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IHepiinyn

Eivar yvootd 011 1 mpdc@atn Tpdodog 6Tov TopEn TG UNYAVIKNG pabnong opeileTon
OTOV HEYAAO OYKO TV Obéciumv dgdopévov. Qotdco, ta TElevTaio Ypovio ot
ALEAVOLEVEG AVIIOGLYIEG YOl TNV TPOCTAGIO TV TPOSOTIKAV dedoUEveov OOncay T1g
apyés vo meplopicovv T ypron kot TN dwPifacn tov dedopévev mov Tapdyoviot
and euokd mpdécoma. Tavtdypova, n palikny pon 6ed0UEVOV TOV TOPAYETOL OO TO
Awdiktvo tov Ipayudtov (Internet of Things-IoT) upmopel va odnynoet oe
VIEPPOPTMOOT] TOL JSIKTVOV KOl GE OVENUEVEG OVAYKES Yol amoONKELTIKN KavOTNTOL
Kot VToAOYoTIKY oyV. Kabdg 1 mapadociakn Tpocéyylon e KEVIPIKOTOUUEVNG
UNYOVIKNAG HaOnong kotappéel vId ovTEG TIC GLVONKES, aVOSVETOL TO HOVIEAO TNG
opoomovolakng pnyovikne pddnong (Federated Learning). H xevipwkn 0éa g
OHooTOVOlOKNG pHabnong eivar va  petagepBel 1 dwdwkacio exmaidsvong oTig
TEPUATIKEG CLOKEVEG TV YPNOTOV, VO EKTOOELTOVV TOAAATAL TOTIKE LOVTEAD Kot
va wapoydel éva cuvolMKkd HOVTELO amd Tov cuvdvacud tovg. H mpocéyyion avt
AVTILETOTICEL TIG TOPATAV®D TPOKANGES, OAAG vEeg avadvovtal. Mo onuavTikn
npoéKAnon mov mpokLATEL €lval M pepoAnyio (bias) mwov €1GAYOLV Ol TEPUATIKEG
oLoKEVEG M omoio. odnyel oe €va pn PEATIOTO HOVTEAO GE OUYKPION HE TNV
TapadOCIOKY KEVIPIKOTOMUEVN mpocéyyon (non identically and independently
distributed data - non-iidness). Xxomo¢ TG TOPOVGOS SUTAOUOTIKNG EpYaciag elval
dlepelivon TV PacIK®OV apyY®V TOV HOVIEAOL TNG OLOCTOVOLNKNG HABNoMg Kot TG
npoavagepbeicas peydang mpoxinong mov 10 cvvodevel. Téhog, mpoteivovpe évav
alyoppo mov petptalel avtd To TPOPANUA Kot TOV AEI0A0YOVIE TPAYLOTOTOLDOVTOG

TEPALOATO GE EVOL TPOGOUOIOUEVO TEPIPAALOV.

AéEarg Kheoa

Mnyoviky  Mdabnon, Kotoavepunuévn Mdébnon, Non-IIDness, IIpocopoimon,

Bektiotonoinon.






Abstract

From medical imaging to predictive analytics, more and more applications nowadays
are based on Artificial Intelligence-Machine Learning (AI/ML), to address complex
problems. Although powerful, AI/ML techniques require enormous amounts of data
in order to be trained. During the last decade, increasing privacy concerns require the
authorities to restrict the use and transfer of data generated by individuals. At the
same time, the massive stream of data produced and transmitted by the IoT (Internet
of Things) devices can lead to network overload, increased demand for storage
capacity and computational power. As the traditional approach of centralized machine
learning (CL) struggles under these circumstances, the paradigm of Federated
Learning (FL) emerges as an alternative. Unlike CL where the data processing task
(training) occurs in a centralized entity (e.g. cloud server), in FL it is offloaded to the
client devices (e.g. smartphones) and the central entity is only responsible to
aggregate the produced local models. This approach tackles the above challenges but
new ones come together. One major challenge is the bias that the client introduces
which leads to a suboptimal model compared to a centralized approach. The aim of
this thesis is to investigate the problem of bias in FL environments focusing on its
impact on the model performance. On top, we present FedLoss, a novel bias
mitigation algorithm, which is benchmarked in our dedicated Federated Learning

simulation environment.

Keywords

Machine Learning, Federated Learning, Non-IIDness, Simulation, Optimization.
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Extetapévn EAAnvikn Hepiinyn

Katé v televtaio dekaetia, n agpbovia tov dedopévav dtadpapotilel kabopiotikd
poho otV tayeio avamtuén eeappoydv  mov  Pacilovror oty Texvnm
Nonpoovvn-Mnyovikn Mdabnon. H Mnyovikn Mdabnon mepihapfaver o gvpeio
yKapo texvikdv Kot adyopiBuov mov Paciloviol ota dE00UEVE Kol ETITPETOVY GTA
CLGTNUOTO VTOAOYIGTAOV Vo pobaivouv amd tnv eumelpio tov mapedbovioc. Ta
CUCTNMOTA OVTA TPOPOSOTOLVTOL HE (HEYOAEG TOCOTNTEG) OEOOUEVAOV YO TNV
mopaywyn (ekmaidevomn) poviédwv  Mnyavikig Mdabnong, mpoxkewévov  va
KOTOVONGOLV TOAVTAOKN TPOTLTO, KOil, WG EK TOVTOV, VO EMAVGOLV TPOBANLOTO TOV
OEV UTOPOLV VO OVTILETOMTIOTOVV PE OVOAVTIKEG HeBddovg. Ot oyeTiKéS eQapUOYES
nepthappdvovy v avdivon Pivteo, v mpoPAeymn tov Kopov, TV TpoPfreyTn ™G

KATOVAAWDGONG EVEPYELNG K.AT.

Ta dedopéva mapdayovior amd &va gvplh PACUA TNYOV, CUUTEPIAOUPAVOUEVOV TOV
HECOV  KOWMVIKNG OKTVMONG, TMOV KWWNTOV TNAEQPOVOV, TOV GLOKELMOV TOL
Awdwktoov tov Tlpaypdtov Kot Tov mopadoscloK®V ETXEPNCIOKOV GUGTNUATMV.
[Mopadociokd, To dedopévo cvAAEyovion kot emeepydlovtal (ekmoudevovot)
KEVIPIKA G€ éva HOVO pMyOvNUo 1 6€ €va GOUTAEYHO UNYOVNUOTOV, T.Y. GE £val
dwkopoty vépovg (Centralized Machine Learning - CL). Qotoco, and avt v
KEVIPIKOTOMUEVT] TPOGEYYIOT] TPOKVLITOVY SLAPOPES TPOKANGELS. Agdopévou 0Tt Ta
dedopévo umopel v mepLEYovv  gvaictnteg mANpoeopiec M. WIPKA apyeia,
tomoBecio ypNon, cuvnBeleg KA., 1 HETAPOPTMOT] OEOOUEVAOV GE O KEVIPIKN M
onuocto. ovtotnta 0ev eivan mavta Piooun. And to 2018 kou petd, emPdiiovron
npochetol meplopiopol amd véeg vopobetikés mpdaels v vo KOTaoTel duvatn M
npootacio. Tov dedopévev kot g WioTkng {oMmg. To mo aviimpoooneutikd
mopadelypa elval 0 YEVIKOG KOVOVIGUOG Yo TNV mpootacio TV dedopuévav (I'KIIA)
[3] g Evponraikng Evoong. Extdc and v mpootacio g dwwtikng {ong, M
UETAPOPA TEPAOTIOV OYKOL dedOpEVEOV pPmopel Vo 0dNYNOEL GE LVREPPOPTMGT TOV

SKTVOV Kol avENEEVN {RTNoM Yo VTTOJONES aoBKELONC.

INo v avIeTdTon TV TPoavaEepPelcdY TPOKANGE®Y, TPOEKLYE 1 £Vvold TNG

opoomovolokng pabnong (Federated Learning). H opoomovdwoky pdabnon



TOPOLGLACTNKE Yo TPAOTN Popd To 2016 [4] won éxtote €yl Tpafnet v mpocoyn
™G EMOTNUOVIKNG Kowvotntoc. H Pactkn Wéa micw amd v opocmovolakn pnanon
elvar 1 ekmaidevon HOVTEA®V UNYOVIKNAG HAONONG O  OMOKEVIPOUEVEG TNYEG
dedoUEVOV, OTMG KIVITEG CLOKEVEG, £TGL MOTE TO 0EOOMEVA va. NV ektifevion oTov
KEVIPIKO Olokopotn. £2G €K TOOTOVL, Ol GLUOKEVEG UETOPOPTOVOLV £VO. LOVTEAO
UNYOVIKNG HEOnong amd Tov KEVIPIKO Ol0KOULOTY), EKTOOEVOVLY TO LOVIEAO TOMIKA
YPNOLOTOIOVTAG TO OKG TOLG OESOUEVE KOL OTN] GUVEYEWD HETAPOPTOVOVV TO
EVNUEP®UEVO (TOTIKO) HOVTEAD TOW® GTOV OLOKOMIOTH. XT1 GLUVEXELD, O OLOKOULGTNG
OVYKEVIPMOVEL TO TOMIKG HOVTEAQ, ONUOVPYDOVTOG £vo. VEO (TayKOOUL0) HOVTELO
punyovikng pabnone. H dwadwaocio eravorappdvetat yior apkeTong KOKAOLS (YOPOLG),
g Otov emtevyBel ocvykhon Tov poviéhov. To Pacwkd mAEOVEKTNUO NG
OHOGTOVOLOKNG Hadnomng eivar 0Tl Tar SEOOUEVO TOPAUEVOVY GTIG CUCKEVEC-TTEAATES
avl TAco OTIYUN, EMOUEVEDS Oc@oAieTon M WIWTIKOTNTO. AVTO onuoaivel 0Tt
TPOCOEPEL LYNAO eminedo mpootaciog g WwTikng {ong, dwucpaiilovtag 0T Ta
JEJOUEVOL TTOPAUEVOVY TOTIKA KO 0EV KOWVOTOl00vVToL 6€ Tpitove. H mpocéyyion avtn
Kafnovydler To AGTOMO. KOl TOLG OPYOVIGUOUG 7OV OoTALOLV VO HOPAGTOVV TO
dedopéva, TouG HE AAAOLG Yoo AOYOUG OIGPAAEING KOl TPOCTOCIOG TWV TPOCOTIKOV
T0VG dedopévav. EmmAéov, autd kabiotd mo SU6KOAO Yo TOVG YAKEP VO ATOKTIGOLV
npocPacn oe gvaicOnta doedopuéva. Emiong, peidverar 1o KOGTOG EMKOWVOVIOG,
dedopévou OTL Ta HOVTEAD UNMYOVIKNG pHaBnong stvar yevikd eloappld amd dmoyn

HeyEBove 0edOUEVMVY, GE GUYKPLON LLE TOL TPOLYLLOTIKE OEOOUEVQL.

AVvoTUY(DG, M OHOGTOVOLOKT LAONOT GLVOOEVETOL KOL OO OPIGUEVOL LELOVEKTTLOTOL.
To mpwro eivan 6Tt Pacileton oV S1fecIUOTNTA TOV OEGOUEVOV GTIC GUGKEVEG TMV
neratov. H pn dofecipdmra dedopévev pumopel va tpokariésel cofapn vrofaduon
™G amddoonNe TOv HOVIEAOL UnYovikng pdnong. EmmAéov, n petdooon/Aym
HOVTEL®Y HETAE) GLOKELAOV-TEAATMOV Kol €VOG KEVIPIKOD OlKOUIOTY| dnuovpyel
TOUVOVG KIVOUVOLS GPAAETING, OTTMC N TOAVITNTO VITOKAOTNG TMV EVIUEPDCEDY OO
évav KaKOBOLVAO Tapdyovta 1 1M €00Y®YN TAACTOV O£dOUEVOV OTn dlodKacio
ekmaidevong. AmO Tn OKOMIA TG UNXOVIKNG AOYIOUIKOD, 1| OHOGTOVIlOKT Hdbnon
mepAopPdvel TOAMOTAEC GLOKELEG Tov cuvepydlovtol ylo TV ekmaidgvorn €vog
HOVTELOL. Xg TETOL0 KAMUOK®OTE GUOTAUOTO, 1] ALENUEVT] TOAVTAOKOTITO SVCYEPALIVEL
TN GULVTHPNGCN TOL AOYIGHIKOV, TNV OTOGQPUALATOOY KA. Qotdc0, 0vTd 7OV

avayvopiletor ¢ 1 ayfAAelog mTépva. NG OHOCTOVOLOKNG HaBnong sivoar m



etepoyéveln TV dedopévov. H pepoinyio eodyetal ota 0£00UEVE TOV TEAATMV,
AMY® TOV TACE®V, TOV TOPOAAAYDV, TGOV TPOTHI®V, TOV GLVNOEIDV KAT. TOV
YPNOTAOV. QG €K TOVTOL, TO TOTIKA LOVTEAN TTOV TAPAYOVTOL GTNV TAEVPA TOV TEANTN
Bacilovtor o€ OPOPETIKEG KOTAVOUES OEOOUEVOV, Ol OTOieg OEV UTOPOLV Vv
Oewpnbovv mavopoldtumeg N aveEapnteg. Avt N pepoinyio UTopel vo TPOKAAESEL
ATTOKALCT] TOV TOTIKAOV LOVTEA®V UNXOVIKNG LAONong Kot ToauTtdypova va voPabuicet

TNV 0tdS00T TOV GLVOAKOV HOVTEAOL (GLUVADPOIoT| TOV TOTIKMV HOVTEA®V).

H pepoinyio mov eiodyetor amd tovg TEAATEG UETAPPALETAL GTNV OLOGTOVOLNKY
uébnon oe acvppetpio 6to cHVoAO TV TEANTOV. Ot Bacikéc LopPES aGLUUETPIOG
elvat ot e€ne: 1. Aovppetpia oty mosotto TV dedouévav (Quantity skew). Xe avtn
NV TEPINTTOON £YOVUE TEAATES E OMUOVTIKE PEYAAES SLOPOPES GTIG TOGOTNTEG TV
dedopévemv mov Olabétel 0 kabévag. 2. AcvppeTpiol TNV KOTOVOUN TOV ETIKETMV
(Label skew). Kd&Be meddng €xet Tig S1k€G TOL TPOTIUNGELS LE OMOTEAEGHO KAOE
mEMATNG Vo €xel OPOopeTIKY Kotavopu etiketwv (labels) 3. Aovuperpio otnv
Katavoun Tov yopaxtnpotikov (features) tov mpotomwv (Feature skew). Kdbe
YPNOTNG €odyst Tov Okd Tov BOpLPo HE OVTITPOCHONEVTIKO TOPAOELYO TNV
avayvoplon xepoypapmv ymeiov omov kdbe meAdng £xer Tov dkd TOL YPAPIKO

YOPOKTIPOL.

To mapardve mTpoPAnua amoterel facikn TPOKANGCT GTNV OLOCTOVOLOKT Ao Kot
N OVTIHETOMION TOV OMOTEAEl OVTIKEIUEVO HEAETNG Yo TOAAOVG epevvntéc. Ot
TPOCTAOELIEG TTOVL YIVOVTAL, OO TNV EMGTNHOVIKN KOWOTNTO, LE OKOTO VO LETPLUCOVY
mv enidpaocn g erepoyévelag taivopobvtal o€ TPels Pacikég katnyopies. Xtnv
TPAOTN Kotnyopia ot epevvntég mpoomadovv va PeTpLicovy To TPOPANUe {nTdvTog
OO TOVG XPNOTES VO LOPAGTOVV £V TOGOGTO TV d€d0UEVDV Tovg .Y, 10% Kata 10
otad0 G mpo-eneEepyociag (pre-processing) mopafiralovrag, Opmg, TV Pacikn
apyn NG OHOCTOVIIOKNG HABNONG TTEPL TPOOTOGING TS WOIMTIKOTNTOS. XTNV OVTEPT
KATNyopio Kotatdssovtal ot alyoplfpotl mov TpochETovy KavOoveg Kot avavouy v
TOATAOKOTNTO. GTNV UEPLA TOL TEANTN UE GKOTO VO UNV aOKAIVOLY, TAve amd éva
O6plo, T TOTmKE HOVTEAD OV Topdyoviol amd To TaykOGHo povtéro. To Pooikd
TPOPANUO e OVTH TNV TPOGEYYIOT €ival OTL 0 TEAATNG EXEL TEPLOPIGUEVOLS TOPOVG
K0l VTOAOYLIOTIKEG duvatotnteg. TéAOG, otnyv Tpitn Karnyopio aviKovv ot aAydpifpot

oL TPOSTAHOVV VO OVTIYETOTICOVLY TO TPOPANUA OTO OTASO TNG CLVEVOOTG



(Ensemble) tov tomkav poviédwv. H tpocéyyion avt) céfetal ta mpoostdypata g
OLOCTOVOLOKNG HABNONG KoL TOVG TEPLOPIGUEVOLS TOPOVS TMOV YPNOTMV, EVAD
napdAAnia givar edkoda vAomomoyun. o awtd T0 AdY0, GTNV TAPOVLGH SITAMUATIKN

EMKEVTPpOONKapE 6TV TpiTN KOTNyOopiaL.

O olyopiBuog mov avédelce 1oV YMPO TNG OROGTOVOlOKNG HdOnong ovopaletot
Federated Averaging kot mpoomafel va UETPLAGEL TNV HEPOANYID TV YPNOTOV
Aappdvovtag o kbBe KOKAO €KTAIOELONG TOV CTUOUGUEVO HEGO OPO TMOV TOTIKMV
HOVTEA®V oL Tapdyovion omd tovg mehdtes. Ta tomikd povtéda otabuiloviot pe
Baon 1o mAn0o¢ TV dertypdtmv mov katéyel KAOe meAdtnG. OélovTag va PeATIOCOVE
tov Federated Averaging mapoatnpnioope 0Tt otabuilel Ta tomkd poviéha UovVo pe
Baom v mocdTNTA TOV SEIYUATOV TOV KOTEXOLV - KATL TOV TOV KAVEL WAVIKO GE £va
nepPdAlov pe acvppetpio otnv mocotnta twv dedopévav (Quantity skew). H dum
pag mpotaon givor va otadpicovpe to TomKd LovtéAla Tov Tapdyovtal pe Baon v
€MIO0GT TOVG GTO TOTIKO TOVG GVVOAD dOedopuévmv (local validation) . H vndé0eon mov
Kévovpe gival OTL To LOVTEAD TTOV OEV TO TAVE KOAANL GTOV TOTIKO EAEYYO ATOKAIVOLV
TEPLOCOTEPO OMO TO UEYPL TOPO TOYKOCUIO HOVTELD. XTO OTASIO TNG GLVEVWOGONG
otafuifovion pe Pdon 10 amotéhespa tov TomKOL eAEyyov (loss) pe otdR0 va
TpoONBovV o povTéELD TOV SLVGKOAEHOVTOL TEPIGGATEPO GTOV TOMIKO EAEYXO KO VoL
gumlovticovpe 10 maykOGUo poviéro.  Tnv mopambve péBodo v ovopdlovue

Fedloss.

v ouvvégela ypnowonowdvtag to  Flower (A Friendly Federated Learning
Framework), éva epyoieio mov Ppioketor omv oy tov 86patog 610 TEdI0 NG
OopocmoVOlaKNG Ldbnong omovpynoape Eva mepBaiiov pe okomd vo ehéyEovpe v
néEB0o6 pog. ITlpocopoldoope TEVTE OOPOPETIKA GEVAPLO: OUOLOYEVEG, OIGLUUETPIOL
OTNV  KOTOVOUY TOV ETIKETOV, OCLUUETPIO. OTNV TOGOTNTO TWV O£dOUEVOY,
OGLUUETPIOL OTNV KATOVOUN TOV YOPUKTNPIOTIKOV Kot TEA0G, £va PEIKTO GEVAPLO LE
OCLUUETPIOL OTNV KOTAVOUY] TOV ETIKETMOV KOl GTIV KOTAVOUT TV YOPOKTNPLOTIKAOV.
e ovTd To TEPPAALOVTA ETYEIPNOAULE VO EKTOUOEVCOVE EVO LLOVTEAD OLVOLYVADPIONG
ewovov  ypnotpomowdvtog Vv  péBodo mov mpoteivoope (FedLoss) kot tnv
ovykpivoope pe tig mAéov ovyypoves pebooovg (FedAvg, FedMedian, FedAvgM).
Téhog, mopabBétovpe kot oyoAALOVHIE TO OTOTEAEGLOTO LOG EVM TPOTEIVOLUE Kol

HEALOVTIKEG PEATIDOELS.



Chapter

Introduction

Over the last decade the abundance of data has been playing a key role in the rapid
development of Artificial Intelligence-Machine Learning (AI/ML)-based applications.
AI/ML involves a wide umbrella of data-driven techniques and algorithms that enable
computer systems to learn from past experience. These systems are fed with (big
amounts of) data to produce (train) ML models, in order to understand complex
patterns and therefore solve problems that cannot be addressed by analytical methods.
Relevant applications include video analytics, weather prediction, energy

consumption prediction, etc.

Training data is generated from a wide range of sources, including social media,
mobile phones, Internet of Things (IoT) devices and traditional enterprise systems.
Traditionally, data is collected and processed (trained) centrally in a single machine or
a cluster of machines e.g., in a cloud server (Centralized Machine Learning - CL).
Several challenges emerge from this centralized approach, however. Since data may
contain sensitive information e.g., medical records, user location, habits etc.,
uploading data to a central or a public entity is not always viable. From 2018
onwards, additional restrictions were imposed by new legislation acts to enable data
protection and privacy. The most representative example is the general data protection
regulation (GDPR) [3] by the European Union. Besides
privacy, transferring enormous amounts of data may lead to network overloads and
increased demand for storage infrastructure. As the ML task scales e.g., to TBytes of
data, CL can cause computational bottlenecks at the server side as well as increased

costs.

To tackle the above-mentioned challenges, the concept of Federated Learning (FL)
has emerged. FL was introduced in 2016 [4] and has been drawing the attention of the
scientific community ever since. The basic idea behind federated learning is to train

machine learning models on decentralized data sources, such as mobile devices or
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edge devices, so that the data is not exposed to the central server. As such, the devices
download an ML model from the central server, train the model locally using their
own data, and then upload the updated (local) model back to the server. The server
thereafter aggregates the local models, creating a new (global) ML model. The
process is repeated for several cycles (rounds), until ML model convergence is
reached. The key advantage of federated learning is that data remains in the client
devices at all times, therefore privacy is ensured. That means it offers a high level of
privacy protection by ensuring that data remains local and is not shared with third
parties. This approach addresses the concerns of individuals and organizations that are
hesitant to share their data with others due to privacy and security reasons.
Furthermore, this makes it more difficult for hackers to gain access to sensitive data.
Also, it manages to reduce the communication cost, since ML models are in general

light-weight in terms of data size, compared to the actual data.

Unfortunately, federated learning also comes with some disadvantages and the first is
that it relies on data being available at the edge devices, which may not always be the
case. Data unavailability can cause serious degradation to the ML model’s
performance. Moreover, transmitting/receiving ML models between edge client
devices and a central server creates potential security risks, such as the possibility of a
malicious actor intercepting the updates or injecting fake data into the training
process. From a software engineering perspective, federated learning involves
multiple devices working together to train a model. In such scaled systems, the
increased complexity hinders software maintenance, debugging, etc. What is
identified as federated learning’s achilles heel however is data heterogeneity. Bias is
introduced in client data, due to user trends, variations, patterns, habits, etc. As such,
local models produced at the client-side are based on different data distributions,
which cannot be assumed identical or independent (i.i.d.). This bias can cause the
local ML models to diverge and at the same time degrade the performance of the

global ML model (aggregation of local ML models).

Object of this work

Several bias mitigation techniques have been proposed [5], however they disregard

the key restrictions of FL e.g., client data exposure. In our work, we address the
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problem of bias in FL settings taking into account the fundamental restrictions
imposed in FL systems. Initially, we perform a comparative analysis of existing
state-of-the-art (SotA) bias mitigation algorithms. We then introduce FedLoss, our
novel bias mitigation algorithm, which is benchmarked on our custom FL framework
in several data distribution scenarios and datasets. Our results suggest that FedLoss
outperforms SoTA algorithms e.g., FedAvg, FedAvgM, FedMedian in terms of
accuracy by an average of 2%, across all bias scenarios. FL’s vision is to harness the
power and the wealth of client data but at the same time respect user privacy. Our
work aims to identify existing research gaps in FL literature and support relevant

research on the field.

Structure

The motivation about Federated learning was established in Section I, the following
section is dedicated to detail the Federated learning framework and the main
challenge of non-IIDness (Section II). In Section III we present our experimental
novel algorithm and the simulation that we conducted in order to evaluate the
algorithm. The results are presented in Section IV. Lastly, we conclude in Section V

pointing also to future exploration.



Chapter a

Theoretical Background

In this chapter, we are going to introduce the terminology and concept of Federated
Learning (FL). Although, we assume that the reader is familiar with the basic
Machine Learning concepts, for the sake of clarity we repeat these established
concepts. For starters, we quote a definition of federated learning and the framework
that we need in order to develop our thoughts. After that we are going to talk about
the main challenges which arise in a federated learning setting. Finally, we discuss our

approach to mitigate these challenges.

2.1 Machine learning

Artificial intelligence (Al) refers to a wide range of techniques that enable systems to
learn and improve from past experience. Machine Learning (ML) is a subset of Al. As
a concept, it captures an array of data-driven algorithms that operate without explicit
programming. The theoretical basis of Machine learning is dated back in
Kolmogorov—Arnold representation theorem [6], which states that a continuous
multivariate function can be expressed on a compact set in terms of sums and
compositions of a finite number of single variable functions. As such, a complex
problem (task) can be broken down (and therefore addressed) in a large number of
connected mathematical functions; the latter are defined as neurons. The (numerical)
connections between neurons are called weights. The neurons together with their
respective weights comprise the Neural Network (NN) model (or simply ML model),
as depicted in Fig 1 If X denotes the input feature vector of the ML model, the
respective output vector Y can be then written as Y=trans(X)W, where trans(X)

denotes the transpose of vector X and W the weights vector.

The process of ML is divided in two main phases: training and inference. During the
training (offline) phase, the ML model is fed with historical data, in order to learn the
data patterns. Specifically, X and Y are known and the ML algorithm estimates the

respective weight vector W, which in fact represents the relationships between the
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input (X) and output (Y) variables (see Figure 1). The estimation is performed via the
minimization of a loss function, which is a comparison metric between prediction and
the ground truth. The process of minimizing the loss function (training) is the core
part of the MI algorithm. Modern ML algorithms utilize Gradient Descent [7], an
optimization algorithm to find the minimum of the loss function. Every ML model has
a set of hyper-parameters, which are tuned prior to the training phase (usually via
test-runs. Relevant examples of hyper-parameters include:

e Epochs: the number of complete passes through the training data.

® Batch size: the number of training samples to work through before the model’s

internal parameters (weights) are updated.
e Learning rate: it governs the pace at which an algorithm updates or learns the

values of a parameter estimate.

Input LayerlL,

Output Layer L,
Hidden Layer L, -

Hidden Layer L,

Neural Network (NN) Model

Figure 1: Neural Network Model.

Upon convergence (end of ML training), the ML model can be utilized for the
inference phase. As such, new (unseen) data is processed by the ML model, to extract
future predictions i.e., the input variable X vector and the weight vector W are known
and therefore the output vector Y can be obtained. Note that unlike the training phase

that is processing-heavy, inference does not require much processing capacity.
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Figure 2: Centralized Machine Learning vs Federated Machine Learning.

In the traditional ML paradigm (see fig 2 Centralized Machine Learning - left part),
the data from various sources is collected in a central entity e.g., a cloud server. It is
thereafter divided into training, validation and inference dataset. The training dataset
is used to train the ML model’s parameters (weights). The validation dataset is used to
control the training phase (convergence tests), perform hyper-parameter tuning, etc.
Finally, the inference dataset (unseen data) is used in order to test (inference phase)
the performance (accuracy) of the output ML model. The term “generalization” refers
to the model’s capability to adapt and react properly to previously unseen data. It
examines how well a model can digest new data and make correct predictions.
Generalization constitutes a key concept, when training an ML model. If a model is
over-trained in the training dataset, it will be incapable of generalizing, therefore
producing erroneous predictions under new data. The latter is known as overfitting.
The inverse (underfitting) is also true, which occurs when an ML model is trained
with inadequate data. In cases of underfitting, the ML model fails to make accurate

predictions even with the training data.

2.2 Federated learning framework

To begin with, we need a definition for the term of Federated Learning (FL). There
have been many attempts in literature to define it and for the first time the term was

introduced in 2016 by McMahan et al. [4] However, in this work we obtain the
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definition of Kairouz et. al. [8] which we reproduce in the lines that follow.

“Federated learning is a machine learning setting where multiple entities (clients)
collaborate in solving a machine learning problem, under the coordination of a central
server or service provider. Each client’s raw data is stored locally and not exchanged
or transferred; instead, focused updates intended for immediate aggregation are used

to achieve the learning objective.”

The process of FL is depicted in Fig 2 Each client (data generator source) e.g., a
smartphone, a laptop, a sensor, a car, etc. receives a global model from the centralized
(cloud) server. Each client then performs local training utilizing its own data and
produces a local client ML model. The server thereafter collects all local models from
the clients and merges (aggregates) them into an updated global ML model. This
constitutes a training FL round. Several rounds are usually required so that the
global ML model reaches convergence. Note that during FL, client data always
remains at the client-side and is never exposed to the server. As such, privacy is

preserved, which is the key motivation of FL.

Then, we have to mention that depending on the size and the kind of clients we have
two categories of Federated Learning: the Cross-Device and the Cross-Silo setting. In
the first case we have a relatively large number of clients (>10°) with limited
resources and unreliable networks. For example, clients can be mobile phones, IoT
devices, sensors, wearables or even autonomous vehicles. These clients are restricted
due to: 1) their computational capabilities 2) their mobility (and therefore availability)
3) energy constraints e.g., power sources such as batteries and 4) their connectivity,
which relies on the communication infrastructure i.e., WiFi1/4G/5G networks. On the
other hand, in Cross-Silo, clients refer to big data hubs such as banks, hospitals,
companies, countries, etc. In this case, we have a relatively small size of clients
(2-100), their computational resources are significantly better, they use reliable
communication networks and usually drain power from the electrical grid (which is

generally assumed stable).
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Figure 3: Cross-Device setting: million of devices with relatively little data which are
considered to be unreliable clients. [1]
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Figure 4: Cross-Silo setting: few data hubs, such as hospitals, banks etc. which are
considered to be reliable clients. [2]

Having said this, we have to mention that in both cases we rely on the same Federated

Learning algorithm. This algorithm is our next topic.

In this section, an outline of the Federated Learning algorithm is presented, followed
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by a formal definition. Our algorithm consists of four basic steps:
1. The server broadcasts an initial (untrained) global model to the clients.
2. The clients perform local training, based on their acquired (stored)
data, each producing a local model.
3. Each client returns (upload) a trained local model.
4. The server collects the local models, aggregates them to an updated

global model and repeats step 1. until convergence is reached.

The first step is the initialization phase, which only occurs once. In this step the server
selects the clients that meet certain predefined criteria e.g., have adequate data
availability or connectivity. By default, the server performs a random sampling to
select the clients for the next FL round. After that the selected clients download the
global model and they start the local training. When they complete their local process,
the local models are sent back to the server. The most common strategy is for the
server to wait for all clients to upload the model and then to proceed to the next step.
This is referred to as synchronous FL. Asynchronous FL schemes are also proposed
[9], but are beyond the scope of this study. Last but not least is the aggregation step.
In the aggregation step the server merges the local models into a global one. The

formal definition [10] of FL is analyzed in the following section:

Generic Federated Learning Algorithm
Input:N,C, T, E
Output: wrg
Initialize w,
for eachround t € {0, E, 2E, ..., (T-1)E} do
m «max(CxN, 1)
I; < (random set of m clients)
for each client 1 € I, in parallel do
w'p < CLIENT-UPDATE(w,)
end for
Wyug < AGGREGATION(W',.g,...,Ww"i5)
end for
return wrg

We assume the following notation: w' is parameters of the model for the client i , N is
the number of clients, C is the fraction of sampling, 7 is the number of rounds, £ is

the local epochs.
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2.3 Non-Independent and Identically Distributed

Despite the fact that the Federated Learning setting enables the continuous
development of Machine Learning models, it sets strict restrictions in regards to
accessing raw data i.e., the clients dataset. Due to the distributed nature of Federated
Learning (data is split among the clients), data heterogeneity is introduced. As a
result, clients end up producing biased models in general. This fact leads us to say that
the [.LI.D assumption that maybe holds in a centralized environment tears down in a
federated world. Before we dive into the non-IIDness we will try to introduce the

I.LI.D concept for completeness.

To start with, I.LI.D stands for Independent and Identically Distributed and it is the
scientific definition of randomness in statistics. To avoid a technical definition for the
terms “Independent” and “ldentically”, we are going to introduce them with the
classic coin toss experiment example. Let's assume that we toss a coin. If we get
“heads” on the first trial, the probability of getting “heads” or “tails” in the next trial
doesn’t change. Note here that we don’t care about the fairness of the coin, it doesn’t
have to be 50-50. It can be 60-40 or 70-30 for “heads”-"tails”, respectively.
Regardless of the number of previous tosses, the next toss has no dependency from
the past. As such, the data distributed is assumed “Independent” i.e., each experiment
(toss) has no dependency on previous experiments. Now, in our example the term
“identically” means that in each coin toss the probabilities to get heads or tails doesn’t
change over time. To avoid the confusion with the term of Independency imagine that
you toss a fair coin and suddenly after some repetitions someone changes your coin
with an unfair one. Then, the underlying mechanism that generates the data (Heads or

Tails) has changed. In this case the identically distributed assumption doesn't hold.
[11]

Although our intention is to avoid in depth analysis the rest of this paragraph is
dedicated in the explanation of fundamental terms such as loss function, empirical
risk and the connection between I.I.D assumption and machine learning. Initially, the
IID assumption is closely related to the concept of empirical risk in machine learning.

Successively, empirical risk is the average loss of a model over a dataset. In machine

m


https://www.zotero.org/google-docs/?YWAFA8

learning, the goal is to learn a function f that maps inputs x to outputs y, given a set of

training data {(xi, yi)}. The empirical risk of a model f is defined as the average loss
L(f (xl,), yl_) over the training data: R(f) = %2 L(f (xl,), yi) a where n is the number
i

of samples in the training data. A loss function, also known as a cost function used in
machine learning to evaluate the performance of a model by measuring the difference
between predicted and actual values. The IID assumption is often made when defining
the empirical risk. Specifically, we assume that the training data {(xi, yi)} are
independent and identically distributed samples from an unknown probability
distribution P(X, Y), which means that the samples are drawn independently from the
same distribution. By minimizing the empirical risk over a class of functions F, we
can find a model f* that best fits the training data. However, if the IID assumption is
violated, the empirical risk may not be a good estimate of the expected risk, and the
model may overfit or underfit the data (see also Section 1). In Federated Learning the
IID assumption collapses by nature. Each client cannot be expected to collect samples
from the same distribution as the rest of the clients, due to seasonality, client mobility,
localities, user habits, etc. Therefore the concept of non-IIDness is introduced, which

poses a great challenge for the ML task.

Clearly, the term non-IIDness means that IID assumption doesn’t hold. In a federated
setting, non-IIDness shows up with the form of data heterogeneity which exists in
many ML applications and distributed learning settings. Let assume that we have a
supervised learning task with feature x and label y. Each client is randomly selected
from a pool. We denote Pi and Pj the local data distributions of client i and client j
participating in federated learning. Then, data heterogeneity can be expressed as the
difference between Pi and Pj for different clients i and j. Using the above notations,

we split the data heterogeneity in federated learning in the following categories.[12]

e Label distribution skew: Label distribution means that the label Pi(y)
distribution of different clients is different. For example, each hospital has its
own specialization so it is possible to have more records from patients with

specific kinds of diseases.
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e Quantity skew: Even though the data distributions among the clients can be
consistent, the size of the local datasets varies across the clients (in the general
case). For example, a client collecting images from a smartphone in an urban
environment may acquire twice the amount of samples compared to another

client in a rural environment.

e Feature distribution skew: Feature distribution skew describes the variation
of the distribution of the feature Pi(x) from clientto client. The most
representative example is the handwritten digits. Imagine that you have to
train a model to recognize digits in a federated setting. Each client (person) is

expected to have a unique handwriting style.

e Mixed skew: When several biases are introduced, a combination of the

above-mentioned cases is presented, which is defined as a mixed skew.

This is not an exhaustive list; we have only presented the basic types. One honorable
mention is the temporal skew which refers to the skew in distribution under temporal
data, including spatio-temporal data and time-series data [13]. Relevant examples

include weather data, network statistics e.g., data-rate and energy consumption data.
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2.4 The FederatedAveraging Algorithm

In this section we introduce the fundamental aggregation algorithm, Federated
Averaging (FedAvg), as presented in [2]: The basic idea of FedAvg is in the
aggregation step where the server collects the local models and the size of the training
set from each client and performs a weighted averaging to produce the updated global
model. Mathematically speaking let’s say that w', is the model trained by the client i
in the t round and n; is the size of the respective dataset. For the round t the server has
sampled I, clients (C*N). The updated global model is
n,
Wiy p ; - wy where m; ; n;

Now we replace the above equations with the term AGGREGATION in the generic
federated learning algorithm and the FedAvg is produced.

Federated Averaging Algorithm
Input: N: number of clients, C: Fraction of sampling, T: Number of rounds, E: local
epochs
Output: wrg
Initialize w,
foreachround t € {0, E, 2E, ..., (T-1)E} do
m «— max(C*N, 1)
I; < (random set of m clients)
for each client 1 € [; in parallel do
W' < CLIENT-UPDATE(w,)
end for

my = E n;

1€l

_ i i
Wi+E = Ewt

i€l t

end for
return wrg




2.5 Beyond FedAvg

Over the last decade the scientific community that works in Federated Learning have
been developing numerous variants of the Federated Averaging algorithm or
algorithms that add every kind of complexity in their logic to mitigate the problem of

non-IIDness.

We categorize these approaches based on which phase of the federated process they
intervene. As a result, we have three categories: Pre-processing, In-processing,
Post-processing (see Figure 4). FL algorithms which add complexity at the beginning
of the round before the server broadcasts the model to the clients for training belong
in the first category. The most common approach in this category is data sharing (via
encryption mechanism) between clients. For example, XorMixFL[14] a
privacy-preserving XOR based mixup data augmentation technique where the core
idea is to collect other devices’ encoded data samples that are decoded only using
each device’s own data samples. The problem with these approaches is that sharing
data violates the philosophy of Federated Learning. Privacy is a key concept and
the main motivation of FL, therefore such methods are not practical in realistic FL

deployments e.g., to train medical data.

The next category is in-processing where an algorithm modifies the local ML task or
the server’s selection algorithm. For instance FAVOR [15], an experience-driven
control framework that intelligently chooses the client devices to participate in each
round of federated learning to counterbalance the bias introduced by non-IID data and
to speed up convergence At FAVOR framework they use a profiling technique based
on model weights and then a Reinforcement Learning mechanism based on deep
Q-learning proposes the most suitable clients in order to maximize the validation
accuracy and minimize the communication rounds. One more example for this
category is the FedProx[16] which is based on FedAvg but it adds a proximal term to
the client in order to restrain local updates to the global model. Then there is a family
of adaptive algorithms that estimates drift across clients and mitigates it. e.g
AdaBest[17], SCAFFOLDJ[18]. The main disadvantage of in-processing methods is

that they add computational cost in the client-side. In FL, clients are by nature
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limited by their computational capacity and resources e.g., battery, bandwidth, etc.
Every mechanism that introduces further complexity in the clients may not be
sustainable in an actual (scaled) FL environment e.g., in smart homes with several

IoT devices, in connected vehicles, in industrial sensor networks, etc.

In the post-processing approach, the FL algorithm tries to mitigate the non-IIDness in
the aggregation step i.e., on the server side. Relevant examples include FedAvg,
FedAvgM[19] and FedMedian[20]. We are going to talk about these algorithms in the
next chapter. The post-processing methods add complexity in the server (which in
general is not limited by its resources, since it resides in the cloud) at the same time
preserving the privacy of the local datasets. As a result, they are the most suitable
methods to mitigate non-IIDness, taking into consideration practical

implementations and the deployment of FL in real environments.

Having identified this gap, from this section onwards we focus on the post-processing
methods. As such, our suggested algorithm and the SotA algorithms we compare

against belong to this class of algorithms.
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Figure 5: Categorization of federated learning methods based on the phase that each

method intervenes.
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Chapter B

Methodology

3.1 Proposal

In this work we introduce our novel algorithm, which is a variant of FedAvg based on
a validation loss. The FL setting is assumed as follows: Each client is assumed to
collect data from the environment, which are locally stored. The acquired client data
constitutes the client dataset. Each client dataset is split in 70% training set -10% local
model validation dataset -20% global model validation dataset. In each training round,
the server broadcasts the global model to several (randomly selected) clients. The
selected clients train the global model, using their training dataset. When they finish
their local training, they evaluate their local model in the local validation dataset. We
denote /', ; the validation loss of the i” client. The clients upload their models w',,  and
the respective losses where the server aggregates them into a global (updated) one.
Note that the default FL algorithm (FedAvg) aggregates the local models in a
weighted averaging manner, where the weights are proportional to the client dataset
size. In our solution, the aggregation step is a weighted averaging of the local models,
where the weights are proportional to their respective losses (taken from the
validation step). Intuition: this extra validation step before the aggregation gives a
measure of how well the model fits on the dataset and by weighting them with the loss
we favor the clients that fit less and we promote the local models that were trained to
datasets with different samples and distributions in comparison the already datasets

that the global model have already seen. We denote this method as Fedloss.

Fedloss
Input: N: number of clients, C: Fraction of sampling, T: Number of rounds, E: local
epochs
Output: wig
Initialize w,
for eachround t € {0, E, 2E, ..., (T-1)E} do
m <« max(C*N, 1)
I; < (random set of m clients)
for each client i € I, in parallel do
W',y < CLIENT-UPDATE(w,)



l.; «—CLIENT-VALIDATION(W'.;) # in 10%
end for

_ i
my = E :lt+E

icly
: E
o t+E i
Wi+E = E — Wy g
‘ my
ZEIt

end for
return wrg

3.2 Heterogeneity Simulation

In the previous chapter we talked about the fact that the IID assumption in general
does not hold in an FL environment. In order to test our proposed nonlIDness
mitigation algorithm, we need to simulate the heterogeneity which occurs in a setting
like this. For that reason, we have created a benchmarking framework to simulate the
basic types of skewness that we have mentioned in chapter 2: label skew, quantity
skew, feature skew and a mixed skew scenario. On top, we simulate an ideal scenario,
where the IID assumption holds. Our simulation strategy is based on the work of Li et

al. [21].

IID scenario: At first, we created a homogenous partition by splitting our dataset into
equal sizes with consistent distributions. As such, client datasets are similar in size
and are drawn from the same distribution. Note that the (ideal) IID scenario is rarely
found in an actual system. However, we have included the scenario in our simulations
for completeness as well as to provide a fair comparison between our proposed

algorithm and SotA alternatives.
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Figure 6: Clients’ distribution in IID setting.

Label Distribution Skew: In order to simulate this kind of heterogeneity the authors
[21] proposed two different methods. The first is quantity-based label imbalance
where each client owns a fixed number of labels. For example, if we were addressing
a digit-classification task, such as MNIST [22] and assumed a total of 10 clients, we
would assign one digit/label per client. The second method is distribution-based label
imbalance; according to this, each client is allocated a proportion of the samples of
each label based on the Dirichlet distribution. Following the authors [21] we denote
Dir(B) the Dirichlet distribution and B the concentration parameter. The advantage of
this approach is that you can control the level of imbalance by varying B. In this work,
we preferred the second method to simulate this type of skewness, since it models
label distribution skewness in a more realistic way. An example of label distribution

skewness is depicted in Figure 7 (for = 0.5).
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Scenario: Label skew
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Figure 7: Clients’ distribution in label skew setting.

Quantity skew: In this scenario, we preserve the data distribution among the clients,
whilst varying the respective local dataset sizes. To simulate this, we use Dirichlet
distribution to allocate different amounts of data samples into each client. Like
distribution-based label imbalance setting we can use the concentration parameter 3 to

control the level of imbalance. Figure 7 depicts an example of quantity skew.
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Figure 8: Clients’ distribution in quantity skew setting.

Feature Distribution Skew: In order to achieve this skewness there are three
different ways: Noise-based feature imbalance, Synthetic feature imbalance,
Real-world feature imbalance. We use noise-based feature imbalance where we divide
the whole dataset into multiple clients randomly and then we add different levels of
Gaussian noise for each client. More specifically, in each client i noise is added to its
data, based on a Gaussian distribution with a mean value of 0 and a variance value of
oi/N, where o stands for the noise level, i is the i-th client, and N is the population of
clients. By changing o, the feature dissimilarity can be increased or decreased.

Relevant examples are depicted in Figures 9, 10



Feature_skew

Figure 9: Local dataset of client 1.

Feature_skew

Figure 10: Local dataset of client 20.

Mixed skew: A mixed skew scenario can be any combination of the above basic
types of skewness. Our mixed skew setting was created by using the label skew
scenario and feature distribution skew. Mixed skew represents scenarios that are

closer to reality, since they capture various types of biases introduced in the clients.



3.3 Experimental setup

3.3.1 Datasets and federated settings

Our experiments are conducted in two image-classification (public) datasets that are
widely used in literature: SVHN [23], CIFAR10 [24]. The Street View House
Numbers (SVHN) Dataset (see Figure 11 - left part) is a dataset based on images from
real-world settings, used for ML and in particular object recognition algorithms.
Images refer to house numbers in Google Street View images. It contains a total of 10
classes, one for each digit. As such, digit '1' has a label value of 1, '9' has a label value
of 9 and '0' has a label value of 10. SVHN contains a total of 73257 digits for training
and 26032 digits for testing. CIFAR-10 (see Figure 11 - right part) is also an object
recognition dataset that consists of 60,000 32x32 color images containing one of 10
object classes, with 6000 images per class. The following object classes can be found

9% ¢¢

in the dataset: “airplane”, “automobile”, “bird”, “cat”, “deer”, “dog”, “frog”, “horse”,

“ship” and “truck”. Note that the classes are mutually exclusive i.e., there is no

overlap between automobiles and trucks.
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Figure 11: SVHN[23] & CIFAR10 [24] datasets.

For each dataset we simulate 5 different scenarios: IID, Label skew, Quantity skew,
Feature skew, Mixed skew (that is a combination of Label skew and Feature skew).
For the federated learning setting, the server selects 5 out of 30 clients during each
communication round in line with the results presented in [25], with T = 50 total

rounds for all methods.

In order to evaluate our proposed method we compare against existing SotA bias
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mitigation algorithms: FedAvg[4], FedMedian [20], FedAvgM [19]. FedAvg refers to
the default FL aggregation algorithm, as analyzed in Section 2 The main idea behind
FedMedian is that instead of averaging the local models, it calculates the median
model. The main advantage of FedMedian is the robustness against the outliers. On
the other hand, FedAvg with momentum (FedAvgM) is a variant of FedAvg, which
utilizes the momentum technique at the aggregation step. Specifically, FedAvg
updates the weights via w «<— w — Aw, where Aw is the weighted average of the local
updates. The method of FedAvgM adds momentum at the server, by computing v «

pv + Aw, and update the model with w «— w — v.

3.3.2 Model Architecture

To address the above-mentioned ML tasks, we use a Convolutional Neural Network
(CNN), being the most suitable model for image-classification tasks[26]. CNN is a
well-known deep machine learning architecture that accepts an image as input,
assigns importance (learnable weights and biases) to various aspects in the image,

therefore enabling differentiation between images i.e., image classification.

Our custom model was developed using two 5x5 convolution layers, followed by 2x2
max pooling (the first with 6 channels and the second with 16 channels) and two fully
connected layers with ReLU activation (the first with 120 units and the second with
84 units). To tune our custom model (prior to the actual training task), we conducted
test-runs using grid search. The respective results are shown in the Appendix. The
optimal values obtained are the following: Adam optimizer with a learning rate of
0.001 (both datasets), local epochs = 10 (both datasets) and batch size = 64 and 128
for SVHN and CIFARI10, respectively.

3.3.3 Evaluation

We follow a federated evaluation by splitting the local datasets into 80% training
dataset and 20% test dataset. In each round we perform an evaluation step after the
aggregation step where we broadcast the updated model to the clients and they
evaluate the model on the test dataset. We are utilizing the accuracy metric i.e., the

percentage of successfully classified images to the total number of classified images,
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as our evaluation performance indicator. Our accuracy metric has a maximum value
of 1 (all images successfully classified) and a minimum value of 0 (no image
successfully classified). We would like to take into consideration the size of the local
dataset that's why we weighting the local accuracy with the respective dataset size
before we take the average. In the evaluation step we assume full participation of the
clients i.e., all clients perform inference/testing on their local datasets, regardless of

their participation in the training process.

3.3.4 Environment

For our purposes we utilize the Flower framework [27] which gives us the ability to
simulate a Federated Learning setting in a single machine. Flower also provides
implementations of different strategies which we use for our baseline comparison
strategies. Furthermore, we make use of FedLab [28] which implements the basic
non-IID partitions (NIID-Bench[21]). The rest of the stack is Python and Pytorch. Our
gear: a cloud VM with 30 virtual cores and 200 GB ram.
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Chapter

Results

For each setting we conducted 5 runs and we took the mean average. Due to the

partial sampling of the clients, the training process for most of the scenarios becomes

unstable so for our analysis we split the results into 5 segments with 10 rounds per

segment and at the end of each segment we compare the algorithms. We mark with

bold the method with the highest accuracy.

4.1 Homogeneous

SVHN: Homogeneous
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Figure 12: Results for the SVHN task in a homogeneous setting.
Mean accuracy =+ standard deviation
Algo\Round 10 20 30 40 50

FedAvg 86.1% +0.5% | 87.4% +0.5% | 88.1% +0.5% | 88.3% +0.4% | 88.4% +0.5%
FedAvgM 84.2% +1.9% | 86.2% +1.0% | 87.0% +0.4% | 87.5% +0.5% | 87.5% +0.6%
FedMedian 84.7% +1.4% | 86.3% +0.8% | 86.8% +0.7% | 87.2% =+0.6% | 87.5% +0.7%
Fedloss 85.3% *1.0% | 86.9% +0.5% | 87.8% +£0.4% | 87.8% +0.5% | 88.2% +0.4%

Table 1: Results of the methods per 10 rounds in a homogeneous setting for the

SVHN task.



The first simulation is on the SVHN task in a homogeneous setting. Undoubtedly in
this scenario the FedAvg outperforms the rest of the algorithms which scores top

accuracy 88.5% at the 47" round. At the same time, Fedloss beats FedMedian and

FedAvgM in each segment.
CIFAR10: Homogeneous
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Figure 13: Results for the CIFAR10 task in a homogeneous setting.

Mean accuracy + standard deviation

Algo\Round 10 20 30 40 50
FedAvg 51.7%+0.3% | 52.6% £0.8% | 53.6% £0.3% | 54.1% +0.5% | 54.3% +0.4%
FedAvgM 50.9% +1.3% | 53.3% £1.4% | 53.8% £1.2% | 54.5% £1.2% | 54.9% +1.3%
FedMedian 52.6% +1.3% | 53.7% +£1.2% | 54.2% +1.3% | 54.5% +1.7% | 54.9% +1.7%
Fedloss 52.5% £1.6% | 53.8% £1.0% | 54.4% +£0.9% | 54.7% £1.0% | 55.2% +1.0%

Table 2: Results of the methods per 10 rounds in a homogeneous setting for the

CIFARI10 task.

For the CIFARI10 task it seems that in the 10™ round the FedMedian with mean
accuracy 52.6% outperforms the other algorithms. Fedloss in second place scores
52.5%. At the end of the next 10 rounds, Fedloss comes first with 53.8% with mean
accuracy while the FedMedian achieves 53.7% while FedAvM surpass FedAvg with
53.3% and 52.6% respectively. In the 30™ round Fedloss remains at the top with



54.7% mean accuracy, FedMedian follows with 54.2% In the 40" round Fedloss keeps
the first position with 54.7% as the FedMedian ties with FedAvM with 54.5%. At the
final round (50) Fedloss finished with 55.2%, FedAvgM and FedMedian shared
second place with 54.9%. For the homogeneous scenario Fedloss appears to perform
at least as well as the baselines which allow us to proceed the evaluation of the

method in more complex (and therefore realistic) non-iid settings.

4.2 Label skew

SWHN: Label skew

0.8
0.7
0Gr
Z05F
Z
0.4
| 15 50
03 —— FedAvgM
0.9 —— Fedloss
=t FedMedian ]
—— FedAvg
01F , | | | 5
0 10 20 30 i all
Rounds
Figure 14: Results for the SVHN task in label skew setting.
Mean accuracy =+ standard deviation
Algo\Round 10 20 30 40 50
FedAvg 73.8% £2.3% | 76.3% £6.3% | 68.4% £4.6% | 74.4% £5.2% | 79.1 £3.4%
FedAvgM 67.6% +£5.0% | 70.3% £5.3% | 76.2% +5.8% | 77.6% +4.2% | 71.3% £2.6%
FedMedian 73.0% +£6.0% | 74.9% +8.3% | 76.1% £2.7% | 77.9% +5.1% | 76.7% =£5.5%
Fedloss 74.7% £2.1% | 78.3% +4.2% | 81.1% £3.6% | 79.7% £7.6% | 82.0% £1.1%

Table 3: Results of the methods per 10 rounds in label skew setting for the SVHN
task.

Unlike the homogenous case, in this setting we can see that the training process

presents higher variations. Fedloss manages to mitigate the bias effect if we compare



its peaks and valleys against the rest of the algorithms.In order to enhance our
analysis we introduce the best accuracy for each algorithm. FedAvg’s top accuracy is
82.9% at the 34" round, FedAvgM’s is 79.2% at the 45" round, FedMedian’s is 81.3%
at 49" round. We observe that the Fedloss outshines the baseline algorithms

throughout the entire process and achieves top accuracy.

CIFAR1O: Label skew
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Figure 15: Results for the CIFAR10 task in label skew setting.
Mean accuracy =+ standard deviation
Algo\Round 10 20 30 40 50
FedAvg 38.3% £3.6% | 41.2% +2.6% | 44.6% +4.4% | 43.9% +4.2% | 42.3 +8.4%
FedAvgM 37.0%+5.7% | 43.2% £2.2% | 43.4% £3.4% | 43.0% £5.3% | 45.9% £3.1%
FedMedian 35.3% +£6.0% | 42.5% +5.7% | 45.6% +4.0% | 43.8% +3.9% | 43.4% +5.3%
Fedloss 39.4% £5.4% | 44.8% £2.5% | 47.1% £1.8% | 45.6% +3.7% | 47.6%=1.8%
Table 4: Results of the methods per 10 rounds in label skew setting for the CIFAR10

task.

Similar to the preceding case, Fedloss beats the baseline algorithms in the majority of
the training rounds. In this setting Fedloss’s best accuracy is 47.8% at round 46,
FedAvg’s is 46.7% at round 22, FedAvgM’s is 46.4% at round 37 while FedMedian’s

is 47.5% at round 49. FedAvg doesn’t take into account the label skewness and it fails



to retain high accuracy during the training process. In this scenario the validation loss
of Fedloss gives us a measure of the skewness distance between the global model that
the client downloads and the local model that produces after each training step. By
aggregating the local models based on the validation loss we promote the models that
have greater “distance” with the current global model so the next global model to be
“closer” to these clients. This is a clear demonstration that our initial intuition
analyzed in Sec 3.1, allows Fedloss to mitigate non-IIDness more efficiently,

compared to SotA algorithms, for the specific settings.

4.3 Quantity skew
SVHN: Quantity skew
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Figure 16: Results for the SVHN task in quantity skew setting.
Mean accuracy + standard deviation
Algo\Round 10 20 30 40 50
FedAvg 85.9% +1.8% | 87.3% £0.6% | 87.4% +£0.4% | 87.6% £0.7% | 87.5% +0.4%
FedAvgM 83.6% +1.7% | 85.5% +0.9% | 85.6% +1.2% | 86.4% +0.8% | 86.7% +0.5%
FedMedian 84.2% +1.4% | 86.4% +0.5% | 86.2% £1.7% | 87.2% +0.6% | 87.0% +0.5%
Fedloss 82.3% +4.7% | 85.5% £2.2% | 87.2% +1.8% | 87.5% +0.7% | 87.5%=*1.0%

Table 5: Results of the methods per 10 rounds in quantity skew setting for the SVHN
task.




As expected, in this scenario FedAvg excels in both accuracy and stability. Despite the
fact that Fedloss for the 10 first rounds falls behind, after the 20" round it achieves
similar accuracy with FedAvg. Note though that quantity skew (an assumption that
FedAvg is based on) is not a realistic setting in most FL environments. In any case, a
future extension of our algorithm can be investigated to address this rare case as well,
by e.g., taking into consideration the client data samples during aggregation (similar

to FedAvg).
CIFARLO: Quantity skew
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Figure 17: Results for the CIFAR10 task in quantity skew setting.
Mean accuracy =+ standard deviation
Algo\Round 10 20 30 40 50
FedAvg 54.4% £1.8% | 55.2% £1.0% | 55.3% £1.0% | 54.7% +0.9% | 54.5% +0.7%
FedAvgM 53.6% = 1.0% | 54.2% £2.0% | 54.0% £1.3% | 54.1% +0.9% | 54.7% £0.9%
FedMedian 50.2% £1.9% | 50.6% £2.0% | 52.4% £2.0% | 52.2% £1.2% | 53.3%=+0.9%
Fedloss 35.8%+13.4% | 46.0% £7.0% | 51.6% +4.0% | 47.7% £9.1% | 47.2%+10.1%

Table 6: Results of the methods per 10 rounds in quantity skew setting for the
CIFARI10 task.




FedAvg and FedAvgM dominate in this scenario, too as expected. FedAvg and its

variant (FedAvgM) are both designed for this non-I1ID scenario. FedAvg aggregates

the local model using their respective local dataset size. On the contrary Fedloss takes

no action against this setting. This scenario is not the usual case but it points out

Fedloss’s weakness. An important note is that FedAvg is stable under quantity

skewness compared to FedMedian and Fedloss.

4.4 Feature skew

SVHN: Feature skew
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Figure 18: Results for the SVHN task in feature skew setting.
Mean accuracy =+ standard deviation

Algo\Round 10 20 30 40 50
FedAvg 76.4% £1.2% | 78.5% £0.5% | 79.3% £0.4% | 79.1% +£0.4% | 79.7% £0.6%
FedAvgM 75.7% £ 0.4% | 76.5% £1.5% | 77.9% +0.8% | 78.2% +0.5% | 77.9% +1.2%
FedMedian 75.0%+1.6% 76.7% +£1.1% | 77.9% £0.9% | 78.0% £0.8% | 78.0%+0.7%
Fedloss 76.8%=+0.7% | 78.5% £0.6% | 79.3% £0.6% | 79.5% £0.5% | 79.8%=+0.7%

Table 7: Results of the methods per 10 rounds in feature skew setting for the SVHN
task.

In this scenario, we observe that Feature skewness doesn’t affect the stability of the

training process compared to Label skewness. Secondly, we see that the FedAvg and



Fedloss perform similarly, outperforming the other two methods. Furthermore, we

notice that Fedloss converges faster until round 18.

CIFARL1O: Feature skew
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Figure 19: Results for the CIFAR10 task in feature skew setting.
Mean accuracy + standard deviation
Algo\Round 10 20 30 40 50
FedAvg 51.7% +£1.9% | 52.2% +1.1% | 53.1% +1.5% | 54.3% +1.2% | 54.7% +1.2%
FedAvgM 48.8% £2.2% | 51.1% +2.1% | 52.6% +1.9% | 52.7% +£2.2% | 53.7% +1.8%
FedMedian 49.8% £2.0% | 50.6% £1.9% | 51.4% £2.0% | 52.0% £1.8% | 52.4%=*1.5%
Fedloss 52.4%+2.1% | 53.7% £2.3% | 54.7% £2.8% | 55.5% £2.3% | 55.9%+2.1%

Table 8: Results of the methods per 10 rounds in feature skew setting for the feature
task.

For the first eight rounds FedAvg and Fedloss converge at the same rate. After the 10"

round it is clear that FedAvg retreats. Also, Fedloss and FedMedian appear to have

more stable behavior. The key take-away point is therefore that Fedloss achieves a

general better performance by promoting the local models that have been trained at

the most difficult datasets, during aggregation..



4.5 Mix skew
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Figure 20: Results for the SVHN task in mixed skew setting.
Mean accuracy =+ standard deviation
Algo\Round 10 20 30 40 50
FedAvg 59.6% +4.9% | 57.3%+11.8% | 60.1% £6.2% | 65.2% +7.8% | 64.6% £5.6%
FedAvgM 51.2% +6.2% | 49.2% £9.9% | 56.4% £6.0% | 58.0% £9.0% | 61.0% £3.7%
FedMedian 45.1%%20.0% | 62.2% +6.3% | 66.4% £3.5% | 67.2% £1.6% | 63.5%+6.3%
Fedloss 59.5%+4.9% | 67.0% £4.1% | 69.2% £2.1% | 65.0% +6.4% | 66.4%+3.3%

Table 9: Results of the methods per 10 rounds in mix skew setting for the SVHN
task.

In the mix skew setting we combined label skew and feature skew in order to evaluate

our proposed method in an even more challenging scenario. At the first 10 rounds

FedAvg performs better than the others but for the rest of the rounds Fedloss

surpasses the baselines. FedAvg scores top accuracy 68.3% at the 37" round,
FedAvgM scores 63.6% at the 45™ round, FedMedian’s is 67.2 at the 40" round,
Fedloss outperforms the other with 70,4% at the 40™ round.



CIFAR10: Mix skew
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Figure 21: Results for the CIFAR10 task in mixed skew setting.
Mean accuracy =+ standard deviation
Algo\Round 10 20 30 40 50
FedAvg 36.3% +4.0% | 44.2%+4.0% | 41.0% +2.5% | 47.8% £3.7% | 45.6% +5.4%
FedAvgM 36.9% +3.6% | 39.9% £1.8% | 45.4% £3.3% |[43.1% +1.8% | 39.8% £7.0%

FedMedian 38.1%+2.2% | 43.1% £2.3% | 47.5% £3.8% | 47.1% £2.8% | 43.6%+5.5%

Fedloss 38.0%+6.7% | 48.0% £2.1% | 45.4% £5.2% | 44.7% £5.3% | 46.8%=*1.1%
Table 10: Results of the methods per 10 rounds in mix skew setting for the CIFAR10
task.

In our last scenario with CIFAR10 under mix skew the limits are indistinguishable
and no method clearly outperforms the others. However, throughout the training
process we see that Fedloss performs at least as well as the others and achieves the
best accuracy 48.4% at the 50™ round while the others achieve: FedAvg 47.8% at 40™
round, FedAvgM 47.5% at 48" round, FedMedian 47.5% at 30" round.

The above experiments provide strong evidence that Fedloss is a method that can

perform well under most of these challenging scenarios. Note that on average Fedloss

outperforms all other algorithms by 2%, across all scenarios and datasets. Feature



skew and label skew are the settings whereFedloss excels, while a quantity skew
setting can be proved a very challenging task for the method. CIFAR10 seems to be a
much more complex task compared to the SVHN for all algorithms in the Federated

Learning setting.



Chapter E

Conclusions

5.1 Summary

To sum up, this thesis investigates the emerging field of Federated Learning, a
promising Machine Learning paradigm which enables the development of Machine
Learning models in a distributed manner. The original motivation for the development
of Federated learning is to address the increasing privacy concerns. Initially, we
outlined FedAvg, the fundamental algorithm of Federated learning. Secondly we
illustrated the main challenge that accompanies the Federated learning framework:
bias introduced by data asymmetry i.e., Non-IIDness. An in-depth analysis was given
as to how non-IID is expressed in an FL setting, as well as how bias degrades the

performance of FL models. The basic non-IID scenarios were presented.

In this context we introduced Fedloss, our novel bias mitigation algorithm. Fedloss
was benchmarked in a custom FL framework based on Flower, an FL simulation
environment, in order to evaluate our proposed method under various non-iid settings.
Our results against State-of-the-Art FL mitigation algorithms suggest that Fedloss
consistently outperforms existing solutions, while preserving the strict privacy
requirement of FL and in parallel without introducing any complexity in the

resource-constrained client devices.

5.2 Future work

For future research, we would like to investigate the combination of Fedloss with
FedAvg, as a means of harnessing the benefits from both algorithms. Also, more
experiments in different ML tasks such as text prediction, speech recognition etc.
should be conducted in order to validate the generalization of our results. Another
direction is the deployment of our solution in an actual environment, to therefore

study its behavior in a cross-device setting with unreliable clients.



Appendix

Tuning

In order to set the hyperparameters we performed a grid search for both tasks in IID
settings. The grid: learning rate {0.01, 0.001, 0.0001}, batch size {32, 64, 128} local
epochs {1, 10, 25}

CIFAR10
CIFAR10 Tuning local epochs = 1
0.5 I b, lr, ep . o — ]
P —— (32, 1e-05, 1) —
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Figure 22: Tuning CIFAR10 local epochs = 1



CIFAR10 Tuning local epochs = 10
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Figure 23: Tuning CIFAR10 local epochs = 10
CIFAR10 Tuning local epochs = 25
051
04dr
£ os} (32, 0.001, 25)
—— (64, 1e-05, 25)
—— (G4, 0.0001, 25)
ool —— (64, 0.001, 25)
——— (128, le-D5, 25)
—— (128, 0.0001, 25) |
oil —— (128, 0.001, 25)
0 10 20 30 40 5l

Rounds
Figure 24: Tuning CIFAR10 local epochs = 25
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Figure 25: Tuning SVHN local epochs = 1
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Figure 26: Tuning SVHN local epochs = 10
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Figure 27: Tuning SVHN local epochs = 25
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