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ITepiindm

Kadade n punyavier uddnon (ML) cuvey(let va @épvel enavdotooT 6Tov TeOTo LUE
Tov omolo ot opyaviouol encéepydlovton xou avahbouv BEBOUEVAL, 1) oveyxT Yior EE-
EWOLXEVPEVOUG UTIOAOYLO TIX00C TOpoUS YivETaw A0 xou To onuovTixr). Ot yovddeg
eneepyaotac ypapxwyv (GPU) éyouv avaderydel wc uio Snuogiiic Aoon yua Ty
emtdyuvorn Twv goptinv cpyacioc ML, npocgepoviac onuavTtind TAEOVEXTHUATA
amod0CNC OE Oyéon UE T Topadoatoxd cucThuata Tou BaciCovtar oe CPU. To
VEQOC €xeL YIVEL plar ONUOPIATC emhoYT| avdmtuing Yo ta gopTtio epyaocioc ML,
TEOGPECOVTAC OLAPOPO TAEOVEXTHUATA, OTWS 1) EMEXTUCLIOTNTA, 1 eLEALlor xa
n owovouwr) arnodotxotnta. To Kubernetes, por mhatpodpuo evopyfotewong
containers ovoixtol x®Oa, €yl Yivel tiar ONROPIAC AVoT) Yo Tn dlayelplon Twv
popTiey epyastag Tou anatoly emitdyuvorn o GPU. O cuvduaouds twv GPU xo
Tou Kubernetes emtpénel 6Toug 0pyaviouoUE var XAUAxXmVoLY To popTia Epyasiag
ML xatd maporyyehlo xan Vo XOUTAVELOUY ATOTEAEGUATIXG TOUC TOPOUC WOTE VAL OlV-
TUmoXEVOVTOL OTIC AmATHOELS TwV PopTiny cpyaciac. 20T600, N avdmTuln o 1
olayelpton twv goptiwy epyaotoc mou Bacilovton oe GPU oto Kubernetes unoget
VoL AMOTEAEGEL TEOXANOT) AOYW TNS ECEWBIXEVPEVNC POOTC ALTOY TwV Topwv. Ot op-
Yoviopol TEENEL Vot BloryelolCovTaL Xou Vo XATAVELOUY TpocexTixd Toug topouc GPU
yior var Slaopaailouy BEATIOTN ambd00T) XAl ATOTEAECUATIXNY YLHOT TOV TOPWV.
Auté unopel vo mepthouBdvel TNV €QUPUOYY TOATIXMY X0t OLOUBXACLOY Yid TNV
lEpdieyNon TNS TEOoBucTnE 0TOUC TOEOUS UE BAoT TIC AMUUTAOELS TOU POPTOU Ep-
Yaotag, 6TKg 0 TUTOS Tou POETOL ERYUCLAS, 1) YPTOT) TWY TOPMY XL OL ATUTHOELS
amodoone. Emmiéoy, n dlac@dion Tng ouufatdTnTog xol TN SLUAELTOURYIXOTNTAC
LETAEY DLUPOPETIXWY OTOLYEIWY UAXOV Xt hoyloutxoU etvar xploun xatd tny avdm-
TuEn poptiny epyactac mou Bacilovtar e GPU oto Kubernetes. To Kubernetes
utootneiCet didpopoug TOToug GPU, o xalévag Ue Tic BixEc Tou TEodLaY PAPES Xou
ATAULTHOELS, XA 1) EVOWUATWOT) OTOLYElwY AOYIoUXOU Xl LAXOU TelTwv UTopel va
ATOTEAECEL TEOXANOT).

Y auth) TN e, oyeddlouue €va cloTnua yeovorpoypoupatiopol GPU
UE ETYVWoT TOpwY ot TUPEUBOADY UE OTOYO TOV UTOTEAECHATIXG YPOVOTQO-
YEOUUUATIONS XoL/Y) TNV TOREAANAT TOTOVETNOT ELOEPYOUEVWV EPUOUOYDY GE OLd-
popa eTepoYeVY| TUUaTY TwV GPU xeévipny dedopévmy. Evowuatovouue tn Ador
oto Kubernetes, évo amd 1o mo €UPEWS Y ENOWOTOLOUUEVY TAXCLOL EVORY O TEW-
ong Vépoug. Acelyvouue OTL 0 YPOVOTEOYRUUUITIOTAC MG UTopel Vo xahOel o
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UTOTEAECUATIXG TOUC TEPLOPLOHOUE ToLdTNTAC UTNRESAY (QOS) TV Yenotdy, Ue
ulmAdtepn alomoinom Twv TOPKWY OE GUYXELOT UE TOUS GUYYPOVOUS YPOVOTRO-
YOOUUOTIOTES, Yoo Lo ol @optwy epyactac ML oto vEgog, dwutnpmvtag
ToEAAANAL YoUNAS TIC XJUC TEQHOELS XAl TNV XATAVIAWGCT) EVEQYELOC.

Aegeic KAedid— umoloyIoTEC VEQYOUS, XAOTA YRUPX®Y, Oloyelpton Topwy,
dpopohoynoT), Tapeufoly|, KuBepveteg, resource-aware, ETEQOYEVELL



Abstract

As Machine Learning (ML) continues to revolutionize the way organizations
process and analyze data, the need for specialized computing resources has be-
come increasingly important. Graphics Processing Units (GPUs) have emerged
as a popular solution for accelerating ML workloads, offering significant perfor-
mance benefits over traditional CPU-based systems. The cloud has become a
popular deployment option for ML workloads, offering several benefits such as
scalability, flexibility, and cost-effectiveness. Kubernetes, an open-source con-
tainer orchestration platform, has become a popular solution for managing con-
tainerized workloads, including those that require GPU acceleration. The com-
bination of GPUs and Kubernetes enables organizations to scale ML workloads
on-demand and efficiently allocate resources to meet workload requirements.
However, deploying and managing GPU-based workloads on Kubernetes can be
challenging due to the specialized nature of these resources. Organizations must
carefully manage and allocate GPU resources to ensure optimal performance
and efficient use of resources. This can include implementing policies and pro-
cedures to prioritize access to resources based on workload requirements, such
as workload type, resource utilization, and performance requirements. Further-
more, ensuring compatibility and interoperability between different hardware
and software components is critical when deploying GPU-based workloads on
Kubernetes. Kubernetes supports several GPU types, each with their own spec-
ifications and requirements, and integrating third-party software and hardware
components can be challenging.

In this thesis, we design a resource and interference aware GPU scheduling
system with the aim of efficiently scheduling and/or collocating incoming ap-
plications on various heterogeneous data center GPU partitions. We integrate
our solution with Kubernetes, one of the most widely used cloud orchestration
framework. We show that our scheduler can cover users’ Quality of Service
(QoS) constraints more efficiently, with higher resource utilization compared
to the state-of-the-art schedulers, for a variety of ML cloud workloads while
maintaining low overheads and energy consumption.

Keywords— cloud computing, GPU, interference, resource management, schedul-
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FEuyapiotieg

Apywd, Yo Adeha va evyaplotiow Tov emPBiémovtd you, Kodnynth Anufteo
Youvten EMII, o onolog pou €dwoe tnv cuxanplor var eEXTOVACK T1) OLTAOUNTIXN
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epyootac. H ouveyric toidy) yog xoatd tn ddexeta Tng OimhwUotixrc, e Borinoe
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xau epyooia. O fieha enlong va euyaploThHow OAa Ta ek tou Microlab yia to
cuydeloTo TepBdALoV epyaciag.
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e LWNg %L TV GTIOVOWY OV,
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Chapter 1

Extetauevn EAAnvixr Ilepliindn

1.1 Ewoaywyn

To cloud computing xou To Kubernetes elvon 500 1oyvpéc teyvoroyleg mou Eyouv
avaBIOCEL TOV TEOTO UE TOV OTOLO Ol ETULYELENOELS OloryLpiloVTaL Xl VAT TUGCOUY
Tic IT unodopec touc. To cloud computing emtpénel oToug yeHoTEC VoL EYouV
TEOCHBAUOY OE EXOVIXOUEC UTOAOYLOTIXOUC TOPOUC OIS OLUXOMLO TES, ATOUNKEL-
TIX0UC YWEOUC, EPUPUOYES xal UTNEESIES, HEcw Tou dldixTOou. To Cloud com-
puting mpoo@epeL Uiar OEWA and UTNEEGIES, GUUTEQLAUUPBAVOUEVNC TNG UTOOOUNG
w¢ umneeota (IaaS), tne mhatpdpuac we utneesia (PaaS) xo tou hoytopxol
w¢ untneeota (SaaS), Tou EMTEETOUY GTOUC YEHOTEC Vol AUEEVOUV 1) VoI UELDVOUV
TOUG TOPOUC TOUC avBAOYO UE TIC aVAYXEC TOUC, VO TANPMVOUY UOVO Yia O,TL
YENOWOTO0Y %ol Vo EYOUV TEOCBUOT) OTo OEDOUEV XL TS EPUPUOYES TOUG
omO OTOUDYTOTE, aVA TAOCU OTUYUR, YEYNOLLOTIOLOVTNS OTOLUONTOTE CUCKEUN UE
oLVdeoT) 0To OldixTUo. To UToAOYIGTIXG VEQOC TEOGPEREL TOAAG TAEOVEXTY-
wota o oyéon ue tnv mapadoctoxy| IT urodour|, 6Twe pelwuévo x6cToC, Auin-
MEVT eUEAElal ot EMEXTACLUOTNTA, BEATIWUEVT) TEOOBACUIOTNTO Ko AUENUEVT 0O-
pdheto xon adlomotion. To Kubernetes, and tnv dhin mhevpd, elvon plor mhatpopua
EVopY o TewoT¢ containers mou amhomolel T diayelplon xan To scaling twv eap-
Hoy®Vv mou meptEyouv containers. To Kubernetes npoogépet apxetd mhcovextn-
UOLTO OE OYEOT) UE TIC TUPADOCLAXES HEVOBOUC AVATTUENS EQUOUOY MY, CUUTEQLA-
ouPovouévne e Beitiwpévne adlonolnone Ty TopwY, TwV ToYUTEPWY YEOVWY
avamTuéng xon Tng audnuévne evehilac xou enextactpotnTac. To Kubernetes au-
TopotoTolel TNV avanTuln, To scaling xou Tn Olaryelplon Twv containers, EMTEETOV-
TOC OTOUG YPNOTES VU ETUXEVTEWYOUY OTNV AVATTUET TOV EQUOUOY MY TOUC X0l OYL
otn Olyelpton g umoxeluevne urodounc. Emmicov, to Kubernetes npoogepel
Lol OELd Yoo TNEo TixwY, Omwe load balancing, fault tolerance x.o. mou eé-
acarilouv vPnAY| dloadeoydtnTo o aflomotio. O CUVBLUCUOS UTOAOYLOTIXOU
vépouc xou Kubernetes mpoogépet o e€onpetind enextdoiun xou euéhxtn Aoomn yio
N Oloyelpiom xan TNV avdmtuln utodopwy. Kubernetes punopet va ypnowonowndet
Yior TN Oy ElploT) EQUEUOYY e containers TOU EXTEAOUVIAL GTO UTOAOYLOTIXO
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VEPOC, ETUTPENOVTAC OTOUC YPENOTES VO ENWOPEANTOUY antd TNV EMEXTACWUOTITA XAl
TNV cueAEiot TOU TOU VEQOUC, EVE TUEAAANANL ETWPEAOUVTOL UTO TO YUEAUXTNELO-
Tixd auTtopatonolnong xat dayelplong mou Tapéyet to Kubernetes. O cuvduoouog
Tou kubernetes xou tou cloud npoc@épel o e€anEeTING EMEXTAOUN XU EUEALXTY
AOGT) yior TN Loy ElpLom Xou TNV AVATTUET EQUOUOYMY X0l UTNEECLMY, ETITEETOVTAC
OTIC ETUYELRNOELS VO BEATIOOO0LY T AEITOUEYLXY| TOUG AMODOTIXOTNTA, VO UELD-
OOUV TO %6610 ot Vo auEHioouy Ty evehiéio. H ypron wovddwy enclepyaoiog
Yooy (GPU) xou dMwv emttayuvtddyv oto Kubernetes éyel yiver ohoévar xa
O ONUOPLANC Yio TNV eneéepyacio xon avahuoT UeYShou 6yxou dedopévmy. Autol
oL EELBIXEVUEVOL UTONOYLO TIXO{ TTOPOL TROCYELOLY GNUAVTIXG TAEOVEXTHUATO OTO-
600M¢ o€ OyEoT UE Ta Topadoctaxd cuc Thuata tou BaciCovton oe CPU. Qlotéoo,
UTLBEY OUV EXETEC BUOXOMES Xal TEOXANOES Tou oyeTiCovton ue Tt yerjon GPU
xa AWV emitoyLvTeY oto Kubernetes.

Mia amd Tic ®x0pleg TEoXANOELS elvor 1) adLUVio BLIUOLEACUOY UTOY TWV €&~
EWIXEVUEVLY TOPWY UETOLD TOAATA®Y QopTwVv cpyaotauc. e avtideon ye to
ouvothuata Tou BaciCovtar oe CPU, ot GPU xou dhiol emitoyuvtéc cuvidwe dev
€Y 0UV OYEBACTEL Yiot Vo HoLedCovTon HETAUED TOANATAMY EQUOUOYMY TUUTOYEOVOL.
Auté unopel vo 0dnyfioel oe Blaudyn yio TOpouC, Wine ot TEPUSIANOVTA UE TTOA-
AoO¢ yeroTeg, omou autol xaL pépToL epyactog aviaywvilovial yio TedofuoT oe
aUTOUC TOUG TTopouc. T'al TNV AVTETOTION AUTAC TNS TEOXANONS, OL OPYUVIGUOL
TEETEL Vo OlaryELplCoVTaL Yol VoL XUTUVEUOLY TROCEXTIXA 0UTOUC TOUC EECELBLXEUE-
YOUG TOPOUS WOTE VoL OLUGPIAMLOLY OTL YENOYOTO0OVTL ATOTEAEOUNTIXG. AUTO
UTOEEL Vo TEPLAAUBEVEL TNV EQUPUOYY| TOATIXGY oL DLUBIXACLMV YLoL TNV LEEAEYNOT)
TWY TEOTEQUOTHTWY TEOcucne 6Toug TOEoue e BAon T AmUTACES TOU Pop-
Tou epyaciog, 6Twe o TOTOg TOL POETOL €pYUoluc, N YENON TWV TOPWY XL OL
amoUThoElS EmO6oEWY. Mia dhAn mpdxAnom etvar 1 Slac@ditor Tng oupBaToTNTS
X0l TNG OLIAELITOVEYIXOTNTOC UETAED ETEPOYEVRY OTOLYEIY LAXOD %ot AOYLoUxoD.
To Kubernetes uroctnpilel didgpopouc timouc GPU xan emtaryuvioy, o xadévac
UE TIC OXEC Tou Tpodlaypaéc xou anantrioels. H diaogpdhion tne ocuufoatotnrag
X0l TNG OLAAELTOVEYIXOTNTOC PETULY ETEPOYEVMV GUC TUTIXWY UTOREL VoL ATOTEAEDEL
TEOXANOT), WIS OTUV EVOWUATOVOVTUL GUCTATIXG AOYLOUIX0U %ot UAXOD TElTwV
XATUOKEVOOTOY. EmmAéov, n avdmtuln xau n ooyelpion goptiwy cpyasiac mou
Baotlovtan oe GPU xau dhhoug emtoyuvtéc umopel vo elvon 6Uox0AN AOYL NG
eeldxevuevne @oone Touc. Eqopuoyéc xou utneesiec mou yenolonololy autolg
TOUC TOPOUC UTOPEL Vo AmonToUY EEELBIXEVUEVES DLUUOPPOCELC Xl BEATICTOTOLY-
OEIC Yiot Vo Olao@aAlo Tel 1 PEYLOTN BuVATH am6d00T. ATOCQUAIATLOY XL ov-
TETOTON TEOBANUATLY Tou oyetilovton pe popToug gpyaciag mou PBuocilovral
oc GPU unopel eniong va elvon mpdxhnon, anoutodviag eCEOXEVUEVES YVOOELS
X EUTELROYVWIooLVY. Muvolilovtag, eved ot GPU xa dAhol emttoryuvtéc npoo-
(PEQOLY OMUAVTIXES ETUDOOELS, UTHEYOLY UEXETEG DUGKOAES %ol TPOXANCELS TIOU
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oyetiCovton pe TN yenorn touc oto Kubernetes. Autéc ol mpoxhvoeic mepthou3d-
YOUV TNV adLVOULa SLUOLAoUo) TOeWY UETALY TOAATAGY PORTWY epyaciog, T
OLOPAALOT TN CLUUSATOTNTOC X TNG OLUAEITOURYIXOTNTAC HETALD TWV GTOLYEIWY,
xorddg xan eCEOIXEVPEVES amanThOELS avamTuEng xan dtayeiptone. H avtipetdmon
QUTOV TWV TEOXANCEWY ATALTEl TPOCEXTIXO OYEDLUOUO xou Oloyeipton yio T1) Ot-
AoPIMOT TNG BEATIOTNG AmOOOCNG XAl TNG AMOTEAECUATIXNAS YEYONS TWV TOPWV.
Xty mapoloa epyootia, oyedtdlouue évay véo ypovorpoypauuatiot) GPU nou
Baotleton o mpofrédeic Al yovtérhwy oyeTnd Pe TIg EMBOCELS TWY EQUOUOYWY GE
mohhamAgg dtagopeTixéc dtatdielc GPU, xadng xan Tig avouevoueves napeuforéc
TOL TEAYOVTAL AOYW TNG CUVTOTOUETNONG OLUPORETIXWY EQUQUOYWOY GTNV (Olat
odtaln. Ipoxewévou va anogactotel 1 BEATIOTN SlodpPoT Yo xdde EQoouoYY
EXUETOUAAEVOPAO TE ETLOTG OE TP YUUTIXO YeOVO UeTeineg amd TNy GPU mou avox-
TOVTOL amd ddpopa cucTAUATA Tapaxorolinone. EvtoniCouue tnv avoamoteheo-
LOTIXOTNTA TV oUYYeovwy Yeovorpoyeouuatiotwv GPU tou Kubernetes 6cov
apopd TNV oL TNTA Twv uttneeatog (QoS) xou ) yehon Twy tépwy. Actyvouue ot
O YPOVOTEOYRAUUUATIO THS IS, YO TNV TAELOVOTNTA TV PORTMY EQYUCIAUS KoL TWV
OEVUPIWY YPOVOTPOYPAUUMATIOUOV UTOREL VoL ETULTUYEL YUUNAOTEQO YEOVO EXTEAEONC
Xotd YEco 6p0, xS xat xahOTEPN 0&lOTONOT TWY TOPWY, EVE Blac@oiilel gu-
eM&iol o UEVEL TLOTOC OTIC AMAUTHOEIS TWV YENOTWY, ywelc va emPBoplveTtal Ue
umAéc xaUoTERHOELS 1 XAUTAVAAWGCT) EVEQYELNC. LTO XEPAAANO 2, AVUAVOUUE GA-
Ae¢ mpooeyyloelg ypovompoypouuatiopod GPU mou €youv npotaiel uéypl orjucpa.
Y10 xegpdhowo 3, oculntdue v T Poowéc évvolec tou Kubernetes, tou un-
oxeluevou evopynotenmTr containers. Xto xc@diono 4, mapoucLAoUUE TN O
LOC TELpaUOTIXT) UTodou|, To cuoTtnua Tapaxoholinone GPU xa tn coulta mou
YENOWOTOLAUNXE VLol EXTEAETT) TWV POPTWY epyaciog xou TNV aloAGYNoT). 2TO Xe-
pdAoto 5, TaPOUCLALOUUE ot CUCNTAUE TOL AMOTEAECUATO TOU YULAUXTNELOUOUD TV
pop1wv epyaotac (ML workloads) mou yenoylomolAcaue yio Tor TELSUTS Hog Xat
TN OnUtovpYlol TV CUVOAWY BEBOUEVKY TIOU TEOPODOTOVY To UOVIEAN TEYVNTNC
VOTNUOGUVNG UOG. 2ITO XEPIANO 6, TUEEYOUNE TANPOPORIEC OYETIXA UE ToL LOVTEAX
Hog %ot EENYOUUE TIC TEYVIXEC TOU YENOUOTOLACOUE YO TNV TAPOY Y| TEOTACEWY
oe Bddoc. Xto xe@diono 7, TapoUCLACOUUE TOV YPOVOTREOYQUUUATIOTH UAS. XTO
XEPIAoLo 8, allONOYOUUE TO TPOTEWOUEVO TAUOLO UOC %ol TO CUYXEVOUUE UE
TOMTAES YVWO TEC ETLAOYES YIU TROYPUUMATIONS EpY Aol Pactouévey oe GPU
oTov evopynotewth) Kubernetes, oe dagpopetind cevdpla xar poptoug epyasiag.
Téhog, oto xepdiroto 9, cuvodilovue v epyacio yog xo tpotelvouue Tedio U,
EVOEYOUEVWLS, VPNAG evBlopépoy Yiar uEANOVTIXY epyacio OE GUVOQT EQELVNTIXG
Tedla.
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1.2 Kubernetes

To Kubernetes eivon €va obotnuo evopyfiotewone containers avolytod x@owxo
TOU OUTOPATOTOLEL TNV aVATTUET, TNV XAUEXWOT xou T1) Ol Elplon) EQUPUOY®Y
ToL yernolonololy container. AvantOydnxe apywd and tnv Google xa Twpa
ouvtneetton omd to Cloud Native Computing Foundation (CNCF).

Ta containers eivon £vog ehapic ToOTOC CUOKEVAGIUG AOYIOULXOU IOV ETUTEETEL
OTOUC TEOYRUUUITIO TEC VoL ONUtoueY 00V, Vol BoXAOLY XAl VoL AVATTUGCOUY EQop-
HOYEC Yeryopa xou a&loTIo T O OLaopeTixd Tepl3dAlovTa. doTdo0, 1) dloyelpion
TV containers og xAlgoxa umopel vo amoteAécel TEOXANGT), xadwC amattel cUV-
TOVIOUO PETAE) TOAAUTAGY containers, 6e TOAATAOUS XEVTEPIXOUS UTOAOYICTEC 1)
xoufouc.

>e autod To onueio Epyeton oTo Tpooxnvio o Kubernetes. Ilopéyet Evav tpdmo
Oloyelplone Twv containers mou Oev e€uETATOL OO TNV TAATPOOUN, OPOLEMVTOC
TNV UTOXEIUEVT) UTOOOUN X0l ETUTEETOVIUSC OTOUC TROYQUUUITIOTEC VoL ETUXEVTE-
oU00V OTNY XATACKEUT] XAl ATOCTOA TwV epapuoy®y tous. To Kubernetes to
TETUYOLVEL QUTO UEOCW WIS OELRBC apalp€cewy, OTwe Ta Pods, Tic unneeoieg xou
T Deployments, ot omoleg mope€youy €vav GUVETY| TEOTO Yl TOV OQLOUO, TNV
avdmTuEn xou T Slryelplon containers.

>tov upriva Tou Kubernetes Bploxeton 1 €évvola tou cluster, n onolo ivon €va
c0OVOAO %xOUPwY Tou CUVERYALOVTAL YIoL TNV EXTEAECT| EQUQUOY WY TOU TEQLEYOVTOL
oe containers. Kdle xoufoc extelel eva mpdypauua exteheone container, omwmg
to Docker, xou dayetpiCeton and €vav npdxtopa tou Kubernetes mou ovoudletan
kubelet. To kubelet elvor unediuvo yia tn Slacpdhion Tne cwoTAC EXTEAEOTC TWV
containers otov x0ufo Tou %o YL TNV ETUXOLVWVIO UE TO UTOAOLTO GOCTNUAYLY
TOV GUVTOVIOUO TNG TOTOVETNOTNE X0l TOU YPOVOTOOYPUUUATIONOL Twy containers.

>to Kubernetes, ot egapuoyéc opilovtar wg oUALOYEC EVOC 1) TEQIOCOTERWY
containers, eviuvioxwuéveg oe €va Pod. 'Eva Pod efvor 1 uixpdteen povdda tou
uropel vo avamtuyVel 6to Kubernetes xou avtinpocwnelel pio povadunn tepintwor
wag epappoyng. Ta Pods etvon epriuepa, mou onualvel 6Tl umopody va dnutovpy oLy,
VO XUTUC TEOUPOLY 1) VoL ETAVEXXIVCOUV ovd Ttdoa oTiyur|, xou To Kubernetes Yo
YELPLO TEL AUTOUATO TOV TEOYQPOUUITIONO XUl TOV ETAUVUTEOYRUUUATIONO TWV CON-
tainers yio vo Sltnerioel TNV EMYUUNTY| XATAC TUOT) TNG EPUEUOYTIC.

O umnpeoieg elvan war dhAn onuovTiny| agaipeon oto Kubernetes, ov onoleg
mopéyouv wo otadepr| dievuvon IP xaw 6vopa DNS yia éva oOvoro Pods. O
UTNEECEC EMUTEETOUY OTOUC TEAUTEC VoL £Y0UY TEOCBACY) OE Lo EQUQUOYY| TTOU
exteAeiton, oxdun xou 6Tav Ta utoxelueva Pods xou containers dnuiouvpyouvta,
XATACTEEPOVTAL 1| METALVOUVTOL GTO CUUTAEYUOL.

To deployments mapéyouy évay tpémo dlayeiplone Tou xUxhou {whc Lo EQop-
HOYTC, OUUTEQLAUBOVOUEVOY TV XUMOUEVWY EVNUERWOEWY, TwV rollbacks xau
Tou scaling. 'Evo deployment duyetplCeton €va ahvoro avtiypdpwy evog Pod xau
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umopel vo yernotuomoiniel yior vor SlacQolloTel OTL EVUC CUYXEXPLIEVOC apLiuOC
VT PdpwY exTeAe(Ton TdvTa, Yo v extehecTody rolling updates tng epopuoyc
xou vt vor dlaryetpto tel To scaling tng egapuoync avdhoya pe tn (HTnom.

Yuvodilovtag, To Kubernetes etvar pio toyuey| xon eUEAXTN TAATQOPUA VLol TT)
OLoyelplom eQoppoYOY Tou TEpEyouy container, 1 omolo mopéyel LPNAS eninedo
apalpeone tng uroxeluevng utodounc. Me 1t yprjon Tou Kubernetes, ol npoypop-
MOTIOTEC UTOPOVY VO ETXEVTEWIOUY OTNV XATOUOXEUT XUl OTOCTOAY TWV EQUE-
LOY®VY TOUG, APVOVTOC TG AETTOUERELES TNG EVORY O TEWOTNC Kol DLIYEIPLONG TWV
containers otny TAATQOQU.

1.3 lleipopatixyr Yrodoun

2e auTo To xEPdAa0, TEPLYEdpoUUE To cluster Tou ONULOLEYHCUUE Yo Ta TIELRS-
Hotd o, To cuotnua tapaxoholinone tne GPU xou tn couita avagopedc MLPerf
1 omolo Yenowomotinxe yio T dnulovpyla Twv opTwY epyacto.

[ Toug x6ufoug Tou cluster pag, ONULOLEYHCUUE 4 ELXOVIXES UMY AUVES (VM) (1
Master x6uPBoc xou 3 Worker xoufot) mévew otic guowéc unyavéc. Or CPUs tov
VM anoteholvtan amod 4 €wmg 8 mupriveg xan tor uey€dn tne RAM xuyatvovtan amod
8 ¢w¢ 16 GB. Xpnowonowjoaue to Qemu KVM w¢ hypervisor. Anéd toug tpeic
epyaTieoUg xopuPoug, o mpwmtog eivar e€omhopévoc e uoe GPU NVIDIA V100 pe
uvhun 32 GB xou 80 SMs, o debtepoc pe wioe NVIDIA A30 GPU e 24GB yvrunc
xat 56 SMs, eve 1) tpltn dev €xet GPU. ‘Okeg oL etovixég unyoveég avamtiecoyv-
Tow otV untodour| Tou epyactnelou tou EMII. ITpoxewevou va npocououwndet eva
TepBdAhov vEpoug, OAeg oL avapepdueva popTior epyaciag Tou exTEAOUVTAL OTO
cluster €youv yivel containerized ypenowonowvtag to Docker. Ta yapaxtneio-
TG xGE EOVIXNG UNYAVHC TEQLYEAPOVTAL GTOV oxdlovdo Ttivoa.

Virtual Machines

Processor Role CPU CPU GPU Access

Cores RAM

(GB)

Intel(R) Xeon(R) Gold 6138 CPU @ | Master 8 8 No
2.00GHz
Intel(R) Xeon(R) CPU E5-2658A | Worker 4 16 No
v3 @ 2.20GHz
Intel(R) Xeon(R) Gold 5218R CPU | Worker 8 16 V100
@ 2.10GHz
Intel(R) Xeon(R) Gold 5218R CPU | Worker 8 16 A30
@ 2.10GHz

Table 1.1: Virtual Machines Characteristics

O cuvdvaouog Twv VM ue ta xovtévep elvon orjuepa o cuviing tpomog ovém-
TUENC CUOTNUATWY VEQPOUS GE XAloXa, XS ONULoLEYEL TOV TEAELO XAToA)TY
yioe Ty adlomotior xar Ty evpwotia. IIdve and ta VMs, €youue avarntiiel to
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Kubernetes w¢ evopynotpmty| eunopeupotoniBotiny, Yo and Tic To ONUOPLAELS
X0l TIO CLY VA YETOWOTOLOUUEVES TAUTPOPUES OYUERAL.

To cbotnua 6to ohvord Tou ametxoviletar oTo oyfua 5.1

Ta npotdvta Tesla tne etoupetac NVIDIA ewodyouy pa oelpd eneepyao oy ut-
ONOYLG TIXWYV YEAUPXOY oL potdlouy Toll ue t oetpd NVIDIA Quadro (cuvidwg
yenowomnooly to Bto toin). Qotéco, dlardéTouy amouoveouévn dietagy odovne.
Awatiievton eniong oe Tordnund Yuyduevoug TUToUC, oL omtolol efvar 1B xaTdAANAOL
Yo yerion oe dlaxouto tée (rack-mounts).

OL YeOTEC EMAYYEMIUTIXWY EPUOUOYWOV UTOPOVY, YUOT OTNV UEYLTEXTOVIXY)
CUDA, va yenotuomololv enelepyactég poric yeupixwyv CUDA. Xden o autd,
elvon BUVITH) 1 YPNON NG OXATERYAUOTNG ATODOONC WULIC XAETUC YRUPLXWY Yo
CUYXEXPUEVOUC UTOAOYLOMOUS, YEYOVOC TOU UTOpel vor aUEAOEL ONUOVTIXG TNV
TaryOTnTa epyociag o oUYXELOT UE TN YPNoT EVOC Topad0osoLax0l ENEEEPY AT T, OL
onofot TeploplCovTol ONUAVTIXG antd TOV UXEOTEEO dEllud TUENVLV.

O Tesla V100 €yel oyedlactel amd tny apyt) yio TNV amhonolnon Tne duvatoTn-
to¢ mpoypapuatiopod To NVIDIA NVLink oto Tesla V100 mopéyer 2 qopéc
ulmAdtepn anddoon oe clyxplon Ye TNV meonyoUUevr Yewd Elomlouévo ue
640 muprjvec Tensor, to Tesla V100 nopeyer 125 TeraFFLOPS anddoone Bondidic
udinonc Me éva ouvduaopd Behtwpévou axatépyastou edpous Lovne 900 GB/s
xou umAdtepne amodotixdTnToc Yerione DRAM oto 95%, o Tesla V100 mpoo-
(PEQEL.

H NVIDIA A30 Tensor Core GPU mopéyet uior euéhixtn mAatgoouo yiar x0Opl-
0UC ETLYELRNUATXO0C POETOUC epyaciag, OTwe 1 eaywyy| ouunepaoudtwy Al
exnatdevorn xat to HPC. Me tnv unoothpien TEF32 xaw FP64 Tensor Core, oo
1Ol UE UL ONOXATRWUEVT 0To{Bot AUsEWY Aoyiopxol xou LAxoU, 1 A30 dtacpaiilel
6Tt ot mainstream egapuoyéc exnaidevone Al xouw HPC unopolv vo avtiyetwmnio-
o0V yeryopa. H Multi-instance GPU (MIG) Swxogolilel tny notdtnta unneeotog
(QoS) pe aopahelc, xotaveunuéves oe UG, xatdhhnhou ueyédouc GPU oe 6ha
QUTA TaL PopTio EpYCTAC Yia BLPOPETIXOUC YPHOTES, AELOTOLOVTIS BEATIOTA TOUG
uroioytoTixolg topouc GPU.

To yapaxtnptotnd xdie GPU neprypdgpovtar otov axdrovdo mivaxa.

GPUs
‘Ovopa GPU SMs MvAun
(GB)
NVIDIA Tesla V100 | 80 32
NVIDIA Ampere A30 | 56 24

Table 1.2: Xapoxtnpiotxd GPU

To DCGM-Exporter etvou eva epyaieio Baotouevo ota Go APIs tou NVIDIA
DCGM mou emitpenel 6Toug yefoteg Vo culAEyouy yetprioelc GPU xou va xatoavooiy
1) CUUTEPLPOEE TOU PoETOL gpyactiag 1) va Tapaxolovdolv Tigc GPU oe clusters.
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To degm-exporter etvan ypauuevo oe Go xau exdétet petpioeic GPU oe éva tehind
onueto HTTP (/metrics) yia Aoeic napoxorotinone.

Avutéc oL petprioelc e€dyovTol G Jop®T YPOVOOELDMY TROXEWEVOU VO YN0l
porondoly amd BACELS BEBOUEVLV YeovooE®Y 6Twe ot Influx, Prometheus ».AT.
Ané 1t oxomd tou Kubernetes, o eCaywyéagc DCGM oyrnuatiCer éva Daemon-
Set mou exxwvel éva damon Pods oe xdie xoufo eConhopévo pe GPU. Autd ta
Pods exterolv epwtiuata petpiocny otic GPU twv x6ufwv yenoiuomoidvtac to
NVIDIA Data Center GPU Manager (DCGM) [1]. Téhoc, autéc ot petprioeic
anocTEMovToL 610 aloTtnua apoxohovinone prometheus [2] to onolo exvétel
uor utneeoto oto cluster and tnv omola onolocdHToTE TOPOC Tou cluster umopet
Vo £YEL TeOoBaoT OTIC UETEHOEL.

The GPU metrics we mainly used in our experiments are presented below.

O DCGM_FI_DEV_FB_FREE: EieOVeon pvrun framebuffer (oe MiB)
O DCGM_FI_DEV_FB_USED: Xprnotuonotoluevn uviun framebuffer (e MiB)

O DCGM_FI_PROF_GR_ENGINE_ACTIVE: AvaAoylo Tou ypdvou TOU 1) UnyovT
Yooy eivar evepyh (oe %)

0 DCGM_FI_DEV_TOTAL_ENERGY_CONSUMPTION: XuVOAXN XATUVIAWOT) EVEQYELOC
and v exxhvnon (oe mJ)

O DCGM_FI_DEV_POWER_USAGE: Katoavdhwon evépyetog (o W)

0 DCGM_FI_PROF_DRAM_ACTIVE: IToc00T6 xUxhwv xotd ToUg omoloug 1) dlemapy)
UVAUNG TNG CUCKEUTG Elvon EVERYY|) oTehvovTag 1) hauPBdvovtog dedoueva (og

)

To MLPerf Inference [3, 4] eivon pio couita avagopde yia ) pétenon e
Tay OTNTOC PE TNV OTOlOL TOL CUCTAUATO UTOPOLY Vo ETEEERYALOVTOL ELGOBOUS Xol VoL
TOEAYOLY UTOTEAECUATA Y ETNOWOTOLOVTAC EVal EXTIUOEUNEVO HoVTELO. Axohoudel
war obvToun mepthndn Twv TeeydvTwy benchmarks xot Twv peTEXOY.

Kde onpeto avagpopdc MLPerf Inference opiCeton and €vo poviého, Eva chOvoro
OEDOUEVLY, EVAY OTOY O TOLOTNTAC Xou Evary TEploptopd xaduoteépnone. Ta axdrovda
Telo onuelo avagopdc Peloxovton oty éxdoon v0.5 Tng coultog xou yenotlonot|inxoy
Yioe T OnuLovpylor Tou PoETOL EpyacloC.

> x&e benchmark to npo-exnawdevyevo povteéro Eyel opiotel oe éva backend
omw¢ Tensorflow, PyTorch, Onnx Runtime »in
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Area Task Backend Model Dataset Quality
‘Opaon Togwvounon Onnxruntime | Resnet50- | ImageNet | FP32
EXOVWY v1.5 (224x224) | (76.46%)
‘Opaon Toagwvounon Onnxruntime | MobileNets-| ImageNet | FP32
EXOVWY vl 224 (224x224) | (71.68%)
‘Opaon Aviyveuon  av- | Onnxruntime | SSD- COCO FP32 (0,22
TIXELUEVOY MobileNets-| (300x300) | mAP)
vl
‘Opoon To&vounon Tensorflow Resnet50- | ImageNet | FP32
EXOVWY vl.5 (224x224) | (76.46%)
‘Opoon To&vounon Tensorflow MobileNets-| ImageNet | FP32
EUOVOV vl 224 (224x224) | (71.68%)
‘Opoon Aviyvevon  av- | Tensorflow SSD- COCO FP32 (0,22
TIXEWUEVEY MobileNets-| (300x300) | mAP)
vl

Table 1.3: MLPerf Inference Benchmarks

1.4 Xvothuata 2UoTACEWY

‘Evo cUotnuo ouotdoewy ebvar Evag alydpriuoc teyvntic vonuooivne ff TN, mou
cLYHUWC CLUVOEETAL PE TN unyovixn pddnon, o omolog yenowomolel yeydha Oe-
dopéva yior var TEOTElVEL 1| Vo cUGTACEL TEOGUETU TPOLOVTA GTOUC XATUVOUAWTEC.
Avtd pmopel va Boactlovtor oe didpopo xpLThHELA, OTWS TEONYOUUEVES oY OREC,
loTopd avalATNoNG, ONUoYpapéc Thnpogopiee xat dhhouc mopdyoviec. To
CUC TAUATA CUCTACEWY Elvon Waktepa yeriotua, xadang Bontodv toug yeroTeg va
avoxahbouy potdvTa xou UTneeoiec Tou dLopopeTixd umopel vor unv etyov Beet
LOVOL TOUC.

To GUGTALUTA CUCTACEWY EXTIUUDEVOVTOL (OTE VO XUATUVOOLY TIS TROTYHOELS,
TIC TTPOTYOUUEVES ATOPACELS XAl TA Y UEOXTNPLO TLXA TRV VROV Xl TWY TEOLOV-
TWY YENOWOTOLOVTAUC OEOOUEVA TTOU GUAAEYOVTUL OYETIXG UE TS AAANAETLOPACELS
Touc. AuTtd TEPLAoPPBAVOUY TIC EVTUTIWOELS, TA XALX, TIC CUUTAUELES Xou TIC ayopEC.
Aoye TN iavoTNTdC Toug Vo TPOBAETOUY TOL EVOLUPELOVTA Xol TIG EMIUPIEC TWV
HATAVAAWDTOV OE ECUPETIXG ECATOUXEVUEVO ETUTEDO, Tol GLUC THUUTA CUCTACEWY £l
VOIL T ALY ATTNHEVA TWY THEOY WY TEPLEYOUEVOU ot TEoOVT®WY. Mropolv va ooy
GOUV TOUC XUTUVOAWTEC OYEDOV GE OTOLOONATIOTE TEOLOY 1) UTNEEGIN TOU TOUC EV-
OLapepet, amd Bifiio xou Bivieo ueypt poduato Lyelag xor POUYL.

Av xau untdpyel évac TEpdoTlog aEtiuos ol yopldumY XaL TEYVIXWY CUCTACEWY,
Ol TEPLOCOTEREC EUTITTOLY OTIC EENAC UEYIAES XATNYORIEC: CUVERYUTIXG PLATEAELOU,
(PLATEAOLOUA TIEQIEYOMEVOU XoU PLATEUQIOHA TTALGIOU.

YNy mopoloa epyocta, Vo emxevIpwUOUUE OTO CUVERYATIXO (QLATEUOLOUOL.
O ahyopriuol cuvepyatxol @uitpaplopatoc cuvioToly avixelyeva (autd elvo
T0 Uépoc Tou @uhtpaplopatoc) e Bdon mAnpogoplec mpotiunone and moAAoUC
Yenhotee (autd eivon o ouvepyatnd Uépoc). Auth N mpocéyylon yenoylomotel
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TNV OUOLOTNTA TNG CUUTERLPOREC TWV TROTWACEWY TWVY YENOTWY, DEDOUEVNS TNG
TEONYOUUEVNS AAANAETIOPUONG HETAED YENOTWV XU AVTIXEWEVW®Y, oL aAyopriuoL
olotoong podaivouy vo TeoBAETOUY T1 UEAAOVTIXY| ahAnAenidpooT).

Ou teyvinéc mopayovtonoinone mvéxwy (MF) anotelolv tov nuphva ToOAGOY
ONUOPLAWY ohy0RIIUwY, CUUTERLAUBAUVOUEVNE TNG EVOWHATOONS AECEWY Xou TNG
wovtehornoinong Vepdtoy, xou €youy xataotel xuplapyn uedodoroyia oto Thaiolo
¢ obotaong mou BocileTon 68 CUVERYATING PLATELELOUOL.

1.5 Predictive inference serving for multi-tenant GPU
clusters

Yty napoloa epyaocio, avanTOEOUE €V YEOVOTPOYEAUUUATIOTY Yio multi-tenant
GPU clusters yenowwonowvtac to Kubernetes (Kegpdhouo 4) xou to Collabo-
rative Filtering (CF) (Kegdhowo 7). T tn dnutovpyio ToU ypoVOTEOYROU0-
TIO TN Ypnotponotoae To Thviclo ypovonpoypeauuatiopol Kubernetes (Kegdiowo
4.8). To mhaicto ypovompoypopuatiopol etvor o pluggable opyitextovixy| yio tov
Ypovompoypouuatio ) Tou Kubernetes. Ilpooiétel eva véo obvoro amd plugin
APIs otov undpyovta ypovonpoypoupatiotd. To plugins petoayiottilovion otov
Ypovompoypouuatio . Enextelvoue to plugins Score xou PostBind mpoxewévou
VO UNOTIOLGOUUE T1 AOYIXT] TOU YPOVOTEOYRaUUoTionol yog. To mpdto eunddio
TOL AVTETOTILETOL XxaTd T dnUtoupyio EVvoc ypovompoypauuatio T Yo To Kuber-
netes etvat To yeyovog 6tL To Kubernetes dev dlagpnuilel ey YEVHS TOUS TOROUS TNG
GPU. Anhadr, o uévoc eup€we amodexToOC TEOTOC Yiol VoL 0ELOTIOLCOVUE TOPOUC
GPU etvou pe tn ypron tou NVIDIA Device plugin, to onolo diagpnuilel cuoxeuéc
GPU o710 olvord toug. €l¢ ex toltou, 1 Aemtopcpric xatavoun népwv GPU,
omwe 1 uviun xou ot SM (tohuenegepyaotéc porc), dev amoterel emhoyr. Tot vor
CemepdooulE auTO To TEOBANUA dnutoveyoaue éva daemonset Tou Tadtvouel Toug
xopPouc GPU (xépBouc mou meptéyouvy GPU) avédhoya pe Toug mtépouc toug. 21
CLVEYELL, amoUNXELOLUE LT T dedoueva ot Eva Redis deployment to omolo ex-
TENOUVTOY 0TOV %UpLo xOUPB0, TEOXEWEVOL Vo BEATIOTOTOLACOUUE TOV YPOVO TV
EQWTNUATODY XL VoL EAAYLOTOTOLCOUNE TNV ETBEOUVOT| YPOVOTPOYRAUUUATIONOU.
'l o Collaborative Filtering (mpéfiedn) yperoaldyootoy pla Stodixacto yio Tov
utoloyloud tou avauevopevou QPS (epwtAuato avd deutepdrento). Autr Vo
umopoloe vo ebvar o exweto T dladxacion oToV XMW Tou dnuLoueYUNXE
YLOL TOV YPOVOTPOYROUUATIOTH 1} €val CEYWEIoTO container 6Tov YeovoTeoypo-
HOTIOTY), ©OOTOCO amoucioaue OTL, OEDOUEVOL OTL TO GUVOAO DEDOUEVWY UTOQEL
vou ebfva oyeTind Yeydho 1 1 dtaduxacion oy wY NS CUUTERUOUATGLY Vo Efvor UTONO-
Yo TS €vTovr), Vol €TPETE VoL UETAPEPOUUE OAOXATEY TN Otadixacia o€ EEYWEIGTO
xoufo. I'a Tov oxond autd yernoiuwomoifooue Tov Cheetara, tov dedtepo xoufo
uoc ywelc GPU extéc and tov master.
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To Redis (Remote Dictionary Server) eivou €vac amodnxeutrc Souov Oe-
OOMEVWY OTI UVAUT], TIOU YEYOWOTOLELTAL (W XUTAVEUNUEVT), 0T uvAun Bdor Oe-
OOUEVY HAELOLOV-TIMYV, XEUPT) UV UT) X0l OLUUECOAUBNTYC UNVUUSTWY, UE TROULOETIXT)
aviextixdtnta. To Redis umootnpilel didpopa €01 apnenuévwy doumy 0e00UEVLY,
omwe ouyfolooeipéc, hoteg, ydpTeg, cuvola, Tadvounuéva cuvora, HyperLogLogs,
bitmaps, poec xan yweoLg delxtec. Xie autd To €pyo, To Redis yenowonotinxe
Y10 VoL BLEUXOAVVEL TNV aTOVHXEVCT] TOOCWELVMY OEBOUEVMY OYETIXS UE TNV XATHO-
toom tou cluster (UUIDs GPU, exywpnuéva pods oe turuata twv GPU x.Ar.).
H avéntuén tou Redis emonudvinxe ye évay pohoxd meploplond cuUYYEVELNCS,
meoxelévou va avatelel oTov x0plo xOUPo, MOTE O YEOVOTLOYPUUUATIOTHS Vo
EYEL axOUT ToyUTERT TEOCBACT) GTO OEOOUEVAL.

Hpoxewévou va napaxohovdolue to yopoxtnelotixd (6nwe ta UUIDs twv
Tpnpdrwv) xdde GPU zTou cluster xau vo to cuoyetiloupe ye tov aviiotolyo
xOUPo, yeeldoTnxe va dnuiovpyrioouue Evay tépo Kubernetes mou vo Aettoupyet
0¢ EVOLdUESOC PETAE) Tou ypovormpoypaupatioTh xat Twv GPUs. To to oxond
ouTod Onuoupyrooue eva daemonset. Kdie pod tou daemonset extehel €va con-
tainer to omolo mpwTa amoguciler av o x6uPog eivon oe Yéom va @uiolevioel
epapuoyéc GPU xan otn ouveyetla, extehwvtag uio amAt| epapuoyyr) CUDA, e&dyel
toe UUIDS e GPU xoadoog xon pepixeg yetprioslc xou tar amounxelel oto Redis.
YN ouvéyela, o eaywyéag mapaxorovidel Ty €€odo tne epapuoyric CUDA yu
oalhayéc. Kdie @opd mou yiveton emavexxivnon ¥ cuvteldy), o eCaywyéac avthel
UECWS T VEX DEDOPEVAL xou EVNuepmvel To Redis.

1.5.0.1 IIpbBAedn xou Baduordynon

Ipoxewévou vo mopdyouue cuoTdoelc o vo Boduohoyfooupe toug xououg
ue Bdom Tic mpoPAédeic yio T emBOoEC o TIC TUEEUSOAES, ONULoLEYNOOUE
Utar avamTuEn UE Evay UoAoXO TEPLOPLOUO CUYYEVELNS TPOXELUEVOU VO TNV OTO-
gopticouye otov Cheetara (tov deltepo x6pufo poc ywelc GPU). H avdmtuin
EVOWUOTWVEL €var cUoTNUe cuoTdoewy nou yenotpornotel CEF xa SVD (singu-
lar value decomposition) xou etvor meooPdowun and to cluster yéow gRPC. AZ-
LOTOLOVTOS Ta OedoUEVa TToU €YOUUE GUANEEEL amd ToV yopaxtneloud uac (Ke-
@dhono 6) dnuovpyhooue 2 olvola dedouévmyv. To mpdhto eivon évag aponde mi-
VOXOAC T X M IOV YENOWOTOLELTOL Yot TOV UTOAOYLOUO Tou avauevouevou QPS
(epo AT avd BELTEPORETTO) OTAV 1) EQUOUOYT) EXTEAELTAL ATOUOVWUEVD GE EVAL
U ye duvatotnta GPU. To n avtiotoyel otic epopuoyéc (loodivouo e ToUg
YEHOTES Yo TIC TOPOBOCLUXES TEOGEYYIOEIC CUOTNUATKV GUOTACE®Y) XU TO M,
avTIoToLYEl OTIC DLEoWIES DLUUOPPWOELS (otouyela). Kdde OLUUOPPWOT| TEEL-
YedpeTaL OO

1. GPU
2. tuiua MIG (gdv undpyet) xou
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3. MPS épta cuoxeuric (€dv eivon drodéotua).

‘Otay €va epdTNUO QTAVEL TN GUGTACT), 1) 600TUCT| TEETEL VoL ETLOTEEDEL OAOXATET
1 OELpd TOU AVTLGTOLYEL O aUTA TNV EQapuoYY). Edv 1 ypouur) €xer ehmelc T,
yenowototel SVD yia va e€dryel tar havidvovTa yopaxTnetotixd and Tov mivaxo
X0 0T CUVEYELX UTOAOYICEL TIC AVOUEVOUEVES TIEC UE BAom TIC OUOLOTNTES PUETAED
TV oTotyelwy. Ovoudloupe Ty topandve Sadxocio isolated(z, p), 6Tou x eivan
N eQopuoYY), p elvon 1 Stobpgwon (xatdtunon GPU) xo isolated(x, p) elvar to
QPS mou ymopel va emitUyel T0 & OTAY EXTEAEITOL ATOUOVWUEVA OTNY XUATETUNOT)
-

o vae Barduoroyricouue Tov x6uBo yeelalOUaC TE Ulot GUVEQTNOT TOU VoL TEQL-
Yedgper v anbéotoon yetald tne {nrovuevne tuhic QPS (otdyoc emnédou e&-
Unnpémcng) xo Tne avapevouevne Twrg. OplCouue T petewr) o@diuatog Tou
CUCTAUATOC W TNV eLXAEideL amdoTaoy Tou {NTOVUEVOU Xal TOU TUEEYOUEVOU
QPS, xavovixomoinuévr and To Te®mTo

SLO(z) — expected value(x, X, p
v, p) = 191008 = expcted_saucl, X.p)

, OOV
expected_value(x, X, p) = isolated(x,p) — total_inter ference(x, X, p)

T OVOUEVOUEVT TLY| aVTIGTOLYEL oTny avopevopevn QPS v v egapuoyy| @
otav elvar TomoVeTnuEVn Ue T0 0UVOAO Twv pods X GTO OLUUERLOUN P %oL N
SLO(x) avagépeton oty QPS mou anaitnoe o yerotne. T vo oplcouvpe to oxop
YEELCOUAC TE XATOLOL GUVEETNOY| TTOU UELWVETAL OTAY 1) TUEATEVE ATOCTAOT Yive-
Ton peyohUtepn. Emlong, yia otadepy| andotaon, o Vetineg Tweg mpenel va ebvan
TPOTIIOTEPEG OE OYEON UE TIC UPVNTIXES, APOoU TEETEL VoL XUADPOUUE TIC vy RES
TV Yenotwv. [a 1o oxond autd yenotworotioaue 600 pétpa opotd6tntag. To
TEMTO UETPO opoloTNToS Ebvar To axdhoudo

1
1+ (err(w, X, p) + 1)

scorey(x, X,p) =

xat To 0eVTEPO
1

1+ err(z, X,p)

scores(z, X, p) =

, 6ToL TPoYAVAOS TOo err(x) unopel va mdpel onotadrnote Vet . To score;
UELWWOVETAL TOMD TILO YPHYORO ald TO Scorey xooe avZdvetar To err(x) ot eniong
T0 GUVOAO TWV TROOELOPGY X0t TwV BU0 cuvapToewy etvor [0, 1]. Xto oyfua 8.1
UTOPOUUE Vo DOUUE TIC YRAUPIXES TUPAUOTACELS TWV CUVIPTHCEWY.
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1.5.0.2 Score

‘Eotw X 10 c0volo twv pods mou exTeEA0OVTIOL GTNV XAUTATUNOT P, CUUTEQLAA-
Bavouévou tou pod mou mpoypauuatileton. Opllouvpe Tar OVOAL Xpeg xoll X
€TOL OOTE

Xneg = {x|z € X, expected value(x, X,p) — SLO(z) < 0}

elval To UToGOVOAO TwVY pods 6To X Tou dev Umopoly va xoALdouv To {NToUPEVO
SLO evo

Xpos = {z|x € X, expected value(zx, X,p) — SLO(z) > 0}

elvar To utocUvoho tou X mou umopet va xahOet To {ntovuevo SLO. Ipogavag
Tot Xpeg 201 X0 €lvon evor Tunua Tou X, OnAady)

Xieg U Xpos = X Kot Xpeg N Xpos =0

H Boduoroyioa tou turuatog Yo elvon Evag otoulouevog YEcog 6pog twv Bad-
LohoYldv 6wy Ttwv pods. Autéc ot Boduoroylec mpenel enfone vo ebvon yetald
0 xou 100, xadwe auteg elvon ot pubdveg amodextéc Poduoroyiee and to mialolo
YEOVOTROY QOUUOTIGHOU.

Yy apvnuixy] mepintwon, 1 Boduoroylo elvor mo onuovTtin and 6,1 6T
Yetr) mepintworn. Autd ogelleton 6TO YEYOVOC OTL Efvol TROTWUOTEPO VO THEEY OV-
ToL TTEPLOCOTEQOL TOPOL OO AUTOUC TOL AmUTEL 0 YEYoTNe Topd var doxuBedeTan
TO aTNUa Tou YeHoTn. o To 6%0md auTd, GTNY AEVNTIXNA TERITTWOT TEOTHNCUUE
T0 scorei(x),x > 0 o onolo yewdveton Yeryopa xoide auEdveTa 1 andoTao
err(z), eved otn Yetn| mepintwon tpotuooue to scorex(x),z > 0 o omoio
LELWOVETAL TLO 0pY S xodie awEdveton to err(x).

H tehue Baduoroyio yia To Sopéplopa ¢ utoloyileton we YRouuixdg cuUVOUIC-
UOC TWV TUEATAVE:

1
|X77f€g‘

1
| Xpos|

score(X,p) = 100x (1—util(p)) x (kx X Z scorey(x, X, p)+(1—Fk)x

IeXneg

X Z scoreg(x, X, p))

IGXpos

6mou util(i) etvon n otrypoda Ty Tou TUAUaTog yior T yerion e GPU mou
eMOTEEPETAL and Tov Prometheus xou k = % elvon ot topdueTeog mou Pelo-
xetar oto Odotnua [0, 1] xou opilel T PopdTnTal TV 0EVNTIXWY TEQITTWOENY
o1 ouvolxy| dwdwactia. Katd npotiunomn, to k mpenel va elvan yeyahitepo amd
50%, BeBOPEVOU OTL OL HPVNTIXES TEQLTTWOELS €)Y 0LV UeYAADTERT oNuacio, 6Twe €&-
nyNUnxe napandve. Tehog, To ohvoro TpoopiopoL g cuvdptnong Paduoroyiag
etvor To Btdotnua [0,100].

Edv Xeq = 0, 161 0 bpog mou TEPIEYEL TO ScoTe; TUpOAElmETOL, OLpOpETIXS
edv Xpos = 0, 1616 0 bpoc moL TEPLEYEL TO Scorey TOPURE(TETOL. X TNV Tapo-
Tévey dladixacio teptypddaue Tov TEOTO PE TOV OO0 UTOPOUUE VoL ETUAEEOUUE
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Wt OLo€pLom oL TouELdlEL XUAUTERY GTIC avdyxes pog. §lotéco, to ScorePlu-
gin poag otver TN duvatétnTa vor Barduoroyficouue povo ohoxhneo tov x6ufo o
omofoc unopel vo teptéyet toomhd partitions (n.y. MIG). Eotw P to clvoho
OhwV TV dladéouwy xatatuioewy GPU otov xéuPo xaw X, éva obvoko pods
mou exteAolVTOL OTNY XatdTunon p. Boduoioyolue tov x6ufo n pe tn uEyion
Borduohoyla uetald Twv Baduoroyidy TOV XATATUNOEOY P

final__score(n) = max score(X,, p)
oTou
UX,=X
peP
Av o xoufoc dev guholevel dikec equppoyéc GPU tn otiyur mou ¢tdvel to
pod, téte avadtapoppnvouue tnv GPU étot dote vo yeyiotonoteiton 1o oxop (av
argmax score(X, p) # current con figuration). H Siodixaocta tng ovadLopdoge-

ong Otapxel Tepimou 5 BEUTEPOAETTA, TEAYUA ACTUAVTO OE GUYXELOT) UE TT) OLdEXELd
TV PopTiwy epyaciog mou dlpxoLy pepind Aentd. Enlong, dtav n GPU dev eivan
GOELaL, ATOPACICAUUE VoL UMV TNV AVAOLUUOPPOOOUUE, OEOONEVOU OTL Tar pods Tou
exteA0OVTUL Yol BLOXOTTOVTAY Yol ETOUEVLS Yo TtopofBialoy Toug 6TdYoUS TOoUC.

1.5.0.3 PostBind xow CUDA__VISIBLE_DEVICES

Y1y mponyoLUevn evOTNTO TEQLYPAPAUE TS UTOPOVUE VoL ETIAELOUUE EVay CUY-
HEXQUIEVO %00, 0AAd o)L TS Vo deouedooupe To pod 6To emuuntéd Slouéptopa.
[o T0 oxomd auTo YenowoTooouE Ua UETUBANTYA TepiBdAlovTOC TTou YENot-
woroteitar amd toug mpoypoupatiotéc Tou CUDA yia Tov éheyyo tng opatdtn-
¢ ¢ GPU vy g egappoyéc CUDA. H CUDA_VISIBLE DEVICES eivau
war ueTaBANTY meptBdAhovtog mou yenowototeiton yior va xadoploel moleg GPU
¢ NVIDIA do mpéner va ypnoylonoodviol ond uio EQUQUOYT UE duVATOTNTA
CUDA. Katd tnv extéleorn evog npoypdupoatoc CUDA oe éva ohotnuo ye moh-
hmiéc GPU, n CUDA_VISIBLE DEVICES yrogel va yenowonomiel yio vo
eréyiel moec GPU ebvan opatéc oto mpdypauue. And mpoemhoyr, oiec oo GPU
elvon 0paTEC, oG ouTH 1) UETAUBANTY| Umopel Vo optoTel o war AMoTa pe dlory wplo-
uEva Ue xoupo avoryvoploxd ocuoxeuwy GPU yia va meploptotoly ol opatéc
ovoxevég. T mopdderyua, n pduon CUDA  VISIBLE DEVICES=0,1 Yo me-
cloploel To mEdYpouUa Vo BAETEL uovo Tty meoTn xou TN ocutepn GPU. Auté
UTOEEl Vo efvon Yoo yial Bldpopous AOYOUS, OTWE O TEPLOPLOUOS TWVY TOPWY
TIOU YENOUWOTOLOUVTOL Ao VAL TROYRUUUA 1) 1) QUVATOTNTA TAUTOYPOVNG EXTEAEONC
TOMOTAGY TEoYpaUpdTeY ot dtagpopetixes GPU.
To npécieto PostBind xaheiton petd tny emtuyr 0éoueuon evog Pod. Tlpoxeiué-

Vou 10 pod Vo OECUEUTEL OE E£VOL CUYXEXPWIEVO OLUUEQLOUA ONULOURYTOOUE EVL
xevo ConfigMap o to npocoptrioaue oto tepBdihov Tou pod. Xto mhalolo Tou
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YPOVOTIOOY QUUUATIO TH), XEUTHUE Uial DOUT| DEDOUEVLY OTY| UVAUT TIOU TEQLY PAPEL
T0 BéATIoTO Oloéplopa yia xdie pod xon xde xOufo xon PETA TNV OAOXAT|E-
(OT) TOU YPOVOTROYEoUATION0) cuumhnewvouue to ConfigMap ue tn yetoBAnt
nepBdrhovioc CUDA VISIBLE DEVICES, pe wa twr ion pe to UUID tou
ETUAEYUEVOL TUAUATOC.

Axolovinoaue axpBoc TNV (BLor AoYLxY| Ylot TOV UTOAOYLOUS xaL TNV TEocVXN
TV BEATIOTWY 0plwv cuoxeu®y MPS yio T uviun xat TNV UTOAOYLO TIXY| YWENTIXOTNTA
YETOWOTOLOVTOG
CUDA_MPS PINNED DEVICE MEM LIMIT xou
CUDA_MPS ACTIVE THREAD PERCENTAGE petof3intéc nepi3dhiovtoc
avtioToLya.

1.5.1 Ag&woAoymonm

"t vor 0 LohOYICOUUE TOV YPOVOTROYQOUMATIO TH UOC, EXTEAEGOE Lol OELRS TIELOUUATWY.
Kde nelpopa elye ¢ 6%0TO VoL ATEXOVICEL Lol DLOPORETLNY| TTUYT] TNG AmhOOCNG
TOu YpovoTpoYpauuaTiIoTh. Eva melpopo anotehelton amd eva cOUVORO QOPTWY
epyaolac (mpo-exnandeupévo povtélo, backend, olvolo dedopévev, cevdplo, apt-
VoS epwTNUdTOY %.AT.), Toug otdyoug (SLO), éva péyedoc naptidog xodde xou
L0 XOTOVOUY| TTIOU TIEELYRAPEL TLG apllEls TV EQPUPUOYWY UE TNV TéPODO Tou Yeo-
vou. Xe xde melpopa oL SLotdEoUOL YEOVOTIROYPUUUATIO TEC TEOPODOTOUVTAL |UE
Toug (Broug axplBne popToug epyaoctag, To péyedoc tne mapTidag xou Tic agpiel.
2TOL EMOUEVA TIELRGUATL, OL POPTOL EQYACLUG AVATTOCCOVTOL O TUPTIOES TWV 8 XaL
EVTOC TV ToRTdWY xde popToC epyaciag Eyel ulor Tuyola xaduo TEENOT UEPLXWY
OEUTEQOAETTWY Yo Vo Tpoctelel €vog ampoBientog mopdyovtoac. Anogaciooue
T0 pEyevog tng moapTidag va elvon 8, enedr) ddetoupe puovo 2 GPU oto cluster
xaL oV To P€yedoc Tne mapTidag YvoTay PEYAAUTERO, wT6 Yo 00NYoLoE GE ono-
TuYleC AOYW AVETUEXWY TOPWY xaL OLPORETIXY To cluster Yo umoieitovpyoloe.
Extehéoope 600 OELpEC TERUUATWY. LTNV TEOTY OEed TELoUdTLY oTellope 20
pods o€ o TN TERITOU DEXATEVTE AETTAV. XT1) DEVTERY), ATOPUCICUUE VoL XOUT-
UTOVHCOUUE TOUS YPOVOTEOYROUUATIOTEC UE TOV OLAdoto oprdud pods (40) oto
(Blo ypovixd BLEIGTNU, TEOXEWEVOL Vo EEETACOUUE TN CUUTEQLPORE TOU YPOVO-
TeOYEAUUUUTIOTH UTe LYMAY Tieor. Ko ta 800 melpdpota enovalhpinxoy 6V
popec. Ty mpytn @opd emaelope Too SLOs yio xde pdpTo epyaoiog va ebvar 6To
Sdotnue [0.8 X SLO4, 1.2 x SLO4] émou SLO4 toobTon UE TNV AVOUEVOUEVT TN
Tou QPS étav o pdpTog epyaciog exteleiton aroyovwuévog 6To i e GPU (omv
nepintwon tou A30 1 and ta 4 partitions, otnv mepintwon Tou V100 neplopio-
uévoc ato 25% twv moépwy tne GPU e yprion MPS) and uévog tou. Anhady,
emAéCope yauniéc SLOs. Ytn deltepn nepintwon, emhéloue SLOs oto Sudotnua
(0.8 x SLO4, 1.2 x SLO4|, émou SLO; wwolton Ye v avaevouevn Ty tou QPS
oty 0 PopToC epyaoioug exteleiton YepovwpEva o ohdxhnen Ty GPU. Emiélaue
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VoL YWEICOUNE TOL TELRAUATO UE AUTOV TOV TEOTO, ETOL WOTE Vo elpuacte ot VEoT va
eCETUOOUPE TNV IXAVOTNTA TOU YPOVOTROYRAUUUTIO T Yo vou xatoepilet i GPU
ue duvatotnta MIG, xadoc xo vo e€etdooupe Ty xavoTnTd Tou va yeptletan
EXPNEELC XL VO OVTOTOXQIVETAL OTLC OVAYXES TOV YENOTOV XM auTEC YivovTo
ONO %O TILO TOUTNTLXEC.

> ndie melpapo peTEAUE TIC axdrouteg ueTeés QoS xa yerione nopwv GPU
yenowonowwvtac To API tou Kubernetes xou tov unyovioud mapoxorovinong
GPU.

O Metpuéc QoS

1. Audpxeia extéleong
2. IIadoc amotuyLoy
3. Apuiuoc napaPidoewy SLO

O Metpwxec yperiong népwv GPU

1. Méon yehon GPU (Avahoyio tou yedvou mou 1 unyave yeoupixwy ivat
eveprh (oc %))
2. Méon xotavédwon evépyetag (W)

3. Méon xatavélwon evépyetac (J)

1.6 Schedulers

Y€ QUTH TNV EVOTNTA OVOADOUUE T X0PLOL YUEUXTNELO TIXA TV Y QOVOTOOY QO
TIO TGOV TOU ONULOURYY|OUUE TROXEWEVOU VoL CUYXPIVOUUE TOl ATOTEAECUAT UAC.

1.6.1 Min

Ip®T0Vv, TPOCOUOIWOUUE EVOLY ATANGTO YPOVOTROYQUUUATIO T O OTOLOC XAUTAVEUEL
TOUC ALyOTEPOUG dLuVATOUC TOPoUC Ot xdle eloEpyOUEVO PopTO epyaoiog. Autd
TO EMTUYYAVEL U TNV xatdtunon ohwv twv GPU ye duvatétnta MIG oe 600
TO BUVATOV TEQLOCOTEPA OLUUEPIOUOTA XA TNV XUTUVOUY| EVOC GE XAVE EQUQUOYT,.
Emuniéoyv, v xdde GPU ywelc duvatdtnto MIG yenowomnoinoe tn duvatotnta
MPS (multi process service) yio va teptoploet Toug mépouc xdde EQPUPUOYYC OTO
25%. O Aoéyoc yio tov onolo Yewproope 6t 1o 25% eivon opxetd Uixpd eivar
EMEDY) TUQUTNENOUUE OTL QUCTNEOTERA OpLol TEOXAAOVGAY LYNAO TOCOCTH amo-
TUYLOV AOYW OVETUEXOUS UVIAUNG ﬁ/xoa UTOAOYIO TG ywenTxétnTog. Emlong,
o yeovonpoypauuatioThc yenotdornoinoe to NVIDIA Device Plugin mpoxeyué-
YOU Vo deopEVoEL TIC epopuoyec o cuoxevee GPU, mpdyua mou onuadver ot
omwe eényeltan oto 4.7.3, ol extetoévol mopol tou cluster dev unoctneilouv
TOV OLOOLRUOHUO UETUED TWV EQPUPUOYMY Xt ETOUEVKS, 6Tay 6Aeg ot GPU elvan
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amaoyohnuEveS oTo cluster, oL ElGEQYOUEVES EQUOUOYES TRETEL VO TEQUIEVOUY OE
tor 0LEd TELY EEXVACOLY TNV EXTEAECT| TOUC. XENOWOTOWOUUE UTH TN AOYIXY)
YPOVOTROYQOUUATIONOU TROXELEVOU VO CUYXQIVOUUE TOV YQOVOTROYQUUMATIO TN
MO UE EVOy TTOU EXUETAAAEVETOL T1) YVOO T TpaxTixy| Tng Yenong Tou NVIDIA De-
vice Plugin. Xenowuomotioaue auty| T AoYIXT) YPOVOTROYQUUUAUTIONO) TROXELIE-
VOU VO GUYXEIVOUUE TOV YPOVOTIQOYQUUUATIOTY| HAC UE EVOY TOU EXUETUAAEDETOL
drminota tic teyvoroyiec MPS xou MIG yio vo potpdleton Toug nopoug GPU
METUEY TV EQURUOY V.

1.6.2 Max

O emduevoc yeovompoYRouUTIGTAC Tou yenotdonotinxe ylo allohdynon etval
EVOC AMANOTOS YEOVOTPOYQRUUUATIGTAC O OTOlOC XATUVEUEL TOUS TEPLOGCGOTEQOUC
OLYUTOUC TOPOUC OF XAVE ELOEQYOUEVO POPTO epYyaoiag. Xe auTé To TElpaU
ohec oo GPU ypnowonowlviar 6to 6UVOAG TOUC, TEdYUX TOU onuolvel 6TL oL
GPU pe duvatotnra MIG 6ev dopepilovton xou dev ypnowonoteiton to MPS.
Enlong, nopduota e ToV TEONYOUUEVO YEOVOTROYQUUUITIOTH, O YPOVOTPOY Q-
wotiothc yenowonotel to NVIDIA Device Plugin npoxewévou va deouedet egop-
uovec oe ocuoxeuéc GPU. Xpnowomoiooue outh T AOYLXY| YEOVOTOOYEOUUA-
TIOUOU TPOXEWEVOU VO GUYXPIVOUUE TOV YPOVOTIQOYROUMATIO T HUC UE EVOLY TTOU
EXUETAMEVETOL TN YVWOo T TpoxTxt| Tng yerjone Tou NVIDIA Device Plugin.

1.6.3 Round Robin

YNy televtado TEPIMTWOT), AMOPUAGIOUUE VO TOEOGOUOLWGOUUE (Lo AOYLXY YPOVO-
TEOYEUUUATIONOD, 1) oTtola, apol yweloel Ohec Tic GPUs oto uixpdtepa duvatd
xoupdrio, meoyeouuatiCer pods oe xdde évor amd Tor xoupdTior ue TedTOo round
robin, urootnptlovtog entone TNV ToEdlecTt UETALD EQUOUOY MY TOU YENCULOTOLOVY
teyvohoyiec MIG xou MPS. T mopdderyuo, dv mpoypouuatioer 800 EQUEUOYES
otny (Ot xatdtunon, Vo egapuodoel oo MPS 50% oe xd&de ulor amd auTee, Qv
Tpoypauuatioel Teelg egapuoyéc, Ya epapuooel opla MPS 33% oe xdde pio omd
awtée x.Am. O Aéyog yio Tov omolo eMAECAUUE VAL TPOCOUOLOCOUUE UTOV TOV
YPOVOTIROYQOUUATIO TY| Elvol yiar vor €YOUUE Eva Baoixd xELTHELO Yol Vo aCLoAOY Y-
COUME TNV IXAVOTNTA TOU YPOVOTOOYQOUUATIOTH HUC VO OVTIETWTICEL TIC ToEy-
Bohéc oe oUYXELOT) UE EVOLY YPOVOTIOOYLOUUATIO T Ywelc TopeuSoréc.

To amoTEAEOUATA TWY TEWWUUATWY uTopoLY Vo Beedoly oto 9 Tou ayyhixol
XEWEVOU.
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Chapter 2

Introduction

2.1 Cloud Computing and Kubernetes

Cloud computing and Kubernetes are two powerful technologies that have rev-
olutionized the way businesses manage and deploy their IT infrastructure.

Cloud computing enables users to access virtualized computing resources
such as servers, storage, applications, and services, over the internet. Cloud
computing offers a range of services, including Infrastructure as a Service (laaS),
Platform as a Service (PaaS), and Software as a Service (SaaS), that allow users
to scale their resources up or down as needed, pay only for what they use, and
access their data and applications from anywhere, at any time, using any device
with an internet connection. Cloud computing offers several advantages over
traditional IT infrastructure, including reduced costs, increased flexibility and
scalability, improved accessibility, and enhanced security and reliability.

Kubernetes, on the other hand, is a container orchestration platform that
simplifies the management and scaling of containerized applications. Kuber-
netes offers several advantages over traditional application deployment meth-
ods, including improved resource utilization, faster deployment times, and en-
hanced flexibility and scalability. Kubernetes automates the deployment, scal-
ing, and management of containerized applications, allowing users to focus on
developing their applications rather than managing the underlying infrastruc-
ture. Additionally, Kubernetes offers a range of features, including load bal-
ancing, automatic failover, and self-healing, that ensure high availability and
reliability:.

Combining cloud computing and Kubernetes offers a highly scalable and
flexible solution for managing and deploying IT infrastructure. Kubernetes
can be used to manage containerized applications running on cloud computing
platforms, allowing users to take advantage of the scalability and flexibility of
the cloud while also benefiting from the automation and management features
provided by Kubernetes. The combination of cloud computing and Kubernetes
enables users to deploy and manage applications and services in a highly scalable

35



and flexible way, ensuring high availability, scalability, and reliability.

In summary, cloud computing and Kubernetes are two powerful technolo-
gies that have transformed the way businesses manage and deploy their IT
infrastructure. Their combination offers a highly scalable and flexible solution
for managing and deploying applications and services, enabling businesses to
improve their operational efficiency, reduce costs, and increase agility.

2.2 Accelerators in Kubernetes

The use of Graphics Processing Units (GPUs) and other accelerators on Ku-
bernetes has become increasingly popular for processing and analyzing large
amounts of data. These specialized computing resources offer significant perfor-
mance benefits over traditional CPU-based systems. However, there are several
difficulties and challenges associated with using GPUs and other accelerators
on Kubernetes.

One of the main challenges is the inability to share these specialized resources
among multiple workloads. Unlike CPU-based systems, GPUs and other ac-
celerators are typically not designed to be shared among multiple applications
simultaneously. This can lead to contention for resources, particularly in multi-
tenant environments where multiple users and workloads are competing for
access to these resources.

To address this challenge, organizations need to carefully manage and al-
locate these specialized resources to ensure that they are used efficiently and
effectively. This can include implementing policies and procedures to prioritize
access to resources based on workload requirements, such as workload type,
resource utilization, and performance requirements.

Another challenge is ensuring compatibility and interoperability between
heterogeneous hardware and software components. Kubernetes supports sev-
eral GPU and accelerator types, each with their own specifications and re-
quirements. Ensuring compatibility and interoperability between heterogeneous
components can be challenging, particularly when integrating third-party soft-
ware and hardware components.

In addition, deploying and managing GPU-based workloads and other ac-
celerators can be challenging due to their specialized nature. Applications and
services that use these resources may require specialized configurations and
optimizations to ensure maximum performance and efficiency. Debugging and
troubleshooting issues related to GPU-based workloads can also be challenging,
requiring specialized knowledge and expertise.

In summary, while GPUs and other accelerators offer significant performance
benefits, there are several difficulties and challenges associated with using them
on Kubernetes. These challenges include the inability to share resources among
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multiple workloads, ensuring compatibility and interoperability between compo-
nents, and specialized deployment and management requirements. Addressing
these challenges requires careful planning and management to ensure optimal
performance and efficient use of resources.

2.3 Overview

In this work, we design a novel GPU scheduler based on predictions of Al
models regarding the performance of applications on multiple different GPU
configurations as well as the expected interference produced due to the collo-
cation of different applications on the same configuration. In order to decide
the optimal configuration for each application we also exploit real-time GPU
metrics retrieved by various monitoring systems. We identify the inefficiency
of the state-of-the-art Kubernetes GPU schedulers concerning the quality of
service (QoS) and resource utilization. We show that our scheduler, for the
majority of workloads and scheduling scenarios, can achieve lower pending and
execution time on average as well as better resource utilization while it ensures
versatility and sticks to the users’ demands without incurring high overhead or
energy consumption.

In chapter 3, we analyze other GPU scheduling approaches that have been
proposed so far. In chapter 4, we discuss about the basic concepts of Ku-
bernetes, the underlying container orchestrator. In chapter 5, we present our
experimental infrastructure, the GPU monitoring system and the suite used for
workload execution and benchmarking. In chapter 6, we present and discuss
the results of the characterization of workloads (inference engines) we used for
our experiments and the creation of the datasets fed in our AI models. In
chapter 7, we provide insight on our models and explain the techniques used
to provide suggestions in depth. In chapter 8, we present our GPU schedul-
ing system. In chapter 9, we evaluate our proposed framework and compare
it to multiple well-known options for scheduling GPU-based workloads on the
Kubernetes orchestrator, across different scenarios and workloads. Finally, in
chapter 10, we summarize our work and propose fields with, potentially, high
interest for future work in related research scopes.
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Chapter 3

Related Work

3.1 Paragon: QoS-Aware Scheduling for Heterogeneous
Datacenters

An increasing amount of computing is performed in the cloud, primarily due
to cost benefits for both the end-users and the operators of datacenters (DC)
that host cloud services [5]. Large-scale providers such as Amazon EC2 [6],
Microsoft Windows Azure [7], Rackspace[8] and Google Compute Engine [9]
host tens of thousands of applications on a daily basis. Several companies also
organize their I'T infrastructure as private clouds, using management systems
such as VMware vSphere [10] or Citrix XenServer [11]. The operator of a cloud
service must schedule the stream of incoming applications on available servers
in a manner that achieves both fast execution (user’s goal) and high resource
efficiency (operator’s goal), enabling better scaling at low cost. This scheduling
problem is particularly difficult as cloud services must accommodate a diverse
set of workloads in terms of resource and performance requirements [5]. More-
over, the operator often has no a priori knowledge of workload characteristics.
This work, focuses on two basic challenges that complicate scheduling in large-
scale DCs: hardware platform heterogeneity and workload interference. Het-
erogeneity occurs because servers are gradually provisioned and replaced over
the typical 15-year lifetime of a DC [5] [12] [13] [14]. At any point in time, a DC
may host 3-5 server generations with a few hardware configurations per gener-
ation, in terms of the specific speeds and capacities of the processor, memory,
storage and networking subsystems. Hence, it is common to have 10 to 40 con-
figurations throughout the DC. Ignoring heterogeneity can lead to significant
inefficiencies, as some workloads are sensitive to hardware configurations. A
heterogeneity-oblivious scheduler can slow applications down by 22% on aver-
age, with some running nearly 2x slower (see Section 4 for methodology). This
is not only suboptimal from the user’s perspective, but also for the DC operator
as workloads occupy servers for significantly longer. Interference is the result of
co-scheduling multiple workloads on a single server to increase utilization and
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achieve better cost efficiency. By co-locating applications a given number of
servers can host a larger set of workloads (better scalability). Alternatively, by
packing workloads in a small number of servers when the overall load is low,
the rest of the servers can be turned off to save energy. The latter is needed be-
cause modern servers are not energy proportional and consume a large fraction
of peak power even at low utilization [15] [5] [16] [17]. Co-scheduled applications
may interfere negatively even if they run on different processor cores because
they share caches, memory channels, storage and networking devices [18] [19]
[20]. It is shown that an interference-oblivious scheduler will slow workloads
down by 34% on average, with some running more than 2x slower. Again, this
is undesirable for both users and operators. Finally, a baseline scheduler that
is both interference and heterogeneity-oblivious and schedules applications to
least-loaded servers is even worse (48% average slowdown), causing some work-
loads to crash due to resource exhaustion on the server. Previous work has
showcased the potential of heterogeneity and interference-aware scheduling [13]
[19]. However, techniques that rely on detailed application characterization
cannot scale to large DCs that receive tens of thousands of potentially un-
known workloads every day [21]. Most cloud management systems have some
notion of contention or interference-awareness [22] [20] [23] [24]. However, they
either use empirical rules for interference management or assume long-running
workloads (e.g., online services), whose repeated behavior can be progressively
modeled. This work, targets both heterogeneity and interference and assumes
no a priori analysis of the application. Instead, it leverages information the sys-
tem already has about the large number of applications it has previously seen.
Paragon, is an online and scalable datacenter scheduler that is heterogeneity
and interference-aware. The key feature of Paragon is its ability to quickly and
accurately classify an unknown application with respect to heterogeneity (which
server configurations it will perform best on) and interference (how much in-
terference it will cause to co-scheduled applications and how much interference
it can tolerate itself in multiple shared resources). Paragon’s classification en-
gine exploits existing data from previously scheduled applications and offline
training and requires only a minimal signal about a new workload. Specifically,
it is organized as a low-overhead recommendation system similar to the one
deployed for the Netflix Challenge [25], but instead of discovering similarities
in users’ movie preferences, it finds similarities in applications’ preferences with
respect to heterogeneity and interference. It uses singular value decomposition
to perform collaborative filtering and identify similarities between incoming and
previously scheduled workloads. Once an incoming application is classified, a
greedy scheduler assigns it to the server that is the best possible match in terms
of platform and minimum negative interference between all co-scheduled work-
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loads. Even though the final step is greedy, the high accuracy of classification
leads to schedules that satisfy both user requirements (fast execution time) and
operator requirements (efficient resource use). Moreover, since classification
is based on robust analytical methods and not merely empirical observation,
the paper provides strong guarantees on its accuracy and strict bounds on its
overheads.

3.2 MISO: Exploiting Multi-Instance GPU Capability
on Multi-Tenant Systems for Machine Learning

GPU technology has been improving at an expedited pace in terms of size and
performance, empowering HPC and AI/ML researchers to advance the scientific
discovery process. However, this also leads to inefficient resource usage, as most
GPU workloads, including complicated AI/ML models, are not able to utilize
the GPU resources to their fullest extent — encouraging support for GPU multi-
tenancy. In this paper MISOI[26] is proposed. MISO is a technique to exploit the
Multi-Instance GPU (MIG) capability on the latest NVIDIA datacenter GPUs
(e.g., A30, A100, H100) to dynamically partition GPU resources among co-
located jobs. MISO’s key insight is to use the lightweight, more flexible Multi-
Process Service (MPS) capability to predict the best MIG partition allocation
for different jobs, without incurring the overhead of implementing them during
exploration.

Recent advancement in GPU technology has enabled HPC and Al researchers
to leverage GPU computing capabilities for a wide variety of critical science mis-
sions, including training of compute-intensive neural network models [27][ [28]
[29] [30]. While these advances have expedited the scientific discovery process,
efficient resource utilization of the powerful GPUs remains a key bottleneck.
With innovative progress in computing technology, GPU vendors are making
individual GPUs bigger and faster — where an individual GPU can now deliver
more than 300 TeraFLOPS of performance and is on the path to becoming a
supercomputer of the past by itself [31] [32]. This trend has served the AI/ML
models well since the computing requirements of these models are increasing
at a rapid pace [33] [34] [35]. Unfortunately, as the paper’s experimental char-
acterization and previous works [36] [37] [38] [39] [40] have shown, even these
models are not able to fully utilize the GPU computing resources, because var-
ious workloads have different resource bottlenecks and performance sensitivity
to different resources. Therefore, the “one-size-fits-all” approach of making a
single GPU more powerful is not optimal for all workloads and leads to in-
efficient resource utilization. Recognizing and motivated by these challenges,
GPU vendors have recently started offering native GPU resource partitioning
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capabilities to enable GPU workload co-location [41] [42]. These capabilities
allow jobs to share the GPU resources concurrently and, thereby, reduce the
cloud computing cost, reduce the long job queue wait time on HPC clusters,
and potentially reduce the average job completion time (queue wait time +
execution time). While promising, efficiently leveraging GPU partitioning is
challenging because configuring a GPU to partition the resources optimally
among co-located workloads is

1. cumbersome due to various practical partitioning constraints,

2. prohibitively time-consuming during the exploration process of finding a
performance-efficient partition, and

3. incurs overhead.

Therefore, the goal of this paper is to provide a novel method that automatically
and quickly partitions GPU resources to achieve overall higher performance. So-
lutions in this space are expected to become increasingly critical as HPC cen-
ters are beginning to deploy modern GPUs with explicit resource partitioning
abilities. For example, the NVIDIA A100 GPUs, which have MIG technology
support, are a part of many cloud computing offerings, industrial research com-
puting clusters, and academic HPC centers [43] [44] [45] [46]. However currently,
we do not have the tools to leverage MIG technology to effectively utilize MIG
capabilities for faster execution and higher throughput, and thereby, reducing
the cost of renting GPU resources or operating HPC clusters.

3.3 Analysis of Large-Scale Multi-Tenant GPU Clusters
for DNN Training Workloads

With widespread advances in machine learning, a number of large enterprises
are beginning to incorporate machine learning models across a number of prod-
ucts. These models are typically trained on shared, multi-tenant GPU clusters.
Similar to existing cluster computing workloads, scheduling frameworks aim to
provide features like high efficiency, resource isolation, fair sharing across users,
etc. However Deep Neural Network (DNN) based workloads, predominantly
trained on GPUs, differ in two significant ways from traditional big data ana-
lytics workloads. First, from a cluster utilization perspective, GPUs represent
a monolithic resource that cannot be shared at a fine granularity across users.
Second, from a workload perspective, deep learning frameworks require gang
scheduling reducing the flexibility of scheduling and making the jobs themselves
inelastic to failures at runtime.

This paper [47] studies two main aspects of how locality-aware scheduling
affects performance and utilization. First, it studies how waiting for locality
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constraints can influence queuing delays before training jobs are run. Train-
ing jobs need to be gang scheduled, as hyper-parameters are picked for specific
GPU count configurations. Given that training jobs take a long time to run,
and greater locality improves performance due to the availability of faster inter-
connects for parallel training [48], the scheduler in Philly waits for appropriate
availability of GPUs before beginning to run the training job. Our study shows
that as one might expect, relaxing locality constraints reduces queueing delays,
especially for jobs that use many GPUs — our emphasis here is not on present-
ing this as a new insight, but instead on highlighting this using real-world data
from production clusters.

Next, it studies how locality-aware scheduling can affect the GPU utilization
for distributed training jobs. Even though most GPUs within a cluster are
allocated to users, thus suggesting high cluster utilization, this metric alone is
misleading. It is shown that the hardware utilization of GPUs in use is only
around 52% on average. Two reasons are investigated which contribute to low
GPU utilization:

1. the distribution of individual jobs across servers, ignoring locality con-
straints, increases synchronization overheads, and

2. the collocation or packing of different jobs on same server leads to inter-
ference due to contention for shared resources.

Finally, it looks at why jobs might fail to complete successfully and offer a
detailed characterization of the causes for such failures in our clusters. Around
30% of jobs are killed or finish unsuccessfully due to failures.

3.4 KubeShare: A Framework to Manage GPUs as First-
Class and Shared Resources in Container Cloud

Container has emerged as a new technology in clouds to replace virtual ma-
chines (VM) for distributed applications deployment and operation. With the
increasing number of new cloud-focused applications, such as deep learning and
high performance applications, started to reply on the high computing through-
put of GPUs, efficiently supporting GPU in container cloud becomes essential.
While GPU virtualization has been extensively studied for VM, limited work
has been done for containers. One of the key challenges is the lack of support
for GPU sharing between multiple concurrent containers. This limitation leads
to low resource utilization when a GPU device cannot be fully utilized by a sin-
gle application due to the burstiness of GPU workload and the limited memory
bandwidth. To overcome this issue, KubeShare [49] was designed and imple-
mented, which extends Kubernetes to enable GPU sharing with fine-grained
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allocation. KubeShare is the first solution for Kubernetes to make GPU device
as a first class resource for scheduling and allocations.

The emergence of containers has revolutionized cloud computing. Due to
negligible runtime overhead and much higher deployment density on a phys-
ical machine, containers are perceived as a lightweight replacement of virtual
machines (VMs) for resource allocation and service deployment. The agility
of containers combining with microservice-style software architecture further
advances the practice of DevOps [50] to achieve continuous software delivery,
productivity, automation, cost saving, in the software delivery process. There-
fore, containerization has been increasingly adapted and supported in cloud
platform. One of the industry leading solution for containerization is Docker
[51], and it has been used by many of the Internet’s most predominate systems
today [52]. As increasing number of applications are deployed and architected
based on containers, the need of an orchestration systems for scheduling, de-
ploying, updating and scaling such container-based applications becomes cru-
cial. Many container-management systems have been developed by industry
and open source community, including YARN [53], Mesos [54], Borg [52], etc.
But Kubernetes [55] is the most popular one among all by far. Kubernetes is
developed and used by Google to power their cloud container service. Kuber-
netes not only provides powerful tools for developer to manage loosely-coupled
and stateless Docker containers without having to interact with the underlying
infrastructure, but also has a highly configurable and extensible architecture to
support custom cluster operators, including load balancing, container replica-
tion, rolling update, volume and network management, etc. While Kubernetes
has the strength to support container management, the only computing re-
sources that can be natively recognized and allocated by Kubernetes are the
CPU and memory. To attach any other custom devices to a container, includ-
ing GPU, high-performance NICs, FPGA, a device plugin [56] [51] [57] must be
developed and installed following the framework defined by Kubernetes to per-
form vendor specific initialization and setup for the devices. The device plugin
framework successfully separates the vendor-specific code from Kubernetes for
better system maintenance and extensibility, but it does not allow resource shar-
ing or fractional allocation on custom devices. This limitation inevitably leads
to lower resource utilization when a custom device cannot be fully utilized by a
single application or container. The problem is further aggravated over the past
decade by the demand surge and the growing price of high performance com-
puting devices, like GPU. With the growing interests from High Performance
Computing (HPC) community for container-based computing [58] [59] [60], the
problem has drawn attentions from both research and industrial communities in
recent years [60] [61] [62]. In this work, KubeShare is presented, which extends
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Kubernetes to support GPU sharing with fine-grained allocation and first-class
resource management. A first-class resource means that the resource entity
can be explicitly identified and selected by both the resource manager and the
users. As explained in the paper, it is an essential property to address the
performance interference problem in shared resource environment. It is a non-
trivial task due to the lack of proper resource description, allocation policy, and
architecture support in the existing Kubernetes framework. Until today, only a
few attempts [63] [64] [61] have been made recently to support GPU sharing in
Kubernetes, but none of them treats GPU as first-class schedulable entities. As
a result, their GPU throughput and utilization can easily suffer from resource
fragmentation and performance interference problems. In contrast, KubeShare
allows users to specify locality constraints on their allocated GPUs, so that a
GPU can be shared among containers with less resource contention.
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Chapter 4

The Kubernetes Orchestrator

In this chapter we explain why Kubernetes, a container orchestration system, is
useful and analyze some of its basic concepts (e.g virtualization, containers|65]
etc).

4.1 Virtualization

Virtualization is the process of creating a simulated computing environment
that’s abstracted from the physical computing hardware—essentially a computer-
generated computer. Virtualization allows you to create multiple, virtual com-
puting instances from the hardware and software components of a single ma-
chine. Those instances could be a computer in the traditional sense or a storage
repository, application, server, or networking configuration. The software that
enables virtualization is called a hypervisor. It’s a lightweight software layer
that sits between the physical hardware and the virtualized environments and
allows multiple operating systems (OS) to run in tandem on the same hardware.
The hypervisor is the middleman that pulls resources from the raw materials
of your infrastructure and directs them to the various computing instances.

4.2 Virtual Machines

The computer-generated computers that virtualization makes possible are known
as virtual machines (VMs)—separate computers running on hardware that is
actually contained in one physical computer. Each VM requires its own OS
as shown in 4.1a. The OS and any applications running on an individual VM
share hardware resources from a single host server, or from a pool of host
servers. Thanks to the hypervisor, the hardware resources are virtualized and
each VM is isolated from its neighbors. Since the advent of affordable virtu-
alization technology and cloud computing services, I'T departments large and
small have embraced VMs as a way to lower costs and increase efficiencies. VMs,
however, can take up a lot of system resources. Each VM runs not just a full
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copy of an OS, but a virtual copy of all the hardware that the operating system
needs to run. It’s why VMs are sometimes associated with the term “mono-
lithic”—they’re single, all-in-one units commonly used to run applications built
as single, large files. This quickly adds up to a lot of RAM and CPU cycles.
They’re still economical compared to running separate actual computers, but
for some use cases, particularly applications, it can be overkill, which led to the
development of containers.

4.3 Containers and Docker

With containers, instead of virtualizing the underlying computer like a VM,
just the OS is virtualized. As shown in 4.1b Containers sit on top of a physical
server and its host OS—typically Linux or Windows. Each container shares
the host OS kernel and, usually, the binaries and libraries, too. Shared com-
ponents are read-only. Sharing OS resources, such as libraries, significantly
reduces the need to reproduce the operating system code—a server can run
multiple workloads with a single operating system installation. Containers are
thus exceptionally light—they are only megabytes in size and take just seconds
to start. What this means in practice is you can put two to three times as many
applications on a single server with containers than you can with a VM. Com-
pared to containers, VMs take minutes to run and are an order of magnitude
larger than an equivalent container, measured in gigabytes versus megabytes.
Container technology has existed for a long time, but the launch of Docker in
2013 made containers essentially industry standard for application and software
development. Docker is a software platform that allows you to build, test, and
deploy applications quickly. Docker packages software into containers that have
everything the software needs to run including libraries, system tools, code, and
runtime.

4.3.1 Orchestration

Orchestration [66] is the coordination and management of multiple computer
systems, applications and /or services, stringing together multiple tasks in order
to execute a larger workflow or process. These processes can consist of multiple
tasks that are automated and can involve multiple systems. An example of a
container orchestrator can be found in figure 4.1
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Figure 4.1: Container Orchestrator
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The goal of orchestration is to streamline and optimize the execution of fre-
quent, repeatable processes and thus to help data teams more easily manage
complex tasks and workflows. Anytime a process is repeatable, and its tasks can
be automated, orchestration can be used to save time, increase efficiency, and
eliminate redundancies. For example, you can simplify data and machine learn-
ing with jobs orchestration. Cloud orchestration is the process of automating
the tasks that manage connections on private and public clouds. It also in-
tegrates automated tasks and processes into a workflow to help you perform
specific business functions.

4.3.2 Cloud Orchestration

The rise of cloud computing, involving public, private and hybrid clouds, has
led to increasing complexity. This creates a need for cloud orchestration soft-
ware that can manage and deploy multiple dependencies across multiple clouds.
Cloud service orchestration includes tasks such as provisioning server workloads
and storage capacity and orchestrating services, workloads and resources.

Remember that cloud orchestration and automation are different things:
Cloud orchestration focuses on the entirety of IT processes, while automation
focuses on an individual piece. Orchestration simplifies automation across a
multi-cloud environment, while ensuring that policies and security protocols
are maintained.

However, such an architecture highlights the need for container orchestration,
a tool that automates the deployment, management, scaling, networking, and
availability of container-based applications.

This is where Kubernetes comes in. Large, distributed containerized applica-
tions can become increasingly difficult to coordinate. By making containerized
applications dramatically easier to manage at scale, Kubernetes has become
a key part of the container revolution. It is a portable, extensible platform
that facilitates both declarative configuration and automation. It has a large,
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rapidly growing ecosystem. Kubernetes services, support, and tools are widely
available. Google open-sourced the Kubernetes project in 2014. Kubernetes
builds upon a decade and a half of experience that Google has with running
production workloads at scale, combined with best-of-breed ideas and practices
from the community.

In the following sections we describe the different components of Kubernetes.

4.4 Kubernetes Control Plane Components

The control plane’s components make global decisions about the cluster (for
example, scheduling), as well as detecting and responding to cluster events (for
example, starting up a new pod when a deployment’s replicas field is unsatis-
fied).

Control plane components can be run on any machine in the cluster. How-
ever, for simplicity, set up scripts typically start all control plane components
on the same machine, and do not run user containers on this machine. See
Creating Highly Available clusters with kubeadm for an example control plane
setup that runs across multiple machines.

O kube-apiserver: The API server is a component of the Kubernetes control
plane that exposes the Kubernetes API. The API server is the front end
for the Kubernetes control plane.

The main implementation of a Kubernetes API server is kube-apiserver.
kube-apiserver is designed to scale horizontally—that is, it scales by de-
ploying more instances. You can run several instances of kube-apiserver
and balance traffic between those instances.

O etcd:Consistent and highly-available key value store used as Kubernetes’
backing store for all cluster data.

If your Kubernetes cluster uses etced as its backing store, make sure you
have a back up plan for those data.

You can find in-depth information about etcd in the official documentation[67].

O kube-scheduler: Control plane component that runs controller processes.

Logically, each controller is a separate process, but to reduce complexity,
they are all compiled into a single binary and run in a single process.

Some types of these controllers are:

— Node controller: Responsible for noticing and responding when nodes
go down. Job controller: Watches for Job objects that represent one-
off tasks, then creates Pods to run those tasks to completion.
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— EndpointSlice controller: Populates EndpointSlice objects (to provide
a link between Services and Pods).

— ServiceAccount controller: Create default ServiceAccounts for new
namespaces.

O kube-controller-manager: Control plane component that runs controller
processes.

Logically, each controller is a separate process, but to reduce complexity,
they are all compiled into a single binary and run in a single process.

Some types of these controllers are:

— Node controller: Responsible for noticing and responding when nodes
go down.

— Job controller: Watches for Job objects that represent one-off tasks,
then creates Pods to run those tasks to completion.

— EndpointSlice controller: Populates EndpointSlice objects (to provide
a link between Services and Pods).

— ServiceAccount controller: Create default ServiceAccounts for new
namespaces.

4.5 Kubernetes Worker Node(s) Components

Node Components run on every node as agents maintaining running pods and
providing the Kubernetes runtime environment.

O kubelet: An agent that runs on each node in the cluster. It makes sure that
containers are running in a pod. The kubelet takes a set of PodSpecs that
are provided through various mechanisms and ensures that the containers
described in those PodSpecs are running and healthy.

O kube-prozy: A network proxy that runs on each node in the cluster. It
enables the Kubernetes service abstraction by maintaining network rules on
the host and performing connection forwarding. Kube-proxy is responsible
for request forwarding. It allows TCP and UDP stream forwarding or
round robin TCP and UDP forwarding across a set of backend functions.

O Container Runtime: The container runtime (e.g. Docker) is the software
that is responsible for running containers.
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4.5.1 Other Important Addons

0 DNS: Cluster DNS is a DNS server, in addition to the other DNS server(s)
in your environment, which serves DNS records for Kubernetes services.
Containers started by Kubernetes automatically include this DNS server
in their DNS searches.

4.6 Kubernetes Architecture

Kubernetes Master

Controller Manager

Kubelet )(CAG )(Kb e-Proxy ( Kubelet ](D’\d vvvvv ) (KuDE—mey]

P\ ugin Network (eg Flannel, Weavenet, etc ) >

Kubernetes Node Kubernetes Node

Figure 4.2: Kubernetes Architecture *

Kubernetes’s architecture makes use of various concepts and abstractions. Some
of these are variations on existing, familiar notions, but others are specific to
Kubernetes. As illustrated in figure 4.2 and described before, a Kubernetes
cluster is consisted of Nodes. Those nodes are separated into two groups, either
Master or Worker nodes. Workloads are executed in Worker Nodes.

4.6.1 Cluster

The highest-level Kubernetes abstraction, the cluster illustrated in figure 4.3,
refers to the group of machines running Kubernetes (itself a clustered appli-
cation) and the containers managed by it. A Kubernetes cluster must have
a master, the brain of the system, the node that commands and controls all
the other Kubernetes machines in the cluster. A highly available Kubernetes
cluster replicates the master’s facilities across multiple machines. But only one
master at a time runs the job scheduler and controller-manager. The cluster can
be set up locally or in the cloud. Most Cloud providers provide a ready-to-use
Kubernetes solution.

Thttps://en.wikipedia.org/wiki/Kubernetes
Zhttps://kubernetes.io/fr/docs/tutorials /kubernetes-basics/create-cluster /cluster-intro,/
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Figure 4.3: Cluster-Node abstraction level 2

4.6.2 Nodes

Each cluster contains Kubernetes nodes. Nodes might be physical machines or
VMs. Again, the idea is abstraction: Whatever the application is running on,
Kubernetes handles deployment on that substrate. These Nodes can be either
Master Nodes or Worker Nodes. A node with its components is presented in

figure 4.4.
/\ Node
@xng\
\3.101 @8.
S - Pod
®\02 &
7 volume
L containerized app
node processes
Figure 4.4: Node-Pod-Container abstraction levels ?
4.6.3 Pods

Nodes run pods, the most basic Kubernetes objects that can be created or
managed. Each pod represents a single instance of an application or running
process in Kubernetes, and consists of one or more containers as shown in
figure 4.4. Kubernetes starts, stops, and replicates all containers in a pod as a
group. Pods keep the user’s attention on the application, rather than on the

3https://kubernetes.io/docs/tutorials /kubernetes-basics/explore/explore-intro/
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containers themselves. Details about how Kubernetes needs to be configured,
from the state of up pods, is kept in eted (distributed key-value store).

Pods are created and destroyed on nodes as needed to conform to the de-
sired state specified by the user in the pod definition. Kubernetes provides an
abstraction called a controller for dealing with the logistics of how pods are
spun up, rolled out, and spun down. Controllers come in a few different fla-
vors depending on the kind of application being managed. For instance, Job
controller is used to ensure that a specified number of the pods will reliably
run to completion. Another kind of controller, the deployment, is used to scale
an app up or down, update an app to a new version, or roll back an app to a
known-good version if there’s a problem. Also a deployment will try to resched-
ule any failed pods. Finally, a deployment tries to provide a guarantee that the
required number of pods are running on the cluster.

4.6.4 DaemonSet

A DaemonSet ensures that all (or some) Nodes run a copy of a Pod. As nodes
are added to the cluster, Pods are added to them. As nodes are removed from
the cluster, those Pods are garbage collected. Deleting a DaemonSet will clean
up the Pods it created.

Some typical uses of a DaemonSet are:

O running a cluster storage daemon on every node
O running a logs collection daemon on every node

O running a node monitoring daemon on every node

In a simple case, one DaemonSet, covering all nodes, would be used for each
type of daemon. A more complex setup might use multiple DaemonSets for a
single type of daemon, but with different flags and/or different memory and
cpu requests for different hardware types.

4.6.5 Deployment

As it is described in Kubernetes documentation, a desired state is described
in a Deployment, and the Deployment controller changes the actual state to
the desired state at a controlled rate. Deployments are defined to create new
ReplicaSets, or to remove existing Deployments and adopt all their resources
with new Deployments. This object offered the easily manageable scalabilty, so
as to increase or decrease accordingly the required stress levels, just by changing
the replicas of the pods created.
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4.6.6 Service

Kubernetes Pods are mortal. They are born and when they die, they are not
resurrected. If you use a Deployment to run your app, it can create and destroy
Pods dynamically (e.g. when scaling out or in). Each Pod gets its own IP
address, however the set of Pods for a Deployment running in one moment
in time could be different from the set of Pods running that application a
moment later. This leads to the following problem: if a set of Pods (call them
“backends”) provides functionality to other Pods (call them “frontends”) inside
your cluster, how do those frontends find out and keep track of which IP address
to connect to, so that the frontend can use the backend part of the workload
? A Service is an abstract way to expose an application running on a set of
Pods as a network service. Kubernetes gives pods their own [P addresses and
a single DNS name for a set of pods and can load-balance across them.

4.6.7 ConfigMaps

A ConfigMap is an API object used to store non-confidential data in key-value
pairs. Pods can consume ConfigMaps as environment variables, command-line
arguments, or as configuration files in a volume. A ConfigMap allows you to
decouple environment-specific configuration from your container images, so that
your applications are easily portable.

A ConfigMap is an API object that lets you store configuration for other
objects to use. Unlike most Kubernetes objects that have a spec, a ConfigMap
has data and binaryData fields. These fields accept key-value pairs as their
values. Both the data field and the binaryData are optional. The data field
is designed to contain UTF-8 strings while the binaryData field is designed to
contain binary data as base64-encoded strings. The name of a ConfigMap must
be a valid DNS subdomain name.

4.7 Kubernetes Resources

4.7.1 Default Resources: CPU and Memory

When the user specifies a Pod, he can optionally specify how much CPU and
memory (RAM) each container needs. When containers have resource requests
specified, the scheduler can make better decisions about which nodes to place
Pods on. And when Containers have their limits specified, contention for re-

sources on a node can be handled in a specified manner 4.

4https:/ /kubernetes.io/docs/concepts/configuration /manage-compute-resources-container /

56



4.7.1.1 Resource Types:

CPU and memory are each a resource type. A resource type has a base unit.
CPU is specified in units of cores, and memory is specified in units of bytes.
CPU and memory are collectively referred to as compute resources, or just
resources. Compute resources are measurable quantities that can be requested,
allocated, and consumed. They are distinct from API resources. API resources,
such as Pods and Services are objects that can be read and modified through
the Kubernetes API server.
Each Container of a Pod can specify one or more of the following:

O spec.containers| |.resources.limits.cpu
O spec.containers| |.resources.limits.memory
O spec.containers| |.resources.requests.cpu

O spec.containers| |.resources.requests.memory

Although requests and limits can only be specified on individual Contain-
ers, it is convenient to talk about Pod resource requests and limits. A Pod
resource request/limit for a particular resource type is the sum of the resource
requests/limits of that type for each Container in the Pod.

4.7.1.2 Meaning of CPU and Memory

Limits and requests in CPU resources are measures in cpu units. One CPU in
Kubernetes is equivalent to 1 vCPU or 1 Hyperthread on a bare-metal Intel
processor. Also fractional requests are allowed. For example a request of 0.5
cpu (or 500m which can be read as five hundreds millicpu), allocates half of
a CPU. CPU is always requested as an absolute quantity, never as a relative
quantity; 0.5 is the same amount of CPU on a single-core, dual-core, or a 48-core
machine. Regarding to the Memory’s requests and limits, they are measured
in bytes. Someone can express memory as a plain integer, or as a fixed-point
integer. Also the user can use the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi,
Ki.

These requests and limits are passed to the container runtime, when the
kubelet starts a container of a Pod. When using Docker, there are used the
—cpu-shares and —memory flags accordingly.

When you create a Pod, the Kubernetes scheduler selects a node for the Pod
to run on. Each node has a maximum capacity for each of the resource types:
the amount of CPU and memory it can provide for Pods. The scheduler ensures
that, for each resource type, the sum of the resource requests of the scheduled
containers is less than the capacity of the node. Note that although actual
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memory or CPU resource usage on nodes is very low, the scheduler still refuses
to place a Pod on a node if the capacity check fails. This protects against a
resource shortage on a node when resource usage later increases, for example,
during a daily peak in request rate.

4.7.2 Extended Resources

Extended resources are fully-qualified resource names outside the kubernetes.io
domain. They allow cluster operators to advertise and users to consume the
non-Kubernetes-built-in resources. For instance, by using this mechanism we
can add a graphical processing unit (GPU) in our Kubernetes cluster and let
different Pods use it.

There are two steps required to use Extended Resources. First, the cluster
operator must advertise an Extended Resource. Second, users must request the
Extended Resource in Pods °.

4.7.3 Kubernetes Device Plugins

Kubernetes provides a device plugin framework that you can use to advertise
system hardware resources to the Kubelet.

Instead of customizing the code for Kubernetes itself, vendors can imple-
ment a device plugin that you deploy either manually or as a DaemonSet. The
targeted devices include GPUs, high-performance NICs, FPGAs, InfiniBand
adapters, and other similar computing resources that may require vendor spe-
cific initialization and setup.

Following a successful registration, the device plugin sends the kubelet the
list of devices it manages, and the kubelet is then in charge of advertising those
resources to the API server as part of the kubelet node status update. For
example, after a device plugin registers hardware-vendor.example /foo with the
kubelet and reports two healthy devices on a node, the node status is updated
to advertise that the node has 2 "Foo" devices installed and available.

Then, users can request devices as part of a Pod specification (see container).
Requesting extended resources is similar to how you manage requests and limits
for other resources, with the following differences:

O Extended resources are only supported as integer resources and cannot be
overcommitted.

0 Devices cannot be shared between containers.

The above limitations are two of the main interests of this thesis. The fact
that extended resources can not be overcommited or shared between containers

Shttps://kubernetes.io/docs/concepts/configuration /manage-resources-containers/
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(only one application can utilize the full GPU at a time) causes GPUs to be
underutilized, leading to increased latency, decreased throughput and energy
consumption, since a running GPU has high power usage even when not utilized.
Namely, the main purpose of this thesis is to design and develop a Kubernetes
component, able to utilize the full spectrum of the provided GPU resources.

4.7.3.1 Manage GPUs Using device plugins

As an administrator, you have to install GPU drivers from the corresponding
hardware vendor on the nodes and run the corresponding device plugin from
the GPU vendor. Here are some links to vendors’ instructions:

O AMD
0O Intel

O NVIDIA

Once you have installed the plugin, your cluster exposes a custom schedulable
resource such as amd.com/gpu or nvidia.com/gpu.

You can consume these GPUs from your containers by requesting the custom
GPU resource, the same way you request cpu or memory. However, there
are some limitations in how you specify the resource requirements for custom
devices.

GPUs are only supposed to be specified in the limits section, which means:

You can specify GPU limits without specifying requests, because Kubernetes
will use the limit as the request value by default. You can specify GPU in both
limits and requests but these two values must be equal. You cannot specify
GPU requests without specifying limits.

4.8 Kubernetes Scheduler

4.8.1 Scheduling overview

A scheduler watches for newly created Pods that have no Node assigned. For
every Pod that the scheduler discovers, the scheduler becomes responsible for
finding the best Node for that Pod to run on. The scheduler reaches this place-
ment decision taking into account the scheduling principles described below.

4.8.2 Kubernetes Scheduling Framework

The scheduling framework is a pluggable architecture for the Kubernetes sched-
uler. It adds a new set of "plugin" APIs to the existing scheduler. Plugins are
compiled into the scheduler. The APIs allow most scheduling features to be
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implemented as plugins, while keeping the scheduling "core' lightweight and
maintainable.

4.8.3 Scheduling and Binding Cycle

The scheduling cycle selects a node for the Pod, and the binding cycle applies
that decision to the cluster. Together, a scheduling cycle and binding cycle are
referred to as a "scheduling context".
Scheduling cycles are run serially, while binding cycles may run concurrently.
A scheduling or binding cycle can be aborted if the Pod is determined to be
unschedulable or if there is an internal error. The Pod will be returned to the
queue and retried.

4.8.3.1 Extension points

In figure 4.5 are represented the scheduling context of a Pod and the exten-
sion points that the scheduling framework exposes. In this picture "Filter" is
equivalent to "Predicate" and "Scoring" is equivalent to "Priority function'.

One plugin may register at multiple extension points to perform more com-
plex or stateful tasks.
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Chapter 5

Experimental Infrastructure

In this chapter, we describe the cluster we have created for our experiments,
the GPU monitoring system and the MLPerf benchmark suite [68] which was
used for the workload creation.

5.1 System setup

For the nodes of our cluster, we have created 4 virtual machines (VMs) (1
master node and 3 worker nodes) on top of the physical machines. The CPUs
of the VMs consist of 4 to 8 cores and the RAM sizes range from 8 to 16 GB.
We used Qemu KVM as our hypervisor. Of the three worker nodes, the first one
is equiped with an NVIDIA V100 GPU with 32GB of memory and 80 SMs,
the second one with an NVIDIA A30 GPU with 24GB of memory and 56 SMs
while the third one has no GPUs available. All of the virtual machines are
deployed on the infrastructure of the laboratory in NTUA. In order to simulate
a cloud environment, all the referenced workloads running on the cluster have
been containerized using the Docker platform.
Each VM’s characteristics are described in the following table.

Virtual Machines

Processor Role CPU CPU GPU Access

Cores RAM

(GB)

Intel(R) Xeon(R) Gold 6138 CPU @ | Master 8 8 No
2.00GHz
Intel(R) Xeon(R) CPU E5-2658A | Worker 4 16 No
v3 @ 2.20GHz
Intel(R) Xeon(R) Gold 5218R CPU | Worker 8 16 V100
@ 2.10GHz
Intel(R) Xeon(R) Gold 5218R CPU | Worker 8 16 A30
@ 2.10GHz

Table 5.1: Virtual Machines Characteristics

The combination of VMs with containers is currently the common way of
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deploying cloud clusters at scale, since it establishes the perfect catalyst for
reliability and robustness. On top of the VMs, we have deployed Kubernetes as
our container orchestrator, one of the most popular and most used platforms
nowadays.

The system as a whole is illustrated in figure 5.1.

kubernetes

k8s-aferik-master

k8s-aferik-cpu

k8s-aferik-gpu-a30 k8s-aferik-gpu

Ampere Tesla
A 4™ <
A30 V100

Figure 5.1: Experimental Infrastructure Overview

5.2 GPU Infrastructure

5.2.1 NVIDIA Volta
5.2.1.1 Architecture

Every industry needs Al, and with this massive leap forward in speed, Al can
now be applied to every industry. Equipped with 640 Tensor Cores[69], Volta
delivers over 125 teraFLOPs per second (TFLOPS) of deep learning perfor-
mance, over a bX increase compared to prior generation NVIDIA Pascal™
architecture.
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Volta uses next generation revolutionary NVIDIA NVLink™ high-speed in-
terconnect technology. This delivers 2X the throughput, compared to the previ-
ous generation of NVLink. This enables more advanced model and data parallel
approaches for strong scaling to achieve the absolute highest application per-
formance.

Data scientists are often forced to make trade-offs between model accuracy
and longer run-times. With Volta-optimized CUDA and NVIDIA Deep Learn-
ing SDK libraries [70] like cuDNN [71], NCCL, and TensorRT[72], the industry’s
top frameworks and applications can easily tap into the power of Volta running
mixed precision[73]. This propels data scientists and researchers towards dis-
coveries faster than before.

5.2.1.2 Volta MPS

The Volta architecture introduced new MPS [41] capabilities. Compared to
MPS on pre-Volta GPUs, Volta MPS provides a few key improvements:

0 Volta MPS clients submit work directly to the GPU without passing through
the MPS server.

0 Each Volta MPS client owns its own GPU address space instead of sharing
GPU address space with all other MPS clients.

0O Volta MPS supports limited execution resource provisioning for Quality of

Service (QoS).

This document will introduce the new capabilities, and note the differences
between Volta MPS and MPS on pre-Volta GPUs. Running MPS on Volta will
automatically enable the new capabilities.

5.2.1.3 NVIDIA Tesla V100

Tesla products from the NVIDIA company introduce a line of computational
graphics processors that are very similar to the NVIDIA Quadro series (they
usually use the same chip). However, they have an isolated display interface.
They're also available in passively-cooled form-factors, which are specifically
appropriate for use in servers (rack-mounts).

Users of professional applications can, thanks to the CUDA architecture, use
graphical CUDA stream processors. Thanks to this, it is possible to use the raw
performance of a graphics card for specific calculations, which can significantly
increase work speed compared to the use of a traditional processor, which are
significantly limited by the lower number of cores.

Tesla V100 is architected from the ground up to simplify programmability
NVIDIA NVLink in Tesla V100 delivers 2X higher throughput compared to the
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previous generation Equipped with 640 Tensor Cores, Tesla V100 delivers 125
TeraFLOPS of deep learning performance With a combination of improved raw
bandwidth of 900 GB/s and higher DRAM utilization efficiency at 95%, Tesla
V100 delivers.

5.2.2 NVIDIA Ampere

5.2.2.1 Architecture

First introduced in the NVIDIA Volta™ architecture, NVIDIA Tensor Core
technology has brought dramatic speedups to Al, bringing down training times
from weeks to hours and providing massive acceleration to inference. The
NVIDIA Ampere architecture builds upon these innovations by bringing new
precisions—Tensor Float 32 (TF32) and floating point 64 (FP64)—to accelerate
and simplify Al adoption and extend the power of Tensor Cores to HPC.
TF32 works just like FP32 while delivering speedups of up to 20X for Al
without requiring any code change. Using NVIDIA Automatic Mixed Preci-
sion, researchers can gain an additional 2X performance with automatic mixed
precision and FP16 by adding just a couple of lines of code. And with support
for bfloat16, INT8, and INT4, Tensor Cores in NVIDIA Ampere architecture
Tensor Core GPUs create an incredibly versatile accelerator for both Al train-
ing and inference. Bringing the power of Tensor Cores to HPC, A100 and A30
GPUs also enable matrix operations in full, IEEE-certified, FP64 precision.

5.2.2.2 Multi Instance GPU

Every Al and HPC application can benefit from acceleration, but not every
application needs the performance of a full GPU. Multi-Instance GPU (MIG) is
a feature supported on A100 and A30 GPUs that allows workloads to share the
GPU. With MIG, each GPU can be partitioned into multiple GPU instances,
fully isolated and secured at the hardware level with their own high-bandwidth
memory, cache, and compute cores. Now, developers can access breakthrough
acceleration for all their applications, big and small, and get guaranteed quality
of service. And IT administrators can offer right-sized GPU acceleration for
optimal utilization and expand access to every user and application across both
bare-metal and virtualized environments.

5.2.2.3 NVIDIA A30

The NVIDIA A30 Tensor Core GPU delivers a versatile platform for mainstream
enterprise workloads, like Al inference, training, and HPC. With TF32 and
FP64 Tensor Core support, as well as an end-to-end software and hardware
solution stack, A30 ensures that mainstream Al training and HPC applications
can be rapidly addressed. Multi-instance GPU (MIG) ensures quality of service
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(QoS) with secure, hardware-partitioned, right-sized GPUs across all of these
workloads for diverse users, optimally utilizing GPU compute resources.
Each GPU’s characteristics are described in the following table.

GPUs
GPU Name SMs Memory
(GB)
NVIDIA Tesla V100 80 32
NVIDIA Ampere A30 | 56 24

Table 5.2: GPU Characteristics

5.3 GPU Monitoring System

5.3.1 NVIDIA GPU Metrics Exporter

DCGM-Exporter is a tool based on the Go APIs to NVIDIA DCGM that allows
users to gather GPU metrics and understand workload behavior or monitor
GPUs in clusters. dcgm-exporter is written in Go and exposes GPU metrics at
an HTTP endpoint (/metrics) for monitoring solutions.

These metrics are exported in time-series format in order to be used by time-
series databases like Influx, Prometheus etc. From the Kubernetes perspective,
the DCGM exporter forms a DaemonSet that starts a damon Pods on every
node equipped with a GPU. These Pods execute metrics queries to the GPUs
of the nodes using NVIDIA Data Center GPU Manager (DCGM) [1]. Finally,
these metrics are sent to the prometheus monitoring system[2] which exposes a
service to the cluster from which any cluster resource can access the metrics.

The GPU metrics we mainly used in our experiments are presented below.

0 DCGM_FI_DEV_FB_FREE: Framebuffer memory free (in MiB)
0 DCGM_FI_DEV_FB_USED: Framebuffer memory used (in MiB)

O DCGM_FI PROF_GR_ENGINE ACTIVE: Ratio of time the graphics engine is
active (in %)

O DCGM_FI DEV_TOTAL ENERGY CONSUMPTION: Total energy consumption since
boot (in mJ)

0 DCGM_FI_DEV_POWER_USAGE: Power draw (in W)

O DCGM_FI PROF_DRAM ACTIVE: Ratio of cycles the device memory interface
is active sending or receiving data (in %)
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5.3.2 Prometheus Timeseries Database

Prometheus is an open-source systems monitoring and alerting toolkit origi-
nally built at SoundCloud. Since its inception in 2012, many companies and
organizations have adopted Prometheus, and the project has a very active de-
veloper and user community. It is now a standalone open source project and
maintained independently of any company. To emphasize this, and to clarify
the project’s governance structure, Prometheus joined the Cloud Native Com-
puting Foundation in 2016 as the second hosted project, after Kubernetes.

Prometheus is based on a multi-dimensional data model with time series
data identified by metric name and key/value pairs. It provides PromQL, a
flexible query language to leverage the dimensionality. Prometheus does not
rely on distributed storage hence each single server node is autonomous. The
time series collection happens via a pull model over HT'TP while the time series
pushing is supported via an intermediate gateway. The Prometheus targets are
discovered via service discovery or static configuration. Finally, it provides
multiple modes of graphing and dashboarding.

The Prometheus ecosystem consists of multiple components, many of which
are optional. The main Prometheus component is the Prometheus server which
scrapes and stores time series data. There is a push gateway for support-
ing short-lived jobs and special-purpose exporters for services like HAProxy,
StatsD, Graphite, etc. For the alerts handling an alertmanager component is
provided. In addition, Prometheus has client libraries for instrumenting appli-
cation code while various tools are supported.

This diagram illustrates the architecture of Prometheus and some of its
ecosystem components:
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Figure 5.2: Prometheus Architecture
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Prometheus scrapes metrics from instrumented jobs, either directly or via
an intermediary push gateway for short-lived jobs. It stores all scraped samples
locally and runs rules over this data to either aggregate and record new time
series from existing data or generate alerts. Grafana or other API consumers
can be used to visualize the collected data.

In our case, the exported GPU metrics are inserted to the Prometheus TSDB
every 1 second and the queries are performed with PromQL [74].

5.4 Description of Cloud GPU workloads

Modern data-center server machines accommodate a wide range of workloads,

which are basically either batch /best-effort (BE) applications, or user-interactive/latency-
critical (LC) applications. The former type of workloads require the highest

possible throughput, whereas the latter demand to meet their QoS constraints.
Throughout this thesis we focused on latency-critical applications that require

GPU resources. For that reason we used MLPerf Inference [4] for creating our
workload.

5.4.1 MULPerf Benchmarks

MLPerf is a consortium of Al leaders from academia, research labs, and industry
whose mission is to “build fair and useful benchmarks” that provide unbiased
evaluations of training and inference performance for hardware, software, and
services—all conducted under prescribed conditions. To stay on the cutting
edge of industry trends, MLPerf continues to evolve, holding new tests at reg-
ular intervals and adding new workloads that represent the state of the art in
Al. The MLPerf philosophy is the creation of a widely accepted benchmark
suite that will benefit the entire community, including researchers, developers,
hardware manufacturers, builders of machine learning frameworks, cloud ser-
vice providers, application providers, and end users.

The main goals of MLPerf project are:

0 Accelerate progress in ML
0 Serve both the commercial and research communities

O Enable fair comparison of competing systems yet encourage innovation to
improve the state-of-the-art of ML

0 Enforce replicability to ensure reliable results

O Keep benchmarking effort affordable so all can participate
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MLPerf began in February 2018 with a series of meetings between engineers
and researchers from Baidu, Google, Harvard University, Stanford University
and the University of California Berkeley. MLPerf launched the Training bench-
mark suite on May 2nd, 2018 and published the first Training results, includ-
ing results from Google, Intel, and NVIDIA, on December 12, 2018. MLPerf
launched the Inference benchmark suite on June 24th, 2019.

As we mentioned before, in this thesis, we focus on workloads that consist
of latency-critical applications. Because of this choice we used the MLPerf
Inference rather than the MLPerf Training benchmarks.

5.4.2 MLPerf Inference

MLPerf Inference [3, 4] is a benchmark suite for measuring how fast systems
can process inputs and produce results using a trained model. Below is a short
summary of the current benchmarks and metrics.

Each MLPerf Inference benchmark is defined by a model, a dataset, a quality
target, and a latency constraint. The following three benchmarks are in version
v0.5 of the suite and were used for the workload creation.

Area Task Backend Model Dataset Quality
Vision Image clas- | Onnxruntime | Resnet50- | ImageNet | FP32
sification v1.5 (224x224) | (76.46%)
Vision Image clas- | Onnxruntime | MobileNets-| ImageNet | FP32
sification vl 224 (224x224) | (71.68%)
Vision Object de- | Onnxruntime | SSD- COCO FP32 (0.22
tection MobileNets-| (300x300) | mAP)
vl
Vision Image clas- | Tensorflow Resnet50- | ImageNet | FP32
sification vl.5 (224x224) | (76.46%)
Vision Image clas- | Tensorflow MobileNets-| ImageNet | FP32
sification vl 224 (224x224) | (71.68%)
Vision Object de- | Tensorflow SSD- COCO FP32 (0.22
tection MobileNets-| (300x300) | mAP)
vl

Table 5.3: MLPerf Inference Benchmarks

In each benchmark the pretrained model is set on a backend like Tensorflow,
PyTorch, Onnx Runtime etc.

The key component of the MLPerf Inference Benchmark is the Load Gener-
ator [75]. The Load Generator is a reusable module that efficiently and fairly
measures the performance of inference systems. It generates traffic for scenarios
as formulated by a diverse set of experts in the MLPerf working group. The
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scenarios emulate the workloads seen in mobile devices, autonomous vehicles,
robotics, and cloud-based setups. Although the Load Generator is not model
or dataset aware, its strength is in its reusability with logic that is.

69



The following is a diagram of how the Load Generator can be integrated
into an inference system, resembling how the used MLPerf reference models are
implemented.

Model + Dataset l—)- 4—} Backend
Benchmark v
Pre Processor <« Post Processor
2 5
vl
6
LoadGen —>» LoadGen Logs

Figure 5.3: Load Generator Integration in MLPerf Inference Benchmarks

As shown in figure 5.3 the Benchmark knows the model, dataset, and prepro-
cessing (1). The Benchmark hands dataset sample IDs to Load Generator (2).
Load Generator starts generating queries of sample IDs (3). These queries are
translated to backend requests (4). The result is post processed and forwarded
to the Load Generator (5). Finally, Load Generator outputs logs for analysis
(6).

After analyzing the benchmark architecture the only thing left to define is the
way queries are sent to the backend. In order to enable representative testing
of a wide variety of inference platforms and use cases, MLPerf has defined
four different scenarios as described below. A given scenario is evaluated by a
standard load generator generating inference requests in a particular pattern
and measuring a specific metric.

From the Kubernetes perspective the wowwrkload consists of a set of Pods,
each running a single MLPerf inference task. One container image was created
per inference engine (Framework + Model) containing all the needed software
to support the execution of this particular engine and afterwards those images
were ran on Kubernetes with the appropriate parameters describe the Dataset,
the Scenario, Number of Queries etc. The scenarios used for this project were
Single Stream and Multi Stream. We also modified the default query number
in order to create Pods that execute different number of queries. The number
of queries ranges from 270 up to 22000.
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In figure 5.4, we present all the components of our proposed system.
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Figure 5.4: Overall System
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Chapter 6

Characterization

6.1 Introduction

Kubernetes promises high scalability, flexibility and cost-effectiveness to satisfy
emerging computing requirements. To efficiently provision gpu resources in
the cloud, system administrators need the capabilities of characterizing and
predicting workload on the machines.

In this thesis, we use data traces obtained from inference tasks on pre-trained
neural models running on two real data center GPUs (NVIDIA V100, NVIDIA
A30) located on the premises of the laboratory to develop such capabilities.
First, we search for repeatable patterns by exploring the execution trace of
each workload in all different configurations. Then, we study the batching
capabilities of each GPU as well as the intensity of the model and dataset
loading operations by executing each inference engine with x queries on each
GPU full, the with z/2 queries on one GPU partition halved in terms of memory
and GPU capacity etc. Finally, we utilize the data traces across the GPUs to
detect similarities and differences between the Volta (V100) and Ampere (A30)
architectures.

The models and datasets used in the following experiments are part of the
MLPerf Inference Classification and Object Detection benchmarks and the par-
titioning means:

O in the case of A30, partitioning the GPU compute and memory resources
utilizing the MIG feature

O in the case of V100, partitioning the GPU compute and memory resources
utilizing the MPS CUDA__MPS_PINNED DEVICE MEM_LIMIT and
CUDA_MPS ACTIVE THREAD PERCENTAGE environment variables.

Finally, each experiment has been ran at least ten times and all of the figures
appended correspond to the averaged values.
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6.2 Utilizing Different Configurations

In this experiment, we use the workloads described in section 5 using the Sin-
gleStream scenario from MLPerf to analyze and study the execution of each
model in all possible GPU cofingurations. In our case, we first considered the
whole server as one configuration. Then we partition each GPU in half using
either MPS of MIG and consider this as another configuration and so on.

In figure 6.1 we can see the number of queries that each engine-configurations
pair achieved. Queries are selected in a way such that the median latency of
a task is about half a minute. In z — axis we can see the configurations. zP
means GPU resources are equally split in x partitions, and A30/V100 describe
the GPU.

From figure 6.1 we observe that, as expected, the QPS of each application
is degrading as GPU resources are further partitioned. One rather interesting
note here is that smaller applications are less affected by resource partitioning.
This leads to the conclusion that GPUs are under-utilized when used as a whole
to execute one such application since it could produce results as close as 1% to
the optimal in a fraction of the GPU. Finally, we observe that in some cases
even in large models the QPS decrease only by a marginal amount and this is
because each model has different key architectural bottlenecks.

In figure 6.3 we can see that both for V100 and A30, FB_ USED (memory
used) tends to decrease for smaller fractions of the GPU, and total energy
consumption tends to increase. This is because power does not have significant
changes when the GPU is empty and when it is loaded and therefore we need to
waste more energy when running on smaller partitions for the same job since it
would take more time. As far as memory is concerned when running on smaller
fractions of the card’s memory, the applications tend to save memory, leading to
lower mean memory utilization. However, the most important conclusion which
emerges from figure 6.2b is that GPU Utilization (GR_ENGINE_ACTIVE)
decreases for smaller partitions of the GPU which means that relatively small
GPU workloads tend to exhaust GPU resources due to other bottlenecks. GPU
Utilization is equal to the percent of time over the past sample period during
which one or more kernels was executing on the GPU. The sample period may
be between 1 second and 1/6 second depending on the product. The reason why
the metrics related to V100 for GPU Utilization are increasing is because GPU
metrics that DCGM provides for V100 refer to the whole GPU, whereas A30
refer to the specific partition. Also we can see that GPU utilization increases
in smaller MPS "partitions" possibly leading to the conclusion that limited SMs
are sufficient and that MPS manages clients demands in such a way that if
limits are as close as possible to the real constraints GPU utilization is highest.
Furthermore, supposing that MPS fully isolates GPU clients’ address spaces and
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Figure 6.3: Tensorflow Resnet50 DCGM metrics

limits the SMs’ utilization, it is safe to assume that approximately all the rest
GPU SMs and memory are free. Therefore GPU resources are underutilized and
the need for a better, heterogeneous aware and interference tolerant scheduling
algorithm arises.

6.3 Fixed workload

In this experiment we examine the ability of the Ampere and Volta GPUs to
host multiple applications at the same time and the potential overheads and
bottlenecks that appear from computation and/or memory heavy applications.
The idea of the experiment is to gradually decrease the intensity of the appli-
cations by decreasing the expected number of queries while also decreasing the
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provided resources and increasing parallelism.

In figure 6.5 P designates that = pods (applications) were executed for this
related benchmark, A30/V100 designate the GPU they were ran on and back-
end/model are described from y labels as explained before. As expected, the
mean frame buffer memory used by in the case of 2 pods is almost double the
memory of one pod and so on. This is because in our experiments one of the
most memory consuming process is the loading of the model which happens
more frequently for greater batch sizes. In the case of GPU utilization we see
that when batching applications in the case of A30, we tend to have lower uti-
lization for more pods whilst for V100 when co-scheduling increasing batch size
mostly means decrease of utilization and only in few cases we see an decrease.
This can be strongly related to MIG which partitions the GPU into multiple
GPU instances, fully isolated and secured at the hardware level with their own
high-bandwidth memory, cache, and compute cores.

To gain further insight in the purpose of the experiment we append figures
6.6a and 6.6b which describe the total number of queries executed per second
among the pods in each batch. Clearly in both cases the queries made per
second follow an almost linear advance when increasing batch size. In figures
6.7a and 6.7b validate that the end-to-end system throughput (namely, the
gpu-k8s-scheduler) also follows the same pattern.

6.4 Interference

In Kubernetes environments, interference between collocated pods can degrade
performance, violating the quality of service (QoS) guarantees that many cloud
workloads require. In this experiment we analyze the results of the last exper-
iment for workload characterization. Purpose of this experiment is to examine
the level of interference caused and tolerated by the pods when collocated with
each other in the same GPU configuration. For the needs of the experiment
we used the Of fline scenario from MLPerf in order to send all the inference
queries at the same and thus produce as much interference as possible.

First, we are going to take a look at how applications, ran on different MIG
partitions in A30, respond to interference. In figures 6.8 we can see the number
of queries that each inference achieved when collocated with each of the rest
engines. The collocated inference engine is depicted in the labels of x-axis. The
first thing that we notice in these figures is that there is a small fluctuation in
the values of QPS when one engine is collocated with another GPU application.
What this means is that even when utilizing MIG architecture in order to iso-
late the execution of the kernels in terms of memory and GPU engines, there
are always unpredictable sources of interference degrading the system’s perfor-
mance. However, it is obvious that among the experiments done to measure
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the interference, this case is the most beneficial since each instance’s processors
have separate and isolated paths through the entire memory system - the on-
chip crossbar ports, L2 cache banks, memory controllers, and DRAM address
busses are all assigned uniquely to an individual instance.

In order to be able to better realise the sensitivity of applications we decided
re-execute this experience, this time by scheduling all applications on the same
GPU partition. In figure 6.9 we can see the results. Here, it is crystal clear
that some favoured when co-scheduled with some applications in some cases
achieving only marginal interference when in other cases their performance is
dramatically impaired.

In the figures 6.10 we can see the deterioration of QPS when running two
GPU pods on V100 concurrently. Here we can clearly observe the negative
impact of interference. For example, in figure 6.10b we see that Onnx runtime
with Resnet50 achieves almost 15 queries per second when collocated with Onnx
runtime Mobilenet and more than 20 queries per second when collocated with
Tensorflow Resnetb50. As expected the QPS for each engine is lower than when
ran fully isolated on the card (e.g. for Onnx Resnet50 the QPS is approximately
equal to 22). Another important note here is that intense models, e.g Resnet,
tend to influence system efficiency more when collocated with other workloads.
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Chapter 7

Recommendation Systems

7.1 What Is a Recommendation System?

A recommendation system is an artificial intelligence or Al algorithm, usually
associated with machine learning, that uses Big Data to suggest or recommend
additional products to consumers. These can be based on various criteria,
including past purchases, search history, demographic information, and other
factors. Recommendation systems are highly useful as they help users discover
products and services they might otherwise have not found on their own.

Recommendation systems are trained to understand the preferences, previ-
ous decisions, and characteristics of people and products using data gathered
about their interactions. These include impressions, clicks, likes, and purchases.
Because of their capability to predict consumer interests and desires on a highly
personalized level, Recommendation systems are a favorite with content and
product providers. They can drive consumers to just about any product or
service that interests them, from books to videos to health classes to clothing.

While there are a vast number of recommendation algorithms and techniques,
most fall into these broad categories: collaborative filtering, content filtering
and context filtering.

In this work, we will be focusing on collaborative filtering. Collaborative
filtering algorithms recommend items (this is the filtering part) based on pref-
erence information from many users (this is the collaborative part). This ap-
proach uses similarity of user preference behavior, given previous interactions
between users and items, recommendation algorithms learn to predict future
interaction.

Matrix factorization (MF) techniques are the core of many popular algo-
rithms, including word embedding and topic modeling, and have become a
dominant methodology within collaborative-filtering-based recommendation.
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7.2 Collaborative Filtering with SVD

The singular value decomposition of a matrix A is the factorization of A into
the product of three matrices

A = UDV”T

where the columns of U and V are orthonormal and the matrix D is diagonal
with positive real entries. The SVD is useful in many tasks. Here we mention
some examples. First, in many applications, the data matrix A is close to a
matrix of low rank and it is useful to find a low rank matrix which is a good
approximation to the data matrix . We will show that from the singular value
decomposition of A, we can get the matrix B of rank k which best approximates
A; in fact we can do this for every k. Also, singular value decomposition is de-
fined for all matrices (rectangular or square) unlike the more commonly used
spectral decomposition in Linear Algebra. The reader familiar with eigenvec-
tors and eigenvalues (we do not assume familiarity here) will also realize that
we need conditions on the matrix to ensure orthogonality of eigenvectors. In
contrast, the columns of V in the singular value decomposition, called the right
singular vectors of A, always form an orthogonal set with no assumptions on
A. The columns of U are called the left singular vectors and they also form an
orthogonal set. A simple consequence of the orthogonality is that for a square
and invertible matrix A, the inverse of A is

vD'U”

. To gain insight into the SVD, treat the rows of an (n x d) matrix A as n
points in a d-dimensional space and consider the problem of finding the best
k-dimensional subspace with respect to the set of points. Here best means
minimize the sum of the squares of the perpendicular distances of the points to
the subspace. We begin with a special case of the problem where the subspace is
1-dimensional, a line through the origin. We will see later that the best-fitting
k-dimensional subspace can be found by k applications of the best fitting line
algorithm. Finding the best fitting line through the origin with respect to a set
of points {z; | 1 <7 < n} in the plane means minimizing the sum of the squared
distances of the points to the line. Here distance is measured perpendicular
to the line. The problem is called the best least squares fit. In the best least
squares fit, one is minimizing the distance to a subspace. An alternative problem
is to find the function that best fits some data. Here one variable y is a function
of the variables 1, z9, ..., x4 and one wishes to minimize the vertical distance,
i.e., distance in the y direction, to the subspace of the x; rather than minimize
the perpendicular distance to the subspace being fit to the data. Returning to
the best least squares fit problem, consider projecting a point z; onto a line
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through the origin. Then x;,%2 +x5,° + -+ - +x,4° = (length of projection)?+
(distance of point to line)? . Thus (distance of point to line)? =
T2 + 12 4 o+ 22 — (length  of  projection)? . To minimize the sum of
the squares of the distances to the line, one could minimize

n (2% +x%+ -+ x2) minus the sum of the squares of the lengths of the
projections of the points to the line. However, X% (2% + 2% + -+ + 22)) is a
constant (independent of the line), so minimizing the sum of the squares of the
distances is equivalent to maximizing the sum of the squares of the lengths of the
projections onto the line. Similarly for best-fit subspaces, we could maximize
the sum of the squared lengths of the projections onto the subspace instead of
minimizing the sum of squared distances to the subspace.

7.3 Multivariate feature imputation

Multiple imputation [76] is the method of choice for complex incomplete data
problems. Missing data that occur in more than one variable presents a spe-
cial challenge. Two general approaches for imputing multivariate data have
emerged: joint modeling (JM) and fully conditional specification (FCS), also
known as multivariate imputation by chained equations (MICE). Schafer (1997)
developed various JM techniques for imputation under the multivariate normal,
the log-linear, and the general location model. JM involves specifying a mul-
tivariate distribution for the missing data, and drawing imputation from their
conditional distributions by Markov chain Monte Carlo (MCMC) techniques.
This methodology is attractive if the multivariate distribution is a reasonable
description of the data. FCS specifies the multivariate imputation model on a
variable-by-variable basis by a set of conditional densities, one for each incom-
plete variable. Starting from an initial imputation, FCS draws imputations by
iterating over the conditional densities. A low number of iterations (say 10-20)
is often sufficient. FCS is attractive as an alternative to JM in cases where no
suitable multivariate distribution can be found. In the statistics community, it
is common practice to perform multiple imputations, generating, for example,
m separate imputations for a single feature matrix. Each of these m imputations
is then put through the subsequent analysis pipeline (e.g. feature engineering,
clustering, regression, classification). The m final analysis results (e.g. held-out
validation errors) allow the data scientist to obtain understanding of how ana-
lytic results may differ as a consequence of the inherent uncertainty caused by
the missing values. The above practice is called multiple imputation. Scikit-
learn provides the implementation of and "Iterativelmputer" inspired by the R
MICE package, but differs from it by returning a single imputation instead of
multiple imputations. However, Iterativelmputer can also be used for multi-
ple imputations by applying it repeatedly to the same dataset with different
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random seeds.

IterativeImputer class models each feature with missing values as a function
of other features, and uses that estimate for imputation. It does so in an iterated
round-robin fashion: at each step, a feature column is designated as output y
and the other feature columns are treated as inputs X. A regressor is fit on (X,
y) for known y. Then, the regressor is used to predict the missing values of
y. This is done for each feature in an iterative fashion, and then is repeated
for max_iter imputation rounds. The results of the final imputation round are
returned.

7.4 Flexibility of Multivariate feature imputation

There are many well-established imputation packages in the R data science
ecosystem: Amelia, mi, mice, missForest, etc. missForest is popular, and turns
out to be a particular instance of different sequential imputation algorithms
that can all be implemented with Multivariate feature imputation by passing
in different regressors to be used for predicting missing feature values. In the
case of missForest, this regressor is a Random Forest.

7.5 Evaluation

In this section we evaluate the perfomance of Collaborative Filtering with SVD
and Multivariate Imputation techniques. For the first case we used numpy.linalg
library for the decomposition, we used euclidean similarity for similarity mea-
sure. FEuclidean similarity is equal to

distance based simalarity = (1 + d(ir. 1))
11,22

d(iy,19) = \/Z?_l (i1, — igj)Q, where n is equal to the dimension of the items.

For the case of multivariate imputation we used Iterativelmputer from the
sklearn.impute library and set max__iter to 10. max__iter is the maximum num-
ber of imputation rounds to perform before returning the imputations computed
during the final round. For this experiment we used a small rating dataset from
18 users for 6 items.

In figure 7.1 we can see the mean squared error for SVD and Iterativelmputer
in a common plot. Here, we use the leave-one-out cross validation technique.
This means that in each iteration of the experiment we used a single row as
the test dataset and the rest to fit our model. From the row used for testing
we progressively delete elements and observed the performance of each model.
This was repeated ten times for each row and averaged among for all results
with the same row and number of missing values. Here, x-axis represents the
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Figure 7.1: Imputer and SVD Mean Squared Errors

number of missing values and y-axis the average MSE for all rows. What we
understand from this figure is that the sparser the matrix is the better the
results from SVD are and the opposite for Multivariate Imputation. In fact,
results from SVD have very small variance and have a mean value close to
5000 when imputer performs very good for small number of missing values but
its performance degrades very quickly when increasing the number more 50%.
This could be due to the fact that Multivariate Imputation uses Markov chain
Monte Carlo (MCMC) which is useful when the multivariate distribution is a
reasonable description of the data.
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Chapter 8

Predictive inference serving for
multi-tenant GPU clusters

In the present work, we developed a scheduler for multi-tenant GPU clusters
using Kubernetes (Chapter 4) and Collaborative Filtering (CF) (Chapter 7).
For the creation of the scheduler we used the Kubernetes Scheduling Frame-
work (Section 4.8). The scheduling framework is a pluggable architecture for
the Kubernetes scheduler. It adds a new set of "plugin" APIs to the existing
scheduler. Plugins are compiled into the scheduler. We extended the Score
plugins and the PostBind plugins in order to implement our scheduling logic.
The first barrier you face when creating a scheduler for Kubernetes is the fact
that Kubernetes does not natively advertise GPU resources. Namely, the only
vulgate way to utilize GPU resources is by using the NVIDIA device plugin
which advertises GPU devices as a whole. Therefore, fine-grained allocation
of GPU resources such as memory and SMs (streaming multiprocessors) is not
an option. To overcome this issue we created a daemonset classified the GPU
nodes (nodes containing GPUs) according to their resources. Then, we saved
these data in a Redis deployment which was running in the master node in
order to optimize the query time and minimize the scheduling overhead. For
the collaborative filtering (prediction) we needed a procedure to compute the
expected QPS (queries per second). This could have been a separate process in
the code created for the scheduler or a separate container in the deployment for
the scheduler, however we decided that, since the dataset could be relatively
large or the inference process compute intense, we should offload the whole
procedure into a separate node. For this purpose we used Cheetara, our second
non-GPU node apart from master.

8.1 Redis

Redis (Remote Dictionary Server) is an in-memory data structure store, used as
a distributed, in-memory key—value database, cache and message broker, with
optional durability. Redis supports different kinds of abstract data structures,
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such as strings, lists, maps, sets, sorted sets, HyperLogLogs, bitmaps, streams,
and spatial indices. In this project, Redis was used to facilitate the storage of
temporary data regarding the state of the cluster (GPU UUIDs, assigned pods
to GPU partitions etc). The Redis deployment was marked with a soft affinity
constraint in order to be assigned on the master node so that the scheduler can
access the data even faster.

8.2 Exporter

In order to monitor the characteristics (such as partitions’ UUIDs) of each GPU
in the cluster and correlate them with the corresponding node we needed to cre-
ate a Kubernetes resource acting as an intermediary between the scheduler and
GPUs. For this purpose we created a daemonset. Each pod of the daemonset
runs a container which first decides whether the node is able to host GPU ap-
plications and then by running a simple CUDA application it exports the GPU
UUIDS as well as a few metrics and saves them in Redis. The exporter then
watches the output of the CUDA application for changes. Whenever a restart or
a crush happens, exporter immediately pulls the new data and updates Redis.

8.3 Predicting and Scoring

In order to produce recommendations and rate the nodes based on the pre-
dictions for performance and interference we created a deployment with a soft
affinity constraint in order to offload it on Cheetara (our second non-GPU
node). The deployment incorporates a recommendation system using CF and
SVD (singular value decomposition) and is accessible by the cluster using gRPC.
Utilizing the data we have collected from our characterization (Chapter 6) we
created 2 datasets. The first one is a sparse n x m matrix used to compute
the expected QPS (queries per second) when the application is running isolated
on a GPU enabled partition. n corresponds to the applications (equivalent to
users for traditional recommendation system approaches) and m corresponds
to the available configurations (items). Each configuration is described by

1. GPU
2. MIG partition (if available) and
3. MPS device limits (if available).

When a query comes to the recommender, the recommender has to return the
whole row corresponding to this application. If the row has missing values, it
uses SVD to extract the latent features from the matrix and then computes
the expected values based on similarities between items. We call the above
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procedure isolated(x, p), where x is the application, p is the configuration (GPU
partition) and isolated(x, p) is the QPS x can achieve when ran isolated on
partition p.

The second dataset is used to compute the interference generated among
the pods. It is a matrix A, ., where n corresponds to the applications and A;;
is equal to the interference suffered (QPS degradation) by application ¢ and
produced by application j. The prediction for missing values are exactly as
above. We define the partition’s interference as the sum of interference suffered
from the collocated pods as follows

total_inter ference(x, X,p) = > interference(z,y,p)
yeX y#x
, where X is the set of collocated pods and inter ference(x,y,p) is equal to the
QPS degradation returned from the above recommendation system for pod x
when collocated with pod y on partition p.

In order to score the node we need a function to describe the distance between
the demanded QPS value (Service Level Objective) and the expected value. We
define the system’s error metric as the euclidean distance of the requested and
provided QPS, normalized by the first

SLO(xz) — expected_value(x, X, p
vt . ) 19L01) erpeted_valuctr, )

, Where
expected_value(x, X, p) = isolated(x,p) — total_inter ference(x, X, p)

expected value corresponds to the expected QPS for application x when collo-
cated with the set of pods X on partition p and SLO(x) refers to the QPS the
user demanded. To define the score we need some function that declines when
the above distance gets larger. Also, for fixed distance, positive values must be
preferable compared to negative values since we must cover the users’ needs.
For this purpose we used two similarity measures. The first similarity measure
is the following

1
T+ (err(w, X, p) + 1)

scorei(x, X, p) =

and the second one

1
1+err(z, X,p)

scores(x, X, p) =

, where obviously err(x) can take any positive value. score; declines much faster
than scorey as err(x) increases and also both functions’ set of destinations are
[0,1]. In figure 8.1 we can see the graphs of the functions.
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8.3.1 Score

Let X be the set of pods running on partition p, including the pod that is being
scheduled. We define the sets X,,., and X, such that

Xneg = {x|z € X, expected value(x, X,p) — SLO(z) < 0}
is the subset of pods in X that can not cover the demanded SLO whereas
Xpos = {z|x € X, expected_value(z, X,p) — SLO(z) > 0}

is the subset of X that can cover the demanded SLO. Obviously X, and X,
are a partition of X, namely

Xineg U Xpos = X and Xpeg N Xpos = 0

The score of the partition will be a weighted average of the scores of all pods.
These scores must also be between 0 and 100 since those are the only accepted
scores by the scheduling framework.

In the negative case, the score is more important than in the positive case.
This is because it is preferable to provide more resources than the user demands
than to compromise the user’s request. For this purpose, in the negative case
we preferred the scorei(z),z > 0 which rapidly declines as distance err(x)
increases, whereas in the positive case we preferred scores(z),z > 0 which
declines slower as err(x) increases.

The final score for partition ¢ is computed as a linear combination of the
above:

1
X
[ Xneg|

1
| Xpos|

score(X,p) = 100x (1—util(p))x (k x Y scorey(z, X, p)+(1—k)x

IeXneg

X Z scoreg(x, X, p))

IGXpos

where util(7) is the instantaneous partition’s value for GPU utilization re-
turned from Prometheus and k = %}—g' defines the weight of the negative in-
stances in the total procedure. Finally, the score function’s set of destination

is the interval [0,100].
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If X,eq = 0, then the term with score_ 1 is omited, else if X,,; = (), then the
term with score 2 is omited. In the above procedure we described how we can
choose a partition which best suits our needs. However, the ScorePlugin only
gives us the option to score the whole node which can hold multiple partitions
(e.g. MIG). Let P be the set of all available GPU partitions on the node and
X, be a set of pods running on partition p. We score node n with the maximum
score among the scores of partitions p

final__score(n) = max score(X,, p)
pe

where

UX,=X

peP
If the node does not host any other GPU applications at the time the pod
arrives, then we reconfigure the GPU such that the score is maximized (if
arginax score(X,p) # current configuration). The process of reconfiguration

lasts an approximate of 5 seconds which is insignificant compared to the dura-
tion of the workloads which last few minutes. Also, when the GPU is not empty,
we decided not to reconfigure it, since the running pods would be interrupted
and therefore would violate their objectives.

8.4 PostBind and CUDA_ VISIBLE_DEVICES

In the previous section we described how we can choose a certain node, but not
how to bind the pod on the desired partition. For this purpose we utilized an
environment variable used by CUDA developers to control GPU visibility for
CUDA applications. CUDA_VISIBLE DEVICES is an environment variable
used to specify which NVIDIA GPUs should be used by a CUDA-enabled ap-
plication. When running a CUDA program on a system with multiple GPUs,
CUDA_VISIBLE DEVICES can be used to control which GPUs are visible
to the program. By default, all GPUs are visible, but this variable can be set
to a comma-separated list of GPU device IDs to limit the visible devices. For
example, setting CUDA_VISIBLE DEVICES=0,1 would limit the program to
only see the first and second GPUs. This can be useful for a variety of reasons,
such as limiting the resources used by a program or allowing multiple programs
to run simultaneously on different GPUs.

The PostBind plugin is called after a Pod is successfully bound. In order for
the pod to be bound on a specific partition we created an empty ConfigMap
and appended it in the pod’s environment. Within the scheduler, we hold an in
memory data structure describing the optimal partition for each pod and each
node and after the scheduling is finished we populate the ConfigMap with the
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CUDA _VISIBLE DEVICES environment variable, with a value equal to the
UUID of the selected partition.

We followed the exact same logic for computing and appending the optimal
MPS device limits for memory and compute capacity utilizing
CUDA_MPS PINNED DEVICE _MEM_LIMIT and

CUDA MPS ACTIVE THREAD PERCENTAGE environment variables re-
spectively.

98



Chapter 9

Evaluation

In this chapter, we use our experimental infrastructure to evaluate our schedul-
ing mechanism using a set of different experiments. We implement a set of
different scheduling logics and compare them to our system.

9.1 Description

In order to evaluate our scheduler we executed a sequence of experiments. Each
experiment had the purpose of illustrating a different aspect of the performance
of the scheduler. An experiment consists of a set workloads (pre-trained model,
backend, dataset, scenario, number of queries etc), the objectives (SLO), a
batch size as well as a distribution describing the applications’ arrivals over
time. In each experiment the exact same workloads, batch size and arrivals are
fed to the available schedulers. In the following experiments, the workloads are
deployed in batches of 8 and within the batches each workload has a random
delay of few seconds in order to add some unpredictability. We decided that the
batch size be 8, because we only have 2 GPUs in the cluster and if the batch size
got larger, it would result in failures due to insufficient resources and otherwise
the cluster would be underutilized. However, later on, we will examine the
cluster’s response to different batch size and compare the benefits of each one.
We executed two series of experiments. In the first series of experiments we
sent 20 pods over a period of roughly fifteen minutes. In the second one, we
decided to stress the schedulers with the double number of pods (40) in the
same time interval in order to examine the behaviour of the scheduler under
high pressure. Both of the experiments were repeated two times. The first time
we chose SLOs for each workload to be in the interval [0.8 X SLO4, 1.2 x SLO,]
where SLOy is equal to the expected value of QPS when the workload is running
isolated on the i of the GPU (in the case of A30 1 out of 4 partitions, in the
case of V100 limited to the 25% of the GPU resouces using MPS) by itself.
Namely, we picked Low SLOs. In the second case, we picked SLOs in the
interval [0.8 x SLO4,1.2 x SLO,], where SLO; is equal to the expected value
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of QPS when the workload is running isolated on the whole GPU. We chose to
divide the experiments in this way, so that we are able to to examine the ability
of our scheduler to partition MIG enabled GPUs, as well as, examine its ability
to handle bursts and meet users needs as they get more and more demanding.
In each experiment we measure the following QoS and GPU resource utiliza-
tion metrics using the Kubernetes API and the GPU monitoring mechanism.

0 QoS Metrics

1. Execution Duration
2. Number of errors occurred
3. Number of SLO violations

0 GPU Resource Utilization Metrics

1. Average GPU utilization (Ratio of time the graphics engine is active
(in %))

2. Average Power Consumption (W)

3. Average Energy Consumption (J)

9.2 Schedulers

In this section we analyze the main characteristics of the schedulers we created
in order to compare our results.

9.2.1 Min

First, we simulated a greedy scheduler which allocates the least possible re-
sources to each incoming workload. It accomplishes this by partitioning all
MIG enabled GPUs in as many partitions as possible and allocating one to
each application. Furthermore, for each non MIG enabled GPU it used the
MPS (multi process service) capability to limit the resources of each applica-
tion to 25%. The reason we considered 25% to be small enough is because we
observed that stricter limits incurred a high percentage of failures due to insuf-
ficient memory and/or compute capacity. Also, the scheduler used the NVIDIA
Device Plugin in order to tie applications on GPU devices, meaning that, as ex-
plained in 4.7.3, the cluster’s extended resources do not support sharing between
applications and therefore when all GPUs are busy in the cluster, incoming ap-
plications must wait in a queue before starting their execution. We used this
scheduling logic in order to compare our scheduler to one which exploits the
well-known practice of using the NVIDIA Device Plugin. We used this schedul-
ing logic in order to compare our scheduler to one which greedily exploits MPS
and MIG technologies to share GPU resources among applications.
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9.2.2 Max

The next scheduler used for evaluation is a greedy scheduler which allocates
the most possible resources to each incoming workload. In this experiment all
GPUs are used as a whole, meaning that MIG enabled GPUs are not partitioned
and MPS is not used. Also, similarly to the previous scheduler, the scheduler
used the NVIDIA Device Plugin in order to tie applications on GPU devices.
We used this scheduling logic in order to compare our scheduler to one which
exploits the well-known practice of using the NVIDIA Device Plugin.

9.2.3 Round Robin

In the last case, we decided to simulate a scheduling logic which, after parti-
tioning all GPUs in the smallest possible chunks, it scheduled pods on each of
the chunks in a round robin fashion, also supporting collocation between appli-
cations utilizing both MIG and MPS technologies. For example, if it were to
schedule two applications in the same partition it would apply 50% MPS limits
to each one of them, if it were to schedule three application it would apply 33%
MPS limits to each one of them etc. The reason why we chose to simulate this
scheduler is so that we have a baseline to assess the ability of our scheduler to
deal with interference compared to a interference-oblivious scheduler.

9.3 Schedulers Comparison

In the following graphs, our scheduler is designated by "My-sched", Min sched-
uler by "min", Max scheduler by "max" and Round Robin scheduler by "round
robin".

In figure 9.1 we can see the percentage difference between the expected QPS
(SLO) and the achieved QPS, namely

|Achieved QPS — SLO|
SLO

Obviously, our objective is to minimize this difference. We can see that "min"
and '"round robin" schedulers perform better when the SLO demands are low
since they offer less resources to pods and the achieved QPS’s are expected to
be lower while for "max" scheduler the opposite applies. Here we can clearly see
that our scheduler performs better in all of the case regardless of the SLO de-

mands. The average percentage difference among all the conducted experiments
of our scheduler is 2.92x lower compared to "min" scheduler, 3.03x lower com-
pared to "round robin" scheduler and finally 3.62x lower compared to "max"
scheduler. This metric is important because apart from demonstrating our
schedulers ability to cover the users’ needs (which will also be validated by the
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rest of the metrics) it also ensures that our scheduler covers their needs in an
optimal way, without overpovisioning resources to do so and therefore has more
free resources to host newly deployed applications.

My-sched
min

= round robin
max

100 4
80 4

60 4

40 -
20 4 |
0

20 pods Low SLO 20 pods High SLO 40 pods Low SLO 40 pods High SLO
Experiment

Distance (%)

Figure 9.1: QPS-SLO percentage difference

In figure 9.2a we can see the total duration of the experiment on each of the
schedulers. We can see that as expected the "max" scheduler takes the most
time to complete in all of the experiment since it uses the NVIDIA device plugin
and does not support collocation. With regard to the "round robin" scheduler,
we can see that the duration of the experiments in most cases is lower than our
scheduler’s. However, the reason why this happens is because as we can see
in figure 9.2b the violations of this scheduler as well as the failures (9.3) are
really high in all cases. As far as the "min" scheduler is concerned, as pointed
out before, the "min" scheduler performs better in low SLOs. In this case, we
can see that "min" scheduler has lower duration in the case of 20 pods and low
SLOs. However, as we can see in figure 9.1, the QPS achieved by the "min"
scheduler in average is much higher than the demanded QPS, therefore meaning
that provided resources are higher and thus the whole system’s versatility is
significantly degraded. Precisely, our scheduler is 1.1x faster than "min", 1.04x
faster than "round robin" and 1.5x faster than "max" scheduler. The total
number of pods whose QoS constraints were violated for our scheduler is equal
to 13 out of 120 (including failures).
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Figure 9.2: QoS Metrics

In figure 9.2c we can see the GPU utilization for each experiment and for
each of the schedulers. We can see that our scheduler achieves better resource
utilization comparing to "min" and "round robin" schedulers but worse compared
to "max" scheduler. Why this happens, is because "max" scheduler always
provide full GPU resources for each application leading to higher utilization
but also leading to 1.4x the energy consumption of our scheduler and 1.5x the
average duration.

At this stage, we will take a look at the failures that occurred in the case
of our scheduler and "round robin" scheduler. The reason why we ignore the
cases of "max" and "min" schedulers is because in these cases the number of
errors is insignificant due to the fact that NVIDIA device plugin over-provisions
resources, making it unlikely for the memory and/or compute capacity to not
be sufficient for the pod. In figure 9.3 we can see the number of errors occurred
for our scheduler as well as the "round robin" scheduler. The total number of
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errors for our scheduler is 3.4x lower compared to "round robin" (5 out of 120
applications).

7 My-sched
round robin

Errors

0 T T T T
20 pods Low SLO 20 pods High SLO 40 pods Low SLO 40 pods High SLO
Experiment

Figure 9.3: Errors

In the case of energy consumption (figure 9.4) our scheduler performs slightly
worse than "min" and "round robin" schedulers (1.01x and 1.1x higher energy
consumption respectively) while consuming 1.4x less energy compared to the
"max" scheduler. However, the energy consumption degradation in the cases

of "min" and "round robin" are marginal when compared to the improvements
showcased above.
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Figure 9.4: Energy consumption

9.4 QPS Distributions

In figure 9.5 we can see the distribution of the percentage differences between
Achieved QPS and SLO for the experiments with high SLOs. As expected
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both "min" and "round robin" schedulers failed to have a positive mean value
while almost all the occurrences lie in the negative half plane. In the case of
"max" scheduler, we can see that all the occurrences lie in the positive half
plane. However, as explained before, the mean value is significantly greater
than zero and occurrences can be found even at 25% higher than demanded due
to over-provisioning, resulting in an underutilized cluster with few applications
occupying a large quota of the total resources for a potential large time interval.
This leads to long queuing times which in turn can comprise fairness or even
lead to resource starvation. In the case of our scheduler we can see that the
mean value of percentage difference is fractionally higher than 0, while almost
all non zero occurrences lie in the positive half, however with significantly lower
variation compared to the other schedulers. On an average, only 7 out of 60
(11.6%) applications had an average number of queries per second lower than
the SLO, while even those applications that were unable to cover the users’
requests had a distance not greater than 5% from the respective requests. For
'round robin" scheduler 54 out of 60 applications (except for one) failed to
meet their constraints, with an average negative distance of 31.6%. For "min'

scheduler 24 out of 60 failed to meet their constraints, with an average negative
distance of 26.1%.
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Figure 9.5: QPS Distributions for high SLOs

In figure 9.6 we can see the distribution of the percentage differences between
Achieved QPS and SLO for the experiments with low SLOs. Here, we can see
that all of the schedulers were able to cover most of the user constraints due to
them being fairly low. However, there are some things that should be pointed
out as well. Comparing our scheduler to an interference oblivious scheduler
which supports collocation (round robin) we come to the conclusion that while
our scheduler manages to cover users’ needs for 96.15% of the applications
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while also supporting collocation, "round robin" scheduler only manages to cover
users’ needs for 62.05% of the pods due to unforeseen negative interference
produced and suffered by collocated applications. Furthermore, it is clear that
distributions related to "round robin" hold a much larger variation compared to
the ones related to our scheduler. As far as the "max" scheduler is concerned, we
observe that, as explained before, while all occurrences lie in the positive half
plane, their values are absurdly large, resulting in erratic delays and stiffness in
the cluster. Regarding the "min" scheduler we can see that all of the user needs
are covered. Nevertheless, at a glance, we can conclude that in accordance with
"max" scheduler, it also features a high variation, thus also resulting in rigidness.
In contrast to the rest of the schedulers, in the case of our scheduler the variance
as low as 18% compared to the variances of "max" and "min" schedulers which
are equal to 340% and 259% respectively.
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Figure 9.6: QPS Distributions for low SLOs
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Chapter 10

Conclusion and Future Work

10.1 Summary

In this thesis, we designed a resource and interference aware GPU scheduler
based on state-of-the-art Kubernetes container orchestrator. First, we charac-
terized our workloads based on metrics obtained from prometheus time series
database(TSDB) regarding their performance and after analysis of their results
we were able to extract some useful conclusions related to their interference
and durability to heterogeneity. We evaluated the system using workloads that
consist of inference engines with different backends, models, number of queries,
scenarios etc. We show that our scheduler, for the majority of workloads and
scheduling scenarios, can achieve lower pending and execution time on average
as well as better resource utilization while it ensures versatility and sticks to
the users’” demands without incurring high overhead or energy consumption.

10.2 Future Work

The analysis, observations and proposals described in this thesis were an imma-
ture attempt to face the GPU sharing problem in Kubernetes infrastructures.
In the following subsections, future work is suggested. We categorize those sug-
gestions into two groups, the ones related to development optimizations and
the ones related to further research opportunities.

10.2.1 Development Scope

Regarding the development of the system, future work could include designing
a custom device plugin which, similarly to our work, using MPS and MIG
technologies would offer the ability to the user to reserve GPU resources in
a fine-grained manner. Regarding heterogeneity, the code can be extended to
take into consideration other modern system resources such as FPGAs, TPUs,
ASICs etc. Regarding the prediction system, a wider variety of AI/ML models
and their respective parameters could be explored in order to better profile the
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applications. Finally, in order to train our models the data used were metrics
obtained by statically profiling the incoming workloads. Therefore an option
is to extend the recommender system in order to be able to get a trace of an
unknown application and add it to the dataset while regularly retraining the
models to incorporate the data from newly arrived applications.

10.2.2 Research Scope

In this section, we suggest some research subjects as proposed future work.
First of all, a Neural Collaborative Filtering model could be used to predict
the performance and interference of incoming workloads. Another option is
that since multivariate imputation performs better for low sparsity and SVD
works better for high sparsity, a mix of the two could be used to optimize
the accuracy of the predictions. These extensions will allow better collocation
decisions and hence less quality of service (QoS) violations and better resource
utilization. Finally, more fine-grained/low-level metrics could be utilized in
order to explore the sensitivity of each application to the interference on each
component of the GPU architecture.
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