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ITepiAndn

To teheutaio ypdvia Tor acUppata cucthuata 5G €youv apyloel Vo eupa-
vilovtan yio eumopxole oxomols. Av xou dev €youv eupavioTel axdun ThAtpwe
CULUPBATE CUGTAUATA, VEA YUEAUXTNELO TIXE EVOWUATOVOVTOL CUVEYMS OYL UOVO
TNV TNAETUXOWVWVIAXT] UTOBOUT 0AAS xou oTov e€omhioud Twv yenotov. Ko-
YOS aUTh 1 EVOWOUATWOT GUVEYILETOL XU Ol OVAYXES QUTWY TWV CUC TNUATGY
yivovtow axdun mo amawtnTxég, elvon amopoaltnTto vor xohugioly pe otadepd,
a&tomiota xan €€umva cuoTAuata emxowvnviog. To Field Programmable Ga-
te Arrays (FPGAs) eivon pio eZoupetin) emAOYT Yot T0 0X0Td authd, xodde
Topéyouv xah6 trade-off yetal e, wybog enelepyaoioc xou anddoonc.

Yy mapovoa BimAwuatixy, oTtoyebouvue ot dopdworn twv I-Q imbala-
nces oe Direct Conversion Receivers pe évav akyopriuo mou viomou|dnxe
oto mpodypauua Xilinx Vivado, yenoiuomoidvtag tn YAOOoK TEQLYpaphc UAL-
xo0 (VHDL). H a&iohéynon tou akyopituou mpaypoatonoeiton oto MATLAB
oLYXEIVOVTOC TO OYETINO CPIAUA UETAED TOV APYIXDY OECOUEVLV Xl TWYV dlop-
Youévoy anotereopdtwy 160 6to MATLAB 600 xau oto Vivado. ¥1n ou-
véyew, yenotwormoiinxe éva RE dataset mou mepuhopfdver 24 thmoug dmgproxdv
XU AVOhOYIXWY Blopopphoewy ot Towiha SNRs xou egapudéotnxe oe autod I-
Q imbalance. Axoholdwg, yenowonowwvtog autd to dataset wg test bench
yioe Tov ohyopriuo Suopdwone oto Vivado, enovagépoue tor imbalanced dedo-
péva oty opyxr Toug xatdotacy. Téhog, pe tn Bordeo Tou TepBdAlovTog
Vitis-Al mpaypatomoijinxe avayvopion RE Swopopphoewy yenowwomodvtog
Deep Neural Networks yio vo tavountoly ol SLdpopee Blotop@ioelc XL Vo
a&rohoyniel 1 axpifeia Tng Tagvounong Twv apyixoy, Tov imbalanced xat twv
otopiwuévwy dedopévwy. H amddoon xo 1 axpifela, Twv xPaviiouévemy xo
compiled povtéhwy, emaindedeton oty mhoxéta Zynq Ultrascale+ RFSoC
ZCU111.

AéZeg Khewdid: Yngioanée Emxowvwvieg, Mnyavixy Mddnon, Nevpwwixd
Abetua, Avoryvopeion Awpdegpwone, AxpBeta, Anoédoan, Ildpol
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Abstract

The past couple of years 5G wireless systems have started appearing for
commercial purposes. Even thought, fully compatible systems are yet to
appear, new features are continuously integrated not only on the telecom-
munication infrastructure but also to user equipment. As this integration
continues and the needs of these systems become even more demanding, it
is vital to cater them with stable, reliable and intelligent communication
systems. Thus, they require high-speed digital interfaces which are capable
to tackle these issues. Field Programmable Gate Arrays (FPGAs) are an
excellent choice for this purpose since they provide a great trade-off of price,
processing power, efficiency and parallelism.

In this diploma thesis, we target the correction of I-QQ imbalances in Di-
rect Conversion Receivers with an algorithm implemented in the software
suite Xilinx Vivado, using hardware description language (VHDL). The eval-
uation of the algorithm is performed in MATLAB by comparing the relative
error between the original data and the corrected results in both MATLAB
and Vivado. Next, we use an RF Dataset which includes 24 digital and
analog modulation types at varying signal-to-noise ratios (SNRs) and apply
[-Q imbalance to its data. Then utilizing this dataset as a test bench for
the correction algorithm in Vivado we restore the imbalanced data to their
original state. Finally, with the assistance of the Vitis-Al environment we
perform RF-modulation recognition using Deep Neural Networks to clas-
sify the different modulations and evaluate the accuracy of the classification
from the original, the imbalanced and the corrected data. The performance
and accuracy, of the quantized and compiled models, is verified on the Zynq
Ultrascale+ RFSoC ZCU111 board.

Keywords: FPGA, VHDL, Digital Communication, I-Q imbalance cor-
rection, Resources, QAM Modulation, Machine Learning, Neural-Networks,
Vitis-Al, Modulation Recognition, Accuracy, Performance
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Y10 onuelo autd Vo foeha vo evyaploTHow Vepud Tov emPBAETOVTA XNy NTH
©ou x. Anuntelo Lolvten Tou Hou EBMGE TNV EUXALELA VoL EXTIOVAGH TNV SLThw-
potxr) wou oto Microlab ye éva €ua dxpwe evolapépov Yo uéva.

Axdun, ¥érw va evyopto Thow Yepud tov utodriplo diddxtopa Indvvn Xtpatdxo
Yioe TNV dueoT) xou amoteheouotiny Borideia tou etyo xdde popd mou avtiwetHTla
xdmoto mpdfinua. Enlong, n e Bddoc yvaoeig tou ota FPGA pe olotioe otig
ateAElWTES BUVATOTNTES TOUC.
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Extetapevn lleplindmn

Ewooaywyn

Yy enoyn mou Lole, eivon abloppioBrTnTo 6TL, ol Yngloxés emxovemvieg u-
TepTeEOUV o oyéon Ue TIC avTioTolyeg avohoyixée. Autd ocuufoiver dOTL Ta
TAEOVEXTAUATO TWV (PNPLOIXDY ETUXOVOVIOY Elval TOA) TEQIOCOTERA ATt QTS
Twv avahoywayv. H tepdotio {Atnomn vl uetapopd BeBoUEVKDY, 1) UEYOADTE-
e adlomo Tl TV PNELaxdY MAEXTEOVIX®Y GE GUVBUUCUSO UE TO YAUUNAO TOUG
%007T0¢ Yo emegepyaoion ONUATOC, 1) EUXOAIL GTOV TEPLOPIOUO TWV EMUTTOOEWY
Tou YopUfBou xaL TUPEPUBOANDY OTAY YENOHIOTOLETOL XWOLXOTOMNGCT TV KAVUAL-
v, e&nyel amohuta yioth ol nglaxéc emxowvewvieg elvon 1 Wavixy| emAoYY yia
ETUXOWVOVLOXA GUC TAHUATO.

Wnoraxd Xvotnuo Enuxotvevioy

Y10 oyfua 0.0.1 mapoucidleton To Umhox SLdypoupd EVOS Pnplaxod ETXOVG-
VIX0) CUCTHUNTOS, CUUTERLAUBAVOUEVOL TOU TOUTOU Xl OEXTY).

Information Source Channel
Modulator
Source Encoder Encoder T T
Modulating Modulated
Signal Signal
Channel
Demodulated

Signal

Information Source Channel ‘l Demodulator
Sink Decoder | Decoder

Yyfua 0.0.1: Mrhox didypopua Pnelaxcdy CUGTNUETWY ETUXOVWVIDY
ITio avahuTixd, 0 xwdxononTtAg TNYNE elvon LTELYUVOC VLol TNV AVOTAEAO TAOT)
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EKTETAMENH IIEPIAHVH

NG UETABIBOUEVNS TANnpopoplac ot Loy Loy

O xoduxomointhc xavahio) Teoc¥ETeL EAEYYOUEVO TAEOVACUO GTNY TANROPOpia
€T0L OOTE VoL EVAL EPIXTO VOL AVTYETWTIOEL OE ETOPEVA GTABL Tdave GpaAaTo
AOY ) ATEAELWY TOU Xovohlol ot YopUfou.

O Buapoppwtic, uetappedlet Ta dtaxpitd cUYBoha Tou eivar 1 €£050¢ TOU XWOLXO-
TOUNTH) XUVAUALOD GE AVOAOYIXT) XUUATOROR®Y| €TOL WOTE Vo UTopel vor UeTadovel
HECL PUOLXOL XAVAALOD.

H popen Tou xavahiol mou yenotwomoleiton oe €vo Ynploxd oL TNUN ETUXOL-
voviog mowdAiel avdhoya avdhoyo ye Ty xde eqappoyr. T'a mapdderyuo,
OTNY EVOURUATT ETIXOVGVIN YEEIACETOL €V YRUUUIXO YPOVIXE OUETIBANTO Tou
0€ TOMEG TEQITTWOELC TEPLAAUBAVEL AVATEOPOBAOTNOT UTO TOV GEXTY GTOV TO-
UTO GYETIXA UE TNV OLoWoORPWOT TOU EQYUPUOCGTNXE GTO TRONYOUUEVO OTABLO.
Avtidétwe, oty aclpuatn xivnTr emxovwvia eV UTERYEL avadeaon) Teog ToV
Toumo. Enouévng, To xavdht npénel va extiuniel 1 va ypnowonowoet pedodoug
TOL BeV AmoUToUV axEBN EXTUNCT XOVIALOD.

O anodlapoppotic encéepydleTon TNV AVaAOYLXY) XUUATOUOR®T Tou €yel AdBeL
u€ow Tou xavoloL, N omolo €yel ahhowwdel Aoyw YoplBou. Xuyxexpiéva,
TEETEL VO THPEL ATOPAOELS OYETIHA UE ToL UETABLOOPEVA GUUPBOAA 6GO aopd. Tig
UETATOTOEIC QAoNE, CUYVOTNTAS Xou YEOVOL Xou TNV eEl0pEOTNGCT 1 avTlo Ta-
ULoM TOL XAVohLo.

Autéc oL anopdoelC EIGEYOVTAL GTOV ATOXWOIXOTOMNTY Xavahlol, 0 omolog yer-
OLIOTIOLEL TOV TAEOVOOUO YIAL VO VOTARAC THOEL TNV EXTUNGCT TNS oxoloudiag
CLUPBOAWY ToU TRl INxoY and ToV XwdxononTr TNYHS.

O anoxwdoroimntic TNYhe, YeTaoynuatilel To exTipdueva clufola ot pop®h
TIOU UTOPEL VO XUTUVONOEL O BEXTNC.

Teyvixég ¥neloxns Alapudppwong
To elon Pnpraxrc dlaudppwong uropoly vo todivoundoly e Teelg PEYARES
xaTnyopleg:

e Metodhoyry Metatédmone IThdrouc (Amplitude Shift Keying), 6nou to
TAdtog Tou Pépovtog ofuatog petatoniletar YeTald BUO BLUPORETINGY
eMNEdWY TAGTOUS Yo Vo avamopaothoet ta neaxd dedouéva (0.0.2).

e Metodhayry Metatdmone Tuyvotmnrac (Frequency Shift Keying), 6mou
T0 xOpo €€680u Yetatomileton PETAEY BLOPORETIXGY GLUYVOTHTWDVY Yio Vol
avamapaothoel o Pnelaxd ovuBoha(Eyrua 0.0.3).
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i L UL

= — -

Yyfua 0.0.2: ASK Awopopgpwuévo Koua EE660u

. L UL

time

1v
ov
v time

f1 f2

Yyfuo 0.0.3: FSK Awopoppuuévo Koua E£660u

e Metahhoyf Metatémione ®done (Phase Shift Keying), énou n ¢don evée
nuLtovoedolg xopatog @opéa otadepnc cuyvotntag ahhdlel xdde popd
TIOL LTIAPYEL AARALY T TNV XAUTAOTAOT) TOL ofuatog etloédou (LyAua 0.0.4).

ML

| ! time

i/\/i\/ti\rne

S LR L b

1v

Ov

Eyfua 0.0.4: PSK Awopopgouévo Ko EZ660u
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EKTETAMENH IIEPIAHVH

O cuvduacudg 600 N TEPIGCOTERMY AT TG TURATAVG TEYVIXES 00N YOUV GE
GAREC YVOOTES TEYVIXES OLOORPWOTS OTWS:

o Tetpaywvinh Awpdppwon IIhdtoue (Quadrature Modulation Techni-
que, 6oL BV POES GNUATLY EYOLY (Blol GUYVOTNTA ARG EYOLY BLaPOEd
pdone 90 polpec (tetpaywviopsds) (Eyrua 0.0.5).

o o o o (=] o (=] o
[ (o] [s] O 0o 0 0 ojo 0 0 0
0 D o e 9 -] o -] o -]
o o o o o o 2 olo o o ©
O 0 0 o " k-] Q L] o Q o @ Q
0o 0 0O ojo o o o
°1° o o|lo o 8 & ® @l & & &
o e o o o o o 1+]
8-QAM 16-QAM 64-QAM

Eyfua 0.0.5: Awdpopec QAM Alopopgpnoeic

I-Q Imbalance

Imbalances petoll tov I-Q cupéiwv (I-Q Imbalances) urnopolv vo Beedoiy
oe déxtec dueone petatponic (direct conversion receivers) émou dev undpyet
evoidueon ouyvotnta frr, Ue anotéiecpo to Aopfoavouevo ofuo RE % to Lw-
VOTEQUTO oTja v hetappdleton amevdelag amd tnyv pépouca cuyvotTnTa fo 6TO
ofua Lavne pe éva otddlo avduerEne (Ey Ao 0.0.6) . O déxtng dueong petatpo-
Thc extelel TY AeYOUEVT UETATROTN TETEAY WVIOHOU TTPoc Ta xdtw (quadrature
down-conversion) pe v yeromn 500 TETEAYWVIXGY NULTOVOEWBWY ONUdTwY. X
auTh Ty Stadixaota, petatonileton to o and tov tomixd tahaviwth (LO)
%ot 90 yLor vor mopory Vel Evor TETRAYWVIXO NULITOVOELES GToLyElo xon €var ToupLo-
016 (ebyog and mixers YETUTEENEL TO (B0 G EIGOBOL UE TIC BLO EXDOCELS
tou LO. Ov avavtiototyieg petadd twv 8Vo onudtwy tou LO 1 xotd prxog twv
000 SLoxAadMoEWY TV down-conversion mixers xat TUY OV aXOAOLVWY EVIC)YU-
TV xou low pass @iktpwv, mpoxahodv ahholworn oto tetpaywvixd baseband
ofuo. Av 1 BLopopd QaoNng YETOED TWV TETPAYWVIXDY XUPATOUORHHY dev efval
oaxpBode 90°A av tar TAdTn Toug dev elva (oo, toTe Lndpyet I-Q imbalance.
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LPF s ADC ]

LNA | Disital
Selection 0 it
Filtar — cos(2r fot) Signal

Q0" Processing

LPF - ADC [

Eyuo 0.0.6: Apyrtextovinn evog Zero intermediate frequency (ZIF) receiver

AuTto elvon 10 ®0PI0 UELOVEXTTUA TWV BEXTWY JUECTC UETATEOTNS OE OYEoM
e toug heterodyne receivers (LynAua 0.0.7), 6mou n @épouca cuyvoTNnTL TOA-
AomhootdleTon Ye Tol TOTUXE TOAVTEUOUEVO GYUATOL Lol VO UETATEATOUY GE EV-
Oudeceg oLy VOTNTES frF, Ol OTOlEC Elval XAUTIAANAES Yiol TEpaTéR® EVioyuaom
xou ene&epyasia.

LPF ADC
LINA
1 o? Drigital
Y.SE‘I-!‘?I&III::I“ > 9 'P — cos(2r fLoat) Signal
ag” Processing
cos(2mf o1t}
LPF ADC

Yo 0.0.7: Apyitextoviny| evog Heterodyne receiver with intermediate fre-
quency (IF)

Field-Programmable Gate Arrays (FPGAs)

To FPGAs elvon enovanpoypoupatilOUEVE TOIT UAX0) TOU Y eNOHIOTOL00VTAL
yioe Loy Aoy Ebvon wio oetpd amd hoyixée mhheg mou umopolv var puid-
woToLy yio va dnutouvpyoLy audalpeta dmgroxd xuxdouoata. H mpodarypoapn
AUTOY TWV XUXAWUATOV YIVETUL YENOWOTOIWVTAS EITE OYNUATING XUXADUATA
elte ye yAwooeg neptypagric LAxoL, Verilog 1 VHDL. H apyitextovixr evog
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FPGA napovoidletoan 6to Lyrua 0.0.8.

Logic Block{LB) Dedicated Hard Block
Logic Tile e B "
\ B B /B B
2 gt Lo Nt
g
i
R aEs St &
R Sk Soft e
;S el Logic Logic hhuih. % :
Eﬁ
54
s Soht St s
S Logic Logic M-
= I-:::éc L.% - {.I |lt " :
e P \3‘\3!\‘:3\ S Routing Channel

110 Block (10B) Switch Block (SB) Connection Block (CB)

Eyfuo 0.0.8: Apyrtextovixr) evoc FPGA

Ta tehevtador ypovia ta FPGAs €youv yivel ToA) dnuogihy) otny Blopnyo-
viot xou yenoylomololvton xan ¢ emttayuvté(accelerators) yior Al eqapuoyéc
XAl YOl ETUTAYUVOT) TEYVTWY VEUPWVIXOY BixTOwv. Ot autieg mou 0dYynoav o
outh TV dnuotdtnTa Twv FPGAS évavtt dhhewv povddny enelepyaoiog (m.y
CPUs, GPUs, ASICs eivou:

To FPGAs €youv tnv Suvatotnta var emovadiotop@mioly ex VEOU UETA TNV
eyxatdotoot, eve 1o ASICs dev punopolv va to xdvouv autod. Emlong, uno-
E0UV Vo eMEEERY UG TOUY TORIAANANL UEYENO OYXO BEBOUEVWY UE UMOTEAEGUAL VL
€youv younho latency. Ou CPUs xoaw GPUs Aettoupyolv celploxd, emouéveng
0EV UTOPOLY Vo ETEEERYACTOUY TANEOPORLES TaTOYPOVA.  Axoun, Adyw Tou
younhoU latency toug pmopolv va yenoulonoiniody oe EQUPUOYES UE UMOLTT
TIXoUg Ypovoug amdxplong, Ty lotewég ouoxevéc. Ilapdro, mou ta ASICs
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UTOPOUV VoL EYOLY axoUa YaUNAOTeERO latency, dev umopolv va yenoiuomolndo-
OV yla méve and pla egappoyt. Téhog, o FPGAs €youv xalbtepn andédoaorn oe
oyéon e ¢ CPUs xou GPUs xou éyouv oAl younhotepo x60T0¢ XoTaoreLY |G
oe oyéon ue ta ASICs mou unopolyv va Eenepdoouy tnyv anédoon twv FPGAs.
(Eyhua 0.0.9)

CPU

Flexibility

Eyfuo 0.0.9: CPU vs GPU vs FPGA vs ASIC

Mnyavixry Mddnon

H Mnyovuey Mainon yenowomnotel unohoyiotixég uedddoug yia tny Beitiowon
NS amoB00TE €VOC CLUCTHUNTOC PEow NS “eunelplag”. Muipelton v avdpmnivn
vonuooLT padatvovtag and to tept3dAiov Tou. O xUplog 6Ty 0 TNE UMY oVIXHS
udinong etvon 1 dnurovpyia ahyopriuwy pddnong Yot TNV XUTACHELT] LOVTEAWY
mou Baoilovtal oe dedopéva Ue eunelplec Tou elvon ot AUTEC O Yop@Y| BEBO-
HEVWV.

Ov alyodpriuor unyovixhc pdinong emtuyydvouy pio emuunty| epyascta yoplic
VoL YPELLETOL VOL TROY ROUUITIO TOUV XUPLOAEXTIXGL YL VOL TORAYOLY TO ETYUUNTO
arotéhecpa. Eivou ovciaotind "soft coded” agol autol or akyodpriuot uropo-
OV QUTOUATO VO TTROCURUOCOUY 1) Vol GAAGEOLY TNV ORYITEXTOVIXY| TOUC HECW
eMAVEANPNE, TEOXEWEVOL VoL BEATIOCOUY TNV IXAVOTNTE TOUG VoL ETULTUYOUY TO
ouyxexpWévo anotéleopa. Xto oyfua 0.0.10 gatvovton ol 3 xatrnyopleg oh-

Yoprduwy unyavixnc uddnong:

o Emtnpoluevn pdinon: umdpyet mpoxadoplouévn €660¢ yio xdde dedo-
uévo eloodoL

e Mn emitnpoluevn pddnon: dev €youv mpoxadoploUuévo oToOY0 OTAY EX-
nawdedovton. XEeNoWonololy alyoptduous opadoTonong Yol Vor GUVELDT-
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TOTIOLCOLY X0l VoL TpoGdLoplcouY ouoLoTNTES /OUAdOTOCELS LETOED TOV
0EBOUEVWY oL BEV €YOLV ETIXETA X0 Blvouy oe xdie éva plo eTéTa

o 'Hu-emtnpoluevn udinomn: €vo nocootd SedOUEVWY EYEL ETIXETO EVE TA
umohotna OyL. To “ovouatiouéva’ dedouéva Bonody 6tny extaldeucT) Tou
UT) OVOUTIOUEVOL TUNUATOS

Training Data

Labeled Data Supervised Learning

Partially
Labeled Data

Machine
Semi-supervised learning—>| Learning Testing
(training)

Human-Machine Interaction

Unlabeled

Data Unsupervised Learning

Eyfua 0.0.10: Katnyopleg Ahyoprduwy Mnyavixic Mddnone ue Bdon tnv
pUOT TV BEBOPEVWY EXTTABELOTC

Teyvntd Nevpwvixd Aixtua

‘Eva teyvnté vevpwvixd dixtuo mepléyel éva eminedo €l0600U amd VELPWVES,
UEELXS XQUUHEVA O TROUTA OO VEURMVES XL €VOL TEALXO GTRMUA YO TOUC VEU-
pwveg €€6dou. H apyitextovins| evog texvNTol VeupmvIXo) SIXTUOU QolveTal
oto oyfua 0.0.11. Kdlde xopBoc oyetileton ye tov veupohva mou cuvdéetan
ue W oprdunter Ty mou ovoudletan Bdpog. H é€oboc xde vevphva ota
XEUUUEVOL CTEOUATH EYEL TNY 0aXOAOLTT YEOUULXY CUVETNON):

N

yi = o) wijzj +by)
j=1

omou o elvan 1 ouvdpeTtnom evepyornoinong, N o apriudc Twv VEupOVLY E1GABOL,
w;j T Bdpot, 5 oL eleddol xou b; 1 TOAGT Tou xEUUUEVOL veupnva. Ol Guvde-
TNOELS EVERPYOTOIMONS UTopoUY va elvor 0TOLEGONTOTE amd Tig Topaxdte (Ly o
0.0.12):
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outputs
' '
/ )

Y
A
/ \

weiéhts )
/

inputs

Eyfuo 0.0.11: Apyitextovinn evog teyvntol veupwvixod dixtiou

Name [o(u)]; Range
lincar! u; (—00,00)
ReL.U [37] | max(0,u;) [0, 00)
tanh tanh(u,) (-1,1)
sigmoid ; ﬂl e (0,1)
softmax ;"1:.“1 (0,1)
;e

Eyhuo 0.0.12: Alota pe cuvopTHoELC evepyoToinong

AvopBwon I-Q Imbalance

‘Onwe avogepdue mo mply, imbalances uetald tov I-Q cuuBorwy cuufBaivouy
o€ BEXTEC QUECTC UETATRPOTAC OTAV 1) Blaopd pdomne Twv dVo dev etvon 90°7 dev
€youv (Blo TAdTog. Oewpolue Ta ToEUXdT® TIg €€600UC dTay UeTaTeéneTal Win

povotovixy| xudotopoppn RE oe {ohvn Bdonc:
I(t) = cos(wt)
Q(t) = sin(wt)

omou w elvor 1 ouyvotnTa TS LOVNS BAONE TNG HOVOTOVIXTC XUHATOUORGTC.
Oewpolue 10 TAGTOC (00 Ue povdda xat TNy @dor ton ue 0 xadoe dev ennpedlouy
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ToV 010U TIXG ahyopLiuo.
2071600, ot mEayUaTIX0UG BEXTES dueoTg peTatpong To I-Q elvou::

I'(t) = acos(wt) + B; (0.0.3)

Q'(t) = sin(wt + ) + B, (0.0.4)

OToU P €lvol TO GPAAUNL PAOTG, O TO GQAAUA TAATOUS xou B; xou By etvan on DC
ToAwoELC Tou cuufaivouy oe xde cluolo.

AXyopripog Abpdwong

Apywnd, o B xou By elvon o péoog bpog twv I'(t), Q'(t), avtictowya, ot éva
axépato apLiud meplddny. Emouévee agpopeiton o uécog 6pog tou xdlde yovo-
ToTo xou oL eEddoL etvo:

I (t) = acos(wt) (0.0.5)

Q7 (t) = sin(wt + 1) (0.0.6)

Ou mopdpetpot a, sin(v), cos(1p) unohoyilovtar ye v PorRdeia e eiowong
<a(t) >= 35 ftt_NT z(u) du, we e&hc:

1 1 1
<I"(H)I(t) >= o < cos*(wt) >=a® < 3 + 5003(2wt) >= 5042 (0.0.7)

< POQ () >= %asin(lb) (0.0.8)

cos(p) = /1 — sin?(y (0.0.9)

Or Soptwuéveg €€000L PE TNV ¥ENON NS TELYWVOUETEXNSG TAUTOTNTAS
(sin(wt + 1) = sin(wt)cos(¢) + cos(wt)sin(1))) etvon:

Ez(ft))] -

Extipnon akyoprdpou diopgdwong

— sin(e . (0.0.10)
a cos%d;% cosl(w)] Q (t)

Me tnyv Bordeio tov MATLAB napdyouue clufBora pe QAM Siopoppaaeic xan
mo ouyxexpyéva 4-QAM xo 16-QAM. Encita, egopudlovue I-Q Imbalance
oTnY x&ie SlopdEPwan.
Yo oyfuarto 0.0.130" xou 0.0.130" mapoustdlovton ot €€odol I-Q ywplc xou ue
10dB xou 45°imbalance.
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QAM4 - TotalSamples = 1024

O original-data
0 imbalanced-data
1L 1
-}
o o
0.5
)
S
*@ o
5 o
] o
S
a
051
o o
o
1+ 4
-1 -0.5 0 0.5 1
In-Phase

(o) 4-QAM apyxd xou pe imbalance dedopéva
QAM16 - TotalSamples = 1024

O original-data
15+ O imbalanced-data |
o
i ) o o o
o
o

05 o
o o % o e °
2 o
P °

0
s} o
g ]
& o ] o, o

05 o

o
o
Al o o o o i
o
151
-1.5 -1 -0.5 0 0.5 1 15
In-Phase

(B) 16-QAM opynd xou pe imbalance deSopéva

Yyfua 0.0.13: Tagne Awpodppuone 4,16-QAM
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Kotaoxeudlouye tov ahyopriupo diopdnmong ue 4 dlapopetind mopddupo -
negepyaoiog oo ye 64, 128, 256 xan 1024 xan 3 SraopeTixd uey€dr deryudTey
yioe xde mopdiupo (oo ue 1024, 131072 xon 1048576.

Ta Sropdnuéva I-Q dedouéva cuyxpivovtan Ue To apyxd dedouEva ToL TTapdy I
xav oto MATLAB ye v Bofdeia tng e€iowong Tou oyYeTixol) 6QIAIATOS TOU
(POUVETAL TOUPOXATE:

measured — real
Relative Error Percentage = | |

100 0.0.11
real x ( )

Ta anoteréopata ToU T0GOGTOV TOU GYETIXOD c@dAaTog Yo Tor -Q oly-
Boha yio 4-QAM gofvovTon 6TOUG TUEUXdTe TVUXES:

4-QAM Méyedog [apadtoou

IDidog 64 128 256 1024
OELYUATWY

1024 14.1903 12.7841 12.8236 12.7749
131072 14.7345 13.4893 13.0347 12.9650
1048576 14.7263 13.4075 13.0083 12.9775

ivoxag 1: Iocooté Lyetixol Lgdigotog petald I-Apyxdv dedouévmy xau

I-Matlab aroteiecudtwy 4-QAM

4-QAM Méyedoc Hapadbpou

IIxdoc 64 128 256 1024
OELYUATWY

1024 37.0323 34.8078 34.5293 34.4696
131072 38.7620 37.6060 37.1421 36.8795
1048576 38.8801 37.6928 37.2487 36.9780

[Tivaxog 2: Ilocootd Lyetixod Lpdhuatog yetadlh Q-Apyixcv dedouévemv xau

Q-Matlab aroteheoudtwy 4-QAM
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To amotehéopota TOL TOGOGTON TOU GYETIXOU GPdAUaTOS Yo Tar [-Q olu-

Boha v 16-QAM gaivovtar 0Toug TapaxdTe Tivaxeg:

16-QAM Méyedoc Hapadipou

T Adoc 64 128 256 1024
OELYHATODVY

1024 21.0646 18.5447 17.8823 16.9282
131072 22.4404 19.7023 18.3292 17.3180
1048576 22.3744 19.6561 18.2860 17.3941

[Tivaxag 3: Hocootd Lyetixod Xgdipatoc yetadh I-Apyncdv 6edopévmwy xou

I-Matlab arotekeopdtwy 16-QAM

16-QAM Méyedoc Hapadipou

IMdoc 64 128 256 1024
OELYUATWY

1024 41.5886 39.9195 39.1859 38.7407
131072 40.7508 38.7685 37.7118 36.8148
1048576 41.0351 38.9571 37.8650 37.0302

ivoxag 4: Tlocootd Eyetinol Mgdhuatog uetollh Q-Apyxcv dedopévewy xal

Q-Matlab aroteheoydtwy 16-QAM
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Apyrtextovixr, AAyoptduou

Aot éyel yivel n extiunon tou Slopdwtixol alyodpriuou ot eninedo MATLAB
0€ QUTO TO OMNUElD E0TIALOUUE GTOV OYEBLAGUO Xl UAOTOINCT OE YAWGOO UAL-
x00 VHDL. Tlapoxdte topovoldletar 1 apyttextovixs Tou olyopiduou (Lyfua

0.0.14 xou otV cuvéyeta epfadivoupe o xdie umhox EexweIoTd.

aGI o>

1 inptlit
;

Q inpl]
>

FIRST STAGE

. 1-Q IMBALANCE
* CORRECTION BLOCK

'
'

Icorrected

—> PARAMETER _o; PARAMETER sir;wf PARAMETER

clk

A

SIZEIN

A

Window

4

siny

COS!

cu.sw

CORRECTION

had §

(i corrected

. ’:nw

<l"(t)é"(t)>T |

siny

B ()

1)

()

-z
B

.Q"®

Q"(®)

L 0" >.

: Q"(O}.

N A A

Yyua 0.0.14: Apyitextovinry Ahyderduouv Awbpdwone I/Q Imbalance

ITowro Xtddio

)

Y10 mpwto otddo, umoloyileton o péoog 6pog TwvV aviobppotwy 1/Q cuy-
Bohwv mou ewépyovion 6To cloTnua. Tautdypova, arodnxedovion TEOCWEIVA
o€ 800 EexwploTolg Umdpep Y€yl Vo TEAELWOEL 1) Bladxasior ToU UTOAOYLOUOY
Tou Yéoou 6pou yia xdle mopddupo. ‘Eneita, apoupodvtan to B xan By and To
x&de povomdtt yuo vo e€oudetepooupe Tic DC noddoec. H (Bl Sraduxaota

oxohovdeiton yior ToV LTOAOYLOPS TwV PEcwy dpnv Ty 17 (H)I7(t), I7(t)Q” (t)
(Eyfua 0.0.15).
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FIRST STAGE ERegistersE Registersi Registers:

Mean I"(t)l"(t)l—d"( E;(tP

r inpltt TR~ 11

I'(t) buffer

/N Mean I'(t)

<1M'(0Q" (>

QiP5 (1) buffer

Mean I"(t)Q"(t)

/N Mean Q'(t)

Yyfuo 0.0.15: Mriox Ipwtou Xtadlou

IMapduetpog o

[ vor uohoytotel 1) Topduetpog o, ToAamhaotdleton ) T < I7 ()17 (t) >
UE 2 UE TO VO UETOTOTIOTEL APLOTEPS XATE VAL UTILT, XL EMELTA PE TETEOYWVIXN
pila modpvouye we amotéheopa o o (LyrAua 0.0.16).

Register

<IV' t III t :
O S HIFT LEFT(<> 1) + SQUARE ROOT |—>

2x<["]">

Eyfuo 0.0.16: Mmiox Hapapétpou o
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INopduetpog sin(y)

Ao éyel unohoyilotel 1 napduetpog o xaw o < I”(t)Q” (t) > unohoyileton To
sin(t)) pe to va petatomotel aplotepd xotd éva pmt o < I7(6)Q7 () >, yw
va dimhootootel, xou énetta Slapeiton pe Ty mopduetpo o (Lyfua 0.0.17).

[
1
1
1
[
1
1
1
1
1
1
L3

—w"(t)Q”( 2 <I”Q">

SHIFT LEFT(<I"Q">,1)

siny

DIVIDE witha f——»

Register

=]

Yyfuo 0.0.17: Mriox Iopauétpou siniy

IMopduetpog cos(y)

Xenowomoteitan 1 towtdTa sin?() + cos? (1) = 1 yia va unoloyiotel to
ouvnuitovo. Tetpaywvileton o Muitovo xau émeito aganpeitar amd to 1 xou ue
tetporywvixh pilo xadopileton to ouvnuitovo (Eyrua 0.0.18).

PARAMETER cosy

1

Cos

SQUARE ROOT

Register

SQUARE

Yyfuo 0.0.18: Mriox mapouéteou cosyp

Mniox Awopdwong

To tehixd oTddo elvon T0 oTABI0 BLoPUWONG. Xe aUTO BNULOUEYOLVTOL OL To-
edueteol mivoxa A,C,D mou cuuBdiouvy oty diopdwor twv avicdpponwy 1,Q
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ouuBorwy. Ta Sopdwuéva I 5edouéva utoroyilovton e to var dlonpedoly ue
TNV mapdueTeo o. o Ty Biopdworn Twv Q dedouévenv: ToAATAAcLECOUUE TO
I” (t) pe TNy TopdueTEo sint xou EmeLtor Sloupelton Ye TNV TUPGUETEO o TOMNATAO-
oalopevn Ue Ty napdueteo cosy. To mnhixo autd eivan (oo pe v Tapopéteo
C. Toavtdypova, dwupeiton o Q7 (t) pe Vv moapduetpo cosy mou elvon (oo pe
v moedueteo D. Ot 6Vo nopauétpol C, D mpootievton xan to ddpoioua etvor
{oo pe to dopdwpévo Q (Uyhue 0.0.19).

CORRECTION ! ;
I"(t :_ ________ - - __A_; E Register E Register I corrected
- » DIVIDE with o =T T
C T C ci
: s : i
—— X } > DIVIDE
1 s ] 1
. ] T ] A !
siny ! ' s
] “alia Q corrected
: >

()T i

Q"(t)

Eyfuo 0.0.19: Mmhox Awdpdwong

YAoroinoy LECOL GpOL, UTAPER, TETEPAYWVIXNG pllag xou
owalpeong

[N vor uhomomndoly xdmota otddia Tou ahyopriuou otnv VHDL yeeidotnxe va
xenowomoundoly xdmota Language Templates xow Math Functions ané tov IP
Catalog.

Buyxexpéva, yioo TNV vhonolnomn Tou Yécou dpou yenotwomolrinxe to Mul-
tiply and Accumulate (macc) Language Template. I'ia tnv mpoowpewvr amo-
Vrxeuon Twv dedouévwy yenotworoiinxe 1 Simple Dual Port 1 clock Block
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RAM Language Template ye tv hoyuxr tou First-In First-Out (FIFO). I'a
v teTpaywvixt| plla emAéytnxe o muprivag CORDIC, o omolog apyixd elye
oSO TEL YL Vo EXTEAEL TeploTEOPT] BlaviopaTog Yo var utohoyilel Tpyw-
VOUETEIXEC EEIGMTELS XL OTNV CUVEYELX 1 YPNHON TOL EMEXTAUNXE Yiol vor AUVEL
dudpopec e€lonoelg Omwe Ny tetpaywwxn plla. ‘Oco agopd tnv dldpeon,
xadide to ovuBoho /7 Bev unootneileton oto 6Tédl0 cUvdeone tou Vivado,
yenowonotinxe o LogiCORE IP Divider Generator. O cuyxexpuévog mu-
evag €xel 3 BLaPORETIXEC UAOTIOLACELC Ol OTIOLEC ETUTEETOUY TNV eELC0REOTNOT
TNV amO000T), *UCTERNOT XU YEHOT TOPWY. XTNV ToEoVC SLTAWUATIXN
xenowonoudnxe n vhonoinon Radix-2 xadode emitpénetl Tov éheyyo petold Tig
TapahAnAlag oTov alyoprluo xal TNS owoTAS avaroyiag YeToll anddoong xou
TOPOUG.

EnaAr9cvon Xyediacpmol

Ye auté Tto onueto Va yivel 1 enodfdevon Tou oyedlacpol Tou EYLVE UE TNV
xerion tou Vivado Design Suite 2022.1. H enairidcuon da yivel ye to va ou-
yxptvoupe ta VHDL aroteréopota pe autd mou mopdydnxoay otny opyr xou ue
Ta anoteAéopata and 1o Matlab pe v yerion tou oyetxod cediyaToc.

Ta 06001 oyeTN0) GPdApaToc HETOE TV Apyixedy xa Twv VHDL
amoteeopdtwy yio o I-Q cbufolra yia 4-QAM nopoucidlovton 6Toug Tivoxreg
5 xou 6 avtioTtoya:

4-QAM Méyedoc Hapadbpou

npoint 64 128 256 1024
1024 14.1893 12.7839 12.8234 12.7749
131072 14.7343 13.4889 13.0339 12.9647
1048576 14.7261 13.4071 13.0079 12.9773

ivoxag 5: Ilocootd Lyetinod Lpdhpatog Yetald twv I-Apyxdv Acdouévmv

xat I-VHDL ormoteheopdtwy 4-QAM
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4-QAM Méyedoc Hapadbpou

npoint 64 128 256 1024
1024 37.0367 34.8073 34.5408 34.4803
131072 38.7687 37.6134 37.1501 36.8886
1048576 38.9443 37.7006 37.2573 36.9872

ivoxag 6: ITocootéd Xyetinod Lpdhpatog petodd twv Q-Apyixwv Acdouévwy
xat Q-VHDL anoterecudtowy 4-QAM

To tococtd oyeTx0) oPIAUaTOS UETOEY Twv Apyix®y xa twv VHDL
anotelecpdtoy yia to I-Q olufora yia 16-QAM nopoucidlovion oToug Tivo-
%eC 7 xou 8 avtioTotyo:

16-QAM Mévyedoc Hapadipou

npoint 64 128 256 1024
1024 21.0657 18.5471 17.8829 16.9261
131072 22.4395 19.7012 18.3275 17.3181
1048576 22.3737 19.6553 18.2851 17.3940

ivoxag 7: Tlocootéd Lyetinol Npdhpatog Yetalld twv I-Apyndv Acdouévwy

xou I-VHDL anoteleoydtwy 16-QAM

16-QAM Mévyedoc Hapadipou

npoint 64 128 256 1024
1024 41.5913 39.9255 39.2021 38.7646
131072 40.7499 38.7683 37.7141 36.8248
1048576 41.3597 38.9572 37.8665 37.0371

[Tivaxog 8: ITocootd Xyetinol Lpdhpatog Yetadd tov Q-Apyixodv Aedouévev

xow Q-VHDL onoteleopdtwy 16-QAM
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To mocootd oyetxol opdhpatoc yetald twv Matlab xa twv VHDL
arotehecudtwy Yo to I-Q oluBoia yia 4-QAM noapoucidlovion GTOUE TIVIXES
9 xou 10 avtilotouya:

4-QAM Méyedoc Hapadbpou

npoint 64 128 256 1024
1024 0.0058 0.0215 0.0426 0.1689
131072 0.0055 0.0217 0.0431 0.1714
1048576 0.0055 0.0217 0.0431 0.1714

[Tivaxoc 9: Ilocootd Eyetxol Xgdipatog yetadl twv I-Matlab Aedopévwv

xat I-VHDL onoteheopdtwy 4-QAM

4-QAM Méyedoc Hapadbpou

npoint 64 128 256 1024
1024 0.0562 0.1291 0.2568 1.0261
131072 0.0548 0.1244 0.2449 0.9666
1048576 0.0896 0.1243 0.2443 0.9652

Tivaxog 10: HHocooté Xyetixol Lpdhuatog yetoll v Q-Matlab Aedopévwv
xar Q-VHDL anoteleopdtov 4-QAM

To nococtd oyetxol opdigoatog petodhd Twv Matlab xa twv VHDL o-
noteAeopdtoy Yo to I-Q cbufBora yia 16-QAM napoucidlovtal otoug Tivaxeg
11 xon 12 avtioTouya

16-QAM Méyedoc Hapadipou

npoint 64 128 256 1024
1024 0.0173 0.0313 0.0606 0.2679
131072 0.0205 0.0350 0.0608 0.2707
1048576 0.0225 0.0341 0.0609 0.2718

[Tivaxog 11: Hocooté Lyetxod Lpdhuatog yetald twv I-Matlab Aedopévwv

xou I-VHDL anotelecudtwy 16-QAM
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16-QAM Méyedoc Hapadbpou

npoint 64 128 256 1024
1024 0.1019 0.1946 0.3806 1.4510
131072 0.2437 0.3252 0.5709 1.5526
1048576 0.7410 0.3814 0.4515 1.5479

Mivoxag 12: HHocooté Lyetinol Npdhuatog petold twv Q-Matlab Aedouévwv
xat Q-VHDL omoteheopdtwy 16-QAM

To didypauua 0o teptopod YeTald TV Apyix®y Bedouévmy, TwV avicOpEo-
Twv xou Twv Matlab-VHDL anoteheoudtwy yio péyedog napadipov = 1024,
npoint = 1048576 xa 4-QAM xou 16-QAM gaivovtan oo oyfuorto 0.0.20 xan
0.0.21 avtioTouya:

QAM4 - Window=1024, TotalData=1048576

© original-data

© imbalanced-data
1+t matlab-results | 4
©  VHDL-results

L L

051 ‘ & i

Quadrature

e ® |

-1 -0.5 0 0.5 1
In-Phase

Eyfuo 0.0.20: 4-QAM opyxd, pe imbalance dedopéva xaw MATLAB,FPGA

ATOTEAECUOTAL
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Quadrature

QAM16 - Window=1024, TotalData=1048576

O original-data
15+ O imbalanced-data| |
' matlab-results
) O VHDL-results
ir o o o o 1
e
‘e & §
st o iy W _
2 ‘e @& @
*
0r |
» ¥ .
. o °
05F ‘ o i
"R
<
4t [+ ] [+ ] [+ ] - |
<
15+ |
1.5 -1 0.5 0 0.5 1 1.5
In-Phase

Ty 0.0.21: 16-QAM opyxd, ye imbalance dedouéva xoo MATLAB,FPGA
ATOTEAEGUOUTA,

Ta resources mou ypnowononinixay xadde xou 1 cuyvOTNTA Aettouvpyiog
Tou cuoTthpatog atveton otov Ilivoxa 13

Table 13: Operating frequency and resource utilization of the system

Resources
Window LUTs LUTRAMs DFFs BRAMs DSPs || Max. Operating Freq.

Available 230400 101760 460800 312 1728
Used 10063 260 26446 0 7

64 Utilization  4.37%  0.26% 574% 0%  0.41% 342MHz
Used 10133 312 26511 0 7

128 Utilization  4.40%  0.31% 575% 0%  0.41% 339MHz
Used 9876 104 26377 2 7

256 Utilization  4.29% 0.10% 572%  0.64%  0.41% S46MHz
Used 9878 104 26381 1 7

10241 Utiligation  4.20%  0.10% 573%  1.28%  0.41% 340MHz
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Avayvaoeion RF Awopoepwong we to Vitis Al

It Ty vhomoinon e avayvoplone RE diapdppwone oto FPGA yenowomnol-

fnxe to Vitis Al nepi3dihov.

Vitis Al

IIio ouyxexpyéva to Vitis Al elvar éva nepiBdhhov avdmtuéng mou emitpénel
v emtdyuvon Al cuurnepaoudtov oe mhat@opues LAxoL T Xilinx. Xto
Yy 0.0.22 topoucidlovton to xOplar otolyelor Tou anoptilouy To nepBdihov

Tou Vitis Al

Frameworks

Vitis Al

Models

Vitis Al
Development
Kit

Overlay

. S ONNX
O PyTorch ¥ Tensor KT CUNTIME
Model Zoo Custom Models

Al Compiler | Al Quantizer | Al Optimizer

Al Profiler | Al Library

Vitis Al Runtime (VART)

Deep Learning Processing Unit (DPU)

Eyfuo 0.0.22: Aour| tou Vitis Al
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X1y mapovoa SmAnUaTixy Yo emxevipnIolue oo Topoxdte epyoAeio:

o KfBavuotic Vitis AL: O Al »Bovtiotrc yetatpénet ta Bdpn xou g ou-
vopThoelg evepyonoinong and 32-bit floating-point oe 8-bit fixed-point
OXEPEALWY, PELWVOVTAS TNV UTOAOYLOTIXH TOAUTAOXOTNTA YWEIG omWAEL
oxplBelog

L] L
[ ] [ ]
e ® Quantize e ®
P Parameter P
® ] 9 [ ]
o) Quantize Py
Activation
@ @
Neural Network Quantization Neural Network
(FP32) (Less bits per param) (INT8)

Al Quantizer

Yyfua 0.0.23: KBavtiothc Vitis Al

o Metayhwttotig Vitis Al: O petoryhwttiothg petateénet to xPovTiouévo
HOVTEAO VELELXOL BXTUOU Ot €va amodoTXd GLVOAO odnyiwy DPU

e
L] 100101010010
® o 110010101011
® 001001010100
° ° 101100101010
° 110010010101
e 001011001010
Al Quantizer DPU Instruction

Al Compiler

Eyua 0.0.24: Metaylotuotic Vitis Al

e Deep Learning Processing Unit (DPU): Eivaw o mupfivag ukixod tou
nepBdAlovtog o omolog elvon plor TpoypauUa T OUEV Unyavh Tou efvon
BérTtiotn yio deep neural networks. Anotehelton and 1Ho1 LAoTOUEVOUC
IP muprvec mou dev ypeetdlovtoan totodétnon xar Spopordynorn. H DPU
YENOWOTOLELTAL YOl TNV ETUTAYUVOT] TOU UTOAOYLO TLXOU (OETOU EQYACToC
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oAy oprduwy Badide pdinong, mou evronilovion o€ cuyVES EQupUOYES Opa-
ONC UTOAOYLOTOV.

Nevpwvixd Aixtuo Avayvopeiong RF Awpoppwong

IMo v vhomoinom Tou veupwvxol dixtiou Tou avayvweilel Tic RF Awouop-
pooelg yenotporotinxay residual neural networks (ResNet). Ta ResNets
omwe gaivovton xou oto Lyfue 0.0.25 neptéyouvy ouvdéoelc tapderdne/ouvto-
peVoELS Tou ETTEENOUY TNV UeTdBoor oe peténeta enineda. To ouyxexpévo
€l00g VELpWVIX®Y BIXTOWY BLEUXOADVEL TNV exTaldeLoT) BardiTEPWY HOVTEAWY.

X
L 2
weight layer
F(x) Jrelu <
weight layer identity

F(x) +x

Yyfuo 0.0.25: Residual Training

H 8udtaln tou xde ResNet stack mapovoidleton oto Lyfuo 0.0.26. To yo-
VIého oty ouyxexpulévn epapuoyn mepiEyel 4 ResNet stacks. ‘Onwg etvon
eupavéc oto ayfua xdie resnet stack mepléyel convolutional eninedo ta onola
mepLéyouv convolutional neural networks pe 32 ¢{Atpa oto xde eninedo. E-
unhéov, oL cuvdpTnoelc evepyonoinong eivar Rectified Linear Units (ReLUs).

To dataset mou ypnowwonotidnxe yio to training/testing tou mopandve po-
viéhou mepiéyel 24 OlapopeTiné avahoynég xou Pnplaxéc diopoppaoeic. Ot
OLILOPPOCELS aUTES dNUoLEYRINXaY ue 5V0 BlaPopeTXo)E TEOTOUS. MUY XE-
AEWEVAL, 1) TEOTN ATAY 1) ONULOUETY LN AGUPUATLY XOUVUALODY XAl EQPUARUOYT] OE AUTH
impairments ono¢ gatveton oto Xyrua 0.0.27. H debtepn yédodog Htav over-
the-air yetddoomn xavohinmy ywelc impairments xou gaiveton oto Lyfuo 0.0.28.
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X Add

1 = 32

Activation

Conwv2d 4

Conv2d_1

X
1
1

32

Conv2d 5

Conv2d 2

e

32

Conv2d 3

X x # of filters
1

32

Yyfhuo 0.0.26: ResNet Stack

Audio Source Analog o At, Af, ., Af, H X
Modulator
v l

1.1.D Symbol Digital Signal . . .
[ Generator ]—)[ Modulator Shaping Interpolation Mixer Convolution AWGN

Yyfuo 0.0.27: To cbotnua Yo TNy Topoywy? Twv onudtey Tou dataset xou
Tor impairments Tou cuvdeTixol xavohlol

To signal-to-noise ratios (SNRs) yio xdle mopdderypo mou mapdydnxe
xuyaiveton oo -20dB oe +30dB. Ov cuyxexpyéves BlaUOp@OOEL; TOU TEPL-
hopBdvovtow oto dataset eivor: OOK, 4ASK, 8ASK, BPSK, QPSK, 8PSK,
16PSK, 32PSK, 16APSK, 32APSK, 64APSK, 128APSK, 16QAM, 32QAM,
64QAM, 128QAM, 256QAM, AM-SSB-WC, AM-SSB-SC, AM-DSB-WC,
AM-DSB-SC, FM, GMSK, OQPSK.
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Y YDD Y ¥
{USRPBZ10J [USRPBZ'IO}

A

\ 4

| UHD Tx/Rx Scheduler |

[ Sig Gen ][ Storage ]
Host Computer

Eyfuo 0.0.28: Over-the-air test configuration

Arnoteréocpata Avayvopione RF Awapdppwong

Aqgob éyel yivel exndudeuor tou yovtéhou, to dataset mou avoapépinxe mopo-
Tave yweloTnxe oe 3 SaupopeTinés moporhayég. Mio mou mepiéyel Oheg TiC
OLLOPPAOOELS TTOU avopépinxay Tapamdve, Wwia mou mepéyel uévo i QAM
dlopoppaoelc xou ol Ye Tic Ynplaxéc dlapoppnoelg wovo. ‘Eneita cuyxplvovtan
Ta anoteréopata axpifetag yio 3 SopopeTinés exdoyéc Tou xdie dataset. H
TeoTn elvan To dataset ywplc enelepyacio, otny delteprn exdoyn €xel epop-
pwootel 10dB imbalance mhdtoug xou 45°imbalance @done oo dedouéva Tic
dlopoppwone 16-QAM yio SNRs (oo e [-20, -10, -2, 0, 2, 10, 20] dB xo 7
Teitn elvon o SlopBwuéva dedouéva. To amoteréopata Twv 3 TUPUAAAYWY TOU
dataset yiou xdie pla amo Tic 3 exdoyéc, agol €yel yivel quantize yéow Tou
vitis-ai, gatvovton ota My ruata 0.0.29, 0.0.30 xou 0.0.31 avtictouya.
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Accuracy vs SNR for INT8 Model, Original Dataset

0.9

0.8

0.7

o
o

Accuracy
(=]
()]

04r
0.3
0.2
—oe— No processing
0.1k —o— |Imbalanced
P Corrected
0 | . | I
-20 -10 0 10 20 30

SNR

Eyfuo 0.0.29: Accuracy vs SNRs yio 10 apyix6 dataset

Accuracy vs SNR for INT8 Model, QAM Dataset

Accuracy
o o o o o o
E-S ()] (=] ~ co w

o
w

—e— No processing
——6— |mbalanced
Corrected

0.27

0.1 . I . I
-20 -10 0 10 20 30
SNR

Eyfuo 0.0.30: Accuracy vs SNRs yio to QAM dataset
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Accuracy vs SNR for INT8 Model, Digital Dataset

o e o 9
o N ® ©
T : T T

Accuracy
o
[4)]

0.4 F 1
037} 1
0.2} 1
—=&— No processing
0.1% —=&— |Imbalanced 1
p—t Corrected
0 \ . . |
-20 -10 0 10 20 30

SNR

Yy 0.0.31: Accuracy vs SNRs vyl to gngproaxd dataset

Mohic to yovtého €yel yivel compiled, tpéyoupe tor accuracy xou perfor-
mance tests yio to Original, QAM and Digital Dataset ywplc enelepyosia
otnyv Zynq Ultrascale+ RFSoC ZCU111 mhaxeta. To anoteAéopata tne mAo-
xétoag patvovtar 6to 0.0.32 xou tor utoroima amotehéopata To todpvouue online

o7o TepBdihov Tou Vitis-Al

Y
Topl
Topl
Topl
Top1 16PSK
Topl 128APSK
Topl 128QAM
Topl
Top1
Top1
Topl
Topl AM-DSB-
- Top1 0
10 Top1
of RF Samples Tested is 998
Size 1
Topl accuracy = 0.55

netua
Actual
Actual
Actual
Actual
Actual
Actual
Actual
Actual
Actual
Actual
Actual
Actual
Actual

root@zculll_custom_plnx:/media/sd-mmcblk@p2/app/model# python3 test_performance

Number of RF Samples is 4660
FP5=983.40, total RF frames = 4000.00 , time=4.067524 seconds

128APSK
128QAM
32APSK
256QAM
BASK
320AM
AM-DSB-SC
16QAM
GMSK

.py 4 rfClassification_zZCU111.xmodel 1060

Yyfuo 0.0.32: Accuracy and Performance results for the Original Dataset

with no processing on the ZCU111 board
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Table 14: Accuracy and Performance results on the Zynq Ultrascale+ RF-
SoC ZCU111 board

Accuracy Performance

No processing 0.55 FPS=983.40, time=4.067524sec
Original | Imbalanced 0.57 -
Corrected 0.56 -

No processing 0.58 FPS=981.11, time=4.077023sec
QAM Imbalanced 0.57 -
Corrected 0.59 -

No processing 0.55 FPS=982.24, time=4.072324sec
Digital Imbalanced 0.57 -
Corrected 0.55 -
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Chapter 1

Introduction

Communication can be delineated as the transfer of information from one
point to another in distinct places in time and location. The information can
have numerous different types of formats such as audio, video, data files and
more. However, there are many vital systems of communication in people’s
everyday lives, that do not include humans. Such examples include packet
transfer between routers on the Internet, computer-to-computer as well as
computer-to-peripherals communication, control signals in communication
networks etc. [1] [2]

Nevertheless, why is the communication world going digital when the
majority of information transmitted is analogue? The advantages of using
digital transmission have been proven to outnumber those of the analog
transmission and thus justifying its prevalence on the design of communi-
cation systems.[3] The surge in demand for data transmission, the higher
reliability of digital electronics for signal processing and their lower cost,
the ease to reduce the effects of noise and interference with the employment
of channel coding and numerous more, illustrate why digital communica-
tions are the superior choice for communication systems and why they have
replaced many corresponding analogue systems. [4]

The tremendous growth of information and wireless communication sys-
tems have caused the radio spectrum to be full due to the enormous increase
of end-users. Thus, it is imperative to have stable, reliable and intelligent
communication systems to cater these demanding needs. On top of that,
there is a need to ameliorate the spectrum efficiency in order to have facil-
ity on the control of the network resources. [5] In optical communication
systems, it is vital for the detectors to sample at high speeds and store
the information locally for a more convenient processing. Hence, they re-
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quire the employment of high-speed digital interfaces. Such digital interfaces
can be found in Application-Specific Integrated Circuits (ASICs) and Field-
Programmable Gate Arrays (FPGAs), whereas Central Processing Units
(CPUs) and Graphics Processing Units (GPUs) are not suitable. While
CPUs provide satisfactory performance in sequential computing, their per-
formance improvement depends on increased clock speed and even multicore
CPUs cannot be used for sufficient parallelization. Consequently, in a large
proportion of digital signal processing and machine learning applications,
GPUs and FPGAs replace them. However, FPGAs have prevailed amongst
the three(GPUs, ASICs, FPGAs) in the field of optical communications
electronics on the grounds that, even though ASICs have the optimum per-
formance and energy efficiency, they have an extravagant manufacture cost,
cannot be used in general purpose applications and they require an exten-
sive time for development. On the contrary, FPGAs have direct connection
with high-speed interfaces, exploitation of parallel architectures for DSP
algorithms and the option to turn the designs into ASICs if needed. [6]

In the past few years, studies have shown that in the transmitter and re-
ceiver chains of an optical communication system, numerous different physi-
cal layer algorithms can be strengthen or even replaced with Artificial Intel-
ligence (AI) tools, such as machine learning algorithms and neural networks.
[7] It has been proven that replacing algorithms which were used for decades
by experts for radio modulation with not that complex convolutional neural
networks, illustrate a much more impressing performance compare to the
previous ones. [§]

1.1 Motivation and Thesis Objectives

This thesis contributes to the fields of digital communications and digital
systems and is concentrated on a correction algorithm for imbalances on the
receiver chain. More specifically, extensive research has been conducted on
implementing the correction algorithm of I-Q imbalance on FPGAs and eval-
uating its accuracy by comparing the classification of the corrected Quadra-
ture Amplitude Modulations(QAMs) and the imbalanced ones, using Deep
Neural Networks.

In more detail, the current research targets the following;:

e Studying and understanding when I-Q imbalances occur on the transmitter-

receiver chain.
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e Testing and Verifying the correction algorithm and its accuracy on
QAM modulated data through MATLAB

e Creating an efficient implementation of the algorithm in Vivado and
aiming at the utilization of minimum resources with high frequency

e Comparing the results from MATLAB and Vivado with the original
data

e Apply I-QQ imbalance to a dataset and then correcting it through MAT-
LAB and Vivado

e Classifying the imbalanced and corrected dataset with Deep Neural
Networks and run the model for accuracy results on the Zynq Ultra-
scale+ RFSoC ZCU111 board

1.2 Thesis Outline

In chapter 2, the theoretical background will be presented which is needed
to comprehend digital communications, the diverse modulations used in
telecommunication systems, the block diagram of a communication system,
what is I-Q imbalance and at what stage of the transmitter-receiver chain
it occurs. Furthermore, what are FPGAs and why we are employing them
in this thesis. What is machine learning, how neural networks are used for
classification, and how they can be utilized in telecommunications.

In chapter 3, the I-Q imbalance correction algorithm will be explained.
Later on it will be tested and verified in MATLAB by generating 4-QAM
and 16-QAM modulations, applying I-Q imbalance to their symbols and
then correcting them. We are comparing the relative error with the original
symbols to test its accuracy.

Next, in chapter 4 we will illustrate the architecture of the implementa-
tion of the algorithm on Vivado. The experimental results from Vivado will
be presented as well as the hardware resources and its maximum operating
frequency for different data windows. The VHDL results will be compared
with the original data generated in MATLAB as well with the MATLAB

results.

Following this, in chapter 5, the Vitis-Al development environment and
its principal components which is utilized for this application will be pre-

53



CHAPTER 1. INTRODUCTION

sented as well as the neural network used for the RF modulation recognition
will be analyzed.

In chapter 6, the experimental results will be presented. More specifi-
cally, the accuracy of the compiled model will be shown against the various
SNRs of three different versions and variations of the dataset. Then, the
performance and accuracy of these models will be verified on the Zynq Ul-
trascale+ RFSoC ZCU111 board.

Finally, chapter 7 shows the conclusions drawn from the results as well
as some recommendations for future work based on this thesis.
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Chapter 2

Theoretical Background

2.1 Digital Communication

Digital Communication can serve an analog or a digital signal, for instance,
speech and images or text files respectively. Nevertheless, the needs of a
communication system for each case are distinct. Moreover, recent commu-
nication systems offer a variety of services in order to deal with the demands

of each signal.

2.1.1 Digital Communication System

Figure 2.1.1 presents the block diagram of a digital communication system,

including the transmitter and receiver.

Information Source Channel Modulator
Source Encoder Encoder T
Modulating Modulated
Signal Signal
Demodulated
Signal
Information Source Channel ‘i Demodulator
Sink Decoder Decoder |

Figure 2.1.1: Block Diagram of a Digital Communication system

In the transmitter chain the following occur:
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The source encoder is used to represent any information in digital form
up to arbitrary precision and minimize the redundancy it may possess in
order to meet the requirements of the receiver.

On the contrary, the channel encoder is responsible to apply controlled
redundancy in the signal in order to be able to face potential errors that
channel imperfections and noise might cause. The channel encoder generates
a codeword which is able to meet the anticipated channel characteristics and
requirements.

The modulator translates the output of the channel encoder, which are
discrete symbols, into a format which can be transmitted over the physical
channel, that format is an analog waveform.

The form of the channel used in a digital communication system can
vary, and in order for the communication system to be efficient it is crucial
to select the right model in each setting. For example, in wireline commu-
nication the channel used is extremely different from that used in a wireless
mobile communication. In the former setting, a linear time-invariant sys-
tem is employed and often feedback from the receiver to the transmitter
can be obtained about the modulation used in the previous step. Whereas,
for the latter, channel feedback to the transmitter is not common, hence,
the channel must be estimated or otherwise utilize methods that do not de-
mand exact channel estimation. Consequently, the channel may vary due
to this mobility between the transmitter and receiver. Furthermore, in the
latter setting, due to wireless being a broadcast medium, the suitable shar-
ing mechanisms should be used to eschew simultaneous transmissions or the
receivers need to be designed in a way to provide robust performance when
interference occurs.

In the receiver part of the digital communication the following take place:

The demodulator targets the processing of the analog waveform received,
which is "disturbed” with noise after its exit from the channel. Aside from
this, it must synchronize the phase, frequency and time shifts with those
in the transmitter and is also responsible for the channel equalization or
compensation if an intersymbol interference takes place in the channel. In
particularly, its main role is to take ”hard” or ”soft” decisions regarding the
transmitted symbols.

These decisions are entered in the channel decoder,which uses the re-
dundancy to represent the estimate of the sequence of the symbols that the
channel encoder had as an input.

Finally, the source decoder transforms the estimated information, which
was generated in the channel decoder, into a format that the receiver can
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understand, not necessarily in its original format. [1]

2.1.2 Classification of Digital Modulation Techniques

The reason as to why digital modulation techniques are preferred over analog
ones is because they minimize the hardware, interference and noise issues.
They require less bandwidth compared to analogue signals which include
large waveforms and thus larger bandwidth for the information to be trans-
mitted. [9]

The digital modulation techniques can be classified in three large cate-
gories:

o Amplitude Shift Keying (ASK)

In Amplitude Shift Keying modulation, as the name suggests,the car-
rier amplitude is shifted between two different amplitude levels in order
to represent the digital data. This is clearly illustrated in figure 2.1.2,
where the first figure shows the input binary sequence and the second
shows the output of the signal when it is modulated with an ASK.
However, It is not a suitable choice for wireless or mobile applications
since it has poor bandwidth efficiency, is extremely prone to noise and
it has an established performance only in the linear region.

5 ] L

| \
| J

Figure 2.1.2: ASK Modulated output wave

cl;: Fi! Aﬁﬂ \|| |\‘|_/|||\_

-1v

e Frequency Shift Keying (FSK)
When Frequency Shift Keying is used then the output wave is shifted
between several different frequencies in order to represent the digital
symbols. Fig.2.1.3 presents the input binary sequence and its output
when FSK modulation is used. While, it is a cost effective and has
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an easy implementation, it is not bandwidth efficient and has a lot of
complexities in the receiver design.

. ] -

time

1v
Ov
v time

fi f2

Figure 2.1.3: FSK Modulated output wave

e Phase Shift Keying (PSK)
In the Phase Shift Keying modulation, the phase of a constant fre-
quency carrier sine wave changes every time there is a change in the
state of the input signal. Fig.2.1.4 illustrates the input binary sequence
and the output PSK modulated wave.. It is robust and has simple im-
plementation but is an inefficient user of the bandwidth. PSK is highly
used in applications like wireless LANs and Bluetooth communication.

| i oo time

Figure 2.1.4: PSK Modulated output wave

Then the combination of two or three of the techniques lead to other
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popular modulation techniques such as:

e Quadrature Amplitude Modulation (QAM)

When this modulation is used, two digital bit streams or two analog
signals are transmitted be altering their amplitude, with the use of
an ASK modulation. Simultaneously, the two carrier waves have the
same frequency but have phase difference of 90°, which is a condi-
tion called quadrature. In QAM modulation the symbols can trans-
mit more bits per symbol, for example, 8QAM utilizes four carrier
phases and two amplitude levels to convey 3 bits per symbol. Simi-
larly, 16QAM,64QAM and 256QQAM transmit 4,6 ans 8 bits per sym-
bol. This can be clearly seen in fig.2.1.5. [10]
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8-QAM 16-QAM 64-QAM

Figure 2.1.5: Different QAM Modulations

and many more.

2.2 I-Q imbalance

2.2.1 Direct-Conversion Receivers

I-Q imbalances can be found in direct-conversion receivers where there is no
intermediate frequency frr, as can be seen in fig.2.2.1, and thus the received
radio frequency(RF) or pass-band signal translates directly from the carrier
frequency fc to baseband with one mixing stage. The IQ imbalance hap-
pens because of the imperfections of the Local Oscillator (LO). If the phase
difference between the quadrature waveforms are not exactly 90°or if their
amplitudes are not equal, then I-Q imbalance occurs and causes a high bit
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LPF - ADC

LMNA . Died
Selection 0 igital
Filtar — cos(2n fLot) Signal
apo Processing

LPF - ADC (-

Figure 2.2.1: Architecture of Zero intermediate frequency (ZIF) receiver

error rate (BER).

2.2.2 Heterodyne Receivers

This is the main shortcoming of direct-conversion receivers compared to the
heterodyne ones. In Heterodyne Receiver, the high carrier frequency fco
signal is multiplied by local oscillating (LO) signals to be transferred to
intermediate frequencies frr appropriate for further amplification and pro-
cessing and finally to the zero frequency (baseband). Fig.2.2.2 shows this
architecture of a heterodyne receiver with the intermediate frequency frp.
1] [12]

LPF ADC
LMA
i 0° Digital
Y.SE;\;EIIM > e "' — cos( 2 fiqot) Signal
a0” Processing
cos(2r fLo1t)
LPF ADC

Figure 2.2.2: Architecture of Heterodyne receiver with intermediate fre-
quency (IF)
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2.2.3 Down-Conversion

In the down-conversion to the baseband, the RF signal is multiplied by the
complex waveform e 72P/LO  where fro is the frequency of the local oscil-
lator at the receiver. In order for the complex down-conversion to happen,
both sine and cosine waveforms must be present. The receiver is distin-
guished in I and Q branches, which are the real an imaginary part of the
signal respectively. If after the down-conversion there is any mismatch be-
tween the T and Q branches, i.e they are not orthogonal (90°phase difference)
or do not have the same amplitude, then this IQ) imbalance will affect the
performance of the system. [11]

2.3 Field-Programmable Gate Arrays (FPGAs)

Field-Programmable gate arrays are reprogrammable hardware chips used
for digital logic. FPGAs are an array of logic gates that can be configured to
build arbitrary digital circuits. The specification of these circuits is done us-
ing either circuit schematics or either with hardware description languages,
Verilog or VHDL. [13]

2.3.1 FPGA architecture

FPGA consists of three main components:
e Programmable Logic Elements , which expresses a logic function
e Programmable I/O Elements, which provide an external interface

e Programmable Interconnect Element, which connects different parts
of the board

Furthermore, on a FPGA there are digital signal processing (DSP) units,
embedded memory which facilitates the calculation ability and phase-locked
loop (PPL) or delay-locked loop (DLL) which supply the board with a clock
network. The figure 2.3.1 presents the schematic of a FPGA. When sup-
plied with the design data, these elements can implement on the FPGA
the desired digital circuit. The logic block and multiplier block are utilized
as hardware resources to comprehend logic functions. The memory blocks
are responsible for storage. Multiplier and memory blocks are called ”Hard
Logic”, whereas when logic blocks are used to implement function they are
called 7Soft Logic”. Each FPGA manufacturing company has a different
name for the logic blocks, for example Xilinx calls them configurable logic
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Figure 2.3.1: Architecture of a FPGA

blocks (CLB) while Altera(now part of Intel) gives them the name logic
array blocks (LAB). [14]

2.3.2 FPGAs vs ASICs, GPUs and CPUs

Recently, FPGAs are utilized for hardware acceleration, where a FPGA
accelerates specific parts of an algorithm and divide part of the computa-
tion between the FPGA and a generic processor. For example, the search
engine Bing has adopted FPGA acceleration for its search algorithm [15].
Numerous industrial applications such as wearable computing, sensorless
motor drive control etc, that require microcontrollers or DSPs and periph-
erals that are implemented with programmable devices, could be done with
FPGAs. In the past few years, FPGAs are used more often as Al accelera-
tors as well as for accelerating artificial neural-networks for diverse machine
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learning applications. The main reasons FPGAs have become so popular in
the industry are:

e FPGAs have the possibility to be reconfigured, while their soft/hard
IP cores are configured for a precise need, they can be reconfigured
multiple times after installation, whereas ASICs cannot do this.

e FPGAs are able to process large amount of data in parallel, which
makes them an excellent tool for edge computing applications due to
their low latency. CPUs/GPUs on the other hand, operate sequentially
and cannot process information simultaneously.

e Due to their low-latency they can be employed for time-demanding
applications such as Software-Defined Radio, medical devices etc. Ad-
mittedly, ASICs could have less latency, yet they are developed for a
specific reason.

e FPGAs have impressively better performance per watt compared to
CPUs or GPUs. Even though ASICs can beat this performance, the
extravagant manufacturing cost renders this argument as unjustified.

Indeed, each application has different requirements and ASICs, GPUs or
CPUs could be better suited for these, nevertheless, FPGAs have an excel-
lent trade-off of price- processing power- configurability- efficiency.[16] [17]
This can be seen in Figure 2.3.2.

CPU

Flexibility

Figure 2.3.2: Trade-offs of CPU, GPU, FPGA and ASIC
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2.4 Machine Learning

Machine Learning utilizes computational methods to improve the perfor-
mance of a system through experience. It imitates human intelligence by
learning from its surrounding environment. Experiences, in a computer sys-
tem, exist in the form of data and the principal goal of machine learning
is to generate learning algorithms in order to construct models based on
data. The model that can make predictions occur by feeding the learning
algorithm with experience data, based on new observations. Machine learn-
ing techniques have been applied with success in many fields ranging from
pattern recognition, computer vision, spacecraft engineering, finance, enter-
tainment, biomedical and medical applications and numerous more. [18§]

[19]

2.4.1 Process of training and testing a ML algorithm

Machine Learning algorithms achieve a desired task without the need to be
literally programmed to produce the desired outcome. They are essentially
”soft coded” since these algorithms can automatically adapt or change their
architecture using repetition, in order to improve their ability to achieve the
particular result.

The process of adaptation to create models from specific data is named learn-
ing or training. The data employed in the training phase are called training
data and these samples include input data along with desired outcomes.
With repetition and the training inputs, the algorithm learns to configure
itself to not only generate the wanted result but to be able to produce the
desired outcome from new data, not used in the training phase.

The process of making predictions for new fed data with a learned model
is called testing. The samples used to make these predictions are names
testing samples.

Besides predictions, another way used for learning is clustering. For instance,
the data fed could share some underlying concepts to assist in further pro-
cessing, in other words, clustering provides data insights that form the basis
for the imminent analysis. [18] [19]

2.4.2 Categories of ML Algorithms

Depending on the nature of the training data, machine learning algorithms
can be categorized in three approaches as can be seen in Figure 2.4.1:
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Training Data

Labeled Data Supervised Learning
Partiall Machine
Labeled Dyata Semi-supervised learning—> Learning Testing
(training)

Unlabeled . .
Unsupervised Learning

Figure 2.4.1: Categories of Machine Learning algorithms based on the nature
of the training data

Human-Machine Interaction

Supervised Learning

Supervised machine learning is when there is a predetermined output at-
tribute alongside the use of input attributes. This kind of algorithms try
to predict and classify the predetermined attribute. The accuracy and mis-
classification as well as their performance measures depend on the number
of times the predetermined attribute is predicted correctly. It is also worth
noting that, the training/learning process ends when the algorithm reaches
a sufficient level of performance, which is prespecified by humans. [20] [21]

Unsupervised Learning

Unsupervised machine learning algorithms, are those that do not have a tar-
get attribute when trained. This technique is appropriate for clustering and
association mining techniques due to the fact that all variables involved are
utilized as inputs. Thus, they create by their own labels in the data given
and then they are used to execute supervised learning. More specifically, un-
supervised clustering algorithms realize and identify similarities/groupings
between the unlabeled data and allocate to each a label. While, unsuper-
vised association mining algorithms recognize rules that depicts relationships
among the attributes. [20] [22] [23]
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Semi-Supervised Learning

In semi-supervised machine learning, a proportion of the data is labeled and
the rest are unlabeled. In this case, the labeled data assist in the learning/-
training of the unlabeled part. This scenario is the most comparable with
how humans develop their skills. [19]

The main difference between the supervised and unsupervised technique
can be seen in Figure 2.4.2.
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Figure 2.4.2: Supervised and Unsupervised Learning(clustering)

2.5 Artificial Neural Networks

Recently, Artificial Neural Networks(ANNs) are favored for classification,
clustering, pattern recognition and prediction. ANNs are competitive op-
ponents of conventional regression ans statistical models when it comes to
usefulness. They can be evaluated in terms of accuracy, processing speed,
latency, performance, fault tolerance, volume, scalability and convergence.
The capability of ANNSs to process in high-speeds due to their parallel imple-
mentation, justifies their popularity in numerous diverse applications. [24]

2.5.1 Artificial Neural Network Architecture

An ANN consists of an input layer of neurons(nodes), some hidden layers of
neurons and a final layer for the output neurons. The typical architecture
of an ANN where the neurons are connected is presented in Figure2.5.1.

Each node is associated with the neuron is connected with through a numeric
number called weight. The output y; of a neuron 4 in the hidden layer has
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the following linear function:
N
yi = o) wijaj +bi)
j=1

where o is the activation function , N the number of input neurons, w;; the
weights, ; inputs and b; the bias of the hidden neuron. [25]

outputs
' '
'\_) L)

inputs

Figure 2.5.1: Architecture of a typical Artificial Neural Network

The activation function can be any of the following functions in Figure
2.5.2:

Name [o(u)]; Range
linear! wi (—00, )
ReLU [37] | max(0,u;) [0, 00)
tanh tanh(u;) (-1,1)
. . 1
sigmoid W (0,1)
softmax Xj 5 (0,1)

Figure 2.5.2: List with activation functions
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2.5.2 Convolutional Neural Network

In the past few years, Convolutional Neural Networks have revolutionary
results in diverse fields that have to do with patter recognition. The great-
est contribution of CNNs is that they decrease the number of parameters in
ANNs, which is why it is now possible to tackle larger and more complex
tasks. [26]. The architecture of a CNN is greatly inspired by the natural
visual perception mechanism of living creatures.

CNNs have had many variations in terms of their architecture in the lit-
erature. Nevertheless, the classic components that compose a CNN are
convolutional, pooling and fully-connected layers. These layers are evident
in Figure 2.5.3. [27]

Eye, nose, ears etc

Convolution + RelLU X/

.qq-_ll Hea;_lbody \{ z
> ﬂ i P a .

Pooling

s
N
Pooling WX
Convolution + RelLU ./ g

Figure 2.5.3: Basic Architecture of a Convolutional Neural Network

As can be seen in Figure 2.5.3 a convolution layer includes several convo-
lution kernels which are utilized to process different feature maps. These
layers strive to learn feature representations of the inputs. The new fea-
ture map is acquired by convolving the input with a learned kernel and
afterwards, apply an activation function on the convolved results. These
activation functions can be any of those presented in Figure 2.5.2.

The pooling layer’s purpose is to apply shift-invariance by decreasing the
resolution of the feature maps. Each feature of a pooling layer is connected
to its preceding respectively convolutional layer feature map. The most
common pooling operations are max and average pooling as can be seen in
Figure 2.5.4 [27]

After the convolutional and pooling layers usually a fully-connected layer is
present in order to execute high-level reasoning.
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(b) Average Pooling

Figure 2.5.4: Types of Pooling Operations

2.5.3 Why Artificial Neural Networks in Communications?

It is irrefutable that the largest proportion of signal processing algorithms
in communications are based on statistics and information theory, and are
mostly proved to be optimal for adjustable mathematically models. How-
ever, most of these are usually linear, stationary and have Gaussian statis-
tics. But in a real-life system there are imperfections and non-linearities.
This is why a communication system which is based on Deep-Learning that
does not demand a mathematically adjustable and can be optimized based
on its targeted hardware configuration and channel, could overcome these
imperfections.

On top of that, in communications is very common to split the signal pro-
cessing into a chain of independent blocks. Each of these blocks are re-
sponsible for a single well-defined and isolated function, yet it is not clear
whether these blocks individually succeed in the best end-to-end perfor-
mance. However, if we have a learned end-to-end communication system
then this facilitates the design of its structure and optimizes the end-to-end
performance.

Furthermore, the execution of Neural Networks is highly parallelized and
implemented with low-precision data types. Consequently, ”learned” algo-
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rithms with this form could be executed much faster and with less energy
cost than their usual ”programmed” counterparts. [28]
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Chapter 3

I-Q Imbalance Correction

As mentioned in chapter 2.2 IQ imbalance occurs in direct conversion re-
ceivers where there is zero-intermediate frequency (IF) and is generated when
the in-phase component and quadrature-phase component do not have or-
thogonality. [12] [29]

3.1 Algorithm Analysis

3.1.1 Amplitude and Phase Imbalance

Assuming the I and @ outputs of an analog direct conversion receiver when
converting a single tone RF waveform to baseband, are :

I(t) = cos(wt) (3.1.1)

Q(t) = sin(wt) (3.1.2)

where w is the baseband frequency of the single tone. We set the amplitude
equal to unit and the phase equal to zero since they do not affect the cor-
rection algorithm.

However, in a practical direct conversion receiver the I and Q outputs are:

I'(t) = acos(wt) + B (3.1.3)

Q' (t) = sin(wt + ) + B, (3.1.4)

where 1) is the phase error, allocated in the QQ output, « is the amplitude
error, which is assigned to the I output and 3; and 3, are the DC biases
that occur in each symbol.
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3.1.2 Correction Procedure

The DC biases (; and S, are the mean of I'(t) and Q'(t) over an integer
number of periods respectively. Thus, removing the DC biases is done by
calculating the mean of each path(I’(t) and Q’'(t)) and subtracting it from
the corresponding path. Consequently, the outputs are now:

I”(t) = acos(wt) (3.1.5)
Q7 (t) = sin(wt + ) (3.1.6)
Rewriting the above in the form of a matrix we get:
I't)| | « 0 1(t)
)= Ly eontir] a0 (347

Utilizing the following trigonometric identity:
sin(wt + 1) = sin(wt)cos(y) + cos(wt)sin() (3.1.8)

Inversing the above matrix we get the corrected outputs:

[Cl;(tt))} - [a‘lofc;;(y;) Sec[zw)} [Cg:’((?)} (3.1.9)

The last thing needed to find I(t) and Q(¢) is to calculate a and . We
employ the following equation to find a:

<alt) >= 5= /t_NT (u) du (3.1.10)

where T is the period %” and N is any integer greater than zero. Then
we get:

1 1 1
<I"(H)I(t) >= o < cos*(wt) >=a® < 3 + icos(2wt) >= 5042 (3.1.11)

and similarly:

< I'(1)Q" (1) >= %asin(w) (3.1.12)

As a result, equation 3.1.11 can be used to find o and equation 3.1.12 to
find sin(¢)) which then we can use to directly calculate cos(1)).
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3.1.3 Summarizing the Algorithm

To recap, the detailed steps to execute the I-Q imbalance correction are [30]:

1. Calculate the mean of I'(t) and Q'(t): Br =< I'(t) > and fBg =<
Q'(t) >

2. Subtract the DC biases: I”(t) = I'(t) — fr and Q" (t) = Q'(t) — Bo

3. Calculate parameter amplitude error: a = /2 < I" ()" (t) >
4. Compute sin(y)) = 2 < I"()Q" (t) >

5. Directly obtain: cos(¢) = y/1 — sin®(1))

6. The correction matrix is:

G-l ) oo

where the correction parameters A,C and D are:
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3.2 IQ imbalance algorithm evaluation

In this section, we present the steps taken to implement the correction al-
gorithm in MATLAB for three different sizes of samples and four different
processing windows for each sample. We test and verify the algorithm on
QAMs and more specifically for 4-QAM and 16-QAM.

3.2.1 QAM generation and IQ imbalance application

In order to generate the input QAM data for the algorithm we employ
the function gammod from MathWorks. We load it with an integer data
sequence for modulation order 4 and 16. The function is presented in 3.2.1.

y = qammod(randi([0 M — 1], npoint, 1), M,' Unit Average Power’, true)
(3.2.1)
where M is the modulation order, npoint is the number of samples and we
set the Unit Average Power to true in order to scale the constellation output
to the average power of one watt referenced to 1 Ohm. The output of this
function plotted with scatterplot in MATLAB can be seen in Figures 3.2.1
3.2.2.

QAM4 - TotalSamples = 1024
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Figure 3.2.1: 4-QAM original
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QAM16 - TotalSamples = 1024
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Figure 3.2.2: 16-QAM original

Then we applied 1/Q imbalance to the input QAM signal with an am-
plitude imbalance of 10dB and phase imbalance of 45° with the function
igimbal from MathWorks seen in 3.2.2 .

y = igimbal(y, 10, 45) (3.2.2)

The output of the two function seen above for 4-QAM and 16-QAM for
npoint equal to 1024 and I1/Q imbalance of 10dB and 45°plotted with scat-
terplot can be seen in Figures 3.2.3a and 3.2.3b.
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(b) 16-QAM original and imbalanced data

Figure 3.2.3: Modulation order 4,16-QAM
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Then we separate the I and QQ symbols in each example, in order to use
them as inputs in the algorithm, by extracting the real and imaginary parts
of the output from the igimbal function respectively.

3.2.2 Multiply Accumulator

We create the prototype of the algorithm in MATLAB. For the mean opera-
tion in steps 1 and 3 in 3.1.3 we design a Multiply Accumulate Unit (macc)
function in MATLAB, because it is going to be utilized in Vivado in the
design of the FPGA circuit. The structure of a macc unit can be seen in

Figure 3.2.4
Al lB

MULTIPLIER

— A*B
vV

ADDER
|
A*B+Partial Sum
Updated 4
Partial Sum
ACCUMULATOR
Final Out
\ 4

Figure 3.2.4: Structure of Multiply Accumulate Unit

3.2.3 Algorithm Evaluation for 4-QAM & 16-QAM

We executed the steps for the correction algorithm as presented in 3.1.3 and
then run the algorithm with processing window size equal to 64, 128, 256
and 1024. The number of samples for each window is equal to 1024, 131072
and 1048576.
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The corrected I and QQ symbols are compared with the original I and Q
data that were generated in the gammod in order to verify the accuracy of
the algorithm. We utilize the relative error equation which can be seen in
3.2.3.

measured — real
Relative Error Percentage = | |

x 100 (3.2.3)

real

The relative error percentage results for the I and Q symbols for 4-QAM
are illustrated in the tables 3.1 3.2 correspondingly.

4-QAM Window Size

npoint 64 128 256 1024
1024 14.1903 12.7841 12.8236 12.7749
131072 14.7345 13.4893 13.0347 12.9650
1048576 14.7263 13.4075 13.0083 12.9775

Table 3.1: Relative Error Percentage Between I-Original Data and I-Matlab
Results 4-QAM

4-QAM Window Size

npoint 64 128 256 1024
1024 37.0323 34.8078 34.5293 34.4696
131072 38.7620 37.6060 37.1421 36.8795
1048576 38.8801 37.6928 37.2487 36.9780

Table 3.2: Relative Error Percentage Between Q-Original Data and Q-

Matlab Results 4-QAM
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The relative error percentage results for the I and Q symbols for 16-

QAM are illustrated in the tables 3.3 3.4 respectively.

16-QAM Window Size

npoint 64 128 256 1024
1024 21.0646 18.5447 17.8823 16.9282
131072 22.4404 19.7023 18.3292 17.3180
1048576 22.3744 19.6561 18.2860 17.3941

Table 3.3: Relative Error Percentage Between I-Original Data and I-Matlab

Results 16-QAM

16-QAM Window Size

npoint 64 128 256 1024
1024 41.5886 39.9195 39.1859 38.7407
131072 40.7508 38.7685 37.7118 36.8148
1048576 41.0351 38.9571 37.8650 37.0302

Table 3.4: Relative Error Percentage Between Q-Original Data and
Matlab Results 16-QAM
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Chapter 4

FPGA Circuit Design

4.1 Introduction

Until this chapter we have analyzed and tested how the 1/Q imbalance al-
gorithm behaves with the assistance of MATLAB codes. In the current
chapter, we are focusing on the design and implementation in VHDL lan-
guage. In summary, we are presenting the block design of the algorithm
and then we delve into each block in particular. Afterwards, the compo-
nents used to execute the algorithm are shown and explained. Finally, the
results from the VHDL code are compared with the original and MATLAB
data. The tool employed for this purpose was the Xilinx Vivado Design
Suite 2022.1.

4.2 Block Design

First, the top level block design is shown in Figure 4.2.1 and each block is
going to by analyzed in more detail later on.
As can be seen in this Figure the input signals of the system are:

e the clock signal(clk)

e the I and Q imbalanced data(I input, Q input)
e the width of the input in bits(SIZEIN)

e the size of the processing window(Window)

Whilst the output signals of the system are:
e the I and Q corrected data
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Figure 4.2.1: I/Q Imbalance Correction Top-Level Block Design

4.2.1 First Stage Block

In the beginning, the imbalanced I and Q symbols enter the first stage
alongside the window size in order to calculate the mean of the I'(t) and
Q'(t). By multiplying each I and Q input with 3 and then adding it to
the result of the previous sum we end up with 5; and Bg. Simultaneously,
the input data are stored temporarily in two separate buffers in order to
"wait” while the mean calculation for each window takes place. Once S
and fg are calculated for the particular window, they are subtracted from
the respective I’(t) and Q’(t) to remove the DC biases. Next, we repeat
the mean calculation for the I” (t)I”(t) and I”(t)Q” (t). The structure of the
First Stage Block is presented in Figure 4.2.2.

4.2.2 Parameter o block

In this block, we target the calculation of parameter a. As seen in the 2.2
we multiply the mean of I”(t)*I” (t) which is taken from the previous block
with two. Concerning the multiplication we use the shift left function of
VHDL and shift left the the mean of I” (t)*I” (t) by 1 bit which is essentially
equivalent to multiplying the data with 2'. Then we pass the result in a
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Figure 4.2.2: First Stage Block Design

square root to get the desirable oo parameter. The structure of the Parameter
a Block is shown in Figure 4.2.3.

Ill' t IH t ] :
M SHIFT LEFT(<I"l">,1) —|—.—i) SQUARE ROOT L)

Figure 4.2.3: Parameter o Block Design
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4.2.3 Sin(v¢) parameter block

Once parameter a is calculated we use it in conjunction with the mean
of I"(t)Q” (t), which was calculated in the First Stage, to find the sin(¢))
parameter. First, we shift left the < I”(¢)Q”(t) > by one bit to acquire
the 2*< I”(¢)Q” (t) > similarly with the previous block. Following this, we
divide it with parameter o which results to parameter sin(¢)). The structure
of the Parameter sin(¢) Block is shown in Figure 4.2.4.

IH t " 1
<I"(H)Q"( eIQr> . simy
i | SHIFT LEFT(<I"Q">,1) |= DIVIDE witha f——
« i
E Register E

Figure 4.2.4: Parameter siniy Block Design

4.2.4 Cos(y) parameter block

In order to calculate the cosy(1)) parameter we multiply the sin(¢)) with itself
in order to obtain sin?(¢)). Then, we acquire cos?(1)) by subtracting sin?(v))
from 1. Finally, we use square root and obtain cos(¢)). The structure of the
Parameter cos(t)) Block is shown in Figure 4.2.5.

cos
SQUARE ROOT H

PARAMETER cosy

5.1

Register
SQUARE

Figure 4.2.5: Parameter cosy Block Design
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4.2.5 Correction block

In the correction block we assemble the correction matrix parameters A,C
and D. The A matrix parameter is calculated by dividing the I” (t) with the
« parameter which results immediately to the corrected I data. To calculate
the Q corrected data we have to form the C and D matrix parameters. First,
the C matrix parameter is obtained by multiplying I” (t) with -sin(¢)) and at
the same time multiply « with cos(¢)) and then dividing the first with the
second. The D matrix parameter is acquired by dividing Q” (t) with cos(1)).
We add the two parameters C and D and we get the corrected Q data. The
structure of the Correction Block is shown in Figure 4.2.6.

CORRECTION

> X % DIVIDE
1 1 1
sinys E $ E i

P A Q corrected
« oy e
e ? g ! DA

cosy | r----- -+- ------- e E)-i
]
Q") g |
i
L]
]
L]

Figure 4.2.6: Correction Block Design
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4.3 VHDL components

During the implementation of the I/Q correction algorithm in VHDL we had
to employ some Language Templates and Math Functions from IP Catalog.
Particularly, we had to execute the mean and buffer operations, the square
root and the division process. We will utilize the macc and Block RAM
language templates for the former two and the CORDIC and DIVIDER
functions from the Math Functions for the latter two. The summary of each
of the aforementioned processes are presented below.

4.3.1 Multiply and Accumulate(macc)

During the First Stage block 4.2.2 we have to implement the mean function
to calculate 3; and g which are the DC biases, and then subtract them
from the initial data. Afterwards, we use the mean function to calculate the
<I"()I"(t) > and < I"(1)Q” (t) >.

We utilize the Multiply and Accumulate(macc) language template to execute
the mean operation. The macc operation accepts two operands, a multiplier
B and a multiplicand A and produces a product (Mul-Reg=A*B) that is
added/subtracted to the previous adder/subtracter result (Adder Out=Mul-
Reg + Mul-Reg).

We supply two different macc units with the I'(t) and Q’(t) data as the
multiplicands A and Wi; Zow for the multiplier B in both units. The sum of

these fractions result to the mean for each processed window.

1 1
A =I't)———— + () —————— + .. + T () ————
ccumulateOut = I1(t) Window + Iy(t) indow Tt N(t)l/vfmdow
" (4.3.1)
IL+I+.. +1,
_Ahthte iy I'(t) > (4.3.2)

Window
Similarly we execute the < I”(¢)I”(t) > and < I”(£)Q" (t) >.
Vivado Synthesis implements Multiply-Accumulate implementation on DSP

block resources. It attempts to maximize circuit performance by leveraging
all the pipelining capabilities of DSP blocks.
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4.3.2 Block RAM

During numerous operations the data need to be temporarily stored in a
buffer in order to be synchronized properly. In this implementation, we em-
ploy the Simple Dual Port 1 clock Block RAM from the language templates
in Vivado to execute the buffer. We utilize the First-In First-Out logic for
the Block RAM, thus during one clock cycle we first read the output data
before writing the new input. The larger the processing window the more

Write Side Read Side
Clock — l-4— Clock
Wr DV —p» a— Rd En
Wr Data —»| BRAM = Rd Data
(FIFQ)
Full --— = Empty
Almost Full -a— = Almost Empty

Figure 4.3.1: Block RAM-FIFO

BRAMs are utilized during the synthesis step because more data need to
be written in the Block Ram before they are read. In this implementa-
tion for window=64 and 128, no BRAMs are utilized. Whilst for processing
window=256 and 1024 the BRAMs utilized are 2 and 4 respectively.

4.3.3 CORDIC

The COordinate Rotation DIgital Computer(CORDIC) is a special-purpose
digital computer where a unique computing technique is employed which
enables to solve trigonometric relationships that occur in plane coordinate
rotation and conversion from rectangular to polar coordinates [31]. It was
originally developed in [32] to confront trigonometric equations and later
in [33] its use was extended to solve a wide variety of equations such as
hyperbolic and square root.

The CORDIC core in Vivado implements a generalized CORDIC algorithm
that solves the following expressions [34]:

e Rectangular < — > Polar Conversion
e Trigonometric
e Hyperbolic

e Square Root
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Initially the CORDIC algorithm was developed to execute a vector rotation,
where the vector (X,Y) is rotated through the angle 6 creating a new vector
(X,Y7).

X' = (cos() x X — sin(f) xY)

Y’ = (cos(0) x Y — sin(f) x X)

The following expressions represent the it" iteration of vector rotation:
Tip1 = T — aiy2”"

Yit1 = yi — aiwi2”"
Oir1=0; — aitcmh_l(Q_i)

where a; = & 1 and it represents the direction of the rotation

We utilize the CORDIC function to apply the square root to the neces-
sary stages of the I/Q correction algorithm.

To obtain the square root function we have to set the width of the data
and the data to be square rooted. If the input X-IN is set to unsigned
fraction, then X-IN and X-OUT is restricted to the range:

0<= XIN/XOUT <2

Whereas if the data format is set to Unsigned Integer, X-IN is limited to
the range:
0 <= XIN < 2InputWidth

and the X-OUT to:

0 <= XOUT < 2int(lnputW'idth/2)+1

4.3.4 DIVIDER

Division is considered the most complex of the four basic arithmetic opera-
tions. The division operand ” /” is not supported in Vivado Synthesis if the
divisor is not a power of 2 or both dividend and divisor are not constant.
Thus we need to use a different way to execute the divisions during the last
step of the I-QQ imbalance correction algorithm 2.2. The LogiCORE IP Di-
vider Generator is an excellent alternative for the division operation since
it is resource efficient and has a high performance for integer division. The
Divider Generator supports three different implementations of division to
allow trade-offs between throughput, latency and resource use:
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1. LUTMult: utilizes a simple lookup estimate of the reciprocal of the
divisor followed by a multiplication by the dividend. This implemen-
tation uses DSP slices, block RAM and a small amount of FPGA logic
primitives(registers and LUTS).

2. Radix-2: Non-restoring algorithm solves one bit of the quotient per cy-
cle using addition and subtraction. The Radix2 solution uses registers
and not any DSP or block RAM primitives.

3. High Radix: Division with prescaling, which is suitable for operand
widths grater than 16 bits due to the overhead caused by the prescal-
ing. This implementation uses DSPs and block RAMs.

In our algorithm we have utilized the Radix-2 implementation because it
has the ability to control the degree of parallelism used in the algorithm,
hence we can make trade-offs between performance and resources.

4.4 Design Verification

Design Verification is a vital step in the development process. It aims to
confirm that the system design complies with the system requirements and
specifications. The verification workflow we followed to verify that the the-
oretical simulations on MATLAB and Behavioral Simulation on Vivado are
what we anticipated is:

We generated the 4-QAM and 16-QAM signals in MATLAB. Then, we ap-
plied IQ-imbalance to these signals and converted them to data files. After-
wards, these data files are read by a VHDL testbench through an input file
and then the simulation output is written to an output text file. At last,
we read the output .txt file in MATLAB and produce the Relative Error
Percentage between the VHDL results and the original data and MATLAB
results.

The relative error percentage results between the Original and the VHDL
results for the I and Q symbols for 4-QAM are shown below in the tables
4.1 and 4.2 respectively:
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4-QAM Window Size

npoint 64 128 256 1024
1024 14.1893 12.7839 12.8234 12.7749
131072 14.7343 13.4889 13.0339 12.9647
1048576 14.7261 13.4071 13.0079 12.9773

Table 4.1: Relative Error Percentage Between I-Original Data and I-VHDL
Results 4-QAM

4-QAM Window Size

npoint 64 128 256 1024
1024 37.0367 34.8073 34.5408 34.4803
131072 38.7687 37.6134 37.1501 36.8886
1048576 38.9443 37.7006 37.2573 36.9872

Table 4.2: Relative Error Percentage Between Q-Original Data and Q-
VHDL Results 4-QAM

The relative error percentage results between the Original and the
VHDL results for the I and Q symbols for 16-QAM are shown below
in the tables 4.3 and 4.4 respectively:

16-QAM Window Size

npoint 64 128 256 1024
1024 21.0657 18.5471 17.8829 16.9261
131072 22.4395 19.7012 18.3275 17.3181
1048576 22.3737 19.6553 18.2851 17.3940

Table 4.3: Relative Error Percentage Between I-Original Data and I-VHDL
Results 16-QAM

16-QAM Window Size

npoint 64 128 256 1024
1024 41.5913 39.9255 39.2021 38.7646
131072 40.7499 38.7683 37.7141 36.8248
1048576 41.3597 38.9572 37.8665 37.0371

Table 4.4: Relative Error Percentage Between Q-Original Data and Q-

VHDL Results 16-QAM
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While, the relative error percentage results between the MATLAB and
the VHDL results for the I and Q symbols for 4-QAM are shown below
in the tables 4.5 and 4.6 respectively:

4-QAM Window Size

npoint 64 128 256 1024
1024 0.0058 0.0215 0.0426 0.1689
131072 0.0055 0.0217 0.0431 0.1714
1048576 0.0055 0.0217 0.0431 0.1714

Table 4.5: Relative Error Percentage Between I-MATLAB Data and I-
VHDL Results 4-QAM

4-QAM Window Size

npoint 64 128 256 1024
1024 0.0562 0.1291 0.2568 1.0261
131072 0.0548 0.1244 0.2449 0.9666
1048576 0.0896 0.1243 0.2443 0.9652

Table 4.6: Relative Error Percentage Between Q-MATLAB Data and Q-
VHDL Results 4-QAM

The relative error percentage results between the MATLAB and the
VHDL results for the I and Q symbols for 16-QAM are shown below in
the tables 4.7 and 4.8 respectively:

16-QAM Window Size

npoint 64 128 256 1024
1024 0.0173 0.0313 0.0606 0.2679
131072 0.0205 0.0350 0.0608 0.2707
1048576 0.0225 0.0341 0.0609 0.2718

Table 4.7: Relative Error Percentage Between I-MATLAB Data and I-
VHDL Results 16-QAM
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16-QAM Window Size

npoint 64 128 256 1024
1024 0.1019 0.1946 0.3806 1.4510
131072 0.2437 0.3252 0.5709 1.5526
1048576 0.7410 0.3814 0.4515 1.5479

Table 4.8: Relative Error Percentage Between Q-MATLAB Data and Q-
VHDL Results 16-QAM

The constellation diagrams between the Original data, the Imbalanced
data and the MATLAB-VHDL results for window=1024, number of sam-
ples=1048576 and 4-QAM and 16-QAM are illustrated below in Figures
4.4.1 4.4.2:

QAM4 - Window=1024, TotalData=1048576

© original-data

© imbalanced-data
1+ matlab-results | |
O VHDL-results

&> =

051 O & 4

Quadrature

os) ® ® |

-1 -0.5 0 0.5 1
In-Phase

Figure 4.4.1: 4-QAM original,imbalanced data and MATLAB,FPGA results
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QAM16 - Window=1024, TotalData=1048576
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Figure 4.4.2: 16-QAM original,imbalanced data and MATLAB,FPGA re-
sults

The Utilization of the Hardware Resources and the Maximum operating
frequency change based on the processing window of the input data. The
Table 4.9 illustrates the utilization of the hardware resources and the max
operating frequency for processing windows equal to 64, 128, 256 and 1024
respectively. We set the period as a constraint equal to 3ns. Once the
implementation of the design in Vivado was finished, the worst negative slack
was subtracted from that period and the maximum operating frequency for
each window could be calculated (f=1/T).
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Table 4.9: Operating frequency and resource utilization of the system for
the four different processing windows.

Resources
‘Window LUTs LUTRAMs DFFs BRAMs DSPs || Max. Operating Freq.
Available 230400 101760 460800 312 1728
. Used 10063 260 26446 0 7 . ,
o4 Utilization 4.37%  0.26%  574% 0%  0.41% 312MHz
Used 10133 312 26511 0 7
128 Utilization  4.40%  031%  575% 0%  041% 339MHz
Used 9876 104 26377 2 7
256 Utilization  4.29% 0.10% 5.72% 0.64%  0.41% 346MHz
Used 9878 104 26381 4 7 oA
1024 Utilization ~ 4.29% 0.10% 5.73% 1.28%  0.41% 340MHz
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Chapter 5

RF Modulation Recognition
with Vitis-Al

In the current chapter we present the tools used to implement the RF mod-
ulation recognition on a FPGA, more specifically the Vitis-Al platform, the
dataset which was utilized for the training and testing of the neural network
and finally the structure and components of the Al model.

5.1 Vitis-Al

Xilinx Vitis Al is a development environment which enables acceleration
of AT inference on the Xilinx hardware platforms. It can be leveraged by
users to conduct deep-learning-related research and development with the
utilization of its optimized IP cores, tools, libraries, models and example
designs. The purpose of Vitis Al is to provide high-efficiency and ease-of-
use in order to exploit the full potential of acceleration on Xilinx FPGAs
[35] [36] [37] [38]. As seen in Figure 5.1.1, the Vitis AI environment includes
the following main components:

e Al Model Zoo: Consists of a variety of pre-optimized deep learning
models to facilitate the inference on Xilinx Platforms.

e Al Optimizer: An optional model compression technology, that can
prune a model and decrease the model complexity by 5-50 times with
negligent accuracy degradation.

e Al Quantizer: An efficient quantizer that allow model quantization,calibration
and fine-tuning.
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e Al Compiler: Converts the quantized neural network model to an
efficient DPU instruction set.

e Al Profiler: Implements an analysis of its efficiency and the allocation
of the computing resources.

e Al Library: It is a set of high-level libraries and APIs that can be used
for Al applications from the edge to the cloud.

e DPU: Pre-implemented on the hardware IP cores that can be param-
eterized to accelerate a plethora of widely adopted applications.

Frameworks | O PyTorch ¥ Tensor @&ﬂ %’E'T’\\'Mé
vitis Al Model Zoo Custom Models
Models

Al Compiler | Al Quantizer | Al Optimizer

Vitis Al
Development Al Profiler | Al Library
Kit
Vitis Al Runtime (VART)
Overlay Deep Learning Processing Unit (DPU)

Figure 5.1.1: Vitis Al Structure

In this implementation we are focused on the following tools: Al Quan-
tizer, AI Compiler and the DPU.
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5.1.1 Vitis-AlI Quantizer

Usually, neural networks are composed of single-precision floating-point weights
and activations. The AT Quantizer converts the 32-bit floating-point weights
and activations to 8-bit fixed-point integers. Thus, it decreases the comput-
ing complexity with insignificant loss of accuracy. In addition, the new
fixed-point model demands less memory bandwidth and compared to the
floating-point model has higher speeds and more power efficiency. [35] [37]

L] ®
[ ] [ ]
e ® Quantize e ®
® Parameter P
[ ] ] @ L
® Quantize ®
Activation
L @
Neural Network Quantization MNeural Metwork
(FP32) (Less bits per param) (INT8)

Al Quantizer

Figure 5.1.2: Vitis Al Quantizer

5.1.2 Vitis-AI Compiler

Once the model is quantized, the AI Compiler executes sophisticated opti-
mizations and creates a .xmodel file. This file includes a highly efficient DPU
instruction set which is compiled for a specific FPGA board using a config-
uration file, arch.json. The optimizations are layer fusion and instruction
scheduling that uses parallel processing, or data reuse. [35] [37]

™
b 100101010010
@ ® 110010101011
® 001001010100
° ° 101100101010
° 110010010101
@ 0010717007010
Al Quantizer Code-generator DPU Instruction

Al Compiler

Figure 5.1.3: Vitis AI Compiler
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5.1.3 Deep Learning Processing Unit (DPU)

The hardware core of the development environment is named Deep Learn-
ing Processing Unit (DPU). It is a programmable engine optimized for deep
neural networks. It consists of pre-implemented on the hardware parame-
terizable IP cores that do not require place and routing. The DPU is used in
order to accelerate the computing workloads of deep learning inference algo-
rithms that are commonly seen in various computer vision applications. [37]

There are a variety of different DPUs available for different tasks and
Xilinx Platforms. In Figure 5.1.4 is illustrated the DPU naming conven-
tion which is useful to comprehend the features, characteristics and target
hardware platforms from a given DPU name.

I - | . '

Deep- Application HW Platform Quantization Quantization Design Target Major Minor Patch
learning Method Bitwidth
Processing
Unit C:CNN AD —Alveo DDR X — DECENT 4 —4-bit G — General purpose
R:RNN AH —Alveo HBM | — Integer 8 — 8-bit H — High throughput

VD - Versal DDR threshold 16 — 16-bit L — Low latency

with AIE & PL F — Float M — Mixed C — Cost optimized

ZD — Zynq DDR  threshold Precision

R - RNN

Figure 5.1.4: DPU naming convention

In this application we are going to use DPUCZDX8G DPU which is
designed for the Zynq Ultrascale+ MPSoC and optimized for convolutional
neural networks. The DPUCZDXS8G IP is implemented in the Programmable
Logic (PL) of the selected device with direct connections to the Processing
System (PS).

In Figure 5.1.5 the Top-Level Block Diagram of this DPU is presented.
In summary, it executes the microcode which is generated from a compiled
neural-network graph and then demands accessible locations for input im-
ages and temporary output data. In addition, it requires a program running
on the Application Processing Unit (APU) in order to service the interrupts
and arrange data transfers.
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DPU
Hybrid Computing Array
High
Performance |« > PE PE PE o=
Scheduler
0 A
\ 4 v
APU [« Instruction
Fetch Unit Global Memory Pool
' A
v 1
High Speed Data Pipe
A
A
¢ \ 4

External DDR RAM

Figure 5.1.5: DPU Top-Level Diagram

In Figure 5.1.6 the hardware architecture of DPUCZDXS8G is shown.
Following the start-up, in order to control the computing engine, the DPU
fetches instructions,that are generated by the Vitis Al from the off-chip
memory. The on-chip memory buffers input activations, intermediate feature-
maps and output meta-data so it can reach high throughput and efficiency.
The DPU reduces external memory bandwidth by reusing the data. For the
computing engine a deep pipelined design is utilized and the Processing El-
ements (PE) exploit the multipliers, adders and accumulators in the target
Xilinx Devices. [39]
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Figure 5.1.6: DPU Hardware

5.2 Dataset

In this section, we are going to analyze the dataset used in the training and
testing of the neural network utilized for the RF modulation recognition.
Based on [40], 24 different and improved analog and digital modulators are
used. In particular, we are employing the dataset generated in [41].

Two different propagation scenarios are considered, the first is generating
wireless channels generated from the model shown in Figure 5.2.1 , while
the second is over-the-air transmission channel of clean signal as presents in
Figure 5.2.2 with no synthetic channel impairments. In the former, for each
example a random value for each of the variables shown below in 5.1 are drew
in order to generate new and uncorrelated random channel initialization for
each example.
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Audio Source Analog o At, Afg O, Af, H X
Modulator
A l

1.1.D Symbol Digital Signal . . .
[ Generator ]—)[ Modulator Shaping Interpolation Mixer Convolution AWGN

Figure 5.2.1: System for dataset signal generation and synthetic channel
impairment modeling
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Figure 5.2.2: Over-the-air test configuration

In the 24 different modulations, various high order modulations are in-
cluded that are used in real world in very high SNR with low-fading channel
environments and also to the synthetic part of the dataset impairments are
applied . The SNRs for each example range from -20dB to +30dB. The
exact modulations included in the dataset are:

OOK, 4ASK, 8ASK, BPSK, QPSK, 8PSK, 16PSK, 32PSK, 16APSK, 32APSK,
64APSK, 128APSK, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM, AM-
SSB-WC, AM-SSB-SC, AM-DSB-WC, AM-DSB-SC, FM, GMSK, OQPSK.
[41]
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H Random Variable Distribution H
o U(0.1, 0.4)
Or U(0, 16)
Ofs N(0, o
0. U(0, 2m)
Sfe. N(O, ouk
H Yi0(t — Rayleigh;(T))

Table 5.1: Random Variable Initialization

5.3 RF Modulation Recognition

For the classification of the aforementioned modulations we are using convo-
lutional neural networks (CNNs). It is worth mentioning that the features
of the CNN used in this application are the raw I-Q samples of each radio
signal example. No feature extraction or any pre-processing takes place on
the raw samples, instead the network ”learns” the raw time-series features
directly. [41]

5.3.1 Residual Neural Network

In this application, we execute the modulation recognition with deep residual
networks. A residual neural network (ResNet) is an artificial neural network
(ANN) which contains skip connections/ shortcuts that allow to jump over
some layers as seen in Figure 5.3.1. They are usually implemented with
double or triple layer skips and in between there are nonlinearities, such as
ReLU, and batch normalization [42].

A

weight layer
F(x) Jrelu <
weight layer identity

F(x) +x
Figure 5.3.1: Residual Training
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There are two reasons to add shortcuts in a neural network. Firstly, to
avoid the vanishing gradient problem, which occurs in neural networks with
gradient-based learning methods and backpropagation. In these methods,
in every training iteration the weights are updated based on the partial
derivative of the error function of the current weight. In some cases, the
gradient will be extremely small and consequently, preventing the weight to
change or even stopping the training of the network. [43]. Secondly, skip
connections facilitate the training of deeper models since it minimizes the
accuracy saturation problem. [42]

5.3.2 Network Layout

The layout of each resnet stack is presented below in Figure 5.3.2. The
model contains 4 resnet stacks. Fach convolutional layer includes 32 filters
and all the activation functions are Rectified Linear Units (ReLUs). [44]

X Add

1 . 32

Activation

Conv2d_4

Conv2d_1

X
1
1

32

Conv2d 5

Add WE

Activation Pocling

Conv2d 2

=

32

Conv2d 3

X x # of filters
1

32

Figure 5.3.2: ResNet Stack
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Chapter 6

Experimental Results

In this section, the RF modulation recognition model is trained and tested.
The dataset mentioned in 5.2 is split into three different versions. The
Original with all the modulations mentioned, the QAM version which in-
cludes only the five QAM modulation and the Digital version which does
not contain any of the analogue modulation. Then its accuracy results are
compared with three different variations of the dataset for each version.
The first is the original dataset with no processing. In the second variation
of the dataset, I-Q imbalance is manually added to the 16-QAM example
modulations of the dataset using Matlab. More specifically, 10dB ampli-
tude imbalance and 45°phase imbalance is applied to the examples of the
16-QAM for SNR equal to [-20, -10, -2, 0, 2, 10, 20] dB. The third variation
of the dataset for training and testing, is the corrected dataset. In more
details, the imbalanced dataset is passed through the I-Q imbalance correc-
tion algorithm and the corrected results assembled the third variation of the
dataset.

6.1 Vitis-Al Results

The model mentioned in 5.3 is trained and tested in the Vitis-Al environ-
ment with a jupyter notebook server. The accuracy results once the model it
has been quantized (INTS) for each SNR and for each version and variation
of the dataset is shown below.

For the Whole Dataset the results with no processing, with imbalance and
the corrected ones are shown in Figure 6.1.1.
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Accuracy vs SNR for INT8 Model, Original Dataset
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Figure 6.1.1: Accuracy vs SNRs for the Original Dataset

For the QAM Dataset the results with no processing, with imbalance
and the corrected ones are shown in Figure 6.1.2.

Accuracy vs SNR for INT8 Model, QAM Dataset

ot
©
T

o
o
T

o
~
T

o
>
T

Accuracy
ol
[$)]

(=4
~
T

ot
w
T

—=&— No processing
~—o&— |mbalanced
Corrected

027

01 . . .
-20 -10 0 10 20 30

SNR

Figure 6.1.2: Accuracy vs SNRs for the QAM Dataset
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For the Digital Dataset the results with no processing, with imbalance
and the corrected ones are shown in Figure 6.1.3.

Accuracy vs SNR for INT8 Model, Digital Dataset

e e o ©
o N ®» ©
: T

Accuracy
o
(4]

0.4 F
0.3
0.2
—=&— No processing
0.1% ——&— |mbalanced
h— Corrected
0 \ . . !
-20 -10 0 10 20 30

SNR

Figure 6.1.3: Accuracy vs SNRs for the Digital Dataset

6.2 Hardware Results

Once the model is compiled and the .xmodel file is created, the accuracy
and performance tests for the Original, QAM and Digital Dataset with no
processing are run on the Zynq Ultrascale+ RFSoC ZCU111 board. In order
to acquire these results, we utilize two different python scripts which have
an output as seen in Figure 6.2.1. The rest accuracy results are obtained
online in the Vitis-AI environment.

Similarly, we get the results for the rest variations and versions of the dataset
which can be seen in Table 6.1.
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Retac
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Actual
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Actual
Actual

Y
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Topl
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Topl
Top1
Topl
Topl
Topl
10 Topl
of RF Samples Tested is
size is 1
Topl accuracy = 0.55
root@zculll_custom_plnx:/media/sd-mmcblk@p2/app/model# python3 test_performance.py 4 rfClassification_zZCU111.xmodel 1800
Number of RF Samples is 4860
FPS=983.40, total RF frames = 4000.00 , time=4.067524 seconds

128APSK
128QAM
32APSK
256QAM
8ASK

Figure 6.2.1: Accuracy and Performance results for the Original Dataset
with no processing on the ZCU111 board

Table 6.1: Accuracy and Performance results on the Zynq Ultrascale+ RF-
SoC ZCU111 board

Accuracy Performance

No processing 0.55 FPS=983.40, time=4.067524sec
Original | Imbalanced 0.57 -
Corrected 0.56 -

No processing 0.58 FPS=981.11, time=4.077023sec
QAM Imbalanced 0.57 -
Corrected 0.59 -

No processing 0.55 FPS=982.24, time=4.072324sec
Digital Imbalanced 0.57 -
Corrected 0.55 -
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Chapter 7

Conclusions and Future

Work

In the current thesis, the definition of I-QQ Imbalances and their correction
algorithm were presented, the algorithm was assessed through MATLAB and
finally implemented on an FPGA platform through Vivado Design Suite.
Afterwards, there was a comparison of the accuracy of an RF Modulation
Recognition Neural Network when I-Q imbalances were applied to its dataset
and when it was corrected through the correction algorithm.

To evaluate the correction algorithm we utilized the relative error be-
tween the original generated 4,16-QAM symbols and the corrected ones
through MATLAB and Vivado. As seen in the results shown in Chapter
3 and Chapter 4 the relative error percentage for the I symbols between the
original data, the MATLAB and the VHDL results ranged from 12% to 14%
for the 4-QAM data and from 16% to 21% for the 16-QAM. Whilst for the
Q symbols for 4-QAM it ranged from 34% to 37% and for 16-QAM from
36% to 41%. It is also worth noting that, the results from the algorithms
implemented in MATLAB and Vivado have negligent difference, since their
relative error percentage for the I-symbols have maximum of 0.17% for the
4-QAM and 0.27% for the 16-QAM, whereas for the Q-symbols the maxi-
mum for the 4-QAM is 1% and for the 16-QAM 1.5%. Consequently, there
was significant compensation of the imbalanced data back to their original
state.

Furthermore, the utilization of the resources, post-implementation, was
minimum since on average only 4.3% of the LUTs were used and 5.7% of the
DFFs. BRAMSs were used only for the processing windows equal to 256 and
1024 with 0.64% and 1.28% utilization respectively and finally only 0.41%
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of DSPs were utilized. The operating frequency for the four processing
windows ranged from 428MHz to 500MHz.

As far as the accuracy results of the RF modulation recognition model
for the three different versions of the dataset (whole, only QAMs and only
Digital Modulations) when each one has three different variations (no pro-
cessing, imbalanced 16-QAM data and corrected 16-QAM data) the neural
network shows negligent differences for each one. As can be seen in Chapter
6, the neural network is able to handle imbalances in its dataset with not
significant loss of accuracy. It can also be observed that in the values of the
SNR that IQ-imbalance was applied and then corrected, the neural network
had improved accuracy compared to when no processing took place in its
dataset. This can be explained, on the grounds that the model ”missclasi-
fied” the modulations which in reality resulted in predicting them better
than before. Overall, we conclude that the particular neural network used
for RF modulaltion recognition is trustworthy to classify modulations that
have impairments and imbalances which usually occur in real-life situations.
Furthermore, we could assume that if the quantizer provided within the
Vitis-Al environment converted the 32-bit floating point weights and acti-
vations to 16 bit, instead of 8-bit, fixed point integers, the accuracy could
increase since there would be more information included in each weight and
activation.

For future projects based on this diploma thesis, the neural network
could be extended into recognizing more components required in the re-
ceiver chain. For instance, recognizing the configuration used in the channel
encoder to minimize the unnecessary information send from the transmitter
to free space on the bandwidth during packet transmission. In addition,
create a neural network that could combine more than one stages of the re-
ceiver, such as a joint modulation recognition and demodulation using deep
learning. Another compelling future work would be, if the whole correct-
ing and modulation recognizing stages could be integrated into one in the
FPGA, without the external processing of the dataset. On top of that, to
collect real-time signals to feed the correction algorithm and sequentially
the neural network, using ADCs and DACs on the FPGA platform.
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