g
£9
™

nvpPopos

Ell

POMHOEVS

F;
G

EONIKO METXOBIO IIOAYTEXNEIO

>XOAH HAEKTPOAOT'QN MHXANIKQN KAT MHXANIKQN YITOAOTTXTOQN
TOMEAY. TEXNOAOITAY ITAHPO®OPIKHY. KAI YITOAOTTETOQN

AIIIAQMATIKH EPT'AXIA

A Novel Reconfigurable Out-of-Order
GPU Microarchitecture with Runtime

Workload Characterization

Zvyypapéag: EmipAéncov:
[Movaywwtng-EAevdéprog AnpnTpLog XovvTpng
EAevdepdnng Kadnyntrg

EPTAYXTHPIO MIKPOYIIOAOITETOQN KAI YHOIAKQN XYSTHMATON

21 Moaprtiov 2023

il

1EXNEIO,\,
\N RTA
G W

o".‘y

’ '\,o N
weEvs
El

VP$oPpos

‘I\

3 2
npom

n

A\l

Sl

EONIKO METXOBIO IIOAYTEXNEIO

>XOAH HAEKTPOAOT'QN MHXANIKQN KAI MHXANIKQN YITOAOTI'TETOQN
TOMEAX TEXNOAOITAY ITAHPOPOPIKHY KAI YIIOAOTI'TETON
EPTAYTHPIO MIKPOYIIOAOTTETQOQN KAI YHPIAKON XYY THMATON

AITITAQMATIKH EPTAYIA

A Novel Reconfigurable Out-of-Order GPU
Microarchitecture with Runtime Workload

Characterization

Jvyypapéag: EmpAéncv:
[Movayiwtng-EAevdéprog Anpntprog Xovvtpng
EAlevdeponng Kadnyntng

Eyxpidnue amod v tpipedn) e€etaotinn emtpomnt) tnv 21n Maptiov 2023.

(Ymoypagr) (Yroypaprj) (Ymoypagrj)
Anpntprog Zovvtpng Mavayiwodtng Toavinog JoTrplog Z0ong
Kadnyntig Kadnyntig AvamtAnpotng Kadnyntig

21 Moaprtiov 2023

IIvevpotind Auwotopoto

Copyright © EAevdepdung Havayiotng-EAevdéprocg, 2023.

Me empOAagn mavtog Suonmdpartog. All rights reserved.

Antayopebetal N avitypo@r], oI xrevon xat Stxvoun Tng Tepovoag epyaciog, €€
0AOXANPOL 1] TUANATOG KUTNG, YA EUTOPKO oxomd. Emurpémeran n avatdnwon,
ATOINAEVOT] HAL SLAVOHT] YL OHOTO HI] REPOOOHOTINO, EXTALOEVTIXNG 1] EPELV-
NTwnNg @UoNG, LTO TNV TPOVTOIECT] VO AVAPEPETAL 1] TNYT] TPOEAEVOTG KO VO
Swatnpeitat o Tapov pipvopa. Epotipata mov a@opodv tn xprion tng epyaciog

Y1 #EPSOGHOTINO GHOTO TPEMEL VA ATELIVVOVTAL TPOG TOV CUYYPAPECL.

Ot TOYPELG KOL TOL GUPUTEPACHOALTO TOV TEPLEXOVTAL GE XVTO TO £YYPOPO ExPPALOLV
TOV GUYYPAPEX RO JEV TPETEL VO EPUTVEVTEL OTL AVIITPOCOTEVOVV TIG ETICTHEG

déoerg Touv Edvinot Metoofrov IToAvteyveiov.

Yroypopn:

Hpepopnvia:

vii

Edvid Metoofio ToAvteyveio

Iepiinyn

Topéag Texyvoroyiog ITAnpogopung ko Yroroylotov
YxoAn HAextpordywv Mnyaviuov xar Mnyavindv YToloylotov

Authopatnn Epyooia

A Novel Reconfigurable Out-of-Order GPU Microarchitecture with Runtime
Workload Characterization

tov [Tovayudtn-EAevdéprov EAevdepdun

>t obyxpovn emoxmn, dedopévng Tng amoTeAHATwoNG Tov vopov Tov Moore, 1 avénon
NG vtoAoylo TG emidoong mpoxvmtel omtd tn palinf mapalinAio ko tnv e€eldinevon Tov
VAWV, Me v xatdppevon g ¥Apduwong tov Dennard ko tnv éAeven tng "Emoxng Tov
o1OTEWVOL TTUPLTIOL" KoHoToTOL averyrarla 1) VPNAT] evepyetont] artddooT) 6Tovg ene€epyaoTéG.
Y& qLTO TO TAXLGLO, OL ETEPOYEVELG KL OL AVAILXHOPPOCLEG OPYLTEUTOVINEG £XOLV avadeLyDel
WG EVEMUTEC TTPOCEYYIOELS VIO TNV ETITEVEN TOV TAPATAVE® GTOXWV.

To 1dn mpotadév oxnpa extéeong Light-weight Out-of-Order GPU (LOOG) avtyetwmilel
TN OTACLHOTN T G€ eidoaT) oL Yapontnpilel pia xotnyopia epappoydv GPU yevinod oxomoo,
oUPTANpOVOVTAG TNV TTopadoctaxy aglomoinon tng moporiniiag emmédov vrjpatog (TLP)
xoL TG ypnyopng evadloyng mepipadrovrog g GPU, pe tnv expetdAAevon tng eyyevong
mopariniiog emmédouv evtoddv (ILP) avtdv twv epappoyodv. Kadog amotelel tn Paon tng
ToPOVONG EPYOGLNG, TO VAOTOLODHE GTNV TTL0 TPOGPath éxdoon tov Accel-Sim, evog mAatsiov
npocopoiwong GPU nov Baciletal oto povtélo enidoong tov GPGPU-Sim, evog mpocopolwt
enidoong GPU o enimedo xdxAov.

‘Exovtag mpooappdoer to LOOG oe pioe mAat@dppa vynAig vmoloylotnrg enidoong
(NVIDIA Quadro GV100, mov tpogodoteital amd tn pixpoapyttextovinr] Volta) pe tn cworth
LG TAGLOAOYNOT) TV SOHDV TOV, TNV EPAPHOYT EVOS SUVOHULKOD HIXOVIGHOD AVOSLAPOPPWOTG
TOUL PLIHLETIHOD SLOAOL EVTOAGDV KaL TN PBEATIOTN SLapdpPwon Twv ototyeiwv front-end tng
GPU, cuAAéyovpe AeTTTOUEPT] OTATIOTIMA CTOLYELX YL T GTHELX GUHPOPNONG TNG APYLTEXTO-
v o€ 7 6OVOAX pHeTpoTtpoypappdtwv ot 100 epappoyég (CUDA kernels).

O avadvOpEVOS XOPOUTNPLOHOG TWV EQUPUOYDOV HOL 1] HEAETT) TWV XOPAXTIPLOTILOV TOVG
mov mtpoPAémovv v emtdyvvon oto LOOG, e cuvdLaoPO pe TNV AVAALOT) TNG HALHOKW-
owotnTag Twv ototyeiwv LOOG and apyltextoviun dmoyr), mopoxivel tnv a€loAdynomn pog
HAOOVPEVNG, avadiapopaoipung puxpoopytrextoviung GPU extdg oelpag, n omoia xepiletonn
HATAAANAa TOGO eQapPOYEG TTOL FewpolvTal evaicdnTeg 670 LOOG 660 1o YeVirég epoappoyEG,
ylot T peylotonoinon tng enidoong 1) tng evepyelaxig addoong.

H avadiopoppooyn piepoapyttextovinr] ololoyeiton Vo dLpopeTind CYNHATE KL €-
Tinedo avadLpHOPPWONG, GUHTEPIAAUPAVOIEVOL €VOG EAEYHTH QVASLOHOPPWONG ETLTESOV
HAONG GLVAPTNOTG GTO LAKO, XPTCLHOTOLOVTOG HETPNTEG EMLOO0EWMY KT T SLAPHELD TNG €-
ntéleong ylox Tnv poPAreyn tng PeAtivong enidoong NG epappoynG o€ EXTENECT) EXTOG GELPAC.
Mo ot xhponwpévn dtoapoppwon LOOG mapéyel emttayvvon 1,48 yio yeviuég epappoyEg
no petwon tng exhvopevng evépyelag xota 13,7% oe abyupion pe n Paocwer) apyirextoviur). H
avodLapopPwor) pe 0dnyleg AOYLOHIXOD KO 1) XPTOT) TOL EAEYXTT] LALKOD PITOpoDV Vo ToPEXOLY
TNV 8la eMTAYVVOT OTAV aTtaLTeLTAL KL £XOVLV TN dLVATOTNTA Vo PEATLOGOUVV TNV eVepPYELoK
anodoon oe oxéon pe tn Paonn apyitextovinn kot 22,4% won 19,5% avticTorya.

AgEerg nherdud: GPU Teviot Zxomo0, YYnAn Yroloyiotwer) Enidoot, Avadiopop@adotjeg
Apyrtentovinég, opoariniia emumédov evroing, Extog Zeipdg Apyitentovinn, HoapAdAinia
Yvotnparta, Evepyelonr) At6doon Yrodoyiopot, Movtelomoinon xot IIpocopoinon.

ix

National Technical University of Athens

Abstract

Division of Computer Science

School of Electrical And Computer Engineering
Diploma Thesis

A Novel Reconfigurable Out-of-Order GPU Microarchitecture with Runtime

Workload Characterization

by Panagiotis-Eleftherios ELEFTHERAKIS

Since the breakdown of Moore’s law, high processor performance has been driven by
Massively Parallel Processing and hardware specialization. The halt met by Dennard’s scal-
ing and the advent of the "Dark Silicon Era" necessitate energy-efficient computing. In this
context, heterogeneous architectures and reconfigurable computing have emerged as flexible
approaches for achieving the above goals.

Meanwhile, the previously proposed Light-weight Out-of-Order GPU (LOOG) execution
scheme addresses the performance stagnation met by a class of general-purpose GPU work-
loads, by complementing the traditional TLP leveraging and fast context switching of the
GPU, with exploitation of the inherent Instruction Level Parallelism (ILP) of these workloads.
As it constitutes the backbone of this thesis, we implement it in the most recent version of
Accel-Sim, a GPU simulation framework that provides modelling of recent high-end NVIDIA
GPU architectures, built around the performance model of GPGPU-Sim 4.1.0, a cycle-level
GPU performance simulator.

Having accommodated LOOG on an HPC-relevant platform (NVIDIA Quadro GV100,
powered by the Volta microarchitecture) by right-sizing its structures, implementing a dy-
namic Instruction Buffer reconfiguration mechanism and optimally configuring GPU pipeline
front-end components, we collect detailed architecture bottleneck statistics across 7 bench-

mark suites and 100 CUDA kernels. o
The emerging application characterization and the study of workload characteristics that

predict speedup on LOOG, paired with a scalability analysis of LOOG components from an ar-
chitectural standpoint, motivates the assessment of a Scalable, Reconfigurable Out-of-Order
GPU Microarchitecture that appropriately handles both kernels deemed LOOG-sensitive as
well as generic kernels, to maximize performance or energy efficiency.

The reconfigurable microarchitecture is evaluated under different reconfiguration schemes
and granularities, including a per-kernel-launch granularity hardware reconfiguration con-
troller using runtime performance counters to predict application OOO performance im-
provement. A static scale-up LOOG configuration provides a speedup of 1.48 for generic
kernels and a 13.7% reduction in energy dissipation, compared to the baseline architecture.
Reconfiguration under programmer-assisted directives and using the hardware controller can
provide the same speedup when needed and have the potential to improve energy efficiency
from baseline (in-order microarchitecture) by 22.4% and 19.5% respectively.

Keywords: General-Purpose GPU, High Performance Computing, Reconfigurable com-
puting, Instruction Level Parallelism, Out-of-Order, Parallel Systems, Energy Efficient com-

puting, Modelling and Simulation.

https://www.ntua.gr/en
https://www.ece.ntua.gr/en

xi

Acknowledgements

The submission of this thesis marks the end of my undergraduate studies at the School
of Electrical and Computer Engineering of the National Technical University of Athens.

First and foremost, I would like to express my profound and sincere thanks to Professor
Dimitrios Soudris for giving me the opportunity to carry out my diploma thesis under his
supervision as well as his inspiring approachability and guidance.

In addition, I would like to thank Professor Sotirios Xydis for his exceptional instruction
and the vast comprehensive knowledge and expertise he shared with me regarding all aspects
of my project and in all stages of it.

I extend my sincerest appreciation to Dr. Konstantinos Iliakis for being consistently avail-
able to provide me with invaluable advice and support me in every difficulty I faced. His
innovative ideas set the track for my thesis and were instrumental in shaping its outcome.

Finally, I would like to thank those closest to me for their patience and support while

carrying out this project.

Contents

Declaration of Authorship

Acknowledgements

1 Exteropévn EAAnvun Hepidnyn

2

3

OePNTMO VITOPATPO . . o v v v o e e e e e e e e e e e e

1.2.2 Ztada Slox€tevonG TV SM . L L L L L

1.2.3 AVOOLOHOPPOCULEG XPYLTEUTOVIHES « « v o v v e v e e e e e e e e e

1.2.4 ETepoyevelG apXLTEUTOVIMEG « « v v v v v v e e e e e e e e e e e e e
1.25 Accel-Sim

1.2.6 Oudopég Tov LOOG naut ot tpomomnoioelg otov GPGPU-Sim

1.2.7 AvOoHOTNOT) ETEPOYEVAOV KOl AVASLAPOPPOCIHOV UPYLTEXTOVIHOV .

1.2.8 AemTOPEPELEG VAOTIOMNOMG « « v v v v v v e e e e e e e e e e

1.29 AE€o0AOYynom NG avoSLOHOPPOCIUNG XPYLTEXTOVIXNG « « « v o o . . .

1.2.10 ZupmepdopoTo XOL HEANOVTINEG ETTEUTOGCELG - « « v v v v o o o o o o .

EUTOOELG « v v v v e e e e e e e e e e e e e e e e

The modern hardware accelerator landscape

of the scalinglaws

2.1.2 High Performance Computing
2.1.3 General-Purpose GPU L.
Reconfigurable and heterogeneous architectures
Light-Weight Out-of-Order GPU (LOOG) execution scheme

Proposal Overview

1.1 Ewaywyn . .
1.2

1.2.1 CUDA
1.3 Melovtinég en
Introduction
2.1

2.1.1 The end
2.2
2.3
24
2.5 Contributions
2.6 Thesis structure
Background
3.1 Introduction .
3.2

Parallel computing

xiii

xi

O O 0 0 B R

= R W Rk
—_ O =k O

43
43
43
44
44
45
47
48
49
51

Xiv

3.2.1 Fundamentals of parallel computing 53
3.2.2 Taxonomy of parallel computing architectures. 55
3.2.3 Composite types of parallelism in applications 56
3.3 GPGPU Programming model 57
3.4 Architectureofthe GPU L oL 58
3.4.1 High-level architecture, 58
3.4.2 Cachearchitecture 59
343 Pipelinestages 62
3.4.4 Parallelism exploited by the GPU 64
3.4.5 Kernel execution sequence 65
3.5 Reconfigurable architectureso 67
3.6 Heterogeneous architectures 70
3.7 GPGPU-Sim pipelinemodel 71
3.8 Accel-Sim 73
3.9 Nvidia Quadro GV100 key features 74
3.10 Workloads 76
3.10.1 Benchmark suitesused oL 76
3.10.2 Elaborating on the Rodinia benchmark suite 78
3.11 LOOG components and modifications implemented 80
Prior Art 85
4.1 Introduction 85
4.2 Characterization of workloads 85
4.2.1 "Whole Picture Characterization" 85
4.3 Prior Art regarding reconfigurable and heterogeneous architectures 86
43.1 Further classification of reconfigurable architectures 86
4.3.2 Related work on heterogeneous and reconfigurable architectures . . 87
433 Reconfigurable GPU architectures. 90
Implementation Details 93
5.1 Introduction 93
5.2 Workload stallsanalysis. 93
5.3 Workload characterization and exploitable ILP analysis 97
53.1 Rodinia - Back propagation 102
54 Performance modelling L 108
55 Powermodelling 108
5.5.1 Changes implemented 108
5.5.2 Leakage and Dynamic power modelling 109
5.5.3 Accelwattch configuration o Lo 109
5.6 Right-sizing LOOG on NVIDIA Quadro GV100 110

5.6.1 Register Renaming Stack

5.6.2 Instruction Window,
5.6.3 Operand Collector
5.7 Accommodating LOOG on the front-end of NVIDIA Quadro GV100
5.7.1 Fetch-Decode stage Bandwidthstudy
5.7.2 Issue scheduling depthstudy

5.7.3 Instruction Buffer reconfiguration.
5.8 Out-Of-Order reconfiguration
5.8.1 Observations leading to Collector Unit reconfiguration
5.8.2 Behavior of individual kernel launches with LOOG

5.8.3 Figures of meritusedin our analysis

5.8.4 Classifying the types of reconfiguration examined

5.8.5 Optimal configurations

5.8.6 Predicting optimal configurations at runtime

5.8.7 Hardware reconfiguration controller design

5.8.8 Power gating reconfiguration overhead estimations

5.9 Speculating on other axes of reconfiguration

5.9.1 Fine-grain Caches and Execution Units scaling

5.9.2 Component scaling design space

6 Evaluation of the OOO reconfigurable microarchitecture

6.1 Right-sizing the reconfigurable Operand Collector

6.2 Software reconfiguration Lo oL

6.2.1 Static reconfiguration o oL

6.2.2 Semi-Dynamic reconfiguration

6.2.3 Static reconfiguration across clusters of applications

6.3 Hardware reconfiguration controller

6.3.1 First-launch reconfiguration L0,

6.3.2 Static reconfiguration L oL

7 Conclusions and Future Work

7.1 Conclusions . .

7.2 Future work . .

A Source Code

A.1 Source code repository

A.2 Original License

Bibliography

XV

110
111
111
117
117
120
123
126
126
129
132
132
134
142
145
150
150
151
154

159
159
160
161
163
164
165
165
166

169
169
170

171
171
171

173

XVvii

List of Figures

1.1 "Eva povtédo tov vymAov emmédov Sopodv piag ovyxpovng apyttextovinig GPU [1] 5
1.2 Movtédo tng GPU a6 tov GPGPU-Sim [24] 5
1.3 Ztadwa dwoxétevongGPU Lo 6
1.4 Tpomomowjoelg Tov LOOG o1 Pacwer piepoapyttextovinr [14] 9

1.5 Pon cutnpatwv pvgpng otov GPGPU-Sim [24]o Lo L. 12
1.6 e e 12
1.7 e 13
1.8 e 13
1.9 EEaywyn xapoxtnploTie®y Kol OHOOOTIOLNGT) « v« v v v v v v v e e e e e e 14
1.10 Zyetinn onpovTdTnTo EYOUEVOV XOPAXTIPLOTIMGY « o o v v v v o v o o w e 14
1.11 SyxetéG TYEC GUOTASMY + v v v v v v v e e e e e e e e e e e e e 14
1.12 Omtwomoinon twv cvoTadwv pe tepapyur) opadomoinen 15
1.13 Awoctacworoynon RRS . . . o Lo Lo 16
1.14 Iotoypappa xopecpévov IPCoto LOOG o oo oo o Lo 18
115 e e e 18
1.16 EvtoAégwarp v uOMAO Lo e e e e e 19
1.17 Tlepropiopodg amddoong Fetch-Decode oo oo L. 20
1.18 EmPapivoelg yia xhipdnwon tov front-end (o€ oyéon pe mopddvpo eviordv 2) . . 21
1.19 Delay improvement across Issue scheduling depths 22
1.20 Ta dedopéva oL TAPOLGLALOVTOL TTOUPOHATD o« v v v v e e e e e e e e e e e e 22
0 23
1.22 Beltiwon IPC avd petpuer) uo TOAMTHT OVOSIOHOPPOONG « v v v v v v v o v v . 25
1.23 Tomot evtoddv - ewvrjoelg kernels. Eppoaviig ovoyétion xAfjoewv - evioAdv pviung 25
1.24 Apwpoc whjoewv ava kernel . . o oL oo oL o0 26
125 e e 26
1.26 Tomor avadlopdppwong PAoel XPOVIHNG AETTTOHEPELOG - « o « v v v o v v o v o . 28
1.27 Béltioteg dwnpoppidoerg CU avé CUDA kernels, exuiviioelg, petpiég avodiopop-
ewong xot evoncInoie cto LOOG L Lo 29
1.28 e e 30

1.29 Xpovog extéheong xow evépyela yix Tig PéATioteg Soapoppioelg oe kernels povig
EMULVIIONG « v v v o e i e e e e e e e e e e e e e e 30
130 e e 31

XViil

1.31

1.32

1.33
1.35

1.36
1.37

1.38
1.39

1.41
1.42

3.1
3.2
3.3
34
3.5
3.7
3.8

5.1

5.2

5.3

5.5

5.6

5.7

5.8

5.9
5.10

Amoteléopata RMSE Stactavpodpevng enudpwong yio OAOvG TouG regressors wov
TPOGAPHOCTNHAY OTA SESOHEVOL .+ v v v v v v v e e e e e e e e e e e e e
Tot 710 GTHAVTIHG XOLPAKTPLOTIUA YLOL TV TTOAVHETAPANTY YPOHpLKT] TTOALVEpOuN-
OT) TTOL TTPOGOPHOLETOL OTAL SESOHEVOL v v v v v vt e e e e e e
Yvoyxétion L1 Data pending hits pe xopeopévn BeAtiowon enidoong
IIpocappoopéva dévtpa amdpaong yio tnv TpoPAeyn tng PeAtivong enidoong oto

Zx€810 TOL eAeYUTT) OVASOLAPOPPWONG GTO DAKO . « v v v v o v v v e e e
Z0YRPLOT] OVOSLOHOPPDOCILOV HXPOUPYLTELTOVIHMDV JLUPOPETIHOD HEYETOUG HATA
N BEATIOTN avadLopdpPwo pe TIg peTpég avadiapoppwong ITAIL ko EAIT . . .
SOYHPLOT] HKPOCPLTEXTOVINGY SIAPOPETLAG KMPGHOONG EXTOG GEPAG + « « « o o v o o o o o o o o &
BeATion TV OTOTUOV HIXPOAPYLTEULTOVIHDOV HOL TWV OVOUSLOUOPPOCH®Y OVEL
HETPWN oo T1) PACIUT HIKPOCPYLTEXTOVIXG. .+ o v v v o v v v o e e e e e e e
RMSE yia T1g tpofAéPelg Tov eAeynth at TIg voAoylopéveg eviidpeoeg Tipég IPC
Beltiwomn ypovou extédeong xon evépyelag yla PEATIOTN oTaT avadlopoOpemoT)

HE TOV EAEYHTI « + v v v v v e e i e e e e e e e e e e e e e e e e

Flynn’s taxonomy [64]
A model of the high-level parts of a modern GPU architecture
GPU architecture at the SM cluster level
GPU pipeline stages
SM cache and RF organization
Methods used for handling warp deivergence
LOOG modifications on top of the baseline architecture [14]

WarpIPC e
High-level stalls analysis
Most of the GPGPU kernels simulated do not fully occupy their maximum
concurrent warp entries, producing shader core stalls
Idle and control stalls represent a miniscule amount of pipeline stalls. Issue
stalls are mainly dependent on various Execution Unit stalls
Mean EXU stall distribution over kernels (kernels are equally weighted) and
breakdown of cache misses causing memory stalls
Miss distribution for each type of cache, normalized over total warp instruc-
tions (theoretical maximum of 32-100).
Kernels feature extraction and clustering
Relative significance of top extracted features
Relative feature values of clusters produced. LOOG DeltalPC and Utilization

were subsequentlyadded oo oo

5.11

5.12
5.13
5.14
5.15
5.16
5.17

5.18
5.19
5.20
5.21

5.22
5.23

5.24
5.25

5.26
5.27

5.28
5.29

5.30
5.31

5.32

5.33

5.34

5.35

5.36

Detailed clustering visualization of the kernels. Note that kernels from the
same application may diverge significantly.o
Accelwattch estimation accuracy
Right-sizingof the RRS
Histogram of saturated IPC improvement on LOOG
LOOG scaling behavior across LOOG improvement percentiles
WarpIPC o e
Fetch-Decode throughput throttling Delay overheads across LOOG-sensitivity
classes
Delay improvement across Issue scheduling depths
Frontend scaling Area and Power overheads (baseline IWindow of 2)

Data visualization provided in Figure 5.21
RAT entries and used RAT entries normalized to the per-kernel maximum
across warps, as seen in Figure 5.20 oL oL L.
Measures of total and used RAT entries deviation
Per-warp STD of reconfiguration metrics normalized to maximum, across
kernellaunches L
IPC improvement across Ibuffer reconfiguration metrics and policies
Various types of dynamic instructions overall, associated with the number of
invocations of their kernel. High launch kernels are memory-intensive
Number of invocations (launches) across all kernels examined
Saturated LOOG IPC improvement correlation with L1C and parameter mem-
OFY ACCESSES .« v v v e v v e et e et e e e e e e e e
Types of reconfiguration examined, varying in temporal granularity
Optimal CU configurations across kernels or launches, reconfiguration met-
rics and LOOG-sensitivity classes
LOOG DeltaIPC from the baseline (inorder) microarchitecture
Whole kernel (static) reconfiguration improvement per kernel type regarding
launches L
Energy improvement and Delay deterioration when optimizing metrics other
than 98% IPC saturation
Single launch kernels optimal reconfiguration Delay and Energy improve-
ment for generic and LOOG-sensitive kernels across reconfiguration metrics
Per-launch (semi-dynamic) optimal reconfiguration Delay and Energy im-
provement compared to optimal static reconfiguration. This finer granularity
isnotworthwhile o o oo
First-launch optimal reconfiguration Delay and Energy overheads compared
to optimal static reconfiguration Lo oL

Cross validation RMSE scores for all regressors fitted on the data

Xix

104
108
112
114
115
118

119
121
122
126

127
127

128
128

130
131

132
134

136
138

139

139

141

XX

5.37

5.38

5.39

5.41

5.42

5.43

5.44

5.45

5.46

5.47
5.48

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Most important features for multivariate linear regression fitted on the data 144

Correlation of L1 Data pending hits to saturated IPC improvement 145
Normalized IPC improvement curve and STD across kernels on LOOG scaling-

UD v v o v e e e e e e e e e e e e 146
Fitted decision trees predicting LOOG performance on the most scale-down

(8 CUs) and the most scale-up (48 CUs) configuration 148
Design of the hardware reconfiguration controller 149
Power and Area overheads of scaling Caches and Execution Units 152

Performance improvement for generic and highly improving kernels with
Cache, EXUscaling, 152
Performance improvement on the most scale-up Cache and EXU configuration 153
IPC ratio of scale-up to scale-down LOOG across Cache, EXU configurations 154
Figures of merit across the design space (Delay refers to the average kernel) 155
Figures of merit across the design space for Cache-bound, EXU-bound kernels

(Delay refers to the average kernel) 156

Comparing differently sized reconfigurable microarchitectures when opti-
mally reconfiguring with the PDP and EDP reconfiguration metrics 160
Figures of merit distributions across differently sized microarchitectures and
reconfiguration metrics, for optimal static reconfiguration 161
Improvement from baseline uArch across set-in-stone uArchs and the re-
configurable 48-CU uArch optimizing different reconfiguration metrics, for
generic and LOOG-sensitive kernels 162
Evaluating the reconfigurable 48 CU architecture across all clusters of appli-
cations defined in Section 5.3, against the static 48 CU architecture for the
average application oo o 165
Evaluating the hardware reconfiguration controller (regressor) against opti-
mal static reconfiguration and a static48 CUuArch 167
RMSE for reconfiguration controller predictions and intermediate configura-
tion IPC calculation L L 167
Delay and Energy improvement for optimal static (whole-kernel) reconfigu-

ration with the hardware controller 168

XX1

List of Tables

1.1
1.2

1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13

1.14

1.15

1.16

3.1

5.1

5.2
5.3
5.4

55
5.6
5.7

BeAtiwon enidoong xan emPopivoelg yio xApoodpevae RRS . 0 o L oo L L 16

EmPoapiveeig nhiparodpevou mapadvpov evtododv (Fetch - Decode - Issue scheduler

throughput) e 17
Enidoon xo emiPopivoetg A ponodpeveoy ZTadpodv ZoAMOYAG .« o . . L . . . 17
Egpappoyég " evaiodnteg oto LOOG" ko oL xopecpéveg Peltiwoelg emidoomg Toug. 19
EvtoAr) avd wdrdo yio artddoon Fetch-Decode wavovucomoinpévrn oto S}\;}Z;Zle. .. 20
EmPapivoelg epfadod kdde otadiov oe oxéon pe mapddvpo eviordv 2 20
EmPapivoelg toxvog xdde otadiov oe oxéon pe Tapddvpo eviordv 2 21
BeAtiwon IPC avda SLopopQmon Kot EXATOSTHOPLO o v v v v v v v v e v e e e 25
BéAtioteg Sropoppwoelg ava kernel o petpery .« oL oL oo oL oo L 27
BéAtioteg Srapoppwoelc yia kernels povrg exxivniong Lo Lo oL 30
Kernels ToAA®V exniviicewV pe AVOPOLOHOPPT) UALANWOT) EXTOG GELPAG 31
Spbdhpoto non tpoPAemdpeveg Tipég IPC yia Toug regressors dévrpov amdpoong . 34

Katavopr eAtioong xpovov extéeong uol evEpyeLog otd GTATIXT GE NUL-OUVOLKT
QVOOLOHOPPWOT) « v v v v v e v e e e e e e e e e e e e e e e e e e 37
HEPVEAG JLE TN HEYOAVTEPT) XELPOTEPELOT) G eVEPYEL ard TNV NUL-SUVOLKY TN
OTOTUY OVOSLOHOPPWOT] o+ v v v v e e e e e e e e e e e e e e e e 38
HEPVEAG HLE TN HEYOADTEPT] XELPOTEPELOT) O€ XPOVO EXTENECTC OO TNV THL-SUVOLpLKT
OTI OTATUY OVAOLOHOPPMOOT] « v v v v o v e e e e i e e e e e e e e e e e e 38
Evépyeteg na xpovoL extéleong Yo Ta OYHHOTO XVOSLOPOPPOOTIG KAL TH) CTOTIXT

HIXPOOPYLTEULTOVIXY, KOVOVIXOTIOUNUEVA OTN BOGWHI. . o v v v v o v e o e o e e . 39
Workloads used in our simulations L. 83

Stall distribution for total stall percentiles. Values do not sum up to total, as

percentiles are calculated separately for each type 97
Nvidia GPU architectures and their minimum node technologies [105, 74, 106] 109
Overheads and performance improvement compared to a 32 RRS configuration 111
Scaling Instruction Window (Fetch - Decode - Issue scheduler throughput)

overheads 113
Collector Unit scaling performance improvement and Area, Power overheads 114
LOOG-sensitivity distribution over kernels and kernel launches 114

LOOG sensitive kernels and their percentile IPC saturated improvements . . 116

XXii

5.8 Optimal CU configuration across saturated IPC improvement kernel percentiles
for metrics ADP, IPC saturation, PDP,EDP 116
5.9 Average kernel IPC normalized to baseline frontend throughput (8) for each
of the Fetch-Decode bandwidths normalized to SHZ;ZQ Issue scheduler through-
put is 2 for all of the above configurations 120

5.10 Area overhead contribution of each stage in frontend scaling with a baseline

IWindow of 2 e 121
5.11 Power overhead contribution of each stage in frontend scaling with a baseline

IWindow of 2 L 122
5.12 IPC increase across CU configurations for saturated LOOG improvement per-

centiles L 129

5.13 Distribution parameters for optimal configurations based on the provided
metricsacrosskernels L L Lo L Lo 137

5.14 Outliers of the distributions in Figures 5.32a and 5.32 that optimize energy
efficiency in the inorder configuration 139

5.15 Single launch optimal reconfiguration results relative to baseline across met-

rics and LOOG-sensitivity classes 140
5.16 Multi-launch kernels with inconsistent OOO scalability behavior among launches 141
5.17 Errors and predicted IPC output values of the decision tree regressors 150
5.18 Caches and Execution Units scaling configurations 151

5.19 Cache and EXU bound kernels (application_kernel-uid), along with speedup
on the respective scale-up configurations 153

5.20 Intersection of component-bound and LOOG-sensitive kernels 154

6.1 Distribution of Delay and Energy improvement from static to semi-dynamic

reconfiguration L e 164
6.2 Kernels with the highest energy overhead in static reconfiguration compared

to semi-dynamic reconfiguration Lo L. 164
6.3 Kernels with the highest delay overhead in static reconfiguration compared

to semi-dynamic reconfiguration Lo L. 164
6.4 Reconfiguration controller Delay and Energy normalized to baseline, for PDP

and EDP reconfiguration metrics L. 166

KepdAoro 1

Extetapévn EAAnvn HepiAnyn

1.1 Ewoayoyn

GPU I'svixo¥ Xxomo¥

Tig tehevtaieg denaetieg AapPaver yopa n e&éMEn twv Graphics Processing Units (GPU) a6 e-
Eeldutevpévo LAWO Yl TNV atdd00T) EQUPHOYDOV YPOPLUOV GE EVEALXTI] XPTOT] YL U] YPOPULES
LTTOAOYLOTIHEG SlepYOGieS, OIS EMLOTNHOVIKEG TTPOCOUOLMOCELS, XPUITTOYPOPLOL KO HIXOvLKr) pad-
on [1] . Ov GPU mpocpépovv onpavtind wépdr enidoong ko evepyelourng omrdd0omG OTaY XTEAOVY
UTTOAOYLO TN EVTATIHA, HOCUG TTOPAAAN AL TUNHATO HLOG EPOPHOYTIG.

‘Etol, £xouv xotaotel xupiopyeg 0TO XDOPO TWV EMTOUYXVVTOV, WOIWG 08 HEVTPA VITEPHALHLON®D-
g enefepyonciag dedopévev O eMLTAYOVOLY EPAPHOYEG UNXOVIXNG HAINONG He TepAoTLO OYXO

dedopévav o mopodAniopo [2, 3] .

Etepoyeveig nort avadiapop@@Ooieg apxLTEXTOVIREG

O nopeopdg NG emidoomg evOg VIHATOC KOTDS KO TO VPV PACH eEELOEUEVIEVOV X XPAKTIPLOTIHOVY
TWV EPUPUOYDOV 001 YNGE GTNV AVATTTUEN OVOSLOUO PPDOCLHWY KO ETEPOYEVDV OLPYLTEXTOVIKOV YLOL TN
BeATIOTOTOLNGT) CUYKEUPLHEVOV EQAPHOYDV KL TT) HEYLOTOTTOLNGT TNG EMIOCGTG AL TNG EVEPYELONTIG
arodotdTnTag, ouvdudlovtag v eveAéio TV YeVinoL oxomoL emeepynoTOV e TIG eMLOOELS
TV eneepyaoTdV eEELOILEVIEVOV EQAPHOYDV GE IO VIO GLOKELT] TTOL PITOpEl VoL TpocoppdleTon
Svvopind oe SrapopeTinég epappoyég [4].

O apxLTenTovinég mou TePLApPAVOLY TTUPTVEG HE ETEPOYEVT] XOLPOUTNPLOTIMA TTEPLOpilovTo Ao
Tov apetafAnto oxediacpd Tovg ava mupnvae. Ol avadLapHOPPOCLIEG OPXLTEXTOVINEG AETTTOHLEPODG
(FPGA) »an adpopepotg (CGRA) avadiapdppwong [4, 5] amotelodv o evarotinr Abor), aAld
£YOLV TEPLOPLOHOVG, OTWG 1) ETLPAPUVET) AVASIOPOPPWOTIG KOl OL TTEPLOpLopéVoL TTopot [6].

T TNV AVTIHETOTLOT AUTOV TV CNTNHATOV €XOUV TPOTOIEL AVASIUHOPPDOLIES CLPYLTEXTOVL-
uég towm-nolveneEepyactov (reconfigurable CMP) [7] , ou omoieg emitpémouvv t Suvayuur avadio-
HopYwoT pe xotoudpuen (scale-up) 1 opilovtia (scale-out) nApduworn pe tn xprion AeLTovpyLdv
OLYXOVELGTG KoL SLAGTTACTG TTUPHVOV.

O A YOHOOHEVEG, HEPLUMOG OVOILOHOPPDOCLUEG oPYLTERTOVIKES, Otwg 0 MorphCore [8] , xprotpo-
TTOLODV HEYGAOVLG TTUPT|VEG EXTOG CELPAG, PEATIOTOTOLNHEVOLG Yial arxoAoLILaHd H®OWa e Eva VI
roL a€LoTTolovV Tov TapaAANALopd oe eminedo eVvTOA®V, oe cuVSLOGHO pe T duvatdTnTa peTdPoong

oe éva oxnpo extédeong SMT pe vPnAo Padpd mopoariniicpod oe eninedo VpaTos.

2 Kepdadaio 1. Extetauévn EAAnvua) HepiAnyn

"AM\eg whpoolpeveg apytentovinég, 6nwg 1 Dynamic Core Boosting, Elastic core o to Flicker
[9,10, 11], mpocappdLoVTaL GTLG ATALTHOELEG TNG EPAPHOYTG HATA T SLAPUELD TOV XPOVOL EUTEAEGTG
eite pe Suvaypuur) A pdnwor eite pe SLVOPLA SLOPPOVHEVT) ETEPOYEVELOL AVAHEGH GTOVG TTLPTIVEC,
XPNOLOTOLOVTOG OITOXOTTH] POAOYLOD 1] LoX00G KoL SUVOHIKT] HALUAKWGT] TAONG KoL GUYVOTNTOG
(Dynamic Frequency and Voltage scaling) yix tnv evioyvor twv emddcewv 1oL TNV eAaXLGTOTOLN G

g emiPépovong toxvog [8] .

Ixnpo extédeong LOOG

O1 GPU ypnotiponolotv palued topoarAnAcpd ot enimedo vipotog kot ypryopn evoarloyr) meptPai-
Aovtog peTafl peydAwV Opadwy VIHATOV Yl vo emtitiyouy LYNATY voloyiotnr enidoot). Qotdco,
oplopéveg epappoyég GPU Sev emw@elobvTon amd autég TIg TeXVIKEG AOYW TEPLOPLOHEVOD TTOPOLA-
AnAlopot oe entinedo dedopévav, TporaA®dvtag oL Vol ¥OXAOLG aVOHOVHG Kot un BEATIOTN YXprion
Tov VALOV. T TV avtipeTdmion owTod Tov {NTAUATOC, 0 eYYEVHG TTPUAANALOHOG emLéSoL evto-
ADV QUTOV TV ePappoy®v propel v aflomoindel pe extéleon entdg oepdg (Out-of-Order, O0O).
Qotdo0, oL oupPatiég apyrtentovinég GPU endidovv mavta evtorég evtdg celpdg (in-order) yio vo
aro@vyovv xvdbvoug dedopévav, yeyovog mov meplopilel tnv addoor] toug [12, 13] .

To oyfpo extéleong Light-Weight Out-of-Order GPU (LOOG) [12, 13, 14] epoppodler ovadidtokn
EVIOADV Yl TNV expetdAlevon tng mopariniiog emutédov evrodrg (ILP). O tpomomotjoelg otn
picpoapyLtextovinn mepthapfdvouvv Tnv eravaypnotpomnoinon twv Operand Collector Units yia va
XPNopedoovy wg otadpol xpdtnong otov ahyoptdpo Tomasulo [15] , tnv mpoodnun evog Register
Alias Table yio tnv avTipetonion twv e£QpTroe®Y OVOPATOS 0L TNV TTPOG U LOVAS G vaSLATOENG
Twv evtoAodVv Load xa Store yia tn dievdétnon tov eaptrioewv amod Tig dievduveEeLg HVAHNG.

T v whpénwon tov LOOG xow v expetdAievon Padivtepov mapoariniiopod oe emimedo
EVTOA®V, TO HXOG TOU TTapaddPOv eVTOAGV 1ot 0 aptdpdg Twv povadwv ovAroyng (Collector Units)
prtopovv va av€ndovv, pe to teAevtaio vo elvor TOAD Lo GTHAVTIHG oYETIG e TNV entidooT). QoTdoo,
n av€nomn twv CUs 0dnyel oe onpoavtnng emPapovern toybog, omdte 6TV Tapovoa epyacio eLoiyeTol
n Suvapu avadiapoppwon Tov LOOG wote v TpocappoleTal 6T CURTEPLPOPA TNG EPAPHOYTG

XOLL VO PHTTOPEL VAL PEYLOTOTIOoEL TNV etidooT) ko TV evepyelant amddoon [12, 13, 14] .

Emoxomnon npodtaong

IMoapatnpnoelg 6Twg avtég ov xivnromoinoav To LOOG, mpoxdiecav to evdlapépov pog TOG0 yio
1 SLepebvIOT) GUYHEUPLHEVWV XOPOUTIPLOTIHDV TV EQAPHOYDV TTOU OEV AVTIHETOTILOVTOL ETAPUADG
oo TIG TPEXOVOES OPYLTEXTOVINEC, OGO KO YL TO TG HITOPEL va avTIHETOTIOTEL PEATIOTO LWL
n ILP, pe) owotn diaotaciohdynon twv epoppoldpevov tporomrotjoenmy tov LOOG ce awTég TIg
OPYLTEULTOVIUEG HOL TNV TTPOCUPUOYT] TOUG OTNV ELAGTOTE EPAPHOYT).

To LOOG vAomoteitar otn véa éxdoon tov GPGPU-sim (4.1.0), mapéxovrog mpdécPact otov Accel-
Sim xai) cvvordrovdn adénon g axpifelag mpocopoiwong oe ToAAL pétwma. H mpocPaocn
ot Spdpewon (configuration) tng GPU touv otadpot epyosioag NVIDIA Quadro GV100, 1 onoia
Tpopodoteital amd tnv apytrextovinr] Volta, mov mapéyetor amd to Accel-sim kot elvor cuvtovicpévn
e HinpodeinTEG, HOG ETLTPETEL VO SLEPEVVI|GOUE TNV EMLTAYLVOT TV ePappoy®dv vitd LOOG oe éva

vooTpwp oXeTnd pe HPC.

1.1. Ewoaywyn 3

‘Exovtag @ulo€eviioer to LOOG og avth) TNV opXLTeXTOVIXT], CUAAEYOVHE GTATIOTIXA GTOLXELR

xpovou extéheong oe 100 epappoyég (CUDA kernels).
Katnyopromorotpe tig epoppoyég oe 5 cuoTddeg 060V APOPA TAL OLPYLTEXTOVIHX CTIEL CUHPOPNOTG
Toug 1oL TIG ovoyetifovpe pe tn Pedtioor] tovg oto LOOG. Avadletal pio xotnyopila eQopproy®v
"evaiodntwv oto LOOG", mov meptlopPdvel epoppoyEG oL OTTOLEG emMLTAXOVOVTOL TTEPLOTOTEPO ALTTO
100% oTig 7o xApocovpeveg drapoppacelg LOOG.

‘Exovtag BéAtiota Sdiaotaocioloyrioel ta ototyeiar mov dev oyetilovtal Gueco pe avthv (to
npdTa otddia g droxétevong tng GPU, (Fetch-Decode Bandwidth, Issue scheduling depth), vAoro-
inon duvapinig avadloapdpPwong Tov PLIHLETIXOD SLALAOL EVTOA®V) , ELoGyOoLpE KoL ELOAOYODE
HLO XALHOXOVUEVT) AVOSLOHOPPAOCLUT OPYXLTEXTOVIXT) EUTOG GELPAG He AETTONEPT] AITOXOTT LY DOG,
ovaSLopopP®OVOVTAS o€ pia X povinr] Aemtopépeta ové exxivrion CUDA kernel , eite yia i feltioto-
moinoT TV PETpeV enidoong eite Yo TN PeATioTOTOINGT TG EVEPYELOXUTG OITOOTIKOTNTOG.

H a&roloynon mng avadiapopeociung apyrrextovinig OO0 yiveton apyind pe Poon po dewpn-
TKT) LAOTIOINGT) AOYLOHIXOD TTOL TPOVTOVETEL TTPOTYOUHEVWG TEAELX YVMOGT) TNG CUUIEPLPOPAS TWV
epappoyodv ot eninedo CUDA kernel launch xou oe 6heg Tig Stadéoeg Sioapoppnoeig. ‘Etol, aklo-
Aoyovpe apywd T péylotn e@uetr) Pertioon otnv enidoot kol TNV evepyelont] arodoTHOTN T TOV
opéxel 1 duvatdTnTa avadapopewons. O BéATioteg diapoppdoelg tposdiopilovror avtioToryo
eite pe Paon v enidoon eite pe Phomn Tig evepyelomég TES.

I CUDA kernels moAAomAodv exuiviicewv, mpoxwpdye otrn cUyrpLot VAOTOGEWV TOGO G€
adpn (oTatnr]) 660 row oe Aemtopept] (Mudvvopnr]) avadLapdpe®aoT, xaddg kol otnv aEloldynon
eVOG eEAEYNTH) AVaSIHOPPWONG TTOL GUHTEpaivel pe axpifela TV xataAAnAdTepn StopdpPpwon yio
TNV TPATN EXULVNOT], ELTEADVTAG € X SLAHOPPWOT) OV avTIoTOLXEL OTN Pacinr) apyLTerTovixN
(in-order configuration) xot avoSLOPOPPOVEL TNV APYLTEXTOVIXT] COHPWVX JLE AVTHV YO TIG VITOAOUTEG
EXULVIOELG TNG EPOUPROYNG.

To aotedéopata deiyvouv ehdyiotn emdeivwon kot yux tig dvo petafhoelg (amd Aemtopepn
ovadlopoppwon avé exxivion oe adpopepn avadiopdpewon avéa epappoyr (CUDA kernel) »on
e€aywyn ocLpmEPAoHATOV Y TN PEATIOTN SLapdpPwot) atd To cOVOAO NG extéleong oe eEaywyr
OUHITEPAOUATOV oTtd TNV TPATN exxiVNOT), YEYOVOG TTOV HOG TTOPOKHLVEL VAL DVAOTTOLOOVHE XL VX
oELoAoyrioovpe Evay EAeYHTH avadlopd pewaong o€ enimedo VAWV, 0 ortoiog tpoPAémel Bedtivon TwV
emddoewv 6to LOOG amd tnv mpadn exnivnorn piog epappoyns, mov exteleital pe tn Sapoppnaon
evtog oelpdg (in-order) o alohoyel av Suwatoloyeiton pror xAponwpévn, evepyofopa Stopdppwaor
EXTOG GELPAG VIO TIG ETTOUEVEG EUHLVIIOELS TOU pe Paor TNV entidooT 1] TIG eVEPYELOUEG HETPLHEG.

Katd v avadiopdpewaon yia n PeAtiotonoinon tng evepyelaxic amddoong, 0 eAeyuTig ava-
Sropdppwong mov Paciletor 6To LAKO Tapéxel xaTd HEGO 0po 27,4% PelTiwomn TOL XpOVOL eXTEAECTG
nat 19,5% Pedtioor tng evépyelag oe oxéot) He To Pacind povTENO eVTOG GELPAC, & OAEG TIC EPUPHOYEG
7OV eEETAOTNHAY, EVD 0 EAEYHTNG avadlapopwong mov Paciletor oe Aoylopd mopéxel 29% ot
22,4% PeAtiwon avtiotoyo. e oOyxpion pe pia otater] piepoopyttextovinr] LOOG, 1 evepyetonr)
anodoom Peltiotomoteiton at& 6,7% non 10,1% yio Tn HEGT) EQAPHOYT] OO TOUG OVTIGTOLYOUG EAEY-
ntéc. T CUDA kernels svaicdntovg oto LOOG, o xpdvog extéheong xon 1 evepyelaut] amddoon
BeAtidvovton watd 54% naL 46%, atd TOV EAEYHTI] AOYLOLKOD.

Téhog, ewmdlovpe TNV KALPAKOGT) TOL peyédoug Twv Movadwv Extéleong kot tng Kpugng Mvrung

g dAAovg mdavolg Gfoveg avadiopdpewong, opilovTag opoing epappoyég mov deopebovtol oo

4 Kepdadaio 1. Extetauévn EAAnvua) HepiAnyn

TIG awvtioTolyeg dopég wg TPog TNV emidoot.

1.2 Ozwpntnd vofodpo

1.2.1 CUDA

H CUDA eivar pioe TAatOppo Tpoypoppatiopod tov avertiydnxe arnd tnv NVIDIA ywx v afto-
moinom g toxvog Twv GPU yia vtoloylotinég epappoyég yevinod oxonot [16, 17, 18] . H CUDA
TOPEYEL CNHOVTIXY ETLTAYXVVOT) G€ GOYKPLOT] PE TOVG Topadootanos LITOAOYLoHOVS oL PacilovTon
oe CPU o prropet va emextadei dote va enteleital oe moAramhiég GPU 1) oe ovotddeg GPU [19, 20]
. H CPU xai 1 GPU cuvepydlovton oe pio etepoyev) epappoy, pe tnv CPU va xewpiletou epyaoieg
evratwég oe Eheyyo xor v GPU va yelpileton vmoloyloTind evTaTinég epyncieg e ToupoAANALOHO

dedopévav [1]

Iepapyio viipdTov

H CUDA emexteivel TIq YAOGGEG OTLG 0TTOLEG DAOTIOLELTAL, ETMLTPETOVTOG GTOV TTPOYPOHHOTIOTT] VAL
opilel ovvaptroelg oTNV avtictolyn yAwooa, mov ovopalovtar "CUDA kernels" (CUDA kernels)
, oL omoieg petapépovtar oty GPU oe avtideon pe t1g kavovinég ouvoptroelg g yAowoooag. Ot
CUDA kernels mepihapfavouv denddeg yihiddeg viipata, emTpEmOVTOG TV EMLTAYVVOT] Hallud TTot-
pAAAA WV epappoyev. Ta viipata avayveopilovtal pe éva moAvdidotato (1 £wg 3) avayveploTind
VHaTog, oXNHatilovTag éva "pmAox vijpatog. YTdpyel 0plo GTOV HEYLOTO apLIpd VHATWV O
éva pthox, naddg oA Bpiorovtal otov ido molveneEepyootn pong (SM) (emi Tov mapodvtog 1024
vijpoata), popdlovtag touvg idtovg mépovg pvipng. To TOAAITAR prtAox eival opoiwg opyovwpéva
oe mohvdidotata mAéypata. ‘Etol, évag CUDA kernel exteleiton wg éva mAéypo ord pthox vi-
patwv.[21] H Baocw povada extédeong oe o GPU elvou évar warp, poe opado vijpdtwv (32 oTig
TPEXOVGES DAOTIOLGELS), TTOV KATOAXUPAVEL ATTOUAELGTIUA EVOL GUYHEKPLUEVO GTASLO0 orywyol XM oe

né&e dedopévn otiypn [22, 23].

Iepapyio pviiung

To vijpata CUDA éyouvv tpdcPaon oe Sidpopa emimeda Tng tepoapyiog Lvipng xotd tn Siepuelx Tng

entédeong tovg. H ev Aoy epapyia amotedeital amd:

« Katoywpntég ava vipa xor tomuer) pvrpn (xpnotpomoteital xuping yia tn Soeppor) koo w-

pNTOV).

+ Hayroopio pvijpn opatr amd O Tor VIHaTo vOg PtAox xo pe xowvn) Suépreta {wng.

Kowvn pvripn mov xpnoipomoteitol amd 6o T VAROTO eVOG HTTAOK 1) LG OPASAG HITAOX.
o Jtadepr) pvrun, virootnplopevn anod tnv Constant Cache.

o MvAun verig, vtootnpilopevn amd tnv Texture Cache, mov mapéyel Swapopetinods tpdITOLG

dtevduvorodotnong mov eEumnpetody 2d xwpwr) TomdTNHTO.

[21, 24]

1.2. Oewpntixd vréPfadpo

Single-Instruction, Multiple- T hreads

GPU
SIMT Core Cluster SIMT Core Cluster SIMT Core Cluster
SIMT SIMT SIMT SIMT PR SIMT SIMT
Core Core Core Core Core Core
i)
| Interconnection Network |
; ! ;
Memory Memory Memory
Partition Partition eoe Partition
GDDR3/GDDRS5 | | GDDR3/GDDR5 | Off-chip DRAM | GDDR3/GDDRS5

Ixfipe 1.1: "Eva povtédo v vPnAod emumédov dopdv piog obyypovng apyl-
textovinrig GPU [1]

SIMT Core Cluster

—| Response FIFO |4

XS\MT Core Cluster

.
K

JS\MT Core Cluster

Kernel

SIMT Core Cluster

Launch

ISIMT Core SIMT Constant K
[siMTcore] - .
o

SIMT Core SIMT
Stacks

Thread Block

Jayng
1od uonoalu]
1

Instruction

SIMT Core

Thread Block

JOMIBN UORIBUU0IIAIU]

| MIOMISN UON92UUOIaLU| |

Off-Chip
DRAM Channel

(o) Apxrtextovinr GPU o emtinedo cuotédog SM [24] (B) H ecwrepuay xaravops xon opyévoon tov SM [23]

Sxnpo 1.2: Movtédo g GPU a6 tov GPGPU-Sim [24]

Apxurextovieny GPU

M ovyypovn GPU Swodétel moAAodg muprjveg ov ovopdlovtal moAveneepyaotég porg 1) LITOAOYL-
oTwég povadeg (SM) , Omwg aivetan otnv ecdva 1.20. Kéde SM eivou évag emeEepyootric SIMD mov
propet vo extedel éwg non yido vijporta taevtdoypove. Ta vijpata oe éva SM popov va mKovovoy
HEG® HOLVNG HVAHNG Hou sy povilovTal pe Ypriyopeg Aettovpyieg @paypo?.

Ou GPU mpémer cuyva v éxouvv mpocPact oe peydho ovvola Sedopévwv mov dev pHopovv
voo amodnuevtotv €€ 0OAOXANPOL GTO TOUT, OTOTE ATTALTOOVTOL eEELSLUEVIEVES HPLPEG HVIHEG KOl
npdcoPaon ot pvipn extdg tout pe vPnAd edpog Lodvng. Ot SM xai to Siopepiopoto PvipnNgG
ouvdéovtal pécw evog diutvov dtachvdeong evtdg tov chip ko 1 xivnon PVHENG XOTOVEHETOL OTLG
HOVASEeG SLOPEPLOHATWY HVAING He T XproT dtoywplopov dtevdvvoewv. Ta SM eivon opyavopéva oe
opadeg, nadepia pe poe FIFO ovpd amdurpLong mov Popel vot GUYHPATHOEL TTAUET TTOL TTPOEPYOVTOL

a6 to dintvo dracvvdeong.

6 Kepdadaio 1. Extetauévn EAAnvua) HepiAnyn

Ferch |-t I | SIMT-Stack

Valid [1:MN Activ Pred. : 3
UN_ I-Buffer [‘| Sl [ALU &LL

| I-Cache H Decode [: t] Teone Operand Fe
—-

Done (WID)

MEM -

Exfpa 1.3: Ztddua Sroxétevong GPU [1]

Apxurextovirn Kpveng Mviung

‘Onwg ameovileton oto Txrua 1.2f°, ou Sopég pvipng péoa oe xdde SM eite yproyomolovvTon
atd ®owol atd T PHITAOK TTOL TO KaToAapPdvouy eite eivar xatavepnpéveg petad tovg. H poipa-
Copevn pvipn xon to Register File eival xatavepnpéva peta&d tov pmiox, xou to Register File xon
ta SIMT Stacks ovyxexpipéva elvar evpetnplacpéva pe Paon to warp ID. Ta eidn xpopng pvrpng

mepLthopfévouv:

1. Ztadepn xpoer) pvipun: Mio kpu@r) pvrjpn HOvo ylor ovayveaoT) ov amodnxedel otadepés oTLG

omoieg yivetouw ovyvi TpdoPaot, OTwg Tivoneg 1) HAHAKOTES TIHEG.

2. Kpuon pvrpn veng: Mia e€etdinevpévn kpuer] pviun mov éxet Bedtiotomoindel yia Aettovpyieg
Xaproypagpnong verg.

3. Kpvon pvipn dedopévov: Miot xpu@r) pvipn yevirig Xprong mov orodnxedel TUHHATA TNG

TOTUNG AL TNG TTOLYKOGHLOG PVIHUNG oTa oToia yivetal ovyxvh tpocfaot.

4. Moipalopevny pviun: ‘Evag xopog pvriung scratchpad vymAot evpouvg {ovng uat YopunAng
VO TEPNOTG TTOL HOLPALOVTAL TX VAT PECO GE £VOL HITAOX.

5. Kpvon pviun dedopévwv emmédov 2: To mpcdto oTdd0 TOL SLXpEPIOUATOS PVHNG EXTOG
towut. Beltiotomolel v amddoom avd povada empavelag yia v GPU xou Siayepiletan

TAUTOYPOVEG EYYPOPEG oTtd TTOAAATTAGL VApOTA GE SLAUAAODGELG.

1.2.2 31ddwx dSroxétevong tov SM

T va dratnpndoov vimiég emdooelg otnv GPU, eivar amapaitnto va e€ilcoppomnndel to vPnAd
e0POG LOVNG LVAKNG pe TNV LYNAT vtoloylotin entidoot). To povtédo Tov aywyoo tg GPU mapéyet
TEPALTEPK TTANPOPOPIEG CYETIMA HE TOVG PNYAVIGHOUG oL oxetilovtal pe avto to [1, 24, 23]. To
oxnuo 1.3 mopéyel Pt OMTINY AVOTTOPAGTACT) TNG E0WTEPIUNAG APYLTEXTOVIXNG TOU XYWYOD TOU
Streaming Multiprocessor. O aywydg amoteleital and éva SIMT front-end ko évee SIMD back-end.
Mopodpora pe proe CPU stov vAomotei todvvnpatiedtnta, To SIMT front-end emitpémer Tnv Tarvtdypovn
Aym, aoxwdwomoinon xou éxdoon (Fetch, Decode, Issue) twv warps.

O XpOVOTTPOYPOPHATIONOG TOV ALyWYOU TTPOYHOATOTIOLELTAL O€ TPEL cLveels "Bpdyoug”: Tov Bpdyo
oVaUTNGOTG EVTOADV, TOV Bpd)0 £xdOoTNG EVTOAGV KoL TOV BPOX0 TPOYPUUUATIGHOD TPOCTEAACTG

rotoyxopntov. O Ppdxog avdurtnong eviododv mepthopfavel ta pAox Fetch, I-Cache, Decode xou

1.2. Oewpntixd vréPfadpo 7

[-Buffer mov gaivovton oto ZxApa 1.3 . O PBpdyog éxdoong evroddv mepihapPdver to phox I-

Buffer, Scoreboard, Issue ko SIMT Stack. O Bpodyog mpoypappaticpod TpdcPacng oe KaToUXwPNTEG

mepthopPavel ta prtdox Operand Collector, ALU xou Memory. To cuvoAixd povtédo tng Stoxétevong

Tov SM mepLhapPaver to andAovda oTddio:

Fetch

Decode

Issue

Operand Collect

Dispatch

Execute

Writeback

"Evoe warp emAéyeTaL YLoL X POVOTTIPOYPOHHATIOHO KoiL O HETPTTAG TTPOYPAPHATOS TPOCTEAXDVEL

TNV XPLET] LVIHN EVTOADV YL VO AVTANGEL TNV ETTOHEVT] EVTOAT).

H evtoA ammoxwduomnoteiton ko tomodeteiton oe éva buffer eviohdv péxpt va dimiotwdet

ot dev vapyovv xivduvol.

Ot tipég g paonag extédeong SIMT yux) otoifa SIMT xadopilovron TapdAAnio pe tnv

AVTANGT) TOV OPYHOV TEAEGTOV aTd TO APXELO HATAX WP TAOV.

O xpovompoypoppatioTig éndoong amopacilel moteg evrorég Jo exdodolv 6Tov aywyod rot
moto warps da éyxovv mpotepotdtntae. H otoifo SIMT evnpepddvetal xot 1) amduAion Twv warp
QVTIHETOTILETOL PECK TNG CELPLOTTOINONG TNG exTéAeong VIHATwV evtdg evog warp. 'Evog
TLVOUOG ATTOTEAEGPUATOV X PT|CLLOTTOLELTAL YLOL THV AITOTPOTTH] HLVODVWOV KOL TNV EXPETAAAEVOT)

nevoV Yéoewv oto backend.

Ot evtohég tomodetovvtal o Collector Units otn dopry Operand Collector yia vo owoxpOfiouy
Tig xodvoteprioelg pvipng. O Operand Collector mpocopoldvel évar apxeio *ATOYXWPNTOV

TOAATTAGDY Jupidwv pécw moparinAiopot ot eninedo tphmelos.

Ot evtolég tomodetobvtal o pia SeEapevr) TOL eMAEYETAL QIO TOV XPOVOTPOYPAPLATIOTH

QUTOOTOANG Yo EXTENEST) OTIG AwPLdeg TNG HATAAANANG povadag extéleoT|G.

H extédeon towv evioddv yiveton otig avtiotoryeg povadeg. O GPU tng NVIDIA Swadétouvv
eTEPOYEVELG HOVADEG EXTENEOTG, OTIWG HOVADEG POPTWOTC/ATTOVTHEVTOTG, AELTOVPYLUEG HOVAOEGS
oHEPULOV OPLIPDV, AELTOVPYIHEG HOVADES HLVTTHG LTTOSLAOTOATG, HOVAdeg LSV AetTovpyL-

®v xo povadeg Tensor Core.

Ot evtorég endidovv éva Register File write yia Tovg TeAeaTéG TPOOPLOHOD TOLG KoL EVNLE-

POVOLY TOV TTIVOXA ATTOTEAEGHATWOV, ATTEAELIEPDOVOVTAG TUXOV EEXPTIHEVES EVTOAEG.

1.2.3 AvoSlapOpPOCIHEG OPYLTELTOVIREG

AedopéVNG TG UTOTEAUATOONG TWV VOPWV KALPEUWOTG, £X0UV Xprotpomondel Sidpopeg mpooey-

yioelg oxedloopol TOT KoL OPYLTELTOVIMNG OTNV TTPOoTadel vor tavorotdody oL aouToeLg

eMOOGEWV TWV GVYXPOVOV EEELOIUEVHEVOV EQAPUOYDV.

ApXLTERTOVIREG CUYHERPIPUEVOV EQOPHOYHDV rot TOpéwv ASIC, DSA

Or apyrtextovinég ASIC xo oL apXLTEXTOVIHEG ELOWUDV TOHEWV GE eTimedo HOVAdwV exTéleoTg
(DSA) eivou 800 mapadeiypato avtrig Tng Tdong, 6mtov ot ASIC oxedidlovtal Yio cUYREHPLUEVEG
TEPUTTMOGELG XPHOTG HE TN XPNOT] YAWSOKOV TepLypa@ng vAoD, eve ot DSA mpocappolovv

TIC HOVAdeg eTéNEOTC YLt GLYKEXPEVA TTAioL Aoylopino [25, 26, 27] .

8 Kepdadaio 1. Extetauévn EAAnvua) HepiAnyn

YroAloyiotind cuoTRpOTa AETTOPEPODG AVASLOPOpP®ONG

OL avadLOpHOPPOCLIEG OPYLTEXTOVINEG avadDOVTOL WG eVOAAOTIKT ADon évavtt Twv ASIC
Yla TNV €EACXLOTOTOLNOT) TOL p) emmovolopfavopevov xdotoug oxediacpod (NRE) yia tn oye-
dioon mpooappoopévov vAWwoL. Ot cueTolyieg TpoypoppaTilOpevey TLUAGY ediov (FPGAS)
mopéxouv eveMEia xot atddooT LAKOD e TH) SUVATOTITA ETAVOTTPOYPAPHATIGHOD KO TTPW-
ToTuTTOTTOiNGNG SaPopeTndV oxediwv. Qotdc0o, cuvodebovtal emiong amd LYNAO 1¥OGTOG
OXETHA JLE TNV LOXV, TN XPHOT) TNG TEPLOXTG Kot TNV emPapuver avadiopdppwong [28, 29, 30,
4,31] .

Yroloyiotind cvotipota odpopepovg avadiapopemong
Ou emovadiopoppooipeg apyltextovinég adpopepots avadiopdppwong (CGRAs) evowpo-
TOVOLY TTPOYPAUHATILOHEVOLG AOYLKOUG TTOpOUG e eEeldinevpéveg Aettovpynég povadeg, mo-
péxovtag pia loopportia petafd sveléiog ko addoomng. Xe oyéorn pe to FPGA, mtpos@épouv
vPNAOTEpeG emdOGELS v povada, HELwEVT eTLBapLVOT) ETOVASLOUOPPWOTG, HAADTEPT] O

Elomoinom Tov xdpov kot YopnAdtepn xatovaiworn evépyeag [32, 30] .

MaAoaxoi Tupnveg (Soft Cores)
Ot pohool Tupriveg emLTPETOVY TNV TTPOCAPHOYT TWV CUVOAWDY EVIOAMV YLOL TNV OVTLHETOTL-
OT) CUYKEXPLUEVOV EPUPIOYRDV, EAXXLOTOTOLOVTAG TNV aviyxn yia ASICs 1) tpocappocpéva
oxédiar VAoV, O oyedioopdg twv soft cores popet var yivel pe tn xprion yAwooodv vymiot
emédov, 6mwg n C, yeyovog mov koo td euroAdTepN TNV avaItTuEn xa Tn doxur} Touvg [33,
34] .

1.2.4 Etepoyeveig apX1TERTOVIREG

To eTepOYEVH] LITOAOYLOTIKR GUOTHHOTH QVALPEPOVTAL GE GUOTHHATO TTOV XPT|GLUOTOLOVV TOAAO-
TAEG Povadeg emeEepyooiog e SLoPOPETINES APYLTEXTOVINES, SUVATOTITEG KL AELTOVPYLES, OL OTTOLEG
AeLtovpyovv oTnyv idLa por| epyaciag yio TNV eXTéAecT) eVOG 1) TEPLGOOTEPOY VITOAOYLOUDV KL OLVXL-
Jétovv ndde évav outd avtovg 610 oTolyeio eneEepyaoiog wov Tov TaupLdlel xadvTepa [35].

IMopadeiypoto amotelovv:

YBp1dund cotnpua CPU-GPU Ta dedopéva eAéyXOL TOU TTPOYPAUHATOC GE TETOLO GUCTHHOTOL ITO-
povv va vroPAndotv ce emefepyacio and v CPU, eved oL mpakelg xivntrg LITOSLXGTOANG

prtopovv va petopepdovv otnv GPU.

Svotdda etepoyevarv eneEepyactdOv Mio cuotdda mov amoteAeital artd moAAoUG enelepyaoTég

pe Srapopetinég apyrrentovnés, omwg CPU, GPU, FPGA o DSP.

0ot 6TOLXELWV VAOD xat Aoyiopkot Eva cOotnpa ov mepthapfavel To6o otoLyeior LAL-
%00 000 %ol oToLyelor AOYLoHWOD, OTTWG TAATPOPHES HoJopLlopéveg amd Aoylopwd (SDR) ov
nepthopavovv FPGA xou DSP.

Actpperpor molveneEepyaotég toun (ACMP) Acdppetpol modveneEepyaotéc toin (ACMP): TToA-
Aamhol Sapopetinol eme€epyaotég mov Ppiouovtal ato idio chip, ot omoiol cuvrdwg Srapépovv

WG TTPOG TOV VIEPHUALUAKMOOT] HAL TO HRXOG TOU TTAPAIVPOL EVTOA®V.

1.2. Oewpntixd vréPfadpo 9

[Legem‘l Lcommon) 'moddu.d | LOOG | Base]ine|]

o |
@'“mp I 5aarp
‘|1 Sched 1 y {Sched 2

'y A& A A A

J Issue . 7 Operand Collect ™, / Writeback)
: LT ’ RR% B L 2}« f
i ' o 1
! Registers - e
! H =i]
1 U sl 1
. o ,

Sxnpoe 1.4: Tpomomojoelg tov LOOG ot Paoiun puepoapyitentovinr [14]

1.2.5 Accel-Sim

H vlomoinon tov LOOG kot GAA®V TPOTOTOGEDY TNG MHPOUAPYLTEXTOVIXAG OV EYLVOV TNV
éndoon 4.1.0 Tov GPGPU-sim mapeyovv mpoécPacn oe OAeg Tig duvartotnteg Tov Accelsim [36] . O
Accel-sim eioayel éva evélnto frontend ov mopéyel tn SuvatdtnrTa alomoinong tng ISA punyavig
(mISA) o€ Aertovpyia pe Baon iyvn (traces). Tia TPOGOROLOGT] VE®V KAPTOV, VO CUTOUATOTOLNHEVO
mAaiolo pOdpeng Tpomomolel To apxeio SIOUOPPWONG TNG APXLTEXTOVIXIG TTOV TPOGOHOLMDVETAL,
TAPAYOVTOG £V axpLPég HOVTEND emdOTEWV.

O Accel-sim mapéyeL aupipéotepr) povrelomoinon xot SLopd pPwoT emdOGEWV TV SOUPAGUEVOVY
GPU, cvpmepiropPfavopévng tng NVIDIA Quadro GV100.

Y10 TAGLo10 TNG epyasiog TpooTidevtal vEa AetTopepr] oTATIOTING oTOLYELR, o)X ETWd e To LOOG
(N cLVOAY ETOWHOTNTA AV WaIp, 1] GUVOALXT) XATAVOHT] ETOWHOTNTOG Warp, 1) TLpaxoAovINCT TNG
amtddoong ammornwdwonontr, 1 xatavopr) tAnpotntog RRS, o xataywprioeig RAT cuvolwd ava

warp xou oL xatoywprjoelg RAT ov xpnopomoodvton avé warp yia tnv topoxorotiner tov ILP.

1.2.6 Ot dopég Tov LOOG %o ot tpotomonoelg 6tov GPGPU-Sim

To Light-Weight Out-of-Order GPU execution scheme (LOOG) [12, 13, 14] epthopfével Tnv emovo-
xpnopooinon Tomwmdv pxpoapyttextovinedv GPU yio tnv expetddAevon g ILP xou tnv xodOtepn
Swaxeiplon evog GUVOAOL EPAPPOYDOV-CTOXWV TTOL XXParTNPLlovTan amtd XapnAr enLTUYXAVOREVT
a€romoinom xou cuvordrovdo xapunAd IPC (evtoléc ava nOuAo). Ot acddoyég na oL Tpocinueg ota
ototyeio Tng Tumnng pepoapyttextovinnig GPU yia tnv tapaywyn tov LOOG gaivovtal 6to Zxnpa

1.4 nou glval oL oxdAovdeg:

« O Movéadeg ZvAroyrig (CUs) Tpomomolodviol MeTe vor XProLebovy oG oTadpol xp&tnong
Tov alyopidpov Tomasulo, o omoiog emitpémel Tnv Gueomn éxdoorn odnyLdV xwplg va mepdoel

TPATO ATTO EAEYYO TOV TLVOUO ATTOTEAECHUATOV.

10 Kepdadaio 1. Extetauévn EAAnvua) HepiAnyn

« IIpoortidetan évog mivaxog Register Alias Table (RAT) ywx tnv e€dherym twv e€apticewv
Yevdov ovopatwv. ‘Otav puo evrohr xatavépet o CU/RS, SixPaler tov RAT avé warp yiox

n&de apyxwod tedeot).

« To mopadupo evtoAodV Tpomomoleital BMOTE Vo EEVTNPETEL TNV EUPETAANEVOT) TOL TOPAAANAL-
opov emutédov evtor®v (ILP) pe tnv avaxtnon 16 éwg 128 bytes dedopévwv amod tnv ICache oe

n&de avarAnon xot ol evtoArég exdidovtan amevdeiog otig CUs yiox avadiatolrn.

« To LOOG enw@eleital amd ToV XpOVOTPOYPOUHATIONO Twv warp oe Padog, o omoiog artodel-

HVOETAL OTL PEATLOVEL GTHAVTIKG TNV AtOSO0T).

o H avadiataln goptwong-amodnuevong oto LOOG mepihapPaver tn dnpovpyio piog ovpag
POPTWOTNG HOL LG OVPAG QTTOUTIHEVGTIG AL TNV EXXDPTIOT LG EYYPOPNG YL TIG OVTIoTOL-
XEG EVTOAEG PVIUNG YLOL TNV QVTLHETAOTLOT TV e€apTtriioewy dedopévmv pviung mépo amd Tig

eEAPTIOELG HATAYWPTTOV.

+ O diawwrog petddoong amoteAeo ATV PETAISEL TA AITOTEAEGHATA PHETA TNV OAOUATPWGT] TNG
entédeong o otédvel éva altnua eyypagng RF otov dwotntr. O CUs amelevdepovovtoal

HOVO HET TNV eYYPOQPT] TNG AVTIGTOLXNG EVTOANG.

« Ewodyetal n Zroifa Metovopaoiog Kataywpntov (Register Renaming Stack - RRS) ywa v
ATOUNUELOT) EVOG HATAAOYOU HOVASIUOV VY VOPLOTIX®V TTOL da Xproiporotndovv 6to RAT
oavti Tov avayvoploTeot CU, yeyovog mou petdvel onpovtnd tn oupeodpnor CU xow avkdvel

Vv expetdAAevon tov ILP.

1.2.7 AvaoxrOTNON ETEPOYEVOV KAl AVOUILAPOPPOCIHOV APXLTEXTO-

VROV
Avadropoppdoipotl TolveneEepyaotég town (reconfigurable CMPs)

O1 avadiapoppooipeg apyrtextovinég CMP [37, 38] mpoo@épouv pio evadldontnr Abon 6TIg apylL-
TEXTOVIXEG ALCOHHETPWV TTOAVETEEEPYOOTMOV TOLT YO TOV XELPLGHO TG TOMIAOROPPLOG TOL POPTOL
epyaoiac. H ovyywvevon muprivwv (Core Fusion) [37] eivon puor eovadLoptop@@dcipn apxLtextovinn
CMP mov ypnopomotei ISA RISC 1} CISC xou mpdcdetor oTOLXEIX YLt TNV QTTOTEAEGUATIUT EXTENEDT)

Aertovpytov FUSE s SPLIT petafd vmoouvodwy mupivwv kotd T SLUPHELA TOL X POVOL EXTEAECTG.

KAypaxotpevor mopnveg

H apyirextovir] Elastic Core [10] wApaxedver Suvopd tovg mépovs, v Tdor Aettovpyiag uat
TN GLXVOTNTO MGTE VO TPOCOUPHOLOVTAL GTI) CUUTEPLPOPA TNG EPAPHOYTIC, XPTOLHOTOLOVTAG EVaL
HOVTEANO YpOoppuun G Taltvdpopnong yo tnv tpdPAem toxvog xon amddoong. Xpnoylomolei aronontr
poloytov (clock gating) oe eninedo povadag yio Tov meploplopd tng duvopnr|g didyvong oybog oe

OVEVEPYX GTOLYELCL.

1.2. Oewpntixd vréPfadpo 11

Etepoyeveig apxrrentovinég

OL eTepoyevelg apLTEXTOVINEG G AVTO TO TAALCLO CVOPEPOVTOL GTOVS ACVUHETPOVG ToAvemeEep-
yootég tout (ACMP), emtiong yvwoTolg g eTEPOYEVH] GUOTHHATA TOAVETEEEPYXTTAOV GE VAL TOLT
(MPSoC). To Big.Little [39] eivan pio apyitextovinn mov cuvdvalel muprveg LYNANG aTOSOCT G KAl
TUPNVEG XOUHUNANG HATAVAAWOTG eVEPYELAS Yo PeATIoTOTOLNUEVT] OITOS00T KoL evepyeLor] otodo-
TiotnTae. H etepoyeviig apyitextovinry piox (HBA) [40] xwpilel Tov #dda o6& atopind pmAon
7OV eUTEAODVTOL aVEEAPTNTA GE SLOUPOPETIUEG HIXPOXPYLTEULTOVIHES, ETLTPETOVTOG HAADTEPO XELPL-
OO Phoewv Pviung ko évtoong voAoylopov. To Dynamic Core Boosting (DCB) [9] petpialet tnv
avicopportic Tov pdpTov epyaciog aCMPs, evioybovtog ta xpicipa vipoto pécw pepovopévov DVES

oe eninedo muprvo.

"Malaxroi ropnveg " (Soft cores)

To TRIPS [41, 42] eivon éva mapdderypa ovadSLopPOGLHOL DITOAOYLGHOD OV XPTOLLOTOLEL évar
Explicit Data Graph Execution (EDGE) ISA ywx tnv amotedecpatiny extéleon @opTiov epyaciog
évtaong dedopévav, Aettovpywvtag artevdeiag oTov ypago pong dedopévev. Hudpla xarvotopio Tov
éyuertal ot xprion {ovdv TPocTaciog yio TNV aTopnn] eXtélect) opddwy evtordv. H amaitodpevn

VOO THPLEN HETAYAWTTIOTH €lVOL TO GTUAVTIHOTEPO HELOVEXTNHUA TNG.

Avadrapopeaoipeg apyrtentovinég GPU

H apyrrextovuer) Bahurupi [43] eivon éva toAvpop@ied opoLoyevég ToAvITOpN Vo GOGTNHA TOL PITopEl
VO LETATPAITEL GE ETEPOYEVT] TTOALTTOPNVY) APYLTEXTOVIXY KOTd TNV exTtéAeon e odnyieg Aoyiopnon,
ETMLTPETTOVTAG TOV VO ELPUETOAAAEVETOL TOGO TOV TOUPOAANALOHO e VIHATX OGO KOl TOV TTOUPOAANALOHO
e evtoAég. YAomotel i ovyyodvevor upriveov (Core Fusion) oe GPU.

To Equalizer [44] eivaun éva obotnpa dwyeipiong vAkos mov éxel oxedaotel yia va mopono-
Aovdel duvapind TG amatthoelg TOpwY evog Tuprva pe oxomd T PedtioTomoinet g amddoong
no TG evepyetomnng amodotwdtnTag. IIpocappolel To vVAWS ©oTe v TOpLALeL pe TG avayHEG TOV
extehovpevov CUDA kernel, dwoyeiptlopevo tnv tavtdyxpovn yprion oto chip, tn cuyvortnta twv
TUPHVOV AL TI) GLXVOTNTA TNG LVIUNG.

To Amoeba [45] taparorovdei SuvopHE TNV ETEXTACILOTNTA TWV EPUPHOYDV KoL TPOGAPROTEL
avaroya T Slopdppwot Twv ToAveneEepyaat®dv pong (SM), cuyxwvebovtdg ta oe adpopepr) Paon
g 1pog tn xpnor tov Network-on-Chip, 1 cvvévwaor vro-warp, tn pvipn, tnv atdxAion eléyyov

roeL T dtendiunon g upveng pviung L1.

1.2.8 Asemropépeleg vAomoinong
Avdivon vOrAov ovapoving

H avaAvon twv xdrhwv avapovrg oe autd To xe@aAoto, pag Sivel o eedvol YL TOL XOPOXTT PLOTING
TWV EPAPHOYDOV TTOV HTOPOLY Vo 0ELoTToLNFo0V outd T OHOTLA TG AVASLAPOPPWOTIG TNG OLPXLTERTO-
viiig (600V aPOopl TA APYLTEXTOVIXA OTHELD GLHPOPTOTNG) OGO AL Yo exelva TOL GuoyeTilovTon

onpovted pe 1 Pedtioon vd LOOG. 'Onwg @aivetor oto Zxrpoa 1.5, xotoypl@ovtot peTpinég

OVOLGTOANG PVTUTG.

12 Kepdadaio 1. Extetauévn EAAnvua) HepiAnyn

Shader Cores

Earlier Stages

gpgpu_n_stall shd mem

Y

Interconnect to | 9Pu_stall dramfull
Memory Stage ———— DRAM +
L DRAM Channels
Writeback Stage | Interconnect to ‘ |
Shader Cores h gpu stall icnt2sh

Sxnpo 1.5: Por) owtnpdteov pvripng otov GPGPU-Sim [24]

DRAM full stals to shader memory stalls Shader core stalls analysis, cycle
— Ratio
Equal stalls

Stall frequency

.
8,

Kemels Kernels

Total warps for all kemels
Total warps

(O(/) Inpeio cupPopnong vim- ([3/) Avaloyio avaoToAGdV (Y’) Avaoctohég SM (5/ Iotoypoppa aptdpod
Ao emumédov DRAM, pvrjpng SM warps

Yxfpa 1.6:

Y10 oxfua 1.60, aivetal n xaTavopr] Twv avasTo GOV pvipng oe vymAod eninedo. EmuwAéov, oTo
Sxhpo 165" gaivetal 611 povo to 12% twv mupRvev avactéleton tepltocdtepo otnv DRAM amd 6,1
ot dtoxétevon Tov SM.

‘Onwg amewovileton oto TxHua 1.6y, ou avactolég 6to SM axolovdoov TNV avopevopevn
TOPOHOLX HATAVORY HE TIG AvOGTOAEG LYNAOD emutédov. 1o IyApa 1.68", eaivetar 6Tl yix T
CUVTPLITTKY TTAELOVOTNTA TV epappoydv GPGPU mov mpocopoieinxav, 1o HéYLGTO OGO TV
Sdéopwv warp slots eivon voamaoyoAnpévo, yeyovog mov epmodiler tn) GPU va wpOyel Tig ev
AOY® avaoToAEG pe evalhayn TeptPAAlovTog peTa€d Twv evepydY warps.

Ou avaotohég adpdvelog 1 eAéyyxov xatd n Sidprela evepydv »OUAWV ExdOCTG AVTLITPOCK-
mevovv diapeco 0,91% xot péco 6po 2,3% €Tl TOL CUVOAOL TWV EVEPYHOV KVUXAWV, OTTWOG PALVETAL
o1o Txfua 1.7y" 'Oleg oL avacTOAEC TOL TPOPAYHATOC TPOXAAOVVTOL OLGLAGTINE OTTO AVAGTONEG
AeLToLpYW®OV HOVASWY, 1) HATAVORY TwV omotwv amewoviletal oto Txfua 1.7a’. Mia onpovti-
uf} xatnyopio Tuprvev (epimov 25%) mov dev mapovotdlovv oxedov #odOAOL AVAGTOAEG HVARNG
(compute intensive) otov aywyd. Qotdc0, OTwg Paivetar oto Tyxfpa 1.75, axdpn xou avtoi oo CUDA
kernels éyovv onpavtind aptipd Aettovpyldv PVApNG cLVOAA, eTopévwg OAa T adté€odo pvrpng
toug ovpPaivovv otnv DRAM.

M 0vGALGT) TOV ULV TOTTOLGEWY TNG XPLPTIG HVHUNG TOL SM IOV TporaAAOUV OXLVT TOTTOLHCELG
pvipng gaiveton oto Sxfpa 1.83". Epgoavdg, ol puoég amd Tig evTolég OV AoTOXO0V 6TV XPLPH
pvrun dedopéveov L1 actoyxovv xow otnv extdg chip, ava tpufipo pviung L2. Aedopévou ot ot
1oJUOTEPNOELS TTOV TPOUAAODVTAL oTd AUTEG TLG AoTOXiEG SeV WITOPODY VO OVTIHETWILGTOVV e

ovOSLATOEN TV EVTOADY KAl XAAOYEG GTOV XPOVOTTPOYPOHHATIONO, QUTO TOTEAEL XLV TPO YL TNV

Wéa g dvvnTnng ad€nong g amodoong TNG ¥PLPNG PVIAKUNG xal TNG HeAéTng Tov cupPifacpo

1.2. Oewpntind vréPfadpo 13

Shader core stalls breakdown Total operations sorted by ALU-MEM ratio - Idle and control stalls over total active cycles

Operations overall

W ALU operations
BN Tensor operations
W SFU operations
e Load operations
= Store operations

Portion of shader core stalls

Memory barrier operations
Taken branch operations

00% 20% a40% 60% 80% 100% 12.0%
Kemeis Kernels Idle/control stalls
’ I3 ’ 3 I3 ’ 7 I3
(o) AvasTorég SM backend ([3) Avvapueég eviohég (Y) Avactolég ehéyxov xaL a-
dpavetog
4 .
2xfpe 1.7:
Cache misses
Shader core total stalls portions
Texture L1 = N .
W s DF_stalls B Constar L1 misses Data L1 misses Constant L1 misses Texture L1 misses

—INT stalls

= VEM_stalls
SFU_stalls

= sp stalls

W Data L2 misses "
W Data L1and L2 misses -

Stall portions,
Stall portions

MEM stals nl-—.—-‘p—l—,—L)
(O(’) AvaoToMEG AELTOLPYH®V pO- (ﬁ,) Actoyieg xpLONG HVHHNG (Y') Katavopr) actoxidv xpueng pvipng

vadwv

Sxnpo 1.8:
peyédoug xpueng pvrpng / Area-Power overhead, oto xepdioio 5.9 .

Xopantnpiopog Tov eQopuoy®v xot cuoxeticelg pe tnv ILP

O oxomdg autrig g peAétng eivar 660 0 TPosdloPLoPROG AVOSVOPEVHOY KATIYOPLOV EPOPHOYDOV
GPGPU Baocel apyltextovin®dy onpeiwv GUPQOpnong ov Ja LIAYOPEDOLY AVTIGTOLYEG HATNYOPieg
SO PPoN G LALKOD, 0G0 KL 1) CLGYETLOT) TV £V AOY® xATYOPLOV pe T Pedtioon tng arddoong oe
oynpoata extéleong OO0, Long Instruction Window, 6nwg to LOOG [12, 13]. ZvAréEape otatiotind
otolyela oe moANaTAES SLopoppdoelg, in-order , yia o Tpia emimedo TG avdAvong OTwg KoL 6TV
"Whole Picture Analysis" [46, 47]. Tat 710 GNHAVTING XOXPAUTNPLOTIHA TTOV TAXPAYOULV TTOLKLAOHOPPLOL

@OpTOL epyacing mapovotalovron oto Xynpe 1.10.

importance(feature) = Z Az) - coef f(x, feature) (1.1)
zes

S: To avvodo 6Awv Twv idodiavuoudtwy

Ax): H oyt yiax to 18108idvuopa x

Ot Padporoyieg GLAOVETTAG HeYLOTOTTOLOOVTOL OTNV TN 5 Kot emAEéEqple TOOEG CLOTADEG, OTTWG
paivetar oto Xxfpo 1.12 . O ovetddeg mov dnpovpyndnray, xaddg kot oL xopeopuéveg PeATLOOELG

LOOG IPC xou ot ypriceig GPU amewoviovtal oto Exnpa 1.11.

14

Kepdadaio 1. Extetauévn EAAnvua) HepiAnyn

Silhouette scores for cosine hierarchical clustering

Scores sorted in descending order

100%

Cumulative variance

° ° °
= D 0
G 3 &

Cosine silhouette score

°
s

°
°

\

1 4 7 10

13 16 19 22 25 28 31 34 ° 5 10 15 20 25 30
Components Number of clusters

0 5

10 15 20 25 30

Statistics sorted by score

35

(O(/) Avaloyia adporotinng amduriiong ([3') Zxop oclhovéttag avé aplipd ov- (y') T LVOUNHEVO GHOP CTIHOVTIXOTTAG

Load_warp_instructions
L1C_miss_rate

Shared_mem_instructions
Store_warp_instructions
Warp_availability_variance
Warp_readiness
Control_hazard_stalls
DP_dispatch_stalls
MEM_dispatch_stalls

DRAM Reads

DRAM writes
Interconnect stalls

L1 Data Accesses

L1 Data miss rate

L1 Constant Accesses
L1 Constant miss rate
Load warp instructions
Store warp instructions
Shared MEM warp instr
Constant MEM warp instr
Register File Reads
DP_unit_dispatch_stalls
INT dispatch stalls
MEM dispatch stalls
SFU dispatch stalls

SP dispatch stalls
Collector unit stalls
Control hazard stalls
Average warp readiness
Scoreboard collisions
Total CTA issued

Total warps

Utilization

Saturated LOOG AIPC

oTddwv

Sxnuo 1.9: E€aywyn xoporTtnpLlotiney kol opadomoinon

Significance of topl0 extracted features

RF_reads

0.130 0.132 0.134

0.136

0.138

Sxnpo 1.10: EyxeTinr) ONHOVTIKOTNTA eEXYOUEVOV XAPOUTIPLOTIUOV

Hierarchical cosine clustering of all kernels

e S

—
I

Ixnpo 1.11: Syetinég Tipég ovoTAdWY

——

0.140

1.2. Oewpntind vréPfadpo 15

Hierarchical clustering, cosine metric
- nestar-mst_5
Shared memory operations [_|—|:[E’HEEEFEQE-E
DP-bound, high utilization | ! BFs. 1.
Cache-bound, low ILP
SP-bound

Cache-bound, highIlP.

—

sh
ﬂ %’r‘l 1
h&artwall mdmm 311
testo

paol Eri'ch correlation_2
pul bench-correlation_1

;ﬁ:eﬁnﬁ'r:bcamulutmn 1

=—
—
| S
—_—
L ——————]
=
M —
=——
— £5-2009-N
——— parboithisto 2 -
——
M

@ ré‘ﬁ"ﬂ.s?mi ¢

cfi rn m“ﬁ 313
::fd rodinia-3.1"1
A55-2009-NN 1

d rodinia-3.1 3
‘: oc-Stencil20 1
ac-FFT 2
oc-FFT 1
— E-m inE-3.1 1
Lunnets.-ta:ran t 2
—‘_. ' gnesta r;E: 4-'&11:_2
0g-50
[nesé ﬁEP In_2
ussian rodﬂma‘% 12
'—I_,_h %u;s:an rodinia-3.171
- stjoin 4
) g @ln@f.l_'z
4| 55;.:
testBh. £)
testBfs™4
Enesta‘r 5t 1
pﬂl%ﬂl -mri
dwt2d- m-dm:a 311
test.ﬁ.igr 1
test8

spnt I'Ddal'ilﬁl3- 11
baci:pmp—mdlma 31 _2
B r-bfs-wlc 1

ar-sssp
nestar—bl‘s Wi
nestar-sssp-win_ 1
%neatarvbl‘g -atomic_1

0c-50
nestar-tih_3
ac-Sort T

pﬂ!‘.ﬁ gﬂﬂ'ﬂ-ﬂ.EE 1

SEé LIB 1

H Fh ﬁﬂ Al

_[spass 563% 'H::l wi

lznesta r—

tﬁ mdlma 211
—= %“ﬁ .
— e

! is|
F'Ijg 1l-husto
4—,—: I‘llstr::» 1
. ass. EDE‘J-T_FS 1
—————
—

i)
-rodima-3

Sxnpo 1.12: Ontinomoinon Twv cvaTadwV He tepapyiur] opadormoinon

16 Kepdadaio 1. Extetauévn EAAnvua) HepiAnyn

Max RRS occupancy for all kemels
pancy. Average RRS occupancy over all kernels for 64 RRS Average available instruction window per warp Cycles with no CU allocated overall

N
1
i
i
L

frequen

20 30 a0
Average RRS occupancy

50 60

cles with no CU allocated

o
0% 10% 20% 30% 40% 50% 60% 70%
Cys

£3 X
Max RRS occupancy

(O(,) Méyloteg natoywpnoeLg (ﬁ,) Méon mAnpotnto RRS (y') Méoo apadvpo evioldv o- (5’) Koot ywpicg Sratedeypéva
RRS va warp ota yo RRS 64 CUs

Sxnpo 1.13: Aueotactoddynon RRS

Awxotacioloynon tov LOOG otnv NVIDIA Quadro GV100

Metd v vhomoinon tov LOOG otnv éxdoon 4.1.0 tov GPGPU-sim [23], kpidnure amapaitntn 1
ETALVEXTIHNOT) TOV CWOTOV PeYEDOUG TV GYETIHOV SOHAOV, XaJOG 1) apXLur) LAoToinon peletrdnue
oto povtélo GeForce GTX1080Ti [48, 14], puoe GPU Buwvteomouyvidicyv, wov vAomotet tnv Pascal, tnv
TLPONYOUHEVY Yevid apyltextovixng tng Volta. Aedopévov 6tL 1) véa Paownr] pog tAatpdppo GPU
etvou pa GPU otadpot epyasiog, 1 ovpmepipopd tov LOOG avapéveton va Siapépel 660ov apopi To
owoTo peyedog NG otoifag peTovopaciog xataxwpnTov [12, 13] , Tov GUAAEXTN TEAEGTOV XAL TOV

ToPOIOPOL EVIOADV.

Stoifa Metovopaoiag Kartaywpntaov (RRS)

‘'Onwg eaivetan otov IMivora 1.1, n emPapovon woydog o empbvelog tng xApduwong RRS eivan
eAayLoTn, eved 1 péom amodoon ava CUDA kernel BeAtidoveton onpavtnd povo amd 32 oe 64 RRS, mov
amotelel TNV TeAwt) Tyr]. to TyApa 1.130't0 arrdALTO péyloTo eivon 146 o To ardAvTo EAGYLGTO
41. 3to Iyfpa 1.13f', tapovoialetar n péon xatdAnyn RRS ce 6Aovg Tovg CUDA kernels pe RRS
pudpiopévo ot 64. IIpopavag, pia petoynoein (30%) twv muprivev éxet péon tinpodtnta RRS yio v
ool T 64 RRS dev emaprovv, na&tL mov ennpedlel apeAntéa v anoédoor tov backend. Ou Tipég
1OVT& 670 64 oTo IyApa 1.13B" mapdyovton amd vYNAY addoon evpouvg Lhvng, mavog oe CUDA
kernels évtaong vrtoroyiopdv.To péco Sradéoipo pirog mapadvpov I avé wopm yia o Stopdpewaor

RRS 64 anewoviletal oto Txfpa 1.13y" (péon tpn 2,93).

RRS size 64 128 256
Power overhead 0.07 0.018% 0.047%
Area overhead 0.002% 0.004% 0.008%
DeltalPC 7.52% 7.67% 7.67%

1.1: BeAtiwon enidoong xou emiPapivoelg yia wApaxotpevo RRS

INopd&dvpo eviorov

O1 emPapoivoelg Loybog koL EMPAVELNG YLt TNV HAUAKOGT] TOL TOPOIVPOL EVTOA®V pe Paoinn
i IWindow = 1 (ou ipég IWindow otov mivora eivor xavoviromownpéveg oe 1 evtodn Fetched,
Decoded »ou Issued avé xoxro ava phox ene€epyaciog SM) mapovoialovtal oTov ivaxa 5.4. Etn
véa apyirextovinr] pe 4 phox eme€epyooiag avé SM [49] (sub-cores[36, 24]) Sev eivon cup@épov va

, . . , . , liansn 1 4
av€ndel to Instruction Window, oaAA& propel va pelwdel oe Drocessing block-ayde X@PIG oNpavTM

emdeivwaor tng enidoong.

1.2. Oewpntixd vréPfadpo 17

IWindow | 2 4 6 8 10 12 14 16
Power 4.79% | 10.68% | 17.58% | 24.98% | 34.06% | 47.01% | 60.47% | 74.77%
Area 0.22% | 0.95% 1.80% 2.71% 3.70% 4.85% 5.99% 7.23%

1.2: EmPopivoelg whponovpevou mopadvpov evtorov (Fetch - Decode - Issue
scheduler throughput)

Movdadeg TvAloyng

Eivou eppovég 6tL or Movadeg ZuAAOYNG, TOL XPNOLHEVOVY WG GTOIHOL KPpATNONG TOL ahyopidpov
Tomasulo [15] elval to mo xpiopo TpRpA Tov, TO6c0 amd v doyn tng avEnong g arnddoong 66o
no ard v amon twv emPapivoewv oxvog xal empdveiog. H péon adénon tng toxdTnTog yio
ohovg tovg CUDA kernels mov doxpdotnuayv xadong xar ot emPapivoelg Area wal Power mopovot-
alovtou otov IMivaxa 1.3. Ipogavag, 1 Beitivon tov IPC oe LOOG ropaiveton mépav twv 48 CUs
yla tov péoo CUDA kernel, amoteAdvtag To 0pLo oxedlaopod yio TiG TePOLTEP® OOULUEG.

Opilovpe v xopeopévn Pertiovon LOOG wg tn péylotn exatootiaia PeAtioon tng amddoong
7oL popel va emitevydel oe oxéon pe T Paocwn} ppoapyitextovinr. Eilvau mepimov iom pe
BeAtiowon otig 48 CUs ko onplPadg iom pe mn PeAtioon otig 64 CUs. To iotdypappa tng ®opecpévng
BeAtiwong yux 6Aovg toug CUDA kernels mov exteAéotnrov amewovileton oto Xxnpe 1.14. Ot xo-
poAeg Pertioong yio tnv xApduwon CU ava exatootnpopio CUDA kernel xopeopévng BeAtiowong
amd T 501 £wg TNV 90N Tapovsidlovton oto Tyfpa 1.15¢". Opilovpe avdaipeta tnv whéon "LOOG-
sensitive” ©g TNV ¥AQCT) TOV EYAPHOYDOV TV 0ToiwV 1) Kopeopévr Pedtiovon LOOG eivan peyodOtepn
o6 100%.

Ofcape G 0TOXO0 Vo oXeSLACOVE Evay PNYOVIGHO aVaSIOHOPPOONG GTNV AETTOPEPELDL TTOV
PAémouvpe otov mivaxa 1.3, mpoxeyévou va PeAtioTonmotjoovpe tnv emidoon 1 TNV evepyelaxy a-
168001 Yo ®&de POPTO ePpynciag HATA TNV EXTENEDT).

Y10 Ixiua 1.150°, ov emiPapiovoelg meploxig xow toxvog cuvdiaypappilovron pe tn Peltioon
tov IPC avé ratnyopia evacdnoiog LOOG. Eppaveg, o dibpesog CUDA kernelg 6cov apopé tnv
evaodnoio LOOG eivan ovolaotind pn LOOG-evaicdnrtog. H péon Bertivon IPC yia tovg CUDA
kernels pe evoucincio LOOG Eemepva to 160%.

Collector Units 8 CUs | 16 CUs | 24 CUs | 32 CUs | 40 CUs | 48 CUs | 56_CUs | 64 CUs
Area overhead 3.33% 6.80% 10.26% 13.72% 17.19% 20.65% 24.12% 27.58%
Power overhead 6.50% 9.90% 13.64% 17.72% 22.13% 26.87% 31.95% 37.37%
Average DeltalPC | 22.29% | 40.76% 48.57% 52% 59.66% 61.14% 61.16% 61.16%

1.3: Emidoon ran emiPapivoelg kAponotpevey Ltadpov ZuAAoyhg

18 Kepdadaio 1. Extetauévn EAAnvua) HepiAnyn

Saturated improvement distribution for kernels

III.-- 1 - — —
oo 05 10 15 z0 2s 30 35 a0

Kernels

Yxfpa 1.14: Iotoypappa vopecspévov IPC oto LOOG

LOOG IPC improvement from baseline per distribution percentiles Ww LOOG IPC improvement from baseline for loog sensitive apps
.- o Rl ve

Percentile improvement

Percentile increase
3 H § E H
%
Percentile improvement
3 g 3 H

““Number of CUS/RS ““Number of CUs/RS

(O(') BeAtiwon enidoong avé exarootn- ([3’) EmPapovoelg xatd v xApduworn (Y’) BeAtiwon enidoong uon emPapivoelg
popio oto LOOG tov LOOG

LOOG area-delay product EDP for LOOG improvement percentiles

PDP for LOOG improvement percentiles

ADP normalized to baseline
EDP normalized to baseline
IRIIET]
“lezssans @
=
EDP normalized to baseline

[T T T T N T T T T T wan man e e
Number of CUs/RS Number of CUs/RS

(5’) KAwpocovpevo ywopevo EpPadoo- (8’) KApocodpevo yvopevo 1ox0og-xpovoo (g’) Khporoopevo ywvopevo Evépyelag-

Xpovou extéleong EXTENEOTG XPOvov extéleomg

Sxnpo 1.15:

IIpocappoyn tov front-end B&oer tov LOOG otnv NVIDIA Quadro GV100

To LOOG emiPdrrer dpeca povo tpomomnoioelg oto backend eved to frontend mapapéver ovoua-
otwd adwrto. Qotooo, pe v avEnuévn arnddoon tov backend evdéyetar va dnpovpyodvtal véa
onpeia ovppdpnong, 1 vroPértioteg dapoppnoelg oto frontend. 'Etol, e€etdlouvpe tn PéATiotn

oupTEPLPOPE TwV oTotyelwv Tov frontend: Decoder, Issue scheduler xou Instruction Buffer.

1.2. Oewpntixd vréPfadpo 19

Benchmark Suite Kernel Sat- AITPC
MST Lonestar Find Minimum 405%
LPS Ispass-2009 3D Laplace calculation 396%
LIB Ispass-2009 Path calculation 319%
Gramschmidt Polybench Gramschmidt 245%
Correlation Polybench Mean calculation 232%
MST Lonestar Verify minimum element 226%
MST Lonestar Find minimum element 194%
MST Lonestar Find minimum element 2 185%
QTC Shoc Compute degrees 180%
testAmr Dragon Refinement kernel 157%
Hotspot Rodinia-3.1 Calculate temperature 153%
Backprop Rodinia-3.1 Weights adjustment 145%
NN Ispass-2009 Execute second layer 140%
Reduction Shoc Reduce 127%
Histo Parboil Input image 125%
Gramschmidt Polybench Initialization 119%
S3D Shoc Find Minmum 116%
Histo Parboil Intermediate kernel 115%
Histo Parboil Histogram calculation 112%
CFD Rodinia-3.1 Compute 110%
Stencil2D Parboil Stencil kernel 106%
FFT Shoc FFT kernel 102%

1.4: Epappoyéc " evdiodnteg oto LOOG" ko oL nopecpéveg PeAtidoelg emi-
doorig Toug.

Warp IPC for all kernels run

& = Warp IPC
m—Minimum lfetch throughput

Frequency

125 150

75 100
Warp IPC

Sxnuo 1.16: Evtoléc warp avd nwbudo

IIpocappoyn Fetch-Decode

H enéxtaom tov opiopod twv Instructions Per Cycle (EvroAég avd wdndo) avagépetor cuvidwg oe
EVTOAEG VAHOTOG ové KOKAO, Xwpig var AapPdvel vtdYn TG evToAég warp, 7O elval 1) TPAyHOTIXT

povada mov exteleitan oto backend:

PO — scalar_thread_instructions (1.2)
total _cycles

Aedopévou Tov eviatiov PeTpn T TPOYPApPPATOG TNG apyLtentovinng Pascal ko Tov povtélov omdnL-
ong evepyng paoxoag avd warp (6mov to vijpato petafd twv warp dev propoliv vol GuveEVEOIOLV),

enavampoodiopilovpe tn petpwer) IPC wg mpog tnv amddoon evrododv Tov frontend wg e€ng:

Warp_insn scalar_thread_insn warp_instructions

W_IPC =

total_cycles total_cycles " scalar_thread_insn (13)
I1PC '

warp_size - warp_occupancy

‘Etol propovpe va suyrpivovpe to Warp IPC, 1o omoio eivon pua petpnr] tov backend, pe tnv
avtiotowyn tov frontend. 'Omwg amewovileton oto Tyxnpe 1.16, Otav exteleital pe xopeopévo

frontend, n anodoon Tov backend ce emimedo SM xaw o0 pécog 6pog ce xpoviury Paon elval kAT

20

Kepdadaio 1. Extetauévn EAAnvua) HepiAnyn

wl;etch—decode throttling, non LOOG-sensitive kernels 0% Fetch-decode throttling, LOOG-sensitive kernels

50%

10%

0%

ADelay normalized per saturation
o
3
&

-10%

L]
+
50%

10%

" T - -

+

ERY

|_ﬂE|_|...” L

ADelay normalized per saturation
o
Q
F

-10%

4

=20%

=20%
1 2 3 4 1 2 3 4

Fetch-decode throughput normalized to min Fetch-decode throughput normalized to min
’ ’r
(o) ®)
Sxnpo 1.17: Iepropiopog amddoong Fetch-Decode

a6 v ehdiyiotn orddoot tov frontend (mov toodvvayet pe 1 evroAr) wov Aapfdveton oaovd SM-wide

L1 Icache avé uduho) yio T0 83% twv epappoydv. Qg ex tovTOL, 1) évvola Twv front-end bound

nan back-end bound egappoydv dev eivon epappooyn otn GPU. Zto Iyfpa 1.17¢ xouw 6t0 Iyfipa

1.17B, eppavieton n emPapovon xodvotépnong yio xéde éva ad ta petwpéva e0pn {dvng Tov

aoxmdiromon Ty xou yu ke natnyopia evaioinoiog LOOG.

Stov ITivoua 1.5, tapovoidletar to IPC, xavoviomonpévo wg tpog tn Paowur) awddoon frontend

(8 avé SM avé wOuho 1) 2 avé prhox eme€epyociog ova vOuAo) yio xbde pio otd TG mePLOPLOPEVEG

Tipég evpoug {wvng Fetch-Decode. Ot Tipég autég xavoviromolovvtal 0mwg e€nynonxe mtaportdve. H

e€owovopno woxvog xot epPadod Adyw TepPLOPLGHOD addocTg o€ ALTE T GTAdLX oL GTO GTAILO

éndoong elvat 4,57% uo 0,22% avTioTOLY .

1.5:

Decoder BW 1 2 3 4
LOOG-sensitive IPC 89,22% | 97,43% | 98,78% | 99,88%
LOOG-insensitive IPC | 74,43% | 92,54% | 98,84% | 99,48%

EvtoAn ava wbuho yux amodoon Fetch-Decode xavoviromownpévn oto
1 _insn
SM-cycle*

IWindow | 4 6 8 10 12 14 16

Fetch 0.03% | 0.05% | 0.08% | 0.11% | 0.14% | 0.16% | 0.19%
Decode 0.54% | 1.09% | 1.63% | 2.17% | 2.72% | 3.26% | 3.80%
Issue 0.16% | 0.44% | 0.77% | 1.19% | 1.77% | 2.33% | 3.00%
Total 0.73% | 1.58% | 2.48% | 3.47% | 4.62% | 5.76% | 6.99%

1.6:

EmPapoivoerg epfadod wade otadiov ot oxéon pe mapddvpo evioAdv 2

1.2. Oewpntind vrdéfadpo 21

IWindow | 4 6 8 10 12 14 16
Fetch 0.20% | 0.39% | 0.59% | 0.79% | 0.98% 1.18% 1.38%
Decode 3.86% | 7.72% 11.58% | 15.44% | 19.30% | 23.17% | 27.03%
Issue 1.56% | 4.09% 7.09% 11.70% | 20.00% | 28.79% | 38.38%
Total 5.62% | 12.21% | 19.27% | 27.93% | 40.29% | 53.13% | 66.78%

1.7: EmPapivoelg toxvog ndde otadiov e oxéon pe mapidvpo evioAwv 2

Frontend scaling Area overhead Frontend scaling Power overhead
T0%
7% | WM Fetch . Fetch
BN Decode N Decode

~ 6% Issue ~ 60% lssue
I 1
= 5% | g 50% 7
o
- =]
c =
-é 49 - E 40%
£ £
g 3% o E 30%
= =
@ 9]
5" n . II II

1% - < 10% | — II

0% 0% !—-JI—“—m

¥ © 5 = B = 9 - 8 % = B = =
IWindow size per processing block IWindow size per processing block

CY) #)

Ixnpe 1.18: EmPapivoelg yio whipdcworn tov front-end (o€ oxéon pe mopddv-
PO EVTOADV 2)

IIpocappoyn Issue scheduling

'Onwg astewovileton ota Txfpoata 1.19a xon 1.19B", évag xpovompoypappatioTig He T duvatdtnTa
VoL X PO LHoTTOLEL Tapddupa eVTOADY peyadbTepov Padoug artd pepovopéva warps, TopEéYEL GTHOVTL-
né nodvtepa amoteréopata pe To LOOG, edud yix epappoyég evaicdnteg oto LOOG. H Bedtivon
avth eivan xopeopévn mépov Twv 8 eVIOADVY. Zuyrexpipéva oto Tyfpa 1.19¢" PAémovpe pio Tpoxa-
TaANYn Tev Tupnvev single-launch mpog tnv LOOG-gsvoucdnoia, n omoia emove€etdleton eXTeVAG

otnv evotnra 5.8.2. To Padog Tov scheduling avtictowyei oto issue_depth otov alyopidpo 1.

Avadiopopwon Instruction Buffer

Aedopévov 611 oo CUDA kernels mov eivai evaicdntor oto LOOG emw@elovvtal meplocotepo amod
Badttepa mapddupa ypovorpoypappaticpot Issue, mapovoia etepoyéveiog ILP peta&d twv warps
epLocoTeEPT) TOLTOY pov tpdcfoact otov Operand Collector da mpérel va Sivetar oe warps pe VYmAo6
ILP. Aedopévng tng evpeiog *ATAVOUNG TWV TPOAVAPEPIEVTWV HETPUOV PeTAED TV Warps yLo ToUG
neplocotepovg CUDA kernels, xadotovpe tnv xatatpnon Ibuffer ava warp mapoapetpomotoun
ovti yia otatwr] (6nwg oto Paowd povtédo [24]) war eEacpaiilovpe OTL mTpocappdleton 6To

expetorlevoipo ILP tov avticTolyov warp xatd tnv extéleon.

22 Kepdadaio 1. Extetauévn EAAnvua) HepiAnyn

ADelay depending on scheduling depth, per kernel ADelay depending on scheduling depth, per launch

— LOOG-sensitive
— non LOOG-sensitive

0% = — LOOG-sensitive %
—— non LOOG-sensitive

-4%

>
F— &
@ 8 —4%
3 2
_8% -5%
-6%
-10%
-7%
-12%
-8%
bfs dfs_2 dfs_4 dis_8 dfs_16 bfs dfs_2 dfs_4 dfs_8 dfs_16
Scheduler depth on LOOG Scheduler depth on LOOG
(o) B)

Sxnpo 1.19: Delay improvement across Issue scheduling depths

64 warps

153 I 2 I I I I

Active warps
‘ 1 |0,ﬁ|0,ﬁ|u,ﬁ|0,4|0,3|0,2| 0 ‘

Zxnpo 1.20: Ta dedopéva mov mapovoldloviol mopardte

MeTpwnn avodriapdp@mong XpNOIHOTIONHEVOV xotaywproewv RAT

H afoomoinon tov xpnoomotodpevoy xatoyxwpioewv RAT yia TNV amo-mpotepatonoinon twv
warps, TapEYEL EVOV OPHOAO TTPOYPAPHATIONO VTOA®Y oTo backend yio warps pe ave€aptnreg evro-
Mg, To warps pe vymAég e€aptroelg propotv v watadopPavoovv tig CUs dtav oL mpadteg €xovv

eEavtAfoel To IWindow toug 1) éxouv avtipeTwicel axtvnromowoelg tng Icache.

MeTpinn avodlopOpP®ONG ETOHOTITOG Warp

H etowpdtnra tev warps mowkiddel petafd twv warps mapovaio xivdovwv eAéyyov Aoyw Bpdywv, Tov
TPorAAOVV mepLoodTEpa YTUTNpHOT otV Icache ko Adyw tng mpotipnong xpovorpoypoppaTiopod
End00MG TOV AVTIoTOLYWV Warps, oL TPoxaAel ouyvo ddelaopa Twv rataywpicewv [Buffer toug.
‘Otav éva warp €xeL mpotepodTnTo yio Issue, av€dveton 1 HeTpnr] ETOHOTNTAG TOV, TOPEXOVTAG

TOU OUOT HEYOADTEPT) TTPOTEPOLATI T H.0.X.

IMoAvtinn avadioapdpewong divarov draywpiopov (Split)

‘Otav xpnoporoteitor 1 oAt Split mov mapovoidletar otnyv e€icwon 5.4, oL Stadéoeg eyypapég

Ibuffer natavépovtar Sixowo petod Twv warps.

1.2. Oewpntind vrdéfadpo

23

ALGORITHM 1
& po warp

order_warps_RR()
total issued =0

while total_issued < max_issue_per_cycle do

get_next_warp()
issued = 0

while issued < issue_depth && total issued < max_issue_per_cycle do
if libuffer_empty() && !'warp_waiting() && pipeline_avail() then

issue_instruction()

issued +=1
total_issued +=1
else

break
end if

end while
end while

RAT entries normalized to max

1.0
038
0.6
@
T
§
0.4
0.2

Warps
(O(') Suvoluég eyypagpég RAT

Standard Deviation of total RAT entries, normalized to max

Kernels

Standard Deviation of used RAT entries, normalized to max

Maximum RAT entry usage across warps per kernel

RAT entries used 100%
10
© 80%
08 3
@
5
>
2 60%
0.6 7]
g
£ 40%
0.4 2
£
=
©
= 20%
0.2
0%

Warps Kernels

(B') Xpnoomowmpéveg eyypopég RAT (Y') Méyilotn xpnoilomoinen eyypopodv
RAT

Standard Deviation of warp readiness, normalized to max

160

140

5
S

B8
8

Number of kernel launches

04

0.0 01

0.2 03
Standard Deviation

(5,) Tomwr) odrhion avé exxivnon kernel
TV GLVOAKAOV eYypap®dv RAT, xav. oTo
HéyloTo

Number of kernel launches

200

175

] 2
] S
e e e
] o &
8] S

3
8

Number of kernel launches
&

g

b

o

0.4

01

02 03
Standard Deviation

0.2 0.3
Standard Deviation

04

0.0

01

(81) Xpnowonowmpéveg eyypagég RAT (g,) Etowpotnta warp

SxnNpe 1.21

24 Kepdadaio 1. Extetauévn EAAnvua) HepiAnyn

oAt avadioapdpewong winner-take-all

H oAt "winner-take-all" avoratavépel dminota tig Stadéopeg vatoywpfoelg petal Twv warps

pe TIg LYNAOTEpeG Padporoyiec.

1

1 + reverse_recon f _metric

warp_score =
warp-score = recon f _metric

total _score = E warp_score(warp)
warp€ Ready_-Warps

warp-entry_pool = Z current_entries(warp) (1.4)

warpE Ready W arps

warp-score
entries(warp) = floor(warp_entry_pool - warp-score

)

remaining_entries = warp_entry_pool — Z entries(warp)

total_score

warpe Ready W arps
warp-score warp_score
— floor(——————

remaining_score(warp) =

)

total_score total_score

ALGORITHM 2

Winner-take-all IBuffer reconfiguration policy

sort_warps_by_score()

while warp_entry_pool do
warp = get_next_warp()
entries[warp] = min(max_entries_per_warp, warp_entry_pool)
warp_entry_pool -= entries[warp]

end while

Amote AéopATA VASLAPOPPOOTG

To amoteAéopato TOL TPOKOTTOLY ATTO TO GLVOLACHO TWV OVO TOALTIKGOV AVUSLAPOPPWOTIG E TLG
8vo petpwég, oe GAovg Tovg CUDA kernels, ametcoviovron oto Txnfua 1.22a, ota Txfpotae 1.220°,
1.22y" won 1.228". H oty Stoywplopod pe T Xprion NG HETPIKNG ETOWHOTNTAG Warp TopExeL
ONHOVTIKA amoTeAEGpATA, e péoT) emitdyvvon 4,4% yioo CUDA kernels evaicdntovg oe LOOG, éwg
ot 10,2%.

Extog oe1pdg avadiapopewon

H Beltiotonoinon tng enidoong N towv aptdpnmindv peyeddv mov Aapfdvovv vdyn tn dudyvon
woxvog (PDP, EDP) asmautei ToAD dtopopeTinég SLpopPidoelg HovAdwvy GUAAEXTT Yo SLapopeTInong
CUDA kernels. Jvyxexpiéva, 1 xhipduwon tov CUs mapdyel aprets adénon twv emddcewnv yio
oplopéva poprtia epyasiog (evaicdnta oto LOOG) mov dweatohoyel tnv emiPépovon toxvog xot -
TLPAVELAS TOV HEYOADTEPWV SLUHOPPOCTEDY, EVD Yiow GAAa, xapio Stopdppwor LOOG dev mapéyet

APUETA PEYAAT emLThYLVOT) WOTe va dwatodoyovvtan ot emtPapivveels. Ot PeAtidoelg Tov LOOG oe

1.2. Oewpntixd vréPfadpo

25

Ibuffer reconfiguration, split, used RAT entries

Ibuffer reconfiguration, split, warp readiness

Ibuffer reconfiguration, winner, used rat entries

Ibuffer reconfiguration, winner, warp readiness

Kemels

(o) MoArtined Sraywpiopon, pe- (B') TIoAttwr) Stoxwplopo, pe- (Y’) oAty Winner-Take-All (§)
TPWT] XPTCIHOTONHEVOV EYYPO-

1% 2%
1pC improvement.

3%

@wv RAT

2%

TPWKI| ETOLOTNTOG Warp

% 2% 4% 6%

1PC improvement

8%

10%

policy,

5 |I-

o%

0% 1% 2% 2%

1PC improvement

2%

pHévov eyypoapov RAT

%

2% %
1PC improvement

IToMtwep Winner-Take-

petpwr) xpnowporown- All policy, petpuer] etoypotnTog

warp

Sxnua 1.22: BeAdtioon IPC avd petpuer ko moAitinr avadStopdpemnong

8_CUs 16_CUs 24_CUs 32_CUs 40_CUs 48_CUs 56_CUs 64_CUs
90th 55.39% 97.63% 121.77% 138.65% 146.71% 148.84% 148.85% 148.89%
80th 43.50% 71.17% 82.92% 89.10% 99.94% 104.97% 105.10% 105.40%
70th 27.65% 49.72% 58.13% 68.07% 76.13% 78.74% 79.66% 79.50%
60th 22.42% 34.69% 40.89% 46.32% 49.84% 49.12% 49.31% 49.41%
50th 17.32% 29.35% 31.58% 32.18% 33.26% 33.39% 32.79% 32.77%
AVG 22.50% 40.32% 49.15% 55.24% 59.44% 60.79% 60.96% 60.93%

1.8: BeAtiwon IPC avé Stoapdppwon xol exatostnpoplo

ox£EoT HE TN Paonr] HIXPOQPYLTEXTOVIKT] YO T SLAPOPX EXATOCTNHOPLA TG HOPESHEVNG PedTivong

nopovotalovrot pe peyalbtepr oxpifela otov mivoxa ;;

Svpneprpopd exxiviioewv kernels pe to LOOG

‘Ocov apopd Tov appd twv exnvijoewv yia touvg eetaldpevovg CUDA kernels, otov mivoa 3.1
42% TV TUPN VOV elyav cUVOALKK pio exxivnon. H xatavopr] tov aptdpod twv exrivijoemV Yot TOUG
vrtodoutovg CUDA kernels astetcoviletor oto XA 35

‘Onwg amewoviletar oto oxfpa 1.230°, 1.23y" xan 1.230, vwapyel cagrg cvoxétion petafd
TV LIOAOYLGTIXMV EVIOADV ol ToL apldod Twv ¥ Mjoewv. ‘Onwg gaivetanr oto Tyfuo 1.250',
oL TPOCTEAACELS OTadEPNG HVAING TV QPOPTWV EPYOOLas HOG GLoXETIlOVTOL KVPLWG HE EVTOAEG
HVARNG TTapopétpov. IIpdyportt, autd opeiletor 6TOVG YOpUNAODE cUVOALKOVG XpOVoug extéheong. H
BeAtiwon tov xopeopévou IPC oto LOOG cvoyetileton évtova apvntind pe (Sxfpa 1.250). Emopéveg,

0 XOUNAOG XpOVOG EXTENECTIG EUNLVNOTG ELVOL PLAL CTJHOVTIXY TTOPAPETPOS KT TI) GHLALYPAPTIOT)

TupHvVeV olppwva pe) Bedtioon tov LOOG.

SFU warp instructions per kernel invocations

Number of invocations

(O(’) Avvoyurég evrorég SFU

SP warp instructions per kemel invocations

Number of invocations

(B’) Avvapinég evrohég SP

ShMem warp instructions per kernel invocations

Saturated AIPC per kemel invocations

250%

Number of invocations

. . 100% . B
7% . [] .
.
70% K
6% | o N I 2 8o DY 200%
. g .® .
2 59 v (]]
2 5% s 5 60% : | R *— T b %150% o
] g . g .
24% | o : I . ', h > M . 3 s
g g LR . g B] .
S3% [o 50% | ® . g 40% | e 2 100%
G H @ . . £ e ° ® ki
H .
2% | o . i 5 . " 509 !
£ 0% %
1% : s 0% (3 hoe . . ‘ . ‘.
. . . l . . e%e
.
0% |8 eoeooocese %o . 0% |8eeesssces 0% Beliaete <
25 50 75 100 125 15.0 25 50 75 100 125 15.0 25 50 7.5 100 125 150 25 50 75 100 125 150

Number of invocations

(Y’) Avvouné evtopég poipa- (6,) Kopeopévn Beltivon enido-

Copevng pvipng

oG - EXULVIOELG

Yxnuo 1.23: Tomot evrodwv - ennviioeig kernels. Epgaviig ovoyétion xAficewv
- EVTOA®V PVAUNG

26 Kepdadaio 1. Extetauévn EAAnvua) HepiAnyn

Number of launches per kernel

14 4

12 A1

10 1

Frequency per device function

|

140

2l
il ETEREErE
[1] 20 40

60 80 100 120
Number of kernel launches

Exnpa 1.24: Aptipog uhrjoewv avé kernel

L1 Constant accesses - LOOG IPC improvement L1 Consant accesses - Parameter memory instructions

Saturated IPC improvement

25

2.0

15

10

0.5

0.0

[4

LN

S i .
J‘-‘J'" :ln'kﬁ .'-.. =

o

5

10 15 20
L1 Constant accesses

25

L1 Constant accesses

30

25

20

15

10

5 10 15 20 25
Parameter memory instructions

(O(,) H ropeopévn Peltiwon emidoong sivar avti- (ﬁ,) OL pocPhoeig L1C Eumnpetodv nuping eviolég
oTPOPWG avidoyn Twv mpocPacewv L1C HVIAHNG TOPOpETPWV

Sxnpo 1.25:

Xpnopomolobpeveg peTpLrég

O xodoplopdg g PEATIOTNG AvaSLAPOPPWOTIG ELVaL GXETIHOG e TOV oUTaLTOOpEVO deintn o€log,
0 070l0G AVTLITPOCWITEVEL KATTOLO €180G TOPER QUTOSOTIHATNTOG TTOV TTPETEL VO BEATLOTOTOLGOUE.

Madi pe avtod xpnoipomotodvTal xar apldpol a&iog wov Aapfavovy voyn v oY L:

« Kopeopévn Pedricoon IPC 98%
Oewpeitat 0TL eivar PedTioToTOEVT 6TV 1) TpEXOLOA SLAPOPPLCT) TAPEXEL ATTOSOGT) EVTOG
evog avdaipetov 2% tng nopeopévng amddoong PeAtinong (péylotrn emtev€pn Pedtioon IPC
otV 1o ¥Apocovpevn diapdpewaon LOOG).

» Kopeouévny Peltiowon IPC 95%
To IPC Ja mpémer va eivon evtog tov 5% g péytotng emttev€ng Pertioong IPC.

« Power-Delay Product
Iooduvayel pe T cuvoAnr] Sty Lo eVEPYELAS TNG EPAPHOYTG.

1.2. Oewpntixd vréPfadpo

27

« Energy-Delay Product

Ioodbvogio pe to ywopevo Power — Delay?, Aoppévovtag meplocdtepo vrdymn o xpovo

EXTENEOTC.

Avtég eivon oL petpunég pe Boon Tig omoieg Ya alodoyndel xo To povTéLO avadLlapdpPwaong, o€ oxéom

e Tig PEATIOTEG TIHES TOUG. ZUX VA T OVOLPEPOHOOTE GE AUTEG WG “HETPLUEG OVASLOHOPPWOTG .

Eidn avadiopdpewong

+ Béoel Tov emumédov vAomoinong Tov eAeyuTr avadlopopPwong:

Emntinedo Aoyiopueod/ vAuoy,

+ Baoel mng 160800 TOL eAeyuTH AVASIHOPPWOTG:

BéAtion avadiopdpwon (6mov ot PéATIoTEG SLPOPPOCELS Elval YVWOTES Yo wGde epappo-

Y1 no peTpnt} avadtopopewong) / Avadiopdpewaorn xatd tnv extéleot (6mov ot PéATioTeg

Sropopeioelg poPAiémovror amd peTpnTég LALKOD)

« Baoel Tov xpovinot Padpod Aemtopépetag:

Statwn (avadioapopewon ava egappoyn) / Hu-Svvapuur (avadiopdpewon avé exxivnon

kernel) / IIpcdytng exnivnong (mpotn exuivnon evtog oelpdg xo otodepr) SILOpPo yLa TIg

LITOAOLTTEG EXULVT|OELG)

IIpocdropiopog BéATioTV Srapoppdcewv

Values ‘ 98% saturation PDP EDP
LOOG-sensitive
min 24 16 24
max 48 48 48
median 40 32 40
LOOG-insensitive
min inorder inorder | inorder
max 48 48 48
median 32 16 16

1.9: BéAtioteg Sroapoppmoelg ava kernel won petpunr)

BéAtiotn Srxpopewon yio CUDA kernels piog exxivinong

Tt Pértiotn avadiopdpeweorn yioe CUDA kernels povrig exxivnong pe faon m PeAtiotomoinon

OAwV TV PeTpK®V Tov opilovtal, Aapfdvovpe amoteAéopata yia) péon PeAtivon tov xpdvou

enxTéleong xou tn péon evepyetonr) anodoon oe 6Aovg Tovg CUDA kernels xaun Tig xatnyopieg evot-

odnoiog LOOG otov mivaxa 1.10.

Ta Swxypépporta 1.280" xou 1.28B" amewcoviovv capng tv mapatrpnon 6t oo CUDA kernels

TOAATTAGDY exnviioemV teivouy va pnv eivon evaicdnrtot oto LOOG.

28 KepdAaio 1. Exterauévny EAAnvuc Iepidnyn

A cPUTIme GPU Time
L o

_kemel_funce<<grid blocks==()

! Whole kernel First launch Semi-dynamic
reconfiguration reconfiguration reconfiguration

Kzu : I

Ixnpa 1.26: Tomor avadiopdppwong Paoel xpovinig AeTTOpEPELaG

K2L1

K2L1

1.2. Oewpntind vréPfadpo

29

Optimal 000 rec:

for kernel launches, sat

== 100G-sensitive
71 non LOOG-sensitive:

Frequency
LI |

¥

inorder 8.CUs 16.CUs 24CUs 32.CUs 40_CUs 48_CUs
Number of CUS/RS

sat98,1

aunches,

sensitivity

Optimal r for kernels and launches, saturation
P - remels
kernel Jaunches.
>
g
2
3
3
s
2w

norder8.CUs

16.Cus 24_CUs 32.CUs 40 CUs 48 CUs

Number of CUS/RS.

(E) sat98, kernels and launches

Optimal 000 rec

figuration for kernels,

Optimal 000

ation for kernels, PDP

¥ ¥ % ¥y 8

Frequency

§

LOOG- (B)

= L00G sensitive
hon LOOG sensitive

== 100G-sensitive
non L0OG-sensitive .

¥

Frequency

inorder .CUs 16.CUs 24_CUs 32.CUs 40_CUs 48_CUs
Number of CUs/RS

Number of CUs/RS

Frequency

inorder 8.CUs 16_CUs 24_CUs 32.CUs 40_CUs 48_CUs

Optimal 000 rec

== 100G sensitive
non LOOG-sensitive

for kernel launches, PDP

inorder 8.CUs 16 CUs 24_CUs 32.CUs 40_CUs 48_CUs
Number of CUs/RS

PDP, kernels, LOOG- (C) sat98, kernels, LOOG- (D) PDP, launches, LOOG-
sensitivity sensitivity sensitivity
Optimal 00O reconfiguration for kernels, EDP
Optimal r for kernels and launches, PDP Optimal 00O rec for kernel launches, EDP S (150G sealtive
. - farmets 100G sensitve I o0 100G sensite
et e] == non to0G sensitve
.- . z
5o g
S E g
£ £. £

(F) PDP, kernels and launches

inorder 8.CUs 16.CUs 24 CUs 32 CUs 40_CUs 48.CUs
Number of CUs/RS

Optimal reconfiguration for kernels and launches, EDP
-
kernel launches

frequency
#

inorder 8.CUs 16.CUs 24_CUs 32.CUs 40_CUs 48.CUs
Number of CUs/RS

(1) EDP, kernels and launches

(G) EDP, launches, LOOG-sens

inorder 8.CUs 16 CUs 24 CUs 32 CUs 40_CUs 48_CUs
Number of CUs/RS

inorder 8.CUs 16.CUs 24 CUs 32 CUs 40_CUs 48 CUs
Number of CUs/RS

(H) EDP, kernels, LOOG-sens

p 1.27: BéAtioteg dapopenoelg CU avé CUDA kernels, exuivijoelg, petpuég
avadiapoppwong xat evaicdnoio oto LOOG

30 Kepdadaio 1. Extetauévn EAAnvua) HepiAnyn

 ADelay from IPC Saturation, single launch kemels AEnergy from IPC on, single launch kernels
Cumulative kernel ADelay per launch type ., Cumulative kernel AEnergy per launch type 8% t
o
:
15% :
% %
12%
10% 5%
10%
. .
. e % ' 5 = ' $
&% 3 g B
£ £ g o : g e
] g ‘ 4 ‘ '
-20% ‘
- 2%
250 ' - it !
2%
‘ ‘ .
o == Single launch kernels == Single launch kemels 1%
Multiple launch kernels Multiple launch kerels o . . ‘
95% sat 98% sat PDP EDP 95% sat 98% sat PDP EDP 95% IPC Saturation POP o 95% IPC Saturation POP EOP
Reconfiguration metric Reconfiguration metric Reconfiguration metric Reconfiguration metric

(0(') Beltiwon ypovov extédeong (B,) Beltiwon evépyelag (Y') Emdeivwon xpovov extéhe- (5') Beltiwon evépyelag amd xo-
ong amd xopecpd pecpd

Sxnpo 1.28:

'Onwg gatveton oo Txfpa 1.28y",) fedtioTomoinon yux Tig GAleg petpinég Tporadel pia avope-
vopevn pnepr) emdeivoon g xadvotépnong oe cOyxplom pe To 98%sat. ‘Ocov apopd 1 petofolr]
evépyelag, 6to Zxfpa 1.28 mopatnpolpe 0TL »atd Péco 6po - 1,1%, -1,4% o -0,9% preaPorn evépyelag
Topayetol and Tig peTpés 95% IPC saturation, PDP ko EDP avtictouya.

CHELOVETOL OTL, OTTWG PAUIVETAL GTIG XATAVOREG eVEPYELAG 0TO TxTpa 1.29Y', extdg amd v ava-
pevopevn Pedtiotomoinot tov PDP, éva chvoro muprivwv dev uepdilel apreTd oNpovTing emitdyvvon
wote va avtiotadpioel v enPdpovon oydog Twv peyordtepwy dapoppncewv LOOG. Avtol ot
CUDA kernels avtipoowebovy 25% yio TiG PeTprég xopea oV 95% uart EDP woun 27% yia tn petpiun
nopecpol 98%. ‘Onwg gaiveton oto IyApa 1.298°, 6Aot oo CUDA kernels mov eivon evaicdntot oto

LOOG pewdvouy tn dtdyvor evépyelag »atd TOLAAYLGTOV 38% o€ PEATIOTES SLOPOPPDOTELG.

| 95% sat | 98% sat | PDP | EDP
Delay
Total -29.4% -30.1% -28.2% | -30%
LOOG-sensitive | -59.8% | -60% -60% -60%
Energy
Total -20% -19% -21% -20%
LOOG-sensitive | -53% -52.9% | -52.8% | -52.8%

1.10: BéAtioteg Srapoppiroelg yia kernels povrig exnivnong

ADelay from baseline, 1 launch kerels ADelay from baseline, 1 launch LOOG-sensitive kemels AEnergy from baseline, 1 launch kernels AEnergy from baseline, 1 launch LOOG-sensitive kernels
% % 0% 0%
-10% -10%
20% 20%
20% -20%
o o
0% 30%
z 2 B -20% & -20%
g - g - g g
= = 4 < o
—s0% -s0%
-60% -60% -60% -60%
—7o% 7% -a0% -a0%
o eo% ~100% ~100%
ossat | sensat 3 S st sensat 3 3 swsat sewsat 3 3 ossat | omnsat ES e
Reconfiguration metric Reconfiguration metric Reconfiguration metric Reconfiguration metric

(oc') Xpovog extéleong, yevirol ([3') Xpovog extéleong, kernels (Y,) Evépyeia, yeviroi kernels (5’) Evépyela, kernels evaicdn-
kernels evaiodntot oto LOOG tot 6to LOOG

Ixnpo 1.29: Xpdvog extéleong uot evépyela yia Tig BEATIoTES SLopopPpidoeLg
oe kernels povrig exxivnong

1.2. Oewpntixd vréPfadpo 31

ADelay on per-launch optimal reconfiguration

| | (<€ 1S

Less than 7 launches

AEnergy on per-launch optimal reconfiguration ADelay on first launch reconfiguration AEnergy on first launch rec

>

ADelay
AEnergy

Less than 7 launches More than 7 launches More than 7 launches

Less than 7 launches More than 7 launches Less than 7 launches More than 7 launches

(O(,) BeAtiwon xpdvov extéleong (B') Beltiwon evépyelag oe nut- (Y,) Xepotépevon xpdvou (5,) Xelpotépevon evépyelog oe
o€ NuL-duvopr Stapopewon Svvaypur StapodpPwon eXTENEONG Ot SLHOPYWGT) SLAHOPPWGT) TTPMOTNG EXNIVIONG
TPATNG eExxivnong

Sxnpo 1.30:

CUDA kernels ToAOTAGOV exx1vijoe@V
Hpt-dvvopuen ovadrapopeowon

'Onwg gaiveton oto oyfpata 1.300 ko 1.30B, o péoor dpol xatavoprg Twv SEATA Yo TNV Ho-
JuoTépnon xo TNV evéPYELA KATA T SLAPOPP®OT) OV eUxiviion KoL TN XPHIOT) TNG HATAAANANG
petpung (ropeopodg IPC yix tnv xadvotépnon xat PDP yio v evépyela) dev Sloupépouv onpovTing
ortd TN oTOTHT AVOSLAPOPPWOT).

Extog oo pepunég axpaieg Tipég pe vepfoind aptdpod exuivjoewv CUDA kernel tov paivovton
otov mivoro 1.11 , Tev omoiwv ot eicodol xo oL Tapdpetpot evdexopévag aAldlovv pe v mépodo

oL YPOVOU, Tar amoTeAéopata eival idia yio Tig S0 opddeg e Péorn Tov aplIptd TOV EUHIVCEWV.

Benchmark suite | Name Description Characteristics Kernels | Launches | deltaDelay | deltaEnergy
Rodinia-3.1 NwW Sequence alignment | Compute intensive | 1 104 -2.4% -4.3%
Rodinia-3.1 CFD Fluid Dynamics Compute intensive | 3 15 -2% -3.5%
Polybench 3DConvolution | 3D filtering Compute & BW 1 32 -1.8% -3%

SHOC Spmv Sparse Vector Mul | Sparse lin Algebra | 1 129 -2.1% -4.1%

SHOC Scan Parallel Scan Memory BW 3 45 -1.8% -3.1%

1.11: Kernels ToAA®OV exxv|ce®V HE AVOHOLOHOPPT] HALUAKWOOT) ELTOG GELPAG

2Tt AVASLAPOPPOCT TPOTNG EXRIVIONG

AopPavovtog voyn avtd ta amoteAécpata, eival Aoyind va eEetdiooupe av 1 BEATIOTN orloy pdpn)-
OT) TOV TPOPIA TNG TTPMOTNG EUKIVIOTG TOPEYEL Lo XELOTTPETY SLAPOPPWOT) YL TNV LITOAOLTT) EXTENEDT)
tov CUDA kernel. ‘Onwg amewovileton 6to Txfpa 1.30y", yioe CUDA kernels to oAy exxiviicewy
He AyOTepeg amd 7 eULVIOELG KOl TTEPLOGOTEPEG ATO 7 EUNLVIGELG OvTioTOLX O, OTOV eQappOleTon 1
BEATIOTN AVOSLAPOPPWET) TTPOTNG EXXLVNONG 08 GVYKPLOT He TN PEATIOTN oTATIKY AVAdLOpHOPPWOT),
elodyetal pua péon emPapuvon xadvotépnong 2,6% xat 3,9%. Ovavtiotoryeg emPopivoelg evépyelag
elvan 1,2% nau 2,6%, 01twg gaivetar oto Tyfpa 1.308". O puepéc autég emiBapiveelg xvntomolody v
TPOPAEYN TNG UALPOIHWOTG EXTOC OELPAG GTO LAIKO, yior TNV e0pect) TV PEATIOTOV SLpOPPOCEWY

HAT& TNV EXTENEDT).

32 Kepdadaio 1. Extetauévn EAAnvua) HepiAnyn

IpoPreyn kApdrmong extog GEPAg

Aoxpbdotnroay moAamAd povtéha moAvdpopnong yio tnv cpdPredn tng xopeopévng PeAtiovong
LOOG (ovotaotind éva pétpo g uApbnwong O00) and Tig petpricelg mov cLAAEXINuay oe OAa
Ta emimedo XapouTnpLopot Twv epappoydv. H pilo pécov tetporyvinod Addoug diaeTavpoOpeEVnG
eMWVPWOTG YLt OAOL TOL HOVTEAQ TTOL TTPOCAPHOGTNHAY aTtelcovilovTon oTo Zyrpe 1.31.

Apyuwd doxpdotnue Evar HOVTEAD YPaIIKTG TTAALVOPOUNOTG, HE TO CTHOVTIXOTEPK YOLPOKTT)-
proTd Tov va astewoviCovtal oto Xxnpa 1.32. Ta xopouTnploTind pe apvnTinong GUVTEAEGTEG
glval xpopatiopéva pe x0uuvo xpope. Onwg oulnthdnue extevog oTnv evotnTa 5.3, T OTATL-
oTid otolyeia xpovov extéleong mov oyetilovran pe mpoomeldoelg pvrjpung (Global accesses, MEM
dispatch stalls, L1 Data pending hits -amaitrioeig yia tpéxovta misses-) cuoyetilovton apvnTind pe
v emtayvvon ot dapoppacelg LOOG, evod exeiva mov onpatodotodv vPnin amddoon eviolwv
ovoyetilovton FeTnd.

To obvoho exmaidevong mepthapPove xon tovg 42 CUDA kernels povrig exxivnong xadog xon
28 CUDA kernels moAAomAov exxivijoewv xot To 6OvoAo doxlpng mepthdypfove Toug vdAoroug 40
CUDA kernels moAamAov exxiviioewv. H tpocappoyr mpaypatomordnue pe faon to adpolotina
otatiotnd otorxeior oAduAnpov tov CUDA kernel (péoog 0pog yia OAEC TIG EUMLVIGELS YLOL TOUG
CUDA kernels moAomtAov exuivijoewv). T va amopevydei nf vtepPfoiinr tpocappoyn kot Adyw Tov
QTTOYOpeLTHOD peyEdoug Twv dedopévev exmaidevong yia StuaTawpolpevn emdpwaot), T0 HOVTELD
mov emAéxdnue mapeixe RMSE evtog 5% tng Siapécov Twv 100 tpocappoymv (tedd RMSE 0,12 xou
MAPE 27%).

Cross validation RMSE for all regressors fitted for reconfiguration

Decision Tree Regressor
Random Forest Regressor
Gradient Boosting Regressor
Adaboost Regressor

K Meighbors Regressor
Lasso Regression

Ridge Regression

Linear Regression

Ixnpo 1.31: Amotedéopato RMSE Sotawpolpevng emndpwong yio 6Aouvg
TOVG Tegressors ov TPOCAPLOSTHHAY 6T dedopéva

H ovoyétion g petafAnThG-oTOXO0U HE TO ONUOVTIHOTEPO XXPAXTNPLoTIKG TOU Regressor, mov

@aivetal oo Zxnpo 1.33 dev eivar ypoppnr.

IIpoPAreydn eridoong otig eVOLAPEGEG SLAPOPPOOELS

IIpoomadodpe v poPAéfovpe tn PeAtivon tov emddcewv oTig evddpeceg dioupoppnoelg dedo-
pévng tng xopeopévng PeAtivong IPC ko tng péong xavoviromonpévng xopmoAng PeAtiovong IPC

(xovxuideg mov astewcovilovran oto Txfpa 1.34a).

1.2. Oewpntind vrdéfadpo

33

Global memory accesses

Memory dispatch stalls
L1 Data pending hits

Relative significance of top statistics in multivariate regression for LOOG improvement

Cycles with fetch

Warp readiness

o
=]

o
(%]

2
B

il
-]

o
-]

|
[=]

Sxnpo 1.32: Tow 1o ONHaVTIHG XpoUTNPLOTHE YIo TNV TTOAVHETABANT YpOL-
per] TaAvdpopnon mov tpocappdletal oto dedopéva

Saturated LOOG improvement - L1 Data pending hits
25

Saturated IPC improvement
a 5 & 5

]
B

.
- e,

.

=0

.-.
.
aete®? % o s B

.

0 1000

2000 3000
L1 Data pending hits

4000

5000

Ixnpa 1.33: Svoyétion L1 Data pending hits pe xopeopévn Pedtioon enidoong

H BeAtioon tov IPC otn diopdppwon 64 CU éxel oplotel otn yvootr tipr xopeopov. Ot evdi-

apeoeg TIEG viroAoyilovtal ToAlamAacidlovtag Tn péon xavovikomotnpévn Pedtioon IPC oe nade

Srapdpewon pe TNy T xopeopod. Ta aote éopata anewovifovron oto Txue 1.34y".

Ot emitayOvoelg oe evilieoeg SIOPOPPOGELS LITOAOYLLOVTOL OTTWG TEPLYPAPTHE TPOTYOUHEVWG,

XPNOHOTOLOVTAG TN pHéoT HApTTOAN emitéyvvong oto e0pog [8_CUs, 48_CUs]. Ta amoteAéopata

amewovilovtol oto Txruo 1.34f".

100%

& E @
2 Ed Ed

IPC normalized to max

El
2

(O(/) Koypurtodn Berticoong IPC pe v wi-

IPC distribution, normalized tc max

IPC distribution, r

to max

inorder 8.CUs 16.CUs 20.CUs 32 CUs 40.CUs 49.CUs 56 CUs 64 CUs
U size

paxwon tov LOOG

IPC normalized to max

100%

-]
2

g
*

&
2

El
*

inorder 8 CUs 16 CUs 24.CUs 32 CUs 40_CUs 48_CUs 5 CUs 64 CUs
U size

o o o o o
= 1 = 1 g
v 5] i} S by

Standard deviation for LOOG improvement curve
g

inorder B_CUs 16_CUs 24_CUs 32_CUs 40_CUs 48_CUs 56_CUS 64_CUs

Number of CUs/RS

([3/) Tomu) amdxlon tov Ty IPC (Y’) Tomua] ardrdion yia TG TeAMxEG TpoPAemdpe-
70V TTpoPAémovTaL aTtd TOV EAEYHTI] OE
OAeg g Sxpoppiroeig CU

TxedLaopog eEAeY AT AVASLIPOPP®OTG GTO LAKO

VEG TUHEG

To dévtpa amopdoewv yia tnv mpoPAredn eldyiotng PeAtivong tov IPC LOOG xou tnv mpdPAreyn

ropecpévng Pedtinong tov IPC amewovilovton ota oxfuota 1.35a xou 1.35. O typég e€680v yio wdde

34 Kepdadaio 1. Extetauévn EAAnvua) HepiAnyn

OEVTPO ATTOPAOTG TOL EAEYUTT] AVOSLAPOPPWOTNG TTapovaLdlovtal otov mivara 1.12. O oxedlocpog

TOU eAeYUTH avaSLpOpPrGTG LALKOD amecoviletal 6to Zxnpa 1.36.

Predictor RMSE | MAPE Leaf values Test set mean | Test set 90th
8_CU regressor 0.08 21% 0.08 | 0.21 | 0.24 | 0.71 | 1.19 | 1.85 | 3.96 | - 0.18 0.57
64_CU regressor | 0.12 27% 0.23 | 0.49 | 0.51 | 0.87 | 1.33 | 1.81 | 245 | 4.1 | 0.61 1.52

1.12: Zpdaipoato won wpoPArenopeveg Tipég IPC yia toug regressors SEvipwv
aTOPUOTG

1.2.9 A&oAoynon tng AVAadlopHOpPOGIUNG AP LTELTOVIRTG
AlocTOcloAoynon

Y10 ITyfuo 1.380" mapéyeton n petpuer] ADP, xavovikomounpévn g mpog tn Paciur piepoapyLTexto-
v, Yo OAeg TiG eEeTalOPEVES HIUPOOPYLTEUXTOVIHES HOLL HLE TT) XPTOT] TWV HETPUDV OVASLUPOPOOOTG
PDP xou EDP. EAayiotomoteital otnv mo yopnAng xhiponcog puepoapyttextovinr] twv 16 CUs pe Tig
32 CUs v atohovdoiv apécwg petd. St oxfuorta 1.38Y", 1.38 wan 1.38[3, eivan mpopavég 6TL OAeg oL
GAAeg petpwég PeATioTONOLOOVTAL GTNV TTLO ¥ALpOKOUpEVT Sapoppwaon xAiporag, 48 CU. Qotoco,
1 Lo onpovTer) TTooT ovpPaivel amd 16 oe 32 CUs, pe eddyiotn Peltioon omnd 32 oe 48.

O péoeg TéG TV PEATIOTOV OTOTEAEGUATOV AVASLOPOPPOGTG YLOL Lot SESOHEVT) OLPYLTEXTOVIX
ova peTpr) avadloapdppwong cuvoyilovtar otov mivoxa 1.3700 , KOVOVIXOTONUEVES WG TTPOG TN
Baoum puepoapytrextovuiny (m.x. Mo puepoapyitextoviur pe 16 CUs, mapayet pio péon xadvotépnon
0,749 XOVOVIKOTIOLNUEVT] WG TTPOG TN PAo U] PHIKpOXPYLTEXTOVIXY OTOV avadlopoppavetol PEATIOTA
pe o petpwr] PDP). ‘Onwg @aiveton emiong otov mivaxa, OAeg oL petpiég extdg amd tnv ADP
ehaytotomorovvton yio péytoteg CUs. T OAa T peyédn a&iag, 1 Sioapdppwon 32 CU moapéyel TG
nov mpooeyyilovv t PédTiotn. ‘Onwg eaivetal otov mivaxa 1.37p, yio 6Aa ta peyédn akiag mov
xpnowomowdnrav (Delay, Energy, ADP, PDP) n pupoapyitextovinry 32 CU mapéyet emiPapivoelg
evtog 2% tov PéATioTOUL.

Ipogavae, ye tov péoo CUDA kernel, 1 puxpoapyitextovinr 32 CU mapéyel tov mo Aoyiud
oupPipaocpd petakd tng Peltictomoinong tov ADP xow twv GAAwv oVvietwv petpriceny. Omng
paiveton otoug mivareg 1.37¢ wou 1.37f, yio toug evaicdntouvg oto LOOG kernels, 1) T autr) eivo
438.

EAeyntng 610 Aoylopxo
StoTinn avadtapopewon

1o Txfpa 1.39¢, 660V apopd TIG oTaTHEG (Set-in-stone) pHipoopyLTERTOVIHES,) AVTICTAIHLOT) Evep-
yetanng addoong-kadvuotépnong amewovileton yio 16 éwg 32 CUs, pe to EDP va ehayiotomoteital
otig 32 CUs. H emidoon, n evepyelaur) anoddoon xoat to EDP BeAtictomolodvton oe 48, 16 uou 32
CUs avtiototya. Eivou evdiagpépov oti, ondpn xou yia yevieotvg CUDA kernels, n avoadiapdppwon pe

ool d1)TTOTE PETPLUT| ELVaL EVEPYELONA TTOSOTIHOTEPT] OUTTO OTTOLAOTTTOTE GTATIHT SLUPOPPWOT).

1.2. Oewpntind vrdéfadpo

35

Saturated AIPC

2.5+

-
S

4 v ODiirated aipe=1.85
: n=7
i
244
F E.-'.'.,,
i
0% 1 257
. " Partition level % wad T
4 = = —) 5g[urated BIPC=1.19
1 parallelism n=e
i
24 P s
e o
!' . : o 2.5
1 B
4‘: U0_02 'l"'s 0041 251
1 U ‘Saturated AIPC=3.96
N Warp Occupancy o e
1} \ - osgturate"t%g{:ﬁ.?l
o ‘?’:1'—‘:-'——‘-‘; -------------- 4) > 4 : i
1.01 06 . i |
Reply Network S ER
: ‘el - 'c"r"ﬁ-": .
active cycles wi- 0 s 'K.__ ________ PR
0 Attt e e bt =
004 1021 46.64 Ds‘%tiratedjwc:u.zl
0007 pET 8000 Control hazard e
commissions T stalls
“1
1
5 | 25
E —
» 0. J--‘_—--_
o }\", ,,,,,,,,,,,,,,,,,,,,,,, S{gturatend:.ligi—ﬂ 08
9% Total warp :‘ém
instructions T
25
LXKy e
n=24
(o) TIpoPAeyn Pertivong IPC otny eéygiotn Sapdppwon LOOG
2
2
I
Saturated APC=0.23
- n=44
44 1 4
: IS
|~ £ T S —— i Saturated AIPC=2.45
n=
0.0009 ~ 336858
Scoreboard 4
. 2
entries
) o ¥ Saturated AIPC=0.87
4 I n=10
i
2 ?
H L 4
g e = ., 5153 f12782 156 2473 ‘ 9?:23 "t [
; i TOtal GPU S;tuf;[ed:ﬂ\ll"f_'—u 51
[
- cycles
& > 4 | occupancy 4 fomhenss
!
5293 612782 i 434 J
Total S b | i L
- N i 1
| 2 '.a- _______________________ Saturated AIPC=4.10
cycles i -0
i !
Lor 2456 32.00 i
0.0 330.7 a
Wa
TP L1D ol
OCCup an CY - ACCBSSGS Saturstagf;r‘c:l 81
4 4
N :
| .2l
i e L
101 18.06 s,tur,taniml C=1.33
Request network .
active cycles >

Saturated APC=0.49

([3’) TIpoPreyn Beticwong IPC otn péytotn duopdppwon LOOG

Ixnpa 1.35: Ipocappoopéva dévipa amdeaong yio tnv mpoPAedn tng Pel-
tiwong enidoong oo LOOG

36

Kepdadaio 1. Extetauévn EAAnvua) HepiAnyn

4 N

Launch 1
in-order
configuration

Performance
counters

Warp instructions
Total cycles
Warp occupancy
L1D Accesses
Reply network active cycles

GPU occupancy

scoreboard entries
Control hazards

Partition |evel parallelism

RET commissions

A

CE I

—Hardcoded v1-¥#
—Hardcoded v2-»|
—Hardcodead w3
—Hardcoded w4
—Hardcoded v5—
—Hardcoded vE—|
—Hardcoded w7

G4_CU Decision
Tree

64 _CU IPC
prediction

—Hardcodead v1-¥
—Hardcoded w2
—Hardcoded w33
—Hardcoded w4
—Hardcoded w5
—Hardcoded vE—|
—Hardcoded v

8 CU Decision
Tree

8 _CUIPC
prediction

Hardcoded IPC curve

4

Predicted IPC vector

8CU

160U |24CU

32CU (40CU

48CU |56CU

G4CU

l

—Optimization metric—

—Optimization metric—»|

—Optimization metric—

Multiplier

Hardcoded max power vector

h J

DIFF and compare if metric == IPC_saturation

Optimize

cu

Reconfiguration

Sxnuoe 1.36: Zxédio Tov eAeyntr} avadolopope®ong 6To LAWO

1.2. Oewpntixd vréPfadpo

37

CU [16 [32 [48 CU [16 [32 [48 CU [16 [32 [48 CU [16 [32 [48
ADP ADP ADP ADP

PDP [0800 | 0815 [0857 PDP | 0 [187% | 7.12% | PDP [0582 | 0533 [0537 PDP [9,13% [0 [0,70%

EDP | 0,790 | 079 | 0833 EDP | 0 | 076% | 544% | EDP [0582 | 0525 | 0531 EDP | 1078% | 0 | 115%
Delay Delay Delay Delay

PDP | 0,749 | 0,716 | 0,710 PDP | 549% | 085% | 0 PDP_| 0545 | 0462 | 0445 PDP | 2245% | 3,79% | 0

EDP [0739 | 0,699 [0,690 EDP [71% | 13% | 0 EDP | 0545 | 0462 | 0,440 EDP | 23,73% | 488% | 0
Energy Energy Energy Energy

PDP | 0800 [0,780 [0,776 PDP [3.09% [052% [0 PDP [0599 [0536 [0,528 PDP | 1345% [158% [0

EDP | 0803 | 0786 | 0784 EDP | 242% | 0.26% | 0 EDP | 0599 | 0536 | 0530 EDP | 13,03% | 120% | 0
EDP EDP EDP EDP

PDP | 0599 | 0558 | 0,551 PDP | 871% | 1.27% | 0 PDP_| 0346 | 0,270 | 0,258 PDP | 3421% | 466% | 0

EDP [0593 | 0549 | 0,541 EDP [9,61% | 148% | 0 EDP | 0346 | 0,270 | 0,256 EDP | 3510% | 536% | 0

(A) Zoyuplon SLopopeTIHdY (B) EmPapovoeig oe oOyup- (C) Zoyupion SLopopeTnmdv (D) EmPapovoelg oe cvynp-
HLXPOOPXLTEXTOVIHWDV ywxon pe TO PEATIOTO YL PLXPOOPYLTEXTOVIXGOV YL €U- 10T HE TO PEATIOTO Yl €v-
yevieovg kernels yevweovg kernels aiodntovg oto LOOG kernels aiodntovg oto LOOG kernels

B 1.37: ZOyuplon ovadlopOpPOCLH®Y HIXPOOPYLTELTOVIHOV SLOPOPETIHOD
peyédoug xatd T PEATIOTN vaSLapOPPWCT) He TIG HETPIKEG VOSLOPOPPE-

ADP across max CU designs EDP across max CU designs Delay across max CU designs Energy across max CU designs
140% 100%
100%
120% 0%
0%
i o
100% "
; o
0%
a SNTIEE > 5 %
g Z oon $
8 g oo
60% =
so%
so%
ao%
o
o
200 0%
0%
o 20%
20
PDP 16CU EDP 16CU PDP 52CU EDP 52CU PDP 48CU EDP 48CU PP 16CU EOP 16CU PDP 32U EDP 32CU PDP 48CU EDP 48CU POP 16CU EDP 16CU PDP 52CU EDP 52CU PDP 48CU EDP 48CU 7P 16CU EDP 16U POP 52CU EDP 32CU POP 48CU EDP 45CU
CU size, metric CU size, metric CU size, metric CU size, metric
(/) (B /) (’) (6l)

Exr']poc 1.38: Ztyupion puepoapyitentoviedv StapopeTig *AMPAKWONG EXTOC GELPAG

Hpt-dvvopuen ovoadrapopewon

3& LTO TO LITOTUN K, 1) ETTLOPALCT) PLoLG NUL-SUVOLKNG XVOSLOPOPPWOTG eEETALETOL XITOUAELT TR YLOL

CUDA kernels moAlamAov enxniviioewv, oe d0o xatnyopieg kernels, mavw ko x&tw otd tov didpeco

appd exnvioewv. Oneg mTopovsldoTnre oTnV evotntae 5.8.5, 1 oTaTKy avadlopopewor dev

Snpovpyet onpavtég emtPapivoelg oe cOYxPLoT) Pe TNV NEISLVOpLKT OVOSLHOPPWGCT) TTOL PaiveTaL

oto Zyfpa 1.26. ITo cuyxexpipéva, 6mwg gaivetal otov mivora 1.13, mopatnpodvrol eEAGYLoTEG HEGES

Tipég emPapuvong xat yia TG S00 xTNYOPLeg EPUPUOY®OV (COHPOVA e TOV APLIHO TV KANOEWV),

HE TNV KoTovoun va elval opretd evpeia. Emopévog, mepldmplonég mepumtioelg XOUNANG ouvoxng

HAPOHOOTG evTOG Tov 1dLov kernel (ypoviur] adlayn TNG CURTEPLPOPAS HALUAUWONG EXTOG GELPAG)

IOV TTOPAYOUV CTHAVTINES ETLPAPUVGELG TOPATNPOVVTOL GTOVG Ttivokeg 1.15 won 1.14.

Launches | Less than 7 launches | 7 or more launches
Delay | Energy Delay | Energy

Min 0 0 0 0

Median -0.45% | -0.52% -0.82% | -0.58%

Mean -0.52% | -0.80% -1.10% | -0.86%

Max -2.41% | -2.65% -4.42% | -4.89%

1.13: Katavoprn PeAtinong xpovov exTEAECTC KoL EVEPYELNG AT OTATIXY O
NH-duvopnn avadloapopewaon

38

Kepdadaio 1. Extetauévn EAAnvua) HepiAnyn

Imp[g;«;ernent from baseline across static and reconfigurable microarchitectures

akgOG—sensitive improvement from baseline across microarchitectures

E -15% g
[U —40% 1
. By B N i 1 |
S - I I I I I E o
E =30% ‘E
; P 11 b6 1 1 g
g -35% | | . - g
2 Delay I I I I £ -70% Delay |
g ~40% | o Energy = = = g e Energy
- = EDP . = EDP
Bacie + T -80% T T
W phre garc - . .p0P .eoP i u}x cset .p0P .€oP
B vEUS uc e ‘\c“:;e“t,‘e v::tin(‘,:ﬁ(l\l o% ‘on‘ ﬁﬁc"ﬂemnﬁ_ﬁc" gm\c“’ e 2 qu“e:oﬂ‘»“ac P:i’;\;acu “W‘“w cont 8
pArch - reconfiguration metric HArch - reconfiguration metric
’ , ’ ,
(o) Tevixoi kernels ([3) kernels svaio9mtoL 6To LOOG
Ixnpo 1.39: BeATIOON TOV GTATIHOV HIXPOXPYLTEXTOVIXDV KAL TWV AVAdLO-
HOPPDOCIUWOV OV HETPLKT] OITO TN PALO LM [XPOOPYLTEXTOVLXT].
Kernel DEnergy | Description static configuration | inorder | 8_CUs | 16_CUs | 24_CUs | 32_CUs | 40_CUs | 48_CUs
testSssp -4,89% Reg. expand kernel | 8_CUs 3 3 0 0 0 0 0
ispass-2009-BFS | -3,26% | BFS 16_CUs 1 0 3 0 0 0 0
shoc-Reduction | -2,85% Reduce operation | 32_CUs 0 0 0 0 3 1 0
shoc-Sort -1,77% Scan 16_CUs 2 0 2 0 0 0 0
test-Amr -1,49% Reg refine kernel 24 _Cus 0 0 1 2 1 0 0
1.14: kernels pe n peyahltepn XelpoTEPELOT OE eVEPYELOL QIO TNV TL-
Suvany o1 oTaTer avadlpOpPwon
Kernel DDelay | Description static configuration | inorder | 8_CUs | 16_CUs | 24_CUs | 32_CUs | 40_CUs | 48_CUs
dwt2d-rodinia-3.1 | -4,42% | DWT2D kernel 32_CUs 0 0 0 0 3 4 0
lonestar-sssp-win | -4,27% | RelaxGraphWorklist | 16_CUs 0 0 4 2 1 1 0
cfd-rodinia -3,87% | Initialization 16_CUs 0 2 0 1 0 0 0
shoc-Spmv -3,69% | spmv_scalar 48 _CUs 0 0 0 0 13 4 82
test-Amr -2,55% | Reg refine kernel 32_CUs 0 0 0 3 1 0 0

1.15: kernels pe tn peyadOtepr XelpoTépevon oe XPOVO EUTEAEGTG OO TNV
NHLI-OLVOHKT] GTT OTATIKT AVOSLOPOPPWST)

S UOoXETION PHE GUGTAOEG EQUAPHOYDV

1o Iyxfpa 1.400, to PéAtioto oxfpa otatg avadiapdpwnong afloloyeiton oe oxéon pe

ototnr] 48 CU punpoopLTextovinr] 6TIG 6LOTADEG EPAPHOYDOV TOL 0pilovTol aTnV evotnTa 5.3 .

EAeyntng 610 vAKO
Avadroapop@mon TpaTng exxivnong

To amoteréopata yio tov péco CUDA kernel cuvoyilovtal otov mivora 1.16. Xe avtr) tnv evotnta,
0 eAeyUTNG avaSLOpPOPPWOTG LAKOD aflodoyeltal e oxéoT pe Tn PEATIOTN GTATL OVOSLOPUOPPWCT)
7OV LAoTIOLELTOL pE AOYLOPKO, OTWG TEPLYPAPETAL GTNV eVOTNTX 5.8.4, HODMOG HOL [E P OTATIXN
(set-in-stone) pixpooapyrtentoviur] pe 48 CUs.OL petpntég emidooewv VALKOD GUAAEYOVTOL YioL OAEG
T1g ¥Afoelg tov CUDA kernel, xatd tn Sibpuela piog extéAect|g TOU Kol X PrOLULOTOLOVVTOL YLoL TNV
eEAYWYT) CUPTTEPACHATOV GXETIHA e HLe PEATLOTN SLOpOPPWOT), 1) OTTOLL EPAPROTETAL GTT) GLVEXELX
oe emdpeveg exteléoelg tov CUDA kernel o Oheg Tig exaviioelg Tov. 2to Tyfpa 1.408°, mapovoialeton
n mpoavagepdeica cOyxpion. O eleyutng LAWODL eivar Atydtepo amodotindg amd Tov eAeyuth

oToTHG avaSLapO pPwonGg AOYLopHLKOD o€ OAa To peyédn aiog xot TG HETPLKEG OVASLOHOPPWOTG.

1.2. Oewpntind vrdéfadpo 39

Static reconfiguration across application clusters

Regressor and optimal reconfiguration improvement from baseline
0

-=10%
2 2 I I | | I
= -10% £ -15%
- - I i I i
o wn
-2 -20% 8 -20% i B
o £
E -30% 2 5%
£ =
] S -30%
£ —40% g
[
2 U _35%
B _cs >
£ -50% == :e\ay 2 Detay
= nergy E —40% { mmm Energy
= _goo | mm EOP E)
—45%
et o™ W W oo o W A \mﬁ‘ \,e@
€ © @ e O A% @ et e““q“ 6“\9“ b o apca 3 - PP - €O - PP acn - B0
0 T T o™ o™ e o ® \s“ = atic & cont A conf A cor o £
[5 o o 20 oo o 0" S e el (&5 res’
S I e ST T LY e red! pedf
o SR e g\?‘:v R R pArch - reconfiguration metric
P

Reconfiguration metric _ Application cluster
([3) AELoAOYNOT) TOV EAEYHTT]) AVASLAPOPPWOTIG GTO LALKO EVAVTLTNG

(OL) AE€10AOYNON NG AVASLAPHOPPDTIUNG OPXLTEXTOVIXTG AV OL- PEATIOTNG AVASIAHOPPWOTG KO TNG CTATIKIG HIXPOXPYLTEXTOVIXNG

OTASO EPAPHOYDOV pe 48 CUs
Static 48CU uArch
Delay 0,680
Energy 0,863
EDP 0,643

Optimal static reconf
Metric | PDP | EDP
Delay | 0,710 | 0,690
Energy | 0,776 | 0,784
EDP 0,599 | 0,587
Regressor
Metric | PDP | EDP
Delay | 0,726 | 0,694
Energy | 0,805 | 0,817
EDP 0,633 | 0,602

1.16: Evépyeleg xa xpovolL exTEAESTG YO TOL GYXTHATO QVOSLUHOPPWONG KO
T OTATIXY HUXPOAPXLTELTOVIKT], KAVOVIKOTOLNHEVD OTT) Paciur).

To RMSE yia to mpoPrenodpevo xavoviromoinpévo diavuopa Pedtioong tov IPC oto clvoro

doupev mopovotdletor oto Tyfpe 1.41.

AE10A0yNON TOL EAEYATI] OE OTATIUT] AVASIOIPOPPHOOT)

3¢ autd To vmoTpnpa, o eAeyntng afloloyeitar oe otatwer] (oAduAnpor CUDA kernels) avti yuo
ovaSLOHOPP®OT) T TNV TPOTN exxivnon. O oxomdg avThg TG akloAdynoNg elvon var ementeivel
TO TTEPLOPLOREVO GUVOAO eSOPEVOV TTUPHVWV TTOAAATTADV EXUIVCEWV DOTE VAL GUPTEPLAGPEL GAOVG
tovg CUDA kernels o vo xadopioer n cvpmepipopd tov eheynty 6cov agpopd CUDA kernels

evaictnrtovg oe LOOG.

40 Kepdadaio 1. Extetauévn EAAnvua) HepiAnyn

0.10

RMSE for LOOG improvet
g
8

8.CUs 16.CUs 24 CUs 32_Cus 40_Cus 48_CUs
Number of CUS/RS

Ixnpo 1.41: RMSE yix tig mpofAéPielg Tov eAeynTH XOL TIG LTTOAOYLOHEVES
evdiapeoeg Tpég IPC

-sensitive kernels
al PO Regre: nal EOP Regressor

Regressor E0P Optimal
Reconfiguration metric

ADelay from baseline, regressor, whole kernel ADelay from baseline, regressor, LOOG-sensitive kernels AEnergy from baseline, regressor, whole kerne! r AEnergy from baseline, regressor, LOOG-
120%
120% "
oo 100% 1o0% 220%
a0% 4
a0

g £ z g
1 60% 60% .
o 1 T
-
l 0% a0% l
-
- o
o

EOP Regressor Por

AEnergy
AEnergy

ADelay

€0P Regressor POP Optmal imal_POP Regressor _EOP Optimal
Reconfiguration metric

P0P Regressor _EOP Optimal PP Regressor €
Reconfiguration metric Reconfigurati

(O(') Xpovog extéleong, yevirol ([3’) Xpovog extéleong, evaiocdn- (Y’) Evépyeia, yeviroi kernels (5/) Evépyelo, evaiodntor oto
kernels tot 6to LOOG kernels LOOG kernels

Sxnpo 1.42: BeAdtiwon xpodvov extéleong ol evEPYELRG Yo PEATIOTH GTATIN
oVaSLOHOPPWACT] HE TOV EAEYHTT)

1.2.10 XZUPTEPAOCHATA KL HEAAOVTIREG EMEUTAOELG
Svpunepdopoto

Me v epappoyn tov oxrpatog extédeong LOOG otov Accel-Sim, amoxtodpe tn duvatdtnto vou
av€noovpe v axpifelo g mpooopoiwong ce MOANG pétwma. Amoxtdpe emiong mpocPact oe
Sioapoppidoelg cuvtovicpéveg pe axpifeia yioo GPU wévtpwv dedopévwv, oupmeptlopfavopévng g
Quadro GV100 mov xpnoipomotjdnue otnv avaAvot Hog.

‘Exovtag cuAAEEEL GTATIOTIHG GTOLYELX XPOVOL EXTENEOTIC TNG HIXPOXPYLTEXTOVIXNG G 7 GVUVO-
Ao petpompoypappdtov xar 100 CUDA kernels, to yprOLHOTOLO0HE Yot VOU XOLPOUTIPIGOVHE TLG
EQUPHOYES G€ OUASES OGOV OPOPH T OTHELX GUHPOPNOTG TNG APYLTEXTOVIKNG, HOTMOG HAL YLXL VO GL-
OYETICOUHE GUYHEUPLUEVO XOPOXTTPLOTING TTOV SLFETOLY He TNV eMLTAYLVOT) Ko TNV LYNAT] Xprion
¢ GPU o¢ rhpanwtég Stopoppnceig LOOG. Mia emmheypévn xatnyopio epoppoy®v wov xepdilovv
OTHOVTKT ETILITALVOT) O TETOLEG SLapopPwoelg ovopatileton "LOOG-evaiodntn ™. Avth n avaivon
TIOPEYEL T POYOXOKOALA YLOL TOV TTEPALTEPL XAPOAKTNPLOHO TOL POPTOL epyaciag oe OAN T didpreLo
QUTNAG TNG ePYOTinG.

To otoiyela Tov front-end tov aywyol Sroctacloloyodvton xal Sixpop@mvovtol BEATIGTA G
ouvdvacpo pe To LOOG, 0dnydvtog 6To GUMIEPACHATH OTL TO £0POG {DVNG TOL ATTORWIHOTOLNTT
propet va meplopilotel (-4,57% Power, -0,22% Area) xou 611 0 ypovorpoypopportiopods Depth-First
instruction Issue mapéyel PéATiotn amddoon (emrayvvon 1,14 yia CUDA kernels evaicdntovg oto
LOOG). To teAevtaio, oe cLVSLAGPS pe TN cLVeLdNTOMTOinoT OTL To expetodievoipo ILP mowidder
eLPEWG PeTED TwV warps, 0dnyel otnv vAoTOLNGCT £VOG EAEYHTH AVASIOHOPPWGTG SLoEPLOHOD TOV

PLIULETHOD SLadAOL EVTOADV TTOL TapéyeL péon adEnom tng amddoong wath 4,4% yioo CUDA kernels

1.3. Meldovtixég ementaoels 41

evaiodntovg oto LOOG, éwg xo 10,2%.

Ot dopég mov oxetiCovtan pe To LOOG (Collector Units, Register Renaming Stack xou Instruction
Buffer) peAetdvrar 66ov agopd tnv ¥Aypdrwaor, odnywvtog oto cupmépacpa 6tL ot Collector Units
elvort To nOpLo oToLyeio ov odnyetl oty avgnon g tayvTnTag, aAAd eivol emiong amontnTiKég oe
LoV ko empdveto. H duvatdtnro va emweendel wavelg amd Tn onpovTing emTéyuver) o enLtuy-
xovetai o dropoppwcelg LOOG pe xhipduwon 6cov apopd CUDA kernels evaicdntovg oo LOOG,
dwtnpdvrog TapdAAnio Ny evepyetomr] atddoor OTOV Vol OUTALPOLTITO, TTOPEXETAL OITO HLOL HAL-
HOUOOHEVT] VOSLOHOPPDOC LU HIXPOAPYLTEXTOVIKT] HE AETLTOUEPT] OUTOXOTN) LoYXVOG GTOVS ZTOIHOVG
YvAhoyrg (Collector Units). H avadiapopeooin apyttextoviur afloloyeiton apywd pe Poon évov
BérTioTo eEAeynTr) AOYLOHLXOD TTOV exTEAEL HI-OUVOPLXT] ETAVADLOPOPPWOT) GE TITTEDO AV EXULVTOT).
Svveldnromowwvtog 6tL 1) Tawtonoinon (profiling) xatd tnv mpotn exxivnon tov CUDA kernel eivon
ETOPUNG YL TNV XVASLOHOPPWGT] G ETOPEVES UAT|OELG, DAOTTOLOVHE EVOLV EAEYHTT] OVASLOUOPPWOTG
VALKOD TTOL X PTOLHOTOLEL PETPNTEG EMLOOGEWY KT TN didprela exTéleonS, PACLOPEVOLS Ge SEVTPaL
ATOPACT|G.

M otatwer] Sapdppwon LOOG pe whiponwor mapéyel emtayvvon 1,48 yio yevivovg CUDA
kernels xon 13,7 % peiwon otnv amolela evépyelog, e alyuplon pe tn Poacwr) apyrtextoviny. H
oo pewot pe 0dnyleg Aoylopinod kot 1) XprioT) Tov eAeyHTH] VALKOD HITOPOVY VO TAPEXOLV TNV
dia emitdyvvon otav xpetdleton xou £xovv T duvaTdTnTa vor fEATLOGOUV TNV eVEPyELoT] OtOSOGT)

o€ oxéon pe 1 ooy piepoapyLtentovinr xatd 22,4% won 19,5% avticTorya.

1.3 MeAAovTinég EMERTACELG

o Mupn avadiopdppwor tov mnyoiov xddwa tov Accel-Sim, 6mov xpedleton (Hapdptnpa
A1), HoFOG 1oL HATAAANAEG EYHOATACTACELS Y TNV A&LOTOINoT) TNG AELTOVPYLLOTN TG TTPO-
oopoiwong pe Baon to tyvog (mISA) mov mapéxel to Accel-Sim eivar 1) dpeon mpotepatdTNTA

HoG yoe TNV adénon tng axpifelag tng Tpocopoiwong enidoong.

« Movtelomoinon oybog pe axpifera xOxAov, pe TNV ELCOYWYN HETPNTOV eMOOGEWV HATA
N Suhprela extéleong oxetinwv pe to LOOG amd to povrédo emddoewv (0mwg Aettouvpyel
t0 Accelwattch ywx to Baowd povtéro) eival amapaitntn yio va Stamiotwdel 1 TocoTIN

OELOTLOTIAL TOV ATTOTEAECHATOVY HOC.

o T v emPefaivon Twv mapadoyxdv poag amonteitor pa axpipéctepn afloAdynon g emt-
pavelog twv Tpoviictop mvou (sleep transistors) tng awoxomrg LoXVOGC, TNG EVEPYELXG HAL TOV
XPOVoL apimviong. AdY® TV XPNCLHOTOLOVHEVWY OYXNUATOV avadioapdpewaong, 1 Evépyeia
not 1 koo Tépnon aPOTVIONG eivor avTOAAGELLES Mol EXOUV peYGAo TTepLI®OPLO CPHAPLATOG,

oAMG o EpPadov eivon {wtinng onpaciog.

o Me peydro Podpod PefordTnTag, oL ToaAvOpoproelg ToL eAeyHTH aVaSLIpOPP®OTG VALKOD pito-
poLV va tpocoppootovy ae droxpoppiaelg LOOG evdidpeong uhiponag, dote vo ommo@evydel

1 emPapuvon SIPOPPWONG TNG TTPDOTNG EXULVIONG G GELPA.

42

Kepdadaio 1. Extetauévn EAAnvua) HepiAnyn

« Mmopei va mpaypotomotndel pia 7o oxoAaoTinr] HEAETN) TNG £TEPOYEVELXG HETHED TV wWarps
6c0v apopd TNV expetaldevoiun ILP ko v douipactodv véeg TOALTIHEG) HETPLKEG LVOSLOHOP-
@wong tov pudpoth evtoddv. Aedopévou Ot 1) avadiapdpwor tov Ibuffer dev amotedovoe
v ®OpLa €0TLAOT) QUTHG TNG EPYACLOG, EALOVHE OTL TO OYETIMA QTTOTEAEGHATA ELVAL LTTO-

BéAtioTar.

43

Chapter 2

Introduction

2.1 The modern hardware accelerator landscape

2.1.1 The end of the scaling laws

There have almost been two decades since the start of what is commonly known as "the
breakdown of Moore’s Law" (which states that transistors on a chip approximately double
every 18 months) and the concomitant cease of the exponential growth in the computing
power in single-core systems. Up to that point, the semiconductor industry has enjoyed the
benefits of Dennard’s scaling, another transistor "scaling law" which states that chip power
density stays constant with transistor scaling-down, thus enabling the design of more, faster
and more energy-efficient transistors and justifying the cost required to develop new process
nodes. This, coupled with advances in device technology, microarchitecture and compilers,
had made the single-core path an affordable solution to the ever increasing demands in soft-
ware [50].

As Dennard’s scaling came to a halt due to supply voltage limits as well as increased tran-
sistor manufacturing complexity at atomic scale technology nodes, power densities rapidly
increased in contemporary chips [51]. The growing transistor count that still follows an ex-
ponential trend owing to Moore’s law is not accompanied by an increased power budget,
leading to the advent of "The Dark Silicon Era" [50], where more transistors occupy an Inte-
grated Circuit than can be turned on at any given time. A reevaluation of power overheads,
subject to critical thermal limits and area overheads, being associated with increased manu-
facturing costs and data communication overheads is necessary [10, 52].

To overcome this obstacle for applications that rely on the traditionally ever-increasing
computing performance such as Artificial Intelligence and Data Analytics, meticulous soft-
ware optimization and fine tuning are required as well as advanced microarchitectures that
leverage software diversity with hardware heterogeneity or can even dynamically reconfig-

ure to suit applications’ specific characteristics at runtime [14].

44 Chapter 2. Introduction

2.1.2 High Performance Computing

High-performance computing (HPC) involves utilizing parallel computing technology, where
multiple powerful processors collaborate to handle enormous multi-dimensional datasets,
also known as big data, and solve complex problems at incredibly high speeds, that would be
impossible to tackle with traditional computing resources [53].

HPC systems operate at speeds over a million times faster than traditional desktop, laptop,
or server systems. While supercomputers were once the preferred HPC system architecture,
many organizations now use HPC solutions on clusters and grids (promoted by the use of
a collapsed network backbone, which is easier to troubleshoot and upgrade) of high-speed
computer servers hosted either on-premises or in the cloud [54, 55].

HPC has recently seen remarkable progress in both the hardware and software optimiza-
tion domains. It has become essential in various fields, including physics, chemistry, biol-
ogy, engineering, and finance. HPC integrates system administration, network, and security
knowledge with parallel programming into a multidisciplinary field that combines digital
electronics, computer architecture, system software, programming languages, algorithms,

and computational techniques [55].

2.1.3 General-Purpose GPU

The GPU (Graphics Processing Unit) is a specialized hardware accelerator originally designed
for graphics rendering applications. In the early 2000s, researchers started experimenting
with using GPUs for non-graphics computing tasks, typically handled by the CPU, such as
scientific simulations, cryptography, and machine learning [1].

Given the halt met by the scaling laws, hardware specialization and the turn to more
efficient hardware architectures emerged as an alternative source of speedup.

The adoption of GPU usage for such applications lead to significant gains in performance
and energy efficiency, with sequential operations being handled by the CPU and compute-
intensive, massively parallel portions of the application being offloaded to the GPU. A chal-
lenge for computer architects is balancing the need for efficiency with the need for flexibility
to support a range of programs. GPUs are attractive because they support a Turing Complete
programming model, making them flexible for a wide range of applications. Hence, they can
be an order of magnitude more efficient than CPUs when software is optimized to make full
use of the hardware [56, 2].

Initially, these general-purpose applications required developers to write low-level code
in specialized languages, to take advantage of the GPU’s parallel architecture. However, as
the demand for GPGPUs grew, companies like NVIDIA and AMD started developing GPGPU
platforms that allowed developers to program the GPU using high-level languages such as
C++ or Python, with the inclusion of compiler directives and enabling the use of heteroge-

neous platform frameworks (such as OpenCL).

2.2. Reconfigurable and heterogeneous architectures 45

Nowadays, computing systems have made a rapid transition towards parallel multi-core
architectures. Thus, the accelerator space has been more than ever dominated by GPUs,
owing to the aforementioned performance improvement they provide. This has facilitated
their widespread adoption in many application domains. Enterprise and hyperscale data-
centers are increasingly being built around workloads using Artificial Intelligence (AI) and
computationally intensive Deep Neural Networks (DNNs) with massive amounts of data and
exploitable parallelism. Striving for the described performance gains and energy efficiency,
they employ GPU servers with specialized GPUs arranged in clusters and scrupulously de-
signed network and cooling system architectures [3].

The history of GPUs designed for general-purpose computing began with Nvidia’s GeForce
3, which was the first GPU to have programmable shaders. Initially, this technology was used
to create more realistic 3D graphics by allowing for 3D transform, bump mapping, specular
mapping, and lighting computations. Later, ATI’s 9700 GPU became the first card that was
capable of DirectX 9 and offered some programming flexibility similar to CPUs. With the
release of Windows Vista and DirectX 10, unified shader cores were included as a part of the
standard, which made it possible for GPUs to perform general-purpose computations.

Despite being originally developed to speed up rasterized 3D graphics, GPUs have sur-
passed CPUs in terms of performance for raytraced pre-rendered graphics. Although real-
time demonstrations of raytracing are not yet seen in games, the advances in GPGPUs show
that computer graphics may be capable of rendering intensive geometry and lighting similar

to those in 3D movies in the near future [2].

2.2 Reconfigurable and heterogeneous architectures

Hardware specialization resulting from the halt of the scaling laws and the consequent satu-
ration of single-thread performance has also given rise to reconfigurable and hetereogeneous
architectures, providing flexibility to tune the architecture to the requirements of the appli-
cation at hand,thus maximizing performance and energy efficiency, by leveraging software
diversity. In [4], a distinction between Von Neumann (VN) and Application-Specific Proces-
sors (ASIP) is made to categorize any architectures in between according to flexibility and
performance.

VN computers are highly flexible but lack performance as their general-purpose design is
not adapted to any particular application domain. ASIPs offer high performance as they are
optimized for a specific sets of applications and can adapt the hardware to them. Between
these two extremes, lie a large number of processors with varying degrees of performance
and flexibility, as seen in Figure 2.1a. For applications with a wide range of uses, a General-
Purpose Processor (GPP) is suitable, while designing a new ASIP optimized for a specific

application is best for embedded systems. Reconfigurable computing aims to combine the

46 Chapter 2. Introduction

Yon Neumann

General purpase
computing

Flexibility

i

DsSP

Damain-specific
camputing Reconfigurable

systems

Reconfigurable
computing

Perfromance

(a) Flexibility and performance of processor classes [4]

flexibility of GPPs with the performance of ASIPs in a single device that can adapt to dif-
ferent applications on the fly. This is achieved by changing the structure of the hardware
at compile-time or run-time, usually by downloading a bitstream into the device. The Field
Programmable Gate Array (FPGA) is currently the most widely used reconfigurable device
[4].

Traditional set-in stone heterogeneous architectures like Asymmetric chip Multiproces-
sors (Asymmetric CMPs), falling between DSPs and Reconfigurable systems in Figure 2.1a
have handled this diversity to an extent, typically by using thread migration between cores
of different characteristics to adapt to the workload currently executing. The most prominent
limitation of such architectures is the immutable design per core, that limits the flexibility
required by definition. Fine-grain reconfigurable fabrics implementing "soft cores" (digital
circuits representing functional paradigms) [34] and Coarse Grain Reconfigurable Architec-
tures (with larger functional units and coarser-grained interconnects) are an established al-
ternative [5, 4]. However, they share limitations such as reconfiguration overhead, limited
support for control-intensive applications and limited resources, hindering the implementa-
tion of more complex designs [6].

Reconfigurable chip-multiprocessor architectures [7] have been proposed to tackle this
issue, through dynamic scale-up or scale-out reconfiguration by using core fusion and split

operations respectively on a multi-core substrate. Thus, multiple independent small in-order

2.3. Light-Weight Out-of-Order GPU (LOOG) execution scheme 47

cores that provide high throughput when executing multi-threaded programs can coalesce to
form fewer large superscalar Out-of-Order cores when executing single-threaded programs
with exploitable Instruction Level Parallelism. Latencies introduced in the pipeline stages
of fused cores as well as cache data migration overheads motivated the design of scalable,
partially reconfigurable architectures, such as MorphCore [8].

These architectures use large, OOO cores as their base substrate, optimized for single-threaded
sequential code and leveraging ILP, paired with the capability to switch to a highly-threaded
in-order SMT execution scheme in the presence of Thread-Level-Parallelism. Other scal-
able architectures such as Dynamic Core boosting [9] , Elastic Core [10] and Flicker [11] ,
adapt to application performance during runtime, on a core, microarchitecture component
and pipeline lane granularity respectively, tailoring the architecture to executing workloads
by either dynamic scalability or heterogeneity. As opposed to multi-core scale-up/scale-
out techniques used in previously mentioned architectures, these scalable architectures used
clock or power gating at various levels as well as Dynamic Voltage and Frequency Scaling.
The latter is used to boost performance in critical bottleneck components or individual cores

and the former is used to minimize their power overhead in the greatest possible degree [8].

2.3 Light-Weight Out-of-Order GPU (LOOG) execution scheme

GPU architectures leverage massive Thread Level Parallelism to achieve high computational
throughput, paired with fast context switching between large groups of threads (warps), in
a similar fashion to simultaneous multithreading in CPUs. When long latency operations
stall the pipeline, available warps are selected from a large pool to occupy it with computa-
tion. As observed in the relevant paper, given the rise of General Purpose GPU computing,
a large group of kernels (functions that are offloaded to and accelerated by the GPU) do not
sufficiently benefit from the GPU resources, as expressed from frequent stalling and subop-
timal hardware utilization, due to their limited data-level parallelism. These kernels bring
insufficiencies of the underlying hardware to the forefront and call for exploitaiton of their
inherent Instruction-Level Parallelism with Out-of-Order (OOO) execution [12, 13].

Conventional GPU architectures always issue instructions in-order. A scoreboard is used
to make sure RAW and WAW data hazards are avoided, paired with a mechanism to safeguard
again WAR hazards. In the recent Volta architecture (2017-2018) examined in this thesis,
instructions from the same warp can be issued in the same cycle for a small window of 2 and
can be generally dispatched and executed Out-of-Order save for register name dependencies.
This virtually sets the limit of the industry regarding OOO execution on the GPU.

A Light-Weight Out-of-Order GPU (LOOG) [12, 13, 14] execution scheme has been pro-
posed, exploiting ILP by implementing instruction reordering. The main modifications to the
microarchitecture include repurposing Operand Collector Units (reserved by instructions un-

til their operands are collected from the Register File) to serve as the Reservation Stations

48 Chapter 2. Introduction

in the Tomasulo [15] algorithm, adding a Register Alias Table (RAT) to address name de-
pendencies, and adding Load and Store instruction reordering to settle address dependen-
cies. Scaling-up LOOG to exploit deeper Instruction Level Parallelism, therefore translates
to increasing the Instruction Window Length and the number of Collector Units (Reserva-
tion Stations, in essence), with the latter being far more significant in the microarchitecture
we studied, as will be demonstrated. Due to power overheads associated with increasing
CUs and given the wide diversity in performance increase of applications under LOOG, we
speculate on dynamically reconfiguring LOOG to match workload behavior and maximize

performance and energy efficiency [12, 13, 14].

2.4 Proposal Overview

Our thorough study of modern reconfigurable computing and our simulation-aided analysis
of the diverse characteristics of GPU workloads that can be accomodated by it are both driven
by the aforementioned observations that motivated the conception and implementation of
LOOG. From early on, said observations sparked our interest about both exploring specific
workload attributes that are not sufficiently addressed by the current architectures, as well
as how ILP specifically can be optimally addressed, by right-sizing the applied modifications
on these architectures and tailoring them to the workload at hand.

LOOG is implemented in the new version of GPGPU-sim (4.1.0), granting access to Accel-
Sim and the concomitant increase in simulation accuracy on many fronts. Access to the
Accel-sim-provided microbenchmarks-tuned configuration of the workstation GPU, Quadro
GV100, powered by the Volta architecture, allows us to explore the acceleration of workloads
under LOOG on an HPC-relevant substrate. Having accommodated LOOG in this architec-
ture, we collect runtime statistics on 100 kernels.

We proceed to thoroughly study the diverse characteristics of these workloads, catego-
rize them into 5 classes regarding their architectural bottleneck resources and correlate them
with improvement on LOOG. A "LOOG-sensitive" class of applications emerges, comprising
kernels that are accelerated by more than 100% in the most scale-up LOOG configurations.
Having optimally right-sized and configured components that are not directly relevant to it,
we theorize and evaluate a scalable OOO reconfigurable architecture with fine-grain power
gating, reconfiguring on a per-kernel-launch temporal granularity, to either optimize mea-
sures of performance or energy efficiency.

Component optimization is done on the front-end of the architecture (Fetch to Issue stage),
regarding Fetch-Decode throughput, instruction Issue scheduling depth and Instruction buffer
runtime reconfiguration.

Evaluation of the OOO reconfigurable architecture is initially done on the basis of a theo-
retical software implementation that assumes previously gained perfect knowledge on work-

load behavior on a per-kernel-launch granularity and on all the available configurations.

2.5. Contributions 49

Thus, we initially assess the maximum attainable improvement in performance and energy
efficiency that is provided by the ability to reconfigure. Optimal configurations are respec-
tively determined by either performance or energy figures of merit.

For multiple-launch kernels, we proceed to compare implementations on both a coarse
(static) and fine (semi-dynamic) reconfiguration granularity, as well as evaluate an oracle
reconfiguration controller that accurately infers the most suitable configuration for the first
launch, executing on a configuration that corresponds to the original architecture (in-order
configuration) and reconfigures the architecture according to it for the rest of the kernel’s
launches.

Results show minimal deterioration for both transitions (fine-grain per-launch reconfig-
uration to coarse-grain per-kernel reconfiguration and inferring the optimal configuration
from the whole execution to inferring it from the first launch), which motivates us to im-
plement and evaluate a hardware-level reconfiguration controller that predicts performance
improvement on LOOG from the first launch of a kernel, executing on the in-order configu-
ration and assesses whether a scale-up, power hungry out-of-order configuration is justified
for its subsequent launches based on performance or energy figures of merit.

When reconfiguring to optimize energy efficiency, the hardware-based reconfiguration
controller provides a 27.4% delay improvement and a 19.5% energy improvement from the
inorder baseline model on average, across all kernels examined, while the software-based
reconfiguration controller provides a 29% and 22.4% improvement respectively. Compared
to a static, scale-up LOOG microarchitecture, energy efficiency for the average kernel is op-
timized by 6.7% and 10.1% by the respective controllers. For LOOG-sensitive kernels, delay
and energy efficiency are improved by 54% and 46%, by the software controller.

Finally, we speculate on Execution Unit and Cache size scaling as other potential axes of

reconfiguration, similarly defining EXU-bound and Cache-bound kernels.

2.5 Contributions

« Implementation of the complete version of LOOG in the new GPGPU-sim version

(4.1.0) granting access to:

— Access to Accel-sim, providing the potential for accurate trace-based simulation

using the trace-generation tool provided

— New microarchitectures simulated, including Volta, providing configurations for
datacenter and workstation GPUs, including the Quadro GV100 simulated in our

experiments

— More accurate microarchiecture configurations for the microarchitectures simu-
lated, produced by the automated microbenchmarks-based Accel-sim configura-

tion tuner.

50

Chapter 2. Introduction

— New architectural features, including the Volta architecture sub-core model, mem-
ory coalescing unit, unified L1 Data cache and shared memory, Register File Cache

and Execution Unit customization.

— New detailed runtime statistics

« New LOOG-dependent runtime statistics and metrics collected used for the reconfigu-

ration model, namely:

Fetch-Decode throughput tracking

Warp availability distribution across runtime

Total and used RAT entries for each active warp

Total readiness per warp

« New runtime frontend reconfiguration controllers implemented (decoder online throt-

tling, online Instruction Buffer partitioning reconfiguration controller).

LOOG-dependent issue scheduling depth study

+ Enhancing Accel-sim job launching and stat collection scripts with per-configuration

option design space exploration.
« Workload-aware LOOG right-sizing for the Quadro GV100

« Workloads clustering based on microarchitecture bottlenecks and brief LOOG-improvement

correlation study.

« Workload characterization (with a kernel granularity) on the three potential reconfig-

uration axes - Qo0 scalability, Cache-bound, Execution Unit-bound -.
« Implementation and evaluation of an OoO reconfiguration controller
« Various LOOG-based reconfiguration schemes:

— Software-based optimal semi-dynamic reconfiguration (kernel launch granular-
ity)
— Software-based optimal static reconfiguration (whole kernel granularity)

— Online profiling reconfiguration based on the first launch

« Speculation on the reconfiguration potential on Cache, Execution Unit scaling axes.

2.6. Thesis structure 51

2.6 Thesis structure

The following chapters of thesis are organized as follows:

« In Chapter 3, the taxonomies of parallel and reconfigurable architectures are discussed,
to ensure comprehension on relevant Prior Art. The architecture of the GPU is elabo-
rated upon and the LOOG execution scheme is presented. A brief introduction to the

simulation framework used in out analysis is performed.

+ In Chapter 4, Prior Art is presented regarding workload characterization on various

fronts and heterogeneous as well as reconfigurable architectures.

« In Chapter 5 we elaborate on the workload categorization and motivational analysis
that lead to our proposed microarchitecture optimizations and reconfigurable architec-
ture. The accommodation of LOOG in the workstation architecture is presented and

all types of reconfiguration performed are thoroughly analyzed.

« The right-sizing process of the reconfigurable architecture is presented in Chapter 6,

along with evaluation of all the aforementioned types of reconfiguration.

« In Chapter 7, we conclude this thesis and summarize potential avenues for further

research and testing.

53

Chapter 3

Background

3.1 Introduction

In this chapter, we will examine the various types of application parallelism as well as how
they can be exploited by the underlying hardware, software or their cooperative design in
more detail.

We will provide a brief overview of the research GPU simulators (Accelsim and Accelwattch)
on which the proposed architectures were evaluated [57]. Per-generation GPU architectural
features will be shortly analyzed, as well as the model used in Accelsim, mentioning var-
ious component configuration tradeoffs. The LOOG architecture will be more thoroughly
discussed, as it provides the basis for the OOO axis of reconfiguration introduced in Chapter
5.

3.2 Parallel computing

3.2.1 Fundamentals of parallel computing

Parallelism is defined as the potential to execute multiple tasks or operations simultane-
ously across multiple processors. It can characterize both applications and the underly-
ing architecture. The concept of parallelism is fundamental to high-performance com-
puting, and is widely encountered in scientific computing, data analytics, and machine
learning. Parallelism can be achieved at various levels, including instruction-level par-
allelism, bit-level-parallelism, thread-level parallelism, and task-level parallelism, with

the latter being closely tied to and exploiting the underlying data parallelism [58].

Concurrency is the ability to make progress on multiple tasks or computations simulta-
neously. Concurrency is closely related to parallelism, but is a more general concept
that can include situations where tasks are executed sequentially on a single proces-
sor, but interleaved with other tasks, remaining active and making progress simultane-
ously. Concurrent programming is particularly important in modern computing sys-

tems, where multiple tasks are executed concurrently to maximize resource utilization,

54 Chapter 3. Background

nevertheless, in the context of a single algorithm, concurrency usually characterizes the

algorithm itself while parallelism characterizes the implementation [59].

Scalability is the ability to increase the number of processors or computing resources to
handle larger problems or increase performance. Scalability is a critical concern in
parallel computing, as it determines the maximum size of problems that can be solved
using parallel methods. Achieving scalability often requires careful design and opti-
mization of parallel algorithms, as well as the use of appropriate parallel programming
models and hardware architectures. In terms of the problem itself, scalability analysis
refers to the selection of the optimal algorithm-architecture combination under certain

constraints (problem size or number of processors) [60].

Load balancing is the distribution of computational load evenly across multiple processors
to ensure maximum utilization of resources. Load balancing is essential for achieving
high performance in parallel systems, as it ensures that all processors are utilized as
efficiently as possible, minimizing idle time and maximizing performance. There are
many load balancing techniques, including static load balancing, dynamic load balanc-
ing, and work stealing. The concept of Load balancing frequently emerges in hetero-

geneous and scalable architectures [61].

Synchronization Synchronization is the coordination of activities among different proces-
sors to ensure correct execution of the program. Synchronization is necessary when
multiple threads or processes access shared resources, to avoid race conditions and
other forms of interference. Common synchronization techniques include locks, semaphores,
and barriers. It is particularly important to the GPU, as it needs to take place on a

coarser than individual thread basis. [62].

Communication Communication refers to the transfer of data and information between
different processors or nodes in a parallel system. Communication is essential for
coordinating activities among different processors, exchanging data between differ-
ent tasks, and distributing work across multiple processors. There are many commu-
nication models, including message passing, shared memory, and remote procedure
calls. Axes of communication pattern categorization include local/global communica-
tion (regarding task communication scope), structured/unstructured (where a task and
its neighbors either form a regular structure like a tree or a random graph), static/dy-
namic (entailing constant or changing communication patterns) and synchronous/asyn-
chronous (depending on whether the producer of the data participates in the commu-

nication process) [63].

3.2. Parallel computing 55

Instruction Stream

Single Multiple
215D I Instructions] MISD I Instructions]
Single !
™ ™
= + PE EFPE[«PE’—-PE’—»PE
Data — —
Stream SIMD I Instructions] MIMD [Instructions I
— ¥— | —
+ PE *
| g PE PE
MUItIPIE o PE
L] i
L T a [
PE PE PE
—
PE

FIGURE 3.1: Flynn’s taxonomy [64]

3.2.2 Taxonomy of parallel computing architectures

Constrained by power dissipation and cost, parallelism is the main driving force of contem-

porary computer design.

« Data-Level Parallelism (DLP) consists in the ability to concurrently operate on multiple

data elements.

+ Task-Level Parallelism (TLP) consists in the independence of multiple tasks of work,

which can largely operate in parallel.

Although these elementary types of parallelism typically characterize applications, their
presence can be leveraged in various forms by certain types of architectures, as seen below.
Flynn’s taxonomy [65] is a classification system proposed by Michael]J.Flynn in 1960, used to
categorize computer architectures based on the number of instruction streams concurrently
operating on the most constrained component of the multiprocessor and the number of data
streams being operated on. Although the classification is generally crude, its abbreviations
are still used today, as all multiprocessors are hybrids of the models it comprises, as seen in
Figure 3.1 [66, 67].

56

Chapter 3. Background

[65]

SISD (Single instruction stream, single data stream) represents the uniprocessor. In-
struction Level Parallelism (see below) is the only type of parallelism that can be ex-

ploited by this architecture.

SIMD (Single instruction stream, multiple data stream) involves the execution of the
same instruction by a unique instruction stream in multiple processors, each operating

in different data items in parallel.
MISD has been implemented by no commercial multiprocessor to date.

MIMD comprises the concurrent execution of multiple instruction streams by multiple
cores operating on multiple data streams. As an implementation of task-level paral-
lelism, it is more flexible than SIMD, thus more costly. Multi-threading represents its

most tightly-coupled form.

3.2.3 Composite types of parallelism in applications

The elementary types of parallelism mentioned in Section 3.2.2 can form other, composite

types that can be directly exploited by the underlying architecture.

Thread-level parallelism (TLP), generally exploits both data-level parallelism and task-
level parallelism in tightly coupled architectures that allow for concurrent execution

and communication among multiple threads.

Data-level parallelism (DLP) is also exploited by vector architectures and GPUs by ap-

plying a sequence of instructions to a collection of data in parallel.

Task-level parallelism, exploits parallelism among tasks which comprise independent
transactions and are logically decoupled explicitly by the programmer or the operating
system. Such parallelism can be exploited in various levels, from separate processors

down to concurrent threads.

Instruction-level parallelism (ILP), expressing the finest grain of data-level parallelism
and task-level parallelism in essence, refers to the overlap in execution of instructions
from the same instruction sequence. This can moderately be achieved by compiler opti-
mizations implementing instruction pipelining as well as superscalar execution (mul-
tiple execution units per core), out of order execution, usually coupled with register

renaming or speculative execution, usually coupled with branch prediction.

Bit-level parallelism (BLP) is leveraged by a type of parallel computing that involves
increasing the size of the processor word. This approach reduces the number of in-
structions required by the processor to perform an operation on variables larger than
the word size [68].

3.3. GPGPU Programming model 57

[69]

3.3 GPGPU Programming model

CUDA

CUDA (Compute Unified Device Architecture) is a parallel computing platform and program-
ming model developed by NVIDIA for their graphics processing units (GPUs) [16]. It allows
developers to leverage the computational power of GPUs for general-purpose computing ap-
plications, making it a popular choice for accelerating scientific simulations, machine learn-
ing, and data analytics workloads. The CUDA platform includes a software development kit
(SDK) that provides a set of programming tools and libraries for developing parallel appli-
cations that can be executed on NVIDIA GPUs. These tools and libraries include compil-
ers, debuggers, performance profiling tools and mathematical libraries optimized for GPU
processing. The underlying hardware architecture includes a GPU and a concomitant large
number of processing cores that can be utilized simultaneously to perform computations in
parallel. The programming model includes a set of compiler directives available in C, C++,
Fortran and Python that allows developers to write high-level code that can be compiled
and executed on the GPU. [18, 17]. The software tools include a debugger, profiler, and per-
formance analysis tool that can be used to optimize the performance of CUDA applications
[19].

Offloading computationally intensive workloads to the GPU can result in significant speedup
compared to traditional CPU-based computing. Additionally, CUDA provides a flexibility and
scalability in its platform for parallel computing, allowing developers to write programs that
can run on a single GPU or scale up to run on multiple GPUs or even clusters of GPUs [20].
Another advantage of CUDA is its wide adoption in both academia and industry. Many re-
searchers and companies have utilized CUDA to accelerate their workloads, resulting in a
large community of developers and a wealth of resources available for learning and develop-
ing with CUDA [17]. A closer, case-dependent inspection of the CUDA programming model
is performed in Subsection 5.3.1, motivated by the workload characterization in Section 5.3
and providing insight into high-level diverse workload characteristics.

Working in conjunction with the CPU and connected to it through a PCI-Express bus, the
CPU is called the host and the GPU is called the device, in GPU computing terms. A heteroge-
neous application comprises discrete parts, the host code and the device code, running on the
respective devices. Computationally intensive applications usually exhibit a great amount of
data parallelism, exploited by the GPU to gain performance. Thus, the CPU handles control-
intensive tasks, while the GPU handles highly data-parallel, computationally intensive tasks.

[1]

58 Chapter 3. Background

Thread hierarchy

CUDA extends the languages it is implemented in, allowing the programmer to define func-
tions in the respective language, called kernels, that are offloaded to the GPU as opposed to
regular functions of the language. Kernels comprise tens of thousands of threads, enabling ac-
celeration of massively parallel applications. Threads are identified with a multi-dimensional
(1 through 3) thread id, forming a "thread block". There is a limit to the maximum number
of threads in a block, as they all reside on the same streaming multiprocessor (currently
1024 threads), sharing the same memory resources. Mutliple blocks are likewise organized
in multi-dimensional grids. Thus, a kernel is executed as a grid of blocks of threads.[21] The
basic unit of execution in a GPU is a warp, a group of threads (32 in current implementations),
that solely occupies a given SM pipeline stage at any given moment. From compute capabil-
ity 9.0 onward (11.0 is utilized in our implementation), blocks can be further organized into
clusters. Within said clusters, hardware-supported synchronization can be opted for, as well

as R/W and atomic operations on a common shared memory [22, 23].

Memory hierarchy

CUDA threads may access various levels of the memory hierarchy during their execution.

Said hierarchy consists of:
« Per-thread registers and local memory (mostly used for register spilling).
+ Global memory visible by all threads withing a block, and sharing its lifetime.
« Shared memory operated on by all threads withing a block or cluster of blocks.
« Constant memory, backed by the Constant Cache.

« Texture memory, backed by the Texture Cache, providing different addressing modes

that service 2d spatial locality.

[21, 24]

3.4 Architecture of the GPU

3.4.1 High-level architecture

A modern GPU comprises many cores, called streaming multiprocessors (SMs) by NVIDIA
or compute units by AMD. Each SM is a Single Instruction Multiple Data (SIMD) processor
running up to the order of a thousand threads concurrently (it can be considered MPMD
if the definition is extended to include simultaneous multithreading). Threads running on
an SM can communicate via a per-core scratchpad memory (shared memory) that is often

unified with the L1 cache. Concurrent threads on an SM are synchronized with fast barrier

3.4. Architecture of the GPU 59

Single-Instruction, Multiple- T hreads

GPU
SIMT Core Cluster SIMT Core Cluster SIMT Core Cluster
SIMT SIMT SIMT SIMT s SIMT SIMT
Core Core Core Core Core Core

} ' I

| Interconnection Network |

! ! i

Memory Memory Memory

.. .. 000 ..
Partition Partition Partition
A A &

Y Y i

GDDR3/GDDRS5 | | GDDR3/GDDR5 | Off-chip DRAM | GDDR3/GDDRS5

FIGURE 3.2: A model of the high-level parts of a modern GPU architecture [1]

operations. A per-core Instruction cache is also used together with L1 cache to reduce traffic
sent off-chip to lower levels of the memory system.

In the context of graphics rendering but not limited to it, GPUs often need to access data
sets that are too large to be stored entirely on the chip. To achieve high performance and
enable programmability for graphics rendering and game design, specialized on-chip caches
and high bandwidth off-chip memory access are required to support frequent memory access.
The memory parallelism required to provide the high memory bandwidth is provided by
partitioning of the last level memory system (multiple DRAM chips) via multiple memory
controllers, each corresponding to a memory partition unit. Often, each memory partition
comprises both a memory controller and a respective part of the last-level cache [23, 24].

The SMs and memory partitions are connected via an on-chip interconnection network
such as a crossbar (though other NoC organizations are possible). Memory traffic is dis-
tributed across the memory partition units using address interleaving. As seen in Figure 3.3,
SMs (equivalent to SIMT cores in GPGPU-Sim terminology) are organized in clusters each
one of which has a response FIFO that can hold packets coming from the interconnection
network. These packets are then directed to either the instruction cache of an SM (in case of

a memory response related to an instruction fetch miss) or its memory pipeline (LDST unit).

3.4.2 Cache architecture

As depicted in Figure 3.5, the memory structures within each SM are either shared by the

blocks occupying it or partitioned among them. Shared memory and the Register File are

60 Chapter 3. Background

SIMT Core Cluster

Respﬂnse FlFD — %

-

1 * 11 } — g

=3 @

1 4 @ 2

r 10 E g g
o

B — 537z

nstruction : 0 -

T LDST Unit o =

— o

SIMT Core =

FIGURE 3.3: GPU architecture at the SM cluster level [23]

_ Branch T: I orm oo 1.}
Fetch |<lrinhTumetPC | SIMT-Stack |

Valid [1:M] lI-Bufﬁn‘L ‘“{E;ﬁf . Pred. ALU “ll’
v

Il
Operand [<7
—— Collector [~
MEM

| I-Cache [> Decode

=
I Done (WILY)
FIGURE 3.4: GPU pipeline stages [1]
»
SIMT Core Cluster -’
SIMT Core Cluster
Kernel
SIMT Core Cluster Launch r
tiif—
ISIMT Core [TSiMT | [Constant o
= b —
[siMT core [mmaT) [Comsntf— | 5
e . I "
SIMT Core SIMT Constant = e | . § Memor\r_Panltlun
Stacks Cache |~ | o* 3 AT—GB'“C_IDIJ-
Texture e_, o i
4 Thread Block e 7 Cache s . ¢ -
% 2 o, Data _.'zr"' 8 e |Last-Level Cache | [ff®
§ 3 €9 Thread Block [T Cache [ory — z Bank
= . - t z F
: o Memaory — 5 .
* Port =1 Off-Chip
l I DRAM Channel

FIGURE 3.5: A model of the internal SM organization, with components both
shared and partitioned between blocks. [23]

3.4. Architecture of the GPU 61

divided between blocks, and the Register File and SIMT Stacks specifically are indexed by
warp ID. Cache types include:

1. The constant cache is a read-only cache that is used to store constants that are accessed
frequently by GPU kernels. It is typically small in size and optimized for low-latency
access to frequently accessed data, such as constant memory arrays or scalar values. It
is typically highly banked. In the Fermi architecture it is organized as a 64 KB cache
divided into 32 banks, with each bank having a 4-byte data path [70].

2. The texture cache is a specialized cache used for texture mapping operations, which
involve accessing texture data using a coordinate system to map the texture onto a
3D surface. The texture cache is optimized for spatial locality and uses sophisticated
filtering algorithms to perform texture filtering operations such as bilinear or trilinear
filtering. In texture mapping, an image, called a texture, is applied to a surface in a
3D model to make the surface look more realistic. To render an image, the rendering
pipeline identifies the position of one or more texels within a texture image. Texels
are the individual points within a texture that contain color and other information.
The pipeline then uses the texel coordinates to locate the memory addresses where
the corresponding texels are stored. Because neighboring screen pixels usually map
to adjacent texels, and it’s often necessary to use the values of nearby texels, there
is a high degree of spatial locality in texture memory accesses that can be leveraged
by caches. It is organized as a hierarchy of texture units, each consisting of multi-
banked texture caches, allowing for parallel processing of multiple texture operations.
The texture cache is typically larger than the constant cache and can be configured in

various modes to optimize performance [71].

3. The data cache is a general-purpose cache that is used to store portions of the local
and global memory address spaces that are accessed frequently during GPU kernels.
It is typically larger than the constant and texture caches and is organized as a set-
associative cache to minimize conflicts and improve performance. The data cache can
also use different cache replacement policies, such as Least Recently Used (LRU) or Ran-
dom, to optimize performance. Additionally, it can be configured to support different

data types and access patterns, such as strided or unaligned accesses [71, 72].

4. The shared memory (or "Global Register File") is a memory space that is shared between
threads within a single block. It is typically used to improve performance by reducing
the number of accesses to global memory and improving inter-thread communication.
Shared memory is organized as a high-bandwidth, low-latency scratchpad memory
(with a latency comparable to the Register File) that is physically located on the GPU
chip. It is typically faster than the data cache and can be used to store intermediate

results or to communicate between threads. Shared memory is accessed using load and

62 Chapter 3. Background

store instructions and can be configured in various modes to optimize performance.

Shared memory and L1 data cache are often found in a unified configuration. [71, 73].

5. As previously mentioned, the L2 cache is usually a part and the first stage of the off-
chip memory partition. Its design includes several optimizations to improve overall
throughput per unit area for the GPU [1]. The L2 cache portion inside each memory
partition is composed of multiple slices (2 in the Fermi architecture and 40 in Ampere)
[74]. Each slice contains separate tag and data arrays and processes incoming requests
in order [75]. To match the DRAM atom size of 32 bytes in GDDR5, each cache line
inside the slice has four 32-byte sectors [76, 77]. Cache lines are allocated for use either
by store instructions or load instructions. To optimize throughput in the common case
of coalesced writes (concurrent writes from multiple threads across warps) that com-
pletely overwrite each sector on a write miss, no data is first read from memory. This
is quite different from how CPU caches are commonly described in standard computer
architecture textbooks. How uncoalesced writes, which do not completely cover a sec-
tor, are handled is not described in the relevant patents, but two solutions are storing
byte-level valid bits and bypassing the L2 entirely. To reduce the area of the memory
access scheduler, data that is being written to memory is buffered in cache lines in the

L2 while writes await scheduling [1].

3.4.3 Pipeline stages

To maintain high performance on the GPU, it is essential to balance high memory bandwidth
with high computational throughput. The pipeline model of the GPU provides further insight
on the mechanisms associated with this [1, 24, 23]. Figure 3.4 provides a visual representation
of the internal architecture of the Streaming Multiprocessor pipeline. The pipeline consists of
a SIMT front-end and a SIMD back-end. Similar to a CPU implementing multithreading, the
SIMT front-end enables concurrent fetch, decode, and issue of warps. The pipeline scheduling
occurs in three continuous "loops": the instruction fetch loop, the instruction issue loop,
and the register access scheduling loop. The instruction fetch loop includes the Fetch, I-
Cache, Decode, and I-Buffer blocks seen in Figure 3.4 . The instruction issue loop includes
the I-Buffer, Scoreboard, Issue, and SIMT Stack blocks. The register access scheduling loop
includes the Operand Collector, ALU, and Memory blocks. A per-stage view of the pipeline

model is presented in 3.7.

1. In each cycle, a warp is selected for scheduling. Its program counter is used to access
an instruction cache and find the next instruction to execute. After the instruction is

fetched, it is decoded and source operand registers are fetched from the register file.

2. In parallel with fetching source operands from the register file, the SIMT execution

mask values for the SIMT stack (elaborated on below and in Section 3.9) are determined.

3.4. Architecture of the GPU 63

3. The Fetch and Decode stages are followed by placing the instruction in an instruction
buffer, where it remains until it is determined that no structural or data hazards exist
and it is scheduled to the backend. This dependency check that is traditionally done
via scoreboarding allows the GPU to exploit vacancies in the backend and schedule
instructions before others from the same warp have committed, essentially hiding long
latency memory operations as well. The traditional scoreboard paradigm that is usually
implemented in the GPU is fairly simple. Each register is represented with a single
bit that is set when a write is still pending to it. This prevents Read-After-Write and
Write-After-Write hazards. Combined with in-order instruction issue that is usually
employed in GPUs, Write-After-Read hazards are also prevented, provided Register

File accesses are also bound to occur in-order.

4. An issue scheduler is used to decide which of the several instructions to be issued
to the rest of the pipeline and which warps to prioritize. Structural hazards encoun-
tered in this stage are handled with instruction replay, as if speculative execution was
taking place. The SIMT stack is updated in this stage. One of the key characteris-
tics of contemporary GPUs is the SIMT execution model. From a functional stand-
point, this model allows individual threads to execute independently, although not
necessarily with improved performance. While it is possible to achieve this program-
ming model using predication alone, current GPUs employ a combination of tradi-
tional predication and this stack of predicate masks [1] . The approach used in cur-
rent GPUs is to serialize execution of threads following different paths within a given
warp [49] . The SIMT stack has certain drawbacks, namely area cost (proportional
to in_flight_warps - warp_size - mazr_warps), lower SIMD efficiency and needless
serialization, inadequate MIMD abstraction due to the forced reconvergence and not
accounting for user-implemented synchronization mechanisms and system-level inter-

rupts, hence the alternative modern approached to handling warp divergence.

5. Instructions selected by the Issue scheduler are placed in Collector Units in a structure
called the Operand Collector. As already explained, to hide long memory latencies it is
essential for many warps to be concurrently executing on the GPU. And to support such
concurrent execution and fast context switching it is necessary to have a large Register
File that contains separate physical registers for each warp that is executing. This area
has been upwards of 256KB already in pre-Pascal architectures. The area of an SRAM
memory used to implement the RF is proportional to the number of its ports. A naive
implementation requires one port per operand per instruction issued per cycle, which
would equate to large area and power overheads. In reality, this large number of ports
is simulated using multiple banks of single ported memories that can be concurrently
accessed (rarely exposed to the ISA), and a structure called the Operand Collector, seen

in Figure 3.6a. The operand collector comprises a set of collector units that are either

64 Chapter 3. Background

generic to the backend execution pipelines or specialized to them. They contain buffer-
ing space for all source operands required to execute an instruction. Given the large
number of source operands and the many concurrently scheduled instructions in the
pipeline (potentially many from the same warp), "bank-level parallelism" is achieved,
allowing simultaneous bank access and essentially simulating a multi-ported Register
File. Specific scheduling policies are employed from the RF arbitrator to minimize bank
conflicts. Other techniques, such as swizzled bank register layout, where registers of
adjacent warps are offset with regards to the bank they are assigned to, are also widely
implemented. Techniques to improve RF performance will be further elaborated on in
Section 3.4.5.

6. When all of the source operands have been collected for an instruction, it is placed
in a pool of instructions available to be selected by the dispatch scheduler for execu-
tion in the lanes of the appropriate Execution Unit. The Execution Units are typically
heterogeneous meaning a given function unit supports only a subset of instructions.
They contain as many lanes as there are threads within a warp. In many implementa-
tions, fewer lanes exist and a single warp is executed over several clock cycles. NVIDIA
GPUs are equipped with various units including a Load/Store unit, Integer functional
units, Floating-point functional units, Special Function Units (SFU), and most recently,

Tensor Core units with the release of Volta.

7. In the Writeback stage, instructions issue a Register File write for all their destination

operands and update the scoreboard freeing any instructions dependent upon them.

3.4.4 Parallelism exploited by the GPU

GPUs, owing to the potential to greatly exploit both levels of inherent application parallelism,
have become popular for media applications. This, coupled with the availability of CUDA and
OpenCL has opened up the option of general purpose computing. They exploit every type
of parallelism that can be captured by the programming environment, and are essentially a

hybrid of all the models in Flynn’s taxonomy [78]:

« Task-level parallelism: Multiple divergent instruction streams can be represented by
the concurrent execution of multiple warps (brfanch divergence) and multiple blocks
(different points of synchronization) on an SM, which in CPU terms is equivalent to
multi-threading (MIMD).

« Data-level parallelism: Individual warps implement SIMD by simultaneously operating
on thread-id-indexed data using the same instruction, thus, leveraging the DLP of the

applications.

« Thread-level parallelism: Warps are equivalent to threads in CPU terms, and concur-

rently execute and communicate within an SM.

3.4. Architecture of the GPU 65

(from instruction decode stage)

— issue
1 I
wi mad ;
Y . o] ———
—— - Bank 0 == - G - |I | 35? ——

> | |* Bank 1 o | 51 |\ £50[—=== | >

L L el
===

—= | |- Bank 2 -- =1 I

¥

[a]
wn
=3
[=
L

B
L

L

s

]
|
|
|
M |£
) L
g
[i+]
[l
i &
=
- - |

[\ w2 add

| Bank 3 | | e | || ::/ B
L) [O==l= === > L=]
' Single-Ported L o , SIMD
Register File Banks Crosbar (Eolleetor Lnits Execution Unit

(a) GPU Operand Collector [1]

« Instruction-level parallelism: Instructions from the same are often not inter-dependent.
Typical GPU architectures account for data hazards by scoreboarding and stall the is-
sue stage for warps that exhibit them. In LOOG, register renaming is implemented to
eliminate WAW and WAR hazards, as well as concurrently execute independent in-

structions. This exploits the manifested ILP of the kernels run.

3.4.5 Kernel execution sequence

The GPGPU compute architecture comprises two units of execution: a host program, and a
set of kernels (denoted by the "__global " CUDA C keyword, or the "__device_ " keyword
when invoked by the host or the device respectively) typically consisting of hundreds of thou-
sands of scalar threads, executing the same instruction stream on different data in an SIMT
fashion [1, 21]. GPGPU applications begin execution on the host, which then offloads kernels
to the device (GPU). The previously described thread hierarchy is initialized as follows:

A grid of thread blocks is initialized based on the parameters specified in the kernel launch,
and using a GPU-wide block scheduling mechanism. Restrictions in block scheduling include

total number of registers (binding threads) and available warp slots.

Each thread block is assigned to a Streaming Multiprocessor. More than one blocks can be
assigned to the same SM concurrently, within parameter limits. During a kernel launch, the

programmer specifies the number of warps per block and shared memory allocated per block.

The warps of each block are assigned their respective execution resources (Ibuffer, RF as
well as dispatch and issue schedulers in architectures with "separate processing blocks" -in
NVIDIA terminology [49] - or sub-core model -in GPGPU-sim terminology [23] -)

66 Chapter 3. Background

Warps execute in lockstep, using a single Program Counter (PC) for all their threads (de-
spite uArch optimizations being applied to this execution model, such as independent thread
scheduling and sub-warp coalescing). The order in which warps execute within a block, or

blocks relative to each other is not specified and hidden from the programmer.

Each thread has a separate thread ID denoting the data assigned to it for execution exclusive
access to a limited number of registers. Having a separate set of registers per thread allows
for fast and efficient context switching. Due to the very large number of active contexts
(warps), the capacity of the register file tends to be substantial and a lot of effort has been

put into optimising it in terms of efficiency, area and power consumption

Synchronization is achieved on three levels
« The aforementioned exertion of threads within a warp in lockstep.

« Block-level synchronization barrier instructions called by the host ("__syncthreads" in

current CUDA C implementations).

« Grid-level synchronization can be achieved by using consecutive kernel calls (launches),
ensuring that all threads begin and end their execution simultaneously (GPU synchro-

nization or implicit synchronization) [79] .

As was mentioned in the memory hierarchy section, each thread has exclusive access to
a lifetime-defined set of registers in the register file, to enable the required thread-level
and warp-level concurrency, enforcing a cache-like capacity on the Register File (256KB for
Quadro GV100). Great effort has been put into optimizing it in terms of efficiency, area and

power consumption. Namely:

« A Register File Cache (RFC), implementing the concept of a hierarchical RF and ex-
ploiting the fact that most registers are only read once. This technique is frequently
paired with a two-level active warp scheduler, which restricts execution to just a pool
of active warps, allowing for significant reduction in the RFC size. When said warps
encounter a long-latency memory operation they are removed from the RFC and rele-
vant contents are flushed. This technique is used in the Volta GV100 architecture and
modelled by increasing the number of banks in the respective Accel-sim configuration
[80, 36].

« Register file partitioning exploits the same concepts, using a Fast Register File and a
Slow Register File and implementing the latter with Near-Threshold Voltage (NTV)

SRAMs, providing lower access energy and less leakage power [81].

« Drowsy State Register File is a power-aware technique where a trimodal entry register
file is proposed, with entries that can switch between {ON,OFF,Drowsy} modes, where

the latter retains the value of the register but needs to be awaken to ON a reasonable

3.5. Reconfigurable architectures 67

time before the register is accessed. Setting each register to Drowsy mode after each
access allows most registers to spend most time in this mode, reducing the leakage
power of the RF [81].

« Register file virtualization, where the physical size of the RF is reduced, and renaming

to virtual physical registers is utilized [82].

« In Regless, the register file is eliminated and replaced with an operand staging buffer.
At given timeframes, only a small portion of the RF is accessed. Therefore a compiler
optimization is implemented, where the kernel is divided up into contiguous regions,
each with a specific set of live registers. Registers are normally stored in a backing
storage area in global memory and potentially backed by the L1 data cache. When a
warp begins executing, the appropriate registers are brought into a cache called the
Operand Staging Unit [83].

+ In the LOOG microarchitecture, instruction reordering that takes place due to instruc-
tion stream ILP significantly reduces Register File traffic. Instructions allocating CUs
and waiting for one or more source operands provided by in-flight instructions, can
immediately capture said operands without issuing an RF read. Similarly, instructions
whose destination registers were renamed while in-flight do not have to issue Register
File writes, as that would cause WAW hazards for instructions to come. In the original
baseline microarchitecture modelled, and for the given set of workloads, 34.8% of RF
reads and 20% of all RF writes are avoided due to writeback stage result broadcast [12,
13, 14].

Unlike the number of warps per block and the portion of the shared memory assigned to it,
which are programmer specified, the number of registers per warp are defined by the com-
piler and depend on kernel code. All three of these parameters limit the Achieved Occupancy
(defined as the ratio of warps concurrently executing on the GPU to the maximum number
of warps that can be supported). This term is often encountered as "Warp Occupancy" but in
the context of this thesis the latter will be used to describe the ratio of average active scalar
threads per warp to maximum threads. High Achieved Occupancy usually equates to better

performance, until the limit set by inter-warp cache contention is encountered [84].

3.5 Reconfigurable architectures

Given the halt met by the scaling laws, several chip and architecture design approaches have
been used in the effort to meet performance requirements of modern specialized workloads.
High performance microprocessors encapsulate all high performance and energy-efficient

single core and multi-core hardware accelerators, including the GPU.

68 Chapter 3. Background

Application-Specific and Domain-Specific Architectures

The ASIC (Application-Specific Integrated Circuit) is a prime example of this trend,
designed for specific applications and use cases, and providing a high performance en-
ergy efficient design. It does not suffer the slow and power-hungry of serial instruction
fetch, decode and execution phases often met in microprocessors. It is designed with
hardware description languages (HDL), allowing designers to precisely describe the
functionality of the circuits just above Register-Transfer Level (RTL) abstraction [25,
26].

Execution-Unit level Domain Specific Architectures (DSA) are another promising so-
lution to the adaptability issue. They entail specialized Execution Units such as the
TPU or the Pixel Visual Core (designed for TensorFlow and Halide respectively), fol-
lowing domain-specific design guidelines and being tailored to the computational re-

quirements of respective software frameworks [27].

Fine-grain reconfigurable computing systems

Given the fact that the Non-recurring engineering (NRE) cost of ASICs needs to be
amortized over large production volumes, the still maturing field of reconfigurable ar-
chitectures has emerged [28]. They comprise one or more programmable processing
units called "reconfigurable logic" and programmable interconnections called "recon-
figurable fabric". Custom functional units can be built on the former, performing a
specific data-dominated task, interconnected by the latter. They combine some of the
flexibility of software with the high performance of hardware. Great efforts have been
put into various relevant domains such as system-level architecture optimization, re-
configurable fabric design and reconfigurable logic design [29]. The FPGA is a prime
example of the aforementioned reconfigurable fabric. Introduced in 1984 [85], it is an
IC that contains an array of programmable logic blocks attempting to bridge the cus-
tomization gap between set-in-stone single core architectures (mentioned as VN ear-
lier) and ASICs. Its configuration is performed with a hardware description language
much like the ASICs, as well as block diagramming techniques. They can be repro-
grammed to perform different functions and suit a variety of applications and their
flexibility also allows designers to prototype and test secondary designs. Said flexibil-
ity allows for hardware to be reused in multiple applications, reducing manufacturing
cost and time-to-market [30].

However their high configurability comes at high costs (power and area utilization as
well as reconfiguration overhead), especially for high performance applications, and
their limited resources such as logic blocks and memory limits the complexity of the
designs that can be implemented. Considering the above, has given rise to specific con-
temporary trends in reconfigurable architectures [4, 31]. Coarse-grain fabrics, which
alleviate the overheads set by large interconnects by increasing the granularity of logic

units, are setting the expectation to see a migration to more complex logic blocks, even

3.5. Reconfigurable architectures 69

stand alone FPGAs.

Coarse-grain reconfigurable architectures
Coarse-grained reconfigurable architectures (CGRAs) are a class of reconfigurable com-
puting systems that provide a balance between performance and flexibility by integrat-
ing programmable logic resources with specialized functional units [32]. In the classi-
fication presented in Figure 2.1a, they occupy the reconfigurable systems area, along
with FPGA, but closer to VN architectures in comparison to them. CGRAs are com-
posed of a large number of processing elements (PEs) operating on word-level and in-
terconnected by a special-purpose routing fabric, allowing for efficient data movement
and parallel processing. Compared to fine-grain reconfigurable architectures they of-
fer higher performance, reduced reconfiguration overhead, better area utilization, and

lower power consumption [30].

The PEs are specialized functional units optimized for specific tasks, such as arithmetic
operations, memory access, and data movement. The flexibility of the routing fabric
allows the CGRA to be reconfigured for different applications or even within the same

application to optimize performance [32].

CGRAs have been used in a variety of application areas, including image and signal
processing, scientific computing, and machine learning. For example, the Trimaran
compiler framework [86] has been used to develop custom CGRAs for multimedia pro-
cessing, achieving up to 8 times the performance of a traditional processor for video

decoding tasks.

While CGRAs offer high performance and flexibility (potentially more on the former
than FPGA but less on the latter), they also come with challenges. One challenge is the
development of programming models and tools that can efficiently utilize the special-
ized functional units and routing fabric. Another challenge is the optimization of the
routing fabric, which can have a significant impact on performance and area. Flexibility
must be taken into account and the architecture should be characterized by generality
(the PE mix should be able to address all classes of applications) and regularity (the PEs
and interconnects should be organized in regular structures), so that the system can
adapt to the requirements of applications that were not known at design time. Hence,
the number of the reconfigurable units, their implemented operations and their organi-
zation are all critical design parameters [30]. Despite these challenges, CGRAs remain

a promising approach for accelerating a wide range of applications.

Soft cores
With the aforementioned advancements in technology and the availability of more
transistors in both reconfigurable logic and fabric, it is possible to include complex
non-programmable or semi-programmable functions in heterogeneous architectures

that have both general-purpose logic resources and fixed-function embedded blocks.

70

Chapter 3. Background

The term "Soft Core" is used to describe specific processors that have a synthesisable
version provided by the vendor in a hardware description language (HDL) and can be
either implemented by the user using a reconfigurable fabric, or etched as an ASIC.
In many applications, soft-core processors provide several advantages over custom de-
signed processors such as reduced cost, flexibility, platform independence and greater
immunity to obsolescence. However, as explained, reconfigurable computing comes at
the cost of larger area and performance overheads due to flexible routing on the bit

level when compared to ASIC technology [33, 34].

3.6 Heterogeneous architectures

Heterogeneous computing systems refer to systems that employ multiple processing
units with different architectures, capabilities, and functions, operating on the same
workflow to perform a single or multiple computations and assign each one of them
to the processing element that suits it better. Heterogeneous systems are becoming in-
creasingly popular in scientific computing and other application areas due to their abil-
ity to provide high performance, energy efficiency, and scalability [35]. One example of
a heterogeneous computing system is a CPU-GPU hybrid system. Such systems consist
of a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit) connected
by a high-speed bus, allowing for efficient communication between the two processors.
Program control data can be processed by the CPU, while floating point operations can
be offloaded to the GPU. Robust orchestration of hardware resources and the inherent
software complexity is required [35]. Another example of a heterogeneous computing
system is a cluster of heterogeneous processors. These clusters consist of multiple pro-
cessors with different architectures, such as CPUs, GPUs, FPGAs (Field Programmable
Gate Arrays), and DSPs (Digital Signal Processors). The Modular Supercomputer Ar-
chitecture (MSA) is one such approach for integrating heterogeneous systems suitable
for various application portfolios. It is a cluster-based architecture that combines mul-
tiple clusters, or "modules," with each module tailored to meet the needs of a specific
class of applications. For example, one cluster may consist of CPUs designed for high
single-thread performance for low to medium scalable applications. There are new
architecture designs that are attempting to reverse the conventional method of build-
ing systems around computing elements. Instead, they place a pool of memory that is

globally accessible at the center of the system [87].

Another type of heterogeneous computing system is a system that includes both hard-
ware and software components. For example, a system that includes a FPGA and a
DSP, such as a software-defined radio (SDR) platform can be used to perform real-time

signal processing tasks. The FPGA can be used to perform low-level signal processing

3.7. GPGPU-Sim pipeline model 71

tasks such as filtering and modulation, while the SDR platform can be used to perform

high-level tasks such as demodulation and decoding [88].

Finally, the type of heterogeneous architecture that was more thoroughly studied was
Asymmetric Chip Multiprocessors (ACMPs). ACMPs are architectures consisting of mul-
tiple diverse processors residing on the same chip, typically varying in superscalar degree
and Instruction Window length, just like core fusion architectures, subsequently elaborated
on in Section 3.5. In the relevant paper by the Intel corporation [7], the performance of
applications running in isolation is improved by a heterogeneous archirecture with a sin-
gle high-performance OOO core and multiple in-order cores, hence targeting desktop PC
environments. This paper, however, focuses on programmer effort pertaining to code paral-
lelization, which is alleviated by more efficient execution of the serial portion of applications.
Several other similar ACMP architectures have been proposed such as a powerful core and
an array of small cores, focusing on energy efficiency [89] and a spectrum of cores vary-
ing in Issue Width, cache sizes, branch predictors and number of MSHRs, examining energy
efficiency and targeting multi-programmed workloads [90]. Balakrishnan et al. [91] have
studied the performance and scalability of commercial workloads on ACMPs and other work
has been done to improve scheduling of threads. The two biggest challenges with ACMPs

are lifecycle management (LCM) and inter-processor communication (IPC) [92].

3.7 GPGPU-Sim pipeline model

All modelling throughout this thesis is performed with version 4.1.0 of GPGPU-sim [23], the
state of-the-art, open-source research GPU simulator, which in this version interfaces with
Accelsim [36].

GPGPU-Sim models massively parallel architectures with generalized components, provid-
ing enough flexibility and to accurately model modern GPU architectures with appropriate
component configuration. The SIMT Core clusters shown in Figure 3.5 represent groups of
SMs with a unified Interconnect Injection Port Buffer and Response FIFO. Since these struc-
tures are independent in the GV100 architecture even for processing block partitions, it is
configured in the simulator with one SM per partition. The per-SM instruction cache in our
configuration has a port throughput of 4 instead of 1, to model the per-partition L0 Icache
in GV100 which is not implemented in the simulator. The per-SM shared unified L1 data
cache/ shared memory is configured as 32KB DL1 and 96KB shared memory. The shader core

pipeline model comprises six stages (Fetch, Decode, Issue, Dispatch, Execute, Writeback)

Fetch and Decode are executed sequentially as many times as the value of the
instruction_fetch_throughput option defined in the configuration file, representing as
many partitions within an SM. m_inst_fetch_buffer acts as a pipeline register between

Fetch and Decode. Whenever it is free, he decoder places its contents to the respective

72 Chapter 3. Background

warp’s Instruction Buffer. In order for fetch to happen for a warp, its Instruction Buffer
needs to be empty. By default, two instructions are fetched from the Icache every cycle,
and placed to the respective warp’s Instruction Buffer. Warps eligible for fetch are
active warps with empty Ibuffer entries and selection is performed in a Round-Robin

fashion.

In the Issue stage , a configurable number of issue schedulers, each with their own schedul-
ing policy, select one warp from which to issue up to two instructions per cycle, by
default. For a warp instruction to issue, is must not be blocked by synchronization
barriers, have no data hazards as verified by the scoreboard, and have free pipeline
registers leading to the Collector Units. The scoreboard contains a vector of ready
bits for each warp, equal to the maximum number of registers that can be assigned to
a warp. Upon issue, the ready bits of the corresponding destination registers are set
on the scoreboard and all source operand registers are checked for in-flight pending
writes, thus avoiding RAW and WAW hazards. WAR hazards are not accounted for in
the simulator by default, but the impact is presumably not significant. After the in-
struction issues, the SIMT stack and the scoreboard are updated. In GPGPU-Sim [23]
version 4.1.0, each warp scheduler has a dedicated register file (RF) and its own exe-
cution units (EUs). A warp scheduler, together with the above structures is called a
sub-core (the equivalent of processing blocks in the Volta architecture). Sub-cores are

isolated, sharing only the instruction cache and the memory subsystem.

In the Operand Collect stage instructions freshly scheduled by the Issue scheduler oc-
cupy a Collector Unit (CU). The Issue-OC pipeline registers lead to per-Execution Unit
specialized Collector Units, unless the latter are configured as generic. In the GV100
default configuration, 8 generic Collector units are used per core leading to 4 SP, 4
DP, 4 SFU, 4 INT and 4 Tensor core Execution Units. These numbers may differ in the
actual microarchitecture, but they are fine tuned given GPGPU-sim’s Execution Unit
configuration. Instructions scheduled to the OC, submit a read request for each source
operand to the RF arbitrator. The instructions remain in their respective CUs until the
RF has read the source operands and they are ready to be sent to the Execution Units.
A mechanism for handling RF bank conflicts is employed to ensure that the maximum
possible RF read throughput is achieved. To interconnect the CUs with the RF ports, a

crossbar (X-bar) is utilized.

In the Execute and Writeback stages there are multiple types of SIMD-vectorized (to the
width of a warp) and usually pipelined Execution Units (EXUs: Single-precision, Double-
precision, Special-Function Units, Load-Store Unit, and Tensor cores in the Volta archi-
tecture [49]). Memory operations are directed to the MEM unit. Unlike the predecessor

Pascal and Fermi architectures (and as implemented from GPGPU-sim 4.0 onward), in

3.8. Accel-Sim 73

Volta, transcendental instructions are processed by the SFUs and the SPs are respon-
sible for handling the remaining arithmetic operations. To select instructions for exe-
cution, the dispatch scheduler chooses up to one instruction per EXU from a pool of
ready-to-execute instructions, giving priority to the oldest. Once executed, the instruc-
tions and the values of the destination registers are stored in a set of Execute-Writeback
registers. These registers then issue a write request to the RF arbitrator before retir-
ing from the pipeline. It is possible for multiple instructions to perform Writeback

operations in a single cycle.

3.8 Accel-Sim

With the implementation of LOOG and the rest of our microarchitecture modifications in
the most recent GPGPU-sim performance model (version 4.1.0), access to all the features
of Accelsim [36] is granted. A fundamental problem of emulation-based execution-driven
simulation is keeping up with the industry. With the rapid scaling of parallelism and intro-
duction of new processing pipelines (i.e. the Tensor cores in Volta), undocumented changes
in both the microarchitecture and the ISA happen often and the research baseline assump-
tions lag behind. GPU architectures widely use a VISA (virtual ISA), a more general form of
an ISA that provides flexibility to make machine ISA (mISA) changes that are hidden even
in binary level. Accel-sim introduces a flexible frontend that provides the option operate
in trace-driven mode. A trace generation tool is provided as a wrapper around NVBit, that
produces mISA traces from any CUDA binary, including those that use exotic hand-tuned
closed source libraries like cuDNN and CUBLAS. NVbit works by intercepting the machine
code of a GPU application as it is executed, and then modifying or replacing certain instruc-
tions in real-time. This allows developers and researchers to perform a wide range of tasks,
such as tracing memory accesses, profiling performance, and even injecting faults for testing
purposes. These traces are converted into an intermediate representation that is input to the
performance model. Therefore, implementation of the ISA’s functional model is not required
and the accuracy of the simulator is improved over using vISA. However, it is not possible
to evaluate designs that rely on global synchronization mechanisms or data values stored
in registers or memory without execution-driven simulation. Integration of LOOG and our
concomitant architectural optimizations in the new GPGPU-Sim version enable trace-based
simulation, but emulation-based simulation with NVIDIA’s stable, well documented vISA,
PTX was used in all of our experiments. Trace-based simulation can potentially increase ac-
curacy through accounting for register allocation and other compiler optimizations, however,
in the case of LOOG some degree of inaccuracy would be added as address dependence res-
olution of reordered instructions takes place in the LDST pipeline. The performance model
in Accel-sim is extensively modified and therefore more detailed, configurable and accurate.

Configuration validation is enabled by through performance counters output by the model

74 Chapter 3. Background

that have a 1:1 correlation with hardware data produced by NVIDIA profilers. These coun-
ters are fed into an automated tuning framework that operates in a feedback loop, modifying
the configuration file of the architecture being simulated, and producing an accurate perfor-
mance model by running GPU microbenchmarks targeting various parts of the microarchi-
tecture. Therefore modelling and performance configuration of the tested GPUs provided
by Accel-sim, including the GV100 we use in our experiments is ever more accurate. New
detailed statistics are added, to which we further contributed a wide range, many of which
are LOOG-custom (namely total readiness per warp and overall warp readiness distribution,
decoder throughput tracking, RRS occupancy distribution, RAT entries total per warp and
RAT entries used per warp, to track ILP).

3.9 Nvidia Quadro GV100 key features

The Quadro GV100 is a professional graphics card manufactured by Nvidia [93]. The term
"Quadro” refers to the series of professional graphics cards produced by NVIDIA that have
been in production for around two decades are specifically designed for use in high-performance
workstations and servers for professional applications such as computer-aided design (CAD),
video editing, and scientific visualization [94], as opposed to the equally long-lived GeForce
lineup that are meant for use in gaming and the consumer market. "RTX", when present refers
to the functionality of real-time ray tracing. The "Quadro" prefix originates from the fact that
they support quad-buffered stereo, a type of three-dimensional display used in scientific en-
terprises like molecular biology responsible for performing complex calculations related to
3D rendering and other graphic-intensive tasks [95]. The "GV" in "Quadro GV100" stands for
"Volta", which is the microarchitecture used in the GPU [93]. As a high-performance GPGPU
architecture designed for deep learning, scientific simulations, and other HPC applications,
the NVIDIA Volta V100 was selected as the substrate of the implementation proposed in this
thesis. The architecture was first introduced in May 2017 and has since become a popular
choice for data centers and supercomputing clusters. The Volta V100 architecture features

several key improvements over its predecessor, the Pascal architecture [49]:

Streaming multiprocessor architecture optimized for Deep Learning
Its new SM architecture is 50% more energy efficient than the previous generation,
enabling major boosts in FP32 (SP) and FP64 (DP) pipeline performance in the same
power envelope [49]. Its mixed precision computing with independent parallel INT
and FP data paths allow for more efficient handling of mixed workloads with computa-
tion and addressing calculations. It introduces independent thread scheduling, seen in
Figure 3.7a , where each thread has an independent Program Counter and Call Stack,
instead of the traditional SIMT stack model depicted in Figure 3.7c , where compatible
threads can be coalesced on a sub-warp basis. One of the most significant improve-

ments is the use of Tensor Cores, which are specialized processing units designed to

3.9. Nvidia Quadro GV100 key features 75

Pre-Volta

e o [N AR ITARI NN

and Stack (5)

32 thread warp

LT Ty R Ty T W T R W T e T I s R T T T T Ty W I s P T R P T

e e e s e s s s e =L s L
CDHVEFEEHCE‘ (I I O R S

B 0 55550005554005555400055464056

32 thread warp with independent scheduling

(a) Independent thread scheduling [49]
X; ¥;
if (threadIdx.x < 4) {
Al
B;

} else {
X3
Y;

] et

» Time
(B) SIMT stack [1]

X; Y; Z;

if (threadidx.x < 4) {

Aj
B; on
} else { ¢
X: E.
Y3 . . .
} A; B; Z;
Z;
__syncwarp(Q) » Time

(c) From CUDA 9.0 onward, __syncwarp() can provide reconvergence on demand [49]

FIGURE 3.7: Methods used for handling warp deivergence

76 Chapter 3. Background

accelerate deep learning computations. Tensor Cores can perform matrix-matrix mul-
tiplication and accumulate operations at a much faster rate than traditional CPUs or
GPUs.

High-bandwidth memory
The Volta V100 architecture features a highly tuned 16 GB HBM2 (high-bandwidth
memory) subsystem which delivers 900 GB/sec peak memory bandwidth, providing
significantly more memory bandwidth than previous generations . This enables faster

access to data and improved performance in memory-intensive applications.

Unified Shared memory - L1 Data Cache
The Unified Memory technology introduced, includes new access counters to allow
more accurate migration of memory pages to the processor that accesses them most
frequently, improving efficiency for memory ranges shared between processors. Fur-

thermore, partitioning of the Unified Memory is configurable.

Optimized software
Volta-optimized versions of GPU accelerated libraries such as cuDNN, cuBLAS, and
TensorRT leverage the new features of the Volta GV100 architecture to deliver higher
performance for both DL inference and HPC applications built with frameworks such
as Caffe2, MXNet, CNTK and TensorFlow. As will be mentioned in later sections, the
simulator on which our microarchitectural modifications were implemented supports
trace-based simulation, permitting the use of these hand-tuned closed source binary

libraries.

Maximum Performance and Maximum Efficiency Modes
In Maximum Performance mode, the V100 accelerator will operate up to its TDP (Ther-
mal Design Power) level of 300 W to accelerate applications that require the fastest
computational speed and highest data throughput. Maximum Efficiency Mode allows
data center managers to tune power usage of their V100 accelerators (by setting a not
to exceed power limit on a per-GPU-rack basis) to operate with optimal performance
per Watt.

[49]

3.10 Workloads

3.10.1 Benchmark suites used

A total of 100 kernels , impartially selected from 7 benchmark suites have been used over

all our testing. Selection was mainly done due to reasonable time constraints of simulations

3.10. Workloads 77

regarding data that should be collected over multiple design space points. The specialization

of each suite is presented below:

The Scalable Heterogeneous Computing (SHOC) [96] benchmark suite is a collection
of benchmark programs that are used to evaluate the performance of GPUs and other
accelerators for high-performance computing workloads. It consists of a variety of
tests that exercise different aspects of a system’s performance, including memory band-
width, floating-point operations, and communication between CPUs and accelerators.
At the lowest level, SHOC uses microbenchmarks to assess architectural features of
the system. At higher levels, SHOC uses kernels to determine system-wide perfor-
mance including many system features such as intranode and internode communica-
tion among devices. Therefore, this suite addresses issues such as architecture hetero-
geneity, power throttling performance tradeoffs, and fine-tuned machine-code level
to directive-based code level performance tradeoffs. Benchmarks used in this thesis -
due to overlap with other suites- include: BFS (Breadth-First Search), FFT(Fast Fourier
Transform), GEMM (Matrix Multiplication), NeuralNet (Image recognition),QTC (qual-
ity threshold gene clustering), Reduction (data set reduction), S3D(combustion particle

simulation) ,Scan (parallel scan), Sort, Spmv, Stencil2D, Triad, spmv-modified.

Lonestar [97] includes applications from several domains deemed "irregular". Said domains
comprise meshing, clustering, simulation, and machine learning, and very different
algorithmic foundations: they require building, computing with, and modifying large
sparse graphs. Applications used from this suite include: bfs-atomic, bfs-wlw, bfs-wla,

sssp, sssp-wlc, sssp-wln, bfs-wlc, mst,bh.

Rodinia-3.1 [98] contains a range of scientific applications, including bioinformatics, molec-
ular dynamics, and fluid dynamics, from which we select: Backpropagation, DWT2D,
Heartwall, HotSpot, LUD, NW\NN, CFD, Gaussian and K-means. These applications
are designed to stress different aspects of a heterogeneous computing system, such as
data transfer, memory usage, and computation. This suite will be further elaborated
on and its Backprop benchmark used as a CUDA-level example of our workload char-

acterization in Section 5.3.

The Parboil benchmarks [99] are collected from different scientific and commercial fields
and are pre-selected to implement scalable algorithms with fine-grained parallel tasks.
They include several implementations, some of which are provided as base implemen-
tations for new optimization efforts, while others represent the current state-of-the-art
targeting specific CPU and GPU architectures. The benchmarks offer opportunities to
demonstrate tools and architectures that help programmers get the most out of their

parallel hardware. Less optimized versions are presented as challenges to the research

78 Chapter 3. Background

communities to develop technology that automatically raises the performance of sim-
pler implementations to the level of sophisticated programmer-optimized implementa-
tions. The benchmarks are continuously optimized for new and existing architectures
and the developers welcome new implementations and benchmark contributions from
other developers. We use two statistical, compute-intensive (Sum of Absolute Differ-
ences, Histogram) and two memory-intensive (BFS, MRI-Q image processing) applica-

tions from this suite.

The Dragon Benchmark Suite is a collection of synthetic benchmarks used to evaluate the
performance of high-performance computing systems, particularly in the areas of com-
puter architecture, compiler optimization, and parallel processing. It includes applica-
tions such as Bitonic Sort,FFT,LU Factorization,Monte Carlo Pi,Reduction,Sparse Ma-

trix Vector Multiplication and Stream Benchmark

ispass-2009 [23] comprises a set of workloads used in the original GPGPU-Sim Ispass pa-
per, meticulously selected to stress implemented architectural features. Workloads we
selected due to the aforementioned time constraints include: AES (encryption and de-
cryption for files using CUDA. Constants are stored in constant memory, the expanded
key in texture memory, and input data is processed in shared memory). LIB (The study
uses Carlo simulations based on a model, with constant memory variables stored in
8KB cache per core. Memory bandwidth is a bottleneck due to local memory accesses),
LPS (3D Laplace solver, a finance application optimized for parallel processing that
uses shared memory and coalesced global memory accesses. However, performance
loss occurs due to branch divergence), NN (convolutional Neural Network for image
recognition), NQU (N-Queen solver, which solves a classic puzzle of placing N = 10
queens on a chess board, using a simple backtracking algorithm. One thread does the

computation, causing low IPC)

A summary of the above is provided in Table 3.1

3.10.2 Elaborating on the Rodinia benchmark suite

The Rodinia benchmark suite [98] was selected to be elaborated on, as benchmarks belong-
ing to it will be used as examples regarding workload categorization in later sections. The
Rodinia benchmark suite [98] was developed according to Berkeley’s "Dwarves" to cover a
wide range of massively parallel applications, run on GPUs and multicore CPUs using CUDA
and OpenMP. Berkeley’s "dwarves" (initially seven in Phil Colella’s work) constitute classes
of applications where coexistence in a class equates to similar computation and data move-
ment. The "dwarves" are specified at a high enough level of abstraction to cover a wide
enough range of applications while still containing specialized and future-proof underlying

patterns. Initially they were defined as:

3.10. Workloads 79

 Dense linear algebra (vector-vector, matrix-vector, matrix-matrix operations corre-
sponding to the three BLAS levels respectively). They are characterized by unit-stride

accesses to read data from rows and strided accesses to read data from columns

« Sparse linear algebra (operations on elements vectors or matrices with a few non zero

elements). Accesses are indexed.

« Spectral methods (such as FFT). These methods are in the frequency domain, and com-
prise "butterfly" stages with consecutive mutiply-add operations. Data permutations

are all-to-all or strictly local, depending on the stage.

« N-body methods (interactions between several particles). Complexities range from
O(N?) in brute force to O(N) or O(NlogN) when aggregating forces for many parti-

cles in some implementations.

« Structured grids (data belongs on a regular grid, areas of which are updated together,

therefore exhibiting great spatial locality).

+ Unstructured grids (data belongs on an irregular grid, and their associations involve

multiple levels of memory reference indirection).

« Monte Carlo (computations depend on statistical results of repeated random opera-

tions).

EEMB from embedded computing and SPEC2006 for desktop and server computing added

more classes to the list:

« Combinational logic (simple operations on large amounts of data, employing bit-level

parallelism)
« Graph traversal (indirect table lookup and little computation)

» Probabilistic graphical models (random variables as nodes and conditional dependen-

cies as edges). Access patterns involve indirect table lookup based on these patterns.

« Finite state machines (an interconnected set of states, some of which can decompose

into multiple simultaneously active state machines).
As for machine learning, two more "dwarves" were added:
+ Dynamic programming
« Backtrack and Branch-and-Bound

Support Vector Machines, Principal Component Analysis, Decision Trees and Hashing are
all covered by the above. Backpropagation from the rodinia suite is the first application that

exhibits all behaviors manifested

80 Chapter 3. Background

K Fetch s Issue - Operand Collect "\‘ ;" Writeback '
il e By
| 1 =5 .=

i 1
¥ f@“"nrp I arp :
‘|1 Sched 1 | {{Sched 2

.n.T.J\. F
' :
4 1

174
2=
2=
7 o
m
nj
g I
=
0
=
[=]
=]
=]
\.D_.J

F1GURE 3.8: LOOG modifications on top of the baseline architecture [14]

3.11 LOOG components and modifications implemented

LOOG stands for Light-Weight Out-of-Order GPU execution scheme [12, 13, 14] . It entails
re-purposing of typical GPU microarchitectures to exploit ILP and better handle a set of
target applications that are characterized by low Achieved Utilization, and concomitant low
IPC and frequent stalling. The changes and additions to components of the typical GPU

microarchitecture in order to produce LOOG can be seen in Figure 3.8 and are the following:

+ The main alteration implemented is modifying the Collector Units (CUs) with the
necessary fields required to serve as the Reservation Stations of the Tomasulo
algorithm [15] .

+ Instructions can therefore be immediately issued from the Instruction Buffer
to the CUs, without passing a scoreboard check having first updated a Register
Alias Table (RAT) that is added to eliminate false name dependencies. When an in-
struction allocates a CU/RS, it reads the per-warp RAT for every source operand. The
RAT contains the ID of the CU containing the instruction bound to broadcast the result,
if said instruction is still in flight, or a null value if all previous instructions writing on
the source operand have committed and the value should be read from the RF. In the
former case, the appropriate CU ID is copied to the respective register value field of
the CU, until the instruction it describes commits and broadcasts its result on a result

broadcast bus.

« The Instruction Window is modified to accommodate exploitation of ILP. By
default 16 to 128 bytes -equivalent to 2 to 16 instructions- are fetched from the ICache
on every fetch (4 times per cycle in Quadro GV100), unless the requested address is
approaching the end of the cache line. As explained in the baseline model, this IWin-

dow size dictates the size of the Fetch-Decode pipeline registers, as well as the Decoder

3.11. LOOG components and modifications implemented 81

throughput and the size of the Instruction Buffers for all warps. As discussed in later
sections, Fetch-Decode throughput can be effectively throttled without significantly
affecting performance, and without hurting ILP exploitation potential, since instruc-
tions are directly issued to the CUs for reordering, provided that issue scheduling is

performed at an appropriate depth (examined as well).

« Instruction issue in typical GPU architectures is performed by at least two issue sched-
ulers utilizing different scheduling policies, so as to not cause starvation for warps
that would be excluded by a single policy. As examined in [14], unlike the baseline,
where due to the short Operand Collect stage issue and dispatch are closely tempo-
rally coupled, LOOG is insensitive to scheduling policies, and therefore in the original
implementation, a Round-Robin issue scheduler is used. As demonstrated in section
, without implementing a more sophisticated scheduling policy and just by configur-
ing the scheduling depth, we uncover great workload diversity. It is demonstrated
that LOOG benefits the most from depth-first warp scheduling, saturating for

all kernels beyond 8 instructions.

+ Load-store reordering in LOOG entails creating a Load Queue and a Store Queue,
upon which an entry is allocated for the respective memory instructions to
tackle memory data dependencies beyond just register dependencies. Thus ad-
dresses of memory instructions are compared in all cases, between all active scalar

threads and the following scenarios arise:

— In case of a memory barrier operation, check that it is the earliest instruction

issued before dispatch.

— In all other cases, check that a memory barrier operation has not issued earlier

than the instruction at hand.

— In case of a store check that no stores have issued earlier , to avoid WAW hazards,
then check all the loads that issued earlier to avoid WAR hazards.

— In case of a load check all stores that issued earlier to eliminate RAW hazards.

In the original LOOG implementation, a mere median value of 1.67 separate memory
requests per memory warp instruction was documented, despite the potential for 32

requests.

+ Result broadcast bus. After finishing execution, an instruction accesses the warp-ID-
indexed RAT for all its destination registers. If the CU ID corresponding to the cur-
rent instruction is found, an RF write request is sent to the arbitrator, and the entry
is cleared, while the result is broadcasted over the broadcast bus. Otherwise, the
register has been renamed while in-flight and the RF does not need to be updated (as a

WAW hazard would occur). Comparative logic is added to the CUs for this purpose, and

82

Chapter 3. Background

in the initial implementation the CUs are freed only after writeback of the respective

instruction.

RRS. In order to ensure that effective instruction reordering and ILP exploitation takes
place, CU stalls due to CU congestion must be eradicated. When long latency opera-
tions enter the CU, other instructions are blocked from allocating them, and potentially
reading register values broadcasted by inflight instructions, thus reducing Register File
traffic. Increasing the number of CUs is area and power sensitive due to the crossbars
that connect them both to the RF and to the pipeline registers leading to the Execution
Units. To efficiently partially alleviate this problem, the Register Renaming Stack
(RRS) is introduced, which holds a list of unique IDs to be used in the RAT
instead of the CU ID. Upon instruction issue, the RRS ID is read instead of the CU
ID, which is held until the writeback stage. Therefore Collector units can be freed after

dispatch, significantly reducing CU congestion, and increasing ILP exploitation. The

size of the RRS in bits is #RRS - log2(#RRS) [14] .

3.11. LOOG components and modifications implemented

83

Name Description ‘ Characteristics ‘ Kernels | Launches
Shoc
FFT Fast Fourier Transform Spectral methods 3 25
QTC Data Clustering Dynamic Programming 1 1
Reduction Parallel Reduction Memory BW 1 4
S3D Combustion Simulation Dense linear algebra 4 4
Scan Parallel Scan Memory BW 3 45
Sort Radix Sort Memory BW 5 19
Spmv Sparse Matrix Vector Mul Sparse linear Algebra 1 129
Stencil2D 2D Stencil Structured Grids 1 2
Triad Streaming Bandwidth Memory BW 1 124
Lonestar
bfs-atomic BFS, atomic ops Graph traversal atomic 1 1
bfs-wlw BFS, worklist workload Graph traversal 3 9
bfs-wla BFS, worklist aware Graph traversal 1 4
SSsp shortest path Graph traversal 1 1
sssp-win Weight longest next Graph traversal 3 9
bfs-wlc bfs weighted-least cost Graph traversal 3 3
mst MST-Kruskal Disjoint-set data, sorting 6 9
bh Barnes-Hut particle sim Parallel task-based model 3 3
Dragon
testAmr Adaptive mesh refinement Memory BW 2 6
testBfs Breadth-First search Graph traversal 4 12
testSssp shortest path Graph traversal 3 7
testJoin Database join Memory BW 4 4
Polybench
3DConvolution | 3D filtering and processing Compute & BW 1 32
BICG Biconjugate Gradient Dense linear algebra 1 1
Correlation Signal Processing Compute & BW 2 2
Gramschmidt Vector Orthogonization Dense linear algebra 2 2
Ispass-2009
AES Adv. Encryption Standard Compute intensive 1 1
LIB Monte Carlo simulations Local memory BW 1 1
LPS 3D Laplace Compute, divergence 1 1
NN Neural Network Graphical model 2 2
NQU N-Queens Compute, low IPC 1 1
Rodinia-3.1
Backprop NN Backpropagation Compute intensive 2 2
CFD Fluid Dynamics Compute intensive 3 15
DWT2D 2D discrete wave transform Compute intensive 2 2
Gaussian Gaussian elimination Dense linear algebra 6 12
Heartwall Image processing Graphical model 1 1
Hotspot Diffusion simulation Compute intensive 1 1
Kmeans K-means clustering Compute intensive 1 1
LUD LU decomposition Dense linear algebra 3 46
NN Neural Network Graphical model 1 1
NW Sequence alignment Compute intensive 1 104
Parboil
sad Sum Absolute Differences Compute intensive 1 1
mri-q Image processing Graphical model 1 1
histo Histogram calculation INT compute intensive 2 2
bfs Breadth-First Search Graph traversal 2 3

TaBLE 3.1: Workloads

used in our simulations

85

Chapter 4

Prior Art

4.1

Introduction

In this chapter, the literature examined on workload characterization as well as reconfig-

urable architectures will be presented, providing insight into the concepts and methods uti-

lized.

4.2

4.2.1

Characterization of workloads

"Whole Picture Characterization"

In Whole-Picture Analysis [47, 46] workload characterization (WPC) it is demonstrated that

for accurate CPU workload characterization results to be obtained, the methodology used

has to take three levels of workload characteristics into account:[46, 47]

ISA-independent: To obtain ISA-independent characteristics, an Intermediate Represen-
tation (IR) is used to provide both a static (IR code) and dynamic (IR stream) analysis
using IR tools such as LLVM. The IR stream is fed to a presumed processor model with
infinite registers but without cache or pipeline modeling. Thus, instruction mix, branch
behaviors and instruction and data locality metrics are obtained. Our methodology in-
cludes the dynamic instruction mix analysis by instruction type statistics provided by
gpgpu-sim for all instructions executed. Data locality metrics are obtained via averag-
ing out cache statistics over multiple architectural configurations including caches of

varying sizes (collection of instruction locality statistics is not sensible on the GPU).

Microarchitecture-independent: ISA-level analysis includes all of the previous level char-
acteristics as well as perfect cache behaviors and parallelism behaviors, by modeling
execution of the binary stream on a perfect processor without a pipeline model. Such
statistics are obtained in our implementation by running workloads on configurations

with exaggerated cache sizes and LOOG instruction windows.

Microarchitecture-dependent: This level encompasses collecting runtime hardware met-

rics produced by actual workload execution. The most comprehensive characteristics

86 Chapter 4. Prior Art

included at this level (from a CPU perspective) include instruction mix, branch pre-
dictor behavior, cache behavior, TLB behavior and pipeline system behavior. Our ap-

proach includes all of the above that are applicable on the GPU.

Thus, "Whole picture analysis" [47] provides the following metrics for program characteri-

zation (those that are sensibly applicable on the GPU are colored green):
+ Instruction mix
« Instruction locality
« Data locality
« Branch predictability
« Parallelism

Instruction locality and branch predictability are omitted, since branch instructions are scarce

in PTX, and always produce control hazards on the GPU.

4.3 Prior Artregarding reconfigurable and heterogeneous

architectures

A selection of modern reconfigurable architectures proposed in literature was studied in the

context of this thesis, belonging to the categories previously described.

4.3.1 Further classification of reconfigurable architectures

Apart from the aforementioned classification of reconfigurable architectures regarding fine
or coarse granularity and homogeneity or heterogeneity, two other distinct categories are

worth mentioning:

Degree of reconfiguration

Partial reconfigurable architectures and full reconfigurable architectures are two types of
reconfigurable architectures used in FPGA-based systems, nevertheless, the concept can be
extended to any sensible architecture discussed below such as reconfigurable ACMPs or scal-
able processors. Partial reconfiguration allows for dynamic reconfiguration of only a portion
of the hardware, while keeping the rest of the design intact. This has several advantages
over full reconfiguration, including shorter reconfiguration times, lower power consumption,
and increased design flexibility and reusability of hardware resources [100]. In contrast, full
reconfiguration entails complete dynamic reconfiguration of the entire hardware platform.

While full reconfiguration can provide greater flexibility in certain applications, it can also

4.3. Prior Art regarding reconfigurable and heterogeneous architectures 87

be more time-consuming and resource-intensive. Overall, the choice between partial and
full reconfiguration depends on the specific application requirements, and designers must

carefully consider the trade-offs between flexibility, performance, and resource usage [101].

Temporal granularity of reconfiguration

Static reconfigurable architectures typically use fixed circuits that can be reconfigured at
design time to optimize performance for specific applications. The definition is often ex-
tended (as is in this thesis) to tailored reconfiguration on a per-workload granular-
ity. These architectures are typically implemented using FPGAs, but this concept can also
be extended as mentioned in the previous paragraph. Once the FPGA has been programmed,
its configuration remains fixed until the next reprogramming cycle. Dynamic reconfigurable
architectures, also known as run-time reconfigurable architectures, allow for reconfiguration
of the hardware during runtime. This allows for the system to dynamically adapt to changes
in the workload and optimize performance for specific tasks. Dynamic reconfigurable archi-
tectures can be implemented using FPGAs or other types of programmable logic devices that
can be reconfigured on the fly. Dynamic reconfigurable architectures are used in applications
where the workload is unpredictable or changes frequently, such as in data centers or cloud
computing environments. They are also commonly used in applications where real-time re-
sponsiveness is critical. Semi-dynamic reconfiguration describes architectures that can be

reconfigured only at specified time intervals [102].

4.3.2 Related work on heterogeneous and reconfigurable architec-

tures
Reconfigurable Chip Multiprocessor (CMP) architecture

Reconfigurable CMP architectures provide an alternative to Asymmetric Chip Multiprocessor
architectures, which are set-in stone heterogeneous core architectures and is the traditional
design approach to handling workload diversity.

Core fusion [37] is a reconfigurable CMP architecture where groups of fundamentally
independent processors can either be used as distinct processing elements (scaling-out) or
be dynamically morphed into a single large CPU (scale-up). It heavily relies on design reuse
by exploiting RISC or CISC ISAs and added components that enable reconfiguration to sup-
port heterogeneous and massively parallel workloads by efficiently performing the FUSE and
SPLIT operations between subsets of cores during runtime. It allows multiple dynamically
allocated processors to share a single contiguous instruction window. Due to the use of said
ISAs, some structures (e.g. register renaming) must be physically shared, limiting its scala-

bility to 8-wide issue.

88 Chapter 4. Prior Art

Composable Lightweight Processors (CLP) [38] are typically based on a modular design,
where individual processing elements can be combined or "composed" to create custom com-
puting systems that are tailored to specific workloads. They address the aforementioned
problem by using an EDGE ISA.

Scalable cores

In the Elastic Core architecture [elastic], resources along with operating voltage and fre-
quency are dynamically scaled to match application behavior. Elastic Core utilizes a lin-
ear regression model for power and performance prediction to guide the scaling of the core
size and the operating voltage and frequency to maximize efficiency, essentially implement-
ing Dynamically Frequency and Voltage scaling (DVFS), a widespread technique in modern
power-aware designs.

Morph Core [8] outperforms several previously mentioned designs by starting with a high
performance, long instruction-window OOO core and dynamically making the minimum
necessary changes to transform it into a highly threaded in-order SMT core when necessary.
Being able to operate both in in-order and Out-of-Order mode, shutting off power hungry
instruction reordering structures such as the renaming logic, OOO scheduling and the load
queue in the former. It essentially performs unit-level clock gating to restrict the dynamic
power dissipation in inactive components. Leakage power is still consumed (sub-threshold
leakage, gate leakage and band-to-band tunneling). Complete power gating (also known
as sleep-transistor technique) is not performed as according to McPAT it does not justify
the unit-level gating overhead. The reconfigurable architecture we propose in Chapter 5 is
closest to Morph Core, regarding the literature studied in the context of this thesis.

The Flicker architecture [11] addresses the issues of coarse grain power control in the
respective gating and uniform power allocation in core-level gating as well as the complex-
ity of having multiple voltage domains within a reconfigurable core. Given that applications
widely vary in the pipeline width that best balances performance and power consumption,
it utilizes deconfigurable lanes —horizontal slices through the pipeline- that permit tailoring
an individual core to the running application with a lower overhead than microarchitecture-
level adaptation, and greater flexibility than core-level power gating. While cores are ho-
mogeneous in design, they can be dynamically reconfigured into a heterogeneous multicore

system that meets power constraints.

Heterogeneous architectures

In the context under examination, all heterogeneous architectures presented here represent
Asymmetric Chip Multiprocessors (ACMPs), also known as heterogeneous multiprocessor

systems on a chip (MPSoC).

4.3. Prior Art regarding reconfigurable and heterogeneous architectures 89

Big.Little [39] is a heterogeneous architecture for mobile devices, developed by ARM
Holdings. The architecture consists of a combination of high-performance cores and low-
power cores, which support the same ISA and work together to optimize performance and
energy efficiency. It introduces a solution to optimize power consumption by selecting the
core type most suitable for a level of processing load along with high performance.

In the Heterogeneous Block Architecture (HBA) paper [40], two observations are made.
Firstly, most serial code exhibits fine-grained heterogeneity. At the scale of tens or hun-
dreds of instructions, regions of code fit different microarchitectures better due to separate
memory-intensive and compute-intensive phases (this holds true regarding the GPU as ex-
amined in Section 5.3) , which is exploited by migrating threads to "big" and "little" cores
respectively. Secondly, this fine-grained heterogeneity allows to split the code into atomic
blocks that execute independently in their respective backends using a well defined commu-
nication interface (liveins - liveouts). The heterogeneous backends that are conbined into one
in HBA include Out-of-Order, VLIW and smaller Instruction Window in-order backends.

In Dynamic Core Boosting [9], the observation is made that in SMT architectures, over-
all latency is dictated by the execution time of the longest running thread. DCB imple-
ments a software-hardware cooperative system that mitigates this workload imbalance in
performance assymetric CMPs by leveraging individual CMP-level DVES to boost ctritical
threads. DCB coordinates its compiler and runtime to enable asymmetric CMPs to achieve
near-optimal utilization of core boosting. The compiler instruments the program with in-
structions to give progress hints and the runtime monitors their execution, enabling DCB to
intelligently accelerate selected threads within a total core boosting budget for better perfor-

mance.

Soft cores

The TRIPS (Tera-op, Reliable, Intelligently adaptive Processing System) is a scalable and en-
ergy efficient reconfigurable computing paradigm that addresses the lag between Instruction
Set Architecture (ISA) design and microfabrication technology as well as the drained scaling
of chip resourcess, which is manifested as the exhaustion of pipeline scaling in micropro-
cessors. It implements a Very Long Isntruction Word (VLIW) Explicit Data Graph Execution
(EDGE) ISA, a type of Instruction Set Architecture (ISA) that is designed for efficient execu-
tion of data-intensive workloads. EDGE is a dataflow architecture that relies on a directed
acyclic graph (DAG) to represent the dependencies between instructions [41].

Unlike traditional von Neumann architectures, where instructions are executed sequentially
and data is stored in memory, the EDGE architecture directly operates on the dataflow graph,
and performs computation as soon as all the input data for a particular instruction is avail-
able. This eliminates the need for explicit instruction sequencing and allows for parallelism at
the instruction level. It also addresses the pipeline-depth limit with fine-grain concurrency

mechanisms. The main benefit of an EDGE IDA is the direct-instruction communication

90 Chapter 4. Prior Art

which entails direct delivery of the producer instructions output to the consumer instruc-
tion by the hardware. Thus, instructions execute in dataflow order. Its en mass speculative
instruction scheduling allows for exploitation of ILP aside from TLP and DLP. Required com-
piler support is the most significant among its drawbacks [42].

TRIPS has features that allow the processing cores and on-chip memory system to be config-
ured and combined in various modes, such as instruction, data, or thread-level parallelism,
in order to adapt to concurrency of different sizes. To support small and large-grain con-
currency, the TRIPS architecture includes four Grid Processor cores that are out-of-order
and have a 16-wide-issue, which can be partitioned if there is easily extractable fine-grained
parallelism. This polymorphic approach offers better performance across a wide range of
application types compared to an approach where numerous small processors are combined
to run workloads with irregular parallelism. The results demonstrate that high performance
can be achieved in all three modes, i.e., ILP, TLP, and DLP, showing that the polymorphic
coarse-grained approach is a promising option for future microprocessors. Its main inno-
vation lies in using guard bands that separate instruction groups which are then executed
atomically. [41, 42]

4.3.3 Reconfigurable GPU architectures

In Bahurupi [43], a polymorphic heterogeneous multi-core architecture is fabricated as a ho-
mogeneous multi-core system containing multiple identical, simple cores. The main novelty
of Bahurupi lies in its ability to morph itself into a heterogeneous multi-core architecture
at runtime under software directives, thus both exploiting explicit Thread-Level-Parallelism
and inherent Instruction-Level-Parallelism. it is essentially an implementation of core fusion
in GPUs with less distributed hardware and microarchitecture modifications, thus smaller
overheads. By coalescing small 2-way Out-of-Order processors into groups of 2-4 it can cre-
ate large virtual superscalar cores.

In Equalizer [44], it is observed that specific warps of the kernel frequently access a bot-
tleneck resource, thus restricting other threads from accessing it, causing under-utilization
of other resources and hindering performance. Equalizer dynamically monitors the resource
requirements of a kernel and manages the amount of on-chip concurrency, core frequency
and memory frequency, to adapt the hardware to best match the needs of the running ker-
nel. Thus, it can function in two complementary modes. Firstly, by throttling under-utilized
resources it can save energy without significant performance degradation. Secondly, it can
boost bottleneck resources to reduce contention and provide higher performance without
significant energy increase. It does so by adjusting three parameters. Number of concur-
rent thread blocks (to handle resource contention, such as L1 Data cache), SM frequency and
memory frequency to match the requirements of the executing kernels.

Amoeba [45] makes the distinction between recent developments in scale-up and scale-

out architectures, accelerating respective workloads exhibiting varying scalability patterns

4.3. Prior Art regarding reconfigurable and heterogeneous architectures 91

with architectural resources. Examples include Network-on-Chip, sub-warp coalescing, mem-
ory, control divergence, and L1 cache behavior and contention. The observation is made that
neither approach optimally suits all domains of applications, leading to significant perfor-
mance degradation for some applications. AMOEBA aims to dynamically monitor applica-
tion scalability and adjust the SM configuration to meet the requirements. It is essentially an
implementation of core fusion, utilizing an online controller that uses a binary logistic re-
gression to predict application scalability and fusing SMs on a coarse-grain basis. The main
criterion for scale-up and scale-out reconfiguration are pipeline stalls due to control haz-
ards. Interestingly, this is found to be an important parameter in our implementation as well,

having predictive value over workload scalability regarding exploitation of ILP.

93

Chapter 5

Implementation Details

5.1 Introduction

A clear picture of the high-level and pipeline stalls on our set workloads is provided in Section
5.2. Motivated by the emerging diversity regarding these stalls, we explore and character-
ize different clusters of applications according to their respective structural bottlenecks that
hinder performance, in Section 5.3. We also determine specific runtime characteristics that
are correlated with improvement in LOOG. This characterization will accompany and direct
further workload analysis throughout this thesis.

Sections 5.5 and 5.8.8 provide an overview of the power modelling methods utilized.

In Section 5.6 back-end structures directly related to LOOG are right-sized for the Volta V100
architecture, while in Section 5.7, a bottleneck analysis is performed regarding front-end
components indirectly related to LOOG and they are optimally configured. A novel Instruc-
tion Buffer partitioning reconfiguration controller is presented and evaluated.

In Section 5.8, the reconfigurable GPU architecure with Out-of-Order scalability is presented
in its various forms.

Finally, in 5.9, a brief speculation on other architectural axes of reconfiguration takes place,

motivated by the analysis in Section 5.3.

5.2 Workload stalls analysis

Motivated by the workload performance analysis that birthed LOOG, we study stalls that
cause performance deterioration at various levels of the GPU, for the set of workloads and
the architecture we selected.

This analysis of stalls should give us a broad sense about both the diverse features of work-
loads that can be exploited from an architecture reconfiguration standpoint as well as those
that are singificantly correlated with impovement in LOOG. As described in previous sec-
tions, the GPU frequently accesses memory and it hides memory stalls by context switching
between concurrently executed warps. To get a broad sense of the bottleneck in the execu-

tion of each kernel, we use performance counters from GPGPU-sim that track stall events

94 Chapter 5. Implementation Details

Shader Cores
Earlier Stages
gpgpu_n_stall shd mem v
Interconnect to gpu_stall dramfull
Memory Stage ———— DRAM +
L | DRAM Channels
Writeback Stage | Interconnect to ‘ |
Shader Cores h gpu stall icnt2sh

FIGURE 5.1: Memory request flow in GPGPU-sim

at different high-level parts of the GPU. As shown in Figure 5.1, the following memory stall

metrics are recorded:

« Shader-memory stalls
Shared memory bank conflicts
Non-coalesced memory accesses

Serialized constant memory accesses
« DRAM-full stalls, due to unserviced DRAM requests
« Interconnect-to-shader stalls

Interconnect to shader stalls occur when the writeback stage is stalled by other types of
Functional Units, they represent less than 1% of total stalls and will therefore not be included.
As depicted in Figure 5.2a, total stalls on the GPU, normalized over total cycles seem to
follow the Pareto distribution, with most kernels having very few stalls overall in this level
of analysis and DRAM stalls being scarce comparatively. Moreover, in Figure 5.2b is is seen
that only 12% of kernels stall in DRAM more than shader core pipeline. Evidently, warp
coalescing and bank conflict stalls amount for a significant number of cycles only in a select
few number of kernels simulated. This realization motivates a closer core-level examination
of stalls, taking workload diversity into consideration.

As depicted in Figure 5.3a, shader core stalls follow the expected similar distribution with
high-level stalls. In Figure 5.3b, it is seen that for the vast majority of GPGPU kernels simu-
lated, the maximum amount of available warps slots is under-occupied, which prevents the
GPU from hiding the aforementioned stalls with context switching between active warps. In

the core level, issue stalls can be divided into:

« Idle or control hazard stalls, representing no active warps or instruction replay due to
taken branches (which is resolved in the Issue stage by comparing the current PC to
the top of the SIMT stack)

5.2. Workload stalls analysis 95

0 High-level stalls analysis, normalized per cycle 2o DRAM full stalls to shader memory stalls
B Shader core memeory stalls == Ratio
DRAM full stalls 178 - Equal stalls
as
150
04
2’-\ 125
S 2
%us E 100
£ 3
= I
.;lhl a7s
0z
0s0
o1
0z
o Kernels o Kernels
(a) Bottleneck analysis for kernels simulated. (B) Ratio of DRAM over shader memory stalls. 10% of
Half of the kernels run stall on GPU-level for kernels do not stall on this level. Only 12% stall on the
less than 3% of total cycles. DRAM more than shader memory.
FIGURE 5.2: High-level stalls analysis
Total warps for all kernels
Shader core stalls analysis, normalized per cycle 5
08 = Total shader core stalls
ko
o7
=
06
? as m 0
@ |5
: :
g 04 15
g 03
o
0z
ol
o 0 20 E] 40 S0 @0
Kernels Total warps
(a) Shader core stalls analysis (B) Warp count histogram

FIGURE 5.3: Most of the GPGPU kernels simulated do not fully occupy their
maximum concurrent warp entries, producing shader core stalls

« Scoreboard conflict stalls, due to RAW and WAW hazards
« Stalled pipeline due to stalled backend.

Idle or control stalls during active issue cycles (idle initialization cycles during kernel of-
floading to the GPU are accounted for by the simulator but not included) represent a median
of 0.91% and an average of 2.3% over total active cycles, as seen in Figure 5.5b Scoreboard
conflict stalls are mainly caused by dependencies on long latency memory operations, while
pipeline stalls only occur when the Execution Units are stalled. Therefore all issue stalls are
essentially caused by functional unit stalls, whose distribution is depicted in Figure 5.4a. Ev-
idently, for the GPGPU kernels we used, single and double precision FP stalls and SFU stalls
represent a significant amount of overall stalls only for a small subset of specialized kernels.

96 Chapter 5. Implementation Details

Shader core stalls breakdown

Portion of shader core stalls

DE_stalls
BN (NT stalis
MEM _stalls
B Sy stalls
B <P ctalls

Kernels

(A) SM backend stalls breakdown

. . 1dl d trol stall total acti I
Total operations sorted by ALU-MEM ratio © AN COnLTg” SaTs over ota’ active cyc'es

&0

100%

Operations overall

I ALU operations
Bl Tensor operations
B SFU operations 10
0 Load operations
. Store operations
Memory barrier operations

Taken branch operations 0
- 00% 20% 40% 60% B0% 10.0% 12.0%
Kernels Idlefcontrol stalls
(a) Total operations breakdown (B) Idle and control stalls

FiGure 5.5: Idle and control stalls represent a miniscule amount of pipeline
stalls. Issue stalls are mainly dependent on various Execution Unit stalls

It is also evident that INT and MEM stalls, representing almost all of the stalls for most ker-
nels are, as expected, negatively correlated to one another, with their ratio distribution being
almost uniform, except for a significant class of kernels (about 25%) that exhibit virtually no
memory stalls on the pipeline compared to other kernels. However, as seen in Figure 5.5a,
even these kernels have a significant amount of memory operations overall, therefore all

their memory stalls happen in DRAM.

5.3. Workload characterization and exploitable ILP analysis 97

INT stalls MEM stalls SP stalls SFU stalls DP_ stalls Total

50th 3.24% 1.54% 0.00% 0.00% 0.00% 7.15%

60th 4.97% 3.16% 0.00% 0.00% 0.00% 12.46%
70th 9.82% 4.72% 0.02% 0.00% 0.00% 20.81%
80th 17.57% 8.39% 0.12% 0.06% 0.00% 35.91%
90th 30.56% 17.48% 0.94% 0.45% 0.04% 45.08%

TABLE 5.1: Stall distribution for total stall percentiles. Values do not sum up to
total, as percentiles are calculated separately for each type

Table 5.1 provides a more detailed view of stall distribution over total stall percentiles. It
can be seen that memory stalls have a steeper distribution, with their relative values increas-
ing faster as percentiles rise.

We conclude that significant memory stalls are present in all kernels, account for nearly
all issue stalls due to RAW and WAW hazards (scoreboard collisions) and cannot be effectively
addressed by the instruction reordering that takes place in LOOG. In Figure 5.6a, a detailed
breakdown of all types of dispatch stalls per Execution Unit (EXU) pipeline stalls is provided.
Note that FP and SFU stalls occupy a bigger portion of the total even for the 90th percentile
seen in Table 5.1, due to the fact that they are concentrated in a small minority of kernels
less than 10% as seen in Figure 5.4a and Figure 5.5a. An analysis of the shader core cache
stalls causing memory stalls is seen in Figure 5.6b. Evidently, half of the instructions that
miss on the L1 Data cache also miss in the off-chip, per-memory-partition L2. Since the stalls
produced by these misses cannot be addressed by instruction reordering and alterations in
scheduling, this motivates the idea of potentially increasing cache performance and studying
the cache size / Area-Power overhead tradeoff. Misses on other types of caches represent a

small portion of the total, as expected, as is evident in Figure 5.7.

5.3 Workload characterization and exploitable ILP anal-
ysis

In continuation of the previous section, given the evident and potentially highly exploitable
workload diversity we set to categorize GPU applications guided by concepts much like those
described in "Whole Picture Analysis" [47]. The purpose of this study is to both determine
emerging classes of GPGPU kernels that would dictate respective classes of hardware con-
figuration, as well as correlate said classes to performance improvement in OOO, Long In-
struction Window execution schemes such as LOOG [12, 13]. In that direction, we collected
runtime statistics from GPGPU-Sim on the workloads mentioned, over multiple configura-
tions, all in the baseline in-order model of the simulator. As in "Whole Picture Analysis" [46,
47], statistics collection for all three levels of the analysis was facilitated by GPGPU-Sim and
for our baseline Quadro GV100 GPU model as demonstrated below:

98 Chapter 5. Implementation Details

. Cache misses
Shader core total stalls portions
Texture L1 misses

INT_stalls DF_stalls B Constant L1 misses
- lINT_stalls B Data L2 misses
s MEM_stalls
= B Data L1 and L2 misses
SFU_stalls

SP_stalls

% DP stalls ‘g
3 SP_stalls g
(a) Mean EXU stall distribution over all kernels (B) Cache miss breakdown
FiGUure 5.6: Mean EXU stall distribution over kernels (kernels are equally
weighted) and breakdown of cache misses causing memory stalls
Data L1 misses Constant L1 misses Texture L1 misses
T
k- mn
&0
o &0 -
50
i 50
40
0 40 1
£
15 2
10 20 2
5 10 - 1o
0 0-]
0 =0 100 150 Faili] [i] 5 10 15 0 5 10 15

FIGURE 5.7: Miss distribution for each type of cache, normalized over total warp
instructions (theoretical maximum of 32 - 100).

IR-level In the WPC paper [47], static and dynamic instruction stream statistics were collected
on a perfect processor model with infinite registers, to track instruction mix, locality
metrics and branch behaviors. In our implementation, such statistics were collected
with GPGPU-Sim regardless of uarch configuration provided Hence we collect instruc-

tion locality, instruction and data locality and branch metrics.

ISA-level Microarchitecture-agnostic characteristics are determined by execution on a perfect

5.3. Workload characterization and exploitable ILP analysis 99

processor with a perfect cache model but with no pipeline model. In our implementa-
tion, such a model was simulated by configuring caches with minimal latencies, func-
tional units with exaggerated latencies, and tracking data hazards via scoreboard check
collisions in the Issue stage. Thus, the characteristics of the previous level along with

perfect cache behavior, parallelism and instruction dependencies were collected

uArch-level This level contains all the architectural component behaviors manifested during exe-
cution on a specific microarchitecture. This stage was implemented by averaging out
statistics collected over multiple cache and functional unit configurations, as it was
theorized that these were the axes we should reconfigure upon based on workload di-
versity. Hence, additional statistics we collected regarded pipeline and cache behavior.
Our analysis was mainly based on pipeline stalls, cache hit ratio, Missed per Thousand

Instructions (MPKI) and memory bandwidths.

Values from all three architectural levels were included in our final analysis. They were nor-
malized by the appropriate cumulative values (i.e. Statistics referring to scalar thread activity
such as total ALU operations were normalized by total thread instructions, statistics referring
to memory or RF accesses were normalized by total warp instructions and statistics referring
to cycles such as various types of stalls were normalized by total cycles). Dimensionality
reduction was applied on the data to find a smaller set of axes that explains at least 95% of
the cumulative variance of the dataset. Features were sorted based on their coefficient in the
PCA eigenvector of each principal component multiplied by the eigenvalues themselves. The

most significant features producing workload diversity are presented in Figure 5.9.

importance(feature) = Z Az) - coef f(z, feature) (5.1)

zeSs

S: The set of all eigenvectors

A(z): The eigenvalue for eigenvector x

23 of the PCA components explained 95% of the Cumulative Variance Ratio (CVR), as seen
in Figure 5.8a. We extracted as many features, since importance scores did not seem to pro-
duce any significant local drops, as depicted in Figure 5.8c. This number of selected features
explained 74% of the CVR. We opted for a cosine metric as relative and not absolute feature
values needed to be interpreted. Kmeans did not yield good results in either metric. For hi-
erarchical with a cosine metric, silhouette scores were locally maximized for a value of 5, as
depicted in Figure 5.8b and we selected as many clusters, seen in Figure 5.11 . The clusters
produced, as well as saturated LOOG IPC improvements and GPU utilizations are depicted
in Figure 5.10.

It is noted that Utilization and Saturated LOOG 0/ PC were not among the features that

the clustering and PCA, was applied upon, rather they were added succeeding it, to aid our

100 Chapter 5. Implementation Details

analysis. Saturated LOOG improvement refers to the maximum achievable performance im-
provement in LOOG configuration, as will be explained in later sections. Early in the ex-
amination of GPU utilization and IPC optimization it was clear that the axes of OOO, cache
and Execution unit scaling could explain all types of stalls (scoreboard stalls, pipeline stalls
and dispatch stalls respectively) and most of the workload diversity. Given this diversity,
we studied the potential for reconfiguration of the microarchitecture on these axes, to tai-
lor it to workloads on runtime. Clusters produced, seen in Figure 5.10 were retrospectively

interpreted with regards to their main performance bottleneck as follows:

« DP-bound, high utilization, significantly stalling on the INT, MEM and DP Execution
Units and exhibiting low cache and DRAM accesses (high miss rate is due to the few
accesses and is therefore irrelevant). The MEM stalls paired with low memory accesses
overall imply separate memory and compute intensive phases. Therefore, it comprises
kernels that mainly perform DP computation. As a compute-intensive cluster, it
stalls frequently due to control hazards, as also seen in Figure 5.5a. Owing to its high
warp-count (achieved occupancy in our terminology [84]) it can maintain a high uti-
lization and high average warp readiness. Its improvement in LOOG is therefore high,

since it is not dependent upon memory instructions.

« Cache-bound, low ILP, having high Data stores and missing on Constant cache, due to
parameter memory instructions as is elaborated on in section 5.8.2 (it is also charac-
terized by a high kernel launch count). High CTA (thread blocks) are the direct cause
of the increased parameter memory instructions, and because of the low warp count,
pipeline stalls due to the subsequent scoreboard collisions cannot be hidden with con-
text switching. It includes kernels that read from constant memory, perform few
computations and write on local and global and local memory Due to constant
memory not being backed by the L2, off-chip memory accesses cause interconnect

stalls. The exploitable ILP of this cluster is low for the above reasons.

+ Shared memory-bound, having high shared memory operations overall (the lowest la-
tency among memory operations) and stalling on the SFU pipeleine. It includes kernels
that perform SFU computation on values read from the shared memory, using
few active warps but exhibit mediocre utilization and low exploitable ILP due to the

low warp count.

« Cache-bound, high ILP, exhibiting frequent Data cache load accesses, with a low miss
rate. This is paired with the relatively high RF read count, signifying the presence of
compute phases. Given that dispatch stalls are only present in the MEM pipeline, com-
pute phases are evenly spread among the ALU and FPU pipelines and do not cause
congestion. Low scoreboard collisions signify the inclusion of kernels that read data
from the Data cache and perform arithmetic operations on it on separate com-

pute phases. All of the above produce exploitable ILP.

5.3. Workload characterization and exploitable ILP analysis 101

+ SP-bound evidently having compute phases (as the high RF reads and ALU stalls imply)
despite its frequent DRAM operations (given that the Data cache is accessed frequently
with a low miss rate, these operations are due to evictions), without significant depen-
dencies (as seen with only a few scoreboard collisions). This, again, implies its com-
position from kernels that load data from global memory, perform SP operations
on it and store it again in global memory. High DRAM traffic is produced by L1
Data cache accesses that hit and produce evictions. High throughput due to compute

phases paired with low dependencies equates to high exploitable ILP.

Summing up, in all our preliminary cluster analysis of the kernels provided, a shared memory
cluster is formed, due to its distinguishing characteristics of high SFU utilization and low
warp count causing relatively low utilization and mediocre exploitable ILP.

Two pairs of cache bound (memory-intensive) and FPU-bound (compute-intensive) clus-
ters are formed. The distinction between cache bound kernels depends on types of operations
and specific cache accesses.

Constant accesses paired with Data store instructions are related to high scoreboard colli-
sions and relatively high utilization, due to a high instruction throughput paired with existing
real dependencies. The dependencies are evidently real since the saturated LOOG AIP(C'is
not significant.

High Data Load Read instructions are paired with low scoreboard collisions and low uti-
lization but a high warp count and compute phases (as evident by RF reads). These charac-
teristics provide high exploitable ILP.

FPU-bound clusters both have high utilization and low scoreboard collisions, providing
exploitable ILP. The DP-bound cluster is less prone to cache utilization and DRAM accesses
and has a high warp count that provides the highest instruction throughput among all clus-

ters.

« Scoreboard collisions are frequently paired with the presence of memory instructions.

+ RF reads are negatively correlated with memory instructions, providing a criterion for

compute phases

+ GPU utilization is higher in compute-intensive kernels and is negatively correlated

with Data load instructions in memory-intensive kernels.

« For compute-intensive kernels, GPU utilization is higher in DP-bound kernels, and for

memory intensive kernels it is higher in shared-memory-bound kernels.

« Exploitable ILP is high in compute-intensive kernels and memory-intensive kernels

with local and global memory load instructions (that exhibit compute phases).

« It is, hence, mostly correlated with compute phases per kernel. RF reads are positively

and scoreboard collisions negatively correlated to it.

102 Chapter 5. Implementation Details

Silhouette scores for cosine hierarchical clustering Scores sorted in descending order

100% [—— 0.14
025
013
80%

Cumulative variance
Cosine silhouette score

1 4 7 10 13 16 19 22 25 28 31 34 o 5 10 15 20 25 30 0 5 10 15 20 25 1) 35
Components Number of clusters Statistics sorted by score

(A) Cumulative variance ratio ex- (B) Silhouette scores per number (c) Sorted importance scores of
plained by components of clusters extracted features

FIGURE 5.8: Kernels feature extraction and clustering

Significance of topl0 extracted features

Load_warp_instructions
L1C_miss_rate

RF_reads
Shared_mem_instructions
Store_warp_instructions
Warp_availability_variance
Warp_readiness
Control_hazard_stalls
DP_dispatch_stalls
MEM_dispatch_stalls

0.130 0.132 0.134 0.136 0.138 0.140

FIGURE 5.9: Relative significance of top extracted features

« From the Cache bound, low utilization and the Shared memory-bound clusters, we can

see that exploitable ILP is correlated to higher utilization.

5.3.1 Rodinia - Back propagation

The back propagation benchmark belongs in the pattern recognition algorithm domain and
its computation and memory access pattern matches that of the unstructured grid dwarf.[2] It
is responsible for training the weights on a layered neural network. It comprises two phases;
In the Forward phase, the activation is propagated from the input to the output layer. In the
Backward phase, the error between the actual and requested output value is used to update
the bias and weights of the layers leading up to the output.[1] Interestingly, the Forward
phase kernel of Rodinia 2.0 back propagation belongs to the Shared memory-bound cluster ,
while the weight adjustment kernel belongs to the DP-bound, high utilization cluster. Note
that even though the latter is actually INT-bound instead of DP-bound, such kernels are

grouped together due to similar characteristics overall. Following is a piece of the relevant
host code (.cu file):

o

5.3. Workload characterization and exploitable ILP analysis 1

Hierarchical cosine clustering of all kernels

DRAM Reads

DRAM writes
Interconnect stalls

L1 Data Accesses

L1 Data miss rate

L1 Constant Accesses
L1 Constant miss rate
Load warp instructions
Store warp instructions
Shared MEM warp instr
Constant MEM warp instr
Register File Reads
DP_unit_dispatch_stalls
INT dispatch stalls
MEM dispatch stalls
SFU dispatch stalls

SP dispatch stalls
Collector unit stalls
Control hazard stalls
Average warp readiness
Scoreboard collisions
Total CTA issued

Total warps

Utilization

Saturated LOOG AIPC

F1GURE 5.10: Relative feature values of clusters produced. LOOG DeltalPC and
Utilization were subsequently added

cudaMemcpy (input_cuda, net->input_units, (in + 1) = sizeof(float),

cudaMemcpyHostToDevice) ;
cudaMemcpy (input_hidden_cuda, input_weights_one_dim, (in + 1) =«
hid + 1) « sizeof(float), cudaMemcpyHostToDevice) ;

bpnn_layerforward CUDA <<< grid, threads >>>(input_cuda,
output_hidden_cuda,
input_hidden_cuda,
hidden_partial_sum ,
in ,
hid) ;
cudaThreadSynchronize () ;

cudaError_t error = cudaGetLastError () ;
if (error != cudaSuccess) {
printf("bpnn kernel error: %s\n", cudaGetErrorString(error));
exit (EXIT_FAILURE) ;
}
cudaMemcpy (partial_sum , hidden_partial_sum , num_blocks » WIDTH -«
sizeof (float), cudaMemcpyDeviceToHost) ;

(

L1sTING 5.1: Rodinia Backpropagation host code

1.0

0.8

0.6

0.4

= 0.2

=0.0

104 Chapter 5. Implementation Details

Hierarchical clustering, cosine metric

nestar-mst_S5
nesiaE e
abnﬁFE'fs

5;5;33&.@ ;
:lc S:F
E.E Ll‘l::tmn 1
heam.l.rall rodinfa-3.1_1
testjo

pol Erfch correlatjon_2
p::ll l;lench correlation”1

ﬁ:eﬁ: !Ibﬂanvulutlun 1
;55 200
rhml-hlzm 2

% Satboihicto 4~

- nd3ni§-3 13
£fd radinia=3.1"1
spass-2009-NK"1
ud-rodinia-3.1 3

oc-Stencil207 1

.-,;,.; FFT 2

shoe-FFT 1
E;.I -rodinia-3.1_1

oc-Scan
lonestar-mst 2
l%nestar—b -m-:_z

* Shared memory operations

- DP-bound, high utilization

- Cache-bound, low ILP
s S5P-bound

== Cachesbound highllP' 1=

==

- L]

H#HH HHH I '%

ac-Sort_ 4

ne sp-win_2
lonestar-bfs-wilw

USS|an-ro ma- A 2

u;sran rodima-3.1"1

st oin_4

stB“s'z
nestat-mst 1
lon & r-bh_T

|: E:ll' -mir_l
|

W

t2d-rodinia-3.1_1
testAFEr 1
testhm
-rodifila
sput mdanlzlil 11
backpmp—mdlma -371 2
ne r-bfs-wic_1
ar-sssp
nestar—bfs Wi
nestar-sssp-w l'r 1
glneatarvbl‘s -atomic_1

0C-50
nestar-kh 3
ac-Sort T

ocSort 1
ispass-2009-AES_1
ﬂll:

ISF:ISE 09-LI8_1

{
=1 oifisto 3 -
—

ass-2009 'IZFS 1

spﬁ’?{c{% SNOU_1
bne&tar—bh 2

'f ri mdlma 211
tostjain 12
ﬁgc EC?PBE
hd-roghma-2.1 2
S — TS

il
il

FIGURE 5.11: Detailed clustering visualization of the kernels. Note that kernels
from the same application may diverge significantly.

5.3. Workload characterization and exploitable ILP analysis 105

Lines 1 and 2 are responsible for host-to-device data transfer of the bias of the input layer and
weights between the input and hidden layer respectively. Memory for destination pointers
has been allocated on the device using cudaMalloc.

On line 4, the device function responsible for the forward phase is called for execution on
the GPU. Its operands are destination, source, allocation size, and memory copy type re-
spectively. It is important to note that data transfers from host to device only take place on
contiguous memory spaces using "cudaMalloc()". Therefore the 2d weights matrix must be
linearized (variable "input_weights_one_dim", line 2) to be used as a source operand. Cre-
ating a 2d matrix on device DRAM using an array of pointers would require multiple calls
to cudaMalloc(), and imply a non-contiguous memory space, reducing data locality. On line
11, the function called blocks the host thread execution until all previously issued commands
running on all active streams on the device have finished. It returns an error if any of the
preceding tasks has failed. It is noted that this function is deprecated and appropriately re-
named in CUDA 12.0 as "cudaDeviceSynchronize()", since it serves the purpose of device and
not thread-level synchronization. On line 19, the partial sum calculated from the forward
propagation function executed on the device, is copied back to host memory [103, 21, 104] .

Following is the forward phase device function from the auxiliary .cu file:

__global__ wvoid

;| bpnn_layerforward _CUDA (float «input_cuda,

float »output_hidden_cuda,
float sinput_hidden_cuda,

float shidden_partial_sum ,

int in,

int hid)
int by = blockldx.y;
int tx = threadldx.x;

int ty = threadldx.y;

int index = (hid + 1) « HEIGHT « by + (hid + 1) » ty + tx +
1 + (hid + 1) ;

int index_in = HEIGHT = by + ty + 1;

__shared__ float input_node [HEIGHT];
__shared__ float weight_matrix [HEIGHT][WIDTH];

if (tx == 0)

input_node[ty] = input_cuda[index_in] ;
__syncthreads () ;

weight_matrix[ty][tx] = input_hidden_cuda[index];
__syncthreads () ;

106 Chapter 5. Implementation Details

weight_matrix [ty][tx] = weight_matrix[ty][tx] * input_node[ty];
__syncthreads () ;

for (int i = 1 ; i <= __log2f(HEIGHT) ; i++){
int power_two = __powf(2, i);
if(ty % power_two == 0)

weight_matrix[ty][tx] = weight_matrix[ty][tx] + weight_matrix|
ty + power_two/2][tx];
__syncthreads () ;

input_hidden_cuda[index] = weight_matrix[ty][tx];

__syncthreads () ;

if (tx == 0) {
hidden_partial_sum [by + hid + ty] = weight_matrix[tx][ty];

L1sTING 5.2: Rodinia Bacpropagation Layerforward kernel

As the keyword "__global__" signifies, this function is called from the host code as shown
above. In lines 9-11 some thread indexing variables are set from kernel launch parameters
stored by default in the shared memory. In lines 15,16 some shared memory matrices are
defined. Host data that was transferred to device DRAM will be copied there, to be used by
all threads in a block. The linearized weights matrix is wrapped as a 2d matrix in the shared
memory. At each stage of the computation, before the output is set at line 37, the function
__syncthreads() is used, which poses a barrier to all threads within a block and synchro-
nizes them. Comparing the kernels corresponding to the forward and the weight adjustment
phases, it is clear why they belong to the respective clusters.

Following is the weight adjustment phase function:

__global__ void bpnn_adjust_weights_cuda(float » delta,
int hid,
float » ly,
int in,
float = w,
float » oldw)

int by = blockldx.y;

™o
>

5.3. Workload characterization and exploitable ILP analysis 107

threadldx .x;

int ty = threadldx.y;

int index = (hid + 1) « HEIGHT « by + (hid + 1) » ty + tx +
1 + (hid + 1) ;

HEIGHT =« by + ty + 1;

tx + 1;

int tx

int index_y

int index_x

w[index] += ((ETA + delta[index_x] * ly[index_y]) + (MOMENIUM «

oldw[index])) ;

oldw[index] = ((ETA » delta[index_x] » ly[index_y]) + (MOMENIUM «
oldw[index]));

__syncthreads () ;

if (ty == 0 && by ==0){

w[index_x] += ((ETA + delta[index_x]) + (MOMENIUM = oldw[index_x
D)s

oldw[index_x] = ((ETA =« delta[index_x]) + (MOMENIUM = oldw[
index_x1]));

}

L1sTING 5.3: Rodinia Bacpropagation Weights Adjustment kernel

Operations inside the loop in lines 26-31 of the forward phase kernel, which produces most
of the kernel’s dynamic instruction mix are compiled into shared memory operations in PTX,
justifying the inclusion of the kernel to the Shared-memory-bound cluster. .

In the weights adjustment kernel, all kernel parameters dereference to global memory ar-
rays requiring L1 Data cache accesses, therefore operations mainly consist of L1D reads.
Since these are one-off reads as seen in lines 15,16,20,21, they cause a high L1 Data miss
rate, which characterizes the DP-bound cluster, as seen in Figure 5.10 . Since the conditional
in line 19 is executed just for a specific scalar thread, it likely causes frequent control haz-
ards as also seen in Figure 5.10. In the microarchitecture level, warps containing this thread
(thread_y == 0&&block_y == 0) will always assume this branch as not taken [24]. During
instruction Issue, the SIMT stack will be updated [24] and two entries, one with the thread
active mask bit set and its complementary, will be added to it and executed sequentially [1]
. Since the branch will always be assumed as not taken, half of the time the PC seen in the
ibuffer entries to be issued will be different than that at the top of the SIMT stack, and control
hazards will be produced.

Evidently, in each of the lines 15,16,20,21, an INT operation is produced in PTX for every
global load, justifying the inclusion of this kernel in the DP-bound cluster and the INT stalls
seen in Figure 5.10.

Since the weights adjustment kernel is compute-intensive and has a high GPU utilization, it

108 Chapter 5. Implementation Details

270

240 4

210 + . R

180 1 -]

150 4 L

120 -

a0 w

&0
30 A
0

Accelwattch Power (W)
[]
-

0 30 60 90 120 lé‘EI 180 zlm 240 270
Measured Power (W)
(b) Volta PTX SIM, MAPE: 13.7%

FIGURE 5.12: Accelwattch estimation accuracy [57]

possesses significant exploitable ILP.

5.4 Performance modelling

A detailed, yet slightly outdated (version 3.x) overview of the software model of GPGPU-Sim,
the performance model of Accelsim used in our simulations can be found at [24].

The source code for all of our modifications on the performance model (GPGPU-Sim 4.1.0)
as well as the power and area model (Accelwattch) of Accelsim, including the baseline con-

figuration files and design space exploration scripts can be found at the Appendix A.1.

5.5 Power modelling

In this section, the method to obtain the configurable LOOG power model is described, with
changes implemented in Accelwattch [57], as well as the baseline configuration file used to

extrapolate configuration options from.

5.5.1 Changes implemented

Components added due to the transition from the baseline model to LOOG, namely RRS RAT
and LSQ were modelled as SRAM arrays. Existing components were modified with extra
entries or extra throughput where needed (Decoder, Instruction Issue Window, Collector Unit
entries). Extra tags were added to the relevant interconnects corresponding to Collector Unit
ID. Hence, scaling-up Collector Units intra-LOOG causes linear Area scaling, while Power

scaling is the sum of a linear and a low-coefficient quadratic function.

5.5. Power modelling 109

5.5.2 Leakage and Dynamic power modelling

The manufacturing process used in GV100 is the TSMC 12 nm FEN (FinFET NVIDIA), while
Accelwattch modelling of the same architecture is tuned with a 23 nm node technology,

roughly corresponding to two generations before as seen in Table 5.2. The leakage power to

Architecture | Min Node
Tesla (2007) 90nm
Tesla (2008) 55nm
Fermi (2010) 40nm
Kepler (2012) 28nm
Maxwell (2014) | 28nm
Pascal (2016) 16nm
Volta (2017) 12nm
Turing (2018) 12nm
Ampere (2020) | 8nm
Lovelace (2022) | 5nm

TaBLE 5.2: Nvidia GPU architectures and their minimum node technologies
[105, 74, 106]

dynamic power ratio varies significantly with technology node scaling. As it scales down,
the dynamic power consumed by CMOS circuits tends to only slightly increase while the
leakage power aggressively increases (inversely proportional to gate length) [107]. This is
due to the increase in the sub-threshold leakage current and the gate leakage current caused
by the thinning of the gate oxide, as well as the junction leakage current. This difference
in configuration is expected to skew our results with regards to dynamic to leakage power
ratio (approximately by a factor of 2, according to [107]). However, since the sum of these
components is used to tune the baseline Accelwattch configuration file we modify, and since
the power gating we perform assumes insignificant increases in dynamic power when the
structures are not gated, and complete eradication of both power components when they are,

this does not affect our analysis.

5.5.3 Accelwattch configuration

The Accelwattch PTX simulator yields satisfactory results when compared against hardware
power measurements on a variety of benchmarks suite ran for the NVIDIA Volta architec-
ture, as seen in Figure 5.12. In the aforementioned paper [57], it is further demonstrated that
Accelwattch can be reliably utilized for design space exploration, as it can provide accurate
power models even for the Pascal and Turing microarchitectures. Accelwattch uses intricate
performance counters provided by the performance simulator to model switching power and
account for DVFS and aggressive power gating. In the scope of this thesis, maximum power

dissipation statistics will be used as provided by Gpuwattch (based on McPAT and Cacti) in

110 Chapter 5. Implementation Details

a relative analysis compared to baseline. Power estimations are bound to be even more ac-
curate when it comes to individual components.

The Accelwattch Volta configuration file has been tuned according to power correlations pro-
vided by running microbenchmarks targeting individual architectural components. There-
fore, power estimations for each component that is dynamically configured come down to
McPat calculations that exhibit a linear dependency with the relative configuration size co-
efficients that are applied. For example, configuring Collector Unit number only affects the
size of the crossbar input buffer connecting them to the Register File, apart from the struc-
tures themselves. Total crossbar area and power dissipation is proportional to both input and
output buffer size. Configuring functional units similarly affects the crossbar size connecting
them to the operand collector, as well as the number of lanes withing the SM. Cache sizes
similarly exhibit a linear dependency with power dissipation. In conclusion, the fine tuned
per-component power dissipation estimations combined with the accurate whole-processor
power model provide a decent substrate for our custom configurations to extrapolate upon

and compare to baseline [57].

5.6 Right-sizing LOOG on NVIDIA Quadro GV100

Following the implementation of LOOG in version 4.1.0 of GPGPU-sim [23], a reassessment
of its right-sizing was deemed necessary, since the original implementation was studied on
the GeForce GTX1080Ti model [48, 14], a gaming GPU, implementing Pascal, the previous
architecture generation to Volta. Since our new baseline GPU platform is a workstation GPU,
LOOG’s behavior is expected to differ regarding right-sizing of the Register Renaming Stack
[12, 13], Operand Collector and Instruction Window.

5.6.1 Register Renaming Stack

As elaborated on in chapter 3, the RRS is a structure designed to alleviate Collector Unit con-
gestion by enabling their deallocation right after instruction dispatch instead of the Write-
back stage [14]. As seen in Table 5.3, the Power and Area overhead of RRS scaling is minimal,
while the average performance per kernel only significantly improves from 32 to 64 RRS. In
Figure 5.13a, the maximum number of RRS entries used over all kernels in the evaluation is
presented. The absolute maximum is 146 and the absolute minimum is 41. In Figure 5.13b, the
average RRS occupancy over all kernels is presented with RRS configured at 64. Evidently,
a minority (30%) of kernels has an average RRS occupancy for which 64 RRS do not suffice.
Values close to 64 in Figure 5.13b are produced by high bandwidth throughput, presumably
in compute-intensive kernels. Despite such high values, RRS size is not a bottleneck for
the respective kernels, since the backend is not stalled and it only prevents Long I-window
instruction reordering. The average available I-window length per warp for an RRS configu-

ration of 64 is depicted in Figure 5.13c (average value of 2.93). It is calculated by dividing the

5.6. Right-sizing LOOG on NVIDIA Quadro GV100 111

average number of RRS entries used with the number of total warp slots occupied. Finally, in
Figure 5.13d, cycles with no CUs allocated (CU stalls) are depicted for an RRS configuration
of 64. Only 32% of kernels have their CU stalled more than 25% of the time. Even such a high
CU stall rate, as indicated, does not equate to backend stalls and reduced throughput.

RRS size 64 128 256
Power overhead | 0.07 0.018% | 0.047%
Area overhead | 0.002% | 0.004% | 0.008%
DeltalPC 7.52% 7.67% 7.67%

TABLE 5.3: Overheads and performance improvement compared to a 32 RRS
configuration

Results are similar to the initial implementation of LOOG [14] and since no significant
improvement is provided beyond 64 RRS, this is the configuration used in all subsequent

modelling in this thesis.

5.6.2 Instruction Window

Power and Area overheads for Instruction Window scaling with a baseline of /Window = 1
(IWindow values in the table are normalized to 1 instruction Fetched, Decoded and Issued
per cycle per SM processing block) are presented in Table 5.4. It is noted that as explained
in the Power modelling section, the overheads presented here contain estimates of the peak
dynamic power. It is worth noting that the leakage power overhead that arises from the
additional structures is more closely approximated by the Area overheads whose model is
precise. Since the total dynamic power for a given number of fetched, decoded and sched-
uled instructions is approximately constant (the Issue scheduler does not implement any
sophisticated policies and considers each scheduled instruction once), the actual total power
overhead curve is, hence, expected to more closely follow the Area overhead curve. As elab-
orated on in section decoder throughput, in the new architecture with per-SM processing

blocks [49] (sub-cores[36, 24]) it is never sensible to scale-up the Instruction Window, rather

1 _insn
processing_block-cycle

As indicated in section depth scheduling, larger instruction windows can provide more effi-

it can be scaled down to

without significant performance deterioration.

cient instruction depth scheduling (it is demonstrated that prioritizing the instructions of a
given warp with Depth-First Scheduling is preferable to switching warps with Breadth-First
Scheduling in LOOG). This scheduling policy, however, can be emulated over many cycles

without using a Longer Instruction Window and with the addition of minor components.

5.6.3 Operand Collector

Early in examining the behavior of the LOOG execution scheme, it was evident that the

Collector Units, serving as the Reservation Stations of the Tomasulo algorithm [15] are its

112 Chapter 5. Implementation Details
Max RRS occupancy for all kernels Average RRS occupancy over all kernels for 64 RRS
18 40 4
16
14 30 -
g g
5]
LT =
g = 20
g £
£
B
10 A
4
z
D -
o 0 10 20 30 40 50 60

&

) 10
Max RRS occupancy

(A) Maximum RRS entries used for all kernels used

25 1

201

Frequency

Average available instruction window per warp

=
w

[
(=]

Average instruction window

(c) Average instruction window per warp with 64 RRS

Average RRS occupancy

(B) Average RRS occupancy for all kernels used
Cycles with no CU allocated overall

Frequency

056 10% 20% 30% 40% 50% 60% T0%
Cycles with no CU allocated

(D) Cycles with no CU allocated overall

FIGURE 5.13: Right-sizing of the RRS

5.6. Right-sizing LOOG on NVIDIA Quadro GV100 113

IWindow | 2 4 6 8 10 12 14 16
Power 4.79% | 10.68% | 17.58% | 24.98% | 34.06% | 47.01% | 60.47% | 74.77%
Area 0.22% | 0.95% | 1.80% | 2.71% | 3.70% | 4.85% | 5.99% | 7.23%

TABLE 5.4: Scaling Instruction Window (Fetch - Decode - Issue scheduler
throughput) overheads

most critical part, both in terms of performance gains as well as Power and Area overheads.
The average speedup for all kernels tested as well as Area and Power overheads are presented
in Table 5.5. Evidently, the IPC improvement from LOOG saturates beyond 48 CUs for the
average kernel.

As no improvement is provided beyond 48 CUs for any workloads, this is the design limit for
all our further testing.

We define saturated LOOG improvement as the maximum percentile performance im-
provement achievable from baseline. It is approximately equal to the improvement at 48
CUs and precisely equal to the improvement at 64 CUs, save for some data anomalies ex-
plained in the scheduling section. The histogram of saturated improvement over all kernels
run is depicted in Figure 5.14. The improvement curves for CU scaling per saturated im-
provement kernel percentiles from 50th to 90th are shown in Figure 5.15a. As seen in both
of the above figures, the distribution of IPC improvement at each scaling step is wide, with
the AIPC between percentiles increasing at higher percentiles. We arbitrarily define the
"LOOG-sensitive" class as the class of applications whose saturated LOOG improvement is
more than 100%.

In Figure 5.15a, the upper two percentile curves, showing marked improvement compared
to the rest of the workloads approximately correspond to the LOOG-sensitive kernels.

The LOOG-sensitive class represents 22.0% over all kernels and 9.2% of all kernel launches.
We observe, therefore, a clear bias of multiple-launch kernels towards LOOG-insensitivity.
This analysis will prove relevant in section 2.2 . Intra-kernel loog-sensitivity is consistent as
depicted in Table 5.6 , with the exception of 1 launch. A small minority of kernel launches not
belonging to LOOG-sensitive kernels surpass the LOOG-sensitivity threshold. These niche
workloads are considered outliers as they belong to only two kernels. We deduce that LOOG
sensitivity highly varies inter-kernel and is mostly consistent intra-kernel, nevertheless, with
existing exceptions. The observation of said high variance is closely tied to determining
the optimal configurations for each class of applications based on different figures of merit
(AIPC saturation, Power-Delay Product, Energy-Delay Product), as tentatively examined
in this subsection, and more closely in section 5.8 . With the realization that optimal con-
figurations vary in a similar fashion, we set to design a reconfiguration mechanism at the
granularity seen in Table 5.5 in section 5.8 , in order to optimize the aforementioned figures
of merit for each workload at runtime, focusing on performance or energy efficiency.

In Figure 5.15b, Area and Power overheads are co-ploted with the IPC improvement per

LOOG sensitivity class. Evidently, the median kernel with regards to LOOG-sensitivity is

114 Chapter 5. Implementation Details

Saturated improvement distribution for kernels

15
| I
.-- | . — —
00 05 10 15 20 25 30 35

4p

w

=

Kernels

FIGURE 5.14: Histogram of saturated IPC improvement on LOOG

essentially LOOG-insensitive. Mean IPC improvement for LOOG sensitive kernels surpasses
160%.

Collector Units 8 CUs | 16 CUs | 24 CUs | 32.CUs | 40 CUs | 48 CUs | 56_CUs | 64 CUs
Area overhead 3.33% 6.80% 10.26% 13.72% 17.19% 20.65% 24.12% 27.58%
Power overhead 6.50% 9.90% 13.64% 17.72% 22.13% 26.87% 31.95% 37.37%
Average DeltalPC | 22.29% | 40.76% 48.57% 52% 59.66% 61.14% 61.16% 61.16%

TaBLE 5.5: Collector Unit scaling performance improvement and Area, Power
overheads

LOOG-sensitive kernel non LOOG-sensitive kernel

LOOG-sensitive launch 3,78% 5,45%
non LOOG-sensitive launch 0,15% 90,62%

TaBLE 5.6: LOOG-sensitivity distribution over kernels and kernel launches

Area and Power scaling with CUs are depicted in Figure 5.15b . As expected, Area is a
linear function of CU size due to the increased number of inputs to the crossbar and Power
is a small coefficient quadratic, due to increased arbitration logic bitlines and multiplexer
size of the crossbar . ADP is depicted in Figure 5.15d, with ADP evidently optimized at 16
CUs for the median and mean LOOG-insensitive kernel. Since it is optimized for such a
scaled-down LOOG configuration, further testing in sections will be done with architecture
configurations containing a maximum of 16,32 and 48 CUs. For the average and mean LOOG-
sensitive kernels ADP is optimized with 32 and 40 CUs respectively.

Power-Delay Product for improvement percentiles is depicted in Figure 5.15e. For each
percentile, PDP is optimized in the CU size range [16,40] non monotonously. Energy-Delay
Product, depicted in Figure 5.15f taking Delay into grater account, is optimized at 48 CUs only

5.6. Right-sizing LOOG on NVIDIA Quadro GV100 115

LOOG Area/Power increase from baseline

8%
o
0%
e
-
c
5 a
E gﬁﬁ
R
> 5]
g £
@ wn
.Em -‘E
2 g
=]
c 5 e
8w &
o
o

““Number of CUS/RS

- “Number of CUs/RS ™~ v
(a) LOOG IPC improvement compared to baseline (8) LOOG Area and Power overheads scaling

per saturated improvement percentiles compared to baseline
LOOG area-delay product

09

=
&

i

Percentile improvement

ADP normalized to baseline

' Number of CUs/RS

(c) LOOG IPC improvement plotted with Area and
Power overheads (D) LOOG Area-Delay Product scaling

EDP for LOOG improvement percentiles

“"Number of CUS/RS

PDP for LOOG improvement percentiles

2 E:
© ©
o Q
S e
el o
L] o
I A
T s
E 07 E
o o
= c
[- % a
=) a
w w

L3

05

““Number of CUS/RS ~ Number of CUS/RS
() LOOG Power-Delay Product scaling (r) LOOG Energy-Delay product scaling

F1GURE 5.15: LOOG scaling behavior across LOOG improvement percentiles

116 Chapter 5. Implementation Details
Benchmark Suite Kernel Sat- ATPC
MST Lonestar Find Minimum 405%
LPS Ispass-2009 | 3D Laplace calculation 396%
LIB Ispass-2009 | Path calculation 319%
Gramschmidt | Polybench | Gramschmidt 245%
Correlation Polybench | Mean calculation 232%
MST Lonestar Verify minimum element | 226%
MST Lonestar Find minimum element 194%
MST Lonestar Find minimum element 2 | 185%
QTC Shoc Compute degrees 180%
testAmr Dragon Refinement kernel 157%
Hotspot Rodinia-3.1 | Calculate temperature 153%
Backprop Rodinia-3.1 | Weights adjustment 145%
NN Ispass-2009 | Execute second layer 140%
Reduction Shoc Reduce 127%
Histo Parboil Input image 125%
Gramschmidt | Polybench | Initialization 119%
S3D Shoc Find Minmum 116%
Histo Parboil Intermediate kernel 115%
Histo Parboil Histogram calculation 112%
CFD Rodinia-3.1 | Compute 110%
Stencil2D Parboil Stencil kernel 106%
FFT Shoc FFT kernel 102%

TaBLE 5.7: LOOG sensitive kernels and their percentile IPC saturated improve-
ments

for the 80th percentile, the right-sizing value set for LOOG in our current implementation.
Energy metrics are mostly optimized at 40 CUs for higher percentiles and all metrics are
optimized at 16 CUs for the median kernel. The above results are summarized in Table 5.8. A
more detailed view of the per-kernel and per-launch optimal CU configuration distribution

is provided in section 5.8 .

Percentile | ADP | sat | PDP | EDP
Median 16 16 | 16 16
60 24 32 | 32 40
70 32 40 | 40 40
80 40 48 | 40 48
90 48 40 | 32 40

TaBLE 5.8: Optimal CU configuration across saturated IPC improvement kernel
percentiles for metrics ADP, IPC saturation, PDP, EDP

5.7. Accommodating LOOG on the front-end of NVIDIA Quadro GV100 117

5.7 Accommodating LOOG on the front-end of NVIDIA
Quadro GV100

The minor studies this section entails, aim to determine the new microarchitecture bottle-
necks that might arise with the implementation of LOOG in the new architecture, in com-
ponents not directly related to LOOG. Since LOOG directly imposes only backend modifi-
cations and the frontend virtually remains intact (save for the Scoreboard collision check
that is replaced with register renaming and seamless Issue scheduling to the Operand Col-
lect stage), we examine the optimal behavior of the Decoder, Issue scheduler and Instruction
Buffer frontend components. Resizing and optimally configuring these components with re-
gards to LOOG is essential. RRS are configured to 64 and CUs to 32 for all simulations used

in this section.

5.7.1 Fetch-Decode stage Bandwidth study

Introducing Out-of-Order execution on the GPU increases backend throughput, therefore a
right-sizing of the frontend stage is crucial. We seek to determine whether the traditionally
CPU-specific distinction of front-end bound and back-end bound workloads is extensible to
the GPU and likewise categorise applications to properly adjust the Decoder BandWidth.
As previously mentioned, SMs in Tesla V100 [93] microarchitecture, comprise 4 processing
blocks with that only share the Instruction cache and the memory subsystem [36]. In the ac-
tual implementation [93], instruction fetching is optimized with a per-partition L0 instruction
cache. This is approximately modeled in GPGPU-sim by a right-sized SM-wide Instruction
cache with 4 times the port throughput.

Instructions fetched in each of the processing blocks are ultimately stored in a statically
per-warp partitioned Instruction Buffer. In the baseline model, each cycle, 2 instructions (per
SM partition) are fetched from the Icache to the pipeline registers leading to the currently
fetch-scheduled warp’s Instruction buffer entries. Fetch-scheduling is done in a Round-Robin
fashion on the active warps that are ready to fetch. Instructions are decoded with an equal
throughput, and are placed in the appropriate Ibuffer entries. Each scheduler-isolated SM par-
tition has one Issue scheduler by default, scheduling two instructions per cycle to the Collec-

tor Units in a Breadth-First fashion on Least-Recently-Used warp ordering. Therefore the to-

1 insn
processing_block-cycle

tal baseline Fetch-Decode Bandwidth (maximum throughput), normalized
is 8. Determining the instruction throughput of the backend (based on the number and the
activity Execution Units and Load Store Unit including Caches) is much more complicated
and depends on instruction mix and latencies and throughput of Execution Units for each
instruction type (latency of execution becomes significant in high IPC workloads that cause
EXU congestion). In our implementation, runtime statistics are collected on a per-kernel-
launch granularity to measure actual runtime backend throughput. The extension of the def-

inition of Instructions Per Cycle typically refers to scalar thread instructions per cycle, not

118 Chapter 5. Implementation Details

Warp IPC for all kernels run

= Warp IFC
m— Minimum Ifetch throughput

Frequency

000 025 050 o7s 100 125 150

Warp IPC

FIGURE 5.16: Warp IPC (equivalent to backend throughput) for 83% of work-
loads is below the minimum frontend throughput (GV100 frontend throughput
is 8)

accounting for warp instructions, which is the actual unit that is executed in the backend:

PO — scalar _thread_instructions (5.2)
total_cycles

When warp divergence is met, the backend equivalent of one warp instruction in the frontend
is multiple instructions, potentially 32 if all threads within the warp diverge. The NVIDIA
Volta GV100 is the first architecture to support independent thread scheduling [93] as men-
tioned in section, however independent warp scheduling and sub-warp coalescing are not
implemented in GPGPU-sim, and it is assumed that their effect is only significant for a niche
subset of workloads. Given the Pascal architecture single Program Counter and per-warp ac-
tive mask divergence model (were inter-warp threads cannot be coalesced), we aptly redefine

the IPC metric in terms of frontend instruction throughput as:

warp_insn scalar_thread_insn — warp_instructions

W_IPC =

total_cycles total_cycles . scalar_thread_insn

1PC
warp_size - warp_occupancy

(5.3)

Thus we can compare Warp IPC, which is a backend metric to its frontend equivalent. As de-
picted in Figure 5.16, when run with a saturated frontend, the backend throughput SM-wide
and temporal average is below the minimum frontend throughput (equivalent to 1 instruc-
tion fetched per SM-wide L1 Icache per cycle) for 83% of kernels. Collecting further live
runtime statistics on backend throughput would not be sensible since with such a low av-
erage, spikes in backend execution throughput would be amortized by the large number of
dispatch-ready instructions in the RRS in LOOG. Hence, the concept of frontend-throughput
bound workloads is not applicable to the GPU.

5.7. Accommodating LOOG on the front-end of NVIDIA Quadro GV100 119

Eml;etch—decc.»de throttling, non LOOG-sensitive kernels 0% Fetch-decode throttling, LOOG-sensitive kernels
' I
+
50% 50%
c c
=] =2
O 40% ! O 0%
2 L] =
o o
w w
w 30% A 4 3 o 30% A
v L
o j= A —_
o 1 & 503
.g 20% 1 .g 20% 1]
© 1 : ©
E 10% - . $ E 10% -
[=] [=]
L = L =
>
T o % + 4’— o | é —_
v u
(=] [a] +
< <
—10% A —10%
-20% ' 1 . . -20% .
1 2 3 4 1 2 3 4
Fetch-decode throughput normalized to min Fetch-decode throughput normalized to min

(a) (8)

FiGURE 5.17: Fetch-Decode throughput throttling Delay overheads across
LOOG-sensitivity classes

In Figure 5.17a and Figure 5.17b, the Delay overhead for each of the scaled down Decoder
bandwidths and for each LOOG-sensitivity class is displayed.

In Table 5.9, the IPC, normalized to baseline frontend throughput (8 per SM per cycle or 2
per processing block per cycle) is presented for each of the throttled Fetch-Decode bandwidth
values. These values are normalized as explained above.

Evidently, LOOG-sensitive kernels suffer a greater overhead in smaller configurations due
to the increased backend instruction throughput. Despite the average backend throughput
being less than 2 for all kernels, as seen in Figure 5.16, throttling the Fetch-Decode through-
put to this value poses a significant bottleneck for most kernels due to the aforementioned
spikes in backend throughput, that are evidently not totally amortized by the instructions
residing in the CUs. As seen in Table 5.9, this bottleneck causes a 2.63% and a 8.61% de-
lay overhead for LOOG-insensitive and LOOG-sensitive kernels respectively. From the last
column we conclude that Fetch-Decode throughput in LOOG and for GPGPU kernels can
be throttled to half of the baseline with insignificant delay overheads (less than 1% even for
LOOG-sensitive kernels). The power and area savings due to throttling in these stages and
the concomitant Issue stage are 4.57% and 0.22% respectively. As seen in Table 5.4. Note that
an IWindow of 2 in Table 5.4 is equivalent to a Fetch-Decode bandwidth of 2 per processing
block, therefore 8 in our current analysis. Hence, while scaling down the relevant structures
in the design would not be sensible, clock or power gating them would provide significant en-
ergy efficiency for GPGPU kernels even in LOOG. Due to the insignificant delay overheads in
the downscaled Decoder bandwidth configuration, further simulations were performed with

the baseline Decoder bandwidth of 2 per SM partition.

120 Chapter 5. Implementation Details

Decoder BW 1 2 3 4
LOOG-sensitive IPC 89,22% | 97,43% | 98,78% | 99,88%
LOOG-insensitive IPC | 74,43% | 92,54% | 98,84% | 99,48%

TaBLE 5.9: Average kernel IPC normalized to baseline frontend throughput (8)

for each of the Fetch-Decode bandwidths normalized to S}\jgze Issue sched-

uler throughput is 2 for all of the above configurations

5.7.2 Issue scheduling depth study

As depicted in Figures 5.17a and 5.17b , IPC tends to saturate asymptotically even when
approaching a decoder throughput of 4 per SM, half that of the actual fetch-decode through-
put of the Volta partitioned SM. However, it is worth noting that unexpected negative De-
lay overhead fluctuations before saturation are recorded. For a normalized Fetch-Decode
bandwidth of 2, a quartile of the distribution belongs in the range [0,-4%] and [0,-17%] for
LOOG-insensitive and LOOG-sensitive kernels respectively, thereby showing greater perfor-
mance in a smaller Fetch-Decode bandwidth configuration. These random fluctuations were
correctly attributed to suboptimal instruction scheduling. In the original LOOG GTX1080Ti
implementation [14] , a Round-Robin instruction issue scheduler was used, presuming that
the instruction reordering taking place in the next stage would inherently not require a more
sophisticated scheduling policy. While LOOG remains insensitive to such sophisticated poli-
cies in the current implementation, a per-warp IWindow depth scheduling scheme was not
investigated. In the baseline model, 2 instructions are considered for scheduling by the Issue
scheduler every cycle per processing block, potentially from the same warp. We kept this
implementation, in contrast to the original LOOG implementation [14], thereby producing
the aforementioned fluctuations as explained below:

When configuring the fetch-decode throughput to 1, the instruction buffer of each warp
fills with one instruction that is immediately scheduled for Issue as no scoreboard check
takes place in LOOG [12, 13]. Therefore, instructions are seamlessly scheduled in a per-warp
Breadth-First fashion. For a throughput of 2, the Depth-First scheduling that takes place in
our implementation, similar to the in-order baseline, causes seamless scheduling of 2 instruc-
tions per cycle from the same warp, immediately emptying the respective warp’s instruction
buffer and making it eligible for fetch. Note that for any throughput greater than 1, the
number of instructions scheduled is restricted by the Icache line size when approaching its
end. For a bigger throughput, 2 instructions are still Issued per cycle, however, not emptying
the IBuffer, thereby not making the current warp eligible again and causing fetch in other
warps as well,implementing a "fairer" scheduling policy that, evidently, produces worse IPC.
We conclude that prioritizing the execution of instructions from the same warp, when pos-
sible, improves performance in LOOG by enhancing the exploitable ILP when fewer warps
concurrently occupy the CUs.

To gain more insight in this behavior, we configure the Fetch, Decode and issue scheduler

5.7. Accommodating LOOG on the front-end of NVIDIA Quadro GV100 121

bandwidths to an unrealistic 16 per cycle, to Issue as many instructions as possible from
individual warps before switching, producing prohibitive Area and Power overheads as seen
in Table 5.4. Nevertheless, this is just to ease simulation and a low Area and Power overhead
implementation of such a mechanism is provided at the end of this subsection.

We test 5 different Issue scheduling depth policies: Breadth-First Scheduling, where one
instruction is issue scheduled per warp before switching warps, similar to the original LOOG
implementation [14], and [2, 4, 8, 16] — deep Depth-First Scheduling, where for N-deep DFS,
the maximum number of instructions possible is scheduled from the same warp up to N,
before switching. The last configuration fetches a whole Icache line each time. Results are
collected for both kernels and individual launches as well as LOOG-sensitivity classes.

As depicted in Figures 5.18a and 5.18b , a scheduler with the option to utilize Longer In-
struction Windows from individual warps, provides significantly better results with LOOG,
especially for LOOG-sensitive applications. This improvement is saturated beyond 8 in-
structions. Specifically in Figure 5.18a we see a bias of single-launch kernels toward LOOG-

sensitivity that is extensively revisited in Section 5.8.2 .

ADelay depending on scheduling depth, per kernel ADelay depending on scheduling depth, per launch

0% T — LOOG-sensitive 0% -—‘._,,.‘_7_(_‘% = LOOG-sensitive
—— nen LOOG-sensitive B —— non LOOG-sensitive

3 g
=10% %
=7%
-12% j—_"‘*—__(_‘
bfs dfs_2 dfs_4 dfs_8 dfs_16 bfs dfs_2 dfs_4 dfs_8 dfs_16
Scheduler depth on LOOG Scheduler depth on LOOG
(a) (8)

F1GURE 5.18: Delay improvement across Issue scheduling depths
IWindow | 4 6 8 10 12 14 16
Fetch 0.03% | 0.05% | 0.08% | 0.11% | 0.14% | 0.16% | 0.19%
Decode 0.54% | 1.09% | 1.63% | 2.17% | 2.72% | 3.26% | 3.80%
Issue 0.16% | 0.44% | 0.77% | 1.19% | 1.77% | 2.33% | 3.00%
Total 0.73% | 1.58% | 2.48% | 3.47% | 4.62% | 5.76% | 6.99%

TABLE 5.10: Area overhead contribution of each stage in frontend scaling with
a baseline IWindow of 2

As mentioned before, all the above simulations were performed with an unrealsitic Area
and Power hungry IWindow to ease the implementation. This provides the required Depth-

First Scheduling but causes instructions to enter the pipeline in a faster rate as well and

122 Chapter 5. Implementation Details

IWindow | 4 6 8 10 12 14 16
Fetch 0.20% | 0.39% | 0.59% | 0.79% | 0.98% | 1.18% | 1.38%
Decode 3.86% | 7.72% | 11.58% | 15.44% | 19.30% | 23.17% | 27.03%
Issue 1.56% | 4.09% | 7.09% | 11.70% | 20.00% | 28.79% | 38.38%
Total 5.62% | 12.21% | 19.27% | 27.93% | 40.29% | 53.13% | 66.78%

TaBLE 5.11: Power overhead contribution of each stage in frontend scaling with
a baseline IWindow of 2

Frontend scaling Area overhead Frontend scaling Power overhead
T0%
7% | Wl Fetch N Fetch
BN Decode N Decode
LT
~ 6% Issue - 60% sue
I I
50% 1
= 59 g
= -
c £ L0e
S % = 40%
£ £
g 3% . E 30% 1
= b I
e
o
O 294 g 20% =T ..
3 1] 5 BRER
1% 1 = D 0% 4 =i
0% - 0% —M
¥ © 5 = B 3 9 - e N = o k4 9
IWindow size per processing block IWindow size per processing block
(a) (8)

FIGURE 5.19: Frontend scaling Area and Power overheads (baseline IWindow
of 2)

occupy the CUs sooner, thereby falsely increasing the instruction reordering potential early
on. We speculate this exaggerated ILP exploitation due to higher frontend throughput, how-
ever, is minimal for all workloads, since the average backend throughput is less than a mere
2 instructions SM-wide (including the 4 processing blocks) per cycle even for the high-
est IPC kernels as depicted in Figure 5.16. Therefore, when configuring the IWindow to

8 insn
processing_block-cycle

approximately 1 cycle instead of approximately 4 with the baseline Fetch-Decode throughput

(equivalent to 32 in Figure 5.16), the collector units are expected to fill in

2_insn
processing_block-cycle

an insignificant head start. When full, behavior of the baseline and exaggerated IWindow is

configuration of in section "Fetch-Decode stage Bandwidth study”, gaining

identical, save for the Issue scheduling depth, which can be emulated as described below.

Issue scheduling at the correct depth

Since frontend throughput is not significant for the instruction scheduling scheme described
in this section, an Issue scheduler needs to be implemented that provides scheduling in the
same order among warps with a lower instruction window. For an IWindow of 16 (where
the performance increase from increased scheduling depth is evidently approximately satu-

rated in Figure 5.18a), the addition of a 3-bit Fetch-Decode counter is required to provide this

5.7. Accommodating LOOG on the front-end of NVIDIA Quadro GV100 123

behavior. Since instruction Fetching and Decoding happens at a rate of 2 per cycle per pro-
cessing block, the same warp needs to be prioritized every cycle, incrementing the respective
counter, up to a total of 8 times or an Icache miss, when priority is given to the next warp. In
the Issue stage, switching of the prioritized warp happens when the current warp’s entries
are emptied, following the aforementioned events. Thus, the same scheduling behavior is
provided with a smaller Iwindow of 2, as in the baseline.

Due to the inherent error in the above speculations, this study is kept separate and for the

results presented in this thesis, LOOG is configured with an 2-deep Depth-First Issue Sched-

2_insn

: as in the baseline model.
processing_block-cycle

uler, thereby Fetching, Decoding and Issuing

ALGORITHM 3
Warp instruction depth scheduling

order_warps_RR()
total_issued = 0
while total_issued < max_issue_per_cycle do
get_next_warp()
issued = 0
while issued < issue_depth && total issued < max_issue_per_cycle do
if libuffer_empty() && 'warp_waiting() && pipeline_avail() then
issue_instruction()
issued +=1
total issued +=1
else
break
end if
end while
end while

5.7.3 Instruction Buffer reconfiguration

LOOG improvement on deeper Issue scheduling Instruction Windows raised the issue of
inter-warp homogeneity regarding exploitable ILP. Since LOOG-sensitive kernels benefit
more from deeper Issue scheduling windows, by having less warps concurrently utilize the
Operand Collector and benefit from more aggressive reordering, it naturally follows that
in the presence of inter-warp ILP heterogeneity more concurrent Operand Collector access
should be given to high-ILP warps.

Using GPGPU-Sim, we collected per-warp and per-kernel-launch "reconfiguration met-
rics", elaborated on below, representing exploitable warp ILP for the whole kernel’s runtime.
Given the wide distribution of the aforementioned metrics across warps for most kernels,
we make the per-warp Ibuffer partitioning configurable instead of static (as in the baseline
model [24]) and ensure that it adapts to the respective warp’s exploitable ILP at runtime.

An Ibuffer reconfiguration controller was implemented in GPGPU-sim providing the needed

124 Chapter 5. Implementation Details

functionality. It uses a reconfiguration policy and a per-warp recorded reconfiguration met-
ric, dynamically modifying the Ibuffer to suit each warp’s exploitable Instruction window
depth.

The following analysis on the reconfiguration metrics is performed on the basis of kernel
launch statistics instead of cumulative kernel statistics, normalized to the per-launch max-
imum and only regarding active warp slots. For instance, given a warp with 8 active warp
slots, only those are used in further calculations and all the relative metrics are normalized
to the highest value among them, as depicted in Figure 5.20 . As described in section, upon
instruction Issue and CU allocation, the Register Alias Table (indexed by register ID and warp
ID, containing a Collector Unit ID) is read once for each source operand. It is also updated
so that the destination register points to the allocated CU [14]. Total RAT entries essentially
represent the average destination registers per instruction for each warp. Since these regis-
ters are source operands for subsequent dependent instructions, total RAT entries provide a
vague measure of per-warp average instruction dependencies, therefore, a reverse measure
of the exploitable ILP of a warp. The per-warp standard deviation of the total RAT entries

vector across launches is depicted in Figure 5.22b.

Used RAT entries reconfiguration metric

Since a destination register may be used multiple times as a source operand and given that
dependent instructions may present far down the instruction stream, essentially making the
dependency irrelevant for the Instruction Windows we examine, used RAT entries provide a
more accurate reverse measure of exploitable ILP. Each time a CU ID is read from the RAT
for a source operand, a per-warp used RAT entries counter is incremented. Thus, both of
the above concerns are addressed. Used RAT entries are roughly the equivalent of Score-
board collisions in the baseline in-order model. It could be argued that used RAT entries
should be used to prioritize warps, since RAT entry usage equates to less high-latency Reg-
ister File reads and traffic. However, in the presence of used RAT entries, more instructions
concurrently occupy the CUs, preventing other independent instructions from entering and
potentially being immediately scheduled for Dispatch. As seen in Figure 5.13b, a significant
fraction of kernels completely occupy the CUs for their whole execution. Therefore utiliz-
ing used RAT entries to de-prioritize warps, provides a smooth instruction scheduling to the
backend for warps with independent instructions. Warps with high dependencies can occupy
the CUs when the former have exhausted their IWindow or encountered Icache stalls. RAT
entry usage widely varies across launches, as seen in Figure 5.22a, where kernel launches
are sorted by their maximum percentile RAT entry usage across all their active warps. In
Figure 5.23a, the standard deviation of normalized RAT entry usage is provided. Figure 5.21a
and Figure 5.21b depict the per-kernel-launch and per-warp total RAT entries and RAT entry
usage respectively, sorted by the standard deviations provided above, showing significant

variance.

5.7. Accommodating LOOG on the front-end of NVIDIA Quadro GV100 125

Warp readiness reconfiguration metric

In the Fetch stage, a warp is considered ready (eligible for instruction Fetch) if it has not
terminated, has no pending Icache misses and all its IBuffer entries are empty. Hence, warp
readiness varies among warps in the presence of control hazards due to loops, causing more
Icache hits (the only significant source of Icache hits, save for subsequent instructions on
the same cache line, since there is no prefetching) and due to Issue scheduling preference
of the respective warps, causing frequent emptying of their IBuffer entries. We collect the
per-launch and per-warp statistics regarding warp readiness. Across launches, the standard
deviation of (normalized to per-launch max) warp readiness is depicted in Figure 5.23. Ev-
idently, the distribution for this metric is wider than both total RAT entries and used RAT
entries, with more kernel launches exhibiting high variance among their active warps. This
potentially explains the superior results provided below by this metric, by prioritizing less
warps more heavily. Another factor that explains said results is the more prominent "snow-
ball effect” by reconfiguring with this metric. When a warp is prioritized for Issue, its readi-
ness metric is increased, providing even higher priority to it and so on. This happens to a

greater extent than with the above metrics.

Split reconfiguration policy

When using the Split policy shown in Equation 5.4, available Ibuffer entries are split fairly
among warps. The first line in Equation 5.4 corresponds to reverse reconfiguration metrics
such as used RAT entries, while the second line corresponds to direct reconfiguration metrics,

such as warp readiness.

1
1+ reverse_reconf_metric

warp_score =
warp_score = recon f_metric

total_score = E warp_score(warp)
warpE Ready_Warps

warp_entry_pool = Z current_entries(warp) (5.4)

warpE Ready_Warps
, warp_score
entries(warp) = floor(warp_entry_pool - ——————
total_score

remaining_entries = warp_entry_pool — Z entries(warp)

warpe Ready_Warps

warp_score _ 07’(warp_score

remaining_score(warp) =

)

total_score total_score

Remaining entries are distributed among warps based on remaining_score.

126 Chapter 5. Implementation Details

Winner-take-all reconfiguration policy

Winner-take-all policy greedily redistributes available entries among warps with the high-
est scores. Warp scores, total scores and the warp entry pool is calculated as in Equation

5.4.Redistribution of entries takes place as described in Algorithm 4.

ALGORITHM 4
Winner-take-all IBuffer reconfiguration policy

sort_warps_by_score()

while warp_entry_pool do
warp = get_next_warp()
entries[warp] = min(max_entries_per_warp, warp_entry_pool)
warp_entry_pool -= entries[warp]

end while

IBuffer reconfiguration results

The results provided by combining the two reconfiguration policies with the two metrics,
across kernels are depicted in Figure 5.24a, Figures 5.24b, 5.24c and 5.24d. Split policy using
a warp readiness metric provides significant results, with an average 1.8% speedup over all
kernels and 4.4% for LOOG-sensitive kernels, up to 10.2%.

64 warps

r
L J

20 |12 |12 |12 | 8 6 4 0

+++++

T
o

Active warps

1 |06]06|06|04]|03]02] O

F 3

FIGURE 5.20: Data visualization provided in Figure 5.21

5.8 Out-Of-Order reconfiguration

5.8.1 Observations leading to Collector Unit reconfiguration

The analysis presented in Section 5.3 regarding exploitable ILP, provided us with insight into
kernel categories characterized by diverse features (compute-intensive kernels, cache-bound
kernels with separate Data load and compute phases) whose ILP can be leveraged to yield sig-
nificant speedup with LOOG. Furthermore, the examination of the significant performance

5.8. Out-Of-Order reconfiguration 127

RAT entries normalized to max 1.0 RAT entries used 10
0.8 0.8
0.6 0.6
))
T T
= =
2 0a 2 0.4
-0.2 -0.2
Warps Warps
(A) RAT entries total (B) RAT entries used

F1GURE 5.21: RAT entries and used RAT entries normalized to the per-kernel
maximum across warps, as seen in Figure 5.20

Maximum RAT entry usage across warps per kernel Standard Deviation of total RAT entries, normalized to max

100% 160 4

140 A

@
=3
kS

-

1¥]

=]

100

o
=]
&

o
=3

§
o
=

E

| el

Number of kernel launches

Maximum RAT entry usage
8

N
-
#

™
=]

%

0.0 0.1 2 0.3 0.4

o
Kernels standard Deviation

(a) Maximum RAT entry usage among warps (B) Per-launch std of per-warp total RAT en-
per kernel, with kernels sorted tries normalized to launch maximum

FIGURE 5.22: Measures of total and used RAT entries deviation

scaling as well as Area and Power overhead scaling in Section 5.6.3 lead to the realization that
optimizing performance or figures of merit accounting for Power dissipation (PDP, EDP) re-
quires highly varying Collector Unit configurations for different kernels. Specifically, scaling
the CUs produces enough of a performance increase for some workloads (LOOG-sensitive)
that justifies the power and area overhead of the largest configurations, while for others, no
LOOG configuration provides a big enough speedup to justify the overheads.

As depicted in Figure 5.15c in section Section 5.6.3 , IPC is saturated after a certain point
(slightly varying across workloads) with increasing CU numbers, while performance and
power continue to increase linearly with the CU - RF crossbar outputs. The performance im-
provement distribution is anomalous, with the subset of LOOG-sensitive kernels improving
greatly on LOOG. LOOG improvements from baseline for different percentiles of saturated

improvement are more accurately presented in Table 5.12

128

Chapter 5. Implementation Details

Standard Deviation of used RAT entries, normalized to max Standard Deviation of warp readiness, normalized to max
200

175

= =
I~] o
] =]

Number of kernel launches
- 15
& 8

Number of kernel launches

g

N
a

o

01 02 03 0.4 0.0 01 0.2 03 0.4 0.5
Standard Deviation Standard Deviation
(a) Used RAT entries (B) Warp readiness

FIGURE 5.23: Per-warp STD of reconfiguration metrics normalized to maximum,
across kernel launches

Ibuffer reconfiguration, split, used RAT entries Ibuffer reconfiguration, split, warp readiness
20.0 1
17.5 1 201
15.0 4
15 1
o 1257 P
@ @
£ 10.0 £
¢ 9 10+
7.5 -
5.0 5
2.5 4
0.0 - 0
-1% 0% 1% 2% 3% -2% 0% 2% 4% 6% 8% 10%
IPC improvement IPC improvement
(a) Split policy and Used RAT entries metric (B) Split policy and Warp Readiness metric
Ibuffer reconfiguration, winner, used rat entries Ibuffer reconfiguration, winner, warp readiness
20 25
20
15
= 0
g 215
¢ 10 g
10
5
5
o B Emoyon n gl am w8 |]
0% 0% 1% 2% 2% 2% 0% 2% 4% 6%
IPC improvement IPC improvement

(c) Winner-Take-All policy and Used RAT entries (D) Winner-Take-All policy and Warp Readiness
metric metric

FIGURE 5.24: IPC improvement across Ibuffer reconfiguration metrics and poli-
cies

It naturally follows that the number of Collector Unit is a major potential axis of recon-

figuration, solely corresponding to the size of LOOG, since the bandwidth of frontend com-

ponents has been addressed in Section 5.7. As demonstrated in Section 5.7.1 , performance

5.8. Out-Of-Order reconfiguration 129

8 CUs 16_CUs 24 CUs 32_CUs 40_CUs 48 CUs 56_CUs 64_CUs

90th 55.39% 97.63% 121.77% 138.65% 146.71% 148.84% 148.85% 148.89%
80th 43.50% 71.17% 82.92% 89.10% 99.94% 104.97% 105.10% 105.40%
70th 27.65% 49.72% 58.13% 68.07% 76.13% 78.74% 79.66% 79.50%
60th 22.42% 34.69% 40.89% 46.32% 49.84% 49.12% 49.31% 49.41%
50th 17.32% 29.35% 31.58% 32.18% 33.26% 33.39% 32.79% 32.77%
AVG 2250% 40.32% 49.15% 55.24% 59.44% 60.79% 60.96% 60.93%

TABLE 5.12: IPC increase across CU configurations for saturated LOOG im-
provement percentiles

gain by scaling the decoder throughput is saturated and as examined in Section 5.7.3 , there is
significant potential for performance improvement when reconfiguring Ibuffer entries. How-
ever, the most significant performance improvement in LOOG comes from increasing the
number of Collector Units, as presented in Section 5.6.3 . Given that in LOOG, CUs act as
the equivalent of Reservation Stations in the Tomasulo algorithm, an increasing number of
instructions concurrently occupying CUs equates to greater reordering potential as well as
Register File reads avoided, as said instructions have their source operands filled in one cycle
by listening to a common data bus for instructions writing on the respective registers. In this
section, it is crucial to determine the aforementioned spectrum of optimal CU configuration
for each workload based on figures of merit, that will potentially allow us to exclude parts
of the design space that are optimal for no launches at all. Given these configurations, the
maximum benefit in terms of Energy efficiency optimization will be provided with minimal

performance deterioration from the biggest scale-up LOOG configurations.

5.8.2 Behavior of individual kernel launches with LOOG

Reconfiguring the architecture by power gating poses significant energy and delay (wake-up
time) overheads that can be traded off. In order to introduce minimal energy overheads, we
need to amortize them over long delays, potentially in the order of microseconds. With a
boost clock of 1530 MHz in Quadro GV100 [49] , this equates to several thousands of cycles
in the SM clock domain. In [108], the CUDA API call latencies such as cudaMemcpy() and
cudaLaunch() are determined and it is proven that they all surpass 1 microsecond, hence,
offloading a kernel to the GPU lasts at least several microseconds. Therefore, as individual
kernel launches provide the finest granularity we can opt for in terms of reconfiguration
without introducing performance degradation during execution, it is imperative to exam-
ine kernel behavior regarding launches (calls/invocations). "Kernel launches" will be used
interchangeably with "kernel invocations" in the rest of this thesis.

Regarding the number of launches for the kernels under examination, in Table 3.1 42% of
the kernels had one launch in total. The distribution of number of launches for the rest of the

kernels is depicted in Figure 5.26. Note that said percentages may slightly vary as workloads

130 Chapter 5. Implementation Details

SFU warp instructions per kernel invocations SP warp instructions per kernel invocations
. []
7% . (]
70% | °
6% | e
¢]
w il
.5 5% s £ 60% e g, ®
= = ° 0 ®
2a% | s I ° s. ¢
g g o ! .
S3% | ® o 50% |8 .
I H o (] .
. . '
2% | o B
18 . 40% | o
1% R S
® L]
0% |8 o 0000oee . . b
25 50 75 100 125 150 25 50 7.5 10.0 125 15.0
Number of invocations Number of invocations
(a) Dynamic SFU instructions (B) Dynamic SP instructions
ShMem warp instructions per kernel invocations Saturated AIPC per kernel invocations
o,
Sk . 250% [
L[]
2 go% * . 200%
2 0% |, ? < 150% | *
- .
5 g . 3 :
£ * £ °
T 40% | e = 100%
E g L]]
3 . i
T L]
5 20% |e . 50% o
o a N
. L l] LN & L
L] L e []
0% |8 e eevesee 0% ":oo... .
25 50 7.5 10.0 125 15.0 25 50 7.5 10.0 125 15.0
Number of invocations Number of invocations
(c) Dynamic shared memory instructions (p) Saturated DeltalPC - invocations

FIGURE 5.25: Various types of dynamic instructions overall, associated with
the number of invocations of their kernel. High launch kernels are memory-
intensive

run across different configurations introduced different simulation overheads, prohibiting
statistics collection among some of them and restricting our analysis to those that provided
results for all the configurations.

It is worth noting, that as previously observed, kernels that are invoked multiple times
tend to be significantly less LOOG-sensitive. This correlation was thought to be explained in
theory by the assumption that more frequently invoked kernels tend to have less instructions
and execute for less cycles, therefore failing to fill up the caches and consequently stalling
more and not improving by OOO execution, as explained in Section 5.3 . This assumption
proved to be false and it was determined that multi-launch kernels tend to have more mem-
ory instructions overall, therefore longer latency operations on average, making them less
LOOG-sensitive. As depicted in Figure 5.25b, 5.25¢ and 5.25a, there is a clear correlation
between SFU instructions and Number of invocations. The vast majority of kernels with a
significant number of SFU instructions overall are invoked just once. An even stronger neg-

ative correlation exists between SP instructions and number of invocations. Shared memory

5.8. Out-Of-Order reconfiguration 131

Number of launches per kernel

14 4
12 4

10 4

i
A
4‘li
2_
L=

0 20 40 60 80 100 120 140
Number of kernel launches

Frequency per device function
o

FIGURE 5.26: Number of invocations (launches) across all kernels examined

instructions naturally increase with more kernel launches, given the mutually exclusive re-
lationship between most types of memory operations and other pipelines. Evidently, multi-
launch kernels tend to be memory intensive contrary to single-launch kernels whose vast
majority tends to be compute intensive and specifically highly utilize the SFU pipeline. An-
other related explanation is the strong correlation exhibited between constant memory pa-
rameter memory warp instructions and constant memory operations. As seen in Figure 5.27b,
constant memory accesses of our workloads are mostly correlated to parameter memory in-
structions. Indeed, this is due to low total runtimes. Saturated IPC improvement in LOOG
is strongly negatively correlated with (Figure 5.27a) with constant memory instructions as
explained above, given that reordering parameter memory operations does not provide any
performance gains. Low launch runtime, therefore, is a significant consideration when profil-
ing kernels according to LOOG improvement, as the cost of having high parameter memory
operations overall is not amortized over the whole execution below certain runtimes. This is
manifested further in section, where it is proven that total launch runtime is a highly signif-
icant feature for predicting saturated LOOG IPC improvement from hardware performance
counters.

This skewed distribution produces different results for kernels and launches in all levels of
the analysis. Results will mainly be presented across cumulative kernel statistics or individual
kernel launch statistics and across LOOG-sensitivity classes. Plots regarding percentiles of a
given metric for the set of workloads are always per-kernel, as percentiles would be heavily
skewed towards multi-launch kernels.

132 Chapter 5. Implementation Details

L1 Constant accesses - LOOG IPC improvement L1 Consant accesses - Parameter memory instructions

251 79 30 .
‘GEJ 25
£ 20 :‘ﬂ
g ° & . ¢
o @ 20
a15{ e § ."
g L 4 Y **
¢ . S o~
.’

o ° o o - o

g | ® S ’
S5l ® e * — .
% ['3 ° ’ s [/
wv n..:; N L ™ :r/'

00 '—A A .=' =" 0% o’ o e o ¢

0 5 10 15 20 25 30 [} 5 10 15 20 25 30
L1 Constant accesses Parameter memory instructions

(a) Saturated IPC improvement in LOOG is (B) The majority of L1 constant accesses ser-
inversely proportional to L1C accesses vice parameter memory instructions

FIGURE 5.27: Saturated LOOG IPC improvement correlation with L1C and pa-
rameter memory accesses

5.8.3 Figures of merit used in our analysis

Defining the optimal reconfiguration is relative to the required figure of merit, representing
some sort of efficiency domain we need to optimize. Since performance improvement with
LOOG is asymptotically saturated for CU values less than 48 and totally saturated for greater
values, we do not define the optimal configuration based on performance as the maximum
available CUs, instead we use the saturated IPC improvement metric. Figures of merit taking

power into account as well are used along with it:

« Saturated 98% IPC improvement
Considered to be optimized when the current configuration provides performance within
of an arbitrary 2% of the saturated improvement performance (maximum achievable

IPC improvement on the most scale-up LOOG configuration).

« Saturated 95% IPC improvement
The provided IPC should be within 5% of the maximum achievable IPC improvement.

+ Power-Delay Product
Equivalent to the total energy dissipation of the application.

« Energy-Delay Product
Equivalent to Power — Delay? Product, taking delay into greater account.

These are the metrics our reconfiguration model will be evaluated upon as well, relative to

their optimal values. We will often refer to them as "reconfiguration metrics".

5.8.4 Classifying the types of reconfiguration examined

In this subsection, we classify the types of reconfiguration our implementation provides by

three different characteristics. Generally, the optimal configurations are inferred and applied

5.8. Out-Of-Order reconfiguration 133

to the microarchitecture by a reconfiguration controller which receives input according to

its level of implementation and on a varying temporal granularity.

Based on the level of reconfiguration controller implementation

Software level Referring to the implementation of a software reconfiguration controller
that can even utilize launch-level execution information retrospectively to provide new

suitable configurations.

Hardware level Regarding the implementation of a hardware controller that can only uti-

lize runtime metrics from hardware counters of the current kernel launch.

Based on the input to the controller

Optimal reconfiguration When optimally reconfiguring the microarchitecture, it is as-
sumed that the most suitable configurations for each application and metric are known
in advance. This is provided by storing workload scalability characteristics based on
previous executions on a kernel-launch granularity and on all the available configu-
rations. Hence, only a software implementation of the controller can provide optimal

reconfiguration.

Runtime reconfiguration When reconfiguring during runtime, the only source of infor-
mation regarding application scalability are the values of hardware performance coun-
ters, that can be utilized at both levels of implementation.

Based on the temporal granularity of reconfiguration

Static / Whole-kernel reconfiguration Inwhole-kernel reconfiguration, it is hypothesized
that cumulative measures regarding scalability have been previously collected over all

of the kernel’s launches and used to profile the kernel.

Semi-dynamic / per-launch reconfiguration In semi-dynamic reconfiguration, the ker-
nel is profiled on a per-launch granularity and the microarchitecture is likewise recon-
figured. In the scope of this thesis, only optimal reconfiguration is examined with a

per-launch granularity.

First-launch reconfiguration In first-launch reconfiguration, the kernel is profiled based
on scalability measures collected on its first launch and the resulting optimal configu-

ration is applied to all its subsequent launches.

Regarding first-launch reconfiguration, it is noted that all kernel profiling with our model
presented in section 5.8.7 is done with hardware counters from the inorder configuration.
Profiling based on other initial configurations would require multiple models, unless the in-

order model with its optimal features and fitted coefficients can sufficiently predict optimal

134 Chapter 5. Implementation Details

r CPU Time GPU Time *
L 4]

for() {
T kernel func<<grid blockss=()

! Whole kernel First launch Semi-dynamic
reconfiguration reconfiguration reconfiguration

inorder KAL1
KiL1

K2L1

KaL1

FIGURE 5.28: Types of reconfiguration examined, varying in temporal granu-
larity

reconfigurations from counters produced by scale-up initial configurations, which remains
to be examined. In Figure 5.28, all reconfiguration schemes based on temporal granularity

are presented.

5.8.5 Optimal configurations

Optimal static reconfiguration (whole-kernel reconfiguration) assumes perfect knowledge of
the optimal configuration for all of the kernel’s launches cumulatively (given the reconfigu-
ration metric at hand) and applies it for its whole execution. Optimal launch reconfiguration
(equivalent to "Optimal semi-dynamic reconfiguration") refers to reconfiguring for all of the

kernel’s launches based on the optimal CU configuration in a per-launch granularity for the

5.8. Out-Of-Order reconfiguration 135

given metric. As already mentioned, the observation that the IPC increase is generally sat-
urated beyond 48 collector units sets the limit for OOO right-sizing, as processor area and
power continue to increase beyond that point. No kernels and scarce kernel invocations were
found to behave optimally beyond 48 collector units, therefore such designs are excluded
from our analysis. To produce optimal reconfiguration results it is crucial to determine the
per-kernel and per-launch configuration that optimizes the metric at hand, based on the met-
rics defined above. Determining the results of optimal reconfiguration sets the limit for any
actual reconfiguration methods we shall implement. In plots ?? and ?? , optimal configura-
tions are depicted for both LOOG-sensitive and LOOG-insensitive classes of kernels, across
all metrics. As expected, in Figure 5.29¢ it is seen that a higher percentage of the kernels rela-
tive to launches saturate at the highest of CU configurations. The aforementioned skewing of
optimal configurations for whole kernels towards bigger CU configurations is not observed
to as big a degree. It is apparent that for higher values of saturated OOO IPC, saturation often
tends to happen in smaller configurations. It is newly seen that most of the launches saturate
at 24 CUs, while optimization in inorder and small LOOG configurations is almost monopo-
lized by kernels. Therefore the average kernel tends to have a wider saturation distribution,
while the average launch saturates in medium configurations. As observed in Figure 5.29a,
virtually none of the LOOG-insensitive launches saturate in the baseline configuration and
none of the LOOG-sensitive launches saturate below 24 CUs. 36% of the LOOG-insensitive
launches saturate at 24 CUs and the median saturation value is 32 CUs. 72% of the LOOG-
sensitive launches saturate at 40 CUs, which is the median optimization value. In Figure 5.29c
it is seen that for LOOG-sensitive whole kernels, the median saturation value is 40CUs, while

for LOOG-insensitive kernels it is 32 CUs, the same as launches with a smoother distribution.

As was expected from the previous analysis, in Figure 5.29f it is seen that whole kernels
monopolize the highest scale-up CU configurations due to LOOG-sensitivity, but also the in-
order configuration, where 30.3% of kernels are optimized. Once again it is seen that launches
tend to occupy the center of the distribution, and be distributed smoothly, Contrarily, whole
kernels tend to have a smooth distribution only beyond the inorder threshold. Indeed, when
observing Figure 5.15b, it is clear that A Power from 8 CUs to 16 CUs is more than double
the transition from inorder to minimum LOOG. This creates a significant threshold when
configuring to minimum LOOG that is easily surpassed for bigger CU configurations. Since
LOOG-sensitive kernels are only defined by their speedup in the biggest scale-up LOOG
configuration, those that saturate slower with regards to CU scaling tend to optimize PDP in
smaller LOOG configurations, as seen in Figure 5.29b. The narrower distribution pointed out
for the saturation metric for launches compared to whole kernels, is seen for the PDP metric
as well in Figure 5.29d

The observations made earlier regarding the "improvement threshold" from inorder to

minimum LOOG do not apply to EDP, as factoring in delay to a greater degree eradicates

136

Chapter 5. Implementation Details

Opt

mal 000 reconfiguration for kernel launches, sat

Frequency

(a) sat98,launches, LOOG-sensitivity (B)

Opt

== 00G-sensitive
non LOOG-sensitive

inorder 8 CUs 16 CUs 24 CUs 32 CUs 40_CUs 48_CUs
Number of CUs/RS

imal OO0 reconfiguration for kernels, saturation

=%

o
2
5% o
& >
c g
o
g 8
o 3
o g
il o

g

0%

== LOOG-sensitive
non LOOG-sensitive

inorder 8 CUs 16 CUs 24 CUs 32 CUs 40_CUs 48 CUs
Number of CUs/RS

Optimal 00O reconfiguration for kernels, PDP

Frequency

= LOOG-sensitive
non LOOG-sensitive

opt

v | ™8 LOOG-sensitive

inorder & CUs 16_CUs 24 CUs 32_CUs 40_CUs 48_CUs
Number of CUs/RS

PDP, kernels, LOOG-sensitivity

mal 000 reconfiguration for kernel launches, PDP

non LOOG-sensitive

inorder 8§ CUs 16_CUs 24 CUs 32_CUs 40_CUs 48_CUs
Number of CUs/RS

(c) sat98, kernels, LOOG-sensitivity (p) PDP, launches, LOOG-sensitivity

Optimal reconfiguration for kernels and launches, PDP

Optimal reconfiguration for kernels and launches, saturation W lemels
= = kernels e kernel_launches
kernel_launches
. =
5
B
> z
& 5
o 3
S S
g 2
LI‘: 1% w
o
o
B
s

inorder 8 CUs 16_CUs 24 CUs 32 CUs 40_CUs 48 _CUs
Number of CUs/RS

inorder 8 CUs 16_CUs 24 CUs 32_CUs 40_CUs 48_CUs
Number of CUs/RS

(E) sat98, kernels and launches () PDP, kernels and launches

Optimal 00O reconfiguration fol

r kernel launches, EDP

= LOOG-sensitive
non LOOG-sensitive

L

Frequency
§

¥

Frequency

inorder 8.CUs 16.CUs 24_CUs 32_CUs 40_CUs 48 CUs

Optimal 00O reconfiguration for kernels, EDP

=N LOOG-sensitive
non LOOG-sensitive

inorder 8 CUs 16 CUs 24 CUs 32.CUs 40 CUs 48 CUs
Number of CUs/RS

Opt

| kemmels
kernel_launches

E
e

>

v

[=4

7]

g

o

[

mal reconfiguration for kernels and launches, EDP

inorder 8 CUs 16 CUs 24 CUs 32 CUs 40_CUs 48 CUs
Number of CUs/RS

Number of CUs/RS

(c) EDP, launches, LOOG-sens

(1) EDP, kernels and launches

(1) EDP, kernels, LOOG-sens

FIGURE 5.29: Optimal CU configurations across kernels or launches, reconfigu-
ration metrics and LOOG-sensitivity classes

5.8. Out-Of-Order reconfiguration 137

it. Whole kernels and launches are evenly distributed across configurations, with the me-
dian optimal value for both being 24 CUs, as seen in Figure 5.29i, while LOOG-sensitive
kernel distribution is zero up to 16 CUs and LOOG-insensitive whole kernel distribution is
uniform in low configurations, as depicted in Figure 5.29h. In Figure 5.29g, it is apparent
that LOOG-sensitive launches are heavily biased towards 40 CUs, while the median value for
LOOG-insensitive launches is 24 CUs.

The above observations are summarized in Table 5.13:

Values | 98% saturation \ PDP \ EDP
LOOG-sensitive
min 24 16 24
max 48 48 48
median 40 32 40
LOOG-insensitive
min inorder inorder | inorder
max 48 48 48
median 32 16 16

TaBLE 5.13: Distribution parameters for optimal configurations based on the
provided metrics across kernels

Presenting the respective kernel launch distribution table would be superfluous as the
launch distribution limits are identical to whole kernels and medians are skewed. Having per-
formed optimal static reconfiguration on all 100 kernels tested, based on all the optimization
metrics defined, we analyze the average delay improvement and energy dissipation change
both for single-launch and multi-launch kernels. Plots 5.31a and 5.31 clearly depict the ob-
servation that multi-launch kernels tend to not be LOOG-sensitive. Static reconfiguration
average Delay and Energy similarly differs for single- and multi-launch kernel classes across
all metrics , manifesting this inclination. It is further observed that all metrics yield similar
results, except 98% saturation which is the most strictest performance metric, yielding the
top performance improvement at -25% Delay for multiple-launch kernels and -31% for single
launch kernels and the lowest Energy improvement at -19.4% for single launch kernels and
-13.5% for multiple-launch kernels. Evidently, the less LOOG-sensitive, on average, multi-
launch kernels are better suited in smaller CU configurations but the single launch kernels
improve enough in higher configurations, to offset the power overhead to negative with more
significant performance gains. The highest energy improvement is, as expected, provided by

the PDP metric at -22.3% for single launch and -16.3% for multiple-launch kernels.

Single launch kernel optimization of PDP,EDP,95% saturation

Examining the behavior of single-launch kernels more closely, we collect statistics on de-

lay deterioration for the optimization of all the other metrics, when comparing to the most

138 Chapter 5. Implementation Details

LOOG AIPC from baseline

200%

00%

+ L]

H '
L}
L]
+
100%
0% ——

. v v v v . v . v
inorder B_CUs 16_CUs W CUs 32CUs 40_CUs 48 CUs 56 _CUs 6 _CUs
Reconfiguration metric

AIPC

F1GURE 5.30: LOOG DeltalPC from the baseline (inorder) microarchitecture

strict performance metric, 98% IPC saturation. Since single launch kernels are biased towards
LOOG-sensitivity, we expect optimization of power metrics to frequently coincide with IPC
saturation. As seen in Figure 5.32a, optimizing for the other metrics, causes an expected
slight deterioration in delay compared to 98%sat. A 3.4% deterioration is observed for both
95% saturation and PDP metrics, while a 1.4% deterioration is observed for EDP. It is worth
noting that in both the distributions factoring in power there are some outliers not seen in
the saturation distribution, due to LOOG-insensitive kernels that do not gain enough of a
speed-up, and occupy smaller configurations to optimize power. As for the power delta, in
Figure 5.32 we observe that an average - 1.1%, -1.4% and -0.9% energy delta is produced by the
95% IPC saturation, PDP and EDP metrics respectively. The above positive delay deltas and
negative delay deltas are produced by the smaller LOOG configurations kernels are forced
to occupy when optimizing metrics other than top IPC saturation. Optimal configurations
for outliers of these distributions are in Table 5.14. As expected, these kernels do not gain a
sufficient OOO performance increase in order to minimize their PDP in any LOOG configu-
ration. Optimally configuring for them, comes with a mediocre delay overhead of less than

18% and their energy overhead is avoided.

Single launch kernels optimal reconfiguration

Optimally reconfiguring for single launch kernels based on optimization of all of the metrics
defined, we receive results for mean delay improvement and mean energy efficiency across
all kernels and LOOG-sensitivity classes in Table 5.15.

5.8. Out-Of-Order reconfiguration 139

o Cumulative kernel ADelay per launch type o Cumulative kernel AEnergy per launch type
-5%
-5%
-10%
e 5 -10%
o]
9 5
—=20%
=15%
—25%
—20%
_30% B Single launch kernels B Single launch kernels
Multiple launch kernels Multiple launch kernels
95% sat 98% sat PDP EDP 95% sat 98% sat PDP EDP
Reconfiguration metric Reconfiguration metric
(a) Delay improvement (B) Energy improvement

Ficure 5.31: Whole kernel (static) reconfiguration improvement per kernel
type regarding launches

98% Saturation PDP EDP 95% Saturation
testJoin_4 48 CUs inorder 48 CUs 32 _CUs
testJoin_3 48 CUs inorder inorder 40 _CUs
lonestar-bfs-wlc_1 48 CUs inorder 16 _CUs 24 CUs
lonestar-bfs-atomic_1 32_CUs inorder 32 CUs 24 CUs
lonestar-bfs-wlc_2 40_CUs inorder inorder inorder
testJoin_2 48 CUs inorder inorder inorder
lonestar-sssp_1 40_CUs inorder 24 CUs 24 CUs
polybench-gramschmidt 2 40_CUs inorder inorder 40_CUs
lonestar-bfs-wlw_2 48 CUs inorder 16 _CUs 32 _CUs

TABLE 5.14: Outliers of the distributions in Figures 5.32a and 5.32 that optimize
energy efficiency in the inorder configuration

ADelay from IPC Saturation, single launch kernels AEnergy from IPC Saturation, single launch kernels

18% '
0%
])
15% +
-2%
12%
-5%
10%
> > _a% +
k) ! o] +
[[
2 8% 7 * 5 -10%
+ 4 + +
+
% 4 -12%
] -15% + +
2% 1
. .)
-18%
0% 4 * + +
95% IPC Saturation POP EDP 95% IPC Saturation PDP EDP
Reconfiguration metric Reconfiguration metric

(a) Delay overhead from 98% IPC satu- (B) Energy improvement from 98% IPC
ration saturation

FIGURE 5.32: Energy improvement and Delay deterioration when optimizing
metrics other than 98% IPC saturation

140 Chapter 5. Implementation Details

95% sat | 98% sat | PDP | EDP
Delay
Total -29.4% | -30.1% | -28.2% | -30%
LOOG-sensitive | -59.8% | -60% -60% -60%
Energy
Total -20% -19% -21% -20%
LOOG-sensitive | -53% -52.9% | -52.8% | -52.8%

TaBLE 5.15: Single launch optimal reconfiguration results relative to baseline
across metrics and LOOG-sensitivity classes

It is noted that as seen in the Energy distributions in Figure 5.33c, apart from the expected
PDP optimization, a set of kernels does not gain a significant enough speedup in order to
offset the power overhead of bigger LOOG configurations. These kernels represent 25% for
the 95% saturation and EDP metrics, and 27% for the 98% saturation metric. As seen in Figure
5.33d, all LOOG-sensitive kernels reduce Energy dissipation by at least 38% when optimally

configured.

Multiple launch kernels

In this subsection, we determine whether optimally profiling a multi-launch kernel based
on cumulative characteristics on its whole execution is sufficient for optimally reconfiguring
for all of its launches individually. Stated differently, we investigate the inter-kernel-launch
scalability behavior consistency with LOOG and compare the optimal whole kernel recon-
figuration to the optimal semi-dynamic reconfiguration seen in Figure 5.28.

In order to evaluate static reconfiguration schemes, it is imperative to examine the po-
tential gain from optimal semi-dynamic reconfiguration. Delay and Energy statistics were
collected on this basis and compared to the static reconfiguration optimal results.

The median value for kernel launches of multi-launch kernels is 7. The relevant statistics
were analyzed for two groups of multi-launch kernels, above and below that threshold, to
determine compare the improvement deltas on a both a coarser- and finer-grain reconfigura-
tion scheme. As seen in Figures 5.34a and 5.34b, the distribution averages of deltas for delay
and energy when configuring on a per-launch basis and using the appropriate metric (IPC
saturation for delay and PDP for energy) do not differ significantly from static reconfigura-
tion. A -0.7% and a - 1.1% delay is provided for multi-launch kernels with less than 7 launches
and multi-launch kernels with more than 7 launches, on average, respectively. A - 0.8% and a
-0.9% energy overhead is avoided. Overheads of optimal static reconfiguration compared to
optimal semi-dynamic reconfiguration for the LOOG-sensitivity classes do not significantly
differ and are not plotted. A reason for this is the tendency towards LOOG-insensitivity for
multi-launch kernels, and another is asymptotic delay behavior on scale-up configurations,
as well as declining power ratios, making a one-off optimal configuration error less signif-

icant in scale-up LOOG. Apart from a few outliers with an exaggerated amount of kernel

5.8. Out-Of-Order reconfiguration 141

ADelay from baseline, 1 launch kernels ADelay from baseline, 1 launch LOOG-sensitive kernels
0% 0%
=10% =10%
-20% -20%
-30% -30%
> >
i i
§ —-40% § —40%
-50% -50%
—60% —60%
—70% -70%
-80% -80%
95% sat 98% sat POP EDP 95% sat 98% sat POP EDP
Reconfiguration metric Reconfiguration metric
(a) Delay, generic kernels (B) Delay, LOOG-sensitive kernels
AEnergy from baseline, 1 launch kernels AEnergy from baseline, 1 launch LOOG-sensitive kernels
40% 40%
20% 20%
0% 4 0%
3 —-20% - 5 -20%
o w
f=4 f=4
w wl
< -40% o < -40%
-60% -60%
-80% 4 -80%
-100% -100%
95% sat 98% sat POP EDP 95% sat 98% sat PDP EDP
Reconfiguration metric Reconfiguration metric
(c) Energy, generic kernels (D) Energy, LOOG-sensitive kernels

FIGURE 5.33: Single launch kernels optimal reconfiguration Delay and Energy
improvement for generic and LOOG-sensitive kernels across reconfiguration
metrics

launches seen in Table 5.16 , whose inputs and parameters possibly change over time, results
are alike for the two groups based on number of launches. Evidently, even a small number of
invocations is enough for the error due to imperfect reconfiguration to be completely amor-
tized for most kernels. As expected, the distribution medians of energy and delay difference
are slightly greater for kernels with more than 7 launches, owing to the fact that kernels with
very few launches do not benefit as much from fine grain reconfiguration. It is also evident
that simplifying the reconfiguration scheme by using cumulative kernel metrics comes with

a mostly negligible overhead of 1% that only becomes significant in fringe cases.

Benchmark suite | Name Description Characteristics Kernels | Launches | deltaDelay | deltaEnergy
Rodinia-3.1 NW Sequence alignment | Compute intensive | 1 104 -2.4% -4.3%
Rodinia-3.1 CFD Fluid Dynamics Compute intensive | 3 15 -2% -3.5%
Polybench 3DConvolution | 3D filtering Compute & BW 1 32 -1.8% -3%

SHOC Spmv Sparse Vector Mul Sparse lin Algebra | 1 129 -2.1% -4.1%
SHOC Scan Parallel Scan Memory BW 3 45 -1.8% -3.1%

TaBLE 5.16: Multi-launch kernels with inconsistent OOO scalability behavior
among launches

142 Chapter 5. Implementation Details

ADelay on per-launch optimal reconfiguration AEnergy on per-launch optimal reconfiguration

g . Q)

-4%
5% "

Less than 7 launches Mere than 7 launches Less than 7 launches Mere than 7 launches

1% n

(a) Delay (B) Energy

FIGURE 5.34: Per-launch (semi-dynamic) optimal reconfiguration Delay and En-
ergy improvement compared to optimal static reconfiguration. This finer gran-
ularity is not worthwhile

Considering these results, it is sensible to examine whether optimally profiling the first
launch provides a decently suited configuration for the rest of the kernel’s execution. As
depicted in Figure 5.35a, a 2.6% and a 3.9% average delay overhead is introduced for multi-
launch kernels with less than 7 launches and more than 7 launches respectively, when ap-
plying first-launch optimal reconfiguration compared to optimal static reconfiguration. The
respective energy overheads are 1.2% and 2.6%, as seen in Figure 5.35b. This motivates the
implementation of a hardware reconfiguration controller that profiles the first launch of a
kernel regarding OOO scalability and applies the configuration best suited to it, to the rest

of its execution. This implementation is presented in Section 5.8.6.

5.8.6 Predicting optimal configurations at runtime

As explained in Section 5.8.2 and seen in Figure 5.28 , kernel launches represent the finest
granularity for microarchitecture reconfiguration that does not impose significant delay over-
heads, as reconfiguration can happen in Idle periods of the GPU between launches. As out-
lined in Section 5.6.3, optimal configurations for each application based on our defined met-

rics (IPC saturation, PDP, EDP) essentially depend on two application characteristics:

« Application OOO scalability, essentially measured by its saturated IPC improvement
on LOOG.

« Rate of performance saturation, referring to the scale-up LOOG configuration beyond
which virtually no performance improvement is obtained. Such varying rates can be

seen in Figures 5.2%¢, 5.29¢ and 5.29a.

Considering that optimal static (whole-kernel) reconfiguration and optimal first-launch re-

configuration closely approximate optimal semi-dynamic reconfiguration (as seen in Figures

5.8. Out-Of-Order reconfiguration 143

LDelay on first launch reconfiguration AEnergy on first launch reconfiguration
12% [
20%
10%
15% 8%
> 6%
& 10% =y
] a
o
% <> % v /\
5%
i 2%
= A
0% AL 0% *“/
2% 1
-5%
Less than 7 launches More than 7 launches Less than 7 launches More than 7 launches
(a) Delay overhead (B) Energy overhead

FI1GURE 5.35: First-launch optimal reconfiguration Delay and Energy overheads
compared to optimal static reconfiguration

5.34 and 5.35), we set out to implement a predictor that uses hardware performance counters
on runtime to output measures for both the above parameters and, thus, perform first-launch
reconfiguration. Each kernel’s first launch is initially run on the in-order configuration. The
aforementioned performance counters are collected throughout its execution. The hardware
reconfiguration controller is essentially a multivariate regressor fitted on these counters, that
predicts application behavior in scale-up configurations as explained in the rest of this sub-
section. It would be sensible to treat this problem as a classification problem, since the nature
of target variable is categorical (7 possible configurations). However by treating it as a re-
gression problem, we exclude the reconfiguration metric that should be taken into account in
categorization, requiring a separate model for each metric. We only factor it in after having
predicted scalability behavior. Moreover, the regressor is less error-prone due to the asymp-
totic nature of the target variable. This method exclusively concerns multiple-launch kernels,
but can be extended to single-launch kernels in the form of an online dynamic reconfigura-
tion controller. A meticulous reconfiguration overhead study would be required as well as

determining optimal sampling periods, switching control algorithms and break-even periods.

Predicting application OOO scalability

Multiple regression models were tested to predict saturated LOOG improvement (essentially
a measure of OOO scalability) from the metrics collected on all levels of workload charac-
terization. The cross validation RMSE scores for all the models fitted are plotted in Figure
5.36. Due to the non-linear correlations in the data, and its categorical aspect, Decision Tree
and Random Forest models provide the best fitting. Decision tree is selected due to ease of
implementation.

A linear regression model was initially tested, with its most important features depicted

in Figure 5.37. Features with negative coefficients are colored red. As extensively discussed

144 Chapter 5. Implementation Details

Cross validation RMSE for all regressors fitted for reconfiguration

Decision Tree Regressor
Random Forest Regressor
Gradient Boosting Regressor
Adaboost Regressor

K Neighbors Regressor
Lasso Regression

Ridge Regression

Linear Regression

0.

=]
(=]

0.05 0.10 0.15 0.20 0.25 0.30
FIGURE 5.36: Cross validation RMSE scores for all regressors fitted on the data

Relative significance of top statistics in multivariate regression for LOOG improvement

Cycles with fetch

Global memory accesses
Warp readiness

Memory dispatch stalls

L1 Data pending hits

=
o

0.2 0.4 0.6 0.8 jL]

FIGURE 5.37: Most important features for multivariate linear regression fitted
on the data

in Section 5.3, runtime statistics associated with memory accesses (Global accesses, MEM
dispatch stalls, L1 Data pending hits -requests for in-flight misses-) are negatively correlated
with speedup on LOOG configurations, while those signifying high instruction throughput
are positively correlated. Nevertheless, the Linear Regressor provided the worst results, as
seen in Figure 5.36. The correlation of the target variable to the Regressor’s most important
feature, seen in Figure 5.38 is hardly linear.

The train set comprised all 42 single-launch kernels as well as 28 multi-launch kernels
and the test set contained the remaining 40 multi-launch kernels. Fitting was performed on
cumulative whole-kernel statistics (averaged out over all launches for multi-launch kernels).
To avoid overfitting and due to the prohibitive size of the training data for cross-validation,
the model selected provided an RMSE within 5% of the median of 100 fittings (final RMSE of
0.12 and a MAPE of 27%).

Predicting performance improvement for intermediate LOOG configurations

In theory, we could fit a regression model for each intermediate configuration in the range
[8_CUs, 48_CUs] to predict the respective speedups. However, this is both impractical and
superfluous as is ascertained below. Motivated by the observation that normalized perfor-
mance improvement scaling with LOOG is similar among kernels, as seen in Figure 5.39 we

try to predict intermediate configuration performance improvement given the saturated IPC

5.8. Out-Of-Order reconfiguration 145

Saturated LOOG improvement - L1 Data pending hits
2.54

2.0

1.5 4

Saturated IPC improvement

]
101
Y ®
L]
05 -
. I
- & L™ o0 L
° e a °
00|88 %=;='!g % o s Pe b
0 1000 2000 3000 4000 5000

L1 Data pending hits

F1GURE 5.38: Correlation of L1 Data pending hits to saturated IPC improvement

improvement, and the mean normalized IPC improvement curve (dots depicted in Figure
5.39). Initially, predicting saturated IPC improvement (essentially IPC improvement on a 64
CU configuration) was thought to be enough in order to determine application scalability in
intermediate configurations. We use known values of the saturated improvement instead of
those predicted by the regressor, in order to assess the optimal attainable results. IPC im-
provement at the 64 CU configuration is set to the known saturation value. Intermediate
values are calculated by multiplying the mean normalized IPC improvement at each config-
uration with the saturation value. The results are depicted in Figure 5.40b. Evidently, the

errors are beyond acceptable margins for 8 CUs.

Predicting the rate of performance saturation

Considering that application scalability (and its corresponding saturated IPC improvement
measure) is not sufficient in order to predict intermediate configuration speedup for the
smaller LOOG configurations, we implement a second predictor, with IPC improvement at
the minimum LOOG configuration of 8 CUs as its target variable. Given the saturated IPC
improvement prediction, this second predictor essentially estimates the rate of performance
saturation for LOOG scaling. When the predicted speedup values at 8 CUs are low, saturation
is slower and vice versa. Speedups at intermediate configurations are calculated as described
before, using the mean speedup curve in the range of [8_CUs, 48_CUs]. Results are depicted
in Figure 5.40a.

5.8.7 Hardware reconfiguration controller design

The decision trees for the minimum LOOG IPC improvement prediction and saturated IPC

improvement prediction are depicted in Figures 5.41a and 5.41.

146 Chapter 5. Implementation Details

IPC distribution, normalized to max

100% 1

3 BO%%G 1
5+
£
o
2
T %1
@
M
r
E
5 40% 4
=
U
=5
0%
0%

inorder B CUs 16 CUs 24_CUs 32 CUs 40 CUs 43 CUs 56 CUs B4 CUs

CU size

FIGURE 5.39: Normalized IPC improvement curve and STD across kernels on
LOOG scaling-up

Performance counters utilized by the decision trees

Regarding the minimum LOOG IPC decision tree predictor in Figure 5.41a, the following

hardware performance counters resulted by fitting the model:

Reply network active cycles Leading to significantly diverging predicted IPC values, it
refers to the active cycles of the virtual Reply network implemented physically by the
interconnect seen in Figure 3.5. High values equate to memory traffic and therefore,

lesser speedups.

Warp occupancy Referring to the average number of active threads per warp in the scope
of this thesis. High values equate to low warp divergence and less control hazards,

improving speedup on LOOG.

RET commissions Dynamic instructions for returning from subroutines. Similarly equate

to control hazard stalls, preventing LOOG from providing significant acceleration.
Control hazard stalls Cause acceleration deterioration on LOOG as explained.

Total warp instructions Are directly correlated to the kernel’s runtime. As elaborated on
in Section 5.8.2, low kernel runtimes equate to worse speedups on LOOG due to the

dynamic instruction mix being occupied by parameter memory instructions.

In the saturated LOOG IPC improvement decision tree, the metrics below are utilized in

addition to the above:

5.8. Out-Of-Order reconfiguration 147

IPC distribution, normalized to max

120%

o
J
A

100% 4

o
Y]
o

o
w

o
=
=1

o
=]
]

o
=]
o

IPC normalized to max
g
Standard deviation for LOOG improvement curve

inorder B CUs 16 CUs 24 CUs 32 CUs 40 CUs 48 CUs 56_CUs 64 CUs inorder 8_CUs 16_CUs 24_CUs 32_CUs 40_CUs 48_CUs 56_CUs 64_CUs
CU size Number of CUs/RS

(a) STD of the IPC values predicted from the (B) Correlation of L1 Data pending hits to saturated IPC im-
controller across CU configurations provement

Total cycles Cause deterioration of LOOG acceleration as explained above.

GPU occupancy Essentially refers to the average dynamic warp occupancy while also ac-

counting for pipeline stalls. Identically affects the speedup.

L1D Accesses Is used to predict the highest of values. Equates to high memory accesses,

therefore a memory intensive kernel, which is negatively correlated with LOOG-sensitivity.

Scoreboard entries used Signify dependencies between instructions from the same stream
(at a depth of 1 in the baseline implementation), which are, by definition, negatively
correlated to ILP, and therefore speedup on LOOG.

The design of the hardware reconfiguration controller is depicted in Figure 5.42. As seen
in the above figure, the first kernel launch is executed in the inorder configuration. The
hardware performance counters input to the decision trees are collected. Threshold values
used by the decision trees remain constant and are hardcoded into them. For each Metric
- Hardcoded threshold value pair a comparator is needed in each of the two decision trees.
Each decision tree leaf corresponds to the Boole product of at most three comparisons. The
respective bitlines are fed to a ROM module containing the hardcoded output values, re-
placing the decoder in the typical implementation. The outputs of the decision trees are fed
to a multiplier predicting intermediate configuration values based on the hardcoded mean
IPC improvement curve. The result is multiplied with the estimated hardcoded max power
vector according to the reconfiguration input to the model. If IPC saturation is the selected
optimization metric, the predicted IPC vector is differentiated and compared with the 2% or
5% threshold at each stage. The CU value optimizing the metric is determined (minimum
for PDP, EDP, first negative value for IPC saturation) and for subsequent launches, the mi-
croarchitecture is reconfigured according to it. Output values for each decision tree of the

reconfiguration controller are presented in Table ??.

148

Chapter 5. Implementation Details

-
|
N
2 —',J
B e LR e
.
0+ :
1.00 iy 38.96
- Partition level
4 - ™ y
1 parallelism
i
24 P
G e ol
g o B 2.5
' - e
= , Lo~ &
" 002 2 Ostirated aIPC=3.96
Warp Occupancy urated
— 4 H
= 47 1
24 0 .
' — |
.ol Fareo
’t«?‘;.- . [e B
0 A SWESAadaae e g
0.04 10.21 46.64
%7 RET 8000 Control hazard
commissions Ta stalls
“1
i
j
24
i
1
s
0 k-"‘!”””””””””””I
0.000 4.116
Total warp 6

instructions

1

2.5 -
| .

OQtirated aipc=1.85
n=7

25

Y
| I X S

OQ:irated aipc=1.19
n=!

25+

[
Osgt\l'att‘d AIPC=0.71
n=20

25

SO P
OSEL\J'ELEG AIPC=0.21
n=3

25
I
050, 7sted aipc=0.08
n=1
25

-
0s0: i rated APC—0.24
n=

(a) Minimum LOOG IPC improvement (predicting the rate of performance saturation)

o4
:
223
s 0k
RPN i il
1
Reply Network
active cycles
gl
g2,
" Total
cycles

4 i
2
[AL L
0.0009 " 33683858
Scoreboard
entries
: 4 !
. S
< | L
5293 Tota] 612782 156 2473 97.28
GPU
cycles
= ; occupancy
612782 . i 4 ‘-'i
24 T L, L L
_—]
lor 24.56 32.00 l
0.0 3307
Warp L1D
occupancy . Accesses
a5
B
1.01 18.06

Request network
active cycles

1

Saturated BIPC=2.45

2
Lemetem

Saturated APC=0.87

saturated AIPC=0.51

2

Saturated AIFC=4.10

2 -

Saturated AIPC=181
n=s

Saturated AIPC=0.49
=6

(B) Saturated IPC improvement decision tree (predicting OOO scalability)

FiGURE 5.41: Fitted decision trees predicting LOOG performance on the most
scale-down (8 CUs) and the most scale-up (48 CUs) configuration

5.8. Out-Of-Order reconfiguration 149
/ \\ —Metric 1—|
—Metric 2—»
—ER
e nc
Launch 1 Vet
e ric G—»
in-order —Metric 7—>| 64_CU Decision Hardcoded IPC curve
figuration SRS 0 ™
CONTGUIAKION] — = e vi»
—Esiay
—hRal O W i
Performance —Hardcoded v 64 CU IPC
—Hardcoded v7-—#| I~ oredicti H
counters prediction Sty
ety
Warp instructions -4
Total cycles —Metric 1—» & CUIPC - i
——MMetric 2—» ™ predicti
Warp occupancy Motne & o prediction
L1D Accesses —Metric 4—»
Reply network active cycles Metnc >3
GPU occupancy —Mstric 7—» 8_CU Decision ¥
scoreboard entries - i
—Hardeoded v1-»] Tree Predicted IPC vector
Control hazards —nagggg Vg:
Partition level parallelism | ——Hardcoded v
BERE T _nggggg :gi BCU |16CU (24CU | 32CU (40C1 | 48CU (56CL | 64CL
—Hardecoded vE—
l\ _,/ —Hardcoded v7—»| l
Multiplier

-

—Optimization metric—

Hardcoded max power vector

4

—Optimization mefric—|

DIFF and compare if metric == IPC_saturation

—Optimization mefric—|

Optimize

cu
Reconfiguration

FIGURE 5.42: Design of the hardware reconfiguration controller

150 Chapter 5. Implementation Details

Predictor RMSE | MAPE Leaf values Test set mean | Test set 90th
8_CU regressor 0.08 21% 0.08 | 0.21 | 0.24 | 0.71 | 1.19 | 1.85 | 3.96 | - 0.18 0.57
64_CU regressor | 0.12 27% 0.23 1049 | 051|087 | 133|181 | 245 | 4.1 0.61 1.52

TaBLE 5.17: Errors and predicted IPC output values of the decision tree regres-
sors

5.8.8 Power gating reconfiguration overhead estimations

As briefly discussed in Section 5.8.2, inter-launch reconfiguration provides us with signif-
icant time windows in order to amortize the Power Gating sleep transistor wake-up time
overhead, thus reducing the associated energy dissipation. Since this window approaches
several microseconds, which a high-end value for fine-grain power gating, we may assume
that no interference with workload execution will take place even in the sem-dynamic per-
launch reconfigurable architecture and the energy overhead will be negligible. A 3.09% and
9.28% static and maximum dynamic power is respectively produced by Accelwattch using
the 23nm node technology configuration. As seen in Table 5.2, the actual node technology
is 12mnm, which according to [107], would double the subthreshold leakage and quadruple
subthreshold power, being the most significant component by an absolute factor of 81% over
total leakage power in our simulation. Therefore, in the Volta architecture, subthreshold
leakage power is expected to be about equal to maximum dynamic power. In Flicker [11], 3
pipeline stages over 4 lanes for a total of 12 fine-grain structures per core are dynamically
power gated, compared to 6 structures per core in our reconfigurable microarchitecture, that
can share the same virtual ground for respective structures across SMs due to workload ho-
mogeneity. Area overhead of the sleep transistors needed is overestimated at 2-6%, while a
90% reduction of static power id provided for an approximate 2% increase in dynamic power
(due to supply voltage levels increase to power the sleep transistors and the related decou-
pling capacitance). We, therefore, infer that power gating the LOOG-related structures can

be approximated by not accounting for them.

5.9 Speculating on other axes of reconfiguration

Motivated by the observations made in Section 5.3 regarding application diversity across dif-
ferent axes, we briefly speculate on the potential of a scalable reconfigurable architecture,
performing static reconfiguration with fine-grain power gating on the Execution Units and
Caches of the GPU. As described in Section 4.3, other power-aware scalable cores employ
fine-grain per-component DVFS to maximize performance and energy efficiency [10] as well
as unit-level clock or power gating to tailor the application to runtime demands regarding
OOO scalability [morph-core] or pipeline width (OOO and concurrency scalability)[11].
With respect to the GPU, Equalizer [44] also leverages DVEFS at a core/memory level gran-

ularity to suit the architecture to dynamic requirements, while Bahurupi [43] and Amoeba

5.9. Speculating on other axes of reconfiguration 151

[45] implement a core-fusion architecture to target bottlenecks regarding OOO scalability
and various other architectural bottlenecks (such as cache contention) respectively. To the
best of our knowledge, a reconfigurable architecture employing fine-grain power gating of
Execution Units as seen in Flicker [11] and caches has not been implemented on the GPU.
These structures were specifically selected upon discovering that they are a source of sig-
nificant workload diversity, as seen in Section 5.3 and pose impactful respective pipeline
bottlenecks, as seen in Section 5.2. In order to briefly speculate on the potential of such an
architecture, we collect runtime statistics with GPGPU-Sim across different Execution Unit
(EXU), cache and Collector Unit (CU) configurations, as well as area and maximum power
dissipation with Accelwattch.

5.9.1 Fine-grain Caches and Execution Units scaling

Similarly to our method in Section 5.6.3 , we first determine the Power and Area overheads
when scaling the respective structures as seen in Table 5.18. These values represent the
GPGPU-Sim configuration values corresponding to our modifications. When configuring
Accelwattch to obtain Power and Area overheads we linearly extrapolate upon them, as ex-
plained in Section 5.5. Note that the absolute values of the components used to configure
GPGPU-Sim and Accelwattch do not necessarily correspond to the actual Volta architecture

values, rather, they are fine-tuned to simulate its performance across various workloads.

Caches Scaling
Relative size | Unified L1D L1D banks L1 DCache | Shared mem | ICache Texture cache | Constant cache
0.5 64 2 16 48 64 64 32
1 128 4 32 96 128 128 64
2 256 8 64 192 256 256 128

EXU Scaling

Relative size | Pipeline width | EX/WB width | SP units DP units INT units | SFU units Tensor core units
0.5 2 4 2 2 2 2 2
1 4 8 4 4 4 4 4
2 8 16 8 8 8 8 8

TaBLE 5.18: Caches and Execution Units scaling configurations

In Figures 5.43a and 5.43b the Caches and Execution Units scaling overheads are dis-
played. Evidently, Execution Unit overheads are much more significant and all scaling is
approximately linear.

In Figure 5.44a, the average kernel performance increase with component scaling is dis-
played. Evidently, generic kernel speedup upon scaling the respective structures is minimal.
In Figures 5.45a and 5.45b the histograms of kernel speedup on the most scale-up configura-
tions tested (2x) are displayed. It is apparent that contrary to the negligible speedup obtained
for most kernels, a select few exhibit marked performance improvement. We define the class
of kernels exhibiting a speedup of at least 4.5% with cache scaling as Cache-bound (12 result-
ing kernels) and the class of kernels exhibiting a speedup of at least 20% with EXU scaling

as EXU-bound (10 resulting kernels). Kernels belonging to these classes are listed in Table

152 Chapter 5. Implementation Details

Caches scaling overheads EXU scaling overheads

30 4 —— Power 50% 1 —— Power
Area Area

30% -
20%

10% 4

Percentile overhead
§ r
Percentile overhead

0%

—29 -
—10% A

—20%

0.5 075 1 125 15 175 2 05 0.75 1 1.25 15 175 2
Relative structure size Relative structure size

(a) Caches scaling (B) EXU scaling

FIGURE 5.43: Power and Area overheads of scaling Caches and Execution Units

5.19 and the overlap among them and the LOOG-sensitive class is depicted in Table 5.20.
Evidently, half of the EXU-bound kernels are LOOG-sensitive compared to a quarter of the
Cache-bound kernels. This is expected since the EXU-bound kernels are by definition com-
pute intensive, while the LOOG-sensitive cache-bound kernels belong in the Cache-bound,
high ILP cluster seen in Figure 5.11. Kernels that belong to both the EXU-bound and Cache-
bound classes, are all produced by the lonestar-mst benchmark. They also belong to the
Cache-bound, high ILP cluster, which is in line with our analysis in Section ??. Since this
cluster contains applications that comprise separate high hit-rate cache access phases and
compute phases, it is expectedly accelerated by scaling both structures. The speedup of the
highly accelerated outliers seen in Figures 5.45a and 5.45b is plotted in Figure 5.44b. Evi-
dently, performance increase for these kernels is not saturated even when doubling the size
of relevant components, contrary to generic kernels in Figure 5.44a which seem to saturate

in the baseline configuration. This motivates the analysis taking place in the next subsection.

Generic kernel performance scaling Qutliers performance scaling
30% < Cache-bound performance
= EXU-bound performance
0% 20% L

§ @ 10%
£ =5% @

a o] 0% 1
e £

z 2 -10% -
£ -10% @

g g _20% A
z &

=30% A

-15% A
Cache performance _40% 1
—— EXU performance
0.5 0.75 1 125 1.5 L.75 2 0.5 0.75 1 1.25 15 1.75 2
Relative structure size Relative structure size
(a) Generic kernels (B) High speedup outliers

FIGURE 5.44: Performance improvement for generic and highly improving ker-
nels with Cache, EXU scaling

5.9. Speculating on other axes of reconfiguration

153

50

40

Kernels

20

10

IPC improvement on scale-up caches IPC improvement on scale-up caches
40
35
30 4
254
]
g
£ 20
¢
15 -
10 1
5]
ol
5% 10% 15% 20% 25% 0% 10% 20% 30% 40% 50% 60%
IPC improvement IPC improvement
(a) Scale-up Cache configuration (B) Scale-up EXU configuration

FIGURE 5.45: Performance improvement on the most scale-up Cache and EXU

configuration
Kernel ‘ DeltalPC

Cache-Bound
lonestar-mst_4 20,83%
lonestar-mst_3 18,30%
lonestar-mst_5 15,87%
lonestar-mst_6 11,52%
ispass-2009-AES_1 11,01%
shoc-Spmv_1 5,75%
cfd-rodinia-3.1_2 5,69%
testJoin_1 5,38%

polybench-correlation_1 | 4,93%
shoc-spmv-modified_1 4,91%

cfd-rodinia-3.1_3 4,82%
shoc-spmv-modified_2 4,70%
EXU-Bound

testAmr 3 43,56%
hotspot-rodinia-3.1_1 37,38%
shoc-S3D 1 36,74%
shoc-S3D_2 30,20%
lonestar-mst_4 30,16%
lonestar-mst_5 29.59%
shoc-BFS 1 28.72%
lonestar-mst_3 28.19%
shoc-S3D_3 21,21%
lonestar-mst_6 20,30%

TABLE 5.19: Cache and EXU bound kernels (application_kernel-uid), along with
speedup on the respective scale-up configurations

154 Chapter 5. Implementation Details

Class intersections | EXU-Bound | Cache-bound | LOOG-sensitive
EXU-Bound 10 4 5

Cache-bound 4 12 3
LOOG-sensitive 5 3 22

TaBLE 5.20: Intersection of component-bound and LOOG-sensitive kernels

Scale up LOOG IPC ratio

15225

1507

0511

- 15200

15175

15150
1504

11

15125

L1 caches configuration

- 15100

1.504 - 15075

211

1507
- 15050

0.5 EXU 1EXU 2 EXU
Execution Units configuration

FiGure 5.46: IPC ratio of scale-up to scale-down LOOG across Cache, EXU
configurations

5.9.2 Component scaling design space

To further investigate the reconfiguration potential among the previously defined axes of ap-
plication scalability, we co-scale the values in Table 5.18 with Collector Units set to [16,32,48],
producing a design space with 27 points. The respective simulations on GPGPU-Sim and Ac-
celwattch produce the results seen in Figure 5.47. As previously established and also seen
in Figures 5.47 and 5.47, Area and Power overheads when scaling Execution Units are an
order of magnitude greater than when scaling the Caches. The same is true for the speedup
of the average kernel as seen in Figure 5.47. To examine the EXU and Cache scaling per-
formance sensitivity of the applications relative to LOOG scaling, we divide the delays seen
in the scale-down 16 CU block in Figure 5.47 with the respective scale-up 48 CU delays, ef-
fectively calculating the OOO scalability of the applications across the Cache and EXU size
design space. Results are depicted in Figure 5.46. Evidently, a negligible but existent speedup
saturation is observed in scale-up Cache and EXU configurations. That is to say, acceleration
from LOOG scaling-up is lesser in scale-up configurations in the other axes. This is explained
by the fact that a wider pipeline can already provide significant speedup in scale-down LOOG
configurations without relying on leveraging ILP. When scaling up both EXUs and CUs, the
combined OOO and TLP scalability of the application is exhausted to an extent.

For the average kernel, the speedup obtained is so minimal compared to the Power over-
heads that no EXU or Cache scale-up configuration optimizes even the EDP figure of merit,
as indicatively displayed in Figure 5.47. Likewise, the performance deterioration offsets the
power reduction in the scale-down configurations, rendering them disadvantageous. These
conclusions arise from the fact that within each CU scaling block in Figure 5.47, the baseline

configuration has the optimal value.

5.9. Speculating on other axes of reconfiguration

05L1- 0795

1L1- 0.804

211- 0819

0.5 EXU -
1 EXU

16 CUs

05L1- 0.847

1L1- 0.859

211- 0.880

0.5 EXU -

05L1

111

211

p=]
>
w
—

16 CUs

05L1

111

211

p=]
>
w
—

16 CUs

Area normalized to 32CU-LOOG

0.856 1.3
1.2
0.864 11
1.0
0.880 - 0.9
' ; -0.8
2 =] 2 2 2 2 2
< = < = 4 = =4
w w w w w w w
™ wr — ~ wy — ~
s s
32 CUs 48 CUs
Power normalized to 32CU-LOOG
13
0913 1.066
1.2
0.925 11
1.0
0.946 1.099
-0.9
2 =] 2 2 2 2 2
< = < = 4 = =4
w w w w w w w
~ w — o~ wn — ~
s s
32 CUs 48 CUs
Mean delay normalized to 32CU-LOOG
1.5
1.016 0.993 1.006 0.934 0.912 14
1.3
1.000 0.975 0.992 0.919 0.896 12
1.1
0.994 0.973 0.989 0.914 0.894 - 1.0
' '] ' ; -0.9
2 =] 2 2 2 2 2
< = < = 4 = =4
w w w w w w w
~ w — o~ wn — ~
s s
32 CUs 48 CUs
Energy-Delay Product normalized to 32CU-LOOG
2.0
1.088 1.020 1.003 0.930 1.072
1.8
1.6
1.073 1.000 1.162 0.987 0.911 1.043
1.4
1.2
1.090 1.009 1.178 1.001 0.917 1.056
- 10
5 S - s 5 s 5
< = < = 4 = =4
w w w w w w w
™ wr — ~ wy — ~
s s
32 CUs 48 CUs

FIGURE 5.47: Figures of merit across the design space (Delay refers to the aver-

age kernel)

156 Chapter 5. Implementation Details

Power-Delay Product, cache-bound kernels

16
0511 1078 1.062 1078 1053
15
1.4
1L 1.030 1000 1.029 0.991
13
12
211 1042 0.998 1.039 0.987 - 1.1
1 [} 1 1 B 1'0
=] = =2 p=1 =2 =2 > - =
< > Y = < = 4 = =4
w w w w w w w w w
L] ~ ™~ wn — ~ wy — ~
s s S
16 CUs 32 CUs 48 CUs
Energy-Delay Product, cache-bound kernels
2.4
0511 1141 1173 1041 L
2.0
18
111 1148 1.000 1164 1.056 0.911 1.045
16
1.4
1.2
211 1148 0.975 1150 1.054 0.886 1.031
=10
=] =2 =2 > =2 =2 2 =2 2
4 b4 < = < = 4 = =4
w i w w W w w w w
L] — ~ w — ~ wy — ~
S s S
16 CUs 32 CUs 48 CUs
Power-Delay Product, EXU-bound kernels
1.6
0511 1.082 1077
15
14
1L1 1.000 0.993
13
12
211 1.020 1015 1.021 1.006 -1.1
| i | ' -10
=] 2 =2 > =2 =2 2 =2 2
> e b4 = > P ¢ P >
w w w w w w w w w
["s] — ~ w — o~ wn — ~
s = S
16 CUs 32CUs 48 CUs
Energy-Delay Product, EXU-bound kernels
3.0
0511 1185 1281 1751 1.087 1156
25
1L 1000 1.069 1.612 0.915 0.962
2.0
1.5
211 1.099 1.008 1.091 1.018 0.920 0.981
-10
= = =2 p=1 = = > - =
< > Y = < = 4 = =4
w w w w w w w w w
uw ~ ™~ wy — ~ wny — ~
s s S
16 CUs 32CUs 48 CUs

FIGURE 5.48: Figures of merit across the design space for Cache-bound, EXU-
bound kernels (Delay refers to the average kernel)

5.9. Speculating on other axes of reconfiguration 157

Cache-bound kernels provide substantial speedups and marginally optimize the figures
of merit in some EXU and Cache scaling configurations. In Figure 5.48, it is seen that the en-
ergy efficiency of the average Cache-bound kernel is insignficantly optimized in the Cache
up-scale configurations for the 32 CU and 48 CU LOOG configurations. The respective EDP
improvements amount to 2.50% and 2.45%. No improvement is seen for the EXU-bound ker-
nels. It is important to note that while performance for the average Cache-bound and EXU-
bound kernel saturates beyond the maximum scale-up configuration we examined (as seen
in Figure 5.44b), the optimal figures of merit for most kernels likely lie in intermediate con-
figurations. Due to practical limitations, a more detailed design space exploration surpasses
the scope of this thesis, but we do not expect worthwhile reconfiguration potential regarding

these axes.

159

Chapter 6

Evaluation of the OOO reconfigurable

microarchitecture

6.1 Right-sizing the reconfigurable Operand Collector

As seen in Section 5.6.3, the most scale-up LOOG configurations utilizing many Collector
Units come with significant Area and maximum Power dissipation overheads. Furthermore,
the Area overheads of the sleep transistors servicing the coarse-grain power gating neces-
sary for reconfiguration must be taken into account (although to the extend they are used
in this thesis they are considered insignificant and precisely calculating them surpasses its
scope). We determine the values of various efficiency figures of merit, normalized to baseline,
when optimally reconfiguring across three different reconfigurable microarchitectures. Said
microarchitectures have 16, 32 and 48 CUs in total. In Figure 6.2a the ADP metric, normal-
ized to baseline, is provided across the examined microarchitectures and using PDP and EDP
reconfiguration metrics. It is minimized on the most down-scale microarchitecture of 16 CUs
with 32 CUs closely following. In Figures 6.2c, 6.2 and 6.2b, it is evident that all other metrics
are optimized in the most scale-up, 48 CU configuration. However, the most significant drop
happens from 16 to 32 CUs, with minimal improvement from 32 to 48.

Average values of optimal reconfiguration results for a given architecture per optimiza-
tion metric are summarized in Table 6.1a , normalized to baseline (i.e. A uArch with 16 CUs,
produces an average delay of 0.749 normalized to baseline when optimally reconfigured with
a PDP metric). As also seen in the table, all metrics except ADP are minimized for maximum
CUs. For all the figures of merit, the 32 CU configuration provides values approximating the
optimal. As seen in Table 6.1b, for all the figures of merit used (Delay, Energy, ADP, PDP)
the 32 CU microachitecture provides overheads within 2% of the optimal.

Evidently, for the average kernel, the 32 CU microarchitecture provides the most sensi-
ble trade-off between optimization of ADP and the other composite metrics. In Tables 6.1c
and 6.1d, the respective optimal reconfiguration results and overheads are presented for the
average LOOG-sensitive kernel. In this context, the 48-CU architecture provides the most
efficient tradeoff between figures of merit, with zero overhead from the optimal for metrics

that account for power, and less than 1.15% for ADP, while the 32-CU microarchitecture poses

160 Chapter 6. Evaluation of the OOO reconfigurable microarchitecture

signficant Delay and EDP overheads. Note that for LOOG-sensitive kernels, figures of merit
are identical between reconfiguration metrics (PDP,EDP) in the 16-CU and 32-CU microarchi-
tectures, since for both PDP and EDP, the most scale-up configuration available is optimal.
Considering the above, the 48-CU microarchitecture was used in all further evaluation, to

assess the microarchitecture reconfiguration potential for LOOG-sensitive kernels.

CU |16 [32 |48 CU |16 [32 |48
ADP ADP

PDP | 0,800 | 0,815 | 0,857 PDP | O 1.87% | 7.12%

EDP | 0,790 | 0,796 | 0,833 EDP | 0 0.76% | 5.44%
Delay Delay

PDP | 0,749 | 0,716 | 0,710 PDP | 5.49% | 0.85% | 0

EDP | 0,739 | 0,699 | 0,690 EDP | 71% | 13% |0
Energy Energy

PDP | 0,800 | 0,780 | 0,776 PDP | 3.09% | 0.52% | 0

EDP | 0,803 | 0,786 | 0,784 EDP | 2.42% | 0.26% | 0
EDP EDP

PDP | 0,599 | 0,558 | 0,551 PDP | 8.71% | 1.27% | 0

EDP | 0,593 | 0,549 | 0,541 EDP | 9,61% | 1,48% | 0

(a) Figures of merit across microarchitectures for (B) Overheads compared to the minimum for each fig-
generic kernels. ure, generic kernels. 32 is the optimal tradeoff

CU |16 [32 |48 CU |16 [32 |48
ADP ADP

PDP | 0,582 | 0,533 | 0,537 PDP | 9,13% | O 0,70%

EDP | 0,582 | 0,525 | 0,531 EDP | 10,78% | O 1,15%
Delay Delay

PDP | 0,545 | 0,462 | 0,445 PDP | 22,45% | 3,79% | O

EDP | 0,545 | 0,462 | 0,440 EDP | 23,73% | 4,88% | O
Energy Energy

PDP | 0,599 | 0,536 | 0,528 PDP | 13,45% | 1,58% | O

EDP | 0,599 | 0,536 | 0,530 EDP | 13,03% | 1,20% | 0
EDP EDP

PDP | 0,346 | 0,270 | 0,258 PDP | 34,21% | 4,66% | 0

EDP | 0,346 | 0,270 | 0,256 EDP | 35,10% | 5,36% | 0

(c) Figures of merit across microarchitectures for (p) Overheads compared to the minimum for each fig-
LOOG-sensitive kernels ure, LOOG-sensitive kernels. 48 is the optimal tradeoff

FiGure 6.1: Comparing differently sized reconfigurable microarchitectures
when optimally reconfiguring with the PDP and EDP reconfiguration metrics

6.2 Software reconfiguration

In this section, the reconfiguration potential a software controller operating with software

directives described in Section 5.8.4 is evaluated. As previously mentioned, optimal static

6.2. Software reconfiguration 161

ADP across max CU designs EDP across max CU designs
140%
120%
120%
100%
100% 80%
o 8% o B0%
g a
w
60% 40%
40% 20%
0%
20%
-20%
0%
PDP 16CU EDP 16CU PDP 32CU EDP 32CU PDP 48CU EDP 48CU PDP 16CU EDP 16CU PDP 32CU EDP 32CU PDP 48CU EDP 48CU
CU size, metric CU size, metric
(a) (8)
Delay across max CU designs Energy across max CU designs
100%
100% -
90%
0%
80%
80%
70% 4
5
) Z 7%
D 0% 5
] o 60%
50%
50%
40%
40%
30%
30% -
20%
20%
PDP 16CU EDP 16CU PDP 32CU EDP 32CU PDP 48CU EDP 4BCU PDP 16CU EDP 16CU PDP 32CU EDP 32CU PDP 48CU EDP 48CU
CU size, metric CU size, metric
(c) ()

FIGURE 6.2: Figures of merit distributions across differently sized microarchi-
tectures and reconfiguration metrics, for optimal static reconfiguration

reconfiguration (whole-kernel reconfiguration) is performed, assuming perfect knowledge
of the configuration that optimizes the cumulative value of the given reconfiguration metric
over all launches. Both single launch and multi-launch kernel are taken into account. Static
reconfiguration, referring to applying a specific configuration for the whole kernel’s execu-
tion should not be confused with static microarchitectures, referring to set-in-stone designs,

without the potential to reconfigure.

6.2.1 Static reconfiguration
Generic kernels

As seen in Figure 6.3a, regarding the static (set-in-stone) microarchitectures, the energy-
efficiency-delay trade-off is apparent for 16 through 32 CUs, with EDP minimizing at 32 CUs.
Performance, energy efficiency and EDP are optimized at 48, 16 and 32 CUs respectively. In-

terestingly, even for generic kernels, reconfiguration by any metric is more energy efficient

162

Chapter 6. Evaluation of the OOO reconfigurable microarchitecture

Improuement from baseline across static and reconfigurable microarchitectures

Improvement from baseline

Improvement from baseline

-15%
—20%
-25% |
—-30% -
—35% 1
-40% Delay -

B Energy
a5 | EDP

ch ch rchn gal .poP .g0P
" -!_E,CU WATE c 31{.1! PAre ;ﬂrﬁﬂ"‘" wA g5 wC 98% \.?":-i m.;u § A EC-"J
st staw geat! £ 480V 77 ¢ 48CY 7 T Recd™ - gecO™ -
“g_f.u - m{,ﬂ
HArch - reconfiguration metric
(a) Improvement for generic kernels
LOOG-sensitive improvement from baseline across microarchitectures

—30%
—-40%
=-50% A
—60% -
-70% 4 Delay .

B Energy

. EDP
-80% T r : : .

ch sat sat _ , _pOP . eDP
16CY -31(.\] '.lF"“ qgcu wAr 95% PC =" a00 1PC Siacu - P27 yacy
gratl sra 280~ 2 L et - Fecont A g ocont
-Ret.ﬂ“t R Dn{

HArch - reconfiguration metric

(B) Improvement for LOOG-sensitive kernels

FIGURE 6.3: Improvement from baseline uArch across set-in-stone uArchs and
the reconfigurable 48-CU uArch optimizing different reconfiguration metrics,
for generic and LOOG-sensitive kernels

6.2. Software reconfiguration 163

than any static configuration. When comparing to scale-up static uArchs, this is explained
by the ability of the reconfigurable uArch to scale-down on demand. When comparing to
scale-down static uArchs, it is explained by the speedup gained in scale-up configurations
not accesible statically. The same is true for EDP. When reconfiguring for performance (98%
IPC saturation), the reconfigurable uArch achieves a -31.56% delay improvement, minimally
worse than the -31.98% achieved by the optimal static uArch (48 CUs), while energy overhead
differs by 6.6%. When reconfiguring for energy-efficiency (PDP), the reconfigurable uArch
achieves a -22.34% change from baseline, compared to -18.93% by the optimal static 16 CU
uArch. When reconfiguring for minimizing of EDP, a -41.25% change is provided, compared
to the -37.68% optimal by the 32 CU static uArch. In conclusion, the reconfigurable microar-
chitecture provides significant improvement across all figures of merit when comparing to

the optimal static uArch in context.

LOOG-sensitive kernels

Regarding LOOG-sensitive kernels, seen in Figure 6.3b the same qualitative conclusions are
true for reconfiguration, nevertheless with lesser relative differences, due to this class of ker-
nels more frequently optimizing the figures of merit by occupying scale-up configurations.
Regarding the static uArchs, the tradeoff seen in Figure 6.3a is not present, with all figures
of merit being optimized at 48 CUs. This is, likewise explained by the high OOO scalability
of the applications. Reconfiguring for performance provides a -55.00% delay improvement,
approximating the -55.30% static optimal by the 48 CU uArch, with a 2.23% energy overhead
difference. Reconfiguring for energy-efficiency improves dissipation by -46.11%, compared
to the -43.29% optimal. EDP is reduced by 72.98% compared to the 71.82% optimal.

6.2.2 Semi-Dynamic reconfiguration

In this subsection, the effect of a semi-dynamic reconfiguration is examined exclusively for
multi-launch kernels, across two classes of kernels, above and below the median launch num-
ber. As presented in Section 5.8.5, static reconfiguration does not pose significant overheads
compared to the finer-grain semi-dynamic reconfiguration seen in Figure 5.28. More specif-
ically, as evident in Table 6.1, minimal average and mean overhead values are seen for both
classes of kernels (according to number of invocations), with the distribution being fairly
wide. Therefore, fringe cases of low intra-kernel scalability consistency producing signifi-
cant overheads are seen in Tables 6.3 and 6.2. Especially for the kernels seen in Table 6.3,
mismatched configurations represent the majority of launches in some cases. It is worth not-
ing that the various optimal configurations tend to be interleaved, therefore increasing the
reconfiguration energy overheads considered insignificant in the scope of this thesis. It is
also worth noting that kernels with launches above the median value of 7 tend to not be the

most inconsistent regarding scalability, as was initially expected. In conclusion, the static

164 Chapter 6. Evaluation of the OOO reconfigurable microarchitecture

(whole-kernel) reconfiguration overhead is generally insignificant compared to a per-launch
granularity reconfiguration, which motivates the hardware-level implementation of the re-

configuration controller.

Launches | Less than 7 launches | 7 or more launches
Delay | Energy Delay | Energy

Min 0 0 0 0

Median -0.45% | -0.52% -0.82% | -0.58%

Mean -0.52% | -0.80% -1.10% | -0.86%

Max -2.41% | -2.65% -4.42% | -4.89%

TaBLE 6.1: Distribution of Delay and Energy improvement from static to semi-
dynamic reconfiguration

Kernel DEnergy | Description static configuration | inorder | 8_CUs | 16_CUs | 24_CUs | 32_CUs | 40_CUs | 48_CUs
testSssp -4,89% Reg. expand kernel | 8_CUs 3 3 0 0 0 0 0
ispass-2009-BFS | -3,26% BFS 16_CUs 8 0 0 0
shoc-Reduction | -2,85% Reduce operation 32_CUs 0 0 0 0 3 1 0
shoc-Sort -1,77% Scan 16_CUs 2 0 2 0 0 0 0
test-Amr -1,49% Reg refine kernel 24_Cus 0 0 1 2 1 0 0

TaBLE 6.2: Kernels with the highest energy overhead in static reconfiguration
compared to semi-dynamic reconfiguration

Kernel DDelay | Description static configuration | inorder | 8_CUs | 16_CUs | 24_CUs | 32_CUs | 40_CUs | 48_CUs
dwt2d-rodinia-3.1 | -4,42% | DWT2D kernel 32_CUs 0 0 0 0 3 4 0
lonestar-sssp-wiln | -4,27% | RelaxGraphWorklist | 16_CUs 0 0 4 2 1 0
cfd-rodinia -3,87% | Initialization 16_CUs 0 2 0 1 0 0 0
shoc-Spmv -3,69% | spmv_scalar 48 CUs 0 0 0 0 13 4 82
test-Amr -2,55% | Reg refine kernel 32_CUs 0 0 0 3 1 0 0

TaBLE 6.3: Kernels with the highest delay overhead in static reconfiguration
compared to semi-dynamic reconfiguration

6.2.3 Static reconfiguration across clusters of applications

In Figure 6.4, the optimal static reconfiguration scheme is evaluated against the static 48 CU
uArch across the clusters of applications defined in Section 5.3 . It can be seen that the perfor-
mance of the DP-bound, high utilization cluster with applications that frequently stall on the
ALU and DP pipelines closely approximates the average kernel execution under the reconfig-
urable architecture. When reconfiguring with the PDP metric, a -31.0% delay improvement
and a -24.5% energy improvement is provided. Frequent control hazards restrict the appli-
cation OOO scalability as discussed in Section 5.3. As expected, the Cache-bound, low ILP
and shared-memory bound clusters suffer the least improvement on the reconfigurable ar-
chitecture, with energy-efficiency and EDP being even lower than that of the static 48 CU
architecture. The SP-bound and Cache-bound, high ILP clusters perform significantly better

than average, regarding the reconfigurable architecture. The lowest performance overall is

6.3. Hardware reconfiguration controller 165

Static reconﬂguratlon across application clusters
=10% - I l | I i I | I
-20% - |

|

w

;=

W

w

38

c | i
=

u— =30% - I
e

@

£ —40% -

@

>

g ~50% Delay

£ [

= oo | ™= EOP

o™ \.? o o e o AF o o
ﬂr."?”K mﬁ‘ @ﬂa" w"‘" w*"“ A @ G e @O oo
BC\} P w@ 4 -.p., “E ‘-J'“ﬁ ﬂ‘} w@:\'ﬂ' uuf\ﬁ' Qe.?.- SR~
2 &
o ,ﬂuu“ ?ﬂou c, 2l e oo {,aﬂ“g cﬁ““

3

0 805 gﬂ‘?f W e g0 ae-
05 a0 A 02 02 PP o
F{econfiguration metric _ Application cluster

FIGURE 6.4: Evaluating the reconfigurable 48 CU architecture across all clusters
of applications defined in Section 5.3, against the static 48 CU architecture for
the average application

exhibited for the Cache-bound, low ILP cluster (due to high thread block count and param-
eter memory instructions, as discussed in Section 5.3) and interestingly, the Cache-bound
high-ILP cluster performs better on the reconfigurable architecture across all figures of merit
and clusters, even better than the purely compute-intensive kernels. This is due to low miss
rate on cache accesses and computation on separate phases that does not cause backend

congestion, as discussed in Chapter 5.

6.3 Hardware reconfiguration controller

In this section, the hardware reconfiguration controller is evaluated against optimal software-
implemented static reconfiguration as described in Section 5.8.4, as well as a static (set-in-
stone) microarchitecture with 48 CUs.

6.3.1 First-launch reconfiguration

In Figure 6.5, the aforementioned comparison is presented. The hardware controller is less

efficient than the software static reconfiguration controller across all figures of merit and

166 Chapter 6. Evaluation of the OOO reconfigurable microarchitecture

reconfiguration metrics. Compared to the static 48 CU uArch,it provides a -30.6% delay im-
provement when maximizing EDP, as opposed to -32% (-31$ for optimal static reconfigura-
tion). The respective differences in energy efficiency are -19.5%,-13.7% (-22.4% for optimal
static reconfiguration) and -39.8%, -35.7% regarding EDP (-41.3%). In conclusion, the hard-
ware reconfiguration controller attains 67% of the energy efficiency improvement and 73%
of the EDP improvement of the optimal static reconfiguration compared to baseline. Maxi-
mizing for performance brings it within 1% of the optimal. Results for the average kernel are

summarized in Table 6.4.

Static 48CU uArch
Delay 0,680
Energy 0,863
EDP 0,643

Optimal static reconf
Metric | PDP | EDP
Delay | 0,710 | 0,690
Energy | 0,776 | 0,784
EDP 0,599 | 0,587

Regressor
Metric | PDP | EDP
Delay | 0,726 | 0,694
Energy | 0,805 | 0,817
EDP 0,633 | 0,602

TABLE 6.4: Reconfiguration controller Delay and Energy normalized to baseline,
for PDP and EDP reconfiguration metrics

The RMSE for the predicted normalized IPC improvement vector over the test set is shown

in Figure 6.6.

6.3.2 Static reconfiguration

In this subsection, the controller is evaluated on static (whole kernel) instead of first-launch
reconfiguration. Hardware performance counters are collected over all invocations of the
kernel, during one of its executions and used to infer an optimal configuration that is then
applied to subsequent executions of the kernel over all its launches. The purpose of this
evaluation is to expand the limited multi-launch kernels dataset to include all kernels, and
determine controller behavior regarding LOOG-sensitive kernels. In Figures 6.7a and 6.7b
the delay provided by regressor reconfiguration normalized to baseline is presented for the
average and the average LOOG-sensitive kernel respectively. In Figures 6.7c and 6.7d the
respective normalized energy distributions are provided. For both delay and energy, the
reconfiguration controller is more accurate for LOOG-sensitive kernels, due to the afore-

mentioned asymptotic behavior of IPC improvement and declining power ratios between

6.3. Hardware reconfiguration controller 167

o Regressc-r and optimal reconfiguration improvement from baseline

1]

_45% T T T T T

5
2

=20%

—25% 1

—30% -

—35% -

-40% -

Improvement from baseline

P P
a0 *? ascy

e_c_ﬂﬁi _..ﬁ -p,e,t.'-'l“i i .;egﬁui -

HArch - reconfiguration metric

Ficure 6.5: Evaluating the hardware reconfiguration controller (regressor)
against optimal static reconfiguration and a static 48 CU uArch

= = o o = =

o = = . - =

(=] (=] = %) w £
L ! L .) .

RMSE for LOOG improvement predictions
S
=]

8_CUs 16_CUs 24_CUs 32_CUs 40_cUs 48_CUs
Number of CUs/RS

FIGURE 6.6: RMSE for reconfiguration controller predictions and intermediate
configuration IPC calculation

168

Chapter 6. Evaluation of the OOO reconfigurable microarchitecture

ADelay from baseline, regressor, whole kernel reconfiguration

120%

100%

80%

ADelay

60%

AEnergy from baseline, regressor, whole kernel reconfiguration

140%

120%

100%

AEnergy

1

PDP Optimal ~ POP Regressor EDP Optimal EDP Regressor

Reconfiguration metric

(a) Delay, generic kernels

it

PDP Optimal

PDP Regressor EDP Optimal EDP Regressor

Reconfiguration metric

(c) Energy, generic kernels

ADelay

AEnergy

ADelay from baseline, regressor, LOOG-sensitive kernels

120%

100%

80%

60% 1

40% 1

20%

PDP Optimal ~ PDP Regressor EDP Optimal EDP Regressor
Reconfiguration metric

(B) Delay, LOOG-sensitive kernels

AEne

rgy from baseline, regressor, LOOG-sensitive kernels

140%

120%

100%

60%

40%

M

0% 1

PDP Optimal ~ PDP Regressor EDP Optimal EDP Regressor
Reconfiguration metric

(D) Energy, LOOG-sensitive kernels

FIGURE 6.7: Delay and Energy improvement for optimal static (whole-kernel)
reconfiguration with the hardware controller

consecutive configurations on the most scale-up LOOG configurations. In Figure 6.7a, it is

evident that while average values between the regressor and optimal reconfiguration are sim-

ilar, medians vary due to mispredicted outliers. In Figure 6.7b, a tighter distribution is seen

for the regressorfailing to predict the baseline inorder configuration. In Figures 6.7c and

6.7d, significant mispredictions are seen when maximizing EDP. This is due to the inherent

error in IPC prediction that is exacerbated in the square of the delay, frequently leading to

the most scale-down configurations. The same is seen to an extent in Figure 6.7c regarding

PDP, due to inorder mispredictions. The fact that mispredictions tend to be scale-down rather

than scale-up is clearly depicted in Figure 6.7a, with the bloated delay distribution near the

baseline.

169

Chapter 7

Conclusions and Future Work

7.1 Conclusions

With the implementation of the LOOG execution scheme on Accel-Sim, we gain the abil-
ity to increase simulation accuracy on many fronts. We also gain access to HPC-relevant
microbenchmarks-tuned datacenter GPU configurations, including the Quadro GV100 used
in our analysis.

Having collected microarchitecture runtime statistics across 7 benchmark suites and 100 ker-
nels, we use them to characterize applications into groups regarding architecture bottlenecks,
as well as correlate specific features they possess with speedup and high GPU utilization on
scale-up LOOG configurations. A select class of kernels that gain significant speedup on
such configurations are deemed "LOOG-sensitive". This analysis provides the backbone for
further workload characterization throughout this thesis.

Components of the pipeline front-end are right-sized and optimally configured in conjuc-
tion with LOOG, leading to the conclusions that the Decoder bandwidth can be throttled
(-4.57% Power, -0.22% Area) and that Depth-First instruction Issue scheduling provides opti-
mal performance (speedup of 1.14 for LOOG-senstitive kernels) . The latter, along with the
realization that exploitable ILP widely varies inter-warp, leads to the implementation of an
Instruction Buffer partitioning reconfiguration controller that provides an average 4.4% per-
formance increase for LOOG-sensitive kernels, up to 10.2%.

LOOG-relevant structures (Collector Units, Register Renaming Stack and Instruction Buffer)
are studied regarding scalability, leading to the conclusion that Collector Units are the main
component driving speedup but are also Power and Area hungry.

The potential to benefit from the significant speedup gained in scale-up LOOG configura-
tions regarding LOOG-sensitive kernels while preserving energy efficiency when necessary,
is provided by a scalable runtime-reconfigurable microarchitecture that power gates groups
of Collector Units. The reconfigurable architecture is initially evaluated on the basis of an
oracle software controller performing semi-dynamic reconfiguration on a per-launch gran-
ularity. Realizing that profiling the first kernel launch is sufficient for reconfiguration on
subsequent invocations, we implement a hardware reconfiguration controller using runtime

performance counters, based on decision tree regressors.

170 Chapter 7. Conclusions and Future Work

A static scale-up LOOG configuration provides a speedup of 1.48 for generic kernels and
a 13.7% reduction in energy dissipation, compared to the baseline architecture. Reconfig-
uration under software directives and using the hardware controller can provide the same
speedup when needed and have the potential to improve energy efficiency from baseline by
22.4% and 19.5% respectively

7.2 Future work

+ Minor Accel-Sim source code refactoring where necessary (Appendix A.1) as well as ap-
propriate setups to exploit the trace-based (mISA) simulation functionality that Accel-

Sim provides is our immediate priority to increase performance simulation accuracy.

+ Cycle-accurate power modelling with LOOG-relevant runtime performance counters
input from the performance model (as Accelwattch operates for the baseline model) is

necessary to ascertain quantitative credibility of our results.

« A more accurate assessment of Power Gating sleep transistor Area, Energy and wake-
up time overheads is needed to confirm our assumptions. Due to the reconfiguration
schemes utilized, Energy and wake-up Delay can be traded off and have a great margin

for error but Area is crucial.

« With a high degree of certainty, the hardware reconfiguration controller regressors can
be fit on intermediately-scaled LOOG configurations, to avoid the first launch in-order

configuration overhead. This has not been performed due to practical time constraints.

+ A more meticulous study of inter-warp heterogeneity regarding exploitable ILP can be
performed and new Instruction Buffer reconfiguration policies or metrics can be tested.
Since Ibuffer reconfiguration was not the main focus of this thesis, we speculate that

relevant results are suboptimal.

171

Appendix A

Source Code

A.1 Source code repository

The source code for the implementation elaborated on in Subsection 2.5 can be found at:
https://github.com/pelef/accel-sim-framework-LOOG/tree/loog
https://github.com/pelef/accel-sim-framework-LOOG/tree/inorder

A.2 Original License

As the code was developed based on Accel-Sim, it is distributed with the relevant license.

Copyright© 2020, Tim Rogers.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permit-

ted provided that the following conditions are met:

« Redistributions of source code must retain the above copyright notice, this list of con-

ditions and the following disclaimer.

« Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIB-
UTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

https://github.com/pelef/accel-sim-framework-LOOG/tree/loog
https://github.com/pelef/accel-sim-framework-LOOG/tree/inorder

172 Appendix A. Source Code

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

173

Bibliography

[1]

Tor M Aamodt, Wilson Wai Lun Fung, and Timothy G Rogers. General-purpose graph-
ics processor architectures. Synthesis lectures on computer architecture 44. Morgan
Claypool Publishers, 2018.

TechTarget Contributor. What is GPGPU (general Purpose Graphics Processing Unit)?:
Definition from TechTarget. 2015. urL: https : / /www . techtarget . com/

whatis/definition/GPGPU-general-purpose-graphics-processing-

unit.

Technology partner. 2022. UrRL: https : //www.nextdimensioninc . com/
wp - content /uploads /2018 /07 /Al - Considerations - For -
Scaling-GPU-Ready-Data-Centers-Whitepaper.pdf.

Christophe Bobda. Introduction to Reconfigurable Computing: Architectures, Algorithms,

and Applications. 1st. Springer Publishing Company, Incorporated, 2007. 1sBN: 1402060882.

Artur Podobas, Kentaro Sano, and Satoshi Matsuoka. “A Survey on Coarse-Grained
Reconfigurable Architectures From a Performance Perspective”. In: IEEE Access 8
(2020), pp. 146719-146743. por: 10 . 1109 /access . 2020 . 3012084. URrL:
https://doi.org/10.1109/access.2020.3012084.

Frank Vahid and Tony D Givargis. Embedded System Design. en. Nashville, TN: John
Wiley & Sons, Oct. 2001.

UrRL: https://hps.ece.utexas.edu/pub/TR-HPS-2007-001.pdf

Khubaib et al. “MorphCore: An Energy-Efficient Microarchitecture for High Perfor-
mance ILP and High Throughput TLP”. In: 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE, Dec. 2012. por: 10.1109/micro.2012.

36.urL: https://doi.org/10.1109/micro.2012.36.

Hyoun Kyu Cho and Scott Mahlke. “Embracing heterogeneity with dynamic core
boosting”. In: Proceedings of the 11th ACM Conference on Computing Frontiers. ACM,
May 2014. por: 10.1145/2597917.2597932. urL: https://doi.org/
10.1145/2597917.2597932.

Mohammad Khavari Tavana et al. “ElasticCore”. In: Proceedings of the 52nd Annual De-
sign Automation Conference. ACM, June 2015.po1: 10.1145/2744769.2744833.
UrRL: https://doi.org/10.1145/2744769.2744833.

https://www.techtarget.com/whatis/definition/GPGPU-general-purpose-graphics-processing-unit
https://www.techtarget.com/whatis/definition/GPGPU-general-purpose-graphics-processing-unit
https://www.techtarget.com/whatis/definition/GPGPU-general-purpose-graphics-processing-unit
https://www.nextdimensioninc.com/wp-content/uploads/2018/07/AI-Considerations-For-Scaling-GPU-Ready-Data-Centers-Whitepaper.pdf
https://www.nextdimensioninc.com/wp-content/uploads/2018/07/AI-Considerations-For-Scaling-GPU-Ready-Data-Centers-Whitepaper.pdf
https://www.nextdimensioninc.com/wp-content/uploads/2018/07/AI-Considerations-For-Scaling-GPU-Ready-Data-Centers-Whitepaper.pdf
https://doi.org/10.1109/access.2020.3012084
https://doi.org/10.1109/access.2020.3012084
https://hps.ece.utexas.edu/pub/TR-HPS-2007-001.pdf
https://doi.org/10.1109/micro.2012.36
https://doi.org/10.1109/micro.2012.36
https://doi.org/10.1109/micro.2012.36
https://doi.org/10.1145/2597917.2597932
https://doi.org/10.1145/2597917.2597932
https://doi.org/10.1145/2597917.2597932
https://doi.org/10.1145/2744769.2744833
https://doi.org/10.1145/2744769.2744833

174 Bibliography

[11] Paula Petrica et al. “Flicker”. In: Proceedings of the 40th Annual International Sym-
posium on Computer Architecture. ACM, June 2013. por: 10 . 1145 /2485922 .
2485924.urL: https://doi.org/10.1145/2485922.2485924.

[12] Konstantinos Iliakis, Sotirios Xydis, and Dimitrios Soudris. “LOOG: Improving GPU
Efficiency With Light-Weight Out-Of-Order Execution”. In: IEEE Computer Architec-
ture Letters 18.2 (July 2019), pp. 166-169. por: 10.1109/1ca.2019.2951161.
UrRL: https://doi.org/10.1109/1ca.2019.2951161.

[13] Konstantinos Iliakis, Sotirios Xydis, and Dimitrios Soudris. “Repurposing GPU Mi-
croarchitectures with Light-Weight Out-Of-Order Execution”. In: IEEE Transactions
on Parallel and Distributed Systems 33.2 (Feb. 2022), pp. 388-402. por: 10 . 1109/
tpds . 2021.3093231. urt: https://doi.org/10.1109/tpds.
2021.3093231.

[14] Konstantinos Iliakis. “Large-Scale Software Optimization And Micro-Architectural
Specialization for Accelerated High-Performance Computing”. PhD thesis. National
Technical University of Athens, 2022. urL: https: //dspace. 1lib . ntua.
gr/xmlui/handle/123456789/55823.

[15] R.M.Tomasulo. “An Efficient Algorithm for Exploiting Multiple Arithmetic Units”. In:
IBM Journal of Research and Development 11.1 (Jan. 1967), pp. 25-33.por: 10.1147/
rd.111.0025.vrL: https://doi.org/10.1147/rd.111.0025.

[16] Cuda Zone - Library of resources. 2022. urL: https://developer.nvidia.
com/cuda-zone.

[17] Lena Oden. “Lessons learned from comparing C-CUDA and Python-Numba for GPU-
Computing”. In: 2020 28th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP). IEEE, Mar. 2020. po1: 10.1109/pdp50117.
2020.00041. urL: https://doi.org/10.1109/pdp50117.2020.
00041.

[18] Peter Zunitch. Cuda vs. opencl vs. OpenGL. 2022. urL: ht tps: //www.videomaker.
com/article/c15/19313-cuda-vs-opencl-vs-opengl/.

[19] CUDA toolkit documentation 12.1. 2023. urL: https://docs.nvidia.com/
cuda/index.html.

[20] uUrL: https://web.stanford. edu/class/ee380/Abstracts/
080227-Nickolls-CUDAScalableParallelProgramming. pdf.

[21] 1. introduction. 2023. urL: https://docs.nvidia.com/cuda/cuda-c-
programming-guide/.

[22] Cuda.vrL: https://nyu-cds.github.io/python-gpu/02-cuda/.

https://doi.org/10.1145/2485922.2485924
https://doi.org/10.1145/2485922.2485924
https://doi.org/10.1145/2485922.2485924
https://doi.org/10.1109/lca.2019.2951161
https://doi.org/10.1109/lca.2019.2951161
https://doi.org/10.1109/tpds.2021.3093231
https://doi.org/10.1109/tpds.2021.3093231
https://doi.org/10.1109/tpds.2021.3093231
https://doi.org/10.1109/tpds.2021.3093231
https://dspace.lib.ntua.gr/xmlui/handle/123456789/55823
https://dspace.lib.ntua.gr/xmlui/handle/123456789/55823
https://doi.org/10.1147/rd.111.0025
https://doi.org/10.1147/rd.111.0025
https://doi.org/10.1147/rd.111.0025
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://doi.org/10.1109/pdp50117.2020.00041
https://doi.org/10.1109/pdp50117.2020.00041
https://doi.org/10.1109/pdp50117.2020.00041
https://doi.org/10.1109/pdp50117.2020.00041
https://www.videomaker.com/article/c15/19313-cuda-vs-opencl-vs-opengl/
https://www.videomaker.com/article/c15/19313-cuda-vs-opencl-vs-opengl/
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/index.html
https://web.stanford.edu/class/ee380/Abstracts/080227-Nickolls-CUDAScalableParallelProgramming.pdf
https://web.stanford.edu/class/ee380/Abstracts/080227-Nickolls-CUDAScalableParallelProgramming.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://nyu-cds.github.io/python-gpu/02-cuda/

Bibliography 175

[23] Ali Bakhoda et al. “Analyzing CUDA workloads using a detailed GPU simulator”. In:
2009 IEEE International Symposium on Performance Analysis of Systems and Software.
IEEE, Apr. 2009. por: 10 . 1109 /ispass . 2009 . 4919648. urL: https:
//doi.org/10.1109/ispass.2009.4919648.

[24] Main page. vrL: http://gpgpu-sim.org/manual/index.php/Main_
Page.

[25] Keith Barr. ASIC design in the silicon sandbox: A complete guide to building mixed-
signal integrated circuits. New York, NY: McGraw-Hill Professional, Dec. 2006.

[26] Anthony M. Cabrera and Roger D. Chamberlain. “Designing Domain Specific Com-
puting Systems”. In: 2020 IEEE 28th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). IEEE, May 2020.po1: 10.1109/fccm48280.
2020.00052. vrL: https://doi.org/10.1109/fccm48280.2020.
00052.

[27] urL:https://passlab.github.io/CSCE513/notes/lecture26_
DSA_DomainSpecificArchitectures.pdf.

[28] Manuel Padial PérezLead the Technical Content Maintenance Team of doEEEt plat-
form. at Alter TechnologyManuel Padial has a Degree in Industrial Electronic. Engi-
neering, a Master (M.Eng.)/Advanced Degree in Electrical, and Electronic Engineer-
ing.Since 200. ASIC or FPGA, how to choose between them. 2023. urL: https: //
www.doeeet.com/content/eee-components/actives/choosing-
between-asic-or-fpga/.

[29] What is an FPGA? field programmable gate array. urL: https://www.xilinx.
com/products/silicon-devices/fpga/what-is-an- fpga.
html.

[30] Dimitrios Soudris and Stamatis Vassiliadis, eds. Fine- and Coarse-Grain Reconfigurable
Computing. en. 2007th ed. New York, NY: Springer, Oct. 2007.

[31] TJ. Todman et al. “Reconfigurable computing: architectures and design methods”. In:
IEE Proceedings - Computers and Digital Techniques 152.2 (2005), p. 193. por: 10 .
1049/ip-cdt : 20045086. urL: https://doi.org/10.1049/ip-
cdt:20045086.

[32] Moghaddam Shahraki Mansureh, Jae-Min Cho, and Kiyoung Choi. “Reconfigurable
Architectures”. In: Handbook of Hardware/Software Codesign. Springer Netherlands,
2016, pp. 1-42. por: 10.1007/978-94-017-7358-4_12-1.vrL: https:
//doi.org/10.1007/978-94-017-7358-4_12-1.

https://doi.org/10.1109/ispass.2009.4919648
https://doi.org/10.1109/ispass.2009.4919648
https://doi.org/10.1109/ispass.2009.4919648
http://gpgpu-sim.org/manual/index.php/Main_Page
http://gpgpu-sim.org/manual/index.php/Main_Page
https://doi.org/10.1109/fccm48280.2020.00052
https://doi.org/10.1109/fccm48280.2020.00052
https://doi.org/10.1109/fccm48280.2020.00052
https://doi.org/10.1109/fccm48280.2020.00052
https://passlab.github.io/CSCE513/notes/lecture26_DSA_DomainSpecificArchitectures.pdf
https://passlab.github.io/CSCE513/notes/lecture26_DSA_DomainSpecificArchitectures.pdf
https://www.doeeet.com/content/eee-components/actives/choosing-between-asic-or-fpga/
https://www.doeeet.com/content/eee-components/actives/choosing-between-asic-or-fpga/
https://www.doeeet.com/content/eee-components/actives/choosing-between-asic-or-fpga/
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://doi.org/10.1049/ip-cdt:20045086
https://doi.org/10.1049/ip-cdt:20045086
https://doi.org/10.1049/ip-cdt:20045086
https://doi.org/10.1049/ip-cdt:20045086
https://doi.org/10.1007/978-94-017-7358-4_12-1
https://doi.org/10.1007/978-94-017-7358-4_12-1
https://doi.org/10.1007/978-94-017-7358-4_12-1

176

Bibliography

[33]

[36]

[37]

[39]

[42]

Jason G. Tong, Ian D. L. Anderson, and Mohammed A. S. Khalid. “Soft-Core Processors
for Embedded Systems”. In: 2006 International Conference on Microelectronics. IEEE,
Dec. 2006. por: 10.1109/1icm.2006.373294. urL: https://doi.org/
10.1109/icm.2006.373294.

urL: https://web.archive.org/web/20091026171102/http:
//1-core.com/library/digital/soft-cpu-cores/.

Hugo Andrade and Ivica Crnkovic. “A Review on Software Architectures for Hetero-
geneous Platforms”. In: 2018 25th Asia-Pacific Software Engineering Conference (APSEC).
IEEE, Dec. 2018. por: 10.1109/apsec.2018.00035. urL: https://doi.
org/10.1109/apsec.2018.00035.

Mahmoud Khairy et al. “Accel-Sim: An Extensible Simulation Framework for Vali-
dated GPU Modeling”. In: 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA). IEEE, May 2020. por: 10 . 1109 / isca45697 .
2020.00047.vrL: https://doi.org/10.1109/isca45697.2020.
00047.

Engin Ipek et al. “Core fusion”. In: Proceedings of the 34th annual international sym-
posium on Computer architecture. ACM, June 2007. por: 10 . 1145 /1250662 .
1250686.urL: https://doi.org/10.1145/1250662.1250686.

Changkyu Kim et al. “Composable Lightweight Processors”. In: 40th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 2007). IEEE, 2007. por: 10 .
1109/micro. 2007 .41. vrL: https://doi.org/10.1109/micro.
2007 .41.

Shubham Kamdar and Neha Kamdar. “big. LITTLE Architecture: Heterogeneous Mul-
ticore Processing”. In: International Journal of Computer Applications 119.1 (June 2015),
pp- 35-38. por: 10.5120/21034-3106. urL: https://doi.org/10.
5120/21034-3106.

Chris Fallin, Chris Wilkerson, and Onur Mutlu. “The heterogeneous block architec-
ture”. In: 2014 IEEE 32nd International Conference on Computer Design (ICCD). IEEE,
Oct. 2014. por: 10 . 1109 /iccd . 2014 . 6974710. urL: https://doi.
org/10.1109/iccd.2014.6974710.

D. Burger et al. “Scaling to the end of silicon with EDGE architectures”. In: Computer
37.7 (July 2004), pp. 44-55.p01: 10.1109/mc. 2004 .65. vrL: https://doi.
org/10.1109/mc.2004.65.

Karthikeyan Sankaralingam et al. “Exploiting ILP, TLP, and DLP with the polymor-
phous TRIPS architecture”. In: Proceedings of the 30th annual international symposium
on Computer architecture - ISCA '03. ACM Press, 2003. por: 10.1145/859618.
859667.urL: https://doi.org/10.1145/859618.859667.

https://doi.org/10.1109/icm.2006.373294
https://doi.org/10.1109/icm.2006.373294
https://doi.org/10.1109/icm.2006.373294
https://web.archive.org/web/20091026171102/http://1-core.com/library/digital/soft-cpu-cores/
https://web.archive.org/web/20091026171102/http://1-core.com/library/digital/soft-cpu-cores/
https://doi.org/10.1109/apsec.2018.00035
https://doi.org/10.1109/apsec.2018.00035
https://doi.org/10.1109/apsec.2018.00035
https://doi.org/10.1109/isca45697.2020.00047
https://doi.org/10.1109/isca45697.2020.00047
https://doi.org/10.1109/isca45697.2020.00047
https://doi.org/10.1109/isca45697.2020.00047
https://doi.org/10.1145/1250662.1250686
https://doi.org/10.1145/1250662.1250686
https://doi.org/10.1145/1250662.1250686
https://doi.org/10.1109/micro.2007.41
https://doi.org/10.1109/micro.2007.41
https://doi.org/10.1109/micro.2007.41
https://doi.org/10.1109/micro.2007.41
https://doi.org/10.5120/21034-3106
https://doi.org/10.5120/21034-3106
https://doi.org/10.5120/21034-3106
https://doi.org/10.1109/iccd.2014.6974710
https://doi.org/10.1109/iccd.2014.6974710
https://doi.org/10.1109/iccd.2014.6974710
https://doi.org/10.1109/mc.2004.65
https://doi.org/10.1109/mc.2004.65
https://doi.org/10.1109/mc.2004.65
https://doi.org/10.1145/859618.859667
https://doi.org/10.1145/859618.859667
https://doi.org/10.1145/859618.859667

Bibliography 177

[43]

[44]

[45]

[46]
[47]

[49]

[51]

Mihai Pricopi and Tulika Mitra. “Bahurupi”. In: ACM Transactions on Architecture and
Code Optimization 8.4 (Jan. 2012), pp. 1-21.por: 10.1145/2086696.2086701.
urL: https://doi.org/10.1145/2086696.2086701.

Ankit Sethia and Scott Mahlke. “Equalizer: Dynamic Tuning of GPU Resources for
Efficient Execution”. In: 2014 47th Annual IEEE/ACM International Symposium on Mi-
croarchitecture. IEEE, Dec. 2014.po1: 10.1109/micro.2014.16.ur: https:
//doi.org/10.1109/micro.2014.16.

Xianwei Cheng et al. AMOEBA: A Coarse Grained Reconfigurable Architecture for Dy-
namic GPU Scaling. 2019.po1: 10.48550/ARXIV.1911.03364.urL: https:
//arxiv.org/abs/1911.03364.

urL: https://www.benchcouncil.org/WPC/.

Lei Wang et al. “WPC: Whole-Picture Workload Characterization Across Intermediate
Representation, ISA, and Microarchitecture”. In: IEEE Computer Architecture Letters
20.2 (July 2021), pp. 86-89.po1: 10.1109/1ca.2021.3087828. urL: https:

//doi.org/10.1109/1ca.2021.3087828.

URL: https://international.download.nvidia.com/geforce-
com/international /pdfs/GeForce_GTIX_1080_Whitepaper _
FINAL.pdf.

Nvidia Corporation. Volta Architecture Whitepaper. https://images.nvidia.
com/content/volta-architecture/pdf/volta-architecture-
whitepaper.pdf. Accessed: March 25, 2023. 2017.

Hadi Esmaeilzadeh et al. “Dark silicon and the end of multicore scaling.” In: ISCA.
Ed. by Ravi Iyer, Qing Yang, and Antonio Gonzalez. ACM, 2011, pp. 365-376. ISBN:
978-1-4503-0472-6. urL: http://dblp.uni-trier.de/db/conf/isca/
isca2011.html#EsmaeilzadehBASB11.

Adrian McMenamin. The end of Dennard scaling. Blog post. 2013. urL: https://
cartesianproduct.wordpress.com/2013/04/15/the-end-of-
dennard-scaling/

R. Saleh et al. “System-on-Chip: Reuse and Integration”. In: Proceedings of the IEEE
94.6 (June 2006), pp. 1050-1069. por: 10. 1109/ jproc.2006.873611. URL:
https://doi.org/10.1109/jproc.2006.873611.

What is HPC? introduction to high-performance computing. URL: https : //www.
ibm.com/topics/hpc.

Rahul Awati. What is high-performance computing (HPC)? 2021. urL: https: //
www . techtarget . com/searchdatacenter/definition/high-
performance-computing-HPC.

https://doi.org/10.1145/2086696.2086701
https://doi.org/10.1145/2086696.2086701
https://doi.org/10.1109/micro.2014.16
https://doi.org/10.1109/micro.2014.16
https://doi.org/10.1109/micro.2014.16
https://doi.org/10.48550/ARXIV.1911.03364
https://arxiv.org/abs/1911.03364
https://arxiv.org/abs/1911.03364
https://www.benchcouncil.org/WPC/
https://doi.org/10.1109/lca.2021.3087828
https://doi.org/10.1109/lca.2021.3087828
https://doi.org/10.1109/lca.2021.3087828
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://dblp.uni-trier.de/db/conf/isca/isca2011.html#EsmaeilzadehBASB11
http://dblp.uni-trier.de/db/conf/isca/isca2011.html#EsmaeilzadehBASB11
https://cartesianproduct.wordpress.com/2013/04/15/the-end-of-dennard-scaling/
https://cartesianproduct.wordpress.com/2013/04/15/the-end-of-dennard-scaling/
https://cartesianproduct.wordpress.com/2013/04/15/the-end-of-dennard-scaling/
https://doi.org/10.1109/jproc.2006.873611
https://doi.org/10.1109/jproc.2006.873611
https://www.ibm.com/topics/hpc
https://www.ibm.com/topics/hpc
https://www.techtarget.com/searchdatacenter/definition/high-performance-computing-HPC
https://www.techtarget.com/searchdatacenter/definition/high-performance-computing-HPC
https://www.techtarget.com/searchdatacenter/definition/high-performance-computing-HPC

178 Bibliography

[55] High-performance computing. 2023. urL: https : / /en . wikipedia . org/
wiki/High-performance_computing

[56] General-purpose computing on graphics processing units. 2023. urL: https://en.
wikipedia.org/wiki/General-purpose_computing_on_graphics_
processing_units.

[57] Vijay Kandiah et al. “AccelWattch: A Power Modeling Framework for Modern GPUs”.
In: MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, Oct. 2021. por: 10.1145/3466752.3480063. urL: https://doi.
0org/10.1145/3466752.3480063.

[58] What is Parallel Computing - javatpoint. UrL: https : / /www . javatpoint.
com/what-is-parallel-computing

[59] Lillian Cassel et al. “Concurrency and parallelism in the computing ontology”. In:
Proceedings of the 14th annual ACM SIGCSE conference on Innovation and technol-
ogy in computer science education. ACM, July 2009. por: 10 . 1145 /1562877 .
1563044.vrL: https://doi.org/10.1145/1562877.1563044.

[60] V.P.Kumar and A. Gupta. “Analyzing Scalability of Parallel Algorithms and Architec-
tures”. In: Journal of Parallel and Distributed Computing 22.3 (Sept. 1994), pp. 379-391.
por: 10.1006/jpdc.1994.1099. urL: https://doi.org/10.1006/
jpdc.1994.1099.

[61] James Dinan et al. “Scalable work stealing”. In: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis. ACM, Nov. 2009. por: 10 .
1145/1654059.1654113.vrL:https://doi.org/10.1145/1654059.
1654113.

[62] T.E. Anderson. “The performance of spin lock alternatives for shared-money multi-
processors”. In: IEEE Transactions on Parallel and Distributed Systems 1.1 (1990), pp. 6—
16.por: 10.1109/71.80120. urL: https://doi.org/10.1109/71.
80120.

[63] UrL:https://www.mcs.anl.gov/~itf/dbpp/text/nodel7.html.

[64] Single instruction single data. urL: https : //www. sciencedirect.com/
topics / computer - science /single - instruction- single -
data.

[65] M.J. Flynn. “Very high-speed computing systems”. In: Proceedings of the IEEE 54.12
(1966), pp. 1901-1909. por: 10 . 1109 /proc. 1966 . 5273. urL: https://
doi.org/10.1109/proc.1966.5273.

[66] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Ap-
proach. 5th ed. Amsterdam: Morgan Kaufmann, 2012. 1sBN: 978-0-12-383872-8.

https://en.wikipedia.org/wiki/High-performance_computing
https://en.wikipedia.org/wiki/High-performance_computing
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://doi.org/10.1145/3466752.3480063
https://doi.org/10.1145/3466752.3480063
https://doi.org/10.1145/3466752.3480063
https://www.javatpoint.com/what-is-parallel-computing
https://www.javatpoint.com/what-is-parallel-computing
https://doi.org/10.1145/1562877.1563044
https://doi.org/10.1145/1562877.1563044
https://doi.org/10.1145/1562877.1563044
https://doi.org/10.1006/jpdc.1994.1099
https://doi.org/10.1006/jpdc.1994.1099
https://doi.org/10.1006/jpdc.1994.1099
https://doi.org/10.1145/1654059.1654113
https://doi.org/10.1145/1654059.1654113
https://doi.org/10.1145/1654059.1654113
https://doi.org/10.1145/1654059.1654113
https://doi.org/10.1109/71.80120
https://doi.org/10.1109/71.80120
https://doi.org/10.1109/71.80120
https://www.mcs.anl.gov/~itf/dbpp/text/node17.html
https://www.sciencedirect.com/topics/computer-science/single-instruction-single-data
https://www.sciencedirect.com/topics/computer-science/single-instruction-single-data
https://www.sciencedirect.com/topics/computer-science/single-instruction-single-data
https://doi.org/10.1109/proc.1966.5273
https://doi.org/10.1109/proc.1966.5273
https://doi.org/10.1109/proc.1966.5273

Bibliography 179

[67]

[68]

[69]

[75]

[76]

(78]

URL: https://www.ece.ucdavis.edu/~jowens/171/lectures/
dlp3.pdf.

Types of parallelism in processing execution. URL: ht tps: //www. tutorialspoint.
com/types-of-parallelism-in-processing-execution.

UrL: https : / /www . inf . ed . ac . uk / teaching / courses /pa/
Notes/lecture02-types.pdf

NVIDIA. Fermi, the NVIDIA CUDA Architecture. 2021. UrL: https : / / docs .
nvidia.com/cuda/cuda-c-programming-guide/index.html#
fermi-the-nvidia-cuda-architecture

NVIDIA Corporation. Programming Guide for CUDA C++. 2019. urL: https: //
docs.nvidia.com/cuda/.

Matt Pharr and Greg Humphreys. Physically Based Rendering: From Theory to Imple-

mentation. Morgan Kaufmann, 2016.

CUDA Toolkit Documentation. NVIDIA Corporation. 2021. urL: https: //docs.
nvidia.com/cuda/.

UrRL: https://images.nvidia.com/aem-dam/en-zz/Solutions/
geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-
wWhitepaper-v1.pdf

Kernel Profiling Guide. urL: https://docs.nvidia.com/nsight-compute/
ProfilingGuide/index.html.

Mike O'Connor et al. “Fine-grained DRAM”. In: Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, Oct. 2017. por: 10 . 1145/
3123939.3124545. ur: https://doi.org/10.1145/3123939.
3124545.

URL: https://www.nvidia.com/content /PDF/fermi_white_
papers /NVIDIA_Fermi_Compute_Architecture_Wwhitepaper.
pdf.

Dr Ranjani Parthasarathi. Computer architecture. 2018. URL: https://www. cs.
umd. edu/~meesh/411/CA-online/chapter/exploiting-data-
level-parallelism/index.html.

Cuda Refresher: The Cuda Programming Model. 2023. urL: https: //developer.
nvidia.com/blog/cuda-refresher-cuda-programming-model/.

Mark Gebhart et al. “Energy-efficient mechanisms for managing thread context in
throughput processors”. In: Proceedings of the 38th annual international symposium
on Computer architecture. ACM, June 2011. por: 10.1145/2000064.2000093.
urL: https://doi.org/10.1145/2000064.2000093.

https://www.ece.ucdavis.edu/~jowens/171/lectures/dlp3.pdf
https://www.ece.ucdavis.edu/~jowens/171/lectures/dlp3.pdf
https://www.tutorialspoint.com/types-of-parallelism-in-processing-execution
https://www.tutorialspoint.com/types-of-parallelism-in-processing-execution
https://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture02-types.pdf
https://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture02-types.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#fermi-the-nvidia-cuda-architecture
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#fermi-the-nvidia-cuda-architecture
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#fermi-the-nvidia-cuda-architecture
https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://doi.org/10.1145/3123939.3124545
https://doi.org/10.1145/3123939.3124545
https://doi.org/10.1145/3123939.3124545
https://doi.org/10.1145/3123939.3124545
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.cs.umd.edu/~meesh/411/CA-online/chapter/exploiting-data-level-parallelism/index.html
https://www.cs.umd.edu/~meesh/411/CA-online/chapter/exploiting-data-level-parallelism/index.html
https://www.cs.umd.edu/~meesh/411/CA-online/chapter/exploiting-data-level-parallelism/index.html
https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/
https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/
https://doi.org/10.1145/2000064.2000093
https://doi.org/10.1145/2000064.2000093

180 Bibliography

[81] M. Abdel-Majeed and M. Annavaram. “Warped register file: A power efficient register
file for GPGPUs”. In: 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA). IEEE, Feb. 2013. por: 10. 1109 /hpca . 2013 .
6522337.vrL: https://doi.org/10.1109/hpca.2013.6522337.

[82] US20110161616A1 - On Demand Register allocation and deallocation for a multithreaded
processor.URL: https://patents.google.com/patent/US20110161616A1/
en.

[83] John Kloosterman et al. “Regless”. In: Proceedings of the 50th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. ACM, Oct. 2017.po1: 10.1145/3123939.
3123974.vrL: https://doi.org/10.1145/3123939.3123974.

[84] urL:https://docs.nvidia.com/gameworks/content/developertools/
desktop/analysis/report/cudaexperiments/kernellevel/
achievedoccupancy.htm.

[85] Stephen M. Trimberger. “Three Ages of FPGAs: A Retrospective on the First Thirty
Years of FPGA Technology”. In: Proceedings of the IEEE 103.3 (Mar. 2015), pp. 318-331.
por: 10.1109/jproc.2015.2392104. vrL: https://doi.org/10.
1109/jproc.2015.2392104.

[86] LakshmiN. Chakrapani etal. “Trimaran: An Infrastructure for Research in Instruction-
Level Parallelism”. In: Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2005, pp. 32-41. por: 10 . 1007 /11532378 _4. urL: https://doi.org/
10.1007/11532378_4.

[87] urL: https://www. etp4hpc.eu/pujades/files/ETP4HPC_WP _
Heterogeneous-HPC_20220216.pdf

[88] Gregory Gailliard et al. “Transaction Level Modelling of SCA Compliant Software De-
fined Radio Waveforms and Platforms PIM/PSM”. In: 2007 Design, Automation &
Test in Europe Conference & Exhibition. IEEE, Apr. 2007. po1: 10.1109/date.
2007 . 364418. urL: https://doi.org/10.1109/date. 2007 .
364418.

[89] TY.Morad et al. “Performance, Power Efficiency and Scalability of Asymmetric Clus-
ter Chip Multiprocessors”. In: IEEE Computer Architecture Letters 5.1 (Jan. 2006), pp. 4—
4.po1: 10.1109/1-ca.2006.6.vrL: https://doi.org/10.1109/1-
ca.2006.6.

[90] R. Kumar et al. “Processor Power Reduction Via Single-ISA Heterogeneous Multi-
Core Architectures”. In: IEEE Computer Architecture Letters 2.1 (Jan. 2003), pp. 2-2.
por: 10.1109/1-ca.2003.6.vrL: https://doi.org/10.1109/1-
ca.2003.6.

https://doi.org/10.1109/hpca.2013.6522337
https://doi.org/10.1109/hpca.2013.6522337
https://doi.org/10.1109/hpca.2013.6522337
https://patents.google.com/patent/US20110161616A1/en
https://patents.google.com/patent/US20110161616A1/en
https://doi.org/10.1145/3123939.3123974
https://doi.org/10.1145/3123939.3123974
https://doi.org/10.1145/3123939.3123974
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://doi.org/10.1109/jproc.2015.2392104
https://doi.org/10.1109/jproc.2015.2392104
https://doi.org/10.1109/jproc.2015.2392104
https://doi.org/10.1007/11532378_4
https://doi.org/10.1007/11532378_4
https://doi.org/10.1007/11532378_4
https://www.etp4hpc.eu/pujades/files/ETP4HPC_WP_Heterogeneous-HPC_20220216.pdf
https://www.etp4hpc.eu/pujades/files/ETP4HPC_WP_Heterogeneous-HPC_20220216.pdf
https://doi.org/10.1109/date.2007.364418
https://doi.org/10.1109/date.2007.364418
https://doi.org/10.1109/date.2007.364418
https://doi.org/10.1109/date.2007.364418
https://doi.org/10.1109/l-ca.2006.6
https://doi.org/10.1109/l-ca.2006.6
https://doi.org/10.1109/l-ca.2006.6
https://doi.org/10.1109/l-ca.2003.6
https://doi.org/10.1109/l-ca.2003.6
https://doi.org/10.1109/l-ca.2003.6

Bibliography 181

[91]

[93]

[96]

[97]

[101]

S. Balakrishnan et al. “The Impact of Performance Asymmetry in Emerging Multicore
Architectures”. In: 32nd International Symposium on Computer Architecture (ISCA'05).
IEEE. por: 10 . 1109 /isca . 2005. 51. urL: https://doi. org/10.
1109/isca.2005.51.

Asymmetric multiprocessing on heterogeneous multiprocessor systems. 2022. UrL: ht tps :
//www.variscite.com/blog/asymmetric-multiprocessing-
on-heterogeneous-multiprocessor-systems/.

URL: https://www.nvidia.com/content/dam/en-zz/Solutions/
design-visualization/productspage/quadro/quadro-desktop/
quadro-volta-gv100-data-sheet-us-nvidia-704619-r3-
web . pdf.

NVIDIA Quadro: Professional Graphics Cards. https://www.nvidia.com/
en-us/design-visualization/quadro/. Accessed: March 25, 2023.

What’s the difference between GeForce and Quadro Graphics Cards? URL: https :
/ /www . engineering . com/ story /whats - the - difference -
between-geforce-and-quadro-graphics-cards.

M. Graham Lopez et al. “Examining recent many-core architectures and program-
ming models using SHOC”. In: Proceedings of the 6th International Workshop on Per-
formance Modeling, Benchmarking, and Simulation of High Performance Computing
Systems. ACM, Nov. 2015. por: 10.1145/2832087.2832090. urL: https:
//doi.org/10.1145/2832087.2832090.

Milind Kulkarni et al. “Lonestar: A suite of parallel irregular programs”. In: 2009 IEEE
International Symposium on Performance Analysis of Systems and Software. IEEE, Apr.
2009.po1: 10.1109/ispass.2009.4919639. urL: https://doi.org/
10.1109/ispass.2009.4919639.

Shuai Che et al. “Rodinia: A benchmark suite for heterogeneous computing”. In: 2009
IEEE International Symposium on Workload Characterization (ISWC). IEEE, Oct. 2009.
por: 10.1109/iiswc.2009.5306797. urL: https://doi.org/10.

1109/iiswc.2009.5306797.

John Stratton et al. “Parboil: A Revised Benchmark Suite for Scientific and Commer-

cial Throughput Computing”. In: (Mar. 2023).

Intel® Quartus® prime software features partial reconfiguration: ... urL: https://
www.intel.com/content/www/us/en/software/programmable/
quartus-prime/partial-reconfiguration.html.

URL: https://www.microsoft.com/en-us/research/wp-content/
uploads/2016/02/prtutorial_1.pdf

https://doi.org/10.1109/isca.2005.51
https://doi.org/10.1109/isca.2005.51
https://doi.org/10.1109/isca.2005.51
https://www.variscite.com/blog/asymmetric-multiprocessing-on-heterogeneous-multiprocessor-systems/
https://www.variscite.com/blog/asymmetric-multiprocessing-on-heterogeneous-multiprocessor-systems/
https://www.variscite.com/blog/asymmetric-multiprocessing-on-heterogeneous-multiprocessor-systems/
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-volta-gv100-data-sheet-us-nvidia-704619-r3-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-volta-gv100-data-sheet-us-nvidia-704619-r3-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-volta-gv100-data-sheet-us-nvidia-704619-r3-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-volta-gv100-data-sheet-us-nvidia-704619-r3-web.pdf
https://www.nvidia.com/en-us/design-visualization/quadro/
https://www.nvidia.com/en-us/design-visualization/quadro/
https://www.engineering.com/story/whats-the-difference-between-geforce-and-quadro-graphics-cards
https://www.engineering.com/story/whats-the-difference-between-geforce-and-quadro-graphics-cards
https://www.engineering.com/story/whats-the-difference-between-geforce-and-quadro-graphics-cards
https://doi.org/10.1145/2832087.2832090
https://doi.org/10.1145/2832087.2832090
https://doi.org/10.1145/2832087.2832090
https://doi.org/10.1109/ispass.2009.4919639
https://doi.org/10.1109/ispass.2009.4919639
https://doi.org/10.1109/ispass.2009.4919639
https://doi.org/10.1109/iiswc.2009.5306797
https://doi.org/10.1109/iiswc.2009.5306797
https://doi.org/10.1109/iiswc.2009.5306797
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/partial-reconfiguration.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/partial-reconfiguration.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/partial-reconfiguration.html
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/prtutorial_1.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/prtutorial_1.pdf

182 Bibliography

[102] Gabriel Fornari and Valdivino Alexandre de Santiago Junior. “Dynamically Recon-
figurable Systems: A Systematic Literature Review”. In: Journal of Intelligent &
Robotic Systems 95.3-4 (Aug. 2018), pp. 829-849. por: 10.1007/s10846-018 -
0921-6.vrL: https://doi.org/10.1007/s10846-018-0921-6.

[103] Jayshree Ghorpade et al. GPGPU processing in Cuda Architecture. 2012. urL: ht tps:
//arxiv.org/abs/1202.4347.

[104] Cuda FAQ. 2021. urL: https://developer.nvidia.com/cuda-fagq.

[105] Nvidia Technologies amp; Architectures. UrRL: ht tps://www.nvidia.com/en-
us/technologies/.

[106] uUrL:https://images.nvidia.com/aem-dam/Solutions/geforce/
ada/nvidia- ada - gpu- architecture . pdf ?ref =jan- eric-
schafrich.

[107] Zia Abbas and Mauro Olivieri. “Impact of technology scaling on leakage power in
nano-scale bulk CMOS digital standard cells”. In: Microelectronics Journal 45.2 (Feb.
2014), pp. 179-195. por: 10.1016/j .mejo.2013.10.013. urL: https:
//doi.org/10.1016/j.mejo.2013.10.013.

[108] D. Lustig and M. Martonosi. “Reducing GPU offload latency via fine-grained CPU-

GPU synchronization”. In: 2013 IEEE 19th International Symposium on High Perfor-
mance Computer Architecture (HPCA). IEEE, Feb. 2013. por: 10 . 1109 / hpca .
2013 .6522332. urL: https://doi.org/10.1109/hpca.2013.
6522332.

https://doi.org/10.1007/s10846-018-0921-6
https://doi.org/10.1007/s10846-018-0921-6
https://doi.org/10.1007/s10846-018-0921-6
https://arxiv.org/abs/1202.4347
https://arxiv.org/abs/1202.4347
https://developer.nvidia.com/cuda-faq
https://www.nvidia.com/en-us/technologies/
https://www.nvidia.com/en-us/technologies/
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf?ref=jan-eric-schafrich
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf?ref=jan-eric-schafrich
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf?ref=jan-eric-schafrich
https://doi.org/10.1016/j.mejo.2013.10.013
https://doi.org/10.1016/j.mejo.2013.10.013
https://doi.org/10.1016/j.mejo.2013.10.013
https://doi.org/10.1109/hpca.2013.6522332
https://doi.org/10.1109/hpca.2013.6522332
https://doi.org/10.1109/hpca.2013.6522332
https://doi.org/10.1109/hpca.2013.6522332

	Declaration of Authorship
	Acknowledgements
	Εκτεταμένη Ελληνική Περίληψη
	Εισαγωγή
	Θεωρητικό υπόβαθρο
	CUDA
	Στάδια διοχέτευσης των SM
	Aναδιαμορφώσιμες αρχιτεκτονικές
	Ετερογενείς αρχιτεκτονικές
	Accel-Sim
	Οι δομές του LOOG και οι τροποποιήσεις στον GPGPU-Sim
	Ανασκόπηση ετερογενών και αναδιαμορφώσιμων αρχιτεκτονικών
	Λεπτομέρειες υλοποίησης
	Αξιολόγηση της αναδιαμορφώσιμης αρχιτεκτονικής
	Συμπεράσματα και μελλοντικές επεκτάσεις

	Μελλοντικές επεκτάσεις

	Introduction
	The modern hardware accelerator landscape
	The end of the scaling laws
	High Performance Computing
	General-Purpose GPU

	Reconfigurable and heterogeneous architectures
	Light-Weight Out-of-Order GPU (LOOG) execution scheme
	Proposal Overview
	Contributions
	Thesis structure

	Background
	Introduction
	Parallel computing
	Fundamentals of parallel computing
	Taxonomy of parallel computing architectures
	Composite types of parallelism in applications

	GPGPU Programming model
	Architecture of the GPU
	High-level architecture
	Cache architecture
	Pipeline stages
	Parallelism exploited by the GPU
	Kernel execution sequence

	Reconfigurable architectures
	Heterogeneous architectures
	GPGPU-Sim pipeline model
	Accel-Sim
	Nvidia Quadro GV100 key features
	Workloads
	Benchmark suites used
	Elaborating on the Rodinia benchmark suite

	LOOG components and modifications implemented

	Prior Art
	Introduction
	Characterization of workloads
	"Whole Picture Characterization"

	Prior Art regarding reconfigurable and heterogeneous architectures
	Further classification of reconfigurable architectures
	Related work on heterogeneous and reconfigurable architectures
	Reconfigurable GPU architectures

	Implementation Details
	Introduction
	Workload stalls analysis
	Workload characterization and exploitable ILP analysis
	Rodinia - Back propagation

	Performance modelling
	Power modelling
	Changes implemented
	Leakage and Dynamic power modelling
	Accelwattch configuration

	Right-sizing LOOG on NVIDIA Quadro GV100
	Register Renaming Stack
	Instruction Window
	Operand Collector

	Accommodating LOOG on the front-end of NVIDIA Quadro GV100
	Fetch-Decode stage Bandwidth study
	Issue scheduling depth study
	Instruction Buffer reconfiguration

	Out-Of-Order reconfiguration
	Observations leading to Collector Unit reconfiguration
	Behavior of individual kernel launches with LOOG
	Figures of merit used in our analysis
	Classifying the types of reconfiguration examined
	Optimal configurations
	Predicting optimal configurations at runtime
	Hardware reconfiguration controller design
	Power gating reconfiguration overhead estimations

	Speculating on other axes of reconfiguration
	Fine-grain Caches and Execution Units scaling
	Component scaling design space

	Evaluation of the OOO reconfigurable microarchitecture
	Right-sizing the reconfigurable Operand Collector
	Software reconfiguration
	Static reconfiguration
	Semi-Dynamic reconfiguration
	Static reconfiguration across clusters of applications

	Hardware reconfiguration controller
	First-launch reconfiguration
	Static reconfiguration

	Conclusions and Future Work
	Conclusions
	Future work

	Source Code
	Source code repository
	Original License

	Bibliography

