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ITepiAndn

H aviyveuvon xou 1 Tunuatonoinon xauougloplopévmy oavTXEWEVLY anoTEAEl Eval TUUO TNG GEUOTC UTOAOYLO TV
TIOU AMOOXOTEL GTNY EVPEST AVTXEWWEVWY TTou 8Uox0A aviyvebovton amd To avipedmivo udtt. Ilpdxeiton yio plot
dradixacior avtidetn and tnv ebpeor npoeéyovioc avielpevou (Salient Object Detection), 6mou o Tphpota
NG EWOVaS TPog aviyveuon elvon Blaxeitd, €0XOAN AVary VERICLIO X0l TO 6pLo TOUS BLOPOROTOLOUVTOL JEXETY amd
TO UTIOAOLTIO TIORUOUNVLOXG TIEPLBAAROY. LNy TERINTOON TWY XAUOVPAUPLOUEVLY OVTIXEWWEVOY, Tol TURUATO TNS
ELXOVAC TPOC avly VeLuaT) cuy VY eupavilouy UEYAAYN OpoLOTNTA UE TO UTOAOLTO TEPBAAROY, AUEAVOVTAS OPXETE TN
BUOXOALL XOU TIC TTROXANOELS TOU TEETEL VO AVTWETWOTIO TOUV Yla T1) Blexnepaiwor autod Tou €pyou.

Yty mopodon SImAwpatin epyocio ELGSYOUUE Lo VEX HEYLTEXTOVIXT] TOU GUVBUALEL TIC LoYUEES BUVATOTNTES
TV xwdxonomntdy ond petacynuatiotée (Transformer Encoder), yio tnv e€aymy nayxOoUwy YopoxXTnolo-
TV, PE TIC TRoUTEpy0UoES Bopéc Tev cuvexTxmY xudixonomtév (Convolutional Encoder) yio t UM
TOTUXOV YoeaxXTNELo TV, Katd tnv aviyveuor evdg xapouphaplopévou avtixelévou efvan apxetd 50oxolo vo
evtomioToLy oL axplfeic Aentopépeleg xovTd ota dxpo Tou. Eunveuvouévol and auth tny ixavdtnta tou diodétouy
QUTE TaL AVTIXElPEVA, ELOEYOUUE EVal VEO UNYoVIoUWd GUVBUACUOU TWV EEAYOUEVKV YOPUXTNELO TGOV ard Toug dVo
AUTOUEC XWOXOTONTES PE OXOTO TNV TAPAYWYY TAOUCLWY YVWelopdtwy tdéco ot eninedo Aemtopépetag 660 Xou
ot en{nedo onuactohoYn epunveiag.

A&ohoyolpe xou cUYXEIVOUPE TO HOVTENOD Uog o€ X0l cUvoha SeBoUéVmV xal UE XOLvEC PeTpNoelc alloAdynong
xou tapouctdlouye tar euphpata gog. To Angidévia anoteréopata elvon apxetd evitoppuvtind, xoados neTuyaivouy
eZoupetinéc emddoelc xou evon eovd vor otodolv avtdiio amévavtt oTic Teheutales BiBAloypagpnés teyvoloyieg.
Télog, mopatneolue mwe YetoBdAleton 1 entldoon Tou wovtéhou pag, xS TEOTOTOOUUE €lTE TOV ahyopLtduo
elte xdmoleg mapouéTpoug xou ev cuveyeia emonuaivouue THAVES YENOEC TOU HOVTEAOU HOG YId LoTEeoUg %ol
didpopouc dAoug oxomouc.

A€&eig-xAedd —  Kapouvglropiouéva Avtixeipeva, Tunuatonoinon Ewudvag, Kwdixonomtée Metaoymuo-
TIo TV, Luvehxtixol Kodixonomntée, Luyywvevon Xapoxtnplotixwy, Auté-Ilpocoyn






Abstract

Camouflaged object detection and segmentation is a branch of computer vision that aims to find objects that
are difficult to detect by the human eye. This is a process opposite to finding a salient object, where the parts
of the image to be detected are distinct, easily recognizable and their boundaries are differentiated enough
from the rest of the background environment. In the case of camouflaged objects, the parts of the image to
be detected often show a high similarity to the rest of the environment, greatly increasing the difficulty and
challenges that must be faced to carry out this task.

In this thesis we introduce a new architecture that combines the powerful capabilities of Transformer En-
coders, for extracting global features, with the existing structures of Convolutional Encoders for capturing
local features. When detecting a camouflaged object it is quite difficult to detect the exact details near its
edges. Inspired by this ability of these objects, we introduce a novel method for combining the extracted
features from these two encoders in order to produce rich features both at the level of detail and at the level
of semantic interpretation.

We evaluate and compare our model on common datasets and with common evaluation metrics and present
our findings. The results obtained are quite encouraging as they achieve excellent performance and are able
to stand up against the latest technologies in literature. Finally, we observe how the performance of our
model changes as we modify either the algorithm or some parameters and afterwards we point out possible
uses of our model for medical and other purposes.

Keywords — Camouflaged Object, Image Segmentation, Transformer Encoder, Convolutional Encoder,
Fuse Features, Self-Attention






Euyopiotieg

OhoxAne@vovtog T SITAWUATIX Xl THVTOYPOVA TIC 6ToLSES wou 6To Edvindé Metodfeio Ilohuteyvelo, opelin
VO EXPEACE TNV TERAOTIOL EVYVOHOCUVY WOL Tpo¢ eXEVOUC TOUS avilp®TOUC Tou GUVETERECAY YeTXd o auTd
to anotéleopa. Euyopiotd depud tov emPBrénomv xodnynti pou, xdpto Ltdpou, yia T toAlTiues unodeilelc
TOU, TNV ETUOVYH ot TO oElwTO eVBlaPEpoY Tou oTov guplTERO Topéa NG TEXVNTASC voruoolvne. Emlong, eu-
YAeLoTe Tov xadnynTh, xOpto AeZavdpldn, Yo Ty eumictoclvy mou you €deie e€apyc MOTE vor avahdBw To
oLYXEXEWEVO VEUa PETA and apxeTéc enoixodountxés oulnthoels. O Hlelo axdua vo eLYAPLOTHOW TN Bidox-
Topixd Moplo Avumepaiov yio Tic ouyPoukéc, Tic Yvwoelg xou TN Yepur) TNe xordodryno), xadoe 1 ovTandxelot
NS OTLC AVAYXEC OV TROEXUTTAY TOCO XUTA TNV €PELVA OGO KoL XATA TN CUYYEUPT NTOY TAVTL HUEST).

Téhog, auctdvopon Podbtata TNV avdyxn vo euyoploTACK TNV OXOYEVELD Wou, oo uthee éva TepdoTio
Puyoroyxd othplypo xan TowTdYpovaL EBEIEE XUTAVONOT GTO YPOVO TOU APEEWOO Yol TNV OAOXAHEWOT TGV
OTIOLBWY UE TAPdAANAT EpyasiaL.

Yrpatdnng MuyorA,
Adfva, Mdptiog 2023
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Extetapevn Ieplindn

Oewpentixd YnoBadeo

H épaom vnoloyiotodv etvon €va tedio texvnthg vonuoouvng nou enegepydletal omTixd BeBOUEVO YONOLLOTOLOV-
Tag oe Yeydro Badud tn Mnyoviery Mddnon uéow teyvixdv Bothdg Mddnong. Suyxexpwéva, tny teheutolo
dexoetio, to Bordid cuvehxTind dixTua €xouv dnulovpYNoel TOAAS EMTELYUOTA OTIS BIAPOPES TTUYES TNS dpACNS
unohoylo V. Méoa and autég Tic xawvoTouleg elvon Buvatovy yia éval LOVTEAD TEYVNTNG VOTLOCUYNG VoL ovary-
vopllet avtixelpeva xar potiBo 6mwe to avipdnivo pdtt xat Vo xotavoel oNUAclohoYxd Tov x6opo, OIS O
avipdTvoS Vouc.

Ou o0y ypovee epapuoyYEéc uTohoYIoTIXC bpaong, Tapd TO YEYOVOS OTL €0UV BopLEC UPYITEXTOVIXES TUPUUETRPMY,
€Y 0LV TUPOVOLAoEL PEYGAES emituylec uéoa amd v oflonoinon povddwy yeapxhc eneiepyooioc (GPUS) xotd
N Sdixacio g exmaldeuone, pe anotéheoua toyltepn enelepyacio SEBOUEVWV XOL CUCTNUATOV XOVOY Vol
emtOyouy LMY axpifela xou 600 to Buvartdv hydtepee Peudeic mpoPrédeic [39]. Lnuavtixée vnnpeoiéc Tou
exteholvTaL og xoinpuepv| Bdon cuvidwe }eNolomololy BACIXEC EVVOLES XAl TEYVIXES TNS OPAUCTC UTOAOYLO TMV.
Me autd TOV TPOTO, ATODEWNVUELTAL O ONUAVTIXOEC POAOC TNE GPUCTC UTOAOYIOTWY OTNV oViYVEUTT) AVTIXEWUEVWLY
X0l TN ONUUCLOAOY X TUNHATOTOMGT G TNV LYElovopxT Tepldahdr, xadog xaw oe Sldpopoug Toueic TopaywYng.

H ‘Opoon Trohoylotdv we nedlo €peuvag evéyel apxetés TpoxAAoELs, xuplwe Aoyw tne ddoyng anddoong tou
avipanivou patiold oe avopiduntes ontxés tpoxifoes [22]. T va amoxthoet pio avtiotoyn anddoom éva teyv-
Nt6 yovtédo, npénel va devepyniel évac yeydhog aptdudc unohoyloumy xou vo e€ac@aiiotel 1) UToEEN dPXETWY
otV dedouévwy. T'a nepantépw Bedtinwon tou amotehéoUaTog Xou EAUYLGTOTONGY TNG UTERTROCOPUOYHC T
EXAOTOTE LOVTEAA ATALTOUV OPYITEXTOVIXEC, UE OXOTO TNV AMOXTNOT OUCLAC TIXNE TANEOPORIAS oL TNV XATAVONCT
TV TUPEYOUEVWY BEDOUEVLY OE MINEDO GNUACLONOYIXO.

YUUBOAA xo OXOTOSC TOU TEOTELVOUEVOLU VELPWVIXOV BIxTVOV

Mia and tic Baoiéc wavdtnteg tou avlpdmivou potiol Bacileton otny emituyn xow oTiypLodo ovory vepLom ov-
TIXEWEVWY 0L OTN ONUACIONOYIXY) XATAVONOT) TOU xOoUou. Yo MOAAEC TPOUTOVETELC 1) VoY VOPLOT) TOV OoLv-
TIXEWEVOY YOl 1) XATovOTon) Toug ebvon axplBhc xou 1) Bladixasta épyetan guotxd xou afiacta. Avtideta, to yovtéia
UTOAOYLO TG GpaoTC AmAUTOVY TNV eE0Y WYY EVOSC GUVOROU YUPUXTNRIG TIXWY amd TNV {m@Loxt| avanapdso taom
TOU XOGUOU %ol VOTEPA TNV AVIAUGT| TOUC.

Trdpyouv aviixelyeva eite Quoxd elte TEYVNTE XATAOHEVAOUEVOL UE BUVATOTNTA XOUOUPAGL, BNAadY| anogel-
YOUV VoL TPOBMOOUY T GNUOVTIXG Xou TEoe&éyovTa yapaxtnetoixd Toug. H e€éhin twv {dwy oty dypia glon
xat 10 avlpwnoYevéS xaouPAEL Uewdvouy Ty mdoavotnTa aviyveuong 1 avayvoptons and mdavois Inpeutég
7 exdpolc [55]. Emmiéov, n eZéhin tov véwv acleveidv dnuovpyel éva eunddlo atn obyypeovn Blopnyavia
uyetovopxic Tepldardng dtav npdxeiton YL aviyveusT) TVELHOVIXGOVY hNOWOEEWY antd tatpinés ewdvee [45]. Mia
EVEEWC YENOWOTOLOUUEYY CTRATNHYIXY) Omd TETOL AVTIXElUEVA Vol VO TPOCUPUOCTOUY GTO GYEDLO, TO YEWUL
X0 GANEC Yoppoloyinég WBi6TNTeC Tou TepBdihoviog oe TéTolo Padud, OoTe 1 aviyveuor Toug vo odnyrioel
oedun %o To éunelpo avdpdmvo YTl ot Peudr| andpaon [43]. Luvohxd, To xopoupAdl yepoywyel TV onTixd
VAU TOOT) TTOU PTavEL oTov Veath ot auEAVEL oMoy TIXd Tic TpoXANoELS plac oxplBole Tunuatonoinong [37].

Me v ewoaywyr e apyrtextovixic twv Transformers emAhde wa enavdotooyn otov 1pdno Ye tov onolo
oUyyeova HovTtéla pdinone emxevtpdvovTal xal Blvouy TEocoy N GTo ONUAVTIXG GTOoLYEl Bl EmMOVaS, Xadmdg

11



dnuiovpyoly eapthoels oe eninedo xodohxd [60]. And tnv dAAn pepid, ta mapadootaxd cuvelxtixd dixtua
(CNNs: Convolutional Neural Networks) eZdyouv yopaxtnplo Tnd copthvovTtac Ty exdoTote exdva ue Bdomn
t0 péyedoc tou nuphva (kernel) [40]. H Siwdixacio auvtd oo pryd enineda evowpatdver Thnpogoples younhol
EMNEDOU, OTWC Ol AXUES XUk TO OYHUNL TWV AVTIXEWEVWY, eV ot Badltepa enineda 1 TANPOoQopla EUTEPLEYEL TN
OTNUUCLOAOY X aVOTopdoTaoT, Tou xéopou [19,28].

Exomog auThS TNE BmAwuatixic elvon va B€aet tor Yepéhia yia T dnwoveyio plog emtuyoic odleuvéne twv CNNs
pe ™ véa teyvoroyia twv Transformers. I'ivetor mpoondelo yior XaTdAANAY GUVEEST TWV YOLOXTNELO TGV
Younhol emnédou amd To ToEAdOCIXd CUVENXTIXG VELpWVIXA BixTua pe TNV xadohxr TAnpogopla and Toug
Transformers. Ilo cuyxexpwéva, 1 poyoxoxahld Tou povtéhou pag e TNy ovopacio RACOD-Net anotehel-
Tou ond 800 xwdonowtée, Tov ResNet50 [18] nou aviinpoowrelel 1 YEVIE TWV GUVEALXTIXOY YEVPGVIXOV
duxtdwy pe tov SegFormer [68] mou vhornoiel v teyvoloyio twv Tranformers. Xtn cuvéyela, o PepIxOS AL-
HOXWTOS ATOXWOLXOTONTAHS HoC XAUTooXEVELEL TN OEPd UE TNV oTtolat CUVBEOVTOL Tol EEAYOUEVEL YAUPAXTNELO TIXSL
Tou mapdynxay vwpeltepa amd toug xwdonoimtés. ‘Onwe golveton oto Xy. 1, 0 povtého poc mopouctdlel
eEoupeTIXd omTiXd amotehéouarTa xou EEMEPVAEL OPXETEC PO YOUUEVES EPEUVES OTIC TAPAYOUEVES TTPOoPAédeLc.

YxeTtwxeg llponyodueveg Epyaoieg

‘Onwe uTOBNAGVEL 0 6pOC, 1 XUTATUNOY EXOVag elvor 1 Bladlxacior SlyoToUNoNG KlaC EXOVAS G TOAUTAS TUr-
pote. Trdpyouvy Vo xOpLol TOToL TUNHUTOTOMONS EXGVIS, 1) opactoloyx) Tunpoatonoinor (semantic segmen-
tation) dtav dha to avuixelpevo Tou aviAxouy oTov Bl TUTo yapoxtneilovtar and TV (Bl eTéTa xNdoNS xou M)
Tunuatonoinon avé teplotoon (instance segmentation) émou dhec ot epgavioels Tou (Blou TOTOL TaUTOTOWUVTAL
ue dapopeTixt) eTiéta. H aviyveuon xan v Tunuatonoinon xouougAAOIOUEVWY AVTIXEWEVGY AVAXEL TTEOS TO TOEHY
oty xatnyopla e onuaciohoyixfc tunuotononone. Koatd ouvénela, ota eixovootoiyeio (pixels) mou avixouv
oe xdmnoto xaovphaplouévo aviixelpyevo o avatietar n wun 1, evéd oty avtidetn neplntwon Yo avotideton 1
T 0. Autd xarhotd To CUYXEXELIEVO AVTIXEUEVO TNG ORACTIC UTOAOYIGTOVY X0t w¢ iot Buadixt| Tunpatonoinoy
EovaC.

Avap{tunteg mponyolueveg épeuveg €youyv dic€aydel yonowonoldvtoc xatd xdplo Adyo CNNs xat €youy Topouotd-
ol e€oupeTind anoteréopa. AvVAUEco oE QUTEC TIC €PELVES CUYXATAAEYOVTOL oTtoudaia povtéha 6mwe to BAS-
Net [44], To SINet [11], To ANet [27], To SINet-V2 [9], to BSANet [79], o BGNet [58], xad¢ xon to PFNet [36]
ToL OTOloL XAVOLY YEHON EVOS GUVEALXTIXOU VEURMVLXOU XWOXOTONTH Xt DOTEQU UEGE) XATIAANAOU ATOXWBXOTOL-
Nt Toedyouy opywd uio tpdiun TedBAedn Ty onola péoo and texvxéC BehtioTonoinong evioy0ouV UE TENXO
anotéheopa pla mo axeBr) tedBredn.

Iapddhnho pe v e€€MEn twv Transformers, to cuyxexpiévo avtixeipevo Behtwinxe oe yeydro Badusd. Ot
peAéteg, xdvovtac ypnorn autic Tng teyvoloylog, elvor AYOTERES CLUYXELTIXG UE TIC TponyoLueves. Evdeitixég
aroteholv ol apyrtextovixéc tou DTINet [31], tou UGTR [69] xou tou CamoFormer [70] mou evowpatdvouy
oToUE UWdXOTONTES TOoLg oTolyelo amd toug Transformers.
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RACOD-Net CamoFormer SINet-V2 ZoomNet SegMaR DTINet PFNet
[70] [10] [72] 28] (31] 36]

Image

YyxAue 1t Onuxéc ouyxploeic avdueoa o XUUOLPAUPLOPEVA avTIXE(UeEVa, YETOED TOu B0l o Wovtélou
RACOD-Net xou tov utéhoinwy yoviélwy tne diedvoic Biiioypadpiog.

H opyitextovixr, tou RACOD-Net
Ayecoc otdyoc e apyrttextovixic Wog elvor o xatdAAnhog cuvduacuds U0 XWBXOTONTOY TOU LAOTOLOVY

dlapopetixéc guhocopiec. Méou amd Evay TEwTOTOELIXS XAUOXWTO ATOXCBIXOTOMNTYH evoTtolovTalL To eEayOUEVAL
YopoxtneloTixd and tov Transformer xwdixomonty xaL Tov avTioTOLYO GUVERXTIXG VEUPWVIXG XOBXOTOMNTH.



Koatd ouvénela, mapdyeton éva tehind amotéheoya pe mhodola tAnpogopia 160 Tomxt 660 xou xodohxr. ‘Onwg
anetxoviletan 0to Xy. 2, apyixd e€dyovial 6To GUVORO €QTO YOPUXTNELOTIXG OO TOUS XWOLXOTONTES LIS, LTO
oovoro {Xj}3_, yopoxtnprotind oné tov ResNet50 [18] xon {Ck }i_, yopoxtnoiotind and tov SegFormer [68].

O CNN xwoéwxonowntng

H apyrtextoviny) ResNet50 xatagépvel va emhboel 1o npdBAnua tov e€apaviloyevewy xiloewy. Katd to népacya
Tpo¢ To mlow, Ta BN TwV OTPWUATKOY X0oVTd oTny elcodo mopouévouy oTaldepd N EVnuEpVOVTOL TOAY 0pYd,
oe avtideon ye autd nou cuyPoivel ota eninedo xovtd oty €é€0do. Autd to mEGPANUL odnYel oE x0pECUS TLV
embéoewy and évo Bddog xou uetd xou emhdeton amd tov ResNet50 ye tny eloaywyr cuvdéoewy mou adpollouy
Tig e€6Boug amd To ey OTEEa ENtineda oTLC E£680UC TLV endUEVLY PadiTEp®VY EMNEDWY. 2T1 BT Hog TeplnTwon),
YENOWOTOLOUUE QUTH) TNV AEYLTEXTOVIXY Yial Vo GUAAEEOUUE T TipdTaL Tplol pnyd enineda.

I# ResNet50 Encoder ‘l

RACOD-Net

Block 1: (64, 114, 114) Block 2: (256, 114, 114) Block 3: (512, 57, 57)

ImgShape:(3, 456, 456)
Block 1: (BS, 64, 114, 114)

\

Block 2: (BS, 128, 57, 57)

Hadamard product

O,
@ Concatenation
®

Element Addition

—_

<

L

Block 3: (BS, 320, 29, 29) Channel Attention

(<11} 1X1 Conv + BN + ReLu

3X3 Conv + BN + ReLu

1X1 Conv, Output 1Channel
Block 4: (BS, 512, 15, 15)

j——— segFormer Encoder

o
>

3X3 Conv, Output 1Channel

Coarse Map

YyxAue 2: H apyttextovix tou RACOD-Net

O Transformer xwdixomownTyg

H Boaowr 10éa mlow and tov SegFormer ontwonoteitan oto Xy. 3. To téooepa eCoydpeva yopaxtnelo Tixd
and tov SegFormer oxoloudolv tnv mapadootaxy tepapylo tne Badide Mddnone, énou xadide npoywedye oe
Badtepa emineda oL yweixéc Sotdoelg pewdvovtal. To mpdto BAua meog autr vy xatedvduvorn Eexwvdel pe
€Vol OTAOLO ETUXAAVUTITOUEVNG OLEOTIUONG TNG EXOVAS OF WiXpOTERO XoUUdTIoL AUuTd emtuyYdveToal Ye 0 yeHom
evoe nupfiva (kernel) pe péyedoc (7, 7), Bua (stride) 4 xon yéuopa (padding) 3 yio to tpdto eninedo, evdd ta
endueva enineda avapévouy péyedoc muphva (3, 3), PAua 2 xou yéwopo 1. Me autédv tov tpdmo, To xopudtia
oo OTO(0L BLUCTIATOL 1) EXOVAL EYOUV ETUXAAUTTOUEVO UERT]. L TN CUVEYELN, TO EXACTOTE ENINEDO EMXAAUTTOUEVNS
didomaomne yivetou eloodoc oto TuhAua Tou vAomolel Tov unyoviopd e outé-tpocoyfc (self-attention) dmewe
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auth ety dn oty épeuva [60]. Mia xawvotopla tou SegFormer efvou 1) eloorywyh evéc cuvehixtixod emmédou Ue

péyedoc muphva (R, R) xou B R mtply tov unoloylopd tng auto-npocoynic, nou TepthoaBver TOMATAAGIAGHO
2

VXY, petdvovtac Ty Tohuthoxdtnta and O(N?) oe O(% ,6mou N = H x W yio pla etxdva ye oo tdoeie

HxW . T tnv ohoxAfipwon evog emnédou 1) é€080¢ mou meoxdnTel and TNy auto-npocoyy yiveton elcodog oe

éva d{xtuo eviaiog tpopodbtnone wag xatedduvong (feed-forward network). Anhoady, éva dixtuo oto onolo dev

UTdPY oLV avadEOUES xou 1) e€UYWYT| TOU TEAXOU Yoo TNelo Txol Biépyetol and ToANATAd otddlo enelepyaoiog
TIOL TEPLAAUBAVOUY YEUUXOUE UETAOYNUATIONOUS, GUVEAZELS XL GUVAPTHOELC EVERYOTOINONG.

| Encoder |
I d
H W H W H W H W
. xixcl Bx . xCs mx mxfjj 32:{ 32}{{4
— — — —
@ _
Sa| |22 2 = ® 3
= > > > > > » > »
g7 23 23 25 23
S ol |23 S 3 & 3 a3
D 5] D 4]
(] E" = = = =
w - i
“m = gm
® = 3 o o
> _Eg_ * N O T >
= 3 Al =2
= = w F_J'_
0
-
* N

EyAure 3: O Transformer xwdixonountic [68]

O anoxwdixonowntic Tou RACOD-Net

O anoxwdixonomtic poc, Bactopévos otny apyix Wéa and v €peuva [67], vhontotel pla Teyvixs 6Tou mapdye
d00 anoteréopata U XAlwoxwtd Teomo. Ilpdxeiton yio plo ey vinn pe d0o mapaydpevous xAddoug, 1 ool €xel
uodetniel oand avapldunto poviéha, 6nwe ta [13], [44], [11], [9], [29], [31], [5] o [70]. Ltbdyoc elvon pe xatdAAnho
TE6TO va tapdEoupe pior Tpwdn TedBAedm and Tov TeMTo xAddo, 1 omolo wall Ye xdmolo onuela-xAeldLd Tou (Blou
x\&dou evomnolelton péow ocuyxexplévne uedodoloyiag ye yapaxtnelotind tou devtepou xhddov. To telxd
anotéAecpa Tou BelTEPOL XAdBoL odNYel TeEAXd ot ula TEdBAedn Tou evéyel peyahibtepn axplBela xou euxpivela.
O anoxwdixonomtic Baoileton otouc xwdixonowmntéc ResNet50 xou SegFormer, nou mapdyouy ta {Xg}3_, xou
o {Cr}i_, yopoxtneotind aviiotolyo.
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H ITpoupn ITeoBAedn

‘Onoc yiveton edxola avtinntd and to By. 2, 1 npdiun npdBiedrn (coarse map) cuyywvedel xatdiinia to tpito
otouyeto amd tov ResNetb0 xou ta tplo teheutaiar otouyeio and tov SegFormer. Auth 1 apyix tpdBredn, xotd
CUVETELD, UMOTEAE(TOL O YUPUXTNELOTIXG, TO OTOla GUVBUACTNXOY (OTE TO THUPAYOUEVO UTOTEAECUO VO EVEYEL
Yopoxtrpa onuoactohoyd xar xadohixo. Anhady va elvar oe 9€on vo avtikngdel tn @born xau ) onuoctohoyia
TOU OVTLXELWEVOU OTOV Y0po. And tny évwor twv ototyelwv Xg xou Cs dnulovpyeltal To evildueco mpoldv ue
v ovopooio MF(Mixed Features), 6nwe amewxovileton mopaxdtw:

MF = BConv(Concat(BConv(Inter(C3)) ® X2), X2), (1)

6mou to eminedo BConv(-) mepthopfdver évor otpmpo cUVENENS, Tou axohoule(tal omd €va OTEMOUO XOVOV-
wonolnone xat téhog and 1 ouvdptnon evepyonoinone ReLU. To eninedo Concat(-) avunpoownedel tn ouy-
YOVEUGT] YOPUXTNOLOTIXADY 01 B0 T Tev xavoky, To eninedo Inter(:) eivar unedduvo yio Ty avaderypo-
Toheudior TOU EXACTOTE YAPAXTNELOTIXOU MDOTE VoL TUELIEOUV Ol YWEWXES TOU BLOC TUOELS UE XATOL0 dAhO Yopox-
TNELWO TS EVE TO GUPBORO O LTOBELXVUEL TOMNMATAACIACHUOS OVAUESH OE TAVUGTES IOV TORAYOVTaL XOTd T1) BldpXELal
exmaidevone Tou VELpwVIXOL pag dixtiou.

O oxonde tiow and éva tolanhactacpud otolyeio Tpog otouyeio, dnwe avagepéton otny épeuva [11], anooxonel
ot pelwon Tou oNUacloAoY 00 Ydouatog avdueca oTa yopaxtneloTxd wos. H opyitextovins tou RACOD-
Net Thus nopouctdlet cuyvé TpnuaTa TOU TEPLAUUBEVOUY TOAUTAUCIACUO, GUYYWVYEUOY) Xol GTY) CUVEYELD EVal
eninedo BConv(+) ye oxomnd 1 ouyxévtpwon ulag evioyupévne mhnpogopiog oe éva xavolpyto UBetdixd yopox-
TNELO TXO.

Y1t ouvéyela, o anoxwdixomointic pog avatyvoet to otouyela Cs, Cyq xot MF xon e€dyeton to yopoxtnplotind
C4Cs, onwg poiveton mopaxdTw:

Cavpxe = BConv(Inter(Bconv(Cy))) (2)
C4 = BConv(Inter(MF)) (3)
Cy C3 = BConv(Inter(BConv(Concat(Caupxa ® C%, Cavpx2)))), (4)

H npown medBredr), Snhadr 1o TEAXS ATOTEAEGUO TOU TRWTOU XAABOU TOU ATOXMIIXOTOLNTY LIS YEVVATOL UETA
and TIC TUPUXATE OELPLUXES EVEQYELEC:

Cavpxa = BConv(Inter(Bconv(Cy))) (5)

CY = BConv(Cy)) (6)

C4C3C, = C5® Capxa ® C4C3 (7)
C4C3C,MF = Beonv(Concat(CyC5Cs, M F)) (8)
Coarse Map = Inter(Pred(CyC3CoMF)), 9)

6mou 1o otpodua Pred(-) npocdétel éva oxdpo emnedo cuvENENG Ue oxomd TN petdBaot e e£68ou pog oe éva
xaveAt (aompdpowen ewdva). O medTog xAddoc ohoxinpdveton pe Ty e&iowon (9), 6mou 1 T TeéBiedn
BelYUUTOANTTE(TAL TPOC TAL AV OY T (POPEC MEOXEWEVOU Vo amOXTHOEL TG (Bleg Yweinée BLUCTACELS YE TNV
enaAndevpévn ahrfdeo.

H Telwr Axpiprc IpoBredm

‘Onwe avagpépetar otnyv €peuva [66], ta Paditepa yopaxtneiotxd and toug Transformers nepuhapBdvouy udpmin
onuactoloyxi TAnpogopia oe avtideon pe ta mo pnyd enlneda mou evéyouy Tomxd yopoxthpa. apduola hoyixy
ex@pdleton xan oTig épeuveg [28], [19] xou [17] mou avagépovtar otic apyttextovixés twv CNN. O dedtepog xhdbog
anooxonel YEow ond oelplaxd eninedo UTOAOYIOTIXGY TEAEEWY VoL EXPETUMAEUTEL AUTA Tot TOTIXE oToLyElo Ko Vot
ToL EYYVOEL XATIAANAA GTA TEOTYOVUEVO UTOAOYLOUEVO xotohxd aTolyela Tou TEWTou XAddou.

H Behuotonoinon tne mpwwne mpdfiedng, mou haufBdver yoea oto deltepo xhddo, yenowwonolel we enl to
mAelotov ta 800 mpdta yapaxtneloTixd Tou ResNet50 xou to mpwto yoapoxtnpliotuxd touv SegFormer. Q¢ ex
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TOUTOV, 0 EUNAOUTIOUOE TNG TRONG TEOBAEYNE ETULTUYYEVETAUL UE TNV ELOUYWYY) AETTOUEPELDY GE TOTIXO TAEOV
eninedo, dote vo mopayVel plar Guvlolopévn xou Aentouepéotepn npoBAiedr. Me tnv aviuiln twv TeLOV AUTOV
otouyelwv dnuovpyeitan To otowyelo pe v ovopacio FB (Fused Bottom), énwe goiveton mopaxdto:

X1 Xy = BConv(Concat(Xy, X2)) (10)

Ci1 X = BC’onv(Cl @Xl) (11)

C1 X1 Xy = BConv(Inter(BConv(Concat(C1 X1 © X1X2, X1X32)))) (12)
FB = BConv(Concat(MF ® C1 X1Xs, MF)), (13)

omou elvan eupavéc Twe yenotwonole(tar ex véou To eVdldueco yapaxtnelotxé MFE mou unoloylotnxe otnv
eZiowon (1).

Extég and to otoiyeio MF, undpyel axodua éva loyupd YapaxTneloTixd pe iotnteg xupiwe xadolixéc. Ilpdxeiton
yio to otoyeio CyCs, 6nwe autd unoloyiotnxe and v e&iowon (4). To C4Cs mepthopPdveton oe autéd TO
omnuelo Tou BTHOU UAC DOTE VA ELGAYEL axOUT| TEptocdTERY evvololoyixy) yvaor. H telu| npdBiedn nopdyeton
OTLC PalVETOL TOEOXAT:

F1=Cy,C3CoMF + FB

F2 = Channel Attn(F1) ® F1
F3 = BConv(Concat(C4Cs, FB)) 16)
F4 = Channel Attn(F3) © F2 17)
RefinedMap = Inter(Pred(F4)) (18)

14)

(
(15)
(
(

Ao avagpopdc anotekel 1 yeron e ddpotone oty ediowon (14). Hapdpowa ye ) aliononomn Twv cuUVIESEWY
Topdxopdne mou avortiooel N apyttextovix ResNet [18] extelelton xou 1 ddpoion twv evdidueswy otolyeinvy
C4C3CoMF xou FB. O xdpiog Aoyog €yyutar oty avdyxn v uetofi3dcouue uPnhol emnédou onpactohoyixés
Thnpogopliec auetdBAntec ota teeutala enineda Tou VEUPWYLXOL pog dxtbou. Extéc and ta mapamdvew, yiveton
Yehion xaw evéc emnédou pe v ovopooio Channel Attention, to onoio ewofydn and tnv épeuva [65], ue otody0
Vo eTXeEVTEWUEL TO AmOTEAEGUN GTO ONUOVTIXOTER YAPUXTNRLOTIXE TOL avTixelwévou. Kdde xavdil otov amox-
wdonoNTh poc anotehel xat xdnolo miavo YopaXTNELGTIXG TOU AVTIXEWWEVOU NS apyixNc exdvag. Méow Tou
ouyxexplévou emmédou divetan onuacia LOVo oTo oNUAVTIXG XovEMa Tou povTéhou uog. O dedtepog xhddog
ohoxhnpwveton pe v e&lowan (18), émou n tehxh npdPBhedr derypotonmreltal xaL AUTH OYTEW QPORES TEOS Ta
dve Gote vo toupldéel oe avdhuon pe Ty enaindevpévn odrlelo xatd T didpxela TS exnaidevong.

ITepartépw ENEEAYNOY TNS APYLTEXTOVIXNG

‘Onwe avapéplnxe Tponyoupévws, 1 TEOTELVOUEVY] URYLTEXTOVIXY UG CUYYWVEDEL UE Vo LoVadixd TeoTo To
PNYOTERO GTEMHATA TOU TUPAYOVTAL ATt TOUS XwdWMOTONTES hag. AuTh 1 tevinh) tTehixd eEdyel éva eviLdpeco
Tpotév tou ovoudletoan FB (Fused Bottom), énwe unoroyiletar and tnv e&iowon (13). Evoc tétolog tovuothc
TANEOPORPLOY YoUNhoL emTESOL TEETMEL VoL YElPLoTEL XUTdAANAL Tply cuPel TepotTépw CUYYOVEUCT] HE TOUC
vdPnhol onuactohoYxols TaVUoTES oG, Tou untohoyilovton and Tov TEMTo XAAS0 TOU AMOXWOLXOTONTH HOG.
‘Onwe gaivetor oto Xy. 4, apyxd umipye wo agerric vionoinon tou RACOD-Net.
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RACOD-Net RACOD-Net

Block 1: (64, 114, 114)  Block 2; (256, 114, 124)  Block 3: (512, 57, 57) Block 1: (84, 114, 114)  Block 2: (256, 114, 124)  Block 3: (512, 57, 57)

i : ’

/

Encoder
Encoder

Block 2: (BS, 128, 57, 57) Block 2: (Bs, 128, 57, 57)|

Block 1: (BS, 64, 114, 114)
\ L

> S

/
(¢

‘/ Down X2

ook 35 (85, 320, 29, 20)
_@_ 0T (@)

Block 4: (BS, 512, 15, 15)

Block 3: (BS, 320, 29, 29)

Block 4: (BS, 512, 15, 15)

X3 Cony, Output 1Ghannal

Amhoixh Thonoinon RACOD-Net

Yxhpa 4: Ontixr Slopopd avauesa oTNY AmAOIXT XA GTNY TEALXT) AEYLTEXTOVIXT HOG.

H agelvc mpwtapywer Wéa Baciotnxe xou auty| Ue T oeLpd TNg oTo apyixd pog xivnteo. I'a v anotinwon t6co
TOU TOTUXOU GO Kol TOU TAYXOOUIOU TAALGIOU QPAVOTOY OEXETA OTAG VO TEOYWENCOUUE UE Lol AmAT Teoothxn
HETOED TWV TOVUOTOV TANEOPORLOY YauNnAol xat LPnhod emmédou, Twe Qaivetal oTNY OPLOTERY EXXOVOL TOU
Yy. 4. Qotéc0, auth 1 onhf teocdixn Jo elye wg anotéheopo pa PEtplor TeA TeoBiedn nou mopouciale
€ dlapopéc and TNy Tediun TedPBAedn. Autol ol 500 TavUoTEC AVTLTEOCKTEVOLY BLUPORETIXES PLAOCOPiEC
xou TeYVohoYieg, Topdho Tou EYOUUE BLoPEEVCEL OPLOUEVES TOTUXES WOLOTNTES GTO TAYXOOULI0 TAUIGLO XoL TO avTi-
YeT0, ouyywveLovtag to Xo pe tov SegFormer xou to C; ye tov ResNet50. Enopévee, n extéleon plog tétolag
TpocUrxne dev cuvio tdtan, xodde auTés ol Vo TpofBiédelc éxouv TOAD Ayec opoldtnTes o Tor avtioTolyo Bden
Toug anoterolvtan and eaipetnd anoxhivovoes Tiuée.

H depehiiddeg auth apyixr) 0éa dhhale xon Bedtiydnxe, pe Bdon v mpwtdtunn apyitextovinr) ResNet dmou
oL ouvdéoelg mopdxaudng teooBétouy Ta Bdpn amd To évo oTeMUa 6To dANo. Autd Ta Swboywd Bden uoipd-
Covtan xowvég evvolohoyxée mtAnpopoples, xadoe elval To anoTéAeoud YELTOVIXDY OTpwUdTwY cUVEAEE®Y. Mo
Tétola Tpootxnn dev da oy anoteleopatixn] edv autd To Bden elyay dnuovpyndel and oTpduato TOL aTEY oLV
peTol Toug ToAAG enineda cuveliZewy. Aopfdvovtog unddrn plo TéTol avdAuom, oy uToyEEWTIXS Vo uetwlel
TO oNUACLONOYIXG Ydopo YeTafl Twv TRoBAéPewy Tou anoxwdonolnth tpotol mpayUatonoilel onoladrtote
TEQAUTERL EVEQYELOL.

ITpoc autéy TOV 0T6Y0, EmonuaivovTon 500 CUYXEXEWEVA UBELBIXE YOeaXTNELO TIXE Yiol TN UELWOT) TV BLapopwV
Tou avapépdnxay Tponyoupévae. To evdidueso tapdywyo MF, 6w vrtoloyileton and tny egicwon (1) elvou to
Tetdto unodnelo yio plo tétola diepyoaoio. O xwdixonownthc SegFormer extehel moloamhég enavafideig auto-
Tpocoy Mg Yo xdde yopoxtneloTixé mou dnuiovpyelton. Ilo cuyxexpyéva, To Cy amoutel elxoot eqtd enoavardele
autompocoyfc. Apyotepa, To Cz avoulyvietan ye to Xo mapdyovtag To evdidueco mpoldy nou ovopdleton MF.
Aedopévou 61t to MF mepiéyer 1600 xadohixéc 600 xan Tomuxéc WLoTNTeS, dtay ToMAmAootdlEToL oL CUV-
dudletan pe TV o pMY ouYYDVEUST TwV Yapaxtneotxody Cp, X; xa Xo , oupfdiiel oto mpdto Briwa Yo
™ pelwon g onpactoloyixic anécTtaong YeTa€d Twv 800 xAddwv. XN cuvéyeld, N avogpepduevn ddpolon
hoBdvel ypo xan Siépyetan and éva otpwue Channel Attention mou e€dyel ue TN oelpd TOU TO YOPAXTNELC TN
F2, chugpuwva pe v egiowon (15). Qotdoo, 1o yapaxtnpiotind F2 dev eivon apxetd wavd va npowdndel we
7 tehxr] exhentuopévn axpBhc TedBAedn. And Ty onux) emVEDENOT TV OMOTEAECUSTWY HaG, 1 EXTUDEVOT
TOU PoVTEAOU pag Pe To F2 w¢ telud anotéheoya Eemepvd xotd mToAD Ty mpwtopy et agehr vhonoinon. H
eniteudn o axEIBOY XoL LoYUEMY BLABIXMY YaETOY Selyvel 6Tt auTd elvor To 6woTd Hovordtt dtoy GuvdLALovTaL
BlapopeTIXEC TEYVOAOYiEC 0TOUC XWOLXOTONTES. 20oTOGO, XUTE TNV ONTIXY EMUEMENOT] TWYV UTOTEAEGUATWY UoC
avoxahOdaue 6T, mapd Ty eniteudn Aentouepdv oplwv xou Teplopiopévou YoplPou, uTheyay oploUéves TEoS-
Aelg mou Ta€vouoloay EGPAUAUEVOL To 1] XOUOUVPAUPLOUEVO AVTIXEUEVA (O XOUOUVPAUPLOUEVL.

Axohovdmvtag v (Blar ToxTinr] mou pog Bidae to yapoxtnelotind MF, oxeptixoye edv o prnopodooue vo
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Behtidooupe nepantépw TNV meoBAedy) pag xon va pewdoouue Tic avaxpiBeiéc e, Tétowa Adn anawtoldy neplo-
obTEEN EYYUOT ONUACLOAOYWXAC YVWoNg oTo yopaxtnetotxd F2. To C4Cs, dnwg utoloyiletoun and tnv elowon
(4), etvon 0 dedtepoc uTOYHPLOC Yo TNV ohoxMipwoT e Telc pog apyttextovixfic. To CyCs eivan to teheutaio
xou Borditepo yopoxtnelo T and To SegFormer mou avtAiel TAnpogopleg and oAdxhnen Ty exdva. Katoypdepet
HoXELVES oNaclohoY XS cuVApELeS UETASD XploWwy TUNUATKY TNe Sedopévne edvag, xadhe Teptéyel OAec TiC
TponyoLpeveg enavahielc avtonpocoyric mou éyouv exterectel. To F2 otepeiton tne amopaitntng spunvelag tev
avTixeévey xau 1o C4C3 unopel va yeplotel authy Ty anaitnorn. 261600, yio GAAY pia Popd TELY TOAAATAAGL-
ac o0V auTd Ta oTolyela, N onuactohoyx| Ttoug andotaor npénel vo yelwdel. ‘Onwe galveton amd Tic e€lo®oelg
(16), (17) xou To By. 2, Tpoywedpe cuvehiooovtas 1 cuyywveuon tou C4Cs pe to FB xan peténerta axohouvdel
éva eninedo Channel Attention. Télog, to mopayduevo yopoxtnelotixd F4 unopel vo tohhamhaotaotel Ue To
F2 yio vo getdoel Tuy 6V eVAToUEVovTa oNUIctohoYIXd XeVE, oynuatilovtas Tov TEAXS EUTAOUTIOUEVO TAVUCTH.
Avutog o tavuothg topaxoroudel e€upTrhioelc UEYAANG EUPBERELOC, CUYXEVTRMYVEL TO TaYXOoUL0 TAECLO xou Blartneet
AMOTEAECUATIXG TIC AMAPAUiTNTES TOTIXEC CUVEMXTIXES LOLOTNTES.

Trdpyel par oocoun onuavtixy| dwopopd petald twv vhonotfoedyv woc. H agelne avdmtuén tou RACOD-Net
ATMOPEVYEL TNV TopAY WYY Tou evdlduecou mpoldvtog nou ovopdletar C4C3CoMF, dnwe unoloyileton and tnv
eZiowon (8) xau gaivetar oto y. 4. Egdbcov, to yapaxtnpiotixd MF ennpedlel tov dedtepo xhddo Tou amox-
WOXOTONTY YAS, OTWE TEQLYPAPNUE TEONYOLUEVKS, ETUAEYOUUE OTNV TEAXY| €XDOCT) TNG UEYLTEXTOVIXAC HAS
vor aLENCOUPE TN CUVELG(PORE TOL XL GTOV TPWTO ¥A&do. XN cuvéyela, petofBdletar o éva OTPOUL oUY-
Y@vevone, cOugwva pe v e&iowon (8), xau ovantOooeL €vol VEO GUYXEVTPWTIXG YoEaXTNEWOTXG TO omolo
OoTeEpa GUUPETEYEL oY avaepduevn ddpoton tne e&lowong (14). O 800 xhddot Tou anoxwdixonointh pog etvat
TPOCUPUOGUEVOL UE GUYXEXEWEVO TEOTO Yol Vo Tapldlouy oNuactohoYxd o évac Ye Tov dAlov. Oyl pévo o
0e0TERPOC UAABOC ElvVOL CNUACLOAOYIXE XOVTA GTOV TPWTO XAdd0o péow NS Yerong Tou otolyelou ME, adkd xou
péow touv C4C3CoMF o mpidtog ®Ad80¢ TelveL EVVOLOMOYIXA TTPOS TOV BEVTERO.

‘Oho autd 10 xlvnteo TNg CUVTNENG BLAPOPETIXWY xwWBLXOTONTAY, evog CNN xau evée Transformer, amontel pio
oppidpoun arinienidpoon petod Toug. H adpr| mpoodrinn aviyesd toug odnyel oe anotehéopata un anodexTd.
H emhoyt| tng dladpouric, OTee TepLypdpTnxe vewpeltepd, xou 1) TeoTiunom autiy Twv 800 LBEWBOY YaEaX TNHELo-
wxwy, MF xoa C4C3CoMF, yia ty extéheon OAwV TV CUYXEVTROTIXOVY dlepyootdv amoutel wio Poditepn
xaTovoNom TwV SdESUWY TEYVOLOYLOY TV BU0 XWOIXOTOWNTMY UAS.

Yuvdetnon Anwieiog
H ouvdptnon ancdielog tou RACOD-Net diveton and tny mapoxdtw e&lowon:
L=Lecn +  Lim,

6mou N Ly, elvan ) ouvdptnomn andietac petofd tne npoiune npoliedne P1 ye v enodndeuuévn oideio xon 1
Ly, vnohoy(leton yetall tng tedlurc mpdPBiedne P2 pe v enodndeupévn arfdeia.

H Lg,, opileton o e&hc:

Le, = LY, ;(P1,GT) + L¥op(P1,GT)
H L,,, opileto we e&€hc:

Ly = LY, ;(P2,GT) + LBop(P2,GT),

Kéle pio and tig 800 avtég ouvapthoets, Lem, xot Lyp,, tpoxdntouy and 1o ddpolopa 500 enuépoug GUVIpTHoENDY
anoieta. H mpd and tic 8Vo elvaw 1 LY, (+) mou anotelel tov otoadwopévo A6yo tne Toufc we Teog Ty
€vwor), dnAadt| tocotixonolel Tov Potud emdhudng petald tne meoBiedng xou tng enodndevuévne aadelag. H
LY op () opiletan we 1 otaduopévn duoduf andiewr eviponiag. O otodulopévoc Topdyovtas Tou avopépeTal
opllel oe xdie pixel éva Bdpoc o. Autd to Bdpoc otn it poc meplntwon urnohoyiletou ye téTol0 TEOTO, WOTE
vo emBpafedoouue TN cLVAETNON aTOAElS OTay Topdyetan pla TEOBAed xovTd oty ahfdela xon TAVTOYEOVA
VoL ETLTANEOVUE TN GUVEPTNON ATOAELNS OF TERINTWOY TOL 1) TPy eV TEOBAed ) anéyel TOAY and TNV Teay-
HATXO T TAL
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Y0Ovolo Acdouévmv

Ta 8edopéva mou yeENoLLoToLoVVTOL XUTd TNV EXTABEVCT) TOU YOVTEAOU Uac avTtAolvion and S0O0 SLapOpETIXES
Tnyéc. Ao to ohvoro dedopévmy pe v ovopasioc CAMO [27] yenoworototue 1.000 ewxdvee, xéde plo and Tic
omnoleg eyyudton TNy UmopEn TOUAGYLOTOV EVOS XopOLPAaptopévou avTxeévou. Ané to alvolo Sedopévev pe
v ovopacia COD10K [11], to onolo mepuhouBdver xapovphopiopéva avtixeluevo and 78 Siopopetind oevdpia
xan mepiBdhhovta, yivetow yerion 3.040 ewdvov. Anhady, to poviého pag exnodevetar ot 4.040 exdveg. T
v aglohéynom tou povtélou pag, Yenowonotoye 250 edveg and to CAMO, 2.026 eixdveg and to COD10K,
76 exdvee oand to CHAMELEON [56] xou 4.121 ewdvee and 1o NC4K [34]. H yprion autdv twv dedopévev
ouvddeL Ue Tic undhoineg €peuveg Omwe ol [11], [70], [31] dote Ta anoteréopota va elvan aviioTtolyo xou vo
umopoLY va cLYxeLolVv.

Medodol ASiohoynong

AZiohoyolue T0 povtélo Yag Ue mapdpolo TeéTo mou axohovinoav mponyolueves pehétee, énwe ol [70], [25],
[11], [77], [72]. Xenowornotolue 6T0 cUVORO Técoeplc PeBbdouc alohdynone yio x&de chvoho dedopévry, ot
OTOlEC OVOUPEROVTOL TIOPOXATE:

e S-measure (S,,) [7], nou anotehel pla pédodo downic adloldynone.

o Weighted F-measure (F¥) [35], tou mepthopPdver évay cuvduaoud oxpifelac (precision) xou avdxinong
(recall).

e Adaptive E-measure («E) [8], mou ypnowonoteitan yiot Ty a&lohdynon tne tunuatonoinone oe eninedo
1600 eOVooTOLYElWY 600 XaL o€ OAOXANEN TNV ExdVaL.

e Mean Absolute Error (MAE) [42], mou avunpoownelel v andiutn Sopopd e medBhedne pe vy
enaAndeupévn ahrfdelo.

Aentopépeieg YAonoinong

To RACOD-Net vhonoeltan pe yerion e Phodxne PyTorch [41]. Ta Bdpn twv 800 xwdixomontdv ap-
YHOTOLOVVTAL PE Tpo-exntandevpéva Bdern and to chvolo dedopévewy ImageNet. Q¢ Behtiotonomthc (optimizer)
yenowonoteiton o Adam [26] pe apyxd ypdvo pdidnone to 2e-5. T vor Tiwprioovue to peydha Ben xou vo
Ta dtnprioovue o younhéc Tiwée opiloupe TNy unep-napduetpo weight decay tou BeAtiotonmowty (o ye Tov
apy6 ypdvo pdinone. o tov xwdwonowty SegFormer uodetolye v éxdoor Mit-b4, 1 omolo pudpilel e
AmOUTOVUEVES UTER-TIoRAUETEOUS. Exmoudetoupe to yoviého yag yio 39 enoyée, elodywvtog 6 edve xdde gopd
He Ywpuxée dlao Tdoelc 456x456 xou 1 SLdoTaon Twv xavahwy eivar lon e 768. H exnaldcuor dapxel elte 11 dpeg
av yivel yenon e xdptac yeapodv P100 16Gb eite 6 dpeg xon 30 Aentd av yivel yprion Tne xdeTog YeupLxy
GeForce RTX 3060 12Gb.

ArnoteAécpata

Yuyxpivoupe T0 HovTého pag pe Sexaéll dAla povtéla, ta omolo mapouctdlouy eEapeTixd anotehéouato. XTov
IMivoxa 1 yivetow avtidnmtd mwe to poviého Uoc Eemepvdel o emBOOELS OPXETEC TEONYOVUEVES UENETES oL
Véter Tov YN otg mpoPiédelc oe mocootd 62.5%. ‘Eyel t Suvatdtnra vo aviyveloel wixpd xan peydha
xoovphaplopéva avtxelpeva, evionilovtag pe peydhn emtuylo ta 6pla toug. O Vépufog oTic teplocdTepes
TEQINTAOOELS Exel e€oudeTtepwiel xou xatd cuvénelo To amotéAeopa €xel LPNAG Podud euxpiveloc. Axduo xou
6ToY oTNY EXOVAL ELOOBOU EUTEPLEYOVTAL TPATAVE amd éva avTixelueva 1 avtixelpeva to onola oy wpilovton
o€ EMPEPOUC TUNUATA, TO UOVTENO pog Topouctdlel dpiota anoteéopata, oyedov Bl ye v emBefouwuévn
olfdeta. To yeyovog dti 1 anddoor Tou Yovtéhou yog Eencpvdel dheg TIC Tponyolpeveg UeAéTeg o€ T6G0 LPNAO
T0606TO, ANOTEAEl EVOEXTIXG OTOLYElD TNG EMTUYNUEVNG LAC HEYLTEXTOVIXAC.
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NC4K COD10K-Test CAMO-Test CHAMELEON
Method 4,121 Images 2,026 Images 250 Images 76 Images
SmT oET  FE1T MJ SmT oET Fr1+ Ml SmT oET Fo1 Ml SmT oET Frt Ml
PraNetz2020 [12] .822 .871 124 .059 | .789 .839 .629 .045 769 .833 663 .094 .860 .898 763 .044
SINet2020 [11] .808 .883 723 .068 | .776 867  .631 .043 745 .825 644 .092 .872 .938 .806 .034
SLSR2021 [34] .840 .902 .766 .048 .804 .882 673 .037 787  .855 696  .080 .890 .936 .822 .030
MGL-R2021 [73] .833 .893 739 .053 .814 .865 .666 .035 782 847 695 .085 .893 923 .812 .031
PFNetzo21 [36] .829 .892 745 .053 .800 .868 .660 .040 782 .852 .695 .085 .882 .942 .810 .033
C2FNetzo21 [57] .838 .898 762 .049 .813 .886 .686 .036 .796 .864 .719  .080 .888 .932 .828 .032
UGTR2021 [77] .839 .886 .746 .052 817 .850 .666 .036 784 .859 794 .086 .888 921 794 031
SINetV22022 [10] .847  .898 770 .048 .815 .863 .680 .037 .820 .875 743 .070 .888 .930 .816 .030
DGNetoo22 [24] 857 907 784 .042 .822 877 693 .033 .839 .901 769 .057 .890 934 816 .029
SegMaR2022 [25] .841 .905 781 .046 .833 .895 724 .033 .815 872 742 .071 .897  .950 .835 .027
ZoomNetz022 [72] .853 907 784 .043 .838 .893 729 .029 .820 .883 752 .066 .902 952 .845 .023
FDNet2g22 [77] .834 .895 .750 .052 837 897 731 .030 .844 903 778 062 .894 .948 .819 .030
TPRNet2g22 [74] .854 .903 .790 .047 .829 .892 725 .034 .814 870  .781 .076 .891 .930 .816 .031
DTINetz2022 [31] .863 915  .792 .041 | .824 .893 .695 .034 857 912 796 .050 .883 928 .813 .033
CamoFormer-Sz022 [70] .888 .941 .840 .031 | .862 .932 .772 .024 | .876 .935 .832 .043 .891 .953  .829 .026
CamoFormer-P2g22 [70] | .892 .941 .847 .030 | .869 .931 .786 .023 | .872 .931 .831 .046 .910 .970 .865 .022
RACOD-Net (Ours) .889 .939 .855 .031 | .872 .942 .804 .022 | .868 .928 .835 .047 917 .971 .887 .021

IMivaxag 1: Ilocotxd anoteréopata o dnudota ohvora dedouévnv. Ta anotehéouata mponyoluevwy HeEAeTHY €yxouv emPBefounidel anod
<a [70], [31], [25], [36] and [24]. Me ypmpo Koxxvo, Ilpdotvo, xou Mrhe unodexvietar 1 mpddt, deltepn xou tpitn xohvTepn anddoon. Ta
oluBora ‘T/1 utodnhdvouy avtiotoya Twe 660 VPNAGTERO/ YUUNAGTERD Elval TO TOCOTS aTOTEAECUA TOGO XAUNDTEPO ElvOL.

IMewpdppota

Exteholpe didpopa TELQGUATI UE ATWTERO OXONO VO ALTIOAOYHOOUUE TIC EMAOYEC TOU UNOTIOLACOPE OTNV -
YLTEXTOVIXY pag. A@aupdvTag dldpopa GTOLYER 1 TPOTOTOLOYTOS XATOLES UTER-TORAUUETEOUS, AAUBAVOUUE GUY-
XEXPWEVA TOCOTIXG amoTteAéoyarta, Ta onola 0dnyoly ot mpofAédeic younhdtepou emnédou, emPelatddvovtog Tic
TEMUEC YOG TEOTUWNAOELS. LUYHEXPLIEVA, EXTEAOVUE T TOEAXETE) TELQGUATIL

o And v el pog opyltextovixy tpoydatonoleiton agalpeon tng TeAxnc medBiedng xou Swthenomn povo
e apY S TEOWNG. ANAadY), 0 ATOXWOIXOTOLNTAC HoC TAEOV TIEPLEYEL LOVO EVaY XAEDO, TOV TEKOTO XADO.

o Xpron e amhoixric vionoinong tou RACOD-Net, énou npoyuotonoteitar povdya pio adpy| ddpoiorn ue
oxond TNV Evwor) Twv 800 XAddwv Tou anoxwdixomointy. H amioixr auth apyttextovixy| ameixovileto
oTNYV dpLOTERT EXOVA Tou Xy. 4.

o Melwon tne Sidotaons tewv xavolwy oe 256, 128 xou 64.
o Melwomn TV Ywpxdy BlaoTdoewy TNE exovag elcddou and 456x456 o 256x256.

To anoteAéopaTa TRV TUPATAVG TELoUdTLY anetxoviCovton otov Iivoxa 2.
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NC4K COD10K-Test CAMO-Test CHAMELEON

Settings 4,121 Images 2,026 Images 250 Images 76 Images
SmT oET FRT M| | SmT  oET  FRT Ml SmtT oET FRT MY SmtT oET FRT M
IMMediwwn ITebBAedn .886 931 .834 .035 | .870 918 778 .025 .865 917 812 .052 913 .949 .857  .026
AnNotx¥ YAoroinon 872 928  .837  .037 | .860 .938 792 .024 847 915 .815 .055 .902 957 872 .025

Aldotaon xavaiidv: 256 884 936 .845  .033 | .868  .942 .796  .022 861 919 823  .050 | .910 .960  .870  .024
AidoTtoor xavaiidyv: 128 .886 .936 .842 .033 | .872 .937 794 .023 .864 .925 .825 .049 915 .960 .874 .022
AvdoTtoon xavaiionyv: 64 .887 .934 .837 .034 | .868 .922 779 .024 .866 .922 .820 .050 .908 .944 .855 .027
Euwxéva Ewcbdou: 256x256 | .848 916  .800 .044 | .834 928 .751  .029 801  .870 .746  .071 850 .921 791 .038

RACOD-Net .889 .939 .855 .031 | .872 .942 .804 .022 | .868 .928 .835 .047 | .917 .971 .887 .021

IMivaxag 2: Hoocotixd anotedéopato and to mewpduatd poc. To xahltepa anotehéopota elvon onuewpéve ue évtovn ypopR. Ta cOpfora 1/}
umodnAdvouy avtiotolyo twe 660 LPNAbTEPO/ YaunhoTepo elvan To TOGOTXG amoTéNECUA TG0 XAMDTERO Elval.

e autd To onuelo ogelhovpe vo emlonudvouue plor onuavTxey] topatienon tou Tteoxtntel and tov Iivoxa 2. H
anAoix UNOTIOINGT TNS OEYLITEXTOVIXNC oG ETULTUY Y EVEL O)EDOV TaL (Bl AMOTEAEGUATO UE TO TPWTO UoC TElpaa,
OTOL YENOLHOTOoOPE UOVO TNV TR TEOBAEYN TNe TEMXAS Hag dpyttextovixhc. Tro autés Tig ouvirixes o&-
LoAOYNONG, Yivetow e0xoAa avTANITd e N Yewpntixd tehixh Qviplouévn TedBAedn and tny amhoixr) vhonoinon
elvon e&ioou pétpla pe TV meodn teoPBiedn tng mpotewoduevng apyttextovixrc. Méow autic g Bladactog
€youue emahndeloel xou Ue mocoTIXd Bedouéva OTL xatd TN cOVINEY BLUPOPETIXWY YUPAXTNELOTIXWY and €val
CUVENXTIXG VELPWVIXS amoxwdononT) o évay Transformer xwduxonomtn dev opxel pio A TpocUfxn Twv
TOEOLY OUEVLY TaVUOTAOY. OQelAOUYE Vol UELOTOUUE TO GNUCLOAOYIXO YAGHO TV YAUPUXTNELO TIXWY Tou eEdyovTol
ané 8V0 TO00 DAPOPETINONE HWOXOTONTES TPOTO) TEOYWETCOLUE OE Wlot TEpATERPW avauLT Toug.

Yuvurnepdopata xaw MeAhoviixée Kateudivoeig

Ye auth TV epeuvnTuer xon TEwpopaTer dtadxacta etonydyoue ulo vEa xon TOAAE UTOCYOUEVY] AEYLTEXTOVIXY),
1 omolo napouctdlel eviunwotaxd anoteAéopato. ‘OloL oL GUVBUAGHOL X0l Ol CUYYWVEDGEL, TV YUEAUXTNELO-
TIXOV NG ELCAYOUEVNS EXOVOS, XAHMEC XAl Ol UTER-TUEAUETEOL TOU LOVTEAOU UOG, HEAETHUNXOY TEOCEY TLXA Xo
pedodxd dote va doundel 1 CUYXEXPWEVY] AEYLTEXTOVIXY).

Trdpyouv apxetéc Meploy€s NG 6PACTC UTOAOYLOTWY GTOV TOUEL TNG LUTEXNE EMOTAUNG, OTwe elval 1 TUM-
patonoino ToAUTodwy xat 6Yyxwv. Ko oTic 800 aUTEC TEQINTOOES TO YEWUIL, TO CYHUN XaL 1) UPH TwV UTd
e&étoomn madoyevewhv tauptdlouy apxetd e toug Telylpw Uytelc otole xan Yupilouv apxetd Tic WBLOTNTES TWV
XAULOUPAAPLOUEVLV OVTIXEWEVODY. AZIONOYACUUE TO HOVTEAD HoG X GE GUVOIX DESOUEVWV TIOU apOoEOLY TNV
Tunuortonoinoyn mohinodwy. To anotehéoyato tng aglohdynong eivon opxetd eviappuvtind, xodog oe xdmola
cUVoha BeBOUEVKV TO HoVTEND Uag Tapdyel e€oupeTinés TEOPBAEPELS, xou UTOBEXVUOUY TIWC 1) THPOLCA ApYLTEX-
TOVXN) €YEL T1) BUVITOTNTA TEPAUTER YEVIXEUOTC Xoll EQPAPUOYTS.

Extéc and 1oV Touéd TV XUUOVPAAPLOUEVOY AVTIXEWEVRY, ATOCKOTOVUE OTO VoL EXTIULOEVGOUIE TO UOVTEAO U
X0l OE GAAOL BLOPORETING GEVAPLOL TNG 6PAUOTC UTOAOYIOTWY. T APy 0uv opxeTéC UEAETEC XoU GUVOIX BEBOUEVLV Yo
apxeTo0g TopEelg X ¢ ex TOUTOL Val HTAY APXETA EVOLUPEPOV VO THPATNEHOOUUE TNV ETUBOOY) X0 T1) CUVELGPORA.
TOL YoVTENOL Uag o€ autéc T ouvdrixes. H aviyveuon npoeZéyovtog avuxewwévou (salient object detection), n
aviyveuon wxpdv avtixewwévov (small object detection), n aviyveuorn avuxeléveoy yéow Bivieo (video object
detection) xaw n aviyveuon avixewwévoy and evogpta péoo (object detection in aerial images ) Yo unopotoav
va ebvon mdavée eQappoyég Yl Ty enéxtact g dpyxic apyttextovixic tou RACOD-Net. Qotéoo, 6tav
mpoxeltar vou auEndel to uéyedog Tou GUVOROL BEBOUEVWY UAC, OPEINOUUE VO TPOTIOTOCOUUE XATIAANAL TNV
apyrTEXTOVIX Wog Wote vo elvar oe V€on va avtaneZéhdel, ywpic va avéndolv ol amoutoluevol utoloyio Txol
mopoL. Anhady), To uéyedog tng moptidac mou ewodyetan elvon emBeBAnuévo va auEndel apxetd pe x6cTOC TNV
TEOTOTOINON XAMOLIC GAANG TUPUHUETPOU # XATOLOU TUHUATOEC TOU BIXTUOU UoC.

EniCoupe nwg to RACOD-Net Yo unopéoet va hettoupyRoet e mhaloto avapopdc mou Ya JEYElpel TEpLooOTERES
véeq 10€eg oe BUOXOAES MEPLOYES TNG OPUONE LTOAOYLOTAOVY. O %MBIXAC Yag o Tor exnaudevpévo Bdpr, to omola
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odnyolv ota anoteréopota Tou Ilivaxa 1, Beloxovta dwrdéoya oto: https://github.com/mikestratakis/
RACOD-Net.
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Chapter 1

Introduction

1.1 State Of Computer Vision

Computer vision is a field of artificial intelligence that processes visual data by excessively using Machine
Learning through Deep Learning techniques. Specifically, over the last decade, deep convolutional neural
networks have produced several achievements over the different aspects of computer vision. Through these
innovations, it is possible for an artificial model to recognize objects, patterns as the human eye and create
semantic understanding of the world as the human mind.

State-of-the-art computer vision applications, despite having heavy parameter architectures, have been suc-
cessfully trained by leveraging graphical processing units (GPUs) for parallel computing implementations,
resulting in faster processing of data and systems able to achieve high precision and minimal false predic-
tions [39]. Major products that are commonly used every day are utilizing core concepts of computer vision
techniques, thus demonstrating an important role in object detection and semantic segmentation in health-
care and manufacturing domains.

Computer Vision as a field of research conceals several challenges, mainly because of the human eye being
too flawless in many visual tasks [22]. For an artificial model to achieve similar performance a vast amount of
computations and visual data are required. To further enhance the outcome and minimize over fitting such
models require architectures than can obtain rich information and high-level understanding of the provided
data.

1.2 Thesis Motivation

One of the key abilities of the human eye relies on the successful and instant object recognition and semantic
realization of the world. Under several conditions, the identification of objects and their understanding is
accurate and the process comes naturally and effortlessly. On the contrary, computer vision models require
to extract a set of features from the given digital representation of the world and later analyze them.

However, there are objects either natural or artificial made with the capability of being camouflaged, thus
avoiding salient features to be extracted. The evolution of animals in the wild and the human-made camou-
flaged strategies reduces the probability of detection or recognition by potentials predators or enemies [55]. In
addition, the evolution of new diseases derives a complex and challenging area in modern healthcare industry
detection of lung infections and their boundaries from medical images [45]. A commonly used strategy by
these objects is to adapt the pattern, color and other morphological properties of the surrounding environ-
ments to such a degree so that the driven correlation in appearance will lead even the experienced human
eye in a false decision [43]. Overall, camouflage manipulates the visual representation that reaches the viewer
and highly increases the challenges of an accurate segmentation [37].

Despite these challenges, there have been several studies based on deep learning architectures that have
shown a promising performance, even with a small amount of data available. Many researchers have based
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Figure 1.1: Visual comparisons among challenging objects, from different and competitive models.

their models in complex convolutional neural networks and recently in complex Transformer neural networks.
However, the produced segmentation results are often mediocre and unsatisfactory, especially in cases where
the object is either perfectly blended with the surrounding or neighbours with several other camouflaged
objects.

A fine-grained recognition model is expected to outcome such challenges and ultimately produce effective
results, aiming to overcome the limitations and faults born from previous works. Achieving such an ob-
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jective not only enhances the effectiveness of computer vision, but also generates greater profits in image
segmentation and object detection.

1.3 Thesis Contribution

Transformer architectures have revolutionized the way attention has been implemented in modern deep
learning models by drawing global long-range dependencies between input sequence elements [60]. On the
contrary, convolutional neural networks are able to extract features through convolutional structures that
glide through the input sequence based by the dimension of the kernel [40]. These features integrate either
low-level information in shallow layers or high-level semantic information in deeper layers [19, 28].

Unlike previous works, in this paper we introduce a novel architecture that focuses on fusing appropri-
ately the low-level information produced by traditional CNNs with the global context derived from a Vision
Transformer (ViT) architecture. More specifically, we implement a powerful and effective framework termed
Refined Accurate Camouflage Object Detection Network (RACOD-Net) that utilizes two backbone en-
coders and an state-of-the-art decoder that handles the described fusion operation.

Our backbone consists of the Convolutional ResNet50 encoder [18], that adopts shortcut connections, and
the Transformer SegFormer encoder designed for semantic segmentation [68]. In addition, a cascaded partial
decoder module is manufactured to successfully combine the information constructed from the encoders, re-
sulting in an enriched segmentation outcome.

As shown in Fig.1.1, our contribution, RACOD-Net, outperforms several previous studies over challenging
objects and scenarios.
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Chapter 2

Related Work

2.1 Object Detection

Object detection is a challenging aspect of Computer Vision and its main objective relies on drawing a bound-
ing box for every object of interest and at the same time assign them a class label [3]. Each model expects
as an input an image or even a live footage and outputs one or more bounding boxes of certain classes for
each predicted object.

One of the first works that introduced a successful method, by achieving a 30% improvement over previous
studies, was the R-CNN architecture [16], proposed back in 2014. The concept idea was to extract fea-
tures through convolutional layers, using a selective search algorithm that would reduce the vast amount of
category-based regions to approximately 2000. These regions would represent possible object instances from
the given input, such as car, airplane etc, and each feature would have a fixed vector length of 4096 that
later would be fed in linear SVMs. Finally, the region with the higher intersection-over-union (IoU) score
would be selected. Despite achieving excellent performance at that time, the main drawback of the model
was the lack of learning during the selective search state and the slow object detection time of 47 seconds
per image [15], that made the model unable to be embedded in real time applications.

As a result, Fast R-CNN was later indroduced by the same author with the aim of enhancing speed and
effectiveness [15]. The key concept was based on feeding the input image in the convolutional layers for a
feature map to be produced, instead of feeding the proposed regions. From the produced feature maps, using
a selective search method region proposals are identified and passed into a region of interest (Rol) pooling
layer, where max pooling reshapes any valid regions of interest into a fixed size (H x W). A region of interest
is specified by its top-left corner, its class, its height and its width. Finally, every Rol vector is forwarded
into a softmax layer, that holds the class probability and the offset values for the predicted bounding boxes.

R-CNN and Fast-CNN shared one common portion of their architecture, the selective search algorithm that
would cost around 2 seconds when the model was implemented in CPU’s [49]. This led to Faster R-CNN
that included a major algorithmic change where region proposals were calculated through another convolu-
tional network, named Region Proposal Networks (RPNs), reducing the current stage cost from 2 seconds to
approximately 10ms per image. The RPNs implemented the idea of attention in neural networks and guided
the Fast R-CNN component to detect the objects. More specifically, the last convolutional layer produces
a feature map that is later fed into a rectangular sliding window of size n x n, where n = 3. Each sliding
window contains k possible region proposals where each proposal is dependent over k£ anchor boxes. These
anchor boxes centered in the middle of each sliding window pinpoint objects of various sizes and aspect ratios.
While the network slides through the feature map pixels, it validates whether these £ anchors include objects
from the actual image and updates the anchor coordinates.

Unlike R-CNN, Fast R-CNN and Faster R-CNN that utilized regions to detect objects over the input image,
YOLO algorithm (You Only Look Once) is based on regression, outputs bounding boxes and class labels
concurrently and has the potential of being used in real time applications since the base architecture runs at
45 frames per second [46]. YOLO splits the given image into an S x S grid and for each grid cell B bounding
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boxes and confidence scores are predicted, indicating how accurate the model seems to be. For each of the
B bounding boxes the network outputs 5 predictions that consist of the (z, y) coordinates of the object, its
height, its width and its class probability. Although YOLO outperformed former studies, due to the spatial
constraints of the algorithm it struggled to detect small objects.

Since YOLO had some drawbacks, YOLOv2 [47] and YOLOv3 [48] were later introduced. YOLOv2 made
use of anchor boxes and YOLOv3 showed great improvements in detection of smaller objects. Ever since, the
YOLO family has shown great ideas, thus enhancing the overall accuracy and smoothness in real-time usage
when low-cost components are being used. It is worth mentioning the evolution in computer vision that led
from the traditional object-detection algorithms, relied on extracting handcrafted features like Histogram
of Oriented Gradients (HOG) [4], to the Two-Stage Object Detectors, like the R-CNN family, who firstly
produce regions of proposals and afterwards make predictions for each region and later to the Single-Stage
Object Detectors who apply the detection head directly on the feature map, like the YOLO family.

Although these methods showcase great improvements and results, they aim to detect salient objects. Objects
with an increased contrast compared to their surroundings that attract human attention. On the contrary,
camouflaged objects require an entire new pipeline rendering SOD (Salient Object Detection) techniques less
sensitive to provide adequate outcomes [79].

2.2 Image Segmentation

As the term suggests image segmentation is the process of partitioning an image into multiple segments.
There are two major types of image segmentation, semantic segmentation were all objects belonging to the
same type are assigned the same class label and instance segmentation were all instances of a type are assigned
their own separate label.

Recent deep learning methods designed for semantic segmentation make use of the classic encoder-decoder
and fully convolutional architecture, as showcased in FCNs [52] where the main idea uses VGG16 as the
backbone encoder to produce low resolution features and the decoder is responsible to upsample the output
to match the original image. However, the decoder fuses shallow and deeper features by element wise
addition to exploit local predictions that respect the global structure. In a similar manner, SegNet [1]
uses a decoder network where the feature maps are upsampled using the memorized max pooling indices
from the corresponding encoder layer, DeconvNet [38] uses a similar upsampling techique termed unpooling
and includes fully-connected layers increasing the computational cost. U-Net [50], designed for biomedical
images, transfers the entire feature maps from the encoder to the decoder and concatenates them before
further convolutions are performed. UNet++ [78] comes with a new more powerful architecture, based on
the original U-Net, by reducing the semantic gap between the encoder and the decoder features before the
fusion leading to an easier optimization problem.

Ever since the paper ” Attention is all you need” [60] Transformers have been introduced with the concept
idea of the attention mechanism to collect global dependencies from the given input. With the great success
of Tranformers in NLP tasks ViT architectures were proposed [6], [76]. As shown in figure 2.1, the generic
architecture behind ViT relies on splitting the 2-D input image into a sequence of 2-D flattened patches,
called tokens, which are mapped to a fixed length linear embedded space. These embedded patches along
with a positional embedding are the input to the Transformer encoder. The Multi-head Attention Network
inside the encoder helps the model focus on the most important regions. However, one strong drawback lies
in the fixed size of the tokens that cannot capture details at different dimensions.

SegFormer [68] is a Transformer model inspired by the ViT architecture that comes with positional-free
encodings and a faster self-attention mechanism that contains a sequence reduction process, able to adapt
at different resolutions increasing performance and inference time. Swin-Transformer [30], like SegFormer,
also introduced hierarchical feature maps and a Shifted Window Self-Attention module to also improve the
quadratic complexity of the original ViT architecture.
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Figure 2.1: The generic ViT architecture [6]

2.3 Camouflage Object Detection

Camouflage object detection relies on segmenting the image in a class-independent manner. Thus, instance-
image segmentation is not demonstrated since the task of detection is utilized by assigning the value of 0 to
pixels not containing a camouflage object and the value of 1 when a camouflage object is present at each
pixel.

Since deep learning evolved, CNNs has showed great results and performance in accomplishing the required
task. Great architectures based on CNN backbone like BASNet [44], SINet [11], ANet [27], SINet-V2 [9],
BSANet [79], BGNet [58] and PFNet [36] make use of a convolutional backbone encoder and later use a
decoder that firstly produces a coarse map output and afterwards through refinement modules the camou-
flaged object and its boundaries are more accurately and precisely predicted. The concept idea of this partial
cascaded decoder having a two stage refinement module is based on the original process represented by [67].

With the evolution of Transformers camouflaged vision tasks have been enhanced as well. A dual-task inter-
active transformer (DTINet) from [31] utilized two Segformers as their backbone encoder. More specifically,
the camouflaged object ground truth (GT) was used to extract features from the foreground stream and
the 1-GT to extract features from the background stream. UGTR [69] introduced Bayesian learning into
Transformer-based reasoning to successfully capture the uncertainty for camouflaged object detection. Camo-
Former [70] adopted a pyramid vision transformer encoder (PVTv2 [62]) and generated a progressive decoder
that involved a masked separable attention module to refine the output mask.
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Chapter 3

Our Proposal: RACOD Network

3.1 RACOD-Net Architecture

Unlike previous studies RACOD-Net architecture manages to successfully combine two powerful backbone
encoders, a CNN encoder and a Transformer encoder, through a novel partial cascaded decoder to output an
enriched tensor containing both global and local information. As shown in Fig. 3.1 we initially have a total
of 7 features from our backbone encoders. A set of {Xj}3_, features extracted from ResNet50 encoder [18]
and a set of {Cy}1_, features extracted from SegFormer encoder [68].
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Figure 3.1: The RACOD architecture
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3.1.1 CNN Backbone Encoder

The main philosophy behind ResNet50 is based in the VGG-Nets [54]. ResNet50 solves the famous vanishing
gradient problem, where the weights remain unchanged as the derivatives vanishes especially in deep networks,
through the introduction of shortcuts so the model can propagate larger gradients to initial layers. However,
since the main idea is to eventually retain only local information derived from the restricted receptive field
of the shallower layers of the ResNet50 architecture we capture only the first 3 layers. Since the ResNet
architecture is widely used over numerous papers we choose to avoid further explanation and analysis.

3.1.2 Transformer Backbone Encoder

Additionally, SegFormer acts as a Transformer encoder by initializing an overlapping embedding layer. Thus,
given an input image of shape B x H x W x 3 patch merging is performed and afterwards a trainable linear
projection layer is applied. The input image is transformed into a sequence of flattened patches with shape
of B x (H x W) x C, where C represents the number of channels and B the batch size. The multi-level
features produced have shape B x 21% X % x C;, where i € 1,2, 3,4, achieving the reduction of spatial
dimensions throughout the model. In order to accomplish an overlapping process the first feature is patched
with a kernel size of (7, 7), stride of 4 and padding of 3 while the rest features expect a kernel size of (3, 3),
stride of 2 and padding of 1. With these specific values the overlapping process is established and therefore
among sequential patches the local continuity of information is preserved. Using stride greater than one and

less than the kernel size results in decreasing the input’s spatial dimension.

The main bottleneck of the original NLP (Natural Language Processing) transformer encoder tasks was the
quadratic complexity O(N?). This original process could be used with images with low resolution where the
images would be split into an input sequence of pixels. However, images with high resolution require even
more memory and computations because every pixel of the image has to attend with every other pixel of
the image, thus generating a quadratic complexity. To tackle effectively such issues SegFormer introduces a
reduction layer just before the self-attention matrix multiplications take place, since the input is forwarded
through a convolutional layer with a kernel size of (R, R) and stride of R reducing the complexity from

O(N?) to O(Nif), where N = H x W. Following this reduction layer the self attention module takes place

and is calculated using the traditional transformer formula:

Attention(Q, K, V) = softmax(ﬁ%)v,

where Q, K, V are the queries, keys and values of the transformer encoder and dpeqq acts as the value that
scales the attention score QK.

Unlike the original paper ” Attention is all you need” [60] where dj,cqq has the same value with the embedding
dimension, Segformer sets dpcqq = embedd”;gef;memw" and head = [1,2,5,8] for each hierarchical feature
respectively.

It is worth mentioning that in our experiments we discovered that for a random tensor of size (1, 3,456, 456)
the execution time of our model fell in half with the use of this reduction layer. RACOD-Net architecture
sets reduction ratio R to [8,4,2, 1] for each hierarchical feature respectively. This ratio drops half in value
for every feature produced due to the fact that deeper features have smaller spatial dimensions compared to
shallower features that contain higher spatial dimensions.

Unlike ViT architecture [6] that includes positional embeddings in order for the transformer to remember
the order or sequence of the patches, SegFormer skips this step. Intuitively we could argue that for semantic
segmentation positional embeddings are not required because from the self attention module we expect only
a filtered vector that contains parts of the image that are similar with each other, since we are performing a
binary segmentation task instead of a NLP task.

The output from the self attention module z_in is then forwarded into a Mix-FFN (Mix Feed Forward
Network), as shown by the formula:

r_out = Miz_ FFN(z4in) + x.in,
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where Mix_FFN(x_in) = Linear(GELU (DepthWiseConvsys(Linear(x_in)))).

Since positional embeddings have been skipped, SegFormer uses a depth wise convolution layer inside the
Mix-FFN module with a kernel size of (3, 3) that is enough to leak local information while the kernel is
sliding through the vector. The SegFormer encoder architecture, as already described, is displayed in Fig.
3.2.
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Figure 3.2: The SegFormer Encoder [68]

3.1.3 PRDM: Partial Refined Decoder Module

Although, SegFormer architecture comes with a built-in decoder module RACOD-Net introduces a novel
partial cascaded decoder that captures and combines both the features from ResNet50 encoder and SegFormer
encoder. The main concept of our cascaded partial decoder is based from the original paper ”Cascaded
Partial Decoder for Fast and Accurate Salient Object Detection” [67]. As a result, our decoder consists of
two powerful branches. The first branch develops an initial coarse map. This technique of a two-branches
decoder is adopted by many other models like [13], [44], [11], [9], [29], [31], [5] and [70].

Unlike all previous researchers that use either the coarse map or some other enhancement modules to refine
the features involved in the second branch, we use both the coarse map and some key features from the
first branch into the second branch, as shown in Fig. 3.1. As a result, the second branch gradually refines
some of its features using some specific key vectors from the first branch, mainly because of the information
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these vectors hold. The pattern of mixing these key features acts as a connection between the branches and
consequently they cannot easily be distinguished.

The decoder is built upon the encoder that produces {Xk}‘z:l features extracted from ResNet50 encoder and
{Cy}}_, features extracted from SegFormer encoder.

3.1.3.1 Coarse Map

Our decoder’s first branch consists of a series of computational calculations with the aim to output a prema-
ture prediction that detects the object and acknowledges its semantic global representation. To capture this
global context we proceed by manipulating the benefits of Transformers technology. Towards this target, our
first goal is to compute the coarse map using only X5, Cy, C3 and Cy4 features. Initially, we fuse X5 with Cs
to produce an intermediate feature called MF(Mixed Features) as follows:

MF = BConv(Concat(BConv(Inter(C3)) ® X2), X2), (3.1)

where BConv(+) denotes a convolutional operation followed by a batch normalization and finally by a ReL.U
activation function, Concat(-) represents the concatenation along the channel dimension, Inter(-) is the in-
terpolation of the input to the given spatial size and finally ® expresses the Hadamard product.

As mentioned in [11], we multiply elements to decrease their semantic gap before concatenating them. Thus,
the fusion operations of our decoder mainly consist of picking the appropriate features and forwarding them
to such sequential layers.

Afterwards, our decoder fuses features Cs, C4 and MF to produce an intermediate product C4Cs , as follows:

Cavpxe = BConv(Inter(Bconv(Cy))) (3.2)
C4 = BConv(Inter(MF)) (3.3)
Cy C3 = BConv(Inter(BConv(Concat(Caupxa ® Ch, Cavpx2)))), (3.4)

where Cyypx2 occurs from Cy after a BConv(-) operation, followed by upsampling X 2 for shape matching
and another BConv(+) operation. For shape matching we also downsample X 2 the MF feature and pass it
through a BConv(-) operation to produce C%.

We finally compute the coarse map as follows:

Cavpxa = BConv(Inter(Bconv(Cy))) (3.5)

CY = BConv(Cy)) (3.6)

040302 = Cé ® C4pr4 ® C4Cs (37)
C4C3C,MF = Beonv(Concat(CyC5Ca, M F)) (3.8)
Coarse Map = Inter(Pred(C4sCsCyMF)), (3.9)

where Cyypxa comes from Cy after a BConv(-) operation, followed by upsampling X 4 for shape matching
and another BConv(+) operation. C4C3Cs is the output after multiplying Cso, that passed through BConv(-)
operation for channel matching, with both Csypx4 and the previously computed element C4Cs. The coarse
map concatenates C4C3Cy with the previously computed MF element. Intuitively we argue that MF is a
powerful feature since it contains information from two features, ResNet50 X5 and SegFormer Cs. As a result,
we choose to increase its contribution to the coarse map with this concatenation. Afterwards, we forward the
concatenated output into a BConv(-) layer for channel restoration to produce C4C3CoMF. A Pred(:) layer
adds another convolution to shift the coarse outcome to one channel (gray-scale for binary segmentation).
The process ends by upsampling X 8 to achieve same spatial dimensions between the ground truth and the
coarse map.
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3.1.3.2 Refined Map

As mentioned by [66], deep features from Transformers also include rich semantic information and shallower
features contain important spatial information. Based also by similar thoughts from [28], [19], [17] that
concern CNN’s, we proceed with a sequence of actions finalizing our decoder’s second branch.

In the first place, we perform a specific combination between low level features from ResNet50 X, Xy with
the lowest feature from SegFormer C;. Fusing these three elements outputs the product FB (Fused Bottom),
as follows:

X1 Xy = BConv(Concat(Xy, X2)) (3.10)

C1 X1 = BConv(Cy ® X1) (3.11)

Cy X1 X5 = BConv(Inter(BConv(Concat(C1 X1 ® X1 X2, X1X5)))) (3.12)
FB = BConv(Concat(MF © C1 X1 X2, MF)), (3.13)

where it is obvious that once again we are using the enriched intermediate element MF to influence the fusion
of the lowest features from our encoders.

There exists one more powerful feature in RACOD-Net architecture. C4Cs, as calculated from equation
(3.4), is a hybrid outcome from successfully fusing C4, C3 and X5. Although it contains some local properties
from Xg, it is very sensitive in semantics since C4 has a higher presence. This feature is included during this
refinement stage on purpose to inject even more conceptual knowledge. We finally produce the refined map
as follows:

F1=CyC3CoMF + FB

(
F2 = ChannelAttn(F1) ® F1 (3.15
F3 = BConv(Concat(C4Cs, FB)) (
F4 = Channel Attn(F3) © F2 (
RefinedMap = Inter(Pred(F4)), (3.18

where the usage of C4Cj is obvious during the concatenation with the product FB . It is worth mentioning
that similar to the skip connections deployed in ResNet architecture [18] we perform element wise addition
between C4C3CoMF and FB. The main reason is the need to pass high-level semantic information unchanged
to the latter layers of our neural network. ChannelAttn(-) represents a new layer of channel attention that
requires further analysis.

One major factor in our refinement process is the Channel-Attention layer based by a convolutional block
attention module, as mentioned in [65]. This attention module, originally comes with two sub-modules, as
shown in Fig. 3.3.
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Figure 3.3: CBAM: Convolutional Block Attention Module [65]

However, unlike [65] which places these sub-modules during the ResNet50 encoder computations we placed
only the channel attention sub-module in our decoder to refine the outcome. Since the performance of
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RACOD-Net increases as the channel dimension increases, it is vital to filter theses channels. Each channel
in the decoder’s computations is considered as a possible feature and as a result through this channel attention
we are able to focus only on meaningful channels. Average and max pooling operations are executed among
others to learn the extend of an object and its distinctive properties respectively. The channel attention
output is computed, as follows:

ChannelAttn(F) = o(Conv(ReLU (Conv(AvgPool(F)) + o(Conv(ReLU (Conv(MaxPool(F)),  (3.19)

where o denotes the sigmoid function, AvgPool applies average pooling and MaxPool applies max pooling.

3.1.4 Further Explanation

As mentioned earlier, our proposed architecture fuses in a unique matter the shallower layers produced
from our encoders. This technique finally outputs an intermediate product termed FB (Fused Bottom), as
computed from equation (3.13). Such a low-level information tensor has to be manipulated appropriately
before further fusion occurs with our high semantic tensors, calculated by the first branch of our decoder.
As shown in Fig. 3.4, initially there existed a naive implementation of RACOD-Net.
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Figure 3.4: Visual comparison among our naive implementation and our renovated published architecture.

Our naive implementation was also based on our initial motivation. To capture both local and global context
it seemed pretty straightforward to proceed with a simple addition among the low-level and the high-level
information tensors, as shown in the left part of Fig. 3.4. However, this plain addition would result in a
mediocre final prediction that showcased minor differences from the coarse prediction. These two tensors
represent different philosophies and technologies, even though we have leaked some local properties into the
global context and the opposite, by fusing Xo with SegFormer and C; with ResNet50. Therefore, performing
such an addition is not advisable, since these two predictions have very few common similarities and their
respective weights consist of extremely divergent values.

The fundamental motivation was altered and enhanced, based by the original ResNet architecture where
the skip connections add the weights from one layer to another. These sequential weights share common
conceptual information since they are the outcome of adjacent layers of convolutions. Such an addition would
not be effective if these weights were generated from long-distanced layers. Taking the previous analysis into
account, it was mandatory to decrease the semantic gap between the decoder’s predictions before any further
action took place.

Towards this target, two specific hybrid features are highlighted to lessen the previously stated differences.
The intermediate product MF, as calculated from equation (3.1) is the first candidate for this task. SegFormer
encoder performs multiple self-attention repetitions for every generated feature. More specific, Cg requires
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27 repetitions of self-attention, as implemented by RACOD-Net. Later, Cs is mixed with X5 producing the
intermediate product termed MF'. Since, MF contains both global and local properties, when it gets multiplied
and concatenated with the shallower fusion of features C;, X; and Xs, it contributes the first step to slowly
decrease the semantic distance among the two branches. Afterwards, the previously mentioned addition takes
place and passes through a channel attention module producing feature F2, according to equations (3.14)
and (3.15). Still, feature F2 is not capable enough to be forwarded as our refined accurate prediction. From
visual inspection of our results, training our model with F2 as our final outcome surpasses by a large margin
our naive implementation. The achievement of more precise and robust binary maps indicates that this is
the right path, when fusing different technologies. However, when inspecting visually our segmentations we
discovered that, despite achieving detailed boundaries and suppressed noise, there existed certain predictions
that falsely classified non-camouflaged objects as camouflaged.

Following the same concept that feature MF taught us, we considered whether we could further enhance
our output maps and reduce their inaccuracies. Such mistakes require more injection of semantic knowledge
into feature F2. C4Cjs, as calculated from equation (3.4), is the second candidate for the completion of our
final architecture. C4Cjs is the last and deeper feature from SegFormer drawing information from the whole
image. It captures distant semantic relevances among crucial parts of the given image, since it contains all the
previous self-attention repetitions that SegFormer performs. F2 lacks from excessive perceptual information
and C4C3 can handle this requirement. However, once again before multiplying these elements their semantic
distance has to decreased. As shown by equations (3.16), (3.17) and Fig. 3.1, we proceed by convolving the
concatenation of C4C3 and FB and later using a channel attention module. Finally, the produced feature
F4 can be multiplied with F2 to diminish any remaining gaps developing the final enriched tensor. This
tensor tracks long-range dependencies, aggregates global context and efficiently holds the necessary local
convolutional properties.

There exists one major difference among our implementations. Our naive deployment avoids the production of
the intermediate product termed C4,C3Cy;MF, as calculated from equation (3.8). Since, feature MF influences
the second branch of our decoder, as described earlier, we choose in our final implementation to increase its
contribution in the first branch as well. Consequently, MF is passed down to a concatenation layer, according
to equation (3.8) generating a new aggregated feature. These two branches are tailored in a specific manner
to attend each other. Not only the second branch is semantically close to the first branch but also through
the previous concatenation the first branch lean towards the second.

This entire motivation of fusing different encoders, a CNN and a Transformer one, requires a two-way
interaction between them. Following such a path and selecting these key features to perform all the previous
aggregations came intuitively, through the deeper understanding of our available encoder technologies.

3.1.5 Loss Function
The total loss function during training RACOD-Net can be formulated as follows:

L= Lcm + era

where Ly, is the loss function calculated between the intermediate coarse map P1 and GT (ground truth)
and L,,, is calculated between the final refined segmentation map P2 and GT.

L., can be written as:

Lewy = LY, ;(P1,GT) + L%p(P1,GT)
L,,, can be written as:

Ly = LY, ;(P2,GT) + L%op(P2,GT),

where LY ;;(-) and L} 5 (+) are the weighted intersection over union (IoU) and weighted binary cross entropy
loss (BCE) respectively. In Salient Object Detection both BCE and IoU functions treat all pixels equally.
However, the weighted versions of these functions based by [5], [64] set to each pixel a weight o. Hard pixels
are assigned a high value of o and simple pixels are assigned a smaller value of a. We could argue that hard
pixels are located in areas of the image with cluttered or elongated objects whereas simple pixels are found
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in smoother areas of the image.

Unlike, [5], [64] where the weighted factor is computed as follows:
a=1 4+ 5|AvgPool(GT) — GT)|,
RACOD-Net computes the weighted factor differently, as shown below:
a=o(lP; - GTJ),

where o denotes the sigmoid function and P; with ¢ = 1,2 represents either the coarse map or the refined
map. It is obvious, that if the prediction is far away from the ground-truth the loss function will be more
penalized compared to the scenario where the prediction is more close to the ground-truth. To further explain
this aspect the sigmoid function is calculated as follows:

o=1/1 + ),

where x = |P; — GT| with i = 1,2. Since x is either zero or a positive number the output of the sigmoid
function ranges between 0.5 and 1. As a result, we reward our loss function by multiplying with a factor
close to 0.5 when our prediction is accurate and we penalize our loss function by multiplying with a factor
close to 1 when our prediction fails by a large margin.

3.2 Datasets

We evaluate our model on the following public datasetes:
e CHAMELEON [56]
e CAMO [27]
e CODI0K [11]
o NC4K [34]

Specificallyy, CHAMELEON contains 76 images which were taken by independent photographers who marked
these as good examples of camouflaged animals. The images from CHAMELEON were collected from Google
image search using the keyword ”camouflaged animal”. CAMO dataset consists of 1250 images, where each
image includes at least one camouflage object from a variety of challenging scenarios. COD10K originally
comes with 10,000 images. However, only 5,066 images contain camouflage objects covering 78 camouflaged
object categories. Finally, NC4K is the largest testing dataset containing 4,121 images for effective model
evaluation. NC4K was initially manufactured to evaluate the generalization ability of existing models. All
datasets come with pixel-wise ground-truths manually annotated to each image.

Following, previous studies like [11], [70], [31] we use 1,000 images from CAMO and 3,040 images from
CODI10K for training our model. After training we evaluate our model in the entire CHAMELEON and
NC4K datasets. Our evaluation set of images is completed by adding the rest 250 and 2,026 images from
CAMO and CODI10K respectively.

The images for testing and training our model from both CAMO and COD10K are predefined and not
randomly selected. As a result, when comparing RACOD-Net with other models we are using the same
datasets with the same data partitions.

3.3 Evaluation Methods

Following previous studies like [70], [25], [11], [77], [72] we evaluate our model using four evaluation metrics
including Structure-measure (S,,) [7], weighted F-measure (F2) [35], adaptive E-measure (oE) [8] and Mean
Absolute Error (MAE) [42].

Mean Absolute Error is the mean value of the absolute difference between the prediction of a computer
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vision model and the ground truth. Although, this metric provides an estimation of the dissimilarity between
two vectors it fails to determine where the error takes place in the image. E-measure designed originally
for binary map evaluation takes into account pixel-wise matching and global statistics, which are related to
human visual perception. Weighted F-measure represents an exhaustive metric that combines both recall and
precision. Additionally, camouflage object segmentation requires a method that can compare region-aware
and object-aware structural similarity between predictions and ground truth. S-measure deals effectively
with this requirement.

3.4 Implementation Details

RACOD-Net is implemented using the PyTorch library [41]. Our backbone ResNet50 encoder is initialized
with pretrained weights on ImageNet-1K_V2 currently available from torchvision.models subpackage. Our
SegFormer encoder is also initialized with pretrained weights on ImageNet-1K currently available from the
authors of SegFormer. To update our network parameters during training, Adam optimizer [26] is deployed
with an initial learning set to 2e-5. To help our model generalize ever better, as stated in [33], we set weight
decay in Adam optimizer equal to the initial learning rate.

Moreover, our backbone SegFormer encoder comes out with several proposals over its architecture hyper-
parameters. These proposals mainly differ in the channel dimension and the amount of repetitions that
have to be performed in order to execute an entire block, as shown in Fig.3.2. We choose to skip the
heavy-weight proposal from the authors of SegFormer named Mit-b5 and adopt the next best version Mit-b4
that has the same channel dimension but less repetitions in the mentioned blocks. Mit-b4 delivers great
results and since it is a bit more light-weight in parameters comparing to Mit-b5 it reduces training time.
Additionally, all predefined versions of SegFormer randomly drops entire blocks during training using a
stochastic depth method introduced by [21]. Although, this method decreases substantially training time
and improves the evaluation results, it is applied through SegFormer on enormous datasets. On the contrary,
our training dataset consists of 4,040 images and even though the model architecture is very complicated
we have discovered from our experiments that avoiding this step doesn’t affect the training period and
simultaneously enhances slightly our predictions. We argue that it is not advised to randomly drop blocks
of our neural network when training is such a small dataset.

Our competitive results relies also on the learning rate strategy applied in our optimizer during training.
Unlike [70] that deploys a cosine learning rate strategy , [72] that uses a linear warm-up and linear decay
strategy or [77] where the learning rate is manually changed at 20 and 40 epochs we use a novel hybrid
version of cosine learning rate with a warm restart. The terminology warm restart allows the model to reset
the learning rate to the initial one. This divergence of the learning rate introduced by [32] helps our model
to escape from a potential local minima and improve the convergence into a global minimum. However,
after observing our loss during training we noticed that after epoch 14 our model is slowly staring to reach
convergence. From this point in training we initialize the cosine learning rate strategy with warm restart, as
displayed in Fig. 3.5.

We deployed during training an automated mixed precision strategy from the PyTorch library [41], avoiding
the Apex Nvidia PyTorch extension. In the course of training any model CUDA operations, executed by
GPU, run in a specific data type (dtype) object chosen by autocast to improve performance while maintaining
accuracy. Essentially we obtain the speed and memory usage benefits of lower precision data types, in our case
float16 instead of float32, while preserving convergence behavior. Afterwards, gradient scaling is applied to
prevent gradients with small magnitudes, of our model, from flushing to zero. This gradient scaling enlarges
the magnitude of gradients just before backpropagation starts.

During training we set the batch size equal to 6, the images are resized to 456x456 resolution and are
randomly splitted into those batches without any post-processing procedures. The channel dimension of our
model is set to 768. The output predictions of our model are resized to match the original binary ground
truths during evaluation. Following [25], [31], [11], [5], [79] after reshaping our prediction we forward it
through a sigmoid function and later we normalize it. Since some predictions might contain very small
camouflage objects resulting to an almost black segmentation output we add a very small factor equal to le-8
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Figure 3.5: RACOD-Net Learning Rate Strategy

to avoid division by zero during normalization.

We train our model end-to-end for 39 epochs with a cloud GPU P100 16Gb for 11 hours. Alternatively,
the same training process costs only 6 hours and 30 minutes when using a Zotac GeForce RTX 3060 Twin
Edge 12Gb. When training with batch size of 6 it is required a GPU with at least 12Gb memory. As the
batch size increases it is mandatory to obtain a GPU with at least 16Gb of memory. The inference time is
approximately 0.4 seconds for an input image of size 456 x456.
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Chapter 4

Experiments

4.1 Results Over Camouflaged Datasets

We compare RACOD-Net with several state-of-the-art camouflaged object detection studies that deploy
either a CNN or a Transformer based architecture. As shown in Tab. 1, RACOD-Net surpasses almost all
methods in several evaluation metrics in almost all datasets. Even when RACOD-Net’s predictions come
second, they are still very close from reaching the top. For fair comparison, all the predictions are evaluated
using the same evaluation metrics and the same evaluation code. Additionally, all the camouflaged maps
prediction scores are provided either by the authors or generated by retraining the models with the provided
open source codes.

Through quantitative and qualitative analysis over previous studies we aim to analyze our model regarding
its learning ability and its generalizability over camouflaged objects. A total of 11 CNN-based comparisons
are displayed in Tab. 1, including PraNet [12], SINet [11], SLSR. [34], MGL-R [73], PFNet [36], C*FNet [57],
SINetV2 [10], DGNet [24], SegMaR [25], ZoomNet [72] and FDNet [77] and 5 Transformer-based comparisons,
including UGTR [77], TPRNet [74], DTINet [31], CamoFormer-S [70] based in Swin-Transformer encoder [30]
and CamoFormer-P [70] adopting a pyramid vision transformer encoder (PVTv2 [62]).
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NC4K COD10K-Test CAMO-Test CHAMELEON
Method 4,121 Images 2,026 Images 250 Images 76 Images
SmT oET  FE1T MJ SmT oET Fr1+ Ml SmT oET Fo1 Ml SmT oET Frt Ml
PraNetz2020 [12] .822 .871 124 .059 | .789 .839 .629 .045 769 .833 663 .094 .860 .898 763 .044
SINet2020 [11] .808 .883 723 .068 | .776 867  .631 .043 745 .825 644 .092 .872 .938 .806 .034
SLSR2021 [34] .840 .902 .766 .048 .804 .882 673 .037 787  .855 696  .080 .890 .936 .822 .030
MGL-R2021 [73] .833 .893 739 .053 .814 .865 .666 .035 782 847 695 .085 .893 923 .812 .031
PFNetzo21 [36] .829 .892 745 .053 .800 .868 .660 .040 782 .852 .695 .085 .882 .942 .810 .033
C2FNetzo21 [57] .838 .898 762 .049 .813 .886 .686 .036 .796 .864 .719  .080 .888 .932 .828 .032
UGTR2021 [77] .839 .886 .746 .052 817 .850 .666 .036 784 .859 794 .086 .888 921 794 031
SINetV22022 [10] .847  .898 770 .048 .815 .863 .680 .037 .820 .875 743 .070 .888 .930 .816 .030
DGNetoo22 [24] 857 907 784 .042 .822 877 693 .033 .839 .901 769 .057 .890 934 816 .029
SegMaR2022 [25] .841 .905 781 .046 .833 .895 724 .033 .815 872 742 .071 .897  .950 .835 .027
ZoomNetz022 [72] .853 907 784 .043 .838 .893 729 .029 .820 .883 752 .066 .902 952 .845 .023
FDNet2g22 [77] .834 .895 .750 .052 837 897 731 .030 .844 903 778 062 .894 .948 .819 .030
TPRNet2g22 [74] .854 .903 .790 .047 .829 .892 725 .034 .814 870  .781 .076 .891 .930 .816 .031
DTINetz2022 [31] .863 915  .792 .041 | .824 .893 .695 .034 857 912 796 .050 .883 928 .813 .033
CamoFormer-Sz022 [70] .888 .941 .840 .031 | .862 .932 .772 .024 | .876 .935 .832 .043 .891 .953  .829 .026
CamoFormer-P2g22 [70] | .892 .941 .847 .030 | .869 .931 .786 .023 | .872 .931 .831 .046 .910 .970 .865 .022
RACOD-Net (Ours) .889 .939 .855 .031 | .872 .942 .804 .022 | .868 .928 .835 .047 917 .971 .887 .021

Table 1: Quantitative results on public datasets. Results from previous studies are verified by [70], [31], [25], [36] and [24].
RACOD-Net outperforms state-of-the-art models in several scenarios. Red, Green, and Blue indicate the best, second best and third
best performance. ‘7/]’ denotes that the higher/lower the score, the better.

4.2 Discussion

COD10K is the most challenging dataset for camouflaged objects. The comparison in Tab. 1, demonstrates
that our model delivers the best results over COD10K setting new state-of-the-art records. This high-end
performance in such a compelling dataset is built upon details. These details derive from paying attention to
both local information and global semantics. This suggests that such fusion verifies the effectiveness of our
proposed model and justifies our original motivation and effort.

Our proposed model achieves the best performance in CHAMELEON across all metrics, by a small margin.
This performance gain over previous studies proves the value of fusing properly traditional convolutional
networks with Transformer networks.

Over CAMO and NC4K dataset our model surpasses several previous public well-trained models. Although,
performance over weighted F-measure (F) is outstanding and sets a new record, our prediction maps for
the rest evaluation metrics captures either the second or the third best performance.

From a total of 16 evalutions, 4 for each dataset, RACOD-Net demonstrates its value by providing the
leading results in 62.5% of all cases. We argue that our final segmentation results are very close to the
ground-truth annotations, by successfully segmenting not only large camouflaged objects but also small ones.
From Fig. 1.1 and various other results we observed that our method successfully segments the position of
camouflage objects with accurate and precise boundaries over several challenging scenes, such as multiple
and low-contrast objects. Even when some camouflaged objects are divided into separate parts because of
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the interference with other non-camouflaged objects RACOD-Net is still capable of detecting and segmenting
the expected target.

4.3 Ablation Studies

We conduct ablation studies to strengthen our decisions over particular components of RACOD-Net’s ar-
chitecture. The main motivation of providing accurate and precise segmentation predictions relies upon
significant key aspects tailored specifically for this task. Thus, it is mandatory to demonstrate the effective-
ness of these components. It is worth mentioning, before proceeding to more detailed informations that the
produced results retain some randomness over different training cycles. Even so, it is safe to state that our
submitted architecture distributes the finest predictions across all the following benchmarks. Quantitative
experimental results of the ablation studies are shown in Table 2.

NC4K COD10K-Test CAMO-Test CHAMELEON
Settings 4,121 Images 2,026 Images 250 Images 76 Images
Sml _@ET F¥1 M| | Sw oBf  F®7 M| | Swml oEf F&1 M| | Sml oEf  F%7 M|
Only Coarse Map .886 931 .834  .035 | .870 918 778 .025 .865 917 812 .052 913 .949 857  .026

Naive Implementation | .872 .928 .837 .037 | .860 .938 792 .024 .847 915 .815 .055 .902 957 .872 .025

Cp=256 .884 .936 .845 .033 | .868 .942 .796 .022 .861 919 .823 .050 .910 .960 .870 .024
Cp=128 .886 .936 .842 .033 | .872 937 794 .023 .864 925 .825 .049 915 .960 .874 .022
Cp=64 .887 .934 .837 .034 | .868 1922 779 .024 .866 922 .820 .050 .908 .944 .855 .027

Image Size: 256 X256 .848 .916 .800 .044 | .834 1928 751 .029 .801 .870 .746 .071 .850 921 791 .038

RACOD-Net (Ours) .889 .939 .855 .031 | .872 .942 .804 .022 | .868 .928 .835 .047 | .917 .971 .887 .021

Table 2: Quantitative results of ablation studies. The best scores are highlighted in bold. ‘1/]’ denotes that the higher/lower the score,
the better.

4.3.1 Effectiveness of the Refined Map

As already mentioned, the process of predicting with accuracy the boundaries of a camouflage object requires
from our model to refine the original predicted coarse map. The refinement process passes through many
stages and fuses several features with an organised manner. In order to validate the existence of the refinement
process we remove this entire block and evaluate only the coarse map. We re-train our model from the start
by placing in our decoder only the first branch that calculates the coarse map. We also alter our loss function
to expect only one prediction instead of two, since now we have available only one branch. Visually our
altered architecture is displayed in Fig. 4.1. The computation cost is substantially decreased, since the entire
second branch is missing. Additionally, several features from our encoders are extracted but are not exploited
for further aggregations, rendering our backbone impractical.
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Figure 4.1: Visual comparison of architectures with or without the refinement map.

As shown in Tab. 2, the performance of our model decreases among all datasets. The differences may appear
insignificant but are crucial since the noise of the refined map is suppressed and its structure is more clear
and robust. Not only boundaries are more precise but the main body of the object appears more compact,
by detecting and eliminating internal empty spots. From visual inspection over some samples in Fig. 4.2, the
differences with the refinement map or without are obvious, setting our second branch a mandatory element.

43



GT RACOD-Net (Ours) Only Coarse Map

Figure 4.2: Ablation study with the refined map or without.

4.3.2 Effectiveness of Naive Implementation

As pointed out during our architecture analysis, initially there existed a naive implementation of RACOD-
Net. The two decoder branches would interact with each other through a simple addition of the produced
tensors, as shown in Fig. 3.4. We aim, through, this experiment to strengthen the analysis of section
3.1.4, where we claimed that the primitive results of our naive implementation were mediocre and barely
tolerable. Before, any visual comparisons take place we must pinpoint the results from Tab. 2. Our naive
implementation achieves almost the same results with our first experiment, where we used only the coarse map
of our decoder. From these evaluation comparisons it is easily noticed that the final refined prediction from
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the premature implementation is as good as the coarse map prediction of our final published architecture.
Through this observation process we have verified that when fusing different features from a CNN and a
Transformer encoder a simple addition of the produced tensors is not enough. The visual differences in Fig.
4.3 fortify our decisions and our intuition, regarding the selection of features to unify our decoder’s two
branches.

GT RACOD-Net (Ours) Naive Implementation

Figure 4.3: Ablation study comparing our original implementation with the premature naive one.

All camouflaged objects in Fig. 4.3 are very challenging and their boundaries are difficult to distinguish.
RACOD-Net delivers great predictions compared to the naive implementation that behaves similar to the
coarse prediction, failing to detect details and large portion of the object’s body.

4.3.3 Effectiveness of Channel Dimension

We further analyze the influence of channel dimension over performance. We observe that the overall be-
haviour of our model increases among all evaluation metrics as the channel dimension becomes greater.
However, the parameters and the computation cost increases as well. Our original architecture with 768
channels consists of almost 132M parameters. Setting channel dimension to 256 or 128 we drop either to
93M or 88M parameters. Decreasing the channels we still manage to deliver a competitive performance
with exceptional results and deliver a real-time experience, in case of a mobile deployment. Still we have to
mention, that lowering the channels translates in our model picking less features from a given object. From
Fig. 4.4, it is noticeable that less channels lead to objects with fewer details. For instance, from the images
of the second row the details of the camouflaged lizard fade as we get closer to 64 channels.
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Figure 4.4: Ablation study regarding the channel dimension.

4.3.4 Effectiveness of Image Size

We considered decreasing the image size from 456x456 to 256x256, like [31] that utilized a dual SegFormer
encoder using a similar batch size like ours. COD10K is the dominant dataset during training and the majority
of the provided images have an approximate resolution around 1024x768. Even though it is preferred to
insert images with high spatial dimensions to provide better quality input to the backbone encoders at the
same time it is resource consuming. We find that setting resolution higher than 465x456 leads to performance
saturation and requires more GPU memory. On the other hand, setting resolution to 256 x256 decreases the
execution time dramatically but generates a major performance degradation, as shown in Fig 4.5. The main
core of the object is still detected but the details regarding its boundary and structure appear to be less
consistent and accurate.



RACOD-Net (Ours) Image Size: 256256

Figure 4.5: Ablation study regarding the input image size.

4.4 Results Over Polyp Datasets

We compare RACOD-Net with several polyp segmentation studies. As shown in Tab. 3 and Tab. 4, RACOD-
Net architecture originally designed for camouflaged object detection and segmentation achieves great results
in polyp segmentation tasks as well. For fair comparison, all the predictions are evaluated using the same
evaluation metrics and the same evaluation code. Additionally, all the binary prediction scores are provided
either by the authors or generated by retraining the models with the provided open source codes.

Polyp segmentation tasks are similar to camouflaged object detection tasks. Both assignments belong to
the general semantic segmentation computer vision field. Pixels belonging to a segmented polyp over some
prediction are assigned with the value 1, otherwise they are assigned with the value 0. Additionally, the color
and texture of polyps blend with the surrounding healthy tissues, thus gaining some camouflaged properties.
Evaluating our model over polyp segmentation datasets seems a great step towards discovering whether or
not our architecture has the potential of being deployed in several other fields of computer vision.

We adopt five challenging public datasets, including Kvasir-SEG [23], ETIS [53], CVC-ClinicDB [2], CVC-
ColonDB [59] and CVC300 [61]. Following the same setup like PraNet [12] and Polyp-PVT [5] we use the
same training and evaluation datasets. More specific our training dataset consists of a total of 1,450 images
from Kvasir-SEG and CVC-ClinicDB. Our evaluation dataset consists of 100 images from Kvasir-SEG, 62



images from CVC-ClinicDB, 196 images from ETIS, 380 images from CVC-ColonDB and 60 images from
CVC300 dataset. Regarding the evaluation metrics, instead of adaptive E-measure we utilize the mean E-
measure. All the rest evaluation criteria remain intact.

However we altered three minor hyper-parameters of our model before proceeding with training. The batch
size increased from 6 to 8, the input image size is reshaped from 456 x456 to 352x 352 and the initial learning
rate is set to 4e-5 from 2e-5. Since our training dataset is even smaller than the previous camouflaged dataset
we considered increasing the batch size and the initial learning rate. However, from visual inspection of the
provided images their average spatial dimension is much smaller than the average spatial dimensions of the
camouflaged images. Thus, it appears preferable to adopt a smaller input image size in our encoders.

A total of 9 comparisons are displayed in Tab. 3 and Tab. 4, including , U-Net (MICCAT’15) [51], UNet+-+
(DLMIA’18) [78], SFA (MICCAI'19) [14], MSEG [20], DCRNet [71], ACSNet (MICCAI'20) [75], PraNet
(MICCAT’20) [12], SANet (MICCAT’21) [63] and Polyp-PVT [5].

Kvasir-SEG CVC-ClinicDB CVC-ColonDB
Method 100 Images 62 Images 380 Images
Sml mEf F%f M| | Smi mEf F2t M| | Swml mEf F&t M|
U-Net (MICCATI’15) [51] .858 .881 794 .055 .889 913 811 .019 712 .696 .498 .061

UNet++ (DLMIA’18) [78] .862 .886 .808 .048 | .873 .891 .785 .022 .691 .680 467 .064

SFA (MICCATI’19) [14] 782 .834 .670 .075 793 .840 .647 .042 .634 675 379 .094
MSEG 2021 [20] 912 .942 .885 .028 .938 961 .907 .007 .834 .859 724 .038
DCRNet2021 [71] 911 .933 .868 .035 .933 .964 .890 .010 .821 .840 .684 .052

ACSNet (MICCATI’20) [75] | .920 941 .882 .032 .927 .947 .873 .011 .829 .839 697 .039

PraNet (MICCATI’20) [12] 915 944 .885 .030 .936 .963 .896 .009 .820 .847 .699 .043

SANet (MICCATI’21) [63] 915 .949 .892 .028 .939 971 .909 .012 .837 .869 .726 .043
Polyp-PVT2022 [5] .925 .956 911 .023 .949 985 .936 .006 | .865 .913 .795 .031
RACOD-Net (Ours) 935 .964 .923 .020 | .938 .965 915 .014 .855 .893 772 .032

Table 3: Quantitative results on 3 public datasets, including Kvasir-SEG [23], CVC-ClinicDB [2] and CVC-
ColonDB [59]. Results from previous studies are verified by [5]. The best scores are highlighted in bold ‘t/J’
denotes that the higher/lower the score, the better.
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ETIS CVC300

Method 196 Images 60 Images
Smt mEf F%1 M| | Swl mE? F&p M|
U-Net (MICCATI’15) [51] 684  .643 366 .036 | .843 847 684 .022

UNet++ (DLMIA’18) [78] .683 629 .390 .035 | .839 .834 .687 .018

SFA (MICCAI’19) [14] .557 631 231 .109 .640 .644 341 .065
MSEG 2021 [20] .828 .854 671 .015 924 .948 .852 .009
DCRNet2p21 [71] .736 742 .506 .096 921 .943 .830 .010

ACSNet (MICCATI’20) [75] | .754 737 .530 .059 .923 .939 .825 .013

PraNet (MICCAI’20) [12] | .794 .808 .600 .031 | .925 .950 .843  .010

SANet (MICCAI’21) [63] .849 .881 .685 .015 1928 .962 .859 .008
Polyp-PVT2022 [5] 871 .906 .750 .013 | .935 973 884 .007
RACOD-Net (Ours) .863 .894 727 .014 942 .965 .885 .006

Table 4: Quantitative results on 2 public datasets, including ETIS [53] and CVC300 [61]. Results from
previous studies are verified by [5]. The best scores are highlighted in bold “/|’” denotes that the higher/lower
the score, the better.

RACOD-Net, despite being designed for camouflaged object detection and segmentation, delivers great results
and even sets some new records over Kvasir-SEG and CVC300 datasets. Almost all our predictions are
pretty close from reaching the finest results. We argue that through further experiments RACOD-Net’s
hyper-parameters could be fine-tuned to deliver state-of-the-art records among a larger portion of polyp
datasets. Still, the overall performance is very promising and verifies the effectiveness of our model over
certain computer vision assignments.
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Chapter 5

Conclusion

5.1 Future Work

In this paper we proposed a novel fusion between traditional neural networks and Transformer based net-
works. We proved that such fusion demonstrates great results setting new records over several metrics. All
modules were carefully combined and all hyper parameters were thoroughly fine tuned to get the job done.
Comprehensive ablation studies also validate our contributions. However, future extensive experiments are
following with the aim of developing and further evolving our original model.

There are several areas of computer vision in the field of medical science, such as segmentation of polyps and
tumors. In both of these cases the color, texture and shape of polyps or tumors provide them with strong
camouflaged properties. A similar task is also the segmentation of computed tomography (CT) images to
distinguish normal tissues from infected ones. Such applications showed great interest during COVID-19.

We also evaluated our model on polyp segmentation datasets. The evaluation results were quite encourag-
ing indicating that the present architecture of RACOD-Net has the potential of further generalization and
deployment.

We aim to further train our model over various datasets and discover its behaviour over several tasks beyond
camouflaged objects. We argue that our model, with certain adjustments and weights produced from certain
datasets, could produce significant results over different computer vision tasks. Salient object detection, small
object detection, video object detection and object detection in aerial images could be possible applications
to extend RACOD-Net’s original architecture. We acknowledge that our model suffers from high computa-
tional cost, even when the entire training dataset consists of a small amount of images. We are obliged to
convert our model into a more lightweight network when dealing with tasks that involve large and compelling
datasets.

We hope that RACOD-Net could act as a reference framework, stimulating more novel ideas over challenging
computer vision areas. Our code, with detailed instructions, and our pretrained weights validating the results
of Tab. 1, Tab. 3 and Tab. 4 have been released at: https://github.com/mikestratakis/RACOD-Net.
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