
Απεικόνιση αλγορίθµων Βαθιάς Μάθησης σε πλατφόρµες υλικού
Graphcore IPU και NVIDIA GPU

Απόστολος Γερακάρης
Επιβλέπων: Διονύσιος Πνευματικάτος

10 ΑΠΡΙΛΙΟΥ 2023

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων
Μηχανικών και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας, Πληροφορικής και Υπολογιστών

Problem Definition

Goal: Evaluate the performance of Graphcore Intelligence Processing Units (IPUs) and Graphics
Processing Units (GPUs) hardware platforms by deploying Machine Learning algorithms and Deep
Learning models in both inference and training tasks:

● Inference Task - Eyeblink Conditioning
○ Implement a real-world scenario based on eyeblink conditioning, a widely studied model in

cognitive neuroscience.
○ Explore solutions from the fields of ML and DL.
○ Evaluate the platforms' performance in terms of latency, throughput, and energy efficiency during

the inference task.
● Training Task - CNN-based Model:

○ Train a Convolutional Neural Network (CNN) model on both hardware platforms.
○ Compare the platforms' performance in terms of training speed.

Graphcore Intelligence Process Unit - Architecture

● Multiple Instruction Multiple Data (MIMD) architecture.
● Basic components: IPU-tile, IPU-exchange, IPU-links and PCIe

interfaces.
● IPU follows the bulk-synchronous parallel (BSP) model of

execution. The execution of a task is organized into step and
each step is composed of 3 phases:

○ local computation phase
○ synchronisation phase
○ data-exchange phase

● Graphcore Poplar SDK (Software Development Kit), offers a
comprehensive set of tools, libraries, and components
designed to help developers program IPUs efficiently for AI and
machine learning applications.

● Support for popular deep learning frameworks via the
Graphcore SDK, such as Tensorflow, Keras, Pytorch

Simplified illustration of an IPU processor.

NVIDIA GPU - Architecture
● Single Instruction, Multiple Data (SIMD) parallelism

● Consist of thousands of parallel processing cores, making
them suitable for running computationally intensive tasks,
such as deep learning workloads, with high performance.

● CUDA (Compute Unified Device Architecture) is a parallel
computing platform and programming model developed
by NVIDIA.

● Execution flow:
○ host code execution,
○ kernel launch,
○ thread organization,
○ memory hierarchy,
○ synchronization
○ kernel completion.

Hardware Specifications: Graphcore IPUs and Host CPUs

● MK1 Host CPU: Intel Xeon Platinum 8168
● MK2 Host CPU: MD-EPYC 7742

● MK2 offers higher processing power 1472 vs 1216
cores.

● The on-chip memory capacity in the MK2 IPU (900
MB) is triple that of the MK1 IPU (300 MB)

Hardware Specifications: Tesla V100 GPU and Host CPU

V100 Host CPU: AMD EPYC 7551

Inference Task: Eye-Blink Conditioning - Eyelid Closure Detection

Challenges:

● Time-consuming manual data collection and analysis.
● Need for precise and accurate measurements.
● Off-line storage

Use cases:

● EBC has been used to study the neural processes involved in the acquisition of new motor skills in humans, providing
insights into the changes that occur in the brain during motor learning.

● EBC has a wide range of potential applications in fields such as neuroscience, psychology, and clinical medicine, making
it a valuable tool for understanding the brain and developing new therapies for neurological disorders.

Inference Task: Eyeblink Conditioning - Eyelid Closure Detection

Goal: Automate and accelerate the process of eyeblink response detection from video in order to achieve real-time
processing speed.

Eyeblink Conditioning - Recording Settings of Eyeblink Test Set
● Grayscale images of resolution 640 × 480 pixels.
● The subject is recorded with a high speed camera which is approximately one meter away.
● Every image depicts a single face.

Step 1: Image loading and Pre-Processing

● Python Imaging Library (PIL) is utilized for loading images and pre-processing tasks.
● PIL library is combined with Python Multiprocessing library to enforce a data-parallel solution.

○ Utilize the `multiprocessing.Pool` class to spawn a pool of workers (processes)
○ Split input data into smaller chunks
○ Process each chunk using a separate process

Step 2: Face Detection - Algorithm Selection

The selection of the appropriate algorithms is of great importance!

Investigated Face Detectors:

● Histogram of Oriented Gradients (HOG)
○ Widely used (39313 citations) on the field of object and/or face detection.
○ A Pre-trained implementation is publicly available through the machine learning open-source Dlib library.

● Multi-task Cascaded Convolutional Networks (MTCNN)
○ A very popular and robust early CNN-based face detector.
○ A pre-trained implementation is publicly available through the Python Package Index (PyPI) repository

● BlazeFace
○ A lightweight and well-performing face detector developed by Google in the year 2020
○ A pre-trained implementation is available via the Mediapipe Library

Step 2: Face Detection - Performance Evaluation of Face Detectors

Evaluation Datasets:

● Annotated Facial Landmarks in the Wild (AFLW)
○ Challenging dataset: images taken from real-life

situations.
● BioID

○ Consists of 1521 grayscale images (384 × 288
pixel.

○ Strongly resembles our Eyeblink test-set.

Evaluation Metrics:

● Accuracy
● Execution Speed

Detection results on AFLW dataset

Step 2: Face Detection - Performance on AFLW and BioID Datasets

 Comments

● MTCNN is the most accurate face detector
● All three detectors produce 100% correct predictions on the BioID dataset. A strong indication that they will perform good in our test

set.

Step 2: Face Detection - Performance Evaluation of Face Detectors on
AFLW and BioID Datasets

● MTCNN is significantly slower than BlazeFace and
HOG detectors, primarily due to its more complex
architecture, which uses multiple layers of
convolutional neural networks to detect faces and
facial landmarks, requiring more computational
resources and longer processing times.

● In contrast, BlazeFace and HOG use simpler
approaches for face detection, making them more
suitable for real-time applications that require faster
processing times.

Selected algorithm: BlazeFace!

Step 2: Face detection - Deploy BlazeFace on MK1 and MK2 IPU with
Tensorflow and Keras

Step 2: Face detection - Deploy BlazeFace on MK1 and MK2 IPU with
Tensorflow and Keras

● In order to run BlazeFace CNN-based face detector on an IPU-based
system we need to construct an IPU-program.

● The IPU program is created using the Graphcore Poplar SDK and its
associated libraries, tools, and compilers. It translates high-level model
representations from popular machine learning frameworks like
TensorFlow to an efficient low-level format that can be directly executed
on the IPU.

● Multi-step process to optimize the performance of machine learning
models on IPU chips.

● XLA (Accelerated Linear Algebra) compilation

Step 2: Face detection - Optimize Inference of BlazeFace on MK1 and
MK2 IPU

Optimization: Maximize Compute Capabilities - Investigate Optimal Batch Size

Exploring optimal batch size for inference on MK1 IPU

Exploring optimal batch size for inference on MK2 IPU

● Optimal batch size for Mk1: 32

● Optimal batch size for MK2: 64

Step 2: Face detection - Optimize Inference of BlazeFace on MK1 and
MK2 IPU

Optimization: Minimize Communication Overhead - I/O Tiles

IPU tiles are split into two sets of tile groups:

1. I/O Tiles: perform only I/O operations to fetch and receive data from
outside the chip.

2. Compute Tiles: perform only computations.

The IPU-program is also splitted into two sub-programs to run in parallel

The number of I/O tiles should be carefully tuned, since these tiles
cannot participate in computations and using a large number can affect
performance. It is considered more optimal to select a number
of I/O tiles that is a power of two.

Step 2: Face detection - Optimize Inference of BlazeFace on MK1 and
MK2 IPU

Optimization: Minimize Communication Overhead - Prefetch & Asynchronous Callback

Inference of BlazeFace on MK1 and MK2 IPUs with optimizations.

● The Prefetch option allows TensorFlow and Poplar to move input data logically closer to the IPU.
● The Asynchronous Callback, spawns an extra thread for dequeuing the processed data back to host as soon as they

are ready.

A grid search experiment was conducted to explore the optimal values for both prefect depth and I/O tiles:
● MK1 IPU: 64 I/O tiles, 2 Prefetch Depth
● MK2 IPU: 64 I/O tiles, 2 Prefetch Depth

Performance improved by 36.5% for MK2 IPU and 28% for MK1 IPU

Step 2: Face detection - Deploy BlazeFace on V100 Tesla GPU with Tensorflow
and Keras

Settings:

● XLA compilation

Inference on Tesla V100 GPU. Throughput (images/sec)

Step 2: Accelerated Face Detection - Performance Evaluation of Hardware
for Face Detection

The Tesla V100 GPU outperforms IPUs when performing BlazeFace inference, primarily due to its larger available memory.
The increased memory capacity enables the GPU to run inference with larger batch sizes, thereby improving throughput

and overall performance compared to IPUs.

Step 3: Face Detection Post-Processing

● Blazeface model outputs 896 detections for every input image ⟶ Output Tensor: [b, 896, 17], where b = batch size
● Each output detection contains:

○ Four bounding box coordinates (x_center, y_center, width, height),
○ Twelve landmark coordinates (x1, y1, ..., x12, y12), and
○ a Confidence score

● All predicted coordinates correspond to the 128 x 128 pixel input image size ⟶ map them on the original image
dimensions (640x480 pixels).

Step 4: Landmark Detection
Selected Algorithm: Ensemble of Regression Trees (ERT)

● Reliable and fast landmark-detection model.
● A pre-trained implementation is available through the open-source Dlib library.

Two versions are used:

● 68-landmark detector.
● 12-landmark detector.

68-landmark output prediction 12-landmark output prediction

Step 4: Landmark Detection - Work-sharing with multiple processes

● Python multiprocessing library is utilized to spawn multiple instances for parallel execution.
● Each spawned process will handle the landmark detection of N / P images, where N is defined as number_of_images

divided by the number of processes P.

Settings:

● P = # of physical cores in each CPU.
● N = batch_size

○ 32 for MK1 Host
○ 64 for MK2 Host
○ 512 for GPU Host

Acceleration Results

Step 5: Eye Aspect Ratio (EAR)

● The EAR metric is used as an estimate of the eye opening state. Six points are needed: two in the corners, two
on the upper eyelid and two on the lower eyelid. If these are accurate enough, they could be used directly for the
calculation of eyelid closure.

● EAR is mostly constant when an eye is open and is getting close to zero while closing an eye.
● This stage is combined with the landmark detection step and is executed in parallel by multiple processes.

Combined Implementation for Eyelid Closure Detection

The combined implementation consists of 4
steps:

1. Image loading, decoding and pre-processing
(CPU)

2. Face Detection (IPU or GPU)
3. Face Detection Post-Processing (CPU)
4. Landmark Detection & EAR calculation (CPU)

GPU settings:
● XLA compilation
● Batch size: 512

IPU settings:
● XLA compilation
● 64 I/O tiles
● Asynchronous

Callback
● Batch size:

○ 32 for MK1
○ 64 for MK2

CPU settings:
● # of Processes = # of physical cores in

each CPU

Inference Task: Hardware Evaluation - Low Latency Experiments

Settings:

● Ι/Ο tiles: 32

Evaluation Metrics:

● Latency (ms per batch)
● Throughput (images per second)
● Power Consumption

○ IPU: gc-monitor tool
○ GPU: nvidia-smi tool

● Energy Efficiency (images / sec / Watt)

Inference Task: Hardware Evaluation - Qualitative evaluation of Low Latency
Experiments

Both MK1 and MK2 IPU chips perform better in terms of latency and throughput for smaller batch sizes (1 to 8) compared to
the Tesla V100 GPU where there is no significant increase in latency as the batch size increases.

Training BlazeFace CNN-Based Model on IPU-based and GPU-based
systems

Training Datasets:

● FDDB: Consists of 2845 images with 5171 annotated faces collected from journalistic articles
● 300W-LP: Consists of 61,225 images with a single annotated faces

Libraries & tools

Training results on FDDB Dataset

Both the MK1 and MK2 IPUs outperform the Tesla V100 GPU in terms of training
speed, especially for small batch sizes.

Settings:

● 150 epochs
● XLA compilation

Training Results on 300W-LP Dataset

Settings:

● 100 epochs
● XLA compilation

Again, both the MK1 and MK2 IPUs outperform the Tesla V100 GPU in terms of training
speed, especially for small batch sizes.

General comments on IPU and GPU systems for image-based workloads

● In our use-case (Eyelid Closure Detection) the Tesla V100 GPU outperforms IPUs when performing BlazeFace
inference, primarily due to its larger available memory. The increased memory capacity enables the GPU to run
inference with larger batch sizes, thereby improving throughput and overall performance compared to IPUs.

● IPUs, on the other hand, perform better at small batch sizes. We argue that this is due to their architecture, which is
optimized for matrix operations and high-speed communication between the processing elements.

● The limited on-chip memory of the IPUs is an important factor that must considered carefully carefully when deploying
training or inference experiments, especially for large models.

● The choice of hardware platform should be based on careful consideration of factors such as model size, memory
requirements, latency requirements and available expertise in parallel programming and distributed systems.

● The GPU ecosystem is mature and well-established, offering an abundance of tools, libraries, and community support.
Developers can access a vast array of resources, facilitating the discovery of solutions and optimization of ML models
for GPU execution.

● Since IPUs have a unique architecture and programming model, there might be a steeper learning curve when adapting
existing code or developing new models for the IPU platform, especially for developers who are already familiar with
GPU programming.

Synopsis
● We designed and accelerated a Machine Learning application to detect the amount of human eyelid closure in video

data in a real-time processing speed of 500 frames per second.

● We explored solutions from the fields of Machine Learning and Deep Learning for the Face Detection and Landmark
Detection stages of our application.
○ Selected Face Detector: BlazeFace
○ Selected Landmark Detector: Ensemble of Regression Trees (ERT)

● We conducted Inference experiments on IPU-based and GPU-based hardware systems.
○ GPU outperformed both MK1 and MK2 IPUs.
○ The limited memory of the IPUs is an important factor that must be considered carefully.

● We constructed an experimental end-to-end training pipeline for BlazeFace CNN-based model.

● We conducted Training experiments on IPU-based and GPU-based hardware systems.
○ Both the MK1 and MK2 IPUs outperformed the Tesla V100 GPU in terms of training speed, especially for small batch

sizes.

Future Work

● Future research can focus on improving the accuracy and accessibility of eye blink detection and exploring the
potential of intermediate stages of face and landmark detection.

● Additionally, research can be conducted to evaluate the performance of IPU-based and GPU-based hardware
platforms in various real-world scenarios to gain more insights into their relative strengths, weaknesses and
suitability. This knowledge can then be used to develop more efficient and effective software and hardware
solutions, ultimately advancing the field of machine learning and improving its practical applications.

● The current setup requires specialized hardware, such as cameras, to be effective. Future work can focus on
developing eye blink detection solutions that can be implemented on portable devices, such as smartphones or
smart glasses. This would make eye blink detection more accessible and usable in everyday life and provide
additional data for research on eye blink patterns and their relation to attention, fatigue, and stress.

Thank You!

Questions?

