Efvixé Metodfio Ilohuteyvelo
2xon) Hxextpondyov Mrpyovixedv
xo Mnyovixedv TToNoylo ey

Toygac Teyvoloylac IInpopopuxhc xou
TroloyloTtHv

NG
£
K

AN N
k(\
1! ?‘- N\ 2
:‘3' ot ¢ =D
7 NPOMHOEV S
3l
nvpPPoPo

{n,

Aupeocol ANyopiBuor ErnauEnuevor pe
ITooPBAedeig yia ITpoPARpata Xwpobetnoneg »xau
AvdOBeong Ildpwv

AIITAQMATIKH EPTAYTA

IAYQON XATZHOEOAQPOY

Emprénov 1 Anurtploc Potdnme
Av. Kofnyntic E.M.IL

AbYjva, Mdptiog 2023

TANEIS
@

3,

'
¥

Efvixé Metodfio Ilohuteyvelo

2xon) Hxextpondyov Mrpyovixedv
xo Mnyovixedv TToNoylo ey

N>
a : a

1! ‘ﬂ- *
) NG =
Y’ NPOMHOEV S .
3l
nVP$OPOS

{n,

Toygac Teyvoloylac IInpopopuxhc xou
TroloyloTtHv

Aupeocol ANyopiBuor ErnauEnuevor pe
ITeoPBAedeig yia ITpoPApata Xwpobetnoneg »xou
AvdOeong Ildpwv

AIITAQMATIKH EPTAYTA

IAYQON XATZHOEOAQPOY

Emprénoy 1 Anurtploc Potdnne
Av. Kabnyntic E.M.IL

Eyxplbnxe and tnv teiwelr) e€etactiny emtpony| v 30n Moptiou 2023.

Anurteloc Potdxnng Apioteldne Hoyouptlhc Avtodvne ZupPovng
Av. Kofnyntic E.M.IL Koafnyntic E.M.IL Kofnyntic E.M.IL

AbYjva, Mdptiog 2023

Idowv Xatlnbcodwpou

Awmhoyoatolyoc Hhextpohdyoc Mryavixdg xow Mnyovixde Yroroyiotodv E.M.IL

Copyright ©) Idowv Xatlnfeododpou, 2023.
Me empONaln mavtog dixoumuatog. All rights reserved.

Anoryopeetan 1 avtrypagy, anobrixeuon xou Siavour| tng mopoloos epyasiag, €€ oNoXNpou Y
TUARATOS AUTAS, Yia EUTopxd oxond. Emitpéneton n avatdnwor, anodixeuorn xan Swovour| yia
OXOTO U1} XEEOOGKOTUXO, EXTUOEUTIXAS 1) EPELYNTIXYC PUOTE, UTO TNV TeolTdBeo Vo avapépeTon
N Ty TEOENEUOTE Xa Vo Satneeitan To ooy urvuua. Epwthuata mou agopolv Tt xehon e
gpyaoiog Yot XEpdOOXOTIXO OXOTO TEENEL Vo AnELBUVOVTOL TEOG TOV CUYYEAUPEA.

O andelg xon oL GUUTERACUATO IOV TEEPLEXOVTAL OE AUTO TO EYYEAPO EXPEALOLY TOV CUYYPAUPEN
xou OV mEENEL var epunveulel Tl avtimpocwrevouy T enlonueg Béoeic Tou Efvixod Metodfiou
[To\uteyveiou.

ITepiindm

Yy mapovoa Simhwpatixn, eotidlovpe o pebddouc Pertinone twv oyopBuwy yia dueca npo-
BX\Auota ot ypdpoug, yenotpworowwvtas teofiédec. Ou alydplbuol emavinuévol pe tpofrédelg
elvon pio tpdopatyn xatevbuvorn oty Tpoomddelo Yog Vo EENERACOUUE TNV AVAAUOY YEWROTERNS
nepinTwong, mou divel amauct680&a amtoTeENEGUATA Yiot TOANG TeoPAAuata. E€outiac tne mAndcdpag
TV CUANEYUEVWY Bedopévav, N AN tpoPrédenv Bewmpeiton TeTpyupévn xou pog Bivel TV guxou-
ela var teThyouue TOND xoAUTEPOUS Ndyoug Tpocéyyiong. Ol mpofNédelc oung mou Naufdvoupe,
olvovTan xwplc eYyURoELS Yior TNV TOLOTNTA TOUG, OTOTE TEETEL VO TETUYOVUE Uiot XATIANTAT LoOE-
poTiot AVAUESA GTO VAL TIC EUTIULO TEVOUIG TE KOl VoL TLC Oy VOOUUE. LUYXEXQUEVA, YETOHLOTOLOVUE
évay o\yoplduo mou oxedLdoTNXE Yiot duECH TEOPAAUATO O YEAPOUS WOTE va eENn@eAnBodue
and Tic TpoPAEderc ato meoPAnua Evouiaone Kotaotnudtov, uia éxdoon tou Hpofifuatog
Xwpobétnong, 6mou 1 xatavouy| ToV TENATOY HETAPINNETOL PE TO YEOVO. 110 TEOPANUL auTo,
avtl va ayopdoouue xotao THUOTL it VoL XONOPOUUE TOUC TENETES, Tal VOLXLECOUUE Yol GUYXE-
xpwéva ypovixd diaothuata. H ypoviny| e€dptnomn anodeixvietal onuovTixy TeOXANOY XATd TNV
avdaueT Tou ayoplBuou, xabne uio mhovn Ao v tic tpofNédeig dev pnopel va npocapuoc el
UE TROQaVY| TEOTO YLot vor XoALUeL TNy elcodo.

NANAS ARSI NAR X

AXyopBuol enavénuévol pe mpofiédeis, Hpdfrnua Xopobétnone, IpdBrnua Evouiaong Kota-
otnudtwy, Ayeca tpofAiuota yedpwy

Abstract

In this thesis, we focus on ways to improve the algorithms for online graph problems, by taking
advantage of predictions. Learning-augmented algorithms are a recent direction in the field
of Beyond-Worst-Case analysis of algorithms, which aims to overcome known pessimistic
bounds for many problems. Due to the abundance of collected data, acquiring predictions
is considered standard and gives us the opportunity to achieve much better approximations.
Yet, these predictions are given without any guarrantees for their quality, therefore we need
to be careful that we do not trust them blindly, while also not ignoring them completely. We
proceed to use a framework for online graph problems in order to take advantage of predictions
for Online Facility Leasing, a variant of Online Facility Location, where the distribution of
the demands also changes with time. In this problem, instead of buying facilities to cover
demands, we lease them choosing from k different lease durations. Time dependency proves
to be a challenge for the analysis of the algorithm, as a solution for a predicted instance may
not be readily adapted for use with the input and requires a problem specific approach.

Key words

Beyond-Worst-Case analysis, Learning-augmented algorithms, Algorithms with predictions,
Facility Location, Facility Leasing, Online graph problems

Euyapioticg

[Mpdto am’ola Bor HBeXa va euyaplothow tov xpto Pwtdxn, oyt uévo yia TNy utooThetEy Tou
XATE TN OLIAGUATIXY), OANG X0 GE OXM T BdpXELo TNS OYONNG, Amd ToL TEOTTUXLXS Uabriuortd
TOU TOU HOU XOANERYNoay TNV mepiépyela v T Oswpnty I npogopunt|, uéyel xou g ai-
THOELS UOU Ylow BdaxTopxéG oToudég oto e€wtepxd. Emnlong, yalpouon Wiodtepa mou elyo tnv
euxauplor va evtadey oto study group tou gpyaoctneiou, émou mépa and evolapépovta BéuaTa
otnv II\npogopuxn, elyope 0 duvatdTnTa Vo cULNTAUE TS BUGKONEG OANS Xou TIC ETLTUYiES Yag
GTO TENEUTAO XOUUATL TV OTOVDWY WIS, LE ONEG aUTES TG TpooTdleleg Beébnxay dimha pou 7
OLXOYEVELL L0V, TOREYXOVTAS CUVEYTH OTAREN Xou oL iNoL Hou, oL omolol Exavay Ta XEOVIL TOV
TEOTITUYLAXWY COTIOUBWY WOV TONU o eUYAELOTA amd 6,TL Bat umopoloa VoL PUVTIC TE.

Idowv XatlnBeodwpou,

Abr¥jva, 30m Moaptiouv 2023

ITepieyopeva

IMeeindm . . . o o
Abstract
EuxoeloTieg
IMeprexOpevaro
Katdhoyog oxnUATOV Lo
1. Extetopévn EX\nvixd Ilepindmo 0000000000000
1.1 Ewoyoyhdo

1.2 Optopol . . o oo
1.3 Tevixée MEOBOBOL o e
1.3.1 Primal Dual Enavénuévo pe HpofBNédewc

1.3.2 TIpoPiuota Kéudne pe Iloxkamhég lpoBrédec

1.3.3 Ayecor A\yépBuol oe T'pdgpoug pe MpoPNédewg

1.4 Alyopbuol Enowénuévol pe Tlpofédeg o o 0oL oo
1.41 SkiRental

1.4.2 Non-Clairvoyant Job Scheduling

1.4.3 Apeco Aévtpo Steiner oo

1.4.4 ‘Apeco Facility Location

1.5 Facility Leasing pe IlpoBNédec Lo oL

2. Introduction
2.1 Previous Work L
2.2 Facility Leasingo
2.2.1 Framework L

2.2.2 Algorithms

2.2.3 Contribution L

3. Preliminaries L
3.1 Definitions
3.2 Predictions
3.3 Error Metrics L

4. Frameworks

4.1 Primal

Dual Learning Augmented Framework

4.2 Covering Problems with Multiple Predictions 38

4.3 Online Graph Algorithms with Predictions 42

5. Learning Augmented Algorithms 47
5.1 Skirental 47
5.1.1 Single Prediction o 47

5.1.2 Multiple Predictions oo 49

5.2 Job Scheduling 51
5.2.1 Preferential Round Robin Algorithm 52

5.3 Online Steiner Tree 53
5.3.1 Using Outliers as the Error 54

5.3.2 Using Metric Matching with Outliers as Exrror 56

5.4 Online Facility Location 59
5.4.1 Prediction of the Input 59

5.4.2 Multiple Predictions of the Solution 59

6. Facility Leasing 63
6.1 Online Facility Leasing 63
6.2 Subset Competitive online algorithm 64
6.3 Prize-collecting offline algorithm o0 65
6.4 Facility Leasing with Predicitons 67

7. Conclusions e 71
Bibliography 73

12

Katdloyog oxynudtwv

6.1 Example of matching where blue rectangles correspond to leased facilities of
the optimal solution while red is a possible extension

13

Kegdlawo 1

Extetopévn EXAnvixA Tlepiindn

1.1 Ewayoyn

H mo Beyehioddng npdxAnom nou avipeTomtilovue oTn HENETN TV duEcwV anyoplBuwy eival
1 afePfoudTNTd pag Yl Tot UENNOVTIXG Bedopéva, oTa onola Bev €youue oxdua tedcPacr. Autd
YIVETOL XATAVONTO OV OXEPTOVUUE TNV TERITTWOT G TNV OOl XATOLOE AVTIRANOG Lo TTAPEYEL TotL OE-
OOUEVA UE OXOTO VOL oG ovary XdoeL Vo xdvoupe Adbog emhoyéc. H mapandve pébodog aviuong
anyoplBuwy Néyetaw Worst-Case xou amotehel TNy xAaowxn TeocEyyion yLo TOV XopaxXTNELoUo
TV aNyoplBuwy xou Xt etéxTaon TwV TEOPANUATOY. AUCTUYWS, UE AUTOV TOV TEOTO OL NOYOL
TPOGEYYLOMNEC OV TalpvouE elvon apxeTd anatctodool. Mepind nopoadelyuota BENTIOTWY aXyopib-
MOV TOU avadeeviouy outd To TedPAnua etvat o vietepuviotinde O(k) xaw mbavotxde O(log k)
Tpooeyyotxol alybéptbuol yioa Online Paging |[Fiat et al., 1991], o O(logn)-rnpooeyyio tuxde
oaAyopbpoc yo Online Steiner Tree [Imase and Waxman, 1991] xou o 10{;1% TPOCEY YO TIXOC
oaAyo6pbpoc vl Online Facility Location [Fotakis, 2011].

Mio véa mpooéyyion mou mpotdbnxe and touc |Lykouris and Vassilvitskii, 2018| vy tnv
OVTLUETAOTIOT TV SUGXONMY Tou empépet 1 afefondtnta, elvar n meoPAedn ueANoOVTIXGY Yopa-
ATNPLOTIXWY TOV OEBOUEVOV ELGODOL XAl 1) XENoT TOUS xuTtd TNV exTéNeon. Me autdy Tov TpbTO
Eexivnoe 1 ueNétn TV alyopBuwy enavinuévayv pe tpofiédel xau puéoa oe Nya xedvia €xel
odnyhoetl oe TARog and amoteNéopota. Yo pio évvola, N emTUYio TOV LOVTENWY UNYAUVIXAC Ud-
Bnong mopéyouv onuavtixd xivteo ot auth Ty npoondbela, xabng e€acpanilouy Ty andxtnon
TV TEoPBAEdewy. Puoixd, Ta Tapandve HovTéNa SEV TEpLUEVOUUE Va Bivouy Téleleg mpoPiEdeLs,
TEA UOVO UEXETA XONEC WO TE Vo TeTuyabvouue BerTiwoelc. Ondte elvon Aoyixd var xatéyel xe-
vipixt| 0€om 1 évvola Tou oPdruaTOS TV TEOBAEPEWY xaTd TNV avduoT. AtucOntixd, Ba OENoue
vo tetuyadvoude AOoeELS TOXND XovTd oTig BENTIoTES GTay oL TPOPAEYELS € oLV YaUNAO Gpdiua,
eved otny avtibetn mepintwon 0o OéNoue va unv elvar yelpdTERES amd AUTES TV HOT YVWO TWOV
oa\yoplBuwy mou dev éyouv mpdcPacn oe mpoPrédelc. Puoind, autd Bev Ba elvon YvwoTd xaTd
TV extéleot), xabdg eaptdton and oNéxAnen TNV dyvwotn elcodo. ‘Eva axduya mo xelowo
gpwtnua elvon To TL o eMAEEOLUE WG XATENANAY TEOPAeT. Xe xdmoleg mepintdoEl; apxel va
Teploplo ToLpE ot dedouéva Tou Bo yenouwonololoe évac BéENTIoTog aNydelBuoc mou yvwellet
OX\n v eloodo, 6nwc xdvouv ot [Lykouris and Vassilvitskii, 2018] vyt to Online Paging. Mia
amholo tepr emhoy Y ebvar vor teofAEéPouue oXdxANnEn TNV €lcodo €€ apyhc, OTWS Yio TAEAdELY UL
xévouv ot [Xu and Moseley, 2021, Azar et al., 2021]. Emunhéov éyouv ypnowponombel npoPré-
Jewg oyetinée pe Tt popen tne PérTioTne None [Bamas et al., 2020, Fotakis et al., 2021, Jiang
et al., 2020, Agrawal et al., 2022].

To nedlo Twv duecwnv a\yoplBuny péypl Thpa Xl CUVAVTHOEL TN YUEYAUNITERT ETITUY (X OTN|
xerion teoPAEdewy, ye peydro TAHBoC TeoPANUATWY Vo €y ouy UeENETNOEL amd auTY TNV OTTLXY Y-
vio. Yuyxexpiuéva, éxet peretndel to Online Paging [Lykouris and Vassilvitskii, 2018, Rohatgi,
2019, Antoniadis et al., 2020] xou 1 yevixeuor tou Weighted Online Paging [Jiang et al.,
2020, Bansal et al., 2020|. Eniong, éxet uehetnfel to Non-Clairvoyant Scheduling oe Sidgpopec
exdoyéc [Purohit et al., 2018, Mitzenmacher, 2019,Im et al., 2021a,Cho et al., 2022, Lindermayr
and Megow, 2022, Zhao et al., 2022]. Mio d\\n xatnyopla mou €xel pehetnBel extevds eivan ta

15

TpoBNAuarta dixtiwy, é6twe to Online Steiner Tree [Xu and Moseley, 2021] xou Online Facility
Location [Almanza et al., 2021, Fotakis et al., 2021, Jiang et al., 2021]. Emt\éov, undpyouyv
eQopUoYES oe xhaowxd mpofNfuata énwg To Online Subset Sum [Xu and Zhang, 2022|, Online
Knapsack [Thang and Durr, 2021,Im et al., 2021b, Boyar et al., 2022].

Ye oLVBLAOUS UE TIC TTAEATAVM NUCELS OE CUYXEXELIEVA TEOBNY U, €xouv avartuybel xoun ye-
vix6TepeC pébodoL, uE TIC OTOlEC UMOPOVUE VO AVTIUETWTICOUUE ONOUNNPES XATTY0pleC TEOPAN-
HaTwyv. Xuyxexpiéva, 1 uébodog primal-dual yevixedtnxe wote vo cuunep\afet Ty xeron neo-
BXédewv yio Ty Noom [Bamas et al., 2020] xou egoppdéotixe ota npoPfifuoata Online Weighted
Set Cover, Ski Rental, TCP Acknowledgment. E&etdotnxe enlong xau n nepintwon mou pog
dlvovton moaNanmhéc mpofAédeic yio TNy xatnyopla Twv covering problems, my Online Facility
Location xatd tn didpxeto tne extéreone and touc [Anand et al., 2022a]. Mo axdpo npocéy-
yion eivan auth twv [Azar et al., 2021] mou oyeddotnxe Y TEoPNAuata o yedpous, dTnG
to Online Steiner Tree, dedopéveov TEoBAEYemY ONOXANENE TNE €GOBOL, 1) ETiTUYla TNE omolag
cuvicTatan 6TOV 0ploud Wag YEVIXELUEVNS €vvolag oparuatoc. ‘Omng elvon @avepd, autég ot
u€BoboL xaAOTTOLY TOANES XaTrYopleg TEOBANUATOY OANG xou BiapopeTixd eldn Teofrédenv.

Baowlbpevol otnv teleutaio and autéc [Azar et al., 2021], O npoonabricouye va xenot-
ponotiooupe TpoPAédeLC yior Ty enihuon tou npoPAfupatoc Online Facility Leasing [Anthony
and Gupta, 2007], to onolo cuvdudlel) xopwh xatavour tou Facility Location |[Meyerson,
2001] pe) ypovint| xatavopr| Tou Parking Permit [Meyerson, 2005]. ‘Onwe Ba govel 610 TeNeU-
Talo xe@ANALO, TNV TEPINTOON ToL oG BlvovTon xanég TpoPiédelc, o alybplbuog Eenepvdet To
BéXTIoT0 %6010 UbVO XAt ot otabepd, vty oty TepinTwon mou ol TeoPiéelg amodetyBolv
avo€lomioteg meTuyalvel Ty Bl Tpocéyyion ue tov anybelduo mou dev ypnouylonoiel Tpofré-
Jewc [Nagarajan and Williamson, 2013].

1.2 Opgwopol

[Ty avdiuor Tev aryopiBuwy mou Ba tapouclacToly elvon amapaitnteg xdnoleg Paoixég
évvolec. Luyxexpéva, ot [Lykouris and Vassilvitskii, 2018] avé\ucav touc alyopifuouc toug
EMEXTENVOVTOG TNV €Vvola TOU AOYOU TROGEYYIONG, DOTE Vo ex@pdoel tTnv e&dptnon and To

OPANUO TV TEOPAEDEWV.

Opiopodg 1.2.1 (Abdyoc Hpooéyyione). Evag alydoduos A éyer Abyo moooéyyons ¢ av pa
xdde otyuoTvmo o oyveL
costa(o) < c-OPT(o)

Ou 800 eyyuroec mou Bo mpémer va Slver évac anydelbuog mou yenowonolel mpoPfrédelg
oxetilovtal e TNV ToLOTNTA TNE AUomg, dTtay oL TeoPAEédelc elvan cwoTég xou 6Tay oL TpoPNédelg
elvan evtende havBoopévec.

Optopbg 1.2.2 (Xuvénew). Evag alydoiduos elvar f-ovvennc edv o Adyoc moooéyyonc tov elvat
B drav to opdiua twv mpofAépew elvar to eddyoto Svvard, dnAadn ov moofAéyeic elvar andivta
OWOTEC.

Ogtop6g 1.2.3 (Evpwotia). Evac alydouduos elvar ci-ovvenic edv o Adyog modéyyions tov elvat
o otay to opdApa twy meoPAcyew elvar to puépoto Svvard, dnAadn avedotnTa pe Ty modTnTa
Ty mpofAépew.

XeNoWOTOWWVTASC TOUG TORATAVW OpLoRoUE, T EMUUNTE YaeaxTNEIo TXd eVOE anyoplBuou
ue npoPAéderc Ba elvan 1 otafepn] cuvETELX Xou ELEWG Tlol TOL eV EeMEPVE XA Td TOND TOV XANVTERO
a\yopLluo ywelc TpoPNédeLc.

‘Ocov agopd ctoug alyopliuouc mou Bu yenowonoindoly, uo yeriown WoTNTL Yl ToV
GUVOLOOUO TOUG PE AANOUG Efva Vo BlaTneolV To NOYOo TROGEY Yo Toug O xdbe uToGUVONO
TV dedouévay eloddou [Azar et al., 2021].

16

Opiowodg 1.2.4 (Subset Competitive). Evac duesoc atydoiduoc ON pe eivodo R xar Adyo
noodéyyons f(|R|) elvar subset-competitive edv ya xdde R' C R to xdotoc mov mhnodver ota
frpara mov tov doyovrar ta otoyela R elvau

ON(R') < f(IR|) - OPT(R)

TéNog, elvan oxdmpo va avagepholye oTic prize-collecting exdoyéc Twv npofAnudtov. Ano-
TENOUY TORUANAYES TV dUEcKV TeoPANudtov 6Tl onoleg dev ypetdleton va xobdpouue xdbe
oTowyelo TNg €L0600L UE ATl NUOT), OANS EXOUUE TNV ETULAOYT VO TANPMCOUUE EVA YVWO TO ATO
TEY XOGTOC XAl VAL TO aPioOoLUE oxdAuTTo. AtoncOntixd, pe autdv tov 1pémo €xouue TN duva-
TOTNTA VoL AmoXTAOOLPE AUoES emBuuntod x60T0UE, oL OToleg XONOTTOLY Tal Uépn NS EL06B0U
Tou BéNouye.

Optowdg 1.2.5 (Prize-collecting). Av vmo@éoovue dui évac dueoos atydorduoc ya éva modpinua
ue eloodo R mhmoder c(r) ya va xarbyer évar € R ayopdlovrag pua Abon ya avtd, 1 va typwendel
ue xéorog m(r), dmov n w elvar yvworn €& agyne. Téte otdyoc elvar va elayotomornoovue to

Zc(r)+ Z 7(r)

res reR\S

émov S C R elvar to olvolo twy xalvupévwr r € R.

1.3 T'esvixéc M£0odor

ITopdXo mou yia yeydho aptbud npofAnudtoy 1 xenon Twv npofAédewy yiveton ue TpéTO TPO-
GOPUOCUEVO GTO CUYXEXPWEVO TEOPANUA, TedopaTa Ex oLy avartuybela o yevixdtepeg uébodot,
oL omoleg AeLTOUEYOOV UE TN NOYLXY| TOU HadPOU XOUTIOU ol XUNOTTOUV EVPUTERES XaTTYOpleC
TeoPAnudTwy. Xe auty TNy evéotnta Ha tapoucidcouue clvTopa Tela amd aUTd, YE XELTHRLO TO
£0p0C TV TEOPANUATWY G Ta oTtolal UTOEOVY VoL EQUPUOC TOUY.

1.3.1 Primal Dual Enauinuévo pe IlpoPrederc

H teyvixy) primal dual avantiybnxe yio tnv enthuon tou xhaopatixod Weighted Set Cover
[Alon et al., 2003| Berixe epopuoyy oe peydho mafBoc mpofinudtov. H Poour wéa elvon mog
BLATNEOVUE ULl EPLXTH AUGT] VLol TO TEMTEVOV TEOBATUL xou Uic U1 EQPUXTH YLl TO BUIXO, TTOL AmEYEL
€V CUYXEXPLIEVO TIoEAYOVTA a6 To va yivel epuxth. Edv 1 Abor tou mpotebovtog gpdooetol dve
ané TN NOom Tou dUixo) entl vy GANO TaEdryovTa TOTE amd aclevr) BUXOTNTA AmoXTOVOUE TO NOYO
npocéyyione. To enduevo Priua etvar va petatpédoupe auty| T ANOT| O axépota XENOLLOTOLMVTIS
XATOLL TEXVIXT] OTEOYYUNOTIOMONE oL EMPEREL TOV TopdryovTa Tou integrality gap.

H B oxpide hoyunr| axoroubeiton xow otnv nepintwon tou primal dual ye mpofiédei,
PDLA [Bamas et al., 2020]. H pévn Swopopd etvon dtu xotd tny eviuépenot twv HEToBANTGOY Tou
TpwTevovTog BENoupe var avgdvoupe o €vtova autéc mou unootnellovton and TG meoPrédels,
oL omoleg avagépovtar oty BENTIOTN Ao

Weighted Set Cover we IlgoBXEdeic. To mpofAnua mou xenouonolelton g TUpdOELY U
vioe T ouyxexpwévn uébodo eivar To Online Weighted Set Cover. Aedouévou evog cuvorou U =
{e1,e2,...,en} xou éva olvoro F and unocivora ue Bdpn tou U. Exomde pog etvar vor xanbpouvue
e oroweio Tou U ayopdlovrag Tg m0c0oTo and xdbe S € F ONNoDN D ge pe) s = 1, EVO
EAUYLOTOTOLOUPE TO ONXO XOGTOS D g7 Ws - Ts. Ou mpoPAédeic mou pag divovton elvon éva
uroolvoro A C F nou avuiotoxel otny BéNTiotn oxépoun Noo.

17

Algorithm 1: PDLA Weighted Set Cover

forall e in the input do
while } ¢ p() s <1do
forall S € F(e) do
1 A 1-)
| s ces- (14 59) + g + wmroma - HS € 4)

Ye & Ye + 1

Ocdpnua 1.3.1. To xdéoros Tov alpopiduov eivar ALG < min{O(log(d/\)) - OPT, O(1) -
S(A, 1)}, émov S(A,T) eivar o xéotoc Tng Aons mov divovy or mpofAdyerc.

1.3.2 IlpoPrruata Kdhudng pe IToxhankég ITpoPréderg

[Mopopévovtag otny (o teployn TeoPANUdTOY, 0 TIELOVUE OE Wia YEVIXOTERT TERITTWOT), Ta
dueoca mpofAuato xdaudne. Autd ta ntpofiuata mepéyouy to Online Set Cover mou eldopue
TEOYYOUHEVWC XAl UE UxpES Tpomonotioelg axodua xou To Online Facility Location. Onwg €detlay
ot [Anand et al., 2022a], UnopoVUE VoL EXUETOANELTOUUE TONNATNES TpoPNEJelC e xdbe Priua
XL VO GUYXEIVOUUE TNV NOOT) WO HE TOV XANVTERO CUVOLACUS TOUC.

Apeoco IMpoPAnua Kdludng. 'Ecto 6t pag divovtar xbéotn ¢; > 0 xan cuviehestég
a;j > 0. Tote 10 yoouuixd TEdYpopU TOU TEpLYEdPeL To TEOPANU Exel TNV eENC Lop®Y

min g Ci T
%

s.t.Zaij cx; > 1 Vjem]

)

z; € [0,1] Vi€ [n]

Omou ol ¢; Sivovtaw otny oy xou o€ x84 Briuc j oamoxaNiTTETOL VOIS TEPLOPLOUOS Y . Gij « i >
1, o omolog npénel va ixavoronbel oo (Blo Pripa xon yior OXo Tor enoUeva. Autd unopoUue Vo To
TETOYOVUE amoQaciloVTAS VoL UNV UELDVOUUE TIC TWES TV UETAUPANTEOV.

ITeoPrederc. e xdbe Priua j divovian k mpofiédelc yia tic Tiwée Tov yetafntodv. H s mpo-
BXedm i TV i-ooTth yetafAnT Oo elvon) (4, s) xou To uévo mou yvwpllouvye yla auTég efvan
TS LXAVOTIOLO0Y TOV TEPLORIOUO auTo) Tou BruaToq.

INo vo ppd€oupe 0 x66T0¢ TOL aNYopBuou Ba yenowonomnBoiv dUo Nioeg mou opilovtar
ATOXNELT TIXG YLt TIC TTROPNEPELC. Buyxexpuéva, 1 Tt anhd Bo utoloyilel To x6ct0¢ oL Bt
elyape av axolovbodoaue TUPAE TNV xoAUTERT TEOPAEPYT, dnhadn

STATIC = min ¢i - max (7, s)
selbl i 7€

And v AN, wla xoxOtepn oo elvon autr mou malpvouue av Bewpricovue EexwploTd Tig
TpoPNédec mou divovton o xdbe Pripa xan Peodue v xakltepn and autés. To clvolo Ttwv
Srabéouwy emhoydy tote Ba etvon X = {2 € [0,1]" | Vi € [n], V] € [m],3s € [k] : &; > #(j,5)}
xat 1 Aor Oo etvou

DYNAMIC =min » _ ¢; - &
PeX icm)

‘Onwg elvon gavepd, ol dwabéoiueg emhoyég tng DY NAMIC mepiéyouv T emAOYES NG

STATIC onéte DYNAMIC < STATIC.

18

(<, S S N I

Apecog AXyopBpog v to ITpoPAnua Kdhudng we ITpoPrEdeig. Ye xdbe Briua
Oor avEdvoupe Tic peTtaffANTé pe SapopeTixols pubuole. ‘Onng etvon Noyixd, auth n adinorn Ba
elvol avahoyT TNG CUVELGPORAS TNG UETAPANTAC 4 TNV X3AUPYN TOU TEQLOPLOUOY, ayj KoL AVTL-
CTEOPWS AVINOYY) GTO XOGTOC ¢; Tou eT@EpeL. Il va elodryoupe TNV emippoy| Twv TeofAédewy,
Ba Bewprioouue To Yéoo 6po TV TEOPAEPEwY Tou BOONXAY GTO cuYXEXPWEVO Priua Yiot TNV xdbe
ueTaBANTH, SN + S, #5(4, 5). Stov aly6pbuo oupBoliloupe § = 1 xon x5 = >, & (4,).

Algorithm 2: Online Covering Framework

forall steps j do
while Zie[n] ajjr; < % do
forall i € [n] do
if z; < % then
L t Increase x; with rate d;t" = %J (@i + 6 - xy)

YuvdudlovTtog Tov TaEATAVEL INYOELOUO UE Evay oTolovdnToTe dueco yweic TpofAédeic malpe-
VOUUE TO Topoxdte Bewmpnuo. O cuvduaouog uropel va yivel xenolonouwvTag Tov (6l oy opLduo
xa lvovTtag Tou wg e TN TEoPNedr Tig NUoelg Tou instance nou €xel npdoPaon oe TpofAédelc
xaL we de0TeEEN TIC ANDGELS TOU duecou ywpelc TpoPNédelc.

Ocdpnua 1.3.2. Yrdoya alydoibuos tov omoiov to xdoros evar ALG < min{O(logk) -
DYNAMIC,O(logd)OPT}, dmov d elvar to pépoto mifdoc petaflnrdr pe pn pndeviecovs ov-
VTeAe0TEG 08 xdle TEQLOQIONO.

1.3.3 Apeocor AXNyoeBuol o I'pdpoug pe IlpoPAeEderg

Yy xatnyopla tov tpofAnudtwy tou opilloval oe PeTEIX0US Y Wpous (1 o€ Yeapous Ue TNV
ouviOn évvola andotaonc), Eva XploYo YoPUXTNELO T EIVOL 1) XOEIXT XUTAVOUY| TV OESOUEVLY,
T omola eppavilovton €var évar xon meénel vor xanugboly. Omodte 6Ty Tepintwon mou 1 tedPiedn
elvar oXOXANEN 1 eloodog, N moloTNTd Tne Ba xabopiotel and N chyxplomn TNG XATAVOUNS NS
ue v mparypatixy| elcodo. To mo yevind TANUCLO YEXEL TWEA TOU XUNUTTEL AUTH TNV TERITTWOT)
elvon o [Azar et al., 2021], xabdc o edLEoTXE PE TN NOYIXT| VoL TOPRITTEL EVIENGDS AavBaouéveg
TEOPBNEPELC AANG XoU VO GUYXEIVEL TIC XATAVOUES TV XOVTVOVY TeoPAédemv ue v elcodo wg
Tpo¢ TNV andotact] Toug. Hapadelypata tpofAnudtov ota onola uropel va xenouytonowmbel etvou
7o Online Steiner Tree/Forest xor Online Facility Location.

TpoPréderg xow Tepddpoto. Onoc 781 avapéobnxe, n mpdPredn R avtiotouyel oe oX6-
XAnen v eloodo R xou diveton €€ apyhc. ' Tov untohoyiopd Touv cEINUATOSC XENoUYLOTOLElTON
wa duddoa (A, D), émou 1o A neprypdpel To TARBoC Twv Tporéewny/dedopévav Tou elvon ToND
HaXELd Lo var avTio Tollo Tolv xou D elvan To x60Tog yiot TNV avTio ol lon Twv urtoloinwy. Ilo
ouyxexpeva, edv T' C R xou T C R eivon ta UmOoHVONA TV dU0 XATAVOUWY Tou Peloxovtou
UPXETE XOVTE (OTE VoL éxEl VOTA 1 avTioTolioh toug, téte A = [R\ T U R\ T| xon w0 D
unohoy(leton avéloya pe to TeéBANuUa, TuTixd ue min cost matching avdueoa oto T, T. Onoc
palveTon, LTdEY oLV TOANOL ThavOl GUVBUAGHUOL AUTMY TWV BVO XKoL To ATOTENEGUATA LOYVOUV YidL
OTIOLOVONTOTE Ao QUTONG, oV ot TUTIXE Tot xa\UTepa bounds mpoxintouv oto Pareto frontier.

Anauwtroeig. O ocuyxexpipévoc anyoplBuoc Aettoupyel cuvdudlovtac dvo dihouc. O mpttog
and autog Oo elvon €vag OmOLOGOHTOTE GUECOS aNYOEWOUOC Yol TO TEOBANUA, UE TOV TEQLOPLOUO
ot mpémel vo elvon subset competitive xou 0o ypnowonomnBel yior var xa\OnTeL Tor dSedouéva TNg
ewo6dou. O deltepog Ba etvan offline xou Bo yenowwonolelton yia vor ayopdlel uepixéc Nooelg
mve oTic TeoPNEdels, Yo auTd xou ypeerdletar var ebvon prize-collecting xan otabepold Noyou
TREOGEYYLONG. LXOTOS TOU GUVONLXOU oy op{Buou elvon vor Soulelel oay var yvoeLle o UTOGUVONY
T,T. Edv {oyue auté téte B umopovoe vo teéfel évav offline ahydpifuo mdve oto T’ xa
TANEWVOVTOG €Vol XOOTOS AVTICTOIYLONG VoL XENOWOTOWOEL auTH TN AVom yiar vor xaxldel to 7.

19

[Mo Ty unoounn elcodo Bo apxoloe va xenoylonoioet Evay online a\ybpeiduo. To eviunwotaxd
elva g eved dev pnopel vor axolouBroel auth) TV TaxTixy, xabdg to T, T Sev elvon Yvwotd,
netuyabvel TEAX Ta (Blar amoteNéoUaTOL.

AXvyo6peBpog. H Baouxn déa mou yenowonoteiton elvar twg unopolue vo tpocbétouue Aoelg
TIOU XOAUTITOUV IXAVOTOINTIXE TOANES TRoBAEdELC Ywelc va Eemepvdve éva 6plo x6GTOLG. XE aUTO
axpipde Bonbodv ot prize-collecting exdoyéc Twv meofAnudtwy, xaboe €tol unopolue pubuilo-
vTog To TedoTia, Vo Peloxouue tor uépn Tov TeoPAEPEwY TOL pag GUUPEREL VoL XONOPOUUE.
Ané exel xou mépa apxel vo mpoyweolue pe exbetind Pruota to dplo x6cTOUG B; wou duecou
ayopifuou xau xdbe popd Tou To PTAveL Vo TpocBEéTouue NOoELS (BloU XOGTOUS TOU XANVTTOLY
ToANEC TpoPNEdec. O mAAeNS oNyopfuog nopoucidletar 6To aryyAxd xeluevo.

To mapaxdte 800 Mupata xwellouvy TNy avdiucr ot dVo uéen ue Bdorn Ty oTiyun ¢ 1 onola
emNéyeToL €T0L WO TE VoL €yl xougbel |T'| pépoc tne elsddou.

Avppa 1.3.1. To xdotoc Twv emavaiyewr péyor Ty i ebvar Pre fiz(i) < O(1)-OPT + (127 +
2) - Bi_q

Afppo 1.3.2. To xdoros twy emavaripewy Sexwvdvrac pe i+ 1 evar Suf fix(i) < O(1) -
max{ON,,—1,ONp,}

‘Onwg galveton yior TNV eqoppoyy| Tou anyoplbuou ce onowodrrote nEdPANua apxel Vo ppd-
Eouye 10 Bj_1 %S xou 10 x60T0C TOU duecou aNyopiBuou oTny TeENeuTaia pdor m.

1.4 AXyopiBpol Enavinueévor pe IlgofreEderc

Yy nopodoo evotnTa o ToEoUCLIGOUUE GUVTOUO XATOLN OO TOL AMOTENECUATO TOU £Y0UV
emteuyOel pe) yeron teofAédeny oe TEoPARUATI TOU XATEYOLY XEVTEIXY) CNUAGIAL GTO XWEO
TV QUECHY ONYOplBUWY.

1.4.1 Ski Rental

To mpoPinua Ski Rental elvon éva and ta amholotepa mpofNuata otny xotnyopia Twv
Suecwv oAyopluwy, aANG TNV (Blot GTUYUT Lo BIVEL ol KON EXOVOL YIa TIC TEXVIXES TIOU YE1OL-
pomoloLvToL xoTd TN Xenor TeoPréPewy. Xxondg tou mpofAruatog etvan vo emNéEOUNE avaETL
GTO VO VOLICOUUE PE x00TOC 1 avd pépa 1) vor ayopdooupe €val oeT Yot oxt ue x6ctog b. To
evilopépov elvan mwg Bev yvwpillovye méoeg pépeg = Bo yelvouye, to omolo amotelel xou TNV
meoPredn . O Béntiotoc duecog arydplBuog ywelc mpoPfrédeic anhd vouadler uéyxpl tn uépa
b — 1 xou ayopdlet Ty enduevY), ondTE TETUYAVEL 2-TPOGEY VIO,

Movoadwxn ITeoBAedn. E@ocov n tpdPredm unopel va éxel un @paryuévo cpdiua, dev uno-
polue vo TNy eumioteufolye TR WoTe var ayopdloue 6tay & > b xou var voudlouue oty
avtifetn nepintwon. Autd pag odnyel oto va Bécouue €va bplo Ab mply To onolo dev aryopdlouue
xou b/A petd to omolo otapatdue vo voudlouue. To A € (0,1) pog diver) duvatdTnta va
TPOCUPUOCGOVUE TNV EUTLOTOCUVY HaS O TG TROoPNEdeLC.

Ochenua 1.4.1. [Purohit et al., 2018] O alydoifuoc metvyaiver ALG < min{(1 + }) -
OPT,(1+X) - OPT + 5}

ITox\arhég ITpoPrederg. Ac unobécoupe tpa 6Tl €youpe ot ddbeon pac k npofiédelc
Z;. O oploouye Teployég amdPaoNg Yia TN wépa Tou Bot oy 0pdcoUUE, €TOL (O TE Vo LOOUOLEALOUY
T0 Noy0 Tpoaéyylong. ‘Oco éyouue mporédelc péoa oe autég T meployée, Tote Ba vouudlouue
xo wONG Bpovue uia xevh meployy| Ba ayopdooupe xou €tol Ba cuumepNdfouue xaL TO QAU
oty TedPAedN. XpNoWomoldVTog xou TNV TORTEVG TEXVIXY TIOU OEV ETUTEETMOVUE oyOpd TELY
™ uépa Ab €xouue ta e€ng dpta

20

b+)\b_b+$1 _b+$k_1
T I N b
Ocvpnpa 1.4.2. [Gollapudi and Panigrahi, 2019] O alydgiiuos metvyaiver A6po mgooéyyons

min{l + §,¢} dmov e, =Y 7 6t + A E;k

1.4.2 Non-Clairvoyant Job Scheduling

e auth TNy unoevoTNTA Bt TUPOUCIACOUYE EVaL AMOTENEGUA Yot TO TEOPATUA SEOUONOYNONG
epyaotdy. Av utobécouue 6TL €xouUe Eva UNXAVNUOL XL 1 ERYAGIEC TTOU AmoUTOUY XEOVOUG EXTE-
NEONG 1, T2, ..., Ty, Do EMOOEOVUE VO ENXYIC TOTOLACOUUE TO GDPOLOUA TOV XEOVWY ONOXAT-
pwong xdle epyaciog. ‘Omwg elvon Qavepd, yio var To TETUYOLUE auTtéd Bo BENaUE oL cuvToudTERES
gpYaoieg va exTENESTOVY aTNY apyT). ‘Oung otny exdoyr| Tou tpofAiuctog mou o ueNeTHoOLYE,
oL %EOVOL EXTENECTC BeV Elvan yYvwoTol xar Toug wobalvoupe yiar xdbe epyacia pévo 6tay olo-
YANpwbel N extéreor| Tne. O BéNTioTog alydplfuog yio autd to mpdPinua etvon o Round Robin,
ToL omAG eXTENEL TIC k gpyaoiec mou amouévouy xdfe oTiyur evwadE, divovtag otny xdbe plo %
EVOS ENGYLOTOU YEovixol Topaflpou Tply TeoYweroel 6TNV eTOUeV. AuTtodg o aNyopLBuog elvon
2-mpocEY YO TIXOC.

Av vnobéoouye dtL €xouue ot Sidbeoy| puag npofNédeg 1, Za, . . ., Tp, Ba T YenoWOTOL-
COUUE €TOL DOTE VoL TPOGUPUOCOUNE TOV puBUd % ue tov omolo tEéyouue xdbe epyooia. Ltny
TparyotixoTnTa, Bar extelolue T epyaoieg Pdoel evog a-mpoceyyloTixol alyoplBuou ue op-
v61ER0 pUOUS xatd 1 — A xan Bdoet tng Sudtadng twv mpoPrédeny pe pubud apydtepa xaTd A.
‘Ecto 6t 0 deltepog anydplbuog eivar S-tpoceyyloTindg amd Uovog Tou.

AAupa 1.4.1. O nagandvew ovvdvaouds metvyaivet AGyo mOOEyyLons min{g, 5)

s ’ z ’ 7 z 27’]
O o\yopiuog mou eumiotedeton Tic npofhédelc, SPFJ, metuyaivel Noyo mpocéyyiong 1+ 71,
OTOU TO CQANUAL N = Y |x; — 4.

Ocewenua 1.4.3. [Purohit et al., 2018] O alydoiduoc mov ovvdvdler to Round Robin ue to
SPJF metvyaiver Abyo moooéyyone min{} (1 + 2%7), =}

1.4.3 Apesco A€vipo Steiner

To Aévtpo Steiner amotedel éva and ta xhacowxd npofAAuata dixtiwy. Oewpdvioc Ot
€youye éva ypdpo G, 1 elcodog Tpocdlopllel TG TEPUATIXES XOPUPES, OL OTOLEC TRETEL VAL GUV-
0e0o0v. Mia e@uxt NooT), anotelelton amd oxuéc oL omoleg Blvouv CUVOETIXG BEVTPO AVAUETH
og aUTEC TIC XOPLPES Xal TLHAVOC XATOLES amd TG UTONOLTES av yeeldlovTot. Xxonog elvon va
Beovpe to cuvBeTind d¢vtpo eEXdyioTou xdaTouc. Ot mpoPrédeic R mou Bu xenowwonomPoiy xau
ot 800 mepinToelc Ba apopoly oXGXANEN TNV lcodo R xat Ba divovton €€ apyrc.

Metpoviag To opdpa he Tig Aavlacueveg npofrédeilg Ye autrh Ty unoevoTnTa
Bo eZetdooupe éva anoténeopa, To onolo avTieTwnilel Tic TEoPAEPE K¢ andNUTA CWOTEC N
Navboouéves. ‘Ooec npofNédelg, Onhady, dev tautilovian Ue XATOoL TEQUATIXY XOPLUEPN TNG ELT0-
00U CUVELCPEPOLY XaTd 1 0TO CQINUA. Xe YEVIXEC YPOUUES, oV EVAL TEQUATIXO T TN ELGODOU
dev avixel oTic TpoPrédeic, tote apxel va To xanUdouue onwg o BéNTIoTOC duecog anydetbuoc,
ON\adY) oy 0pdlovTaS TO GUVTOUOTERO OVOTIATL TTOU TO GUVOEEL UE TAL UTONOLTA. L TNV TERINTOON
mou avrxel oTig TeoPAédeig Bo BENaE Vo XENOLLOTOACOUUE €Vl HOVOTIHTL TOU ENAXICTOU CUV-
Setixol dévrpou tou R. ‘Ouwc autd umopel va odnyfioet ot unepBolnd ueydho x6aTog, onbte
elvat TEOTWOTERO VoL BOXLUACOUUE Vo BEOUUE HOVOTTL O aUTO TO BEVTEO UE XOOTOG GUYXplollo
ME oUTO TNG axpng Tou ETUNEYAUE oV Bev elyoue TeoBAEPeLC xan av Bev apxel yiar Tn cUVOEST v
oY OPACOVUE TNV XY

21

Ocedpnuo 1.4.4. [Xu and Moseley, 2021] O magandvw alydoiiuos metvyaiver Adyo mooosy-
yone O(logn).

Metpuxd ocpdhpa xou Aavlaoueveg npoPiéderg. Elvoar gavepd ouwe, nwg wlor puxen
ATOUAXEUVOT) TV TEQUOTIXWY AT TNV TEoyLoTiXT] Toug BEoT BEV HELDVEL XATd TONY TNV TOLOTNTA
TV TEofAédeny. Yuvenwg, urtopolue vo Bewpricoupe Ot éva UTOGUVONO T eivan ypfowo xou
dpa vou Agoupe uTody TNy andcTaon Tou D and TG TEAYHATIXES, EVE OL UTONOLTES TROBNEYeLS
A etvan NovBoopéveg xon TEENEL VoL TIC ary VOTICOUUE.

Tt yerion tou akyopibuou [Azar et al., 2021] ypeialépacte dVo ayopibuouc. O évag
elvon 0 dminotog duecoc ohyopbpoc [Imase and Waxman, 1991] o onoloc eivar O(log |R| + 2)-
mpooeyywotxdc. O dediepoc elvar o prize-collecting olydpibpoc [Goemans and Williamson,
1995 o omoiog givon 2-npooeyyio TxdC.

Optlovtag to yetpixd opdiua D wg éva matching eNdyiotou x66TOUC AVIUESA GTIC XANES
TeoPAédeic xou TNV elcodo, €xouue To axdroubo.

Ocdpnuo 1.4.5. [Azar et al., 2021] To xdoros rov alyopitov eivar ALG < O(logmin{A, |R|} + 2)-
OPT +O(1) - OPT.

‘Onwg gotveton, autd To amotéreoyo anoteXel pio ooy Bertioon oe oxéon pe to mponyoL-
HEVO, XS YEWOTEPEVEL O OUANE 6G0 amopaxplvovTaL oL TEoPNEELS.

1.4.4 ’Apeoco Facility Location

To Facility Location efvon évor axodpo yvwoto medPAnua dixtimwy, Tou ©g oxond €xel v
opadonoinon e ewwddou, avolyovtog facilities to omolor xootilouvv xan meéner vo Peloxovton
660 TO %0vVTd 6TouC TENdTEC TTou xoAlTTeL. Tlio ouyxexpwéva, oto petpd xopo M (X, d)
€xouue oOvola F ue Tic duvatég Béoeic yia facilities xou D pe Tic duvatég Béoelc TwV TENATOV.
Kdbe facility i € F xootilel f; xou xdbe neNdtng j mou avatifeton oe autd empépel x60TOC
d(rj, fi). Exonde elvon var eENaylo TOTOACOUUE TO GUVONLXG XOC TOC.

ITe6BAedn tng Ewcddovu. Ilupduola ye 1o mponyoluevo mpdfAnua, UmopolUE Vo ¥e1oLWo-
rowoouue TeoPNEdEC TNG ElG6B0L, oL omoleg divovton €€ apyng.

IMa vo egapudoouye tov anyoptbuo [Azar et al., 2021], ypewalbuacte d0o aryopiBuouc. O
dpecoc anyopfuoc Ba eivon o primal-dual [Fotakis, 2011] o onolog efvar subset-competitive ov
Bewpriooupe we x66T0¢ oL To dfpolopa Twv a(r;) mou unoloyilel o a\ybplBuoc xou Pedcouy
10 TporypaTnd x6otoc. O Noyog mpooéyyioric tou eivon O(logn). O prize-collecting ovybpiBuoc
elvon o [Xu and Xu, 2005 ye Noyo npocéyyione 1.8526.

Av 70 yetpd o@dipa D etvon xou og auth TNV nepintwon éva matching ehdylotou x6cTOoUG
avdueoa oTic TeofAEdelg xan TNV elcodo €xouue To e€rC.

Ocdpnua 1.4.6. [Azar et al., 2021] To xdoros rov atyopiBuov eivar ALG < O(log (min{|R|, A} 4 2))-
OPT +O(1) - D.

ITox\anXég ITpoBreéderg Tng AVorg. Mio dwopetin) tpocéyyion etvar auth Tov [Almanza
et al., 2021], ou onolot ypnowwonotolv TpofNéeic yia Tic Béoeic Twv facilities. Eotw dnhadh 6t
€yxouue S1, 52, ...,k cbvora ano facilities. Xxomdg elvan vo tethyoupe wa Ao mou cuyxpi-
VETOL UE TOV xaNUTERO cuvduaopd facilities and v évwon twv npoPrédewv S = |, S;. 'Encita,
UTopOUUE Vo GUVBUAGOUUE TOV oy oplBuo ot e Tov BéNTioTo [Fotakis, 2011] yenoipwonowwvtog
T0 anotéleopa tov [Mahdian et al., 2012].

H Baow teyvixn mou yenowponotel o akybdpiBuog etvon 1 xataoxeuy HST-family (77, D) nou
drotnpel i WOTTES TOU PETEXOU YWpou S twv TpofNédewy, olugmva pe [Fakcharoenphol
et al., 2004].

22

O a\ydpibuog emnéyel éva HST olugpova pe tnv xotavouy) D. e xdbe Briua, xdvel éva
Tépoopa o€ aUTO To dEVTEO £Tol HoTe va Peet To pONNo (facility) oo onolo B avortedel o teNdtne
NG €L0600U. MTNY TEPIMTWOT TOU BEV UTAPYEL XovEVA avoLyTd POANO XOVTE GTOV TENATY), Oa
YEEWOTEL Vo avolEoupe €va xavolpylo, onote Ba emAéEouUE Vo GUVEYICOUPE GTO UTOBEVTEO
UE TIC TeploodTepES xoVTVES TeoPNEéelc. Xty avtibetn nepintwon Ba meénel va npocéouue
XATE TOCO UAS CUUPEREL VAL AVOIEOUIE XATOLO GUNNO aXOUA TILO XOVTY GTOV TENATY), EVEK TNV (Bl
oTyun va amo@iyouye vo avoi&ouue unepBoiixd ToANd. I va To metiyouue autd xafuotepoiue
T0 Qvorypa polevovtac x60Tog o xdbe xOUPo XL TEOXWEWVTIC TEOS TO UTOBEVTPO TOL AV TO
x6010¢ Eenepdoel o f.

Oedpnua 1.4.7. [Almanza et al., 2021] Xvvolixd o arydoiuos metvyaiver xéotog ALG <
min{O(log |S|) - OPT(S), —2"_ . OPT}.

’ loglogn

1.5 Facility Leasing pe IIgofXEderc

To Facility Leasing arotelel yevixeuorn tou Facility Location, ye tn Siagpopd 6T o xd0e
xeovXT G TLY U oANGLouY oL B€aELC TV TENATEDY xou YLl vor Toug xanUdoupe vowrdlovye facilities
YLl CUYXEXPUEVT] YpovixY| Btdpxeta. Me oxond va avadelloupe tny 1oyl tou anyopibuou [Azar
et al., 2021], to ypnowonowolue oto TEéPAnua Facility Leasing tou onolou 7 elcodoc xoto-
VEUETOL X0l OTO YEOVO EXTOC A0 TOV XWeO. Ou YEEWGTOVUE EVay GUECO aNYOELOMO Tou Elvol
subset competitive xaBdg xou Evay a\ydetbuo yio Ty prize collecting exdoyy| Tou TpofArjuatog.
‘Eneita, opllovtoag xatdAAnho o@dipa Bo Bpodue to Noyo mpocéyyiong.

Online Facility Leasing H eicobog tou npofAfuatog xwplletar o T' ypovixéc oTiypés, dyvew-
otec xatd TNV extérean. To abvolo F' mepiéyel Tic Suvatéc Tomobeciec Tou UmopOVUE Vo VoL
xdoouvye facilities, eved To D elvon oL duvatég Béoelc Twv melatdv. Ou SopopeTixés SLdpxeles
evouxioong etvan K xan xdfe plo cupPoXileton Iy, ondte av voidoouue to f; T oTiyuh t Ye To
k evolxio téte O eivon avorytéd otn Bidpxeia [t, t + 1] xou O xootioer fF. Kdbe otryun supo-
vileton oty eloodo éva ohvoro Dy pe Ti¢ Béoeic TV TENATOV 75 TN CUYXEXEWEVN GTLYUY), OL
ornolot meénel va avatefolv oe xdmoto vouxiaouévo facility f; ue x6otog avdbeong Ty andc oo
d(rje, fi). Av F, Fy ebvan ta vouaouéva facilities o ta evepyd m otvyun ¢ avtiotoiya tote t0
GUVOAIXO X060 TOC NS AVong elvan

S+ YD d(FLr)

(i,t,k’)E]‘- (j,t):rthDt

Apeocog ANyoeBuoc. O duecoc aryoplfuog v to Online Facility Leasing Siveton and
toug [Nagarajan and Williamson, 2013]. Kafde gtdvouy ow Béoeic twv teatdv ty xdbe otiyun,
0 oy 6pLiuog mpocopudlet Tic LETOBANTES Tou BUixol TpoBAAuATOS, oL 0Toleg LTOBEXVOOUY TGO
elvan Sratebeévoc vo mAnpwaoel o xdfe teNdtng yior TV avdbest) Tou, €tol Ko Te va dlatneel Ty
WBLOTNTAL 6TL xavelc Bev Eodelel TeplocdTepo and 600 ypeedleton. H xevtpnt| andgaor mou npénel
Vo N&Pel 0 alyopluog elvon xotd méco Bo avabéoel Evav medtn o o1 vouaouévo facility 1
av Bo vouxdoel xdmolo ex véou. Autéd to anogacilel auédvovTog TNV YETOUBANTH TOU ovTIo ToLyEL
oTov TENGTN péxpet elte va xohOeEL To x6aTOg Yl avdbeon oe YO vounaouévo facility ¥ vo
GUVELOQEREL EMOPXWS GTNV EVOLX{aGT XouvolEYLou.

To nopoxdte Nupa delyvel twg o ahyopdupog elivon subset competitive €dv otpoyyulonol-
HOOUUE TO XOGTOC TOU XENOHIOTOLOVTOC T UETAPANTES @t TOU BuixoU.

AAppa 1.5.1. To orgoyyviomoumuévo xdoztog tov atyoplBuov ya xdde R’ C R elvau

(K+1) > aj <2(K +1)(log (|[R'| + 1) + 1) - OPT
(4,t)eR’

23

Prize-collecting AXNyopiBpog. Xtny neplntwor tng prize-collecting exdoyhc Tou mpofNrjuo-
TOC, UTOPOUUE Vo EMAEEOLUE VoL uny avalécouue xdmoloug meNdteg oe xavéva facility. Ye auti
TNV TEPITTWON TANPOVOUPE €val TEOSTIO T(T), YVWwoTo €€ apyhc, Yot TOV TENATY 7.

AAupa 1.5.2. Yradoyer prize-collecting atyooiduoc ya to Facility Leasing pe otadleod Adyo
QOOEYYIONG (00 ue 3.

Ypdipa tpoPredng. o tnv avdhuor tou akyopiBuou Ba ypeetaotel vo fpodue xdmolov tpdTo
VoL EXPEACOVYE TO TS ETnpedleton amd Ti¢ TpoPAEPelg xou EToL Var PEdEoUUE TO XOGTOS TOU. TNV
TEOY HATIXOTNTAL, UTIEYOLY TOANOL TEOTIOL VoL YivEL auTO, omoTe Wavixd Bar O€Nape vo oploouue éva
XATIANNNANO CQANUA, TOU TEPLYPAPEL OGO YiVETOL XONDTERA TO ETLTAEOY XOGTOG TO OTO(O ETUPEQOLY
ol Navbaouéveg mpoPrédeic. Tio autdv Tov oploud B Slatnerooude TN Noyixy TS avTio Tolyong
€va TROC €val TV TROPNEPEWY PE TOUC MENGTEC TNV €000, TOU €lVol LXAVOTIOLNTIXE XOVTA.
‘Onwg elvon qavepd, o min cost matching nou yenowwonoieitan yio oo undNomoina TpoPNYuaTa,
Steiner Tree xou Facility Location, dev emoapxel xafoc pio omoladhrote NOoT TOU XANOTTEL
Tic poPAédelc Bev elvon olyoupo mwg umopel va yenowwonombel yior Ty elcodo aANdlovtog Tig
avabéoeic. Xtny nparypotixdtnTa, pio teoPNedrn unopel vo Bploxeton ypovixd TOND paxeld and
TOUG TROYHATIXOUS TENATES, OANS Vo BIVEL AEXETYH TATPOQORLA Lol TNV XATAVOUT| TOUG.

IIio cuyxexpwéva, o BENope va oploouvye To emAEOV xOGTOC Yiat VoL XONOPOUE Eva GTLY-
wotuno T C R, edv éxoupe wo Noom yia évo otymétuno T C R. T vo Bpodpe tor 0o
UTOGUVONA OEXEL VoL EQUPUOCOUUE TA ToRAXATw o€ Xdbe duvartd utocUvoro Tou R, evdd to und-
Notna T utoroyiloupe oto A. Autd to emnhéov x6oto¢ Ba Peebel xataoxeudlovtoc éva duylept
vedgo (T, T) HE oxUéS uRxoug (oou PE TNV amécTaoT 6To UETEd Y Weo. Oung Bo mpérel va
EMTEEPOLUE UOVO PEPIXEC ald TIC aXPES, UE TOV TORUXATW TEOTO.

o Av wa mpofredn 7; € R pnopel vo xouglel and xdnoto facility mou vouadotnxe yio to
T (xou dpo ebvon evepyd TN oTLyUh) TOL QTAVEL TO 75), TOTE TO GUVOEW GTO duept| YPdPO
ME ONOUC TOUC TENATES TNE ELCOOOU TOLU XOAUTTOVIOL antd To cuyxexpldévo facility.

‘Emeita o autd tov ypdpo Aovouue to min cost matching xou Beloxoupe awtd to unosivolo
T i 0 onolo 0 x6GT0¢ oL TPOXUTTEL PedoceTon and To D mou éyoupe emhéel. Mio aduvopio
NG TUETAVE dLadixactag elvon OTL amoTUYYAVEL AV 1) ElCOBOC EXEL ONUAVTLIXI DLUPOPETIXT DLAEXELNL
a6 Tic mpoPAédelc, ue Ty €vvola 6T BeV xdvel xauio avTioTolylon agol 1 Abon eivon adlvoto
va yenoworolel. Autd to mEOBANUa ADVETUL YENOLLOTOLWVTAS ENEXTACELS TOV EVOXIWY XoL
TEPLYPAPETOL UE NETTOUERELX GTO AYYAXO HEEOG.

Ocswenpa 1.5.1. O alydpuduos ya to Online Facility Leasing emavinuévos pe mooprépes
retvyalver to e&nNe xéotos, pa xdlde epuern dvdda (A, D)

Alg(R,R) < O(K) - D + O(K (log(min{|R|, A} + 1) + 1)) - OPT

24

Chapter 2

Introduction

In the study of online algorithms, the main challenge is our uncertainty towards future input.
The classical approach has been to analyze the algorithms in comparison with an optimal
solution of a given input, in a worst case manner. That is, assuming an adversary is inten-
tionally trying to force the algorithm to make bad decisions. While randomization seems
to be a reasonable solution to this problem, in most cases the performance does not im-
prove drastically over that that of deterministic algorithms, which can be obtained through
derandomization [Raghavan, 1988]. As a result, the approximation ratios we get in many
problems are rather pessimistic. For instance, [Fiat et al., 1991] gives optimal O(k) and
O(log k)-competitive deterministic and randomized algorithms for Online Paging, [Imase and
Waxman, 1991] gives an optimal O(logn)-competitive greedy algorithm for Online Steiner
Tree, [Fotakis, 2011] gives an optimal O(log)i gn)—competitive deterministic algorithm for On-
line Facility Location, [Nagarajan and Williamson, 2013] gives an O(K logn)-competitive
algorithm for Online Facility Leasing.

2.1 Previous Work

A novel approach to overcoming uncertainty has been to predict elements of the problem
that would assist in achieving better results, as suggested in |[Lykouris and Vassilvitskii,
2018|, which formalised the study of learning-augmented algorithms. The success of machine
learning models in a vast range of topics provides enough motivation towards pursuing this
goal, as previous instances having appeared in a given application can be used to improve
the performance of an algorithm in the future. But even these models are not expected
to perform optimally in all scenarios, therefore it is necessary to design algorithms in an
appropriate way, so that they take advantage of the predictions as much as they can, while
also degrading gracefully towards the best worst-case ratios known, when these prove to be
untrustworthy. This is typically achieved by appropriately combining the best known online
algorithms with algorithms that blindly trust the predictions, so as to get the best of both
worlds. Therefore it is evident that an essential element in the analysis of such algorithms
will be the notion of an error metric between what is predicted and what is actually given
from the input. Depending on the problem, this error metric can be a simple L; norm
between the items bought by a possible solution, or as complicated as a the solution of a
combinatorial optimisation problem in itself. An obvious challenge is that since the input is
unknown, the quality of the predictions is impossible to evaluate beforehand, meaning that
the algorithms will need to balance between the two in an online fashion. Another question
that naturally arises is what should we predict? There are cases where the prediction is chosen
based on the future information that an optimal offline algorithm would take advantage of.
For example, in the case of Online Paging in [Lykouris and Vassilvitskii, 2018|, it is Belady’s
algorithm [Belady, 1966] that hints towards predicting the next arrival of each page. Some
authors have attempted to use predictions of the whole input [Xu and Moseley, 2021, Azar
et al., 2021] while others used predictions on the optimal solution [Bamas et al., 2020, Fotakis

25

et al., 2021, Jiang et al., 2021, Agrawal et al., 2022, Balkanski et al., 2022]. Motivated by
learning theory, some works have been successful in utilising multiple predictions in order to
achieve even better results [Almanza et al., 2021, Anand et al., 2022a).

The area of online algorithms has certainly been the one with the most success in utilising
predictions. Starting with the seminal work on Online Paging |[Lykouris and Vassilvitskii,
2018|, it was later improved by [Rohatgi, 2019, Wei, 2020] and [Antoniadis et al., 2020], who
used a different error metric. Its generalisation, Online Weighted Paging was studied in [Jiang
et al., 2020|, proving the limitation of predicting only the subsequent time each page will be
called and using more predicted information, while [Bansal et al., 2020| gave optimal random-
ized and deterministic algorithms matching the previous bounds. Another classic problem
studied in this context is Non-Clairvoyant Scheduling, originally in the single-machine un-
weighted version [Purohit et al., 2018, Mitzenmacher, 2019,Im et al., 2021a], single-machine
weighted version [Cho et al., 2022], but also in more general settings with multiple machines
and weighted jobs [Lindermayr and Megow, 2022, Zhao et al., 2022]. Moreover, network prob-
lems like Online Steiner Tree [Xu and Moseley, 2021] and Online Facility Location [Almanza
et al., 2021, Fotakis et al., 2021, Jiang et al., 2021] have been studied, with more general
results in [Azar et al., 2021, Bernardini et al., 2022]. Some other classic problems set in this
context are Online Subset Sum [Xu and Zhang, 2022], Online Knapsack |Thang and Durr,
2021,Im et al., 2021b, Boyar et al., 2022]. As for the optimality of consistency-robustness
tradeoffs, it is studied for Ski Rental and Online Paging in [Wei and Zhang, 2020).

Having said that, the applications are not restricted to online algorithms, but a variety
of problems, from mechanism design [Agrawal et al., 2022, Balkanski et al., 2022, Gkatzelis
et al., 2022, Istrate and Bonchis, 2022, Xu and Lu, 2022, to improving the running time of
classic algorithms [Lu et al., 2020, Polak and Zub, 2022, Dinitz et al., 2021, Feijen and Schéfer,
2021|. Their success can be evidenced both by the theoretical guarrantees provided as well
as the experiments designed to test their strength.

So far, most of the work in this area focuses on ways to leverage the predictions, assum-
ing that they are provided by an oracle. On the other hand, it is natural to ask whether
the predictions we use can be learnt so that they are of high quality and what the sample
complexity is in each case. This is the direction pursued by [Du et al., 2021, Khodak et al.,
2022, Anand et al., 2022c, Anand et al., 2022b].

In addition to problem specific methods, general frameworks have also been developed
[Bamas et al., 2020, Anand et al., 2022a, Azar et al., 2021|, some of which could potentially
provide black-box solutions for different categories of problems. In [Bamas et al., 2020], the
primal-dual method is extended to the learning-augmented scenario and used in order to
obtain algorithms for Online Weighted Set Cover, Ski Rental and TCP Acknowledgment,
when given predictions of the solution. Next, [Anand et al., 2022a| deals with the case of
multiple predictions supplied in an online fashion to the variables of a linear program of
a covering problem, like Online Facility Location. On the other hand, [Azar et al., 2021]
was designed specifically for metric problems, like Online Steiner Tree and Online Facility
Location, given a prediction of the whole input in an offline fashion. The new notion of error
it introduces seems to capture the characteristics of these problems, while also being general
enough to adapt to many different problems. Recently, a universal error metric was found for
this specific framework which can be used to show that the actual performance is even better
in some cases [Bernardini et al., 2022|. Therefore, these frameworks cover a large amount of
problems, as well as various different choices for the predictions.

26

2.2 Facility Leasing

We proceed to obtain a learning-augmented algorithm for a problem that had not been
previously considered in this study, Online Facility Leasing, whose offline counterpart first
appeared in [Anthony and Gupta, 2007]. In this variant of Facility Location, the locations
of the demands change on every time step and in order to cover them we lease facilities,
choosing from K available lease periods. Therefore, it can be seen as a generalization of both
the Online Facility Location [Meyerson, 2001] and the Parking Permit problem [Meyerson,
2005]. Intuitively, this problem could model the distribution of clients of a company as it
changes every year. In this sense it is a more realistic depiction of actual decision making,
where one seeks to lease goods for only a limited amount of time, in order to adapt to the
changes of the environment.

2.2.1 Framework

Surprisingly, the framework [Azar et al., 2021] designed for network problems, is sufficient
for a greater family of problems, as Facility Leasing combines network properties with a time
dependency. In this framework, the input is predicted, providing a whole instance to the
algorithm in an offline manner. The key is that an online algorithm responsible for covering
the online input, is combined with an offline one responsible for buying useful solutions
covering some of the offline predictions. In fact, the online algorithm is allowed to run for
exponential steps of the online cost, at which points the offline algorithm injects solutions
from the predicted instance, covering as many predictions as possible with a cost comparable
to that of the online algorithm, hoping that they will prove useful in the future. For the
analysis of this algorithm, they introduce a new notion of error, that of a tuple (A, D). In
this tuple, A measures how many predictions were entirely wrong, simply called outliers,
while D measures a distance between the input and the correct predictions, in terms of their
distributions. The intuition behind the error is that the offline algorithm will buy solutions
for the correct predictions, which the online algorithm will later connect to the actual input,
while the outliers will be ignored completely.

2.2.2 Algorithms

The online algorithm is given by [Nagarajan and Williamson, 2013, which modifies the primal
dual algorithm of [Fotakis, 2011| and employs a dual-fitting analysis. In essence, it increases
the dual variable of the new demand and by finding which dual constraints become tight, it
decides whether a lease has been paid and should be opened, or whether the new demand
should be assigned to an already leased facility. The algorithm achieves a K logn competitive
ratio. It is not known whether this is tight, nor optimal, as it is the only algorithm known
for this problem.

The offline algorithm |de Lima et al., 2016] solves the prize-collecting version of the prob-
lem, so that it can buy solutions for some of the predictions. This algorithm uniformly
increases the dual variables until some dual constraint is violated, keeping in mind that there
is an extra set of constraints due to the penalties. By carefully selecting which of the facilities
to lease and tripling them, it achieves a 3-approximation.

2.2.3 Contribution

Following this work, we defined an appropriate notion of distance between instances of Facility
Leasing. The difference is that on top of a spacial distribution, the demands of Facility
Leasing are also distributed in time, both of which need to be considered in order to define a

27

reasonable matching cost between the two instances. That implies that a demand arriving at
time ¢ cannot be matched with any prediction, as a solution leased to cover that prediction
might not be open at t. Instead, it can only be matched with the predictions whose leased
facilities are open at that time. But even then, should correct predictions that appear too far
in the future be excluded? The answer is no, as they can still provide useful insight, but need
to be assigned a higher matching cost, that would pay for extending the lease of a facility
so that it might cover both. In essence, lease extensions allow us to measure the time cost
between the two distributions.

With that in mind, we obtain an algorithm with approximation ratio upper bounded by
O(K(log (|A])4+1))-OPT 4+ O(K) - D. Supposing that the predictions are good enough, A is
0, while D can be thought of as an €, in which case the approximation ratio is K, much better
than that of the best worst case online algorithm. On the opposite case, there is no sense in
trying to match the demands and D = 0, leading to a ratio of O(K (log (n) + 1)) - OPT which
matches the best known online algorithm. Overall, it is evident that noticeable improvements
can be achieved by using these novel techniques in Facility Leasing, without compromising
beyond a constant factor in the approximation ratio.

28

Chapter 3

Preliminaries

We proceed by exploring different ways in which predictions are incorporated in the design of
algorithms in order to exceed the performance of the state of the art worst case algorithms.
Despite the fact that these techniques only appeared recently, many problems have been
studied, namely

e Ski Rental
e Job Scheduling
e Paging

Steiner Tree

Facility Location

In order to begin our study of learning augmented algorithms some basic notions are
needed to facilitate the analysis.

3.1 Definitions

In their seminal work [Lykouris and Vassilvitskii, 2018|, Lykouris and Vassilvitskii set the
framework for the analysis of learning augmented algorithms, by extending the idea of the
approximation ratio to accommodate the characteristics of learning augmented algorithms.

Definition 3.1.1 (Approximation Ratio). An algorithm A has approximation ratio ¢ for all
instances o of a minimization problem if

costp(o) < c-OPT(o)

Essentially, a learning augmented algorithm should provide guarrantees that it gets close
to the optimal solution when the predictions, whatever they might be, are perfect. It should
also degrade gracefully to the performance of the best worst case algorithm even when the
predictions are not representative of the input. These ideas are expressed by the consistency
and the robustness of the algorithms as defined below, in a rather simplified manner.

Definition 3.1.2 (Consistency). An algorithm is considered [3-consistent if its approximation
ratio is B when the predictions’ error is minimum, i.e. the predictions are correct.

Definition 3.1.3 (Robustness). An algorithm is considered a-robust if its approximation
ratio is mot worse than « for any possible error of the predictions.

Using the above definitions, for an online learning augmented algorithm to be considered
effective, it is expected to achieve a consistency much better than that of its worst case

29

counterpart, preferrably constant, and a robustness that asymptotically matches that of the
worst case.

As for the algorithms encountered, a crucial property in the framework [Azar et al., 2021] is
that of subset competitiveness. Intuitively, an algorithm is subset competitive if the solutions
it produces preserve their competitive ratio on all subsets of the solution against the optimal
solution on that subset.

Definition 3.1.4 (Subset Competitive). An online algorithm ON input R and approximation
ratio f(|R|) is subset competitive when for every R’ C R the cost incurred by the solution of
ON given R on the elements of R is

ON(R) < f(|R'|) - OPT(R')

This property is useful when considering the costs incurred on parts of the input with
useful properties, especially when combining multiple algorithms and keeping track of each
one’s contribution to the cost.

We now turn to a category of variations of problems called prize-collecting problems.
In essence, given an online input that needs to be covered by making irrevocable decisions,
prize-collecting variations relax this requirement by providing an alternative. Either cover
the element given by paying the cost of an appropriate solution, or pay a penalty and discard
it.

Definition 3.1.5 (Prize-collecting). Suppose that given an online input R for a problem, the
solution pays c(r) for anr € R if it chooses to satisfy it, where ¢ is dependent on the structure
of the problem, or w(r) and not satisfy it, where 7 : R — RT is a penalty function given as
offline input. The goal is to minimize the objective

Zc(r)+ Z 7(r)

res reR\S

where S C R is the set of satisfied requests r € R.

This category of problems is particularly useful when trying to obtain a solution that only
partially covers the input. By assigning different values to the penalties 7(e) and inspecting
the resulting solution, it is possible to find a part of the input of desired size, which can be
covered incurring a low cost. Intuitively, high penalties incentivize satisfying a larger part of
the input in order to avoid the high cost, while lower penalties lead to smaller portions of the
input being satisfied.

3.2 Predictions

Depending on the problem, there might be different elements needed by an online algorithm
to make up for the uncertainty of the input. In general, there are two natural choices made
by the majority of the works in this field. The first one is to predict what we want to achieve,
that is the actual solution or parts of it, that will satisfy the future input. The second one is
to predict the one thing that restricts us in the study of online algorithms, that is the input.
Another approach, is to make multiple predictions in the hopes that some of them will be
good.

Definition 3.2.1 (Predictor). Let X be the set of possible instances for a problem and Y
a set of labels. Then the predictor is a function h : X — Y. Specifically, for every possible
instance o € X it outputs the label h(o).

30

In the above definition we do not specify what these instances might be, but in most cases
they consist of the offline input of the problem i.e. the metric space in which it is defined,
and maybe the online input.

The various kinds of predictions will be discussed below.

Ski Rental. A seemingly simple problem called Ski Rental, where the main decision on each
day is whether to rent the skis or buy them for a fixed cost provides enough motivation for
this approach. The prediction proposed in [Purohit et al., 2018] is the total amount of days
that the person stays in the resort. Expanding upon this result, [Gollapudi and Panigrahi,
2019| assume k predictions of the total amount of days.

Paging. Three models of predictions have been used for the study of Online Paging. The
first is the Per-Request Prediction model, inspired by the Belady’s rule [Belady, 1966|, which
provides for each requested page the subsequent time when it will be requested and is used
for the unweighted version by [Lykouris and Vassilvitskii, 2018, Rohatgi, 2019, Wei, 2020| and
for the weighted version by [Bansal et al., 2020]. On the other hand, the Strong Per-Request
Prediction model used by [Jiang et al., 2020], obtains better results by demanding that the
predictions also give the whole sequence of page requests until the next request of the same
page. Finally, in [Antoniadis et al., 2020] a different model is used, inspired by the study of
Metrical Task Systems, which predicts the state of the whole cache for every time step and
can be derived from the Per-Request Prediction model.

Job Scheduling. The study of Non-Clairvoyant Job Scheduling in the context of predictions
started with [Purohit et al., 2018], which studied the unweighted version with one machine
with predictions being the processing time of each job and later improved by [Im et al.,
2021a]. A similar choice is made in the more general case of multiple jobs and different
machines in [Zhao et al., 2022], while [Lindermayr and Megow, 2022] predict the whole
permutation of jobs that will be assigned to each machine, i.e. the optimal solution. On the
other hand [Cho et al., 2022| studied the case where there is a single machine and weighted
jobs and predicted the weight of each job. From a mechanism design perspective, [Balkanski
et al., 2022| naturally predicts the private information of each agent, which is the processing
load that the job would incur to their machine.

Steiner Tree. As for network problems, the Online Steiner Tree has been studied extensively.
In a completely different setting compared to the previous problems, both [Xu and Moseley,
2021, Azar et al., 2021| consider a model in which the predictions are the terminals, provided
in an offline fashion to the algorithm.

Facility Location. Another interesting network problem, Online Facility Location was
studied in order to utilise predictions. In [Azar et al., 2021] the predictions are given in an
offline fashion and correspond to the locations of all the demands. On the other hand, a
different approach is employed by [Fotakis et al., 2021, Jiang et al., 2021], where each demand
arriving online is given a corresponding prediction as to which facility it should be assigned to.
Furthermore, cast in the setting of mechanism design, this problem was studied by [Agrawal
et al., 2022|, where a single prediction was requested, the location of the optimal centre for
the facility.

3.3 Error Metrics

In order to analyze an algorithm that utilises predictions, it is necessary to define appropriate
notions of error for these predictions. Informally, this error can be thought of as the extra
cost incurred for extending a solution bought according to the predictions, in order to cover
the actual input. This way, we can achieve bounds parametrized by this error, thus beating
the worst case. At this point it is important to note that the analysis of learning augmented

31

algorithms does not require any guarrantees from these predictions. As a result, the bounds
given, hold for any possible value of the error. This is very useful as it provides the necessary
separation between the oracle that offers predictions and the algorithm that uses them.

Next, we explore some of the errors that have been used in the literature, for each of the
problems.

Ski Rental. In the case of a single prediction, [Purohit et al., 2018] uses the difference
n = |& — x| between the predicted days Z and the actual days x, which can be thought of as
a trivial use of the Li-norm. On the other hand, when multiple predictions are considered,
[Gollapudi and Panigrahi, 2019] use the difference between the best prediction and the actual
days of skiing, n = min; |Z; — z|.

Paging. In online caching, [Lykouris and Vassilvitskii, 2018| define the error in a more
general manner, for any loss function [with arguments the actual next time that an element
o; will be requested, y(o;), and the predicted next time, h(o;), as n = >, l(y(0:), h(0y)).
Examples that could be used for | are the absolute difference, which naturally leads to n
being the absolute difference and the squared difference which leads to n being the squared
loss function. Similarly, [Rohatgi, 2019, Wei, 2020] use as error the sum of absolute differences,
but obtain bounds using the number of inversions, i.e. the number of pairs of pages whose
next requests are predicted in the opposite order, which is upper bounded by twice the error.
As a generalisation, in the weighted version [Bansal et al., 2020, Jiang et al., 2020] use the
weighted absolute difference as an error metric. On the other hand, [Antoniadis et al., 2020]
approaches the problem as an MTS and therefore sums the distances between the predicted
and optimal cache states at each timestep.

Job Scheduling. In Non-Clairvoyant Job Scheduling, with predictions ; of the total pro-
cessing times z;, the error was used in [Purohit et al., 2018] as the Li-norm n = >, |Z; — x;l.
This was refined in [Im et al., 2021a] where a more elaborate definition was employed, us-
ing the increase in the cost of an optimal solution if overrestimated (also underrestimated)
predictions were correct. On the other hand in [Lindermayr and Megow, 2022|, where permu-
tations are predicted, the error measures the increase in the cost incurred by inverting pairs
of jobs. In [Zhao et al., 2022], the error is simply the maximum ratio between predicted and
actual size of a job. Surprisingly, a similar error is used in the context of mechanism design,
where [Balkanski et al., 2022] use the maximum ratio between predicted actual processing
cost for each job, agent.

Steiner Tree. As for the Steiner Tree, two different models have been proposed. In the
framework by Moseley [Xu and Moseley, 2021|, the error was defined as the number of ter-
minals not accurately predicted, despite the fact that their distance to the actual terminals
might have been minuscule. On the other hand, in the framework [Azar et al., 2021] the error
incorporates both the notion of outliers and matched predictions, with the tuple (A, D). The
matching cost is chosen as the distance (cost of the shortest path) between each prediction
and terminal in the input on the graph, which are then matched by a min cost matching so
that the total cost does not exceed D. As expected, the analysis of the algorithm is valid for
any feasible such tuple. In that sense it generalises the former approach, which can be seen
by setting the matching cost D = 0, in which case only predictions that are located on actual
terminals are matched.

Facility Location. First, for the case where the positions of the facilites are predicted,
the error used in [Fotakis et al., 2021, Jiang et al., 2021] is mainly the L.,-norm between
the predictions and the actual optimal centers, 7 = max; d(};{ed, g t). One technical detail,
is that in order for this error to be bounded, the predictions are calibrated appropriately.
Second, the case where the whole input is predicted is identical to that of Steiner Tree. In the

mechanism design variation, [Agrawal et al., 2022] normalise the Li-norm of the predicted and

32

optimal location of the facility, ¢ and ¢ respectively, by the optimal social welfare, n = [é(]éfT).

All these applications provide some insight into what is effective in the choice of predictions
and errors, which are undoubtedly the crux of this field of algorithms. While there is no
consensus as to what is suitable for each problem, some conclusions can be made. Problems
where a characteristic of each element of the input is desirable, admit the obvious choice,
a norm that aggregates the individual differences between each prediction and each actual
characteristic. On the other hand, when we wish to use a prediction of the whole input, it is
reasonable to be more interested in the differences in terms of the distribution between the
predictions and the input, especially in network problems, but not exclusively. Accounting
for the fact that some predictions might be faulty, we can expand on the previous notion by
discarding some predictions as outliers, which are expected to be present in realistic scenarios
and should not be allowed to skew the analysis towards unbounded costs. Last of all, another
useful idea is that of normalising the error by the cost of the optimal solution, in order to
prevent it from increasing with size of the input.

33

Chapter 4

Frameworks

Even though the study of learning augmented algorithms is still in an exploratory phase,
where most problems are approached by ad hoc methods, certain frameworks have emerged,
which facilitate the design of such algorithms for families of problems. These frameworks
utilise ideas from the study of online algorithms, like the primal dual method, the multiple
experts problem or the online combination of online algorithms, in order to provide a more
general approach to taking advantage of predictions. The results that will be presented have
been developed with different kinds of covering problems in mind. One interesting question is
whether they can be adapted to solving more general problems when predictions are available.

4.1 Primal Dual Learning Augmented Framework

The primal dual method for online algorithms appeared for the first time in [Alon et al.,
2003|, in order to solve the fractional weighted set cover problem. Its main property is that it
maintains a feasible solution to the primal LP, while also maintaining an infeasible solution
to the dual LP. Conceptually, the following steps are needed to use it.

1. Find the factor a by which the solution of the dual needs to be scaled down to become
feasible.

2. Upper bound the feasible primal solution by some factor b times the dual.

3. Using weak duality the product a - b is the approximation ratio.

If we wish to obtain an integral solution, the ratio only increases due to the integrality
gap of the problem.

Similarly to the classical primal-dual method, the framework of [Bamas et al., 2020] follows
the same steps to prove consistency and robustness. The main idea, is that if we are given a
prediction of an integral solution to the problem, we can introduce a tunable parameter A to
increase or decrease our trust in the predictions and how much they affect the updates.

Weighted Set Cover with Predictions. The problem is once again weighted set cover,
which is general enough to showcase the properties of the framework. We are given a set
U = {e1,ea,...,e,} and a weighted set F of subsets of U. In the fractional problem, we
need to cover every element by fractionally buying xg of each S € F in order to satisfy
> SeF(e) TS > 1 while minimizing the total cost ser Ws - Ts. In this scenario, we are also
provided with a set A C F which predicts the optimal integral solution. Adapting the original
primal-dual algorithm, we can tune our trust into the sets that have been predicted to be
part of the solution by updating them proportionately.

35

oW N =

ot

Algorithm 3: PDLA Weighted Set Cover
forall e in the input do
while } ¢ p() s <1do
forall S € F(e) do
1 A 1-)\
| @s e os (14 59) + gy + werom - LS € A)

Ye & Ye + 1

At this point we note that this algorithm does not cover the case when the predictions
are not a feasible solution, but this can be solved with minor changes both in the algorithm
and in the analysis and can be found in [Bamas et al., 2020].

The analysis of this algorithm will closely follow the 3 steps outlined above, adding another
one for the consistency ratio.

Lemma 4.1.1. The scaled down dual solution with variables W is feasible.

Proof. The dual problem only requires that) . y. < 1 for every S € F. In order to obtain
a bound we will first notice that every xg has a lower bound of a geometric series with
exponent exactly equal to that sum. Next, we will upper bound this xg by a constant.

Inspecting the update rule for an xg that has been updated & times we notice the following
recursion, where w% =0

1 A 11—
k k—1
- 1+ — -1{8
ry =ty U)T wsF @) T wslFo nal HEEA
1 A
S s
1 A 1 A 1
S k=201 4)2 e 14 =0
i (+ws) + 'wS(+ws)+ ws< +ws)
k—1
1
> A (1+—)

Now, notice that xg will be updated as many times as e € S have arrived until a given
point. Therefore k =) _g¥.. Using the inequality (1 + wiS)WS > 2 we get

2k > 3 (2’“/“’8 - 1) &

What remains is to give the upper bound, noting that xg < 1 at all times before the last

1 A 1- A
k k—1
- 1+ — 1{S
rs =5 (I+ o)+ oF @] T wsFe nal S EA
k-f
<22i 41
<2.14+41=3

36

Combining the two bounds we get

d
Zye§w5'10g<)\~3+l>

ecS

which proves the lemma.
O

Lemma 4.1.2. The primal solution is feasible and it is upper bounded by 2 times the dual.

Proof. The variables xg are only increased by the updates. Therefore, once a constraint
> ecsTs > 1 has been satisfied, which occurs when the while loop ends, no variable in the
sum can be decreased.

We proceed to prove the ratio between the primal and the dual solution, by showing that
every single increase of a variable y. in the dual incurs at most twice that in the primal
solution. Suppose that an update takes place, after e arrives. Once all zg with S € F(e)
have been updated, y. increases by exactly 1.

Formally, AD = 1 while AP = ZSEHG) wg - (ZL',S —xg). Denoting dg = xls — x5 we have
two different cases.

o If S € F(e) N A then
1—-A

A
F@l T FEnA

wg - 0g = Tg +

o If S e Fl(e)\ A then

A
wg 05 = Tg + ———

| F(e)|
By summing them up we get
ap=Y I W i O L B W W 1 GO A e Y as+1<2=2.AD
SeF(e) |J—'.(€)‘ |./—"(€)| SeF(e)+1
since before the update, the constraint) ¢ Fle) TS = 1 was not satisfied.]

At this point, we know that the primal solution we have obtained is feasible, achieving a
robustness of O(log(d/\)).

Theorem 4.1.1. The cost of the algorithm is ALG < min{©(log(d/))) - OPT,O(1%5) -
S(A,ZI)}, where S(A,Z) is the cost of the predicted solution.

Proof. The first bound has already been proved. As for the second one, it shows the consis-
tency of the algorithm. In order to prove it, we will have to charge all costs to those incurred
by the variables zg where S € A. Notice that these are upper bounded by 3, implying that
their total cost is at most 3 - S(A,Z).

We begin by breaking the primal cost into two parts AP., AP,, which describe the increase
in cost after an update to the variables whose S € F(e) N A and S € F(e) \ A respectively.
As already shown in the previous lemma,

[F(e) N A
AP, = \- 1-A>241-2)
Z Tg + FO) + >+
Se|F(e)nA|
AP, = > as+A Fe)\ Al <14\
|F(e)]
Se|F(e)\Al

37

AP, < 1+

Then the ratio between them is AP and the total increase is

= A+41-A
1+ A 2 1
AP < 1—1—/\# AP = —F— :O<>-APC
By summing all the increases and charging P, to S(A,Z) we have the theorem. O

4.2 Covering Problems with Multiple Predictions

Staying in the area of covering problems we focus on a more general scenario, where we are
provided with & different predictions at each step. Specifically, [Anand et al., 2022a] studied
the online covering problem, a generalisation of fractional weighted set cover, where in each
step k predictions are given in an online fashion and gave a framework for utilising predictions
for fractional problems in this category.

Online Covering Problem. The online covering problem (OCP), can be formulated by
the following LP, assuming costs ¢; > 0 and constraint coefficients a;; > 0

miani - T
s.t. Za’j cx; > 1 Vj e [m]
z; € 10,1] Vi€ [n]

The costs ¢; are given as offline input. In each step j of the online input, a new constraint
> ;aij-x; > 1 s given and needs to be satisfied by deciding new values for the variables
x;- One common way of ensuring that no previous constraint will be violated, is to only
increase the variables for every new constraint. Since the constraints of the coefficients are
not negative, if a constraint is satisfied, increasing any variable will only cause the sum to
exceed 1.

Predictions. As mentioned earlier, in each step j we receive k predictions, each one suggest-
ing different values for all variables x;. The s-th prediction for variable x; at time j is denoted
%;(4,8). These predictions are assumed to all satisfy the j-th constraint and nothing else. In
fact, an even stronger assumption is made to simplify the analysis, that >, ¢; - Z;(4,s) = 1,
but it is without loss of generality, since even if it exceeded it, we could lower some variable
in it. Therefore, their actual values are not expected to be used as is, rather they will hint
towards a good solution. To formalise this notion, the following definition is given

Definition 4.2.1. The value of a variable x; is said to be supported by the s-th prediction if
xi > #(j, s) for all j € [m].

Benchmarks. In order to provide consistency bounds for the algorithm, we need to define
some notion of good solution according to the predictions, which is going to be compared to
it.

One natural way to define such a solution is to consider the best individual predictor, out
of the k available and find the best solution that is supported by them. This solution will be
called STATIC'. Formally,

STATIC = min ¢; - max ;(7, s
s€[k] Z Jj€[m] G s)

1€[n]

38

(<, S S N I

A different approach would be to freely choose the best from all the predictions. The set
of available choices will be X = {& € [0,1]" | Vi € [n],Vj € [m],3s € [k] : & > &:(j,5)}.
By this definition, every Z; is supported by some predictor for every step, thus allowing each
component to be supported by a different predictor. This solution will be called DY NAMIC.

DYNAMIC =min » ¢ - &
zeX i€[n]

Obviously the available options of the DY NAMIC' solution include those that can be
made by the STATIC, therefore

DYNAMIC < STATIC

Online Covering Algorithm with Predictions. As in the primal-dual framework, in
every step the algorithm will be increasing the variables by some rate dft". This rate will
depend on the cost ¢; incurred by the variable, the benefit it offers towards satisfying the
current constrain, a;;, as well as the k suggested values for it. In order to incorporate all of the
predictions in the calculation of the rate, a natural choice is to use their average % > Til4,).
In the algorithm and the analysis, the notation § = + and z;; = >, #;(j, s) will be used.

Initially all z; are equal to 0. At this point we are ready to present the algorithm.

Algorithm 4: Online Covering Framework

forall steps j do
while Zz’e[n] ajjr; < % do
forall i € [n] do
L if z; < % then
t Increase x; with rate

G= (w6)

In the end, all constraints will be half satisfied, therefore we can get a feasible solution
by multiplying every variable by 2, which increases the cost by the same constant factor.
Another property of the algorithm, is that if Zie[n] ai;T; < %, then there will always be
at least one variable x; < % which will be increased in order to help satisfy the constraint.
Otherwise, if all z; > % then %Zie[n] a;j < Zie[n] a;jr; < % and Zie[n] a;j < 1, which means
that the constraint given is impossible to satisfy by any vector in [0, 1]™. As for the continuous
rate of increase, it can be discretized, by increasing the variable until either the variable itself
or the sum of the constraint exceed %

Analysis. The analysis of the algorithm uses the potential method. Specifically, by com-
paring the rate of increase of the cost incurred by the algorithm to the rate of decrease of the
potential function, we acquire an upper bound for the cost. Next, by bounding the potential
function by the DY N AM IC solution we obtain the consistency bound O(log k-DY NAMIC)).
As for the robustness, a slight modification of the algorithm is used in order to combine the
predictions with the solutions suggested by a worst case online algorithm.

Lemma 4.2.1. The rate at which the cost incurred by the algorithm increases is at most %

Proof. The rate of increase of the total cost is

39

dx;
Zci- CZ zzaij($i+5$ij)
= Zawxl—i_]lczzawi:z(j’ 3)
O

In order to upper bound the total cost incurred, we will define a potential function which
models the extra cost incurred by the DY NAMIC solution at each step. The potential
function for each variable is defined by a component

(1+ (5)1’iDYN
T; + (5xiDYN

¢; = c;zPY N In

where each x; has the value it was assigned with by the algorithm at any step, while xlD YN

is constant and is the value of the DY NAM IC solution.

The total potential function is the sum of those components for the variables in which the
DY NAMIC solution actually incurred extra cost

b= > ¢

i:x?YNza:i

In order for this potential function to be useful in bounding the total cost, we will need
for it to have a constant rate of decrease and also for it to be non negative so that we can
directly correlate the two rates with the corresponding maximum values.

Lemma 4.2.2. Every component i of the potential function is ¢; > 0, therefore ¢ > 0.

DY N

Proof. Since the potential function only sums terms for which z; < x; we have that

b1 = caP¥N I L2
‘ v T; + 5xlDYN

! xi/xZDYN 4+
iDYN Z 0

= CGT

> T

. . . de
Lemma 4.2.3. The rate of decrease of the potential function is 55 < —5.

NI

Due to the technical nature of the proof, it is deferred to the paper [Anand et al., 2022a].

Next, we prove the bound that connects the potential function with the DY NAMIC
solution.

Lemma 4.2.4. For every component of the potential function we have ¢; < ciatZDYN‘O(log k).

40

Proof.

61 = ciaPV N LEO T
! v T; +5:UiDYN

DYN w "N
3

< cxPYNIn(1/6 +1)
= c;zPYN . O(logk)

O]

At this point we are ready to prove the theorem concerning the consistency of the algo-
rithm.

Theorem 4.2.1. The cost incurred by the algorithm is ALG < O(logk)DY NAMIC.

Proof. The potential function decreases at 3 times the rate of increase of the cost incurred by
the algorithm. The cost is initially equal to 0, while the potential function at worst reaches
0 starting from a positive value. Therefore

ALG = cimi < 3¢(j =0)

Due to the previous lemma we get

ALG <3-O(loghk) - Y cixl*™ = O(logk) - DY NAMIC

)

Doubling the variables in order to obtain a feasible solution only doubles the total cost. [

Surprisingly, in order to obtain a robust algorithm, we only need to apply the framework
itself to combine the solution described above, with that suggested by any online algorithm.

Theorem 4.2.2. There is an algorithm whose cost is bounded by ALG < min{O(logk) -
DYNAMIC,O(logd)OPT}, where d is the mazimum number of variables with non zero
coefficients in each constraint.

Proof. Suppose that we use the framework in order to combine two solutions. One is the
solution given by the online algorithm from |[Gupta and Nagarajan, 2012] in each step, which
is an O(log d) approximation. The other is the solution given by the framework when it is ran
using the k predictions as suggestions in each step. As a total, the algorithm incurs a ratio of
O(log2) = O(1) over the DY NAMIC', which is allowed to only choose from the two sugges-
tions. But as discussed earlier any dynamic solution is upper bounded by its corresponding
static. The two static solutions have bounds O(logd)OPT and O(logk)DY NAMIC which
gives the theorem. O

Online Covering with Box Constraints. While the above analysis suffices for problems
like weighted set cover and weighted caching, it lacks the ability to bound variables by each
other, as in x;; < y;. Motivated by fractional facility location, where a set of variables
y; indicate the extent to which each facility is open and another set of variables x;; which
indicate how much the facility ¢ covers demand j, we need extra constraints to express the
fact that in order for a facility to cover a demand by x;; it needs to be open by at least that
much. The covering problem only allows for positive coefficients a;;, therefore this case is not

41

1
2
3
4
5

(]

covered by it and a new problem is needed, than the previous one. In its general formulation

the covering problem with box constraints is

min Z ciyi + Z Z dijwij
i PR

s.t. Zaijxij Z 1 \V/j
%

Tij < Y
Y; € [0, 1]

Vi, j

Vi

In this case the online input is the constraints sum;a;jx;; = 1, since everything else is

known offline. The update of the z;; to that of

the x; in the simple covering problem. The

main difference is that this increase is only made when the corresponding box constraint
x;; < y; is strictly satisfied. Otherwise, both variables are increased at the same rate, which

also incorporates the cost ¢; of y;.

Algorithm 5: Online Covering Framework with Box Constraints

forall steps j do
Set I'y; = >, zi;(s) while >, a5z < % do
forall i € [n] such that z;; < 1 do

if z;; <y; then

L. dx iy
Increase x;j with rate 2;’ = % (xij +0-T)
else
g , dy; _ Omyy _ dwyy @y T
t Increase both z;; and y; at rates 4 = — i = Tt (xij +6-T)

The analysis is very similar so we present only

the theorem, which is obtained by combining

an online algorithm with the framework, as before.

Theorem 4.2.3. There is an algorithm for the

online covering problem with box constraints

that incurs cost ALG < min{O(logk)DY NAMIC,aOPTY}, where o is the approzimation

ratio of a known online algorithm for the specifi

¢ problem.

4.3 Online Graph Algorithms with Predictions

In their paper [Azar et al., 2021|, Azar, Panigrahi, Touitou, design a framework with metric
problems in mind. In their work, they attempt to create a black box method for combining
algorithms, one for the online input and another for augmenting the solution with elements

bought according to the predictions. The key to

this framework is a new notion of error that

they introduced, capturing both the spacial distance between two distributions of requests
and the fact that some demands can be far enough from each other to be considered outliers.

Setting. As mentioned, we are concerned with problems defined on a metric space (M, d). In
these problems we are given a set of requests R as input, and a universe S with the elements
that a solution can buy in order to cover the requests. For example, in Facility Location the
requests are the demands and the elements of the universe S are the locations where facilities
can be opened. We note that problems on graphs can be described by this setting, by using

the usual shortest path distance as the metric.

This extends the framework to problems

such as Steiner Tree/Forest. Since we are concerned with online problems, the requests R
are assumed to be given one by one in an online fashion, as it is the case in Online Facility

Location and Online Steiner Tree.

42

Predictions. This framework operates on predictions of the whole input. The algorithms
designed are expected to be given a set R of predictions for all the requests as offline input.
Then, using these predictions they should obtain offline solutions on them that they buy
hoping that they will prove useful in covering future input.

Error Metric. In graph problems like Steiner Tree, the error metric of outliers alone has
already been used in [Xu and Moseley, 2021|. In that setting, any predicted terminal that
does not coincide with an actual terminal is considered flat-out wrong and contributes 1 to
the error. Yet the general class of metric problems can also utilize the notion of distance
between two distributions, by means of a matching. Motivated by these two facts, they
combined these two notions to introduce the metric error with outliers. Specifically, the error
is now a tuple (A, D), where A is the number of outliers, both predicted and actual input,
and D the distance between requests that have been matched across the two distributions.
If the matched subsets of R, R are T,T, then A = |[R\ T U R\ T|. In essence, for every
number of outliers A there are many different matchings that can be made and vice versa.
These possible tuples create a Pareto frontier. For instance, for a fixed A we can acquire
the least D by using some variation of min cost matching that fits the given problem. Then,
the algorithms are analyzed against any possible value that these two values can have. The
consistency of the algorithms is obtained by setting A = 0 and D = €, while the robustness
is obtained for A = |[RU R).

Requirements. If we wish to utilise the offline predictions of the input we will need to
run some offline algorithm on them, while another online algorithm handles the input. In
accordance with the outliers in the error metric, we need to be able to discard predictions. In
fact, it would be preferrable to be able to tune how many of the predicted requests we wish
to cover, while keeping the cost incurred as low as possible. This is where prize-collecting
algorithms prove to be useful. If we were to assign the same penalty 7 to all predicted requests
and then run an approximation algorithm, then by increasing = we would be getting more and
more requests covered, as the penalty becomes more inhibiting. By repeatedly running this
algorithm we could find the point where we get the approximately lowest possible number of
predictions that can be covered by a solution that spends no more than the price of the online
solution. Ideally, the offline algorithm would recognise which predictions are bad and would
only consider the rest of them. While that is not possible, this framework successfully buys
solutions that incur no more cost than it would if it knew which are to be matched. As for
the online algorithm, it will similarly not be aware of the matching and which solutions could
cover which parts of the online input. Nevertheless, if it has the property of being subset
competitive we could analyze it with respect to the matched requests it correctly recognised.
Therefore, the two required algorithms for this framework are the following

e A constant y-approximation offline algorithm for the prize-collecting variation of the
problem.

e A subset competitive online algorithm for the problem with approximation ratio f(|R|).

Algorithm. As mentioned before, we will need to combine offline solutions bought for the
predicted instance with online solutions bought for the input. In order to achieve that, we can
request an offline solution every time the cost incurred by the online algorithm has doubled.
This solution is expected to cost no more than that of the online solution, while covering as
many predicted requests as possible.

The subroutine PARTTAL is responsible for buying elements that cover the predicted
requests, leaving approximately u of them not satisfied. By exploring different penalties, it
finds those that leave close to u requests. By running it multiple times for different values
of u we maximize the satisfied predictions while also incurring cost within a constant ratio
from the online algorithm.

43

[y

© o N o

10

11
12
13

14
15
16

17

Algorithm 6: General Framework for Online Algorithms with Predictions

Input: ON — An online algorithm for the problem
PC — a ~v-approximation for the prize-collecting problem
R — a prediction of requests

Initialization
Initialize B < 0, B < 0 and S «+ 0.
| Initialize ON to be a new instance of the online algorithm.

forall requests r in the input do
Send r to the online algorithm ON, and augment S accordingly. Increase B by the
resulting cost incurred by ON.

// Whenever the cost of the online algorithm doubles, buy another offline solution
if B > 2B then
Set B+ B
Calculate 0 < u < |R|, the minimum number such that ¢(PARTIAL(R,u)) < 3yB.
Augment S with the elements of PARTIAL(R, u).
Start a new instance of the online algorithm ON where ¢(e) =0 for all e € S.
Function PARTIAL(R,u)
if yu > |R| then return §
For every z, define 7, to be the prize-collecting penalty that penalizes every request
by x.
Let ¢ be the minimum integer such that PC (R, i) does not satisfy < vyu requests.
Let S; = PC(R, myi—1) and Sy = PC(R, my:).
Let uq, uo be the number of requests from R which are not satisfied by S1, .52,
respectively.
if yu > WT“Q then return S else return S,

Analysis of PARTIAL. First, we analyze the PARTIAL subroutine in order to prove that
it achieves what it set out to.

Lemma 4.3.1. Running PARTIAL with input u gives the following

o The predicted requests not satisfied by the solution are at most 2yu.

e The solution costs at most 3yc(S*) where c(S*) is the cost of the optimal solution that
doesn’t cover u predicted requests.

Proof. First of all, notice that the subroutine chooses S; or S based on whether ~vu is closer
to w1 or us respectively. On one hand, us < yu < 2yu. On the other, when S is chosen, yu
is closer to uq, therefore u; cannot exceed 2yu.

As for the bound of the cost, we use the approximation ratio of algorithm PC to get
c(PC(my)) < ve(Sy,) where ¢(S;) is the optimal solution of the prize collecting with penalties
. Note that S* is the optimal solution leaving u* < w requests not satisfied with given
penalties. Given that it is a valid solution the bound becomes ¢(PC(7;)) < v(c(S*) +x - u*).

Applying it to the two solutions S7 and So we get

c(S1) + 271wy < ye(S*) + 207 - qut (4.1)
c(S2) + 20wy < ye(S*) + 20 yut (4.2)

44

When S = 5] the lemma follows because vu < u; and
c(S1) < 7e(S*) + 271 (yut —) < ye(SF) + 271 (yu — ur) < 7e(S*)

When S = S we cannot directly compare yu* with us as we did with u;. In order to
acquire a bound we introduce yu in inequality (2)

c(S2) < ve(S*) 4 24 (yu* — ug) = ye(S*) + 21 (yu* — yu) + 2% (yu — u) < ye(S*) + 24 (yu — us)

i +
Using the fact that yu < %

c(Ss) < ve(S*) + 22‘%

In order to bound u; — uy we use inequality (1)

1U1L — U2

ve(S*) > e(Sh) + 21‘71(1“ —yu) > 21— 5

Using the last two inequalities we get the lemma. O

Analysis of the framework. Having analyzed PARTIAL and the quality of the solutions
it obtains, it is time to discuss how these are combined with the online solutions to give some
general bounds.

We notice that in the beginning, the algorithm is expected to buy enough solutions for
the future relying heavily on the predictions, since the online algorithm does not yet have
enough information to make good decisions. After a certain point, though, when enough
of the input has been observed and enough offline solutions have been bought, the online
algorithm will have to decide whether to use them or not. This will be decided for the most
part by the error of the predictions. If the predictions were good then all the algorithm does
is to connect them to the requests. On the opposite case, the online algorithm will have to
buy new ones. Motivated by this, we split the execution in two parts, suffic and prefix, before
and after a major iteration . This iteration will have to be defined by every application of
the framework and should be chosen so that the total cost incurred up to that point is close
to OPT, so that the offline solutions will have covered most of the predictions.

In order to refer to the cost up to a certain iteration, we use B; and Bj for the value of
B and B respectively, after iteration j. For the purposes of the analysis, we can split the
execution of the online algorithm after iteration ¢ in different phases ONy,...,ON,,, each
one ending on an iteration when the algorithm has doubled its total cost and seeks offline
solutions. These iterations are called major iterations and are denoted z;

Lemma 4.3.2. The cost of the iterations up to i is Prefiz(i) < O(1)-OPT +(12y+2)-B;_1

Proof. The cost of the iterations up to ¢ is made up of the cost incurred by the online
algorithm, which is B; and that of the offline solutions, which is bounded by 3vB; if j was a
major iteration. Adding all these costs together we get

7 i—1
Prefiz(i) < B;+3v» Bj=Bi+3yBi+3y)_B;
=0 =0

The reason why we separate costs corresponding to iteration ¢ from the rest, is because i
is a major iteration and B; = B; = B;_1 + ON(r;). But using subset competitiveness of the
online algorithm it is clear that ON(r;) < f(1) - OPT = O(1) - OPT. On iterations that are

not major, like ¢ — 1 the invariant B;_; < 2B;_1 holds. Using all these we get

45

Bi+3vBi=(1+37)B; = (14 37) - (Bi_1 + O(1)-OPT) < (24 67) - Bi_y + O(1) - OPT

As for the sum, due to the exponential increase of B we can bound B < (Y1 B;
for j <i—1. In order to sum all these we notice the geometric series and we get

iB < ’Yle
j=0

which proves the lemma. O

Lemma 4.3.3. The cost of the iterations starting with i+1 is Suf fiz(i) < O(1)-max{ONy,_1,ON,,}

Proof. The cost after iteration ¢ is expected to be bound by that of the online in its last phases,
since the cost required to conclude a phase is equal to that incurred from the beginning until
the last phase, i.e. Bi§+1 — Bi; > 2. Bij*_ — Bi; = B;x

()

Suf fix(i) ZON +3'yz
Jj=0 J
The cost of the offline solutions can be bounded as follows

3723 <3VZ(i~ ;):37201\@

What remains is to bound the cost of the online algorithm in its various phases. The
argument is similar since

For j = m — 1 we have

Therefore the sum up to 7 = m — 1 is at most twice the cost of ON,,,_1.
The next phase, ON,, is of unknown cost, since the input could end after one request,

or even get to the point where the cost has doubled. Therefore, we use the highest of
ONp,—1,0ON,, as the bound, which gives the lemma. O

Having proved the main properties of the framework, it can be seen that in order to use
it and obtain bounds for a given problem, one needs to choose the iteration ¢ and give two
bounds, one for B;_; and another for ON ;. Of course, the definition of a proper error for the
matching is a more intricate problem, one that we explore in the final section.

46

Chapter 5

Learning Augmented Algorithms

In this section we present a survey of some main results in the area of learning augmented
algorithms, using both problem specific methods as well as the frameworks presented in the
previous section.

5.1 Ski rental

The Ski Rental problem is simple enough to provide a warm up for the study of learning
augmented algorithms, while at the same time requiring non trivial approaches to achieve
good results. As a reminder, the setting is that every day we decide whether to rent the skis
for a cost of 1, or to buy them once and for all for a cost of b. The problem is that we do
not know how many days we will be skiing, which is exactly why we choose to predict it. A
simple approach that yields a 2 approximation is to rent until day b — 1 and then buy. There
is also a randomized algorithm by [Karlin et al., 1990] for the problem achieving ratio 1.58.
Both of these algorithms are optimal.

5.1.1 Single Prediction

Considering that we have a prediction & of the total days x, we need to find a proper way to
leverage it with respect to the error n = | — x| in order to achieve better than the previous
two deterministic and randomized results in the worst case. The algorithms of this section
were given in [Purohit et al., 2018].

Deterministic algorithm. If we were to assume that the prediction is trustworthy, we
could implement the following simple rule. If £ > b then pay b to buy the skis, otherwise rent
until the end of the input, paying z.

Lemma 5.1.1. If the above algorithm incurs cost ALG, then ALG < OPT + n.
Proof. A simple case study exposes the weaknesses of this approach.
e If &, x are both less or both greater than b, then ALG = OPT
o Ifx <b<Zthen OPT =2, ALG=b<it<i—x+x=0PT+n
o If 2 <b<zthen OPT =0, ALG=2=2—-b+b<b+2—-2=0PT +n
O

If the prediction is actually good, then the above algorithm achieves O PT'. In the opposite
case, its ratio is unbounded. As an example, given & < b and x = k- b > b the ratio is k
because the algorithm blindly trusts that the total days are less than b and keeps renting.
Similarly, given £ > b and = = 1 the algorithm buys immediately, giving ratio b. Both these

47

issues could be alleviated by imposing a limit on how long the algorithm can keep renting
and how early it can start buying. Introducing a tunable parameter A € (0,1) we can express
our trust in the predictions. Specifically, if we were to buy, i.e. £ > b we rent until Ab and
then buy. On the other hand, if we were to rent, i.e. £ < b, we only do so until % and then
buy.

Theorem 5.1.1. The modified algorithm incurs cost ALG < min{(1 + }) - OPT, (1 + A) -
OPT + 5}

Proof. We proceed with a similar case study, in order to prove both bounds.

o IfZ >0

— If z < [Ab] then ALG = OPT because the algorithm does not buy before A\b

— If x > [Ab] then ALG < (14 \)b, while OPT is either = or b depending on whether
xz exceeds b. The worst ratio corresponds to = [Ab] and is 1 + }. On the other
hand, it is also true that b < OPT + 0, therefore ALG < (A + 1)(OPT + n)

o If 2 <b

— If x < b then ALG = OPT because the algorithm keeps renting until day =
— Ifb < 2 < [%] then OPT = b, while ALG < + and ALG = v = x—b+b < OPT+n

— If z > [%] then OPT = b while ALG < b+ %. Obviously, ALG < (1+ 1) - OPT.
On the other hand, n =2 -3 > & —b= (1-)\)2. Asaresult, ALG < OPT +

O]

The above analysis, guarrantees 1 + %—robustness and 1+ A-consistency. Depending on
our trust in the predictions we decide which side of the tradeoff we will favour. High values
for A indicate low trust in the predictions but provide increased robustness.

Randomized algorithm. As for the randomized algorithm, the ideas that drive its design
build upon the previous discussion, by selecting the day that we purchase by defining proper
distributions. The limitations of Ab and % are still present but we no longer wait until we
reach these specific days, so that the adversary cannot force the algorithm’s choices by giving
a bad prediction. Specifically, if the prediction is & > b the algorithm a day before Ab to buy,
while if & < b the algorithm will choose a day before %. Before giving the exact distributions
we will attempt to provide some intuition into their construction.

Suppose that A = 1 which means A\b = 3 = b matching the two limits. This is the original
worst case scenario where no prediction is used. We need a distribution p; that expresses how
long we should wait before buying, for each day i € [1,b]. This p; calculates the probability
that <4, implying that if we rent until ¢ we will not have to buy at all. Since we do not know
x and assuming it is z < b, selecting it at random would give ¢ with probability % and anything
but ¢ with probability 1 — %. Therefore, the probability that it is « € [1,4] is equal to the
probability of z ¢ [i+1,b] which is to say P(z € [1,4] | z € [1,b]) = (1 — %)b_i. In order to get
rid of the condition we have P(z € [1,i]) = (1 —)"~ P(z € [1,b]). Notice that P(z € [1,b])

1/b g and

is constant with respect to 4, therefore by summing we have P(x € [1,b]) = TSP

1
b(1—(1-1/b)")

pi=(1—1/b)""

In order to introduce A we have to scale the distribution so that it is defined on different
domains, i € [1,Ab] and @ € [1,b/A]. This is simple, since we can adjust the exponent with

48

k = [Ab] and [= [b/A] and get a different corresponding constant in each case which will
give
g = (1= 1/B)~i. ! i<k
Z b(1—(1—1/b)F)" "~
; 1
=(1-1/p)"") <1
Uy

Theorem 5.1.2. The randomized algorithm achieves E[ALG] < mln{w -OPT
(OPT + 1)} for X € [b, 1].

A
Y l—e—A

Proof. We proceed by a case study

e If £ > b and z < k then we will have to rent the skis for ¢ — 1 days and eventually buy
them on the i-th day. As before we have b < OPT 4 n and

k
k
BIALG =2 (i1 6= T3

.k
~ 1—e K/

/b

A
<)
g — (OPT +n)

e If £ > b but z < k then for ¢ < z we pay b+ ¢ — 1 as before but beyond that point we
only pay x as we did not have to buy the skis. In this case OPT = z and

xT

k
BIALG) =3 0+i-1 a+ 3 @ 6= T

=1 i=z+1
1
< - .
S T ok OPT
1
= -OPT
1 —e A

The first bound is given because A < § therefore E[ALG] < w OPT. The
second bound is given because OPT = x < A\b < A& = AOPT + n) which implies
E[ALG] < - (OPT +n)

A
1—e—A

The proofs for & < b follow the exact same approach and give the same bounds. O

5.1.2 Multiple Predictions

Now we can consider a different scenario, where we receive k predictions ; of = as presented
in [Gollapudi and Panigrahi, 2019]. In this case, the error will be that of the best prediction
n = min;{|Z; — z|}. In order to understand the problem, we start by assuming that 7 = 0,
or equivalently that one of the prediction is correct, in order to derive a consistent algorithm
for the problem.

To begin with, suppose that k = 2 and the predictions are &1 < Zo. Then one of them
is equal to x. If both predictions are on the same side of b, then the algorithm can always
make the optimal decision, as we will know where z is. On the other hand, if z; < b < xo,
then we need a rule based on which to decide whether to buy or rent and until when.

49

First approach. One natural approach would be to rent until Z1, at which point we will know
whether it is the correct prediction or not, and then buy if the input continues. Obviously,
when it is the correct prediction &, = x, we get the optimal solution which means ratio 1.
Otherwise, b < &9 = x and OPT = b but we pay ALG = x +b. The ratio will be % in this
case. The worst ratio will be achieved when &1 = b — € in which case it will be 2 — ¢, which
does not improve over the online algorithm without predictions.

Consistent algorithm for k£ = 2. The previous algorithm despite its pitfalls, offers some
intuition over the problem. Using #; as the decision boundary for buying and renting, the
ratios in the two different cases are unbalanced. By moving this boundary, we expect to suffer
some ratio worse than one when Z; is the correct prediction but we will also improve in the
case when Zo is correct, since we will not have to rent until ;. In essence we are looking
for a x7 that balances the two ratios, which is necessary, since the worst one counts. If Z;
appears before it we will rent until z1, otherwise we will buy.

Theorem 5.1.3. This algorithm achieves consistency equal to ¢ = @ =1.618...

Proof. If 1 = x, then the worst ratio is obtained when %1 > z; since we will buy, resulting
in a ratio of % < %. Otherwise if 9 = z, then the worst ratio will be obtained if £ < z1

since we will have to rent and then buy, resulting in a ratio of H%. We can balance these
two by solving the equation l”'% = z—bl with respect to x1 which gives z1 = @ -b and a
consistency of ¢. O

We remark that this is the best possible for k = 2.

Consistent algorithm for any k. What remains is to generalise the above algorithm for
any number of predictions. We continue to assume that one prediction is correct. In this case
we will have separate the segment [1,b] in k£ — 1 intervals using x; so that all the ratios will be
balanced. As for the algorithm, when k = 2 we would only start renting if a prediction was
present inside the first interval [1,z;) and no prediction was in the second interval [z1,b).
In the opposite case we would buy. Therefore, a natural generalisation is to inspect these
intervals from left to right, renting until the first interval without a prediction in it and then
buying. In essence, regardless of the predictions we will have split the segment [1,b) into
intervals independent of the predictions and once we are given the predictions we will choose
which of those intervals will be the boundary between renting and buying.

Theorem 5.1.4. The above algorithm achieves a consistency that results from the equation
k—1 —i
Ck = i1 Ck

Proof. If there is no prediction in the first interval the algorithm will buy immediately, while
the optimal solution in the worst case will buy at z;, the next boundary, giving a ratio of
%. If we find no prediction in the i-th interval, which is [x;, z;11) then ALG = x; + b while

OPT > x;41 giving a ratio no worse than ﬁz—ﬂ’ In order to balance them we solve
b 7b+$17 7b+$k,1
T - i) - N b

The solution of these equations is

where x; is calculated by

50

Now suppose that the first interval without a prediction in it is [x;, z;+1). If # < z; then
the algorithm achieves the optimal cost as it rents until x;. Otherwise z > x;41. If x < b
z;+b < T;+b

+

then the ratio is #= < = otherwise it is le‘H’ < fc’—ﬂ’ So in both cases, the ratio is equal

to ¢ = x% which can be calculated by the last equation as

k—1
cr = E e
i=1

As before this is the best possible consistency for k predictions.

Consistent and robust algorithm for any k. The last step will be to allow for error.
Once again, we will attempt to split [1,b) into intervals and rent until the first one without
prediction. As in the case of a single prediction, the worst scenario is that no prediction is
found in the first interval, which will force us to buy, while & could be inside that interval,
leading to a ratio % If x = 1 this ratio is exactly b. To resolve this, we impose a tunable

limit A\b, before which we always rent. This could be considered the first boundary.
Theorem 5.1.5. The algorithm above incurs cost ALG < min{l + %,Ek} - OPT where
o =0t (@) A

Proof. As before the analysis balances the ratios, with the difference that now the first interval
is [1, Ab), in which case

b+Ab b+ay btap
I - i) N B b

By solving these equations we get the following consistency ratio
k—1
G=> (@) +Xrg"
i=1

As for the robustness, the idea is the same as in the single prediction. We will not buy
before Ab, therefore the worst ratio is obtained when z comes right after we buy, giving a

. Ab+b 1
ratio of 5 =1+ 5

O

5.2 Job Scheduling

In this section we will consider the problem of job scheduling as studied in [Purohit et al.,
2018|. Having n jobs with required execution times denoted by zi,xo,...,x,, we wish to
execute them on a single machine and need to determine their order. The objective with
respect to which we need to optimize is the sum of completion times for all jobs.

In the clairvoyant case, we are given these execution times and it can easily be seen that
the optimal strategy is to schedule them in a non decreasing order of their execution times
(SJF). Intuitively, any long execution time spent in the beginning will be charged multiple
times, therefore swapping it with a lower execution time will only reduce the total cost. The
scenario that will be studied, will be the non clairvoyant one where we do not know any
execution times until the execution of a specific job has finished. In this case it is necessary
to be able to preempt and resume jobs, which is a reasonable requirement since we have
absolutely no information about the jobs and could potentially end up getting stuck in the

ol

execution of very long jobs early on. The optimal approximation in this setting is Round
Robin, which was proved to be a 2-approximation in [Motwani et al., 1994]. This algorithm
runs the k jobs remaining at the same rate %, meaning that for infinitessimal time windows,
every job is ran for a % fraction of the available time and then swapped by the next.

5.2.1 Preferential Round Robin Algorithm

In the analysis below, these two strategies will be combined in order to utilise predictions of
the execution times and achieve ratios better than 2. A useful assumption w.l.o.g. is that all
execution times are no less than 1, which can be achieved with normalisation, if there are no
zero-length jobs.

Predictions. The predictions will give the execution times of each job, denoted by 21, Zo, . .., Zy.

Error metric. The error will be the natural Li-norm between the predictions and the actual
execution times n =Y. m; = > |z, — Z4|.

Starting with the consistency, if the predictions were perfect, then the algorithm we would
use would be SJF on the predictions, which we will call SPJ and we would obtain the
optimal solution. On the other hand, when the predictions are bad we would use the best
approximation available which is Round Robin with ratio equal to 2. Given that we can run
the jobs at different rates, we can run both of these algorithms adjusting the rates they would
assign to the different jobs by a parameter A € [0, 1].

At this point it would be useful to define monotonicity, a property that allows us to
combine two arbitrary algorithms in this way.

Definition 5.2.1. An algorithm is monotone if given instances x1,xa, ..., Ty and x|, x5, ...),

with x; < i, for all i, it would not incur any more cost in the first instance than the second
one.

Both Round Robin and SPJF are monotonic, since they both make the same choices
regardless of input, for fixed predictions, therefore the total cost could only decrease due to
jobs finishing earlier.

Now we give the lemma for the combination of any two monotonic algorithms.

Lemma 5.2.1. If we adjust the rates assigned to jobs by a monotonic a-approximation
algorithm by A and those by a monotonic B-approximation algorithm by 1 — X then the new
ratio would be min{ <, %}

Proof. Assume that only the first algorithm ran. Adjusting the rates of its jobs by a factor A
means that we multiply their rates, slowing them down. In terms of completion times, they
are delayed by a factor of % and the new approximation ratio would be §. The fact that we
are also running the second algorithm does not increase this ratio, as it can only decrease
the execution times that the first algorithm sees and due to monotonicity this would only
decrease the ratio. Using the same logic on the second algorithm and multiplying its rates
by 1 — A\ we get the lemma. O

In essence, A indicates our trust in each algorithm. A high value of A trusts the a-
approximation as it slows down the rates of the S-approximation.

At this point, it remains to prove the approximation ratio of SPJF.

Lemma 5.2.2. The SPJF algorithm achieves an approximation ratio of 1 + %’7

Proof. Suppose that the actual execution times are indexed in a non decreasing order x; <
Ty < -0 < Ty

52

Any algorithm will have to pay the sum of the execution times), ; in order to actually
process the jobs. In order to measure completion times, we need to add the time it took for
jobs executed before it. In order to measure that, we define d(,j) which is how much of 4
was executed before j finished, meaning how much job i delayed job j.

As for the total cost, each job i is delayed by each j that would come before it in the
optimal solution by d(i, j), which can be directly charged to it. But also delays those j that
would be executed before it in the optimal solution, by d(j,7) which will be bounded by the
error.

The algorithm will prioritize the jobs with short predicted execution times. For i < j and
Z; < &, then j does not delay 4, while ¢ delays j by its actual execution time x;. On the
other hand, if #; > 2}, then only job j delays job ¢ by ;.

j=1 1<J
n
Jj=1 {i<jlei<;} {i<jldi>a5}
n
:Z:Z,‘j—l-zxi—F Z (l‘j—ZL‘i)
Jj=1 1<j {i<j|&:i >34}

Now observe that > %, ;43" ; 2; is exactly the cost of the optimal solution. Therefore

ALG=0PT+ > (zj—)
{i<ijléi>5}
=OPT+ > (wj—a&j+a— o+ & — &)
{i<jl&;>a;}
SOPT+ > (mj— i+ — ;)
{i<jl#:>%;}
=OPT+ Y (gj—m)=O0PT+ (n—1)n

{i<jl@i>2;}

Then the ratio is 1 + (—1n 1t all execution times are no less than 1 therefore OPT >

OPT
% and the ratio in the worst case is 1 + 2”(?,;11);7 <1+ 27771 -

Theorem 5.2.1. The algorithm that combines the SPJF and Round Robin has a ratio
min{}(1 + 22), 12}

5.3 Online Steiner Tree

Steiner Tree is the classical network problem, where we need to connect a subset of the nodes
of a graph with edges of the minimum total cost. Formally, given a graph G(V,E) and a
subset R C V of terminals of size k = |R|, the goal is to connect all terminals with edges
of minimum total cost. In its online version, the terminals are given one by one, in the
order 71,79,...,7 and on every step we need to connect the latest terminal to the rest by
irrevocably buying edges. We refer to the set of terminals given up to step ¢ as R;. Since
proved to be NP-Hard [Karp, 1972], a lot of effort has been put into designing approximation

93

algorithms both online and offline. One common technique used in order to approach it as
a metric problem, is to consider the metric closure of the graph, effectively turning it into a
complete graph whose edge costs are the shortest path distances between the nodes.

Lemma 5.3.1. The offline algorithm [Kou et al., 1981] achieves a 2-approzimation by finding
the MST among the terminals.

Lemma 5.3.2. The greedy online algorithm [Imase and Waxman, 1991] which connects every
new terminal r; to R;—1 by buying the shortest path to a node in R;—1 is O(logk) competitive.

The prediction used in both cases will be the input, i.e. the terminals. That is to say a
set R C V is given as offline input.

5.3.1 Using Outliers as the Error

In the work of B. Moseley [Xu and Moseley, 2021], the Steiner Tree problem was studied
for the first time in this setting. In this work, the error metric was chosen to be solely the
number of mispredicted terminals.

Error Metric. The error is defined as n = k — |[RN R).

n-Competitive Algorithm. As a natural first approach, we combine the two algorithms for
the online and the offline case. Specifically, if a terminal in the input was not in the predictions
we connect it with the shortest path incurring logarithmic cost on the error. Otherwise we
buy a path from the MST on R that connects the terminal to another predicted terminal
that appeared earlier in the input. To simplify the analysis, we assume that the predicted
instance is of equal size k to the input, which can be lifted, as shown in the paper.

Algorithm 7: Online Algorithm with Predicted Terminals

forall r; in the input do

if r; ¢ R orr; is the first predicted terminal to appear as input then
L Buy the shortest path that connects r; with R;_;.

else if r; € R then
L Buy a path from the MST(R) which connects r; with a terminal in R;_; N R

The solutions bought for terminals that were not predicted make up the set A;, while
the rest make up the set As. These two sets obviously partition the solutions bought by the
algorithm.

Lemma 5.3.3. The cost incurred by line 3 of the algorithm is c(Ay) <logn- OPT.

Proof. This follows directly from the greedy online algorithm. The terminals that satisfy the
condition of line 3 are equal to the number of mispredicted terminals plus one for the first
predicted terminal that appears in the input, which is 74 1 terminals. If the optimal solution
on them is OPT’ then OPT’ < OPT and due to the analysis of the greedy algorithm we get

c(A1) < O(logn) - OPT' < O(logn) - OPT

Lemma 5.3.4. Fvery edge e € Ay incurs no more cost than OPT.

o4

1
2
3

o N O CU

©

10

Proof. The edges of Ay are bought due to terminals r; € R;_1 N R, as paths of MST(]:Z). For
every other terminal r; € R;_; N R we have that d(r;,r;) < OPT, since these two terminals
are connected by a path of G.

The path P; chosen in line 5 is either the edge e = (74, 7;), if it is included in the M ST(R),

~

or e ¢ P, because it was not included in the MST(R). In the second case, adding e to

MST(R) creates a cycle. If this cycle included an even more expensive edge that would
mean we have reduced the cost of an optimal solution.

Therefore, every edge bought due to the predictions costs at most OPT. O

Lemma 5.3.5. The set Ay can be partitioned into By and By so that ¢(By1) < OPT and
| Ba| <.

Proof. Intuitively, B is the set of good edges of M ST(R), while the rest are Bs and can be
thought of as bad edges, incurring a high total cost.

A

Suppose that the following procedure takes place. Starting with S = MST(R) and
E' = MST(R)NMST(RNR), we iteratively pick an e € MST(RNR)\ MST(R), add it to
S and remove an edge ¢ € MST(R)\ MST(RN R). Then augment E’ by the edge ¢

What this achieves is that ¢(E') < ¢(MST(RN R)) < OPT, since E' started with the

common edges between the two MSTs and only added the €' from M ST(]:Z), each one of
which is ¢(e’) < ¢(e) with e € MST(R N R) using the same argument as in the previous

lemma.
By choosing By = E' N As we immediately get ¢(B1) < OPT since By C E'.
Then By = A\ E'. But E' = k—1n—1 since its edges are equal to those of MST(RNR).

Also |As] < k — 1 since it only buys edges from M ST (R). Therefore |Ba| < 7. O

As a whole, the competitive ratio is , which means that the robustness of the algorithm is
k, much worse than that of the online O(log k) competitive algorithm. Next, we will present
a modification to the algorithm that fixes this problem.

O(logn)-Competitive Algorithm. The previous algorithm did fairly well when it came
to the mispredicted terminals. The problem was that when it bought a path from M ST (T)
there was no guarrantee as to how much it might cost. Allowing for costs bounded by that
of the least expensive single edge that connects the terminal with the other predictions is
sufficient to solve this issue, since the cost will be once again comparable to that of the
greedy algorithm.

Algorithm 8: Online Algorithm with Predicted Terminals

forall r; in the input do
if r; ¢ R or r; is the first predicted terminal to appear as input then
L Buy the shortest path that connects r; with R;_.

else if r; € R then
P; is the shortest path of MST(R) that connects r; to R;_1 N R.

e; is the least expensive edge connecting r; to R;—1 N R
if 3P/ C P, with cost ¢(P) € [c(ei),2¢(e;)] then

L Buy P/.
if P/ does not give a connected tree then

L Buy e;.

The lemmas from the previous algorithm apply here as well. What remains is bound As.

%)

Lemma 5.3.6. The cost of set Ay is ¢(A2) <logn- OPT.

Proof. Set Ay can be split into B; and Bs as before.

Due to the range allowed as a cost for the path P/ we obtain two bounds for the cost

incurred in step 7 of the algorithm, denoted A;c(Az), as follows
Ajc(Az) < min{2¢(P), 3c(e;)}

Now we define good terminals, denoted r; € T, as those whose path bought by the
algorithm is P/ C B; and

D Aic(Ag) <) 2¢(P)) < 2¢(B1) < O(1) - OPT

r,€TG r,€TG

The rest of them can be considered bad terminals, and we bound their cost by using the

second bound
D Aie(A2) <) Bee) <3) cfer)
T‘iETB TiETG T‘iETG
Notice that the sum is made up of the edges that would be bought by the greedy online
algorithm if it was run on the |Bs| = 7 terminals therefore

> Aje(Az) < O(logn) - OPT

T‘Z‘ETB

Theorem 5.3.1. The cost of the algorithm is ALG < O(logn) - OPT.

This algorithm offers a significant improvement, as its robustness now matches the ratio
of the greedy online algorithm, O(logk).

5.3.2 Using Metric Matching with Outliers as Error

In this section we discuss a more general approach to this problem. While outliers proved
to be a useful error metric for Steiner Tree, using the framework of section 3.3, [Azar et al.,
2021| showed that we can analyze the problem taking into account both the outliers and the
specific distribution of the input and prediction in the induced metric space. Previously, the
algorithms combined were a greedy online and an offline 2-approximation. As expected, the
greedy online algorithm will still be used, but the offline algorithm will be swapped for one
that solves the prize-collecting variant of the problem, still a 2-approximation.

Lemma 5.3.7. The greedy online algorithm buying the shortest path that connects a new
terminal r; € R to the rest from [Imase and Wazman, 1991] that is O(log|R|+2) competitive
is also subset competitive.

Proof. Suppose R’ C R. We need to bound the cost of the online algorithm with input R
that was incurred to connect the terminals of R'.

When request r; € R’ appears in the input, the closest terminal also in R’ is r. If the
algorithm decides to buy a different path P; instead, that is because c¢(FP;) < d(r;,r), due to
the terminals in R\ R’. But d(r;,r) is exactly the cost that would be paid if the algorithm
was ran on R’ only. Obviously, the total cost of running the online algorithm with input R’
is O(log|R'| +2) - OPT’, where obviously OPT" < OPT, therefore

ON(R') < O(log |R'| +2) - OPT

56

Lemma 5.3.8. There is a 2-competitive algorithm [Goemans and Williamson, 1995/ for the
prize collecting variation of Steiner Tree.

We will assume that we are solving the rooted version of Steiner Tree, where one terminal,
say p is the root and every other terminal needs to be connected to p. This is no different
than the regular Steiner Tree, as any vertex can be considered a root, since all terminals will
be connected in the tree.

Matching Error. The matching error will be calculated as a regular matching between
some of the input R and the predicted]%?, so as not to exceed D.

As for the analysis, we need to define the iteration i and bound B;_1 and ON,,_1,0ON,,.
Iteration i. We would like this iteration to be the point at which the ofline solutions bought,
connect all the matched predictions in 7', where |T'| = k. This implies that |R| — k predicted
terminals will not have been connected. Even though it is impossible to know whether the k

connected predicted terminals will actually be the matched ones, it is sufficient to define 7 as
the first major iteration when the lowest u selected by the algorithm is at most |R| — k.

Theorem 5.3.2. The cost incurred by the framework for Steiner Tree is
ALG(R,|R|) < O(log(min{A, |R|} +2)) - OPT + O(1) - OPT
Lemma 5.3.9. Bi_l <OPT+ D

Proof. From the definition of iteration i, we know that in the previous major iteration i’ the
predicted terminals not connected were u; > |R| — k. Then

¢«(PARTIAL(R,|R| — k)) > ¢(PARTIAL(R,uy)) > 3yB;_1.

otherwise iteration 7 would have been earlier.

From the analysis of the framework in Lemma 3.7, we know that ¢(PARTTAL(R, u;)) <
3yc(S*). Then

c(PARTIAL(R,|R| — k)) < ¢(PARTIAL(R, u;)) < 3v¢(S*) < 3yOPT;,

where the last inequality holds because S* is the optimal solution on R that leaves u; <
|R| — k predicted terminals disconnected. OPT} on the other hand, leaves disconnected

exactly R| — |T| = |R| — k predicted terminals, therefore it a feasible solution and the bound
follows.

Combining the two inequialities we have
B;i1 < OPTy;,

At this point, we can use the matching cost cost to upper bound OPT}. If r; € T is the

matched terminal for every A(r;) € T then we can buy an optimal solution on T denoted
OPTr, and connect all A(r;) to their matched r; and incur total cost OPTr + D. Since
OPTr < OPT we get the lemma.

O
Lemma 5.3.10. ON; < O(log(min{|A|,R} +2)) - OPT + O(1) - D for j € {m —1,m}.

Proof. Let j € {m — 1,m}, and let Q@ C R be the subsequence of requests considered in
ON;. Denote by R’ C R the subset of predicted requests that are satisfied by the PARTIAL
solution considered in iteration i (the solution whose facilities were opened at the end of
iteration).

57

The online algorithm ON; operates on a modified input, in which the cost of a set of
edges Fy has been set to 0.

We partition @ into the following subsequences:

1. @1 = QNT. We further partition 1 into the following sets:

(a) Q11 ={r e Qi|\(r) € R'}
(b) Q2= {r € Qi|\(r) ¢ R\R'}

2. Q2=0\T.

Intuitively, Q1,1 is the part of T" that appeared in iteration j and their matched predictions
were covered by the offline solution on iteration i. Observe that ON;(Q) = ON;(Q1,1) +
ON;(Q1,2 U Q2). We now bound each component separately.

Bound of ON;(Q1,1) For r € Q1,1, the matched prediction A(r) is covered by a path P
with cost ¢(P) < d(r, p) opened by PARTIAL in iteration i, since at most the algorithm will
connect it all the way to the root. Therefore

ON;(Q11) < Y d(r,p)

reQ1,1

> (d(r, A(r) + d(A(r), p)

r€Q1,1

IN

Observe that the path with distance d(A(r), p) has already been bought by the offline
algorithm in order to connect A(r) and its cost for the online algorithm is 0. Then

ON;(Q11) <D

Bound of ON;(Q12UQ2) Using subset competitiveness, we have that
ON;(Q1,2UQ2) < O(log(|Q1,2U Q2 +2)) - OPT’

where OPT’ is the optimal solution to @ with the cost of Fj set to 0. Clearly, OPT' < OPT.
Now, observe that |Q1 2| < |R\R'|. From the definition of the major iteration 4, and from

Lemma 2.1 in the framework, it holds that |IR\R'| <27 - (|R| — k) = 2y|R\T|. As for Qo, it
holds that Q2 < |R\T'|. These facts imply that
Q12U Q2| < 279A
In addition, it clearly holds that |Q12 U Q2| < |R|. Therefore, it holds that
ONj(Q12U Q2) < O(log(min{|R|, A} +2)) - OPT
Using all the previous bounds we get

ON;(Q) < O(log(min{|R|,A} +2)) - OPT +O(1) - D

The two Lemmas above suffice to prove the theorem using Lemmas 3.8, 3.9.

Notice that setting D = 0 we retrieve the same bound as in the previous section where we
only considered outliers therefore the same robustness O(log|R|). As for consistency, using
this algorithm we still obtain an O(1) ratio. The difference is that the ratio degrades much
more smoothly, as disturbing the positions of all terminals by only ﬁ will give a bound of
O(1) - OPT + € as opposed to the previous solution which would already have considered all
predictions to be wrong, giving O(log|R|) ratio.

o8

5.4 Online Facility Location

Facility Location is another well known NP-Hard network problem, where the objective is
to cluster the input, not unlike k-means or k-median. On a high level, the input is made
out of locations of clients on a map and we wish to buy facilities located as close to them
as possible. In order to formalise the problem, assume a metric space M(X,d), the set of
possible demands (or clients) D and the set of possible locations for facilities F. Then, each
1 € F has a cost f; and assigning a demand j to facility ¢ incurs a cost equal to the distance
d(rj, fi). Notice how we abuse the notation so that f; is both the cost and the location of
the facility.

The integer program for this problem uses variables y; to indicate whether a facility is
open and z;; to indicate whether demand j is assigned to facility 7. The constraints are that
each demand must be assigned to a facility and that this facility must be open in order to
cover a demand.

miani Y + Z d(rj, fi) - i

i€F i,jEFxD
sty my=1 VjeD
i€EF

:rijgyi ViGF,jGD
xij,yie{o,l} Vie F,jeD

5.4.1 Prediction of the Input

Similarly with the case of Steiner Tree, we can use predictions of the locations of the demands,
with the framework [Azar et al., 2021].

In this case, the online algorithm used will be the primal-dual from [Fotakis, 2011]. This
algorithm is not subset competitive but the amortization that uses the variables a(r;) =
2 - min{d(Fj_1,r;), mingey (fu — pi—1(u) + d(u,r;))} of the solution is, where p(u) is the po-
tential calculated by the algorithm.

Lemma 5.4.1. Online algorithm There is a O(logn)-competitive online subset-competitive
algorithm for Online Facility Location.

The offline prize collecting algorithm used is [Xu and Xu, 2005].

Lemma 5.4.2. There is a 1.8526-approximation algorithm for the prize-collecting version of
Facility Location.

The metric error used is simply a min cost matching between the input and the predictions.
The analysis is identical to that of Steiner Tree, therefore we omit it and present the result.

Theorem 5.4.1. The cost of the algorithm given by the framework is ALG < O(log (min |R|, A + 2))-
OPT + O(1) - D.

5.4.2 Multiple Predictions of the Solution

On the other hand, [Almanza et al., 2021] studies the setting where we have multiple predic-
tions of the solution and we attempt to compare with the best combination of them. Formally,
assume we are given sets 51,59, ..., S of facilities. Then, we wish to find an algorithm that
incurs cost comparable to the optimal that uses only predicted facilities S = |, S;, OPT(S5).

Once we have that, we can combine it using the framework [Mahdian et al., 2012] with
the optimal algorithm from [Fotakis, 2011] and achieve robustness.

99

o N & W Ao N =

©

10
11

12
13
14

15

16
17

18

19
20

21
22

Algorithm 9: Algorithm TakeHeed
Input: 2-HST family (7, D)
Choose random HST T ~ D

forall p in the input do

qp < argminseg d(f,p)
| Run Pruck (T,root(T),q,) and assign the facility returned to p

Function PLUCK(T,u,q)

if w is a leaf then

Open u if not already open
return u

if T'(u) has no open leaf within distance f from q then
w < SELECTHEAVIESTCHILD (7',u,q)
| return PLuck (T, w, q)

else
Let z be the child of u s.t. ¢ is a leaf of T'(x)
if T'(z) has an open leaf then

// Find the open leaf

return Pruck (7, z, q)

else

Let [be the closest open leaf to ¢
// Update potential

p(u) < p(u) + dr(q, p)

// Look for facility to open

if p(u) > f then PLuck (T,x,q)
else return [

Function SELECTHEAVIESTCHILD(T,u,q)
return a child w of u s.t.

1. T(w) has a leaf at distance no more than f/3 from ¢

2. The number of leaves of T'(w) is maximum (among those of the first condition)

Theorem 5.4.2. There is an algorithm that given predictions S1,So, ..., Sk of the solution,

mecurs cost

logn

ALG < min{O(log|S|) - OPT(S), . OPT}

loglogn

The main technique used to obtain this result is the construction of Hierarchically Sep-
arated Trees for the metric space of predicted facilites S. This is possible due to the result
of [Fakcharoenphol et al., 2004|, which states that we can construct a 2-HST family (7 D)
for any metric space, where T is a set of HSTs and D is a probability distribution over them,
since some of the properties are probabilistic.

The algorithm randomly chooses an HST T ~ D and operates on that. It also represents
each demand p of the input by its closest facility g, in S. On each step, we need to select
some open facility to which ¢, will be assigned, or open a new one, which is done by calling
PLucK repeatedly. Function PLUCK is defined recursively and it traverses the tree in order
to select the correct leaf (facility). If no leaf is open near g, then it has to select where to
open a new one. It is in our best interest to open a new leaf both close to ¢, and to as many

60

other demands as possible, which is achieved by function SELECTHEAVIESTCHILD. On the
other hand, if there are open leaves close to ¢, we prefer to traverse in the direction of ¢ if
possible. If there is no such leaf in the subtree that contains ¢, we will have to decide whether
to open a new leaf or just assign the one we know is closest. But we should not allow too
many leaves to open. Therefore, we delay the opening of a new leaf until enough potential
has been accumulated in the internal nodes, at which point we allow the traversal towards
that subtree.

The cost of this algorithm is O(log|S|) - OPT(S). In the case of too many predictions,
this cost can easily become too high, but it is important that the existence of even a few good
facilities in each set can keep OPT(S) close to OPT.

61

Chapter 6

Facility Leasing

In an effort to explore the strength of the framework [Azar et al., 2021] we apply it to
a problem whose input evolves with time. The problem, Facility Leasing, first appeared
in [Anthony and Gupta, 2007] and is essentially a variation of facility location in which
demand locations change on each time step and need to be covered by facilities leased for
limited amounts of time. As in Steiner Tree and Facility Location the algorithm will be
buying solutions for part of the predicted demands in the form of facilities and their selected
lease durations, and supplying them to the online algorithm to use if needed. The key element
in the analysis is that of an error metric between instances, namely the predictions and the
input, which separates the parts that need to be matched from those that can be considered
outliers. While for time independent problems like Facility Location, bought facilities could
potentially be used to cover any demand, in the leasing variation each leased facility can cover
only demands that appear during its lease period and no others. This difficulty leads to the
formulation of a nontrivial combinatorial optimization problem whose solution will directly
express the error metric. We start by formally defining the problem. Then we present the two
algorithms required by the framework and the remaining section proves the bounds achieved
for the problem when predictions are given.

6.1 Online Facility Leasing

Overall the problem is split into T' different time steps, not known prior to execution. We
are given a set of potential locations for facilities /' and another set of potential locations for
demands D on a metric space (M, d). We are also given a list of K available lease durations,
each denoted [, meaning that a lease [bought at time t for facility f; will open a facility
for the duration [t,t + I},), incurring a cost of fF. The online input is split in sets Dy C D
each one indicating the positions of the demands for timestep ¢. In order to cover them, for
all t, rj; € Dy needs to be assigned to a facility f; which is under lease for time ¢ at a cost
of d(rjt, fi). Supposing that F is the set of all leased facilities in the form of (i,t, k), i.e. fF
starting at time ¢ and JF; only those available during time ¢ the total cost incurred is

Yoo+ D d(Furw)

(i,t,k‘)ef (j,t):’!’thDt

To formalise the study of the problem, we give the LP that corresponds to it as well as
its dual.

Primal. The primal problem keeps track of all the costs incurred both for leasing and
assigning demands to leased facilities, so that all demands are satisfied. The natural relaxation
allows facilities to be fractionally leased and demands to be fractionally assigned to leased
facilities.

63

1
2

3
4
5

min Sy +d Y dlfira) g
f=(tk)eF deD f=(i,t' k)eF
s.t. Z zgp >1 Vd=(j,t) €D
F=(G,t k) EFLE t/+1)
Tar < Yy Yde D, feF
Tdf, Yf >0 VYdeD,feF

Dual. In the dual problem each demand d = (j,t) declares how much it is willing to pay, a4.
The objective is to maximize the total payments. Each demand’s payment should cover both
its own assignment cost d(f;, rq4) and part of the lease cost fi]C . In this sense we can consider
aq — d(f;,rq) as the bid of demand r4 towards facility f; at time ¢. The feasible solutions are
those that include no overbidding by the demands for any given lease.

max Z aq
deD
s.t. Yoo aa—d(fira)ls < fF VG k) EF
d:(j}t)eD,tEItk,

ag>0 VvdeD

6.2 Subset Competitive online algorithm

First of all we need an online algorithm for the problem, with the added property of being
subset competitive. This algorithm is given by Nagarajan, Williamson in [Nagarajan and
Williamson, 2013| and will be denoted ON.

As the demand sets D; arrive in an online fashion, the crucial decision to be made is
whether we should assign a demand to an already leased facility, or lease a new one for
it. In order to resolve this dilemma we use the dual LP and increase the dual variable a;
corresponding to each demand (j,t), until it can pay for either the assignment cost to a
previously leased open facility or contribute to the total bid towards a facility lease so that
it reaches the lease cost.

Algorithm 10: Online Facility Leasing

Initialization
| Initialize X < 0, X* < 0, D <0

foreach ¢t < T do
foreach j € D; do
Increase a;; until one of the following occurs

1. aji = d(f;,7jt) for some (i,t*, k) € X and t € I

2. [Cth - d(fz, Tjt)]+ + Z(j’,t’)ED,t’GIf* [min{aj/t/, d(Xk’ T‘j/t/)} — d(fi’; Tj/t/)]Jr = fzk
for some (i,t*,k) ¢ X and t € If.

Assign (j,t) to the selected (i,t*, k) and add it to D
If it wasn’t already open, add it to X and X*

64

As in the case of Facility Location, in order to obtain subset competitiveness the cost of
the algorithm is amortized using the variables of the LP. In the following suppose that R is
made up of all the demands of the input.

Lemma 6.2.1. The cost of the solution obtained by the algorithm is upper bounded by
(K +].) Z(j,t)ER ajt.

Therefore, the variables a;; which correspond to the demands, multiplied by K + 1 are a
proper amortization of the algorithm’s cost. The following lemma, whose result follows from
Lemma 5.2 in their paper, shows that this amortization is in fact subset competitive, since
their analysis is valid for any subset of the input that might be selected.

Lemma 6.2.2. For any subset R' C R, the sum of dual variables corresponding to demands
in R is
> aj <2(Hjp|+1)-OPT
(J,t)eR!

As a result, the amortized cost incurred due to any subset R’ C R is

(K+1) > aje <2(K +1)(log (|[R'| + 1) + 1) - OPT
(4,t)eR’

6.3 Prize-collecting offline algorithm

In this case we pay a penalty for each demand that is not satisfied. The LP changes slightly
to account for the penalties as follows.

Primal.

min > fwr+)y > dfird)eg+) maza

F=(i.t.k)eF dED f=(it' k)EF deD
s.t. 24 + Z xgp =1 Vd= (,t) €D
F=(it! k) EFtElt! ¢ +1y]
zgp <yy VdeD,feF
Tdfs Yfs 2d >0 VYdeD,feF

Dual.

max Z aq
deD
s.t. > laa—d(fira)ls < fFOV0G,E k) € F
deD
ag <mq VYdeD

ag>0 VYdeD

Now we can present a prize collecting offline algorithm with constant competitive ratio
for facility leasing, denoted PC. This algorithm will solve the offline version of the problem
where the whole input is known in advance, but any one of the demands r;; can be left
uncovered for a cost 7,. This algorithm is given by Lima, San Felice, Lee in [de Lima et al.,
2016]. We will say that demand r;; reaches facility f; when ajz > d(fi,rj¢).

The algorithm combines ideas from the online algorithm in [Nagarajan and Williamson,
2013] and the prize-collecting offline algorithm for Facility Location in [Charikar et al., 2001].

65

©

10
11
12

13

14
15
16

17
18

Algorithm 11: Prize-collecting algorithm for Facility Leasing

Initialization
// X is the set of selected leased facilities and S is the set of remaining demands
| Initialize X < 0,5 «~ D

while S # () do
Increase all dual variables ag uniformly until one of the following happens
if > nep laje — d(fi,)]+ = f¥ for some lease (i, k,t) € F then
L Add f = (i,k,t) to X
else if aj; = d(fi,rj) or aj. = mj for some (j,t) € S and some lease (i,k,t) € X
then
L Remove (j,t) from S

Create a graph G with

VI[G] + X

E[G] < {(f1, f2) € X? :3(j,t) € D that reaches both f; and f5 }
Find a maximal independent set X’ C X on G in decreasing order of lease duration
X — {(i,k,t — 1), (i, k, 1), (is byt + 1) : (3, k,t) € X'}
// Assign demands to leased facilities
foreach (j,t) € D do

if (j,t) reaches some f € X then

L Assign it to the closest leased facility in X

else
L Assign it to no facility

Specifically, it starts by uniformly increasing the dual variables until either some lease is
paid for and consequently becomes available for demands to be assigned to it, or a demand
pays for its assignment to an already leased facility, or a demand has paid enough for its own
penalty. In the second and third cases, we can assume that the demand has paid as much as
needed to be satisfied and its dual variable stops increasing.

At this point, it remains to be determined which facilities will actually be leased. By
finding a maximal independent set we ensure that each demand reaches at most one facility
in it. The interesting question is what happens to a demand r; that reaches no facility
in the independent set found. Due to the construction it must have reached some other
facility f, which was excluded from the set as it had an edge with a facility f’ in it, which
means that these two facilities were both reached by another demand rg. Remember that
in the construction of the set, the facilities were considered in decreasing order of their lease
durations, therefore the facility f’ will be open for a longer time than f would be and has
some overlap with f in the durations of their leases. In order to ensure that the resulting
solution is feasible it suffices to lease facility f’ two more times with the same lease, before
and after the lease selected by the independent set, which is exactly the reason the algorithm
is 3-competitive.

Beyond this point, no more facilities are leased, it only remains to be decided for each
demand whether it will be assigned to some open facility or pay the penalty.

Lemma 6.3.1. PC is a prize-collecting algorithm for Facility Leasing achieving a constant
ratio yrr, = 3.

66

6.4 Facility Leasing with Predicitons

Since the framework works in a black-box fashion, two algorithms are needed to be plugged
into it. The algorithms PC' and ON will be combined by the framework in order to utilize
appropriately the predictions. As in the rest of the problems studied for the framework, we
assume that an oracle provides a prediction R of the whole input in an offline fashion. Any
solution on R bought with the purpose of being used to cover the actual input, has one caveat
compared to Facility Location. It might be completely unusable as the leased facilities could
correspond to lease periods during which there are no actual demands to be covered. As an
example, a facility might be leased for a period that is too far in the future (or the past) from
any demands of the actual input. This discrepancy will need to be treated appropriately by
the error metric. Another issue is that of counting the cost of the online algorithm. From this
point onwards it will be assumed that this cost is counted with respect to the amortization
based on variables a;; as described in Lemma 1.3. In fact, these are calculated in an online
fashion for every set of demands Dy, which is needed since the offline solution is only bought
when this online cost has doubled.

It still remains to be discussed what the error tuple (A, D) between two instances of the
input, of outliers A and matching cost D will represent. Intuitively, it should capture the
distances both in the spacial distribution of the demands and their temporal distribution,
while not being too restrictive for either one of them. A naive approach would be to adapt
the error as presented in Facility Location, by simply matching the two instances in every
time step independently. It is easy to see why this approach fails catastrophically, for example
in the case when the two instances are exactly the same but one is shifted by one time step
relative to the other. In essence, any matching that doesn’t take into account the specific
clustering of demands in time, is bound to fail, in this exact sense. In order to overcome
this obstacle we design a combinatorial optimization problem, which includes the optimal
solution of one of the instances in its definition so that it can match only those demands that
could possibly be matched. Of course, this is not enough yet, as the distributions of the one
instance could be too far from the other to be able to be connected to any of its demands.
But building on this idea, the next step is to also account for all the possible combinations
of the extensions of the leases in this solution, each one of which helps measure the distance
of the instances in terms of time.

Note that from now on we will drop the ¢ from the demands r;; for ease, assuming that
all demands are ordered in some way. Any symbols denoted with a hat, like 7; correspond to
the predicted instance, while the rest correspond to the actual input.

Error Metric. In order to match the input R to the predictions R we need to find subsets
T and T respectively so that the optimal solution on 7" can be used to cover the predictions
in T', with extra cost D. This will be used later to upper bound the cost of OPT};.

Therefore we need to find a T' C R whose optimal solution is denoted OPT7p. The leases fik
bought by this solution can be extended in finitely (albeit exponentially) many combinations,
without changing the assignments, each of them capturing the time distance between the
instances and incurring an extra cost due to the extensions. The j-th of these solutions will
be denoted E:mePT}J),

At this point we need to constrain which demands can be matched with each other in any
feasible solution. In order to achieve that, we construct a bipartite graph between T" and R
for each of the extension combinations in the following way:

e If a prediction 7; € R can be covered by some facilities in ExtOPT:(F]) (i.e. they are
leased for a time period that includes t) then add all the edges between 7; and the
demands that are assigned to these facilities only. The weight of these edges is the
distance between the respective demands.

67

®
@ @

Figure 6.1: Example of matching where blue rectangles correspond to leased facilities of the
optimal solution while red is a possible extension

On that graph we find a Bipartite Matching M (T,]:2) so that

1. Tts cost M = ¢(M (T, R)) plus the cost of the extensions E = c(ExtOPT}j)) —c(OPTr)
is less than D.

2. Every r; € T has an edge in the matching.

The second condition is necessary because T’ needs to be the actual matched subset of R.
If it changes, the optimal solution also changes and the bipartite graph is no longer valid. In
essence we pick one edge from each demand in T so that we have a low cost valid matching.
The rest of the input and predictions, R\ T'|J R \ T are the outliers A. As for the matching
cost, intuitively E represents the distance of the two instances in terms of time, while M is
their distance in terms of space. Both are necessary to define a reasonable matching. Of
course, it is important to keep in mind that this problem is more of a theoretical formulation,
not supposed to be solved efficiently. Nevertheless it is useful in the analysis due to the
generality of the scenarios it covers.

As expected, for the different values of A and D, different solutions emerge. For instance,
by choosing A = 0, all of the input will have to be matched and there will be a minimum
value of D for which this can be achieved. This value will correspond to the best combination
of extensions which allow all demands to be covered. On the other hand, by choosing D = 0,
all demands that are not situated in identical positions will be outliers. Note that a solution
is always possible by choosing T' = (). If it comes to that, the predictions are way too far from
the demands in every way and we have prefered to discard them completely, making them all
outliers. These simple cases show exactly how this error metric is capable of capturing every
possible discrepancy between the instances.

At this point, we have defined every element necessary to state the main theorem of this
section.

Theorem 6.4.1. There is a learning augmented algorithm for Facility Leasing achieving the
following bound, for every valid error tuple (A, D)

Alg(R,R) < O(K) - D + O(K (log(min{|R|, A} + 1) + 1)) - OPT

In order to prove the theorem, three ingredients are needed. The first is to define the
iteration ¢ which will split the execution of the framework in two parts. For the first part, it

68

suffices to bound the cost incurred by the algorithm until the previous major iteration, while
for the second, it suffices to bound the cost of the online algorithm during the last iteration.
The proofs following are similar to those given for Facility Location.

Iteration i. The framework [Azar et al., 2021] requires that an iteration i is selected, which
splits the analysis in two parts. As in the rest of the problems, i is the first iteration in which
u (approximately the predictions not covered by the offline solution) was chosen to be at
most |R| — k, where k = |T| = |T|.

Lemma 6.4.1. Ei_l < OPT + D where D is the error metric discussed above.
Proof. If i’ is the iteration when By = B;_1, then uy > |R| — k and
PARTIAL(R, |R| — k) > 3vB;_1

otherwise u;; would be smaller.
But PARTIAL(R,|R| — k) also covers at least k = |T'| predictions and by Lemma 2.1 it

is upper bounded by the optimal solution on some k predictions, which is upper bounded by
OPT; since it fixes the k predictions. Therefore

PARTTAL(R,|R| - k) < 3y¢(OPT})

As a result

Bi—l § C(OPTT)

It is sufficient to bound ¢(OPT}) by showing how T can be covered using the facilities
of OPT7 whose cost is bounded by that of OPT. By the definition of the error metric,
the lease-extended facilities of FxtOPTyp (where the index j was dropped to indicate the
combination that was chosen) can cover T as follows

Bi_1 < ¢(OPT;) < Y d(F,\(r;)) + Facility(OPTy) + E

rj eT
< " d(\(ry),ry) + Y d(F,rj) + Facility(OPTr) + E
rj erT rj eT
<M+OPITr+F
<OPT+D
by triangle inequality, after properly extending the leases.]

Lemma 6.4.2. It holds that
max{ON,,_1,ONp,} < O(K)D + O(K (log(min{|R|,A} + 1)+ 1)) - OPT

Proof. This proof follows from that of Lemma 3.5 in [Azar et al., 2021] with changes only in
the bound of ON;(Q1,1) and is given for ease of the reader.

Let j € {m —1,m}, and let Q C R be the subsequence of requests considered in ON;.
Denote by R’ C R the subset of predicted requests that are satisfied by the PARTIAL
solution considered in iteration i (the solution whose facilities were opened at the end of
iteration 7).

The online algorithm ON; operates on a modified input, in which the cost of a set of
facilities Fy is set to 0.

We partition @ into the following subsequences:

1. Q1 = Q@NT. We further partition)7 into the following sets:

69

(a) Qi1 ={r € Qi|\(r) € R’}
(b) Q2 ={r € Qi|\(r) € R\R'}

2. Q2=Q\T.

Intuitively, Q1,1 is the part of T that appeared in iteration j and their matched predictions
were covered by the offline solution on iteration i. Observe that ON;(Q) = ON;(Q1,1) +
ON;(Q1,2U Q2). We now bound each component separately.

Bound of ON;(Q1,1) For r = (j,t) € Q1,1, the matched prediction A(r) is covered by a
facility ¢,y opened by PARTIAL in iteration . The online algorithm will stop increasing
a, = aj; at some point before it reaches d(cy(,r) since it belongs to the set of opened
facilities X. This implies a, < d(cy(), 7). Using the bound for the cost

ON;j(Qu1) < (K + 1)) d(cxe,r)
<(K+1) z’": (d(exrys A(r)) + d(A(r),7))
< (K + 1)id(cf,f) +(K+1)D
< (K+1) ZT:d(Fo,f) +(K+1)D

where d(Fp, #) < 37(2B;_14+0(1))D as in the proof of the Lemma and ON;(Q1.1) < O(K)D+
O(K)OPT

Bound of ON;(Q12UQ2) Using subset competitiveness, we have that
ON;(Q12U Q2) < O(log(|Q12U Q2| +1) + 1)) - OPT"

where OPT’ is the optimal solution to @ with the cost of Fj set to 0. Clearly, OPT' < OPT.

Now, observe that |Q; 2| < |R\R'|. From the definition of the major iteration 4, and from
Lemma 2.1 in the framework, it holds that |R\R'| < 27 (|R| — k) = 2y|R\T'|. As for Q2, it
holds that Q2 < |R\T|. These facts imply that

Q12U Q2| < 29A
In addition, it clearly holds that |Q12 U Q2| < |R|. Therefore, it holds that
ONj(Q12U Q2) < O(K(log(minf|R|,A} +1) + 1)) - OPT
Using all the previous bounds we get

ON; < O(K) - D + O(K (log(min{|R|, A} + 1) + 1)) - OPT

The two lemmas prove the theorem.

70

Chapter 7

Conclusions

In this thesis we explored the field of Learning-Augmented algorithms for the category of
Online problems. In essence, the problem lies in our inability to evaluate the quality of
predictions during runtime. Therefore, we need to design algorithms that both explore the
additional information and discard it when it proves untrustworthy. When the predictions
appear in an online fashion, it is natural to attempt to combine different online algorithms in
order to remain competitive with the best among them. In these cases we typically attempt
to design an algorithm that trusts the predictions in some way and then combine it with the
best known online algorithm without predictions. When we are given predictions in an offline
fashion, the natural approach is to combine an online algorithm with an offline algorithm, each
handling the input and the predictions respectively. It is also common to modify standard
methods, like Primal-Dual, in order to take advantage of the predictions.

Focusing on Network Problems, we studied a framework that elegantly achieves to separate
good from bad predictions in an online fashion and applied it to Online Facility Leasing, by
providing a way to measure the extra cost these predictions will force this algorithm to incur.

The importance of this result is two-fold.

e On one hand, the problem itself had not been studied in the setting of predictions,
therefore the bound we obtained is the first for it. It is expected that it can be improved,
either by obtaining better competitive ratios for the online version, or by designing a
problem specific algorithm that takes even better advantage of predictions.

e On the other hand, we can deduce that time dependency is a feature that in some cases
can be handled by known methods. This motivates the study of further problems whose
input evolves with time in the setting of predictions.

Such problems were initiated in [Anthony and Gupta, 2007| and are essentially Leasing
versions of known NP-Hard problems. In the same way that Facility Leasing replaces the
purchase of facilities with the ability to lease them, Leasing Steiner Tree replaces the purchase
of edges with the ability to lease them, as the distribution of terminals changes. Other
such variants of problems are Leasing Vertex Cover and Leasing Set Cover with similar
formulations.

Another exciting direction is that of Multistage Matroid Maintenance (MMM). Intuitively
it can be thought of as maintaining a Spanning Tree with edges that each can only be bought
for a certain interval. Ultimately, a goal would be to improve the current results for Metrical
Task Systems (MTS), as this problem genelarizes MMM.

71

Bibliography

[Agrawal et al., 2022] Agrawal, P., Balkanski, E., Gkatzelis, V., Ou, T., and Tan, X. (2022).
Learning-augmented mechanism design: Leveraging predictions for facility location.

[Almanza et al., 2021] Almanza, M., Chierichetti, F., Lattanzi, S., Panconesi, A., and Re,
G. (2021). Online facility location with multiple advice. In Ranzato, M., Beygelzimer,
A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information
Processing Systems, volume 34, pages 4661-4673. Curran Associates, Inc.

[Alon et al., 2003] Alon, N., Awerbuch, B., and Azar, Y. (2003). The online set cover prob-
lem. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing,
STOC ’03, pages 100-105, New York, NY, USA. Association for Computing Machinery.

[Anand et al., 2022a] Anand, K., Ge, R., Kumar, A., and Panigrahi, D. (2022a). Online
algorithms with multiple predictions.

[Anand et al., 2022b] Anand, K., Ge, R., Kumar, A., and Panigrahi, D. (2022b). A regression

approach to learning-augmented online algorithms.

[Anand et al., 2022¢|] Anand, K., Ge, R., and Panigrahi, D. (2022¢). Customizing ml predic-
tions for online algorithms.

[Anthony and Gupta, 2007] Anthony, B. M. and Gupta, A. (2007). Infrastructure leasing
problems. In Fischetti, M. and Williamson, D. P., editors, Integer Programming and Com-
binatorial Optimization, pages 424-438, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Antoniadis et al., 2020] Antoniadis, A., Coester, C., Elias, M., Polak, A., and Simon, B.
(2020). Online metric algorithms with untrusted predictions.

[Azar et al., 2021] Azar, Y., Panigrahi, D., and Touitou, N. (2021). Online graph algorithms
with predictions. CoRR, abs/2112.11831.

[Balkanski et al., 2022] Balkanski, E., Gkatzelis, V., and Tan, X. (2022). Strategyproof
scheduling with predictions.

[Bamas et al., 2020] Bamas, E., Maggiori, A., and Svensson, O. (2020). The primal-dual
method for learning augmented algorithms. CoRR, abs/2010.11632.

[Bansal et al., 2020] Bansal, N., Coester, C., Kumar, R., Purohit, M., and Vee, E. (2020).
Learning-augmented weighted paging.

[Belady, 1966] Belady, L. A. (1966). A study of replacement algorithms for a virtual-storage
computer. IBM Systems Journal, 5(2):78-101.

[Bernardini et al., 2022| Bernardini, G., Lindermayr, A., Marchetti-Spaccamela, A., Megow,
N., Stougie, L., and Sweering, M. (2022). A universal error measure for input predictions
applied to online graph problems.

73

[Boyar et al., 2022| Boyar, J., Favrholdt, L. M., and Larsen, K. S. (2022). Online unit profit
knapsack with untrusted predictions.

[Charikar et al., 2001] Charikar, M., Khuller, S., Mount, D. M., and Narasimhan, G. (2001).
Algorithms for facility location problems with outliers. In Proceedings of the Twelfth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’01, pages 642-651, USA. Society
for Industrial and Applied Mathematics.

[Cho et al., 2022] Cho, W.-H., Henderson, S., and Shmoys, D. (2022). Scheduling with pre-
dictions.

|[de Lima et al., 2016] de Lima, M. S., Felice, M. C. S., and Lee, O. (2016). Facility leasing
with penalties. CoRR, abs/1610.00575.

[Dinitz et al., 2021] Dinitz, M., Im, S., Lavastida, T., Moseley, B., and Vassilvitskii, S. (2021).
Faster matchings via learned duals.

[Du et al., 2021] Du, E., Wang, F., and Mitzenmacher, M. (2021). Putting the “learning”
into learning-augmented algorithms for frequency estimation. In Meila, M. and Zhang, T.,

editors, Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pages 2860-2869. PMLR.

[Fakcharoenphol et al., 2004] Fakcharoenphol, J., Rao, S., and Talwar, K. (2004). A tight
bound on approximating arbitrary metrics by tree metrics. Journal of Computer and
System Sciences, 69(3):485-497. Special Issue on STOC 2003.

|[Feijen and Schéfer, 2021] Feijen, W. and Schifer, G. (2021). Using machine learning predic-
tions to speed-up dijkstra’s shortest path algorithm.

[Fiat et al., 1991] Fiat, A., Karp, R. M., Luby, M., McGeoch, L. A., Sleator, D. D., and
Young, N. E. (1991). Competitive paging algorithms. Journal of Algorithms, 12(4):685—
699.

[Fotakis, 2011| Fotakis, D. (2011). Online and incremental algorithms for facility location.
SIGACT News, 42:97-131.

[Fotakis et al., 2021] Fotakis, D., Gergatsouli, E., Gouleakis, T., and Patris, N. (2021).
Learning augmented online facility location. CoRR, abs/2107.08277.

|Gkatzelis et al., 2022] Gkatzelis, V., Kollias, K., Sgouritsa, A., and Tan, X. (2022). Improved
price of anarchy via predictions.

|Goemans and Williamson, 1995] Goemans, M. X. and Williamson, D. P. (1995). A general
approximation technique for constrained forest problems. SIAM Journal on Computing,
24(2):296-317.

|Gollapudi and Panigrahi, 2019] Gollapudi, S. and Panigrahi, D. (2019). Online algorithms
for rent-or-buy with expert advice. In Chaudhuri, K. and Salakhutdinov, R., editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Pro-
ceedings of Machine Learning Research, pages 2319-2327. PMLR.

|Gupta and Nagarajan, 2012] Gupta, A. and Nagarajan, V. (2012). Approximating sparse
covering integer programs online. CoRR, abs/1205.0175.

[Im et al., 2021a] Im, S., Kumar, R., Montazer Qaem, M., and Purohit, M. (2021a). Non-
clairvoyant scheduling with predictions. In Proceedings of the 33rd ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’21, page 285-294, New York, NY,
USA. Association for Computing Machinery.

74

[Im et al., 2021b| Im, S., Kumar, R., Montazer Qaem, M., and Purohit, M. (2021b). Online
knapsack with frequency predictions. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang,
P., and Vaughan, J. W. editors, Advances in Neural Information Processing Systems,
volume 34, pages 2733-2743. Curran Associates, Inc.

[Imase and Waxman, 1991] Imase, M. and Waxman, B. M. (1991). Dynamic steiner tree
problem. SIAM Journal on Discrete Mathematics, 4(3):369-384.

[Istrate and Bonchis, 2022] Istrate, G. and Bonchis, C. (2022). Mechanism design with pre-
dictions for obnoxious facility location.

[Jiang et al., 2021| Jiang, S. H., Liu, E., Lyu, Y., Tang, Z. G., and Zhang, Y. (2021). Online
facility location with predictions. CoRR, abs/2110.08840.

[Jiang et al., 2020] Jiang, Z., Panigrahi, D., and Sun, K. (2020). Online algorithms for
weighted paging with predictions.

[Karlin et al., 1990] Karlin, A. R., Manasse, M. S., McGeoch, L. A., and Owicki, S. (1990).
Competitive randomized algorithms for non-uniform problems. In Proceedings of the First
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 90, pages 301-309, USA.
Society for Industrial and Applied Mathematics.

|[Karp, 1972] Karp, R. M. (1972). Reducibility among Combinatorial Problems, pages 85-103.
Springer US, Boston, MA.

[Khodak et al., 2022] Khodak, M., Balcan, M.-F., Talwalkar, A., and Vassilvitskii, S. (2022).
Learning predictions for algorithms with predictions.

[Kou et al., 1981] Kou, L., Markowsky, G., and Berman, L. (1981). A fast algorithm for
steiner trees. Acta Informatica, 15:141-145.

[Lindermayr and Megow, 2022] Lindermayr, A. and Megow, N. (2022). Permutation predic-
tions for non-clairvoyant scheduling.

[Lu et al., 2020] Lu, P., Ren, X., Sun, E., and Zhang, Y. (2020). Generalized sorting with
predictions.

[Lykouris and Vassilvitskii, 2018] Lykouris, T. and Vassilvitskii, S. (2018). Competitive
caching with machine learned advice. CoRR, abs/1802.05399.

[Mahdian et al., 2012] Mahdian, M., Nazerzadeh, H., and Saberi, A. (2012). Online opti-
mization with uncertain information. ACM Trans. Algorithms, 8(1).

[Meyerson, 2001] Meyerson, A. (2001). Online facility location. In Foundations of Computer
Science, pages 426— 431.

[Meyerson, 2005] Meyerson, A. (2005). The parking permit problem. In Foundations of
Computer Science, pages 274 — 282.

[Mitzenmacher, 2019] Mitzenmacher, M. (2019). Scheduling with predictions and the price
of misprediction.

[Motwani et al., 1994] Motwani, R., Phillips, S., and Torng, E. (1994). Nonclairvoyant
scheduling. Theoretical Computer Science, 130(1):17-47.

[Nagarajan and Williamson, 2013] Nagarajan, C. and Williamson, D. P. (2013). Offline and
online facility leasing. Discrete Optimization, 10(4):361-370.

()

[Polak and Zub, 2022] Polak, A. and Zub, M. (2022). Learning-augmented maximum flow.

[Purohit et al., 2018] Purohit, M., Svitkina, Z., and Kumar, R. (2018). Improving online
algorithms via ml predictions. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc.

[Raghavan, 1988] Raghavan, P. (1988). Probabilistic construction of deterministic algo-
rithms: Approximating packing integer programs. Journal of Computer and System Sci-
ences, 37(2):130-143.

|[Rohatgi, 2019] Rohatgi, D. (2019). Near-optimal bounds for online caching with machine
learned advice.

[Thang and Durr, 2021] Thang, N. K. and Durr, C. (2021). Online primal-dual algorithms
with predictions for packing problems.

[Wei, 2020] Wei, A. (2020). Better and simpler learning-augmented online caching.

[Wei and Zhang, 2020] Wei, A. and Zhang, F. (2020). Optimal robustness-consistency trade-
offs for learning-augmented online algorithms.

[Xu and Lu, 2022] Xu, C. and Lu, P. (2022). Mechanism design with predictions.

[Xu and Moseley, 2021] Xu, C. and Moseley, B. (2021). Learning-augmented algorithms for
online steiner tree. CoRR, abs/2112.05353.

[Xu and Zhang, 2022] Xu, C. and Zhang, G. (2022). Learning-augmented algorithms for
online subset sum.

[Xu and Xu, 2005] Xu, G. and Xu, J. (2005). An improved approximation algorithm for
uncapacitated facility location problem with penalties. In Wang, L., editor, Computing
and Combinatorics, pages 644—653, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Zhao et al., 2022] Zhao, T., Li, W., and Zomaya, A. Y. (2022). Uniform machine scheduling
with predictions. Proceedings of the International Conference on Automated Planning and
Scheduling, 32(1):413-422.

76

	Περίληψη
	Abstract
	Ευχαριστίες
	Περιεχόμενα
	Κατάλογος σχημάτων
	Εκτεταμένη Ελληνική Περίληψη
	Εισαγωγή
	Ορισμοί
	Γενικές Μέθοδοι
	Primal Dual Επαυξημένο με Προβλέψεις
	Προβλήματα Κάλυψης με Πολλαπλές Προβλέψεις
	Άμεσοι Αλγόριθμοι σε Γράφους με Προβλέψεις

	Αλγόριθμοι Επαυξημένοι με Προβλέψεις
	Ski Rental
	Non-Clairvoyant Job Scheduling
	Άμεσο Δέντρο Steiner
	Άμεσο Facility Location

	Facility Leasing με Προβλέψεις

	Introduction
	Previous Work
	Facility Leasing
	Framework
	Algorithms
	Contribution

	Preliminaries
	Definitions
	Predictions
	Error Metrics

	Frameworks
	Primal Dual Learning Augmented Framework
	Covering Problems with Multiple Predictions
	Online Graph Algorithms with Predictions

	Learning Augmented Algorithms
	Ski rental
	Single Prediction
	Multiple Predictions

	Job Scheduling
	Preferential Round Robin Algorithm

	Online Steiner Tree
	Using Outliers as the Error
	Using Metric Matching with Outliers as Error

	Online Facility Location
	Prediction of the Input
	Multiple Predictions of the Solution

	Facility Leasing
	Online Facility Leasing
	Subset Competitive online algorithm
	Prize-collecting offline algorithm
	Facility Leasing with Predicitons

	Conclusions
	Bibliography

