
Advanced machine learning methods for
large-scale parametrized problems in

computational mechanics

By
Stefanos Nikolopoulos

School of Civil Engineering
Institute of Structural Analysis and Antiseismic Research

National Technical University of Athens

Supervisor: Professor Vissarion Papadopoulos

A thesis submitted for the degree of
Doctor of Philosophy

January, 2023





APPROVAL
PhD THESIS EXAMINATION COMMITTEE:

Professor Vissarion Papadopoulos
(Supervisor and Principal Advisor of the Committee)

National Technical University of Athens
School of Civil Engineering

Associate Professor Dimitrios Vamvatsikos
(Member Advisor of the Committee)

National Technical University of Athens
School of Civil Engineering

Associate Professor Michalis Fragiadakis
(Member Advisor of the Committee)

National Technical University of Athens
School of Civil Engineering





Professor Christos Zeris
(Member of the Examination Committee)
National Technical University of Athens

School of Civl Engineering

Professor Nikolaos Lagaros
(Member of the Examination Committee)
National Technical University of Athens

School of Civil Engineering

Professor Emmanuil Georgoulis
(Member of the Examination Committee)
National Technical University of Athens

School of Applied Mathematical and Physics Sciences

Assistant Professor Savvas Triantafyllou
(Member of the Examination Committee)
National Technical University of Athens

School of Civil Engineering



©2023 – Stefanos Nikolopoulos
all rights reserved.



To my family.

i



ii



Acknowledgments

Undertaking this PhD has been an amazing journey and a life-changing experience. I got
the chance to meet and work with many bright scientists and researchers and exchange
ideas with them. I would like to thank all of them for their valuable input in my PhD.

First of all, I would really like to thank my supervisor, Professor Vissarion Papadopou-
los, for all his guidance and support. I would not be in this position today without him
believing in me and giving me a chance to join his team some years ago.

Besides my advisor, I would like to express my gratitude to the rest of my thesis
committee for their insightful comments and encouragement. I would like to particularly
thank Assistant Professor Dimitrios Vamvatsikos and Assistant Professor Michail Fra-
giadakis for participating in my supervising committee and for being ever available for
consultation.

Furthermore, I would like to thank my colleague, Dr Ioannis Kalogeris, for the scientific
support and mentoring that he provided me during these years. His contribution to this
work is invaluable.

I would also like to thank my family and friends for supporting and motivating me
during this difficult process.

Last but not least, I gratefully acknowledge the funding received towards my PhD
from the European Regional Development Fund and Greek national funds under the
Grants ”HEAT - Optimal multiscale design of innovative materials for heat exchange
applications”, ”DComEX – Data Driven Computational Mechanics at exascale” and
”Materialize: Ολοκληρωμένη διαδικτυακή πλατφόρμα νέφους για το σχεδιασμό και την
προτυποποίηση υλικών και προιόντων υψηλών επιδόσεων¨.

iii



iv



Advanced machine learning methods for large-scale
parametrized problems in computational mechanics

Abstract

Recent advances in the field of machine learning open a new era in high performance
computing for challenging computational science and engineering applications. In this
framework, the use of advanced machine learning algorithms for the development of
accurate and cost-efficient surrogate models of complex physical processes has already
attracted major attention from scientists. This dissertation presents a novel non-
intrusive surrogate modeling scheme based on deep learning for predictive modeling of
complex systems, described by parametrized time-dependent partial differential equations.
Specifically, the proposed method utilizes a convolutional autoencoder in conjunction
with a feed forward neural network to establish a mapping from the problem’s parametric
space to its solution space. For this purpose, training data are collected by solving the
high-fidelity model via finite elements for a reduced set of parameter values. Then, by
applying the convolutional autoencoder, a low-dimensional vector representation of the
high dimensional solution matrices is provided by the encoder, while the reconstruction
map is obtained by the decoder. Using the latent vectors given by the encoder, a
feed forward neural network is efficiently trained to map points from the parametric
space to the compressed version of the respective solution matrices. This way, the
proposed surrogate model is capable of predicting the entire time history response
simultaneously with remarkable computational gains and very high accuracy. The
elaborated methodology is demonstrated on the stochastic analysis of time-dependent
partial differential equations solved with the Monte Carlo method.

However, despite their powerful approximation capabilities, surrogate model predic-
tions are still far from being near to the ‘exact’ solution of the problem. To address
this issue, this thesis suggests the use of up-to-date machine learning tools in order to
equip a new generation of iterative solvers of linear equation systems, capable of very
efficiently solving large-scale parametrized problems at any desired level of accuracy.
The proposed approach consists of the following two steps. At first, a reduced set of
model evaluations is performed using a standard finite element methodology and the
corresponding solutions are used to establish an approximate mapping from the problem’s
parametric space to its solution space using a combination of deep feedforward neural
networks and convolutional autoencoders. This mapping serves a means to obtain very
accurate initial predictions of the system’s response to new query points at negligible
computational cost. Subsequently, an iterative solver inspired by the Algebraic Multigrid
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method in combination with Proper Orthogonal Decomposition, termed POD-2G, is
developed that successively refines the initial predictions of the surrogate model towards
the exact solution. The application of POD-2G as a standalone solver or as precondi-
tioner in the context of preconditioned conjugate gradient methods is demonstrated on
several numerical examples of large scale systems, with the results indicating its strong
superiority over conventional iterative solution schemes.

Furthermore, the development of Physics-Informed Neural Networks (PINNs) over
the recent years has offered a promising avenue for the solution of partial differential
equations, as well as for the identification of unknown equation parameters. The last
chapter of this dissertation focuses on the application of PINNs, and in particular, their
variation called eXtended PINNs (XPINNs) for the determination of the Kapitza thermal
resistance at the interface between the different phases in a multiphase composite
material. This phenomenological model parameter is almost impossible to measure
experimentally, however the proposed framework successfully overcomes this difficulty
since it only requires measurements of the temperature at the interior of the composite
that are easy to obtain. The task of fine tuning the XPINN related hyperparameters is
successfully addressed by employing a Bayesian hyperparameter optimisation scheme
based on Gaussian process regression. Benchmark numerical examples are provided that
demonstrate the high accuracy, ease of implementation and robustness of the proposed
computational framework in capturing the true values of the Kapitza resistance.
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ΠΕΡΙΛΗΨΗ ΤΗΣ
ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

με τίτλο

‘Προχωρημένες μέθοδοι βαθιάς μηχανικής μάθησης

στην υπολογιστική στοχαστική μηχανική’
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Οι πρόσφατες εξελίξεις στον τομέα της υπολογιστικής μηχανικής επέτρεψαν στους ε-

ρευνητές να αναπτύξουν μοντέλα υψηλής ακριβείας πολύπλοκων φυσικών συστημάτων που

μιμούνται τη συμπεριφορά τους. Με αυτήν την προσέγγιση, η απόκριση ενός συστήμα-

τος υπολογίζεται μέσω προσομοιώσεων υπολογιστή, οι οποίες συνήθως είναι υπολογιστικά

δαπανηρές και χρονοβόρες. Ορισμένες εφαρμογές πρακτικού ενδιαφέροντος όπως η βελτι-

στοποίηση, η ποσοτικοποίηση της αβεβαιότητας και ο υπολογισμός των παραμέτρων ενος

συστήματος, απαιτούν μεγάλο αριθμό τέτοιων αναλύσεων. Για λεπτομερή πολύπλοκα μο-

ντέλα που περιγράφονται από μερικές διαφορικές εξισώσεις, το υπολογιστικό κόστος για μία

μόνο εκτέλεση μπορεί να κυμαίνεται από μερικά δευτερόλεπτα σε αρκετές ώρες, ως εκ το-

ύτου, αυτού του είδους οι αναλύσεις γίνονται υπολογιστικά ακριβές. Ο χειρισμός τέτοιων

προβλημάτων απαιτεί την ανάπτυξη εξαιρετικά αποτελεσματικών και γρήγορων τεχνικών

επίλυσης.

Προς αυτή την κατεύθυνση, έχουν αναδυθεί τεχνικές υποκατάστατων μοντέλων (surro-
gate models) τα προηγούμενα χρόνια ως αποτελεσματική προσέγγιση για τη μείωση του
υπολογιστικού φόρτου που σχετίζεται με μοντελοποίηση σύνθετων προβλημάτων μεγάλης

κλίμακας . Τα μοντέλα, που αναφέρονται επίσης ως μεταμοντέλα, είναι προσεγγίσεις του

αρχικού μοντέλου που είναι φθηνά στον υπολογισμό και μπορούν να μιμηθούν τη συμπε-

ριφορά του συστήματος με ελεγχόμενη απώλεια ακρίβειας. Αυτά τα μοντέλα συνήθως

κατασκευάζονται χρησιμοποιώντας ορισμένες υποθέσεις σχετικά με το λειτουργικό σχήμα

του μοντέλου που βασίζεται σε πληροφορίες σχετικά με την απόκριση του μοντέλου και για

το λόγο αυτό είναι γνωστά και ως μοντέλα που βασίζονται σε δεδομένα.

Οι μέθοδοι μειωμένης της διαστατικότητας ανήκουν σε αυτή την οικογένεια τεχνικών

μεταμοντελοποίησης και εφαρμόζονται ευρέως ως υποκατάστατα μοντέλα για παραμετρο-

ποιημένα συστήματα μεγάλης κλίμακας. Η ιδέα πίσω από τις μεθόδους αυτές είναι να

βρεθεί ένας κατάλληλος υποχώρος χαμηλής διάστασης του συστήματος υψηλών διαστάσε-

ων χώρο λύσης και προβάλλετε τις εξισώσεις που διέπουν αυτό το μειωμένο χώρο, όπου

μπορούν να επιλυθούν πιο αποτελεσματικά. Η πιο δημοφιλής γραμμική μέθοδος είναι γνω-

στή ως Επέκταση Karhunen-Loeve ή Ανάλυση Κύριων Στοιχείων (PCA/POD) . Η POD
συνήθως εφαρμόζεται σε μια συλλογή διανυσμάτων λύσης (στιγμιότυπα) και προσδιορίζει

μια κατάλληλη βάση για έναν υποχώρο μικρότερης διάστασης.

Ενώ οι γραμμικές μέθοδοι μείωσης της διαστατικότητας έχουν αποδειχθεί ότι λειτουργο-

ύν βέλτιστα σε γραμμικά προβλήματα, αυτό δεν συμαβαίνει σε μη γραμμικά προβλήματα με

μη συγγενική εξάρτηση από τις παραμέτρους. Αυτό συμβαίνει επειδή σε τέτοιες περιπτώσεις

η διαμόρφωση του συστήματος πρέπει να ενημερώνεται σε κάθε μία μη γραμμική επανάληψη

ή σε οποιαδήποτε νέα τιμή παραμέτρου και αυτή η διαδικασία μπορεί να εκτελεστεί μόνο

στο αρχικό μοντέλο. Επομένως, κάθε φορά που αλλάζει το πλήρες σύστημα εξισώσεων,

το μειωμένο σύστημα πρέπει να υπολογιστεί εκ νέου χρησιμοποιώντας προβολές Galerkin
, οι οποίες μεταφράζονται σε υπολογισμο πολλαπλών εσωτερικών γινομένων. Ωστόσο, το

υπολογιστικό κόστος των μη-γραμμικων μεθόδων είναι πολύ υψηλό και, επομένως, μει-

ώνουν σημαντικά τα υπολογιστικά οφέλη των γραμμικών μεθόδων, όπως η POD . Για την
αντιμετώπιση μη γραμμικών προβλημάτων με μη συγγενική εξάρτηση παραμέτρων, πολλά
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σχήματα που βασίζονται στην εμπειρική μέθοδο παρεμβολής (empirical interpolation) ή
στην υποδιαστημική γωνία παρεμβολής (subspace-angle Interpolation) έχουν προταθεί,
αλλά αυτά είναι επίσης παρεμβατικά στη φύση και τους. Η γενίκευση σε άλλα μη γραμμικά

προβλήματα δεν είναι απλή.

Πρόσφατα, ο συνδυασμός τεχνικών μείωσης της διαστατικότητας με μοντέλα μηχανικής

μάθησης που βασίζονται σε δεδομένα έχει οδηγήσει σε μη παρεμβατικές (non-intrusive)
προσεγγίσεις για τη λύση περίπλοκων προβλημάτων μεγάλης κλίμακας. Το πλεονέκτημα

αυτών των μεθόδων είναι ότι δεν απαιτείται πρόσβαση και τροποποίηση των εξισώσεων του

αρχικού μοντέλου. Για παράδειγμα, έχει προταθεί ο συνδυασμός POD και νευρωνικών

δικτύων (NN) που παράγουν μια υβριδική προσέγγιση POD-NN , όπου τα NN εκπαιδευο-
νται να παράγουν τους συντελεστές προβολής χαμηλών διαστάσεων του μοντέλου. Σε αυτό

πλαίσιο, η χρήση διαφορετικών σχημάτων παρεμβολής αντί για NN , όπως η παλινδρόμηση
διεργασίας Gauss , και οι συναρτήσεις ακτινικής βάσης αποδείχθηκαν επίσης πολύ αποτελε-
σματικές για παρεμβολή πάνω από τους συντελεστές της POD . Παρά το γεγονός ότι αυτές
οι μέθοδοι είναι πολύ αποδοτικές, το κύριο μειονέκτημα τους είναι ότι σε μη γραμμικά προ-

βλήματα, συχνά απαιτούν μεγαλύτερο αρχικών επιλύσεων από τις παρεμβατικές μεθόδους

για την κατασκευή ενός αξιόπιστο υποκατάστατου μοντέλου.

Λογω της παραπάνω αδυναμίας των γραμμικών μεθόδων, μη γραμμικές μέθοδοι μείωσης

της διαστατικότητας (Kernel PCA, Hessian eigenmaps, Laplacian eigenmaps, local tan-
gent space alignment, diffusion maps) κέρδισαν περισσότερη προσοχή τα τελευταία χρόνια.
Η κύρια υπόθεση αυτών των μεθόδων είναι ότι τα σημεία δεδομένων, που αντιστοιχούν

στις λύσεις του συστήματος, βρίσκονται σε ένα χώρο χαμηλής διάστασης ενσωματωμένο

στον Ευκλείδειο χώρος μεγάλης διάστασης. Αυτή η προσέγγιση είναι ιδιαίτερα χρήσιμη

όταν έχουμε να κάνουμε με σύνολα δεδομένων υψηλών διαστάσεων και, κατά συνέπεια,

επιτρέπουν την ανάπτυξη αποτελεσματικών σχημάτων παρεμβολής. Για παράδειγμα, έχει

προταθεί ο αλγόριθμος Kernel PCA, ο οποίος χρησιμοποιήθηκε για μείωση της διαστατι-
κότητας και σε συνδυασμό με τα υποκατάστατα μοντέλα του και του πολυωνυμικού χάους,

κατασκευάστηκε ένα οικονομικό μεταμοντέλο.

Παρά την αποτελεσματικότητα των προαναφερθέντων αλγορίθμων στην μείωση της δια-

στατικότητας για σύνολα δεδομένων υψηλών διαστάσεων, το κύριο μειονέκτημά τους πη-

γάζει από το γεγονός ότι δεν παρέχουν μια αναλυτική σχέση για την αποκωδικοποίηση των

συμπιεσμένων δεδομένων πίσω στις υψηλών διαστάσεων αναπαραστάσεις τους στον αρχικό

χώρο. Αυτό το πρόβλημα είναι γνωστό στη βιβλιογραφία ως το πρόβλημα της προεικόνας

και αρκετά περίτεχνα σχήματα παρεμβολής έχουν χρησιμοποιηθεί για την αντιμετώπισή του,

όπως οι γεωμετρικές αρμονικές και οι Λαπλασιανές πυραμίδες. Ωστόσο, μια πιο ευέλικτη

λύση σε αυτό το πρόβλημα μπορεί να δοθεί από οι αυτοκωδικοποιητές (Autoencoders -
AE). ΄Ενας αυτόματος κωδικοποιητής είναι ένας συγκεκριμένος τύπος μη εποπτευόμενου
νευρωνικού δικτύου (NN) που μαθαίνει πώς να συμπιέζει και να κωδικοποιεί αποτελεσματικά
δεδομένα και στη συνέχεια μαθαίνει πώς να τα ανακατασκευάζει (αποκωδικοποιεί), δηλαδή

να τα χαρτογραφεί από τα κωδικοποιήματά τους αναπαράσταση σε μια αναπαράσταση όσο

το δυνατόν πιο κοντά στην αρχική είσοδο. Ο κωδικοποιητής και ο αποκωδικοποιητής ε-
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νός αυτόματου κωδικοποιητή εκπαιδεύονται από κοινού, αλλά μπορούν να χρησιμοποιηθούν

χωριστά. Μια επέκταση των συνηθισμένων αυτόματων κωδικοποιητών είναι οι λεγόμενοι

συνελικτικοί αυτοματοι κωδικοποιητές (Convolutional Autoencoder - CAE), ένας ειδι-
κός τύπος συνελικτικών νευρωνικών δικτύων (CNN), που έχουν αναπτύχθεί κυρίως για
τη συμπίεση δεδομένων χωρικού πεδίου, αλλά έχουν αποδειχθεί ιδιαίτερα χρήσιμα σε πολ-

λές εφαρμογές που ασχολούνται με σύνολα δεδομένων υψηλών διαστάσεων. Ομοία με το

συνηθισμένο AE, τα CAE αποτελούνται επίσης από έναν κωδικοποιητή και ένα τμήμα α-
ποκωδικοποιητή, αλλά κατασκευάζονται χρησιμοποιώντας διαφορετικοί τύποι στρωμάτων

(layers), που ονομάζονται συνελικτικά και αποσυνελικτικά στρώματα. Μερικές απο τίς
εφαρμογές τους αφορούν τα πεδία της όρασης υπολογιστή (Computer vision), την ανα-
γνώριση προτύπων (Pattern recognition) και πρόβλεψη δεδομένων χρονοιστορίας(Time
series prediction).
Στην επιστημονική πληροφορική, υπάρχει συνεχής ανάγκη για την επίλυση μεγαλύτε-

ρων και υπολογιστικά πιο απαιτητικών προβλημάτων με αυξημένη ακρίβεια και βελτιωμένα

αριθμητικά εκτέλεση. Αυτό ισχύει ιδιαίτερα σε σενάρια πολλαπλών ερωτημάτων όπως η

βελτιστοποίηση, ποσοτικοποίηση αβεβαιότητας, και αντίστροφα προβλήματα, όπου τα προ-

βλήματα υπό διερεύνηση πρέπει να επιλυθούν για πολλές διαφορετικές περιπτώσεις παρα-

μέτρων με υψηλή ακρίβεια και αποτελεσματικότητα. Από αυτή την άποψη, η κατασκευή

αποτελεσματικών αριθμητικών επιλυτών για σύνθετα συστήματα που περιγράφονται με με-

ρικές διαφορικές εξισώσεις είναι ζωτικής σημασίας για πολλούς επιστημονικούς τομείς. Η

πρεςονδιτιονεδ ςονθυγατε γραδιεντ (PCG) και η preconditioned generalized minimal resid-
ual method (PGMRES) είναι από τις πιο δημοφιλείς προσεγγίσεις για την αντιμετώπιση
τέτοιων προβλημάτων. Σε αυτα μεθόδων, η επιλογή ενός κατάλληλου προρυθμιστή (precon-
ditioner) παίζει σημαντικό ρόλο στη σύγκλιση της μεθόδου. Αξιοσημείωτα παραδείγματα
προρυθμιστών περιλαμβάνουν την ημιτελής παραγοντοποίση Choleski, και μέθοδους α-
ποσύνθεσης τομέα (domain decompotision), όπως οι μέθοδοι FETI και οι προσθετικές
μέθοδοι Schwarz. Ομοίως, οι μέθοδοι αλγεβρικού και γεωμετρικού πολυπλέγματος (Al-
gebraic multigrid, Geometric multigrid, αντίστοιχα) είναι εξίσου καθιερωμένες μέθοδοι
που χρησιμοποιούνται συνήθως για την επιτάχυνση τυπικών επαναληπτικών επιλύτων και

μπορούν επίσης να χρησιμοποιηθούν ως υψηλής απόδοσης προρυθμιστές (preconditioners)
σε PCG ή PGMRES.
Οι ραγδαίες εξελίξεις στον τομέα της μηχανικής μάθησης (Machine Learning) έχουν προ-

σφέρει στους ερευνητές νέα εργαλεία για την αντιμετώπιση πολύπλοκων προβλημάτων σε

σενάρια πολλαπλών επιλύσεων. Για παράδειγμα, τα νευρωνικά δίκτυα (FFNN) έχουν χρησι-
μοποιηθεί με επιτυχία για την κατασκευή επιφανειών απόκρισης ποσοτήτων που ενδιαφέρουν

σε πολύπλοκα προβλήματα. Τα συνελικτικά νευρωνικά δίκτυα (CNN) σε συνδυασμό με τα
FFNN έχουν χρησιμοποιήθηκε για την πρόβλεψη της απόκρισης του συστήματος υψηλών
διαστάσεων σε διαφορετικές παραμέτρους περιπτώσεις. Επιπλέον, τα επαναλαμβανόμενα

νευρωνικά δίκτυα (Recurrent neural networks - RNN) έδειξαν εξαιρετική προοπτική σε
δυναμικά προβλήματα χωρίς την ανάγκη επίλυσης συστημάτων εξισώσεων. ΄Ολα αυτές οι μη

παρεμβατικές προσεγγίσεις χρησιμοποιούν ένα μικρό σύνολο αποκρίσεων συστήματος για
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να δημιουργήσουν έναν εξομοιωτή της σχέσης εισόδου-εξόδου του συστήματος για διαφο-

ρετικές τιμές παραμέτρων. Ως εκ τούτου, είναι ιδιαίτερα γρήγορες και μπορεί να είναι πολύ

ακριβής σε ορισμένες περιπτώσεις. Ωστόσο, τα αποτελέσμα που προκύπτουν απο τέτοιες με-

θόδους δεν ικανοποιούν τυχόν φυσικούς νόμους. Αυτό το πρόβλημα διορθώνεται σε κάποιο

βαθμό από παρεμβατικές προσεγγίσεις, οι οποίες βασίζονται σε μεθόδους μειωμένης βάσης,

όπως η POD. Επιπλέον, αρκετές πρόσφατες εργασίες έχουν διερευνήσει τον συνδυασμό
γραμμικών ή μη γραμμικών αλγόρθυμων μείωσης της διαστατικότητας σε συνδυασμό με

μη παρεμβατικά σχήματα παρεμβολής για την κατασκευή φθηνών εξομοιωτών πολύπλοκων

συστημάτων. Ωστόσο, κανένα από αυτά τα υποκατάστατα σχήματα μοντελοποίησης δεν

μπορεί να εγγυηθεί τη σύγκλιση στην ακριβή λύση του προβλήματος.

Στην προσπάθεια να συνδυαστεί το καλύτερο από τους δύο κόσμους, μια νέα ερευνητική

κατεύθυνση είναι αυτή της ενίσχυσης των επιλυτών γραμμικής άλγεβρας με αλγόριθμους

μηχανικής μάθησης για ταχύτερη σύγκλιση στην ακρίβη λύση του σύστηματος. Για πα-

ράδειγμα, η POD έχει συνδυαστεί με επιτυχία με την PCG για την αποτελεσματική ε-
πίλυση ακολουθιών γραμμικών συστημάτων που χαρακτηρίζονται από μεταβαλλόμενα δεξια

μέλη και συμμετρικούς θετικά ορισμισμένους πίνακες. Επιπλέον, η στενή σύνδεση μεταξύ

μεθόδων πολυπλέγματος και συνελικτικών νευρωνικών δικτύων έχει μελετηθεί σε αρκετές

πρόσφατες εργασίες για την επιτάχυνση της σύγκλισης των συστημάτων προς επίλυση.

Πρόσφατα, εισήχθη το πλαίσιο Νευρωνικού Δικτύου με Πληροφόρηση Φυσικής η (Physics
informed neural networks/PINN), στην προσπάθεια να ενσωματωθεί η φυσική στη μη-
χανική μάθηση. Τα πρώτα έργα που χρονολογούνται από τη δεκαετία του ΄90 είχαν ήδη

δείξει τις δυνατότητες του νευρικού δίκτυα για τη μοντελοποίηση μη γραμμικών δυναμικών

συστημάτων, καθώς και για την επίλυση συνηθισμένων και μερικών διαφορικών εξισώσε-

ων. Ωστόσο, το πρόσφατο έργο των η Raissi et. al, κατάφερε να αναζωπυρώσει το
επιστημονικό ενδιαφέρον για το θέμα, θέτοντας τις θεμελιώδεις αρχές των η PINN και την
επίδειξη των δυνατοτήτων τους στα σύγχρονα υπολογιστικά περιβάλλοντα. Από εκεί και

πέρα, τα η PINN έχουν εφαρμοστεί με επιτυχία σε πολλές εφαρμογές, είτε για την εξαγωγή
της λύσης ή για τον προσδιορισμό των παραμέτρων (αντίστροφο πρόβλημα) της μερικής

διαφορικής εξίσωσης, καθώς και για την επίλυση στοχαστικών προβλημάτων. Επομένως,

παρέχουν μια πολλά υποσχόμενη εναλλακτική λύση σε άλλα συμβατικά υπολογιστικά ερ-

γαλεία όπως η μέθοδος των πεπερασμένων στοιχείων η (FEM). Τα οφέλη των η PINN
περιλαμβάνουν την ευκολία εφαρμογής και την ικανότητά τους να συγχωνεύουν υπολογιστι-

κά μοντέλα με πειραματικά δεδομένα, που λαμβάνονται από προσομοιώσεις ή/και μετρήσεις.

Επιπλέον, προηγμένες πλατφόρμες βαθιάς μάθησης όπως καθώς οι η Pytorch και η Ten-
sorflow παρέχουν μαζικά παράλληλες υπολογιστικές δυνατότητες και η ανάπτυξη των η
PINN σε αυτές τις πλατφόρμες ανοιχτού κώδικα οδηγεί σε τεράστια βελτίωση απόδοσης,
καθιστώντας τα η PINN πιο αποτελεσματικά από τους συμβατικούς επιλύτες η FEM σε
ορισμένες περιπτώσεις. Αρκετές παραλλαγές αυτού του πλαισίου περιλαμβάνουν μεταβλητά

PINN, παράλληλα PINN και εκτεταμένα PINN (XPINN).
Στον τομέα της επιστήμης των υλικών, τα PINN έχουν χρησιμοποιηθεί με επιτυχία για

την εξαγωγή συμπερασμάτων των ετερογενών ιδιοτήτων υλικών σε πολύπλοκα συστήματα,

xi



όπως οι παράμετροι Lame και οι παράμετροι υπερελαστικότητας στη μηχανική των στερεών.
Επιπλέον, η εφαρμογή των PINN σε προβλήματα μεταφοράς θερμότητας, τα οποία επικε-
ντρώνονται σε αυτή την εργασία, έχει ήδη διερευνηθεί σε μια σειρά από δημοσιεύσεις. Η

παρούσα εργασία, ωστόσο, διαφέρει από προηγούμενες προσεγγίσεις. με την έννοια ότι εδώ

δίνεται έμφαση στην ανάπτυξη ενός υπολογιστικού πλαισίου για την εκτίμηση της θερμικής

αντίστασης σε μια διεπαφή μεταξύ δύο υλικών, με βάση στις μετρήσεις θερμοκρασίας. Η

θερμική αντίσταση της διεπαφής είναι μια σημαντική φυσική μηχανισμός που συναντάται σε

πολλές καταστάσεις πρακτικού ενδιαφέροντος. Επηρεάζει τη ροή θερμότητας από το ένα υ-

λικό στο άλλο θέτοντας ένα εμπόδιο στη ροή και οδηγώντας σε μια θερμοκρασία μετάβασης

στη διεπαφή. Αυτό το φαινόμενο παρατηρήθηκε και εννοιολογήθηκε από τον Kapitza που
εισήγαγε μια μακροσκοπική παράμετρο, γνωστή ως θερμική αντίσταση Kapitza. Παρά τη
σημαντική θεωρητική και πρακτική σημασία του, η πειραματική διευρεύνηση της αντίστασης

Kapitza είναι ένα δύσκολο έργο λόγω του γεγονότος ότι δεν είναι άμεσα μετρήσιμο μέγε-
θος. Υπάρχουν κάποιες υπολογιστικές προσεγγίσεις, που βασίζονται κυρίως στη μοριακή

δομική μηχανική, αλλά συνδέονται με τεράστιες υπολογιστικές απαιτήσεις.

Σε αυτή τη διατριβή, προτείνεται μια μη παρεμβατική στρατηγική υποκατάστασης μο-

ντελοποίησης για την επίλυση προβλημάτων που περιγράφονται από παραμετροποιημένες

χρονικά εξαρτώμενες μερικές διαφορικές εξισώσεις. Αυτό το σχήμα βασίζεται στις ισχυ-

ρές ιδιότητες μη-γραμμικής μείωσης διαστατικότητας των συνελικτικών αυτοκωδικοποιητών

(Convolutional autoencoders - CAE). Επί πλέον, χρησιμοποιούνται FFNN/MLP (Feed-
forward neural networks ή multilayer perceptrons) για να δημιουργήσουν μια αντιστοίχιση
μεταξύ του παραμετρικού χώρου του προβλήματος και του κωδικοποιημένου χώρου χαμηλής

διάστασης. Με αυτή την προσέγγιση (CAE-FFNN), η κωδικοποιημένη χρονική απόκριση
του συστήματος σε μια νέα τιμή παραμέτρου δίνεται από το FFNN, ενώ η αναπαράστασή
του στον αρχικό χώρο υψηλών διαστάσεων λαμβάνεται από τον αποκωδικοποιητή. Επο-

μένως, είναι ικανό να παρέχει εξαιρετικά γρήγορες και ακριβείς προσεγγίσεις της απόκρισης

του πλήρους συστήματος, παρακάμπτοντας αποτελεσματικά την ανάγκη για σειριακή δια-

μόρφωση και επίλυση των εξισώσεων που διέπουν το σύστημα σε κάθε χρονικό βήμα, όπως

συνήθως απαιτείται από την μέθοδο των πεπερασμένων στοιχείων. Επιπλέον, όσον αφορά

την απόδοση, η έρευνά μας έδειξε ότι η βέλτιστη αρχιτεκτονική του CAE βασίζεται σε
1-D συνελικτικά φίλτρα για τη χωρική διάσταση μείωση μαζί με 1-D pooling layers. Με
αυτόν τον τρόπο, επιτυγχάνεται μείωση έως και 4 φορές στις παραμέτρους του εκπαιδεύσι-

μου δικτύου, σε σύγκριση με τον αντίστοιχο 2-D CAE. Επομένως, η αρχιτεκτονική που
προτείνεται στην παρούσα εργασία έχει μειωμένες υπολογιστικές απαιτήσεις (offline και on-
line), ενώ ταυτόχρονα επιτυγχάνει πολύ ακριβή αποτελέσματα. Η μεθοδολογία εξετάζεται
σε προβλήματα στοχαστικής ανάλυσης χρονικά εξαρτώμενων PDEs, παραμετροποιημένων
από τυχαίες μεταβλητές, οι οποίες λύθηκαν στο πλαίσιο της μεθόδου Monte Carlo. Απο τα
αποτελέσμα προέκυψε μείωσης του υπολογιστικού κόστους έως και 80 φορές εν συγκρίσει

με την μέθοδο των πεπερασμένων στοιχείων, ενω παράλληλα τα αποτελέσματα ηταν πολυ

κοντά στην ακριβή λύση.

Επιπλέον, η παρούσα διατριβή προτείνει ενα υποκατάστατο μοντέλο ειδικά για δομικά
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παραμετροποιήσιμα προβλήματα μη γραμμικής δυναμικής ανάλυσης. Σε αυτή τη περίπτω-

ση, εκτελείται ένα αρχικό σύνολο επιλύσεων του πλήρες μοντέλου για μικρό αριθμό τιμών

παραμέτρων και οι πίνακες χρονοιστορίας λύσης αποθηκεύονται για να χρησιμεύουν ως το

σύνολο δεδομένων εκπαίδευσης. Αυτοί οι πίνακες υποδιαιρούνται περαιτέρω σε υποπίνακες

σύμφωνα με τον τύπο βαθμού ελευθερίας (dof), δηλαδή έξι υπομητρώα για τρισδιάστα-
τα προβλήματα που αντιστοιχούν στους τρείς μεταφορικούς και τους τρείς περιστροφικούς

dof. Στη συνέχεια, ένας ξεχωριστός CAE εκπαιδεύεται πάνω στις αντίστοιχες υπομήτρες
κάθε τύπου dof προκειμένου να ληφθεί μια διανυσματική αναπαράσταση χαμηλής διάστα-
σης μέσω του κωδικοποιητή του και ο χάρτης ανακατασκευής από τον αποκωδικοποιητή.

Στη συνέχεια, ένα διαφορετικό FFNN εκπαιδεύεται έτσι ώστε να δημιουργήσει μια σχέση
μεταξύ των σημείων από τον παραμετρικό χώρο στον λανθάνοντα χώρο που δίνεται από

κάθε κωδικοποιητή, ο οποίος μπορεί να αντιστοιχιστεί περαιτέρω στην πραγματική, υψη-

λών διαστάσεων, απόκριση του συστήματος μέσω του αποκωδικοποιητή. Παρόλο που ο

διαχωρισμός σε επιμέρους υποκατάσταστα μοντέλα για κάθε dof αυξάνει το offline κόστος
της μεθοδολογίας, ωστόσο, οδηγεί σε σημαντική βελτίωση στις δυνατότητες πρόβλεψης.

Η μεθοδολογία εξετάζεται στη στοχαστική μη γραμμική δυναμική ανάλυση δομικών συστη-

μάτων ενός και πολλαπλών βαθμών ελευθερίας, όπου φαίνεται να επιτυγχάνει εξαιρετικά

γρήγορες και ακριβείς προσσεγίσεις της απόκρισης του συστήματος. Συγκεκριμένα, σημει-

ώθηκε μείωση του υπολογιστικού κόστους έως και 300 φορές σε σχέση με τις συμβατικές

μεθόδους.

Η διδακτορική διατριβή στοχεύει στη γεφύρωση του χάσματος μεταξύ της μηχανικής

μάθησης και της γραμμικής άλγεβρας για την επιτάχυνση της επίλυσης πραγματικών προ-

βλημάτων υπολογιστικής μηχανικής σε σενάρια πολλαπλών ερωτημάτων. Για το σκοπό

αυτό, προτείνεται μια νέα στρατηγική για τη χρήση εργαλείων μηχανικής μάθησης προκει-

μένου να ληφθούν λύσεις του συστήματος εντός ενός προκαθορισμένου ορίου ακρίβειας,

με ταχύτερους ρυθμούς σύγκλισης από τους συμβατικούς επιλύτες. Η προτεινόμενη προ-

σέγγιση αποτελείται από δύο βήματα. Αρχικά κατασκευάζεται ένα μικρό σύνολο επιλύσεων

του συστήματος, οι οποίες χρησιμοποιούνται για τη δημιουργία μιας απεικόνισης απο τον

παραμετρικό χώρο στον χώρο των λύσεων. Συγκεκριμένα, χρησιμοποιείται το υποκατα-

στάτο μοντέλο CAE-FFNN. Αυτή η απεικόνιση εξυπηρετεί ώς μέσο απόκτησης αρχικών
εκτιμήσεων της απόκρισης του συστήματος με αμελητέο υπολογιστικό κόστος και υψηλή α-

κρίβεια. Το σφάλμα σε αυτές τις προβλέψεις, ωστόσο, μπορεί ή ενδέχεται να μην ικανοποιεί

το προβλεπόμενο όριο ακρίβειας. Ως εκ τούτου, προτείνεται ένα δεύτερο βήμα, το οποίο

αξιοποιεί περαιτέρω τη γνώση από τις ήδη διαθέσιμες λύσεις συστήματος, προκειμένου να

κατασκευαστεί ένας επαναληπτικός επιλύτης που βασίζεται σε δεδομένα. Αυτός ο λύτης

είναι εμπνευσμένος από την ιδέα της μεθόδου του Αλγεβρικού Πολυπλέγματος (AMG) σε
συνδυασμό με την Ορθή Ορθογώνια Αποσύνθεση (POD) και ονομάζεται POD-2G, βελτι-
ώνει διαδοχικά την αρχική πρόβλεψη του υποκατάστατου μοντέλου προς τις ακριβείς λύσεις

συστήματος με σημαντικά ταχύτερους ρυθμούς σύγκλισης.

Το τελευταίο κεφάλαιο αυτής της διατριβής προτείνει μια απλή αλλά πολύ αποτελεσματική

προσέγγιση για την εκτίμηση της τιμής της αντίστασης Kapitza στη διεπαφή μεταξύ δύο υ-
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λικών, αξιοποιώντας την έννοια των PINN και ειδικότερα αυτή των XPINN. Σε σύγκριση με
Τα PINN, τα XPINN προσφέρουν μεγάλη ικανότητα παραλληλισμού, καθώς ενισχύουν τη
μεθοδολογία PINN χρησιμοποιώντας μια διαδικασία αποσύνθεσης τομέα. Σε κάθε έναν από
τους υποτομείς που δημιουργούνται, εφαρμόζεται ξεχωριστό PINN με την πολυπλοκότητά
του να επιλέγεται σύμφωνα με την πολυπλοκότητα της λύσης σε αυτόν τον συγκεκριμένο

υποτομέα. Χρησιμοποιώντας XPINN στην παρούσα προσέγγιση, είναι εφικτή η υλοποίηση
ξεχωριστών PINN για την επίλυση της μερικής διαφορικής εξίσωσης που διέπει το πρόβλημα
μεταφοράς θερμότητας σε κάθε μεμονωμένο υλικό και στη συνέχεια επιβάλλουν την εξίσω-

ση συνέχειας της ροής θερμότητας στη διεπαφή των υλικών ως περιορισμός που και τα δύο

νευρωνικά δίκτυα πρέπει να ικανοποιούν. Εάν, επιπλέον, δοθεί ένα σύνολο πειραματικών με-

τρήσεων, όπως τιμές θερμοκρασίας στον όγκο του σύνθετου υλικού, το οποίο είναι εύκολο

να ληφθεί στην πράξη, τότε το μοντέλο μας μπορεί να εκπαιδευτεί για να βρει τη βέλτι-

στη τιμή της αντίστασης Kapitza, τέτοια ώστε οι διαφορικές εξισώσεις να επιλύονται με
ακρίβεια στο εσωτερικό κάθε υλικού, οι προβλεπόμενες από το XPINN τιμές θερμοκρασίας
να συμφωνούν με τις πειραματικές στο καθορισμένες θέσεις και να ικανοποιείται η εξίσωση

ροής θερμότητας στη διεπαφή. Η επιλογή των XPINN έναντι των PINN στην προτεινόμενη
προσέγγιση δικαιολογείται περαιτέρω από την ύπαρξη θερμοκρασιακών ασυνεχειών, κάτι

που είναι ευκολότερα διαχειρίσιμο από τα XPINN. Ωστόσο, ένα σχετικό μειονέκτημα των
XPINN είναι το γεγονός ότι περιλαμβάνουν μεγάλο αριθμό υπερπαραμέτρων που απαιτούν
λεπτομέρεια, προκειμένου να επιτύχει τα επιθυμητά επίπεδα ακρίβειας.
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1
Introduction

1.1 Motivation

Recent advances in the field of computational mechanics have allowed researchers to

develop high-fidelity models of complex physical systems that emulate their behavior.

With this approach, the response of a system under investigation can be efficiently

predicted via computer simulations in lieu of computationally costly and time-consuming

experiments. However, certain applications of practical interest such as optimization,

uncertainty quantification and parameter identification require a large number of model

runs. For detailed complex models described by time-dependent partial differential

equations (PDEs), the computational cost for a single run may range from a few seconds

to several hours, hence, these types of analyses become unduly expensive. Computational

handling of such problems necessitates the development of highly efficient and accurate

solution techniques. In this direction, surrogate modeling techniques have emerged over

the past years as an effective approach for reducing the computational burden associated

with predictive modeling of complex large-scale problems [207, 13, 172, 6, 193]. Surrogate

models, also referred to as metamodels, are approximations of the original model that

are cheap to compute and can mimic the system’s behavior with a controlled loss of

accuracy. These models are typically constructed by using some assumptions about the

functional shape of the model based on information about the model’s response in the
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form of data, and for this reason they are also known as data-driven models.

Reduced basis (RB) methods belong to this family of metamodeling techniques and are

widely applied as surrogates for parametrized large scale systems [140, 70, 108, 146]. The

idea behind RB methods is to find a suitable low-dimensional subspace of the system’s

high-dimensional solution space and project the governing equations onto this reduced

space, where they can be solved more efficiently. The most popular linear reduced basis

technique is Proper Orthogonal Decomposition (POD) [178, 9, 72, 190], also known as

Karhunen-Loéve expansion or Principal Component Analysis (PCA) in certain contexts.

POD is typically applied to a collection of solution vectors (snapshots) and identifies an

appropriate basis for a lower dimensional subspace. The main advantage of POD stems

from its ability to optimally truncate the basis such that it represents only the most

energetic modes contained in the snapshots. Other linear basis construction methods

include proper generalized decomposition [60, 51], balanced truncation [149, 185] and

rational interpolation [23].

While linear RB methods have proven to work optimally on linear problems, this is not

the case for general nonlinear problems with non-affine dependence on the parameters

[153]. This is because in such cases the system configuration needs to be updated at each

nonlinear iteration or at any new parameter value and this process can only be performed

on the full-order model. Therefore, every time the system changes, the reduced system of

equations needs to be re-derived using Galerkin projections, which translate to multiple

inner product evaluations. However, the computational cost of these evaluations is

very high and, thus, they significantly diminish the computational gains of linear RB

methods. To address nonlinear problems with non-affine parameter dependence, several

RB schemes based on the empirical interpolation method [43, 152] or subspace-angle

interpolation [9, 10] have been proposed, but these are also intrusive in nature and their

generalization to other nonlinear problems is not straightforward.

Recently, the combination of RB techniques with data-driven machine learning models

[168, 112, 12] has resulted in non-intrusive approaches for the solution of large-scale

complex systems [230, 110, 95, 169]. The advantage of these methods is that they do not

need to access and modify the governing equations of the original high-fidelity model.

For instance, in [95, 169] it has been proposed to combine POD and feed forward neural

networks (FFNNs) producing a hybrid POD-FFNN approach, where the FFNN was

trained to produce the low-dimensional projection coefficients of the RB model. In this

frame, the use of different interpolation schemes instead of FFNNs, such as Gaussian
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Process Regression [86] and radial basis functions [223, 61] were also shown to be very

efficient for interpolating over the POD coefficients. Despite the fact that these methods

are highly efficient, their main pitfall is that for general nonlinear problems, they often

require a higher number of model evaluations than intrusive methods to construct a

reliable surrogate in the first place.

Motivated by the inability of linear reduction methods such as POD to capture

complex response surfaces, nonlinear manifold learning methods (e.g. Kernel PCA [241],

Hessian eigenmaps [233], Laplacian eigenmaps [25], local tangent space alignment [239],

the diffusion maps algorithm [54]) gained more attention over the past few years. The

main assumption in manifold learning is that the data points, which correspond to system

solutions in this setting, lie on a low-dimensional manifold embedded in an ambient

higher-dimensional Euclidean space. The goal is to identify the manifold’s intrinsic

dimensionality, that is, the parameters that describe it, and thus obtain low-dimensional

representations of the data set. This approach can remedy the problems associated

with the curse of dimensionality when dealing with high-dimensional data sets and,

consequently, enable the development of efficient interpolation schemes. For instance,

in [129], the kernel PCA algorithm was employed for the purposes of dimensionality

reduction and in conjunction with Kriging and polynomial chaos expansion surrogates,

a cost-efficient metamodel was constructed. Similarly, in [114, 115] the diffusion maps

algorithm has been investigated as an alternative to POD.

Despite the effectiveness of the aforementioned algorithms in providing low-dimensional

representations for high-dimensional data sets, their main disadvantage stems from the

fact that they do not provide an analytic relation for decoding the compressed data back

to their high-dimensional representations in the original space. This problem is known

in the literature as the pre-image problem and several elaborate interpolation schemes

have been employed to address it, such as the geometric harmonics [55] and Laplacian

pyramids [35]. However, a more versatile solution to this problem can be provided by

the autoencoders [139]. An autoencoder (AE) is a specific type of an unsupervised

neural network (NN) that learns how to efficiently compress and encode data and then

learns how to reconstruct (decode) them, that is, to map them from their encoded

representation to a representation as close to the original input as possible. The encoder

and decoder parts of an autoencoder are trained jointly, yet can be used separately.

In [222], an AE with a novel support vector machine based classifier is proposed to

identify the location of the pilot’s pupil center detection. A similar approach can be
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found in [220], where a deep AE with a softmax classifier is used for determining pilot’s

fatigue status. An extension of ordinary autoencoders are the so called convolutional

autoencoders (CAEs), a special type of convolutional NNs (CNNs), which have been

developed primarily for spatial field data compression but have proven particularly useful

in several applications dealing with high-dimensional data sets. Similarly to ordinary

AEs, CAEs also consist of an encoder and a decoder part but they are constructed using

different types of layers, called convolutional and deconvolutional layers [87]. Some of

their applications pertain to the fields of computer vision [121], pattern recognition [162]

and time series data prediction [240]. For example, in [221] a combined CNN - long

short memory network (LSTM) is proposed for detecting dynamic behavior of brain

fatigue and in [232] CAEs were used as surrogates for blood flow simulation.

In this dissertation, a non-intrusive surrogate modeling strategy is proposed for the

solution of problems described by parametrized time-dependent PDEs. This scheme relies

on the powerful dimensionality reduction properties of CAEs, which are exploited as a

means of encoding and decoding the high-dimensional solution data sets. Furthermore,

FFNNs are used to establish a mapping between the problem’s parametric space to its

encoded solution space. With this approach, the encoded time-history response of the

system at a new parameter value is given by the FFNN, while its representation in the

original high-dimensional space is obtained by the decoder. Therefore, it is capable of

providing remarkably fast and accurate evaluations of the complete system’s response,

effectively bypassing the need to serially formulate and solve the governing equations

of the system at each time increment, as is typically required by finite element (FE)

methods. A similar approach can be found in [226], where the authors suggest the use of

3 levels of NNs, namely a CAE, a temporal CAE [214] and a FFNN to perform parameter

and future state prediction. On the other hand, the surrogate scheme proposed herein

requires only 2 levels of NNs, a FFNN and a CAE, rendering it very easy to implement.

Furthermore, in terms of performance, our investigation indicated that the optimal

CAE’s architecture is based on 1-D convolutional filters for the spatial dimensionality

reduction along with 1-D average pooling layers for the temporal reduction. This way, a

decrease of up to ×4.00 in the trainable network’s parameters is achieved when compared

to the corresponding 2-D CAE. Therefore, the architecture proposed in this paper has

reduced offline and online computational requirements, while at the same time achieves

very accurate results. The elaborated methodology is demonstrated on the stochastic

analysis of time-dependent PDEs, parametrized by the system’s random variables and
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solved in the frame of the Monte Carlo method.

Consequently, this dissertation builds upon the above framework and focuses its

application on the more challenging problem of nonlinear transient analysis of stochastic

structural problems. In this setting, an initial set of full model evaluations is performed

for a small number of parameter values and the solution time-history matrices are

stored to serve as the training data set. These matrices are further subdivided into

submatrices according to the dof type, that is, six solution time-history submatrices

for 3D structures corresponding to the three translational and three rotational dofs.

Then, a separate CAE is trained over the corresponding submatrices of each dof type

in order to obtain a low-dimensional vector representation through its encoder and a

reconstruction map by the decoder. Subsequently, a different FFNN is trained to map

points from the parametric space to the latent space given by each encoder, which can

be further mapped to the actual, high-dimensional, system response by the associated

decoder mapping. Even though this classification of the solution time-history matrices

according to the dof type increases the offline cost of the methodology, yet, it leads to

significant improvements on the surrogate’s prediction capabilities, since it is better able

to capture the specific functional behavior of the time-histories of each dof type.

In scientific computing, there is a constant need for solving larger and computa-

tionally more demanding problems with increased accuracy and improved numerical

performance. This holds particularly true in multi-query scenarios such as optimization,

uncertainty quantification, inverse problems and optimal control, where the problems

under investigation need to be solved for numerous different parameter instances with

high accuracy and efficiency. In this regard, constructing efficient numerical solvers for

complex systems described by partial differential equations is crucial for many scientific

disciplines. The preconditioned conjugate gradient method (PCG) [21, 26, 136, 93] and

the preconditioned generalised minimal residual method (PGMRES) [183, 194, 15] are

amongst the most powerful and versatile approaches to treat such problems. In these

methods, the choice of a suitable preconditioner plays a major role on the convergence

and scalability of the solvers and notable examples include the incomplete Choleski

factorization [57] and domain decomposition methods [210, 208], such as the popular

FETI methods [74, 73, 76] and the additive Schwarz methods [38, 8]. In a similar

fashion, Algebraic and Geometric Multigrid (AMG, GMG, resp.) [212] are equally

well-established methods that are commonly employed for accelerating standard iterative

solvers and may also service as highly efficient preconditioners for PCG [100, 96, 128] or
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PGMRES [176, 219, 213].

Nevertheless, optimizing the aforementioned solvers so as to attain a uniformly fast

convergence for multiple parameter instances, as required in multi-query problems,

remains a challenging task to this day. To tackle this problem, several works suggest the

use of interpolation methods tasked with constructing approximations of the system’s

inverse operator for different parameter values [235, 27, 41], which can then be used

as preconditioners. Another approach can be found in [204], where primal and dual

FETI decomposition methods with customized preconditioners are developed in order to

accelerate the solution of stochastic problems in the context of Monte Carlo simulation,

as well as intrusive Galerkin methods. Augmented Krylov Subspace methods showed

great promise in handling sequences of linear systems [182], such as those arising in

parametrized PDEs, however, the augmentation of the usual Krylov subspace with data

from multiple previous solves led in certain cases to disproportional computational and

memory requirements. To alleviate this cost, optimal truncation strategies have been

proposed in [63], as well as deflation techniques [42, 184, 88].

In recent days, the rapid advancements in the field of machine learning (ML) have

offered researchers new tools to tackle challenging problems in multi-query scenarios. For

instance, deep feedforward neural networks (FFNNs) have been successfully employed

to construct response surfaces of quantities of interest in complex problems [167, 166,

192, 98, 52]. Convolutional neural networks (CNNs) in conjuction with FFNNs have

been employed to predict the high-dimensional system response at different parameter

instances [156, 154, 227]. In addition, recurrent neural networks demonstrated great

potential in transient problems for propagating the state of the system forward in time

without the need of solving systems of equations [230, 109]. All these non-intrusive

approaches utilize a reduced set of system responses to build an emulator of the system’s

input-output relation for different parameter values. As such, they are particularly cheap

to evaluate and can be very accurate in certain cases. However, these methods can be

characterized as physics-agnostic in the sense that the derived solutions do not satisfy

any physical laws. This problem is remedied to some extent from intrusive approaches

based on reduced basis methods, such as Principal Orthogonal Decomposition (POD)

[39, 236, 7] and proper Generalized Decomposition [50, 126, 125]. These methods rely on

the premise that a small set of appropriately selected basis vectors suffices to construct

a low-dimensional subspace of the system’s high-dimensional solution space and the

projection of the governing equations to this subspace will come at minimum error.
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In addition, several recent works have investigated the combination of either linear or

nonlinear dimensionality reduction algorithms and non-intrusive interpolation schemes

to construct cheap emulators of complex systems [58, 188, 115, 67, 111, 216, 91, 130].

Nevertheless, none of these surrogate modelling schemes can guarantee convergence to

the exact solution of the problem.

In the effort to combine the best of two worlds, a newly emergent research direction

is that of enhancing linear algebra solvers with machine-learning algorithms. For

instance, POD has been successfully employed to truncate the augmented Krylov

subspace and retain only the high-energy modes [40] for efficiently solving sequences of

linear systems of equations characterized by varying right-hand sides and symmetric-

positive-definite matrices. In [92], neural networks were trained for predicting the

geometric location of constraints in the context of domain decomposition methods,

leading to enhanced algorithm robustness. Moreover, the close connection between

multigrid methods and CNNs has been studied in several recent works, which managed

to accelerate their convergence by providing data-driven smoothers [48], prolongation

and restriction operators [141].

This dissertation aims at bridging the gap between machine learning and linear algebra

algorithms for accelerating the solution of real-life computational mechanics problems

in multi-query scenarios. To this end, a novel strategy is proposed to utilize ML tools

in order to obtain system solutions within a prescribed accuracy threshold, with faster

convergence rates than conventional solvers. The proposed approach consists of two steps.

Initially, a reduced set of model evaluations is performed and the corresponding solutions

are used to establish an approximate mapping from the problem’s parametric space to

its solution space using a combination of deep FFNNs and CAEs. This mapping serves a

means of acquiring very accurate initial predictions of the system’s response to new query

points at negligible computational cost. The error in these predictions, however, may or

may not satisfy the prescribed accuracy threshold. Therefore, a second step is proposed

herein, which further utilizes the knowledge from the already available system solutions,

in order to construct a data-driven iterative solver. This solver is inspired by the idea

of the Algebraic Multigrid method combined with Proper Orthogonal Decomposition,

termed POD-2G, that successively refines the initial prediction of the surrogate model

towards the exact system solutions with significantly faster convergence rates.

The field of machine learning has witnessed tremendous breakthroughs over the past

decades, becoming a pervasive technology in a wide range of applications, such as image

7



processing [90, 195], speech recognition [97, 151, 64], autonomous driving [85, 66] and

patient-specific healthcare [59, 69, 30]. To address the particular requirements of each

application, a variety of different neural network architectures emerged, including Deep

Neural Networks [131, 196], Convolutional Neural Networks [231, 217], Recurrent Neural

Networks [84, 197, 187], Autoencoders [19, 20] and Transformers [215, 49, 229]. Most of

these frameworks have also been employed in computational mechanics for the purposes

of predictive and data-driven modeling [155, 202, 33, 137]. Their ability to provide

accurate and cheap-to-evaluate surrogates of complex large-scale systems made them

an indispensable tool for challenging engineering problems such as partial differential

equations [157], uncertainty quantification [4] and Bayesian inference [173].

Recently, the Physics-Informed Neural Network (PINN) framework was introduced

in the effort to incorporate physics into machine learning [174, 147, 65, 175, 132, 106].

Early works dating back in the 90s had already demonstrated the capabilities of neural

networks for modeling nonlinear dynamical systems [179], as well as for solving ordinary

and partial differential equations [127]. However, it was the recent work of Raissi et.

al [174], which managed to rekindle the scientific interest on the topic, by laying down

the fundamental principles of PINNs and demonstrating their powerful approximation

capabilities in the modern-day computing environments. From there on, PINNs have

been successfully applied in numerous applications, either to derive the solution (forward

problem) [174] or to infer the parameters (inverse problem) [82] of partial differential

equations (PDEs), as well as for solving stochastic [237, 47] and interval [78] PDEs, thus

providing a promising alternative to other conventional computational tools such as finite

element methods (FEM). The benefits of PINNs include the ease of implementation

and their ability to fuse computational models with experimental data, obtained from

simulations and/or measurements. Furthermore, advanced deep-learning platforms such

as Pytorch [170] and Tensorflow [3] provide massively parallel computing capabilities

and the deployment of PINNs in these open-source platforms leads to vast performance

improvements, rendering PINNs more efficient than conventional FEM solvers in certain

cases. Several variations of this framework involve Variational PINNs [116], Parareal

PINNs [145] and eXtended PINNs (XPINNs) [101].

In the field of material science, PINNs have been successfully employed for inferring

heterogeneous material properties in complex systems, such as the Lamé parameters

[79] and hyperelasticity parameters [238] in solid mechanics, as well as permeability

coefficients [234] in fluid mechanics. In addition, the application of PINNs to heat transfer
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problems, which are focused in this work, has already been investigated in a number of

publications [37, 243]. The present work, however, differs from previous approaches in

the sense that the emphasis herein is put on developing a computational framework for

the estimation of the thermal resistance at an interface between two materials, based

on temperature measurements. Interface thermal resistance is an important physical

mechanism encountered in many situations of practical interest. It affects heat flow from

one material to another by posing a barrier to the flow and leading to a temperature

jump across the interface. This phenomenon was observed and conceptualized by Kapitza

[117, 209] who introduced a macroscopic parameter, known as Kapitza thermal resistance,

to model it. Despite its significant theoretical and practical importance, experimental

establishment of the Kapitza resistance is a difficult task due to its phenomenological

nature and the fact that it is not a directly measurable quantity. Some computational

approaches, mostly relying on molecular structural mechanics [205, 186], do exist, but

they are associated with extreme computational demands.

The last chapter of this dissertation proposes a simple yet very efficient computational

approach to estimate the value of the Kapitza resistance at the interface between two

materials, utilizing the concept of PINNs and in particular that of XPINNs. Compared to

PINNs, XPINNs offer great parallelization and representation capacity, as they enhance

the PINN methodology by employing a domain decomposition procedure [101, 199].

In each of the induced subdomains, a separate PINN is applied with its complexity

chosen in accordance to the complexity of the solution at this specific subdomain. Using

XPINNs in our approach allows for implementing separate PINNs to solve the PDE of

the heat transfer problem at each individual material and then impose the heat flux

continuity equation at the interface of the materials as a constraint that both neural

networks have to satisfy. If, in addition a set of experimental measurements is given,

such as temperature values at the volume of the composite, which is easy to obtain

in practice, then our model can be trained to find the optimal value of the Kapitza

resistance, such that (i) the PDEs are accurately solved in the interior of each material,

(ii) the XPINN-predicted temperature values agree to the experimental ones at the

specified locations and (iii) the heat flux equation at the interface is satisfied. The choice

of XPINNs over PINNs in our setting is further justified by the existence of temperature

discontinuities in the problem’s domain, which is something that XPINNs are more

capable of capturing [105]. However, an associated drawback of XPINNs is the fact that

they involve a large number of hyperparameters that require fine tuning, in order to

9



achieve the desirable levels of accuracy. To address this problem in an efficient manner,

Bayesian hyperparameter optimisation using Gaussian Process regression [201, 83] is

employed herein.

1.2 Outline

This thesis is organized in 9 chapters. Besides chapter 1, the rest of the dissertation is

outlined as follows:

Chapter 2 introduces common solution practices for solving large-scale systems.

Specifically, the finite element method is briefly described as a modeling technique

of elliptic PDEs, followed by the preconditioned conjugate gradient and the algebraic

multigrid methods.

Chapter 3 provides the theory of the machine learning models used in this dissertation,

such as feed-forward neural networks, autoencoders and physics informed neural networks.

Chapter 4 continues with the development of a novel surrogate modeling technique

for parametrized systems. The proposed methodology is demonstrated on the stochastic

analysis of time-dependent PDEs, parametrized by the system’s random variables and

solved in the frame of the Monte Carlo method. Numerical examples are provided to

assess the performance of the proposed surrogate model.

Chapter 5 builds upon the methodology presented in chapter 4 and aims to extend

its applicability in transient analysis of stochastic nonlinear structures. The elaborated

methodology is demonstrated on the stochastic nonlinear transient analysis of single and

multi degree of freedom structural systems, where it is shown to achieve remarkably fast

and accurate evaluations of the complete system’s response.

Chapter 6 introduces a novel iterative solver for accelerating the solution of large-scale

parametrized systems. In this chapter the proposed methodology utilizes the surrogate

models that developed earlier in order to obtain an accurate initial estimation of the

solution. Subsequently, the proposed solver successively refines the initial prediction

of the surrogate model towards the exact system solutions with significantly faster

convergence rates as demonstrated by the numerical examples.

Chapter 7 presents a novel methodology for parameter identification of composite

materials using eXtended physics informed neural networks (XPINNs). In this chap-

ter, the XPINNs’ general formulation is explained along with the proposed algorithm.

Numerical examples are provided to validate the methodology’s efficiency.
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To conclude, chapter 8 discusses the conclusions and contribution drawn from this

research.
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2
Solution techniques for large-scale systems

2.1 Intoduction

In computational mechanics, there is a constant need for solving larger and computa-

tionally more demanding problems with increased accuracy and improved numerical

performance. This holds particularly true in multi-query scenarios such as optimization,

uncertainty quantification, inverse problems and optimal control, where the problems

under investigation need to be solved for numerous different parameter instances with

high accuracy and efficiency. In this regard, constructing efficient numerical solvers for

complex systems described by partial differential equations is crucial for many scientific

disciplines. The preconditioned conjugate gradient method (PCG) [21, 26, 136, 93] and

the preconditioned generalised minimal residual method (PGMRES) [183, 194, 15] are

amongst the most powerful and versatile approaches to treat such problems. In these

methods, the choice of a suitable preconditioner plays a major role on the convergence

and scalability of the solvers and notable examples include the incomplete Choleski

factorization [57] and domain decomposition methods [210, 208], such as the popular

FETI methods [74, 73, 76] and the additive Schwarz methods [38, 8]. In a similar

fashion, Algebraic and Geometric Multigrid (AMG, GMG, resp.) [212] are equally

well-established methods that are commonly employed for accelerating standard iterative

solvers and may also service as highly efficient preconditioners for PCG [100, 96, 128] or
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PGMRES [176, 219, 213].

Nevertheless, optimizing the aforementioned solvers so as to attain a uniformly fast

convergence for multiple parameter instances, as required in multi-query problems,

remains a challenging task to this day. To tackle this problem, several works suggest the

use of interpolation methods tasked with constructing approximations of the system’s

inverse operator for different parameter values [235, 27, 41], which can then be used

as preconditioners. Another approach can be found in [204], where primal and dual

FETI decomposition methods with customized preconditioners are developed in order to

accelerate the solution of stochastic problems in the context of Monte Carlo simulation,

as well as intrusive Galerkin methods. Augmented Krylov Subspace methods showed

great promise in handling sequences of linear systems [182], such as those arising in

parametrized PDEs, however, the augmentation of the usual Krylov subspace with data

from multiple previous solves led in certain cases to disproportional computational and

memory requirements. To alleviate this cost, optimal truncation strategies have been

proposed in [63], as well as deflation techniques [42, 184, 88].

2.2 Finite Element Method

This work focuses on linear elliptic PDEs defined on a domain Ω ⊆ Rdim, dim = 1, 2, 3,

which are parametrized by a vector of parameters θ ∈ Θ, with Θ ⊆ Rn being the

parameter space. The variational formulation of the PDE can be stated as: given θ ∈ Θ,

find the solution v = v(θ) from the Hilbert space V= V(Ω) such that

κ (v, w;θ) = f (w;θ) (2.1)

for every w ∈ V(Ω) with compact support in Ω. The Lax-Milgram lemma proves that

eq. (2.1) has a unique solution for every θ, provided that the bilinear form κ(·, ·;θ) is
continuous and coercive and f (·;θ) is a continuous one-form.

In practice, however, obtaining an exact solution v is not feasible for most applications

of interest and instead, an approximate solution is sought using numerical techniques,

such the finite element method (FEM). In FEM, a finite-dimensional subspace Vh ⊆ V

is considered, which is spanned by a finite number of polynomial basis vectors {Ni}N̄i=1.

These polynomials are compactly supported on a set of small polyhedra (finite elements)

that partition the domain Ω and within each element e the approximate displacement

vector field vh ∈ Vh and test functions wh are expressed as:
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veh =

N̄∑
i=1

ueiN
e
i (2.2)

weh =
N̄∑
i=1

weiN
e
i (2.3)

where ue = [uei , · · · ,ueN̄ ]
T ∈ RN̄ are the coefficients in the expansion of the unknown

field approximation, obtained using a Galerkin minimization that relies on the linearity

of the forms κ, f and the orthogonality of the polynomial basis vectors. Since eq. (2.1)

must hold within each finite element e and for any test function w, the system of linear

equations follows:

κ

 N̄∑
j=1

uejNj , Ni;θ

 = f (Ni;θ) , for i = 1, ..., N̄ (2.4)

or, due to the linearity of κ,

N̄∑
j=1

κ (Nj , Ni;θ) u
e
j = f (Ni;θ) , for i = 1, ..., N̄ (2.5)

Equation (2.5) describes an N̄ × N̄ linear system of equations to be satisfied within

the e-th element. Repeating this procedure for all elements and appropriately assembling

the respective equations will result in the following d× d linear system

K(θ)u(θ) = f(θ) (2.6)

with d being the total number of unknowns in the system, K ∈ Rd×d is a real symmetric

positive definite matrix, u ∈ Rd is the unknown solution vector and f ∈ Rd the force

vector.

Solving such a linear system for a detailed discretization (d ≫ 1) can be computa-

tionally intensive, particularly in multiquery problems that require numerous system

evaluations for various instances of parameters θ, such as optimization, parameter infer-

ence, uncertainty propagation, sensitivity analysis, etc. Therefore, it becomes evident

that efficient numerical solvers for linear systems of equations are of vital importance in
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the analysis of large scale real-world problems. The following sections revisits the basic

ideas behind two of most efficient methods for solving such systems, namely, the PCG

and the AMG methods.

2.3 Preconditioned conjugate gradient method

The Conjugate Gradient method was originally proposed by Hestenes and Stiefel as a

direct method [94] for solving linear systems, but its full potential was demonstrated in

the frame of iterative solvers for large-scale sparse systems of the form Ku = f , with K

being a symmetric positive definite matrix. The goal of CG is to minimize the quadratic

function

Q(u) =
1

2
uTKu− fTu (2.7)

which is equivalent to setting the residual r = −∇Q(u) = f −Ku to zero.

Let us assume an initial guess u(0) for the system, which, in the absence of any other

information, is taken u(0) = 0, with corresponding residual r(0) = f . Then, we can

consider the Krylov subspaces,

K0 = {0}, Kk = span{f ,Kf , . . . ,Kk−1f}, for k ≥ 1 (2.8)

These subspaces are nested, K0 ⊆K1 ⊆ . . . , and have the key property that K−1f ∈Kd.

Then, a Krylov sequence {u(1),u(2), · · · } consists of the vectors u(k) such that

u(k) = argmin
u∈Kk

Q(u), k = 1, 2, . . . (2.9)

Bbased on the previous property, it follows that u(d) = K−1f . In this regard, CG is a

recursive method for computing the Krylov sequence {u(0),u(1), . . . }. It can be proven

that the corresponding (nonzero) residuals r(k) = f −Kuk() form an orthogonal basis

for the Krylov subspaces, that is

Kk = span{r(0), r(1), . . . , r(k−1)},
(
r(j)
)T

r(i) = 0, for i ̸= j (2.10)

and a sequence of conjugate (K-orthogonal) basis vectors pk can be obtained by applying

the Gram-Schmidt process to the r(k) vectors as follows:
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p0 = r(0), pk = r(k) −
∑
i<k

pTi Kr(k)

pTi Kpi
pi, k = 1, 2, . . . (2.11)

or, equivalently,

pk = r(k) −
pTk−1Kr(k)

pTk−1Kpk−1

pk−1, k = 1, 2, . . .

= r(k) +

(
r(k)

)T
r(k)(

r(k−1)
)T

r(k−1)
pk−1, k = 1, 2, . . . (2.12)

The solution u(k+1) = argminu∈Kk+1
Q(u) of eq. (2.9) can be expressed as a linear

combination of the basis vectors {p0, . . . ,pk}

u(k+1) =
k∑
i=0

αipi (2.13)

with the coefficients αi obtained from the Galerkin projections:

αi =
pTi r

(i)

pTi Kpi
(2.14)

Using the fact that u(k) =
∑k−1

i=0 αipi, then, the Krylov sequence and the corresponding

residuals are given by the relations:

u(k+1) = u(k) + αkpk (2.15)

r(k+1) = r(k) − αkKpk (2.16)

In the above, we could consider an initial guess u(0) ̸= 0 and solve the system

Kū = f −Ku(0), with u = ū+ u(0). This is the same as initializing the CG algorithm

with {u(0), r(0) = f −Ku(0)} and updating this guess according to equations (2.15)-

(2.16) for k = 1, 2, . . . , until r(k) is suffiently small. In theory, CG terminates in at

most d steps, however, due to rounding errors it may take more than d steps or even

fail in practice. Also, the improvement in the approximations u(k) is determined by

the condition number c(K) of the system matrix K; the larger c(K) is, the slower the
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improvement.

A standard approach to enhance the convergence of the CG method is through

preconditioning (PCG), namely the application of a linear transformation to the system

with a matrix T , called the preconditioner, in order to reduce the condition number of

the problem. Thus, the original system Ku−f = 0 is replaced with T−1 (Ku− f) = 0,

such that c(T−1K) is smaller than c(K). The steps of the PCG algorithm are presented

in algorithm 1.

Algorithm 1 PCG algorithm

1: Input: K ∈ Rd×d, rhs f ∈ Rd, preconditioner T ∈ Rd×d, residual tolerance δ
and an initial approximation u(0)

2: set k = 0, initial residual r(0) = f −Ku(0)

3: s0 = T−1r(0)

4: p0 = s0
5: while ∥r(k)∥ < δ do

6: αk =
(r(k))

T
sk

pT
k Kpk

7: u(k+1) = u(k) + αkpk
8: r(k+1) = r(k) − αkKpk
9: sk+1 = T−1r(k+1)

10: βk =
(r(k+1))

T
sk+1

(r(k))
T
sk

11: pk+1 = sk+1 + βkpk
12: k = k + 1
13: end while

The choice of the preconditioner T in PCG plays a crucial role in the fast convergence

of the algorithm. Some generic choices include the Jacobi (diagonal) preconditioner

T = diag(K) and the incomplete Cholesky factorization T = L̂L̂
T
, with L̂ being a

sparse lower triangular matrix such that K ≈ L̂L̂
T
. Another popular choice is the

incomplete LU factorization T = L̃Ũ , with L̃ being a lower unitriangular matrix and

Ũ an upper triangular, such that K ≈ L̃Ũ . Moreover, multigrid methods such as the

AMG, elaborated on the next section, apart from standalone iterative schemes, are also

very effective as preconditioners to the CG method.
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2.4 Algebraic Multigrid Method

AMG was originally introduced in the 1980’s [180] as an efficient numerical approach for

solving large ill-conditioned sparse linear systems and eigenproblems. Its main difference

from the (geometric) multigrid method lies only in the method of coarsening. While

multigrid methods require knowledge of the mesh, AMG methods extract all the needed

information from the system matrix. AMG methods have been successfully applied to

numerous problems including PDEs, sparse Markov chains and problems involving graph

Laplacians (e.g. [206, 32, 211, 150, 71]). The key idea in AMG algorithms is to employ a

hierarchy of progressively coarser approximations to the linear system under consideration

in order to accelerate the convergence of classical simple and cheap iterative processes,

such as the damped Jacobi or Gauss-Seidel. These methods, commonly referred to as

relaxation or smoothing, are very efficient in eliminating the high-frequency error modes,

but inefficient in resolving the low-energy modes. AMG overcomes this problem through

the coarse-level correction, as elaborated below.

Let us consider the linear system of eq. (2.6), which describes the fine problem and

let u(0) be an initial solution to it. The two-level AMG defines a prolongation operator

P , which is a full-column rank matrix in Rd×dc , dc < d and a relaxation scheme such as

the Gauss-Seidel (GS). Then, the two-level AMG algorithm consists in the steps shown

in algorithm 2:

In the above algorithm, lines 4-10 describe what is known as a V -cycle, schematically

depicted in figure 2.1a. The multi-level version of the above algorithm is easily obtained

as the result of recursively applying the two-level algorithm, as shown in fig. 2.1b for

the 3-level setting. The notation

u(k+1) = AMG(u(k);K,f , r1, r2) (2.17)

will be used to denote the application of one AMG cycle.
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Algorithm 2 Two-level AMG algorithm

1: Input: K ∈ Rd×d, rhs f ∈ Rd, prolongation operator P ∈ Rd×dc , a relaxation
scheme denoted as G, residual tolerance δ and an initial approximation u(0)

2: set k = 0, initial residual r(0) = f −Ku(0)

3: while ∥r(k)∥ < δ do
4: Pre-relaxation: Perform r1 iterations of the relaxation scheme on the current

approximation and obtain u(k) as: u(k) ← G
(
u(k); r1

)
5: Update the residual: r(k) = f −Ku(k)

6: Restrict the residual to the coarser level and solve the coarse level system
Kce

(k)
c = P Tr(k), where Kc = P TKP ∈ Rdc×dc

7: Prolongate the coarse grid error e(k) = Pe
(k)
c

8: Correct the fine grid solution: u(k+1) = u(k) + e(k)

9: Post-relaxation: Perform additional r2 relaxation iterations and obtain
u(k+1) ← G

(
u(k+1); r2

)
10: k = k + 1
11: end while

(a)

(b)

Figure 2.1: Multigrid V-cycles in a (a) 2-level and a (b) 3-level setting
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To better illustrate algorithm 2 and its convergence properties, let us consider the GS

algorithm as the relaxation scheme, where the matrix K is split into K = L+ V , L

being a lower triangular matrix that includes the diagonal elements and V is the upper

triangular part of K. The iterative scheme of the GS method is as follows:

um+1 = L−1 (f − V um)

= L−1f −L−1 (K −L)um

= um +L−1 (f −Kum)

= um +L−1rm (2.18)

where the subscripts m,m+ 1 in the above equation denote the iteration number of the

GS algorithm. If u⋆ is the exact solution to the system and em = u⋆ − um the error

after the m-th iteration, then

em+1 = u⋆ − um+1

= em + um −
(
um +L−1rm

)
= em −L−1 (Kem)

=
(
I −L−1K

)
em (2.19)

where I is the d× d identity matrix. Setting M = I −L−1K, then it is straightforward

to show that

em+1 = Mem = M2em−1 = . . .Mm+1e0 (2.20)

Returning to Algorithm 2, the error at the end of the k-th cycle of the two-level AMG

can be computed as:

e(k) = M r2CM r1e(k−1) (2.21)

with

C = I − P
(
P TKP

)−1
P TK (2.22)
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being the coarse grid correction, M r2 the post-relaxation matrix after r2 sweeps and

M r1 the pre-relaxation after r1 sweeps.

From eq. (2.21) it becomes evident that the matrix M r2CM r1 determines the

convergence behavior of the two-level cycle. The relaxation matrix M plays a role,

however, in practice the selection of the prolongation operator P is the key to designing

an efficient algorithm. In this regard, the most popular variations of AMG include the

Ruge-Stüben method [180] and the smoothed aggregation based (SA) AMG [163]. Lastly,

another factor the affects the number of iterations in AMG to reach the prescribed

threshold of accuracy, is the choice of the initial solution. In absence of other information,

u(0) = 0 is usually considered.
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3
Machine learning models

3.1 Intoduction

3.2 Feed-forward Neural Networks

A feed-forward neural network (FFNN) is a collection of interconnected processing units

denoted as neurons, distributed into an input, an output and a set of intermediate hidden

layers. In particular, let Nk : Rd0 −→ Rdk+1 be a FFNN with k hidden layers, with

each hidden layer consisting of nj neurons, for j = 1, 2, ..., k. The input and output

layers consist of n0 = d0 and nk+1 = dk+1 neurons, respectively. Each layer except from

the input is associated with a weight matrix and a bias vector, denoted as W j and

bj , respectively; the sets of these quantities, when accounted for all the network layers,

define the adjustable parameters of the model. The input vector is denoted as z0 ∈ Rd0

and the output vector of the jth layer as zj ∈ Rdj , for j = 1, 2, ..., k + 1. An example of

a FFNN architecture with one hidden layer is illustrated in Fig. 3.1.
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Figure 3.1: A Feed-forward Neural Network with one hidden layer.

The output of a network’s layer, say j, can be described by the following relationship:

zj = σj(W jzj−1 + bj), ∀j ∈ {1, 2, ..., k + 1} (3.1)

where σj(·) is a non-linear activation function, which is applied layer-wise. As a result,

the overall function of a FFNN can be seen as a mapping of inputs z0 ∈ Rd0 to outputs

zk+1 ∈ Rdk+1 , through the recursive evaluation of (3.1).

The optimisation of the network parameters is achieved through a process known as

supervised learning. More specifically, the FFNN is provided with data, each containing

an input and a target (flag) value, and then is assigned to adjust its parameters in order

to minimize the difference, denoted as error, between its processed outputs and the

target value. The error is computed with the aid of a loss function, L(W ; b), such as

the mean squared error, which for continuous cases and a dataset {z(i)
0 , t(i)}Ni=1, takes

the form:

L(W ; b) =
1

N

N∑
i=1

||zk+1(z
(i)
0 )− t(i)||2 (3.2)

where {z(i)
0 }Ni=1 are the N input vectors and {t(i)}Ni=1 the corresponding target vectors.

Due to the non-linearity imposed by the activation functions, the minimization of
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(3.2) is a non-convex problem, and thereby can only be dealt with non-linear iterative

algorithms, such as stochastic gradient descent [118] and quasi-Newton methods [75].

3.3 Autoencoders

3.3.1 General concept

The AE concept was introduced in [181] and it is regarded as a neural network that

learns from an unlabeled data set in an unsupervised manner. The aim of an AE is to

learn a reduced representation for a set of data, known as encoding, and then learn how

to reconstruct the original input from the encoded input with the minimum possible

error. The latter part of the AE is called the decoder.

In particular, let X be a subset of Rd with x ∈ X denoting an element of the set.

Then, the AE’s encoder and decoder are defined as transition maps ϕ, ψ such that:

ϕ : X ⊆ Rd →H ⊆ Rl (3.3)

ψ : H ⊆ Rl →X ⊆ Rd (3.4)

ϕ, ψ = argmin
ϕ,ψ

∥X − (ψ ◦ ϕ)X∥2 (3.5)

with the dimension l typically being much smaller than d.

Now, let us consider the simplest case, where the encoder has only one hidden layer.

It takes an input x ∈ Rd and sends it to h = ϕ(x) ∈ Rl, which in this case can also be

written as

h = σ(Wx+ b) (3.6)

with σ being an activation function (eg. tanh, ReLU , etc), W a weight matrix and b a

bias vector. The image h of x is the latent or encoded representation of x and H is the

latent or feature space.

The decoder’s task is to establish the inverse mapping ψ that will reconstruct the

input x, given its latent representation h. Again, considering a one-hidden layer, the

reconstructed point x̃ = ψ(h) is given by

x̃ = σ̃(W̃h+ b̃) (3.7)
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where σ̃, W̃ and b̃ may be unrelated to those of the encoder. Also, the network’s

architecture selected for the encoder can be different than that of the decoder and the

number of hidden layers can be greater than one, leading to the so-called deep AEs. The

general concept and architecture of an AE is schematically presented in figure 3.2.

Figure 3.2: Schematic representation of a basic autoencoder

AEs are trained by a back propagation algorithm [36], which is the most commonly

used algorithm for the training of NNs. Back propagation computes the gradient of the

loss function with respect to network’s weights very efficiently with the aid of automatic

differentiation (AD) [24]. AD involves a set of techniques developed to numerically

evaluate the gradient of a function specified by a computer program. It exploits the fact

that every operation performed by the program, no matter how complicated, executes

a sequence of elementary arithmetic operations (addition, subtraction, multiplication,

division, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the chain

rule to these operations, derivatives of arbitrary order can be computed to working

precision. Thus, gradient based optimization methods such as stochastic gradient descent,

adaptive moment, etc. can be applied for training multilayer NNs by updating weights

such as to minimize loss.

In the context of AEs, the loss function becomes the reconstruction error between the

input points xi and their respective output x̃i. It is usually expressed as the mean-square
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error:

L=
1

N

N∑
i=1

||xi − x̃i||2 (3.8)

with ∥ · ∥2 denoting the L2-norm and N being the number of points in the training

data set. It should be explicitly mentioned that even though the minimization of the

reconstruction error implies that the encoder and decoder are trained jointly, however,

they can be used separately.

3.3.2 Convolutional autoencoders

Despite their powerful dimensionality reduction properties, AEs face significant challenges

when dealing with very high-dimensional inputs, due to the fact that the number of

trainable parameters increases drastically with an increase in the input’s dimensionality.

In addition, AEs are not capable of capturing the spatial features of the input (e.g. when

dealing with images) nor the sequential information in the input (e.g. when dealing with

sequence data).

To remedy these issues, a new type of AEs has emerged, that of convolutional

autoencoders (CAEs) [144]. Similarly to AEs, CAEs also consist of an encoder and a

decoder that are trained to minimize the loss function of eq. (3.8), but they are built from

different layer types. Specifically, in CAEs the encoder part is built using a combination

of convolutional layers, fully connected layers, pooling layers and normalization layers,

while the decoder is built from deconvolutional layers and unpooling layers along with

fully connected and normalization layers. Intuitively, CAEs can be viewed as extensions

of ordinary AEs in the same way that CNNs [124] are extensions of FFNNs. These

concepts are illustrated in the following sections.

Convolutional and deconvolutional layers

Convolutional layers take as input a n-D array M and apply a filter F (a.k.a. kernel)

of specified size to the elements of M in a moving window fashion. This process

is schematically depicted in figure 3.3. Essentially, the objective of the convolution

operation is to extract the most important features from the input and use them to

encode it. To better clarify this process, let us consider a 2−D array M = [mij ] and

its encoded version M enc = [µij ], called feature map, which is obtained after applying a
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filter W = [wij ] of size fh × fw, moving with vertical stride sv and horizontal stride sh.

The element µij of M
enc is given by the equation:

µij =

fh∑
u=1

fw∑
v=1

mi′j′ · wuv + b with

i′ = i× sv + u

j′ = j × sh + v
(3.9)

where b is the bias term and wuv is the element of the filter W that gives the connection

weight between elements of M enc and the elements of M within the respective window.

This layer architecture is significantly more economical than that of a fully connected

layer since the parameters involved are only the fh × fw elements of the filter wij and

the bias term b. The filter parameters do not require to be manually defined, instead

the convolutional layer will automatically learn the most appropriate filter for the task.

Also, a convolutional layer can have multiple filters, in which case it outputs one feature

map M enc
k per each filter k. This enables it to detect multiple features anywhere in

its inputs. Additionally, several convolutional layers can be stacked in order to build

deep architectures which allow the network to concentrate on small low-level features in

the first layer and progressively assemble them into larger higher-level features in the

subsequent layers. In this more general case, the element µijk at the q-th convolutional

layer, corresponding to row i, column j of the k feature map M enc
k , is obtained as:

µijk =

fh∑
u=1

fw∑
v=1

fn′∑
k′=1

mi′j′k′ · wuvk′k + bk with

i′ = i× sv + u

j′ = j × sh + v
(3.10)

where now fn′ is the number of feature maps in the previous layer (layer q − 1), mi′j′k′

the value located in row i′, column j′ of the q − 1 layer’s feature map k′ and bk is the

bias term for the k-th feature map (in layer q). Also, wuvk′k is the connection weight

between the values in feature map k of layer q and its input located at row u, column v

at the window of the k′ feature map. To simplify the notation, the application of several

convolutional layers, with multiple filters each, to an array M will be expressed as

M enc = ConvNN(M) (3.11)

with ConvNN(·) denoting the mapping from the initial input space to its encoded

representation.
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Figure 3.3: Schematic representation of a 2-D convolutional filter with strides sh = 2 and sv = 2.

Depending on the application, the convolutional filters can either be one, two or three

dimensional with the difference between them being the way they slide across the data.

In this work, the focus is on processing time series data, therefore 1-D convolutional

filters, such as the one depicted in figure 3.4, were used to scan the data only in the time

axis.

Figure 3.4: Schematic representation of a 1-D convolutional filter with stride s = 2.

On the other hand, a deconvolutional layer performs the reverse operation of convolu-

tion, called deconvolution, and it is used to construct decoding layers. Their function

is to multiply each input value by a filter elementwise. For instance, a 2D fh × fw
deconvolution filter maps an 1× 1 spatial region of the input to an fh × fw region of

the output. Thus, the filters learned in the deconvolutional layers create a base used for

the reconstruction of the inputs’ shape, taking into consideration the required shape of
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the output. As before, a deconvolutional layer can have multiple filters, while several

deconvolutional layers can be stacked for building deep architectures for CAEs [89, 87].

The decoding procedure can be represented as:

M = DeconvNN(M enc) (3.12)

Based on the above, the CAE’s architecture consists of convolutional, deconvolutional

and dense layers and is typically used for dimensionality reduction and reconstruction

purposes. In practice, the CAE’s encoder uses a number of convolutional layers to

compress the input and once the desirable level of reduction has been achieved, the

encoded matrix is flattened into a vector. Then, a dense layer is employed to map

this vector to its latent representation. In the reverse direction, the decoder starts by

taking the latent representation and transforming it into a vector through a denser layer.

Subsequently, the input reconstruction is achieved by the deconvolutional layers. In

accordance to eq. (3.8) the loss for CAEs becomes:

L=
1

N

N∑
i=1

||M i − M̃ i||2 (3.13)

whereM i denotes the input arrays used for training and M̃ i = DeconvNN(ConvNN(M i))

the corresponding CAE’s output. In general, CAEs tend to be lossy due to the mathe-

matical inability of perfectly reconstructing high-dimensional data from their encoded

representations. However, by selecting an appropriate architecture for the CAE (types of

layers, number and size of filters, dimensionality of latent space, etc., the reconstruction

error given by the above equation can be reduced to a minimum.In figure 5.1, a schematic

representation of a deep CAE is presented.
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Figure 3.5: Schematic representation of a deep convolutional autoencoder.

Pooling and unpooling layers

Aside of convolutional, deconvolutional and dense layers, two other important layer types

often employed in CAEs are those of pooling and unpooling. Pooling layers are quite

similar to convolutional layers in the sense that they downsample the input in order to

decrease its size, however, they do not involve any trainable parameters. Their goal is to

reduce the computational load, the memory usage, and the number of parameters. The

latter is particularly useful since it also limits the risk of overfitting. Each neuron in

a pooling layer is linked to a limited number of neurons in the previous layer, located

within a small window. The window’s size and stride are user defined.

Common types of pooling layers include the max pooling layer and the average pooling

layer. The first outputs the maximum value from the portion of the input covered by

the filter and all other inputs are neglected. Accordingly, average pooling layers return

the average from the portion of the input. Aside from its dimensionality reduction

properties, the pooling operation can be useful for extracting dominant features of the

input such as translational, rotational and scale invariance. Nevertheless, caution should

be exercised regarding the usage of pooling layers because the corresponding accuracy

loss might outweigh the benefits they provide.

On the other hand, unpooling layers perform the reverse operation of pooling and

their aim is to reconstruct the original size of each rectangular patch. During the max
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pooling operation, a matrix is created which records the location of the maximum values

selected during pooling. This matrix is then employed in the unpooling operation in

order to place each value back to its original pooled location, while setting all other

values to zero. In the case of average unpooling, it assigns the same mean value to all

elements of the output window. A schematic representation of max pooling, average

pooling and unpooling is given in figure 3.6.

Figure 3.6: Examples of pooling and unpooling.

3.4 Physics informed neural networks

In general, a PDE parameterized by a vector of parameters θ can be expressed as

f(x,
∂u

∂x1
, ...,

∂u

∂xd
,

∂2u

∂x1∂x1
, ...,

∂2u

∂x1∂xd
, ...;θ) = 0 x ∈ Ω ⊂ Rd (3.14)

where u = u(x) is the solution field that satisfies the PDE for a given instance of the

parameter vector θ. In addition, the boundary conditions associated with (3.14) can be

written as

Bi(u;x) = 0, x ∈ Φi ⊂ ∂Ω (3.15)

where Bi(·), for i = 1, 2, .., l, can be Dirichlet, Neumann or mixed boundary conditions

for the boundary Φi.
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The intuition behind Physics-Informed Neural Networks (PINNs) is that they incorpo-

rate (3.14) and (3.15) into their loss function, designed to solve both forward and inverse

problems of PDEs. The forward problem consists in finding the solution field u of eq.

(3.14) for a given value of the parameter vector θ, while the inverse problem consists

in inferring the unknown values of θ using a set of experimental measurements of u

at specific locations of the domain. In both cases, the given mathematical problem is

converted into an optimisation problem, where its corresponding loss function is defined

using training examples obtained by evaluating the initial and boundary conditions of

the given PDE and, if possible, by experimentally evaluating its solution at a set of

points in the domain interior.

More specifically, the application of a PINN for solving a forward problem proceeds

as follows. A single FFNN is considered to approximate the solution of eq. (3.14) at

the domain points {x(i)
u }Nu

i=1, where the values of u(x) are known and correspond to

the Dirichlet boundary conditions. Moreover, the same FFNN is trained to satisfy the

physics imposed by the PDE as well, by attempting to minimize the absolute value

of f at a collection of randomly chosen collocation points inside the domain, denoted

by {x(i)
f }

Nf

i=1. This FFNN model is called PINN and its associated parameters can be

learned through the minimization of the following loss function [174]:

L(Θ) =Wu MSEu(Θ; {x(i)
u }

Nu
i=1) +

Wf MSEf (Θ; {x(i)
f }

Nf

i=1)
(3.16)

where Wu and Wf are the weights for the data mismatch and the residuals, respectively,

and Θ = {W , b} are the adjustable parameters of the PINN. The Mean Squared Error

(MSE) for each term is given by

MSEu(Θ; {x(i)
u }

Nu
i=1) =

1

Nu

Nu∑
i=1

||uΘ(x(i)
u )− u(i)||2 (3.17)

and

MSEf (Θ; {x(i)
f }

Nf

i=1) =
1

Nf

Nf∑
i=1

||fΘ(x
(i)
f )||2 (3.18)

Here, {u(i)}Nu
i=1 are the exact solutions of the PDE for the points {x(i)

u }Nu
i=1, {uΘ(x

(i)
u )}Nu

i=1

are the solutions obtained from the PINN and {fΘ(x
(i)
f )}Nf

i=1 are the residuals at {x
(i)
f }

Nf

i=1.
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For the inverse problem, where we want to identify the equation’s parameters θ, we

can define the loss function as follows [174]:

L(Θ,θ) =Wu MSEu(Θ,θ; {x(i)
u }Ni=1) +Wf MSEf (Θ,θ; {x(i)

u }Ni=1) (3.19)

where

MSEu(Θ,θ; {x(i)
u }Ni=1) =

1

N

N∑
i=1

||uΘ(x(i)
u )− u(i)||2 (3.20)

and

MSEf (Θ,θ; {x(i)
u }Ni=1) =

1

N

N∑
i=1

||fΘ(x(i)
u )||2 (3.21)

Here, {x(i)
u , u(i)}Ni=1 denotes the training dataset on the solution of (3.14), with {x(i)

u }Ni=1

including, in this case, both points in the Dirichlet boundary and points in the interior

of the domain, where the solution is known. The collocation points in eq. (3.21) are

selected to be the same as the training data [174].
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4
Machine learning surrogate modeling for

parametrized systems

4.1 Introduction

Recent advances in the field of computational mechanics have allowed researchers to

develop high-fidelity models of complex physical systems that emulate their behavior.

With this approach, the response of a system under investigation can be efficiently

predicted via computer simulations in lieu of computationally costly and time-consuming

experiments. However, certain applications of practical interest such as optimization,

uncertainty quantification and parameter identification require a large number of model

runs. For detailed complex models described by time-dependent partial differential

equations (PDEs), the computational cost for a single run may range from a few seconds

to several hours, hence, these types of analyses become unduly expensive. Computational

handling of such problems necessitates the development of highly efficient and accurate

solution techniques. In this direction, surrogate modeling techniques have emerged over

the past years as an effective approach for reducing the computational burden associated

with predictive modeling of complex large-scale problems [207, 13, 172, 6, 193]. Surrogate

models, also referred to as metamodels, are approximations of the original model that

are cheap to compute and can mimic the system’s behavior with a controlled loss of
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accuracy. These models are typically constructed by using some assumptions about the

functional shape of the model based on information about the model’s response in the

form of data, and for this reason they are also known as data-driven models.

Reduced basis (RB) methods belong to this family of metamodeling techniques and are

widely applied as surrogates for parametrized large scale systems [140, 70, 108, 146]. The

idea behind RB methods is to find a suitable low-dimensional subspace of the system’s

high-dimensional solution space and project the governing equations onto this reduced

space, where they can be solved more efficiently. The most popular linear reduced basis

technique is Proper Orthogonal Decomposition (POD) [178, 9, 72, 190], also known as

Karhunen-Loéve expansion or Principal Component Analysis (PCA) in certain contexts.

POD is typically applied to a collection of solution vectors (snapshots) and identifies an

appropriate basis for a lower dimensional subspace. The main advantage of POD stems

from its ability to optimally truncate the basis such that it represents only the most

energetic modes contained in the snapshots. Other linear basis construction methods

include proper generalized decomposition [60, 51], balanced truncation [149, 185] and

rational interpolation [23].

While linear RB methods have proven to work optimally on linear problems, this is not

the case for general nonlinear problems with non-affine dependence on the parameters

[153]. This is because in such cases the system configuration needs to be updated at each

nonlinear iteration or at any new parameter value and this process can only be performed

on the full-order model. Therefore, every time the system changes, the reduced system of

equations needs to be re-derived using Galerkin projections, which translate to multiple

inner product evaluations. However, the computational cost of these evaluations is

very high and, thus, they significantly diminish the computational gains of linear RB

methods. To address nonlinear problems with non-affine parameter dependence, several

RB schemes based on the empirical interpolation method [43, 152] or subspace-angle

interpolation [9, 10] have been proposed, but these are also intrusive in nature and their

generalization to other nonlinear problems is not straightforward.

Recently, the combination of RB techniques with data-driven machine learning models

[168, 112, 12] has resulted in non-intrusive approaches for the solution of large-scale

complex systems [230, 110, 95, 169]. The advantage of these methods is that they do not

need to access and modify the governing equations of the original high-fidelity model.

For instance, in [95, 169] it has been proposed to combine POD and feed forward neural

networks (FFNNs) producing a hybrid POD-FFNN approach, where the FFNN was
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trained to produce the low-dimensional projection coefficients of the RB model. In this

frame, the use of different interpolation schemes instead of FFNNs, such as Gaussian

Process Regression [86] and radial basis functions [223, 61] were also shown to be very

efficient for interpolating over the POD coefficients. Despite the fact that these methods

are highly efficient, their main pitfall is that for general nonlinear problems, they often

require a higher number of model evaluations than intrusive methods to construct a

reliable surrogate in the first place.

Motivated by the inability of linear reduction methods such as POD to capture

complex response surfaces, nonlinear manifold learning methods (e.g. Kernel PCA [241],

Hessian eigenmaps [233], Laplacian eigenmaps [25], local tangent space alignment [239],

the diffusion maps algorithm [54]) gained more attention over the past few years. The

main assumption in manifold learning is that the data points, which correspond to system

solutions in this setting, lie on a low-dimensional manifold embedded in an ambient

higher-dimensional Euclidean space. The goal is to identify the manifold’s intrinsic

dimensionality, that is, the parameters that describe it, and thus obtain low-dimensional

representations of the data set. This approach can remedy the problems associated

with the curse of dimensionality when dealing with high-dimensional data sets and,

consequently, enable the development of efficient interpolation schemes. For instance,

in [129], the kernel PCA algorithm was employed for the purposes of dimensionality

reduction and in conjunction with Kriging and polynomial chaos expansion surrogates,

a cost-efficient metamodel was constructed. Similarly, in [114, 115] the diffusion maps

algorithm has been investigated as an alternative to POD.

Despite the effectiveness of the aforementioned algorithms in providing low-dimensional

representations for high-dimensional data sets, their main disadvantage stems from the

fact that they do not provide an analytic relation for decoding the compressed data back

to their high-dimensional representations in the original space. This problem is known

in the literature as the pre-image problem and several elaborate interpolation schemes

have been employed to address it, such as the geometric harmonics [55] and Laplacian

pyramids [35]. However, a more versatile solution to this problem can be provided by

the autoencoders [139]. An autoencoder (AE) is a specific type of an unsupervised

neural network (NN) that learns how to efficiently compress and encode data and then

learns how to reconstruct (decode) them, that is, to map them from their encoded

representation to a representation as close to the original input as possible. The encoder

and decoder parts of an autoencoder are trained jointly, yet can be used separately.
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In [222], an AE with a novel support vector machine based classifier is proposed to

identify the location of the pilot’s pupil center detection. A similar approach can be

found in [220], where a deep AE with a softmax classifier is used for determining pilot’s

fatigue status. An extension of ordinary autoencoders are the so called convolutional

autoencoders (CAEs), a special type of convolutional NNs (CNNs), which have been

developed primarily for spatial field data compression but have proven particularly useful

in several applications dealing with high-dimensional data sets. Similarly to ordinary

AEs, CAEs also consist of an encoder and a decoder part but they are constructed using

different types of layers, called convolutional and deconvolutional layers [87]. Some of

their applications pertain to the fields of computer vision [121], pattern recognition [162]

and time series data prediction [240]. For example, in [221] a combined CNN - long

short memory network (LSTM) is proposed for detecting dynamic behavior of brain

fatigue and in [232] CAEs were used as surrogates for blood flow simulation.

In this chapter, a non-intrusive surrogate modeling strategy is proposed for the solution

of problems described by parametrized time-dependent PDEs. This scheme relies on

the powerful dimensionality reduction properties of CAEs, which are exploited as a

means of encoding and decoding the high-dimensional solution data sets. Furthermore,

FFNNs are used to establish a mapping between the problem’s parametric space to its

encoded solution space. With this approach, the encoded time-history response of the

system at a new parameter value is given by the FFNN, while its representation in the

original high-dimensional space is obtained by the decoder. Therefore, it is capable of

providing remarkably fast and accurate evaluations of the complete system’s response,

effectively bypassing the need to serially formulate and solve the governing equations

of the system at each time increment, as is typically required by finite element (FE)

methods. A similar approach can be found in [226], where the authors suggest the use of

3 levels of NNs, namely a CAE, a temporal CAE [214] and a FFNN to perform parameter

and future state prediction. On the other hand, the surrogate scheme proposed herein

requires only 2 levels of NNs, a FFNN and a CAE, rendering it very easy to implement.

Furthermore, in terms of performance, our investigation indicated that the optimal

CAE’s architecture is based on 1-D convolutional filters for the spatial dimensionality

reduction along with 1-D average pooling layers for the temporal reduction. This way, a

decrease of up to ×4.00 in the trainable network’s parameters is achieved when compared

to the corresponding 2-D CAE. Therefore, the architecture proposed in this paper has

reduced offline and online computational requirements, while at the same time achieves
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very accurate results. The elaborated methodology is demonstrated on the stochastic

analysis of time-dependent PDEs, parametrized by the system’s random variables and

solved in the frame of the Monte Carlo method.

4.2 Surrogate modeling using convolutional autoencoders

Consider the modeling of a parametrized physical system governed by partial differential

equations:

∂u (x, t;θ)

∂t
+N(u (x, t;θ)) = f(x, t;θ), x ∈ Ω, t ∈ [0, T ],θ ∈ Θ

B(u(x, t;θ) = b(x, t;θ), x ∈ ∂Ω, t ∈ [0, T ],θ ∈ Θ (4.1)

C(u(x, 0;θ) = c(x;θ), x ∈ ∂Ω,θ ∈ Θ

where u (x, t;θ) is the field of interest, N is a general differential operator that involves

spatial derivatives, and f(x, t;θ) is a source field. Furthermore, B is the operator for

the boundary conditions defined on the boundary ∂Ω of the domain Ω, C is the operator

for the initial conditions at t = 0 and θ ∈ Θ is a vector of uncertain parameters that

include randomness in the system parameters, loading or boundary conditions.

The discrete solution to the above set of equations for a given parameter value θ can

be obtained through the semidiscrete Galerkin method. Specifically, the spatial part

of the solution is obtained through the FE method on a discrete space Vh spanned by

basis functions φi(x), i = 1, 2, ..., d, with d being the number of degrees of freedom. To

take into account the time-dependence, temporal derivatives are approximated by finite

differences. Thus, the FE solutions uh are expressed as:

uh(x;θ, t) =

d∑
i=1

(uh(θ, t))i φi(x) (4.2)

with uh(θ, t) ∈ Rd being the expansion coefficient vector at time t for a given parameter

value θ. Then, the complete time-history response of the system is given by Uh(θ) =

{uh(θ, t1), · · · ,uh(θ, tNt)} ∈ Rd×Nt , where Nt is the number of time increments in the

temporal discretization. A detailed exposition on the implementation aspects of the

finite element method is outside the scope of this work, however, the interested reader is

referred to the classic textbooks [242, 22].
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To quantify the probabilistic characteristics of the solution in eq. (4.1) the most

versatile approach is the brute force Monte Carlo (MC) simulation. In this setting,

a large number, NMC , of parameter realizations {θj}NMC
j=1 is generated according to

their joint probability distribution and the corresponding PDEs are solved with the FE

method in order to obtain an accurate estimate of the system’s stochastic behaviour.

Namely, for a set of parameter values, the PDEs are discretized as described above and

the corresponding linear system of equations is solved at each time step either directly

or iteratively. Then, the system responses are statistically processed to extract the

probabilistic characteristics of the response. A graphical representation of the problem

statement is presented in figure 4.1. Evidently, MC analysis of this type is associated with

increased computational requirements, especially when handling large - scale problems

where the computational cost for each model run may range from several minutes to

several hours.

Figure 4.1: Problem Statement

To alleviate this computational burden, a surrogate modeling approach is proposed

herein based on the powerful dimensionality reduction capabilities of CAEs. To this

purpose, the PDEs are solved with the classic FE procedure for a small, yet sufficient

number, N , of parameter values in order to obtain a data set of time history matrices

{U i}Ni=1. It is very important at this stage to span the parametric space of the problem

in an efficient manner, which will lead to an efficient exploration of the parametric

space and, hence, the solution space. This approach will ensure that the surrogate

performs well even at ”unseen” parameter values and no extrapolation will be required.
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Furthermore, it is worth mentioning that the training data does not suffer from noise

or any other inconsistencies as they are accurate solutions obtained by the FE model.

However, the amount of data, that is the amount of initial model evaluations, required

to train the surrogate can be considerable in certain applications, in order to attain

maximum accuracy of the surrogate. The CAE (encoder and decoder) is trained over this

data set minimizing the reconstruction mean square error. The encoded representation

of each time history solution matrix U i is a low dimensional vector zi ∈ Rl (l << d),

which allows a FFNN to be trained accurately and efficiently in order to construct a

mapping between the PDE’s parametric space and the encoded solution space. It should

be mentioned that the optimal architecture and hyperparameters of the CAE and FFNN

are typically obtained via a trial and error procedure, also employed in this work. To

tackle the problem of overfitting the standard Hold-out approach was exploited. The

data sets were randomly divided into train and test subsets using a ratio of 80%-20%

and each network’s performance on the testing data set was assessed in order to avoid

overfitting.

After the training phase is completed, the proposed surrogate scheme works as follows.

For a new input parameter vector, the encoded vector representation of the time history

solution matrix is calculated by the FFNN and, subsequently, the entire time history

matrix is delivered by the CAE’s decoder. This way a large number of MC simulations

can be performed at minimum computational cost. With this approach we will be in a

position to draw conclusions about the model’s behavior and derive accurate estimates of

quantities of engineering interest such as, for instance, statistics of displacements, stresses

etc. Even though in principle a surrogate can never output the ’exact’ values of these

quantities, nevertheless, the numerical examples in the following section will demonstrate

that the elaborated scheme is capable of producing highly accurate approximations with

negligible computational cost.

The implementation steps of the proposed approach can be divided into two phases,

namely the offline and the online phase, and these are the following:

Offline phase

Step 1 : Generate N vectors of parameter values θi ∈ Rn with i = 1, 2, ....N

according to their probability distribution and solve the corresponding time-

dependent PDEs with the FEM procedure. Collect the solutions in a three-

dimensional array N x d x Nt , where d is the number of degrees of freedom and
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Nt the number of time increments.

Step 2 : Train a CAE over the N time history solutions matrices U i ∈ Rd×Nt ,

collected in step 1, to obtain the encoded low dimensional vector representations

zi ∈ Rl of these matrices along with the reconstruction map.

Step 3 : Train a FFNN to establish a mapping from the parametric space θi to

the low dimensional encoded space zi.

Steps 1-3 of the offline phase are illustrated in fig. 5.2.

Online phase

Step 1 : For NMC new realizations of parameter vectors θj with j = 1, 2, ..., NMC ,

generated from the same joint probability distribution, use the trained FFNN to

obtain the encoded vector representations of the solution matrices, zj .

Step 2 : The CAE’s decoder is used to produce the solution matrices U j based on

their encoded representations zj in the previous step.

Steps 1 and 2 of the online phase are schematically represented in fig. 5.3.
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Figure 4.2: Offline phase of the proposed surrogate modeling method
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Figure 4.3: Online phase of the proposed surrogate modeling method

4.3 Numerical tests

We first implement the proposed methodology in the academic case of the 1-D non-linear

Burgers’ equation, in order to illustrate its applicability. The efficiency and accuracy of

the method are assessed subsequently on a structural problem governed by the equations

of 2D linear elasticity.

4.3.1 Burgers’ equation

Burgers’ equation is occurring in many fields of engineering and applied mechanics,

such as fluid mechanics [18] and non-linear acoustics [138]. It is a convection-diffusion

non-linear PDE of the following form:

∂u

∂t
+∇u · u = ν∇2u (4.3)

where u ≡ u(x, t) is the velocity field of the fluid, ∇u is its gradient and ν is the fluid’s
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viscosity. For simplicity we choose to demonstrate the 1-D version of equation (4.3)

which may be written as:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(4.4)

The initial conditions were taken as u(x, 0) = −sin(πx) with x ∈ [−1, 1] and the

boundary conditions u(±1, t) = 0 with t ∈ [0, 5]. It is well know that, as ν → 0 the

solution exhibits steep gradients as time evolves, while as ν → 1 it becomes smoother. In

this model, ν is considered a random variable following the uniform distribution between

[0, 1] to include all possible trends of the solution. In order to obtain exact solutions of

eq. (4.4), a finite difference scheme is employed in both time and space domains, using a

time step of ∆t = 0.0505 sec and spatial discretization ∆x = 0.0101 m, leading to 100

and 200 time and spatial points, respectively. Numerical convergence studies indicated

that the chosen spatio-temporal discretization is capable of providing highly accurate

solutions to the PDE.

As explained in the previous section, the first step to apply the proposed surrogate

modeling scheme is the generation of a sufficient number of training samples. To

this purpose, Burgers’ equation is solved numerically for N = 100 values of ν within

the range [0, 1]. Subsequently, these solution snapshots are stored in a 3-D matrix

S = [U1,U2, ...,UN ] ∈ R100×200×100, where U i ∈ R200×100 is the velocity matrix of the

i-th solution of equation (4.4). Then, a CAE is trained over this data set for 2000 epochs

with learning rate equal to 1e-4 and a batch size of 16. An adaptive moment optimizer

(Adam) [119] is utilized for the loss minimization, with the loss function being the mean

square error of eq. (5.15).
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Figure 4.4: CAE architecture for the solution of Burgers’ equation

After CAE’s training phase, an encoded data matrix Se = [z1, z2, ...,zN ] is obtained,

where each column zi is the 8 × 1 latent vector representation of the solution matrix

U i. The proposed CAE’s architecture is presented in figure 4.4 and it consists of a

total of 372,624 trainable parameters. The corresponding CAE architecture with 2-D

convolutional and 2-D pooling layers would have required 1,483,024, which leads to a

reduction of ×3.98 in the network’s trainable parameters. The final step of the training

procedure is the training of the FFNN in order to establish the mapping from the

problem’s parameters νi to the encoded vector representations zi. As shown in table

5.1, the network’s architecture consists of 4 hidden layers with 32 nodes per layer. The

ReLU activation function [159] is used in each node, while the Adam optimizer is utilized

again to minimize the mean square error loss function. The FFNN was trained for 30000

epochs with a learning rate of 1e-4.
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Layer Nodes Activation

Input 1 -

Hidden 1 32 ReLU

Hidden 2 32 ReLU

Hidden 3 32 ReLU

Hidden 4 32 ReLU

Output 8 -

Table 4.1: FFNN architecture for the solution of Burgers’ equation

The CAE-FFNN model accuracy is tested on the solutions for the values of ν = 0.2, 0.8

that were not included in the initial training data set and compared with those predicted

by the finite differences model. Figures 4.5 and 4.7 present the total solution field,

while figures 4.6 and 4.8 illustrate the solution profiles for specific time steps. From

these results it can be observed that the predictions of the proposed surrogate model

are almost identical to those of the exact solution. The normalized error between the

solution matrices UFD and USUR of the finite differences model and the surrogate

model, respectively, given by êrr = ∥UFD −USUR∥2/∥UFD∥2, with ∥ · ∥2 being the L2

matrix norm, was found equal to 1.23% for the case of ν = 0.2 and 0.53% for ν = 0.8.
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Figure 4.5: Solution profile u(x, t) for ν = 0.2 predicted by (a) the exact model and (b) the
surrogate model
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Figure 4.6: Solution profiles u(x, t) at specific time instants for ν = 0.2
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Figure 4.7: Solution profile u(x, t) for ν = 0.8 predicted by (a) the exact model and (b) the
surrogate model
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Figure 4.8: Solution profiles u(x, t) at specific time instants for ν = 0.8

Subsequently, in the context of the MC analysis, NMC = 3000 values of ν ∼ U[0, 1]

are generated according to their distribution and the corresponding PDEs are solved

by the exact and the surrogate model, respectively. The mean value and variance of

u(x, t) obtained by the two models are depicted in figures 4.9 and 4.11, respectively,

while figures 4.10 and 4.12 present a comparison between the two models in the mean

value and the variance of u(x, t) at specific time instants. As evidenced by these results,

the surrogate and the exact model are in very close agreement. The normalized error

between the mean solution matrices MFD and MSUR was found equal to 0.96%, while

the same error for the variance matrices V FD and V SUR was 2.54%.
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Figure 4.9: Mean value of u(x, t) predicted by (a) the exact model and (b) the surrogate model
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Figure 4.10: Mean value of u(x, t) at specific time instants
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Figure 4.11: Variance of u(x, t) predicted by (a) the exact model and (b) the surrogate model
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Figure 4.12: Variance of u(x, t) at specific time instants
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To further test the method’s interpolation capabilities, a significantly larger number

of MC simulations are performed, in order to acquire the probability density function

(PDF) of u(x, t). Specifically, NMC = 300000 simulations are carried out by the two

models and the results pertaining to the positions x = −0.5075 m and x = 0.5075 m at

t = 2.4747 sec are depicted in figure 4.13. It becomes apparent from this figure that the

surrogate model is able to predict the PDF of u(x, t) with satisfactory accuracy.
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Figure 4.13: PDF of u(x, t) predicted by the exact model and the surrogate model

Finally, a convergence study with respect to the dimension of the latent vectors and

the size of the initial data set is presented in figure 5.13. The average normalized error

is defined as:

ē =
1

NMC

NMC∑
j=1

||U j
FD −U j

SUR||
||U j

FD||
(4.5)

where U j
FD and U j

SUR are the solution matrices of the j-th MC simulation obtained by

the ’exact’ model and the surrogate model, respectively.
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Figure 4.14: Mean error ē with respect to (a) the latent space dimension and (b) the initial model
evaluations

From these results, it becomes apparent that the proposed CAE based surrogate model

is capable of delivering very accurate predictions even with a small number of training

samples. It should be mentioned that a selection of a higher dimensional latent vector

representation reduces the amount of information lost in the decoding process, thus

is linked to improved accuracy. Subsequently, as the initial data set size increases a

reduced mean error ē is achieved and converges close to the value ēlim ≈ 0.01.

4.3.2 Coupled shear walls under seismic loading

A transient plane stress structural problem is considered as the second test example.

The problem is governed by the equations of motion of 2-D linear elasticity:

E

2(1 + ν)
∇2ux +

E

2(1− ν)
∂

∂x

(
∂ux
∂x

+
∂uy
∂y

)
+ px = ρ

∂ux
2

∂t2
(4.6)

E

2(1 + ν)
∇2uy +

E

2(1− ν)
∂

∂y

(
∂ux
∂x

+
∂uy
∂y

)
+ py = ρ

∂uy
2

∂t2
(4.7)

where ux ≡ ux(x, y, t) and uy ≡ uy(x, y, t) are the displacement fields, E is the modulus

of elasticity, ν is the Poisson ratio, ρ is the material’s mass density and px and py are

the body forces.
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Figure 4.15: Geometry and finite element meshing of the coupled shear walls

Specifically, the three-story reinforced concrete coupled shear walls of figure 4.15 are

subjected to a seismic loading, that of the accelerogram of 1972 Kefalonia earthquake

[31] (figure 5.15) with a total duration of 6.00 sec. The Poisson ratio is assumed ν = 0.2,

the mass density of the wall is taken as ρ = 2500 kg/m3, the thickness of the wall is

considered τ = 1 m, while body forces px and py are assumed zero. The Young moduli

E1, E2 and E3 of each story are considered to be uncorrelated random variables following

the log-normal distribution with mean value µ = 30 GPa and standard deviation

σ = 0.25µ = 7.5 GPa. This phenomenon occurs in reinforced concrete structures,

where the construction of each story is initiated several days after the completion of the

previous story so that the concrete achieves at least 95% of its design strength capacity.

As a consequence, the concrete mixture used in each construction phase is different,

which justifies the lack of correlation in the random variables describing the mechanical

properties of each storey. The selection of the log-normal distribution with such a high

value for the standard deviation σ is purely for academic purposes in order to illustrate
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the capabilities of the proposed method.
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Figure 4.16: Acceleration data of the selected ground motion

The ’exact’ solutions of the problem are obtained by solving eq. (4.6) and (4.7) with

the FE method using plane stress elements. More specifically, the walls are spatially

discretized with 876 quadrilateral elements, while for the time discretization the Newmark

integration scheme [158] is applied with time step size ∆t = 0.01 sec, leading to a total of

1966 degrees of freedom and 600 time steps for the spatial and time domain, respectively.

This particular spatio-temporal discretization is the result of a convergence study, which

ensured that the numerical solutions of the PDE will be of high accuracy.

An efficient exploration of the parametric space will result in capturing almost all

possible response variations and, consequently, it will ensure the surrogate’s performance.

To this end, N = 500 triplets of parameters {[Ei1, Ei2, Ei3]}Ni=1 are generated with the aid of

Latin Hybercube Sampling [160]. The normalization process of the parameters in this case,

is the min-max normalization [171]. For each triplet of parameters, the corresponding

dynamic problem is solved with the above mentioned numerical procedure and the

solution matrices are stored in a 3D matrix S = [U1,U2, ....,UN ] ∈ R500×1966×600.

A CAE is subsequently trained over this data set for 500 epochs with a learning rate of

1e-4 and a batch size of 8. The mean square reconstruction error of U i is minimized again

by the Adam optimizer. The proposed CAE’s architecture is presented in figure 5.18 and

it contains 11,871,670 trainable parameters. The corresponding 2-D CAE architecture

would have required 43,234,230, which lead to a reduction of ×3.64 in the network’s

trainable parameters. An encoded 64× 500 training matrix Se = [z1, z2, ...,zN ] is then

obtained via the encoder, where each column zi is the 64× 1 latent vector representation
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of the solution time history matrix U i. The above encoded training matrix Se along

with the stored parameter triplets {[Ei1, Ei2, Ei3]}Ni=1 from the previous step are used

as outputs and inputs, respectively, in the training process of the FFNN in order to

construct a mapping from the parametric to the encoded solution space. The FFNN is

trained for 10000 epochs with learning rate 1e-4 and a batch size of 100. The selected

architecture is shown in table 5.3.

Figure 4.17: CAE architecture for the solution of the structural dynamic problem

Layer Nodes Activation

Input 3 -

Hidden 1 256 ReLU

Hidden 2 256 ReLU

Hidden 3 256 ReLU

Hidden 4 256 ReLU

Hidden 5 256 ReLU

Hidden 6 256 ReLU

Output 64 -

Table 4.2: FFNN architecture for the solution of the structural dynamic problem

In order to test the surrogate’s generalization capabilities to ’unseen’ parameter

values, a random triplet of parameters that was not included in the training data set,

[E1, E2, E3] = [18.66, 27.02, 21.65] GPa is selected. Figures 4.18 and 4.19 present contour
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plots for the displacement fields ux and uy of the whole structure at t = 4.00 sec,

predicted by the exact and the surrogate model, respectively, while figure 4.20 depicts

a comparison between the exact and the surrogate model in the displacements ux and

uy of the monitored nodes 1 through 3 (see figure 4.15). From these results it can be

observed that the predictions obtained by the surrogate model are in a near perfect

match with those of the exact model. The normalized error between the solution matrices

UFEM and USUR of the FE method and the surrogate model, respectively, given by

êrr = ∥UFEM −USUR∥2/∥UFEM∥2, was found equal to 1.53%.

(a) exact model (b) surrogate model

Figure 4.18: ux at t = 4.00 sec predicted by (a) the exact model and (b) the surrogate model

(a) exact model (b) surrogate model

Figure 4.19: uy at t = 4.00 sec predicted by (a) the exact model and (b) the surrogate model
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Figure 4.20: Displacements ux and uy of monitored nodes predicted by the exact and the surrogate
model

Subsequently, NMC = 3000 triplets {[Ej1, E
j
2, E

j
3]}

NMC
j=1 are generated according to

the above described log-normal distribution and an MC analysis is performed for both

the exact and the surrogate model. Figure 4.21 depicts contour plots for the mean

value of ux at t = 4.00 sec predicted by the two models, while figure 4.22 shows the

same contour plots for the mean value of uy. In addition, figures 4.23 and 4.24 display

the variance contours of these displacement fields. Furthermore, figures 4.25 and 4.26

display a comparison between the two models in the mean value and the variance of the

displacements ux and uy of the monitored nodes 1 through 3. Again, the predictions

obtained by the proposed CAE-FFNN model are in very close agreement with those

computed by the FEM model. The normalized error between the mean solution matrices

MFEM and MSUR is equal to 0.62%, while the same error for the variance matrices

V FEM and V SUR is 1.37%.
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(a) exact model (b) surrogate model

Figure 4.21: Mean value of ux at t = 4.00 sec predicted by (a) the exact model and (b) the
surrogate model

(a) exact model (b) surrogate model

Figure 4.22: Mean value of uy at t = 4.00 sec predicted by (a) the exact model and (b) the
surrogate model
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(a) exact model (b) surrogate model

Figure 4.23: Variance of ux at t = 4.00 sec predicted by (a) the exact model and (b) the surrogate
model

(a) exact model (b) surrogate model

Figure 4.24: Variance of uy at t = 4.00 sec predicted by (a) the exact model and (b) the surrogate
model

59



0 1 2 3 4 5 6
-0.01

-0.005

0

0.005

0.01
Node 1

surrogate

exact

0 1 2 3 4 5 6
-0.02

-0.01

0

0.01

0.02
Node 2

surrogate

exact

0 1 2 3 4 5 6
-0.04

-0.02

0

0.02

0.04
Node 3

surrogate

exact

0 1 2 3 4 5 6
-4

-2

0

2

4

6
10-3 Node 1

surrogate

exact

0 1 2 3 4 5 6
-10

-5

0

5

10-3 Node 2

surrogate

exact

0 1 2 3 4 5 6
-0.01

-0.005

0

0.005

0.01

0.015
Node 3

surrogate

exact

Figure 4.25: Mean ux and uy of monitored nodes predicted by the exact and the surrogate model
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Figure 4.26: Variance of ux and uy of monitored nodes predicted by the exact and the surrogate
model

Furthermore, in figure 5.29 a convergence study with respect to the dimension of the

latent vectors and the initial data set size is provided. The average normalized error ē of

the 3000 MC simulations is given by:
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ē =
1

NMC

NMC∑
j=1

||U j
FEM −U j

SUR||
||U j

FEM ||
(4.8)

with U jFEM , U jSUR being the solution matrices of the j-th MC simulation obtained by

the FEM and the surrogate model, respectively.
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Figure 4.27: Mean error ē with respect to (a) the latent space dimension and (b) the initial model
evaluations

These results indicate that a choice of a higher dimensional latent vector representation

leads to improved accuracy, as in the previous example. Furthermore, the average

error ē decreases as the initial data set size increases and converges close to the value

ēlim ≈ 0.03. It is worth mentioning that an optimized set of hyperparameters (latent

vector dimension, number of hidden layers, learning rate, etc.) or a different architecture

of the CAE and the FFNN could potentially further reduce the value of ēlim, but the

accuracy achieved for N = 500 samples is already deemed adequate for the purposes of

this analysis.

Regarding the computational cost, the results are very promising. Specifically, one

MC simulation required an average of 21.12 sec to complete with the exact model, while

it only needed 0.26 sec with the surrogate model, which translates to a speed up of

×81.23. This drastic computational cost reduction is the outcome of the ’simulation

free’ approach of the proposed novel method that eliminates the need of formulating

and solving multiple linear systems of equations during the solution procedure of each
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simulation and is expected to be even greater as the problem’s dimensionality increases.

In general, training deep CAEs is a computationally expensive task that requires a good

GPU to be available. In this case, the training of the CAE and the FFNN was performed

using the GPU version of the Tensorflow framework [3] on an NVIDIA GeForce GTX

TITAN X GPU, while all online computations and the initial full model evaluations

were performed on an Intel® CORETM -i7 X 980 CPU. Figure 5.30a illustrates the

computational costs required by the FE model and the CAE-FFNN model to complete

the 3000 MC simulations. This figure also displays the offline computational cost for

training the surrogate and how it was allocated. In particular, the cost for obtaining

the 500 initial solutions was 10560 sec, the training of the CAE required 4970 sec and

the training of the FFNN 211 sec. The cost of the 3000 online simulations was only 780

sec, which led to a total cost for the surrogate of 16521 sec. On the other hand, the full

model MC simulations required 63360 sec, almost 4 times that of the surrogate.

Finally, the tested surrogate model is utilized to perform NMC = 500000 simulations

in order to calculate the time evolution of the probability density function (PDF) of the

displacements ux and uy of the monitored node 3. These results are presented in figure

4.29. Needless to say, that this analysis would be infeasible without using the proposed

surrogate method. In particular, the FE model would have required approximately 122

days to complete the MC simulation, while the surrogate model required only 40.7 hours,

including the offline computational cost. This remarkable decrease in computational

cost is equivalent to a speed up of ×81.10. A comparison between the two models is

schematically represented in figure 4.28b.
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Figure 4.28: Comparison of computational cost between the surrogate and the exact model
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(a) (b)

Figure 4.29: Time evolution of PDF for the displacements (a) ux and (b) uy of the monitored node
3

4.4 Conclusions

This paper presents a novel surrogate modeling method based on CAEs in conjunction

with FFNNs, aimed at accelerating the solution of parametrized time-dependent PDEs.

Using a reduced set of system solutions as training data set, the CAE provides a low-

dimensional representation of this high-dimensional data set through its encoder, as well

as the inverse map through its decoder. Next, a FFNN is trained to map points from the

problem’s parametric space to the encoded solution space and the decoder map is used

to reconstruct the system solutions to their original dimension. By composing the FFNN

with the decoder, a ’simulation-free’ approach is established to obtain the complete

system solutions at very low cost, rendering this approach ideal for problems requiring

multiple model evaluations or ’on-the-fly’ calculations. The method is demonstrated on

the solution of time-dependent stochastic PDEs, parametrized by random variables, in

the context of the Monte Carlo simulation. The results of the numerical investigation

indicated the powerful dimensionality reduction and reconstruction capabilities of the

CAE and along with the FFNN, a highly accurate and cheap surrogate for systems de-

scribed by PDEs, is developed. Future investigations are focused towards the application

of the method to more complex non-linear PDEs.
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5
Machine Learning Accelerated Transient

Analysis of Stochastic Nonlinear

Structures

5.1 Introduction

Deterministic structural dynamics has been extensively studied over the past decades

and managed to provide engineers with valuable insight about the behavior of structures

under dynamic excitation. In this regard, great efforts have been made towards making

the computational models agree with the physical systems, including the development of

mathematical and numerical methodologies to take into account the nonlinear structural

behavior, both geometric and material. In practice, however, exact values of the

parameters and the external loads needed in dynamic analysis are usually unknown and

instead only statistical properties are available. This fact necessitates the reformulation of

the problem in a stochastic setting, capable of producing the probabilistic characteristics

of the response, rather than deterministic values.

In the field of the stochastic finite element methods, there exists a variety of methods

for performing stochastic structural analysis on linear systems, including the direct

Monte Carlo simulation (MCS) [198] and its variants (i.e. importance sampling [189],
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line sampling [123], subset simulation [14]), the random perturbation method [120],

orthogonal polynomials expansion method [80, 224, 143, 68] and the probability density

evolution method (PDEM) [133, 46, 164, 44]. However, when turning our focus to the

nonlinear case, most of the aforementioned methods face significant difficulties to predict

the stochastic nonlinear response in an accurate and efficient manner. For instance,

polynomial chaos expansions require specific formulations for problems with material

and geometric nonlinearity [5, 11, 191, 165]. The Monte Carlo simulation method,

despite being the most versatile approach and straightforwardly applied to non-linear

dynamic problems, yet, the large number of simulations it requires to achieve statistical

convergence in conjunction with the cost of performing a single model simulation, renders

this method impractical. PDEM overcomes the requirement of the excessive number

of simulations and has been successfully employed for stochastic response analysis of

nonlinear systems [45, 228, 28, 113, 134]. However, for detailed finite element models

with many degrees of freedom (dof), this method is still very computationally demanding,

since for the evaluation of the evolution of the probability density function for every dof

of the structure, it needs to solve a large number of advection-type partial differential

equations.

In light of the above, and owing to the recent advances in the field of machine learning,

a new methodology has emerged for stochastic problems, which combines the general

applicability of the MCS along with the powerful approximation properties of neural

networks. The idea is to develop a surrogate model, also known as metamodel, that will

mimic the system’s input-output relation with high accuracy and low cost and can be used

for repeated model evaluations. This approach can been found in numerous works when

dealing with small systems or when focusing on specific quantities of interest [167, 81].

On the other hand, as the dimensionality of the system’s input and/or output increases,

the predictive capabilities of the surrogate drastically deteriorate due to the curse of

dimensionality. To bypass this problem, the use of dimensionality reduction methods has

been proposed in order to compress the input and/or output of the problem, which would

facilitate the development of a more accurate metamodel. For instance, in several works

[110, 95, 169] principal orthogonal decomposition (POD) was employed to compress

the high-dimensional system responses and feed forward Neural Networks (FFNNs)

were trained to output the low-dimensional projection coefficients of the reduced basis

model. Similar ideas have been pursued in [86] and in [223, 61] using Gaussian Process

Regression and radial basis function interpolation, respectively, for the interpolation
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scheme instead of FFNNs.

Over the recent years, nonlinear manifold learning methods, such as Kernel PCA

[241], Hessian eigenmaps [233], Laplacian eigenmaps [25], diffusion maps [54], etc. have

gained more attention over linear dimensionality reduction methods. This is due to the

fact that they are better able to provide meaningful low-dimensional representations

of the data set than their linear counterparts and have already found applications in

non-intrusive surrogate modeling [129, 122, 114, 115]. However, the main disadvantage

of nonlinear manifold learning methods stems from the fact that they do not provide

an analytic relation for decoding the compressed data back to their high-dimensional

representations in the original space. This problem is known in the literature as the

pre-image problem and several elaborate interpolation schemes have been employed to

address it, including the geometric harmonics [55] and Laplacian pyramids [35].

To remedy this problem, a powerful new concept in machine learning has emerged,

namely that of Autoencoders [139] (AE). An AE is a specific type of an unsupervised

neural network that learns how to efficiently encode data and then learns how to decode

them, that is, to map them from their encoded representation to a representation

as close to the original input as possible. An extension of ordinary AEs are the so

called Convolutional Autoencoders (CAEs), which have been developed primarily for

spatial field data compression but have proven particularly useful in several applications

dealing with high-dimensional data sets. Particularly in the field of computational

mechanics, CAEs have already been exploited as a means of encoding and decoding the

high-dimensional solution data sets arising in the numerical solution of complex PDEs

[112, 77, 226].

In a recent work done by the authors [157], CAEs in conjuction with FFNNs were

used in order to deliver a non-intrusive surrogate modeling strategy for parametrized

time-dependent PDEs. The present work builds upon this framework and focuses its

application on the more challenging problem of nonlinear transient analysis of stochastic

structural problems. In this setting, an initial set of full model evaluations is performed

for a small number of parameter values and the solution time-history matrices are

stored to serve as the training data set. These matrices are further subdivided into

submatrices according to the dof type, that is, six solution time-history submatrices

for 3D structures corresponding to the three translational and three rotational dofs.

Then, a separate CAE is trained over the corresponding submatrices of each dof type

in order to obtain a low-dimensional vector representation through its encoder and a

66



reconstruction map by the decoder. Subsequently, a different FFNN is trained to map

points from the parametric space to the latent space given by each encoder, which can

be further mapped to the actual, high-dimensional, system response by the associated

decoder mapping. Even though this classification of the solution time-history matrices

according to the dof type increases the offline cost of the methodology, yet, it leads to

significant improvements on the surrogate’s prediction capabilities, since it is better able

to capture the specific functional behavior of the time-histories of each dof type.

The elaborated methodology is demonstrated on the stochastic nonlinear transient

analysis of single and multi degree of freedom structural systems, where it is shown to

achieve remarkably fast and accurate evaluations of the complete system’s response. This

is a direct consequence of the non-intrusive nature of the surrogate, which bypasses the

need to serially formulate and solve the governing equations of the system at each time

increment, as well as the Newton-Raphson iterations, typically required by FEM methods

for nonlinear problems. This property renders the method ideal for the acceleration of

MCS in the context of uncertainty quantification and reliability analysis, however, it

can be straightforwardly applied to other similar problem types, which require multiple

model evaluations, such as optimization and sensitivity analysis.

5.2 Problem statement

The equations of motion of a parametrized inelastic multistory building that contains d

degrees of freedom are expressed as follows:

M(θ)ü(t;θ) +C(θ)u̇(t;θ) + fs(u, u̇;θ) = −M(θ)iüg(t;θ) (5.1)

where M(θ) and C(θ) are the d× d system’s mass and damping matrix, respectively,

fs(u, u̇;θ) is the inelastic restoring force vector, üg(t;θ) is the ground motion acceleration,

i= [1, 1, ..., 1]T and θ is the vector of all random parameters in the system, including

material properties, excitation, etc.

In the deterministic setting, that is in the absence of random parameters θ, equation

5.1 is typically solved using Direct Time Integration Analysis [53]. The nonlinearity in

eq. 5.1 comes from the inelastic restoring force term fs(u, u̇), which, in the general case,

involves the physical behaviour of nonlinear materials as well as large deformations, and

is given by
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fs(u, u̇) =

∫
V
[B(u)]Tσ(ϵ)dV (5.2)

at each stage of the computations. B is the appropriate strain-displacement matrix

which is a function of the displacements for large deformation problems and σ is the

nonlinear stress. In order for the displacements and stresses to satisfy fully the nonlinear

conditions of the problem, it is necessary to perform a sequence of Newton-Raphson

iterations at each time-step of the time integrator. To illustrate the solution process,

starting from the known solution at time t, the solution at time t+∆t reads

Müt+∆t +Cu̇t+∆t + (fs)t+∆t = −Miüg(t+∆t) (5.3)

while the nonlinear restoring force at time t+∆t is calculated by the expression:

(fs)t+∆t =

∫
V
BT
t+∆tσ(ϵ)t+∆tdV (5.4)

with the constitutive law defined as σ = h(ϵ) for a specified function h. The prediction

of (fs)t+∆t is commonly obtained by linearization using the tangent stiffness method:

(fs)t+∆t = (fs)t + [K(u)]tδu (5.5)

where [K(u)]t is the tangential stiffness matrix evaluated from conditions at time t

and δu = ut+∆t − ut. Substituting eq. (5.5) to eq. (5.3), the linearized version of the

equations of motion is expressed in the form:

Müit+∆t +Cu̇it+∆t + [K(u)]tδu
i = −Miüg(t+∆t)− (fs)

i−1
t+∆t (5.6)

δuit+∆t = δui−1
t+∆t +∆ui; i = 1, 2, ... (5.7)

where the superscript i denotes the equilibrium iteration. The solution of eq. (5.6) is a

very computationally demanding process due to the number of time steps in the time

integrator along with the Newton-Raphson iterations required to achieve convergence at

each time step.

Returning to the stochastic problem of eq. (5.1), the aim in this case is to quantify the

probabilistic characteristics of the solution u(t;θ). The most popular approach for this

purpose is the crude Monte Carlo simulation (MCS), due to its ease of implementation
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and general applicability. In the context of MCS, a large number, NMC , of parameter

realizations {θj}NMC
j=1 is generated according to their joint probability distribution and

the corresponding structural problems are solved in order to obtain an accurate estimate

of the system’s behaviour. Then, the system responses are statistically processed to

extract the probabilistic characteristics of the response:

ū(t) = E[u(t;θ)] =
NMC∑
j=1

u(t;θj)

NMC
(5.8)

Cov[u(t;θ)] = E
[
(u(t;θ)− ū(t)) (u(t;θ)− ū(t))T

]
(5.9)

... (5.10)

(higher moments) (5.11)

5.3 Surrogate Modeling strategy

From the previous section, it becomes apparent that MC analysis of nonlinear dynamic

systems is associated with increased computational requirements, especially when dealing

with large - scale finite element models, where the cost of each model run may range from

several minutes to several hours. To alleviate this computational burden, a surrogate

modeling approach is proposed herein based on the powerful nonlinear dimensionality

reduction capabilities of CAEs. This section revisits the basics of CAEs, while for a

detailed description the interested reader is referred to [157].

Let X be a subset of Rn1×n2 with x ∈X denoting an element of the set. Then, the

CAE’s encoder and decoder are defined as the transition maps ϕ, ψ such that:

ϕ : X ⊆ Rn1×n2 →H ⊆ Rl1×l2 (5.12)

ψ : H ⊆ Rl1×l2 →X ⊆ Rn1×n2 (5.13)

ϕ, ψ = argmin
ϕ,ψ

∥X − (ψ ◦ ϕ)X∥2 (5.14)

with the dimensions l1 and l2 typically being much smaller than n1 and n2, respectively.

In general, the encoder ϕ may consist of the composition of convolutional layers, pooling

layers, flatten layers, reshaping layers and dense layers, while the decoder of deconvolu-
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tional layers, unpooling layers, dense layers, etc. The parameters associated with each of

these layers are obtained after solving the minimization problem of (5.14).

The first step of the proposed surrogate modeling technique is to obtain ‘exact’

solutions of the system, which will constitute the training data set. To this purpose,

the problem is solved with an appropriate numerical method, for a small yet sufficient

number, N , of parameter values in order to obtain a data set of time history matrices

(or just vectors for single degree of freedom systems) {Ui}Ni=1, with Ui ∈ Rd×Nt , d

being the number of dofs in the system and Nt the number of time steps in the time

integrator. The next step is to subdivide the solution matrices Ui into submatrices

according to the dof type. For instance, for 3D structural problems, there are three

translational dofs ux, uy, uz and three rotational rx, ry, rz. By making the associations

ux ↔ 1, uy ↔ 2, . . . , rz ↔ 6, the initial data set {Ui}Ni=1 can be broken down into six

separate data sets {U(1)
i }Ni=1, . . . , {U

(6)
i }Ni=1, one for each dof type, where U

(j)
i ∈ Rd/6×Nt .

This part is important because different dof types usually exhibit quite dissimilar time

histories and this would put a lot of strain for a single surrogate to accurately capture

them all.

Next, a separate CAE (encoder and decoder) is trained over each data set so as to

minimize the reconstruction mean square error:

L(j) =
1

N

N∑
i=1

||U(j)
i − Ũ

(j)
i ||

2
2 j = 1, ..., 6 (5.15)

where U
(j)
i refers to the system solution matrix of the j-th dof type corresponding to

the i-th realization of the random vector θ and Ũ
(j)
i is its reconstructed counterpart

obtained by the CAE. A schematic representation of a general CAE is presented in

figure 5.1. The encoded representation of each time history solution matrix U
(j)
i is a

low dimensional vector z
(j)
i ∈ Rl (l << d/6×Nt), which allows a feed forward Neural

Network (FFNN) to be trained accurately and efficiently in order to construct a mapping

between the problem’s parametric space and the encoded solution space.
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Figure 5.1: Schematic representation of a Convolutional Autoencoder

Despite the fact that the dataset contains 2-D time history solution matrices, our

investigation indicated that in terms of performance, the optimal CAE’s architecture

is based on 1-D convolutional and deconvolutional filters. Specifically, the spatial and

the temporal dimensionality reduction of the data matrix is achieved simultaneously by

applying these filters only on the time axis, with stride s > 1. This way, the proposed

approach has reduced offline and online computational requirements, as it reduces

drastically the number of the network’s trainable parameters when compared with the

standard 2-D filters, while at the same time achieves very accurate results.

After the training phase is completed the proposed surrogate scheme works as follows.

For a new input parameter vector, the encoded vector representation of the time history

solution matrix is calculated for each type of dof by the corresponding FFNN and,

subsequently, the entire time history matrix is delivered by each CAE’s decoder. This

way a large number of MC simulations can be performed afterwards at a minimum

computational cost. The implementation steps of the proposed approach can be di-

vided into two phases, namely the offline and the online phase, and these are the following:

Offline phase

Step 1 : Generate N vectors of parameter values θi ∈ Rn with i = 1, 2, ....N

according to their probability distribution and solve the corresponding problems

numerically. Collect the solutions in three-dimensional arrays N x (d/p) x Nt, one

for each dof type, where d is the number of degrees of freedom, p the number of

dof types in the problem and Nt the number of time increments.

Step 2 : Train p CAEs over the N time history solutions matrices U
(j)
i ∈ R(d/p)×Nt ,

j = 1, . . . , p collected in step 1, to obtain the encoded low dimensional vector

representations z
(j)
i ∈ Rl of these matrices along with the reconstruction map.
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Step 3 : Train p FFNNs to establish a mapping from the parametric space θi to

the low dimensional encoded spaces z
(j)
i , j = 1, ..., p.

Steps 1-3 of the offline phase are illustrated in fig. 5.2.

Online phase

Step 1 : For NMC new realizations of parameter vectors θi with i = 1, 2, ....NMC ,

generated from the same joint probability distribution, use the trained FFNNs to

obtain the encoded vector representations z
(j)
i of the solution matrices.

Step 2 : Each CAE’s decoder is used to produce the solution matrices U
(j)
i based

on their encoded representations z
(j)
i in the previous step.

Steps 1 and 2 of the online phase are schematically represented in fig. 5.3.

Figure 5.2: Offline phase of the proposed surrogate modeling method
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Figure 5.3: Online phase of the proposed surrogate modeling method

5.4 Numerical Tests

We first implement the proposed methodology in the academic case of a single degree of

freedom (SDOF) nonlinear oscillator, in order to illustrate the implementation steps.

The efficiency of the method is tested afterwards on a nonlinear time history analysis of

a steel building including both material and geometrical nonlinearities.

5.4.1 Nonlinear SDOF Oscillator

The nonlinear SDOF oscilator of figure 5.4 is governed by the following ordinary differ-

ential equation of motion.

m
d2u

dt2
+ c

du

dt
+ fs = p(t) (5.16)

u ≡ u(t) is the displacement, m is the system’s mass, c is the damping coefficient, p(t) is

the external load applied to the oscillator and fs = k(u)u is the inelastic restoring force,

with k(u) being the oscillator’s stiffness. Specifically, the model is a damped mass-spring
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with a nonlinear relationship between the restoring force fs and the displacement u(t)

that yields at 36 kN . The elastoplastic behaviour is displayed at figure 5.5 and is given

by:

fs(u) =

18u (kN), u < 2cm

36 (kN), u ⩾ 2cm
(5.17)

Figure 5.4: Nonlinear SDOF oscillator
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Figure 5.5: Restoring force hysteresis loop

The external load p(t) applied to the oscillator is a sine pulse with a total duration of

4.00 seconds and is expressed as:
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p(t) =

p0sin(ωt), t ∈ [0, 3)

0, t ∈ [3, 4]
(5.18)

where p0 = 50 kN is the pulse width and ω is the angular frequency of the pulse. The

angular frequency is considered as a random variable following the uniform distribution

between [π, 2π]. Figure 5.6 depicts the external force p(t) for ω = π and 2π. Furthermore,

the system’s mass is also regarded as a random variable following the lognormal distri-

bution with mean value µ = 0.456 kNs2/cm and standard deviation σ = 0.20µ = 0.0912

kNs2/cm.
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Figure 5.6: External load p(t) for (a) ω = π and (b) ω = 2π

As explained in the previous section, the first step to apply the proposed surrogate

modeling scheme is the generation of a small yet sufficient number of training samples.

To this purpose, the nonlinear SDOF oscillator system is solved numerically for N = 250

values of the parameters {ωi,mi}Ni=1 according to the their corresponding probability

distributions. The numerical algorithm used to obtain ‘exact’ solutions involves the

Newmark-beta method [53] and the Newton-Raphson algorithm [34]. The selected time

step size is dt = 0.01 s, leading to Nt = 400 total time steps. Subsequently, these

solution snapshots are stored in a matrix [u1,u2, ...,uN ] ∈ RN×Nt , where ui ∈ RNt is

the displacement vector of the i-th solution of the system.

Then, a CAE is trained over this data set for 3000 epochs with learning rate equal to

1e-4 and a batch size of 16. An adaptive moment optimizer (Adam) [119] is utilized for

the loss minimization, with the loss function being the mean square error of eq. (5.15).
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After CAE’s training phase, an encoded data matrix [z1, z2, ..., zN ] is obtained, where

each column zi is the l dimensional compressed version of the solution vector ui. In

this case, the size of the latent space is set to l= 8. The selected CAE’s architecture is

presented in figure 5.7. The final step of the training procedure is the training of the

FFNN in order to establish the mapping from the problem’s parameters (ωi,mi) to the

encoded vector representations zi. As shown in table 5.1, the network’s architecture

consists of 4 hidden layers with 64 nodes per layer. The leaky ReLU activation function

[225] is being used in each node, while the Adam optimizer is again utilized to minimize

the mean square error loss function. The FFNN was trained for 20000 epochs with

learning rate 1e-4.

Figure 5.7: CAE architecture for the solution of the nonlinear SDOF oscillator
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Layer Nodes Activation

Input 2 -

Hidden 1 64 Leaky ReLU

Hidden 2 64 Leaky ReLU

Hidden 3 64 Leaky ReLU

Hidden 4 64 Leaky ReLU

Output 8 -

Table 5.1: FFNN architecture for the solution of the nonlinear SDOF oscillator

The CAE-FFNN model accuracy is tested on the solutions for different combinations

of the random parameters that were not included in the initial training data set and

compared with those predicted by the ‘exact’ model. Figures 5.8 and 5.9 present the

displacement u(t) of the SDOF oscillator for different parameter values (ω,m). From

these results it can be seen that the predictions of the proposed surrogate model are

almost identical to those of the exact solution. The normalized error between the solution

matrices uex and usur of the ‘exact’ model and the surrogate model, respectively, given

by êrr = ∥uex−usur∥2/∥uex∥2, with ∥ · ∥2 being the L2 norm, was found to be less than

1.00% for these four cases.
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Figure 5.8: u(t) for different values of the angular frequency ω and the system’s mass m
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Figure 5.9: u(t) for different values of the angular frequency ω and the system’s mass m

Subsequently, in the context of the MC analysis, NMC = 3000 parameter values are

generated according to their distribution and the corresponding PDEs are solved by

the ‘exact’ and the surrogate model, respectively. The mean value and variance of u(t)

obtained by the two models are depicted in figure 5.10. As evidenced by these results, the

surrogate and the exact model are in perfect agreement. The normalized error between

the mean solution vectors of the exact and the surrogate model was equal to 0.49%,

while the same error for the variance vectors was 0.51%.
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Figure 5.10: Mean value and variance of u(t) for 3000 MC simulations

To further assess the method’s predictive capabilities, a significantly larger number of
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MC simulations are carried out, in order to obtain the time evolution of the probability

density function (PDF) of u(t). In particular, NMC = 200000 simulations are performed

on the two models and the results are presented in figure 5.11. Also, figure 5.12 provides

a comparison between the PDFs obtained by the surrogate and the exact model at time

instants t = 2 sec and t = 3 sec. As evidenced by these figures, the surrogate model is

able to predict the time evolution of the PDF of u(t) with satisfactory accuracy.

(a) Exact model (b) Surrogate model

Figure 5.11: Time evolution of the PDF of u(t) predicted by the exact model and the surrogate
model
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Figure 5.12: PDF for specific time instants predicted by the exact and the surrogate model

Finally, a convergence study with respect to the dimension of the latent vectors and
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the size of the initial data set is presented in figure 5.13. The average normalized error

is defined as:

ē =
1

NMC

NMC∑
i=1

||uex,i − usur,i||
||uex,i||

(5.19)

where uex,i and usur,i are the solution time-histories (vectors) of the i-th MC simulation

obtained by the exact model and the surrogate model, respectively.
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Figure 5.13: Mean error ē with respect to (a) the latent vector dimension l and (b) the initial
model evaluations N

From these results, it becomes apparent that the proposed CAE based surrogate model

is capable of delivering very accurate predictions even when a small number of training

samples are used. It should be remarked that a selection of a higher dimensional latent

vector representation reduces the amount of information compromised in the decoding

process, which improves the quality of the surrogate’s predictions. In addition, as the

initial data set size increases a decrease in the mean error ē can be attained, reaching

values less than 1.00%.

5.4.2 Nonlinear Time History Analysis of Steel Building

The structural problem of the five-story steel building of figure 5.14 is considered as

the second test case. Each story has a height of h = 3.00 m, a span in the x-axis equal

to lx = 6.00 m, while the corresponding span for the y-axis is also ly = 6.00 m. The
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column and beam sections are HEB280 and IPE240, respectively, while the steel quality

is S275. The structure consists of 145 beam and column elements and 72 nodes. Each

story is subjected to a dead load g = 8 kN/m2, including the floor’s self mass and a live

load q = 5 kN/m2. The damping matrix of the system is calculated via the Rayleigh

method as:

D = α0K + α1M (5.20)

where D is the damping matrix, K is the stiffness matrix and M is the mass matrix.

The Rayleigh coefficients α0 and α1 are calculated by the first two periods of the system

T1, T2 and their damping ratios ζ1, ζ2, that were considered equal to 5.00% for both

periods.

Figure 5.14: Structural model in SAP2000

The problem is parametrized by three uncorrelated random variables. The first

parameter is the modulus of elasticity E, which is considered a random variable following

the lognormal distribution with mean value µE = 200 GPa and standard deviation

σE = 0.20µ = 40 GPa. The second one is the material’s yield stress Fy, which is treated

as another random variable, also following the lognormal distribution with mean value

µFy = 275 MPa and standard deviation σFy = 0.10µ = 27.5 MPa. The third random

variable is related to the excitation. In particular, the ground motion used for the
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analysis is based on the accelerograms of the 1975 Imperial Valley earthquake obtained

by two different recording stations (USGS 5056, USGS 5115) as displayed in figure 5.15.

The ground motion acceleration üg considered for the numerical analysis is calculated by

a random superposition of the two recorded acceleration data, multiplied by a constant

scale factor SF .

üg = SF ×
(
αüg,1 + (1− α)üg,2

)
(5.21)

where üg,1 and üg,2 are the acceleration data from the recording stations USGS 5056

and 5115, respectively, and SF = 2.50. The superposition coefficient α is considered a

random variable following the uniform distribution in the range [0, 1].

distribution mean standard deviation

E lognornal 200 GPa 40 GPa

Fy lognormal 275 MPa 27.5 MPa

α uniform [0, 1]

Table 5.2: random parameters of the problem
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Figure 5.15: Imperial Valley earthquake ground motion acceleration

The structure is subjected to seismic loading acting diagonally on the x − y plane

and a nonlinear time history analysis is performed for each set of parameter values in
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order to obtain the system’s response. The software selected for this task is SAP2000

[Computers and Structures Inc.], developed by Computers and Structures Inc., due to

the advanced capabilities it offers for dynamic nonlinear analysis of large-scale FE

structural systems. In this frame, its predictions are regarded as the ‘exact’ ones, upon

which the surrogate will be later trained. The selected methodology for the Time History

Analysis in SAP2000 is Direct Time Integration with the Newmark method. The time

step size is set to dt = 0.02 s, thus the accelerograms contain Nt = 2400 total time steps.

The exact solutions of the problem are obtained by performing a series of nonlinear time

history analyses for different parameter values in SAP2000. In order to automate this

process, a customized MATLAB-SAP2000 API is developed, which allows the generation

of a single MATLAB script that schedules the desired number of SAP2000 simulations for

creating the training and the testing samples. The SAP2000 model consists of Nfree = 60

free nodes and Nfixed = 12 fixed nodes. Each node contains 3 translational (ux, uy, uz)

and 3 rotational (rx, ry, rz) degrees of freedom (dofs), thus the total dofs are equal to

d = 360. Furthermore, the model takes into account geometrical nonlinearities such as

P − δ effects plus large displacements. The material’s stress - strain law is nonlinear

and is depicted in figure 5.16 for Fy = 275 MPa.
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Figure 5.16: Material’s stress - strain plot for Fy = 275 MPa

In order to capture the plastic deformation of the structure, plastic hinges have been

assigned to the start and end node of each beam and column element. In particular,

the hinge type of the beam elements is a deformation controlled ‘Moment M3’ hinge,

while an ‘Interacting P-M2-M3’ has been selected for the columns according to ASCE

83



41-13 [2]. The moment - rotation diagrams for the defined plastic hinges are displayed

in figure 5.17.
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Figure 5.17: Moment - rotation curves of the defined plastic hinges

For spanning efficiently the parametric space, N = 400 triplets of parameters

{[Ei, Fyi, αi]}Ni=1 are generated according to their probability distributions using the latin

hypercube sampling method [160]. This step is instrumental to the performance of the

proposed methodology since an efficient exploration of the parametric space will result

in capturing almost all possible response variations and, consequently, it will ensure the

surrogate’s accuracy. Next, for each triplet of parameters, the corresponding problem is

solved by SAP2000 and the solution matrix of each type of dof is stored in the respective

3D matrix [U
(j)
1 ,U

(j)
2 , ....,U

(j)
N ] ∈ RN×Nt×N(j)

free , where j = 1, . . . , 6 refers to the type of

dof (ux, uy, uz, rx, ry, rz) and N
(j)
free is the number of free dofs of j type. As mentioned,

in order to acquire more accurate results, a separate surrogate model is trained for each

type of dof. This plays an essential part in the surrogate’s accuracy since each dof type

exhibits its own transient behaviour. In this investigation, the same CAE architecture

(see figure 5.18) is considered for each dof type and the training was performed for 1000

epochs with learning rate 1e-4 and a batch size of 8.
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Figure 5.18: CAE architecture for the solution of the structural problem

The mean square reconstruction error of each U(j), given by eq. (5.15), is minimized

again by the Adam optimizer. An encoded N × l training matrix [z
(j)
1 , z

(j)
2 , ..., z

(j)
N ],

j = 1, ..., 6 is then obtained for each dof type via the respective encoder, where each

column z
(j)
i is the l - dimensional latent vector representation of the solution time history

matrix U
(j)
i . In this example the latent vector dimension is set to l= 64. The above

encoded training matrices Zj along with the stored parameter triplets {[Ei, Fy,i, αi]}Ni=1

from the previous step are used as inputs and outputs, respectively, in the training

process of the FFNNs in order to construct a mapping from the parametric to the

encoded solution spaces. Each FFNN is trained for 20000 epochs with learning rate 1e-4

and a batch size of 16. The selected architecture is shown in table 5.3.
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Layer Nodes Activation

Input 3 -

Hidden 1 256 Leaky ReLU

Hidden 2 256 Leaky ReLU

Hidden 3 256 Leaky ReLU

Hidden 4 256 Leaky ReLU

Hidden 5 256 Leaky ReLU

Hidden 6 256 Leaky ReLU

Output 64 -

Table 5.3: FFNN architecture for the solution of the structural problem

To demonstrate the surrogate’s predictions to ‘unseen’ parameter values, a random

realization of parameters that was not included in the training data set, [E,Fy, α] =

[207.78 GPa, 245.43 MPa, 0.0552] is selected. Figure 5.19 illustrates a comparison

between the exact and the surrogate model in the displacements ux(t) and uy(t) of the

monitored node (see figure 5.14), while figure 5.20 displays the same comparison for the

rotations rx(t) and ry(t). From these results it can be observed that the predictions

obtained by the surrogate model are in a near perfect match with those of the exact model

and, interestingly, the surrogate model is capable of capturing the plastic deformation

with satisfactory accuracy.
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Figure 5.19: Displacements ux(t) and uy(t) of the monitored node
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Figure 5.20: Rotations rx(t) and ry(t) of the monitored node

In order to better demonstrate the surrogate’s accuracy on samples that are considered

to be ‘rare’ events and hence, difficult for it to capture the corresponding structural

responses, figures 5.21, 5.22, 5.23 and 5.24 are included. These figures display a compari-

son on the surrogate’s predictions of the monitored node with the exact ones for specific

parameter values from the lower probability regions of their respective probability density

functions. As evidenced by these results, the surrogate model is capable of capturing

these responses with high accuracy.
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Figure 5.21: Displacement ux(t) of the monitored node for different parameter values
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Figure 5.22: Displacement uy(t) of the monitored node for different parameter values

0 20 40

1

2

3
10

-3

Exact

Surrogate

(a)
E = 140 GPa, Fy =
233.75 MPa, α = 0.0

0 20 40
1

2

3
10

-3

Exact

Surrogate

(b)
E = 140 GPa, Fy =
233.75 MPa, α = 1.0

0 20 40
0

1

2

3
10

-3

Exact

Surrogate

(c)
E = 260 GPa, Fy =
316.25 MPa, α = 0.0

0 20 40

1

1.5

2

10
-3

Exact

Surrogate

(d)
E = 260 GPa, Fy =
316.25 MPa, α = 1.0

Figure 5.23: Rotation rx(t) of the monitored node for different parameter values
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Figure 5.24: Rotation ry(t) of the monitored node for different parameter values

Subsequently, NMC = 3000 triplets {[Ej , Fy,j , αj ]}NMC
j=1 are generated according their

distributions and a MC analysis is performed for both the exact and the surrogate model.

Figures 5.25, 5.26, 5.27, 5.28 display a comparison between the two models in the mean

value and variance of the displacements ux(t) and uy(t) and the rotations rx(t) and
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ry(t) of the monitored node. These figures also illustrate the same statistical quantities

extracted from the training data set. Again, the predictions obtained by the proposed

CAE-FFNN model are in very close agreement with those computed by the FEM model.

In addition, it becomes evident that the training data set was insufficient to produce

good statistical estimates. The normalized errors between the exact and the surrogate

model in the mean solution matrices em and the variance matrices ev for each type of

dof are given in table 5.4.

Dof em(%) ev(%)

ux 1.64 3.11

uy 1.79 5.70

rx 1.18 3.35

ry 1.69 2.44

Table 5.4: Normalized errors between the mean solution matrices em and the variance
matrices ev
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Figure 5.25: Mean value and variance of ux(t) of the monitored node
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Figure 5.26: Mean value and variance of uy(t) of the monitored node
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Figure 5.27: Mean value and variance of rx(t) of the monitored node
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Figure 5.28: Mean value and variance of ry(t) of the monitored node

Furthermore, in figure 5.29 a convergence study with respect to the dimension of the

latent vectors and the initial data set size is provided. The average normalized error ē of

the 3000 MC simulations is given by:

ē(j) =
1

NMC

NMC∑
i=1

||U(j)
ex,i −U

(j)
sur,i||

||U(j)
ex,i||

for j = 1, . . . , 6 (5.22)

with U
(j)
ex,i, U

(j)
sur,i being the solution matrices of the i-th MC simulation obtained by the

exact and the surrogate model, respectively, and j = 1, ..., 6 denotes the dof type.
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Figure 5.29: Mean error ē with respect to (a) the latent vector dimension l and (b) the initial
model evaluations N
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These results indicate that a choice of a higher dimensional latent vector representation

leads to improved accuracy, as in the previous example. Furthermore, the average error ē

decreases as the initial data set size increases and converges bellow 4.30% for all dofs. It

is worth mentioning that an optimized set of hyperparameters (latent vector dimension,

number of hidden layers, learning rate, number of training epochs, etc.) or a different

architecture of the CAE and the FFNN could potentially further increase the surrogate’s

precision, but the accuracy achieved for N = 400 samples and l= 64 is already deemed

adequate for the purposes of this analysis.

Regarding the computational cost, the results are very promising. Specifically, a MC

simulation required an average of 29.40 sec to complete in SAP2000, while it only needed

0.0078 sec with the surrogate model, which translates to a speed up of 3.77× 103. This

remarkable decrease in computational cost is the outcome of the ‘simulation-free’ approach

of the proposed novel method that eliminates the need of formulating and solving the

nonlinear differential equation of motion (see eq. 5.1) during the solution procedure

of each simulation and is expected to be even greater as the problem’s dimensionality

increases. All computations were performed on a typical CPU environment (Intel®

CORETM -i5 - 7500 CPU). Figure 5.30a illustrates the computational costs required by

the exact model and the CAE-FFNN model to complete the 3000 MC simulations. This

figure also displays the offline cost for training the surrogate and how it was allocated.

In particular, the cost for obtaining the 400 initial solutions was 11760 s, the training

of the CAEs required 13584 s and the training of the FFNNs 3756 s. The cost of the

3000 online simulations was only 23.4 s, which led to a total cost for the surrogate of

29123.40 s. On the other hand, the full model MC simulations required 88200 s, over 3

times that of the surrogate.

Finally, the tested surrogate model is utilized to perform NMC = 200000 simulations

in order to calculate the time evolution of the probability density function (PDF) of

the displacements ux and uy and the rotations rx and ry of the monitored node. These

results are presented in figures 5.31 and 5.32. Needless to say, that this analysis would be

infeasible without using the proposed surrogate method. In particular, SAP2000 would

have required approximately 68 days to complete the MC simulation, while the surrogate

model required only 5.25 hours, including the offline cost. This drastic decrease in

computational cost is equivalent to a speed up of 3.11× 102. A comparison between the

computational costs of the two models is schematically represented in figure 5.30b.
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Figure 5.30: Comparison of computational cost between the surrogate and the exact model
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Figure 5.31: Time evolution of PDF for the displacements ux and uy of the monitored node
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(a) rx (b) ry

Figure 5.32: Time evolution of PDF for the rotations rx and ry of the monitored node

5.5 Conclusions

This chapter presents a novel surrogate modeling method for nonlinear stochastic transient

analysis based on machine learning and, specifically, CAEs in conjunction with FFNNs.

The proposed scheme utilizes a reduced set of system solutions as its data set, which are

further subdivided into smaller data sets according to the structural dof type. Separate

CAEs are trained on these data sets in order to identify low-dimensional representations

through their encoders, as well as to establish the corresponding inverse maps through

their decoders. Then, FFNNs are trained to map points from the problem’s parametric

space to the encoded solution spaces and the decoder maps are used to reconstruct

the system solutions to their original dimension. By composing the FFNNs with the

decoders, a ‘simulation-free’ approach can be established to obtain the complete system

solutions at very low cost and high accuracy. The method is demonstrated on the simple

case of a stochastic SDOF oscillator as well as on a steel building with random material

properties and excitation, solved using Monte Carlo simulation. The results obtained

exhibit high accuracy and remarkable computational gains.
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6
AI-enhanced iterative solvers for

accelerating the solution of large-scale

parametrized systems

6.1 Intoduction

In recent days, the rapid advancements in the field of machine learning (ML) have

offered researchers new tools to tackle challenging problems in multi-query scenarios. For

instance, deep feedforward neural networks (FFNNs) have been successfully employed

to construct response surfaces of quantities of interest in complex problems [167, 166,

192, 98, 52]. Convolutional neural networks (CNNs) in conjuction with FFNNs have

been employed to predict the high-dimensional system response at different parameter

instances [156, 154, 227]. In addition, recurrent neural networks demonstrated great

potential in transient problems for propagating the state of the system forward in time

without the need of solving systems of equations [230, 109]. All these non-intrusive

approaches utilize a reduced set of system responses to build an emulator of the system’s

input-output relation for different parameter values. As such, they are particularly cheap

to evaluate and can be very accurate in certain cases. However, these methods can be

characterized as physics-agnostic in the sense that the derived solutions do not satisfy
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any physical laws. This problem is remedied to some extent from intrusive approaches

based on reduced basis methods, such as Principal Orthogonal Decomposition (POD)

[39, 236, 7] and proper Generalized Decomposition [50, 126, 125]. These methods rely on

the premise that a small set of appropriately selected basis vectors suffices to construct

a low-dimensional subspace of the system’s high-dimensional solution space and the

projection of the governing equations to this subspace will come at minimum error.

In addition, several recent works have investigated the combination of either linear or

nonlinear dimensionality reduction algorithms and non-intrusive interpolation schemes

to construct cheap emulators of complex systems [58, 188, 115, 67, 111, 216, 91, 130].

Nevertheless, none of these surrogate modelling schemes can guarantee convergence to

the exact solution of the problem.

In the effort to combine the best of two worlds, a newly emergent research direction

is that of enhancing linear algebra solvers with machine-learning algorithms. For

instance, POD has been successfully employed to truncate the augmented Krylov

subspace and retain only the high-energy modes [40] for efficiently solving sequences of

linear systems of equations characterized by varying right-hand sides and symmetric-

positive-definite matrices. In [92], neural networks were trained for predicting the

geometric location of constraints in the context of domain decomposition methods,

leading to enhanced algorithm robustness. Moreover, the close connection between

multigrid methods and CNNs has been studied in several recent works, which managed

to accelerate their convergence by providing data-driven smoothers [48], prolongation

and restriction operators [141].

The present work aims at bridging the gap between machine learning and linear algebra

algorithms for accelerating the solution of real-life computational mechanics problems

in multi-query scenarios. To this end, a novel strategy is proposed to utilize ML tools

in order to obtain system solutions within a prescribed accuracy threshold, with faster

convergence rates than conventional solvers. The proposed approach consists of two steps.

Initially, a reduced set of model evaluations is performed and the corresponding solutions

are used to establish an approximate mapping from the problem’s parametric space to

its solution space using a combination of deep FFNNs and CAEs. This mapping serves a

means of acquiring very accurate initial predictions of the system’s response to new query

points at negligible computational cost. The error in these predictions, however, may or

may not satisfy the prescribed accuracy threshold. Therefore, a second step is proposed

herein, which further utilizes the knowledge from the already available system solutions,
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in order to construct a data-driven iterative solver. This solver is inspired by the idea

of the Algebraic Multigrid method combined with Proper Orthogonal Decomposition,

termed POD-2G, that successively refines the initial prediction of the surrogate model

towards the exact system solutions with significantly faster convergence rates.

6.2 Machine learning accelerated iterative solvers

6.2.1 Problem statement

The aim in this section is to develop an efficient data-driven and AI-enhanced solver

parametrized systems, by combining linear algebra-based solvers with machine learning

algorithms. More specifically, the idea proposed herein, is to utilize a reduced set of

high-fidelity system solutions, obtained after solving the high-fidelity model for specified

parameter instances, in two different yet complementary ways. First, a surrogate model

will be established in the form of a ‘cheap-to-evaluate‘ nonlinear mapping from the

problem’s parameter space to its solution space using convolutional neural networks

(CNNs) and feedforward neural networks (FFNNs). Even though CNNs and FFNNs have

been shown to produce astonishing results even for challenging applications [148, 227, 154],

nevertheless, their black-box and physics-agnostic nature doesn’t provide any means to

improve the solutions they produce. To combat this problem, POD is performed on

this data set of solutions and an efficient iterative solver is developed based on the idea

of AMG, where in this case the prolongation operator is substituted by the projection

matrix to the POD reduced space.

6.2.2 Construction of surrogate model

As mentioned in the previous chapter, a surrogate model is an imitation of the original

high fidelity model and serves as a ’cheap’ mapping from the parametric space θ ∈ Rn

to the solution space u ∈ Rd. In general, it is built upon an initial data set {ui}Ni=1,

which is created by solving the problem for a small, yet sufficient number, N , of

parameter values. It is essential to span the problem’s parametric space effectively, thus

sophisticated sampling methods are often utilized, such as the Latin Hypercube [161].

Many surrogate modeling techniques have been introduced over the past years, including

linear [125, 236, 7] and nonlinear [156, 154, 115] dimensionality reduction methods.
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In general, the selection of an appropriate surrogate modelling method is problem

dependent, however, in this work, we will employ the surrogate modeling scheme that

was presented in the previous chapter and was introduced in [156] and consists of two

phases, namely the offline and the online phase. The offline phase begins with the

training of a CAE that consists of an encoder and a decoder, in order to obtain low

dimensional latent representations, zi ∈ Rl for each ui ∈ Rd, through the encoder with

l ≪ d and a reconstruction map by the decoder. It is trained over the initial data set

{ui}Ni=1 to minimize the objective function:

LCAE =
1

N

N∑
i=1

||ui − ũi||22 (6.1)

where ũi is the reconstructed input. After the training is completed, the latent space

data set {zi}Ni=1 is obtained. The second step of the offline phase is the training of the

FFNN, which is used to establish a nonlinear mapping from the parametric space θ ∈ Rn

to the latent space z ∈ Rl. Again, the aim of the training is the minimization of the loss

function:

LFFNN =
1

N

N∑
i=1

||zi − z̃i||22 (6.2)

where z̃i is the network’s output.

Subsequently, the online phase utilizes the fully trained surrogate model, which is now

capable of delivering accurate predictions of the system’s response for new parameter

values θj as follows:

uj = decoder(FFNN(θj)) := Fsur(θj) (6.3)
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Figure 6.1: Schematic representation of the surrogate model

A schematic representation of the surrogate model is presented in figure 6.1.

6.2.3 Multigrid-inspired POD solver

POD, also known as Principal Component Analysis, is a powerful and effective approach

for data analysis and dimensionality reduction, aimed at indentifying low-order modes

of a system. In conjunction with the Galerkin projection procedure it is commonly

utilized as an efficient method to reduce the dimensionality of large linear systems
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of equations [178, 135, 177]. The theory and application of POD is covered in many

publications, however, to keep this paper as self-contained as possible the POD procedure

used within this framework is summarized below. Let us denote with U ∈ Rd×N the

matrix consisting of N solution vectors [u1, ...,uN ] for different parameter values {θi}Ni=1

and with R = UUT ∈ Rd×d the correlation matrix. Then POD consists in the following

steps.

1. Compute the eigenvalues and eigenvectors of R that satisfy RΦ = ΦΛ. This step

can be very demanding when d ≫ 1, however, in practice N ≪ d and since R,

RT have the same non-zero eigenvalues, it is computationally more convenient to

solve instead the eigenvalue problem UTUΨ = ΨΛ. Then, the eigenvectors Φ

and Ψ are linked according to the formula.

Φ = UΨΛ−1/2 (6.4)

2. Form the reduced basisΦr, be retaining only the r first columns ofΦ, corresponding

to the largest eigenvalues.

3. Under the assumption that each solution to eq. (2.6) can be approximated as:

u ≡ Φrur (6.5)

with ur ∈ Rr being the unknown coefficients of the projection on the truncated

POD basis, then the reduced-order linear system becomes:

Ku = f

ΦT
r KΦrur = ΦT

r f

Krur = f r (6.6)

Solving equation (6.6) for ur is significantly easier since Kr ∈ Rr×r, with r small.

4. Retrieve the solution to their original problem:

u = Φrur (6.7)
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Based on the above, a similarity between the 2-level AMG method and POD can

be observed, under the identification of Φr as the prolongation operator and ΦT
r the

corresponding restriction. Then, the PCG algorithm remains practically the same. In

this case, the error of the scheme is given by the formula

e(k) = M r2
(
I −Φr

(
ΦT
r KΦr

)−1
ΦT
r K

)
M r1e(k−1) (6.8)

6.2.4 Proposed data-driven framework for parameterized linear

systems

The final step is to combine the surrogate model of section 6.2.2 and the multigrid-

inspired POD solver of the previous section into a unified methodological framework for

solving efficiently large-scale parametrized linear systems. In particular, an initial data

set of system solutions {ui}Ni=1 is performed for specified instances of the parameter

vector {θi}Ni=1. Then, these solution vectors are utilized as training data for the CNN

and FFNN and the surrogate model is established. The error between the exact solution

and the surrogate’s prediction for a given θ can be given as:

esur = u⋆ −Fsur(θ) (6.9)

Despite one’s best efforts, however, ∥esur∥ ≠ 0 and the surrogate’s predictions will

not converge to the ’exact’ solution of the problem. At this point, instead of simply

performing iterations of PCG or AMG to improve the surrogate’s predictions, we propose

to further utilize the knowledge available to us from the data set of solution vectors, in

order to enhance the performance of these iterative solvers. In particular, we perform

POD to the solution matrix U = [u1, ...,uN ], in order to obtain the projection matrix

ΦT
r and apply the AMG method either directly, or as a preconditioner in the PCG

algorithm according to the following algorithm 3.
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Algorithm 3 AMG preconditioned PCG algorithm

1: Input: K ∈ Rd×d, rhs f ∈ Rd, AMG scheme, residual tolerance δ and an
initial approximation u(0)

2: set k = 0, initial residual r(0) = f −Ku(0)

3: s0 = AMG(0;K, r(0), r1, r2)
4: p0 = s0
5: while ∥r(k)∥ < δ do

6: αk =
(r(k))

T
sk

pT
k Kpk

7: u(k+1) = u(k) + αkpk
8: r(k+1) = r(k) − αkKpk
9: sk+1 = AMG(0;K, r(k+1), r1, r2)

10: βk =
(r(k+1))

T
sk+1

(r(k))
T
sk

11: pk+1 = sk+1 + βkpk
12: k = k + 1
13: end while

6.2.5 Error bounds

The proposed methodology is data-driven and, as such, it is not possible to provide a

priori estimates of the error for general systems. Nevertheless, under the assumption

that the training data set U is ‘large’ enough to contain almost all possible variations of

the solution vector, then an estimate for the error can be provided as follows:

e(k) = M r2
(
I −Φr

(
ΦT
r KΦr

)−1
ΦT
r K

)
M r2e(k−1) ⇒

∥e(k)∥ = ∥M r2
(
I −Φr

(
ΦT
r KΦr

)−1
ΦT
r K

)
M r2e(k−1)∥ ⇒

≤ ∥M r2∥

∥∥∥∥∥(I −Φr

(
ΦT
r KΦr

)−1
ΦT
r K

)∥∥∥∥∥∥M r2∥∥e(k−1)∥ (6.10)

In the above, ∥ · ∥ denotes the l2-vector norm, when the input is a vector, and the

induced operator norm (spectral norm) when the input is a matrix.

We can assume that M has a spectral radius ρ(M) < 1 and the GS algorithm

converges. This assumption is valid when K is symmetric positive definite, which is

commonly the case in engineering problems. Then, according to Gelfand’s formula, we
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have

ρ(M) = lim
k→∞

∥Mk∥1/k (6.11)

As a consequence, there is k0 ∈ N and γ ∈ (ρ (M) , 1) ⊆ (0, 1) such that:

∥Mk∥ ≤ γk, ∀k ≥ k0 (6.12)

Therefore, ∥M r1∥, ∥M r2∥ < 1 for r1, r2 large enough.

Now, focusing on the term

∥∥∥∥∥(I −Φr

(
ΦT
r KΦr

)−1
ΦT
r K

)∥∥∥∥∥, then, by definition the

following holds:

∥∥∥∥∥(I −Φr

(
ΦT
r KΦr

)−1
ΦT
r K

)∥∥∥∥∥ = sup
u∈Rd:∥u∥=1

∥∥∥∥∥(I −Φr

(
ΦT
r KΦr

)−1
ΦT
r K

)
u

∥∥∥∥∥
(6.13)

Since a given u ∈ Rd can be decomposed as u = Φrur + u⊥, with Φrur ∈ Φ and

u⊥ ∈ Φ⊥, where Φ = span {ϕ1, ...,ϕr} and Φ⊥ its orthogonal complement in Rd, then,

(
I −Φr

(
ΦT
r KΦr

)−1
ΦT
r K

)
u = u−Φr

(
ΦT
r KΦr

)−1
ΦT
r K

(
Φrur + u⊥

)
= Φrur + u⊥ −Φr

(
ΦT
r KΦr

)−1
ΦT
r K

(
Φrur + u⊥

)
= Φrur + u⊥ −Φrur −Φr

(
ΦT
r KΦr

)−1
ΦT
r Ku⊥

= u⊥ −Φr

(
ΦT
r KΦr

)−1
ΦT
r Ku⊥ (6.14)

thus,

∥∥∥∥∥(I −Φr

(
ΦT
r KΦr

)−1
ΦT
r K

)
u

∥∥∥∥∥ ≤
∥∥∥∥∥I −Φr

(
ΦT
r KΦr

)−1
ΦT
r K

∥∥∥∥∥∥u⊥∥ ≤ c∥u⊥∥

(6.15)

for some c > 0. Due to the orthogonality of Φrur and u⊥, it follows that
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∥u⊥∥2 = ∥u∥2 − ∥Φrur∥2 ⇒

∥u⊥∥ =
√

1− ∥Φrur∥2 ≤ 1 (6.16)

In fact, by choosing an appropriate number of eigenvectors r in POD, we can obtain

∥u⊥∥ < 1
c and then, inequality (6.15) becomes∥∥∥∥∥(I −Φr

(
ΦT
r KΦr

)−1
ΦT
r K

)
u

∥∥∥∥∥ ≤ C (6.17)

with C := C(u⊥) and C ∈ (0, 1).

Inserting the inequalities (6.12) and (6.17) into (6.10), we have:

∥e(k)∥ ≤ γr2Cγr1∥e(k−1)∥, with γr2Cγr1 < 1 (6.18)

Applying the above inequality recursively, we conclude:

∥e(k)∥ ≤ (γr2)kCk(γr1)k∥e(0)∥

= (γr2)kCk(γr1)k∥esur∥ (6.19)

The above inequality provides us with some valuable insight regarding the performance

of the proposed data-driven solver. Most importantly, we notice the critical role that

the surrogate’s predictions play in the convergence, since the error is bounded be

the surrogate’s error ∥esur∥. Even though this result agrees with common intuition,

nevertheless, being rigorously proven excludes the possibility of good initial predictions

requiring more iterations for the solution to converge. Secondly, by retaining more

eigenvectors to construct the reduced space Φ, we reduce the norm of u⊥ ∈ Φ⊥, resulting

in faster convergence. In the following section, we test the solver on numerical applications

of scientific interest and assess its performance in comparison with conventional solvers.

6.3 Numerical applications

The proposed methodology is tested on two large scale parametrized systems. The first

case is the indirect tensile strength (ITS) test, which is treated with the theory of 2D
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linear elasticity, while the second one is a 3D deformable porous medium problem, also

known as Biot problem.

6.3.1 Indirect tensile strength test

A popular test to measure the tensile strength of concrete or asphalt materials is the

ITS test. As shown in figure 6.2, the test contains a cylindrical specimen loaded across

its diameter to failure. The specimen is usually loaded at a constant deformation rate

and measuring the load response. When the developed tensile stress in the specimen

under loading exceeds its tensile strength then the specimen will fail. In this application,

we restrict our analysis to the linear regime and model the cylinder as a 2D disk under

plain strain assumptions, as shown in 6.2. In this case, the weak form of the problem

reads: Find v ∈ V(Ω) such that∫
Ω
σ(v) : ϵ(w)dΩ =

∫
Ω
f ·wdΩ, ∀w ∈ Vc(Ω)

σ = λtr (ϵ) I+ 2µϵ

(6.20)

where,

ϵ =

[
ϵxx ϵxy

ϵxy ϵyy

]
(6.21)

the strain tensor and f the loading. Also, µ and λ are the Lamé’s constants, which are

linked to the Young modulus E and the Poisson ratio according to equations (6.22):

µ =
E

2(1 + ν)

λ =
Eν

(1 + ν)(1− 2ν)

(6.22)
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Figure 6.2: ITS test: A diametrically point loaded disk

In this example, the specimen has a diameter of 150 mm and due to symmetry in

geometry and loading we only need to model one quarter of the disk, as illustrated in

figure 6.3. The solution of eq. (6.20) is obtained using a finite element mesh that consists

of triangular plane-strain finite elements with a total of d = 5656 dofs. The Young

modulus E and the load P are considered uncorrelated random variables following the

lognormal distribution as described in table 6.1. The Poisson ratio is considered to be a

constant parameter ν = 0.3. Figure 6.3 displays the contour plot of the displacement

norm ∥u∥ for the mean value of the random parameters, that is E = 2000 MPa and

P = −1000 N .

Parameter Distribution Mean Standard deviation

E(MPa) Lognornal 2000 600

P (N) Lognormal −1000 300

Table 6.1: Random parameters of the ITS test
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Figure 6.3: Displacement magnitude ||u|| for E = 2000 MPa and P = −1000 N

The first step of the proposed procedure is to generate a sufficient number of offline

samples. To this purpose, the Latin Hybercube sampling method was utilized to generate

N = 200 parameter samples {[Ei, Pi]}Ni=1. Subsequently, the corresponding problems are

solved with the finite element method and the solution vectors obtained, {ui}Ni=1, are

regarded as ’exact’ solutions. Next, a surrogate model is trained over these solutions

in order to establish a ’cheap’ mapping from the parametric to solution space. The

methodology for the surrogate model is described in section 6.2.1. The details of the

selected CAE and FFNN architectures are presented in figure 6.4.

To tackle the problem of overfitting, the standard hold-out approach was employed.

In particular, the data set was randomly divided into train and validation subsets with a

ratio of 70%-30% and each network’s performance on the validation data set was assessed

in order to avoid overfitting. The CAE is trained for 40 epochs with a batch size of 10

and a learning rate of 0.0005, while the FFNN is trained for 3000 epochs with a batch

size of 20 and a learning rate of 0.0001. The average normalized l2 norm error of the

surrogate model on the test data set is 0.54%.
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Figure 6.4: Surrogate model architecture

The second step is to form the POD basis Φr by performing eigendecomposition on

the correlation matrix UUT , with U = [u1, . . . ,uN ] being the solution matrix. In this

case, the number of eigenvectors kept is r = 8, which correspond to over 99.99% of

the variance in the training data. Subsequently, when all components of the proposed

POD-2G solver are defined and fully trained, the methodology described in section 6.2.2

can be applied to obtain new system’s solutions for different parameter values.

In order to test the proposed POD-based solver, a number of Ntest = 500 test

parameter samples {[Ej , Pj ]}Ntest
j=1 were generated according to their distribution. The

corresponding problems were solved with the Ruge-Stüben AMG solver for 2, 3 and 5

grids (termed AMG-2G, -3G, -5G respec.), as well as the proposed POD-2G solver for

different values of tolerance. The size of the system of equations at the coarsest level

for each of these solvers is given in table 6.2. The mean value of the CPU time and the

number of cycles required for convergence to the desired tolerance are displayed in figure

6.5 for the 3 AMG solvers and the proposed POD-2G with initial u(0) = 0, as well as

u(0) = usur, namely the solution delivered by the surrogate model.
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System Size

Initial Problem 5656× 5656

AMG-2G 1555× 1555

AMG-3G 314× 314

AMG-4G 80× 80

AMG-5G 26× 26

POD-2G 8× 8

Table 6.2: Size of the problem at the coarsest grid for the different solvers

0 5 10 15 20 25 30
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

(a) Comparison of mean CPU time

0 2000 4000 6000 8000 10000
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

(b) Comparison of mean number of cycles

Figure 6.5: Comparison of mean CPU time and mean number of cycles over 500 analyses for
different multigrid solvers

ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7 ε = 10−8

AMG-2G (u(0) = 0) ×1 ×1 ×1 ×1 ×1
AMG-3G (u(0) = 0) ×1.51 ×1.39 ×1.34 ×1.31 ×1.29
AMG-5G (u(0) = 0) ×1.12 ×1.04 ×1.00 ×0.98 ×0.96
POD-2G (u(0) = 0) ×6.90 ×3.53 ×2.81 ×2.51 ×2.34
POD-2G (u(0) = usur) ×138.99 ×48.97 ×20.09 ×8.73 ×5.51

Table 6.3: Computational speedup of different solvers compared to AMG-2G

109



From figure 6.5, we notice that AMG-3G and AMG-5G require the same mean number

of cycles, which is slightly more than those AMG-2G needs to achieve the same tolerance,

yet, AMG-3G is the most efficient AMG scheme in terms of CPU time. This is because

the CPU time is affected by both the size of the coarse problem and the number of

times the prolongation/restriction operators are applied within a cycle. In this regard,

AMG-3G provides the optimal number of grids needed for this problem. However,

a significant improvement on both the speedup and the number of iterations can be

observed when applying the two POD solvers instead of the AMG solvers (see table 6.3).

This performance gain is increased with increasing tolerance ε, reaching a speedup of

×6.90 and ×138.99 for the POD solvers with u(0) = 0 and u(0) = usur for ε = 10−4,

respectively. On the other hand, for smaller values of ε such as 10−8, the speedup in

CPU time obtained with POD-2G with u(0) = usur is ×5.51, when compared with the

case of AMG-2G with u(0) = 0. Even though the gain achieved in this case is much

smaller than for the case of ε = 10−4, yet, it is still notable. Based on these results, the

conclusion is drawn that a key component of the proposed methodology is to obtain

a close estimation of the solution by the surrogate model, u(0) = usur since an initial

solution u(0) from an accurately trained surrogate is capable of drastically reducing the

computational cost.

Furthermore, the convergence behaviour of the proposed method when used as a

preconditioner in the context of the PCG method is presented in figure 6.6 and table 6.4.
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Figure 6.6: Comparison of mean CPU time and mean number of PCG iterations over 500 analyses
for different preconditioners
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ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7 ε = 10−8

AMG-3G (u(0) = 0) ×1 ×1 ×1 ×1 ×1
POD-2G (u(0) = 0) 1.89 1.52 1.41 1.32 1.21

POD-2G (u(0) = usur) 12.77 6.10 3.06 2.19 1.76

Table 6.4: Computational speedup of different preconditioners compared to the AMG-3G
preconditioner

Again, the results obtained proved that the proposed methodology is superior than

classic AMG preconditioners. In particular, for ε = 10−4 and u(0) = 0, a reduction of

computational cost of ×1.89 is observed between the proposed method and the 3-grid

AMG. In addition, the initial solution delivered by the surrogate model, u(0) = usur, is

again a crucial factor of fast convergence, and can lead to a speedup of ×12.77 for the

same case.

Finally, in order to highlight the computational gain of the proposed framework in the

context of the Monte Carlo method, NMC = 105 simulations are performed to determine

the probability density function (PDF) of the vertical displacement utopy of the top node,

where the load P is applied. The calculated PDF is presented in figure 6.7a. Each

simulation is solved with PCG and two different preconditioners, namely the proposed

POD-2G method and a standard three grid Ruge-Stüben AMG preconditioner. The

results are displayed in figure 6.7b and verify that the proposed method is superior to

classic AMG when dealing with parametrized systems. In particular, the conventional

method needed 21109 s to complete the 105 simulations, while the proposed data-driven

solver required 4013 s for the same task including the offline cost (initial simulations

and training of the surrogate model). This translates to a remarkable decrease in CPU

time of ×5.26.
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Figure 6.7: PDF of utopy for 105 MC simulations and comparison of computational cost.

6.3.2 Biot problem - deformable porous medium

Biot’s theory describes wave propagation in a porous saturated medium, i.e., a medium

made of a solid matrix, fully soaked with a fluid. Biot does not take into account the

microscopic level and assumes that continuum mechanics can be applied to measurable

macroscopic quantities [1]. Biot problem in weak form can be stated as: Find v ∈
V(Ω;R3) and p ∈ V(Ω;R) such that∫

Ω
σ(v) : ϵ(w)dΩ−

∫
Ω
pA : ϵ(w)dΩ = 0, ∀w ∈ Vc(Ω;R3)∫

Ω
qA : ϵ(v)dΩ+

∫
Ω
∇q ·D (∇p)TdΩ = 0, ∀q ∈ Vc(Ω;R)

σ = λtr (ϵ) I+ 2µϵ

(6.23)

with A,D being the Biot coefficient tensor and diffusion tensor, respectively. In this

test case, the domain Ω is a cube and each side has a length of L = 1.00 m. Regarding

the boundary conditions, a pressure distribution pleft := p|x=0 = 1.0 MPa is applied on

the left face of the cube along with a displacement load utopy := uy|z=1 = 0.20 m on the

top face, while all displacements ux, uy and uz are restrained in the bottom face (z = 0).

The problem definition is presented in figure 6.8.
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Figure 6.8: Geometry and boundary conditions of Biot problem

The finite element mesh contains 3-d hexa elements and the solution vector u ∈ Rd

consists of the nodal values of displacements and pressure, where in this case the total

number of dofs is d = 34839. The Lame’s constants µ and λ are considered uncorrelated

random variables following the lognormal distribution as described in table 6.5. The

Poisson ratio ν is determined by:

ν =
λ

2(λ+ µ)
< 0.5 (6.24)

We further assumed that the Biot coefficient tensor A and D are constant, taking the

values:

A =

0.13 0.13 0.13

0.09 0.09 0.09

0 0 0

 , D =

2.0 0.2 0

0.2 2.0 0

0 0 0.5

 (6.25)

Parameter Distribution Mean Standard deviation

µ(MPa) Lognornal 0.30 0.09

λ(MPa) Lognormal 1.70 0.51

Table 6.5: Random parameters of the Biot problem
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(a) Displacement magnitude ∥u∥ (b) Pressure distribution p

Figure 6.9: Displacement magnitude ∥u∥ and pressure distribution p for λ = 1.70 MPa and
µ = 0.30 MPa

Figure 6.8 also displays a contour plot of the magnitude of u and the pressure distribution

p for µ = 0.30 MPa and λ = 1.70 MPa.

The first step of the proposed methodology is to create an initial solution space. To

this purpose, the Latin Hybercube sampling method was utilized to generate N = 300

parameter samples {[µi, λi]}Ni=1. The next steps are similar with those of the previous

numerical example. The surrogate’s architecture is presented in figure 6.10. The CAE

is trained for 100 epochs with a batch size of 10 and a learning rate of 10−3, while the

FFNN is trained for 5000 epochs with a batch size of 20 and a learning rate of 10−4. The

average normalized l2 norm error of the surrogate model in the test data set is 0.68%.

Figure 6.10: Surrogate model architecture

As in the previous numerical example, a number of Ntest = 500 parameter vectors
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{[µj , λj ]}Ntest
j=1 were generated according to their distribution and the corresponding

problems were solved with the proposed POD-based solver and different Ruge-Stüben

AMG solvers, with the number of grids ranging from 2 to 6. The size of the system of

equations at the coarsest level for each of these solvers is presented in table 6.6. For this

example, 8 eigenvectors were retained in the POD expansion, as these were sufficient for

capturing 99.99% of the dataset’s variance.

System Size

Initial Problem 34839× 34839

AMG-2G 8625× 8625

AMG-3G 1421× 1421

AMG-4G 229× 229

AMG-5G 47× 47

AMG-6G 9× 9

POD-2G 8× 8

Table 6.6: Size of the problem at the coarsest grid for the different solvers

The mean value of the CPU time and the number of cycles required for convergence to

the desired number of tolerance are displayed in figure 6.11 and table 6.7. The results are

very promising in terms of computational cost. For instance, for ε = 10−5 and u(0) = 0,

a reduction of computational cost of ×7.32 is achieved when comparing the proposed

solver with the 3-grid AMG solver. Furthermore, obtaining an accurate initial solution

u(0) is again a very important component of the proposed framework. Specifically, by

considering u(0) = usur instead of u(0) = 0 for ε = 10−5, an additional decrease in CPU

time of ×4.31 can be achieved.
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Figure 6.11: Comparison of mean CPU time and mean number of cycles over 500 analyses for
different multigrid solvers

ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7 ε = 10−8

AMG-3G (u(0) = 0) ×1 ×1 ×1 ×1 ×1
AMG-5G (u(0) = 0) ×0.97 ×0.96 ×0.96 ×0.96 ×0.96
AMG-6G (u(0) = 0) ×0.97 ×0.96 ×0.96 ×0.96 ×0.96
POD-2G (u(0) = 0) ×12.31 ×7.32 ×4.89 ×2.34 ×1.77
POD-2G (u(0) = usur) ×76.89 ×31.54 ×17.90 ×12.12 ×4.35

Table 6.7: Computational speedup of different solvers compared to AMG-3G

Furthermore, the convergence behaviour of the proposed method when used as a

preconditioner in the context of the PCG method is presented in figure 6.12. Again,

the results delivered by the proposed methodology showed its superior performance

not only over AMG preconditioners but also over ILU and Jacobi preconditioners. In

this case, for ε = 10−5 and u(0) = 0, a reduction of computational cost of ×2.37 is

observed between the proposed method and the 3-grid AMG, of ×1.63 with the ILU

and of ×1.16 with the Jacobi. Last but not least, the initial solution delivered by the

surrogate model, u(0) = usur, managed to further reduce the computational time by

×2.12 when compared to POD-2G with u(0) = 0.
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Figure 6.12: Comparison of mean CPU time and mean number of PCG iterations over 500 analyses
for different preconditioners

ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7 ε = 10−8

AMG-3G (u(0) = 0) ×1 ×1 ×1 ×1 ×1
ILU (u(0) = 0) ×1.38 ×1.45 ×1.61 ×1.77 ×2.63
Jacobi (u(0) = 0) ×2.50 ×2.04 ×1.73 ×1.85 ×2.70
× POD-2G (u(0) = 0) ×2.86 ×2.37 ×1.74 ×1.86 ×2.71
POD-2G (u(0) = usur) ×8.88 ×5.02 ×3.98 ×2.64 ×3.55

Table 6.8: Computational speedup of different preconditioners compared to the AMG-3G
preconditioner

Finally, a Monte Carlo simulation is performed on this example as well, using NMC =

2 × 105 simulations to determine the PDF of the displacement magnitude ∥u∥ of the
monitored node (see figure 6.8). The calculated PDF is presented in figure 6.13a.

As in the previous example, each simulation is solved with PCG and two different

preconditioners, namely the proposed POD-2G and a standard three grid Ruge-Stüben

AMG preconditioner. Again, the results obtained by the proposed methods demonstrate

a significant computational advantage over conventional preconditioners. In particular,

the Jacobi preconditioner needed 4.23 × 105 s to complete 2 × 105 simulations, while

the proposed data-driven solver required 1.75× 105 s for the same task including the
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offline cost (initial simulations and training of the surrogate model). This translates to a

decrease in CPU time of ×2.42.
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Figure 6.13: PDF of ∥u∥ at monitored dof for 2× 105 MC simulations and comparison of
computational cost

6.4 Conclusions

The present work introduces a framework for accelerating the solution of parametrized

problems that require multiple model evaluations. The proposed framework consists

of two distinct yet complementary steps. The first step in the methodology is the

construction of a ‘cheap-to-evaluate’ metamodel using FFNNs and CAEs, trained over a

reduced set of high-fidelity system solutions. Despite giving very accurate predictions at

new parameter instances, these predictions are bound to exhibit some discrepancy with

respect to the actual system solutions since they are not constrained by any physical laws.

The second step in the methodology aims precisely at fixing this by proposing a data-

driven iterative solver, inspired by the AMG method, that will refine the metamodel’s

predictions until a prescribed level of accuracy has been attained. In particular, using

again the already available set of high-fidelity system solutions, POD is performed on this

set to identify the subspace that captures most of the variation in the system responses.

Next, a 2-level multigrid scheme is developed, termed POD-2G, using the projection

operator from POD as the prolongation operator. This scheme was tested on numerical

applications as a standalone solver, as well as a preconditioner to PCG, and in both cases,

its superior performance with respect to conventional iterative solvers was demonstrated.
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7
Extended physics informed neural

networks for parameter identification of

composite materials

7.1 Introduction

The field of machine learning has witnessed tremendous breakthroughs over the past

decades, becoming a pervasive technology in a wide range of applications, such as image

processing [90, 195], speech recognition [97, 151, 64], autonomous driving [85, 66] and

patient-specific healthcare [59, 69, 30]. To address the particular requirements of each

application, a variety of different neural network architectures emerged, including Deep

Neural Networks [131, 196], Convolutional Neural Networks [231, 217], Recurrent Neural

Networks [84, 197, 187], Autoencoders [19, 20] and Transformers [215, 49, 229]. Most of

these frameworks have also been employed in computational mechanics for the purposes

of predictive and data-driven modeling [155, 202, 33, 137]. Their ability to provide

accurate and cheap-to-evaluate surrogates of complex large-scale systems made them

an indispensable tool for challenging engineering problems such as partial differential

equations [157], uncertainty quantification [4] and Bayesian inference [173].

Recently, the Physics-Informed Neural Network (PINN) framework was introduced
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in the effort to incorporate physics into machine learning [174, 147, 65, 175, 132, 106].

Early works dating back in the 90s had already demonstrated the capabilities of neural

networks for modeling nonlinear dynamical systems [179], as well as for solving ordinary

and partial differential equations [127]. However, it was the recent work of Raissi et.

al [174], which managed to rekindle the scientific interest on the topic, by laying down

the fundamental principles of PINNs and demonstrating their powerful approximation

capabilities in the modern-day computing environments. From there on, PINNs have

been successfully applied in numerous applications, either to derive the solution (forward

problem) [174] or to infer the parameters (inverse problem) [82] of partial differential

equations (PDEs), as well as for solving stochastic [237, 47] and interval [78] PDEs, thus

providing a promising alternative to other conventional computational tools such as finite

element methods (FEM). The benefits of PINNs include the ease of implementation

and their ability to fuse computational models with experimental data, obtained from

simulations and/or measurements. Furthermore, advanced deep-learning platforms such

as Pytorch [170] and Tensorflow [3] provide massively parallel computing capabilities

and the deployment of PINNs in these open-source platforms leads to vast performance

improvements, rendering PINNs more efficient than conventional FEM solvers in certain

cases. Several variations of this framework involve Variational PINNs [116], Parareal

PINNs [145] and eXtended PINNs (XPINNs) [101].

In the field of computational mechanics, PINNs have been successfully employed

for inferring heterogeneous material properties in complex systems, such as the Lamé

parameters [79] and hyperelasticity parameters [238] in solid mechanics, as well as

permeability coefficients [234] in fluid mechanics. In addition, the application of PINNs

to heat transfer problems, which are focused in this work, has already been investigated

in a number of publications [37, 243]. The present work, however, differs from previous

approaches in the sense that the emphasis herein is put on developing a computational

framework for the estimation of the thermal resistance at an interface between two

materials, based on temperature measurements. Interface thermal resistance is an

important physical mechanism encountered in many situations of practical interest.

It affects heat flow from one material to another by posing a barrier to the flow and

leading to a temperature jump across the interface. This phenomenon was observed and

conceptualized by Kapitza [117, 209] who introduced a macroscopic parameter, known as

Kapitza thermal resistance, to model it. Despite its significant theoretical and practical

importance, experimental establishment of the Kapitza resistance is a difficult task due
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to its phenomenological nature and the fact that it is not a directly measurable quantity.

Some computational approaches, mostly relying on molecular structural mechanics

[205, 186], do exist, but they are associated with extreme computational demands.

The present work proposes a simple yet very efficient computational approach to

estimate the value of the Kapitza resistance at the interface between two materials,

utilizing the concept of PINNs and in particular that of XPINNs. Compared to PINNs,

XPINNs offer great parallelization and representation capacity, as they enhance the

PINN methodology by employing a domain decomposition procedure [101, 199]. In each

of the induced subdomains, a separate PINN is applied with its complexity chosen in

accordance to the complexity of the solution at this specific subdomain. Using XPINNs

in our approach allows for implementing separate PINNs to solve the PDE of the heat

transfer problem at each individual material and then impose the heat flux continuity

equation at the interface of the materials as a constraint that both neural networks

have to satisfy. If, in addition a set of experimental measurements is given, such as

temperature values at the volume of the composite, which is easy to obtain in practice,

then our model can be trained to find the optimal value of the Kapitza resistance,

such that (i) the PDEs are accurately solved in the interior of each material, (ii) the

XPINN-predicted temperature values agree to the experimental ones at the specified

locations and (iii) the heat flux equation at the interface is satisfied. The choice of

XPINNs over PINNs in our setting is further justified by the existence of temperature

discontinuities in the problem’s domain, which is something that XPINNs are more

capable of capturing [105]. However, an associated drawback of XPINNs is the fact that

they involve a large number of hyperparameters that require fine tuning, in order to

achieve the desirable levels of accuracy. To address this problem in an efficient manner,

Bayesian hyperparameter optimisation using Gaussian Process regression [201, 83] is

employed herein.

7.2 Extended Physics-Informed Neural Networks

The main advantage of PINNs is that they provide a mesh-free algorithm to approximate

PDEs conveniently using automatic differentiation (AD) and non-linear optimisation

techniques. However, they are subject to some considerable limitations. The most

notable ones are:

(i) Their large training cost. Training a PINN generally requires a large amount of
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time.

(ii) They have proved themselves to lack representation capacity for certain types of

problems (i.e. conservation laws, existence of gradient pathologies, etc.), being

unable to produce satisfying results without resorting to specialized network

architectures and implementations [218].

(iii) PINNs are not well-suited for capturing discontinuous solutions, since they consist

of a composition of continuous functions.

There are works proposing modifications to PINNs for successfully addressing these

issues, such as the clustering of collocation points around regions of discontinuities, in

order to approximate solution jumps with steep solution gradients [142]. However, a

more natural way to overcome some of these limitations can be found in the XPINN

framework. XPINNs utilise a domain decomposition approach and integrate it with the

PINN framework [101]. In particular, they divide Ω into subdomains {Ωq}Nsd
q=1 such that

Ω =
⋃Nsd
q=1 Ωq and Ωi ∩ Ωj = Γij , i ̸= j. Here, Γij is referred as the interface between Ωi

and Ωj and is the common boundary between these two subdomains. Next, one PINN

is defined for each subdomain and is referred as sub-net. As a result, the loss function

of XPINNs is defined subdomain-wise. The induced loss for the sub-net applied to a

subdomain Ωm, for the forward case, is given as:

Lm(Θm) =Wum MSEum(Θm; {x(i)
um}

Num
i=1 ) +Wfm MSEfm(Θm; {x(i)

fm
}Nfm
i=1 )+

WΓm MSEuavg(Θm; {x(i)
Γm
}NΓm
i=1 ) +WΓfm

MSER(Θm; {x(i)
Γfm
}
NΓfm
i=1 )

(7.1)

Here, the first two terms are similar to (3.16), but restricted to Ωm. The third and fourth

terms consist of MSEuavg and MSER, respectively, which impose average solution and

residual continuity, accompanied by their corresponding weights WΓm and WΓfm
. These

two terms, denoted as interface conditions, stitch together the induced subnets and

merge them into a global model, namely the XPINN. In fact, the subdomain loss has

the same structure as (3.16), but is enriched with the interface conditions to ensure

communication between sub-nets. Moreover, we can optionally accumulate any other

interface conditions that may be valid for the problem we wish to solve. The MSE for

each term is given by:
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MSEum(Θm; {x(i)
um}

Num
i=1 ) =

1

Num

Num∑
i=1

|uΘm(x
(i)
um)− u

(i)
m |

2
, (7.2)

MSEfm(Θm; {x(i)
fm
}Nfm
i=1 ) =

1

Nfm

Nfm∑
i=1

|fΘm(x
(i)
fm

)|
2
, (7.3)

MSEuavg(Θm; {x(i)
Γm
}NΓm
i=1 ) =

∑
∀m+

 1

NΓm

NΓm∑
i=1

|uΘm(x
(i)
Γm

)− ⟨uΘm(x
(i)
Γm

)⟩|2
 , (7.4)

MSER(Θm; {x(i)
Γm
}NΓm
i=1 ) =

∑
∀m+

 1

NΓm

NΓm∑
i=1

|fΘm(x
(i)
Γm

)− fΘm+ (x
(i)
Γm

)|
2

 , (7.5)

Both MSER and MSEuavg are defined for all neighbouring subdomains of m, denoted

as m+. The average value of u at the interface is denoted as ⟨uΘm(x
(i)
Γm

)⟩.
For the inverse case, where we seek to identify the PDE’s parameters θ, the loss for

the m-th subdomain can be written as

Lm(Θm,θ) =Wum MSEum(Θm,θ; {x(i)
um}

Num
i=1 )+

Wfm MSEfm(Θm,θ; {x(i)
um}

Num
i=1 )+

WΓm {MSEuavg(Θm,θ; {x(i)
Γm
}NΓm
i=1 )+

MSEθ(Θm,θ; {x(i)
Γm
}NΓm
i=1 )}+

WΓfm
MSER(Θm,θ; {x(i)

Γm
}NΓm
i=1 )

(7.6)

where

MSEfm(Θm,θ; {x(i)
um}

Num
i=1 ) =

1

Num

Num∑
i=1

|fΘm(x
(i)
um)|

2
(7.7)

and
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MSEθ (Θm,θ; {x(i)
Γm
}NΓm
i=1 )} =

∑
∀m+

 1

NΓm

NΓm∑
i=1

|θq(x(i)
Γm

)− θm+(x
(i)
Γm

)|
2

 (7.8)

The MSE for the other terms remains the same as (7.1). The MSEθ enforces the

continuity of the value of θ on the interfaces.

The domain decomposition in the XPINN methodology results in great parallelization

and representation capacity. Using prior knowledge of the behavior of a PDE, we can

apply models with varying representation power to each of its induced subdomains,

in the sense that different network designs can be assigned to each of the problem’s

subdomains. For instance, a subnet, which is defined for a subdomain where the solution

of the PDE is expected to be complex, can be designed to be deep, whereas a subnet

defined for a subdomain where the solution is smooth can be shallow. This comes in

contrast to the standard PINN procedure, providing more flexibility and allowing to

obtain better, more localized results. A detailed discussion of the advantages of XPINNs

over PINNs can be found in [99] and a derivation of XPINN error estimates for nonlinear

PDEs in [62].

Conceptually, the XPINN framework generalises the Conservative Physics-Informed

Neural Networks (CPINNs) [102], where MSER is substituted with:

MSEflux(Θm; {x(i)
Γm
}NΓm
i=1 ) =

∑
∀m+

 1

NΓm

NΓm∑
i=1

|flm(u(x(i)
Γm

)) · n− flm+(um(x
(i)
Γm

)) · n|
2


(7.9)

where flm ·n and flm+ ·n are the interface fluxes normal to the interface between m and

its neighbors, m+. The aforementioned MSE imposes flux continuity on the interface.

Thus, CPINNs, as opposed to XPINNs, can be applied only in cases where the flux

continuity assumption is valid on the interfaces between the problem’s subdomains. Note

that even in problems where the flux continuity is satisfied, it is more convenient to

apply the XPINN procedure and add MSEflux, multiplied by its corresponding weight,

as a complementary term to the loss function, instead of using a CPINN.

For the problems studied in this work, we will slightly modify the XPINN methodology

presented in this section. Further details will be given in the following sections. As a
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closing remark to this section, several recent papers report on the possibility of boosting

XPINNs’ performance using adaptive activation functions [104, 103, 107]. However, in

this work we opted to employ classic activation functions, adopting a more parsimonious

approach in the sense of minimizing the number of model hyperparameters needed to

reach acceptable levels of accuracy.

7.3 Mathematical formulation of steady-state heat transfer in

composites with interface interaction

Let Ω denote a two-phase material with Γ representing the interface that divides Ω

into its two constituents Ω1 and Ω2, as depicted in figure 7.1. The external boundary

∂Ω of the whole domain has an outward normal vector v and it is further divided into

complementary parts ∂ΩT and ∂Ωq, on which the Dirichlet and Neumann boundary

conditions are applied respectively:

Figure 7.1: Domain with two different phases, Ω1 and Ω2, separated by an interface Γ

u = ū in ∂ΩT ,

q · v = −q̄v in ∂Ωq.
(7.10)

where u = u(x) is the (scalar) temperature field and q = q(x) is the heat flux vector

field, with x ∈ Rd, d = 1, 2 or 3, the position vector of a current point in Ω. Let ki

denote the conductivity tensor of phase Ωi, then, from Fourier’s law, the constitutive

relation between the temperature and heat flux in the phase’s interior is defined as
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q(x) = −ki(x)∇u(x) i = 1, 2 (7.11)

In this setting, the interface Γ is assumed to exhibit Kapitza thermal resistance α

and as a consequence, the thermal behavior on Γ is characterized by a jump in the

temperature field, while the heat flux field is continuous:

||u|| = −αq · n on Γ, (7.12)

||q · n|| = 0 on Γ (7.13)

where || · || = (·)(2)− (·)(1) is an operator denoting the jump of any scalar quantity across

Γ. The positive and negative sides of the boundary are defined by the unit vector n,

which is normal to Γ and directed outwards from Ω1 to Ω2. Finally, the steady-state

differential equation governing the temperature field in the interior of each phase Ωi for

a given heat source r(x) is

∇ · q(x)− r(x) = 0 in Ωi, i = 1 . . . np (7.14)

subject to the boundary conditions (7.10), the constitutive relation (7.11) and the

interface equations (7.12), (7.13).

7.4 Identification of Kapitza resistance using XPINNs

7.4.1 The proposed XPINN formulation

In this section we propose a formulation dedicated to the identification of the Kapitza

thermal resistance at the interface of two different phases, using an appropriately

customized version of eq. (7.6). Let us consider a two-phase material, which is subdivided

into two subdomains, namely Ω1 and Ω2, as shown in figure 7.1. Next, we use two

separate sub-nets to solve the PDE of the heat transfer at each distinctive material. We

merge the induced sub-nets into a global model by applying a modified version of eq.

(7.6), which is explained as follows:

First, we replace MSEuavg with
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MSEuΓ(Θ1, α; {x(i)
Γ1
}NΓ
i=1, {x

(i)
Γ2
}NΓ
i=1) =

1

NΓ

NΓ∑
i=1

|{uΘ1(x
(i)
Γ1
)− uΘ2(x

(i)
Γ2
)}+ αq · n1|2,

(7.15)

since the behavior of the temperature field u exhibits a discontinuity at Γ, characterized

by a jump given by eq. (7.12). Note that in order to be able to evaluateMSEuΓ we make

use of two datasets, D1 = {x(i)
Γ1
}NΓ
i=1 and D2 = {x(i)

Γ2
}NΓ
i=1, which consist of internal points

of the subdomains Ω1 and Ω2, respectively, selected so that their distance from Γ is equal

to a very small value (e.g. 10−5 was chosen in this work). The importance of MSEuΓ is

crucial, as it allows to calculate the Kapitza resistance α. Here, as can be seen by eq.

(7.15), we opt to accumulate MSEuΓ to the loss function of the sub-net corresponding

to Ω1 and use the other sub-net only to predict the solution at Ω2. Alternatively,

MSEuΓ can be applied to both sub-nets, and then obtain α by taking the average of

their approximations. Our approach allows for a more efficient procedure in terms of

computational resources and also eliminates the need to evaluate MSEθ.

Next, in order to impose the flux continuity given by (7.13), we use D1 and D2 to

calculate and add MSEfl to the sub-nets’ loss functions, which can be expressed as:

MSEflm
(
Θm; {x(i)

Γm
}NΓ
i=1, {x

(i)
Γm+
}NΓ
i=1

)
=

1

NΓ

NΓ∑
i=1

∣∣flm(uΘ1(x
(i)
Γm

)) · nm − flm+(uΘ2(x
(i)
Γm+

)) · nm+

∣∣2 (7.16)

for m = 1, 2. Moreover, we compute MSEum using both the boundary conditions of the

given PDEs and also, for both sub-nets, a set of internal points where the value of u

has been experimentally obtained. The form of MSEum is identical to (7.2). We also

omit MSEfm and MSER, as our trials showed that they do not offer any considerable

improvements to the result. As a result, the loss functions for the sub-nets assigned to

Ω1 and Ω2, respectively, are given by:

L1(Θ1, α) =Wu1MSEu1(Θ1; {x(i)
u1}

Nu1
i=1 ) +WΓMSEuΓ(Θ1, α;D1,D2)+

Wfl1MSEfl1(Θ1;D1,D2)
(7.17)

and
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L2(Θ2) =Wu2MSEu2(Θ2; {x(i)
u2}

Nu2
i=1 ) +Wfl2MSEfl2(Θ2;D1,D2) (7.18)

Closing this section, it should be mentioned that XPINNs involve a considerable

number of hyperparameters, which require fine tuning in order to get the optimal results.

Instead of using a trial-and-error process for finding the values of these hyperparameters,

in this work we opted to apply the Bayesian hyperparameter optimisation scheme [201]

to optimise the learning rates of the sub-nets, as well as the weights of the loss functions.

The implementation aspects of this scheme are presented next.

7.4.2 Bayesian hyperparameter optimisation

A key task of creating a deep learning model is tuning its hyperparamaters, that is, the

number of layers, the types of activation functions, the nodes per layer, learning rate, etc.

There are several methods for this task, such as grid search or random search, however,

a more efficient way to achieve this is to use the Bayesian hyperparameter optimisation

procedure [201]. This approach involves building a probability model of the objective

function and, then, using this model to select the most promising hyperparameters to

evaluate in the true objective function. It consists of the following steps:

(i) Create a probabilistic model of the loss function.

(ii) Find the hyperparameters that perform best on this model.

(iii) Apply them to evaluate the true loss function.

(iv) Update the probabilistic model incorporating the new data.

(v) Repeat until maximum iterations are reached.

Usually, we model the loss function by fitting a Gaussian Process (GP) regression

model on the performance data collected at each stage. A GP is a set of random variables,

indexed by time or space, where the joint distribution of each finite subset of those

variables follows a multivariate Gaussian distribution. In the remaining of this section,

we present the general framework of GP regression according to [29] and we explain how

to search for the optimal hyperaparameters on the induced probabilistic model.

To make things more concrete, we will illustrate the process of performing Bayesian

hyperparameter optimisation in our problem setting. Let us denote with R = −(L1+L2)
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the total reward function of the XPINN model, namely the opposite of the total loss,

where L1 and L2 are given by equations (7.17) and (7.18). Then, R can be viewed as a

function of the network’s hyperparameters, collectively denoted as a vector h, and the

aim is to find an optimal instance of these hyperparameters, h⋆, that maximize R. In

our implementation, we consider h = (h1, h2, · · · , h7) ∈ R7, where h1, h2 correspond to

the learning rates of the two neural networks comprising the XPINN, and h3 − h7 to the

five weight coefficients (Wu1 , . . . ,Wfl2) in equations (7.17)-(7.18). Needless to say that

other hyperparameters could be included as well in the optimisation process, such as

the number of layers in each NN or the number of nodes, yet, we chose to focus only on

these seven.

To initiate the procedure, we randomly generate N instances, {hi}Ni=1, of h and obtain

the corresponding values {yi}Ni=1 := {R (hi)}Ni=1 that the reward function has reached

after a prescribed number of training epochs. Next, in order to take into account the

existence of noise on the observations of the reward function, we consider a probabilistic

model of the form

rn = yn + ϵn, n = 1, . . . , N (7.19)

where ϵn is a random noise variable, whose value is chosen independently for each

observation n. We shall consider noise processes that are Gaussian, so that

p(rn|yn) = N(rn|yn, β−1) (7.20)

with β being a hyperparameter representing the inverse variance of the noise. It follows

that the joint distribution of r = (r1, . . . , rN )
T , conditioned on the observed values

y = (y1, . . . , yN )
T , is given by an isotropic Gaussian distribution of the form

p(r|y) = N(r|y, β−1IN ) (7.21)

with IN being the N ×N identity matrix. Then, after some mathematical operations

[29], the joint distribution of t is given by

p(r) =

∫
p(r|y)p(y)dy = N(r|0,C) (7.22)
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In the above equation, C is a covariance matrix with elements

C(hn,hm) = k(hn,hm) + β−1δnm (7.23)

where k(·, ·) is kernel function, which can be chosen from the Matérn class of kernels

k(hn,hm) =
1

Γ(ν)2ν−1

(√
2ν

l
d(hn,hm)

)ν
Kν

(√
2ν

l
d(hn,hm)

)
(7.24)

with l being the correlation length parameter, d(·, ·) the Euclidean distance, Γ(·) the
gamma function and Kν a modified Bessel function. Also, ν is a parameter that controls

the smoothness of the resulting function, which is here taken equal to 2.5.

The elaborated procedure allows us to build a model of the joint distribution over

the data points, which can be further used to predict the target variable rN+1 for a

new instance of the hyperparameter vector hN+1. It can be proven that the predictive

distribution p(rN+1|rN ) is a Gaussian distribution with mean

mN (hN+1) = kTC−1
N t (7.25)

and variance

σ2N (hN+1) = c− kTC−1
N k (7.26)

where k is a vector with elements kn = k(hn,hN+1) for n = 1, . . . , N and c =

k(hN+1,hN+1) + β−1.

Once established, the GP surrogate for the total reward function is utilized in order

to accelerate the process of finding the optimal hyperparameter values. To do so,

first an acquisition function is selected, whose purpose is to locate the points in the

hyperparameter space with the greatest potential to maximize the GP model of the

reward function (or equivalently minimize the loss), while maintaining a good balance

between exploration and exploitation. A commonly used acquisition function is the GP

Upper Confidence Bound [203]. According to this, given the first N instances of h, then

hN+1 is selected to be the most promising value of the hyperparameters for maximizing

the reward function, calculated from the solution of

hN+1 = argmax
h
{mN (h) + λ1/2σN (h)} (7.27)
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with λ being some suitable scalar [203], which for small values suggests that Bayesian

optimisation will favor solutions that are expected to be high-performing, i.e., have

high m(h), while for large values, Bayesian optimisation will reward the exploration of

currently uncharted areas in the search space. Next, after computing hN+1, we employ

this set of hyperparameters to train the XPINN model and obtain the corresponding value

yN+1 = R(hN+1). If yN+1 is deemed accurate for the applications under investigation,

the process terminates. Otherwise, the GP model is updated using the new pair of data

(hN+1, yN+1) and the procedure iterates until the desired level of accuracy has been

achieved or the maximum number of iterations has been reached. The implementation

steps for the elaborated procedure are summarized in the algorithm below:

Algorithm 4 Bayesian Hyperparameter Optimisation Algorithm for fine tuning
the XPINN model

1: Input: maxIter: maximum number of iterations, N : initial training evalua-
tions, tol: tolerance, parameters: λ, ν, β, l

2: Result: h⋆ = {h1, . . . , h7} such that h⋆ = argmaxh R(h)
3: Randomly generate an initial set of N instances for h
4: Train a GP surrogate using {hj, yj ≡ R(hj)}Nj=1 to obtain mN(h), σN(h)
5: set i = 1
6: while i ≤ maxIter and yN+i−1 > tol do
7: Compute hN+i = argmaxh{mN+i−1(h) + λ1/2σN+i−1(h)}
8: Evaluate yN+i = R(hN+i) using the Adam optimizer for a predefined

number of epochs
9: Update the GP surrogate using the new data {hN+i, yN+i} to obtain

mN+i(h), σN+i(h)
10: i = i+ 1
11: end while

It should be mentioned that the computational cost of training the GP model has a

N3 scaling and this can become an issue for problems with many data points. There are

ways to significantly reduce this cost, such as using sparse GPs [200], however, this was

not required in this work since N was adequately small.
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7.5 Numerical examples

7.5.1 Two-phase material with planar and resistive interface

As a first illustrative example, let us consider a two-phase material with a planar and

resistive interface. The problem’s geometry is illustrated in Fig. 7.2. The boundary

conditions for this problem are u(x = −1) = 0 and u(x = 1) = 1. The problem exhibits

an unidirectional flow (along the x-axis) and the temperature field has a jump at x = 0,

whose magnitude depends on the Kapitza resistance α. For the two constituent materials

we further assume that their conductivities are k1 = 0.1/W/mK and k2 = 1.0/W/mK.

Figure 7.2: Geometry of the first example.

In order to test the capabilities of the proposed formulation in inferring the values

of the Kapitza resistance, an initial set of artificial data is generated as follows. For

a predefined value of α, the steady-state heat transfer problem is solved using a finite

element formulation [16, 17]. Then, a small set of points along with their temperature

values are arbitrarily chosen inside the domain of the PDE. These artificial (synthetic)

data play the role of experimental data in this work. For this application in particular,

50 points are randomly chosen at the interior of each domain. The aforementioned

procedure is repeated for various values of α, that is, α = 0.1, 1, 10. For each case, the

set of the boundary conditions is taken to contain 100 samples and the sets of points on

each side of the interface, namely D1 and D2, consist of 2000 samples. The selected

points are depicted in figure 7.3. Table 1 shows the architecture of the models applied

for all values of α and Table 2 presents the values of their hyperparameters h, selected

using the Bayesian optimisation procedure. Figure 7.4 illustrates the values chosen for
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Wu1 , Wfl1 , Wu2 , Wfl2 , WΓ, namely the weight coefficients in equations (7.17)-(7.18), at

each iteration of the aforementioned optimisation process.

Figure 7.3: Different sets of points used for training the XPINN

Domain id Ω1 Ω2

hidden layers 3 3

neurons 64 40

activation function ReLU ReLU

epochs 1.5× 105 1.5× 105

Table 7.1: Model architecture applied to material with planar interface.
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Magnitude of α 0.1 1 10

lr1 41× 10−3 46× 10−3 30× 10−4

lr2 39× 10−3 47× 10−3 95× 10−4

Wu1 738 40814 40656

Wu2 36 2785 7103

WΓ 220 10900 2

Wfl1 1028 29 2263

Wfl2 1047 8017 41405

Table 7.2: Models’ hyperparameters for the first example

Figure 7.4: Evolution of Bayesian hyperparameter optimisation for Wu1
,Wfl1 ,Wu2

,Wfl2 ,WΓ. (a)
α = 0.1; (b) α = 1; (c) α = 10.
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Figure 7.5 compares the solutions obtained from the proposed XPINN models to the

corresponding ‘exact’ ones, obtained by FEM. From these figures it becomes evident

that as the values of α increase, the temperature ‘jump’ at the interface becomes larger,

but at the same time, the XPINNs are capable of capturing these discontinuities in the

temperature fields. The L2 error between our predictions and the finite element solutions,

as well as the model approximation of the Kapitza resistance obtained for each case are

presented in Table 3, while fig. 7.6 illustrates the loss curves of our models. Fig. 7.7

shows the convergence of the XPINN models to the Kapitza resistance values we have

chosen for the purposes of this parametric investigation. In all cases we observe that

after a number of epochs, the XPINNs manage to accurately identify the ‘exact’ values of

α. Based on these findings, the conclusion can be drawn that the proposed formulation

is capable of predicting both the value of u and the resistance at the interface with high

precision.

Figure 7.5: Regression lines for the first example. (a) α = 0.1; (b) α = 1; (c) α = 10.

135



Magnitude of α 0.1 1 10

L2 error for Ω1 3.19× 10−11 4.86× 10−10 6.21× 10−8

L2 error for Ω2 3.76× 10−13 1.1× 10−11 2.67× 10−9

α̂ 0.10002 0.99999 9.99556

Table 7.3: Models’ performance for the first example.

Figure 7.6: Loss curves for the first example. (a) α = 0.1; (b) α = 1; (c) α = 10.
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Figure 7.7: Convergence to the Kapitza resistance values for the first example. (a) α = 0.1; (b)
α = 1; (c) α = 10.

7.5.2 Two-phase material with circular and resistive interface

As our second test case, we consider a spherical inclusion with domain Ω2, immersed

in larger rectangular host material with domain Ω1. We assume that on the left side

of Ω1 a temperature u(x = 0) = 0 is imposed, while on the right side u(x = 1) = 1.

The geometry of the problem and its boundary conditions are schematically depicted in

figure 7.8. In terms of the material properties, we considered the conductivity of Ω1,

k1 = 0.1, and k2 = 1 for Ω2. This particular example exhibits heat flow in 2 directions

(x and y), while the circular geometry of the interface adds an additional strain to the

XPINN. Similarly to the previous case, we generate synthetic data that will play the role

of experimental measurements by solving the problem for three Kapitza values, namely

α = 0.1, 1, 10 using the finite element formulation employed in the previous example. For

each case, 100 points are randomly selected at the interior of each domain. In addition,

D1 and D2 are both taken to consist of 2000 points and the set of boundary conditions

consists of 100 samples. Our models’ details, as well as their hyperparameters, calculated

using Bayesian optimisation, are listed in Tables 4 and 5, respectively.
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Figure 7.8: Geometry of the second example.

Domain id Ω1 Ω2

hidden layers 7 7

neurons 64 64

activation function ReLU ReLU

epochs 1.5× 105 1.5× 105

Table 7.4: Model architecture applied to the second example.
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Magnitude of α 0.1 1 10

lr1 86× 10−4 12× 10−4 54× 10−4

lr2 39× 10−3 36× 10−3 33× 10−3

Wu1 22375 2096 7610

Wu2 3367 1377 38

WΓ 1813 449 1

Wfl1 133 113 9

Wfl2 96 308 6

Table 7.5: Models’ hyperparameters for the second example.

Fig. 7.9 reflects the magnitude of u over Ω, as computed by our models. These heat

maps indicate that as the values of the Kapitza resistance increase, sharper temperature

changes can be observed at the interface zone of the constituents. This result is better

illustrated in fig. 7.10, which compares our approximations to their corresponding

‘exact’ solutions. In particular, this figure plots the temperature values along the x-

axis for y = 0.5, obtained from the proposed framework, and contrasts them with the

corresponding FE solutions. Again, it is evidenced that greater Kapitza values lead to

stronger discontinuities in the temperature profiles, that conventional PINN formulations

would fail to capture, yet our models succeed in predicting both the discontinuous

solutions of the PDEs and the resistance values at Γ. Each model’s performance is

summarized in Table 6. Fig. 7.11 illustrates the point-wise error between our models’

predictions and the ‘exact’ solutions, Fig. 7.12 shows our models’ loss curves and Fig.

7.13 shows their convergence to the values of α, chosen for this analysis. In all cases,

high accuracy can be reported.
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Figure 7.9: Heatmaps for the second example. (a) α = 0.1; (b) α = 1; (c) α = 10.
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Figure 7.10: Regression lines for the second example, at the plane y = 0.5 . (a) α = 0.1; (b) α = 1;
(c) α = 10.
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Figure 7.11: Point-wise error for the second example. (a) α = 0.1; (b) α = 1; (c) α = 10.

Magnitude of α 0.1 1 10

L2 error for Ω1 6.54× 10−7 3.15× 10−4 7.33× 10−8

L2 error for Ω2 5.92× 10−8 5.39× 10−9 1.89× 10−5

α̂ 0.10114 1.00087 9.99876

Table 7.6: Models’ performance for the second example.
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Figure 7.12: Loss curves for the second example. (a) α = 0.1; (b) α = 1; (c) α = 10.
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Figure 7.13: Convergence to the Kapitza resistance values for the second example. (a) α = 0.1; (b)
α = 1; (c) α = 10.

7.6 Conclusions

In this work, a novel methodology has been presented to estimate the Kapitza thermal

resistance at the interface of two different materials. It relies on the powerful PINN

framework and, in particular, XPINNs to solve inverse problems described by PDEs. In

this regard, two separate PINNs are utilized that are trained to solve the heat transfer

PDE at the interior of each constituent phase. In addition, at the interface between the

different phases, a problem-specific boundary condition is imposed that both PINNs

must satisfy in order to accurately capture the temperature discontinuity arising at this

region. The main methodological advantage that the proposed approach offers is that

it only requires temperature measurements at a few interior points of the composite,

which are easy to obtain with standard experimental setups. The cumbersome task

of fine tuning the XPINN related hyperparameters has been successfully addressed

using a Bayesian hyperparameter optimisation scheme based on Gaussian processes.

The numerical examples presented demonstrate that the elaborated methodology is

highly accurate and robust, with significant generalization capabilities to other interface
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problems arising in fields such as mechanics or electrodynamics.
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8
Summary - Innovation of thesis

This dissertation presented a machine learning framework for solving parametrized

large-scale problems in computational mechanics. The main target of this research was

to reduce the required computational time for Monte Carlo Simulation by utilizing state

of the art machine learning models.

Firstly, a novel surrogate modeling strategy was introduced for time-dependent partial

differential equations. The model consists of a convolutional autoencoder (CAE) and

a feed-forward neural network (FFNN) and aims to deliver an accurate mapping from

the parameter space to the high-dimensional solution space. The numerical examples

indicated that the computational gains are very promising.

Consequently, the CAE-FFNN surrogate modeling scheme described above was ex-

tended in order to be utilized on the more challenging problem of nonlinear transient

analysis of stochastic structures. The results obtained exhibit high accuracy and remark-

able computational gains as demonstrated by numerical examples.

Furthermore, a novel numerical solver for parametrized large-scale systems was in-

troduced inspired by proper orthogonal decomposition (POD) and algebraic multigrid

(AMG), named POD-2G. Specifically, POD-2G solver utilized the CAE-FFNN surrogate

model to obtain an initial estimate of the solution and then successively refines the initial

prediction towards the exact system solution with significantly faster convergence rates.

The proposed methodology was demonstrated on numerical examples.

146



Last but not least, a novel methodology has been presented for parameter inverse

identification. It relies on physics informed neural networks (PINNs) and, in particular,

extented PINNs (XPINNs) to solve inverse problems described by PDEs. The method is

tested on numerical examples.
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