
Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών
Εργαστήριο Μικροϋπολογιστών και Ψηφιακών Συστημάτων

Error Mitigation Techniques on VDHL circuits
and SoC FPGAs
Διπλωματική Εργασία

του

ΠΑΓΩΝΗ ΓΕΩΡΓΙΟΥ

Επιβλέπων: Δημήτριος Σούντρης
Καθηγητής Ε.Μ.Π.

Αθήνα,Μάρτιου 2023

Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών
Εργαστήριο Μικροϋπολογιστών και Ψηφιακών Συστημάτων

Error Mitigation Techniques on VDHL circuits and
SoC FPGAs

Διπλωματική Εργασία

του

ΠΑΓΩΝΗ ΓΕΩΡΓΙΟΥ

Επιβλέπων: Δημήτριος Σούντρης
Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 21 Μάρτιου 2023.

(Υπογραφή) (Υπογραφή) (Υπογραφή)

. .
Δημήτριος Σούντρης Διονύσιος Πνευματικάτος Διονύσιος Ρεΐσης
Καθηγητής Ε.Μ.Π. Καθηγητής Ε.Μ.Π. Καθηγητής Ε.Κ.Π.Α.

Αθήνα,Μάρτιου 2023

Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών
Εργαστήριο Μικροϋπολογιστών και Ψηφιακών Συστημάτων

(Υπογραφή)

...
Παγώνης Γεώργιος
Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © – All rights reserved Παγώνης Γεώργιος, 2023.
Με επιφύλαξη παντός δικαιώματος.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ
ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση,
αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητι-
κής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να δια-
τηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για
κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Περίληψη

Η διαστημική βιομηχανία τα τελευταία χρόνια έχει υποστεί μετασχηματισμό, μεταβαί-
νοντας από τα παραδοσιακά space-grade συστήματα, σε mixed architectures, που συν-
δυάζουν radiation-hardened components και Commercial-off-the-Shelf (COTS) συσκευές,
μεταξύ των οποίων τα FPGAs. Τα πλεονεκτήματα αυτών των components είναι το SWaP-
C (size, weight, power and cost), η απόδοση στην επεξεργασία και η ευελιξία ανάπτυξης
των εφαρμογών, σε σύγκριση με τις κλασικές αρχιτεκτονικές που αδυνατούν να καλύψουν
αποτελεσματικά τις αυξημένες απαιτήσεις. Ωστόσο, οι εμπορικές συσκευές είναι επιρρε-
πείς σε fault λόγω ιονίζουσας ακτινοβολίας. Τα Single Event Upsets (SEU), που αλλά-
ζουν την λειτουργικότητα, μετριάζουμε σε αυτή την διπλωματική. Όλες οι fault-mitigation
τεχνικές εφαρμόζονται στην MPSoC Ultrascale+ αρχιτεκτονική, που χρησιμοποιείται σε
διαστημικές αποστολές. Αναπτύξαμε μια custom hardware architecture ενός Fast Fourier
Transform αλγορίθμου, που θα χρησιμοποιηθεί ως το βασικό μας DSP component. Οι
fault-mitigation αρχιτεκτονικές που εφαρμόσαμε είναι τόσο ανεξάρτητες της εφαρμογής,
όσο και συγκεκριμένα για τον FFT, ενώ οι εκστρατείες fault injection και evaluation, χρη-
σιμοποιούνται για την κατηγοριοποίηση και την ταξινόμηση των τεχνικών μας με βάση
την μείωση του downtime της συσκευής. Εκτός αυτού, διερευνήσαμε τον αντίκτυπο της
χρήσης διαφορετικών computational FPGA block, δηλαδή DSP, LUT στην αξιοπιστία την
συσκευής. Οι τεχνικές error-mitigation ήταν Spatial (DMR, TMR), Temporal, Hybrid (DMR
Temporal), καθώς επίσης και fine-grained redundancy(TMR σε Stage, Butterfly). Για την
διόρθωση αυτών των component, συμπεριλάβαμε στην σχεδίαση μας την πλήρη και με-
ρική επαναδιαμόρφωση (Dynamic Partial Reconfiguration) και τον internal memory scrub-
ber που προσφέρετε από το SEM IP από την Xilinx. Η προσομοίωση γίνεται με την προ-
σθήκη bit-flips στην configuration μνήμη. Για τον αντίκτυπο της χρήσης των διαφορετικών
υπολογιστικών FPGA block, με την υλοποίηση με LUT να είχε αυξημένο downtime 2.2×,
3.68×, 2.7× όταν συγκινήθηκε με την υλοποίησε με DSP, για 8,16,32-point FFT. Οι κα-
λύτερες αρχιτεκτονικές για την μείωση του downtime, είναι η temporal, λόγω του μικρού
μεγέθους και την ανίχνευση σφαλμάτων που προσφέρει, και το TMR λόγω του Error De-
tection & Correction. Η καλύτερη βελτίωση στην μείωση του downtime είναι 95% και 65%
στο 8,32-point FFT, καθώς και οι δύο αρχιτεκτονικές έχουν εκμεταλλευτεί όλες τις μεθο-
δολογίες διόρθωσης (FR, PR, CMS).

Λέξεις Κλειδιά

COTS FPGA, MPSoC UltraScale+, SEU Error Injection, SEM IP, Spatial | Temporal | Hy-
brid | Fine-Grained Redunancy, Full|Partial Reconfiguration, CMS

1

Abstract

The space industry has undergone a transformation in recent years, shifting from clas-
sic space-grade systems to mixed architecture that combines radiation-hardened com-
ponents and Commercial-off-the-Shelf (COTS) devices, including FPGAs. The advan-
tages of the COTS components are the SWaP-C (size, weight, power, and cost), the pro-
cessing performance, and the development flexibility when compared with the classical-
computational architectures, which stress meeting the increased data and computational
demands effectively. However, commercial devices are susceptible to ionizing radiation
failures. The Single Event Upsets (SEU), that alter the functionality are those, we try to
mitigate in this thesis. All the fault-tolerance techniques are implemented in the MPSoC
Ultascale+ Architecture, which is commonly used in space missions. We developed a
custom hardware architecture for a Fast Fourier Transform Algorithm to be used as our
digital signal processing (DSP) component. The fault-mitigation architectures are both
application-independent and application-specific, while the fault injection and evaluation
campaign we developed, is used to categorize and sort our techniques based on the re-
duction of the downtime of our device. Besides that, we explored the impact of utilizing
different FPGA blocks, i.e. DSP and LUT on the reliability of the device. The fault miti-
gation techniques implemented in the Hardware accelerator are spatial(i.e. DMR, TMR),
temporal, hybrid between the spatial and temporal (i.e. DMR Temporal), and in addition
and fine-grain spatial redundancy (i.e TMR in Stage and Butterfly). For the module cor-
rection, we included in our design the full and partial reconfiguration (i.e. Dynamic Partial
Reconfiguration), and the internal scrubber offered by Xilinx’s SEM IP. The injection is
performed also using the SEM IP, by adducing bit-flip in the configuration memory. The in-
jection campaign involved 200,000 configuration memory addresses. As far as the impact
of different FPGA computational blocks is considered, the LUT implementation suffered
from increased downtime 2.2×, 3.68×, 2.7×, when comparing to the DSP implementation
for the 8,16,32-point FFT respectively. The best reduction architectures are the temporal,
due to its small resource utilization and Error Detection, as well as the TMR which offered
Error Detection & Correction. The best improvement in downtime was the reduction of
95% and 65% in 8 and 32-point FFT, as both architectures have taken advantage of all
the correction methodologies (FR, PR, CMS).

Keywords

COTS FPGA, MPSoC UltraScale+, SEU Error Injection, SEM IP, Spatial | Temporal | Hy-
brid | Fine-Grained Redunancy, Full|Partial Reconfiguration, CMS

3

Ευχαριστίες

Ευχαριστώ θερμά τον επιβλέποντα καθηγητή κύριο Δημήτριο Σούντρη για την ευκαιρία
και την εμπιστοσύνη που μου έδωσε να εκπονήσω την διπλωματική μου εργασία στο
εργαστήριο Μικροϋπολογιστών και Ψηφιακών Συστημάτων. Επίσης ευχαριστώ ιδιαίτερα
τον διδάκτορα Βασίλη Λέων και τον καθηγητή Γιώργο Λεντάρη για την καθοδήγησή τους,
την ευκαιρία να αναπτύξω τις δικές μου ιδέες, την εξαιρετική και άψογη συνεργασία που
είχαμε. Τέλος θα ήθελα να ευχαριστήσω τους γονείς μου, Ευθαλία Κοσμά και Παναγιώτη
Παγώνη, για την καθοδήγηση και την ηθική συμπαράσταση που μου προσέφεραν όλα
αυτά τα χρόνια. Ένα μεγάλο ευχαριστώ στους φίλους μου και σε όσους με βοήθησαν
κατά την διάρκεια των φοιτητικών μου χρόνων.

Μάρτιος 2023

Παγώνης Γεώργιος

5

Contents

Περίληψη 1

Abstract 3

Ευχαριστίες 5

List of Figures 8

List of Tables 10

Εκτεταμένη Περίληψη 13

1 Introduction 29
1.1 FPGAs . 29
1.2 Landscape of COTS FPGAs Devices in Space 30
1.3 Problem Statement . 31
1.4 Thesis Structure . 33

2 Ageneral background onSpace Environment and Fault-Tolerance techniques 35
2.1 MPSoC Tools and Architecture . 36
2.2 Ionising radiation . 39
2.3 Classic FT Techniques theoretical . 40

3 Proposed Techniques and Methodologies for Error Mitigation 43
3.1 Design of FFT Hardware Kernel . 44

3.1.1 Design and implementation of FFT 45
3.2 Spacial Redundancy . 51

3.2.1 DMR . 51
3.2.2 TMR . 52

3.3 Temporal Reduncancy . 53
3.3.1 Simple Temporal Redundancy . 53

3.4 Hybrid between Spatial and Temporal Redundancy 55
3.4.1 DMR Temporal . 55

3.5 Fine Grain Spacial redundancy . 56
3.5.1 FFT Stage TMR . 56
3.5.2 FFT Butterfly TMR . 58

7

Contents

3.6 Dynamic Partial Reconfiguration . 58
3.7 AXI-Lite . 61
3.8 DSPs vs LUTs . 63
3.9 How to Perform Fault Injection . 63

4 Validation and Evaluation of Fault-Tolerance Mitigation Techniques 69
4.1 Experimental Setup . 70

4.1.1 Main application and testing ground 70
4.1.2 Overview of the test setup . 71
4.1.3 Injection Campain . 71

4.2 Methodologies Evaluation . 73
4.2.1 Size . 73

4.3 Time of Reconfiguration of different regions 76
4.4 Evaluation Campaign . 78
4.5 Evaluation . 79

4.5.1 Mitigation Techniques Evaluation . 80
4.5.2 Internal Scrubbing Evaluation . 82
4.5.3 Comparisons- Summary . 84

5 Conclusion & Future Work 85

References 89

8

List of Figures

1 FFT Kernel Architecture . 15
2 DMR Architecture . 16
3 TMR Architecture . 17
4 Temporal Architecture . 17
5 DMR Temporal Architecture . 18
6 TMR Stage Architecture . 18
7 TMR Butterfly Architecture . 19
8 Whole Diagram . 21
9 Increase of usage based on input size using DSps 23
10 Increase of usage based on input size using Luts 23
11 Correlating SEU Errors and Downtime in a 8-Point FFT Kernel 24
12 Correlating SEU Errors and Downtime in a 16-Point FFT Kernel 25
13 Correlating SEU Errors and Downtime in a 32-Point FFT Kernel 25

1.1 Visual Chapter Guide . 33

2.1 Visual Chapter Guide . 35
2.2 MPSoC Architecture . 38
2.3 Ionizing Injection . 39

3.1 Visual Chapter Guide . 43
3.2 Divide FFT Stages . 46
3.3 Radix 2 FFT architecture . 46
3.4 FFT Architecture . 47
3.5 Scrambler Architecture . 48
3.6 Butterfly Set Stage 1 . 49
3.7 Butterfly Set Stage 2 . 50
3.8 DMR Architecture . 52
3.9 TMR Architecture . 53
3.10 Temporal FSM . 54
3.11 Temporal Architecture . 55
3.12 DMR Temporal FSM . 55
3.13 DMR Temporal Architecture . 56
3.14 TMR Stage Architecture . 57
3.15 TMR Butterfly Architecture . 58
3.16 Dynamic Partial Reconfiguration 1 . 59

9

List of Figures

3.17 Dynamic Partial Reconfiguration 2 . 59
3.18 AXI4-Lite . 61
3.19 DSP vs Lut . 63
3.20 Sem IP v3.1 . 65
3.21 Whole Diagram . 67

4.1 Topological relationship of Clock Region of ZCU106 and its EBD file. Reading
the file from top to bottom is similar to moving the design following the
arrow on a zigzag basis. 72

4.2 Increase of usage based on input size using DSps 75
4.3 Increase of usage based on input size using Luts 75
4.4 Partial Size and Time . 77
4.5 Evaluation Champaign . 79
4.6 Correlating SEU Errors and Downtime in a 8-Point FFT Kernel 80
4.7 Correlating SEU Errors and Downtime in a 16-Point FFT Kernel 80
4.8 Correlating SEU Errors and Downtime in a 32-Point FFT Kernel 81

5.1 Visual Chapter Guide . 85

10

List of Tables

1 Resource utilization of FPGA with 8-input FFT 22
2 Resource utilization of FPGA with 16-input FFT 22
3 Resource utilization of FPGA with 32-input FFT 22
4 Relation between the size and the time of Partial Reconfiguration 24
5 Mitigation Techniques with and without Configuration Memory Scrubbing . 26
6 The effectiveness of the proposed fault tolerant techniques in reducing

downtimewas compared against the baseline Fast Fourier Transform (FFT)
Kernel. This was evaluated for each technique across various basecases,
taking into consideration the number of points used for the FFT and the
FPGA block utilized for computation. 27

2.1 Specification of Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC 36
2.2 Logic Resources in One CLB Slice . 36

3.1 DMR Voter to DMR Flags . 52
3.2 TMR Voter to TMR Flags . 53
3.3 Temporal FSM Flags . 54
3.4 TMR Voter to TMR Flags . 56

4.1 Lines of EBD in relationship with the Clock Region of ZCU106 73
4.2 Resource utilization of FPGA with 8-input FFT 74
4.3 Resource utilization of FPGA with 16-input FFT 74
4.4 Resource utilization of FPGA with 32-input FFT 74
4.5 Resource Utilization of Different Modules 76
4.6 Relation between the size and the time of Partial Reconfiguration 76
4.7 Latency of Internal Memory Scrubbing . 77
4.8 Different approaches in Scrubbing . 83
4.9 Mitigation Techniques with and without Configuration Memory Scrubbing . 83
4.10 The effectiveness of the proposed fault-tolerant techniques in reducing

downtimewas compared against the baseline Fast Fourier Transform (FFT)
Kernel. This was evaluated for each technique across various base cases,
taking into consideration the number of points used for the FFT and the
FPGA block utilized for computation. 84

11

Εκτεταμένη Περίληψη

Introduction & Background
Το διάστημα αποτελεί σημαντική απειλή για τις ηλεκτρονικές συσκευές λόγω της παρου-
σίας ιονίζουσας ακτινοβολίας. Η εν λόγω ακτινοβολία μπορεί να αυξήσει την αγωγιμότητα
των υλικών, οδηγώντας σε βλαβερά επίπεδα ρεύματος και ενδεχομένως να προκαλέσει
μόνιμες ζημιές ή σφάλματα λειτουργίας στον ηλεκτρονικό εξοπλισμό. Ως αποτέλεσμα, οι
ημιαγωγοί είναι ιδιαίτερα ευαίσθητοι σε αυτά τα φαινόμενα, τα οποία μπορούν να προ-
καλέσουν μοναδικά συμβάντα διαταραχής (Single Event Upsets - SEUs) στα ψηφιακά
κυκλώματα, οδηγώντας σε θανατηφόρα σφάλματα στις αεροδιαστημικές εφαρμογές [10].
Για την προστασία των κυκλωμάτων σε αυτές τις εφαρμογές, συνήθως χρησιμοποιούνται
τεχνικές αντοχής και ανθεκτικότητας στην ακτινοβολία. Ωστόσο, αυτές οι τεχνικές είναι κο-
στοβόρες και ενδέχεται να μην είναι εφικτές για χρήση σε μικρότερους δορυφόρους, όπως
οι CubeSats.
Τα FPGAs που είναι εμπορικά διαθέσιμα (COTS) έχουν μια μοναδική θέση στην αντιμετώ-
πιση των δυσκολιών που σχετίζονται με τον σχεδιασμό και τη λειτουργία των εφαρμογών
διαστήματος. Αυτό οφείλεται στην ικανότητά τους να αναδιαρθρώνονται εν κινήσει και
να προσαρμόζονται στο αυστηρό διάστημα, συνεχίζοντας τη λειτουργία τους αντιμετωπί-
ζοντας βλάβες που προκαλούνται από ακτινοβολία. Η ακτινοβολία μπορεί να προκαλέσει
πολλαπλές βλάβες σε ηλεκτρονικές συσκευές που χρησιμοποιούνται στο διάστημα, όπως
παρατεταμένες επιπτώσεις και κορεσμό των ηλεκτρονικών κυκλωμάτων. Ως αποτέλεσμα,
οι εταιρείες έχουν αναπτύξει FPGAs που είναι ανθεκτικές στην ακτινοβολία, παρέχοντας
στους σχεδιαστές ανθεκτικές και πιστοποιημένες συσκευές που πληρούν τις απαιτητικές
απαιτήσεις απόδοσης, αξιοπιστίας και διάρκειας ζωής των εφαρμογών διαστήματος.
Τα εμπορικά διαθέσιμα (COTS) FPGAs, λόγω της ικανότητάς τους να αναδιαρθρώνονται
κατά τη διάρκεια της λειτουργίας, έχουν μια μοναδική θέση για να αντιμετωπίσουν αυ-
τές τις δυσκολίες. Η ικανότητά τους να αναδιαρθρώνονται εν κινήσει τους επιτρέπει να
προσαρμόζονται στο αυστηρό διάστημα και να συνεχίζουν τη λειτουργία τους αντιμετω-
πίζοντας βλάβες που προκαλούνται από ακτινοβολία. Ως αποτέλεσμα, οι εταιρείες έχουν
αναπτύξει FPGAs ανθεκτικά στην ακτινοβολία, παρέχοντας στους σχεδιαστές ανθεκτι-
κές και πιστοποιημένες συσκευές που πληρούν τις απαιτήσεις απόδοσης, αξιοπιστίας και
διάρκειας ζωής των εφαρμογών διαστήματος. Επιπλέον, η συνεχής εξέλιξη των τεχνολο-
γιών σχεδίασης FPGA συνεπάγεται ότι πρέπει να αναπτύσσεται συνεχώς νέες μεθόδους
και προσεγγίσεις σχεδίασης για να διατηρούμε την ανθεκτικότητά τους. Αυτό μπορεί να
περιλαμβάνει την εκμετάλλευση νέων υλικών και τεχνολογιών, όπως η χρήση προηγμέ-
νων τεχνικών σχεδίασης για τη μείωση των επιδράσεων της ακτινοβολίας, καθώς και την
ανάπτυξη νέων αλγορίθμων για την ανίχνευση και την αντιμετώπιση σφαλμάτων.

13

Εκτεταμένη Περίληψη

Τα FPGAs που είναι εμπορικά διαθέσιμα (COTS) έχουν μια μοναδική θέση στην αντιμετώ-
πιση των δυσκολιών που σχετίζονται με τον σχεδιασμό και τη λειτουργία των εφαρμογών
διαστήματος. Αυτό οφείλεται στην ικανότητά τους να αναδιαρθρώνονται εν κινήσει και
να προσαρμόζονται στο αυστηρό διάστημα, συνεχίζοντας τη λειτουργία τους αντιμετωπί-
ζοντας βλάβες που προκαλούνται από ακτινοβολία.Η ακτινοβολία μπορεί να προκαλέσει
πολλαπλές βλάβες σε ηλεκτρονικές συσκευές που χρησιμοποιούνται στο διάστημα, όπως
παρατεταμένες επιπτώσεις και κορεσμό των ηλεκτρονικών κυκλωμάτων. Ως αποτέλεσμα,
οι εταιρείες έχουν αναπτύξει FPGAs που είναι ανθεκτικές στην ακτινοβολία, παρέχοντας
στους σχεδιαστές ανθεκτικές και πιστοποιημένες συσκευές που πληρούν τις απαιτητικές
απαιτήσεις απόδοσης, αξιοπιστίας και διάρκειας ζωής των εφαρμογών διαστήματος.
Τα εμπορικά διαθέσιμα (COTS) FPGAs, λόγω της ικανότητάς τους να αναδιαρθρώνονται
κατά τη διάρκεια της λειτουργίας, έχουν μια μοναδική θέση για να αντιμετωπίσουν αυ-
τές τις δυσκολίες. Η ικανότητά τους να αναδιαρθρώνονται εν κινήσει τους επιτρέπει να
προσαρμόζονται στο αυστηρό διάστημα και να συνεχίζουν τη λειτουργία τους αντιμετω-
πίζοντας βλάβες που προκαλούνται από ακτινοβολία. Ως αποτέλεσμα, οι εταιρείες έχουν
αναπτύξει FPGAs ανθεκτικά στην ακτινοβολία, παρέχοντας στους σχεδιαστές ανθεκτι-
κές και πιστοποιημένες συσκευές που πληρούν τις απαιτήσεις απόδοσης, αξιοπιστίας και
διάρκειας ζωής των εφαρμογών διαστήματος. Επιπλέον, η συνεχής εξέλιξη των τεχνολο-
γιών σχεδίασης FPGA συνεπάγεται ότι πρέπει να αναπτύσσεται συνεχώς νέες μεθόδους
και προσεγγίσεις σχεδίασης για να διατηρούμε την ανθεκτικότητά τους. Αυτό μπορεί να
περιλαμβάνει την εκμετάλλευση νέων υλικών και τεχνολογιών, όπως η χρήση προηγμέ-
νων τεχνικών σχεδίασης για τη μείωση των επιδράσεων της ακτινοβολίας, καθώς και την
ανάπτυξη νέων αλγορίθμων για την ανίχνευση και την αντιμετώπιση σφαλμάτων.

Συμβολές διπλωματικής
Η παρούσα διπλωματική εργασία παρέχει σημαντικές συνεισφορές:

• Στοχεύουμε στα MPSoC UltraScale+ FPGA τα οποία είναι όλο και πιο διαδεδομένα
σε συστήματα υψηλής αξιοπιστίας για το διάστημα, όπως τα Q8S και Leopard, ενώ
η πλειονότητα των ερευνητικών εργασιών επικεντρώνεται στα Zynq FPGAs.

• Πραγματοποιήθηκαν δοκιμές με διαφορετικές μεθοδολογίες αντιμετώπισης, ανεξάρ-
τητα από τον πυρήνα επεξεργασίας FFT, προκειμένου να αξιολογηθεί η αποτελε-
σματικότητά τους.

• Πραγματοποιήθηκαν δοκιμές με διαφορετικές μεθοδολογίες αντιμετώπισης, ανεξάρ-
τητα από τον πυρήνα επεξεργασίας FFT, προκειμένου να αξιολογηθεί η αποτελε-
σματικότητά τους.

• Επεκτείνοντας και αναπτύσσοντας μια μεθοδολογία εγχύσεων,

• Η αξιοπιστία του αλγορίθμου FFT για διαφορετικά μήκη εισόδου (8/16/32).

• Διερευνούμε τον αντίκτυπο της χρήσης διαφορετικών μπλοκ FPGA για υπολογι-
σμούς, όπως DSPs και LUTs, στην αξιοπιστία της συσκευής.

14

Εκτεταμένη Περίληψη

Υλοποίηση Fast Fourier Transform αλγορίθμου στο hardware
Στο πλαίσιο της παρούσας διπλωματικής εργασίας, έχουμε αναλύσει και υλοποιήσει έναν
αλγόριθμο FFT (Fast Fourier Transform) βασισμένο στον αλγόριθμο του Cooley-Tukey. Η
υλοποίηση αυτή βασίζεται στην τεχνική divide and conquer, η οποία επιτρέπει τον διαχω-
ρισμό ενός μεγάλου προβλήματος σε μικρότερα, πιο απλά υποπροβλήματα. Αποτέλεσμα
αυτού είναι η παραγωγή ενός πλήρως παραλληλοποιημένου Radix-2 FFT, ο οποίος υλο-
ποιείται στο επίπεδο υλικού και ακολουθεί την κατανομή από κάτω προς τα πάνω των
δεδομένων και των πράξεων στα στάδια του.

Scrambler

Type
Butterfly
Stage 1

Type
Butterfly
Stage 1

Type
Butterfly
Stage 1

Stage 1 Stage 2 Stage 3

Type
Butterfly
Stage 1

Type
Butterfly
Stage 2

Type
Butterfly
Stage 2

Type
Butterfly
Stage 3

Figure 1: FFT Kernel Architecture

Ο πυρήνας αυτός αποτελείται από ξεχωριστά modules, όπως:

• Scrambler: χωρίζει και τοποθετεί σωστά τα δεδομένα εισόδου στον FFT, ώστε να
εκτελεστούν οι πράξεις με τη σωστή σειρά.

• Butterfly: που εκτελεί τις πράξεις :

y0 = x0+ x1 ∗ twiddle

y1 = x0− x1 ∗ twiddle

• Adder|Subber: εκτελούν complex πολλαπλασιασμούς, προσθέσεις και αφαιρέσεις
που απαιτούνται από τις λειτουργίες των δομών ”butterfly”. Η αριθμητική αναπα-
ράσταση που χρησιμοποιήθηκε είναι η fixed point Q1.15, η οποία περιορίζει τους
αριθμούς στο εύρος [-1,1), χρησιμοποιώντας ένα signed bit και τα υπόλοιπα δε-
καδικά. Για να διατηρηθούν οι περιορισμοί αυτοί, το αποτέλεσμα από κάθε πράξη
περικόπτεται, καθιστώντας την πράξη στην πραγματικότητα μια διαίρεση δια 2.

15

Εκτεταμένη Περίληψη

Τεχνικές Αντιμετώπισης Σφαλμάτων
Για τις τεχνικές αντιμετώπισης σφαλμάτων, βασιστήκαμε σε :
Xωρικός Πλεονασμός (Spatial Redundancy)
Στα πλαίσια της έρευνάς μας, δοκιμάσαμε δύο διαφορετικές τεχνικές αντιμετώπισης των
σφαλμάτων, συγκεκριμένα τον διπλασιασμό και τον τριπλασιασμό του πυρήνα FFT. Επι-
πλέον, χρησιμοποιήσαμε έναν voter, ο οποίος επιλέγει το σωστό αποτέλεσμα μεταξύ των
αποτελεσμάτων που παράγονται από τους πολλαπλούς πυρήνες FFT, εξασφαλίζοντας
την ακρίβεια των αποτελεσμάτων.
Διπλασιασμός Πυρήνα
Η μέθοδος του διπλασιασμού του κεντρικού module αποτελεί αποτελεσματικό τρόπο ανί-
χνευσης σφαλμάτων, αλλά δεν επαρκεί για τη διόρθωσή τους. Συνεπώς, σε περίπτωση
σφάλματος, απαιτείται η επιδιόρθωση και των δύο module, με την προσθήκη χρόνου
αδράνειας στη λειτουργία της εφαρμογής.

FFT

DMR
Voter

FFT

Figure 2: DMR Architecture

Τριπλασιασμός Πυρήνα
Με την εφαρμογή της τεχνικής του τριπλασιασμού, δίνεται η δυνατότητα να ανιχνεύσουμε
τα σφάλματα που προκύπτουν στη λειτουργία του συστήματος και να τα διορθώσουμε
ακόμη και σε περίπτωση που ένα από τα module δεχτεί αναστροφή bit (bit flip), αξιο-
ποιώντας τις λειτουργικές δυνατότητες των δύο υπολοίπων. Πρόκειται για την πιο διαδε-
δομένη τεχνική αξιοποίησης στην αεροδιαστημική βιομηχανία, στην πυρηνική βιομηχανία
και στον κλάδο της ιατρικής τεχνολογίας.

16

Εκτεταμένη Περίληψη

FFT TMR
Voter

FFT

FFT

Figure 3: TMR Architecture

Χρονικός Πλεονασμός (Temporal Redundancy)
Χρησιμοποιώντας την τεχνική του χρονικού πλεονασμού, είναι δυνατόν να επαναλάβουμε
τον υπολογισμό πάνωστα ίδια δεδομένα, προκειμένου να αντιληφθούμε τη χρονική στιγμή
σε περίπτωση σφάλματος. Με αυτόν τον τρόπο, μπορούμε να αντιληφθούμε αν χρειάζεται
να διορθώσουμε το σφάλμα στον FFT πυρήνα ή αν χρειάζεται να να διαμορφώσουμε όλη
τη συσκευή. Είναι σημαντικό να σημειωθεί ότι αυτή η τεχνική μπορεί να αποδειχθεί πολύ
χρήσιμη σε περιπτώσεις όπου το σφάλμα συμβαίνει κατά τη διάρκεια της επανάληψης
των ίδιων δεδομένων. Ωστόσο, αν το σφάλμα συμβεί ανάμεσα στις επαναλήψεις, δεν θα
είμαστε σε θέση να το αντιληφθούμε με αυτόν τον τρόπο.

FFTRepeater Detect
Errors FSM

Figure 4: Temporal Architecture

Συνδιασμός Χρονικού και Χωρικού Πλεονασμού
Μια εναλλακτική προσέγγιση είναι να συνδυάσουμε τις δύο διαφορετικές τεχνικές, πολλα-
πλασιάζοντας τα δεδομένα εισόδου με τον αριθμό των πυρήνων και επαναλαμβάνοντας

17

Εκτεταμένη Περίληψη

τον υπολογισμό για κάθε επανάληψη. Ωστόσο, στην παρούσα εργασία, προτιμήσαμε τον
διπλασιασμό και την επανάληψη των δεδομένων N (FFT kernel input length) φορές.

FFT

Repeater Detect
Errors FSM

FFT

Figure 5: DMR Temporal Architecture

Xωρικός Πλεονασμός σε μικρότερα τμήματα (Fine-grain Spatial Redundancy) Μια
εναλλακτική προσέγγιση θα ήταν η διαίρεση του πυρήνα σε μικρότερα τμήματα και η προ-
στασία τους με την τεχνική του χωρικού περιορισμού, αντί να πραγματοποιήσουμε tripli-
cation σε ολόκληρη τη συσκευή. Μετά την υλοποίηση του πυρήνα FFT στο κάθε στάδιο,
εφαρμόζεται τη μέθοδο στα μικρότερα τμήματα του πυρήνα καθώς και στα butterflies.
Ωστόσο, για τη χρήση εσωτερικού χωρικού περιορισμού απαιτείται η χρήση επιπλέον
voters.

FFT Stage TMR

Scrambler

Triplication
Stage
Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Voter
Stage

Stage 1 Stage 2 Stage 3
Stage
Voter

Stage 1

Stage
Voter

Stage 2

Stage
Voter

Stage 3

Type

Butterfly
Stage 1

Triplication
Stage

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Type
Butterfly
Stage 1

Triplication
Stage

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Triplication
Stage

Type

Butterfly
Stage 2

Type

Butterfly
Stage 2

Triplication
Stage

Type

Butterfly
Stage 2

Type

Butterfly
Stage 2

Triplication
Stage

Type

Butterfly
Stage 2

Type
Butterfly
Stage 2

Voter
Stage

Triplication
Stage

Type

Butterfly
Stage 3

Triplication
Stage

Type

Butterfly
Stage 3

Triplication
Stage

Type

Butterfly
Stage 3

Voter
Stage

Figure 6: TMR Stage Architecture

18

Εκτεταμένη Περίληψη

FFT Butterfly TMR

Scrambler

Triplication
Butterfly

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Triplication
Butterfly

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Triplication
Butterfly

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Voter
Stage 1

Voter
Stage 1

Voter
Stage 1

Voter
Stage 1

Triplication
Butterfly

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Triplication
Butterfly

Type

Butterfly
Stage 2

Type

Butterfly
Stage 2

Type

Butterfly
Stage 2

Triplication
Butterfly

Type

Butterfly
Stage 2

Type

Butterfly
Stage 2

Voter
Stage 2

Voter
Stage 2

Triplication
Butterfly

Type

Butterfly
Stage 3

Type

Butterfly
Stage 3

Type

Butterfly
Stage 3

Voter
Stage 3

Stage 1 Stage 2

Stage 3

Butterfly
Voter

Stage 1

Butterfly
Voter

Stage 2 Butterfly
Voter

Stage 3

Type

Butterfly
Stage 2

Figure 7: TMR Butterfly Architecture

19

Εκτεταμένη Περίληψη

Δυναμική Μερική Επαναδιαμόρφωση (Dynamic Partial Reconfiguration)
Στο πλαίσιο των FPGAs, είναι δυνατό να επαναδιαμορφώσουμε μόνο τμήματα της μνήμης
ρύθμισης (configuration memory), αντί να επαναφορτώσουμε ολόκληρη τη μνήμη. Αυτό
παρέχει τη δυνατότητα όχι μόνο να διορθώσουμε λάθη στο σχεδιασμό, αλλά και να διατη-
ρήσουμε τη λειτουργία των ενοτήτων που δεν έχουν παρουσιάσει σφάλματα. Η εταιρεία
Xilinx παρέχει ένα API με την ονομασία Xilfpga, το οποίο δίνει τη δυνατότητα εκτέλεσης είτε
ενιαίας επαναδιαμόρφωσης (full reconfiguration) είτε μερικής επαναδιαμόρφωσης (partial
reconfiguration) στη συσκευή. Τα bitstreams που απαιτούνται για την επαναδιαμόρφωση
έχουν αποθηκευτεί σε μια κάρτα SD, από όπου μπορούμε να διαβάσουμε τα δεδομένα
από το PL και να τα μεταφέρουμε στο FPGA fabric, προκειμένου να εκτελεστεί η επανα-
διαμόρφωση.

Επικοινωνία PL-PS
Η επικοινωνία μεταξύ του επεξεργαστή (PS) και του PL στο σύστημά μας υλοποιήθηκε
μέσω του πρωτοκόλλου AXI-Lite. Το πρωτόκολλο αυτό προσφέρει μια γρήγορη, memory
mapped διεπαφή πάνω στην αρχιτεκτονική AMBA (AdvancedMicorcontoler Bus Architec-
ture). Η διεπαφή αυτή χρησιμοποιείται για τη μεταφορά δεδομένων και εντολών ανάμεσα
στον επεξεργαστή και την λογική πύλη, με σκοπό τον έλεγχο και τη διαχείριση της λει-
τουργίας της PL.
Το πρωτόκολλο AXI-Lite χρησιμοποιεί μια απλή σειριακή δομή με τρεις κατηγορίες σημά-
των: read, write και control. Τα σήματα read και write χρησιμοποιούνται για τη μεταφορά
δεδομένων, ενώ το σήμα control χρησιμοποιείται για τον έλεγχο της λειτουργίας της PL.
Η χρήση αυτής της διεπαφής προσφέρει ταχύτητα και ευελιξία στην επικοινωνία μεταξύ
του επεξεργαστή και της λογικής πύλης, ενισχύοντας την απόδοση και την αξιοπιστία του
συστήματος μας.

Υπολογισμός με την χρήση διαφορετικών FPGA Block e.g. DSP, LUT
Το FPGAπροσφέρει δύο διαφορετικούς τρόπους για την εκτέλεση των υπολογισμών, τους
οποίους μπορούμε να χρησιμοποιήσουμε ανάλογα με τις απαιτήσεις της εφαρμογής μας.
Συγκεκριμένα, μπορούμε να χρησιμοποιήσουμε τους επεξεργαστές ψηφιακού σήματος
(DSP) ή τους πίνακες αναζήτησης (LUT). Η βασική διαφορά ανάμεσά τους είναι το μέ-
γεθος της επιφάνειας στο FPGA fabric που καταναλώνουν. Οι επεξεργαστές ψηφιακού
σήματος καταναλώνουν λιγότερο χώρο σε σχέση με τους πίνακες αναζήτησης.

Διαδικασία Injection Σφαλμάτων
Προκειμένου να πραγματοποιήσουμε την αξιολόγηση των διαφορετικών τεχνικών που
εφαρμόσαμε, χρειαζόμαστε έναν τρόπο να ενσωματώσουμε ένα σφάλμα εισαγωγής στη
διαδικασία αξιολόγησης. Η SEM IP core από την Xilinx παρέχει αυτή τη δυνατότητα. Η
διεπαφή που χρησιμοποιείται για να επικοινωνήσουμε με την SEM IP είναι ένας ελεγκτής
uartlite που παρέχεται μαζί με την εφαρμογή. Για την πρόσβαση της SEM IP στη μνήμη
διαμόρφωσης του FPGA χρησιμοποιείται η διεπαφή ICAP.

20

Εκτεταμένη Περίληψη

Whole Diagram

SD Card

Uart

DDR

Configuration
Memory

AXI-Lite

SEM

ICAP

HW Acceleration

ARM Processor Programmable Logic

AXI-UART

ECC/DPR
Monitoring

Injection/
ECC

DPR

Redundancy

Figure 8:Whole Diagram

Evaluation
Στο πλαίσιο αυτής της διπλωματικής, αποφασίσαμε να χρησιμοποιήσουμε το MPSoC Ul-
taScale+ ZCU106 board για την λήψη των μετρήσεων. Η επιλογή αυτή έγινε λόγω της
αυξημένης παρουσίασης των Ultrascale+ based FPGAs σε εφαρμογές διαστήματος και
λόγω του χαμηλού κόστους και της ευκολίας προγραμματισμού του.
Στο πλαίσιο αυτής της εφαρμογής, αποστέλλουμε 32-bit διανύσματα με σύνθετους αριθ-
μούς στο FFT Kernel, χρησιμοποιώντας το πρωτόκολλο AXI-Lite. Για την αποστολή των
δεδομένων, απαιτούνται οι διευθύνσεις των κρίσιμων bit από το στάδιο της υλοποίησης.
Η λειτουργικότητα αυτή παρέχεται από το λογισμικό Vivado μέσω της εντολής:

set_property BITSTREAM.SEU.ESSENTIALBITS yes [current_design]

Τα αρχεία που παράγονται είναι τα .edc και .ebd. Αυτά περιλαμβάνουν όλο το con-
figuration memory content του FPGA με το .EBD, να είναι μια μάσκα του .EBC, όπου 1
δηλώνει ότι αυτό το bit είναι essential. Ωστόσο ήταν απαραίτητο να αντιληφθούμε τη συ-
σχέτηση του αρχείου με τα clock regions του ZCU106 FPGA. Αυτό το καταφέραμε με το να
τοποθετούμε ένα kernel σε κάθε σημείο και να αντιλαμβανόμαστε τα αποτελέσματα που
έχει αυτό στην μορφολογία του .EBD. Η τοπολογία που καταλήξαμε φαίνεται στο κάτωθι
σχήμα, και ακολουθεί μια zig-zag γραμμή στο FPGA fabric.
Χρησιμοποιώντας αυτή την λογική καταλήξαμε σε 200.000 διευθύνσεις στο FPGΑ στις
οποίες κάναμε error injection. Τις κρατάμε σταθερές σε όλη την διάρκεια των μετρήσεων

21

Εκτεταμένη Περίληψη

μας, με σκοπό την αμεροληψία και αντικειμενικότητα των μετρήσεων.

Size

Οι κάτωθεν πίνανες εμφανίζουν τα resources που καταναλώνουν τόσο τα βασικά kernel,
όσο και οι mitigation τεχνικές που εφαρμόσαμε.

Method LUTs DSPs FFs Es. Bits
FFT 2.77% 2.71% 1.24% 2.12%

DMR 3.44% 5.38% 1.40% 2.77%
TMR 4.26% 8.04% 1.51% 3.46%
Temp 3.45% 2.71% 1.52% 2.39%
DMR T 4.39% 5.38% 1.69% 3.12%
TMR S 4.75% 9.08% 1.74% 4.39%
TMR B 5.48% 9.08% 1.93% 4.34%

(1) Computation using DSP

LUTs FFs Es. Bits
4.04% 1.30% 2.74%
5.97% 1.52% 3.94%
8.06% 1.69% 5.19%
4.71% 1.58% 3.00%
 6.92% 1.80% 4.27%
 8.56% 1.84% 6.06%
 9.30% 2.02% 6.37%

(2) Computation using LUT

Table 1: Resource utilization of FPGA with 8-input FFT

Method LUTs DSPs FFs Es. Bits
FFT 3.82% 9.89% 1.28% 3.14%
DMR 5.55% 19.73% % 1.61% 4.91%
TMR 7.58% 29.57% 1.82% 6.77%
Temp 4.55% 9.89% 1.85% 3.75%

DMR T 6.96% 19.73% 2.17% 5.80%
TMR S 9.20% 20.89% 2.65% 8.04%

(1) Computation using DSP

 LUTs FFs Es. Bits
7.65% 1.52% 4.75%
 13.21% 2.08% 7.88%
19.07% 2.53% 11.36%
 8.39% 2.08% 5.28%
 14.63% 2.64% 8.80%
19.66% 2.91% 13.25%

(2) Computation using LUT

Table 2: Resource utilization of FPGA with 16-input FFT

Method LUTs DSPs FFs Es. Bits
FFT 6.09% 28.99% 1.44% 6.10%
DMR 10.35% 57.92% 2.14% 10.65%
TMR 15.27% 86.86% 2.63% 15.80%
Temp 6.87% 28.99% 2.55% 7.14%
DMR T 12.69% 57.92% 3.26% 12.21%

(1) Computation using DSP

 LUTs FFs Es. Bits
 19.37% 2.08% 11.05%
 36.95% 3.42% 20.83%
 55.44% 4.56% 30.35%
 20.14% 3.19% 12.00%
 39.30% 4.54% 22.35%

(2) Computation using LUT

Table 3: Resource utilization of FPGA with 32-input FFT

Ενώ εδώ μπορούμε να παρατηρήσουμε την αλλαγή στα διαφορετικά resources με βάση
την τεχνική και το μέγεθος του FFT Kernel.

22

Εκτεταμένη Περίληψη

4

6

8

10

12

14
Pe

rc
en

ta
ge

 o
f L

ut
s

8 16 32

Luts
Kernel

FFT
DMR
TMR
Temp
DMR T

0

20

40

60

80

Pe
rc

en
ta

ge
 o

f D
SP

s

8 16 32

Flip-Flops
Kernel

FFT
DMR
TMR
Temp
DMR T

1.5

2.0

2.5

3.0

Pe
rc

en
ta

ge
 o

f F
FS

8 16 32

Dsps
Kernel

FFT
DMR
TMR
Temp
DMR T

2

4

6

8

10

12

14

16

Pe
rc

en
ta

ge
 o

f E
ss

en
tia

l B
its

8 16 32

Essential Bits
Kernel

FFT
DMR
TMR
Temp
DMR T

Input FFT Size

Figure 9: Increase of usage based on input size using DSps

10

20

30

40

50

Pe
rc

en
ta

ge
 o

f L
ut

s

8 16 32

Luts
Kernel

FFT
DMR
TMR
Temp
DMR T

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Pe
rc

en
ta

ge
 o

f F
FS

8 16 32

Flip-Flops
Kernel

FFT
DMR
TMR
Temp
DMR T

5

10

15

20

25

30

Pe
rc

en
ta

ge
 o

f E
ss

en
tia

l B
its

8 16 32

Essential Bits
Kernel

FFT
DMR
TMR
Temp
DMR T

Input FFT Size

Figure 10: Increase of usage based on input size using Luts

Partial Reconfiguration
Για την μερική επαναδιαμόρφωση είναι απαραίτητη η παρατήρηση του χρόνου για κάθε
ένα από τα reconfigurable modules που έχουμε εφαρμόσει αυτή την τεχνική. Είναι ση-
μαντικό να σημειώσουμε ότι ενώ υπάρχει μια σύνδεση μεταξύ του μεγέθους του reconfig-
urable area, το startup time μπορεί να είναι σημαντικό στα modules με μικρότερα μεγέθη
και δημιουργεί καθυστερήσεις. Επίσης, χωρίζοντας το design σε όλο και μικρότερα recon-
figurable regions, στερούμε την δυνατότητα από το design να εφαρμόσει optimization,

23

Εκτεταμένη Περίληψη

μειώνοντας την χρήση των resources. Επομένως, ανεβαίνει η χρήση του area, που συνε-
πάγονται αύξηση του χρόνο reconfiguration.

- Full Reconfiguration 19.3 MB 28.3
Kernel Size Partial Module Size of Module (KB) Time (msec)

8
FFT Kernel 661 1

Average Stage Module 330 0.6
Average Butterfly Module 174 0.363

16 FFT Kernel 2354 3.59
Average Stage Module 338 0.9

32 FFT Kernel 7492 11.46

Table 4: Relation between the size and the time of Partial Reconfiguration

Mitigation Techniques Evaluation

Τα παρακάτω διαγράμματα παρουσιάζουν την σύνδεση που υπάρχει μεταξύ του αριθμού
λαθών που υπάρχει σε κάθε τεχνική και του downtime της εφαρμογής μας.

FFT Temp DMR DMR T TMR TMR S TMR B
Mitigation Technique3 (implementing either partial or full reconfiguration)

0

250

500

750

1000

1250

1500

1750

2000

Si
ng

le
 E

ve
nt

 U
ps

et
s E

rro
rs

1 (
in

 2
00

,0
00

 in
je

ct
io

ns
)

Errors
DSP
No DSP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Do
wn

 T
im

e2 (
%

)

Downtime
DSP
No DSP

Figure 11: Correlating SEU Errors and Downtime in a 8-Point FFT Kernel

24

Εκτεταμένη Περίληψη

FFT Temp DMR DMR T TMR TMR S
Mitigation Technique3 (implementing either partial or full reconfiguration)

0

1000

2000

3000

4000

5000
Si

ng
le

 E
ve

nt
 U

ps
et

s E
rro

rs
1 (

in
 2

00
,0

00
 in

je
ct

io
ns

)
Errors

DSP
No DSP

0

1

2

3

4

5

Do
wn

 T
im

e2 (
%

)

Downtime
DSP
No DSP

Figure 12: Correlating SEU Errors and Downtime in a 16-Point FFT Kernel

FFT Temp DMR DMR T TMR
Mitigation Technique3 (implementing either partial or full reconfiguration)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Si
ng

le
 E

ve
nt

 U
ps

et
s E

rro
rs

1 (
in

 2
00

,0
00

 in
je

ct
io

ns
)

Errors
DSP
No DSP

0

2

4

6

8

10

Do
wn

 T
im

e2 (
%

)

Downtime
DSP
No DSP

Figure 13: Correlating SEU Errors and Downtime in a 32-Point FFT Kernel

1. Single Event Upsets Errors: Η είσοδος λαθών στην εφαρμογή δεν οδηγεί πάντα στην
παραγωγή SEU errors, και την αλλαγή στη λειτουργικότητα της εφαρμογής. Αυτά τα λάθη
τα αναγνωρίζουμε είτε διαβάζοντας το λανθασμένο output είτε παρακολουθώντας τα flags,
της εφαρμογής.
2. Downtime: Το downtime αναφέρεται σε μια περίοδο χρόνου, όπου η εφαρμογή δεν
μπορεί να δεχθεί δεδομένα και είναι non-functional. Ωστόσο, σε περιπτώσεις που μεμο-
νωμένα στοιχεία του design, βρίσκονται ανενεργά και εκτελείται σε αυτά μερική επαναδια-

25

Εκτεταμένη Περίληψη

μόρφωση, εφόσον τα άλλα components του design μπορούν να εκτελέσουν το compute,
(TMR, DMR Temporal), τα input δεν χάνονται και ο χρόνος αυτός δεν προστίθεται στο
downtime.
3. Mitigation Technique: Σε όλες τις τεχνικές, με το συνεχόμενο error injection, θα εμφα-
νιστούν λάθη. Αυτά είτε τα αντιμετωπίζουμε με partial ή full reconfiguration. Αυτό επιτρέπει
στην εφαρμογή μας να συνεχίσει και να ολοκληρώσει το σύνολο των error injection. Στις
μετρήσεις μας, δεν συμπεριλάβαμε τεχνική που δεν περιλαμβάνει partial ή full reconfigu-
ration.

Παρατηρούμε, αρχικά ότι χρησιμοποιώντας διαφορετικά FPGA blocks για την πραγματο-
ποίηση των υπολογισμών, αυξάνουμε και το αριθμό των λαθών και το downtime, που είναι
απόρροια του της μεγαλύτερης χρήσης των resources του FPGA. Οι καλύτερες τεχνικές
που εφαρμόσαμε είναι η χρήση χρονικού πλεονασμού (temporal redundancy) στον FFT,
που προφέρει την δυνατότητα να αντιληφθούμε τα λάθη στο design, και να οδηγηθούμε
σε partial reconfiguration αντί για όλο το design, ενώ η δεύτερη είναι η χρήση του τριπλού
χωρικού πλεονασμού. Στην τελευταία τεχνική υπάρχει η δυνατότητα για να ελαχιστοποιή-
σουμε το downtime, από την στιγμή που ενώ ένα από τα τρία FFT Kernels, έχει χτυπηθεί
και υποστεί σφάλμα, τα άλλα δυο λειτουργούν, μη συνεισφέροντας έτσι στην μείωση της
λειτουργικότητας του design μας. Παρατηρούμε, ωστόσο ότι το fine grain redundancy με
τη χρήση σε κάθε πυρήνα δεν προφέρει καλά αποτελέσματα. Αυτό μπορεί να αποδοθεί
πρώτον, στη αυξημένη χρήση των resources από την στιγμή που απαγορεύονται τα op-
timization στα resources μεταξύ των reconfigurable regions, και δεύτερον, η extra χρήση
voters ανάμεσα στα στάδια αυξάνει την πιθανότητα ένας εκ των voter να αντιμετωπίσει
σφάλμα, οδηγώντας την εφαρμογή σε full reconfiguration, που είναι ×28, πιο χρονοβόρο
από το partial reconfiguration του FFT kernel 8 εισόδων.

Internal Scrubber Evaluation
Για τις καλύτερες μετρικές μας, αποφασίσαμε να προσθέσουμε και τη λειτουργικότητα του
internal memory scrubbing που μας προσφέρει το SEM IP της Xilinx. Από όλα αυτά που
δοκιμάσαμε επιλέξαμε το temporal και το tmr, με την χρήση των υπολογισμών με LUTS,
για μέγεθος kernel 8 και 32. Η βελτίωση με την χρήση του interanl scrubber, ήταν της
τάξης του 5% με 10% εξαίρεση του temporal για 32 input size, όπου η χρονική εξάρτηση
των υπολογισμών οδήγησε σε χειρότερα αποτελέσματα.

Kernel Size Mitigation Technique DownTime (sec) DownTime with CMS (sec) Improvements of CMS

8
Simple FFT 12.47 11.781 5.5%
Temporal 1.93 1.85 4.14%

TMR 0.57 0.54 5.06%

32
Simple FFT 19.90 18.94 4.8%
Temporal 23.53 23.34 -0.8%

TMR 7.67 8.32 7%

Table 5: Mitigation Techniques with and without Configuration Memory Scrubbing

Comparisons
Σε αυτό το τελευταίο κεφάλαιο, παρουσιαζουμε μια συνολική εικόνα των καλύτερων απο-

26

Εκτεταμένη Περίληψη

τελεσμάτων με τις ανάλογες τεχνικές. Αυτό που μπορούμε να συνοψίσουμε είναι ότι οι
καλύτερες τεχνικές είναι οι Temporal και TMR. Η πρώτη ότι λόγω του μικρού μεγέθους της
κρατάει τον αριθμό των meaningful errors στο ελάχιστο, ενώ η χρήση του TMR προσφέρει
την δυνατότητα να διατηρηθεί η λειτουργικότητα της εφαρμογής, ακόμα και αν κάποιο από
το modules τεθεί εκτός λειτουργίας.
Ο τελικός πίνακας με τις καλύτερες μετρήσεις, μας παρουσιάζει τη βελτίωση στην μεί-
ωση του downtime σε σχέση με την baseline περίπτωση που δεν υπάρχει καμία από τις
mitigation τεχνικές, όπως χωρικός ή χρονικός πλεονασμός, ή internal scrubbing.

Kernel Size Comp FPGA Block Mitigation Technique Downtime Reduction

8

DSP Temporal 72.7%
TMR 89.5%

LUT

 Temporal 84.5%
 TMR 95.4%

 CMS 5.5%
Temporal & CMS 85.09%

 TMR & CMS 95.64%

32

DSP TMR 66.7%

LUT
 TMR 58.1%
 CMS 4.81%

 TMR & CMS 61.4%

Table 6: The effectiveness of the proposed fault tolerant techniques in reducing downtime
was compared against the baseline Fast Fourier Transform (FFT) Kernel. This was eval-
uated for each technique across various basecases, taking into consideration the number
of points used for the FFT and the FPGA block utilized for computation.

27

Chapter 1
Introduction

1.1 FPGAs

Field Programmable Gate Arrays (FPGAs) are semiconductor devices that rely on a
matrix of configurable logic blocks (CLBs) interconnected via programmable interconnects.
A significant feature of FPGAs is their ability to be reprogrammed according to specific
application or functionality requirements post-manufacturing. This ability distinguishes
FPGAs fromApplication Specific Integrated Circuits (ASICs), which are solelymanufactured
for dedicated design tasks. With the aid of FPGAs and associated design platforms, a
higher level of flexibility, faster time-to-market, and a lower non-recurring engineering cost
(NRE) are achievable for a broad spectrum of applications. Notably, FPGAs have been
extensively applied in the fields of Aerospace & Defense, Automotive, Video & Image
Processing, as well as Space missions and explorations.

Particularly in Space Applications, such as navigation, communication, the emerging
era of commercialization of space, and observation of Earth and deep space, electronic
systems require an extended lifespan due to the high costs and significant difficulties in
maintenance, which may be impossible. Therefore, there is a pressing need to enhance
the lifetime of electronics in space. Field Programmable Gate Array (FPGA) devices have
been used in space for more than a decade with a mixed level of success. Until now, few
reprogrammable devices have been used on European spacecraft due to their sensitivity
to involuntary reconfiguration due to Single Event Upsets (SEU) induced by radiation. But
with the advent of reprogrammable devices featuring a million system gates or more, it
is no longer feasible to disregard these technologies. The FPGA vendors have already
begun to develop SEUmitigation techniques tomake their devices usable in space applications

The capacity and performance of FPGAs suitable for space flight have been increasing
steadily for more than a decade. For reprogrammable devices, the increase has been
from tens of thousands to millions of system gates. The application of FPGAs has moved
from simple glue logic to complete subsystem platforms that combine several real-time
systems functions on a single chip, even including microprocessors and memories [1] and
[2]. The potential for FPGA use in space is steadily increasing, continuously opening up
new application areas. FPGAs are more commonly used in critical applications and are
replacing ASICs regularly.

29

Chapter 1. Introduction

The potential of reprogrammable FPGAs has been presented in [3] and [4] and is
repeated hereafter. Many experiments [5] have been conducted to test the feasibility of
reconfigurable devices in space applications. Reconfigurable computing technology is still
a relatively new field of study for space applications. The space environment is different
from terrestrial systems in that incident radiation can cause bit flips in memory elements
and ionization failure in semiconductors. This kind of hardware fault cannot be debugged
and repaired, requiring high-reliability manufacture, assembly, and operating techniques.

1.2 Landscape of COTS FPGAs Devices in Space

In the realm of space applications, meeting challenging requirements often requires
the use of commercial off-the-shelf (COTS) devices [6]. While traditional military/space
electrical, electronic, and electromechanical (EEE) parts have proven to be suitable for
use in these applications, budget constraints and declining availability havemade it necessary
to find alternative solutions. As a result, more and more COTS devices are finding their
way into spacemissions due to their higher performance and lower costs. Although radiation-
hardened devices are often used in space, they are prohibitively expensive for smaller
missions involving CubeSat solutions. Furthermore, extensive testing durations can delay
deployment and overlook the advancements in computing and implementationmethodologies
that are available today.

The strict constraints for real-time processing and low power have forced the space
community to examine alternative solutions for onboard processing. Inmore detail, general-
purpose processors, such as the conventional Central Processors Units (CPUs) andmicroprocessors,
cannot provide sufficient acceleration in compute-intensive tasks of space applications,
e.g., for Vision-Based Navigation (VBN) and Earth Observation (EO). As a result, FPGAs
[7, 8, 9, 10, 11, 12] and other novel accelerators (e.g., GPUs [13, 14], TPUs [15, 16], and
VPUs [17, 18]) are employed to deliver enhanced performance and meet the demands of
modern space applications.When evenmore improvement is targeted in performance and
Space, Weight & Power (SWaP), there is a tendency to use mixed-criticality processing
architectures [19, 20], which consist of both space-grade and COTS components. To put
things into perspective, COTS processors are faster, less expensive, and more flexible in
general than their radiation-hardened counterparts, and thus, they can facilitate on-board
computing in several aspects.

Regarding the FPGAs, which are the focus of our work, they are typically used as main
processors for demanding tasks (i.e., for DSP/AI acceleration) or as framing processors
(i.e., for sensor data handling and data transcoding). Μany space agencies and industries
worldwide employing it in both consumer and research satellites and spacecraft. Compa-
nies like AMD Xilinx have responded to this demand by developing space-grade FPGAs
such as the Virtex-5QV [21], the industry’s first high-performance, rad-hard reconfigurable
FPGA designed for processing-intensive space systems. Other notable FPGA platforms
include the Q8S [22] developed by Xiphos Systems Corporation and the Leopard DPU
[23] developed by KP Labs, which is compliant with CubeSat standards and enables the

30

1.3 Problem Statement

application of Artificial Intelligence solutions in space. These platforms offer high flexibil-
ity and significant performance gains and are equipped with Zynq UltraScale+ MPSoC
processing cores.

Considering the significant costs associated with space electronics, this thesis con-
tribution focuses on the development and validation of FPGA-based mitigation solutions
on the Xilinx MPSoC UltraScale+ platform, specifically, the ZCU106 [24]. By adopting this
approach, the development process can be readily adapted to space-grade platforms with
minimal effort and changes, while still taking advantage of the benefits offered by COTS
devices.

1.3 Problem Statement

The space environment poses a significant threat to electronic devices due to the
presence of ionizing radiation, which can increase the conductivity of materials, leading to
damaging current levels and potentially causing permanent damage or operation errors in
electronic equipment. Semiconductor microelectronics are particularly vulnerable to these
phenomena, which can cause single-event upsets (SEUs) in digital circuits, leading to
fatal errors in aerospace applications [25]. As a result, radiation hardening and tolerance
techniques are typically employed to protect circuits in these applications. However, these
techniques are expensive and may not be feasible for use in smaller satellites, such as
CubeSats.

Commercial-of-the-shelf (COTS) Field-programmable gate arrays (FPGAs), with their
reconfigurable nature, are uniquely positioned to overcome these difficulties. Their ability
to be reconfigured on-the-fly enables them to adapt to the harsh space environment and
continue operating in the face of radiation-induced faults. As a result, companies have
developed radiation-hardened and radiation-tolerant FPGAs that provide designers with
robust and qualified devices that meet the demanding performance, reliability, and lifecy-
cle requirements of space applications.

Despite the availability of these specialized devices, there remains a lack of exploration
in the area of different design technologies. This is partly due to the time-consuming nature
of evaluating the radiation hardness of different design approaches, as well as the kernel-
specific nature of the problem. However, it is crucial to develop a better understanding
of the effects of ionizing radiation on different FPGA designs in order to improve their
resilience and ensure their continued operation in space environments.

The contribution of this thesis is summarized as follows:

• We apply fault tolerance mitigation techniques in the MPSoC UltraScale+ FPGA,
which has attracted significant interest from the space industry (e.g., it is integrated
in Q8S [22] and Leopard [23]), while the majority of the previous works focused on
the Zynq FPGAs [26].

• We propose various mitigation techniques that can be applied along with every ac-
celerator (application), as well as application-specific mitigation techniques (i.e., for
the FFT kernel).

31

Chapter 1. Introduction

• We develop our own fault injection campaign, which can be used to evaluate fault
tolerant systems in the MPSoC UltraScale+ FPGA.

• We examine the error resilience and the reliability of the FFT algorithm for various
input lengths (8/16/32).

• We explore the impact of utilizing different FPGA blocks (e.g., DSPs, LUTs) on the
reliability of the device.

32

1.4 Thesis Structure

1.4 Thesis Structure

FFT Kernels

Axi4-LiteSem Ip

Spacecraft

MPSoC Logic

Software

PS

PL

Ionizing
Radiation

Ch4:Evaluation

Ch3.9:Injection Ch3.7:Interface

Ch3: Kernel Design

Ch2: Background &

Radiation

Figure 1.1: Visual Chapter Guide

A brief outline of the subsequent chapters follows, with a visual chapter guide depicted
in Figure 1.1.

Chapter 2: A general background on Space Environment
and Fault-Tolerance techinques

In Chapter 2, a general background is presented on the basic layout of Field-Programmable
Gate Arrays (FPGAs) and the tools required for their programming. The effects of ionizing
radiation on FPGAs are then discussed, along with an analysis of the harmful behavior
that they may cause in satellites operating in a space environment. This chapter also in-
troduces several commonmitigation mechanisms that have been previously implemented
in a variety of fields, encompassing both electronic and mechanical components. Many of
these mechanisms serve as building blocks for the architecture presented in this thesis.

Chapter 3: Proposed Techniques and Methodologies for Error Mitigation

In Chapter 3, the implementation of a fast Fourier algorithm as a hardware module is
outlined, serving as the fundamental building block for all the kernels designed and eval-
uated in this study. A detailed architecture and approach for designing these kernels are
presented, along with thorough explanations of the implementation of the architectures.
The communication protocol AXI4-Lite, used for receiving and communicating with the
design, is also described. In addition, dynamic partial reconfiguration is introduced as a
technique that enables recovery from the faulty configuration of the Programmable Logic
(PL). The computational operation is transitioned from Digital Signal Processing compo-
nents (DSPs) to Look Up Tables (LUTs), and the injection method utilizing Xilinx Core
SEM IP is discussed in detail.

33

Chapter 1. Introduction

Chapter 4: Validation and Evaluation of Fault-Tolerance
Mitigation Techniques

In Chapter 4, the results of injection tests performed on Xilinx’s MPSoC UltraScale+
ZCU106 board are presented, which are covering all of the architectures proposed in
Chapter 3. The chapter explains how errors were introduced during the tests, and it in-
cludes a comparison of the performance metrics and resource utilization of each kernel
across input sizes of 8, 16, and 32. In addition, the injection campaign is described in
detail, including the methodology that was followed during the execution of the tests.

Chapter 5: Conclusion and Future work

In Chapter 5, this thesis concludes with a comprehensive evaluation of the proposed miti-
gation techniques. Furthermore, a brief discourse on potential future avenues for research
is provided, building on the techniques presented in this thesis.

34

Chapter 2
A general background on Space Environment
and Fault-Tolerance techniques

In Chapter 2, a general background is presented on the basic layout of Field-Programmable
Gate Arrays (FPGAs) and the tools required for their programming. The effects of ionizing
radiation on FPGAs are then discussed, along with an analysis of the harmful behavior
that they may cause in satellites operating in a space environment. This chapter also in-
troduces several commonmitigation mechanisms that have been previously implemented
in a variety of fields, encompassing both electronic and mechanical components. Many of
these mechanisms serve as building blocks for the architecture presented in this thesis.

FFT Kernels

Axi4-LiteSem Ip

Spacecraft

MPSoC Logic

Software

PS

PL

Ionizing
Radiation

Ch4:Evaluation

Ch3.9:Injection Ch3.7:Interface

Ch3: Kernel Design

Ch2: Background &

Radiation

Figure 2.1: Visual Chapter Guide

35

Chapter 2. A general background on Space Environment and Fault-Tolerance techniques

2.1 MPSoC Tools and Architecture

The development board used as part of our thesis is the [24] Zynq UltraScale+ MPSoC
ZCU106 Evaluation Kit developed by AMDXilinx. The included ZU7EV device is equipped
with a quad-core Arm Cortex-A53 applications processor, dual-core Cortex-R5 real-time
processor, and 16nm FinFET+ programmable logic. The device includes :

System Logic Cells (K) 504
Memory 38Mb

DSP Slices 1,728
Video Codec Unit 1
Maximum I/O Pins 464

LUT 230400
FF 460800

BUFG 544

Table 2.1: Specification of Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC

In general, FPGAs are integrated circuits that consist of smaller elements. Some of
these elements are the CLBs (configurable logic blocks), memory elements, DSPs (digital
signal processing blocks), IO blocks, etc. The functionality of the kernels is implemented
in the FPGA fabric using both the functionality of the routing matrix and the CLB’s inter-
nal routing and structures. The routing matrix consists of switch boxes and multiplexers,
responsible for routing and transferring the information. The CLBs are tiled across the
fabric in rows and columns with channels of routing wires lying in between them. The
CLBs contain smaller logic elements and their configuration is determined by the manu-
facturer. In the MPSoC UltraScale+ architecture, Xilinx has created the following [27] CLB
architecture.

Every CLB contains one slice with eight 6-input LUTs and sixteen storage elements.
The LUTs are organized as a column with an 8-bit carry chain per CLB, called CARRY8.
Wide-function multiplexers combine LUTs to create any function of 7, 8, or 9 inputs, or
some functions of up to 55 inputs. SLICEL is the name used to describe CLB slices that
support these functions, where the L is for logic. The LUT in a SLICEM, where the M is
for memory, can be configured as a look-up table, 64-bit distributed RAM or a 32-bit shift
register. The CLB for a SLICEL is referred to as a CLEL tile, and the CLB for the SLICEM
is referred to as a CLE_M tile. The table summarizes the resources in one CLB.

CLB Slice LUTs Flip-Flops Arithmetic
and Carry Chains Wide Multiplexers Distributed RAM Shift Registers

SLICEL 8 16 1 F7, F8, F9 N/A N/A
SLICEM 8 16 1 F7, F8, F9 512 bits 256 bits

Table 2.2: Logic Resources in One CLB Slice

36

2.1 MPSoC Tools and Architecture

The function generators are implemented as six-input look-up tables (LUTs). There
are six independent inputs (1 to 6) and two independent outputs (O5 and O6) for each of
the eight function generators in a CLB slice. The function generators can implement:

• Any arbitrarily defined six-input Boolean function.

• Two arbitrarily defined five-input Boolean functions, as long as these two functions
share common inputs.

• Two arbitrarily defined Boolean functions of three and two inputs or less.

Storage Elements There are 16 storage elements per CLB slice (two per LUT), which
can all be configured as either edge-triggered D-type flip-flops or level-sensitive latches.
Control Signals There are two clock inputs (CLK) and two set/reset inputs (SR) to every
CLB for the storage elements.

Distributed RAM (SLICEM Only) The function generators (LUTs) in SLICEM can be
implemented as a synchronous RAM resource also described as distributed RAM.Multiple
LUTs in a SLICEM can be combined in various ways to store larger amounts of data up
to 512 bits per SLICEM. Multiple SLICEMs can be combined to create larger memories.

Shift Registers (SLICEM Only) A SLICEM function generator can also be configured
as a 32-bit shift register without using the flip-flops. When used in this manner, each LUT
can delay serial data from one to 32 clock cycles. The shifting D (DI1 LUT pin) and shift
out Q31 (MC31 LUT pin) lines cascade LUTs to form larger shift registers. The eight LUTs
in a SLICEM are cascaded to produce delays of up to 256 clock cycles. It is also possible
to combine shift registers across more than one SLICEM.

The contents of the configuration memory are generated by the design tool software
suite in the form of a configuration bitstream. In the case of Xilinx, the Vivado-Vitis design
suite is developed and enables a wide range of functionality in both the hardware and
software design of Xilinx’s FPGAs. The configuration memory defines the function and
operation of all the described resources as well as the routing and connections on the
FPGA and can be seen as an underlying device definition layer. The Vivado tools allow
the user to extract besides the bitstream file used for the programming of the FPGA, two
more files, the [28] .ebc and .ebd labeled files. The EBC file is a reference file and contains
the memory cell content, while the .EBD file is used to mask the EBC file, 1 in the EBD
file corresponds to an essential bit in the EBC file.

If a soft error occurs, one or morememory bits are corrupted. Thememory bits affected
can be in the device configuration memory (which determines the behavior of the design),
or might be in design memory elements (which determines the state of the design). The
following four memory categories represent a majority of the memory in a device:

• Configuration Memory – Storage elements used to configure the function of the
design loaded into the device. This includes function block behavior and function
block connectivity. This memory is physically distributed across the entire device
and represents the largest number of bits. Only a fraction of the bits is essential to
the proper operation of any specific design loaded into the device.

37

Chapter 2. A general background on Space Environment and Fault-Tolerance techniques

Figure 2.2: MPSoC Architecture

• Block Memory – High capacity storage elements used to store design state. As
the name implies, the bits are clustered into a physical block, with several blocks
distributed across the entire device. Block Memory represents the second largest
number of bits.

• Distributed Memory – Medium capacity storage elements used to store design state.
This type of memory is present in certain configurable logic blocks (CLBs) and is
distributed across the entire device. Distributed Memory represents the third largest
number of bits.

• Flip-Flops – Low capacity storage elements used to store design state. This type of
memory is present in all configurable logic blocks (CLBs) and is distributed across
the entire device. Flip-Flops represent the fourth largest number of bits. An extremely
small number of additional memory bits exist as internal device control registers and
state elements. Soft errors occurring in these areas can result in regional or device-
wide interference that is referred to as a single-event functional interrupt (SEFI). Due
to the small number of these memory bits, the frequency of SEFI events is consid-
ered negligible in this discussion, and these infrequent events are not addressed by
the SEM controller.

An EBD file [29] is an ASCII text file that has an informational header, followed by a
number of lines, where each line has 32 characters that are either zero (0) or one (1).
Each line represents the classification of 32-bits or one word of CRAM. Zero means non-

38

2.2 Ionising radiation

essential and one means essential. The Least Significant Bit (LSB) of a word, which is
sequentially considered it’s the first bit, is on the far right. In the 16nm UltraScale+ family,
each CRAM frame is 93[30] words. As each line in the EBD represents a word, You can
visualize it by counting off groups of 93 lines in the EBD file. Each group of 93 lines of
data in the EBD file holds the essential bits of data for a configuration frame. It is ordered
by incrementing Linear Frame Address, or LA. The initial group of 118 lines consists of 25
dummy words and one dummy frame. The next group of 93 lines is for LA = 0, followed
by the next group of 93 lines for LA = 1, and so on.

Theoretically, any change in the configuration memory can result in a disruption of the
FPGA functionality. But this is not always the case, as all the FPGA resources are rarely
used. Hence the configuration memory bits that correspond to used FPGA resources are
a candidate to affect the functionality and are referred to as the essential bits.

2.2 Ionising radiation

Ionizing radiation is any type of particle or electromagnetic wave that carries enough
energy to ionize or remove electrons from an atom. For transistors that are made up of
memory cells (such as SRAM cells), ionizing radiation can disrupt the transistor state by
causing surges of current to flow or by stopping currents from flowing. Ionizing radiation
comes from a variety of sources and has a wide range of effects on FPGAs.

Radiation effects in micro-electronics [31] are a serious concern for the performance
and the survival of devices operating in radiation environments, from outer space to air-
craft avionics to accelerators and nuclear power plants and even safety-critical equipment
operation at ground level. Many experiments have been conducted to measure the sig-
nificance of the f

Figure 2.3: Ionizing Injection

Radiation effects in microelectronics are broadly grouped into several categories. The
first distinction is whether the effect is the result of cumulative damage from the passage
of many energetic particles, or whether it results from the passage of a single particle.
Examples of cumulative damage include the total ionizing dose (TID) and displacement

39

Chapter 2. A general background on Space Environment and Fault-Tolerance techniques

damage dose (DDD). Failures resulting from a single particle can be destructive or non-
destructive to the device and may include memory upsets, latch, gate rupture, burnout,
and other phenomena, broadly described as single event effects (SEE).

Single Event Effects can be further divided into destructive and non-destructive. The
destructive as the name suggests can result in catastrophic failure of the device. The most
common types of catastrophic single-event effects include single-event latch-up (SEL),
single-event burnout(SEB), and single-event gate rupture or dielectric rapture (SEGR/
SEDR). In FPGA the are rare, while non-destructive single-event effects on the pro-
grammable logic are more common, which effects do not result in device failure but still
affect normal operation. The most commonly known of these effects is the single event
upset (SEU) or ”bit-flip” in a memory cell. The effects of single event upsets have been
thoroughly evaluated, especially in their impact on the configuration memory [32] of the
FPGA.

2.3 Classic FT Techniques theoretical

Classical fault-tolerant techniques are a set of techniques used to ensure that a system
or device continues to operate correctly in the presence of one or more faults or failures.
These techniques are commonly used in safety-critical systems, such as aerospace, au-
tomotive, and medical devices, as well as in high-performance computing systems and
other applications where system reliability is critical. Some of the classical fault-tolerant
techniques are:

1. Redundancy: This technique involves duplicating the critical components or sub-
systems of a system so that if one component or subsystem fails, the redundant
component or subsystem can take over. There are different types of redundancy
techniques, such as hardware redundancy, software redundancy, and information
redundancy.

2. Error detection and correction: This technique involves detecting and correcting er-
rors that occur in a system or device. This can be done through techniques such as
checksums, parity bits, and cyclic redundancy checks.

3. Fail-safe design: This technique involves designing a system or device in such a way
that if a failure or fault occurs, the system or device will fail safely and predictably.
This technique is commonly used in safety-critical systems, such as aircraft systems
and medical devices.

4. Fault avoidance: This technique involves designing a system or device in such a way
that faults or failures are less likely to occur. This can be done through techniques
such as robust design, testing, and quality control.

5. Fault isolation: This technique involves designing a system or device in such a way
that if a fault or failure occurs, it can be isolated to a specific component or subsys-
tem, allowing the rest of the system or device to continue to operate correctly.

40

2.3 Classic FT Techniques theoretical

6. Recovery: This technique involves designing a system or device in such a way that if
a fault or failure occurs, the system or device can be restored to its normal operation
as quickly as possible. This can be done through techniques such as checkpointing,
replication, and restart.

Indeed, the continuous development of fault-tolerant techniques and systems is cru-
cial for improving the reliability and safety of a wide range of electronic and mechanical
systems. As technology evolves and becomes more complex, the need for robust and
fault-tolerant designs becomes increasingly important. This is particularly true in safety-
critical systems such as aircraft, medical devices, and nuclear power plants, where a
failure can have catastrophic consequences.

Advancements in fault-tolerant techniques and systems have resulted in the develop-
ment of more capable and reliable platforms, which can withstand a wide range of failure
modes and continue to operate safely and reliably. For example, modern aircraft use so-
phisticated fault-tolerant avionics systems that are designed to continue functioning even
in the event of multiple component failures. Similarly, medical devices such as pacemak-
ers and implantable defibrillators use advanced fault-tolerant designs to ensure that they
continue to function correctly even in the presence of faults or failures. Such technics are
starting to be deployed more and more in space applications, such as CubeSat or deep
space missions.

In addition to improving the safety and reliability of electronic and mechanical systems,
fault-tolerant techniques can also help to reduce the cost of development, deployment,
and operation. By designing systems that can continue functioning in the presence of
faults or failures, it may be possible to avoid costly shutdowns, repairs, replacements, or
cancelations of the whole operation.

Overall, the development of fault-tolerant techniques and systems is an important area
of research and development, which has the potential to improve the reliability and safety
of a wide range of electronic and mechanical systems, while also reducing the cost of
development and operation.

41

Chapter 3
Proposed Techniques and Methodologies for
Error Mitigation

In Chapter 3, the implementation of a fast Fourier algorithm as a hardware module is
outlined, serving as the fundamental building block for all the kernels designed and eval-
uated in this study. A detailed architecture and approach for designing these kernels are
presented, along with thorough explanations of the implementation of the architectures.
The communication protocol AXI4-Lite, used for receiving and communicating with the
design, is also described. In addition, dynamic partial reconfiguration is introduced as a
technique that enables recovery from the faulty configuration of the Programmable Logic
(PL). The computational operation is transitioned from Digital Signal Processing compo-
nents (DSPs) to Look Up Tables (LUTs), and the injection method utilizing Xilinx Core
SEM IP is discussed in detail.

FFT Kernels

Axi4-LiteSem Ip

Spacecraft

MPSoC Logic

Software

PS

PL

Ionizing
Radiation

Ch4:Evaluation

Ch3.9:Injection Ch3.7:Interface

Ch3: Kernel Design

Ch2: Background &

Radiation

Figure 3.1: Visual Chapter Guide

43

Chapter 3. Proposed Techniques and Methodologies for Error Mitigation

3.1 Design of FFT Hardware Kernel

The first step towards implementing some fault mitigation techniques is to develop a
custom design that allows us to understand the design deeply, in every part of it. The
algorithm that, we decided to implement is the fast Fourier transform.

Fast Fourier transform is a crucial algorithm and a fundamental part of most of ourmod-
ern digital signal processing [33]. A fast Fourier transform (FFT) is an algorithm that com-
putes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT). Fourier
analysis converts a signal from its original domain (often time or space) to a represen-
tation in the frequency domain and vice versa. The DFT is obtained by decomposing a
sequence of values into components of different frequencies. This operation is useful in
many fields, but computing it directly from the definition is often too slow to be practical.
An FFT rapidly computes such transformations by factorizing the DFT matrix into a prod-
uct of sparse (mostly zero) factors.[2] As a result, it manages to reduce the complexity
of computing the DFT from O(N2) to O(N logN). The importance is enormous, especially
considering the increasingly input size necessary, and the amount of data the transrfation
needed to compute.

Fast Fourier transforms are widely used for applications in engineering, music, sci-
ence, and mathematics. The basic ideas were popularized in 1965, but some algorithms
had been derived as early as 1805.[1] In 1994, Gilbert Strang described the FFT as ”the
most important numerical algorithm of our lifetime”,[3][4] and it was included in the Top 10
Algorithms of the 20th Century by the IEEE magazine Computing in Science & Engineer-
ing.[5]

Both the discrete Fourier transform and the FFT transforms a sequence of N complex
numbers.

ξ

10∑
i=1

ti{c}a1,1

Xk =
N−1∑
i=0

xne−i2πkn/N

where {xn} = x0, x1, . . . , xN−1 and {Xk} = X0,X1, . . . ,XN−1.

The FFT is used in digital recording, sampling, additive synthesis, and pitch correction
software.

44

3.1.1 Design and implementation of FFT

The FFT’s importance derives from the fact that it has made working in the frequency
domain equally computationally feasible as working in the temporal or spatial domain.
Some of the important applications of the FFT include:

Communications

The most important equation for communication and signal processing is the convolu-
tion between the input x(t) and the impulse of that system h(t) which results in the output
Y(t). However, the convolution algorithm is time, thus transforming the domain from time
to frequency, allowing us to use multiplication Y(f) = x(f) ∗ h(f), which is mathematically
significantly easier than convolutions.

Optics, diffraction, and tomography

The discrete Fourier transform is widely used with spatial frequencies in modeling
the way that light, electrons, and other probes travel through optical systems and scatter
from objects in two and three dimensions. The dual (direct/reciprocal) vector space of
three-dimensional objects further makes available a three-dimensional reciprocal lattice,
whose construction from translucent object shadows (via the Fourier slice theorem) allows
tomographic reconstruction of three-dimensional objects with a wide range of applications
e.g. in modern medicine.

Data compression

The field of digital signal processing relies heavily on operations in the frequency do-
main (i.e. on the Fourier transform). For example, several lossy images and sound com-
pression methods employ the discrete Fourier transform: the signal is cut into short seg-
ments, each is transformed, and then the Fourier coefficients of high frequencies, which
are assumed to be unnoticeable, are discarded. The decompressor computes the inverse
transform based on this reduced number of Fourier coefficients. (Compression applica-
tions often use a specialized form of the DFT, the discrete cosine transform, or sometimes
the modified discrete cosine transform.)

3.1.1 Design and implementation of FFT

For this thesis, we implemented the most commonly used FFT, the Cooley–Tukey
algorithm. This is a divide-and-conquer algorithm that recursively breaks down a DFT of
any composite size N = N1 × N2 into many smaller DFTs of sizes N1 and N2 along with
O(N) multiplications by complex roots of unity traditionally called twiddle factors[18]).

Below is an image of an 8-input FFT. With the recursive use of smaller and smaller
components.

45

Chapter 3. Proposed Techniques and Methodologies for Error Mitigation

Figure 3.2: Divide FFT Stages

The more close representation of the design is :

Figure 3.3: Radix 2 FFT architecture

The FFT component, we have implemented is a Radix-2 Decimation-in-Time (DIT),
Pipeliend FFT. Some considerations of the implementation: - Radix-2 : Every level uses
decomposition into half-sizes(mod 2) FFTs - Pipelined: Every stage/level store the output
into a register. This is done to lessen the critical path which is now only an addition +
multiplication

The circle that this FFT implementation needs to produce an output is log(N).
The implementation consists of 2 main components the scraber and the butterflies can

be shown in the figure 3.4:

46

3.1.1 Design and implementation of FFT

Scrambler

Type
Butterfly
Stage 1

Type
Butterfly
Stage 1

Type
Butterfly
Stage 1

Stage 1 Stage 2 Stage 3

Type
Butterfly
Stage 1

Type
Butterfly
Stage 2

Type
Butterfly
Stage 2

Type
Butterfly
Stage 3

Figure 3.4: FFT Architecture

Twiddle Factors (Root of Unity)

The value of the Root of Unity is used in every stage multiplication. We have precal-
culated and placed those in a ROM inside the FPGA.

Scrambler

According to the 3.2 figure, in FFT Radix-2 we have to gather and process inputs into
specific groups. This is more easily explained by following the 3.4 figure. Considering the
inputs of a stage, the previous one is divided into two groups, the first one performs the
even number calculations, and the second one the odd calculations. There is an easy
trick to perform this operation by reversing the order of bits that represent the position of
the input, and this scrambles the inputs to their correct orientation. We perform this with
a component called Scrambler. Below is a representation of that operation on a 16-input
Scrambler.

0000 := 0 => 0000 := 0
0001 := 1 => 1000 := 8
0010 := 2 => 0100 := 4
0011 := 3 => 1100 := 12
0100 := 4 => 0010 := 2
0101 := 5 => 1010 := 10
0110 := 6 => 0110 := 6
0111 := 7 => 1110 := 14
1000 := 8 => 0001 := 1
1001 := 9 => 1001 := 9
1010 := 10 => 0101 := 5
1011 := 11 => 1101 := 13

47

Chapter 3. Proposed Techniques and Methodologies for Error Mitigation

Figure 3.5: Scrambler Architecture

1100 := 12 => 0011 := 3
1101 := 13 => 1011 := 11
1110 := 14 => 0111 := 7
1111 := 15 => 1111 := 15

Type Butterfly Stage

The butterflies perform an operation :

y0 = x0+ x1 ∗ twiddle

y1 = x0− x1 ∗ twiddle

We opted to alter the butterfly implementation, creating the type of butterfly by making
it dependent on the stage. The inputs of each butterfly are 2∗∗Stage, and we perform the
correct routing inside the butterfly component. The routing is matching the correct inputs to
perform the operation. That is achieved by every input(i) combined with input(i+N) where
N =2**(stage-1)/2 the number of pairs to produce an output. The output of each operation
is performed by two more modules the adder and the subber. The adder produces the
first output(i) and the subber the second one, output(i+N). The following logic can be
represented in the following table for the 4-input or a 2-stage type butterfly:

I(0) + I(2) => O(0)
I(1) + I(3) => O(1)
I(0) - I(2) => O(2)
I(1) - I(3) => O(3)

48

3.1.1 Design and implementation of FFT

Flip-Flop

Adder

Subber

Real

Real

Imaginary

Imaginary

Figure 3.6: Butterfly Set Stage 1

The architecture of the type butterfly is depicted in figures 3.5 and 3.6 for a 1-stage
and 2-stage respectively:

To achieve pipelining our design, we added a storage unit at the end of each butterfly,
to minimize the critical path and allow for continuous operation of the components of the
FFT. Another important distinction is to forward the twiddle factors into the lower module of
the design. We observed a correlation the twiddle factors have with the stage, the number
of inputs, and the current number of pairs using this formula :

twiddle((inputs/2) ∗ i/(2 ∗ ∗stage)/2)

where i = current number of pair

Adder | Subber

Both the adder and the subber take as input two 32 vectors of bits, with the first 16
representing the real part and the other the imaginary part, and output a single 32 vector
of bits. The same format is followed by the twiddle factors. We opted for a fixed point
arithmetic Q1.15 with 1 signed bit and 15 bits representing the fractional part of the num-
ber. That allows the application to run in a range of [−1, 1). To perform each operation we
divided the inputs into real and imaginary parts. The adder performs:

(i1.re+ i1.im) + (i2.re+ i2.im) ∗ (t3.re+ t3.im) = o.re+ o.im

The operation can be further analyzed to :

o.re = 1.re+ 2.re ∗ 3.re− 2.im ∗ 3.im

o.im = 1.im+ 2.re ∗ 3.im+ 2.im ∗ 3.re

49

Chapter 3. Proposed Techniques and Methodologies for Error Mitigation

Flip-Flop

Adder

Subber

Real

Real

Imaginary

Imaginary

Adder

Real

Imaginary

Real

Imaginary

Subber

Figure 3.7: Butterfly Set Stage 2

50

3.2 Spacial Redundancy

Exactly the same as the subber:

(1.re+ 1.im)− (2.re+ 2.im) ∗ (3.re+ 3.im) = o.re+ o.im

o.re = 1.re− 2.re ∗ 3.re+ 2.im ∗ 3.im

o.im = 1.im− 2.re ∗ 3.im− 2.im ∗ 3.re

However, due to the arithmetic operations needing the bit vector length to increase,
and because we wanted to keep it to 32 size, we truncated the results to fit that size. That
meant that passing through every adder and subber the number was divided by two.

The latency of our implementation is log(N), incase of parallel inputs, while incase of
serial arrival, the latency of the first result in N*log(N).

3.2 Spacial Redundancy

Spatial redundancy is the intentional multiplication of critical components or functions
of a system with the goal of increasing the reliability of the system.

Besides the usage of spatial redundancy in digital design operations and kernels, it
is also used in physical parts of many safety-critical systems, such as fly-by-wire and hy-
draulic systems in aircraft, An error in one component may then be out-voted by the other
ones. All components of a system must fail before the system fails. Since the percentage
of error in many parts is often small and the subcomponents are expected to fail indepen-
dently, the probability of all three failings is calculated to be extraordinarily small, and it
is ofter outweighed by other risk factors. Redundancy may also be known by the terms
”majority voting systems”[2] or ”voting logic”.[3]

However, specifically in ionizing radiation environments where the percentage of fault
is closely correlatable with the area a component requires, increasing the number of com-
ponents is not often able to produce the required results. For that reason, space explo-
ration is needed for which different techniques fit a diverse range of applications in a
diverse range of environments.

3.2.1 DMR

Dual Modular Redundancy (DMR) is a form of redundancy that uses two or more
identical modules to independently process the same data. These modules are monitored
to detect any discrepancies between them. If a discrepancy is found, the data is discarded
and the system is reset.

The system is able to detect an error but not correct them. Although DMR is most com-
monly used in an application with a lower catastrophic error percentage, it offers smaller
overhead and time to reconfigure than other methods we will explore and explain further.
It is better than some other alternatives, where the error detection must happen in the
software part of the design by comparing to some golden result. The hardware detection

51

Chapter 3. Proposed Techniques and Methodologies for Error Mitigation

allows to perform reconfiguration of the FFT in real-time and corrects a possible error in
the design.

Our proposed architecture is the following:

FFT

DMR
Voter

FFT

Figure 3.8: DMR Architecture

The voter compares the output of the two modules, and when an error is detected it
outputs a flag that allows the ps to understand the error.

Voter output Flags
same results 00
different results 11

Table 3.1: DMR Voter to DMR Flags

3.2.2 TMR

Triple modular redundancy (TMR) is a fault-tolerant form of redundancy used in safety-
critical systems. It involves the use of three separate processing modules that indepen-
dently perform the same task. The output from the three modules is then compared to
verify that all three results are identical. If the results are not identical, then the system
will enter a fault state and initiate an appropriate response. This type of redundancy is
used to ensure that the system is highly reliable and that any errors can be detected and
addressed quickly. TMR provides increased reliability by ensuring that any single error or
fault in one of the three circuits will be detected and corrected by the other two. TMR is
commonly used in applications such as aerospace systems, nuclear power plants, and
medical equipment.

In this thesis, we opted for triplicating the FFT kernel and adding a voter connected to
their outputs. The system is able to both detect and correct possible errors that may occur.
The voter is able to compare the result of the FFT kernels. Even though many academic
explorations [34], [35] have been conducted in the search for the most suitable voter for

52

3.3 Temporal Reduncancy

fault tolerance, we used a single voter in the output. In case of one kernel differentiating
from the other two then the voter outputs the correct result and raises a flag for the faulty
kernel to be corrected. If all three kernels disagree in their results the voter selects the
first FFT and raises that all the kernels needed to be reconfigured.

FFT TMR
Voter

FFT

FFT

Figure 3.9: TMR Architecture

Voter output Flags
all components same 000

first different, second & third same 001
second different, first & third same 010
third different, first & second same 100

all different 111

Table 3.2: TMR Voter to TMR Flags

3.3 Temporal Reduncancy

3.3.1 Simple Temporal Redundancy

Besides the concept of spatial redundancy where the duplication or triplication of crit-
ical kernels in the design is implemented, there is another form of redundancy spreading
over time. Temporal redundancy is a type of data redundancy that occurs when the same
operation is executed multiple times and can be used either as a complementary or main
tolerance technique as a fault-tolerance architecture [36]. It’s optimal for applications fa-
voring checkpoint implementations where the faulted results can be discarded and the
kernels can be repaired. The use of multiple operations tends to lead to higher energy
consumption from the application where the modules can be set to idle waiting for inputs

53

Chapter 3. Proposed Techniques and Methodologies for Error Mitigation

to arrive, and can often lead to conflicts with requirements for real-time applications. Due
to that, temporal redundancy is often used in modules with specific structures, resulting
in simpler outputs, while programs with complex internal states and structures may result
in higher performance overheads. However, with the time dependence of this approach,
temporal redundancy is vulnerable to errors occurring between the start of multiplied op-
erations.

In our thesis, we decided to execute the same input N times as many as the number
of inputs of the FFT. This approach could detect errors happening during the re-execution
phase of the operation. Imagining a continuous arrival of input data that approach could
detect and correct errors during 1 - 1/N cycles. For that reason, further exploration is
necessary regarding the favorable Pareto point featuring energy consumption and the
percentage of errors between different bursts of executions.

Our approach includes : - an input repeater that multiplies the input N times - the FFT
kernel - a mechanism observing the output of the FFT kernel emitting the correct result
and raising a flag in case of a faulty operation. - an FSM that ensures that the same errors
won’t influence the error detection or even transient imbalances in the output could be
detected.

The diagram of the FSM is the following:

Detected Error

Correct State Error State

Detected Error/

Correct Behaviour

Correct Behaviour

Figure 3.10: Temporal FSM

The flag table is :

State Flags
Correct State 0
Error State 1

Table 3.3: Temporal FSM Flags

A holistic view of the whole kernel:

54

3.4 Hybrid between Spatial and Temporal Redundancy

FFTRepeater Detect
Errors FSM

Figure 3.11: Temporal Architecture

3.4 Hybrid between Spatial and Temporal Redundancy

3.4.1 DMR Temporal

Another approach is to combine spatial redundancy with temporal one in a single ker-
nel taking advantage of both techniques. We opted for a dual spatial redundancy and
keeping the time repeating the input data N times.

The mechanism responsible for detecting errors in this approach is configured to also
compare and detect the different outputs of the two FFT kernels.

The FSM has been altered to fit the extra kernel :

Correct State Uncorrectable error
State

Error in second module
State

Error in first module
State

Detected error in
first module/

Correct Behaviour

Detected error in second
module/ Correct Behaviour

Detected error in
first module

Detected error in
second module

Detected error in
first module

Detected error in
second module

Correct
Behaviour

Error regardless
of module/

Correct Behaviour

Figure 3.12: DMR Temporal FSM

The flag table is :

55

Chapter 3. Proposed Techniques and Methodologies for Error Mitigation

State Flags
Correct State 000
Error in first 01

Error in second 10
Uncorrectable error 11

Table 3.4: TMR Voter to TMR Flags

A holistic view of the whole kernel:

FFT

Repeater Detect
Errors FSM

FFT

Figure 3.13: DMR Temporal Architecture

3.5 Fine Grain Spacial redundancy

Previous research has suggested that triplication may not always be the optimal ap-
proach for mitigating the effects of ionizing radiation in the space environment [citation
needed]. As previously explained, there is a direct correlation between the size of a design
and the percentage of single event upset in the device. This often necessitates decisions
regarding which critical parts to protect and which to neglect. This methodology can also
be applied to the inner components of each kernel, providing more control for device re-
configuration. Using smaller components requires less reconfigurable time and reduces
overhead. In this thesis, we explore two kernels, one where triplication is performed at the
stage level, and the other at the butterfly level of each FFT kernel.

3.5.1 FFT Stage TMR

The TMR Stage kernel operates by triplicating each stage and passing the resulting
outputs through a voter that compares them to detect and correct possible errors. The
voter module is identical to that of the TMR kernel but is now present at the end of every
stage. In the event of an error, the targetedmodule can be reconfigured, minimizing device
downtime as compared to reconfiguring the entire device.

56

3.5.1 FFT Stage TMR

Scrambler

Triplication
Stage
Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Voter
Stage

Stage 1 Stage 2 Stage 3
Stage
Voter

Stage 1

Stage
Voter

Stage 2

Stage
Voter

Stage 3

Type

Butterfly
Stage 1

Triplication
Stage

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Type
Butterfly
Stage 1

Triplication
Stage

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Triplication
Stage

Type

Butterfly
Stage 2

Type

Butterfly
Stage 2

Triplication
Stage

Type

Butterfly
Stage 2

Type

Butterfly
Stage 2

Triplication
Stage

Type

Butterfly
Stage 2

Type
Butterfly
Stage 2

Voter
Stage

Triplication
Stage

Type

Butterfly
Stage 3

Triplication
Stage

Type

Butterfly
Stage 3

Triplication
Stage

Type

Butterfly
Stage 3

Voter
Stage

Figure 3.14: TMR Stage Architecture

57

Chapter 3. Proposed Techniques and Methodologies for Error Mitigation

Scrambler

Triplication
Butterfly

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Triplication
Butterfly

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Triplication
Butterfly

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Voter
Stage 1

Voter
Stage 1

Voter
Stage 1

Voter
Stage 1

Triplication
Butterfly

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Type

Butterfly
Stage 1

Triplication
Butterfly

Type

Butterfly
Stage 2

Type

Butterfly
Stage 2

Type

Butterfly
Stage 2

Triplication
Butterfly

Type

Butterfly
Stage 2

Type

Butterfly
Stage 2

Voter
Stage 2

Voter
Stage 2

Triplication
Butterfly

Type

Butterfly
Stage 3

Type

Butterfly
Stage 3

Type

Butterfly
Stage 3

Voter
Stage 3

Stage 1 Stage 2

Stage 3

Butterfly
Voter

Stage 1

Butterfly
Voter

Stage 2 Butterfly
Voter

Stage 3

Type

Butterfly
Stage 2

Figure 3.15: TMR Butterfly Architecture

3.5.2 FFT Butterfly TMR

Similar to the TMR Stage kernel, the TMR Butterfly kernel triplicates components, but
on a butterfly level. This approach provides greater flexibility, but the creation of partitions
and startup time overheads for partial reconfiguration is more significant in this design.
The voter is slightly modified to consider the difference in input size at each level, but the
error vector for incorrect outputs remains identical.

3.6 Dynamic Partial Reconfiguration

The FPGAs are logicaly dividid into two layers, the hardware layer, which include the
logic resources, the routing resources, the DSP block, the RAM, the IO and others. Most
FPGAs are able to be reconfigurable during their deployment. However many times, the
situation does not require a full reboot of the device, and rather smaller parts need to
be reconfigurable. This process is called partial reconfiguration. Partial reconfiguration in
FPGAs is a feature that allows sections of an FPGA to be reconfigured while the FPGA is
still running. This allows the FPGA to be used to its fullest potential, as different sections
of the FPGA can be used for different tasks at any given time. This technology enables

58

3.6 Dynamic Partial Reconfiguration

Figure 3.16: Dynamic Partial Reconfiguration 1

dynamic reconfiguration of the FPGA, allowing the FPGA to be used as a multi-function
device. This technology has been explored in the correction of the single event upsets
(SEU), through various forms either as reconfiguring manually areas of the FPGA fabric
or as part of the Configuration Memory Scrubbing [37].

It also allows for the FPGA to be more energy-efficient as it only uses the resources
that are necessary for the current task. Nevertheless, that functionality minimizes the area
need in the FPGA fabric, as more and more modules can be stored in the external mem-
ory. That leads to lower deployment costs and even development time as more and more
components can be developed independently ignoring the functionality of the whole sys-
tem. Besides the dual functionality that, would have tremendous benefits on the field,
dynamic partial reconfiguration allows us to combat problems with regard to the fault of
a component in the design. This could be for example one out of the triplication mod-
ules used in spatial redundancy that malfunctions. Instead of disabling the whole device
and reprograming it from the start, we have the opportunity to keep running the other two
modules, while the faulty one would be dynamically reconfigured, in a smaller time than
the time needed for the whole design. With this process, we are able to eliminate the
downtime of the device, while dealing with the faulty component.

Figure 3.17: Dynamic Partial Reconfiguration 2

Another technic is the static partial reconfiguration of the design, however, the most
significant problem of that design needs to stop working at the time of reconfiguration.
That limitation is the reason most implementations of partial reconfiguration prefer to use
the dynamic approach.

Xilinx FPGAs in their tool flow offer partial reconfiguration floorplanning and bitstream
generation. In addition, many interfaces are used to be able to reconfigure the device.

59

Chapter 3. Proposed Techniques and Methodologies for Error Mitigation

ICAP

ICAP or Internal Configuration Access Port allows the user to program the device
from within the FPGA itself. The ICAP should be explicitly enabled by the user design.
The ICAP is unable to perform the initial reconfiguration, but when it is finished, allows
the user decideto reconfigure the device partially or fully. One significant advantage the
ICAP reconfiguration method has, is its configuration speed and high throughput, with an
operating frequency of 100 MHz and throughput of up to 67 MBps. To access this interface
of the FPGAs device, Xilinx provided the IP CORE AXI HWICAP. The software application
running on the ARM-Processor is responsible for reading the configuration bitstream and
delivering them to the ICAP interface.

PCAP

PCAP or Processor Configuration Access Port is a unique interface that enables ac-
cess from a hard processor to the configuration module. It consists of a quickly found
concept and is only present in the newer Xilinx Devices including the UltraScale+ MPSoC
line of boards. Due to the importance of its functionality Xilinx develop a new API, to help
with the accesibility of the reconfiguration. XilFPGA library [38] provides an interface for
the users to configure the programmable logic (PL) from PS. The library is designed to
run on top of Xilinx standalone BSPs. It acts as a bridge between the user application and
the PL device. It provides the required functionality to the user application for configuring
the PL device with the required bitstream. Some of the features supported in the Zynq Ul-
traScale+ MPSoC platform are among others Full bitstream loading and Partial bitstream
loading. The PCAP clock can run at frequencies as high as 500 MHz, though it usually
runs at no higher than 100 MHz for most applications.

In all applications, the configuration bitstream is transferred to DDR from an external
memory (SD card) or using an SPI memory bus (QSPI). This is due to the fact that flash
memory is widely used in all space applications, and currently, there is no readily available
radiation-tolerant alternative.

In this thesis, we chose the PCAP approach as it is newer, better supported, and
recommended by Xilinx. We implemented partial reconfiguration to crucial computational
modules of the kernel, such as modules inside the FFT, such as adders and subtractors.
We excluded the voters, the FSM, the repeater, and the error-detecting modules in the
previously described architectures. The reason for this decision is that without these core
components, the application does not function according to the specification since no
redundancy or error mitigation technique is implemented for them. Additionally, their small
size compared to the FFT main module does not offer significant time improvements over
already necessary overheads needed for the partial reconfiguration to start. This makes
the reconfiguration of these individual components inefficient both in detecting errors in
these modules and the fact that the application is inoperable during the reconfiguration.
For the initial stage of our application, we have made the decision to utilize an SD card to
store all of the necessary bitstreams. These bitstreams will be subsequently transferred

60

3.7 AXI-Lite

to the DDR memory. This approach will enable us to transfer the stored data to fulfill the
requirements of the partial reconfiguration process as and when needed.

In contrast, we can reconfigure an instance of an FFT kernel in which, for example,
the application detects an error, while the other kernels continue to function. This is what
partial reconfiguration offers our design.

3.7 AXI-Lite

Advanced eXtensible Interface 4 (AXI4) [39]is a family of buses defined as part of the
fourth generation of the ARM Advanced Microcontroller Bus Architecture (AMBA) stan-
dard. The AMBA specification defines 3 AXI4 protocols:

- AXI4: A high-performance memory-mapped data and address interface. Capable
of Burst access to memory-mapped devices. - AXI4-Lite: A subset of AXI, lacking burst
access capability. Has a simpler interface than the full AXI4 interface. - AXI4-Stream: A
fast unidirectional protocol for transferring data from master to slave.

The Vivado design suite offers the ability to create custom IP with AXI4 interfaces.
These can be directly connected to ARM Processing System. The AXI4-Lite interface
consists of five channels: Read Address, Read Data, Write Address, Write Data, and
Write Response.

Figure 3.18: AXI4-Lite

61

Chapter 3. Proposed Techniques and Methodologies for Error Mitigation

The signals included in an AXI4-Lite Interface are :

AXI4-Lite
Global Signals

ACLK : Clock source
ARESETN : Global reset source, active low

Read Address Channel
ARADDR: Read address
ARCACHE: Memory type
ARPROT: Protection type
ARVALID: Read address valid

Read Data Channel
RDATA: Read Data
RRESP: Read response
RVALID: Read valid
RREADY: Read ready

Write Address Channel
AWADDR: Write address
AWCACHE: Memory type
AWPROT: Protection type
AWVALID: Write address valid
AWREADY: Write address ready

Write Data Channel
WDATA: Write data
WSTRB: Write strobes

Write Response Channel
BRESP: Write response
BVALID: Write response valid
BREADY: Response ready

In order to perform transactions in the protocol, a handshake process is required. All
five transaction channels employ the same VALID/READY process to transfer addresses,
data, and control information. This two-way flow control mechanism enables both the
master and slave to regulate the rate at which the information is exchanged between them.
The source of the information generates the VALID signal to indicate when the address,
data, or control information is available, while the destination generates the READY signal
to indicate that it can receive the information. The handshake process is completed if both
the VALID and READY signals in a channel are asserted during a rising clock edge.

In this thesis, an AXI-Lite interface is employed to facilitate communication from the
processing system to the programmable logic, in order to transmit data, manual resets to
the kernels, and receive the output as well as the signal indicating errors in the design.
The function and testing of our own application do not require a more complex method,
such as DMA transfers. Thememory map allows us to directly influence the input and read
the output necessary for testing for single-event upsets that may affect the functionality of
the kernels.

62

3.8 DSPs vs LUTs

3.8 DSPs vs LUTs

The field-programmable gate array (FPGA) consists of look-up tables (LUTs), which
serve as the fundamental building blocks of the device. A LUT is capable of implementing
any logic function of N Boolean variables. Essentially, it functions as a truth table, where
different combinations of inputs yield various functions, ultimately leading to output values.
Contrary, Digital signal processors (DSPs) are specialized multiply-accumulate hardware
accelerators that significantly speed up the execution of signal processing functions.

Figure 3.19: DSP vs Lut

Modern FPGAs can map specific functions directly to the device, and conversely, ev-
ery DSP functionality can be emulated using LUTs. There exists a trade-off between the
availability of DSP slices in the FPGA fabric and the speedup in the application and lower
configuration memory. In addition, when attempting to mitigate the effects of ionizing ra-
diation in space, the area in the FPGA fabric in which the kernels require execution is
crucial. A direct correlation between the area and the percentage of signal even upset in
the design is present, requiring an exploration to determine the optimal configuration and
balance the use of LUTs and DSP.

This thesis explores our designs by testing themwith the use of themaximum available
and necessary DSPs, as well as excluding them from the design. The purpose of this
approach is to test the kernels in extreme scenarios and understand how such decisions
affect the implemented design. The use of LUTs is expected to increase the percentage of
errors in our design, as the configuration memory is larger than the DSP implementation.

3.9 How to Perform Fault Injection

Ionizing radiation has the potential to induce undesired effects in most silicon devices,
which are broadly referred to as single-event effects (SEEs). In most cases, these events
do not cause permanent damage to the silicon device and are thus called soft errors.
However, soft errors can reduce the reliability of a device. While soft errors are consid-
ered unavoidable within commercial and practical constraints, Xilinx has integrated soft
error detection and correction capabilities into many of its device families. Moreover, Xilinx

63

Chapter 3. Proposed Techniques and Methodologies for Error Mitigation

offers an IP core with fault injection capabilities, named SEM IP, which helps in validating
the design and measuring the device’s tolerance. Specifically, for the Ultrascale+ boards,
the UltraScale Soft Error Mitigation Controller v3.1 is available [28].

The use of the SEM IP as a means of simulating the effects of ionizing radiation on
semiconductor devices has been widely recognized in the literature. This powerful tool
allows for the injection of errors into the configuration memory of the programmable logic
during runtime, effectively replicating single event upsets (SEUs) that occur in real-world
environments. Despite the fact that the SEM IP includes mitigation techniques such as er-
ror detection, correction, and classification, it should be noted that a faulty SEM IP com-
ponent could potentially interfere with the configuration memory, ultimately resulting in
catastrophic failure of the entire device.

Several studies have been conducted in the literature regarding the efficacy of scrub-
bing techniques [40]. Interestingly, the results of these studies have revealed that the
internal scrubber methodology employed by the SEM IP may be prone to certain limi-
tations that could impact its overall integrity. The Xilinx internal scrubber has 4 general
methods of inoperability:

1. SEU causing the SECDED to either: not be able to correct and therefore potential
fault accumulation can occur (within a frame) or improperly correct a frame thus
creating massive interconnect errors

2. Internal scrubber circuitry gets hit and causes improper function or cease of function

3. Utilized BRAM (pico-blaze of internal scrubber uses BRAM) gets hit and causes
malfunction.

4. ICAP interface becomes inoperable

Therefore, it is crucial to introduce a radiation-tolerant SEM IP to ensure the reliability of
semiconductor devices operating in harsh environments.

One potential solution is to implement a watchdog mechanism that checks essential
bits of the SEM IP every time it communicates with the configuration memory. If any of
these essential bits are found to be incorrect, the watchdog can trigger a recovery mech-
anism to restore the SEM IP to its original state. Another approach is to use triplication of
the SEM IP, where three identical instances of the IP are used, and their outputs are com-
pared. This technique can improve the overall reliability of the system by using a voting
mechanism to select the correct output in the event of radiation-induced errors affect-
ing one or two instances of the SEM IP. Partial reconfiguration of faulty components is
another potential solution, where the IP can be partitioned into smaller subcomponents,
and only the faulty subcomponents can be reconfigured while the rest of the IP remains
operational. This approach can minimize downtime and reduce the impact of radiation-
induced errors on the system’s overall performance. By implementing these techniques, a
radiation-tolerant SEM IP can significantly improve the reliability of semiconductor devices
operating in harsh environments.

64

3.9 How to Perform Fault Injection

However, it is important to note that the aforementioned considerations extend beyond
the scope of this thesis. Therefore, the focus of this work is solely on the deployment of
the FPGA injection mechanism to simulate real-time environments.

The ports of the SEM IP v3.1 are depicted in the following figure:

Figure 3.20: Sem IP v3.1

In order to communicate with the monitor interface of the SEM IP, we are using AXI
UartLite IP clocked at 100 MHz. This allows us to send commands and receive reports.
This is the recommended method from Xilinx as it is more verbose than others. The com-
mands [28] are the following

Reset

The ”R” command is used to perform a software reset. The binary format of the com-
mand is:

R {2-digit hex value}

The controller transmits an initialization report if the command is successful.

Idle

The ”I” command is used to place the SEM core into the Idle state. This state is crit-
ical as only from it, the injection command can be performed. The binary format of the
command is:

I

The controller transmits an initialization report if the command is successful.

65

Chapter 3. Proposed Techniques and Methodologies for Error Mitigation

Error Injection

The “N” command is used to perform an error injection by LFA (linear frame address).
The controller only accepts this command when in the Idle state. The format of the com-
mand is:

N {11-digit hex value}

The binary format of the command is :

1100 0000 0000 ssLL LLLL LLLL LLLL LLLL wwww wwwb bbbb

, where

• ss are the hardware slr number

• L represents the 18-bits of the linear frame address

• w the word address ranging from 0 to 91

• b the bit address ranging from 0 to 31

Configuration Memory Scrubbing

The ”O” command is used to command the scanning electron microscope (SEM) IP
during the observation state. During this state, the core is unable to inject errors; however,
it can identify and rectify them by employing the error correction code (ECC) and cyclic
redundancy check (CRC) algorithms. The command format for this operation is as follows:

O

[This paragraph is for the purpose of this draft empty, It will be finished until the final
presentation]

To add the functionality of the SEM IP in our design, we had to consider some of
the limitations and adduce more functionality to our design. The most specific limitation
of our design is the fact that the SEM IP reads the configuration memory through the
ICAP. However, in the booting of the device, the control of the configuration memory is
not enabled. For that reason, we stalled the initialization of the SEM IP until the ICAP
is enabled. The ICAP register is in the 0xFFCA3008 address for UltraScale+ devices,
and we have to clear the 0 bit for the ICAP to be enabled. Then using some GPIO pins
that allow communication between the processor and the programmable logic, we start
the SEM IP. The example design provided by Xilinx includes the monitor UART interface
which we include in our design.

66

3.9 How to Perform Fault Injection

The whole design can be depicted in the following diagram :

SD Card

Uart

DDR

Configuration
Memory

AXI-Lite

SEM

ICAP

HW Acceleration

ARM Processor Programmable Logic

AXI-UART

ECC/DPR
Monitoring

Injection/
ECC

DPR

Redundancy

Figure 3.21:Whole Diagram

67

Chapter 4
Validation and Evaluation of Fault-Tolerance
Mitigation Techniques

In Chapter 4, the results of injection tests performed on Xilinx’s MPSoC UltraScale+
ZCU106 board are presented, which are covering all of the architectures proposed in
Chapter 3. The chapter provides an explanation of how errors were introduced during the
tests, and it includes a comparison of the performance metrics and resource utilization
of each kernel across input sizes of 8, 16, and 32. In addition, the injection campaign is
described in detail, including the methodology that was followed during the execution of
the tests.

FFT Kernels

Axi4-LiteSem Ip

Spacecraft

MPSoC Logic

Software

PS

PL

Ionizing
Radiation

Ch4:Evaluation

Ch3.9:Injection Ch3.7:Interface

Ch3: Kernel Design

Ch2: Background &

Radiation

69

Chapter 4. Validation and Evaluation of Fault-Tolerance Mitigation Techniques

4.1 Experimental Setup

We selected Xilinx’s MPSoC ZCU106 SoC (System-on-Chip) board as our implemen-
tation platform. The reason for this selection is the usage of this platform on space-grade
applications and missions. The relatively lower cost and programmability of this board
make it ideal for this thesis. The board includes among others a quad-core Arm Cortex-
A53 applications processor and 16nm FinFET+ SRAM-based programmable logic. All
those methods explored in this thesis, however, are not board dependent. It is a general
method that can be employed for all types of SRAM-based FPGAs. The MPSoC archi-
tecture allows the user to access and change the FPGA configuration bits.

The software that allowed us to develop and implement the aforementioned architec-
tures is the Vivado Design Suit (2020.2). It provided us with the right tools needed to
develop our design, placing and route our architecture on the FPGA fabric, and prove the
necessary IP developed by Xilinx. Besides that, for the software applications we used the
Vitis software development kit to implement the software code necessary fro running our
bare metal project in the ARM processor. The Vivado Design Suit also has the ability to
generate the bitstreams necessary for both the full and the partial reconfiguration of the
device, and the necessary .ebd file [29]. Using the following command in the .xdc file in
the synthesis and implementation runs of the Vivado, the tool generates the .ebc and .ebd
files.

set_property BITSTREAM.SEU.ESSENTIALBITS yes [current_design]

• The EBC file is a reference file and contains the memory cell content. This is the
same content read back by the SEM controller during the SEU readback of the
FPGA.

• The EBD file shows the bits of the SEU Readback that are marked as essential. The
EBD file is used to mask the EBC file meaning that a 1 in the EBD file corresponds
to an essential bit in the EBC file.

However, it is important to note that this file is not the same as the bitstream used to
program the board.

4.1.1 Main application and testing ground

Our main application sends 32-bit vectors, with the first 16 being the real and the other
being the imaginary part, and expects the same format of data after being processed by
the Fast Fourier Transform algorithm, implemented in hardware. We opted to send all the
inputs in parallel in memory mapped registers. That allowed us to take advantage of our
inherently parallel design, by continuously feeding data through the hardware.

As we mention in Chapter 2 the main cause of an error, is the upsets that are present
in the design. The ratio that shows us the availability of the design follows in common
critical systems the ”five-neds” standard, indicating an availability of 99.999%. The ratio

70

4.1.2 Overview of the test setup

of the time the system is operating correctly to the total running time of the application is
the definition of Reliability. Reliability is the likelihood that a system will remain operational
for the duration of a mission. Higher levels of reliability are important in critical missions
such as space satellites or in industrial control, environments where failure could mean
loss of life or failure of costly missions. Availability expresses the fraction of time a system
is operational. High availability is critical in many applications in which every minute of
downtime translates to potential catastrophic errors of significant revenue loss. Both of
these metrics can be extracted by calculating the error rate of the application. The error
rate is the ratio of the number of erroneous data to the total number of data received.

4.1.2 Overview of the test setup

In order to inject errors in the configuration memory of the design, the first option fol-
lows the procedure explained in [41], which basically consists in performing an exhaustive
campaign in all the configuration bits of the FPGA. After each injection, the behavior of
the design is compared to the precalculated output, counting how many times a wrong
output has been produced. This can be used as a figure of the metric of the sensitivity of
the various techniques. However, this does not take into account that the injected error
may not be a part of the design. Therefore, a more direct approach is necessary to be
able to test and inject errors only in the essential bits part of the design.

4.1.3 Injection Campain

There are some ways to obtain the list of the essential configuration bits [42] associ-
ated with a design. Xilinx provides some methods to generate this list. However, in order
to extract from that list the important subset for our kernel, we have to understand the
topology and the correlation of the .ebd file lines with the area in the FPGA fabric. We
use as guidance the ACME tool [41] which can provide a subset of the essential bits as-
sociated with a sub-module embedded in the FPGA fabric. However, the ACME tool is
board dependent and difficult to implement on other boards. However, basic technics im-
plemented in the ACME paper, which describes the development of that tool, could be
used.

One of the basic understandings we need to have is the relationships between the
frames of the ZCU106 board and its EBD file. As explained in the figure below reading
the file from top to bottom is similar to moving the design following the error in a zigzag
pattern.

71

Chapter 4. Validation and Evaluation of Fault-Tolerance Mitigation Techniques

X0Y5 X1Y5 X2Y5 X3Y5

X0Y4 X1Y4 X2Y4 X3Y4

X0Y3 X1Y3 X2Y3 X3Y3

X0Y2 X1Y2 X2Y2 X3Y2

X0Y1 X1Y1 X2Y1 X3Y1

X0Y0 X1Y0 X2Y0 X3Y50

00000000
00000110
00010000
01000010

...

01100011
01011000

Figure 4.1: Topological relationship of Clock Region of ZCU106 and its EBD file. Reading
the file from top to bottom is similar to moving the design following the arrow on a zigzag
basis.

In this Xilinx forum question [30], it is described that the EBD file is an ASCII text file
with a header followed bymultiple lines of 32 characters, which represent the classification
of 32-bit words in the CRAM. Each line of the EBD file represents one word, and the least
significant bit of the word is on the far right. In the 16nm UltraScale+ family of FPGAs,
each CRAM frame consists of 93 words, and the EBD file is organized into groups of 93
lines that hold the essential bit data for a configuration frame. The linear frame address
(LA) is used to order the data, and the allowed range for LA is from zero to the maximum
frame of the device. The word offset in a frame can range from 0 to 92, and the bit offset
in a word can range from 0 to 31. The initial group of 118 lines in the EBD file consists
of 25 dummy words and one dummy frame, followed by groups of 93 lines for each LA
value, starting from LA = 0.

By implementing the above strategy, we can transform the lines of the EBD file into
addresses that can be utilized by the SEM IP to inject errors. The subsequent crucial
step is to comprehend the ranges of the clock regions. However, not all tiles existing in
the clock region can be reconfigured, and thus, they are absent from the EBD file. In
the MPSoC ZCU106 UltraScale+ architecture, a direct correlation cannot be performed.
Nevertheless, an estimation of the position of a tile in the EBD file can be approximated
by exploring an FFT kernel across the tiles. Only a signal FFT module is placed in the
FPGA fabric, and the amount of congestion of the essential bits in the design is reported.
The table 4.1 illustrates the relation between clock regions and their starting and ending
lines in the EBD file. Although this approach is not entirely accurate, as the design may
not precisely cover the entire clock region, we can extract an estimation for the position
of our modules in the FPGA fabric.

72

4.2 Methodologies Evaluation

Clock Region Start Finish
X1Y0 334.986 361.767
X2Y0 451.329 478.171
X3Y0 645.328 679.543
X1Y1 1.020.303 1.047.147
X2Y1 1.136.652 1.164.160
X3Y1 1.330.644 1.355.619
X1Y2 1.705.620 1.732.424
X2Y2 1.851.352 1.878.858
X3Y2 2.015.962 2.050.180
X1Y3 2.390.937 2.418.103
X2Y3 2.536.669 2.560.916
X3Y3 2.701.279 2.735.532

Clock Region Start Finish
X0Y4 2.826.558 2.847.818
X1Y4 3.076.257 3.101.216
X2Y4 3.221.991 3.246.225
X3Y4 3.386.598 3.420.888
X0Y5 3.570.553 3.631.386
X1Y5 3.761.574 3.788.386
X2Y5 3.877.914 3.905.436
X3Y5 4.071.915 4.096.831

Table 4.1: Lines of EBD in relationship with the Clock Region of ZCU106

By following this procedure, we can inject errors into our design and validate the func-
tionality of our techniques using linear addresses of essential bits. To enable communica-
tion between the Processing System (PS) and the SEM IP, we utilize the monitor interface.
The instruction parsing interface of the SEM IP establishes bidirectional communication
between the PS and Programmable Logic (PL) and facilitates the injection of errors in the
configuration memory within the PL. To inject an error in the kernel, the controller must be
in an idle state. Once in the idle state, an error can be injected by executing the following
command:

N {11-digit hex value}

The 11-digit hexadecimal value specifies the bit location where the error is to be in-
jected. This linear frame address is obtained using the procedure described above. The
format of the 11-digit hex value is depicted in the following figure. The successful injection
of the error is indicated by the assertion and de-assertion of the injection status signal,
as well as the state-changing report on the monitor interface, which indicates that the
controller has transitioned from the injection state back to the idle state.

4.2 Methodologies Evaluation

All the methodologies discussed in Chapter 3 have been implemented, and we con-
ducted two synthesis configurations for each of them: one utilizing DSPs and the other
replacing the DSP functionality with LUTs. For every different methodology, the code pa-
rameterization enabled us to analyze the effects of different Fast Fourier Transform (FFT)
sizes, specifically 8, 16, and 32. However, the metrics excluded the stage and butterfly
triplication methods as the resources needed for the device made it unable to floorplan
and place in the FPGA fabric.

4.2.1 Size

This thesis initiates with an exploration of the sizes of the methodologies mentioned
above, and a comparison of their footprints with the error rates in our design. Previous
chapters have explicated that the expansion of the different modules’ areas in the FPGA

73

Chapter 4. Validation and Evaluation of Fault-Tolerance Mitigation Techniques

fabric correlates with the percentage of ionized particles that can potentially harm the de-
vice’s functionality. This is a significant factor as an increase in logic within the components
elevates the probability of single-event upsets. Therefore, it is crucial to comprehend and
carefully consider what aspects we aim to protect from ionizing radiation to avoid unde-
sired outcomes.

The subsequent figures depict the resource utilization of various methodologies and
input sizes within the programmable logic.

Method LUTs DSPs FFs Es. Bits
FFT 2.77% 2.71% 1.24% 2.12%
Temp 3.45% 2.71% 1.52% 2.39%
DMR 3.44% 5.38% 1.40% 2.77%
DMR T 4.39% 5.38% 1.69% 3.12%
TMR 4.26% 8.04% 1.51% 3.46%
TMR S 4.75% 9.08% 1.74% 4.39%
TMR B 5.48% 9.08% 1.93% 4.34%

(1) Computation using DSP

LUTs FFs Es. Bits
4.04% 1.30% 2.74%
4.71% 1.58% 3.00%
5.97% 1.52% 3.94%
6.92% 1.80% 4.27%
8.06% 1.69% 5.19%
8.56% 1.84% 6.06%
9.30% 2.02% 6.37%

(2) Computation using LUT

Table 4.2: Resource utilization of FPGA with 8-input FFT

Method LUTs DSPs FFs Es. Bits
FFT 3.82% 9.89% 1.28% 3.14%
Temp 4.55% 9.89% 1.85% 3.75%
DMR 5.55% 19.73% 1.61% 4.91%
DMR T 6.96% 19.73% 2.17% 5.80%
TMR 7.58% 29.57% 1.82% 6.77%
TMR S 9.20% 20.89% 2.65% 8.04%

(1) Computation using DSP

LUTs FFs Es. Bits
7.65% 1.52% 4.75%
8.39% 2.08% 5.28%
13.21% 2.08% 7.88%
14.63% 2.64% 8.80%
19.07% 2.53% 11.36%
19.66% 2.91% 13.25%

(2) Computation using LUT

Table 4.3: Resource utilization of FPGA with 16-input FFT

Method LUTs DSPs FFs Es. Bits
FFT 6.09% 28.99% 1.44% 6.10%
Temp 6.87% 28.99% 2.55% 7.14%
DMR 10.35% 57.92% 2.14% 10.65%
DMR T 12.69% 57.92% 3.26% 12.21%
TMR 15.27% 86.86% 2.63% 15.80%

(1) Computation using DSP

LUTs FFs Es. Bits
19.37% 2.08% 11.05%
20.14% 3.19% 12.00%
36.95% 3.42% 20.83%
39.30% 4.54% 22.35%
55.44% 4.56% 30.35%

(2) Computation using LUT

Table 4.4: Resource utilization of FPGA with 32-input FFT

Tables 4.2, 4.3, and 4.4 present the resource utilization of FPGA resources with differ-
ent input sizes and various mitigation techniques. As expected, the larger the input size
of the FFT kernel, the more resources are required for its implementation. However, it is
interesting to note the relationship between the size of the essential bits of the fine-grain
mitigation techniques, specifically the stage and butterfly triplication methods. Contrary to
our expectations, the number of essential bits in these triplication methods is increased,
which can be attributed to the internal optimization performed by the tool that groups the
functionality of some components together. When dividing them into PBlocks, these opti-
mizations are unable to occur between them, thereby increasing the required resources.

The size metric is a crucial characteristic of the programmable logic implementation
and has a direct correlation with the percentage of single-event upsets (SEUs) that might

74

4.2.1 Size

occur. Therefore, it is significant to consider the area occupied by the features before mul-
tiplying them. Failure to do so may lead to unnoticeable results or even negative outcomes
for the device.

The following figures illustrate the correlation the input size has on that resource. It is
important to note as stated earlier, that the stage and butterfly triplication methods are not
included in these figures, as their resource utilization was too high to allow for successful
floorplan and placement in the FPGA fabric. Therefore, their impact on resource utilization
could not be analyzed.

4

6

8

10

12

14

Pe
rc

en
ta

ge
 o

f L
ut

s

8 16 32

Luts
Kernel

FFT
DMR
TMR
Temp
DMR T

0

20

40

60

80

Pe
rc

en
ta

ge
 o

f D
SP

s

8 16 32

Flip-Flops
Kernel

FFT
DMR
TMR
Temp
DMR T

1.5

2.0

2.5

3.0

Pe
rc

en
ta

ge
 o

f F
FS

8 16 32

Dsps
Kernel

FFT
DMR
TMR
Temp
DMR T

2

4

6

8

10

12

14

16

Pe
rc

en
ta

ge
 o

f E
ss

en
tia

l B
its

8 16 32

Essential Bits
Kernel

FFT
DMR
TMR
Temp
DMR T

Input FFT Size

Figure 4.2: Increase of usage based on input size using DSps

10

20

30

40

50

Pe
rc

en
ta

ge
 o

f L
ut

s

8 16 32

Luts
Kernel

FFT
DMR
TMR
Temp
DMR T

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Pe
rc

en
ta

ge
 o

f F
FS

8 16 32

Flip-Flops
Kernel

FFT
DMR
TMR
Temp
DMR T

5

10

15

20

25

30

Pe
rc

en
ta

ge
 o

f E
ss

en
tia

l B
its

8 16 32

Essential Bits
Kernel

FFT
DMR
TMR
Temp
DMR T

Input FFT Size

Figure 4.3: Increase of usage based on input size using Luts

75

Chapter 4. Validation and Evaluation of Fault-Tolerance Mitigation Techniques

The design must also account for variations in component size. Specifically, we align
our differing sizes within the Fast Fourier Transform (FFT) framework without any miti-
gation techniques. Additionally, we incorporate temporal redundancy over a single FFT
kernel, as well as Triple Modular Redundancy (TMR), by means of Lookup Tables (LUTs)
rather than Digital Signal Processing (DSP) computations.

Kernel Size Mitigation Technique Module LUTS Flip-Flop
- - sem_ultra 288 403
- - sem_ultra_monitor_uart 61 54

8

No Fault Tolerance FFT 4346 768

Temporal FSM 2 258
Input Repeater 267 522
Output Repeater 585 525

TMR TMR Voter 514 259

32

No Fault Tolerance FFT 39956 5120

Temporal FSM 2 1026
Input Repeater 1037 2060
Output Repeater 1747 2061

TMR TMR Voter 2074 1027

Table 4.5: Resource Utilization of Different Modules

It is worth noting that these techniques require additional supportivemodules to ensure
proper functioning and testing, thereby introducing their own resource utilization. Although
this may be of negligible significance when considering larger modules, it becomes crucial
for small resource utilization, such as the 8-length input kernel. This aspect may or may
not be a critical consideration when designing the final product.

4.3 Time of Reconfiguration of different regions

A crucial distinction in our study is the time required for partial reconfiguration of dif-
ferent size areas of the FPGA. As explained in Chapter 3, we chose to utilize the XilFPGA
API provided by XILINX for partial reconfiguration. The XilFPGA library offers an inter-
face for users to configure the programmable logic (PL) from the processing system (PS),
specifically, Full bitstream loading and Partial bitstream loading, which are supported in
the Zynq UltraScale+ MPSoC platform.

Table 4.5 depicts the various times required for different reconfiguration areas, ranging
from the full FPGA bitstream to the smallest components on which we performed partial
reconfiguration.

- Full Reconfiguration 19.3 MB 28.3
Kernel Size Partial Module Size of Module (KB) Time (msec)

8
FFT Kernel 661 1

Average Stage Module 330 0.6
Average Butterfly Module 174 0.363

16 FFT Kernel 2354 3.59
Average Stage Module 338 0.9

32 FFT Kernel 7492 11.46

Table 4.6: Relation between the size and the time of Partial Reconfiguration

76

4.3 Time of Reconfiguration of different regions

0 1000 2000 3000 4000 5000 6000 7000
Partial Reconfiguration Size (KB)

0

2

4

6

8

10

12

Pa
rti

al
 R

ec
on

fig
ur

at
io

n
Ti

m
e

(m
se

c)

Figure 4.4: Partial Size and Time

Equally as important is the time needed for the reconfiguration implementing the in-
ternal scrubber. We can observe than the time need for the detection and correction of an
error using the internal scrubber, is quite similar to the time needed for the reconfiguration
of the entiry memory of the FPGA. The full reconfiguration is only 1.08× larger than the
Xilinx approach. However, it should also be mentioned that most of the time is needed in
the detection stage of the scrubbing, while the correction is relative small, in the 20-40 μs
range

UltraScale+ XCZU7

Detection Time 26 ms
Repair Correctable 44 μs

Repair Uncorrectable 22 μs
Any CRC-only (Uncorrectable) 9 μs

Table 4.7: Latency of Internal Memory Scrubbing

In our study utilizing XilFPGA for measurement purposes, we have extracted some
notable findings. Firstly, we have determined that the time required for configuration is
proportionate to the size of the area being reconfigured. For instance, in the comparison
of the 32 and 16-length input FFT, the time required for reconfiguration is 3.19× longer,
which is similar to the 3.18× increase in size. This pattern is also evident in the difference
between the 8 and 16-length inputs, which require 3.56× and 3.59× longer reconfiguration
times, respectively. However, it is important to note that the start-up time of the config-
uration significantly impacts the time required for reconfiguration, particularly for smaller
sizes.

Regarding the various sizes of the 8-length input kernel, we observed that the time
required for reconfiguration is 2.75× longer for the entire kernel size and 1.65× longer
for the stage size than for the butterfly triplication modules. This implies that the reconfig-
uration time becomes more significant as the sizes become smaller, resulting in smaller

77

Chapter 4. Validation and Evaluation of Fault-Tolerance Mitigation Techniques

gains through fine-grain methods, which we will discuss in the next section.
Lastly, we encountered an issue with the size optimization of different implementa-

tions by the tool. During the Vivado synthesis and implementation algorithm, the design is
floor planned and placed, with specific optimization performed for the utilization of some
components. However, when the FFT kernel, which requires a substantial number of re-
sources, is divided into smaller components, creating different reconfigurable PBLOCKs
or regions, it leads to an increase in time. This is evident in the size of the various partial
modules in the 8-length kernel size, where the stage was expected to be 1/3 of the entire
FFT kernel but was only 1/2 on average, and the average butterfly was only 0.26 times
smaller than the entire FFT kernel when optimized by the Vivado Design Suite.

4.4 Evaluation Campaign

In this thesis, an error injection campaign was developed to evaluate and categorize
different methodologies and techniques, and to draw conclusions about their safety. The
campaign assumed a continuous input of N-length complex numbers from the processing
system (PS) to the programmable logic (PL). In spatial redundancy schemes, the inputs
were continuous, whereas, in temporal redundancy schemes, the data was sent every N
clock cycles. This distinction was crucial for the design to replicate the same output mul-
tiple times without losing incoming results. For each of the temporal redundancy method-
ologies, the results were replicated N times, which corresponded to the number of inputs
of the Fast Fourier Transform (FFT) Kernel. This application was based on the notion that
in the case of serial transmission of inputs to the FPGA fabric for calculation, the results
could be grouped and sent in parallel with each other. This allowed the idle time that the
kernel would wait for the transmission of the input data to be used for the proposed mit-
igation methodology to prevent possible errors. While this approach may lead to greater
power and energy consumption, it was not within the scope of this thesis to measure its
impact, as we only evaluated the resiliency and reliability of our design in single-event
upsets. However, it is important to note that this may be critical to consider in real-time
applications and deployed products.

To validate the outputs of our system, we generated a golden output from a known
golden input and repeatedly submitted this input to our system. We used the Fast Fourier
Transform (FFT) Kernel with the implementation of mitigation techniques to calculate the
output. During each run, we monitored the resulting output and the flags raised by the
system to gain insight into any potential errors in the computation. While this approach
cannot be replicated in the context of real-world deployment, it is essential for evaluating
the efficacy of our system’s architecture and mitigation techniques. Our approach enables
statistical evaluation of the system’s performance, with the specific choice of evaluation
criteria and techniques being left to the discretion of the system designer. The designer
may consider submitting the golden input with the precalculated output on occasion to
act as a watchdog for the system. However, this action should be undertaken sparingly to
minimize the downtime of running applications.

78

4.5 Evaluation

End
Correction

Phase

PR Initialization
XFPGA Intance

Reading from SD
Card, loading the
bitstreams to DDR

Initializing SEM IP

Passing control to

ICAP

Loading the
precalculated input to
the memory mapped

PS-PL Communication

Reading the PL
output

Checking with
precalculated output

and the Flags

Error
Detected

Full Reconfiguration
of the design

Partial
Reconfiguration of the

fault module

Configuration
Memory Scrubber

Detection,
correction and

repair using the
SEM IP

Inject Errors

End
Correction

Stage

Output time spend inoperable and
the number of meaningful Errors

Initialisation Stage

Evaluation Stage

Report Stage

Figure 4.5: Evaluation Champaign

Each of the mitigation techniques employed in this study was approached in a distinct
manner while maintaining a consistent underlying philosophy. In the event of an error,
we undertook a thorough examination of the output and accompanying flags to locate the
source of the error within the kernel. For cases where multiple errors were detected, we
employed a strategy that involved reconfiguring each component of the partial designs to
optimize performance. This approach was found to be more efficient than full reconfigu-
ration, as the time required for multiple partial reconfigurations was less than that for a
full reconfiguration. Following the reconfiguration process, we performed another check
on the output to ensure the proper functioning of the system.

In situations where the flags were unable to reveal the error location, we initiated a full
reconfiguration of the device. This approach enabled us to efficiently address errors that
were not isolated to a specific component of the system.

To test the various methodologies, errors were injected into the addresses as per the
injection campaign described in this implementation.

4.5 Evaluation

In this section, we evaluate the results of the different techniques, using the aforemen-
tioned two campaigns. These would give us an understanding of the effect those might
have on reliability and the overall downtime of the device and application.

79

Chapter 4. Validation and Evaluation of Fault-Tolerance Mitigation Techniques

4.5.1 Mitigation Techniques Evaluation

The figures 4.5-4.7 depict the relation between the Number of Errors in the design
and the downtime of each different technique, each mode in multiple input lengths of FFT
Kernel.

FFT Temp DMR DMR T TMR TMR S TMR B
Mitigation Technique3 (implementing either partial or full reconfiguration)

0

250

500

750

1000

1250

1500

1750

2000

Si
ng

le
 E

ve
nt

 U
ps

et
s E

rro
rs

1 (
in

 2
00

,0
00

 in
je

ct
io

ns
)

Errors
DSP
No DSP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Do
wn

 T
im

e2 (
%

)

Downtime
DSP
No DSP

Figure 4.6: Correlating SEU Errors and Downtime in a 8-Point FFT Kernel

FFT Temp DMR DMR T TMR TMR S
Mitigation Technique3 (implementing either partial or full reconfiguration)

0

1000

2000

3000

4000

5000

Si
ng

le
 E

ve
nt

 U
ps

et
s E

rro
rs

1 (
in

 2
00

,0
00

 in
je

ct
io

ns
)

Errors
DSP
No DSP

0

1

2

3

4

5

Do
wn

 T
im

e2 (
%

)

Downtime
DSP
No DSP

Figure 4.7: Correlating SEU Errors and Downtime in a 16-Point FFT Kernel

80

4.5.1 Mitigation Techniques Evaluation

FFT Temp DMR DMR T TMR
Mitigation Technique3 (implementing either partial or full reconfiguration)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Si

ng
le

 E
ve

nt
 U

ps
et

s E
rro

rs
1 (

in
 2

00
,0

00
 in

je
ct

io
ns

)
Errors

DSP
No DSP

0

2

4

6

8

10

Do
wn

 T
im

e2 (
%

)

Downtime
DSP
No DSP

Figure 4.8: Correlating SEU Errors and Downtime in a 32-Point FFT Kernel

1. Single Event Effect Errors: The introduction of errors into a design does not always
lead to the production of single Event Effect errors, and a change in device functionality.
Specifically, it is necessary to determine the number of errors that cause a change in func-
tionality, as these may result in incorrect outputs or trigger error flags. The error flags do
not result in the wrong output, especially in mitigation techniques such as triple modular
redundancy (TMR) or multiple operation time techniques like temporal redundancy meth-
ods such as the Temporal and DMR Temporal methods. These techniques can correct
the output of the device.

2. Downtime: In all mitigation techniques, an increase in the number of injected errors
can ultimately result in erroneous functionality, which can be detected through observa-
tion of the output or examination of error flags. Such flags indicate the presence of a faulty
component, even if it is capable of correction. Downtime refers to the period during which
the device cannot accept new data as it waits for reconfiguration to complete and restore
correct functionality. During this time, inputs to the computational unit are lost as it is non-
operational. It should be noted that downtime does not include the time during which a
single component of the design is unavailable due to an error and undergoing partial re-
configuration. However, if other components are functioning normally and the application
is able to compute without missing input data, this time is not added to the downtime.

3. Mitigation Technique: Each of the mitigation techniques and the unmitigated sim-
ple FFT kernel are susceptible to error and can ultimately result in a system error state.
To restore the functionality of the system, partial or full reconfiguration is performed, de-
pending on the specific situation. This ensures that all applications continue to function as
necessary to complete the testing campaign. In our testing, we do not evaluate a method
without employing the necessary partial or full reconfiguration.

The results obtained from the figures above indicate a significant relationship between
the errors and the sizes calculated by the implementation of the Vivado Design Suite. It

81

Chapter 4. Validation and Evaluation of Fault-Tolerance Mitigation Techniques

is evident that the addition of extra logic for mitigation purposes increases the number of
errors. Furthermore, the temporal redundancy also leads to an increase in the number
of errors, as the additional logic required for the replication of the data input occupies a
substantial portion of the design. This is particularly evident when considering the different
sizes of the Kernel, and thus the replication time of the tools. For instance, in the input
length 32 FFT Kernel, the amount of extra logic increases to a point where the number of
errors in the DMR temporal technique exceeds that of the triplication modules.

Additionally, the use of different FPGA blocks for computation, such as DSPs or Luts,
consistently results in higher errors and lower functional time of the design. Although both
serve the same purpose, using Luts for computation consumes more space, as DSPs are
more condensed.

The above diagrams indicate that the most effective techniques for minimizing the
downtime of our design are the temporal redundancy and triplication module redundancy
of the entire FFT kernel. While the replication of the calculation in the dual modular re-
dundancy (DMR) technique allowed for partial reconfiguration of each distinct module, it
did not manage to overcome the increase in size, and consequently, the increase in the
number of errors. Although the results are compared using only spatial redundancy DMR,
increasing the size occupied in the FPGA fabric leads to higher downtime.

It is critical to mention that the triplication of smaller components inside the FFT cre-
ated more problems than it solved. The increased size and the higher number of voters
lead to less functional time, as either more errors created problems or more hits in the
voter parts of the design led to more time under full reconfiguration. As mentioned in the
previous section, full reconfiguration is about 28× more time-consuming than a simple
reconfiguration of the entire FFT kernel. Comparing the average stage and butterfly re-
configuration time of 1.6× and 2.75×, respectively, it is evident that fine-grain triplication
inside the FFT kernel and its components is not worth the extra functionality or the extra
errors it introduces.

4.5.2 Internal Scrubbing Evaluation

We explained in the previous section, that the various mitigation techniques that im-
pressed with their results were the temporal redundancy on a single FFT Kernel and the
Triple Modular Redundancy again over the whole FFT. The first can be explained that we
are able to understand errors happening during the computation and partially reconfigure
the kernel, without needing to undergo the reconfiguration of the whole device. The triple
modular redundancy has the ability to produce results even when a single one of the mod-
ules has been corrupted, as the other two would function properly. For that reason, the
downtime is minimized and combat the effects of the increased size due to more modules.

In addition, we decided to consider the effects of the internal scrubber function, which
we labeled Configuration Memory Scrubbing (CMS), build-in with SEM IP provided by Xil-
inx. Even though, we discussed that the internal scrubber is not always the proper choice
[40], as it can also be affected by ionizing radiation. However, it is a good comparison,
to understand how our results are fair incase of the operation of the internal scrubber

82

4.5.2 Internal Scrubbing Evaluation

alongside our components.

We opted to integrate the internal scrubber in our metrics, by regarding only the ones
using LUTs, and considering the extreme scenarios, like the 8 and 32 input kernel.

From the Chapter 3, it is clear that both the internal scrubber and the injection method-
ologies can not be used simultaniously from the SEM IP. For that reason, in this thesis
implementation we have to choose one of the two approaches that are presented in the
following table.

Advantages Disadvantages

After Every Injection Higher Correction Rate
Higher power consumption,

when sparce SEU

When Error is Detected Operational only when needed
Lower correction Rate

as MBU minimize the effect of ECC & CRC

Table 4.8: Different approaches in Scrubbing

We opted to implement the second route, opening the internall memory scrubber of-
fered by the SEM IP, when an error is detected. This would lead to lower correction rates,
as the accumulation of error in the memory frames would exceed the capabilities of the
ECC algorith implemented inside the SEM IP, which has the ability to correct upto 4-bit
errors in a single frame and upto 4 adjacent frames. This approach is closer to a real-time
missions as the memory errors could be space in the time duration, maybe upto several
in a month. So, the power consumption of the internal merory scrabber would have been
greater for small improvements.

Kernel Size Mitigation Technique DownTime (sec) DownTime with CMS (sec) Improvements of CMS

8
Simple FFT 12.47 11.781 5.5%
Temporal 1.93 1.85 4.14%

TMR 0.57 0.54 5.06%

32
Simple FFT 19.90 18.94 4.8%
Temporal 23.53 23.34 -0.8%

TMR 8.32 7.67 7%

Table 4.9: Mitigation Techniques with and without Configuration Memory Scrubbing

The effectiveness of internal scrubbing in improving system performance is evident,
although it is uncertain whether the benefits outweigh the drawbacks. Across various tech-
niques, a notable improvement of between 5% and 10% was observed. The 32 temporal
poses a distinct challenge, largely due to its algorithm’s time dependency in our design.
It is important to note that while the time of the error can potentially be identified during
computation, any errors occurring between iterations would necessitate a complete re-
configuration of the design. This could result in varied timing of error injection during the
evaluation campaign.

It is important to note that while the internal scrubber may not be the ideal choice,
it offers a comparable representation to an external scrubber that implements the same
ECC and CRC algorithms for error correction.

83

Chapter 4. Validation and Evaluation of Fault-Tolerance Mitigation Techniques

4.5.3 Comparisons- Summary

In this final section, we present a comprehensive overview of the best metrics in our
design. As discussed before, the temporal and TMR techniques were found to be the
best approaches for the mitigation of our design. Both provided excellent results, as the
temporal approach could detect errors in the FFT kernel and partially reconfigure only the
affected areas while keeping the occupied FPGA fabric minimal. However, the best overall
approach was the triple modular redundancy, as it allowed the reconfiguration of one
module of the design while the others kept running and calculating the Fourier transform
algorithm. Even though triplicating the area needed for the implementation, the ability to
exclude specific modules is critical to minimizing downtime and increasing the reliability
of the device as a whole. We also included memory scrubbing in the best approach using
different FPGA blocks, such as DSP and LUT, in the two kernel sizes 8 and 32. These
gave a small but significant improvement in the overall reliability of the design.

The table 4.8 depicts the increase in reliability over the base case for each of the
implementations. The increase is measured against the base case using no mitigation
technique, ensuring that the measurement is as realistic and close to real-time applica-
tions as possible.

Kernel Size Comp FPGA Block Mitigation Technique Downtime Reduction

8

DSP Temporal 72.7%
TMR 89.5%

LUT

Temporal 84.5%
TMR 95.4%

Temporal & CMS 85.09%
TMR & CMS 95.64%

32

DSP TMR 66.7%

LUT TMR 58.1%
TMR & CMS 61.4%

Table 4.10: The effectiveness of the proposed fault-tolerant techniques in reducing down-
time was compared against the baseline Fast Fourier Transform (FFT) Kernel. This was
evaluated for each technique across various base cases, taking into consideration the
number of points used for the FFT and the FPGA block utilized for computation.

84

Chapter 5
Conclusion & Future Work

In Chapter 5, this thesis concludes with a comprehensive evaluation of the proposed
mitigation techniques. Furthermore, a brief discourse on potential future avenues for re-
search is provided, building on the techniques presented in this thesis.

FFT Kernels

Axi4-LiteSem Ip

Spacecraft

MPSoC Logic

Software

PS

PL

Ionizing
Radiation

Ch4:Evaluation

Ch3.9:Injection Ch3.7:Interface

Ch3: Kernel Design

Ch2: Background &

Radiation

Figure 5.1: Visual Chapter Guide

85

Chapter 5. Conclusion & Future Work

Conclusion

This thesis presents experimental evaluation scenarios revealing that commercial-off-
the-shelf FPGAs can be effectively utilized in space applications through the implemen-
tation of specific mitigation techniques to protect the configuration memory. Our proof-
of-concept designs were implemented on an MPSoC Ultrascale+ ZU106 with quad-core
Arm Cortex-A53 applications processor, while the kernel and redundancy mitigation tech-
niques were implemented in 16nm FinFET+ programmable logic. All techniques pre-
sented in this thesis can be easily replicated on any board using these components with
standard design tools and library IPs provided by Xilinx, which are widely available and
relatively low cost compared to alternatives, making our methodology scalable with tech-
nology. This approach benefits from performance and energy efficiency improvements
that can be achieved through improved technology nodes and can be scaled for designs
with increasingly powerful processor cores while existing approaches are often custom-
made and limited by restrictions of not being commercial products.

In this thesis, we developed a custom FFT kernel to serve as a building block for our
mitigation approaches. The mitigation techniques implemented include spatial and tem-
poral redundancy schemes in various forms, dynamic partial reconfiguration, and con-
figuration memory scrubbing. The validation campaign implemented both injection and
evaluation methodologies to test and categorize the proposed methods based on reliabil-
ity and minimization of device downtime by comparing them against the unmitigated de-
sign. Specifically, we explored DMR and TMR spatial redundancy, temporal redundancy,
a combination of the two using dual modules and repeating the operation, and fine-grain
spatial redundancy on the smaller component of the FFT kernel. Additionally, every crit-
ical module of the application was able to be corrected by implementing dynamic partial
reconfiguration. For each approach, different kernel sizes were implemented, such as 8,
16, and 32 input lengths of the FFT, and the different computational FPGA blocks like the
DSPs and LUTs. Finally, we used the most resilient techniques, coupled with configura-
tion memory scrubbing (CMS), to test their effects on the overall design. In each variation
of SEU mitigation techniques, the same injection methodology was implemented to fairly
compare results and measure improvement increases.

The combination of methods resulted in minimized device downtime, with improve-
ments of up to 89.5% and 95.4% of the unprotected 8-input FFT kernel using Digital
Signal Processors (DSPs) and Look-Up Tables (LUTs), respectively. Similar results were
observed in the 32-input kernel, with 66.7% and 61.4% with the equivalent FPGA blocks.

86

Future Work

There are several things that can be taken up as an extension of the work presented
in the thesis :

• One possible approach to mitigate single event upsets (SEUs) in on-chip BRAMs
and off-chip DRAMs is to implement various techniques, such as error-correcting
codes (ECC), cyclic redundancy check (CRC), triple modular redundancy (TMR),
and memory scrubbing. For example, a TMR memory controller can be used to
write data to three different locations and vote on them while reading to detect any
corruption. If corruption is detected, the data can be rewritten with the majority-voted
data.

• Introducing a radiation-tolerant SEM IP is a crucial step in ensuring the reliability
of semiconductor devices operating in harsh environments. Some of the potential
solutions are a watchdog mechanism that checks essential bits of the SEM IP every
time it communicates with the configuration memory, to use of triplication of the SEM
IP, where three identical instances of the IP are used and their outputs are compared
paired with Partial reconfiguration of a faulty component.

• Another potential avenue is to use external memory scrubbing with other programmable
cores in the system. One such example is having one core execute an application
that uses the Fast Fourier Transform algorithm, while the second core acts as a
watchdog responsible for periodically reading the device’s configuration memory
and correcting errors when detected. This method can also be further explored us-
ing ECC algorithms and other techniques.

• Regarding the evaluation process to measure the effectiveness of the proposed
approach, extensive tests can be conducted by injecting errors across the entire
configuration bitstream. Although time-consuming, this method can reveal the full
spectrum of errors in the device. The next step in the verification process is to per-
form tests in a hazardous environment under ionizing radiation to assess the results
in real-time scenarios. This can be done at a facility on the ground or an experimental
satellite.

87

References

[1] T. Vladimirova and A. d. Curiel, “A system-on-a-chip for small satellite data process-
ing and control (” chipsat”),” 2004.

[2] A. Farrington, A. Gray, B. Bell, V. Stanton, Y. Chong, K. Peters, C. Lee, and J. Srini-
vasan, “Software-reconfigurable processors for spacecraft,” 2005.

[3] D. Zheng, T. Vladimirova, H. Tiggeler, and M. Sweeting, “Reconfigurable single-
chip on-board computer for a small satellite,” in 52nd International Astronautical
Congress, Toulouse, France, 2001.

[4] D. Zheng, T. Vladimirova, and M. Sweeting, “A ccsds-based communication sys-
tem for a single chip on-board computer,” in Proceedings of the 5th Military and
Aerospace Applications of Programmable Devices and Technologies International
Conference (MAPLD’2002), D-5, 2002.

[5] M. Caffrey, K. Morgan, D. Roussel-Dupre, S. Robinson, A. Nelson, A. Salazar,
M. Wirthlin, W. Howes, and D. Richins, “On-orbit flight results from the reconfig-
urable cibola flight experiment satellite (cfesat),” in 17th IEEE Symposium on Field
Programmable Custom Computing Machines, pp. 3–10, 01 2009.

[6] Dan Friedlander, “Cots in space applications: Evolution overview.” Available
online at: https://www.doeeet.com/content/cots-components/cots-in-space-
applications-evolution-overview/, last accessed on 06.03.2023.

[7] K. Maragos, V. Leon, G. Lentaris, D. Soudris, D. Gonzalez-Arjona, R. Domingo,
A. Pastor, D. M. Codinachs, and I. Conway, “Evaluation methodology and recon-
figuration tests on the new european NG-MEDIUM FPGA,” in 2018 NASA/ESA Con-
ference on Adaptive Hardware and Systems (AHS), pp. 127–134, 2018.

[8] A. Pérez, A. Rodríguez, A. Otero, D. González-Arjona, A. Jiménez-Peralo, M. A.
Verdugo, and E. De La Torre, “Run-time reconfigurable MPSoC-based on-board pro-
cessor for vision-based space navigation,” IEEE Access, vol. 8, pp. 59891–59905,
2020.

[9] A. Rodríguez, L. Santos, R. Sarmiento, and E. De La Torre, “Scalable hardware-
based on-board processing for run-time adaptive lossless hyperspectral compres-
sion,” IEEE Access, vol. 7, pp. 10644–10652, 2019.

89

https://www.doeeet.com/content/cots-components/cots-in-space-applications-evolution-overview/
https://www.doeeet.com/content/cots-components/cots-in-space-applications-evolution-overview/

References

[10] V. Leon, I. Stamoulias, G. Lentaris, D. Soudris, D. Gonzalez-Arjona, R. Domingo,
D. M. Codinachs, and I. Conway, “Development and testing on the european space-
grade BRAVE FPGAs: Evaluation of NG-Large using high-performance DSP bench-
marks,” IEEE Access, vol. 9, pp. 131877–131892, 2021.

[11] X. Iturbe, D. Keymeulen, E. Ozer, P. Yiu, D. Berisford, K. Hand, and R. Carlson, “An
integrated SoC for science data processing in next-generation space flight instru-
ments avionics,” in IFIP/IEEE International Conference on Very Large Scale Integra-
tion (VLSI-SoC), pp. 134–141, 2015.

[12] V. Leon, I. Stamoulias, G. Lentaris, D. Soudris, R. Domingo, M. Verdugo,
D. Gonzalez-Arjona, D. Merodio Codinachs, and I. Conway, “Systematic Evalua-
tion of the European NG-LARGE FPGA & EDA Tools for On-Board Processing,” in
European Workshop on On-Board Data Processing (OBDP), pp. 1–8, 2021.

[13] L. Kosmidis, I. Rodriguez, Álvaro Jover, S. Alcaide, J. Lachaize, J. Abella, O. Note-
baert, F. J. Cazorla, and D. Steenari, “GPU4S: Embedded GPUs in space - latest
project updates,” Elsevier Microprocessors and Microsystems, vol. 77, pp. 1–10,
2020.

[14] C. Adams, A. Spain, J. Parker, M. Hevert, J. Roach, and D. Cotten, “Towards an
integrated GPU accelerated SoC as a flight computer for small satellites,” in IEEE
Aerospace Conference, pp. 1–7, 2019.

[15] V. Leon, G. Lentaris, D. Soudris, S. Vellas, and M. Bernou, “Towards employing
FPGA and ASIP acceleration to enable onboard AI/ML in space applications,” in 2022
IFIP/IEEE 30th International Conference on Very Large Scale Integration (VLSI-
SoC), pp. 1–4, 2022.

[16] J. Goodwill et al., “NASA SpaceCube Edge TPU SmallSat Card for Autonomous Op-
erations and Onboard Science-Data Analysis,” in AIAA/USU Conf. on Small Satel-
lites, pp. 1–13, 2021.

[17] G. Giuffrida, L. Fanucci, G. Meoni, M. Batič, L. Buckley, A. Dunne, C. Van Dijk, M. Es-
posito, J. Hefele, N. Vercruyssen, G. Furano, M. Pastena, and J. Aschbacher, “The
�-Sat-1 mission: the first on-board deep neural network demonstrator for satellite
earth observation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60,
pp. 1–14, 2022.

[18] V. Leon, G. Lentaris, E. Petrongonas, D. Soudris, G. Furano, A. Tavoularis, and
D. Moloney, “Improving performance-power-programmability in space avionics with
edge devices: VBN on Myriad2 SoC,” ACM Transactions on Embedded Computing
Systems, vol. 20, no. 3, pp. 1–23, 2021.

[19] A. D. George and C. M. Wilson, “Onboard processing with hybrid and reconfigurable
computing on small satellites,” Proceedings of the IEEE, vol. 106, no. 3, pp. 458–470,
2018.

90

References

[20] V. Leon, C. Bezaitis, G. Lentaris, D. Soudris, D. Reisis, E.-A. Papatheofanous, A. Kyr-
iakos, A. Dunne, A. Samuelsson, and D. Steenari, “FPGA & VPU co-processing in
space applications: Development and testing with DSP/AI benchmarks,” in 2021 28th
IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 1–
5, 2021.

[21] AMD Xilinx, San Jose, CA, USA, “Space-grade virtex-5qv fpga.”

[22] Xiphos Systems Corporation, “Q8 processor.” Available online at: https://xiphos.
com/products/q8-processor/, last accessed on 06.03.2023.

[23] KP Labs, “Leopard-technical-sheet.” Available online at: https://kplabs.
space/wp-content/uploads/Leopard-technical-sheet.pdf, last accessed on
06.03.2023.

[24] AMD Xilinx, San Jose, CA, USA, “Zcu106 board user guide.” Available on-
line at: https://docs.xilinx.com/v/u/en-US/ug1244-zcu106-eval-bd, last ac-
cessed on 06.03.2023.

[25] D. Binder, E. C. Smith, and A. B. Holman, “Satellite anomalies from galactic cosmic
rays,” IEEE Transactions on Nuclear Science, vol. 22, no. 6, pp. 2675–2680, 1975.

[26] V. Leon, E. A. Papatheofanous, G. Lentaris, C. Bezaitis, N. Mastorakis, G. Bampilis,
D. Reisis, and D. Soudris, “Combining fault tolerance techniques and cots soc ac-
celerators for payload processing in space,” in 2022 IFIP/IEEE 30th International
Conference on Very Large Scale Integration (VLSI-SoC), pp. 1–6, 2022.

[27] AMD Xilinx, San Jose, CA, USA, “Ultrascale architecture configurable logic block
user guide (ug574).” Available online at: https://docs.xilinx.com/v/u/en-US/
ug574-ultrascale-clb, last accessed on 06.03.2023.

[28] AMD Xilinx, San Jose, CA, USA, “Ultrascale architecture soft error mit-
igation controller v3.1 logicore ip product guide.” Available online at:
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_
documentation/sem_ultra/v3_1/pg187-ultrascale-sem.pdf, last accessed
on 06.03.2023.

[29] AMD Xilinx, San Jose, CA, USA, “Article: 41197- soft error mitigation controller -
what is the difference between the ebc and the ebd file?.” Available online at:
https://support.xilinx.com/s/article/41197?language=en_US, last accessed
on 06.03.2023.

[30] AMD Xilinx, San Jose, CA, USA, “Article:70684 - ultrascale+ - sem ip - how to use the
sem ip error report to look up essential bit error locations using the ebd (essential bit
data) file?.” Available online at: https://support.xilinx.com/s/article/70684?
language=en_US, last accessed on 06.03.2023.

91

https://xiphos.com/products/q8-processor/
https://xiphos.com/products/q8-processor/
https://kplabs.space/wp-content/uploads/Leopard-technical-sheet.pdf
https://kplabs.space/wp-content/uploads/Leopard-technical-sheet.pdf
https://docs.xilinx.com/v/u/en-US/ug1244-zcu106-eval-bd
https://docs.xilinx.com/v/u/en-US/ug574-ultrascale-clb
https://docs.xilinx.com/v/u/en-US/ug574-ultrascale-clb
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/sem_ultra/v3_1/pg187-ultrascale-sem.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/sem_ultra/v3_1/pg187-ultrascale-sem.pdf
https://support.xilinx.com/s/article/41197?language=en_US
https://support.xilinx.com/s/article/70684?language=en_US
https://support.xilinx.com/s/article/70684?language=en_US

References

[31] J. S. George, “An overview of radiation effects in electronics,” AIP Conference Pro-
ceedings, vol. 2160, no. 1, pp. 1–8, 2019.

[32] M. Bellato, P. Bernardi, D. Bortolato, A. Candelori, M. Ceschia, A. Paccagnella,
M. Rebaudengo, M. S. Reorda, M. Violante, and P. Zambolin, “Evaluating the effects
of seus affecting the configuration memory of an sram-based fpga,” Proceedings De-
sign, Automation and Test in Europe Conference and Exhibition, vol. 1, pp. 584–589
Vol.1, 2004.

[33] Wikipedia, “Fast fourier transform.” Available online at: https://en.wikipedia.
org/wiki/Fast_Fourier_transform, last accessed on 06.03.2023.

[34] J. M. Johnson and M. J. Wirthlin, “Voter insertion algorithms for fpga designs using
triple modular redundancy,” in Proceedings of the 18th Annual ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays, FPGA ’10, (New York, NY,
USA), p. 249–258, Association for Computing Machinery, 2010.

[35] S. Mitra and E. McCluskey, “Word-voter: a new voter design for triple modular re-
dundant systems,” in Proceedings 18th IEEE VLSI Test Symposium, pp. 465–470,
2000.

[36] K. S. Morgan, D. L. McMurtrey, B. H. Pratt, and M. J. Wirthlin, “A comparison of
tmr with alternative fault-tolerant design techniques for fpgas,” IEEE Transactions on
Nuclear Science, vol. 54, no. 6, pp. 2065–2072, 2007.

[37] M. Carmichael, C. Caffrey and A. Salazar, “Correcting single-event upsets through
virtex partial configuration.,” in Xilinx Application Notes, XAPP216, 2000.

[38] AMD Xilinx, San Jose, CA, USA, “Xilfpga: Baremetal drivers and libraries.”
Available online at: https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/
18841910/Xilfpga, last accessed on 06.03.2023.

[39] Real Digital, “Axi4-lite interface.” Available online at: https://www.realdigital.
org/doc/a9fee931f7a172423e1ba73f66ca4081, last accessed on 06.03.2023.

[40] M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea, K. LaBel, M. Friendlich, H. Kim,
and A. Phan, “Effectiveness of internal vs. external seu scrubbing mitigation strate-
gies in a xilinx fpga: Design, test, and analysis,” in 2007 9th European Conference
on Radiation and Its Effects on Components and Systems, pp. 1–8, 2007.

[41] L. A. Aranda, A. Sánchez-Macián, and J. A. Maestro, “Acme: A tool to improve con-
figuration memory fault injection in sram-based fpgas,” IEEE Access, vol. 7, pp. 1–5,
2019.

[42] AMDXilinx, San Jose, CA, USA, “Soft error mitigation using prioritized essential bits.”
Available online at: https://www.eeweb.com/wp-content/uploads/articles-
app-notes-files-soft-error-mitigation-using-prioritized-essential-
bits-1339781673.pdf, last accessed on 06.03.2023.

92

https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841910/Xilfpga
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841910/Xilfpga
https://www.realdigital.org/doc/a9fee931f7a172423e1ba73f66ca4081
https://www.realdigital.org/doc/a9fee931f7a172423e1ba73f66ca4081
https://www.eeweb.com/wp-content/uploads/articles-app-notes-files-soft-error-mitigation-using-prioritized-essential-bits-1339781673.pdf
https://www.eeweb.com/wp-content/uploads/articles-app-notes-files-soft-error-mitigation-using-prioritized-essential-bits-1339781673.pdf
https://www.eeweb.com/wp-content/uploads/articles-app-notes-files-soft-error-mitigation-using-prioritized-essential-bits-1339781673.pdf

	Περίληψη
	Abstract
	Ευχαριστίες
	List of Figures
	List of Tables
	Εκτεταμένη Περίληψη
	Introduction
	FPGAs
	Landscape of COTS FPGAs Devices in Space
	Problem Statement
	Thesis Structure

	A general background on Space Environment and Fault-Tolerance techniques
	MPSoC Tools and Architecture
	Ionising radiation
	Classic FT Techniques theoretical

	Proposed Techniques and Methodologies for Error Mitigation
	Design of FFT Hardware Kernel
	Design and implementation of FFT

	Spacial Redundancy
	DMR
	TMR

	Temporal Reduncancy
	Simple Temporal Redundancy

	Hybrid between Spatial and Temporal Redundancy
	DMR Temporal

	Fine Grain Spacial redundancy
	FFT Stage TMR
	FFT Butterfly TMR

	Dynamic Partial Reconfiguration
	AXI-Lite
	DSPs vs LUTs
	How to Perform Fault Injection

	 Validation and Evaluation of Fault-Tolerance Mitigation Techniques
	Experimental Setup
	Main application and testing ground
	Overview of the test setup
	Injection Campain

	Methodologies Evaluation
	Size

	Time of Reconfiguration of different regions
	Evaluation Campaign
	Evaluation
	Mitigation Techniques Evaluation
	Internal Scrubbing Evaluation
	Comparisons- Summary

	Conclusion & Future Work
	References

