S

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

ScHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

)
5
Bl

MSc DATA SCIENCE & MACHINE LEARNING

. \‘)
] e\ KR
’!-‘.‘i
POMHOEVS -
Q=

nvpPopos

I _ 4
WwAn

Creating & Evaluating a Music Recommender
System Without Access to Multiple User Data

Implementation and Testing on the Spotify Platform

DipLoOMA THESIS

of

GEORGIOS PIPILIS

Supervisor: Stefanos Kollias

Professor

Athens, September 2022

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
ScHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

MSc DATA SCIENCE & MACHINE LEARNING

Creating & Evaluating a Music Recommender

System Without Access to Multiple User Data

Implementation and Testing on the Spotify Platform

DipLoMA THESIS
of

GEORGIOS PIPILIS

Supervisor: Stefanos Kollias

Professor

Approved by the examination committee on March 2023.

(Signature) (Signature) (Signature)

Stefanos Kollias Georgios Stamou Athanasios Voulodimos

Professor Professor Associate Professor

Athens, September 2022

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

ScHooL OF ELECTRICAL AND COMPUTER ENGINEERING

MSc DATA SCIENCE & MACHINE LEARNING

Copyright (C) - All rights reserved.
Georgios Pipilis, 2022.

The copying, storage and distribution of this diploma thesis, exall or part of it, is prohibited
for commercial purposes. Reprinting, storage and distribution for non - profit, educational
or of a research nature is allowed, provided that the source is indicated and that this

message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the

Supervisor, or the committee that approved it.

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this diploma
thesis, as well as the electronic files and source codes developed or modified in the course
of this thesis, are solely the product of my personal work and do not infringe any rights of
intellectual property, personality and personal data of third parties, do not contain work
/ contributions of third parties for which the permission of the authors / beneficiaries is
required and are not a product of partial or complete plagiarism, while the sources used
are limited to the bibliographic references only and meet the rules of scientific citing. The
points where I have used ideas, text, files and / or sources of other authors are clearly
mentioned in the text with the appropriate citation and the relevant complete reference
is included in the bibliographic references section. I fully, individually and personally
undertake all legal and administrative consequences that may arise in the event that it is
proven, in the course of time, that this thesis or part of it does not belong to me because

it is a product of plagiarism.

(Signature)

Georgios Pipilis

March 2023

Abstract

A recommender system is a type of algorithm that provides personalized recommenda-
tions to users based on either their past behaviors or preferences or the properties of the
content they consume. It is commonly used in e-commerce, streaming services, social
media platforms, and other applications to enhance user experience and engagement.
When it comes to music, recommender systems usually rely on vast amounts on user or
track data in order to generate suggestions.

This diploma thesis aims to explore the creation and evaluation of a full recommender
system pipeline that does not rely on data from multiple users or bleeding edge computing
resources in order to function. This is done through the exploration of a listener’s Spotify
music history. The final algorithm, as well as the methods in which it is evaluated, will
be compared to Spotify in order to evaluate how far one can reach without the need for

extra resources.

Keywords

Recommender system, content based filtering, music recommendation, Spotify

To my friends Alyssa, Eva, Nikos & Sneha who supported me through thick and thin

Acknowledgements

This work would not have been possible without the help of my supervisors Paraskevi
Tzouveli and Stefanos Kollias. I am grateful to them, as well as the entire faculty of
ECE, NTUA and the DSML master which helped me form the necessary knowledge toolkit

required to complete this thesis.

Athens, Summer 2022

Georgios Pipilis

Table of Contents

Abstract

Acknowledgements

1 Introduction
1.1 English e
1.2 EAANVIKA o o o e

2 Background
2.1 Recommender Systems Lo
2.1.1 Collaborative Filtering
2.1.2 Content-Based Filtering
2.1.3 Hybrid Approaches 0oL
2.2 Recommending New Music,
2.3 The Spotify Recommendation Ecosystem

2.4 Bias in Music Recommendation Systems

3 Methods
3.1 Model Overviewt
3.2 The 8 Million Song Dataset
3.2.1 Data Acquisitiono
3.2.2 Pre-Processing Lo
3.2.3 Audio Featureso
3.2.4 Artist Popularity & Following
3.2.5 Artist Vectors L e
3.3 User Listening History o oo
3.3.1 Pre-Processingo s
3.3.2 Personalised Statistics,
3.3.3 Automated Clustering & User Vectors
3.4 Making recommendations L0000 oL

3.4.1 Exploring New genresottt e e e e e e e e e

4 Results and Analysis
4.1 Spotify-based Evaluation
4.1.1 R-Precision e

4.1.2 Evaluating the Best Parameters for R-Precision Optimisation

11
11
13

17
17
17
19
19
20
20
21

23
23
24
24
24
25
28
29
30
30
32
34
35
36

37
38
38
39

TABLE OF CONTENTS

4.1.3 Drawbacks of R-Precision 39

4.2 User-based Evaluation 39
4.2.1 Results for Different Similarity Settings 41

4.2.2 Results That Ignore Artist Following 42

4.2.3 Comparison With Spotify 42

5 Discussion 43
5.1 The Importance of User Data & the Cold Start Problem 43
5.2 Testing Recommender Systems, 43
5.3 Conclusions of the Thesis & Future Work 44
Bibliography 49

List of Tables

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3

Analysis of a Song from the Band "God is an Astronaut" 27
Different Versions of "House of the Rising Sun" 28
Popularity Score Distribution 0000, 29
Artist Following Distribution, 29
Example data from a Spotify listening history file. 30
Follower Cut-Off Relationship with R-Precision 39
Popularity Cut-Off Relationship with R-Precision 39
User-based evaluationresults 41

Chapter E

Introduction

1.1 English

Over the last decade, the music industry has undergone a tremendous transformation.
The widespread adoption of smartphones and high speed internet has led to the rapid
digitisation of one of the biggest industries on the planet, with streaming services making
up 65% of the global recorded music revenue in 2022 [1]. In comparison, only a decade
earlier, back in 2012, the streaming service market share was merely 6.8% [2, 3]. One
of the companies that spearheaded this shift in listening and market habits has been
Spotify, a Swedish audio streaming provider that boasts 433 million active users as of the
end of Q2, 2022 [4].

As a result of this digitisation, millions of unique tracks, albums and artists are now
available, usually for free, to anyone who has access to an internet connection. The sheer
volume of options available makes the task of discovering new music that fits the tastes
of the user a challenging task. In contrast to problems such as recommending a new film
or book, music recommendation systems deal with a larger variety of available options
(the number of published songs is much higher than the number of published films and
books) and a higher frequency of requests for recommendations. After all, when a user
finds a suitable film or book, they can occupy themselves for multiple hours by only
utilising that single recommendation whereas, a user searching for new music, might
often look for more than one tracks.

The primary method used for tackling all of these problems, whether it’s recommend-
ing music, books or any other digital or physical product, is a family of information
filtering systems called recommender systems (RS). RS combine different data mining
and filtering methodologies in order to help users select an item from possibly millions
of different choices. Their applications range from suggesting digital content to users of
streaming services (videos, songs, podcasts) [5, 6, 7] to recommending news articles and
user groups to users of social media applications. There are three main approaches to rec-
ommender systems: collaborative filtering, content-based filtering and hybrid methods,
which combine the aforementioned techniques in order to achieve better results.

Collaborative filtering (CF) [8] revolves around the idea of selecting items suitable for
a user based on the habits of users with similar tastes. This is based on the assumption

that users who largely have matching preferences about certain products will continue to

Chapter 1. Introduction

do so in the future for most new products. The similarity of tastes is usually quantified
by a metric such as a product score or an up-vote/down-vote system. Generating a
recommendation using CF requires data from multiple users but generates predictions

specific to each user.

On the other hand, content-based filtering (CBF) systems [9] recommend new items
based on the different features of each product and the history of the user’s preferences
when it comes to said features. As an example, in CBF film RS, features might include
the genre of the film (Horror, Comedy, Drama), the cast of actors, the director etc. By
utilising the user’s rating and viewing history, the RS can determine whether a Horror
film is a good recommendation, whether the user will enjoy a film with a specific actor

starring and so on.

Naturally, hybrid systems refer to RS that utilise a combination of CF and CBF. Nowa-
days, hybrid algorithms are the go-to approach for most RS since they can offer the best

of both worlds, without any significant drawbacks.

However, while selecting an appropriate RS approach might be straightforward in
a multitude of cases, evaluating an RS is a much more difficult process. This arises
from the fact that, when it comes to human preferences in music, books or any other
product, there is no unique, absolute truth or single item that can be selected as the
optimal recommendation for every user. Each human has their own, unique tastes and
preferences. This has transformed the field from a purely computer science focused area
of science to one that attracts research from mathematicians, psychologists and lawyers,

among others.

Unfortunately, these facts make creating and evaluating an RS highly reliant on the
existence and acquisition of data from multiple, sometimes million, users. This reliance
on user data often leads to biased recommendations. In fact, research has shown [10, 11]
that RS are often biased towards popular items, which leads to significant misrepresen-
tation of unpopular items and usually limits the range of possible recommendations to a
very small number. This is very evident in music streaming services [12], where users are
often exposed to repeated recommendations of mainstream artists and suffer markedly

worse quality recommendations if they are not interested in mainstream music.

When it comes to making recommendations, Spotify uses a hybrid system that relies
both on the data of millions of users and content related features. While none of the user
data is available to the general public, a significant amount of song and artist information
is accessible through the platform’s API. At the same time, any Spotify user can manually

request a detailed copy of their own listening history from the past 365 days.

The goal of this thesis is to utilise the user’s Spotify listening history and any content
related features provided by the Spotify API in order to examine the plausibility and
effectiveness of a music RS that is not based on the existence of large datasets that are
comprised of millions of users. Furthermore, we aim to explore RS evaluation methods
that do not rely on metrics such as song popularity or artist following, thus providing
equal representation to artists, regardless of whether they are considered mainstream or

not.

1.2 EAAnvika

1.2 EAAnpvika

Katd v teAeutaia dexkaetia, 1 poUoiKy) Blopnxavia €l UTIOOTEL Pia TepAotia PeETapop-
pwon. H supeila v100émon teov smartphones kat 1ou §1a81KTI0U VYPNAGV TAXUTHTOV 00y oe
otV taxeia yneomoinon piag amnod tg peyaiutepeg Blopnyxavieg tou mAav)tn, HPe Ti§ UIn)-
peoieg streaming va arnotedouv 10 65 % 1OV MAYKOOPI®V £008@V AITO TNV NX0YyPadnIEvn
pouoikn to 2022. ZUYKpPKA, PoAg pla dekaetia vaopitepa, 1o 2012, to pepidio ayopdg
1OV Unnpeowv streaming rtav poAg 6,8%. Mia amo 11§ €1aipeieg MOV MPETOCTATOAV O
autn T PETATOron TV ouvnel®v akpoaong Kal ayopdg nrav to Spotify, évag coundikog
TIAPOYX0G PONG 1)X0U rou S1abétetl 433 ekatoppupla evepyous Xpnoteg (pe faon ta otatiouka
£€0G KAl 10 t1€Aog tou Heutepou Tpiprvou tou 2022).

Qg amotédeopa autng NG Yn@lomoinong, EKatoppupla povadika Koppdrtia, aAprnoup
Kat kaAAwteyveg eivatl mAéov dabeopa, ouvrBwg dwpedv, os orolovdnote £xel pooBaor) oe
ouvbeon oto Sadiktuo. O tePAOTIOg OYKOG TV H1aBE01pnVv emAoydv Kab1otd 10 £pyo g
avakdAuyng véag POUCIKNG TTOU Talptddel ota youota Tou Xprjotn duokolo. Ze avtibeon
pe mpoBArjpata onwg n ouotacn piag véag taviag n evog PiBAiou, ta cuotrjpata POUCIKOV
ouotdace®v Kalouvial va daxelplotouv peyaAutepn moikidia drabéopev emdoymv (0 apiBpog
1OV SNPOCIEVPEVOV TPAYOoUdIdV eival TTOAU PeEyaAUTEPOG ATIO TOV APlOP0 TV SNI0CIEUPEVOV
Taviov Kat BiBAiev) kat peyadutepr ouxvotnta attpawy yia ouotaoelg. E§dAdou, otav évag
Xprotng Bpioket pla katdAAnAn tawia 1y éva BiBAio, propei va araoxoAnBel yia nodAAég opeg
XPNOOo1®VIAg POvo autr)) pia ouotaoct), Ve €vag XPrjotng Iou avadntd véa POUOolKY,
propel ouxva va avadntrioel ePLoootepa amnod £€va Koppatia.

H xUpla p€60d0g 1mou Xpnopornoteital yia v avilpeIRIon 0A®V aut®V TV IIPoBAn-
pdtov, eite MPOKeltal yid OUCTACES POUOIKYG, BBAiov 1 omoloudrmote aAlou YPndplakou
1] @UOIKOU TIPoidVIog, eival Pl OKOYEVEID CUCTNHATOV QUATPAPIORATOS MTANPOPOPIDV TTOU
ovopadovtat ouotrjpata ouotacenv (Recommender Systems - RS). Ta RS ouvdualouv diagpo-
petikég pebodoroyieg e§opuing Sedopévav Kal @IATpapiopatog mPoKeévou va Bonbrjcouv
TOUG XP1)0Teg va eIMAETOUV €va AVIIKEIPEVO A0 £VOEXONEVHS ERKATOPNUPIA H1APOPETIKEG €-
rmdoyég. Ot epaployég TOUg Kupiaivovial aro v Ipotact PYndliakou MEPLEXOPEVOU OTOUG
Xproteg unnpeot®v pong (Bivieo, tpayoudia, podcasts) éwg tn ouotaor apbpwv e1610e®V KAl
opadav xpnotav (user groups) ota PEAN ePAPHOYOV KOWVOVIKAG SIKTUMONG. YIIAPXOUV TPELS
KUP1EG TIPOOEYYIOES OTA CUCTHIATA CUCTACE®V: TO CUVEPYATIKO PIATPAPIONd, TO QATPAPL-
opa Baocet mepleXoPEVoU Kat o1 UBp1d1keg 11€60H01, o1 omtoieg cuvdudlouv 1§ poavadepOeioeg
TEXVIKEG TIPOKEIPEVOU VA EMTUXOUV KAAUTEpA arnoteAéopata.

To ouvepyatiko @uitpapiopa (Collaborative Filtering - CF) meplotpédetal yupe amno v
18¢a g ermAoyng otolxeinv KataAAnAev yia évav xprjotrn pe BAon tig ouvr0eieg Xpnotov Pe
apopoleg mpotpnoelg. Autd Baociletal oty undbeon OTL 01 XPI)OTEG TTOU £XOUV OF HEYAAO
Babpo tautoonpeg mPOTPHoelg yia oplopéva rmpoiovia 9a ouvexioouv va to KAvouv Kadtl oTo
péAAov yia ta meploootepa véa mnpoidvia. H opoidinta te@v mpotipoenv moooTikonoteitat
ouvnB®g Pe pla PEIPIKY), onwg pla Babpoloyia mpoidviog 11 éva ouotnpa Pripev mpog ta
nave/kate®. H nmapayeyr puag ovotaong pe xpron CF arattel 6edopéva anod moAlouvg
Xproteg, aAAd apayet rpoBAgyelg e181KaA yla KAOs xprjoty.

Ao v dAAn Aeupd, Ta cucthpata @itpapiopatog Baoet epiexopévou (Content Based

Chapter 1. Introduction

Filtering - CBF) cuviotouv véa mpoiovia pie Bdon ta S1apopetikd XapaKkinplotikd Kdbes mpo-
i6VT0g KAl 1O 10TOPIKO TRV IMIPOTIUHOE®V TOU XP1)0tr 000V adopd 1d £V AOY® XAPAKINPLOTIKA.
Ia napddetypa, ota CBF xivnuatoypapika RS, ta xapakinplotikda priopei va mepldap-
Bavouv 1o £160g g Tawviag (tpopog, kepwdia, dpdpa), 1o KAaot TV NOOIOIMV, TOV OKNVODETN
KA. A§lorowpviag) Babpodoyia kat to 10t0p1ko rpoBoArg tou Xprjotr, 1o RS propei va
kabopioel av pia tawvia 1popou anotedel Kadn ouotaorn, av o xprotng Ya anolavoel pa
Tawvia pe mpeIaywviotr] £vav CUYKEKPTIEVO 110011010 K.0.K.

duokd, ta uBpdika cuothpata avapépovial oe RS rou xpnopomnoovy évav ouvéuaocpo
CF ka1 CBF. Zug pépeg pag, ot uBpidikoi adyopiBpot eival) mpoogyyion mou emAEyetatl yia
1a ieploodtepa RS, kabwg propovv va mmpoodEpouV 10 KAAUTEPO KAt arto 1oug §U0 KOOH0UG,
X®PIS ONUAVIIKA PEIOVEKTIATA.

Qoto00, eve 1 ermdoyn plag KatdAAnAng rnpoogyyiong RS propet va sivatl amdr) og pa
MAnbwpa MepUTI®oe®V, 1 a§loddynorn evog RS eivat piia rmoAu rmo §uoxkodn dadikacia. Autd
TIPOKUITIEL ATIO TO YEYOVOG OTL, OTAV IPOKELTAL Y1d TIG AVOP®ITIVEG TIPOTII0ELS Ot LOUOIKY),
ta B1BAia 1 oroodnmote aAddo mpoiodv, Hev undpyel povadiky], aroAutn aAnbeia 1 éva povo
otoixeio mou propel va ermdeyel wg n BEAtiotn ovotaon yia Kabe xprjotn. Kabe avbpwriog
€Xel Ta 61KA TOU, Povadikd youota Kal TIPOTIHNoelg. AUTto £Xel petatpeyet 1o redio amo evav
TOpEA TG EMMIOTNNG TTOU EIMIKEVIPMOVETAL KaBapd OtV €O T®V UITOAOYIOTQOV O &vav
Topéa IMou IPOCEAKUEL TNV £peuva Ao Padnpatikoug, PuxXoAOyoug Kal VOUIKOUG, Petady
aAA®v.

Auotuxeg, Ta yeyovota autd kabiotouv 1 dnuiovpyia kat v adloddynon evog RS oe
peyddo Babpod e€aptwpevn amo v vnapdn Kat v anokon dsdopévav arod moAloug,
HEPIKEG POPEG EKATOPIUPIA, XPHOTES. Autr) 1) e§dptnorn amno ta dedopéva tov Xpnotov odnyet
OUXVA 0 PEPOANITTIKEG OUOTACELS. XLV IMpaypatukotnta, n épeuva €xet deiget ot ta RS
elval ouxvad npoxkatelAnppéva mpog ta SrpodlAn oTotXeia, YEyovog rmou 0odnyel 0 ONnpaviiKn
mapanoinon tv un Snpodldev otoixeimv Kal ouvhBwg meplopidel 10 €Upog TV TMBaAveV
OUCTACE®V Of €vav TOAU HIKPO aptdpo. Autd eival TOAU €ldaveg OTIS UTNPECIEG PO1G
HOUOIKNG, OTIOU 01 XP1OTeG ouXvd eKtiBevtal oe emavailapBavopeveg ouotaoelg mainstream
KAAATEXVOV KAl UPioTavial ONHaviliKa XEIPOTEPES TTOI0TIKA OUOTAoelS av dev evdladepoviat
yla mainstream J10UoKr).

'‘Otav rpokettal va kdvel ouotdoelg, to Spotify xpnowpornotet éva uBp1d1ko ovotnpa rou
Baoiletatl 1600 ota Sedopéva eKATOPPUPIOV XPNOTOV 000 KAl 08 XAPAKINPIOTIKA TTOU OXE-
tidovtat pe 1o mepiexopevo. Eve kavéva aro ta Sedopéva twv Xpnotov dev etval diabéopo
OTO £UPU KOWO, £€vag ONHAVIIKOG apldpog mAnpodopiav yla tpayoudla kat KadAttéyxveg eivat
nipooBaoipog péo® tou API tng matpoppag. Tautdypova, kaBe xpriotng tou Spotify propet
va {NTroel XEPOKIvNTA £va AETITOPEPES AVILYPAPO TOU H1KOU TOU 10TOPIKOU AKPOAOHS Ao TIG
tedeutaieg 365 nuépeg.

Z16X0G G Iapovoag SUMAGPATIKYG epyaciag eivatl va adlornoirjoel 10 10TopIKO aKpoaong
10U ¥pnotn oto Spotify Kat TuXov Xapakinelotikd mou OXeTi{ovial HE To MEPLEXOIEVO Kal
napéxovrat artod to API tou Spotify, ripoketpévou va e€etaoet tnv anddoor Kat Ty aroteAe-
OHATIKOTTA £VOG POUCIKOU RS mou dev Baociletat oty Unapgn peyddmv cuvolav debopiévav
OV arotedouvial and ekatoppupla xproteg. Ermmdéov, otoxog pag eivat va diepeuvrjooupie

1eboboug aglodoynong RS mou 6ev Bacilovial oe PeTpikég Onwg 1 dnpoukotna v 1pa-

1.2 EAAnvika

youbiwv 1] 1 apakoAoubnorn KAAATEXVOV, MAPEXOVIAG £T01 00T EKIIPOCWITNOL OTOUG

KaAAtéyveg, avegaptnta arod 1o av ewpouvial mainstream n oxt.

Chapter E

Background

Before we can start the in depth discussion of our algorithm, we need to define a
few key concepts that play a pivotal role in understanding the essence of how music

recommendation works.

2.1 Recommender Systems

Recommender systems (also known as recommendation systems) are algorithms that
belong in the family of information filtering techniques. They aim to provide personalised
recommendations to users by utilising information such as their past activity, sociodemo-
graphic information, as well as the preferences of other users. These systems have gained
widespread adoption in various domains, including but not limited to, music and video
streaming services (recommendation of new content the user might enjoy), e-commerce
websites (recommendation of products the user might be interested in), and social media
platforms (recommendation of groups and pages the user might consider following).

Recommender systems are usually classified into the following categories, based on

the technique the algorithm uses to generate recommendations:

2.1.1 Collaborative Filtering
Memory-based Collaborative Filtering

Memory-based collaborative filtering is a method of recommendation that relies on the
past behavior and preferences of users in order to make recommendations. Memory-based
collaborative filtering approaches can be further divided into two categories: user-item
filtering and item-item filtering.

User-item filtering is based on the idea that similar users tend to have similar pref-
erences. Given a target user, the algorithm will look for users with preferences similar
to those of the target user and will, therefore, recommend items that those similar users

have liked. Mathematically, this can be represented as:

2ouey Sim(u, Ug) - Ty
Yueu Istim(u, up)|

Prediction(user, item) =

Where:

Chapter 2. Background

U is the set of all users sim(u, up) is the similarity between users u and ug r,; is the
rating given by user u to item i

Item-item filtering, on the other hand, is based on the idea that users have an inclina-
tion towards items that are similar to ones they already rate highly. Given a target item,
the system will look for similar items and recommend them - for example, if someone
generally likes action movies item-item based RS will be biased towards suggesting new
action movies rather than picking a film from a different genre. Mathematically, this can

be represented as:

2uier SIM(i, i) - Ty
et Isim(i, o)l

Prediction(user, item) =

Where:

I is the set of all items sim(i, ip) is the similarity between items i and iy r,; is the rating
given by user u to item i

A few different metrics can be used to calculate the similarity between items or users.
One of the most popular measures of similarity used is Cosine similarity. Cosine similarity
is defined as the cosine of the angle between two feature vectors in an inner product space.
Mathematically, it can be written as:
A-B
1AlIBI

Where A and B are the two feature vectors and |A| and |B| are the magnitudes of the

= cos(9)

cosine similarity =

vectors.

The dot product of the vectors, A - B, measures the similarity between the two vectors,
while the magnitudes of the vectors, |A| and |B|, measure the magnitude of the vectors.
The cosine similarity is then calculated by dividing the dot product of the vectors by the
product of their magnitudes.

The resulting value will be between -1 and 1, with 1 indicating that the vectors are
perfectly aligned (i.e., they point in the same direction), O indicating that the vectors are
orthogonal (i.e., they are perpendicular), and -1 indicating that the vectors are opposite
(i.e., they point in opposite directions).

In a recommendation system, cosine similarity can be used to measure the similarity
between two users (or two items) based on their ratings (or other features) in a vector
space. For example, if two users have rated a similar set of movies, their feature vectors
will be more similar, and the cosine similarity between them will be closer to 1. On the
other hand, if the two users have rated very different sets of movies, their feature vectors

will be less similar, and the cosine similarity between them will be closer to O.

Model-based Collaborative Filtering

Model-based collaborative filtering is a method based on creating a model that is
learned from past user behavior to make predictions about a user’s preferences for items.
The model is typically a matrix factorization algorithm, such as singular value decompo-

sition (SVD), that is trained on the past user-item interactions (e.g. ratings) to learn latent

2.1.2 Content-Based Filtering

representations of users and items. The learned latent representations are then used to
make predictions about a user’s preferences for items they have not yet interacted with.

The key idea behind matrix factorization is that the observed ratings can be approx-
imated by a dot product of two low-rank matrices, one representing the users and the
other representing the items. These low-rank matrices can be thought of as encoding
the underlying preferences of the users and the characteristics of the items. Once the
model is trained, it can be used to make predictions for any user-item pair by taking the
dot product of the corresponding user and item representations. These predictions can
then be used to rank items for a particular user, with the highest-ranked items being
recommended to the user.

Model-based collaborative filtering can handle large datasets and can be more accurate
than memory-based collaborative filtering, but it requires a lot of data to train and may
not be able to model the dynamics of user preferences over time.

Naturally, approaches that combine model-based filtering with memory-based ap-

proaches are comimeorn.

2.1.2 Content-Based Filtering

On the other hand, content-based filtering provides recommendations based on the
user’s past behavior and the features (the content) of the items they have interacted with.
This technique is based on the idea that if a user has liked or interacted with certain
items in the past, they are likely to enjoy similar items in the future.

The general process for content-based filtering starts by representing each item in the
dataset as a set of features or attributes. For example, in the case of movies, the features
could be genre, actors, directors, and plot-related keywords. Subsequently, a user profile
based on the user’s past interactions with similar items is created. In the movie example
provided above, that profile would include the user’s ratings of different films. This profile
is typically modelled as a vector, which represents the user’s preferences for each of the
item features.

Finally, the algorithm calculates the similarity of each single item in the dataset with
the user’s profile vector, essentially searching for items that closely match what the user
enjoys on average. The items that display the highest similarity are then served to the
user as recommendations. This similarity can be measured by using a variety of metrics,

from cosine similarity to the Pearson correlation coefficient.

2.1.3 Hybrid Approaches

Nowadays, one of the most common approaches to recommender systems are hybrid
approaches [13]. These combine collaborative filtering and content-based recommenda-
tions in order to bypass the drawbacks of each method and offer better recommendations.

One way to combine the two methods is by implementing them separately, generating
predictions using each of them separately and then, finally combining the results of the

two. The combination can be done either linearly or by using techniques such as voting,

Chapter 2. Background

where multiple recommender systems vote on the best recommendations with the majority
deciding the item that will ultimately be recommended.

A different way to combine the two approaches is by creating user vectors (similarly
to what is done in content-based filtering) for every user and then utilise these to provide
recommendations based on user similarity, akin to what is done in collaborative filtering.
This approach deals with certain sparsity issues that might arise in datasets where not
many users have multiple items in common.

Alternatively, users can be grouped together based on collaborative filtering tech-
niques. This is reminiscent of clustering and allows us to generate group profiles for
each cluster instead of user profiles, which we can subsequently use for content-based

filtering.

2.2 Recommending New Music

Music recommendation engines generate personalized music recommendations for
users based on their past listening history and track information. These systems have
been an important part of the music industry since the early ‘00s, when platforms such
as Pandora and Last.fm introduced the first collaborative filtering-based recommendation
engines.

Since then, music recommendation systems have undergone significant evolution,
with the incorporation of more advanced techniques such as machine learning and the
use of diverse data sources. For example, in 2015, the music streaming service Spotify
introduced the Discover Weekly feature, which utilized collaborative filtering and natural
language processing to recommend songs to users based on their listening history and
the lyrics of the songs that they had listened to. Since then, mood detection based on
lyrics and audio signals has been a cutting edge area of recommender system research
[14, 15]

More recently, music recommendation systems have begun to incorporate deep learn-
ing techniques in order to analyze the audio features of songs and make recommendations

based on the acoustic characteristics of the music.

2.3 The Spotify Recommendation Ecosystem

Naturally, the exact nature of the Spotify algorithm is not information that is available
to the general public. This makes sense as Spotify is a for profit company, whose product
largely relies on recommender systems for user retention and acquisition. And in today’s
landscape where competitor music streaming applications and services abound, leading
the pack with cutting edge algorithms while, at the same time, protecting those algorithms
is important. However, from various papers and presentations released over the years,
we can get a brief glimpse under the hood of Spotify’s recommendation engine.

As one might expect, collaborative filtering is part of the Spotify algorithm ecosystem
[16]. With more than 433 million users, there is enough data granularity to allow almost

perfect matches between clusters of users who listen to similar music. Similarly, Spotify

2.4 Bias in Music Recommendation Systems

takes advantage of content based filtering [16], taking into account song lyrics (using
Natural Language Processing for Sentiment Analysis), track features (a lot of which are
publicly available through the service’s APl and will be used in the scope of this thesis)
and raw track signal features among other things.

On top of that, according to various papers released by the Spotify Research & Devel-
opment team, the company has experimented with pitch tracking and melody estimation
[17], music recommendation using multi-armed bandit algorithms [18] and graph repre-

sentation learning [19].

2.4 Bias in Music Recommendation Systems

Irrespective of the technology used, music recommendation systems have been found
to be biased in various ways, thus perpetuating existing societal inequalities and limiting
the diversity of music that is recommended to users.

One source of bias in music recommendation systems is the data used to train the
system. For example, studies have found that music recommendation systems trained
on data from predominantly white and/or male users tend to recommend music by white
male artists more often [20, 21]. Similarly, music recommendation systems trained on
data from Western countries tend to recommend Western music to users, while under-
representing music from other cultural regions. These biases in the training data can
result in a lack of diversity in the music that is recommended to users, subsequently
making it more difficult for musicians from underrepresented groups to gain visibility.

Multiple research groups have found evidence of popularity bias in music recommen-
dation systems [22, 10, 11, 12, 20, 21], indicating that recommendation systems are
inclined towards recommending more popular artists, with users interested in unpopular
items receiving worse recommendations overall [23].

When it comes to Spotify, the company’s Research & Development team has started
producing more and more research on the topic of recommender system & Al fairness with
a focus on providing good recommendations without causing a "rich-get-richer" effect [24].
An example of this is the paper published by Aziz et al., which proposes utilising semantic
information via means of knowledge graphs in order to recommend underserved podcasts
to users who might be interested [25]. Unfortunately, the algorithmic implementations

(and even a lot of the papers) are not publicly available.

Chapter B

Methods

3.1 Model Overview

One of the purposes of this thesis is to explore the viability of music recommender
systems (RS) which do not take advantage of data from millions of users. This is a
limitation that naturally arises from the fact that user data from streaming services such
as Spotify are not publicly available. As a consequence, the use of collaborative filtering
(CF) for music recommendation is out of the picture.

Instead, we are going to explore possibility of using a single user’s listening history in
order to discover patterns about their listening habits. The listening history of any Spotify
user can easily be obtained by the user themselves through the service’s official website
and includes a detailed timeline of any piece of music or podcast they streamed through
Spotify in the past 365 days. From this file, we aim to create a "user profile" - that is to
say a vector of features that best describes the music preferences of the person seeking
recommendations.

The process of generating this vector starts by figuring out the user’s top artists based
on frequency and total time listened. Subsequently, these artists are separated into
clusters that represent different styles of music. This clustering process is based on song
and artist features that are openly available to anyone through the use of the Spotify API.
These features provide a range of information for each track, from details of the musical
composition (key, mode, tempo) to more abstract metrics calculated by Spotify such as
the danceability of a song or its happiness levels. We average selected features for each
artist while dealing with outliers and missing data and, afterwards, we generate a user
vector by calculating the weighted average of the user’s X top artists by listening time,
weighed by total listening time. The amount of top artists X we use to create this vector
is one of the hyperparameters of the model and, therefore, is not constant.

Now that he have a representation of the user’s listening preferences, we aim to find
artists that closely match this profile. In order to do this, we calculate artist vectors for
every artist available on Spotify by averaging the features of their songs, after dealing with
outliers and missing or problematic values. This allows us to use a variety of similarity and
proximity measures in order to single out the artists that appear to fit the user’s tastes.
Naturally, before performing this operation, we remove the user’s most listened to artists

from the dataset of all Spotify artists in order to ensure there are no recommendations of

Chapter 3. Methods

already favored artists as well as guarantee there is no contamination when evaluating
the results of our RS.

In order for the process described above to work, we need to acquire two main datasets.
First and foremost, we need a dataset of features for all possible artists on Spotify. This
dataset will be used as a pool from which we can pick new recommendations but also as a
source of information for any possible artist, whether it is an artist we are recommending
or one that exists in the user’s listening history.

Secondly, our method requires the existence of a data table that tracks information
about the user’s top artists. We single out these artists based on the person’s listening
history records and then we retrieve all features relevant to them from the aforementioned

dataset of all Spotify songs.

3.2 The 8 Million Song Dataset

3.2.1 Data Acquisition

Spotify provides an openly accessible application programming interface (API) [26],
through which anyone can query the service’s databases in order to acquire various data.
This includes data about any artist and track, as well as the audio features of said tracks.
Unfortunately, the amount of tracks available on the platform is prohibitively large and
would require querying the API hundreds of millions of times in order to scrape all of the
information we need. Naturally, Spotify throttles large amounts of successive queries,
thus making a scraping task like this prohibitively time and resource consuming.

Hence, instead of obtaining information on the entire platform catalogue by using API
calls, we opted for the use of a public dataset found on Kaggle [27]. This dataset comes in
the form of an SQLite database that provides information on 8 million of the most popular
Spotify songs, including their audio features as well as artist, album and genre informa-
tion. While this number is only a fraction of the total number of tracks available on Spotify
(which is around 80 million), it is large enough for us to make recommendations since,
as we’ll observe later on, only a small fractions of songs on Spotify have any listeners. Of
course, the fact a song has no plays doesn’t make it unsuitable for recommendations but
it is certainly not something an RS would recommend to a user.

It is worth noting that this dataset includes tracks that were released up to, and
during, 2018.

3.2.2 Pre-Processing

Due to the size of the dataset (over 5.1 GB), it was provided to us in the form of an
SQLite database. This database comprised of 9 different tables:

e Artists: Provides information about the popularity (a metric arbitrarily defined by

Spotify) and following count of each artist, as well as their unique ID.

e Albums: Provides a unique ID for each album on Spotify, as well as some basic

3.2.3 Audio Features

information (album name, album type, release data, popularity). This information

does not include the artist’s name.

e Track: Provides a unique ID and basic information for every track on Spotify. This

does not include the name of the corresponding artist or album.

e Audio Features: Provides a multitude of audio features for every unique track ID
that exists on the "Track" table.

e Genres: Gives a unique ID to each genre descriptor that exists on Spotify.
e Albums < Artists: Correlates each album ID with one or multiple artist IDs.

e Albums © Tracks: Correlates each album ID with the track IDs of all of the songs

in that album.
e Artist <> Genre: Correlates each artist ID with one or multiple genre IDs.
e Track < Artist: Correlates each track ID with one or multiple artist IDs.

Evidently, the data is provided to us in a relational database format. In order to
improve the efficiency and explainability of our model, we need to transform these tables
into a format that is easier to manipulate and use for calculations. The format we selected
for this implementation is that of Pandas DataFrames (DF).

The first step of this process is to export all of the SQLite database tables into separate
comma-separated values (CSV) files, a file format that works brilliantly with Python and
Pandas, the two main tools we are going to use for data processing. These CSV files
are then loaded into Pandas DFs. For now, each of the DFs closely follow the structure
of the corresponding SQL table. Our next step is to slowly start merging these DFs,
while removing any duplicate data columns that might exist. The merging of the DFs
happens on ID columns by taking into advantage the correlation tables outlined above.
This process leads to a single DF with 11.8 million rows (the songs in our dataset) 16
columns: artist name, song name and duration, artist popularity and 12 music related
features. It is apparent that the number of songs on this DF (11.8 million) does not match
the "advertised" number of songs on the dataset (around 8 million). This is because any
song that is a collaboration between multiple artists exists multiple times in the DF - one
for each artist participating in the track. We are going to deal with this phenomenon in a
later stage of the pre-processing process.

We also create a hash table (a Python dictionary in this case) that keeps track of the

following count of each artist.

3.2.3 Audio Features

Since we are implementing a form of content-based filtering, we will need a set of
features that describe the songs which are available for recommendation. In this case,
this set of features mostly comes from the 12 music related features mentioned above.
These are provided by Spotify for every track that is available on the service and play a

pivotal role in describing any piece of music. The 12 audio features are:

Chapter 3. Methods

e Acousticness: A confidence measure of whether the song is acoustic or not. Values

range from 0.0 to 1.0, with higher values indicating higher confidence.

e Danceability: Describes how suitable a song is for dancing. Values range from
0.0 to 1.0, with higher values indicating a more "danceable" song. While Spotify
doesn’t provide an exact formula for this value, they mention that it is derived from
a combination of musical elements including tempo, rhythm stability, beat strength,

and overall regularity of the track.

e Energy: A measure of intensity and activity. Values range from 0.0 to 1.0, with
higher values indicating more energetic tracks. According to Spotify, energetic
tracks feel fast, loud, and noisy. An example of a track that scores high in en-
ergy would be a death metal track. On the contrary, a Bach track would score low
on the scale. This is a purely perceptual measurement. Features contributing to it

include dynamic range, perceived loudness, timbre, onset rate, and general entropy.

e Instrumentalness: A confidence measure of whether the song is purely instrumental
or not. Purely instrumental songs contain no vocals. Values range from 0.0 to 1.0,
with values above 0.5 indicating an instrumental song. On the low end of the
spectrum we would expect to find rap or spoken word tracks. It’s worth mentioning
that brief vocal sounds such as "ooh" and "aah" are treated as instrumental in this

context.

e Liveness: A confidence measure of whether there is an audience present or not in
the recording. Values again range from 0.0 to 1.0, with values above 0.8 indicating

a high probability that the song is performed live.

e Loudness: The overall loudness of a track in decibels. According to the Spotify
documentation, values are averaged across the entire track and are used when
comparing the relative loudness of tracks. Loudness is the quality of a sound
that is the primary psychological correlate of physical strength (amplitude). Values
typically range between -60 and O db.

e Speechiness: This measure represents whether spoken words were detected in a
song or not. Values range between 0.0 and 1.0, with higher values indicating
recordings that are primarily speech-like, such as talk shows or poetry. According
to Spotify, values above 0.66 strongly suggest a recording that is made almost
entirely out of spoken words, while values between 0.33 and 0.66 point towards
recordings that contain both speech and music and values below 0.33 suggest the

absence of spoken words.

e Valence: Measures the musical positiveness of a song. While Spotify doesn’t provide
a detailed explanation about how it is calculated, we know that songs with higher
valence sound more happy, cheerful and euphoric while tracks with low valence give
off feelings of sadness, depression and anger. Values range from 0.0 to 1.0, with

higher values representing more positive feelings.

3.2.3 Audio Features

. God is an Astronaut -

Artist - Song .
Fragile

Acousticness 0.01
Danceability 0.30
Energy 0.48
Instrum. 0.82
Liveness 0.06
Loudness 0.73
Speechiness 0.03
Valence 0.20

Table 3.1. Analysis of a Song from the Band "God is an Astronaut”

e Key: The key the track is in. Integers map to pitches using standard Pitch Class
notation. E.g. 0 = C, 1 = C-sharp, 2 = D, and so on. If no key was detected, the

value is -1.

e Mode: Mode indicates the modality (major or minor) of a track, the type of scale
from which its melodic content is derived. Major is represented by 1 and minor is
0.

e Tempo: The estimated tempo of a track in beats per minute (BPM). In musical
terminology, tempo is the pace of a given piece and derives directly from the average

beat duration.

e Time Signature: An estimated time signature. This is a notational convention to
specify how many beats are in each bar. The time signature ranges from 3 to 7

indicating time signatures of "3/4", to "7/4".

Most of these features produce values that are already normalised. We normalise tempo
and loudness values so they can produce results on the [0, 1] range, thus eliminating the
huge differences in value scales that existed in our dataset. On one hand, this means that
tempo and loudness values can no longer be interpreted at face value - while a loudness
of -50 is thoroughly explainable and measurable in db, a loudness of 0.23 is something
that is not explainable in and of itself and can only be used in comparisons. On the other
hand, this change in scales will help us produce recommendations that are unbiased by
loudness or tempo values.

Based on some simple data retrieval, we can see how these features can accurately
describe a song or artist. Looking at table 3.1, we can see a track of the band "God is
an Astronaut" which plays instrumental, rock music. An instrumentals of 0.82 confirms
this is a track that does not include vocals, while a loudness of 0.73 and an energy value
of 0.48 point towards rock music, with an acousticness of 0.01 confirming the track is
performed with electrical instruments. Similarly, we can use this information to identify
the traits of different performances of the same song. In table 3.2, we can see three
different iterations of "House of the Rising Sun", with version 1 being the original version

of the song and versions 2 and 3 being different, unidentified versions. Based on the

Chapter 3.

Methods

Acoustic. | Dance. | Energy | Instrum. | Liveness | Loud. | Speech. | Valence
Version 1 0] 0.31 0.48 0] 0.09 0.76 0.03 0.29
Version 2 0.40 0.52 0.53 0.06 0.11 0.79 0.03 0.21
Version 3 0.09 0.22 0.67 0] 0.71 0.75 0.07 0.24

Table 3.2. Different Versions of "House of the Rising Sun”

data at hand, we can tell version 2 is probably an acoustic performance of the song while

version 3 is recorded live.

3.2.4 Artist Popularity & Following

Apart from the audio specific features mentioned above, we also take into account
artist related features such as popularity and following. While a lot of the audio specific
features are thoroughly explained by Spotify, popularity is analysed in a more obscure
way. In Spotify’s developer portal, with find this explanation:

"The popularity of a track is a value between 0 and 100, with 100 being the most
popular. The popularity is calculated by algorithm and is based, in the most part, on
the total number of plays the track has had and how recent those plays are. Generally
speaking, songs that are being played a lot now will have a higher popularity than songs
that were played a lot in the past. Duplicate tracks (e.g. the same track from a single and
an album) are rated independently. Artist and album popularity is derived mathematically
from track popularity.”

Even though this gives us a small glimpse of how the popularity metric works, we do
not know how to interpret it or how it is distributed. For this reasons, we calculate a few
basic metrics about it. The results are shown in table 3.3 and in the graph below. It is
evident that we are dealing with a heavily skewed distribution where more than 50% of
the artists in our dataset (that is to say, more than 4 million unique artists) score less

than 1 out 100 in popularity and only a handful of artists score above 50/100.

1leb
o8
=
E
E B
"
on
=
]
5 4]
o
=]
E
2 27
D T T T T T T
] 20 40 =] B0 100

Popularity

The other metric we are going to explore is following. This is a more straightforward

metric as it indicates the exact number of Spotify accounts that are following a particular

3.2.5

Mean (std)

25% (Q1)

50% (Median)

75% (Q3)

5.8 (10.4) 0

1

7

Table 3.3. Popularity Score Distribution

Mean (std)

25% (Q1)

50% (Median)

75% (Q3)

Max

0

101

78 Billion

Artist Vectors

7012.3 (208k) 0

Table 3.4. Artist Following Distribution

artist. When calculating a few basic statistics about artist following, we arrive at the
results shown in table 3.4 and in the graph below. We can observe that more that 50% of
all artists have O followers and that we need to get to the top 25% artists in order to start

seeing follower counts that go into triple digits (>101).

1e7
B 1 o
:.'.
B]
o
5_.
q.

Folowers (in tens of millions)

=T
L[L K

T
followers

We are going to use both of these metrics in order to test different variations of our
algorithm. As mentioned before, research has shown that RS recommendations are often
skewed towards more popular artists and artists with higher following thus, being able
to filter recommended artists based on these two metrics, will allow us to emulate differ-
ent scenarios where the popularity/following of an artist plays - or does not - a role in

determining the RS behavior.

3.2.5 Artist Vectors

In order to generate artist recommendations using a content-based RS, we are going to
need a set of features that describe each artist. We generate this vector by averaging the
audio features mentioned above, without key, mode and time signature, and appending
artist following and popularity to it. While the discography of any artist is not always
uniform in style or even genre, creating artist vectors instead of using track or album-
specific ones better fits the experimental scope of the thesis, available resources and using
someone’s top artists in order to recommend new artists.

This is also done in order to combat the limitation of this dataset, which is that it

includes only songs released up to, and including, 2018. We do not want to recommend

Chapter 3. Methods

Index End Time ‘ Artist Name Track Name] ms Played
1 2020-11-16 22:11 The Album Leaf Another Day (Revised) 47831

2 2020-11-17 17:15 King Diamond The Family Ghost 265724
3 2020-11-17 17:56 King Diamond 7th Day of July 1777 56995

4 2020-11-17 20:13 Mac Miller Blue World 203831
5 2020-11-17 20:26 Mac Miller Good News 342040

Table 3.5. Example data _from a Spotify listening history file.

only older songs and there is no feasible path for updating our datasets, therefore we opt
to provide artist recommendations instead of track recommendations in order to partially

bypass this problem.

3.3 User Listening History

Acquiring a copy of one’s listening history is a straightforward process that can be
started for free through Spotify’s automated "Download Your Data" tool [28]. This history
includes every piece of music or podcast streamed by the user during the last year and is
delivered in a .json format. By extracting data from that file, we arrive at something that
looks like data table 3.5.

Each entry on this table is a unique event (a stream of a song or podcast) on the
streaming timeline of the past one year and is described by 4 different parameters: the
time when the playback stopped, the name of the artist, the name of the track and the
amount of milliseconds the playback lasted. From these elementary features, we can
derive a plethora of different statistics about the person seeking recommendations and

their streaming habits. Before we do that however, we need to clean up the data.

3.3.1 Pre-Processing

The main limitation of our datasets lies in the fact that the 8 million song database
includes songs that were released only up to, and including, 2018 and can not, in the
scope and time frame of this thesis, be updated to include newer tracks. However, when
it comes to user’s streaming histories, this limitation does not apply. This gives rise to a
significant inconsistency: some of the tracks that exist in a user’s streaming history might
not exist in our 8 million song dataset. Thankfully, even though we might be unable to
update our entire dataset to include songs released after 2018, we can still retrieve all
necessary information on the small sample of songs, released after 2018, that is relevant
to the user and their listening history.

The first step towards dealing with this issue is singling out the unique songs which
exist in our dataset. We do this since our data describe someone’s music streaming
history, it is highly probable that a song might appear multiple times - that would mean
this specific song was played multiple times in the span of one year, which is an entirely
reasonable assumption. After we have the list of all unique songs that exist in the user’s

history, we check to see how many of these exist in our 8 million song dataset. Any of the

3.3.1 Pre-Processing

songs that do not exist there are kept track of in a separate list, so they can be added to
the dataset during the next step.

In order to do this, we need to use Spotify’s API. After registering a developer account
with the streaming service and setting up the authentication process and credentials flow,
we query Spotify’s database for information about every song missing. The information
we retrieve is comprised of exactly the same audio and track/artist-specific features that
are described in the 8 million song dataset section. Throughout this process, we are
especially careful to handle any possible code exceptions with emphasis on the scenario
where the desired song data does not exist on Spotify’s current database at all. This might

happen for one of two reasons:

1. The streaming item is a podcast and not a track. Podcasts might exist on a user’s
history file but neither we nor Spotify have any audio features about them. Hence,
querying the API for more information about their audio features, returns an error.
Of course, podcasts are outside the scope of this thesis, so at this stage we can safely
delete the podcast entry from the user’s history and proceed with the next entry.
In other words, this is a way for us to filter out any possible non-song items, since
only queries to the Spotify API about songs will yield any audio feature information

whatsoever.

2. The streaming item is a song but does no longer exist within the Spotify database.
That means that the track and artist existed in Spotify’s database back in 2018 but
has since been removed. In this case, we can safely delete this entry and move on
to the next item. This deletion is performed in order to avoid any inconsistencies
between the two datasets (current Spotify and 2018 Spotify) when it comes to artist

existence.

After we retrieve all of the necessary information, we add these new songs to the 8
million song dataset.

Now that we have all track information for the user’s listening history, we proceed to
calculate the user’s top artists. We do this by ordering every artist in the user’s history
by total listening time. We’ll use only a certain amount of these artists in order to provide
recommendations. The reasoning behind this is straightforward: throughout the course
of the year, a person can be exposed to thousands of different artists. This is especially
true on Spotify, where the platform provides you with tailor-made playlists and features
like Spotify Radio, all aimed at discovering new songs, on a daily basis. Using all of these
artists would unnecessarily increase our algorithm’s processing time and would introduce
a lot of noise to the model, even if we weighted the influence of each artist based on the
percentage of total listening time they were listened to.

After singling out the subset of top artists, we subtract that from the dataset of all
available artists. This is done in order to avoid suggesting artists the user already listens
to on a regular basis as well as any possible data contamination.

Naturally, there might exist outliers in the top artists. This is not referring simply to

a group of artists that share a genre different to the average genre of the listener but to

Chapter 3. Methods

single artists that drastically differ from the rest and might significantly skew the results
if taken into account during the recommendation process. In order to deal with them, we
remove outliers from the top artists based on their z-score. A z-score is a measure of how
many standard deviations an observation or data point is from the mean of a distribution.
Mathematically, it is defined as:

X-u
g

z =

Where X is the value of the observation or data point, u is the mean of the distribution,
and o is the standard deviation of the distribution. By removing any top artist that exhibits
an absolute z-score above 3, we eliminate most of the outliers in this subset of our data.
This happens because, assuming our data follows a normal distribution, 99.7% of data
points will fall within 3 standard deviations of the mean. Therefore, any data point with
an absolute z-score above 3, will most likely be an outlier.

An alternative option for outlier detection that is available to users, is removing outliers
based on the interquartile range (also known as IQR - a measure of the spread of a dataset,
defined as the difference between the 75th percentile and the 25th percentile) which yields

similar results to the z-score method.

3.3.2 Personalised Statistics

Since we have full access to the user’s listening history, we can generate a set of
personalised user statistics. These include: total listening time per artist, total listening
time per unique track, total and average listening time per hour of the day, total and
average listening time per day of the week, total and average listening time per month of
the year as well as combinations of the above (e.g. most listened to artist for the month

of September).

100 1

hrPlayed

20 1

T T T T T T
56 78 91011121314151617181920212223 01 2 3 4
Hour

Figure 3.1. Total Amount of Music Played at Each Hour of the Day

The total listening time per artist will prove useful to us since we will utilise it in
order to discover the user’s top artists (ranked by listening time) and weigh our recom-

mendations based on that. The rest of the statistics will be provided to the user together

3.3.2 Personalised Statistics

Figure 3.2. Total Amount of Music Played at Each Day of the Month

120 1

100 1

hrPlayed

Month

Figure 3.3. Total Amount of Music Played at Each Month of the Year

with the final song recommendations in the form of graphs, as a way to better visualise
their listening habits. Some examples of these visualisations are 3.1, which shows the
total amount of music played at each hour of the day during the past year, 3.1, which
visualises the same statistic but for each day of the week and 3.3 which expands upon

this and provides a visualisation for each month of the year.

These statistics can help the user better understand their listening habits and might
also be used in future work that derives from this thesis. For example, one could link
patterns that arise in the listening times of a person (referring to if someone listens to
music mostly at night or on Fridays or around Christmas etc) with the mood of the
music they listen to in these specific times. This would would allow for more targeted
recommendations based on mood or activities - maybe someone is listening to more

intense music only when they work out (which would be a clear recurring pattern on the

Chapter 3. Methods

stats) or calmer music when they study, etc.

3.3.3 Automated Clustering & User Vectors

After pre-processing is completed, it is time to generate a user vector. This refers to a
set of features that describes what type of music the user enjoys on average, with values
for danceability, acousticness, valence and all of the other audio features described earlier.
Essentially, it is going to be the average vector of the user’s most listened to artists. This
will serve as a "user profile" and will be compared against other artists in the database in
order to make recommendations.

As mentioned previously, we are using only a fraction of the listener’s top artists in
order to generate recommendations. In the current form of the algorithm, the default
amount of top artists we use is 50. Obviously, there is no single value that is objectively
ideal for every use case. Furthermore, generating recommendations based on 10 artists
might yield significantly different results than generating recommendations using 100
artists. For this reason, we employ one of the ideas mentioned above: weighting each
artist’s influence on the user vector based on the time the user has listened to their
music. Specifically, when we are creating the user profile, instead of simply averaging
all top artist vectors, we calculate a weighted average. This means that if a user has
spent 90% of his time listening to one artist, that artist will contribute roughly 90% (in
practice it would be more than that, since 90% is the percentage of time the user listened
to that artist as a percentage of the total amount listened to their top artists, not every
artist in their listening history. The non-top artists of the listening history are removed in
pre-processing, thus slightly increasing the overall listening time share of each top artist)
to the weighted average and subsequently the user profile generated. In this way, we
ensure that adding more artists to the "top artist" subset doesn’t dramatically affect the
consistency or the genre of the recommendations.

Of course, in most cases, a person’s musical taste can not be averaged to a single
set of characteristics that describes all of their favorite music. That arises from the
fact that people rarely listen to exclusively only one style of music - even within genres
with devout following such as Metal or Hip Hop, there are immense variations in sound
and style between different sub-genres. This means that averaging all of a listener’s top
artists into one vector will likely not yield optimal results in case there are more than
one genres (or sub-genres) present in the listening history. What happens in the case
of a new parent that enjoys listening to Jazz on their own time but also, on the same
Spotify account, frequently streams nursery rhymes for their newborn and instrumental
music for car rides with the family? Averaging these vastly different genres will, in all
likelihood, yield poor recommendations that belong neither in Jazz nor in the nursery
rhyme or instrumental music genres.

Our solution to this is clustering the user’s top artists into groups, creating averaged
user profiles and then providing separate recommendations for each cluster. Obviously,
every person’s top artists are going to be clustered in a different amount of groups so, be-

fore we even deploy a clustering algorithm, we need to determine the appropriate amount

3.4 Making recommendations

of clusters for that particular user. This process is fully automated and relies on the
Calinski - Harabasz score, also known as the Variance Ratio Criterion. This is defined
as the ratio of the sum of between-cluster dispersion and of within-cluster dispersion
and is a measure of how similar an item is to its own cluster versus different clusters.
Mathematically, this is defined as:

S niGuimp (i

=1
¥ i=1K 3 xeCi(e—py)x—p) T

Calinski — Harabasz =

Where: n; is the number of poirnl_ts in cluster i y; is the mean vector of cluster i u is the
overall mean vector of all data points C; is the set of data points in cluster i x is a data
point

The numerator of the formula represents the between-cluster variance and is calcu-
lated by summing up the squared distances between the cluster means and the overall
mean, weighted by the number of data points in each cluster. The denominator of the for-
mula represents the within-cluster variance and is calculated by summing up the squared
distances between each data point and its corresponding cluster mean.

Once we have defined the appropriate number of clusters, we can allocate the top
artists into them by utilising the K-Means clustering algorithm. Since, in the scope of this
thesis and any future work done on it, we might encounter the need to cluster thousands
of artists (in case the user wants to take into consideration every single artist they listened
to in the past year) or millions of songs (in case in some future modification of this thesis
user profiles are created based on unique songs and not artists), another option would be
to utilise the Mini Batch version of the K-Means algorithm. Mini Batch K-Means aims to
combat the increase in computation time that comes with bigger datasets by partitioning
the input data in random, fixed size batches, thus removing the need to store the entirety
of the dataset in memory. Every iteration of Mini Batch K-Means runs on a fresh random
sample and updates the current clusters through a convex combination of the original
clusters and the new data. The change in the learning rate is inversely proportional to
the number of iterations, with the numerical value of the learning rate equating to the
inverse of the number of sample points assigned to a cluster.

When it comes to the programmatic implementation of the thesis, both the regular and
the Mini Batch version of K-Means are available to the user and can be easily alternated
through a simple Boolean function parameter, with regular K-Means being the default

option.

3.4 Making recommendations

Now that we have multiple clusters of artists, each corresponding to a different style
of music the user listens to, we generate a "user profile" from each of them. As mentioned
above, this is essentially the average feature vector of all artists in the cluster, weighted
by the time the user spent listening to each of the artists. We will therefore generate
recommendations for each of these vectors, using each of them as input, one by one.

The process of generating recommendations is based on using a similarity metric to

discover artists whose average features most closely resemble the user vector in question.

Chapter 3. Methods

The two main approaches available in our algorithm are K-Nearest Neighbors and Cosine
similarity, with the latter being the default. The artists that have the highest similarity to

the user vector are then suggested as recommendations to the listener.

3.4.1 Exploring new genres

In order to provide a solution to the recommendation bias that is evident in other
music RS, we employ a variety of methods.

First of all, when receiving recommendations from the RS, the user has the option to
tune a "max similarity" setting. This is a value that goes from O to 100 and acts as a
similarity "cutoff'. In other words, if the user sets max similarity to 80%, no artists with
a cosine similarity above 0.8 will be recommended. Tuning this value allows the user to
explore genres that fall outside of their usual preferences.

Additionally, we have implemented similar, adjustable cutoff values for popularity and
following. Any artist with a popularity and / or following above the corresponding cutoff
value will not be suggested by the RS. Modifying these settings allows the user to opt
in for recommendations of less popular artists, thus avoiding any bias other RS might
have towards more popular artists and allowing the user to explore artists that are new
to Spotify.

Chapter ﬂ

Results and Analysis

One of the most challenging aspects of designing a recommender system is that of
evaluating the quality of its recommendations, as well as ensuring the lack of bias in
their generation. This stems from the fact that there is no inherent, absolute, universally
correct answer to questions such as what is the best song to recommend to a person,
what is the most suitable item to recommend to a customer for purchase or what is the
most appropriate article to recommend to a reader. Everyone has different tastes and
preferences. This highlights the need for large amount of labeled data (in this case songs
rated by users whose preferences are also documented and labeled) when evaluating
recommender systems. This opens the door to evaluating new algorithms with the use of
A/B testing.

A/B testing is a common technique used to evaluate the effectiveness of recommender
systems [29]. In an A/B test, two versions of the recommender system are compared: the
"control" version (the "tried and tested" system that has been in use for some time and has
proven results) and the "experimental” version (the newer algorithm whose performance
we want to evaluate). Users are then randomly assigned to one of these two versions and
their interactions with the system are tracked and analyzed to determine which version
performs better. In the context of music recommender systems, some interactions that
might interest us would be: how much time the user spends listening to songs, how
many songs on average does the user skip, how many of the recommended songs are
being added to playlists or favorited, etc.

However, it is obvious that properly running an A/B test requires a large amount of
user data, from a multitude of users. Since, in the scope of this thesis, we are trying to
explore the life cycle of a recommender system without access to millions of user data,
what are some other ways in which we can evaluate our algorithm? In this chapter, we
explore a few alternatives used by this thesis. These methods are split in two categories:
"Spotify-based" metrics and "user-based" metrics.

Spotify-based evaluation centers around the idea of using Spotify’s recommendation
engine and its recommendations for the user as our labelled, test dataset that evaluates
the accuracy of our recommendations. Naturally, this would lead our algorithm to start
behaving more and more like the Spotify algorithm which inherently leads to multiple
problems, all of which we will explore later in this chapter.

On the other hand, user-based evaluation centers around the idea of having real users,

Chapter 4. Results and Analysis

who have provided their Spotify history to us, participating in a single-blind study. In
that study, they would be exposed to recommendations from multiple, different sources

and they would have to rate them according to how much they enjoy them or not.

4.1 Spotify-based Evaluation

As previously discussed, Spotify-based evaluation centers around the idea of using
the results of Spotify’s recommendation engine as ground truth for the assessment of
our algorithm’s performance. We can leverage Spotify’s engine through the service’s API,
which allows us to call the function "Get Recommendations". This function can take
a variety of artists, genres or tracks as input and returns a list of recommendations

generated by Spotify.

The way in which we take advantage of this API function for evaluating our recom-
mender system is as follows. For every one of the artist clusters generated for a user,
we select the top five artists. We then use these artists as the input to both our rec-
ommender system as well as the Spotify recommendation API. The reasoning behind
selecting five artists is that the "Get Recommendations" function can take a maximum of
5 unique artists in consideration when generating recommendations. We instruct both
our recommender system and Spotify’s API to produce 100 recommendations. Our RS’s

performance can now be measured by using R-Precision.

4.1.1 R-Precision

In 2018, Spotify, The University of Massachusetts, Amherst, and Johannes Kepler
University, Linz ran a Machine Learning challenge [30] focused on music recommendation
and, specifically, the enrichment of a user’s playlists with new songs (given an initial set of
tracks in a playlist, predict the subsequent tracks in said playlist). The dataset contained
1,000,000 playlists created by users on Spotify platform between January 2010 and
October 2017. One of the ways the participants were evaluated, was through the use of

a metric called "R-Precision". Specifically:

R-precision is the number of recommended, relevant tracks divided by the number of

known relevant tracks:

- GNR;:
R-precision = %

We are utilising a modified version of that metric in order to measure the performance
of our RS. In our case, instead of taking note of relevant tracks, we are taking note
of relevant artists. A known relevant artist, is an artist recommended by the Spotify
algorithm. A recommended relevant artist is an artist recommended by our algorithm
that is also recommended by Spotify’s API when given the same input. Essentially, we
are calculating the percentage in which our RS recommendations match those generated

by Spotify’s recommendation engine.

4.1.2 Evaluating the Best Parameters for R-Precision Optimisation

Follower Cut-Off

Mean R-Precision

75K 0.094432
50K 0.091044
25K 0.084729

Table 4.1. Follower Cut-Off Relationship with R-Precision

Popularity Cut-Off | Mean R-Precision
5 0.095200
1 0.09066
o 0.090309

Table 4.2. Popularity Cut-Off Relationship with R-Precision

4.1.2 Evaluating the Best Parameters for R-Precision Optimisation

Before we talk about some of the drawbacks the usage of R-Precision introduces to our
method, we can use it to perform an initial grid search for optimising the hyperparameters
of our model. More specifically, we are interested into how the cutoffs for follower and
popularity count affect our results. While keeping other hyperparameters stable, we
run multiple iterations of our algorithm on the data of 5 different users. Judging from
tables 4.1 and 4.2, we can see there is a slight correlation between the cut-offs and an
increase in R-Precision. However, it’s worth noting that due to the small sample size of
the experiment, we can not be certain that a statistically significant correlation exists

between these hyperparameters and the way our algorithm performs.

4.1.3 Drawbacks of R-Precision

Even though R-Precision might give us an initial evaluation of our algorithm (after
all, a recommender system that mimics Spotify’s recommendation engine is, to a certain
degree, an effective recommender system), there are some obvious drawbacks to it. First
and foremost, trying to morph our algorithm into that of Spotify but with dramatically
less data obviously leads us down a path where, no matter what we do, we can not offer
better tailored recommendations than Spotify. That comes from the fact that, in that
case, we would essentially be trying to "discover" the black box system of Spotify and run
it ourselves but without having access to the vast amounts of user data or computing
power that Spotify has. What is more, by trying to align to Spotify’s algorithm, we are
automatically "adopting" all of it’s biases. This would defeat one of the purposes of this
thesis - trying to propose new artists that are relatively unknown, without many track

plays and possibly not completely aligned to the user’s average listening habits.

4.2 User-based Evaluation

If R-Precision leads to all of the problems outlined above, then what could be a more
accurate evaluation metric? Once again, we run into the problem of user data. Since,

under the constraints of this thesis, we can not run large scale A/B testing (due to the lack

Chapter 4. Results and Analysis

of unique users) we turn to personalised, single-blind surveys with single, uncorrelated
users. In other words, we asked for users to provide us with their Spotify listening history
file in order to be served personalised recommendations. These files were then pushed
through our algorithm’s pipeline and personalised recommendations were generated.

It’s worth noting that the files of these unique users were pushed through the algo-
rithmic pipeline in different instances of the code, all of which retained no information
about the weights calculated for other users or the recommendations generated for them.
This was done in line with the core idea of the thesis; trying to suggest new artists while
having access only to the user’s personal listening history and absolutely no other user
data.

For every user (and therefore every listening history file), this process was repeated

three different times, with three different sets of hyperparameters. In detail:

e Group 1: Our algorithm recommends the songs that closest match the average
preferences of the user (similarity setting of 1), generates weighted user vectors, has
a popularity cutoff of 1 and a following cutoff of 75 thousand. This is the best our

algorithm has to offer, according to the R-Precision metric.

e Group 2: Same settings as above, with one key difference - the similarity setting is
set to 0.98. This means that the algorithm will not suggest artists that are above a
98% match. This forces the algorithm to recommend artists outside the user’s most

common genres.

e Group 3: No follower or popularity cutoff. Similarity setting set to 1. This version of
the algorithm doesn’t follow the R-Precision way and instead is able to recommend
literally any artist on the platform, even those with no recorded plays and/or no

followers.

The same history file is also passed to the Spotify recommendation system via the API
method mentioned above.

For all of the methods mentioned above and for each one of the resulting artist recom-
mendations, their top Spotify song is then added to a list. The order of the songs in the list
is then randomised and the list is sent to the users who rate each song from 1-5, based
entirely on personal criteria. No instructions are given by the researcher, other than to
rate each song based on how much the user likes it or not. The scores given by the users
are then averaged. In case the same artist is recommended by multiple versions of the
algorithm and/or Spotify, the score is factored into the average score of all algorithms
involved.

The goals of this setup are:

1. Examine how close we can get to Spotify’s RS performance when we use the hyper-
parameter values that give us the best possible R-Precision (Hence the inclusion of

Group 1).

2. Identify how are ratings affected by recommending artists that are slightly outside

the usual range of the user’s preferences (Hence the inclusion of Group 2).

4.2.1 Results for Different Similarity Settings

Algorithm Mean Score | STD | Mode
Group 1 (simil = 1) 3.28 1.06 3
Group 2 (simil = 0.98) 2.83 1.13 3
Group 3 (no follower constraints) 2.71 1.21 4
Spotify 3.57 1.08 4

Table 4.3. User-based evaluation results

3. Evaluate the quality of recommendations a recommender system without follow-

er/population biases generates (Hence the inclusion of Group 3).

All in all, five users participated in the experiment. Each one of them provided their
personal Spotify history from the past year and evaluated a number of songs ranging from
60 to 100, based on how many artist clusters were generated for their user vector. The

results of this experiment can be seen in table 4.3.

4.2.1 Results for Different Similarity Settings

From the results presented above it is obvious that decreasing the similarity setting
results in an immediate penalty in average user rating. When users listened to artists
that matched as close as 99.9% of their user vector, they gave an average score of 3.28/5
(with a standard deviation of 1.06 and a mode of 3). On the other hand, when they were
exposed to songs capped at 98% similarity (while keeping all other experiment parameters
constant) the average song rating dropped to 2.83/5 (std: 1.13, mode: 3).

Due to the amount of effort and time commitment needed by the experiment partici-
pants, it was not feasible to test a multitude of different values for the similarity hyper-
parameter. However, using the recommendations generated for each user, their listening
histories and the R-Precision metric, we ran multiple, automated simulations where rec-
ommendations were generated and evaluated for all possible values of similarity, while
always keeping the rest of the experiment variables steady. The results can be seen in

graph below.

R Prec
0.10

0.08 -

0.06 -

0.04 1

002 1

0.00 1

100 0.98 096 094 092 0.90
Similarity

Chapter 4. Results and Analysis

We see a steady drop in R-Precision the further away we go from similarity = 1.0.
That being said, for future experiments that might include user-based ratings, it is worth

experimenting with multiple similarity values that are higher than 0.98 but not quite 1.

4.2.2 Results That Ignore Artist Following

On the other hand, the results for Group 3 are more promising, even though the
average score drops to 2.71/5 (std: 1.21). Surprisingly, the mode for this group was 4 (in
contrast to groups 1 and 2 which had a mode of 3) with 2 users reporting higher average
ratings for Group 3 than Group 2 and 1 user reporting higher ratings for Group 3 than
Group 1.

It is obvious that when we remove the restrictions of popularity and following, there
exist many more artists that are closer to the user vector than before, even if they have
O followers and/or O Spotify plays. The problem is, however, that many times these
artists are in different languages than the languages spoken by the user. According to
the people participating in the study, this affected the ratings although we can not draw
any conclusions just based on after the fact reports from users. This is an effect that
would need to be studied in further experiments. It also points out to a possible need
for filtering recommendations by language although this should be done with care as it

might inadvertently introduce geolocation or ethnic biases to the algorithm.

4.2.3 Comparison With Spotify

When compared to Spotify’s recommendation engine, no version of our algorithm
manages to deliver recommendations that receive higher average rating. This is something
that was partly expected due to the lack of algorithmic capabilities and data granularity
that naturally arises from the scope of this thesis. However, the difference between our
algorithm’s results and those of Spotify’s is narrow enough to conclude that a decently

useful recommender system can be created without much data or computing power.

Chapter E

Discussion

5.1 The Importance of User Data & the Cold Start Problem

Throughout the results of this thesis, it is evident that user data plays a significant
role in the development of a recommender system. On one hand, the more data a recom-
mender system has access to, the more accurate it can be in predicting user preferences
and making recommendations. More data can help to identify patterns and trends that
might be missed with smaller datasets, leading to more accurate and personalized rec-
ommendations. Furthermore, with more user data, a recommender system can provide
recommendations for a broader range of music genres. This is because the system has a
better understanding of user preferences and the relationship between the different gen-
res, which allows it to recommend tracks that users might not have discovered otherwise.

Additionally, having access to an increased amount of user data allows the algorithm to
provide recommendations that are more diverse and varied. This helps to prevent users
from getting stuck in a "filter bubble" and can introduce them to new and unexpected
songs or artists. It also helps make recommender systems more robust to changes in
user behavior, preferences, or demographics. This means that the system can continue
to provide accurate and relevant recommendations even as user behavior evolves over
time.

However, one of the most important problems that becomes more apparent when
working with limited or sparse data, is the cold start problem. The cold start problem
refers to the difficulty of providing accurate recommendations for new users or items that
lack sufficient interaction data. This challenge arises due to data sparsity, where there is
insufficient information available about the users or items to make accurate predictions.
Additionally, the problem may involve data heterogeneity, where the available data is
too diverse or inconsistent to provide meaningful recommendations (for example, an edge
case could be trying to recommend new music to a user that’s listening to a new, different,

unique band every day).

5.2 Testing Recommender Systems

Surprisingly, the biggest challenge faced was evaluating the recommender system

created. How can we confirm that we are serving the best possible recommendations

Chapter 5. Discussion

when music preferences are a topic where no absolute truth exists? Different artists and
genres might appeal to different people. And, as a thought experiment, even if we create
a recommender system that suggests 10 new songs and users report liking 8/10 of them,
how can we be certain that there doesn’t exist a different set of hyperparameters that
results in a 9/10 score?

As mentioned earlier, we don’t have a user base that would allow us to perform neither
a proper A/B test nor a user survey. As a matter of fact, none of the popular recommen-
dation system evaluation methods used in the industry are suitable for this thesis. For
example:

One widely used approach for testing recommender systems is to use historical data
to simulate real-world usage scenarios. This approach involves splitting the available
data into training and testing sets, and using the training set to train the recommender
model and the testing set to evaluate its performance. Common metrics used to evaluate
recommender systems include accuracy measures such as precision, recall, and F1-
score, as well as ranking measures such as mean average precision (MAP) and normalized
discounted cumulative gain (NDCG).

Another approach for testing recommender systems is to conduct user studies and
gather feedback from actual people. This approach involves recruiting a representative
sample of users, presenting them with recommendations generated by the system, and
gathering feedback on the relevance and usefulness of the recommendations. User studies
can provide valuable insights into the effectiveness of the system, as well as the user
experience and user satisfaction.

In recent years, there has been growing interest in using simulation techniques to
test and evaluate recommender systems. Simulations can provide a more controlled
and reproducible environment for testing, as well as the ability to test the system under
a wide range of scenarios and conditions. For example, one recent study used agent-
based simulation to evaluate the performance of a recommender system in a simulated
e-commerce environment.

However, even in the industry, there are challenges to performing these types of tests.
Some of these challenges include the lack of ground truth data, the difficulty of defining
appropriate evaluation metrics, and the need to balance competing objectives such as

accuracy, diversity, and serendipity.

5.3 Conclusions of the Thesis & Future Work

The bottom line of this thesis is that a simplistic recommender system which doesn’t
have access to data of more than one user might not be able to reach the quality levels
of Spotify’s algorithm or deal that well with edge cases (users with almost no data, users
with extremely varied preferences), however it performs surprisingly well and can still be
a strong source of discovering new music, without requiring the technology or data that
Spotify has.

Despite the hurdles that arise from the lack of user data, the algorithm produced

by this thesis can still play an important role in improving a user’s exploration of music.

5.3 Conclusions of the Thesis & Future Work

This is primarily achieved because of our algorithm’s ability to generate more obscure and
less popular recommendations on demand, allowing the user to freely explore the music
suggested to them without the recommendations being affected by any societal factors or
biases. Another area where the thesis, in its current state, can prove useful is that of
detailed user statistics generation.

The functionality of this thesis can be expanded on multiple different fronts. On one
hand, music recommendations can be further personalised and improved if we provide
users with the ability to rate the recommendations generated by the RS, as well as any
song they listen to. We could then use said ratings to fine-tune our RS. The drawback of
this approach is that our algorithm would now require some kind of non-volatile memory
in order to store user data.

On the other hand, the thesis can be expanded on the user interface / user experience
(UI/UX) front, by building a web interface from which the user can control the different
parameter of the RS. Within the same UI, we can provide the functionality of personal
statistics discussed earlier in this thesis and showcase a variety of interactive graphs
generated in order to showcase patterns in the user’s listening history.

On a more academic level, the application of cutting edge techniques such as zero-
shot learning might bring this thesis closer, performance-wise, to a commercial music RS.
The way in which the recommender system is tested should also be re-evaluated, with a

bigger group of users participating in the experiment.

Bibliography

(1]

(2]

(3]

(4]

(5]

6]

(7]

(8]

[9]

(10]

(11]

International Federation of the Phonographic Industry. Global Music Report 2022 -
State of the Industry. https://www.ifpi.org/wp-content/uploads/2022/04/IFPI_Global_
Music_Report_2022-State_of_the_Industry.pdf, 2022.

International Federation of the Phonographic Industry. Global Music Report
2012. https://www.musikindustrie.de/fileadmin/bvmi/upload/06_Publikationen/DMR/
ifpi_digital-music-report-2012.pdf, 2012.

Ulrich Dolata. The digital transformation of the music industry. The second decade:
From download to streaming. SOI Discussion Paper 2020-04, Stuttgart, 2020.

Spotify. Spotify Q2 2022 Earnings Update. https://s29.q4cdn.com/175625835/files/
doc_presentation/Q2-2022-Shareholder-Deck-FINAL.pdf, 2022.

Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas xkat Domonkos Tikk.

Session-based Recommendations with Recurrent Neural Networks, 2015.

Maxim Naumov, Dheevatsa Mudigere, Hao Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole Jean
Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherniavskii,
Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko,
Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong kat
Misha Smelyanskiy. Deep Learning Recommendation Model for Personalization and

Recommendation Systems, 2019.

Paul Covington, Jay Adams kat Emre Sargin. Deep Neural Networlks for YouTube Rec-
ommendations. Proceedings of the 10th ACM Conference on Recommender Systems,
New York, NY, USA, 2016.

David Goldberg, David Nichols, Brian M. Oki ka1t Douglas Terry. Using Collaborative
Filtering to Weave an Information Tapestry. Commun. ACM, 35(12):61-70, 1992.

Robinvan Meteren. Using Content-Based Filtering for Recommendation. 2000.

Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang kat Xiangnan He.

Bias and Debias in Recommender System: A Survey and Future Directions, 2020.

Himan Abdollahpouri, Masoud Mansoury, Robin Burke kat Bamshad Mobasher. The

Unfairness of Popularity Bias in Recommendation, 2019.

https://www.ifpi.org/wp-content/uploads/2022/04/IFPI_Global_Music_Report_2022-State_of_the_Industry.pdf
https://www.ifpi.org/wp-content/uploads/2022/04/IFPI_Global_Music_Report_2022-State_of_the_Industry.pdf
https://www.musikindustrie.de/fileadmin/bvmi/upload/06_Publikationen/DMR/ifpi_digital-music-report-2012.pdf
https://www.musikindustrie.de/fileadmin/bvmi/upload/06_Publikationen/DMR/ifpi_digital-music-report-2012.pdf
https://s29.q4cdn.com/175625835/files/doc_presentation/Q2-2022-Shareholder-Deck-FINAL.pdf
https://s29.q4cdn.com/175625835/files/doc_presentation/Q2-2022-Shareholder-Deck-FINAL.pdf

BIBLIOGRAPHY

(12]

(13]

(14]

[15]

(16]

(17]

(18]

Alessandro B. Melchiorre, Eva Zangerle kat Markus Schedl. Personality Bias of Music
Recommendation Algorithms. ogAida 533-538, 2020.

Robin Burke. Hybrid Recommender Systems: Survey and Experiments. User Modeling
and User-Adapted Interaction, 12, 2002.

K. Pyrovolakis, P. Tzouveli kat G. "Stamou (2021), "Mood detection analyzing lyrics
and audio signal based on deep learning architectures, ” 2020 25th International
Conference on Pattern Recognition (ICPR)". 2021, 10.:9363-9370, 2021.

"K Pyrovolakis ka1 G Stamou" P Tzouveli. Multi-Modal Song Mood Detection with Deep
Learning. Sensors 22 (3), 1065(3):35-43, 2009.

Christopher C. Johnson. Logistic Matrix Factorization for Implicit Feedback Data.
2014.

Rachel M. Bittner kat Juan J. Bosch. Generalized Metrics for Single-fO Estimation

Evaluation. International Society for Music Information Retrieval Conference, 2019.

James Mclnerney, Benjamin Lacker, Samantha Hansen, Karl Higley, Hugues
Bouchard, Alois Gruson kat Rishabh Mehrotra. Explore, Exploit, and Explain: Per-
sonalizing Explainable Recommendations with Bandits. Proceedings of the 12th ACM
Conference on Recommender Systems, RecSys ’18, oeAiba 31-39, New York, NY, USA,
2018. Association for Computing Machinery.

[19] Antonia Saravanou, Federico Tomasi, Rishabh Mehrotra kat Mounia Lalmas. Multi-

Task Learning of Graph-based Inductive Representations of Music Content. Proceed-
ings of the 22nd International Society for Music Information Retrieval Conference,
oeAibeg 602-609, Online, 2021. ISMIR.

[20] Alessandro B. Melchiorre, Navid Rekabsaz, Emilia Parada-Cabaleiro, Stefan Brandl,

(21]

[22]

(23]

Oleg Lesota xkat Markus Schedl. Investigating gender fairness of recommendation
algorithms in the music domain. Information Processing & Management, 58(5):102666,
2021.

Andres Ferraro, Xavier Serra kat Christine Bauer. Brealk the Loop: Gender Imbalance
in Music Recommenders. Proceedings of the 2021 Conference on Human Information
Interaction and Retrieval, oeAida 249-254, New York, NY, USA, 2021. Association for
Computing Machinery.

Oleg Lesota, Alessandro Melchiorre, Navid Rekabsaz, Stefan Brandl, Dominik
Kowald, Elisabeth Lex kat Markus Schedl. Analyzing Item Popularity Bias of Mu-
sic Recommender Systems: Are Different Genders Equally Affected? Fifteenth ACM

Conference on Recommender Systems. ACM, 2021.

Dominik Kowald, Markus Schedl kat Elisabeth Lex. The Unfairness of Popularity Bias
in Music Recommendation: A Reproducibility Study, oeAibeg 35-42. 2020.

BIBLIOGRAPHY

[24]

[25]

[26]

(27]

(28]

[29]

[30]

Lex Beattie, Dan Taber kat Henriette Cramer. Challenges in Translating Research to
Practice for Evaluating Fairness and Bias in Recommendation Systems. Proceedings
of the 16th ACM Conference on Recommender Systems, RecSys 22, oeAida 528-530,
New York, NY, USA, 2022. Association for Computing Machinery.

Maryam Aziz, Alice Wang, Aasish Pappu, Hugues Bouchard, Yu Zhao, Benjamin
Carterette kat Mounia Lalmas. Leveraging Semantic Information to Facilitate the Dis-
covery of Underserved Podcasts. Proceedings of the 30th ACM International Conference
on Information &; Knowledge Management, CIKM 21, ceAida 3707-3716, New York,
NY, USA, 2021. Association for Computing Machinery.

Spotify APIL https://developer.spotify.com/documentation/web-api/.

Kaggle.com - 8+ M. Spotify Tracks, Genre, Audio Features. https://www.kaggle.com/

datasets/maltegrosse/8-m-spotify-tracks-genre-audio- features.

Spotify Data Rights and Privacy Settings. https://support.spotify.com/us/article/

data-rights-and-privacy-settings/.

Preetam Nandy, Divya Venugopalan, Chun Lo kat Shaunak Chatterjee. A/B Testing

Jfor Recommender Systems in a Two-sided Marketplace, 2021.

Al Crowd - Spotify Million Playlist Dataset Challenge. https://www.aicrowd.com/
challenges/spotify-million-playlist-dataset-challenge.

https://developer.spotify.com/documentation/web-api/
https://www.kaggle.com/datasets/maltegrosse/8-m-spotify-tracks-genre-audio-features
https://www.kaggle.com/datasets/maltegrosse/8-m-spotify-tracks-genre-audio-features
https://support.spotify.com/us/article/data-rights-and-privacy-settings/
https://support.spotify.com/us/article/data-rights-and-privacy-settings/
https://www.aicrowd.com/challenges/spotify-million-playlist-dataset-challenge
https://www.aicrowd.com/challenges/spotify-million-playlist-dataset-challenge

	Abstract
	Acknowledgements
	Introduction
	English
	Ελληνικά

	Background
	Recommender Systems
	Collaborative Filtering
	Content-Based Filtering
	Hybrid Approaches

	Recommending New Music
	The Spotify Recommendation Ecosystem
	Bias in Music Recommendation Systems

	Methods
	Model Overview
	The 8 Million Song Dataset
	Data Acquisition
	Pre-Processing
	Audio Features
	Artist Popularity & Following
	Artist Vectors

	User Listening History
	Pre-Processing
	Personalised Statistics
	Automated Clustering & User Vectors

	Making recommendations
	Exploring new genres

	Results and Analysis
	Spotify-based Evaluation
	R-Precision
	Evaluating the Best Parameters for R-Precision Optimisation
	Drawbacks of R-Precision

	User-based Evaluation
	Results for Different Similarity Settings
	Results That Ignore Artist Following
	Comparison With Spotify

	Discussion
	The Importance of User Data & the Cold Start Problem
	Testing Recommender Systems
	Conclusions of the Thesis & Future Work

	Bibliography

