'
¥

L]
>
K6y,
’ g
NPOMHOBOEVS .
Al
nvpPoros

EBvIk6 MeTooBI0 MNoAuTexveio 2x0Ar) HAEKTPOAOYwWV
Mnxavikwv kal Mnxavikwy YTToAoyIoTwyv
Touéag TexvoAoyiag, NMANPoPopIKNES Kal YTTOAOYIOTWYV

ATtreikévion aAyopifuwyv BaBiag Madnong o€ TTAaT@OpHES UAIKOU
Graphcore IPU ka1 NVIDIA GPU

AtréoToAoG "'epakdapng
EmBAETTWY: Alovuoiog MNveupaTikdTog

10 AMMPIAIOY 2023



Problem Definition

Goal: Evaluate the performance of Graphcore Intelligence Processing Units (IPUs) and Graphics
Processing Units (GPUs) hardware platforms by deploying Machine Learning algorithms and Deep
Learning models in both inference and training tasks:

e Inference Task - Eyeblink Conditioning
o Implement a real-world scenario based on eyeblink conditioning, a widely studied model in
cognitive neuroscience.
o Explore solutions from the fields of ML and DL.
o Evaluate the platforms' performance in terms of latency, throughput, and energy efficiency during
the inference task.
e Training Task - CNN-based Model:
o Train a Convolutional Neural Network (CNN) model on both hardware platforms.
o Compare the platforms' performance in terms of training speed.



Graphcore Intelligence Process Unit - Architecture
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Simplified illustration of an IPU processor.



NVIDIA GPU - Architecture

(a)

Register File
(32,768 x 32bit)

(b)

Block 0 (CBiock2 )
Block 4 Block 5 Block 6

Block 12 Block 13

e Single Instruction, Multiple Data (SIMD) parallelism

e Consist of thousands of parallel processing cores, making
them suitable for running computationally intensive tasks,
such as deep learning workloads, with high performance.

e CUDA (Compute Unified Device Architecture) is a Iparallel
gom \}Jlgllg\ platform and programming model developed
y :

e Execution flow:
o host code execution,
o kernel launch,
o thread organization,
o memory hierarchy,
o synchronization
o kernel completion.



Hardware Specifications: Graphcore IPUs and Host CPUs

Specifications MK1 IPU MK2 IPU
Architecture MIMD MIMD
IPU Cores 1216 1472
Memory (On-chip ) 300 900
Memory Bandwidth (TB/sec) 45 47.5
TeraFLOPS (FP16) 125 250

Max TDP (Watts) 150 300
Specification MK1 Host MK2 Host

Clock Speed 2.70 GHz 2.25 GHz

Number of cores
PCle controller
L1 cache

L2 cache

L3 cache

24 (48 threads)

64 (128 threads)

PCle 3.0 (48 lines) PCle 4.0 (128 lines)

24 x 32 KB
24 x 1024 KB
33 MB

64 x 32 KB
64 x 512 KB
256 MB

e MK2 offers higher processing power 1472 vs 1216
cores.

e The on-chip memory capacity in the MK2 IPU (900
MB) is triple that of the MK1 IPU (300 MB)

e MK1 Host CPU: Intel Xeon Platinum 8168
o MK2 Host CPU: MD-EPYC 7742



Hardware Specifications: Tesla V100 GPU and Host CPU

Specifications Tesla V100

Architecture SIMD

Cores 5,120 CUDA Cores and 640 Tensor Cores
Memory 32GB HBM2

Memory Bandwidth (GB/sec) 900

TeraFLOPS (FP16) 125

Max TDP (Watts) 300

Specification V100 Host

Clock Speed 2.0 GHz

Number of cores 32 (64 threads)
PCle controller PCle 3.0 (128 lines)

L1 cache 32 x 64 KiB
L2 cache 32 x 512 KiB
L3 cache 64 MB

V100 Host CPU: AMD EPYC 7551



Inference Task: Eye-Blink Conditioning - Eyelid Closure Detection
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Challenges:

e Time-consuming manual data collection and analysis.
e Need for precise and accurate measurements.
e Off-line storage

Use cases:

e EBC has been used to study the neural processes involved in the acquisition of new motor skills in humans, providing
insights into the changes that occur in the brain during motor learning.

e EBC has a wide range of potential applications in fields such as neuroscience, psychology, and clinical medicine, making
it a valuable tool for understanding the brain and developing new therapies for neurological disorders.



Inference Task: Eyeblink Conditioning - Eyelid Closure Detection

Goal: Automate and accelerate the process of eyeblink response detection from video in order to achieve real-time
processing speed.

Image Loading - :
e Face Detection Face Detectlpn Landm.ark Eyelid Clgsure
- : Post Processing Detection Detection
re-Processing

Input
Image

____v_____




Eyeblink Conditioning - Recording Settings of Eyeblink Test Set

e Grayscale images of resolution 640 x 480 pixels.
e The subject is recorded with a high speed camera which is approximately one meter away.
e Every image depicts a single face.

Yaw Roll Pitch Oecclusion Lighting Face size Frame rate

Setting is well-lit,
+20° £25° +40° Glasses but videos suffer 20%+ of image 500 FPS
from light flicker




Step 1: Image loading and Pre-Processing

e Python Imaging Library (PIL) is utilized for loading images and pre-processing tasks.

e PIL library is combined with Python Multiprocessing library to enforce a data-parallel solution.
o Utilize the "multiprocessing.Pool’ class to spawn a pool of workers (processes)
o Split input data into smaller chunks
o Process each chunk using a separate process

Cropping Resizing
r EEEN ‘
|

A

‘--

Multi-processing



Step 2: Face Detection - Algorithm Selection

The selection of the appropriate algorithms is of great importance!
Investigated Face Detectors:

e Histogram of Oriented Gradients (HOG)

o Widely used (39313 citations) on the field of object and/or face detection.

o A Pre-trained implementation is publicly available through the machine learning open-source DIib library.
e Multi-task Cascaded Convolutional Networks (MTCNN)

o A very popular and robust early CNN-based face detector.

o A pre-trained implementation is publicly available through the Python Package Index (PyPI) repository
e BlazeFace

o A lightweight and well-performing face detector developed by Google in the year 2020

o A pre-trained implementation is available via the Mediapipe Library



Step 2: Face Detection - Performance Evaluation of Face Detectors

Evaluation Datasets: Evaluation Metrics:

e Annotated Facial Landmarks in the Wild (AFLW) e Accuracy
o Challenging dataset: images taken from real-life e Execution Speed
situations.
e BiolD Recall =
o Consists of 1521 grayscale images (384 x 288

piX el. Precision =

o Strongly resembles our Eyeblink test-set.

TP
TP + FN
TP

TP + FP
TP = true positives, FN = false negatives, FP = false positives

Algorithm Faces FN FP TP Time per Image (ms)
HOG 3425 687 7 2738 29.23

MTCNN 3425 294 37 3131 347.4

BlazeFace 3425 940 1 2485 32.727

Detection results on AFL\W dataset




Percentage (%)

Step 2: Face Detection - Performance on AFLW and BiolD Datasets

AFLW Dataset BiolD Dataset
Il BlazeFace [l HOG [ MTCNN [l BlazeFace [l HOG | MTCNN

100 100

80 80
60 60

40 40

Percentage (%)

20 20

Recall Precision Recall Precision
Comments

MTCNN is the most accurate face detector
All three detectors produce 100% correct predictions on the BiolD dataset. A strong indication that they will perform good in our test
set.



Step 2: Face Detection - Performance Evaluation of Face Detectors on
AFLW and BiolD Datasets

B BlazeFace [l HOG MTCNN e MTCNN is significantly slower than BlazeFace and
HOG detectors, primarily due to its more complex
architecture, which uses multiple layers of
convolutional neural networks to detect faces and
facial landmarks, requiring more computational
resources and longer processing times.

e In contrast, BlazeFace and HOG use simpler
approaches for face detection, making them more
suitable for real-time applications that require faster

0 100 200 300 400 processing times.

Execution Time per Image (ms)

Selected algorithm: BlazeFace!



Step 2: Face detection - Deploy BlazeFace on MK1 and MK2 IPU with
Tensorflow and Keras
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Step 2: Face detection - Deploy BlazeFace on MK1 and MK2 IPU with
Tensorflow and Keras

Extract compute graph from code

High level graph representation of
NN model

Lower compute graph + perform transformations

Low level graph representation of
NN model (TensorFlow XLA/HLO)

Optimizations / schedule

A fully scheduled set of operations to
perform (low level Tensorflow XLA/HLO)

Convert schedule of operations

In order to run BlazeFace CNN-based face detector on an IPU-based
system we need to construct an IPU-program.

The IPU program is created using the Graphcore Poplar SDK and its
associated libraries, tools, and compilers. It translates high-level model
representations from popular machine learning frameworks like
TensorFlow to an efficient low-level format that can be directly executed
on the IPU.

Multi-step process to optimize the performance of machine learning
models on IPU chips.

XLA (Accelerated Linear Algebra) compilation



Step 2: Face detection - Optimize Inference of BlazeFace on MK1 and
MK2 IPU

Optimization: Maximize Compute Capabilities - Investigate Optimal Batch Size

Batch_Size Run_time (s) Throughput Time/image (ms) Compilation_time (s) e Optimal batch size for Mk1: 32

1 160.483 398.796 2.508 26.8
2 84.241 759.725 1.316 28.3
4 45.19 1416.243 0.706 34.6
8 30.209 2118.574 0.472 38.9
16 21.904 2921.841 0.342 49.1
32 18.696 3423.192 0.292 64.8

Exploring optimal batch size for inference on MK1 IPU

Batch_Size Run_time (s) Throughput Time/image (ms) Compilation_time (s) e Optimal batch size for MK2: 64

1 134.029 477.509 2.094 126.7
2 70.832 903.546 1.107 131.8
4 42.739 1497.461 0.668 139,2
8 25.541 2505.775 0.399 144.7
16 21.291 3005.965 0.333 156,1
32 19.379 3302.544 0.303 236.4
64 14.1394 4526.370 0.221 240,2
128 15.3025 4182.311 0.2391 292.6

Exploring optimal batch size for inference on MK2 IPU



Step 2: Face detection - Optimize Inference of BlazeFace on MK1 and

MK2 IPU

Optimization: Minimize Communication Overhead - I/O Tiles
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The IPU-program runs across the entire
IPU

IPU is split into compute tiles and 1/0
tiles

The IPU program splits into parallel sub-

programs. The I/O sub-program consist
of stream copies or copies to/from
Streaming Memory

Sub-programs sync and join back to a
global program

IPU tiles are split into two sets of tile groups:

1. /O Tiles: perform only I/O operations to fetch and receive data from
outside the chip.
2. Compute Tiles: perform only computations.

The IPU-program is also splitted into two sub-programs to run in parallel

The number of I/O tiles should be carefully tuned, since these tiles
cannot participate in computations and using a large number can affect
performance. It is considered more optimal to select a number

of 1/0 tiles that is a power of two.



Step 2: Face detection - Optimize Inference of BlazeFace on MK1 and
MK2 IPU

Optimization: Minimize Communication Overhead - Prefetch & Asynchronous Callback

e The Prefetch option allows TensorFlow and Poplar to move input data logically closer to the IPU.

e The Asynchronous Callback, spawns an extra thread for dequeuing the processed data back to host as soon as they
are ready.

A grid search experiment was conducted to explore the optimal values for both prefect depth and /O tiles:
e MK1 IPU: 64 I/0 tiles, 2 Prefetch Depth

e MK2 IPU: 64 I/0 tiles, 2 Prefetch Depth

Device Batch_Size Run_time (sec) Throughput Time/image (ms)
MK1 32 7.052 9074.475 0.107
MEK2 64 5,558 11514.051 0.079

Inference of BlazeFace on MK1 and MK2 IPUs with optimizations.

Performance improved by 36.5% for MK2 IPU and 28% for MK1 IPU



Step 2: Face detection - Deploy BlazeFace on V100 Tesla GPU with Tensorflow
and Keras

Settings:

e XLA compilation

Batch_Size Run_time (s) Throughput Time/image (ms)

32 9.81 6521.81 0.1532
64 5.416 11816,838 0.0846
128 2.792 22968.123 0.0436
256 1.704 37705.264 0.0266
512 0.815 79123.324 0.0127

Inference on Tesla V100 GPU. Throughput (images/sec)



Step 2: Accelerated Face Detection - Performance Evaluation of Hardware
for Face Detection

Implementaion Time/Image (ms) Speedup
BlazeFace serial version 32.727 -
MK1 BlazeFace implementation 0.107 306
MK2 BlazeFace implementation 0.079 414
Tesla V100 BlazeFace implementation 0.0127 2576

The Tesla V100 GPU outperforms IPUs when performing BlazeFace inference, primarily due to its larger available memory.
The increased memory capacity enables the GPU to run inference with larger batch sizes, thereby improving throughput
and overall performance compared to IPUs.



Step 3: Face Detection Post-Processing

e Blazeface model outputs 896 detections for every input image — Output Tensor: [b, 896, 17], where b = batch size
e Each output detection contains:
o Four bounding box coordinates (x_center, y_center, width, height),
o Twelve landmark coordinates (x1, y1, ..., x12, y12), and
o a Confidence score
e All predicted coordinates correspond to the 128 x 128 pixel input image size — map them on the original image
dimensions (640x480 pixels).



Step 4: Landmark Detection
Selected Algorithm: Ensemble of Regression Trees (ERT)

e Reliable and fast landmark-detection model.
e A pre-trained implementation is available through the open-source Dlib library.

Two versions are used:

e 68-landmark detector.
e 12-landmark detector.

68-landmark output prediction 12-landmark output prediction



Step 4: Landmark Detection - Work-sharing with multiple processes

e Python multiprocessing library is utilized to spawn multiple instances for parallel execution.
e Each spawned process will handle the landmark detection of N / P images, where N is defined as number_of _images
divided by the number of processes P.

Settings:

e P = # of physical cores in each CPU.
e N = batch_size

o 32 for MK1 Host

o 64 for MK2 Host

o 512 for GPU Host

Acceleration Results

System # Processes Time/Image (ms) Speedup
Original serial version 1 1.06 -
AMD EPYC 7551 (GPU) 32 0.071 14,9
Intel Xeon Platinum 8168 (MK1) 24 0.078 13.6

MD-EPYC 7742 (MK2) 64 0.06 1ET




Step 5: Eye Aspect Ratio (EAR)

0.2
0.15
0.1
0.05

e The EAR metric is used as an estimate of the eye opening state. Six points are needed: two in the corners, two
on the upper eyelid and two on the lower eyelid. If these are accurate enough, they could be used directly for the
calculation of eyelid closure.

e EAR is mostly constant when an eye is open and is getting close to zero while closing an eye.

e This stage is combined with the landmark detection step and is executed in parallel by multiple processes.



Combined Implementation for Eyelid Closure Detection

The combined implementation consists of 4
steps:

1.

Image loading, decoding and pre-processing
(CPU)

2. Face Detection (IPU or GPU)
3.
4

Face Detection Post-Processing (CPU)

. Landmark Detection & EAR calculation (CPU)

Hardware Landmark model Time per image (ms)
MK2 [PU 68-point 0.7116
MK2 IPU 12-point 0.6938
MK1 IPU 68-point 0.761
MK1 IPU 12-point 0.731
Tesla V100 68-point 0.642
Tesla V100 12-point 0.603
IPU settings: GPU settings: CPU settings:
e XLA compilation e XLA compilation e # of Processes = # of physical cores in
e 64 1/0 tiles e Batch size: 512 each CPU
e Asynchronous
Callback
e Batch size:
o 32 for MK1

o 64 for MK2



Inference Task: Hardware Evaluation - Low Latency Experiments

MK1 IPU MK2 IPU V100 GPU
Batch size | Latency Time/image (ms) | Latency Time/image (ms) | Latency Time/image (ms)
1 1.97 1.97 1.701 1.701 3.724 3.724
2 2.108 1,054 1.841 0,921 3.789 1,895
4 2.337 0,585 2.077 0,519 3.794 0,949
6 2.894 0,482 2.293 0,382 3.873 0,645
8 3.058 0,382 2.831 0,353 3.83 0,478
10 3.526 0,352 3112 0.311 3.829 0.382
12 4.283 0,356 3.545 0,295 3.866 0,322
14 4.478 0.319 3.734 0,266 3.972 0,283
16 5.042 0,315 4.148 0,259 4.189 0,261
Bk alze Energy Efficiency Settings:

MK1 MK2 V100
1 4,74 8.02 4.62 o |/O tiles: 32
2 8,45 14,86 13,2
4 15.61 24,97 21,97 Evaluation Metrics:
6 18,85 29,48 28,16
8 20,96 37,07 36,68 e Latency (ms per batch)
10 22,06 42,51 45,18 .

’ s : e Throughput (images per second

12 25,01 44,66 45,80 ghput ( g P )
14 9797 46.53 4894 e Power Consumption
16 27,58 51,05 48,96 o |PU: gc-monitor tool

o GPU: nvidia-smi tool
e Energy Efficiency (images / sec / Watt)



Inference Task: Hardware Evaluation - Qualitative evaluation of Low Latency
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Both MK1 and MK2 IPU chips perform better in terms of latency and throughput for smaller batch sizes (1 to 8) compared to
the Tesla V100 GPU where there is no significant increase in latency as the batch size increases.



Training BlazeFace CNN-Based Model on IPU-based and GPU-based
systems

Training Datasets:

e FDDB: Consists of 2845 images with 5171 annotated faces collected from journalistic articles
e 300W-LP: Consists of 61,225 images with a single annotated faces

Libraries & tools

P

= tf.data

* Keras Dataset ST g Model

GCS, S3...etc) Create mini-batches




Time (sec)

Training results on FDDB Dataset
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Both the MK1 and MK2 IPUs outperform the Tesla V100 GPU in terms of training
speed, especially for small batch sizes.
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Training Results on 300W-LP Dataset
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Again, both the MK1 and MK2 |PUs outperform the Tesla V100 GPU in terms of training

speed, especially for small batch sizes.

Settings:

e 100 epochs
e XLA compilation



General comments on IPU and GPU systems for image-based workloads

e In our use-case (Eyelid Closure Detection) the Tesla V100 GPU outperforms IPUs when performing BlazeFace
inference, primarily due to its larger available memory. The increased memory capacity enables the GPU to run
inference with larger batch sizes, thereby improving throughput and overall performance compared to IPUs.

e |PUs, on the other hand, perform better at small batch sizes. We argue that this is due to their architecture, which is
optimized for matrix operations and high-speed communication between the processing elements.

e The limited on-chip memory of the IPUs is an important factor that must considered carefully carefully when deploying
training or inference experiments, especially for large models.

e The choice of hardware platform should be based on careful consideration of factors such as model size, memory
requirements, latency requirements and available expertise in parallel programming and distributed systems.

e The GPU ecosystem is mature and well-established, offering an abundance of tools, libraries, and community support.
Developers can access a vast array of resources, facilitating the discovery of solutions and optimization of ML models
for GPU execution.

e Since IPUs have a unique architecture and programming model, there might be a steeper learning curve when adapting
existing code or developing new models for the IPU platform, especially for developers who are already familiar with
GPU programming.



Synopsis

We designed and accelerated a Machine Learning application to detect the amount of human eyelid closure in video
data in a real-time processing speed of 500 frames per second.

We explored solutions from the fields of Machine Learning and Deep Learning for the Face Detection and Landmark
Detection stages of our application.

o Selected Face Detector: BlazeFace

o Selected Landmark Detector: Ensemble of Regression Trees (ERT)

We conducted Inference experiments on IPU-based and GPU-based hardware systems.
o GPU outperformed both MK1 and MK2 IPUs.
o The limited memory of the IPUs is an important factor that must be considered carefully.

We constructed an experimental end-to-end training pipeline for BlazeFace CNN-based model.
We conducted Training experiments on IPU-based and GPU-based hardware systems.

o Both the MK1 and MK2 IPUs outperformed the Tesla V100 GPU in terms of training speed, especially for small batch
sizes.



Future Work

e Future research can focus on improving the accuracy and accessibility of eye blink detection and exploring the
potential of intermediate stages of face and landmark detection.

e Additionally, research can be conducted to evaluate the performance of IPU-based and GPU-based hardware
platforms in various real-world scenarios to gain more insights into their relative strengths, weaknesses and
suitability. This knowledge can then be used to develop more efficient and effective software and hardware
solutions, ultimately advancing the field of machine learning and improving its practical applications.

e The current setup requires specialized hardware, such as cameras, to be effective. Future work can focus on
developing eye blink detection solutions that can be implemented on portable devices, such as smartphones or
smart glasses. This would make eye blink detection more accessible and usable in everyday life and provide
additional data for research on eye blink patterns and their relation to attention, fatigue, and stress.



Thank Youl!

Questions?



