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Abstract

In the present thesis, a numerical scheme for the Free-Surface Euler system in general
bathymetry is presented. The σ-coordinate is generalized in a layer-wise manner and the
Generalized-Coordinate Euler system (GCE) is proposed. The system is treated by a
standard operator splitting technique with the addition of a layer kinematic scheme.

As a result, the GCE is split into the Multilayer Shallow Water Equations (mSWE),
followed by the proposed Vertical Remeshing Operator (VRO) and the standard Pres-
sure Correction Operator (PCO). Those three operators constitute the Semi-Lagrangian
Splitting scheme (SLS).

The mSWE and VRO are solved by two separate Finite Volume schemes. The PCO is
solved by a partially implicit approach, followed by the solution of a Poisson-like equation
on a staggered grid through a Finite Difference method.

The SLS’s performance is tested on the wave propagation over variable bathymetry
and wave-current interaction over a flat bottom cases.
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Chapter 1

Introduction

Free surface wave

Bottom topography

Shear current

Figure 1.1: The physical problem

1.1 Motivation

In coastal areas, water flows are often dominated by the presence of strong currents
and steep bathymetries. At the same time, free surface waves and their interaction with
human-made structures is of great importance for safety and engineering purposes. As
such, the development of efficient numerical models that accurately capture those phenom-
ena is highly motivated. Among the difficulties in the description of such models is the
inclusion of complex interactions (wave-bottom,wave-current) that are inherently nonlinear
and often of multi-scale nature. Because of those complications, great care must be given
in order to strike a balance between the model’s ability to describe those phenomena and
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its computational efficiency.

Specifically, it has been recently established that the presence of a shear currents
greatly influences the propagation of free-surface waves [1, 2] and thus, suitable numerical
models for the simulation of wave-current interaction have been proposed [3]. Under the
assumption of constant shear (linear current profile), extended mild slope [4, 5] and couple
mode [6] models have been proposed and experimentally validated [7]. Extensions of the
couple mode system for the case of waves propagating in the presence of currents with
general vertical profiles have also been proposed [8, 9].

In the present work, a more direct approach is adopted. The standard Euler equations
describing the motion of an incompressible fluid of constant density are directly discretized
and a numerical model able to simulate rotational flows of arbitrary nature is obtained.
The model’s only main restriction is that both the free surface and bottom topography
boundaries are considered to be single valued functions of the horizontal coordinate. This
system is referred to as the Free-Surface Euler system (FSE) and will be the starting point
of the present approach.

1.2 Approaches to mathematical modeling

When constructing a numerical method for a physical problem, two approaches appear
to be prevalent. The first one is to propose a mathematical model that is tailor made to
capture the physics of the problem and then propose a suitable discretization based on
that. The second one is to choose a more universal numerical method and then apply it to
the problem at hand with some minuscule problem-specific modifications.

While the former approach ensures that all the relevant quantities are modeled and
handled properly, the proposed numerical method is often not optimal due its case-specific
construction.

On the other hand, the adoption of a more universal method comes with a high base
quality, because established methods become over time more robust and computationally
efficient due to the accumulated amount of research. The main deficit of the second ap-
proach is that choosing the proper numerical method from a finite set of popularized ones
means that its application on a specific problem may require some modifications. That
can either alter its performance (stability, efficiency) or worsen its ability to capture the
underlying physics.

Regarding the free surface water flows, those two different approaches are easily iden-
tified.

The first one consists of a series of mathematical models whose complexity ranges from

10
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the Shallow Water Equations [10] and the Boussinesq-type models [11, 12, 13] to more com-
plex formulations that are able to describe flows with arbitrary vertical structure [14, 15].
Those models are designed to maximize their capability to capture the physics with careful
mathematical modeling, while lowering the complexity (or size) of the variables/operators
in use. The numerical resolution of these methods, though, is often times suboptimal due
to the fact that the unique form of those equations poses additional difficulties on the
discretization.

The other approach falls within the general framework of the Computational Fluid
Dynamics (CFD). Based on that, one chooses to solve a specific set of field equations
that describe the fluid motion on a specific level of complexity. Common methods include
Laplace, the Euler and the Navier-Stokes equations. Those equations are ubiquitous in the
CFD community and thus standard numerical methods (Finite Elements, Finite Volume,
Spectral, Particle methods e.t.c.) can be employed to solve them.

The main feature that is unique to the problem at hand is the incorporation of the free
surface. One category of methods are the free surface capturing ones: the Volume of Fluid
method (VoF) [16], the Level Set method [17] and the Marker-and-Cell method (MAC)
[18]. Other approaches include the so called mesh-moving methods, either in the Arbitrary
Lagrangian Eulerian (ALE) framework [19] or using the well known in the oceanographic
community σ-coordinate system1 [21].

Having said that, it is the firm belief of the author that between those two approaches
exists a significant unexplored design space of methods that may prove to be highly effec-
tive. Bearing that in mind, the general strategy and scope of the thesis will be presented
in the next sections.

1.3 Main framework and scope of the thesis

As it was briefly expressed in §1.1, the main goal of the thesis is to propose a nu-
merical method for the Free-Surface Euler system, able to capture rotational phenomena
of oceanographic interest. After the brief description of §1.2 regarding the already exist-
ing approaches to the free surface problem, the adopted approach/framework is left to be
specified.

For the purposes of the present work, the splitting strategy is employed, where a
complicated problem (or operator) is divided into a set of sub-problems that are easier
to handle. An ubiquitous example from CFD is the projection method of Chorin [22],
where the incompressible Navier-Stokes operator is splitted into the advection+diffusion
part and the pressure+divergence free one. The last one is transformed into a Poisson

1For the connection between those two approaches see [20].
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equation, which is heavily analysed both in the theoretical and numerical aspect. That
kind of approach generally gives rise to schemes with block structure that are easier to
analyse, build and maintain because their components (if chosen carefully) are of interdis-
ciplinary nature and thus are heavily supported by the bibliography. This serves as the
main inspiration for the proposed numerical method.

Due to the aforementioned advantages, the main scope of the thesis is to present a
splitting scheme for the Free-Surface Euler system that correctly captures both the veloc-
ity field and free surface kinematics in a straightforward and mathematically consistent
manner. When possible, the mathematical modeling is done in a way so that the fun-
damental building blocks of the proposed method are either present in the literature or
straightforward in their description.

Following the discussion of §1.2 the splitting scheme is designed so that one of the
resulting subsystems coincides with an already existent simplified free surface model, which
as will be illustrated in the maid body of thesis, is the classic Shallow Water Equations
(SWE). That ensures a seamless incorporation of the free surface kinematics into the solver
and combines the approaches mentioned in §1.2.

Free-Surface Euler Equations Multilayer Shallow Water Equations (mSWE)

Vertical Remeshing Operator (VRO)

Pressure Correction Operator (PCO)

operator splitting
+kinematic scheme

Figure 1.2: Structure of the proposed model

1.4 Thesis outline

The thesis is structured as follows:

In Chapter 2 the Free-Surface Euler system (FSE) is presented and various vertical
coordinate systems are described. The σ-coordinate counterpart of the FSE is generated.

In Chapter 3 the novel scheme for the FSE is proposed: The σ-coordinate transfor-
mation is generalized in a layer-wise manner and the Generalized-Coordinate Euler system

12
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(GCE) is generated. Using an operator splitting technique combined with a layer kinematic
scheme, the Semi-Lagrangian Splitting scheme (SLS) is proposed. The SLS consists of 3
basic operators: the Multilayer Shallow Water Equations (mSWE), the Vertical Remesh-
ing Operator (VRO) and the Pressure Correction Operator (PCO). Those operators are
separately described in their corresponding chapters that follow.

In Chapter 4 the numerical scheme for the first operator, the mSWE is described.
The proposed discretization is based on the consecutive solution of a set of regular Shallow
Water Equations (SWE). Because of that, a second-order Finite Volume solver for the
SWE is described in detail, followed by its multilayer extension.

In Chapter 5 the VRO scheme is described. The remeshing technique and its dis-
cretization by a simple one-speed Finite Volume solver are presented.

In Chapter 6 the PCO is solved. The role of the operator is discussed and the numerical
approach for its solution (partial implicit formulation, grid staggering, finite difference
scheme) is described.

In Chapter 7 the use of the SLS as a numerical wave tank is presented. Relaxation zone
techniques are discussed and the fully discrete time-marching scheme is formed. Discrete
dispersion relations are presented and the properties of the scheme are analyzed.

In Chapter 8 the SLS is tested in both the propagation over general bathymetry and
in the wave-current interaction cases.

In Chapter 9 conclusions and directions for future research are discussed.

13



Chapter 2

The Free-Surface Euler system

In the present chapter the Free-Surface Euler system (FSE) is described. The equations
of motion are first presented in the cartesian frame and then other coordinate systems are
discussed, focusing on the ubiquitous in oceanography σ-coordinate transformation.

x

z

z = η(x, t)

z = −h(x)

H(x, t)

∇ · u = 0

ρ
Du
Dt

+ ρg +∇p = 0

∂η

∂t
+ ũ

∂η

∂x
− w̃ = 0 and p̃ = 0

ŵ + û
∂h

∂x
= 0

Figure 2.1: The free surface setup
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2.1 Description in cartesian coordinates

As mentioned, we focus on the motion of a homogeneous fluid of constant density ρ
that is vertically bounded by the bottom, z = −h(x) and the free surface, z = η(x, t).
Those surfaces alongside the (cartesian) coordinate system can be seen in Fig.2.1. An
important restriction that is imposed on that configuration is the positivity of the water
column height: H

def
== η + h ≥ 0.

If the viscosity effects are neglected, the flow in the domain can be described by the
Euler equations:

∂u

∂x
+

∂w

∂z
= 0 (2.1a)

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+

1

ρ

∂p

∂x
= 0 (2.1b)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
+

1

ρ

∂p

∂z
+ g = 0 (2.1c)

where u,w are the horizontal and vertical components of the velocity, p is the pressure
and g is the gravitational constant.

The system is then complete with the addition of the kinematic and dynamic free
surface boundary conditions:

∂η

∂t
+ ũ

∂η

∂x
− w̃ = 0 (2.2)

p̃ = 0 (2.3)

and the bottom no-through boundary condition:

û
∂h

∂x
+ ŵ = 0 (2.4)

Where (̃·) = [(·)]z=η and (̂·) = [(·)]z=−h are the free surface and the bottom trace
operators.

By defining the dynamic pressure as q
def
==

p

ρ
− g(η− z) the Free-Surface Euler system
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(FSE) is generated:

∂u

∂x
+

∂w

∂z
= 0 (2.5a)

Du

Dt
+

∂q

∂x
+ g

∂η

∂x
= 0 (2.5b)

Dw

Dt
+

∂q

∂z
= 0 (2.5c)

BC: q̃ = 0 (2.5d)
∂η

∂t
+ ũ

∂η

∂x
− w̃ = 0 (2.5e)

û
∂h

∂x
+ ŵ = 0 (2.5f)

with the material derivative defined as: D(·)
Dt

def
==

∂

∂t
(·) + u

∂

∂x
(·) + w

∂

∂z
(·)

Note that in the FSE described above, the fluid motion is completely contained be-
tween two boundaries (the free surface and the bottom) that are considered to be singled
valued functions of the horizontal coordinate x. From a physical point of view, that as-
sumption renders the description of overturning/breaking waves impossible, but greatly
simplifies the model. In order to model such complex phenomena, one must employ the
two-phase CFD methodologies that were mentioned in §1.2.

In the present model, no such method is used and thus the fluid is considered to
be totally contained within a vertically compact (albeit moving and deforming) domain.
This enables the design of methods for the vertical resolution of the system that adequetely
incorporate the implicit character of the domain. An overview of those methods is presented
in the next section.
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2.2 Vertical coordinate systems

An apparent difficulty of the FSE (and the free surface models in general) is the fact
that the equations describing the motion of the fluid are defined in a moving and deforming
domain. Since the two boundaries (i.e. the free surface and the bottom) bound the fluid
across the vertical axis, the coordinate system used for that direction plays an important
role in the numerical scheme that will be employed.

ρ0

ρ1

ρ2

ρ3

ρ4

z-model ρ-model σ-model

Figure 2.2: Vertical coordinate systems

Following [23], the three main vertical coordinate systems that are used within the
oceanographic community are briefly described. Those systems fall within the Generalized
Vertical Coordinate (GVC) framework introduced by Starr [24]. A GVC-like method for
the FSE is also presented in Appendix A.

2.2.1 z-models (Cartesian frame)

Popularized by the work of Bryan [25] and used most notably in the GFDL Modular
Ocean Model (MOM) [26], the use of Cartesian coordinates has been proven robust and
efficient due to the natural discretization of state equations and easy grid structure.

The incorporation, though, of the free surface and bottom topography can be quite
cumbersome because those surfaces intersect the cartesian grid and special care must be
taken when the discretization near them is performed (see e.g. [27]).
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2.2.2 ρ-models (Lagrangian frame)

In the so-called isopycnal models, the domain is split into horizontal layers, so that the
fluid density is constant within each of them. This means that mixing between the layers
is prohibited and thus the layer interfaces are forced to move in a Lagrangian way. Notable
contributions to isopycnal models include the works of Hallberg [28] and Bleck [29].

This coordinate system is boundary-fitted and the advection of tracers can easily be
incorporated due to the Lagrangian nature of the layers. The main disadvantage, though,
derives from the fact that the isopycnal interfaces are of an arbitrary shape and thus
discretization of equations (and gradients) can be rather difficult if large deformations
occur.

2.2.3 σ-models (Terrain following)

Pioneered by Phillips [21], the σ coordinate is introduced so that the the water column
is mapped on a fixed interval (usually [−h, η] 7→ [0, 1], using the notation of Fig.2.1). The
most well-known oceanographic application of this method is in the Princeton Ocean Model
(POM) [30].

Due to their terrain-following nature, the σ-models incorporate the boundaries in an
analytic way and thus are ideal for coastal and engineering applications. Regarding the
method’s disadvantages, problems may arise in the numerical scheme as a consequence
of the curvilinear nature of the coordinates. A classic example of that is the well-known
problem in the evaluation of the horizontal pressure gradient [31].

Because the scheme proposed herein can be seen as a generalization of the σ-coordinate
method, its application on the FSE will be presented in the next section.
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2.3 The σ-coordinate system

The standard σ-coordinate transformation is given by:

(x, z, t) 7−→ (x′, z′, t′) with:


x′ = x

σ = σ(x, z, t) =
z + h(x)

H(x, t)
t′ = t

 (2.6)

x

z

x′

σ

z = −h(x)

z = η(x, t)

σ = 0

σ = 1

x
=

a

x
=

b

x
′
=

a

x
′
=

b

σ = σ(x, z, t) , x′ = x

Figure 2.3: The σ-coordinate transformation

Based on that, the derivatives are transformed through the chain rule:

∂

∂x
=

∂σ

∂x
· ∂

∂σ
+

∂

∂x′
(2.7a)

∂

∂z
=

∂σ

∂z
· ∂

∂σ
(2.7b)

∂

∂t
=

∂σ

∂t
· ∂

∂σ
+

∂

∂t′
(2.7c)

D

Dt
=

∂

∂t′
+ u

∂

∂x′
+

Dσ

Dt
· ∂

∂σ
(2.7d)
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Based on that, the derivatives of the iso-σ surfaces are defined as:

St
def
== H

∂σ

∂t
= −σ∂H

∂t
(2.8a)

Sx
def
== H

∂σ

∂x
=

∂h

∂x
− σ

∂H

∂x
(2.8b)

Sz
def
== H

∂σ

∂z
= 1 (2.8c)

Using the above, the ”conservative” form of the partial derivatives is:

H
∂f

∂t
= H

∂f

∂t′
+ St

∂f

∂σ
=

∂

∂t′
(Hf) +

∂

∂σ
(Stf)−��������

f

(
∂St

∂σ
+

∂H

∂t

)
(2.9a)

H
∂f

∂x
= H

∂f

∂x′
+ Sx

∂f

∂σ
=

∂

∂x′
(Hf) +

∂

∂σ
(Sxf)−��������

f

(
∂Sx

∂σ
+

∂H

∂x

)
(2.9b)

H
∂f

∂z
=

∂f

∂σ
(2.9c)

The last two terms are zero by the definition of eq.(2.8) and thus the material derivative
is written as:

H
Df

Dt
= H

∂

∂t
(f) +H

∂

∂x
(uf) +H

∂

∂z
(wf) =

=
∂

∂t′
(Hf) +

∂

∂x′
(Huf) +

∂

∂σ
(ϖf) (2.10)

Where ϖ is defined by:

ϖ
def
== H

Dσ

Dt
= St + uSx + wSz (2.11)

The ϖ essentially represents the velocity component that is normal to the iso-σ surfaces.
Note that this velocity is relative to the motion of said surfaces (incorporated through the
term St).

2.3.1 Tranformation of operators

Returning to the FSE, its σ-coordinate is presented.

• The differential operators are transformed by directly applying eq.(2.9),(2.10).

– The continuity equation:

H

(
∂u

∂x
+

∂w

∂z

)
= 0⇒ ∂

∂x′
(Hu) +

∂

∂σ
(uSx + w) = 0 (2.12)
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– The horizontal momentum equation:

H
Du

Dt
+H

∂q

∂x
+ gH

∂η

∂x
= 0⇒

⇒ ∂

∂t′
(Hu) +

∂

∂x′

(
Hu2 +

1

2
gH2 +Hq

)
+

∂

∂σ
(ϖu+ Sxq) =

∂h

∂x
gH

(2.13)

– The vertical momentum equation:

H
Dw

Dt
+H

∂q

∂z
= 0⇒ ∂

∂t′
(Hw) +

∂

∂x′
(Huw) +

∂

∂σ
(ϖw + q) = 0 (2.14)

• The boundary conditions’ structure is kept unchanged, but they are written in a
more convenient manner.

– The free surface dynamic condition stays the same: q̃ = 0

– The kinematic conditions are expressed through the use of the velocity ϖ, thus
further reinforcing its physical meaning:

ϖ̃ = w̃ − ∂η

∂t
− ũ

∂η

∂x
= 0 (2.15)

ϖ̂ = û
∂h

∂x
+ ŵ = 0 (2.16)

2.3.2 The Sigma-Coordinate Euler system

Summarizing those results, the Sigma-Coordinate Euler system (SCE) in the domain
(x′, σ) ∈ R× [0, 1] is presented:

∂

∂x′
(Hu) +

∂

∂σ
(w + uSx) = 0 (2.17a)

∂

∂t′
(Hu) +

∂

∂x′

(
Hu2 +

1

2
gH2 +Hq

)
+

∂

∂σ
(ϖu+ Sxq) = gH

∂h

∂x
(2.17b)

∂

∂t′
(Hw) +

∂

∂x′
(Huw) +

∂

∂σ
(ϖw + q) = 0 (2.17c)

BC: ϖ̃ = ϖ̂ = q̃ = 0 (2.17d)
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The Semi-Lagrangian Splitting
scheme

In the present chapter, the mathematical formulation of the proposed Semi-Lagrangian
Splitting scheme (SLS) for the FSE is presented. Since the SLS falls within the broad
family of Hybrid-coordinate / Vertical Lagrangian Remap methods that are used within
the oceanography community, the relevant existing literature is briefly overviewed. After
that, and following the framework of Generalized Vertical Coordinates (GVC), the σ-
coordinate is generalized in a layerwise mannner. The resulting system, combined with a
layer kinematic scheme, is treated through an operator splitting and, finally, the continuous
and discrete forms of the SLS are presented.

3.1 Hybrid coordinate methods

As it was described in §2.2, the three main Generalized Vertical Coordinates (GVC)
each have their corresponding advantages and drawbacks and thus the choice between them
is not always an obvious one. For example, if one decides to use the ρ-model because of its
natural advection of tracers and ability to simulate internal waves, the isopycnal layers are
forced to move in a Lagrangian manner. Even though this may prove to be an excellent
choice for most of the domain, there may areas where large deformations or singularities
occur. Those problems are easily overcome if another GVC is used in those regions. In
that case, one would like to adopt a hybrid approach that switches between the basic GVC
systems based on the corresponding flow configuration.

This lead to the introduction of a hybrid ρ/z-model by Bleck [32], where if a layer’s
thickness approaches zero, a remeshing technique on the fixed z-grid is performed and thus
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the layers are redefined. This Vertical Lagrangian Remapping (VLR) technique has been
used with success in the HYCOM [33] and the MOM6 [34] ocean models and has inspired
a wide class of methods like the frequency-filtering ALE schemes of [35] and [36]. For an
extensive (and recent) review of the VLR methods in use for oceanographic applications,
we refer to [37].

Even though the majority of the VLR methods have been applied to hydrostatic
models, a small number of schemes have also been constructed for models free of that
assumption. Those include the atmospheric models of [38] and [39] and the multilayer
approach of [40]. The last one bears a lot of similarities regarding the structure of the
operator-splitting scheme (Multilayer SWE + remapping + Projection step) used in the
method proposed herein, but the derivation and numerical solution of those operators differ
in a significant way.

A VLR-like technique for the FSE will be presented in then next sections.

3.2 The layerwise Generalized-Coordinate Euler system

Consider a set of functions {zj(x, t)}j=Nl
j=0 that produce a layer-like partition of the

water column as follows:

−h(x) = z0(x, t) ≤ · · · ≤ zj(x, t) ≤ · · · ≤ zNl
(x, t) = η(x, t) (3.1)

Now, consider a set of constant in space and time numbers {ξj}j=Nl
j=0 that form a

tessellation of the interval [0, 1]:

0 = ξ0 ≤ · · · ≤ ξj ≤ · · · ≤ ξNl
= 1 (3.2)

Based on those, the quantities {Lj}j=Nl−1
j=0 can be defined as:

Lj(x, t)
def
==

zj+1 − zj
ξj+1 − ξj

=
∆zj
lj

(3.3)

with: lj
def
== ξj+1 − ξj (3.4)

Note that by definition of the ξj , the lj form a partition of unity:
∑

lj = 1. The
quantities Lj play an important role in the present layerwise approach and will be referred
to as the layer indicators.
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l0L0

l1L1

l2L2

l3L3

l4L4

z0 = −h(x)

z1

z2

z3

z4

z5 = η(x, t)

Figure 3.1: Sample layer configuration for Nl = 5

Now, let us consider a smooth mapping that interpolates those layer interfaces:

(x′, ξ, t′) 7−→(x, z, t) with:


x = x′

z = PΞ(x′, ξ, t′)
t = t′

 (3.5)

so that: PΞ(x′, ξj , t′) = zj(x
′, t′) , j = 0, ..., Nl − 1 (3.6)

In order to transform the derivatives, we define (see Appendix A):

L
def
==

∂PΞ
∂ξ

(3.7a)

Ξt
def
== −∂PΞ

∂t′
(3.7b)

Ξx
def
== −∂PΞ

∂x′
(3.7c)

Note that the layer indicators are related to the quantities L(x′, ξ, t′) through:

Lj
(3.3)
==

∆zj
lj

(3.7a)
==

1

lj

∫ ξj+1

ξj

Ldξ (3.8)
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Following the analysis of Appendix A, the derivatives are transformed:

L
∂f

∂t
= L

∂f

∂t′
+ Ξt

∂f

∂ξ
=

∂

∂t′
(Lf) +

∂

∂ξ
(Ξtf) (3.9a)

L
∂f

∂x
= L

∂f

∂x′
+ Ξx

∂f

∂ξ
=

∂

∂x′
(Lf) +

∂

∂ξ
(Ξxf) (3.9b)

L
∂f

∂z
=

∂f

∂ξ
(3.9c)

and then similarly:

L
Df

Dt
= L

∂

∂t
(f) + L

∂

∂x
(uf) + L

∂

∂z
(wf) =

=
∂

∂t′
(Lf) +

∂

∂x′
(Luf) +

∂

∂ξ
(ϑf) (3.10)

with the velocity that is normal the the coordinate lines being:

ϑ
def
== w + uΞx + Ξt (3.11)

Note that the role of ϑ is essentially the same as that of ϖ in the σ-coordinate transfor-
mation.

Thus, the FSE is rewritten in the domain (x′, ξ) ∈ R× [0, 1] as:

∂

∂x′
(Lu) +

∂

∂ξ
(w + uΞx) = 0 (3.12a)

∂

∂t′
(Lu) +

∂

∂x′

(
Lu2 +

1

2
gL2 + Lq

)
+

∂

∂ξ
(ϑu+ Ξxq) = gL

∂

∂x
(L− η) (3.12b)

∂

∂t′
(Lw) +

∂

∂x′
(Luw) +

∂

∂ξ
(ϑw + q) = 0 (3.12c)

BC: ϑ̃ = ϑ̂ = q̃ = 0 (3.12d)

We dub the above system the Generalized-Coordinate Euler system (GCE).

From this point forward, in order to shorten the notation, the primes when the coor-
dinates x′, t′ are referenced are dropped.

3.2.1 Getting the SCE from the GCE

A quick inspection reveals that the SCE in the form of eq.(2.17) and the GCE in
the form of eq.(3.12) are extremely similar. Indeed, if ones sets PΞ = −h + ξH (i.e.
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L = H, ∀ξ ∈ [0, 1]), the two coordinate transformations coincide and the two systems are
fully equivalent.

Note that the equality L = H also implies Lj = H, ∀j. This is indeed compatible
with the nature of the Lj because, by the definition of eq.(3.3), the water column height
is written as a convex combination of the layer indicators:

H =

Nl−1∑
j=0

ljLj with:
Nl−1∑
j=0

lj = 1 (3.13)

Another insightful equality is:

σj+1(x, t)− σj(x, t)

lj
=

Lj(x, t)

H(x, t)
(3.14)

where: σj = (zj + h)/H (3.15)

Based on that, if the layer indicators are close to each other (i.e. Lj ≈ H), then the lj
represent the spacing of the layers in the σ coordinate system: lj ≈ σj+1 − σj .

That being said, the layer-wise approach produces systems that are generalizations of
the regular σ transformation by adding additional degrees of freedom through the inner
layer interfaces {zj(x, t)}Nl−2

j=1 .

An even more general framework is presented in Appendix A, where both transforma-
tions are produced as special cases of a broader approach.

3.2.2 Variable reconfiguration

Although the set in the form of eq.(3.12) appears to be in a convenient form, the
variable ϑ must be defined explicitly. If this is achieved through eq.(3.11), both velocities
u,w are involved, thus further complicating the system.

In order to eliminate the vertical velocity w from the definition of ϑ, we use the
continuity equation, alongside the the bottom boundary condition:

{
ϑ = w + uΞx + Ξt

ϑ̂ = 0

}
(3.12a)⇐⇒

ϑ = −
∫ ξ

0

[
∂L

∂t
+

∂

∂x
(Lu)

]
dξ

ŵ + ûΞ̂x = 0

⇐⇒ (3.16)

⇐⇒


∂L

∂t
+

∂

∂x
(Lu) +

∂ϑ

∂ξ
= 0

ϑ̂ = 0

ŵ + ûΞ̂x = 0

 (3.17)
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Incorporating eq.(3.17) into the set of eq.(3.12) allows the GCE to be rewritten in the
following form:

∂U

∂t
+

∂

∂x
F (U) +

∂

∂ξ
G(U, ϑ) +∇xξ[q;L] = S(U) (3.18a)

div(U) = 0 (3.18b)
BC: ϑ̃ = ϑ̂ = q̃ = 0 (3.18c)

ŵ + ûΞ̂x = 0 (3.18d)

The primary variables are noted as U =
[
L P Q

]T
=
[
L Lu Lw

]T and the rest
of the terms are given by:

F (U) =

 Lu
Lu2 + 1

2gL
2

Luw

 (3.19a)

S(U) =

 0

gL
∂

∂x
(L− η)

0

 (3.19b)

G(U ;ϑ) =

 ϑ
ϑu
ϑw

 (3.19c)

∇xξ[q;L] =


0

∂

∂x
(Lq) +

∂

∂ξ
(Ξxq)

∂q

∂ξ

 (3.19d)

div(U) =
∂

∂x
(Lu) +

∂

∂ξ
(w + uΞx) (3.19e)

Note that the GCE in the form of eq.(3.18),(3.19) is free of any additional definitions
aside from that of Ξx given in eq.(3.7c) as the slope of the iso-ξ surfaces.
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3.3 Layer kinematics

Having formulate the GCE, we now need to produce a layer kinematic scheme. In
order to reveal the underlying physics and the role of ϑj = ϑξ=ξj , eq.(3.17) is integrated in
an arbitrary layer [ξj , ξj+1]:

∂Lj

∂t
+

∂

∂x
(Lu)j +

ϑj+1 − ϑj

lj
= 0 (3.20)

where: (Lu)j
def
==

1

lj

∫ ξj+1

ξj

(Lu)dξ (3.21)

As mentioned, eq.(3.20) reveals the main role of the parameter ϑj , as it represents the
amount of mass that gets transferred between layers j − 1 and j. Setting ϑj = 0 means
that the horizontal flux of mass results in the evolution of the layer’s height as in:

∂Lj

∂t
+

∂

∂x
(Lu)j = 0 (3.22)

The main advantage of this approach is that by simply moving the layers in the
aforementioned way, the ξ-advection becomes unnecessary and the free surface kinematic
condition is satisfied implicitly. Τhis approach is essentially a Lagrangian one, as the layer
indicators are fully incorporated into the system and are freely evolved in time and space.

ljLj

uj
ϑj = 0

ϑj+1 = 0

ljL
′
j ϑj 6= 0

ϑj+1 6= 0

ljL
′′
j

∂L

∂t
+

∂

∂x
(Lu) = 0

∂L

∂t
+

∂ϑ

∂ξ
= 0

Initial Lagrangian Remeshed

Figure 3.2: The layer kinematic scheme

On top of that, one may follow the Lagrangian evolution by a remeshing step. Within
that, the layers are forced into a prescribed shape, thus resulting in mass exchange between
the layers. This is expressed by the second part of eq.(3.20):

∂Lj

∂t
+

ϑj+1 − ϑj

lj
= 0 (3.23)
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It must be noted that this Lagrangian technique followed by an (optional) remeshing
falls within the VLR framework mentioned in §3.1 and reviewed in [37].

In order to present a kinematically compatible scheme, the Lagrangian and remeshing
steps are incorporated into the x and ξ advection steps respectively.

3.4 The operator splitting formulation

An approach to handle multidimensional problems with pressure coupling is the well-
known projection method of Chorin [22, 41], where the advection terms are splitted from
the pressure ones. The multidimensional advection is handled through the dimensional
splitting technique (see e.g. [42, §19.5]).

This standard operator splitting technique, combined with the layer kinematic scheme
(see Figure 3.2) as it was discussed in the previous section, splits the system of eq.(3.18)
into the three main operators and the Semi-Lagrangian Splitting scheme (SLS) is
formed:

1. The x advection, alongside the Lagrangian layer updating:

∂U

∂t
+

∂

∂x
F (U) = S(U) (3.24a)

2. The ξ advection, alongside the vertical remeshing:

∂U

∂t
+

∂

∂ξ
G(U, ϑ) = 0 (3.25a)

BC: ϑ̃ = ϑ̂ = 0 (3.25b)

3. The pressure correction step, in which the layers are considered static:

∂U

∂t
+∇xξ[q;L] = 0 (3.26a)

div(U) = 0 (3.26b)
BC: q̃ = 0 (3.26c)

ŵ + ûΞ̂x = 0 (3.26d)
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3.5 Discretization of variables

In order to present the discrete scheme, we consider the orthogonal tessellation of the
domai Ω = [a, b]× [0, 1] ⊂ R2 that consists of N = Nx ×Nl cells:

Ω =
⋃

(i,j)∈I

Ωij with: I =
{
(i, j) ∈ N2 : 0 ≤ i < Nx and 0 ≤ j < Nl

}
(3.27)

where: Ωij = [xi, xi+1]× [ξj , ξj+1] (3.28)

The cell edges are spaced (see Figure 3.3) in the following way:

∆xi = xi+1 − xi (3.29)
lj = ξj+1 − ξj (3.30)

Note that the ξ partition is consistent with the definition of ξj , lj in §3.2.

In order to produce the discrete cell-averaged variables Uij we integrate:

Uij(t) =
1

∆xi × lj

∫ ξj+1

ξj

∫ xi+1

xi

U(x, ξ, t)dxdξ (3.31)

While the double index i, j implies integration in both arguments x, ξ, the semi-discrete
forms will also be used:

Ui(ξ, t) =
1

∆xi

∫ xi+1

xi

U(x, ξ, t)dx (3.32)

Uj(x, t) =
1

lj

∫ ξj+1

ξj

U(x, ξ, t)dξ (3.33)

Note that this notation is consistent with eq.(3.8).

Thus, the primary variables Uij = [Lij , Pij , Qij ] = [Lij , (Lu)ij , (Lw)ij ]
T are defined in

a cell-averaged way. On the other hand, the variables q, ϑ are placed on the faces of the
cells:

ϑj(x, t) = ϑ(x, ξj , t) (3.34)

ϑij(t) =
1

∆xi

∫ xi+1

xi

ϑj(x, t)dx (3.35)

and:

qi(ξ, t) = q(xi, ξ, t) (3.36)

qij(t) =
1

lj

∫ ξj+1

ξj

qi(ξ, t)dξ (3.37)
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The velocity ϑ is placed in the layer interfaces in accordance with eq.(3.20) and the
pressure q is placed in the vertical faces for reasons that will be presented in §6.2.

Regarding the temporal resolution, timestepping over the discrete intervals [tn, tn+1]

with ∆tn
def
== tn+1 − tn is used. The variables at each timestep are noted as:

Un(x, ξ) = U(x, ξ, tn) (3.38)

The same notation (·)n is used for the discrete and the semi-discrete forms.

Ωi

∆xi−1 ∆xi ∆xi+1

lj−1

lj

lj+1

xi−1 xi xi+1 xi+2

ξj−1

ξj

ξj+1

ξj+2

Ui−1,j−1

Ui−1,j

Ui−1,j+1

Ui,j−1

Ui,j

Ui,j+1

Ui+1,j−1

Ui+1,j

Ui+1,j+1

q i−
1,
j−

1

q i−
1,
j

q i−
1,
j+

1

q i,j
−1

q i,j

q i,j
+
1

q i+
1,
j−

1

q i+
1,
j

q i+
1,
j+

1

q i+
2,
j−

1

q i+
2,
j

q i+
2,
j+

1

ϑi−1,j−1

ϑi−1,j

ϑi−1,j+1

ϑi−1,j+2

ϑi,j−1

ϑi,j

ϑi,j+1

ϑi,j+2

ϑi+1,j−1

ϑi+1,j

ϑi+1,j+1

ϑi+1,j+2

Figure 3.3: Variable indexing on the 2D mesh

31



Master thesis Chapter 3

3.6 The discrete Semi-Lagrangian Splitting scheme

Having discussed the discretization of variables in the computational mesh, the discrete
forms of the three main operators are presented. The operators associated with the x and
ξ advection are averaged with respect to only one variable, while the pressure correction
step is presented in its continuous form.

(1/3): The operator of eq.(3.24) in the j-discrete form is:
∂

∂t
(Lj) +

∂

∂x
(Ljuj) = 0 (3.39a)

∂

∂t
(Ljuj) +

∂

∂x

(
Lju

2
j +

1

2
gL2

j

)
= gLj

∂

∂x
(Lj − η) (3.39b)

∂

∂t
(Ljwj) +

∂

∂x
(Ljujwj) = 0 (3.39c)

This is nothing but the Multilayer Shallow Water Equations (mSWE) found in [43, 44] and
other sources. Chapter 4 is dedicated to its numerical solution.

(2/3): The operator of eq.(3.25) in the i-discrete form is:
∂

∂t
(Li) +

∂

∂ξ
(ϑi) = 0 (3.40a)

∂

∂t
(Liui) +

∂

∂ξ
(ϑiui) = 0 (3.40b)

∂

∂t
(Liwi) +

∂

∂ξ
(ϑiwi) = 0 (3.40c)

BC: ϑ̂i = ϑ̃i = 0 (3.40d)

We dub this the Vertical Remeshing Operator (VRO). It is recognised to be a hyperbolic
conservation law and its numerical treatment will be described in detail in Chapter 5.

(3/3): The pressure correction step of eq.(3.26) in the fully continuous form is:
∂

∂t
(Lu) +

∂

∂x
(Lq) +

∂

∂ξ
(Ξxq) = 0 (3.41a)

∂

∂t
(Lw) +

∂q

∂ξ
= 0 (3.41b)

∂

∂x
(Lu) +

∂

∂ξ
(w + uΞx) = 0 (3.41c)

BC: qξ=1 = 0 (3.41d)
(w + uΞx)ξ=0 = 0 (3.41e)

This operator is noted as the Pressure Correction Operator (PCO). Its discrete form will
be discussed in detail in Chapter 6.
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Chapter 4

The Multilayer Shallow Water
Equations

The scope of this chapter is to fully describe the numerical method used for the solution
of the Multilayer Shallow Water Equations (mSWE), as expressed by eq.(3.39):

∂

∂t
(Lj) +

∂

∂x
(Ljuj) = 0 (4.1a)

∂

∂t
(Ljuj) +

∂

∂x

(
Lju

2
j +

1

2
gL2

j

)
= gLj

∂

∂x
(Lj − η) (4.1b)

∂

∂t
(Ljwj) +

∂

∂x
(Ljujwj) = 0 (4.1c)

where: η = H − h =

j<Nl∑
j=0

ljLj

− h (4.1d)

The main feature of the mSWE (that makes its numerical solution somehow difficult)
is the genuine loss of hyperbolicity that occurs through the appearance of complex eigen-
values. This loss of hyperbolicity appears in a lot of relevant flow scenarios and is closely
related to the well-known Kelvin-Helmholtz instabilities [45]. The eigenstructure of the
two-layer model is presented in Appendix B.

The mSWE in its eq.(4.1) form was introduced by Audusse [43] and since then, many
schemes have been proposed for its solution [46, 47]. Although schemes that treat the loss
of hyperbolicity do exist for the two-layer case [48, 49], their extension to an arbitrary
number of layers can be quite cumbersome.

In the present method, the scheme that will be used for the mSWE is based on the
uncoupled solver introduced in [50, 44], where the the mSWE is split into its single-layer
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counterparts, that are then solved independently. This greatly simplifies the scheme, but
special care must be taken when stability is concerned.

The numerical approach to the standard single-layer Shallow Water Equations (SWE)
is described in the following section.

4.1 The Shallow Water Equations solver

Our main focus is on the Shallow Water Equations (SWE) with a passive tracer w
and bottom topography h(x).

∂H

∂t
+

∂

∂x
(Hu) = 0 (4.2a)

∂

∂t
(Hu) +

∂

∂x

(
Hu2 +

1

2
gH2

)
=

∂h

∂x
gH (4.2b)

∂

∂t
(Hw) +

∂

∂x
(Huw) = 0 (4.2c)

or in the short-hand operator notation:

∂U

∂t
+

∂

∂x
F (U) = S(U ;h) (4.3a)

with: F (U) = [FH , FP , FQ]
T =

[
P , P 2/H + gH2/2 , PQ/H

]T (4.3b)

S(U ;h) = [SH , SP , SQ]
T =

[
0 ,

∂h

∂x
gH , 0

]T
(4.3c)

where U = [H,P,Q]T = [H,Hu,Hw]T are the conserved variables, F (U) the flux vector
and S(U ;h) the topography induced source term.

Remark: The notation used in the description of the SWE solver (i.e. within §4.1) is
of a local nature. Thus, some inconsistencies with the rest of the thesis arise (for example
U(x, ξ, t) = [L,Lu, Lu]T is replaced by U(x, t) = [H,Hu,Hw]T ). This change is adopted
because it lightens the notation and follows the one usually used in the study of SWE
systems. That, though, will not affect the analysis of the broader scheme, because the
SWE solver is presented in a vacuum and it is only utilized in the mSWE scheme (see
§4.2), where compatibility is restored by carefully defining the input-arguments that are
passed from one solver to another.
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4.1.1 Eigenstructure of the SWE

Defining the celerity c =
√
gH the Jacobian matrix of the flux is computed as:

JF =
∂F

∂U
=

 0 1 0
c2 − u2 2u 0
−uw w u

 (4.4)

after some straight-forward calculations one attains the diagonal matrix ΛF containing the
eigenvalues λi of Jacobian and KF the matrix consisting of its right eigenvectors K

(i)
F :

ΛF =

λ1 0 0
0 λ2 0
0 0 λ3

 =

u 0 0
0 u+ c 0
0 0 u− c

 (4.5)

KF =
[
K

(1)
F K

(2)
F K

(3)
F

]
=

0 1 1
0 u+ c u− c
1 w w

 (4.6)

In order to check the hyperbolicity of the system (see [51, §2.4.3]), we compute the
quantities:[

∂λ1

∂U

]T
K

(1)
F = 0 (4.7)[

∂λ2

∂U

]T
K

(2)
F =

3g

2c
(4.8)[

∂λ3

∂U

]T
K

(3)
F = −3g

2c
(4.9)

which verifies that for H 6= 0 the fields corresponding to the eigenvalues λ2,3 = u ± c are
genuinely nonlinear, whereas the one relating to λ1 = u is linearly degenerate, which derives
from the fact that w is passively advected without inferring in the underlying dynamics of
the system.

Another noteworthy property is that det (KF ) = −2c that proves that for H 6= 0 the
eigenvectors are linearly independent.
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4.1.2 The finite volume scheme

Let us consider the tessellation
⋃N−1

i=0 [xi, xi+1] (as it was introduced in §3.5), based on
which a standard Finite Volume discretization is performed:

∂Ui

∂t
+

F̃i+1/2 − F̃i−1/2

∆xi
= Si (4.10)

where F̃i+1/2 = F̃
(
UL
i+1/2, U

R
i+1/2

)
a suitably defined intercell flux and Si an approximation

of the source term S(U ;h).

The left and right state quantities UR
i+1/2, U

L
i+1/2 are extracted from their cell-averaged

counterparts Ui =
1

∆xi

∫ xi+1

xi
Udx through a carefully chosen variable reconstruction.

4.1.3 Roe’s Riemann solver

As it is customary in the context of Finite Volume methods, the intercell flux is defined
by considering the solution of the associated Riemann problem. For an extensive overview
of Riemann solvers and their application on numerical methods we refer to [51].

In the context of the present scheme, the approximate Riemann solver of Roe [52] is
utilized because of its versatility and mathematical robustness. Roe’s method is derived
by exactly solving a linearized version of the Riemann problem:

∂U

∂t
+

∂F

∂x
= 0

linearize−−−−−→ ∂U

∂t
+ARoe

∂U

∂x
= 0 , U(x, 0) =

{
UR x > 0

UL x < 0
(4.11)

The matrix ARoe(UL, UR) is not explicitly defined, but is restricted by the following con-
ditions [51, §11.1.2]:

1. Hyperbolicity of the system: ARoe must have real eigenvalues and linearly indepen-
dent right eigenvectors.

2. Consistency with the Jacobian of the flux: ARoe(U,U) = JF (U)

3. Conservation of discontinuities: F (UR)− F (UL) = [ARoe(UR, UL)] (UR − UL)

Omitting the technical details (see [52] and [51] for a formal derivation), the intercell
flux in the context of Roe’s method is calculated as:

F̃ (UL, UR) =
F (UL) + F (UR)

2
−
[
Ã(UL, UR)

] UR − UL

2
(4.12)

with: Ã
def
== KRoe|ΛRoe|K−1

Roe (4.13)
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where: ΛRoe is the diagonal matrix containing the eigenvalues of the the Roe matrix and
KRoe the matrix consisting of it’s right eigenvectors: ΛRoe,KRoe = eig(ARoe).

The above methodology is now applied to the SWE system.

A common choice of the Roe matrix is the Jacobian itself computed in an intermediate
state Ũ :

ARoe = JF

(
Ũ
)
= JF

(
H̃ , H̃ũ , H̃w̃

)
(4.14)

The intermediate state that is consistent with the above choice of ARoe, following the
literature about similar systems (see e.g. [53]), is:

H̃ =
HL +HR

2
(4.15a)

ũ =
uL
√
HL + uR

√
HR√

HL +
√
HR

(4.15b)

w̃ =
wL

√
HL + wR

√
HR√

HL +
√
HR

(4.15c)

This averaging is proved to satisfy the 3 requirements mentioned above.

Thus, after some algebraic manipulations, the Roe viscosity matrix can be computed
as:

Ã
def
== KRoe|ΛRoe|K−1

Roe =

 c̃(a− bFr) b 0
bc̃2(1− Fr2) c̃(a+ bFr) 0

c̃w̃(a− bFr − |Fr|) bw̃ c̃|Fr|

 (4.16)

with the Froude number related quantities defined as

c̃ =

√
gH̃ (4.17a)

Fr = ũ/c̃ (4.17b)

a =
|Fr + 1|+ |Fr − 1|

2
(4.17c)

b =
|Fr + 1| − |Fr − 1|

2
(4.17d)
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4.1.4 Second order reconstruction and slope limiters

In the present section the linear reconstruction scheme is presented. The approach is
kept general and within the broad framework of variable reconstruction used in Total Vari-
ance Diminishing (TVD) second order Finite Volume schemes. For an extensive analysis
of the subject of high order TVD methods we refer to [51, Ch.14].

Let us consider the set y = {yi}N−1
i=0 that represents the cell-averaged values of an

arbitrary function y(x) on the tessellation
⋃N−1

i=0 [xi, xi+1].

It is obvious that for a given set of values yi the original function cannot be uniquely
retrieved. Choosing a piecewise linear reconstruction, we observe that any function of the
type:

yrec(x) = yi +∆i

(
x− xi + xi+1

2

)
, x ∈ [xi, xi+1] (4.18)

conserves the average values for every choice of the in-cell slopes {∆i}N−1
i=0 ∈ R.

As a first step, one may define the (unlimited) slopes in the central-upwind manner:

∆∗
i =

1

2
(1 + ω)∆i−1/2 +

1

2
(1− ω)∆i+1/2 (4.19)

where ∆i+1/2 =
yi+1 − yi

(∆xi+1 +∆xi)/2
and ω ∈ [−1, 1] being a free parameter.

Even if those slopes appear to be the obvious choice, their use in Finite Volume schemes
induces spurious oscillations around large gradients/discontinuities and leads to unstable
numerical schemes. In order to avoid that, a stable TVD scheme can be constructed if
those values are modified through the use of slope limiters. The limited slopes are then
defined as:

∆i = ∆∗
i ×min

{
lim

(
∆i−1/2

∆∗
i

)
, lim

(
∆i+1/2

∆∗
i

) }
=

= sign(∆∗
i )×min

{
ϕ
(
∆i−1/2 ,∆∗

i

)
, ϕ
(
∆i+1/2,∆

∗
i

) }
(4.20)

where lim : R 7→ R an unspecified slope limiter function and ϕ(a, b)
def
== lim

(a
b

)
|b|.

Exploiting the property that lim(r) = 0, ∀r ≤ 0 the function ϕ is rewritten:

ϕ(a, b) =

lim

(
|a|
|b|

)
|b| ab ≥ 0

0 ab < 0
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In the present work the Van Albada [54] limiter is used:

limAlbada(r) =


r2 + r

r2 + 1
r ≥ 0

0 r < 0
(4.21)

which produces:

ϕAlbada(a, b; ϵ) =


(a2 + ϵ)|b|+ (b2 + ϵ)|a|

(a2 + ϵ) + (b2 + ϵ)
ab ≥ 0

0 ab < 0

(4.22)

where ϵ following [55] and [54] is a small number to avoid division by zero in the
(relevant) case of vanishing slopes and also to enhance the convergence properties. Such
enhancement can be achieved [56] by setting ϵ = K3∆x where K ≈ 5.

Summarizing the procedure presented, the slopes are defined solely based on the cell
averages (i.e. yi 7→ ∆∗

i 7→ ∆i). Thus, the inter-cell values of the reconstructed function can
be computed as:

yRi+1/2 = lim
x→x+

i+1

yrec(x) = yi+1 −∆i+1
∆xi+1

2
(4.23)

yLi+1/2 = lim
x→x−

i+1

yrec(x) = yi +∆i
∆xi
2

(4.24)

The reconstruction operator that returns those values can then be written as:

yL/R = R2
lim(y) (4.25)

The superscript L/R is used to merge the left and right intercell values in order to shorten
the notation.

One important property is that this reconstruction operator leaves a set of constant
values unaffected:

{yi = yj , ∀i, j} =⇒ y = R2
lim(y) (4.26)
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4.1.5 Hydrostatic reconstruction and source term

An important property of the numerical scheme is its ability to exactly preserve steady
states in the discrete level. As this is of tremendous practical importance, the construction
of so-called well-balanced schemes has been the focus of many researchers. For a more
general approach to the construction of such schemes we refer to [57, 58] and the references
therein.

In the present method, we focus only on the preservation of the lake-at-rest steady
state, where the fluid is motionless (u = w = 0) and the free surface horizontal (H − h =
const). Schemes that preserve this are said to satisfy the C-property (introduced in [59]).

Let us now introduce a set of cell-centered topography values h = {hi}N−1
i=0 and a set

of nodal values that are defined based on those h̃ = {h̃i+1/2}N−2
i=0 . Having said that, the

discrete C-property is expressed:

if
{
Hi − hi = C
ui = wi = 0

}
then: ∆F̃

∆x

∣∣∣∣∣
i

= Si ⇔
∂Ui

∂t
= 0 (4.27)

It is readily observed that the C-property relies on balancing the discrete flux and source
term of the horizontal momentum equation.

xi xi+1 xi+2

∆xi ∆xi+1

UL
i+1/2

Ui
UR
i+1/2

Ui+1

F̃i+1/2

Figure 4.1: SWE variable reconstruction

Bearing that in mind, we now focus on the variable reconstruction process that will be
used in the SWE scheme. As it is presented in Figure 4.1 the interface values (·)L/Ri+1/2 must
be extracted from their cell-centered counterparts (·)i in order to be used in the numerical
flux F̃i+1/2.

Following [60] and using the second order operator R2
lim presented in §4.1.4, the fol-
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lowing reconstruction is proposed:
HL/R = R2

lim (H− h) + h̃ (4.28a)
PL/R = R2

lim (P) (4.28b)
QL/R = R2

lim (Q) (4.28c)
or: UL/R = Rhydro

SWE (U); (4.28d)

Based on that and due to eq.(4.26), in the lake-at-rest state the interface variables are:{
Hi − hi = C
Pi = Qi = 0

, ∀i
}

=⇒ UL
i+1/2 = UR

i+1/2 =
[
C + h̃i+1/2 , 0 , 0

]T
(4.29)

Focusing on the x-momentum component and since the intercell flux satisfies the
consistency property F̃ (U,U) = F (U) we compute the horizontal momentum part FP of
the flux:

F̃P
i+1/2 =

1

2
g(C + h̃i+1/2)

2 =
1

2
gC2 + gCh̃i+1/2 +

1

2
gh̃2i+1/2

⇒
F̃P
i+1/2 − F̃P

i−1/2

∆xi
= gC

h̃i+1/2 − h̃i−1/2

∆xi
+

1

2
g
h̃2i+1/2 − h̃2i−1/2

∆xi

⇒ ∆F̃P

∆x
= gC

∆h̃

∆x
+

1

2
g
∆(h̃2)

∆x
(4.30)

Now, the momentum source term SP is rewritten in a similar-looking manner:

SP = gH
∂h

∂x
= g(H − h)

∂h

∂x
+ gh

∂h

∂x
= g(H − h)

∂h

∂x
+

1

2
g
∂(h2)

∂x
(4.31)

Aiming to balance the flux when Hi − hi = C, the discrete source is chosen to be:
1

∆xi

∫ xi+1

xi

SPdx ≈ SP
i = g(Hi − hi)

∆h̃

∆x
+

1

2
g
∆(h̃2)

∆x
(4.32)

Having defined the variable reconstruction and the source term, eq.(4.30) in conjunc-
tion with eq.(4.32) shows that the scheme satisfies the C-property. Note that only the
horizontal momentum components were balanced, because the other components are triv-
ially zero in the lake-at-rest state.

The relation between the nodal h̃i+1/2 and the cell-centered topography values hi is
yet to be specified. Although a lot of valid choices exist, again following [60], an ”upwind”
approach of the following type is adopted:

h̃i+1/2 = min {hi, hi+1} (4.33)

The proposed second order hydrostatic reconstruction scheme is presented in detail in
Algorithm 1.
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4.1.6 Boundary conditions and timestepping

Something yet to be specified is the implementation of the boundary conditions into
the SWE solver. For an extensive overview of their incorporation into the Finite Volume
framework we refer to [42, Ch.7]. In the present case the use of Dirichlet-type conditions
is adopted:

U(x0, t) = UL
BC(t) and U(xN , t) = UR

BC(t) (4.34)

In order to enforce them the standard use of ”ghost” nodes is applied: Two fictitious cells are
placed on the left and right ends of the computational domain, which are forced to contain
the fixed values UL

BC , U
R
BC respectively. Those cells are concatenated alongside the regular

ones and are used in the variable reconstruction process in order to compute the nodal
values UL

i+1/2, U
R
i+1/2 that used to calculate the intercell fluxes F̃i+1/2 = F̃

(
UL
i+1/2, U

R
i+1/2

)
.

Let us now consider a timestep [tn, tn+1] with ∆tn
def
== tn+1− tn. The last thing left to

be specified is the temporal resolution of the space-discrete conservation law of eq.(4.10).
For the sake of simplicity, the first order explicit method is adopted:

Un+1 = Un +∆tnRSWE(Un, tn) (4.35)

where: (Ri)SWE
def
== Si −

F̃i+1/2 − F̃i−1/2

∆xi
(4.36)

One major thing to address when using an explicit method is the matter of stability.
In a standard fashion, for nonlinear systems (see e.g. [42, Chapter 15]), the standard CFL
condition is enforced:

∆t max
0≤i<N

{
(Smax)i
∆xi

}
< 1 (4.37)

with Smax = max {|λ1|, |λ2|, |λ3|}
(4.5)
== |u|+ c representing the largest eigenvalue.

That means that setting the timestep as

∆t← CFL min
0≤i<N

{
∆xi

|Pi/Hi|+
√
gHi

}
(4.38)

ensures the CFL stability of the method when 0 < CFL < 1 is chosen.

That being said, the timestepping procedure takes the form:

1. Given a CFL constant, eq.(4.38) is used to determine the timestep size ∆tn based
on the data of the previous step Un (at time t = tn). Time progresses accordingly:
tn+1 ← tn +∆tn
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2. The residual R(Un, tn) is calculated through the procedure described in Algorithm
2: The boundary conditions are incorporated into the variable reconstruction proce-
dure. The reconstruction is then succeeded by the application of the Roe scheme, as
described in the corresponding sections of the present chapter. The source term is
calculated by eq.(4.32) so that the discrete C-property is satisfied.

3. The solution is updated Un+1 ← Un+∆tnR(Un, tn) and the timestepping is repeated.
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Algorithm 1 SWE variable reconstruction
Input: H,P,Q, h,HBC , PBC , QBC , hBC

Boundary conditions incorpotated as ghost nodes:
H =

[
HL

BC H0 HR
BC

]
P =

[
PL
BC P0 PR

BC

]
Q =

[
QL

BC Q0 QR
BC

]
h =

[
hLBC h0 hRBC

]
Unlimited slope calculation using eq.(4.19):
∆∗

η = slope(H − h)
∆∗

P = slope(P )
∆∗

Q = slope(Q)

Slope limiting using eq.(4.20) and eq.(4.22):
∆η = limiter(∆∗

η,H − h)
∆P = limiter(∆∗

P , P )
∆Q = limiter(∆∗

Q, Q)

for i = 0, Nx do
Reconstruction of the nodal topography values using eq.(4.33):
h̃i+1/2 = min {hi, hi+1}

Calculation of the Left and Right states:
HL

i+1/2 = Hi − hi + hi+1/2 +∆i,η/2

HR
i+1/2 = Hi+1 − hi+1 + hi+1/2 −∆i+1,η/2

PL
i+1/2 = Pi +∆i,P /2

PR
i+1/2 = Pi+1 −∆i+1,P /2

QL
i+1/2 = Qi +∆i,Q/2

QR
i+1/2 = Qi+1 −∆i+1,Q/2

end for
return h̃(·)+1/2, UR, UL
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Algorithm 2 SWE residual calculation
Input: H,P,Q, h,HBC , PBC , QBC , hBC , g

Perform the reconstruction algorithm:
h̃(·)+1/2, UR, UL ← SWE_reconstruction(H,P,Q, h,HBC , PBC , QBC , hBC)

for i = 0, N do
Calculate the Roe average variables using eq.(4.15):
Ũ ← Roe_average(UL, UR)
Compute the viscosity matrix according to eq.(4.16):
Ã← Roe_viscosity(Ũ)

Compute the intercell flux
F̃i+1/2 ←

F (UL) + F (UR)

2
−
[
Ã
] UR − UL

2
end for

for i = 0, N − 1 do
Calculate the source term using eq.(4.32):

SP ← g(Hi − hi)
h̃i+1/2 − h̃i−1/2

∆xi
+

g

2

h̃2i+1/2 − h̃2i−1/2

∆xi
Si ← [0 , SP , 0]T

Extract the residual:

Ri ← Si −
F̃i+1/2 − F̃i−1/2

∆xi
end for

return R
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4.2 The uncoupled mSWE scheme

The key to the numerical method implemented here is to write the mSWE as:

∂Uj

∂t
+

∂

∂x
F (Uj) = S(Uj ;Lj − η) (4.39)

where: Uj =
[
Lj Ljuj Ljwj

]T and F (U), S(U ;h) are the flux and source term of the
regular SWE as described in eq.(4.3).

This loss of hyperbolicity is due to the fact that the topography gradient in the source
term is dependant on layer indicators Lj :

Sj = S(Uj ;h
◦
j ) = gLj

∂h◦j
∂x

(4.40)

where: h◦j
def
== h+ Lj −H = h+ Lj −

j<Nl∑
j=0

ljLj (4.41)

It can be easily seen that the system becomes a system of uncoupled hyperbolic con-
servation laws if one forces Lj = H , ∀(x, t). In order to minimize the cross-layer coupling
(i.e. h◦j ≈ h), the layers are remeshed in a way that results in a low variance of the layer in-
dicators (i.e. Lj ≈ H) at the start of each timestep. This means that the coupling between
the layers is mainly achieved through the VRO and the mSWE are further stabilized. The
remeshing strategy will be described in depth in the next chapter.

The restriction that the layer indicators Lj must remain close to the depth H is the
main reason that they were defined as Lj

def
== ∆zj/lj (see the discussion of §3.2.1). If

the indicators were defined in any other way, utilizing them as a primary variable in the
mSWE would result in a dominant cross-layer coupling regardless of the adopted remeshing
technique.

Having addressed the cross-layer coupling, one can construct an numerical scheme for
the mSWE by the consecutive (and uncoupled) solution of Nl regular SWE [50]. As seen
in eq.(4.39), the only non-local element is the topography-like term h◦j , that introduces the
coupling. In the present timestepping method, this term is calculated by the data provided
by the previous timestep and is either updated as the SWE operators are applied or is kept
unchanged1. Even though those approaches perform almost identically, the non-updating
option is adopted herein. The general procedure is outlined in Algorithm 3.

1In [44] those are referred to as the splitting and sum schemes
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Algorithm 3 Multilayer Shallow Water Equations solver
Input: Un,∆tn, h, U

L/R
BC

H∗ ←
∑j<Nl

j=0 ljL
n
j

for 0 ≤ j < Nl do
h◦j ← h+ Ln

j −H∗

Un+1
j ← Un

j +∆tn ·RSWE

(
Un
j ;h

◦
j ;
{
U

L/R
BC

}
j

)
if inter-layer updating is chosen then

H∗ ← H∗ + lj(L
n+1
j − Ln

j )
end if

end for
return Un+1

Notes:
The primary variables are noted as U

def
== [L,Lu, Lw]T , while Un, Un+1 denote the

variables at time tn, tn+1 respectively.

An important property of this scheme is that if the SWE scheme satisfies the discrete
C-property of eq.(4.27), then that property is also valid for the mSWE scheme in the
following sense:{

Hi − hi = C
Pij = Qij = 0

}
(4.41)⇐⇒

{
Lij − h◦ij = C

Pij = Qij = 0

}
C-property

=⇒ RSWE

(
Uj ; h◦

j

)
= 0 (4.42)
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Chapter 5

The Vertical Remeshing Operator

In this chapter the numerical resolution of the Vertical Remeshing Operator (VRO)
is described. Since the dependence on the index i is of a purely parametric nature, the
corresponding subscript in the set of eq.(3.40) is dropped:

∂

∂t
(L) +

∂

∂ξ
(ϑ) = 0 (5.1a)

∂

∂t
(Lu) +

∂

∂ξ
(ϑu) = 0 (5.1b)

∂

∂t
(Lw) +

∂

∂ξ
(ϑu) = 0 (5.1c)

BC: ϑ̂ = ϑ̃ = 0 (5.1d)

Timestepping with initial condition U0 = [L,Lu, Lw]0 on the interval t ∈ [t, t+∆t] is
considered. The final/remeshed values are noted as U∗ = [L,Lu, Lw]∗.

The eq.(5.1a)-(5.1c) of the VRO can be written in the conservative form:

∂U

∂t
+

∂

∂ξ
G(U ;ϑ) = 0 ξ ∈ [0, 1] (5.2)

with the flux defined as:

G(U ;ϑ) =
ϑ

L
U (5.3)

Thus, the VRO is identified to be a hyperbolic conservation law where the variables are
advected with speed c = ϑ/L.
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5.1 Remeshing and kinematic considerations

As it was briefly pointed out in §3.3, the main purpose of the VRO is to act as a
correction to the Lagrangian layer kinematics. That means that given the initial layer
indicators L0

j one must define based on them the remeshed quantities L∗
j in order for the

velocities ϑj to be defined based on eq.(5.1a). After those are defined, eq.(5.1b),(5.1c) are
used to remap the velocities (Lu,Lw)0 7→ (Lu,Lw)∗ on the newly defined layers.

Aside from the mathematical standpoint of operator-splitting, the VRO has very clear
physical interpretation. After the application of the mSWE the layers are evolved in the
Lagrangian manner that indirectly implies that there is no mass exchange between the
layers. That mass exchange is directly connected to the ϑj that are essentially the velocity
normal to the interface between the layers. Thus, it is only natural that if one chooses not
to remap the layers (i.e. L0

j = L∗
j ) eq.(5.1a) implies that there is indeed no mass exchange

between the layers (i.e. ϑj = 0).

Having said that, we integrate eq.(5.1a) over [t, t+∆t]× [ξj , ξj+1] to obtain:

ϑ∗
j+1 =

ϑ∗
j −

lj
∆t

(
L∗
j − L0

j

)
, j ≥ 0

0 , j = −1
(5.4)

where ϑ∗
j

def
== 1

∆t

∫ t+∆t
t ϑjdt and ϑj = ϑξ=ξj .

One last thing of note is the incorporation of the boundary conditions related to the
vertical advection as pointed out in eq.(5.1d) (i.e. ϑ0 = ϑNl

= 0). As seen in eq.(5.4) the
bottom impermeability condition is directly enforced by setting ϑ∗

0 = 0. That is not true
for the free surface kinematic condition of ϑ∗

Nl
= 0, where special care must be taken.

A quick inspection of eq.(5.4) gives:

ϑ∗
Nl

= 0⇐⇒
j<Nl∑
j=0

ljL
0
j =

j<Nl∑
j=0

ljL
∗
j = H (5.5)

We define a remeshing strategy that satisfies the above relation as kinematically consistent.

Although a lot of remeshing strategies can be valid, the natural choice, which will be
adopted in the present method, is to set all the layer indicators to be equal to the water
depth H:

L∗
j = H =

j<Nl∑
j=0

ljL
0
j (5.6)
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This approach, which is dubbed as the Eulerian remapping, aside from its simplicity makes
sure that the indicators do not stray away from their mean value (i.e. the water depth
H). That is (as pointed out in §4.2) extremely important because big deviations from that
would result in a strong cross-layer coupling in the mSWE, thus resulting in problems in
the numerical method.

5.2 Spatial resolution

In order to discretize the VRO in the time domain, we suppose a set of starting
variables U0 and the target layer indicators L∗ that define the ϑ∗ through eq.(5.4).

Concerning eq.(5.1b),(5.1c) the explicit Finite Volume formulation of the following
type on the tessellation [0, 1] =

⋃Nl−1
j=0 [ξj , ξj+1] is employed:

U∗
j = U0

j −
∆t

lj

[
G̃j+1/2 − G̃j−1/2

]
(5.7)

with U = [Lu,Lw]T and G̃i+1/2 = G̃ (Uj ,Uj+1;ϑj+1) a suitably defined numerical flux.

5.2.1 Flux reconstruction

Having said that, one must define the intercell value G̃ of the flux G =
ϑ

L
U so that

eq.(5.1b),(5.1c) can be discretized. Since the only (albeit double) eigenvalue of the flux is
the speed c = ϑ/L, the natural choice is the one-wave scheme of Rusanov [61]. Bearing in
mind the piecewise constant vertical discretization (as described in §3.6) and the notation
displayed in Figure 5.1, the intercell flux takes the following form:

G̃j+1/2 =
cLj+1/2Uj + cRj+1/2Uj+1

2
−max

{
|cLj+1/2|, |c

R
j+1/2|

}Uj+1 − Uj
2

=
1

2

(
ϑj+1

Lj
+
|ϑj+1|
Lj+1/2

)
Uj +

1

2

(
ϑj+1

Lj+1
− |ϑj+1|

Lj+1/2

)
Uj+1 (5.8)

,where U = [Lu,Lw]T and Lj+1/2
def
== min {Lj , Lj+1}
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ξj

ϑj

ξj+1

ϑj+1

ξj+2

ϑj+2

lj lj+1

()Li+1/2

(L,Lu, Lw)j ()Ri+1/2

(L,Lu, Lw)j+1

G̃j+1/2

Figure 5.1: VRO variable reconstruction

5.2.2 Boundary conditions

Another important thing to specify is the treatment of boundary conditions and how
the interfaces on the outer boundary of the domain are incorporated into the reconstruction
process. In the context of Finite Volume methods, usually an assumption must be made
concerning the state of variables either on the boundary interface or in the cells just outside
the computation domain (as it was discussed in §4.1.6).

In the case of the VRO such an approach is not needed, as it will illustrated. The
main advantage of the method is that the nodal values of ϑ∗

j are determined based on the
remeshing strategy by using eq.(5.4). That means that those values are defined indepen-
dently of the calculation of the intercell fluxes G̃. Furthermore, if a kinematically consistent
remeshing strategy is employed, the relation ϑ∗

0 = ϑ∗
Nl

= 0 is automatically satisfied. That,
in conjunction with eq.(5.8), gives the very useful relation:

ϑ0 = ϑNl
= 0 =⇒ G̃−1/2 = G̃Nl−1/2 = 0 (5.9)

That means that the intercell flux G̃ on the boundary is zero independently of any
assumption made regarding the variables (Lu,Lw) and thus any further treatment becomes
unnecessary. Aside from convenience, there is also a physical relevance to that, as no mass
exchange (i.e. ϑ = 0) directly implies zero momentum exchange (i.e. G̃ = 0) on the
boundary interfaces.
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5.3 Temporal resolution and final scheme

Again following the arguments that were laid out in §4.1.6, the CFL stability of such
an explicit timestepping is ensured when:

∆t max
0≤j<Nl

{
S∗
j

lj

}
< 1 (5.10)

with: S∗
j =

∣∣∣ϑ∗
j+1 + ϑ∗

j

∣∣∣
2L∗

j

(5.11)

After that note, the fully discrete VRO can be outlined:

1. The initial condition U0 is defined alongside the timestep ∆t as the input.

2. The target remeshed layer indicators L∗
j are determined by eq.(5.6).

3. The velocities ϑ∗ are calculated through eq.(5.4).

4. The intercell fluxes G̃j+1/2 are calculated through eq.(5.3) in the inner interfaces,
while G̃ = 0 is set on the boundaries.

5. The velocities are updated by eq.(5.7): U∗
j ← U0

j −
∆t

lj

(
G̃i+1/2 − G̃i−1/2

)
The process is also described in Algorithm 4.
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Algorithm 4 Discrete VRO scheme
Input: [L,Lu, Lw]0,∆t

H∗ ←
∑j<Nl

j=0 ljL
0
j

ϑ∗
0 ← 0

G̃−1/2 ← 0

U0 ← [Lu,Lw]0

for 0 ≤ j < Nl do
L∗
j ← H∗

ϑ∗
j+1 ← ϑ∗

j −
lj
∆t

(
L∗
j − L0

j

)
if j = Nl − 1 then

G̃i+1/2 = 0
else

Lj+1/2 ← min
{
L∗
j , L

∗
j+1

}
aL ←

1

2

(
ϑ∗
j+1

L∗
j

+
|ϑ∗

j+1|
L∗
j+1/2

)

aR ←
1

2

(
ϑ∗
j+1

L∗
j+1

−
|ϑ∗

j+1|
L∗
j+1/2

)
G̃j+1/2 ← aLU0

i + aRU0
i+1

end if

U∗
j ← U0

j −
∆t

lj

(
G̃i+1/2 − G̃i−1/2

)
end for

return (L,Lu, Lw, ϑ)∗
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The Pressure Correction Operator

In this chapter the numerical scheme for the Pressure Correction Operator (PCO) is
described. The PCO, as it was presented in eq.(3.40) is repeated in its fully continuous
form.

∂

∂t
(Lu) +

∂

∂x
(Lq) +

∂

∂ξ
(Ξxq) = 0 (6.1a)

∂

∂t
(Lw) +

∂q

∂ξ
= 0 (6.1b)

∂

∂x
(Lu) +

∂

∂ξ
(w + uΞx) = 0 (6.1c)

qξ=1 = 0 (6.1d)

(w + uΞx)ξ=0 = wξ=0 + uξ=0
∂h

∂x
= 0 (6.1e)

6.1 The partially implicit approach

The general idea behind the projection method of Chorin [22, 41] is to define the
pressure field q that if applied to the field u∗ = [u∗, w∗]T results into a divergence-free
velocity field u = [u,w]T . Again, similar to the previous chapters, the scheme is applied
on a finite time window [t, t+∆t]. The standard procedure for this method is formulated
through a simple first order implicit temporal method:{u− u∗

∆t
+∇q = 0

∇ · u = 0

}
⇐⇒

{u = u∗ −∆t (∇q)

∇2q =
∇ · u∗

∆t

}
(6.2)
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And thus, the pressure field is calculated through the Poisson equation and is then used to
update the field.

While this approach is easily implemented in a structured cartesian mesh, its use on
the x− ξ system poses some difficulties. The first is related to the extra complexity of the
Poisson equation in the transformed coordinate system. The Laplacian operator following
eq.(3.9a) in that case is:

L2
(
∇2q

)
= L

∂

∂x

(
L
∂q

∂x

)
+

∂

∂ξ

(
ΞxL

∂q

∂x
+ (Ξx)

2∂q

∂ξ

)
+

∂2q

∂ξ2
(6.3)

The extra mixed derivatives that appear in the middle term of eq.(6.3) produce a
larger stencil and complicate the calculations, thus reducing the method’s computational
efficiency. Another problematic feature of this approach is the incorporation of boundary
conditions. As it can be seen in eq.(6.1e) the kinematic condition contains both velocity
components. This means that the bottom boundary condition for the Poisson equation
would take (in conjuction with eq.(6.1a),(6.1b)) the following form:

∂h

∂x

(
L
∂q

∂x

)
ξ=0

+

[
1 +

(
∂h

∂x

)2
](

∂q

∂ξ

)
ξ=0

=

(
∂h

∂x
(Lu)∗ξ=0 + (Lw)∗ξ=0

)
/∆t (6.4)

With the exception of the special case of the flat bottom (where the above is reduced to
a Neumann-type condition), such an approach induces numerical difficulties and would be
preferable to be avoided.

In order to overcome these two main obstacles we draw inspiration from the Partially
Implicit scheme introduced in [62]. The basis of this approach is to incorporate some of
the problematic terms of eq.(6.1a),(6.1b) into an explicit step so that those are then absent
from the Poisson solver.

Having that in mind and using the notation of P
def
== Lu, Q

def
== Lw and the in-

troduction of Ψ
def
== ΞxP + Q and λ

def
== ∆t · q, the following explicit step is proposed:

P ′ = P ∗ − Ξx
∂λ≈
∂ξ

(6.5a)

Q′ = Q∗ − ΞxL
∂λ≈
∂x

(6.5b)

Ψ′ def
== ΞxP

′ +Q′ (6.5c)
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followed by the implicit step of:

P = P ′ − L
∂λ

∂x
(6.6a)

Ψ = Ψ′ − ∂λ

∂ξ
(6.6b)

L
∂P

∂x
+

∂Ψ

∂ξ
= 0 (6.6c)

BC: λξ=1 = Ψξ=0 = 0 (6.6d)

Something to note is that for calculation of the intermediate field (P ′, Q′) one needs to
define the approximate pressure field λ≈

def
== q≈δt. For the purposes of the present method

the pressure field from the previous timestep will be used. That will be discussed in detail
in the next chapter.

Rewritting the divergence-free condition using eq.(6.6) one obtains the following Poisson-
like equation:

∇2
ξ [λ]

def
== L

∂

∂x

(
L
∂λ

∂x

)
+

∂2λ

∂ξ2
= L

∂P ′

∂x
+

∂Ψ′

∂ξ
(6.7a)

BC: λξ=1 = 0 (6.7b)
∂λ

∂ξ

∣∣∣∣
ξ=0

= Ψ′
ξ=0 (6.7c)

The advantages of the new approach are now highlighted: The problematic terms of
eq.(6.3) are incorporated into the right hand side of the Poisson-like equation through the
intermediate velocity field. Also, by working with the pair (P,Ψ) instead of the (P,Q) the
bottom boundary condition is now reduced to a simple Neumann-type one.

An important feature of this approach is that the explicit step of eq.(6.5) scales linearly
with the factor Ξx. As such, if the layer gradients are sufficiently small, the explicit step
does not alter significantly the starting field (i.e. (P ′,Ψ′) ≈ (P,Q)). That means that the
proposed method should be stable in the case of mild layer deformations.

Although eq.(6.7) gives an adequate description of the system that will be discretized,
the actual numerical method will be constructed in a fully discrete manner, so that con-
sistency is guarantied.

6.2 Grid staggering

In order to construct the fully discrete VRO scheme, some considerations must be made
concerning the distribution of variables on the computational domain. As was described
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in §3.5, the variables (L,Lu, Lw) are considered constant on the cells Ωij = [xi, xi+1] ×
[ξj , ξj+1]:

(L, u,w) = (Lij , uij , wij) when: (x, ξ) ∈ Ωij (6.8)

If one approaches the Poisson equation in a standard cell-centered way, the resulting
algebraic system is ill-conditioned and the well known erroneous pressure modes appear.
In order to bypass those obstacles, the so called staggered grid approach is used, where
the variables u,w, q are placed in different locations from each other. Grid staggering is a
common practice in oceanographic CFD applications, as illustrated by Stelling and Zijlema
[63, 64] and more recently in [65] among other sources, because it offers an extremely
robust and consistent way to guarantee conservation of mass while maintaining an accurate
prediction of the pressure.

In the present method, the standard Arakawa C-grid1 [67] is used. In the Arakawa
C-grid, the horizontal velocity remains on the centre of the cell Ωij , the vertical one appears
in the cell’s nodes and the pressure appears in the middle of the vertical cell faces. That
configuration alongside the used indexing is presented in Figure 6.1.

6.3 Discrete equations and boundary conditions

Having said that, the discrete form of eq.(6.6) becomes:

Pij = P ′
ij − Lij

λi+1,j − λij

∆xi
(6.9a)

Ψij = Ψ′
ij −

λij − λi,j−1

(lj + lj−1)/2
(6.9b)

Li−1,j + Lij

∆xi−1 +∆xi
(Pij − Pi−1,j) +

Ψi,j+1 −Ψij

lj
= 0 (6.9c)

BC: λNl−1 + λNl
= 0 (6.9d)

Ψi0 = 0 (6.9e)
P−1,j = PBC

−1,j (6.9f)
PNl,j = PBC

Nl,j
(6.9g)

1That type of grid is also proposed in [18] and is referred to as the 2/1 staggered grid in [66].
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Ωi

∆xi−1 ∆xi

lj−1

lj

lj+1

xi−1 xi xi+1

ξj−1

ξj

ξj+1

ξj+2

qi−1,j−1

qi−1,j

qi−1,j+1

qi,j−1

qi,j

qi,j+1

qi+1,j−1

qi+1,j

qi+1,j+1

Ψi,j

Ψi,j+1

Pi−1,j Pi,j

Figure 6.1: Grid staggering technique

58



Master thesis Chapter 6

After some algebraic manipulations the following set of equations is obtained:

[
AN

ij , AE
ij , −Aij , AW

ij , AS
ij

]

λi,j+1

λi+1,j

λij

λi−1,j

λi,j−1

 = Bij ,
0 ≤ i ≤ Nx

0 ≤ j ≤ Nl − 1
(6.10a)

AN
ij =

2

lj(lj−1 + lj)
(6.10b)

AS
ij =

2

lj−1(lj−1 + lj)
(6.10c)

AE
ij =

Li,j(Li−1,j + Li,j)

∆xi(∆xi−1 +∆xi)
(6.10d)

AW
ij =

Li−1,j(Li−1,j + Li,j)

∆xi−1(∆xi−1 +∆xi)
(6.10e)

Aij = AN
ij +AS

ij +AW
ij +AE

ij + δBC
ij (6.10f)

Bij =
Li−1,j + Lij

∆xi−1 +∆xi

(
P ′′
ij − P ′′

i−1,j

)
+

Ψ′′
i,j+1 −Ψ′′

ij

lj
= 0 (6.10g)

The above equations are in the classic 5-point stencil form of the Finite Difference
Poisson equation and thus can be easily solved through a diagonal linear system solver.

When the stencil extends outside the computational boundary, those terms are zeroed
and the effects of the boundary conditions are incorporated through the correcting factor
δBC
ij in eq.(6.10f).

δBC
ij =



AN
ij , j = Nl − 1

−AW
ij , i = 0

−AE
ij , i = Nx

−AS
ij , j = 0

0 , otherwise

(6.11)

and the definition of the P ′′,Ψ′′ used on the right hand side of eq.(6.10):

P ′′
ij =

{
PBC
ij , i = 0, Nx

P ′
ij , otherwise

(6.12)

Ψ′′
ij =

{
0 , j = 0

Ψ′
ij , otherwise

(6.13)
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This procedure is written in matrix form in the following way:

[PCO(L)]λ = div
(
P ′,Ψ′;PBC

)
(6.14)

6.4 Variable and gradient reconstruction

As it was mentioned, the variables Ψ, q are shifted from their original, cell-centered
positions due to the grid staggering technique (see Fig.6.1). The location of the pressure
does not effect the numerical procedure, as it is only used within the PCO and thus no
contradiction arises. That though is not true for the Ψ = PΞx + Q variable, because the
field (P,Q)∗ is also used in the other two operators.

In order to obtain those values an averaging procedure is used:

Ψij = (Ξx)ijPi−1/2,j−1/2 +Qi−1/2,j−1/2 (6.15a)

with: Pi−1/2,j−1/2 =
Pij + Pi,j−1 + Pi−1,j + Pi−1,j−1

4
(6.15b)

Qi−1/2,j−1/2 =
Qij +Qi,j−1 +Qi−1,j +Qi−1,j−1

4
(6.15c)

(Ξx)ij = (Ξx)
ξ=ξj
x=xi =

−(zij − zi−1,j)

(∆xi +∆xi−1)/2
(6.15d)

zij = −hi +
k<j∑
k=0

lkLik (6.15e)

The values Pi,Nl
, Qi,Nl

that extend outside the computational domain are obtained through
linear extrapolation:

(·)i,Nl
= 2 [(·)i,Nl−1]− [(·)i,Nl−2] (6.16)

When the PCO procedure is applied, the cell-centered values are retrieved through
another averaging:

(·)ij =
(·)i+1/2,j+1/2 + (·)i+1/2,j−1/2 + (·)i+1/2,j−1/2 + (·)i−1/2,j−1/2

4
(6.17)

The last thing to address is the discrete form of eq.(6.5) which is chosen to be:

P ′
ij = P ∗

ij − Ξ◦
ij

λ≈
i,j+1 + λ≈

i+1,j+1 − λ≈
i,j−1 − λ≈

i+1,j−1

2lj
(6.18a)

Q′
ij = Q∗

ij − Ξ◦
ij

λ≈
i+1,j − λ≈

i,j

∆xi
(6.18b)

Ξ◦
ij =

Ξi+1,j+1
x + Ξi,j+1

x + Ξi+1,j
x + Ξij

x

4
(6.18c)
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6.5 The PCO algorithm

Based on the above PCO procedure can now be outlined:

1. The field (L,P ∗, Q∗) and the approximate pressure field q≈ are defined as input.

2. The layer gradient Ξx is calculated as per eq.(6.15d).

3. The explicit step of eq.(6.18) is applied upon (P,Q) using the values q≈ to get (P ′, Q′).

4. The eq.(6.15) is used to obtain the nodal values Ψ′
ij .

5. The matrices PCO(L) and div(P ′,Ψ′;PBC) are calculated through eq.(6.10).

6. The linear system [PCO] q = div is solved and the pressure field is obtained.

7. The velocity field is updated through eq.(6.9) thus defining the field (P,Q, q).

The details of this procedure are displayed in Algorithm 5,6.
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Algorithm 5 The PCO reconstruction scheme
Input: L,P ∗, Q∗, q≈,∆t, h, LBC , PBC , QBC

for 0 ≤ i ≤ Nx do
(Ξx)i0 ←

hi+1 − hi
∆xi

for 1 ≤ j ≤ Nl do
(Ξx)ij ← (Ξx)i,j−1 −

lj−1

∆xi
(Li+1,j−1 − Li,j−1)

end for
end for
λ≈ ← q≈ ·∆t
for (i, j) ∈ {0, Nx − 1} × {0, Nl − 1} do

Ξ◦
ij ←

Ξi+1,j+1
x + Ξi,j+1

x + Ξi+1,j
x + Ξij

x

4

P ′
ij ← P ∗

ij − Ξ◦
ij

λ≈
i,j+1 + λ≈

i+1,j+1 − λ≈
i,j−1 − λ≈

i+1,j−1

2lj

Q′
ij ← Q∗

ij − LijΞ
◦
ij

λ≈
i+1,j − λ≈

i,j

∆xi
end for
for (i, j) ∈ {−1, Nx} × {−1, Nl} do

if i = −1 or i = Nx then
P ′′
ij ← PBC

ij

Q′′
ij ← QBC

ij

else if j = Nl then
P ′′
ij ← 2P ′

i,j−1 − P ′
i,j−2

Q′′
ij ← 2Q′

i,j−1 −Q′
i,j−2

else
P ′′
ij ← P ′

ij

Q′′
ij ← Q′

ij

end if
end for
for (i, j) ∈ {0, Nx} × {0, Nl} do

if j = 0 then
Ψ′′

i0 ← 0
else

P ′′
n ←

P ′′
ij + P ′′

i,j−1 + P ′′
i−1,j + P ′′

i−1,j−1

4

Q′′
n ←

Q′′
ij +Q′′

i,j−1 +Q′′
i−1,j +Q′′

i−1,j−1

4
Ψ′′

ij ← (Ξx)ijP
′′
n +Q′′

n

end if
end for

return P ′′, Q′′,Ψ′′,Ξx,Ξ
◦
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Algorithm 6 Discrete PCO scheme
Input: L,P ∗, Q∗, q≈, h, PBC , QBC

The reconstruction process of Algorithm 5 is applied:
P ′′, Q′′,Ψ′′,Ξx,Ξ

◦ ← PCOrecon (L,P
∗, Q∗, q≈, h, PBC , QBC)

The matrices PCO(L) and div(P ′,Ψ′;PBC) are calculated through eq.(6.10),(6.11).

λ← PCO−1div
q ← λ/∆t

for (i, j) ∈ {0, Nx − 1} × {0, Nl − 1} do
Pij ← P ′′

ij − Lij
λi+1,j − λij

∆xi
end for

for (i, j) ∈ {0, Nx} × {0, Nl} do
Ψij ← Ψ′′

ij −
λij − λi,j−1

(lj + lj−1)/2
end for

for (i, j) ∈ {0, Nx − 1} × {0, Nl − 1} do
Qij ←

Ψi+1,j+1 +Ψi+1,j +Ψi,j−1 +Ψij

4
− Ξ◦

ijPij

end for
return P,Q, q
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Chapter 7

The SLS as a numerical wave tank

In the present chapter the use of the SLS as a numerical wave tank is described. Wave
and wave-current generation techniques are discussed and the fully discrete time-marching
scheme is presented.

7.1 Boundary conditions and relaxation zones

When dealing with a numerical wave tank, one needs to address the way the bound-
ary conditions are incorporated into the algorithm. The three basic components of the
algorithm (mSWE, VRO, PCO) all account for the boundary conditions in the Dirichlet
pointwise sense:

Uj(a, t) =
[
UL
BC

]
j
(t) and U(b, t) =

[
UR
BC

]
j
(t) , j = 0, ..., Nl − 1 (7.1)

where U = [L,Lu, Lw]T .

Although this approach is adequate for simple configurations, when one wants to use
the scheme for wave propagation, a technique that also accounts for the horizontal distri-
bution of the target solution must be employed. Although more sophisticated approaches
like the Perfectly Matched Layers have been popularized for linear problems [68], their use
on nonlinear problems is quite limiting.

In the present method, the standard relaxation zone technique described in [69, 70]
is utilized. In this technique the discrete timestepping operator is blended with the en-
forcement of R(U) = (U − Uzone)/∆t = 0, where Uzone(x, t) is the target solution and
m(x) a blending function. If the timestepping operator is written in the form J (U) =
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U − U0

∆t
+R = 0 , where U0

def
== U(x, tn) the blending takes the form:

(1−m)J (U) +mR(U) = 0⇒
⇒U = U∗ +m (Uzone − U∗) (7.2)

where U∗ = U0 −∆t ·R the timestepping solution when the blending is ignored.

Again, following [70], the blending function is defined as:

m(x) =
exp

(
X p
(x)

)
− 1

exp (1)− 1
(7.3)

X(x) =


Lin − (x− a)

Lin
x ≤ a+ Lin

0 a+ Lin < x < b− Lout

Lout − (b− x)

Lout
x ≥ b− Lout

(7.4)

with Lin, Lout being the lengths of the left and right relaxation zones as seen in Fig.7.1.
Empirically, the exponent is set to p = 3.5.

x

m(x)

1

0
a b

Lin Lout

Figure 7.1: Generation/ absorption zones

This procedure allows for an easy implementation of the target solution Uzone(x, t) on
the timestepping procedure by simply applying eq.(7.5) within each timestep. Even though
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one could apply this on each variable L,P,Q separately, in practice the application on only
the horizontal discharge P = Lu is sufficient, because that will directly influence the two
other variables through the layer kinematics (i.e. the mSWE) and the enforcement of the
divergence-free condition (via the PCO). Thus the relaxation scheme takes the form:

Pij = P ∗
ij +m(xmi )

(
P j
zone(x

m
i , t)− P ∗

ij

)
(7.5)

where xmi = (xi+1 + xi)/2.

Note that the pointwise treatment of the boundary conditions within the scheme
remains the same and the enforced boundary data are defined through the target solution
as: [

UL
BC(t)

]
j
← U j

zone(a, t) (7.6a)[
UR
BC(t)

]
j
← U j

zone(b, t) (7.6b)

As one may notice, in the above description of the relaxation scheme, both the bound-
ary conditions and the target solution depends on the layer index 0 ≤ j < Nl in the
parametric sense. This is because, depending on the number of layers, a different set of
functions

{
U j
zone(x, t)

}j=Nl−1

j=0
is used, as it will be described in §7.3.

7.2 Stability and timestepping scheme

In order to specify the fully discrete temporal version of the SLS the timestep ∆t must
be defined in such a way so that the stability of the method is ensured. As it is customary,
the influence of the PCO on the stability of the method is considered to be negligible and
thus the CFL stability is enforced through eq.(4.37) and eq.(5.10):

∆t = CFL×min
{[

min
ij

δSWE
ij

]
,

[
min
ij

δV RO
ij

]}
(7.7)

δSWE
ij =

∆xi

|Pij/Lij |+
√
gLij

(7.8)

δV RO
ij =

2ljLij

|ϑi,j+1 + ϑij |
(7.9)

where the parameter 0 < CFL < 1 regulates the relative size of the timestep.

After addressing that, the fully discrete time marching scheme can be determined.

1. Given the CFL, the step ∆tn is determined through eq.(7.7) based on the data
provided by the previous timestep tn. The new discrete time is set as tn+1‘ = tn+∆tn.
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2. The pointwise boundary data that will be passed to the mSWE,PCO are calculated
based on the target solution by using eq.(7.6) at t = tn.

3. The mSWE (Algorithm 3) is applied on Un to obtain the intermediate values U (1).

4. The relaxation zone technique is applied on P (1) through eq.(7.5) to obtain P (2)

5. The VRO (Algorithm 4) is applied on U (2) to obtain the remeshed field U (3) and the
ϑn+1.

6. The PCO (Algorithm 6) is applied on U (3) and the final field Un+1, qn+1 is thus
calculated. The approximate pressure field used in the partially implicit approach of
eq.(6.5) is set equal to qn, that is known from the previous timestep.

as usual the notation U = [L,P,Q]T = [L,Lu, Lw]T is used. The procedure is also de-
scribed in Algorithm 7.
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Algorithm 7 The discrete SLS
Input: U0, q0, hi, xi, lj ,CFL,m(x), U j

zone(x, t)

for 1 ≤ n < Nt do

δSWE ← minij

 ∆xi∣∣∣Pn−1
ij /Ln−1

ij

∣∣∣+√gLij


δV RO ← minij

 2ljL
n−1
ij∣∣∣ϑn−1

i,j+1 + ϑn−1
ij

∣∣∣


∆t← CFL×min
{
δSWE , δV RO

}
tn ← tn−1 +∆t[
UL
BC

]
j
← U j

zone (x0, t
n)[

UR
BC

]
j
← U j

zone (xNx , t
n)

The Multilayer Shallow Water Equations (Algorithm 3) are solved:
U∗ ← mSWE

(
Un−1,∆t, hi, U

L/R
BC

)
The relaxation zone technique eq.(7.5) is applied on the horizontal velocity:
P ∗
ij ← P ∗

ij +m(xmi )×
(
P j
zone(xmi , tn)− P ∗

ij

)
The Vertical Remeshing Operator (Algorithm 4) is applied:
U∗, ϑn ← V RO (U∗,∆t)

The Pressure Correction Operator (Algorithm 6) is applied:
Un, qn ← PCO

(
U∗, qn−1,∆t, U

L/R
BC

)
end for

return L,P,Q, q, t

68



Master thesis Chapter 7

7.3 Dispersion properties and wave/current propagation

7.3.1 Irrotational waves

In order to address the topic of wave propagation let us consider a wave of small
amplitude Aη propagating over a bottom of constant depth h. According to the linear
theory of Airy [71, §2.1], if the wave is of sinusoidal nature with length λ, propagating with
speed c, the field is described by:

η(x, t) = Aη × cos [k(x− ct)] (7.10a)
u(x, σ, t) = Au × cosh [khσ]× cos [k(x− ct)] (7.10b)
w(x, σ, t) = Au × sinh [khσ]× sin [k(x− ct)] (7.10c)

with: Au = ckAη/sinh kh (7.10d)

The vertical coordinate is defined as σ = (z + h)/h and the wave number as k = 2π/λ.
The wave celerity is calculated using the classic dispersion relation for linear waves:

c2Airy

gh
=

tanh kh

kh
(7.11)

In order to test the performance of the layer-discrete SLS with respect to propagation,
the method to calculate the dispersion relation of the semi-discrete linearized system is pre-
sented in Appendix C. Following that, the dispersion relations are analytically calculated:

c2

gh
=

2

kh2 + 2
Nl = 1 (7.12a)

=
4kh2 + 32

kh4 + 16kh2 + 32
Nl = 2 (7.12b)

=
6kh4 + 216kh4 + 1458

kh6 + 54kh4 + 729kh2 + 1458
Nl = 3 (7.12c)

=

∑N−1
n=0 αn(kh)

2n∑N
k=0 βk(kh)

2k
Nl = N (7.12d)

Those dispersion relations of the layer-discrete systems are compared with eq.(7.11)
in Figures 7.2,7.3. It is observed that as the number of layers increases, the dispersion
relation tends to coincide with the analytic one. That indicates that with the addition
of layers, the dispersion properties of the model are enhanced and thus waves of shorter
length can be accurately simulated.
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Another thing to note is that the difference between the discrete dispersion relation
and the analytical one stems from the fact that eq.(C.7) is a discretization of the Helmholtz
equation:

∂2q∗

∂σ2
− (kh)2q∗ = (kh)2 with: ∂q∗

∂σ

∣∣∣∣
σ=0

= q∗|σ=1 = 0 σ ∈ [0, 1] (7.13)

That equation’s analytic solution is q∗th =
cosh(khσ)

cosh kh
− 1. That, when substituted into

eq.(C.9), gives the analytic dispersion relation of the Airy theory. This means that the
dispersion error is essentially the error related to the discretization of eq.(7.13).

7.3.2 Current incorporation and boundary data

When dealing with waves propagating on top of a current, dispersion relations become
complicated, because the solution of the Rayleigh equation is required in order to calculate
them. Thus, approximate methods are abundant in the literature.

Let V (σ) be a vertical current profile and Ṽ = V (1) its free surface trace. For the
purposes of defining the boundary conditions of the method, the following approximate
relation is used [72]:

c≈ = Ṽ +
[√

(c0)2 + δ2 − δ
]

(7.14)

with : δ = δ[V ′] =

∫ 1

0
V ′(σ)

sinh(2khσ)
sinh(2kh) dσ (7.15)

Where c0 denotes the celerity in the absence of the current, calculated by eq.(7.11).

If the background flow is considered to be piecewise constant Vi in a mesh [σi, σi+1],
the relation can be rewritten as:

c≈ =

√
(c0)

2 + (δ∗ − VN−1)
2 + δ∗ (7.16)

with : δ∗ = δ∗[Vj ] =

Nl−1∑
j=0

Vj(Nj+1 −Nj) (7.17)

Nj =
sinh(2khσj)
sinh(2kh) (7.18)

Having said that, the travelling wave solution that will be used for wave and wave-
current generation is defined through eq.(7.10). If the wavenumber k, the amplitude Aη,
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the depth h and the current Vj are known, those equations written in a layerwise manner
are:

Hwc(x, t) = h+Aη × cos [k(x− c≈t)] (7.19a)
ujwc(x, t) = Vj +Au × coshj × cos [k(x− c≈t)] , j = 0, ..., Nl − 1 (7.19b)
wj
wc(x, t) = Au × sinhj × sin [k(x− c≈t)] , j = 0, ..., Nl − 1 (7.19c)

Au = c≈kAη/sinh kh (7.19d)

The celerity is c≈ is calculated trough eq.(7.16). The celerity c0 is considered to
be equal to that of the Airy wave theory. The hyperbolic functions are averaged in the
following manner:

coshj =
1

σj+1 − σj

∫ σj+1

σj

cosh(khσ)dσ =
sinh(khσj+1)− sinh(khσj)

khσj+1 − khσj
(7.20)

sinhj =
1

σj+1 − σj

∫ σj+1

σj

sinh(khσ)dσ =
cosh(khσj+1)− cosh(khσj)

khσj+1 − khσj
(7.21)

When the set of eq.(7.19) will be used in the relaxation zone scheme for wave genera-
tions, the following restrictions must be noted:

• The wave amplitude must be small enough in order for the Airy theory to be appli-
cable.

• The 3 main conditions as noted in [72] (weak current, weak shear or short wavelength)
must be somehow met so that the approximation of eq.(7.16) is accurate enough.

• The number of layers must be large enough so that the celerity of the discrete system
remains close to the analytic solution to the Airy theory. One way to estimate that
is the dispersion analysis of the previous section.
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Figure 7.2: Dispersion relation curves
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Figure 7.3: Celerity error curves
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Numerical results

8.1 Propagation over submerged trapezoid

In order to test the model’s ability to simulate the propagation of waves over general
bathymetry, the well-known experiment of [73] is used.

In the long wave case, a sinusoidal wave of length λ = 3.7407m and amplitude A =
0.01m propagates over a varying topography with 0.1 ≤ h ≤ 0.4.

Concerning the discretization, the horizontal domain x ∈ [−10, 40] is divided into
Nx = 3000 cells of equal size. On the vertical direction, Nl = 10 layers are used and
lj = 1/Nl is set. In order to marginally ensure stability, CFL = 0.9 is chosen.

Wave generation/absorption is performed by the relaxation zone technique using eq.(7.19),
with Lin = Lout = 3λ. In order to gradually introduce the wave, the amplitude is set to
vary with time: Aη = A tanh (t/τ), where τ = 4λ/ (g × hmax)

1/2.

0 6 12 14 17 20

0.3m
0.4m

Figure 8.1: The immersed trapezoid setup

The resulting field (P,Q, q) at t = 58.96s is presented in Figures 8.2, 8.3 and 8.4.
The timeseries of the free surface elevation alongside the experimental data at the various
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stations are presented in Fig.8.5.
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Figure 8.2: Submerged trapezoid, P field
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Figure 8.3: Submerged trapezoid, Q field
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Figure 8.4: Submerged trapezoid, q field
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Figure 8.5: Free surface elevation at stations
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The results validate the performance of the model, since the wave transformation is
captured in a robust manner. Specifically, as it is shown in Fig.8.5, the simulated free
surface elevation remains really close to the experimental data even at the last stations,
where it is known that the dispersion effects are dominant. Small differences appear at
the last two stations, but are considered acceptable. Those results show that the SLS is
able, with a reasonable number of layers (Nl = 10), to capture dispersion phenomena of
non-trivial nature, even in the presence of varying bottom topography.

8.2 Wave-current interaction

In order to test the SLS in the wave-current interaction cases, the following set of
simulations is performed. Linear waves of amplitude Aη = 0.001(h/0.4) and length λ = 5m
propagate on top of a bottom of constant depth h in the present of a shear current.
Two current configurations (linear,exponential) are considered: Frlin = 0.1σ and Frexp =
0.1 exp [3(σ − 1)]. In order to alter the value of kh, a discrete set of depths are simulated
separately: h[m] = {0.4, 0.8, 1.6, 4}.

Regarding the discretization, the horizontal domain x ∈ [0, 100] is divided into Nx =
2000 cells of equal size. On the vertical direction, Nl = 10 layers are used with lj = 1/Nl.
Concerning the timestepping, CFL = 0.5 is chosen.

Wave generation is performed by the relaxation zone technique using eq.(7.19), with
Lin = Lout = 3λ. In order to gradually introduce the wave, the amplitude is set to vary
with time: Aη = A tanh (t/τ), where τ = 4λ/ (g × hmax)

1/2. The current flow is used as
the initial condition.

The resulting curves in the absence of background flow and with linear/exponential
current profiles are presented in Figures 8.6, 8.7 and 8.8 respectively. Alongside the simu-
lation results, the analytic curves calculated through eq.(7.14) are plotted. Note that the
wave nonlinearity is kept low (A/h = 0.25%), so that those relations are applicable.

76



Master thesis Chapter 8

0 1 2 3 4 5 6
kh

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 c
/

gh
 

No current

0.05 0.00 0.05
Fr

0.0

0.5

1.0
Current profile

SLS, N=10
analytic

Figure 8.6: No current
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Figure 8.7: Linear current profile
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Figure 8.8: Exponential current profile

The simulated wave celerities are extremely close to the analytic curves and thus the
ability of the SLS to simulate the propagation of waves on top of currents of arbitrary shear
is demonstrated.
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Concluding remarks

9.1 Brief summary

In the present thesis a numerical scheme for the Free-Surface Euler system in general
bathymetry is presented. The σ-coordinate transformation is generalized in a layer-wise
manner and the Generalized-Coordinate Euler system (GCE) is proposed. The system is
treated by a standard operator splitting technique with the addition of a layer kinematic
scheme. The mathematical modeling is done in such a way so that the horizontal advec-
tion is performed through the Multilayer Shallow Water Equations (mSWE), followed by
the proposed Vertical Remeshing Operator (VRO) and the standard Pressure Correction
Operator (PCO). Those three operators constitute the Semi-Lagrangian Splitting scheme
(SLS).

Following the literature, a standard second-order Finite Volume scheme is designed for
the numerical resolution of the mSWE. A remeshing strategy is employed through the VRO
so that the well-known loss of hyperbolicity in the mSWE does not become prevalent. The
VRO is solved through a simple one-wave Finite Volume scheme. The pressure coupling is
performed through the PCO by a partially implicit approach, followed by the solution of
a Poisson-like equation on a staggered grid in a standard Finite Difference manner.

The dispersive properties of the linearized SLS are analyzed and boundary condi-
tions for wave propagation (with and without the presence of current) are proposed. The
method’s performance is tested on the wave propagation over variable bathymetry and
in the wave-current interaction over a flat bottom cases. Comparison with experimental
results and analytic relations show good agreement, thus verifying the method’s accuracy.
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9.2 Directions for future research

As an epilogue some possible directions for future research are outlined:

• Numerical investigation of more severe nonlinear wave phenomena in order to test
the model’s limits/capabilities.

• Enrichment of the model with additional physical considerations, like: variable den-
sity (stratified flows), effects of viscosity e.t.c.

• Investigation of how the layers’ placement influences the dispersive characteristics of
the system. A starting point could be an error analysis of eq.(7.13) on various grids.

• Extension of the model to 3 dimensions. In that case, the splitting technique that
constitutes the core of the SLS is expected to remain the same, but a 2D SWE solver
and a 3D Poisson solver would need to be constructed.

Concerning the possible extension of the present model for large-scale oceanographic
applications, a -quite optimistic- quote from [37, §6.3] is cited:

[...] We thus conjecture that it is only a matter of time before we see a vertical
Lagrangian-remap-based nonhydrostatic ocean dynamical core for realistic global
and regional applications.
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Appendix A

Generalized Vertical Coordinates

In the present appendix, the notion of coordinate transformation is generalized. Let
us now consider a mapping of the type (x′, z′, t′) 7→ (x, z, t) with:

x = x′ (A.1a)
z = P(x′, z′, t′) (A.1b)
t = t′ (A.1c)

The function P is kept arbitrary.

According to the chain rule, the derivatives are:

∂f

∂t′
=

∂f

∂t
+

∂P
∂t′

∂f

∂z
(A.2a)

∂f

∂x′
=

∂f

∂x
+

∂P
∂x′

∂f

∂z
(A.2b)

∂f

∂z′
=

∂P
∂z′

∂f

∂z
(A.2c)

Before we proceed further, the following quantities are defined:

T def
== −∂P

∂t′
(A.3a)

X def
== −∂P

∂x′
(A.3b)

C def
==

∂P
∂z′

(A.3c)
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Multiplying eq.(A.2) with C the following relations are produced:

C ∂f
∂t

= C ∂f
∂t′

+ T ∂f

∂z′
(A.4a)

C ∂f
∂x

= C ∂f
∂x′

+ X ∂f

∂z′
(A.4b)

C ∂f
∂z

=
∂f

∂z′
(A.4c)

And then by noticing that ∂C
∂t′

=
∂2P
∂z′∂t′

= −∂T
∂z′

and ∂C
∂x′

=
∂2P
∂z′∂x′

= −∂X
∂z′

,
eq.(A.4) are written in the alternative ”conservative” form:

C ∂f
∂t

=
∂

∂t′
(Cf) + ∂

∂z′
(T f) (A.5a)

C ∂f
∂x

=
∂

∂x′
(Cf) + ∂

∂z′
(X f) (A.5b)

C ∂f
∂z

=
∂f

∂z′
(A.5c)

Similar expressions appear in the literature of moving grids, where C is referred to as
the capacity function [74].

If now the velocity field u,w is introduced, the material derivative takes the form:

CDf

Dt
=

∂

∂t′
(Cf) + ∂

∂x′
(Cuf) + ∂

∂z′
(Wf) (A.6)

where: W def
== w + uX + T (A.7)

Furthermore, if the mapping is of the type [0, 1]
P7→ [−h, η], the FSE, as described by

the set of eq.(2.5), can be rewritten using the set of eq.(A.5):
∂

∂x′
(Cu) + ∂

∂z′
(w + uX ) = 0 (A.8a)

∂

∂t′
(Cu) + ∂

∂x′

(
Cu2 + 1

2
gC2 + Cq

)
+

∂

∂z′
(Wu+ X q) = gC ∂

∂x′
(C − η) (A.8b)

∂

∂t′
(Cw) + ∂

∂x′
(Cuw) + ∂

∂z′
(Ww + q) = 0 (A.8c)

BC: Wz′=0 =Wz′=1 = qz′=1 = 0 (A.8d)

Note that the SCE of eq.(2.17) and the GCE of eq.(3.12) are derived as special cases
of this system when one defines:

z′ = σ =⇒ P = −h+ σH (A.9)
z′ = ξ =⇒ P = PΞ(x′, ξ, t′) (A.10)
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Appendix B

The two-layer SWE

Consider the two-layer (Nl = 2) version of the mSWE system in its eq.(4.1) form, with
l1 = l2 =

1

2
. This system is written as:

∂

∂t
(L1) +

∂

∂x
(L1u1) = 0 (B.1a)

∂

∂t
(L1u1) +

∂

∂x

(
L1u

2
1

)
+ gL1

∂

∂x

(
L1 + L2

2

)
= gL1

∂h

∂x
(B.1b)

∂

∂t
(L2) +

∂

∂x
(L2u2) = 0 (B.1c)

∂

∂t
(L2u2) +

∂

∂x

(
L2u

2
2

)
+ gL2

∂

∂x

(
L1 + L2

2

)
= gL2

∂h

∂x
(B.1d)

L1

2 u1

L2

2 u2

z0 = −h(x)

z1

z2 = η(x, t)

Figure B.1: The two-layer SWE
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or in the quasi-linear form:

∂U
∂t

+ A(U)
∂U
∂x

= S(U;h) (B.2a)

where: A(U) =


0 1 0 0

(c1)
2 − (u1)

2 2u1 (c1)
2 0

0 0 0 1
(c2)

2 0 (c2)
2 − (u2)

2 2u2

 (B.2b)

S(U;h) =

[
0 , gL1

∂h

∂x
, 0 , gL2

∂h

∂x

]T
(B.2c)

and: U def
==

[
L1 , L1u1 , L2 , L2u2

]T (B.2d)

cj
def
==

√
gLj

2
, j = 1, 2 (B.2e)

As pointed out in the literature [49, 75, 76], the two-layer system’s eigenvalues cannot
be analytically calculated and may even be complex. In the special case of equal layer
heights L1 = L2 = H, the eigenvalues of the system can be explicitly expressed [77]. By
setting c

def
==
√
gH those are:

λ1,2,3,4 = eig(A) =
u1 + u2

2
± 1

2

√
2c2 + (u2 − u1)2 ∓ 2c

√
c2 + 2(u2 − u1)2 (B.3)

= u± c

2

√
2 + δ2 ∓ 2

√
1 + 2δ2 (B.4)

where δ
def
==
|u2 − u1|

c
, u =

u2 + u1
2

and ±,∓ switch signs independently.

It is then observed that in the (very relevant) case of 0 < δ < 2, two of those eigenvalues
become complex and thus hyperbolicity is lost. Note that in the case of equal velocities
(δ = 0), those eigenvalues are consistent with those of the regular one-layer system:
λ1,2 = u± c and λ3,4 = 0.
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Discrete dispersion relation

Let us consider a small free surface perturbation (i.e. η/h� 1) over a horizontal bot-
tom with h = const. Aiming to linearize the system, the convection terms Lu2, Luw, ϑu, ϑw
are omitted from the SLS in eq.(3.39),(3.40). Considering the PCO, Ξx � 1 is assumed.
This means that eq.(6.5) vanish and in eq.(6.6) Ψ ≈ hw. Based on that and using the
staggering formulation of the PCO described in §6.2 and eq.(6.9), the linearized version of
the semi-discrete SLS is formed. Considering a uniform spacing of lj = 1/N , this is written
as:

∂η

∂t
+

h

N

∂

∂x

j<N∑
j=0

uj = 0 (C.1)

∂uj
∂t

+ g
∂η

∂x
+

∂qj
∂x

= 0 j = 0, ..., N − 1 (C.2)
∂wj

∂t
+

qj − qj−1

h/N
= 0 j = 0, ..., N (C.3)

∂uj
∂x

+
wj+1 − wj

h/N
= 0 j = 0, ..., N − 1 (C.4)

BC: qN + qN−1 = 0 and q0 − q−1 = 0 (C.5)

Substituting the momentum equations into the continuity we obtain the Poisson-like
equation for the pressure:

∂2qj
∂x2

+
qj+1 − 2qj + qj−1

(h/N)2
= −g ∂

2η

∂x2
(C.6)

Now, let us use the frequency domain using the complex representation
f(x, t) = <

{
f̊ exp [ik(x− ct)]

}
where f̊ ∈ C.
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The Poisson equation now becomes:

(ik)2q̊j +
q̊j+1 − 2q̊j + q̊j−1

(h/N)2
= −g(ik)2η̊ (C.7)

Setting η̊ = A ∈ R and q∗
def
==

q̊

gA
the following linear system can be formulated:

Aq∗ =



−1 1
a 1− 2a a

a 1− 2a a
. . . . . . . . .

a 1− 2a a
a 1− 2a a

1 1





q∗−1

q∗0
q∗1
...

q∗N−2

q∗N−1

q∗N


=



0
−1
−1
...
−1
−1
0


= B (C.8)

where a
def
==

1

(ikh/N)2
= −

(
N

kh

)2

.

It is, then, readily observed that the non dimensional dynamic pressure can be calcu-
lated by inverting the matrix A(kh;N), thus fully defining the mapping (kh,N) 7→ q∗j ∈ R.

Now, by inserting the eq.(C.2) into eq.(C.4) we obtain:

∂2η

∂t2
− gh

∂2η

∂x2
− h

N

∂2

∂x2

j<N∑
j=0

qj ⇒

⇒(ikc)2A− gh(ik)2A− h

N
(ik)2gA

j<N∑
j=0

q∗j = 0⇒

⇒ c2

gh
= 1 +

1

N

j<N∑
j=0

q∗j = 1 + (q∗) (C.9)

Since the dynamic pressure components q∗j are fully defined, the above equation for-
mulates a dispersion relation of the type (kh,N) 7→ c2/(gh).

Bearing that in mind, eq.(C.2) gives:

(−ikc)̊uj + g(ik)A+ (ik)q̊j = 0⇒

⇒ůj =
gA

c
(1 + q∗j ) =

cA/h

c2/(gh)
(1 + q∗j )⇒

(C.9)
===⇒hůj = cA

(
1 + q∗j

1 + (q∗)

)
(C.10)
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