«
>

2\l
S3UHP
/.
El

F

I d
=\
] ‘“‘k
7 NPOMHOEVS . ?
1§qk!p<poroi

\

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

ScHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

MSc DATA SCIENCE & MACHINE LEARNING

{

Study and Resource Analysis of Ethereum

Execution Client Bootstrapping

DipLOMA THESIS

of

KONSTANTINOS TSIARAS

Supervisor: Nectarios Koziris

Professor

Athens, March 2023

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

ScHooL OF ELECTRICAL AND COMPUTER ENGINEERING

MSc DATA SCIENCE & MACHINE LEARNING

Study and Resource Analysis of Ethereum Execution

Client Bootstrapping

DipLOMA THESIS
of

KONSTANTINOS TSIARAS

Supervisor: Nectarios Koziris

Professor

Approved by the examination committee on 16th March 2023.

(Signature) (Signature) (Signature)
Nectarios Koziris Georgios Goumas Ioannis Konstantinou
Professor Associate Professor Assistant Professor

Athens, March 2023

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

ScHooL OF ELECTRICAL AND COMPUTER ENGINEERING

MSc DATA SCIENCE & MACHINE LEARNING

Copyright (C) - All rights reserved.

Konstantinos Tsiaras, 2023.

The copying, storage and distribution of this diploma thesis, exall or part of it, is prohibited
for commercial purposes. Reprinting, storage and distribution for non - profit, educational
or of a research nature is allowed, provided that the source is indicated and that this

message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the

Supervisor, or the committee that approved it.

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this diploma
thesis, as well as the electronic files and source codes developed or modified in the course
of this thesis, are solely the product of my personal work and do not infringe any rights of
intellectual property, personality and personal data of third parties, do not contain work
/ contributions of third parties for which the permission of the authors / beneficiaries is
required and are not a product of partial or complete plagiarism, while the sources used
are limited to the bibliographic references only and meet the rules of scientific citing. The
points where I have used ideas, text, files and / or sources of other authors are clearly
mentioned in the text with the appropriate citation and the relevant complete reference
is included in the bibliographic references section. I fully, individually and personally
undertake all legal and administrative consequences that may arise in the event that it is
proven, in the course of time, that this thesis or part of it does not belong to me because

it is a product of plagiarism.

(Signature)

Konstantinos Tsiaras

16th March 2023

Abstract

The Ethereum blockchain, beyond its status as the second largest cryptocurrency by
market cap, is a decentralized platform which is currently employed for a variety of use
cases. Its programmable nature has allowed its users to develop a plethora of applications
on it using smart contracts and it has seen an explosive growth and adoption in the few
years since its creation. However, in order to keep such a decentralized network online,
numerous nodes around the globe are required to run some specific client software. This
client software in Ethereum is responsible both for deciding upon the current canonical
chain ("consensus client") but also for downloading and storing the chain’s data, locally
preserving and maintaining an up-to-date copy of the network’s state ("execution client").
The latter in particular requires a lengthy and resource-intensive process to bootstrap,
one that has been the subject of much debate but also the catalyst for several innovations.

The purpose of this thesis is to thoroughly understand the workloads an Ethereum
execution client is required to handle, and the different ways in which the different client
implementations have opted to approach it. We will initially research Ethereum’s archi-
tecture, the data structures used to persist chain and state data on disk, and we will
also be exploring the different sync modes each client implementation utilizes to initially
synchronize the network. Finally, we will be performing a comparative resource analysis
on them, focusing on the system resources and time needed for their bootstrapping and

we will be evaluating these results.

Keywords

Ethereum, Blockchain, Node, Client, Benchmark, Resource Analysis, Bootstrapping,

Synchronization, Execution, Storage

MepiAnyn

To Ethereum blockchain, mépa amo tn 9éon 10U wg 10 SeUtepo PEYAAUTEPO KPUTI-
Tovopiopa Bacel kegpadatoroinong, eivat pia arnokevipepévn niatpoppa i oroia orpepa ag-
lortoteitatl yla éva peydio rminbog xproewv. Zta Alya Xpovia Urapdhg Tou €Xet 6l EKPNKTIKY)
avartugn), pe v npoypappatidopevn @uUaor] tou va £xel Sooet) Suvatdtnta otoug Xproteg
10U va avarugouv mnbopa epappoyov mave oe autd Péow £Eurnvev oupBolaiov (smart
contracts). Qotdco, n eupubn Asttoupyia evog T€To10U S1KTUOU anattel moAudpBpoug KO-
Boug avd tov kK6opo va ektedouv KArolo rporabopiopévo Aoylopiko-rieddtn (client). To
AOY10p1KO auto eival ureubuvo 1600 yia va anopaoidel yia tmyv ophotnta g Ipexoucag
aAuoibag ("consensus client") 600 kat yia 1o katéBaopa Kat arobrjkeuor] 1oV §edopEvev g
aAuoibag, dlatnpoviag éva evIEP®IEVO TOTTIKO aviiypado tng IPEX0UCAg KATAOTAonG ToU
diktvou ("execution client"). H ekkivnon tou AOylOHIKOU €KTEAEONG OUYKERPIPEVA XP1EEL
pag xpovoBopag dradikaociag pe PeYAAEg AMAlNOelg 0 MOPOUS CUOTHIATOG, 1] Ooroia £xel
arotedéoel ouxvo d€pna 81adoyou adAd €xel emiong 6pAcEl KATAAUTIKA Y1d APKETEG OXETIKES
KAVoTolieg.

O 0Korog autrg g SMAEPATIKYG epyaociag givat 1 81e§od1kr) Katavonon Tou PopTou
€epyaoiag rmou 1o Aoylopko ektédeong oto Ethereum kaleital va Siaxeiplotet kal toug o1-
APOPEUKOUG TPOITOUG HE TOUG OIT0I0UG 01 H1aPOPETIKEG UAOITOIOELG AUTOU £X0UV £MAEEEL va
1oV mpooeyyioouv. Apxikd Sa Siepguvricoupe v apytiektoviky tou Ethereum, tg Sopég
d6edopévav rou xpnotpornolovviatl yia va arodnkevoouv ta dedopéva aduoidag kat katdo-
taong otov Hioko kat ertiong 9a egepeuvricoupe TG Srapopetikeég Pebddoug TG omoieg KABe
vloroinor agloroliel yua va ouyxpoviotel apyikda pe 1o diktuo. Tédog, Sa mpaypatoror)-
OOUJLE 1110 OUYKPITIKY) PeAétn petady autev, eottddoviag otoug opoug CUCTHATOS KAl GUVO-
AKOUG XpOVOUG eKTEAEONG TTOU £€KAOTN UAoToinon Xpelddetal yla v ekKivnorn g Kat Sa

ATIOTIUYOOUHE Ta ATOTEAECPATA AUTHS TNG PEAETNG.

Agterg KAe1b1a

Ethereum, Blockchain, KopBog, ITeAdtng, Zuykpitiky] MeAétn, [1opot, Exkivnon, Zuy-
xpoviopog, Extédeor), AroBnkeuon

Zuvoyr)

To Ethereum blockchain arotelei pia mlat@poppa avarmtuing ArmoKEVIPOUEVOV EPpap-
HOY®V Y1a £éva Peyddo eUpog TOPERVY HEOR TN XPHong £Eunvav oupBoAaiwy (smart contracts).
To vopopa tou, Ether (ETH), srutpénet) petadopd adiag eviog evog KPUIoypadpika ao-
(Paloug H1KTUou Katl arotipdral oe ekatoviadeg ekatoppupla SoAdpla, oviag to Heutepo
HeyaAUteEpPO KPUMTOVORIoPd ava Kepadalonoinor.

'Eva t€tolou eidoug opotipo (peer-to-peer) Siktuo anattei évav 1kavo aplBpio amno Xpnoteg
avd Tov KOOHO 01 OTToi01 va AE1toupyouv KOBoUg Tou 1ou 9a TPEXOUV KATIO0 CUYKEKPIHIEVO
Aoylopiko-tieddatn (client). Meta) peyadn avaBadiiion mou 0AokANp®Onke to Zemtepbpio
tou 2022, yvootr) og "The Merge", to Aoylopiko autd ywa to Ethereum yopiotke oe 2
koppata. To mpolnapxov, yvooto g "execution client”, mapépetve unieuBuvo 1600 yia 10
katéBaopa Kat mv anobrkeuon v dedopévav tng aducidag 6co kat yia) diatrpnon evog
EVIHIEPWHEVOU TOTUKOU AVIYPAPOU TG TPEX0UCAS Kataotaong tou Siktuou. To kawvoupylo,
mou ovopaotnke "consensus client”, eivat mAéov urnevBuvo yla va anopaoilet v opbotnta
g PEXoucag aluoidag pe Bdaon to véo aAdyopiBpo cuvaiveong nou akoAoubeital Aéov oto
Ethereum, to Proof-of-Stake.

'Exovtag opioet oto Kepdldatio 2 kamnoieg anattoupeveg opoloyieg, oto Kepadaio 3 apyxika
eotialoupie otig Hopég SedopEvmV TTOU XPNOIHOII0OI0UVIAL OTHV APXITEKTOVIKT Tou Ethereum
orou kuplapyn 9éon €xouv tporonoupéveg devdpikeg Sopég MPT (Merkle Patricia Tries).
Autn) n Sopr arotedel pa PeAtiotonoinpévn ekdoxr 10U KAAOKOU trie, pe ta dedopéva
va Bpiokovial armoBnkeupéva ota eUAAA AUTOU Ve Ol evO1APE001 KOPBO1 MEPIEXOUV KPUTI-
toypadikég anodei§elg Merkle ékaotog yia 1o urodeévbpo tou. Ta MPT Bpiokouv epappoyn
oto Ethereum 1000 0UVOAKA yia TNV arobrKevuorn g TPEXOUOAG KATAOTAONG TOU S1KTUOU,
000 KAl EIMPEPOUS Yla TiG dopég anobrjkeuong tov MAnPopopldv Kabe Aoyapiaopou aidda
KAl yid Vv 0pyaveor oV ouvaAlayov eviog tou Kabe purmlok kat tov arodeifemv autov.
Atlonotwviag 1810TTeg TV OUVAPTICEMV KATAKEPHATIONOU (KAt e181KOTEPA OTNV TPOKETHEVT)
g Keccal-256) ta MPT napéxouv éva mAfj0og armo rieovektrpata ta onoia petady dAdwv
nieptAapBavouv 1 Suvatotnta ermBeBainong g opbotnTag empepoug unodeévipwv aAdd Kat
v eyyunon neg 2 i6ieg pideg 6évépwv cuvendyovial anapaitnta idia 6évépa otnv oAdtntda
TOUG, AOY® TOU VIETEPHIVIOTIKOU TPOIOU KATACKEULG TOUG.

Mveia yivetar BéBaia kat otg Pdoelg 6e60pévev AmOBNKEUONG TOV ITPOAvVAPEPOEVI®DV
Sopwv oto 6ioko 1oU ¥protporolouviatl arod toug diagopoug clients, pie TPoegEXOUOEG AUTEG
rou Paocidovtatl oty xpnon nodverninedov LSM 6évpwv, 1ig Level DB kat RocksDB. Autég
Kavouv katdAAndn adloroinorn g pvpng RAM kd6e @opd rmou xpetdadetal KAmoa yypaon)
TIPOKEHIEVOU 01 eYYpadéG oto S1oKo va yivovial MePodika os MAKETA, EMTUYXAvVOvVIag 161-

aitepa UYPNAEG TAXUTNTES EYYPAPOV AV KAl ITAPOUcIAdouv XapnAodtepeg arodooeig 6cov adpopd

Zuvoyn

TG Tuxaieg avayvooelg Sebopévav.

X1 ouvexela, oto Kepdldato 4, avadvoupe ta dapopetikd €i6n kKOpbmv mou unapxouv
oto Ethereum, toug full, archive kat light kopBoug. Ot full eivat 1o Aéov ocuvnBéotepo £1dog
KOpBwv rou, appodidtnta tou oroiou eival va kateBdoetl To oUVOAO TV PIMAOK NG aAuoidag,
va ermBeBai®oet tv opOOTNTA TOUG KAl VA KATACKEUAOEL £va TOTIKO aviiypado g IpEXoucag
Katdotaong Tou d1ktuou. AQou 1a 0AoKAnNpwoel autd, €ivat os 9€on va uroBaiAetl ouval-
Aayég oto Siktuo adAd kat va dextel dAAeg arod ToUg OPOTIIIOUG TOU, Ol OIoieg CUVAAAQYES
Ya pooteBouv o KATO10 eOPEVO PITAOK anod toug validators. Ot validators ev aroteAouv
Eexp1oto £idog kOpBou, rapd sivat full k6pBot rmou £éxouv otnv Katoxr] Toug touddyxiotov 32
ETH kat gpovrtidouv yia tv aodpdleia tou d1ktuou Kat) dnpioupyia vém®v PImAoK, arokopi-
Jovtag OKOVORIKA odeAn amd 1 dwadikaocia auty] Ornwg mPoBAEMETal Ao 10 MPATOKOAAO
Proof-of-Stake. Ot archive kopBot eivat emiong full k61801 01 o1o101 GRS TIEPATTEP® £XOUV
NV appod1otta va arnobnKeUouy £va MANPeS 10T0PIKO TV evOIAPEoOV KATaotaoe®v (petadu
1OV PIMAoK) aro tg anapyég tou diktvou. Eival éva eidog kopBou pe peyddeg anattfoeig
X®POoU oto §10KO KAt ITOAU XpovoBOpO GTO GUYXPOVIOHO TOU, Y1d TOUG OTI010Ug AGYOUS OUVHO®G
dev xpnowonoteital mapd PoOvo yla ouyKekpilpéveg epappoyég. Tédog, ot light kopBot £xouv
€AAX10TEG ATIAITHOL1G TIOPWV CUCTHIATOG adou eregepyadoviatl povo tg kepadibeg (headers)
TV PUrmAok, aAAd Katd cuvénela aduvatouy va ermtedé0ouv ApKeTEG AETOUPYieg Kal §aptmv-
Tat anod ta vnoldourna £idn kOpbwv yla v andavinon minboug attnpdtev mou duvavial va
anartnouv ano evdexOPEVOUG XP1)0TeEG TOUG.

Yotepa avapepdpacte otnv avaykaotnta yia wowidopopgia otoug clients kdbe turou,
onwg Kat epBabuvoupe o kamnowo Pabpo otoug consensus clients, rmapabgtoviag ev ouv-
Topia TG H1aPoPETIKEG UAOITO|0E1S AUTWV KAl TOV TPOITO ITOU AUTO1 EITUYXAVOUV TOV apX1KO
ouyxpoviopd toug pe to diktuo ("bootstrapping”). O mAéov dadedopévog TpOIT0g ITOU TOV
npaypatortolovv, ovopatt "checkpoint sync", neptdapBavet v aglornoinon tpitwv 1én ouy-
Xpoviopévav consensus clients kat eivat pia dadikacia ou Suvatatl va 0AorANp®Oel evidg
oAlywv Asmwv mapayoviag oto téAog g pla €ykupn Kedadr g aiuoidag (chain head).
Tnv tedeutaia o execution client propei va ndpet ot CUVEXELA YA va EKKIVIOEL 1] O1KT| TOU
avtiotoixn Sadikaocia bootstrapping.

KaBwg 10 xuping aviikeipevo tng SmAe@pPAtiKng pag eival ouykekpipéva ol execution
clients, oto KepdAaio 5 eotiddoupe akpiBwg ekei aAAd kat otig moikideg peBodoug apyxikou
OUYXPOVIopoU toug. AvtiBeta pe toug consensus clients, €66 n Stadikaoia autr| eivat 16co
XpovoBopa 600 kat dlaitepa anatntikiy os mopoug cuotpatog. To katéBaopa 1wV PITAOK
elval pev KAl autd moAUmPOo, ®OTOCO TIOAU TIEPIO0OTEPOG XPOVOS daravdatal oty TOITKD
KATAOKEUT] EVOG AVIYPAPOU TG TPEXOUCAS KATAOTACNS TOU OUCTHATOG.

O 1110 armAdg TPO1og yia va ermteuOel auto 9a NTav va enaveKieAeoTtoUv OE1plaKkd OAeg
01 OUVAAAQYEG OAGV TV PITAOK artd TV apXl) Tou S1Ktuou (yveotog g "full sync"), katt rmou
Aoy® Tou TTANBOUG aUTOV TV cuvallay®v duvatal va SlaprEoel akopa kat e86opnadeg, Kka-
Slotodviag Tov eppaveg 1 MPAKTIKO yid 10 PEco Xprjotn. Mia 81adopetik rpooeyyion ouy-
Xpoviopou 9a ntav va rpooradroet o Xprjotng va kateBdoest kateubeiav v Kataotaor) tou
S1KTUOU artd ToUg OPOTIHOUG TOU, SEKIVOVTIAG arto tr) pida tou oxetikou MPT kat Siatpéxoviag
10, ATOUPEVOG KABE popd 0To §1KTUO 000UG KOPBOUG ToU Asirouv. Av Kal) TPOCEYY10n AUty

yvootr) og "fast sync"”, mapesixe onpaviikeg PEATIOOELS KAl YA APKETO diaotnpa anoteAovos

Zuvoyn

TIPOETIAOYT] @V TePlocotep®v clients, mepldapBave mMAN00¢ PEPOVOHIEVEOV ATPATOV Yid
Pkpa koppatia tou MPT kaBe @opd, katt nmou kabwg 1o Ethereum peydAwve odnyouoe
o€ 0A0€va Kal MePLooOTEPES KABUOTEPT0Elg AOY® avapovav yla ta attpata auvtd. TeAdikog
oav P€Bodog ouyxPOoVIoHoU aviikataotdbnke aro 1o "snap sync' to oroio diatr)pnoe v
KEVIPIKY] 16€a €rmKOVOVIAG TG €V AOY® KATAOTAONS PEO® TOU 81KTUOU, adAd aviadAalov-
Tag Koppdatia evog ertinedou otypiotunou ("snapshot”) tng katdotaong to ortoio kabe client
Slatnpet kat avaveamvel Suvapika. O client ot ouvéxela propet Kat EUKOAA AvaKATACKEUALEL
10 oxeuko MPT tormkd, €ve 10 OTIYHIOTUITIO AUTO 81eUKOAUVEL KAl dAAeg Aettoupyieg tou. Ot
napandve pEBodot ouyxpoviopou eivat ot mAéov Sradedopéveg otoug reptoodtepoug clients,
av Kat oto Keipevo pag avapepOpacte KAl OTlg UTTOAOLTEG TTOU X P OIOIIO0UVIAL £V YVEVEL.

EmumAéov napaBetoupe 11g H1apopetikeg UAoTIOINOL1S TV execution clients, mAaioiwvov-
TAG TEG KAl 1€ 10TOPIKEG TTANPOPOPIEG OTIOU AUTO KPIvETAl XPrO110. XT1G UAOTIOIN0E1S AUTESG
nipoegexouoa 9éon £xel o Geth, rnou arnotelei v adaidtepr) UAOoOinon KAt XProtonolei-
Tal ofjpepa aro rnepinou ta Hvo Tpita v KOPB®V 10U H1KTUoU, Ve €ITiong meplypadoulie
toug veotepoug Nethermind kat Besu pe toug omoioug 9a avunapabéooupe tov Geth ota
peténeta nepapatd pag. KataAnkuka avagepopaote otov Erigon, rmou akoAouBei onpav-
TIKA O1aQOPETIKY] APXITEKTOVIKI] A0 TOUG ITPONYOUHEVOUS EVE UAOITOEL P1OVO 111d OEIPIAKD
ekboxn tou full sync ovépat "staged sync" g) povadikr) tou pébodo ouyxpoviopou.

H Sutdepatikn pag KataAnyel o€ MeEpapatiko KOPHPATL T0 0roio adopd piia CUYKPITIKY)
avdAuon petadu twv execution clients ©g 11pog 10 XpPOVo OUYXPOVIOIOU aAAd KAl TOUG TTIOPOUG
ouoTRatog rou Katavadovouv. H avdluor] pag autr) ekteiveratl oe 2 afoveg, 1000 petady
eKteEAéoE@V Hrapopetikov clients pe) xprjor tou id1ou sync mode 600 Kat petady eKteAEoemV
tou i6ou client pe Sapopetikég mapapé€rpous. IMa 10 MPATO OKEAOG TV HETPLOE®V, TO
sync mode 1ou ermA&£XOnKe 1tav 10 mpoavapepbev snap sync kabwog eival to Povo 1ou
unootnpidetatl oty rmsloynia v clients (0Toug TPEIg €K TOV TECO0APWOV, EEAIPOUIEVOU P1OVO
tou Erigon), eve yia to deutepo akoroubnOnkav drapopetikég rmpooeyyioelg ava client.

O1 PETPIKEG TTIAV® OTIG OIT0iEG MPAYHATOIIO|OAIE TIS PETPLOEIS PNag adopouv T XP1o1
CPU (rmooootd),) xprion RAM (GB), 1o péyebog tov dsbopévav oto dioko (GB), tig avay-
VOOoELS Kat eyypadég oto dioko (MB/deutepdAernto) 0nmg Kat T ATOOTOAEG KAl ANYELG ATto
10 diktuo (MB/6eutepoderto). AviArjoaple auteg TIS PEIPIKEG KATAYPAPOVIAS TOUG TTOPOUG
g Siepyaoiag tou ekdotote client exteddviag éva Bash script! 1o omoio afionotei Siapopa
gpyaleia ypappng evioAov ota Linux.

Ta anoteAéopata avtev TV petprosev napatibeviat oto Kepddao 6. Av kat ta ypadr)-
pata kel PooPEPOUV Olyoupa [11a KAAUTEPT] OITTIKI] KATAVOI Ol TV CUUIEPACHAT®OV 1Ag,
£V OUVIOWid TTAPATNPNOANE TIOS KOS IIPOS TO MIPATO OKEAOG NG avaAduorg pag o Nethermind
anodeixdnke avatepog twv Geth kat Besu 6cov apopd 10 XpOvo ouyxpoviopol Kabog ftav o
9¢on va aloror)oel KaAUtepa 1§ UYPNAEG tayutnieg eyypapov tou SSD pag. KataAnkuxd,
dlarmotwoape MEPAPATIKA TIOG 1) TTAPoX1) eptoootepng pvpung RAM otov Geth avapevo-
peva BeAtiovel v anodoor 10U KaBdG PEIOVEL TV AVAYKY Yid eyypapég oto dioko ava
Seutepolertto, evw 1€A0g Ot pla evdeIKTIKY oUyKplon petadyu fast kat snap sync modes otov

Nethermind anotunobnke n avotepdtnta 10U snap sync aro kKabes arowyr).

'Ata®éoio oto GitHub: https://github.com/Tsiaraskon/Ethereum-Client-Metrics

https://github.com/TsiarasKon/Ethereum-Client-Metrics

"Don’t trust, verify”

Acknowledgements

Firstly, I would like to thank my supervisor Professor Nectarios Koziris for giving me
the opportunity to pursue this thesis, on the innovative field of blockchain technolo-
gies. Furthermore, I would like to thank postdoctoral researcher Katerina Doka for her
guidance and support during both the research and the experimental part of this thesis.
Lastly, I would like to thank my family and all the people near and dear to me for their
support during this period.

Athens, March 2023

Konstantinos Tsiaras

Table of Contents

Abstract

MepiAnyn

Zuvoyn
Acknowledgements
1 Introduction

2 The Ethereum Blockchain

2.1 Historical Background o ..
2.1.1 Upgrades and Major Milestones

2.2 Terminology L. e e e e e e e e
2.2.1 Coinsand Tokens i
2.2.2 Accounts oL e e e e e e e e
2.2.2.1 Externally owned accounts

2.2.2.2 Contractaccountso

2.2.3 SmartContracts 0000
2.2.4 Ethereum Virtual Machine
2.2.5 Transactions o o it e e e
2.2.5.1 Typesof Transactions

2.2.5.2 GasandFees 000

2.2.6 Blocks e
2.2.7 Networks e
2.2.8 Consensus Algorithms 0L,
2.2.8.1 Proof-of-Work

2.2.8.2 Proof-of-Stake

2.2.8.3 Proof-of-Authority

2.3 The Merge i i i v it ittt
2.3.1 Consensus algorithm change

2.3.2 Consequences on Ether’s economics

3 Storage Architecture
3.1 Data Structures
3.1.1 RadixTries e e e e e e

14

16
16
17
18
18
19
19
20
20
22
22
23
23
24
26
26
26
28
29
29
29
32

TABLE OF CONTENTS

3.1.2 Merkletrees 35
3.1.3 Ethereum’s Modified Merkle Patricia Trie 36
3.1.4 Usein Ethereum 38
3.1.4.1 World State Trie 38

3.1.4.2 Account Storage Trie 38

3.1.4.3 Transactions Trie 39

3.144 ReceiptsTrie oo 39

3.1.5 Advantagesof MPTuse 39
3.1.6 BonsaiTries L oo e 41
3.1.7 Verkle Trees o e 41
3.1.8 Bloom filters e 43

3.2 Helper Functions e 44
3.2.1 HashFunctions 44
3.2.2 Encoding Functions 45
3.2.2.1 Recursive Length Prefix (RLP) 45

3.2.2.2 Simple Serialize (SSZ) 46

3.3 Storage Engines 0oL 000 46
4 Nodes and Clients 49
4.1 NodeTypes i i e 49
4.1.1 FullNode e 50
4.1.1.1 BootstrapNode, 50

4.1.2 Archive Node e 50
4.1.3 Light Node ittt 51

4.2 Client Types o o o i v i ittt e e e e e e e 52
4.3 Consensusclients L L e 53
4.3.1 Implementations 0. 53
4.3.2 CheckpointSync L 54
4.3.3 Weak Subjectivity oo 000000 55

5 Execution Clients 57
5.1 Initial Synchronization 0000 58
5.2 Synchronization Modes o000 58
5.2.1 FullSync e 58
5.2.2 FastSync L e 59
5.2.3 SnapSync.o e e e 60
5.2.4 CheckpointSync00 63
5.2.5 Staged Sync e e e e 63
526 LightSync. e 65

5.3 State Pruning 65
5.4 Implementations Lo 67
54.1 Geth 67
5.4.2 Nethermind o 67

TABLE OF CONTENTS

543 Besu e e e 68

54.4 Erigon e 68

5.4.5 Discontinued clients 0000 69

5.4.5.1 Parity - OpenEthereum 70

5452 Akula.o e 70

5.4.5.3 Smaller projects oL oo 71

6 Benchmarks 72
6.1 Methodology L e e e e 72
6.1.1 Metrics L e e e e e 73

6.1.2 Datagathering 74

6.1.3 Consensus client selection 74

6.1.4 Hardware ot it e 75

6.2 Results e e e 77
6.2.1 Geth e 78

6.2.2 Nethermind e 78

6.2.3 Besu e e e 81

6.2.4 Erigon o e e 81

6.2.5 Inter-client comparisons 83

6.3 Resultsassessmento 86

7 Conclusion 87
7.1 The Futureof Ethereum 87
7.2 Related work on potential improvements 0L 88
Bibliography 94
List of Abbreviations 95

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6

Block structureo e 25
Committee and Proposer selection through RANDAO 31
Number of Ethereum mainnet validators over time 32
Anexampleofatrie Lo Lo 34
An example of a patriciatrie L0000 34
An exampleofahashtree, 35
Simplified example of Ethereum’s modified MPT 37
MPTs in Ethereum e 40
Bonsai trie visualization L0000 41
An exampleofa Verkletree 42
A Bloom filter example 0o 43
A high-level overview of LevelDB write flow 48
Ethereum mainnet archive node disk size over time 51
Consensus client distribution on Ethereum mainnet 54
Execution client distribution on Ethereum mainnet 57
Fast vs snap sync visualization 62
Erigon’s staged sync control flow 64
Nimbus indicative benchmark results 76
Geth benchmark graphs 0oL, 79
Nethermind benchmark graphs 80
Besu benchmark graphs Lo 82
Erigon benchmark graphs00 84
Inter-client comparative benchmark results 85

List of Tables

6.1
6.2
6.3
6.4

Geth benchmark configurations andresults 78
Nethermind benchmark configurations and results 78
Besu benchmark configurations andresults 81
Erigon benchmarkresults, 83

Chapter “

Introduction

The Ethereum blockchain is a decentralized Turing-complete platform that enables
the creation of decentralized applications through the use of smart contracts. It seeks to
provide a trustless, cryptographically-secure value transfer network, utilizing its native
token Ether which is currently the second largest cryptocurrency with a market cap in
the hundreds of billions of USD. As its community of developers and users has grown and
its adoption increased, Ethereum has enabled decentralized solutions for a wide range of
use cases, from financial services and digital identity to supply chain management and
gaming.

Being a peer-to-peer network, Ethereum is comprised of thousands of nodes commu-
nicating with one another, each running two pieces of client software — a consensus and
an execution one. Bootstrapping an execution client in particular is a resource-intensive
and often time-consuming process, but is a necessary step for any user wanting to par-
ticipate in the network. This synchronization process (also known as "initial sync") seeks
to create and maintain a local copy of the entire Ethereum blockchain which can then be
used to execute smart contracts and retrieve information regarding the network’s latest
state. This initial sync generally involves downloading and validating all the chain’s blocks
since the genesis one and re-executing all the transactions included in them, though not
all these steps are necessarily always executed.

Our purpose here will be to thoroughly understand the workloads Ethereum execu-
tion clients are required to handle, and the different ways in which the different client
implementations approach them. This will be done both from a research perspective,
where we will explore data structures used and sync modes employed by each client but
also experimentally, by benchmarking on the system resources and time needed for their
initial sync and then evaluating these results.

Most of the research for this thesis was done in mid-2022, when the major Ethereum
upgrade known as "The Merge" was still upcoming. Contrary to some pessimist pre-
dictions, the long-awaited Merge was indeed completed on September 15, 2022 and the
Ethereum network transitioned from the Proof-of-Work consensus algorithm to Proof-of-
Stake. The fact that this transition occurred during the writing of this thesis was seen
as an opportunity to incorporate it to the extent that it was relevant. Since it naturally
affects the nature of our study’s focus — what was formerly simply "a client" split into a

consensus and an execution client — we of course need to cover each client type and their

responsibilities. As part of that we will be able to examine, albeit briefly, new challenges
introduced by Proof-of-Stake and how Ethereum has opted to address them.

In general, while the focus of this thesis is on execution clients and their bootstrap-
ping, it was deemed preferable to approach this subject from a broader perspective. For
this reason, in Chapter 2 we will first go over some necessary Ethereum terminology ac-
companying it with some historical background wherever applicable. In Chapter 3 we will
explore the Merkle Patricia Tries and other data structures that are used by Ethereum,
along with the storage engines most widely used to persist these structures on the disk
(such as LevelDB or RocksDB). Subsequently, in Chapter 4 we will provide some defini-
tions on the different types of nodes and clients, while in Chapter 5 we will be delving
deep into execution client implementations and focusing on the different modes they use
to initially synchronize the Ethereum network. Finally, our analysis will culminate in our
benchmarks in Chapter 6, where we will explain our methodology and present the results
of our metrics from several runs of the aforementioned execution clients. These results
lend themselves both for inter-client but also intra-client comparisons (using different
configurations) and will form the basis of an overall assessment and overview of potential
future work in Chapter 7.

The intended contribution of this thesis is manifold. On one hand, a comprehensive
analysis of the resource usage of each execution client can prove useful to identify possible
bottlenecks in the sync process and is the first step towards designing and implementing
architectural improvements to them. Moreover, this resource analysis along with the sync
times of each client can help potential node operators make a decision on which to prefer
and be better prepared for their hardware requirements.

On the other hand, the exploratory part of this thesis aspires to provide a source
of insight on the current state of Ethereum execution clients and everything related to
them. In a constantly evolving field as that of blockchains, relevant information is often
scattered between outdated documentations, stack exchanges and blog posts, with little
cross-referencing to help the reader comprehend the flow of information. While some
of the contents of this thesis will inevitably become likewise outdated, a concentrated
work detailing their evolution up to the time of this writing is likely to be valuable to any
researchers seeking to expand on Ethereum clients, sync modes’ architecture or anything

else relevant.

Chapter E

The Ethereum Blockchain

2.1 Historical Background

A Blockchain is a shared, immutable ledger that facilitates the process of record-
ing transactions and tracking assets in a decentralized manner. Bitcoin’s creation in
2009 by the pseudonymous Satoshi Nakamoto marked the first successful application
of blockchain technology as a finite-supply decentralized currency and ushered in a new
asset class, that of cryptocurrencies, currently at a total market capitalization of around
a trillion US dollars.

While Bitcoin still remains the undisputed leader among the various cryptocurrencies
that have emerged since its creation, its lack of Turing-completeness along with its UTXO
(Unspent Transaction Outputs) architecture has meant that it cannot effectively be used
for more than a means of transactions or a store of value. Ethereum, taking its name after
ether (the hypothetical fifth element and invisible medium that permeates the universe
according to ancient and medieval science), was conceived in 2013 by Vitalik Buterin as a
way to expand on Bitcoin’s core concepts by providing a programmable platform on which
anyone can create decentralized applications covering a plethora of potential needs. It
was developed throughout 2014 and early 2015 by Buterin along with a long list of co-
founders (Gavin Wood, Charles Hoskinson, Anthony Di lorio, Joseph Lubin, Mihai Alisie,
Amir Chetrit, Jeffrey Wilcke) some of whom later distanced themselves from Ethereum
and went on to develop other prolific blockchains.

Its development has been largely overseen by the Ethereum Foundation, a Swiss non-
profit organization which, by its own admission', does neither own nor control Ethereum
but is rather dedicated to supporting it and related technologies. Its philosophy re-
volves around advocating Ethereum to the outside world and supporting its decentralized
ecosystem through the proper allocation of resources so as to maximize its potential to
achieve long-term success.

Following a crowd sale in July 2014 an initial number of 72 million coins were sold
to individuals who payed in Bitcoin raising a total of $18.3 million and, a year later,
Ethereum was officially launched with the genesis block being mined in July 30 2015.

The basics of what initially made up Ethereum and the way it should operate are all

described in the whitepaper originally published by Buterin in 2014 [1], albeit not in much

!Source: https://ethereum.foundation/philosophy/

https://ethereum.foundation/philosophy/

2.1.1 Upgrades and Major Milestones

technical detail. The first version of its more technical document (called yellowpaper)
which contains the formal definitions of the protocol and its building blocks was written
by Gavin Wood in the same year [2]. In this chapter we will be going over a few of those
Ethereum building blocks, presenting many of the updates that have happened since and

adding historical context wherever necessary.

2.1.1 Upgrades and Major Milestones

Despite its widespread popularity, it could be argued that Ethereum is still in its
infancy. In the few years since its release, it has undergone several upgrades to its
architecture with quite some more underway (see Section 7.1). Changes to any aspect of
the network are initially proposed in the form of Ethereum Improvement Proposals (EIPs)
and thoroughly discussed in the community. Several of those end up being withdrawn
or discarded through this process, while others are implemented usually in the form of
some fork in the network.

While not having a strict definition, a fork is generally described as what happens
when a blockchain "diverges into two potential paths forward", something that can be
caused either inadvertently or by a change in its protocol. Forks are categorized as either
soft or hard. Soft forks preserve backwards compatibility, with old nodes not needing
to upgrade as they can continue to accept new blocks as valid. Hard forks on the other
hand mandate all network participants to upgrade their software as otherwise they will
perceive any new blocks as invalid. The latter can effectively split a blockchain into two
new ones causing different nodes to work on different chains, based on whether they have
performed some specific update. Naturally, soft forks are overall less disrupting and new
changes tend to be implemented using soft forks whenever possible.

Perhaps the most tumultuous time period in the Ethereum community was the "DAO
hack" and everything that followed it. A great lot has been written on that topic and the
full extent of the disputes of that time needs not be analyzed at length here?. In summary,
a Decentralized Autonomous Organization (DAO) naming itself "The DAO" was launched in
April 2016, gathering funds from numerous users. OnJune 17 2016 an attacker exploited
a security vulnerability of The DAO to transfer around 3.6 million ETH to themselves —
valued at around 50 million USD at the time and amounting to about a third of the Ether
that had been committed to The DAO thus far. The Ethereum community was split on
how to tackle the highest-profile (at the time) attack in the cryptocurrency space with the
majority eventually agreeing on the difficult decision to essentially nullify it by performing
a hard fork which reverted the chain to a state where the attack had not happened.
The DAO hard fork, as it was named, was strongly opposed by a part of the Ethereum
community that viewed "code as law" and thus refused to follow the fork, opting to instead
continue mining on the original chain. The once original chain was renamed to Ethereum
Classic (with a much devalued coin, named ETC) while the forked one kept the name

"Ethereum" as it was supported by the majority of Ethereum developers and users alike.

2A detailed timeline of the events around the DAO hard fork along with expanded explanations can be
found here: https://cypherpunks-core.github.io/ethereumbook/appdx- forks-history.html

https://cypherpunks-core.github.io/ethereumbook/appdx-forks-history.html

Chapter 2. The Ethereum Blockchain

Since then there has been a long list of both minor and major upgrades to Ethereum
[3], with another notable one being the London hard fork which we will put into context in
Section 2.2.5.2. However, the most anticipated upgrade to the Ethereum was undoubt-
edly "The Merge" which was executed on September 15 2022 after years in the making.
While largely uncontroversial and well-received, it too caused a fork by a group of users
that opposed the network’s transition to Proof-of-Stake thus spawning the EthereumPoW
(ETHW) coin. ETHW and ETC alike are supported by drastically smaller communities
than those of ETH, both in terms of developers and users, and as such our study will be
focusing solely on the Ethereum mainnet and its Ether.

The majority of what we will be going over in this thesis, was not affected by The Merge.
Wherever this is not the case we may also shortly present the state of things as they were
in the pre-Merge era in order to allow for comparisons. As for the details of the changes
that The Merge introduced in Ethereum, we will expand on them further on Section 2.3,

right after we define some necessary terminology for our study.

2.2 Terminology

2.2.1 Coins and Tokens

Ethereum’s native token (or coin) is Ether (ETH), sometimes annotated by the Greek
uppercase Xi character (=). It is generated by the Ethereum protocol as a reward for the
building of new blocks, and it also the only currency accepted to pay for transaction fees.

The smallest and most commonly used denomination of Ether is called a Wei, named
after cryptocurrency pioneer Wei Dai, and is equal to 10”18 ETH. Other named yet obscure
denominations include a Szabo (107 ETH) and a Finney (1073 ETH).

At the time of writing there are currently more than 122 million Ether in circulation
and, contrary to Bitcoin of which only 21 million will ever be mined, there is no cap on
the maximum supply of Ether. New Ether is issued every time a new block is created,
but The Merge significantly decreased that amount. Additionally, EIP-1559 [4] introduced
the burning of part of the Ether used as fee per transaction (which used to entirely be
transferred to the miners), a mechanism which effectively decreases the issuance rate
of Ether and can even cause it to become deflationary during periods of high network
congestion. In our study we will not be focusing on economics of supply and demand and
potential economic repercussions that Ether’s inflation has on its price.

Furthermore, Ethereum allows the creation of additional custom tokens according to
specific ERC (Ethereum Request for Comments) standards. ERC-20 is the most widely
used for fungible tokens, which can then be used for transactions and interact with smart
contracts in much the same way as Ether.

Another common type of tokens is defined in ERC-721, which is the standard for non-
fungible tokens (NFT's). The uniqueness that NFTs provide (no two NFTs can be identical in
the same way that, for instance, two Ether tokens are) has caused them to gain popularity
in gaming as well as for representation of art pieces and other types of collectibles, having

thus birthed a distinct market for them than the rest of the cryptocurrency space with a

2.2.2 Accounts

daily trading volume in the tens of millions of USD.

2.2.2 Accounts

In order for an entity to send and receive transactions on the Ethereum blockchain
they require an account, which is represented by a 42-character hexadecimal address.
There are two types of accounts on Ethereum: externally owned accounts (EOAs) and

contract accounts. Both of these contains the same following 4 fields:

e nonce: A simple counter which is incremented each time the account sends a trans-
action in order to ensure that each one is only processed once. Also useful to
guarantee order of execution if multiple transactions are sent at once (regardless
of order of receival, each node will execute the transactions of an account by in-
creasing order of nonce). For contract accounts, this field represents the number of

contracts created by the account.
e balance: The amount of ETH (in Wei) the account owns.

e codeHash: For contract accounts, this is the hash of the code of the account that gets
executed on the EVM. For EOAs, this field is always the hash of the empty string.
Unlike the rest of the account’s fields, codeHash is immutable following the account’s

creation.

e storageRoot: A 256-bit hash of the root node of a Merkle Patricia trie that encodes
the storage contents of the account. This trie encodes the hash of the storage
contents of this account and it is empty by default. We will be investigating the data

structures used here in the next chapter.

2.2.2.1 Externally owned accounts

An EOA is made up of a cryptographic pair of a public and a private key. The owner-
ship of this private key is what allows the signing transactions on behalf of the account
and, consequently, is what grants an individual who possess it custody over the funds
associated with the related account.

To create such an account, a private key is usually made up by randomly generating
64 hexadecimal characters (possibly encrypted with a password) and then a public key
is generated from that using the Elliptic Curve Digital Signature Algorithm (ECDSA). The
account’s address is obtained by concatenating the prefix 0x (the hexadecimal identifier)
with the rightmost 20 bytes (40 hexadecimal digits) of the keccak256 hash of the public
key. It is possible to derive additional public keys (and, consequently, addresses) from a
single private key, but it is naturally impossible to derive a private key from public keys.

In order to prevent a frequent terminology confusion, it is worth mentioning that this
keypair is not itself a wallet. A wallet is simply an interface (e.g. an application) that
facilitates the interaction between an individual and their Ethereum account. Lastly,
from the above it should be evident that an individual technically does not ever hold

any funds themselves - these always reside solely on the blockchain - instead, they hold

Chapter 2. The Ethereum Blockchain

private keys that are associated with accounts that own funds and they can transfer it to

others by again using that same private key.

2.2.2.2 Contract accounts

Smart contracts in the Ethereum blockchain exist as a type of account, one con-
trolled not by private keys but by its own contract code. Contract accounts also have
42-character hexadecimal addresses which is deterministically computed from data of
the account which created them. More specifically, the contract address is produced by
RLP encoding the creator’s address along with their nonce and then hashing them with
Keccak-256.

Contrary to creating an EOA, creating a contract account is not free because it makes
use of network storage and the cost required is paid by the creator account. Once this
is done, the smart contract code is deployed on the network and cannot be altered.
Furthermore, that code will only be run whenever a transaction is sent to its account —
either by an EOA or by another contract account. A smart contract’s code can include
several different actions, including the transferring of tokens between two accounts and

even the creation of new contracts.

2.2.3 Smart Contracts

First conceptualized by Nick Szabo in 1997 [5], a smart contract is a merely a com-
puter program which implements some contractual clauses between two entities without
the need for a third-party intermediary. Smart contracts achieve trustless and automatic
execution and control of whatever on-chain asset was agreed between the parties once
some pre-defined condition is met. In that way, the parties’ agreement can be securely
and reliably carried out, cutting potential commission costs and eliminating accuracy er-
rors that can be caused by involving intermediaries. Additionally, since smart contracts
are deployed in advance of an expected condition to be determined and are automatically
executed following that, any need for trust between the parties themselves is also elimi-
nated as there is no chance for either one to back down and refuse to honor their part of
their agreement in case of an undesirable outcome.

Despite the name, smart contracts are neither particularly "smart" nor legally binding
in the way conventional contracts tend to be. In computer science contexts "smart" is
typically associated with artificial intelligence and machine learning algorithms, whereas
smart contracts codify comparatively simple programs and are not intended to carry out
any amount of deep analytics.

Meanwhile, in most cases the legal status around smart contracts remains unclear,
with countries generally lacking a legal framework to process anything regarding this in-
novative type of contractual agreement. Virtually all smart contracts that are employed
today in blockchain applications could not realistically be enforced by any court or tri-

bunal®.

3There does, however, exist a classification for smart contracts that have all the elements of a legally
enforceable contract in some jurisdiction, called "smart legal contracts" [6].

2.2.3 Smart Contracts

Several uses for smart contracts have been suggested, some of which have already

been implemented by existing applications at least to some degree, including the following:

e Encoding financial agreements: a deal between a person and an insurance company
or a mortgage could be made significantly more efficient for all parties involved via

the use of a smart contract.

e Elections: while gaining public trust at a large scale could be an issue, smart
contracts can allow to reliably record votes without revealing voters’ identities, es-

sentially eliminating electoral fraud risks.

e Speculation platforms on financial (related to sports), betting (sports, political) or

similar.

e Decentralized Finance (DeFi) applications: Financial applications that provide most
of the services that banks traditionally support including but not limited to borrow-

ing and lending peer-to-peer (P2P), interest earning, asset and derivative trading.

e Multisignature accounts: accounts owned by multiple people where moving funds

can require a predefined percentage of its owners agreeing.

While in no way exhaustive, the above list should prove that the potential for smart
contract applications is undeniable.

Smart contracts are nowadays supported by most major blockchains (though, notably,
not Bitcoin) but they were first introduced in Ethereum where they are still most widely
adopted. Programmers can write Ethereum smart contracts in a handful of languages
but they almost invariably use Solidity, a statically typed object-oriented programming
language with similarities to C and JavaScript.

Requiring the use of real-world, off-chain data for some of the above applications poses
an obvious problem regarding the source of this data. Some trustworthy entity is needed
to reliably provide this data and any entity of this kind would in itself result in some degree
of centralization, which blockchain developers generally strive to avoid. Furthermore, the
issue of deterministic execution arises: all network nodes must somehow receive the same
data (regardless of when they requested it) in order to reach a consensus.

Third-party services called oracles have been developed to connect smart contracts
with the outside world, allowing them to access real-world data quickly on-demand. An
oracle acts as a layer that queries, verifies and authenticates external data sources,
usually via trusted APIs or reliable data feeds and then relays that information. The oracle
of choice for the majority of applications currently on Ethereum is Chainlink, created in
2017 along with its own native cryptocurrency, LINK. Chainlink is comprised of a network
of thousands of oracles that independently collect the necessary off-chain data, which is
then aggregated so that the system can come to a deterministic value of truth for the data

requested [7].

Chapter 2. The Ethereum Blockchain

2.2.4 Ethereum Virtual Machine

The Ethereum Virtual Machine (EVM) is the runtime environment where code execu-
tion happens on the Ethereum blockchain. While programmers generally write Ethereum
contracts in Solidity, in order for them to be run on the EVM they are first compiled to a
low-level, stack-based bytecode language, referred to as "EVM code".

Code execution is a rather simple process and happens in an infinite loop where
operations are sequentially executed until the end of the code is reached, an instruction
to halt execution is detected or some error occurs. The operations have access to the
following three types of storage for any data they might wish to store: a stack (a LIFO
container in which values are pushed and popped), memory (an expandable byte array)
and the contract’s own long-term storage (a trie storing key-value pairs) which, unlike the

other two, persists long-term even after the code execution completes.

2.2.5 Transactions

An Ethereum transaction refers to an action initiated by an EOA (i.e. not a contract)
and causes an update to the state of the Ethereum network. The simplest type of trans-
action is transferring ETH from one account to another, which results in a state change
by debiting the sender’s account and crediting the receiver’s account with the respective
ETH amount.

All transactions need to be broadcast to the whole network which any node can do,
and then validators (which we will detail in Section 2.3.1) are responsible to execute them
on the EVM. After one of them does that, they propagate the resulting state change to rest
of the network. A transaction may not always be successful and the wait time between
its submission and its being processed by a validator can vary significantly, both usually
depending on the gas fee set.

The structure of an Ethereum transaction object is the following:
e from: The sending address.

e to: The receiving address. If an EOA, the transaction will transfer value - if a

contract account, the transaction will execute the contract code.
e value: Amount of ETH to transfer from sender to recipient (in Wei).

e nonce: A sequentially incrementing counter, issued by the originating EOA, which
indicate the transaction number from the account. It is used to prevent transaction

replay.
e data: Optional field which may contain code or a message to the recipient.

e gasLimit: The maximum amount of gas units that can be consumed by the trans-

action.

e maxPriorityFeePerGas: The maximum amount of gas to be included as a tip to the

validator (formerly miner).

2.2.5 Transactions

e maxFeePerGas: The maximum amount of gas willing to be paid for the transaction

(including baseFeePerGas and maxPriorityFeePerGas).

e v, r, s: The three components of an ECDSA digital signature of the originating EOA.
This signature is generated when the sender’s private key signs the transaction and

confirms the sender has authorized this transaction.

The lifecycle of a transaction begins once an EOA creates the transaction object. The
sending account then signs the transaction, thus getting a transaction hash (also known
as "transaction ID") which acts as a unique identifier for it. Next up, the transaction is
broadcast across the Ethereum network, waiting for a validator (formerly miner) to pick
it up and verify it - the waiting time for that depends on the network’s current traffic
as well as the gas fee set for the transaction. Once it gets picked up and added to a
block, the transaction is completed and considered successful, otherwise (e.g. due to
insufficient gas provided or "bad instructions" in case of a contract deployment) it may be
considered failed. Other possible transaction states during or after the process we have

just described include pending, queued, cancelled and replaced.

2.2.5.1 Types of Transactions

The different types of transactions supported in Ethereum are the following:

e Regular transactions: a transaction (of either Ether or some other token) from one

account to another.

e Execution of a contract: a transaction that interacts with a deployed smart contract,

in which case the recipient address is the smart contract address.

e Contract deployment transactions: a transaction without a recipient address, where
the data field is used for the contract code. This transaction creates a smart contract

account as described in Section 2.2.2.2.

The first two of these are sometimes referred to as message call transactions while the
last one is also known as contract creation transaction.

On the more technical side, while Ethereum originally only had one format for trans-
actions, it eventually evolved to support multiple types of transactions and to allow for
new features without affecting legacy transaction formats. EIP-2718 [8] defines the
typed transaction envelope that is currently used and is defined as TransactionType ||
TransactionPayload (where || is the byte concatenation operator). TransactionType in this
context represents a number between 0 and 0x7f allowing for great future extensibility up
to theoretical maximum of 128 possible transaction types. EIP-2718 does not itself define
any transaction types, but proposals that use this new standard include the aforemen-
tioned EIP-1559 as well as EIP-2930 [9].

2.2.5.2 Gas and Fees

Gas is the fuel of Ethereum. Since each Ethereum transaction requires computational

resources to execute, each transaction requires a fee. Gas refers to the fee required to

Chapter 2. The Ethereum Blockchain

conduct a transaction on Ethereum successfully. Gas fess are paid in Ethereum’s native
currency, Ether, and are denominated in Gwei (10° Wei = 1072 ETH).

The way transaction fees on the Ethereum network are calculated changed with the
London Upgrade on August 5 2021 which introduced EIP-1559 to the network [4]. Before
the London Upgrade, Ethereum had fixed-sized blocks which, in times of high network
demand, regularly operated at total capacity with users having to wait long queues in
order to get their transactions included in some block. EIP-1559 introduced variable-
sized blocks to Ethereum, each having a target of 15 million gas on average but with that
being dependant on network demand. To understand this process better, the following

parameters need to be explained:

® baseFeePerGas: The bare minimum fee required to send a transaction on the network,
set by the network itself based on how full the latest block was. The Ether provided

for this fee will be burned.

e maxPriorityFeePerGas: This fee is intended as a "tip" to the validator (formerly miner)
and acts as an incentive for them to introduce that transaction to the current block.
The greater this tip is, the more likely it is that the transaction will be included in
the next block.

e maxFeePerGas: The maximum fee the user is willing to pay for that transaction and is
generally equivalent to baseFeePerGas + maxPriorityFeePerGas. Should a user manu-
ally sets this gas limit higher than it is needed to be, any Ether unused by the EVM

will be refunded to the their account.

By introducing the concept of baseFeePerGas the London Upgrade resulted in making
gas fees more predictable, a common grievance of Ethereum users in the period leading
to it. Furthermore, by introducing the concept of fee burning, despite diminishing the
(then) miners’ profits at least in the short-term, it diminishes Ether’s inflation — even
causing it to become deflationary in periods of high network demand when baseFeePerGas
is increased — which was deemed advantageous to Ethereum’s long-term prospects.

Ultimately, gas fees help keep the Ethereum network secure. Since a fee is required
for any computation executed on the network, bad actors are disincentivized to spam the
network. On top of that, accidental or hostile infinite loops in code are avoided since each
transaction is required to set a limit to how many computational steps of code execution

it can use, with the fundamental unit of computation being "gas".

2.2.6 Blocks

A block consists of a batch of transactions organized in a trie structure (that we will
examine in the next chapter), along with a few other fields helping to identify it but also
to facilitate the work of the nodes that will be required to process it. A short overview of
all the fields in a block can be seen in Figure 2.1.

Blocks are strictly ordered, each pointing to its previous one through parentHash, all

the way back to the first block ever mined — which is known as the genesis block and

2.2.6 Blocks

Block, B

Block Header, H or By
paren tHﬂSh, HF: Keccak236 hash of parent block header
ommersHash, ccak2i6 hash of the ommers list portion of this block
beneficiary, H,. 160-bit address for fees collected from successful mining
stateRoot, H :cak236 hash of the root of the state trie. after transactions are executed and finalisations applied
transactionsRoot, /1. Keccak256 hashof the rootnode of the transaction trie
PECEiPISRO ot, H‘ cak236 hash of the root node of the transaction receipts trie
logsBloom, H: Bloom filter from indexable info (logger address & log topics)in each log entry from the receipts
difﬁculty, H 4 Scalar value corresponding to the difficulty level of this block
number, HI.-Z Scalar value equal to the number of ancestorblocks (genesis block = 0

ga sLimit, ffj alar value equal to the current limit of gas expenditure per block

ga sUsed, HE Scalar value equal to the total gas usedin transactions in this block

timestamp: H, 5= Scalar value equal to the reasonable output of Unix's time() at this block's inception
extraData, Arbitrary by Y wtes) containing datarelevant to this block
36-bit hashwhich proves, combined with the nonce, that sufficient computation has been done on this block

nonce, H e 04-bit hash which proves, combined with the nonce, that sufficient computation has been done on this block

Transaction List, B

Ommers List, B;;

Figure 2.1. Block structure *

was mined on July 30 2015. Except in rare cases, all participants on the network are in
agreement on the exact number and history of blocks at any given time and are working
to batch the current live transaction requests into the next block.

New blocks are constantly being put together by batching transactions and the priori-
tization of transactions is being done by considering the gas the transactions’ senders are
willing to spend for their transactions to be included in the block, among other factors.
This optimization process has long been an important aspect for maximizing profitabil-

ity and this maximal possible profit is called maximal extractable value (MEV, formerly

4Source: Lee Thomas, https://ethereum.stackexchange.com/a/6413/100602

https://ethereum.stackexchange.com/a/6413/100602

Chapter 2. The Ethereum Blockchain

meaning miner extractable value).

Pre-merge those new blocks were created and propagated to the network by miners
every 13 seconds on average, while now this responsibility rests on validators with a block
time of (almost) exactly 12 seconds. Furthermore, blocks need to be prevented from being
arbitrarily large, since that would cause less performant nodes to gradually be unable to
keep up with the network due to space and speed requirements. As briefly mentioned in
Section 2.2.5.2, this is currently achieved in Ethereum by having a block limit not in the
number of transactions but rather the gas expended by them. That limit is 30 million gas

per block (in cases of high network demand), with the target size being 15 million gas.

2.2.7 Networks

What is generally referred to simply as "the Ethereum network" is also known as
"mainnet". This term is sometimes used to differentiate it from various test networks,
called "testnets". Testnets are of great value to application developers who can test their
smart contracts there, being akin to a staging environment in the traditional development
cycle (with the mainnet respectively corresponding to the production environment). Test
Ether in testnets is given freely to experiment with, often through applications that directly
sent a fixed amount of it to a requesting wallet, called faucets. Naturally, Ether (or any
other token) in a testnet cannot be transferred to the mainnet and does not hold any
monetary value. Testnets are not required to share many of their network parameters
with the mainnet including block sizes, block times and even consensus algorithm (more
on these next up). The most popular testnets at the time of writing are Sepolia, Goerli
and Rinkeby, though new ones are regularly created to account for new testing needs.

Our focus in this thesis will be the Ethereum mainnet which is a public (or permi-
sionless) network, as are all the aforementioned testnets. It is noted that private (or
permissioned) networks can also be created in Ethereum, which can likewise be useful in
the process of developing an application before deploying it to the mainnet. Such a net-
work can be accessed by Ethereum nodes by parameterizing them with its configuration

consisting of a specific chain ID and a custom genesis block.

2.2.8 Consensus Algorithms

A fundamental concept in distributed systems is that of consensus and how to achieve
it, i.e. the way in which all the network’s participants agree on what its global state is. In
blockchain systems these are generally Proof-of-X, the most widely used of which are the

following.

2.2.8.1 Proof-of-Work

Proof-of-Work (PoW) is a form of cryptographic proof in which one party proves to
others that a certain amount of computational effort has been expended to perform a
specific task. This concept was originally invented in 1993 by Moni Naor and Cyuntia

Dwork [10] in the context of deterring denial-of-service attacks and combating spam but

2.2.8 Consensus Algorithms

was first formalized in 1999 by Markus Jakobsson and Ari Juels [11]. Its popularization
however unarguably came when Satoshi Nakamoto used it as a foundation for Bitcoin’s
permissionless decentralized network [12] and PoW has served as a model consensus
algorithm for several of the blockchains that have since been created.

In PoW, network participants called miners compete with each other in order to solve
some arbitrary mathematical puzzle. Whoever solves it first gets to add a block to the
blockchain, containing the transactions of his choice — most usually just based on the
amounts of "tips" the senders of those transactions have included for the miner. An
additional block reward transaction is added crediting the miner for a fixed amount (which
used to be 2 ETH in pre-merge Ethereum) and that is how new coins are minted.

In the case of Ethereum, the PoW algorithm Ethash required miners to iteratively
increment the block’s nonce so that the hash of the resulting entire block (including both
that nonce and the miners’ transactions of choice) would be lower than a certain target
value. Due to the one-way nature of hash functions, the best and only way to achieve that
is through trial and error by attempting to hash the block with different nonce values.
Bitcoin’s PoW also works in a similar way, using the SHA-256 hash function and requiring
that the resulting block’s hash begins with a certain number of zeroes.

A useful characteristic of PoW is that the difficulty of the problem requiring solving
by the miners can be tweaked as the network’s computational power fluctuates so as to
approximately achieve a desired outcome, for example that of a constant average block
time. As such, the exact target value that a block’s hash needs to be lower than (or
the number of zeroes at the start of the block’s hash in the case of Bitcoin) is tunable
through a difficulty network parameter, communicated through the block header and
automatically updated whenever necessary based on the speed on which the latest blocks
have been produced. But while the solution itself may take however long based on the
parameters specified, confirming that the solution is indeed correct (and thus that the
resulting block is valid) is effectively instantaneous by anyone, a necessary property for
the entire system to function.

Security in PoW derives from the immense computational effort required to defraud
the chain. While a malicious actor could theoretically randomly get to mine some single
block, consistently creating malicious yet valid blocks would require 51% of the network’s
mining power (also known as a Sybil Attack), a feat realistically impossible and definitely
unprofitable for any entity given a large enough network (such as Ethereum or Bitcoin).

Lastly, the mathematical problem in question for both Bitcoin and Ethereum used
to originally require little overall computational power, even being solvable by a home
PC of average hardware specifications. Gradually however, it became infeasible to do so
— at a rate to be able to keep up with the rest of the miners — and users had to pool
together in order to remain profitable. This was possible in pre-merge Ethereum for users
with high-end GPUs, but Bitcoin mining has long been unprofitable on consumer-grade
hardware and is being performed only on ASICs (Application-specific integrated circuits).
This ever-increasing necessity for more advanced hardware is widely regarded as the
largest drawback of PoW, as it involves growing amounts of energy being "wasted" with

the sole purpose of securing the network.

Chapter 2. The Ethereum Blockchain

2.2.8.2 Proof-of-Stake

Proof-of-Stake (PoS) is a consensus algorithm that centers around randomly selecting
network participants called validators, in proportion to their quantity of holdings. First
introduced by Sunny King and Scott Nadal in 2012 and applied to created Peercoin [13],
PoS is currently used by most major blockchains (notably excluding Bitcoin), especially
newer ones and those that provide smart contract support.

In a blockchain using PoS, validators are expected to operate constantly and are
chosen at random to construct blocks, propagate them through the network and receive
a reward for doing so. In order for an entity to become a validator they need to pledge
or "stake" a minimum amount of coins that they own which consequently provides them
with an economic incentive to behave honestly.

Furthermore, most PoS blockchains implement a concept known as slashing, where
validators lose a portion of their stake, usually triggered if they are unjustifiably offline for
long periods of time or if they are found to have behaved dishonestly. In most blockchains
a validator can possibly lose even the entirety of their stake, depending on the severity
of their misbehaviour that caused them to be slashed. Even if a group of validators ever
assembled to corrupt the chain, the amount of coins that they risk to lose (and also
devalue, buy discrediting the network’s reliability) all but ensures that it would be in their
own self-interest to not act maliciously.

Slashing is also used to combat Nothing-at-Stale, an issue exclusive to PoS blockchains
where a validator is incentivized to work on forks of the main chain at the same time [14].
While in PoW working on separate network forks equates to wasting computing resources,
in PoS working for multiple forks does not require splitting one’s stake nor does it inher-
ently incur any other meaningful cost whatsoever. Consequently, as long as it is even
remotely possible that a fork will eventually result in the longest chain, working on it
too would maximize a validator’s likely payout. A punishment is thus introduced so as
to prevent such behavior, which is applied to a validator if it is found to be working on
several forks at the same time or simply if it is found to be validating the wrong chain —
the latter can also occur inadvertently to an honest validator but it nonetheless acts as
an incentive to always be working on the chain with the highest likelihood of being the
longest.

While energy waste is indeed minimal in PoS, there are other aspects in which it is
inferior to PoW. To begin with, due to its recency as a consensus mechanism, PoS’ security
is not as proven as that of PoW. Additionally, from a validator’s standpoint, participating
in the network may appear unappealing as not only may their stake be subject to a lock
period during which they cannot access ("unstake") their funds, but it can also be entirely
at risk due to the aforementioned concept of slashing.

More crucially however, tying the network’s security to the validators’ stake ensures
that the wealthiest users will posses more influence on it and also passively be getting
most of the rewards, while the less affluent ones may outright be prevented from becoming
a validator due to not meeting certain minimum criteria. While this last issue is not

exclusive to PoS (especially if one considers the costs of PoW mining equipment), it is

2.3 The Merge

certainly more evident here and that is why PoS has been widely criticized as causing a
decrease in the network’s decentralization, considered by many an end in itself.

These arguments against it of course do not lessen the fact that PoS is a more scal-
able consensus algorithm, which solved the long-term sustainability issue of constantly
increasing energy waste in PoW and is rightfully credited with ushering in a new era for
blockchains. As for the more technical security concerns, these can all be sufficiently
tackled in the confines of a well-designed protocol as we will later examine is the case

with Ethereum.

2.2.8.3 Proof-of-Authority

Proof-of-Authority (PoA) is a comparatively new consensus algorithm (first coined as
a term by Ethereum co-founder Gavin Wood in 2015), quite similar to PoS. It likewise
involves validators who are responsible for the construction and propagation of blocks,
but these validators are entities with known identities, placing their reputation at stake
instead of — or along with — their funds.

PoA is considered to provide even greater scalability than PoS (and much more than
PoW), being able to securely provide very high throughput. However, since the validators
here have to be identified, trusted and selected by the network, their number tends to be
relatively small. This fact causes PoA networks to be even more centralized and hence
more susceptible to corruption and even manipulation due to the identifiable nature of
the validators involved — there have even been cases of a malicious actor taking control
of a PoA network by directly hacking a few (just over half) publicly known validators.

PoA is much less widespread than the previous two consensus mechanisms (few widely
adopted blockchains use it) and has never been relevant to the Ethereum mainnet. We
are however mentioning it here for the sake of completeness since it is often preferred by
Ethereum testnets, where there would not be enough miners to apply PoW but PoS would

also be impractical to implement due to the testnet’s coins’ lack of monetary value.

2.3 The Merge

The most major upgrade in the history of the Ethereum network was labelled "The
Merge" and was completed on September 15 2022. Long anticipated as "Ethereum 2.0"
(or "Eth2"), that naming has since been deprecated so as to clarify that the new upgrade
does not constitute some new chain separate from "Eth1l", but merely its continuation

into a new era.

2.3.1 Consensus algorithm change

On December 1 2020, a PoS blockchain was created by the Ethereum developers
called the Beacon Chain, running alongside the original PoW Ethereum mainnet. Its
purpose was to ensure that the PoS consensus logic was sound and sustainable before
enabling it on Ethereum mainnet. When almost two years later this was assured, the

Beacon Chain was instructed to accept transactions from the original Ethereum chain,

Chapter 2. The Ethereum Blockchain

bundle them into blocks and then organize them into a blockchain using a PoS based
consensus mechanism. At the same moment the original Ethereum clients turned off
block propagation and consensus logic, handing all that over to the Beacon Chain. This
event is known as "The Merge", after which there were no longer two blockchains but only
the single PoS Ethereum chain.

By far the most cited advantage of this change was its environmental friendliness,
since PoS manages to secure the network without necessitating miners to waste electricity
on "useless" calculations. It is estimated that by switching to PoS, Ethereum achieved an
energy consumption reduction of over 99.9%.

In PoS Ethereum all functions regarding the network’s operation and security are
completed by validators. A validator is a virtual entity that participates in the consensus
of the Ethereum protocol by staking 32 ETH and is represented by a public key, a balance,
and some other properties. The rules that all validators must abide by and the exact way
in which validators communicate but can also be slashed for misbehaving so as to address
security concerns such as those described in Section 2.2.8.2 were all initially presented
in a protocol called Casper [15]. Combining Casper with GHOST, a fork choice algorithm
originally developed for PoW, led to the development of the Gasper protocol, which is the
one currently used by PoS Ethereum [16].

Time is now divided in 12 second units called "slots" and in each one a single validator
is randomly selected to propose a block — aptly called proposer. A period of 32 slots is also
called an "epoch", after each of which validators are shuffled for security purposes into
"committees" in a pseudorandomized manner by the same process that chooses proposers,
called RANDAO. Every epoch the validators will propose an "attestation" (vote) to the
network so as to help reach a consensus for the current state of the Ethereum network,
for which they are rewarded. Assuming all validators are online and fully functional, there
will be a block created in every slot resulting in a block time of exactly 12 seconds. In
practice, occasionally a validator might be offline when called to propose a block, meaning
that a slot can sometimes go empty and thus the average block time is ever so slightly more
than 12 seconds. This is in contrast to pre-merge Ethereum and PoW-based blockchains
in general, where block times are probabilistic and tuned by the mining difficulty.

Under Gasper, a block must pass through a two-step upgrade procedure in order to
be considered finalized, that is when the block and the transactions it contains are for
all intents and purposes considered valid and thus part of the "correct" (canonical) chain.
Firstly, two-thirds of the total staked ETH must have voted in favor of block’s A inclusion in
the canonical chain, which upgrades the block’s status to "justified" (or "safe"). A justified
block is unlikely to be reverted, but that may still happen under certain conditions such
as to restore the network’s state following a large-scale coordinated attack. Then when
a block B is also justified on top of A, block A is upgraded to "finalized" which is in
itself a strong commitment that it will keep being considered as part of the canonical
chain. It must be noted that these block upgrades do not happen in every slot but rather
periodically every few blocks which are known as "checkpoints".

The only way a finalized block can be reverted is by creating an alternative finalized

chain which requires two-thirds majority. An attacker could only ever achieve that either

2.3.1 Consensus algorithm change

Slot 1 Slot 31
Proposer | i ' ' Proposer
A T " """ A
Committee A Committee X
minimum 128 validators minimum 128 validators
assigned to create assigned to create
attestations attestations
& r

... and thousands more

Set of Active Validators
RANDAC combined with the effective balance of
validators is used to sample proposers

Figure 2.2. Committee and Proposer selection through RANDAO 5

by controlling two-thirds of the total staked ETH or by owning and destroying one-third of
the total staked ETH (by using it to double-vote, a behaviour that is maximally punished
through slashing). The former is already an improvement from the usual "51% rule" by
raising the bar for a catastrophic attack to the network to two thirds, while the latter
could only be performed once and would require the attacker to burn an amount of ETH

worth billions of USD, a feat unreasonable enough in any real-world scenarios.

An interesting property deriving from the above is that we now have an in-protocol
definition of finality. By contrast, finality in PoW is necessarily probabilistic and based
on the fact that the older a block is in the currently longest chain the more likely it is that
it is valid and thus, after enough blocks, its contained transactions are agreed upon to

be probabilistically final.

At the time of writing there are over half a million Ethereum validators and their
number is monotonically increasing as they are still not able to unstake their ETH. With
The Merge having been successfully completed, stake withdrawals are intended to be
enabled with the upcoming Shanghai upgrade, planned for April 2023. Even then, the
exit rate of validators will be limited for security reasons, in order to prevent a potential

mass exodus.

5Source: https://ethos.dev/beacon-chain

https://ethos.dev/beacon-chain

Chapter 2. The Ethereum Blockchain

Validators

Source: beaconscan.com

Zoom 1m 3m 6m YTD 1y All From | Feb 1, 2022 To Feb 1, 2023

No of Validators

Mar ‘22 Apr-22 May "22 Jun 2z Juirz2 Aug 22 Sep ‘22 Oct'az Nov "22 Dec22 Jan ‘23 Feb 23

Figure 2.3. Number of Ethereum mainnet validators over time °

2.3.2 Consequences on Ether’s economics

A major consequence of The Merge is a drastic decrease to Ether’s issuance rate. By
replacing the ~13,000 ETH per day mining rewards with a mere ~1,600 ETH per day
staking rewards, the new ETH issuance is reduced by roughly 90% compared to pre-
Merge levels. Furthermore, taking into account the burning of ETH introduced in the
London upgrade, on an average day ETH can have close to zero net inflation and even
become deflationary under periods of moderate network use [17].

Furthermore, the existence of staking on the network caused a variety of DeFi apps
to see their attraction crucially diminished (if not outright deprecated) as their business
model was largely centered around on gaining passive income on Ether. Even for the
majority of users that lack 32 ETH to stake, they can stake however little ETH they have
through various third parties including some of the largest cryptocurrency exchanges —
albeit with slightly reduced rewards. As such, for a majority of network users and/or
investors who want some (relatively) riskless passive income on their Ether, directly or
indirectly staking seems a solid choice and will inevitably be the obvious one, once val-
idators’ stakes withdrawals are enabled.

It is lastly noted that the amount of staking rewards in PoS Ethereum is inversely
correlated with the number of validators (or, more specifically, the amount of total staked
ETH). This is an apt mechanism to ensure the network’s health should the number of
validators ever get too small since in that scenario the staking rewards would increase

and new users would be financially incentivized to stake their ETH.

Son February 1 2023; Source: https://beaconscan.com/stat/validator

https://beaconscan.com/stat/validator

Chapter B

Storage Architecture

3.1 Data Structures

In order to fully comprehend the workload of and the challenges faced by an Ethereum
client, we first need to be aware of what kind of data it needs to store but also the way in
which it stores it. Ethereum’s main data structure, which is used for multiple different
purposes, is a version of a trie called modified Merkle Patricia Trie (MPT). In this chapter
we will go over the architecture of MPTs and then examine how Ethereum takes advantage
of them.

3.1.1 Radix Tries

A trie, taking its name from the word re-trie-val, is a tree data structure that is used to
store and easily retrieve a set of keys — most usually strings which will be our focus here.
Unlike conventional (binary) search trees, a node in a trie does not store its associated
key but rather a single character. By concatenating nodes’ characters in the path from
the trie root to any given leaf node (i.e. traversing the trie depth-first) we can retrieve a
string that has been stored in the trie. A simple example of such a trie can be seen in
Figure 3.1.

An obvious issue with the tries described above is that they are quite inefficient for
strings of any decent length. Storing a single 64 character-long string (a frequent use
case in Ethereum) would necessitate a trie of equal depth, with a single node at each level
for each character and each lookup or delete would require traversing the full 64 nodes.
While this issue would naturally become less pronounced as we continued to add strings
to our trie, it is evident that an optimization of some kind could significantly improve
efficiency and it comes in the form of radix tries.

A radix trie represents a space-optimized trie (or prefix trie) in which only-child nodes
are merged with their parents. This results in internal nodes having at most r amount of
children, with the radix r > 2 of the radix tree being a power of 2. This radix represents
all the possible sorting combinations of the binary data that can be stored in the radix
trie. In the simplest case, a binary radix tree would only ever have two children for any
given node, while a radix tree used to store English words (i.e. strings from an alphabet
of 26 characters) would have r = 32 = 25 (the nearest power of 2) and, consequently, up

to 5 children per node.

Chapter 3. Storage Architecture

dog
dot
pump
fat
fire

dog dot pump fat fire

Figure 3.1. An example of a trie

A Patricia trie (sometimes stylized as "PATRICIA' which stands for "Practical Algorithm
To Retrieve Information Coded in Alphanumeric"), despite often being used as another
equivalent term for "radix trie" by some sources, is in fact a variant of the binary (r = 2)
radix trie. Its difference lies in that rather than explicitly storing every bit of every key,
the nodes in a Patricia tree store only the position of the first bit which differentiates two
sub-trees and, as such, there are only ever n amount of nodes to contain n items [18].
The Ethereum whitepaper never mentions radix tries by name but instead solely focuses
on Patricia ones. This semantic ambiguity is not particularly relevant to our study so

henceforth we will likewise only be focusing on "Patricia tries".

1 test -
2 toaster [\
3 toasting tw
4 slow / ¥
5 slowly /—‘(- e Ozz'>f—-~-
—_— |
toast \
& ® v
i i ReN AN

< B)
@ &
‘ah b
(.:\\) Search for “toasting’

Figure 3.2. An example of a patricia trie

3.1.2 Merkle trees

3.1.2 Merkle trees

A Merkle tree (also commonly known as hash tree) is a tree in which the data is stored
in the leaf nodes and every non-leaf node contains the cryptographic hash of the contents
of its child nodes. It was named after Ralph Merkle who patented it in 1979 [19] and is
regarded as the first of a type of data structures that are known as authenticated data
structures (ADS) [20]. Its utility derives from the fact that it allows parties to verify the
consistency of a given dataset without needing to exchange the dataset itself in its entirety.

While the usefulness of comparing hashes to protect against maliciously or uninten-
tionally corrupted data is evident, that same functionality could be achieved by simply
using a hash list. That would entail simply hashing the concatenation of the hashes of
all the data in our dataset and the result would serve the same purpose as a hash tree’s
root node. However, the tree structure further introduces a mechanism called Merkle
proof, comprised of a leaf node and the tree’s branch consisting of all of the hashes going
up along the path from that node up to and including the root node. Someone reading
such a proof can verify that the hashing, at least for that branch, is consistent going all
the way up the tree, and therefore that the given leaf actually is at that position in the
tree [21]. Using the above process one can efficient verify the membership of a value in
a Merkle tree but the potential non-membership of it can similarly and equally efficiently

be verified as well.

Top Hash

hash(Hash 0)

Hadh 1

hash(

Hash
0

Hask 0-0
Hash 0-1

)

/7

AN

hash(

Hash
1

Hasfl 1-0
Hash 1-1

)

/7

AN

Hash Hash Hash Hash
0-0 0-1 1-0 1-1
hash(L1) hash(L2) hash(L3) hash(L4)
Data
L1 L2 L3 L4 Blocks

Figure 3.3. An example of a hash tree

A practical benefit of Merkle proofs is that they permit integrity checks of tree branches
before even the entire Merkle tree is available, let alone the data itself. For example, let’s
assume that our application is currently downloading the tree depicted in Figure 3.3 and

would like to verify the integrity of data block L2. This can be verified in logarithmic

Chapter 3. Storage Architecture

time if the tree already contains hashes 0-0 and 1 by firstly hashing L2, then hashing the
concatenation of 0-0 and L2’s hash and iteratively repeating this process until it reaches
the top hash. If at any point the produced hash differs from the downloaded tree’s one
then we have identified an invalid data block in the corresponding subtree (though not
necessarily due to an erroneous L2), otherwise we can be certain that L2 is indeed valid. In
the latter case and in a real-world application (where the hash tree would be vastly deeper)
this would mean that L2’s download could begin simultaneously with the download of the
rest of the tree. This is of utmost importance in distributed applications where exchanging
data can be costly and time-consuming and so it would be valuable to know to discard
invalid data before downloading them.

Furthermore, when dealing with blocks of data that change over time in a distributed
system, nodes can preserve a Merkle tree to facilitate data synchronization. Whenever
updating, instead of comparing entire datasets to figure out what changed, a node can
simply perform a hash comparison of Merkle trees. This way, only subtrees whose root
node changed hashes need to be requested and sent over the network, saving on poten-
tially valuable network bandwidth.

Effectively all major blockchains make use of Merkle trees in some way but these
trees had been used in a vast variety of applications long before blockchain technology.
Indicatively, they are used by the Git version control system as well as a number of NoSQL

distributed database systems such as Apache Cassandra and Amazon DynamoDB.

3.1.3 Ethereum’s Modified Merkle Patricia Trie

Contrary to the simplified descriptions of tries we have given so far where only singular
elements (keys) where stored, Ethereum needs to store not merely keys but key-value
pairs. A common use case for that — though not the only one, as we’ll examine in the
next section — would be storing an account’s address (key) and its associated balance in
ETH (value). As such, both leaf and intermediary nodes need to include a "value" field to
fulfil that requirement.

The modified MPT that Ethereum uses is, in fact, not a binary trie as "Patricia" would
suggest but instead a hexadecimal one. Furthermore, the modification comes from intro-
ducing some additional complexity to the data structure, since here a node can be one of

the following:

1. NULL (represented as the empty string)
2. branch: A 17-item node [vO .. v15, vt]
3. leaf: A 2-item node [encodedPath, value]

4. extension: A 2-item node [encodedPath, key]

Branch nodes effectively act as routers, providing a child node at every nibble (hex-
adecimal digit) wherever they are found, in addition to a value (the 17th item) in case a

key ends at that node in its traversal. An extension node is interjected after a branch

3.1.3 Ethereum’s Modified Merkle Patricia Trie

node wherever there is a shared prefix between multiple keys at some nibble and saves
space in the way that radix tries in general are useful for. Lastly, if after some branch
node’s nibble there is only a single key to be stored a leaf node is used, containing the
non-shared suffix of that key along with the value corresponding to it.

This data structure, albeit somewhat complicated, is greatly space-efficient as well
as scalable, designed to be able to accommodate vast amounts of data. Moreover, it is
optimized for updating by requiring a minimal amount of nodes to be created or altered
as new elements are added to the trie, with the vast majority of nodes usually remaining
intact.

While this optimization serves several functions, it does adversely introduce some
ambiguity. When traversing paths in nibbles, we may end up with an odd number of
nibbles to traverse, but because all data is stored in bytes, it is not possible to differentiate
between, for instance, the nibble 1, and the nibbles 01 (both must be stored as 01). This
is solvable by prepending a prefix nibble in all 2-item nodes (i.e. extension and leaf ones)

during their encoding to signify the difference between odd and even partial path lengths.

Ethereum Modified Merkle-Paricia-Trie System
An interpretation of the Ethereum Project Yellow Paper
G- Wood, “Ethereum: A secue decenralised gencelived

Block Header, H or B;;

Hash function:

= Simplified World State, o
KECCAK256 () i
3 Keys Values
finalisations applied
al7]1(1|3|5]|5 45.0 ETH
World State Trie | | | | | | |
al7|7|d]|3[3]|7 1.00 WEI
ROOT: Extension Node | | | | | | | \7
prefix shared nibble(s) next node ¢ | a | 7 ‘ f | 9 | 3 | 6 | 5 ‘ 1.1 ETH
0 a7 [a]7]7[d]3]9]7] o126TH
Branch Node
0|1|12|3|4|5|6|7|8|9|a|b|c|d]|e]|f]| value
_* A S
Leaf Node Extension Node Leaf Node
prefix | key-end value prefix shared nibble(s) next node prefix | key-end value
2 1355 |45.0ETH 0 d3 2 9365 | 1.1ETH
Prefixes
0 - Extension Node, Branch Node
even number of nibbles
10 - Extension Node, 0(1|2|3|4|5|6[|7|8|9|a|b|c|d|el|f]| value
odd number of nibbles, Vad
2 - Leaf Node, even 7~
number of nibbles / \
30 - Leaf Node, odd Leaf Node Leaf Node
number of nibbles 3 3
O = 1% nibble prefix | key-end value prefix | key-end value
1 nibble = 4 bits 30 7 1.00WEI 3 7 0.12ETH

Figure 3.4. Simplified example of Ethereum’s modified MPT !

All that we have described here in words can be better understood by examining
the simplified Ethereum use example in Figure 3.4, where one such modified MPT is

constructed to contain 4 key-value pairs with some prefix overlap.

!Source: Lee Thomas, https://ethereum.stackexchange.com/a/6413/100602

https://ethereum.stackexchange.com/a/6413/100602

Chapter 3. Storage Architecture

From all these we can infer a property of MPTs that is of paramount importance to
the structure of Ethereum, that of determinism. In other words, two MPTs containing the
same key-value pairs are guaranteed to be identical down to the last byte. As such, it
becomes easy to communicate MPT roots across different nodes for validation purposes
because it is a certainty that if, for example, two nodes have independently locally con-
structed the same state MPT then they must also have ended up with the same MPT
root.

Lastly, it is worth noting that this structure is not set in stone as explicitly stated
in the yellowpaper [2]: "The core of the trie, and its sole requirement in terms of the
protocol specification is to provide a single value that identifies a given set of key-value
pairs, which may be either a 32-byte sequence or the empty byte sequence. It is left as an
implementation consideration to store and maintain the structure of the trie in a manner
that allows effective and efficient realisation of the protocol”. Nonetheless, modified MPTs
have been widely adopted as part of the Ethereum standard given that they provide unique

advantages in storage of key-value data as well as fast verifiability through Merkle proofs.

3.1.4 Use in Ethereum

The modified MPT is used in four different interrelated places in Ethereum’s architec-

ture and we will examine each one separately.

3.1.4.1 World State Trie

There is one global state in Ethereum and it is represented by the singular world state
trie which is updated over time. This trie is not contained in any block’s data but is
rather constructed by every node separately during their initial sync to the network and
is then constantly kept up-to-date upon the receival of additional blocks and transactions
from other nodes. That way, it can be queried at any time to retrieve any and all data
associated with any Ethereum account.

The Ethereum world state is a mapping between addresses and account states. More
specifically, the key-value pairs that comprise the world state trie are always keccak256 (
ethereumAddress) keys paired with rlp(EthereumAccount) values. Ethereum accounts, as
we have examined in the previous chapter, consist of a 4-item array of [nonce, balance,
storageRoot, codeHash] with storageRoot in turn being the root of another MPT.

Accounts in Ethereum are only added to the state trie once a transaction involving
them has taken place. Simply creating a new account A will not cause it to be appended
to the state trie — this will only happen after a successful transaction is recorded with
A as the recipient. This behaviour constitutes a protective measure against malicious

attackers who could otherwise costlessly create new accounts and bloat the state trie.

3.1.4.2 Account Storage Trie

The account storage trie is where the data associated with an account is stored. This

is only relevant for contract accounts, as for EOAs the storageRoot is empty (and the

3.1.5 Advantages of MPT use

codeHash is the hash of an empty string). Values contained in this trie can be retrieved by

querying with the integer position of the stored data and the related block ID.

3.1.4.3 Transactions Trie

Each Ethereum block has its own separate transactions trie wherein all the transac-
tions included in that block are encoded. The choice of which transactions to be included
in it used to be decided by the miner who assembled that block, while post-Merge this
responsibility belongs to validators as explained in Section 2.3.1.

The key-value pairing here is an rlp(transactionIndex) key (the index within the block
the transaction is included in) paired with the contents of the transactions which we
presented in Section 2.2.5. Contrary to the aforementioned tries, the Transactions trie
is immutable and once the block is validated the transactions it contains can never be
changed nor included in some other block. As such, a finalized transaction in the network
can always be reliably and uniquely located by knowing the block in which it was included

and its position in that block.

3.1.4.4 Receipts Trie

Similarly to the transactions trie, every block contains the root of a receipts trie using
the same type of key (rip(transactionIndex)). The difference here however is that, instead
of the transactions themselves, the receipts trie records the outcomes (i.e. receipts) of
these transactions and these are not included in each block but are rather recreated by
each client locally. In order to validate a transaction’s T receipt one simply needs to
re-execute T on the state that the network had when T was originally executed. The
fields that can be found in such a receipt include the resulting MPT root, the gas that
ended up being used, a set of logs created as a result of the transaction’s execution as
well as a Bloom filter composed of information in those logs (more on Bloom filters’ use
in Section 3.1.8). Each log record can include up to 4 indexed topics in it for the type of
event, the sender and receiver addresses, as well as for any other related (but short-form)
data.

It is worth noting that the transactions and receipts trie, due to the nature of the keys
they contain as well as their lack of updating over time, do not particularly take advantage
of the Patricia optimizations we went over earlier. Still, these tries are too coded as MPTs
for uniformity purposes, as Ethereum has deemed it less maintainable to implement and

optimize a separate Merkle tree data structure in every client just for them.

3.1.5 Advantages of MPT use

Having explored how MPTs are used by Ethereum, we should also expand a bit on
what are the benefits they provide that have rendered them so integral to Ethereum’s
architecture.

One such benefit we already went over in Section 3.1.2 is the ability for partial verifica-

tions. Given that everything in Ethereum is ultimately representable as simple key-value

Chapter 3. Storage Architecture

World State trie

Block ‘| Account State

Header nonce

parentHash balance

ommersHash

storageRoot |- - - - -

beneficiary
stateRoot

<«+fd------- codeHash

receiptsRoot - t|H------
transactionRoot - [- - -

logsBloom :

difficulty }

number :

gasLimit 1

gasUsed :

1

1

1

1

1

1

1

1

1

timestamp
extraData
mixHash

Transaction

nonce
gasPrice
gasLimit
to
value

nonce

Body

List of Transactions

V,1,S
data
init

List of Ommers

Figure 3.5. MPTs in Ethereum >

pairs, it might seem that both read and write times could be improved by a flat structure
instead of a tree one. However, a vital aspect of blockchain applications is their ability
to verify each and every piece of data they receive from the network before accepting it
as authentic. Taking the state MPT as an example, were we to instead try to preserve its
(hundreds of millions of) contained accounts in a flat key-value storage then any modifica-
tion of any kind at any account would necessarily always result in the need to rehash the
entire dataset. These problems are solved by the MPT data structure as trie branches are
self-contained (in that their hashes are unaffected by changes in different trie branches)
and much more quickly verifiable by any peer even before the have downloaded the rest
of the MPT. Lastly, modifications in the trie leaves only require a logarithmic number
of hashes to be recalculated, a major improvement in efficiency when dealing with the

colossal number of data in the Ethereum blockchain.

Furthermore, the very existence of light nodes — lightweight Ethereum nodes that
do not download the entirety of the blockchain but merely their headers, which we will
analyze in Section 4.1.3 — is only possible thanks to the clever use of MPTs. A sufficiently
advanced light node protocol can easily get verifiable answers to a variety of queries.
For instance "has transaction T been included in block B?" can be answered by checking
B’s transactions trie while questions like "does account A exist?" or "what is A’s current
balance?" are handled by the state trie. More complex queries (e.g. "what would be the
output of running transaction T on contract C?") require computations that are out of the
scope of our analysis, but it is sufficient to point out that many of them can likewise be
handled by the state trie [21].

2Source: Lucas Saldahna, https://www.lucassaldanha.com/ethereum-yellow- paper-walkthrough-2/

https://www.lucassaldanha.com/ethereum-yellow-paper-walkthrough-2/

3.1.6 Bonsali Tries

3.1.6 Bonsai Tries

As already mentioned, MPTs are the standard but not the sole way of storing Ethereum
data. Bonsai tries are an additional data storage format to the traditional MPTs and, at
the time of writing, are implemented as an optional alternative to them only in the Besu
execution client (more on clients in the following chapters).

Their goal is to improve access speeds to the current state through piles of leafs
and trie logs to quickly access them, where in traditional MPT one must traverse all the
branches by hash in order to read a leaf value. Instead of keeping those large MPTs within
storage, Bonsai keeps only the most recent trie in its storage as well as a trie log layer.
This log layer provides a small store of changes (a diff between the states of a parent block
and a new one) that, when needed, can be used to construct the complete history of the
tries. This "flatter" approach effectively reduces storage and offers much faster times for

nodes to read any data about Ethereum’s current state, such as O(1) account lookups.

Bonsai Tries
Leaf nodes stored by node location

Trie log

Use the Trie log to
access the leaf directly Branch node

0]1]2[3]a]sf6l7]e]9]alblcldle]f]q

Leaf node

O ooores|

Leaf node Branch node

o1]2(sals[e]7]eloalblcld]elr]]

Leaf node

fa6abbla... [l 4

Branch node

0]1]2]3]a]s]|6[7]8o]alblc]dle]f]g]

Figure 3.6. Bonsai trie visualization 3

The main drawback of Bonsai tries when used to store Ethereum state is that, while
they do make accessing recent blockchain data much faster, it becomes increasingly more
resource-intensive the further in history we try to read data. If this is a common use case

then using MPTs instead remains the optimal choice.

3.1.7 Verkle Trees

In 2018, John Kuszmaul proposed a new alternative data structure to Merkle trees,
called Verkle trees [22]. Verkle trees are constructed with a significantly larger branching

factor k than Merkle trees do (where typically k = 2) and leverage that fact by using a

3Source: https://besu.hyperledger.org/en/stable/public-networks/concepts/data-storage-formats/

https://besu.hyperledger.org/en/stable/public-networks/concepts/data-storage-formats/

Chapter 3. Storage Architecture

special type of hashing function, vector commitment [23], instead of conventional cryp-
tographic hash functions. Since proof size directly depends on the tree’s depth, these

shallower Verkle trees (with a proposed k = 256) naturally produce significantly smaller

proofs.
Parent block .
Eash Time Stamp nonce
block header
statetrieRoot trantrieRoot trajetrieRoot
Extension Node
nibbies | address Branch Node
Leaf Node
dco 11 | | | EI] D keys values
W ! l di5 Ing1,lat1,d1
Extension Node
nibbies | address Branch Node
0 [[Jo[s] ~ ~[]-[]
|1
¥
Leaf Node
Branch Node keys values
|1 D &0 Ing4,latd,d4 account information
keys values
Iﬁ 4lc|clald]|1]5] Ingl,latl,dl
Leaf Node Leaf Node alclel7]o]x]1] ing2lat2,d2
keys values keys values alclc|7]o]1]s]| ing3at3,d3
5 Ing3,lat3,d3 1 Ing2 lat2,d2 4lc|ec|7|1]|e]|0]| Ingdlatd,dd

Figure 3.7. An example of a Verkle tree *

We will not be going over their technical details here since Verkle trees are currently
still in a proposal phase with no indication of urgency by Ethereum developers to im-
plement them in the short-term. The key takeaway is that while a Verkle tree is more
expensive to initially construct, its proof size complexity is only O(log, n) as opposed to a
Merkle tree’s O(klog,. n), while preserving the same O(klog,. n) time complexity for updat-
ing a file (where k is the tree’s branching factor and n the number of files to be stored in
the tree).

While the developers’ intention is to sometime transition Ethereum to exclusively
relying on Verkle trees to store execution state, this is quite a major upgrade and is
not meant to begin until a number of other unrelated Ethereum upgrades have been
successfully deployed. Nevertheless, a draft EIP has been written which would see the
introduction of Verkle state trees alongside the existing Patricia ones [25]. According to
it, the use of Verkle trees allows proof sizes to decrease by a factor of ~6-8 compared to
ideal Merkle trees, and by a factor of over 20-30 compared to the hexary Patricia trees
that Ethereum uses today. Although fully integrating them to Ethereum is not trivial —
a hard fork would likely be required — and they require more complex cryptography to

implement, Verkle trees show serious potential and furthermore present large measurable

4Source: [24]

3.1.8 Bloom filters

gains to scalability.

3.1.8 Bloom filters

While tries are rightfully in the spotlight when discussing Ethereum’s data structures,
for the sake of completeness it must be noted that they are not the only data structure
used in Ethereum clients. Another structure known as Bloom filter is used to enable
efficient querying of information related to accounts involved in transactions.

A Bloom filter is a space-efficient probabilistic data structure, named after Burton
Howard Bloom who conceived it in 1970 [26] and is used to check for element membership
in a set. False positive matches may occur (and increase in likelihood as elements are
added to the set) but false negatives are impossible. It is implemented using a simple
bit array of length m (with all elements initialized to 0) and some k independent hash
functions with each mapping to some of the array’s elements so as to ideally jointly
approximate a uniform random distribution. Insertion and search time complexities are
O(k) while space complexity is naturally O(m) — the bit array itself. It is noted that a
bloom filter can be made using k = 1, though in that case a sufficiently large m is required

to preserve a low false positive rate.

{x,y, 2}

(oftfoftfrjr]ofojojofofijofifojoj1[O]

w

Figure 3.8. A Bloom filter example

Insertion of new elements to the filter can easily be done by hashing each new element
and setting to 1 all the bits corresponding to its hashes, while the removal of elements is
not supported. A trivial example of how element inclusion checks are done in Bloom filters
can be understood through the Bloom filter depicted in Figure 3.8. This filter includes
the elements {x, y, z} which were inserted by hashing each one separately and updating
the array’s bits that belonged to its hashes. When querying for a new element w we first
hash it too and then check whether all the hashes’ corresponding bits in the filter have
already been set to 1. In this case there is at least one bit for which this condition is not
satisfied so we can be certain that w has not been included in this filter. Had that not
been the case, we would not have proved the existence of w in the filter but rather merely
have an indication that it may have been included in it, which would then prompt us to
perform an actual search for it in our underlying data.

In Ethereum, since we want the various events that can occur as a result of trans-

actions to be easily searchable, it would be a significantly time-consuming process for

Chapter 3. Storage Architecture

an application to be examining all the transactions in each and every block regardless
of what it is searching for. To prevent this, every block contains a logsBloonm filter which
consists of a simple 2048-bit string constructed from hashing (using keccak256) parts of
the log records found in the receipts trie.

A common use case of them would be trying to retrieve some historical information
regarding a particular account A, such that would require identifying whether A is in-
volved in the transactions included in some block B. Instead of tediously going over all
the transactions in B, we can instead take the keccak256(A) hash and compare it against
B’s logsBloom. Through this process, a potential application will need to check far fewer
blocks for such a query than it would otherwise have to. While the "positive" blocks will
each still require further individual checking as there is a risk of false positives, there is
a certainty that A was not involved in any transaction included in any other block.

Furthermore, by leveraging the up to 4 indexed topics included in each log record
and integrating them in our Bloom filter (each of these will set some different bits to 1)
we can further narrow our search to some specific fields, e.g. find only the blocks that
include a transaction where A was the recipient. Evidently, this use of Bloom filters
can drastically increase performance of both applications like block explorers but also of
nodes themselves, which are able to quickly scan over the headers of blocks and quickly

determine which ones are relevant depending on their workload at any given time.

3.2 Helper Functions

When we earlier described the use of MPTs we mentioned certain functions like
keccak256() and rlp() without providing any explanation for them. Let’s explore them

a little bit here before we shift our focus to other aspects of Ethereum.

3.2.1 Hash Functions

A fundamental architectural characteristic of MPTs and Merkle trees at large is the
hash function chosen. A hash function can be any function that can map data of arbitrary
size to fixed-size values® (called hashes), but a valuable one should ideally meet some
additional criteria. A cryptographic hash function (CHF), which is what interests us
here, ought to make it impossible to deduce an input value from its hash, while also
additionally ensuring that there are no collisions, i.e. chf(inputl) # chf(input2) V inputl
input2. Lastly, any small change to an input value should drastically change the output
of a CHF.

A number of CHFs have found various applications over the years, including SHA-256
(Secure Hashing Algorithm 256) in Bitcoin. For its purposes, wherever a hash is needed
Ethereum uses Keccak-256 (often referred to as simply "Keccak", though the Keccak
family includes hash functions other than Keccak-256) which is the original implementa-
tion of SHA-3, before SHA-3 was officially standardized following the 2012 Cryptographic

5Though unrelated for us here, it is noted that there also exist hash functions that can generate hash
values of arbitrary lengths such as RC6 [27]

3.2.2 Encoding Functions

Hash Algorithm Competition by the American National Institute of Standards and Tech-
nology (NIST) [28]. While both these CHFs have proven security, the newer Keccak-256
is considered to be even more secure than SHA-256 albeit comparatively slower to run in
non-specialized hardware due to some additional precautionary measures taken.

Keccak-256 allows for arbitrary inputs and an infinite input space, thus being able
to provide a singular 256-bit hash for arbitrarily large files or byte-arrays (as is the case
with our trie nodes). Its implementation details are beyond the scope of this thesis, but
it should be noted that so far Keccak-256 as used by Ethereum has exhibited perfect
collision resistance (though collisions have been observed in round-reduced versions of
Keccak [29]).

3.2.2 Encoding Functions

Since everything is stored in key-value pairs, in the effort to decrease the size of chain
data on disk it would be desirable to encode the value part of those pairs in some space-
efficient way. Thus, a necessity arises to encode complex structures into easily storable
values, while of course also being able to recover our original structures from the chosen

encoding whenever needed.

3.2.2.1 Recursive Length Prefix (RLP)

Recursive Length Prefix (RLP) is an encoding function that was created specifically
to be used in Ethereum where object encoding was needed, including transaction fields,
nodes in MPTs and blocks in their entirety. We have already mentioned some of its uses,
such as in the world state MPT where a keccak256 (ethereumAddress) key is used to store
an rlp(EthereumAccount) value but also in the transactions and receipts MPTs where even
the keys themselves are encoded as rlp(transactionIndex).

RLP can be used to encode nested sequences of bytes into flat sequences of bytes that
can be decoded back into the original nested sequences. RLP is self-describing, meaning
that decoding any output of it can be performed without any other prerequisite knowledge.
This is achieved by having the first byte of the serialised content indicate the type of data
that follows. For example, a single byte the value of which is in the [0x00, 0x7f] range is
itself its own RLP encoding, while a string’s encoding will begin with a byte in the range
[0x80, Oxb7] based on its length, followed by the length itself and the string’s bytes in
a sequence. A list is encoded similarly (with the first byte in the range [OxcO, Oxff]) as
are its contents which accounts for nested elements. This approach makes RLP decoding
fairly straightforward, though a limitation of it is that it cannot support payloads (neither
strings nor arrays) with length higher than 254, A detailed strict definition of RLP can be
found in the yellowpaper [2].

As we established, RLP is used abundantly in Ethereum on account of the several
nested objects throughout its architecture that necessitate some encoding in order to be
stored efficiently. RLP was originally the sole encoding function of Ethereum and was
used in all cases where it was applicable, but that changed after The Merge additionally
introduced SSZ.

Chapter 3. Storage Architecture

3.2.2.2 Simple Serialize (SSZ)

Simple Serialize (SSZ) was first proposed by Vitalik Buterin in 2017 and soon after
became the canonical serialization format of Ethereum’s consensus layer, where it has
completely replaced RLP except in the peer discovery protocol. Its goal was to be simpler
than RLP, efficient to traverse, and also support Merkle-proof schemes by design. SSZ
is also bijective, meaning that serializing the same object of the same type will always
yield the same result, while the serialized representations of two different objects are
guaranteed to be different, an essential characteristic for its use in Ethereum’s consensus.

Unlike RLP, the newer SSZ is not self-describing but rather relies on a schema that
must be known in advance before decoding it where the precise layout of the serialized
data (type, value, size, and position) is defined. Its goal is again to represent objects
of arbitrary complexity as strings of bytes which merely consists of a straightforward
conversion for basic types but becomes more complex in the case of composite types of
potentially variable lengths. We will not go over its specification® here, but the gist of it
revolves around constructing a byte sequence with offset values in the place of the actual
data while adding the latter to a heap at the end of the serialized object.

SSZ is less space-efficient than RLP but enables indexing, i.e. accessing inner values
of the data structure without fully deserializing it. Requiring a schema could itself be
considered a downside of SSZ but it also means that it is extensible so that new data
types could potentially be added to the serialization format without breaking backwards
compatibility. Moreover, its ability to "merkleize" (i.e. transform into a Merkle tree repre-
sentation of the same data) efficiently is regarded as a major architectural advantage. For
these reasons, the Ethereum development team has expressed its intention to eventually

retire RLP entirely in favour of SSZ.

3.3 Storage Engines

It will be useful for our later analysis to not only have a high-level overview of the
data structures chosen in Ethereum but also of the way they are actually stored on the
disk at the fundamental level. This is generally done through the use of some LSM
(Log-Structured Merge) tree based storage engine (a key-value store without schema
constraints) organized on disk in multiple layers. This kind of stores differ from SQL
databases in that they do not have a relational data model, nor do they support indexes.
They are recommended for write-intensive scenarios but less so for read-intensive ones,
making them ideal for the average expected workload of an Ethereum node.

In order to minimize the amount of random writes on disk, when new records are
ready to be written to a LSM-based storage they are first batched in memory (in a data
structure called MemTable) and are only inserted to a level on the disk once the size of that
batch reaches a certain threshold. Furthermore, they periodically perform a compaction

which consists of selecting multiple files and merging them together — a process that can

As is often the case in cutting edge blockchain developments, this specification is not yet part of some
published research paper but is rather maintained in the official GitHub repository: https://github.com/
ethereum/consensus-specs/blob/dev/ssz/simple-serialize.md

https://github.com/ethereum/consensus-specs/blob/dev/ssz/simple-serialize.md
https://github.com/ethereum/consensus-specs/blob/dev/ssz/simple-serialize.md

3.3 Storage Engines

be done efficiently since files in disk levels are kept sorted (by key). This is a crucial part
of their design, since through compaction a handle can be kept on their read performance
which degrades as the number of files increases. Compactions are by default performed
in some background thread in most implementations but may also be invoked manually
in the foreground if that is deemed desirable.

Given this architecture and that LSMs are optimized for multiple writes, locating some
particular key would likely require accessing several files because the requested one could
be found in any of the levels. To minimize redundant reads, a bloom filter is used across
levels as a memory-efficient way of working out whether a file contains some key.

Of course, there are some limitations in the use of LSMs to store Ethereum data.
One such is that in Ethereum everything is identified via hashes which are, by definition,
uniformly randomly distributed. For an LSM that keeps everything sorted by identifier
(key), this fact evidently makes accessing values associated with hash keys very expensive.
However, without a specific database schema for Ethereum MPTs by design, this is a
challenge without a direct optimization solution.

While a comparative analysis of storage engines is beyond the scope of our study, we
can briefly mention the main open-source ones that are currently used by the various

Ethereum clients along with some noteworthy information for each:

e LevelDB: The most popular of its kind and developed by Google, LevelDB is the
storage engine used by a variety of non-blockchain and blockchain applications
alike, including Bitcoin. It does not provide a server nor a CLI (command-line

interface) but rather applications are expected to use it simply as a library.

LevelDB employs a 7-level architecture in addition to up to 2 in-memory tables, with
each level containing multiple files called SSTables (Sorted String Tables). As their
name implies, an SSTable is a simple abstraction to efficiently store large numbers

of key-value pairs while optimizing for high throughput.

Each level’s capacity is approximately an order of magnitude greater than that of the
previous level, which also comes with a comparatively slower access time. When
a new key-value pair is to be added, as described above, it is first inserted to a
MemTable and when that is filled an SSTable file is created which is then merged
with the SSTables in Level O in disk. As the number and size of SSTables in Level O
increases they are compacted into Level 1 and so on for the rest of the levels. This

write flow is depicted on a high-level in Figure 3.9.

e RocksDB: Developed by Facebook, RocksDB began as a fork of LevelDB and still
shares many similarities to it. It likewise uses the same leveled approach with
a MemTable, storing disk data in SSTable files. RocksDB is optimized for high-
concurrency and multi-threaded workloads where it can offer greater read and write

performance than LevelDB, though by using comparatively more disk space [30].

Chapter 3. Storage Architecture

Immutable
MemTablo ——— MemTable

Memory VAN
Disk
N
Level 0 Compaction [Write-Ahead Log
-
Level 1 L Write
Level2 | | | |

SSTable

Figure 3.9. A high-level overview of LevelDB write flow

e MDBX: MDBX is a community-maintained data store that, contrary to the previous
two, is based on B+ trees instead of LSMs. We need not expand more on B+ trees
here, especially since MDBX is solely used by Erigon (see Section 5.4.4) out of all
the clients in our study, but it should be noted that they offer a more balanced
performance between read and writes, making them preferable to LSMs when more
reads (especially random ones) are expected. Lastly, MDBX is additionally ACID-

compliant’, making it more resilient than its alternatives.

“ACID (Atomicity, Consistency, Isolation, Durability) is a set of properties of database transactions intended
to guarantee data validity despite application crashes or other failures

Chapter ﬂ

Nodes and Clients

The terms “node” and “client” are often used interchangeably but they are not equiva-
lent. A node represents the computer that connects to the network and performs certain
actions such as receiving, storing and sending data, which is done by running client
software. Therefore, while we often generically refer to network participants as "nodes",
we ought to turn to "clients" whenever we are interested in any and all implementation
details.

The Ethereum network is made up of nodes, which are the only method to access it.
Nodes communicate with one another in order to validate transactions and record data
about the status of the blockchain while each keeps its own copy of the blockchain and
strives to guarantee that it matches the copies kept by the majority of other nodes. This
network of continually communicating nodes allows users to avoid relying on a single
source of truth and all of the challenges that entails.

Participating in the Ethereum network or, as it is commonly referred to, "running
a node", involves running client software (which we will imminently examine) on some
computer while maximizing its uptime. An Ethereum node can be run on an average
consumer-grade home computer, but most users opt to run their node on dedicated hard-
ware to eliminate the performance impact on their machine and minimize node downtime.

Many nodes are operated by large organizations and crypto-related companies (e.g.
cryptocurrency exchanges), but truly anyone can run a node. While network validators,
as described in Section 2.3, are naturally required to run a node, one does not need to
be a validator in order to do so — in fact, no ETH whatsoever is needed for that. While in
that case the node operator will not have any financial rewards, there are other benefits to
running an Ethereum node including privacy, security and improving the decentralization
of the network by reducing the user’s need for third-party services. The latter is actually
the cornerstone of decentralized blockchain systems commonly summed up in the phrase
"don’t trust, verify", i.e. using one’s own node instead of relying to any third parties for

information about the state of the network.

4.1 Node Types

Fundamentally, there are 3 distinct types of Ethereum nodes that differ in the way

they consume block data and the utility they provide. These are light, full and archive,

Chapter 4. Nodes and Clients

with the various client implementations choosing to support any number of them.

4.1.1 Full Node

Full nodes store the current and the most recent blockchain state (by default, up to the
last 128 blocks in most implementations) and participate in verifying and validating each
and every transaction that takes place on the Ethereum network. When a smart contract
transaction occurs, full nodes execute all of the instructions in it and determine whether
or not the smart contract execution is producing the expected results. Full nodes also
participate in block validation, verifying all blocks and state and are thus the conventional
node type that validators use.

A full node will usually take a lengthy time to initially sync, the reasons for which will
be our focus in Section 5.1. As that syncing progresses, the node does not necessarily
retain historical blockchain states (also known as "pruning", which we will likewise inspect
in the next chapter) but these can nonetheless be recreated on demand since they are
derived from the blocks’ data. Such a request would certainly be resource-intensive and
would take a longer time to be fulfilled than one depending only on the current blockchain
state but it is important to point out that no information is lost by pruning as it can always

be retrieved if necessary.

4.1.1.1 Bootstrap Node

A bootstrap node (or bootnode) is not a separate type of node, but rather a — usually
stripped down — version of a full node which provides initial configuration information to
new nodes joining the network. In most P2P networks, since nodes can join and leave at
any time, new users may struggle to find peers. Bootnodes are useful in combating this
issue by being highly available and providing a newly joining node with vital resources
and information regarding the network itself and mainly guiding them to discover other
peers.

The connection information (addresses) of several Ethereum bootnodes is hard-coded
in the source files of most client implementations so that they can begin syncing without
requiring user configuration, at least in regards to the network node discovery protocol.
Despite that, additional bootnodes can generally be manually provided as an argument
when starting a node or even during its runtime.

For disambiguation purposes, it is noted that node "bootstrapping" in the context
of this thesis refers to the process of the initial synchronization of a node and is not
related to bootstrap nodes — though this process naturally does internally initially involve

requesting information from them.

4.1.2 Archive Node

An archive node does everything that a full node does while also preserving an archive
of all historical states. Where a full node will prune those interim states to save on
resources and decrease sync time, an archive node will disregard such constraints and

store as much information as possible for quick querying capabilities.

4.1.3 Light Node

An archive node will verify all downloaded blocks, re-execute all transactions, and
write all intermediate states to the disk. The trade-off for this costlier initial sync and
significantly greater storage requirements (over 13TB using Geth at the time of writing) is
a much faster response time to questions regarding the blockchain’s history, e.g. "What
was X’s account balance on this day 2 years ago?" or "At which block did X’s account
exceed Y ETH?".

At times, even full nodes that have the ability to rebuild past states find it quicker to
simply query archive nodes when posed with historical questions. Rebuilding historical
blockchain states is a costly operation for those and it is generally expected that some
archive node will be quick to fulfil such requests. For these reasons, archive nodes are of
limited use to an average user but have proven effective in certain applications such as

block explorers and chain analytics.

Ethereum Full Node Sync (Archive) Chart

Source: Etherscan.io

Zoom Im 6m 1y All Jan 23,2019 — Feb 1, 2023
15k

12.5k Jun 30, 2022
Open Ethereum deprecated

10k

7.5k

Chain data size in GB

5k

2.5k

2020 2021 2022 2023
TimeLine

GETH Archive -#- OpenEthereum Archive

Figure 4.1. Ethereum mainnet archive node disk size over time !

4.1.3 Light Node

Instead of downloading every block in its entirety, light nodes achieve their lightweight-
ness by merely downloading and storing the blocks’ headers. They do not even hold the
complete current blockchain state since those headers only contain summary information
about the blocks’ contents but are able to request such data on-demand from full nodes.

Light nodes use the minimum amount of data possible to interact with the Ethereum

lon February 1 2023; Source: https://etherscan.io/chartsync/chainarchive

https://etherscan.io/chartsync/chainarchive

Chapter 4. Nodes and Clients

blockchain but are still able to respond to more intricate requests by in turn requesting
additional information from full nodes.

Naturally, light nodes are suitable for low memory and computational devices and
maintaining a light node involves the least investment in both hardware and technical
skills. Eventually, it is envisioned that light nodes could even run on mobile phones
or embedded devices. Unsurprisingly however, these conveniences are accompanied by
their own set of drawbacks.

Light nodes’ heavy reliance to full nodes necessitates the existence of enough full
nodes willing to altruistically serve data to them (which is generally done by setting a
related flag and dedicating a maximum amount of system resources to handling light
nodes’ requests). In practice few full nodes opt to do that, leading to a struggle to find
peers and, consequently, noticeable delays in data retrieval. But even in ideal condition
with enough peers willing to serve light node data, it is undeniable that even the smallest
of network delays would add up to a significant degree if data retrieval was a frequent
requirement. For that reason, if a node operator anticipates such a use case from their
node, the optimal choice would be to forego light nodes and instead operate a full node to
be able to access this kind of information directly.

Lastly, light nodes cannot participate in consensus (block validation) and are thus of

no use to validators who wish to stake ETH and receive financial rewards for that.

4.2 Client Types

In PoW Ethereum there was only one type of client, formerly simply referred to as
"Ethereum Clients" and now as Execution (Layer) Clients. After The Merge however, ad-
ditional client software was needed to support the consensus upgrade, called Consensus
(Layer) Clients.

An execution client runs the code pertaining to the execution layer, which is where
the transactions actually get executed and enact changes on the state of the blockchain.
It is thus tasked with maintaining an up-to-date copy of the latest state by validating and
handling all the transactions that are communicated through the network. On the other
hand, a consensus client runs the code for the consensus layer, i.e. is responsible for all
the logic that enables the node to stay in sync with the Ethereum network. It achieves
that by keeping up with the canonical order of blocks and transactions, as defined by the
PoS criteria described in Section 2.3.1. Each client has its own distinct networking stack
— sometimes referred to as P2P or network layer — through which communication with
peers of the same type can be established and which is used to gossip transactions (in
the case of execution clients) or blocks (in the case of consensus clients).

These types of clients were originally called "Eth1" and "Eth2" clients respectively.
This naming scheme was deprecated as it gave the false impression that execution clients
would be discontinued in PoS Ethereum. In fact, consensus clients now operate alongside
and complement the execution ones and after The Merge every node is required to run
them both together in order to gain access to the Ethereum network. An authenticated

connection is required between the consensus and the execution clients which is estab-

4.3 Consensus clients

lished through a JWT (JSON Web Token) file. This signed token acts as a shared secret
used to check that information is being sent to and received from the correct peer.

There are several implementations of both types of clients in various programming
languages maintained by different teams of developers. One could justifiably wonder why
is that the case, when surely securing and updating a single implementation of client
software should be easier than doing so for multiple ones. A simple reason is that not
all implementations are focusing on the same uses, with some opting for the highest
efficiency and speed possible, while others aiming to minimize resource consumption
which allows them to run even on low specification computers. However, the main reason
for promoting what is known as "client diversity" is indeed network security. Bugs or
security holes are bound to eventually spring up somewhere in any decently complicated
software, no matter the amount of auditing or the number of programmers involved in
preventing them. When that happens, it is necessary that there exist enough nodes
running healthy client implementations on the network so as for the faulty clients to not
pose any threat to its stability. While this broadly applies to both types of clients it is
of paramount importance to consensus clients in particular since a bug in these could
result in double spending and invalid blocks being perceived as valid. An accidental fork
of that nature is not implausible and did, in fact, happen in PoW Ethereum in August
2021, when a bug in an older version of Geth clients caused several mining pools to split
from the main chain?. This thankfully only had minimal impact because the majority of
miners happened to have had already updated their clients and the longest chain was
indeed the bug-free one. Evidently, it is crucial for the health of the network that no single
client implementation possesses a dominant share of the network, hence eliminating a
potential single point of failure.

A thorough analysis of the various execution client implementations and their ar-
chitecture is going to be the basis of the following chapters of this thesis. But before
moving on, we should first briefly go over the most popular consensus clients and their

bootstrapping which will also be relevant in our later benchmarks.

4.3 Consensus clients

4.3.1 Implementations

All client implementations mentioned here — as well as the 4 major execution client
ones in the following chapter — are free, open-source and cross-platform (available on
Windows, Linux and MacOS).

e Lighthouse: Written in Rust and maintained by Sigma Prime, it aims to be secure,
performant and interoperable in a wide range of environments, from desktop PCs
to sophisticated automated deployments. Lighthouse has been production-ready
since Beacon Chain genesis and is currently one of the most widely used consensus

clients along with Prysm.

2Source: https://www.theblock.co/post/115822/bug-impacting-over-50-of-ethereum-clients-leads-to-fork

https://www.theblock.co/post/115822/bug-impacting-over-50-of-ethereum-clients-leads-to-fork

Chapter 4. Nodes and Clients

e Prysm: Written in Golang by Prysmatic Labs, it prioritizes user experience, docu-

mentation, and configurability for both solo stakers and institutional users.

e Teku: Written in Java by ConsenSys, it is dedicated to building enterprise-ready
clients and tools for interacting with the core Ethereum platform but is compara-

tively more resource-intensive that the alternatives.

e Nimbus: Written in Nim and maintained by the Status.im team, it strives to be as
lightweight as possible, allowing it to perform well even on embedded systems or

resource-restricted devices.

Consensus Clients

Prysm - 39.7%
Lighthouse - 36.18%

Teku - 16.83%
Nimbus - 7.01%

Lodestar - 0.29%

Other - 0%

Data provided by Sigma Prime's Blockprint — updated daily.
Data may not be 100% accurate.

Figure 4.2. Consensus client distribution on Ethereum mainnet >

4.3.2 Checkpoint Sync

Before an Ethereum node can perform any meaningful work, both its consensus and
its execution clients must initially get in sync with the network. The execution client in
particular requires to know the head of the chain as a target to begin syncing towards and,
post-Merge, it is the responsibility of the consensus client to provide that correct chain
head. Contrary to execution clients where the initial sync is a seriously time-consuming
process — and which will be our focus for most of the rest of this thesis — it is a much
more effortless matter in consensus clients. While they too need to initially sync, there
exists a quick and easy way of achieving that by employing a sync mode called checkpoint

sync (also known as weal subjectivity sync).

3on February 1 2023; Source: https://clientdiversity.org/

https://clientdiversity.org/

4.3.3 Weak Subjectivity

Of course, there exist alternatives to bootstrap a consensus client, most notably op-
timistic sync which involves "optimistically" assuming that downloaded blocks are valid
so that the execution client can commence syncing with some presumably valid chain
head while the consensus client is still in the process of verifying it. But by contrast,
checkpoint sync is completed in a matter of minutes, upon which the consensus client is
considered synced and can immediately be used to guide the initial sync of an execution
client, without any potential risk of later invalidating the presumed chain head.

Checkpoint sync is performed by bootstrapping a consensus client with a parameter
containing the URL of another, trusted and already synced node which will provide a (weak
subjectivity) checkpoint block to act as the ground truth of the client’s chain. Once that
is completed, a further step ought to be taken by manually verifying that the legitimacy
of the received checkpoint by validating their chain head against another known source.

Following its checkpoint sync, a consensus client may also commence a backfill sync
so as to download the blocks from the checkpoint block back to genesis. All the consensus
clients listed previously have implemented checkpoint sync — though not necessarily
backfilling too, which is not a requirement to participate in the network or run a validator.

It must be emphasized that from a checkpoint-synced client’s point of view, the check-
point block has all the characteristics of a genesis block (except that it is found at a
non-genesis position in the chain). Even finalized blocks do not receive such a treatment,
since when a node encounters two conflicting finalized blocks then it is considered to
be experiencing a consensus failure and thus being unable to identify a canonical fork.
Conversely, if a checkpoint-synced client sees a block conflicting with a weak subjectivity
checkpoint, then it immediately rejects that block [31].

Given this description, it is clear that checkpoint sync involves "asking" and then
completely trusting an off-chain source about information regarding the network’s state,
an approach which objectively seems inherently insecure for a decentralized trustless
network. But somewhat counter-intuitively, checkpoint sync is actually considered more
secure than simply syncing from the genesis block. In order to comprehend the reasoning
behind that we ought to examine a PoS concept that we had omitted so far, that of "weak

subjectivity" and the perils it introduces in the form of "long-range attacks".

4.3.3 Weak Subjectivity

Subjectivity in blockchains refers to reliance upon social information to agree on the
current state — i.e. there may be multiple valid forks that are chosen from according
to information gathered from other peers on the network. The converse of that would
be objectivity, a case where there is only one possible valid chain that all nodes will
necessarily agree upon by applying their coded rules. But there can also be a third state,
known as weal subjectivity, which refers to a chain that can progress objectively after
some initial seed of information is retrieved socially.

Weak subjectivity naturally ensues from the fact that a node that comes online for the
first time (or even just after a long offline period) will necessarily have to ask a trusted

source what the head of the valid chain is. This seemingly completely undermines the

Chapter 4. Nodes and Clients

trustless nature of blockchains and is an issue intrinsic to all PoS blockchains, where
selecting the correct chain from multiple forks is done by counting historical votes.

Weak subjectivity also enables a PoS-exclusive attack vector, known as "long-range
attack". When the newcomer node requests to learn about the canonical chain, a group
of validators that had been online for a longer amount of time can present any alternative
version of the blockchain beginning from the genesis block (or just the latest block that
the requesting node is aware of as being part of the chain) as the canonical chain. Since
there are no PoW proofs to be independently verified, as long as the presented chain is
internally consistent and passes some basic sanity checks, the newcomer node has no
way of knowing that it is being deceived [32].

Checkpoints embolden initial sync security by severely limiting the extent to which a
newcomer node can be presented with a fabricated chain. These checkpoints form a chain
in and of themselves (with each one pointing to its predecessor) and anyone connecting
to the Ethereum network for the first time knows a priori that the canonical chain must
include them, being thus effectively protected from the worst of long-range attacks.

These checkpoints may offer a way to prevent long-range attacks, yet still need to be
trustworthy themselves. It is not entirely impossible to imagine ways which could help
minimize trust for them even under the PoS framework. For instance, a couple of recent
papers proposed reusing Bitcoin mining to enhance PoS security by "anchoring” PoS
checkpoints to its mined blocks [33] [34], though this approach would necessarily create a
probably undesirable dependency between any blockchain that chose to implement it and
Bitcoin. Instead, Ethereum has opted for a more pragmatic approach using community
checkpoints.

As Buterin explained in 2014 [35] — Ethereum’s transition to PoS was indeed envi-
sioned even before its genesis block was mined — the kind of situation in which weak
subjectivity by itself would compromise a blockchain’s security is one where a power-
ful malicious entity can convince the entire community that the hash of some block
is different than it truly is, even despite a number of honest participants having been
online during that block’s creation and having its correct version saved on their comput-
ers. Understandably, any such entity (such as a hypothetical oppressive government or a
malevolent corporation, as a usual argument goes) that could infiltrate several centralised
entities to alter the community checkpoints could just as easily corrupt the client software
itself or trick users into downloading a compromised version of it. Even in the extreme
hypothetical scenario of a user that was willing to write the client software themselves (a
daunting task, to say the least) they too would need to get the protocol’s specifications
from some, likewise compromisable, external off-chain source.

In conclusion, while a decentralized system always seeks to minimize trust, in practice
one will always need to put some amount of trust to a party outside of the system, be that
to a software provider or to request social information about a checkpoint. Again, all these
worrying considerations only become relevant in the very unlikely event that a majority
of validators conspire to produce an alternate fork of the blockchain. Under any other
circumstances, there is only one Ethereum chain to choose from and weak subjectivity

checkpoints only facilitate and improve the users’ experience.

Chapter E

Execution Clients

In this chapter we will be going over the main focus of this thesis and the subject of
our upcoming benchmarks, Ethereum execution clients. We will be detailing the char-
acteristics of the different initial sync modes, state pruning but also how each of the
major clients (Geth, Nethermind, Besu and Erigon) implements these and differs from
one another. Our overview will primarily be from the perspective of Geth which at the
time of writing represents around two thirds of the total execution clients of the network
— a clear sign of insufficient client diversity, which the different client implementation
seek to mend. Regardless, attention will be given to all important aspects in which those
implementations have distinguished themselves from Geth and the consequences of their

approaches.

Execution Clients

Geth - 62.29%

Nethermind - 18.52%

Erigon - 11.91%

Besu - 7.02%

Others - 0.27%

Data provided by Ethernodes — updated daily.
Data may not be 100% accurate.

Figure 5.1. Execution client distribution on Ethereum mainnet !

lon February 1 2023; Source: https://clientdiversity.org/

https://clientdiversity.org/

Chapter 5. Execution Clients

5.1 Initial Synchronization

As we explained in the previous chapter, bootstrapping an execution client in post-
Merge Ethereum requires a target chain head, meeting the consensus criteria defined by
Gasper. Assuming that an already synced consensus client has provided such a sync
target, the execution client can commence syncing with a few specific objectives to strive
towards.

First and foremost, it needs to download all the past blocks that are part of the
chain, which it naturally obtains by requesting them from rest of the network’s nodes.
Both internet speed and hardware (especially disk write speeds) can be an impediment
in that process. Then these blocks ought to be verified, confirming that block headers
are structured correctly, containing the hash of the previous block, a valid timestamp
and that the gas limit specified in it is not exceeded by the sum of the total gas used by
all the transactions contained in the block (this process additionally included checking
PoW proofs in pre-Merge Ethereum). Should any of the above fail then the entire block is
rejected as invalid.

A common misconception is that if a client has completed downloading the blocks then
it must also be in sync with the network. This is not the case because, by themselves,
the blocks do not automatically provide any information about the network’s state. State
data is implicit data, i.e. it is not gathered from the blocks’ information communicated but
rather needs to be produced through calculations. However, extracting state information
from the downloaded blocks is a process more time-consuming in itself than the block
download phase and we will be examining the different approaches to this process next
up.

But before going over the various sync strategies, let’s briefly point out that it is techni-
cally feasible to directly download any information necessary from some off-chain source
and then import it to one’s client of choice. While such a functionality is implemented
by the various clients (mainly for backup purposes), if it were to be used in such a way
it would evidently undermine the purpose of a decentralized blockchain network as it
relies on trusting a single party as the source of all information. Even in a consensus
client’s checkpoint sync (see Section 4.3.2) where we do rely on some other party for the
chain head, it is still assumed that we subsequently verify the blocks leading to it and the
transactions within them. So for security purposes, the undisputed standard procedure
for a client to get up-to-date with the network is to first connect to it and then request

any data needed from its peers, using one of the following sync modes.

5.2 Synchronization Modes

5.2.1 Full Sync

The first sync mode that we ought to analyse is certainly full sync so as to properly
understand the workload that an execution client is called to fulfill. A full sync consists

of downloading and fully verifying all the blocks received from the client’s peers, and then

5.2.2 Fast Sync

executing every transaction in every block one by one starting from genesis. In addition to
what was earlier described regarding the block’s header, a block’s full verification process
additionally incorporates checking if its contained transactions are valid in themselves
(the sender have enough balance to pay for it along with the gas indicated and their nonce
is correct) and that the transactions’ receipts included in the block match the receipts that
the client computed by executing the transactions. Having completed all these validations
itself, the client can always be confident about the integrity of the blockchain data it
maintains locally. It is for this reason that this sync mode is necessarily implemented by
all clients.

Transaction execution is done on the EVM that all clients also implement and it
is through their execution that the world state MPT (as described in Section 3.1.4) is
gradually constructed, a process that is actually significantly more time-consuming than
the block download phase. By sequentially re-executing transactions, including smart
contract execution on the EVM, state balances across all Ethereum accounts (EOAs and
contract ones alike) are updated, resulting in a different global state after processing each
block. Full sync provides the functionality to optionally save all these intermediate states
on the disk, with this also referred to as archive sync as it is the requirement to run an
archive node.

At the time of writing there exist almost 2 billion transactions in the Ethereum main-
net, steadily increasing by around a thousand per day. It is therefore no wonder why se-
quentially re-executing all these transactions as described would decidedly be the longest
part of the initial full sync process. There is also inherently no way to parallelize it as
each state s+ 1 is dependent on state s. Naturally, in all client implementations full sync
is by far the most time-consuming, requiring weeks to complete (except in Erigon, which

we will later be presenting in detail).

5.2.2 Fast Sync

Fast sync begins similarly to full sync by first connecting to a few peers and down-
loading all the blocks (first their headers and then later their bodies) from them. While a
client syncing using fast sync will too check the validity of the downloaded blocks’ headers
and will also download the transaction receipts (which contain information about their
outcomes), it will not re-execute the transactions themselves.

Instead, the client remains oblivious to the world state until it reaches a "recent"
enough block to the current chain head, called the pivot block. The pivot block is chosen
so that its state trie is recent enough to be close enough to the network’s current state, yet
far enough back in the blockchain that it is unlikely to change in the future. This allows
the node to quickly synchronize with the current state of the blockchain while minimizing
the risk of downloading a stale or outdated state trie. In most implementations its default
value is 64 blocks behind the chain head.

At that point, the client uses the pivot block’s world state root with the purpose of
replicating this state locally by iteratively requesting any data it is missing by its peers,

commencing what is known as the state trie download phase. This root node, as detailed

Chapter 5. Execution Clients

in Section 3.1.3, may contain up to 16 branches to other nodes which will too initially
be unknown to the fast-syncing client and will require a separate request to its peers.
Then each of these nodes may in turn contain up to 16 branches which likewise must
be downloaded from the peers with this traversal and consequent requests to download
missing trie nodes from peers continuing until the client completes the reconstruction of
the entire state MPT, down to the leaves.

The state trie download phase takes a significant amount of time to be completed,
again longer than the block download phase. This is because the world state MPT consists
of hundreds of millions of nodes and it is estimated that about 1000 are deleted and 2000
new ones are added at every block. Given that the block time is at roughly 12 seconds,
this means that the client is attempting to synchronize a dataset that is changing more
than 200 times per second. Moreover, the pivot block will inevitably become stale several
times during the course of this process, meaning that enough blocks have been added to
the chain so as for the client’s current pivot block to not be considered as representative
enough of the current state. Whenever that occurs the client needs to pivot, i.e. pick a
more recent pivot block and start syncing again. Pivoting does not mean that the entire
process is started from scratch (as there will be enough overlap between the already
downloaded state trie and that of the new pivot block) yet it obviously increases the time
spent downloading and verifying state. It is for this reason that during this phase a fast
network connection with low latency becomes a more important factor that CPU or RAM,
although a fast SSD is still of the essence.

While a fast-synced client will not be able to quickly respond to historical queries (i.e.
ones further back than the pivot block), it is still used to sync a full node as it possesses
all the data necessary to respond to them — and can reconstruct the respective historical
states if required. Furthermore, once the syncing process is completed and the client
has successfully locally reconstructed the world state, it switches to full sync mode. All
the above ensure that a fast-synced client can practically guarantee the security of a full
client, but at a fraction of the time that is needed for a full sync.

Nonetheless, the once ubiquitous fast sync is clearly and steadily being phased out,
with Geth having already dropped it entirely, Besu actively advising against using it for
mainnet sync, and Nethermind seemingly likewise heading in the same direction. The

cause of that is the emergence of another sync mode called "snap sync".

5.2.3 Snap Sync

Geth’s release of v1.10.0 in early 2021 led to a paradigm shift in the bootstrapping of
execution clients by introducing the snap sync (or snapshot sync) mode. In snap sync,
while the client once again downloads and verifies all the block headers since genesis
from its peers, similarly to fast sync it will not re-execute transactions. But in contrast
to it, it will not seek to reconstruct the MPT of the current state either but will instead
merely request a snapshot of it by its peers.

To understand state snapshots, we must first examine the reasons that led to their

development. For all its benefits, fast sync eventually hit an originally unforeseen bot-

5.2.3 Snap Sync

tleneck in the form of network latency ultimately caused by the Ethereum’s data model.
Downloading the hundreds of millions of nodes one-by-one, even batching requests wher-
ever possible, resulted in millions of request to peers and even a few ms of waiting time
per request added up to several hours of the fast-syncing node doing nothing. To make
matters worse, a serving peer wanting to fulfil such a request had to traverse its state
MPT and locate some arbitrary node, requiring to touch up to 7 files (in the average imple-
mentation using LevelDB as detailed in Section 3.3) for every node requested and with no
meaningful way to retrieve these nodes batched as they are stored by hash. Subpar SSDs
used by some nodes as well as a probably low upload speed for most further compounded
these issues.

All these led to the reexamination of whether communicating the entire state MPT is
truly necessary during a client’s sync. In essence, the meaningful segment of the state
trie is only its leaves, which ultimately contain all the Ethereum accounts, i.e. the "value"
part of the key-value pairs that comprise it. While Merkle proofs are certainly vital for
verification purposes and the MPT structure enables a number of architectural benefits
(as we detailed in Section 3.1.5), in the case of the initial sync this very structure also
poses a significant impediment. Since a client obviously trusts the data it has already
verified, traversing the world state MPT over and over again is an unnecessary overhead
for reads. Ideally, a flat key-value data structure, one containing a snapshot of the state
trie’s leaves would solve all these issues.

Of course we would not want to entirely get rid of the state MPT for reasons already
described in Section 3.1.5, but that does not mean that it needs to be used for all purposes.
Maintaining such an additional snapshot and serving it to snap-syncing peers makes the
syncing process much more appealing for both the syncing and the serving peers. The
syncing peer can download this snapshot in contiguous chunks of useful state data,
without needing to consistently perform requests and await responses for individual trie
nodes, in addition to entirely skipping the download of all the intermediate state MPT
nodes. Crucially, since these chunks consist of sequential Merkle trie leaves, any range
of them can be individually validated and thus allow for quick detection of potential
fraudulent data. On the serving peer’s side, since the data requested is no longer randomly
keyed (in the form of hashes, as in fast sync), the client needs only perform a significantly
smaller amount of contiguous disk reads to serve syncing requests, removing disk I/0
delays.

Upon completion of the snapshot download and before the client can be considered
synced, it must of course reconstruct the state MPT locally, a straightforward process
given that it has all the trie’s leaves. However, while this is happening the blockchain
is naturally progressing, meaning some of the regenerated state MPT becomes invalid.
Therefore, a final state heal phase is needed in order to correct any errors in the state
MPT. This is, once more, a phase were a performance SSD is vital since in order for the
client to catch up with the current state the healing must be able to outpace the growth
of the blockchain.

Simultaneously with the state trie download phase, block bodies and receipts are

being downloaded to be preserved in the disk as is the requirement for every full node.

Chapter 5. Execution Clients

Merkle tree nodes downloaded

N

Fast Sync > > >

N
N
N
N

Snap Sync

Figure 5.2. Fast vs snap sync visualization

Lastly, once snap sync is completed then the client switches its sync mode to full, a switch
which helps ensure the long-term stability of the network.

It should not be understated that, once locally constructed, the state snapshot can
serve other purposes other than serving syncing requests. Having successfully reduced
read time complexity from O(logN) to O(1) (always multiplied by the storage engine’s
overhead), it makes sense that the client would use this snapshot in any operation that
requires such reads. One example could be EVM smart contract execution which, aside
from state writes, may often involve a decent number of state reads.

The only meaningful drawback of this approach is that all clients need to maintain a
state snapshot at all times to satisfy requests from newcomer nodes. This is maintained
live without noticeable performance impact in regards to system resources, partly due to
in-memory diff layers that help prevent redundant reorgs of the in-disk snapshot [36].
The state snapshot also does occupy an additional few tens of GB on the disk as it is
comprised of duplicate information from the state MPT, an admittedly negligible overhead
when compared to the hundreds of GB already needed to sync a full node.

In the patch notes of Geth’s v1.10.0 [37], where snap sync was originally introduced
following years of development (cautiously, as obviously no client had snapshots ready at
the time and needed to generate them for the first time), it was denoted that synchronizing

the mainnet state with it against a mere 3 serving peers took a fifth of the time that fast

5.2.4 Checkpoint Sync

sync required, with an over 99% reduction of both the amount of reads those serving
peers had to perform on their disks and the amount of packets needed to be exchanged
between them.

Snap sync is currently on its way to replace other sync modes, especially fast sync
which it directly succeeded. Following its popularization in Geth, both Besu (since
v22.4.0) and Nethermind (since v1.13.0) implemented support for snap sync. In all 3

of these clients, snap sync has become the default sync mode.

5.2.4 Checkpoint Sync

Not to be confused with the consensus client’s sync mode namesake, checkpoint sync
operates using the same principle in execution clients too. Only available in Besu as an
early access feature at the time of writing, this sync mode behaves exactly like snap sync,
but instead of syncing from the genesis block it syncs from some other manually provided
"checkpoint" block.

Checkpoint sync is faster and occupies less disk space than snap sync, though this
is achieved by altogether ignoring some historical data (e.g. receipts) of earlier blocks.
While the earlier blocks’ bodies are always themselves downloaded (as is a requirement
for every full node), since the checkpoint block acts as a ground truth there are certain
security considerations regarding older blocks’ validation (or rather the lack thereof).
These are the ones that we went over when we explored consensus clients’ checkpoint

sync in Section 4.3.2.

5.2.5 Staged Sync

In all previous sync modes the various aspects of workloads (including downloading
block headers and bodies, executing transactions or downloading state data) are executed
in parallel wherever possible. While this intuitively seems to be beneficial to the client’s
efficiency, it turns out that doing so also prevents various optimizations. A simple example
of such an optimization is inserting data in large pre-sorted (in-memory) batches versus
inserting each element as it is received (effectively at random) into a database that keeps
its contents sorted at all times. On this basis, the Erigon team devised a rearchitected
version of full sync, called staged sync, that seeks to redefine how client syncing can be
done more efficiently.

As its name suggests, staged sync is separated in stages — 10 on a high level — that
are executed sequentially. Initially, block headers are downloaded, verified and stored,
before proceeding to download the blocks’ bodies. Senders’ signatures (the addresses
contained in the from of every transaction) are then located and likewise persisted in the
database. The majority of the total sync time is spent on the next stage which is the
re-execution of all transactions since genesis which produces a PlainState (simple key-
value store of accounts and their contents) along with receipt and event logs. Hashes and
trie roots are calculated next up, which are followed by the (optional) creation of the call

trace, history and log indexes. The final stage consists of creating a TxLookup mapping

Chapter 5. Execution Clients

between transaction hashes and the height of the block in which they were included for
quick future retrieval.

This sequence of stages will be executed once upon bootstrapping the node until its
completion, at which point it will restart from its first stage. That second time, of course,
there will be a much smaller amount of blocks to process meaning that the entire loop will
last significantly less. Eventually, these repetitions converge to processing 1 block at a
time, as they are being produced by the network. This flow (along with the block receival
flow in Erigon) as well as the exact stages of this sync mode are depicted in Figure 5.3,

which is further expanded upon in Erigon’s extensive documentation [38].

p2p network [,
| : o Bty N
NS / S

BlockHeaders Ne ck

BlockBodies

Block Body

B PoS
Downloader Exchange
[
Consensus |
Layer | Engine API Header
Mode | Request List ETL Collectar
Headers Stage
Tx Lookup Stage Block Hash Stage
Log Index Stage Bodies Stage GetBlockBodies |
Stageloop | e
History Index Stage Senders Stage
Call Trace Index Stage Trie Stage Hashed State Stage Execution Stage

Figure 5.3. Erigon’s control flows (staged sync loop in yellow arrows) 2

2Source: [38]

5.2.6 Light Sync

5.2.6 Light Sync

Light syncing is used exclusively as part of a light node’s bootstrapping and relies
merely on downloading and validating block headers, which was relatively straightforward
in PoW Ethereum. There exists a mathematical function which a block header must
satisfy in order to be valid, and it would be computationally very intensive for an attacker
to produce such a valid header. A light client could always easily look for the longest
chain of valid block headers, and assume that the resulting chain is the canonical one.

In PoS, however, the same process is not that simple. For a block to be considered
valid the client must first confirm that the validator who created it is indeed the one who
was meant to do that and verify their signature against the public keys. While the latter
part is done in constant time, simply retrieving that validator’s public keys from the state
trie has a logarithmic complexity. On the surface, this shows that light clients can exist
on PoS, albeit with some additional computational overhead. In fact, protocols involving
checkpoints have been proposed (such that the validity of every n blocks needs to be
checked instead of that of every block) exhibiting that PoS could potentially prove to be
even more light-client friendly than PoW was [39]. Nonetheless, at the time of writing
none of these proposals have yet been implemented by any execution client and as such

light sync is not currently operational on the Ethereum mainnet.

5.3 State Pruning

As Ethereum increases its adoption and use, its state inevitably grows larger and
archiving it becomes increasingly challenging. As we mentioned in Section 4.1.2, the
total (archive) chain data size indicatively on Geth surpasses 13TB and is constantly
increasing at a somewhat steady pace of around 300GB per month. While one could
constantly upgrade their storage to keep up with that growing demand — and archive
nodes must indeed do exactly that as they are by definition meant to preserve all historical
data — such a requirement would be prohibitive for the average user.

Of course, the average user does not need the entire history of states since genesis.
Already, when an execution client is bootstrapped using any non-archive sync mode, it
does not store intermediate historical states — i.e. it already downloads a pruned version
of the Ethereum state. Once it has finished synced however, it always switches to full
sync mode, necessarily saving new states to the disk as the blockchain progresses. An
issue that then arises when a client has been running for a considerable amount of time
is the inevitable filling of the available disk space.

At a high level, all data in Ethereum can be separated in two types, permanent and
ephemeral. The blocks themselves as well as the transactions contained in them are
examples of permanent data. It must be emphasized that permanent data is never pruned
as they are vital for guaranteeing the long-term stability of the network. By contrast, state
data (including anything mutable like an account’s balance at some block) is considered
ephemeral and may be stored separately. Since ephemeral data can be reconstructed

using the permanent data whenever necessary, client implementations have a great degree

Chapter 5. Execution Clients

of freedom on how to store it and how much of it they wish to have readily available at
any time.

The practical solution to the growing disk space occupied by the client is to delete
older state data, which are not necessary for its operation. However, it turns out that
deleting these concurrently with inserting new pieces of state data block-by-block as a
node receives them is quite a difficult problem. Since state in Ethereum is stored in a trie
data structure — and since most blocks only change a small fraction of the state — two
such tries will share huge portions of the data with one another. It can easily be decided
whether the root of an old trie is stale and can be deleted, but it is exceedingly costly to
figure out if a node deep within an old state is still referenced by anything newer or not.
Several pruning solutions had been proposed over the years, but consistently broke down
as the size of the Ethereum state kept growing.

As a result of the above, in v1.10.0 Geth introduced offline pruning. This kind of
pruning takes advantage of the state snapshots introduced in the same Geth version
by constructing a bloom filter which helps identify and delete stale trie nodes. Upon
completing that, Geth performs a database compaction and manages to reclaim free disk
space>.

Offline pruning is not done automatically but is instead meant to be periodically
manually initiated after, as its name suggests, shutting down the client. When running a
validator post-Merge, taking one’s node offline for any amount of time can result not only
in missed profits but also to some limited slashing. In these cases, the standard way of
approaching state pruning is by syncing a secondary execution client in a separate disk
and linking one’s consensus client to it while the primary execution client is pruning.

State pruning is of course not exclusive to Geth. In fact, Nethermind has pioneered
a full pruning approach that does not necessitate shutting down the client [40]. This
involves creating a separate empty MPT and a period of duplicate writes (both to the old
and the new MPTs) while the client is operating as usual, following which the old state
MPT can be safely deleted. Full pruning is only possible in Nethermind because, contrary
to other clients that keep all kinds of data (state, blocks headers and transactions) in a
single database, Nethermind has a separate one for each, allowing for easy and targeted
deletion of state data without affecting the stored permanent data.

Nethermind’s pruning approach effectively circumvents the challenge of locating which
trie nodes should be kept and which ones are stale and thus should be deleted. A certain
drawback though of it is that it causes a lot of additional disk writes which, aside from
any performance impact, also cause unnecessary wear on the SSD used. It is also a
reasonably time-consuming process, potentially lasting more than a day depending on
the hardware used. For these reasons, it is recommended not to run this pruning task
more than once every few weeks.

In conclusion, there is no silver bullet solution to pruning state data. Despite Nether-
mind’s aforementioned approach, its team acknowledges that there exist better solutions

together with different storage models and with which it is currently experimenting at

3As a side note, initiating this process requires a few additional tens of GB of free disk space meaning that
it cannot be used to salvage a hard drive that has already been completely filled.

5.4 Implementations

the time of writing. Alternative storage data structures (like Besu’s Bonsai tries or the
currently under development Verkle trees) can provide different approaches to pruning as

well. Consequently, novelties in pruning methods are to be expected in the near future.

5.4 Implementations

5.4.1 Geth

Go Ethereum (usually referred as Geth) is the original Ethereum execution client im-
plementation, written in Golang and maintained by the Ethereum Foundation. It has
been the most widespread client with the biggest user base for the entirety of Ethereum’s
history. In addition to interacting with the Ethereum network manually through a con-
sole, Geth also has built-in support for JSON-RPC based APIs, which can be exposed via
HTTP among other ways, and allow user programs to easily access Ethereum information.

At present, Geth uses LevelDB where it stores both state and chain data. The latter
are separated internally on the basis that older blocks are less likely to be needed for
retrieval and — as of v1.9.0 — can thus be stored on slower, cheaper storage. Offline
pruning of state data is supported, as previously described.

Geth solely supports full and snap sync modes. Snap sync was made the default
sync mode over fast sync in v1.10.4, the support for which was ultimately dropped in
v1.10.14. Despite that, Geth continues to serve the relevant requests to other client
implementations that still rely on fast sync.

Up until The Merge, a user could opt to run a light client using Geth’s light mode
syncing, with the benefits and detriments that such a client has compared to a full one,
as detailed in Section 4.1.3. Additionally, Geth supported an even lighter sync mode
which resulted in an ultra light client (ULC). Its difference during syncing as opposed
to light mode syncing was that a ULC did not even check the PoW in block headers,
getting its data from one or more trusted light servers (the addresses of which had to be
provided upon starting the client). Neither of these Geth light clients currently work on

PoS Ethereum, but new PoS light clients are being developed at the time of writing.

5.4.2 Nethermind

Founded by a small team in 2018 of the same name, Nethermind is an Ethereum
implementation created with the C# .NET tech stack. Like Geth, Nethermind can be used
both to sync the Ethereum mainnet as well as various testnets and even private networks.
Nethermind uses RocksDB for its storage but, unlike Geth, does not save all Ethereum
data in the same database but splits them in multiple ones which allows it to perform live
full pruning, as we detailed in Section 5.3.

In regards to sync modes, Nethermind implements full, fast and snap sync. Snap
sync has been supported since v1.13.0, though Nethermind can only download the state
snapshots but not serve it to other clients at the time of writing. Due to this fact, snap
sync in Netherming can be used only for the networks (mainnet and testnets) that are

also supported by Geth. However, contrastingly to Geth, in fast and snap sync modes

Chapter 5. Execution Clients

Nethermind does not begin blocks’ data download until after the state download has
been completed. Especially in snap sync, its initial exclusive focus on state syncing
enables Nethermind to take advantage of sequential disk write operations, consequently
managing to complete it in remarkably fast speeds. This approach additionally allows
users to quickly get up to speed with the network and present them with the option to

download block bodies and receipts®.

5.4.3 Besu

Hyperledger Besu is an enterprise-grade Ethereum client written in Java. Formerly
known as Pantheon by ConsenSys, its first official release was in 2019. It is now main-
tained by the Hyperledger Foundation, an umbrella project of open source blockchains
and related tools, started by the Linux foundations but with contributions from a long
list of member organizations and companies. Apart from the Ethereum mainnet and its
public testnets, Besu is often run on private permissioned networks. As with previous
clients, it supports smart contract and Dapp development, deployment, and operational
use cases as well as common JSON-RPC API methods over HTTP.

Besu uses a RocksDB key-value store to persist chain data locally. Since v21.1.0 in
early 2021, Besu supports optionally syncing using the newer Bonsai tries for storage
(Bonsai mode) instead of the traditional MPTs (Forest mode). This data format (which we
described in Section 3.1.6) offers noticeably faster sync speeds but also provides implicit
tree pruning which results in reduced disk usage regardless of sync mode. These improve-
ments become even more pronounced in full archive sync, where using Bonsai achieves
up to an order of magnitude lower storage compared to Forest mode (an estimated 1.2TB
with Bonsai as opposed to ~13TB otherwise).

In addition to full sync, Besu supports fast, snap and checkpoint sync modes. Check-
point sync, which we explained earlier, is still an early access feature. Moreover, fast
syncing is being discouraged by Besu’s developers who state that it might eventually be-
come impossible to fast sync the Ethereum mainnet in the future. Snap syncing Besu
using Bonsai is their latest (stable) recommendation for both lower sync times and lower

storage requirements.

5.4.4 Erigon

Formerly known as Turbo-Geth, Erigon began as a fork of Geth with its first public
alpha version being released in mid-2020 after more than two years in development.
Soon after that however, the Erigon team realized that its plans to provide a faster, more
modular and better optimized Ethereum implementation required a radical overhaul of
the entire architecture which led to a rewrite of the database structure, data model, and
sync process.

Erigon is undoubtedly the most unique out of the clients of our study. Contrary to the

more monolithic designs of other clients, it boasts a modular design which enable paral-

“Nethermind presents the download of these as distinct options of its sync modes: https://docs.
nethermind.io/nethermind/ethereum-client/sync-modes

https://docs.nethermind.io/nethermind/ethereum-client/sync-modes
https://docs.nethermind.io/nethermind/ethereum-client/sync-modes

5.4.5 Discontinued clients

lelized development of the different components. These components include the client’s
core, the RPC API, the P2P sentry and the TxLookup mentioned in Section 5.2.5 among
others and can each be compiled into a separate executable and run as a standalone
application. It additionally includes an embedded consensus client that is sufficient to
optionally complement Erigon post-Merge, but not yet replace a dedicated consensus
client when running a validator node.

Throughout its history Erigon changed its storage engine several times, going from
BoltDB to LMDB before finally settling on MDBX. MDBX is largely different from the storage
engines used by other clients, first of all architecturally in that it is based on B+ trees
instead of LSM ones, as explored in Section 3.3. The Erigon team has provided several
reasons for this choice, among which the need for faster and more predictable times in
random disk reads for their implementation. In addition to that, traditional LSM-based
databases are not ACID-compliant meaning that a potential crash or power failure could
corrupt them, something that was deemed a non-starter for a client which only provides
a full sync mode. While all these applied equally on LMDB too, the switch from it to
MDBX happened both for performance reasons as well as a number of desirable features
available only on the latter.

As will also be evident from our benchmarks in the following chapter, Erigon has dif-
ferent resource usage patterns than the rest of the clients. Most notably, the resources it
requires vary depending on the stage it is currently executing but in general it compara-
tively uses up far more RAM which (along with a fast SSD) does significantly affect sync
times. The reason for that is its ability of preprocessing grater amounts of data in-memory
due to its staged sync, rendering the eventual write operations to the disk faster by an
order of magnitude according to its developers.

Erigon’s sole sync mode is the aforementioned staged sync, which can be used to
sync either simply a full node or an archive one. The latter can be completed using less
than 3TB of disk space and, more impressively, in less than 5 days on reasonably fast
hardware. Nevertheless, Erigon’s lack of a faster sync mode drives off some potential users
and also means that any potentially disruptive changes will always require a, growingly
impractical, full replay of all blocks from genesis. This is acknowledged as a problem by
its developers and the implementation of snapshot sync is regarded as a priority for a
future major release.

Finally, it is worth mentioning that at a time there was a full (and faster) implementa-
tion of Erigon in Rust, named "Akula" which was however short-lived (see Section 5.4.5.2).
Furthermore, a C++ version of Erigon called "Silkworm" is under development, though by
a significantly less active ecosystem. Not even having reached an alpha phase of release
yet, Silkworm is at the time of writing unable to actually sync a blockchain from genesis

but relies on an already synced database by Erigon to fulfill other execution client tasks.

5.4.5 Discontinued clients

Even though the above 4 are the only Merge-ready Ethereum execution clients at

present, a few other abandoned client implementations merit a mention for historical

Chapter 5. Execution Clients

reasons as well as insight on how they affected our contemporary ones.

5.4.5.1 Parity - OpenEthereum

Originally introduced in 2015 as Parity Ethereum by Parity Technologies this client
written in Rust had been the second most widely used (after Geth) for most of Ethereum’s
history. In 2019 Parity announced the client’s transition to OpenEthereum, with Gnosis-
DAO taking primary oversight of the project [41] before eventually in 2021 announcing
their intention of ending support for it in favour of Erigon. What led to that decision was
OpenEthereum’s huge legacy codebase, the managing of which was proving to be increas-
ingly difficult, especially with Ethereum’s transition to PoS fast approaching. As such,
OpenEthereum has been officially deprecated since The Merge, with the team behind it
recommending using Erigon instead [42].

Parity’s historical importance also stems from an incident in September 2016, when
a bug in Geth’s v1.14.11 caused Geth clients to run out of memory and crash, thus
preventing the mining of new blocks®. While Geth’s developers quickly worked out the
root cause and deployed a fix within hours, the Ethereum network would have completely
halted in the meantime had it not been for Parity, the only other client implementation at
the time. Parity clients were unaffected by the bug and continued to produce blocks as
normal, keeping the network online and once again proving the need for client diversity.

Despite not being used anymore, Parity also introduced an innovative mode of syncing
worthy of discussion, named warp sync. Warp sync was a sync mode that preceded snap
sync and from which the Geth team took many design ideas to develop it. It likewise in-
volved snapshots created by each client which could be served to newcomer clients. The
most significant difference between it and snap sync was that warp sync relied on static
snapshots created periodically by the clients, in contrast to snap sync’s dynamic snap-
shots that are kept updated in real-time. This meant that every 30000 blocks (or about 5
days) — as was the interval chosen at the time — the client would have to regenerate the
snapshots practically from scratch by continuously iterating the state MPT, something
that was even then seen as unsustainable long-term given the Ethereum state’s rate of
growth. Moreover, instead of following the Merkle trie layout, the data format of warp sync
snapshots was comprised of a manifest (metadata about the snapshot) followed by raw
block data about the blocks. The obvious drawback of that approach was that chunks
of such data could not be individually validated, forcing syncing nodes to download the
entire snapshot (of several GB) before they could verify it. In conclusion, while warp sync
was certainly a novelty at the time and faster than Geth’s fast sync, it was admittedly

wholly outclassed by snap sync which it helped inspire.

5.4.5.2 Akula

Following the abandonment of OpenEthereum, there was a large amount of interest
in a high-performance Ethereum implementation written in Rust. Akula was such a

client that grew out of an internal project in Erigon’s team at the end of 2021, where it

5Source: https://blog.ethereum.org/2016/09/18/security-alert-geth-nodes-crash-due-memory-bug

https://blog.ethereum.org/2016/09/18/security-alert-geth-nodes-crash-due-memory-bug

5.4.5 Discontinued clients

was originally conceived as a helper library for Erigon’s database. It had lower storage
requirements and was up to twice as fast as Erigon in full sync mode using the same
staged sync approach, even achieving to bootstrap an archive node in a record time of
under 3 days.

Despite the significant progress done on Akula during 2022 and it beginning to gain
traction in the community, in November of the same year it was unexpectedly announced
that the Erigon team was winding down support for it [43]. The reason cited for this
decision was the impending release of another, at the time unnamed, execution client
written in Rust with many similarities and nearly identical scope as Akula. Predicting
that it would soon be surpassed and that it would prove challenging to secure funds for it
in the future, the Erigon team deemed it unsustainable to keep spending resources and
development effort on Akula.

That unnamed project was revealed in December 2022, when Web3 investment firm
Paradigm announced that it was developing a new execution client written from scratch
in Rust named Reth. According to what little is known about it at the time of writing [44],
Reth will indeed also be using the staged sync architecture pioneered by Erigon and the
MDBX storage engine, with its first release being expected in early 2023.

5.4.5.3 Smaller projects

e Ruby-Ethereum: A Ruby implementation of Ethereum. Little development was done
for it, mainly in 2016, and there has not been an Ethereum client written in Ruby

ever since.

e Aleth: Part of a collection of official C++ Ethereum libraries and tools by the
Ethereum foundation, formerly known as "cpp-ethereum". Its last release was in
December 2019.

e Mana-Ethereum: Built using Elixir, it sought to take advantage of the Erlang Vir-
tual Machine to provide a massively scalable Ethereum client. Despite its GitHub
repository not having been explicitly archived, it has not received any updates since
2019.

e Trinity: A client written in Python by a small development team within the Ethereum
foundation. It never left the alpha release stage and was officially deprecated in mid-
2021, having served mostly as a research and educational tool for the community.
A large number of python-based modules related to Trinity yet continues to be
maintained by the same team, including a Python implementation of the Ethereum
Virtual Machine, called "Py-EVM".

Chapter E

Benchmarks

6.1 Methodology

In the experimental chapter of this thesis we will be running a full node on the
Ethereum mainnet, bootstrapping different execution clients with various configurations
and recording certain metrics throughout their initial sync (and up to few hours following

that). Our goal in performing these benchmarks is twofold:

e A comparative analysis across different clients using the same sync mode in an

attempt to quantifiably evaluate their different approaches to optimizations.

e A comparative analysis between different configurations of the same client so as
to better evaluate the performance impact some parameters can have on a client’s

bootstrapping.

Firstly, let’s justify our selection of snap sync for our benchmarks. When initially
conceptualizing this thesis, there was an intention to perform inter-client bootstrapping
comparisons for multiple sync modes. However, Erigon merely supports its own unique
staged sync mode (as we went over in Section 5.2.5) and the only 3 sync modes that used
to be supported by all Geth, Nethermind and Besu are snap, fast and full. A full client
sync takes weeks (often upwards of a month) to bootstrap, something prohibitive in the
context of a thesis where we want to run several such syncs. On the other hand, fast
sync is clearly and steadily being phased out, with Geth having already dropped it since
v.1.10.14 and Besu actively advising against using it for mainnet sync. Consequently,
with snap sync becoming the de facto "standard" way of bootstrapping an Ethereum
execution client, it made sense to only base our inter-client comparisons there.

A further goal is to additionally perform some limited intra-client comparisons, i.e.
between different configurations of the same client. These focus mainly on the cache
memory used which, as previously emphasized when exploring storage engines and how
the clients use them during syncing, can prevent redundant disk writes and as such
provide significant performance improvements. Furthermore, as fast sync is still usable
in Nethermind, an additional run was executed using it so as to juxtapose it with snap
sync. Lastly, in the case of Besu, there was both a choice between snap and checkpoint
sync modes but also a data storage one (optionally using the experimental Bonsai tries)

to consider. We performed runs using Bonsai tries for both of these sync modes and

6.1.1 Metrics

we intended to juxtapose these results with the respective ones from runs using the
traditional Forest data storage. The latter, however, was not possible due to a related
bug in Besu! that remained unresolved throughout the weeks of our benchmarks and,

as such, we were only able to perform Besu runs using Bonsai tries.

6.1.1 Metrics

The focus of our comparisons will be on initial sync time but also on the system
resources each client consumes over time during that sync (and up to a few hours after
its conclusion, to juxtapose it with normal use). These resources are reflected in the

following 7 metrics:
e CPU usage (percentage)

e RAM usage (GB)

Client data disk size (GB)

Disk I/0: Reads and Writes (MB/second)

Network traffic: Sent and Received (MB/second)

Peer counts are also important when syncing an Ethereum client but, as long as their
number does not drop too low, increasing the number of peers does not directly translate
to increased sync speeds. On the contrary, having too many peers can lead to spending
more system resources (network bandwidth but also disk reads) in order to fulfill their
various requests. As such, we wanted to set the max-peers parameter for our benchmarks
to a sufficiently high value that will help our clients’ bootstrapping but not cripple our
network — a value of 128 was thus chosen for consistency across our clients, with the
exception of Erigon where the default 100 were kept. Peer counts over time were recorded
for each benchmark and will also be plotted along our aforementioned 7 metrics.

It must be emphasized that studying a client’s bootstrapping is certainly not a way
to categorically determine its quality or efficiency. Whatever cost it may incur, either in
terms of time or system resources, is one that will be paid only once in the lifetime of
a node (assuming no hard failures that force a restart from scratch). In spite of that,
studying a client’s initial sync is objectively the ideal way to understand the workload
that it is tasked with performing in order to preserve the Ethereum network. Moreover,
identifying what system resources may be underutilised or cause a bottleneck in this
entire process could lead to ideas for future improvements.

An inspiration for our approach was an insightful similar resource analysis done on

Ethereum consensus clients (on the Beacon chain, before The Merge) in 2021 [45].

'Related GitHub issue: https://github.com/hyperledger/besu/issues/4901; when using the user-suggested
fix we failed to locally build from source. Even if we had succeeded, any benchmark results would not have
been suited for comparisons as we would have been using a non-release version of Besu.

https://github.com/hyperledger/besu/issues/4901

Chapter 6. Benchmarks

6.1.2 Data gathering

In order to gather the data required for our aforementioned metrics, a custom Bash
script was created?, making use of some common Linux command line tools. The majority
of what we required — more specifically, CPU, RAM and disk I/O — was readily available by
pidstat, simply by passing the client’s process ID to it immediately once the client begins
running. Network traffic data was gathered using nethogs, a useful tool that breaks down
sent and received traffic by process which is ideal for our use case — unlike most others
of its kind (like the popular netstat) which group network traffic per protocol or subnet.
Lastly, the growth of the client data size on the disk (including both chain and state
data) was observer by the built-in du tool. It is noted that, since du necessitates iterating
and checking directories for the sizes of each file they contain (as does any other similar
tool), it would occasionally fail to access some inner files in the chain data when these
were created and deleted in quick succession. Errors caused for that reason were safely
ignored as it was assessed that they cannot meaningfully affect our conclusions. Our
script ran the above at an interval of 1 second, logging its output of all these values to
a csv file, which could then be used to produce the graphs we will be presenting in the
following section.

There is a number of other options to consider when seeking to monitor an Ethereum
node, most notably Prometheus-Grafana and Netdata. Both of these tools provide some
quite insightful dashboards for tracking various real-time metrics and can be truly useful
for a node operator. However, the graphs that they display are a product of extensive
custom configuration and while this has already been done to an extent for all of our
execution clients, they do not all provide the metrics that we require nor do they provide
what they do in a consistent manner across all clients. Furthermore, since those graphs
would each be produced by a single client execution, there would be no easy way to
plot metrics across different executions on the same graph against one another for easier
visual comparisons. As such, it was preferable to obtain raw data in a csv format which
could then easily be parsed and used to plot any and all graphs that most closely matched
the focus of our analysis.

Lastly, the output (stdout and stderr) logs of all runs for every client, after appropriately
setting the verbosity parameter, were redirected to log files. These logs were necessary
to provide additional context to our results and help us locate the various events that
occurred throughout the syncing process as well as to keep track of peer counts in order

to later plot them.

6.1.3 Consensus client selection

Post-Merge it is not possible to independently run an execution client on its own. Both
an execution and a consensus client must be run together in order to gain access to the
Ethereum network and the connected consensus client needs to already be synced before

the execution one can begin bootstrapping.

2GitHub repository: https://github.com/Tsiaraskon/Ethereum-Client-Metrics

https://github.com/TsiarasKon/Ethereum-Client-Metrics

6.1.4 Hardware

Our only requirement for our consensus client was to be as lightweight as possible so
as for its resource needs to not weigh down our execution client. As such, Nimbus was
chosen, the syncing of which was completed nearly instantaneously through the use of
checkpoint sync (as described in Section 4.3.2). For the purpose of uniformity, Nimbus
was used in the Erigon run too, despite Erigon’s capability to run with its own embedded
consensus client.

Even though benchmarking our consensus client is not part of our scope, an indica-
tive resource usage of Nimbus over a 12-hour period is presented in Figure 6.1. No
commenting of these results needs to be included here other than to point out that the
values across all metrics are several times lower than those we will soon examine in
Section 6.2, proving that the weight of running an Ethereum node in terms of system
resources undeniably lies on the execution client.

Lastly, had it not been for the need to also run an execution client (and given that
no other application runs on our system along with our experiments) it would have been
simpler to use some system-wide resource monitoring utility like dstat with sufficiently
accurate results. We instead opted for the more precise way of isolating exactly the re-
sources used by the execution client using it process ID as presented above, and these
results are the ones used for our resulting graphs. This way we have successfully elimi-
nated the parameter of the consensus client from our experiments and thus, for example,
a potential spike in its network traffic will correctly not be depicted in our execution client

analysis.

6.1.4 Hardware
All the experiments were run on the same computer with the following:
e CPU: AMD Ryzen 5 2600X Six-Core 3.6 GHz
e RAM: G.Skill RipjawsV 32GB DDR4 (at 2933 MHz)

Motherboard: MSI B450 Tomahawk

e Disk: Samsung 980 Pro NVMe SSD (in PCle 3.0)
e OS: Ubuntu 22.04 LTS
e Internet: Stable 100/100 Mbps FTTH connection

The technical requirements of running an Ethereum execution client are not all of
equal importance. Since the sync process is not multi-threaded, a high-end multi-core
CPU is necessarily underutilized. Most clients do not take full advantage of RAM either
— with the notable exception of Erigon — and while some stable and reliable connection
is required, high network speeds are not obligatory.

The most common bottleneck in Ethereum clients’ syncing is usually the disk used.
It has long been impossible to bootstrap a client in HDDs, while some SSDs may too be
unsuitable due to their subpar speed and lack of some components. An ideal consumer
SSD would at present be an NVMe (NVM Express), with DRAM, TLC (triple-level cell)

RAM usage (GB)

Disk reads (MB/s)

Disk usage (GB}

Received data (MB/s)

Chapter 6. Benchmarks

RAM usage over time CPU usage over time
121 —— Nimbus —— Nimbus
0.4
11
0.3
1.0 4 _
g
L9
o
2
il 5 024
0.9 3
a
¥}
0.8
0.1+
0.7 4
0.04
0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 12
Time (hours) Time (hours)
Disk Reads over time Disk Writes over time
0.14 4 —— Nimbus 0.0200 4 —— Nimbus
0.0175
0.0150
@ 0.0125 4
@
0.08 =
o
£ 0.0100 4
£
H
0.06 I
& 0.0075 4
0.04
0.0050
0.02 4 0.0025 4
0.00 - 0.0000
0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 1 12
Time (hours) Time (hours)
Client data disk size over time Client peers over time
—— Nimbus 160 I
123.50 v
140
123.45 o
120
123.40
o 100 1
@
&
123.35 80
60
123.30
40
123.25 1 —— Nimbus
T T
0 1 2 3 4 5 6 7 8 9 10 1 12 0 1 2 3 4 5 6 7 8 9 10 11 12
Time (hours) Time (hours)
Network - Received data over time Network - Sent data over time
—— Nimbus —— Nimbus
0.14 0.07 4
0.12 4 0.06 1
0.10 4 |
7 005
=<}
=
0.08 2 0041 'L
°
5
0.06 - a
0.03 4 f
0.04 4
0.02 4 i
|
0.02
0.01 -
T T T T T i T T T i T T T T T T T T r r T T i T T T
0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 12
Time (hours) Time (hours)

Figure 6.1. Nimbus indicative benchmark results

6.2 Results

instead of QLC (quad-level cell) and an SLC (single-level cell) cache. Analyzing these
terms would necessitate delving into the implementation details of SSD architecture in
general, so for our experiments suffice it to say that our Samsung 980 Pro fulfills all these
criteria. In regards to its size, as we will see in the results below and thanks to state
pruning it is currently possible to snap sync an execution client using less than 1TB of
disk space. Of course, one should also take into account the consensus client which,
presumably, will too be running on the same drive and may require up to 200GB. Given
the steady expansion of the Ethereum network’s chain size and the common fact that an
SSD performance degrades when it reaches low amounts of free space, the recommended
SSD size at the time of writing in order to run a full node is 2TB.

It is of course feasible to achieve better sync times and overall results using better
hardware than the above. A CPU with stronger performance in single-threaded applica-
tions is generally preferable, as would be a Gigabit or faster internet connection. Lastly,
probably the most meaningful upgrade would be a CPU-motherboard combination that
supports PCle 4.0 (Peripheral Component Interconnect Express), using which with a com-
patible drive could yield up to twice the speeds of PCle 3.0.

6.2 Results

All client runs were executed from mid-January to mid-February 2023 (around block
16.5M). It is noted that since the experiments for each setup were run sequentially on the
same machine up until the initial syncing was completed (and a few hours beyond that),
the later runs are comparatively slightly "disadvantaged" in that they need to catch up
with a later block that those of the earlier runs. While technically this should result in
slightly greater sync times and disk space used — the resource usage metrics would still
remain unaffected — in practice that difference is small enough that it needs not be taken
into account in any of our later conclusions.

Default configurations for mainnet sync were used in all of our clients’ runs. Wherever
adjustments were made for our intra-client comparisons or for any other purpose, the
parameters changed and values used are denoted per client configuration.

All graphs were produced by custom-made Python scripts®, making use of the popular
pandas and matplotlib libraries. Since our input data contained 1 second interval values
over several hours, these were averaged out (e.g. by using the average network traffic of
1 minute’s worth of values as a single data point) so as to produce smoother and more
easily readable plot line graphs.

We will be presenting the results for every metric per client, commenting on them and
the depicted intra-client comparisons. The completion of the various stages in each run is
represented by a marker on the plotted lines of each, as these events were retrieved from
their execution logs. In all executions, the last event marked also signals the completion
of the entire initial sync process. At the end we will evaluate the inter-client comparison

results — produced using the best configuration for every client — and perform an overall

3GitHub repository: https://github.com/TsiarasKon/Ethereum-Client-Metrics

https://github.com/TsiarasKon/Ethereum-Client-Metrics

Chapter 6. Benchmarks

assessment of our results.

6.2.1 Geth

Geth v1.10.26 was used. In all the configurations, aside from the cache adjustment,

max peers were set to 128 and the rest of the parameters were left at defaults.

Table 6.1. Geth benchmark configurations and results

Label | Sync mode Cache (MB) Sync Duration
Geth_1 Snap 4096 (default) 22h 07m
Geth_2 Snap 10683 (max) 19h 44m

When tried to provide more cache to Geth through its parameters, it adjusted the
amount down to ~10.6GB on our computer. In regards to peers numbers, we can see
that there are several fluctuations (though in similar patterns) in both of our Geth runs,
with them only trying to reach their max-peers value only after their sync was completed.

In Geth the different parts that comprise the sync process happen in parallel whenever
possible. In snap sync in particular, as we detailed in Section 5.2.3, a chain of block
headers is initially constructed by requesting them from peers. Following that, the state’s
(snapshot) download begins in parallel with the download of all the blocks’ bodies and
receipts. Lastly, once the state sync is completed, it requires healing. The completion
times of all these events are marked in all graphs of Figure 6.2.

As we can see, the headers’ sync happens very quickly (around the 20m mark in both
configurations) which explains the initial spikes in network traffic. The majority of the
sync’s duration is spent on the parallel download of blocks and state, with the former
occurring first (around the 12h45m mark, again in both configurations). The state’s sync
is where we see the impact of the increased RAM cache, with this phase being completed
at 19h26m in Geth_1 as opposed to 21h46m in Geth_2. As expected, the higher RAM usage
is correlated with a lower amount of disk writes (to LevelDB) throughout the initial sync.
Lastly, the state heal phase is a swift one, beginning immediately after the state has been

synced and lasting about 20m.

6.2.2 Nethermind

Nethermind v1.15.0 was used. In all the configurations, aside from the sync mode

change, max peers were set to 128 and the rest of the parameters were left at defaults.

Table 6.2. Nethermind benchmark configurations and results

Label Sync mode || Sync Duration
Nethermind_1 Snap 11h 59m
Nethermind_2 Fast 1d 08h 07m

Quite differently to Geth, Nethermind’s state sync in snap mode was completed re-

markably fast (at the 2h39m mark). While at that point it could be considered synced

RAM usage (GB)

Disk reads (MB/s)

Disk usage (GB)

Received data (MB/s)

6.2.2 Nethermind

RAM usage over time

CPU usage over time

17.5
- /__
10 15.0 /\
j 125
8 Jib.pﬁ -
WM - |
M f £ 100
o
6 i M..;' =
&
E]
5 75
a.
5]
: Lusde i 5.0
— Geth_1 — Geth_1
—— Geth_2 4 —— Geth_2
2 Y A Headers chain synced 25 A Headers chain synced |
v Blocks downloaded v Blocks downloaded
W State sync complete W State sync completed
0 “ State heal d 0.0 “ State heal competed |
o 2 4 6 8 1‘0 1‘2 1‘4 1‘5 18 20 22 24 26 o 2 4 6 8 10 12 14 16 18 Zb 2‘2 2‘4 2‘5
Time (hours) Time (hours)
Disk Reads over time Disk Writes over time
— Geth_ 1
~ A
—— Geth_ 2 ___{P 50
20+ i
A Headers chain synced v —
v Blocks downloaded / /. \-\\
B State sync completed a0 /_,__‘
“% State heal competed f l // “
15 / %
v
/' 5 s
z v
"
£
10 5
% 20 /
\\ | g T
s — —— Geth_1
/ 10 —— Geth 2 1
/" A Headers chain synced
r_r—frﬂ/__,—vv' L v Blocks downloaded
-~ ! o W State sync completed
[} 0 “ State heal competed
o 2 4 6 8 10 12 14 16 18 20 22 24 26 2 4 6 8 10 12 14 16 18 2‘0 2‘2 2‘4 2‘6
Time (hours) Time (hours)
Client data disk size over time Client peers over time
800
—— Geth 1 N
—— Geth 2 r~ [. 120 P N
700 1+ A Headers chain synced " 1
v Blocks downloaded /_i//.
600 W State sync completed ‘_/‘ 100
“ State heal competed //f
e f : }]
500 / 80
1U
400 g
@
AL
& 60 r,\, WYL
300 Jr |
40 ¥ i
200 / / — Geth_1
—— Geth_2
100 / 20 | A Headers chain synced
v Blocks downloaded
W State sync completed
] o “ State heal competed
T T u T
o 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26
Time (hours) Time (hours)
Network - Received data over time Network - Sent data over time
6 — Geth_1 0.25 —— Geth_1
—— Geth_2 —— Geth_2
A Headers chain synced A Headers chain synced
54 v Blocks downloaded v Blocks downloaded
W State sync leted 0.20 W State sync d
“ State heal competed % State heal competed
4
L | e T S o L e S 1 et | [| '% & B
2 |
3 = | |
]]
B |
g 0104 o
w0
2 \
L 0.05 M, j"l | | -
1 k : CA LY "V'l,ﬁ |
o i i e A 0.00 : i
T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 22 24 26] 2 4 6 8 10 12 14 16 18 20 22 24 26

Time (hours)

Time (hours)

Figure 6.2. Geth benchmark graphs

Chapter 6. Benchmarks

RAM usage over time

CPU usage over time

—— Nethermind_1
18 4 ——— Nethermind_2
40 A Headers chain synced
16 4 B State sync completed
Blocks bodies downloaded
& Receipts bodies downloaded
14 4
30 4
= .
S 12 £
S 5
2 °
] 2
S 10 > 20
= 2
g g
s
—— Nethermind_1
6 —— Nethermind_2 104
A Headers chain synced
W State sync completed
1 Blocks bodies downloaded
Receipts bodies downloaded 04
0 3 6 9 12 15 18 21 24 27 30 33 36 0 3 6 9 12 15 18 21 24 27 30 33 36
Time (hours) Time (hours)
Disk Reads over time Disk Writes over time
—— Nethermind_1 —— Nethermind_1
—— Nethermind_2 —— Nethermind_2
100 A = 300 B
A Headers chain synced A Headers chain synced
W State sync completed W State sync completed
Blocks bodies downloaded 250 Blocks bodies downloaded
80 & Receipts bodies downloaded & Receipts bodies downloaded
@ I]
2 & 200
2 60 2
0 s
B ‘% 150 A
2 H
~ ~
)
& 40 8
/\ 100 1
204 /f\
50 4
01 01
0 3 6 9 12 15 18 21 24 27 30 33 36 0 3 6 9 12 15 18 21 24 27 30 33 36
Time (hours) Time (hours)
Client data disk size over time Client peers over time
600 1 ey v
| I
120 4 | —rl l
500 4
100 4
400 -
8 50]
@
2 300 4 5
5 &
é 60 1
fa}
200 4
—— Nethermind_1 40 —— Nethermind_1
—— Nethermind_2 —— Nethermind_2
100 4 A Headers chain synced A Headers chain synced
m State sync completed 201 m State sync completed
Blocks bodies downloaded Blocks bodies downloaded
0 # Receipts bodies downloaded # Receipts bodies downloaded
T T T T T u T T u T T T T T T T T T T T T u T T T T
0 3 6 9 12 15 18 21 24 27 30 33 36 0 3 6 9 12 15 18 21 24 27 30 33 36
Time (hours) Time (hours)
Network - Received data over time Network - Sent data over time
—— Nethermind_1 —— Nethermind_1
—— Nethermind_2 064 —— Nethermind_2
J A Headers chain synced A Headers chain synced
8 W State sync completed W State sync completed
Blocks bodies downloaded 0.5+ Blocks bodies downloaded
& Receipts bodies downloaded Receipts bodies downloaded
E 6
£ T 0.4
s =
il £
3 1 £
3 © 0349
= 4 =
[@
g w0
4
0.2+
2
0.1+
oA
T T
] 3 6 9 12 15 18 21 24 27 30 33 36] 3 6 9 12 15 18 21 24 27 30 33 36
Time (hours) Time (hours)

Figure 6.3. Nethermind benchmark graphs

6.2.3 Besu

for some purposes (and would be able to respond to queries regarding the network’s cur-
rent state), a full Ethereum node should locally preserve the blocks’ data as well. Also
in contrast to Geth, these begin downloading only following the state sync’s completion.
Once these are too downloaded (at the 8h29m mark for Nethermind_1), Nethermind finally
commences the download of the receipts’ bodies.

As Nethermind_2 will be the only of our execution runs using fast sync, it merits some
discussion here. Following the block headers’ sync, we can notice a drop in the incoming
network traffic on the corresponding plots in Figure 6.3. The reason for that is that,
contrary to snap sync’s snapshots, here separate requests are being constantly sent out
for different state nodes and this procedure introduces a lot of idle time due to network
latency — as a response is required before a new request can be sent. These delays are
additionally evident from the comparatively much slower disk size growth rate until the
state is synced, at which point an increase can be seen across our metrics as the block
download phase begins. It is worth mentioning that, regardless of sync mode, both of our

Nethermind runs quickly try to reach and strive to maintain their max-peers value.

6.2.3 Besu

Besu v22.10.3 was used. In all the configurations, aside from the mentioned adjust-
ments for sync mode, storage format and peers, the rest of the parameters were left at
defaults.

Table 6.3. Besu benchmark configurations and results

Label | Sync mode | Storage format || Sync Duration
Besu_1 Snap Bonsai 1d 04h 51m
Besu_2 | Checkpoint Bonsai 17h 30m

In Besu, as in Geth, the state’s download is performed in parallel with the blocks’
downloading. Contrary to Geth however, here the state download is completed first (at
10h23m and 10h42m for Besu_1 and Besu_2 respectively) with the blocks’ download fin-
ishing much later. Moreover, state heal in both our Besu runs is logged as to have been
completed mere seconds after the blocks’ download, evidently waiting for the latter to
complete before designated the client as synced.

Lastly, using checkpoint sync mode unsurprisingly leads to lower total disk sizes and
better overall performance. A Besu client would likely prefer it over snap sync unless they
have a need for information related to earlier blocks. Moreover, checkpoint sync exhibits
a preference to connect to significantly less peers than it is able to through its parameters
— with the exception of a peculiar spike close to 70, it mostly preserved a connection with

only around 30 peers, despite having a max-peers value of 128.

6.2.4 Erigon

Erigon v2.36.1 was used. A single Erigon configuration was run, with all the default

options but also the inclusion of pruning due to storage constraints. It is noted that

Chapter 6. Benchmarks

RAM usage over time

CPU usage over time

04
18 r A w” Y ————'—_———-"\
o | ~
e]'M'\
16
l ‘_\ 25 -1
T
14 ""‘;—b
20 11
51 g
] o
g W g 15 4—-+
2 10 £
= =
z &
8
10
6 [l —— Besu_1 —— Besu_l
J —— Besu_2 54 —— Besu_2 1
4 W World state downloaded m World state downloaded
v Blocks downloaded v Blocks downloaded
% State heal competed % State heal competed
2 T u 7 o1 T T T
0 3 6 9 12 15 18 21 24 27 30 0 6 12 15 18 21 24 27 30
Time (hours) Time (hours)
Disk Reads over time Disk Writes over time
80 *, /K "
/’—’\\ 150 e
f—
70 /
50 l/ 125
g0 / Z 100
g %« £
0 s
240 g
o / ERRE
% ¥
a 30 z
// *
20
— Besu_l — Besu_1
/ —— Besu_2 25 — Besu_2
10 m World state downloaded m World state downloaded
v Blocks downloaded v Blocks downloaded
0 % State heal competed 0 % State heal competed
0 3 6 9 12 15 18 21 2‘4 2‘7 Bb 0 6 12 15 18 21 2‘4 2‘7 3b
Time (hours) Time (hours)
Client data disk size over time Client peers over time
— Besu_l /‘_—
rf “HP
—— Besu_2
700 = g s I\
m World state downloaded / 100 M' A\ rgpsf
v Blocks downloaded p{‘ fJ’
6001 % State heal d Jf/ M
ﬁ 80 !
500 X,
g -
% 400 /J 2 60
Ed &
k3 300
B 7
y K
200 g
4 T flnird | — ooy
100 / 20 — Besu_2
V W World state downloaded
/ v Blocks downloaded
0 o % State heal competed
T T T
0 3 6 9 12 15 18 21 24 27 30 0 6 12 15 18 21 24 27 30
Time (hours) Time (hours)
Network - Received data over time Network - Sent data over time
— Besu_l — Besu_l
7 | —— Besu_2 035 —— Besu_2
1 m World state downloaded m World state downloaded
E . v Blocks downloaded v Blocks downloaded
6 v % State heal competed 030 +% State heal competed
53 | 0.25
B =
% 4 < 020
3 8
H 3
H =
g & 01s
4
2
||' m 0104 It
. , [P
Al
x* 0.05 Laiae! S A
, * . i
T
3 6 9 12 15 18 21 24 27 30 0 6 12 15 18 21 24 27 30

Time (hours)

Figure 6.4. Besu benchmark graphs

Time (hours)

6.2.5 Inter-client comparisons

without any pruning this same sync mode would have resulted in an archive node.

Table 6.4. Erigon benchmark results

Label | Sync mode || Sync Duration
Erigon Staged 4d 12h 13m

The 10 high level sync stages that we went over in Section 5.2.5 are further split for
a total of 15 in the execution logs*. We will not be detailing them all here as most of
them were completed in a matter of seconds or few minutes. As such and for visibility
purposes, on Figure 6.5 we will only be marking the completion of the stages that lasted
over an hour.

This run is the only one in our client benchmarks that performed (a version of) full
sync and that is immediately evident from the sync time required. A sync time of four
and a half days is much better than other clients could hope to achieve using their full
sync modes, but it is admittedly multiple times worse when compared to their snap sync
times.

This is of course due to the transaction execution stage, which in itself took up the vast
majority of the sync time (3d18h in particular). This stage becomes progressively slower
as the local state grows in the disk but also as the blocks themselves increase in size as
we approach the present day, which was evident by the execution logs that periodically
logged the rates of blocks and transactions processed per second. In the beginning (close
to genesis) Erigon was processing hundreds of blocks/second and tens of thousands
of transactions/second, while by block 10M it had dropped to about 60 blocks/second
and 7000 transactions/second, before converging to about 20 blocks/second and 2500
transactions/second when its sync was completed shortly after block 16M.

An interesting capability that the non-parallel nature of Erigon’s staged sync enables
is the adjustment of its resource consumption based on the stage it is currently executing.
For instance, we can see that the network traffic (most notably, data received) was minimal
throughout the execution stage, which is easily explainable as at this stage Erigon does

not need to request data from its peers.

6.2.5 Inter-client comparisons

For our inter-client comparisons we used the best configuration for each of Geth,
Nethermind and Besu (Geth_2, Nethermind_1 and Besu_2 respectively), based on the above
results.

Erigon is not directly comparable to the other 3 clients since its staged sync re-
executes all transactions from genesis, a process that is circumvented when using snap
sync and which in itself takes significantly longer than the entire snap sync of the other
3 clients. As it would simply skew the axes of our graphs and render visual comparisons

less distinct, it was thus excluded from this comparative analysis.

“These sub-stages are occasionally adjusted by Erigon’s developers; for instance, an earlier version of
Erigon with which we experimented included 17 stages

RAM usage (GB)

MB per second

Disk usage (GB}

Received data (MB/s)

Chapter 6. Benchmarks

RAM usage over time

CPU usage over time

17.5 4
27.54
25.0 4 15.0 4
22.5 1) 12.5 A
H
z
20.0 A o 1001
8
E]
17.5 4 L z
. & 754
15.0 A 5.0 4
— Erigon —— Erigon
1 snapshots 1 snapshots
12.5 1 7 Execution 2.5 7 Execution
Hashstate Hashstate
10.0 4 13 Llogindex 13 Logindex
o 12 24 36 48 60 72 84 96 108 o 12 24 36 48 60 72 84 96 108
Time (hours) Time (hours)
Disk Reads over time Disk Writes over time
—— Erigon 16 4
14 4 1 snapshots
7 Execution |
Hashstate 14
12 4 13 Logindex
12 4
10 1
/lg“\ 2104
=
81 -
2 8
€
=
61 il
o 61
o
4
—— Erigon
24 1 Snapshots
24 7 Execution
Hashstate
0 A o] 13 Logindex
0 12 24 36 48 60 72 84 96 108 0 12 24 36 48 60 72 84 96 108
Time (hours) Time (hours)
Client data disk size over time Client peers over time
—— FErigon 100
8001 7 snapshots _/ﬂ‘r_ v
7 Execution -
Hashstate
13 Logindex 80 4
600 +
60
5
400 &
40
200 4
201 —— Erigon
1 Snapshots
7 Execution
HashState
0 0 13 Logindex
T T T T T T T T T T T u T T T T T T u T
0 12 24 36 48 60 72 84 96 108 0 12 24 36 48 60 72 84 96 108
Time (hours) Time (hours)
Network - Received data over time Network - Sent data over time
—— Erigon 0.357 —— Erigon
1.75 4 1 Snapshots 1 Snapshots
7 Execution 7 Execution
Hashstate 0307 Hashstate
1.50 4 13 logindex 13 Logindex
1 0.25 4
1.25 4
o
<
g
] 0.20 4
1.00 =
o
(=}
[s]
= 0151
0.75 4
0.50 .
0.25 4 0.05 4
T T T T T y T T y T T T T T T y T T T T
] 12 24 36 48 60 72 84 96 108 0 12 24 36 48 60 72 84 96 108

Time (hours)

Time (hours)

Figure 6.5. Erigon benchmark graphs

RAM usage (GB)

Disk reads (MB/s)

Disk usage (GB)

Received data (MB/s)

6.2.5 Inter-client comparisons

RAM usage over time

CPU usage over time

— Geth 2
175 PN P i P /\ —— Nethermind 1
! NN T 40 —— Besu_2 1
} \- % Initial sync completed
15.0 J‘.I‘(-__./ \
125 30 .
L L 2 / __
10.0 &
&
E]
20
=)
7.5 \ 5 ,/
v » o
T
5.0 / I
10
— Geth 2
25 —— Nethermind_1
—— Besu_2
0.0 % Initial sync 0
0 2 4 6 8 0 12 14 16 18 20 22 24 0 2 4 8 10 12 14 16 18 20 22 24
Time (hours) Time (hours)
Disk Reads over time Disk Writes over time
— Geth 2 — Geth 2
/\ —— Nethermind_1 /\ —— Nethermind_1
100 — Besu_2 300 —— Besu_2
/\ \ % Initial sync completed /\ + Initial sync completed
250
80 - A\ \
L ™~ —_
60 =
"
/ £ L e
S 150
= =~
% —
40 a /
100
/ o
20 /
/_/’ K 0 "
L ________—————— ™
_//
[[
0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 8 10 12 14 16 18 20 22 24
Time (hours) Time (hours)
Client data disk size over time Client peers over time
800
— Geth_2 .
—— Nethermind_1 ' 120 fw-"‘]rr(" Pada!
700 1 —— Besu_2 \I l
“ Initial sync completed /_VJ'
600 e 100
500 - . H A/ M
v ~ 80
400 .;r‘// 4 [J / }j
@
,ﬂ"” . ‘\.‘F.l.r’\“r J
300 f
/ P Pl
200 - J
/ o LAttt
100 W 2 | — Geth_2
/"" V —— Nethermind_1
—— Besu_2
] o % Initial sync completed
0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 8 10 12 14 16 18 20 2 24
Time (hours) Time (hours)
Network - Received data over time Network - Sent data over time
| | — Geth_2 \ — Geth_2
—— Nethermind_1 0.6 —— Nethermind_1
—— Besu_2 —— Besu_2
8 + Initial sync completed % Initial sync completed
0.5 i
| | I |
6 " = 0.4
2]
2
: I
ko 0.3 1
44 ¥ £] |
w0
- l W .
2
11— I
A AL] "
¢ | i 0.0
T T T

0 2 4 6 8 10 12 14 16
Time (hours)

18 20 22 24

Time (hours)

Figure 6.6. Inter-client comparative benchmark results

Chapter 6. Benchmarks

At first glance, we notice that Geth struggles to reach the disk read and write speeds
exhibited by the other 2 clients. While this could be seen as proof of RocksDB superiority
over LevelDB, the various other optimizations that Nethermind and Besu have imple-
mented as well as their architectural design differences ought to be taken into account.

We treated Nethermind’s initial sync completion as coinciding with the completion of
its last marked event (receipt bodies downloaded) although, as mentioned when describing
its results above, depending on the use case one could consider Nethermind to have
already synced quite earlier than that. Even so, Nethermind_1 outperformed both Geth
with max cache options and Besu using checkpoint sync and Bonsai tries. It appears
that being able to perform large uninterrupted sequential writes during state download in
traditionally disk-bound applications (as Ethereum execution clients are) unsurprisingly
provides an important edge when it comes to sync times. Nonetheless, on a weaker
computer with a less performing SSD or on a worse network connection it is not unlikely

that Nethermind’s performance would most closely resemble that of Geth and Besu.

6.3 Results assessment

There are a few overall conclusions to which we can arrive from our benchmark results.
First of all, the comparison between snap and fast sync in Nethermind’s configurations
(Figure 6.3) categorically shows how fast sync is outclassed both it terms of speed but also
on how it can make use of the available system resources. It thus comes as no surprise
that snap sync has currently become the default mode of syncing among execution clients,
with fast sync being phased out.

Peer number fluctuations are to be expected in any P2P network. While a low number
of them would surely negatively impact total sync time, any spikes that we observed in
our experiments did nonetheless not meaningfully affect performance across our metrics.
We also make note of the fact that during its initial sync a client will often not seek to
reach its maximum allowed number of peers with which it was parameterized but it may
prefer to instead preserve a lower peer count, a behaviour which was in fact exhibited in
several of our client configurations.

Furthermore, granting more RAM to a client for caching purposes expectedly con-
tributed substantially to decrease sync times and decrease the amount of writes (and, to
a lesser extent, reads) to the disk, as is evident in Geth’s intra-client comparison results
(Figure 6.2). On the other hand, across our metrics we can see that our CPU was not
maximally utilized, largely due to the fact that the sync process is inherently not suited
for parallelization. While sync phases can be executed in parallel as is done in Geth
and Besu, a single phase cannot meaningfully split its workload across different threads
— for instance, blocks’ download cannot be parallelized because each block needs to be
individually validated before processing its child block.

Finally, it bears repeating that the above results are indicative of execution client runs
on a particular computer but it is certainly plausible that different configurations either
in terms of hardware or parameters when running each client could yield more favourable

results for some of them.

Chapter

Conclusion

In this thesis, we explored the current state of Ethereum execution clients, the data
structures that they use but also the various innovative modes they have employed to
more efficiently synchronize the network. In our penultimate chapter we experimentally
compared the most widely used of them in several configurations, resulting in a compre-
hensive comparative analysis of the different execution client implementations in terms
of resources used and sync times required.

Other metrics that were mostly left out of our analysis but could provide a further
insight depending on one’s use case would be block and transaction processing speeds
(throughput). These could, for instance, help deduce whether a client implementation
takes an approximately constant amount of time to process each block or if that time
varies depending on the blocks’ contents (such as the gas used or the types of its included
transactions) and could be grounds for further benchmarks.

It should be emphasized that preserving a healthy Ethereum client is not only impor-
tant for the security of the network, but ever since staking was introduced it also has
financial benefits to its operator. Benchmarks such as ours can be a first step towards
initially choosing a client, but a continued resource monitoring during a client’s normal
operation (even after its bootstrapping) will always be of paramount importance.

Before drawing to a close, we can briefly go over what is already planned for Ethereum’s
future and how it relates to our study as well as explore some related work on proposed

improvements and alternative client implementations.

7.1 The Future of Ethereum

The Ethereum ecosystem is constantly evolving at a rapid rate. The Merge was a long-
awaited upgrade which brought with it several architectural changes, including to the
subject of our thesis. Following the Merge, a number of further major network upgrades
have already been planned — and have even been given their own rhyming names. In
brief:

e The Surge: Introduction of shard chains to the network (63 in number, for a 64 total
along with the main chain) which are intended to massively increase the scalability
of the network. These will pave the way for significantly lower gas fees and enable

the network to handle thousands of transactions per second. Most relevant to our

Chapter 7. Conclusion

focus here, shard chains will mean that a node will no longer need to locally store
the entire blockchain’s data, drastically lowering their workload and reducing their

hardware requirements.

e The Verge: Incorporation of Verkle trees (as briefly described in Section 3.1.7) to the

network, with the goal of replacing MPTs.

e The Purge: Elimination of certain historical data and technical debt. This includes
the introduction of native history expiry and state expiry concepts through which
a client will be able to safely ignore data past a certain date, further decreasing its
load.

e The Splurge: Various miscellaneous changes, including EVM improvements and the

implementation of proposer-builder separation (PBS) [46].

These are currently intended to happen in the above order, though exact dates have
not been given at the time of writing. Regardless, it is undeniable that Ethereum is
constantly striving to improve itself and, in all likelihood, before these upgrades come to

pass some yet unpublished piece of research will enrich them in some advantageous way.

7.2 Related work on potential improvements

Undoubtedly, apart from what is already planned for upgrading the Ethereum net-
work, related research for improvements in all its aspects continues without stopping. In
terms of execution client sync implementations, this research often focuses on alternative
approaches to their bootstrapping. Admittedly, many of them were conceived before the
release of snap sync which has since rendered them outdated (e.g. a turbo sync mode,
improving on Parity’s warp sync [47]) .

An intriguing approach to efficient client bootstrapping was Ethanos [48]. Its re-
searchers observed that only a fraction of the total Ethereum accounts are "active" (about
5% of accounts sent or received a transaction in the period of a month). Using that ob-
servation, they devised a syncing algorithm based around periodic epochs', at the start
of which the client would sweep inactive accounts, recreating the state trie only con-
taining the active ones. This approach necessarily adds some complexity, for instance
when an account becomes active again and its state needs to be manually retrieved, but
nonetheless results in MPTs of significantly smaller sizes. While the sync time gains that
it originally exhibited when compared to Geth’s fast sync are now too eclipsed by those of
snap sync, it remains a practical concept that merits further future consideration.

A separate but necessary approach to bootstrapping improvements would be on the
storage engines used. No matter the techniques employed by the clients to sync the
network, a bottleneck will sooner or later be found on the underlying storage unless that
is likewise optimized. A plethora of LSM-based key-value stores exist that improve upon
the popular LevelDB and RocksDB ones [49] [50], but the most compelling one is probably
mLSM trees [51].

lunrelated to PoS epochs

7.2 Related work on potential improvements

The cost of disk reads and writes in client implementations using multi-level LSM-
based storage engines can be traced back to the additional read and writes that these
engines need to perform internally on each such request (see Section 3.3). Merkelized Log
Structured Merge trees (mLSM trees) focus specifically on making authenticated storage
faster on Ethereum, by redesigning the data structure that a client’s storage engine uses
so as to avoid this amplification of reads and writes, through the incorporation of Merkle
proof caching. While caching does seems like an obvious solution to many of our issues —
and it indeed would be, should a client’s workload solely involve reads — its problem lies in
that a single write to any MPT leaf updates several intermediary nodes, including the root,
meaning that cached Merkle proofs would be invalidated on every write. The solution that
mLSM propose is replacing LevelDB’s immutable SSTables on disk with mutable MPTs
(keeping the multiple level implementation), while decoupling lookup and authentication.
Despite only being tested on a small subset of Ethereum’s total blocks as of their paper’s
publication, mLSM trees recorded a noteworthy decrease in redundant disk reads and
writes compared to LevelDB on Geth and are certainly a promising development.

Lastly, in the blockchain landscape where thousands of developers are unceasingly
working to deliver high quality services, some significant innovation may naturally first
arise in some other blockchain. Ethereum can take inspiration from similar account-
based cryptocurrencies and adapt any applicable and useful features of theirs into its
own architecture. Some interesting relevant work — not necessarily suitable for direct
application in Ethereum, but still useful for providing insights — include Cardano’s Mithril
[62] and Algorand’s Vault [53], both of which are proposals for their respective blockchains
that enable scalability through faster node bootstrapping.

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

(12]

(13]

(14]

V. Buterin, “Ethereum white paper: A next generation smart contract & decentralized

application platform,” 2013.
G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,” 2014.

“The history of Ethereum.” https://ethereum.org/en/history/. Date accessed: 16-09-
2022.

V. Buterin, E. Conner, et al.,, “EIP-1559: Fee market change for eth 1.0 chain.”
https://eips.ethereum.org/EIPS/eip-2718. Date accessed: 16-09-2022.

“The idea of smart contracts.” https://www.fon.hum.uva.nl/rob/Courses/
InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/
idea.html, 1997. Date accessed: 06-07-2022.

ISDA, “Smart contracts and distributed ledger - a legal perspective,” aug 2017.

L. Breidenbach, C. Christian, et al., “Chainlink 2.0: Next steps in the evolution of

decentralized oracle networks,” apr 2021.

M. Zoltu, “EIP-2718: Typed transaction envelope.” https://eips.ethereum.org/EIPS/
eip-1559. Date accessed: 16-09-2022.

V. Buterin and M. Swende, “EIP-2930: Optional access lists.” https://eips.ethereum.
org/EIPS/eip-2930. Date accessed: 28-09-2022.

C. Dwork and M. Naor, “Pricing via processing or combatting junk mail,” in Advances
in Cryptology — CRYPTO’ 92 (E. F. Brickell, ed.), (Berlin, Heidelberg), pp. 139-147,
Springer Berlin Heidelberg, 1993.

M. Jakobsson and A. Juels, Proofs of Work and Bread Pudding Protocols(Extended
Abstract), pp. 258-272. Boston, MA: Springer US, 1999.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” May 2009.
S. N. Sunny King, “PPCoin: Peer-to-peer crypto-currency with proof-of-stake,” 2012.

G. A. F. Rebello, G. F. Camilo, L. C. B. Guimaraes, L. A. C. de Souza, and O. C. M. B.
Duarte, “On the security and performance of proof-based consensus protocols,” in
2020 4th Conference on Cloud and Internet of Things (CIoT), pp. 67-74, 2020.

https://ethereum.org/en/history/
https://eips.ethereum.org/EIPS/eip-2718
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html
https://eips.ethereum.org/EIPS/eip-1559
https://eips.ethereum.org/EIPS/eip-1559
https://eips.ethereum.org/EIPS/eip-2930
https://eips.ethereum.org/EIPS/eip-2930

BIBLIOGRAPHY

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

V. Buterin and V. Griffith, “Casper the friendly finality gadget,” CoRR,
vol. abs/1710.09437, 2017.

V. Buterin, D. Hernandez, T. Kamphefner, K. Pham, Z. Qiao, D. Ryan,
J. Sin, Y. Wang, and Y. X. Zhang, “Combining GHOST and Casper,” CoRR,
vol. abs/2003.03052, 2020.

“How the merge impacts eth supply.” https://ethereum.org/en/upgrades/merge/
issuance/. Date accessed: 16-09-2022.

D. R. Morrison, “PATRICIA - practical algorithm to retrieve information coded in
alphanumeric,” Journal of the ACM, vol. 15, pp. 514—-534, oct 1968.

R. C. Merkle, “A digital signature based on a conventional encryption function,”
in Advances in Cryptology — CRYPTO ’87 (C. Pomerance, ed.), (Berlin, Heidelberg),
pp. 369-378, Springer Berlin Heidelberg, 1988.

A. Miller, M. Hicks, J. Katz, and E. Shi, “Authenticated data structures, generically,”
in Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’14, (New York, NY, USA), p. 411-423, Association for
Computing Machinery, 2014.

“Merkling in Ethereum.” https://blog.ethereum.org/2015/11/15/merkling-in-
ethereum/, nov 2015. Date accessed: 02-08-2022.

J. Kuszmaul, “Verkle trees,”

D. Catalano and D. Fiore, “Vector commitments and their applications,” in Public-Key
Cryptography - PKC 2013 (K. Kurosawa and G. Hanaoka, eds.), (Berlin, Heidelberg),
pp. 55-72, Springer Berlin Heidelberg, 2013.

H. Chen and D. Liang, “Adaptive spatio-temporal query strategies in blockchain,”
ISPRS International Journal of Geo-Information, vol. 11, p. 409, 07 2022.

V. Buterin, “Verkle draft EIP.” https://notes.ethereum.org/@vbuterin/verkle_tree_eip.
Date accessed: 22-08-2022.

B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Commun.
ACM, vol. 13, p. 422-426, jul 1970.

K. Aggarwal and H. K. Verma, “Hash_RC6 — variable length hash algorithm using
RC6,” in 2015 International Conference on Advances in Computer Engineering and
Applications, pp. 450-456, 2015.

G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Keccak,” in Advances in
Cryptology - EUROCRYPT 2013 (T. Johansson and P. Q. Nguyen, eds.), (Berlin, Hei-
delberg), pp. 313-314, Springer Berlin Heidelberg, 2013.

https://ethereum.org/en/upgrades/merge/issuance/
https://ethereum.org/en/upgrades/merge/issuance/
https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/
https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/
https://notes.ethereum.org/@vbuterin/verkle_tree_eip

BIBLIOGRAPHY

[29]

[30]

(31]

[32]

[33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

I. Dinur, O. Dunkelman, and A. Shamir, “New attacks on Keccak-224 and Keccak-
256,” in Fast Software Encryption (A. Canteaut, ed.), (Berlin, Heidelberg), pp. 442-
461, Springer Berlin Heidelberg, 2012.

G. H. A. Jesse Hines, Nicholas Cunningham, “Performance comparison of operations

in the file system and in embedded key-value databases,”

A. Asgaonkar, “Weak subjectivity in Eth2.0.” https://notes.ethereum.org/@adiasg/
weak-subjectvity-eth2. Date accessed: 26-12-2022.

E. Deirmentzoglou, G. Papakyriakopoulos, and C. Patsakis, “A survey on long-range
attacks for proof of stake protocols,” IEEE Access, vol. 7, pp. 28712-28725, 2019.

S. Azouvi and M. Vukoli¢, “Pikachu: Securing PoS blockchains from long-range
attacks by checkpointing into Bitcoin pow using Taproot,” in Proceedings of the 2022
ACM Workshop on Developments in Consensus, ConsensusDay 22, (New York, NY,
USA), p. 53-65, Association for Computing Machinery, 2022.

E. N. Tas, D. Tse, F. Yu, and S. Kannan, “Babylon: Reusing Bitcoin mining to
enhance Proof-of-Stake security,” CoRR, vol. abs/2201.07946, 2022.

V. Buterin, “Proof of Stake: How i learned to love weak subjectivity.” https://
blog.ethereum.org/2014/11/25/proof-stake-learned- love-weak-subjectivity. Date ac-
cessed: 26-12-2022.

P. Szilagyi, “Ask about Geth: Snapshot acceleration.” https://blog.ethereum.org/
2020/07/17/ask-about-geth-snapshot-acceleration. Date accessed: 27-01-2023.

P. Szilagyi, “Geth v1.10.0.” https://blog.ethereum.org/2021/03/03/geth-v1-10-0#snap-
sync. Date accessed: 27-01-2023.

A. Sharp, “Erigon stage sync and control flows.” https://erigon.substack.com/p/
erigon-stage-sync-and-control-flows. Date accessed: 30-01-2023.

V. Buterin, “Light clients and Proof of Stake.” https://blog.ethereum.org/2015/01/10/
light-clients-proof-stake. Date accessed: 28-12-2022.

I. Darwish, “Nethermind’s full pruning is here — cutting the gordian knot.”
https://medium.com/nethermind-eth/netherminds- full-pruning-is-here-cutting-the-
gordian-knot-5e3450f02de9. Date accessed: 27-01-2023.

P. Technologies, “Transitioning Parity Ethereum to OpenEthereum DAO.” https://
www.parity.io/blog/parity-ethereum-openethereum-dao/. Date accessed: 04-02-2023.

Gnosis, “Gnosis client development team joins Erigon (formerly Turbo-Geth) to
release next-gen Ethereum client.” https://medium.com/openethereum/gnosis-joins-
erigon-formerly-turbo-geth-to-release-next-gen-ethereum-client-c6708dde6dd. Date
accessed: 04-02-2023.

https://notes.ethereum.org/@adiasg/weak-subjectvity-eth2
https://notes.ethereum.org/@adiasg/weak-subjectvity-eth2
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity
https://blog.ethereum.org/2020/07/17/ask-about-geth-snapshot-acceleration
https://blog.ethereum.org/2020/07/17/ask-about-geth-snapshot-acceleration
https://blog.ethereum.org/2021/03/03/geth-v1-10-0#snap-sync
https://blog.ethereum.org/2021/03/03/geth-v1-10-0#snap-sync
https://erigon.substack.com/p/erigon-stage-sync-and-control-flows
https://erigon.substack.com/p/erigon-stage-sync-and-control-flows
https://blog.ethereum.org/2015/01/10/light-clients-proof-stake
https://blog.ethereum.org/2015/01/10/light-clients-proof-stake
https://medium.com/nethermind-eth/netherminds-full-pruning-is-here-cutting-the-gordian-knot-5e3450f02de9
https://medium.com/nethermind-eth/netherminds-full-pruning-is-here-cutting-the-gordian-knot-5e3450f02de9
https://www.parity.io/blog/parity-ethereum-openethereum-dao/
https://www.parity.io/blog/parity-ethereum-openethereum-dao/
https://medium.com/openethereum/gnosis-joins-erigon-formerly-turbo-geth-to-release-next-gen-ethereum-client-c6708dd06dd
https://medium.com/openethereum/gnosis-joins-erigon-formerly-turbo-geth-to-release-next-gen-ethereum-client-c6708dd06dd

BIBLIOGRAPHY

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

[52]

(53]

A. Sharp, “Winding down support for Akula project.” https://erigon.substack.com/p/
winding-down-support-for-akula-project. Date accessed: 04-02-2023.

G. Konstantopoulos, “Introducing Reth.” https://www.paradigm.xyz/2022/12/reth.
Date accessed: 13-01-2023.

M. Cortes-Goicoechea, L. Franceschini, and L. Bautista-Gomez, “Resource analysis
of Ethereum 2.0 clients,” in 2021 3rd Conference on Blockchain Research Applications
Jor Innovative Networks and Services (BRAINS), pp. 1-8, 2021.

V. Buterin, “State of research: increasing censorship resistance of transactions un-
der proposer/builder separation (PBS).” https://notes.ethereum.org/@vbuterin/pbs_

censorship_resistance. Date accessed: 02-04-2023.

X. Qian, “Improved authenticated data structures for blockchain synchronization,”

Master’s thesis, University of Illinois at Urbana-Champaign, 2018.

J.-Y. Kim, J. Lee, Y. Koo, S. Park, and S.-M. Moon, “Ethanos: Efficient bootstrapping
for full nodes on account-based blockchain,” in Proceedings of the Sixteenth European
Conference on Computer Systems, EuroSys 21, (New York, NY, USA), p. 99-113,
Association for Computing Machinery, 2021.

P. Ktistakis, “Scaling the RocksDB key-value store via data distribution on multiple
nodes,” Master’s thesis, National Technical University of Athens, School of Electrical

and Computer Engineering, 2018.

H. Huang and S. Ghandeharizadeh, “Nova-LSM: A distributed, component-based
LSM-tree key-value store,” in Proceedings of the 2021 International Conference on
Management of Data, SIGMOD 21, (New York, NY, USA), p. 749-763, Association for
Computing Machinery, 2021.

P. Raju, S. Ponnapalli, E. Kaminsky, G. Oved, Z. Keener, V. Chidambaram, and
I. Abraham, “mLSM: Making authenticated storage faster in Ethereum,” HotStor-
age’l8, (USA), p. 10, USENIX Association, 2018.

P. Chaidos and A. Kiayias, “Mithril: Stake-based threshold multisignatures,”

D. Leung, A. Suhl, Y. Gilad, and N. Zeldovich, “Vault: Fast bootstrapping for the Al-
gorand cryptocurrency,” Proceedings 2019 Network and Distributed System Security
Symposium, 2019.

https://erigon.substack.com/p/winding-down-support-for-akula-project
https://erigon.substack.com/p/winding-down-support-for-akula-project
https://www.paradigm.xyz/2022/12/reth
https://notes.ethereum.org/@vbuterin/pbs_censorship_resistance
https://notes.ethereum.org/@vbuterin/pbs_censorship_resistance

List of Abbreviations

ACID Atomicity, Consistency, Isolation, Durability
ADS Authenticated Data Structure

API Application Programming Interface
BTC Bitcoin

CHF Cryptographic Hash Function

CLI Command-Line Interface

DAO Decentralized Autonomous Organization
DApp Decentralized Application

DeFi Decentralized Finance

ECDSA Elliptic Curve Digital Signature Algorithm
EOA Externally Owned Account

EIP Ethereum Improvement Proposal
ERC Ethereum Request for Comments
ETH Ether

EVM Ethereum Virtual Machine

JSON JavaScript Object Notation

JWT JSON Web Token

LSM Log-Structured Merge

LIFO Last-In First-Out

MEV Maximal Extractable Value

MPT Merkle Patricia Trie

NFT Non-Fungible Token

P2P Peer-to-Peer

PoA Proof-of-Authority

PoS Proof-of-Stake

PoW Proof-of-Work

RPC Remote Procedure Call

RLP Recursive Length Prefix

SHA Secure Hash Algorithm

SSZ Simple Serialize

ULC Ultra Light Client

UTXO Unspent Transaction Output

	Abstract
	Περίληψη
	Σύνoψη
	Acknowledgements
	Introduction
	The Ethereum Blockchain
	Historical Background
	Upgrades and Major Milestones

	Terminology
	Coins and Tokens
	Accounts
	Externally owned accounts
	Contract accounts

	Smart Contracts
	Ethereum Virtual Machine
	Transactions
	Types of Transactions
	Gas and Fees

	Blocks
	Networks
	Consensus Algorithms
	Proof-of-Work
	Proof-of-Stake
	Proof-of-Authority

	The Merge
	Consensus algorithm change
	Consequences on Ether's economics

	Storage Architecture
	Data Structures
	Radix Tries
	Merkle trees
	Ethereum's Modified Merkle Patricia Trie
	Use in Ethereum
	World State Trie
	Account Storage Trie
	Transactions Trie
	Receipts Trie

	Advantages of MPT use
	Bonsai Tries
	Verkle Trees
	Bloom filters

	Helper Functions
	Hash Functions
	Encoding Functions
	Recursive Length Prefix (RLP)
	Simple Serialize (SSZ)

	Storage Engines

	Nodes and Clients
	Node Types
	Full Node
	Bootstrap Node

	Archive Node
	Light Node

	Client Types
	Consensus clients
	Implementations
	Checkpoint Sync
	Weak Subjectivity

	Execution Clients
	Initial Synchronization
	Synchronization Modes
	Full Sync
	Fast Sync
	Snap Sync
	Checkpoint Sync
	Staged Sync
	Light Sync

	State Pruning
	Implementations
	Geth
	Nethermind
	Besu
	Erigon
	Discontinued clients
	Parity - OpenEthereum
	Akula
	Smaller projects

	Benchmarks
	Methodology
	Metrics
	Data gathering
	Consensus client selection
	Hardware

	Results
	Geth
	Nethermind
	Besu
	Erigon
	Inter-client comparisons

	Results assessment

	Conclusion
	The Future of Ethereum
	Related work on potential improvements

	Bibliography
	List of Abbreviations

