EONIKO METZOBIO IIOATTEXNEIO

Y XOAH HAEKTPOAOTON MHXANIKON KAI MHXANIKON YTTIOAOTISTON
METAOTYXIAKO [IPOrPAMMA ” ENISTHMH AEAOMENON & MHXANIKH MAOHSH”

Exuddnon avanapaoTtdoewy 08 TOAVGYECLUX0VG

vedwoug pe gugaocrn o JopuBwodelg Yedpoug

METAIITYXIAKH AIIAOMATIKH EPTAYIA

TOL

AHMHTPIOY N. ¥TYPPA®OY

EnBAenwv: Tibpyog Xtduou
Kodnyntic E.M.IL.

EprasTHPIO TEXNHTHE NOHMOSYNHE KAI LTSTHMATON MAeHsH: (AILS)
AdAva, 28 Moptiouv 2023

Edvind Metodfo Ilohuteyvelo
Eyohy Hhextpohdywv Mnyavixay xou Mnyovixodv Troloyiotoy
Metantuylond Hpdypauuo "Eniothun Acdouyévewv & Mnyoviny) Mddnon”

Epyaothpio Teyvntric Nonuooivng xaw Xuotnudtwy Mdinone (AILS)

Exudidnorn avanapactdoewy o TOAVCYESLAX0VS

Yedwoug pe gugaocrn o JopuBwoelg Yedpoug

METAIITYXIAKH AIIAOMATIKH EPTASIA

TOL

AHMHTPIOY N. ¥XYPPA®OY

EnBAenwv: Tdpyoc Ltduou
Kodnyntic E.M.IL

Evyxpldnxe and tnv towern eletaoctin emtpony| tnv 281 Maptiouv 2023

(Troypaerj) (Troypaerj) (Troypaerj)
[Ndpyoc Xtdpou Ytépavog Koag Adavdoiog Boulddnuog
Kodnyntic E.M.IL Kodnyntic E.M.IL En. Kadnyntic E.M.IL

Adrvo, Mdptiog 2023

Edvind Metodfo Ilohuteyvelo
Eyohy Hhextpohdywv Mnyavixay xou Mnyovixodv Troloyiotoy
Metantuylond Hpdypauuo "Eniothun Acdouyévewv & Mnyoviny) Mddnon”

Epyaothpio Teyvntric Nonuooivng xaw Xuotnudtwy Mdinone (AILS)

Copyright (©)—All rights reserved Aruftpioc N. Yuppdpoc, 2023.
Me emupOhaln TovTog BIXonOUATOC.

Arnoyopebetal 1 avTiypay), anodixeucT xou Slovouy| Tng mopoloos epyaoiog, €& 0AoxAHEou
1) TUAUATOC AUTHS, Yidl EUTOELXO Ox0To. Emteéneton 1 ovatOTmo, anoUhxeuon xal dloavour
Yot OXOTO U] XEEOOOKOTINOG, EXTUOEUTIXAC 1) EQELVITIXAC PUONE, UTO TNV TpolndleoT va
OVOPERETOL 1) TNYT) TEOEAELOTE %o VoL BLaTneelTan To Tapdy urvupa. Epwthuata tou apopodv

™ xenomn e epyactiog yia xepdooxomnd oxond TEENEL VoL ameLIOVOVTOL TEOS TOV CUYYQOPEA.

HeptAngm

Or ypdepol etvar pio SLodedouevn dour| BEBOUEVKY YLl TN LOVIEAOTOMOT) TOAOTAOXWY GUC TN
HATOV TOU TEAYUATIXOU XOOUOU. LUYXEXQWEVA, To TEPICCOTERA CUC THUATA TOU TEYUATIXOU
AOOUOL €Vl ETEPOYEVY, TOU GTULVEL OTL TEPLEYOLY XOUPOUC X OXUES DLAPORETIXWY TOTMV.
I vor yenowomointoly povtéha unyovixis o€ TETOOUS YEAPOUS YEELUOVTOL EXPEUC TIXES
OVOTIOROC TAGELS YEAPWY TOU AMOTUTOVOUV TIC DOUXES Toug TAnpogopiec. Tdutd to Adyo,
1N expdinon avanopdoTaone Yedpou €yel TeaBhEEL TNV Tpocoy) TEAEUTAlo AOYW TNG EMTU-
ylog twv veupwvixdy dixtiwy yedpwyv (Graph Neural Networks) oe Sidgpopec amoutntinés
epyaoieg unyavixic udinong oe dedopéva Pe T Lopgt| Yedpou. Emmiéov, ol tolucyeotaxol
YEAPOL YVOONS TOU YpNOWoTolouvToL TERIEYOUV oLy VA YopufBwdelc Thnpogoplee, elte ye
HOP®Y| AUV TIOLU GUVBEOLY U1 OYETIXOUE xOpuPBoug elte pe oyéaelc youninc Thnpogoptac. T
VoL OVTIHETOTOOUUE auTd To TEOBANUY, TEoTEVOUUE Eva HOVTEAD Yia TNV ToEvouNon xOuBwy
OE ETEPOYEVELS YPA(POUS TIOU OEIOTIOLEL AVTUPUC TUCELS TTOU TROERYOVTOL OO €VOL GUVEMXTIXG
VEUPWVIXO BixTuo Yedpwy (Graph Convolutional Neural Network) yio vor avory voploet tic to-
Tuxég e€aptroelc YeTadd xOUBmVy xou va TIC cUVBUACEL PE TANEOYOopieg ot eninedo oyéong mou
TpogpyovTon omd Wi LEYodo evomudtwone tohuoyectaxoy Yedgwy (Multi-relational graph
embedding). H pédodoc, enovouyaléuevn Split Relation Graph Convolutional Networks
(SRGCN), povteronotel Eexmplotd Tic avamapaotdoelc tou xdle xéufou ue Bdorn ta Sopo-
EETXG €(0T) oUWV OTO YPAPO, BivovTag €TOL EUQUOT) OTNG ONUAVTIXES OYECELS. MUYXEIVUUE
TNV TEOTEWVOUEVY uevodoloyia Ue dANX EVEEWS YPNOWOTOLOUUEVO VEVPMVIXY OIXTU YEAUPWY
o€ Lot TANIOEA TELRAUATOY, BVOVTOS EUQUoT) GTN BUVATOTNTA AUTKOY Vo 0aELOTOLOUY YENOWES
OYECELS OTO YPAPO xou Vo avTHETOTI ouy o Y6pufo mou unopel vo undpyet. o Tov oxond
QUTO TEAYUATOTOWACUUE TOAAGL TELRAUATA OE YRAPOUS TOLU TEQLEYOLY BLdPopeS Loppes Yo-
EUPOL, TUPUTNEWVTAUS T1) CUUTERLPOEE TOU UOVTEAOU HOG XUl TV UTOAOITKY VEUPKWIXGY. To
TEOTEWVOUEVO HOVTENO ETTUYYAVEL BehTiwon Tng ambdoone oe olyxplon pe oo GNN yevinrc

xenong, xadwe xar aviextixdtnta Evavtt Tou Yoplfou ot didpopa cevdpla.

AéEeic KAeoud

Acdopéva oe Mopgy| T'edgou, Exudidnon Avorapdotaone I'edgponv, Nevpwvixd Abtuo
Fedpwv, Etepoyeveic I'odgol, Evowpataoeg INedgwy I'viong, OopuBndeic I'odgol

Abstract

Graphs are a ubiquitous data structure for modelling real-world complex systems.
Specifically, most of them are heterogeneous, meaning they contain nodes of different
types, and multi-relational, exhibiting multiple types of edges. In order to use machine
learning models to tackle different downstream tasks on the graphs, we need expressive
graph representations that capture structural information for these graphs, in order. Thus,
graph representation learning has drawn significant attention recently due to the success of
Graph Neural Networks in various challenging machine learning tasks on graph-structured
data. Additionally, real-world graphs often contain noisy information in the form of edges
connecting non-relevant nodes or low-informational relations. To address this issue, we
propose a model for heterogeneous graph node classification that leverages neighbourhood
aggregation representations derived from Graph Convolutional Network (GCN) to cap-
ture local dependencies between nodes and combine this information with relation-level
information derived from a graph embedding learning method. Our methodology, named
Split Relation Graph Convolutional Networks (SRGCN), models the representations of
each node separately according to the different types of relations in the graph, enabling
it to focus on important relations. We compared our model with other commonly used
GNNs on a plethora of experiments, focusing on their ability to leverage informative edges,
especially when noise was introduced on the graphs. To this end, we conducted many ex-
periments on graphs under different noise scenarios, gaining insights on the behaviour of
different models. Ultimately, the introduced model achieved better performance compared

to the strong baseline GNNs and exhibited robustness against noise in all scenarios.

Keywords

Graph-structured Data, Graph Representation Learning, Graph Neural Networks, Het-
erogeneous Graphs, Knowledge Graph Embeddings, Noisy Graphs

Yn pvnun tov Yeiov pov, Avdpéa

Euyapiotieg

Apywd, do Hdeho va euyopiotiow tov emPBAémovia xadnynth pou x. T'bpyo Ltduov,
yioo TNV guxotpior TOL Pou EBwaE Py vor QolTow oto AIIMY odAd xan vo acyolnie ue
TO OLUYXEXPWEVO Vépa, xaddg xan Yot TN SUUBOAT) TOU GTNY oxadNUoiXT Lou Topeio Uyt
CTIYUNC.

Eniong Yo Hdeha va euyopiotiow toug Kwvotavtivo Mrouylatiddytn xou Anurten Keréon,
oaxtopole gpeuvntéc oto EKE®E Anudxpitog, vyl To €umpaxto evolapépov Toug, T
owdieon Toug va Bondnoouy, To YpodVO TOUC XU TNV UTOUOVY) TOUG OAO oUTO TO OLAGTTUO TOU
CLVERYAOCTAXAUE oTa Thaiola Tng epyaciag xan vor Toug euy i oA emttuyio oty extovno
e Swboxtopixfc Toug dateBric. Eupado moANd and autolc xou 1 cuVepYacio uag HTay dxenme
ETOOBOUNTIXY X0l TOUTOY POV EVYHRLOTY).

Extoc autov, Yo Adelo vo e éva euyoptoted otn Pevapétn, tov Anurten, tyv Evgopgia
xau tov Boothn mou cuvéBahay éumpoxta oTny npoondideio Lou auth, €6ei&oy XaTavonon TG
BUOXOAOIC TOL EYYELRNUATOC LOU ol oL Topelyay xde Suvatr SleuxdAUVGCT| GE OAT) T SLdEXELDL
TN EXTOVNONG QUTAHS TNG EPYATLaC.

Enlong va euyopiotiow toug giloug xou cuugortntés Baoiin xou Meixov yio tn Pordeia
TOUC XOIL TN OUVERYACTOL oG YEVIXOTERO XaTd TN poitnot| uag oto AIIMY.

Y10 onuelo auto Yo TpwToTUT oW, ameLdivovtog Eva UEYAAO pa xdde dAAo Topd cuyPort-
%0 ELYAPLOTEL GTOUC YOVEIC UOU XU GTOV ABERPO HOU, YL TNV UALXT), OXOVOUXT) AAAS XUELKOS
cuvatoUnuoTiny oTAEEn dveu Gpwy xou xodnuepvd. Xwelg tn Bordeld toug, 1 oloxhrpwon
TV omoudev You ato AIIMY 6e Yo ftay eguxty).

Téhog, euyapLOTG ENXEVE GAOUC EXEIVOUC, TOU UE TO OO TOUC TEOTO GUVERORAY avL-
OLOTEAWS Vo avTame€éADw OTIC BUOXOAIEC TTOU TOPOVCLIC TNXAY XU VO OAOXANEWOL ETLTUYMS

QUTH TNV TEOCTAVEL.

Contents

IMepirndm
Abstract
Evyopiotieg
Contents
Prologue
1 Exztetopévn Iepiindn ota EAAnvixd
L1 Boayoynd . . .o e
111 Knmeo . . . oo
112 BudBolfy . . o
1.2 Oewpnuixd undBaldpeo xou OYETIXES €pyYOaoies L L Lo
1.2.1 Tpdgor cav pyédodog avamapdoTaong BEBOUEVODY
1.2.2 Exuddnom avamaedotaong YROPMY « o v v ov v e
1.2.3 Nevpovixd dIXTua YEAPWY . . o v v o
1.2.4 EVOOUITOOES YRAPOY YVWONG « v v v v v v v v o oo e
1.2.5 ©0puBog OE YRAPOUS . o v v oo
1.3 Medodohoyla
1.3.1 Mevdpio YoplfBou
1.3.2 Movtéha avopopdc « o v v v o
1.3.3 IIpOTEVOUEVN OOYITEXTOVIXY .« v v v v v v v e e e e e e
1.4 ITepduomor Xou AMOTEAECHUATOL © « « v v v v e e e e e
141 Metpu a€lOAOYNONG « « « v v v o o
1.4.2 XOVOAa BEBOUEVOY . . o o v o
1.4.3 IlpoPAentiny| xovOTNTO TEOTEWVOUEVOU UOVTEAOU o o o . . .
144 Avdextxotqra oto 96pufo Lo
1.5 BUUMEQAOUATO . . v v v o
151 Xdvodm ..o
1.5.2 MeAOVTMEC TROEXTAGELS . .+« « v v v v v e et

2 Introduction

2.1 Motivation
2.2 Approach and contribution

2.3 Thesis structure

3 Theoretical Background and Related Work

3.1 Introduction to graphs

3.2

3.3

3.1.1

3.1.2 Graph basics and notation

Graph-structured data . .

3.1.3 Multi-relational, heterogeneous and knowledge graphs

Graph representation learning

3.2.1 Machine learning on graphs oo
3.2.2 Graph neural networkso
3.23 Classical GNN layers
3.2.4 Extension of GNNs in multi-relational graphs
3.2.5 Knowledge graph embeddings L.
Noise in graphs e
3.3.1 Forms of noise in graph-structured data,
3.3.2 Noise-robust models L

4 Methodology

4.1
4.2
4.3
4.4

Problem statement
Settings of noise
Baseline models
Proposed architecture
SRGCN architecture . . .

4.4.1
4.4.2
4.4.3

Intuition behind SRGCN

Model complexity

5 Experiments and Results

5.1
5.2
5.3
5.4

Evaluation metric

Benchmark datasets

Performance on benchmark datasets

Robustness against noise

5.4.1

Experiments on syntheticdata

5.4.2 Experiments on real-world datasets

6 Conclusions

6.1 Summary
6.2 Future work

List of Figures

26
26
27
28

30
30
30
30
31
31
32
34
35
39
41
46
46
47

52
52
53
o4
55
55
o7
58

61
61
61
63
64
64
69

76
76
76

79

List of Tables

Bibliography

80

81

Prologue

This thesis has been conducted in collaboration with the Artificial Intelligence & Learn-
ing Systems (AILS) laboratory of National Technical University of Athens (NTUA) and
the National Centre For Scientific Research (NCSR) Demokritos.

For the experiments and result visualizations presented in this thesis the Python pro-
gramming language has been used. The Python deep learning framework used for the
construction and training of the models presented is PyTorch . The neural network layers
for geometric deep learning used in the models, as well as the datasets used for training
and evaluation are implemented in the PyTorch Geometric library. The library used for
the training of the knowledge graph embeddings is PyKeen .

For the training of the deep learning models as well as the we used an Nvidia GPU,
namely the Nvidia GeForce GTX 1660.

The code for the construction, training and evaluation of the models as well as the logs
containing the different results presented in this thesis are open-source and can be found
on Github'.

"https://github.com/dsyrrafos /thesis-gnn

https://github.com/dsyrrafos/thesis-gnn

Kegpdiaio 1

Extetapevn Ilepiindn ota
EANN V&

1.1 Ewooywyn

1.1.1 Kivntpeo

H exuddnon avonapaotdoewy yedgwy (Graph representation learning) etvou éva avodu-
OUEVO TEBIO AOY W TOU EVEOUC TWV ETULC TNUOVIXADY TEDIWY XAl TWV EQUPUOYMY TOU YENOWOTOLO-
Ovton oL ypdpol cav TpodTog avandpdotaong dedopévewy. O yedgol cupofliilovton cuvidng
(G CLYOLACUOE EVOG GUVOROU XOUBWY ol EVOS Tvoxa YELTVINOTG TOU UTOBNAWYVEL TNV AAAT-
henidpoon PeTall TwvV xOUPwv Tou yedpou. Av xou auTH 1 avamapdoTaon elval Yerourn Yo
VO XATOVOTICOUUE T1| BOUT TOu Yedpou, oL Tapadoatoxol akyopriuol unyavixng udinone dev
UTOPOUY VO YENOHOTOLAGOUY AUTAY TNV AVATARdo TAOT), XoKS OEV UTOPOLY Vol EQUEUOGTOUY
o€ U1 cuxAeldelo BEdOEVA, OTWS OL YEAPOL.

[To:réc mpooeyyioeig €youy viotetniel otn uddnon avomopds taone xouPwy. To Nevpwwvi-
%8 Aixtua Ipdgpwy (Graph Neural Networks), ev ouvtopia GNN eivar ta o Snuo@u Aoy
e VPnArc anddoone mou €youy emTUYEL Ot SLAPOPES EpYaoieg exudinone avamapdc Toong
Yedpwv. T ypdpoug yviong, tohhés pédodol evowpdtwong xouBwy xo oyéoewv (Node and
relation embeddings) éyouv avantuydel uéow epyacLdY avaXATUOKEUNS YEAPWY TONNAUTAGY
oyéoewv (Knowledge graph reconstruction).

O B6pufoc oToug Yedypoug elvar €val TOM) XOWO EUTOBL0 GTNY EE0Y WYY YENOULWY avoTa-
PUCTACEWY YPdpwY. Emniéov, n mAcodnpla Twv Yedpmy YVOONE TOU TEUYUATIXO) XOCUOU
xaTaoxeLalovTon Yéow tng e€opuing yvwong and tov Ioté. O autopatonomuéves yédodot
XATACKEVAC YRAPWVY YVWOONG Elvor oLy VE aTteAel xow auTtd 00mMyel o YopuPBwdrn Yedpoug xa
YounAéc mAnpogopieg 1 oxxdua xou YopuBmdels oyéoelg Tou ennEedlouy dEVNTIXA TNV TOLOTN-
Ta TOL TaEAYOUEVOL Yedpou yvwong. To GNN, av xou nopouctdlouvy Yeydleg exppacTixég
dLVATOTNTES, elvan eudhwta oto VopuPo. 'Etol, ta poviéha Badde pdinong mou uropolyv va
eZorydyoUV LOYUPES aVATOEAC TAGELS EVaVTL TOU £YYEVOUS Y0oplfou auUT®Y TV YRAPKY €Y0UY

onuovT o&la.

10

11

1.1.2 XupBol

Ye auth TN SmhwpoTix epyaoia, TPOTEVOUUE TN XpHOoN EVOWUITOOEWY oyéoewy (relation
embeddings) mou e&dyovton and €va LOVTEAD XOOXOTOUNTH-ATOXWBIXOTONTH EXTUSEUUEVO
oty epyacia ohoxhipwone yedpou (Knowledge graph completion) e cuvbuaoud pe o-
vomopao Tdoele xouPwv mou mpogpyovia and €évo GNN ylo v eniteudn mo ex@pacTixwmy
OVOTORAC TAGEWY TV XOUPwY Tou Yedpou. Ta melpduatd Yo LTOSNAWVOLY OTL UTOPOVUE Vv
emtOyoupe Behtiwuévn andédoaon oe wia epyacion Tagvounong xOufwy aloTowvTog 1060 TIC
TANEopoplec Sournc Yertovidg Tmou e&dyovtat amd évo GNN 660 xau Tig Sopnég TAnpogopieg mou
TEOEEYOVTOL AT EVAL LOVTENO EVOWUITWONS YRdpou Yvoone. Emniéov, n npotetvouevn apyl-
TEXTOVIXT| LOC OTOYEVEL VO TOREYEL LOYUPES avamopao TAoeLS Jopundwy doumy yedpny. Ta
ATOTEAEGUOTA TOU TELQUUATIONOU MG EVIUPEUVOUV T1] YE101) EVOOUITMOCEWY YEAPWY YVOONG
évovTt one-hot xwduonolnong Yl TNV avamapdcTaoT TWV OYECEWY, XM 1) EXPEACTIXOTN
TaL TWV TEAEUTAlWY OeV emopxel yia Vo Blayweto Tody oL yproes and Tig YopuPddelc oyéoeLC.
Emmiéov, ta euprjuatd pog Oetyvouv 6Tl TO TEOTEWVOUEVO UOVTEAO EXEL QUEANTEN ATOAELOL O-
T6d0ang o Ypdpoug Tou enneedlovian and oyéoelc eviehws YopuBwdel. Télog, n mtwon

amodoong neplopileton dtav o Vopufoc ennpedlel TEPLOPIGUEVO apLiUd OYECEWY.

1.2 Ocswpntixd vNOBadpo Ko GYETIXES EpYATLES

1.2.1 Tpdyot cav uéVod0og AVATALACTACTG OEBOUEVLY

Or yedpot etvan piar SLadedOUEVT BouT] BEBOUEVKVY YId T1 HOVIEAOTOMNGY) TOAUTAOXMWY CU-
CTNUATOY TOL TEAYUATIXOU xO0UoU. XenoWonoloLVTol EUpEws w¢ HEY000C avamopdo Taong
O€ OLAPORES EPUPUOYES. LNV EMOTHUYN UTOAOYIGTOVY Tolouy TOM) GNUAVTIXG PONO XaL €YUV
amOTEAEGEL AVTIXEUEVO UEAETTS ETL TOAAG Ypovia. To xUplo TAEOVEXTNUA TWV YRdPwWY Elvol TO
YEYOVOG OTL QUTH 1) CUYXEXPWEVT) DOUT] UTOPEL VO LOVTEAOTIOLACEL OVTIXEIUEVO TOU TEAYUATL-
%00 x6ouou pall pe tig ahkniemdpdoelc uetall Toug. o To Adyo autd ol ypdpol emhéyovTol
¢ uEY0dOC AvVamPdo TAoS O Uial TANUMEN EPUEUOYWY, OTWS ToL XOVWVIXE dixTud, CUCTAUN-
oL CUOTACEWY, LOpLUXS. YPaPhHUoTY, dixTua CAANAETIBEAUONE TEWTEVGDY 1| papudxwy xAt [14].
(2¢ ex ToUTOL ExEl exONAwIEl EMOTNUOVIXNG EVOLAPEROY YURW ATt TNV EQURUOYT oA yoplduwy
unyovixhc xan Bordidg uddnong oe dedouéva oe Yop®n Yedpwy, UE Ta GNN va omotehohv To
dnueio avapopdc [17].

[ToAA& amd tor oOVOA DEBOUEVLV TOU TEOYHUATIXO) XOCUOU BEV UTOPOVY VoL OVOTUEUC To-
YoOv ye amholg yYpdpoug ToU TEPLEYOUY XOUBOUC xou axUéc evOg novo tumou. ['pdgol mou
TEPLEYOLY HOUBOUC Kol oXPES BLaopETIXGDY TUTWY ovoudlovtal etepoyeveic [38]. Mua eldund
TEPIMTWON ETEPOYEVOY YEAPWVY Elvol OL YRA(POL YVOONS, OL OTOoL YENOWOTOWUY TNV Soun
TOU YPAPOL YLl TNV AVATUEAC TACT) TNS AVIPOTIVAC YVWONE, AVATIQIC TOVTISC YEYOVOTA UE T1)
HOPPY| OVIOTATOVY, OYECEWY X0t CNUCLONOYIXY TEPLYPAUPT QUTOV (ETIXETES, YAUPOXTNELOTIXY

xou TOToL ovtothtnv) [18].

12

1.2.2 Expddnorn avanapdotacns Yeipwy

O oxomdg g exudinong avanapdo TaoNG YRUPHUATOS Vol 1) E0YWYT) AVUTOEC TACEWY
YUUNAGY SO TACEWY amd TOUC xOuBoug eVOg Ypdpou. Autod €yel ueydhn onuaocta yioti 7
TOLOTNTAL XA 1) EXPEACTIXOTNTA TV OLUVUCHUATOV OVAUTURAC TUOTE TOL Yedpou efval 0 To or-
MOV TIXOC TIOEAY OVTOG YIAL TNV ATOB0CT) TWV HOVTEAWY UNyavixng uddnong oe didpope epyacieg
[24].

Auté mou Blaépel oTNY TERIMTWON TWY YEAPWY Elval TO YEYOVOS OTL oL cuVRELS XATNYO-
oleg mpoPhnudtey emPBAenouevng xat un emPBAeTOUEVNS Uddnong Bev elvon T600 GUYVES AOY W
TWV WLUTEPWY YOPUXTNPLOTIXADY TWY YPAPOY (S AVATOPAoTIOY GLUVOAWY dedouévmy [57].
Emniéov, n Omopdn axuodv oxtég and xouous meoopépovton Yo eEEBIXEVUEVES EQYIUCIES UT)-
yovixic wdidnone, émee 1 tedBhedn ooudv [29]. T'evind undpyouv tela Thaloto yior eqapuoyéc
unyovixic pudinong oe yedgpoug: ot eninedo xouPou (tadvounon xOufwyv), ot eminedo oxunc
(ta&wvéunon xon mpdBRedn axuwyv) xou ot eninedo ypdpou (ta&vounon yedpou) [46].

H to&wvounon xoufwv eivor (owg n mo xowvi| epyacio oe Sedopéva Ue TN HopQT YEAPWY.
Aedopévou evoc ypdgou G = (V,€) xaw etnéteg oe éva unocivoro xOUBwV Vipgin € V
0 otdY0c otV Tavounon xOuPBwy elvan 1 TEOBAEPN TWV ETIXETWV TWV U1 ETLONUACUEVLY
AHOUPwV.

To mpofinua tng ta€vounone xouPwy eivon éva TeoBinua emBAenouevng udidnong. Xtnv
emPBAenOUEV Ydino, o akyopriuog udinong mtopatneel Eval ETOTNUACUEVO GUVORO GEBOUEVLV
(cUvoho exmaidevong) mou amotelelton and Lebyn (yapoxTneloTnd, eTixéta) xou cUUPBOALo-
viow P {(x1, Y1)y oy (Tn, Yn) }- O otdyoc eivan va mpoPrédoupe Ty etéta y yioo xdde véa
un emonuacuévn eicodo x. 261000, oL ETIETES ¥ elval oLy VA BUoxoNO, axE30 XL apYo Vo
amoxtniolyv. Auto axeiBdc avtiuetonilel N nueTBAeTOUeV udinon, xotd Ty omolo Aoy-
Bévovtog unddn éva oyeTnd wixpd cvvolo dedouévev pe etxéta {(z,y)} xou éva ueydho

’ 4 7 4 7 7 4 7 7. 4
o0voho Sedopévmy ywplc etxéta {z}, unopel xavelc var pddel and xar to dYo yia tadvéunon.

1.2.3 Nevpwvixd dixTud YEAPWY

H emxpatoloa apyitextoviny| Padide ydinone yio 6edopéva o€ Lop®t Yedpwy eiva Ta
Nevpwvixd Aixtua I'edgwv (Graph Neural Networks) [35]. O otdyoc twv GNNs eivar va
udder o avamapdotact by, € R yio xde xoufo u tou ypdgou, mou euncpléyel TANpopopieg
am6 T yertovid tou xdie xouBou. T va pdiel autéc Tic avamapactdoec, o GNN yenowuo-
Totel évol Yevixd mhaioto, mou ovoudleton TAUOLO UETAPORAS VELPOVIXGOY Unvupdtwy (neural
message passing framework) [11]. Ltnv apy?, xdde xéufoc u apyxomoleiton pe pla xdmoto
ovamoEdo TooT hy. 3e xdde enavdhndn, evnuepdvouue TNV xaTtdc Tacy Tou xoufou, ue Bdon
TNV TREONYOUUEVY] XATACTACY) TOU XOL TIC OVOTUPACTACELS TV YEITOVKDY Tou. H Sobixacio
AVOVEWOTNC TWV OVITORAC TACEWY TV xOuBwy yiveton uéow uiog dadixactiog avTaAloyhc xon
oLVAYEOLENEC UNVUUATOVY UETAED TV YEITOVIXWY XOUPBwY, 1 onolo Unopel Vo Teptypa@el Ue Tig
TOEOXATE TEAEELS:

mil = AGGREGATE(hE Yu € N(u)) (1.1)
hETY — UPDATE(RE, mkt1) (1.2)

13

6mou N (u) etvou 1 yettowd tou xopPov u , AGGREGATE xau UPDATE eivor Swgpoprot-
EC GUVOPTAGELS, Tou ouvidue Tpooeyyilovton amd veupwvixd dixtua [16] , mEt! elva to
ouvadpolouévo uAvLa omd Toug yeltovee oty emavéndn k+ 1 xou AFHL etvon 1 avamapdoto-
on tou xouPBou u oto k + 1 enavdindn. H ouvdptnon AGGREGATE Yo mpénet vo elvou
oueTABANTN peTdeon. Extog amd to puivupa xaw T cuvddpolon, éva eninedo GNN eqopudlet
EMTAEOV UN) YRUUUXOTNTO O TNV EVERYOTONOY] TOU ETUTESOL Yiol VAL XAVEL BUVATH) TNV TEOGEY-
YIOT TV U YROUUXOV CUVORTACE®Y GTO 0ixTuo. Ol O XOWVEC GUVIRTHOEIS EVERYOTOMONG
elvow 1) oLlyPoewc ouvdptnor xou 1 ouvdptnorn ReLU. To oyfua 3.5 eivon yio ameixovion g

rpoavagepVeicoug dtadixaclog.

YuveAxTind dixtuo Yedpwyv GCN

To Yuvehtixd Aixtvo Tpdgwv (Graph Convolutional Network) [26] eivor to o €U-
pewg yenotponoluevo GNN. Axoloudel Ty TEOGEYYIoN UETABOOTNC VEUROVIXMY UNVUUATOV.
Kdde ouvehxtind eninedo | amoteheiton and évav mivaxa Bdpouc WU, Tia xdde xéuBo u,
Todpvel w¢ €lcodo TY avamaedo oo) TOL TEoTYoUueEVOL eédou (Snhady, hg_l)), TOV TOA-
homhaotdlel pe tov mhvaa Bdpouc WO yia va Snuioupyrioete ™ véa avomopdotoo h.
Avuto anotedel To Yrvupa xde YEITOVIXOU xOUBOU TOU U OTOV CLUYXEXPWEVO xOufo. X
CUVEYELDL, TOL UNVOUATA CUYXEVTROVOVTAL Xal EQUEUOleTon ETIONG Wiot U] YRUUUIXY) CUVAETNO
evepyonoinong.
by "

[N (v)]

h,(f) =0 Z

u€N (v)

(1.3)

Aixtuo GraphSAGE

Ta neprocotepa GNNs dev yevixebovtar oe un opatd 0edouéva, xadng dnuiovpyoly Tig
EVOWUATOOELS PelTioTonowwvTag Tig TeoPAédelc oe xouPBoug oe éva otoepd ypdgnua. To
GraphSAGE [13] anotelél évo YeVixd TAOLO Yol TNV EVOWUATWOT) ENAYOYIXMY XOUB®V.
Ye avtideon ye v npocéyyion evonudtwone tou GCN, to GraphSAGE 8ev cuyxevtphvel
amevlelag Tor UNVOUUTa oamd T YELTOVLA TOU XOUPBOUL U, AAAS oy ixd AVTAEL YLol AVITAEAOTUCT)
NG YELTOVLAC CUYXEVTRWVOVTOS TIC AVATOQUCTACELS TWY YELTOVWY X0 OTT GUVEYELXL GUVEVVEL

)

7 ’ ’ ’ , (l—l /
TNV avamaedoTaot Tou x6pufou v amd To tponyoluevo eninedo hy 7 ue Ty mpoavagepdeioa

avamapdotoon yertovide (ELyfua 3.7).

h{) ¢ o (WO . CONCAT(R{™), AGG({Bi !, Yu € N(v)}))) (14)

AixTuo mpocoyhc vedpwyv (GAT)

2TO TOEATAVE VELPWVIXG. BiXTUN YEAPWY, 1) UUPBOAY xdie xouPou 6To oy ua cuVEdEoL-
one vnoyopedetow and tov Padud tou. Ko 6to GCN xou oto GraphSAGE, undpyet évag
TUEAYOVTAS CTAVUONG Qg = m Tou UNVOUATOS Tou XOUPou u Tpog Tov xoufo v . Au-
6 onuaivel 6Tt bhot ot yeltovee u € N(v) ebvan eZloou onuoavtxol v tov x6pfo v. Ta

dixtua mpoooyhc yeaphuatoc (Graph Attention Networks) [41] avtpetonilovv oautdv tov

14

TEPLOPLOUO EQapUOlovTaS BlapopeTixd Bdpn eoTdlovVTag OTA CNUAVTIXG UERT TV BEBOUEVWLY
e10600u (Lyfua 3.8) xar eZagavilovtag to undhotta un Thnpogoptoxd uéen. Me dhha Aoy,
otny nepintwon tou GAT, dev eivan 6ot oL yeltoveg Tou x6pfou e€loou onuavtixol. H onuo-
olo Tou xdde yeltova e€optdton amotehel exmaudelolun TUEAUETEO XL LTOAOYILETOL XATd TNV

exmaldEUoT).

h)=o | > auWOh{ (1.5)
ueN (v)

Enéxtaon GNNs oc noluoysoiaxolg yedpoug

To mhaiowo twv GNNs unopel va emextodel yior vor avTIUETWTICEL ETEQOYEVY| YRAUPHUATAL.
Yto GCN, 10 Bdpoc WO uowdletor oe dhec tic axuée oo enimedo 1. T tov yewpioud
TOMOMAGY oyéoewy, 1 apyrtextovixt oyeotooxol GCON (Relational GON) ewcdyel Eeywpt-
otol¢ mivaxeg Bdpoug yio xdde TOmo oyéone [36] xon pbvo oL axuéc Tou (Blov Thnov oyéong T
oyetiCovton pe to Bto Bdpog mpoofc wd (Ewéva 3.9). Xn ouvéyela, axoloudoviog Ty
TEOGEYYLON UETABOCTG VEVPWVIXWDY UNVURATOVY YIVETAL 1) AVOVEWGT] TNG AVATOEAC TACTS XAUe

x6pPou yia xdde oyéorn Tou Tohuoyeslaxo) YEAPOU.

A+ = o D> Z wpD (1.6)

reRueEN (v

To meoBANU TOU TEOXVUTTEL XATA TNV JUECT) EQUPUOYT) TG Topandve e&icwaong elvon 1 Tayeio
aO&nom Tou apLiuol TV TUPUUETEMY, EWBWE UE YRAPouS ue UeYdro TARdog oyéocwy. Autd
odnyel oe LPNIS LTohoYIOTIXG XboTOC XAt X{vBLVO LTepTpocapuoyic (overfitting). o vo o-
Togeuy Vel auTéd TpoTEVETAL 1) YENoT TNE anocUvieong Bdomng xotd Tn Sudpxela TG EXTALBELOTG
[36].

1.2.4 EvoWpatwoelg YRAPWY YVWONS

Ta ypaprAuoata YVeOong, we po Lop@t| dounuévng avipdmvng yvmong €xouy TpaShEeL ue-
YEAT pELYNTIXY TEOGOY T ToL TEAEUTAkAL YEOVIaL §2C AMOTENEOUAL, 1) EXUAINOT AVATAUEAUC TAOEWY
o€ YRAUPOUS YVOOTNG Elval Eva avadUOUEVO TEDID TTOU Exel ToEdYEL oNuovTIXd armoTteAéopata. H
EXUAUNOT AVATOEUC TACEWY YEAPOU YVWoTg elvar 1) Stadxactia TeoBoAnc YedpwY YVHOoNg o
€vay ouveYY) BLVUOPOTIXG YDEO YoUNAOY Slaotdoewy [48] (Ewdéva 3.10). Ou yédodol evow-
UATWONG TOL YENOWOTO0OVTAL OE AUTH TN HEAETH 0XOAOUTOUY TNV TEOGEYYIOT XWOLXOTOLNTY
- ATOXWOXOTONTH YOl TNV EXTUUOEUCT] TWV EVOWHUATOOENY X AVAXOUY OTNV XATNY0plo TeV

eNYOV evouuatwoeny (shallow graph embedding) [14].

MovTtéAo %XWBLXOTOLNTY - ATOXWOLXOTOLNTN

Y10 TAAUCLO XWOIXOTOINTH - AMOXWOOTONTA 1) Bladixacior SNULOVEYINS EVOWUATWOEWY
yiot Toug xOpfBoug xou TLC axUéC Tou yeagruatog ywelletou ot 600 Aettovpyieg. Ipdtov, évag
xwdixomountig avtioTtoyilel xde x6ufo Tou YEUPAUUTOS ELGOB0L GE Vol BLAVUCHOL YUUNANG

15

owdotaons. Metd and autd, Evag AmOXWOXOTONTAS YENOHLOTOLE! TO XWOLXOTOLNUEVO BLEVUGU
Y10 VL OVOXAUTUOXEUBGEL TANPOPORIEC GYETIXA UE T1) YELTOVLA X&E xOUBou 6TO apyixd Yedpnua
[14].

Ou amoxwodixonomntég ywellovtol oTIC TaEaxdTw xaTnyoples:

o Metagppactixol: AvTinpocwnebouy GYECES WC UETAPRACEL GTOV YWPEO EVOWUSTWL-
ong. e authy TN pedodoroyia evowudtnong, xdle oyéon avomopioTaton yenoylo-
TOLOVTAG UL EVOWUATwOT Blactdoewy d. H mboavotnto axunc ebvar avdhoyn pe tnyv
AmOGTOCT| UETUEY TNG EVOWHUATWONS TOU XOUBOU TNg XEQUARS Xou TOU XxOUPou Tng ou-
edC, apol PETAPEAGTOOY Ol XOUBOL XEPAUAAC Kol OLEAS GUUPMYA UE TO OLUVUCHUATIXO

YWEO TNS CUYXEXPWEVNG oyéone. Lyetxd povtého: TransE, TransR, TransH

o IToAu-ypauuixol ecwteptxol yivopévou: X1n ucdodohoyia auTh 0 amoxmOL-
XOTOUNTAS EQUEUOCEL TNV TEAEN TOL ECWTERPXOV YIVOUEVOU GTa BlavOoUATo IOV dNuLo-
Veynoe o xwdixonotntic (DistMult). Baoixde nepiopioude tne mpooéyyione authc eivan
1 aduvoia Stoyelplong avTi-cLUUETEIXOY oyéoewy. Autd avtuetwnilletal Ue TNy Yer-

OLUOTIONGT ULYOBIXWY EVOWUUTOOEWY TwV oTotyeinv tou yedpou (ComplEx, RotatE)

To mpoavagpepdévta ToAUCYECIAXd LOVTERN AVTWUETWTILOUY TO €pY0 TNG EVOWUATWONS
YEAPWY YVWOTNE YENOULOTOIWVTAS SLopope TS cuVaPTATELS PBardohoyloc 6TO TUAUN TOU omo-
xwdwonoint Toug. H emhoyy) tne ouvdptnone Boduoroyiag xat 0 BlavuouaTinog yMeog Twy
ONULOVPYOUUEVY EVOOUATMOEWY efval oL xUplol Ttapdyovteg Tou xadopllouv TNy xavoTnTd
TOUG VO AVATOPLO TOUY CUYXEXPUEVOUS TUTOUS OYECEMY. l¢ amOTEAECUN, AUTOL Ol UTOX-
OLXOTIOLNTES UTOPOUY VAL YOQUXTNEIGTOOY ol TNV IXAVOTNTA TOUC VoL OVOTUELO TOLY TETOLOUC

Tonoug oyéoewy (Mivaxoc 3.1).

1.2.5 ©Obpufog oe yYpdpoug

Ta ehhimy), avoloLa, TOPUUOPPWUEVY 1) XATECTEAUUUEVH DEBOUEVA GE GUVOAL BEBOUEVWY
elvol Yvootd wg YopuBoc. O Y6pufog unopel va €yel onuavTind avtixTuno oTr GUVOAXT| a-
168001 VO UOVTELOU Unyovixhc udimong [15]. O Y6puPoc mapatnpeiton cuvidng oe didpopa
OOUNUEVYL 1) AOOUTTAL DEDOUEVOL XL To DEOOUEVA TTOL AVITURIG TAVTAL WG YRAUPOL BEV ATOTEAOUY
eCalpeon.

O YopuPog otoug yedgoug umopel va amodolel oe didpopoug Tapdyovies. Emmiéov,
nop@Y| ue tnv omola unopel va mapatneniel o Yopufog ota yeapruata urnopel vo ToixihAeL.
Mrnogel va efvar T0 anoTéAEGU LG ETUOLWXOUEVNS TEOCTAUEWC aAAay S TNS BOURAC Tou Bl
xtoou (m.y. emdéoec avundhou, bots oe xowvwvixd dixtua) 1 unopel vo mpoépyeton and
OTERELES QUTOUATOTONUEVLY PEDOBWY xataoxevic ypapnudtwy [30] (m.y. outdpata xoro-
oxevaouéva ypophuato yvoons). Ot dvo xipteg poppéc YopiPou eivon: i) EAinelc # nepittéc
oxpéc LETOED xOUPBwV (%OUBoL BLPOPETIXAC XATAVOUNRE YOEAUXTNPLOTIXADY, XNAOELS, XOWOTI-
TeC x.AT). i) Anintnplacuévor xépfol (xéufol pe SlatoparyUéva YopoxTnelo Tixd 1 eTixETeS)
TEOGUPTNUEVOL GE XOVOVIXOUS xOUBoug Tou unopoly vo BAddouy tig yetddouc cuvddpolong

YELTOVIAC Yo €Ay YR avomopao Tdoewy [49)].

16

ITapd To yeyovog OTL Ta veupmvIxd dixTua Ypopxmy €youy emdeiel ueydin emtuyla ot
novtehomolnom SeBOUEVWY UE TN LopdT| YRdpwY, xouv delel apxetd alloonueiwtr eundieia
oe Odpopoug TuToLg VYopUBou. Ou axpéc VoplBou, xadmg xou oL dNANTNELICUEVOL XOUPoL
umopel vo 0dnyioouy ae onuavtixy utofdiduion tne anddoong tou GNN. Autd ogelheton xu-
plwg ot @hon Tou TMAwciou UETABOONE VEUPWVIXGOY UNVUUAT®Y TOU YENOWOTOOLY ouTd To
veupwvixd dixtua [7]. O axpéc YoplBou cuvilne cuVBEoUV XOUBOUC BLAPOPETINDY HAACEWY
1) UE OLOPORETINGL YOROXTNEIO TIXA, EMOUEVWS 1) CUYXEVTEWOT] TANPOPORLMY YELTOVIXWY XOUBwY
OBl opdhuaTa, avoLy VOEL YEHOWES TANPOoQopleg Ue VopuBo xou TEAMXE 00NYeEl oE Xaxég
VTG TAOELS TeV XOuBwv Tou Yedgou [19]. Tlpoxewévou va apuviel To veupwvixd dixtuo
EVOVTL QUTOY TV eV YoplBou, €youv mpotaldel dlagopeTind avtiyetpo, Ta omolo EmLXE-
VIPWVOVTAL GTOV YEWRLOUO Tou YopUPBou 1000 %aTd T1 SLIEXELN TNS EXTIOUBEUONC OGO XAk TNG

a€loAdynoTg.

1.3 MeJdodoloyia

1.3.1 Xevdpia YopUfou

Oa acyohndoiue ye tnv Onapn YoplfBou ce Ypdpoug Tou eupavileTon Y TN HoE@PT) Aov-

Yoouévwy axpoyv xat Yo tagivouricoupe Ty Unapdn YoplBou oTic axdhouteg xatnyoples:

e Oopufwdelc oyéoelg: Opiouévol ypdpol umopel vor Tepléyouy OYETELC UE OXUES
TOU GUVBEOLY AMOXAEICTIXG UN OYETXOUE xOuPous. Auth 7 meplntwon ebvar mo ou-
VIHOUEVT] GE QUTOUOTA XATAGKEVACUEVOUS YRAPOUS YVWOoNS, €dv 1 u€dodog e aywymng
oyéoewv etvar Aavioaouévn 1 g oyéon eV TAREYEL YEHOWES TANPOPORIEC OYETIXG UE

TNV OUOLOTNTA TWV XOUBWY ATd TEOETLAOYT.

o Axuéc YopUPou oe yprnoireg oxéoeilg: Xe auth TN pddulon, ecTidlouue oTov
avTiXTUTO TV VopUBWBMY UXUMY TOU AVAXOLY GE WUa GYECT| TOU TUREYEL TANEOPORLA.
Auté umopel va elvar anoTéAeouo CUYXEXPEVWY EMUECEWY OTN douy) Tou Ypdpou 1
AOY® OTEAELWV [LOC QUTOUATOTOMNUEVNS HEVOB0U XATAOKEUTC YRAUPWY TOU dNULOUEYEL
TEPLTTEC axPES. AuTég oL oxuéc BAAnTOUV To oy fua cuvddpolone YELTOVLY, ETELDY| OL

un oyetxol yeltoveg ouufBdAlouy oTny TeEAY| avarapdoTacT xde xouBou.

1.3.2 MovTéla avagpopdg

[Tpoxewévou va a€loAOYHOOUUE TNV ATOBOGCT| TG TEOTEWVOUEVNG UPYLTEXTOVIXTG WS, ETL-
Aeape 800 apyttextovixég GNN, ot onoleg elvon amd Ta Mo GUYVE YENOULOTOLOVUEVO HOVTEAL
otn oxeTny| BBMoypapla yio SLdpopeg epyacieg exudinong avanopdotaong Yeopnudtwy. H
EMAOYT) AQUTOV TwV 800 HOVTIEAWY, EXTOC MO TNV Mooy EVOC UETEOL GlYXELONG Yo TNV
AEYLTEXTOVIXY| HaG, OYETILETOL PE TO YEYOVOS OTL QUTEC OL 500 UPYITEXTOVIXES YETOWLOTOLOUY
000 BLUPORETIXOVE UNYAVIOUOUE TOL Vol UTOPOVGAY EVOEYOUEVKS VAL TTOREYOLY AVIEXTIXOTNTA

evavtt Tou YoplfBou. To yovtéra autd elvou:

17

e GCN / GraphSAGE: Ta 800 autd povtéha Swtnpody Slopopetind mivoxa Baptv
yioo x&e oyéon. O oyediaouds autog Yo unopoloe va ayVoNoEL OYECELS YOUUNAAC

Thnpogoplag 1) oaxdua xou Yopfou tpocapudlovtac Ta aviicTolya Bden xdde oyéonc.

e GAT: To GAT &itnpel enlong drapopeTind mivaxa Bopnv yia xdde oyéon xon emTAéoy
€yel xou éva Bdpog “npocoync” yio xde anur. VewpenTixd Tapéyel TEOCVETT AoPAAEL
Evavtt oy Yoplfou, xadog To povtého dluoUnTixd unopel vo amodOoeL eAdyloTA

Bdpn TeocoYNC O QUTEC TG AXUES.

1.3.3 IIpoteltvopevr ap)LTEXTOVIXT
IMTepiypapr apyitextovixrc (SRGCN)

To povtého SRGCN anoteheiton and tplo xOplar oTotyela xou 1) dladixacio poviehonolnong
amewoviletan oto oyfua 4.1. To mp®dTo elvon éva cuvelxTind dixTtuo Ypogpnudtwy. To yo-
viého meptéyel éva GON yia xdie plo and tig oyéoelg tou ypagpruatog ewoodou. Kade GCN
YENOWOTOLEL OC EGOBO TOV aEyixd YEAPO, aAAS U Evay UOVO TOTO Oyéang, xaL EEAYETOL (Lol
avamoEdo TacT) Yo xde x6ufo. AuTY 1 EVOOUATWOT AVTITPOCWTEVEL TOV XOUPBO YLol AUTHYV
N ouyxexpévn oyéon. To dedtepo ctowyelo elvon €va pNyd UOVTEAD EVOLUITWONS YEU-
pruatoc yvoone. To poviého evowudtwong yedgou dnutoupyel Wi avamapdotaot (Sniadn
Ut EVOOUAT®DOoT) Yo X8 oyéon Tou apytxol yedpou. Xtn cuvéyela, Yo xdVe xoufo, m
avamapdotact) tou avd oyéon (and to GCN) xou 1 avtiotolyn avoarnopdo taon oyéone (and to
HOVTENO EVOWUETWONG YRUPAUOTOS) CUVOEOVTAL, DNULOURYMVTUC Lol LOVODLIXY avamapdoToo
yioe xdde SropopeTiny oyéon yio Tov xoufo. Téhog, autég ol avanapactdoelg cuvadeollovton
X0l TEOPOBOTOVVTUL WS EC0BOC O €va VEUPWVIXO dixTuo eunpdothog Tpogodoaiog yio TNV
TaEwounon. XNy meplnTtwoy| Yog, eMAEEUUE TN CUVEVKDON W cuvdpTtnon cuvddpotone. H
10€a elvon Vor Uny avaely voovTaL oL TANEoQoples Yiol SLUPORETIXES OYECELS OE AUTO TO OTABLO.
'Etot, 1o tehixd MLP mdve and autég T CUYXEVTROTIXES EVOWUATMOOELS Vo UTOREL VoL Yenot-
HOTIOLAGCEL TIE BLOXELTES OVOTOEOC TAGELS TTOL BNULOUEYOUVTOL amd XddE OYEDT), VLo VoL EXTEAETEL
v Tagvounon xoufnv. Télog, 1 dladxacia EVeOUATWoNS Yedpou Tou Yenowlonoleital etval

RotatE Aoyw tng unepoyfc Tne amdd0G61g TOL.

Kivnteo tng nedodorovyiag

H »0plor 18€a Tng TROTEWVOUEVNE ap)ITEXTOVIXAC Elvol Vo aLOTIOLAGEL TOCO TNV LXAVOTNTO
e apyrtextovixic GNN vo xoartaypdepel e€optrioeic oe eninedo YeLToVdE 660 xou TIC TANEOPO-
plec o€ eminedo oyéong Yy xde oyéon evog mohuoyeatoxol yedgou. To SRGCN BaociCetan
oto GNN turua yioo v e€aywyr avarnopactdoewy xoufwy. To GNN, yéow tou mhouciou
METAPORAS VEVEWVIXGDY UNVUUATOY, UTOROLY VoL BLad®COLY TANROQORiES OYETIXY UE TOUG YEL-
TovxoUg xOpPBouc Tou xouBou-atoyou. Iapdha autd, o Tumixéc apyttextovixéc GNN elvan
EUBAWTES 6TOV Souind VOpUBO ToEd TN HEYEAT TOUS Loyl ot poviehonoinon yedgoy [19]. To
#©vNTEO Yog oy Vo EUTAOUTICOUUE TNV TEAXT| AVATUEAC TACT) ELOAYOVTAS YEVIXES TANROQORIES

YLt OAOXANPO TO YRdpo xai Yo xdie oyéon ewdindtepa. Autd cuufaivel uéow evog Yoviéhou

18

EVOOUATWOTNS YEdPou Yveons. O GuVBUNCUOS TWV EVOWUATOCEWY XOUBWY TOU TEOEPYOVTUL
am6 To oy e cuvadpolong yertovide g opyLtextovixic GCON e Tic eVoUaT®oel oyéoewy
EVOC HOVTENOU EVOWUITWONS YRAPOY UTOREL VO 00N YHOEL OE Lol EXPEOC TIXT| OVOTOEAC TACT
ToL SLoxplvel TIg YeNOWES OYETELS amd TIC youning TAnpogopieg 1) YopuBwdelc oyéoeig. INa
vo emohndedoovpe TNV TeEAeuTaio UTOUEDT), TEOYUATOTOLCOUE TELRAUOTA Vi VoL a&LoAoYoOU-
UE TN Yeron wog Yedodou evowudtnang yedpou yvaong, otwe to RotatE, cuyxplvovtag ta
amoTEAECUOTA UE Wat “Tio ey h”, Omwe Uioe one-hot avanopdotacn oyéowy . Téhog, Vérou-
UE vo meptoploouue TNV €EGETNOT TOLU UOVTENOL UG OO TA)X YoeaxTNElo Tixd xouBou.
Yy mepintwon moAd YopuBwdny Yedpwy, To apyixd BLaVICUATO YULUXTNEIC TIXGOY TEVoUV
vo aouy To oNUAVTIXG EONO, XIS N aliot TV BOPXDY TANPOPORLMY PELWVETAUL antd TO
YopuBo. Emmiéov, to yopaxtneio Tixd xOUBou yenoWoTolouvToL YLl TNV oVOYVMELoT TWY
oY YopUBou cUYXEIVOVTOS TNV OUOLOTNTO YUPOXTNELO TIXWY TOL GUVIESEUEVOL xduPou [7].
XNy mpocéyylon yog, teootoolue Vo aloTotoouue T Sour| Tou Yedpou 660 To BuvaTdY
TEPLOCOTERO Xl Vo BEATIOCOVUE TNV anddocT evionilovTog TIC OYECELS TOU EMNEEGLOVTOL Amd

7o Yopufo.

IToAunhoxéTnTo LOVTEAOL

Tow i 51e€0diny) cUYXEIoN TV HOVTEAWY, elvar AoYixd vor Aofdveton UTOPT XaL 1) TOAU-
mhoxétntd touc. To SRGCN xou to GCN mepthapBdvouy évav mivaa Bopdy W, € RFXH
omou F' ebvar o apriude tov yopaxtnelo ixay eicédou xar H elvon to xpupd uéyedog ev-
owpdtwone . Ko undpyet éva Eeywpotd W, vy xdde oyéon r xou oe xdde eninedo (1).
Aoufdvovtoag unddn éva udvo eninedo xon yior T 800 HOVTEAA, 1) TOAUTAOXOTNTO TNG UVAUNGC
Vo etvar 16t€ Ogyy = O(RFH), émou R eivar o aprdudc tov oyéoeny xou F, H dnwe xou
mew. 'Etot, 6cov agopd to apyixd Tuua avamapds taong xouBou tou Bactleton oe GNN, xou
To 800 pOVTERA €YOLY TOV (BL0 oELIUG TUEUUETEWY.

o 1o povtého SRGON ouvbudlouye emlong auTéC T EVOOUATOOELS Tou Boacilovton o
GNN pe v evowudtwon mapdywyng oyéone, i xdde oyéon. Emouévee, mpénel vo mpo-
oVEGOUPE TO YEVIXO XOGTOC TROCUQUOYTC TOU aVTIGTOLYOU HOVTEAOU EVOOUATWONS YEAPOU.
H emhoy?| poc rav 1o RotatE nou éyer unohoyiotixf nohunhoxétnra Ogr = O(2VHgr +
2RHgE) [52], 6mou 1o V ebvan tov apipd twv x6ufwy oto yedenua xat Hgp 1o emheypévo
uéyedog eVoOUATWONS Y TO HOVTENO EVOWUAT®WONG Yedpou. 'Eyoviag Ti¢ eVOWUATOOEL
OYECEWY OMO TO HOVIEAO EVOWUATWONG YEUPHUATOS, UTOPOVUUE VA GUVOEGOUUE XddE EVOe-
udtworn mou PBaoctleton oe GNN yia cuyxexpwévn oyéon ue v avtioTolyn EVoOUSTWoN
oyxéoewyv. Kdie éva and autd €yer péyedoc Honn + Hgp. To poviého GON dev €yel
6o ¥eTn TOAUTAOXOTN T GE QUTO To Bhua.

Télog, €youue v mohumAoxdTnTa UVAUNG Tou TeAwol emnédov MLP. H cuvdptnon
ouvadpotong Tou GON eivon to ddpoiopa. ‘Etol, n dldotaon eic6d0u Tou TUXVOL ETLTEGOU
talvounone eivar Hoyny xou n nohumhoxdtnta tou MLP eivawe O(Hgyn). To povtého
SRGCN ypenowornotel tn cuvdptnon cuvévworng we TeAeott| ouvddpolong. Etol, 1 didotaon
€106d0u Tou TuxvoL eminédou tadvounone eivar R(Honn + Hgr). Xuvokxd, n abyxplon

19

TOUG W¢ TPOS TG opauéTeoug paiveton otov Iivoxa 4.1.

1.4 Ileipdpata xo ATOTEAECUATH

1.4.1 Metpwxr aglohdynong

To povtéla exnandedovtan oTny epyaota Tagivounong xOuPuv xat aglohoyolvtal cUUPLVL
ue to F1-score mou emTLYYAVOLY GTNY TEOBAEYN TN XAAGNEC TOV YN ETOTUACUEVKDY XOUBWV.

To Fl-score unoloy(letan ypnoyonowwvtog Tov axéiovdo tOTO:

Fl— 2 % Pr(.ec‘ision x Recall (1.7)
Precision + Recall

1.4.2 XOvolo Be0OUEVWLYV

Tio¥etolpe 000 cLEEWS YENOUWOTOVUEV GOVORA DEDOUEVKV ETEQOYEVV YRAPHY oTO
OLPOPETIXOUE TOUELS Yiat Var 0&LONOYICOUUE TNV amOBOCT TV TEOTEWOUEVMY XL UOVTEAWY
avapopds. Mo emoxdémnon tng dounc xdde cUVOLOL BEBOUEVLV YRUPNUITOS QUiVETOL GTO
Eyfuor 5.1, Mot teplhndn Twv ovIoTATWY Xol TV OYECEWY TV GUVOADY BEBOUEVGLY YR
udtwyv mapovotdleton otov Hivaxa 5.1. To cbvoro autd etvar too IMDDb xou DBLP. Ipdxetton

YLt ETEPOYEVEIC YRAPOUC XIVNUATOYRAUPIXEY TUVLAOY Xall BIBALOYRAPIXDY vapOEEY.

1.4.3 IIpoBAemtixy] iXaAvOTNTA TEOTELVOUEVOU LOVTEAOL

Ané ta anoteréoparta (Ilivoxee 5.2 xar 5.3) PAénoupe GTL T0 TPOTEWOUEVO LOVTELO UTE-
PEYEL OE AMOBOCT) OE GYECT| UE TO HOVIEAA OVOUPOREAS €0TW X GE €val xeod Podud. Mtnv
neplntwon tou cuvohou dedouévwy IMDB Biénoupe 6t to GAT elvor onuovtind yeipdtepo
ond to GraphSAGE, xdti mou 6ev ouvéBel otny nepintwon tou DBLP. To MLP mou dev
AofBdver unddn TN Sour Tou Yedpou xadohou Lo Tepel oNUAVTIXG o oyéon ue Ta e&eTaloueva
GNN. And toug ypdvoug exnaldevong BAETOUPE OTL TO TEOTEWVOUEVO UOVTEAO XaddS XoL TO
GAT ypeidlovton nepinou to dimidolo yeovo ond to GraphSAGE, nopdha autd ot ypdvol
exnaldevomg Elvon oYETIXG GLYXEICHIOL TOEA TO YEYOVOS OTL TO UOVTEAO UOC EYEL UEYUAUTERT
Y WEXT TOAUTAOXOTNTA AOY W TOV TR OUEVWY EVOOUATMOOEWY GYECKY TOL Yedpou. And to
TOEATAVE VEWPOVUE OTL TO TPOTEWVOUEVO UOVTEAO EfValL AVTAYWVICTIXG oL UTOREL VoL Ypnol-
porowniel ooy povtého yevixol oxomol aveldptnta and tnv Topoucia YopiBou oo cUvoho

OEDOUEVWV.

1.4.4 AvOextixdtnta oto Yopufo

Extog and v wavotnta Tou SRGON var omod{oel xahitepa 6Tor GOVOAA BEBOUEVHY VAL
popdc, Vélope emlong Vo SLEPEUVACOUPE TS QUTH 1) AEYITEXTOVIXY| Yol UTOpOUCE Vol TOREYEL
O TERES AVATORAC TUCELS OE YRUPHUATO PUE UEYAAES TOCOTNTES oy VoplPou. H Swadoinot
pog ebvan OTL 1) EVOWUATKOOY TANROPORLMY Yid OAOXANEO TO GOVORO TOV OXUWY CE ULol GU-

yxexpwévn oyéon unopel va Bondroel To GuUVOAIXS povVTERD va avayvopioel Tig YopuPBndelg

20

OYEOELS O VoL ETUIXEVTPWUE! OTIC AvaTaPAC TAOELS XOUPKY TOU TEOEEYOVTAL UTO TIC YPNOWES
oyéoec. o va enodndedoouye v und¥eoy| Yac, TEOYUATOTOLNCOUE SLBPOPO TELRGUATO GE
OtapopeTixd oevdpla Yoplfou. Ta vor emToyUVOUUE TOV TELRUUATIOUO X0l VoL TROCUPUOGC TOUUE

oTIC avdyxeg xdde mewpduatog, Ywetlouue Ty TewpapoTixy Sladixacia oe Vo YOpoug.

IMTewpdpota oe cuvIeTIXd dsdoUEVA

210V TPKOTO YORO TEWAUUATIOUO) GYETIXA UE TNV ETBpAoT TwV dxpwy Yopldfou, TeayuaTo-
roinxay melpduata o cuvieTixnd dedouéva. To cuvietind dedoyéva umopoly vo purndoiy
oedouéva Aettoupyiog 1) mapaywyhc xou vor fondnocovy oTny EXTABEVCT) HOVTEAWY UNYAVIXAS
xou Bardide expdinong [32]. O oxonde autic tTne melpopoTixhc eyxotdotaong etvon 1 dedoryw-
Y1 TEWAUATWY PUE OXOTO TNV ATOXTNOY| YVWOEWY OYETXE UE TIC ETTTMOOELC Tou YopUfou, TN
ouuTEELPopd TwV apyttexTtovix®wy GNN xai TNy emitdyuvoTn Tou TELROUATIOUOV, BLUTNEMVTIS
TpAAANA TOV EAEY YO €Tl TOU GUVOAOU BEBOUEVWY AOYL TOU UXEOU TOU PEYEVOUG.

To cuvietind cOvoro Bedouévey amotehelton and 50 xoufoug, dhot tou (Blou ToOTOU.
Autol ou x6ufot aviixouv oe 2 xhdoelc, pe xdve xhdon vo €xel (oo aptdud xouBwv (25).
O ypdpoc meptéyel €va oUVOLO 16 ETONUACUEVLY XOUB®Y, LOOTOCH XATAVEUNUEVOUS OTIC
2 xNdoeig (dnhadhy 8 n xadepia). Or unéhoimol 34 un emonuacpévol xoufol amoTEAOUY To
doxaoTind olvolo xon ywellovtar e€icov otic 2 xhdoeig (dnhadh 17 1 xadepla). Ov axpéc
HETOEY TV xOuPwy dev elvon otodepée xal BlapopomolobvTon avahoYo PE TIG avayXeS xdide
netpdpatoc. H avanopdotaon xdde xouBou apyixonoleltar Tuyolor OUPWYL UE UL OUOLOUOR®T
xatavout|. H emieyuévn didotoom tov apyixey Sloavuoudtoy elvar 32.

To oevdpla YopBou mou e€etdoaue elvon tar oxdhovdas

o EZ’ ohoxAvpou YopufBwdeig oxcoelg:O otdy0c autol Tou nelpduatog eivon va
efetdoel N oupneplpopd Twv GNN otav eqopudletor o8 YpaupuaTo TOU TEPLEYOLY
YopuBo ue TN popyn wac Stoxpltic oyéong YoplBou. AwciIntxd, n mpocirixrn Yo-
eUPoL oo Yedpnua Yo TEETEL VoL TROXAAETEL TTWOT TNE anddoong Tou poviéhou GNN,
exto¢ and to GNN nou €yel 0 duvatodTnTa va ayvorioel T YopuPodrn oyéorn xon va
A&BeL uTOPN POVO TouG YEITOVES GUUPWVOL UE TNV TANPOQYORLAXT| OYETT) XATY T1) SLadLXo-
olo exudinone twv evowuatwoewy. T'a vo a&lohoyfocouye Ty anddoon Twv YOVTEALY
oploayue wg “yprown” oyéon uio oyéomn mou oL axuég TG cuVBEoLY xOPBouC TNS (BLag
xhdong, xon cav oyéon YopLuPou plo oyEcT Tou oL axéc TNG CUVBEOLY XOUBoug Blapo-
peTXAC XAdoNg.

Eexwvrioope €yovtog uia “yerowun” xou uio oyéomn YoptBou ue dlo mAfdog oxumy. Kdie
xouPog elye Blo TARYog axp®v Yo xodepior and Tic oyéoelc. Ilopatneriooue 6tL Tar
HOVTENDL avapopdc UTopoloay Vo TAEWVOUNRCOUY OWOTA GAOUS TOUC U1 ETUCTUACUEVOUG
xouPouc. Luveyloaue avZdvovtog to TAftog Ty oy T YopuPndoug oyéong. TIdh
1 TTWOTN AmOB00NS TWV UOVIEAWY AVAPORAS HTAY AUEANTEX. 2TO deUTEPO Telpaya, au-
Ehoope To TAU0C TwY oY Yoplou, auth Th Qopd OUKS TEOCVETOVTAS VEEC OYETELS
Yoplfou, dlatnenmvtog Al To TARUOS TV axumy xde oyéong o xdie xoufo (co. Yto

Yyfua 5.3 Brémouye To Fl-score yia dtapopetinég THuég Tou Baduold xouBou xou thdoug

21

oyéoewy Yoplfou. O Badude xéufou etvor (Brog yio Ghoug Toug xoufoug. Ilopatnpolue
OTL amd €va ouyxexpévo Thdoc oyéocwv YoplfBou To LOVTENX avapopeds dEyiouy Vo
ToEoLGLdlouy onuoavTix TToon otny oxplBelo. Avtidétweg, to SRGCON cuvéyioe va
T vopel GwOTA GAOLUG TOUG UN ETOTUACUEVOUS xOuBoug ot Gheg Ti¢ teptntioelc. To

GAT ropouctaoe wa uxey| utepoyy| o€ anddoon oe oyéon pe to amhé GCN.

‘Ocov apopd T0 TAY0C TwV GUVENXTIXWY ETTESWY, TUEATNENCOUE OTL ALEAVOVTOC TO
maRdoc wg éva onuelo 0dYynoe oe Peitiwon e axplBelac. To GON metuyalver
BérTIoTN oxplBetar ye YeyollTepo apldud amo cuvehxTxd eninedo oe oyéorn ue to GAT
(Eyhua 5.2).

Mo oxdua evdtagpépovoa mopathenon elye va xdvel ue to Thfdog TV axuoy tng xdie
oyéong. Xto oyfua 5.4 BAémouue Ty axplBela tpdBredne yia 3 SlopopeTixéc TWES Tou
Barduot xde xouBou. Kdlde xduPBog €yeic to (610 Padud xan oe xde oyéon. H apyinn
eooto wag frav 6TL 6o To 1) oyéorn YopuBwdele Tpog “yerowec” axuég auidveton, Yo
petoveton 1 oxplBelar Twv wovtédwy. Iapdha autd, auidvovtac To TARYOC TRV aXUOY,
ARG TAUTOYPOVAL BLATNEWVTIS T GYECT) AUTH) OTOERT], TUPATNEACUUE OTL 1) TTWOCT TNS
axpifBetag meptoplletar. Yuunepaivoupe 6Tt 1 andAutn adENcT TOL CHUATOS TANEOYORiC
amd) “yerowun” oyéon Bonddel to GNN vo metiyouv yeyalbtepn oxplBeta, oxduo xou

av o augdveton mapdhinia xon o Yopufoc.

o Axuég YopLBou oe yerowes oxéoelg: To dedtepo ceviplo Yopliflou mou e-
Eetdoope elvor autd oTo omolo oL “yefowes” oyEoelc TepEYouY EMTEOCVETES aXUEC
YopUPou, dnhadn axpéc mou cuVBEouV xOuBouS dlapopeTixc xAdonc. Apywd e&etdoa-
HE TNV emidpaon Tou Yoplfou auTAS TNG HopPnc 6Tay ot axpés YoplBou GUVBEOLY UOVO
ETMONUACHEVOUS XOUPBOUE, EVE OL UN-ETLONUACUEVOL XOUB0L GUVOEOVTOL HOVO PE “YeY|OL-
pec” ouée, dnhadh ue xépPouc tne Blag xhdone. Amd ta amoteléoporto (Ilivaxag
5.5) mpoxintel 6Tl mapatnpeiton uixen ntdon e axpiBelac TedPAednc pwbvo Yo peydho
maRdoc oxumy YoplPou. Erniong auvldvovtac 1o mARUOC TV CUVEAXTIXOY ETUTEDMY
Behtudver Ty oxplfBeto tpofredng uéypt éva ouyxexpipévo tandoc. Toa GON xou GAT
€y oLV TapoUoLN amoTEAECUOTA. X TN CLUVEYEL Tpoc¥ETouue axueg YoplfBou xau o un-
emonuacpévous xouPouc (Ilivoxac 5.6) . Xe auth TV TepinTtmorn TopatnEoVUE TOAD
peYahOTEEN TTTOOT TNE axplBelac TeoBAedng oe oyéon ue to Tponyoluevo cevdpto. E-
mlong, xou o€ aUTO TO GEVERLO, TO amOALTO TAHVOC “YENOWMY” aXUWY, OGO UEYUADTEQO
elvon, t600 UixpdTepn ebvan N mTwon e axpeifetag. [o peyaidtepo mARdog oy
YopUPBou Ta wovtéha Ue PeYahOTEPO TARUOC CUVEAXTIXWYV ETUTESWY €y0ouv XaAOTEEN

aATOd00T).

ITapdhhnhot, 0 TEROPATIOUOE Lag GTa SUVIETIXG Bedouéva fTary Wi xahy) euxonplor var aglo-
AOYHCOUUE o T BLAPOEOL LOVTERX Yia TIC HEYOBOUC EVOWUATOOENY Yedpnv. Tapoucidlouue
TOL AMOTEAEOUATA Yia 2 GLVBLAOPOLUE TAoUS axp®y - TAoug oyéoenmy YopUPou and To o-
mola mpoxUmtel 6Tl Toe RotatE xou TransH elvon tor wdvar yior o onolar metuyabvouue ambdiuT

axpifela otic mpoPAédei (Ilivaxag 5.4) . T vor aglohoyficoupe T xeYoN TWY EVOOUATOCENDY

22

OYECEWY GUVOMXY TEAYUATOTOW|OAUE Telpduota xat xou pe pio one-hot xwoixonoinon twv
oyéoewv. Iapatnpriooue 6Tl ToL AMOTEAEGUATO OE AUTH TNV TERITTWOT RToY TOA) TOEOUOLAL UE

avtd Tou anioy GCN.

IMewpdpoata os aAndivd dsdopéva

Me Bdion tig Topatneoelg Yo OTo TELRAUUTO 0ToL GUVIETIXG BESOUEVA, TEOYUATOTONCUUE
éva OeTERO YUPO TEWROPETWY, auTH TN Yopd ot Tpaypatixd dedopéva (IMDb xaw DBLP) vy

VoL ETANIEUCOUPE TN CUUTEQLPORA TTIOU TUPATNPNCUUE GE €VOL TLO PEAALGTIXO GEVAQLO.

o EZ’ ohoxhvpou YopuBwdelg oyxéoelg: XNTo oevdplo 6mou €youpe VopuPo ue T
HOE®Y| BLAXETWV OYECEWY, YLO VA TROCOUOLWCOUNE TNV TERITTWOT OTOU UTEEYOLY oL
Y&¢ YopuBmdelc oyEotlg, ONULOURYNOUUE OYETELS AVIAOYES UE TIG 0T UTEOYOUCES TTOU
OUWG CUVOEOLY UT OYETXES OVIOTNTEG. MUYXEIVOUUE Tol AmOTEAEOUOTA UE 2 HOVTERD
OLUPOPETIXWY XEUPADY DO TACEWY GTa CUVEAXTXE enimeda: 128 xodidg Atay 1 TN
pe T xohOTepa amotehéopota ohhd xon 64 yiatl elvon To u€yedog TV CUVEAXTIXOY
emnédwy nou yenotwornoifoous oto SRGON. Ilpayuatonotioaue 800 melpduato: 0TO
TpwTo TEociécaue Vopufo UTG TN popYH ToAATAGY oyéoewy YopUBou (Ilivaxes 5.7
xau 5.9), evéd 070 deltepo elyope povo uia ayéon Yopiou yia xdle mporypatixy oyéon
xou auEHoope To TAHDOC Twv axu®y tne oyéone YoplBou (ivoxes 5.8 xou 5.10). Iopa-
Tnewvtog Ta anoteréopata, BAénovue 6Tt To SRGON éyel eNdyiotn andAieio anddoorng
Tl TNV UTEEn TETOLWY GYECEWY, TN OTLYUH TOU T LOVTEAN ovoupopds emnpedlovTo
EMPAVAS apVTIXG artd TNV OTapdn Twv oyéoewy YopiBou. 3to oevdplo énou o Yopu-
Boc undpyel 6 TOAMATAES OYETELS, 1) TTWOOT TN oxplBelag TpoBAedng Arav ueyaldTeen,
%3t ToL GUPBABICEL UE TIC TUPATNENOELS KOG OTA TELRSUATA TKV CUVIETIXWDY BEBOUEVLY.
Télog, dmwe BAETOUUE 1) oxp(BELal TOU TETUY Y ToL HOVTENA AVOPOEAS O AUTO TO GEVAQLO

ATaY ToEOUOLL.

o Axpéc YoplPBou o ypNoLles OyECELS: 2TO OEUTEPO GEVIPLO TPOCUETOUUE ax-
uég Yoplfou otig mpaypatixéc oyéoelg. Apyind npootécoue VopuPo oe xdie pla oyéon
EEYWPLOTA XL OTN CUVEYELN OE TEPLOGOTERES amd Uia Towtdypova. Ltoug Ilivaxeg 5.11
xan 5.12 Brénouvye 6TL 1) Umopdn Yoplfou ot cuyxexpWEve oyéaelg odnyel o UeYo-
Notepn mTwor tou fl, mapd o yeyovog 6Tl To Thdog axpy Yoplfou Tou tpocUEcaue
0ev ATy TO PEYOADTERD. Xuyxexptuéva 6tav npociéooue axuéc Yopifou petald Twv
Director xou Movie oto IMDb xou Author xau Paper oto DBLP nopoatnerioaue
peyahbtepn ttwon oto Fl-score napdho mou to mAfog TV axuov YopdfBou dev Aoy
To Yéytoto. Emmpdoieta, napatneolue 6t 1o SRGCON eyet onuoavtind xaidtepa amo-
TENEOUOTA OO TAL HOVTERN OVOPORAS oTay HOAOVOUUE Ue VopuBo uovo plo oyéon. XTig
TEPITTOOELC Tou Tpoc¥écaue VopuPo oe Oheg Tic oyéoelg, To %€pdoc TNne pedodolo-
yiog yog Arav copne uxedtepo. Autd dloancintid etvon Aoyixd, xodng 1 uedodoroyia
pog Baoileton oto va yeyiotonolel Ty TAneogopia and Tig “xadoupéc” oyéoelg Yo va

TETLUYVEL XOADTEQU AMOTEAEGUAT XU OE QUTY| TNV TEPITTWOT BEV LT EY AV TETOLES.

23

[parypatonotiooue eniong metpduata Yo va dooue tny enidoon tou SRGCN yua dSudpopa
Toc0otd Yoplfou otny oyéon ue t peyahitepn onuacia (LyAua 5.5). Brénovye 6T to
SRGCN unepioydet EvavTl TV HOVTEAWY avapopds O OAES TIC OLUPOPETIXES TUES OV
Aoylag Y6pufBog mpog mAnpogoplo. Emnpdocieta, otny nepintwon tou DBLP BAénouue
6t To MLP nou 8ev haufdver unddm 0 dour Tou yedpou xat dpo dev enneedleton amd
T0 VopuPo xaddhou apyilel va €xel xahldTepa anoteAéopata o oyéon pe to baselines
otav oL oxpéc Yopvfou etvon 50% twv “yerowwnv” oy, eved 1o SRGCN xotogpépvet
va dtatneel xahitepo Fl-score and to MLP péypet yioe mAdog axpodv Yoplfou 75% twv

“YeriowWwy” axuy.

TéNog, MEAYUATOTOCOUE TELPAUATA Yiol DLUPORETIXG TARUOC GUVEALXTIXOY ETUTEDMY
vl var e€etdooupe TV enidpaocy| Tou oe civoha dedopévev e mohd YopuPo (Xyfua
5.6). H evduagépouca mhnpogopio tou anoxopicaye eivar 6Tt oe avtideon ue 1o oevdpto
onou elyaue oplyws YopuBmdEl; oyEoeLs, €66 Ta XUAUTEQO ATOTEAEGUATO TEOEPYOVTOL
an6 mo “enyd” GNNs. H e&iynon pog yi autd elvon 611 xodidg €60 “ypriowes” oxuéc
xou oxpég YopUBou cuvundpyouv oTtny Bl oyéor, auidvovtag To TA0g TwY ETTESWY
UEYOADVOUUE TN YELTOVIA TOU EMNEEGCEL TNV TEAXT| avamapdoTtact xdde xouou xou

ouunepthauBdvoupe teptocdtepo VopuPo.

1.5 Xvurepdopata

1.5.1 30Ovodn

Ye auth) T SwtePr], mpotelvoue Wi GUVUETY apYLTEXTOVIXT PUCIOUEVY) OE GUVENXTIXG
VEUROVIXE, S{XTUA YRAPWY XUl EVOWUATMOOEL YEAPWY, Yia Vo emhicouue éva TedfBinua Todi-
vounone xouPwy oe mohucyeatoxd dixtua, eoTidlovtag oc ypdpoug ue Yopufo. To evpruatd
Hog 00NYOLY OTO GUUTERAOUA OTL 1) EVOWUATWOT TANPOPOELOY OE ETUNEDO OYEDNC OE EVal HO-
viéro mou Booileton oto GNN unopel va evioydoeL TNV EXPEOC TIXOTNTA THOV AVATURAOC TAOEWY
xaL Vo BEATUOCEL TNV Amdd0GT) OAOXANEOU TOU UOVTEAOU.

Emniéov, ta meipduoatd pog o€ yedpoug Ye dLlapopeTixd aevdpla YoplBou napetyay yenol-
HES TANPOYOPIEC OYETIXG UE TN CUUTIERLPORE TV EUREWS YeNotporooluevwy GNN xou tnv ov-
VeEXTINOTNTE TOUC EVavTL TOMAGY oy YopLBou. Evtornicaue cevdpia Yoplfou nou BAdntouy
TNV AmdOOCT) AUTWY TWV UOVTEAWY, OTwe 0 Tuyaiog Y6puog ot UYXEXPIIEVES 1) TOAMIATAES
oyEoELS.

H xptor oupPold| poc eivon 1 npotevouevn opyttextovix) (SRGCN), n onola tétuye xo-
ANotepn anddoon oto mEOPAnua Tagvouncng xouBwyv oe chvoha dedopévwy avagpopds. Emi-
Théov, Eemépaoce oNUaVTIXG To Bacixd povTéla o Ao Tar oevdpLa YoplfBou. Luyxexpuléva, 1
QEYLTEXTOVIXY) HOG OEV UTEGTY GYEDOV xaia TTHoN anddoons dTav npoc¥Ecaue GYETES TOU
meplelyay povo Vopufo xou unepioyve 6Tav elodyoue VOpUBO LOAOVOVTAC ULl CUYXEXPUIEVT
oyéon. 'Etol, anodelaye euneipd Ty xOpwa dtaiodnon mlow amd To yoviého yog, 0Tl oL
emmiéov TAnpogopleg Tou ey inoay and Tig evowpatnoelg oyéoewy tou SRGN Lorincav

TO JOVTEAO UOG VoL avary Vopioel ypriowes oyéoelg and T YopuBndelc.

24

1.5.2 MeAlovTixéEg TROEXTACELS

Auth 1 BlotplB Tpoo@épet pepinés TIUVES EMEXTACELS Yiot TEpaUTEéPL TelpauaTions. ‘Ocov
apopd TNV opyLteEXTOVIXY, 0 TelpauaTiopos ot GNN mou yenotlonolodvIoL GTNY dEYLTEXTOVL-
%) SRGCN, ext6¢ and 1o GCN xaw 1o GraphSAGE, nopoucidlel Biaitepo evilopepoy, xodog
Yo umopoloe EVOEYOUEVKS Vo 00Ny ioeL oE onuavTixy| Behtinon tne anddoong. Arogacicaue
eniong VoL YENOULOTOLACOUUE T1) GUVEVKOT] TWV EVOWHUATOOENY oL Tpogpyovtat and o GNN
X0l TOUC AMOXWOXOTONTES WG oLVETNoT cuvdipolong. Ileputépw MelPUUATIONOS GTNV ETL-
hoyT) cuvdpTnong cuvdlpotong Yo UTopoUcE Vo TROGPEREL YPNOIIES TANPOYORIES 1 oXOUoL Xalt
Behtiwon tng anddoong. Extog and autd, Ya ¥itay evdlagépoy va a&lohoYooUUE TNV anddoo
Tou YovTéAOU Uog OF TEPLoaOTERR oevdpLa YoplfBou. T'a mopdderypa, oto yéhhov, Vo uro-
eOoUCAUE Vo AELONOYHOOUUE TNV EVPMOC TN TWV BLUPORETIXMY LOVTEAWY OF XATUO TUOELS OTOU
o VopuPoc otoyelel cuyxexpévous xoufouc. Télog, 6edopévou 6Tl To YoVTENO pag EDBElEe
IXOVOTIOLNTIXG. AMOTEAEOUATO O aUTA Tor oevdpla YoplfBou, Jewpolue oxomun Tn cLYXEIoN
Tou pOVTEAOU pog Ue dhheg pedodoloyieg mou €youv oyediaoTel ewdd yio T Beitiwon g
an6doomng o€ Yedpoug ue Yopufo.

25

Chapter 2

Introduction

2.1 Motivation

Graph representation learning is an emerging field due to the wide range of scientific
fields and applications that graphs are used in. Modelling physics systems, learning molec-
ular fingerprints, protein structures or drug interactions require models that can utilize
graph-structure information to extract entities representations [55]. Graphs are usually
represented as a combination of a set of attributed nodes and an adjacency matrix denot-
ing the interactions between the nodes of the graph. Although this representation is useful
for us to understand the structure of the graph in some sense, traditional machine learning
models can not utilize this representation since they are not applicable in non-euclidean
data, like graphs [14].

Following the deep learning trend, the adaptation of deep learning models like Con-
volutional Neural Networks (CNNs) on non-euclidean data lead to the development of
geometric deep learning methods and Graph Neural networks (GNNs). GNNs are the
most popular graph representation models, due to their superior performance in various
graph representation learning tasks [46]. They accomplish that by passing and aggregating
information between neighbouring nodes, eventually capturing neighbourhood-level infor-
mation in node representations. Apart from deep learning, other methods that capture
structural information of a graph beyond the neighbourhood level have drawn scientific
interest. For example, graph embedding methods aim to embed components of graphs
including entities and relations into continuous vector spaces that encode and preserve the
inherent structure of the whole graph [43].

However, noise in graphs is a very common obstacle in deriving useful graph repre-
sentations [9]. For instance, the majority of the real-world graphs used are constructed
through knowledge mining from the web. Automated knowledge graph construction meth-
ods are often imperfect, and this results in noisy graphs and low-information or even noisy
relations that can affect the quality of the constructed graph negatively [30]. GNNs are
vulnerable to noise due to the propagation of noisy messages between the node neighbour-

hoods [7]. Therefore, deep learning models that can extract robust representations against

26

27

the inherent noise of these graphs are of significant value.

Moreover, these real-world multi-relational graphs can contain large number of rela-
tions. Some relations can be more informational than others, meaning the interaction they
describe is more fundamental for the represented system or the downstream application
we want to model. The existence of noise in these relations can lead to significant degra-
dation of the quality of the generated representations. Thus, preserving the structural
properties of informative relations is of high priority to mitigate the noise impact on the

graph representation [27].

2.2 Approach and contribution

In this thesis, we aim to address the aforementioned GNN limitations but also to eval-
uate the incorporation of structural information about each relation of a multi-relational
graph in the graph nodes’ representation. We propose the utilization of relation embed-
dings extracted by a knowledge graph embedding model (such as RotatE), combined with
node embeddings derived by a GNN, to achieve more expressive representations of the
nodes of the graph. The proposed methodology, named Split Relation Graph Convo-
lutional Network (SRGCN for brevity), can achieve improved performance in the node
classification task by leveraging both information about the neighbourhood structure ex-
tracted by a GNN and relation-level structural information derived from the knowledge
graph embedding model. In addition to that, our proposed architecture provides robust
representations in noisy graph. Our experimentation results encourage the use of knowl-
edge graph embeddings over just shallow lookup embeddings, since the expressiveness of
the latter is not sufficient to discriminate informative from noisy relations. Furthermore,
our findings show that our proposed model has neglectable performance loss in graphs
affected by totally noisy relations, when in comparison widely-used GNN models greatly
drop their performance. Finally, our experimentation indicates that the performance loss
of the proposed architecture is mitigated significantly when noise affects a limited number
of relations, compared to the baseline models.

In general, the contributions of this thesis can be summarized into the following points:

e The introduction of a hybrid GNN and graph embedding model, that is able to cap-
italize on informative relations to produce expressive graph representations. These
representations, according to our experiments, are able to preserve useful relation
information and reduce the negative impact of noise edges significantly better than

our baselines GNN models.

e Extensive comparison on synthetic and real-world datasets, under different noise

scenarios of the introduced model versus commonly used models.

e Empiric results that prove the usefulness of the proposed architecture and plenty
of insights regarding the behaviour of the examined GNNs under specific types of

noise.

28

Apart from the above contributions, the code and experimental results are available to

everyone on GitHub for results’ replication and further experimentation purposes.

2.3 Thesis structure

In Chapter 3 we provide the theoretical background of our work. We introduce the
basic concepts and notation about graphs, graph representation learning, graph neural
networks and knowledge graph embedding methods. We also give a brief overview of
research on noisy graph representation learning.

In Chapter 4 we present the proposed architecture, delve into details of its features
and the intuition behind it.

In Chapter 5 we present our experimental setup, the datasets used, the results of our
experimentation and the insights we derived regarding our proposed model, as well as
other baseline GNNs.

In Chapter 6 we conclude this thesis by presenting a summary of the results and

providing possible future research ideas.

29

Chapter 3

Theoretical Background and
Related Work

3.1 Introduction to graphs

3.1.1 Graph-structured data

Graphs are a ubiquitous data structure for modeling complex systems of the real world.
They are widely used as a representation method in various scientific fields. Especially, in
computer science, they play a very important role and have been studied for many years.
The main advantage of graphs is their ability to model objects of the real world (i.e.,
nodes of the graph) alongside the interactions between pairs of these objects (i.e., edges of
the graph). Therefore, graphs are being selected as a representation method in a variety
of applications, such as social networks, recommendation systems, molecular graphs, pro-
tein or drug interaction networks etc. [14]. Lately, applying machine and deep learning
algorithms on graph-structured data has been evolved into an emerging field of research
mainly due to the promising results such models (i.e., GNNs) have achieved on various
challenging tasks [17]. Before analyzing how these models can handle graph structured

data, it makes sense to give some formal definitions on this special data structure.

3.1.2 Graph basics and notation

Formally, a graph G = (V, E) is comprised of a set of nodes V and a set of edges
E. An edge e € E is associated with two (distinct in most cases) nodes u,v € V |
and denoted as e = (u,v). The most common way to represent the edges of a graph is
through its adjacency matriz A € RIVIXIVI. To form the adjacency matrix, we arbitrary
enumerate graph nodes and match their numbers to the corresponding rows and columns
of the matrix, then for each pair (u,v) we assign A[u,v] =1 if the pair is in E, otherwise
Alu,v] = 0, indicating that no edge exists between these nodes. In weighted graphs, the
value of the weight is assigned to the corresponding cells instead of 1. If the graph is

undirected, meaning that node order in the every edge does not contain any information

30

31

. @ roone
Breast Neoplasms cerebral
Neoplasms by Site ISA . 7' f{}‘ ’heemormage
. 2 A ;:'" ,f' & %
chromosome / . O % @® Drug
seggregation - . i 64)&. . @ Disease
‘ BRCAIR™_ +~— ‘? A fulvestrant__ Pyelonephritis p 4 Adverse event
\giRez / /,* % " e Protein
X / pulmonary A Pathways
N\ Y X \ embolism ¥
N D
EsR2 Esm""’ﬁp(% P PIM1
response
to estradiol
(a) Biomedical Knowledge Graph (b) Event Graph

Figure 3.1: Examples of heterogeneous real world graphs.

about their interaction, then the adjacency matrix is symmetrical.

3.1.3 Multi-relational, heterogeneous and knowledge graphs

Many of the real world applications (datasets) cannot be re represented by simple
graphs containing nodes and edges of a single type. Some graphs contain entities that,
except for the label differ also in terms of the type.

Apart from weights, graph edges may also have different types too. Such graphs are
called multi-relational. An important subset of multi-relational graphs are heterogeneous
graphs. In heterogeneous graphs [38], both edges and nodes are associated with multiple
types. A heterogeneous graph G = (V, E) consists of a node set V and an edge set £ . A
heterogeneous graph is also associated with a node type mapping function ¢ : V' — A and
an edge type mapping function ¢ : F — R. A and R denote the sets of predefined node and
edges types. We represent this kind of graphs with an adjacency tensor A € RIVIXIEIXV]
where R is the set of relations. Examples of heterogeneous graphs are shown in Figure

3.1.

Knowledge graphs

Knowledge graphs are an example of heterogeneous graphs. They use a graph-structured
model to represent human knowledge, by capturing facts in the form of entities, relation-
ships and semantic descriptions (labels, attributes and types of entities) [18]. Knowledge
graphs have drawn attention mainly due to the inclusion of such models in industrial-scale
projects like Google’s Knowledge Graph and Amazon’s Product Graph [23]. Their im-
portance mainly lies on the fact that they can be used for reasoning and rule extraction,

fundamental concepts in the context of relational data mining [37].

3.2 Graph representation learning

Graph representation learning has been an emerging research area recently. The pur-

pose of graph representation learning is to extract low-dimensional representations through

32

the combination of node features (i.e., vectors containing information for every graph node)
with graph topology. This is of a large significance because the quality and expressiveness
of the graph representations are the most important factor that affects the performance
of machine learning models in various tasks. Many techniques have been proposed for
generating effective graph representation vectors, which generally fall into two categories:
traditional graph embedding methods like random walk and matrix factorization based
methods [47] or graph and graph neural networks based methods, which will be analyzed

in the following sections [24].

3.2.1 Machine learning on graphs

As mentioned before, a variety of systems of the real world can be represented as
graphs. Machine learning algorithms have demonstrated their success on tackling diverse
problems associated with structured data, and graph structured data are not an exception.
What differs in the case of graphs is the fact that the usual categories of supervised
and unsupervised learning are not so common due to the special characteristics of graph
datasets. For example, labeled data are often more difficult to be collected in systems
described as graphs [57]. Specifically in graph structured data, the existence of edges
alongside nodes offered the possibility for graph specific machine learning tasks such as
link prediction [29]. Generally, there are three tasks for machine learning applications
on graphs, according to the output of the machine learning model: node-level (node
classification), edge-level (edge classification and link prediction) and graph-level (graph
classification) tasks [46].

In this point it is useful to give some formal definitions and examples of graph machine

learning frameworks that will be the main part of the subject of this study.

Semi-supervised learning for node classification

In supervised learning, the learning system observes a labeled set (lablel meaning an
indication of the class of each node) of datapoints (training set) consisting of (feature,
label) pairs, denoted by {(z1,y1), ..., (Zn,yn)}. The goal is to predict the label y for any
new input feature x. However, labels y are often hard, expensive and slow to obtain,
because it may require custom annotation by humans. On the other hand, unlabeled data
x is usually available in large quantity and costs little to collect compared to labeled data.
Traditional supervised classification methods cannot use unlabeled data to train classifiers.

Before explaining the semi-supervised setting, it is useful to provide a detailed defi-
nition of the node classification task. Node classification is probably the most common
task on graph-structured data. Given a graph G = (V, E') and labels on a subset of nodes
Virain € V, the goal in node classification is to predict the labels of the rest of the nodes
that we are unaware of their class (unlabeled nodes). Examples of node classification tasks
are classifying papers or authors in a citation network [1] or finding malicious accounts

or bots on social networks [22]. Essentially, we assume relations between the nodes, in

33

Test Dataset

Transductive "
0,

| B

SOIE:

)

Training Dataset

[Test Dataset

(
e

Inductive

Figure 3.2: A Comparison between transductive and inductive setting

order to find the missing labels. These relations can exploit homophily [31], which states
that nodes have high probability to share characteristics with their neighbors. Another
concept is structural equivalence [33], which is the the tendency of nodes that have similar

neighborhoods structures, to share similar labels.

The question semi-supervised learning addresses is: given a relatively small labeled
dataset {(z,y)} and a large unlabeled dataset {z}, can one devise ways to learn from
both for classification? The name “semi-supervised learning” comes from the fact that
the data used is between supervised and unsupervised learning. Semi-supervised learning
promises higher accuracies with less annotating effort. It is therefore of great theoretical
and practical interest, especially in graph-structured data where labeled data is hard to
find and most datasets contain a small fraction of labeled nodes [57]. There are two

settings for semi-supervised learning in graphs [6] (Figure 3.2):

e Transductive setting: In the test phase, the model tries to predict the labels of
the given unlabeled nodes. In transductive learning, the model has observed all
the data beforehand, both labeled and unlabeled nodes. Even though the class of
the unlabeled nodes is unknown, learning algorithms can make use of patterns and

additional information present in this data during the learning process.

e Inductive setting: In the test phase, new unlabeled nodes from the same dis-
tribution are provided to the model to infer. This setting is similar to traditional
supervised learning, where unlabeled data are not accessed by the model at all during

the training procedure.

34

(a) Grid (Euclidean) (b) Arbitrary graph (Non-Euclidean)

Figure 3.3: An illustration of Euclidean vs non-Euclidean graphs.

3.2.2 Graph neural networks

As a natural consequence of the rapid rise of deep learning models in various fields
lately, a lot of research attention has been drawn on deep learning applications on graphs
as well. Learning representations for complex structured data is a challenging task. In
the deep learning era, many successful models have been introduced for certain kinds
of structured data. More specifically, sequential data, such as text and videos, can be
modelled via recurrent neural networks which can capture sequential dependencies. In
addition to that, convolutional neural networks have achieved state-of-the-art performance
in extracting image features due to their ability to recognise spatial patterns.

Plenty of machine learning tasks are dealing with data represented as graphs. However,
CNNSs can only operate on regular Euclidean data. These structures can be regarded as
instances of graphs, as show in Figure 3.3. Therefore, it makes sense to find a way to gen-
eralize the already successful CNNs on graphs. Extending CNNs from Euclidean domain
to non-Euclidean is an emerging research area. To this day, graph neural networks have

shown their great power in working with graph structured data for various applications

13].

Permutation invariant property

In order to deal with graph data, the most common methodology is to represent the
graph with its adjacency matrix and use the feature vectors of the nodes and the adjacency
matrix as the input to a feed forward neural network (Figure 3.4). The problem that arises
by following this approach, is that feed forward neural network produces different outputs
for different node orderings (i.e., for different adjacency matrices). But permutations of
the adjacency matrix, represent the same graph. Therefore, it is essential to make sure

that the neural network architecture is permutation invariant [46].

35

A B C DE Feat

A 01 1 1 0 10

@ ® B 1 0 0 1 1 [
n’e c 10 0 1 0 0 1
© © D 171 1 0 1 11
E 01 0 1 0 10

Figure 3.4: An illustration of why naive MLP approach fails for graphs

Neural message passing framework

The current most commonly used architecture when considering graph-structured data
is the Graph Neural Network (GNN) [35]. The goal of GNN is to learn a representation
h, € R for every node u in the graph, that combines its feature vector with the feature
vectors of its immediate neighbors. The representation h,, of every node u can be used in
order to produce the label of the node u for a node classification task. To learn these rep-
resentations, GNN uses a general framework, called neural message passing [11], in which
every node exchanges messages with its neighbors. In start, every node u is represented
with an initial feature vector h,. In every iteration, we update the state of the node, based
on its previous state and the representations of its neighbors. In mathematical notation,

we have the following equations:
mP T = AGGREGATE(hY Yu € N(u)) (3.1)

hEY = UPDATE(RE, mk+1) (3.2)

u

where N (u) is the neighborhood of node u , AGGREGATE and UPDATE are differen-
tiable functions, usually approximated by neural networks [16] , m5*! is the aggregated
message from the neighbors in k + 1 iteration and h%*! is the representation of the node
u in k + 1 iteration. The AGGREGATFE function should be permutation invariant, as it
was mentioned before. Apart from the message and aggregation, a GNN layer additionally
applies non-linearity to the activation of the layer to extract the final representation to add
expressiveness and making it possible for the network to approximate nonlinear functions.
Most common activation functions are the sigmoid function (o(-)) and the rectified linear

unit function (ReLU(-)). Figure 3.5 is a visualization of the aforementioned procedure.

3.2.3 Classical GNN layers
CNN vs GNN

Before we dive into the state-of-the-art GNN-based architectures, it would be useful
to analyze the relation between CNNs and GNN, since the neural networks we are going
to describe in the next sections are convolution-based.

CNNs are feature extractors that have achieved state-of-the-art results in tasks related

to structured data with grid-like topology such as images. But, as mentioned before, grid-

36

TAHGETl NODE .‘ ® “fﬁ: <

e 2
INPUT GRAPH e .

Figure 3.5: An illustration of message passing (arrows) and aggregation (grey boxes) in

message passing framework

s

a) Image b) Graph

Figure 3.6: An illustration of how an image can be represented as graph.

like structures can be represented as graphs. In the case of a single channel image N (v)
represents the 8 neighbour pixels of pixel v (Figure 3.6).

CNN can be seen as a special GNN with fixed neighbor size and ordering. In the case
of CNNs, the size of the filter is pre-defined. The advantage of GNN is the fact that it
processes arbitrary graphs with different degrees for each node. In addition to that, CNNs
are not permutation equivariant, like GNN. That means that switching the order of pixels
leads to different outputs of the network [55].

Graph convolutional network

Graph Convolutional Network is the most widely used GNN layer in the literature. It
was proposed by Kipf and Welling [26] and it has achieved state-of-the-art performance
in a variety of tasks associated with graph-structured data including natural language
processing, physics, chemistry, biology, material science and social network analysis [54].

It follows the neural message passing approach. Every convolutional layer | consists of a

37

weight matrix W®. For each node u, it takes as input the representation of the previous
layer (i.e, hq(f _1)), multiplies it with the weight matrix W® to produce the new represen-
tation hg). This constitutes the message of each neighbour node of u to this particular
node. The messages then are being aggregated and a non-linear activation function is
applied as well to add expressiveness. The following formula describes in mathematical

notation the operations taking place in a GCN layer.

0 b
h{) =& w2 3.3
%) V(o)) 3.3)

The term W in the message equation is used to normalize the message of the layer
by the node degree of each node. In addition to that, in GCN graph is assumed to have
self-loops that are included in the summation. The message and aggregation operations

can be formulated as:

1
() — WORED (3.4)
m’U U
[N (v)]
hg) =0 E mg) (3.5)
ueN (v)

GraphSAGE

The majority of approaches in the literature that generate node embeddings are inher-
ently transductive. Most of them do not generalize to unseen data, since they create the
embeddings by optimizing predictions over nodes in a fixed graph. Hamilton et al. [13]
proposed a general framework, called GraphSAGE (SAmple and aggreGatE), for induc-
tive node embedding. Unlike the embedding approach of GCN, the GraphSAGE is not
directly aggregating the messages from the neighbourhood of node v, but first derives a
representation of the neighbourhood by aggregating the representations of the neighbours
and then concatenates the hidden representation of node v from the previous layer hq(f -l
with the aforementioned neighbourhood representation. This leads to a neural message
passing approach with a two-stage aggregation, as formulated below, that can learn the
topological structure of each node’s neighbourhood and generalize on unseen nodes. An
overview of the GraphSAGE architecture can be seen in Figure 3.7

First the message for each node u of the neighbourhood N (v) of node v is computed
m®) « {h!™' vu e N(v)} (3.6)
e Stage 1: Aggregate from node neighbours

0
hN

) AGG(mY) (3.7)

e Stage 2: Further aggregate over node itself
h) « o (WU) - CONCAT(h{~Y), h%)(v))) (3.8)

38

CONVOLVE(? T ®

(See Algorithm 1) ./‘ 1 .

" P °
(2) Ly \, v'e
. hib (1) ; @

N (A) he .
@
hg?' F @

Figure 3.7: An illustration of the GraphSAGE architecture

Altogether the representation update procedure for each node v in a GraphSAGE layer

can be expressed mathematically by the following formula:

h{) o (WO CONCAT({™), AGG ({1, Yu € N(v)})) (35)

In addition to that, a GraphSAGE layer applies 5 normalization to hg,l). The normal-

ization step in GraphSAGE performs the following operation:

R0
h{) (7;) Yo eV (3.10)
[0][2

Without the ¢3 normalization, the embeddings vectors have different scales (¢ - norm) for

vectors. After /5 normalization, all vectors have the same f3 - norm. In some cases (not

always), normalization of embedding results in performance improvement.

Graph attention network

Graph Attention Networks are another neural network architecture that operates on
graph-structured data and follows the neural message passing framework. It was proposed
by Velickovié et al. [41] to address the shortcomings of prior methods based on graph
convolutions.

In the graph neural networks we described above, the contribution of each node to the
aggregation scheme is dictated by its degree. In both GCN and GraphSAGE, there is a
weighting factor (importance) o, = m of node u’s message to node v . This weighting
factor is defined explicitly based on structural properties of the graph (node degree). This
means that all neighbours u € N(v) are equally important to node v.

Graph Attention Networks face this limitation by applying different weights focusing

on the important parts of the input data and fading out the rest non-informative parts.

39

In other words, in GAT’s case, not all node’s neighbours are equally important. The
intuition behind GAT is that the neural network should devote more computing power
on that small but important part of the data. Which part of the data is more important
depends on the context and is learned through training. This mechanism is illustrated in
Figure 3.8.

For the computation of the embedding hq()l) of node v, GAT introduces a trainable
attention weight a,,, that determines how much node v attends the message of each neigh-
bour u € N(v). The computation of the weights ay,, is taking place through an attention
mechanism «. This mechanism computes the attention coefficients e,, across pairs of

nodes u, v based on their messages as shown below:
eou = a(WORID Whn(=1) (3.11)

The term e,, denotes the importance of node u’s message to node v. This attention score
vy 18 then normalized into the final attention weight o, by applying the softmaz function

so that the individual attention weights are summing up to 1.
_ exp(eyy)

2keN(v) €2P(€vk)
Incorporating these weights into the standard GCN embedding update process leads to
an embedding update formula for the GAT that looks like this:

Oy (3.12)

h) =0 > auWOh{ (3.13)

u€N (v)
Attention mechanisms are being widely adopted in many state-of-the-art architectures due
to their computational and storage efficiency and the fact that they perform extremely
well in a large variety of tasks. In the case of graphs, it is also worth mentioning that they
are independent of graph size (fixed number of parameters) and also readily applicable to
inductive problems, as it is a shared edge-wise mechanism and therefore does not depend

on the global graph structure [53].

3.2.4 Extension of GNNs in multi-relational graphs

In the previous section, we presented an overview of the neural message passing frame-
work and how it can handle graph-structured data to extract expressive representations
of the graph. In this section we will describe how this framework can be extended to deal
with heterogeneous graphs (i.e., graphs with different types of nodes and relations). To
provide mathematical notation and equations, we will use GCN as instance to demonstrate
the function of a Relational-GNN, but the following process can be implemented with any
convolutional GNN identically. Recall that in GCN, the hidden representation for each
node v at (I + 1) layer is computed by

1
Wr=o| > —wOr) (3.14)
ueN (v) o

40

~ @ g concat/avg /7
hs > M

Figure 3.8: An illustration of a GAT layer with multi-head attention

— Aggregation

Target node . —

.T‘ . Weights W,., for r,] PS

L Y4
v

Input graph Neural networks

(a) Input graph and relation weights (b) Relational-GNN

Figure 3.9: An illustration of Relational-GNN on heterogeneous graphs following the

neural message passing framework

where ¢, is the normalization constant. In GCN, weight W) is shared by all edges in layer
I. To handle multiple relations, the Relational-GCN architecture introduces individual
weight matrices for each relation type [36] and only edges of the same relation type r are
associated with the same projection weight anl) (Figure 3.9). Then, following the neural

message passing approach

e Computes outgoing message using node representation and weight matrix associated

with the edge type (message)

— Each neighbour of a given relation type

m{) = iw,ﬁ”h(l) (3.15)
’ Cu,r
— Self-loop
m® = w{n® (3.16)

e Aggregates incoming messages and self-loop message, apply activation function and

generate new node representations (aggregation)

B = o (S (m), u e Nw)} u{m})) (3.17)

41

So the hidden representation of nodes in [layer in R-GCN can be formulated as

the following equation:

! 1
WY =0 (WiPaD + 3" 3 — WO (3.18)
r€ERuEN (v)y vr

where N(v), denotes the set of neighbour indices of node v under relation r € R and
Cyr 1s a normalization constant. In node classification, Schlichtkrull et al. [36] propose
Cor = |N(v)y].

The problem that arises when applying the above equation directly is the rapid growth
of the number of parameters, especially with high multi-relational data. This leads to high
computational cost and overfitting risk. To prevent that, Schlichtkrull et al. [36] propose

the use of basis decomposition during training.

B
wih =3"al)vy (3.19)
b=1

Therefore, the weight Wf«l) is a linear combination of basis transformation V;)(l) with
coefficients ong). The number of bases B is much smaller than the number of relations in

the knowledge base.

3.2.5 Knowledge graph embeddings

As we mentioned in Section 2.1.3, knowledge graphs, as a form of structured human
knowledge have drawn great research attention over the past several years. As a result,
representation learning on knowledge graphs is an emerging field having produced sig-
nificant results. Knowledge graph representation learning is the process of embedding
knowledge graphs including both entities and relations into a continuous low-dimensional
vector space [48] (Figure 3.10). The embedding methods utilized in this study follow the
encoder - decoder approach for the training of the embeddings and belong to the shallow
embeddings category, in the sense that the encoder that maps nodes to embeddings is
simply an embedding lookup [14].

Edges in knowledge graphs are represented as triples (u,7,v) which is interpreted as
“head w has relation 7 with the tail v”. The goal of representation learning in knowledge
graphs is, given a true triple (u,7,v), to generate an embedding vector for (u,7) that
should be close (in the embedding space) to the embedding of v.

Most of the methods used for knowledge graph representation learning were originally
designed for the task of knowledge graph completion. Therefore, it would be useful to give

a short definition of this particular task.

Knowledge graph completion

In knowledge graph completion, the input graph is a multi-relational graph G = (V, €)

where the edges are defined as tuples of the form e = (u, 7,v) indicating the existence of a

42

Liverpool
Acme Inc :p
{) ‘-—is rS
A A\) Liverpool
K bornln Acme Inc iver ol
- ® City[o
worksFor basedIn City L Grvloyes °
worksFor lik isA o o Liverpool FC [(TTTTITIIT
1Xes O Mike person @ FootballTeam 1111
i /Mk\ LiVEI‘pOOl FC George 4 ndWith ¢
friendWith M1Ke =, FootballTeam ° o
r'd worksFor S
iSA: -
G bornin @ likes “basedln
€orge ke
g Person °

Figure 3.10: An illustration of the Knowledge Graph Embedding task

particular relation ¢ € 7 holding between these nodes. In general, the goal of knowledge
graph completion is to detect missing nodes or edges in the graph, i.e nodes or edges that

should exist in real-world setting but are omitted in the graph representation [14].

Encoder - decoder framework

In the encoder - decoder framework the process of generating embeddings for the nodes
and edges of the graph is divided into two operations. First, an encoder model maps each
node of the input graph into a low-dimensional vector. After that, a decoder model
utilizes the encoded vector to reconstruct information about each node’s neighbourhood
in the original graph [14].

The encoder model is a function that maps nodes v € V to vectors z, € R?. This can

be formulated as:

ENC:V — R? (3.20)
ENC(v) = Z[v] (3.21)

where Z € RIV*dl is the matrix that consists of the embedding vectors for all nodes of the
graph.

The decoder attempts to reconstruct certain graph statistics utilizing the node embed-
dings produced by the encoder. This statistics can vary, for example the decoder might
try to figure out u’s neighbours from vector z,. The corresponding signature for the above
is:

DEC : R? x RY — R (3.22)
The goal of this encoder - decoder model is to optimize the reconstruction of the specified
graph statistic. This is achieved by minimizing a reconstruction loss. This loss is computed

by comparing the decoder output with a graph-based similarity measure between nodes

(i.e., S[u,v]). The corresponding mathematical expression for this process is the following:

DEC(ENC(u),ENC(v)) = DEC(zy, 2,) ~ S[u, v] (3.23)

43

encode node

decode neiahborhood '
L]

(embgé‘ding)

Figure 3.11: An illustration of the Encoder - Decoder framework

The aforementioned reconstruction loss is computed over a subset of nodes of the original

graph (i.e, training set D) by pairwise comparisons

L= > UDEC(zy,2,),S[u,v]) (3.24)
(u,v)€D

where £ : R x R — R is a loss function that computes the difference between the output
of the decoder model (i.e., DEC(z,,2,)) and the true similarity values S[u,v]. In node
classification tasks, the loss function £ is the cross-entropy loss and it is minimized through

stochastic gradient descent.

Extension to multi-relational graphs

The encoder - decoder framework that we described in the previous section can be
further extended to handle multi-relational graphs as well, since the training of the embed-
dings of a multi-relational graph can also be treated as a reconstruction task. Attempting
to solve the knowledge graph completion task, the encoder - decoder model is optimizing
node embeddings z, and z, of two nodes v and v to reconstruct the relationship between
these nodes.

In knowledge graphs, where multiple types of nodes and relations exist, the decoder
part of the model is extended to handle the multi-relational setting. To achieve that, the
decoder is given as input the pair of node embeddings created by the encoder together

with a relation type. The signature describing this mapping is the following:
R? x R x R? — RT (3.25)
where R is referring to the relation type. The value that the decoder outputs corresponds

to the likelihood of the existence of the edge (u,7,v). The model is literally defined by

the decoder operation, the similarity measure and the loss function.

44

Translational decoders

The first category of decoders that are relevant to this study are translational decoders,
since they represent relations as translations in the embedding space. The first model is the
TransE model. For a triple (u, T, v) of the knowledge graph, the decoder of this particular
model is defined as

DEC(2zy, T, 2y) = —||2y — rr + 20| (3.26)

In this embedding methodology, each relation is represented using a d-dimensional em-
bedding. The likelihood of an edge is proportional to the distance between the embedding
of the head node and the tail node, after translating the head and tail nodes according to
the relation-specific space [2]. Two fundamental limitations of this approach is the fact
that TransE cannot model symmetric relations nor 1-to-N relations. These limitations are
being addressed by TransR model, another model of the translation class. In order to
overcome these limitations, the decoder of TransR models entities as vectors in the entity
space R% and each relation as vector in the relation space r € R* with M, € R¥*? as the
projection matrix of this particular relation. In other words, TransR is projecting em-
bdeddings from entity space R¢ to relation space R¥. The scoring function of the decoder
remains the same as in TransE case, but now the embeddings z,, and z,, are referring

to the projections in the relation space [28].
DEC(zy,T,2y) = —||Z1y — Tr + Z14]] (3.27)

There are also translation-based embedding models that are defined by more complex
decoders. One of these models is the TransH model, another extension of the basic

TransE model. In the case of the TransH model, the decoder is defined as
DEC(zy, 7,2y) = —||(zy — w;rzuwr) +r;— (2 — W:—ZUWT)H (3.28)

In this particular approach, the entity embeddings are being projected onto a trainable
relation-specific hyperplane, which is defined by the vector w, , before applying the trans-
lation [45].

Multi-linear dot-product decoders

Another approach to learn multi-relational graph embeddings is by applying the dot-
product operation to the embeddings of the graph nodes and relations. An example of such

a model is the DistMult [50]. The decoder in this case performs the following operation
DEC(2zy, T,2y) =< 2y, Cr,Zy > (3.29)

The main limitation of this approach is its inability to handle anti-symmetric relations.
Therefore, ComplEx extends the previous dot-product-based approach handling such re-
lations [40]. ComplEx’s decoder is defined as

DEC(zy, T,2y) = Re(< Zy, Tr, Zy >) (3.30)

45

TransE TransH RotatE
:
Distance Y . Dlstance/
—— \ t‘____:\‘________--;, ‘
t h .
4 \ w /
/I \, \\‘\‘tll,/
h hy pistance h

h,r,t € R%

flh,7,t) = —|lhy + 7 —t.]l,
h,7,t € R%

f(h,7,8t) = —|lher —tl,
h, ,tE(Cd,lri|=1Vi

Figure 3.12: An illustration of the scoring functions of TransE, TransH and RotatE

where z,,r,,2, € C? are complex-valued embeddings and 9Re denotes the real part of the
complex vector. This approach can represent anti-symmetric relations effectively leverag-
ing the complex conjugate z, of the embedding of the tail node. Another approach that
utilizes the rotation operation on the complex plane is the RotatE [39] model, its decoder
can be defined as:

DEC(zy, 7,2y) = —||2y o rr — Zy|] (3.31)

where o denotes the Hadamard product and the embeddings z are complex values as well.

Representational abilities

The aforementioned multi-relational models address the task of knowledge graph em-
bedding learning utilizing different score functions in their decoder part. The selection of
the score function and the vector space of the generated embeddings are the main factors
that define their ability to represent specific types of relations. As a result, these decoders

can be characterized by their ability to represent such relation types.

e Symmetry: A relation is symmetric when for each edge 7 of this relation between
two nodes u, v holds:

(u,7,v) € E < (v,T,u) € E (3.32)

e Anti-Symmetry: A relation is anti-symmetric when for each edge 7 of this relation

between two nodes u, v holds:

(u,7,v) € E <> (v,T,u) ¢ E (3.33)

e Inversion: The characteristic of inversion suggests that the existence of an edge 7
of a certain relation between two nodes u,v implies the existence of an edge 7o of

another relation between the same nodes

(u,m1,v) € E <> (v,12,u) € E (3.34)

46

e Compositionality: The attribute of compositionality indicates the ability of the

decoder to handle the composition of two relation representations

(ule’y) € EN (y,TQ,’U) € & — (U,Tg,U) € & (335)

e 1-to-N: A relation is a 1-to-N relation if (u, 7, v1) and (u, 7, v2) can exist in the same

relation.

Most of the decoders we described above can handle relations that are characterized by
most of these traits, but not all of them. Table 3.1 summarizes the representational

abilities of the decoders that are relevant to this study .

Model Symmetry Anti-Symmetry Inversion Composition 1-to-N

TransE X v v v X

TransR v v v v

TransH v v v v v
DistMult v X X X v
ComplEx v v v X v

RotatE v v v v v

Table 3.1: A summary of the representational abilities of decoders

3.3 Noise in graphs

Incomplete, meaningless, distorted or corrupted data in datasets is known as noise.
Noise can have a significant impact on the overall performance of a machine learning
model [15]. Noise is commonly observed in various structured or unstructured data and
graph-represented data are no exception. In the next sections we are going to give a brief
overview of the forms of noise in graph-structured data as well as how graph machine

learning models can be equipped with a layer of defense against these kinds of noise.

3.3.1 Forms of noise in graph-structured data

Noise in graphs can be attributed to various factors. In addition to that, the form in
which noise can be observed in graphs can vary. It can be the result of an intended attempt
to change the network’s structure (e.g. adversarial attacks, bots on social networks) or it
can emanate from imperfections of automated graph construction methods (e.g. automatic
constructed knowledge graphs). The two main forms of noise are: i) Missing or redundant
links between nodes (nodes of different feature distribution, classes, communities etc.). ii)
Poisoned nodes (nodes with perturbed features or labels) attached to normal nodes that

can harm the neighbour aggregation methods for representation extraction. Subsequently,

47

we are going to present a brief overview of the main factors leading to noise in graph

structured data.

Automatic constructed knowledge graphs

Knowledge graphs are a very valuable data structure for many applications. In many
cases, such graphs have to be constructed based on both structured and unstructured
data. Recently, extracting graph representations from various non-graph-structured data
sources has drawn significant attention due to the expressiveness graph representations can
incorporate. By these means, the most informative entities and relations of the domain
under investigation are being extracted and form a graph-structured representation. In
Figure 3.13 an illustration of an automated knowledge graph extraction is presented [51].

On the other hand, automatically constructed knowledge graphs often contain noisy
facts, since information extraction methods are imperfect [30]. Facts derived from auto-
mated knowledge graphs methods are often inaccurate, when extractors try to maximize
rule coverage. This leads to relations containing large number of misleading links between

entities or even be non-informative entirely [49].

Adversarial attacks on graphs

A fundamental case of artificial noise in graphs are adversarial attacks. Adversarial
attacks aim to fool a neural network to output a wrong prediction with slight and unno-
ticeable perturbations to the input of the network, either the feature matrix of the nodes
or the adjacency matrix of the graph [5] [20] . An example of adversarial attack on graph
data is illustrated in Figure 3.14, where a specific node is targeted by the addition of
a single edge. Many real-world graphs are naturally low-rank and sparse as the entities
usually tend to form communities and would only be connected with a small number of
neighbors [56]. Adversarial attacks on GCNs tend to add adversarial edges that link nodes
of different communities as this is more efficient to reduce node classification performance
of GNNs. Introducing links connecting nodes of different communities in a sparse graph
can significantly increase the rank of the adjacency matrix, thus damaging the low rank

and sparsity properties of graphs [20].

3.3.2 Noise-robust models

Despite the fact that Graph Neural Networks have exhibited great success in modeling
graph-structured data, they have shown quite notable vulnerability to various types of
noise. Noisy and adversarial edges, as well as poisoned or limited labeled nodes can lead
to significant degradation of the GNN performance. This is mainly due to the nature
of the message passing framework that these neural networks utilize [7]. Noise edges
usually connect nodes of different classes or with different attributes, thus aggregating
information of neighbouring nodes propagates errors, mixes useful information with noise

and eventually leads to poor representations of the nodes of the graph [19].

48

Food domain data

‘ from Wikipedia |
| = |— |
el . F Acquisition of
‘ - = multi-structured |
\ data
Wikipedia Wikipedia NEtwork. |
‘ classification classification encyclopedia |
‘ system labels Web texts |
___vl;_____ o I N
r— —vy_ — — = — _—____"____—_l
| Upper and lower Extract upper and |
| relationships in lower relationships
the classification based on co-occurrence |
| system and semantic analysis |
| | | v
¢ Convolution residual |
| \ network based on Relationship
Ambiguous . d . |
| relationship HNDIGKCA AeAS extraction
. entropy loss function |
| clearing
| Upper and Fooq None
lower domain . |
. N -+ superordinate
| relationship conceptual . .
. relationship set |
|_ set hierarchy
- - - =
Make use of Neodj
A4 :
Food domain knowledge
graph

Figure 3.13: An example of automatic knowledge graph extraction - The roadmap of food

domain knowledge graph from Wikipedia

Clean Graph Perturbed Graph

e Predicted as: . o Predicted as: .

Figure 3.14: An example of adversarial attack on graph data

49

Noisy Graph
Labeled Unlabeled (CET T T
y=1 + : [AN :
y= 0 - | \\ /N \' /]
N o — ——— —
Node Features Denoised and Densified Graph » £g

(\ {"'_,_ """"" \
i | Link /AN <= |
! } Predictor f; RV N }
N e e 7/ N

Label Smoothness £, T

Figure 3.15: An illustration of Dai et al. link predictor - GCN approach for noisy graph

representation learning

In order to defend the graph neural network against these kinds of noise, different
countermeasures have been proposed, which are focusing on handling noise both during
training and test time. Dai et al. [7] train an MLP on the task of link prediction. The
link predictor learns to assign weights to every edge according to the feature similarity of
the nodes connected by that particular edge. The link predictor is able to down-weight or
eliminate noisy edges of the original graph. A side profit of this process is that it can also
predict missing links, which is particularly useful in sparse labeled graphs. Then trains a
GNN on the denoised and densified graph on a node classification task. The downside of
this approach is that it overrates node similarity in terms of the node attributes and does
not rely so much on the actual edges. It also depends on the expressiveness of the initial

node representation. An illustration of this approach is presented in Figure 3.15.

Wang et al. [42] attempt to recognise noise by training two generator models, a graph
generator and a noise generator, in an unsupervised setting. The graph generator’s task
is to identify normal structures. It captures useful graph prior knowledge and utilize it to
generate normal graph structures. This prior heuristic knowledge comes in form of several
graph-related statistics such as homophily, community, hierarchical structures and power-
law degree distributions. The noise generator captures and generates arbitrary noises. It
generates noisy graphs according to specific distributions that are distinguishable from
the normal edges distribution. Eventually, both generators are optimized jointly through
maximum likelihood estimation, to derive a noiseless adjacency matrix for the original

graph. The proposed framework is illustrated in Figure 3.16.

Hafidi et al. [12] propose Bayesian node classification for node classifications tasks on
noisy graphs. According to their approach, training a simplified graph-based Bayesian
classifier on the intrinsic features of each node and those of its first-order neighbours,

showing that it can ignore 1-hop noise neighbours.

Kang et al. [21] make the assumption that noisy graph matrices can be decomposed
into two matrices, a clean and a noisy one. The decomposition is based on the fact that

clean data form a low-rank matrix while the erroneous data form a sparse matrix. The

50

Graph Generator Mo Likelitood Overall Loss
Graph Prior Information Z Generate U| Z Generate A | U aximum LIKelihoo

Estimation
i community & u;)
[homoph‘ly &] [stmcturesy e e } Integrate | @ Sim. true prob.
ower-law L a; = (u,u;)
[dﬁsmbutions L__] [e] © [000J v n

<-- LyroximinyA, U, E)

observed edge

L(U)

Noise Generator
Noise Distributions Generate E

(vonad N (Mowrd)) (o) Tdgpre | e~ Tovwad i rP g

g

L(E)

Figure 3.16: An illustration of Wang et al. generative approach to eliminate noise from

noisy graphs

final graph is derived from the clean matrix using adaptive neighbours graph construction
approach. The final and the clean graph are optimized simultaneously leveraging the
alternating simulation approach.

Jin et al. [19] focused on robustness against adversarial attacks. They propose a model
which tries to eliminate the crafted adversarial structure by iteratively reconstructing the
clean graph by preserving graph characteristics such as low-rank, sparsity and feature

smoothness.

o1

Chapter 4

Methodology

In this chapter, we are going to describe a novel GNN-based architecture aiming to
achieve expressive representation learning on heterogeneous graphs that shows robustness
against potential presence of noise edges. In addition to that, we are going to explain the

intuition behind this model and the particular settings in which it could be applicable.

4.1 Problem statement

The process of representation learning has been conducted in a supervised learning
setting on a node classification task, as described in Section 2.2.1 . We define a graph
G = (V,&), where V denotes the set of nodes, and £ is the set of edges. The edges of the
graph are characterized by a type r € R, where R is the set of relation types of the graph
G. Every node v of the graph is associated with a feature vectorx, € RM. We can stack
all the feature vectors in one tensor X € RM*N for the graph in total. Moreover, we can
model all the edges present in the graph, through the adjacency tensor A € {0, 1}V *RxN,
If Alv;,r,v;] = 1, then node v; is connected to node v; with an edge of type r.

For each node V of graph G, our goal is to calculate the conditional output distribution

of this node as follows:
p (X, A, 09) (4.1)

where y, denotes the class of node v, X the attributes of the nodes of the graph and ® is a
set of trainable parameters [44]. Our goal is to find a function f(X, A, ©) that models the
aforementioned probability density function. We formulate this task as an optimization

problem that can be formulated by the following expression:
min £(y, f(X, A, ©)) (4.2)

where L is called the objective function and could be any loss function that is applicable to
the node classification task. In our case, the model is trained in to minimize a categorical

cross-entropy loss given by the following formula:
CE(y, Z yilog f(x (4.3)
=1

52

53

where y; and f(x); are the actual and predicted values of the i-th class. The total loss

over all training nodes is given by the following equation:

L=) CEy, f(x) (4.4)

(x,y)eT

where 7 denotes the training set of nodes (i.e, all pairs of data and labels (x,y)). The
output of the model f(x) is generated after the application of a softmax function to squash
the output g(z) in the range (0,1) and all the resulting outputs to add up to 1, in order
to be consistent with the probability density function properties. The final output of the

model will be:
e9(®)i
f(X)Z — Z]CZI eg(x)j

where C' is the number of classes and g(z); denotes the i-th coordinate of the vector output

(4.5)

of function g(x).
We want to calculate the learnable parameters ® of the model in order to minimize
the prediction loss in a setting where the input graph is a multi-relational heterogeneous

graph.

4.2 Settings of noise

In this section, we are going to briefly introduce the settings in which we are going to
infuse structural noise to the original graph. We are going to break down the experiments
that have been conducted in three defined settings, that have been chosen in such a
manner that cover the main aspects in which noise can be observed in a graph, whether
it is related to an adversarial attack or the graph is noisy by its nature (e.g. derived
from an automated graph representation process that created non-informational edges or
relations), as described in Section 2.3.1. We are going to classify the existence of noise in

graphs in the following categories.

Noisy relations

In this setting, the focus is on low-informational or even noisy relations. Some graphs
can contain relations with edges connecting non-relevant nodes exclusively. This case is
more common on automatically constructed knowledge graphs, if the relation extraction
method is highly erroneous or a relation does not provide useful information about the
nodes similarity by default. Ideally, we would eliminate this kind of relations, but training
multiple models for different combinations of relations can be extremely expensive, even
impossible for knowledge graphs with large number of relations, due to the exponential
increase of the possible combinations. A robust model against this type of noise presence

should minimize the effect of the noisy relations on the generated node embeddings.

o4

Noise edges in informational relations

In this setting, we are focusing on the impact of noisy edges that belong to a relation
that is informative in general. This can be the result of specific attacks to the graph
structure, aiming to connect non-relevant nodes, or due to imperfections of an automated
graph construction method that creates edges that should not exist. These edges harm the
neighbour aggregation scheme, because non-relevant neighbours contribute to the update
of the target node’s representation. A robust model should be able to minimize the
misleading information propagation of the noise related edges while effectively propagating

useful information provided by the correct links.

4.3 Baseline models

In order to evaluate the performance of our proposed architecture, we selected two GNN
architectures, which are among the most commonly-used models in the related literature
for various graph representation learning tasks. The selection of these two models, except
for providing a strong baseline performance for our architecture to overcome, is related
to the fact that these two architectures are utilizing two different mechanisms that could
potentially provide robustness against the various forms of noise presented in the previous
section. Therefore, the choice of these GNN layers in particular aims to the investigation
of their behaviour and potentially the evaluation of these mechanisms against intensive

noise in general.

GCN - GraphSAGE

According to the internal architecture of the GCN (as described in detail in Section
2.2.3), in a heterogeneous input graph setting, each layer of this particular network archi-
tecture is equipped with a weight matrix W,. for each individual relation r . This weight
matrix W, is shared among edges of the same relation type r € R. As a reminder, the
representation update in a relational GCN layer is performed according to the following

scheme:

R =0 Y 3 L wWOR® L wORO (4.6)
r€RueN (v) Coyr

As we can see from the above expression, the representation of node v in the ({4 1)-th layer
is derived from an aggregation (sum) over the embeddings of the previous layer multiplied
by the weights of the current layer for each relation. Although the RGCN keeps different
weight matrices for each relation, this aggregation scheme could be vulnerable to noise
relations, meaning that it may not have the ability to ignore such low-information or even
noise relations. As far as edge addition on removal is concerned, RGCN is not providing

a safety layer against such kind of attacks.
GraphSAGE is a general purpose GNN as well. The difference between GraphSAGE
and GCN is the fact that the network aggregates messages of the neighbours in the first

95

place, the concatenates these representations with the target node representation of the
previous layer. As far as its robustness against noise is concerned, it does not differ greatly
compared to the GCN.

GAT

The second baseline model for the experimental procedure is the Graph Attention
Network. Compared to the Graph Convolutional Network we mentioned above, GAT is
used extensively in the related literature regarding noise robust graph neural networks [19]
[7]. As mentioned in Section 2.2.3, the embedding update expression for a GAT layer is
the following:

h) = > uWhh{ (4.7)
u€N (v)
Respectively to the extension of GCN in heterogeneous graph-structured data, the GAT

weight update in a heterogeneous setting looks like this:

W =0 (> Y oy, WHh{Y (4.8)
r€R ueEN (v)r

From the above expression, the key difference of this neural network architecture and the
vanilla RGCN is the existence of the attention weights a,,. These weights are applied
to each node of the neighbourhood of the target node. As far as noise is concerned, this
particular network provides additional safety against attacks in the form of adversarial
edge additions, since the model intuitively can assign little attention weights to these
noisy edges. In addition to that, the GAT network also provides separate weight matrices
for each relation type and applies an aggregation function to derive the final representation,
identically to the R-GCN, which potentially can minimize the effect of low-information

relations.

4.4 Proposed architecture

In this section, we are going to provide a detailed description of the proposed GNN-
based architecture for the formulated problem, but also the intuition behind the proposed
model named Split Relation Graph Convolutional Network (SRGCN for brevity).

4.4.1 SRGCN architecture

The SRGCN model consists of three main components, and the modelling procedure
is illustrated in Fig. 4.1. The first one is a graph convolutional network. To be more
precise, the model contains a GCN for each of the relations of the input graph. Each
GOCN utilizes as input the original graph but with only one type of relation present, and

a representation is extracted for each node. This embedding represents the node for

56

A

Input Graph /
Iy

Target Node ‘/e
I
Iz
L |
|

‘ RotatE ‘ ‘ GCN ’

! |
O D (ITTTTT] I COrrrrl

T 1]'2 1‘1 1'2

Relation GNN Nud'e
. Representations
representations ; ' for each relation
[Concatenate]

Representations for CTT T T T

each relation [TTTTT]

!

[Aggregate }

SRGCN Node (T LT 1T — ‘

e.g.
Concatenate

SRGCN Node
Representations

EEEEEE _ EEEEEE CITTTT]

T
N

Class1 Class 2

Figure 4.1: An illustration of the SRGCN Architecture

o7

this specific relation. The second component is a shallow knowledge graph embedding
model. The graph embedding model generates a representation (i.e. an embedding) for
each relation of the original graph. Then, for each node, its representation per relation
(from the GCN) and the corresponding relation representation (from the graph embedding
model) are concatenated, creating a singular representation per different relation for the
node. Finally, these representations are aggregated and are fed as input to a feed-forward
neural network for the classification. The aggregation scheme of the model could be

represented as follows:
AGGREGATE(h),),h(}) YueV (4.9)

where AGGREGATE denotes an aggregation procedure (i.e. sum, mean, concatenation
ete.), h{;(r) denotes the node representation for node u € V of the final GNN layer L for the
relation r and h(Cf,J)E denotes the relation embedding extracted from the graph embedding
model for the relation r in the relation set R.

In our case, we opted for the concatenation operation as an aggregation function. The
idea is to not blend the information for different relations at this stage, as would be the case
through summation or taking the mean. Thus, the final MLP on top of these aggregated
embeddings will be able to utilize the distinct representations generated by each relation,
to perform the node classification class. Moreover, the graph embedding procedure used
is RotatE due to its performance superiority, as also shown in the next chapter.

In-between the layers of both the GCN and the MLP components of the architecture
there are non-linear activations (i.e., ReLU function) to add non-linearity to the model,
batch normalization (since it has proven to lead to better performance in various cases
[34]) and dropout layers to prevent overfitting. The activation function of the final layer

of the feed-forward neural network is a softmaz function.

4.4.2 Intuition behind SRGCN

The main concept of the proposed architecture is to leverage both the ability of the
GNN architecture to capture neighbourhood-level dependencies and the graph-level infor-
mation about each relation provided by a knowledge graph embedding model. SRGCN is
relying on the GNN part to extract node representations. GNNs, via the neural message
passing framework, can propagate information about the neighbour nodes of the target
node. According to the related literature [19], standard GCN architectures are vulnerable
to structural noise despite their great power in modelling graph structured data. Our
motivation was to enrich the final representation by injecting general information about
the whole graph and each relation in particular. This is happening via a knowledge graph
embedding model, as presented in Section 2.2.5. Combining the node embeddings derived
from the neighbourhood aggregation scheme of the GCN architecture with the relation
embeddings of a graph embedding model can lead to an expressive representation that

discriminates useful relations from low-informational or noisy ones, as well as adding more

o8

useful information to the final representation. To verify the latter assumption, we con-
ducted experiments to evaluate the utilization of a knowledge graph embedding method,
such as RotatE, by comparing the results with a “more shallow” one, like a relation lookup
embedding method. The results of the experiments on noisy graphs verify our assumption
that relation lookup embeddings do not provide the necessary expressiveness to improve
the model performance, in contrast to a relation representation extracted by a knowledge
graph embedding method. Finally, we want to limit our model’s reliance on initial node
features. In the case of very noisy graphs, initial feature vectors tend to play a more im-
portant role, since structural information’s value is reduced by noise. Additionally, node
attributes are being used to identify noise edges by comparing the connected node feature
similarity [7]. In our approach, we try to leverage the graph structure as much as possible

and improve the performance by identifying relations affected by noise.

4.4.3 Model complexity

For a thorough comparison of the models, it makes sense to take their complexity into
account as well. SRGCN and GCN include a learnable weight matrix W, € RF*H where
F' is the number of input features and H is the hidden embedding size. And there is a
distinct W, for each relation r and in each layer (I). Considering a single layer for both
models, the memory complexity will then be Ogny = O(RFH), where R is the number of
relations and F, H as before. Thus, regarding the initial GNN-based node representation
part, both models have the same number of parameters.

Then, for the SRGCN model we also concatenate these GNN-based embeddings with
the derived relation embedding, for each relation. Thus, we must add the overhead of
fitting the corresponding graph embedding model. Our selection was RotatE which has a
computational complexity [52] of Oqr = O(2V Hgr +2RHgg), where V' is the number of
nodes in the graph and Hgg the selected embedding size for the graph embedding model.
Having the relation embeddings from the graph embedding model, we can concatenate
each relation-specific GNN-based embedding with the corresponding relation embedding.
Each one of them has a size of Hoyny + Hgr. The GCN model has no added complexity
in this step.

Model | GNN Params GE Params MLP Params

GCN RFHGNN - HGNN
SRGCN RFHaonN 2(VHGE+RHGE) R(HGNN+HGE)

Table 4.1: Number of Parameters for SRGCN versus GCN.

Finally, we have the memory complexity of the final MLP layer. The GCN aggregation
function uses the sum operation, meaning that the final node representation is the sum
of the distinct relation-based ones. Thus, the input dimension of the classification dense
layer is Hgnn and the complexity of the MLP is O(Hgnyn). The SRGCN model, uses the

59

concatenation function as an aggregation operator for the distinct relation-based node-
represenations. Thus, the input dimension of the classification dense layer is R(Hgny +

Hgg). Overall, their comparison in terms of parameters is shown in Table 4.1.

60

Chapter 5
Experiments and Results

In this chapter we are going to describe the experimental process we followed, give
an overview of the datasets used for training and evaluation of the models and comment
on the results and the insights derived. We will first introduce the evaluation metric
used, then we will briefly describe the benchmark datasets and then present the predictive
performance o the different models used. Specifically, we will evaluate the model both
on the original datasets as and under two different noise scenarios. We will also conduct

experiments on noisy synthetic graphs, to audit specific properties of mainstream models.

5.1 Evaluation metric

The models are being trained on the node classification task and evaluated according
to the F'1-score they achieve in the prediction of the unlabelled nodes’ class. The F1-score

is computed using the following formula:

02X Precision x Recall

Fl= 5.1
Precision + Recall (5-1)
where Precision and Recall of the model’s predictions are computed as follows:
TP
Precision = ——— 2
recision TP + TP (5.2)
TP
l=—— .
Reca TP - N (5.3)

where the TP, F'P, TN and FN denote the true and false, positive and negative predictions
in the test set respectively. To minimize the effect of randomly initialized weights of the
neural networks and provide more robust results, every experiment result reported in this

chapter is the average Fl-score of 5 executions with different random seeds.

5.2 Benchmark datasets

We adopt two widely used heterogeneous graph datasets from different domains to

evaluate the performance of the proposed and baseline models. An overview of the struc-

61

62

. Mavie . ! Author |

(a) IMDb

Conference

(b) DBLP

Figure 5.1: An Illustration of entities (classification entities in blue) and relations of the

benchmark datasets

ture of each graph dataset is shown in Figure 5.1. A summary of the entities and relations

of the graph datasets is presented in Table 5.1.

IMDb dataset

IMDb is an online database about movies and television programs, including informa-
tion such as cast, production crew, and plot summaries. The dataset is a heterogeneous
graph containing three types of entities - movies (4,278 nodes), actors (5,257 nodes), and
directors (2,081 nodes). There are labels for the movie nodes. The movies are divided
into three classes (action, comedy, drama) according to their genre. Additionally, it con-
tains 2 types of relations - (actor-to-movie) and (director-to-movie). These relations are
symmetric. Movie features correspond to elements of a bag-of-words representation of
its plot keywords. Apart from the above, we also have feature vectors for the actor and
director entities. For semi-supervised learning models, the movie nodes are divided into
training, validation, and testing sets of 400 (9.35%), 400 (9.35%), and 3,478 (81.30%)

nodes, respectively [10].

DBLP dataset

DBLP is a computer science bibliography website. This dataset is a heterogeneous
graph containing four types of entities - authors (4,057 nodes), papers (14,328 nodes),
terms (7,723 nodes), and conferences (20 nodes). The entities which we have to classify
are the authors. The authors are divided into four research areas (database, data mining,
artificial intelligence, information retrieval). In addition to that, the dataset contains 3
types of relations - (author-to-paper), (term-to-paper) and (conference-to-paper), all of
them symmetric. Each author is described by a bag-of-words feature vector, consisting of
their paper keywords. Additionally, the dataset provides feature vectors for the paper and
term entities, but not for conference ones. We use a one-hot encoding scheme to represent
the conferences. For semi-supervised learning models, the author nodes are divided into
training, validation, and testing sets of 400 (9.86%), 400 (9.86%), and 3,257 (80.28%)

nodes, respectively [10].

63

Dataset Nodes Edges
movie (M): 4278
) 4 M-D: 4278
IMDb # director (D): 2081
4 M-A: 12828
actor (A): 5257
thor (A): 4057
Ziu OET())14328 4 A-P: 19645
e :
DBLP o 4 P-T: 85810
paper (P): 7723
4 P-C: 14328
conference (C): 20

Table 5.1: Summary statistics for benchmark datasets

5.3 Performance on benchmark datasets

Firstly, we compare the proposed methodology on the benchmark datasets versus some
strong baseline GNNs. The baseline GNNs are the multi-relational variations of the Graph-
SAGE and GAT networks, referred from now on as RGraphSAGE and RGAT respectively.
We opted for GraphSage layers instead of GCN ones, due to PyTorchGeometric [8] imple-
mentation’s limitations' of the GCN in heterogeneous graphs with multiple node types.
The proposed model also utilizes the GraphSAGE layer as convolutional layer for the same
reason.

We trained the models for 100 epochs, keeping track of the best performing model
and using that for evaluation. We used the best performing optimizer (Adam [25]) and
the corresponding learning rates and weight decay, as found in the related literature [10].
In addition to that, hyperparameter tuning was conducted on the RGraphSAGE and
RGAT model, in order to avoid adding bias to our proposed model results. The primary
focus of the hyperparameter tuning was the number of convolutional and dense layers
of the models, and in the case of RGAT also the number of attention heads. Only one
dense hidden layer was used in all 3 models. For our model, we used the RotatE graph

embeddings, which were trained for 50 epochs.

Model F1-score NN RotatE Total
MLP 0.487 £ 0.002 3.9 - 3.9
RGraphSage 0.576 + 0.002 10.6 - 10.6
RGAT 0.525 £+ 0.003 22.7 - 22.7
SRGCN 0.584 + 0.003 13.8 9 22.8

Table 5.2: Fl-score and training time (s) for the IMDb dataset.

'Related Github Issue: https://github.com/pyg-team /pytorch_geometric/issues/4271

https://github.com/pyg-team/pytorch_geometric/issues/4271##issuecomment-1328107867

64

Model F1-score NN RotatE Total
MLP 0.744 + 0.001 3.8 - 3.8
RGraphSage 0.912 + 0.001 24.8 - 24.8
RGAT 0.916 = 0.002 43.2 - 43.2
SRGCN 0.924 + 0.002 31.3 13 44.3

Table 5.3: Fl-score and training time (s) for the DBLP dataset.

In Tables 5.2 and 5.3 we present the Fl-scores measured for the results (average f1-
score and a standard deviation) of the different models examined as well as the training
times (in seconds) for both datasets. We provide the training time of the end-to-end node
classifier (NN) and the RotatE model separately, as well as the total training time. From

the above results we can conclude that:

e Our model achieves better performance than the baseline models, even by a slight
margin. This encourages its use even as a general purpose model for node classifi-

cation.

e The training time in total is comparable to the baselines even though the model’s

complexity is higher, mainly due to the knowledge graph embeddings training.

5.4 Robustness against noise

Apart from the ability of the SRGCN to perform better on the benchmark datasets,
we also wanted to investigate how this architecture could provide solid representations in
graphs with large amounts of noise edges. Our intuition is that incorporating information
about the whole set of edges in a particular relation can help the overall model identify
noisy relations and focus on the node representations derived from the useful relations.
To verify our assumption, we conducted various experiments on different settings of noise.
To speed up experimentation and to adapt to the needs of each experiment, we split the

experimental process in two rounds, as described in the next sections.

5.4.1 Experiments on synthetic data

In the first round of experimentation on the impact of noise edges, experiments were
conducted on synthetic data. The synthetic data can mimic operational or production data
and help train machine and deep learning models [32]. The purpose of this experimental
setup is to conduct experiments in order to gain insights on the effects of noise, the
behaviour of the state-of-the-art GNN architectures and speed up experimentation, while

maintaining control over the dataset due to its small size.

65

Synthetic graph overview

Our synthetic graph dataset consists of 50 nodes, all the same type. These nodes belong
to 2 classes, each class having equal number of nodes (25 each). The graph contains a set
of 16 labelled nodes, equally distributed into 2 classes (i.e. 8 each). The rest 34 unlabelled
nodes constitute the test set, and they are equally split into the 2 classes as well (i.e.
17 each). The edges between the nodes and their corresponding relation type are not
fixed and vary according to each experiment’s needs. The representation of each node
is initialized randomly according to a uniform distribution.The selected dimension of the

initial vectors is 32.

Noise as separate relations

This experiment’s goal is to examine the behaviour of GNNs when applied to graphs
containing noise in the form of a distinct noise relation. That is when a relation is noisy by
design. Adding noise to the graph intuitively should cause the performance of the GNN
model to drop, except for the GNN having the ability to ignore the noisy relation and
take into account only the neighbours according to the informational relation during the
embeddings’ learning process.

To evaluate the models’ performance, we modified the synthetic graph as follows:
First, we set an “informative” relation. Edges of this relation type connect nodes of the
same class. Then, we created multiple “noise” relations. Edges of these relation types
connect nodes of the opposite class. Initially, every labelled node was connected with 2
labelled nodes of the same class through the informative edge type and with 2 nodes of the
opposite class for each noise relation. Similarly, every unlabelled node was connected with
2 labelled nodes of the same class for the informative relation, and with 2 labelled nodes of
the opposite class for each of the noise relations. This way, every relation, informative or
noise, has the same number of edges. With the aforementioned noisy graph structure, we
examine the extent of noise that the GNNs can ignore, while focusing only the informative
one.

In order to see the impact of noise, we evaluate the models while increasing the noisy

edges. The addition of noise can be done in two ways:

e Adding noisy edges in an existing uninformative relation: The experiments
in this setting showed that despite adding more noise edges in a single noise relation
didn’t cause any performance drop for the baseline GNNs. We added noise edges up
to 8 times the number of the informative edges and all models maintained perfect
accuracy. The GNNs have the ability to discriminate the informational from the

noisy relations, when the number of noisy relations is kept low e.g. one noise relation.

e Adding noise edges through additional noise relations: In this setting, we
progressively add more noise edges, but this time as additional noise relations. We

observe that adding more noise relations causes the performance of the baseline

66

8
t
$
t

10 10
+ 12 - 12

&
2 8
= in

a2
&

F1 Score (%}
v

F1 Score (%)

&

o

2 4 &] 10 2 4 3 8 10
Number of GNN layers Number of GNN layers

(a) GON (b) GAT

Figure 5.2: An illustration of the impact of number of graph convolution layers in GNNs
performance. Increasing number of layers to a certain point improves performance against
noise. After this point further increase of the number of layers causes oversmoothing and

performance drop.

models to drop, but our architecture maintains a nearly perfect accuracy despite the

large number of noise relations. This behaviour is depicted in Figure 5.3.

It is also clear that increasing the number of convolutional layers improves the model
performance until a certain point where oversmoothing (indistinguishable represen-
tations of nodes in different classes)[4] kicks in, as shown in Figure 5.2). The GCN
model achieves the highest Fl-score at higher number of layers compared to GAT,
while GAT performs better with fewer layers. Another insight is that, adding more
informational edges slows the degradation of the models accuracy, even if the noise-
to-info ratio is kept the same. We increased the number of each relation’s edges
(informative and noise) attached to each node and we observed that more noise
relations are needed to achieve the same performance drop. This can be seen in
Figure 5.4. That indicates that, in very noisy graphs, a minimum number of “in-

formative” edges is needed for the useful information propagation to be effective.

Graph Embeddings on noisy graphs

We also experimented on the synthetic dataset using different graph embeddings, to
gain insights on the best performing embedding model under noise. The results of the
experiments also encourage the use of encoder-decoder models for the extraction of the
relation representations compared with the one-hot encoding of the relations. Previously,
we mentioned that our proposed model managed to achieve almost perfect accuracy in
every experiment, but that does not apply for every single decoder used. In Table 5.4
we present the accuracy of our proposed model according to the multi-relational decoder

model used for the relation embedding learning. We experimented with two noise scenarios

67

100

mmm SRGCN
mm RGraphSAGE
mmm RGAT

F1 score
®

24 28 38 310 410 412
Node connectivity - Number of noise relations

Figure 5.3: F1 scores on synthetic data, with noise introduced as separate relations sce-
nario. The x-axis refers to different noise settings. Specifically, it is the combination of

(Number of edges connected to each node for each relation - Number of noise relations).

100 4 -

2

F1 Score (%)
F1 Score (%)

2 4 3 8 10 1z 2 4 B 8 10 12
Number of noise relations Number of noise relations

(a) GCN (b) GAT

Figure 5.4: An illustration of the impact of number of informational edges in GNNs
performance. Increasing the number of informational edges while keeping the info-to-

noise edges ratio constant mitigates the effect of noise.

68

(8 and 12 noise relations respectively), which are somewhat extreme to accentuate the

effect of noise on the embeddings created.

Model 2-8 3-12

Lookup 0.784 0.753
TransR 0.902 0.888
TransH 1.0 1.0
DistMult 0.847 0.821
RotatE 1.0 1.0

Table 5.4: Fl-scores for different embedding models in SRGCN. The first number in the
column name refers to the number of edges of each relation attached to each node the

second to the number of noise relations in the graph.

From the results, it is clear that RotatE and TransH are clearly outperforming the rest
of the models, which seem to lack the ability to produce expressive relation embeddings

that handle noise as well.

Adding noise on the informational relation

Once again, our goal is to evaluate the performance of baseline GNNs on this partic-
ular setting, where noise is being added to the network not as a separate relation, but
by polluting the informational relation. Adding edges of noise into the already existing
informational relation should cause the accuracy of the model in the classification task
to drop. Adding more noise should magnify the degradation of the model’s performance.
Since homogeneous graphs are not in scope for this thesis, we are creating two informative
relations. Each node is connected with edges of each informational relations to 2 other
nodes of the same class, leading to 8 informational edges in total for each class and for
each relation. Noise is being added as edges connecting nodes of the opposite class, exactly
as the previous case. The number of edges providing noise is used as a hyperparameter of
this experiment.

Initially, the unlabelled nodes are connected only to nodes of the same class, with one
edge for each relation. Gradually, we connect the unlabelled nodes with more labelled
ones, this time not only of the same class but of the opposite class as well. The rate
of noise to total edges attached to each node is treated again as a hyperparameter to
measure the impact of the noise edges added to the graph. We conducted experiments to

investigate GNNs behaviour in two major settings.

e Noise on labelled nodes: Initially, we want to investigate how noise can affect
the training of a GNN. We are focusing on the labelled nodes in the first place.
Unlabelled nodes are connected to labelled nodes of the same class. The results of

the experiments are presented in Table 5.5. As we can see, noise starts to impact the

69

Noise-to-info rate | GCN # Layers GCN | GAT # Layers GAT
no noise 1.0 2 1.0 2
1 1.0 3 1.0 2
2 1.0 3 1.0 2
3 1.0 4 1.0 2
4 1.0 4 1.0 2
6 0.978 5 0.980 3
8 0.876 6 0.882 4

Table 5.5: Fl-scores for the unlabeled nodes classification and the respective number of

convolutional layers when noise edges are added only between labeled nodes.

models performance only when applied in massive amounts (6 and 8 times more than
the informative edges). We deduce that the GNNs can learn to discriminate noisy
information during training. Increasing the number of layers, improves the model
performance until a certain threshold. Interestingly, even if the unlabelled nodes
should be able to extract their true class from the 1-hop neighbours, the 1-layer
GNNs do not perform well.

e Noise on unlabelled nodes: The aforementioned results stress the fact that when
no noise is added between unlabelled nodes, the GNNs do not have significant degra-
dation in their performance. This time we are going to add noisy edges to the unla-
belled nodes as well to evaluate the impact of noise in a more general and realistic
scenario. We extended the previous setup by connecting unlabelled nodes to nodes
of the opposite class to simulate a noisy setting. The results of our experimentation
are presented in Table 5.6. It is obvious that noise in this setting really hurts the
GNN performance, with way less additional noise. The number of informative edges
greatly impacts the model the same way as in the setting where noise was added as
separate relations. This can be seen from the great improvement in results in the last
row of the table, where the ratio of informative to noisy increased to 2:1. Increasing
the number of convolutions to a specific number also improves the performance of

the model to a certain degree, as in the previous noise scenario.

5.4.2 Experiments on real-world datasets

Experiments on the synthetic dataset provide useful insights about the behaviour of
noise in graph structured data, as well as an indication of the performance of the different
models when dealing with noisy graphs. In this part of the experimental process, the
main focus is to evaluate the proposed architecture, as well as the two other competing

GNNs, but we pay significant attention to gaining further insights on the models’ be-

70

L-L U-L GCN # Layers GCN GAT # Layers GAT

22 1-1 0.657 6 0.668 4
2-2 2.2 0.697 6 0.693 4
2-2 12 0.938 3 0.938 2

Table 5.6: Fl-scores for the unlabelled nodes classification and the respective number of
convolutional layers. L-L refers to the number of edges from (L)abelled to (L)abelled
nodes, and U-L refers to (U)nlabelled to (L)abelled. The first number in these columns

denotes the number of noisy edges and the second of informative ones, per node.

haviour leveraging the knowledge derived from the synthetic data experiments. For the
sake of fairness, we present the F1-scores for two variants of the RGraphSAGE and RGAT
models. In the first one, the node embeddings generated by the graph convolutional layer
are 64-dimensional embeddings, as in the SRGCN. In the second one, the node embed-
dings generated by the graph convolutional layer are 128-dimensional embeddings, which
produced the best results overall. For brevity, SAGE and GAT refer to the RGraphSAGE
and RGAT models introduced before.

Add noise as separate relations

In this particular setting, noise is integrated to the graph as a separate relation. Specif-
ically, we create relations with random connections between existing entities and we are
going to progressively add more of these relations. We create noise relations that are
similar to the actual ones, i.e., between the same entity pairs. For instance, in IMDb
dataset we added noise relations Movie-noiseTo-Actor and Movie-noiseTo-Director since
such relations existed in the initial dataset. We did not create noise relation between
Actor and Director entities since there wasn’t similar relation in the original dataset. The
number of noise edges in each noise relation are set to be the same as the number of edges
in the informational relations. In contrast to the synthetic data, noise relation number
will be kept in lower levels, since high number of noise relations is quite uncommon in the

real-world.

Noise relations SAGE-64 SAGE-128 GAT-64 GAT-128 SRGCN

no noise 0.575 0.576 0.523 0.525 0.584
1 0.537 0.539 0.491 0.494 0.581
2 0.516 0.521 0.450 0.457 0.576

Table 5.7: Fl-scores for the IMDb dataset, with multiple noise relations.

In the case of multiple noise relations, from the results presented in Table 5.7 and

71

Noise-to-info ratio SAGE-64 SAGE-128 GAT-64 GAT-128 SRGCN

no noise 0.575 0.576 0.523 0.525 0.584
1 0.537 0.539 0.491 0.494 0.581
2 0.532 0.535 0.478 0.480 0.579

Table 5.8: Fl-scores for the IMDb dataset, with a single noise relation.

Noise relations SAGE-64 SAGE-128 GAT-64 GAT-128 SRGCN

no noise 0.905 0.912 0.91 0.916 0.924
1 0.857 0.869 0.858 0.867 0.904
2 0.764 0.776 0.791 0.799 0.890

Table 5.9: Fl-scores for the DBLP dataset, with multiple noise relations.

Noise-to-info ratio SAGE-64 SAGE-128 GAT-64 GAT-128 SRGCN

no noise 0.905 0.912 0.91 0.916 0.924
1 0.857 0.869 0.858 0.867 0.904
2 0.824 0.834 0.813 0.821 0.892

Table 5.10: Fl-scores for the DBLP dataset, with a single noise relation.

Table 5.9 we observe that our model outperforms significantly its competitor models as the
number of noisy relations increases. This behaviour is consistent with our observations in
the synthetic data. This time, just a few noise relations cause the performance of the other
GNN models to drop, in comparison to the synthetic dataset, where the performance drop
occurred when more than 5 noise relations where introduced. Another difference with the
toy dataset is the fact that increasing the number of layers didn’t improve the performance
of the models. On the contrary, oversmoothing of the node representations happened after
4-5 convolutional layers for the IMDb dataset, and 6-7 for the DBLP dataset.

As far as the single noise relation case is concerned, we observed similar results (Table
5.8 and Table 5.10) with the multiple noise relations case, as well as with the corresponding
results of the synthetic dataset. In comparison to the toy dataset, the performance drop
was more significant in the case of the RGraphSAGE and the RGAT models, but not as
much as in the previous case. It is obvious that adding the same amount of noisy edges
in the form of multiple relations is causing bigger performance drop than in the form of a
single relation.

An interesting observation is the poor performance of the GAT-based architecture in

the IMDb dataset, which was not expected according to the synthetic data experiments.

72

The behaviour of the attentional network in the DBLP dataset was more consistent, but
still not better than the ones of the RGraphSAGE.

Adding noise to the informational relation

The experiments in this stage are focusing on the existence of noise not as separate
relation, but in an existing one. We conducted experiments with different noise distribu-
tions among the existing relations in the benchmark datasets. We added noise edges in
each relation separately, as well as, in multiple relations at the same time, and compared
the performance of the models in each setting. The results of the experiments for the
IMDb and DBLP are shown in the Tables 5.11 and 5.12 respectively.

MA-MD |E| SAGE-64 SAGE-128 GAT-64 GAT-128 SRGCN

no noise 0 0.575 0.576 0.523 0.525 0.584
1-0 12828 0.551 0.56 0.497 0.499 0.571
0-1 4278 0535 0.541 0.494 0.497 0.552
1-1 1711 0.543 0.549 0.487 0.489 0.546
5-5 853 0.529 0.532 0.472 0.476 0.534

Table 5.11: Fl-scores for the IMDDb dataset, with noise edges in informational relations.

|E| denotes the number of noise edges added to the original graph.

AP-PT-PC |E| SAGE-64 SAGE-128 GAT-64 GAT-128 SRGCN
no noise 0 0.905 0.912 0.91 0.916 0.924
1-0-0 19645 0.657 0.698 0.656 0.664 0.722
0-1-0 85810 0.903 0.909 0.861 0.871 0.921
0-0-1 14328 0.857 0.875 0.768 0.801 0.892

d-1-1 11978 0.874 0.886 0.853 0.862 0.889
BS5-.5-.5 59891 0.684 0.704 0.678 0.684 0.707

Table 5.12: Fl-scores for the DBLP dataset, with noise edges in informational relations.

|E| denotes the number of noise edges added to the original graph.

First, some explanations about the notation of the experiments. The first column of
each table denotes the type of the relation, as defined in Table 5.1. The numbers in the
first column denote the ratios of noisy edges added with respect to the normal edges.
The total number of noisy edges added is shown in the second column. We conducted
experiments both by adding noise only to one relation at a time and by adding noise to

all relations simultaneously.

73

=&~ SRGCN =&~ SRGCN
RGraphSAGE RGraphSAGE

* RGAT %0 * RGAT
-—- MLP

-—- MLP

£

F1 Score (%)
F1 Score (%)

b
bl

00 0z 04 06 08 10 00 0z 04 06 08 10
Npise to info ratio Moise to info ratio

(a) IMDb (b) DBLP

Figure 5.5: Predictive performance of the models according to added noise percentage.

As expected, the presence of noisy edges causes the accuracy of the models’ predictions
to drop. AM and TP have the largest number of edges in the IMDb and DBLP dataset
respectively. Nevertheless, the performance drop in these cases is not the highest. In fact,
DM (in IMDb) and AP (in DBLP) are the relations that, when polluted with noise edges,
impair the models’ performance the most, even though the number of added noisy edges
in these experiments is significantly lower. It is obvious that the number of noise edges
is not the most important factor for the impact of noise, but it is rather how informative
the polluted relation is. The SRGCN performs generally better across all types and levels
of noise. Specifically, it is significantly better than the baseline models when only one
relation is polluted with noise.

In Figure 5.5 we present the performance of each model for various values of added
noise in the most informative relations (Movie-to-Director for IMDb and Author-to-Paper
for DBLP). We also compare the results with a structure-agnostic MLP model. We can
see that generally the SRGCN model outperforms the baseline models for all noise-to-
info ratios. Interestingly, for the DBLP dataset, the baseline models start to have worse
performance than the MLP when noisy edges are more than 50% of the informational
edges, while SRGCN outperforms the MLP until the 75% noise-to-info ratio point.

Adding noise to multiple relations simultaneously causes performance drop that is
proportionate to the importance of each relation. We observed very minor performance
gains for the SRGCN compared to its competitors. This is expected, since the advantage
of SRGN stems from its ability to incorporate information for each relation as a whole.
By polluting every relation, every relation representation is distorted, and therefore this
advantage is mitigated.

Another insight from the experiments is the fact that GNNs with smaller number of
layers performed better when increasing the proportion of noise. This can be explained
if we take into account the neighbour aggregation scheme of the GNNs. By adding more

layers, the neighbourhood that contributes to the final representation of each node becomes

74

5 == SRGCN 7 = SRGCN
mm RGraphSAGE mmm RGraphSAGE
. RGAT . RGAT

Number of conv layers
Number of conv layers

0 01 025 05 075 1 1] 01 025 05 075 1
Moise to info ratio (%) Moise to info ratio (%)

(a) Number of layers - IMDb (b) Number of layers - DBLP

Figure 5.6: Number of convolution layers for the best model, per model category, according

to added noise percentage.

bigger. As a result, in noisy-heavy graphs, the graph structure provides little information
and the GNNs integrate more noise into their representation. A more detailed illustration
of this behaviour is shown in Figure 5.6. We can easily observe the general trend, that
fewer layers are better when dealing with more noisy graphs, which is consistent across all
models and both datasets. It is interesting that the optimal number of layers for a given
noise-to-info ratio is different for each model and dataset, pointing out that both the
particularities of the graphs and the expressive power of each model play a significant role
on this choice. GAT achieves best performance with the smallest number of layers, which
is consistent with out synthetic data experiments. SRGCN, despite utilizing the same
graph convolution layer with RGraphSAGE (i.e. GraphSAGE) achieves best performance
with fewer layers than RGraphSAGE.

75

Chapter 6

Conclusions

6.1 Summary

In this thesis, we proposed a complex architecture based on Graph Convolutional
Neural Networks and graph embeddings, to tackle the node classification task in multi-
relational networks, focusing on graphs with noise. Our findings lead to the conclusion
that incorporating relation-level information in a GNN based model can boost the expres-
siveness of the representations and improve the performance of the whole model.

Moreover, our experiments on graphs with different noise settings provided useful
insights about the behaviour of widely used GNNs and their robustness against large
amounts of noisy edges. We identified settings of noise that harm the performance of
these models, such as arbitrary noise in specific or multiple relations.

Our main contribution is the proposed architecture, SRGCN, which achieved better
performance on the node classification task on benchmark datasets. Moreover, it signifi-
cantly outperformed strong baseline models in all the scenarios where noise was introduced
in the graph. Specifically, our architecture suffered almost no performance drop when we
added relations that contained only noise and excelled when we introduced noise by pollut-
ing a specific relation. Thus, we proved empirically the main intuition behind our model,
that the extra information introduced by the global relation embeddings of SRGN helped

our model identify useful relations from redundant ones.

6.2 Future work

This thesis offers some potential extensions for further experimentation. As far as the
architecture is concerned, experimentation on the GNNs used in the SRGCN architecture,
apart from the GCN and GraphSAGE, would be particularly interesting since it could
potentially lead to significant performance improvement. We also decided to use the
concatenation of the embeddings derived from the GNNs and decoders as an aggregation
function. Further experimentation in the aggregation function selection could provide

useful insights or even performance improvement. Apart from that, it would be interesting

76

7

to evaluate our model’s performance on more settings of noise. For example, in the
future, we could evaluate the robustness of the different models in situations where noise
is targeting specific nodes. This could be helpful to simulate some realistic scenarios
where we have adversarial attacks on compromised nodes of the graph. Finally, since our
model showed robust results on these noise settings, we consider purposeful to compare
our model to other methodologies that are specifically designed to improve performance

on noisy graphs.

List of Figures

3.1
3.2
3.3
3.4
3.5

3.6
3.7
3.8
3.9

3.10
3.11
3.12
3.13

3.14
3.15

3.16

4.1

5.1

5.2

Examples of heterogeneous real world graphs.
A Comparison between transductive and inductive setting
An illustration of Euclidean vs non-Euclidean graphs.
An illustration of why naive MLP approach fails for graphs

An illustration of message passing (arrows) and aggregation (grey boxes)

in message passing framework Lo oL
An illustration of how an image can be represented as graph.
An illustration of the GraphSAGE architecture
An illustration of a GAT layer with multi-head attention
An illustration of Relational-GNN on heterogeneous graphs following the

neural message passing framework oL
An illustration of the Knowledge Graph Embedding task
An illustration of the Encoder - Decoder framework
An illustration of the scoring functions of TransE, TransH and RotatE . . .

An example of automatic knowledge graph extraction - The roadmap of

food domain knowledge graph from Wikipedia
An example of adversarial attack on graph data
An illustration of Dai et al. link predictor - GCN approach for noisy graph
representation learning oL oL Lo
An illustration of Wang et al. generative approach to eliminate noise from

noisy graphso
An illustration of the SRGCN Architecture

An Hlustration of entities (classification entities in blue) and relations of
the benchmark datasets o L.
An illustration of the impact of number of graph convolution layers in GNNs
performance. Increasing number of layers to a certain point improves per-
formance against noise. After this point further increase of the number of

layers causes oversmoothing and performance drop.

78

79

5.3

5.4

5.5
5.6

F1 scores on synthetic data, with noise introduced as separate relations
scenario. The x-axis refers to different noise settings. Specifically, it is the
combination of (Number of edges connected to each node for each relation
- Number of noise relations).
An illustration of the impact of number of informational edges in GNNs
performance. Increasing the number of informational edges while keeping
the info-to-noise edges ratio constant mitigates the effect of noise.
Predictive performance of the models according to added noise percentage.
Number of convolution layers for the best model, per model category, ac-

cording to added noise percentage.

List of Tables

3.1 A summary of the representational abilities of decoders 46
4.1 Number of Parameters for SRGCN versus GCN. 58
5.1 Summary statistics for benchmark datasets 63
5.2 Fl-score and training time (s) for the IMDb dataset. 63
5.3 Fl-score and training time (s) for the DBLP dataset. 64

5.4 Fl-scores for different embedding models in SRGCN. The first number in

the column name refers to the number of edges of each relation attached to

each node the second to the number of noise relations in the graph. 68
5.5 Fl-scores for the unlabeled nodes classification and the respective number

of convolutional layers when noise edges are added only between labeled

nodes. e 69
5.6 Fl-scores for the unlabelled nodes classification and the respective number

of convolutional layers. L-L refers to the number of edges from (L)abelled

to (L)abelled nodes, and U-L refers to (U)nlabelled to (L)abelled. The first

number in these columns denotes the number of noisy edges and the second

of informative ones, pernode. Lo 70
5.7 Fl-scores for the IMDb dataset, with multiple noise relations. 70
5.8 Fl-scores for the IMDb dataset, with a single noise relation. 71
5.9 Fl-scores for the DBLP dataset, with multiple noise relations. 71
5.10 Fl-scores for the DBLP dataset, with a single noise relation. 71

5.11 Fl-scores for the IMDb dataset, with noise edges in informational relations.
|E| denotes the number of noise edges added to the original graph. 72
5.12 F1l-scores for the DBLP dataset, with noise edges in informational relations.

|E| denotes the number of noise edges added to the original graph. 72

80

Bibliography

[1]

U. Akujuobi, H. Yufei, Q. Zhang, and X. Zhang. Collaborative graph walk for semi-
supervised multi-label node classification. In 2019 IEEE International Conference on
Data Mining (ICDM), pages 1-10. IEEE, 2019.

A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translat-
ing embeddings for modeling multi-relational data. Advances in neural information

processing systems, 26, 2013.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geomet-
ric deep learning: going beyond euclidean data. IFEE Signal Processing Magazine,
34(4):18-42, 2017.

D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun. Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view. In
Proceedings of the AAAI conference on artificial intelligence, volume 34, pages 3438—
3445, 2020.

L. Chen, J. Li, J. Peng, T. Xie, Z. Cao, K. Xu, X. He, and Z. Zheng. A survey of
adversarial learning on graphs. arXiv preprint arXiv:2003.05750, 2020.

G. Ciano, A. Rossi, M. Bianchini, and F. Scarselli. On inductive—transductive learning
with graph neural networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(2):758-769, 2021.

E. Dai, W. Jin, H. Liu, and S. Wang. Towards robust graph neural networks for
noisy graphs with sparse labels. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining, pages 181-191, 2022.

M. Fey and J. E. Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

J. Fox and S. Rajamanickam. How robust are graph neural networks to structural
noise? arXiv preprint arXiv:1912.10206, 2019.

X. Fu, J. Zhang, Z. Meng, and 1. King. Magnn: Metapath aggregated graph neural
network for heterogeneous graph embedding. In Proceedings of The Web Conference
2020, pages 2331-2341, 2020.

81

82

[11]

[12]

[13]

[14]

[18]

[21]

[22]

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message
passing for quantum chemistry. In International conference on machine learning,
pages 1263-1272. PMLR, 2017.

H. Hafidi, M. Ghogho, P. Ciblat, and A. Swami. Bayesian node classification for noisy
graphs. In 2021 IEEFE Statistical Signal Processing Workshop (SSP), pages 246-250.
IEEE, 2021.

W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large

graphs. Advances in neural information processing systems, 30, 2017.

W. L. Hamilton. Graph representation learning. Synthesis Lectures on Artifical
Intelligence and Machine Learning, 14(3):1-159, 2020.

R. Hasan and C. Chu. Noise in datasets: What are the impacts on classification per-
formance?[noise in datasets: What are the impacts on classification performance?]. In
Proceedings of the 11th International Conference on Pattern Recognition Applications
and Methods, 2022.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359-366, 1989.

W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec.
Open graph benchmark: Datasets for machine learning on graphs. Advances in neural

information processing systems, 33:22118-22133, 2020.

S. Ji, S. Pan, E. Cambria, P. Marttinen, and S. Y. Philip. A survey on knowledge
graphs: Representation, acquisition, and applications. IFEE Transactions on Neural
Networks and Learning Systems, 33(2):494-514, 2021.

W. Jin, Y. Li, H. Xu, Y. Wang, S. Ji, C. Aggarwal, and J. Tang. Adversarial attacks
and defenses on graphs. ACM SIGKDD Ezxplorations Newsletter, 22(2):19-34, 2021.

W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, and J. Tang. Graph structure learning for
robust graph neural networks. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pages 66—74, 2020.

Z. Kang, H. Pan, S. C. Hoi, and Z. Xu. Robust graph learning from noisy data. IEEE
transactions on cybernetics, 50(5):1833-1843, 2019.

N. Keerthana, V. Vinod, and S. Sudhakar. A novel method for multi-dimensional clus-
ter to identify the malicious users on online social networks. Journal of Engineering
Science and Technology, 15(6):4107-4122, 2020.

M. Kejriwal, C. A. Knoblock, and P. Szekely. Knowledge graphs: Fundamentals,
techniques, and applications. MIT Press, 2021.

83

[24]

S. Khoshraftar and A. An. A survey on graph representation learning methods. arXiv
preprint arXiv:2204.01855, 2022.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXw:1412.6980, 2014.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional
networks. arXww preprint arXiv:1609.02907, 2016.

Z. Li, H. Liu, Z. Zhang, T. Liu, and N. N. Xiong. Learning knowledge graph embed-
ding with heterogeneous relation attention networks. IEEE Transactions on Neural
Networks and Learning Systems, 33(8):3961-3973, 2021.

Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. Learning entity and relation embeddings
for knowledge graph completion. In Proceedings of the AAAI conference on artificial

intelligence, volume 29, 2015.

L. Li and T. Zhou. Link prediction in complex networks: A survey. Physica A:
statistical mechanics and its applications, 390(6):1150-1170, 2011.

M. Masoud, B. Pereira, J. McCrae, and P. Buitelaar. Automatic construction of
knowledge graphs from text and structured data: A preliminary literature review. In
3rd Conference on Language, Data and Knowledge (LDK 2021). Schloss Dagstuhl-

Leibniz-Zentrum fiir Informatik, 2021.

M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily in
social networks. Annual review of sociology, pages 415-444, 2001.

U. Meyer and M. Penschuck. Generating synthetic graph data from random network
models. In Algorithms for Big Data: DFG Priority Program 1736, pages 21-38.
Springer, 2023.

L. D. Sailer. Structural equivalence: Meaning and definition, computation and appli-
cation. Social networks, 1(1):73-90, 1978.

S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry. How does batch normalization help

optimization? Advances in neural information processing systems, 31, 2018.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph
neural network model. IEEE transactions on neural networks, 20(1):61-80, 2008.

M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, and M. Welling.
Modeling relational data with graph convolutional networks. In The Semantic Web:
15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3-7,
2018, Proceedings 15, pages 593—607. Springer, 2018.

84

[37]

[38]

[44]

[46]

D. Stepanova, M. H. Gad-Elrab, and V. T. Ho. Rule induction and reasoning over
knowledge graphs. Reasoning Web. Learning, Uncertainty, Streaming, and Scalability:
14th International Summer School 2018, Esch-sur-Alzette, Luxembourg, September
22-26, 2018, Tutorial Lectures 14, pages 142-172, 2018.

Y. Sun and J. Han. Mining heterogeneous information networks: principles and
methodologies. Synthesis Lectures on Data Mining and Knowledge Discovery, 3(2):1-
159, 2012.

Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang. Rotate: Knowledge graph embedding by
relational rotation in complex space. arXiv preprint arXiv:1902.10197, 2019.

T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, and G. Bouchard. Complex embeddings
for simple link prediction. In International conference on machine learning, pages
2071-2080. PMLR, 2016.

P. Velickovié, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph

Attention Networks. International Conference on Learning Representations, 2018.

J. Wang, Z. Li, Q. Long, W. Zhang, G. Song, and C. Shi. Learning node represen-
tations from noisy graph structures. In 2020 IEEFE international conference on data
mining (ICDM), pages 1310-1315. IEEE, 2020.

Q. Wang, Z. Mao, B. Wang, and L. Guo. Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions on Knowledge and Data Engineer-
ing, 29(12):2724-2743, 2017.

Y. Wang, W. Wang, Y. Liang, Y. Cai, J. Liu, and B. Hooi. Nodeaug: Semi-supervised
node classification with data augmentation. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery € Data Mining, pages 207-217,
2020.

Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge graph embedding by translating
on hyperplanes. In Proceedings of the AAAI conference on artificial intelligence,
volume 28, 2014.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehensive
survey on graph neural networks. IFEF transactions on neural networks and learning
systems, 32(1):4-24, 2020.

F. Xia, K. Sun, S. Yu, A. Aziz, L. Wan, S. Pan, and H. Liu. Graph learning: A
survey. IEEFE Transactions on Artificial Intelligence, 2(2):109-127, 2021.

R. Xie, Z. Liu, J. Jia, H. Luan, and M. Sun. Representation learning of knowledge
graphs with entity descriptions. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30, 2016.

85

[49]

[50]

[51]

[57]

J. Yan, C. Wang, W. Cheng, M. Gao, and A. Zhou. A retrospective of knowledge
graphs. Frontiers of Computer Science, 12:55-74, 2018.

B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng. Embedding entities and relations
for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575, 2014.

H. Yu, H. Li, D. Mao, and Q. Cai. A relationship extraction method for domain
knowledge graph construction. World Wide Web, 23:735-753, 2020.

M. Zamini, H. Reza, and M. Rabiei. A review of knowledge graph link prediction

using graph neural networks. 2022.

C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla. Heterogeneous graph
neural network. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 793-803, 2019.

S. Zhang, H. Tong, J. Xu, and R. Maciejewski. Graph convolutional networks: a

comprehensive review. Computational Social Networks, 6(1):1-23, 2019.

J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun.
Graph neural networks: A review of methods and applications. AI Open, 1:57-81,
2020.

K. Zhou, H. Zha, and L. Song. Learning social infectivity in sparse low-rank networks
using multi-dimensional hawkes processes. In Artificial Intelligence and Statistics,

pages 641-649. PMLR, 2013.

X. J. Zhu. Semi-supervised learning literature survey. 2005.

86

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	Prologue
	Εκτεταμένη Περίληψη στα Ελληνικά
	Εισαγωγή
	Κίνητρο
	Συμβολή

	Θεωρητικό υπόβαθρο και σχετικές εργασίες
	Γράφοι σαν μέθοδος αναπαράστασης δεδομένων
	Εκμάθηση αναπαράστασης γράφων
	Νευρωνικά δίκτυα γράφων
	Ενσωματώσεις γράφων γνώσης
	Θόρυβος σε γράφους

	Μεθοδολογία
	Σενάρια θορύβου
	Μοντέλα αναφοράς
	Προτεινόμενη αρχιτεκτονική

	Πειράματα και αποτελέσματα
	Μετρική αξιολόγησης
	Σύνολα δεδομένων
	Προβλεπτική ικανότητα προτεινόμενου μοντέλου
	Ανθεκτικότητα στο θόρυβο

	Συμπεράσματα
	Σύνοψη
	Μελλοντικές προεκτάσεις

	Introduction
	Motivation
	Approach and contribution
	Thesis structure

	Theoretical Background and Related Work
	Introduction to graphs
	Graph-structured data
	Graph basics and notation
	Multi-relational, heterogeneous and knowledge graphs

	Graph representation learning
	Machine learning on graphs
	Graph neural networks
	Classical GNN layers
	Extension of GNNs in multi-relational graphs
	Knowledge graph embeddings

	Noise in graphs
	Forms of noise in graph-structured data
	Noise-robust models

	Methodology
	Problem statement
	Settings of noise
	Baseline models
	Proposed architecture
	SRGCN architecture
	Intuition behind SRGCN
	Model complexity

	Experiments and Results
	Evaluation metric
	Benchmark datasets
	Performance on benchmark datasets
	Robustness against noise
	Experiments on synthetic data
	Experiments on real-world datasets

	Conclusions
	Summary
	Future work

	englishenglishList of Figures
	List of Tables
	Bibliography

