. Gradients 
d. Computer System  
e. Patient handling System  

 

Fig.2.7: Spectroscopy MRI. Normal spectrum and slight Choline elevation with 
NAA reduction on patients with a seizure [29]. 

Fig.2.6: fMRI an indirect measurement of brain activity. We can 
observe the level and pattern of activity alteration between a 
Healthy subject and a Stroke patient. [28]  



 

2.3.1 The Magnet 
 

The most important component of the MR system is the magnet. The common field 
strengths used in clinical scanners may vary between 0.5-1.5 T while in pre-clinical 
research even 11.7 T magnets (CEA-Paris-Saclay) are used. The highest is the 
magnetic field the higher is the produced MR-signal, signal-to-noise ratio (SNR). To 
have an idea of the operational strength of the magnetic field, 1 Tesla equals 10000 
Gauss (1G = 0.1 mT) and the Earth’s magnetic field is approximately 0.05 mT (0.5G), 
which means that a magnet of 1T applies magnetic force which is 20K times more 
than the Earth’s magnetic field (gravity). The most modern systems use 
superconducting magnets in two settings closed or open bore (bore - opening where 
the subject is placed). The most important characteristic of a magnet is the 
homogeneity, the quality, or the uniformity of the produced magnetic field. [14].  The 
Magnet produces the main magnetic field which is denoted by Bo. 
 

 

2.3.2 Radiofrequency Coils 
 
The MR signals are collected from the patient’s tissue, produced by the radiofrequency 
coils (RF pulse). A radiofrequency coil with more than one element (multiple elements) 
is called array. A transmitter coil surround the subject’s part of the body under 
examination and produces the RF pulse. The resulted signal, produced after the initial 
RF pulse penetrates in the tissue is collected from a receiver coil. Depending on the 
scanning anatomy several coils exist (body, head, spine, knee, etc.)  
 

 

2.3.3 Gradients 
 
To localize the MR signals in the body a short-term spatial magnetic field variation 
needs to be produced. These variations are produced by the gradient coils or 
gradients. Each system has 3 different gradient coils, in all 3 directions (x, y, z).   
 

Each scanning anatomy, depending on the clinical protocol under investigation 
(anatomy, malignancies, neurodegenerative issues) needs to activate all the above 
coils in a repeatedly manner with specific amplitudes and duration. This series of 
radiofrequency pulses applied to the sample is called pulse sequence. 
 

 

2.3.4 Computer System 
 
The operation of the whole MR System takes place through a work-station console. 
Medical details for the subject, as well as commands for the operation of the MR 
scanner but also for the post processing stage of image reconstruction are 
communicated through the latter computer system.  
 



2.3.5 Patient Handling System 
 
The last part of the system is the patient’s bed, where the subject is placed to be 
inserted in the magnet bore. During the positioning of the subject, the array coils are 
placed on the subject, a communication device, and in specific cases further 
equipment might be connected such as peripheral pulse or EEG. 
 
 

 

 

2.4 MRI Physics for imaging  
 
The MR phenomenon is based on the nuclear spin; atoms with an odd number of 
protos and/or neutrons possess this property. These nucleons can be visualized as 
spinning charged spheres and give rise to a small magnetic moment, the spin. Since 
we humans are 70% water, the 1H is the most prominent element in our body and the 
most common measured in MR Imaging. The main interactions that can be measured 
by MRI are the spin-lattice T1 and spin-spin T2 relaxation, through three types of 
magnetic fields: a) the main field B0, b) the RF field B1 and c) the linear Gradient fields 
G. In the following paragraphs we make a short introduction in each of these fields.  
 
 

2.4.1 Main Field Bo 
 

The spins, in the absence of an external magnetic field, are randomly oriented and the 
net macroscopic magnetic moment is zero. However, if we activate an external 
magnetic field B0, we can observe two noticeable effects. First, all the magnetic 
moment vectors tend to align with the direction of the B0 and a net magnetic moment 
is produced. The direction of all the aligned magnetic moments is called longitudinal 
and by convention it is attributed to the z-direction. Second, all the spins exhibit the 
same resonance at a frequency ω called Larmor. This frequency is proportional to the 
applied magnetic field B0: 

ω = γ Β οr f = γ/2π Β 

Fig.2.8: MRI System Cutaway. 



 

Where γ is the gyromagnetic ratio, unique for each atom type. By placing a sample in 
a constant magnetic field B0, all the atoms are polarized inducing a net magnetization 
parallel with the B0 field in the z-direction. Also, all the spins exhibit resonance at their 
Larmor frequency. A radiofrequency magnetic field excites the spins at their specific 
Larmor frequency, and they produce a signal proportional to this frequency.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.4.2 RF Field B1 
 
To obtain the MR signal, a second RF magnetic pulse B1 is applied to turn the magnetization 
in the xy (transverse) plane. The B1 rotates the magnetization vectors by a pre-decided angle 
(flip angle α), adjusted by the B1 magnitude (strength) and duration. The activation of the B1 
field lasts only for a few milliseconds and then the tipped vectors are left to process back to 
equilibrium. The precession takes place initially in the xy plane- transverse magnetization and 
is characterized by the T2 time decay constant. When the precession of the frequencies 
occurred along the z-axis the time constant is called T1. These time constants are the most 
important MR parameters, along with the proton density (PD) values. The generated signal is 
called free induction decay (FID) and the main objective of MRI is to map the spatial 
distribution of their amplitudes to reconstruct the scanning organ/tissue.  

 

Fig.2.9: Alignment of spins with the main magnetic field B0. Low energy 
nuclei align their magnetic moments parallel to the main field. High energy 
nuclei have enough energy to opposite the main field. In the end all the 
spins are align to B0 due to the repulsion between B0 and the magnetic 
moments. (NMV- Net Magnetization Vector).  [31] 

 



  
  
  
  
 
 
 
 
 
 
 
 

2.4.3 Gradient Fields G 
 
With the activation of the main B0 field, all the spins possess at the same resonance frequency. 
Thus, we cannot differentiate the signals produced at different spatial locations. In this case 
we record the signal generated from all the excited regions. In MRI to achieve spatial varying 
magnetic fields, linear magnetic fields are applied in addition to the Bo through the Gradient 
fields. And since we want to spatially classify the magnitudes in the 2D plane we vary the 
magnetic fields in two ways. First, we can introduce a frequency differentiation, in the x-plane 
denoted by Gx, thus the time signal contains contributions of oscillators emitting signal over a 
range of frequencies. Second, on the remaining y-axis, we can introduce alteration on the 
phase of the oscillators through the Gy gradient. Finally, in such a case the resulted MR signal 
characterized by different frequency and phase for each spatial location can be accurately 
determined. 

 
 
 
 
 
 
 
 
 

Fig.2.10: B1 rotates the magnetization vectors to the transverse plane (xy) 

Fig.2.11: Indicative T1(longitudinal magnetization) & T2(transverse magnetization). 

 



 

 
 

 
 

Fig.2.12: Frequency encoding. Analogy with the piano the highest is the frequency the fastest the spins their 

precessional frequencies increase. [31] 

Fig.2.13: Phase Encoding through the Gradients. The highest is the Gradient Amplitude (Stronger) the bigger is 
the phase shift that is introduced [31]. 



2.4.4 Bloch Equation 
 
The total behaviour of the magnetization vector M for all the x, y, z directions, for the 
Bo (Mo magnetization) magnetic field and the magnetization arise from the G (Gx, Gy, 
Gz) gradient fields is given from the Bloch equation:  
 

𝑑𝑀

𝑑𝑡
= 𝑀 𝑥 𝛾𝐵 −

𝑀𝑥𝑖 + 𝑀𝑦𝑗

𝑇2
−

(𝑀𝑧 − 𝑀0) 𝑘

𝑇1
 

 

 

Where i, j, k are the unit vectors in the x, y and z direction respectively.  
 

 

2.5 Imaging Methods 
 

The main two parts of an MRI pulse sequence are the excitation and the reception. 
More sophisticated sequences are of course available but for the conventional 
methods these are the main parts. As we already mentioned in the previous 
paragraphs the initiation of the sequence starts with an RF pulse to tip the spins in a 
specified anatomical region. The recordable RF signal occurs when the spins have 
been tipped to the xy (transversal) plane and the rotation is occurred in this plane. The 
different excitation pulses are combined to become some function of the MR 
parameters (T1, T2, PD). At this point, we have excited a specific volume and all the 
measured signals from the processing magnetic dipoles, with a specific magnetic 
distribution in the different axis m (x, y, z) need to be reconstructed.  

 

2.5.1 k-space & FOV 
 

The matrix where our data are stored, the energy released from de-excitation of the 
protons, is called k-space. The stored data are frequencies and 𝑘𝑥, 𝑘𝑦 are used to 
represent rows and columns respectively on a rectangular grid. The values are 
complex data represent both frequency and phase information. The central points - 
low frequencies contain information about the global structure of the subject while the 
periphery points - high frequencies contain information regarding the edges of the 
object - resolution. Important is here to clarify that the corresponding points in the k-
space are not coincide with the same points in image domain. To reconstruct the 
image of the subject from the k-space data, the Fourier Transform is used, which will 
be briefly presented in the next paragraph. [32]-[33].  
 
 
 
 
 
 
 
 
 
 



  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
 
The size of the area from which the MR signals are sampled is called Field-of-View 
(FOV). Hence, the received signal ~ pixel/voxel size is proportional to the size of the 
FOV. An increased FOV results in more sampled points, while the pixel size become 
bigger, which results in lower spatial resolution. The desired part of the image will 
appear smaller is the latter case. Also, the size of the covered image depends on the 
sampling rate, the highest the sampling rate (smaller distance between k-space points) 
the higher the image size.  

 

2.5.2 Pulse Sequence 
 
In the previous paragraph we tried to present a short description of what is known in 
the field of MR imaging as a pulse sequence. A pulse sequence, defines and controls 
the order of appliance, as well as the timings for all the provided RF and gradient 
pulses [34]. Depending on the pathology under examination, the sequence 
characteristics for each tissue may vary as a function of the different imaging 
parameters (duration, amplitude of each pulse). The main timings which characterize 
the duration of a specific pulse sequence are the TE - echo time and TR - repetition 
time. TE is the time interval between the initiation of the sequence and the recordable 
signal, depending on which contrast we are interested in (T1, T2, PD) the TE will vary. 
TR is the time needed for one repetition of the sequence. The time interval between 
the termination and the reinitiating of the sequence, is usually used for magnetization 
recovery. Depending on the size of the scanned volume in association with parameters 
as the slice thickness for example, each pulse sequence is repeated several times.  
A pulse sequence diagram is represented by several axis, stand for the different 
pulses and gradients applied in a time order manner. The main axis presented are 
mainly four or five for 2D or a 3D sequence respectively (second Gp). The first axis 
denoted by RF is the pulse selected for the excitation of a specific volume. The second 

Fig.2.14: k-space sampling and the reconstructed image. A. Fully sampled 
k-space, B. Only the central part of the k-space – (low frequencies) is 
sampled – general shape information. C. Only the periphery of the k-space 

- (high frequencies) is sampled – edges information/resolution. [14] 



axis referred to the z direction gradient, Gz or Gslice (Gs). The Gs is occurred 
simultaneously with the RF pulse to tip the spins to the transversal plane. The 
remaining two directions 𝐺𝑦, 𝐺𝑥 are the 𝐺𝑝 / 𝐺𝑝ℎ𝑎𝑠𝑒 and 𝐺𝑓/ 𝐺𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 gradient, encode 

the spatial frequencies by applying a phase and frequency encoding in the resonant 
frequencies of the spins respectively. In the following fig.2.15 you can observe the 
pulse sequence diagram of the Spin Echo sequence. The main steps for the 2D 
imaging methods are the following: 
A selective 90-degree excitation pulse is applied in the presence of 𝐺𝑧 such that the 
nuclear magnetization vectors in a thin plane in parallel with the z-axis are tipped into 
the xy-plane. The state of the vectors immediately following the excitation - ideally all 
vectors pointed in the same direction. The resultant signal at this moment equals the 
‘magnetization volume’ of the specific slice. The measured location is the beginning of 
the k-space since the volume under a 2D function m (x, y) equals the value of its 
Fourier transform at (𝑘𝑥=0, 𝑘𝑦=0) at t=0. Position 1 in fig.2.15. Next, we need to 

introduce to the excited spins an amplitude distribution m (x, y) that it will help as 
distinguish each spatial location. As the excited spins precession and induce an 
electromagnetic field (EMF) signal in the receiver coil, we encode their spatial location 
using the other 2 axis gradients  𝐺𝑥 (𝐺𝑓) and 𝐺𝑦 (𝐺𝑝). These steps depend on the  used 

sequence. 
 
Continuing with the sequence, the y-gradient is switched on, which introduces a linear 
phase difference on the spins along the y-direction. Position 2 in fig.2.15.  The longer 
the 𝐺𝑦 (𝐺𝑝) gradient is left on, the larger is the phase variation that is introduced. 

Position 3 in fig.2.15. The particular spatial frequency of each spin is analogous to the 
linear phase variation with time. Each x-component is weighted by a cosine function 
of the vectors at each y-position.  
Right after, when the 𝐺𝑦 gradient is turned off, the 𝐺𝑥 (𝐺𝑓) gradient is turned on and 

introduces a frequency difference along the x-axis. Position 4 in fig.2.15. The signal at 
this moment is the sum of all the vectors and equals the k-space value at the 
appropriate (𝑘𝑥1

, 𝑘𝑦2
) position. 

Finally, the signal decays and the spin vector return to equilibrium. Several repetitions 
of the sequence are needed to cover the whole imaging slice/volume.  
 
The pulse sequences of the two most commonly pulse sequences are presented in 
the following figure. Spin Echo and Gradient Echo.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
 
 
 
The pulse sequences of the two most commonly pulse sequences are presented in 
the following figure. Spin Echo and Gradient Echo.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2.15: A pulse sequence diagram. 1) Initiation of the sequence – (kx, ky 
= 0, 0). 2) Gp=ON a phase variation is introduced. 3) Phase of each 
nucleus is proportional to the linear phase variation with time. 4) Gx=ON a 
frequency difference is applied at the nucleus along the x-axis.  

[35] 

Fig.2.16: Spin Echo & Gradient Echo pulse sequence Diagram [36] 



2.5.3 k-space Trajectories 
 

The route that is followed to sample the k-space points is called trajectory. In the more 
conventional way, trajectories follow a line-by-line path with points lying on a 
rectangular grid. This sort of trajectories called Cartesian and an inverse Fourier 
Transform is applied to directly obtain the image of the scanned object. However, other 
trajectories are available such as the radial or the spiral. These trajectories are non-
Cartesian which means that prior to the application of the Fourier transform a 
regridding strategy is needed to first place the sampling points on a Cartesian grid 
(interpolation) and then apply the Fourier Transform. Non-Cartesian trajectories result 
in faster scanning, and they provide an efficient k-space coverage with fewer spokes 
in Radial case or a smaller number of shots in the spiral trajectory. Apart from 
acceleration during scanning, these trajectories can be directly undersampled without 
artifacts that cannot be removed in a postprocessing stage as in the Cartesian case. 
This is due to the architecture of the trajectory where each spoke or shot contains 
equal amount of low and high frequency components in comparison with the line-by-
line scanning (*either low or high frequencies per line) Cartesian trajectories. The last 
identity is very important when dealing with acceleration methods using undersampling 
masks and will further analysed in the next paragraphs. Each of these trajectories is 
characterized by specific properties but one common important characteristic is the 
motion tolerance. For example, in radial sampling, due to the nature of sampling, the 
centre of k-space is densely sampled and thus present motion robustness. [37] 
 

 
Fig.2.17: k-Space Trajectories. a. Cartesian b. Radial (Non-Cartesian) c. Spiral (Non-Cartesian) [14] 

 

2.5.4 Fourier Transform 
 
The Fourier Transform is a mathematical technique that allows an MR signal to be 
decomposed into a sum of sine waves of different frequencies, phases, and 
amplitudes as follows: 
 
 

𝑠(𝑡) = 𝑎0 + 𝑎1 sin(𝜔𝑡 + 𝜑1) + 𝛼2 sin(2𝜔𝑡 + 𝜑2) + 𝛼3 sin(3𝜔𝑡 + 𝜑3) + ⋯ 

 

where 𝑎𝑖’𝑠 are amplitudes, 𝜑𝑖’𝑠 are phase shifts, and 𝜔 is the fundamental frequency. 

The higher order frequencies 2𝜔, 3𝜔, etc. are called harmonics. [35] 
 



  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
In the above figure we can observe both the Time and the Frequency Domain 

signals. A brief explanation of Fig.2.18 is that starting from the Time domain signal 

𝑠(𝑡) we can see the decomposition of it in a sum of sinusoids for each of which we 

have a specific amplitude 𝑆(𝜔) in the Frequency domain. The Fourier Transform is a 

mathematical procedure connecting the 𝑠(𝑡) with the 𝑆(𝜔) as follows:  

𝑆(𝜔) =  ∫ 𝑠(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
=∞

−∞

      𝑭𝑻       

 𝑠(𝑡) =  ∫ 𝑆(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔
+∞

−∞

      𝑰𝑭𝑻 

The 1st equation is the Fourier Transform and the 2nd one the Inverse Fourier 

Transform, used to convert the k-space to image and vice versa Fig.2.20.  

 

Fig.2.19: The magnitude and frequency of each frequency component along x and y. 

 

 Fig.2.18: Fourier Decomposition of a time signal in a sum of sinusoids 
and their respective frequencies.  



 

Fig.2.20: The Fourier and the Inverse Fourier transform between the Image and the k-space respectively. 

  



 

 

 

 

 

 

Chapter 3  

 
3. Image Acceleration 
  
MR imaging is a non-invasive, radiation free imaging modality which offers high 
resolution imaging with various contrast mechanisms to reveal different properties of 
the underlying anatomy. However, the main drawback of MRI is the inherently slow 
image acquisition. The sampling process is performed in the k-space (frequency 
space) in a sequential manner and the speed at which it can be traversed is limited by 
physiological and hardware constraints [54]. The inherent slow acquisition is 
associated not only with patient discomfort from the lengthy examinations but also with 
artifacts mainly motion related. The main two approaches for acceleration are: a) 
Parallel Imaging (PI) from a hardware perspective and b) Compressed Sensing (CS) 
from a software perspective. Our main work is based on the CS framework on which 
acceleration is achieved through k-space undersampling. In the following paragraphs 
we introduced the CS theory with all the constraints and limitations, as well as the 
transition to the Deep Learning (DL) methodologies. 
 

 

3.1 Compressed Sensing (CS) 
 
Compressed Sensing (CS) aims to reconstruct signals and images from significantly 
fewer measurements than were traditionally thought necessary. The main idea behind 
this technic originates from transform-based compression a widely used strategy 
adopted in the JPEG and MPEG standards. The technic is based on a sparsifying 
transform, mapping image content into a vector of sparse coefficients and then encode 
the sparse vector by approximating the most significant coefficients and ignoring the 
smaller ones.  
In CS one measures a relatively small number of ‘random’ linear combinations of the 
signal values - much smaller than the samples nominally defining the signal. Since the 
signal is compressible the total number of signal samples is a gross overestimate of 



the ‘degrees of freedom’ of the signal. In MRI the samples are individual Fourier 
coefficients. The successful application of CS has three requirements:  
 

A. Transform Sparsity: The desired image should have a sparse representation in 
a known transform domain.  

B. Incoherence during undersampling: The artifacts produced after the 
reconstruction should look like noise - be incoherent in the transform domain  

C. Nonlinear reconstruction: The final image should be iteratively reconstructed by 
a nonlinear method that enforces both sparsity and consistency of the 
reconstruction with the acquired samples.  

 
Sparsity: A predefined mathematical transform such as wavelet, curvelet, discrete 
cosine transform etc. is used to transform the initial signal in a domain where only a 
few coefficients remain significant – sparse signal.  
 
Incoherence: the way we acquire the samples from the whole signal needs to be 
random. In case of Cartesian trajectories, mathematical orthogonal basis [1]-[3] that 
produce random measurements need to be used to avoid aliasing artifacts during the 
reconstruction. For the Non-Cartesian trajectories, the methodology of undersampling 
is straight-forward without the need of such a base. In radial imaging for example by 
discard random spokes we produce undersampled measurements.  
 

Nonlinear Reconstruction: Let 𝑚 be a complex vector of measurements, 𝛹 the 
sparsifying transform (eg. wavelet), 𝐹𝑠 the fourier transform including the 
undersampled mask (𝛷) and 𝑦 the measured k-space data form the MRI scanner. 𝜀 
controls the fidelity of the reconstruction. Then our reconstructions are obtained by 
solving the following constrained optimization problem:  
 

min|𝛹𝑚|1      𝑠. 𝑡.      |𝐹𝑠 𝑚 −  𝑦|2
2  < 𝜀 

 
𝐹𝑠 = 𝐹 ∗ 𝛷  𝑎𝑛𝑑 𝛩 = 𝐹𝑠 ∗ 𝛹 

 

Minimizing the L1-Norm promotes sparsity while constraint by the L2-Norm enforces 
data consistency. In other words, among all solutions that are consistent with the 
acquired data, we want to find a solution that is compressible by the transform Ψ.  
 

There are many different formulations for the latter definition of the nonlinear 
reconstruction.  

Fig.3.1: Schematic Representation of the CS measurements. Where 𝐹𝑠 =  𝐹 ∗  𝛷 the Fourier transform (𝐹) Including 

the undersampling mask (𝛷), 𝛹 the wavelet transforms and 𝛩 =  𝐹 ∗  𝛷 ∗  𝛹  , 𝑆 is the whole Signal and y and 

undersampled measurements. 



3.2 Machine Learning in Medical Imaging  
 

Machine learning is an active highly growing field of research where algorithms are  
combined with statistics to extract and discover meaningful patterns based on 
observations (examples). Beyond human perception, computers by repetitively 
execute ML algorithms can learn complex patterns. ML algorithms extract image 
features by eliminating redundant variables or representations to better estimate input 
data with high accuracy. Next, based on the extracted features learned from the 
training data, predictions are performed in the ‘unseen’ data. Deep Learning (DL) is 
an extension of ML, but the features are identified automatically during the learning 
process which are useful representations depending on the task.  
In Medical Imaging the latter algorithms have been used for segmentation [38]-[39], 
image reconstruction [40],[4], image registration [41],[42] or classification [43]. The 
main applications in radiology aim to provide direct interpretation of the results leading 
in accelerated diagnosis [44]. The state-of-the-art applications on the field target in 
quantitative learning – results [45].  
DL as a branch of ML uses multiple deep layers to model the complex relationships 
between input and output. The most popular and widely used building pillars of DL are 
the: 

a. Convolutional Neural Networks (CNN) 
b. Recurrent Neural Networks (RNN) 
c. Generative Adversarial Networks (GAN) 
d. Autoencoders (AE)  

 

In our work we are interested in DL reconstruction algorithms for medical imaging 
applications. In the provided architecture we mainly use CNNs for the current work 
even thought, the proposed regularization is not limited to these building blocks, but 
any architecture can be used for the sparsity term.  
Since we apply our model in a CNN based architecture, we will perform a brief 
introduction to these specific models.  
 

 

CNN 
 
CNN is one of the most used models in computer vision tasks where each neuron 
receives an input, performs a dot product and a non-linearity function follows to provide 
the output. This sort of architecture explicitly assumes that the inputs are images and 
neurons at each layer are connected only to a small region of the previous layer 
instead of the full image. The main pillars used in a CNN setting are:   
 

A. Convolutional Layer: The core element of CNNs, consist of a set of learnable 
filters - a set of weights and biases for each layer. Each neuron is only 
connected to a small region of the input. The spatial extend of the total neuron’s 
field of view is a hyperparameter called receptive field. During the forward pass 
each filter slides across the whole input and for each height x width 
neighbourhood, the dot product is calculated between the input and the filter 
weights. This produces an activation map which corresponds to responses of 
filters at each spatial position. In contrast with the simple neural networks 
whose neurons at each layer are independent, here the weights are shared for 



each neuron. In image processing, coloured pictures are represented by 3 
channels for Red, Green, and Blue respectively. In MRI reconstruction there 
are only 2 channels which mainly represent the real and imaginary channel of 
the complex input.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. Pooling Layer: Mainly common to the CNN architectures this layer is used to 
reduce the spatial size of the representation - reduce the number of parameters 
passed in the subsequent layers and thus limit the computational power 
required to process the data. It is mostly found in two versions: max pooling 
and average pooling where the max and average of a region is calculated 
respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c. Fully Connected Layer: This layer is mainly the same with the regular neural 
networks which is connected to all activations from previous layer. The 
activation is a matrix multiplication with a bias offset.  

 
 
 
 

Fig.3.2: Convolution of a 5x5x1 Image with a kernel 3x3x1 to get a convolved feature of 3x3x1. 

Fig.3.3: Types of Pooling.  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
A few words for the most recent architectures use CNNs. The ResNet [46] winner of 
ILSVRC; the main novelty in the ResNet are the skip connections apart from the 
regular convolutional path. In such a way, the most common issue of deep CNNs, the 
vanishing gradient, is overcome. The Dense Net, same as the ResNet but with densely 
connected layers to outperform the performance of ResNet. Finally, U-Net is a recent 
architecture in which pooling and upsampling layers are used, and the feature maps 
from the two paths are concatenated. In this setting the gradients from higher layers 
are propagated to lower layers directly which is highly beneficial for performance gain.  
 
 

3.2 DL Based Reconstruction  
 
The key strength of DL is its capacity to model complex input-output relationships 
between large amount of data [47].  From all the different DL techniques for computer 
vision and image processing we are mainly interested to the nonlinear image 
reconstruction under the umbrella of CS for accelerated MRI reconstruction. 
A DL method learns a non-linear function 𝑓: 𝑌→ 𝑌 from a set of all possible mapping 
functions 𝐹.  The empirical risk [48] 𝐿(𝑓) can be estimated using some loss function 
as: 

𝑳̂(𝒇) =
𝟏

𝟐
∑ 𝒍(𝒇(𝒚𝒊), 𝒙𝒊)

𝒎

𝒊=𝟏

 

and the generalization error of mapping function 𝑓(. ) can be measured using some 
notion of accuracy measurement. In MR image reconstruction using DL we try learning 
a map from the undersampled k-space measurement 𝑦 ∈  𝐶 (𝑁1𝑥𝑁2 𝑜𝑟 𝑁1𝑥𝑁2𝑥2) to 

an unaliased MR image 𝑥 ∈  𝐶 (𝑁1𝑥𝑁2).   
The main two broad aspects of DL methods are 1) Generative models, data generation 
processes capturing the underlying density of data distribution and 2) non-Generative 
models, that learn complex feature representations of image intending to learn the 
inverse mapping from k-space measurements to MR images.  
 
 
 

Fig3.4: Convolutional and Fully Connected Layer 
respectively (FC). In the FC layer all the neurons 
of a layer are connected to all the neurons of the 
next layer 



3.2.1 CS to DL 
 
In MR imaging the measurement space (k-space) as well the image domain data are 
complex numbers. To deal with the complex data for the neural network input, we 
mostly create 2-channel real tensors for the real and imaginary part respectively for 
both image and k-space data. However, there are methods that deal with complex 
data at once [49].  
 
Problem Formulation  
 
 Let 𝑥 ∈ ∁𝑁 represent a 2D complex-valued MR image. The reconstruction problem 

aims to reconstruct 𝑥 from  𝑦 ∈ ∁𝑀, 𝑀 ≪ 𝑁 undersampled k-space measurements, 
such that:  

𝑦 = 𝐹𝑢 𝑥 + 𝜀      (1) 
 

Here 𝐹𝑢 ∈ ∁𝑀𝑥𝑁 is the undersampled Fourier encoding matrix and 𝜀 ∈ ∁𝑀 is acquisition 
noise. In the case of cartesian acquisition we have: 
 

𝐹𝑢 = 𝑀 𝐹 
 
Where 𝐹𝑢  ∈ ∁𝑁𝑥𝑁 applies 2D Discrete Fourier Transform, and 𝑀 ∈ ∁𝑀𝑥𝑁 is the binary 
sampling mask selecting which lines will be sampled in k-space. The subset of 
sampled positions in k-space is indicated by Ω. When there is not any undersampled 
mask 𝑀 = 𝑁 and the sequence is reconstructed just by applying the 2D inverse Fourier 
transform.  
The problem formulation in eq.1 is called zero-filled reconstruction and in the current 
state even in the absence of noise is an ill-posed problem and does not have a unique 
solution. Consequently, a regularizer 𝑅(𝑥) to incorporate prior knowledge is added to 
reconstruct 𝑥 and this can be formulated as an unconstrained optimization problem as 
follows:    
 

min
𝑥

𝑅(𝑥) + 𝜆 | 𝑦 − 𝐹𝑢𝑥|2
2       (2) 

 
𝑅 expresses regularization terms on 𝑥 and 𝜆 ∈ 𝑅 is a hyperparameter that controls the 
properties of the reconstructed image 𝑥  in accordance with the noise level in the 
acquired measurements 𝑦. The regularization term can be optimized using various 
methods, such as:   
 
1. The Morozov formulation:   
  

min 𝑅(𝑥)  𝑠. 𝑡.  |𝐹𝑢𝑥 − 𝑦| ≤ 𝛿 
2. The Ivanov formulation:  
 

min|𝐹𝑢𝑥 − 𝑦|  𝑠. 𝑡.  𝑅(𝑥) ≤ 𝜀   
3. The Tikonov formulation:   
  

min|𝐹𝑢𝑥 − 𝑦|  +   𝜆 𝑅(𝑥)  
 



The regularization we will be using in this work is based on the 3rd formulation of 
Tikonov and can be formulated as:  
 
 

min
𝑥

  |𝑥 − 𝑓𝐶𝑁𝑁(𝑥𝑢|𝜃)|2
2 + 𝜆|𝐹𝑢𝑥 − 𝑦|2

2     (3) 

 
Here the 𝑓𝐶𝑁𝑁 is the forward mapping of the CNN parametrized by 𝜃, which takes in 

the 𝑥𝑢zero-filled reconstruction and directly produces a reconstruction as an output. 
The 1st term in eq.3 operates in the image domain and can be seen as a dealising 
problem. This term is conditioned by the data consistency term (2nd term) using 
𝛺 𝑎𝑛𝑑 𝜆. In this sense the final output is given by:  
 

𝑥𝐶𝑁𝑁  =  𝑓𝐶𝑁𝑁 (𝑥𝑢 |𝜃, 𝜆, 𝛺) 
 
and the training is performed by providing data D containing pairs of undersampled 
and fully sampled (ground truth) images 𝐷( 𝑥𝑢, 𝑥𝑔𝑛𝑑). The reconstruction is obtained 

by minimizing the following loss: 
 
 

𝐿(𝜃) =  ∑ 𝑙(𝑥𝑔𝑛𝑑, 𝑥𝑐𝑛𝑛)
(𝑥𝑢,𝑥𝑔𝑛𝑑)

   (4) 

 
Where 𝑙 is the loss function. In this case we use the element-wise squared loss given 
by: 

𝐿(𝑥𝑔𝑛𝑑 , 𝑥𝑐𝑛𝑛)  =  |𝑥𝑔𝑛𝑑 – 𝑥𝑐𝑛𝑛|
2

2
 

 
 
 
 Data Consistency Layer 
 
Denote the reconstructed image by the CNN as:  𝑠𝐶𝑁𝑁 = 𝐹 𝑥𝑐𝑛𝑛 = 𝐹 𝑓𝑐𝑛𝑛(𝑥𝑢|𝜃) where 
𝑠𝑐𝑛𝑛(𝑗) represents an entry at index j of k-space. The non-acquired indices in k-space 
are filled with zeros. Therefore, for the reconstructed image regarding the latter 2 
cases, sampled and not sampled k-space position respectively, we have the following 
formulation:  
 

𝑠𝑟𝑒𝑐(𝑗) =  {

𝑠𝑐𝑛𝑛(𝑗)      𝑖𝑓  𝑗 ∉  𝛺 

𝑠𝑐𝑛𝑛(𝑗) + 𝜆 𝑠0(𝑗)

1 + 𝜆
 𝑖𝑓 𝑗 ∈  𝛺 

  (5) 

 
And the final reconstruction is then obtained by simply applying the inverse Fourier 
encoding  𝑥𝑟𝑒𝑐 =  𝐹𝐻   𝑠𝑟𝑒𝑐. Eq.5 states that if there does not exist any k-space value on 
the specific k-space position, then the only existed value is the one calculated from 
the CNN. On the other hand, if there is already an existed value on the k-space for the 
specific 𝑗 position, then the result is partially accounted depending on 𝜆 but also a new 
value has been calculated from the CNN. In the case where 𝜆→ ∞ we simply replace 
the j-th predicted coefficient in 𝛺 by the original coefficient. That is why this operation 
is called data consistency (DC) step.  



During the forward pass the DC term can be decomposed in 3 terms. Receiving the 
output of the CNN in the image domain a Fourier transform is applied to obtain the k-
space coefficient 𝐹, then the DC term 𝑓𝐷𝐶  is applied and finally an inverse 𝑓𝑓𝑡 𝐹𝐻  
returns the output in the image domain. The latter procedure can be described as:  
 

𝑓𝐷𝐶(𝑠, 𝑠0; 𝜆) = 𝛬 𝑠 +
𝜆

1 + 𝜆
 𝑠0            (6) 

 
Where: 
 

𝛬𝑘𝑘 =  {

1      𝑖𝑓  𝑗 ∉  𝛺 
1

1 + 𝜆
 𝑖𝑓 𝑗 ∈  𝛺 

          (7) 

 
In matrix form and the forward pass including all the above operators as: 
 

𝑓𝐿 (𝑥, 𝑦;  𝜆) =  𝐹𝐻 𝛬 𝐹 𝑥 +
𝜆

1 + 𝜆
 𝐹𝑢

𝐻 𝑦     (8) 

 
Finally, the backward pass is obtained through the Jacobian of the DC layer with 
respect to the layer input x as follows [4]: 

𝜕𝑓𝐿

𝜕𝑥𝑇
= 𝐹𝐻 𝛬 𝐹       (9) 

 

3.3 Algorithms for image reconstruction 
 
The image reconstruction on accelerated MRI has been playing the most prominent 
role on the medical imaging field. The major objective is to acquire high quality images 
at the minimal cost and patient risk. The patient risk is eliminated by following specific 
imaging protocols during examinations. On the other hand, the image reconstruction 
can be formulated in many different optimization settings which is based on 
mathematical models, but further prior information can be incorporated to easier guide 
the convergence of the reconstruction. Following the eq.2, for the regularization term 
different formulations can be used such as 2D wavelet [56], total variation (TV) [57], 
dictionary [58] etc. Later with the introduction of CS to incorporate the sparsity 
constrain, pre-constructed basis [14-18], adaptive basis [19-21] or dictionaries [58, 71, 
72]. In fig. 3.5 different optimization formulations from several research works are 
presented: 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.5: Different mathematical formulations from iterative reconstruction algorithms based on equation 1.  



Practical and effective optimization algorithms are essential, and a large number have 
been studied to solve various optimization problems. The iterative reconstruction 
algorithms and the DL networks still have a close connection. The most common 
algorithms used for solving the latter problems are: 

a. Variable splitting with quadratic penalty (VSQP) [66] 
b. Proximal gradient descent (PGD) [67] 
c. Iterative shrinkage thresholding algorithm (ISTA) [68] 
d. Alternate direction method of multipliers (ADMM) [69] 

 
 

3.4 Cascaded Architecture 
 
 
For the CS-based methods based on DL the optimisation step in eq.3 is solved using 
a coordinate-descent type algorithm, iterating between the two terms, the dealising 
and the data consistency term until convergence. Using just one CNN for dealising 
and thus one step reconstruction in the absence of vast amounts of training data, is 
often shows signs of overfitting. The simplest solution is to use a second CNN attached 
to the output of the first CNN and data consistency step. Following that methodology, 
very deep architectures can be built to deal with the dealising -reconstruction problem. 
We term this a cascading network. The main two parameters in a cascading 
architecture are:  
 
𝑛𝑑: Number of Consecutive CNN layers followed by a non-linear function – rectified 
linear unit (ReLU).  
𝑛𝑐: Number of Cascades. Each cascade is characterized by the latter block (number 
of consecutive CNNs each followed by a ReLU) plus the DC term. 
 
So, for example a Cascaded Architecture of 𝑛𝑑 , 𝑛𝑐 =  3, 2 stands for the following: 
 
 

 

Fig.3.6: Example of a Cascaded Architecture with 𝑛𝑑 , 𝑛𝑐 =  3, 2. The red dashed line represents the residual 

connection that is used. 𝑥𝑖𝑛, 𝑥𝑐𝑛𝑛 the network input and the modified input after the application of the CNNs 

respectively. 



To avoid the main drawback of the CNN networks when the architecture becomes very 
deep, the vanishing gradient issue, a residual connection* is used.  
 
*Residual Connection: The residual connection applies identity mapping of the input just before the output of the series of the 
applied CNNs. In other words, it performs an element-wise addition of the input with the output after a series of convolutions 𝒙 +
 𝑭𝒄𝒏𝒏(𝒙) prior to the activation function.  

 

 

3.5 Regularization Learning 
 
In the previous paragraph we presented the crucial role of the DC layer in the 
reconstruction performance. In contrast to the convolutional block and the residual 
connection, which operate in the image domain (mainly) to extract features from the 
reference image, the DC layer operates in the frequency domain and aims to preserve 
the accuracy of the learning process through the sampling domain. [4], [50]. 
After the convolutional layer a Fourier transform is applied to obtain the k-space data, 
in the frequency domain.  As we described in formulation from eq.7; in the case of 
undersampled data there are two possibilities for the k-space locations. Either the 
initial data point, 𝑠𝑗, is sampled ( 𝑗 ∈ 𝛺) or not (𝑗 ∉ 𝛺). In case that a missing data point 

is reconstructed then the only value existed for the exact location is the output of the 
CNN-Network. On the other hand, when an existed, initially sampled data point is 
reconstructed, there arise two values for the same position. The already existed-
sampled value, and the one returned from the CNN-Network. However, as we can see 
in Eq.7 this is not always the case. The latter statement of totally discarding the newly 
created point is only accurate when we are certain for the total absence of noise or 
artifacts during sampling. Although, this is an ideal case.  
Nevertheless, in real applications and especially in the undersampled cases there is 
always noise in our measurements. In this case, we will use a sort of convention 
between the two values and depending on our knowledge about the data (noise 
existence), we should suitably adjust the weights of them. Here comes the regularizer, 
𝜆, which adjusts the interaction of the two terms for the most optimal output. Of course, 
𝜆, is highly data- dependent and thus its accurate estimation could formulate an 
empirical noise model for the current dataset. In such a case, we need to consider the 
dealising step of the convolutional block in our DC step.  
 

3.5.1 Fixed Regularization Parameter 
 
This hyperparameter 𝜆 in the latter formulation (Eq.10) is fixed and predefined in an 
empirical value, for the whole reconstruction cycle.  
 

[
𝜕𝑓𝑑𝑐(𝑠𝐶𝑁𝑁, 𝑠0; 𝜆)

𝜕𝜆
]

𝑗

=  {

0           𝑖𝑓 𝑗 ∉ 𝛺

𝑠0(𝑗) − 𝑠𝑐𝑛𝑛(𝑗)

(1 + 𝜆)2
       𝑖𝑓 𝑗 ∈ 𝛺

          (10) 
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3.5.2 Learnable Regularization Parameter  
 
At this point we consider the modification of 𝜆, towards a learning scenario. Instead of 
a predefined 𝜆, we make this parameter trainable. In this way the optimal value is 
tuned during the reconstruction depending of course on the current dataset. We 
include 𝜆 in the forward and backward pass and in such a way the weights in the 
Jacobian are adjusted including the derivative of 𝜆. 
 
The eq.10 when used in the network is written in the following format: 
 

𝑵𝒐𝒊𝒔𝒆𝒍𝒆𝒔𝒔 𝑪𝒂𝒔𝒆 ∶ 𝑠𝑟𝑒𝑐 = (1 − 𝐹𝛺) ∗ 𝑠𝐶𝑁𝑁 + 𝐹𝛺 ∗ 𝑠0 
 

𝑵𝒐𝒊𝒔𝒚 𝑪𝒂𝒔𝒆: 𝑠𝑟𝑒𝑐 =
(1 − 𝐹𝛺) ∗ 𝑠𝐶𝑁𝑁 + 𝐹𝛺 (𝑠𝐶𝑁𝑁 + 𝜆 ∗ 𝑠0)

1 + 𝜆
 

 
 
Slice Learnable Parameter 
In this first step of the work, for improved reconstruction, starting from the 𝑗 ∈ 𝛺 case 
(Noisy Case) of 𝑒𝑞. 10, we convert 𝜆 to a learnable network parameter and we 
calculated the 𝑠𝑟𝑒𝑐 for each k-space frame individually as follows:  
 

𝑠𝑟𝑒𝑐 =
(1 − 𝐹𝛺) ∗ 𝑠𝐶𝑁𝑁 + 𝐹𝛺 (𝑠𝐶𝑁𝑁 + 𝜆 ∗ 𝑠0)

1 + 𝜆
 

𝑠𝑟𝑒𝑐 =
(1 − 𝐹𝛺) ∗ 𝑠𝐶𝑁𝑁 + 𝐹𝛺 ∗ 𝑠𝐶𝑁𝑁 + 𝐹𝛺 ∗ 𝜆 ∗ 𝑠0)

1 + 𝜆
 

 
𝐼𝑛𝑠𝑡𝑒𝑎𝑑 𝑜𝑓 𝑎 𝑓𝑖𝑥𝑒𝑑 𝜆 𝑣𝑎𝑙𝑢𝑒 𝑤𝑒 𝑢𝑠𝑒 𝑎 𝑙𝑒𝑎𝑟𝑛𝑎𝑏𝑙𝑒 𝜆:                       𝝀 ↔ 𝝀𝑫𝑪 

 

𝑓𝐷𝐶(𝑠0, 𝑠𝐶𝑁𝑁; [𝝀𝑫𝑪]) = 𝑠𝑟𝑒𝑐 =  
(1 − 𝐹𝛺) ∗ 𝑠𝑐𝑛𝑛 + 𝐹𝛺 ∗ 𝑠𝑐𝑛𝑛 + 𝜆𝐷𝐶 ∗  𝐹𝛺 ∗ 𝑠0 

1 + 𝜆𝐷𝐶
    (11) 

 
To clarify the conversion to a learnable parameter, we mean that instead of using a 
fixed integer value for the whole reconstruction, an adjustable through the iterations 
𝜆𝐷𝐶  is used. The 𝑛𝑛. 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 function from the 𝑃𝑦𝑡𝑜𝑟𝑐ℎ library was used. In that 
way the 𝜆𝐷𝐶 is included in the backpropagation step [73-75].  
 
Spatially Learnable Parameter 
 
Proven the highly optimized results from the learnable 𝜆 we moved a step forward in 
a spatially varying learning formulation. Motivated by the characteristic properties of 
the frequency space, and more specifically the different role of the low (main object 
shape) and high frequencies (edges, resolution) in the reconstruction process, as well 
as the different amount of sampling needed in the two different neighbourhoods 
respectively, we were interested in a spatially varying learnable parameter set up. 
Starting again from Eq.10 and separating the 𝜆 parameter in 2 terms, for the CNN and 
the initial k-space output we have the following equation:  
 
 

𝑓𝐷𝐶(𝑠0, 𝑠𝐶𝑁𝑁; [𝝀𝑪𝑵𝑵,  𝝀𝑫𝑪]) =  𝑠𝑟𝑒𝑐 = (1 − 𝜆𝐶𝑁𝑁 ∗ 𝐹𝛺) ∗ 𝑠𝑐𝑛𝑛 + (𝐹𝛺 ∗ 𝜆𝐷𝐶) ∗ 𝑠0 (12) 



In the above formulation the distinctive contribution of the different spatial frequencies 
in k-space was revealed.  
 
The 𝜆𝐷𝐶 and 𝜆𝐶𝑁𝑁 parameters were again converted through the  𝑛𝑛. 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 
function and included in the backpropagation step.  
 
 

 
Where: 

𝑠𝑟𝑒𝑐 Final k-space Output 

𝑠𝐶𝑁𝑁 k-space from CNN Output 

𝑠0 Initial k-space  

𝐹𝛺 Mask & FFT   

1 – 𝐹𝛺 Remaining part without the 𝐹𝛺 

𝜆𝐷𝐶 Regularization for the DC term 

𝜆𝐶𝑁𝑁 Regularization for the CNN output 

 
 
 

3.6 Channel Separated Convolutions 
 
 
 
 
 
 
 
 
  
 
 
 
 
Regarding the CNNs’, several settings can differentiate each CNN unit, such as the 
kernel size, the number of applied filters, the padding, or the stride etc. Another 
important aspect of the CNNs, is the number of channels, especially in the MRI case 
where the input is complex. Of course, all the data inputs are provided using real 
numbers for both channels (real and imaginary) for both image and k-space entries. 
 
However, the way the data are provided to the network leads in different results for 
mainly two reasons. First, during the CNN operation, the different channels interact to 
provide a final single channel output (fig.3.6). This is important here because the 2 
channels in our case contain frequency and phase information (complex data) rather 
than just different channels of colour.  
 Second, when dealing with real and not synthesized MRI data, the Real and the 
Imaginary channel of our measurements have several orders of magnitude difference. 
In such a case when we provide the data as 2-channel input, with the imaginary part 
being several orders of magnitude smaller than the Real channel, the imaginary part 
is finally neglected. The different channels in MRI data contain useful information 

Fig.3.7: A. CNN operation on 3 Channel colour input (RGB).  B. Complex MRI analogy – 
The two parts are intentionally presented with such a big size difference to denote the 
order of magnitude difference in real sampled data.  



about the nature of the acquisition and both are of vital importance for a successful 
reconstruction. Thus, in the current work presented in the next chapter, all the 
convolutions were performed separately per channel and the convolved outputs were 
concatenated prior to the DC block.   
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Chapter 4 

 
4. Materials & Methods  
 
In the current chapter all the used pillars for the current reconstruction are presented 
in a Materials & Methods way. 
 

4.1 Dataset 
The Dataset used for the reconstruction algorithms presented in this work is the 
Calgary Campinas Public Dataset [53]. It is composed of healthy T1-weighted MR 
brain images acquired with a General Electric – Discovery MR 750 scanner. The 
dataset consists of both Single and Multi-Coil Data but for the current work only the 
Single-Coil Data were used. 45 fully sampled acquisitions are provided. For train, 
validation and test we divided the data in 25, 10 and 10 subjects respectively. 
However, in the total amount of 4.524, 1.700 and 1.700 images for train, validation, 
and test respectively, the SNR was measured, and part of each dataset was discarded 

Fig.4.1: ROIs for SNR measurements. The red window measures the Signal while the blue one 
the Noise. The image on the left- hand side is an example of a discarded image from the initial 
dataset which has an SNR<20. 

https://www.ccdataset.com/mr-reconstruction-challenge


when the SNR was below 20 for better reconstruction results. This method led to a 
total amount of 3724, 1527 and 1553 for train, validation, and test respectively. The 
SNR was measured using two Regions of Interest (ROI) as it is shown in the following 
figure. The blue one represents the noisy counterpart while the red one the area with 
the signal.  
 
 
The final SNR was calculated using the following formula:  
 

𝑆𝑁𝑅 =
𝑚𝑒𝑎𝑛(𝑆𝑖𝑔𝑛𝑎𝑙)

𝑠𝑡𝑑(𝑁𝑜𝑖𝑠𝑒)
       

 

 

4.2 Convolutional Schemes 

 
For the current work several architectures for the convolutional block were used. The 
main idea was to build and test all the most common network topologies used. A quick 
overview of all the created architectures will follow. 
 
General Network Characteristics 

In Fig. 4.2 we can observe the main pillars existing in all the following used 
architectures.  
1. CNN Block (Cascade of CNN’s): A chain of CNNs followed of a non-Linear function 
is called a cascade of CNNs. In each cascade we can select the number of the latter 
scheme (CNN + Non-Linearity) 
2. Dual Domain Setting: All the used architectures have been built to be able to be 
used for both image and k-space data as an input to the CNN-Block.  
3. Data Consistency Block: The CNN block is always followed by a DC Block which 
compares the converted to k-space reconstructed output of the CNN Block with the 
initial existed-sampled values.  

Fig.4.2: Main building blocks of the built Networks. 1.Cascade of CNN’s, 2. Dual Domain Setting, 3. Data 
Consistency, 4. λ Regularization Learning, 5. Residual Connection. 



4. λ Regularization Learning: All the networks consisted of an adjustable λ 
regularization parameter in three different settings (FF-fixed value, TF-learnable, TT-
spatially learnable). 
5. Residual Connection: To avoid the vanishing gradient problem of this kind of 
architectures (deep sequential layers of CNNs) a residual connection is used. The 
initial input to the CNN is added to the convolved output prior to the DC-block. 
 
In the following paragraphs the main architectures used are briefly presented: 
 
Cascades of CNNs  
Our initial architecture borrowed from Schlempler et al. [4] with several sequential 
CNNs fig4.2, a residual connection prior to the ReLU function and a DC term. The 
kernel size can be adjusted but is conserved through the different layers. The number 
of CNNs as well as the number of cascades is also an option. The undersampled 
image is provided as a Single-Two Channel Input (separate convolution for each 
channel and concatenation prior to the DC term).  
 

 
Fig.4.3: Cascade of CNNs 

 

Cascades of Increasing Filters & Concatenation Block 
 
The 2nd architecture we implemented consists of increasing filter sizes per layer, 3x3, 
5x5, and 7x7, followed by a concatenation block of all the previous outputs. The 
concatenate block at the end prior to the DC term is mimicking a fully connected layer. 
In this format we moderate the computational burden of the model while increasing 
the field of view using this technique. The undersampled image is provided as a Single-
Two Channel Input (separate convolution for each channel and concatenation prior to 
the DC term). 
 

 
Fig.4.4: Cascade of Increasing Filters & Concatenation Block 



Cascades of U-Net like shape 
 
The last architecture, which was used for all the results presented in the next chapters 
is mimicking in a way the U-Net architecture just from the point of increasing-
decreasing number of filters but with the same kernel size in all layers as well as the 
size of the outputs per layer.  In all the experiments the set of applied filters was 8-16-
32-32-16-8 followed by a ReLU and a DC term respectively. The option of this 
architecture is related with the memory and can be adjusted to 16-32…. Or 32-64… 
etc. The undersampled image is again provided as a Single-Two Channel Input 
(separate convolution for each channel and concatenation prior to the DC term). 
 

 
 
Important is here to mention that all the DC blocks were applied after each non-linearity 
function (per-layer). For the sake of illustration, the DC block is presented just once 
per Network.  
 

 

4.3 Evaluation Metrics 
 
For the Loss function the mean square error (MSE) was used in the image domain, 
comparing the reconstructed image with the reference image. 
 

𝑀𝑆𝐸 = |𝑥𝐺𝑁𝐷 − 𝑥𝑅𝐸𝐶|2     
The quantitative metrics used for validation of the reconstruction quality was:  
 
a. Peak Signal to Noise Ratio:  

𝑃𝑆𝑁𝑅 = 10 log10(
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
)      

Where 𝑀𝐴𝑋𝐼 is the maximum possible pixel value of the image  
 

b. Structural similarity index (SSIM): 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2 𝜇𝑥 𝜇𝑦 + 𝑐1)( 2 𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 

 
 𝜇𝑥: 𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑥 
 𝜇𝑦: 𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑦 

𝜎𝑥
2: 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑥  

𝜎𝑦
2: 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑦 

Fig.4.5: Cascades of U-Net like shape 



𝜎𝑥𝑦: 𝑡ℎ𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑥, 𝑦 

𝑐1 = (𝑘1𝐿)2, 𝑐2 = (𝑘2𝐿)2 𝑡𝑤𝑜 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑡𝑜 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 
𝐿: 𝑡ℎ𝑒 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙 − 𝑣𝑎𝑙𝑢𝑒𝑠 
𝑘1 = 0.01 & 𝑘2 = 0.03  

 
The SSIM function that used was from the [52].  

  

4.4 The undersampling schemes  
 
For all the presented work data from Cartesian acquisitions were used. Thus, the 
undersampling schemes are based on randomly excluding lines from the k-space 
based on a Poisson distribution as in [53]. The PSNR/SNR from undersampled data 
is highly dependent on the imaging data and the undersampling mask. For a fair 
comparison we aligned an arbitrary but fixed undersampling mask for all the used 
datasets (train-validation-test). 
The acceleration rates applied was 4.0, 8.0 and 20.0 corresponds to undersampling 

of 0.25, 0.125 and 0.05 (of the initial data) respectively (𝑎𝑐𝑐 =
1

𝑢𝑛𝑑𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
). The 

undersampling masks are presented in the following figure. 
 
 

 
Fig.4.6: From right to left hand side: Fully Sampled k-space, 4 acc., 8 acc., and 20 acc.  

 

4.5 Network Notation  
 
The main architecture used in all the performed reconstructions is based on CS-DL 
reconstruction architecture. The built of the architecture is based on the two main block 
formulation of iterative optimization under the CS framework consisted of a 
convolutional block (𝐶𝑁𝑁𝑏𝑙) followed by the data consistency (𝐷𝐶) block. The notation 

for this type of networks is mainly regards the formation of the 𝐶𝑁𝑁𝑏𝑙;  𝒏𝒅: the number 
of sequential CNNs’ followed by a non-linear function (ReLU) and  𝒏𝒄: the number of 
cascades- the repetitions of the latter block.  
For the simple examples in the simplest architecture of the “Cascade of CNN’’, the 
notation D5C2 is a network of 5 consecutive CNNs& ReLU per Cascade and in total 
of two such cascades.  
In the rest of the results where the “Cascades of U-Net” architecture is used the 8-16-
32 notation is used to denote the 8-16-32-32-16-8 number of consecutive CNNs& 
ReLU. The meaning of Cascade in this case is more abstract. 
  



 

 

 

 

 

 

 

Chapter 5 

 
5. Results & Future Research  
 

 

5.1 2 vs 1 Channel Convolution Results  
 
In this first section we would like to present the results regarding the different weight 
matrices produced when the convolution is performed using a 2 single-channel input 
vs a two-channel input data. For these experiments a D4C2 architecture of the simple 
“Cascade of CNNs” was used with 16 filters per layer. In the following figure the 
characteristics of the network as well as the dimensions in each case are presented.  
 

 
Fig.5.1: The Network Characteristics and the dimensions of the layers in each case. The 2-Single Channel CNN 
block can be seen as a twice version of the 1-Dual Channel CNN block.  



 
In the following figure a schematic representation of the filter weights is shown for the 
above case. Only the Convolutional layers are presented for all the layers (not the 
biased or the Leaky ReLU layer) 
 
 

 
Fig.5.2: The two convolution cases 2 Single-Channel and 1 Dual-Channel respectively. Only the CNN layer weights 

are shown in the above figure.  

 
The difference is highly profound in the above results. Here we would like to pinpoint 
the importance of using the 2 Single-Channel convolutions. The most important 
argument for using this format is mainly due to the nature of the involved data. In MRI 
acquisitions both the Real and the Imaginary part are of high importance in real 
sampled data. As we have noticed in several acquisitions we have performed, the real 
and the imaginary absolute values are characterized by several orders of magnitude 
difference. In the way the CNNs are operating in the Single Dual-Channel input leads 
in almost absolute ignorance of the imaginary values in the resulted convolved 
features. The higher is the absolute value the more important is a feature for the 
reconstruction proceeding. In the following presented results both cases are used. 
However, in the last part of experiments the 2 Single-Channel input is used for optimal 
reconstruction. To the best of our knowledge this is the first time such an argument is 
introduced at least in the specific domain.  
 

5.2 Learnable Regularization Parameter Results  
Fixed Regularization Parameter 
To prove the need of learnable regularization parameters, we first show that different 
fixed λ ∈ [0,1] values lead in different reconstruction results. Thus, there will be a 
specific λ value that leads in the most improved reconstruction results.  
Using the simplest ‘Cascade of CNNs’-D2C5 architecture* with a fixed λ regularization 
parameter, we performed reconstructions for three different acceleration rates (4.0, 



8.0, 20.0), using five different λ values (0.1, 0.2, 0.4, 0.6, 0.8, 1.0). The MSE and image 
evaluation metrics (PSNR and SSIM) were measured. For ease of comparison the 
performance gain between the undersampled, and the reconstructed images was 
included.  
 
*D2C5:  
Network Params.: Epochs:30-60-100, Batch Size:16, Learning Rate:0.001, Optimizer: Adam  
CNN: Channels:2, Filters:32, Kernel Size:3x3, Activation: Leaky ReLU 
 
 

From the above results there are several important findings to be discussed.  
MSE 
As we can observe from the 1st column of fig.3 the MSE decreased inversely 
proportional to the λ value almost for all the accelerations except for acc.=8. For acc.=8 
we noticed that the λ = 0.8 leads in a smaller MSE than the λ=1.0. This outcome 
suggests that there is not always a specific (expected) trend as the previous 
accelerations suggest and that the prominent λ value is highly case specific.  
 
PSNR 
The PSNR values follow the same trend as the MSE results even for the acc.=20 for 
which the value λ=0.8 leads in more optimised PSNR. 
 
SSIM 
For the SSIM the results for acc.=2, seems to follow the inversed proportional trend 
between the λ values and the performance gain. For acc.=4, there is some similar 
behaviour but only for the edge values. The λ=0.4, 0.6, 0.8 value lead in the same 
performance. Finally, for acc.=8 for all the λ values the performance gain remain 
constant. The last results suggest that for such high accelerations the number of 

Fig. 5.3: Columns A: MSE, B: PSNR (& PSNR Gain), C: SSIM (& SSIM gain) vs. Lambda Values for 3 different 

acceleration rates (2,4,8). The MSE error is decreased inversely proportional to Lambda value.  



epochs used is very limited to lead in more differentiable results just for a slightly 
change in λ.  
 
The latter results underline the importance of approaching the optimal λ value for each 
reconstruction case. At this point, we would like to pinpoint that the role of finding the 
optimal λ value is of secondary importance for the final reconstruction results by itself. 
Having said that and to avoid any misconception, the right architecture – network 
depth as well as all the tuning parameters (number of epochs, batch size, etc.)  is of 
course of primary importance and the most crucial part of the reconstruction algorithm. 
However, our proposed results suggest that the optimal λ estimation highly improves 
the reconstruction results for a given architecture and thus a more solid strategy for 
approaching the optimal λ value is needed.  

 
 
Learnable Regularization Parameter (Slice) 
 
The next step was to convert the regularization parameter λ into a trainable network 
parameter as follows:  

𝒔𝒓𝒆𝒄 =  
(𝟏 − 𝑭𝛀) ∗ 𝒔𝑪𝑵𝑵 + 𝑭𝛀 ∗ 𝒔𝑪𝑵𝑵 + 𝝀 ∗ 𝑭𝛀 ∗ 𝒔𝟎

𝟏 + 𝝀 
  

Where 𝒔𝑪𝑵𝑵(𝒋) represents an entry at index j in k-space and 𝒔𝟎 the initial acquired k-
space data using zero filling. In this formulation the λ parameter was learned-estimated 
for each k-space frame. 
We used a fixed λ value 𝜆 = 10 and we performed training for 3 different accelerations 

(acc.=2.0, 4.0, 8.0) for a fixed number of epochs. The architecture used was the 𝑫𝟐𝑪𝟓. 
In the next table we can observe the MSE and image evaluation metrics (PSNR, SSIM) 
for all the above combination of experiments. The performance gain was used again 
for the image evaluation metrics.  
 

 
Table 5.1: All the Results (MSE, PSNR, SSIM) for the Fixed and Trainable lambda, for the 3 different Acceleration 
Rates (2,4,8) are presented briefly. With Green colour are highlighted the better performed lambda (fixed or 
trainable) respectively. 

 

As the results suggest for small acceleration, acc.=2 the fixed λ seems to perform 
slightly better, but not for higher acceleration rates (4, 8). Furthermore, as the number 
of epochs increases the trainable λ led to better performance which was 
expected (longer training). Important is here to mention that our results are of the same 
order of magnitude with similar state of the art architectures [4], [53].  
 



Spatially Learnable Regularization Parameter 
 
The last step in our research was to divide the regularization parameter in two parts 
and learn it independently for the two building blocks of our CNN architecture. The 𝝀𝑫𝑪 
is the regularization parameter regarding the initial k-space sampled locations on 
which the DC block operates, and the 𝝀𝑪𝑵𝑵 which is the regularization parameter for 
the reconstructed locations of the k-space from the CNN block fig.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The new formulation for the spatially learnable regularization parameter for the DC 
block is stated as follows: 
 

𝒔𝒓𝒆𝒄 =  (𝟏 − 𝝀𝒄𝒏𝒏  ∗  𝑭𝛀) ∗ 𝒔𝑪𝑵𝑵 + (𝑭𝛀 ∗ 𝒔𝟎) ∗  𝝀𝑫𝑪   
 
  
On the following figures the reconstruction results are presented for all the three 
different regularization cases: a) The fixed λ, b) The trainable λ (per slice), and c) The 
spatially trainable λ denoted by FF, TF, and TT respectively.   
 

DISCLOSURE Content  
 
 
 
 
 

Fig. 5.4: The different regularization parameters for the initially sampled k-space 

points 𝝀𝑫𝑪 and the reconstructed k-space points from the CNN block 𝝀𝒄𝒏𝒏 



‘Cascades of U-Net like shape’ 
 
In the following experiments we used the “Cascade of U-Net like shape” architecture 
with all the regularization settings to test the performance of the regularization settings 
in another architecture for the CNN block.  
 
The above network architecture regarding the CNN block followed the setting for the 
low-memory with 8-16-32-32-16-8 sequential CNNs respectively. For the DC block all 
the different settings were used, and the results are presented in the following figures: 
 

 
Fig.5.5: The undersampling masks for acc.=4, 8 and 20 respectively. 

 

 
Fig. 5.6: The Ground Truth and the undersampled images for acc.=4, 8 and 20 respectively including the SSIM 

index in the upper right corner. 

 

In fig. 5.6 the k-space undersampling masks that used for the following experiments 
are depicted as well as the undersampled images for the latter accelerations can be 
seen in fig. 5.7. For all the undersampled images the SSIM index between the 
undersampled and the ground truth image is denoted at the upper right corner. As we 
can observe even for acc. 8.0 the reconstruction is really challenging. In the following 
experiments we used the acc. 20.0 just to prove that the current network setting is able 
to learn even in such extreme cases.  
 
In fig. 5.8 the MSE vs the number of epochs is summarized for all the different λ 
regularization settings and for all the accelerations. Green, blue, and red were used 
for the FF, TF, and TT setting respectively, while the solid and dashed lines used to 
differentiate between the training and validation results. Finally, the diamond sign was 
used for the mean test error in each case.  
 



Independently of the regularization setting all methods showed that the current 
architecture can learn the hidden features and reduce the reconstruction error (MSE). 
Also, all the different methods produced different results which highlights the adding 
value of each λ regularization setting.  
 
As we can observe the TT setting outperforms all the other settings in all the above 
cases. Again, in this network setting for the lowest acceleration (acc. 4.0) the FF case 
outperforms the TF as in the previous results. For the medium acceleration (acc. 8.0) 
the FF and TF showed significant results but a mild better performance on the test 
case for the TF setting. In the highest acceleration (acc. 8.0) the TF performance was 
better than the FF. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Regarding the PSNR measurements, highly similar performance was observed as we 
can see in fig. 5.9. At this point we would like to underpin the role of these two-
validation metrics MSE and PSNR. Both measurements are closely related with the 
degree of undersampling, and the opposite behaviour is expected (MSE-decrease, 
PSNR-increase) proportional with the number of training epochs.  
 
In fig. 5.10 the mean SSIM per batch per epoch is shown for all the pre-mentioned 
cases. Also, in fig. 5.11 the same results are presented in bar-plot format. What is 
important here to mention is that of course the TT setting was always outperformed all 
the rest but also for the extreme case of acc. 20.0 the TT setting was the only one 
capable of even slightly overcome the SSIM index of the undersampled image (thick-
dashed- black line). This finding highlights the significance of the proposed setting on 
upgrading the performance of such CS-DL based architectures.  
 

Fig. 5.7: MSE vs number of Epochs for all the different λ settings and for all the accelerations for the 
Training and the Validation test. The Test Error for each setting is annotated above the different 
markers per λ setting.  
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Fig.5.8: PSNR vs number of Epochs for all the different λ settings and for all the accelerations 
for the Training and the Validation test. The Test Error for each setting is annotated above the 
markers per λ setting.  

Fig. 5.9: SSIM for all saved Images for all the λ regularization parameters and all accelerations. The 
black dashed line is the base SSIM of the undersampled image. 



 
 

 
Finally in fig. 5.12 the reconstruction results for the same brain slice are shown for all 
the different λ regularization settings and accelerations. On the upper right corner, the 
SSIM is mentioned. The different colours yellow-green-red denote the SSIM in 
increasing performance order. For all the above experiments the same order was 
conserved on all the data (train- validation- test) for the sake of comparison. (code) 
 

Fig. 5.10: Barplot showing the mean and std SSIM for all the λ regularization settings and all the accelerations.  

file:///C:/Users/DTryfonopoulos/OneDrive%20-%20MR%20Solutions/Documents/PhD/MARKO-PIZURICA_Project/20220322_SpatialReg_/20220321_Cartesian_NewRegularization/Results


 
Fig.5.11: An indicative reconstruction for all the acceleration rates and all the λ regularizations. In the upper right 
corner, the SSIM is denoted between the illustrated image and the ground truth. The best performance is indicated 
with by colours with the following increasing order yellow<green<red.  
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Chapter 6 

 

Discussion & Future Research 

In the current work, we used the CS-DL based architectures which composed of the 
two blocks, the CNN, and the DC block with an intermediate regularization term λ 
which controls the properties of the reconstructed image in accordance with the noise 
level in the acquired measurements.   
The main novelty proposed on this work focused on converting the regularization term 
in a learnable setting and as the results suggest the performance is highly improved. 
We used three different network architectures for the CNN term and as our findings 
suggest in all the different architectures the spatially learnable λ regularization highly 
improves the reconstruction results.   
All the used architectures and the presented results could be further improved through 
fine tuning, but this was out of the scope of the current work. The main aim was to 
underpin the importance of incorporate a learnable regularization and that the current 
setting can be easily adapted in this kind on networks. The most important aspect of 
the proposed setting, apart from the improved reconstructions is that it only needs a 
very limited additive computational burden.   
 
Future Research 
The optimal target of the proposed setting would be to derive a model for the prominent 
noise presence through the learning of the spatially learnable regularization 
parameter. Since our idea on working on this topic was conceived while working on 
the MRI pulse sequences optimization for accelerated reconstructions our target aims 
on that direction. In the optimal case that we will be able to derive a noise model for 
this source of acquisitions many pulse sequence related artifacts will further be 
understood. From the imaging acceleration perspective, when the undersampling of 
measurements should be performed on a real time setting, the prior knowledge about 
the sources of the noisy artifacts of a specific anatomy will highly increase the 
efficiency of the examinations.   



On the same path our future research would like to focus on the CNN block and more 
specifically on the dual domain networks [55]. Under this kind of networks, the CNNs 
are tuned to operate not only on the image domain but also on the frequency domain 
(k-space). The interaction of the two domains allows learning the mapping between 
the sampled data (frequency) and the reconstructed image. Again, the more 
macroscopic outcome of this venture is again to better understand the sources of noise 
associated with the hardware components of the MRI during sampling.  
This is our current research interest on CNNs operate on the frequency domain and 
more specifically we would like to focus on non-cartesian trajectories such as radial 
and spiral. Due to the optimised motion resistance and direct ability of undersampling 
the recent years this kind of trajectories are broadly used.  
To conclude we showed how we can further optimise the reconstructions resulted from 
the very flexible CNN based on the CS-DL architectures, with a very simple and highly 
adaptive setting on the regularization term. Still CS remains challenging to implement 
since not all reduced-rate sampling is equal. Also, compression rates interplay with 
the properties of the input, the anatomy in our case, to impact the ability of the 
reconstruction.  The main pros of the CS-DL is that the CNNs’ surpass conventional 
formulations and sidestep the sparsity utilized from predefined prior knowledge 
assumptions. CNNs’ capture and exploit relevant features from the data. However, 
depending on the current reconstruction anatomy further investigation should be 
performed on the formulation of the optimization problem. Finally, we are confident 
that by analysing the optimised performance offered by the regularization term we will 
be able to derive a noise model for the associated artifacts especially for the real 
sampled and not on synthetic data.  
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