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ITepixndm

Yy mopoloo Bimhopatixy epyocia, tapovaldloupe to medfAnue SUBSET SUM RATIO to
ornolo optletar v €€ng: 6edouévou eVOC GUVONOUL BeTiX®Y axepalwy Z TANBUXOTNTAC 1, VoL TIPOG-
dloploTel edv untdpyouv BV Eéva UTOGUVONA TOU Z, TwV OTolwY 0 A6Y0¢ TwV abpoloudToy Toug
elvar BéNTiotoc. To SUBSET SUM RATIO amotelel npdPinua Bertiotonolnone xou elvon otevd
ouVdedeuévo pe o EQUAL SUBSET SUM, oplléuevo we e€ng: 8edopévou evdg cuVONoL BETixmY
axepaiov Z mANBuxoTNTOC N, Vo TEOGOloPlo TEL EQV LUTdEYOUY dLOo Eéva UTOGUVONL TOu Z, T
otovxela Twv onolwv abpollouv oty Bl Twn. AxpBéotepa, oto SUBSET SUM RATIO Bewpolye
6t dev urdpyouv Eéva urtocvola mou va afpollovton otov Blo aplud, cuvende avalntolue
aUTd Tor EEVaL UTOGUVONA TV OTOlWY 0 AOYOC EVOL TLO XOVTA GTN) OV

Eunveduevol and texvixée Tou yenoWoToo0VToL OTIC O CUYYPOVES EQELVNTIXES ONUOCLEL-
oelg vl Toe TeoPNYjuatat SUBSET SUM xow EQUAL SUBSET SUM ,x0f)¢ X0 TROGEY VIO TIXWY oY1
HdTov mou €youv dlopop@wdel vl To SUBSET SUM RATIO ,To omolo TepLypdOupE avaNuTLXd
ot moapoloa dimhwuaTxy, Topouctdlovpe éva véo mpooeyyoTixd oyfua (FPTAS) to onolo
ETUTUYYAVEL TN XONDTEEY) TONUTAOXOTNTAL ATO TAL TEOCEYYLIO TS OYAULATA TOU €Y0UV TUQOUGCLO-
otel péxpt orjuepa. Ilo avohutnd, amodewvbouue 6Tt yia TNV ToaurhoxdTnTa Tou FPTAS yia
70 SUBSET SUM RATIO exgpalépevn otn wopgh O((n + 1)°), yiveton ye ¢ < 5, anotéheoya 0
onolo anotelel Pertiwon ouyxpitnd pe OXa to FPTAS’s nou éxouv dnuoocteutel.

Emnpocbétog, uéow tou npoceyyio 1ol o AUITOS TOU ToEOUCLELEToL OE oUTH T1) SLTAWUO-
TIXY], ATTOBEXVIETOL Lot O TEVOTERT GUVOEOT) HETAED TNG TONUTAOXOTN TS TOL SUBSET SUM RATIO
xat Tou APPROXIMATE SUBSET SUM .Ewbixdtepa,cto npotewvouevo FPTAS yenowwonoteiton we
UTOPOUTIVOL 1) TEOCEYYIOTIXY €NIAUCY, TOAN®Y SUBSET SUM unonpofinudtov. Me autd tov
TEoOTO, onoladToTe PENTIOOT G TNV TONUTAOXOTNTA GE TEOGEYYIC TLXO GO Yo TO SUBSET SUM
unopel va yetagepbel aneubeloc xou 6To TPOCEYYIOTIXG OYHUA Yiat To SUBSET SUM RATIO

Koatorfiyouue, 6t pe 1o FPTAS mou napouctdloupe amoTumdveTon 1) avary X YL TEEOUTERW
€PEUVAL 0TI TEOCEYYLOWOTNTO TOU SUBSET SUM Xou EWOXOTEQO 1) UENETY WG TLO adUVOUNG
HOPPHC TEOGEYYIONS 1) OTOLA UNAPWVEL TNV AVIGOTNTA YLt TO dBpoloua oToyo t. 1o avohutixd,
vioe To oOVoXo AUom Y v To omolo meémet va oyler X(Y) < ¢, n ovicdtnto peTotpéneTon o€
E(Y) < (1+¢)-t, ouvbBiun n onola dOvartan va fonbricel otny Slopdppwon xdmotou PeXTiwévou
TEOCEYYLOTIXO) OYAUATOS YLot T0 SUBSET SUM xou €MOpévewe ylot To SUBSET SUM RATIO mou
elvar 10 LTO PENETY TEOPANUA.

A€Eeic xAELOLA

subset sum, equal subset sum, meet-in-the-middle algorithm, approximate subset sum, color-
coding, pseudopolynomial time algorithms.






Abstract

In this diploma dissertation, we present the SUBSET SUM RATIO problem which is defined
as follows: Given a set of positive integers Z of cardinality n, find two disjoint subsets of
Z whose ratio of sums is optimal. SUBSET SUM RATIO constitutes the optimization problem
closely related to the EQUAL SUBSET SUM problem, which is defined in the following way:
Given a set Z of positive integers of cardinality n, find two disjoint subsets of Z whose sums
of elements are equal. In particular, in the SUBSET SUM RATIO problem we assume that
there are no disjoint subsets with the same sum, thus we search the subsets that their ratio
of sums is as close to 1 as possible.

Inspired from algorithmic techniques that are utilized in the most recent publications
for SUBSET SUM and EQUAL SUBSET SUM problems and also approximation schemes which
have been formulated for the SUBSET SUM RATIO problem, which we describe and analyze
in detail, we present a new approximation scheme (FPTAS) that achieves an improved time
complexity in comparison with the fastest scheme that was presented up until now. In
particular, we prove that while the complexity of the current state of the art approximation
scheme expressed in the form O((n + 1/¢)¢) has an exponent ¢ = 5, the presented FPTAS
achieves complexity with constant ¢ < 5. Furthermore, through this approximation scheme,
a connection between SUBSET SUM RATIO and APPROXIMATE SUBSET SUM is established.
This happens, because many SUBSET SUM calculations are used in our FPTAS in order to
approximate SUBSET SUM RATIO .Thus, any improvement in the complexity of approximating
SUBSET SUM could be immediately transferred in our FPTAS and improve its complexity.

We conclude that the presented approximation scheme highlights the necessity of further
research on approximation algorithms for SUBSET SUM and specifically a weak notion of
approximation which relaxes the constrain (YY) < ¢, where ¢ is the target sum, and it is
sufficient to satisfy X(Y) < (1 + ¢) - t. This relaxation seems to open a way for further
improvements in approximating SUBSET SUM and thus open the way for many improvements
in problems that SUBSET SUM and SUBSET SUM RATIO are applied.

Key words

subset sum, equal subset sum, meet-in-the-middle algorithm, approximate subset sum, color-
coding, pseudopolynomial time algorithms.






Evyopioticg

Ye auTég TIC TPWTES OENIDEC TNE BIMAUTIXAC Uwou gpyaoiog, Ou Aleha va euyopicThon
xdmoloug avbp®roug ot omolol artotérecay Bacixd TUADOVA GTARIENG XAl TNy 1) EUTVEUOTC YIaL TNV
ONOXNAEWOT AUTAC TNS EPYAOLOG Xl GTOUG OTOIOUC TNV APLECOVE.

Apyd, ogeilw éva ueydho evyaplo T oTtov emPBrénovTta xabnynts Tng nopolou SITAWU-
g gpyooiog, x. Apoteldn Iloyouptlr, o omoloc ye Pornoe mOND va dnuovpyHow plo o
xaBopr] edvaL Ylor To X600 NG €peuvag oTr BewenTixy| TANEOPOEXY XATL TOU ATd TAVTA UE
YONTEVEL XAl Yol TIC XOUPLES, ELAIXELVELS XalL AVTIXEWUEVIXEC GUUPOUNES TOU TOGO VLAl TNV ONOXAT-
PWON NG EpYOsiac 6C0 ol VLol TEOTOUC Xl ETUNOYES TTOU €Y YLOL VAL XUVIYOW UEANOVTLXA TO
OVELRO [ou.

Emmiéov, o ABela va euyapio thon toug didaxtopixols gortntéc Mavakn Bacukdxn, Nixo
MeXhiowd, Aviovn Aviovomouro xan Xtavpo Iletooundxr, yio TNV euydeioTn xoL amodoTixn
ouvepyaola pog. And TV apyY|, EViOoo XOUUSTL WG "XONONIBWUEVNG UNnyovAC” OTOU UE TNV
guguia Toug xou TNV eumelpla Toug Neba o emagy) e dlagopeTnés onTixég yia T Cwh evog
VEQPOU %Ol TANAVTOUYOU EQEUVNTH.

IIéve amd OXa duwe, Be pmopd mopd vo expedon TNy PBabitatn euyvwpoohvn xou oydmn
HoU GTNV OXOYEVELL Uou, Toug yovelc pwou Bdryia xaw Xeroto, to adéppla pou Kovotavtiva
xou Ytépylo, mou efvon mavTa dimha Hou, Ue amodéyovion OTng elon xou e xabodnyoly divovtag
HOL, TNV ELAXEWVY Ao TOUS, oxOUa Xt oV ouTo efvan 8OO0 yia uéva. EATilw va Toug xdvw
UTERHPAVOUG.

Emmiéov, Ba fleda va euyaplothow tny xoméha pwou, Magiva, 1 onola g 6Xo autd T0 "Ta(dL”
NG OLMAGUOTIXAG, OTIC BUOXONESC OTUYUES XL OTIC XAUPOVUEVES, HTOV TAVTO EXEL UE TO XOPTERD
HUANG, TO XoOYENO xou TNV aarfela Tng, vo pou Blvel éumveuot), dUvoun va cuveyiow xaL va
TOAE0DW YLoL TA OVELRE OV,

TéNog, 0Pelhm VoL EUYAPLO THCW TOUG XOAANTOUS UOU QINOUC UE TOUG OTOIOUS €Y UEYUNDOEL
xou €xw {foel ToANéS EexwploTée oTypéS, xolfig Ye €xouv BlauopP®aoel we éva BoTIXd oL
YOUPOVUEVO GVBpMTO o EXOVOLY TOL (POLTITIXG OV XEOVLAL aEEX AT TAL.

Aloviototng Indvvng,

Abrva, 10m Anpiniou 2022
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Kegpdharo 0

Extetopévn EX\nvixr Ilepiindn

e auTO TO xEPINNUO Dol TOPOUCLAGOUUE CUVOTTIXG TNV ToEOLoA BIMAWUATIXT Epyacio uéoa
and plo extetopévn tepidndn oo EXA\nvixd. ©a anogeuybolyv ou texvinés Nentopépelec xou ot
anodeléelg, oL onoleg mapouctdlovion EVOENEXMSC GTO oy YA Xelyevo, xat Ba eoTidooupe oTny
oucla TOV OTOTENECUATWY UOC.

0.1 Ewoyoyn

"BEvo omd o o Oeuekicddn npofruata e Bewplag molumhoxdtntag, and to omolo €youv
onuiovpyNBel mowxiheg mopaANaryég Wit €x TwV omolwv ot To UTO YENETY meoPAnua, elvon to
SUBSET SUM xat dtatunadvetal og e€rc: Aobévtog evog cuvorou S Betixidv oxepalwv xon evog
otdyou t, e€etdoTe edv UTdEYEL Xxdmoto utoctvoro A C S, émou To dfpoioua Twv GOl ElwY TOU
woolton pe t. To nmopoamdve meodPAnua anotelel éva and to apyixd NP-mxfen mpofNAuata, dnwe
Tapovcldo Txay and tov Karp oto | |, xon Bewpeiton évac and toug douxolc Aboug g
Bewploc moxumhoxdTnTag, woll pe ta npoPAAuato KNAPSACK, SAT xou dika. Iloryxoouing ota
TOVETULO TS LOpUUaTa, ot poldhuota ohyoplbuwy Tapgoucidleton 1 évvola Tng Peudonolvwvu-
ULXAC TOAUTIAOXOTNTOG UECW TOU XAAGGIX0U ayopibuou tou Bellman yia to SUBSET SUM 6mwg
anodidetar 670 | |. Tlopdrt mpdxeLTaL Yior EVaL EXTEVOS PENETNUEVO TPOPANUYL, ToL TENEUTOLL
YEOVLaL €Y 0LV YiVEL NUAVTIXES BENTIOCELS 6GOV 0POopd TNV EMAUGLUOTNTE TOU GE PELBOTONVWYL-
uxd xpdvo. Néow vietepuviotixol | | xou Tuyonoxpatixol | , | a\ybpLbuot éxouy
TpoTabel, AMOTENDVTAC TIC TPWTEC OUCLOOELS PENTIWOTELS OE OYEDT UE TNV XADEPOUEVY XNUCCIXN
Tpooéyyion tou Bellman | | %00 xou v Pertioon tou Pisinger | |. Emithéov, oe
wla mpdopatn dnuooieuon twv Bringmann xa Nakos | | mapovoidletan éva véo mpooey-
YIoTIXO oYuo yiot To SUBSET SUM T0 omolo odnyel oTnv eVpEST EVOS XATWTEEOL oplou o1
TOANUTIAOXOTNTA TWV TEOGEYYIC TIXWY OYNUATOV YLt TO SUBSET SUM 0AN& xou TNV €0pECT) EVOS
Ta UTEPOV TPOGEYYLO TIXOV GYNUATOS Yiat TNV EWBWXN TepinTmon Tou SUBSET SUM mou ovoudleto
PARTITION.

To mpéPAnua SUBSET SUM RATIO ,to0 omolo dnwe avagpépnxe xan mpornyouuéveg, amoTeNel
v exdoxn Pextiotonoinone tou EQUAL SUBSET SUM ,elvan évar AyOTepo UENETNUEVO, EVTOU-
Toic adloonuelwto TEOPANUN TOU €xEL TEOCEAXUGEL TNV TEOCOYY| UEXETWY EPEUYNTOV, AOYW®
TWV EVOLAPEROVCHV EQPUPUOYWOY Tou Beloxel o Budpopa Tedia, OTWwe NOyou xden 1 UTONOYL-
ot Broloyla | , |, n utoXoylo T XoWLVIXY ETNOYY | | xou n xpunToyEL-
oplo | |. Emhéov, oyetileton ye onuavuxés Bewpntinéc évvoles, 6mwe mopadelyuatos xden
NV TONUTNOXSTNTAL TV TpoPANudtwy avalAtnone otnv x\dorn TENP | .

SxeTixn BifAioypapia

To npéfAnua EQUAL SUBSET SUM xou 1) exdoy)| BeXtioTonolnchc Tou tnv omola UENETAE,
mou o1 PiPhoypapio xakeitow SUBSET SUM RATIO | |, oxetilovton e Sidpopa TEOBNA-
potar Tou mapouctdlovTon oe o TANBMea ETE TNUOVIXGY Teptoywy. Mepixd napadelyuota amo-
TeNolV To TpoPAnua Partial Digest, mou epgaviCetan otny neployy Tng unoloyiotxrg Blolo-
yiog | , |, n exydenon atouxdy ayabdv | |, n xotaoxeuh Toupvoud | ],
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xou o mopoharyy) Tou SUBSET SUM, to Multiple Integrated Sets SSP, mou Bpeloxel egopuo-
véc oto medio tne xpuntoypoapiog | |. Eminhéov, oxetilovton xou Ye ONUaVTIXES EVVOLES
e Bewpnuinhc emoTAUNG TV uToloyloTwy. ['ar mopdderypa, wla meploplouévn exdoyr Tou
EQUAL SUBSET SUM avrixel o€ uia UTOXAGCT NS XAJoNS ToAumhoxotntac TENP, cuyxexpl-
uévo oty PPP | |, plat xNdon mou amoptileton and npoPrAuota avalATnons Tou TéVToTE
€y0uv NUom e€outlag XATOLOU EMYELRNUATOS TEQLO TERWIVA, XU XAVEVOS TONVWVUULXOS Ny OpLt0p0C
0eV Elvol YYWOTOC YIal QUTAY TNV TEPLORLOUEVT EXDOYY).

To npéPinua EQUAL SUBSET SUM éyet anodevyel 6ti elvow NP-hard ané toug Woeginger
xou Yu | | xou apxetéc mapohayéc Tou éxouv amoderybel otu etvon NP-hard oand toug
Cieliebak et al. oo | ) |. "Exer peketnfel xuploc oe oyéon pe to SUBSET SUM RATIO,
omou {ntdte 1 ebpeon BV EEVWV UTOGUVONWY UE OGO TO BUVITOV UXEOTERO AOYO0 afpoloudTwy.
‘Evog 1.324-tpooceyyiotxde anyoplbuog éxel mpotabel yio to SUBSET SUM RATIO oo | |
xou apxetd FPTASS epgoviotnxay ota | , , |, ue To yeryopdtepo Eng ThHpa
va efvon auté TOU TaPOLCLICTNXE OTO | ] moxumhoxdtnTac O(nt/e), wpdyua to onolo
BerTidvetan Ye TO AmOTENECUA TNG TOEOVCUS BITAWUATIXAG.

Avutd to tpoPNfuarta etvan dppnxto cuvdedeuéva pe To SUBSET SUM. To tekeutalo, Tpdopota
Topouciooe evtunwotaxt tpdodo, eZutiac twv Koiliaris xou Xu | | mou rapouciocay évay
oAy OEBUO TONUTAOXOTNTASG O(y/nt), 6mou n eivan o manloc Twv cToyelny eloédou xan t el
vou 0 0TO)0¢, xou and tov Bringmann | | mou napovciooe évay Tbavoxpatind akybptbuo
TONUTIAOXOTNTOG O(n +t). Ou Jin xou Wu mpbtewvay évay amholotepo mhavoxpatind ahyo6-
etbpo | | metuyadvovtag Ta iBa bpta pe To | |, mov buwe dev Belyvel va enexteiveTon amo-
BOTIXG (BOTE VoL YIVETOL AVaXATUOHEVT TV GUVON®Y TN NUone.! TTo\y mpbowata, ol Bringmann
xou Nakos | | mapousiacay évav alybpduo moumhoxdtntac O(|Sy(Z)[*3poly(logt)),
6mou Si(Z) elvar 10 6UvoNo GAwY TV ThavOY 0fpolopdtwy UTOGUVOAWY TOL GUVONOU ELGGBOU
Z mou elvon wxpdtepa oL ¢, Pacilouevol oto top-k convolution.

To npéBAnua MULTIPLE SUBSET SUM GTnVv TeotyotixoTnTa anoTerel wla eldixr| nepintwon
Tou TpoPAjuatog MULTIPLE KNAPSACK, 6mou xou Tor 600 €x Twv omolwv €xouv mpoceAx)oEL
Wlodtepo evdlapépov. XxeTixd ye to MULTIPLE SUBSET SUM, ot Caprara et al. mapouciacay
évo PTAS vy tnv nepintwon 6mou dXot oL atéyot eivon (Blol oto | |, xou o ouvéyEL
oto | | topoucidlouvy évav 3/4 npoceyyioTind alyopluo. To MULTIPLE KNAPSACK €yet
e€eTAO TEL EXTEVESTERO TAL TEAELTOLO (EOVLAL, POV EQUPUOYES TOU GLUVAVTHOVTOL GE SLdpopa Tedla,
OTOC TOL OWXOVOULXA 1) ot peTaxvioelc. Mepuée adloonuelwteg €peuves Tdvew e ToRAUANAYES TOU

TpofNAuartoc napéyovtar and Toug Lahyani et al. | | xou Dell’Amico et al. | |. Edi-
%€ MEQINTOOELS Xa TopaANary€ Tou MULTIPLE SUBSET SUM, Onwg AOyou xder To TedBAnua
k-SUBSET SuM, éyouv pehetnbel oto | , |, 6Tou TpoTdBnxay amhol Peudonoruwvy-

uxol oy opLiuot.

0.1.1 EpeuvnTtixny Xuveicgpopd
Epsuvntixy Xuvelicpopd

Tao tekeutala xpovia €xel auEnBel To eVBLAPEEOY TNG EPEUVINTIXNG XOWVOTNTOC YL TEOCEY YO TI-
%x00¢ oNyoplBuoug xou €xel undpéel evTuTmaloxY| TEAGOB0C OYETXE PE TO TEOPBANUN SUBSET SUM
xa0de Véol, mo anodotixol Peudomoluwvuuxol ahyopluol cuvey®e tpotelvovTon. Auth 1 pod-
080¢ UTOpEl VoL ETNEEdoEL EVTova dANa oXeTLLOUEVA TEOPAAUATA.

Yy mapoloa gpyooia, e€etdloupe xuping T0 SUBSET SUM RATIO mpdBAnua, xabde xou mede
Betidoeg oty mpooeyYloTiXY eniAuon Tou SUBSET SUM SUvaton vor emitary0vouy Tnv Tpo-
oeyyiloTxn emiiuon tou SUBSET SUM RATIO xau avtioTtpoga. Me dila AoyLo, amodecviouue

! Tlapatnphiote 61t olte 0 a\ybplduoc Tou Bringmann | | Nover tnv exdoyi avalitnone tou SUBSET SUM,
ouwe o avth Ty epyacio Ba dSelouye THE UTOPOUUE Vo EMEXTEVOUPE XOTIANTAG TOV aAyoelBUo (o TE Vo emi-
OTEEPOVTOL TaL GUVONL NG AUong tou EQUAL SUBSET SUM, ywpic va avénbel  moNumhoxdtntd tou (oryvomviag
TONVNOYELOUIXOUC TtapdryOVTES).
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TN oOVOEDT) TNG TPOCEYYLIOWOTNTOC ToU SUBSET SUM Ue auTh Tou SUBSET SUM RATIO xo-
TaoxeLdlovTog Vo TPOCEYYLOTIXO oYU Ylot To SUBSET SUM RATIO mou ypenowlonolel tnv
eniAuorn oTiypotiTEY Tou SUBSET SUM mpoPX\fuatoc. Tavtoyxpdveg, emtuyydveton 1 Bekti-
OON TNG YEOVIXAC TOAUTAOXOTNTOG ot olyxplom He To Ty ltepo ewg twpa FPTAS vy to
SUBSET SUM RATIO .

Mio mAnfea TeoPANUATWY UTOPOUY VoL EMNEEACTOVY X0l VO EXUETOANEUTOVY AUTAHY TNV Tpdodo,
ME AmOTENEOUN VEOUS, THO AmOD0TIX0UC oNYopifuoug yior TONNG a\yoptduixd mpoPNAuata, mou
XENOWOTOL0V ¢ LToPOUTIVEL To SUBSET SUM RATIO mpofAnua xou avadewxviovtag €Tol Ty
oTevr) oy€on mou €youv ue To SUBSET SUM .

0.2 IIpoanawtodpevoa

Y& auté To unoxepdNo, Bo TUPOLGIAC TOUY GUVOTTIXG XdToLeS BewpnTiXéc EVVoleg Tou ano-
TeENéGOLY TO BewpnTind undPabpo vl TNV aETIOTERYN XATAVONOT TOLU ENNNVIXOU Xewwévou. Emi-
Tp6cbeTa, YivEToL AVAAUTIXOTERT TUEOLUGIACT) TWV EVVOLKDY Xl TV GUUBONOUGY NS TapolLoag
epYaolag OE UETUYEVECTERO XEQPANALO TOU TEPLEYETOL GTO oy YAXO XEIUEVO (TOPATOUTH GTO Xe-
(PENOLO 2 TOL aryYNXOU XEWEVOL).

Yuupoiiocuog

Apyxd, mapouotdlovpe Tov cUPPONIOUO TOU YXENOWLOTOLELTAL OE AUTAY TNV EANNNVLXY| Te-
eiAndn. Xe peydho Pobud oxoloubolue tov cupfoliopd mou yprnowwonoleitow oo | |
xou | ].

o Acdopévou evic auvorou A C N, cupforilouye

> 1o dBpolopa Twv oTowelnv Tou pe N(A) =D o4 -

> To 6UVONO OX®V TV duvathv abpoloudtey utocuvorwy tou A ye S(A) = {3(X) |
X C A}

> TO GUVONO ON®V TV duvat®v abpolopdtoy utocuvOrwv tou  uéxet t ue Si() =
SON -

> T0 GUVONO OGNV TV duVaTKY abpoloudtony uTocuVOAWY Tou A pall ue Tnv exdotote
mAnBuxétTnTé Toug ue SC(A) = {(X(X), | X]) | X C A}

> T0 GUVONO OAWV TV duvVaTOY afpotoudtoy UTocUVONWY Tou A péypl t pall ye tny
exdotote TANBUXOTNTE Toug e SC(A) = SC(A) N ([t] x N).

o Acdopévou 800 cuvorwy X, Y C N, cuyforiloupe 10 gOvoXo Twv Suvart®dy abpoloudtwy
TOL TPOEPYOVTAL omd ool el Twv Vo clvooy wc X ®Y ={z+y |z € X U{0},y €
Y U{0}}. Emnhéov, opilovpe X &Y = (X @ Y) N [t].

e O — Eupéuc XPNOWOTOLOVUEVOS SUPPONOUOS 0TO XOUUSTL TS UTOXOYLOTIXHG TOAUTNO-
x6tntoe, f(n) € O(g(n)) eivor ouvtopoypapia v to Ik @ f(n) € O(g(n)logt g(n)),
On\adY) xenowonolelton yia TNV amdxpudn TONUNOYORLBUIXMOY ToEOY OVTWY.

BOcswenTtixd YnoPabeo

Ye autd 1o onuelo Ou mapoucidoouue xdmoleg Paocuxéc OewpnTixéc €vvoleg Tou xplvovTal
ATAEALTNTES YLl TNV XATAVONOT TNE TopOVCAS EQYAUTiag.
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NP-completeness H x\don noxumhoxdtnrac NP eumepiéyel ta mpofrfuata andgaong yia
Ta omola, Ta input instances ye xatagatixy andxplon €xouv anodellelc Tou ToTOTOWUVIAUL GE
TOAUOVLUIXO XeOVOo amd Wla vieteppuvioTixny| unyov) Turing. Me d\\a Noyia, dedouévou evog
O TUYULOTUTIOU ELGOO0U TOU TEOPAAUATOC, UTOPOVUE VO TG TOTOCOUNE OTL 1) €€000¢ elvar dvTwg
XUTAUPATIXY) OE TONVWVUULXS YEOVO.

Edv éva tpéBanua I} avdyeto oe éva tpdBinua Il oe tolvwvouxd yedvo (I <p II),
ToTE:

o Trdpyel plo ouvdptnon T : X% — ¥ 7 onola untoXoy(leTal o€ TONUGVLUIXO YEOVO, TETOL
oote Vo € ¥, woybe 6tz € I <= T(z) € Iz, bnov ye ¥* avanoplo ToUpe T0 6UVONO
ONV TV Thavey elo6dwy xou x € II av xou yévo av 1 elcodog x €xel wg anotéreoua
xatopatixr] €€080 yia to medBAnua 11,

o H cuvdptnon T' xaketton molvwvvusen avaywyn.

e Ouoaotid, petaoynuotiCouue (anodotxd) xdbe otywdTuno €106d0u ToU TEOBNAUATOC
IT; oe éva otiypoTuno €l0édou tou mpoPNfuatog Ilo xaw otn cuvéyelo emidoupe to
neofAnua 1.

‘Evo npéBinua anégaone I eivon NP-complete €dv:
1. To II avrxer atnv xX\don NP, xou
2. Kdbe npéfinua otny xhdon NP uropel va avayfel oto 11 oe moNuwvuuixd yedvo.

Ta NP-complete mpofN\fuata avamaplotodyv tar Suoxordtepa TpofAAuata Tne xXdong NP xou
ouvoilouv TNV uToXoylo T BuoxoXio Tne Blag TG XNdoNS.

Peudonolvwvuuixol AXNyopiBpor Troclvoro twv NP-complete anoteholv ta weakly
NP-complete mpofAfpata. ‘Eva mpofinua anoxoreiton weakly NP-complete dv undpyet o\yo-
etbpoc mou To emAVEL, TOU OTOIOL 0 YEOVOC EXTENEOTC EIVOL TONUWYLUIXOS WS TIEOG TNV aplBurn-
T T TG €Lo680L (0 HEYONDTEROS axépatog ToU LTAEYEL o TNV €l0080) aANS Oyt amapaitnTa
o7to phAxog e ew6dou (tov aplbud Ty bits mou ypeewdlovial Yl Vo THY oVamapao TROOUY),
mou ouufaiver yio Toug alyoplbuoug ToNvwYLUXOL Yedvou. ‘Evac tétolog alyoplduog xokelton
PevboTOAVWYYIIOS, Aol 1 aplBunT) T TS €lo6d0uL elvar exXOeTX WS TEOG TO P0G TNG
€Ll0O00U.

Tuyooxpatixol ANyoeBuor  'Evag alyoplbuoc anoxalelton tvyaloxatinds edv euneplLé-
xeL évay Balbud TuyandnTaC we pépog TS Aoyixic Tou. Xe avtifeon ue évav vretegumortied (1
NG amioxpatixd) axyb6euo, 1 é€0dog evig TuyonoxpaTixol ahyop(Buou uropel va Slopépet
avdueoa og EEXWELOTES XANOELS 6TO (B0 oTiyudTUTO €l0ddou. Enopévae, undpyel 1 mbavotnta
Tapary 0y e Navbaouévou anoteléopatog 6mov cuvhBwe cupforiletar ye 6. Autol ol a\ybpeibuot
anoxanolvton enlong mbavorixol ¥ midavoxgatixol xou 1 TONUTAOXOTNTE TOUC ennpedleTon amd
Tic Tée e mbavotnTog Ndboug J.

ITpooceyyiwotixd oxAuato PTAS 'Eva npoceyyiotxd oxAua PTAS (polynomial time
approximation scheme) eivou évac a\yoplBuoc o omoiog déyeton cav eloodo instance evoc npo-
BA\Auotoc Peltiotomoinong xou pio Topduetpo opdipatos € > 0 (error), o€ TONVWYLULXS YPOVO,
X0l TOPAYEL EVOL ATOTENECUA TO OTolo améyel xatd €éva mapdyovta (1 + ) and v Béxtot (4
(1 — &) v tpoPNiuata yeyotonoinong). Emniéov, évac akydpbuoc yio vor Bewpeiton PTAS
TEETEL VO EYEL YEOVLXY| TONUTAOXOTNTA TONUWYUUXY w¢ Tpog To péyebog tng eloddou n, yia
xdbe otabepd €. Aev undpyet analtnomn yio TV e€dpTNOTN AN TO €, CUVETKOS EVaS oNYOELOpOC
nou tpéxer ot ypbvo O(n/€) f axdua xou O(neP(1/2) unoel va amoteel éva PTAS.
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ITpooceyyiotixd oxfuatoe FPTAS ‘'Eva npoceyyiotxd oyhuo xarettow FPTAS (fully
polynomial time approximation scheme) étav tpé€xel o€ xpGVO TONUOVLUIXG X0 OC TPOS TO
péyeBoc e elob6dou n, oG xou w¢ pog to 1/e. Ilio avahutixd, OXa ta TpoNAuata Tou emt-
oéyovtoaw FPTAS, éyouv eniong xou PTAS. Anoteholv, ooy, uio eW0LXOTERT XaL AUC TNEOTERT
nepintoon and to PTAS xou woyver FPTAS C PTAS.

Juvdvaocuwog Zuvorev  Eva xowd yxopoxtneiotixd twv aryopibuov tou eletdlovian o
aUTAY TNV SImAwpaTr epyactio etvon 1 Sladpeom Tou apyixo’ GUVONOU ELGOBOL Z GE UTOGUVONA
Z1y. .., Jp XOL O AVOOEOUIXOS UTONOYLOUOS TV ofpoloudToy UTocUVONwY Toug. Meténelta,
autd to afpoloyota UTOCUVONWY cuVOLALOVTAL UE OXOTG TOV UTONOYIoHO Tov afpoloudtonv
UTOGUVONWY TOU apyixol cuvorou Z. Emouéveg, elvar ToND onuavTtixd vo meoypatomoleiton
ATOBOTIXA AUTOS O GUYBLACUOG, APOL EXEL XEVTELXO PONO GTOV XABOPLOUO TNG TONUTAOXOTNTUC
TV onyoplbuwy. Autod yiveton ue yeromn tou aryoplBuou FFT, n Noyix xou 1 yenowwdtnto tou
onolou avobeTan Slegodixd oto aryyAixd xelpevo. Hpocélte nwg o alydplBuoc FFT unopel va
enextalel xou o cUvVora k-BldoTatov onuelwy, 6mou unopel va mparyuotoroindel arodotixd To
dhpoloua TwV TWEOV TOV EXACTOTE BLUC TUCEMV.

KXdoeig Iootipiag  Aobévtog evdg axepatou n > 1, 0o axépatol a, b elvon todtyor modulo
n, oV To 1 elvan SlpETng TS dapopdic Toug (Ue SN NoyLa, uTtdpyer axépatog k € Z téTolog (o Te
a—b = kn). H wwotpio modulo n elvon oyéon iwooduvopiac xar cupforiletar ye a = b (mod n).

To clhvoro GXov Tov x\docwy twotyiog modulo n cupforileton pe Z, = {0,...,n — 1}.
Kabévo anéd tar ototyele Tou ¢ avonapiotd To 60volo Tov axepatov Tou elvar idtiwor modulo n
WE TO 4, We NN Noywa Vo € Z,z €1 < x =i (mod n).

EbVpeon Moaptipwv wéow Peeling Kdbe gopd nou avalnrodue to duvatd abpolopata
TIOU UTOPOLY VoL GYNUATIOTOUY amd ToV cLVOUAOUSO dUO GUVONWY, elval xalplog onuaciag o aro-
00TIXOC TPOGBLOPLOUOS TV ETUEPOUS afpoloudTwy Tou afpoloTnxay Yid TOV UTONOYIOUO X3l
afpolopatoc. Autd elvar amoEolTNTO Yot TNV AVAXATACKEVT] TWV GUVOAWY AUONC X0 ETOUEVWS
e enihvone tne exdoync avalhtnons tou EQUAL SUBSET SuM. Ou Koiliaris xou Xu | |
avéryouv auTd 10 TEOBANUA 6To TR avaxataoxevnc, OTWS AUTO AVAPERETAL OTO | |
X0l ETUWYELPNUATONOYOUY OYETXA UE TNV TONUTAOXOTNTY TOU, XATUNYYOVIUG GTO CUUTEQUCHUA
HTL UTIEPYEL LWOVO TONUNOYpLOPLCH ETLBAPUYOT GTOV UTONOYIOWS TV OYETILOUEVDY LapTUPWV?.
Auto elvon €vol TOXND ONUAVTIXG ATOTENECUA, TIOU UTOBELXVIEL OTL O UTONOYIOUOS TWV UAPTURWY
0EV TEOXANEL XATOLO ‘GNUA’ GTNY XEOVIXT] TONUTAOXOTNTAL.

Closest set T éva obvolo S; C A, opilouue wg closest set, Eva aUVONO S; opi, TETOLO DO TE
Siopt € AN\ Si xou 3(S;) > E(Siopt) > E(S7), v xdbe 8" C A\ S;.

e-close set T éva olvoro S; C A opllouue wg e-close set éva ohvoro S; . TéTol0 WOTE
Si’g g A \ Sl nouw E(Sl) Z E(Si,g) Z (1 — E)E(Sippt).

0.3 IlpooesyyioTixd oxRurata yio To Subset Sum

Y& autd TO UToXEPINLo Do TapoLGLdcoUUE CUVOTITIXG TN Blalodnor BV0 TEOCEYYIo TV
oyxnudtov FPTAS, ta onola éxouv nopouctactel otic epyaoies tov Kelleler | | xou Bringmann,
Nakos | | ywt To SUBSET SUM mpdfBAnua. Ot déec xan oL tevixéc Tou napouctdlovTo
o€ AUTEC TIC EPELVNTIXESC ONUOCLEDTELS, AMOTENOUY XOUUATL X0 TOU TEOCEYYICTIXOU GYAUATOS

? Q¢ pdorvges evoe abpoiouatos s, opiloupe ta emuépouc abpoiopata ' xo s — s, and 1o omola oyNUATicTHXE
T0 dbpoloua s.
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mou Ba mopovcidooupe apydTeEpa yiao To SUBSET SUM RATIO . Extevéotepn nopoucicon tov
oanyoplBuwy Ba yivel oto ayyAixd xelpevo.

Y10 uONOLTO TOL XEPUN{OL Ba Bewpolue we olvolo elwobdou To clvoro A = {ai, ag, ..., an}
ue |A] = n xou Bewpolue 6L ot oTov el Tou cLVONOU A eivon Tavounuéva oe adZovoo oeld,
On\adY) a1 < az < ... < ap. BVVETOG, 6Twg B yivel eupavés, otdyoc Twv alyoplBumy sivon va
Toed&ouy ANUom yia To SUBSET SUM UE X4molo Teplddplo 0QINUATOS €, OE XEOVO TONUOVUULXO
1600 ¢ TEOG TO UE€YEDOC TOU XWOXOTONUEVOU GTUYOTOTIOU TNE ELWGOBOL N, OGO XU WS TEOS
™ nocdénta 1 /€.

0.3.1 Amodotixé FPTAS oc xpovo O(min{% n+ %log(1)}) xou xdeo
O(n + %)

To FPTAS mou Ba napouctactel, dnuootetfnxe and toug Hans Kellerer, Renata Mansini,
Ulrich Pferschy xow Maria Grazia Speranza. ‘Onwg avepépdnxe xou otny elcorywyr|, 1o SUBSET SUM
elvon o edur| mepintwon tou KNAPSACK mpofifuatog, 6mou To Bdpog Tov avTiXEévoy Llool-
ToL UE TO XOCTOG TOUG. LUVETKC, 1) dour) Tou alyoplBuou &exwvdel and tov yvwoto (eudono-
Avwvupxd anyoéelbuo tou Bellman xou Qo mopouclactody ol adNay€g o oL Teploplopol Tou
yeewalovtan, ote o a\yopliuog va anoterel FPTAS yio to und yehétn npdfinua. O aydpeid-
noc tou Bellman AOvel Béltiotor To SUBSET SUM Ye Tov €€r¢ tpdmo:

Ye éva obvolo R mou xakeiton oOvoro epuetddv v (reachable values) amofnxebovton axé-
potol i pixpdTeTOoL 1) (0Ol TNG YWENTIXOTNTOS ¢, Yot TOUG 0Toloug UTdEYEL UTOGUVONO Tou A mou
10 dhpoloua Tov oTovxeinv (Bapdv) wolto pe 1. a va xataoxevactel To olvolo R, exxwvolye
amb To xevd oOVONo xou ot xdbe emavdandy j mpocBétouue Bdpog w; oe OXa Tar umdpEyoVTYL
otouyelot Tou R xou toawtdypova amoxelovpe to otoiyela Tou EEMEEVOLY TNV TN YWENTXOTNTOG
c. 'Etol, xatorfiyouye e 10 0OVONO TV EQIXTOV abpoloudtmy Tou UTopolue va A&Bouue and
UTOGUVONY TWYV GTOXElWY EL0600U A, xau emouévwg €xouue €vay (JEUBOTONUOVUIIXG 0Ny OeLbuo
vior T0 SUBSET SUM Tou TpéyeL o ypbvo xat xoHpo O(ne).

210 oLUYXEXPWEVO TROCEYYICTNG oYAua Ue oToX0 Vo xataotel FPTAS, o npwto o1ddio ta
avTixelyeva Tou GUVONOL €lGOJ0L YwellovTon oe pxpd xou Ueydha oTotyelo. Mixpd Bempolvton
autd Twv omolwv N TN elvoar < ec xou T uTONOLTA TOTOBETOUYTAL GTO GUVONO TWV UEYAN®V
otoelov. Eivou epgoavéc, Nowndv, g onowdinote (1 — e)—npooeyyiotix Aon nou anote-
Nettow povo and peydha otovela, anotehel (1 — )—mpooeyyioTxh ANOoN Xou YLol TO GUVONIXD
TEOPANU, x00OC 1 TEocONXN TV UixpwY cToKElwY OEV UTopEl Vo EMNEEEACEL apXETE TO dfpoL-
opa Twv peydrov. Enopévac, edv Peebel o (1 — &) —mpooeyyiotxh oo ye peydha otoyela
elvon eixtd pe dmnoto tpdmo (greedy way) vo ntpootebolv xou tar xpd oTorelor Yot vor TN
otdoel xt dAXo To dfpolopa otéxo t. Emnpdobeta, 1o Sidotnua twv peydiov otovelwy [ec, ¢|
tunuatonoteltan emnhéov oe O(1/e) unodao thuata (oov peyéBouc ec. And autd tar UTOBIG TH-
wote I; = [jee, (j + 1)ec], Swatnpodvton to moX) ta [%} — 1 wixpdtepa xou yeyehltepa otouyelo
T omtola TonobeTolvTaL 610 ETOVOUAlOUEVO GUVONO OYETIXMV avTiXEWéVwY (relevant items set)
K xou o undNowna amoxietovtar. Xe XU Tou TEQIEXETOL TNV BNUOGIEUCT), AMOBEXVITUL TWS
xd0e BéEXTioTn Ndon pe otovgela uoévo and to civolo K elvon to moNd ec uxpdteer amd uia
BéXTio™n AOon mou yenoiwonolel OXo ToL HEYEAX OTOUKEl. LUVETAS, U ouTH TN METABONY 7
xerion tou axyoplBuou Bellman ye yprion tov otoiyelwv tou cuvdlou K, yia to onolo oy lel
IK| < O(min{n,1/clog(1/c}), poc diver anotéreopa ot ypévo O(min{nc,n+1/c-log(1/e)c})
xou xweo O(n + (1/e)c), ye axpifea ec. Ondte, otdyoc eivon va Angbel npooeyyloTivde oy d-
etluog mou N xeovixY) Xt Ywelxh TOAUTAOXOTNTA Tou Ot Bar e€apTdTon amd TNV YWENTXOTNTA C.
Y70 ENOUEVO PBrHA XATAOKEVHC TOU TPOCEYYIOTIXOU GYAUATOC, Yo Vo apoupelel 1 e€dptnon and
TNV TOGOTNTA ¢, O Xdbe UTOOLAIC TNUA UEYSIAWY oTouxelwy I Slatnpodvion Udvo 1) ueyanlTepn
T 67 (4) xow n pxpdteen Twh 6 (4) tou utodlcThatoc autol. Me autd Tov Tp6To, avTL-
xabotolue Tic ¢ mbavéS e@uxtéc Tée Ye 1/ epuutd Swo ThaTa, CLUVETKDS dev emnppedleTal
1 YEOVIXY) TOANUTAOXOTNTA and To c. Enoxdrouba, eqopuoletar avtioToryn TEXVIXT UE TOV -
v6pBuo tou Bringmann tnv onola ovoudlouv relaxed dynamic programming, tnv omoio Oa
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TUEOVUCLACOVYE THO AVANUTIXE GTO HETAYEVECTERO aryyYAxd xeluyevo. Tekixd, ue xprion autic e
uebodou xou e eqoppoyy| dalpel xou PBaciheve xabde xou backtracking yio v avoxataoxeun
TV cLVONWY €€6B0u, e€acpanileton 1 Topaywyr emBuunTtod WG TEOS TO GQANUN, ATOTENECHO-
Toc g ypbvo O(min{n-1/e,n+1/%log(1/e)}) xou xodeo O(n + 1/¢), Tou Hrav 0 5TdY0C, %ot
oupPoivel yotl Téov Bev elvan anapaitnTo var amofnxedovtan ta ohvola AUoEwV xaTd T OLde-
XEW TOU oNYopBUOL, dANG BUVOTAL Vol AvaXATACOXELAC TONY, anodnxedoviag uévo 600 aplduoic
oe xdbe emavdrndn.

0.3.2 X0vdeom tou SUBSET SUM pe to Min-Plus Convolution
neoAnua xow topaywyr FPTAS xeovixrg tolunhoxotntag

1/€2
O(n + 22(/(og(1/2)) )

e auty) T Tapdypago o topouclac tel pio tpdogaty dnuocicuon Twv Karl Bringmann xau
Vasileios Nakos | |, otV onola ToEOUCLEG THXOY XATOLXL TEWTOTOPLAXE. ATOTENECUATOL, X0
B¢ mapoucido TxE Eva VEO TPOGEYYIGTIXG oY YLot TO SUBSET SUM péow TNE avarywyhg Tou
mpoPN\fuatoc oto Min-Plus Convolution npdBinua. Me authv tnv avayoyn, oL epeuvntég elyav
TN duvaToTNTA Vo Topéyouv dueca lower bounds yia Ty moAumhoxdtnta Tou Approximating
SUBSET SUM X0l TAUTOYEOVO XUTUOXEVAOAY EVO TPOCEYYLOTIXG aAyoptbpo yia to Partition
TpOPANHa oL elvon e TepinTwon Tou SUBSET SUM otny onola t = 3(A)/2. Ltodyoc elvan,
on\ady), o akyopeluog va anogavlel yio Ty Uapdn utocuvdlou Tou va €xel dbpoloua oTolxelny
{co ye T0 wod tou abpoicyatog Tou GUVONOUL €lG6BOL. §26TOCO, OTN TMERIMTWOT TEOCEYYLONG
elpaote wavonomuévol pe plo oaxplPeta € wg mpog To BENTIOTO, cLuVENKE dev amanteltan 1) axpLBhC
eniAuor tou TpoPifuatoc.

Emnpocétng, ta mo ouctactixd onueio o auTh T dONpocicuot elvon 1) XATACKEUT] EVOS Toy V-
TEQOU TROCEYYLOTIXOU OXAUATOS Yl To SUBSET SUM uetd and 20 ypévia xou nwg to FPTAS
v to Partition efvan vietepuviotind xan Teéyel oe ¥eOVo LTOTETEAYWVIXO, ot avtibeon ue ta
HEYEL TWOE DNUOCLEVUEVA EQELVINTIXG TEOCEYYLO TN OYAULOTA TTOU ATOV TUYMMOXQATIXAL, UTOTENE-
opata To omola xablo ToV AT TNV EpeLVNTLIXY dNpocieuon Tewtonoplaxt. Eniong, ol epeuvntéc
XATOEOMCUY VO ATAVTACOUY CEYNTLIXA VOl OVOLYTO EPWTNUA YLoL TO €AV UTopel vor UTdpEel TEo-
oeY Yo ™G oY fua Yo To SUBSET SUM mou va éxet molumhoxdtnta O(n 4 1/£)%79, yia xdnoto
0 > 0, dnhadn) var TpEYEL OE LTOTETPAYWVIXO YEOVO. 2T cuvéyeLla, Bo napateBolv cuvonTixnd Ta
BewpenTind Pruata Tng anddelgng mou naEoucdloVToL GTO PAPET Xl 1) EXTEVEC TEPT) AVIAUGT] TOUG
Oo yiver o yetayevéatepo xe@dhono. To anoteNéopata xou to Bewpntind epyoeia mou yenot-
HOTOLOUVTOL GTO TEOGEYYLOTIXG Oy AU TNG dnuocicuong cuvodilovTon 6T TaEUXAT® TEOTACEL:

Opopdg 0.1 Aéue 6T éva yeyovog ouufaivel pe peydhn mbavotnta, €ov 1 mbovdtnto mpory-
potonoinohc tou eivar Touagyiotov 1 —min{l/n, A/t}¢, yia xdnow otoafepd ¢ > 0 600 peydin
emupolye.

Ocdhpnua 0.2 (Avoywyr oand to SUBSET SUM oto MinConv)
Edv to MinConv pnopel va Aubei oe ypbévo T'(n), t6te 10 SUBSET SUM emdE eTon mhavoTind
Tpooeyylo b oyfua, To onolo elvon 0pbb pe peydn mbavotnta, ot xedvo O(n + T'(1/¢)).

ITopropa 0.3 (Ilpooeyyiotind oyfua yio 1o SUBSET SUM )

Trdpyer mbavoTind TEooEYYIOoTIXG oYU YL To SUBSET SUM Tou amovtdel ophd ue peydn
mhavoTnTo, MU TEEYEL OE (EOVO:

B 2
On+ L)
9Q(+/(log(1/¢)))
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Ocewenua 0.4 (Avaywyr and 1o MinConv 6to SUBSET SUM )

Edv undpyel mpooeyylotixd oyfua yia To SUBSET SUM TOU TEEYEL OE UG TNEd UTOTETEOY WVIXO
xobvo O((n + 1/€)>79), yio %é0e 6 > 0, wéte w0 MinConv pnopet va \ubel oe ypdvo O(n?%),
vio xdmowo & > 0.

O o\yoplfuog mou anotelel 10 mMPOCEYYIOTIXG OYAUL, Yenotworolel uio uoppr Tpocéyyiong
TOU BLATUTAOVETAL WS €ENG:

Aocpévou evog auvorou A xou otéyou t xau € > 0, enéotpede Eva 0TOLOBHTOTE LTOGUVONO
A; C A, 7o onolo wavonotel tic oxgoeic: 3(A4;) < t xou X(A;) > min{(1 —¢e)t, OPT}

Etvou onuavtixd va mapatnendel 6ti auth 1 Yop@n mpoceyyloWoTnTog efval apXeTd auaTney,
xabig oe neplntwon tov OPT < (1 — ¢)t, t61e 10 npoPANua meénet vor Nubel oxptaq.

Y11 CUVEYELD, XENOWOTOOVUY TEXVIXES antd HOT) UTHEYOVTA TROCEYYIC TS OYHUATA, WG TOCO To-
eoUGLELoLY pla VEOL TEYVIXY YL TOV UTONOYLOUO TOU GUVONOL eQXTOY afipolopdtwy (sumset) tou
GUVONOU €L06D00U A, XENOWOTOWOVTIS G Uaveo xoutl Tov anybdetbuo tou MinConv. Emniéoy,
yenowpomoolvton ol texvixéc RecursiveSplitting xou ColorCoding yia var ywetlovton avoadpo-
uxd ot ototelo oe Wxed xon Leydha xou yio vor Aubel To SUBSET SUM Lol Tol Ueydho o Tolyela,
TeVIXEC Tou Ba mapouctacholy aveuTixd apyotepa. Telixd, amodewxvieton 6Tl 0 a\yopLduog
evtoniel éva cOvoNo etV abpoloudtwy Ar yia To omolo toylel:

Ioxveiopmée 0.5 Me peydin mbavotnta woyver max(Ayr) > min{(1l —e)t, OPT}

Yuvoilovtag, dnuovpyeiton éva FPTAS vy to SUBSET SUM , to omolo anavtder opbd ue
ey mbavétnta (6mwc opileton Optopde 0.1) xon tpéxel ot xpbévo O((n+T(1/e))log®(n/e)).

0.4 IlpooceyyioTixd oYAULATX Yot To SUBSET SUM RATIO

Y10 moapdyv vnoxepdiato, Ha napovciactoly Vo FPTAS’s v to SUBSET SUM RATIO .To
TEWTO ATOTENEL TO UEXPL TPOCPATOCS, TAYUTEPO TEOCEYYLOTIXO OYa TTou elxe dnuoaotevbel and
touc Aris Pagourtzis xou Nikos Mellisinos | | ue xpovixh moxumhoxétnTa O(n/e) xau
otnv cuvéyela Ba nopovaidcovue 1o FPTAS nou npotelvetan w¢ véo TaylTtepo TROCEYYLOTING
oy Auo xou €lvol 1) EPELYNTLXY CUVELCQORA TN TAPOUGCUS BIMAWUATIXAC EQYACIAC.

YrevOupileton, 6Tt To SUBSET SUM RATIO w¢ npdfAnua Bextiotonoinong dlatunddvetar wg e€XC:

SUBSET SUM RATIO(SSR) Aocpévou evic tavounuévou cuvoou Betixdv oxepaiwv A =
{a1,a2,...,an}, va Bpebolv B0 Zéva petall toug uroolvora S1,S52 C {1,2,...,n} ta onoia
e ayloTonoloLY TNV e€X¢ TocoTN T

mar{Sics, i, Xjes,a;}

min{Xies, ai, Yjes,a;}
Enopévoc, otdyoc etvan vo evtomiaBolv 800 unocivora Eéva uetolld toug to omolwv 0 Aoyog
elvo 0 eENdy o Tog Suvatdg (o xovtd ot povdda). Emnpootétag, avapépeton 6Tt 6tov apifunt
umalvel To UTOGVOVONO UE To YEYANDTEPO dfpoloua G ToLyElwY.

0.4.1 FPTAS ywx to SSR ot xpdvo O(n'/e) pe ypron scaling

To mpoceyyioTind oy o Tou TopouctdleTon G AUTO TO paper, eival To ToyUTEPO TOU UTHEYEL
otnv Bihoypapio xou yiveton Ye yeRom evog Peudomouwvulxol alyoplBuou, 6Tou EXUETUN-
AELVOUEVOL ®ATOLES HPIOWES BLOTNTESC TWV CUVOA®Y NUCEWY ETULTUYYAVOLY UEYANN BeXTinon o1
ToAuTAoxOTNTA o€ oxéan e ta mpornyolueva FPTAS’s. Apyxd, optlovton ol e€hc mocdtntec:

Yies @i .
R(S1,52,A) = { Xjesy ifS1US #0

+00 otherwise
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MR(Sl, SQ, A) = max{R(Sl, SQ, A), R(SQ, Sl, A)}

oL OTIOlEC AVTLTPOCWTEVOLY TOV AOY0 afpoloudtmy 800 UTOGUVON®Y XoL TOV PEYIGTO NOYO abpol-
OoUdTWY 8V0 LTOGLUVOAWY avTioTowya. o TNV xataoxeur autol Tou FPTAS ol epeuvnté eunved-
oTNXOY AT6 TO TPOCEYYLOTIXO oyUa Tou potddnxe and tov Nanonghai oto | | 6mou
YL TNV AVTWETOTLON Tou TEoPAAUATOC ENVcay uid To auc Tner exdoy)| Tou TEOBNAUATOE, TOU
OLATUTVETAL WS EENC:

Restricted SUBSET SUM RATIO problem. Aocpévou evédc taivounuévou cuvorou Beti-
xov oaxepaiov A = {ay, ag, ..., an} xou 0o axepaiov 1 < p < ¢ < n, va Beebolv 8o urtocihvora
51,52 €{1,2,...,n} Eéva petall toue, tétowa wote {max(S1), max(S2)} = {p, q} »a o Noyoc
TV afpoloUdTmY TOUC ENAXLO TOTOLE(TAL.

ITio SwoucOnTixd, amouteitan 1 enthuon evéc Suoxordtepou TEoPAAUATOS, XaBd Tor ueyoNdTERY
otouelo xar Twv 800 cLVOALY Tou anapTi{ouy TN AJom elval YVWOTd. LNy epeuvnTixy| dnuoot-
EUOY), WOTOCO, TOU TUPOVCLALETOL GTO TUPWY UTOXEPINOLO, Ol EQEUVNTES TORATARNCAY OTL BEV
yeetaletar var ebvon yvwo T tor péylota oToyelo xou Tov dU0 GUVOAWY, ToEd LOVO TOU EVOC.
Yuvenog, dtinwoay xan ENvoay To eENg TedPANuUa:

Semi Restricted SUBSET SUM RATIO problem. Aocyuévou gvic talivounuévou cuvorou
Bty axepoiov A = {a1, ag, ..., an} xou evic axepaiov 1 < p < n va Bpebodv dYo urnocivola
51,52 C {1,2,...,n} Z&va petadd toug, tétowr Bote maxr(S1) = p < max(S2) xou o Noyog
aBpOoLoUATOY TOUC ENOLO TOTOLE(TAL.

Yuvenoe, eivar edxolo xavelg va nopatnerioeg to € ‘Eoto 61, to {ebyog cuvorwv ST, S5
anoterel TNV BENTIOTN AOOT ToL SUBSET SUM RATIO mpofNfjuatog evog otiypotimou eloéoou
xon ST, SY tou Semi Restricted SUBSET SUM RATIO mpoBX\Apatoc pe elcodo A, p, té1e 1oy bel:

MR(ST,55,A) = min  MR(S7, 5%, A)
pe{1,2,..,n—1}
YUVETODC, XATONYOUpE OTL unopolue evtonicouue TN BéXTIGTN AUor Tou SUBSET SUM RATIO
TpoPAApatoc, Novovtog tn Semi Restricted exdoyh tou v p € {1,2,...,n}.
"Yotepa, oL epEUVNTES XAVOUV BlEpEDVNOT Yiot TN Ty Tou ¢, dnhadn mou Peloxetal To Y€YloTOo
otouelo Tou BedTEPOU GUVONOU TNE BENTIGTNG NDong, xi €Tol yweilouv To cUvolo Nicewy ot 3
dlapopeTnd LTOGUVONL UE TOV €€N¢ TEOTO:

A={ai,..,ap} UBUC

6mov B = {ajli > p,a; < ¥_a;} xou C = {ala; > X5_ a;}. Enopévoc, eivor mpogavés 61t 10
q aviixel elte oto ahvolo B elte 610 C agol & oplopol tng auatneotepng exdoyfic Tou TeoPAH-
patog toylel p < q. Tehixd, pe autd Tov ToV dlaywploud xATAGXEVALOLY €Val PEUBOTONUWVUIXO
oaXybefuo, tov omofo Bo Solue avokutixd oe emdpevo xe@dhato, moxumhoxdtntag O(n - Q),
6mov Q = XP_ a; mocbdTa mou amoteXel dve Gplo 6To dBpotoua TOU TEMTOL LROGUVONOU T1g
BéXTiIoTNnE Ndong.

Yuveylovtag, mpoxewévou va xoataoxevaotel éva FPTAS ye yeron tou alyopibuou mou mo-
pouctacay, xdvouv xefion scaling opllovog pia mopduetpo scaling § = S22 ue v omola d1-
wovpyeitan éva véo alvolo ewwddouv A = {al,...,a;,} ue a = |5 ]. Eneta, ypnowonoieiton o
Topandve axyoplbpoc pe eioodo {A'p} o omoloc Nover BéNTIoTor To SUBSET SUM RATIO vt
0 scaled oOvolo €16680 xou yio TN oxéon avthAc e Noong (Sa, Sp) pe ™ BéENTIo TN Aon Tou
ool TpofAAuatos (ST, 55) woyleL:

MR(S4, Sp, A') < (1+¢) - MR(SF, S5, A)
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Onhadt 1 moparybuevn oo arotelel (1 + €)-npooéyyion tne BéXTioTne Abone Tou apyxoy
meoPN\fuatoc. Tt TNy ToAUTAOXOTNTA TOU TEOGEYYLOTIXO) OYAUATOS Loy VEL:

2
n-ap:?)-n

P ’ o
Q=%Y_10;<n-a,< 5 5

ENOUEVOS 0 PEUBOTONUWMVUIIXOS oY OpLBOC oy €xel ToAuTAOXxOTNTA O(n - Q) TEéXEL OE YEOVO
O(n - ?’E—”Q) = O(”?S) TeXixd, enedn tpéyoupe Tov aNyoplBuo n Qopéc yior Ty diepelivnon ot

TEAPETEO P, 1 LVONLXY) ToAUTAoXOTNTa Tou FPTAS etvou O(”;).

0.4.2 X0vdeom tou SSR pe to approximate SUBSET SUM xouw FPTAS

oe ypovo O(mm{%,’;—j )

Ye auth) Vv Tapdypapo Oo THPOUCIACOUUE CUVOTITIXG TNV CUVELCPOEE QUTAG TNG OLTAL-
patxng epyaoctoc énou ebvan évor véo FPTAS vyia to SUBSET SUM RATIO mpdfAnuo to omolo
TEEYEL OE YPOVO O(min{% -log(n/e?), Z—j -log(n/e?), Z—j(log(n/s% + & -log(1/€))). ILo avar-
AUTIXAL, OV EXPEACOUUE TNV TONUTAOXOTNTA TWV UTEEYOVIOY TROCEYYIOTIXMY OYXNUATOVY Yio TO
SUBSET SUM RATIO o1t popph O((n + 1/€)¢), t6te t0 oyfipa mou Bo mopouscidoouye eivor To
TEMTO OV ETUTUYYAVEL T ¢ < 5 x1 €Tol anoTeXel BeXTinon 6Tn TONUTAOXOTN T TOU ToyUTEQOU
uéxer wwpo FPTAS vy to SUBSET SUM RATIO . Emnpocbétng, o exbétne otn mopduetpo n
unopel va yewwbel uéyer v TN 2, n onola anoteXel yeydin Pektiworn oe oyéon ye v uéypel
e xoAOTEEN ToAuThoxoTNTa. Emlong, delyvel va elvon xan 1 BENTIoTN TIwy) otov exbétn Tou
n, e€outiac Tov lower bounds mou €youv tebel yio To SUBSET SUM mtpbfAnua.

Ye auTO TO TREOCEYYLOTINO OYAUAL, AEYIXE YIVETAUL Lo WELOUOS METAED UEYIAWY XAk UIXEWY AVTL-
XEWEVWY Xt DOTEPA DLUTNEMVTAS UOVO Tor UeydNa avTixelueva, egapudlovton okydetbuol mou
€youv vormoinbel vyl To SUBSET SUM , woTe va eviomoBoly xarég mpooeyyloTixég ADoELS
TOU OMOTEANOVUVTOL UE GUVON UTMOXAECTIXA UEYOAWY OVTIXEWEVOY. DTNV TEPINTOON Tou OEv
evtomoboly, tdte amodevieton 6TL efvon e@uxtd Vo evtomiobel xa\f npooeyyio Ty AUoT mpo-
cbétovtac uxpd oTolyela UE AMOTENECUATIXG TEOTO.

Y UUTEQUOUATIXG, EXUETINNEUOUEVOL UTONOYIGHOUE X0 YRy 0pOUS aNyoplBuouc yia To SUBSET SUM
€youpe 600 Pooind wPENN:

o Beltdveton oe peydho Pabud n xeovixr toxumhoxdtnta tou FPTAS v to SUBSET SUM RATIO

e JUVOEeTol 1) TONUTAOXOTNTA ToU SUBSET SUM Ue to SUBSET SUM RATIO , €10l woTte
onowdrrote Pertiwon 61N TEOCEYYICWOTNTA TOU TEMTOL duvatal va petapepbel dueca
0710 deVTERO.

X1n cuvéyelo BIVETAL UL TEPLYRUPT TV PNUATWY TOU TEOCEYYIOTIX0) OYAUATOC XU TV Oew-
entixov Bdocwv tou oalyopiBuou:

Muxpd xou peydha otovyeia To ahvoro eicddou A yweileton oe 500 LTOGOVONA TO GUVONO
UXPOV GTOLYEIWY %ot 6TO GOVONO PEYIN®Y G TolxElwy Tou opllovTta we eEhg:

e To civolo pxpdv otorgeloy M(A,e) =s € A, s < e - max(A4).

e To olvolo peydhwv otogeiov L(A,e) = s € A, s > ¢ - max(A).

Closest set T'i éva civoro S; C A, oplloupe we closest set, évo 6OVONO S opt, TETOWO BOTE
Siopt € AN\ S; xou (S;) > X(Siopt) > E(S7), v xdbe S' C A\ S;.

e-close set T éva olvoro S; C A opiCouue wg e-close set éva chvolo S;. Tétol0 “oTE
Sie CA\S; xou X(S;) > 3(Sie) > (1 —e)X(Siopt)-
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JuvonTixy ntapouvsiacy Tou ayoplduou

o Apynd, avalnrolue npoceyyloTixég NOOELC TOU AMOTENOUVTOL HOVO amd UEYANa o TolyE(,
OnAad” ot UTOGUVONA TIOU TIC ATOTENOVY TiERIEY 0LV o TovKE(R WoVo amd To olvoro L(A,¢).

o YTotepa, mopdyouvpe OXa ta subset sums nmou anoteNolvVTL POVO amd peydAo aTouEld.
Eév to m\R0oc Touc Eemepvdel To n/e?, 16Te Unopolpe eOxONA Vo BpoUUE Wia XONF TPO-
oceyyloTxn Aoon,.

o Ye avtibetn mepintwon, v xdfe éva and Tta maparyoueva UTocUvola, evtoniouue To
avtioTowyo &'-close set, vl xdrowo &' mou opllovye apydrepa.

o Tote apxel va yehetoouue uévo autd ta Lebyr UTOCLVONWY Yiot VY TEOCEY YO TIXT
Aoon.

o Ynyv nepintwon mou 1 BéXTIoTN Adon mepLEyEl Uixpd oToueld, TOTE UTOPOUUE Vo EVTOT-
COULUE WLt E-TIPOGEYYLOT TS TpocbéTovTag wxped oTol el Ue GMANCTO TEOTO.

0.5 XUUTELACUATA KA LEANOVIILXES TEOEXTACELG

Apyxd, To SUBSET SUM RATIO npdBAnua €xel apxeTéC ONUAVTIXES EQOOUOYES G TNV XQUTTO-
veapla xar oty utoloylo x| Broloylo. Emmiéov, cuvdéetan 6Tng eldoue xou ye 1o SUBSET SUM
10 omolo €xel e&éyouca Béomn oty Bewplor TONUTNOXOGTNTAC Ko TOWXINES EQPUPUOYES. JUVETMS, 1
Bextiwon oty mpoceyyoWoTNTA AUTOY TV 500 TEOPANUATWY anoTeENel TOND onuovTxy e&é-
AEM.

Koatarfiyouue, Nowmdv, o€ autr TNV SLmAouatixy epyacio €xouue 000 onuavTixég tpocbrixes. Bek-
Tlwon TNE xeovixAc ToAUTAOXOTNTAS Xou ooy wyY) véou FPTAS vyia to SUBSET SUM RATIO xou
TO ONUAVTIXOTERO elval OTL amodexvieToL 1) 6OVOEST) Tou SUBSET SUM RATIO e tnv npooceyyi-
o TN exdoy)) Tou SUBSET SUM. Xuvenng, onotadnnote Behtinon otny axelfr elte xar otny npo-
oeyyio T enihucn Tou SUBSET SUM odnyel xou o€ avtiotolyn Pektiwon oto SUBSET SUM RATIO

TEOPANUAL.
Q¢ pLot LENNOVTIXT TROEXTAOT), OTWC avapepdnxe Tapamdvw, Bo UTopoNCE VoL ATOTENETEL 1) UENETT)
tnc Weak Approximation of SUBSET SUM 6nwe Statundvetor 6to | | 6mou yenowponotei-

Ton i TNy meocéyyion tou euxordtepou PARTITION npofhAuatog xan iowg ye v xehon
AUTAC TN HoPYPHS TEOTEYYIoNG Vo emiTayLVOEL 1) ebpeon Twy e-close cuVOAWY.

Mo &N\ xatevBuvon Ba uropoloe va eivar 1 xprion aryoplBuwy tou emteholv axelfr eniiuon
Tou SUBSET SUM xou Oyl TROCEYYLOTXE, OL OToloL EVOL TOPUUETEOTONUEVOL UE TT) TUPAUETEO
ouyxévipwone B, 6nng gaivetar xot ota | I, | |, 6mou avokbetan 1 exdoyh andgo-
ong Tou SUBSET SUM .JUVET®GS, O Yitory evilopépoy, va epeuvniel mog avaloya emiyetprota
X0l TEXVIXES UTopoLY Vo eqappoctoly otny enihuon tng exdoyc PerticTonomong.
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Chapter 1

Introduction

1.1 Motivation

In complexity theory one of the fundamental problems is the so called SUBSET SUM problem,
from which a variety of problems has been produced and is stated in the following way: Given
a set A of positive integers and a target ¢, determine whether there exists a subset Z C A,
such that the sum of its elements equals ¢. For the first time, it was formulated by Karp as
one of the fundamental NP-complete problems in | |, alongside with KNAPSACK, SAT
and more. In many universities around the world, undergraduate computer science classes
introduce the very concept of pseudopolynomial complexity and dynamic programming via
the classical algorithm of Bellman, as presented in | |. SUBSET SuM has been studied
for many years, however there have been many vital improvements in the past few years with
respect to its pseudopolynomial time solvability. At first, an innovative deterministic | |
and a randomised | , | algorithm have been proposed, representing the first sub-
stantial improvements over the long-standing standard approach of Bellman | | and the
improvement by Pisinger | .

SUBSET SUM RATIO is a less studied, nevertheless noteworthy problem, which is the opti-
mization version of the EQUAL SUBSET SuM problem. SSR has attracted the attention of sev-
eral researchers, as it finds interesting applications in computational biology | , |,
computational social choice [ | and cryptography | ].  Moreover, it is related
to important theoretical concepts such as the complexity of search problems in the class
TFNP | |. The definition of the SUBSET SUM RATIO problem is stated below:

SUBSET SuM RATIO(SSR) Given a sorted set of positive integers A = {ai,a2,...,an},
detect two disjoint subsets S, Sy C {1,2,...,n} such that they minimize the ratio:

maz{Xies, i, Ljes, a5}
min{Zies, @i, Yjes,a;}

Consequently, the target is to find two disjoint subsets whose ratio of sums is minimum. It
is important to notice, that on the nominator goes larger sum, thus in other words, we try
to reach a ratio as close to 1 as possible.

In this dissertation, we construct and formulate an FPTAS ((1+¢)-approximation algorithm).
Formally, we are solving the following problem:

Given a sorted set of n positive integers A = ay,...,a, and a fixed parameter ¢ € (0,1),
find two disjoint subsets 57,55 C A where 3(S}) < X(S]) which constitute an (1 + ¢)-

approximation solution. In other words, the ratio of their sums is in e-distance from the
. (S $(S7)
optimal ratio i.e. SIEA (1+ E)E(S;) .
Let S}, S5 C A be an optimal solution. Two disjoint subsets S1, 52 C A constitute an (14¢)-
. N . (S1) 2(SF) . . (1) o
approximate solution if and only if 1 < S(55) <(1+e¢) S(55) Notice that since S(55) >11itis

sufficient, for a pair of disjoint sets 51,52 to be an (1 + €)-approximation solution, to prove
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(S1)
(S2)

E(Si)

that (52

< (14¢), because 1 +¢& < (1+¢) , so the initial inequality is still satisfied.

1.2 Related Work

SUBSET SUM RATIO is the optimization version of the so called EQUAL SUBSET SUM problem,
which both of them are very well studied problems and have many application in a variety of
scientific areas such as computational biology, cryptography and computational social choice.
Some examples are presented, such as the Partial Digest problem, which comes from com-

putational biology | , |, the allocation of individual goods | |, tournament
construction | |, and a variation of SUBSET SUM, namely the Multiple Integrated Sets
SSP, which finds applications in the field of cryptography | |. Moreover, it is related

to important concepts in theoretical computer science; for example, a restricted version of
EQUAL SUBSET SUM namely when the sum of input values is stricly less than 2™ — 1, then
there exists an argument from Dirichlet Principle (Pigheonhole Princible) that ensures that
there is a solution, however there is no way to find it. This problem lies in a subclass of the
complexity class TFNP, namely in PPP | |, a class consisting of search problems that
always have a solution due to some pigeonhole argument, and no polynomial time algorithm
is known for this restricted version. The main subject of this thesis is the SUBSET SUM RATIO
problem, and more specifically approximation schemes that have been proposed for this prob-
lem. The first FPTAS was proposed by Bazgan et al. in | | and more recently a simpler
but slower FPTAS was introduced in | | and a faster one in | | the latter is the
fastest known so far for the problem. Variations of ESS were studied and shown NP-hard in
[5,6,7], where also pseudopolynomial time algorithms were presented for some of them and it
was left open whether the corresponding optimization problems admit an FPTAS.

1.3 Research Objectives & Contribution

The main contribution of this dissertation, apart from the introduction of a new FPTAS for
the SUBSET SUM RATIO problem, is the establishment of a connection between SUBSET SUM
and approximating SUBSET SUM RATIO. In particular, we showed that any improvement over
the classic meet in the middle algorithm | | for SUBSET SuM, or over the approximation
scheme for SUBSET SUM will result in an improved FPTAS for SUBSET SUM RATIO.

Additionally, it is important to note that there is a distinct limit to the complexity that
one may achieve for the SUBSET SUM RATIO problem using the techniques discussed in this
paper.

Finally, we establish that the complexity of approximating SUBSET SUM RATIO, expressed
in the form O((n 4 1/¢)¢) has an exponent ¢ < 5, which is an improvement over all the
previously presented FPTASs for the problem.

As a direction for future research, we consider the notion of the weak approximation of
SUBSET SuUM, as discussed in | , |, which was used in order to approximate the
slightly easier PARTITION problem, and may be able to replace the approximate SUBSET SUM
algorithm in the computation of the &’-close sets.

Another possible direction could be the use of exact SUBSET SUM algorithms parameter-
ized by a concentration parameter (3, as described in | , |, where they solve the
decision version of SUBSET SUM. See also | | for a use of this parameter (defined as
k in their paper) under a pseudopolynomial setting. It would be interesting to investigate
whether analogous arguments could be used to solve the optimization version.

1.4 Thesis Outline

The thesis is structured as follows:
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We start by presenting some necessary theoretical background in Chapter 2.1. Here, we
provide some necessary lemmas used throughout the rest of the thesis. We also explain
the notation used as well as some of the used techniques.

Afterwards, in the Chapter2 we present and thoroughly analyse two approximation al-
gorithms for SUBSET SuM problem, as introduced by Bringmann and Nakos in | |
and Kelleler | |]. These are the algorithms we extend in order to efficiently ap-
proximate SUBSET SUM RATIO .

Next, in Chapter3 we introduce and analyse two schemes that efficiently approximate
the optimization version of EQUAL SUBSET SUM i.e. SUBSET SUM RATIO and success-
fully returning the solution sets. Additionally, we present a faster FPTAS than the was
previously the faster one.

Finally, in Chapter4 we summarise our results, as well as provide some intuition re-
garding possible extensions and research areas.
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Chapter 2

Preliminaries

In this subsection, we will present the theoretical background, through some definitions, lem-
mas and theorems that are necessary for a better understanding of the results and algorithms
in this dissertation.

Notation

At first, we describe the notation that is used throughout this thesis and the notation from
| | and | | is largely followed.

e Given a set A C N, we denote as

> the sum of its elements 3(A) = > 4 a.

> the set of all possible subset sums of A with S(A) = {E(X) | X C A}.

> the set of all possible subset sums of A with upper bound ¢ with S;() = S() N [¢].

> the set of all possible subset sums of A with their respective cardinality SC() =
{(E(X), XX <}

> the set of all possible subset sums of A with upper bound ¢ with their respective

cardinality SC(A) = SC(A) N ([t] x N).

e Given two sets X, Y C N, we denote the pairwise sum from elements of the two sets
XY = {z+y | v € XU{0},y € YU{0}}. Furthermore, we define X&,Y = (X®Y)N[t].

e O — Standard complexity notation, used to ignore polylogarithmic factors. Thus, it
holds that, f(n) € O(g(n)) is an abbreviation for 3k : f(n) € O(g(n)log® g(n)).

Theoretical Background

In this subsection we define some important theoretical concepts.

NP-completeness Complexity class NP includes decision problems, whose input instances
have positive answer, they have proofs that can be validated in polynomial time from a
deterministic Turing machine. In other words, we can verify if the answer is actually positive
in polynomial time. Furthermore, it holds that P C N P, that is if a problem is solvable in
polynomial time (class P), then it is also verifiable in polynomial time.

If a problem II; is reducible to a problem II3 in polynomial time (II; <p II3), then:

e There exists a function 7 : ¥* — ¥* which can be computed in polynomial time, such
that Vo € ¥*, it holds that z € II; <= T(x) € Iy, where with ¥* we denote the sum
of all possible inputs and x € II if and only if the input = has a positive answer for the
problem II.

e Function T is called polynomial reduction.
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e Essentially, we efficiently transform every input instance of problem II; into an input
instance for problem II, and afterwards we solve problem 1I.

A decision problem II is NP-complete iff:
1. II belongs to the NP class, and
2. Every NP problem can be reduced to II in polynomial time.

NP-complete problems are the most difficult to solve problems in NP class and they represent
the total complexity of NP complexity class.

Pseudopolynomial Algorithms Weakly NP-complete problems is a subset of NP-complete
problem. An algorithmic problem is called weakly NP-complete if there is an algorithm that
solves it, whose runtime is polynomial in the numeric value of the input instance (the largest
integer in the input) but not necessarily in the length of input (the number of bits that are
required for its representation), which is the case for polynomial time algorithms. An algo-
rithm is called pseudopolynomial, as the numerical value of the input is exponential in the
input length.

Randomized Algorithms A randomized algorithm is an algorithm that employs a degree
of randomness as part of its logic. In contrast to a deterministic algorithm, the output of a
randomized one may be different among distinct calls with the same input. Hence, there is a
chance of producing an incorrect result (commonly symbolised by ). These algorithms are
also referred to as probabilistic and their complexity is affected by the allowed values of error
probability 4.

Polynomial Time Approximation Schemes An approximation scheme PTAS (polyno-
mial time approximation scheme) is an algorithm that takes as input in polynomial time an
instance of an optimization problem and an error parameter £ > 0 (error), and produces an
output that is in an (1 +¢) distance from the optimal (#} (1 —¢) for maximization problems).
In addition, for an algorithm to constitute a PTAS, its complexity must be polynomial in the
input size n and for every fixed €. There is no special requirement for the dependence on ¢,
thus an algorithm which runs in time O(n'/¢) or even in O(n®*P(1/9)), could be a PTAS.

Fully polynomial time approximation schemens An approximation scheme is called
FPTAS (fully polynomial time approximation scheme), when it runs in polynomial time both
in the input size n, and in 1/e. Specifically, every problem that has an FPTAS, has also a
PTAS. Consequently, FPTAS’s is a more strict form of PTAS and it holds FPTAS C PTAS.

Congruence Classes Given an integer n > 1, two integers a,b are said to be congruent
modulo n, if n is a divisor of their difference (i.e., there exists an integer k € Z such that
a—b = kn). Congruence modulo n is an equivalence relation' that is compatible with the
operations of addition, subtraction, and multiplication and is denoted by a = b (mod n).
The set of all congruence classes of the integers for a modulus n is called the ring of
integers modulo n and is denoted by Z, = {0,...,n — 1}. Each of its elements i represents
the set of integers that are congruent modulo n with i, i.e. Vo € Z,x € i <= z =i (mod n).

Closest set For a given set S; C A we define as its closest set a set S; oy such that
Si,opt Q A \ Sz and E(SZ) Z E(S@opt) Z E(S/) for all Sl g A \ Sl

! An equivalence relation has the following properties: a) Reflexivity, b) Symmetry and c¢) Transitivity. In our
case, that translates to a) a = a (mod n), b) a = b (mod n) if b = a (mod n),Va,b,n and ¢) If a = b (mod n)
and b = ¢ (mod n), then a = ¢ (mod n).
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e-close set For a given set S; C A we define as its e-close set a set S; . such that S; . C A\ S;
and E(SZ> Z E<SZ,€) Z (1 — 8)2(52'7023,5).

Closest Set and e-close set computation By solving the following problem, one can
compute an e-close set of a given subset .S; C A.

Definition 1. (Approzimate SUBSET SUM) Given a set A\ S;, target 3(S;) and error margin
e, return a subset S; . C A\ S; such that £(S;) > 3(S;c) > (1 —e)X(S") for all S" C A\ S;

We present two different ways to compute an e-close set for some set S; C A. Note that the
first way actually returns the closest set, which is by definition an e-close set.

1. Closest set (S; ) computation
Compute the subset sums of set A\ S; with target ¥(S;) and keep the largest non
exceeding. This can be achieved by a standard meet in the middle | | algorithm.

2. e-close set (5;.) computation
Run an approximate SUBSET SUM algorithm | , | with error margin ¢ on
set A\ S; with target X(5;).
Notation Given a set of n positive integers S = s1,...,s, C N, let
e max(S) denote its largest element.
o ¥(S5)=s1+ -+ s, denote the sum of its elements.
Distinction between large and small elements Given a finite set of positive integers
S C N as well as a value € € (0,1), define the following partition of its elements:
e The set of its large elements as L(S,e) = {s € S,s > ¢ - max(5)}.
e The set of its small elements as M (S,e) = {s € S, s < e - max(S)}.

Note that max(S) € L(S,¢), for any € € (0,1).

2.0.1 Relationship between SUBSET SUM and EQUAL SUBSET SUM

Mucha et al. present a reduction SUBSET SUM < EQUAL SUBSET SUM in the full version of
their paper | ]. This reduction is slightly sharper than the one presented in | |
and shows the intrinsic relationship between the two algorithmic problems.

Theorem. If EQUAL SUBSET SUM can be solved in time O*((2 — £)%25") for some e > 0,
then SUBSET SUM can be solved in time O*((2 — &')%°") for some constant £’ > 0.

Proof. Assume that we have a black-box access to the EQUAL SUBSET SUM algorithm running
in time O*((2 —¢)%2) for some ¢ > 0. We will show how to use this algorithm to obtain an
algorithm for SUBSET SUM running in time O*((2 — £)%-5").

Given an instance (S,t) of SUBSET SuM such that S = {s1,...,s,}, we will construct an
equivalent instance Z of EQUAL SUBSET SuM such that Z = {z1,...,22n,41}. The construc-
tion is as follows:

o for 1 <i<mn,let zj=s; 10" +2.10°,
o for 1 <i<n,let 24, =1-10%

o let 29,01 =t 10" 4370 1-10%
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Now, we will show that if (S,¢) is a YES instance for SUBSET SuM, then Z is a YES instance
for EQUAL SUBSET SUM. Let X C [n], such that ),y s; = t, be the set of the indexes
of the elements of the solution set. Then, sets A = {z; | © € X} U {zi4n | ©+ ¢ X} and
B = {zitn | i € X} U {22n41} are a valid solution to EQUAL SUBSET SUM on instance Z,
since ¥(A4) = X(B) and AN B = 0.

For the other direction, we will prove that if Z is a YES instance of EQUAL SUBSET SuM,
then (S,¢) is a YES instance of SUBSET SuM. Assume that Z is a YES instance and sets
A, B C Z is a correct solution pair. Observe that if for some ¢ < n element z; € A, then
zon+1 € B. That is due to the fact that the sets A, B have an equal sum and only the elements
Ziy Zi+n and zo,41 have something nonzero at the i-th decimal place. Moreover, all smaller
decimal places of all numbers sum up to something smaller than 10° and therefore cannot
interfere with the i-th decimal.

Finally, observe that numbers z;,,, for i € [n], cannot produce a YES instance on their
own. Hence, sets AU B contain at least one number z; for i € [n]. Without loss of generality,
let A be the set that contains such an z;. Then, set B has to contain the element z5,4+1. That
means that set B cannot contain any z; for i € [n].

In particular, ¥(A4)/10"*! = %(B)/10"*!. Only numbers z; for i € [n] contribute to
$(A)/10" and only number 29,1 contributes to X(B)/10" . Hence, there exists a subset
S’ C S, such that X(S") =t.

O

2.0.2 Subset Sum Ratio

We formally present three different definitions of the Subset Sums Ratio problem, that are
used in this diploma dissertation.

SUBSET SUM RATIO problem (SSR) (equivalent definition). Givenaset A = {a1,...,an}
of n positive integers, find two disjoint sets S1, S2 C {1, ...,n} such that the value MR (S, S2, A)
is minimized. In addition, from now on, whenever we have a set A = {ay, ..., a,} we will as-
sume that 0 < a1 < a2 < ... < a, (clearly, if the input contains two equal numbers then the
problem has a trivial solution). The FPTAS proposed by Nanonghai approximates the SSR
problem by solving a restricted version.

Restricted Subset-Sums Ratio problem . Given a set A = {ay,...,a,} of n positive
integers and two integers 1 < p < ¢ < n, find two disjoint sets S1,S2 C {1,...,n} such that
{maxS1, maxSs} = {p,q} and the value MR(S1, S2, A) is minimized. Inspired by this idea,
they define a less restricted version. The new problem requires one additional input integer,
instead of two, which represents the smallest of the two maximum elements of the sought
optimal solution.

Semi-Restricted Subset-Sums Ratio problem . Given a set A = {ai,...,a,} of n
positive integers and an integer 1 < p < n, find two disjoint sets Sy, 52 C {1,...,n} such
that mazS1 = p < maxSs and the value MR(S1,S2, A) is minimized. Let A = {ay,...,an}
be a set of n positive integers and p € {1,...,n—1}. Observe that, if ST, S5 is the optimal
solution of SSR problem of instance A and S%, S} the optimal solution of Semi-Restricted
SSR problem of instance A,p then: MR(S1,S5, A) = minyeq,., 13MR(ST, 55, A) . Thus,
we can find the optimal solution of SSR problem by solving the SSR Semi-Restricted SSR
problem for all p € {1,...,n—1}.
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Chapter 3

SUBSET SUM Approximation Algorithms

In this chapter we are going to present two approximation schemes for SUBSET SUM one from
Hans Kellerer, Renata Mansini, Ulrich Pferschy and Maria Grazia Speranza | | and one
new approximation algorithm from Karl Bringmann and Vasileios Nakos | .

The first fully polynomial approximation scheme for the Subset-Sum Problem was suggested
by Ibarra and Kim | |. They partition the items into small and large items. The
weights of the large items are scaled and then the problem with scaled weights and capacity
is solved optimally through dynamic programming. The small items are added afterwards
using a greedy-type algorithm. Their approach has time complexity O(n - 1/?) and space
complexity O(n+ 1/¢): Lawler | | improved the scheme of Ibarra and Kim by a direct
transfer of a scheme for the knapsack problem which uses a more efficient method of scaling.
His algorithm has only O(n + 1/¢*) time and O(n + 1/&3) memory requirement. Note that
the special algorithm proposed in his paper for subset-sum does not work, since he makes the
erroneous proposal to round up the item values.

As an improvement, Lawler claims in his paper that a combination of his approach (which is
not correct) with a result by Karp | | would give a running time of O(n+1/e%log(1)):
Karp in this paper presented an algorithm for subset sum with running time n(%)logl+52
which is O(n - 1/¢?). Lawler states that replacing n by the number of large items, would
give a running time of O(n + 1/¢%log(1/¢)). It can be easily checked that a factor of 1/e is
missing in the second term of the expression. Possibly, this mistake originates from the fact
that there is a misprint in Karp’s paper, giving a false running time.

The approach by Gens and Levner is based on a different idea. They use a dynamic pro-
gramming procedure where at each iteration solution values are eliminated which are different
from each other by at least a threshold value depending on €. The corresponding solution
set is then determined by standard backtracking. Their algorithm solves the Subset-Sum
Problem in O(n - 1/¢) time and space. In 1994 Gens and Levner | | presented an im-
proved fully polynomial approximation scheme based on the same idea. The algorithm finds
an approximate solution with relative error less than ¢ in time O(min{n/e,n + 1/e3}) and
space O(min{n/e,n + 1/&%}).

The first FPTAS that we will present it was the first improvement over all the previously
presented FPTAS’s, and it was based on the ideas, which were implemented in the papers
we talked about in the previous paragraph, however they exploited some properties of the
numbers, thus improving time and spatial complexity.

3.0.1 Efficient FPTAS O(min{%,n + “4/21) and space O(n + 1)

Firstly, we give a more intuitive explanation of the algorithm in order to explain better the
ideas and theoretical concepts behind it. As a starting point we have the famous dynamic
programming algorithm from Bellman, which solves the SUBSET SUM problem optimally in
the following way: A set R of reachable values consists of integers i less than or equal to
the capacity ¢ for which a subset of items exists with total weight equal to ¢. Starting from
the empty set, R is constructed iteratively in n iterations by adding in iteration j weight w;
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to all elements from R and keeping only partial sums not exceeding the capacity. For each
value 7 € R a corresponding solution set with total weight equal to i is stored. This gives a
pseudopolynomial algorithm with time O(nc) and space O(nc).

In order to formulate an FPTAS at first the input items are split into large and small. Small
are the items with weight < ec and large are the items with weight > ec. It can be eas-
ily seen, that any (1 — &)—approximation algorithm using only large items, constitutes an
(1 — e)—approximation solution for the whole item set, by adding small items greedily after-
wards.

Consecutively, the small items are discarded and the interval containing large items [ec, (]
is partitioned in O(1/e) subintervals. Then, from each subinterval I; = [jec, (j + 1)ec|, at
most [£] — 1 smallest and (é} — 1 largest items are being selected and then stored in the so
called relevant items set K. The rest items are discarded. Consequently, the corresponding
modification of the Bellman algorithm requires time O(min{nc,n+1/clog(1/e)c}) and space
O(n+(1/¢)c), but approximates the optimal solution still with accuracy c: (For each partial
sum we have to store O(1/¢) large items).

The next step, is to formulate an algorithm so that there is no dependence on c. For this
purpose, instead of storing the [é] — 1 smallest and (%1 — 1 largest items, we store only
the smallest item §(j) and the largest item 67 (j), for each subinterval I;. In principle,
the ¢ possible reachable values have been replace with 1/ reachable intervals. Afterwards,
a relaxed dynamoic programming technique is being performed, which returns an array
A = {0[1],46[2], ..., 0[k']}. Tt is shown, later in the paper, that §[k'] is at least (1 —&)c or even
equal to the optimal solution value. Thus, we have an (1 —¢)-approximation algorithm which
runs in time O(min{n - 1/e,n + 1/e2log(1/¢)}) and space O(n + 1/£2).

Already, the described algorithm achieves an FPTAS with the claimed running time. How-
ever, the space complexity is bigger. In order to improve the space complexity, the researchers
use the techniques of backtracking and divide and conquer. In detail, the space complex-
ity is larger by a factor of 1/e. This happens due to the fact that we store for each reduced
reachable value i the corresponding solution set. Thus, if we would be satisfied with calcu-
lating only the maximal solution value and not be interested in the corresponding solution
set, we could finish the algorithm after this step.

In order to reconstruct the solution set, we start from the maximal solution value and we
apply backtracking. The first problem to be resolved in the backtracking procedure is that
the partial sum I;, which remains after each step of backtracking, may not be stored in A
anymore , thus we select one from the updated values {6~ (7),d7(i)}. Although, we may not
have the original values, this is not a big problem because it is shown that if y? is the total
weight of the current solution set determined by backtracking, there exists yf* € {67 (i), 57 (i)}
such that (1 —¢)c <y +yP < ¢, thus constituting a good approximation or even exact com-
putation of the optimal. However, the actual problem with backtracking is that the series of
indices from which we reconstruct the solution set may have been updated (increased actu-
ally) in some step. In this case, we may accept twice the same item in the solution set. A
straightforward solution is to run the procedure only when the item values are decreasing.
In the worst case, backtracking will always stop after detecting only one correct item of the
solution set.

For this reason, the researchers use divide and conquer combined with backtracking in order
to reconstruct the approximate solution set. More analytically, after performing backtrack-
ing and the values §(j) are increased, then the procedure divide and conquer is called. The
set IC is partitioned in K1 and Ko, on which relazed dynamic programming procedure is per-
formed recursively and two o arrays of reduced reachable arrays Aj, Ay are returned. By
lemma proved in this paper, it is known that there exist u; € Ay and us € As such that
c* —ec < uyp +us <c*, where c* :c—yB.

To find the solution sets corresponding to value u; and us they first perform backtracking
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for item set Ky with capacity ¢* — uo which reconstructs a part of the solution contributed
by K1 with value y£. If 4P is not close enough to ¢* — uz and hence does not fully represent
the solution value generated by items in K; we perform a recursive execution of divide and
conquer for item set K7 with capacity ¢* — us — y which finally produces leC such that
yP + y{jC is close to u;.

The same strategy is carried out for K producing a partial solution value y# by back-
tracking and possibly performing recursively divide and conquer which again returns a value
yQDC. Finally, we derive the solution contributed by item set K from this formula y?¢ =
yr + P s+

In every recursive execution of divide and conquer, two runs of relaxed dynamic program-
ming and backtracking are performed for both subsets. If backtracking completely produces
the solution for the desired capacity we have completely solved one subproblem, otherwise
we continue the splitting process of the item set recursively for the remaining subproblem.
As each execution of divide and conquer returns at least one item of the solution through
backtracking (usually more than one), the depth of the recursion is bounded by O(log(1/¢)).
Furthermore, it is possible to represent the recursive structure of the algorithm (specifically
divide and conquer calls) as a binary rooted tree. The root indicates the first call of divide
and conquer procedure and every child node represents one call. Each node has up to two
child nodes, the left representing the recursive call for K; and the right one for Ko. After-
wards, a depth-first search (DFS) is used in order to traverse the tree nodes. Every node
returns a part of the solution set computed directly through backtracking and returns as
another part the results of its child nodes. Finally, it is guaranteed that the final solution
value y* = yP + yPC returned by the first backtracking phase and the first application of
divide and conquer, either satisfies (1 —¢)c < y* < c or that y” is optimal for the large items.
In this way, the algorithm is still a FPTAS, however it is not necessary to store solution sets
of items thus requiring only O(n 4 1/¢) space. Finally, Theorem 8 in the paper shows the
rather surprising fact that introducing divide and conquer does not increase the running time.
This can be intuitively explained by the fact that the size of the subproblems is decreasing
systematically both with respect to the number of items and the required subset capacity.In
the following, we give a technical description of the algorithm, by presenting its pseudocode.
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Algorithm (A)
Input: n, w; (j=1,...,n), c, &
Output: =, X*.

Step 1: Partition into intervals.

Compute the number of intervals k == [17]. Set the interval length = zc.

Partition the interval [0,¢] into the interval [0,¢], into k —2 intervals I; =|jt,(j+ 1)1
(f=1.....,k —2) of length  and the (possibly smaller) interval I; | =|(k — 1)z, ¢].

Denote the items in [0,¢] by S and call them small items.

Denote the items in [; by L; with n; = |L;|.

Set L = Uj.:ll L; and call the elements of L large items.

If L. = 0 then go to Step 4.

Step 2. Determination of the relevant item set A.
Foreveryj=1,....k—1do

If n),—:»2([j—?‘| — 1) then
Let K; consist of the [£] — 1 smallest and the [£] — 1 biggest items in L.
Else let K; consist of all items in L;.
Define the set of relevant items A by A = Uf__ll K;. Set 4= |A].
Discard the remaining items L\A.

Step 3: Dynamic programming recursion.

P = 0 (current solution set of large items)

AE = 0 (set of relevant items excluded from further consideration)
These two sets are updated only by procedure backtracking.

Perform procedure relaxed dynamic programming (A, ¢) returning the dynamic programming
arrays 4 (), 67() and d() with entries 6 (/),0"(j) (j=1,....k=1) and d(i) (i=
l,...,k',kK'<2k —1). Let the array 4 = {d[1]<d[2]<:--<d[k'|} of reduced reachable values
represent the values 6 (), 67 (/) (unequal to zero) sorted in non-increasing order.

If 6[k'] < (1 — &)e, then set ¢ = d[k'] + ec.

Perform procedure backtracking (6 (),6"(),d(), A, ¢) returning y®.

If ¢ — y® > ¢c then perform procedure divide and conquer (A\A", ¢ — y®) returning y°¢

yho= B 4 pPC

Step 4. Assignment of the small items.

Apply a greedy-type algorithm to S and a knapsack with capacity ¢ — y*, i.e. examine the small
items in any order and insert each new item into the knapsack if it fits.

Let 5 be the greedy solution value and PS be the corresponding solution set.

Finish with z* = y* + % and X* = P- U PS.

Comment. It will be clear from Corollary 3 that the possible redefinition of ¢ in Step 3 of the
algorithm is used to find the exact solution in case of z* <(1 — ¢)e.



Step 4: Assignment of the small items.

Apply a greedy-type algorithm to S and a knapsack with capacity ¢ — y*, i.e. examine the small
items in any order and insert each new item into the knapsack if it fits.

Let »® be the greedy solution value and PS be the corresponding solution set.

Finish with z* =yt + S and X* = PL U PS,

Comment. It will be clear from Corollary 3 that the possible redefinition of ¢ in Step 3 of the
algorithm is used to find the exact solution in case of z* < (1 — &)e.

Procedure relaxed dynamic programming (A, ¢)
Input: A: subset of items, & subset capacity.
Output: 5 (),6"().d(): dynamic programming arrays.

(Forward recursion)

Let A =uvy, 12, ..., v; and i= |;1|
Compute k with celp.

() =8 () =0 (j=1,...k).

For i =1 to / do
begin
Form the set 4, = {67 (j) + v; |07 (/) + vi<é, j=1,....k}u
{07 (j)+uv|d (j)+u<é j=1,...k}u{v}
For all ue A; do
begin
Compute j with uel;.
If 67 (/) = 0 (and therefore also 67 (j) =0) then 6 (j) =d"(j) = u
and d(6 () =d(67(j)) =i
If u<d (j)thend (j) =wand d(d (j)) =i
If u>3"(j) then 6" (j) = wu and d(67(j)) = i.
end
end
return & (),07(),d().

Comment. In each interval /; we keep only the current biggest iteration value 67 (/) and the
current smallest iteration value 6 ( f), respectively. The value d(d) represents the index of the last
item which is used to compute the iteration value 4. It is stored for further use in procedure
backtracking. Note that the last interval /; contains only values smaller than or equal to ¢
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Procedure backtracking (6 ().67().d(). A.y")

Input: 6 (),0"().d(): dynamic programming arrays,

A= {v1, 12, ..., v;}: subset of items as in relaxed dynamic programming;

y': target point for backtracking.

Output: y®: collected partial solution value.

This is the only procedure where items are added to P and deleted from AE.

(Backward recursion)
u = max;{u} |} = 6" (j) and uj<y'}

B = 0; stop = false.

Repeat
i =d(u)
PL = PLu{v;}
yW=yB 4+
U=u—"u
If x>0 then
Compute j with ue l;.
If 67(j) +yB<y" and d(67(j)) <i then u = 67 ()
else if 67 (/) + ¥ =T —zc and d(67(j)) <i then u = & ()
else stop = true.
until u = 0 or stop
AF = AR U{uea|jzi}
return (1?).

Comment. A part of the sequence of items which led to a value within gc of y' is
reconstructed. The backtracking stops in particular if, in the dynamic programming
arrays, an entry is found which, meeting the condition on the solution value, was
however updated after the generation of the “forward arc” v;.. Such an updated entry
must not be used because it may originate from a smaller entry which was generated by an
item already used in the partial solution and hence this item would appear twice in the solution
vector,

Procedure divide and conquer (A, ¢)

Input: A: subset of items, ¢ subset capacity.

Output: yPC: part of the solution value contained in A.

(Divide)

Partition A into two disjoint subsets A, A, with cardinalities as equal as possible.

Perform procedure relaxed dynamic programming (A,, ) returning 4, (),d, (), d,().

Perform procedure relaxed dynamic programming (A,, ¢) returning 4, (),d5 (), da().

(Conquer)

Find entries u; and w; of the dynamic programming arrays &, (),d,() and 6, (),d; (),
respectively, with u; = u, such that
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C—ec<su +ur=c.

.VJDC =0; ,l‘gB =0 }‘?C = 0. local variables

(Resolve A;)

Perform procedure backtracking (6, (),d,(),d,(), Ay, ¢ — uy) returning y'f,
If é —u — .1'? > gc then
DC

perform procedure divide and conquer (A;\A" ¢ — > — yP) returning y!

(Resolve A3)
If 1> >0 then begin

If ¢ — uy — yP>ec then perform procedure relaxed dynamic

programming (1>, ¢ — y® — yPC) returning 65 (), 65 (), da(). (%)

Perform procedure backtracking (4, (), d5 (). d2(), A2, ¢ — _I‘P - _1'1}{'} returning 1?
If ¢ — y® — pP€ — yB = ¢c then perform procedure divide and

conquer (A;\AF ¢ — pB — pP€ — 4B returning yPC.

end
el :_‘.ils_l__'_,ll)t +.'>'£! _4_-],1:)(
return (y°°).

3.0.2 Connection establishment between SUBSET SUM and Min/-ylus
1/e
)

Convolution problem and new FPTAS in time O(n + N )]
In this subsection, a new faster FPTAS was presented. After the approximation scheme of
Kelleler et al. that we analyzed in the previous subsection, with time complexity O(min{n -
1/e,n+1/e%log(1/€)}) and space O(n+1/¢), which was the fastest for 20 years the following
question about approximating SUBSET SUM remained elusive.

Does SUBSET SUM admit an approzimation scheme in time O((n+1/€)>7%) for some § > 07

After, the improvement of solving SUBSET SUM with a pseudopolynomial algorithm from Karl
Bringmann in time O(n +t), which is proved to be optimal in lower order factors, it seemed
very challenging to find any higher lower bounds than n+1/e, up to lower order factors. How-
ever, in this paper the researches managed to find a better lower bound through establishing a
connection with the MinPlus-Convolution problem. In detail, they proved that computing a
(1-—1/n)-approximation for SUBSET SUM is equivalent to the MinPlus-Convolution problem,
thus adding the first approximation problem to the list of known MinConv-equivalent prob-
lems. This negatively answers the main question for SUBSET SUM approximation schemes
running in strongly subquadratic time, conditional on the MinConv conjecture. Moreover,
their reductions allow to transfer the known lower order improvements from MinConv to
approximating SUBSET SUM which yields the first algorithmic improvement in over 20 years.

MinPlus-Convolution Problem In this problem we are given two sets A, B € Z™ and
the goal is to compute the sequence C' € Z*" with C[k] = min;; j—xA[i] + B[j]. The naive
running time of O(n?) can be improved to O(W("i\/%n)) by a reduction to All Pairs Shortest by
using Williams’ algorithm. Despite, considerable attention has been shown for this problem
no subquadratic algorithm has been detected. This was the reason for a hardness result that
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was formulated for this problem. In particular, a Knapsack instance with weight budget W
can be solved in time O((n 4+ W)279) if and only if MinPlus-Convolution can be solved in
time O((n + W)?~%") for some &' > 0.

Contribution of this paper In this paper the researchers prove that (1— %)—approximation
for SUBSET SuUM is equivalent to the MinConv problem, thus adding the first approximation
problem to the list of known MinConv-equivalent problems. This negatively answers our
main question for SUBSET SUM approximation schemes running in strongly subquadratic
time, conditional on the MinConv conjecture. Moreover, our reductions allow us to transfer
the known lower order improvements from MinConv to approximating SUBSET SUM which
yields the first algorithmic improvement in over 20 years.

Formal statement of the results

In this section, we present the theorems that their results are based on. Actually, the re-
searchers prove a subquadratic equivalence between SUBSET SUM and MinConv through the
following reductions.

Theorem 3.1. (Reduction from SUBSET SUM to MinConv)If MinConv can be solved in time
T(n), then SUBSET SUM has “a randomized approzimation scheme that is correct with high
probability and runs in time O(n + T(1/¢)).

This reduction even transfers the lower order improvements of the MinConv algorithm
that runs in time n? /29(”09"). This yields the first improved approximation scheme for
SubsetSum in over 20 years.

Corollary. 1.2 (Approzimation Scheme for SUBSET SUM). SUBSET SUM has a randomized
approximation scheme that is correct with high probability and runs in time

- 2
O(n + e
92y/(log(1/2))

‘The second reduction is as follows:

Theorem 3.2. (Reduction from MinConv to SUBSET SUM ) If SUBSET SUM has an approzi-
mation scheme running in time O((n 4+ 1/¢)?7°) for some § > 0 then MinConv can be solved
in time O(n*~%") for some & > 0.

Under the MinConv conjecture this rules out the existence of approximation schemes for
SubsetSum running in strongly subquadratic time O((n + 1/£)27°) for any § > 0. Taken
together, the two reductions prove that SubsetSum has an approximation scheme in time
O((n + 1/€)*7%) if and only if MinConv can be solved in time O(n? %) for some ¢’ > 0.

Algorithm for Approximating SUBSET SuM

In this subsection we are going to describe analytically the reduction from approximating
SUBSET SUM to exactly solving MinConv, thus proving Theorem 1.1. This implies the ap-
proximation of Corollary 1.2. In the paper, they state a different formulation of approximating
SUBSET SUM:

Given X, t and £ > 0, return any subset Y C X satisfying ¥(Y) < ¢t and
Y(Y) > min{OPT, (1—¢)t}.
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Note that this is quite a strong problem variant, since for OPT < (1—¢)t it requires to solve
the problem exactly! In particular, an algorithm for the above problem variant implies a
standard approximation scheme for SUBSET SUM.

From high level perspective, we adapt the exact pseudopolynomial algorithm for SUBSET SuM
from | | by replacing its standard sumset subroutine by a novel approximate sumset
computation, in addition to several further changes to make it work in the approximate
setting. This yields an approximation scheme for SUBSET SuM , with black-box access to
a MinConv algorithm. Throughout this section we assume to have access to an algorithm
for MinConv running in time Tasinconv(n) on sequences of length n. Since this is an exact
algorithm, we can assume that Thsinconw(n) = (n).

Definitions and Lemmas

In this subsection we present some definitions and lemmas which are utilized in this paper in
order to support the correctness of the produced FPTAS.

(Approximation). Let t,A € N. For any A C [t] and b € N, we define the lower and upper
approximation of b in A as:

apx; (b, A) :=mazx{a € AU{t + 1}|a < b}

apz; (b, A) := min{a € AU{t + 1}|a > b}

We use the convention max := -oo and min := oo
For A, B C N, we say that A (¢, A)-approximates B if A C B C [t] and for any b € B we
have:

apx (b, A) — apz; (b, A) < A

It is important to note that the approximations of b in A are not necessarily elements of A,
since we add ¢t 4+ 1. Throughout the analysis, we may use ”b has good approximations in A”,
with the meaning that apz;" (b, A) — apz; (b, A) < A holds.

Lemma 3.3. (Transitivity). If A (t, A)-approzimates B and B (t,A)-approzimates C, then
A (t, A)-approzimates C

Lemma 3.4. [f AC B C C and A (t, A)-approzimates C, then B (t,A)-approzimates C.

Lemma 3.5. (Union Property). If A; (t,A)-approzimates By and Ay (t, A)-approzimates
By, then A1 U Ay (t, A)-approzimates By U Bs.

Lemma 3.6. (Sumset Property). If Ay (t, A)-approzimates By and As (t,A)-approzimates
By, then Ay 4+ Ay (t, A)-approzimates By +; Ba.

(Sparsity). Let A € N and A € N. We say that A is A-sparse if |[AN [z, z+ A]| < 2 holds
for any x € N. If A is A-sparse and A (¢, A)-approximates B, we say that A sparsely (¢, A)-
approximates B. The previous definition shows that is always valid to assume approximation
sets have small size, or more precisely to be locally sparse.

Lemma 3.7. (Sparsification). Given t,A € N and a set B C [t], in time O(|B|) we can
compute a set A such that A sparsely (t, A)-approximates B.

It is easy to compute A in time O(|B|) by one sweep from left to right, assuming that B
is given in sorted order. Pseudocode for this is presented in the following Algorithm 1.
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Algorithm 1 Sparsification(B.t,A): Givenf, A > 0 and a set B C [f] in sorted order, compute

a set A that sparsely (f, A)-approximates B. We denote the elements of B by B[1].....B[m].
1: Initialize A := 0 and n =0
2 fori=1....mdo
% n:=mn-+1l
4 Aln] := Bli]
5: if n>3and Aln] —Aln—-2] <A then
: Aln — 1] := A[n]
T: n=n—1
& return {A[1]...... Aln]}

Lemma 3.8. (Down Shifting). Lett,t',A € N witht >t'. If A (t,A)-approzimates B, then
AN[] (t,A)-approzimates B N [t'].

Lemma 3.9. (Up Shifting). Let t,t',A € N witht <t'. If A (t,A)-approximates B, then
there exists u € [t — A, t] such that A (t', A)-approzimates B N [u).

Algorithm for Approximate Sumset Computation

Now the main connection to MinConv is presented. In this subsection it is shown how to
compute for given A, As a set A that approximates A; + Ao, by performing two calls to
MinConv. At first, we set t := oo, so that we do not have to worry about the upper end. In
this way, we have the following.

Lemma 3.10. (Unbounded Sumset Computation). Given t,A € N witht > A and A-sparse
sets A1, Ay C [t], in time O(ThrinConv(t/A)

Proof. To simplify notation, for this proof we introduce the symbol | indicating an undefined
value. We let min = max =L1. Furthermore, we let x+ L=1 and min{z, L} = max{z, L
} = x .This gives rise to natural generalizations of MinConv and MaxConv to sequences
overZ U {L}. We call an entry of such a sequence defined if it is not L. Note that since
1 acts as a neutral element for the min and max operations, we can think of 1 being oo
for MinConv, and —oo for MaxConv. The fact that these neutral elements, oo and —oo, are
different is the reason why we introduce L.

Observe that if MinConv on sequences over {—M, ..., M} is in time Tazincony(n), then also
MinConv on sequences over {—M/4,...,M/4} U {1} is in time O(Tainconv(n)). Indeed,
replacing L by M, any output value in [—M /2, M /2] is computed correctly, while any out-
put value in [3M /4,2M] corresponds to L. Also observe that MaxConv is equivalent to
MinConv by negating all input and output values, and therefore MaxConv is also in time
O(TMinCom;(n))'

The algorithm is as follows. Set n := 4[t, A]. We consider intervals I; := [iA/2, (i + 1)A/2]
for 0 < i < n. Since Ay, Ay are A-sparse, they contain at most two elements in any interval
I; . We may therefore “unfold” the sets Ay, Ay into vectors X1, X5 of length 2n as follows.
For r € {1,2} and 0 < i < n we set:

Xr[2i] :== min(I; N A,),
Xr[2i + 1] := mazx(I; N 4;).
We then compute the sequences

C = MinConv(X1, X2),
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that is,
C~ [k] = mingy j=r X1[i] + Xa[j],
and also
C" = MazConv(X1, X2),

that is,

CH k] = maz;y j=p X1 [i] + Xalj],
for 0 < k < 4n. Finally, we return the set A containing all defined entries of C~ and C™.
Clearly, this algorithm runs in O(Thrincony(t/A)).

Correctness. We should prove that for any a1 € Aj,as € Ao their sum a; + ao has good
approximations in A. Let 0 < ¢, 5% < 2n be such that X;[i*] = a1 and Xs[j*] = a2 and let
k* := ¢* 4+ j*. Then, by definition we have:

Cf[k*] <ai+ags < CJF[IC*}.

It remains to prove that Ct[k*] —C~[k*] < A. From the construction of X,.[2i] and X [2i+1]
it follows that any defined entry satisfies X,[i] € [(i — 1)A/4, (i + 1)A/4]. In particular, the
sum of two defined entries satisfies X1[i] + Xa[j] € [(i +7 —2)A/4, (i+j +2)A/4]. This yiels:

O[], O[] € [(K* — 2)A/4, (k* + 2)A/4] U {}.

Moreover, at least one summand, X1 [i*]4+X2[7*] = a1+as, is defined and thus C~[k*], C T [k*] #.
This yields Ct[k*] — C~[k*] < A. As a conclusion, we have that a; +az € A; + Ay has good
approximations in A which finishes the proof. ]

Lemma 3.11. (Capped Sumset Computation). Lett, A € N and By, By C [t|. Set B := Bi+¢
By and suppose that Ay sparsely (t, A)-approzimates By and As sparsely (t, A)-approzimates
By. In this situation, given Aj, Ao, t, A, we can compute a set A that sparsely (t,A)-
approximates B in time O(Trrincony(t/A)). We call this algorithm CapppedSumset(Aq, Ag, ¢, A).

Proof. By Lemma 4.5, Aj +; Ay (t, A)-approximates B. Using Lemma 4.10, we can compute
a set A’ that (oo, A)-approximates A; + Ay. By Lemma 4.8 (Down Shifting), A” := A’ N [¢]
(t, A)-approximates (A; + A2) N[t] = A; ++ A2. Using Lemma 4.7, given A” we can compute
a set A that sparsely (¢, A)-approximates A”. By Lemma 4.2 (Transitivity), these three steps
imply that A (¢, A)-approximates B. Since A is A-sparse, A also sparsely (¢, A)-approximates
B.

Each of these steps runs in time O(t/A) or in time O(Tyincony(t/A)). Since we can assume
Trrinconv(n) = Q(n), we can bound the total running time by O(Tasincony(t/A)). O

Algorithms for Subset Sum

Using the lemmas that we proved above in this subsection we are going to present the ap-
proximation algorithm for the SUBSET SuM of this paper. The main difference is that they
use Lemma 4.11 instead of the usual sumset computation by Fast Fourier Transform, but
significant changes are required in order to make it work.

Given (X,t,A) where X has size n, the goal is to compute a set A that sparsely (¢, A)-
approximates the set S(X;t) = {E(Y)|Y C X, E(Y) < t}.
We say that an event happens with high probability if its probability is at least
1—min{1/n, A/t}¢ for some constant ¢ > 0 that we are free to choose as any large con-
stant. We say that A w.h.p. (¢, A)-approximates B if we have:

e AC B, and

e with high probability A (¢, A)-approximates B.
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Color Coding

We present the algorithm that the researchers use in order to solve SUBSET SUM in case all
items are large, i.e. X C [t/k,t] for a parameter k.

Lemma 3.12. (Color Coding). Given t,Ak € N witht > A and a set X C [t/k,t] of size
n, we can compute a set A that w.h.p. sparsely (t, A)-approzimates S(X;t), in time

O((n + k* - TatinCono(t/A))log(nt/A)).

Proof. Denote by X1, ..., X;2 a random m partitioning of X, that is, for every z € X we
choose a number j uniformly and independently at random and we put x into X;. For any
subset Y € X with X(Y) < ¢, note that |Y| < k since X C [t/k,t], and consider how the
random partitioning acts on Y . We say that the partitioning splits Y if we have |[Y N X;| <1
for any 1 < j < k2. By the birthday paradox, Y is split with constant probability. More
precisely, we can view the partitioning restricted to Y as throwing |Y'| < k balls into k2 bins.
Thus, the probability that Y is split is equal to the probability that the second ball falls into
a different bin than the first, the third ball falls into a different bin than the first two, and so
on, which has probability:

-1 kK2-2 K —(Y|-1)
T =

K — (Y] 1)
k2

> ( > (1-1/k)% > (1/2)* = 1/4.

We make use of this splitting property. Let X; = X; U {0} and

T .= X{ +4 e X];'Q

Observe that T'C S(X;t), since each sum appearing in T uses any item x € X at most once.
We claim that if Y is split then T" contains X(Y"). Indeed, in any part X; with |[Y N X;| =1
we pick this element of Y, and in any other part we pick 0 € X}, to form ¥(Y) as a sum
appearing in T' = X +¢...+¢ X},. Hence, we have ¥(Y) € T with probability at least 1/4. To
boost the success probability, we repeat the above random experiment several times. More
precisely, for r = 1,...,Clog(nt/A) we sample a random partitioning X = X1 U... U X, 12,
set X{nﬂ- = X, ; U{0}, and consider T, := X;,J T X;,kQ. Since we have (YY) € T, with
probability at least 1/4, we obtain X(Y) € |, 7, with high probability. Moreover, we have
U, T € S(X;t). Let Sa—sp(X;t) be a sparsification of S(X;¢), and note that it has size
|Sa—sp(X;t)] = O(t/A) and can be found in linear time by Lemma 4.7. Since we use “with
high probability” to denote a probability of at least 1—min{1/n, A/t}¢ for large constant c,
we can afford a union bound over the O(t/A) elements of Sa_s,(X;t) to infer that with high
probability
SA—sp(X;t) - UTr - S(X;t)'
T

Since Sa—qp(X;t) (¢, A)-approximates S(X;t), Lemma 4.3 implies that
U, T, w.h.p. (t, A)-approximates S(X;t).

We cannot afford to compute any T, explicitly, but we can compute approximations of
these sets. To this end, let Z, ; be the sparsification of X;", ; given by Lemma 4.7. We start
with A, := {0} and repeatedly compute the capped sumset with Z,; , setting A,; :=
CappedSumset(Ay ;1,2 j,t,A) for 1 < j < k?. It now follows inductively from Lemma
4.11 that A, ; sparsely (¢, A)-approximates X + ... ++ X ;. Hence, A, ;2 sparsely (¢, A)-
approximates T,. Let A’ := |J, A, ;2. By Lemma 4.4, A’ (t, A)-approximates (J, T,,. With
the previous relation and transitivity, A" w.h.p. (¢, A)-approximates S(X;t). Finally, we
sparsify A’ using Lemma 4.7 to obtain a subset A that sparsely (¢, A)-approximates A’. By
transitivity, A w.h.p. sparsely (¢, A)-approximates S(X;t). O
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The running time is immediate from Lemmas 4.7 and 4.11

Algorithm 2 ColorCoding(X.f, A, k): Given f,A € M and a set X C [t/k,t] in sorted order, we
compute a set A that w.h.p. sparsely (1, A)-approximates S{X ).

I: forr=1,....Clog(nt/A) do

2 randomly partition X = X U.. U X, 2
3 Arp = {H}

4: for j=1,..., k* do

5 X, ;= Xr; U{0}

i Ly = Sparsificatiun[."{':_j.F..-ﬁ]

T: Ay j := CappedSumset(A,;_1, 2, . L. A)

8: return Sparsification(|J A, .zt A)

In the following section we are going to present a greedy algorithm, which is used as a
special treatment of the case that all items are small, that is maz(X) < A. In this
case, we pick any ordering of X = {x1,...,2,} and let P denote the set of all prefix sums
0,21, %1 + T2, 1 + T2 + 3, ... that are bounded by ¢, i.e. P = {Z/_,2;/0 <j <n}N[t]. We
return a sparsification A of P.

Claim 3.13. P (t,A)-approximates S(X;t).

Proof. Clearly P C S(X;t). Moreover, any s € [0, maz(P)] falls into some interval between
two consecutive prefix sums, and such an interval has length x; for some i. Hence, we have

apxf (s, P)—apx, (s, P) < z; < maz(X) < A.

We now do a case distinction on X(X). If ¥(X) < ¢, then observe that maz(P) = £(X) =
max(S(X;t)). Therefore, the interval [0, max(P)] already covers all s € S(X;t) and we are
done.

Otherwise, if ¥(X) > t, then observe that maxz(P) > t—A, as otherwise we could add the
next prefix sum to P. In this case, for any s € [max(P),t],
apx} (s, P)—apx; (s, P) < t+ 1—maz(P) < A.
In total, every s € S(X;t) has good approximations in P.

From Claim 4.13 and transitivity it follows for A = Sparsification(P, t, A) that A sparsely
(t, A)-approximates S(X;t). We thus proved the following lemma. O

Lemma 3.14. (Greedy). Given integers t,A > 0 and a set X C [t] of size n satisfying
max(X) < A we can compute a set A that sparsely (t,A)-approzimates S(X;t) in time

O(n).

Algorithm 3 Greedy(X,t, A): Givent, A c Mandaset X = {x1...., rn b C [f] with max(X) < A,
we compute a set A that sparsely (f, A)-approximates S(X; ).

L P:={0},s:=0,i:=1

2. while i < n and s +x; <1 do

3 3:=54T;

4 P:=PuU{s}

5 ii=1i+1

i: A:= SBparsification(F,{, A)
7: return A

ol



Recursive Splitting

Afterwards, in the paper they provide a recursive algorithm which makes use of Color Cod-
ing and Greedy. This is actually a simplified version of the algorithms FasterSubsetSum and
ColorCodingLayer from | | adapted to the approximation setting.

Given a set X C N of size n and numbers ¢, A > 0, our goal is to compute a set A that

sparsely (¢, A)-approximates S(X;t). We assume that initially ¢ > 8A. We will use parame-
ters k and 7, which are set before the first call of the algorithm to k := max{8, Clog3(nt/A)}
and 1 :=1/(2log(t/A)). We can assume that X C [t], since larger numbers cannot be picked
for subset sums in [¢].
We partition X into the large numbers X, := XN[t/k, t] and the small numbers Xg := X\ X7.
On the large numbers we compute Ay := ColorCoding(Xp,t,A k), so that Ay w.h.p.
sparsely (¢, A)-approximates S(X;t). We then randomly partition the small numbers Xg
into subsets X1, X, that is, for any z € Xg we choose a number j € {1,2} uniformly at
random and we put = into X; . We recursively call the same algorithm on (X1,¢,A) and on
(X2,t', A) for the new target bound ¢ := (1 +7)t/2 + A. Call the results of these recursive
calls Ay, As. Finally, we combine Ay, AstoAg, and Ag, Ay, to A, by capped sumset computa-
tions. We return A. The base case happens when maz(X) < A, where we run Greedy. Next
we give the pseudocode of this Algorithm.

Algorithm 4 RecursiveSplitting(X,f. A): Given £. A € M and a set X C [t] in sorted order, we
compute a set A that sparsely (t, A J-approximates S{X:1). The parameters k, 5 are set before the
first call of the algorithm to k.= m:u-c{ﬁ.(.*hj-g:l'lirr!f.ﬁ]} and = 1/(2log(t/A)).
I: if max(X) < A then return Greedy (X, 1, A)
Xp:=XnNn[t/k.t], Xg:= X\ X
randomly partition Xs = Xy U X
= (1+9)t/2+ A
Ap = ColorCoding|( X .t ALK
6: Ay := RecursiveSplitting{ X, ¢ A)
7. Az := RecursiveSplitting(Xo. ' A)
8 Ag = CappedSumset|.d;, ds,.f, A)
9. A := CappedSumset( A, As. 1. A)
10 return A

(o IS L I ]

The analysis of this algorithm implies the following lemma.

Lemma 3.15. (Recursive Splitting). Given integers t,A > 0 with t > 8A and a set X C [t]
of size n, we can compute a set A that sparsely (t, A)-approrimates S(X;t) in time

O((n + Tatincons (t/A))log® (nt/ A)).

Correctness

We inductively prove that with high probability for any recursive call of method RecursiveSplitting(X, ¢, A)
the output A sparsely (¢, A)-approximates S(X;t). Note that, as an output of CappedSum-
set, A is clearly A-sparse, and thus we only need to show that A (¢, A)-approximates S(X;t).
Since the recursion tree has total size O(t/A), we can afford a union bound over all recursive
calls. In particular, if we prove correctness of one recursive call with high probability, then
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the whole recursion tree is correct with high probability. Therefore,in the following we con-
sider one recursive call.

In the following we present three more lemmas which complete the proof of correctness of the
approximation algorithm and finish the presentation of the algorithm.

Lemma 3.16. With high probability, there exist t1,t2 € [(14+1)t/2, (14 n)t/2+ A] such that
A(t, A)-approzimates S(Xp;t) ++ S(X1;t1) ++ S(Xa;ta).

Lemma 3.17. Let Sa—sp(Xg;t) be the sparsification of S(Xg;t) given by Lemma 4.7 and let
t = (1+n)t/2. With high probability we have Sa—gp(Xg;t) C S(X1;t) ++ S(Xo3t)

Observation 1. For any partitioning Z = Z1 U Zy we have S(Z1,t) ++ S(Za,t) = S(Z;t).

Lemma 3.18. A with high probability (t, A)-approzimates S(X;t).

Finishing the proof

We show how to use RecursiveSplitting to obtain an approximation scheme for SubsetSum
in time O(n + Tasinconv(1/€)). Note that this proves Theorem 1.1 as well as Corollary 1.2.
Given X,t and € > 0, let OPT := max(S(X;t)). Set A := min{et,t/8} and call the proce-
dure RecursiveSplitting(X, ¢, A) to obtain a set A that w.h.p. (¢, A)-approximates S(X;t).

Claim 3.19. With high probability, we have max(A) > min{OPT, (1—¢)t}.

Proof. Consider apz; (OPT, A) and apz; (OPT, A). Since S(X;t) does not contain any num-
bers in (OPT,t], and A C S(X;t), we have apx (OPT, A) € {OPT,t+1}. If apz; (OPT, A) =
OPT, then A contains OPT, so max(A) > OPT. Otherwise, if apz;” (OPT, A) =t + 1, then
apr, (OPT, A) > apz; (OPT,A)—A > t—¢ct. In particular, maz(A) > (1—¢)t. O

We have thus shown how to compute a subset sum maz(A) with maxz(A) > min{OPT, (1—¢)t}.
It remains to determine a subset ¥ C X summing to max(A). To this end, we retrace the
steps of the algorithm, using the following idea. If a € CappedSumset(A;, Az, ¢, A), then
a € A1 + Ay, and thus we can simply iterate over all a; € A7 and check whether a—a; € Ao,
to reconstruct a pair a; € Ay, as € As with a = a1 + as in linear time. Starting with max(A),
we perform this trick in each recursive call of the algorithm, to reconstruct a subset summing
to maxz(A). The total running time of this algorithm is O((n + Thrincons(1/€))log®(n/e)).
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Chapter 4

SUBSET SUM RATIO Approximation Algorithms

In this chapter, we are going to present two approximation schemes for the SUBSET SUM RATIO
problem. The first is the fastest FPTAS presented up until now with time complexity
O(n*/e) and the second FPTAS is the research contribution of this dissertation which im-
proves upon the time complexity of the previously fastest FPTAS, by achieving complexity

~ . 23 .2 .2
O(min{%75, %5, %5 }).

4.0.1 FPTAS in O(n*/¢)

The centerpiece of this paper is the SUBSET SUM RATIO problem, the optimization version
of EQUAL SUBSET SuM, which asks, given an input set S C N, for two disjoint subsets
S1,59 C S, such that the following ratio is minimized

max{zsiesl Si, Zsj €Sy sj}
min{ZSiESH Si) 28]‘652 8]}

In this paper, the researchers develop a new FPTAS for the SUBSET SUM RATIO problem
which builds on techniques proposed in [D. Nanongkai, Simple FPTAS for the subset-sums
ratio problem, Inf. Proc. Lett. 113 (2013)]. One of the key improvements of our scheme
is the use of a dynamic programming table in which one dimension represents the difference
of the sums of the two subsets. This idea, together with a careful choice of a scaling pa-
rameter, yields an FPTAS that is several orders of magnitude faster than the best currently
known scheme of [C. Bazgan, M. Santha, Z. Tuza, Efficient approximation algorithms for the
Subset-Sums Equality problem.

At first, we present some functions that are defined in the paper which are used throughout
their algorithm.

Definition 1 (Ratio of two subsets) Given a set A = {a1,...,a,} of n positive integers
and two sets S1,S2 C {1,...,n} we define R(S,S2, A) as follows:

Yies @i .
R(Sl, 52’ A) — { ZjESQaj lfSl U SQ 7& @

+00 otherwise

Definition 2 (Max Ratio) Given aset A = {ay,...,a,} of n positive integers and two sets
S1,52 € {1,...,n} we define MR(S1,S2, A) as follows:

MR(S1, 52, A) = max{R(S1, 52, A), R(S2,51,A)}

In the following, it is important to note that in this paper inspired by the restricted version of
SUBSET SUM RATIO that was defined and solved in the paper of D. Nanongkai, they observed
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that one of the restrictions in the restricted version is not necessary, thus a semi-restricted
version of SUBSET SUM RATIO is defined. All the versions of SUBSET SUM RATIO problem
that are we mentioned are defined as follows:

SUBSET SUM RATIO problem (SSR) (equivalent definition). Givenaset A = {a1,...,an}
of n positive integers, find two disjoint sets S1, S2 C {1, ...,n} such that the value MR (S, S2, A)
is minimized. In addition, from now on, whenever we have a set A = {ay, ..., a,} we will as-
sume that 0 < a1 < ag < ... < a, (clearly, if the input contains two equal numbers then the
problem has a trivial solution). The FPTAS proposed by Nanonghai approximates the SSR
problem by solving a restricted version.

Restricted Subset-Sums Ratio problem . Given a set A = {ay,...,a,} of n positive
integers and two integers 1 < p < ¢ < n, find two disjoint sets S1,S2 C {1,...,n} such that
{maxS1, maxSs} = {p,q} and the value MR(S1, S2, A) is minimized. Inspired by this idea,
they define a less restricted version. The new problem requires one additional input integer,
instead of two, which represents the smallest of the two maximum elements of the sought
optimal solution.

Semi-Restricted Subset-Sums Ratio problem . Given a set A = {ay,...,an} of n
positive integers and an integer 1 < p < n, find two disjoint sets S1,S2 C {1,...,n} such
that mazS) = p < maxSy and the value MR(S], S2, A) is minimized. Let A = {ay,...,an}
be a set of n positive integers and p € {1,...,n—1}. Observe that, if ST, S5 is the optimal
solution of SSR problem of instance A and SY, S} the optimal solution of Semi-Restricted
SSR problem of instance A, p then: MR(S1, 55, A) = minpeq1,..n 1}/\/172(5{’, SP, A) .Thus,
we can find the optimal solution of SSR problem by solving the SSR Semi-Restricted SSR
problem for all p € {1,...,n—1}.

Pseudo-polynomial time algorithm for Semi-Restricted SSR problem Let the A, p
be an instance of the Semi-Restricted SSR problem where A = {aq,...,a,} and 1 < p < n.
For solving the problem we have to check two cases for the maximum element of the optimal
solution. Let S7,5; be the optimal solution of this instance and maxzS; = q. We define
B = {ali > p,a; < ¥j_ja;} and C = {aj|la; > ¥¥_,a;} from which we have that either
aq € B or a; € C. Note that A = {a,...,a,} UBUC.

Case 1 (a; € C). It is easy to see that if a; € C, then a; = minC and the optimal
solution will be (S1 = {1,...,p},S2 = {¢}). We describe below a function that returns this
pair of sets, thus computing the optimal solution if Case 1 holds.

Definition 2. (Case 1 solution). Given a set A = {ay,...,a2} of n positive integers and an
integer 1 < p < n we define the function SOL1(A,p) as follows:

_ [ ({1, p}, {minCY}) ifC #0
S0k = { (0,0) otherwise

where C = {a;|a; > 2?:1%‘}
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Case 2(a, € B). This second case is not trivial. Here, we define an integer P and
m = maxz{jla; € A\C} and a matrix T', where T'[¢,d],0 < i < m,—2-X7_ ap <d < 3V_ ay,is
a quadruple to be defined below. A cell T[4, d] is nonempty if there exist two disjoint sets S1, Sa
with sums sum;i, sumg such that sum;—sums = d, maxS; = p, and S1US2 C {1, ...,i} U{p};
if i > p, we require in addition that p < maxSs. In such a case, cell T'[i,d] consists of the two
sets S, Sa, and two integers max(S1US2) and sumi + sums. A crucial point in this algorithm
is that if there exist more than one pairs of sets which meet the required conditions, they
keep the one that maximize the value sum, + sums for convenience, they use a function to
check this property and select the appropriate sets. The algorithm for this case (Algorithm
1) finally returns the pair Si,S2 which, among those that appear in some T'[m,d] # ), has
the smallest ratio M R(S7, S2, A).

Definition 3. (Larger total sum tuple selection). Given two tuples v = (S1,52,¢,x) and
ve = (51, 5%, ¢',2") we define the function LTST (v1,v2) as follows:

vg v =0z >
vy otherwise

ETST(Ul,Uz) = {

Algorithm 1 Case 2 solution [SOLz(A. p) function]

Input: a strictly sorted set A = {a;,..., .}, a; € Z1, and an integer p, 1 < p < n.
Output: the sets of an optimal solution for Case 2.

1: 8] 0, 5, « @

22 Q«3}F a, m+ max{i|a; <Q}

3: if m > p then

4: forallic {0.....m}, de{-2-0Q,..., J} do

A Tli.d «— @

G: end for

T T0,a,] + ({p}. 0. p.ay)  p € 5 by problem definition
& for i + 1 to m do

9: if ¢ < p then
10: for all T[i — 1,d] # @ do
11: (51, 58z,q.x) «— T[i —1,d]
12: Tli,d] «+ LTST(T[i.d], T[i — 1.d])
13: Tli,d+ ai| +— CTST(T[i, d + ai], (51U {i}, G2, 9, + ai))
14: Tli,d —ai| +— CTST(T[i,d — ai], (51,52 U {i}, g, + ai))
15: end for
16: else if i = p then = p is already placed in 51
17: for all T[i — 1,d] # @ do
18: Tli,d] + T[i — 1.4
19: end for
20: else
21: for all T[i — 1.d] # 0 do
22 (81, 8z,q,7) « T[i — 1,4
23: ifi >p+1then
24: Tli.d] « LTST(T[i,d).T[i — 1,d])
25: end if
26: if d—a; = —-2-0 then
a7 Tli.d —a;] « LTST(T[i,d —a;], (5, S U {i}, i,z + a;))
28: end if
29: end for
30 for all T[p,d # @ do
31 (51, 82,q, 1) « T[p,d]
32: if d—a; = —2-0 then
33 Tli,.d —ai]l « LTST(T[i,d — a:], (51,82 {i}, i,z + a:))

57



34 end if

35: end for

36: end if

3 end for

3&: for d + —2-0) to () do

39: (81,82, 9,x) + T[m,d]

40: if MRS58, 4) < MR(S5],55, A) then
41: 8]+ 51, 85— 55

42: end if

43: end for

44: end if

45: return 57, 55

Next, we present the complete algorithm for Semi-Restricted SSR (Algorithm 2) which
returns the best of the two solutions obtained by solving the two cases. The complexity of
the algorithm 2 is O(n - Q), where Q = X!_, ;.

Algorithm 2 Exact solution for Semi-Restricted SSR [SOL..(A. p) function]

Input: a strictly sorted set A = {a;,....a,}, a; € Z1, and an integer p, 1 < p < n.
Output: the sets of an optimal solution of Semi-Restricted S5R.

1: (51, 52) — SOL(A, p)

2: (8], 83) — SOL2(A, p)

3: if MR(51,52.4) < MR(S5], 55, A) then

4 return 51, Sz

5 else

6: return 57, S5

7 end if

FPTAS for Semi-Restricted SSR and SSR  Algorithm 2, which we presented at Section

3, is an exact pseudo-polynomial time algorithm for the Semi-Restricted SSR problem. In
order to derive a (1 + ¢)-approximation algorithm we will define a scaling parameter § = Egi;
which we will use to make a new set A’ = {a},...,a},} with a; = [%]. The approximation
algorithm solves the problem optimally on input (A’,p) and returns the sets of this exact
solution. The ratio of those sets is a (1 +¢)-approximation of the optimal ratio of the original
input.

Algorithm 3 FPTAS for Semi-Restricted SSR [SOL,,.(A. p, £) function|

Input: a strictly sorted set A = {a1,..., an}, @i € L7, an integer p, 1 < p < n, and
an error parameter = € (00, 1).

Output: the sets of a (1 + =)-approximation solution for Semi-Restricted S5RH.

oy g =

A+

: for i + 1 ton do
a; + | %]
A"+ AU {al}

end for

2 (8, 8:) + SOL.. (A p)

return 5, 55

an
o

:':F.

Proof of correctness In this section, we will present the proof that this approximation
scheme, actually approximates the optimal solution by a factor (1 + ¢).
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Let S4,Sp be the pair that the Algorithm 3 returns, on input A = {ay,...,a,},p and €
and also (ST, S3) the optimal solution of the instance.

Lemma 4.1. For any S € {Sa,SB,S7,55}

Zai—n-(SSZé-a;SZai (4.1)

€S €S i€S
€
n*éggxai (4.2)
€S
Proof. For 4.1 notice that for all i € {1,...,n} we define a; = §. This gives us

@ .
§—1<a <§ — q;—0<6d-a; <a;

In addition, for any S € {S4, Sp, 57, S5} we have |S| < n, which means that
Socns< Y6 <Ya
€S €8 ies

For 4.2 observe that maxzS > p for any S € {SA,SB,St,S;}. By this observation, we can
show the second inequality
€
<5 2
es

O]
Lemma 4.2. MR(S4,Sp,A) < MR(Sa,SB,A") + 5
Proof.
R(S4. S5, A) < D ics, Wi < Sies, 0 di+dn
2jesp 2iesp 4
< D iesa @ n do-n
T D iesp @ Doiesy Y
< MR(Sa, S5, 4) + <
The same way we have
R(Sa,Sp,A) < MR(Sa,SB,A") + =
Thus we completed the proof. ]

Lemma 4.3. For any ¢ € (0,1), MR(S},S5,4") < (1+5) - MR(S}, S5, A).

Proof. If R(S7,55,A") > 1, let (S1,S2) = (S7,55), otherwise (S1,S52) = (53,57). Then it
holds that

* Q¥ _ _ Ziesl a;
MR(S],55,A) =R(S1,5,A) = =——
2 jes: 4
< Eie& @
N EjESQ a’j —n- 5

_ 2ics, % ) 2ics, i
ZjGSQ aj—mn-o ZjGSQ aj
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n-o . 21651 a;
ZJ'GSz aj—n-o ZjeSg aj

Because Sy € {S7, 55}, by 4.2 it follows that

= (14

1 . Zi€sl a;

MR(S*,S*,A/) < (14 )
b g -1 ZJ'€S2 a;j

€ ) . ZiGSl a;

. a;
< (1 + E) . @
2 ZjESQ aj

< (142)- MR(S{, S5, 4)
This concludes the proof. O

In the following, the researchers state the next theorem, which proves that Algorithm 3
is an (1 4 ¢)—approximation algorithm.

Theorem 4.4. Let Sa,Sp be the pair of sets returned by Algorithm 38 on input (A =
{a1,...;an},p,e) and Sy, S5 be an optimal solution, then:

MR(SA7SBvA) < (1 +€) : MR(STNSS?A)

Proof.
MR(S5,Sa, A) < MR(S4, Sp, A') + %

gMR(Sf,S;,A’)+§
€ . €
S (1 + 5) ' MR(517‘927A) + §

< (1+¢)  MR(S}, S5, A)
O

Finally, in order to show that the constructed algorithm is an FPTAS it must hold that
the complexity of Algorithm 3 is O(poly(n,1/¢)). As we described above the complexity of
this algorithm is O(n - Q) where @ = Y, al. Thus, by the definition of the scaled items a]
it follows,

2

P
n-a 3n
i=1

which means that the complexity of Algorithm 3 is O(n3/e).
In conclusion, it is sufficient to perform n — 1 executions of the Algorithm i.e. solving the

Semi-Restricted SSR problem and return the the best of the solutions. Therefore, the result
is summarized in the next theorem.

Theorem 4.5. The above described algorithm is an FPTAS for SSR that runs in O(n*/e)time.
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4.0.2 Establishing a connection between SSR and SUBSET SuM and
formulate an FPTAS of time O(mm{ e 53, o })

In this section, We present a new FPTAS for the SUBSET SUM RATIO problem, which, given
a set of integers, asks for two disjoint subsets such that the ratio of their sums is as close to
1 as possible. Our scheme makes use of exact and approximate algorithms for the closely re-
lated SUBSET SUM problem, hence any progress over those—such as the recent improvement
due to Bringmann and Nakos [SODA 2021]—carries over to our FPTAS. Depending on the
relationship between the size of the input set n and the error margin €, we improve upon the
best currently known algorithm of Melissinos and Pagourtzis [COCOON 2018] of complexity
O(n*/e). In particular, the exponent of n in our proposed scheme may decrease down to 2,
depending on the SUBSET SUM algorithm used. Furthermore, while the aforementioned state
of the art complexity, expressed in the form O((n + 1/¢)¢), has constant ¢ = 5, our results
establish that ¢ < 5.

In particular, a restricted version of SUBSET SUM RATIO is being solved. We will present a
fully polynomial time approximation scheme, which successfully approximates those solutions
that involve large subset sums. Specifically, consider A = {ay,...,a,} the sorted input set
and a given error margin € € (0,1). Then, the FPTAS presented in this section will consider
the problem of finding two disjoint subsets of minimum ratio of subset sums.

Outline of the algorithm

We now present a rough outline of the presented algorithm, along with its respective pseu-
docode:

At first, we search for approximate solutions involving exclusively large elements from

L(A,¢).

e To this end, we produce all the subset sums formed by these large elements. If their
number exceeds n/e2, then we can easily find an approximate solution.

e Otherwise, for each of the produced subsets, we find its corresponding &’-close set, for
some appropriate ¢’ defined later.

e We prove that it suffices to consider only these pairs of subsets when searching for an
approximate solution, irrespective of whether the solution contains small elements. In
the case that it indeed does, we can efficiently add small elements to the &’-close pairs
in a greedy way.

e This procedure successfully approximates the optimal solution for SUBSET SuM RATIO,
with the additional constraint that at least one of the solution subsets has sum of its
large elements at least a,,.
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Algorithm 1 ConstrainedSSR(A, =, T')

Input : Sorted set A = {a1,..., an }, error margin £ and table of partial sums T
Output : (1 4 =)-approximation of the optimal solution respecting the constraint.

1: Partition Ato M ={a; € A |ay <z-a,tand L={a; € A |a; ==z -a,}.

2: Split interval [0,n - a,] to n/=? bins of size £ - a,,.

3: while filling the bins with the subset sums of L do

4: if two subset sums correspond to the same bin then
b return an approximation solution based on these. b O(n/s?) complexity.
G: end if
7: end while
& 28 = /e = |L| < log(n/?).

9: for each subset in a bin do b {')['i-t,a":':rj subsets.
1i: Find its £'-close set. t Complexity analysis in Section .
11: Add small elements accordingly. - O(logn) complexity, see Subsection 3.35.
1Z: end for

4.0.3 Regarding only large elements

We firstly search for an (1 + ¢)-approximate solution with e € (0, 1), without involving any
of the elements that are smaller than € - a,,. Let M = {a; € Ala; < €-ay,} be the set of small
elements and L = A\ M = {a; € Ala; > ¢ - a,} be the set of large elements.

After partitioning the input set, we split the interval [0, n-a,] into smaller intervals, called
bins, of size [ = &2 - a,, each, as depicted in figure 4.1.

0 e“ay e (n—e¢
1

Figure 4.1: Split of the interval 0,7 - a, to bins of size I.

Thus, there are a total of B = n/e? bins. Notice that each possible subset of the input set
will belong to a respective bin constructed this way, depending on its sum. Additionally, if
two sets correspond to the same bin, then the difference of their subset sums will be at most
L.

The next step of our algorithm is to generate all the possible subset sums, occurring from
the set of large elements L. The complexity of this procedure is O(2/X), where |L| is the
cardinality of set L. Notice however, that it is possible to bound the number of the produced
subset sums by the number of bins B, since if two sums belong to the same bin they constitute
a solution, as shown in Lemma 4.6, in which case the algorithm terminates in time O(n/e?).

Lemma 4.6. If two subsets correspond to the same bin, we can find an (1+¢)-approximation
solution.

Proof. Suppose there exist two sets L1, Lo C L whose sums correspond to the same bin, with
¥(L1) < X(L2). Notice that there is no guarantee regarding the disjointness of said subsets,
thus consider L} = L1 \ Ly and L}, = Lo \ Ly, for which it is obvious that 3(L}) < X(Lj).
Additionally, assume that L} # (). Then it holds that
S(Ly) = B(Lh) = B(Lg) — B(L1) <1
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Therefore, the sets L) and L/, constitute an (1 + £)-approximation solution, since

! /

Z(L/Q) g E(Ll),+l . l,
Y(LY) B(LY) Y(LY)
2
<1429 4.
c-ap

where the last inequality is due to the fact that L] C L is composed of elements > ¢ - ay,
thus X(L)) > ¢ - ap.

It remains to show that L} # (. Assume that L} = (). This implies that L; C Ly and
since we consider each subset of L only once and the input is a set and not a multiset, it
holds that L1 C Ly = L/, # (). Since L; and Ly correspond to the same bin, it holds that

S(Lo) — B(Ly) <1 = S(L,) - S(L)) <1 = X(L}) <1

which is a contradiction, since L} is a non empty subset of L, which is comprised of elements
greater than or equal to ¢ - a,, hence (L) > ¢ - a, > e a, =1, since ¢ < 1. ]

Consider an ¢’ such that 1/(1—¢’) < 1+¢ forall e € (0, 1), for instance ¢’ = £/2 (the exact
value of ¢ will be computed in Section 4.2). If every produced subset sum of the previous
step belongs to a distinct bin, then, we compute their respective &’-close sets, as described in
Section 77. We can approximate an optimal solution that involves exclusively large elements
using these pairs.

Before we prove the previous statement, observe that, if the optimal solution involves sets
Ly, Ly C L composed only of large elements, where ¥(L1) < ¥(Lg), then 3(L1) = X(La,),
where Ly is a closest set of Lo, with respect to the set L\ Lo.

Lemma 4.7. If the optimal ratio v involves sets consisting of only large elements, then there
exists an €’'-close pair with ratior < (1+¢)-r.

Proof. Assume that the sets ST, S5 C L form the optimal solution (S5, S7) and % =r>1
is the optimal ratio. Then, as mentioned, it holds that %(S}) = (S5 ). For each set of
large elements, there exists an &’-close set and a corresponding &’-close pair; let (S5, S; /) be
this pair for set S5. Then,

2(83) = B(ST) = X(85) = £(S5.) = (1 —€') - 2(57)
Thus, it holds that

(83) 1 X(SY)
LSS ST 58

<(14¢)-r

O]

Therefore, we have proved that in the case where the optimal solution consists of sets
comprised of only large elements, it is possible to find an (1 4 ¢)-approximation solution.
This is achieved by computing an &’-close set for each subset L; C L belonging in some bin,
using the algorithms described in the preliminaries, with respect to set L \ L; and target
Y(L;). The total cost of these algorithms will be thoroughly analyzed in Section 4.2 and
depends on the algorithm used.

It is important to note that by utilizing an (exact or approximation) algorithm for
SUBSET SuM, we establish a connection between the complexities of SUBSET SUM and ap-
proximating SUBSET SUM RATIO in a way that any future improvement in the first carries
over to the second.
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4.0.4 General (1 + ¢)-approximation solutions

Whereas we previously considered optimal solutions involving exclusively large elements, here
we will search for approximations for those optimal solutions that use all the elements of the
input set, hence include small elements, and satisfy our constraint. We will prove that in
order to approximate those optimal solutions, it suffices to consider only the &’-close pairs
corresponding to each distinct bin and add small elements to them. In other words, instead
of considering any two random disjoint subsets consisting of large elements! and subsequently
adding to these the small elements, we can instead consider only the pairs computed in the
previous step, the number of which is bounded by the number of bins B = n/c2. Moreover,
we will prove that it suffices to add the small elements to our solution in a greedy way.

Since the algorithm has not detected a solution so far, due to Lemma 4.6 every computed
subset sum of set L belongs to a different bin. Thus, their total number is bounded by the
number of bins B, i.e.

(ﬁ

L n
2lfl < 52) — |L] Slog(gj)-

We proceed by involving small elements in order to reduce the difference between the sums
of ’-close pairs, thus reducing their ratio.

Lemma 4.8. Given the &'-close pairs, one can find an (1 + €)-approzimation solution for
the constrained version of SUBSET SUM RATIO, in the case that the optimal solution involves
small elements.

sketch. Due to page limitations, we only give a short sketch of the proof here; the full proof
is deferred to the appendix.

Let S7 = L7 U M and S5 = L3 U M3 be disjoint subsets that form an optimal solution,
where 3(S7) < 3(S5), L7, L5 C L and M, M5 C M.

For 3(L7) < X(L3) (respectively X(L3) < X(L7)), we show that is suffices to add an
appropriate subset M C M to L;E, (respectively L’is,) in order to approximate the optimal

solution r = LS%), where My = {a; € M|i € [k]} and k < |M].

EH)
Therefore, by adding in a greedy way small elements to an &’-close set of the set with the
largest sum among L] and L3, we can successfully approximate the optimal solution. O

Adding small elements efficiently.

Here, we will describe a method to efficiently add small elements to our sets. As a reminder,
up to this point the algorithm has detected an &’-close pair (Lg, L1), such that Ly, Ly C L
with ¥(L;) < 3(Lg). Thus, we search for some k such that 3(L; U M) < 3(L2) + € - an,
where M}, = a; € Mi € [k]. Notice that if (M) > ¥(Lg) — X(L1), there always exists such a
set My, since by definition, each element of set M is smaller than €-a,,. In order to determine
M., we make use of an array of partial sums T'[k] = 3(My), where k < |M|. Notice that T
is sorted; therefore, since T is already available (see Final Algorithm), each time we need to
compute a subset with the desired property this can be done in O(log k) = O(logn) time.

4.1 Final Algorithm

The algorithm presented in the previous section constitutes an approximation scheme for
SUBSET SUM RATIO, in the case where at least one of the solution subsets has sum of its
large elements greater than, or equal to the max element of the input set. Thus, in order

! Note that the number of these random pairs is 3Ll
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to solve the SUBSET SUM RATIO problem, it suffices to run the previous algorithm n times,
where n depicts the cardinality of the input set A, while each time removing the max element
of A.

In particular, suppose that the optimal solution involves disjoint sets S} and S5, where
ar, = max{S7 U S;}. There exists an iteration for which the algorithm considers as input
the set Ay = {ai1,...,ax}. In this iteration, the element ay is the largest element and the
algorithm searches for a solution where the sum of the large elements of one of the two subsets
is at least ag. The optimal solution has this property so the ratio of the approximate solution
that the algorithm of the previous section returns is at most (1 + ¢) times the optimal.

Consequently, n repetitions of the algorithm suffice to construct an FPTAS for SUBSET SuM RATIO.

Notice that if at some repetition, the sets returned due to the algorithm of Section 77
have ratio at most 1 + ¢, then this ratio successfully approximates the optimal ratio r > 1,
since 1 +¢& < (1 +¢) - r, therefore they constitute an approximation solution.

Algorithm 2 55R( 4. =)

Input : Sorted set A = {a,,..., d, } and error margin =.
Output : (1 4 z)-approximation of the optimal solution for SUBsSET SumM RaTio.

1: Consider table T such that T[k] = E':;I ;. = &(n) time.
2Zfori=n.....1do

3 ConstrainedSSR({a1, ..., ai}.z, T)

4: end for

4.2 Complexity

The total complexity of the final algorithm is determined by three distinct operations, over
the n iterations of the algorithm:

1. The cost to compute all the possible subset sums occurring from large elements. It
suffices to consider the case where this is bounded by the number of bins B = n/e2,
due to Lemma 4.6.

2. The cost to find the &'-close pair for each subset in a distinct bin. The cost of this
operation will be analyzed in the following subsection.

3. The cost to include small elements to the ¢’-close pairs. There are B ¢’-close pairs, and
each requires O(logn) time, thus the total time required is O(Z; logn).

4.2.1 Complexity to find the <'-close pairs
Using exact SUBSET SUM computations.

The first algorithm we mentioned is a standard meet in the middle algorithm. Here we will
analyze its complexity.

Let subset L' C L such that |L'| = k. The meet in the middle algorithm on the set L\ L’

costs time
/ /
o <|L\2L| .2L\2L>'

Notice that the number of subsets of L of cardinality k is ('i') and that |L| < log(n/e?).
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Additionally,

|L] |
|L| =k |Ll =k _ ip2 L ke LIk
Z(k 2 y =2 ()2 2
k=0 k=0
<o L S (12 gar
- 2 = k

Furthermore, let ¢ = (14 271/2), where logc = 0.7715... < 0.8. Due to Binomial Theorem, it
holds that

ZLE <‘L|> . 2fk/2 — (1 + 271/2)|L\ — C\L\ < clog(n/sz) — (n/EZ)logc

k=0 k -
Consequently, the complexity to find a closest set for every subset in a bin is

0@ L je2yose) = 0((nfe2)172 tog(n/=%) - (nfe?))

n1.3

= 055 +log(n/e)

Using approximate SUBSET SUM computations.

Here we will analyze the complexity in the case we run an approximate SUBSET SUM algo-
rithm.
For subset L; C L of sum ¥(L;), we run an approximate SUBSET SUM algorithm (| ,
|), with error margin &’ such that

<1 — <
= +e €_1+€

By choosing the maximum such &', we have that
/ € 1

1
T a0

9

Thus, if we use for instance the approximation algorithm? presented at | |, the complex-
ity to find an &’-close set for every subset in a bin is

O(E : min{|L|

> L+ g Tog(1/2)}) =

(e)?
n |L|

0(6—2 . min{?7 |L| + 8% -log(1/e)}) =

8/

O(ﬁ - min{ 710g(n/€2)

= og(n/=%) + = log(1/e)})

4.2.2 Total complexity

The total complexity of the algorithm occurs from the n distinct iterations required and
depends on the algorithm chosen to find the £’-close pairs, since both of the presented algo-
rithms dominate the time of the rest of the operations. Thus, by choosing the fastest one
(depending on the relationship between n and ¢), the final complexity is

n2.3 n2 n2 1
O(min{ 55 -log(n/s*), 5 -log(n/e*), 5 (log(n/=*) + — -log(1/¢))})

* Of complexity O(min{2,n + = -log(1/e)}) for n elements and error margin €.
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Chapter 5

Conclusions and future research directions

We conclude that there is an increasing interest in approximation algorithms for knapsack
type problems (fair allocation of goods) and also we manage to produce an FPTAS that
has two main benefits. The first is that it is faster than all of the previously presented
approximation schemes for SUBSET SUM RATIO and also if we express the time complexity in
the form O((n+ 1/¢)¢) where ¢ > 0, we show that SUBSET SUM RATIO can be approximated
with ¢ < 5 whereas the previous faster FPTAS achieved ¢ = 5. Secondly, we establish
a connection between SUBSET SUM RATIO and approximating SUBSET SUM which leads to
the following: Any improvement in the complexity of approximating SUBSET SUM can be
immediately transferred to our scheme, thus connecting the complexities of the two problems,
even the fact that they are very close there was no similar result up until now.

Furthermore, we suggest that a possible future research direction could be to utilize
faster exact algorithms such as the ones presented in the papers | | and | |
where the researchers used a concentration parameter 5 and they solved the decision version
of SUBSET SUM thus it is interesting to check whether analogous setting and arguments can
solve the optimization version faster.

Additionally, another interesting future research direction is to study the Weak Approx-
imation Version of SUBSET SUM as stated in | | which seems to provide amazing im-
provement for the closely related PARTITION problem. This implies, that it may provide
further improvements to approximating SUBSET SUM and SUBSET SUM RATIO by relaxing
the approximation constraints and utilize it in order to compute faster the e—close sets.

Finally, there is also another application on fair allocation of goods in people’s network
where their utility function for the goods is additive and also they have the same value for each
good. In this case, we improve the complexity for the minimization of envy-ratio allocation
problem.

All of the above, show that the improvements suggested in this dissertation are important
and also pinpoint the need for further research on the SUBSET SUM and SUBSET SUM RATIO
problems.
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