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Abstract

The Ethereum blockchain, beyond its status as the second largest cryptocurrency by

market cap, is a decentralized platform which is currently employed for a variety of use

cases. Its programmable nature has allowed its users to develop a plethora of applications

on it using smart contracts and it has seen an explosive growth and adoption in the few

years since its creation. However, in order to keep such a decentralized network online,

numerous nodes around the globe are required to run some specific client software. This

client software in Ethereum is responsible both for deciding upon the current canonical

chain ("consensus client") but also for downloading and storing the chain’s data, locally

preserving and maintaining an up-to-date copy of the network’s state ("execution client").

The latter in particular requires a lengthy and resource-intensive process to bootstrap,

one that has been the subject of much debate but also the catalyst for several innovations.

The purpose of this thesis is to thoroughly understand the workloads an Ethereum

execution client is required to handle, and the different ways in which the different client

implementations have opted to approach it. We will initially research Ethereum’s archi-

tecture, the data structures used to persist chain and state data on disk, and we will

also be exploring the different sync modes each client implementation utilizes to initially

synchronize the network. Finally, we will be performing a comparative resource analysis

on them, focusing on the system resources and time needed for their bootstrapping and

we will be evaluating these results.

Keywords

Ethereum, Blockchain, Node, Client, Benchmark, Resource Analysis, Bootstrapping,

Synchronization, Execution, Storage
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Πεϱίληψη

Το Ethereum blockchain, πέρα από τη ϑέση του ως το δεύτερο µεγαλύτερο κρυπ-

τονόµισµα ϐάσει κεφαλαιοποίησης, είναι µια αποκεντρωµένη πλατφόρµα η οποία σήµερα αξ-

ιοποιείται για ένα µεγάλο πλήθος χρήσεων. Στα λίγα χρόνια ύπαρξής του έχει δει εκρηκτική

ανάπτυξη, µε την προγραµµατιζόµενη ϕύση του να έχει δώσει τη δυνατότητα στους χρήστες

του να αναπτύξουν πληθώρα εφαρµογών πάνω σε αυτό µέσω έξυπνων συµβολαίων (smart

contracts). Ωστόσο, η εύρυθµη λειτουργία ενός τέτοιου δικτύου απαιτεί πολυάριθµους κόµ-

ϐους ανά τον κόσµο να εκτελούν κάποιο προκαθορισµένο λογισµικό-πελάτη (client). Το

λογισµικό αυτό είναι υπεύθυνο τόσο για να αποφασίζει για την ορθότητα της τρέχουσας

αλυσίδας ("consensus client") όσο και για το κατέβασµα και αποθήκευση των δεδοµένων της

αλυσίδας, διατηρώντας ένα ενηµερωµένο τοπικό αντίγραφο της τρέχουσας κατάστασης του

δικτύου ("execution client"). Η εκκίνηση του λογισµικού εκτέλεσης συγκεκριµένα χρήζει

µιας χρονοβόρας διαδικασίας µε µεγάλες απαιτήσεις σε πόρους συστήµατος, η οποία έχει

αποτελέσει συχνό ϑέµα διαλόγου αλλά έχει επίσης δράσει καταλυτικά για αρκετές σχετικές

καινοτοµίες.

Ο σκοπός αυτής της διπλωµατικής εργασίας είναι η διεξοδική κατανόηση του ϕόρτου

εργασίας που το λογισµικό εκτέλεσης στο Ethereum καλείται να διαχειριστεί και τους δι-

αφορετικούς τρόπους µε τους οποίους οι διαφορετικές υλοποιήσεις αυτού έχουν επιλέξει να

τον προσεγγίσουν. Αρχικά ϑα διερευνήσουµε την αρχιτεκτονική του Ethereum, τις δοµές

δεδοµένων που χρησιµοποιούνται για να αποθηκεύσουν τα δεδοµένα αλυσίδας και κατάσ-

τασης στον δίσκο και επίσης ϑα εξερευνήσουµε τις διαφορετικές µεθόδους τις οποίες κάθε

υλοποίηση αξιοποιεί για να συγχρονιστεί αρχικά µε το δίκτυο. Τέλος, ϑα πραγµατοποιή-

σουµε µια συγκριτική µελέτη µεταξύ αυτών, εστιάζοντας στους πόρους συστήµατος και συνο-

λικούς χρόνους εκτέλεσης που έκαστη υλοποίηση χρειάζεται για την εκκίνησή της και ϑα

αποτιµήσουµε τα αποτελέσµατα αυτής της µελέτης.

Λέξεις Κλειδιά

Ethereum, Blockchain, Κόµβος, Πελάτης, Συγκριτική Μελέτη, Πόροι, Εκκίνηση, Συγ-

χρονισµός, Εκτέλεση, Αποθήκευση
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Σύνoψη

Το Ethereum blockchain αποτελεί µια πλατφόρµα ανάπτυξης αποκεντρωµένων εφαρ-

µογών για ένα µεγάλο εύρος τοµέων µέσω της χρήσης έξυπνων συµβολαίων (smart contracts).

Το νόµισµά του, Ether (ETH), επιτρέπει τη µεταφορά αξίας εντός ενός κρυπτογραφικά ασ-

ϕαλούς δικτύου και αποτιµάται σε εκατοντάδες εκατοµµύρια δολάρια, όντας το δεύτερο

µεγαλύτερο κρυπτονόµισµα ανά κεφαλαιοποίηση.

΄Ενα τέτοιου είδους οµότιµο (peer-to-peer) δίκτυο απαιτεί έναν ικανό αριθµό από χρήστες

ανά τον κόσµο οι οποίοι να λειτουργούν κόµβους του που ϑα τρέχουν κάποιο συγκεκριµένο

λογισµικό-πελάτη (client). Μετά τη µεγάλη αναβάθµιση που ολοκληρώθηκε το Σεπτέµβριο

του 2022, γνωστή ως "The Merge", το λογισµικό αυτό για το Ethereum χωρίστηκε σε 2

κοµµάτια. Το προϋπάρχον, γνωστό ως "execution client", παρέµεινε υπεύθυνο τόσο για το

κατέβασµα και την αποθήκευση των δεδοµένων της αλυσίδας όσο και για τη διατήρηση ενός

ενηµερωµένου τοπικού αντιγράφου της τρέχουσας κατάστασης του δικτύου. Το καινούργιο,

που ονοµάστηκε "consensus client", είναι πλέον υπεύθυνο για να αποφασίζει την ορθότητα

της τρέχουσας αλυσίδας µε ϐάση το νέο αλγόριθµο συναίνεσης που ακολουθείται πλέον στο

Ethereum, το Proof-of-Stake.

΄Εχοντας ορίσει στο Κεφάλαιο 2 κάποιες απαιτούµενες ορολογίες, στο Κεφάλαιο 3 αρχικά

εστιάζουµε στις δοµές δεδοµένων που χρησιµοποιούνται στην αρχιτεκτονική του Ethereum

όπου κυρίαρχη ϑέση έχουν τροποποιηµένες δενδρικές δοµές MPT (Merkle Patricia Tries).

Αυτή η δοµή αποτελεί µια ϐελτιστοποιηµένη εκδοχή του κλασικού trie, µε τα δεδοµένα

να ϐρίσκονται αποθηκευµένα στα ϕύλλα αυτού ενώ οι ενδιάµεσοι κόµβοι περιέχουν κρυπ-

τογραφικές αποδείξεις Merkle έκαστος για το υποδένδρο του. Τα MPT ϐρίσκουν εφαρµογή

στο Ethereum τόσο συνολικά για την αποθήκευση της τρέχουσας κατάστασης του δικτύου,

όσο και επιµέρους για τις δοµές αποθήκευσης των πληροφοριών κάθε λογαριασµού αλλά

και για την οργάνωση των συναλλαγών εντός του κάθε µπλοκ και των αποδείξεων αυτών.

Αξιοποιώντας ιδιότητες των συναρτήσεων κατακερµατισµού (και ειδικότερα στην προκειµένη

της Keccak-256) τα MPT παρέχουν ένα πλήθος από πλεονεκτήµατα τα οποία µεταξύ άλλων

περιλαµβάνουν τη δυνατότητα επιβεβαίωσης της ορθότητας επιµέρους υποδένδρων αλλά και

την εγγύηση πως 2 ίδιες ϱίζες δένδρων συνεπάγονται απαραίτητα ίδια δένδρα στην ολότητά

τους, λόγω του ντετερµινιστικού τρόπου κατασκευής τους.

Μνεία γίνεται ϐέβαια και στις ϐάσεις δεδοµένων αποθήκευσης των προαναφερθέντων

δοµών στο δίσκο που χρησιµοποιούνται από τους διάφορους clients, µε προεξέχουσες αυτές

που ϐασίζονται στη χρήση πολυεπίπεδων LSM δέντρων, τις LevelDB και RocksDB. Αυτές

κάνουν κατάλληλη αξιοποίηση της µνήµης RAM κάθε ϕορά που χρειάζεται κάποια εγγραφή

προκειµένου οι εγγραφές στο δίσκο να γίνονται περιοδικά σε πακέτα, επιτυγχάνοντας ιδι-

αίτερα υψηλές ταχύτητες εγγραφών αν και παρουσιάζουν χαµηλότερες αποδόσεις όσον αφορά
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Σύνοψη

τις τυχαίες αναγνώσεις δεδοµένων.

Στη συνέχεια, στο Κεφάλαιο 4, αναλύουµε τα διαφορετικά είδη κόµβων που υπάρχουν

στο Ethereum, τους full, archive και light κόµβους. Οι full είναι το πλέον συνηθέστερο είδος

κόµβων που, αρµοδιότητα του οποίου είναι να κατεβάσει το σύνολο των µπλοκ της αλυσίδας,

να επιβεβαιώσει την ορθότητά τους και να κατασκευάσει ένα τοπικό αντίγραφο της τρέχουσας

κατάστασης του δικτύου. Αφού τα ολοκληρώσει αυτά, είναι σε ϑέση να υποβάλλει συναλ-

λαγές στο δίκτυο αλλά και να δεχτεί άλλες από τους οµότιµούς του, οι οποίες συναλλαγές

ϑα προστεθούν σε κάποιο επόµενο µπλοκ από τους validators. Οι validators δεν αποτελούν

ξεχωριστό είδος κόµβου, παρά είναι full κόµβοι που έχουν στην κατοχή τους τουλάχιστον 32

ETH και ϕροντίζουν για την ασφάλεια του δικτύου και τη δηµιουργία νέων µπλοκ, αποκοµί-

Ϲοντας οικονοµικά οφέλη από τη διαδικασία αυτή όπως προβλέπεται από το πρωτόκολλο

Proof-of-Stake. Οι archive κόµβοι είναι επίσης full κόµβοι οι οποίοι όµως περαιτέρω έχουν

την αρµοδιότητα να αποθηκεύουν ένα πλήρες ιστορικό των ενδιάµεσων καταστάσεων (µεταξύ

των µπλοκ) από τις απαρχές του δικτύου. Είναι ένα είδος κόµβου µε µεγάλες απαιτήσεις

χώρου στο δίσκο και πολύ χρονοβόρο στο συγχρονισµό του, για τους οποίους λόγους συνήθως

δεν χρησιµοποιείται παρά µόνο για συγκεκριµένες εφαρµογές. Τέλος, οι light κόµβοι έχουν

ελάχιστες απαιτήσεις πόρων συστήµατος αφού επεξεργάζονται µόνο τις κεφαλίδες (headers)

των µπλοκ, αλλά κατά συνέπεια αδυνατούν να επιτελέσουν αρκετές λειτουργίες και εξαρτών-

ται από τα υπόλοιπα είδη κόµβων για την απάντηση πλήθους αιτηµάτων που δύνανται να

απαιτηθούν από ενδεχόµενους χρήστες τους.

΄Υστερα αναφερόµαστε στην αναγκαιότητα για ποικιλοµορφία στους clients κάθε τύπου,

όπως και εµβαθύνουµε σε κάποιο ϐαθµό στους consensus clients, παραθέτοντας εν συν-

τοµία τις διαφορετικές υλοποιήσεις αυτών και τον τρόπο που αυτοί επιτυγχάνουν τον αρχικό

συγχρονισµό τους µε το δίκτυο ("bootstrapping"). Ο πλέον διαδεδοµένος τρόπος που τον

πραγµατοποιούν, ονόµατι "checkpoint sync", περιλαµβάνει την αξιοποίηση τρίτων ήδη συγ-

χρονισµένων consensus clients και είναι µια διαδικασία που δύναται να ολοκληρωθεί εντός

ολίγων λεπτών παράγοντας στο τέλος της µια έγκυρη κεφαλή της αλυσίδας (chain head).

Την τελευταία ο execution client µπορεί να πάρει στη συνέχεια για να εκκινήσει τη δική του

αντίστοιχη διαδικασία bootstrapping.

Καθώς το κυρίως αντικείµενο της διπλωµατικής µας είναι συγκεκριµένα οι execution

clients, στο Κεφάλαιο 5 εστιάζουµε ακριβώς εκεί αλλά και στις ποικίλες µεθόδους αρχικού

συγχρονισµού τους. Αντίθετα µε τους consensus clients, εδώ η διαδικασία αυτή είναι τόσο

χρονοβόρα όσο και ιδιαίτερα απαιτητική σε πόρους συστήµατος. Το κατέβασµα των µπλοκ

είναι µεν και αυτό πολύωρο, ωστόσο πολύ περισσότερος χρόνος δαπανάται στην τοπική

κατασκευή ενός αντιγράφου της τρέχουσας κατάστασης του συστήµατος.

Ο πιο απλός τρόπος για να επιτευχθεί αυτό ϑα ήταν να επανεκτελεστούν σειριακά όλες

οι συναλλαγές όλων των µπλοκ από την αρχή του δικτύου (γνωστός ως "full sync"), κάτι που

λόγω του πλήθους αυτών των συναλλαγών δύναται να διαρκέσει ακόµα και εβδοµάδες, κα-

ϑιστώντας τον εµφανώς µη πρακτικό για το µέσο χρήστη. Μια διαφορετική προσέγγιση συγ-

χρονισµού ϑα ήταν να προσπαθήσει ο χρήστης να κατεβάσει κατευθείαν την κατάσταση του

δικτύου από τους οµότιµούς του, ξεκινώντας από τη ϱίζα του σχετικού MPT και διατρέχοντάς

το, αιτούµενος κάθε ϕορά στο δίκτυο όσους κόµβους του λείπουν. Αν και η προσέγγιση αυτή,

γνωστή ως "fast sync", παρείχε σηµαντικές ϐελτιώσεις και για αρκετό διάστηµα αποτελούσε
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Σύνoψη

προεπιλογή των περισσότερων clients, περιλάµβανε πλήθος µεµονωµένων αιτηµάτων για

µικρά κοµµάτια του MPT κάθε ϕορά, κάτι που καθώς το Ethereum µεγάλωνε οδηγούσε

σε ολοένα και περισσότερες καθυστερήσεις λόγω αναµονών για τα αιτήµατα αυτά. Τελικώς

σαν µέθοδος συγχρονισµού αντικαταστάθηκε από το "snap sync" το οποίο διατήρησε την

κεντρική ιδέα επικοινωνίας της εν λόγω κατάστασης µέσω του δικτύου, αλλά ανταλλάζον-

τας κοµµάτια ενός επίπεδου στιγµιότυπου ("snapshot") της κατάστασης το οποίο κάθε client

διατηρεί και ανανεώνει δυναµικά. Ο client στη συνέχεια µπορεί και εύκολα ανακατασκευάζει

το σχετικό MPT τοπικά, ενώ το στιγµιότυπο αυτό διευκολύνει και άλλες λειτουργίες του. Οι

παραπάνω µέθοδοι συγχρονισµού είναι οι πλέον διαδεδοµένες στους περισσότερους clients,

αν και στο κείµενό µας αναφερόµαστε και στις υπόλοιπες που χρησιµοποιούνται εν γένει.

Επιπλέον παραθέτουµε τις διαφορετικές υλοποιήσεις των execution clients, πλαισιώνον-

τάς τες και µε ιστορικές πληροφορίες όπου αυτό κρίνεται χρήσιµο. Στις υλοποιήσεις αυτές

προεξέχουσα ϑέση έχει ο Geth, που αποτελεί την παλαιότερη υλοποίηση και χρησιµοποιεί-

ται σήµερα από περίπου τα δύο τρίτα των κόµβων του δικτύου, ενώ επίσης περιγράφουµε

τους νεότερους Nethermind και Besu µε τους οποίους ϑα αντιπαραθέσουµε τον Geth στα

µετέπειτα πειράµατά µας. Καταληκτικά αναφερόµαστε στον Erigon, που ακολουθεί σηµαν-

τικά διαφορετική αρχιτεκτονική από τους προηγούµενους ενώ υλοποιεί µόνο µια σειριακή

εκδοχή του full sync ονόµατι "staged sync" ως τη µοναδική του µέθοδο συγχρονισµού.

Η διπλωµατική µας καταλήγει σε πειραµατικό κοµµάτι το οποίο αφορά µια συγκριτική

ανάλυση µεταξύ των execution clients ως προς το χρόνο συγχρονισµού αλλά και τους πόρους

συστήµατος που καταναλώνουν. Η ανάλυσή µας αυτή εκτείνεται σε 2 άξονες, τόσο µεταξύ

εκτελέσεων διαφορετικών clients µε τη χρήση του ίδιου sync mode όσο και µεταξύ εκτελέσεων

του ίδιου client µε διαφορετικές παραµέτρους. Για το πρώτο σκέλος των µετρήσεων, το

sync mode που επιλέχθηκε ήταν το προαναφερθέν snap sync καθώς είναι το µόνο που

υποστηρίζεται στην πλειοψηφία των clients (στους τρεις εκ των τεσσάρων, εξαιρουµένου µόνο

του Erigon), ενώ για το δεύτερο ακολουθήθηκαν διαφορετικές προσεγγίσεις ανά client.

Οι µετρικές πάνω στις οποίες πραγµατοποιήσαµε τις µετρήσεις µας αφορούν τη χρήση

CPU (ποσοστό), τη χρήση RAM (GB), το µέγεθος των δεδοµένων στο δίσκο (GB), τις αναγ-

νώσεις και εγγραφές στο δίσκο (MB/δευτερόλεπτο) όπως και τις αποστολές και λήψεις από

το δίκτυο (MB/δευτερόλεπτο). Αντλήσαµε αυτές τις µετρικές καταγράφοντας τους πόρους

της διεργασίας του εκάστοτε client εκτελώντας ένα Bash script
1

το οποίο αξιοποιεί διάφορα

εργαλεία γραµµής εντολών στα Linux.

Τα αποτελέσµατα αυτών των µετρήσεων παρατίθενται στο Κεφάλαιο 6. Αν και τα γραφή-

µατα εκεί προσφέρουν σίγουρα µια καλύτερη οπτική κατανόηση των συµπερασµάτων µας,

εν συντοµία παρατηρήσαµε πως ως προς το πρώτο σκέλος της ανάλυσής µας ο Nethermind

αποδείχθηκε ανώτερος των Geth και Besu όσον αφορά το χρόνο συγχρονισµού καθώς ήταν σε

ϑέση να αξιοποιήσει καλύτερα τις υψηλές ταχύτητες εγγραφών του SSD µας. Καταληκτικά,

διαπιστώσαµε πειραµατικά πως η παροχή περισσότερης µνήµης RAM στον Geth αναµενό-

µενα ϐελτιώνει την απόδοση του καθώς µειώνει την ανάγκη για εγγραφές στο δίσκο ανά

δευτερόλεπτο, ενώ τέλος σε µια ενδεικτική σύγκριση µεταξύ fast και snap sync modes στον

Nethermind αποτυπώθηκε η ανωτερότητα του snap sync από κάθε άποψη.

1
∆ιαθέσιµο στο GitHub: https://github.com/TsiarasKon/Ethereum-Client-Metrics
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Chapter 1

Introduction

The Ethereum blockchain is a decentralized Turing-complete platform that enables

the creation of decentralized applications through the use of smart contracts. It seeks to

provide a trustless, cryptographically-secure value transfer network, utilizing its native

token Ether which is currently the second largest cryptocurrency with a market cap in

the hundreds of billions of USD. As its community of developers and users has grown and

its adoption increased, Ethereum has enabled decentralized solutions for a wide range of

use cases, from financial services and digital identity to supply chain management and

gaming.

Being a peer-to-peer network, Ethereum is comprised of thousands of nodes commu-

nicating with one another, each running two pieces of client software — a consensus and

an execution one. Bootstrapping an execution client in particular is a resource-intensive

and often time-consuming process, but is a necessary step for any user wanting to par-

ticipate in the network. This synchronization process (also known as "initial sync") seeks

to create and maintain a local copy of the entire Ethereum blockchain which can then be

used to execute smart contracts and retrieve information regarding the network’s latest

state. This initial sync generally involves downloading and validating all the chain’s blocks

since the genesis one and re-executing all the transactions included in them, though not

all these steps are necessarily always executed.

Our purpose here will be to thoroughly understand the workloads Ethereum execu-

tion clients are required to handle, and the different ways in which the different client

implementations approach them. This will be done both from a research perspective,

where we will explore data structures used and sync modes employed by each client but

also experimentally, by benchmarking on the system resources and time needed for their

initial sync and then evaluating these results.

Most of the research for this thesis was done in mid-2022, when the major Ethereum

upgrade known as "The Merge" was still upcoming. Contrary to some pessimist pre-

dictions, the long-awaited Merge was indeed completed on September 15, 2022 and the

Ethereum network transitioned from the Proof-of-Work consensus algorithm to Proof-of-

Stake. The fact that this transition occurred during the writing of this thesis was seen

as an opportunity to incorporate it to the extent that it was relevant. Since it naturally

affects the nature of our study’s focus — what was formerly simply "a client" split into a

consensus and an execution client — we of course need to cover each client type and their
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responsibilities. As part of that we will be able to examine, albeit briefly, new challenges

introduced by Proof-of-Stake and how Ethereum has opted to address them.

In general, while the focus of this thesis is on execution clients and their bootstrap-

ping, it was deemed preferable to approach this subject from a broader perspective. For

this reason, in Chapter 2 we will first go over some necessary Ethereum terminology ac-

companying it with some historical background wherever applicable. In Chapter 3 we will

explore the Merkle Patricia Tries and other data structures that are used by Ethereum,

along with the storage engines most widely used to persist these structures on the disk

(such as LevelDB or RocksDB). Subsequently, in Chapter 4 we will provide some defini-

tions on the different types of nodes and clients, while in Chapter 5 we will be delving

deep into execution client implementations and focusing on the different modes they use

to initially synchronize the Ethereum network. Finally, our analysis will culminate in our

benchmarks in Chapter 6, where we will explain our methodology and present the results

of our metrics from several runs of the aforementioned execution clients. These results

lend themselves both for inter-client but also intra-client comparisons (using different

configurations) and will form the basis of an overall assessment and overview of potential

future work in Chapter 7.

The intended contribution of this thesis is manifold. On one hand, a comprehensive

analysis of the resource usage of each execution client can prove useful to identify possible

bottlenecks in the sync process and is the first step towards designing and implementing

architectural improvements to them. Moreover, this resource analysis along with the sync

times of each client can help potential node operators make a decision on which to prefer

and be better prepared for their hardware requirements.

On the other hand, the exploratory part of this thesis aspires to provide a source

of insight on the current state of Ethereum execution clients and everything related to

them. In a constantly evolving field as that of blockchains, relevant information is often

scattered between outdated documentations, stack exchanges and blog posts, with little

cross-referencing to help the reader comprehend the flow of information. While some

of the contents of this thesis will inevitably become likewise outdated, a concentrated

work detailing their evolution up to the time of this writing is likely to be valuable to any

researchers seeking to expand on Ethereum clients, sync modes’ architecture or anything

else relevant.
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Chapter 2

The Ethereum Blockchain

2.1 Historical Background

A Blockchain is a shared, immutable ledger that facilitates the process of record-

ing transactions and tracking assets in a decentralized manner. Bitcoin’s creation in

2009 by the pseudonymous Satoshi Nakamoto marked the first successful application

of blockchain technology as a finite-supply decentralized currency and ushered in a new

asset class, that of cryptocurrencies, currently at a total market capitalization of around

a trillion US dollars.

While Bitcoin still remains the undisputed leader among the various cryptocurrencies

that have emerged since its creation, its lack of Turing-completeness along with its UTXO

(Unspent Transaction Outputs) architecture has meant that it cannot effectively be used

for more than a means of transactions or a store of value. Ethereum, taking its name after

ether (the hypothetical fifth element and invisible medium that permeates the universe

according to ancient and medieval science), was conceived in 2013 by Vitalik Buterin as a

way to expand on Bitcoin’s core concepts by providing a programmable platform on which

anyone can create decentralized applications covering a plethora of potential needs. It

was developed throughout 2014 and early 2015 by Buterin along with a long list of co-

founders (Gavin Wood, Charles Hoskinson, Anthony Di Iorio, Joseph Lubin, Mihai Alisie,

Amir Chetrit, Jeffrey Wilcke) some of whom later distanced themselves from Ethereum

and went on to develop other prolific blockchains.

Its development has been largely overseen by the Ethereum Foundation, a Swiss non-

profit organization which, by its own admission
1
, does neither own nor control Ethereum

but is rather dedicated to supporting it and related technologies. Its philosophy re-

volves around advocating Ethereum to the outside world and supporting its decentralized

ecosystem through the proper allocation of resources so as to maximize its potential to

achieve long-term success.

Following a crowd sale in July 2014 an initial number of 72 million coins were sold

to individuals who payed in Bitcoin raising a total of $18.3 million and, a year later,

Ethereum was officially launched with the genesis block being mined in July 30 2015.

The basics of what initially made up Ethereum and the way it should operate are all

described in the whitepaper originally published by Buterin in 2014 [1], albeit not in much

1
Source: https://ethereum.foundation/philosophy/
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technical detail. The first version of its more technical document (called yellowpaper)

which contains the formal definitions of the protocol and its building blocks was written

by Gavin Wood in the same year [2]. In this chapter we will be going over a few of those

Ethereum building blocks, presenting many of the updates that have happened since and

adding historical context wherever necessary.

2.1.1 Upgrades and Major Milestones

Despite its widespread popularity, it could be argued that Ethereum is still in its

infancy. In the few years since its release, it has undergone several upgrades to its

architecture with quite some more underway (see Section 7.1). Changes to any aspect of

the network are initially proposed in the form of Ethereum Improvement Proposals (EIPs)

and thoroughly discussed in the community. Several of those end up being withdrawn

or discarded through this process, while others are implemented usually in the form of

some fork in the network.

While not having a strict definition, a fork is generally described as what happens

when a blockchain "diverges into two potential paths forward", something that can be

caused either inadvertently or by a change in its protocol. Forks are categorized as either

soft or hard. Soft forks preserve backwards compatibility, with old nodes not needing

to upgrade as they can continue to accept new blocks as valid. Hard forks on the other

hand mandate all network participants to upgrade their software as otherwise they will

perceive any new blocks as invalid. The latter can effectively split a blockchain into two

new ones causing different nodes to work on different chains, based on whether they have

performed some specific update. Naturally, soft forks are overall less disrupting and new

changes tend to be implemented using soft forks whenever possible.

Perhaps the most tumultuous time period in the Ethereum community was the "DAO

hack" and everything that followed it. A great lot has been written on that topic and the

full extent of the disputes of that time needs not be analyzed at length here
2
. In summary,

a Decentralized Autonomous Organization (DAO) naming itself "The DAO" was launched in

April 2016, gathering funds from numerous users. On June 17 2016 an attacker exploited

a security vulnerability of The DAO to transfer around 3.6 million ETH to themselves —

valued at around 50 million USD at the time and amounting to about a third of the Ether

that had been committed to The DAO thus far. The Ethereum community was split on

how to tackle the highest-profile (at the time) attack in the cryptocurrency space with the

majority eventually agreeing on the difficult decision to essentially nullify it by performing

a hard fork which reverted the chain to a state where the attack had not happened.

The DAO hard fork, as it was named, was strongly opposed by a part of the Ethereum

community that viewed "code as law" and thus refused to follow the fork, opting to instead

continue mining on the original chain. The once original chain was renamed to Ethereum

Classic (with a much devalued coin, named ETC) while the forked one kept the name

"Ethereum" as it was supported by the majority of Ethereum developers and users alike.

2
A detailed timeline of the events around the DAO hard fork along with expanded explanations can be

found here: https://cypherpunks-core.github.io/ethereumbook/appdx-forks-history.html
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Chapter 2. The Ethereum Blockchain

Since then there has been a long list of both minor and major upgrades to Ethereum

[3], with another notable one being the London hard fork which we will put into context in

Section 2.2.5.2. However, the most anticipated upgrade to the Ethereum was undoubt-

edly "The Merge" which was executed on September 15 2022 after years in the making.

While largely uncontroversial and well-received, it too caused a fork by a group of users

that opposed the network’s transition to Proof-of-Stake thus spawning the EthereumPoW

(ETHW) coin. ETHW and ETC alike are supported by drastically smaller communities

than those of ETH, both in terms of developers and users, and as such our study will be

focusing solely on the Ethereum mainnet and its Ether.

The majority of what we will be going over in this thesis, was not affected by The Merge.

Wherever this is not the case we may also shortly present the state of things as they were

in the pre-Merge era in order to allow for comparisons. As for the details of the changes

that The Merge introduced in Ethereum, we will expand on them further on Section 2.3,

right after we define some necessary terminology for our study.

2.2 Terminology

2.2.1 Coins and Tokens

Ethereum’s native token (or coin) is Ether (ETH), sometimes annotated by the Greek

uppercase Xi character (Ξ). It is generated by the Ethereum protocol as a reward for the

building of new blocks, and it also the only currency accepted to pay for transaction fees.

The smallest and most commonly used denomination of Ether is called a Wei, named

after cryptocurrency pioneer Wei Dai, and is equal to 10
−18

ΕΤΗ. Other named yet obscure

denominations include a Szabo (10
−6

ΕΤΗ) and a Finney (10
−3

ΕΤΗ).

At the time of writing there are currently more than 122 million Ether in circulation

and, contrary to Bitcoin of which only 21 million will ever be mined, there is no cap on

the maximum supply of Ether. New Ether is issued every time a new block is created,

but The Merge significantly decreased that amount. Additionally, EIP-1559 [4] introduced

the burning of part of the Ether used as fee per transaction (which used to entirely be

transferred to the miners), a mechanism which effectively decreases the issuance rate

of Ether and can even cause it to become deflationary during periods of high network

congestion. In our study we will not be focusing on economics of supply and demand and

potential economic repercussions that Ether’s inflation has on its price.

Furthermore, Ethereum allows the creation of additional custom tokens according to

specific ERC (Ethereum Request for Comments) standards. ERC-20 is the most widely

used for fungible tokens, which can then be used for transactions and interact with smart

contracts in much the same way as Ether.

Another common type of tokens is defined in ERC-721, which is the standard for non-

fungible tokens (NFTs). The uniqueness that NFTs provide (no two NFTs can be identical in

the same way that, for instance, two Ether tokens are) has caused them to gain popularity

in gaming as well as for representation of art pieces and other types of collectibles, having

thus birthed a distinct market for them than the rest of the cryptocurrency space with a

18



2.2.2 Accounts

daily trading volume in the tens of millions of USD.

2.2.2 Accounts

In order for an entity to send and receive transactions on the Ethereum blockchain

they require an account, which is represented by a 42-character hexadecimal address.

There are two types of accounts on Ethereum: externally owned accounts (EOAs) and

contract accounts. Both of these contains the same following 4 fields:

• nonce: A simple counter which is incremented each time the account sends a trans-

action in order to ensure that each one is only processed once. Also useful to

guarantee order of execution if multiple transactions are sent at once (regardless

of order of receival, each node will execute the transactions of an account by in-

creasing order of nonce). For contract accounts, this field represents the number of

contracts created by the account.

• balance: The amount of ETH (in Wei) the account owns.

• codeHash: For contract accounts, this is the hash of the code of the account that gets

executed on the EVM. For EOAs, this field is always the hash of the empty string.

Unlike the rest of the account’s fields, codeHash is immutable following the account’s

creation.

• storageRoot: A 256-bit hash of the root node of a Merkle Patricia trie that encodes

the storage contents of the account. This trie encodes the hash of the storage

contents of this account and it is empty by default. We will be investigating the data

structures used here in the next chapter.

2.2.2.1 Externally owned accounts

An EOA is made up of a cryptographic pair of a public and a private key. The owner-

ship of this private key is what allows the signing transactions on behalf of the account

and, consequently, is what grants an individual who possess it custody over the funds

associated with the related account.

To create such an account, a private key is usually made up by randomly generating

64 hexadecimal characters (possibly encrypted with a password) and then a public key

is generated from that using the Elliptic Curve Digital Signature Algorithm (ECDSA). The

account’s address is obtained by concatenating the prefix 0x (the hexadecimal identifier)

with the rightmost 20 bytes (40 hexadecimal digits) of the keccak256 hash of the public

key. It is possible to derive additional public keys (and, consequently, addresses) from a

single private key, but it is naturally impossible to derive a private key from public keys.

In order to prevent a frequent terminology confusion, it is worth mentioning that this

keypair is not itself a wallet. A wallet is simply an interface (e.g. an application) that

facilitates the interaction between an individual and their Ethereum account. Lastly,

from the above it should be evident that an individual technically does not ever hold

any funds themselves - these always reside solely on the blockchain - instead, they hold

19



Chapter 2. The Ethereum Blockchain

private keys that are associated with accounts that own funds and they can transfer it to

others by again using that same private key.

2.2.2.2 Contract accounts

Smart contracts in the Ethereum blockchain exist as a type of account, one con-

trolled not by private keys but by its own contract code. Contract accounts also have

42-character hexadecimal addresses which is deterministically computed from data of

the account which created them. More specifically, the contract address is produced by

RLP encoding the creator’s address along with their nonce and then hashing them with

Keccak-256.

Contrary to creating an EOA, creating a contract account is not free because it makes

use of network storage and the cost required is paid by the creator account. Once this

is done, the smart contract code is deployed on the network and cannot be altered.

Furthermore, that code will only be run whenever a transaction is sent to its account —

either by an EOA or by another contract account. A smart contract’s code can include

several different actions, including the transferring of tokens between two accounts and

even the creation of new contracts.

2.2.3 Smart Contracts

First conceptualized by Nick Szabo in 1997 [5], a smart contract is a merely a com-

puter program which implements some contractual clauses between two entities without

the need for a third-party intermediary. Smart contracts achieve trustless and automatic

execution and control of whatever on-chain asset was agreed between the parties once

some pre-defined condition is met. In that way, the parties’ agreement can be securely

and reliably carried out, cutting potential commission costs and eliminating accuracy er-

rors that can be caused by involving intermediaries. Additionally, since smart contracts

are deployed in advance of an expected condition to be determined and are automatically

executed following that, any need for trust between the parties themselves is also elimi-

nated as there is no chance for either one to back down and refuse to honor their part of

their agreement in case of an undesirable outcome.

Despite the name, smart contracts are neither particularly "smart" nor legally binding

in the way conventional contracts tend to be. In computer science contexts "smart" is

typically associated with artificial intelligence and machine learning algorithms, whereas

smart contracts codify comparatively simple programs and are not intended to carry out

any amount of deep analytics.

Meanwhile, in most cases the legal status around smart contracts remains unclear,

with countries generally lacking a legal framework to process anything regarding this in-

novative type of contractual agreement. Virtually all smart contracts that are employed

today in blockchain applications could not realistically be enforced by any court or tri-

bunal
3
.

3
There does, however, exist a classification for smart contracts that have all the elements of a legally

enforceable contract in some jurisdiction, called "smart legal contracts" [6].
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Several uses for smart contracts have been suggested, some of which have already

been implemented by existing applications at least to some degree, including the following:

• Encoding financial agreements: a deal between a person and an insurance company

or a mortgage could be made significantly more efficient for all parties involved via

the use of a smart contract.

• Elections: while gaining public trust at a large scale could be an issue, smart

contracts can allow to reliably record votes without revealing voters’ identities, es-

sentially eliminating electoral fraud risks.

• Speculation platforms on financial (related to sports), betting (sports, political) or

similar.

• Decentralized Finance (DeFi) applications: Financial applications that provide most

of the services that banks traditionally support including but not limited to borrow-

ing and lending peer-to-peer (P2P), interest earning, asset and derivative trading.

• Multisignature accounts: accounts owned by multiple people where moving funds

can require a predefined percentage of its owners agreeing.

While in no way exhaustive, the above list should prove that the potential for smart

contract applications is undeniable.

Smart contracts are nowadays supported by most major blockchains (though, notably,

not Bitcoin) but they were first introduced in Ethereum where they are still most widely

adopted. Programmers can write Ethereum smart contracts in a handful of languages

but they almost invariably use Solidity, a statically typed object-oriented programming

language with similarities to C and JavaScript.

Requiring the use of real-world, off-chain data for some of the above applications poses

an obvious problem regarding the source of this data. Some trustworthy entity is needed

to reliably provide this data and any entity of this kind would in itself result in some degree

of centralization, which blockchain developers generally strive to avoid. Furthermore, the

issue of deterministic execution arises: all network nodes must somehow receive the same

data (regardless of when they requested it) in order to reach a consensus.

Third-party services called oracles have been developed to connect smart contracts

with the outside world, allowing them to access real-world data quickly on-demand. An

oracle acts as a layer that queries, verifies and authenticates external data sources,

usually via trusted APIs or reliable data feeds and then relays that information. The oracle

of choice for the majority of applications currently on Ethereum is Chainlink, created in

2017 along with its own native cryptocurrency, LINK. Chainlink is comprised of a network

of thousands of oracles that independently collect the necessary off-chain data, which is

then aggregated so that the system can come to a deterministic value of truth for the data

requested [7].
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2.2.4 Ethereum Virtual Machine

The Ethereum Virtual Machine (EVM ) is the runtime environment where code execu-

tion happens on the Ethereum blockchain. While programmers generally write Ethereum

contracts in Solidity, in order for them to be run on the EVM they are first compiled to a

low-level, stack-based bytecode language, referred to as "EVM code".

Code execution is a rather simple process and happens in an infinite loop where

operations are sequentially executed until the end of the code is reached, an instruction

to halt execution is detected or some error occurs. The operations have access to the

following three types of storage for any data they might wish to store: a stack (a LIFO

container in which values are pushed and popped), memory (an expandable byte array)

and the contract’s own long-term storage (a trie storing key-value pairs) which, unlike the

other two, persists long-term even after the code execution completes.

2.2.5 Transactions

An Ethereum transaction refers to an action initiated by an EOA (i.e. not a contract)

and causes an update to the state of the Ethereum network. The simplest type of trans-

action is transferring ETH from one account to another, which results in a state change

by debiting the sender’s account and crediting the receiver’s account with the respective

ETH amount.

All transactions need to be broadcast to the whole network which any node can do,

and then validators (which we will detail in Section 2.3.1) are responsible to execute them

on the EVM. After one of them does that, they propagate the resulting state change to rest

of the network. A transaction may not always be successful and the wait time between

its submission and its being processed by a validator can vary significantly, both usually

depending on the gas fee set.

The structure of an Ethereum transaction object is the following:

• from: The sending address.

• to: The receiving address. If an EOA, the transaction will transfer value - if a

contract account, the transaction will execute the contract code.

• value: Amount of ETH to transfer from sender to recipient (in Wei).

• nonce: A sequentially incrementing counter, issued by the originating EOA, which

indicate the transaction number from the account. It is used to prevent transaction

replay.

• data: Optional field which may contain code or a message to the recipient.

• gasLimit: The maximum amount of gas units that can be consumed by the trans-

action.

• maxPriorityFeePerGas: The maximum amount of gas to be included as a tip to the

validator (formerly miner).
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• maxFeePerGas: The maximum amount of gas willing to be paid for the transaction

(including baseFeePerGas and maxPriorityFeePerGas).

• v, r, s: The three components of an ECDSA digital signature of the originating EOA.

This signature is generated when the sender’s private key signs the transaction and

confirms the sender has authorized this transaction.

The lifecycle of a transaction begins once an EOA creates the transaction object. The

sending account then signs the transaction, thus getting a transaction hash (also known

as "transaction ID") which acts as a unique identifier for it. Next up, the transaction is

broadcast across the Ethereum network, waiting for a validator (formerly miner) to pick

it up and verify it - the waiting time for that depends on the network’s current traffic

as well as the gas fee set for the transaction. Once it gets picked up and added to a

block, the transaction is completed and considered successful, otherwise (e.g. due to

insufficient gas provided or "bad instructions" in case of a contract deployment) it may be

considered failed. Other possible transaction states during or after the process we have

just described include pending, queued, cancelled and replaced.

2.2.5.1 Types of Transactions

The different types of transactions supported in Ethereum are the following:

• Regular transactions: a transaction (of either Ether or some other token) from one

account to another.

• Execution of a contract: a transaction that interacts with a deployed smart contract,

in which case the recipient address is the smart contract address.

• Contract deployment transactions: a transaction without a recipient address, where

the data field is used for the contract code. This transaction creates a smart contract

account as described in Section 2.2.2.2.

The first two of these are sometimes referred to as message call transactions while the

last one is also known as contract creation transaction.

On the more technical side, while Ethereum originally only had one format for trans-

actions, it eventually evolved to support multiple types of transactions and to allow for

new features without affecting legacy transaction formats. EIP-2718 [8] defines the

typed transaction envelope that is currently used and is defined as TransactionType ||

TransactionPayload (where || is the byte concatenation operator). TransactionType in this

context represents a number between 0 and 0x7f allowing for great future extensibility up

to theoretical maximum of 128 possible transaction types. EIP-2718 does not itself define

any transaction types, but proposals that use this new standard include the aforemen-

tioned EIP-1559 as well as EIP-2930 [9].

2.2.5.2 Gas and Fees

Gas is the fuel of Ethereum. Since each Ethereum transaction requires computational

resources to execute, each transaction requires a fee. Gas refers to the fee required to
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conduct a transaction on Ethereum successfully. Gas fess are paid in Ethereum’s native

currency, Ether, and are denominated in Gwei (10
9

Wei = 10
−9

ETH).

The way transaction fees on the Ethereum network are calculated changed with the

London Upgrade on August 5 2021 which introduced EIP-1559 to the network [4]. Before

the London Upgrade, Ethereum had fixed-sized blocks which, in times of high network

demand, regularly operated at total capacity with users having to wait long queues in

order to get their transactions included in some block. EIP-1559 introduced variable-

sized blocks to Ethereum, each having a target of 15 million gas on average but with that

being dependant on network demand. To understand this process better, the following

parameters need to be explained:

• baseFeePerGas: The bare minimum fee required to send a transaction on the network,

set by the network itself based on how full the latest block was. The Ether provided

for this fee will be burned.

• maxPriorityFeePerGas: This fee is intended as a "tip" to the validator (formerly miner)

and acts as an incentive for them to introduce that transaction to the current block.

The greater this tip is, the more likely it is that the transaction will be included in

the next block.

• maxFeePerGas: The maximum fee the user is willing to pay for that transaction and is

generally equivalent to baseFeePerGas + maxPriorityFeePerGas. Should a user manu-

ally sets this gas limit higher than it is needed to be, any Ether unused by the EVM

will be refunded to the their account.

By introducing the concept of baseFeePerGas the London Upgrade resulted in making

gas fees more predictable, a common grievance of Ethereum users in the period leading

to it. Furthermore, by introducing the concept of fee burning, despite diminishing the

(then) miners’ profits at least in the short-term, it diminishes Ether’s inflation — even

causing it to become deflationary in periods of high network demand when baseFeePerGas

is increased — which was deemed advantageous to Ethereum’s long-term prospects.

Ultimately, gas fees help keep the Ethereum network secure. Since a fee is required

for any computation executed on the network, bad actors are disincentivized to spam the

network. On top of that, accidental or hostile infinite loops in code are avoided since each

transaction is required to set a limit to how many computational steps of code execution

it can use, with the fundamental unit of computation being "gas".

2.2.6 Blocks

A block consists of a batch of transactions organized in a trie structure (that we will

examine in the next chapter), along with a few other fields helping to identify it but also

to facilitate the work of the nodes that will be required to process it. A short overview of

all the fields in a block can be seen in Figure 2.1.

Blocks are strictly ordered, each pointing to its previous one through parentHash, all

the way back to the first block ever mined — which is known as the genesis block and
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Figure 2.1. Block structure 4

was mined on July 30 2015. Except in rare cases, all participants on the network are in

agreement on the exact number and history of blocks at any given time and are working

to batch the current live transaction requests into the next block.

New blocks are constantly being put together by batching transactions and the priori-

tization of transactions is being done by considering the gas the transactions’ senders are

willing to spend for their transactions to be included in the block, among other factors.

This optimization process has long been an important aspect for maximizing profitabil-

ity and this maximal possible profit is called maximal extractable value (MEV, formerly

4
Source: Lee Thomas, https://ethereum.stackexchange.com/a/6413/100602
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meaning miner extractable value).

Pre-merge those new blocks were created and propagated to the network by miners

every 13 seconds on average, while now this responsibility rests on validators with a block

time of (almost) exactly 12 seconds. Furthermore, blocks need to be prevented from being

arbitrarily large, since that would cause less performant nodes to gradually be unable to

keep up with the network due to space and speed requirements. As briefly mentioned in

Section 2.2.5.2, this is currently achieved in Ethereum by having a block limit not in the

number of transactions but rather the gas expended by them. That limit is 30 million gas

per block (in cases of high network demand), with the target size being 15 million gas.

2.2.7 Networks

What is generally referred to simply as "the Ethereum network" is also known as

"mainnet". This term is sometimes used to differentiate it from various test networks,

called "testnets". Testnets are of great value to application developers who can test their

smart contracts there, being akin to a staging environment in the traditional development

cycle (with the mainnet respectively corresponding to the production environment). Test

Ether in testnets is given freely to experiment with, often through applications that directly

sent a fixed amount of it to a requesting wallet, called faucets. Naturally, Ether (or any

other token) in a testnet cannot be transferred to the mainnet and does not hold any

monetary value. Testnets are not required to share many of their network parameters

with the mainnet including block sizes, block times and even consensus algorithm (more

on these next up). The most popular testnets at the time of writing are Sepolia, Goerli

and Rinkeby, though new ones are regularly created to account for new testing needs.

Our focus in this thesis will be the Ethereum mainnet which is a public (or permi-

sionless) network, as are all the aforementioned testnets. It is noted that private (or

permissioned) networks can also be created in Ethereum, which can likewise be useful in

the process of developing an application before deploying it to the mainnet. Such a net-

work can be accessed by Ethereum nodes by parameterizing them with its configuration

consisting of a specific chain ID and a custom genesis block.

2.2.8 Consensus Algorithms

A fundamental concept in distributed systems is that of consensus and how to achieve

it, i.e. the way in which all the network’s participants agree on what its global state is. In

blockchain systems these are generally Proof-of-X, the most widely used of which are the

following.

2.2.8.1 Proof-of-Work

Proof-of-Work (PoW ) is a form of cryptographic proof in which one party proves to

others that a certain amount of computational effort has been expended to perform a

specific task. This concept was originally invented in 1993 by Moni Naor and Cyuntia

Dwork [10] in the context of deterring denial-of-service attacks and combating spam but
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was first formalized in 1999 by Markus Jakobsson and Ari Juels [11]. Its popularization

however unarguably came when Satoshi Nakamoto used it as a foundation for Bitcoin’s

permissionless decentralized network [12] and PoW has served as a model consensus

algorithm for several of the blockchains that have since been created.

In PoW, network participants called miners compete with each other in order to solve

some arbitrary mathematical puzzle. Whoever solves it first gets to add a block to the

blockchain, containing the transactions of his choice — most usually just based on the

amounts of "tips" the senders of those transactions have included for the miner. An

additional block reward transaction is added crediting the miner for a fixed amount (which

used to be 2 ETH in pre-merge Ethereum) and that is how new coins are minted.

In the case of Ethereum, the PoW algorithm Ethash required miners to iteratively

increment the block’s nonce so that the hash of the resulting entire block (including both

that nonce and the miners’ transactions of choice) would be lower than a certain target

value. Due to the one-way nature of hash functions, the best and only way to achieve that

is through trial and error by attempting to hash the block with different nonce values.

Bitcoin’s PoW also works in a similar way, using the SHA-256 hash function and requiring

that the resulting block’s hash begins with a certain number of zeroes.

A useful characteristic of PoW is that the difficulty of the problem requiring solving

by the miners can be tweaked as the network’s computational power fluctuates so as to

approximately achieve a desired outcome, for example that of a constant average block

time. As such, the exact target value that a block’s hash needs to be lower than (or

the number of zeroes at the start of the block’s hash in the case of Bitcoin) is tunable

through a difficulty network parameter, communicated through the block header and

automatically updated whenever necessary based on the speed on which the latest blocks

have been produced. But while the solution itself may take however long based on the

parameters specified, confirming that the solution is indeed correct (and thus that the

resulting block is valid) is effectively instantaneous by anyone, a necessary property for

the entire system to function.

Security in PoW derives from the immense computational effort required to defraud

the chain. While a malicious actor could theoretically randomly get to mine some single

block, consistently creating malicious yet valid blocks would require 51% of the network’s

mining power (also known as a Sybil Attack), a feat realistically impossible and definitely

unprofitable for any entity given a large enough network (such as Ethereum or Bitcoin).

Lastly, the mathematical problem in question for both Bitcoin and Ethereum used

to originally require little overall computational power, even being solvable by a home

PC of average hardware specifications. Gradually however, it became infeasible to do so

— at a rate to be able to keep up with the rest of the miners — and users had to pool

together in order to remain profitable. This was possible in pre-merge Ethereum for users

with high-end GPUs, but Bitcoin mining has long been unprofitable on consumer-grade

hardware and is being performed only on ASICs (Application-specific integrated circuits).

This ever-increasing necessity for more advanced hardware is widely regarded as the

largest drawback of PoW, as it involves growing amounts of energy being "wasted" with

the sole purpose of securing the network.
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2.2.8.2 Proof-of-Stake

Proof-of-Stake (PoS) is a consensus algorithm that centers around randomly selecting

network participants called validators, in proportion to their quantity of holdings. First

introduced by Sunny King and Scott Nadal in 2012 and applied to created Peercoin [13],

PoS is currently used by most major blockchains (notably excluding Bitcoin), especially

newer ones and those that provide smart contract support.

In a blockchain using PoS, validators are expected to operate constantly and are

chosen at random to construct blocks, propagate them through the network and receive

a reward for doing so. In order for an entity to become a validator they need to pledge

or "stake" a minimum amount of coins that they own which consequently provides them

with an economic incentive to behave honestly.

Furthermore, most PoS blockchains implement a concept known as slashing, where

validators lose a portion of their stake, usually triggered if they are unjustifiably offline for

long periods of time or if they are found to have behaved dishonestly. In most blockchains

a validator can possibly lose even the entirety of their stake, depending on the severity

of their misbehaviour that caused them to be slashed. Even if a group of validators ever

assembled to corrupt the chain, the amount of coins that they risk to lose (and also

devalue, buy discrediting the network’s reliability) all but ensures that it would be in their

own self-interest to not act maliciously.

Slashing is also used to combat Nothing-at-Stake, an issue exclusive to PoS blockchains

where a validator is incentivized to work on forks of the main chain at the same time [14].

While in PoW working on separate network forks equates to wasting computing resources,

in PoS working for multiple forks does not require splitting one’s stake nor does it inher-

ently incur any other meaningful cost whatsoever. Consequently, as long as it is even

remotely possible that a fork will eventually result in the longest chain, working on it

too would maximize a validator’s likely payout. A punishment is thus introduced so as

to prevent such behavior, which is applied to a validator if it is found to be working on

several forks at the same time or simply if it is found to be validating the wrong chain —

the latter can also occur inadvertently to an honest validator but it nonetheless acts as

an incentive to always be working on the chain with the highest likelihood of being the

longest.

While energy waste is indeed minimal in PoS, there are other aspects in which it is

inferior to PoW. To begin with, due to its recency as a consensus mechanism, PoS’ security

is not as proven as that of PoW. Additionally, from a validator’s standpoint, participating

in the network may appear unappealing as not only may their stake be subject to a lock

period during which they cannot access ("unstake") their funds, but it can also be entirely

at risk due to the aforementioned concept of slashing.

More crucially however, tying the network’s security to the validators’ stake ensures

that the wealthiest users will posses more influence on it and also passively be getting

most of the rewards, while the less affluent ones may outright be prevented from becoming

a validator due to not meeting certain minimum criteria. While this last issue is not

exclusive to PoS (especially if one considers the costs of PoW mining equipment), it is
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certainly more evident here and that is why PoS has been widely criticized as causing a

decrease in the network’s decentralization, considered by many an end in itself.

These arguments against it of course do not lessen the fact that PoS is a more scal-

able consensus algorithm, which solved the long-term sustainability issue of constantly

increasing energy waste in PoW and is rightfully credited with ushering in a new era for

blockchains. As for the more technical security concerns, these can all be sufficiently

tackled in the confines of a well-designed protocol as we will later examine is the case

with Ethereum.

2.2.8.3 Proof-of-Authority

Proof-of-Authority (PoA) is a comparatively new consensus algorithm (first coined as

a term by Ethereum co-founder Gavin Wood in 2015), quite similar to PoS. It likewise

involves validators who are responsible for the construction and propagation of blocks,

but these validators are entities with known identities, placing their reputation at stake

instead of — or along with — their funds.

PoA is considered to provide even greater scalability than PoS (and much more than

PoW), being able to securely provide very high throughput. However, since the validators

here have to be identified, trusted and selected by the network, their number tends to be

relatively small. This fact causes PoA networks to be even more centralized and hence

more susceptible to corruption and even manipulation due to the identifiable nature of

the validators involved — there have even been cases of a malicious actor taking control

of a PoA network by directly hacking a few (just over half) publicly known validators.

PoA is much less widespread than the previous two consensus mechanisms (few widely

adopted blockchains use it) and has never been relevant to the Ethereum mainnet. We

are however mentioning it here for the sake of completeness since it is often preferred by

Ethereum testnets, where there would not be enough miners to apply PoW but PoS would

also be impractical to implement due to the testnet’s coins’ lack of monetary value.

2.3 The Merge

The most major upgrade in the history of the Ethereum network was labelled "The

Merge" and was completed on September 15 2022. Long anticipated as "Ethereum 2.0"

(or "Eth2"), that naming has since been deprecated so as to clarify that the new upgrade

does not constitute some new chain separate from "Eth1", but merely its continuation

into a new era.

2.3.1 Consensus algorithm change

On December 1 2020, a PoS blockchain was created by the Ethereum developers

called the Beacon Chain, running alongside the original PoW Ethereum mainnet. Its

purpose was to ensure that the PoS consensus logic was sound and sustainable before

enabling it on Ethereum mainnet. When almost two years later this was assured, the

Beacon Chain was instructed to accept transactions from the original Ethereum chain,

29



Chapter 2. The Ethereum Blockchain

bundle them into blocks and then organize them into a blockchain using a PoS based

consensus mechanism. At the same moment the original Ethereum clients turned off

block propagation and consensus logic, handing all that over to the Beacon Chain. This

event is known as "The Merge", after which there were no longer two blockchains but only

the single PoS Ethereum chain.

By far the most cited advantage of this change was its environmental friendliness,

since PoS manages to secure the network without necessitating miners to waste electricity

on "useless" calculations. It is estimated that by switching to PoS, Ethereum achieved an

energy consumption reduction of over 99.9%.

In PoS Ethereum all functions regarding the network’s operation and security are

completed by validators. A validator is a virtual entity that participates in the consensus

of the Ethereum protocol by staking 32 ETH and is represented by a public key, a balance,

and some other properties. The rules that all validators must abide by and the exact way

in which validators communicate but can also be slashed for misbehaving so as to address

security concerns such as those described in Section 2.2.8.2 were all initially presented

in a protocol called Casper [15]. Combining Casper with GHOST, a fork choice algorithm

originally developed for PoW, led to the development of the Gasper protocol, which is the

one currently used by PoS Ethereum [16].

Time is now divided in 12 second units called "slots" and in each one a single validator

is randomly selected to propose a block — aptly called proposer. A period of 32 slots is also

called an "epoch", after each of which validators are shuffled for security purposes into

"committees" in a pseudorandomized manner by the same process that chooses proposers,

called RANDAO. Every epoch the validators will propose an "attestation" (vote) to the

network so as to help reach a consensus for the current state of the Ethereum network,

for which they are rewarded. Assuming all validators are online and fully functional, there

will be a block created in every slot resulting in a block time of exactly 12 seconds. In

practice, occasionally a validator might be offline when called to propose a block, meaning

that a slot can sometimes go empty and thus the average block time is ever so slightly more

than 12 seconds. This is in contrast to pre-merge Ethereum and PoW-based blockchains

in general, where block times are probabilistic and tuned by the mining difficulty.

Under Gasper, a block must pass through a two-step upgrade procedure in order to

be considered finalized, that is when the block and the transactions it contains are for

all intents and purposes considered valid and thus part of the "correct" (canonical) chain.

Firstly, two-thirds of the total staked ETH must have voted in favor of block’s A inclusion in

the canonical chain, which upgrades the block’s status to "justified" (or "safe"). A justified

block is unlikely to be reverted, but that may still happen under certain conditions such

as to restore the network’s state following a large-scale coordinated attack. Then when

a block B is also justified on top of A, block A is upgraded to "finalized" which is in

itself a strong commitment that it will keep being considered as part of the canonical

chain. It must be noted that these block upgrades do not happen in every slot but rather

periodically every few blocks which are known as "checkpoints".

The only way a finalized block can be reverted is by creating an alternative finalized

chain which requires two-thirds majority. An attacker could only ever achieve that either
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Figure 2.2. Committee and Proposer selection through RANDAO 5

by controlling two-thirds of the total staked ETH or by owning and destroying one-third of

the total staked ETH (by using it to double-vote, a behaviour that is maximally punished

through slashing). The former is already an improvement from the usual "51% rule" by

raising the bar for a catastrophic attack to the network to two thirds, while the latter

could only be performed once and would require the attacker to burn an amount of ETH

worth billions of USD, a feat unreasonable enough in any real-world scenarios.

An interesting property deriving from the above is that we now have an in-protocol

definition of finality. By contrast, finality in PoW is necessarily probabilistic and based

on the fact that the older a block is in the currently longest chain the more likely it is that

it is valid and thus, after enough blocks, its contained transactions are agreed upon to

be probabilistically final.

At the time of writing there are over half a million Ethereum validators and their

number is monotonically increasing as they are still not able to unstake their ETH. With

The Merge having been successfully completed, stake withdrawals are intended to be

enabled with the upcoming Shanghai upgrade, planned for April 2023. Even then, the

exit rate of validators will be limited for security reasons, in order to prevent a potential

mass exodus.

5
Source: https://ethos.dev/beacon-chain
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Figure 2.3. Number of Ethereum mainnet validators over time 6

2.3.2 Consequences on Ether’s economics

A major consequence of The Merge is a drastic decrease to Ether’s issuance rate. By

replacing the ∼13,000 ETH per day mining rewards with a mere ∼1,600 ETH per day

staking rewards, the new ETH issuance is reduced by roughly 90% compared to pre-

Merge levels. Furthermore, taking into account the burning of ETH introduced in the

London upgrade, on an average day ETH can have close to zero net inflation and even

become deflationary under periods of moderate network use [17].

Furthermore, the existence of staking on the network caused a variety of DeFi apps

to see their attraction crucially diminished (if not outright deprecated) as their business

model was largely centered around on gaining passive income on Ether. Even for the

majority of users that lack 32 ETH to stake, they can stake however little ETH they have

through various third parties including some of the largest cryptocurrency exchanges —

albeit with slightly reduced rewards. As such, for a majority of network users and/or

investors who want some (relatively) riskless passive income on their Ether, directly or

indirectly staking seems a solid choice and will inevitably be the obvious one, once val-

idators’ stakes withdrawals are enabled.

It is lastly noted that the amount of staking rewards in PoS Ethereum is inversely

correlated with the number of validators (or, more specifically, the amount of total staked

ETH). This is an apt mechanism to ensure the network’s health should the number of

validators ever get too small since in that scenario the staking rewards would increase

and new users would be financially incentivized to stake their ETH.

6
on February 1 2023; Source: https://beaconscan.com/stat/validator
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Storage Architecture

3.1 Data Structures

In order to fully comprehend the workload of and the challenges faced by an Ethereum

client, we first need to be aware of what kind of data it needs to store but also the way in

which it stores it. Ethereum’s main data structure, which is used for multiple different

purposes, is a version of a trie called modified Merkle Patricia Trie (MPT ). In this chapter

we will go over the architecture of MPTs and then examine how Ethereum takes advantage

of them.

3.1.1 Radix Tries

A trie, taking its name from the word re-trie-val, is a tree data structure that is used to

store and easily retrieve a set of keys — most usually strings which will be our focus here.

Unlike conventional (binary) search trees, a node in a trie does not store its associated

key but rather a single character. By concatenating nodes’ characters in the path from

the trie root to any given leaf node (i.e. traversing the trie depth-first) we can retrieve a

string that has been stored in the trie. A simple example of such a trie can be seen in

Figure 3.1.

An obvious issue with the tries described above is that they are quite inefficient for

strings of any decent length. Storing a single 64 character-long string (a frequent use

case in Ethereum) would necessitate a trie of equal depth, with a single node at each level

for each character and each lookup or delete would require traversing the full 64 nodes.

While this issue would naturally become less pronounced as we continued to add strings

to our trie, it is evident that an optimization of some kind could significantly improve

efficiency and it comes in the form of radix tries.

A radix trie represents a space-optimized trie (or prefix trie) in which only-child nodes

are merged with their parents. This results in internal nodes having at most r amount of

children, with the radix r ≥ 2 of the radix tree being a power of 2. This radix represents

all the possible sorting combinations of the binary data that can be stored in the radix

trie. In the simplest case, a binary radix tree would only ever have two children for any

given node, while a radix tree used to store English words (i.e. strings from an alphabet

of 26 characters) would have r = 32 = 2
5

(the nearest power of 2) and, consequently, up

to 5 children per node.
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Figure 3.1. An example of a trie

A Patricia trie (sometimes stylized as "PATRICIA" which stands for "Practical Algorithm

To Retrieve Information Coded in Alphanumeric"), despite often being used as another

equivalent term for "radix trie" by some sources, is in fact a variant of the binary (r = 2)

radix trie. Its difference lies in that rather than explicitly storing every bit of every key,

the nodes in a Patricia tree store only the position of the first bit which differentiates two

sub-trees and, as such, there are only ever n amount of nodes to contain n items [18].

The Ethereum whitepaper never mentions radix tries by name but instead solely focuses

on Patricia ones. This semantic ambiguity is not particularly relevant to our study so

henceforth we will likewise only be focusing on "Patricia tries".

Figure 3.2. An example of a patricia trie
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3.1.2 Merkle trees

A Merkle tree (also commonly known as hash tree) is a tree in which the data is stored

in the leaf nodes and every non-leaf node contains the cryptographic hash of the contents

of its child nodes. It was named after Ralph Merkle who patented it in 1979 [19] and is

regarded as the first of a type of data structures that are known as authenticated data

structures (ADS) [20]. Its utility derives from the fact that it allows parties to verify the

consistency of a given dataset without needing to exchange the dataset itself in its entirety.

While the usefulness of comparing hashes to protect against maliciously or uninten-

tionally corrupted data is evident, that same functionality could be achieved by simply

using a hash list. That would entail simply hashing the concatenation of the hashes of

all the data in our dataset and the result would serve the same purpose as a hash tree’s

root node. However, the tree structure further introduces a mechanism called Merkle

proof, comprised of a leaf node and the tree’s branch consisting of all of the hashes going

up along the path from that node up to and including the root node. Someone reading

such a proof can verify that the hashing, at least for that branch, is consistent going all

the way up the tree, and therefore that the given leaf actually is at that position in the

tree [21]. Using the above process one can efficient verify the membership of a value in

a Merkle tree but the potential non-membership of it can similarly and equally efficiently

be verified as well.

Figure 3.3. An example of a hash tree

A practical benefit of Merkle proofs is that they permit integrity checks of tree branches

before even the entire Merkle tree is available, let alone the data itself. For example, let’s

assume that our application is currently downloading the tree depicted in Figure 3.3 and

would like to verify the integrity of data block L2. This can be verified in logarithmic
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time if the tree already contains hashes 0-0 and 1 by firstly hashing L2, then hashing the

concatenation of 0-0 and L2’s hash and iteratively repeating this process until it reaches

the top hash. If at any point the produced hash differs from the downloaded tree’s one

then we have identified an invalid data block in the corresponding subtree (though not

necessarily due to an erroneous L2), otherwise we can be certain that L2 is indeed valid. In

the latter case and in a real-world application (where the hash tree would be vastly deeper)

this would mean that L2’s download could begin simultaneously with the download of the

rest of the tree. This is of utmost importance in distributed applications where exchanging

data can be costly and time-consuming and so it would be valuable to know to discard

invalid data before downloading them.

Furthermore, when dealing with blocks of data that change over time in a distributed

system, nodes can preserve a Merkle tree to facilitate data synchronization. Whenever

updating, instead of comparing entire datasets to figure out what changed, a node can

simply perform a hash comparison of Merkle trees. This way, only subtrees whose root

node changed hashes need to be requested and sent over the network, saving on poten-

tially valuable network bandwidth.

Effectively all major blockchains make use of Merkle trees in some way but these

trees had been used in a vast variety of applications long before blockchain technology.

Indicatively, they are used by the Git version control system as well as a number of NoSQL

distributed database systems such as Apache Cassandra and Amazon DynamoDB.

3.1.3 Ethereum’s Modified Merkle Patricia Trie

Contrary to the simplified descriptions of tries we have given so far where only singular

elements (keys) where stored, Ethereum needs to store not merely keys but key-value

pairs. A common use case for that — though not the only one, as we’ll examine in the

next section — would be storing an account’s address (key) and its associated balance in

ETH (value). As such, both leaf and intermediary nodes need to include a "value" field to

fulfil that requirement.

The modified MPT that Ethereum uses is, in fact, not a binary trie as "Patricia" would

suggest but instead a hexadecimal one. Furthermore, the modification comes from intro-

ducing some additional complexity to the data structure, since here a node can be one of

the following:

1. NULL (represented as the empty string)

2. branch: A 17-item node [v0 .. v15, vt]

3. leaf: A 2-item node [encodedPath, value]

4. extension: A 2-item node [encodedPath, key]

Branch nodes effectively act as routers, providing a child node at every nibble (hex-

adecimal digit) wherever they are found, in addition to a value (the 17th item) in case a

key ends at that node in its traversal. An extension node is interjected after a branch
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node wherever there is a shared prefix between multiple keys at some nibble and saves

space in the way that radix tries in general are useful for. Lastly, if after some branch

node’s nibble there is only a single key to be stored a leaf node is used, containing the

non-shared suffix of that key along with the value corresponding to it.

This data structure, albeit somewhat complicated, is greatly space-efficient as well

as scalable, designed to be able to accommodate vast amounts of data. Moreover, it is

optimized for updating by requiring a minimal amount of nodes to be created or altered

as new elements are added to the trie, with the vast majority of nodes usually remaining

intact.

While this optimization serves several functions, it does adversely introduce some

ambiguity. When traversing paths in nibbles, we may end up with an odd number of

nibbles to traverse, but because all data is stored in bytes, it is not possible to differentiate

between, for instance, the nibble 1, and the nibbles 01 (both must be stored as 01). This

is solvable by prepending a prefix nibble in all 2-item nodes (i.e. extension and leaf ones)

during their encoding to signify the difference between odd and even partial path lengths.

Figure 3.4. Simplified example of Ethereum’s modified MPT 1

All that we have described here in words can be better understood by examining

the simplified Ethereum use example in Figure 3.4, where one such modified MPT is

constructed to contain 4 key-value pairs with some prefix overlap.

1
Source: Lee Thomas, https://ethereum.stackexchange.com/a/6413/100602
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From all these we can infer a property of MPTs that is of paramount importance to

the structure of Ethereum, that of determinism. In other words, two MPTs containing the

same key-value pairs are guaranteed to be identical down to the last byte. As such, it

becomes easy to communicate MPT roots across different nodes for validation purposes

because it is a certainty that if, for example, two nodes have independently locally con-

structed the same state MPT then they must also have ended up with the same MPT

root.

Lastly, it is worth noting that this structure is not set in stone as explicitly stated

in the yellowpaper [2]: "The core of the trie, and its sole requirement in terms of the

protocol specification is to provide a single value that identifies a given set of key-value

pairs, which may be either a 32-byte sequence or the empty byte sequence. It is left as an

implementation consideration to store and maintain the structure of the trie in a manner

that allows effective and efficient realisation of the protocol". Nonetheless, modified MPTs

have been widely adopted as part of the Ethereum standard given that they provide unique

advantages in storage of key-value data as well as fast verifiability through Merkle proofs.

3.1.4 Use in Ethereum

The modified MPT is used in four different interrelated places in Ethereum’s architec-

ture and we will examine each one separately.

3.1.4.1 World State Trie

There is one global state in Ethereum and it is represented by the singular world state

trie which is updated over time. This trie is not contained in any block’s data but is

rather constructed by every node separately during their initial sync to the network and

is then constantly kept up-to-date upon the receival of additional blocks and transactions

from other nodes. That way, it can be queried at any time to retrieve any and all data

associated with any Ethereum account.

The Ethereum world state is a mapping between addresses and account states. More

specifically, the key-value pairs that comprise the world state trie are always keccak256(

ethereumAddress) keys paired with rlp(EthereumAccount) values. Ethereum accounts, as

we have examined in the previous chapter, consist of a 4-item array of [nonce, balance,

storageRoot, codeHash] with storageRoot in turn being the root of another MPT.

Accounts in Ethereum are only added to the state trie once a transaction involving

them has taken place. Simply creating a new account A will not cause it to be appended

to the state trie — this will only happen after a successful transaction is recorded with

A as the recipient. This behaviour constitutes a protective measure against malicious

attackers who could otherwise costlessly create new accounts and bloat the state trie.

3.1.4.2 Account Storage Trie

The account storage trie is where the data associated with an account is stored. This

is only relevant for contract accounts, as for EOAs the storageRoot is empty (and the

38



3.1.5 Advantages of MPT use

codeHash is the hash of an empty string). Values contained in this trie can be retrieved by

querying with the integer position of the stored data and the related block ID.

3.1.4.3 Transactions Trie

Each Ethereum block has its own separate transactions trie wherein all the transac-

tions included in that block are encoded. The choice of which transactions to be included

in it used to be decided by the miner who assembled that block, while post-Merge this

responsibility belongs to validators as explained in Section 2.3.1.

The key-value pairing here is an rlp(transactionIndex) key (the index within the block

the transaction is included in) paired with the contents of the transactions which we

presented in Section 2.2.5. Contrary to the aforementioned tries, the Transactions trie

is immutable and once the block is validated the transactions it contains can never be

changed nor included in some other block. As such, a finalized transaction in the network

can always be reliably and uniquely located by knowing the block in which it was included

and its position in that block.

3.1.4.4 Receipts Trie

Similarly to the transactions trie, every block contains the root of a receipts trie using

the same type of key (rlp(transactionIndex)). The difference here however is that, instead

of the transactions themselves, the receipts trie records the outcomes (i.e. receipts) of

these transactions and these are not included in each block but are rather recreated by

each client locally. In order to validate a transaction’s T receipt one simply needs to

re-execute T on the state that the network had when T was originally executed. The

fields that can be found in such a receipt include the resulting MPT root, the gas that

ended up being used, a set of logs created as a result of the transaction’s execution as

well as a Bloom filter composed of information in those logs (more on Bloom filters’ use

in Section 3.1.8). Each log record can include up to 4 indexed topics in it for the type of

event, the sender and receiver addresses, as well as for any other related (but short-form)

data.

It is worth noting that the transactions and receipts trie, due to the nature of the keys

they contain as well as their lack of updating over time, do not particularly take advantage

of the Patricia optimizations we went over earlier. Still, these tries are too coded as MPTs

for uniformity purposes, as Ethereum has deemed it less maintainable to implement and

optimize a separate Merkle tree data structure in every client just for them.

3.1.5 Advantages of MPT use

Having explored how MPTs are used by Ethereum, we should also expand a bit on

what are the benefits they provide that have rendered them so integral to Ethereum’s

architecture.

One such benefit we already went over in Section 3.1.2 is the ability for partial verifica-

tions. Given that everything in Ethereum is ultimately representable as simple key-value
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Figure 3.5. MPTs in Ethereum 2

pairs, it might seem that both read and write times could be improved by a flat structure

instead of a tree one. However, a vital aspect of blockchain applications is their ability

to verify each and every piece of data they receive from the network before accepting it

as authentic. Taking the state MPT as an example, were we to instead try to preserve its

(hundreds of millions of) contained accounts in a flat key-value storage then any modifica-

tion of any kind at any account would necessarily always result in the need to rehash the

entire dataset. These problems are solved by the MPT data structure as trie branches are

self-contained (in that their hashes are unaffected by changes in different trie branches)

and much more quickly verifiable by any peer even before the have downloaded the rest

of the MPT. Lastly, modifications in the trie leaves only require a logarithmic number

of hashes to be recalculated, a major improvement in efficiency when dealing with the

colossal number of data in the Ethereum blockchain.

Furthermore, the very existence of light nodes — lightweight Ethereum nodes that

do not download the entirety of the blockchain but merely their headers, which we will

analyze in Section 4.1.3 — is only possible thanks to the clever use of MPTs. A sufficiently

advanced light node protocol can easily get verifiable answers to a variety of queries.

For instance "has transaction T been included in block B?" can be answered by checking

B’s transactions trie while questions like "does account A exist?" or "what is A’s current

balance?" are handled by the state trie. More complex queries (e.g. "what would be the

output of running transaction T on contract C?") require computations that are out of the

scope of our analysis, but it is sufficient to point out that many of them can likewise be

handled by the state trie [21].

2
Source: Lucas Saldahna, https://www.lucassaldanha.com/ethereum-yellow-paper-walkthrough-2/
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3.1.6 Bonsai Tries

As already mentioned, MPTs are the standard but not the sole way of storing Ethereum

data. Bonsai tries are an additional data storage format to the traditional MPTs and, at

the time of writing, are implemented as an optional alternative to them only in the Besu

execution client (more on clients in the following chapters).

Their goal is to improve access speeds to the current state through piles of leafs

and trie logs to quickly access them, where in traditional MPT one must traverse all the

branches by hash in order to read a leaf value. Instead of keeping those large MPTs within

storage, Bonsai keeps only the most recent trie in its storage as well as a trie log layer.

This log layer provides a small store of changes (a diff between the states of a parent block

and a new one) that, when needed, can be used to construct the complete history of the

tries. This "flatter" approach effectively reduces storage and offers much faster times for

nodes to read any data about Ethereum’s current state, such as O(1) account lookups.

Figure 3.6. Bonsai trie visualization 3

The main drawback of Bonsai tries when used to store Ethereum state is that, while

they do make accessing recent blockchain data much faster, it becomes increasingly more

resource-intensive the further in history we try to read data. If this is a common use case

then using MPTs instead remains the optimal choice.

3.1.7 Verkle Trees

In 2018, John Kuszmaul proposed a new alternative data structure to Merkle trees,

called Verkle trees [22]. Verkle trees are constructed with a significantly larger branching

factor k than Merkle trees do (where typically k = 2) and leverage that fact by using a

3
Source: https://besu.hyperledger.org/en/stable/public-networks/concepts/data-storage-formats/
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special type of hashing function, vector commitment [23], instead of conventional cryp-

tographic hash functions. Since proof size directly depends on the tree’s depth, these

shallower Verkle trees (with a proposed k = 256) naturally produce significantly smaller

proofs.

Figure 3.7. An example of a Verkle tree 4

We will not be going over their technical details here since Verkle trees are currently

still in a proposal phase with no indication of urgency by Ethereum developers to im-

plement them in the short-term. The key takeaway is that while a Verkle tree is more

expensive to initially construct, its proof size complexity is only O(logk n) as opposed to a

Merkle tree’s O(klogk n), while preserving the same O(klogk n) time complexity for updat-

ing a file (where k is the tree’s branching factor and n the number of files to be stored in

the tree).

While the developers’ intention is to sometime transition Ethereum to exclusively

relying on Verkle trees to store execution state, this is quite a major upgrade and is

not meant to begin until a number of other unrelated Ethereum upgrades have been

successfully deployed. Nevertheless, a draft EIP has been written which would see the

introduction of Verkle state trees alongside the existing Patricia ones [25]. According to

it, the use of Verkle trees allows proof sizes to decrease by a factor of ∼6-8 compared to

ideal Merkle trees, and by a factor of over 20-30 compared to the hexary Patricia trees

that Ethereum uses today. Although fully integrating them to Ethereum is not trivial —

a hard fork would likely be required — and they require more complex cryptography to

implement, Verkle trees show serious potential and furthermore present large measurable

4
Source: [24]
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gains to scalability.

3.1.8 Bloom filters

While tries are rightfully in the spotlight when discussing Ethereum’s data structures,

for the sake of completeness it must be noted that they are not the only data structure

used in Ethereum clients. Another structure known as Bloom filter is used to enable

efficient querying of information related to accounts involved in transactions.

A Bloom filter is a space-efficient probabilistic data structure, named after Burton

Howard Bloom who conceived it in 1970 [26] and is used to check for element membership

in a set. False positive matches may occur (and increase in likelihood as elements are

added to the set) but false negatives are impossible. It is implemented using a simple

bit array of length m (with all elements initialized to 0) and some k independent hash

functions with each mapping to some of the array’s elements so as to ideally jointly

approximate a uniform random distribution. Insertion and search time complexities are

O(k) while space complexity is naturally O(m) — the bit array itself. It is noted that a

bloom filter can be made using k = 1, though in that case a sufficiently large m is required

to preserve a low false positive rate.

Figure 3.8. A Bloom filter example

Insertion of new elements to the filter can easily be done by hashing each new element

and setting to 1 all the bits corresponding to its hashes, while the removal of elements is

not supported. A trivial example of how element inclusion checks are done in Bloom filters

can be understood through the Bloom filter depicted in Figure 3.8. This filter includes

the elements {x, y, z} which were inserted by hashing each one separately and updating

the array’s bits that belonged to its hashes. When querying for a new element w we first

hash it too and then check whether all the hashes’ corresponding bits in the filter have

already been set to 1. In this case there is at least one bit for which this condition is not

satisfied so we can be certain that w has not been included in this filter. Had that not

been the case, we would not have proved the existence of w in the filter but rather merely

have an indication that it may have been included in it, which would then prompt us to

perform an actual search for it in our underlying data.

In Ethereum, since we want the various events that can occur as a result of trans-

actions to be easily searchable, it would be a significantly time-consuming process for
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an application to be examining all the transactions in each and every block regardless

of what it is searching for. To prevent this, every block contains a logsBloom filter which

consists of a simple 2048-bit string constructed from hashing (using keccak256) parts of

the log records found in the receipts trie.

A common use case of them would be trying to retrieve some historical information

regarding a particular account A, such that would require identifying whether A is in-

volved in the transactions included in some block B. Instead of tediously going over all

the transactions in B, we can instead take the keccak256(A) hash and compare it against

B’s logsBloom. Through this process, a potential application will need to check far fewer

blocks for such a query than it would otherwise have to. While the "positive" blocks will

each still require further individual checking as there is a risk of false positives, there is

a certainty that A was not involved in any transaction included in any other block.

Furthermore, by leveraging the up to 4 indexed topics included in each log record

and integrating them in our Bloom filter (each of these will set some different bits to 1)

we can further narrow our search to some specific fields, e.g. find only the blocks that

include a transaction where A was the recipient. Evidently, this use of Bloom filters

can drastically increase performance of both applications like block explorers but also of

nodes themselves, which are able to quickly scan over the headers of blocks and quickly

determine which ones are relevant depending on their workload at any given time.

3.2 Helper Functions

When we earlier described the use of MPTs we mentioned certain functions like

keccak256() and rlp() without providing any explanation for them. Let’s explore them

a little bit here before we shift our focus to other aspects of Ethereum.

3.2.1 Hash Functions

A fundamental architectural characteristic of MPTs and Merkle trees at large is the

hash function chosen. A hash function can be any function that can map data of arbitrary

size to fixed-size values
5

(called hashes), but a valuable one should ideally meet some

additional criteria. A cryptographic hash function (CHF ), which is what interests us

here, ought to make it impossible to deduce an input value from its hash, while also

additionally ensuring that there are no collisions, i.e. chf(input1) , chf(input2) ∀ input1

, input2. Lastly, any small change to an input value should drastically change the output

of a CHF.

A number of CHFs have found various applications over the years, including SHA-256

(Secure Hashing Algorithm 256) in Bitcoin. For its purposes, wherever a hash is needed

Ethereum uses Keccak-256 (often referred to as simply "Keccak", though the Keccak

family includes hash functions other than Keccak-256) which is the original implementa-

tion of SHA-3, before SHA-3 was officially standardized following the 2012 Cryptographic

5
Though unrelated for us here, it is noted that there also exist hash functions that can generate hash

values of arbitrary lengths such as RC6 [27]
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Hash Algorithm Competition by the American National Institute of Standards and Tech-

nology (NIST) [28]. While both these CHFs have proven security, the newer Keccak-256

is considered to be even more secure than SHA-256 albeit comparatively slower to run in

non-specialized hardware due to some additional precautionary measures taken.

Keccak-256 allows for arbitrary inputs and an infinite input space, thus being able

to provide a singular 256-bit hash for arbitrarily large files or byte-arrays (as is the case

with our trie nodes). Its implementation details are beyond the scope of this thesis, but

it should be noted that so far Keccak-256 as used by Ethereum has exhibited perfect

collision resistance (though collisions have been observed in round-reduced versions of

Keccak [29]).

3.2.2 Encoding Functions

Since everything is stored in key-value pairs, in the effort to decrease the size of chain

data on disk it would be desirable to encode the value part of those pairs in some space-

efficient way. Thus, a necessity arises to encode complex structures into easily storable

values, while of course also being able to recover our original structures from the chosen

encoding whenever needed.

3.2.2.1 Recursive Length Prefix (RLP)

Recursive Length Prefix (RLP) is an encoding function that was created specifically

to be used in Ethereum where object encoding was needed, including transaction fields,

nodes in MPTs and blocks in their entirety. We have already mentioned some of its uses,

such as in the world state MPT where a keccak256(ethereumAddress) key is used to store

an rlp(EthereumAccount) value but also in the transactions and receipts MPTs where even

the keys themselves are encoded as rlp(transactionIndex).

RLP can be used to encode nested sequences of bytes into flat sequences of bytes that

can be decoded back into the original nested sequences. RLP is self-describing, meaning

that decoding any output of it can be performed without any other prerequisite knowledge.

This is achieved by having the first byte of the serialised content indicate the type of data

that follows. For example, a single byte the value of which is in the [0x00, 0x7f ] range is

itself its own RLP encoding, while a string’s encoding will begin with a byte in the range

[0x80, 0xb7] based on its length, followed by the length itself and the string’s bytes in

a sequence. A list is encoded similarly (with the first byte in the range [0xc0, 0xff ]) as

are its contents which accounts for nested elements. This approach makes RLP decoding

fairly straightforward, though a limitation of it is that it cannot support payloads (neither

strings nor arrays) with length higher than 2
64

. A detailed strict definition of RLP can be

found in the yellowpaper [2].

As we established, RLP is used abundantly in Ethereum on account of the several

nested objects throughout its architecture that necessitate some encoding in order to be

stored efficiently. RLP was originally the sole encoding function of Ethereum and was

used in all cases where it was applicable, but that changed after The Merge additionally

introduced SSZ.
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3.2.2.2 Simple Serialize (SSZ)

Simple Serialize (SSZ ) was first proposed by Vitalik Buterin in 2017 and soon after

became the canonical serialization format of Ethereum’s consensus layer, where it has

completely replaced RLP except in the peer discovery protocol. Its goal was to be simpler

than RLP, efficient to traverse, and also support Merkle-proof schemes by design. SSZ

is also bĳective, meaning that serializing the same object of the same type will always

yield the same result, while the serialized representations of two different objects are

guaranteed to be different, an essential characteristic for its use in Ethereum’s consensus.

Unlike RLP, the newer SSZ is not self-describing but rather relies on a schema that

must be known in advance before decoding it where the precise layout of the serialized

data (type, value, size, and position) is defined. Its goal is again to represent objects

of arbitrary complexity as strings of bytes which merely consists of a straightforward

conversion for basic types but becomes more complex in the case of composite types of

potentially variable lengths. We will not go over its specification
6

here, but the gist of it

revolves around constructing a byte sequence with offset values in the place of the actual

data while adding the latter to a heap at the end of the serialized object.

SSZ is less space-efficient than RLP but enables indexing, i.e. accessing inner values

of the data structure without fully deserializing it. Requiring a schema could itself be

considered a downside of SSZ but it also means that it is extensible so that new data

types could potentially be added to the serialization format without breaking backwards

compatibility. Moreover, its ability to "merkleize" (i.e. transform into a Merkle tree repre-

sentation of the same data) efficiently is regarded as a major architectural advantage. For

these reasons, the Ethereum development team has expressed its intention to eventually

retire RLP entirely in favour of SSZ.

3.3 Storage Engines

It will be useful for our later analysis to not only have a high-level overview of the

data structures chosen in Ethereum but also of the way they are actually stored on the

disk at the fundamental level. This is generally done through the use of some LSM

(Log-Structured Merge) tree based storage engine (a key-value store without schema

constraints) organized on disk in multiple layers. This kind of stores differ from SQL

databases in that they do not have a relational data model, nor do they support indexes.

They are recommended for write-intensive scenarios but less so for read-intensive ones,

making them ideal for the average expected workload of an Ethereum node.

In order to minimize the amount of random writes on disk, when new records are

ready to be written to a LSM-based storage they are first batched in memory (in a data

structure called MemTable) and are only inserted to a level on the disk once the size of that

batch reaches a certain threshold. Furthermore, they periodically perform a compaction

which consists of selecting multiple files and merging them together — a process that can

6
As is often the case in cutting edge blockchain developments, this specification is not yet part of some

published research paper but is rather maintained in the official GitHub repository: https://github.com/

ethereum/consensus-specs/blob/dev/ssz/simple-serialize.md
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be done efficiently since files in disk levels are kept sorted (by key). This is a crucial part

of their design, since through compaction a handle can be kept on their read performance

which degrades as the number of files increases. Compactions are by default performed

in some background thread in most implementations but may also be invoked manually

in the foreground if that is deemed desirable.

Given this architecture and that LSMs are optimized for multiple writes, locating some

particular key would likely require accessing several files because the requested one could

be found in any of the levels. To minimize redundant reads, a bloom filter is used across

levels as a memory-efficient way of working out whether a file contains some key.

Of course, there are some limitations in the use of LSMs to store Ethereum data.

One such is that in Ethereum everything is identified via hashes which are, by definition,

uniformly randomly distributed. For an LSM that keeps everything sorted by identifier

(key), this fact evidently makes accessing values associated with hash keys very expensive.

However, without a specific database schema for Ethereum MPTs by design, this is a

challenge without a direct optimization solution.

While a comparative analysis of storage engines is beyond the scope of our study, we

can briefly mention the main open-source ones that are currently used by the various

Ethereum clients along with some noteworthy information for each:

• LevelDB: The most popular of its kind and developed by Google, LevelDB is the

storage engine used by a variety of non-blockchain and blockchain applications

alike, including Bitcoin. It does not provide a server nor a CLI (command-line

interface) but rather applications are expected to use it simply as a library.

LevelDB employs a 7-level architecture in addition to up to 2 in-memory tables, with

each level containing multiple files called SSTables (Sorted String Tables). As their

name implies, an SSTable is a simple abstraction to efficiently store large numbers

of key-value pairs while optimizing for high throughput.

Each level’s capacity is approximately an order of magnitude greater than that of the

previous level, which also comes with a comparatively slower access time. When

a new key-value pair is to be added, as described above, it is first inserted to a

MemTable and when that is filled an SSTable file is created which is then merged

with the SSTables in Level 0 in disk. As the number and size of SSTables in Level 0

increases they are compacted into Level 1 and so on for the rest of the levels. This

write flow is depicted on a high-level in Figure 3.9.

• RocksDB: Developed by Facebook, RocksDB began as a fork of LevelDB and still

shares many similarities to it. It likewise uses the same leveled approach with

a MemTable, storing disk data in SSTable files. RocksDB is optimized for high-

concurrency and multi-threaded workloads where it can offer greater read and write

performance than LevelDB, though by using comparatively more disk space [30].
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Figure 3.9. A high-level overview of LevelDB write flow

• MDBX: MDBX is a community-maintained data store that, contrary to the previous

two, is based on B+ trees instead of LSMs. We need not expand more on B+ trees

here, especially since MDBX is solely used by Erigon (see Section 5.4.4) out of all

the clients in our study, but it should be noted that they offer a more balanced

performance between read and writes, making them preferable to LSMs when more

reads (especially random ones) are expected. Lastly, MDBX is additionally ACID-

compliant
7
, making it more resilient than its alternatives.

7
ACID (Atomicity, Consistency, Isolation, Durability) is a set of properties of database transactions intended

to guarantee data validity despite application crashes or other failures
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Nodes and Clients

The terms “node” and “client” are often used interchangeably but they are not equiva-

lent. A node represents the computer that connects to the network and performs certain

actions such as receiving, storing and sending data, which is done by running client

software. Therefore, while we often generically refer to network participants as "nodes",

we ought to turn to "clients" whenever we are interested in any and all implementation

details.

The Ethereum network is made up of nodes, which are the only method to access it.

Nodes communicate with one another in order to validate transactions and record data

about the status of the blockchain while each keeps its own copy of the blockchain and

strives to guarantee that it matches the copies kept by the majority of other nodes. This

network of continually communicating nodes allows users to avoid relying on a single

source of truth and all of the challenges that entails.

Participating in the Ethereum network or, as it is commonly referred to, "running

a node", involves running client software (which we will imminently examine) on some

computer while maximizing its uptime. An Ethereum node can be run on an average

consumer-grade home computer, but most users opt to run their node on dedicated hard-

ware to eliminate the performance impact on their machine and minimize node downtime.

Many nodes are operated by large organizations and crypto-related companies (e.g.

cryptocurrency exchanges), but truly anyone can run a node. While network validators,

as described in Section 2.3, are naturally required to run a node, one does not need to

be a validator in order to do so — in fact, no ETH whatsoever is needed for that. While in

that case the node operator will not have any financial rewards, there are other benefits to

running an Ethereum node including privacy, security and improving the decentralization

of the network by reducing the user’s need for third-party services. The latter is actually

the cornerstone of decentralized blockchain systems commonly summed up in the phrase

"don’t trust, verify", i.e. using one’s own node instead of relying to any third parties for

information about the state of the network.

4.1 Node Types

Fundamentally, there are 3 distinct types of Ethereum nodes that differ in the way

they consume block data and the utility they provide. These are light, full and archive,
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with the various client implementations choosing to support any number of them.

4.1.1 Full Node

Full nodes store the current and the most recent blockchain state (by default, up to the

last 128 blocks in most implementations) and participate in verifying and validating each

and every transaction that takes place on the Ethereum network. When a smart contract

transaction occurs, full nodes execute all of the instructions in it and determine whether

or not the smart contract execution is producing the expected results. Full nodes also

participate in block validation, verifying all blocks and state and are thus the conventional

node type that validators use.

A full node will usually take a lengthy time to initially sync, the reasons for which will

be our focus in Section 5.1. As that syncing progresses, the node does not necessarily

retain historical blockchain states (also known as "pruning", which we will likewise inspect

in the next chapter) but these can nonetheless be recreated on demand since they are

derived from the blocks’ data. Such a request would certainly be resource-intensive and

would take a longer time to be fulfilled than one depending only on the current blockchain

state but it is important to point out that no information is lost by pruning as it can always

be retrieved if necessary.

4.1.1.1 Bootstrap Node

A bootstrap node (or bootnode) is not a separate type of node, but rather a — usually

stripped down — version of a full node which provides initial configuration information to

new nodes joining the network. In most P2P networks, since nodes can join and leave at

any time, new users may struggle to find peers. Bootnodes are useful in combating this

issue by being highly available and providing a newly joining node with vital resources

and information regarding the network itself and mainly guiding them to discover other

peers.

The connection information (addresses) of several Ethereum bootnodes is hard-coded

in the source files of most client implementations so that they can begin syncing without

requiring user configuration, at least in regards to the network node discovery protocol.

Despite that, additional bootnodes can generally be manually provided as an argument

when starting a node or even during its runtime.

For disambiguation purposes, it is noted that node "bootstrapping" in the context

of this thesis refers to the process of the initial synchronization of a node and is not

related to bootstrap nodes — though this process naturally does internally initially involve

requesting information from them.

4.1.2 Archive Node

An archive node does everything that a full node does while also preserving an archive

of all historical states. Where a full node will prune those interim states to save on

resources and decrease sync time, an archive node will disregard such constraints and

store as much information as possible for quick querying capabilities.
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An archive node will verify all downloaded blocks, re-execute all transactions, and

write all intermediate states to the disk. The trade-off for this costlier initial sync and

significantly greater storage requirements (over 13TB using Geth at the time of writing) is

a much faster response time to questions regarding the blockchain’s history, e.g. "What

was X ’s account balance on this day 2 years ago?" or "At which block did X ’s account

exceed Y ETH?".

At times, even full nodes that have the ability to rebuild past states find it quicker to

simply query archive nodes when posed with historical questions. Rebuilding historical

blockchain states is a costly operation for those and it is generally expected that some

archive node will be quick to fulfil such requests. For these reasons, archive nodes are of

limited use to an average user but have proven effective in certain applications such as

block explorers and chain analytics.

Figure 4.1. Ethereum mainnet archive node disk size over time 1

4.1.3 Light Node

Instead of downloading every block in its entirety, light nodes achieve their lightweight-

ness by merely downloading and storing the blocks’ headers. They do not even hold the

complete current blockchain state since those headers only contain summary information

about the blocks’ contents but are able to request such data on-demand from full nodes.

Light nodes use the minimum amount of data possible to interact with the Ethereum

1
on February 1 2023; Source: https://etherscan.io/chartsync/chainarchive
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blockchain but are still able to respond to more intricate requests by in turn requesting

additional information from full nodes.

Naturally, light nodes are suitable for low memory and computational devices and

maintaining a light node involves the least investment in both hardware and technical

skills. Eventually, it is envisioned that light nodes could even run on mobile phones

or embedded devices. Unsurprisingly however, these conveniences are accompanied by

their own set of drawbacks.

Light nodes’ heavy reliance to full nodes necessitates the existence of enough full

nodes willing to altruistically serve data to them (which is generally done by setting a

related flag and dedicating a maximum amount of system resources to handling light

nodes’ requests). In practice few full nodes opt to do that, leading to a struggle to find

peers and, consequently, noticeable delays in data retrieval. But even in ideal condition

with enough peers willing to serve light node data, it is undeniable that even the smallest

of network delays would add up to a significant degree if data retrieval was a frequent

requirement. For that reason, if a node operator anticipates such a use case from their

node, the optimal choice would be to forego light nodes and instead operate a full node to

be able to access this kind of information directly.

Lastly, light nodes cannot participate in consensus (block validation) and are thus of

no use to validators who wish to stake ETH and receive financial rewards for that.

4.2 Client Types

In PoW Ethereum there was only one type of client, formerly simply referred to as

"Ethereum Clients" and now as Execution (Layer) Clients. After The Merge however, ad-

ditional client software was needed to support the consensus upgrade, called Consensus

(Layer) Clients.

An execution client runs the code pertaining to the execution layer, which is where

the transactions actually get executed and enact changes on the state of the blockchain.

It is thus tasked with maintaining an up-to-date copy of the latest state by validating and

handling all the transactions that are communicated through the network. On the other

hand, a consensus client runs the code for the consensus layer, i.e. is responsible for all

the logic that enables the node to stay in sync with the Ethereum network. It achieves

that by keeping up with the canonical order of blocks and transactions, as defined by the

PoS criteria described in Section 2.3.1. Each client has its own distinct networking stack

— sometimes referred to as P2P or network layer — through which communication with

peers of the same type can be established and which is used to gossip transactions (in

the case of execution clients) or blocks (in the case of consensus clients).

These types of clients were originally called "Eth1" and "Eth2" clients respectively.

This naming scheme was deprecated as it gave the false impression that execution clients

would be discontinued in PoS Ethereum. In fact, consensus clients now operate alongside

and complement the execution ones and after The Merge every node is required to run

them both together in order to gain access to the Ethereum network. An authenticated

connection is required between the consensus and the execution clients which is estab-

52



4.3 Consensus clients

lished through a JWT (JSON Web Token) file. This signed token acts as a shared secret

used to check that information is being sent to and received from the correct peer.

There are several implementations of both types of clients in various programming

languages maintained by different teams of developers. One could justifiably wonder why

is that the case, when surely securing and updating a single implementation of client

software should be easier than doing so for multiple ones. A simple reason is that not

all implementations are focusing on the same uses, with some opting for the highest

efficiency and speed possible, while others aiming to minimize resource consumption

which allows them to run even on low specification computers. However, the main reason

for promoting what is known as "client diversity" is indeed network security. Bugs or

security holes are bound to eventually spring up somewhere in any decently complicated

software, no matter the amount of auditing or the number of programmers involved in

preventing them. When that happens, it is necessary that there exist enough nodes

running healthy client implementations on the network so as for the faulty clients to not

pose any threat to its stability. While this broadly applies to both types of clients it is

of paramount importance to consensus clients in particular since a bug in these could

result in double spending and invalid blocks being perceived as valid. An accidental fork

of that nature is not implausible and did, in fact, happen in PoW Ethereum in August

2021, when a bug in an older version of Geth clients caused several mining pools to split

from the main chain
2
. This thankfully only had minimal impact because the majority of

miners happened to have had already updated their clients and the longest chain was

indeed the bug-free one. Evidently, it is crucial for the health of the network that no single

client implementation possesses a dominant share of the network, hence eliminating a

potential single point of failure.

A thorough analysis of the various execution client implementations and their ar-

chitecture is going to be the basis of the following chapters of this thesis. But before

moving on, we should first briefly go over the most popular consensus clients and their

bootstrapping which will also be relevant in our later benchmarks.

4.3 Consensus clients

4.3.1 Implementations

All client implementations mentioned here — as well as the 4 major execution client

ones in the following chapter — are free, open-source and cross-platform (available on

Windows, Linux and MacOS).

• Lighthouse: Written in Rust and maintained by Sigma Prime, it aims to be secure,

performant and interoperable in a wide range of environments, from desktop PCs

to sophisticated automated deployments. Lighthouse has been production-ready

since Beacon Chain genesis and is currently one of the most widely used consensus

clients along with Prysm.

2
Source: https://www.theblock.co/post/115822/bug-impacting-over-50-of-ethereum-clients-leads-to-fork
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• Prysm: Written in Golang by Prysmatic Labs, it prioritizes user experience, docu-

mentation, and configurability for both solo stakers and institutional users.

• Teku: Written in Java by ConsenSys, it is dedicated to building enterprise-ready

clients and tools for interacting with the core Ethereum platform but is compara-

tively more resource-intensive that the alternatives.

• Nimbus: Written in Nim and maintained by the Status.im team, it strives to be as

lightweight as possible, allowing it to perform well even on embedded systems or

resource-restricted devices.

Figure 4.2. Consensus client distribution on Ethereum mainnet 3

4.3.2 Checkpoint Sync

Before an Ethereum node can perform any meaningful work, both its consensus and

its execution clients must initially get in sync with the network. The execution client in

particular requires to know the head of the chain as a target to begin syncing towards and,

post-Merge, it is the responsibility of the consensus client to provide that correct chain

head. Contrary to execution clients where the initial sync is a seriously time-consuming

process — and which will be our focus for most of the rest of this thesis — it is a much

more effortless matter in consensus clients. While they too need to initially sync, there

exists a quick and easy way of achieving that by employing a sync mode called checkpoint

sync (also known as weak subjectivity sync).

3
on February 1 2023; Source: https://clientdiversity.org/
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Of course, there exist alternatives to bootstrap a consensus client, most notably op-

timistic sync which involves "optimistically" assuming that downloaded blocks are valid

so that the execution client can commence syncing with some presumably valid chain

head while the consensus client is still in the process of verifying it. But by contrast,

checkpoint sync is completed in a matter of minutes, upon which the consensus client is

considered synced and can immediately be used to guide the initial sync of an execution

client, without any potential risk of later invalidating the presumed chain head.

Checkpoint sync is performed by bootstrapping a consensus client with a parameter

containing the URL of another, trusted and already synced node which will provide a (weak

subjectivity) checkpoint block to act as the ground truth of the client’s chain. Once that

is completed, a further step ought to be taken by manually verifying that the legitimacy

of the received checkpoint by validating their chain head against another known source.

Following its checkpoint sync, a consensus client may also commence a backfill sync

so as to download the blocks from the checkpoint block back to genesis. All the consensus

clients listed previously have implemented checkpoint sync — though not necessarily

backfilling too, which is not a requirement to participate in the network or run a validator.

It must be emphasized that from a checkpoint-synced client’s point of view, the check-

point block has all the characteristics of a genesis block (except that it is found at a

non-genesis position in the chain). Even finalized blocks do not receive such a treatment,

since when a node encounters two conflicting finalized blocks then it is considered to

be experiencing a consensus failure and thus being unable to identify a canonical fork.

Conversely, if a checkpoint-synced client sees a block conflicting with a weak subjectivity

checkpoint, then it immediately rejects that block [31].

Given this description, it is clear that checkpoint sync involves "asking" and then

completely trusting an off-chain source about information regarding the network’s state,

an approach which objectively seems inherently insecure for a decentralized trustless

network. But somewhat counter-intuitively, checkpoint sync is actually considered more

secure than simply syncing from the genesis block. In order to comprehend the reasoning

behind that we ought to examine a PoS concept that we had omitted so far, that of "weak

subjectivity" and the perils it introduces in the form of "long-range attacks".

4.3.3 Weak Subjectivity

Subjectivity in blockchains refers to reliance upon social information to agree on the

current state — i.e. there may be multiple valid forks that are chosen from according

to information gathered from other peers on the network. The converse of that would

be objectivity, a case where there is only one possible valid chain that all nodes will

necessarily agree upon by applying their coded rules. But there can also be a third state,

known as weak subjectivity, which refers to a chain that can progress objectively after

some initial seed of information is retrieved socially.

Weak subjectivity naturally ensues from the fact that a node that comes online for the

first time (or even just after a long offline period) will necessarily have to ask a trusted

source what the head of the valid chain is. This seemingly completely undermines the
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trustless nature of blockchains and is an issue intrinsic to all PoS blockchains, where

selecting the correct chain from multiple forks is done by counting historical votes.

Weak subjectivity also enables a PoS-exclusive attack vector, known as "long-range

attack". When the newcomer node requests to learn about the canonical chain, a group

of validators that had been online for a longer amount of time can present any alternative

version of the blockchain beginning from the genesis block (or just the latest block that

the requesting node is aware of as being part of the chain) as the canonical chain. Since

there are no PoW proofs to be independently verified, as long as the presented chain is

internally consistent and passes some basic sanity checks, the newcomer node has no

way of knowing that it is being deceived [32].

Checkpoints embolden initial sync security by severely limiting the extent to which a

newcomer node can be presented with a fabricated chain. These checkpoints form a chain

in and of themselves (with each one pointing to its predecessor) and anyone connecting

to the Ethereum network for the first time knows a priori that the canonical chain must

include them, being thus effectively protected from the worst of long-range attacks.

These checkpoints may offer a way to prevent long-range attacks, yet still need to be

trustworthy themselves. It is not entirely impossible to imagine ways which could help

minimize trust for them even under the PoS framework. For instance, a couple of recent

papers proposed reusing Bitcoin mining to enhance PoS security by "anchoring" PoS

checkpoints to its mined blocks [33] [34], though this approach would necessarily create a

probably undesirable dependency between any blockchain that chose to implement it and

Bitcoin. Instead, Ethereum has opted for a more pragmatic approach using community

checkpoints.

As Buterin explained in 2014 [35] — Ethereum’s transition to PoS was indeed envi-

sioned even before its genesis block was mined — the kind of situation in which weak

subjectivity by itself would compromise a blockchain’s security is one where a power-

ful malicious entity can convince the entire community that the hash of some block

is different than it truly is, even despite a number of honest participants having been

online during that block’s creation and having its correct version saved on their comput-

ers. Understandably, any such entity (such as a hypothetical oppressive government or a

malevolent corporation, as a usual argument goes) that could infiltrate several centralised

entities to alter the community checkpoints could just as easily corrupt the client software

itself or trick users into downloading a compromised version of it. Even in the extreme

hypothetical scenario of a user that was willing to write the client software themselves (a

daunting task, to say the least) they too would need to get the protocol’s specifications

from some, likewise compromisable, external off-chain source.

In conclusion, while a decentralized system always seeks to minimize trust, in practice

one will always need to put some amount of trust to a party outside of the system, be that

to a software provider or to request social information about a checkpoint. Again, all these

worrying considerations only become relevant in the very unlikely event that a majority

of validators conspire to produce an alternate fork of the blockchain. Under any other

circumstances, there is only one Ethereum chain to choose from and weak subjectivity

checkpoints only facilitate and improve the users’ experience.
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Execution Clients

In this chapter we will be going over the main focus of this thesis and the subject of

our upcoming benchmarks, Ethereum execution clients. We will be detailing the char-

acteristics of the different initial sync modes, state pruning but also how each of the

major clients (Geth, Nethermind, Besu and Erigon) implements these and differs from

one another. Our overview will primarily be from the perspective of Geth which at the

time of writing represents around two thirds of the total execution clients of the network

— a clear sign of insufficient client diversity, which the different client implementation

seek to mend. Regardless, attention will be given to all important aspects in which those

implementations have distinguished themselves from Geth and the consequences of their

approaches.

Figure 5.1. Execution client distribution on Ethereum mainnet 1

1
on February 1 2023; Source: https://clientdiversity.org/

57

https://clientdiversity.org/


Chapter 5. Execution Clients

5.1 Initial Synchronization

As we explained in the previous chapter, bootstrapping an execution client in post-

Merge Ethereum requires a target chain head, meeting the consensus criteria defined by

Gasper. Assuming that an already synced consensus client has provided such a sync

target, the execution client can commence syncing with a few specific objectives to strive

towards.

First and foremost, it needs to download all the past blocks that are part of the

chain, which it naturally obtains by requesting them from rest of the network’s nodes.

Both internet speed and hardware (especially disk write speeds) can be an impediment

in that process. Then these blocks ought to be verified, confirming that block headers

are structured correctly, containing the hash of the previous block, a valid timestamp

and that the gas limit specified in it is not exceeded by the sum of the total gas used by

all the transactions contained in the block (this process additionally included checking

PoW proofs in pre-Merge Ethereum). Should any of the above fail then the entire block is

rejected as invalid.

A common misconception is that if a client has completed downloading the blocks then

it must also be in sync with the network. This is not the case because, by themselves,

the blocks do not automatically provide any information about the network’s state. State

data is implicit data, i.e. it is not gathered from the blocks’ information communicated but

rather needs to be produced through calculations. However, extracting state information

from the downloaded blocks is a process more time-consuming in itself than the block

download phase and we will be examining the different approaches to this process next

up.

But before going over the various sync strategies, let’s briefly point out that it is techni-

cally feasible to directly download any information necessary from some off-chain source

and then import it to one’s client of choice. While such a functionality is implemented

by the various clients (mainly for backup purposes), if it were to be used in such a way

it would evidently undermine the purpose of a decentralized blockchain network as it

relies on trusting a single party as the source of all information. Even in a consensus

client’s checkpoint sync (see Section 4.3.2) where we do rely on some other party for the

chain head, it is still assumed that we subsequently verify the blocks leading to it and the

transactions within them. So for security purposes, the undisputed standard procedure

for a client to get up-to-date with the network is to first connect to it and then request

any data needed from its peers, using one of the following sync modes.

5.2 Synchronization Modes

5.2.1 Full Sync

The first sync mode that we ought to analyse is certainly full sync so as to properly

understand the workload that an execution client is called to fulfill. A full sync consists

of downloading and fully verifying all the blocks received from the client’s peers, and then
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executing every transaction in every block one by one starting from genesis. In addition to

what was earlier described regarding the block’s header, a block’s full verification process

additionally incorporates checking if its contained transactions are valid in themselves

(the sender have enough balance to pay for it along with the gas indicated and their nonce

is correct) and that the transactions’ receipts included in the block match the receipts that

the client computed by executing the transactions. Having completed all these validations

itself, the client can always be confident about the integrity of the blockchain data it

maintains locally. It is for this reason that this sync mode is necessarily implemented by

all clients.

Transaction execution is done on the EVM that all clients also implement and it

is through their execution that the world state MPT (as described in Section 3.1.4) is

gradually constructed, a process that is actually significantly more time-consuming than

the block download phase. By sequentially re-executing transactions, including smart

contract execution on the EVM, state balances across all Ethereum accounts (EOAs and

contract ones alike) are updated, resulting in a different global state after processing each

block. Full sync provides the functionality to optionally save all these intermediate states

on the disk, with this also referred to as archive sync as it is the requirement to run an

archive node.

At the time of writing there exist almost 2 billion transactions in the Ethereum main-

net, steadily increasing by around a thousand per day. It is therefore no wonder why se-

quentially re-executing all these transactions as described would decidedly be the longest

part of the initial full sync process. There is also inherently no way to parallelize it as

each state s+ 1 is dependent on state s. Naturally, in all client implementations full sync

is by far the most time-consuming, requiring weeks to complete (except in Erigon, which

we will later be presenting in detail).

5.2.2 Fast Sync

Fast sync begins similarly to full sync by first connecting to a few peers and down-

loading all the blocks (first their headers and then later their bodies) from them. While a

client syncing using fast sync will too check the validity of the downloaded blocks’ headers

and will also download the transaction receipts (which contain information about their

outcomes), it will not re-execute the transactions themselves.

Instead, the client remains oblivious to the world state until it reaches a "recent"

enough block to the current chain head, called the pivot block. The pivot block is chosen

so that its state trie is recent enough to be close enough to the network’s current state, yet

far enough back in the blockchain that it is unlikely to change in the future. This allows

the node to quickly synchronize with the current state of the blockchain while minimizing

the risk of downloading a stale or outdated state trie. In most implementations its default

value is 64 blocks behind the chain head.

At that point, the client uses the pivot block’s world state root with the purpose of

replicating this state locally by iteratively requesting any data it is missing by its peers,

commencing what is known as the state trie download phase. This root node, as detailed
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in Section 3.1.3, may contain up to 16 branches to other nodes which will too initially

be unknown to the fast-syncing client and will require a separate request to its peers.

Then each of these nodes may in turn contain up to 16 branches which likewise must

be downloaded from the peers with this traversal and consequent requests to download

missing trie nodes from peers continuing until the client completes the reconstruction of

the entire state MPT, down to the leaves.

The state trie download phase takes a significant amount of time to be completed,

again longer than the block download phase. This is because the world state MPT consists

of hundreds of millions of nodes and it is estimated that about 1000 are deleted and 2000

new ones are added at every block. Given that the block time is at roughly 12 seconds,

this means that the client is attempting to synchronize a dataset that is changing more

than 200 times per second. Moreover, the pivot block will inevitably become stale several

times during the course of this process, meaning that enough blocks have been added to

the chain so as for the client’s current pivot block to not be considered as representative

enough of the current state. Whenever that occurs the client needs to pivot, i.e. pick a

more recent pivot block and start syncing again. Pivoting does not mean that the entire

process is started from scratch (as there will be enough overlap between the already

downloaded state trie and that of the new pivot block) yet it obviously increases the time

spent downloading and verifying state. It is for this reason that during this phase a fast

network connection with low latency becomes a more important factor that CPU or RAM,

although a fast SSD is still of the essence.

While a fast-synced client will not be able to quickly respond to historical queries (i.e.

ones further back than the pivot block), it is still used to sync a full node as it possesses

all the data necessary to respond to them — and can reconstruct the respective historical

states if required. Furthermore, once the syncing process is completed and the client

has successfully locally reconstructed the world state, it switches to full sync mode. All

the above ensure that a fast-synced client can practically guarantee the security of a full

client, but at a fraction of the time that is needed for a full sync.

Nonetheless, the once ubiquitous fast sync is clearly and steadily being phased out,

with Geth having already dropped it entirely, Besu actively advising against using it for

mainnet sync, and Nethermind seemingly likewise heading in the same direction. The

cause of that is the emergence of another sync mode called "snap sync".

5.2.3 Snap Sync

Geth’s release of v1.10.0 in early 2021 led to a paradigm shift in the bootstrapping of

execution clients by introducing the snap sync (or snapshot sync) mode. In snap sync,

while the client once again downloads and verifies all the block headers since genesis

from its peers, similarly to fast sync it will not re-execute transactions. But in contrast

to it, it will not seek to reconstruct the MPT of the current state either but will instead

merely request a snapshot of it by its peers.

To understand state snapshots, we must first examine the reasons that led to their

development. For all its benefits, fast sync eventually hit an originally unforeseen bot-
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tleneck in the form of network latency ultimately caused by the Ethereum’s data model.

Downloading the hundreds of millions of nodes one-by-one, even batching requests wher-

ever possible, resulted in millions of request to peers and even a few ms of waiting time

per request added up to several hours of the fast-syncing node doing nothing. To make

matters worse, a serving peer wanting to fulfil such a request had to traverse its state

MPT and locate some arbitrary node, requiring to touch up to 7 files (in the average imple-

mentation using LevelDB as detailed in Section 3.3) for every node requested and with no

meaningful way to retrieve these nodes batched as they are stored by hash. Subpar SSDs

used by some nodes as well as a probably low upload speed for most further compounded

these issues.

All these led to the reexamination of whether communicating the entire state MPT is

truly necessary during a client’s sync. In essence, the meaningful segment of the state

trie is only its leaves, which ultimately contain all the Ethereum accounts, i.e. the "value"

part of the key-value pairs that comprise it. While Merkle proofs are certainly vital for

verification purposes and the MPT structure enables a number of architectural benefits

(as we detailed in Section 3.1.5), in the case of the initial sync this very structure also

poses a significant impediment. Since a client obviously trusts the data it has already

verified, traversing the world state MPT over and over again is an unnecessary overhead

for reads. Ideally, a flat key-value data structure, one containing a snapshot of the state

trie’s leaves would solve all these issues.

Of course we would not want to entirely get rid of the state MPT for reasons already

described in Section 3.1.5, but that does not mean that it needs to be used for all purposes.

Maintaining such an additional snapshot and serving it to snap-syncing peers makes the

syncing process much more appealing for both the syncing and the serving peers. The

syncing peer can download this snapshot in contiguous chunks of useful state data,

without needing to consistently perform requests and await responses for individual trie

nodes, in addition to entirely skipping the download of all the intermediate state MPT

nodes. Crucially, since these chunks consist of sequential Merkle trie leaves, any range

of them can be individually validated and thus allow for quick detection of potential

fraudulent data. On the serving peer’s side, since the data requested is no longer randomly

keyed (in the form of hashes, as in fast sync), the client needs only perform a significantly

smaller amount of contiguous disk reads to serve syncing requests, removing disk I/O

delays.

Upon completion of the snapshot download and before the client can be considered

synced, it must of course reconstruct the state MPT locally, a straightforward process

given that it has all the trie’s leaves. However, while this is happening the blockchain

is naturally progressing, meaning some of the regenerated state MPT becomes invalid.

Therefore, a final state heal phase is needed in order to correct any errors in the state

MPT. This is, once more, a phase were a performance SSD is vital since in order for the

client to catch up with the current state the healing must be able to outpace the growth

of the blockchain.

Simultaneously with the state trie download phase, block bodies and receipts are

being downloaded to be preserved in the disk as is the requirement for every full node.
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Figure 5.2. Fast vs snap sync visualization

Lastly, once snap sync is completed then the client switches its sync mode to full, a switch

which helps ensure the long-term stability of the network.

It should not be understated that, once locally constructed, the state snapshot can

serve other purposes other than serving syncing requests. Having successfully reduced

read time complexity from O(logN) to O(1) (always multiplied by the storage engine’s

overhead), it makes sense that the client would use this snapshot in any operation that

requires such reads. One example could be EVM smart contract execution which, aside

from state writes, may often involve a decent number of state reads.

The only meaningful drawback of this approach is that all clients need to maintain a

state snapshot at all times to satisfy requests from newcomer nodes. This is maintained

live without noticeable performance impact in regards to system resources, partly due to

in-memory diff layers that help prevent redundant reorgs of the in-disk snapshot [36].

The state snapshot also does occupy an additional few tens of GB on the disk as it is

comprised of duplicate information from the state MPT, an admittedly negligible overhead

when compared to the hundreds of GB already needed to sync a full node.

In the patch notes of Geth’s v1.10.0 [37], where snap sync was originally introduced

following years of development (cautiously, as obviously no client had snapshots ready at

the time and needed to generate them for the first time), it was denoted that synchronizing

the mainnet state with it against a mere 3 serving peers took a fifth of the time that fast
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sync required, with an over 99% reduction of both the amount of reads those serving

peers had to perform on their disks and the amount of packets needed to be exchanged

between them.

Snap sync is currently on its way to replace other sync modes, especially fast sync

which it directly succeeded. Following its popularization in Geth, both Besu (since

v22.4.0) and Nethermind (since v1.13.0) implemented support for snap sync. In all 3

of these clients, snap sync has become the default sync mode.

5.2.4 Checkpoint Sync

Not to be confused with the consensus client’s sync mode namesake, checkpoint sync

operates using the same principle in execution clients too. Only available in Besu as an

early access feature at the time of writing, this sync mode behaves exactly like snap sync,

but instead of syncing from the genesis block it syncs from some other manually provided

"checkpoint" block.

Checkpoint sync is faster and occupies less disk space than snap sync, though this

is achieved by altogether ignoring some historical data (e.g. receipts) of earlier blocks.

While the earlier blocks’ bodies are always themselves downloaded (as is a requirement

for every full node), since the checkpoint block acts as a ground truth there are certain

security considerations regarding older blocks’ validation (or rather the lack thereof).

These are the ones that we went over when we explored consensus clients’ checkpoint

sync in Section 4.3.2.

5.2.5 Staged Sync

In all previous sync modes the various aspects of workloads (including downloading

block headers and bodies, executing transactions or downloading state data) are executed

in parallel wherever possible. While this intuitively seems to be beneficial to the client’s

efficiency, it turns out that doing so also prevents various optimizations. A simple example

of such an optimization is inserting data in large pre-sorted (in-memory) batches versus

inserting each element as it is received (effectively at random) into a database that keeps

its contents sorted at all times. On this basis, the Erigon team devised a rearchitected

version of full sync, called staged sync, that seeks to redefine how client syncing can be

done more efficiently.

As its name suggests, staged sync is separated in stages — 10 on a high level — that

are executed sequentially. Initially, block headers are downloaded, verified and stored,

before proceeding to download the blocks’ bodies. Senders’ signatures (the addresses

contained in the from of every transaction) are then located and likewise persisted in the

database. The majority of the total sync time is spent on the next stage which is the

re-execution of all transactions since genesis which produces a PlainState (simple key-

value store of accounts and their contents) along with receipt and event logs. Hashes and

trie roots are calculated next up, which are followed by the (optional) creation of the call

trace, history and log indexes. The final stage consists of creating a TxLookup mapping
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between transaction hashes and the height of the block in which they were included for

quick future retrieval.

This sequence of stages will be executed once upon bootstrapping the node until its

completion, at which point it will restart from its first stage. That second time, of course,

there will be a much smaller amount of blocks to process meaning that the entire loop will

last significantly less. Eventually, these repetitions converge to processing 1 block at a

time, as they are being produced by the network. This flow (along with the block receival

flow in Erigon) as well as the exact stages of this sync mode are depicted in Figure 5.3,

which is further expanded upon in Erigon’s extensive documentation [38].

Figure 5.3. Erigon’s control flows (staged sync loop in yellow arrows) 2

2
Source: [38]
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5.2.6 Light Sync

Light syncing is used exclusively as part of a light node’s bootstrapping and relies

merely on downloading and validating block headers, which was relatively straightforward

in PoW Ethereum. There exists a mathematical function which a block header must

satisfy in order to be valid, and it would be computationally very intensive for an attacker

to produce such a valid header. A light client could always easily look for the longest

chain of valid block headers, and assume that the resulting chain is the canonical one.

In PoS, however, the same process is not that simple. For a block to be considered

valid the client must first confirm that the validator who created it is indeed the one who

was meant to do that and verify their signature against the public keys. While the latter

part is done in constant time, simply retrieving that validator’s public keys from the state

trie has a logarithmic complexity. On the surface, this shows that light clients can exist

on PoS, albeit with some additional computational overhead. In fact, protocols involving

checkpoints have been proposed (such that the validity of every n blocks needs to be

checked instead of that of every block) exhibiting that PoS could potentially prove to be

even more light-client friendly than PoW was [39]. Nonetheless, at the time of writing

none of these proposals have yet been implemented by any execution client and as such

light sync is not currently operational on the Ethereum mainnet.

5.3 State Pruning

As Ethereum increases its adoption and use, its state inevitably grows larger and

archiving it becomes increasingly challenging. As we mentioned in Section 4.1.2, the

total (archive) chain data size indicatively on Geth surpasses 13TB and is constantly

increasing at a somewhat steady pace of around 300GB per month. While one could

constantly upgrade their storage to keep up with that growing demand — and archive

nodes must indeed do exactly that as they are by definition meant to preserve all historical

data — such a requirement would be prohibitive for the average user.

Of course, the average user does not need the entire history of states since genesis.

Already, when an execution client is bootstrapped using any non-archive sync mode, it

does not store intermediate historical states — i.e. it already downloads a pruned version

of the Ethereum state. Once it has finished synced however, it always switches to full

sync mode, necessarily saving new states to the disk as the blockchain progresses. An

issue that then arises when a client has been running for a considerable amount of time

is the inevitable filling of the available disk space.

At a high level, all data in Ethereum can be separated in two types, permanent and

ephemeral. The blocks themselves as well as the transactions contained in them are

examples of permanent data. It must be emphasized that permanent data is never pruned

as they are vital for guaranteeing the long-term stability of the network. By contrast, state

data (including anything mutable like an account’s balance at some block) is considered

ephemeral and may be stored separately. Since ephemeral data can be reconstructed

using the permanent data whenever necessary, client implementations have a great degree

65



Chapter 5. Execution Clients

of freedom on how to store it and how much of it they wish to have readily available at

any time.

The practical solution to the growing disk space occupied by the client is to delete

older state data, which are not necessary for its operation. However, it turns out that

deleting these concurrently with inserting new pieces of state data block-by-block as a

node receives them is quite a difficult problem. Since state in Ethereum is stored in a trie

data structure — and since most blocks only change a small fraction of the state — two

such tries will share huge portions of the data with one another. It can easily be decided

whether the root of an old trie is stale and can be deleted, but it is exceedingly costly to

figure out if a node deep within an old state is still referenced by anything newer or not.

Several pruning solutions had been proposed over the years, but consistently broke down

as the size of the Ethereum state kept growing.

As a result of the above, in v1.10.0 Geth introduced offline pruning. This kind of

pruning takes advantage of the state snapshots introduced in the same Geth version

by constructing a bloom filter which helps identify and delete stale trie nodes. Upon

completing that, Geth performs a database compaction and manages to reclaim free disk

space
3
.

Offline pruning is not done automatically but is instead meant to be periodically

manually initiated after, as its name suggests, shutting down the client. When running a

validator post-Merge, taking one’s node offline for any amount of time can result not only

in missed profits but also to some limited slashing. In these cases, the standard way of

approaching state pruning is by syncing a secondary execution client in a separate disk

and linking one’s consensus client to it while the primary execution client is pruning.

State pruning is of course not exclusive to Geth. In fact, Nethermind has pioneered

a full pruning approach that does not necessitate shutting down the client [40]. This

involves creating a separate empty MPT and a period of duplicate writes (both to the old

and the new MPTs) while the client is operating as usual, following which the old state

MPT can be safely deleted. Full pruning is only possible in Nethermind because, contrary

to other clients that keep all kinds of data (state, blocks headers and transactions) in a

single database, Nethermind has a separate one for each, allowing for easy and targeted

deletion of state data without affecting the stored permanent data.

Nethermind’s pruning approach effectively circumvents the challenge of locating which

trie nodes should be kept and which ones are stale and thus should be deleted. A certain

drawback though of it is that it causes a lot of additional disk writes which, aside from

any performance impact, also cause unnecessary wear on the SSD used. It is also a

reasonably time-consuming process, potentially lasting more than a day depending on

the hardware used. For these reasons, it is recommended not to run this pruning task

more than once every few weeks.

In conclusion, there is no silver bullet solution to pruning state data. Despite Nether-

mind’s aforementioned approach, its team acknowledges that there exist better solutions

together with different storage models and with which it is currently experimenting at

3
As a side note, initiating this process requires a few additional tens of GB of free disk space meaning that

it cannot be used to salvage a hard drive that has already been completely filled.
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the time of writing. Alternative storage data structures (like Besu’s Bonsai tries or the

currently under development Verkle trees) can provide different approaches to pruning as

well. Consequently, novelties in pruning methods are to be expected in the near future.

5.4 Implementations

5.4.1 Geth

Go Ethereum (usually referred as Geth) is the original Ethereum execution client im-

plementation, written in Golang and maintained by the Ethereum Foundation. It has

been the most widespread client with the biggest user base for the entirety of Ethereum’s

history. In addition to interacting with the Ethereum network manually through a con-

sole, Geth also has built-in support for JSON-RPC based APIs, which can be exposed via

HTTP among other ways, and allow user programs to easily access Ethereum information.

At present, Geth uses LevelDB where it stores both state and chain data. The latter

are separated internally on the basis that older blocks are less likely to be needed for

retrieval and — as of v1.9.0 — can thus be stored on slower, cheaper storage. Offline

pruning of state data is supported, as previously described.

Geth solely supports full and snap sync modes. Snap sync was made the default

sync mode over fast sync in v1.10.4, the support for which was ultimately dropped in

v1.10.14. Despite that, Geth continues to serve the relevant requests to other client

implementations that still rely on fast sync.

Up until The Merge, a user could opt to run a light client using Geth’s light mode

syncing, with the benefits and detriments that such a client has compared to a full one,

as detailed in Section 4.1.3. Additionally, Geth supported an even lighter sync mode

which resulted in an ultra light client (ULC). Its difference during syncing as opposed

to light mode syncing was that a ULC did not even check the PoW in block headers,

getting its data from one or more trusted light servers (the addresses of which had to be

provided upon starting the client). Neither of these Geth light clients currently work on

PoS Ethereum, but new PoS light clients are being developed at the time of writing.

5.4.2 Nethermind

Founded by a small team in 2018 of the same name, Nethermind is an Ethereum

implementation created with the C# .NET tech stack. Like Geth, Nethermind can be used

both to sync the Ethereum mainnet as well as various testnets and even private networks.

Nethermind uses RocksDB for its storage but, unlike Geth, does not save all Ethereum

data in the same database but splits them in multiple ones which allows it to perform live

full pruning, as we detailed in Section 5.3.

In regards to sync modes, Nethermind implements full, fast and snap sync. Snap

sync has been supported since v1.13.0, though Nethermind can only download the state

snapshots but not serve it to other clients at the time of writing. Due to this fact, snap

sync in Netherming can be used only for the networks (mainnet and testnets) that are

also supported by Geth. However, contrastingly to Geth, in fast and snap sync modes
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Nethermind does not begin blocks’ data download until after the state download has

been completed. Especially in snap sync, its initial exclusive focus on state syncing

enables Nethermind to take advantage of sequential disk write operations, consequently

managing to complete it in remarkably fast speeds. This approach additionally allows

users to quickly get up to speed with the network and present them with the option to

download block bodies and receipts
4
.

5.4.3 Besu

Hyperledger Besu is an enterprise-grade Ethereum client written in Java. Formerly

known as Pantheon by ConsenSys, its first official release was in 2019. It is now main-

tained by the Hyperledger Foundation, an umbrella project of open source blockchains

and related tools, started by the Linux foundations but with contributions from a long

list of member organizations and companies. Apart from the Ethereum mainnet and its

public testnets, Besu is often run on private permissioned networks. As with previous

clients, it supports smart contract and Dapp development, deployment, and operational

use cases as well as common JSON-RPC API methods over HTTP.

Besu uses a RocksDB key-value store to persist chain data locally. Since v21.1.0 in

early 2021, Besu supports optionally syncing using the newer Bonsai tries for storage

(Bonsai mode) instead of the traditional MPTs (Forest mode). This data format (which we

described in Section 3.1.6) offers noticeably faster sync speeds but also provides implicit

tree pruning which results in reduced disk usage regardless of sync mode. These improve-

ments become even more pronounced in full archive sync, where using Bonsai achieves

up to an order of magnitude lower storage compared to Forest mode (an estimated 1.2TB

with Bonsai as opposed to ∼13TB otherwise).

In addition to full sync, Besu supports fast, snap and checkpoint sync modes. Check-

point sync, which we explained earlier, is still an early access feature. Moreover, fast

syncing is being discouraged by Besu’s developers who state that it might eventually be-

come impossible to fast sync the Ethereum mainnet in the future. Snap syncing Besu

using Bonsai is their latest (stable) recommendation for both lower sync times and lower

storage requirements.

5.4.4 Erigon

Formerly known as Turbo-Geth, Erigon began as a fork of Geth with its first public

alpha version being released in mid-2020 after more than two years in development.

Soon after that however, the Erigon team realized that its plans to provide a faster, more

modular and better optimized Ethereum implementation required a radical overhaul of

the entire architecture which led to a rewrite of the database structure, data model, and

sync process.

Erigon is undoubtedly the most unique out of the clients of our study. Contrary to the

more monolithic designs of other clients, it boasts a modular design which enable paral-

4
Nethermind presents the download of these as distinct options of its sync modes: https://docs.

nethermind.io/nethermind/ethereum-client/sync-modes
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lelized development of the different components. These components include the client’s

core, the RPC API, the P2P sentry and the TxLookup mentioned in Section 5.2.5 among

others and can each be compiled into a separate executable and run as a standalone

application. It additionally includes an embedded consensus client that is sufficient to

optionally complement Erigon post-Merge, but not yet replace a dedicated consensus

client when running a validator node.

Throughout its history Erigon changed its storage engine several times, going from

BoltDB to LMDB before finally settling on MDBX. MDBX is largely different from the storage

engines used by other clients, first of all architecturally in that it is based on B+ trees

instead of LSM ones, as explored in Section 3.3. The Erigon team has provided several

reasons for this choice, among which the need for faster and more predictable times in

random disk reads for their implementation. In addition to that, traditional LSM-based

databases are not ACID-compliant meaning that a potential crash or power failure could

corrupt them, something that was deemed a non-starter for a client which only provides

a full sync mode. While all these applied equally on LMDB too, the switch from it to

MDBX happened both for performance reasons as well as a number of desirable features

available only on the latter.

As will also be evident from our benchmarks in the following chapter, Erigon has dif-

ferent resource usage patterns than the rest of the clients. Most notably, the resources it

requires vary depending on the stage it is currently executing but in general it compara-

tively uses up far more RAM which (along with a fast SSD) does significantly affect sync

times. The reason for that is its ability of preprocessing grater amounts of data in-memory

due to its staged sync, rendering the eventual write operations to the disk faster by an

order of magnitude according to its developers.

Erigon’s sole sync mode is the aforementioned staged sync, which can be used to

sync either simply a full node or an archive one. The latter can be completed using less

than 3TB of disk space and, more impressively, in less than 5 days on reasonably fast

hardware. Nevertheless, Erigon’s lack of a faster sync mode drives off some potential users

and also means that any potentially disruptive changes will always require a, growingly

impractical, full replay of all blocks from genesis. This is acknowledged as a problem by

its developers and the implementation of snapshot sync is regarded as a priority for a

future major release.

Finally, it is worth mentioning that at a time there was a full (and faster) implementa-

tion of Erigon in Rust, named "Akula" which was however short-lived (see Section 5.4.5.2).

Furthermore, a C++ version of Erigon called "Silkworm" is under development, though by

a significantly less active ecosystem. Not even having reached an alpha phase of release

yet, Silkworm is at the time of writing unable to actually sync a blockchain from genesis

but relies on an already synced database by Erigon to fulfill other execution client tasks.

5.4.5 Discontinued clients

Even though the above 4 are the only Merge-ready Ethereum execution clients at

present, a few other abandoned client implementations merit a mention for historical
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reasons as well as insight on how they affected our contemporary ones.

5.4.5.1 Parity - OpenEthereum

Originally introduced in 2015 as Parity Ethereum by Parity Technologies this client

written in Rust had been the second most widely used (after Geth) for most of Ethereum’s

history. In 2019 Parity announced the client’s transition to OpenEthereum, with Gnosis-

DAO taking primary oversight of the project [41] before eventually in 2021 announcing

their intention of ending support for it in favour of Erigon. What led to that decision was

OpenEthereum’s huge legacy codebase, the managing of which was proving to be increas-

ingly difficult, especially with Ethereum’s transition to PoS fast approaching. As such,

OpenEthereum has been officially deprecated since The Merge, with the team behind it

recommending using Erigon instead [42].

Parity’s historical importance also stems from an incident in September 2016, when

a bug in Geth’s v1.14.11 caused Geth clients to run out of memory and crash, thus

preventing the mining of new blocks
5
. While Geth’s developers quickly worked out the

root cause and deployed a fix within hours, the Ethereum network would have completely

halted in the meantime had it not been for Parity, the only other client implementation at

the time. Parity clients were unaffected by the bug and continued to produce blocks as

normal, keeping the network online and once again proving the need for client diversity.

Despite not being used anymore, Parity also introduced an innovative mode of syncing

worthy of discussion, named warp sync. Warp sync was a sync mode that preceded snap

sync and from which the Geth team took many design ideas to develop it. It likewise in-

volved snapshots created by each client which could be served to newcomer clients. The

most significant difference between it and snap sync was that warp sync relied on static

snapshots created periodically by the clients, in contrast to snap sync’s dynamic snap-

shots that are kept updated in real-time. This meant that every 30000 blocks (or about 5

days) — as was the interval chosen at the time — the client would have to regenerate the

snapshots practically from scratch by continuously iterating the state MPT, something

that was even then seen as unsustainable long-term given the Ethereum state’s rate of

growth. Moreover, instead of following the Merkle trie layout, the data format of warp sync

snapshots was comprised of a manifest (metadata about the snapshot) followed by raw

block data about the blocks. The obvious drawback of that approach was that chunks

of such data could not be individually validated, forcing syncing nodes to download the

entire snapshot (of several GB) before they could verify it. In conclusion, while warp sync

was certainly a novelty at the time and faster than Geth’s fast sync, it was admittedly

wholly outclassed by snap sync which it helped inspire.

5.4.5.2 Akula

Following the abandonment of OpenEthereum, there was a large amount of interest

in a high-performance Ethereum implementation written in Rust. Akula was such a

client that grew out of an internal project in Erigon’s team at the end of 2021, where it

5
Source: https://blog.ethereum.org/2016/09/18/security-alert-geth-nodes-crash-due-memory-bug
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was originally conceived as a helper library for Erigon’s database. It had lower storage

requirements and was up to twice as fast as Erigon in full sync mode using the same

staged sync approach, even achieving to bootstrap an archive node in a record time of

under 3 days.

Despite the significant progress done on Akula during 2022 and it beginning to gain

traction in the community, in November of the same year it was unexpectedly announced

that the Erigon team was winding down support for it [43]. The reason cited for this

decision was the impending release of another, at the time unnamed, execution client

written in Rust with many similarities and nearly identical scope as Akula. Predicting

that it would soon be surpassed and that it would prove challenging to secure funds for it

in the future, the Erigon team deemed it unsustainable to keep spending resources and

development effort on Akula.

That unnamed project was revealed in December 2022, when Web3 investment firm

Paradigm announced that it was developing a new execution client written from scratch

in Rust named Reth. According to what little is known about it at the time of writing [44],

Reth will indeed also be using the staged sync architecture pioneered by Erigon and the

MDBX storage engine, with its first release being expected in early 2023.

5.4.5.3 Smaller projects

• Ruby-Ethereum: A Ruby implementation of Ethereum. Little development was done

for it, mainly in 2016, and there has not been an Ethereum client written in Ruby

ever since.

• Aleth: Part of a collection of official C++ Ethereum libraries and tools by the

Ethereum foundation, formerly known as "cpp-ethereum". Its last release was in

December 2019.

• Mana-Ethereum: Built using Elixir, it sought to take advantage of the Erlang Vir-

tual Machine to provide a massively scalable Ethereum client. Despite its GitHub

repository not having been explicitly archived, it has not received any updates since

2019.

• Trinity: A client written in Python by a small development team within the Ethereum

foundation. It never left the alpha release stage and was officially deprecated in mid-

2021, having served mostly as a research and educational tool for the community.

A large number of python-based modules related to Trinity yet continues to be

maintained by the same team, including a Python implementation of the Ethereum

Virtual Machine, called "Py-EVM".
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Benchmarks

6.1 Methodology

In the experimental chapter of this thesis we will be running a full node on the

Ethereum mainnet, bootstrapping different execution clients with various configurations

and recording certain metrics throughout their initial sync (and up to few hours following

that). Our goal in performing these benchmarks is twofold:

• A comparative analysis across different clients using the same sync mode in an

attempt to quantifiably evaluate their different approaches to optimizations.

• A comparative analysis between different configurations of the same client so as

to better evaluate the performance impact some parameters can have on a client’s

bootstrapping.

Firstly, let’s justify our selection of snap sync for our benchmarks. When initially

conceptualizing this thesis, there was an intention to perform inter-client bootstrapping

comparisons for multiple sync modes. However, Erigon merely supports its own unique

staged sync mode (as we went over in Section 5.2.5) and the only 3 sync modes that used

to be supported by all Geth, Nethermind and Besu are snap, fast and full. A full client

sync takes weeks (often upwards of a month) to bootstrap, something prohibitive in the

context of a thesis where we want to run several such syncs. On the other hand, fast

sync is clearly and steadily being phased out, with Geth having already dropped it since

v.1.10.14 and Besu actively advising against using it for mainnet sync. Consequently,

with snap sync becoming the de facto "standard" way of bootstrapping an Ethereum

execution client, it made sense to only base our inter-client comparisons there.

A further goal is to additionally perform some limited intra-client comparisons, i.e.

between different configurations of the same client. These focus mainly on the cache

memory used which, as previously emphasized when exploring storage engines and how

the clients use them during syncing, can prevent redundant disk writes and as such

provide significant performance improvements. Furthermore, as fast sync is still usable

in Nethermind, an additional run was executed using it so as to juxtapose it with snap

sync. Lastly, in the case of Besu, there was both a choice between snap and checkpoint

sync modes but also a data storage one (optionally using the experimental Bonsai tries)

to consider. We performed runs using Bonsai tries for both of these sync modes and
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we intended to juxtapose these results with the respective ones from runs using the

traditional Forest data storage. The latter, however, was not possible due to a related

bug in Besu
1

that remained unresolved throughout the weeks of our benchmarks and,

as such, we were only able to perform Besu runs using Bonsai tries.

6.1.1 Metrics

The focus of our comparisons will be on initial sync time but also on the system

resources each client consumes over time during that sync (and up to a few hours after

its conclusion, to juxtapose it with normal use). These resources are reflected in the

following 7 metrics:

• CPU usage (percentage)

• RAM usage (GB)

• Client data disk size (GB)

• Disk I/O: Reads and Writes (MB/second)

• Network traffic: Sent and Received (MB/second)

Peer counts are also important when syncing an Ethereum client but, as long as their

number does not drop too low, increasing the number of peers does not directly translate

to increased sync speeds. On the contrary, having too many peers can lead to spending

more system resources (network bandwidth but also disk reads) in order to fulfill their

various requests. As such, we wanted to set the max-peers parameter for our benchmarks

to a sufficiently high value that will help our clients’ bootstrapping but not cripple our

network — a value of 128 was thus chosen for consistency across our clients, with the

exception of Erigon where the default 100 were kept. Peer counts over time were recorded

for each benchmark and will also be plotted along our aforementioned 7 metrics.

It must be emphasized that studying a client’s bootstrapping is certainly not a way

to categorically determine its quality or efficiency. Whatever cost it may incur, either in

terms of time or system resources, is one that will be paid only once in the lifetime of

a node (assuming no hard failures that force a restart from scratch). In spite of that,

studying a client’s initial sync is objectively the ideal way to understand the workload

that it is tasked with performing in order to preserve the Ethereum network. Moreover,

identifying what system resources may be underutilised or cause a bottleneck in this

entire process could lead to ideas for future improvements.

An inspiration for our approach was an insightful similar resource analysis done on

Ethereum consensus clients (on the Beacon chain, before The Merge) in 2021 [45].

1
Related GitHub issue: https://github.com/hyperledger/besu/issues/4901; when using the user-suggested

fix we failed to locally build from source. Even if we had succeeded, any benchmark results would not have

been suited for comparisons as we would have been using a non-release version of Besu.

73

https://github.com/hyperledger/besu/issues/4901


Chapter 6. Benchmarks

6.1.2 Data gathering

In order to gather the data required for our aforementioned metrics, a custom Bash

script was created
2
, making use of some common Linux command line tools. The majority

of what we required — more specifically, CPU, RAM and disk I/O — was readily available by

pidstat, simply by passing the client’s process ID to it immediately once the client begins

running. Network traffic data was gathered using nethogs, a useful tool that breaks down

sent and received traffic by process which is ideal for our use case — unlike most others

of its kind (like the popular netstat) which group network traffic per protocol or subnet.

Lastly, the growth of the client data size on the disk (including both chain and state

data) was observer by the built-in du tool. It is noted that, since du necessitates iterating

and checking directories for the sizes of each file they contain (as does any other similar

tool), it would occasionally fail to access some inner files in the chain data when these

were created and deleted in quick succession. Errors caused for that reason were safely

ignored as it was assessed that they cannot meaningfully affect our conclusions. Our

script ran the above at an interval of 1 second, logging its output of all these values to

a csv file, which could then be used to produce the graphs we will be presenting in the

following section.

There is a number of other options to consider when seeking to monitor an Ethereum

node, most notably Prometheus-Grafana and Netdata. Both of these tools provide some

quite insightful dashboards for tracking various real-time metrics and can be truly useful

for a node operator. However, the graphs that they display are a product of extensive

custom configuration and while this has already been done to an extent for all of our

execution clients, they do not all provide the metrics that we require nor do they provide

what they do in a consistent manner across all clients. Furthermore, since those graphs

would each be produced by a single client execution, there would be no easy way to

plot metrics across different executions on the same graph against one another for easier

visual comparisons. As such, it was preferable to obtain raw data in a csv format which

could then easily be parsed and used to plot any and all graphs that most closely matched

the focus of our analysis.

Lastly, the output (stdout and stderr) logs of all runs for every client, after appropriately

setting the verbosity parameter, were redirected to log files. These logs were necessary

to provide additional context to our results and help us locate the various events that

occurred throughout the syncing process as well as to keep track of peer counts in order

to later plot them.

6.1.3 Consensus client selection

Post-Merge it is not possible to independently run an execution client on its own. Both

an execution and a consensus client must be run together in order to gain access to the

Ethereum network and the connected consensus client needs to already be synced before

the execution one can begin bootstrapping.

2
GitHub repository: https://github.com/TsiarasKon/Ethereum-Client-Metrics
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Our only requirement for our consensus client was to be as lightweight as possible so

as for its resource needs to not weigh down our execution client. As such, Nimbus was

chosen, the syncing of which was completed nearly instantaneously through the use of

checkpoint sync (as described in Section 4.3.2). For the purpose of uniformity, Nimbus

was used in the Erigon run too, despite Erigon’s capability to run with its own embedded

consensus client.

Even though benchmarking our consensus client is not part of our scope, an indica-

tive resource usage of Nimbus over a 12-hour period is presented in Figure 6.1. No

commenting of these results needs to be included here other than to point out that the

values across all metrics are several times lower than those we will soon examine in

Section 6.2, proving that the weight of running an Ethereum node in terms of system

resources undeniably lies on the execution client.

Lastly, had it not been for the need to also run an execution client (and given that

no other application runs on our system along with our experiments) it would have been

simpler to use some system-wide resource monitoring utility like dstat with sufficiently

accurate results. We instead opted for the more precise way of isolating exactly the re-

sources used by the execution client using it process ID as presented above, and these

results are the ones used for our resulting graphs. This way we have successfully elimi-

nated the parameter of the consensus client from our experiments and thus, for example,

a potential spike in its network traffic will correctly not be depicted in our execution client

analysis.

6.1.4 Hardware

All the experiments were run on the same computer with the following:

• CPU: AMD Ryzen 5 2600X Six-Core 3.6 GHz

• RAM: G.Skill RipjawsV 32GB DDR4 (at 2933 MHz)

• Motherboard: MSI B450 Tomahawk

• Disk: Samsung 980 Pro NVMe SSD (in PCIe 3.0)

• OS: Ubuntu 22.04 LTS

• Internet: Stable 100/100 Mbps FTTH connection

The technical requirements of running an Ethereum execution client are not all of

equal importance. Since the sync process is not multi-threaded, a high-end multi-core

CPU is necessarily underutilized. Most clients do not take full advantage of RAM either

— with the notable exception of Erigon — and while some stable and reliable connection

is required, high network speeds are not obligatory.

The most common bottleneck in Ethereum clients’ syncing is usually the disk used.

It has long been impossible to bootstrap a client in HDDs, while some SSDs may too be

unsuitable due to their subpar speed and lack of some components. An ideal consumer

SSD would at present be an NVMe (NVM Express), with DRAM, TLC (triple-level cell)
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Figure 6.1. Nimbus indicative benchmark results
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instead of QLC (quad-level cell) and an SLC (single-level cell) cache. Analyzing these

terms would necessitate delving into the implementation details of SSD architecture in

general, so for our experiments suffice it to say that our Samsung 980 Pro fulfills all these

criteria. In regards to its size, as we will see in the results below and thanks to state

pruning it is currently possible to snap sync an execution client using less than 1TB of

disk space. Of course, one should also take into account the consensus client which,

presumably, will too be running on the same drive and may require up to 200GB. Given

the steady expansion of the Ethereum network’s chain size and the common fact that an

SSD performance degrades when it reaches low amounts of free space, the recommended

SSD size at the time of writing in order to run a full node is 2TB.

It is of course feasible to achieve better sync times and overall results using better

hardware than the above. A CPU with stronger performance in single-threaded applica-

tions is generally preferable, as would be a Gigabit or faster internet connection. Lastly,

probably the most meaningful upgrade would be a CPU-motherboard combination that

supports PCIe 4.0 (Peripheral Component Interconnect Express), using which with a com-

patible drive could yield up to twice the speeds of PCIe 3.0.

6.2 Results

All client runs were executed from mid-January to mid-February 2023 (around block

16.5M). It is noted that since the experiments for each setup were run sequentially on the

same machine up until the initial syncing was completed (and a few hours beyond that),

the later runs are comparatively slightly "disadvantaged" in that they need to catch up

with a later block that those of the earlier runs. While technically this should result in

slightly greater sync times and disk space used — the resource usage metrics would still

remain unaffected — in practice that difference is small enough that it needs not be taken

into account in any of our later conclusions.

Default configurations for mainnet sync were used in all of our clients’ runs. Wherever

adjustments were made for our intra-client comparisons or for any other purpose, the

parameters changed and values used are denoted per client configuration.

All graphs were produced by custom-made Python scripts
3
, making use of the popular

pandas and matplotlib libraries. Since our input data contained 1 second interval values

over several hours, these were averaged out (e.g. by using the average network traffic of

1 minute’s worth of values as a single data point) so as to produce smoother and more

easily readable plot line graphs.

We will be presenting the results for every metric per client, commenting on them and

the depicted intra-client comparisons. The completion of the various stages in each run is

represented by a marker on the plotted lines of each, as these events were retrieved from

their execution logs. In all executions, the last event marked also signals the completion

of the entire initial sync process. At the end we will evaluate the inter-client comparison

results — produced using the best configuration for every client — and perform an overall

3
GitHub repository: https://github.com/TsiarasKon/Ethereum-Client-Metrics
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assessment of our results.

6.2.1 Geth

Geth v1.10.26 was used. In all the configurations, aside from the cache adjustment,

max peers were set to 128 and the rest of the parameters were left at defaults.

Table 6.1. Geth benchmark configurations and results

Label Sync mode Cache (MB) Sync Duration

Geth_1 Snap 4096 (default) 22h 07m

Geth_2 Snap 10683 (max) 19h 44m

When tried to provide more cache to Geth through its parameters, it adjusted the

amount down to ∼10.6GB on our computer. In regards to peers numbers, we can see

that there are several fluctuations (though in similar patterns) in both of our Geth runs,

with them only trying to reach their max-peers value only after their sync was completed.

In Geth the different parts that comprise the sync process happen in parallel whenever

possible. In snap sync in particular, as we detailed in Section 5.2.3, a chain of block

headers is initially constructed by requesting them from peers. Following that, the state’s

(snapshot) download begins in parallel with the download of all the blocks’ bodies and

receipts. Lastly, once the state sync is completed, it requires healing. The completion

times of all these events are marked in all graphs of Figure 6.2.

As we can see, the headers’ sync happens very quickly (around the 20m mark in both

configurations) which explains the initial spikes in network traffic. The majority of the

sync’s duration is spent on the parallel download of blocks and state, with the former

occurring first (around the 12h45m mark, again in both configurations). The state’s sync

is where we see the impact of the increased RAM cache, with this phase being completed

at 19h26m in Geth_1 as opposed to 21h46m in Geth_2. As expected, the higher RAM usage

is correlated with a lower amount of disk writes (to LevelDB) throughout the initial sync.

Lastly, the state heal phase is a swift one, beginning immediately after the state has been

synced and lasting about 20m.

6.2.2 Nethermind

Nethermind v1.15.0 was used. In all the configurations, aside from the sync mode

change, max peers were set to 128 and the rest of the parameters were left at defaults.

Table 6.2. Nethermind benchmark configurations and results

Label Sync mode Sync Duration

Nethermind_1 Snap 11h 59m

Nethermind_2 Fast 1d 08h 07m

Quite differently to Geth, Nethermind’s state sync in snap mode was completed re-

markably fast (at the 2h39m mark). While at that point it could be considered synced
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Figure 6.2. Geth benchmark graphs
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Figure 6.3. Nethermind benchmark graphs
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for some purposes (and would be able to respond to queries regarding the network’s cur-

rent state), a full Ethereum node should locally preserve the blocks’ data as well. Also

in contrast to Geth, these begin downloading only following the state sync’s completion.

Once these are too downloaded (at the 8h29m mark for Nethermind_1), Nethermind finally

commences the download of the receipts’ bodies.

As Nethermind_2 will be the only of our execution runs using fast sync, it merits some

discussion here. Following the block headers’ sync, we can notice a drop in the incoming

network traffic on the corresponding plots in Figure 6.3. The reason for that is that,

contrary to snap sync’s snapshots, here separate requests are being constantly sent out

for different state nodes and this procedure introduces a lot of idle time due to network

latency — as a response is required before a new request can be sent. These delays are

additionally evident from the comparatively much slower disk size growth rate until the

state is synced, at which point an increase can be seen across our metrics as the block

download phase begins. It is worth mentioning that, regardless of sync mode, both of our

Nethermind runs quickly try to reach and strive to maintain their max-peers value.

6.2.3 Besu

Besu v22.10.3 was used. In all the configurations, aside from the mentioned adjust-

ments for sync mode, storage format and peers, the rest of the parameters were left at

defaults.

Table 6.3. Besu benchmark configurations and results

Label Sync mode Storage format Sync Duration

Besu_1 Snap Bonsai 1d 04h 51m

Besu_2 Checkpoint Bonsai 17h 30m

In Besu, as in Geth, the state’s download is performed in parallel with the blocks’

downloading. Contrary to Geth however, here the state download is completed first (at

10h23m and 10h42m for Besu_1 and Besu_2 respectively) with the blocks’ download fin-

ishing much later. Moreover, state heal in both our Besu runs is logged as to have been

completed mere seconds after the blocks’ download, evidently waiting for the latter to

complete before designated the client as synced.

Lastly, using checkpoint sync mode unsurprisingly leads to lower total disk sizes and

better overall performance. A Besu client would likely prefer it over snap sync unless they

have a need for information related to earlier blocks. Moreover, checkpoint sync exhibits

a preference to connect to significantly less peers than it is able to through its parameters

— with the exception of a peculiar spike close to 70, it mostly preserved a connection with

only around 30 peers, despite having a max-peers value of 128.

6.2.4 Erigon

Erigon v2.36.1 was used. A single Erigon configuration was run, with all the default

options but also the inclusion of pruning due to storage constraints. It is noted that
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Figure 6.4. Besu benchmark graphs
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without any pruning this same sync mode would have resulted in an archive node.

Table 6.4. Erigon benchmark results

Label Sync mode Sync Duration

Erigon Staged 4d 12h 13m

The 10 high level sync stages that we went over in Section 5.2.5 are further split for

a total of 15 in the execution logs
4
. We will not be detailing them all here as most of

them were completed in a matter of seconds or few minutes. As such and for visibility

purposes, on Figure 6.5 we will only be marking the completion of the stages that lasted

over an hour.

This run is the only one in our client benchmarks that performed (a version of) full

sync and that is immediately evident from the sync time required. A sync time of four

and a half days is much better than other clients could hope to achieve using their full

sync modes, but it is admittedly multiple times worse when compared to their snap sync

times.

This is of course due to the transaction execution stage, which in itself took up the vast

majority of the sync time (3d18h in particular). This stage becomes progressively slower

as the local state grows in the disk but also as the blocks themselves increase in size as

we approach the present day, which was evident by the execution logs that periodically

logged the rates of blocks and transactions processed per second. In the beginning (close

to genesis) Erigon was processing hundreds of blocks/second and tens of thousands

of transactions/second, while by block 10M it had dropped to about 60 blocks/second

and 7000 transactions/second, before converging to about 20 blocks/second and 2500

transactions/second when its sync was completed shortly after block 16M.

An interesting capability that the non-parallel nature of Erigon’s staged sync enables

is the adjustment of its resource consumption based on the stage it is currently executing.

For instance, we can see that the network traffic (most notably, data received) was minimal

throughout the execution stage, which is easily explainable as at this stage Erigon does

not need to request data from its peers.

6.2.5 Inter-client comparisons

For our inter-client comparisons we used the best configuration for each of Geth,

Nethermind and Besu (Geth_2, Nethermind_1 and Besu_2 respectively), based on the above

results.

Erigon is not directly comparable to the other 3 clients since its staged sync re-

executes all transactions from genesis, a process that is circumvented when using snap

sync and which in itself takes significantly longer than the entire snap sync of the other

3 clients. As it would simply skew the axes of our graphs and render visual comparisons

less distinct, it was thus excluded from this comparative analysis.

4
These sub-stages are occasionally adjusted by Erigon’s developers; for instance, an earlier version of

Erigon with which we experimented included 17 stages
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Figure 6.5. Erigon benchmark graphs
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Figure 6.6. Inter-client comparative benchmark results
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At first glance, we notice that Geth struggles to reach the disk read and write speeds

exhibited by the other 2 clients. While this could be seen as proof of RocksDB superiority

over LevelDB, the various other optimizations that Nethermind and Besu have imple-

mented as well as their architectural design differences ought to be taken into account.

We treated Nethermind’s initial sync completion as coinciding with the completion of

its last marked event (receipt bodies downloaded) although, as mentioned when describing

its results above, depending on the use case one could consider Nethermind to have

already synced quite earlier than that. Even so, Nethermind_1 outperformed both Geth

with max cache options and Besu using checkpoint sync and Bonsai tries. It appears

that being able to perform large uninterrupted sequential writes during state download in

traditionally disk-bound applications (as Ethereum execution clients are) unsurprisingly

provides an important edge when it comes to sync times. Nonetheless, on a weaker

computer with a less performing SSD or on a worse network connection it is not unlikely

that Nethermind’s performance would most closely resemble that of Geth and Besu.

6.3 Results assessment

There are a few overall conclusions to which we can arrive from our benchmark results.

First of all, the comparison between snap and fast sync in Nethermind’s configurations

(Figure 6.3) categorically shows how fast sync is outclassed both it terms of speed but also

on how it can make use of the available system resources. It thus comes as no surprise

that snap sync has currently become the default mode of syncing among execution clients,

with fast sync being phased out.

Peer number fluctuations are to be expected in any P2P network. While a low number

of them would surely negatively impact total sync time, any spikes that we observed in

our experiments did nonetheless not meaningfully affect performance across our metrics.

We also make note of the fact that during its initial sync a client will often not seek to

reach its maximum allowed number of peers with which it was parameterized but it may

prefer to instead preserve a lower peer count, a behaviour which was in fact exhibited in

several of our client configurations.

Furthermore, granting more RAM to a client for caching purposes expectedly con-

tributed substantially to decrease sync times and decrease the amount of writes (and, to

a lesser extent, reads) to the disk, as is evident in Geth’s intra-client comparison results

(Figure 6.2). On the other hand, across our metrics we can see that our CPU was not

maximally utilized, largely due to the fact that the sync process is inherently not suited

for parallelization. While sync phases can be executed in parallel as is done in Geth

and Besu, a single phase cannot meaningfully split its workload across different threads

— for instance, blocks’ download cannot be parallelized because each block needs to be

individually validated before processing its child block.

Finally, it bears repeating that the above results are indicative of execution client runs

on a particular computer but it is certainly plausible that different configurations either

in terms of hardware or parameters when running each client could yield more favourable

results for some of them.
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Conclusion

In this thesis, we explored the current state of Ethereum execution clients, the data

structures that they use but also the various innovative modes they have employed to

more efficiently synchronize the network. In our penultimate chapter we experimentally

compared the most widely used of them in several configurations, resulting in a compre-

hensive comparative analysis of the different execution client implementations in terms

of resources used and sync times required.

Other metrics that were mostly left out of our analysis but could provide a further

insight depending on one’s use case would be block and transaction processing speeds

(throughput). These could, for instance, help deduce whether a client implementation

takes an approximately constant amount of time to process each block or if that time

varies depending on the blocks’ contents (such as the gas used or the types of its included

transactions) and could be grounds for further benchmarks.

It should be emphasized that preserving a healthy Ethereum client is not only impor-

tant for the security of the network, but ever since staking was introduced it also has

financial benefits to its operator. Benchmarks such as ours can be a first step towards

initially choosing a client, but a continued resource monitoring during a client’s normal

operation (even after its bootstrapping) will always be of paramount importance.

Before drawing to a close, we can briefly go over what is already planned for Ethereum’s

future and how it relates to our study as well as explore some related work on proposed

improvements and alternative client implementations.

7.1 The Future of Ethereum

The Ethereum ecosystem is constantly evolving at a rapid rate. The Merge was a long-

awaited upgrade which brought with it several architectural changes, including to the

subject of our thesis. Following the Merge, a number of further major network upgrades

have already been planned — and have even been given their own rhyming names. In

brief:

• The Surge: Introduction of shard chains to the network (63 in number, for a 64 total

along with the main chain) which are intended to massively increase the scalability

of the network. These will pave the way for significantly lower gas fees and enable

the network to handle thousands of transactions per second. Most relevant to our
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focus here, shard chains will mean that a node will no longer need to locally store

the entire blockchain’s data, drastically lowering their workload and reducing their

hardware requirements.

• The Verge: Incorporation of Verkle trees (as briefly described in Section 3.1.7) to the

network, with the goal of replacing MPTs.

• The Purge: Elimination of certain historical data and technical debt. This includes

the introduction of native history expiry and state expiry concepts through which

a client will be able to safely ignore data past a certain date, further decreasing its

load.

• The Splurge: Various miscellaneous changes, including EVM improvements and the

implementation of proposer-builder separation (PBS) [46].

These are currently intended to happen in the above order, though exact dates have

not been given at the time of writing. Regardless, it is undeniable that Ethereum is

constantly striving to improve itself and, in all likelihood, before these upgrades come to

pass some yet unpublished piece of research will enrich them in some advantageous way.

7.2 Related work on potential improvements

Undoubtedly, apart from what is already planned for upgrading the Ethereum net-

work, related research for improvements in all its aspects continues without stopping. In

terms of execution client sync implementations, this research often focuses on alternative

approaches to their bootstrapping. Admittedly, many of them were conceived before the

release of snap sync which has since rendered them outdated (e.g. a turbo sync mode,

improving on Parity’s warp sync [47]) .

An intriguing approach to efficient client bootstrapping was Ethanos [48]. Its re-

searchers observed that only a fraction of the total Ethereum accounts are "active" (about

5% of accounts sent or received a transaction in the period of a month). Using that ob-

servation, they devised a syncing algorithm based around periodic epochs1
, at the start

of which the client would sweep inactive accounts, recreating the state trie only con-

taining the active ones. This approach necessarily adds some complexity, for instance

when an account becomes active again and its state needs to be manually retrieved, but

nonetheless results in MPTs of significantly smaller sizes. While the sync time gains that

it originally exhibited when compared to Geth’s fast sync are now too eclipsed by those of

snap sync, it remains a practical concept that merits further future consideration.

A separate but necessary approach to bootstrapping improvements would be on the

storage engines used. No matter the techniques employed by the clients to sync the

network, a bottleneck will sooner or later be found on the underlying storage unless that

is likewise optimized. A plethora of LSM-based key-value stores exist that improve upon

the popular LevelDB and RocksDB ones [49] [50], but the most compelling one is probably

mLSM trees [51].

1
unrelated to PoS epochs
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The cost of disk reads and writes in client implementations using multi-level LSM-

based storage engines can be traced back to the additional read and writes that these

engines need to perform internally on each such request (see Section 3.3). Merkelized Log

Structured Merge trees (mLSM trees) focus specifically on making authenticated storage

faster on Ethereum, by redesigning the data structure that a client’s storage engine uses

so as to avoid this amplification of reads and writes, through the incorporation of Merkle

proof caching. While caching does seems like an obvious solution to many of our issues —

and it indeed would be, should a client’s workload solely involve reads — its problem lies in

that a single write to any MPT leaf updates several intermediary nodes, including the root,

meaning that cached Merkle proofs would be invalidated on every write. The solution that

mLSM propose is replacing LevelDB’s immutable SSTables on disk with mutable MPTs

(keeping the multiple level implementation), while decoupling lookup and authentication.

Despite only being tested on a small subset of Ethereum’s total blocks as of their paper’s

publication, mLSM trees recorded a noteworthy decrease in redundant disk reads and

writes compared to LevelDB on Geth and are certainly a promising development.

Lastly, in the blockchain landscape where thousands of developers are unceasingly

working to deliver high quality services, some significant innovation may naturally first

arise in some other blockchain. Ethereum can take inspiration from similar account-

based cryptocurrencies and adapt any applicable and useful features of theirs into its

own architecture. Some interesting relevant work — not necessarily suitable for direct

application in Ethereum, but still useful for providing insights — include Cardano’s Mithril

[52] and Algorand’s Vault [53], both of which are proposals for their respective blockchains

that enable scalability through faster node bootstrapping.
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List of Abbreviations

ACID Atomicity, Consistency, Isolation, Durability

ADS Authenticated Data Structure

API Application Programming Interface

BTC Bitcoin

CHF Cryptographic Hash Function

CLI Command-Line Interface

DAO Decentralized Autonomous Organization

DApp Decentralized Application

DeFi Decentralized Finance

ECDSA Elliptic Curve Digital Signature Algorithm

EOA Externally Owned Account

EIP Ethereum Improvement Proposal

ERC Ethereum Request for Comments

ETH Ether

EVM Ethereum Virtual Machine

JSON JavaScript Object Notation

JWT JSON Web Token

LSM Log-Structured Merge

LIFO Last-In First-Out

MEV Maximal Extractable Value

MPT Merkle Patricia Trie

NFT Non-Fungible Token

P2P Peer-to-Peer

PoA Proof-of-Authority

PoS Proof-of-Stake

PoW Proof-of-Work

RPC Remote Procedure Call

RLP Recursive Length Prefix

SHA Secure Hash Algorithm

SSZ Simple Serialize

ULC Ultra Light Client

UTXO Unspent Transaction Output
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