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Advanced machine learning methods for large-scale
parametrized problems in computational mechanics

ABSTRACT

Recent advances in the field of machine learning open a new era in high performance
computing for challenging computational science and engineering applications. In this
framework, the use of advanced machine learning algorithms for the development of
accurate and cost-efficient surrogate models of complex physical processes has already
attracted major attention from scientists. This dissertation presents a novel non-
intrusive surrogate modeling scheme based on deep learning for predictive modeling of
complex systems, described by parametrized time-dependent partial differential equations.
Specifically, the proposed method utilizes a convolutional autoencoder in conjunction
with a feed forward neural network to establish a mapping from the problem’s parametric
space to its solution space. For this purpose, training data are collected by solving the
high-fidelity model via finite elements for a reduced set of parameter values. Then, by
applying the convolutional autoencoder, a low-dimensional vector representation of the
high dimensional solution matrices is provided by the encoder, while the reconstruction
map is obtained by the decoder. Using the latent vectors given by the encoder, a
feed forward neural network is efficiently trained to map points from the parametric
space to the compressed version of the respective solution matrices. This way, the
proposed surrogate model is capable of predicting the entire time history response
simultaneously with remarkable computational gains and very high accuracy. The
elaborated methodology is demonstrated on the stochastic analysis of time-dependent
partial differential equations solved with the Monte Carlo method.

However, despite their powerful approximation capabilities, surrogate model predic-
tions are still far from being near to the ‘exact’ solution of the problem. To address
this issue, this thesis suggests the use of up-to-date machine learning tools in order to
equip a new generation of iterative solvers of linear equation systems, capable of very
efficiently solving large-scale parametrized problems at any desired level of accuracy.
The proposed approach consists of the following two steps. At first, a reduced set of
model evaluations is performed using a standard finite element methodology and the
corresponding solutions are used to establish an approximate mapping from the problem’s
parametric space to its solution space using a combination of deep feedforward neural
networks and convolutional autoencoders. This mapping serves a means to obtain very
accurate initial predictions of the system’s response to new query points at negligible
computational cost. Subsequently, an iterative solver inspired by the Algebraic Multigrid



method in combination with Proper Orthogonal Decomposition, termed POD-2G, is
developed that successively refines the initial predictions of the surrogate model towards
the exact solution. The application of POD-2G as a standalone solver or as precondi-
tioner in the context of preconditioned conjugate gradient methods is demonstrated on
several numerical examples of large scale systems, with the results indicating its strong
superiority over conventional iterative solution schemes.

Furthermore, the development of Physics-Informed Neural Networks (PINNs) over
the recent years has offered a promising avenue for the solution of partial differential
equations, as well as for the identification of unknown equation parameters. The last
chapter of this dissertation focuses on the application of PINNs, and in particular, their
variation called eXtended PINNs (XPINNS) for the determination of the Kapitza thermal
resistance at the interface between the different phases in a multiphase composite
material. This phenomenological model parameter is almost impossible to measure
experimentally, however the proposed framework successfully overcomes this difficulty
since it only requires measurements of the temperature at the interior of the composite
that are easy to obtain. The task of fine tuning the XPINN related hyperparameters is
successfully addressed by employing a Bayesian hyperparameter optimisation scheme
based on Gaussian process regression. Benchmark numerical examples are provided that
demonstrate the high accuracy, ease of implementation and robustness of the proposed
computational framework in capturing the true values of the Kapitza resistance.
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O npdogateg e€ehielc oTov Topéa TNC UTOAOYLOTIXAC UNyavixic ETETeeday oToug €-
eeUVNTES VoL avamTUZoLY LovTERA YNNG oxpBeiag TOAITAOXWY PUGIXWY CGUCTNUATWY TOU
HLOOVTOL TN CUUTERLPOEd Touc. Me auTthiv TNV TeocEYYIoT, 1 andxplon EVOS CUCTHUO-
T0¢ uTohoyileTan PECW TPOGOUOIOOENY UTOAOYLO T, oL omoleg cuvAYng eivon UTOAOYLOTIXG
domoavneeg xou yeovoPopec. Oplouéves eQapUoYE TEOXTIXO) EVOLIPEROVTOS OTWS 1) BEATL-
ctomoinon, 1 mocotixononon TS oBeBudTNTIC %ol O UTOAOYIOUOS TWV TURUUETEWY EVOS
UG TAUATOS, ATAUTOUY PEYSAO aptdud Tétolwy avohloewy. o Aentouept| TohdmAoxa yo-
VTENOL TTOU TERLYPAPOVTOL OO UERIXES BLOPORIXES EELGMOTELS, TO UTOANOYIOTIXO XOGTOC Yol Ul
HOVO EXTENECT) UTOREL VOU XUUAEVETOL OO UEPLXA DEUTEPOAETITAL OE UPXETEC WPES, WG EX TO-
UTou, auTtoL Tou eldoug ot avarloelg yYivovton utohoylloTixd axpiBéc. O yeplouds TETolwyY
TeoPBAnudtwy anawtel TNV avanTUEN EEUEETIXE AMOTEAECUATIXOY X YENYORMY TEYVIXWOVY
enthuong.

Ipoc awth v xotevduvar, éyouv avadudel Teyvixés UTOXATAC TATWY UOVTEAWY (SurTo-
gate models) o TPONYOUUEV YPOVIOL (S ATOTEAECUATIX TPOCEYYION Yiol TN PElwOTN Tou
UTOAOYIOTIXOU (p6ETOU Tou OyeTleTal Ue YovTehoToinoT cOVIETWY TROBANUATODY UEYIANG
xhipoxog . To poviéha, mou avapépovton ETONG S UETUUOVTEAA, EVOL TEOCEYYIOES TOU
oy 00 UOVTENOL Tou elvar QUNVE GTOV UTOAOYIOUO Xt Pmopoly vo uundoly tn cuumne-
PLPORE. TOL CUOTAUATOC PE EAEYYOUEVT omwAeta axpifBelac. Autd ta povtéda cuvidug
XATOOHEVALOVTOL YENOLLOTIOLOVTOS OPIOUEVES UTOVECEL OYETIXE UE TO AELTOURYIXO Oy U
Tou povtéhou nou Pooiletal o€ TANEOPORIEC GYETHE PE TNV ATOXPLOT) TOL LOVTEAOL X0l Yid
TO AOYO oUTO Elval YVOOTd Xt w¢ wovtéha ou Bacilovton oe dedopéva.

O yé€dodol Uetwuévne TG Lo TATIXOTNTAUSC AV XOUY GE QUTH TNV OLXOYEVELN TEYVIXWY
peTopovTeEAOTOINONS X EQUPUOLOVTOL EVPEWS WS UTOXATACTAUTO HOVTEAA YL TUQUUETOO-
Tounuéva cuoTHUNTA UEYEANG xhlpoxag. H 6éa mlow and Tic yedddoug autég elvon va
Beedel €vac xaTIAANAOC UTOYWEOC YAUNATC BIACTAOTE TOU GUCTHUUTOS LYNAGDY Blac Tdoe-
OV YOO Aong xou TEOBUAAETE Ti¢ eELOMOEIC TOU BLETOLY AUTO TO UEIWHUEVO YKOEO, OTOU
umopolv va emhudoly o anoteleouatid. H mo dnuoguivic yeouuix uédodog etvar yve-
ot we Enéxtaon Karhunen-Loeve 1 Avéiuvon Kopuwy Ytoyeiwv (PCA/POD) . H POD
ouviidwe epoapudleton oe W cUANOYY Btavuoudtwy Aoong (oTywtétuna) xou Tpocdlopilet
Lol XU TEAANAT, BAom Yo EVay UTIOYMEO UiXPOTEENS OLEC TUOTC.

Evoy ot ypaupixég pédodot pelwong tng dlac tatixdtntog £xouv anodetydel 6Tt Asttovpyo-
OV BéATIo T OE Ypauuxd TeoPBAfuata, autd dev cupaBaivel oE U YeoUUIXd TEOBAAUNTA UE
un ouyyevixy e€dpTnon amd TiC TopaUéTeous. AuTd cUUPLVEL ETELDTY) O TETOLEC TEQLTTWOELS
1 SLLOPPMOT) TOU CUC TAUATOS TRETEL VoL EVNUEROVETAL GE Xdde Wlar U Ypouuixt| emavaindn
7} OE OTOLONTOTE VEU TYT| THPUUETEOL XaL auTH 1) dadacta umopel vor exteheotel pévo
oT0 opyWo6 Yovtéro. Emouévee, xdde gopd mou ahhdlel to mAYpec clo TN eElOMCEWY,
TO PELWPEVO GUC TN TRETEL VoL UTOAOYLOTEL €x VEOUL Ypnowonowwviag tpoPforéc Galerkin
, OL OTOlEC UETUPEALOVTOL GE UTOAOYLOUO TOAAATAGDY ECWTEQIXWOY YIVOUEVWY. 20T0C0, TO
UTIOAOYIOTIXO XOGTOG TOV UNFYRUUUX®Y UeDOdwY elvonr TOAD uPnAd o, EMOPEVS, WEL-
(OVOUV OTUAVTIXE TO UTOAOYIGTIXE OPERT) TWV YRUUUXOY HeEVOdnY, otwe 1 POD . T'a tny
OVTHIETOTLON U1 YEUUUXOV TEOBANUETWY UE YN CUYYEVIXY| €E3RTNOY TOEOUETPWY, TOMAY

viil



oyfota mou Baciloviar oty eunetpixh uédodo mopepforric (empirical interpolation) 7
otnv unodlo Tt Yovia tapepBorrc  (subspace-angle Interpolation) éyouv npotadet,
oG owTd ebvon entiong mopepBatind otn @lon xon toug. H yevixevon oe dhha un yeouuixd
TpoBAUTa OEV Elvor oA,

[Tpbogata, 0 GUVBLUCUOE TEYVIXMY UEWONS TNE OLUC TATIXOTNTOG HE HOVTENN UMY OVIXAC
udinone mou Pooilovtar oe dedouéva €xer odnyroel oe un napeuPotixés (non-intrusive)
TEOCEYYIOEC Yo TN AUOT| TEpimAoXwY TEOBANUATWY PeYdAng xAluaxag. To mhcovéxtrua
TGOV TV YeYodwY elvon 6Tt Sev amouteiton TEOOBaon xou TpoTOToINGN TWV EEIGHOEMY TOL
apyxol povtéhou. TN mapdderyya, €xel mpotadel o cuvduvaoude POD  xan vevpwvixoy
dtiwy (NN) mou napdyouv pa uBedn npocéyyion POD-NN | émou ta NN exnoudevo-
VTOL VoL TPy OLY TOUC GUVTEAECTEC TTROBOATC YOUNAGY BLIG TAGEWY TOU HOVTEAOU. YE AUTO
Thaiolo, 1 yerion SlapopeTixwy oynudtey TopeuBorhc avtl yia NN | 6mwe 1 makivdpodunon
oepyaoiog Gauss , xou ol CLVAPTACELS aXTVIXAC Bdomg amodelyUnxay eniong TOAD anotele-
OUOTIXES Yol TOREUBOAY Tave amd Toug cuvtereaTtéc tne POD . Tlopd to yeyovog 6tL autéc
oL uévoodol eivar TOAD amOBOTIXES, TO XUPLO UELOVEXTNHUA TOUG Efval OTL GE U] YeouULXd Teo-
BA o, cuyVE amontoly PEYUAITERO JEYXWY ETLADCEWY amd TI ToReUSuTinée uevddoug
YL TV XATAOKEUT EVOC AELOTIOTO UTOXATAC TUTOU OVTENOU.

Aoy g mopamdve aduVoplag TRV YRUUUXOY UEVO0WY, un Yeouuxés pédodot ueiwong
e drotanxdtnroc (Kernel PCA, Hessian eigenmaps, Laplacian eigenmaps, local tan-
gent space alignment, diffusion maps) xépSioav neplocdtepn tpocoyt| ta teheutaior ypdvia.
H x0pio unddeon autodv twv uedddnv eivor 6Tl tar onueia BeBoUEVKY, TIOU AVTIGTOLYOLY
oTIC AUoEIS TOL cuoTAHUATOS, Beloxovtal e €va YMEo YoUUNAAC OLIGTUONG EVOWUATOUEVO
otov Euxeldelo ydpog peyding ddotaonc. Auth 1 mpocéyyion ebvar wiaitepa yehrowun
OTaY €YOUUE VoL XAVOUUE PE GUVORA BEBOUEVGLY UPNAGDY LG TUCEWY %O, XOTH CUVETEL,
EMTEETOLY TNV AVATTUEY ATMOTEAECUATIXWDY OYNUATLV TapedBoirc. o mopdderyua, €yet
meotadel o ahydprtuoc Kernel PCA, o onolog yenowonoidnxe yia yelwon tng dlaoTtoti-
XOTNTOC O OE GUVOUAOUO UE TOL UTOXATAC TATOL HOVTEAN TOU X0l TOU TOAUWVUULIXOU Yo,
AATUACHEVAC TNXE EVAL OLXOVOULXO UETAUOVTENO.

[Topd TNV anoTEAECUATIXOTNTA TWV TEOAVAPERIEVTOY ahyopliuwy TNy Yelworn Tng dla-
CTUTIXOTNTOC Yot GUVOAX BEBOPEVWY LPNAGY BlHcTACEWY, TO XVPLO UELOVEXTNUA TOUG TN
yaler amd 10 YEYOVOS OTL OEV TAPEYOLY LAl AVOAUTIXY OYECT] YLOL TNV ATOXWIXOTOINoY TKV
CUUTLECUEVWY BEGOUEVMY THOw GTIC VYNAWY BLIC TACEWY AVATORIC TACELS TOUS GTOV 0pYLXO
Y®eo. Autd To TEOBANUaA elvon YVwotd ot BiBMoypapio we To TEOBANUA TNS TEOEXOVIC
xalL 0pXETE TEP(TEY VoL oY ot TapeUBORNC €y ouy yenolporondel yia TNV oVTIHETOTION TOU,
OTWC Ol YEWUETEIXES apUoVIXES xou ot Aamhactavég Ttupopidec. 2oTtd00, Pio o gVEAXT
ANoon o autd 10 TEdBANUa propel va Sodel and or autoxwdworomtéc (Autoencoders -
AE). 'Evoc autéyotoc xwdixomontig elvar €vog GUYXEXEWWEVOS TUTOC UY) ETOTTEUOUEVOU
veupnmvxol dixtvou (NN) tou pardaivel tée vor cuuméleL xot VoL xwOLXOTOLEL ATOTEAEGUUTIXS.
dedouéva xou ot cuvéyela podaivel TS vor Tar avoxataoxeudlet (amoxwmdxomolet), dnhadn
VoL T YUETOYRAUPEL ATO To XWOLXOTOLAUATE TOUS AVITOEAC TACT) OE ULd VATAPAO TAOT) OGO
TO BUVOTOV O XOVTA otV apyixt| €lcodo. O %xWBXOTOINTAC XAl O ATOXWOLXOTOMNTAS €-
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VO QUTOUOTOU XWOIXOTOLNTY) EXTUOEVOVTAL OO XOWVOU, AAAS UTOPOUY Vo Yenowonolndoly
ywewotd. M eméxtaon Twv cuVRUICUEVLY AUTOUATOY XWOLXOTONT®Y Elval oL AeyOuEVOoL
ouvehxtixol autopator xwdwornomtés (Convolutional Autoencoder - CAE), évag eidi-
%6¢ TOTOC GLUVENXTIXOY VEUPWVIXWY dxTOwY (CNN), mou éyouv avamtdydel xuplwe yia
TN ouuTnieon BESOUEVLY Y wELXoL TEBIOL, ahhd €xouv anodely Vel WLalTepa Y OWo OE TOA-
AEC E@apUoYES Tou aoyoholvTaL Ue GOVORA BEBOPEVLY LPNAGOY BlacTdoewy. Ouola ue o
ocuvndopévo AE, 1o CAE anoteholviar eniong amd €vov xXmOXOTOTH Xt Vol UL O-
TOXWOXOTOUNTY|, AAAG XATACHEVALOVTOL YENOHLOTOLOVTOS BLAPORETIXOl TUTOL O TEWUATMY
(layers), mou ovopdloviton CUVEMXTIXE Xo AMOCUVEAXTIXS oTp@pata. Mepwéc ano tic
EQOPUOYES TOUC apopoly Tar Tedia tne dpaone unohoytoth (Computer vision), tnv avo-
yYvoplon mpotinwy (Pattern recognition) xou mpdBiedn dedopévmv ypovolotopioc(Time
series prediction).

YTV EmOTNUOVIXY TANROQOEIXY|, UTHEYEL CUVEYTS avayXn Yio TNV ETAVCT HEYAUADTE-
POV X0l UTOAOYLOTIXG IO AMOULTNTIXWY TEOBANUAT®Y Ye auEnuévn axpifeta xon BeAtiwuéva
aprduntixd extéheon. Autd oylel Wlitepa 0 GEVARLIL TOAATAOY EQOTAUATWY OTWE 1)
Beltiotomoinoy, ntocotixonoinoy alefoundtnTog, xan avtioTpopa TEoBAfuAT, OTOV TA TEO-
BAuata uTO Biepebvnon TEENEL Vo EAUYOUY Yiol TOMAES BLUPOPETINES TEQLTTMOELS THPO-
pétewy Ue VPN axpifelo xan anoteheoyatixotTnTo. Ao auTh TNV dmodm, 1 xaTooxeun
ATMOTEAEGUATIXODV OELIUNTIXOY ETAUTOY Lot GOVIETO GUC TAUATO TOU TEPLYPAPOVTAL UE |UE-
ewéc Bapopnéc eglotaoelc elvon Lot onuaciog yio ToAolg emoTnuovixolg touelc. H
rpecovdLtioved coviuyate ypadievt (PCG) xou 1 preconditioned generalized minimal resid-
ual method (PGMRES) eivor and tic mo dnuogilelc npooceyyloelc yio Ty ovTUETOTLON
TETOUWV TPOBANUdTLY. Xe auta LeVddwy, N emhoyy evoc xatdhiniou npopuduot (precon-
ditioner) moilel onuovtixd pdro otn olyxhion tng pedodou. AZoonueinta nopoadelyporta
Tpopuio TV Tep opfdvouy Ty nuiteArc nopayovtonoion  Choleski, xou pédodoug o-
nooUvieone touéa (domain decompotision), émwe ov uédodor FETT xa ov npocdetinée
pédodor Schwarz. Ouolwe, ot pédodol ahyeBpixol ot YEWUETEXOU TOAUTAEYUaToS (Al-
gebraic multigrid, Geometric multigrid, avtiotoiya) eivan e&icou xadicpwuéves pédodot
TIOU YpNoyonotouvTal GUVATWS Yol TNV ETTAYUVOT TUTIXOV ETAVUANTTIXGY ETADTOV ol
uropoly enione va yenowonondody we udpmiic anddoone tpopuiuotéc (preconditioners)
oe PCG 4y PGMRES.

O parydoiec eZehifelc otov Topéa tne unyovixrc pdinone (Machine Learning) éyouv mpo-
GQEPEL OTOUG EPELVNTEC VEX EPYORELX YIaL TNV AVTUETOTION TOAUTAOX®Y TEOBANUATOVY OF
oevdpta ToMamAGy emthioeny. Ta nopdderypa, to veupwmvixd dixtua (FFNN) éyouv yenot-
pomonVel e emiTuyiol YLt TNV XATAOKELT) EMLPAVELDY ATOXQPLOTG TOGOTHTGLY TTOU EVOLAPEPOLY
oe mohUmhoxa tpofifuata. Ta cuvelixtixd vevpwvixd dixtuo (CNN) oe cuvduaoud ye to
FENN éyouv yenotwonowjdnxe yia v medfiedn tng andxeiong Tou cusTALATOC UPNAGDY
OLIOTACEWY OE OLUPOPETIXES TOROUETPOUS TEPITTWOoELS. Emmiéov, to emavohauSovousva
veupwvixd dixtua (Recurrent neural networks - RNN) é€deilav eZoupetiny) npoonuxy| oe
BUVOIXE TEOBAA T YWEl TNV avdyxTn ETIAUGTC CUCTNUATKLY e€lo®oEwY. ‘Oha auTES OL un
TopEUPouTIXEC TPOCEYYIOES YENOoUoTol0Y éva Uixpd GOVORO amoXEICEWY GUCTAUATOS YL



VoL ONULoLEYHoOUY Evay ECOUOLWTY TNE OYEOTE ELGGBOL-EE000U TOU GUC THUNTOS Yo Blapo-
peTég TS TopopéTewy. ()¢ ex ToOTOL, elvor Wlitepa YR Yopes xa Umopel va elvon TOAD
oaxE31C OE OPLOPEVES TEQLTTWOELS. §26TOCO, To ATOTEAEGUN IOV TROXVUTTOUY A0 TETOLES [UE-
Y680Ug BEV IXAVOTIOLOVLY TUY OV PUGLXOUE VOUOUC. AuTo To TEOBANUL Slopd®VeTal Ot Xdmolo
Bardud amd mopepPatinég mpooeyyioels, ol onoleg BaciCovton ot pedddoug petwuévng Bdorng,
onwe 1 POD. Emnhéov, opxetéc mpdo@uteg epyaolec €Y0UV BLEQEUVAOEL TOV GUVOUIGUO
YOUUUXOY 1) U1 YEOUULXGY alYopduumy Uelkwons Tng Slac TATIXOTNTAC OE GUVOUICUO UE
un mopeuBatind oy Nt TUPEUBOAAC VLol TNV XUTAOXEUT PUNVOY EEOUOLWTWY TOAUTAOXMY
CUCTNUATOY. (26TOCO, XAUVEVH OO QUTA TO UTOXATACTATO OYHUATA HOVIEAOTONONG OEV
unopel vo eyyundel tn odyxiion otny axp 31 Abon tou TpoAfuaTOC.

Yty mpoomdieia vo cuVOLacTEl TO XoADTERO amd TOUC 500 XOGUOUG, Lo VEA EQEUVITIXT
xatevuvon ebvar aUTH TG EVioYUONC TV ETMAVTOV YU AC dAYEPpac e ahyopriuoug
unyovixAc pdinong yio ToyUteen oUyxhon otny axpeifin Aborn tou cbotnuotog. T mo-
eadetypa,  POD éyelr cuvdbvaotel ye emtuyla ye tny PCG yio v amoteheoyotiny e-
TAUGT AXOAOLTAOY YRUUUIXGOY CUCTNUETWY oy Yapoxtneilovton and petaBarldpeva dedia
HEAT o CUPUETELXOUE YeTnd optoplouévoug miivaxeg. Emmiéov, 1 otev oUvoeoT yetadld
ueO8WY TOANUTAEYUOTOS X0l GUVEAXTIXWDV VEURWVIX®Y OXTOWY €xel uehetniel oe apxeTég
TEOCPATES EQYACIES YLl TNV ETUTAYLYOT TNS COYXAONE TWV CUCTNUATOY TR0 ETIAUOT).

[pdogata, etofydn o mhaioto Neupwvixod Awtiou pe IIknpogpdenon Puoixic 1 (Physics
informed neural networks/PINN), otnv mpoonddeio va evowuatwiel n uoxh otn un-
yovixy pdinon. To mpodto €pya mou ypovoloyolvtar and T dexoetia Tou 90 elyav 1Hon
BelZeL TIC BUVITOTNTEC TOU VELEXOU BIXTUA Yol T1) LOVTEAOTIOMGTT U1 YEOUUIXODY SUVOULXGDY
CUCTNUATOVY, xoME Xl VLol TNV ETHAUCT) CUVITIOUEVWY XL UEPLXWY DLopopLX®Y €ELOMOE-
ov. Qot6c0, T0 TpdopuTo épyo Twv 1 Raissi et. al, xatdgepe va avalonupmosl To
EMO TNUOVIXO EVOLAPEPOY Yo To Véua, VETovtag Tic Yepehlndelc apyéc twv 1 PINN xou tnyv
enidelln TwV BUVATOTATWY TOUC GToL GUYYEOVA UTOAOYLo TG TepBdAlovTa. And exel xou
mépa, T ) PINN €youv egopuootel pe emtuyla oc ToAES e@apuoyEée, elte yia TNy eaywy
e Aong 1yl Tov Tpoodloplopd Twv apoéteny (avtioTpogo medBinua) e peptxic
otaopixiic e€lowong, xomg Xou Yot TNV ETUAUCT) GTOYAC TGV TEoBANUdTwY. Enouéveg,
TEEYOLY Uidl TOAG UTOGYOUEVT) EVUANOXTIXT) AOOT G dAAO GUUPBATIXG UTOAOYLOTIXG €p-
yohelor 6t 1 pédodoc twyv nenepacpévov otoyeinv n (FEM). Ta ogéhn twv n PINN
TEPLAUBAVOUY TNV EUXOALXL EQURUOYTIC X0 TNV IXAVOTNTA TOUS VO GLUY Y WVEVOUY UTONOYLO Ti-
%3 pOVTEND PE TiELpauaTiXd Bedopévar, Tou hopfdvovta and TpocouoLOCELS 1/ xat HETENOELS.
Emnmiéov, mponyuéveg mhatpopues Padide udidnong omwe xadoe ow np Pytorch xou n Ten-
sorflow mopéyouv palxd mapdhAnhec LUTOAOYIOTIXEC BUVATOTNTEC XL 1) OVATTUEN TWV 1)
PINN oe autéc Tic TAat(popues avolyTol x@oixa odnyel oe Tepdotia Bedtiwon anddoorng,
xadotwvtag ta n PINN mo aroteheoyatind amd toug cupPatixols emthiteg n FEM oe
OPLOUEVES TIEPLTTWOELS. APXETEC TURUANAYES AUTOU TOU TANUGIOU TEPLAOUBAVOLY UETOBANTA
PINN, nopédinha PINN xa extetapéva PINN (XPINN).

Ytov Topéa Tng emoTAUNG TV VAo, Ta PINN €youv yenowonomlel pe emtuyio yio
TNV €E0YWYT) CUUTEQUCUATWY TWVY ETELOYEVMV WOLOTHTWY UAXDV GE TOAOTAOXO GUC THUATA,
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omw¢ ol TapdueTeol Lame xat oL TapdUeTeol UTECEAAC TIXOTNTIC GTY) UNYAVIXT] TWV O TEQEWY.
Emmiéov, n egapuoyy| tov PINN ce mpofifuata yetagopds Yepudtntog, o omolo emixe-
VTPWVOVTAL OE oUTH TNV epyaoio, €yel Hor diepeuvniel oe uia oelpd amd dnuootevoelg. H
TEOVCA EPYACIA, (WGTOCO, DUPEREL ATO TEONYOVUUEVES TEOCEYYIOELS. UE TNV €VVOLa OTL EBW)
olvetan Eupoom oTny avamTun EVOC LTOAOYIG TIXOU TAAGIOL Yiot TNV exTiunon tng Vepuxnc
avtioTtaong oe o Slemagn uetall 600 LAWY, e Bdor otig uetproeg Yepuoxpaciag. H
Vepuiny| avtloTaon Tng SIETAPHE EVOL Lot CTUAVTIXT) QUOLXT) UNYAVIOULOS TOU CUVAVTATOL OE
TOMAES XUTAO TAOELS TEaxTixoU evilagépovTtoc. Ennpedlel n por| Yepudtnrag and to €va u-
Ax6 670 dANO VE€ToVTag €val EUTOBLO GTN) oY) o 0ONYWVTAG ot Wa Yepuoxpacio uetdfoaong
ot demapn. Autd To pouvouevo topatnerdnxe xou evvolohoyinxe and tov Kapitza mou
ELONYAYE L0l LOXPOOXOTUXT TOURAUETEO, YVWOTY w¢ Vepuixy avtiotaorn Kapitza. Ilapd
onuovTIX VemEeNTXn XL TEoxTXr onpacior Tou, 1 TEWAUATLXY) SlEupedvNon TN AvTioTAoNS
Kapitza etvon €va 50ox0A0 €070 AOYw TOL YEYOVOTOG OTL BEV Efval GUECH UETEHOLIO UEYE-
Yog. Tmdpyouv xdmoleg unoloyioTéS Tpooeyyioelg, mou Pactlovton xupiwe GTN Loptaxt
OO Py ovixt|, ahhd GUVOEOVTOL UE TEPACTIEG UTOAOYLO TIXEG ATALTY|OELS.

Ye auth) T otelBY), meoTelveTal Wiar Un TUEEUBATIX OTEATNYIX UTOXATAC TGS [O-
viehomolnong yia TNV emAVGT TEOBANUATWY TOU TEELYEAPOVTOL UMO TURAUUETPOTONUEVES
Yeovd e€opTdueves Yeptxéc Sapopixéc edlowoelc. Autd to oyrua Baclleton otic toyu-
PEC LOLOTNTES UN-YPOUUXNS UEONE BLC TATIXOTNTOG TOV GUVEAXTIXOY AUTOXWOXOTONTOY
(Convolutional autoencoders - CAE). Eni miéov, ypnowonowivtar FENN/MLP (Feed-
forward neural networks ¥ multilayer perceptrons) yio va Snuiovpycouv pio avTio tolyton
HETAE ) TOU TUROHUETEIXOU YDOEOU TOU TROBANUATOS XAl TOU XWOLXOTONUEVOU YMOEOL YAUUNAAC
ddotaone. Me auth v npooéyyion (CAE-FENN), n xwduonoimnuévn ypovixn andxpeion
TOU CUCTAUATOC OF Ui Véa Tt mopopéteou diveton and to FFNN, eve) 1 avanopdotacy
TOU GTOV 0pYX0 YWEO LPNAGY BlacTdoewy Aaufdveton amd Tov anoxwdxonontr. Ero-
HEVOCS, elvon txovd vor Top€yel e€oupeTind Ypryopeg o axplBelc mpooeyyioelg Tng andxpiong
TOU TANPOUS GUOTHUNTOS, TORUXGUTTOVTAS ATOTEAECUATIXG TNV OVEYXT] Yol OELRLOXY) OLo-
HOEPLON xal ETALOT TwV eELCHOCEWY TOL BIETOUY TO GUCTNUN OE XAVE Ypovixd Bhua, OTwe
cuvidwe anouteiton and TNy PEYodo TV TETEPAoUEVLY GToyElwy. Emmiéov, dcov agpopd
v anddoor), 1 €peuvd yoc €6eile OTL 1 BErTioTn apyttextovixy tou CAE Boaoctletu o
1-D ouvehixtixd @ilteo yior T ywewt Sidotaor yelwon pall pe 1-D pooling layers. Me
QUTOV TOV TEOTO, ETTUYYAVETOL PElwoT Ewe xat 4 PopEC OTIC ToEUUETEOUS TOU EXTIOUSEUCL-
pou dutbou, oe obyxplon pe Tov avtictoo 2-D CAE. Enopévee, n apyitextovixt| tou
Tpoteivetan 0Ty apoloa epyaoio Exel UElwUEVES UTohoYloTiéC anarthoels (offline xou on-
line), eved ToutodypOVa EmTUYYEVEL TOAD oxpifr) anoteléopoto. H pedodohoyio e€etdleton
O€ TPOPBAAUTA CTOYACTIXAC avdhuoTg yeovixd eCopTtouevwy PDES, nopouetponomuéveny
amd tuyaieg YetaBAnTég, ot onoleg Aodnxay oto mhalolo tng uetddou Monte Carlo. Ano ta
anoTeAéopa TEOEXLPE UElOTS TOU LTOAOYIGTOV X60TOUS €wg xat 80 popég ev cuyxploel
ue TNV PEY0D0 TWV METMEPUOUEVKDY OTOLYELWY, EVK) TURIAANAA TO ATOTEAECUATA NTAY TOAU
%x0ovVTd otV oxelB3r Abom.

Emnmiéov, n mopodoo diatpir) mpotelvel evol UTOXATACTATO LOVTEAO ELOLXA Yiot DOopLXd
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TOEUUETEOTIOLAGIUA. TEOBANUOTA U1 YRUUUXTC BUVAIXAC avdAuong. Xe auTy| TN TeplnTtw-
o1, exteheiton Eva apyind oOVORO ETAVGEWY TOU TAHRES LOVTEAOU Yol U0 apliud TGOV
TOEUUETEWY oL oL Tiivaxe ypovoloTopiag AOong amoUnxebovTon yia Vo Yenoelovy »¢ To
cUVoho Bedopévwy exnaideuonc. Autol ot Tivaxeg UTOBLLEOVYTOL TEEUITER OE UTOTVAXES
olugwva pe tov tono Boduol ehevdeploc (dof), dniadr €& umountpma Yo TELEdLEC T
Tot TEOBAAUOTA TOU AVTIG TOLYOUY GTOUG TEELC UETAPORLXOUS Xl TOUG TEElC TERLO TEOPIXOUS
dof. Xtn ouvéyewa, évag Eeywpiotdc CAE exmoudeletar ndvew oTic avtioToLyeC LTOUNTEES
xdde tOnou dof mpoxewévou vo Angiel plar SLoVUCUOTIXT oVOToEdc TooT, YUUNATS OLdo To-
ONC UECK TOU XWOLXOTOLNTH TOU Xl O YAQTNG AVUXATAOXEUTS OO TOV ATOXWOLXOTOTH.
Y1n ouvéyeta, éva dlapopeTind FFNN exnawdeleton €Tol WoTE var SnploupyoeL plor oyéaon
HETOED TV ONUEIWY AT TOV TUPUUETEXO YWOEO CGTOV AovidvovTa Yo Tou Biveton omd
x40 xwdxonont), 0 onolog uUnopel Vo AVTIGTOLYLOTEL TEEAUTEPW OTNY TEOYUOTIXY, LT
MOV BLICTACEWY, ATOXELGT, TOU CUCTAUNTOS UECK Tou amoxwdwononty. Ilapdho mou o
Ol WEIOUOS OF EMPEPOUC UTOXATACTACTA HovTERX Yo xde dof auvgdver to offline xbot0¢
e pedodohoyiag, woTtéc0, 0dNYEl o onuavTXy BeATiwon 6T duvatdTnTeg TEOBAEYNS
H pedodohoylo eCetdleton 0TN GTOYUC XY 1) YEOUUXT) BUVOULXT) AVEAUGT] BOULX®Y CUC T
HaTwY evOg xan TOAAATAWY Borducy eheuvdeplag, OTOU QolveTal Vo ETITUYYAVEL EEAEETIXS
YEYYORES o oxEIBElC TPOOGEYIOELS TNG ATOXEIONE TOU CUC THUNTOC. LUYXEXQUIEVA, GNUEL-
OUnxe pelworn tou utoloyio ol x6cToug €ng xou 300 Yopéc oe oyéon e T CUUPUTIXES
uevoooug.

H 8u8axtopiny| dlatpllh) otoyelel ot YEQUEWOT TOU YAoUATOC PETOED NG UNYOViXAS
udinong xon TN Yeouxng GAYEBpaC yior TNV ETTAYLVOT TNG ENLAUCTS TEAYUATIXWY TEO-
BANUGTWY UTOAOYIOTIXAG UNYOVIXAC OE GEVAQLE TOAAATAGY EpOTNUdTwY. [ To oxond
aUTO, TEOTEIVETOL Uiol VEX GTEUTNYXY YL TN YeNon €pYoAelwy unyovixhc udidnong mpoxel-
pévou va An@dolv AUCEE TOU CUGTAUATOS EVTOE VoG Tpoxatoplouévou oplou axpifetag,
ue ToyTEPOoUg puinole olyxhiong amd Toug cuufatixolg emAlTec. H mpotewouevn npo-
céyylon amotehelitan and dvo Briuata. Apyd xataoxreudletal Eva Uixed GUVOAO ETAUCERY
TOU GUGTAUATOS, Ol OTOLEG YENOWOTOLOUVTOL YL T1) ONUOVEYIo ULUS ATEOVIONE ATO TOV
TOUEUUETELXO Y WEO GTOV YWEO TWV AICEWV. LUYHEXQUEVA, YENOOTOLETOL TO UTOXATO-
otdto poviého CAE-FFNN. Autr n anewxdvion eunnpetel ¢ UECO amdXTNone dpyixy
EXTWACEMY TNS OMOXELONG TOU GUC TAUATOS UE UUEANTED UTONOYIG TN XOGTOC Xou LYNAN o-
xp{Beo. To cpdpo oe auTtég TIc TEOBAEVELS, KO TOCO, UTOEEL 1} EVOEYETOL VoL UNY IXAVOTIOLEL
10 TpofAemouevo dpto axplBelac. ¢ ex toUTou, mpotelveTon €va BelTEPO PBriua, To omolo
oZlomolel TEQUUTERL TN YVWOT amd T o1 dladéotuec MOOEC UG TAUATOS, TEOXEWEVOU VA,
XATAOXEVUO TEL €VaC ENAVAANTTIXOG eMAUTNG Tou Baotleton ot dedouéva. Autdg o Aotng
elvan eunvevopévog and v wéa e pedodou tou AlyePexol Ilohvnhéypatoc (AMG) oe
ouvbuaous e Ty Opty) Opdoydvia Anocivieon (POD) xou ovoudletan POD-2G, Behti-
OVEL SLadoyxd TNV oy x| TEOBAEd Tou LToXUTACTATOU HOVTEROL TRO¢ TIC axplfeic Aoelg
CUCTAUOTOSC HE OTMUVTXG TaryUTEEOUC puiols alyxMong.

To teheutaio xepdiono auThc TNE BlaTEBhC TEOTEVEL Wiat amthY| ohAd TOAD AMOTEAEOUATIX
TROGEYYLOT Yior TNV exTiunon e T tne avtiotaone Kapitza otn Sienagy| yetadd 5o u-
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Axov, alomoldvtog Ty évvola Twv PINN xou ewdixdtepa autr| twv XPINN. Ye obyxplon ye
Ta PINN, ta XPINN npocgépouy yeydhn ixavétnto TapaAAnMopon, xadog evioyiouy
uevodoroyioa PINN yenoiwomowdvtog wia dtadixactio atoctvieong topéa. Ye xdie évay amod
Toug uToTopElc Tou SnuLoupyoLVTaL, e@apuoleTon Eexwetotd PINN e tnv noAunioxotntd
TOU Vo ETMAEYETAL CUUPOVA UE TNV TOALTAOXOTNTA TNE AUCNC O AUTOV TOV CUYXEXPUIEVO
unotopéa. Xenotwormowwvtag XPINN otnv nopodoa npoceyyion, elvon e@uxth 1 uhonolnon
Eeywpiotedv PINN yia tny enlhuon tng pepixrc dtapopixhc e€lomang mou Biénet to mpdfBinua
peTapopdc Vepuodtntac ot xdie UEPOVWUEVO UAXO xou 0T1) GUVEYELX ETBAANOLY TNV e€low-
O™ GUVEYELC TNG PONG VEPUOTNTOC O DIETAPT) TV VAKXV 1G TEPLOPLOKOS TOU %o Tl 800
VELPWVIXY BixTUO TEETEL Vo LxavoToloy. Edyv, emnAéov, dolel Eva 6OVONO TELRUUATINGDY Ue-
TENOEWY, 0TS TWES Veppoxpaciag 6Tov 6Yxo Tou cUVIETOL U0V, To omolo eivar ebxolo
vo. Angiel oty medlr), toTE To Yovtélo pag umopel vor exmandeutel yia vor el Tn BEATI-
oty Twn e avtiotaone Kapitza, tétow dote ol Slapopixéc e€lodoelg vor emhdovTon Ue
axp{Bela 610 E0wTEPIXO *dE LALXOU, oL tpofienoueves and to XPINN twéc Yeppoxpaciog
VoL GUUPWVOUY UE TIC TELRAUATIXES 0To xadoplopéveg Yéoelg xou va ixavoroteiton 1 e&lowaon
coric Vepuotnrag otn demagr. H emhoyr twv XPINN évavtt twv PINN oty npotetvouevn
TEOGEYYLON Oxonohoye(ton mepoutépw amd TNV UnaElr VEpUOXPAUCLOXDY JCUVEYELDY, XATL
mou ebvan euxoldtepa dayelpioo and T XPINN. 261600, €val oyYeTNd UEIOVEXTNUO TRV
XPINN elvon 10 yeyovog 0Tl tepthoBavouy peydho apldud LTEPTUPUUETEWY TOU ATOLTOUY
AETTOUEQELY, TPOXEWEVOL VoL ETUTOYEL Tor ETYUUNTE eTtimeda axpifBetag.
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Introduction

1.1 MOTIVATION

Recent advances in the field of computational mechanics have allowed researchers to
develop high-fidelity models of complex physical systems that emulate their behavior.
With this approach, the response of a system under investigation can be efficiently
predicted via computer simulations in lieu of computationally costly and time-consuming
experiments. However, certain applications of practical interest such as optimization,
uncertainty quantification and parameter identification require a large number of model
runs. For detailed complex models described by time-dependent partial differential
equations (PDEs), the computational cost for a single run may range from a few seconds
to several hours, hence, these types of analyses become unduly expensive. Computational
handling of such problems necessitates the development of highly efficient and accurate
solution techniques. In this direction, surrogate modeling techniques have emerged over
the past years as an effective approach for reducing the computational burden associated
with predictive modeling of complex large-scale problems [207, 13, 172, 6, 193]. Surrogate
models, also referred to as metamodels, are approximations of the original model that
are cheap to compute and can mimic the system’s behavior with a controlled loss of
accuracy. These models are typically constructed by using some assumptions about the

functional shape of the model based on information about the model’s response in the



form of data, and for this reason they are also known as data-driven models.

Reduced basis (RB) methods belong to this family of metamodeling techniques and are
widely applied as surrogates for parametrized large scale systems [140, 70, 108, 146]. The
idea behind RB methods is to find a suitable low-dimensional subspace of the system’s
high-dimensional solution space and project the governing equations onto this reduced
space, where they can be solved more efficiently. The most popular linear reduced basis
technique is Proper Orthogonal Decomposition (POD) [178, 9, 72, 190], also known as
Karhunen-Loéve expansion or Principal Component Analysis (PCA) in certain contexts.
POD is typically applied to a collection of solution vectors (snapshots) and identifies an
appropriate basis for a lower dimensional subspace. The main advantage of POD stems
from its ability to optimally truncate the basis such that it represents only the most
energetic modes contained in the snapshots. Other linear basis construction methods
include proper generalized decomposition [60, 51], balanced truncation [149, 185] and
rational interpolation [23].

While linear RB methods have proven to work optimally on linear problems, this is not
the case for general nonlinear problems with non-affine dependence on the parameters
[153]. This is because in such cases the system configuration needs to be updated at each
nonlinear iteration or at any new parameter value and this process can only be performed
on the full-order model. Therefore, every time the system changes, the reduced system of
equations needs to be re-derived using Galerkin projections, which translate to multiple
inner product evaluations. However, the computational cost of these evaluations is
very high and, thus, they significantly diminish the computational gains of linear RB
methods. To address nonlinear problems with non-affine parameter dependence, several
RB schemes based on the empirical interpolation method [43, 152] or subspace-angle
interpolation [9, 10] have been proposed, but these are also intrusive in nature and their
generalization to other nonlinear problems is not straightforward.

Recently, the combination of RB techniques with data-driven machine learning models
[168, 112, 12] has resulted in non-intrusive approaches for the solution of large-scale
complex systems [230, 110, 95, 169]. The advantage of these methods is that they do not
need to access and modify the governing equations of the original high-fidelity model.
For instance, in [95, 169] it has been proposed to combine POD and feed forward neural
networks (FFNNs) producing a hybrid POD-FFNN approach, where the FENN was
trained to produce the low-dimensional projection coefficients of the RB model. In this

frame, the use of different interpolation schemes instead of FFNNs, such as Gaussian



Process Regression [86] and radial basis functions [223, 61] were also shown to be very
efficient for interpolating over the POD coefficients. Despite the fact that these methods
are highly efficient, their main pitfall is that for general nonlinear problems, they often
require a higher number of model evaluations than intrusive methods to construct a
reliable surrogate in the first place.

Motivated by the inability of linear reduction methods such as POD to capture
complex response surfaces, nonlinear manifold learning methods (e.g. Kernel PCA [241],
Hessian eigenmaps [233], Laplacian eigenmaps [25], local tangent space alignment [239],
the diffusion maps algorithm [54]) gained more attention over the past few years. The
main assumption in manifold learning is that the data points, which correspond to system
solutions in this setting, lie on a low-dimensional manifold embedded in an ambient
higher-dimensional Euclidean space. The goal is to identify the manifold’s intrinsic
dimensionality, that is, the parameters that describe it, and thus obtain low-dimensional
representations of the data set. This approach can remedy the problems associated
with the curse of dimensionality when dealing with high-dimensional data sets and,
consequently, enable the development of efficient interpolation schemes. For instance,
in [129], the kernel PCA algorithm was employed for the purposes of dimensionality
reduction and in conjunction with Kriging and polynomial chaos expansion surrogates,
a cost-efficient metamodel was constructed. Similarly, in [114, 115] the diffusion maps
algorithm has been investigated as an alternative to POD.

Despite the effectiveness of the aforementioned algorithms in providing low-dimensional
representations for high-dimensional data sets, their main disadvantage stems from the
fact that they do not provide an analytic relation for decoding the compressed data back
to their high-dimensional representations in the original space. This problem is known
in the literature as the pre-image problem and several elaborate interpolation schemes
have been employed to address it, such as the geometric harmonics [55] and Laplacian
pyramids [35]. However, a more versatile solution to this problem can be provided by
the autoencoders [139]. An autoencoder (AE) is a specific type of an unsupervised
neural network (NN) that learns how to efficiently compress and encode data and then
learns how to reconstruct (decode) them, that is, to map them from their encoded
representation to a representation as close to the original input as possible. The encoder
and decoder parts of an autoencoder are trained jointly, yet can be used separately.
In [222], an AE with a novel support vector machine based classifier is proposed to

identify the location of the pilot’s pupil center detection. A similar approach can be



found in [220], where a deep AE with a softmax classifier is used for determining pilot’s
fatigue status. An extension of ordinary autoencoders are the so called convolutional
autoencoders (CAEs), a special type of convolutional NNs (CNNs), which have been
developed primarily for spatial field data compression but have proven particularly useful
in several applications dealing with high-dimensional data sets. Similarly to ordinary
AEs, CAEs also consist of an encoder and a decoder part but they are constructed using
different types of layers, called convolutional and deconvolutional layers [87]. Some of
their applications pertain to the fields of computer vision [121], pattern recognition [162]
and time series data prediction [240]. For example, in [221] a combined CNN - long
short memory network (LSTM) is proposed for detecting dynamic behavior of brain
fatigue and in [232] CAEs were used as surrogates for blood flow simulation.

In this dissertation, a non-intrusive surrogate modeling strategy is proposed for the
solution of problems described by parametrized time-dependent PDEs. This scheme relies
on the powerful dimensionality reduction properties of CAEs, which are exploited as a
means of encoding and decoding the high-dimensional solution data sets. Furthermore,
FFNNs are used to establish a mapping between the problem’s parametric space to its
encoded solution space. With this approach, the encoded time-history response of the
system at a new parameter value is given by the FFNN, while its representation in the
original high-dimensional space is obtained by the decoder. Therefore, it is capable of
providing remarkably fast and accurate evaluations of the complete system’s response,
effectively bypassing the need to serially formulate and solve the governing equations
of the system at each time increment, as is typically required by finite element (FE)
methods. A similar approach can be found in [226], where the authors suggest the use of
3 levels of NNs, namely a CAE, a temporal CAE [214] and a FFNN to perform parameter
and future state prediction. On the other hand, the surrogate scheme proposed herein
requires only 2 levels of NNs, a FFNN and a CAE, rendering it very easy to implement.
Furthermore, in terms of performance, our investigation indicated that the optimal
CAE’s architecture is based on 1-D convolutional filters for the spatial dimensionality
reduction along with 1-D average pooling layers for the temporal reduction. This way, a
decrease of up to x4.00 in the trainable network’s parameters is achieved when compared
to the corresponding 2-D CAE. Therefore, the architecture proposed in this paper has
reduced offline and online computational requirements, while at the same time achieves
very accurate results. The elaborated methodology is demonstrated on the stochastic

analysis of time-dependent PDESs, parametrized by the system’s random variables and



solved in the frame of the Monte Carlo method.

Consequently, this dissertation builds upon the above framework and focuses its
application on the more challenging problem of nonlinear transient analysis of stochastic
structural problems. In this setting, an initial set of full model evaluations is performed
for a small number of parameter values and the solution time-history matrices are
stored to serve as the training data set. These matrices are further subdivided into
submatrices according to the dof type, that is, six solution time-history submatrices
for 3D structures corresponding to the three translational and three rotational dofs.
Then, a separate CAE is trained over the corresponding submatrices of each dof type
in order to obtain a low-dimensional vector representation through its encoder and a
reconstruction map by the decoder. Subsequently, a different FFNN is trained to map
points from the parametric space to the latent space given by each encoder, which can
be further mapped to the actual, high-dimensional, system response by the associated
decoder mapping. Even though this classification of the solution time-history matrices
according to the dof type increases the offline cost of the methodology, yet, it leads to
significant improvements on the surrogate’s prediction capabilities, since it is better able
to capture the specific functional behavior of the time-histories of each dof type.

In scientific computing, there is a constant need for solving larger and computa-
tionally more demanding problems with increased accuracy and improved numerical
performance. This holds particularly true in multi-query scenarios such as optimization,
uncertainty quantification, inverse problems and optimal control, where the problems
under investigation need to be solved for numerous different parameter instances with
high accuracy and efficiency. In this regard, constructing efficient numerical solvers for
complex systems described by partial differential equations is crucial for many scientific
disciplines. The preconditioned conjugate gradient method (PCG) [21, 26, 136, 93] and
the preconditioned generalised minimal residual method (PGMRES) [183, 194, 15] are
amongst the most powerful and versatile approaches to treat such problems. In these
methods, the choice of a suitable preconditioner plays a major role on the convergence
and scalability of the solvers and notable examples include the incomplete Choleski
factorization [57] and domain decomposition methods [210, 208], such as the popular
FETI methods [74, 73, 76] and the additive Schwarz methods [38, §]. In a similar
fashion, Algebraic and Geometric Multigrid (AMG, GMG, resp.) [212] are equally
well-established methods that are commonly employed for accelerating standard iterative

solvers and may also service as highly efficient preconditioners for PCG [100, 96, 128] or



PGMRES [176, 219, 213].

Nevertheless, optimizing the aforementioned solvers so as to attain a uniformly fast
convergence for multiple parameter instances, as required in multi-query problems,
remains a challenging task to this day. To tackle this problem, several works suggest the
use of interpolation methods tasked with constructing approximations of the system’s
inverse operator for different parameter values [235, 27, 41|, which can then be used
as preconditioners. Another approach can be found in [204], where primal and dual
FETI decomposition methods with customized preconditioners are developed in order to
accelerate the solution of stochastic problems in the context of Monte Carlo simulation,
as well as intrusive Galerkin methods. Augmented Krylov Subspace methods showed
great promise in handling sequences of linear systems [182], such as those arising in
parametrized PDEs, however, the augmentation of the usual Krylov subspace with data
from multiple previous solves led in certain cases to disproportional computational and
memory requirements. To alleviate this cost, optimal truncation strategies have been
proposed in [63], as well as deflation techniques [42, 184, 88].

In recent days, the rapid advancements in the field of machine learning (ML) have
offered researchers new tools to tackle challenging problems in multi-query scenarios. For
instance, deep feedforward neural networks (FFNNs) have been successfully employed
to construct response surfaces of quantities of interest in complex problems [167, 166,
192, 98, 52]. Convolutional neural networks (CNNs) in conjuction with FFNNs have
been employed to predict the high-dimensional system response at different parameter
instances [156, 154, 227]. In addition, recurrent neural networks demonstrated great
potential in transient problems for propagating the state of the system forward in time
without the need of solving systems of equations [230, 109]. All these non-intrusive
approaches utilize a reduced set of system responses to build an emulator of the system’s
input-output relation for different parameter values. As such, they are particularly cheap
to evaluate and can be very accurate in certain cases. However, these methods can be
characterized as physics-agnostic in the sense that the derived solutions do not satisfy
any physical laws. This problem is remedied to some extent from intrusive approaches
based on reduced basis methods, such as Principal Orthogonal Decomposition (POD)
[39, 236, 7] and proper Generalized Decomposition [50, 126, 125]. These methods rely on
the premise that a small set of appropriately selected basis vectors suffices to construct
a low-dimensional subspace of the system’s high-dimensional solution space and the

projection of the governing equations to this subspace will come at minimum error.



In addition, several recent works have investigated the combination of either linear or
nonlinear dimensionality reduction algorithms and non-intrusive interpolation schemes
to construct cheap emulators of complex systems [58, 188, 115, 67, 111, 216, 91, 130].
Nevertheless, none of these surrogate modelling schemes can guarantee convergence to
the exact solution of the problem.

In the effort to combine the best of two worlds, a newly emergent research direction
is that of enhancing linear algebra solvers with machine-learning algorithms. For
instance, POD has been successfully employed to truncate the augmented Krylov
subspace and retain only the high-energy modes [40] for efficiently solving sequences of
linear systems of equations characterized by varying right-hand sides and symmetric-
positive-definite matrices. In [92], neural networks were trained for predicting the
geometric location of constraints in the context of domain decomposition methods,
leading to enhanced algorithm robustness. Moreover, the close connection between
multigrid methods and CNNs has been studied in several recent works, which managed
to accelerate their convergence by providing data-driven smoothers [48], prolongation
and restriction operators [141].

This dissertation aims at bridging the gap between machine learning and linear algebra
algorithms for accelerating the solution of real-life computational mechanics problems
in multi-query scenarios. To this end, a novel strategy is proposed to utilize ML tools
in order to obtain system solutions within a prescribed accuracy threshold, with faster
convergence rates than conventional solvers. The proposed approach consists of two steps.
Initially, a reduced set of model evaluations is performed and the corresponding solutions
are used to establish an approximate mapping from the problem’s parametric space to
its solution space using a combination of deep FFNNs and CAEs. This mapping serves a
means of acquiring very accurate initial predictions of the system’s response to new query
points at negligible computational cost. The error in these predictions, however, may or
may not satisfy the prescribed accuracy threshold. Therefore, a second step is proposed
herein, which further utilizes the knowledge from the already available system solutions,
in order to construct a data-driven iterative solver. This solver is inspired by the idea
of the Algebraic Multigrid method combined with Proper Orthogonal Decomposition,
termed POD-2G, that successively refines the initial prediction of the surrogate model
towards the exact system solutions with significantly faster convergence rates.

The field of machine learning has witnessed tremendous breakthroughs over the past

decades, becoming a pervasive technology in a wide range of applications, such as image



processing [90, 195], speech recognition [97, 151, 64], autonomous driving [85, 66] and
patient-specific healthcare [59, 69, 30]. To address the particular requirements of each
application, a variety of different neural network architectures emerged, including Deep
Neural Networks [131, 196], Convolutional Neural Networks [231, 217], Recurrent Neural
Networks [84, 197, 187], Autoencoders [19, 20] and Transformers [215, 49, 229]. Most of
these frameworks have also been employed in computational mechanics for the purposes
of predictive and data-driven modeling [155, 202, 33, 137]. Their ability to provide
accurate and cheap-to-evaluate surrogates of complex large-scale systems made them
an indispensable tool for challenging engineering problems such as partial differential
equations [157], uncertainty quantification [4] and Bayesian inference [173].

Recently, the Physics-Informed Neural Network (PINN) framework was introduced
in the effort to incorporate physics into machine learning [174, 147, 65, 175, 132, 106].
Early works dating back in the 90s had already demonstrated the capabilities of neural
networks for modeling nonlinear dynamical systems [179], as well as for solving ordinary
and partial differential equations [127]. However, it was the recent work of Raissi et.
al [174], which managed to rekindle the scientific interest on the topic, by laying down
the fundamental principles of PINNs and demonstrating their powerful approximation
capabilities in the modern-day computing environments. From there on, PINNs have
been successfully applied in numerous applications, either to derive the solution (forward
problem) [174] or to infer the parameters (inverse problem) [82] of partial differential
equations (PDEs), as well as for solving stochastic [237, 47] and interval [78] PDEs, thus
providing a promising alternative to other conventional computational tools such as finite
element methods (FEM). The benefits of PINNs include the ease of implementation
and their ability to fuse computational models with experimental data, obtained from
simulations and/or measurements. Furthermore, advanced deep-learning platforms such
as Pytorch [170] and Tensorflow [3] provide massively parallel computing capabilities
and the deployment of PINNs in these open-source platforms leads to vast performance
improvements, rendering PINNs more efficient than conventional FEM solvers in certain
cases. Several variations of this framework involve Variational PINNs [116], Parareal
PINNs [145] and eXtended PINNs (XPINNs) [101].

In the field of material science, PINNs have been successfully employed for inferring
heterogeneous material properties in complex systems, such as the Lamé parameters
[79] and hyperelasticity parameters [238] in solid mechanics, as well as permeability

coefficients [234] in fluid mechanics. In addition, the application of PINNS to heat transfer



problems, which are focused in this work, has already been investigated in a number of
publications [37, 243]. The present work, however, differs from previous approaches in
the sense that the emphasis herein is put on developing a computational framework for
the estimation of the thermal resistance at an interface between two materials, based
on temperature measurements. Interface thermal resistance is an important physical
mechanism encountered in many situations of practical interest. It affects heat flow from
one material to another by posing a barrier to the flow and leading to a temperature
jump across the interface. This phenomenon was observed and conceptualized by Kapitza
[117, 209] who introduced a macroscopic parameter, known as Kapitza thermal resistance,
to model it. Despite its significant theoretical and practical importance, experimental
establishment of the Kapitza resistance is a difficult task due to its phenomenological
nature and the fact that it is not a directly measurable quantity. Some computational
approaches, mostly relying on molecular structural mechanics [205, 186], do exist, but
they are associated with extreme computational demands.

The last chapter of this dissertation proposes a simple yet very efficient computational
approach to estimate the value of the Kapitza resistance at the interface between two
materials, utilizing the concept of PINNs and in particular that of XPINNs. Compared to
PINNs, XPINNSs offer great parallelization and representation capacity, as they enhance
the PINN methodology by employing a domain decomposition procedure [101, 199].
In each of the induced subdomains, a separate PINN is applied with its complexity
chosen in accordance to the complexity of the solution at this specific subdomain. Using
XPINNSs in our approach allows for implementing separate PINNs to solve the PDE of
the heat transfer problem at each individual material and then impose the heat flux
continuity equation at the interface of the materials as a constraint that both neural
networks have to satisfy. If, in addition a set of experimental measurements is given,
such as temperature values at the volume of the composite, which is easy to obtain
in practice, then our model can be trained to find the optimal value of the Kapitza
resistance, such that (i) the PDEs are accurately solved in the interior of each material,
(ii) the XPINN-predicted temperature values agree to the experimental ones at the
specified locations and (iii) the heat flux equation at the interface is satisfied. The choice
of XPINNs over PINNSs in our setting is further justified by the existence of temperature
discontinuities in the problem’s domain, which is something that XPINNs are more
capable of capturing [105]. However, an associated drawback of XPINNs is the fact that

they involve a large number of hyperparameters that require fine tuning, in order to



achieve the desirable levels of accuracy. To address this problem in an efficient manner,
Bayesian hyperparameter optimisation using Gaussian Process regression [201, 83] is

employed herein.

1.2 OUTLINE

This thesis is organized in 9 chapters. Besides chapter 1, the rest of the dissertation is
outlined as follows:

Chapter 2 introduces common solution practices for solving large-scale systems.
Specifically, the finite element method is briefly described as a modeling technique
of elliptic PDEs, followed by the preconditioned conjugate gradient and the algebraic
multigrid methods.

Chapter 3 provides the theory of the machine learning models used in this dissertation,
such as feed-forward neural networks, autoencoders and physics informed neural networks.

Chapter 4 continues with the development of a novel surrogate modeling technique
for parametrized systems. The proposed methodology is demonstrated on the stochastic
analysis of time-dependent PDEs, parametrized by the system’s random variables and
solved in the frame of the Monte Carlo method. Numerical examples are provided to
assess the performance of the proposed surrogate model.

Chapter 5 builds upon the methodology presented in chapter 4 and aims to extend
its applicability in transient analysis of stochastic nonlinear structures. The elaborated
methodology is demonstrated on the stochastic nonlinear transient analysis of single and
multi degree of freedom structural systems, where it is shown to achieve remarkably fast
and accurate evaluations of the complete system’s response.

Chapter 6 introduces a novel iterative solver for accelerating the solution of large-scale
parametrized systems. In this chapter the proposed methodology utilizes the surrogate
models that developed earlier in order to obtain an accurate initial estimation of the
solution. Subsequently, the proposed solver successively refines the initial prediction
of the surrogate model towards the exact system solutions with significantly faster
convergence rates as demonstrated by the numerical examples.

Chapter 7 presents a novel methodology for parameter identification of composite
materials using eXtended physics informed neural networks (XPINNs). In this chap-
ter, the XPINNSs’ general formulation is explained along with the proposed algorithm.

Numerical examples are provided to validate the methodology’s efficiency.

10



To conclude, chapter 8 discusses the conclusions and contribution drawn from this

research.
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Solution techniques for large-scale systems

2.1 INTODUCTION

In computational mechanics, there is a constant need for solving larger and computa-
tionally more demanding problems with increased accuracy and improved numerical
performance. This holds particularly true in multi-query scenarios such as optimization,
uncertainty quantification, inverse problems and optimal control, where the problems
under investigation need to be solved for numerous different parameter instances with
high accuracy and efficiency. In this regard, constructing efficient numerical solvers for
complex systems described by partial differential equations is crucial for many scientific
disciplines. The preconditioned conjugate gradient method (PCG) [21, 26, 136, 93] and
the preconditioned generalised minimal residual method (PGMRES) [183, 194, 15] are
amongst the most powerful and versatile approaches to treat such problems. In these
methods, the choice of a suitable preconditioner plays a major role on the convergence
and scalability of the solvers and notable examples include the incomplete Choleski
factorization [57] and domain decomposition methods [210, 208], such as the popular
FETI methods [74, 73, 76] and the additive Schwarz methods [38, 8]. In a similar
fashion, Algebraic and Geometric Multigrid (AMG, GMG, resp.) [212] are equally
well-established methods that are commonly employed for accelerating standard iterative

solvers and may also service as highly efficient preconditioners for PCG [100, 96, 128] or
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PGMRES [176, 219, 213].

Nevertheless, optimizing the aforementioned solvers so as to attain a uniformly fast
convergence for multiple parameter instances, as required in multi-query problems,
remains a challenging task to this day. To tackle this problem, several works suggest the
use of interpolation methods tasked with constructing approximations of the system’s
inverse operator for different parameter values [235, 27, 41|, which can then be used
as preconditioners. Another approach can be found in [204], where primal and dual
FETI decomposition methods with customized preconditioners are developed in order to
accelerate the solution of stochastic problems in the context of Monte Carlo simulation,
as well as intrusive Galerkin methods. Augmented Krylov Subspace methods showed
great promise in handling sequences of linear systems [182], such as those arising in
parametrized PDEs, however, the augmentation of the usual Krylov subspace with data
from multiple previous solves led in certain cases to disproportional computational and
memory requirements. To alleviate this cost, optimal truncation strategies have been

proposed in [63], as well as deflation techniques [42, 184, 88].

2.2 FINITE ELEMENT METHOD

This work focuses on linear elliptic PDEs defined on a domain Q C R¥™_ dim = 1,2, 3,
which are parametrized by a vector of parameters 8 € ©, with ® C R"™ being the

parameter space. The variational formulation of the PDE can be stated as: given 8 € O,
find the solution v = v(0) from the Hilbert space ¥ = ¥ (2) such that

K (v, w; ) = f (w; 0) (2.1)

for every w € V() with compact support in 2. The Lax-Milgram lemma proves that
eq. (2.1) has a unique solution for every 6, provided that the bilinear form x(-,-;8) is
continuous and coercive and f (-; @) is a continuous one-form.

In practice, however, obtaining an exact solution v is not feasible for most applications
of interest and instead, an approximate solution is sought using numerical techniques,
such the finite element method (FEM). In FEM, a finite-dimensional subspace 7, C ¥
is considered, which is spanned by a finite number of polynomial basis vectors {Nl}le
These polynomials are compactly supported on a set of small polyhedra (finite elements)
that partition the domain 2 and within each element e the approximate displacement

vector field vy, € ¥, and test functions wj, are expressed as:

13



N

v =) uNy (2.2)
=1
N

wh =Y wiNf (2.3)
=1

where u® = [u§, - - ,ui—[]T € RY are the coefficients in the expansion of the unknown

7
field approximation, obtained using a Galerkin minimization that relies on the linearity
of the forms &, f and the orthogonality of the polynomial basis vectors. Since eq. (2.1)
must hold within each finite element e and for any test function w, the system of linear

equations follows:

N
> uSN;, N;;0 | = f(N;0), fori=1,.,N (2.4)
j=1

or, due to the linearity of x,

N
> k(Nj,N;0)uw§ = f(N;;0), fori=1,.., N (2.5)
7j=1

Equation (2.5) describes an N x N linear system of equations to be satisfied within
the e-th element. Repeating this procedure for all elements and appropriately assembling

the respective equations will result in the following d x d linear system

K (0)u(6) = £(6) (2.6)

with d being the total number of unknowns in the system, K € R%*? is a real symmetric
positive definite matrix, u € R? is the unknown solution vector and f € R% the force
vector.

Solving such a linear system for a detailed discretization (d > 1) can be computa-
tionally intensive, particularly in multiquery problems that require numerous system
evaluations for various instances of parameters 6, such as optimization, parameter infer-
ence, uncertainty propagation, sensitivity analysis, etc. Therefore, it becomes evident

that efficient numerical solvers for linear systems of equations are of vital importance in
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the analysis of large scale real-world problems. The following sections revisits the basic
ideas behind two of most efficient methods for solving such systems, namely, the PCG
and the AMG methods.

2.3 PRECONDITIONED CONJUGATE GRADIENT METHOD

The Conjugate Gradient method was originally proposed by Hestenes and Stiefel as a
direct method [94] for solving linear systems, but its full potential was demonstrated in
the frame of iterative solvers for large-scale sparse systems of the form Ku = f, with K
being a symmetric positive definite matrix. The goal of CG is to minimize the quadratic

function

Q(u) = %uTKu . (2.7)

which is equivalent to setting the residual r = —VQ(u) = f — Ku to zero.
Let us assume an initial guess u(?) for the system, which, in the absence of any other

(0

information, is taken u(®) = 0, with corresponding residual () = f. Then, we can

consider the Krylov subspaces,

Ho = {0}, Ky =span{f,Kf,..., K" f} fork>1 (2.8)
These subspaces are nested, oy C H; C ..., and have the key property that K1 f € H,.
Then, a Krylov sequence {u(®, u?), ...} consists of the vectors u*) such that
u® = argmin Q(u), k=1,2,... (2.9)
ueXy

Bbased on the previous property, it follows that w(® = K~ f. In this regard, CG is a
recursive method for computing the Krylov sequence {u(o),u(l), ... }. It can be proven
that the corresponding (nonzero) residuals r®) = f — Ku*0 form an orthogonal basis

for the Krylov subspaces, that is

N\ .
Ky = span{r(o), r ,T(k_l)}, (r(])) r =0, fori#j (2.10)

and a sequence of conjugate (K-orthogonal) basis vectors p;, can be obtained by applying

the Gram-Schmidt process to the r*) vectors as follows:
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TK (k)
po=r9, p Zp " b k=1,2,... (2.11)

i<k p’ pi
or, equivalently,
T Kk
_ k) _ Pt _
D =T - pk—17k_1a2a"'
pg_lek:—l
T (k)
r r
=) 4 ( )T Pr1, k=12, (2.12)
(r(kfl)) p(k=1)
The solution u*+1) = arg ming ey, , @(u) of eq. (2.9) can be expressed as a linear
combination of the basis vectors {po, ..., Pk}
k
uk+) — Z aip; (2.13)
i=0

with the coefficients «; obtained from the Galerkin projections:

_ plr®

(2.14)
PZ-TKPZ‘

Using the fact that u(®) = Zi‘:ol o;p;, then, the Krylov sequence and the corresponding

residuals are given by the relations:

wF ) = 4 4 aup, (2.15)
P — ) _ o Ko, (2.16)

In the above, we could consider an initial guess u(®) # 0 and solve the system
Ku=f— Ku, with u =@+ u®. This is the same as initializing the CG algorithm
with {u®, 7 = f — Ku(®} and updating this guess according to equations (2.15)-
(2.16) for k£ = 1,2,..., until r*) is suffiently small. In theory, CG terminates in at
most d steps, however, due to rounding errors it may take more than d steps or even
k)

fail in practice. Also, the improvement in the approximations u*) is determined by

the condition number ¢(K) of the system matrix K; the larger ¢(K) is, the slower the
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improvement.

A standard approach to enhance the convergence of the CG method is through
preconditioning (PCG), namely the application of a linear transformation to the system
with a matrix T, called the preconditioner, in order to reduce the condition number of
the problem. Thus, the original system Ku — f = 0 is replaced with T (Ku — f) = 0,
such that ¢(T 1K) is smaller than ¢(K). The steps of the PCG algorithm are presented

in algorithm 1.

Algorithm 1 PCG algorithm

1: Input: K € R¥9 ths f € R? preconditioner T' € R¥*? residual tolerance &
and an initial approximation u(®
set k = 0, initial residual r© = f — Ku©
so =T 1r®
Py = So
while ||| < § do
_ () s
B P{ka
uF+HD) = k) Py,
rt+) = ) 0, Kp,
sip = T lp 4
p(k+1) Tskﬂ
10: P = ( (r(k)gTsk
11: Dit1 = Sk+1 + BiDy,
12: kE=k+1
13: end while

Q

k

The choice of the preconditioner T" in PCG plays a crucial role in the fast convergence
of the algorithm. Some generic choices include the Jacobi (diagonal) preconditioner
T = diag(K) and the incomplete Cholesky factorization T = f/fLT, with L being a
sparse lower triangular matrix such that K =~ ii" Another popular choice is the
incomplete LU factorization T = LU, with L being a lower unitriangular matrix and
U an upper triangular, such that K ~ LU. Moreover, multigrid methods such as the
AMG, elaborated on the next section, apart from standalone iterative schemes, are also

very effective as preconditioners to the CG method.
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2.4 ALGEBRAIC MULTIGRID METHOD

AMG was originally introduced in the 1980’s [180] as an efficient numerical approach for
solving large ill-conditioned sparse linear systems and eigenproblems. Its main difference
from the (geometric) multigrid method lies only in the method of coarsening. While
multigrid methods require knowledge of the mesh, AMG methods extract all the needed
information from the system matrix. AMG methods have been successfully applied to
numerous problems including PDEs, sparse Markov chains and problems involving graph
Laplacians (e.g. [206, 32, 211, 150, 71]). The key idea in AMG algorithms is to employ a
hierarchy of progressively coarser approximations to the linear system under consideration
in order to accelerate the convergence of classical simple and cheap iterative processes,
such as the damped Jacobi or Gauss-Seidel. These methods, commonly referred to as
relaxation or smoothing, are very efficient in eliminating the high-frequency error modes,
but inefficient in resolving the low-energy modes. AMG overcomes this problem through
the coarse-level correction, as elaborated below.

Let us consider the linear system of eq. (2.6), which describes the fine problem and
let ©(©) be an initial solution to it. The two-level AMG defines a prolongation operator
P, which is a full-column rank matrix in R%%_d, < d and a relaxation scheme such as
the Gauss-Seidel (GS). Then, the two-level AMG algorithm consists in the steps shown
in algorithm 2:

In the above algorithm, lines 4-10 describe what is known as a V-cycle, schematically
depicted in figure 2.1a. The multi-level version of the above algorithm is easily obtained
as the result of recursively applying the two-level algorithm, as shown in fig. 2.1b for

the 3-level setting. The notation

wk ) = AMGW™; K, f,r1, ) (2.17)

will be used to denote the application of one AMG cycle.
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Algorithm 2 Two-level AMG algorithm

1:

Input: K € R rhs f € R?, prolongation operator P € R4 a relaxation
scheme denoted as €, residual tolerance ¢ and an initial approximation ()
set k = 0, initial residual r© = f — Ku©

3: while ||[r®| < § do

10:
11:

Pre-relaxation: Perform rq iterations of the relaxation scheme on the current
approximation and obtain u® as: u® « € (u(’“); rl)

Update the residual: r® = f — Ku®

Restrict the residual to the coarser level and solve the coarse level system

Kcegk) = PTr®) where K, = PTKP € R%*d

Prolongate the coarse grid error e*) = pel?)

Correct the fine grid solution: u®*+9 = y®) 4 e*)

Post-relaxation: Perform additional ro relaxation iterations and obtain
uk+) g (u(k+1); 7"2)

k=k+1
end while

Ku® =f ™) =y ® 4 pe
.
Level 0
K K
Restriction: PT Prolongation: P
Level 1
KC
e.=K'r,
(a)
Ku® =f u D = y® 4 p e
—-0%c
Level O
K K

Restriction: P IT_) 0\ / Prolongation: P, _,,

Level 1
e.=e+
Ke =r, K K e
Py_ 1€

Restriction: Pi{_u\ Lovk /Drolongation: Py,

K,

£

e =K'ry.
(b)
Figure 2.1: Multigrid V-cycles in a (a) 2-level and a (b) 3-level setting



To better illustrate algorithm 2 and its convergence properties, let us consider the GS
algorithm as the relaxation scheme, where the matrix K is split into K =L+ V, L
being a lower triangular matrix that includes the diagonal elements and V is the upper

triangular part of K. The iterative scheme of the GS method is as follows:

U1 = L7 (f = V)
=L 'f-L Y (K-Lu,
=y + L7 (f — Kuy,)
= Uy + L 1r, (2.18)

where the subscripts m, m + 1 in the above equation denote the iteration number of the
GS algorithm. If u* is the exact solution to the system and e,, = u* — u,, the error

after the m-th iteration, then

emi1 = U — Uyt
=emn +u, — (um + L_lrm)
em— L7 (Key,)
=(I-L'K)en (2.19)

where I is the d x d identity matrix. Setting M = I — L™K, then it is straightforward
to show that

ems1 = Me, = M?e,,_1 = ... M™ e (2.20)

Returning to Algorithm 2, the error at the end of the k-th cycle of the two-level AMG

can be computed as:

e®) = Mm2cMmel—Y (2.21)

with

c-1-P(P"KP)'PT'K (2.22)
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being the coarse grid correction, M the post-relaxation matrix after ro sweeps and
M the pre-relaxation after ri sweeps.

From eq. (2.21) it becomes evident that the matrix M"™CM™ determines the
convergence behavior of the two-level cycle. The relaxation matrix M plays a role,
however, in practice the selection of the prolongation operator P is the key to designing
an efficient algorithm. In this regard, the most popular variations of AMG include the
Ruge-Stiiben method [180] and the smoothed aggregation based (SA) AMG [163]. Lastly,
another factor the affects the number of iterations in AMG to reach the prescribed
threshold of accuracy, is the choice of the initial solution. In absence of other information,
0)

w9 = 0 is usually considered.
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Machine learning models

3.1 INTODUCTION
3.2 FEED-FORWARD NEURAL NETWORKS

A feed-forward neural network (FFNN) is a collection of interconnected processing units
denoted as neurons, distributed into an input, an output and a set of intermediate hidden
layers. In particular, let N¥ : R% — R%+1 be a FFNN with & hidden layers, with
each hidden layer consisting of n; neurons, for j = 1,2,...,k. The input and output
layers consist of ng = dp and ng11 = diy1 neurons, respectively. Each layer except from
the input is associated with a weight matrix and a bias vector, denoted as W; and
b;, respectively; the sets of these quantities, when accounted for all the network layers,
define the adjustable parameters of the model. The input vector is denoted as zo € R%
and the output vector of the j** layer as z; € R%, for j =1,2,....k + 1. An example of
a FFNN architecture with one hidden layer is illustrated in Fig. 3.1.
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Input Hidden Ouput

layer layer layer

Figure 3.1: A Feed-forward Neural Network with one hidden layer.
The output of a network’s layer, say j, can be described by the following relationship:

zj=0;(Wjizj1+bj), Vje{l,2,...k+1} (3.1)

where 0(-) is a non-linear activation function, which is applied layer-wise. As a result,
the overall function of a FFNN can be seen as a mapping of inputs zg € R% to outputs
Zp41 € R%+1 through the recursive evaluation of (3.1).

The optimisation of the network parameters is achieved through a process known as
supervised learning. More specifically, the FFNN is provided with data, each containing
an input and a target (flag) value, and then is assigned to adjust its parameters in order
to minimize the difference, denoted as error, between its processed outputs and the
target value. The error is computed with the aid of a loss function, £(W'; b), such as
the mean squared error, which for continuous cases and a dataset {z[()i),t(i) Z-Z\Ll, takes

the form:

N
LW:b) = 3 llzraa(z)) — ¢ (3:2)
=1

where {z((]i) N | are the N input vectors and {t(i)}f\il the corresponding target vectors.

Due to the non-linearity imposed by the activation functions, the minimization of
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(3.2) is a non-convex problem, and thereby can only be dealt with non-linear iterative

algorithms, such as stochastic gradient descent [118] and quasi-Newton methods [75].

3.3 AUTOENCODERS

3.3.1 GENERAL CONCEPT

The AE concept was introduced in [181] and it is regarded as a neural network that
learns from an unlabeled data set in an unsupervised manner. The aim of an AE is to
learn a reduced representation for a set of data, known as encoding, and then learn how
to reconstruct the original input from the encoded input with the minimum possible
error. The latter part of the AE is called the decoder.

In particular, let X be a subset of R? with & € X denoting an element of the set.

Then, the AE’s encoder and decoder are defined as transition maps ¢, 1 such that:

$: X CR? - HCR! (3.3)
Y:HCR - X CR? (3.4)
¢,9 = argmin | X — (¢ 0 ¢) X |? (3.5)

)

with the dimension [ typically being much smaller than d.
Now, let us consider the simplest case, where the encoder has only one hidden layer.
It takes an input = € R? and sends it to h = ¢(x) € R!, which in this case can also be

written as

h=o(Wz+b) (3.6)

with o being an activation function (eg. tanh, ReLU, etc), W a weight matrix and b a
bias vector. The image h of x is the latent or encoded representation of @ and H is the
latent or feature space.

The decoder’s task is to establish the inverse mapping 1 that will reconstruct the
input «, given its latent representation h. Again, considering a one-hidden layer, the

reconstructed point & = 1 (h) is given by
i =5(Wh+b) (3.7)
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where &, W and b may be unrelated to those of the encoder. Also, the network’s
architecture selected for the encoder can be different than that of the decoder and the
number of hidden layers can be greater than one, leading to the so-called deep AEs. The

general concept and architecture of an AE is schematically presented in figure 3.2.

Decoder
Encoder ]
1
‘ {W b} . {W, b}
_ >
' h € R ‘
x € RY T € R4

Figure 3.2: Schematic representation of a basic autoencoder

AEs are trained by a back propagation algorithm [36], which is the most commonly
used algorithm for the training of NNs. Back propagation computes the gradient of the
loss function with respect to network’s weights very efficiently with the aid of automatic
differentiation (AD) [24]. AD involves a set of techniques developed to numerically
evaluate the gradient of a function specified by a computer program. It exploits the fact
that every operation performed by the program, no matter how complicated, executes
a sequence of elementary arithmetic operations (addition, subtraction, multiplication,
division, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the chain
rule to these operations, derivatives of arbitrary order can be computed to working
precision. Thus, gradient based optimization methods such as stochastic gradient descent,
adaptive moment, etc. can be applied for training multilayer NNs by updating weights
such as to minimize loss.

In the context of AEs, the loss function becomes the reconstruction error between the

input points a; and their respective output @;. It is usually expressed as the mean-square
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error:

| N
QZNZH;BZ-—@HQ (3.8)
=1
with || - |2 denoting the L2-norm and N being the number of points in the training

data set. It should be explicitly mentioned that even though the minimization of the
reconstruction error implies that the encoder and decoder are trained jointly, however,

they can be used separately.

3.3.2 CONVOLUTIONAL AUTOENCODERS

Despite their powerful dimensionality reduction properties, AEs face significant challenges
when dealing with very high-dimensional inputs, due to the fact that the number of
trainable parameters increases drastically with an increase in the input’s dimensionality.
In addition, AEs are not capable of capturing the spatial features of the input (e.g. when
dealing with images) nor the sequential information in the input (e.g. when dealing with
sequence data).

To remedy these issues, a new type of AEs has emerged, that of convolutional
autoencoders (CAEs) [144]. Similarly to AEs, CAEs also consist of an encoder and a
decoder that are trained to minimize the loss function of eq. (3.8), but they are built from
different layer types. Specifically, in CAEs the encoder part is built using a combination
of convolutional layers, fully connected layers, pooling layers and normalization layers,
while the decoder is built from deconvolutional layers and unpooling layers along with
fully connected and normalization layers. Intuitively, CAEs can be viewed as extensions
of ordinary AEs in the same way that CNNs [124] are extensions of FFNNs. These

concepts are illustrated in the following sections.

CONVOLUTIONAL AND DECONVOLUTIONAL LAYERS

Convolutional layers take as input a n-D array M and apply a filter F (a.k.a. kernel)
of specified size to the elements of M in a moving window fashion. This process
is schematically depicted in figure 3.3. Essentially, the objective of the convolution
operation is to extract the most important features from the input and use them to
encode it. To better clarify this process, let us consider a 2 — D array M = [m;;] and

its encoded version M " = [;;], called feature map, which is obtained after applying a
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filler W = [w;;] of size f}, X fi,, moving with vertical stride s, and horizontal stride s,

The element p;; of M is given by the equation:

fh fw

_ i =iX 8, +u
’u” = sz’i/j’ * Wyw + b with ., ) Y (39)
u=1v=1 J =) Xsptv

where b is the bias term and w,, is the element of the filter W that gives the connection
weight between elements of M "¢ and the elements of M within the respective window.

This layer architecture is significantly more economical than that of a fully connected
layer since the parameters involved are only the fj x f,, elements of the filter w;; and
the bias term b. The filter parameters do not require to be manually defined, instead
the convolutional layer will automatically learn the most appropriate filter for the task.
Also, a convolutional layer can have multiple filters, in which case it outputs one feature
map M per each filter k. This enables it to detect multiple features anywhere in
its inputs. Additionally, several convolutional layers can be stacked in order to build
deep architectures which allow the network to concentrate on small low-level features in
the first layer and progressively assemble them into larger higher-level features in the
subsequent layers. In this more general case, the element ;55 at the g-th convolutional

layer, corresponding to row ¢, column j of the k feature map M7, is obtained as:

o fo fn’

) ! =ixX 8, +u
Hijk = Z Z Z Mirjrks - Wypk'k + b With L ! (3.10)
u=1v=1k'=1 ) =3Xsp+v

where now f,/ is the number of feature maps in the previous layer (layer ¢ — 1), mg ;i
the value located in row i/, column j’ of the ¢ — 1 layer’s feature map k’ and by, is the
bias term for the k-th feature map (in layer ¢). Also, wyik is the connection weight
between the values in feature map k of layer ¢ and its input located at row u, column v
at the window of the k' feature map. To simplify the notation, the application of several

convolutional layers, with multiple filters each, to an array M will be expressed as

M = ConvNN (M) (3.11)

with ConvNN(-) denoting the mapping from the initial input space to its encoded

representation.
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Figure 3.3: Schematic representation of a 2-D convolutional filter with strides s, = 2 and s, = 2.

Depending on the application, the convolutional filters can either be one, two or three
dimensional with the difference between them being the way they slide across the data.
In this work, the focus is on processing time series data, therefore 1-D convolutional
filters, such as the one depicted in figure 3.4, were used to scan the data only in the time

axis.
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Figure 3.4: Schematic representation of a 1-D convolutional filter with stride s = 2.

On the other hand, a deconvolutional layer performs the reverse operation of convolu-
tion, called deconvolution, and it is used to construct decoding layers. Their function
is to multiply each input value by a filter elementwise. For instance, a 2D f, X fy
deconvolution filter maps an 1 x 1 spatial region of the input to an fj x f,, region of
the output. Thus, the filters learned in the deconvolutional layers create a base used for

the reconstruction of the inputs’ shape, taking into consideration the required shape of

28



the output. As before, a deconvolutional layer can have multiple filters, while several
deconvolutional layers can be stacked for building deep architectures for CAEs [89, 87].

The decoding procedure can be represented as:

M = DeconvN N (M) (3.12)

Based on the above, the CAE’s architecture consists of convolutional, deconvolutional
and dense layers and is typically used for dimensionality reduction and reconstruction
purposes. In practice, the CAE’s encoder uses a number of convolutional layers to
compress the input and once the desirable level of reduction has been achieved, the
encoded matrix is flattened into a vector. Then, a dense layer is employed to map
this vector to its latent representation. In the reverse direction, the decoder starts by
taking the latent representation and transforming it into a vector through a denser layer.
Subsequently, the input reconstruction is achieved by the deconvolutional layers. In

accordance to eq. (3.8) the loss for CAEs becomes:

N

Sf—;,;HMi—MiH? (3.13)
where M ; denotes the input arrays used for training and M; = DeconvNN(ConvNN (M;))
the corresponding CAFE’s output. In general, CAEs tend to be lossy due to the mathe-
matical inability of perfectly reconstructing high-dimensional data from their encoded
representations. However, by selecting an appropriate architecture for the CAE (types of
layers, number and size of filters, dimensionality of latent space, etc., the reconstruction
error given by the above equation can be reduced to a minimum.In figure 5.1, a schematic

representation of a deep CAE is presented.
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Figure 3.5: Schematic representation of a deep convolutional autoencoder.

POOLING AND UNPOOLING LAYERS

Aside of convolutional, deconvolutional and dense layers, two other important layer types
often employed in CAEs are those of pooling and unpooling. Pooling layers are quite
similar to convolutional layers in the sense that they downsample the input in order to
decrease its size, however, they do not involve any trainable parameters. Their goal is to
reduce the computational load, the memory usage, and the number of parameters. The
latter is particularly useful since it also limits the risk of overfitting. Each neuron in
a pooling layer is linked to a limited number of neurons in the previous layer, located
within a small window. The window’s size and stride are user defined.

Common types of pooling layers include the max pooling layer and the average pooling
layer. The first outputs the maximum value from the portion of the input covered by
the filter and all other inputs are neglected. Accordingly, average pooling layers return
the average from the portion of the input. Aside from its dimensionality reduction
properties, the pooling operation can be useful for extracting dominant features of the
input such as translational, rotational and scale invariance. Nevertheless, caution should
be exercised regarding the usage of pooling layers because the corresponding accuracy
loss might outweigh the benefits they provide.

On the other hand, unpooling layers perform the reverse operation of pooling and

their aim is to reconstruct the original size of each rectangular patch. During the max
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pooling operation, a matrix is created which records the location of the maximum values
selected during pooling. This matrix is then employed in the unpooling operation in
order to place each value back to its original pooled location, while setting all other
values to zero. In the case of average unpooling, it assigns the same mean value to all
elements of the output window. A schematic representation of max pooling, average

pooling and unpooling is given in figure 3.6.

2 6 12 2

9 7

9 12 Max pooling Average pooling

1 5 6 5

Unpooling Unpooling

0 0 12 o0 6 6 5 5
0 0 0

Figure 3.6: Examples of pooling and unpooling.

9

3.4 PHYSICS INFORMED NEURAL NETWORKS

In general, a PDE parameterized by a vector of parameters 8 can be expressed as

f, DL Ou Ou FPu_
"0z, Oxg’ Ox10x1’ " OOy’

where u = u(x) is the solution field that satisfies the PDE for a given instance of the

0)=0 xcQCR? (3.14)

parameter vector 6. In addition, the boundary conditions associated with (3.14) can be
written as

Bi(w;x) =0, xe€d; CIN (3.15)

where 3;(+), for i = 1,2,..,1, can be Dirichlet, Neumann or mixed boundary conditions

for the boundary &;.
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The intuition behind Physics-Informed Neural Networks (PINNs) is that they incorpo-
rate (3.14) and (3.15) into their loss function, designed to solve both forward and inverse
problems of PDEs. The forward problem consists in finding the solution field u of eq.
(3.14) for a given value of the parameter vector 8, while the inverse problem consists
in inferring the unknown values of 0 using a set of experimental measurements of u
at specific locations of the domain. In both cases, the given mathematical problem is
converted into an optimisation problem, where its corresponding loss function is defined
using training examples obtained by evaluating the initial and boundary conditions of
the given PDE and, if possible, by experimentally evaluating its solution at a set of
points in the domain interior.

More specifically, the application of a PINN for solving a forward problem proceeds
as follows. A single FFNN is considered to approximate the solution of eq. (3.14) at
the domain points {acq(f )}1]-\[2"1, where the values of u(x) are known and correspond to
the Dirichlet boundary conditions. Moreover, the same FFNN is trained to satisfy the
physics imposed by the PDE as well, by attempting to minimize the absolute value
of f at a collection of randomly chosen collocation points inside the domain, denoted
by {wgf)}fvzfl This FFNN model is called PINN and its associated parameters can be

learned through the minimization of the following loss function [174]:

L(®) = W, MSE,(©; {z()} ) + (3.16)
i) NV .
Wy MSE;(©;{z{'}}Y))

where W, and W} are the weights for the data mismatch and the residuals, respectively,
and ©® = {W b} are the adjustable parameters of the PINN. The Mean Squared Error
(MSE) for each term is given by

N,
% 1 - 7 %
MSEW(@: {#l}i2) = 7. 3 ue(@l?) ~ I (3.17)
and
MSEf(®; {x}’ Z [ fo(@)|” (3.18)

Here, {u}N* are the exact solutions of the PDE for the pomts {acu S {u@(xg))}fvzul
are the solutions obtained from the PINN and { f@( T, )} ;) are the residuals at {my)}fifl
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For the inverse problem, where we want to identify the equation’s parameters 8, we

can define the loss function as follows [174]:

L(©,0) =W, MSE,(©,0; {z"}N ) + W; MSE;(©,0; {z"}Y ) (3.19)
where
. 1 Y . .
MSE,(©,6; {z}),) = N;IIUe(w&”) —u®| (3.20)
and
N
MSE(©,6; {2}Y) = 3 llfe ()’ (321)
=1

Here, {ch(f), u®™}Y | denotes the training dataset on the solution of (3.14), with {azq(f) N
including, in this case, both points in the Dirichlet boundary and points in the interior
of the domain, where the solution is known. The collocation points in eq. (3.21) are

selected to be the same as the training data [174].
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Machine learning surrogate modeling for

parametrized systems

4.1 INTRODUCTION

Recent advances in the field of computational mechanics have allowed researchers to
develop high-fidelity models of complex physical systems that emulate their behavior.
With this approach, the response of a system under investigation can be efficiently
predicted via computer simulations in lieu of computationally costly and time-consuming
experiments. However, certain applications of practical interest such as optimization,
uncertainty quantification and parameter identification require a large number of model
runs. For detailed complex models described by time-dependent partial differential
equations (PDEs), the computational cost for a single run may range from a few seconds
to several hours, hence, these types of analyses become unduly expensive. Computational
handling of such problems necessitates the development of highly efficient and accurate
solution techniques. In this direction, surrogate modeling techniques have emerged over
the past years as an effective approach for reducing the computational burden associated
with predictive modeling of complex large-scale problems [207, 13, 172, 6, 193]. Surrogate
models, also referred to as metamodels, are approximations of the original model that

are cheap to compute and can mimic the system’s behavior with a controlled loss of
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accuracy. These models are typically constructed by using some assumptions about the
functional shape of the model based on information about the model’s response in the
form of data, and for this reason they are also known as data-driven models.

Reduced basis (RB) methods belong to this family of metamodeling techniques and are
widely applied as surrogates for parametrized large scale systems [140, 70, 108, 146]. The
idea behind RB methods is to find a suitable low-dimensional subspace of the system’s
high-dimensional solution space and project the governing equations onto this reduced
space, where they can be solved more efficiently. The most popular linear reduced basis
technique is Proper Orthogonal Decomposition (POD) [178, 9, 72, 190], also known as
Karhunen-Loéve expansion or Principal Component Analysis (PCA) in certain contexts.
POD is typically applied to a collection of solution vectors (snapshots) and identifies an
appropriate basis for a lower dimensional subspace. The main advantage of POD stems
from its ability to optimally truncate the basis such that it represents only the most
energetic modes contained in the snapshots. Other linear basis construction methods
include proper generalized decomposition [60, 51], balanced truncation [149, 185] and
rational interpolation [23].

While linear RB methods have proven to work optimally on linear problems, this is not
the case for general nonlinear problems with non-affine dependence on the parameters
[153]. This is because in such cases the system configuration needs to be updated at each
nonlinear iteration or at any new parameter value and this process can only be performed
on the full-order model. Therefore, every time the system changes, the reduced system of
equations needs to be re-derived using Galerkin projections, which translate to multiple
inner product evaluations. However, the computational cost of these evaluations is
very high and, thus, they significantly diminish the computational gains of linear RB
methods. To address nonlinear problems with non-affine parameter dependence, several
RB schemes based on the empirical interpolation method [43, 152] or subspace-angle
interpolation [9, 10] have been proposed, but these are also intrusive in nature and their
generalization to other nonlinear problems is not straightforward.

Recently, the combination of RB techniques with data-driven machine learning models
[168, 112, 12] has resulted in non-intrusive approaches for the solution of large-scale
complex systems [230, 110, 95, 169]. The advantage of these methods is that they do not
need to access and modify the governing equations of the original high-fidelity model.
For instance, in [95, 169] it has been proposed to combine POD and feed forward neural
networks (FFNNs) producing a hybrid POD-FFNN approach, where the FFNN was
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trained to produce the low-dimensional projection coefficients of the RB model. In this
frame, the use of different interpolation schemes instead of FFNNs, such as Gaussian
Process Regression [86] and radial basis functions [223, 61] were also shown to be very
efficient for interpolating over the POD coefficients. Despite the fact that these methods
are highly efficient, their main pitfall is that for general nonlinear problems, they often
require a higher number of model evaluations than intrusive methods to construct a
reliable surrogate in the first place.

Motivated by the inability of linear reduction methods such as POD to capture
complex response surfaces, nonlinear manifold learning methods (e.g. Kernel PCA [241],
Hessian eigenmaps [233], Laplacian eigenmaps [25], local tangent space alignment [239],
the diffusion maps algorithm [54]) gained more attention over the past few years. The
main assumption in manifold learning is that the data points, which correspond to system
solutions in this setting, lie on a low-dimensional manifold embedded in an ambient
higher-dimensional FKuclidean space. The goal is to identify the manifold’s intrinsic
dimensionality, that is, the parameters that describe it, and thus obtain low-dimensional
representations of the data set. This approach can remedy the problems associated
with the curse of dimensionality when dealing with high-dimensional data sets and,
consequently, enable the development of efficient interpolation schemes. For instance,
in [129], the kernel PCA algorithm was employed for the purposes of dimensionality
reduction and in conjunction with Kriging and polynomial chaos expansion surrogates,
a cost-efficient metamodel was constructed. Similarly, in [114, 115] the diffusion maps
algorithm has been investigated as an alternative to POD.

Despite the effectiveness of the aforementioned algorithms in providing low-dimensional
representations for high-dimensional data sets, their main disadvantage stems from the
fact that they do not provide an analytic relation for decoding the compressed data back
to their high-dimensional representations in the original space. This problem is known
in the literature as the pre-image problem and several elaborate interpolation schemes
have been employed to address it, such as the geometric harmonics [55] and Laplacian
pyramids [35]. However, a more versatile solution to this problem can be provided by
the autoencoders [139]. An autoencoder (AE) is a specific type of an unsupervised
neural network (NN) that learns how to efficiently compress and encode data and then
learns how to reconstruct (decode) them, that is, to map them from their encoded
representation to a representation as close to the original input as possible. The encoder

and decoder parts of an autoencoder are trained jointly, yet can be used separately.
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In [222], an AE with a novel support vector machine based classifier is proposed to
identify the location of the pilot’s pupil center detection. A similar approach can be
found in [220], where a deep AE with a softmax classifier is used for determining pilot’s
fatigue status. An extension of ordinary autoencoders are the so called convolutional
autoencoders (CAEs), a special type of convolutional NNs (CNNs), which have been
developed primarily for spatial field data compression but have proven particularly useful
in several applications dealing with high-dimensional data sets. Similarly to ordinary
AEs, CAEs also consist of an encoder and a decoder part but they are constructed using
different types of layers, called convolutional and deconvolutional layers [87]. Some of
their applications pertain to the fields of computer vision [121], pattern recognition [162]
and time series data prediction [240]. For example, in [221] a combined CNN - long
short memory network (LSTM) is proposed for detecting dynamic behavior of brain
fatigue and in [232] CAEs were used as surrogates for blood flow simulation.

In this chapter, a non-intrusive surrogate modeling strategy is proposed for the solution
of problems described by parametrized time-dependent PDEs. This scheme relies on
the powerful dimensionality reduction properties of CAEs, which are exploited as a
means of encoding and decoding the high-dimensional solution data sets. Furthermore,
FFNNSs are used to establish a mapping between the problem’s parametric space to its
encoded solution space. With this approach, the encoded time-history response of the
system at a new parameter value is given by the FFNN, while its representation in the
original high-dimensional space is obtained by the decoder. Therefore, it is capable of
providing remarkably fast and accurate evaluations of the complete system’s response,
effectively bypassing the need to serially formulate and solve the governing equations
of the system at each time increment, as is typically required by finite element (FE)
methods. A similar approach can be found in [226], where the authors suggest the use of
3 levels of NNs, namely a CAE, a temporal CAE [214] and a FFNN to perform parameter
and future state prediction. On the other hand, the surrogate scheme proposed herein
requires only 2 levels of NNs, a FFNN and a CAE, rendering it very easy to implement.
Furthermore, in terms of performance, our investigation indicated that the optimal
CAE’s architecture is based on 1-D convolutional filters for the spatial dimensionality
reduction along with 1-D average pooling layers for the temporal reduction. This way, a
decrease of up to x4.00 in the trainable network’s parameters is achieved when compared
to the corresponding 2-D CAE. Therefore, the architecture proposed in this paper has

reduced offline and online computational requirements, while at the same time achieves
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very accurate results. The elaborated methodology is demonstrated on the stochastic
analysis of time-dependent PDEs, parametrized by the system’s random variables and

solved in the frame of the Monte Carlo method.

4.2 SURROGATE MODELING USING CONVOLUTIONAL AUTOENCODERS

Consider the modeling of a parametrized physical system governed by partial differential

equations:

QELO) L N (e 1:0)) = Sl 1:60), weO1e[0.7],0€0
B(u(x,t;0) =b(x,t;0), xecdtel0,T],0c0O (4.1)

G(u(x,0;0) =c(x;0), =xcIN0cO

where u (x,t; 0) is the field of interest, N is a general differential operator that involves
spatial derivatives, and f(x,t;0) is a source field. Furthermore, % is the operator for
the boundary conditions defined on the boundary 0f2 of the domain 2, € is the operator
for the initial conditions at ¢ = 0 and 8 € O is a vector of uncertain parameters that
include randomness in the system parameters, loading or boundary conditions.

The discrete solution to the above set of equations for a given parameter value @ can
be obtained through the semidiscrete Galerkin method. Specifically, the spatial part
of the solution is obtained through the FE method on a discrete space ¥}, spanned by
basis functions ;(x), i = 1,2, ...,d, with d being the number of degrees of freedom. To
take into account the time-dependence, temporal derivatives are approximated by finite

differences. Thus, the FE solutions uy, are expressed as:

d
n(x;0,t) Zuhet wi(x) (4.2)
i=1

with uy,(0,t) € R? being the expansion coefficient vector at time ¢ for a given parameter
value 0. Then, the complete time-history response of the system is given by Uy (0) =
{un(0,t1), -+ ,un(0,ty,)} € RNt where N; is the number of time increments in the
temporal discretization. A detailed exposition on the implementation aspects of the
finite element method is outside the scope of this work, however, the interested reader is
referred to the classic textbooks [242, 22].
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To quantify the probabilistic characteristics of the solution in eq. (4.1) the most
versatile approach is the brute force Monte Carlo (MC) simulation. In this setting,
a large number, Njsc, of parameter realizations {Bj}jy: M¢ is generated according to
their joint probability distribution and the corresponding PDEs are solved with the FE
method in order to obtain an accurate estimate of the system’s stochastic behaviour.
Namely, for a set of parameter values, the PDEs are discretized as described above and
the corresponding linear system of equations is solved at each time step either directly
or iteratively. Then, the system responses are statistically processed to extract the
probabilistic characteristics of the response. A graphical representation of the problem
statement is presented in figure 4.1. Evidently, MC analysis of this type is associated with
increased computational requirements, especially when handling large - scale problems
where the computational cost for each model run may range from several minutes to

several hours.

Problem Statement

1. Define problem's 2. Solve with 3. Statistical
parameters FEM model response analysis
Nic points
6’1: /
1
Nic points

: FEM MODEL
= fd&

Niic points

Figure 4.1: Problem Statement

To alleviate this computational burden, a surrogate modeling approach is proposed
herein based on the powerful dimensionality reduction capabilities of CAEs. To this
purpose, the PDEs are solved with the classic FE procedure for a small, yet sufficient
number, N, of parameter values in order to obtain a data set of time history matrices
{Ui}fil. It is very important at this stage to span the parametric space of the problem
in an efficient manner, which will lead to an efficient exploration of the parametric
space and, hence, the solution space. This approach will ensure that the surrogate

performs well even at ”unseen” parameter values and no extrapolation will be required.
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Furthermore, it is worth mentioning that the training data does not suffer from noise
or any other inconsistencies as they are accurate solutions obtained by the FE model.
However, the amount of data, that is the amount of initial model evaluations, required
to train the surrogate can be considerable in certain applications, in order to attain
maximum accuracy of the surrogate. The CAE (encoder and decoder) is trained over this
data set minimizing the reconstruction mean square error. The encoded representation
of each time history solution matrix U; is a low dimensional vector z; € R! (I << d),
which allows a FFNN to be trained accurately and efficiently in order to construct a
mapping between the PDE’s parametric space and the encoded solution space. It should
be mentioned that the optimal architecture and hyperparameters of the CAE and FFNN
are typically obtained via a trial and error procedure, also employed in this work. To
tackle the problem of overfitting the standard Hold-out approach was exploited. The
data sets were randomly divided into train and test subsets using a ratio of 80%-20%
and each network’s performance on the testing data set was assessed in order to avoid
overfitting.

After the training phase is completed, the proposed surrogate scheme works as follows.
For a new input parameter vector, the encoded vector representation of the time history
solution matrix is calculated by the FFNN and, subsequently, the entire time history
matrix is delivered by the CAE’s decoder. This way a large number of MC simulations
can be performed at minimum computational cost. With this approach we will be in a
position to draw conclusions about the model’s behavior and derive accurate estimates of
quantities of engineering interest such as, for instance, statistics of displacements, stresses
etc. Even though in principle a surrogate can never output the ’exact’ values of these
quantities, nevertheless, the numerical examples in the following section will demonstrate
that the elaborated scheme is capable of producing highly accurate approximations with
negligible computational cost.

The implementation steps of the proposed approach can be divided into two phases,

namely the offline and the online phase, and these are the following;:

Offline phase

Step 1: Generate N vectors of parameter values 8; € R" with ¢ = 1,2,....N
according to their probability distribution and solve the corresponding time-
dependent PDEs with the FEM procedure. Collect the solutions in a three-

dimensional array N x d x Ny , where d is the number of degrees of freedom and
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N; the number of time increments.

Step 2: Train a CAE over the N time history solutions matrices U; € RNt
collected in step 1, to obtain the encoded low dimensional vector representations

z; € R! of these matrices along with the reconstruction map.

Step &8: Train a FFNN to establish a mapping from the parametric space 8; to

the low dimensional encoded space z;.

Steps 1-3 of the offline phase are illustrated in fig. 5.2.

Online phase

Step 1: For Njrc new realizations of parameter vectors 8; with j =1,2,..., Nyc,
generated from the same joint probability distribution, use the trained FFNN to

obtain the encoded vector representations of the solution matrices, z;.

Step 2: The CAE’s decoder is used to produce the solution matrices U ; based on

their encoded representations z; in the previous step.

Steps 1 and 2 of the online phase are schematically represented in fig. 5.3.
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Figure 4.2: Offline phase of the proposed surrogate modeling method
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Figure 4.3: Online phase of the proposed surrogate modeling method

4.3 NUMERICAL TESTS

We first implement the proposed methodology in the academic case of the 1-D non-linear
Burgers’ equation, in order to illustrate its applicability. The efficiency and accuracy of
the method are assessed subsequently on a structural problem governed by the equations

of 2D linear elasticity.

4.3.1 BURGERS’ EQUATION

Burgers’ equation is occurring in many fields of engineering and applied mechanics,
such as fluid mechanics [18] and non-linear acoustics [138]. It is a convection-diffusion

non-linear PDE of the following form:

L
ot
where u = u(x, t) is the velocity field of the fluid, Vu is its gradient and v is the fluid’s

Vu-u=vViu (4.3)
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viscosity. For simplicity we choose to demonstrate the 1-D version of equation (4.3)

which may be written as:

ou, ou_ P

ot Oz 0z

The initial conditions were taken as u(x,0) = —sin(mx) with € [—1,1] and the
boundary conditions u(+1,¢) = 0 with ¢ € [0,5]. It is well know that, as v — 0 the

solution exhibits steep gradients as time evolves, while as v — 1 it becomes smoother. In

(4.4)

this model, v is considered a random variable following the uniform distribution between
[0,1] to include all possible trends of the solution. In order to obtain exact solutions of
eq. (4.4), a finite difference scheme is employed in both time and space domains, using a
time step of At = 0.0505 sec and spatial discretization Az = 0.0101 m, leading to 100
and 200 time and spatial points, respectively. Numerical convergence studies indicated
that the chosen spatio-temporal discretization is capable of providing highly accurate
solutions to the PDE.

As explained in the previous section, the first step to apply the proposed surrogate
modeling scheme is the generation of a sufficient number of training samples. To
this purpose, Burgers’ equation is solved numerically for N = 100 values of v within
the range [0,1]. Subsequently, these solution snapshots are stored in a 3-D matrix
S = [U1,Uy,...,U ] € RI00X200x100 " where U; € R290X100 ig the velocity matrix of the
i-th solution of equation (4.4). Then, a CAE is trained over this data set for 2000 epochs
with learning rate equal to le-4 and a batch size of 16. An adaptive moment optimizer
(Adam) [119] is utilized for the loss minimization, with the loss function being the mean

square error of eq. (5.15).
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Figure 4.4: CAE architecture for the solution of Burgers' equation

After CAE’s training phase, an encoded data matrix S¢ = [z, 29, ..., 2] is obtained,
where each column z; is the 8 x 1 latent vector representation of the solution matrix
U;. The proposed CAE’s architecture is presented in figure 4.4 and it consists of a
total of 372,624 trainable parameters. The corresponding CAE architecture with 2-D
convolutional and 2-D pooling layers would have required 1,483,024, which leads to a
reduction of x3.98 in the network’s trainable parameters. The final step of the training
procedure is the training of the FFNN in order to establish the mapping from the
problem’s parameters v; to the encoded vector representations z;. As shown in table
5.1, the network’s architecture consists of 4 hidden layers with 32 nodes per layer. The
ReLU activation function [159] is used in each node, while the Adam optimizer is utilized
again to minimize the mean square error loss function. The FFNN was trained for 30000

epochs with a learning rate of le-4.
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Layer Nodes | Activation
Input 1 -

Hidden 1 | 32 ReLLU
Hidden 2 | 32 ReLU
Hidden 3 | 32 ReLU
Hidden 4 | 32 ReLU
Output 8 -

Table 4.1: FFNN architecture for the solution of Burgers' equation

The CAE-FFNN model accuracy is tested on the solutions for the values of v = 0.2, 0.8
that were not included in the initial training data set and compared with those predicted
by the finite differences model. Figures 4.5 and 4.7 present the total solution field,
while figures 4.6 and 4.8 illustrate the solution profiles for specific time steps. From
these results it can be observed that the predictions of the proposed surrogate model
are almost identical to those of the exact solution. The normalized error between the
solution matrices Upp and Ugygr of the finite differences model and the surrogate
model, respectively, given by érr = |[Upp — Usvurll2/||UFpll2, with || - ||2 being the Lo

matrix norm, was found equal to 1.23% for the case of v = 0.2 and 0.53% for v = 0.8.

t(sec) t(sec)

(a) exact model (b) surrogate model

Figure 4.5: Solution profile u(z,t) for v = 0.2 predicted by (a) the exact model and (b) the
surrogate model
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Figure 4.7: Solution profile u(z,t) for v = 0.8 predicted by (a) the exact model and (b) the

surrogate model
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Figure 4.8: Solution profiles u(x,t) at specific time instants for v = 0.8

Subsequently, in the context of the MC analysis, Nj;c = 3000 values of v ~ U[0, 1]
are generated according to their distribution and the corresponding PDEs are solved
by the exact and the surrogate model, respectively. The mean value and variance of
u(z,t) obtained by the two models are depicted in figures 4.9 and 4.11, respectively,
while figures 4.10 and 4.12 present a comparison between the two models in the mean
value and the variance of u(x,t) at specific time instants. As evidenced by these results,
the surrogate and the exact model are in very close agreement. The normalized error
between the mean solution matrices M gpp and M gy was found equal to 0.96%, while

the same error for the variance matrices V gp and Vgyr was 2.54%.
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Figure 4.9: Mean value of u(x,t) predicted by (a) the exact model and (b) the surrogate model
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Figure 4.10: Mean value of u(z,t) at specific time instants
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Figure 4.11: Variance of u(z,t) predicted by (a) the exact model and (b) the surrogate model
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Figure 4.12: Variance of u(x,t) at specific time instants
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To further test the method’s interpolation capabilities, a significantly larger number
of MC simulations are performed, in order to acquire the probability density function
(PDF) of u(z,t). Specifically, Nyrc = 300000 simulations are carried out by the two
models and the results pertaining to the positions x = —0.5075 m and x = 0.5075 m at
t = 2.4747 sec are depicted in figure 4.13. It becomes apparent from this figure that the

surrogate model is able to predict the PDF of u(x,t) with satisfactory accuracy.

x = —0.5075 m, t = 2.4747 sec x = 0.5075 m, t = 2.4747 sec

—surrogate surrogate
- - —exact - = =exact

u(m/sec) u(m/sec)
(a) (b)

Figure 4.13: PDF of u(z,t) predicted by the exact model and the surrogate model

Finally, a convergence study with respect to the dimension of the latent vectors and
the size of the initial data set is presented in figure 5.13. The average normalized error

is defined as:

N . A
oo & fHU%D_AU?SURH (4.5)
Nuo = 1U%p]

where U{m p and U{?U r are the solution matrices of the j-th MC simulation obtained by

the ’exact’ model and the surrogate model, respectively.
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Figure 4.14: Mean error € with respect to (a) the latent space dimension and (b) the initial model
evaluations

From these results, it becomes apparent that the proposed CAE based surrogate model
is capable of delivering very accurate predictions even with a small number of training
samples. It should be mentioned that a selection of a higher dimensional latent vector
representation reduces the amount of information lost in the decoding process, thus
is linked to improved accuracy. Subsequently, as the initial data set size increases a

reduced mean error € is achieved and converges close to the value €y, ~ 0.01.

4.3.2 COUPLED SHEAR WALLS UNDER SEISMIC LOADING

A transient plane stress structural problem is considered as the second test example.

The problem is governed by the equations of motion of 2-D linear elasticity:

9 FE g Ouy % B Ouz2

210 Tt aa—ae\ar "oy ) TP T (46)
) E 0 (0u, Ou o)

) T aa—ay\ae oy ) TP T P (47)

where u, = uz(x,y,t) and uy = uy(x,y,t) are the displacement fields, E is the modulus
of elasticity, v is the Poisson ratio, p is the material’s mass density and p, and p, are

the body forces.
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Figure 4.15: Geometry and finite element meshing of the coupled shear walls

Specifically, the three-story reinforced concrete coupled shear walls of figure 4.15 are
subjected to a seismic loading, that of the accelerogram of 1972 Kefalonia earthquake
[31] (figure 5.15) with a total duration of 6.00 sec. The Poisson ratio is assumed v = 0.2,
the mass density of the wall is taken as p = 2500 kg/m3, the thickness of the wall is
considered 7 = 1 m, while body forces p, and p, are assumed zero. The Young moduli
FEh, E5 and Fj of each story are considered to be uncorrelated random variables following
the log-normal distribution with mean value p = 30 GPa and standard deviation
o = 0.25u = 7.5 GPa. This phenomenon occurs in reinforced concrete structures,
where the construction of each story is initiated several days after the completion of the
previous story so that the concrete achieves at least 95% of its design strength capacity.
As a consequence, the concrete mixture used in each construction phase is different,
which justifies the lack of correlation in the random variables describing the mechanical
properties of each storey. The selection of the log-normal distribution with such a high

value for the standard deviation o is purely for academic purposes in order to illustrate
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the capabilities of the proposed method.
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Figure 4.16: Acceleration data of the selected ground motion

The ’exact’ solutions of the problem are obtained by solving eq. (4.6) and (4.7) with
the FE method using plane stress elements. More specifically, the walls are spatially
discretized with 876 quadrilateral elements, while for the time discretization the Newmark
integration scheme [158] is applied with time step size At = 0.01 sec, leading to a total of
1966 degrees of freedom and 600 time steps for the spatial and time domain, respectively.
This particular spatio-temporal discretization is the result of a convergence study, which
ensured that the numerical solutions of the PDE will be of high accuracy.

An efficient exploration of the parametric space will result in capturing almost all
possible response variations and, consequently, it will ensure the surrogate’s performance.
To this end, N = 500 triplets of parameters {[E%, Ei, Ei]} Y | are generated with the aid of
Latin Hybercube Sampling [160]. The normalization process of the parameters in this case,
is the min-max normalization [171]. For each triplet of parameters, the corresponding
dynamic problem is solved with the above mentioned numerical procedure and the
solution matrices are stored in a 3D matrix S = [Uy,Us, ...., U ] € R900x1966x600,

A CAE is subsequently trained over this data set for 500 epochs with a learning rate of
le-4 and a batch size of 8. The mean square reconstruction error of U; is minimized again
by the Adam optimizer. The proposed CAE’s architecture is presented in figure 5.18 and
it contains 11,871,670 trainable parameters. The corresponding 2-D CAE architecture
would have required 43,234,230, which lead to a reduction of x3.64 in the network’s
trainable parameters. An encoded 64 x 500 training matrix S¢ = [z1, 22, ..., 2n] is then

obtained via the encoder, where each column z; is the 64 x 1 latent vector representation
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of the solution time history matrix U;. The above encoded training matrix S¢ along
with the stored parameter triplets {[E?, E%, E4]}Y, from the previous step are used
as outputs and inputs, respectively, in the training process of the FFNN in order to
construct a mapping from the parametric to the encoded solution space. The FFNN is
trained for 10000 epochs with learning rate le-4 and a batch size of 100. The selected

architecture is shown in table 5.3.
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Figure 4.17: CAE architecture for the solution of the structural dynamic problem

Layer Nodes | Activation

Input 3 -
Hidden 1 | 256 ReLU
Hidden 2 | 256 ReLU
Hidden 3 | 256 ReLU
Hidden 4 | 256 ReLU
Hidden 5 | 256 ReLU
Hidden 6 | 256 ReLU
Output 64 -

Table 4.2: FFNN architecture for the solution of the structural dynamic problem

In order to test the surrogate’s generalization capabilities to 'unseen’ parameter
values, a random triplet of parameters that was not included in the training data set,
[En, B9, E3] = [18.66,27.02,21.65] GPa is selected. Figures 4.18 and 4.19 present contour
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plots for the displacement fields u, and u, of the whole structure at ¢ = 4.00 sec,
predicted by the exact and the surrogate model, respectively, while figure 4.20 depicts
a comparison between the exact and the surrogate model in the displacements u, and
u, of the monitored nodes 1 through 3 (see figure 4.15). From these results it can be
observed that the predictions obtained by the surrogate model are in a near perfect
match with those of the exact model. The normalized error between the solution matrices
Urgpy and Ugpr of the FE method and the surrogate model, respectively, given by
err = HUFEM — USURHQ/HUFEMHQ, was found equal to 1.53%.

t = 4.00 sec %1073 t = 4.00 sec %107
6 6
5 5
6 6
—_ 4 Py 4
£ £
> 3 = 3
3 . 3 5
1 1
0 0 0 0
0 1 2 3 4 0 1 2 3 4
z(m) z(m)
(a) exact model (b) surrogate model

Figure 4.18: u, at ¢t = 4.00 sec predicted by (a) the exact model and (b) the surrogate model
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Figure 4.19: u, at t = 4.00 sec predicted by (a) the exact model and (b) the surrogate model
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Figure 4.20: Displacements u, and u, of monitored nodes predicted by the exact and the surrogate
model

Subsequently, Njy;c = 3000 triplets {[E{ ,Eg ,Eé]};vzj‘{c are generated according to
the above described log-normal distribution and an MC analysis is performed for both
the exact and the surrogate model. Figure 4.21 depicts contour plots for the mean
value of u, at t = 4.00 sec predicted by the two models, while figure 4.22 shows the
same contour plots for the mean value of u,. In addition, figures 4.23 and 4.24 display
the variance contours of these displacement fields. Furthermore, figures 4.25 and 4.26
display a comparison between the two models in the mean value and the variance of the
displacements u, and u, of the monitored nodes 1 through 3. Again, the predictions
obtained by the proposed CAE-FFNN model are in very close agreement with those
computed by the FEM model. The normalized error between the mean solution matrices
Mpgy and Mgyg is equal to 0.62%, while the same error for the variance matrices
Vreym and Vsyg is 1.37%.
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Figure 4.21: Mean value of u, at t = 4.00 sec predicted by (a) the exact model and (b) the
surrogate model
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Figure 4.22: Mean value of u, at t = 4.00 sec predicted by (a) the exact model and (b) the
surrogate model
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Figure 4.23: Variance of u, at t = 4.00 sec predicted by (a) the exact model and (b) the surrogate
model
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Figure 4.24: Variance of u, at t = 4.00 sec predicted by (a) the exact model and (b) the surrogate
model
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Figure 4.25: Mean u, and u, of monitored nodes predicted by the exact and the surrogate model
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Figure 4.26: Variance of u, and u, of monitored nodes predicted by the exact and the surrogate
model

Furthermore, in figure 5.29 a convergence study with respect to the dimension of the
latent vectors and the initial data set size is provided. The average normalized error & of
the 3000 MC simulations is given by:
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with U 13; e U g;U r being the solution matrices of the j-th MC simulation obtained by
the FEM and the surrogate model, respectively.
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Figure 4.27: Mean error € with respect to (a) the latent space dimension and (b) the initial model
evaluations

These results indicate that a choice of a higher dimensional latent vector representation
leads to improved accuracy, as in the previous example. Furthermore, the average
error € decreases as the initial data set size increases and converges close to the value
€lim ~ 0.03. It is worth mentioning that an optimized set of hyperparameters (latent
vector dimension, number of hidden layers, learning rate, etc.) or a different architecture
of the CAE and the FFNN could potentially further reduce the value of €, but the
accuracy achieved for N = 500 samples is already deemed adequate for the purposes of
this analysis.

Regarding the computational cost, the results are very promising. Specifically, one
MC simulation required an average of 21.12 sec to complete with the exact model, while
it only needed 0.26 sec with the surrogate model, which translates to a speed up of
x81.23. This drastic computational cost reduction is the outcome of the ’simulation
free’ approach of the proposed novel method that eliminates the need of formulating

and solving multiple linear systems of equations during the solution procedure of each
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simulation and is expected to be even greater as the problem’s dimensionality increases.
In general, training deep CAEs is a computationally expensive task that requires a good
GPU to be available. In this case, the training of the CAE and the FFNN was performed
using the GPU version of the Tensorflow framework [3] on an NVIDIA GeForce GTX
TITAN X GPU, while all online computations and the initial full model evaluations
were performed on an Intel® CORE™ -i7 X 980 CPU. Figure 5.30a illustrates the
computational costs required by the FE model and the CAE-FFNN model to complete
the 3000 MC simulations. This figure also displays the offline computational cost for
training the surrogate and how it was allocated. In particular, the cost for obtaining
the 500 initial solutions was 10560 sec, the training of the CAE required 4970 sec and
the training of the FFNN 211 sec. The cost of the 3000 online simulations was only 780
sec, which led to a total cost for the surrogate of 16521 sec. On the other hand, the full
model MC simulations required 63360 sec, almost 4 times that of the surrogate.
Finally, the tested surrogate model is utilized to perform Njp;c = 500000 simulations
in order to calculate the time evolution of the probability density function (PDF) of the
displacements u, and u, of the monitored node 3. These results are presented in figure
4.29. Needless to say, that this analysis would be infeasible without using the proposed
surrogate method. In particular, the FE model would have required approximately 122
days to complete the MC simulation, while the surrogate model required only 40.7 hours,
including the offline computational cost. This remarkable decrease in computational
cost is equivalent to a speed up of x81.10. A comparison between the two models is

schematically represented in figure 4.28b.
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Figure 4.28: Comparison of computational cost between the surrogate and the exact model
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Figure 4.29: Time evolution of PDF for the displacements (a) u, and (b) u, of the monitored node
3

4.4 CONCLUSIONS

This paper presents a novel surrogate modeling method based on CAEs in conjunction
with FFNNs, aimed at accelerating the solution of parametrized time-dependent PDEs.
Using a reduced set of system solutions as training data set, the CAE provides a low-
dimensional representation of this high-dimensional data set through its encoder, as well
as the inverse map through its decoder. Next, a FFNN is trained to map points from the
problem’s parametric space to the encoded solution space and the decoder map is used
to reconstruct the system solutions to their original dimension. By composing the FFNN
with the decoder, a ’simulation-free’ approach is established to obtain the complete
system solutions at very low cost, rendering this approach ideal for problems requiring
multiple model evaluations or ’on-the-fly’ calculations. The method is demonstrated on
the solution of time-dependent stochastic PDEs, parametrized by random variables, in
the context of the Monte Carlo simulation. The results of the numerical investigation
indicated the powerful dimensionality reduction and reconstruction capabilities of the
CAE and along with the FFNN, a highly accurate and cheap surrogate for systems de-
scribed by PDEs, is developed. Future investigations are focused towards the application

of the method to more complex non-linear PDEs.
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Machine Learning Accelerated Transient
Analysis of Stochastic Nonlinear

Structures

5.1 INTRODUCTION

Deterministic structural dynamics has been extensively studied over the past decades
and managed to provide engineers with valuable insight about the behavior of structures
under dynamic excitation. In this regard, great efforts have been made towards making
the computational models agree with the physical systems, including the development of
mathematical and numerical methodologies to take into account the nonlinear structural
behavior, both geometric and material. In practice, however, exact values of the
parameters and the external loads needed in dynamic analysis are usually unknown and
instead only statistical properties are available. This fact necessitates the reformulation of
the problem in a stochastic setting, capable of producing the probabilistic characteristics
of the response, rather than deterministic values.

In the field of the stochastic finite element methods, there exists a variety of methods
for performing stochastic structural analysis on linear systems, including the direct

Monte Carlo simulation (MCS) [198] and its variants (i.e. importance sampling [189],
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line sampling [123], subset simulation [14]), the random perturbation method [120],
orthogonal polynomials expansion method [80, 224, 143, 68] and the probability density
evolution method (PDEM) [133, 46, 164, 44]. However, when turning our focus to the
nonlinear case, most of the aforementioned methods face significant difficulties to predict
the stochastic nonlinear response in an accurate and efficient manner. For instance,
polynomial chaos expansions require specific formulations for problems with material
and geometric nonlinearity [5, 11, 191, 165]. The Monte Carlo simulation method,
despite being the most versatile approach and straightforwardly applied to non-linear
dynamic problems, yet, the large number of simulations it requires to achieve statistical
convergence in conjunction with the cost of performing a single model simulation, renders
this method impractical. PDEM overcomes the requirement of the excessive number
of simulations and has been successfully employed for stochastic response analysis of
nonlinear systems [45, 228, 28, 113, 134]. However, for detailed finite element models
with many degrees of freedom (dof), this method is still very computationally demanding,
since for the evaluation of the evolution of the probability density function for every dof
of the structure, it needs to solve a large number of advection-type partial differential
equations.

In light of the above, and owing to the recent advances in the field of machine learning,
a new methodology has emerged for stochastic problems, which combines the general
applicability of the MCS along with the powerful approximation properties of neural
networks. The idea is to develop a surrogate model, also known as metamodel, that will
mimic the system’s input-output relation with high accuracy and low cost and can be used
for repeated model evaluations. This approach can been found in numerous works when
dealing with small systems or when focusing on specific quantities of interest [167, 81].
On the other hand, as the dimensionality of the system’s input and/or output increases,
the predictive capabilities of the surrogate drastically deteriorate due to the curse of
dimensionality. To bypass this problem, the use of dimensionality reduction methods has
been proposed in order to compress the input and/or output of the problem, which would
facilitate the development of a more accurate metamodel. For instance, in several works
[110, 95, 169] principal orthogonal decomposition (POD) was employed to compress
the high-dimensional system responses and feed forward Neural Networks (FFNNs)
were trained to output the low-dimensional projection coefficients of the reduced basis
model. Similar ideas have been pursued in [86] and in [223, 61] using Gaussian Process

Regression and radial basis function interpolation, respectively, for the interpolation
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scheme instead of FFNNs.

Over the recent years, nonlinear manifold learning methods, such as Kernel PCA
[241], Hessian eigenmaps [233], Laplacian eigenmaps [25], diffusion maps [54], etc. have
gained more attention over linear dimensionality reduction methods. This is due to the
fact that they are better able to provide meaningful low-dimensional representations
of the data set than their linear counterparts and have already found applications in
non-intrusive surrogate modeling [129, 122, 114, 115]. However, the main disadvantage
of nonlinear manifold learning methods stems from the fact that they do not provide
an analytic relation for decoding the compressed data back to their high-dimensional
representations in the original space. This problem is known in the literature as the
pre-image problem and several elaborate interpolation schemes have been employed to
address it, including the geometric harmonics [55] and Laplacian pyramids [35].

To remedy this problem, a powerful new concept in machine learning has emerged,
namely that of Autoencoders [139] (AE). An AE is a specific type of an unsupervised
neural network that learns how to efficiently encode data and then learns how to decode
them, that is, to map them from their encoded representation to a representation
as close to the original input as possible. An extension of ordinary AEs are the so
called Convolutional Autoencoders (CAEs), which have been developed primarily for
spatial field data compression but have proven particularly useful in several applications
dealing with high-dimensional data sets. Particularly in the field of computational
mechanics, CAEs have already been exploited as a means of encoding and decoding the
high-dimensional solution data sets arising in the numerical solution of complex PDEs
[112, 77, 226].

In a recent work done by the authors [157], CAEs in conjuction with FFNNs were
used in order to deliver a non-intrusive surrogate modeling strategy for parametrized
time-dependent PDEs. The present work builds upon this framework and focuses its
application on the more challenging problem of nonlinear transient analysis of stochastic
structural problems. In this setting, an initial set of full model evaluations is performed
for a small number of parameter values and the solution time-history matrices are
stored to serve as the training data set. These matrices are further subdivided into
submatrices according to the dof type, that is, six solution time-history submatrices
for 3D structures corresponding to the three translational and three rotational dofs.
Then, a separate CAE is trained over the corresponding submatrices of each dof type

in order to obtain a low-dimensional vector representation through its encoder and a
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reconstruction map by the decoder. Subsequently, a different FFNN is trained to map
points from the parametric space to the latent space given by each encoder, which can
be further mapped to the actual, high-dimensional, system response by the associated
decoder mapping. Even though this classification of the solution time-history matrices
according to the dof type increases the offline cost of the methodology, yet, it leads to
significant improvements on the surrogate’s prediction capabilities, since it is better able
to capture the specific functional behavior of the time-histories of each dof type.

The elaborated methodology is demonstrated on the stochastic nonlinear transient
analysis of single and multi degree of freedom structural systems, where it is shown to
achieve remarkably fast and accurate evaluations of the complete system’s response. This
is a direct consequence of the non-intrusive nature of the surrogate, which bypasses the
need to serially formulate and solve the governing equations of the system at each time
increment, as well as the Newton-Raphson iterations, typically required by FEM methods
for nonlinear problems. This property renders the method ideal for the acceleration of
MCS in the context of uncertainty quantification and reliability analysis, however, it
can be straightforwardly applied to other similar problem types, which require multiple

model evaluations, such as optimization and sensitivity analysis.

5.2 PROBLEM STATEMENT

The equations of motion of a parametrized inelastic multistory building that contains d

degrees of freedom are expressed as follows:

M(0)ii(t; 0) + C(0)u(t; ) + £, (u, i; ) = —M(0)iiy(t; 0) (5.1)

where M(60) and C(0) are the d x d system’s mass and damping matrix, respectively,
fs(u, 0; ) is the inelastic restoring force vector, ii4(t; @) is the ground motion acceleration,
1=[1,1,.., 1]T and 0 is the vector of all random parameters in the system, including
material properties, excitation, etc.

In the deterministic setting, that is in the absence of random parameters @, equation
5.1 is typically solved using Direct Time Integration Analysis [53]. The nonlinearity in
eq. 5.1 comes from the inelastic restoring force term fs(u, ), which, in the general case,
involves the physical behaviour of nonlinear materials as well as large deformations, and

is given by
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fs(u, ) :/V[B(u)]TU(e)dV (5.2)

at each stage of the computations. B is the appropriate strain-displacement matrix
which is a function of the displacements for large deformation problems and o is the
nonlinear stress. In order for the displacements and stresses to satisfy fully the nonlinear
conditions of the problem, it is necessary to perform a sequence of Newton-Raphson
iterations at each time-step of the time integrator. To illustrate the solution process,

starting from the known solution at time ¢, the solution at time ¢ + At reads

Miiyny + Citpnr + (£)esar = —Miiig (£ + At) (5.3)

while the nonlinear restoring force at time t + At is calculated by the expression:

(£)as = / BY, 0,0 (€)esardV (5.4)
14

with the constitutive law defined as o = h(e€) for a specified function h. The prediction

of (fs)i+a¢ is commonly obtained by linearization using the tangent stiffness method:

(f)rae = (£5): + [K(u)]:0u (5.5)

where [K(u)]; is the tangential stiffness matrix evaluated from conditions at time ¢
and du = wgyar — ug. Substituting eq. (5.5) to eq. (5.3), the linearized version of the

equations of motion is expressed in the form:

Miif, p, + Cltf, o, + [K(u)]i6u’ = —Miiig(t + At) — (£)i A, (5.6)

Sup,n = (5uf;jrlAt +AuY i=1,2,.. (5.7)

where the superscript ¢ denotes the equilibrium iteration. The solution of eq. (5.6) is a
very computationally demanding process due to the number of time steps in the time
integrator along with the Newton-Raphson iterations required to achieve convergence at
each time step.

Returning to the stochastic problem of eq. (5.1), the aim in this case is to quantify the
probabilistic characteristics of the solution u(t;@). The most popular approach for this

purpose is the crude Monte Carlo simulation (MCS), due to its ease of implementation
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and general applicability. In the context of MCS, a large number, Nys¢, of parameter

realizations {0, ;V:A{c is generated according to their joint probability distribution and
the corresponding structural problems are solved in order to obtain an accurate estimate
of the system’s behaviour. Then, the system responses are statistically processed to

extract the probabilistic characteristics of the response:

N
i(t) = Elu(t: )] = -~ u(t;6;)
w(t) = Efut0) = 3 2 (5:)
Covlu(t;0)] = E [(u t;:0) —u(t)) (u(t; 0) —a(t)” (5.9)
5.10)
(higher moments) (5.11)

5.3 SURROGATE MODELING STRATEGY

From the previous section, it becomes apparent that MC analysis of nonlinear dynamic
systems is associated with increased computational requirements, especially when dealing
with large - scale finite element models, where the cost of each model run may range from
several minutes to several hours. To alleviate this computational burden, a surrogate
modeling approach is proposed herein based on the powerful nonlinear dimensionality
reduction capabilities of CAEs. This section revisits the basics of CAEs, while for a
detailed description the interested reader is referred to [157].

Let X be a subset of R™*"2 with & € X denoting an element of the set. Then, the

CAE’s encoder and decoder are defined as the transition maps ¢, 1 such that:

¢: X CRMX™  H C Rhixk (5.12)
¢ H C R 4 X € Ruxm2 (5.13)
¢ = argmin | X — (¢ o ¢) X || (5.14)

with the dimensions [; and Iy typically being much smaller than n; and ne, respectively.
In general, the encoder ¢ may consist of the composition of convolutional layers, pooling

layers, flatten layers, reshaping layers and dense layers, while the decoder of deconvolu-
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tional layers, unpooling layers, dense layers, etc. The parameters associated with each of
these layers are obtained after solving the minimization problem of (5.14).

The first step of the proposed surrogate modeling technique is to obtain ‘exact’
solutions of the system, which will constitute the training data set. To this purpose,
the problem is solved with an appropriate numerical method, for a small yet sufficient
number, N, of parameter values in order to obtain a data set of time history matrices
(or just vectors for single degree of freedom systems) {U;}Y |, with U; € R>Ne g
being the number of dofs in the system and N; the number of time steps in the time
integrator. The next step is to subdivide the solution matrices U; into submatrices
according to the dof type. For instance, for 3D structural problems, there are three
translational dofs ug,u,,u, and three rotational r.,r,,r.. By making the associations
Uy > 1,uy <> 2,...,7, <> 6, the initial data set {U;}Y, can be broken down into six
separate data sets {Ugl)}f\il, R {UEG) N |, one for each dof type, where Ugj) € R/6xNe,
This part is important because different dof types usually exhibit quite dissimilar time
histories and this would put a lot of strain for a single surrogate to accurately capture
them all.

Next, a separate CAE (encoder and decoder) is trained over each data set so as to

minimize the reconstruction mean square error:
. 1 N ) y
¢V =30 TP =16 (5.15)
=1

where Ul(.j ) refers to the system solution matrix of the j-th dof type corresponding to

)

the i-th realization of the random vector 8 and ﬁgﬂ is its reconstructed counterpart

obtained by the CAE. A schematic representation of a general CAE is presented in
()
i

low dimensional vector z\”) € R! (I << d/6 x Ni), which allows a feed forward Neural

i

figure 5.1. The encoded representation of each time history solution matrix U;” is a

Network (FFNN) to be trained accurately and efficiently in order to construct a mapping

between the problem’s parametric space and the encoded solution space.
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Figure 5.1: Schematic representation of a Convolutional Autoencoder

Despite the fact that the dataset contains 2-D time history solution matrices, our
investigation indicated that in terms of performance, the optimal CAE’s architecture
is based on 1-D convolutional and deconvolutional filters. Specifically, the spatial and
the temporal dimensionality reduction of the data matrix is achieved simultaneously by
applying these filters only on the time axis, with stride s > 1. This way, the proposed
approach has reduced offline and online computational requirements, as it reduces
drastically the number of the network’s trainable parameters when compared with the
standard 2-D filters, while at the same time achieves very accurate results.

After the training phase is completed the proposed surrogate scheme works as follows.
For a new input parameter vector, the encoded vector representation of the time history
solution matrix is calculated for each type of dof by the corresponding FFNN and,
subsequently, the entire time history matrix is delivered by each CAFE’s decoder. This
way a large number of MC simulations can be performed afterwards at a minimum
computational cost. The implementation steps of the proposed approach can be di-

vided into two phases, namely the offline and the online phase, and these are the following;:

Offline phase

Step 1: Generate N vectors of parameter values 0; € R" with ¢ = 1,2,....IN
according to their probability distribution and solve the corresponding problems
numerically. Collect the solutions in three-dimensional arrays N x (d/p) x Ny, one
for each dof type, where d is the number of degrees of freedom, p the number of

dof types in the problem and N; the number of time increments.

Step 2: Train p CAEs over the IV time history solutions matrices UZ(-j ) ¢ R/ P)xNe

j =1,...,p collected in step 1, to obtain the encoded low dimensional vector
(9)

representations z;”” € R! of these matrices along with the reconstruction map.
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Step 3: Train p FFNNSs to establish a mapping from the parametric space 6; to

the low dimensional encoded spaces z( 7 ,j=1,.

Steps 1-3 of the offline phase are illustrated in fig. 5.2.

Online phase

Step 1: For Njsc new realizations of parameter vectors 0; with i = 1,2, ....Ny¢,

generated from the same joint probability distribution, use the trained FFNNs to
()

obtain the encoded vector representations z;”’ of the solution matrices.

Step 2: Each CAE’s decoder is used to produce the solution matrices UZ(-j ) based

(4)

on their encoded representations z;”” in the previous step.

Steps 1 and 2 of the online phase are schematically represented in fig. 5.3.

(1) c R(dfp)x Ny

#; ¢ R" V<UO e ]Rd/p)xm
17) R(d/P)x Ny
Step 2: Tram CAEs
CAE" CAE®

FFNN"

.\. O 77 ”.«.;;
(1) Ce 0, . Do f : zl@)
L 4

Figure 5.2: Offline phase of the proposed surrogate modeling method
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Figure 5.3: Online phase of the proposed surrogate modeling method

5.4 NUMERICAL TESTS

We first implement the proposed methodology in the academic case of a single degree of
freedom (SDOF) nonlinear oscillator, in order to illustrate the implementation steps.
The efficiency of the method is tested afterwards on a nonlinear time history analysis of

a steel building including both material and geometrical nonlinearities.

5.4.1 NONLINEAR SDOF OSCILLATOR

The nonlinear SDOF oscilator of figure 5.4 is governed by the following ordinary differ-

ential equation of motion.

Pu du
merg oo+ fs = p(t) (5.16)

u = u(t) is the displacement, m is the system’s mass, ¢ is the damping coefficient, p(t) is
the external load applied to the oscillator and fs = k(u)u is the inelastic restoring force,

with k(u) being the oscillator’s stiffness. Specifically, the model is a damped mass-spring
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with a nonlinear relationship between the restoring force fs and the displacement u(t)
that yields at 36 kN. The elastoplastic behaviour is displayed at figure 5.5 and is given
by:

18u (kN), u < 2em
fs(u) = (5.17)
36 (EN), u > 2cm

d%u du

g a0

’—Du

k(u)

QA

() ()

Figure 5.4: Nonlinear SDOF oscillator
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Figure 5.5: Restoring force hysteresis loop

The external load p(t) applied to the oscillator is a sine pulse with a total duration of

4.00 seconds and is expressed as:
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o(t) = posin(wt), t € [0,3) (5.18)
0, t €[3,4]

where pg = 50 kN is the pulse width and w is the angular frequency of the pulse. The
angular frequency is considered as a random variable following the uniform distribution
between [, 27]. Figure 5.6 depicts the external force p(t) for w = 7 and 27. Furthermore,
the system’s mass is also regarded as a random variable following the lognormal distri-
bution with mean value p = 0.456 kNs?/cm and standard deviation o = 0.20p = 0.0912
kNs?/cm.

p (kN)

Figure 5.6: External load p(t) for (a) w = 7 and (b) w = 27

As explained in the previous section, the first step to apply the proposed surrogate
modeling scheme is the generation of a small yet sufficient number of training samples.
To this purpose, the nonlinear SDOF oscillator system is solved numerically for N = 250
values of the parameters {w;, mz}f\il according to the their corresponding probability
distributions. The numerical algorithm used to obtain ‘exact’ solutions involves the
Newmark-beta method [53] and the Newton-Raphson algorithm [34]. The selected time
step size is dt = 0.01 s, leading to Ny = 400 total time steps. Subsequently, these
solution snapshots are stored in a matrix [uy, ug, ..., uy] € R¥V*Nt where u; € RM is
the displacement vector of the i-th solution of the system.

Then, a CAE is trained over this data set for 3000 epochs with learning rate equal to
le-4 and a batch size of 16. An adaptive moment optimizer (Adam) [119] is utilized for

the loss minimization, with the loss function being the mean square error of eq. (5.15).
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After CAE’s training phase, an encoded data matrix [z1, 29, ..., zy]| is obtained, where
each column z; is the ¢ dimensional compressed version of the solution vector u;. In
this case, the size of the latent space is set to € = 8. The selected CAE’s architecture is
presented in figure 5.7. The final step of the training procedure is the training of the
FFNN in order to establish the mapping from the problem’s parameters (w;, m;) to the
encoded vector representations z;. As shown in table 5.1, the network’s architecture
consists of 4 hidden layers with 64 nodes per layer. The leaky ReLU activation function
[225] is being used in each node, while the Adam optimizer is again utilized to minimize
the mean square error loss function. The FFNN was trained for 20000 epochs with

learning rate le-4.

Encoder
Conv-1D Conv-1D Conv-1D Conv-1D
% Filters = 8 M| Filters=8 o| Filters=8 w| Filters=38 Flatten Dense
Stride = 2 O| Stride=2 O Sstride=2 O stride =2 Leaky ReLU
Leaky RelLU Leaky RelU Leaky ReLU | 8 | Leaky ReLU
8
= Latent space q—H
Decoder
Deconv-1D Deconv-1D Deconv-1D Deconv-1D
§l= Filters = 1 N Filters = 8 = Filters =8 | Filters=8 .
Stride = 2 6| Stride =2 6 Stride =2 S Stride=2 | _ Leaky ReLU
Leaky RelLU Leaky ReLU Leaky RelLU
8

Figure 5.7: CAE architecture for the solution of the nonlinear SDOF oscillator
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of the random parameters that were not included in the initial training data set and
compared with those predicted by the ‘exact’ model. Figures 5.8 and 5.9 present the
displacement u(t) of the SDOF oscillator for different parameter values (w,m). From
these results it can be seen that the predictions of the proposed surrogate model are
almost identical to those of the exact solution. The normalized error between the solution
matrices U, and wg,, of the ‘exact’ model and the surrogate model, respectively, given

by err = ||ter — Usur||2/ || Wez||2, With || - |2 being the Lo norm, was found to be less than

Layer Nodes | Activation
Input 2 -

Hidden 1 | 64 Leaky ReLLU
Hidden 2 | 64 Leaky ReLU
Hidden 3 | 64 Leaky ReLLU
Hidden 4 | 64 Leaky ReLLU
Output 8 -

Table 5.1: FFNN architecture for the solution of the nonlinear SDOF oscillator

1.00% for these four cases.
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Figure 5.9: u(t) for different values of the angular frequency w and the system’s mass m

Subsequently, in the context of the MC analysis, Ny;c = 3000 parameter values are
generated according to their distribution and the corresponding PDEs are solved by
the ‘exact’ and the surrogate model, respectively. The mean value and variance of u(t)
obtained by the two models are depicted in figure 5.10. As evidenced by these results, the
surrogate and the exact model are in perfect agreement. The normalized error between

the mean solution vectors of the exact and the surrogate model was equal to 0.49%,

while the same error for the variance vectors was 0.51%.

8 T T i 30
= = Exact
6h ——Surrogate | | 25+

mean u(cm)

5¢ — — Exact
——Surrogate

(a) Mean value of u(t) (b) Variance of u(t)

Figure 5.10: Mean value and variance of u(t) for 3000 MC simulations
To further assess the method’s predictive capabilities, a significantly larger number of
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MC simulations are carried out, in order to obtain the time evolution of the probability
density function (PDF) of u(t). In particular, Nj;e = 200000 simulations are performed
on the two models and the results are presented in figure 5.11. Also, figure 5.12 provides
a comparison between the PDFs obtained by the surrogate and the exact model at time
instants t = 2 sec and t = 3 sec. As evidenced by these figures, the surrogate model is

able to predict the time evolution of the PDF of u(t) with satisfactory accuracy.

(a) Exact model (b) Surrogate model
Figure 5.11: Time evolution of the PDF of u(t) predicted by the exact model and the surrogate
model
t=2.00s t=3.00s
0.25 ‘ ; ‘ 0.15 ‘ w
—Exact —Exact
0.2 - - ~Surrogate - - -Surrogate
017
=, 0.15¢ o
a a
~ ~
0.1r
0.057
0.05r
0 0
u(em) u(cm)
(a) PDF for t = 2.00 s (b) PDF for t = 3.00 s

Figure 5.12: PDF for specific time instants predicted by the exact and the surrogate model

Finally, a convergence study with respect to the dimension of the latent vectors and
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the size of the initial data set is presented in figure 5.13. The average normalized error

is defined as:

(5.19)

Nye
e — 1 Z Huex,i - usur,i”
N 2= ued]

where ug;; and ugy,,; are the solution time-histories (vectors) of the i-th MC simulation

obtained by the exact model and the surrogate model, respectively.
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Figure 5.13: Mean error € with respect to (a) the latent vector dimension ¢ and (b) the initial
model evaluations NV

From these results, it becomes apparent that the proposed CAE based surrogate model
is capable of delivering very accurate predictions even when a small number of training
samples are used. It should be remarked that a selection of a higher dimensional latent
vector representation reduces the amount of information compromised in the decoding
process, which improves the quality of the surrogate’s predictions. In addition, as the
initial data set size increases a decrease in the mean error e can be attained, reaching
values less than 1.00%.

5.4.2 NONLINEAR TIME HISTORY ANALYSIS OF STEEL BUILDING

The structural problem of the five-story steel building of figure 5.14 is considered as
the second test case. Each story has a height of h = 3.00 m, a span in the z-axis equal

to I, = 6.00 m, while the corresponding span for the y-axis is also [, = 6.00 m. The
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column and beam sections are HEB280 and TPE240, respectively, while the steel quality
is S275. The structure consists of 145 beam and column elements and 72 nodes. Each
story is subjected to a dead load g = 8 kN/m?, including the floor’s self mass and a live
load ¢ =5 kN/m?. The damping matrix of the system is calculated via the Rayleigh

method as:

D=oK+a M (5.20)

where D is the damping matrix, K is the stiffness matrix and M is the mass matrix.
The Rayleigh coeflicients ap and «; are calculated by the first two periods of the system
Ty, Ty and their damping ratios (1, (2, that were considered equal to 5.00% for both

periods.

Monitored node

Figure 5.14: Structural model in SAP2000

The problem is parametrized by three uncorrelated random variables. The first
parameter is the modulus of elasticity F, which is considered a random variable following
the lognormal distribution with mean value pg = 200 GPa and standard deviation
op = 0.20p4 = 40 GPa. The second one is the material’s yield stress F, which is treated
as another random variable, also following the lognormal distribution with mean value
pr, = 275 M Pa and standard deviation o, = 0.10p = 27.5 M Pa. The third random

variable is related to the excitation. In particular, the ground motion used for the
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analysis is based on the accelerograms of the 1975 Imperial Valley earthquake obtained
by two different recording stations (USGS 5056, USGS 5115) as displayed in figure 5.15.
The ground motion acceleration i, considered for the numerical analysis is calculated by
a random superposition of the two recorded acceleration data, multiplied by a constant

scale factor SF.

iig = SF x (aiigr + (1 — a)iig2) (5.21)

where 41 and 42 are the acceleration data from the recording stations USGS 5056
and 5115, respectively, and SF = 2.50. The superposition coefficient « is considered a

random variable following the uniform distribution in the range [0, 1].

distribution mean standard deviation
E | lognornal 200 GPa | 40 GPa

F, | lognormal 275 M Pa | 27.5 M Pa
o

uniform [0, 1]

Table 5.2: random parameters of the problem

100 f ‘ ‘ : : ] 400 ‘ | : :
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-200 ¢
-100 ¢
‘ ‘ ‘ ‘ ‘ -400 ‘ ‘ ‘ ‘
10 20 30 40 50 0 10 20 30 40 50
t(s) t(s)
(a) Station USGS 5056 (b) Station USGS 5115

Figure 5.15: Imperial Valley earthquake ground motion acceleration

The structure is subjected to seismic loading acting diagonally on the z — y plane

and a nonlinear time history analysis is performed for each set of parameter values in
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order to obtain the system’s response. The software selected for this task is SAP2000
[Computers and Structures Inc.], developed by Computers and Structures Inc., due to
the advanced capabilities it offers for dynamic nonlinear analysis of large-scale FE
structural systems. In this frame, its predictions are regarded as the ‘exact’ ones, upon
which the surrogate will be later trained. The selected methodology for the Time History
Analysis in SAP2000 is Direct Time Integration with the Newmark method. The time
step size is set to dt = 0.02 s, thus the accelerograms contain N; = 2400 total time steps.
The exact solutions of the problem are obtained by performing a series of nonlinear time
history analyses for different parameter values in SAP2000. In order to automate this
process, a customized MATLAB-SAP2000 API is developed, which allows the generation
of a single MATLAB script that schedules the desired number of SAP2000 simulations for
creating the training and the testing samples. The SAP2000 model consists of Ny,c. = 60
free nodes and Nyzeq = 12 fixed nodes. Each node contains 3 translational (ug, y, u,)
and 3 rotational (ry,7y,7,) degrees of freedom (dofs), thus the total dofs are equal to
d = 360. Furthermore, the model takes into account geometrical nonlinearities such as
P — § effects plus large displacements. The material’s stress - strain law is nonlinear
and is depicted in figure 5.16 for F,, = 275 M Pa.

x10°

25r

Stress (kN/m?)
o

251

5 ‘ ‘ ‘ ‘ ‘ ‘ ‘
-02 -015 -0.1 -0.05 0 0.05 01 015 0.2
Strain (m/m)

Figure 5.16: Material's stress - strain plot for F,, = 275 M Pa

In order to capture the plastic deformation of the structure, plastic hinges have been
assigned to the start and end node of each beam and column element. In particular,
the hinge type of the beam elements is a deformation controlled ‘Moment M3’ hinge,
while an ‘Interacting P-M2-M3’ has been selected for the columns according to ASCE
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41-13 [2]. The moment - rotation diagrams for the defined plastic hinges are displayed
in figure 5.17.

1r '/I—e @ 17
5
05 =08/
< =
g of o 206+
g Z
= 05 1 g 041 1
g
a6 ! | S 0.2 | Rotation SF = 0.0053 L o——
Moment SF = 129.75 = F:=841.38 kN
. ‘ ! _ Rotation SF = 0.0126 0f ©  angle=45 ! ‘ N
15 -10 -5 0 5 10 15 0 2 4 6 8
Rotation/SF Rotation/SF
(a) Moment 'M3' hinge (b) Interacting 'P-M2-M3’ hinge
Figure 5.17: Moment - rotation curves of the defined plastic hinges
For spanning efficiently the parametric space, N = 400 triplets of parameters

{[E:, Fyi, ci] } Y., are generated according to their probability distributions using the latin
hypercube sampling method [160]. This step is instrumental to the performance of the
proposed methodology since an efficient exploration of the parametric space will result
in capturing almost all possible response variations and, consequently, it will ensure the
surrogate’s accuracy. Next, for each triplet of parameters, the corresponding problem is
solved by SAP2000 and the solution matrix of each type of dof is stored in the respective
3D matrix [Ugj),Ugj), ....,U%)] € RNXNtXN}Jr)ee, where j = 1,...,6 refers to the type of

dof (ug, uy, Uz, 1y, 7y, 1) and NY) is the number of free dofs of j type. As mentioned,

ree
in order to acquire more accurage results, a separate surrogate model is trained for each
type of dof. This plays an essential part in the surrogate’s accuracy since each dof type
exhibits its own transient behaviour. In this investigation, the same CAE architecture
(see figure 5.18) is considered for each dof type and the training was performed for 1000

epochs with learning rate le-4 and a batch size of 8.
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Encoder
Conv-1D Conv-1D Conv-1D Conv-1D
ﬁ Filters = 64 F; Filters = 32 "’ Filters = 16 H Filters = 8 Flatten ; Dense
S stride=2 8| stride =2 & Stride=2 D Stride = 2 e S|Leaky ReLU
Leaky ReLU Leaky RelLU Leaky ReLU Leaky ReLU
64
60
Latentspace <—E|
Decoder
Deconv-1D Deconv-1D 1D 1D
Filters = 60 Filters = 64 g Filters = 32 g Filters = 16 Dense
o

00ZL

Stride = 2 Stride = 2

Leaky ReLU

Leaky ReLU

Stride = 2 S| Stride=2 | g
= Leaky ReLU _18 | Leaky ReLU

64

60

Figure 5.18: CAE architecture for the solution of the structural problem

The mean square reconstruction error of each UU), given by eq. (5.15), is minimized

29,29, .29,

j =1,...,6 is then obtained for each dof type via the respective encoder, where each

()
10)

matrix Ui

again by the Adam optimizer. An encoded N X ¢ training matrix
column z;”’ is the ¢ - dimensional latent vector representation of the solution time history
. In this example the latent vector dimension is set to ¢ = 64. The above
encoded training matrices Z7 along with the stored parameter triplets {[E;, F},;, ;] }¥,
from the previous step are used as inputs and outputs, respectively, in the training
process of the FFNNs in order to construct a mapping from the parametric to the
encoded solution spaces. Each FFNN is trained for 20000 epochs with learning rate le-4

and a batch size of 16. The selected architecture is shown in table 5.3.
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Layer Nodes | Activation

Input 3 -
Hidden 1 | 256 Leaky ReLU
Hidden 2 | 256 Leaky ReLLU
Hidden 3 | 256 Leaky ReLLU
Hidden 4 | 256 Leaky ReLU
Hidden 5 | 256 Leaky ReLU
Hidden 6 | 256 Leaky ReLU
Output 64 -

Table 5.3: FFNN architecture for the solution of the structural problem

To demonstrate the surrogate’s predictions to ‘unseen’ parameter values, a random
realization of parameters that was not included in the training data set, [E, Fy, a] =
[207.78 GPa,245.43 M Pa,0.0552] is selected. Figure 5.19 illustrates a comparison
between the exact and the surrogate model in the displacements u,(t) and u,(t) of the
monitored node (see figure 5.14), while figure 5.20 displays the same comparison for the
rotations r;(t) and r,(t). From these results it can be observed that the predictions
obtained by the surrogate model are in a near perfect match with those of the exact model
and, interestingly, the surrogate model is capable of capturing the plastic deformation

with satisfactory accuracy.

2r —— ~Exact 1 4t ——~Exact
Surrogate Surrogate
- - - Plastic Deformation - - -Plastic Deformation

—
—
uy(cm)

(a) ux(t) (b) uy(t)

Figure 5.19: Displacements u.(t) and uy(t) of the monitored node
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Figure 5.20: Rotations r,(t) and 7,(¢) of the monitored node

In order to better demonstrate the surrogate’s accuracy on samples that are considered
to be ‘rare’ events and hence, difficult for it to capture the corresponding structural
responses, figures 5.21, 5.22, 5.23 and 5.24 are included. These figures display a compari-
son on the surrogate’s predictions of the monitored node with the exact ones for specific
parameter values from the lower probability regions of their respective probability density

functions. As evidenced by these results, the surrogate model is capable of capturing
these responses with high accuracy.
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—Surrogate

B 5°

3 So
5 5

0 20 40 0 20 40 0 20 40
t(s) £(s) t(s)
(a) (b) (c) (d)
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233.75 M Pa,ao=0.0 233.75 MPa,aa=1.0 316.25 MPa,aa=0.0 316.25 MPa,aa=1.0

Figure 5.21: Displacement u,(t) of the monitored node for different parameter values
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Figure 5.22: Displacement u,(t) of the monitored node for different parameter values
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Figure 5.23: Rotation r,(¢) of the monitored node for different parameter values
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Figure 5.24: Rotation r,(t) of the monitored node for different parameter values

Subsequently, Nj;c = 3000 triplets {[Ej, Fy ;, aj]}j.v:ﬂﬁc are generated according their
distributions and a MC analysis is performed for both the exact and the surrogate model
Figures 5.25, 5.26, 5.27, 5.28 display a comparison between the two models in the mean

value and variance of the displacements u,(t) and u,(¢) and the rotations 7,(t) and
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1y (t) of the monitored node. These figures also illustrate the same statistical quantities
extracted from the training data set. Again, the predictions obtained by the proposed
CAE-FFNN model are in very close agreement with those computed by the FEM model.
In addition, it becomes evident that the training data set was insufficient to produce
good statistical estimates. The normalized errors between the exact and the surrogate
model in the mean solution matrices e,, and the variance matrices e, for each type of

dof are given in table 5.4.

Dof | e,(%) | e,(%)
w, | 164 |311
1.79 5.70
Ty 1.18 3.35
r, | 1.60 | 2.44

Table 5.4: Normalized errors between the mean solution matrices e,,, and the variance
matrices e,
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Figure 5.25: Mean value and variance of u,(t) of the monitored node
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Figure 5.27: Mean value and variance of r,(¢) of the monitored node
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Figure 5.28: Mean value and variance of ry(t) of the monitored node

Furthermore, in figure 5.29 a convergence study with respect to the dimension of the

latent vectors and the initial data set size is provided. The average normalized error € of

the 3000 MC simulations is given by:
Nuyc ||U(j) _U(j) I

) 1 . .

,(]) _ Z ex,t sur,? f - 1 6 5 22

€ . or j e (5.22)
Nuc & uld|

with Ugv{i, Ug}r,z’ being the solution matrices of the i-th MC simulation obtained by the

exact and the surrogate model, respectively, and j = 1,...,6 denotes the dof type.
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Figure 5.29: Mean error € with respect to (a) the latent vector dimension ¢ and (b) the initial
model evaluations N
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These results indicate that a choice of a higher dimensional latent vector representation
leads to improved accuracy, as in the previous example. Furthermore, the average error e
decreases as the initial data set size increases and converges bellow 4.30% for all dofs. It
is worth mentioning that an optimized set of hyperparameters (latent vector dimension,
number of hidden layers, learning rate, number of training epochs, etc.) or a different
architecture of the CAE and the FFNN could potentially further increase the surrogate’s
precision, but the accuracy achieved for N = 400 samples and ¢ = 64 is already deemed
adequate for the purposes of this analysis.

Regarding the computational cost, the results are very promising. Specifically, a MC
simulation required an average of 29.40 sec to complete in SAP2000, while it only needed
0.0078 sec with the surrogate model, which translates to a speed up of 3.77 x 103. This
remarkable decrease in computational cost is the outcome of the ‘simulation-free’ approach
of the proposed novel method that eliminates the need of formulating and solving the
nonlinear differential equation of motion (see eq. 5.1) during the solution procedure
of each simulation and is expected to be even greater as the problem’s dimensionality
increases. All computations were performed on a typical CPU environment (Intel®
CORE™ _i5 - 7500 CPU). Figure 5.30a illustrates the computational costs required by
the exact model and the CAE-FFNN model to complete the 3000 MC simulations. This
figure also displays the offline cost for training the surrogate and how it was allocated.
In particular, the cost for obtaining the 400 initial solutions was 11760 s, the training
of the CAEs required 13584 s and the training of the FFNNs 3756 s. The cost of the
3000 online simulations was only 23.4 s, which led to a total cost for the surrogate of
29123.40 s. On the other hand, the full model MC simulations required 88200 s, over 3
times that of the surrogate.

Finally, the tested surrogate model is utilized to perform Nj;c = 200000 simulations
in order to calculate the time evolution of the probability density function (PDF) of
the displacements u, and wu, and the rotations 7, and r, of the monitored node. These
results are presented in figures 5.31 and 5.32. Needless to say, that this analysis would be
infeasible without using the proposed surrogate method. In particular, SAP2000 would
have required approximately 68 days to complete the MC simulation, while the surrogate
model required only 5.25 hours, including the offline cost. This drastic decrease in
computational cost is equivalent to a speed up of 3.11 x 102. A comparison between the

computational costs of the two models is schematically represented in figure 5.30b.
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Figure 5.30: Comparison of computational cost between the surrogate and the exact model
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Figure 5.31: Time evolution of PDF for the displacements u, and w, of the monitored node

(a) ug
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(@) e (b) 7y

Figure 5.32: Time evolution of PDF for the rotations r, and 7, of the monitored node

5.5 CONCLUSIONS

This chapter presents a novel surrogate modeling method for nonlinear stochastic transient
analysis based on machine learning and, specifically, CAEs in conjunction with FFNNs.
The proposed scheme utilizes a reduced set of system solutions as its data set, which are
further subdivided into smaller data sets according to the structural dof type. Separate
CAEs are trained on these data sets in order to identify low-dimensional representations
through their encoders, as well as to establish the corresponding inverse maps through
their decoders. Then, FFNNs are trained to map points from the problem’s parametric
space to the encoded solution spaces and the decoder maps are used to reconstruct
the system solutions to their original dimension. By composing the FFNNs with the
decoders, a ‘simulation-free’ approach can be established to obtain the complete system
solutions at very low cost and high accuracy. The method is demonstrated on the simple
case of a stochastic SDOF oscillator as well as on a steel building with random material
properties and excitation, solved using Monte Carlo simulation. The results obtained

exhibit high accuracy and remarkable computational gains.
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Al-enhanced iterative solvers for
accelerating the solution of large-scale

parametrized systems

6.1 INTODUCTION

In recent days, the rapid advancements in the field of machine learning (ML) have
offered researchers new tools to tackle challenging problems in multi-query scenarios. For
instance, deep feedforward neural networks (FFNNs) have been successfully employed
to construct response surfaces of quantities of interest in complex problems [167, 166,
192, 98, 52]. Convolutional neural networks (CNNs) in conjuction with FFNNs have
been employed to predict the high-dimensional system response at different parameter
instances [156, 154, 227]. In addition, recurrent neural networks demonstrated great
potential in transient problems for propagating the state of the system forward in time
without the need of solving systems of equations [230, 109]. All these non-intrusive
approaches utilize a reduced set of system responses to build an emulator of the system’s
input-output relation for different parameter values. As such, they are particularly cheap
to evaluate and can be very accurate in certain cases. However, these methods can be

characterized as physics-agnostic in the sense that the derived solutions do not satisfy
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any physical laws. This problem is remedied to some extent from intrusive approaches
based on reduced basis methods, such as Principal Orthogonal Decomposition (POD)
[39, 236, 7] and proper Generalized Decomposition [50, 126, 125]. These methods rely on
the premise that a small set of appropriately selected basis vectors suffices to construct
a low-dimensional subspace of the system’s high-dimensional solution space and the
projection of the governing equations to this subspace will come at minimum error.
In addition, several recent works have investigated the combination of either linear or
nonlinear dimensionality reduction algorithms and non-intrusive interpolation schemes
to construct cheap emulators of complex systems [58, 188, 115, 67, 111, 216, 91, 130].
Nevertheless, none of these surrogate modelling schemes can guarantee convergence to
the exact solution of the problem.

In the effort to combine the best of two worlds, a newly emergent research direction
is that of enhancing linear algebra solvers with machine-learning algorithms. For
instance, POD has been successfully employed to truncate the augmented Krylov
subspace and retain only the high-energy modes [40] for efficiently solving sequences of
linear systems of equations characterized by varying right-hand sides and symmetric-
positive-definite matrices. In [92], neural networks were trained for predicting the
geometric location of constraints in the context of domain decomposition methods,
leading to enhanced algorithm robustness. Moreover, the close connection between
multigrid methods and CNNs has been studied in several recent works, which managed
to accelerate their convergence by providing data-driven smoothers [48], prolongation
and restriction operators [141].

The present work aims at bridging the gap between machine learning and linear algebra
algorithms for accelerating the solution of real-life computational mechanics problems
in multi-query scenarios. To this end, a novel strategy is proposed to utilize ML tools
in order to obtain system solutions within a prescribed accuracy threshold, with faster
convergence rates than conventional solvers. The proposed approach consists of two steps.
Initially, a reduced set of model evaluations is performed and the corresponding solutions
are used to establish an approximate mapping from the problem’s parametric space to
its solution space using a combination of deep FFNNs and CAEs. This mapping serves a
means of acquiring very accurate initial predictions of the system’s response to new query
points at negligible computational cost. The error in these predictions, however, may or
may not satisfy the prescribed accuracy threshold. Therefore, a second step is proposed

herein, which further utilizes the knowledge from the already available system solutions,
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in order to construct a data-driven iterative solver. This solver is inspired by the idea
of the Algebraic Multigrid method combined with Proper Orthogonal Decomposition,
termed POD-2G, that successively refines the initial prediction of the surrogate model

towards the exact system solutions with significantly faster convergence rates.

6.2 MACHINE LEARNING ACCELERATED ITERATIVE SOLVERS

6.2.1 PROBLEM STATEMENT

The aim in this section is to develop an efficient data-driven and Al-enhanced solver
parametrized systems, by combining linear algebra-based solvers with machine learning
algorithms. More specifically, the idea proposed herein, is to utilize a reduced set of
high-fidelity system solutions, obtained after solving the high-fidelity model for specified
parameter instances, in two different yet complementary ways. First, a surrogate model
will be established in the form of a ‘cheap-to-evaluate’ nonlinear mapping from the
problem’s parameter space to its solution space using convolutional neural networks
(CNNs) and feedforward neural networks (FFNNs). Even though CNNs and FFNNs have
been shown to produce astonishing results even for challenging applications [148, 227, 154],
nevertheless, their black-box and physics-agnostic nature doesn’t provide any means to
improve the solutions they produce. To combat this problem, POD is performed on
this data set of solutions and an efficient iterative solver is developed based on the idea
of AMG, where in this case the prolongation operator is substituted by the projection
matrix to the POD reduced space.

6.2.2 (CONSTRUCTION OF SURROGATE MODEL

As mentioned in the previous chapter, a surrogate model is an imitation of the original
high fidelity model and serves as a ’cheap’ mapping from the parametric space 8 € R"
to the solution space u € R%. In general, it is built upon an initial data set {ui},fil,
which is created by solving the problem for a small, yet sufficient number, N, of
parameter values. It is essential to span the problem’s parametric space effectively, thus
sophisticated sampling methods are often utilized, such as the Latin Hypercube [161].
Many surrogate modeling techniques have been introduced over the past years, including
linear [125, 236, 7] and nonlinear [156, 154, 115] dimensionality reduction methods.
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In general, the selection of an appropriate surrogate modelling method is problem
dependent, however, in this work, we will employ the surrogate modeling scheme that
was presented in the previous chapter and was introduced in [156] and consists of two
phases, namely the offline and the online phase. The offline phase begins with the
training of a CAE that consists of an encoder and a decoder, in order to obtain low
dimensional latent representations, z; € R! for each u; € R?, through the encoder with
[ <« d and a reconstruction map by the decoder. It is trained over the initial data set

{u;}Y, to minimize the objective function:

N
1 -
ZLoap = NZHUi—Ung (6.1)
=1

where ; is the reconstructed input. After the training is completed, the latent space
data set {z;}, is obtained. The second step of the offline phase is the training of the
FFNN, which is used to establish a nonlinear mapping from the parametric space 8 € R"
to the latent space z € R!. Again, the aim of the training is the minimization of the loss

function:

N
1 -
ZLFFNN = N Z |2 — Zill3 (6.2)
i=1

where z; is the network’s output.
Subsequently, the online phase utilizes the fully trained surrogate model, which is now
capable of delivering accurate predictions of the system’s response for new parameter

values 6; as follows:

u; = decoder(FFNN(0;)) := %°""(0;) (6.3)
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Figure 6.1: Schematic representation of the surrogate model

A schematic representation of the surrogate model is presented in figure 6.1.

6.2.3 MULTIGRID-INSPIRED POD SOLVER

POD, also known as Principal Component Analysis, is a powerful and effective approach
for data analysis and dimensionality reduction, aimed at indentifying low-order modes
of a system. In conjunction with the Galerkin projection procedure it is commonly

utilized as an efficient method to reduce the dimensionality of large linear systems
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of equations [178, 135, 177]. The theory and application of POD is covered in many
publications, however, to keep this paper as self-contained as possible the POD procedure
used within this framework is summarized below. Let us denote with U € R4V the
matrix consisting of N solution vectors [u1, ..., uy] for different parameter values {6;}
and with R = UUT € R?*? the correlation matrix. Then POD consists in the following
steps.

1. Compute the eigenvalues and eigenvectors of R that satisfy R® = ®A. This step
can be very demanding when d >> 1, however, in practice N < d and since R,
R” have the same non-zero eigenvalues, it is computationally more convenient to
solve instead the eigenvalue problem UTUW = WA. Then, the eigenvectors ®

and ¥ are linked according to the formula.

®=UTA /2 (6.4)

2. Form the reduced basis ®,., be retaining only the r first columns of ®, corresponding

to the largest eigenvalues.
3. Under the assumption that each solution to eq. (2.6) can be approximated as:
u = Pu, (6.5)

with u, € R" being the unknown coefficients of the projection on the truncated

POD basis, then the reduced-order linear system becomes:

Ku=f
O'K®,u, =oLf
K,u, = f, (6.6)

Solving equation (6.6) for u, is significantly easier since K, € R™*"  with r small.

4. Retrieve the solution to their original problem:

u=®,u, (6.7)
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Based on the above, a similarity between the 2-level AMG method and POD can
be observed, under the identification of ®, as the prolongation operator and @f the
corresponding restriction. Then, the PCG algorithm remains practically the same. In

this case, the error of the scheme is given by the formula

e® — M (I- @, (@] K®,)  ®TK) M el (6.8)

6.2.4 PROPOSED DATA-DRIVEN FRAMEWORK FOR PARAMETERIZED LINEAR
SYSTEMS

The final step is to combine the surrogate model of section 6.2.2 and the multigrid-
inspired POD solver of the previous section into a unified methodological framework for
solving efficiently large-scale parametrized linear systems. In particular, an initial data
set of system solutions {u;}Y , is performed for specified instances of the parameter
vector {0;}Y . Then, these solution vectors are utilized as training data for the CNN
and FFNN and the surrogate model is established. The error between the exact solution

and the surrogate’s prediction for a given 8 can be given as:

esu’r‘ — 'U,* _ %Sur(a) (69)

Despite one’s best efforts, however, ||e**"|| # 0 and the surrogate’s predictions will
not converge to the ’exact’ solution of the problem. At this point, instead of simply
performing iterations of PCG or AMG to improve the surrogate’s predictions, we propose
to further utilize the knowledge available to us from the data set of solution vectors, in
order to enhance the performance of these iterative solvers. In particular, we perform
POD to the solution matrix U = [uq, ..., uy], in order to obtain the projection matrix
<I>TT and apply the AMG method either directly, or as a preconditioner in the PCG

algorithm according to the following algorithm 3.
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Algorithm 3 AMG preconditioned PCG algorithm

1: Input: K € R rhs f € RY, AMG scheme, residual tolerance ¢ and an
initial approximation u(®

2: set k = 0, initial residual r©® = f — Ku®
3 89 = AMG(0; K, 7 1 1y)
5: while ||[r®)| < § do
W)
6: o = pTKp;
7: u(kJrl) — u(k) _|_ akpk
g ) = ¢k _ o, Kp,
9: Spp1 = AMG(0; K, r*+ r) ry)
. B (r(k+1))Tsk+1
10 /Bk’ - ('r’(k))Tsk

11: Dri1 = Skt+1 + BePy
12: k=k+1
13: end while

6.2.5 ERROR BOUNDS

The proposed methodology is data-driven and, as such, it is not possible to provide a
priori estimates of the error for general systems. Nevertheless, under the assumption
that the training data set U is ‘large’ enough to contain almost all possible variations of

the solution vector, then an estimate for the error can be provided as follows:

k) — ppr ( I-o, (®'K®,)" q>Z’K) M2et-1) —

le®| = | M7 (I -, (3TK®,)” <I>ZK> M2t =

< ||p2

‘ (1- @ (e7K®,)  o7K) Hanuue(’“)r (6.10)

In the above, || - || denotes the [2-vector norm, when the input is a vector, and the
induced operator norm (spectral norm) when the input is a matrix.

We can assume that M has a spectral radius p(M) < 1 and the GS algorithm
converges. This assumption is valid when K is symmetric positive definite, which is

commonly the case in engineering problems. Then, according to Gelfand’s formula, we
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have

p(M) = lim || M*|/* (6.11)

As a consequence, there is kg € N and v € (p(M),1) C (0,1) such that:

IMF|| < A%, Yk > ko (6.12)
Therefore, ||[M™ ||, ||M"|| < 1 for r1, 72 large enough.

Now, focusing on the term H (I —®, ((I'Z’Kq)qn)fl <I>;‘,FK> , then, by definition the

following holds:

(1-@ (@7K®,)  ®/K)| = suw
weR:|u)|=1

(1-@ (e/K®,) ®/K)u

(6.13)
Since a given u € R? can be decomposed as u = ®,u, + ul, with ®,u, € & and

ut € &+, where & = span {¢p1,....,,} and 1 its orthogonal complement in R?, then,

(I ~®, (®TK®,) " @ZK) u=u-&, (TK®,) 'K (@Tur n uL>
— ®u, +ut - @, (TKD,) 7K (®u +ut)
= ®,u, +ut — du, — &, (BTKSD,) T Ku"
—ul - ®, (®TK®,) T Ku" (6.14)

thus,

l

for some ¢ > 0. Due to the orthogonality of ®,u, and w', it follows that

<I — o, (®TK®,)”" @ZK) ul| < |I- @, (TK®,) " 87K |||jut] < c|u’]

(6.15)
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lut [ = [lul® — | @y =

lut | = V1~ [[@ru? <1 (6.16)

In fact, by choosing an appropriate number of eigenvectors r in POD, we can obtain

|lut|| < % and then, inequality (6.15) becomes

with C := C(u') and C € (0,1).
Inserting the inequalities (6.12) and (6.17) into (6.10), we have:

(I ~ %, (®TK®,) " <I>$K> ul| < C (6.17)

le®|| <4720y e V|, with 420y < 1 (6.18)

Applying the above inequality recursively, we conclude:

le®] < (=) () el
= (v"2)*C*(y) e (6.19)

The above inequality provides us with some valuable insight regarding the performance
of the proposed data-driven solver. Most importantly, we notice the critical role that
the surrogate’s predictions play in the convergence, since the error is bounded be

the surrogate’s error ||e®"||.

Even though this result agrees with common intuition,
nevertheless, being rigorously proven excludes the possibility of good initial predictions
requiring more iterations for the solution to converge. Secondly, by retaining more
eigenvectors to construct the reduced space ®, we reduce the norm of u € &, resulting
in faster convergence. In the following section, we test the solver on numerical applications

of scientific interest and assess its performance in comparison with conventional solvers.

6.3 NUMERICAL APPLICATIONS

The proposed methodology is tested on two large scale parametrized systems. The first
case is the indirect tensile strength (ITS) test, which is treated with the theory of 2D
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linear elasticity, while the second one is a 3D deformable porous medium problem, also

known as Biot problem.

6.3.1 INDIRECT TENSILE STRENGTH TEST

A popular test to measure the tensile strength of concrete or asphalt materials is the
ITS test. As shown in figure 6.2, the test contains a cylindrical specimen loaded across
its diameter to failure. The specimen is usually loaded at a constant deformation rate
and measuring the load response. When the developed tensile stress in the specimen
under loading exceeds its tensile strength then the specimen will fail. In this application,
we restrict our analysis to the linear regime and model the cylinder as a 2D disk under
plain strain assumptions, as shown in 6.2. In this case, the weak form of the problem
reads: Find v € 7 (Q) such that

/Qa('v)  €(w)dQ) = /Qf ~wdQ), Yw € V(Q)

o = Mr(e)l+ 2ue

(6.20)

where,

Co E”y] (6.21)

the strain tensor and f the loading. Also, p and A are the Lamé’s constants, which are

linked to the Young modulus E and the Poisson ratio according to equations (6.22):

E
2(1+v)
Ev
(I+v)(1-2v)

/J; =
(6.22)
A\ =
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Figure 6.2: ITS test: A diametrically point loaded disk

In this example, the specimen has a diameter of 150 mm and due to symmetry in
geometry and loading we only need to model one quarter of the disk, as illustrated in
figure 6.3. The solution of eq. (6.20) is obtained using a finite element mesh that consists
of triangular plane-strain finite elements with a total of d = 5656 dofs. The Young
modulus F and the load P are considered uncorrelated random variables following the
lognormal distribution as described in table 6.1. The Poisson ratio is considered to be a
constant parameter v = 0.3. Figure 6.3 displays the contour plot of the displacement

norm ||u|| for the mean value of the random parameters, that is £ = 2000 M Pa and

P =-1000 N.
Parameter | Distribution | Mean | Standard deviation
E(MPa) | Lognornal 2000 | 600
P(N) Lognormal | —1000 | 300

Table 6.1: Random parameters of the ITS test
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Figure 6.3: Displacement magnitude ||u|| for E = 2000 M Pa and P = —1000 N

The first step of the proposed procedure is to generate a sufficient number of offline
samples. To this purpose, the Latin Hybercube sampling method was utilized to generate
N = 200 parameter samples {[F;, P;]}},. Subsequently, the corresponding problems are
solved with the finite element method and the solution vectors obtained, {u;}Y,, are
regarded as ’exact’ solutions. Next, a surrogate model is trained over these solutions
in order to establish a ’cheap’ mapping from the parametric to solution space. The
methodology for the surrogate model is described in section 6.2.1. The details of the
selected CAE and FFNN architectures are presented in figure 6.4.

To tackle the problem of overfitting, the standard hold-out approach was employed.
In particular, the data set was randomly divided into train and validation subsets with a
ratio of 70%-30% and each network’s performance on the validation data set was assessed
in order to avoid overfitting. The CAE is trained for 40 epochs with a batch size of 10
and a learning rate of 0.0005, while the FFNN is trained for 3000 epochs with a batch
size of 20 and a learning rate of 0.0001. The average normalized Il norm error of the

surrogate model on the test data set is 0.54%.
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Figure 6.4: Surrogate model architecture

The second step is to form the POD basis ®, by performing eigendecomposition on
the correlation matrix UUT, with U = [u1,...,un] being the solution matrix. In this
case, the number of eigenvectors kept is r = 8, which correspond to over 99.99% of
the variance in the training data. Subsequently, when all components of the proposed
POD-2G solver are defined and fully trained, the methodology described in section 6.2.2
can be applied to obtain new system’s solutions for different parameter values.

In order to test the proposed POD-based solver, a number of Ny = 500 test
‘A;V:telst
corresponding problems were solved with the Ruge-Stiiben AMG solver for 2, 3 and 5
grids (termed AMG-2G, -3G, -5G respec.), as well as the proposed POD-2G solver for

different values of tolerance. The size of the system of equations at the coarsest level

parameter samples {[E}, P;]} were generated according to their distribution. The

for each of these solvers is given in table 6.2. The mean value of the CPU time and the
number of cycles required for convergence to the desired tolerance are displayed in figure
6.5 for the 3 AMG solvers and the proposed POD-2G with initial ©(®) = 0, as well as

w9 = wug,,, namely the solution delivered by the surrogate model.
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System Size
Initial Problem | 5656 x 5656
AMG-2G 1555 x 1555
AMG-3G 314 x 314
AMG-4G 80 x 80
AMG-5G 26 x 26
POD-2G 8§ x 8

Table 6.2: Size of the problem at the coarsest grid for the different solvers
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Figure 6.5: Comparison of mean CPU time and mean number of cycles over 500 analyses for

e=10"%e=10"°|e=10°%|e=10"" | e=10"8
AMG-2G (ul® = 0) x1 x1 x1 x1 x1
AMG-3G (u® =0) | x1.51 x1.39 x1.34 x1.31 x1.29
AMG-5G (ul® = 0) x1.12 x1.04 x1.00 x0.98 x0.96
POD-2G (ul® = 0) x6.90 x3.53 x2.81 x2.51 x2.34
POD-2G (ul® = u,,,) | x138.99 | x48.97 | x20.09 | x8.73 x5.51

Table 6.3: Computational speedup of different solvers compared to AMG-2G
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From figure 6.5, we notice that AMG-3G and AMG-5G require the same mean number
of cycles, which is slightly more than those AMG-2G needs to achieve the same tolerance,
yet, AMG-3G is the most efficient AMG scheme in terms of CPU time. This is because
the CPU time is affected by both the size of the coarse problem and the number of
times the prolongation/restriction operators are applied within a cycle. In this regard,
AMG-3G provides the optimal number of grids needed for this problem. However,
a significant improvement on both the speedup and the number of iterations can be
observed when applying the two POD solvers instead of the AMG solvers (see table 6.3).
This performance gain is increased with increasing tolerance e, reaching a speedup of
x6.90 and x138.99 for the POD solvers with ©(9) = 0 and u(® = wu,, for e = 107,
respectively. On the other hand, for smaller values of ¢ such as 1078, the speedup in
CPU time obtained with POD-2G with u(® = u,,, is x5.51, when compared with the
case of AMG-2G with u(?) = 0. Even though the gain achieved in this case is much
smaller than for the case of € = 1074, yet, it is still notable. Based on these results, the
conclusion is drawn that a key component of the proposed methodology is to obtain
a close estimation of the solution by the surrogate model, w0 = Ugyr Since an initial
solution w(®) from an accurately trained surrogate is capable of drastically reducing the
computational cost.

Furthermore, the convergence behaviour of the proposed method when used as a

preconditioner in the context of the PCG method is presented in figure 6.6 and table 6.4.
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Figure 6.6: Comparison of mean CPU time and mean number of PCG iterations over 500 analyses
for different preconditioners
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e=10"*e=10"°|e=10°%|e=10" | e=10"8
AMG-3G (ul® = 0) x1 x1 x1 x1 x1
POD-2G (u® = 0) 1.89 1.52 1.41 1.32 1.21
POD-2G (u® = uy,,) | 12.77 6.10 3.06 2.19 1.76

Table 6.4: Computational speedup of different preconditioners compared to the AMG-3G
preconditioner

Again, the results obtained proved that the proposed methodology is superior than
classic AMG preconditioners. In particular, for ¢ = 1074 and u(® = 0, a reduction of
computational cost of x1.89 is observed between the proposed method and the 3-grid
AMG. In addition, the initial solution delivered by the surrogate model, u(?) = gy, is
again a crucial factor of fast convergence, and can lead to a speedup of x12.77 for the
same case.

Finally, in order to highlight the computational gain of the proposed framework in the
context of the Monte Carlo method, Njy;c = 10° simulations are performed to determine
the probability density function (PDF) of the vertical displacement uZOp of the top node,
where the load P is applied. The calculated PDF is presented in figure 6.7a. Each
simulation is solved with PCG and two different preconditioners, namely the proposed
POD-2G method and a standard three grid Ruge-Stiiben AMG preconditioner. The
results are displayed in figure 6.7b and verify that the proposed method is superior to
classic AMG when dealing with parametrized systems. In particular, the conventional
method needed 21109 s to complete the 10° simulations, while the proposed data-driven
solver required 4013 s for the same task including the offline cost (initial simulations
and training of the surrogate model). This translates to a remarkable decrease in CPU
time of x5.26.
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Figure 6.7: PDF of ué”p for 10° MC simulations and comparison of computational cost.

6.3.2 BIOT PROBLEM - DEFORMABLE POROUS MEDIUM

Biot’s theory describes wave propagation in a porous saturated medium, i.e., a medium
made of a solid matrix, fully soaked with a fluid. Biot does not take into account the
microscopic level and assumes that continuum mechanics can be applied to measurable
macroscopic quantities [1]. Biot problem in weak form can be stated as: Find v €
V(Q;R3) and p € ¥ (;R) such that

/ o(v) : e(w)dQ) — / pA:e(w)dQ =0, Yw € V(%R

Q Q

/ qA : €(v)d +/ Vq-D (Vp)'dQ =0, VqeT.(4R) (6.23)
Q Q

o = Mtr(e) [+ 2ue

with A, D being the Biot coefficient tensor and diffusion tensor, respectively. In this
test case, the domain 2 is a cube and each side has a length of L = 1.00 m. Regarding
the boundary conditions, a pressure distribution p'/* := p|,—g = 1.0 M Pa is applied on
the left face of the cube along with a displacement load uy” = u,|,—; = 0.20 m on the
top face, while all displacements u,, u, and u, are restrained in the bottom face (z = 0).

The problem definition is presented in figure 6.8.
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=
Poex
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Figure 6.8: Geometry and boundary conditions of Biot problem

The finite element mesh contains 3-d hexa elements and the solution vector u € R?
consists of the nodal values of displacements and pressure, where in this case the total
number of dofs is d = 34839. The Lame’s constants p and A are considered uncorrelated
random variables following the lognormal distribution as described in table 6.5. The

Poisson ratio v is determined by:

A

V= oo <0 (6.24)

We further assumed that the Biot coefficient tensor A and D are constant, taking the

values:
0.13 0.13 0.13] 20 02 O
A=10.09 009 0.09], D=1]02 20 0 (6.25)
0 0 0 0 0 0.5

Parameter | Distribution | Mean | Standard deviation

w(MPa) | Lognornal | 0.30 | 0.09
A(MPa) | Lognormal | 1.70 | 0.51

Table 6.5: Random parameters of the Biot problem

113



(a) Displacement magnitude ||ul| (b) Pressure distribution p

Figure 6.9: Displacement magnitude ||u|| and pressure distribution p for A = 1.70 M Pa and
pn=0.30 MPa

Figure 6.8 also displays a contour plot of the magnitude of w and the pressure distribution
p for 4 =0.30 M Pa and A = 1.70 M Pa.

The first step of the proposed methodology is to create an initial solution space. To
this purpose, the Latin Hybercube sampling method was utilized to generate N = 300
parameter samples {[u;, \i]}2;. The next steps are similar with those of the previous
numerical example. The surrogate’s architecture is presented in figure 6.10. The CAE
is trained for 100 epochs with a batch size of 10 and a learning rate of 1073, while the
FFNN is trained for 5000 epochs with a batch size of 20 and a learning rate of 10~4. The

average normalized o norm error of the surrogate model in the test data set is 0.68%.

.| conv-1p Conv-10 Conv-1D Conv1D
&|_Filters=128 |o| Filters = 64 Filters = 32 Fiters = 16 Dense
@ stide=1 |5 Strde=1 Stride= 1 Stride = 1
Leaky ReL U Leaky ReLU Leaky ReLU || LeakyReLU

Parameter space
+

= Latent Space e eee - [*], Dense Dense Dense Dense Dense Dense Dense [
pas ) Teaky ReLU [*[Leaky ReLU M Leaky ReLU [* Leaky ReLU [ Leaky RelU [= Leaky ReLU
f

Deconv-1D Deconv-1D Deconv-1D DeconvAD
Filters = 34839 (2| Filters = 128 Filters = 64 Filters = 32 Dense
Stride = 1 Stride = 1 D Stride = 1 Stide=1 Leaky ReLU

Leaky RelLU Leaky RelLU Leaky RelLU

GERYE

Figure 6.10: Surrogate model architecture

As in the previous numerical example, a number of N = 500 parameter vectors
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{[uj,)\j]}j-v:”ft were generated according to their distribution and the corresponding
problems were solved with the proposed POD-based solver and different Ruge-Stiiben
AMG solvers, with the number of grids ranging from 2 to 6. The size of the system of
equations at the coarsest level for each of these solvers is presented in table 6.6. For this
example, 8 eigenvectors were retained in the POD expansion, as these were sufficient for

capturing 99.99% of the dataset’s variance.

System Size
Initial Problem | 34839 x 34839
AMG-2G 8625 x 8625
AMG-3G 1421 x 1421
AMG-4G 229 x 229
AMG-5G 47 x 47
AMG-6G 9x9
POD-2G 8 x 8

Table 6.6: Size of the problem at the coarsest grid for the different solvers

The mean value of the CPU time and the number of cycles required for convergence to
the desired number of tolerance are displayed in figure 6.11 and table 6.7. The results are
very promising in terms of computational cost. For instance, for ¢ = 1075 and u® = 0,
a reduction of computational cost of x7.32 is achieved when comparing the proposed
solver with the 3-grid AMG solver. Furthermore, obtaining an accurate initial solution

9) i3 again a very important component of the proposed framework. Specifically, by

(
u
considering u®) = uy,, instead of u® = 0 for ¢ = 107, an additional decrease in CPU

time of x4.31 can be achieved.
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Figure 6.11: Comparison of mean CPU time and mean number of cycles over 500 analyses for
different multigrid solvers

e=104e=107|e=10%|e=10" | e=10"8
AMG-3G (ul® = 0) x1 x1 x1 x1 x1
AMGC-5G (u® = 0) x0.97 x0.96 x0.96 x0.96 x0.96
(u®=0
0

AMG-6G (u® = 0) x0.97 x0.96 x0.96 x0.96 x0.96
POD-2G (u® = 0) x12.31 | x7.32 x4.89 x2.34 x1.77
POD-2G (u(® = u,,,) | x76.89 | x31.54 | x17.90 | x12.12 | x4.35

Table 6.7: Computational speedup of different solvers compared to AMG-3G

Furthermore, the convergence behaviour of the proposed method when used as a
preconditioner in the context of the PCG method is presented in figure 6.12. Again,
the results delivered by the proposed methodology showed its superior performance
not only over AMG preconditioners but also over ILU and Jacobi preconditioners. In
this case, for ¢ = 1075 and «(® = 0, a reduction of computational cost of x2.37 is
observed between the proposed method and the 3-grid AMG, of x1.63 with the ILU
and of x1.16 with the Jacobi. Last but not least, the initial solution delivered by the
surrogate model, u(®) = wug,,, managed to further reduce the computational time by
%2.12 when compared to POD-2G with u(9) = 0.
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Figure 6.12: Comparison of mean CPU time and mean number of PCG iterations over 500 analyses
for different preconditioners

e=10"*e=10"°|e=10°%|e=10"| =108
AMG-3G (ul® = 0) [x1 x1 x1 x1 x1
ILU (u® = 0) x1.38 x1.45 x1.61 x1.77 x2.63
Jacobi (u® = 0) x2.50 x2.04 x1.73 x1.85 x2.70
x POD-2G (u(® = 0) | x2.86 x2.37 x1.74 x1.86 x2.71
POD-2G (u(® = uy,,) | x8.88 x5.02 x3.98 x2.64 x3.55

Table 6.8: Computational speedup of different preconditioners compared to the AMG-3G
preconditioner

Finally, a Monte Carlo simulation is performed on this example as well, using Ny;c =
2 x 10° simulations to determine the PDF of the displacement magnitude ||u|| of the
monitored node (see figure 6.8). The calculated PDF is presented in figure 6.13a.
As in the previous example, each simulation is solved with PCG and two different
preconditioners, namely the proposed POD-2G and a standard three grid Ruge-Stiiben
AMG preconditioner. Again, the results obtained by the proposed methods demonstrate
a significant computational advantage over conventional preconditioners. In particular,
the Jacobi preconditioner needed 4.23 x 10° s to complete 2 x 10° simulations, while

the proposed data-driven solver required 1.75 x 10° s for the same task including the
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offline cost (initial simulations and training of the surrogate model). This translates to a
decrease in CPU time of x2.42.

4 7 x10°
I Training simulations
61 I CAE training
[IFFNN training
3r g I MC simulations (proposed method)
. 51 |EEEMC simulations (Jacobi preconditoner)
w
s g 4r
o2 £
D_ +
o 3r
o
O
1 27
1 L
0 |
0 05 1 15 0

Displacement magnitude ||u)|
(a) PDF of ||u|| at monitored dof (b) Comparison of computational cost

Figure 6.13: PDF of ||u|| at monitored dof for 2 x 10> MC simulations and comparison of
computational cost

6.4 CONCLUSIONS

The present work introduces a framework for accelerating the solution of parametrized
problems that require multiple model evaluations. The proposed framework consists
of two distinct yet complementary steps. The first step in the methodology is the
construction of a ‘cheap-to-evaluate’ metamodel using FFNNs and CAEs, trained over a
reduced set of high-fidelity system solutions. Despite giving very accurate predictions at
new parameter instances, these predictions are bound to exhibit some discrepancy with
respect to the actual system solutions since they are not constrained by any physical laws.
The second step in the methodology aims precisely at fixing this by proposing a data-
driven iterative solver, inspired by the AMG method, that will refine the metamodel’s
predictions until a prescribed level of accuracy has been attained. In particular, using
again the already available set of high-fidelity system solutions, POD is performed on this
set to identify the subspace that captures most of the variation in the system responses.
Next, a 2-level multigrid scheme is developed, termed POD-2G, using the projection
operator from POD as the prolongation operator. This scheme was tested on numerical
applications as a standalone solver, as well as a preconditioner to PCG, and in both cases,

its superior performance with respect to conventional iterative solvers was demonstrated.
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Extended physics informed neural
networks for parameter identification of

composite materials

7.1 INTRODUCTION

The field of machine learning has witnessed tremendous breakthroughs over the past
decades, becoming a pervasive technology in a wide range of applications, such as image
processing [90, 195], speech recognition [97, 151, 64], autonomous driving [85, 66] and
patient-specific healthcare [59, 69, 30]. To address the particular requirements of each
application, a variety of different neural network architectures emerged, including Deep
Neural Networks [131, 196], Convolutional Neural Networks [231, 217], Recurrent Neural
Networks [84, 197, 187], Autoencoders [19, 20] and Transformers [215, 49, 229]. Most of
these frameworks have also been employed in computational mechanics for the purposes
of predictive and data-driven modeling [155, 202, 33, 137]. Their ability to provide
accurate and cheap-to-evaluate surrogates of complex large-scale systems made them
an indispensable tool for challenging engineering problems such as partial differential
equations [157], uncertainty quantification [4] and Bayesian inference [173].

Recently, the Physics-Informed Neural Network (PINN) framework was introduced
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in the effort to incorporate physics into machine learning [174, 147, 65, 175, 132, 106].
Early works dating back in the 90s had already demonstrated the capabilities of neural
networks for modeling nonlinear dynamical systems [179], as well as for solving ordinary
and partial differential equations [127]. However, it was the recent work of Raissi et.
al [174], which managed to rekindle the scientific interest on the topic, by laying down
the fundamental principles of PINNs and demonstrating their powerful approximation
capabilities in the modern-day computing environments. From there on, PINNs have
been successfully applied in numerous applications, either to derive the solution (forward
problem) [174] or to infer the parameters (inverse problem) [82] of partial differential
equations (PDEs), as well as for solving stochastic [237, 47] and interval [78] PDEs, thus
providing a promising alternative to other conventional computational tools such as finite
element methods (FEM). The benefits of PINNs include the ease of implementation
and their ability to fuse computational models with experimental data, obtained from
simulations and/or measurements. Furthermore, advanced deep-learning platforms such
as Pytorch [170] and Tensorflow [3] provide massively parallel computing capabilities
and the deployment of PINNs in these open-source platforms leads to vast performance
improvements, rendering PINNs more efficient than conventional FEM solvers in certain
cases. Several variations of this framework involve Variational PINNs [116], Parareal
PINNs [145] and eXtended PINNs (XPINNs) [101].

In the field of computational mechanics, PINNs have been successfully employed
for inferring heterogeneous material properties in complex systems, such as the Lamé
parameters [79] and hyperelasticity parameters [238] in solid mechanics, as well as
permeability coefficients [234] in fluid mechanics. In addition, the application of PINNs
to heat transfer problems, which are focused in this work, has already been investigated
in a number of publications [37, 243]. The present work, however, differs from previous
approaches in the sense that the emphasis herein is put on developing a computational
framework for the estimation of the thermal resistance at an interface between two
materials, based on temperature measurements. Interface thermal resistance is an
important physical mechanism encountered in many situations of practical interest.
It affects heat flow from one material to another by posing a barrier to the flow and
leading to a temperature jump across the interface. This phenomenon was observed and
conceptualized by Kapitza [117, 209] who introduced a macroscopic parameter, known as
Kapitza thermal resistance, to model it. Despite its significant theoretical and practical

importance, experimental establishment of the Kapitza resistance is a difficult task due
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to its phenomenological nature and the fact that it is not a directly measurable quantity.
Some computational approaches, mostly relying on molecular structural mechanics
[205, 186], do exist, but they are associated with extreme computational demands.
The present work proposes a simple yet very efficient computational approach to
estimate the value of the Kapitza resistance at the interface between two materials,
utilizing the concept of PINNs and in particular that of XPINNs. Compared to PINNs,
XPINNSs offer great parallelization and representation capacity, as they enhance the
PINN methodology by employing a domain decomposition procedure [101, 199]. In each
of the induced subdomains, a separate PINN is applied with its complexity chosen in
accordance to the complexity of the solution at this specific subdomain. Using XPINNs
in our approach allows for implementing separate PINNs to solve the PDE of the heat
transfer problem at each individual material and then impose the heat flux continuity
equation at the interface of the materials as a constraint that both neural networks
have to satisfy. If, in addition a set of experimental measurements is given, such as
temperature values at the volume of the composite, which is easy to obtain in practice,
then our model can be trained to find the optimal value of the Kapitza resistance,
such that (i) the PDEs are accurately solved in the interior of each material, (ii) the
XPINN-predicted temperature values agree to the experimental ones at the specified
locations and (iii) the heat flux equation at the interface is satisfied. The choice of
XPINNs over PINNs in our setting is further justified by the existence of temperature
discontinuities in the problem’s domain, which is something that XPINNs are more
capable of capturing [105]. However, an associated drawback of XPINNs is the fact that
they involve a large number of hyperparameters that require fine tuning, in order to
achieve the desirable levels of accuracy. To address this problem in an efficient manner,
Bayesian hyperparameter optimisation using Gaussian Process regression [201, 83] is

employed herein.

7.2 EXTENDED PHYSICS-INFORMED NEURAL NETWORKS

The main advantage of PINNs is that they provide a mesh-free algorithm to approximate
PDEs conveniently using automatic differentiation (AD) and non-linear optimisation
techniques. However, they are subject to some considerable limitations. The most

notable ones are:

(i) Their large training cost. Training a PINN generally requires a large amount of
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time.

(ii) They have proved themselves to lack representation capacity for certain types of
problems (i.e. conservation laws, existence of gradient pathologies, etc.), being
unable to produce satisfying results without resorting to specialized network

architectures and implementations [218].

(iii) PINNs are not well-suited for capturing discontinuous solutions, since they consist

of a composition of continuous functions.

There are works proposing modifications to PINNs for successfully addressing these
issues, such as the clustering of collocation points around regions of discontinuities, in
order to approximate solution jumps with steep solution gradients [142]. However, a
more natural way to overcome some of these limitations can be found in the XPINN
framework. XPINNs utilise a domain decomposition approach and integrate it with the
PINN framework [101]. In particular, they divide €2 into subdomains {€2;},= Sd such that
Q= U 1 Qg and Q; N Q; =T, ¢ # j. Here, I';; is referred as the interface between Q;
and ), and is the common boundary between these two subdomains. Next, one PINN
is defined for each subdomain and is referred as sub-net. As a result, the loss function
of XPINNSs is defined subdomain-wise. The induced loss for the sub-net applied to a

subdomain §2,,, for the forward case, is given as:

Lin(©®) = Wy, MSE, (© m,{x%}%) +W;, MSE;, (© m,{x )y 4

N NFf (71)
Wr,, MSEuavq( m,{:l: } m)+WFf MSER(© mv{ml‘f} lm)

Here, the first two terms are similar to (3.16), but restricted to €2,,,. The third and fourth
terms consist of MSE

uavg @A M SER, respectively, which impose average solution and

residual continuity, accompanied by their corresponding weights Wr,, and W, . These
two terms, denoted as interface conditions, stitch together the induced subnets and
merge them into a global model, namely the XPINN. In fact, the subdomain loss has
the same structure as (3.16), but is enriched with the interface conditions to ensure
communication between sub-nets. Moreover, we can optionally accumulate any other
interface conditions that may be valid for the problem we wish to solve. The MSE for

each term is given by:
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Num 1 i 1 2
MSE,, (©,; {z) }14m) = > Jue,, () —uld] (7.2)
Um ;1
1 N, 5
i)\ N i
MSE;, (Omi{e, 121) = = 3 e (@) (7.3)
mo=1

Vm™+

Nr,,
i) N 1 i i
MS By (@i {21 K1) = 3 (NF Zu@m@%;wu@m(w%;»?), (74)

MSEp(@n: {2 1) = 3 | + er@ @)~ fo . @ |, (75

Vm+

Both MSER and MSE,

as mT. The average value of u at the interface is denoted as (ue,, (wl(fzn»

are defined for all neighbouring subdomains of m, denoted

avg

For the inverse case, where we seek to identify the PDE’s parameters 6, the loss for

the m-th subdomain can be written as

Lin(On, 0) = Wa,, MSE,, (0, 0; {a(l) 10 )+
Wy, MSEy, (O, 0; {z) }m)+

Wry, {MSEu,,, (O, 0: {a) }Nm) 1 (7.6)
MSEg(©p,0; {2 } 7)1+

Wr, MSER(®,,6; {2}

fm

where

MSEf, (©,,0; {x() }um) =

’nL

and
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Nr,,,

MSEp (©,0: (=) 117 )} = 3 | Z 0, ) — 0,4 (2] (7.8)

VYm+

The MSE for the other terms remains the same as (7.1). The MSEy enforces the
continuity of the value of @ on the interfaces.

The domain decomposition in the XPINN methodology results in great parallelization
and representation capacity. Using prior knowledge of the behavior of a PDE, we can
apply models with varying representation power to each of its induced subdomains,
in the sense that different network designs can be assigned to each of the problem’s
subdomains. For instance, a subnet, which is defined for a subdomain where the solution
of the PDE is expected to be complex, can be designed to be deep, whereas a subnet
defined for a subdomain where the solution is smooth can be shallow. This comes in
contrast to the standard PINN procedure, providing more flexibility and allowing to
obtain better, more localized results. A detailed discussion of the advantages of XPINNs
over PINNs can be found in [99] and a derivation of XPINN error estimates for nonlinear
PDEs in [62].

Conceptually, the XPINN framework generalises the Conservative Physics-Informed
Neural Networks (CPINNs) [102], where M SER is substituted with:

Nr,,

MSE (@ {2 127 = 3 | 5 Z [l (u(@? ) -1 = flos (un (@) ) - n

VYmt

2

(7.9)
where fl,,-n and fl,,+ -n are the interface fluxes normal to the interface between m and
its neighbors, m™. The aforementioned MSE imposes flux continuity on the interface.
Thus, CPINNSs, as opposed to XPINNs, can be applied only in cases where the flux
continuity assumption is valid on the interfaces between the problem’s subdomains. Note
that even in problems where the flux continuity is satisfied, it is more convenient to
apply the XPINN procedure and add M SFEy,,, multiplied by its corresponding weight,
as a complementary term to the loss function, instead of using a CPINN.

For the problems studied in this work, we will slightly modify the XPINN methodology

presented in this section. Further details will be given in the following sections. As a
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closing remark to this section, several recent papers report on the possibility of boosting
XPINNS’ performance using adaptive activation functions [104, 103, 107]. However, in
this work we opted to employ classic activation functions, adopting a more parsimonious
approach in the sense of minimizing the number of model hyperparameters needed to

reach acceptable levels of accuracy.

7.3 MATHEMATICAL FORMULATION OF STEADY-STATE HEAT TRANSFER IN
COMPOSITES WITH INTERFACE INTERACTION

Let © denote a two-phase material with I' representing the interface that divides €2
into its two constituents €27 and €2y, as depicted in figure 7.1. The external boundary
012 of the whole domain has an outward normal vector v and it is further divided into
complementary parts €0y and 9€2,, on which the Dirichlet and Neumann boundary

conditions are applied respectively:

Figure 7.1: Domain with two different phases, {2 and €25, separated by an interface I’

w=1u in 0y,
(7.10)
qg-v=—¢ in Q.

where u = u(x) is the (scalar) temperature field and g = g(x) is the heat flux vector
field, with € R%, d = 1,2 or 3, the position vector of a current point in Q. Let k;
denote the conductivity tensor of phase €2;, then, from Fourier’s law, the constitutive

relation between the temperature and heat flux in the phase’s interior is defined as
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q(x) = —ki(x)Vu(z) i=1,2 (7.11)

In this setting, the interface I' is assumed to exhibit Kapitza thermal resistance «
and as a consequence, the thermal behavior on I' is characterized by a jump in the

temperature field, while the heat flux field is continuous:

|lu|| =—ag-n onT, (7.12)
llg-n|]|=0 onT (7.13)
where || - || = (-)® — () is an operator denoting the jump of any scalar quantity across

I'. The positive and negative sides of the boundary are defined by the unit vector n,
which is normal to I' and directed outwards from 21 to {25. Finally, the steady-state
differential equation governing the temperature field in the interior of each phase §2; for

a given heat source r(x) is
V-gqlx)—r(x)=0 inQ, i=1...n (7.14)

subject to the boundary conditions (7.10), the constitutive relation (7.11) and the
interface equations (7.12), (7.13).

7.4 IDENTIFICATION OF KAPITZA RESISTANCE USING XPINNSs

7.4.1 THE PROPOSED XPINN FORMULATION

In this section we propose a formulation dedicated to the identification of the Kapitza
thermal resistance at the interface of two different phases, using an appropriately
customized version of eq. (7.6). Let us consider a two-phase material, which is subdivided
into two subdomains, namely 2; and €, as shown in figure 7.1. Next, we use two
separate sub-nets to solve the PDE of the heat transfer at each distinctive material. We
merge the induced sub-nets into a global model by applying a modified version of eq.
(7.6), which is explained as follows:

First, we replace MSE,_ . with

avg

126



MSE,. (01, a; {2} {2} = ZHU@ ) —uey (@)} + ag -2,

(7.15)
since the behavior of the temperature field u exhibits a discontinuity at I', characterized
by a jump given by eq. (7.12). Note that in order to be able to evaluate M SE,,. we make
use of two datasets, D = {wgf}f\gl and Dy = {a:F }Z 1» which consist of internal points
of the subdomains 1 and 29, respectively, selected so that their distance from I' is equal
to a very small value (e.g. 107° was chosen in this work). The importance of M SE,,. is
crucial, as it allows to calculate the Kapitza resistance «. Here, as can be seen by eq.
(7.15), we opt to accumulate M SE, . to the loss function of the sub-net corresponding
to 27 and use the other sub-net only to predict the solution at 9. Alternatively,
MSE,, can be applied to both sub-nets, and then obtain a by taking the average of
their approximations. Our approach allows for a more efficient procedure in terms of
computational resources and also eliminates the need to evaluate MSFEy.

Next, in order to impose the flux continuity given by (7.13), we use Dy and D5 to

calculate and add MSEy; to the sub-nets’ loss functions, which can be expressed as:

MSEy,, (© m,{wr }z 17{517(ri;+}£v:r1):

1 & - . ) (7.16)
F1“ Z; ’flm(ugl (iBFm)) ‘M — [l (ue, (wl“m+)) : nm*‘

for m = 1,2. Moreover, we compute M SE,, using both the boundary conditions of the
given PDEs and also, for both sub-nets, a set of internal points where the value of u
has been experimentally obtained. The form of M SE,,  is identical to (7.2). We also
omit MSEy, and MSER, as our trials showed that they do not offer any considerable
improvements to the result. As a result, the loss functions for the sub-nets assigned to

Q1 and €9, respectively, are given by:

L1(©1,a) = Wi, MSE,, (©1: {z{)},1) + Wr MSE,.(©1,a; D1, D2)+

(7.17)
Wiy, MSEy, (©1; Dy, D>)

and
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i) NVu
L2(©2) = Wiy MSE,, (@g; {x)}.12) + Wy, MSEp,(©2; Dy, Dy) (7.18)

Closing this section, it should be mentioned that XPINNs involve a considerable
number of hyperparameters, which require fine tuning in order to get the optimal results.
Instead of using a trial-and-error process for finding the values of these hyperparameters,
in this work we opted to apply the Bayesian hyperparameter optimisation scheme [201]
to optimise the learning rates of the sub-nets, as well as the weights of the loss functions.

The implementation aspects of this scheme are presented next.

7.4.2 BAYESIAN HYPERPARAMETER OPTIMISATION

A key task of creating a deep learning model is tuning its hyperparamaters, that is, the
number of layers, the types of activation functions, the nodes per layer, learning rate, etc.
There are several methods for this task, such as grid search or random search, however,
a more efficient way to achieve this is to use the Bayesian hyperparameter optimisation
procedure [201]. This approach involves building a probability model of the objective
function and, then, using this model to select the most promising hyperparameters to

evaluate in the true objective function. It consists of the following steps:

(i) Create a probabilistic model of the loss function.

(ii) Find the hyperparameters that perform best on this model.
(iii) Apply them to evaluate the true loss function.
(iv) Update the probabilistic model incorporating the new data.
(v) Repeat until maximum iterations are reached.

Usually, we model the loss function by fitting a Gaussian Process (GP) regression
model on the performance data collected at each stage. A GP is a set of random variables,
indexed by time or space, where the joint distribution of each finite subset of those
variables follows a multivariate Gaussian distribution. In the remaining of this section,
we present the general framework of GP regression according to [29] and we explain how
to search for the optimal hyperaparameters on the induced probabilistic model.

To make things more concrete, we will illustrate the process of performing Bayesian

hyperparameter optimisation in our problem setting. Let us denote with R = —(L1 + Lg)
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the total reward function of the XPINN model, namely the opposite of the total loss,
where L and Ly are given by equations (7.17) and (7.18). Then, R can be viewed as a
function of the network’s hyperparameters, collectively denoted as a vector h, and the
aim is to find an optimal instance of these hyperparameters, h,, that maximize R. In
our implementation, we consider h = (hy, hg,--- ,h7) € R”, where hy, hy correspond to
the learning rates of the two neural networks comprising the XPINN, and h3 — h7 to the
five weight coefficients (W, ,..., Wy;,) in equations (7.17)-(7.18). Needless to say that
other hyperparameters could be included as well in the optimisation process, such as
the number of layers in each NN or the number of nodes, yet, we chose to focus only on
these seven.

To initiate the procedure, we randomly generate N instances, {h;}}¥,, of b and obtain
the corresponding values {y;}Y | := {R (h;)}}Y, that the reward function has reached
after a prescribed number of training epochs. Next, in order to take into account the
existence of noise on the observations of the reward function, we consider a probabilistic
model of the form

"n=1%Yn+€n, n=1...,N (7.19)

where €, is a random noise variable, whose value is chosen independently for each

observation n. We shall consider noise processes that are Gaussian, so that

p(ralyn) = N (ralyn, 57) (7.20)

with 8 being a hyperparameter representing the inverse variance of the noise. It follows

that the joint distribution of » = (r1,...,7rx)", conditioned on the observed values
y=(y1,..-, yN)T, is given by an isotropic Gaussian distribution of the form
p(rly) = N(rly, 57 In) (7.21)

with Iy being the N x N identity matrix. Then, after some mathematical operations

[29], the joint distribution of ¢ is given by

p(r) = / p(rly)p(y)dy = X (r]0, C) (7.22)
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In the above equation, C' is a covariance matrix with elements
C(hn, hm) = k(R h) + B 00m (7.23)

where k(-, ) is kernel function, which can be chosen from the Matérn class of kernels

(P o) = —— (*@d(hn,hm)> %, (md(hn,hm)> (7.24)

'(v)2v-1 l l

with [ being the correlation length parameter, d(-,-) the Euclidean distance, I'(-) the
gamma function and ¥, a modified Bessel function. Also, v is a parameter that controls
the smoothness of the resulting function, which is here taken equal to 2.5.

The elaborated procedure allows us to build a model of the joint distribution over
the data points, which can be further used to predict the target variable rxyy; for a
new instance of the hyperparameter vector hyyi. It can be proven that the predictive

distribution p(ryy1|ry) is a Gaussian distribution with mean

mN(hN_H) = kTC]_Vlt (7.25)

and variance
ok (hni1) =c— kKT CH'k (7.26)
where k is a vector with elements k, = k(h,,hyy1) for n = 1,...,N and ¢ =

k(hni1,hye1) + 871

Once established, the GP surrogate for the total reward function is utilized in order
to accelerate the process of finding the optimal hyperparameter values. To do so,
first an acquisition function is selected, whose purpose is to locate the points in the
hyperparameter space with the greatest potential to maximize the GP model of the
reward function (or equivalently minimize the loss), while maintaining a good balance
between exploration and exploitation. A commonly used acquisition function is the GP
Upper Confidence Bound [203]. According to this, given the first N instances of h, then
h 1 is selected to be the most promising value of the hyperparameters for maximizing

the reward function, calculated from the solution of

hyi1 = argmax{my(h) + A\ %o (h)} (7.27)
h
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with A\ being some suitable scalar [203], which for small values suggests that Bayesian
optimisation will favor solutions that are expected to be high-performing, i.e., have
high m(h), while for large values, Bayesian optimisation will reward the exploration of
currently uncharted areas in the search space. Next, after computing hy1, we employ
this set of hyperparameters to train the XPINN model and obtain the corresponding value
yN+1 = R(hni1). If yy41 is deemed accurate for the applications under investigation,
the process terminates. Otherwise, the GP model is updated using the new pair of data
(hn+1,yn+1) and the procedure iterates until the desired level of accuracy has been
achieved or the maximum number of iterations has been reached. The implementation

steps for the elaborated procedure are summarized in the algorithm below:

Algorithm 4 Bayesian Hyperparameter Optimisation Algorithm for fine tuning
the XPINN model
1: Input: maxlter: maximum number of iterations, N: initial training evalua-
tions, tol: tolerance, parameters: \, v, 3,1
Result: h, = {hy,..., hy} such that h, = argmax, R(h)
Randomly generate an initial set of NV instances for h
Train a GP surrogate using {h;,y; = R(h;)}}, to obtain my(h),on(h)
set 1 =1
while ¢ < maxIter and yy.; 1 > tol do
Compute hy; = arg max, {my,i_1(h) + A 20yx_1(h)}
Evaluate yni1; = R(hyy;) using the Adam optimizer for a predefined
number of epochs
9: Update the GP surrogate using the new data {hy.;,ynyi} to obtain
my+i(h), oni(h)
10: t=1+1
11: end while

It should be mentioned that the computational cost of training the GP model has a
N3 scaling and this can become an issue for problems with many data points. There are
ways to significantly reduce this cost, such as using sparse GPs [200], however, this was

not required in this work since N was adequately small.
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7.5 NUMERICAL EXAMPLES

7.5.1 TWO-PHASE MATERIAL WITH PLANAR AND RESISTIVE INTERFACE

As a first illustrative example, let us consider a two-phase material with a planar and
resistive interface. The problem’s geometry is illustrated in Fig. 7.2. The boundary
conditions for this problem are u(x = —1) = 0 and u(x = 1) = 1. The problem exhibits
an unidirectional flow (along the z-axis) and the temperature field has a jump at z = 0,
whose magnitude depends on the Kapitza resistance «. For the two constituent materials
we further assume that their conductivities are k; = 0.1/W/mK and ko = 1.0/W/mK.

Q Q,

>

X 0
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Il

)
PN\
~7777777

<

Il

Figure 7.2: Geometry of the first example.

In order to test the capabilities of the proposed formulation in inferring the values
of the Kapitza resistance, an initial set of artificial data is generated as follows. For
a predefined value of «, the steady-state heat transfer problem is solved using a finite
element formulation [16, 17]. Then, a small set of points along with their temperature
values are arbitrarily chosen inside the domain of the PDE. These artificial (synthetic)
data play the role of experimental data in this work. For this application in particular,
50 points are randomly chosen at the interior of each domain. The aforementioned
procedure is repeated for various values of «, that is, a = 0.1,1,10. For each case, the
set of the boundary conditions is taken to contain 100 samples and the sets of points on
each side of the interface, namely D and Do, consist of 2000 samples. The selected
points are depicted in figure 7.3. Table 1 shows the architecture of the models applied
for all values of o and Table 2 presents the values of their hyperparameters h, selected

using the Bayesian optimisation procedure. Figure 7.4 illustrates the values chosen for
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Wy, Wi, Way, Wy, Wr, namely the weight coefficients in equations (7.17)-(7.18), at

each iteration of the aforementioned optimisation process.

+  Boundary conditions
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* FE solution data
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Figure 7.3: Different sets of points used for training the XPINN

Domain id 0 Qo
hidden layers 3 3
neurons 64 40
activation function | ReLLU ReLU
epochs 1.5 x 10° | 1.5 x 10°

Table 7.1: Model architecture applied to material with planar interface.
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Magnitude of a | 0.1 1 10

Iry 41 x 1073 | 46 x 1073 | 30 x 10~*
lry 39 x 1073 | 47 x 1073 | 95 x 1074
W, 738 40814 40656
W, 36 2785 7103

Wr 220 10900 2

Wi, 1028 29 2263
Wi, 1047 8017 41405

Table 7.2: Models' hyperparameters for the first example

70000 W, 100000 W,
1 1

— W — W
60000 2 iz
— Wy, 80000 — Wy,
50000 — Wh, — Wg,
Wr Wr
40000 60000
30000
40000
20000
20000
10000 /\h

12 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20
Optimization Trials

— Wy,
— Wa,
i S WL,Z
— W,
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123456 7 8 91017 121314 15 16 17 18 19 20
Optimization Trials

Value
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172 3 4 5 6 7 8 9 101 12 13 14 15 16 17 18 19 20
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100000

80000

60000

Value

40000

20000

Figure 7.4: Evolution of Bayesian hyperparameter optimisation for W, W, W, Wy, Wr. (a)
a=0.1; (b) a=1; (c) a = 10.
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Figure 7.5 compares the solutions obtained from the proposed XPINN models to the
corresponding ‘exact’ ones, obtained by FEM. From these figures it becomes evident
that as the values of « increase, the temperature ‘jump’ at the interface becomes larger,
but at the same time, the XPINNs are capable of capturing these discontinuities in the
temperature fields. The Lo error between our predictions and the finite element solutions,
as well as the model approximation of the Kapitza resistance obtained for each case are
presented in Table 3, while fig. 7.6 illustrates the loss curves of our models. Fig. 7.7
shows the convergence of the XPINN models to the Kapitza resistance values we have
chosen for the purposes of this parametric investigation. In all cases we observe that
after a number of epochs, the XPINNs manage to accurately identify the ‘exact’ values of
«. Based on these findings, the conclusion can be drawn that the proposed formulation
is capable of predicting both the value of u and the resistance at the interface with high

precision.
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Magnitude of o | 0.1 1 10

Lo error for ©; | 3.19 x 10711 | 4.86 x 1071° | 6.21 x 1078
Lo error for Q5 | 3.76 x 10713 | 1.1 x 1071 | 2.67 x 107°
Q 0.10002 0.99999 9.99556

Table 7.3: Models’ performance for the first example.

Total loss
Total loss
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Epochs
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Figure 7.6: Loss curves for the first example. (a) «
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Figure 7.7: Convergence to the Kapitza resistance values for the first example. (a) a = 0.1; (b)
a=1; (c) a=10.

7.5.2 TWO-PHASE MATERIAL WITH CIRCULAR AND RESISTIVE INTERFACE

As our second test case, we consider a spherical inclusion with domain €25, immersed
in larger rectangular host material with domain 2;. We assume that on the left side
of Q; a temperature u(z = 0) = 0 is imposed, while on the right side u(z = 1) = 1.
The geometry of the problem and its boundary conditions are schematically depicted in
figure 7.8. In terms of the material properties, we considered the conductivity of {21,
ki1 = 0.1, and ko = 1 for Q. This particular example exhibits heat flow in 2 directions
(x and y), while the circular geometry of the interface adds an additional strain to the
XPINN. Similarly to the previous case, we generate synthetic data that will play the role
of experimental measurements by solving the problem for three Kapitza values, namely
«a = 0.1,1, 10 using the finite element formulation employed in the previous example. For
each case, 100 points are randomly selected at the interior of each domain. In addition,
D; and D> are both taken to consist of 2000 points and the set of boundary conditions
consists of 100 samples. Our models’ details, as well as their hyperparameters, calculated

using Bayesian optimisation, are listed in Tables 4 and 5, respectively.
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0 1 X

Figure 7.8: Geometry of the second example.

Domain id 04 Qo
hidden layers 7 7
neurons 64 64
activation function | ReLLU ReLLU
epochs 1.5x 10° | 1.5 x 10°

Table 7.4: Model architecture applied to the second example.
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Magnitude of o | 0.1 1 10

Iry 86 x 107* | 12 x 107 | 54 x 10~
lry 39x 1072 [ 36 x 1072 | 33 x 1073
W, 22375 2096 7610

W, 3367 1377 38

Wr 1813 449

Wi, 133 113

Whi, 96 308

Table 7.5: Models’ hyperparameters for the second example.

Fig. 7.9 reflects the magnitude of u over {2, as computed by our models. These heat
maps indicate that as the values of the Kapitza resistance increase, sharper temperature
changes can be observed at the interface zone of the constituents. This result is better
illustrated in fig. 7.10, which compares our approximations to their corresponding
‘exact’ solutions. In particular, this figure plots the temperature values along the z-
axis for y = 0.5, obtained from the proposed framework, and contrasts them with the
corresponding FE solutions. Again, it is evidenced that greater Kapitza values lead to
stronger discontinuities in the temperature profiles, that conventional PINN formulations
would fail to capture, yet our models succeed in predicting both the discontinuous
solutions of the PDEs and the resistance values at I". Each model’s performance is
summarized in Table 6. Fig. 7.11 illustrates the point-wise error between our models’
predictions and the ‘exact’ solutions, Fig. 7.12 shows our models’ loss curves and Fig.
7.13 shows their convergence to the values of «, chosen for this analysis. In all cases,

high accuracy can be reported.
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Figure 7.11: Point-wise error for the second example. (a) a =0.1; (b) @ =1; (c) a = 10.

JOlle 3SIM-JUI0H

Magnitude of o | 0.1 1 10

Lo error for O | 6.54x 1077 | 3.15 x 1074 | 7.33 x 1078
Ly error for Qy | 592 x107% | 5.39 x 107 | 1.89 x 107
Q 0.10114 1.00087 9.99876

Table 7.6: Models’ performance for the second example.
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Figure 7.12: Loss curves for the second example. (a) @ =0.1; (b) a = 1; (¢) @ = 10.
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Figure 7.13: Convergence to the Kapitza resistance values for the second example. (a) a =0.1; (b)
a=1; (c) a=10.

7.6 CONCLUSIONS

In this work, a novel methodology has been presented to estimate the Kapitza thermal
resistance at the interface of two different materials. It relies on the powerful PINN
framework and, in particular, XPINNs to solve inverse problems described by PDEs. In
this regard, two separate PINNs are utilized that are trained to solve the heat transfer
PDE at the interior of each constituent phase. In addition, at the interface between the
different phases, a problem-specific boundary condition is imposed that both PINNs
must satisfy in order to accurately capture the temperature discontinuity arising at this
region. The main methodological advantage that the proposed approach offers is that
it only requires temperature measurements at a few interior points of the composite,
which are easy to obtain with standard experimental setups. The cumbersome task
of fine tuning the XPINN related hyperparameters has been successfully addressed
using a Bayesian hyperparameter optimisation scheme based on Gaussian processes.
The numerical examples presented demonstrate that the elaborated methodology is

highly accurate and robust, with significant generalization capabilities to other interface
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problems arising in fields such as mechanics or electrodynamics.
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Summary - Innovation of thesis

This dissertation presented a machine learning framework for solving parametrized
large-scale problems in computational mechanics. The main target of this research was
to reduce the required computational time for Monte Carlo Simulation by utilizing state
of the art machine learning models.

Firstly, a novel surrogate modeling strategy was introduced for time-dependent partial
differential equations. The model consists of a convolutional autoencoder (CAE) and
a feed-forward neural network (FFNN) and aims to deliver an accurate mapping from
the parameter space to the high-dimensional solution space. The numerical examples
indicated that the computational gains are very promising.

Consequently, the CAE-FFNN surrogate modeling scheme described above was ex-
tended in order to be utilized on the more challenging problem of nonlinear transient
analysis of stochastic structures. The results obtained exhibit high accuracy and remark-
able computational gains as demonstrated by numerical examples.

Furthermore, a novel numerical solver for parametrized large-scale systems was in-
troduced inspired by proper orthogonal decomposition (POD) and algebraic multigrid
(AMG), named POD-2G. Specifically, POD-2G solver utilized the CAE-FFNN surrogate
model to obtain an initial estimate of the solution and then successively refines the initial
prediction towards the exact system solution with significantly faster convergence rates.

The proposed methodology was demonstrated on numerical examples.
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Last but not least, a novel methodology has been presented for parameter inverse
identification. It relies on physics informed neural networks (PINNs) and, in particular,
extented PINNs (XPINNSs) to solve inverse problems described by PDEs. The method is

tested on numerical examples.
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