
National Technical University of Athens
School of Electrical and Computer Engineering

MSc Data Science & Machine Learning

Creating & Evaluating a Music Recommender

System Without Access to Multiple User Data

Implementation and Testing on the Spotify Platform

Diploma Thesis
of

GEORGIOS PIPILIS

Supervisor: Stefanos Kollias

Professor

Athens, September 2022

National Technical University of Athens

School of Electrical and Computer Engineering

MSc Data Science & Machine Learning

Creating & Evaluating a Music Recommender

System Without Access to Multiple User Data

Implementation and Testing on the Spotify Platform

Diploma Thesis
of

GEORGIOS PIPILIS

Supervisor: Stefanos Kollias

Professor

Approved by the examination committee on March 2023.

(Signature) (Signature) (Signature)

. .

Stefanos Kollias Georgios Stamou Athanasios Voulodimos

Professor Professor Associate Professor

Athens, September 2022

National Technical University of Athens

School of Electrical and Computer Engineering

MSc Data Science & Machine Learning

Copyright © – All rights reserved.

Georgios Pipilis, 2022.

The copying, storage and distribution of this diploma thesis, exall or part of it, is prohibited

for commercial purposes. Reprinting, storage and distribution for non - profit, educational

or of a research nature is allowed, provided that the source is indicated and that this

message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the

Supervisor, or the committee that approved it.

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work

/ contributions of third parties for which the permission of the authors / beneficiaries is

required and are not a product of partial or complete plagiarism, while the sources used

are limited to the bibliographic references only and meet the rules of scientific citing. The

points where I have used ideas, text, files and / or sources of other authors are clearly

mentioned in the text with the appropriate citation and the relevant complete reference

is included in the bibliographic references section. I fully, individually and personally

undertake all legal and administrative consequences that may arise in the event that it is

proven, in the course of time, that this thesis or part of it does not belong to me because

it is a product of plagiarism.

(Signature)

. .

Georgios Pipilis

March 2023

Abstract

A recommender system is a type of algorithm that provides personalized recommenda-

tions to users based on either their past behaviors or preferences or the properties of the

content they consume. It is commonly used in e-commerce, streaming services, social

media platforms, and other applications to enhance user experience and engagement.

When it comes to music, recommender systems usually rely on vast amounts on user or

track data in order to generate suggestions.

This diploma thesis aims to explore the creation and evaluation of a full recommender

system pipeline that does not rely on data from multiple users or bleeding edge computing

resources in order to function. This is done through the exploration of a listener’s Spotify

music history. The final algorithm, as well as the methods in which it is evaluated, will

be compared to Spotify in order to evaluate how far one can reach without the need for

extra resources.

Keywords

Recommender system, content based filtering, music recommendation, Spotify

1

To my friends Alyssa, Eva, Nikos & Sneha who supported me through thick and thin

Acknowledgements

This work would not have been possible without the help of my supervisors Paraskevi

Tzouveli and Stefanos Kollias. I am grateful to them, as well as the entire faculty of

ECE, NTUA and the DSML master which helped me form the necessary knowledge toolkit

required to complete this thesis.

Athens, Summer 2022

Georgios Pipilis

5

Table of Contents

Abstract 1

Acknowledgements 5

1 Introduction 11

1.1 English . 11

1.2 Ελληνικά . 13

2 Background 17

2.1 Recommender Systems . 17

2.1.1 Collaborative Filtering . 17

2.1.2 Content-Based Filtering . 19

2.1.3 Hybrid Approaches . 19

2.2 Recommending New Music . 20

2.3 The Spotify Recommendation Ecosystem 20

2.4 Bias in Music Recommendation Systems 21

3 Methods 23

3.1 Model Overview . 23

3.2 The 8 Million Song Dataset . 24

3.2.1 Data Acquisition . 24

3.2.2 Pre-Processing . 24

3.2.3 Audio Features . 25

3.2.4 Artist Popularity & Following . 28

3.2.5 Artist Vectors . 29

3.3 User Listening History . 30

3.3.1 Pre-Processing . 30

3.3.2 Personalised Statistics . 32

3.3.3 Automated Clustering & User Vectors 34

3.4 Making recommendations . 35

3.4.1 Exploring new genres . 36

4 Results and Analysis 37

4.1 Spotify-based Evaluation . 38

4.1.1 R-Precision . 38

4.1.2 Evaluating the Best Parameters for R-Precision Optimisation 39

7

TABLE OF CONTENTS

4.1.3 Drawbacks of R-Precision . 39

4.2 User-based Evaluation . 39

4.2.1 Results for Different Similarity Settings 41

4.2.2 Results That Ignore Artist Following 42

4.2.3 Comparison With Spotify . 42

5 Discussion 43

5.1 The Importance of User Data & the Cold Start Problem 43

5.2 Testing Recommender Systems . 43

5.3 Conclusions of the Thesis & Future Work 44

Bibliography 49

8

List of Tables

3.1 Analysis of a Song from the Band "God is an Astronaut" 27

3.2 Different Versions of "House of the Rising Sun" 28

3.3 Popularity Score Distribution . 29

3.4 Artist Following Distribution . 29

3.5 Example data from a Spotify listening history file. 30

4.1 Follower Cut-Off Relationship with R-Precision 39

4.2 Popularity Cut-Off Relationship with R-Precision 39

4.3 User-based evaluation results . 41

9

Chapter 1

Introduction

1.1 English

Over the last decade, the music industry has undergone a tremendous transformation.

The widespread adoption of smartphones and high speed internet has led to the rapid

digitisation of one of the biggest industries on the planet, with streaming services making

up 65% of the global recorded music revenue in 2022 [1]. In comparison, only a decade

earlier, back in 2012, the streaming service market share was merely 6.8% [2, 3]. One

of the companies that spearheaded this shift in listening and market habits has been

Spotify, a Swedish audio streaming provider that boasts 433 million active users as of the

end of Q2, 2022 [4].

As a result of this digitisation, millions of unique tracks, albums and artists are now

available, usually for free, to anyone who has access to an internet connection. The sheer

volume of options available makes the task of discovering new music that fits the tastes

of the user a challenging task. In contrast to problems such as recommending a new film

or book, music recommendation systems deal with a larger variety of available options

(the number of published songs is much higher than the number of published films and

books) and a higher frequency of requests for recommendations. After all, when a user

finds a suitable film or book, they can occupy themselves for multiple hours by only

utilising that single recommendation whereas, a user searching for new music, might

often look for more than one tracks.

The primary method used for tackling all of these problems, whether it’s recommend-

ing music, books or any other digital or physical product, is a family of information

filtering systems called recommender systems (RS). RS combine different data mining

and filtering methodologies in order to help users select an item from possibly millions

of different choices. Their applications range from suggesting digital content to users of

streaming services (videos, songs, podcasts) [5, 6, 7] to recommending news articles and

user groups to users of social media applications. There are three main approaches to rec-

ommender systems: collaborative filtering, content-based filtering and hybrid methods,

which combine the aforementioned techniques in order to achieve better results.

Collaborative filtering (CF) [8] revolves around the idea of selecting items suitable for

a user based on the habits of users with similar tastes. This is based on the assumption

that users who largely have matching preferences about certain products will continue to

11

Chapter 1. Introduction

do so in the future for most new products. The similarity of tastes is usually quantified

by a metric such as a product score or an up-vote/down-vote system. Generating a

recommendation using CF requires data from multiple users but generates predictions

specific to each user.

On the other hand, content-based filtering (CBF) systems [9] recommend new items

based on the different features of each product and the history of the user’s preferences

when it comes to said features. As an example, in CBF film RS, features might include

the genre of the film (Horror, Comedy, Drama), the cast of actors, the director etc. By

utilising the user’s rating and viewing history, the RS can determine whether a Horror

film is a good recommendation, whether the user will enjoy a film with a specific actor

starring and so on.

Naturally, hybrid systems refer to RS that utilise a combination of CF and CBF. Nowa-

days, hybrid algorithms are the go-to approach for most RS since they can offer the best

of both worlds, without any significant drawbacks.

However, while selecting an appropriate RS approach might be straightforward in

a multitude of cases, evaluating an RS is a much more difficult process. This arises

from the fact that, when it comes to human preferences in music, books or any other

product, there is no unique, absolute truth or single item that can be selected as the

optimal recommendation for every user. Each human has their own, unique tastes and

preferences. This has transformed the field from a purely computer science focused area

of science to one that attracts research from mathematicians, psychologists and lawyers,

among others.

Unfortunately, these facts make creating and evaluating an RS highly reliant on the

existence and acquisition of data from multiple, sometimes million, users. This reliance

on user data often leads to biased recommendations. In fact, research has shown [10, 11]

that RS are often biased towards popular items, which leads to significant misrepresen-

tation of unpopular items and usually limits the range of possible recommendations to a

very small number. This is very evident in music streaming services [12], where users are

often exposed to repeated recommendations of mainstream artists and suffer markedly

worse quality recommendations if they are not interested in mainstream music.

When it comes to making recommendations, Spotify uses a hybrid system that relies

both on the data of millions of users and content related features. While none of the user

data is available to the general public, a significant amount of song and artist information

is accessible through the platform’s API. At the same time, any Spotify user can manually

request a detailed copy of their own listening history from the past 365 days.

The goal of this thesis is to utilise the user’s Spotify listening history and any content

related features provided by the Spotify API in order to examine the plausibility and

effectiveness of a music RS that is not based on the existence of large datasets that are

comprised of millions of users. Furthermore, we aim to explore RS evaluation methods

that do not rely on metrics such as song popularity or artist following, thus providing

equal representation to artists, regardless of whether they are considered mainstream or

not.

12

1.2 Ελληνικά

1.2 Ελληνικά

Κατά την τελευταία δεκαετία, η µουσική ϐιοµηχανία έχει υποστεί µια τεράστια µεταµόρ-

ϕωση. Η ευρεία υιοθέτηση των smartphones και του διαδικτύου υψηλών ταχυτήτων οδήγησε

στην ταχεία ψηφιοποίηση µιας από τις µεγαλύτερες ϐιοµηχανίες του πλανήτη, µε τις υπη-

ϱεσίες streaming να αποτελούν το 65 % των παγκόσµιων εσόδων από την ηχογραφηµένη

µουσική το 2022. Συγκριτικά, µόλις µια δεκαετία νωρίτερα, το 2012, το µερίδιο αγοράς

των υπηρεσιών streaming ήταν µόλις 6,8%. Μία από τις εταιρείες που πρωτοστάτησαν σε

αυτή τη µετατόπιση των συνηθειών ακρόασης και αγοράς ήταν το Spotify, ένας σουηδικός

πάροχος ϱοής ήχου που διαθέτει 433 εκατοµµύρια ενεργούς χρήστες (µε ϐάση τα στατιστικά

έως και το τέλος του δεύτερου τριµήνου του 2022).

Ως αποτέλεσµα αυτής της ψηφιοποίησης, εκατοµµύρια µοναδικά κοµµάτια, άλµπουµ

και καλλιτέχνες είναι πλέον διαθέσιµα, συνήθως δωρεάν, σε οποιονδήποτε έχει πρόσβαση σε

σύνδεση στο διαδίκτυο. Ο τεράστιος όγκος των διαθέσιµων επιλογών καθιστά το έργο της

ανακάλυψης νέας µουσικής που ταιριάζει στα γούστα του χρήστη δύσκολο. Σε αντίθεση

µε προβλήµατα όπως η σύσταση µιας νέας ταινίας ή ενός ϐιβλίου, τα συστήµατα µουσικών

συστάσεων καλούνται να διαχειριστούν µεγαλύτερη ποικιλία διαθέσιµων επιλογών (ο αριθµός

των δηµοσιευµένων τραγουδιών είναι πολύ µεγαλύτερος από τον αριθµό των δηµοσιευµένων

ταινιών και ϐιβλίων) και µεγαλύτερη συχνότητα αιτηµάτων για συστάσεις. Εξάλλου, όταν ένας

χρήστης ϐρίσκει µια κατάλληλη ταινία ή ένα ϐιβλίο, µπορεί να απασχοληθεί για πολλές ώρες

χρησιµοποιώντας µόνο αυτή τη µία σύσταση, ενώ ένας χρήστης που αναζητά νέα µουσική,

µπορεί συχνά να αναζητήσει περισσότερα από ένα κοµµάτια.

Η κύρια µέθοδος που χρησιµοποιείται για την αντιµετώπιση όλων αυτών των προβλη-

µάτων, είτε πρόκειται για συστάσεις µουσικής, ϐιβλίων ή οποιουδήποτε άλλου ψηφιακού

ή ϕυσικού προϊόντος, είναι µια οικογένεια συστηµάτων ϕιλτραρίσµατος πληροφοριών που

ονοµάζονται συστήµατα συστάσεων (Recommender Systems - RS). Τα RS συνδυάζουν διαφο-

ϱετικές µεθοδολογίες εξόρυξης δεδοµένων και ϕιλτραρίσµατος προκειµένου να ϐοηθήσουν

τους χρήστες να επιλέξουν ένα αντικείµενο από ενδεχοµένως εκατοµµύρια διαφορετικές ε-

πιλογές. Οι εφαρµογές τους κυµαίνονται από την πρόταση ψηφιακού περιεχοµένου στους

χρήστες υπηρεσιών ϱοής (ϐίντεο, τραγούδια, podcasts) έως τη σύσταση άρθρων ειδήσεων και

οµάδων χρηστών (user groups) στα µέλη εφαρµογών κοινωνικής δικτύωσης. Υπάρχουν τρεις

κύριες προσεγγίσεις στα συστήµατα συστάσεων: το συνεργατικό ϕιλτράρισµα, το ϕιλτράρι-

σµα ϐάσει περιεχοµένου και οι υβριδικές µέθοδοι, οι οποίες συνδυάζουν τις προαναφερθείσες

τεχνικές προκειµένου να επιτύχουν καλύτερα αποτελέσµατα.

Το συνεργατικό ϕιλτράρισµα (Collaborative Filtering - CF) περιστρέφεται γύρω από την

ιδέα της επιλογής στοιχείων κατάλληλων για έναν χρήστη µε ϐάση τις συνήθειες χρηστών µε

παρόµοιες προτιµήσεις. Αυτό ϐασίζεται στην υπόθεση ότι οι χρήστες που έχουν σε µεγάλο

ϐαθµό ταυτόσηµες προτιµήσεις για ορισµένα προϊόντα ϑα συνεχίσουν να το κάνουν και στο

µέλλον για τα περισσότερα νέα προϊόντα. Η οµοιότητα των προτιµήσεων ποσοτικοποιείται

συνήθως µε µια µετρική, όπως µια ϐαθµολογία προϊόντος ή ένα σύστηµα ψήφων προς τα

πάνω/κάτω. Η παραγωγή µιας σύστασης µε χρήση CF απαιτεί δεδοµένα από πολλούς

χρήστες, αλλά παράγει προβλέψεις ειδικά για κάθε χρήστη.

Από την άλλη πλευρά, τα συστήµατα ϕιλτραρίσµατος ϐάσει περιεχοµένου (Content Based

13

Chapter 1. Introduction

Filtering - CBF) συνιστούν νέα προϊόντα µε ϐάση τα διαφορετικά χαρακτηριστικά κάθε προ-

ϊόντος και το ιστορικό των προτιµήσεων του χρήστη όσον αφορά τα εν λόγω χαρακτηριστικά.

Για παράδειγµα, στα CBF κινηµατογραφικά RS, τα χαρακτηριστικά µπορεί να περιλαµ-

ϐάνουν το είδος της ταινίας (τρόµος, κωµωδία, δράµα), το καστ των ηθοποιών, τον σκηνοθέτη

κ.λπ. Αξιοποιώντας τη ϐαθµολογία και το ιστορικό προβολής του χρήστη, το RS µπορεί να

καθορίσει αν µια ταινία τρόµου αποτελεί καλή σύσταση, αν ο χρήστης ϑα απολαύσει µια

ταινία µε πρωταγωνιστή έναν συγκεκριµένο ηθοποιό κ.ο.κ.

Φυσικά, τα υβριδικά συστήµατα αναφέρονται σε RS που χρησιµοποιούν έναν συνδυασµό

CF και CBF. Στις µέρες µας, οι υβριδικοί αλγόριθµοι είναι η προσέγγιση που επιλέγεται για

τα περισσότερα RS, καθώς µπορούν να προσφέρουν το καλύτερο και από τους δύο κόσµους,

χωρίς σηµαντικά µειονεκτήµατα.

Ωστόσο, ενώ η επιλογή µιας κατάλληλης προσέγγισης RS µπορεί να είναι απλή σε µια

πληθώρα περιπτώσεων, η αξιολόγηση ενός RS είναι µια πολύ πιο δύσκολη διαδικασία. Αυτό

προκύπτει από το γεγονός ότι, όταν πρόκειται για τις ανθρώπινες προτιµήσεις στη µουσική,

τα ϐιβλία ή οποιοδήποτε άλλο προϊόν, δεν υπάρχει µοναδική, απόλυτη αλήθεια ή ένα µόνο

στοιχείο που µπορεί να επιλεγεί ως η ϐέλτιστη σύσταση για κάθε χρήστη. Κάθε άνθρωπος

έχει τα δικά του, µοναδικά γούστα και προτιµήσεις. Αυτό έχει µετατρέψει το πεδίο από έναν

τοµέα της επιστήµης που επικεντρώνεται καθαρά στην επιστήµη των υπολογιστών σε έναν

τοµέα που προσελκύει την έρευνα από µαθηµατικούς, ψυχολόγους και νοµικούς, µεταξύ

άλλων.

∆υστυχώς, τα γεγονότα αυτά καθιστούν τη δηµιουργία και την αξιολόγηση ενός RS σε

µεγάλο ϐαθµό εξαρτώµενη από την ύπαρξη και την απόκτηση δεδοµένων από πολλούς,

µερικές ϕορές εκατοµµύρια, χρήστες. Αυτή η εξάρτηση από τα δεδοµένα των χρηστών οδηγεί

συχνά σε µεροληπτικές συστάσεις. Στην πραγµατικότητα, η έρευνα έχει δείξει ότι τα RS

είναι συχνά προκατειληµµένα προς τα δηµοφιλή στοιχεία, γεγονός που οδηγεί σε σηµαντική

παραποίηση των µη δηµοφιλών στοιχείων και συνήθως περιορίζει το εύρος των πιθανών

συστάσεων σε έναν πολύ µικρό αριθµό. Αυτό είναι πολύ εµφανές στις υπηρεσίες ϱοής

µουσικής, όπου οι χρήστες συχνά εκτίθενται σε επαναλαµβανόµενες συστάσεις mainstream

καλλιτεχνών και υφίστανται σηµαντικά χειρότερες ποιοτικά συστάσεις εάν δεν ενδιαφέρονται

για mainstream µουσική.

΄Οταν πρόκειται να κάνει συστάσεις, το Spotify χρησιµοποιεί ένα υβριδικό σύστηµα που

ϐασίζεται τόσο στα δεδοµένα εκατοµµυρίων χρηστών όσο και σε χαρακτηριστικά που σχε-

τίζονται µε το περιεχόµενο. Ενώ κανένα από τα δεδοµένα των χρηστών δεν είναι διαθέσιµο

στο ευρύ κοινό, ένας σηµαντικός αριθµός πληροφοριών για τραγούδια και καλλιτέχνες είναι

προσβάσιµος µέσω του API της πλατφόρµας. Ταυτόχρονα, κάθε χρήστης του Spotify µπορεί

να Ϲητήσει χειροκίνητα ένα λεπτοµερές αντίγραφο του δικού του ιστορικού ακρόασης από τις

τελευταίες 365 ηµέρες.

Στόχος της παρούσας διπλωµατικής εργασίας είναι να αξιοποιήσει το ιστορικό ακρόασης

του χρήστη στο Spotify και τυχόν χαρακτηριστικά που σχετίζονται µε το περιεχόµενο και

παρέχονται από το API του Spotify, προκειµένου να εξετάσει την απόδοση και την αποτελε-

σµατικότητα ενός µουσικού RS που δεν ϐασίζεται στην ύπαρξη µεγάλων συνόλων δεδοµένων

που αποτελούνται από εκατοµµύρια χρήστες. Επιπλέον, στόχος µας είναι να διερευνήσουµε

µεθόδους αξιολόγησης RS που δεν ϐασίζονται σε µετρικές όπως η δηµοτικότητα των τρα-

14

1.2 Ελληνικά

γουδιών ή η παρακολούθηση καλλιτεχνών, παρέχοντας έτσι ισότιµη εκπροσώπηση στους

καλλιτέχνες, ανεξάρτητα από το αν ϑεωρούνται mainstream ή όχι.

15

Chapter 2

Background

Before we can start the in depth discussion of our algorithm, we need to define a

few key concepts that play a pivotal role in understanding the essence of how music

recommendation works.

2.1 Recommender Systems

Recommender systems (also known as recommendation systems) are algorithms that

belong in the family of information filtering techniques. They aim to provide personalised

recommendations to users by utilising information such as their past activity, sociodemo-

graphic information, as well as the preferences of other users. These systems have gained

widespread adoption in various domains, including but not limited to, music and video

streaming services (recommendation of new content the user might enjoy), e-commerce

websites (recommendation of products the user might be interested in), and social media

platforms (recommendation of groups and pages the user might consider following).

Recommender systems are usually classified into the following categories, based on

the technique the algorithm uses to generate recommendations:

2.1.1 Collaborative Filtering

Memory-based Collaborative Filtering

Memory-based collaborative filtering is a method of recommendation that relies on the

past behavior and preferences of users in order to make recommendations. Memory-based

collaborative filtering approaches can be further divided into two categories: user-item

filtering and item-item filtering.

User-item filtering is based on the idea that similar users tend to have similar pref-

erences. Given a target user, the algorithm will look for users with preferences similar

to those of the target user and will, therefore, recommend items that those similar users

have liked. Mathematically, this can be represented as:

Prediction(user, item) =

∑
u∈U sim(u, u0) · ru,i∑

u∈U |sim(u, u0)|

Where:

17

Chapter 2. Background

U is the set of all users sim(u, u0) is the similarity between users u and u0 ru,i is the

rating given by user u to item i

Item-item filtering, on the other hand, is based on the idea that users have an inclina-

tion towards items that are similar to ones they already rate highly. Given a target item,

the system will look for similar items and recommend them - for example, if someone

generally likes action movies item-item based RS will be biased towards suggesting new

action movies rather than picking a film from a different genre. Mathematically, this can

be represented as:

Prediction(user, item) =

∑
i∈I sim(i, i0) · ru,i∑

i∈I |sim(i, i0)|

Where:

I is the set of all items sim(i, i0) is the similarity between items i and i0 ru,i is the rating

given by user u to item i

A few different metrics can be used to calculate the similarity between items or users.

One of the most popular measures of similarity used is Cosine similarity. Cosine similarity

is defined as the cosine of the angle between two feature vectors in an inner product space.

Mathematically, it can be written as:

cosine similarity =
A⃗ · B⃗

|A⃗||B⃗|
= cos(θ)

Where A and B are the two feature vectors and |A| and |B| are the magnitudes of the

vectors.

The dot product of the vectors, A ·B, measures the similarity between the two vectors,

while the magnitudes of the vectors, |A| and |B|, measure the magnitude of the vectors.

The cosine similarity is then calculated by dividing the dot product of the vectors by the

product of their magnitudes.

The resulting value will be between -1 and 1, with 1 indicating that the vectors are

perfectly aligned (i.e., they point in the same direction), 0 indicating that the vectors are

orthogonal (i.e., they are perpendicular), and -1 indicating that the vectors are opposite

(i.e., they point in opposite directions).

In a recommendation system, cosine similarity can be used to measure the similarity

between two users (or two items) based on their ratings (or other features) in a vector

space. For example, if two users have rated a similar set of movies, their feature vectors

will be more similar, and the cosine similarity between them will be closer to 1. On the

other hand, if the two users have rated very different sets of movies, their feature vectors

will be less similar, and the cosine similarity between them will be closer to 0.

Model-based Collaborative Filtering

Model-based collaborative filtering is a method based on creating a model that is

learned from past user behavior to make predictions about a user’s preferences for items.

The model is typically a matrix factorization algorithm, such as singular value decompo-

sition (SVD), that is trained on the past user-item interactions (e.g. ratings) to learn latent

18

2.1.2 Content-Based Filtering

representations of users and items. The learned latent representations are then used to

make predictions about a user’s preferences for items they have not yet interacted with.

The key idea behind matrix factorization is that the observed ratings can be approx-

imated by a dot product of two low-rank matrices, one representing the users and the

other representing the items. These low-rank matrices can be thought of as encoding

the underlying preferences of the users and the characteristics of the items. Once the

model is trained, it can be used to make predictions for any user-item pair by taking the

dot product of the corresponding user and item representations. These predictions can

then be used to rank items for a particular user, with the highest-ranked items being

recommended to the user.

Model-based collaborative filtering can handle large datasets and can be more accurate

than memory-based collaborative filtering, but it requires a lot of data to train and may

not be able to model the dynamics of user preferences over time.

Naturally, approaches that combine model-based filtering with memory-based ap-

proaches are common.

2.1.2 Content-Based Filtering

On the other hand, content-based filtering provides recommendations based on the

user’s past behavior and the features (the content) of the items they have interacted with.

This technique is based on the idea that if a user has liked or interacted with certain

items in the past, they are likely to enjoy similar items in the future.

The general process for content-based filtering starts by representing each item in the

dataset as a set of features or attributes. For example, in the case of movies, the features

could be genre, actors, directors, and plot-related keywords. Subsequently, a user profile

based on the user’s past interactions with similar items is created. In the movie example

provided above, that profile would include the user’s ratings of different films. This profile

is typically modelled as a vector, which represents the user’s preferences for each of the

item features.

Finally, the algorithm calculates the similarity of each single item in the dataset with

the user’s profile vector, essentially searching for items that closely match what the user

enjoys on average. The items that display the highest similarity are then served to the

user as recommendations. This similarity can be measured by using a variety of metrics,

from cosine similarity to the Pearson correlation coefficient.

2.1.3 Hybrid Approaches

Nowadays, one of the most common approaches to recommender systems are hybrid

approaches [13]. These combine collaborative filtering and content-based recommenda-

tions in order to bypass the drawbacks of each method and offer better recommendations.

One way to combine the two methods is by implementing them separately, generating

predictions using each of them separately and then, finally combining the results of the

two. The combination can be done either linearly or by using techniques such as voting,

19

Chapter 2. Background

where multiple recommender systems vote on the best recommendations with the majority

deciding the item that will ultimately be recommended.

A different way to combine the two approaches is by creating user vectors (similarly

to what is done in content-based filtering) for every user and then utilise these to provide

recommendations based on user similarity, akin to what is done in collaborative filtering.

This approach deals with certain sparsity issues that might arise in datasets where not

many users have multiple items in common.

Alternatively, users can be grouped together based on collaborative filtering tech-

niques. This is reminiscent of clustering and allows us to generate group profiles for

each cluster instead of user profiles, which we can subsequently use for content-based

filtering.

2.2 Recommending New Music

Music recommendation engines generate personalized music recommendations for

users based on their past listening history and track information. These systems have

been an important part of the music industry since the early ’00s, when platforms such

as Pandora and Last.fm introduced the first collaborative filtering-based recommendation

engines.

Since then, music recommendation systems have undergone significant evolution,

with the incorporation of more advanced techniques such as machine learning and the

use of diverse data sources. For example, in 2015, the music streaming service Spotify

introduced the Discover Weekly feature, which utilized collaborative filtering and natural

language processing to recommend songs to users based on their listening history and

the lyrics of the songs that they had listened to. Since then, mood detection based on

lyrics and audio signals has been a cutting edge area of recommender system research

[14, 15]

More recently, music recommendation systems have begun to incorporate deep learn-

ing techniques in order to analyze the audio features of songs and make recommendations

based on the acoustic characteristics of the music.

2.3 The Spotify Recommendation Ecosystem

Naturally, the exact nature of the Spotify algorithm is not information that is available

to the general public. This makes sense as Spotify is a for profit company, whose product

largely relies on recommender systems for user retention and acquisition. And in today’s

landscape where competitor music streaming applications and services abound, leading

the pack with cutting edge algorithms while, at the same time, protecting those algorithms

is important. However, from various papers and presentations released over the years,

we can get a brief glimpse under the hood of Spotify’s recommendation engine.

As one might expect, collaborative filtering is part of the Spotify algorithm ecosystem

[16]. With more than 433 million users, there is enough data granularity to allow almost

perfect matches between clusters of users who listen to similar music. Similarly, Spotify

20

2.4 Bias in Music Recommendation Systems

takes advantage of content based filtering [16], taking into account song lyrics (using

Natural Language Processing for Sentiment Analysis), track features (a lot of which are

publicly available through the service’s API and will be used in the scope of this thesis)

and raw track signal features among other things.

On top of that, according to various papers released by the Spotify Research & Devel-

opment team, the company has experimented with pitch tracking and melody estimation

[17], music recommendation using multi-armed bandit algorithms [18] and graph repre-

sentation learning [19].

2.4 Bias in Music Recommendation Systems

Irrespective of the technology used, music recommendation systems have been found

to be biased in various ways, thus perpetuating existing societal inequalities and limiting

the diversity of music that is recommended to users.

One source of bias in music recommendation systems is the data used to train the

system. For example, studies have found that music recommendation systems trained

on data from predominantly white and/or male users tend to recommend music by white

male artists more often [20, 21]. Similarly, music recommendation systems trained on

data from Western countries tend to recommend Western music to users, while under-

representing music from other cultural regions. These biases in the training data can

result in a lack of diversity in the music that is recommended to users, subsequently

making it more difficult for musicians from underrepresented groups to gain visibility.

Multiple research groups have found evidence of popularity bias in music recommen-

dation systems [22, 10, 11, 12, 20, 21], indicating that recommendation systems are

inclined towards recommending more popular artists, with users interested in unpopular

items receiving worse recommendations overall [23].

When it comes to Spotify, the company’s Research & Development team has started

producing more and more research on the topic of recommender system & AI fairness with

a focus on providing good recommendations without causing a "rich-get-richer" effect [24].

An example of this is the paper published by Aziz et al., which proposes utilising semantic

information via means of knowledge graphs in order to recommend underserved podcasts

to users who might be interested [25]. Unfortunately, the algorithmic implementations

(and even a lot of the papers) are not publicly available.

21

Chapter 3

Methods

3.1 Model Overview

One of the purposes of this thesis is to explore the viability of music recommender

systems (RS) which do not take advantage of data from millions of users. This is a

limitation that naturally arises from the fact that user data from streaming services such

as Spotify are not publicly available. As a consequence, the use of collaborative filtering

(CF) for music recommendation is out of the picture.

Instead, we are going to explore possibility of using a single user’s listening history in

order to discover patterns about their listening habits. The listening history of any Spotify

user can easily be obtained by the user themselves through the service’s official website

and includes a detailed timeline of any piece of music or podcast they streamed through

Spotify in the past 365 days. From this file, we aim to create a "user profile" - that is to

say a vector of features that best describes the music preferences of the person seeking

recommendations.

The process of generating this vector starts by figuring out the user’s top artists based

on frequency and total time listened. Subsequently, these artists are separated into

clusters that represent different styles of music. This clustering process is based on song

and artist features that are openly available to anyone through the use of the Spotify API.

These features provide a range of information for each track, from details of the musical

composition (key, mode, tempo) to more abstract metrics calculated by Spotify such as

the danceability of a song or its happiness levels. We average selected features for each

artist while dealing with outliers and missing data and, afterwards, we generate a user

vector by calculating the weighted average of the user’s X top artists by listening time,

weighed by total listening time. The amount of top artists X we use to create this vector

is one of the hyperparameters of the model and, therefore, is not constant.

Now that he have a representation of the user’s listening preferences, we aim to find

artists that closely match this profile. In order to do this, we calculate artist vectors for

every artist available on Spotify by averaging the features of their songs, after dealing with

outliers and missing or problematic values. This allows us to use a variety of similarity and

proximity measures in order to single out the artists that appear to fit the user’s tastes.

Naturally, before performing this operation, we remove the user’s most listened to artists

from the dataset of all Spotify artists in order to ensure there are no recommendations of

23

Chapter 3. Methods

already favored artists as well as guarantee there is no contamination when evaluating

the results of our RS.

In order for the process described above to work, we need to acquire two main datasets.

First and foremost, we need a dataset of features for all possible artists on Spotify. This

dataset will be used as a pool from which we can pick new recommendations but also as a

source of information for any possible artist, whether it is an artist we are recommending

or one that exists in the user’s listening history.

Secondly, our method requires the existence of a data table that tracks information

about the user’s top artists. We single out these artists based on the person’s listening

history records and then we retrieve all features relevant to them from the aforementioned

dataset of all Spotify songs.

3.2 The 8 Million Song Dataset

3.2.1 Data Acquisition

Spotify provides an openly accessible application programming interface (API) [26],

through which anyone can query the service’s databases in order to acquire various data.

This includes data about any artist and track, as well as the audio features of said tracks.

Unfortunately, the amount of tracks available on the platform is prohibitively large and

would require querying the API hundreds of millions of times in order to scrape all of the

information we need. Naturally, Spotify throttles large amounts of successive queries,

thus making a scraping task like this prohibitively time and resource consuming.

Hence, instead of obtaining information on the entire platform catalogue by using API

calls, we opted for the use of a public dataset found on Kaggle [27]. This dataset comes in

the form of an SQLite database that provides information on 8 million of the most popular

Spotify songs, including their audio features as well as artist, album and genre informa-

tion. While this number is only a fraction of the total number of tracks available on Spotify

(which is around 80 million), it is large enough for us to make recommendations since,

as we’ll observe later on, only a small fractions of songs on Spotify have any listeners. Of

course, the fact a song has no plays doesn’t make it unsuitable for recommendations but

it is certainly not something an RS would recommend to a user.

It is worth noting that this dataset includes tracks that were released up to, and

during, 2018.

3.2.2 Pre-Processing

Due to the size of the dataset (over 5.1 GB), it was provided to us in the form of an

SQLite database. This database comprised of 9 different tables:

• Artists: Provides information about the popularity (a metric arbitrarily defined by

Spotify) and following count of each artist, as well as their unique ID.

• Albums: Provides a unique ID for each album on Spotify, as well as some basic

24

3.2.3 Audio Features

information (album name, album type, release data, popularity). This information

does not include the artist’s name.

• Track: Provides a unique ID and basic information for every track on Spotify. This

does not include the name of the corresponding artist or album.

• Audio Features: Provides a multitude of audio features for every unique track ID

that exists on the "Track" table.

• Genres: Gives a unique ID to each genre descriptor that exists on Spotify.

• Albums↔ Artists: Correlates each album ID with one or multiple artist IDs.

• Albums ↔ Tracks: Correlates each album ID with the track IDs of all of the songs

in that album.

• Artist↔ Genre: Correlates each artist ID with one or multiple genre IDs.

• Track↔ Artist: Correlates each track ID with one or multiple artist IDs.

Evidently, the data is provided to us in a relational database format. In order to

improve the efficiency and explainability of our model, we need to transform these tables

into a format that is easier to manipulate and use for calculations. The format we selected

for this implementation is that of Pandas DataFrames (DF).

The first step of this process is to export all of the SQLite database tables into separate

comma-separated values (CSV) files, a file format that works brilliantly with Python and

Pandas, the two main tools we are going to use for data processing. These CSV files

are then loaded into Pandas DFs. For now, each of the DFs closely follow the structure

of the corresponding SQL table. Our next step is to slowly start merging these DFs,

while removing any duplicate data columns that might exist. The merging of the DFs

happens on ID columns by taking into advantage the correlation tables outlined above.

This process leads to a single DF with 11.8 million rows (the songs in our dataset) 16

columns: artist name, song name and duration, artist popularity and 12 music related

features. It is apparent that the number of songs on this DF (11.8 million) does not match

the "advertised" number of songs on the dataset (around 8 million). This is because any

song that is a collaboration between multiple artists exists multiple times in the DF - one

for each artist participating in the track. We are going to deal with this phenomenon in a

later stage of the pre-processing process.

We also create a hash table (a Python dictionary in this case) that keeps track of the

following count of each artist.

3.2.3 Audio Features

Since we are implementing a form of content-based filtering, we will need a set of

features that describe the songs which are available for recommendation. In this case,

this set of features mostly comes from the 12 music related features mentioned above.

These are provided by Spotify for every track that is available on the service and play a

pivotal role in describing any piece of music. The 12 audio features are:

25

Chapter 3. Methods

• Acousticness: A confidence measure of whether the song is acoustic or not. Values

range from 0.0 to 1.0, with higher values indicating higher confidence.

• Danceability: Describes how suitable a song is for dancing. Values range from

0.0 to 1.0, with higher values indicating a more "danceable" song. While Spotify

doesn’t provide an exact formula for this value, they mention that it is derived from

a combination of musical elements including tempo, rhythm stability, beat strength,

and overall regularity of the track.

• Energy: A measure of intensity and activity. Values range from 0.0 to 1.0, with

higher values indicating more energetic tracks. According to Spotify, energetic

tracks feel fast, loud, and noisy. An example of a track that scores high in en-

ergy would be a death metal track. On the contrary, a Bach track would score low

on the scale. This is a purely perceptual measurement. Features contributing to it

include dynamic range, perceived loudness, timbre, onset rate, and general entropy.

• Instrumentalness: A confidence measure of whether the song is purely instrumental

or not. Purely instrumental songs contain no vocals. Values range from 0.0 to 1.0,

with values above 0.5 indicating an instrumental song. On the low end of the

spectrum we would expect to find rap or spoken word tracks. It’s worth mentioning

that brief vocal sounds such as "ooh" and "aah" are treated as instrumental in this

context.

• Liveness: A confidence measure of whether there is an audience present or not in

the recording. Values again range from 0.0 to 1.0, with values above 0.8 indicating

a high probability that the song is performed live.

• Loudness: The overall loudness of a track in decibels. According to the Spotify

documentation, values are averaged across the entire track and are used when

comparing the relative loudness of tracks. Loudness is the quality of a sound

that is the primary psychological correlate of physical strength (amplitude). Values

typically range between -60 and 0 db.

• Speechiness: This measure represents whether spoken words were detected in a

song or not. Values range between 0.0 and 1.0, with higher values indicating

recordings that are primarily speech-like, such as talk shows or poetry. According

to Spotify, values above 0.66 strongly suggest a recording that is made almost

entirely out of spoken words, while values between 0.33 and 0.66 point towards

recordings that contain both speech and music and values below 0.33 suggest the

absence of spoken words.

• Valence: Measures the musical positiveness of a song. While Spotify doesn’t provide

a detailed explanation about how it is calculated, we know that songs with higher

valence sound more happy, cheerful and euphoric while tracks with low valence give

off feelings of sadness, depression and anger. Values range from 0.0 to 1.0, with

higher values representing more positive feelings.

26

3.2.3 Audio Features

Artist - Song
God is an Astronaut -

Fragile

Acousticness 0.01

Danceability 0.30

Energy 0.48

Instrum. 0.82

Liveness 0.06

Loudness 0.73

Speechiness 0.03

Valence 0.20

Table 3.1. Analysis of a Song from the Band "God is an Astronaut"

• Key: The key the track is in. Integers map to pitches using standard Pitch Class

notation. E.g. 0 = C, 1 = C-sharp, 2 = D, and so on. If no key was detected, the

value is -1.

• Mode: Mode indicates the modality (major or minor) of a track, the type of scale

from which its melodic content is derived. Major is represented by 1 and minor is

0.

• Tempo: The estimated tempo of a track in beats per minute (BPM). In musical

terminology, tempo is the pace of a given piece and derives directly from the average

beat duration.

• Time Signature: An estimated time signature. This is a notational convention to

specify how many beats are in each bar. The time signature ranges from 3 to 7

indicating time signatures of "3/4", to "7/4".

Most of these features produce values that are already normalised. We normalise tempo

and loudness values so they can produce results on the [0, 1] range, thus eliminating the

huge differences in value scales that existed in our dataset. On one hand, this means that

tempo and loudness values can no longer be interpreted at face value - while a loudness

of -50 is thoroughly explainable and measurable in db, a loudness of 0.23 is something

that is not explainable in and of itself and can only be used in comparisons. On the other

hand, this change in scales will help us produce recommendations that are unbiased by

loudness or tempo values.

Based on some simple data retrieval, we can see how these features can accurately

describe a song or artist. Looking at table 3.1, we can see a track of the band "God is

an Astronaut" which plays instrumental, rock music. An instrumentals of 0.82 confirms

this is a track that does not include vocals, while a loudness of 0.73 and an energy value

of 0.48 point towards rock music, with an acousticness of 0.01 confirming the track is

performed with electrical instruments. Similarly, we can use this information to identify

the traits of different performances of the same song. In table 3.2, we can see three

different iterations of "House of the Rising Sun", with version 1 being the original version

of the song and versions 2 and 3 being different, unidentified versions. Based on the

27

Chapter 3. Methods

Acoustic. Dance. Energy Instrum. Liveness Loud. Speech. Valence

Version 1 0 0.31 0.48 0 0.09 0.76 0.03 0.29

Version 2 0.40 0.52 0.53 0.06 0.11 0.79 0.03 0.21

Version 3 0.09 0.22 0.67 0 0.71 0.75 0.07 0.24

Table 3.2. Different Versions of "House of the Rising Sun"

data at hand, we can tell version 2 is probably an acoustic performance of the song while

version 3 is recorded live.

3.2.4 Artist Popularity & Following

Apart from the audio specific features mentioned above, we also take into account

artist related features such as popularity and following. While a lot of the audio specific

features are thoroughly explained by Spotify, popularity is analysed in a more obscure

way. In Spotify’s developer portal, with find this explanation:

"The popularity of a track is a value between 0 and 100, with 100 being the most

popular. The popularity is calculated by algorithm and is based, in the most part, on

the total number of plays the track has had and how recent those plays are. Generally

speaking, songs that are being played a lot now will have a higher popularity than songs

that were played a lot in the past. Duplicate tracks (e.g. the same track from a single and

an album) are rated independently. Artist and album popularity is derived mathematically

from track popularity."

Even though this gives us a small glimpse of how the popularity metric works, we do

not know how to interpret it or how it is distributed. For this reasons, we calculate a few

basic metrics about it. The results are shown in table 3.3 and in the graph below. It is

evident that we are dealing with a heavily skewed distribution where more than 50% of

the artists in our dataset (that is to say, more than 4 million unique artists) score less

than 1 out 100 in popularity and only a handful of artists score above 50/100.

The other metric we are going to explore is following. This is a more straightforward

metric as it indicates the exact number of Spotify accounts that are following a particular

28

3.2.5 Artist Vectors

Mean (std) 25% (Q1) 50% (Median) 75% (Q3)

5.8 (10.4) 0 1 7

Table 3.3. Popularity Score Distribution

Mean (std) 25% (Q1) 50% (Median) 75% (Q3) Max

7012.3 (208k) 0 0 101 78 Billion

Table 3.4. Artist Following Distribution

artist. When calculating a few basic statistics about artist following, we arrive at the

results shown in table 3.4 and in the graph below. We can observe that more that 50% of

all artists have 0 followers and that we need to get to the top 25% artists in order to start

seeing follower counts that go into triple digits (>101).

We are going to use both of these metrics in order to test different variations of our

algorithm. As mentioned before, research has shown that RS recommendations are often

skewed towards more popular artists and artists with higher following thus, being able

to filter recommended artists based on these two metrics, will allow us to emulate differ-

ent scenarios where the popularity/following of an artist plays - or does not - a role in

determining the RS behavior.

3.2.5 Artist Vectors

In order to generate artist recommendations using a content-based RS, we are going to

need a set of features that describe each artist. We generate this vector by averaging the

audio features mentioned above, without key, mode and time signature, and appending

artist following and popularity to it. While the discography of any artist is not always

uniform in style or even genre, creating artist vectors instead of using track or album-

specific ones better fits the experimental scope of the thesis, available resources and using

someone’s top artists in order to recommend new artists.

This is also done in order to combat the limitation of this dataset, which is that it

includes only songs released up to, and including, 2018. We do not want to recommend

29

Chapter 3. Methods

Index End Time Artist Name Track Name ms Played

1 2020-11-16 22:11 The Album Leaf Another Day (Revised) 47831

2 2020-11-17 17:15 King Diamond The Family Ghost 265724

3 2020-11-17 17:56 King Diamond 7th Day of July 1777 56995

4 2020-11-17 20:13 Mac Miller Blue World 203831

5 2020-11-17 20:26 Mac Miller Good News 342040

Table 3.5. Example data from a Spotify listening history file.

only older songs and there is no feasible path for updating our datasets, therefore we opt

to provide artist recommendations instead of track recommendations in order to partially

bypass this problem.

3.3 User Listening History

Acquiring a copy of one’s listening history is a straightforward process that can be

started for free through Spotify’s automated "Download Your Data" tool [28]. This history

includes every piece of music or podcast streamed by the user during the last year and is

delivered in a .json format. By extracting data from that file, we arrive at something that

looks like data table 3.5.

Each entry on this table is a unique event (a stream of a song or podcast) on the

streaming timeline of the past one year and is described by 4 different parameters: the

time when the playback stopped, the name of the artist, the name of the track and the

amount of milliseconds the playback lasted. From these elementary features, we can

derive a plethora of different statistics about the person seeking recommendations and

their streaming habits. Before we do that however, we need to clean up the data.

3.3.1 Pre-Processing

The main limitation of our datasets lies in the fact that the 8 million song database

includes songs that were released only up to, and including, 2018 and can not, in the

scope and time frame of this thesis, be updated to include newer tracks. However, when

it comes to user’s streaming histories, this limitation does not apply. This gives rise to a

significant inconsistency: some of the tracks that exist in a user’s streaming history might

not exist in our 8 million song dataset. Thankfully, even though we might be unable to

update our entire dataset to include songs released after 2018, we can still retrieve all

necessary information on the small sample of songs, released after 2018, that is relevant

to the user and their listening history.

The first step towards dealing with this issue is singling out the unique songs which

exist in our dataset. We do this since our data describe someone’s music streaming

history, it is highly probable that a song might appear multiple times - that would mean

this specific song was played multiple times in the span of one year, which is an entirely

reasonable assumption. After we have the list of all unique songs that exist in the user’s

history, we check to see how many of these exist in our 8 million song dataset. Any of the

30

3.3.1 Pre-Processing

songs that do not exist there are kept track of in a separate list, so they can be added to

the dataset during the next step.

In order to do this, we need to use Spotify’s API. After registering a developer account

with the streaming service and setting up the authentication process and credentials flow,

we query Spotify’s database for information about every song missing. The information

we retrieve is comprised of exactly the same audio and track/artist-specific features that

are described in the 8 million song dataset section. Throughout this process, we are

especially careful to handle any possible code exceptions with emphasis on the scenario

where the desired song data does not exist on Spotify’s current database at all. This might

happen for one of two reasons:

1. The streaming item is a podcast and not a track. Podcasts might exist on a user’s

history file but neither we nor Spotify have any audio features about them. Hence,

querying the API for more information about their audio features, returns an error.

Of course, podcasts are outside the scope of this thesis, so at this stage we can safely

delete the podcast entry from the user’s history and proceed with the next entry.

In other words, this is a way for us to filter out any possible non-song items, since

only queries to the Spotify API about songs will yield any audio feature information

whatsoever.

2. The streaming item is a song but does no longer exist within the Spotify database.

That means that the track and artist existed in Spotify’s database back in 2018 but

has since been removed. In this case, we can safely delete this entry and move on

to the next item. This deletion is performed in order to avoid any inconsistencies

between the two datasets (current Spotify and 2018 Spotify) when it comes to artist

existence.

After we retrieve all of the necessary information, we add these new songs to the 8

million song dataset.

Now that we have all track information for the user’s listening history, we proceed to

calculate the user’s top artists. We do this by ordering every artist in the user’s history

by total listening time. We’ll use only a certain amount of these artists in order to provide

recommendations. The reasoning behind this is straightforward: throughout the course

of the year, a person can be exposed to thousands of different artists. This is especially

true on Spotify, where the platform provides you with tailor-made playlists and features

like Spotify Radio, all aimed at discovering new songs, on a daily basis. Using all of these

artists would unnecessarily increase our algorithm’s processing time and would introduce

a lot of noise to the model, even if we weighted the influence of each artist based on the

percentage of total listening time they were listened to.

After singling out the subset of top artists, we subtract that from the dataset of all

available artists. This is done in order to avoid suggesting artists the user already listens

to on a regular basis as well as any possible data contamination.

Naturally, there might exist outliers in the top artists. This is not referring simply to

a group of artists that share a genre different to the average genre of the listener but to

31

Chapter 3. Methods

single artists that drastically differ from the rest and might significantly skew the results

if taken into account during the recommendation process. In order to deal with them, we

remove outliers from the top artists based on their z-score. A z-score is a measure of how

many standard deviations an observation or data point is from the mean of a distribution.

Mathematically, it is defined as:

z = X−µ
σ

Where X is the value of the observation or data point, µ is the mean of the distribution,

and σ is the standard deviation of the distribution. By removing any top artist that exhibits

an absolute z-score above 3, we eliminate most of the outliers in this subset of our data.

This happens because, assuming our data follows a normal distribution, 99.7% of data

points will fall within 3 standard deviations of the mean. Therefore, any data point with

an absolute z-score above 3, will most likely be an outlier.

An alternative option for outlier detection that is available to users, is removing outliers

based on the interquartile range (also known as IQR - a measure of the spread of a dataset,

defined as the difference between the 75th percentile and the 25th percentile) which yields

similar results to the z-score method.

3.3.2 Personalised Statistics

Since we have full access to the user’s listening history, we can generate a set of

personalised user statistics. These include: total listening time per artist, total listening

time per unique track, total and average listening time per hour of the day, total and

average listening time per day of the week, total and average listening time per month of

the year as well as combinations of the above (e.g. most listened to artist for the month

of September).

Figure 3.1. Total Amount of Music Played at Each Hour of the Day

The total listening time per artist will prove useful to us since we will utilise it in

order to discover the user’s top artists (ranked by listening time) and weigh our recom-

mendations based on that. The rest of the statistics will be provided to the user together

32

3.3.2 Personalised Statistics

Figure 3.2. Total Amount of Music Played at Each Day of the Month

Figure 3.3. Total Amount of Music Played at Each Month of the Year

with the final song recommendations in the form of graphs, as a way to better visualise

their listening habits. Some examples of these visualisations are 3.1, which shows the

total amount of music played at each hour of the day during the past year, 3.1, which

visualises the same statistic but for each day of the week and 3.3 which expands upon

this and provides a visualisation for each month of the year.

These statistics can help the user better understand their listening habits and might

also be used in future work that derives from this thesis. For example, one could link

patterns that arise in the listening times of a person (referring to if someone listens to

music mostly at night or on Fridays or around Christmas etc) with the mood of the

music they listen to in these specific times. This would would allow for more targeted

recommendations based on mood or activities - maybe someone is listening to more

intense music only when they work out (which would be a clear recurring pattern on the

33

Chapter 3. Methods

stats) or calmer music when they study, etc.

3.3.3 Automated Clustering & User Vectors

After pre-processing is completed, it is time to generate a user vector. This refers to a

set of features that describes what type of music the user enjoys on average, with values

for danceability, acousticness, valence and all of the other audio features described earlier.

Essentially, it is going to be the average vector of the user’s most listened to artists. This

will serve as a "user profile" and will be compared against other artists in the database in

order to make recommendations.

As mentioned previously, we are using only a fraction of the listener’s top artists in

order to generate recommendations. In the current form of the algorithm, the default

amount of top artists we use is 50. Obviously, there is no single value that is objectively

ideal for every use case. Furthermore, generating recommendations based on 10 artists

might yield significantly different results than generating recommendations using 100

artists. For this reason, we employ one of the ideas mentioned above: weighting each

artist’s influence on the user vector based on the time the user has listened to their

music. Specifically, when we are creating the user profile, instead of simply averaging

all top artist vectors, we calculate a weighted average. This means that if a user has

spent 90% of his time listening to one artist, that artist will contribute roughly 90% (in

practice it would be more than that, since 90% is the percentage of time the user listened

to that artist as a percentage of the total amount listened to their top artists, not every

artist in their listening history. The non-top artists of the listening history are removed in

pre-processing, thus slightly increasing the overall listening time share of each top artist)

to the weighted average and subsequently the user profile generated. In this way, we

ensure that adding more artists to the "top artist" subset doesn’t dramatically affect the

consistency or the genre of the recommendations.

Of course, in most cases, a person’s musical taste can not be averaged to a single

set of characteristics that describes all of their favorite music. That arises from the

fact that people rarely listen to exclusively only one style of music - even within genres

with devout following such as Metal or Hip Hop, there are immense variations in sound

and style between different sub-genres. This means that averaging all of a listener’s top

artists into one vector will likely not yield optimal results in case there are more than

one genres (or sub-genres) present in the listening history. What happens in the case

of a new parent that enjoys listening to Jazz on their own time but also, on the same

Spotify account, frequently streams nursery rhymes for their newborn and instrumental

music for car rides with the family? Averaging these vastly different genres will, in all

likelihood, yield poor recommendations that belong neither in Jazz nor in the nursery

rhyme or instrumental music genres.

Our solution to this is clustering the user’s top artists into groups, creating averaged

user profiles and then providing separate recommendations for each cluster. Obviously,

every person’s top artists are going to be clustered in a different amount of groups so, be-

fore we even deploy a clustering algorithm, we need to determine the appropriate amount

34

3.4 Making recommendations

of clusters for that particular user. This process is fully automated and relies on the

Calinski - Harabasz score, also known as the Variance Ratio Criterion. This is defined

as the ratio of the sum of between-cluster dispersion and of within-cluster dispersion

and is a measure of how similar an item is to its own cluster versus different clusters.

Mathematically, this is defined as:

Calinski − Harabasz =

∑k
i=1

ni (µi−µ)(µi−µ)T

k−1∑
i=1k ∑ x∈Ci (x−µi)(x−µi)T

n−k

Where: ni is the number of points in cluster i µi is the mean vector of cluster i µ is the

overall mean vector of all data points Ci is the set of data points in cluster i x is a data

point

The numerator of the formula represents the between-cluster variance and is calcu-

lated by summing up the squared distances between the cluster means and the overall

mean, weighted by the number of data points in each cluster. The denominator of the for-

mula represents the within-cluster variance and is calculated by summing up the squared

distances between each data point and its corresponding cluster mean.

Once we have defined the appropriate number of clusters, we can allocate the top

artists into them by utilising the K-Means clustering algorithm. Since, in the scope of this

thesis and any future work done on it, we might encounter the need to cluster thousands

of artists (in case the user wants to take into consideration every single artist they listened

to in the past year) or millions of songs (in case in some future modification of this thesis

user profiles are created based on unique songs and not artists), another option would be

to utilise the Mini Batch version of the K-Means algorithm. Mini Batch K-Means aims to

combat the increase in computation time that comes with bigger datasets by partitioning

the input data in random, fixed size batches, thus removing the need to store the entirety

of the dataset in memory. Every iteration of Mini Batch K-Means runs on a fresh random

sample and updates the current clusters through a convex combination of the original

clusters and the new data. The change in the learning rate is inversely proportional to

the number of iterations, with the numerical value of the learning rate equating to the

inverse of the number of sample points assigned to a cluster.

When it comes to the programmatic implementation of the thesis, both the regular and

the Mini Batch version of K-Means are available to the user and can be easily alternated

through a simple Boolean function parameter, with regular K-Means being the default

option.

3.4 Making recommendations

Now that we have multiple clusters of artists, each corresponding to a different style

of music the user listens to, we generate a "user profile" from each of them. As mentioned

above, this is essentially the average feature vector of all artists in the cluster, weighted

by the time the user spent listening to each of the artists. We will therefore generate

recommendations for each of these vectors, using each of them as input, one by one.

The process of generating recommendations is based on using a similarity metric to

discover artists whose average features most closely resemble the user vector in question.

35

Chapter 3. Methods

The two main approaches available in our algorithm are K-Nearest Neighbors and Cosine

similarity, with the latter being the default. The artists that have the highest similarity to

the user vector are then suggested as recommendations to the listener.

3.4.1 Exploring new genres

In order to provide a solution to the recommendation bias that is evident in other

music RS, we employ a variety of methods.

First of all, when receiving recommendations from the RS, the user has the option to

tune a "max similarity" setting. This is a value that goes from 0 to 100 and acts as a

similarity "cutoff". In other words, if the user sets max similarity to 80%, no artists with

a cosine similarity above 0.8 will be recommended. Tuning this value allows the user to

explore genres that fall outside of their usual preferences.

Additionally, we have implemented similar, adjustable cutoff values for popularity and

following. Any artist with a popularity and / or following above the corresponding cutoff

value will not be suggested by the RS. Modifying these settings allows the user to opt

in for recommendations of less popular artists, thus avoiding any bias other RS might

have towards more popular artists and allowing the user to explore artists that are new

to Spotify.

36

Chapter 4

Results and Analysis

One of the most challenging aspects of designing a recommender system is that of

evaluating the quality of its recommendations, as well as ensuring the lack of bias in

their generation. This stems from the fact that there is no inherent, absolute, universally

correct answer to questions such as what is the best song to recommend to a person,

what is the most suitable item to recommend to a customer for purchase or what is the

most appropriate article to recommend to a reader. Everyone has different tastes and

preferences. This highlights the need for large amount of labeled data (in this case songs

rated by users whose preferences are also documented and labeled) when evaluating

recommender systems. This opens the door to evaluating new algorithms with the use of

A/B testing.

A/B testing is a common technique used to evaluate the effectiveness of recommender

systems [29]. In an A/B test, two versions of the recommender system are compared: the

"control" version (the "tried and tested" system that has been in use for some time and has

proven results) and the "experimental" version (the newer algorithm whose performance

we want to evaluate). Users are then randomly assigned to one of these two versions and

their interactions with the system are tracked and analyzed to determine which version

performs better. In the context of music recommender systems, some interactions that

might interest us would be: how much time the user spends listening to songs, how

many songs on average does the user skip, how many of the recommended songs are

being added to playlists or favorited, etc.

However, it is obvious that properly running an A/B test requires a large amount of

user data, from a multitude of users. Since, in the scope of this thesis, we are trying to

explore the life cycle of a recommender system without access to millions of user data,

what are some other ways in which we can evaluate our algorithm? In this chapter, we

explore a few alternatives used by this thesis. These methods are split in two categories:

"Spotify-based" metrics and "user-based" metrics.

Spotify-based evaluation centers around the idea of using Spotify’s recommendation

engine and its recommendations for the user as our labelled, test dataset that evaluates

the accuracy of our recommendations. Naturally, this would lead our algorithm to start

behaving more and more like the Spotify algorithm which inherently leads to multiple

problems, all of which we will explore later in this chapter.

On the other hand, user-based evaluation centers around the idea of having real users,

37

Chapter 4. Results and Analysis

who have provided their Spotify history to us, participating in a single-blind study. In

that study, they would be exposed to recommendations from multiple, different sources

and they would have to rate them according to how much they enjoy them or not.

4.1 Spotify-based Evaluation

As previously discussed, Spotify-based evaluation centers around the idea of using

the results of Spotify’s recommendation engine as ground truth for the assessment of

our algorithm’s performance. We can leverage Spotify’s engine through the service’s API,

which allows us to call the function "Get Recommendations". This function can take

a variety of artists, genres or tracks as input and returns a list of recommendations

generated by Spotify.

The way in which we take advantage of this API function for evaluating our recom-

mender system is as follows. For every one of the artist clusters generated for a user,

we select the top five artists. We then use these artists as the input to both our rec-

ommender system as well as the Spotify recommendation API. The reasoning behind

selecting five artists is that the "Get Recommendations" function can take a maximum of

5 unique artists in consideration when generating recommendations. We instruct both

our recommender system and Spotify’s API to produce 100 recommendations. Our RS’s

performance can now be measured by using R-Precision.

4.1.1 R-Precision

In 2018, Spotify, The University of Massachusetts, Amherst, and Johannes Kepler

University, Linz ran a Machine Learning challenge [30] focused on music recommendation

and, specifically, the enrichment of a user’s playlists with new songs (given an initial set of

tracks in a playlist, predict the subsequent tracks in said playlist). The dataset contained

1,000,000 playlists created by users on Spotify platform between January 2010 and

October 2017. One of the ways the participants were evaluated, was through the use of

a metric called "R-Precision". Specifically:

R-precision is the number of recommended, relevant tracks divided by the number of

known relevant tracks:

R-precision =
|G∩R1:|G||
|G|

We are utilising a modified version of that metric in order to measure the performance

of our RS. In our case, instead of taking note of relevant tracks, we are taking note

of relevant artists. A known relevant artist, is an artist recommended by the Spotify

algorithm. A recommended relevant artist is an artist recommended by our algorithm

that is also recommended by Spotify’s API when given the same input. Essentially, we

are calculating the percentage in which our RS recommendations match those generated

by Spotify’s recommendation engine.

38

4.1.2 Evaluating the Best Parameters for R-Precision Optimisation

Follower Cut-Off Mean R-Precision

75K 0.094432

50K 0.091044

25K 0.084729

Table 4.1. Follower Cut-Off Relationship with R-Precision

Popularity Cut-Off Mean R-Precision

5 0.095200

1 0.09066

0 0.090309

Table 4.2. Popularity Cut-Off Relationship with R-Precision

4.1.2 Evaluating the Best Parameters for R-Precision Optimisation

Before we talk about some of the drawbacks the usage of R-Precision introduces to our

method, we can use it to perform an initial grid search for optimising the hyperparameters

of our model. More specifically, we are interested into how the cutoffs for follower and

popularity count affect our results. While keeping other hyperparameters stable, we

run multiple iterations of our algorithm on the data of 5 different users. Judging from

tables 4.1 and 4.2, we can see there is a slight correlation between the cut-offs and an

increase in R-Precision. However, it’s worth noting that due to the small sample size of

the experiment, we can not be certain that a statistically significant correlation exists

between these hyperparameters and the way our algorithm performs.

4.1.3 Drawbacks of R-Precision

Even though R-Precision might give us an initial evaluation of our algorithm (after

all, a recommender system that mimics Spotify’s recommendation engine is, to a certain

degree, an effective recommender system), there are some obvious drawbacks to it. First

and foremost, trying to morph our algorithm into that of Spotify but with dramatically

less data obviously leads us down a path where, no matter what we do, we can not offer

better tailored recommendations than Spotify. That comes from the fact that, in that

case, we would essentially be trying to "discover" the black box system of Spotify and run

it ourselves but without having access to the vast amounts of user data or computing

power that Spotify has. What is more, by trying to align to Spotify’s algorithm, we are

automatically "adopting" all of it’s biases. This would defeat one of the purposes of this

thesis - trying to propose new artists that are relatively unknown, without many track

plays and possibly not completely aligned to the user’s average listening habits.

4.2 User-based Evaluation

If R-Precision leads to all of the problems outlined above, then what could be a more

accurate evaluation metric? Once again, we run into the problem of user data. Since,

under the constraints of this thesis, we can not run large scale A/B testing (due to the lack

39

Chapter 4. Results and Analysis

of unique users) we turn to personalised, single-blind surveys with single, uncorrelated

users. In other words, we asked for users to provide us with their Spotify listening history

file in order to be served personalised recommendations. These files were then pushed

through our algorithm’s pipeline and personalised recommendations were generated.

It’s worth noting that the files of these unique users were pushed through the algo-

rithmic pipeline in different instances of the code, all of which retained no information

about the weights calculated for other users or the recommendations generated for them.

This was done in line with the core idea of the thesis; trying to suggest new artists while

having access only to the user’s personal listening history and absolutely no other user

data.

For every user (and therefore every listening history file), this process was repeated

three different times, with three different sets of hyperparameters. In detail:

• Group 1: Our algorithm recommends the songs that closest match the average

preferences of the user (similarity setting of 1), generates weighted user vectors, has

a popularity cutoff of 1 and a following cutoff of 75 thousand. This is the best our

algorithm has to offer, according to the R-Precision metric.

• Group 2: Same settings as above, with one key difference - the similarity setting is

set to 0.98. This means that the algorithm will not suggest artists that are above a

98% match. This forces the algorithm to recommend artists outside the user’s most

common genres.

• Group 3: No follower or popularity cutoff. Similarity setting set to 1. This version of

the algorithm doesn’t follow the R-Precision way and instead is able to recommend

literally any artist on the platform, even those with no recorded plays and/or no

followers.

The same history file is also passed to the Spotify recommendation system via the API

method mentioned above.

For all of the methods mentioned above and for each one of the resulting artist recom-

mendations, their top Spotify song is then added to a list. The order of the songs in the list

is then randomised and the list is sent to the users who rate each song from 1-5, based

entirely on personal criteria. No instructions are given by the researcher, other than to

rate each song based on how much the user likes it or not. The scores given by the users

are then averaged. In case the same artist is recommended by multiple versions of the

algorithm and/or Spotify, the score is factored into the average score of all algorithms

involved.

The goals of this setup are:

1. Examine how close we can get to Spotify’s RS performance when we use the hyper-

parameter values that give us the best possible R-Precision (Hence the inclusion of

Group 1).

2. Identify how are ratings affected by recommending artists that are slightly outside

the usual range of the user’s preferences (Hence the inclusion of Group 2).

40

4.2.1 Results for Different Similarity Settings

Algorithm Mean Score STD Mode

Group 1 (simil = 1) 3.28 1.06 3

Group 2 (simil = 0.98) 2.83 1.13 3

Group 3 (no follower constraints) 2.71 1.21 4

Spotify 3.57 1.08 4

Table 4.3. User-based evaluation results

3. Evaluate the quality of recommendations a recommender system without follow-

er/population biases generates (Hence the inclusion of Group 3).

All in all, five users participated in the experiment. Each one of them provided their

personal Spotify history from the past year and evaluated a number of songs ranging from

60 to 100, based on how many artist clusters were generated for their user vector. The

results of this experiment can be seen in table 4.3.

4.2.1 Results for Different Similarity Settings

From the results presented above it is obvious that decreasing the similarity setting

results in an immediate penalty in average user rating. When users listened to artists

that matched as close as 99.9% of their user vector, they gave an average score of 3.28/5

(with a standard deviation of 1.06 and a mode of 3). On the other hand, when they were

exposed to songs capped at 98% similarity (while keeping all other experiment parameters

constant) the average song rating dropped to 2.83/5 (std: 1.13, mode: 3).

Due to the amount of effort and time commitment needed by the experiment partici-

pants, it was not feasible to test a multitude of different values for the similarity hyper-

parameter. However, using the recommendations generated for each user, their listening

histories and the R-Precision metric, we ran multiple, automated simulations where rec-

ommendations were generated and evaluated for all possible values of similarity, while

always keeping the rest of the experiment variables steady. The results can be seen in

graph below.

41

Chapter 4. Results and Analysis

We see a steady drop in R-Precision the further away we go from similarity = 1.0.

That being said, for future experiments that might include user-based ratings, it is worth

experimenting with multiple similarity values that are higher than 0.98 but not quite 1.

4.2.2 Results That Ignore Artist Following

On the other hand, the results for Group 3 are more promising, even though the

average score drops to 2.71/5 (std: 1.21). Surprisingly, the mode for this group was 4 (in

contrast to groups 1 and 2 which had a mode of 3) with 2 users reporting higher average

ratings for Group 3 than Group 2 and 1 user reporting higher ratings for Group 3 than

Group 1.

It is obvious that when we remove the restrictions of popularity and following, there

exist many more artists that are closer to the user vector than before, even if they have

0 followers and/or 0 Spotify plays. The problem is, however, that many times these

artists are in different languages than the languages spoken by the user. According to

the people participating in the study, this affected the ratings although we can not draw

any conclusions just based on after the fact reports from users. This is an effect that

would need to be studied in further experiments. It also points out to a possible need

for filtering recommendations by language although this should be done with care as it

might inadvertently introduce geolocation or ethnic biases to the algorithm.

4.2.3 Comparison With Spotify

When compared to Spotify’s recommendation engine, no version of our algorithm

manages to deliver recommendations that receive higher average rating. This is something

that was partly expected due to the lack of algorithmic capabilities and data granularity

that naturally arises from the scope of this thesis. However, the difference between our

algorithm’s results and those of Spotify’s is narrow enough to conclude that a decently

useful recommender system can be created without much data or computing power.

42

Chapter 5

Discussion

5.1 The Importance of User Data & the Cold Start Problem

Throughout the results of this thesis, it is evident that user data plays a significant

role in the development of a recommender system. On one hand, the more data a recom-

mender system has access to, the more accurate it can be in predicting user preferences

and making recommendations. More data can help to identify patterns and trends that

might be missed with smaller datasets, leading to more accurate and personalized rec-

ommendations. Furthermore, with more user data, a recommender system can provide

recommendations for a broader range of music genres. This is because the system has a

better understanding of user preferences and the relationship between the different gen-

res, which allows it to recommend tracks that users might not have discovered otherwise.

Additionally, having access to an increased amount of user data allows the algorithm to

provide recommendations that are more diverse and varied. This helps to prevent users

from getting stuck in a "filter bubble" and can introduce them to new and unexpected

songs or artists. It also helps make recommender systems more robust to changes in

user behavior, preferences, or demographics. This means that the system can continue

to provide accurate and relevant recommendations even as user behavior evolves over

time.

However, one of the most important problems that becomes more apparent when

working with limited or sparse data, is the cold start problem. The cold start problem

refers to the difficulty of providing accurate recommendations for new users or items that

lack sufficient interaction data. This challenge arises due to data sparsity, where there is

insufficient information available about the users or items to make accurate predictions.

Additionally, the problem may involve data heterogeneity, where the available data is

too diverse or inconsistent to provide meaningful recommendations (for example, an edge

case could be trying to recommend new music to a user that’s listening to a new, different,

unique band every day).

5.2 Testing Recommender Systems

Surprisingly, the biggest challenge faced was evaluating the recommender system

created. How can we confirm that we are serving the best possible recommendations

43

Chapter 5. Discussion

when music preferences are a topic where no absolute truth exists? Different artists and

genres might appeal to different people. And, as a thought experiment, even if we create

a recommender system that suggests 10 new songs and users report liking 8/10 of them,

how can we be certain that there doesn’t exist a different set of hyperparameters that

results in a 9/10 score?

As mentioned earlier, we don’t have a user base that would allow us to perform neither

a proper A/B test nor a user survey. As a matter of fact, none of the popular recommen-

dation system evaluation methods used in the industry are suitable for this thesis. For

example:

One widely used approach for testing recommender systems is to use historical data

to simulate real-world usage scenarios. This approach involves splitting the available

data into training and testing sets, and using the training set to train the recommender

model and the testing set to evaluate its performance. Common metrics used to evaluate

recommender systems include accuracy measures such as precision, recall, and F1-

score, as well as ranking measures such as mean average precision (MAP) and normalized

discounted cumulative gain (NDCG).

Another approach for testing recommender systems is to conduct user studies and

gather feedback from actual people. This approach involves recruiting a representative

sample of users, presenting them with recommendations generated by the system, and

gathering feedback on the relevance and usefulness of the recommendations. User studies

can provide valuable insights into the effectiveness of the system, as well as the user

experience and user satisfaction.

In recent years, there has been growing interest in using simulation techniques to

test and evaluate recommender systems. Simulations can provide a more controlled

and reproducible environment for testing, as well as the ability to test the system under

a wide range of scenarios and conditions. For example, one recent study used agent-

based simulation to evaluate the performance of a recommender system in a simulated

e-commerce environment.

However, even in the industry, there are challenges to performing these types of tests.

Some of these challenges include the lack of ground truth data, the difficulty of defining

appropriate evaluation metrics, and the need to balance competing objectives such as

accuracy, diversity, and serendipity.

5.3 Conclusions of the Thesis & Future Work

The bottom line of this thesis is that a simplistic recommender system which doesn’t

have access to data of more than one user might not be able to reach the quality levels

of Spotify’s algorithm or deal that well with edge cases (users with almost no data, users

with extremely varied preferences), however it performs surprisingly well and can still be

a strong source of discovering new music, without requiring the technology or data that

Spotify has.

Despite the hurdles that arise from the lack of user data, the algorithm produced

by this thesis can still play an important role in improving a user’s exploration of music.

44

5.3 Conclusions of the Thesis & Future Work

This is primarily achieved because of our algorithm’s ability to generate more obscure and

less popular recommendations on demand, allowing the user to freely explore the music

suggested to them without the recommendations being affected by any societal factors or

biases. Another area where the thesis, in its current state, can prove useful is that of

detailed user statistics generation.

The functionality of this thesis can be expanded on multiple different fronts. On one

hand, music recommendations can be further personalised and improved if we provide

users with the ability to rate the recommendations generated by the RS, as well as any

song they listen to. We could then use said ratings to fine-tune our RS. The drawback of

this approach is that our algorithm would now require some kind of non-volatile memory

in order to store user data.

On the other hand, the thesis can be expanded on the user interface / user experience

(UI/UX) front, by building a web interface from which the user can control the different

parameter of the RS. Within the same UI, we can provide the functionality of personal

statistics discussed earlier in this thesis and showcase a variety of interactive graphs

generated in order to showcase patterns in the user’s listening history.

On a more academic level, the application of cutting edge techniques such as zero-

shot learning might bring this thesis closer, performance-wise, to a commercial music RS.

The way in which the recommender system is tested should also be re-evaluated, with a

bigger group of users participating in the experiment.

45

Bibliography

[1] International Federation of the Phonographic Industry. Global Music Report 2022 -

State of the Industry. https://www.ifpi.org/wp-content/uploads/2022/04/IFPI_Global_

Music_Report_2022-State_of_the_Industry.pdf, 2022.

[2] International Federation of the Phonographic Industry. Global Music Report

2012. https://www.musikindustrie.de/fileadmin/bvmi/upload/06_Publikationen/DMR/

ifpi_digital-music-report-2012.pdf, 2012.

[3] Ulrich Dolata. The digital transformation of the music industry. The second decade:

From download to streaming. SOI Discussion Paper 2020-04, Stuttgart, 2020.

[4] Spotify. Spotify Q2 2022 Earnings Update. https://s29.q4cdn.com/175625835/files/

doc_presentation/Q2-2022-Shareholder-Deck-FINAL.pdf, 2022.

[5] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas και Domonkos Tikk.

Session-based Recommendations with Recurrent Neural Networks, 2015.

[6] Maxim Naumov, Dheevatsa Mudigere, Hao Jun Michael Shi, Jianyu Huang,

Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole Jean

Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherniavskii,

Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko,

Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vĳay Rao, Bill Jia, Liang Xiong και

Misha Smelyanskiy. Deep Learning Recommendation Model for Personalization and

Recommendation Systems, 2019.

[7] Paul Covington, Jay Adams και Emre Sargin. Deep Neural Networks for YouTube Rec-

ommendations. Proceedings of the 10th ACM Conference on Recommender Systems,

New York, NY, USA, 2016.

[8] David Goldberg, David Nichols, Brian M. Oki και Douglas Terry. Using Collaborative

Filtering to Weave an Information Tapestry. Commun. ACM, 35(12):61–70, 1992.

[9] Robinvan Meteren. Using Content-Based Filtering for Recommendation. 2000.

[10] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang και Xiangnan He.

Bias and Debias in Recommender System: A Survey and Future Directions, 2020.

[11] Himan Abdollahpouri, Masoud Mansoury, Robin Burke και Bamshad Mobasher. The

Unfairness of Popularity Bias in Recommendation, 2019.

47

https://www.ifpi.org/wp-content/uploads/2022/04/IFPI_Global_Music_Report_2022-State_of_the_Industry.pdf
https://www.ifpi.org/wp-content/uploads/2022/04/IFPI_Global_Music_Report_2022-State_of_the_Industry.pdf
https://www.musikindustrie.de/fileadmin/bvmi/upload/06_Publikationen/DMR/ifpi_digital-music-report-2012.pdf
https://www.musikindustrie.de/fileadmin/bvmi/upload/06_Publikationen/DMR/ifpi_digital-music-report-2012.pdf
https://s29.q4cdn.com/175625835/files/doc_presentation/Q2-2022-Shareholder-Deck-FINAL.pdf
https://s29.q4cdn.com/175625835/files/doc_presentation/Q2-2022-Shareholder-Deck-FINAL.pdf

BIBLIOGRAPHY

[12] Alessandro B. Melchiorre, Eva Zangerle και Markus Schedl. Personality Bias of Music

Recommendation Algorithms. σελίδα 533–538, 2020.

[13] Robin Burke. Hybrid Recommender Systems: Survey and Experiments. User Modeling

and User-Adapted Interaction, 12, 2002.

[14] K. Pyrovolakis, P. Tzouveli και G. "Stamou (2021), "Mood detection analyzing lyrics

and audio signal based on deep learning architectures, " 2020 25th International

Conference on Pattern Recognition (ICPR)". 2021, 10.:9363–9370, 2021.

[15] "K Pyrovolakis και G Stamou" P Tzouveli. Multi-Modal Song Mood Detection with Deep

Learning. Sensors 22 (3), 1065(3):35–43, 2009.

[16] Christopher C. Johnson. Logistic Matrix Factorization for Implicit Feedback Data.

2014.

[17] Rachel M. Bittner και Juan J. Bosch. Generalized Metrics for Single-f0 Estimation

Evaluation. International Society for Music Information Retrieval Conference, 2019.

[18] James McInerney, Benjamin Lacker, Samantha Hansen, Karl Higley, Hugues

Bouchard, Alois Gruson και Rishabh Mehrotra. Explore, Exploit, and Explain: Per-

sonalizing Explainable Recommendations with Bandits. Proceedings of the 12th ACM

Conference on Recommender Systems, RecSys ’18, σελίδα 31–39, New York, NY, USA,

2018. Association for Computing Machinery.

[19] Antonia Saravanou, Federico Tomasi, Rishabh Mehrotra και Mounia Lalmas. Multi-

Task Learning of Graph-based Inductive Representations of Music Content. Proceed-

ings of the 22nd International Society for Music Information Retrieval Conference,

σελίδες 602–609, Online, 2021. ISMIR.

[20] Alessandro B. Melchiorre, Navid Rekabsaz, Emilia Parada-Cabaleiro, Stefan Brandl,

Oleg Lesota και Markus Schedl. Investigating gender fairness of recommendation

algorithms in the music domain. Information Processing & Management, 58(5):102666,

2021.

[21] Andres Ferraro, Xavier Serra και Christine Bauer. Break the Loop: Gender Imbalance

in Music Recommenders. Proceedings of the 2021 Conference on Human Information

Interaction and Retrieval, σελίδα 249–254, New York, NY, USA, 2021. Association for

Computing Machinery.

[22] Oleg Lesota, Alessandro Melchiorre, Navid Rekabsaz, Stefan Brandl, Dominik

Kowald, Elisabeth Lex και Markus Schedl. Analyzing Item Popularity Bias of Mu-

sic Recommender Systems: Are Different Genders Equally Affected? Fifteenth ACM

Conference on Recommender Systems. ACM, 2021.

[23] Dominik Kowald, Markus Schedl και Elisabeth Lex. The Unfairness of Popularity Bias

in Music Recommendation: A Reproducibility Study, σελίδες 35–42. 2020.

48

BIBLIOGRAPHY

[24] Lex Beattie, Dan Taber και Henriette Cramer. Challenges in Translating Research to

Practice for Evaluating Fairness and Bias in Recommendation Systems. Proceedings

of the 16th ACM Conference on Recommender Systems, RecSys ’22, σελίδα 528–530,

New York, NY, USA, 2022. Association for Computing Machinery.

[25] Maryam Aziz, Alice Wang, Aasish Pappu, Hugues Bouchard, Yu Zhao, Benjamin

Carterette και Mounia Lalmas. Leveraging Semantic Information to Facilitate the Dis-

covery of Underserved Podcasts. Proceedings of the 30th ACM International Conference

on Information &; Knowledge Management, CIKM ’21, σελίδα 3707–3716, New York,

NY, USA, 2021. Association for Computing Machinery.

[26] Spotify API. https://developer.spotify.com/documentation/web-api/.

[27] Kaggle.com - 8+ M. Spotify Tracks, Genre, Audio Features. https://www.kaggle.com/

datasets/maltegrosse/8-m-spotify-tracks-genre-audio-features.

[28] Spotify Data Rights and Privacy Settings. https://support.spotify.com/us/article/

data-rights-and-privacy-settings/.

[29] Preetam Nandy, Divya Venugopalan, Chun Lo και Shaunak Chatterjee. A/B Testing

for Recommender Systems in a Two-sided Marketplace, 2021.

[30] AI Crowd - Spotify Million Playlist Dataset Challenge. https://www.aicrowd.com/

challenges/spotify-million-playlist-dataset-challenge.

49

https://developer.spotify.com/documentation/web-api/
https://www.kaggle.com/datasets/maltegrosse/8-m-spotify-tracks-genre-audio-features
https://www.kaggle.com/datasets/maltegrosse/8-m-spotify-tracks-genre-audio-features
https://support.spotify.com/us/article/data-rights-and-privacy-settings/
https://support.spotify.com/us/article/data-rights-and-privacy-settings/
https://www.aicrowd.com/challenges/spotify-million-playlist-dataset-challenge
https://www.aicrowd.com/challenges/spotify-million-playlist-dataset-challenge

	Abstract
	Acknowledgements
	Introduction
	English
	Ελληνικά

	Background
	Recommender Systems
	Collaborative Filtering
	Content-Based Filtering
	Hybrid Approaches

	Recommending New Music
	The Spotify Recommendation Ecosystem
	Bias in Music Recommendation Systems

	Methods
	Model Overview
	The 8 Million Song Dataset
	Data Acquisition
	Pre-Processing
	Audio Features
	Artist Popularity & Following
	Artist Vectors

	User Listening History
	Pre-Processing
	Personalised Statistics
	Automated Clustering & User Vectors

	Making recommendations
	Exploring new genres

	Results and Analysis
	Spotify-based Evaluation
	R-Precision
	Evaluating the Best Parameters for R-Precision Optimisation
	Drawbacks of R-Precision

	User-based Evaluation
	Results for Different Similarity Settings
	Results That Ignore Artist Following
	Comparison With Spotify

	Discussion
	The Importance of User Data & the Cold Start Problem
	Testing Recommender Systems
	Conclusions of the Thesis & Future Work

	Bibliography

