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ITepiAndm

H otfopdmmro twv govtéhwy Opoaone Troroylotdv elvon éva Waitepa xowvd {Atnua otn PiBhoypopia, -
dixdtepa Bedouévou Tou auiavépevou pdAou Tou aUTd amoxToUV GE €val EUPU QACHO TOUEWY OTN CUYYEOVN
xowwvia. Ilpoxewévou va eymotevdolye T anopdoelc toug mpénel va e&oc@aiicovue Ty odlomotion Toug
OTAY QUTA YENOWOTOLOVVTOL OE TRAYUATIXG GeEVApLaL, xS oL TNV Blapdveld Toug, €10l WoTe Vo ano@euy Yol
ohédplor Addn xou vor umopolv vor mapdyovTal Yehotuec epunvelec oyetxd ue tn Aettoupyio Touc. Ewbixdtepa
OE EQUPUOYES TOU AELTOUEYOUY Ot eEMTEPIXOUC YWEOUC, OTWE Tol auTH-0dNyolueva autoxivita 1 To oUCTY-
portar Lovtavic TAOHYNONG, TO HOVTENX EVTOTULOUO) UVTIXEWEVGDY TEETEL VoL EYOUV TN SUVATOTNTA VA AELTOURYOUV
ATOTEAEOUATING YO CUCTNUOTLXG AXOUA XL XATw ond duouevels cuviixeg dmwe 1 Beoyn, To YoV, xdTw and
BlapopeTIXéC GUVINXES PWTIONOY, 1| O Teptntioels duchettovpyiog e€omMopol ou eledyouy Bopufo 1 Hohwaon
otnv exova. To cuyxexpévo npdBinua €xel ueretniel extevdde otn BBhoypapla, oo yio Tov Eviomopo
Avtixewévwy oo xar yio Ty To€wounon Ewdvev, wotéoo ye v elopon VEWY UOVTEAWY TOU ETLTUYYEVOUV
ohoéva xou UPmAdTepeS anodOaELS, Lol aVoAUTIXY UEAETY elvor amapaiTnTy.

Ye avth v epyaoio npoceyyilouvpe to cuyxexpluévo {htnua alohoydvtog o o olyypova cuoTiuota Ev-
TOTIOUOU AVTIXEWEVWY GE €val GOVORO AAROLWUEVKY ELXOVWY X0 GTY) GUVEYELX EPUNVEVOVTAS TNV an6d0GT TOUg,
AEYIXA YENOWOTOUOVTAC VO GUVORO VEWYV ELOXE XUTACHEVUCUEVWY UETELXWY Tou Bacilovtol otny petpnr) AP,
X0l GTY) CUVEYELDL OTITIXE X0l TTOCOTIXE YENOLWOTOLOVTAS TNV TexVixt| Twv Xaptdv EEoyrc. Ilapouvoidlovue 18
cUvoha Bedouévwy, xadéva and ta onola mepthauPBdvel oAlowwuéveg exdoyéc tou ouvohou dedouévev COCO.
Kdde cbOvolo mepiéyel mévte vnoclvora: Tig opyixéc 5.000 exdveg aANOLWUEVES UE Uiot DLOPOPETLXOD TUTOU
alholwon 1 onola €yel epopuooTel ye éva auéavouevo eninedo opodpdtntag. Oo YeNoILoToCOVUE AUTY TA
cUvoha Sedopévwy mpoxelwévou vo adlohoyfooupe 0 oTPopdtnta Twv Tedeutaiwy poviéhwy YOLO xou tou
povtéhou Mask R-CNN, avollwvtog Ty nteon otny anédooy| toug Yo xdie tono alholwone, xadde yiveton
o évtovn. Auth n allohdynon Yo npaypatonomiel ypnowonowdvtas ) petew; mAP xau ewodyovtac éva
GUVORO VEWY UETEXDY TIOU €YOLV XATACKEVAOTEL EWBXE YLoL T1) SOUT) TWV TEROUATWY U, XATd TNV onola 1 év-
Toon NS ahholwong avdveton oe enineda. Mtn cuvéyeta o e€dyoupe Toug Xdptee E€oyrg v éva unochvolo
ATV TWV AAAOLOCEWY, TPOXEWEVOU VO ATOXTHCOUUE OTTIXY XATAVONOT| TOU TEOTOU TOU AUTA TOL LOVTENS Ao~
Bdvouv anogdoelg, xou nwe autdg ennpedleton. Téhog, npotelvouue €va GUVONO UETEIXMY UE GXOTIO VoL ELGAYOUUE
TOCOTIXY) OXOTIA OTOUC XUTd To dAAa omTixole Xdpteg EEoymc, xou va nopatnericouvue mo xadapd Tig ahhayég
Toug avdroya pe tov TOmo e alholwong xar Ta eninedo o@odpdtnros. Katapépope vo e€dyoupe xdmoleg
evdlapépouceg eppunveleg xou UTOVETELC BACEL TWVY ANOTEAECUATWY TWV TELRUUATWY UOS, XL TOUTOY POV VoL CUVE-
LOQEQOUNE UE TN LOPPT] HEPIXWY VEWY AAAOLOCEWY XAl HETELXMY, OAAG X0 VA TEOTEIVOUUE XATOIEC UEAAOVTIXES
%TELYOVOELC YLl TN CUVEYLOY] TOV TEOCTIIELDY HOG TTOU QOVOVTAL UTOCY OUEVES.

AgZeigc Khewdd — Evtomopde Avireévoy, Talivéunon Ewodveyv, Ltfapdtnta, Alowwoelc Ewdvwy,
Xéptee E€oyhe, YOLO, R-CNN






Abstract

Robustness of Computer Vision models is an ever-present issue in the literature, especially given the increasing
role these models are playing in a wide range of domains in modern society. If we are to trust their decisions
we need to ensure their reliability when deployed in real world scenarios, as well as their transparency, in
order to be able to detect and prevent errors and offer valuable explanations regarding their way of operating.
Especially in applications that operate in the outside world, such as self-driving cars or live navigation systems,
object detectors need to be able to perform consistently even under conditions of heavy rain, snow, in different
lighting conditions, or in cases of equipment malfunction that introduce noise or blur in the image. This
problem has been studied extensively both in Image Classification and Object Detection, however with the
influx of new state of the art Object Detectors, an analytical evaluation in neccessary.

In this thesis we approach this issue by evaluating the most modern Object Detection models on a set of
corrupted images and then by interpreting their performance first using a set of custom metrics based on AP
score and then visually and quantitatively using the technique of Saliency Maps. We present 18 datasets,
each containing different corrupted versions of the COCO validation set. Every dataset contains five subsets:
the original 5.000 images corrupted with a different corruption applied with increasing severity over a range
of five levels. We will be using this dataset to evaluate the robustness of the newest YOLO object detectors
and the Mask R-CNN object detector, by analysing the drop in performance for each corruption, as it gets
more severe. This evaluation will be performed using the mAP score metric and by proposing a new set
of metrics that are more tailored to our experimentation framework of increasing the severity level of the
corruption. Next, we will be extracting the Saliency Maps for a subset of these corruptions, in order to gain
a visual understanding of the way the models’ decision making process is affected, and lastly we propose a set
of metrics to attempt to insert a quantitative aspect to the otherwise qualitative visual saliency maps, and
observe their fluctuations along with the corruption types and severity levels. We are able to formulate some
interesting hypotheses and interpretations based on the results of our experiments, while also contributing a
few new corruptions and metrics, and also proposing some promising future steps to continue our efforts.

Keywords — Object Detection, Image Classification, Robustness, Image Corruptions, Saliency Maps,
YOLO, R-CNN






Euyaplotieg

O fideha vo evyaploTow Tov emPBAEnovTd wou, x. T'edpyo Etduou, yia Ty euxonplor vo evioyded oto ep-
yoo thetd Tou, vo uddn xou va eEey Ay . Oa fideha eniong vo euyapiothow Ty Maplo Avurtepaiou yia Ty ToAD-
TN xadod1yNoT, UTOUOVY XaL UTOG THRIEN TTOU 0L TPOGEPERE GTO TEPLTETEMOES AUTO BIACTNUA TNG EXTOVNONG
aUTAC TN epyaoiog.

Téhog o deha vor e €var TERAGTLO ELYAPLOTE) OTNV AYATNUEVY) LOU OLXOYEVELX, TOUG YOVELC LOU Xal TOV adeppd
pou, xadde N aydmn xou 1 otAREY Toug Atav meplocdTeR and 6Tt Yo unopoloe vo {nthoel toté xavelc. To
HEYOAUTERO OUWE EUYAPLOTY (owe To ogeihw oTov Atovior, mou uniple Bpdyoc Yo péva and Ta mpwta BrdoTa
TOU axadNUaixoy wou Tafidtol uéyet tar teheutala, xadog elyar BEBoun 6Tl Bev Yo elyo xotapépet va Bploxouon
£0¢) ofuepa Ywplg exelvov. I'Voutd tov Adyo Tou aglep®dvey auTh TN SIMAOUATIX, XadtS TOU OPeihe To TavTd,
%ol Tou gdyopat eutuyia 6TO XouvolpYlo Tou Tag(dL.

Kooxwviatn Evayyella, Mdptiog 2023
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CHAPTER 1.

EKTETAMENH IIEPIAHVH XTA EAAHNIKA



1.1. ©OEQPHTIKO TITOBAGPO 1
1.1 Oewpentixd TroPadeo

1.1.1 ’'Opaocr YrohoyioTtwyv

O pohoc e Teyyntie Nonpoolvne ot cbyypovn xowvwvia eivor TAéov ablop@loPBhtnToc xat ohoéva auoavo-
HEVOC OE €VOL EVIUTWOLOXG EVPOC XAGDBWY, omd yevxol¢ Touelc omwe N culhoyioTixh xou 1 avtiindn, uéyel
ouyxexpWévee egopuoyéc otny lateuy, T Nowx 1} tnv autdvour odrynor. H dieloduon twv povtéhwy Teyv-
i Nonpoolvne, xaw ouyxexpuyéva Mnyavifc Mddnong, otn hettoupyio xar tn dadixosio Mne anogpdoewy
TV TWV XAEBWV TROCPEREL AheTal 0QEAN OTLC aENUEVES Toy OTNTES, auToUaToToiNoY, axp(Bela xou UeLwPévo
%x60T0¢ o€ dldopes Bladixacles, wot6co 1 avEavouevne onuaciag ano@doelc mou avolopfdvouy to AdBouy
evelpouv {Intruata acgdietag xan oTfopdtnrag. o 6houg Toug mopamdvey Adyoug, to wovteha Mnyavixnc
Mdrinong dev unopolv va Aettovpyoly Théov oav podpot XOUTLE, oAAG efval ETITOXTIXY 1 AvVAYXY ElCUYWYNC OL-
apdveloc oTr Aeltovpyia TOUC TEOXEWEVOL Va elval BUVITOC 0 EXEYYOC TWV ATOTEAEOUATWY TOUG TTPOS AMOPUYT
A0y xon mpog adénom TNe EPTLOTOCUYNS TOL X0tvol PO AUTA.

H 'Opaon Troroyiowodv (Computer Vision) elvon évag omd toug onuavtixdtepoug touelc e Teyvntic Nonuooivng
TIOU GTOYEVEL GTNV TPOGOUOIGT) TOL AVIPMTLVOU GUC THHATOS GPACTEC X0 XUTAVONONS GE UTOAOYLOTIXE UG TH-
pato.  Xtov muphva g PBeloxeton n avdmtuén xou 1 ovdAuor odyoplduwy mou umopodv va avahboouy, va
eneepyYAoTOUY XOU VoL EPUNVEVGOUY Nplaxés edveg xou axohovdies PmpLoaxody exdvwy xat va eEGyouY ouoLOOT
oupnepdopota yioo autés. O egapuoyéc tng ‘Opaong Tmohoyiotdv xahOTTouy €va eUpl QAcUA TOUEwY, amd
v Tty 6mou adydprduol xaholvtar Vo avahdoOUV EIXOVES LATEIXTG ATEXOVIONG Xak VoL evToTicouy Tdoveg
acéveleg oe autd (tpooVeTn| 6poom), €m¢ TNV awtdvoun odfRynar, émou akydplduol eivon utedduvol yio Tov
EVTOTUOUO XOL TNV OVALY VOPLOT| AVTIXEWWEVWY 0ToV Bpduo, 6mwe nelolc, ofjpata ¥ dila oyfuota. Bdoel avtov
TV TopadelyUdTwy yivetar mpogavic 1 VLo TN onpacio TN XATOYUEKOTS TNE ACPAUAOUE AELTOLEYING AUTHOY TWV
HOVTEAWY.

Ané autd ta Inripara xer exxohagel o topéac e Enednyfownc Teyvnuic Nonuooivne (Explainable Al +
adde XAI), o onolog eotidler otn dnurovpyia EUmoTwY Xat Bidpavwy LOVTEAWY TOU UTopoly Vo epunveudoly
amo avipnnoug, napéyovTag eENYNOELS Yiot TOV TPOTIO TOU AELTOURYOUY Xol TLE ATOGAELS Tou hauBdvouy. Xe auth
Vv xotnyopio evidooeton, uetald SAAWY, 1 uerétn e oTBapdtniac (robustness) Twv poviéhwy Mnyavinhc
Mddnong, n omola agopd v adloAdynon tng anddoong xar Tng oo TS TOUC OE BLUPORETINES CUVIXES
hertoupylag, eldindtepa oe GUVIAXES TOU BEV €YOLV AVTWUETWRICEL XaTd TNV exnaldeucr) Touc. H perétn g
otopdtnrog evog poviéhou pnogel vo fondicel oty avory vidplon aduVoLe)Y, TPOXUTUAAPEWY ¥ XEVEOY TNV EX-
TalBeuom Tou xou Vo TpocpEpel Ui xadoupdTepn uatid ot Swdxacio AMng anogdoewy Tou. Trdpyouv didpopot
TeoéTOL PE TOoLC omoloug ueketdtal 1 oTapdTnTa PovTédwy Mnyavixic Mdidnone ta tehutala ypdvia, 6mwC oL
Avraywviotixéc Emdéoeic (Adversarial Attacks), n Avéiuon Evoaodnoioc (Sensitivity Analysis), oo MetaBohéc
Kartavourc (Distribution Shifts) »Ar.

Yxonde g epyaoioc authc elvon 1 de€odixn perétn tne otPopdtnroc poviédwy Evtomopod Avuxeévwy
(Object Detection models) anévavtt oe odholwPéveS eLodBoue Pe TN XeNOoN DAPOPWY TEYVIXDY, TEOXEWLEVOU VOl
eVTomoTOLY UV aduvauies ¥ npoxatarelc oTov TpdTo Tou Aettoupyolv. Xuyxexpluéva, du afloloyntodv
oL o clyypeovol ohybdprduol eVIOToHOL avTXelévwy amd Ti¢ dUo Baoxés xatnyoplec: evdg atadlou xou dbo
oTadleV xaL oTr cLVEYELX Ta anoTEAESHATA AUTA Yo avaAuloly oe peyahiTepo Bddog xou and SLaPopETINT OXOTILY
pe ™ yeron twv Xoptodv EZoyrc (Saliency Maps).

1.1.2 Evitomiopdc AvIXElhEvwY

O Evtomopoc Avtixeyévay eivon pio omo Tig Baocixdtepes epyaoieg tou topéa g ‘Opaone Trohoylo v xau tep-
LhaBAVEL TOV EVTOTUOUS XOL TNV AVAYVORLOY) OPLOUEVKY XAACEWY AVTIXEWEVKY Ot exdveg xal Bivieo, enopévwg
pnopel va avahudel oe autée Tic 800 Umb-epyaoiec: Tov eviomioud g VEONE EVOC AVTIXEWEVOL OE [LoL ELXOVOL
péow Tou xadoplopol evée nepLypdppatoc cuvtetaypévwy (bounding box), To onolo gpdooel T dpla oo omoia
rep auBdveTon To avTixelyevo, xal Ty TaEvouncy| Tou ot uio tpoxadoplouévn XAJoY oVTIXEWEVOU.
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Figure 1.1.1: Evtomopog Avuxeévwy pe Heprypdupato Yuvtetayuévewy

Ou emixpatéotepeg pédodol mou yenoylomoolvton yio Ty emthuon awtolb Tou mpoBifuatog opillouv €va Bi-
Y WPLOUO AVHUECO GTOL LOVTERX TIOU YENOULOTOLOUVTOL, Ta omtola Unopoly vo Tavountoldy e 6Uo xatnyopleg
olOUQLVAL YE TOV TPOTo Tov 10 TpooeyYilouv: Ta povtéha evée otadiou (one-stage object detectors) xan to pov-
éha dVo otadiwv (two-stage object detectors). Ta 800 oTédBia auTd avapépovTto GTNV Tapadoolaxy| TpOcEYYIoN
tou Evromiopol Avtixewévewy émou to povtého emiteholoe v epyaoia oe 800 Baowxd otddor Tty medtoom
TEPLOY Y eVBLapEpovTog (region proposal stage) xou TNy TaEVOUNOT TV AVTIXEWEVWY. LTO 6TEBL0 TNE TROTACTE
TEPLOY OV EVOLAPEPOVTOG TO UOVTENO Tapdyel éva oivolo utodhgiwy neploydv (candidate regions), otic onolec
umopel VoL TEPLEYOVTOL AVTIXEIUEVA, EVEK 0TO GTAB0 TNE TaEVoOUNONS TO WOVTEADO xotatdooel xadeulo ond auTég
TG TEPLOYES OE [Lol XNAOT avTLXEWWEVOL, eEQYOVTAS TOPIAANAAL TNV TUAVOTNTOL Vo TEPLEYETAL EVOL AVTIXELUEVO
oTNV TEPLOY T auTH, Xou Tpoodlopilel pe weyalbtepn axpifela Ty Tonodesia Tou avTiXEWEVOU.

S X S grid on input Final Detections

Class probability map

Figure 1.1.2: Awdwaocio Evtomiopol Avtixeéveny oe Abo Etddia

Enopévuc, ta povtéha mou avixouy otny xotnyopta auth evtomilouy to avuxelyeva péow authc e dwadxasiog,
oe avtiveon ye Ta povtéha evoc otadlov, Ta onola mpoBAémouy anculdelag Tor TEQPLYPAUUNTO CUVTETAYUEVOY Xal
T mbavotnes, ol onolec ovoudlovion mdavotntes xhdong (class probabilities), og évo pdvo "népaoua, ywplic
ONAUBY TO OTABLO TNE TUPAY WY T TEOTACEWY TEPLYPAUUUATOY cuVTETAYUEVWY. Ta neplocdTepa olYypovVa oVTEA D
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unopoly va TaEivoundolv oe ula and autég Tic 800 XATNYOopE(ES, UE T TLO SNUOPIAY) LOVTEN TOU OVAXOUY GTNVY
mpwTN xatnyoplo vor elvan tar povtéha g owxoyévelrg YOLO (You Only Look Once), mou mepthopBdvouy
TouNdytoTov 8 exBbotlc Tou ahyopiduou pe Tpoodeutixée Behtidoele xau Behtiotonoinoels [40], to povtéha tng
owovyévewe EfficientDet [47], to povtého SSD (Single Shot Detector) [25] xou tohh& dhha, evéd oTnv deltepn
xatnyopio xuplapyel 1 owxoyévewn twv R-CNN (Region-Based Convolutional Neural Networks) ohyopiQucwy
[14], mou amotehelton amd wa axohoudior poviédwy tov Basilovtar oty Bl apyh. Adyw e Paocic Supopdc
OTIC Py € AelTovpYiag TWV LOVTEAWY TTOU aviXOUV GTIG BU0 xatnyopieg autég, xodeulo TpOGPEREL BlopopeTIXd
o@EN avdhoya Ue TNV emduunTy Yeromn: To oviEha evOg oTadlou TapEYouv PeYoAUTERY TayUTNTA, Xadde Sev
draywpilouv ) dadixacio evtonioyol oe 300 oTEdLYL, YEYOVOS TOU Tal XoroTA LUVIXEL Yol XLYNTES EQUPUOTYES, EVE
Ta povTéla BUo atadinv €xouy younhotepn toydtnTa TEOBAEYEWY, TEOCPEPOUY WGTOGO YeyoullTepn axpifeta.

1.1.3 Xdptec EZoyng

Mua acépa évvola tou Yo ypnowponowmdel oe enepydueva xepdhana elvan 1 évvota twv Xaptdv E€oyrc, ol onolot
AmOTEAOUV Lol TEYVIXY OTTIXOTO(NOTE TOU YENOUWLOTOLE(TOL YIal VO ETLOTUAVEL TTOLEC TEPLOYES Xol ToLoL oToLyElal
elvan Tot o onpavTd, N e€€yovta, o wa exdva. H Baocud toug yenowdtnta €yxeitol TNy Xpnomn toug ot
perétn otBopdtntac poviéhwy Opaone TnoloyloTtdy, OToL YENCHLOTOLOOVTOL TPOXEWEVOL Vo EPUNVEVGOUV
T YOROXTNELOTIXG TG EWOVaE Elvon onuoavTixdTepa Yo To wovtého. ‘Evag ydetne eoync elvar évag ydptne
Yeppotnroc (heatmap), xdde etxovootolyeio Tou onolou teptéyel yior Ty, 1 onola avTinpocwredeL TN onuacio
TOU GUYXEXPLWEVOU elxovooTolyelou yia to povtého. Ou ydpetee eoync elvan xpiowune onuacioc epyohela ot
HEAETN OTRB0EOTNTOC HOVTEAWY EVIOTUGUOU AVTIXEWEVWY, xaL Oyt povo, xodng unepBaivouv tn Boaouxr pédodo
a&lohdynong mou Bacileton oe peTEiXég axpBelag, xaL emTEEROLY TNy ot eENYNoT TwV TEoBAédewy ue TpdTo
xovtv6 oty avipdmivy oxédn. Etot, éxouy ) duvatdtnta va avadel€ouy mol GUVOMXE YopaxTNELoTIXG Elvou
ONUAVTIXOTEPA OTOV EVTOTULOUS BLEPOpwY OVTIXEWWEVKDVY (YEOUO, XOUUATL TOU VTIXEWEVOL, XAT), TN onuacia
Tou TepBdhhovTog evie avixewévou (context clues) xadode xon mdovée Tpoxatalfdelc oTov TpdTO Aettoupyiug
ToUC (eZ€TUOT XAMOLOL CLUYXEXELIEVOL, aVaXEBOUC YUPUXTNELOTIXOD YIoL THY aVoy VORLOT] EVOS OVTIXELUEVOU).

Figure 1.1.3: opadeiypata Xoaptdv E€oynic [34]

O xadopiopde Tou T ouvioTd wa "eE€yovoa Teployn oe o exova BeV elvol aUGTNEOC, ETOUEVKC 1) dutovpyia
Yoty €€0yAg Yot HOVTEAD EVTOTUOHOD OVTIXEWWEVKY TpooeYYileton pe ToMhéC SapopeTinés pedddous. O mo
xotvég pédodol ovoudlovtar gradient-based, xou Bocilovron otov unoloylopd tou gradient tng e£6dou evog
povtéhou oe oyéon e v elcodo, To omolo ypnotuomoleiton TEAXE ooy UETEO Yl TN onuascia Tou xdde exovoo-
Totyelov g elo6dou oe oyéam e TNV €080, xaL 0 TEAXOC YAPTNS CUVAPUONOYELTAL OO TNV GUALOYT QUTMY TwWY
HETEWV YLor OAa T ecovooTolyela. Autég ol uédodol elvon edxoleg otny vhornoinor xou edxola ene&nyRoyles,
YeEYOVOC oL Bixouohoyel To eVPOC TNE YENONG TOUS, WOTOCO ANALTOVY YVOGCT| TNG ECWTEPLXNG HEYLTEXTOVIXAC TOU
HOVTEROU, TOV BoptdV Xl TV VEURKOV®Y TOU, TROXEWEVOL Vo UToAoYioouy Ta anatolueva gradients. {dotédoo,
N TEOSPucT) OTNY AEYITEXTOVIXY EVOC UOVTENOU Bev elvol TAVTA EQPLXTH, XU Yo QUTO TOV AGYO OVUTTUGGOV-
Ton oy prduot "wodpou xoutiod" yio TNy avdmtugn yapTtodv efoyfc. Autég ol uédodol dev amaTOUY YVHOGON TRV
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TOEAUETEWY EVOS LOVTENOU, ahAd efval YEVIXEOOUIES %O UTOROUV VoL EQUQUOCTOUY OF TEPIOOOTERA LOVTEAN Ywpelg
Tpomonoinon Tou oAyoplduou yia Vo TpocapUuoc el oV dpyltEXTOVIXY ToU povtéhou. Mia tétola mpocéyyion,
n omolo Yo vtodetndel xou yia Toug mEPAUATIONOVE TN CUYXEXPLEVNC epyaotac, elvar o alydprduoc D-RISE
[35]. Eta mhadowa autic tne pedddou, yenotponolodviar duadixéc udoxec (binary masks) nouv xohintouy pépoc
TN EOVOG Tou BEYETL WS €(0000 TO UOVTEND, %O TO TMEQLYPGUUOTA CUVTETAYUEVWY TOU TUPdYOVToL and TO
povtého pe Bdomn auth Ty elcodo cuyxplvovTol Pe Ta TEoYUoTiXd, Tor omola £xouv emonuovIel xatd T Bidpxela
NG XUTAGKEVYC TOL GLVOLOL Bedouévwy. Me Bdon auth tn Sopopd urohoyiletan éva Bapog yiot Tn CUYXEXEWEVN
BB Udoxa o 0 TEAXOC YdpTNG €0y M TPOXUTTEL WG TO GUPOLOUN TWV SUABIXMDY HAUCHMVE TOANATAACLIO-
pévwyv pe ta avtiotoya Bden. H ouyxexpiuévn uédodog @épel 10 TASOVEXTNUA TNG ALY VWO TIXOTNTUC AMEVOVTL
oTov TOTO TOU UOVTENOU, YEYOVOS TOL EMTEENEL TNV XeNHon NS yia TNV e€lynon twv npoBiédewv Sloupope-
TIXWY LOVTEAWY, T600 £VOC 600 xai 800 oTadiwy, Ye anotéheoua v anotehel yeriowo spyohelo otn yehétn ng
ouPBapotnTog xou TN alyxelon avdueoa oTic 800 Baouxés xatnyopieg HOVTEAWY EVIOTUOHO) AVTIXEWEVWY.

1.1.4 Mekétn XtiPopodnTog

H otuBapdtnta evée wovtéhou pnyovixAc uddnong ovagéeeton oTny LXAvOTATE TOU Vo TORAYEL CUCTNUATIXG
axplY) anotehéopata UTO BLapopeTixés ouviixes. Xta mAdiolo TNG GPUCTE UTOAOYLOTOV %ol ELBXOTEQO TOU
EVTOTUOUOU OVTIXEWEVLY, N oTBUpOTNTA EVOS OVTENOL UTtopel Vo 0ploTel we 1) LXavOTNTd Tou Vo evtomilel xou
VoL xoTnyoptonolel avtixelueva Ue ixavorountixn oxeifBeio und Ty napovaia YopiBwy, uetaBarldueveny cuvInxOY
PWTLORO0, EMXIALPNS Xl AWV TUEAYOVTIWY TOU UTOEOUY Vo ETNEEGGOUY TNV TOLOTNTH NS EXOVIS ELGOBOU.
Ot y€dodol mou ypnowlonotobvTon yio Th MEAETH TNE oTBapdtnTag otny PiBMoypeapio eivon ToIAES xou UTopoLY
VoL BLay wELOTOUV EUREWE OTLC TORAXATL XUTNYOplES:

o ANoiwon Ewxxdévev Ewcddou: M and 1 cuvniéotepec mpooeyyloelc otn perétn otufBopdtnrac
elvon 1 oAAolwom TN EwdVaE EL0GB0UL Ue BLAPopoug TOTOUE BLaTapay Y, OTwe YopuBog, FOAWGT), Blapopty
eV XAEIXES GUVUTXES OTWS YLOVL, Beoy T XAT, o 1 TapatienoT TNE Uelwong Tng anédoang Tou LOVTENOU
pe Bdon tov tomo e datopoyrc. H ouyxexpiuévn npocéyylon meoxUnTel QUOIXE TOpATNE®VTIS TIC OLd-
(POPES EPUPUOYES TV ahyopliuwy dpaone UTOAOYLO TGV oty clYYeovn xadnueptvdTnTo: oTNY auTdvoun
0dfynom 6mou to povtélo mou eivon unelduvo va evtonilet avtixelyeva 6nwe telole, dAho oy RuaTa, oot
xou dhhat eumddia Teémel var ebva eavd va topdyel axpiBelc meoBhédelc axdpa xou x84t amd viovo xatptxd
pouvoueva, ot Lotpd Bonintixd custhiuata xadodhyNone aToUwY UE TROBAAUATI OPUCTE, OE GUC THHUATA
acpodeloc x.0.x. Me tn povrehomoinor tng anddoong vnd autéc ¢ cuvinxeg, oxomndc elvon 1 egay-
WYY LOTBwY xan LTV YLoL TRV TTWOY NG anddoone Xl N TeoTaoy HeYddny yio TNV emdLopdwon auThg
e oduvopiag, elte péow npo-exnaidevone (pretraining) ¥ e ¥phion SUPOPETIXDV TEYVIXMY ETAOENOTNS
dedopévev (data augmentation).

o Enidéoeic Avtinadotntag: O bpoc emibéoeic avuimoddtnroc (adversarial attacks) avogépeton oe
€va GOVONO TEXVIXDV TOL YELPAYWYOUV TIG EXOVES ELGOBOU EVOS HOVTEAOU 6pUCTC UTOAOYLOTMY UE CUY-
xeEXPIEVO TeOTo Wote va "e€anathoouv" To yoviého, dnhadY| wote va e€dyel Aaviaouéveg npolAédels.
O pédodol autol Slapépouy amd TN Al ahholwon exdvwy, xone cuvidne ol uetoforéc oTic exdveg
elvon adLopateg yia évay avipnnivo topatnentr xou elvor fehtioTonomuéveg Mote Vo Tpoxaholy Aaviao-
pévar amoteréopota omd To Yovtéro. O embéoelc avtimahdtnog Yétouv mohd cofopd {nThuoto oyetixd
ME TNV AOQPAAELL YEHONS HOVIEAWY UNYOVIXAC UdUNoNG o TpaypaTind oevdpla, xowg eivol B0oxoko va
EVTOTOTOUY oOUaL ot LTS ovdpmivy entiBhedn xou Umopolv Vo TeoxahéGoUY XATUCTPOPIXES CUVETELES.
Emotpépovtog 610 mapddelyua Tng autévoung odhynong, wa entdeon avtinahotntog unopet vo e€anatroel
TO HOVTENO %O VoL TO 0BNYHOEL Vo Yewphoel Eva xdxxivo Qavdpl, Tedolvo, e anotélecpa Tr) dnuiovpyla
atuYNUdTwy. Enouévewe, n oTBopdTnTa TwV HOVIEAWY EVIOTOUOD AVTIXEWEVWY ATEVAVTL OE EMVECELS ov-
unohdtnTog anotele! éva {Atnpa Uiotng onpaoctac, ohhd xou avTixelyevo cuveyolc UehéTtne to TeheuTala
yeova. Ilpoxewévou va Bertiwidel n otPopdtnta evog YovTéAoU amévavTl ot emUECES AVTIUAOTNTOG,
gpeuyNTéC €youv emoTpatedoeL SLdpopec LedbdoUS GUUVOCS, OTWE 1) EXTIAUBEVCT| GE ELXOVES TOL €YOLV O~
howwdel avtayoviotixd (adversarially perturbed images) Tpoxeyévou To HOVTENO VoL €YEL TNV IXAVOTNTA
vou tapdryel opd anoteAéopaTa oxoUo Xou péoa and TG HETABOAES, 1) TUYALOTOINOT) OPIOUEVGY TOROUETEMY
TOU YOVTEAOU (OOTE Ol ETMTIIEUEVOL VO UNY amoxToLV eixohd Tedofact otov TeéTo Aettouvpylag Tou, 7
extevéotepn mpoeneéepyasio TG ElHO0U TEOXEWEVOU Vo apapedoly TUYOV CAAOUGELS GTNY ELXOVAL, UE
™ yenon elhteny agalpeong YopiBou xhm.

o MetoBoAiéc Katavopng: Xtov nmhaioia tng perétng ouBapdtnrag yio Loviéha Spaong UTOROYLOTOY Ol
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petaBoréc xatavouric (distribution shifts) cuvietolv éva evdiagépoy nedio, To onolo agopd oTny petoBoly
NG UTOXEIUEVNE XATAVOUNG TRV DEBOUEVWY GTO OTtolol EXTTUULBEDTNHE EVOL HOVTENO XATE TNV TEAYUITIXY TOU
xerion. Autd to gauvduevo pnopel va avapépetal oty e€€taon evdg aAyoplduou eVIOTLOUO) AVTIXEWEVKDY
og ewoveg Tou e aUPBdvouy oxnvég, avTixelueva, cLVINXEC QOTIOUOD, OXOU XL OTTIXES YWVIES, OL
ornoleg dev Bploxovton 6to cUVOLo dedouévwy ndvew oto omolo exnandeltnxe. Eldixdtepa oTov Toyéa tng
6pUONG UTOAOYLOTOV, OTOU Ta HOVTEAN YPNOLLOTOLOUVTOL Xt €0y O Tpaypatixéc cuviixes 6mou 1
XOUTAVOUT| TV OedOUEVWY BEV eYYUdTaL Vol Elvol TAVOUOLOTUTY PE aUTH TwV dedopévwy exmaldevong, 7
o€lomotia Toug €yxetton oe peydio PBodud oty oTBapdTnTd Toug AMEVOVTL Ot UETOBOAEC XOTAVOUTG.
Yougova pe v BPBMoypapla, 1 anédoor und tétoleg cuvirxec unopel va Bedtiwdel Eavd péow Tng
emadEnong Sedouévmv, TS YEHoNe TEXVIXMY UeTapopds Yvhone (transfer learning) xou dAAwv.

o Xdeteg EZoyng: Ou ydptec e€oyng elvon pia xowvr| uédodog mou aglonoleltol cUTTNUUTING xaTd TN
HEAETT O TBAUPOTNTAC HOVTEAWY HROUOTC UTOAOYLO TV, XIS OTWC ovapERUNXE TUPAUTEV®, TPOCPECOLY Uil
uédodo ontixonolnong tng "ouAloyio A" TOU UTOXELTAL TWYV anoPdoewy Toug. IIépa and T yprion Toug
otnv eppunvela Twv TEoBAédEny, TY avddelly) CUC TRATIXGY TEOXATUAPEWY Xol TOV EVIOTUOUO CUCTH-
HOTIXDY aBUVOILOY PE oxoTtd TNV BLopdwor| Toue, ol xdptec e€oync ypnotlonoolvTal Yot TNV TapaywyN
emdéoewy avTImaAOTNTOG Ol ontoleg Umopoly vo agonondoly oty avdntuln cUCTNUATOY GUUVIS omé-
vovtl Toug, YLl TOV eVTOTUOUS adldpatwy emIEcEwY, ohAd xou we epyoaheia enadEnong dedouévwy, xadwng
UTOPOUV VoL Topdyouy Ve delypota exnaldeuons Ye Baomn o oNUavTIXOTERO YOPUXTNEIC TXE TNG ELXOVAC.

1.2 Yvuveiocgpopd

Y ovyxexpévn epyaoto mpotelvouue éva mAdioto aflohdynone tne oTPopdtnToag Wac oelpdc LoviéAny Ev-
TOTULOUOU AVTXEWWEVRY eVOC Xat 800 O0TAdlwY ATEVaVTL G HANOLWHUEVES EIXOVES ELGOBOU, TPOXEWEVOU VoL BLAmLo T-
wUel ) TTOOoT TNC am6d001iC Toug o THavES va aroxakugdoly cuyxexpéva LotiBa avdloya ue to eldog Tng
ahholwons TS exxovoc.

To mhaicto autd anoteelton and Ty egapuoyn v woviéhwy YOLOvVS, YOLOv6, YOLOvV7 xa YOLOVS xou
tou povtéhou Mask R-CNN oe éva ahvoro 5000 ewdvwy, ol onoleg anotehoby to clvolo enoirdeucng Tou
ocuvéhou bedopévy MS COCO, otic onoleg €yel e@apuootel Eva cUVOAO 18 BlaPORETIXWY AANOUDOEWY OE b
aw&avoueva eninedo évtaong. Lt ouvéyela, 1 anédoon Twv povtéAny Yo avahudel ue Bdon vy axpeifeld toug,
xan tor amoteréapara Yo cuyxprioldy T6c0 avdueoa otig SlapopeTinég exddoelg Twv YOLO povtéhwy, 1660 xou
avépeoa ota wovtédo YOLO xaw to povtého R-CNN, mpoxeévou va e€oaxptBwiel wa olyxpion e dlapopdc
e otPopdtnTac avdueca otic dvo xoatnyopiec woviédwy Evtomopol Avuxewévewyv. Téhog, 1 avdhuon Yo
ouveytotel pe T yeron Xaptov EEoyne, ue Bdon toug omoloug Yo emyeiondel 1 eaxpiBworn twv mapandve
AMOTEAECUATWY.

Yxonde authg g Oimhwpatixic gpyaciog etvar 1 Siedpuvon g YEAETNG NG oTPARPOTNTIC TWY HOVTEAWY
Mnyavixic Mddnoneg otov topéa tng ‘Opaone Tnoroylo ey xou cuyxexpidévo otov Evtoniopd Aviixeipévey,
%o 1) BIeE0BIT| AVIAVCT| TNG CUUTERLPORES TWYV TO OUYYEOVKY UOVTEAWY ANEVAVTL O €val €0pOg CUVIMUOY TAVE
oto omnofo miavde va uny éyouy exnadeutel. H ouvelspopd poc pmopel vo cuvoiotel oto napoxdte onueio:

o Ilupoucidloupe wo cuotnotiny YeAétn twv mo alyypovev aryoplduwy YOLO anévavtl oe éva eupd
pdopa ohholdoewy 1 ontola, and 660 yvwpeilouue, anovoldlet and tny BBAoypapio. H yekétn pog nepléyet
OVOAUTIXG ATOTEAEGUATA YL BUO BLAPOPETIXEC EXDOCELS TWY TECTYPWY THO GUYYPOoVWY Uoviédwv YOLO,
xadepio and tic omolec e&umnpetel SlopopeTinois oxomole xa Unopel var yenouloroindel oe SlapopeTInéG
EQUPUOYEC.

o Ilopouctdlouye Lo eUNEQIO TATWHUEVY GUYXELON NS OTRAUPOTNTAUC aviYecH TS 000 PACXOTEPES XATY
yoplec HOVTEAWY EVTOTUOUOD AVTIXEWEVWY ATEVOVTL OTIC (BlEC AAAOLCELS, TROXEWWEVOL Vo cLoyETIcOUUE
TG OLOPORETINES OPYITEXTOVIXES QUTWY TWV HOVTIEAWY UE TIC CUUTIEPUPORES TOUG.

o Ilpotelvouye éva véo mhaiolo a&loAdYNONEC HOVTEARY EVIOTUGUOD AVTIXEWEVWY UE TN XPHON YTV eE0YNC
HE TNV TEOTOOT, TEUOV VEWY UETEIXMV, UE OXOTO TNV EUNEQLOTATMON TV ANOTEAECUATWY UOC XAl TNV
TEOAY WYY TNC TOCOTXNE YEHONS OTTIXWY UedodwY e€Nyroewy oTo TEdBANua e Lerétng oTiBapdTnToc.

o Ioupéyoupe avahuTIXG OATOTEAEGUOTA YIo T1) GUUTERLPOPd xdle wovtélou und tar auEavoueva eninedo opo-
BpOTNTAG TWV UANOLWOEDY xodWE ot avTioToLES cpunVveleg Yl Tol AmOTENECUATI QUT, TPOXELUEVOU VA
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pmopoLy vo yenotponowdoly xatd Tt ddxacio emhoyic HOVTEAWY 0TO TAAICLO BLPORETIXGY TEOPBAT-
PATOV.

o Ilopéyoupe 18 chvola BeBOUEVDY TIOLU TEPLEYOUY TLC TOPUANXYEC TOU GUVOAOU dedouévwy enoifdeucrg
touv COCO, xodéva and ta onolo mepthopfdver tig apyxés 5000 exdvee arholwuéveg e ulo and Tic 15
ahholdoel Tou yenowonololvtal otn BiAloypapla cupTANEWUEVES and Tic 3 VEEC BIXEC HAC AANOUDOELS,
oe 5 eninedo avlavopevng évtaone. Autd to olvolo dedouévwy elvon dnudota Sladéotua xou UTooply
va yenoulonoindoly yia BIEVELYOT TNG CUYXEXPWEVNG UEAETNG, OANE xou GAAWY TpooTadeldy TPog
Behtiwon e oTPopdTNTIC HOVIEAWY EVTOTUOUOU AVTIXELEVWYV.

1.3 Ileipopotind Meépog

1.3.1 M¢é9060c¢

H pédodog mou Ya axoroudicouye xotd Tn SLepXeLd TEV TELUUOTIOUMY Yo UTOpEl Vo cUVOPLETEL oo ToRodTe
Bruaro:

1. Anuovpyia cdANoLOUEVRY GUVOAWY BESOUEVKLY Tve ota ontola Yo aglohoyndoly ta povtéha
2. E€aywy" npolAédewv twv poviéhny néve ota oAotwuéva dedouéva

3. AZohbéynon twv tpoPiédewy Bdoel Teoxaoplouévmy UETELXWY

4. E€aywyn yoptov eCoync Bdoel towv npoPrédenmv yio ETAEYUEVESC AANOUOTELS

5. Ilepoutépw avdhuon amotehecUdtwy Yoptov e€oy N PAcEL VEWY UETELXWY

Y1 ovvéyeo Ba eme€nyndoly Ta empuépoug TUAUATO aUTHASC TNS axohoutiag.

1.3.2 AMhowwoeic Ewodvov
IMpdto Brpa oToug Telpopatiopols Yoc anoTtelel 1 odholwon tewv dedouévey Téve ota onolo Ba afiohoyntodv
ToL LOVTENDL e SLdpopeg PeTaBoréc mou Yo xahdmTouy éva eupl @doua mdavedv oevaplony. Q¢ Bdorn da yenot-

ponomndolv ol yetaforéc Tou mapouvoidotnxay oto [18], o mévte eninedo auEavépevne opodpdtntac. Mropolv
VoL SLoy WELOTOUY GE XUTNYOPiEC AvENOY YE TO QPAUVOUEVO TO OTOl0 TPOCOUOLOVOUV e eENC:

e ®o6puBog: I'naovoiavog BopuBoc, ObpuBoc Bohhc, Kpouotixde ©bpufog

e OoAwom : Bohwon Aneotlaong, O6Awaorn I'vakiod, Oohwon Kivnong, Odiwon Zoup

o Kawpuxd ®awvouevo: Xidw, Ildyog, Oulyin, Pwteivotnta

o Unpaxd Pouvopeva: Aviideon, Eractinde Metaoynuatiouds, Pixelation, Yuuricon Jpeg

Y1n ouvéyela TEOTEIVOUPE TELC VEEC UAAOLOGELS oL omoleg Yo AELTOUPYHOOUY GUUTANPWUATIXG GTA TELPUOTE
oG,

e Bpoyx7: H adholworn auth elvan yia tpogavic mpootixn oTic nopoamdve, xadde anoteAel Pooind xoupixd
(PoUVOUEVO TO OTol0 YEEWELETAL VAl AVTLUETOTLOTEL ONO TIC EQPUPUOYES TOU EVIOTUOUOV AVTLXEWEVWY OF
npaypatxd oevdpia.  Egopudler Beoyh oty edva oe mévie eninedo opodpdtntoac xou Paciletan o
BBAodxn imgaug.
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Figure 1.3.1: To 5 Eninedo Xgodpdtntag yior Ty arhoiworn Beoyn

o Yx0Td&BL: Axdua yio Tpogavng tpocVhx, 1 omola oxoTeVidlel TPOOBELTIXE TNV EWdVA UE OXOTO TNV
TEOCOUOIKOY TV CUVINXOY TNS VOYTAS, N ontolo anotehel plar cuvixn Yl TNV onola oL eQaPUOYES TOUL
avapéeUnxay TopATavVe TEETEL VoL ELVIL TEOETOYLACUEVES.

Figure 1.3.2: To 5 Eninedo Xgodpdtntag yia tnv odholworn Nxotddl

o Mdioxou: Yta mhalola autrig g adlolwong éva Tuyaio YEpog TNg emdVIC ATOXPUTTETOL UE T XPNOoT Op-
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Yoywvixav pooxov. o xdie eninedo opodpdtntac 10 1060676 NG EXOVAC TTOU ATOXEVUTTETOL AVEAVETAL,
ue oxond vo xadopicoupe 1 onuoscio Tou TEPYBAIANOVTOC TWV UVTLXEWEVKOY GTOV EVIOTOWS TOUG oA ol
TN CUUTERLPORA TWV LOVTEAWY OTaV To cUVNHoUEVO TEPIBAAAOY TwV avTXEWWEVWY EYEL amoxpupiet.

Figure 1.3.3: Ta 5 Eninedo Xgodpdtntag yia tnv odloiworn Mdoxa

1.3.3 3X0volo Acdopévwy xar Metpixég

To cOvoho dedopévev nou Ya afloromdel otny napolvoa epyooio eivaw to MS COCO (Common Objects in
Conext), {owe to o dNpogiéc cOVORO BEBOPEVLY VLol TNV EPYACIA TOU EVIOTOUOU OVTIXEWWEV®DY, TO 0Tolo
amotelelton omd 330 ylAddeg exdveg 80 xhdoewy xadnuepvedv avixeévey oto ouvndeg nepBdilov toug.
Iepioodtepeg and 200 ythiddeg and AUTEC TIC EXOVES GUVODEDOVTUL amd ETIXETEC Yid DLAPOPETIXEC EpYaaleg,
0 EVIOTUOUOS AVTIXEWWEVMV, 1) XOTATUNOY avTixeévey (object segmentation), n extiunorn Poowdv onueionv
(keypoint estimation) xou dhhec. Zuyxexpéva, Yo alortomdel to odvoho enarfdeuone tou COCO, xadc
TepthopPdver Evay xavorointixd 6yxo eixovev (5,000 exdvee) e tic avtiotoyes etinéteg toug (ot avtideon e
T0 6UVOAO dedopévmv eétaonc), ahhd oyt vrepBolxd ueydho wote va xadiotd v enelepyaoia Tou TEofBAn-
potiny). Emmpdodeto, nodd cOyypova HoVTEA EVIOTUGHOD OVTIXEWEVKY EY0UV exToudeutel Tévew 6To Glvolo
dedouévev exntoldevonc Tou, eToUEve 1) aEloAdYNoN Toug oTo (Blo ahvoro Bev Va fToy AVTIXELLEVIXT.

Me Bdomn autéd 10 olvoho exdvwy Ba dnuiovpyntody 18 mapakhayés Tou, oTic onoleg Vo Exel e@apuooTel plo
and TS TUPATEVE AAAOLOCELS, UE TIC ETIXETES VoL Tapopévouy (Bleg.

[t v a€lordynom twy tepapdtwy Evtontiowod Avtixeipévev o yonowonomdel n ueteii mAP (mean
Average Precision), 1 onolo cuvdudlel 800 xowvéc petpée, tny axpifBeia (precision) xou v avéxinor (recall),
0 oplopde TV omolwy mapoelneTal, evé ypnoponowe! xau v petpwr| IoU (Intersection over Union, # Topf,
npoc ‘Evoon). To pétpo autéd yenowonoteiton yio vor xadoploel v opotdtnta avdyeoo otny npdfBiedn evée
TEPLYPOUHUATOC GUVTETAYUEVWY ot To parypatixd meplypauue. Opileton we to mnAd tou eufadod tne Tounc
TOU TROYUATIXO0U TEPLYPAUUATOS XAl TOU TPOBAETOUEVOL TEPLY PAUUTOS TPOg To eUPudd TNng EVwonc Tou.

_ AreaofOverlap

IoU = (1.3.1)

AreaofUnion

T tou IoU {on pe 1 iooduvopel ye téhela emxdAum avdueoa oto 800 meplypduuata, eved 1 Tiwr 0 looduvayel
pe TApn omoZévwot), ETOPEVKC ot UE [at ovoxplBT| TedBAedn.
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Booiopévn oto IoU, n petpixi mAP uvnoloyileton apyixd xodopilovtag éva xotdeit Yo v Ty tou IoU,
Gote ol tpoPAédelc pe TYég PEYORDTERES and TO XATOPAL Vo Yewpolvtal we mpayuatixée Yetxée npofrédelc
(true positive), eved o npoPAédeic pe wxpdtepee Tpée va Yewpolvton we Peudeic Yetxée (false positive). Xn
ouvéyeta, oyedidleton 1 xomOAn oxpifelac-avixinone (precision-recall curve) petafddiovtog to xotdeh IoU
xou tehxd ) T AP vrohoyileton we to epPads tne xaunvine. Téhog, n yetpin) mAP vrohoyileton we 1 péon
T Twv AP 6hwv twv BlapopeTinty xAdoewy aviixewévey. H mAP petpu elvan xotddhhnhn yior tov oxono
TOV TELROUATOV PAS OYETHE YE TOV EVTOTLOUS AVTIXELUEVWY Xad(¢ amotehel To cuvniéotepo Yétpo adlohdynone
TWV JOVTEAWY TIOU AVATOGCOVTAL Yol QUTH TNV EpYaoia.

Yuuninewuotind we mpog TN Yeteix) mAP oplloupe dVo axdua yetpixéc ol omoleg elfvon edixdtepa TpoCUE-
poouéves oto mpofBinua mov npooeyyiloupe. Apywd, opllouue t yetpwy GmAP, 1 omola avtiotoiyel ot puéon
T TV Slapopdv avdueoa otic Twéc MAP evéc poviéhou petadd dVo Sladoyixdv emmédwy évtaone e Biag
ahholwong, 1 aAALe:

Z?:() (mAPSEU:H-l - mAPsev:i)
4

GmAP = (1.3.2)

Yxomée autrc Tne petpixhc ebva 1 cLVOAXY| alohbY Mo NS oTBAEOTNTIC EVOC LOVTENOL OTEVAVTL OE Lo GUY-
xexpluévn odlolwon. Mo upnidteen Ty GmAP ooduvauel pe tayOtepn pelwon tng amddoons Tou Yoviéhou,
EMOUEVLC OE Uelwuévn otfBapotnta. Téhog, yio T cuvolny a€lordynor tne oTPoedTNTag VOGS HOVTEAOU amé-
VovTL o€ 6h0 TO GUVORO TV ahholwoewy opiloupe Ty petpe) mGmARP, 1 onolo tloobton ye tn Yéon Ty 6Awy
Twv GmAP nou npoéxuday and dhec Tic dapopetixéc odhowdoels. H petpur) autr do Bondrioer otn obyxplon
avapeoa ot oTPRoedTNTA GAWY TWV HOVIEAWY, XaL O)L OTNV AUOTNEE AVOTERT, AnédOoT).

o - GmAP;
mGmAP — szcorruptwn ?

1.3.3
# Corruptions ( )

Ané ) pepld Twv datapoy oy opiloupe ) yetpy CmAP, oxonde tne onoloc elvon va xodoploel ol Btartapoy
npoxahel Ta yelpdTEPR amotehéoyoTa Xt ot Tola wovtéha. Ty opiloupe we:

SN, GmAP,

CmAP = i

(1.3.4)

onouv GmAP; eivon 1 Ty GmAP tou poviéhou ¢ oe autr) ) Satagoryn, yiot Evay GUVORXO aptdud N UOVTERWY.
‘Onwe xau mply, 6o yeyohltepn elvon 1 andiuty CmAP ty, téco yeipdtepn enldpaot Exel | CUYXEXPWEVN
dlatapory ) oTo LOVTEAX Yia Ta ontolal UToAoYioTNXE.

‘Ocov agopd v allohdynon twv nepopdtoy Xoptodv Efoxhe, dev xatapépaue Vo eviomioouye xdmola
EUTEQLOTATOUEVT] UETELXY TTOU VoL GUAAUBEVEL TNV amdBoon twv Tpofiédewy Tou ontixonotolvtal pe T Bordela
TWV YTV, ETOUEVLS 0pILOUKE EVOL GUVOAO TIELROHATIXGY HETEIXWY TOL Yol TOGOTIXOTOLAGOUY TOL ATOTEAEGUATCV
TOV TEWRAUATOV LS.

o Apciduog EEeyxoviwv Ileproyodv: Auth n petp| avapépetal otov dpldud TV EXOVOoTOLYElWY
Tou Ydptn e€oyfc Tou emonpaivovTtal g "e&éyovta, BnAadY oNUAvVTIXE Yot TNV AmdPacT| TOU HOVTEAOU.
OpiCoupe 61t éva etxovootolyeio Yewpeltor e€éyov 6tav 1 tuh Tou otov Ydetn e€oyfc unepPaivel éva
npoxadoplouévo xath@ht, to onolo opllovpe we:

E[saliency map] + mazx(saliency map)

2

threshold = E[saliency map| + (1.3.5)

OTOU WG
Soity sali (9)
o saliency map(i
N
opileton 1 péomn T TV TWOY OAOV TeV ExovocTolelny evic eEéyovToc ydpTr, xou we max(saliency map)
op{letan M péytotn T ToL Y8eTN. Auth 1 petex xadoploTxe TEPUUATIXG, UETE oTd TUEATAPNOY| TGV
YUETWV TOU TROEXUTTAY amd TLC TPOBAEPELC TLV HOVTEALY.

E[saliency map| = (1.3.6)
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e Aoyvog Ewxovootouyxeiowv: H cuyxexpyévn petpun avagépetar otny avaroyio Tou opiduol eixovoo-
touyelowv mou Beloxovion extoC EVOC TEQLYPAUUITOC CUVTETAYUEVKY TEOG TOV GUVORLXG apldud eeydvTwy
ELXOVOO TOLYE(WV.

Sy — SgB

= (1.3.7)

pizel ratio =

3xondg aUTHE TNS UETEIXAG EVOL VO TOCOTIXOTIOLACEL TN oNuaciol TS TEPLOYNS EVTOS TOU MEPLYPAUUATOS
CUVTETAYHEVOY YL TNV ATOPACT] TOU HOVTEAOU ahhd xou o Tl Bordud To mepBdAloY exTdC TOU TEPLY Pd-
patog emnpedlet autr) TNy andgact. ‘Otav o Aéyoq exovooTtolyelwy Talpvel HEYAAES TWES UTOPOVUE Vo
uno¥éooupe 6Tl To TEPPBAAoY exTdC Tou TEpLypduUaToC Todlel Yeydho pdho oty mpoliedn, 1 6TL To
povtélo Yewpel otolyeio e emBarhéuevne ahholwong we onuavtind mepBdihov yia Ty neoBhedm.

o Adbvog Ileprypappdtwy: H tedhud yetpnr| mou opilouye elvan o Aéyog meplypopudtwy, o onolog
avtioTolyel oty avaloyio TV exxovooTolyelwy Tou Peloxovial péoa oe €val TeplYPOUUO CUVTETAYUEVGDY
xan yopoxtneiloviar we e€€yovta Tpog Tov cLUVOAMXS apLdd EXOVOCTOLYEIWY OTO TEplYpouaL.

. Sp
= — 1. .
box ratio B (1.3.8)

Autdg o Moyog oToyelel atov xadoploud ToU TOGOCTO) TOU TEPLYPGUUATOE TOU (VAL GNUOVTIXG YLOL THY
AmOPACY) TOU LOVTEAOU, X0l TS oUTO UETOPBEANETOL PE TG BLAPOPES AANOLDOELS.

Onwe avagépinxe mapandve, ol ueteinés autés Pploxovtal axdua o TELpAUUATIXG OTdBlo xode Bev €youv
eunepiotatwdel oty Bihoypapia xou xodidg dev elvan avotned xodoplouévn 1 epunveio Toug.

1.3.4 To Movtéra

Y10 TAACLO TWV TELROPATWY HaC Vo CUUHETEYOLY TO TILO AVTLTPOCWTEVTIXA LOVTENA xdle xatnyoplag aviueoa
oTo povtéha evog otadiou xon Tar wovteha 600 otadiwy, dnhadn ol owoyévelee YOLO xou R-CNN avtiotouya.
Suyxexpyéva, Yo agloroynioldy ta yoviéha YOLOvVS, YOLOvV6, YOLOvV7, YOLOVS ané v owxoyéveia
YOLO xou to yovtého Mask R-CNN ané v owoyévewr R-CNN. TN xdde povtého YOLO da yenoipornol-
ndolv Blo moapohayég: 1 €xBoon UE TOV UxEOTERO apLiUd TORUUETE®Y, 1} 0ANLOS TO AnA0VCTERO WOVTEAO, TO
omolo emTUYYVEL XU TOV YAUNAOTERO YpOVO TEOBAEdNS, XL 1) €XB00T UE TOV PEYUAUTERO optlud TapaUETPWY,
Onhady) To o TEPITAOXO UOVTEND, TO OTolo EMTUYYAVEL TNV xohOTeEY oxp(PBeia aAAd cuvodeleTon and o op-
yoig ypdévoug medPredng. O Aoéyog miow and autr v emhoyy elvan 1 Somiotwon Tou av éva o TepltAoxo
povtého (Snhady| évar povtéro pe neplocdtepes Topauétpou) elvan To oTupd omd £val TUVOUoLETUTIO AhoVo-
TEPO HOVTENO, axdua xou av €xel udmAidtepn axplfBeta. Tao povtéha autd emhéydnxay xadodg oe xdmola oYU
XOTA TN CLYYREOPT AUTHE TNE epyaoiog HTay Ta mo obyyeova and TNy avtioTolyr ooyéveld toug. To yovtéla
YOLO, évtoc mo olyyeova, elvon tepioodtepa o TAdog xotidg xuxhopdenoay oTo BIdcTNUo ToU TEAEUTaiou
xeovou, v 1 owxoyével R-CNN 8ev napdyel mhéov povtéda ye avtiotolyn ouyvotnta. otoco, 1 clyxpelon
avduesd toug dev Yo yivel doov aopd TNV andhuta xoAUTERY Anddoo, ahhd 6OV apopd TNV XahiTERN avToyn
xo oTBopdtnTa anévavtt oTic eTBoAAOUEVES AAAOLOCELS.

1.3.5 AmoteAéopata

1.3.5.1 EvTomiopdc AVIIXELUEVLY

Apyixd Yo avagpépouye T amoteAEGUTA TOL xePoAfou Tou Evtomiopol Avtixeipévey, napadétovtag eviexTind
évay Ttivoeol Tou TEPLAOUBAVEL TaL ATOTEAECUATA Yiol OAAL T LOVTEAQ Ol OAEC TLG DLATUPOYES VLol TO YOUNAOTERO
eninedo opodpdtnTag, To eninedo 1. Ou mivaxec yio tor undroina 4 eninedo oQOdEOTNTAC Yior OGN ToL LOVTEAA
unopovy va Beedolyv oto Iupdptnue oto téhoc authc e epyaotac. Ilapovoidlovpe eniong pior ypoupixy ovo-
TUPAC TUCT, TWV ATOTEAECUATWY YLt OAEC TIG DLATopoyES Xat OAo To eninedo GPOdEOTNTUC EVOEXTIXS Yiot TO
povtého YOLOvSn, eve tor Storypduportar yior Tor utdroina povtéha umopolyv eniong va Bpedolv oto Iapdptnua.
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| Detector || YOLOv5n | YOLOv6n | YOLOvV7 | YOLOv8n | Mask RCNN |

Snow 0.252 0.267 0.399 0.246 0.226
Frost 0.297 0.308 0.438 0.292 0.262
Fog 0.32 0.332 0.453 0.315 0.279
Brightness 0.357 0.362 0.48 0.24 0.345
Darken 0.349 0.356 0.468 0.347 0.315
Rain 0.339 0.345 0.468 0.336 0.325
Gauss 0.27 0.302 0.413 0.259 0.264
Impulse 0.224 0.28 0.366 0.221 0.194
Shot 0.27 0.306 0.412 0.262 0.263
Defocus 0.305 0.305 0.415 0.302 0.254
Zoom 0.131 0.131 0.208 0.127 0.108
Motion 0.289 0.306 0.409 0.289 0.269
Jpeg 0.282 0.313 0.347 0.277 0.263
Contrast 0.317 0.329 0.454 0.312 0.279
Pixelate 0.266 0.342 0.376 0.307 0.262
Elastic 0.298 0.318 0.418 0.308 0.278
Mask 0.274 0.251 0.404 0.257 0.255

Table 1.1: mAP Scores yiot Mixpd Movtéla - Eninedo Xpodpdtnroc 1

YOLOVSN - Weather Corruptions YOLOVSN - Noise Corruptions
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Figure 1.3.4: YOLOv5n an6doon oto datapaypévo olvolo dedopévwv COCO

Téhog, napdyouue xot To mMGmMAP anote éopata yio GAA To LOVTENN TRPOXEWEVOL VOL ATOXTHOOUPE Lol GUVOMXT
enontela TG amddooc Toug.
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Detector mGmAP
YOLOv5n 0.0601
YOLOv6n 0.0607
YOLOvT 0.067
YOLOv8n 0.06

Mask RCNN 0.0583
YOLOv5x 0.0713
YOLOv6I 0.065

YOLOvVTEG6 0.0681
YOLOv8x 0.06805

Table 1.2: Anéivtec Anoddoeic mGmAP

Trdpyouv TOAREC eVOLAPEPOUCES TUPATNENOELS CYETIXA UE QUTA AMOTEAECUATA, TOCO YLl HEUOVOUEVA LOVTENDL
600 xou cuvolxd. Koatopyde, elvan Eexdiopo xon avapevouevo 6Tl 1 anddoor 6AY Twv HoVTEAWY @Uivel xodode
n évtaon e dlatoapoy e aLEAveETaL. X TN CUVEYELN, OTAV cuYXplvoupe TN oToEdTNTa PETOHED TWV HOVTIEAWY
evog xou B0 otadlwy nopatneovue 6Tt To Mask R-CNN povtého elvar ol mo otifoapd and dheC TiC exBOOELS
0wV YOLO povtéhwv otic neplocdTepeS SLoTopoyes, Topdho Tou elvol TAALOTERO UOVTEAO.  LUYXEXPLUEVQ,
Brémouye 6T to Mask R-CNN éyet to younidétepo mGmAP oxdp and 6o tor Hovtéld, YEYOVOS TOL UG
odnyel vau unodécouue 6Tl Tar HovTéda BVo oTadlwy elvar o oTopd amd To wovtEa VOC oTadlou, wWoTOGO
yio va emBeBonmdel wa tétota unddeon Guo Enpene vo npaypatonomnoly o eXTEVY TERdUATA UE Lo GOY Y POV
povtéha and Tt ueptd Twv R-CNN.

Erlong, wa oAl eviiagépouoa napatrhenoy etvon 6Tt eved ta peydia wovtéda YOLO €youv cuoTnuatixd avoteen
an6doon and Ta UxpdTEPR avtioToLd TouS, SeV Loy Vel To (Blo xan yia Ti¢ Tiwée GmAP, pe ta pixed povtéha va
elvon xatd péoo 6po mo oTPopd. Me Bdon autd To amOTEAECUN UTOPOVUE VO GUUTERAVOUUE OTL 1) 0 UEYUANDTEROC
aptiude mopauéteny evog Bixtiou dev looduvayel pe auEnuévn otBoupdTnTa, ETOUEVRC TEOXELLEVOU Vo Belti-
wdolv to yovtéha oe aUTOV Tov Topéa Tpénel To TEOBANUA Vo tpoceyYloTel Ye Slapopetinés uetddoug and tnv
aOEnom Tou PeYEYOUS XU TNE TOALTAOXOTNTOC Xou (owS Vo yeeldleTan Vo Yenoonon 3oy Teyvixég oYeTiXéC Ue
v enadénon Twv dedopévwy exnaideuorg.

YuveyiCoupe ue ta amoteléopota NG enldpaons TV SlaTapoy @y o Ohat ToL HOVTENA, plal weétn 1 omola Jor hag
detlel moleg Batoparyég elvan oL mo EMIVOUVES YIoL QUTA, UEHOVOUEVI X0l GUVOAXAL.

] Corruption H CmAP ‘

Snow 0.042
Frost 0.04
Fog 0.0173
Brightness 0.0208
Darken 0.0473
Rain 0.0383
Gauss 0.0938
Impulse 0.0807
Shot 0.0898
Defocus 0.796
Zoom 0.0412
Motion 0.09
Jpeg 0.084
Contrast 0.093
Pixelate 0.1
Elastic 0.0658
Mask 0.0665

Table 1.3: Absolute CmAP scores over all Detectors for all Corruptions
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Iopatneotue 6tu 1 datapayr Pixelate €xel cuvolixd tny yewpdtepn enldpaor 6To GUVONO TWV HOVTEAWY UAC UE
ti¢ Gaussian Noise, Contrast xou Shot Noise va axohouvdoiv. Mia nidovi| epunvelo tou yropolye vo dwoouye oe
aUTH TO PoUVOUEVO elval 6TL To e@é Tou pixelation pnopel va 0BNYHOEL TNV ATOAELN TOAADY AETTOUEQRELDY LA
EOVOGC XAl VO XAVEL TIC OXPES TNG VOL YEVOLY OVEAUGT), YEYOVOC TIoU 00NYEL OTNY AmdTOUN TTWAN TNe anddoone.

Yuvolxd, unopolpe eniong va Solue 6T ot Satapayés tou Boplfou métuyay Yepixés and Tic LPMhoTepes TéS
CmAP, nou onuaiver 6t elyov mohd onuavtixy enidpoor ota poviéha. Autd to anotéleopa elvon evoiapépov
xadde 6tav npoovétouye Yopufo ot wa ewdva oAAGCOUUE TNV UTOXEIUEVY) XATAVOUY TNG, YEYOVOS TOU ExElL
amodetydel 6Tl enneedlel TNV anddooT TV HOVIEAWY ot TOAD ueydho Badud. Qotdoo, (owg 1o To oNPAVTIXG
potiBo mou eugavileton and ta anoteréopatd yac elvon 6Tl ol Satopayéc Tou eMNEEAloOLY TIC AXUES WLAC ELXOVAC,
XAVOVTAS TNV VoL QOUVETAL TLO OHOLOYEVNS, XATL TTOU XAVEL BUOKONO TOV BLoYWELOUO OVIUETH OTOL VTIXEUEVOL XAl
TO POVTO, TEOXUAOUV GUVOAXE Ta YelpdTepa anotehéopata. Auth 1 unddeon dixatohoyel xaL TNV TopEATHENON
6Tl oL o Aeleg Blatapayéc omwe Brightness, Fog, Darkness xhn. 8ev €youv 1660 onuoavtixéc emdpdoeLs.

Téhog, emavorauBdvoupe ouTh TNV avdhuon yia xdde LOVTENO, TPOXEWEVOU VAl €Y OUUE PLo TLO AETTOUERT ElxdVaL
yia To moleg dlatopayéc ennpedlouy mtota dixTua TEPLOGOTERO:

] Detector H YOLOv5 \ YOLOv6 \ YOLOv7 \ YOLOvS8 \ Mask RCNN ‘

Snow 0.044 0.0405 0.0425 0.0405 0.0225
Frost 0.042 0.04 0.0345 0.04 0.0235
Fog 0.0175 0.016 0.015 0.0175 0.012
Brightness 0.02 0.0165 0.02 0.02 0.0175
Darken 0.048 0.042 0.044 0.0455 0.0335
Rain 0.0405 0.035 0.029 0.0425 0.0255
Gauss 0.0945 0.0915 0.1025 0.0945 0.0395
Impulse 0.0825 0.083 0.089 0.0815 0.0275
Shot 0.0905 0.086 0.099 0.091 0.038
Defocus 0.08 0.078 0.0855 0.083 0.032
Zoom 0.0405 0.0415 0.048 0.0415 0.014
Motion 0.091 0.09 0.098 0.0895 0.0365
Jpeg 0.088 0.0795 0.0925 0.086 0.0355
Contrast 0.103 0.091 0.0895 0.091 0.045
Pixelate 0.1 0.101 0.1165 0.103 0.039
Elastic 0.065 0.0655 0.076 0.064 0.026
Mask 0.07 0.0715 0.0675 0.062 0.0285

Table 1.4: Anbhvtec tipéc CmAP yia dha ta Movtéha

Anobopchvtog To AnoTEAEGUOTA TOU ToRandve Tivaxa cuunepaivoupe 0Tl ol Batapayég Pixelate xou Contrast
elvon autéc mou mpoxaholv TNy Ueyolltepn pelworn yio 6Aa To HOVTEN, €V xou oL axdhouvdec Blotapayés
elvon xvpledc xowvég avdueoa oe 6ha to ovtéra. Autd to yeyovog umopel va efivon €vdeln 6Tl n xatavour
TwV Bedouévey exnaideuong xou ot cuviixeg mou tephaufdvel elvan TOAD oNUaVTIXES Yia TN OTRoEOTNT TWV
HOVTEAWY, (0L ONUAVTIXOTEPES Xat omd TNV {BLol TNV apYLTEXTOVIXY), xS BLUPORETINE LOVTENN CUUTEQLPELOVTOL
ue tov (dlo tpdmo.

1.3.5.2 Xdpteg ESoyxnc

IMopouctdlovye To ATOTERECUOTO TWV TELAUATIOUMY UaS UE Toug Ydptee e€oync, Eextvdvtag and Tr dlatapoy
Contrast.
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Number of Salient Pixels for Contrast Corruption

0.9
=8 YOLO

0.8 —@— RCNN

0.7 +
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Figure 1.3.5: Aptdpdc and e&éyovia emovoototyein o ahholworn Contrast (Contrast Corruption)

'Onwe ftoy avoevopevo o aptdudc Ty eE€ovVTmy EXovoo Tolyelny audveTto xat Yol To d00 HOVTENA TaUTOY POV
pe Ty adinom e évtaone TS BLlopopay e UE XATOLES UIXEES Blapopés avdueoa ota duo. Autd o Qouvéuevo
NTAY AVOPEVOUEVO XadG PE TNV avénon tne dlatopayng, To YoviEho Oyl povo evtomilel aviixelpevo mou dev
UTdEY oLV, UANE AOYW® TNG OANAYHC TNG UTOXEIUEVNC XOTAVOUNE TV BESOUEVRY TOL YUPUXTNELOTIXA TNG ELXOVAS
nou Yo Yewpoloe To HoVTERO puotoloyixd TAéov Yempolvton anoxAioels, dniadr| xdtt oto onolo mpénet va dodel

TPOGOYM.

Yuveyiloupe Ue TOV UTONOYIOUS TV AOYWV EXOVOCTOLYEVY Yia Tor povTéha pog untd v (Bia dtartopory ) Eex-
WVOVTAG PE TNV ¥Adom ‘Atoyuo.
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Pixel Ratios for Contrast Corruption - Person Class
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Figure 1.3.6: Adyol Ewovootouyeiwv oty odholwon Contrast yia tnv xAdon ‘Atopo (Person Class)

Iopatneobue 6Tt oL Adyol elxovootolyelwy augdvovton pe Ty adénon tng éviaong, YEYOVOS Tou oe cuVBUAoUd
pe T adEnot Twv eEEYOVTWY EIXOVOCTOLYEIWY UTOPOUUE UE AopPAAEL VA TOVUE OTL TO MEQBAAAOY TNS EXOVAS
anoxTd OAoEva UEYOADTERO EVOLAQEROY, THAVOTATA YL TOUG AGYOUS IOV UVAPEQIUE TIOQOTAVE.

Téhoc vnoroyiloupe xou TOUC AOYOUS TEPLYPOPUATOY Yo TNV ¥Adon Atouo yio Ty (Bla Srortorpary ).

Box Ratios for Contrast Corruption - Person Class

0.55 1
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== RCMNN
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Figure 1.3.7: Aéyou Ileprypoppdtewy yia Ty odhoiwon Contrast - Khdon Atopo (Person Class)
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Mmnopolue vor Solue 6Tl oL TWég aUTAS TNG METEXMS €xouy W xardodixy| tdon ye tnv adinorn tne évrtaong,
YEYOVOG oL onuadvel OTL 1 TepLloy Y| EVTOE Tou Thanolou yivetow oho€va xol AYOTEQO ONUAVTIXY, YEYOVOS TTOU
OE GUVBLOOUO UE TOL TIOROTAVG CUUTERAoUATA Lo 0dnyel oTo cupnépaouo 6Tl Tedyuatt To TepBdihov Tou (Blou
TOU OVTIXELWEVOU YiVETOL AMYOTEPO ONUavTIXd o€ OYEaN PE TO CUVOAXS TEPBEANOY NG EXOVAS, (0WS Yol TOUG
AOYOUC TIOU AVUPEQOE TOPOTIAVE.

Oa enextelvouye TNV avdiuor yag otny xihdon Autoxivnto 1 omola eivon pla TOAD cuyvd eppovilouevy xhdom
ME TOLUALOL EQUQUOYMY TWV HOVTEAWY TOU UEAETAUE

Pixel Ratios for Contrast Corruption - Car Class Box Ratios for Contrast Corruption - Car Class

—e- oL0 —— YoL0
—e— RCNN 09 —— RCNN
0.9

0.8
0.8

0.7

0.7

0.6

0.6
0.5

0.5 0.4

1 2 3 4 5 1 2 3 4 5
Severity Severity

Figure 1.3.8: E&éyouoec Metpuég yio Ty odholwon Contrast - KAdon Autoxivnto

‘Onwe pmopolUe vo TopaTtnEHoOUUE TO Jtdypaupo €xel Tic Bleg yevixée apyéc pe v xhdomn Atoyo, mapdtl
To anotehéopota dev Tawtilovtan amdiuta, Omwe xou elvon avepevouevo. Ot Tipée tou AOYoL €xxovooToLyElwY
aw&dvovtar poli pe Ty adEnom Tov e OVInY ELXOVOG TOLYEWY, EVEM OL TIWES TOU AOYOU TEQLY PUUHUITOS HELOVOV-
tou. Hapoatnenote 61t o apripog twv egeydvtny exovootoiyeiwy eivon pio uetper avegdptntn and tnv xAdom,
OnhadY| avapépeton oe OAN TNV etxdva xou Topopével aveldptnTn and to onola xAdorn aviyveleton. Boaoioyévol
o€ AUTN TNV TEATAENOT UTOROVUE Vo EXACOUNE OTL TA CUUTEPAoUATA ToU BYELouUe Yia plot XAAOY) UTOPoLY Vol
YEVIXELTOOY Xl OE JANEC.

IepiocdTEPEC AEMTOUEPELES YL TNV AVAAUCT) TV AMOTEAEOUATWY UTopolV Vo Bpedoly 0To ayyAwd Tufua authc
¢ epyooiag, WoTdoo Ta YEVIXOTEQU ATOTEAECUOTA UTOPOVY YOl CUGYETICTOUY UE QUTA TOU AVAPEQUUE TORATAVG,
pE udmoleg edxéC eEUPETELS.

1.4 3>Ovodn, Yvunepdopata xaw Merhoviixégs Katevddvoeig

1.4.1 X0Ovodn

Yo mhaiola auTAC TG BimhwuaTidc epyociog TEROUATIOTAXOUE YE Ta Mo cUYypeova Udoviédo Evtomiopod
Avuxelévey xar avoahOooUe TN CUUTERLPORE TOUG AmEVAVTL OE EOVEC TOU €youv alhowwlel and éva evpog
petoordy Bdoet dlapopwv pedodnv xou ueteixiv. Apyixd, dnuiovpyroope 18 clvoha dedouévev, xodéva omod
Ta onofa mepthauBdver 25.000 ewxodveg, tig 5.000 ewdveg tou cuvdlou Bedopévev enahieuone tou COCO oh-
howwpévee pe 5 enineda auavopevne €viaong. LN cuvéyeln epapudoope To o olyypova poviéha YOLO o
R-CNN xan xataypddope tnv anddoot Toug oe xodéva amd autd Tor oOVOAa Sedopévwy, Yia xdlde eninedo évtaong
e xdde ahhoiwong. ‘Erneita, e€dyoue toug ydpteg e€oynic Yl T ahNOLOGELS TOL Elyay TN 6podpbdTepT el
OpooT) 0T LOVTENX, X0l TPOY WENOUUE OE CUC TNUATIXY TOGOTLXY) XL TOLOTLXY OVAAUCT) TWV YAETWV TEOXEWEVOU
VO AMOXTACOUUE TEPLOCOTERES AEMTOUEQELEC OYETIXA YE TY) CUUTEQLPOPE TOUC AMEVAVTL OE AUTES TIG AAAOUWIOELS.
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1.4.2 Xvunepdopato

1.4.3 MelrovTtixéc KateuOOvoelc

H épeuva oto nedlo tng oTifopdtnroc, xon ddTEpA 0TO TEDO TNG OPACTC UTONOYLOTMY, TEQLAOUBAVEL ToOUERD
evdlapépov xou amotehel {htnpa UdPiotng onuaciog xodde Tor AT Tor HOVTEAX Unyovixic Wdinong eloépyovton
ohoéva xat teptocdTepo otic Lwée poc. Ta autd Tov oxond, agopuduevol and Ty tpoondield poc tpoteivouue
Ta €€ eMovVTIXd epeuvnTd Briwato:

Trv Siedpuvor Tou GUVOAOL AANOLOCEWY TOU EPAPUOLOVTOL OTIC EIXOVEC WOTE Vo TEPLAEPBeL Evar axdua
eLPUTERPO PACUI POUVOUEVKDY OANG xai TN Behtlwon twv aAlowdoeny ou eivon o1 diodéoules ye oxomd
NV axEBECTEPY TPOCOUOIKOY) TV PUUVOUEVWY ETOUEVKS Xl TNV oxplBéotepy) SlamloTwor Tng anddoorng
v poviéhwv. Evo tétolo nopdderypa anotedel n ypon GANSs yia v napaywyy Twv ohhOLOOEWY X0l
MY %aA0TERT, TPOGOUOIWOY BIUPORETIXWY GUVINXWY, OTWE PEOMOTIXEC GUVITXES VOYTOQ, TROYUATIXES
ouviixeg oxlaong, epé xamvol x.o. Devixdtepa, o0 cupltepo elval To QACUA TV AAAOLOOEWY TOUL
UTOPOUUE VoL TUPEYOUKE GTO UOVTEND, TOCO TLO TEPLEXTIXT] ol ovaAUTIXY Yot efvon 1) uerétn o VYo mpoxtiet,
7 onola Yo Tpodyel Ty moparywyY) o oTBupdy Xo aELOTIETWY HOVTEAGV.

Trv mpoofnn wog extevols UeEAETNG TG oTPUROTNTAC QUTWY Xol GAAGDY LOVTEAWY ATEVAVTL OF ELXOVEQ
pe onpovter) emdAudn uetadd avixeévey. H emxdiudm anotehel po onuavtin npdxinon 6cov agopd
TOV EVIOTIOUO AVTIXEWEVLY, XA} Teoxalel cOYYUOT, 6TA LOVTERX XOL UELOVEL TNV andBOGCT| TOUS, axXoU
%o UG xavovixée ouvinixec. Emopévwe, 1 avdluorn tng enldpaong tne emxdiudne ota mo obyypeova
HOVTEND EVTOTLOUOU OVTIXEWEVKDY Var Unopoloe vou pavel Wlaitepa yeNown oty avdmTudn TEXVIXGOY ToU
umepPaivouy autd To {iTnua.

Trv enéxtaon TwV TEPUUATOY Uag ot ela6doug TNg Hopghc Pivteo. EWwd ta wovtéha tng owxoyévelog
YOLO ¢nuilovtan yia tig anoddoelc toug ot Blvieo xou yenolponololvtal oe mohd peydho Badud yio
TOV EVIOTUOUS AVTIXEWEVWY TpaypaTixo) Ypovou. Enopévwe, 1 nopathienon tng anddochc Toug anévavtl
oe ahhowwuéveg axoroudieg Bivieo undoyeton evdlapépovia anoteréopata. Emnpdodeta, o gouvéuevo
e emxdAudng mou avapépinxe mapandvey Yo PTopoVsE Vo EPUPUOCTEL Xl GTY) GUYXEXPUIEVT HEAETY TNG
elo6dou Pivteo.

Tryv enéxtaon e avdiuong Twv Yaetdyv eEoyNc ot éva eUPUTERO PACUA XAJOEWY avTXEWWEVWY. ‘Onwg
avapepinxe oto avtioTolyo xe@dhalo, Ta TEWRAUUTd uac TepihduBavay éva UTOGUVOAO TV XAJCEWY TOU
ouvérou dedopévwy COCO, ot omoleg dlardétouv TeploadTepn onuacio yia oplouéves epapuoyéc. (dotéoo,
dedopuévne e éAhewdne meploplopdy doov apopd Toug Sladéotuous LTOAOYLIo T0UE TOEOUE, QUTH T TELRE-
potar Umopoly vor enavoknpUoly Yol Oheg Tig dlardéoiues xAdoele, tpoxeévou vo enaindeudolv, xo lowe
va yevixevolv ta e€aydévTa anoTeEAEoUATA.

Trv vlonoinon autol Tou TAMGIOU TELPUPATKOY GE BLUPOPETIXA UOVTENN, EXTOC TOU TOUEN TNS OPACTC
unoAoytoT@V. Mia evdlagépouca yehhovtiny mdavdtnta Teog auth TNy xatevduvor elvon o telpopaTionds
pe povtéda Ontnhc Epunveioc Kowne Aoyudc (Visual Commonsense Reasoning models), to onofo de-
BOUEVNC ULOG OTUTIXAC XL ULOG YRATTHS ELGOBOU, UTOEOUY Vol TapdyOUY AOYLXA CUUTERACUOTA XoL EQUNVELES
yio e oxnv xan Tt oupPabvel péoa oe auth B TL Yo oupPel oto dueco péhhov. H otifopdtnta outdv tev
HOVTEAWY TIoRoEVEL Eva OYETIXA aveepelvnTo Tedlo, ETOUEVWCE 1) EPAPUOYY) TOUS OE OANOLWPEVES ELGODBOUC
Yo umopoloe Vo EMLPEREL Lol OELRE EVOLAPEROY ATOTEAECUATELY, UXOUIL XoU Yiol TLo BooXEC apyEC TNE ORACTS
LUTTOAOYLO TOV.
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2.1 Introduction

Artificial Intelligence (AI) is a general field of study that aims at the simulation of human intelligence in
machines that are programmed to think and learn like humans. This interpretation of Al began as more of
a fantasy, a wild fever dream of what computers might be able to achieve decades or even centuries into the
future - perfectly simulate human intelligence. However, in recent years this dream seems to be edging ever
closer to reality. The rapid advances in processing power and memory capabilities have brought forward the
rise of Machine Learning (ML) models, which are essentially algorithms that rely on statistics and repetitive
learning to improve their performance on a specific task whose applications are as impressive as they are
widespread in several industries such as healthcare, finance, transportation, entertainment, security etc. The
huge progress in this domain has been received with vibrant enthusiasm but also large amounts of concern
and distrust on two major issues.

Firstly, it is known that ML models tend to underperform when presented with new, unexpected or adversarial
inputs, or even inputs that were drawn from a distribution different than the one they were trained on. This
is a major issue for many of the aforementioned applications, especially the ones that rely on the model’s
accurate performance under adverse conditions: for example you would still expect a self-driving car to safely
get you to your destination even under heavy rain, snow, fog, or even when the input image gets somewhat
corrupted due to camera issues. This is where Robustness study appears, which aims to create ML models
that maintain their performance under unexpected inputs, whether those are corrupted inputs, inputs that
come from a different distribution, adversarially manufactured inputs etc.

The second cause of concern around Al systems is that they mostly operate as black boxes: there is no
clear justification behind the decisions they make, which puts their position in fields like Medicine or Law
under question. How can we blindly trust the decisions these algorithms make when we do not know the
reasoning behind them? These questions are the main foundation of the field of Explainable AT (XAI), which
aims to create explanations (interpretations) for the models’ predictions in order to prevent errors and create
trustworthy, transparent systems. Robustness study plays an important role in model explainability, as a
robust model is more likely to perform consistently and provide accurate explanations for its decisions.

Computer Vision (CV) is a field of Artificial Intelligence that focuses on enabling computers to interpret and
understand visual data from the world around us. To that end, this field of study includes many relevant tasks
such as Image Classification, Object Detection, Instance Segmentation, Pose Estimation etc., all aiming to
encode a certain aspect of the human visual system. CV finds numerous applications the industries previously
mentioned, such as creating diagnoses from medical images, detecting suspicious activity in security systems,
autonomous driving etc, which is why robustness and explainability of CV models is crucial.

In this work, our aim is to systematically analyze the robustness of state of the art Object Detection models
under corrupted inputs, to observe emerging patterns and provide meaningful interpretations for these models’
performance. We will be solidifying this study using Saliency Maps, which are an explainability technique
that enables visualization of an Image Classifier’s of Object Detector’s decisions by highlighting regions of
the image that were important for the prediction. We will also be providing quantitative results for this
primarily visual field, and attempting to correlate these results with our previous interpretations, while also
creating new ones.

Our main contributions can be summarized in the points below:

e Creating a wide set of datasets that include images that have been corrupted with varying types of
corruptions and levels of severity, some of which are already available in the literature and some which
we have created ourselves.

e Systematically evaluating the performance of modern Object Detection algorithms on these datasets
using custom pre-defined metrics.

e Comparing the robustness of the most prevalent Object Detection frameworks, one stage and two stage
object detection, based on the previous results

e Extracting visual explanations of these results and providing custom metrics to quantitatively interpret
these results.
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e Offer possible interpretations and explanations on the models’ performance according to the model and
corruption type.

2.2 Computer Vision

Computer Vision is a field of Artificial Intelligence (AI) that has been getting increasing amounts of attention
in the past few years. At its core, Computer Vision aims to replicate the complex human vision system and
train computers to understand and interpret the visual world. Digital images, videos and other visual
elements are processed and analyzed in order to extract meaningful representations that allow the system to
derive logical conclusions regarding those elements and their context. Computer Vision tasks vary greatly
in regards to their application as well as to the various techniques used to complete them. Examples of
such tasks include Object Detection, Pose Estimation, Instance Segmentation, Scene Reconstruction etc.
The most impressive applications of Computer Vision can be found in healthcare, where Machine Learning
(ML) models have managed to detect cancers using MRI images [55], and produce valuable prognoses about
patients’ probabilities to develop certain diseases [28], as well as other industries like self-driving cars [11]
ete.

Figure 2.2.1: The various applications of Computer Vision

2.3 Object Detection

Object detection is perhaps the most prevalent task in the field of Computer Vision. It entails detecting
instances of objects of a certain class within an image, encapsulating two different tasks: object localization
and image classification. In object localization the algorithm outputs a set of (x,y) coordinates that define a
bounding box that contains a certain object. Next, the algorithm must predict a class label for each object
it detected, i.e. image classification. Although this task might sound simple, it is one of the most basic tasks
in computer vision and therefore is still a very widely researched and competitive field, with new models that
offer innovative ideas being introduced frequently.
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Figure 2.3.1: Object Detection using bounding boxes

As previously mentioned, Object detection finds countless real-world applications in a large variety of domains,
such as bio-medicine, healthcare, agriculture, transportation, autonomous driving etc. This field has also been
boosted significantly thanks to the great advances in imaging technology, with cameras getting smaller and
cheaper, while providing better image quality, the dramatic increase in computer power, with Graphical
Processing Units becoming stronger than ever, and the improved capacity of cloud platforms to host huge
amounts of data. At the same time, object detection algorithms are becoming more advanced than ever, with
new technologies constantly being implemented in order to push state-of-the-art performance even further.
The state-of-the-art methods that tackle this task can be categorized in two main algorithm families: one-
shot and two-shot algorithms, often called one-stage and two-stage algorithms, respectively. One-shot object
detectors are usually faster, sometimes sacrificing inference accuracy, while two-shot detectors prioritize
accuracy over speed. The most well known one-shot object detectors are the YOLO models [40], followed by
SSD [25], EfficientDet [47] and RetinaNet [24], whereas the two-shot object detector category is dominated
by the R-CNN [14] algorithm family, which includes Mask R-CNN, Fast and Faster R-CNN, Cascade R-CNN
etc. Despite the differences in architecture, most object detectors follow a similar structure, so a standard
model consists of three main parts: the backbone, or the feature extractor that extracts the feature map
of the image, the neck, or the feature aggregator, and finally the head, which is the actual object detector,
determining the bounding box and class label for each object in the image. These models are key in our
analysis of Object Detection so they will be described more extensively in subsequent chapters.
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Figure 2.3.2: Example of two-stage Object Detection

An integral part of the development of Object Detection models are the datasets that are used to train and
finetune them. These datasets vary in number and size according to the subtask, whether that is object
detection in indoor spaces, outdoor spaces, object detection in autonomous driving etc. The most popular
among these benchmarks is the Microsoft COCO (Common Objects in Context) dataset [7], a large-scale,
public dataset that consists of 328,000 images of everyday scenes, both indoor and outdoor, and annotations
for many different computer vision tasks such as object detection, segmentation, image captioning, and
keypoint tracking. There are 80 object classes to be detected, ranging from people, animals and vehicles to
common household objects like a hairbrush or a suitcase. This dataset is very prominent and most models
are evaluated on its validation set since the labels for the test data are not publicly available. A similar,
but much smaller, dataset that is also widely used in this context is the PASCAL Visual Object Classes
Challenge (VOC) [8] dataset, which contains 20 everyday object classes found in 3000 labeled images. These
datasets are ideal for the development of general-purpose models that aim to offer a general understanding
of the space a person can find themselves in in their everyday life. On the other hand, there are datasets like
KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute) [10] that consist of hours of
traffic scenes and that are targeted towards the development of robotic navigation systems, for which object
detection is a crucial part. Considering the widespread use of object detectors in many real-life applications,
the importance of large, reliably annotated datasets that help algorithm robustness becomes evident. Part
of the evaluation of object detection models are also the pre-defined metrics that determine the models’
performance compared to previous attempts at the same tasks. Since object detection consists of two sub-
tasks, object localization and image classification, there are two seperate metrics that can be combined to
help us evaluate the performance as a whole. In the task of object localization the detector has to define a
bounding box that contains an object and the goal is for that bounding box to overlap with the ground-truth
bounding box that has been previously annotated as much as possible. The main metric used to determine
whether a bounding box prediction is accurate is the Intersection over Union (IoU) metric that can be defined
as:

ol — AreaofQOuerlap (2.3.1)

AreaofUnion
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Area of Overlap

loU =

Area of Union

Figure 2.3.3: The IoU metric

So, a larger IoU suggests that there is a bigger overlap between the ground truth and the prediction. However,
this metric is not enough for the evaluation of object detectors since the class label also needs to correspond
to the ground truth. To that end, the mean Average Precision (mAP) is calculated for all object classes in a
dataset. The general definition for Average Precision is the area under the precision-recall curve:

AP = /01 p(r)dr (2.3.2)

Different datasets use different methods to smooth and sample the precision-recall curve, which leads to
different definitions of the AP score. For the COCO dataset, which will be the focus of our experiments, AP
is defined as the average of the APs calculated for a range of different IoU scores. So, an AP@[.50:.05:.95]
(which is used for the COCO challenge and as an evaluation tool for most of the models we will use)
corresponds to the AP calculated for an IoU threshold ranging from 0.5 to 0.95 with a 0.05 step.

After having described the necessary principles, datasets and evaluation metrics for the Object Detection
task we will move forward by examining the most important models that have been developed for this task
according to the one-stage vs two-stage detection paradigm.

2.4 The R-CNN Models

On the side of two-shot detectors there is the R-CNN family of algorithms, which stands for Region-Based
Convolutional Neural Networks. As the name suggests, these models perform object detection in two stages:
first a seperate algorithm generates a set of candidate regions of the input image that have a high probability
of including an object, then these regions are input into a Convolutional Neural Network (CNN) and that
CNN will output classification scores for each of these regions, deciding whether they include an object of a
particular class based on an IoU overlap threshold. Let’s take a look at the models that were developed as
part of this family over the years.

e The original R-CNN model [14] was introduced in 2014, breaking the plateau that object detection
models had reached at that point. It offered a 30% mAP increase on the PASCAL VOC dataset
compared to the previous state of the art model, scoring a 53.3% mAP. The region proposals were
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generated using Selective Search, an algorithm that groups together regions of an image based on
their pixel intensities, and then input into different CNNs that extract feature vectors for each region,
regardless of its size, by warping all pixels to a pre-determined size. Lastly, all regions are classified
using pre-trained class-specific linear SVMs that classify a region proposal as one of the object classes,
or as background.

R-CNN: Regions with CNN features
eSS warpeJd region /| acroplane? no. |

= =
o =
BT TN gE .
>[person? yes. |

) L CNNN, :
1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

Figure 2.4.1: Original R-CNN Model Architecture

In this particular instance of the R-CNN model, 2000 bottom-up region proposals were generated for
each image, and a 4096-dimensional feature vector was extracted for each region, while the extracted
features from the CNNs needed to be cached in order to later train the SVMs. So, although this
algorithm achieved state-of-the-art results, it is evident that the training and evaluation times become
exorbitant for large datasets, combined with the enormous disk size needed to cache the extracted
features. This is where the next version came into play.

The Fast-RCNN [13] algorithm was developed in 2015 to combat the issues of the original R-CNN
model, by using a single CNN model to extract features from all the regions. The network accepts an
image and the corresponding region proposals as input and first the image feature map is extracted
using convolutional and max pooling layers. Then, for each region proposal, a Region of Interest (Rol)
pooling layer extracts a fixed-length feature vector that is then fed into a series of fully connected layers
that generate probability estimates for K object classes. This network managed to increase R-CNN
mAP on the PASCAL VOC, while decreasing training and inference times and eliminating the need for
disk storage for feature caching.

Faster-RCNN [41], introduced in 2016, is an extension of Fast-RCNN that aimed to further improve its
speed and performance. The main contribution of this model is that it replaced Selective Search with
a Region Proposal Network (RPN), which is a Fully Convolutional Network that predicts bounding
boxes and objectness scores in various scales. This change was combined with the introduction of
anchor boxes, which are reference boxes associated with different scale and aspect ratios All region
proposals were generated relative to these anchor boxes, thus allowing the model to detect objects at
different scales and creating a pyramid of anchor boxes. The overall network consists of the RPN and
Fast-RCNN, which is responsible for detecting objects in the region proposals generated by the RPN, by
classifying the extracted feature vectors. The model can be trained using three methods: 1)Alternating
Training, in which the RPN is trained first and then the shared weights of the Fast-RCNN module are
initiliazed, while the other weights are trained and tuned along with the RPN weights. 2) Approximate
Joint Training, in which the two modules are trained as a single network and the weights are updated
sequentially. 3)Non-Approximate Joint Training, in which a Rol Warping layer is used. This model
achieved state of the art results not only on the PASCAL VOC but also on the MS-COCO dataset.

Mask R-CNN [17] is not the final rendition of the R-CNN algorithm family, although it is the last to
be mentioned/analyzed in this study. It was released in 2017 and included an extension for instance
segmentation by returning a mask for each object detected along with the anchored bounding box and
the class label. The same RPN as in Faster-RCNN is used for the first stage, while in the second stage
a binary mask that encodes each object’s spatial layout is calculated for each region proposed. The Rol
pooling layer is replaced by RolAlign, which aligns the extracted features with the input. Although
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this model adds a small time overhead to Faster-RCNN); its extention of this popular architecture into
different tasks such as keypoint detection, pose estimation etc. is worth noting.

2.5 The YOLO Models

The most prevalent one-shot object detection algorithms are the YOLO (You Only Look Once) algorithms,
with the first model being introduced in 2015 [40] and the latest version, YOLOVS, being released in 2023
[64]. The principle that distinguishes these models is the lack of the region proposal stage that characterizes
the two-stage object detectors, to which the faster inference speed of the one-shot detectors is attributed.
Although the models have undergone many changes over the years and over different authors, the principles
of one-shot object detection remain the same. Starting from the original YOLO model, the algorithm divides
the input image into an Sz.S grid and if the center of an object falls into a grid cell then that grid cell is
responsible for detecting that object. Each cell predicts B bounding boxes and their respective confidence
scores, which reflect the model’s confidence that a bounding box contains an object and how accurate that
bounding box is.

The confidence score can be calculated as
Confidence = Pr(Object) x IOU,red ruth (2.5.1)

Another key technique that is used in the YOLO models is Non-Maximum Suppression (NMS), whose purpose
is to select one of out of the many overlapping bounding boxes that are produced based on a pre-defined
criterion, usually based on the IoU overlap between the predictions. The network architecture is based on
the GoogLeNet model for image classification.
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Figure 2.5.1: Original YOLO Model Architecture

All subsequent version of YOLO add significant improvements in different aspects of the architecture in order
to boost performance, which we will summarize below:

¢ YOLOV2, or YOLO9000 [38] was introduced in 2016 and included a different backbone, Darknet-19, a
variant of VGGNet but also introduced the use of anchor boxes. Anchor boxes are a set of predefined
bounding boxes of different sizes that are used to capture the scale and aspect ratio of the specific classes
to be predicted. Then, the predicted bounding boxes are not calculated directly but as displacements
from the predetermined anchor boxes.

e In the third version, YOLOv3 [39], the model became larger and more accurate while maintaining
superior speed compared to other detectors of its time. The main improvements employed are the
addition of Feature Pyramid Networks [reference| to extract features from different scales and sizes
from the same image, the improvement of the backbone to Darknet-53 as well as the addition of logistic
classifiers to improve accuracy.

e YOLOV4 [2] was the first version of the YOLO models that was not developed by the original author,
Joseph Redmon, who decided to step back from the projects due to concerns about the ethical usage
of Computer Vision models. The new authors, A. Bochkovskiy et al., made many new contributions
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to these models, first by introducing two new concepts: Bag of Freebies (BoF) to refer to methods
that improve performance by modifying only the training strategy while not increasing the inference
cost, so mainly data augmentation techniques, and Bag of Specials (BoS) to refer to post-processing
methods that increase the inference cost but significantly improve the detection accuracy. Several
data augmentation techniques were added to the BoF, including CutMix and two new methods: a)
Mosaic, that mixes 4 training images to include 4 different contexts and b) Self-Adversarial Training
(SAT), where the model performs an adversarial attack on itself by altering the input image and then
detecting an object in that image. In addition to data augmentation, the BoF also included different
types or regularization techniques such as Dropout, DropPath, Spatial dropout etc. and different types
of normalization techniques, like the newly introduced Cross mini-Batch Normalization (CmBN) that
collects statistics only within mini-batches in a single batch. The changes made to the BoS include the
addition of Skip-Connections such as Cross stage partial connections (CSP) and the modification of
other techniques, such as Spatial Attention Modules (SAM) that generates feature maps by utilizing
their inter-spatial feature relationship.

e YOLOV5 [53] was released by the Ultralytics group in 2020 as a PyTorch implementation of YOLOvV3,
but no actual paper has still been produced to accompany this work. However, this is still one of the
most popular versions of the YOLO models, scoring an 50.7% mAP score on the COCO validation
dataset.

e The year 2022 saw two new releases of the YOLO algorithm, the first of which is YOLOv6, [22] published
by yet another set of authors that introduced some fundamental changes. First, the architecture
was switched from the Darknet architecture that was used as the backbone in all previous versions,
to a dual approach that was named EfficientRep and included using a RepVGG backbone for the
smaller network, as it is equipped with more feature representation power with a similar inference speed
(but has prohibitively high computational costs in larger networks), and a revised CSP block named
CSPStackRep for the large networks. Another main modification that impacted both the inference
speed and performance is the transition from anchor boxes to anchor-free detection, specifically anchor
point-based detection, where the distance from the anchor point to all four sides of the bounding box is
predicted. With the addition of an SIoU bounding box regression loss that contains four cost functions
(angle cost, distance cost, shape cost, IoU cost) and other finetuned elements, this model’s smallest
version achieves a score of 35.9 mAP on the COCO validation set, while the largest achieves a mAP of
57.2.

e Next, YOLOvV7 [49], also published in 2022 by the same authors as YOLOv4, introduced an ensemble
technique that merges different computational modules at the inference stage and surpassed all known
object detectors of that time in real-time object detection. The BoF from YOLOv4 was upgraded to
a Trainable Bag of Freebies that included a RepConv backbone without identity connection, named
RepConvN, and a re-parameterization of the convolutional layers. The largest version of this network,
YOLOv7-E6E, is comprised of 151.7 million parameters and achieves a score of 56.8% mAP on the
COCO validation set, while the smallest, YOLOv7-tiny scores a 35.2%.

e Finally, YOLOvVS8 [54], the latest rendition of the YOLO lineage (at least at the time of writing) was
released in 2023 by the Ultralytics group as a PyTorch implementation, again without a corresponding

paper having been released yet, and the largest model, YOLOv8x achieves a 53.9% mAP score on the
COCO validation set.

The performance of the different YOLO models on the COCO dataset has been incrementally increasing over
the years, with the latest versions surpassing all other modern object detectors both in terms of speed and
accuracy.



28 CHAPTER 2. INTRODUCTION

55 55
50 50 4
a a
‘:'.:\E 45 éE 45 4
< e
E 40 E 404
[o] =]
Q 5]
C 35 —e— YOLOv8 O 354 —e— YOLOvB
o dcii YOLOWV? 2 Fast YoLOV?
0|/ Al voowzo | gyl | gglaster voLow20
YOLOV5-7.0 YOLOV5-7.0
0 20 40 60 80 1.0 1.5 2.0 25 3.0 35
Parameters (M) Latency A100 TensorRT FP16 (msfimg)

Figure 2.5.2: The evolution of the latest YOLO models [54]

2.6 Saliency Maps

Despite the many evaluation metrics that have been employed for this task, the way Object Detectors truly
function and the reasons they make the decisions they do are still unclear to humans. And with the increasing
role that these, and other Machine Learning models, play in modern society the need for transparency in the
way they work is more urgent than ever. This is how Explainability emerged as a field of Artificial Intelligence
that attempts to explain to humans how a model functions, from input to output, and how it comes to make
a decision. If ML models are to be included in the decision making process of areas like Law or Medicine, it
is essential that they be made explainable, to avoid assimilating their possible biases in our culture and also
to increase faith in them and ensure they serve the good of the public. In the field of Object Detection the
explainability methods tend to be visual, due to the nature of task, but there are also analytical methods
that determine the contribution of a feature to the model decision. In this work, we will focus on visual
explainability methods, and more specifically Saliency Maps. Saliency maps are heatmaps that represent
how each pixel of an image affects the detectors’ decision. Another interpretation of Saliency Maps is that
they aim to depict on which parts of an image a person’s eyes focus first. A highlighted region in a saliency
map might imply that the actual object detected is located there, or that the region contains an important
piece of context for an object that was detected. Some algorithms rely on static image features to localize
the regions of interest in an image, while others that use video input consider objects that move as salient.
However, in our study, the point of interest is not what elements a human will notice first in an image but
an object detector. This study may unveil possible biases in our models like reliance on color, context and
environment clues, or even possible biases in the datasets used to train these models.

Figure 2.6.1: Examples of Saliency Maps [34]

The most popular approaches for creating saliency maps can be categorized in the following manner:
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e Gradient-based methods: These methods utilize the gradient of a deep learning network to identify
which parts of an image are most important for a particular decision. Backpropagation can be used to
calculate the gradient of a network’s output with respect to its input image, which can then be used to
create a saliency map.

e Perturbation-based methods: These approaches involve making small changes to an input image
and observing how the model’s decisions change as a result. By analyzing these changes, it is possible
to identify which parts of the image are most important for these decisions.

e Activation-based methods: The methods that belong in this category rely on the activation maps to
complete this task by identifying which parts of the input image correspond to the highest activations
in the network’s activation map, as these regions are assumed to be the most important regions for the
network’s output.
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3.1 Image Corruptions

The field of robustness in Object Detection, Image Classification and Instance Segmentation has been widely
explored with many different methods that highlight the many aspects of these models that remain vague
and unclear to humans. The first and most common group of works contains evaluating the performance
of pre-trained model on perturbed or corrupted images in order to observe their deteriorating performance,
locate gaps in their training according to the specific characteristics of each corruption, and fill in those
gaps with data augmentation techniques, or by altering the network itself. In [18] the authors introduce a
set of image corruptions benchmarks for testing the robustness of several image classifiers against common
perturbations like the added effect of snow, rain, fog, different types of noises and blurs etc. They created 15
different perturbations, each of which has five levels of severity, resulting in 75 corruptions that they applied to
ImageNet, a popular image classification dataset, to create two variations IMAGENET-C and IMAGENET-
P. Next, they tested the performance of deep learning image classification models like AlexNet, ResNet, VGG
etc. They also introduced a new set of metrics for evaluating this performance and documented deteriorating
and unexpected results from all classifiers, with larger models such as ResNet being more robust, while also
introducing a set of techniques that improves robustness against corruptions and perturbations. This work
shares our goals and sets a very important benchmark for evaluating and improving classifier robustness, and
could be generalized to fit the Object Detection task. A different study on deep learning image classifiers
(ResNet, VGG, GoogLeNet) that tested their ability to generalize when an image is corrupted against a
human’s ability, showed that the human visual system is almost always superior when it comes to robustness,
as it performed better on twelve different types of image corruptions. It was also noted that classifiers trained
on distorted images outperformed humans on these exact distortion types, but were unable to generalize on
other types, highlighting the challenges of robustness in the field. [12] Moving onto Object Detection, a work
that investigates the vulnerability of deep learning models against image corruptions is [33], in which three
perturbed benchmark datasets PASCAL-C, COCO-C and Cityscapes-C are introduced for Object Detection
and specifically for autonomous driving, which is a prime example of a real-life application where Object
Detectors need to be able to adjust to various weather conditions without necessarily having been trained on
such images. Following the work of Hendrycks et al., they used 15 different types of corruptions, including
added blur, noise, frost, fog etc., with 5 degrees of severity, to test popular object detectors such as Faster
R-CNN, Mask R-CNN, Cascade R-CNN etc. They also introduced their own evaluation metrics and reported
that a stronger backbone causes performance improvement on corrupted data, whereas a more powerful head
does not. Lastly, they propose a new method of stylizing images during training which leads to improved
robustness against corruptions during evaluation time. Our work is an extension of this study to include
state of the art one-stage object detectors like the YOLO line of models, since we have utilized their images
corruptions to apply to the COCO validation set, while also introducing a few new corruptions and extending
the analysis by leveraging the use of saliency maps. There have also been attempts to evaluate the robustness
of image segmentation models [1], [21], in which the same corruptions by Hendrycks et al. are applied on
images to test instance and semantic segmentation models respectively, benchmarking the performance of
different backbones and suggesting possible solutions to increase robustness in these models.

3.2 Adversarial Attacks

Another emerging field on Machine Learning that has been gaining significant popularity and has been applied
to robustness study is Adversarial Machine Learning. The term Adversarial Attack refers to a technique that
aims to "fool" a model using deceptive data, either during training or during inference. These techniques
are based either on modifying the input data in a way that is imperceptible by a human observer or by
directing altering the model’s parameters, thus causing it to malfunction. These are classified as black-box
and white-box attacks respectively, however we will be focusing on black-box attacks since they are much
more common and do not require specific knowledge of a model’s functionality. A black-box adversarial
attack against an object detection model can include adding imperceptible noise to an image that will cause
the detector to malfunction and identify an object as something completely different, by feeding an online
model with maliciously tampered data, or even by altering a single pixel of the input image [46]. However,
this set of methods can also be used to increase the robustness of a model when used as a data augmentation
technique. In [5] the authors integrate adversarial examples into a data augmentation technique that is
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used during the fine-tuning stage of a detector and apply it separately to the image classification and object
localization branches. More specifically, they make use of the corruption types introduced in [18] and feed
different EfficientDet models both with clean and corrupted images and observe not only that the model has
slightly increased accuracy but also that it is more robust to image distortions. On the other hand, robustness
against adversarial attacks in image classifiers and object detectors has also been studied extensively [26],
[32], [31], [51], [16], [36], [52], [6], however this field of study falls outside the scope of this work.

3.3 Distribution Shifts

In the field of Image Classification, and therefore Object Detection, the concept of distribution shifts as tools
for testing and increasing model robustness has been gaining increasing popularity in recent years. The term
distribution shift in general was created to describe the phenomenon where the underlying distribution of
the data the model was trained on differs greatly from the data it is tested or deployed on. In the context of
image classification and object detection, this could refer to testing a model on images that contain unseen
object types, changed features, entirely different scenes, different lighting conditions or camera settings, a
different camera perspective etc. Ideally, any ML model and therefore any classifier or detector would be able
to adapt to distribution shifts, whether they are natural or artificial, however research has shown that state-
of-the-art object detectors and image classifiers are vulnerable even to small changes in the input distribution
and perform poorly on out-of-distribution data [37], [48], [19], [3], [30]. Particularly in the Computer Vision
domain, where models are typically deployed in real-world scenarios with the input data coming from a
variety of different sources and distributions, robustness against distribution shifts is crucial for increasing
model reliability. Various works have been developed in the literature for studying the robustness of image
classifiers and object detectors against distribution shifts using a wide variety of methods. In [30] the authors
explore the problem of adapting object detection models to new domains with differing training and testing
data distributions and propose a method for unsupervised domain adaptation that aligns the distributions of
the target and source domains, which shows promise in improving the models’ performance under distribution
shifts. Another application of this is found in [23], where the authors propose a training schema in which
different noisy labels are generated after each gradient update during model training, so the model does not
overfit on a specific type of noise. Their approach trains the model to adapt to the distribution of the noisy
data by learning to correct the noise, making it more robust against added noise in the data distribution
during testing. A different approach is followed by the authors in [27], where they examine the performance
of different image classifiers under distribution shifts that stem from uncurated images sourced from the web,
unlike in other works where the data used to simulate the distribution shift are carefully selected. They
observe the performance drop of these models on the collected dataset and explain the inability of simple
accuracy metrics to capture the entire essence of this deterioration, so a knowledge-driven evaluation schema
that captures the semantic relations between the misclassified samples is proposed. This type of analysis,
that goes past strict accuracy-based evaluation and attempts to uncover deeper biases and relations in image
classifiers and object detectors is what we hope to achieve in this work as well.

3.4 Saliency Maps

On the topic of saliency maps, many previous works rely on this, and other, methods to gain a better insight
on the way object detectors operate, unveiling possible biases, such as people’s skin color leading to reduced
performance when it comes to dark-skinned individuals [50]. However, saliency maps can be directly used
to increase model robustness. In [29] and in [20], saliency maps and other explainability methods are used
to generate adversarial examples, resulting in improved performance as the adversarial attack got stronger
and therefore increasing model robustness. Another functionality of saliency maps in robustness study can
be found in [4], where it was shown that the saliency map produced based on a robustness-enchanced model
was much more robust against perturbations compared to the saliency map produced based on a regular
model. This approach has also been widely used to study the explainability of image classifiers in many
works [44], [43], [56]. Particularly in [9] the authors attempt to produce a mask that represents the most
important feature of an image according to image classifiers, by progressively applying certrain perturbations
such as noise or blur, and observing how the classifier’s decision changes. Our approach to robustness based
on saliency maps is similar, in that it aims to observe the changes that occur as the model is fed progressively
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more corrupted images, with different kinds of corruptions and attempting to quantify these results.
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4.1 The MS COCO Dataset

Many datasets have been introduced for this task over the years, including the PASCAL Visual Object
Classes (VOC) Challenge, the KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute)
mainly used in mobile robotics and autonomous driving etc. However, the most popular benchmark on this
task is the Microsoft COCO (Common Objects in Context) dataset [7], a large-scale, public dataset that
consists of 328,000 images of everyday scenes, and annotations for many different computer vision tasks such
as object detection, segmentation, image captioning, and keypoint tracking. We will only be focusing on the
object detection segment of the dataset, whose captions include 80 class labels of everyday objects, varying
from people and vehicles to animals and household objects. This dataset will play an integral role in our
experimentations, so we provide an analytical overview of the dataset and its classes.

person elephant wine glass dining table
bicycle bear cup toilet
car zebra fork tv
motorcycle giraffe knife laptop
airplane backpack spoon mouse
bus umbrella bowl remote
train handbag banana keyboard
truck tie apple cell phone
boat suitcase sandwich microwave
traffic light frisbee orange oven
fire hydrant skis broccoli toaster
stop sign snowboard carrot sink
parking meter sports ball hot dog refrigerator
bench kite pizza book
bird baseball bat donut clock
cat baseball glove cake vase
dog skateboard chair scissors
horse surfboard couch teddy bear
sheep tennis racket | potted plant hair drier
cow bottle bed toothbrush

Table 4.1: Available classes in the COCO dataset

Class H Instances in the Train Set \ Instances in the Val Set ‘
Person 262.465 11.004
Car 43.867 1.932
Chair 38.491 1.791
Book 24.715 1.161
Bottle 24.342 1.025
Cup 20.650 899
Dining Table 15.714 697
Bowl 14.358 637
Traffic Light 12.884 626
Handbag 12.354 540
Umbrella 11.431 413
Bird 10.806 440
Boat 10.759 430
Truck 9.973 415
Bench 9.838 413

Table 4.2: Top 10 most frequently appearing classes in the COCO dataset
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Figure 4.1.1: Number of Instances per Class in COCO training set

Most Object Detection models are trained, validated or tested on a subset of the COCO dataset, and new
works that are being released publish their performance on it in order to show the importance of their work.
The current best performing models on this dataset are as follows:

’ Model H AP Score | Release Year
YOLOv6-L6 57.2 2023
YOLOvT7-E6E 56.8 2022
YOLOvT7-D6 56.6 2022
YOLOvVT7-E6 56 2022
YOLOv7-W6 54.9 2022
YOLOv7-X 53.1 2022
YOLOvVT Table 51.4 2022
YOLOv5-X 50.4 2021
Mask R-CNN 45.2 2017

Table 4.3: Best performing recent models of the COCO dataset

It is obvious that the field of Object Detection over the past years has been dominated by YOLO and its
latest release, which is why we have selected this model family to be the main source of experimentation,
with Mask R-CNN following, although not closely given its release year, mostly to provide with a baseline
comparison between one shot and two shot object detectors.

4.2 Experiment Pipeline

In order to gauge how robust modern Object Detectors are to changes in image quality, whether that comes
from extreme weather conditions, applied noise due to camera malfunctions, blur from abrupt camera move-
ments or other alterations, we need to establish a baseline performance of these models and then methodically
analyze the way it deteriorates according to each perturbation. To this end, we will utilize the MS COCO
dataset, since it is arguably the most popular dataset on this task and most researchers use it to validate their
models’ performance compared to others, while also containing a variety of indoor and outdoor images and
various object classes. We will begin our experimentation by establishing the already known performance of
our chosen detectors on the original COCO validation set, since the labels of the test set are not publicly
available. Next, we will apply various types of perturbations on these images, with varying degrees of sever-
ity, and document the decline in performance of each detector according to the nature of each perturbation.
After these results are documented and analyzed we will select the most interesting/conflicting aspects and
move on to the next step of our experimentation which will be the visualization. We will utilize Saliency
Maps to gauge the way the regions of interest change according to the perturbations as well as the shift in
the importance of contextual clues in the image.
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4.2.1 Model Selection

In our experiments we will also be comparing the performance of both one-stage and two-stage detectors,
since their architecture is fundamentally different, so it is expected that they will behave differently under
the same corruptions. More specifically, we will select Mask R-CNN as the two-stage detector since it is
one of latest algorithms of the R-CNN family and the YOLO models as the one stage detectors. We began
our experimentation with YOLOvV5 as it was the latest YOLO model at the time of writing, however, since
then there have been many new releases of YOLO, so in order to provide a more comprehensive study we
included every new version of YOLO as it came, so our model selection for the one-stage detectors consists
of YOLOvV5, YOLOv6, YOLOv7 and YOLOv8. Another point to note is that we will be testing two different
versions of each of these models: the smallest available version, usually called the nano, and the largest
available. The smaller models have fewer parameters, require less space and they are faster but less accurate,
while the larger ones fall on the opposite side, with more parameters and higher inference times but increased
accuracy. We are formatting our experiments this way to analyze how important model size and complexity
is for robustness, as well as to establish a trade-off between inference speed and accuracy/robustness. Each
version has a different use, e.g. nano models could be useful for mobile applications where speed is crucial,
but all of them need to have established robustness. Lastly, the reason why we focus more on the one-
stage detectors is because two-stage detectors, and mainly the R-CNN family, have been already studied
extensively for their robustness, whereas there hasn’t been a comprehensive analysis of robustness for the
different YOLO models, to our knowledge. Also, the Object Detection stage has been dominated by YOLO
models in recent years, which is why a benchmark of their robustness on a large variety of perturbations
is important. However, we still test Mask R-CNN to provide a comparison between the different types of
detectors, and because the R-CNN family had been dominating the Object Detection stage until the rise of
the YOLO models. We provide an overview of the models we will be using for our experiments, including
their inference speed, which is relevant for real-time object detection, or object detection on video.

Model mAPYY o5 | # of Params (M)
YOLOv5Hn 28.0 1.9
YOLOv5x 50.7 86.7
YOLOv6n 37.5 4.7
YOLOv61 52.8 59.6
YOLOvT7 51.4 37

YOLOvV7E6 53.1 71.3
YOLOv8n 37.3 3.2
YOLOv8x 53.9 68.2
Mask RCNN 45.2 63.8

Table 4.4: Overview of Selected Models

The detector scoring the best performance on the COCO validation set among our selection is also the latest,
YOLOvV8x, which does not include the largest number of parameters. Note that, obviously the larger models
will outperform the smaller ones in terms of accuracy, however we want to evaluate the models’ robustness,
meaning the rate at which they deteriorate under certain corruptions and not the absolute best performace
accuracy-wise.

4.3 Image Corruptions

To perform our experiments we will use the corruptions provided by [18] and apply them to all 5000 images
of the COCO validation set. These corruptions include:

e Noise Corruptions: Gaussian noise, Shot noise, Impulse noise
e Blur Corruptions : Defocus Blur, Glass Blur, Motion Blur, Zoom Blur

e Weather Corruptions: Snow, Frost, Fog, Brightness
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e Digital Corruptions: Contrast, Elastic Transform, Pixelation, Jpeg Compression

Defocus Blur Glass Blur

Gaussian Noi - _Shot Nois Impulse Noise

Motion Blur Zoom Blur

Brightness Contrast Elastic Transform Pixelate |PEG Compression

Figure 4.3.1: Original image corruptions introduced in [18]

In order to enrich the variability of the corruptions we introduce three new corruptions:

e Rain: Introduces an effect of rain to the image, ranging from a slight drizzle to torrential rain. We
produce this corruption by using the imgaug library, defining five different deterministic rain augmentors
and modifying their parameters so each of them matches a specific degree of rain severity, and then
apply these augmentors to the COCO validation set. This is a basic weather corruption that needs to
be part of our experiments, both from a theoretical standpoint but most importantly from a practical
standpoint, as rain is very common and outdoor navigation systems (vision aids or autonomous vehicles)
need to be able to achieve good performance while the image is affected by rain.
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Figure 4.3.2: 5 levels of severity for our Rain Corruption

e Dark: This corruption progressively darkens the image to simulate a nighttime effect, by slowly lowering
pixel values. Its aim is to establish how important color context is to an object detection model, since by
slowly darkening the image the color of its environment disappears, while the edges of objects become
less apparent and harder to distinguish.

Figure 4.3.3: 5 levels of severity for our Darken Corruption
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e Mask: This corruption entails a random masking of parts of the image. For each severity level we define
the total number number of pixels to be masked as N and a cluster factor C, then we select a number
random pixels equal to N and mask a square patch of size [C,C] of the original image. This algorithm
is based on [15], where the authors employ the technique of masking to create a self-supervised audio
transformer, however masking appears in many works and across many different domains. We define
five different random mask generators and apply them to the COCO validation set. The purpose of this
corruption is to determine the importance of contextual clues in object detectors, and whether they
can produce the same results when most of the image environment is missing. This technique is also a
popular pretraining technique for self-supervised networks.

Figure 4.3.4: 5 levels of severity for our Mask Corruption

4.4 Results

We present a table containing results for all small detectors and all the corruptions for severity level 1. The
tables for all severity levels, both for large and small detectors, can be found in the Appendix. We also present
a graphical representation of our results for all corruptions and all severity levels for YOLOv5n, while the
graphs for all other detectors can also be found in the appendix.
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| Detector || YOLOv5n | YOLOv6n | YOLOvV7 | YOLOv8n | Mask RCNN |

Snow 0.252 0.267 0.399 0.246 0.226
Frost 0.297 0.308 0.438 0.292 0.262
Fog 0.32 0.332 0.453 0.315 0.279
Brightness 0.357 0.362 0.48 0.24 0.345
Darken 0.349 0.356 0.468 0.347 0.315
Rain 0.339 0.345 0.468 0.336 0.325
Gauss 0.27 0.302 0.413 0.259 0.264
Impulse 0.224 0.28 0.366 0.221 0.194
Shot 0.27 0.306 0.412 0.262 0.263
Defocus 0.305 0.305 0.415 0.302 0.254
Zoom 0.131 0.131 0.208 0.127 0.108
Motion 0.289 0.306 0.409 0.289 0.269
Jpeg 0.282 0.313 0.347 0.277 0.263
Contrast 0.317 0.329 0.454 0.312 0.279
Pixelate 0.266 0.342 0.376 0.307 0.262
Elastic 0.298 0.318 0.418 0.308 0.278
Mask 0.274 0.251 0.404 0.257 0.255

Table 4.5: mAP Scores for Small Detectors - Severity Level 1
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Figure 4.4.1: YOLOv)n performance on Corrupted COCO dataset

Lastly, we also define a metric that we name GmAP to get a more global evaluation of the robustness of each
detector. Specifically, for each corruption we calculate the difference of the mAP score of each severity level

with the following severity level, and finally get the average of these differences:

Z?:O (mAPsev:'H—l - mAPse’u:i)

GmAP =

4

(4.4.1)
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A higher absolute GmAP value means that the differences in detector performance across the increasing
severity levels was deteriorating faster compared to a detector with a lower absolute GmAP value, therefore
an overall less robust performance of the detector on that specific corruption.

’ Detector H YOLOv5n \ YOLOv6n \ YOLOv7 \ YOLOv8n \ Mask RCNN ‘

Snow 0.044 0.044 0.039 0.045 0.045
Frost 0.047 0.046 0.033 0.047 0.047
Fog 0.02 0.018 0.015 0.015 0.24
Brightness 0.019 0.017 0.021 0.021 0.035
Darken 0.046 0.042 0.04 0.049 0.067
Rain 0.051 0.046 0.028 0.056 0.051
Gauss 0.085 0.09 0.11 0.083 0.079
Impulse 0.07 0.083 0.096 0.07 0.055
Shot 0.082 0.086 0.108 0.082 0.076
Defocus 0.073 0.073 0.084 0.075 0.064
Zoom 0.032 0.032 0.047 0.031 0.028
Motion 0.078 0.082 0.104 0.079 0.073
Jpeg 0.077 0.071 0.087 0.072 0.071
Contrast 0.098 0.092 0.084 0.094 0.09
Pixelate 0.079 0.089 0.113 0.088 0.078
Elastic 0.054 0.057 0.072 0.054 0.052
Mask 0.065 0.064 0.06 0.064 0.057

Table 4.6: Absolute GmAP scores for all Small detectors and Corruptions

’ Detector H YOLOv5x \ YOLOv61 \ YOLOvV7EG6 \ YOLOv8x

Snow 0.044 0.037 0.046 0.036
Frost 0.037 0.034 0.036 0.033
Fog 0.015 0.014 0.015 0.016
Brightness 0.021 0.016 0.019 0.019
Darken 0.05 0.042 0.048 0.042
Rain 0.03 0.024 0.03 0.029
Gauss 0.104 0.093 0.095 0.106
Impulse 0.095 0.083 0.082 0.093
Shot 0.099 0.086 0.09 0.1
Defocus 0.087 0.083 0.087 0.091
Zoom 0.049 0.051 0.049 0.052
Motion 0.104 0.098 0.1048 0.1
Jpeg 0.099 0.088 0.087 0.1
Contrast 0.108 0.09 0.095 0.088
Pixelate 0.121 0.113 0.12 0.118
Elastic 0.076 0.074 0.08 0.074
Mask 0.075 0.079 0.075 0.06

Table 4.7: Absolute GmAP scores for all Large Detectors and Corruptions

There are a lot of interesting observations to be made about these results, both for each detector separately but
also collectively. First, it is clear and expected that all detectors’ performance deteriorates as the corruption
severity level increases. Secondly, when comparing the robustness of one-stage and two-stage algorithms,
what is interesting to note is that the Mask R-CNN model is more robust than all versions of the small
YOLO models on 9/15 total corruptions, despite being an older model. Particularly, we can see that Mask
R-CNN scores the lowest GmAP values amongst all detectors on all the Blur corruptions, Impulse Noise,
and the Jpeg, Pixelate, Elastic and Mask corruptions. This result could indicate that two-stage detectors
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are more robust to certain kinds of corruptions than one-stage detectors, however in order to solidify such a
conclusion we would need to experiment with a two-stage detector that matches the size of the large YOLO
models available today. So far, we can only state that Mask R-CNN seems more robust against corruptions
that distort the image without affecting its colors, particularly against blurring of the input image, and less
robust against corruptions that change the color distribution (like the Brightness and Darken corruptions) and
corruptions that directly insert new edges and shapes to the image (like most Weather corruptions). Now
comparing between the small YOLO models, we observe that YOLOvV7 is the most robust model against
most Weather corruptions, but the least robust against the Noise and Blur corruptions. The YOLOv5n
and YOLOv8n models perform similarly in terms of robustness, which is to be expected since they were
developed by the same group, scoring better GmAP values than YOLOv7 against Blur corruptions and the
Pixelate, Jpeg and Elastic corruptions that have the similar effect of pixelation on an image. On the other
hand YOLOv6 seems to be among the best performers against Digital corruptions

When it comes to the large detectors, there seems to be no significant deviation in their GmAP scores, with
all models achieving similar scores and outperforming each other by a slight margin in individual corruptions
that follow no discernible pattern. However, what is interesting to note is that, while the large YOLO models
always significantly outperform their smaller equivalents in terms of mAP score, which is expected as the
large models often include an exponentially larger number of parameters, the same conclusion does not hold
in terms of GmAP score. Specifically, YOLOv5n and YOLOv8n almost exclusively score better GmAP
results compared to YOLOv5x and YOLOvS8x respectively, and for YOLOv7, despite the smaller model still
scoring better GmAP scores in most cases, the larger model scores better in more cases than the previous
models. YOLOvV6! on the other hand outperforms YOLOv6n when it comes to Weather corruptions, but
falls short when it comes to all other categories, which evens out the robustness score between them. This
observation is interesting in the sense that, the large detectors still produce better results no matter the
corruption or severity and the expected result is that they would also produce better GmAP values, however
that is not the case. Therefore, we can safely say that a larger parameter number does not ensure robustness
in the detector’s results. The consensus still stands that the larger models offer better accuracy against
all corruptions and are therefore more robust, however when it comes to improving absolute robustness of
a detector, a larger model does not equal a more robust model. This result leads us to the conclusion
that in order to improve robustness in object detectors we cannot lean on simply larger models, which are
accompanied by a significantly slower inference speed, but focus on how other elements can help improve
robustness, such as pretraining and augmentation techniques.

Finally, we produce the mean GmAP score for all detectors across all corruptions, in order to arrive at a
general conclusion about their overall robustness. We define the mean GmAP score as:

meAP _ Zz-corruptwn :
# Corruptions

(4.4.2)

Once again, a smaller absolute mGmAP score points to a more robust detector. The final mGmAP results
for all detectors are presented in the table below.

Detector mGmAP
YOLOv5n 0.0601
YOLOv6n 0.0607
YOLOvT7 0.067
YOLOv8n 0.06
Mask RCNN 0.0583
YOLOv5x 0.0713
YOLOv61 0.065
YOLOvVTEG6 0.0681
YOLOv8x 0.06805

Table 4.8: Absolute mGmAP scores for Detectors

These results summarize all our previous observations. More specifically, Mask RCNN is the most absolutely
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robust detector (meaning compared to itself), which leads us to assume that the trade-off between accuracy
and inference speed between one-stage and two-stage detectors includes robustness as well, with two-stage
detectors being overall more robust against different types of image corruptions. When it comes to one-stage
detectors, the smaller models are more absolutely robust compared to their larger equivalents, with YOLOvS
being the more robust detector, both among the small and large models. Unfortunately, since we have no
knowledge about this detector’s architecture, pretraining or data augmentation techniques we cannot explain
this superiority in performance.

Another interesting interpretation would be to determine which corruption from each category causes the
worst results among all the classifiers, and which corruption is the worst overall. After having defined the
metrics that summarize detector performance we will also propose a related metric that summarizes the
effect of the different corruptions over all detectors, or over a specific model. Given a specific corruption C
we denote the proposed metric as CmAP and define it as:

SN, GmAP,

AP =
Cm i

(4.4.3)

where GmAP; is the GmAP performance of detector ¢ on this corruption, for N total number of detectors.
Once again, the larger the absolute CmAP value, the worse effect this specific corruption has had on the
detectors it was calculated on. We will calculate this metric for all corruptions, first on all detectors in order
to determine which corruption caused the worst overall results and then repeat this process for each model
(both the smaller and larger version) in order to document which corruption affects each classifier more. We
present our results below, starting with the CmAP values for each corruption over all the detectors:

’ Corruption H CmAP ‘

Snow 0.042
Frost 0.04
Fog 0.0173
Brightness 0.0208
Darken 0.0473
Rain 0.0383
Gauss 0.0938
Impulse 0.0807
Shot 0.0898
Defocus 0.796
Zoom 0.0412
Motion 0.09
Jpeg 0.084
Contrast 0.093
Pixelate 0.1
Elastic 0.0658
Mask 0.0665

Table 4.9: Absolute CmAP scores over all Detectors for all Corruptions

After observing these results we distinguish the Pixelate corruption as the one having the worst overall effect
on our set of models, with the Gaussian Noise, Contrast and Shot Noise corruptions following shortly behind.
In general, pixelation can lead to a loss of a lot of the fine details in an image and can make its edges and
contours appear jagged, which could justify the large decrease in detector performance.

Overall we can see that the Noise corruptions achieved some of the highest CmAP scores, meaning they caused
the worst decline in overall detector performance. This result is interesting since adding noise to the input
image changes its underlying distribution, for example with Gaussian noise the resulting distribution of pixel
values will likely be more spread out and have a wider range of values than the original distribution or with
Impulse noise that randomly replaces some pixels in an image with either the minimum or maximum value
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the change in the image distribution is drastic because this particular type of noise creates sudden spikes or
dips in the pixel values. But the most important pattern that seems to be emerging from these results is that
corruptions that affect the edges and texture of the image making it appear more homogeneous, which can
make it harder for object detection algorithms to distinguish between different objects and backgrounds, cause
an overall more significant decline in accuracy and robustness. This hypothesis also justifies the observation
that smoother corruptions such as Brightness, Fog, Darkness etc. do not downgrade model performance as
much. Given the case of the Mask corruption, which at the final severity level masks an important percentage
of the image and still does not score at the top worst corruptions, we could postulate that discrete object
edges are more important than context clues when it comes to object detection.

In the case of the Contrast corruption, has a highly adverse effect on detectors, we can attribute this phe-
nomenon to the fact that contrast adjustments can make the features of objects in the image appear more
pronounced or subdued, which can cause the detector to detect false positives due to exaggerated features or
miss objects altogether due to subdued features, leading to false negatives. Moreover, contrast adjustments
can alter the lighting and shadowing in an image. This can make it more difficult for the object detector
to accurately distinguish objects from the background, especially if the contrast adjustment results in areas
of the image being overexposed or underexposed. Finally, contrast adjustments can also introduce noise or
artifacts into an image, especially in areas of high contrast. This can cause the object detector to detect false
positives or miss objects that have been obscured by the noise or artifacts.

We will be repeating this analysis for each model specifically, in order to arrive at a conclusion about which
corruption affects which detector more and whether some corruptions affect all detectors equally. To that
end, we will be calculating the CmAP scores of each corruption for each model separately, but jointly among
small and large versions, and comparing them.

] Detector H YOLOv5 \ YOLOv6 \ YOLOv7 \ YOLOvS8 \ Mask RCNN \

Snow 0.044 0.0405 0.0425 0.0405 0.0225
Frost 0.042 0.04 0.0345 0.04 0.0235
Fog 0.0175 0.016 0.015 0.0175 0.012
Brightness 0.02 0.0165 0.02 0.02 0.0175
Darken 0.048 0.042 0.044 0.0455 0.0335
Rain 0.0405 0.035 0.029 0.0425 0.0255
Gauss 0.0945 0.0915 0.1025 0.0945 0.0395
Impulse 0.0825 0.083 0.089 0.0815 0.0275
Shot 0.0905 0.086 0.099 0.091 0.038
Defocus 0.08 0.078 0.0855 0.083 0.032
Zoom 0.0405 0.0415 0.048 0.0415 0.014
Motion 0.091 0.09 0.098 0.0895 0.0365
Jpeg 0.088 0.0795 0.0925 0.086 0.0355
Contrast 0.103 0.091 0.0895 0.091 0.045
Pixelate 0.1 0.101 0.1165 0.103 0.039
Elastic 0.065 0.0655 0.076 0.064 0.026
Mask 0.07 0.0715 0.0675 0.062 0.0285

Table 4.10: Absolute CmAP scores for Detectors and Corruptions

By destructing the results of the table above into its individual components we can extract some conclusions
for the effect of the applied on corruptions on each model. The first clear observation is that the Pixelate and
Contrast corruptions are the ones causing the worst deterioration in performance, in most cases by a large
margin. This result could indicate that model architecture is not the most relevant feature when it comes to
robustness against similar corruptions, since these different models get affected by the same corruptions in
similar ways, but the training data distribution is, since all these models were trained on the COCO dataset.
This hypothesis is also supported by the fact that the corruptions which affect a detector more are common
among all detectors, meaning that the Gaussian noise corruption is the third worst overall corruption for all
detectors, while Shot noise is the fourth overall corruption for all detectors except YOLOvV6 etc. Therefore,
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based on these observations we hypothesize that training data distribution is more important when it comes
to robustness against input image corruptions compared to model architecture, although this needs to be
thoroughly tested with different techniques to be confirmed.
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5.1 D-RISE Algorithm

To further expand our insight on the robustness of these object detectors we will continue by extracting the
saliency maps they produce according to their predictions. To this end, we will be using the D-RISE (Detector
Randomized Input Sampling for Explanation) algorithm [35], which is a black-box algorithm developed for
producing saliency maps for any object detectors using their bounding box and confidence score predictions.
Previous works have used an importance score that is backpropagated through the layers of the network,
starting from the output and leading back to the individual pixels in the image [45], [42], [57], however, these
methods rely on the knowledge of the model’s architecture, rendering them unsuitable for explaining different
models than the ones they were specifically designed to work on. This type of method is characterized
as white-box, since it requires insight into the model’s functionality, which is not always a feasible task.
Furthermore, object detectors require explanations not just for the categorization of a bounding box but also
for its location, which is why existing saliency methods are not suitable for this task. D-RISE is a black-box
algorithm, in that it does not require any knowledge of the model’s inner functioning to produce a saliency
map that corresponds to its prediction. Based on the RISE algorithm [34], in this method the main idea is to
measure the effect of masking random regions of the input image and then utilize the changes of the model’s
predictions in this image to calculate its importance. Specifically, N binary masks are generated and then
used to mask the image that is input to the detector, which generates D bounding box and confidence score
proposals for that image. Each of these proposals is denoted as:

where L; = (x%,4}), (v}, y4) are the bounding box corner coordinates, O; is the probability score that this
bounding box contains an object, and lastly P, = (pi,...,p,) is a probability vector that contains the
probability the predicted bounding box contains an object belonging to a specific class. Next, a pairwise
similarity is computed between the target bounding box and confidence score and the proposals to obtain
weights for each binary mask. This similarity is calculated as follows:

St MO D) = | tmax  s(dr,ds) (5.1.2)

where the similarity metric s between the target vector d; and the current detection vector d; is computed as
the product of the three similarity aspects that need to be taken into account specifically in the case of Object
Detection: bounding box similarity, confidence score similarity and class-conditional probability similarity,
formally defined as:

S(dt,dj) = SL(dt,dj) . Sp(dt,dj) . So(dhdj) (513)

where

P, P
sp(di,d;) = ToU(Ly, L), sp(ds, d;) L J H,so(dt,dj) =0, (5.1.4)

IR

Note that in this approach the target vector can be arbitrarily defined and is not bound to be model-defined,
which provides the ability to produce saliency maps for objects that the detector missed at inference time.

Lastly, the saliency map is produced as a weighted sum of the binary masks. The D-RISE algorithm is
specifically tailored to object detectors since it utilizes all bounding box proposals to create the saliency map
and allows us to visualize the decisions of both one-stage and two-stage object detectors since it relies solely
on their predictions.
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Figure 5.1.1: Saliency map produced by the D-RISE algorithm with 5000 binary masks and a probability
threshold of 0.5

During our experiments we selected the default parameters of the algorithm, i.e. 1.000 binary masks for each
map created (since including 5.000 masks would be too resource intensive and cost too much time) and an
ToU threshold of 0.5. We will be performing our experiments on a subset of the COCO validation set since
the process of extracting saliency maps is very slow and requires GPU processing, which was limited in our
case.
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Figure 5.1.2: Saliency Maps extracted for the Snow Corruption

5.2 Experiment Pipeline

Our goal is to visualize the shifts in the saliency maps produced by the D-RISE algorithm for one-stage and
two-stage detectors as the severity of the corruptions we applied increases. We will be testing the YOLOv3
algorithm to represent one-stage object detectors and the Faster R-CNN algorithm to represent two-stage
object detectors. Although these models are older versions of the models studied in the previous sections
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the main principles of each approach to object detection remain the same, which allows us to generalize our
conclusions and combine them with our previous ones. We will be using a probability threshold of 0.5 for
both object detectors and 1000 binary masks to generate the saliency maps. Next, we will produce saliency
maps for all images of the COCO validation set, corrupted with a subset of the corruptions used in the
previous sections, for the predictions of YOLOv3 and Faster R-CNN. We selected a corruption from each
category, that we determined would provide interesting visual results in order to economize on resources since
the extraction of saliency maps is a costly procedure in terms of time. Specifically, we will study the Frost
corruption from the Weather category, the Impulse Noise corruption, the Zoom Blur corruption and finally
the Contrast corruption from the Digital category.

Figure 5.2.1: Saliency Maps - 4 levels of Impulse Noise Corruption

As we can tell from the saliency maps extracted above, it is quite challenging to get meaningful interpretations
about the model’s behaviour strictly through visual evaluation, especially when it comes to such large numbers
of images and objects detected, which is why we propose three evaluation metrics to help us quantify these
results and study them more thoroughly.

1. Number of Salient Areas: This metric represents the number of pixels in the saliency map that are
marked as important to the detector’s decision. A pixel is defined as salient if its value in the saliency
map surpasses a specific threshold. We define that threshold as follows:

E[saliency map] + max(saliency map)
2

threshold = E[saliency map] + (5.2.1)

where

Zio saliency map(i)
N

is the mean value of the pixel values in a saliency map of N pixels total and maz(saliency map) is

the maximum pixel value in the saliency map. This threshold was determined experimentally from

observing the majority of saliency maps produced on our corrupted COCO validation set. This metric

will help us observe which corruptions lead to an increase of salient pixels.

E[saliency map] = (5.2.2)
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2. Pixel Ratio: This metric represents the ratio of the number of salient pixels that are found outside of
a bounding box, for each object detected, over the total number of salient pixels. A pixel is considered
salient if its value in the saliency map is over the threshold we proposed above. If we denote S as the
total number of pixels of a bounding box that are salient and Sy as the total number of salient pixels
we can define the pixel ratio as

Sy — SB

izel ratio =
D Sy

(5.2.3)

This metric aims to quantify how important the area inside the bounding box is and how much the
context outside it affects the detector’s decision. A large pixel ratio value might signify that the
environment of the image is more important, or that the detector gets "confused" by the corruption as
its severity increases, and considers noise or other insignificant elements as objects or important context
clues

3. Box Ratio: This metric represents the ratio of the pixels of a bounding box that are marked as salient
pixels (as defined above over the total number of pixels of the bounding box. If we denote B the total
number of pixels in a bounding box we can define the box ratio as

S
box ratio = fB (5.2.4)

With this ratio we aim to determine what percentage of each bounding box is marked as salient, since
it is known that the entire area inside a bounding box is not equally important to a detector’s decision
[35].

We will calculate these metrics for every object class contained in every image in the different versions of
the corrupted COCO validation set, and then extract their average values for the most important object
classes. In this context, an object class is considered important when it appears often or when it is related
to important applications in object detection, such as the person, vehicle and stop sign classes.

It is important to note that only the Box Ratio and Pixel Ratio metrics are calculated for a specific bounding
box, therefore for a specific object and its corresponding class, so we will calculate their values for every
object in every image of the corrupted COCO validation set and then aggregate the results in order to
extract class-specific conclusions. Also note that this area has not been explored in the literature so far, so
these metrics are still experimental and may not definitively provide a strict visual measure for the robustness
of object detectors against these corruptions. However, we believe that they are a solid foundation on which
we can base the analysis of our experiments and safely draw some conclusions on the subject.

5.3 Results

We present the results of our experiments as mentioned in the previous chapter, indicatively starting with
the Contrast corruption for both detectors.
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Figure 5.3.1: Number of Salient Pixels on Contrast Corruption

As expected, the number of salient pixels increases for both detectors, as the severity level increases, with
YOLOvV3 producing a more linear and steady increase, while Faster R-CNN remains more stable until the
spike observed in the final severity level. The number of salient pixels is expected to increase since as
the corruption deteriorates the image, the detector locates objects where they don’t actually exist. Another
possible explanation for this result is that as the corruption changes the image more and more, the underlying
distribution changes, making the image different than the data the detector was trained on. Therefore, since
the normal features of the images and the objects they contain change, the model believes that every part of
the image is an outlier feature and therefore something that is salient, and that needs to be paid attention
to.

Next, we calulcate the pixels ratios for each detector for the contrast corruption, starting with the "person"
object class, which is the biggest class in the COCO dataset, containing the biggest number of instances in
the dataset.
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Pixel Ratios for Contrast Corruption - Person Class
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Figure 5.3.2: Pixel Ratios on Contrast Corruption for the Person Class

As we can see the pixel ratios generally increase for both detectors with the increase of corruption severity,
with YOLOv3 again having an almost polynomial increase, while Faster R-CNN maintains a more steady
course until the last level of corruption. Combining these results with the corresponding increase in total
salient pixels, it is safe to say that as the image deteriorates, both detectors being paying more attention to
outside context clues, possibly for the reasons we mentioned above, with the R-CNN model again maintaining
a more steady increase until the final severity level.

Lastly, we will be calculating the box ratios for each detector, again for the contrast corruption and the
person class.
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Box Ratios for Contrast Corruption - Person Class
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Figure 5.3.3: Box Ratios on Contrast Corruption for the Person Class

We can see that the values of this metric have a downward tendency as the severity of the corruption increases
for both detectors, with Faster R-CNN again having a relatively more steady decline compared to YOLOvV3.
The conclusion that can be drawn from this diagram is that as the severity of the corruption increases the
area inside the bounding box becomes less important to the detector, since it contains fewer and fewer salient
pixels. Comparing this result with the fact that the total number of salient pixels increases, we would be
justified in assuming that the surroundings of the object become more important and that the detector finds
more interest in the overall environment of the image. This could mean that as the features of the image
change and become different from the features the model has been trained on, it marks that environment as
unknown and therefore more "interesting" and important for the detection, whereas the object class itself
loses interest since its detection is encoded with far more features than the detection of its context.

Overall, the main conclusion to be made from this analysis is that, as the corruption increases in severity,
the model gets "confused" and does not know where to pay attention to, which is why the area inside the
bounding box which should be important becomes equally as important as any other part of the image. which
explains the overall rise in pixel ratio and salient pixels and decrease in pixel ratio.

Again, these conclusions are only theoretical and cannot be directly confirmed in this line of research, however
they can be viewed as hypotheses to be studied further in the future.

We will extend our analysis to the "Car" class, which is another distinct object class that appears in the
dataset very often, and also plays a crucial role in the wide variety of applications of object detection models.
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Figure 5.3.4: Saliency Metrics on Contrast Corruption - Car Class

As we can see in the produced diagram the same general principles that were present for the Person class still
apply to the Car class, although the results are not identical, as expected. The pixel ratio values increase
along with the increase of salient pixels, while the box ratio values decrease. Note that the number of salient
pixels is a class-agnostic metric, i.e. it refers to the entire image and remains the same regardless of which
class is being detected, therefore we will not be repeating it. Based on this observation we can postulate that
the conclusions we draw for one class can be generalized to others, which would allow us to strictly define a
framework for evaluating the robustness of these models.

To continue our analysis we will be presenting our results for a different corruption, the Frost corruption.
We choose to systematically analyze these two corruptions since they contain a very important differing
component that can split our analysis into two categories: how do object detectors behave against corruptions
that insert new edges to the image, versus against corruptions that do not. The Frost corruption inserts an
increasing amount of new edges to the image as its severity increases, so we expect the saliency analysis results
to be fundamentally different from the results of the Contrast corruption, which is a "smooth" corruption,
in that it does not add new elements to the image. We will be presenting the same diagrams as above for
the Frost corruption.
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Figure 5.3.5: Saliency Metrics on Frost Corruption - Person Class

The results for this corruption are more erratic and complex, a fact which has several possible explanations.
When it comes to the number of salient pixels YOLOv3 maintains the same increase as in the Contrast
corruption, whereas Faster R-CNN sees an overall decrease. This result could be attributed to the fact that
as the severity of the corruption increases Faster R-CNN fails to detect more and more objects. Since the
saliency map is created according to the objects detected, when there is no object the saliency map includes
no salient pixels.
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Therefore, since the frost corruption has a more significant impact on detector performance regardless of
architecture, as evidenced by our experiments in the previous chapters, the detector gets "more" confused
and cannot pay attention to any significant features in particular. Ultimately, we observe the performance
superiority of YOLOv3 on corruptions that add new edges and features to the image and the performance
superioty of Faster R-CNN on corruptions that are smoother and affect the color scheme and other similar
features of the images. This generalization stems from these results and others that are not shown in this
chapter but can be found in the appendix.

Continuing with the pixel ratio metric, we see that YOLOv3 maintains the expected behaviour of increasing,
however at a slower pace than the Contrast corruption, meaning that this model considers context clues more
important with the decrease in image quality. On the other hand, Faster R-CNN sees an overall decrease in
pixel ratios. This result, combined with the overall decrease in salient pixels could indicate that the detector
does not consider context clues as important.

Lastly, when it comes to the box ratios, the metric values again maintain the same behaviour as before for the
YOLOvV3 detector, with a steady decrease accompanying the severity increase. Conversely, for Faster R-CNN
this metric shows a very erratic behaviour, which can be attributed to poor performance, and disallows us
from safely drawing any conclusions regarding its behaviour.

Next we repeat this process, this time extracting the results for the Frost corruption and the Car object class
(once again the values for the total number of salient pixels remains the same).
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Figure 5.3.6: Saliency Metrics on Frost Corruption - Car Class

Similarly to the contrast corruption, we see that the pixel ratio metric diagram closely follows the pixel ratio
diagram for the Person class, for both detectors, which reinforces our assumption that the same corruption
usually affects the detector’s ability to detect different object classes in the same way. The first change is
observed in the box ratio diagram, where YOLOv3 behaves in a similar way as it did with the Person class,
with an overall decrease, however Faster R-CNN also shows a clear decrease, which clashes with the results
of the Person class. This fact could be attributed to the detector’s deteriorating performance, where fewer
instances of the Person class were detected due to the corruption in some severity levels and then more in
other levels, which lead to the erratic behaviour noticed in the previous diagram, however with the Car class
this might not have been the case, which leads to this expected behaviour. So once again, as the corruption
deteriorates the input image the content inside the bounding box becomes less important for the decision but
at the same time context clues do not become more important as evidenced by the simultaneous decrease in
pixel ratio values. These results indicate that as the corruption gets more severe, the detector cannot find
important features to focus on as the image gets more cluttered, especially in the cases of corruptions such
as this that add new elements and edges to the image, which leads to failure to detect the object and the
resulting deteriorating performance.

We also provide the results for the rest of the corruptions which are similar to the ones we have analyzed
thus far.
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Figure 5.3.7: Saliency Metrics on Impulse Corruption - Person Class
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Figure 5.3.8: Saliency Metrics on Impulse Corruption - Car Class

As we can see YOLOvV3’s behaviour under the Impulse Noise corruption follows the Contrast corruption,
with the increase of salient pixels and pixel ratio accompanied by the decrease of box ratio. That seems to
not be the base with Faster R-CNN, however we can attribute that to an inability to detect most object
instances under this corruption since we can see that the number of salient pixels is very low compared to
YOLOv3 and the pixel ratio metric is very close to 0. Nevertheless, the number of salient pixels and box
ratio seem to follow YOLOv3. We can attribute this similarity of performance of the models on Impulse
Noise and Contrast on the overall similarity of the corruptions, which, as was mentioned in previous chapters,
boils down to the fact that both they disrupt the objects’ edges by making them appear fused, blurred and
subdued.

Lastly, we provide the results for the Zoom Blur corruption.
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Figure 5.3.9: Saliency Metrics on Zoom Corruption - Person Class
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Figure 5.3.10: Saliency Metrics on Zoom Corruption - Car Class

Both detectors’ performance is very erratic when performing under this corruption, with some patterns briefly
appearing in the box ratio curves for both classes that match our conclusion about the Impulse and Contrast
corruptions. However, taking into account the poor performance of the detectors in the previous chapter,
where Zoom blur caused some of the worst results in terms of absolute mAP score in all detectors, we can
attribute this phenomenon to the models’ poor performance on this corruption, which leads to incomplete
results.

The results for the rest of the object classes were quite limited due to the fact that their instances are much
fewer than those of the two classes analyzed in this chapter, especially given we only worked on a subset
of the COCO validation set. Therefore, we will not be providing the results of these experiments in this
section.




Chapter 6

Synonpsis, Conclusions and Future Steps

6.1 Synopsis

In this work we experimented with the most state of the art one-stage and two-stage object detectors in order
to systematically analyze their behaviour under several types of image corruptions. Our goal was to evaluate
the robustness of the best current models against common perturbations, underline possible differences among
different models of the same category as well as possible differences among models whose architectures differ
greatly, and offer interpretations that could push forward research in this domain. We started by creating
18 datasets stemming from the MS COCO validation set, each of which contains 25.000 images: the original
5.000 images of the dataset with 5 increasing levels of each corruption applied. Next we applied the most
modern object detection models from the YOLO and the R-CNN family and observed the deterioration in
their performance, documenting our observations and conclusions along the way. Furthermore, we extracted
the corresponding saliency maps for the corruptions that yielded the biggest deterioration in performance
and proposed three new metrics to quantify the analysis performed on them that accompanied our qualitative
analysis.

6.2 Conclusions

The most fundamental conclusion that can be drawn from our experiments is that, despite the constant
increase in object detection performance by the new models that are being produced, robust object detection
still remains wide open, with the newer models not necessarily surpassing the old ones when it comes to
robustness against input image corruption. We found that, although the newer version of the YOLO algorithm
could overall perform better on corrupted inputs, their overall decline in performance as the severity of the
corruption increased was not any slower when it came to the newest model. Comparing them to the much
older Mask R-CNN model, we found that they were even less robust, which leads us to yet another interesting
conclusion: that is that one-stage object detectors do not only sacrifice accuracy in order to gain inference
speed but also sacrifice robustness. Furthermore, we observed that the more complex models in terms of size
(number of parameters etc.) were not strictly more robust than their smaller equivalents, even though their
overall performance was superior. These results lead us to believe that the solution to creating more robust
object detectors is not adding more complexity to the network architecture, but other techniques such as
data augmentation, pretraining techniques etc. Our analysis using saliency maps also offered some interesting
observations, such as the fact that the nature of the corruption plays a decisive role in the way the detector
makes decisions, with corruptions that insert new edges to an image having a different impact compared to
smoother corruptions. Specifically, our results showed that smooth corruptions cause the detector to pay
more attention to contextual clues and the overall environment of the image, while the corruptions that
inserted new edges produced more erratic results in terms of saliency map analysis, probably due to the fact
that they caused a more serious deterioration in accuracy and therefore the amount of object detected was
reduced significantly. However, the most severe results both for Object Detection and Saliency Map analysis
were caused by corruptions that affected the existing image edges, by blurring or pixelating them thus making
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the objects harder to distinguish from the background or from each other. This leads us to the important
conclusion that the edges of the objects in the image are perhaps the most important features when it comes
to recognizing and classifying them. Furthermore, based on the range of object classes we studied, we found
that the nature of the corruption does not affect the decision making process of the detector differently for
each class, but the whole process can be considered universal.

Concluding, we can state that model performance against image corruptions can be modeled and later studied
in order to develop techniques targeted in improving robustness. We were able to provide some initial steps
towards this effort by recognizing patterns that appeared in the data, and hopefully our experiments can be
used as a starting point for even more extensive research in the field of robustness.

6.3 Future Steps

Robustness in ML, and more specifically in Computer Vision is a wide and engaging field gaining more and
more importance as these models claim a more prominent position in modern life every day. Ongoing research
on this field is remarkably active, and we wish to contribute to those efforts by proposing some interesting
future steps that are based on this current work. To this end we propose:

e The expansion of the set of corruptions that are applied to the input images of each model to include an
ever wider spectrum of phenomena, as well as the refinement of the corruptions that already available
to simulate these phenomena even more accurately and therefore simulate the response of the models
tested against them as accurately as possible. One possible method to achieve this goal would be to
include the use of GANs to generate more convincing effects and also add new ones, such as a realistic
nighttime effect, a physics-accurate shadow effect, an added smoke effect etc. In general, the wider the
range of conditions that we are able to simulate, the more comprehensive and analytical our study will
be, which will allow us to create more robust and reliable models.

e The addition of an extensive occlusion robustness study on these detectors. Occlusion is a major
factor in the deterioration of performance of most computer vision models, since it poses some unique
challenges on most related tasks, therefore carrying out a comprehensive study of occlusion on state of
the art object detection models that could aid in developing techniques that overcome this issue, is a
future research direction that shows great promise.

e The extension of our experiments to video input. Particularly the YOLO detectors are extremely
popular when it comes to object detection in video, or even real-time object detection. Therefore,
it would be of great interest to observe their performance on corrupted video input, and determine
whether the principles of robustness from object detection on images carry over to object detection
on video. Occlusion study can also be included in object detection with video input. Especially for
applications like autonomous driving and navigation, this type of study is crucial in the real-world
deployment of these models.

e The extension of our saliency map analysis to include different object classes, corruptions and a larger
dataset. As mentioned in the corresponding chapter, we performed our experiments on a subset of
the COCO validation set images and object classes that are most important to certain applications.
However, given freedom of computational resources, these experiments can be repeated for all object
classes and images, in order to validate the results that have been extracted thus far and perhaps
generalize them.

e The implementation of this experiment framework on different models outside the scope of Computer
Vision. An interesting future direction is the experimentation on Visual Commonsense Reasoning
models, which combine the domains of Computer Vision and Natural Language Processing to create
algorithms that, given a visual and a written contextual input, can draw logical conclusions and produce
interpretations about a scene, what is currently occurring in it or what might take place in the future.
This line of research remains relatively unexplored, therefore testing the robustness of these newer
models by adding corrupted image inputs could yield some interesting results, even for the more basic
Computer Vision principles they are founded on.
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CHAPTER 8. APPENDIX

’ Detector H YOLOv5n \ YOLOv6n \ YOLOv7 \ YOLOv8n \ Mask RCNN ‘

Snow 0.252 0.267 0.399 0.246 0.226
Frost 0.297 0.308 0.438 0.292 0.262
Fog 0.32 0.332 0.453 0.315 0.279
Brightness 0.357 0.362 0.48 0.24 0.345
Darken 0.349 0.356 0.468 0.347 0.315
Rain 0.339 0.345 0.468 0.336 0.325
Gauss 0.27 0.302 0.413 0.259 0.264
Impulse 0.224 0.28 0.366 0.221 0.194
Shot 0.27 0.306 0.412 0.262 0.263
Defocus 0.305 0.305 0.415 0.302 0.254
Zoom 0.131 0.131 0.208 0.127 0.108
Motion 0.289 0.306 0.409 0.289 0.269
Jpeg 0.282 0.313 0.347 0.277 0.263
Contrast 0.317 0.329 0.454 0.312 0.279
Pixelate 0.266 0.342 0.376 0.307 0.262
Elastic 0.298 0.318 0.418 0.308 0.278
Mask 0.274 0.251 0.404 0.257 0.255

Table 8.1: mAP Scores for Small Detectors - Severity Level 1

’ Detector H YOLOv5x \ YOLOv61 \ YOLOvV7EG6 \ YOLOv8x ‘

Snow 0.445 0.441 0.461 0.44
Frost 0.476 0.424 0.489 0.47
Fog 0.491 0.483 0.499 0.483
Brightness 0.524 0.506 0.532 0.512
Darken 0.508 0.496 0.517 0.5
Rain 0.513 0.477 0.522 0.502
Gauss 0.464 0.457 0.479 0.46
Impulse 0.446 0.433 0.459 0.424
Shot 0.464 0.46 0.48 0.458
Defocus 0.433 0.432 0.44 0.461
Zoom 0.213 0.222 0.216 0.231
Motion 0.436 0.438 0.448 0.447
Jpeg 0.447 0.441 0.452 0.377
Contrast 0.49 0.485 0.5 0.484
Pixelate 0.455 0.466 0.455 0.429
Elastic 0.437 0.437 0.454 0.447
Mask 0.482 0.454 0.501 0.451

Table 8.2: mAP Scores for Large Detectors - Severity Level 1



’ Detector H YOLOv5n \ YOLOv6n \ YOLOv7 \ YOLOv8n \ Mask RCNN ‘

Snow 0.171 0.181 0.343 0.155 0.145
Frost 0.23 0.244 0.395 0.223 0.191
Fog 0.304 0.318 0.443 0.3 0.254
Brightness 0.347 0.353 0.47 0.341 0.329
Darken 0.341 0.349 0.461 0.338 0.315
Rain 0.317 0.327 0.456 0.315 0.302
Gauss 0.206 0.253 0.359 0.187 0.207
Impulse 0.162 0.225 0.317 0.151 0.152
Shot 0.205 0.252 0.353 0.114 0.207
Defocus 0.27 0.266 0.391 0.268 0.209
Zoom 0.086 0.085 0.145 0.0825 0.07
Motion 0.218 0.242 0.339 0.218 0.205
Jpeg 0.219 0 0.273 0.221 0.21
Contrast 0.289 0.307 0.441 0.284 0.239
Pixelate 0.215 0.332 0.312 0.293 0.228
Elastic 0.26 0.281 0.372 0.271 0.245
Mask 0.274 0.196 0.34 0.19 0.213

Table 8.3: mAP Scores for Small Detectors - Severity Level 2

’ Detector H YOLOv5x \ YOLOv61 \ YOLOvV7EG6 \ YOLOv8x ‘

Snow 0.386 0.425 0.395 0.397
Frost 0.476 0.424 0.44 0.43
Fog 0.479 0.476 0.489 0.471
Brightness 0.515 0.499 0.523 0.512
Darken 0.499 0.49 0.507 0.492
Rain 0.5 0.477 0.511 0.492
Gauss 0.417 0.438 0.438 0.413
Impulse 0.402 0.417 0.424 0.38
Shot 0.414 0.418 0.437 0.41
Defocus 0.386 0.432 0.371 0.423
Zoom 0.11 0.222 0.152 0.161
Motion 0.36 0.372 0.371 0.383
Jpeg 0.4 0.394 0.406 0.294
Contrast 0.476 0.474 0.484 0.469
Pixelate 0.426 0.442 0.42 0.374
Elastic 0.387 0.389 0.403 0.4
Mask 0.447 0.392 0.46 0.41

Table 8.4: mAP Scores for Large Detectors - Severity Level 2
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’ Detector H YOLOv5n \ YOLOv6n \ YOLOv7 \ YOLOv8n \ Mask RCNN ‘

Snow 0.169 0.18 0.325 0.15 0.142
Frost 0.192 0.205 0.364 0.223 0.154
Fog 0.289 0.303 0.436 0.283 0.232
Brightness 0.334 0.343 0.458 0.328 0.305
Darken 0.331 0.337 0.449 0.326 0.271
Rain 0.264 0.279 0.424 0.259 0.244
Gauss 0.127 0.176 0.288 0.101 0.142
Impulse 0.119 0.182 0.277 0.101 0.129
Shot 0.136 0.184 0.284 0.114 0.144
Defocus 0.195 0.189 0.287 0.188 0.062
Zoom 0.063 0.062 0.11 0.0618 0.049
Motion 0.14 0.158 0.255 0.137 0.133
Jpeg 0.179 0.242 0.21 0.187 0.173
Contrast 0.234 0.265 0.415 0.23 0.173
Pixelate 0.093 0.252 0.175 0.152 0.133
Elastic 0.21 0.226 0.306 0.218 0.194
Mask 0.183 0.14 0.34 0.151 0.191

Table 8.5: mAP Scores for Small Detectors - Severity Level 3

’ Detector H YOLOv5x \ YOLOv61 \ YOLOvV7EG6 \ YOLOv8x ‘

Snow 0.366 0.371 0.38 0.368
Frost 0.4 0.391 0.407 0.398
Fog 0.468 0.465 0.478 0.463
Brightness 0.504 0.489 0.512 0.491
Darken 0.485 0.478 0.492 0.479
Rain 0.465 0.46 0.477 0.431
Gauss 0.352 0.359 0.377 0.349
Impulse 0.334 0.36 0.391 0.34
Shot 0.351 0.361 0.378 0.348
Defocus 0.301 0.312 0.301 0.338
Zoom 0.11 0.12 0.115 0.125
Motion 0.263 0.283 0.277 0.294
Jpeg 0.369 0.361 0.38 0.252
Contrast 0.442 0.446 0.453 0.442
Pixelate 0.312 0.343 0.311 0.256
Elastic 0.317 0.322 0.33 0.334
Mask 0.411 0.343 0.422 0.391

Table 8.6: mAP Scores for Large Detectors - Severity Level 3



’ Detector H YOLOv5n \ YOLOv6n \ YOLOv7 \ YOLOv8n \ Mask RCNN ‘

Snow 0.128 0.134 0.278 0.114 0.098
Frost 0.18 0.196 0.361 0.175 0.146
Fog 0.287 0.3 0.432 0.282 0.231
Brightness 0.317 0.329 0.44 0.31 0.274
Darken 0.301 0.312 0.423 0.293 0.218
Rain 0.192 0.218 0.39 0.188 0.178
Gauss 0.059 0.097 0.195 0.0408 0.075
Impulse 0.05 0.089 0.174 0.0356 0.069
Shot 0.054 0.091 0.166 0.0403 0.066
Defocus 0.132 0.13 0.22 0.123 0.093
Zoom 0.045 0.044 0.081 0.0433 0.034
Motion 0.08 0.091 0.174 0.077 0.075
Jpeg 0.103 0.164 0.107 0.114 0.102
Contrast 0.112 0.16 0.336 0.114 0.06
Pixelate 0.045 0.124 0.091 0.066 0.065
Elastic 0.174 0.19 0.259 0.186 0.162
Mask 0.143 0.11 0.315 0.122 0.155

Table 8.7: mAP Scores for Small Detectors - Severity Level 4

’ Detector H YOLOv5x \ YOLOv61 \ YOLOvV7EG6 \ YOLOv8x ‘

Snow 0.305 0.322 0.322 0.321
Frost 0.396 0.39 0.405 0.396
Fog 0.464 0.46 0.474 0.459
Brightness 0.487 0.476 0.495 0.475
Darken 0.453 0.451 0.461 0.452
Rain 0.438 0.436 0.449 0.428
Gauss 0.262 0.282 0.301 0.259
Impulse 0.266 0.276 0.307 0.245
Shot 0.243 0.268 0.282 0.236
Defocus 0.231 0.243 0.239 0.258
Zoom 0.082 0.089 0.084 0.093
Motion 0.171 0.192 0.184 0.203
Jpeg 0.272 0.268 0.293 0.146
Contrast 0.337 0.363 0.36 0.361
Pixelate 0.183 0.228 0.187 0.168
Elastic 0.268 0.273 0.278 0.285
Mask 0.36 0.305 0.374 0.357

Table 8.8: mAP Scores for Large Detectors - Severity Level 4
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’ Detector H YOLOv5n \ YOLOv6n \ YOLOv7 \ YOLOv8n \ Mask RCNN ‘

Snow 0.12 0.135 0.283 0.11 0.091
Frost 0.157 0.17 0.34 0.151 0.112
Fog 0.261 0.278 0.409 0.258 0.206
Brightness 0.294 0.31 0.418 0.29 0.24
Darken 0.211 0.231 0.347 0.2 0.115
Rain 0.185 0.207 0.383 0.169 0.171
Gauss 0.015 0.031 0.082 0.0105 0.026
Impulse 0.014 0.031 0.079 0.101 0.029
Shot 0.023 0.048 0.089 0.169 0.034
Defocus 0.085 0.087 0.162 0.0771 0.062
Zoom 0.034 0.035 0.066 0.0353 0.024
Motion 0.054 0.061 0.132 0.0523 0.05
Jpeg 0.051 0.1 0.053 0.187 0.051
Contrast 0.024 0.052 0.203 0.23 0.008
Pixelate 0.029 0.076 0.037 0.0442 0.029
Elastic 0.135 0.146 0.203 0.145 0.121
Mask 0.078 0.059 0.224 0.0646 0.085

Table 8.9: mAP Scores for Small Detectors - Severity Level 5

’ Detector H YOLOv5x \ YOLOv61 \ YOLOvV7EG6 \ YOLOv8x ‘

Snow 0.313 0.331 0.324 0.331
Frost 0.366 0.364 0.38 0.371
Fog 0.445 0.441 0.453 0.435
Brightness 0.466 0.458 0.475 0.455
Darken 0.358 0.369 0.372 0.373
Rain 0.422 0.426 0.432 0.414
Gauss 0.151 0.179 0.195 0.141
Impulse 0.16 0.185 0.212 0.144
Shot 0.168 0.201 0.089 0.159
Defocus 0.171 0.183 0.181 0.188
Zoom 0.069 0.07 0.069 0.0751
Motion 0.125 0.143 0.136 0.146
Jpeg 0.15 0.177 0.191 0.0764
Contrast 0.166 0.216 0.216 0.221
Pixelate 0.091 0.127 0.094 0.0764
Elastic 0.208 0.215 0.213 0.226
Mask 0.256 0.218 0.275 0.27

Table 8.10: mAP Scores for Large Detectors - Severity Level 5
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Figure 8.0.3: YOLOv6n performance on Corrupted COCO dataset



mAP Score

mAP Score

78

YOLOVEL - Weather Corruptions

0500 4

0.475

0.450 4

0425 4

0.400 4

0375 4

0350 4

0325 4

Snow
Fog
Frost
Erightness
Darkness
Rain

2 3 4 5
Severity Level
YOLOw6L - Blur Corruptions

1t

045

040 4

035 4

030 4

025 4

020 4

015 4

010 4

== Defocus Blur
=== Mation Blur
== Zoom Blur

1 2 3 4 5
Severity Level

mAP Score

mAP Score

CHAPTER 8. APPENDIX

YOLOWGL - Noise Corruptions

045 A

0.40

035

0.30

025 4

0.20

=—8=— Gaussian Moise
=#=|mpulse Noise
=#= Shot Noise

2 3
Severity Level
YOLOV6L - Digital Corruptions

050

045

040

035

0.30

025 4

0.20 4

015 4

== E|astic transform
== Pixelate
== (ontrast
== |peg
== Mask

T T
2 3
Severity Level

Figure 8.0.4: YOLOvV6L performance on Corrupted COCO dataset
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YOLOVTX - Noise Corruptions
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Figure 8.0.7: YOLOv8n performance on Corrupted COCO dataset
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YOLOvE8x - Noise Corruptions
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Figure 8.0.8: YOLOv8x performance on Corrupted COCO dataset
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Figure 8.0.9: Mask R-CNN performance on Corrupted COCO dataset

| Detector || YOLOv5n | YOLOv6n | YOLOvV7 | YOLOv8n | Mask RCNN |

Snow 0.044 0.044 0.039 0.045 0.045
Frost 0.047 0.046 0.033 0.047 0.047
Fog 0.02 0.018 0.015 0.015 0.24
Brightness 0.019 0.017 0.021 0.021 0.035
Darken 0.046 0.042 0.04 0.049 0.067
Rain 0.051 0.046 0.028 0.056 0.051
Gauss 0.085 0.09 0.11 0.083 0.079
Impulse 0.07 0.083 0.096 0.07 0.055
Shot 0.082 0.086 0.108 0.082 0.076
Defocus 0.073 0.073 0.084 0.075 0.064
Zoom 0.032 0.032 0.047 0.031 0.028
Motion 0.078 0.082 0.104 0.079 0.073
Jpeg 0.077 0.071 0.087 0.072 0.071
Contrast 0.098 0.092 0.084 0.094 0.09
Pixelate 0.079 0.089 0.113 0.088 0.078
Elastic 0.054 0.057 0.072 0.054 0.052
Mask 0.065 0.064 0.06 0.064 0.057

Table 8.11: Absolute GmAP scores for all Small detectors and Corruptions
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’ Detector H YOLOv5x \ YOLOv61 \ YOLOvV7EG6 \ YOLOv8x ‘

Snow 0.044 0.037 0.046 0.036
Frost 0.037 0.034 0.036 0.033
Fog 0.015 0.014 0.015 0.016
Brightness 0.021 0.016 0.019 0.019
Darken 0.05 0.042 0.048 0.042
Rain 0.03 0.024 0.03 0.029
Gauss 0.104 0.093 0.095 0.106
Impulse 0.095 0.083 0.082 0.093
Shot 0.099 0.086 0.09 0.1
Defocus 0.087 0.083 0.087 0.091
Zoom 0.049 0.051 0.049 0.052
Motion 0.104 0.098 0.1048 0.1
Jpeg 0.099 0.088 0.087 0.1
Contrast 0.108 0.09 0.095 0.088
Pixelate 0.121 0.113 0.12 0.118
Elastic 0.076 0.074 0.08 0.074
Mask 0.075 0.079 0.075 0.06

Table 8.12: Absolute GmAP scores for all Large Detectors and Corruptions
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