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Amayopevetal 1 avtiypogr], amodrkevor kot diavoun tng mopovoog epyaciog, €€ oAokAnpov 1
TUAHOTOG QUTAG, Yo epmoplkd okomd. Emtpénetan 1) avatdnwon, amobrkevon kat Stovopr] yio
OKOTO U1 KeEPOOOKOTLKO, EKTTALOEVTIKNG 1] EPELVNTIKNG PVGTG, Lo TNV TPpodOeon v avoupépeTa
1 mtnyn mpoélevong kat va dwatnpeital To mapdv prjvopa. Epotripate mov agopodv tn xprion g
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Ko dev mpémel va epunvevbel 0TI avtimpoowtebovy Tig enionpeg Béoelg Tov EOvikod Metodfiov
IoAvteyveiov.



ITepiAnyn

Avth) 1) duthwpatikn acyoAreitor pe to mpoPAnpa g e€nynoung opadomoinong (explainable
clustering) kétw amnd mapadoyés "evotdberos” twv elc6dwv. H e€nynon opadomoinomn eivor puo
“eppnvevoun” dadikacio wov avamtoxOnke amtd Tovg Dasgupta k.&. ko oToXEVEL VX TTOPEYEL OL-
vorTikég e€nynoelg yux v ovpmepidnym k&be onpeiov ot cvotdda tov (cluster). To epdTNHA
o710 onolo mpoomabolpe va atavtrcoupe givor ebv to “Tipnpoa tng EEnynowpotntag”, dniadn to
eyYyevég KOGTOG IOV TPOKVTTEL EEQUTLOG TNG TEPLOPLOHEVNG LOPPTIG TWV AVGEWMVY TTOV EYYVMVTAL TNV
e€nynopotnTa, propet vo pewdet edv vtobfécovpe 6TL Ta GTLYHLOTUTTO OpdOTTOING TG ELOSOV LKL
vorolovv eite TNV WL0TNTA "eyyvTnTag” eite TV WLOTNTA TNG “evoTdBelag oe Statapoxés”. Apov el-
ooydyoupe dudupopeg évvoleg evoTdDeL0G 6TO TAALGLO TG OPASOTOLNGTG KOl AVOADGOUE TOUG TTLO
ONHAVTLKOUG AAYOpLOpoLG Yo TNV e€NYHoLn opadomoinoT), arodetikvOoupe OTL AV TAL GTLYILOTUTTOL
€L6OS0V LKAVOTTOLOOY TNV OLOTNTX TNG G-eYYOTNTAG pE @ = € (kd%> HITOPOVE VO TAPOUHE eENYTN-
olpovg adyopiBpovg otabepol Adyov Tpocéyylong. 2Tn cuvéxel, peAeTde TV evoTdBelo apke-
TV SOOKOAWDV GTLYHLOTOTIOV TNG eEnyrioung opadomoinong. Katagépvoupe va dei€ovpe 6TL ot
n e€aptnon oto mAnbog twv doothoewv d kou 6to TARBog twv clusters k elvan avaykaio, a@od
VITAPYOLV OPLoPEVA SVOKOAN GTLYHLOTUTIN OLASOTTOLN GG, TWV OTTOLWV 1) GLVAPTNGT) KOGTOUVG Elvarl

1 [}, AVTIKEWEVIKT) GUVAPTIOT), TTOV IKAXVOTTOLODY TNV a-eyyotnta pe a = §2 { kd? ), eved vmépyovv

oTypdTuna ov eivou Q(v/d)-evoTadr oe Siatapayéc ot mepintwon tov k-median clustering
(p = 1). Ta va dei€ovpe o deltepo amoTéAecpa, oTodelkVOOLE OTL EGV Vel GTLYHLOTUTTO Opado-
moinong wkavorotel Tnv WLOTNTA TNG a-eyyouTNTag pHoll pe pio WdtnTa mov StecPaiilel OTL OAeg
ot cvoTddeg otn PEATIOTN opadomoinomn éxouvv mepimov To 180 KO6GTOC, TOTE AVTO TO GTLYHLOTUTTO
elvou Q(y/a)-evotabéc oe Sratapayéc. Zvpmepaivovpe OTL dev eivan ebAoyo vo vtoBécovpe OTL Tar
OTLYHLOTUTIA OPASOTTOINOTG TTOL CUVAVTAYE TNV TPAEN elvon opkeTd evaTaldr] (He TNV évvola TwV
TopaTdve Tapadoymv), dote va petwbei to Tipnpa tng EEnynowpodmrac.

Aétaig Khewduax  Opadomoinon, Eppnvedoyn Mnyovikry Mébnon, Avévon mépa amd v xeLpo-
TEPT) TEPUTTWOT), EENYNOLUN OHAdOTOLNGT)], EVGTADELX dLATOUPAX DOV, HETPLKOL XDPOL






Abstract

This thesis is concerned with the explainable clustering problem under stability assumptions. Ex-
plainable Clustering is an interpretation method developed by Dasgupta et al. that aims to provide
concise explanations for the inclusion of each data point in a cluster. The question that we try to
answer is whether the Price of Explainability, i.e. the inherent cost due to the restricted solution for-
mat that guarantees explainability, can be reduced if we assume that the input clustering instances
satisfy either the proximity or the perturbation stability property. After we introduce several stabil-
ity notions in the context of clustering and analyze the most important algorithms for explainable

clustering, we show that under a-center stability, with a = Q(k‘d%) there are explainable algo-
rithms with constant approximation ratio. Next, we study the stability of several hard explainable
clustering instances and prove that this dependence on the number of dimensions d and clusters k
is necessary. More specifically, we manage to show that there are some hard clustering instances
with the [}, objective that satisfy the a-proximity with a = ) (kd%> and there exist (1/d)-(metric)
perturbation stable instances in the k-median case (p = 1), where d is the number of the dimen-
sions of the dataset. To prove the second result, we show that if a clustering instance satisfies the
a-proximity property along with a property that ensures that all clusters in the optimal clustering
have roughly the same cost, then this instance is {2(1/a)-metric perturbation stable. We conclude
that it is not reasonable to assume that practical instances are stable enough for the Price of Explain-
ability to reduce, under these stability assumptions.

Keywords Clustering, Interpretable Machine Learning, Beyond the Worst-Case analysis, Explain-
able Clustering, Perturbation Stability, Metric Spaces






Acknowledgments / Evxoapiotieg

Oa nbela, xaTapyxag, va evxaploTnow Tov KUpLo Anpntpn Pwtdkn mov pov £dwaoe TNV evKapic Vo
aoxoAnNBw® pe éva toco evdiapépov Bépa ko yia Tnv oAt koBodrjynon kot Tig cupPovAég Tov,
7660 670 TAALOL0 QVTHG TNG SITAWHATIKNAG EpYRsing, 660 KoL £€w atd aTo.

Emiong, 0éAw va evyaplotrion Wiaitepa tov Hoavayudtn Hatohvéaxo kot tnv EAévn Yapovddaxn,
YLot TIG TTOAAEG (PEG TTOL POV APLEPWGAY OTLG EfSOpAdIoiEG CUVAVTHOELG OIS KL TNV UTTOHOVT] TTOU
édertav. EAtilw 1 ovvepyaoio pog va tovg gavnke to idlo euyxdplotn kat evilupépovoa 060 KoL
o€ gpévaL.

OfA®, aKOpT, VA EKPPAG® TNV ELYVOWHOGTUVI POV 6TOV KUpLo XTtdbn Zdyo kot Tov kvplo Apn Ia-
youptl yia tnv Porifeld Tovg oTIC aLTHoELS HOU Yo 1Sk TOPLKO KOl yiot TG GUHPBOVAEG TOUG.
TéAog, Ba NBela va evyaplotiow Tovg pilovg pov Anurtpn Aesomotidn, Mapro Mavtaro kot tnv
LITOAOLTN TTOPEQ PG 0T OYOAT, XWPLg TOLg omoiovg de Ba prropovoa v pavTasTd T {wr) pov Ta
mponyovpeva 5 xpovia. Toug evxoploTd Yl TIG wpaieg oTLYpHEG oL Ttepdoope pall KoL Tov €dw-
ooV VOO 6T POLTNTLKA pov ypovia. Idaitepa Ba Beda va evyoplotiow tov @ido pov Atovion
ApPavitdxn, o omolog ta tehevtaia ypovia kat edké 6to dVoKoAo avTd TEAeLTALO EEGpNVO POV
éxel otafel 600 kaveig dAlog. Tov evyoaplot® yio TV TOAOTIHN YuyoAoyikr vItooThpLEN, TN oUL-
vepyooio pog o€ dmelpeg epyacieg kat Tig OAD evOlopépovoeg cLLNTHOELG IOV EXOUHE KAVEL OAO
avtd Tov kapd. Toug edyopal 6,1t KaAOTEPO Ko EATTLLW VO KPATAE TTAVTX ETTALPT] oTA XPOVLOL TTOV
Bo axorovdncouv.



H epyacio avty eivon apiepopévn oty pviun Tov Umaumd [1ov.



Contents / Ileprexopeva

Contents / ITeprexopeva
List of Tables / ITivakeg

List of Figures / Exkoveg

Extetapevn EAAnvikn Iepidnyn . . . . . . o . o0 oo

0.1  OHOSOTOINGOT « v v o e v e e e e e e e e e e e e e e e e

0.2 IIfpo otd avalvor xelpdtepng mepintwong kat Opadomoinen . . . . . . . . . ..
0.2.1  Mepikég dnpogiheic évvoleg “evatdBelag” oTLYHLOTOTWY OpdOTOLNGTg

0.3 Eppnve0doipo HOVTEAX PNXOVIKAG HAONONG « .+ . v o v v v v o e e e

0.3.1  E&nynouyn opadomoinem . .« .« . . L L e oo e e e

0.4 ZUVEIGQOPA . . v v v o i e e e e e e e e e e e e e e e e e e e e e e e e e

0.5 OpyavwonmgEpyaciog . . . . . . o o o

1. Introduction . . . . . . . . ..

1.1 Clustering . . . . . . o i e e e e

1.2 Beyond Worst-Case analysis and Clustering . . . ... ... ... ..........

1.2.1  Some popular clustering stability assumptions . . . . . . ... ... ... ..

1.3 Interpretable Machine Learning Models . . . . . ... ... ... ... .. ......

1.3.1  Explainable Clustering . . . . . .. .. ... ... .. ... .. ...

1.4 Contribution . . . . . . ... e

1.5 Organization of the Project . . . . . .. ... ... .. .. ... . . L ...

2. Preliminaries . . . . . . . . L

2.1 Metric Spaces . . . . . . o e e e e

2.2 Clustering . . . . . . o i i i e e e e

221 Definitions . . . . . . ..

2.3 Hoeffding’sInequality . . . . . . . . ...

3. Well-Clusterable Instances . . . . . . .. . ... ... ... ... ... ......

3.1 Center stability and its basic properties . . . . .. .. ... ... .. ... ...

3.1.1  Motivation and Definition . . . . . ... .. ... ... ... ... 0.

3.1.2  Basic properties of center stability . . . . ... ... ... 0000 L.

3.2 Perturbation stability and its basic property . . . . . . ... ... Lo,

3.2.1  Motivation and Definitions . . . . ... ... ... ... . ... ...

3.2.2 A basic property of a-perturbation stable instances . . . . ... .. ... ..

3.2.3  Efficient Clustering Algorithm under a-perturbation stability . . . . .. ..

4. Explainable Clustering . . . . . . . . ... . ... .. o

4.1
4.2
4.3

Clustering using Threshold Trees . . . . .. ... ... ... ... . ... ......

Price of Explainability . . . . . . .. . .. . L

The IMM Algorithm

11

13

15

17
17
19
20
22
24
26
27

29
29
31
32
33
35
37
37

53
53
54
55

11



44 Improved Explainable Clustering Algorithms . . . . ... ... ... ... ... ... 60
44.1 Two randomized and oblivious explainable clustering algorithms for the k-

median objective . . . . ... L 61

4.4.2  State-of-the-art explainable clustering algorithms for the k-median case . . 62

45 Lower Bound for the k-mediancase . . ... ... ... ... .. ... ... ..., 64

4.6 Lower Bounds for all /, objectives . . . . ... ... ... ... .. . . L, 66

5. Well-clusterability vs. price of explainability . . . ... ... ... ... .. ..... 69
5.1 Explainable clustering under a-center stability . . . . .. ... ... ... . ..... 69
5.1.1  For sufficiently well-separated instances PoE becomes constant . . . . . . . 69

5.1.2  a-center stability of hard instances . . . . .. ... ... ... o L. 72

5.2 Explainable k-median clustering under a-metric perturbation stability . . . . . . . . 73

5.3 Discussionof theResults . . . .. .. ... ... ... . 79
Bibliography . . . . . . . .. e 81

12



List of Tables / ITivakeg

0.1  Avow epaypate yio to tipnpe tng E&nynopotntag . . . . . oo oL 26
0.2 Katw ppaypata yix To TUnpo NG eENYNOHOTNTOS  « v v v v v v v v v e e e v v e 26
1.1 Upper Bounds for the Price of Explainability . . ... ... ... ... ........ 37
1.2 Lower Bounds for the Price of Explainability . . . ... ... ... ... ....... 37

13






List of Figures / Euxoveg

0.1
0.2

1.1
1.2
1.3

2.1
2.2

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
53
5.4

AEVIPO QTTOPOOTIG « o o o e e e e e e e e e e e e e e e 23
>oykpion EEnynowpng ko un EEnynowng Opadomoinong . . . v v v o v v v o oL L 25
4-clustering . . . . . . . 30
Decision Tree . . . . . . ... 34
Explainable vs Non-Explainable Clustering . . . . . ... ... ... ... ..... 36
MetricSpace . . . . . . . . .. 39
Clustering with the {;, objective . . . .. ... .. ... ... ... ... .. ..., 42
a-center-stable instance . . . . . .. ... L Lo L 46
Perturbation Stability: Optimal Clustering is the same for all Perturbations . . . . . 48
Partition induced by threshold cut (2,5.094) . . . ... ... ... ... .. .... 53
Threshold Tree . . . . . . . . . . o e 54
Step 0: Compute a reference clustering . . . .. ... ... ... ... ... ... 55
Step 1: Choose cut that makes minimum mistakes (0) . . . .. ... ... ... ... 56
Step 2: Omistakes . . . . . . ... e 56
Step 3: 2mistakes . . . . ... 56
ProofIdea . . . . . . . . . . . e 70
ProofIdea . . . . . . . . . e 75
The 3 types of clusters in the Proof of 5.2.2 . . . .. .. ... ... .. .. ...... 77
Relationship between the stability parameterand PoE . . . . . .. .. ... ... .. 80

15






Extetapévn EAAnvikn [epiinyn

To évavopa micw atd To epOTNHAX TOL PLAOSOEOVHE VO ATTOVTHGOVpE TTpoépyeTal atd S0 VY-

xpova media tng Bewpntikhc [IAnpogwopikrc. H mpodTn eivon ) ”Avédvon [épa amd tnv Xerpdtepn
[lepintwon” (Beyond the Worst-Case Analysis), 1 omoio arookomel vor marpéyel pio o peaALlo Tk
peAétn tng outddoong Twv adyoplBuwy ce mpakTikd oevipla, o avtiBeorn pe tnv mapadooLokr)
avaAvot) XelpoTepng mePITTWONG, 1) OO HEPLKES POPEG HITOPEL va elval TOAD atoiatddoEn kal o
poamthavnTiky. To devtepo medio eivar avtd g Eppnvedoyng Mnyavikrig Mabnong (Interpretable
Machine Learning), 6tox0g Tng omoiag eival va oxedidoel povTédo pnxavikng pabnong mov mopé-
XOLV KOTOVONTEG EENYNOELS TOV UTOPACEMY TOVG, OL OTTOLEG HTTOPOVVY eDKOAX va alomotnBovv amod
Tov avBpwio. O otd)0g aLTHG TG SUTAWHATIKNG eival va peAetrioel tn péBodo e€nyrong opa-
domoinong (Explainable Clustering), 1 omoia eivon éva eppunvedoLpo HOVTEAD Pnyovikig pébnong,
Qo TNV OTTIKY] TNG AVAALONG OV eKTELVETOL TTEPAL QUTO TNV AVAALOT TNG XELPOTEPNG TEPINTW-
ong, a€loroymvtog tnv amddoot e€nynowv adyopibpwv opadomoinong (explainable clustering
algorithms) oe evotodn oTiypLdTULTIA €160J0V (stable clustering instances), SnAadr) oe TpoPApata
7oV eival mio mbavd va pokdfiovy oty Tpdkn Kol tkaevorolovv opilopéveg viobéoelg “opadomor-
NoWWoTNTRG .
Qo1600, TpLy PAjoovpe Y otdrjmote GANO, TpémeL va TPocPépovpe kdmoto vtdfabpo yia To
npoPAnpa g k-opadomoinong (k-clustering). Ipoto ot *oAa, aupot e€otkelwboovpe pe ta mo on-
HOVTIKG aroTedéopata yio To tpoPAnpa k-clustering, eivot mo ebkoAo va ekTipricovpe Tn dvoko-
Ala TOU KOl VOU KOLTOVOT)GOVE TOV AOYO TTOU TIPETEL GTPEYOUE TNV TTPOCOXT HOG GTNV AVAALGT)
népo amd T XelpoTepn mepintwor). Agbtepov, autr 1) oulftnomn Ba Sikatoloyroel TV avaykn ylo
ene€nynopovg alyopibpouvg opadomoinong.

0.1 Opadomoinon

H Opadomnoinon (Clustering 1} Cluster Analysis) eivon pio teyviky) exudfnong ywpic emifleyn
(unsupervised learning) mov amookomel 6TV 0pyAvwoT Twv dedopévwy eladdou (potifa) oe "ebAo-
yeg” opddec, mov ovopdlovton ovarddes (clusters), étol woTe va amokadv@BoV opotdTNTEG KoL Srox-
@opég PeTakb aTOV TV dedopévwv kou va e€oxBolv xpriopa cvpmepdopata yo ovté. H 1déa tng
opadomoinong dpowv potifwv cvvavtator e TOAAL emotnpovikd media [22], dmwg n Poroyia,
n {woloyia, ot emiotpeg vyelog (Yuyxiatpikr], maboroyia), oL KowwViké ematrpeg (Kowwviolo-
yia, apyeoroyia), N yewypoaoia, n yeoloyia, 1 pnyoviky. Extog avtoo, n opadomoinon cuvietd pia
TPWTOYOV TVEVHATLKT] SpacTnpLoTnTa TV avBpdIwy, OoTE Vo ato@evdyovy vo eme€epyalovtol
k&Be TAnpopopic Tov AopPévouy EexwpLETA, KOTYOPLOTOLOVTHG TA OLVTLKELLEVO TTOV HOLPALoVTOL
KOLVQ XOPOKTNPLOTIKG 6TV idta opdda kot amodidovtag oe kdbe péAog tng opddag avTig To yvo-
plopata avtd. Ztnv mAeloymeia TV TPOPANHATOV OPASOTOINGTG TOL TPOKVITOLY GTNV TPAEN,
ta dedopéva eloddoL avamapiotavtol ad éva abvolo X, mou eivat vITocVoAo Tov R4, 4mov To
d € N* ovopaletan didoraon twv dedopévav. Kabe onpeio © € X eivon éva d-Sidotato Siavuopa
xapaxmpionikv (features) mov kwdLkomoLel ONHAVTIKEG TANPOPOpPLES Yo Evar GLYKEKPLUEVO poTifO-
yio kéBe i € [d], z; eivon 1 Tyr Tov i-6TOV YapakTnploTikod Tov potifov. O oTOXOG pag eivar vou
dwopepicovpe To obvoro X oe k pn keva kot Eéva petad Toug chvoAa, MOTE va eAayloTomoLlelTaL
Ml cUYKEKPLUEVT) ouvapTon KooTovg(cost function) 1) avrikeevikt cvvapthon(objective function),
omola eivor oxedLoopévr) e TETOLO TPOTTO, MOTE OTLG AVGELG XN AoV KOoTOUVG, KdDe cluster epiéyel
dedopéva ta omola eivor "kovtd” peto&d toug. Eival, Aowmdv, cagéc, 4tL yio vo opicouvpe TUTTLKG TO
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oTO)X0 aTO, opeilovpe va kaBopicovpe éva pétpo eyyvtnrag (proximity measure), Sniodn pio év-
vola ardéorachs PeTafD Twv potifwv elc6dov oL tpocdiopilel tdco “opota” eiva. Tlap’ 6Aa avtd,
VITAPYOVV TTOAAG SLAPOPETIKG PETPO EYYVTNTOG TTOL 0SNYOVV G€ LKAVOTOUNTLKEG dLXple piTELS, 0
HEVWG 1) ETLAOYT TOUG eEXPTATE OO TNV EKACTOTE EQPOUPUOYT] OUASOTOLNGTG TOL KAAODHAOTE VX
AVooUpE.

Avop@lofrtnTa, 1 o HEAETNHEVT KoL GUX VA XPTCLHLOTOLOVHEVT] CLVAPTNOT KOGTOVG eival 1) k-
means oVTLKELHEVIKT] cuvapTnon (k-means objective). Eav Siopepioovpe to cbvoro X oe k clusters
C1,Cs, ..., C, tote TO k-means k6610¢ NG opadormoinong eivad:

k
Ho(C1,Co, s Cr) = Y > 0% (w, i)

i=1 zeC;

6mov 1 suvéptnon & : R x R? — [0, +-00) ovopdletan petpikij (metric), kou viroloyilel T omod-
oTaon petan §vo potifwv eicodov z,y € RY, evd o p; = arg min, cga Y., 6(2, )2 xokeiton
Kévrpo (center) tov cluster C;. Zvvrifwg, dtav pedetdyie T cuvéptnon k66TOLS k-means e AVTO TO
nAaiolo, Taipvovpe T petpikn va eivan: 6(z,y) = ||x — yl|2, Snhadn n Evkleideia amdotaon peto€d
TOV T KL Y.

IMopopoing, n k-median avtikeyeviky ocvvaptnor opiletor wg e€ng:

k
#1(Cy,Cay s Cr) = Y Y O, i)

i=1 xcC;

OTOV i = Argmin,cga Y ,cc, 0(7, 1) o oLviBwg emAéyovpe we usually choose (7, y) = ||z —
Yl|1- Avtég 0L 300 GLVAPTHCELS KOGTOUG AVAKOULY GE HLa EDPVTEPT) KATIYOPLOt AVTIKEHEVIKOV GLVOLP-
TNGEWV, OOV TO KOGTOG TNG opadomnoinong voAoyiletal avabétovtag éva kévipo o ke cluster
Ko 0 6To)0G eivao va Ppovpe tnv k-Sropépion C tov X kar éva ovvoro kévtpwv M to omoia va
EAGLYLOTOTTOLODV TNV AVTIKEWEVIKT] CLVEPTNOT).

To tedevtaio xpovio, AOy® NG SHOTIKOTNTOG TV TOPATAVK SLUTUTTOGCEWY TOL TPOPATHATOS TNG
opadomoinong, motkidot ahydpibpol éxouvv mpotabei yia Tnv emidvon tovg. Qotdoo, Exel amoderyOel
OTL Y Ta meplocOTEp autd To pofAfpata opadornoinong, cuvpmeptiopfovopévov twv k-means
kot k-median, eivor NP-hard v vtohoyiotei ny BéAtiotn Swopépion, otn xelpdtepn mepintwon [8]
[21] [24]. Av ko pmopel va yiver e O (nkd) xpovo [9], dedopévou 611 1) opadomoinon exteleitan
ouviBwg Yo chvora Sedopévev LPNAGY dtoThoewy pe TOAAK dedopéva, avtd eival amapddektn
emid00T YO TTPAKTLKEG EQPOUPHOYEG KOl £TOL EXOVE KATAPOYEL GTN XPTOT) ToXVOTEPWV adyopiBpwv
opadormoinong mov dev emotpépouv aapaitnta tn PEATIoTN AdoT). Evag tétolog alyoptOpog yuo
NV mepintewon Tov k-means eivon o adydpiBpog tov Lloyd [5], mov adAidg ovopdletar oahyopLbpog
k-means, o omoiog éxetL xpropomoinBel ektevdg otnv Tpdkn, AdOyw TNng atAdTNTOG KoL TNG LKOVO-
o TiKig arrddoomg Tov yiow ToAvapBpeg mpoaktikég epappoyéc. Eivon évog alydpiBpog romikijc
avaltjtnong (local search), dniodny évog emavaAnmtikdg odyoplBpog mov Pplokel pior opyLKy opo-
domoinon ko o k&Be emavainyn Pedtidver Tnv Tpéxovoa Abomn Ppickovtag pio KaAdTeEPn 6T
“yertovid” autng Tng Abomng, £wg dtov va pnv propet va vtapéet Bedtiwon (avtod eivor eyyunpévo
otL O oupPel). Av kan éxel amoderyBei 6TL 0 ahydpiBpog Tov Lloyd propei va mapdyer avbaipeta
KOKEG OHOOTIOLCELG 0TI XELPOTEPT) TEPLTTWAT], AKOUN Kot Yix otofepd mAr0og Sedopévwv n ko
clusters k [19], amodider aloonpeinta otnv mpdkn, Ppickovrag tkavomointikéc diopepicelg petd
amd pepkd povo Prpata extédeonc. Onwg O dodpe 6Ty emdpevn evOTNTA, ALTO TO PALVOREVO €XEL
TOPAKLVI|OEL TOVG ETLOTHHOVES VAL HEAETIIGOUV QLTOV TOV aAYOpLOpo KaBMG ko TNV opadomoinom
YEVIKA, péoa amod To mpilopa TNG avaAvong mépa atd T XeLpOTEPT) TEPIMTWOT).

Extog and ta mapamdve, £xovv avarttuyBel apketol alyoplBpol mpocoéyylong yio tnv opadomnoi-
non k-means. O Vassilvitskii k.&. dnpodpynoav tov adyopibpo k-means++[19], mov eivar icwg o
IO GUY VA XPNOLHOTTOL0VUEVOG alyOpLOpog k-means otnv mpakr), KAVOVTOG HLA PLKPY) TPOTTOTOL-
non otov ailydépiBpo tov Lloyd mov apopd tnv apxiky Adon g tomikig avalhtnong. Avtdg o
alyopiOpog emtuyyavel Aoyo pooéyyiotng O(log k), dndadn ot AMboelg ov emotpépel kooTilovv
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10 oAb O(log k) popég mepiocdtepo and tn PéATiotn opadornoinotn. Mia celpl epyaoidY yuo n
pelwomn tov Adyou mtpocéyylong Twv alyopibpwv opadomoinong odnynoe e alyopibpovg arabepoi
Adyov mpoaéyyiong [49] [23], pe Tov kadOTepo AOYO TTPpocéyyLong HéXPL GTLYUNG va eival 6.357, Tov
amodeiyOnke ad Tovg Ahmadian, Norouzi-Fard, Svensson kot Ward[49].

Ooov apopd v mepintwon tov k-median, pe pia Tpomomoinotn Tov alydpiBpov k-means++ Aop-
Bavoupe O(logk) Aoyo mpocéyyiong [19]. EmumAéov, o Li kou o Svensson oyediocav évav alyopibpo
npocéyytong 14v/3+¢ yio to k-median mpofAnpe [32], ) omoia apydTepa PeAticobnie oe 2, 611+
amd toug Byrka, Rybicki, Srinivasan kxou Trinh [43].

AkileL emiong vo avapepBoidpe oe peplkd eVOLOLPEPOVT QUTOTEAEGHATO GXETIKG pe TN SLoKOAL
TOAAGV TTpoPANpéTeY opadoroinong. Onwg avagépope TPONYOLHEVWS, 0 LITOAOYLOHOG TNG PEA-
Tiotng opadomoinong eivon NP-hard xou yia i cuvaptroelg kéotovg k-means kot yio k-median.
Ot Awasthi, Charikar, Krishnaswamy kot Sinop [35] édei&av emiong 611 eivon dvokoro va mpooey-
yioovpe v Béltiotn k-means Ao pe Adyo kadbtepo amd (1 + €) yux kéuroro Oetikr) otobepd
€. EmutAéov, o1 Bhattacharya, Goyal kot Jaiswal [54] éxouv amodeiel 6TL 6To TpoOPANpa k-median
otov EvkAeidelo xdpo Sev pmopovpe va metdyouvpe kaldtepo Aoyo mpooéyyiong (1 + €), yio kG-
moto € > 0, edv amodeytovpe v etkacio Movaducdv Iouyxvidiov (Unique Games Conjecture), eved
oty Siakpitr ekdoyn Tov k-median mpofAfpartog, 6mov mepropilovpe T kéEvTpa Tov clustering va
avrikouv 6to ovolo etgddov X, eivar NP-hard va tpoceyyioovpe n éAtiotn Adon pe mapdyovto
xohbTepo amd (1 + 2) [11].

0.2 IIépa amd avadvon xepodtepng nepintwong kot Opadonoinon

Onwg avapépape TNV ITPonNyovHeVn evoTtnTa, 0 alydplbpog k-means tov Lloyd amodidet woA0
KoA& otV mTpaEn, Tapd TIG AITOYONTEVTLKEG EYYUNOELG TOU OTT XELPOTEPT) TepinTwaoT). Elvan evdia-
QEPOV OTL 1) KATAGTAOT OTOL évag alyoplOpog mapdayel Mo kadbtepeg AVoelg atd O,TL TepiLpé-
VOHE otd TNV ovAALoT) TNG ardS00NG TOL GTN XELPOTEPT]) TTEPITTMOT), Elva Vel KOV POLVOIEVO
OV TPOKVITEL KOTA TN HEAETN TOAADV TpoPAnpdTev, eKTOG atd TNV opadomoinet). Qg amotéde-
OpQ, TOAAOL EMOTAROVEG £XOLV TPOoTAOoEL Vo avartTOEOLY evaAlakTicég peBddouvg avalvonc.
IMowa eivor Aoutdv T YAPAKTNPLOTIKA TNG OVAALONG TNG YXELPOTEPNG TEPLTTWONG TOL TNV KobOL-
oTOVV EETEPAGHEVT), OTOY peAeTOpE OPLOPEVOL TTPOPANHOTAL, KOl TTOLEG ELVOLL OL TEXVIKEG OVAAVGTG
TTOL HITOPOVHE VAL X PT)CLHLOTTOLCOVHE YL VOl OLVTIHETWITIGOVHE T HELOVEKTHHATA TNG;

Sy avadvon yepotepng mepintwong, £voag alyopibpog afloloyeitan pe Paon tn xewpodTepn amo-
doo1] Tov o OAeg TIg £L0OS0VG cLYKeKkpLEvoy peyéBoug. Ilpv omebooupe vo KATASLKAGOLE TNV
avaAvon yeLpoTepng mepintwong, akilel va onpewdel 4TL vTApYoLY AdYOL YL TOVG 0TTOlOVG GUL-
viotd v 1o cuvnBiopévn pébodo avaivong aiyopibpwv. H xpnowodtntd g mnydlel and to
yeyovog 0Tt eivan évag BoAkdg TpOTOGg va PATJGOUVHE YL TNV OUTOTEAEGHATIKOTI T £VOG OAyopiD-
ROV ylxti ov Kartoupépoupe va otodei€ouvpe 6Tt orodidet mOAD KOAG oKOpA Ko 0TLG 7Lo SUGKOAES
TMEPUTTOOELS, elpaote oiyovpot 0Tt Ba éxel Tig 1dieg 1§ ko kKoAOTepeg emdodoelg ota mBavadg Lo
evKoAa TPOPARHATO TTOL TTPOKVITTOLY 6TV TP&EN. ExTog crvto, pa peyddn mowkidia otd kpioipo
npoPAnpata emdéxoval adyopBpoug, ot omoiot cuvodevovtol amd TOAD KaAEG eYYLoeLg XpOVvou
ektéAeong ot xelpodtepn mepintwor), evd eivor emiong ovvnbeg oL *ddokoreg” elocodol oplopévev
TPOPANPATOV Vo elval TOAAEG Ko eppovilovTon cUXVE 6TV TPAEN.

A7 TV QALY TAELPQA, LTLAPYOLY TEPLITTOCELG OOV 1) AVAALGT) TNG XELPOTEPNG TEPLTTWONG OTTO-
TUYXOVEL vau e€Enynoel Ty eEoupetikr] amoddooT) opLlopévey alyopifpwy, 6Twg o alyopiBpog Lloyd’s
o710 TAaiclo g opadomoinong k-means, TOL TOLG AELOAOYEL WG G PNOTOVG AOY® TNG KAKNG TOUG
atdd00mG o€ P PEAALOTIKEG ELGOSOVS TTOL deV TTPOKVLITTOLY TTOTE GTNV TPAEN. AEilel va onpetwOet
o1 0 alyopiBpog tou Lloyd ypnowomoteiton kabnpepivé yio tnv emilvomn ekatoppvpiov tpoPin-
patwv clustering, To omoia dev Bewpovvron Wiaitepa SdokoAw, Tapd To Yeyovog 6Tt eivat SOoKoAO
vo vtodoytotei 1) péATioTn Ador opadomoinong. Eva dAho mapdderypa avtod tov @ovopévou ei-
var 0 atAog alyopiBpog tov Dantzig yia tnv emiAvon YPOoUULKOV TPOYPOPPATOV, OTTOL Topd TOV
ek0eTIkO XpOVO eKTENECTC TOV OTN XELPOTEPT) TEPIMTWOT], GLVHOWG LITEPTEPEL TOL eAAeLoeldovg
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aiyopiBpov (Ellipsoid algorithm) [4], o omoiog éxel TOALWVLHLKT] TOALTAOKOTNTA OT XELPOTEPN
nepintwon [13]. EmumpocBétng, o alydpiBpog LRU yua to pdPAnpa tng online ceAidomoinong ep-
Qovilel TapoOpoLa CUPITTEPLPOPE, KOB®G 0 aplONdg Twv cpaipdtwy oelidag (page faults) tng kpueng
WVIHNG O TN XELPOTEPT TEPITTWOT) Elvarl [t TOAD atoaLOS0EN EKTIHNOT) TNG TTPAYUATLKHG TOV OTTO-
doong oe e106d0vg, oL omoieg yapaktnpilovron amd tomrdrnta avapopds (locality of reference).
Yrédpyer mAnOdpa peb6dwv ahyoptBpikng avaAvong ekTeivovton épa amd TNV aveAvoT) NG XeL-
poTepNG MepinTOONG, 0w 1) smoothed analysis [13] [62] [16] [26] | avdAvon uéong mepintwong
(average-case analysis) [62] [7] [3] [1] [2] [10] M&Aiota, éxel amodetyBei 0TL TOGO 0 aAyOPLOHOG
tou Lloyd [16][26] 660 xar 0 adydpiBpog tov Dantzig [13] tov Lloyd éyovv moAvwvupikr) smoothed
complexity, eve e€nyeitan ko 1 amddoon tov LRU oe katdAAnAo mopopeTpomotnpéveg eLcddoug
7OV ePPVilouy ToTLKOTN T Ovarpopds [14]. Qotdoo, o avThv TN SutAwpartikt, Oa emikevpwboiype
o€ Lot SLoupopeTLKY TEXVIKT] OVAALGTG, OTTOL 1) atdd00T) TV aAYopiBpwy amoTipdtol oe éva vITo-
GOVOAO TOL XMOPOL TV GTLYHLOTOTTWV, TO OTOL0 OVTLOTOLYEL OTO TTPAKTIKA GTLYHLOTLTTO ELGOSOV,
o6mwg T "evotadn” oTiypoTLTTO.

T va Tpoo@époupe kamola dwaicOnon micw and avtn ™ pébodo avaivong alyopiBuwv, Tapé-
XOUHE TO ToPASELYHO TV TPOPANUATWVY OHOSOTOLNGTG, HE TO OTTOL XOYOAELTAL KO 1) EpyATio
avtr. Hopatnpovpe 6t 1 opadomoinon evdg ovvorov dedopévav oToxebEL OTNV TOKAALYT HLOG
dopnc mov vtobétovpe cLTNP OTL LITdp)eL ota dedopéva. ITio cuykekpéva, KEVOLpE TNV LITO-
Beon OtL avth) 1 Sopr) popel vor avoktnBel Swopepilovtog 10 GVUVOAO SedOpHEVWV GE GUVEKTLKEG
OpGdeg Ko OTL LITApYEL pio TETOL “KaAT]” dtopépLon. AVTLoTpOP®GS, v dev LITApYEL pLa KaAT) dio-
pépom, Bo popovoe kavelc v vootnpiel 6TL 1) opadomoinom dev eivo To GGTO epyadeio yio TV
e€ayoyn tov embountov TAnpogoptodv and ta dedopéva. Emopévag, eival Aoykd va eaTidcoupe
otov oxedlood amodotikdv ahyopibuwmy povo yia cuvola Sedopévwv ta omoia arrodéxovTaL pLo
tétow opadornoinot. Onwg O dovpe oto Kepdhato 3, 0 mePLOPLGROG TOL XDPOL TV ELGOWV o€
“opadomolroipe” oTypoTUTTe Kablotd ToAAG TpoPAfpata opadonroinong evemilvta kot Stevko-
Abvel T dnpovpyia xpropey adyopiBpwy mov éxovv TOAD kaAr) awddoon oty Tpakn, aArd Ba
prtopovoayv va tapafrepBodv Adym Twv Kokdv emdOGedV TOVG o€ TeXVNTES, “aotabng” e160d0ug.
Katd pio évvola, 1 Ouadomoinon eivar §voxoln povo érav Sev éxer onuacio (Clustering is difficult
only when it doesn’t matter) [30]. O k0pLog 6TOY0G AVTAG TG SUTAMUATIKNG Elval Var HEAETNOEL XLV
aUTO LoYVEL KO YL TNV TTEPITWOT TG eényrjoiung opadomoinong (explainable clustering), tnv omoia
elodryovpe tumkd oto Kegpdhauo 4.

0.2.1 Mepikég dnpogiAeig évvoleg "evotdBelag” oTiyplotdnmv opadomnoinong

lNo va PePfarwbotpe 6TL 1 opadomoinon eivor SVokoAn povo ot eL6ddoug oL dev eppavifovron
otV pakn, Bo Tpémel va evToTicoUvpE OPLOPEVEG LOLOTNTEG TTOV EXOVV TA TEPLEGOTEPA TPAKTLKK
otyptdTuTa opadomoinong ko v otodeifovpe 6tL To TPOPANpa NG k-opadomoinorng eivon evko-
AOTEPO, EQV TTEPLOPLOOVIE TOV XDPO ELGOSWV POVO GE EKELVES TTOV LKAVOTTOLOVY QUTEG TLG LOLOTHTEG.
Me dAha Aoy, BéAovpe va Bpolpe kdutoleg Tapadoyis “evoTdelag” OTLYHLOTOTTWV OPHASOTOiNoNG
OV Vo TAN POV TIg akdAovBeg amartrioelg [37]:

1. H opadomoinon eivon gvemidvty, edv amodextovpe avtég tig mopadoyés, dniadn vdpyouvv
oAyoplOpoL ToAVWVLHLKOD ¥povov ov AapPdvouvv kahég mpooeyyioelg Tng PEATIOTNG Opo-
domoinong, edv 1 eicodog eivon evoTadng.

2. Ovapadoyég dev eival mOAD ALOTNPES, EMOUEVWS TO TEPLOCOTEPA CTTO T GTLYHLOTUTIOL TOV
TPOPANUATOV OPAdOTTOLNGTG OV TTPOKVILTOLY GTNV TPAEN TIG LKOLVOTTOLODV.

AvTég elvat, UOLKA, 0L EAGYLOTEG ATTOLTHOELG TTOV TTPETLEL VAL TTATPOVVTOL 0Tt TIG TToPASOXEG EVOTA-
Belog. e éva davikd oevipro, Ba BéAape oL vToBEseLg va Ltkavoolovy kal TV akdAovdn WidtnTa:

3. Yrépyet évag amodotikdg alyoplBpog (ToAL®VULKOD XpOVoL) TTOL eAEYXEL EQV éva Sedopévo
oTypLoTUTTO opadomoinong tkawvomolel Tnv vTtdBeon evoTdBelag 1 OyL.
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Ag tpoomabricovpe Topa v Bpoope Tétoteg Tapadoyég evotdbetac. Miax 8ot T TOL Box pITOopPOD-
OOV VO LKOVOTTOLOUV TTOAAG TTPAKTIKA GTLYHLOTUTTA elva OTL omtotadrjote PEATIOTN opadomoinon
«Eexwpilew», dnAad, ol féATIoTeG CLOTADEG elvarl TOAD KaAG SLoXWPLOEVES, £TOL (oTe KGDe GTOoL-
xeto v Bploketar TOAD 1o kovtd 6To KEVTPOo ToL dLkoL Tov cluster mapd oe omolodriote GALO
kévTpo. Auth 1) 18éa 0dnyel puotkd oty Tapadoyr a-evotdBelag-kévipwv (a-center-stability),
7OV SLLPOPETIKR OVOpALeETOL a-€yydTNTX (a-proximity), 6tov a > 1 eivon 1) Tap&peTPOG TOL EAEY-
xeLTov Pabpo Sroywpiopod tng PéATioTng opadomoinong. Ooo vmAdtepo eivon To a, TOG0 o KaAd
Sroywplopévn eivor 1) BéATiotn opadonoinon. H evotdBeia kévtpwv eivon pia kevrpikr évvola otnv
avaAvot twv alyopibpwv opadomoinong mépa ortd T xelpodTePN TEPITTWOT), EMELdY, OXL HOVO KO-
vorotel tnv WiotnTa 1, d6mwg Ba Sodpe oto kepdhato 3, aAAd eivor ko ard Tig o “aoBeveig”
ToPadOYES, apol GAAeg évvoleg evoTdBeLaG cLVETAYOVTOL TNV eLOTABELX KEVTPWV, OTIwG Bar Sovpe
TOUPUKAT®.

T vo extipfioovpe v Wéax micw amd tn devtepn mapadoyn evoTdbelng TOL peAETApE GE QUTH
v epyacic, Oo TPETEL TPATA VA KATOVOT|GOUHE TOV BonONTikd pOAO TNG AVTIKELUEVIKNG GLUVAPT)-
ong o¢ éva poPAnpa opadomoinong. Ilio cuykekpipéva, OTWG £XOLHE EENYOEL GTNV TTPOTYOUHEVN
eVOTNTQ, 0 0TOXOG TNG opadomoinong eival va Siapepicel To oOvolo dedopévwv oe “ouvekTikég”
opédeg. EMOpéVmG, 1) AVTIKELHEVIKT] GUVAPTNOT Elvol ATA®G €va PEGO YL VAL TTOGOTLKOIIOLGOVLE
v embopia pog va opadomotjoovpe ta dedopéva, £ToL woTe kdbe cuoTAdX Vo TTEPLEXEL TTOPOHOLL
onpeio ko Tor onpeia TOL AVAKOLY GE SLAPOPETIKG CUHTAEYHATO VoL Elval avOpOLa. € OpLOjLEé-
VEG TEPUTTAOOELG, 1] SO KOl TAL XOPOKTNPLOTIKE TV dedopévmv VTodeltkviouy OTL HOVO HEPLKES
QLVTLKELHEVIKEG CUVOPTHOELS ELVaL KATAAANAES YLt TN GUYKEKPLHEVT epappoyr. QoTdG0, elval TOAD
ouvnOLoPEVO OTL deV POG EVOLOLPEPEL TTPOLYHOTLKA 1) EACLYLOTOTOLNGT] HLOG GUYKEKPLUEVIG GUVAPTT)-
ong k6otovg. Me apoppr| awtr} TNV mapatrpnot, Oo propodoje Vo AVOEVOURE OTL VIO TTPAKTL-
KEG TeEPUTTOGELS opadomoinong, n PéAtiotn Abon dev e€aptaton oe peydho Pabud omd Tig drow-
TePOTNTEG TOL HETPOL €YYDTNTOG OV YPTCLHOTOLELTOL YIOL TNV TTOGOTLKOTOINGT) TG OHOLOTNTAG
TV potifwv elgddov. Avtr 1 cuAAoyLoTIKY TTopeia 0d1ynoe atov opiopd tng Bilu-Linial evota-
Ocrag 1 a-evotdBeiag datapaxmv (a-perturbation stability) 1 a-eAaotikéTnNTA dSrxTOpax®d>V
(a-perturbation resilience). Zvykexpipéva, évo oTLypLdTUITO OPAdOTOINGOTG e £Vt CUYKEKPLUEVO [Lé-
Tpo eyy0LTNTOG I eivon a-evotabéc otig Swntapayés edv pkpéc alloyéc oTov OpLoPd TOL PETPOV
eyYuTNTOg, oL ovopdlovtal a-dratapoyés, dev aAA&lovv T povadiki PéATioTn opadomoinomn Tov
otiypidtumov. Ko ki, 1 mopdpetpog a kobopiler o péyebog tng Swatapoyrg. Oco peyadvtepo
elvat 1o a, 1660 TEPLEGOTEPO PITOPOVHE VO SLATAPAEOVIE TO APXLKO CTLYHLOTUTTO XWwPLg vor oA AGEeL
1 BéAtiotn opadomoinot. Onwg Oa dovpe oto Kepddouo 3, n a-evotdbeio Statapoydv cuvemdyetal
NV a-eyyotnta.

O p@Tol Tov elofyayo Tnv évvolx Tng evotdBetog drotapoydv frav ot Bilu kou Linial oo [28], ot
orolol €dwoav Tov 0pLopd evog eLGTABOVG GTLYHLOTVTTOL Yo TpoPAnpata Swokpitg PedTioTomoi-
nong ko oyediocov évav arodotikd alydpibpo yia to TpdPAnpa g Méyiotng Toprg (Max Cut)
oe O(n)-gvotabeig e.6680vg (T T0 amotéheopa apyodTepa PeAtidOnke oe O(y/n) ard tov Bilu
K. [29] kan pewddnke mepoutépw oe O(y/lognloglogn) and tov Makarychev k.& [34]). Extore,
TOAAG& poPAnpata éxouv pedetnBel oTo TAaioo g evoTdbelag daTapoy®V, OTWS TO TPOPANHK
tov mAovediov twAntr (Traveling Salesman Problem) [27], to Minimum Multiway Cut [34] [42],
T0 TTPOPANpa evpecng Tov MéyioTtov AveEdptrntov Zvvolov (Maximum Independent Set) [46] ko
GAAaL.

H svotaBeia Sratapoydv peretnOnke oto mhaioclo tng opadomoinong apyikd amd tovg Awasthi,
Blum kou Sheffet oto [25], 6ov oxediacav évav alyopiBpo mToAvwVLpLKO XpOvoL Yl 3-evaTadn
oTiypoTuTe. Apydtepa, ot Balcan kou Liang yoddpwoav Ty anaitnon svotédeicag oe (1 + 1/2)-
evotabn otrypotuma [39] ko teAkd o Angelidakis k.& [42] €8e1&e Ot pio taxpaddoyt) Tov alyopid-
pov opadomnoinong single linkage e€dyer T Péltiotn opadomoinon e TOAVOVUILKO XpOVO aKOUN
Ko yla 2-evotodr] oTiypotuna, 6nws Ba Sotpe oto Kepdroto 3. Autd to amotéheopa eivon ov-
ootk BEATIoTO, 0upov oL Ben-David kot Reyzin oto [33] amédet€av 611 eivar NP-hard vor Bpebet
n BéAtiotn Abon otnv k-median opadomoino, e&v TO GTLYHLOTUITO LKOLVOTIOLOOV TNV WOLOTNTA TNG
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(2 — €)-eyyotnrag, evd otnv nepintwon k-centers o Balcan k.& anédei€e oto [36] 611 dev vmdp-
XEL aAyOpLOHOG TOAVWVLHLKOD YXpdvou 1ov va propel va Advel (2 — €)-evotodr] oTLYHOTUTTA TOV
npoPAnpatog k-centers, extog edv NP = RP, to omoio fewpeiton mwg dev toyvet. Akilel va ovar-
PEPOUVHE OTL, Yiow vor otodetyBovv Ta Tapamdve amoteAécpata, apkel va vrobésouvpe TNV WOLOTNTA
NG a-eyyvtnTag, dniadn dev xperdletot 1) o avotnpr] Topadoyr] Tng a-evotdbelog Siatapaymv.
KatoAnyovtag, onpetdvoupe 0Tt péxpL oTiypnig dev vdpyel orrodotikdg alydpiBpog mov va eAéyyel
€0V EVOL OTLYHLOTLITTO OPASOTTOLN GG LKOVOTTOLEL TIG TToLPadOXEG TNG G-YYUTNTOG 1) TNG a-eVoTABELNG
Sratapoy®v, emopéveg dev tkavorolovy TNV LOTN T 3. AkOpN Lo avoLXNTKO elvot To yeyovog
611 oMot Bewpolv OTL oL TIEG TNG TTAPapETPOL EVOTABELAG @ TTOV ATALTOOVTAL YLOL TO TTPOOLVOL-
@epBévta amoteAéopata eival TOAD peyaAeg, EMOpEVMG LITAPXEL emtiong apLlPoria edv autég oL
opadoxég tkavoroovy v Wotnta 2 [37].

0.3 Eppnvetdopa povtéda pnxavikng padnong

T va katoddPoupie T onpacio Tov TPoPARHATOS TNG eENYHOIUNG ORASOTOIN GG TTOV HEAETAYLE
o€ QUTH TNV epyaoia, eVl OITOPALTITO VO KATAVOT|GOVLE TNV CCVALYKT) YLOL EPUNVEVCLUO HOVTEA X
pnxovikng padnong. Eivor yvootd 6t ta tedevtaia xpovia, n pnyovikn pébnon eiye peyain emi-
TUYLOL O€ POt TTOLKLALGL EPOPHOY®V, TTOV KUHAUVOVTOL ATTd T1 6VGTACT] TTPOIOVIWY £WG TNV VALY VE®-
plon elkovag kot v avaAvon cvvoucOnpatog [17] [40] [Duda2000-hc ]. Avtr n emitoyio propet
vou tod0Bel oTNV LKOWVOTNTH TV HOVTEAWY PNnxovikng pabnong va Aapfavouv aLlomioteg Ko pn
TETPLUHEVEG ITTOPATELS Kol TTPOPAEYELG pe PAOT) TNV ePTTELpioL TTOV EXOUV ITOKTHOEL QT TV eKTaLi-
devot] Tovg oe TePAaTIL GUVOAX dedopévv. QoTO00, elval GLYVO PALVOUEVO 1) akpLPrg cLAAOYL-
oTiky Tiow oo TG TpoPAiPelg Tov povtéAov va elval ToADTTAOKT) Kol va un yiveton SioioOnTikd
Kotovon T oo Toug avBpodmovg. Qg amotéAecpa, TPoKOITOLY PLOLKE Tar akOAoLOA epwTApTOL:
«IIcdg propodpe va eipocte oiyovpol 6TL To ekmodevpPéVo HovTENO éxel pdbeL avtd oL vtotiBeTot
Ot Tpémel va pdiBet;» Kot «Itopodpe v oXESLAGOVHE HOVTEAD TTOL VO TOPEXOLV eENYNOELS VIO TLG
QTOPAOELG TOUG, OL 0TTOLEG PITOopovV va eAeyxBoiv oo edikoig kat va xprioipomotnfodv oe cuvdio-
Opo pe TNV avBpdILvT epmteLpio pe outotéAeopa tn Pobitepn Katavonon avt®dv Twv dedopévmv;”.
Ipoxeyévou va avadel&ove Tn oNpoGia TG EPUNVEVGIHOTTAG OTH PNXAVLKT] p&BnoT, topéyoupe
T0 akdAovbo apaderypo otd o kAaokd Epyo twv Leo Breiman, Jerome Friedman, Charles J Stone
kow R A Olshen [6]. Oswpeiote To TpoOPAnpa katnyopromoinong (classification) démov BéAovpe va
amo@acicovpe eqv évog aobevrig mov énabe kapdiokt) poaPorn éxet LYNAS kivduvo va Tebdvel
péoa otig emdpeveg 30 Nuépeg petd tn voonleior Tov oto vosokopeio. Ta tnv enidvon awtod ToUL
npoPAfpartog, ekmoudevtnke éva dévipo amopacns (decision tree) oe dedopéva acBevav, divovrog
T0 8évTpo Tov eppaviletal ato ZxnNpa 0.1. Avto to dévtpo emétpefe 6TOLG YLATPOLG VA TPOGdLopi-
oouv Tov kivduvo Bavatou e£eTAlovTog TPELS ATTAEG HETPTIOELS: TV EAXYLOTI GUGTOALKT) ALPTIPLOKT]
ntieomn tov/Tng acBevovg, TNV nAtkio Tov/TNg ko av o el and gAefokopPikn tayvkapdio. Av ko
ATav yvwoTtd OTL auTol oL ToHPAYOVTEG HTAV CHAVTLKOL 6TO TAALGLO TV KoPILtk®V TTPpoc oAy,
oL yiatpoti dev propovoav va Ppovv o0Te Tot cwoTd Opla i kébe epdTNOT 0VTE TNV aKPLPT] oA~
AnAovyia autdV TV epwtioewy. Emopéveng, autd to ebAnmTo povtélo propel va cuvdvaoTel pe
TNV TEXVOYVWGiX TOL LATPLKOD TPOCWTLKOV Yla va Yivouv ypriotpeg mpoPAéPelg kot va cwboiv
{wéc. Topa, pavtooteite OTL, AvTL AVTOL TOL JEVIPOL ATOPACEWYV, XPNCLHOTOLOVVTOY £va oVV-
Beto vevpwvikd SikTvo Yot vTd TO TPOPANHA KOl OTL, AOYW VOGS TPOYPOHHATIOTIKOD GPAAHATOC
1 pag kaknig emAoyng Tov emnédwv (layers) tov duktdov, To povtédo katéAnye va pdbet 6tL 660
vPNAGTEPN elval 1) apTnpLlokT) mtieoT) , TOG0 YopUNAOTEPOG elvat o kivduvog Bavartov. Puoikd, avtd
épyetal oe avtifeon pe To emeTNHOVIKG dedopéva, A& AOY® TNG TOAVTTAOKOTNTOG TOV HOVTEAOV,
Ba ftav adbvaro yia Touvg yratpog va avakaibyiouvy To AdBog. Eva topopoto tpdPAnpa culntei-
Tal 070 [52], 61ov ot cuyypaeic avapépouy pua peAétn [38], n omola elye wg oTOXO Vo oXESLROEL
évat HOVTELO TTOL TTPoOPLLOTAY Vot X priopoTtoLnBel 6 vVOooKopELD Yo va SOCEL TTPOTEPALOTTA GTT)
ppovtido acBevidv mov mhoxovy amd mvevpovia, aAAd TeAkd épobav OtL To Gobpa peldvel Tov
Kivduvo BovdTouv amd mvevpovia, Ve 6TV TPAyHATIKOTNTO Loy Vel To avtifeto. MéypL tdpa eivor
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Yxnuo 0.1: Aévtpo amdpacng

oOPEG OTL 1) EPUNVELGIUOTNTO Elvan pLa Kpion amaitnot oe ToAAEG epappoyés. 2to [52] ol ouy-
ypoeig mpoteivouv Tov akdAovbo opLopod:

“Epunvetoiun punyaviky uddnon eivar n xprjon povrédwv pnyavikis pddnong yia thv eéaywyr oxeTikov
TANPOPOPLDV TTOV aPopovY TIG TETELS Tov TEpLEyovTan ata dedousva. ES, Oswpotue tn yvadon ayetiky
EQV TTAPEYEL TANPOPOPIES TE EVAL CUYKEKPIUEVO KOLVO it Evar emmdeypévo mpofAnua o€ Kdmoio ovyke-
Kpiévo medio evliapépovtog. AvTES oL TANpPoPopies ypnoyomololvtar ouyve yie thv kabodjynon the
ETKOLVWVIQG, TWV EVEPYELWDV, Kal THG avakdAvymg.”

SNHELOCTE OTL 1] GUYKEKPLUEVT] HOPPT] HE TNV OTola ToPOoLGLALOVTOL OL OYETLKEG TTANPOPOpPLieg GTO
KOO e€aptatal amd T YOUPAKTNPLOTIKA auTOD TOL KOWOoU (Y. TOU LOTPLKOV TPOCKITLKOD GTO
TPONYOOUEVO TOPASELYHA) KOL TN VO] TNG EQOPHOYTIG.

Ynépyovv 800 kbpleg katnyopieg pebddwv eppunveing: eppunvevcipudTNTR o€ eminedo poviéAov Ko ek
TV voTépwv eppnvevtikotnta [52]. H mpdtn eotidlel 670 oxediacpd povtéAwy pnyoviknig pédnong
HE TTEPLOPLOHEVT) HOPPT], ETOL DOTE VO TAPEXOUV EDKOAD XPTOLUEG TTANPOPOPLES YLOL TIG KYVWOTEG
oxéoelg mov BéAovpe va avarkadOouvpe. Me &Ada Adyia, owtég ot péBodot meplopilovv o YHPOo TGV
TOVOV PHOVTEAWY o€ eKelva OV tkavortolovy éva TABog emBupuntodv WotrTwy, oL omoieg pro-
polv va xpnoiporolnfovv yia va eEnyioouy Tig ammopioelg Toug. Avtdg o TepLoplopds Bo mpémel va
ekteheiton pe Tpoooyn ylati propel v odnyrioet e yapunhotepn akpifeix tpoPredng. Emopévag,
ot péBodot mov Pacilovrol oe povtéda eivar TPoTOTEPEG OTAV 1) LTTOKElEVY) XD elval OYETIKA
amtAn. Ao TNV GAAN TAELPA, 1) EK TOV VOTEPWV EPUNVELTIKOTNTA GTOYEVEL OTNV eEoywyn] TAT-
POPOPLOV OXETIKA He TIG pobnpéveg oxéoelg evog 1dn exmardevpévou (mBavadg pn-epunvedoyLov)
HOVTEAOU KOLL X PT|CLUOTIOLELTOL KUPLWG OTOV 1) LITOKELHEV) OXECT] elvo TTEPLITAOKT).

Yrépyovv TOAAG TAEOVEKTHHATO KOl LELOVEKTHHOTA Kot 6TOVG S0 arvTog T0ous pefddwv oyedi-
ooNG EPUNVELC LDV HOVTEAWV. AvapgloPriTnta, To peyalltepo pépog tng dovAeldg ot eneEnynopa
HOVTEAQ aupopd TNV €K TV VoTépwv epunvevoipotnta [50] [51] [55] [65] [45] [48] [58]. QoTdoo,
oto [53] 1 ouyypapéag toxvpileton OTL TOL TAEOVEKTHHATX TOV OXESLAGHOD EYYEVOG EPUNVEVCIUOV
HOVTEAWV VIEPTEPOVV TWV HELOVEKTNHATWV TOLG Kot LITooTpilel OTL T “e€nynopa podpa kov-
TLE” TPéTtel var atoPedyovTaL e aoPioels LPNAoD ototyfpatog. H e€nyroyn opadormroinon mov
npotdbnke atd tovg Dasgupta k.& oto [57] eiva, €€ o0V yvopilw, 1 tpotn pébodog eppnvevot-
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potntag oe eninedo povtéAov oTo mAaiolo Tng opadomroinong, Tov ocuvodeveTol ad BewPNTIKEG
EYYUNOELS YLl TNV eTTid00T) TV eENYNOLU®Y 0AyopiBuwy cuykpLtikd pe tnv BéATioTn opadomoinon
XWpIg TEPLOPLOPOVG.

0.3.1 Egnynown opadomoinon

Onwg eidape mponyovpévwg, 1 opadomoinon eivar éva onpovtikd TpoPANpa, pe ToANES epop-
poyég ko éxel pedetnBel die€odikd ad eMOTHHOVEG VITOAOYLOTMV, OL OTOLOL KATAPEPAV VAL GYE-
dioouvv armotedeoparticovg alyoplBpoug pe oAl kahog Adyoug Tpocéyylong. QoTtdo0, oL opado-
TOLIGELG TTOV TTALPAYOVTOL OO LTOVG TOLG aAyOpLBpoug propel va eivor SOoKOAO var eppnvevTovy,
emewdn] elvar dvokoro va StkatoroynOei 1) ocvpmepiAnyn evog dedopévou ot pio cuoTada (cluster),
KOG To emaryOpeva OpLo adPaong eEoptadvTol TVAOG otd OAX TAL XOPOKTNPLOTIKE TwV dedo-
pévov (Zxnpa ??). Avtd eivor diaitepo TpoPANHATIKO OTaY EXOUIE VO KAVOUE e Sedopéva LYNAGVY
dloctdoewv, kKabBahg eivor poktikd advvato va eEnyroouvpe yioti k&Be onpeio avkel oto cluster
TOU.

I'V owtd o1 Dasgupta k.& 670 [57] Tpoomdbnoav va dnpovpyrcouvy évay arodotikd alydpibpo opo-
domoinong mov 6ToXeVEL GTNVY EDPECT) LG AVOTIG TTOL EAYLOTOTOLEL KAUITOLX SNHOPLAT) GLVAPTTOT)
K6GTOVG opadomoinong (yix mopddetypa v k-median 1] TNV k-means), eve TRULTOX POV TOPEYEL
Woe ovvorTikt e€fjynon awtig TG opadomoinong, £ToL MOTE 1) GLPTEPIAN YT 0TTOLOLdNTOTE CNpEIOL
o1 oveTdda Tov va eivat ebkola emanBevon kot Staobntikd katavontr. I'a 10 oKomd AvTo,
eloryayov tnv opadomoinon péow SEvipwv katwpliov, 1 omoio eivar pio péBodog epunvevoipotn-
TG o€ eninedo PHOVTELOL, 1) OTTolo TOPEYEL EVOLY GLVOTITLKO XOPOKTNPLOHO Yo kK&be cuoTdda pe T
pop@r dévTpov, kabloTdVTag e0KOAO Yot KATTolov Vo eAEYEeL YIoTL Vo GUYKEKPLUEVO OTHELD OLVT]KEL
oe kdurolo cluster. Omwg prropotpe va Sovpe oto oxrfpa 0.2y, k&b ecwtepikdg KOPPOg TOL dévTpou
nepLéxeL éva (e0yog XapaKTnpLoTikov-katw@iiov (i,6) mov mapamépnel otn ouvOrkn (x; > 0),
EVO ToL @OAA TOL SévTpov emdryouv Tnv opadomnoinot mov emoTpépel 0 adlydpLBpog wg e€fg: kabe
@UAAO ovvioTd éva cluster ko epiéxel Ta oMHELR TTOV CUHPWVODV GTIG GLVOKEG TOL HOVOTTATLOD
amd 1t pilo Tpog avTd To POANO, OTTwG Yaivetal oTo XxHpa 0.28.

Opwg yroti va xpropomolovpe SEvipa amdPaong Yo var EPHIVEDCOUVHE TIG ATTOPACELS TNG OHO-
domoinong; Ta pukpd dévrpa amopdoewv Bewpobvtal evpéng TLMLKO TOPAdELypa evOG eENYHOLHOUL
povtélov [56] [52], kaBmg 1 arhr] tepapytkr} Toug dopr ta kabiotd “rpocouowdoe” (simulatable),
dnAadn évag GvBpwiog pmopel ecwteplkd va mpooopoldoel ) Sadikacion AGYNG amopacemy.
Onwg eivon copég amd to oxfpa 0.2, N ovpmepiAnyn evdg onpeiov dedopévov x oe pia cUYKEKPL-
pévn ocvotdda e€nyeiton e0KOAQ e TOV LITOAOYLORO TV (EVYHOV XAPAKTIPLOTIKOV-KATOPALOV otd
™ pila Tov dévTpov éwg To YUANO 6TO 0moio avTioTOoLKEL 0T cVeTAdX! crutr). EmutAéov, To yeyovog
0TL K&Be cLETAd OpLleTaLL XPNOIHOTOLOVTAG TO TTOAD k — 1 YopakTnpLloTikd, aveEdpTnta amd tov
aplBpd twv dactdoewv d 0dnyel oe oOVTOpES emeEnynoelg TN opadomoinong ov eival YprioLun
Wuaitepa 0tav k << d. Znpewdote 0TL 1) 1€ TNG XPYONG | ETOTTEVOPEVOV FEVIPWV ATTOPACTIG
yuoe opadomtoinen Sev eivan véa [47] [31] [20] [44] [15], Opewg 1 SovAerd Tov Dasgupta eivor 1) TpodTn
OV TTapéxEL PPAYHATO TOU AOYOL TPOGEYYLONG TWV EENYNOHWV aAYopiBpwv.

SUVETHOG VoL, QUTO TO HOVTEAO QaiveTal va eival Tpdypatt eppunvedotpo. Ilowo eivon dpwg To Tipnpo
IOV TIPETEL VO TTANPOGOUHE YLt VX VTTOAOYIoOUE eENYNoLpeg ADCELG; XTIV TTEPITTMOT) TOL ZYHHo-
t0g 0.2 n e€nynown opadomnoinon eivon pia koA Tpocéyylon g Abeng tov alyopibpov Lloyd, n
omola dev pmopet va e€nynOei. Ztnv Wavikn mepintwon, Oa Oé ape oL eEnyroieg Aboelg opadoroi-
nong va eivat oxedov e€icov kahég pe Tig Aboelg opadomnoinong ov propolv va fpouv ot kKAaoLikol
(un e&nynopor) adydpiBpovg opadomoinonge. Etot, 0 otdyog tng e€nyroung opadomroinong eivat
vo oxedldoel aAyopiBpoug Tov eMLGTPEPOLY ADGELS TTOV LKOVOTTOLOVY TOV ~TIEPLOPLOHO EPHNVEVCL-
HOTNTOG”, EVE TAVTOXPOVA ETLTUYXAVOUV HL KOAY TTpooéyyLoT TG PEATIOTN opadomoinong ywpic
sepiopiopiots. O eAdyLoTog otd Toug AOYOUG TTPOGEYYLOTIG Yot OAOVG TOVG eENYNOLHOVG adyOPLOROUG
opadomoinong ovopdletan Tiunue s Eénynowdrntag (Price of Explainability 1) PoE). O tivaxkeg 0.1
ko 0.2 ouvoyilouvv Tig Lo oNHAVTIKEG epyacieg oxetikd pe tnv Exe€nynon opadomoinon pall pe
Ta Ve Kal kKAt gpaypata tov Typatog Exe€nynoydtntag mov amodetkviouv. Enpeidote 6TL 0
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Yxnua 0.2: Xoykpion EEnynowung ko un EEnynoyng Opadomoinong

PHhTOG alyopIBpog twv Dasgupta k.& emitvyydver tpocéyyion O(k) tng Pértiotng opadomoinong
(xwpig meplopiopovg) 6tav 1 cuvaptnon kdéotoug eivar 1) k-median, evéd Aot oL e€nyrotpol alyo-
pdpoL TAnpodvouy éva avamdgevkto kdotog §2(log k) eni Tov BéAtiotov KOoTOULC. O Epfadivoupe
o€ avtov Tov alyopBpo xar Ba opicovpe enionpa v Tipnpa tng Exe€nynowpotntag oto Kepd-
Aao 4, kaBag ko B oyoAidooupe Tig 1déeg miow amd Tovg cOYYPOovoLs eENyHopovg ahydpLBpouvg

opadomoinong.
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k-median k-means [}, objective Authors

O(k) O(k?) Dasgupta k.& [57]
O(dlogk) O(kdlogk) Laber and Murtinho
[60]
O(log” k) O(klog” k) O(kP~Tlog” k) Svensson k.& [59]
O(log kloglog k) O(klogkloglogk) Makarychev and Shan
[61]
O(log kloglog k) O(klogk) Esfandiari k. [64]
O(dlog® d) Esfandiari x.& [64]
O(kl’%polylog k) Charikar and Hu [63]

Mivakag 0.1: Ave gpaypoata yio to tipnpe g EEnynowyodtntog

k-median k-means [, objective Authors
Q(log k) Q(log k) Dasgupta k.& [57]
Q(k) Q(kP~1) Svensson k.& [59]
Q(ﬁ) Makarychev and Shan
[61]
Q(min(d,logk)) Q(k) Esfandiari x.& [64]
Q(k'~ 7 /polylog k) Charikar and Hu [63]

IMivakag 0.2: Kato @pdypoata yio To Tiunpe tng e€nynopotntag

0.4 Xvvewopopa

O oté)0g TG NG SUTAWPATIKNG eivor var pedetrioel To mpOPAnpa tng e€nynong opodo-
moinong mov dptoav ot Dasgupta k.& oto [57] kdtw amd moapadoyés “opadomomnopdtnrag” Twv
OTLYILOTOTT®WV £L6OJ0V.

To np®TO TPAYHX TOL aTodeLKVDOULE elval OTL 0 e€nyrnoipog alyopBpog opadomoineng IMM, tov
07t0l0 ELGAYOULE GTO KEPAAXLO 4, emiTuy)hvel oTabepd AOYO TPOGEYYLOTG EQV TOL CTLYHLOTUTIA EL-
0680v tkavomolobv v WLOTNTA TNG G-eYYOTNTAG, HE ¢ > 2k:d%, Yo omolodnmote [}, objective
(ocvvéptnon kdéaToLg oL eival yevikevon Twv k-means ko k-median), vtodnAwvovTag éva AV
ppbypa O(1) yio o Tipmpo tng EEnynowpotrog. Etn cvvéxela, yix k&be covaptnon kdéotovg ()
pe p > 2, deixvoupe 0L LTTAPYEL Eva oTLYpLOTLTTO opadomoinong (awtd ato [59]) wov kavorotel tnv
oTNTA TNG G-eyYOTNTaG e a = §) (k:d%) Ko pog Sivel To k&tw @pérype: (kP71 yia to Tipnuo
¢ E&nynopémrog.

EmutAéov, peletdype to mpofAnpa tng e€nynowng k-median opadormoinong, 6Tav T GTLYHLOTUTX
ele6dov eivan a-evotadr oe Satapoyéc. At 600 Yvwpilw, dev LITAPXEL KAVEVA KPLTHPLO TTOVL VOL KO-
Bopilel évo KOO KATW EPAYHO YL TNV eLOTADELX SLOTOPOYDV EVOG GTLYHLOTUTTOV OHadOTTOiN oG,
dedopévou OtL tkavorolel oplopéveg LWLOTNTEG. ATodelkvOoupe OTL edv éva oTLYHLOTUTTO OpadoTToi-
nNong tkaevortolel Ty mapadoxr) TG a-eyyvuTnTag kat OAeg oL cvoTadeg ot PEATIOTN opadomoino
éxouv mepimov To 810 k6GTOG, TOTE TO oTIypHLOTLTO CWTH elvon )(y/a)-metric-perturbation stable
(o Aiyo mo aoBevrig exdoyr) tng evotdBelog dratapoydv). TNV TPAYHATIKOTNTA, KITOdELKVD-
OUE €VOL TTLO YEVIKO OTTOTEAEGA, OOV EMLTPETOVIE GTA KOGTN TV 6LGTASWY 61N PéATioTn Adon
vou unv elvon mepinov ioa. Xprollomolovpe avutd To Yeyovog Yo va arodeifouple OTL vtapyet va
oTypédTuno k-median opadomoinong (avtd oo [57]) mov eivan (+v/d)-metric-perturbation stable,
yeyovog mov vrtouvicoeton To k&tw gpaypa: (log k) yia o Tipnpa tng E&nynoyodtntag, 6mov d
elval 0 aplBpog twv dtaotdoewv Tov cLVOAOL dedopévwv.

To amoteAéopaTd Pog LITOSNAGVOLY OTL 1} a-evaTdBela eyyOTNTOG KoL 1) a-evoTdBeLa SraTapoydV
dev elvon katdAAnAeg mapadoyég yia va petwoovy to Tipnpe tng E&Enynowotntac.
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0.5 Opyavwon tng Epyaciag

Ipora an *6Aa, oto Kepdhaio 2 mapéyovpe To vmdPfabpo mov amarteital yio v katavonorn
g vtorowng. MeprhopPavel pua elooywyr ota TPofANpOT OPHASOTOLNGTG KAl OTNV AVIGOTN T
tov Hoeffding mov Ba eivan xpriowpn yix tn dnpovpyia puog okAnprg mapovoiog oto Kepddoto 4.
10 Kepdhowo 3 culntipe didpopeg Evvoleg Twv OPASOTOLHGIHOV CTLYHLOTOTTOV KO ETLKEVTPWVO-
poote o€ d00 amd AUTEG: a-evoTABelx KEVTPWY KoL TNV a-evoTdBela Stotapoy®dv. ZxoALdlovpe TG
10ée¢ oW otd ALTEG TLG £VVOLEG KO TTatpoLGLALOUVpE TIG faoticég ISLOTTEG TOVG KL fLot ETLOKOTNON
oL aAyopiBpov Tov AyyeAiddxn [42] mov violoyilel oe ToAvWVLHLKO Xpovo TN PéATIoTN opado-
moinon omotovdrote 2-metric perturbation stable otiypiotidnov.

1o Kepahraro 4, eiobyovpe o mpoPAnpa g e€nynoung opadomoinong ko opilovpe Tumkd o
Tipnpa g EEnynowotrag (PoE), o omoio avastapiotd to tpdcobeto k66TOG OV TANPOVOLE
yoe Ty e€oywyr) "eppnveDGIHOV” OpHOSOTOLoEWV. 2TT) GUVEXELX, CLUINTALE TOVG KOPLOLG OAYOPLE-
HOULG KOl TQ ATOTEAEGHATA 0€ UTO TO TTedi0. ZUYKEKPLLEVOL, TTAPEYOVHE LK EKTEVT] ETLGKOTNGT) TOV
aiyopiBpov IMM, o omoiog eivar 0 adydpiBpog mov mpoteivetar amd tovg Dasgupta k.& oo [57]
Ko ailel kevtpikd poro otnv epyacio pog. EmutAéov, mapéyovpe po Aemtopepr] avdAvor Tov
IMM mov eivar ovoloeTiKd TovopoLdTumn pe tnv addeln twv Dasgupta k.¢ adA& mopovotdletol
pe ta Sikd pov Adyla ko e€nyeital cOpeova pe TN Sikf HOL KaTavOnoT. T oUVEXELD, OVOupE-
poupe TOLVG GOYYXPOVOLS adyopLBpoug yia tnv e€nynoun opadomoinon pall pe tnv Paoikn Wdéa
iow oo v avaivon Tovg. KataAnyovtag, meptypd@oupe oplopéva "d06koAa” GTLYHLOTUTTOL Yol
6lovg Toug e€nynoovg alyopibpouvg opadoroinong mov pog TapéXouy HEXPL GTLYRNAG TO KOAD-
TEpL KATw @paypato tov Tipripatog tng EEnynowomrac.

TéAlog, oto Kepdhowo 5 peretape tnv e€nynoin opadomnoinon kdtw amd topadoxég evatdbelas.
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Chapter 1

Introduction

The motivation behind the question that we aspire to answer comes from two contemporary fields of
Theoretical Computer Science. The first is Beyond the Worst-Case analysis, which aims to provide a
more realistic understanding of the performance of algorithms in practical scenarios, contrary to the
traditional Worst-Case analysis, which can sometimes be too pessimistic and misleading. The second
field is that of Interpretable Machine Learning, whose goal is to design machine learning models
that provide intelligible explanations of their decisions, which can easily be understood by humans.
The goal of this project is to study the Explainable Clustering method, which is an interpretable
machine learning model, from the viewpoint of algorithmic analysis that extends beyond the worst-
case analysis, by measuring the performance of explainable clustering algorithms on practical input
clustering instances, i.e. instances that are the most likely to arise in practice and satisfy certain
*well-clusterability” assumptions.

However, before we talk about anything else, we have to offer some background on the k-clustering
problem. First of all, after becoming familiar with the most important results for the k-clustering
problem, it is easier to appreciate its difficulty and understand the reason to turn our attention to
the analysis beyond the worst-case. Secondly, this discussion will justify the need for explainability
in numerous clustering applications.

1.1 Clustering

Clustering or Cluster Analysis is an unsupervised machine learning technique that aims to organize
the input data (patterns) into “sensible” groups, called clusters, in order to discover similarities and
differences among these data and derive useful conclusions between them. This idea of grouping
similar patterns is common among many fields[22], such as life sciences (biology, zoology), medical
sciences (psychiatry, pathology), social sciences (sociology, archeology), earth sciences (geography,
geology), and engineering. Besides, clustering is a primitive mental activity that humans have, in
order to avoid processing every piece of information separately, by categorizing entities that share
some key attributes into the same cluster. In that way, they can think of all of the entities that belong
in the same cluster, according to these common attributes, without having to store vast amounts of
information.

In the majority of the clustering problems that arise in practice, the input data are represented by
a set X, which is a subset of R, where d € N* is called the dimension of the data. Each data point
x € X isad-dimentional vector that encodes important information about a specific pattern in terms
of features; for every i € [d], z; is the value of the i feature of the pattern. Our goal is to partition
X into k nonempty and disjoint sets so as to minimize a specific cost function (otherwise called an
objective function), which is designed so that in low-cost solutions each cluster contains data that are
“close” to each other. It is clear that to formally define this goal, we need to determine a proximity
measure, i.e. a notion of distance between the input patterns that specifies what it means for them
to be “similar”. However, there are many different proximity measures that lead to meaningful
partitions, thus their choice depends on the specific clustering application at hand.

Arguably, the most well-studied and commonly used clustering objective function is the k-means
objective, probably followed by the k-median objective. If we have partitioned X into k clusters
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C1, Cy, ..., C then the k-means cost of this clustering is:

k
%2(01,02, ,Ck> = Z Z 52(x,ui)

i=1 zeC;

where function § : R% x R% — [0, 4+00) is called a metric, as it measures the distance between two
input patterns z,y € R%, while y; = arg min, . pa > wec, 6(T, p)? is called the center of cluster C;.
Usually, when we study the k-means objective in this context, we take the metric to be d(x,y) =
llx — y||2, i.e. the Euclidean distance between x and y.

Similarly, the k-median objective function is:

k
H1(C1,Cay s C) = Y O, i)

i=1 z€C;

where y; = argmin,cga Y, ¢, 0(2, ) and we usually choose 6(z,y) = ||z — y/[1. These two clus-
tering cost functions belong to a wider class of objective functions called center-based objectives,
where the clustering cost is computed by assigning a center to each cluster and the goal is to find a
k-partition C of X and a set of centers M that minimize the objective function.

Through the past years, due to the popularity of the clustering settings mentioned above, a variety
of algorithms have been proposed to solve them. Nevertheless, it has been shown that for most
of the clustering problems, including k-means and k-median, it is NP-hard to compute the optimal
partition, in the worst case [8] [21] [24] . Although it can be done in O(n*?) time [9], since clus-
tering is usually performed for high dimensional data sets with numerous data points, this is an
unacceptable running time for practical applications and thus people have resorted to using faster
clustering algorithms that do not necessarily return the optimal clustering. One such algorithm
for the k-means setting is the Lloyd’s algorithm [5], otherwise called the k-means algorithm, which
has been extensively used in practice, due to its simplicity and satisfactory performance for a lot of
practical applications. It is a local search algorithm, that is, an iterative algorithm that finds an initial
clustering and at each iteration improves the current solution by finding a better one in the "neigh-
borhood” of this solution, until all of the clusterings in its neighborhood have a higher cost than the
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current solution (this is guaranteed to happen). Although it has been shown that Lloyd’s algorithm
may produce arbitrarily bad clustering solutions in the worst case, even for a fixed number of data
points n and clusters k [19], it performs remarkably in practice, by finding satisfactory partitions
after only a few steps. As we will see in the next section, this phenomenon has motivated scientists
to study this algorithm as well as clustering in general, through the prism of beyond the worst-case
analysis.

Apart from the above, several approximation algorithms have been developed for k-means cluster-
ing. Vassilvitskii et al. created the k-means++ algorithm[19], which is probably the most commonly
used k-means algorithm in practice, by making a slight modification to Lloyd’s with respect to the
initial clustering solution of the local search. This algorithm achieves an O(log k) approximation
of the optimal solution, i.e. solutions that cost at most O(log k) times more than the optimal clus-
tering. A line of work on reducing the approximation ratio of k-means clustering algorithms led to
constant approximation algorithms [49] [23] with the current best achieving a ratio of 6.357, proved
by Ahmadian, Norouzi-Fard, Svensson and Ward[49].

As far as the k-median setting is concerned, a modification of the k-means++ Algorithm obtains a
O(logk) approximation [19] . In addition, Li and Svensson provided a 1 4 v/3 + € approximation
algorithm for the k-median objective [32], which was later improved to 2.611 + € by Byrka, Pensyl,
Rybicki, Srinivasan and Trinh [43].

In conclusion, some interesting hardness results have been obtained for many k-clustering prob-
lems. As we mentioned before, computing the optimal clustering is NP-hard for both k-means and
k-median objectives. Awasthi, Charikar, Krishnaswamy, and Sinop, [35] also showed that it is NP-
hard to approximate the k-means objective within a factor of (1 + €) for some positive constant e.
Moreover, Bhattacharya, Goyal, and Jaiswal [54] have proved that the Euclidean k-median problem
cannot be approximated within a factor of (1+ ¢€), assuming the Unique Games Conjecture, whereas
the discrete k-median problem, where we restrict the cluster centers to belong in the input set X, is
NP-hard to approximate within (1 + 2) [11].

1.2 Beyond Worst-Case analysis and Clustering

As we mentioned in the previous section, Lloyd’s k-means algorithm performs very well in prac-
tice, despite its disappointing worst-case guarantees. Interestingly, the situation where an algorithm
produces much better solutions than what we expected from analyzing its worst-case performance,
is a common phenomenon that can be encountered while studying numerous problems, besides.
As a result, many scientists have attempted to develop alternative analysis paradigms to the worst-
case analysis. So what are the characteristics of the worst-case analysis that deem it obsolete, when
studying certain problems, and what are the techniques that we can use to deal with its disadvan-
tages?

In the worst-case analysis, an algorithm is judged upon its worst performance on any input instance
of a given size. In other words, when we want to compare two algorithms on inputs of a given size,
we measure their performance on their hardest input. Before we rush to condemn it, it is worth
noting that there are reasons why the worst-case analysis is by far the most common analysis tech-
nique. Its usefulness stems from the fact that it is a convenient way to talk about the efficiency of an
algorithm because if we manage to prove that it performs very well even on the hardest instances,
we are certain that it will run as fast or even faster on the potentially easier instances that arise in
practice. Apart from that, a wide variety of crucial problems admit algorithms, which come with
very good worst-case running time guarantees, while it is also common that the hard instances of
some problems are numerous and frequently arise in practice.

On the other hand, there are cases where worst-case analysis fails to explain the outstanding per-
formance of certain algorithms, such as Lloyd’s algorithm in the context of k-means clustering,
deeming them useless because of their poor performance on unrealistic input instances that never
occur in practice. Bear in mind, that clustering problems are solved by Lloyd’s algorithm millions
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of times every day and are not considered especially difficult, in spite of the fact that it is NP-hard
to compute the optimal clustering solution. Another example of this phenomenon is Dantzig’s sim-
plex algorithm used to solve linear programs and despite its exponential worst-case running time,
it usually outperforms the Ellipsoid algorithm [4], which has polynomial worst-case complexity
[13]. Moreover, the LRU algorithm for the online paging problem displays a similar behavior, as
its worst-case number of cache misses is a very pessimistic estimate of its actual performance on
real-life paging instances, which exhibit locality of reference.

Several algorithmic analysis methods extend beyond the worst-case analysis, such as smoothed anal-
ysis [13] [62] [16] [26] or average case analysis [62] [7] [3] [1] [2] [10]. In fact, it has been proved
both Lloyd’s [16][26] and Dantzig’s[13] algorithms have polynomial smoothed complexity, while the
LRU algorithm achieves a much smaller page-fault rate for data that exhibit locality of reference[14].
However, in this project, we will focus on a different analysis technique, where the performance of
algorithms is measured on a subset of the input space, which corresponds to "meaningful” input
instances, such as stable instances.

To offer some motivation behind this analysis paradigm, we provide the example of clustering prob-
lems, which is also the main topic of this thesis. Note that clustering a data set aims to uncover an
interesting structure that we implicitly assume there exists in the data. In particular, we make the
assumption that this structure can be retrieved by partitioning the data set into coherent groups
and that such a partition exists. Conversely, if such a partition does not exist, one could argue that
clustering is just not the right method to extract the desired information from the data. It is, there-
fore, reasonable to focus on the design of efficient and accurate algorithms for instances that accept
such a meaningful clustering and to not care about instances that are unlikely to arise in practice.
As we will see in Chapter 3, the restriction of the input space to "well-clusterable” instances renders
many clustering problems tractable and facilitates the creation of useful algorithms that perform
very well in practice, but could be overlooked due to their poor results on artificially constructed,
fragile hard inputs. In a sense, Clustering is difficult only when it doesn’t matter [30]. The main goal
of this project is to study whether this is also true for the explainable clustering setting, which we
formally introduce in Chapter 4.

1.2.1 Some popular clustering stability assumptions

In order to verify that Clustering is hard only for instances that do not occur in practice, we should
identify some properties that most of the practical instances have and study whether the k-clustering
problem is easier, if we restrict the input space to only those instances that satisfy these properties.
In other words, we want to find some “clustering stability” assumptions that meet the following
requirements [37]:

1. Clustering is tractable under these assumptions, i.e. there exist polynomial-time algorithms
that obtain good approximations of the optimal clustering solution, if the input is stable.

2. The assumptions are not too strict, so most of the instances that arise in practice satisfy them.

These are, of course, the minimum requirements that should be met by stability assumptions. In an
ideal scenario, we would like the assumptions to satisfy the following property as well:

3. There exists an efficient algorithm that checks whether a given clustering instance satisfies
the stability assumption or not.

Let us, now, try to find such stability assumptions. One property that many practical instances
might satisfy is that any optimal clustering “stands out”, that is, the optimal clusters are very well-
separated so that each element is much closer to the center of its own cluster than to any other
center in the optimal clustering. This idea gives rise to the a-center-stability assumption, or the
a-proximity property, where a > 1 is the parameter that controls the amount of separation of the
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optimal clustering; the higher a is, the more well-separated any optimal clustering is. Center sta-
bility is a central notion in the analysis of clustering algorithms that extends beyond the worst-case
analysis because not only does it satisfy property 1, as we will see in Chapter 3, but it is also implied
by other definitions of stability and thus its properties can be used to derive useful algorithms.

In order to appreciate the second stability assumption that we study in this project, we should first
understand the auxiliary role of the objective function in a clustering problem. To be more specific,
as we have explained in the previous section, the goal of clustering is to partition the data set into
coherent groups. Therefore, the objective function is just a means to quantify numerically our de-
sire to group the data, so that each cluster contains similar points and points that belong to different
clusters are dissimilar. In some cases, the implicit structure that exists in the data indicates that only
a few objective functions are suitable for the specific application. However, it is quite common that
we don’t really care about minimizing a specific cost function; in such cases, the cost function is
just a means to an end and not the end itself. Motivated by this observation, we might expect that
for practical clustering instances, the optimal solution does not strongly depend on the specifics of
the proximity measure that is used to quantify the similarity of input patterns. This thought pro-
cess has led to the definition of Bilu-Linial stability or a-perturbation stability or a-perturbation
resilience. Specifically, a clustering instance with a certain proximity measure ¢ is a a-perturbation
stable if small changes in the definition of the proximity measure, which are called a-perturbations,
do not change the unique optimal clustering of the instance. Again, the parameter a determines
the size of the perturbation; the higher a is, the more we can perturb the initial clustering instance
without changing the optimal clustering. As we will see in Chapter 3, a-perturbation stability im-
plies a-proximity.

The first to introduce perturbation stability were Bilu and Linial in [28], who gave the definition of
a stable instance for discrete optimization problems and designed an exact and efficient algorithm
for O(n)-stable Max Cut instances (this result was later improved to O(y/n) by Bilu et al. [29] and
was further reduced to O(+/log nloglogn) by Makarychev et al. [34]). Since then, many problems
have been studied under perturbation stability, such as TSP [27], Minimum Multiway Cut [34] [42],
Maximum Independent Set [46].

Perturbation stability in clustering was initially studied by Awasthi, Blum and Sheffet in [25], where
they designed a polynomial time algorithm for 3-perturbation stable instances. Later, Balcan and
Liang relaxed the stability requirement to (1 + v/2)-stable instances [39] and finally Angelidakis et
al. [42] showed that a variant of the single linkage clustering algorithm extracts the optimal clus-
tering in polynomial time even for 2-perturbation stable instances, as we will see in Chapter 3. This
result is essentially tight, because Ben-David and Reyzin in [33] proved that it is NP-hard to find the
optimal solution for (2 — €)-center stable k-median instances, while in the k-centers case, as Balcan
et al. have proved in [36], there is no polynomial-time algorithm that can solve (2 — €)-perturbation
stable instances of the k-centers problem unless N P = RP, which is widely considered to be false.
It is worth mentioning that, in order to prove the results above, it suffices to assume the a-proximity
property rather than the stronger a-perturbation stability.

In addition, note that, as of yet, there is no efficient algorithm that checks whether a clustering
instance is a-center stable or a-preturbation stable, so these assumptions do not satisfy property 3.
Even more concerning is the fact that many people consider the values of the clusterability parame-
ter a needed for the aforementioned efficiency results to be too large, so there is also doubt whether
these assumptions satisfy property 2 [37].

1.3 Interpretable Machine Learning Models

To comprehend the importance of the explainable clustering problem that we study in this thesis,
it is essential to understand the need for interpretable machine learning models. It is a well-known
fact that in recent years, machine learning has had great success in a variety of applications, rang-

ing from product recommendation to image recognition and sentiment analysis [17] [40] [12]. This
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Figure 1.2: Decision Tree

success can be attributed to the ability of machine learning models to make reliable and non-trivial
decisions and predictions based on the experience it has gained by training on huge datasets. Nev-
ertheless, it is often the case, that the exact reasoning behind the model’s predictions is complex and
not intuitively understood by humans. As a result, the following questions arise naturally: "How
can we be certain that the trained model is learning what it is supposed to learn” and “can we design
models that provide explanations for their decisions, which can be checked by human experts and
combined with human experience in order to reach a deeper understanding of these data”?

To illustrate the importance of interpretability in machine learning, we provide the following ex-
ample from the classical work of Leo Breiman, Jerome Friedman, Charles J Stone, and R A Olshen
[6]. Consider the classification problem of deciding whether a heart-attack patient has a high risk of
dying within the next 30 days after being hospitalized. To solve this problem, a decision tree model
was trained on patient data, yielding the tree appearing in Figure 1.2. This tree allows doctors to
determine the risk of death by looking at three simple measurements: the patient’s minimum sys-
tolic blood pressure, his/her age and whether he/she suffers from sinus tachycardia. Although these
factors were known to be important in the context of heart-attacks, doctors could not come up ei-
ther with the correct thresholds for each question or with the exact sequencing of these questions.
Therefore, this easy-to-understand model can be combined with the domain expertise of the medical
staff to make useful predictions and save lives. Now, imagine that, instead of this decision tree, a
complex neural network was used for this problem and that, due to a programming error or a poor
choice of layers of the network, the model ended up learning that the higher the blood pressure
is, the lower the risk of death. Of course, this contrasts with the scientific data, but because of the
complexity of the model, it would be impossible for doctors to discover the mistake. A similar prob-
lem is discussed in [52], where the authors mention a study [38], which aimed to design a model
intended to be used in a hospital to prioritize patient care for patients suffering from pneumonia, but
it eventually learned, that having asthma is associated with a lower risk of dying from pneumonia,
while in reality, the opposite is true. By now it is clear, that interpretability is a crucial requirement
in many applications. In [52] the authors suggest the following definition:

“Interpretable machine learning is the use of machine learning models for the extraction of relevant
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information about domain relationships contained in data. Here, we view knowledge as being relevant
if it provides insight for a particular audience into a chosen domain problem. These insights are often
used to guide communication, actions, and discovery.”

Note that the specific format in which the relevant information is presented to the audience depends
on the characteristics of this audience (for instance the medical staff in the previous example) and
the nature of the application.

There are two main categories of interpretation methods: model-based interpretability and post hoc
interpretability [52]. The first focuses on the design of ML models with a constrained form, so that
they readily provide useful information about the uncovered relationships. In other words, these
methods restrict the space of potential models to those that satisfy a number of desirable properties,
which can be utilized to explain their decisions. This restriction should be performed with caution
because it might lead to lower predictive accuracy. Therefore, model-based methods are preferable
when the underlying relationship is relatively simple. On the other hand, post hoc interpretabil-
ity aims to extract information about the learned relationships of a trained (possibly unintelligible)
model and it is mainly used when the underlying relationship is complicated.

There are several advantages and disadvantages to both of these types of interpretation methods.
Arguably, most of the work on explainable models concerns post hoc intrepretability [50] [51] [55]
[65] [45] [41] [48] [58]. However, in [53] the author claims that the benefits of designing inherently
interpretable models outweigh their drawbacks and argues that “explainable black boxes” should be
avoided in high-stakes decisions. The explainable clustering method proposed by Dasgupta et al. in
[57] is, to my knowledge, the first model-based interpretation method in the context of clustering,
that comes with theoretical guarantees on the worst-case performance of the explainable algorithm
in comparison with the optimal unconstrained clustering algorithm.

1.3.1 Explainable Clustering

As we have seen previously, clustering is an important problem, with many applications and has
been studied thoroughly by computer scientists, who managed to design efficient algorithms with
very good approximation ratios. However, the clusterings produced by these algorithms might be
hard to interpret, because it is difficult to justify the inclusion of a data point to a cluster, as the
induced decision boundaries possibly depend on all of the features of the data (Figure 1.3b). This is
especially problematic when we are dealing with high-dimensional data, as it is practically impos-
sible to explain why each point was assigned to its cluster.

That’s why Dasgupta et al. in [57] attempted to create an efficient clustering algorithm that aims to
output a solution that minimizes some popular clustering objective, while at the same time provid-
ing a concise explanation of this clustering so that the inclusion of any point to its assigned cluster
is easily verifiable and intuitively understood. To this end, they introduced clustering via threshold
trees, which is a model-based interpretation method, that provides a concise tree-based characteriza-
tion for each cluster, making it easy for someone to check why a specific point belongs to a specific
cluster. As we can see in Figure 1.3c, each internal node of the tree contains a single feature and
threshold pair (i, #) that corresponds to the condition (z; > 6), while the leaves of the tree induce
the output clustering as follows: each leaf is a cluster that contains the points that agree on the
conditions in the path from the root to this leaf, as shown in Figure 1.3d.

But why decision trees? Small decision trees are widely considered as a standard example of an
explainable model [56] [52], as their simple hierarchical decision-making deems them simulatable,
i.e. a human can internally simulate and explain their decisions. As it is clear from Figure 1.3, the
inclusion of a data point x in a specific cluster is easily explained by computing the feature-threshold
pairs from the root of the tree to the leaf that corresponds to the cluster. In addition, the fact that
each cluster is defined using at most k& — 1 features, independently from the number of dimensions
d leads to short explanations that are especially when &£ << d. Note that the idea of using unsuper-
vised decision trees for clustering is not new [47] [31] [20] [44] [15], but the work of Dasgupta is the
first that comes with theoretical bounds on the approximation ratio of the explainable algorithm.
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Figure 1.3: Explainable vs Non-Explainable Clustering

So yes, this model seems to be interpretable indeed. But what is the price we have to pay in order to
compute explainable solutions? In the case of Figure 1.3 the explainable clustering is a good approx-
imation of the solution of Lloyd’s algorithm, which is non-explainable. Ideally, we would like our
explainable clustering solutions to be almost as good as the unconstrained clustering solutions that
can be obtained by classical (non-explainable) clustering algorithms. Thus, the goal of explainable
clustering is to design algorithms that return solutions that satisfy the “explainability constraint”,
while at the same time achieving a good approximation of the optimal unconstrained clustering.
The minimum of the approximation ratios over all explainable clustering algorithms is called the
Price of Explainability (PoE). Tables 1.1 and 1.2 summarize the most important papers on Explain-
able Clustering along with the upper and lower bounds of the PoE that they prove. Note that the first
algorithm by Dasgupta et al. achieves O(k) approximation of the optimal unconstrained clustering,
for the k-median objective, while all explainable algorithms incur an unavoidable cost of 2(log k)
times the optimal cost. We will delve deeper into this algorithm and formally define the Price of
Explainability in Chapter 4, as well as discuss the ideas behind the state-of-the-art, near-optimal
explainable clustering algorithms.
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k-median k-means [}, objective Authors

O(k) O(k?) Dasgupta et al. [57]
O(dlogk) O(kdlogk) Laber and Murtinho
[60]
O(log” k) O(klog” k) O(kP~Tlog” k) Svensson et al. [59]
O(log kloglog k) O(klogkloglogk) Makarychev and Shan
[61]
O(log kloglog k) O(klogk) Esfandiari et al. [64]
O(dlog® d) Esfandiari et al. [64]
O(k%%polylog k) Charikar and Hu [63]

Table 1.1: Upper Bounds for the Price of Explainability

k-median k-means [}, objective Authors
Q(log k) Q(log k) Dasgupta et al. [57]
Q(k) Q(kP~1) Svensson et al. [59]
Q(ﬁ) Makarychev and Shan
[61]
Q(min(d,logk)) Q(k) Esfandiari et al. [64]
Q(k'~7 /polylog k) Charikar and Hu [63]

Table 1.2: Lower Bounds for the Price of Explainability

1.4 Contribution

The goal of this project is to study the explainable clustering problem defined by Dasgupta et al. in
[57] under "well-clusterability” assumptions.

The first thing that we prove is that the IMM explainable clustering algorithm, which we introduce
in chapter 4, achieves a constant approximation ratio if the input instance satisfies the a-proximity
assumption, with a > 2kd%, for any (), clustering objective, implying an O(1) upper bound for the
price of explainability. Next, for every (), objective with p > 2, we show that there exists a cluster-
ing instance (the one in [59]) that satisfies the a-proximity property with a = Q (k‘d%> and implies
a lower bound of Q(kP~!) for the PoE.

Afterward, we study the explainable k-median clustering problem under a-perturbation stability. As
far as I am concerned, there is no criterion that determines a good lower bound for the perturbation-
stability of a clustering instance, given that it satisfies some requirements. We prove that if a clus-
tering instance has the a-proximity property and all of the clusters in the optimal clustering with
centers M have roughly the same cost, i.e. for any two clusters C, C’ in the optimal clustering it
holds that %cost(C’, M) < cost(C, M) < cost(C', M) for a constant v > 1, where cost(C, M) is
the k-median cost of the cluster C with centers M, then the instance is ©(y/a)-metric-perturbation
stable. In fact, we prove a more general result, where we allow 7 to be non-constant too. We use
this fact to prove that there exists a k-median clustering instance (the one in [57]) that is Q(v/d)-
metric-perturbation stable and implies a lower bound of 2(log k) for PoE, where d is the number of
dimensions of the data set.

Our results suggest that a-proximity and a-perturbation stability are not suitable *well-clusterability”
assumptions for the explainable clustering problem.

1.5 Organization of the Project

First of all, in Chapter 2 we provide the background needed to understand the rest of the project. It
includes an introduction to clustering problems and Hoeffding’s Inequality which will be useful in
the creation of a hard instance in Chapter 4.
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In Chapter 3 we discuss several notions of well-clusterable instances and focus on two of them:
a-center stability and a-perturbation stability. We offer the motivation behind these notions and
present their basic properties and an overview of the algorithm of Angelidakis [42], which com-
putes the optimal (unconstrained) clustering of any 2-metric perturbation stable input instance in
polynomial time.

In Chapter 4, we introduce the explainable clustering problem and define the price of explainability
(PoE), which captures the additional cost of creating clusterings that are "interpretable”. Afterward,
we discuss the main algorithms and results in this field. To be more specific, we provide an ex-
tensive overview of the IMM Algorithm, which is the algorithm proposed by Dasgupta et al. in
[57] and plays a central role in our project. In addition, we provide a detailed analysis of IMM that
is essentially identical to the proof by Dasgupta et al. but is presented in my own words and ex-
plained according to my intuition. Next, we mention the state-of-the-art algorithms for explainable
clustering along with the main idea behind their analysis. Last but not least, we describe some hard
instances for the explainable clustering problems that provide us with the current best lower bounds
of the price of explainability (in terms of the number of clusters k).

Finally, in Chapter 5 we study explainable clustering under stability assumptions.
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Chapter 2

Preliminaries

2.1 Metric Spaces

® ® o 5;}'. Y

Figure 2.1: Metric Space

As we explained in the introduction, in order to formulate the clustering problem, we need to define
a proximity measure, i.e. a notion of distance, which quantifies the similarity between any two input
patterns and will be used to define the clustering cost function to be minimized. The first thing that
comes to mind when we think of distance is probably the Euclidean distance in R?. Interestingly,
this concept of distance seems to be more general and can be best captured by the notion of a metric.

Definition 2.1.1 (Metric Space). Let X be a set and 6 : X x X — [0,400) be a function. Then
(X, 9) is a called a metric space and function § is called a metric, if for any x,y, z € X the following
properties hold:

1 §(z,y) >0
2. 6(x,x) =0
3. 6(z,y) >0 forx#y
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4. §(y,z) = 0(x,y) (symmetry)
5. 0(z,y) + 0(y, 2) > d(x, 2) (triangle inequality)

A natural way to define a metric is in a vector space equipped with a function that specifies the
distance of a point from the "origin”. These vector spaces are called normed spaces and this function
is called a norm. More formally:

Definition 2.1.2 (Normed Space). A normed space is a vector space V over R (or C) equipped with
a mapping ||-|| : V' — [0, 4+00), which is called a norm, that satisfies the following axioms for any
z,y € Vanda € R (orC):

L|z[|=0=2=0
2. Jaz|| = |al ||z
3.z 4yl = llzll + llyl
Remark: If (V, ||-||) is a normed space, then the function § : V' x V' — R defined by the formula
oz, y) =lle —yl, z,y eV

is a metric.

Definition 2.1.3 (p-norm). Letd € N* andp > 1. We define the p-norm or [}, norm to be a function
I, : R% — [0, +00), such that, for every x € R9:

zllp = (Zd: I»”C!p);

i=1
Then, l’g = (R%,||"||,) is @ normed space.

In this project, we will denote the metric defined by the p-norm in any normed space g as 0p.

2.2 Clustering

2.2.1 Definitions

We will now present a general definition of the k-clustering problem, which is rarely used in this
form. However, since we want to study several clustering objectives and because it is helpful to think
of clustering according to this definition in the context of stable clustering instances, we choose to
start with it and then introduce the most common clustering objectives that we mentioned in the
introduction, such as the k-means and k-median objectives, as a special case.

Definition 2.2.1 (k-clustering problem). An instance of a k-clustering problem, for some positive
integer k, is a tuple:
9=((Y,9),X,#)

where (Y, 0) is a metric space, X is a finite set X C'Y and # is an objective function:
H:Px X Dx — [O,+OO)

where Px is the set of all partitions of X into k non-empty sets and Dx is the set of all metrics
on Y. Given such an instance, our goal is to partition X into sets C1,Cy, ..., Cy so as to minimize
%(Cla CQa SE) Cka 5)

The partition {C1, C, ..., Cy } is called a clustering of X and each C;, i € [k] is called a cluster.
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Note that in case X = Y, we might denote J as: § = ((X,0),#). Moreover, if 6 and # can be
inferred from the context, we might just say that X is a clustering instance.

A popular class of objectives is that of center-based objective functions, which define a cost for each
cluster C; by assigning a center ¢ to it, and the total cost of the clustering is the sum of the costs of
the k clusters. In this project, we are going to focus on the £, objective functions, which are natural
center-based objectives that capture the most commonly used cost functions for clustering problems
in practice. To define these objective functions, we will need the following two definitions.

Definition 2.2.2 (£, cost of a set C' with centers M). Let a metric space (Y, ) and two finite sets
C,M CY. We define the cost of C with centers M to be:

t M,6) = in 67
cos p(cv ’ ) /iréljvl} ('Tv :U’)
zeC
If we want to compute the cost of C' from a single center ;1 € Y, we may write cost(C, u, 0) instead

of cost(C, {u}, ). We will say that u* = argmin,, .y cost(C, p) is the optimal center of C.

Definition 2.2.3 (£, cost of a clustering C with centers M). Let a metric space (Y, ), a finite set
X CY and k € N*. We define the (), cost of a k-clustering C = {C1,Cy, ..., Cy} of X with centers
M = {p*, 4%, ..., ¥} and p > 1, where ' is the center of C; fori € [k], as follows:

k
cost,(Ch, Co, ..., Cy, TR T )) = Z cost,(C;, . 8)
i=1

We will also say that the center of cluster C; is yi* and that each element in C; is assigned to i, for
everyi € [k].

Definition 2.2.4. (clustering objective function) Let a metric space (Y, 0) and a finite set X C Y
and k € N*. The [}, clustering objective function, is a function #, that, given a clustering C =
{C1,Cy, ...,Cr} of X and a metric 0, assigns the following cost to C:

B : 12 k
#Hp(C1,Ca, ..., C, 0) = {lerjl'l.ﬁk}gycostp(Cl,C’g,...,Ck,u S ey 117, 0)

In other words, in the k-clustering problem with the £, objective, we try to find a clustering C =
{C1,Cy, ..., Cy} along with centers M = {u', 1%, ..., ¥}, so as to minimize the cost

k

Yo ()

=1 zeC}

The most commonly used [}, objectives, are the ones for p = 1 and p = 2; k-clustering with the
1 objective is called k-median clustering, while k-clustering with the {5 objective is known as k-
means clustering. Now, we will make some important remarks about clustering with £}, objective
functions.

Remark 1: Because the cost function #(, is to be minimized, many authors consider it redundant
to specify both the clustering C and its centers M. This is because, in case we specify C = {C1,-
(9, ..., Ck}, the set of centers that minimizes the #, objective function (i.e. the optimal centers of
C)is M = {u*t, 2, ..., p**}, where 11*? is the optimal center of cluster C;. Similarly, if we fix a set
of centers M = {p', 1%, ..., u*}, the optimal clustering with these centers is the Voronoi partition of
X, that is, the optimal clustering is C = {C, Cy, ..., Cj } where C; is the set of points that are closer
to center ' than to any other p/, for all i € [k]. In this case, we will say that M induces clustering
C and we will write:

cost,(C1, Ca, oo Oy i, 112, ...,,uk,é) = cost,(M, 6)
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Figure 2.2: Clustering with the (), objective

Remark 2. Consider the pair (C, 771) that minimizes the cost function #,,. Then, M is an optimal set
of centers for C, and conversely, C is induced by M (otherwise there would exist an even cheaper
clustering). Consequently, if © = {Cy, Ca, ...,Ci}y and M = {u', y?, ..., u*¥}, then for any i, j € [k]
with i # j and a point = € Cj, then §(x, u?) < §(x, 4?), that is, each point in the optimal clustering
is closer to its own center than to any other center. Note that the inequality becomes strict if we know
that C is the unique optimal clustering. Nevertheless, this property does not hold in general, that is,
if C is not the optimal clustering and M™* is the optimal set of centers for C, then C is not necessarily
induced by M*.

Note, that in case p or § can be inferred from the context, we may not include them in the notation,
for example, we will write:

cost(M) or cost(Cy, Cy, ..., Cr, i, 2, ..., i)

2.3 Hoeftding’s Inequality

When we analyze a randomized algorithm, we often want to know the probability that it fails to
achieve a certain performance or the value of one of its parameters that allows the algorithm to
work as desired, with high probability. To answer these questions, it is not sufficient to understand
the expected behavior of our algorithm, because it might be the case that there is a high probability
for the algorithm to deviate significantly from its mean performance. Therefore, a very common
problem that arises in the analysis of such algorithms is to bound the probability that some random
variable X deviates significantly from its mean E[X].

There are many ways deal with this problem, such as the Markov’s Inequality or Chebyshev’s In-
equality, which offer us the desired bounds in terms of the first and second-order moments of the
random variable X, i.e. its mean and its variance. However, in the special case when X is the sum
of independent, bounded random variables, we can use the information contained in all of the (infi-
nite) moments of the random variable X and thus obtain much sharper (exponentially decreasing)
bounds than if we applied first or second order methods. The standard tool that we use to obtain

42



these sharp bounds is the Hoeffding’s Inequality, which we present below.

Theorem 2.3.1 (Hoeftding’s Inequality). Let X1, X, ..., X,, be independent random variables that
where for each i € [n] there exist a;,b; € R such that: Pr (X; € [a;,b;]) = 1. If X =" | X, then
the following two inequalities hold for any e > 0:

1
—2¢2

Pr(X —E[X]>¢) < e Ty (bi—a;)?

—2¢2

Pr(| X —E[X]| >¢ < 26 T (bi—ai)?
Note that this inequality has numerous applications, apart from the analysis of randomized algo-

rithms. In fact, in this project, we will make use of this inequality to prove the existence of a clus-
tering instance via the probabilistic method.
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Chapter 3

Well-Clusterable Instances

In this Chapter, we will introduce some of the most common notions of "stable” clustering instances
along with some of their most important properties and explain how these can be exploited in order
to develop clustering algorithms that produce almost perfect clustering solutions, in polynomial
time. We focus on a-center stability, otherwise called a-proximity, and a-perturbation stability;
these are the clusterability assumptions under which we study explainable clustering in Chapter
5. Last but not least, we present an efficient algorithm that returns the optimal clustering for many
clustering objectives under the perturbation stability assumption, including k-means and k-median.

3.1 Center stability and its basic properties

3.1.1 Motivation and Definition

Center stability or center proximity is probably the most natural well-clusterability assumption. Let
C be a unique optimal clustering of a clustering instance with optimal centers M. For any data point
x it is true that x is closer to the center to which it was assigned than to any other center. Therefore,
it is reasonable to assume that well-clusterable instances have optimal solutions that ”stand out”,
which means that, each point is much closer to its assigned center than to any other center in any
optimal clusteirng.

Definition 3.1.1 (a-center stability). Let = ((Y,9), X, #) be a clustering instance. We say that
J is a-center stable, with a > 1, if for any optimal clustering C of this instance, if for any C,C’ € C
with C # C', for any data point z € C':

§(z,d) > ad(z,c)
where c, ¢ are the (optimal) centers of clusters C' and C' respectively.

We will also refer to a-center stability as a-proximity.

3.1.2 Basic properties of center stability

We will now present some of the most important properties of a-center-stable instances, that are
frequently used in the design of clustering algorithms achieve outstanding performance under this
assumption.

Lemma 3.1.1 (Properties of a-center stability). Let ((Y,0), X, #) be an a-center stable k-clustering
instance. Let C'y and Cy be two distinct clusters in the optimal clustering, with centers cy, co respectively,
radii Ry, Ry respectively and p,p’ € C1 and q € Cs. Then:

1. 0(p,q) > (a—1)d(p,c1)
2. §(c1,c2) > (a—1)d(p, 1) (also implying 6(c1,¢2) > (a — 1) max(Ry, R2))
a—1

3. 6(p,q) > 4770(c1,¢2) fora > 1
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6(z, 1) > ad(z, py)
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Figure 3.1: a-center-stable instance

(a—1)?

: 5(1)7 q) > 2a 6(p,p’),fora >1

Proof of Lemma 3.1.1.

46

1. For the sake of contradiction, let’s assume, that §(p, q) < (a — 1)d(p, ¢1). Then, by Definition

3.1.1 and the triangle inequality, we obtain:
G(S(q, 02) < 5(q7 Cl) < 5(]), Cl) + 5(]7, Q) < aé(p, Cl) = 5(q7 02) < 5(p7 Cl)

ad(p,c1) < d(p,c2) < d(q,c2) +6(p,q) < (g, ca) + (a—1)d(p,c1) =
= 0(p,c1) < d(q,c2)

which is a contradiction.

. By triangle inequality:

d(cr,c2) +6(p,c1) = 6(p,c2) > ad(p,c1) =

0(c1,c2) > (a—1)d(p, 1)

Since we showed the above for arbitrary points p € 1, the inequality also holds for z € (',
such that 6(x, c;) = Ry. Thus:

d(crye2) > (a—1)Ry
Working in the exact same way, we obtain:
d(c1,e2) > (a—1)Ry

so:
d(c1,¢2) > (@ — 1) max(Ry, Ra)



3. By triangle inequality:
a+1
a—1

d(c1,c2) < 6(e1,p) +3(p,q) + (g, ¢2) < (2 + 1) o(p,q) = 5(p, q)

a—1

where, for the strict inequality, we have used item 1.
4. Again, by triangle inequality:

((l - 1)6(p7p,) < ((l - 1)5(293 Cl) + ((l - 1)6(]?,701) < 6(p7 Q) + 5(615 C2)
a+1 2a
d —0 =—0
<o(p.a) + ——70(p,q) = —4(p,q)
where for the second inequality we have used items 1. and 2. and for the third, we made use
of item 3.

O]

An interesting consequence of item 1. of Lemma 3.1.1 is that for a > 2, each point is closer to its own
center in the optimal clustering than to any other point that belongs to a different cluster. Moreover,
by item 4. of Lemma 3.1.1, we notice that, for a > 2+ /3, every point is closer to any other point in
its own cluster than to any other point that belongs in a different cluster (in the optimal clustering).

3.2 Perturbation stability and its basic property

3.2.1 Motivation and Definitions

In most k-clustering problems that arise in practice, there are many proximity measures, i.e. notions
of similarity between two patterns, that lead to satisfactory clustering solutions and it does not really
matter which one we choose. Take the k-means clustering with the ' metric for example, where
the objective function is:

k
F2(C1, O, ..., C) = Z Z 2 — 1|13

i=1 zeC;

where p’ are the optimal centers of clusters C;. In many cases, the choice of the 2-norm to compute
the distances is arbitrary. We would expect that for many practical instances X C R?, even if the
distance between patterns  and y is slightly less than ||z — y||o for every z,y € RY, the optimal
clustering solution should not change. This slight modification of the proximity measure is captured
by the notion of perturbation of a metric space.

Definition 3.2.1 (a-perturbation of a metric space). Let (Y, d) be a metric space. A a-perturbation
of this metric space is a pair (Y, '), where ' : Y x Y — [0, +00) is a symmetric function such that
foranyz,y €Y:

(.)€ |+ 6(,), d(z,)

In other words, all distances of an a-perturbation of a metric space are shrunk, but only by a multi-
plicative factor of % Notice that the function ¢’ is not necessarily a metric. When we require that
¢’ is a metric, then (Y, ¢') is called a a-metric perturbation.

This idea, that for many applications the optimal clustering should not change for any perturbation
of the clustering metric space resulted in the introduction of the notion of a-perturbation stability
or a-perturbation resilience or Bilu Linial stability [62].

Definition 3.2.2 (a-perturbation stability). Let § = ((Y,0), X, #) be a clustering instance. Let
C be the optimal k-clustering of 9. Then, J is a-perturbation stable, if for every instance 9’ =
((Y,0"), X, 7€), where (Y, 0") is a a-perturbation of (Y, ), the unique optimal clustering of 9’ is C.

Again, if the above is true for every a-metric perturbation, we call the instance a-metric perturbation
stable.
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(a) Optimal Clustering before Perturbation (b) Optimal Clustering after Perturbation

Figure 3.2: Perturbation Stability: Optimal Clustering is the same for all Perturbations

3.2.2 A basic property of a-perturbation stable instances

Next, we state the most important property of a-perturbation stability and prove it. This property
essentially states that a-metric perturbation stability with a center-based objective implies a-center
stability (when Y = X). Since a-metric perturbation stability is a weaker notion than a-perturbation
stability, this also means that a-perturbation stable instances are a-center stable. This is indeed a
very useful property, as most of the work on the design of clustering algorithms for a-perturbation
stable instances that I am familiar with makes use of the properties implied by a-center stability.

Theorem 3.2.1 (Konstantin Makarychev and Yury Makarychev, 2016). Consider an a-metric pertur-
bation stable k-clustering instance § = ((X,6), #,), where #), is the (), objective. Then, J is a-center
stable.

Proof of theorem 3.2.1.

Let C1, Co, ..., C be the unique optimal solution; and let ¢1, ca, ..., ¢ be a set of centers of C1, Co, ..., C.
We assume, for the sake of contradiction, that there exists ani € [k],ap € C; anda j € [k] \ {i}
such that:

5(p7 C]) S a(s(p7 Ci) (31)

In the first place, we will define a new metric ¢’ and prove that it is an a-metric perturbation of the
metric §. We consider the complete (undirected) graph on X and assign length len(u,v) = d(u, v)
to each edge (u,v) € (X x X) \ {(p,¢;)} and len(p,cj) = r, where we have set = d(p, ¢;).
Let 0’ be the shortest path metric on the complete graph on X with edge lengths len(u,v). Note
that len(u,v) < 6(u,v), since d(p,¢;j) > d(p,c;) = r, where we have used that Cy, Cs,..., C}, is
the optimal clustering for a clustering problem with a center-based objective. Observe that, ¢’ is a
metric and for every (u,v) € X x X:

8 (u,v) < (u,v) (3.2)

because ¢’ (u,v) < len(u,v) < d(u,v). In addition, note that for every (u,v) € X x X, it holds
that len(u,v) > 16(u,v), by definition of len and (3.1). Therefore, if we consider any path P =
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(v, U1, ..., ur) in the complete graph on X with edge lengths given by len, then:

f—1

1 1

E len(ug, wip1) > —6(ui, uip1) > —0(up, uy)
a a

i=0

Using the above and the definition of ¢’ as a shortest path metric, it holds that:
1
&' (u,v) = =6(u,v) (3.3)
a

By combining (3.2) and (3.3), we reach the conclusion that, indeed, ¢’ is an a-metric perturbation of
J.

By definition of a-metric perturbation stability, the ((X, §"), #,) has the same unique optimal clus-
tering as ((X, 0), #,). Because p € C;, by Remark 2. in the preliminaries section, it holds that:

§(p,cj) > & (pci)=r (3.4)
We will complete the proof by showing that ¢’ is equal to § within cluster C;.
Lemma 3.2.2. For allu,v € C; we have that §(u,v) = §'(u,v).
Proof of Lemma 3.2.2. Consider any two points u, v € X and the shortest path P from u to v in the
complete graph on X with edge lengths given by len. There are three cases:

1. P does not contain the edge (p, ¢;). Then, by definition of len(z,y) for z,y € X, we know
that P = (u, v), i.e. it contains only one edge, (u,v). Thus:

8 (u,v) = §(u,v) (3.5)

2. P contains (p, ¢j) and is of the form:
U~ P—Cj vV
H/—/ ;\/_/
Pl PQ

Of course, Py and P> do not contain (p, ¢;), because P is a path and the fact that it is the
shortest path from u to v implies that: P; = (u, p) and P, = (c;, v). Thus:

& (u,v) = 6(u, p) + 7+ (cj,v) (3.6)

3. P contains (p, ¢;) and is of the form:
U~ Cj— P~V
\—V—/ w—/
Py P2

Similarly, it holds that:
& (u,v) = 6(u, ¢j) + 7+ 8(p,v) (3.7)

By combining (3.5), (3.6), (3.7), we conclude that, for any u,v € X:
&' (u,v) = min(8(u, v), §(u, p) + 7 + 6(cj,v), 8(u, ¢;) + 7+ §(p,v))
Hence, to prove this lemma, it suffices to show that for any u,v € C;:
d(u,v) < min(d(u, p) + r + d(c;,v),d(u, ¢j) + 1+ §(p,v))

We fix some u, v € C; and assume that ¢'(u, v) = 6(u, p) +r + d(c;, v) (for the other case we work
similarly). Since v € C;, we have 6(u, ¢;) < 6(u, ¢;), therefore:

5(“717) +r 4 5(ij ’U) > 5(U,p) + (5(]?, Ci) + 5(Ci7 ’U) > 5(“7 ’U)

by triangle inequality, thus completing the proof. O
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In conclusion, by (3.4) and Lemma 3.2.2:

r= 6/(1)’ C]) > 6,(]?, Ci) = 6(p’ Ci) =T
which is, of course, a contradiction. O

It is worth mentioning that Konstantin and Yury Makarychev proved a more general result than
the above since the objective function is not required to be an [}, objective. The only property of
the objective function that is useful in the previous proof, is the fact that, in the optimal clustering,
each point is closer to the cluster’s optimal center, than to any other center. That’s why, in [42],
the authors define the class of center-based objective functions, which are essentially the ones that
satisfy this property, and proved the above for any center-based objective function.

3.2.3 Efficient Clustering Algorithm under a-perturbation stability

Although the a-proximity and a-perturbation stability are natural assumptions that we would expect
to be satisfied by many practical clustering instances, they are very powerful, as they allow us to
design algorithms that find the optimal clustering solutions in polynomial time, even for very small
values of a. We will now provide an example of such an algorithm, specifically the algorithm by
Angelidakis et al. [42], and present the main ideas behind its analysis. The design of this algorithm
is based on the two following observations:

1. For an a-metric perturbation stable clustering instance with the [}, objective and a > 2, each
point is closer to its own center than to any other point that belongs in a different cluster, in
the optimal clustering. This fact follows from Theorem 3.2.1 and item 1. of Lemma 3.1.1.

2. Think of the input metric space as a complete weighted graph G(V, E), where the weight of
an edge {u,v} is 6(u,v). Then, given a spanning tree 7" of the graph, we can compute in
polynomial time the optimal clustering of the input, subject to the constraint that each cluster
induces a connected subgraph of T', using easy dp.

This train of thought led Anggelidakis et al. to come up with the signle-link++ algorithm described
below.
If J is a-pertrubation stable with @ > 2, then due to observation 1, each cluster in the optimal clus-

Algorithm 1: single-link++

Input: Clustering instance ¢ = ((X, ¢), #,), number of clusters k
Output: a clustering C of X
1 Compute the minimum spanning tree 7" of the complete graph G(V, E) that has one vertex
for each z € X and edge weight §(u, v) for every u,v € X, by running the Kruskal’s
algorithm.
2 Among all (z:%) subsets of £ — 1 edges of T" and the induced clusterings that arise when
we remove those edges from 1" (with one cluster per connected component), compute the
one with the minimum (), cost.

tering of X induces a connected subgraph of the MST and therefore the Algorithm 2 will compute
the optimal clustering in polynomial time (due to observation 2). To see why this is true, consider
any two distinct clusters C' and C” in the optimal clustering and the iteration t € [n— 1] of Kruskal’s
Algorithm where an edge {u, v} was added in the MST, such that u € C and v € C". Then, at it-
eration ¢, both clusters C' and C’ will induce a connected subgraph of the partially constructed
minimum spanning tree at the end of iteration ¢ — 1. This is because Kruskal’s algorithm attempts
to add the lighter edges in the minimum spanning tree, before the heavier edges, and because of
observation 1, any intra-cluster distance is smaller than any inter-cluster distance. As a result, the
following is true.
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Theorem 3.2.3 (Haris Angelidakis, Yury Makarychev, Konstantin Makarychev).
Let 9§ = ((X,0),#,) be a k-clustering instance, for some p > 1 and k € N*, that is a-perturbation
stable with a > 2. Then, Algorithm 2 computes the optimal clustering of X (in polynomial time).

Again, Angelidakis et al. proved the above theorem for a wider class of objective functions. Note
that this simple dynamic programming algorithm overcomes the NP-hardness of clustering for a
very small value of a, which is essentially tight, as it is NP-hard to solve the k-centers problem
exactly if we allow (2 — €)-perturbation stable inputs for any small € > 0.
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Chapter 4

Explainable Clustering

It is time to give a definition of the explainable clustering problem and discuss the most important
results in this field. First of all, we formally define clustering using Threshold Trees and the Price of
Explainability (PoE), which is the cost due to the interpretability constraint that has to be satisfied by
any solution. Next, we present some popular explainable clustering algorithms with a special focus
on the Iterative Mistake Minimization (IMM) algorithm, whose performance we will analyze under
various stability assumptions in Chapter 5. Last but not least, we describe some hard clustering
instances that entail large PoE lower bounds. An interesting property of these instances is that they
are well-separated, which will help us study their stability in Chapter 5.

4.1 Clustering using Threshold Trees

The key idea behind threshold trees is that of a threshold cut, which is a simple way to partition a
dataset into two clusters, using only one feature (Figure 4.1). Consider a d-dimensional dataset X, a
feature i € [d] and a threshold # € R. We can partition X into two clusters C, Co by placing each
x = [r1,22,...,24) € X in C1 if ; < 0 and in C otherwise.

A threshold tree is an unsupervised variant of a (binary) decision tree (Figure 4.2). Each internal
node u of the tree is associated with a feature-threshold pair (i,,6,,) and it induces a clustering
of the input data X by iteratively applying threshold cuts. More formally, for a threshold tree T'
with k leaves, we assign a set Y, for every node u of the tree, according to the following recursive

10

=10

-5 0 5 10
Figure 4.1: Partition induced by threshold cut (2, 5.094)
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Figure 4.2: Threshold Tree

procedure:
e Let 7 be the root of the tree. Then Y, = R<,

e For every internal node u of the tree, we set:
Yu—>left = {y € Yu L Yiy < gu}
Yu—>right - {y € Yu D Yiy > eu}

where u — left and u — right are the left and right children of u. Then the induced k-clustering
is:
C ={Xy, w € leaves(T)}

where:
Xy={XnNnY,}forueT

and the cost of the explainable clustering is:
COSt(T) = %(Cl, 02, veey Ck, (5)

that is, the cost of the clustering induced by 7. In the rest of this project, we will say that "node u
is split by the threshold cut (i, 0,)” and that "node u contains a set S C R?” when S C Y,. We
might also say that ”(i,, 0,,) separates two points y1,y2 € Y,”, if y1 € Yyt and y2 € Yy srigns
or the opposite.

4.2 Price of Explainability

As with unconstrained clustering, explainable clustering algorithms try to minimize a cost function,
such as the k-median or the k-means objective. However, similarly to any model-based interpre-
tation method, explainable clustering entails a decrease in performance. Restricting the possible
clusterings results in solutions that potentially have a greater cost than those produced by uncon-
strained algorithms that make use of all features to define clusters. The inherent cost that has to be
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paid by an explainable algorithm A due to the constrained interpretable form of valid clustering
solutions is called price of explainability and is formally defined as follows:

, cost(A(X))
PoE = f —
© explgilnable XSélﬂgd OP T(X )
algorithm A | Xl— <oc’>

where A (X)) is the threshold tree that algorithm A produces on input X and OPT'(X) is the cost
of the optimal unconstrained clustering of X. In other words, when we want to assess the accuracy
of an explainable clustering algorithm, we compare its cost to the optimal unconstrained cluster-
ing solution. In the following section, we will provide the first algorithm and the corresponding
Theorem that offered an upper bound for the PoE.

4.3 The IMM Algorithm

The Iterative Mistake Minimization algorithm or IMM (Algorithm 2) was proposed in the paper [57],
which introduced explainable clustering and is the first attempt to tackle the explainable k-median
and k-means problems (§ = d; and # = #; or § = d2 and H = H>). As with all of the explainable
clustering algorithms (that I know of), its first step (line 1.) is to compute a reference clustering, i.e.
a (non-explainable) clustering C with centers M of the input X, which is obtained by using one of
the constant approximation algorithms for k-median (k-means).

Next, it constructs a threshold tree with k leaves in a top-down manner; starting from a single node
that corresponds to the root of the tree, which contains the whole dataset X and while the tree cre-
ated so far has leaves that contain more than one reference centers, it chooses some leaf u with this
property and splits it into two using a threshold cut (i, 6, ). Hence, when the algorithm terminates,
the threshold tree it returns has k homogeneous leaves, i.e. leaves that contain a single reference cen-
ter u € M, to which every data point in the same leaf is assigned. But how do we pick a suitable cut
(iy, 0y), so that we are certain that the clustering produced is not arbitrarily more expensive than
the optimal unconstrained clustering? As its name suggests, every time the IMM algorithm splits a
node u, it chooses the threshold cut that makes the fewest mistakes. We say that the threshold cut
(iy, 0,,) that splits an internal node u of a threshold tree makes a mistake on z € X, if it separates
it from its closest reference center. The steps of the algorithm are shown in Figures 4.3 through 4.6.
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Figure 4.3: Step 0: Compute a reference clustering
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Algorithm 2: Tterative Mistake Minimization (IMM)
Input: {z', 22, ..., 2"} CR? k
Output: root of the threshold tree
{ut, 1%, 13, ..., p*}  k-median(X)
for j =1tondo
|y < argming o fl27 — '
return build_tree({xz’ Fi1s {y? T w };‘?:1)

build_tree build_tree ({xj};":l, {y [inp {uj};?zl):

W N =

'S

if {y/} is homogeneous then
L leaf.center + y!

® N o W

return leaf

9 i,0 « argmin, Z;n:l mistake (27, wv i, 6)

10 node.condition = x; < 0

11 F={je[m]: mistake(xj,,uyj,i,&) =1}

12 Lz{jG[m]\F:x{ﬁG}

13 R={je[m]\F: x>0}

14 node.left = built_tree({xj}jeL, {yj}jeL, {Mj}?:l)
15 node.right = built_tree({z7 }jer, {¥’}jer {/ij}?zﬂ
16 return node

17 mistake mistake(x, u, 7, 0):
18 L return (z; < 0) # (1; <0)71 : 0

As we will explain, this method of choosing the threshold cuts guarantees that the explainable
clustering cost will be a good approximation of the optimal clustering of the input instance. More
specifically, in [57] the following theorem is proved.

Theorem 4.3.1 (Sanjoy Dasgupta, Nave Frost, Michal Moshkovitz, Cyrus Rashtchian, 2020). Let
X C R% and k > 2 be the input of the IMM algorithm. Suppose that the reference centers returned in
line 1. are M = {p', 2, ..., u*} and that the algorithm returns a threshold tree T' of depth H. Then:

1. The k-median cost of the explainable clustering induced by T is at most:

cost1(T) < (2H + 1) costy (M)

2. The k-means cost of the explainable clustering induced by T is at most:

costo(T) < (8HE + 2) costa(M)

In particular, if the reference clustering is produced by a constant approximation algorithm, then IMM
achieves approximation factors of O(k) and O(k?) respectively (when compared to the optimal uncon-
strained k-median and k-means clustering).

We will now provide the analysis of Algorithm 2 for the k-median case (the k-means for the ex-
plainable clustering is similar and we refer the reader to [57] for more details). It is essentially the
same proof as in [57] but presented in my own words and based on my understanding.

Proof of Theorem 4.3.1 for the k-median case.
We start with some notation. We set:

e The internal nodes of the threshold tree T°

T; =T\ leaves(T)
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e The centers that are contained in node u:

M,=MnNY,

e A function ¢ : X — M, which maps any x € X to its assigned center in the reference
clustering, i.e.:
() = argmin]lz — u
pneM

e A function ¢ : X — M that maps each x € X to its assigned center in the explainable
clustering, i.e. for z € X, if z is contained in the leaf v € leaves(T') with u € M, being the
only center in this leaf, then:

d(x) = p
e The minimum number of mistakes t,, by the cut chosen to split node v € T; of the threshold
tree 7.

e The diameter of the node u:

D(u) = max {|p1— pel}
1,2 €My

The first step of the proof is to provide an upper bound for the cost of the explainable clustering in
terms of t,, in each internal node.

Lemma 4.3.2. It holds that:

cost(T) < cost(M) + Z ty D(u)
u€eT;

Proof of Lemma 4.3.2.
First, we rewrite the cost of the IMM algorithm on input X as follows:

cost(T) = ) llz — @)1= Y _llz—c@)l + Y (e~ @)~ o —c(@)lh) =

zeX zeX reX

= cost(T') = cost(M) + Z re(x)
reX

where rc(z) = ||z — (z)]|1 — ||z — ¢(x)||1 is the reassignment cost of x, that is, the extra cost we
have to pay to assign x to the sub-optimal center ¢/(z) in the explainable clustering. Now we will
upper bound the reassignment cost of every x € X.

Let x € X be a mistake of the algorithm at the internal node v € T, which means that x was
separated for the first time from its reference center ¢(x) at node u. Notice, that = will end up in
the same leaf with some reference center in M,,, when the algorithm terminates, hence ¢/ (x) € M,,.
Since ¢ is a metric, by the triangle inequality we have:

lz = e(@)ll < llz = ¢ (@)l + [le(z) = ()]l

= re(x) < le(z) — ()]s < D(w)

On the other hand, if the algorithm assigns « to its optimal reference center, the reassignment cost
is obviously 0.
For any u € T, we set:

XM — L3 € X : x was separated from c(x) at node u}
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Notice that a mistake happens in exactly one node, so X/"*¥ N X™¥5$ = () for v # u. Also, by
the construction of the IMM algorithm, | X™$| = ¢, for any u € Tj. By rewriting the cost of the
resulting clustering, we obtain the desired upper bound:

cost(T) = cost(M) + Z re(x) = cost(M) + Z Z re(z) <

reX u€T; xe X miss

< cost(M) + Z tyD(u) (4.1)
ueT;

O]

Next, we are going to give a lower bound for the cost of the reference clustering, in terms of the
minimum mistakes possible on every internal node. The next lemma essentially justifies our thresh-
old cut choices, as it implies that if the IMM makes a lot of mistakes, which entail a high cost of the
explainable clustering, it probably means that the reference clustering was very expensive to start
with, so we might not lose much from the explainability constraint.

Lemma 4.3.3. Let H be the height of the threshold tree I'. Then, it holds that:

1
M) > — D
cost(M) > 5T UGZT tyD(u)

Proof of Lemma 4.3.3.
To prove Lemma 4.3.3, we will lower bound the cost at each node v € T; in terms of the minimum
number of mistakes made by any threshold cut that splits u.

Lemma 4.3.4. For everyu € T3, it holds that:

> e~ e@)lh > D)

zeXgor

where:
X ={r e Xy:c(x) € Xy}

Proof of Lemma 4.3.4.

Fix a node u € T;. Now consider any dimension j € [d] and the projection of X,, U M,, on this
dimension. Without loss of generality, we assume that M, = {u!, 42, ..., u"} for some r < k, such
that:

1 2
,U’jSMjS'HSIU';

We also consider the midpoints m! of the intervals [,u}, u§+1] for i € [k — 1], or in other words:
i ikl
i — K5+ 1y
2

Let I, = [z, c(x);], if z; < ¢(x);, else I, = [c(x);, z;], for every x € X °". We will say that a pair
(7,7 + 1) is covered by some point z € X, if at least one of the following happens:

d [,ué,m’] C I
i [mi7/j’§+1] g Iw
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The key observation needed to prove this Lemma is that if ¢,, are the minimum number of mistakes
for any threshold cut, any cut (j, m") with i € [k — 1] results in at least ¢,, mistakes. This means
that every pair (4,7 + 1) is covered by at least t,, points x € XS°". We define:

Ii=1I,n [,uj,u;“] forz € X i€ [k —1]
={ie[k—1]: (i,i+ 1) is covered by z} for x € X"
‘= {z € X : xcovers (i,i+ 1)} fori € [k — 1]

Now, we can bound the cost of all z € X;°" along dimension j as follows:

k—1
Yo lwi—c@)l= Y Yo ILI=) ) I

zeXior rEXCoT ieST i=1 zeSi

k— H—l 7 r 1
ILL . — -
Z S (4.2)

2

where for the last inequality, we used that if = covers the pair (i,i + 1), then (by definition) |I%| >

—L_"J_ Notice, that (4.2) holds for any dimension j € [d] and as a result, if we sum up this
inequality for all j € [d], we get:

ty
> e —e@)h = 2D(w)
zeEXgor
O
Now consider a point x € X and notice that the nodes that contain it form a path from the root
of the threshold tree to a leaf v corresponding to the cluster X, in the explainable clustering. This

path contains at least one and at most H nodes, where H is the height of the tree, so there are at
most H nodes u € T}, such that x € X °". Thus:

H cost(M Z Z |l —c(z)|1 > Z %‘D(u)

uel; zeXs5or ueT;
O
By combining Lemma 4.3.2 and 4.3.3, we obtain:
cost(T) < cost(M) + Z tuD(u) < (2H + 1) cost(M)
u€T;
O]

Theorem 4.3.1 implies that PoE is upper-bounded by O(k) and O(k?) for the k-median and k-means
case respectively. As we shall see in sections 4.5 and 4.6, PoE is also lower-bounded by Q(log k)
and (k) for the k-median and k-means objectives respectively. Therefore, there is still room for
improvement in terms of approximation guarantees of the explainable clustering algorithms.

4.4 Improved Explainable Clustering Algorithms

After noticing this huge gap between the upper and lower bounds of PoE, it is natural to wonder
whether there exist algorithms that obtain a better approximation of the optimal unconstrained
clustering than IMM. A series of independent works have given a positive answer to this question
by proving that the Price of Explainability can be significantly reduced, especially in the k-median
case, where we are able to get an exponential improvement to the bound proven by Dasgupta et al.
We will now present some of these algorithms along with the central ideas behind their inception.
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4.4.1 Two randomized and oblivious explainable clustering algorithms for the
k-median objective

We will now talk about two algorithms that not only imply a better upper bound for PoE but also
have another interesting property: they are oblivious to the input data points. That is, they receive
only the reference centers as input so that their running time depends only on the number of clusters
k and the number of dimensions d and not on the number of input points n. The way that they
achieve this is by replacing the IMM’s greedy criterion, which chooses a threshold cut based on the
minimum number of mistakes it makes, with a surprisingly simpler rule: at each step just pick a
random threshold cut! In [59] Svensson et al. show that picking threshold cuts according to this
rule can drastically improve the performance of our explainable clustering algorithm. To do this
they make the following two crucial observations.

First of all, if we start again with a reference clustering C induced by centers M and we sample
a random threshold cut, the probability that it splits a data point x from its closest center in the
reference clustering, c¢(x), is at most M, where L is the diameter of the bounding box of the
clustering instance. This also means that the expected number of points separated from their closest
center is %(M)

In addition, notice that in (4.1) for each mistake in every node u the extra cost that we pay is at
most the diameter of this node. Initially, this cost is equal to ¢4, Which is the maximum distance
between any two centers. However, each child node has a smaller diameter than its predecessor, so
its mistakes cost less than the mistakes of its ancestor. What the authors of [59] realized is, that if
we pick threshold cuts uniformly at random, then with high probability after only a few cuts every
pair of centers with distance at least 6”12“ are cut. As a result, every few iterations the worst-case
cost of each mistake made by a threshold cut halves, thus dramatically decreasing the reassignment
costs.

Motivated by these observations, Svensson et al. proposed the following algorithm:

The major difference to the IMM algorithm is the way that Algorithm 3 chooses the threshold cuts;
when there exist leaves that contain two or more distinct reference centers, instead of picking the
threshold cut according to a greedy rule, as IMM does, Algorithm 3 chooses a random threshold
cut uniformly at random among the cuts that separate some two distinct centers contained in some
leaf of the partially created tree. By making use of the observations that we presented earlier, the
authors of [59] prove the following theorem.

Theorem 4.4.1 (O. Svensson, B. Gamlath, X. Jia, A. Polak). Given reference centers M = {1, pi2, ..., fix }
the Algorithm 3 outputs a threshold tree T, whose expected k-median cost satisfies:

E[cost,(T)] < O <Iogk <1 +log (C’W>)> cost1 (M)

Cmin

where Cpaq and cmin are respectively the maximum and minimum distance between any two centers
in M.

Nevertheless, notice that this algorithm can perform arbitrarily badly, in case ¢4, is much larger
than c¢,;,. This problematic ratio arises because we allow cuts that separate centers that are very
close to each other compared to the diameter of the node where they are contained and one way
to deal with this problem is to not allow such cuts. In that way, each threshold cut is considered
a candidate cut for much fewer iterations of the algorithm, because, as we explained before, the
maximum diameter of any leaf of the partially constructed tree drops rapidly, with high probability.
As a result, each cut contributes less to the expected cost of the algorithm and thus reducing it
significantly.

This reasoning led Svensson et al. to Algorithm 4, which is essentially the same as Algorithm 3,
except for the fact that the set from which the algorithm chooses its threshold cuts uniformly at
random, has changed. More specifically, if we set ¢4 (t) to be the maximum distance between
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Algorithm 3: Explainable k-median clustering with uniformly random cuts

Input: {z!, 22, ..., 2"} CR% k

Output: root of the threshold tree

{ut, p2, 143, ..., ¥} + k-median(X)

Set Sgr = {(4,6) : threshold cut (i, §) separates centers ¢ and p"} for all ¢, r € [k]
Initialize tree 7Tj to contain only the root node, root.

Set Xyoot = {l’] }je[n} and Moot = {,u] }je[k]

5 Sett =10

6 while partially created tree T} contains leaves with more than two distinct centers do

B W N =

7| Set By = Uyereaves(r (@, )+ p? 1" € My}
8 Set Ry = U(q,r)EEt{SqT}
9 Pick (7, 0) uniformly at random from the set R;.
10 for u € leaves(T;) do
11 if (,0) splits u then
12 u.condition = x; < 60
13 Xp={reX,: z; <6}
14 Xp={reXy: z;>0}
15 Mp={peM,: u <0}
16 Mp={pe M, : pu >0}
17 u.left = create_node(Xy, My)
18 u.rtght = create_node(Xg, MRg)
vwt=t+1

20 return root

any two centers in the same leaf of the partially constructed tree 7; at iteration ¢, instead of picking
uniformly at random any threshold cut that separates some two distinct centers in a leaf of T3,
Algorithm 4 is only allowed to choose cuts that do not separate a pair of centers in the same leaf,
c’"ziﬁ(t) from each other.

For this algorithm, Svensson et al. managed to prove the following theorem:

which are at distance at most

Theorem 4.4.2 (O. Svensson, B. Gamlath, X. Jia, A. Polak). Given reference centers M = {11, j12, ..., fif }»
Algorithm 4 outputs a threshold tree T, whose expected k-median cost satisfies:

E[cost(T)] < O(log?k) cost1(M)

Interestingly, the ideas of Algorithm 4 can be generalized not only for the k-means cost function but
also for any (), objective (0 = 0, # = #p, p > 1), including k-means. The algorithm is essentially
the same; the only thing that changes is the distribution from which we sample the random cuts.

Theorem 4.4.3. Given ak-clustering instance (R%,5,), X, #,) and reference centers M = {1, jia, ...-
, i}, for anyp > 1 there exists a randomized algorithm that outputs a threshold tree T, whose expected
[}, cost, for p > 1 satisfies:

Elcost,(T)] < O(kP~'log? k) cost,(M)

4.4.2 State-of-the-art explainable clustering algorithms for the £-median case

Independently from Svensson et al., other scientists have proposed algorithms that achieve even
better approximation guarantees for the explainable clustering problem under the k-median objec-
tive. More precisely, these state-of-the-art algorithms are essentially identical to algorithms 3 and
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Algorithm 4: Explainable k-median clustering with uniformly random cuts and forbidden
cuts

Input: {z', 22, ..., 2"} CR? k

Output: root of the threshold tree

{ut, 2, 143, ..., u*} « k-median(X)

Set Sgr = {(4,60) : threshold cut (i, §) separates centers ¢ and p"} for all ¢, r € [k]
Initialize tree g to contain only the root node, root.

Set Xyt = {xj}je[n} and Moot = {H]}je[k]

5 Sett =10

6 while partially created tree T} contains leaves with more than two distinct centers do

7 Set By = UuEleaves(Tt){(Q7 T) : /anur € MU}

BW N =

8 Set Cinaq (t) = max(grep, ln? — 1"l
9 Set
At = U Sqr and Bt == U Sqr
(q,r)EE: (q,r)EE::

t
=l < “meg(®

10 Set Rt = At \ Bt.

11 Pick (7, 0) uniformly at random from the set R;.
12 for u € leaves(T;) do

13 if (i,0) splits u then

14 u.condition = x; < 60

15 Xp={reX,: z; <0}

16 Xp={zeXy: z; >0}

17 Mp={peM,: pu <6}

18 Mp={pe M,: p >0}

19 u.left = create_node(Xp, My)
20 u.right = create_node(Xpr, MR)
21 t=1t+1

22 return root

4, but the cost analysis provided is tighter.

First of all, Makarychev et al. in [61] study Algorithm 4 with a slight modification and prove that it
offers better guarantees than those proved by Svensson et al. The only difference is the definition
of By, i.e. the set of forbidden threshold cuts that separate centers that are very close to each other
at iteration ¢. More specifically, for every u € leaves(T}) instead of not allowing the separation of
two centers p, i’ € M, such that || — p/[j1 < le‘;ﬁ, we replace k* with k3. The authors of [61]
initially provide a similar analysis to that of [59], achieving the same result. However, after more
careful analysis, they manage to prove the following theorem.

Theorem 4.4.4 (Konstantin Makarychev, Liren Shan). Given reference centers M = {1, pa, ..., fix }
the Algorithm 4 with the modification mentioned above outputs a threshold tree T, whose expected
k-median cost satisfies:

Elcost1(T)] < O(logk loglog k) cost1(M)

The insight that led Makarychev and Shan to prove Theorem 4.4.5 was that the diameter of a leaf
in the partially constructed tree is too pessimistic an upper bound for the reassignment cost of a
data point z that is contained in this leaf. To see why this is the case, consider a point x, whose
reference center is 1 and a node u of the resulting threshold tree, where x is separated from p, for
which it holds that D(u) >> || — p||1. If there exists a center y that is very close to x4 and it
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so happens that after the cut x and ;' remain in the same leaf, then it is too pessimistic to upper
bound the reassignment cost with D(u), as it is much more preferable to assign z to z/. Therefore,
in the improved analysis, an additional bound for the reassignment cost of a point is used, namely
its distance from the closest center after separation.

A completely different approach was followed by Hossein Esfandiari, Vahab Mirrokni, and Shyam
Narayanan, who study Algorithm 3 from a different perspective. Instead of bounding the expected
cost of each cut chosen by the algorithm, they bound the reassignment cost of each point x € X
separately and prove the following theorem by using the union bound.

Theorem 4.4.5 (Hossein Esfandiari, Vahab Mirrokni, Shyam Narayanan). Given reference centers
M = {u1, 12, ..., pr } the Algorithm 3 outputs a threshold tree T, whose expected k-median cost satis-

fies:
Elcost1(T)] < O(logk loglog k) cost1(M)

4.5 Lower Bound for the k-median case

In the previous sections, we have seen some popular explainable clustering algorithms, which achieve
good approximation ratios. It is now the time to wonder about the optimality of these algorithms.
Does the explainability constraint entail an unavoidable cost, compared to the unconstrained prob-
lem? In this section, we explain why this is indeed the case and discuss the results of [57], who
give a lower bound for the price of explainability in the k-median case, by proving the following
theorem:

Theorem 4.5.1. Foranyk > 2 there exists a data set X, such that any explainable k-median algorithm
A that produces a threshold tree T' on input X has cost:

cost1(T) > Q(logk) OPTy(X)
where OPTy(X) is the cost of the optimal unconstrained k-median clustering of X.

Now we are going to define this instance and its basic properties and explain the idea behind them
and how they are going to be used in the proof. To create the instance we follow the steps below:

e We pick k points M = {u', 12, ..., u*} C {£1}¢ according to Claim 4.5.1, so that they satisfy
several desirable properties. These points are essentially the centers of the optimal clustering
of the instance we are going to define.

e For each i € [k] we define the set:
XH i, < ()

where ¢/ is the unit vector along the j*" dimension. Notice that each point in C; differs from
1" at exactly one dimension, where it is equal to 0.

o The dataset is: '
x=Jx~
i€lk]
Now, let’s define the properties that the set M should satisfy to ensure a high explainable clustering

cost. First of all, we define an assignment to a set of features I C [d] as a function o : [ — {£1}.
We will say that a point z € R? agrees with o if z; = o'(4), Vi € I.

Claim 4.5.1. For any k € N with k > 3, there exist k points M C {+1}? that have the following
properties, for any € > %:
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1. d=k

2. forevery p,p' € p with ju # i/, it holds that: |{p; # .} > %

3. for every set of features I C [d] with sizel < % and every assignment o to I, the number of
points in M that agrees with the assignment o is at least k (% — 6).

First of all, notice that C = {X*',i € [k]} is the optimal clustering of X with optimal centers
and a cost of at most dk. Due to item 2. of claim 4.5.1, the optimal clustering is very well separated
(as we will see in chapter 4. it is (d)-center stable and Q(v/d)-metric perturbation stable). As a
result, if two points from different X** end up in the same cluster, due to the triangle inequality,
they will contribute a cost of €2(d) in the clustering cost, instead of only 2, if they where assigned
to their closest 4. In other words, we would like to avoid separating u’ from any of the points in
XH. However, due to item 3. this is impossible. To see why this is the case, consider a node «
in depth | < Intk) of a threshold tree T created by some explainable clustering algorithm 4. Let
(i1, 61), (i2,02), ..., (i1, ;) be the threshold cuts chosen by the algorithm in the path from the root
of Ttou, I = {i,iz,....,5and uf ={v eV, : p; =1} pu, ={veY,: p = —1}. Observe
that since the projection of any v € V' on any dimension can take two possible values (either +1 or
-1), then all the points in ;" agree with some assignment o to the set I (the assignment induced by
the threshold cuts). The same holds for y,, . Nevertheless, from item 3., we know that both |y;F| and
|77 | contain at least k(27! — €) elements, thus, by the construction of the data set, the threshold cut
(i7,0;) will separate at least k(27! — ¢) data points from their closets points in M. In other words,
the data set is constructed in such a way so as to ensure that any choice of threshold cuts up to a depth
of O(log k) results in Q(k27!) mistakes, incurring the cost of Q(dk27"). Now, since at each level of
the tree there are 2! nodes (we can prove that until the depth of % we can assume that the tree is
complete, without loss of generality) and e << 27! we get that the total cost is Q(dk log(k)), which
is Q(log(k)) times more than the optimal clustering cost which is dk.

I will not provide all of the details of the formal proof of Theorem 4.5.1, but I will show Claim 4.5.1,
which explains the existence of the hard instance. We will revisit this instance in Chapter 5 to study
its center stability and perturbation stability.

Proof of Claim 4.5.1. We are going to prove the existence of those points via the probabilistic method.
More specifically, we are going to show that if we choose a subset M of the vertices of the hyper-
cube {+1}? uniformly at random, with |M| = k and d = k3, the probability that M satisfies the
properties above is strictly positive, which will lead us to the conclusion that indeed there exists
such a set.

In the first place, let’s prove item 2. Let M = {u', 1%, ..., u*} be the random subset of the hyper-
cube’s vertices and X;; be random variables for every i,j € [k] and ¢ < j that are equal to 1 if
[{r : ui # 1J}| and 0 otherwise. Also, consider d additional random variables Yijr fori,j € [k]
withi < j and r € |d] that are equal to 1 if i = 72} and 0 otherwise. Fix some i, j € [k] withi < j
and notice that:

d
ij = Z Yijr
r=1
Moreover, due to the linearity of expectation:
d d
E[Xy) = > El¥iy] = 5
r=1

Because {Yi;r },¢[q are independent random variables, we can apply Hoeffding’s inequality:
2
d 2 (4
Pr <Xij - E[Xj;] > 4> < exp <—(;) ) =
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3d d
= Pr <Xij > 4) < exp <—8>

By using the union bound, we have:

Pr (Hi,jE [k‘]l<]/\XU21d> < (g) exp (—Z) =

k k3
= <2> exp <_8> <l—e!, fork>3

As for item 3, we first fix some I C [d] with |I| = [ and some assignment o € o(I), where o () is the
set of all assignments to I. We define the random variables Z (i, o) for all i € [k] and set them equal
to 1if y* agrees with o and 0 otherwise. We also define the random variable Z (o) = Diep Z(i,0).

Notice that for any i € [k], Pr (Z(i,o) = 1) = 27" and as a result E[Z(c)] = k27'. Bear in mind
that Z(i, o) are independent random variables, so we can apply Hoeffding’s inequality:

Pr (\Z(U) — k27! > ke) < 2exp (—2ke®) =

= Pr (Z(U) <k (2_l - 6)) < 2exp (—2ke?)
Since the number of distinct subsets of [d] of size [ is (‘li) and for each of these subsets, the number

of assignments to these subsets is 2!, by using the union bound, we obtain:
d
Pr (31 Cld3oceall): Zo)<k (2—l - e)) < <l>2’+1 exp (—2ke?) <

Ink In(k)
—and! <
JE =50

1

<exp (3lIn(k) +20+1— 262k) <e !, fore>

where for the last inequality we used that (?) < (er) Since e < 1, we have completed the
proof. O

4.6 Lower Bounds for all [, objectives

We have described an explainable clustering instance with a very high k-median cost, but what about
other center-based objectives? In this section, we present a theorem that offers us the current best
lower bounds of the price of explainability for every [, objective for p > 2, including the £-means
objective.

Theorem 4.6.1 (O. Svensson, B. Gamlath, X. Jia, A. Polak). Foranyp > 1 there exist somek > 2 and
d > 1 and a k-clustering instance ((RY, dp), X, ) , such that any explainable clustering algorithm
A that outputs a clustering induced by a threshold treel" has a cost:

cost,(T) > QP OPT,(X)

where OPT,(X) is the cost of the optimal unconstrained k-clustering with the [}, objective and 0,
melric.

Notice that for k-means explainable clustering, the theorem above implies an (k) lower bound for
the price of explainability.
To create this instance, we follow the steps below:

e We pick a prime number m and set the number of dimensions d = m(m — 1) and the number
of clusters k = m.
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e We pick k centers u', pi2, ..., u* whose coordinates are given by d functions f;, i € [d]. More
specifically, the function f; determines the projection of any center to dimension i like this:
w) = fi(j). The set { fi,i € [k]} is the set of all functions over Z,, with non-zero slope, thus:

fi(x) = (a; x + b;) where:
a; = (1 + UJ) modm and b; = 1 modm

e Similarly to the instance in the previous section, for each j € [k] we define B; = {u/ +
cel : ¢ € {£1}, i € [d]}. Then, the clustering instance is going to be:

xX=JB
jEk
This instance has two crucial properties that are sufficient to prove Theorem 4.6.1:

1
1. Any two centers are at distance A = O(dr k)

2. Any threshold cut that separates two centers p!, ..., u* separates also some two points from
the same B;.

Notice that the distance of each point in B; from p is exactly 1, thus OPT,(X) is at most 2kd.
Since at least one threshold cut has to be non-trivial, we conclude that there will exist a leaf of the
threshold tree that will contain two points from different sets 5;. However, due to the triangle
inequality, the distance between these two points will be at least A — 2, which means that cost,,(T")

will be at least Q(AP) = Q(kPd) = Q(kP~1)OPT,(X).
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Chapter 5

Well-clusterability vs. price of explainability

Motivated by the improved algorithms for (unconstrained) clustering under stability assumptions,
we want to study whether there exist explainable clustering algorithms that perform better if their
input space is restricted to only well-clusterable instances. More specifically, we want to know if
the Price of Explainability is reduced, if the input clustering instances are either a-center stable or
a-perturbation stable, and extract the relationship between the parameter a and PoE.

In order to state and analyze our results, it is useful to define the notion of a-separation of a clus-
tering.

Definition 5.0.1. Let ((Y,6), X, #) be a k-clustering instance and centers M = {u*, 2, ..., u*} C Y
that induce the clustering C = {C, Ca, ..., Cy }, where ui* is the center of C;, i € [k|, and a real number
a > 1. The clustering C with centers M, denoted by the pair (C, M), is a-separated, if for everyi € [k],
j € [k]\ {i} and z € C, it holds that:

3(x, 1) > ad(x, 1)

Note that a clustering instance is a-center stable if and only if any optimal clustering is a-separated.

5.1 Explainable clustering under a-center stability

5.1.1 For sufficiently well-separated instances PoE becomes constant

In this section, we prove that indeed there exists a large enough a such that the price of explainability
is reduced if the input instances are a-center stable. In fact, we find a sufficiently large a such that
the IMM algorithm that we described in Chapter 4 outputs the reference clustering unaltered, thus
achieving a clustering cost that is at most a constant factor of the optimal cost.

Theorem 5.1.1. Let the input of the IMM algorithm be a k-clustering instance (R%,6,), X, #,), for
some k,d € N*, k > 2,p > 1 and suppose that the reference centers M = {u', 2, ..., ¥} returned
in line 1 of the algorithm induce a clustering C = {C4, C4, ..., Ck}, such that the pair (C, M) satisfies

the a-separation property with a > de%. Then the IMM algorithm will output a threshold treel’ that
induces the reference clustering.

First of all, we are going to show the following lemma that directly implies Theorem 5.1.1.

Lemma 5.1.2. If the requirements of Theorem 5.1.1 are met, then there exists a threshold cut (i,0) that
makes no mistakes, i.e. it does not separate any point in X from its assigned center in M.

Proof of Lemma 5.1.2.

We consider the bounding boxes B; of each cluster C; of the clustering C, as well as the bounding
box of the whole instance B. In addition, let Iji» be the projection of B; to the j-th dimension for
eachi € [k] and j € [d] and L} := |I}| (similarly we define I; and L; for the projections of B).
For the sake of contradiction, we assume that for every j € [d] and 6 € I; the threshold cut (j, §)
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Figure 5.1: Proof Idea



makes some mistake. We define j* as follows: j* = argmax | d]{Lj}- From the assumption above
we get that:
VOelpJielkl: 0el=1I.C|JIL =
ick

k
]
1=1

Therefore, there exists i* € [k] such that:

T

> (5.1)

1

Next, we set L = (E?Zl(Lj)p> ¥, ie. the diameter of the bounding box B, which is the maximum
distance of any two points inside B and it has the following property:

d v d v
L= (Z(Lj)l’> < (Z(Lj*)p> <drL; (5.2)

i=1
We need one more inequality to complete the proof. For any ¢ € [k], if D; is the diameter of the

cluster C; € C, i.e.
D; = mggi{llw —ylp}

)

then: ‘
Vjeld: D; > L;- (5.3)

To see why this is true, we consider the bounding box B; and for some j € [d] we choose z,y € C;
such that |z; — y;| = L%. We know that those points exist by definition of the bounding box of the
cluster. Then, it is apparent that:

D; > |z —yllp > |z; — y;| = L

Now, let a point & € C;+ such that ||z — pu"||, = R;~ and a center p/ € M \ {t*" }. By combining
1
(5.1), (5.2), (5.3) and using the a-separation property and the fact that a > 2kd», we conclude that:

Dy L%
|z — |, > aRy > a— > a2 >
2 2
> a@ > a L=
2kd»

=z —ull, > L

and we have reached a contradiction, as both  and p’ are inside the bounding box B and L is the
greatest distance between any two points in B. O

Now that we have shown Lemma 5.1.2, we can easily prove Theorem 5.1.1, as follows:

Proof of Theorem 5.1.1.

We will prove the theorem by induction in the number of clusters k.

Base Case (k = 2)

According to the Lemma 5.1.2 there exists a threshold cut (7, #) that makes no mistakes. The IMM
algorithm chooses at each iteration a cut that makes the fewest mistakes, thus it will opt for a cut
that makes 0 mistakes as well. Therefore the threshold tree induces the reference clustering.
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Inductive step
Let (R, 4,), X, #,) be a k-clustering instance with k > 2. By Lemma 5.1.2 we know that the IMM
algorithm will choose a cut (4, f) that makes no mistakes to split the root node. We set:

XL:{iBEX: xzﬁe}, XR:X\XL

Mp={pep: p <0}, pr=M\{u}

Next, the IMM algorithm will produce a threshold tree for each of the two children of the root node
and attach these trees to the root; the root node of the left subtree will contain X, along with their
correct centers M, and the root of the right subtree will contain Xr and Mp. Therefore, the left
subproblem that the algorithm solves recursively is the ky-clustering instance ((R%,,), X1, #p),
where k;, = |Mp| with reference centers M. Note that k;, < k, because the IMM algorithm
chooses only non-trivial threshold cuts, i.e. cuts that separate some two reference centers. Hence,
if Cr, is the induced clustering of X, by the centers My, then (Cr,, M) satisfies the a-separation
property with a > Uhedr > Qde% (since the pair (C, M) satisfied this property). By induction, the
algorithm will solve the left subproblem without making any mistakes. Similarly, we can show that
it will also solve the right subproblem without making any mistakes. Therefore, the tree returned
by the algorithm induces the reference clustering. O

The theorem 5.1.1 directly implies the following corollary:

Corollary 5.1.2.1. Let a k-clustering instance (R%,6,), X, #,), with k,d € N*, k > 2,p > 1,

1
that satisfies the a-proximity property with a > 12kdr. There exists a polynomial-time explainable
clustering algorithm that returns a threshold tree T', which induces a constant-approximation clustering

(PoE = O(1)).

Proof of Corollary 5.1.2.1.

In line 1. of IMM, we can use an algorithm that computes the optimal discrete unconstrained cluster-
ing in polynomial time, given an a-center stable clustering instance, to obtain the reference centers
M = {u', 42, ..., u*} by using algorithm 2 (in the discrete clustering problem, we minimize the
same objective, but the cluster centers can only be a subset of X).

The clustering C induced by M is such, that (C, M) satisfies the (a;al)Q -separation property (due to

item 4. of Lemma 3.1.1), so the conditions of theorem 5.1.1 are met, if a > 12kd% (we have used that
(a;)Q > &, for a > 1), and the explainable clustering will be the same as the reference clustering.
Since the optimal discrete clustering is at most a constant factor of the optimal continuous clustering
(if we assume that p is constant), the resulting clustering is an O(1)-approximation of the optimal

unconstrained solution, thus PoE = O(1). O

5.1.2 a-center stability of hard instances

In the previous section, we saw that indeed there exists a large value of a such that PoE drops dra-
matically for a-center stable input instances. The problem is, however, that this value is so large
(Q <kd% ) > that it makes the a-center stability assumption impractical. That’s why we either want
to significantly improve this upper bound or find a matching lower bound for the value of a@ needed
to increase the performance of explainable clustering algorithms and give up on this idea. Unfortu-
nately, we manage to prove the second case, by showing that the hard instances created by Dasgupta
et al. and Svensson et al. were already a- center stable for very large values of a.

As far as the hard instance of Svensson et al. is concerned, the optimal k-clustering of this instance
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(forany p > 1)is C = {B; : j € [k]} (see Section 4.6) for definitions). By property 1. of the in-
stance and the triangle inequality, we have that the distance between each point # € B; and some
p with j’ # j is:

o= [l > A1

. 1 1
since ||z — p/ ||, = 1. Consequently, because A = Q (k:d5>, the instance is <kd5)—center stable,

for any fixed p. Note that this value of a matches (in terms of order of magnitude) our result for
the value needed for IMM to make no mistakes. Also, remember that for p > 2, Q(kp_l) is the best
lower bound of PoFE that has been discovered yet and the upper bound given by Theorem 4.4.3 is
almost tight (O(kP~ " log? k)). In other words, if we want the lower bound of PoE to drop significantly
for a-center stable input instances compared to the general case, an impractically large value of a is
necessary.
On the other hand, for p = 1, Svensson’s lower bound for the price of explainability is €2(1), which
is not the current best lower bound for the PoE of explainable k-median clustering. Therefore, we
study the a-proximity property of Dasgupta’s lower bound in [57].
Consider the k-median clustering instance described in section 4.5. We can easily see that the unique
optimal clustering is ¢ = {X*', i € [k]} with optimal centers M = {u’, i € [k]}. Moreover,
consider some 2z € X* and y/ € M \ {u}. Notice that x is at distance 1 from its center ;1 and that
for each j € [d] where yi; # i’ is holds that 11 — p| = 2, as pj, p; € {&1}. From item 2. of Claim
4.5.1 we know that: J
el m# >
hence:

N Q.

e — p |1 >

As a result:

d d
o= sl 2 (5 1) llo =l > gllo sl

which means that this instance is %—center stable, which is Q(d)-center stable (the same holds for the
hard instance by Esfandiari et al. in [64]). Although this does not match our result, it is still depen-
dent on the number of dimensions of the instance, which deems the stability assumption impractical.

5.2 Explainable k-median clustering under a-metric perturbation
stability

We have seen that explainable clustering under a-center stability is not easier, but we shouldn’t give
up just yet, as there could be other reasonable stability assumptions, independent from the above or
stronger, which imply a low price of explainability. It is time to study one of the most commonly
used stability assumptions, the Bilu-Linial stability, in the context of explainable clustering. To this
end, we develop a tool that helps us analyze the perturbation stability of a given instance, assuming
that it satisfies certain conditions.

By Theorem 3.2.1 we already know that (when X = Y), a-metric perturbation stability implies a-
center stability. Nevertheless, what we really need is the opposite direction: does a-center stability
imply a’-metric perturbation stability for some @’ < a? If this were true, then we would be able to
determine a lower bound for the perturbation stability of an instance by checking its center stability,
which is easier to identify (at least for the hard instances of explainable clustering that we consider
in this project). Unfortunately, this is clearly not the case, because for any ¢ > land 1 < d’ < a
there exists an a-center stable k-clustering instance, such that we can find some a'-metric pertur-
bation with a different optimal clustering than that of the original instance.

It is, therefore, necessary to assume additional conditions, that in combination with center stability
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imply metric perturbation stability. Note that the k-median clustering instance of Theorem 4.5.1 is
not only a-center stable for a large value of a, but all the clusters in the optimal clustering have ex-
actly the same cost, as they are essentially the same cluster, moved to different positions. Intuitively,
this has to be a perturbation stable instance and that’s what we will try to prove. More specifically,
we prove the following theorem.

Theorem 5.2.1. Let § = ((Y,0), X, #1) be a k-median clustering instance with k € N*. Suppose
there exist centers M = {u', u?, ..., u*} that induce a clustering C = {C1,Ca, ..., Cy} of 9 and real
numbersa > 1,8 > 1 and H > 0, such that:

1. The pair (C, M) is a— separated, witha > 23 + 9.
2. Foreveryi € [k]: % <Y pec, 0(x,u') < H.

Then J is y-metric perturbation stable, where:

-9+ /3% + 8af3

The above theorem directly implies the following:

Corollary 5.2.1.1. Let (X, 0) be a k-median clustering instance with X C R% and a metric§ : R —
R with d, k € N*. Suppose there exists a k-clustering C = {C;,i € [k]} of (X, ) with centers M,
that satisfies the following properties for some constant ¢ > 1 and H > 0:

1. a-separation for somea > 1

2. foreveryi ¢ [k]: & <

e — zeC; 5(5671%) <H

where j1; € M is the center of C; fori € [k|. Then (X, 0) is Q(y/a)-perturbation stable.

Let’s assume for the moment that Corollary 5.2.1.1 is indeed true and apply it to the hard instance of
[57]. As we have seen in the previous section, this instance satisfies the a-proximity property with
a = Q(d), hence the optimal clustering C = {X*' : i € [k]} with centers M = {u' : i € [k]}is
Q(d)-separated. Furthermore, since every point in X*' for any i € [k] is at distance 1 from x and
there are exactly d points in each cluster, we can see that all clusters in the optimal clustering have
exactly the same cost, so it satisfies the second condition of the Corollary 5.2.1.1 as well, with ¢ = 1.
As a result, this instance is at least (/d)-metric perturbation stable.

Before we get into the proof of Theorem 5.2.1, we provide a proof sketch that showcases the most
important ideas of the proof.

Proof sketch of Theorem 5.2.1 and Lemma 5.2.2.

To prove that a k-clustering instance is y-metric perturbation stable, we want to show that any ~-
metric perturbation of the starting instance will have the same optimal clustering as this instance. To
do this, we will make use of two important properties of the resulting instance after the perturbation:

1. The clustering C with centers M continues to be well-separated after the y-metric perturba-
tion. More specifically, if it was « separated before, it is % separated after.

2. The cost of each cluster C; in C with its center x’ in M does not change much after a -
metric perturbation. To be more precise, if the clusters had exactly the same cost before the
perturbation, their costs are fy—close after the perturbation, i.e. no cluster can cost more than
~ times more than any other cluster.

74



Cy e=1 Cy
Cs Cy
(a) Optimal Cluster centers M before the Perturbation

Cy

Cg Cl
Cy Cs

T
Q CJ XH.SYE XIJAI CJ
CD i

(b) Clustering with centers M after the perturbation (c) Optimal Clustering after the Perturbation

Figure 5.2: Proof Idea

As a result, after the y-metric perturbation, the clustering C remains well-separated and all its clus-
ters have roughly the same cost. To complete the proof, we will show Lemma 5.2.2, which is the
heart of our proof. It essentially states that if there exists a clustering C with centers M that is
very well separated and all of its clusters have roughly the same cost, then C is the unique optimal
clustering. More formally, we prove that if a clustering is o’ separated and the costs of its clusters
are 7'-close, then it is the induced clustering is optimal, if (roughly) @’ > 24/, and since, in our case,
a = % and 7' = v, we get v < \/g

Suppose, for the sake of contradiction, that this is not the case. Then there exists a set of optimal M’
that induce the optimal clustering C’ # C, like in Figure 5.2c. We identify three types of clusters of
C:

1. Clusters that have only one optimal center in their neighborhood, like C; and Cs. These
clusters with centers from M’ (red) contribute roughly the same cost as with centers from M
(orange).

2. Clusters that have two or more centers in their neighborhood, like C'3. These clusters may
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cost less if the clustering centers are M.

3. Clusters that have no centers in their neighborhood, like Cjy. These clusters cost much more
in the red clustering, than in the orange clustering, because all of their points are assigned to
a center that does not belong in their neighborhood.

To reach a contradiction we need to prove that the optimal clustering after the perturbation (red) is
more expensive than the optimal clustering before the perturbation (orange). The only way that red
is cheaper than orange is if the cost that we avoid due to type 2 clusters (C3) in the red clustering is
more than the extra cost we have to pay for type 3 clusters (Cy). This could be possible only if the
cost of (s in the orange clustering is negligible compared to C3. However, since we know that all
clusters in the orange clustering have roughly the same cost and using the fact that type 3 clusters
are as much or even more than type 2 clusters, we reach a contradiction.

O]

Now that we have seen the basic ideas of the proof, it is easier to follow the formal proof, which we
give below.
In the first place, let’s prove Lemma 5.2.2, which is the heart of the proof of Theorem 5.2.1.

Lemma 5.2.2. Let § = ((Y,0),X,#1) be a k-median clustering instance with k € N*. Suppose
there exist centers M = {u', 1%, ..., u*} that induce a clustering C = {C4, Cs, ..., Cy} of 9 and real
numbersa’ > 1,3/ > 1 and H > 0, such that:

1. The pair (C, M) is ' — separated, witha' > 23’ + 9.
2. Foreveryi € [k]: g <Y aeo, O(x,u') < H.

Then, clustering C is the unique optimal clustering of J.

Proof of Lemma 5.2.2.

We start with some notation. Let S = {o!, 02, ...,0%} be a set of centers where o' is the optimal
center for the cluster C; of the clustering C (remember 1° might not be the optimal center for C;).
Note that S induces C, as we will explain later. For the sake of contradiction, we assume that there
exist centers M’ = {p/*, %, ..., ;//F} that induce a clustering ¢’ # C with cost(M') < cost(M).
Let h : X — M’ be the function that assigns each = € X to its optimal (closest) center in M.

As in the proof sketch, we will consider the neighborhood of each cluster. To describe this neigh-
borhood, we use the (closed) balls Ay, As, ..., A; and By, Bs, ..., By, that are defined as follows:

2

Ai =B, (B +4)Ry)

B; == B(u', (8" + 2)R;)

where R; is the radius of cluster Cj, that is: R; = max,cc, 0(z, /ﬂ).
Now consider 3 types of sets (Figure 5.3):

IOZ{iE[/{?]I BZQM,:@}
L={icl: |BiOM|=1A [AnM|=1)
Iy = [K]\ (oL 1)

The first thing we notice is that Iy, I1, and I5 form a partition of [k]. In addition, for any i € I5 it
holds that |A; N M’| > 2, because otherwise i € Iy U I;. By rewriting the optimal cost, we have:

cost(M') = Z cost(C;, M") + Z cost(Cy, M) + Z cost(C;, M') =

1€l i€y 1€1ls
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(a) Ip: Clusters with no (b) I;: Clusters with only  (c) I2: Clusters with at least 2 opti-
optimal centers in their 1 optimal in their neigh- mal in their neighborhood
neighborhood borhood

Figure 5.3: The 3 types of clusters in the Proof of 5.2.2

= cost(M Z cost(C;, M') + Z cost(C;, M") (5.4)

i€lp iely

Next, we bound the 2 terms in (5.4).
For the first term, if ¢ € I, by triangle inequality we know that for every x € C;:

d(x, h(x)) = 6(u', h(x)) = 6(u',x) > (B +2)Ri — Ri =
= (8'+ DR = (6" +1)8(z, 1)
Let’s assume that |Iy| > 0. Then:

Zcost (Ci,M") = ZZé:ﬂh (5,+1)ZZ5($»Hi):>

i€ly iely zeC; iely zeC;

= Z cost(Cy, M') > (B8’ + 1) Z cost(C;, M) (5.5)

i€lp i€lp
To bound the second term, we notice that all x € C; for any ¢ € I are assigned to the same center
in the optimal clustering. To see why this is the case, we consider the unique ¢/ € M’ N B; and any
other center p// € M’ \ A;. Then, for any x € C;:
5, ) < 8(a i) + 6 i) < R+ (B + 2Ry < (8 + 3R,

O, ") > 6(u', 1) = 5(u',x) > (B’ +4)R; — Ri = (B’ + 3)R

Thus:
ZcostCl,M/ ZZ(th ZZéazal
i€ly iel, zeC; iel, zeC;
= Z cost(Ci, M') > Z cost(C;, S) (5.6)
i€l i€l

where we have used the fact that S is the set of optimal centers for C in the clustering setting.
To complete the proof, we will need the following auxiliary lemma.

Lemma 5.2.3. It is true that |Iy| > |I2|.
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Proof of Lemma 5.2.3. Since Iy, I1, I form a partition of [k] we get that:
[To| + [11] + | 12| = K (5.7)
In addition, by item 2. of Lemma 3.1.1, we get that for 7, j € [k] with i # j:

S(u', p?) > (a — 1) max{R;, R;} > %(Ri +Rj) > (B +4) (R + Rj)

since @ > 26"+ 9, so A; N Aj = (. This also means that (M’ N A4;) N (M'NA;) =0 fori # j.
Hence:

E>] | (MnA) =) IMNAl+ ) IM N4l >
iel1Uls i€ly i€ls

> ||+ 2|Ls| > k — |Io| + | 12|

where for the last inequality we used (5.7). Consequently:

[lo| > |12
O
In conclusion, by combining (5.4), (5.5), (5.6) and Lemma 5.2.3 we obtain:
cost(M") > Z cost(Ci, M) + Z cost(C;, S) + Z cost(Cy, M) >
1€l el i€lp
> Z cost(C;, S) + Z cost(C;, S) + |Io|H >
i€lp i€l
> Z cost(C;, S) + Z cost(Cy, S) + |I2|H >
i€ly i€l
> Z cost(Cy, S) + Z cost(C;, S) + Z cost(Cy, M) >
i€l i€l i€l
> Z cost(Cy, S) + Z cost(Cy, S) + Z cost(C;, S)
i€lp i€l i€ls
= cost(S)
where once again every time we substitute M with S we make use of the optimality of S.
We have reached a contradiction. Therefore, it has to be |Iy| = |I2| = 0 for any optimal clustering.
As aresult, I = [k] and thus M’ induces C, so C = C’, which is again a contradiction. This is why
C is the unique optimal clustering of J. O

Now that we have proved 5.2.2, we can finally complete the proof of 5.2.1.

Proof of Theorem 5.2.1.
For some v > 1 we consider a y-perturbation 9’ = ((Y, '), ,#€1) of 9. We observe that, for any
i,j € [k] with i # j and a data point = € C}, it holds that:
. 1 . a . a .
5/(35;#] Z *5 xvuj) > 75 xnu’l 2 *6/ xv/j/l
) 2 o SO, ) = 20z, 1)

where we have used the a-separation property of (C, M) and the definition of a metric perturbation.
Therefore, if we set ' = %, we get that the clustering (C, M) is a’-separated after the perturbation.

V344 8af — 9
4p

Specifically, we set:

We observe that, if we also set ' = 3, then:
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1. B/ >1fora>2B+9
2. d =28 +9> 1.

3. forany ¢ € [k]:

S, ') < > 8 (a4 < 6w, ph) < H

zeC; z€C;

2|z

H
=~ <
By ggj

==

As a result, the centers M satisfy the conditions of Lemma 5.2.2, therefore C is the unique optimal
k-clustering of the perturbation. In conclusion, we have shown that the optimal k-clustering C of
the initial k-median instance is also the unique optimal k-clustering of any ~y-metric perturbation

/34 _ / —
of this instance, for v = %a’gg, therefore J is (342?59> -metric perturbation stable for
a>26+09.

5.3 Discussion of the Results

As it turns out, explainable clustering algorithms do not improve under stability assumptions, at
least those studied above.

As we have explained in the introduction, perturbation stability is considered by many to be a re-
strictive assumption and it is not clear if practical instances are a-perturbation stable, even for very
small values of a such as 2. In addition, notice that for a as small as 2 there exist algorithms that
solve k-clustering problems optimally in polynomial time. Therefore, it is safe to say that a center-
stability or perturbation-stability assumption is considered practical if a does not depend either on
the number of clusters k or the number of dimensions d of the data set. Besides, in most clustering
applications, d is quite large.

Nevertheless, Theorem 5.1.1 requires a = 2 (kd%> so that the IMM algorithm achieves a constant

approximation ratio, under a-center stability. Unfortunately, for every (,, objective with p > 1,
this dependence on the number of dimensions d and the number of clusters £ is necessary, as we

1
have shown that the hard instances of [59] are (2 (kcﬁ)—center stable and imply a lower bound of

Q(kP~1) for p > 1, while in the k-median case, there is an (d)-center stable instance with lower
bound Q(log k) for the Price Of Explainability. In addition, there are almost optimal algorithms that
achieve O(kP~!) log? k approximation ratios for p > 1 and O(log kloglog k) for the p = 1. As a
result, for the Price of Explainability to reduce, we need to assume that the input instances are im-
practically center stable. Moreover, even for such values of a there exist almost optimal explainable
clustering algorithms that do not assume the a-center stability of their inputs.

As far as perturbation stability is concerned, the situation is similar. Although this assumption
is more strict than center stability, we prove that the k-median instance of [57] is Q(v/d)-metric
perturbation stable, so again the stability parameter is dependent on the number of dimensions.
However, in my opinion, the proof of this statement comes with an interesting consequence: Corol-
lary 5.2.1.1 is a statement that can be used to determine a lower bound for the perturbation stability
of a given instance, which to my knowledge, did not exist before. Unfortunately, the requirements
of this Corollary are too strict and give us useful information about the perturbation stability of an
instance for large values of a. On the other hand, it would be interesting to study the requirements
needed for similar theorems that offer a more useful characterization of the perturbation stability of
a given instance. In Figure 5.4 we can see the (approximate) relationship of the stability parameters
with the Price of Explainability.
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Figure 5.4: Relationship between the stability parameter and PoE

We end this thesis with a high-level interpretation of our results:

Although explainable clustering algorithms might make fewer mistakes on well-separated instances,
when they do make a mistake the reassignment cost is enormous, due to this separation. In fact, this is
exactly the property that is exploited in most of the hard instances we studied in this thesis.
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