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Abstract

This thesis investigates the performance of hardware accelerators, namely GPUs and
IPUs, for Machine Learning and Deep Learning applications. Specifically, we focus on two
tasks: automating and accelerating eyeblink-response detection from video and training
an image-based CNN face detection model. For the former, we explore and compare dif-
ferent algorithms and optimization techniques to achieve real-time processing speed. In
the latter, we optimize the training pipeline by leveraging both CPUs and device accel-
erators. The Eyeblink Conditioning experiment is a widely used experiment in the field
of neuroscience to study learning and memory processes in the brain. In the past, re-
searchers have used potentiometers or electromyography (EMG) to monitor the movement
of the eyelid during an experiment. In recent years, the use of computer vision and im-
age processing has greatly reduced the need for these methods, as they they need human
intervention and do not allow real-time processing. In order to fully automate eyelid track-
ing, we chose a combination of face and landmark-detection algorithms and accelerated
them to create a fast and accurate implementation. Various different algorithms from
the fields of Deep Learning and Machine Learning are analyzed and compared for face
detection and landmark detection (eyelid detection). Based on this study, two algorithms
are identified as most suitable for our use case: the Ensemble of Regression Trees (ERT)
approach for landmark detection and the BlazeFace CNN-based model for face detection.
The BlazeFace model was accelerated on three different hardware accelerators: V100 Tesla
GPU, MK1 IPU and MK2 IPU. The ERT algorithm was accelerated using multi-core CPUs.
A combined implementation is successfully deployed for a real neuroscientific use-case:
eyeblink response detection, achieving an overall runtime of 0.642 ms per frame with
Tesla V100 GPU and 32 CPU processes, 0.7116 ms per frame with MK2-1PU and 64 CPU
processes and 0.761 ms per frame with MK1-IPU and 32 CPU processes. Furthermore,
an experimental open-source training implementation of the BlazeFace face detector was
built from scratch to benchmark the performance of IPU and GPU hardware accelerators.
Our results show that IPU-based systems have superior performance compared to the
GPU-based systems in training the CNN-based face detector, especially for small batch

sizes.
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EAAnviko Keipevo







Ke¢paAaro ﬂ

Ewcaywyn

H xlaowrn egapupévn padnon (Classical conditioning) eivat pia pop@r] CUVEIPHIKNG
padnorng, 6rou évag opyaviopog pabaivetl va ouvbietl 5uo epebiopata petadv toug. Yriapxouv
800 Baokd gpebiopata: to pn egaptnuévo gpédiopa (UCS) kat 1o e§aptnpévo gpédiopa (CS).
To un eiaptunuévo gpédiopa eival éva QuUOKO £pédopa moU MPOKAAEl [11d CUYKEKPTHIEVT)
avtidpaon, n oroia ovopdaletal aveaptntn anokpion. To egaptnuévo gpédopa, amod v
aAAn mAeupd, eivat apxikda éva oudétepo epédiopa mou dev mpokraAel v aviibpaon rmou
pag evblagépel, addd péowe g eravadapBavopevng avilotoixiong Hpe 1o ur e§aptnpévo
epedopna, ouoxetidetal pe autd Katl TeEAKA €pXETAl va MPoKaAéoetl v 16wa avtidpaon. H
ePQAavion rapopolag aviidpaong evog opyaviopou ovopddetat egaptnpévr anokpion. ‘Eva
aro ta mo didonpa napadeiypata KAaowkng egaptnpévng padnong eivat to reipapa tou
Pavlov, oto omoio cuvébee emaveldnppéva Tov X0 €vog KOUSOUVIOU e Tnv Iapouciaon)
PO oc okUAOUG. Me v ndpodo 10U Xpdvou, Ta OKUALA €épabav va ouvdéouv Tov 1)Xo
10U KOubouVvIoU pe TV AQIEn TG TPOPNG PE ArOTEAECA va TPEXOUV T CAAld TOUG POVOo JE
1OV 11X0 ToU Koudouviou, akourn Kat otav dev rapouaiaddtav 1poer). Autd £8eile rwg éva un
eCaptnuévo gpgdiopa (to koudouvy) propet va ouvdeBel pe pia aviavakAaotikr aviibpaor
(o1eddppota) péow enavalapBavopevng avilotoixiong pe éva e€aptnpévo gpédiopa (tpowr))

KAl MApeixe onpaviikeég mAnpodopieg yla tToug pnxaviopoug padnong Kat oupreplpopds.

To tpnua Neupoeruotfjung tou navernnotnpiov Erasmus MC Sie§ayet éva nieipapia KAAoKAg
eCaptpévng padnong, to oroio ovopddetat Eyeblink Conditioning (EBC), kat epappodletat
oe avBporoug. Ze autd 1o meipapa, &vag tovog (to eSaptnuévo gpédiopa) ocuvdualetal pe
éva @uonpa aépa oto pau (to pn egapunuévo epediopa), to oroio rporalei éva kAeiopo
1OV pauev (n pun egaptnuévn aroxkpion). Katd ) idpkela tou melpdparog, o 1nxog Kat
10 uUonpa aépa ouviuddovial emavelAnPpeva PEXPL O CUPHETEX®V va PAbel va ocuoxetilel
1a 8vo epebiopata. O 1xog mapouoiadetatl Aiyo mpilv amod 10 Uonpa aépd, £T0l OOTE O
OUPPETIEX®V va apXioel va avapével 10 @Uonpa otav akouel tov xo. Me v napodo 1ou
XPOVoU, 0 TOVOG POVOG TOU £PXETAL VA MTPOKAAECEL TNV AvVIidpaon ToU KAE101PATog TV HaTidv
(v eaptnuévn aroxkpton). 'Etot, petd anod pia nepiodo ernavalapBavopevov OUXETICE®Y,
Ol EPEUVITEG UITOPOUV va HEAETHOOUV TA XAPAKINPIOTIKA TG €§aptnuévhg aroKplong v

patev napouotadoviag povo Tov 1)xo.

To Eyeblink conditioning (EBC) eival pia kadd pedetnpévn pop@rn KAAOIKNG e§aptn-



Kegpadawo 1. Ewayeyn

Hévng padnong rou XPnolporoleital and toug EIMOTHIOVES YA TV €6ay®yr MOAUTIH®V
MANPOPOPIRV OXETIKA PE TIG VEUPIKEG OOIEG KAl TOUG PNXAVIOHOoUG TTou Si€mouv 1 padnon
Kat m pvhun. [podopateg pedéteg mou KAvVOUv Xprorn g OUYKEKPIPEVNGS pebodou eivat ot
[1], ortou peAetdtal Tt cupBaivel OToUg avOPMOITIVOUG EYKEPAAOUG OTav Pabaivovial VEEG Kiv-
nukég dediotnteg, [2], 6rou pedetdtat n) enibpaon SiaPpdpev Sratapax®wv ard 1o EAcpa Tou
auTIoPoU OTI§ arokpioelg Tou patiou (conditioned responses) kat [3], orou n péSobog EBC
Xpnopornoteital yia ) diepevvnon g napeykepadidikng duoAettoupyiag os StatapayEg oxi-
Joppéverag.

Mua mP@UAn MPOCLYY1on Yid T PETPN 0T NS £5apTNREVIG ATOKPI0NG TV PATIQV ITav 1
avdluor tou KAsloipatog tov BAepdpav os €va Pivieo, Kapeé-kapé. Ot EMOTHIOVEG ETTPETTE
va ermA£§0UV XEIPOKIVITA TO P00 TPOCWITO OTO TMIPATO KAPE KAl 0T CUVEXELA va €rmAEEOUV
XEPOKIVITA TO PATL TTOU TOUG eVOlEPepe. X1 OUVEXEld, akodoubouoe pia Sadikacia aviio-
toixiong (template matching) [4] yia va riepikortel 1) TEPLOXT] TOU PATIOU 0 KA9e Kapé/sikova
Kat TeAKA va urodoytotet 1o KAgioo tewv BAsdpdpov. Ta pelovektrpata autg g MPOoey-
ylong ftav 1 avaykn Xepokivning rnapgpbaong (EmAoyr) tou mpoo®Itou Kal T0U Patlou yid
Kade véa Soxkyar)) kat n avaykaiounta arnobrnkeuong noddov dedopévev, kabwg 1o mpay-
Hatiko Bivieo mpéret va ripoBAndel kat va urootel enedepyacia and evav avopwrio.

H dnpoupyia piag avtopatng diadikaociag aviyveuong IpoomIou Kat Patiev, Pe taxutnta
eneepyaoiag wkavr) va oupBadilel pe 1o pubpd kapé tou PBivieo, amoteAel onuavuko Prpa
npog v Kateuduvon piag on-line epappoyrg yia Ty avaluon TV ArtoteAeopdtov. AUt
Ya emérpene OTOUG EPEUVITEG VA AVAAUOUV 1A ATOTEAECHATA TOU MEWPAPATOS OF TIPAYHATIKO
XPOVO, YEYOVOG TTOU He T oglpd Tou 9a peiove v avaykn avlpormvng rapépbaong Kat

arnobrjkeuong tov dedopévav.

Ta tedeutaia Xpovia, 1 £peuva Kat n avamntugn mg Mnxavikng Madnong (Machine Learn-
ing), éxe1 avgnOei paydaia kat xprowonoteitat oe S1adpopa ermotnpovikd nedia. H pnyxavikr
1a9non arnoteAel PE€POG TOU KAAG0U NG MANPOPOPIKEG TOU MTAPEXEL T dUuvatotnta OToV UTT-
oloylotr] péoa amo t) culloyn 6edopévav 1) TG TEPUTINOELS TIOU €XEl AVIIIEIOITOEL, v
paBaivel yia 1o ekdotote mpoPAnua xopig va xpetadetal epattépn Kat o e181k0g rpoypap-
patopos. H BaBid Mdadnon [5] etvat éva unoniedio tng Mnyavikng MadSnong kat nipoortaBeti
va punBet v avBporivy vonpoouvn péoa amnod 1o cuvduaopo dsbopévav, Bapav (weights)
Kat g nipoxkataAnyng (bias). H Babia MdSnon Siagpoporoteital amnod tm Mnyaviky) Madnon
Bdoet tou turou debopévav nou enegepyddetal oo kat Baoet tov pedoddwv rou xprotpornotet
yua va pdbet. Xprnowporotet Siktua rmoddardev emredov gote otadlakd va e§ayel Xapak-
PIOTIKA UYPNAOGTEPOU eTUIESOU, X®PIg TV mapépbacn ToU avOp@Ivou mapdyovid, ario

avene§epyaota pn Sounpéva dedopéva (6niwg potoypadieg, Keipeva, Bivieo k.a.).

Ta 6iktua auvtd ovopdloviat Babia Nevpwvika Aiktua (Deep Neural Networks - DNNs)
Kat Bpiokouv epappoyn os MAnOwpa epeuvnuika dépata onwg rn 6pact) UIOAOYIOTOV, 1) ETTES-
£pyaocia uoikng yAwooag, n avayvepion optidiag. Metadu autov v Sepatev, niapadsiypata
g OpAONS UMOAOY10TOV ival aAyopiBpot yia tadivounorn eikovev (image classification) [6],

avixveuon avukeipévav (object detection) [7] [8] kat katdatpnon ekovev (image segmenta-



tion) [9] o1 oroiol £€XoUv TPOCEAKUOEL AUEAVOIEVO EPEUVITIKO evdlapépov Ady® tov duva-
TOTTOV TOUG O £va €UPU PACHA EPAPHUOY®V TOU IIPAYHATIKOU KOOUOoU, OMKG I autdvoun

odnynon, n aAAnAenibpaocn av9pOIOU-PNXavng Kat 1 avaduor] 1aIpIK®OV EIKOVAOV.

E81kotepa, ta Zuvedikukd Nevpavika Aiktua (CNN) €xouv xpnotporoindei eUpemg Kat
£xouv erubeifel Kopuaieg emdOoelg o ePAPOYEG enegepyaoiag ekovag. Me v e§EAEn
1OV Badidv veupavikov diktunv, conydnoav peyadutepa kat Badutepa povieda yua v
AVTIPETOITION SUOKOAOTEP®V KAl IO OUVIET®V MPOPANPATOV, KAl ®G €K TOUTOU AUTEG Ol
pooeyyioelg rmou Baocifoviat oe CNN gxouv auinpéveg amattrjoelg o€ arno9nKeUTIKO XWOPO
(storage), pvnun xpovou ektédeong (runtime memory), kKa9®g KAl UTTOAOY10TIKY] 10XV TO00
Katd v eknaibevor (training) 6co xkat katd v e§aywyr ouvpnepacudtev (inference). H
Sadikaoia e€aynyhg oupnepacpdt®v Xpnotpornoleital yla tmy tagvopnon 1 my e§ayoyn
npoPAsyenv and ta 6edopéva €10060U O £PAPPOYESG TOU MPAYHATIKOU KOOHOU, HETA TV
ekmaideuorn) 10U VEUPOVIKOU S1KTUOU.

Ot pooeyyioelg Badiag padnong, kat mo ouvykekpipéva ta CNN, anattovv cuvndweg
XP1ON €VOG EIMITAXUVIN UAIKOU yla TNV €IMITAXUVON TV UMOAoOylopev. ‘Oneg avapepdnke
PO YOUHEV®G, 1] §AYOYT] CUNIEPAORATOV EKTEAEITAL OE EPAPIOYES TOU MTPAYHATIKOU KOO-
Bou, a@ou exrnaldeuTel £€va POVIEAO, KAl @G €K TOUTOU £ival onpaviko va dtaopaldiotel ot
10 UAIKO, OTO OITOi0 avAITTUOOETAl I EPAPUOYT], £ival 1KAvO va eKTeAEl AMTOTEAEOPATIKOUG KAl
ypniyopoug utiodoyiopous. Emunéov, n eknaidevon tov DNN eivatl antattnukn os Sedopéva,
ATIALTNTIKL) 0 TIOPOUG Kat XpovoPopa. TTepidapBavet v 0A10TIKY XP1)01 OA®V TRV TIOP®V O
évav dlaxkopotr), and v anodrnkeuorn kat tr) CPU yia v aviAnorn Kat v mposrnesepyacia
TOU OUVOAOU Hedopévav €wg o e§eldikeupévo UAKO (GPU, IPU) rou ekteAei urtoAoylopoug

ota petacynpartiopéva dedopéva.

H napouoa epyaocia srmkevipovetatl oty a§loAdynon v ermdooe®v OV IMAATPOPHIOV
vAkou GPU xkat IPU pe v avartugn aiyopibuev Mnyavikng MadSnong kat poviédewv Babag
Md&9nong 1000 ot epappoyeg eSaywyng ouprnepacpdtev (Inference) 60o kal oe epyaoieg ex-
naibevong (Training). ApX1KA EMKEVIPOVETAL OTOV 0XeS1A010 KAl AVATTTUST Plag epaployng
yla v e§ayoyn oupnepacpdatev otg Stabéopeg miatpoppeg vhikou. H epappoyr) autr) éxet
OTOX0 TNV aUTOPAIONoinon Kat ermrdyuvorn g dadikaociag avixveuong g arokpiong tav
pauov ano kapé Pivieo, rpoxkepévou va ermteuyOel taxuta eneepyaoiag oe mpaypatko
xpovo. Egetdloupe kat xpnotporoloupe Avoelg and ta nedia g punxavikng xat Babiag
pé9nong yla v Kataokevr pag on-line epappoyrg, n oroia pag analddacoet amno v
avaykn unapgng peydlou arobnreutikou xwpou (off-line storage) yia ta kataysypappéva
Bivieo KaBwg emmiong MMITPEMEL T TPOCAPHIOYT] TOU MEPANATOS O CUVONKEG IPAYILATIKOU
XpPOvou ektédeong. Xprnotpornotoupe §U0 81adopeTikoug ermtaxuvieg vAikou (IPU, GPU) yua
v erutaxuvon g dtadikaociag aviyveuong kat GUYKPivoupEe 11 OUVOAIKY Toug amnodoor
(6oov agopd v kabuotépnon arokpong - latency, tv Katavddmon evépyelag KAl thv
anodotkota 1wV unoAoylopwv - computational efficiency) kabmg kat ) kataAAnAdtnta

TOUG Yla epappoyég enedepyaoiag e1kovag oe ouvOnKeg rpaypatikoly Xpovou.

It ouvéxela, 1 apouod epyacia erMKeVIp@vVETAl otV agloddynon twv ermdooewv kade



Kegpadawo 1. Ewayeyn

mAatpoppag VAKOU Kat otn dadikaoia exknaideuong evog ZuveAkuikoU NeupovikoU Alk-
tuou (CNN), pe Bdon v npetdtunn epyacia tou aviyveutr npooonav BlazeFace [10]. H
dladkaoia exknaibsuong eival MOAUMAOKN KaAl ArtAttel AMOTEAEOPATIKY] ASl0TI0IN 0T TO00 TV
CPU 0600 Kal T®V £MIAXUVIOV OUOKEUQV, orwg ot GPU kat ot IPU. @a diepsuvriooupie kat
Ya epappoocoupe Bedtiotomnow)oelg o diadopa Pripata 10U ay®you eknaideuong yia v ri-

1eun BéATiotng anddoong.

H apyutektoviky) tov IPU akoAouSouv §1a@opetiky] mpooeyyilon o ouykptlon pe tg GPU
Kal KA9e OUOKEUT] €XEL TA MAEOVEKTIATA KAl TA PEOVEKTAPATA TNG. XT0 MAAICl0 auto, 1)
a&loAoynon v ermbooemv 1V S1ad9¢0eV ermTaxuviov UAKOU sival {TUKknAg onpaciag yia
TV aVAITTugn aroteAeCPaTIKOV KAl aroSoTiKOV EQAPHOY®V UNXAVIKNAG 1adnong kat Badiag
Badnong rmou Propouv va aviernegeA9ouv oTig UTOAOYI0TIKEG ATTATTH|Oe1g TOU 1EAAOVTOG.

TéAog eival onpavuko va avadepbel ot ) mapovoa epyaocia arotedei PEPOg pag €u-
putepng ouvepyaoiag petaiy tou CSLab tou Edvikou MetodBiou [ToAutexveiou Kat tou tur)-
patog Neupoeruotrjung tou Erasmus MC kat anookorei oty ag§loroinon kat agloAoynon
OUYXPOV®V ETUTEXUVIOV UAIKOU XPNOTHOIO0VvVIag AUCELG TIOU TapEXovial anod ta nedia g

Mnyxavikfg MaSnong kat tng Babiag Madnong.



Ke¢palairo g

OswpnTiko YnoBabpo

210 ntapwv Ke@dadato da kaAuedei 10 Jewpntiko unofadpo mou Kpivetal anapaitno ya

TNV KAtavonon g SrmAeuatikng epyaoiag.

2.1 Eye-blink Conditioning

Zwv napovoa epyaocia npaypatevopaocte to nieipapa Eyeblink Conditioning oe av-
Ypormvoug opyaviopoug. Tvetatl xprjon plag plag Kapepag UPning tayxuintag yia my Kata-
ypaon tov sedopévav kat kade Bivieo £xel drapkeia 2 deutepoArénmiav. O pubpog kataypadng
etvat 333 kapé ava deutepddernto (FPS), kat emopévag kade Pivieo mepiExel 666 kape. Kata
Vv SldpKrela OV MEPApdtev elval avaykaio va kataypagei pia eupeia neployr), kabag o
avOperiog Kiveital oxetkd edevBepa katd ) Sidpkela g Sokurng Kat eropévag dev e§ao-
palAidetat ot 1 9¢orn tou kepadiov da rapapeivel otabepry. H kapepa tonobeteital mepirou
€va PETPO PAKPd aTto ToV AvOp®ITo yia v Kataypagrn tou rmpoowriou. H 9éon kat ) otdon
OOUATOG TOU UITOKEIPEVOU €X0UV ONHAVIIKO pOAo oty dadikaoia kataypadrg, kabwg arnod-
TOJLEG KIVI|OELG KAl IIEPIOTPOPESG TOU IIPOCHITOU £X0UV PEYAAO AVIIKTUIIO 0T KATAYEYPAPPEVA
b6edopéva 1a oroia Pmopouv va Kataotouv akatdAAnda. T'a tov Adyo auto pia 09ovn mou
ipoPalet pia tawvia tomoBeteital Himda amo v Kapepa yia va Bonbroet 1o UnoKeipevo va

KPaTtroel 600 tov duvatodv 1o otabepr tr J€orn Tou.

2.2 'Opaocn UMOAOY10TOV KAl AViXVEUOCT AVIIREIHEVOV

'‘Opaon YroAoyiotwv (Computer Vision): Eival to medio tng Texvning Nonpoouvng rou
EMITPETIEL OF UMOAOY10TEG KAl CUCTAHATA vd AVIAOUV ONPAVIIKEG TANPOdOpieg armo ynoi-
aKEG €1KOVeG 1] PBivieo KAl va mpoBaivouv ot €VEPYELEG 1] v KAVOUV TIPOTACElS pe Pdon
TG eSayopeveg rinpogopieg. To Computer Vision €xel apyioet kat arnoxktd 1Swaitepo ev-
drapépov kabwg €xel TIOAAEG epappoyeg oe diapopa nedia g kKabnpuepvrg {wrg. Karmowa
napadeiypata sival n S1ayveon evog aocBevoug péow eregepyaociag Kat availuong 1atpikov
€IKOV®V, I POPIIOTIKY (aUuTdvopa oxHpatd, Kivntd popnot) Kat n aAAnAenidpaon unoAoyiotr)-

avdparou.

H Avayvopion Avukepévou (Object Detection) eivat éva urtonie6io tng ‘Opaong YrtoA-

oylotov (Computer Vision) rmou pag emrpénel va avayvepiloupe Kat va eviorioupe av-
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Tikelpeva péoa amno pia getoypadia 1 éva Bivieo. To e161KO XApPAKINPIOTIKO OXETIKA 1€ TV
Avayvepion Avuketpévou eivat 0t poodiopilet tnv KAdor (AvOp®Iiog, OKUA0G, yata KAIT) ToU
AVTIKEIPIEVOU KAl TI§ aKp1Peig ouvietaypéveg tou otn dedopevn eikova 1) Bivieo. To mpofAnpa
auto reptypdgetal og e&ng: Me edopévn pia elkova £10060u, mpérnet va ripoBAedpOel 1) toro-
Yeoia kat n €KTaon IOV AVIIKETPIEVOV TTOU AVI)KOUV O€ £va OUVOAO TPOKAO0P101EVROV KAAOEGDV,
Kat va arodobei n owotr) KAdaon oto kade éva. H mAnpogopia yia ) 9€orn evog aviikepiévou
bivetal og ouvietaypéveg evog miatoiou oproBétnong (bounding box)to oroio oxediddetal

YUpP® AIIo TO AVUIKEIPEVO.

Ot pédodot yia v emiduon tou npoBAnpatog Avixveuong AvVUKEEVEOV PITOPOUV va
X®plotouv oe mpooeyyioelg Mnxavikng MadSnong Baoiopéveg kat oe mipooeyyioelg Babiag
MdSnong Baociopéveg oe Neupwvikd Aiktua (Neural Networks). Tia autég mou Pacifov-
1Al ot PNXaviky padnon apxikd IpEnetl va Kabopiotouv MPOCEKTIKA T XAPAKINPIOTIKA
Kat Katormy Xpnoponotovviat tagivopntég Support Vector Machines (SVM), yia va yivet i
ratnyoptoroinon [11][12]. Amo v dAArn, ot pédodot mou otnpidoviat oe Neupwvikd Aiktua
elvatl kaveg va kavouv pia end-to-end Aviyxveuon Avukelpiévev, Xopig va xpeiadetal 1 va
arnatteital o IPoodloPIoROg TOV XAPAKINPLIOTIKGV KAl oUVHOI®G XPNOOITOI0UV LZUVEAKTIKA
Neupovikd Aiktua (CNN). Ot ouyyxpoveg rpooeyyioelg rou Paocilovial ot Babid Madnon
[13][14][15] £xouv emtuyel onpaviikn PeAtinon v ermdocewv o oUYKPLor pe TG pebodoug
Mnyavikfig Madnong Kat Xpnotpiorolouvidal o8 £vd eUpU QAcHd EGAPHIOY®V TOU MPAYHATIKOU

KOOJ0U.

2.2.1 'Evvoleg Katl OpLOROi NG AViXVEUONG AVTIKEIHEVOV
ITAaiolo Oprodiétnong (Bounding Box)

To Bounding Box 1) aAAeg [TAaiolo OproBetnong eivat €éva amnod ta mo avayveoplopéva Kat
ouvn9wg Xpnotpornoloupeva epyaleia otnv Avixveuon Aviikelpévav. Xe pia e1kova eva ITAat-
o0 Op1oBEtnong eivat Eva vonto 0pBoywvio, T0 Oroio mePIKAEiel £va OAOKANPO AVIIKEIHIEVO.
Extog amnd ) 9¢on 1ou aviikeliévou Péoa o€ Jila £1kova PIopet va xpnotponownfet yia tov
KaBop1op6 POoOET®V XAPAKINPIOTIKOV £VOG AVIIKEIPEVOU, OMKG I KAdOoT (LY. MPOO®IIOo,
HN-TiPOO®ITO) KAl EPIIOTOoUV] (rtoco mbavo eival 1o aviikeipevo va PploKetal oe auty 1
9¢on). H avanapdoctaon) evog [MAaioou Opilobétnong yivetat ouvhidwg pe évav anod toug E1g

TPOIIOUG:

e Aivovtag Tig ouvieTaypEveg dUo onpeimv tou opBoywviou, SnNAadn (Xmin, Ymin) KA (Xmaxs Ymax)-
'O1I0U (Xpmin, Ymin) OUVIETAYHEVESG TG KATO APLOTEPTS YOVIAS KA (Xmax, Ymax) OUVIETAY-

péveg g ave 6e81ag yoviag.
e Aivoviag TI§ OUVIETayHEVEG TOU onpeiou Tou kKévipou tou [TAaioiou Oprodénong (x., Ye)
KA1 £METTa T0U UYPOoUS KAl Tou mAdtoug (w, h).
Non Maximum Suppression

H Non Maximum Suppression [16] eivat piia 11€9060¢ UTIOAOY10TIKG OPAOTG TTOU ETTAEYEL

Hla povadiky] oviotnta amnod MoAAEg erkalunopeveg oviotnieg. To kpur)ptlo eival ouvndwg



2.2.1 'Evvoleg kat optopot g Avixveuong AVIIKEIPEVOV

1 amoppPlYn OVIOITI®V IoU Ppiokovial KAT® aro éva 6edopévo opo mmbavointag. 'Eva
EORANpa mou gpgavidetal ouxva oty Avixveuorn AVUKelévav gival n Urapsn moAAarmiaov
r\ailoi®v oplobEtnong rou neptypdadouv 1o id10 aviikeipevo. O aiyopiBpog NMS Sa erudétet
10 kaAutepo [MAaioo OploBEnong pe 1 PEYIOT €PIOoToouvr) KAl 9a aroxkAsiost 0Aa ta
dAda mAaiola pe emkaAuyn peyaAutepn arno 50% oe oxéon pe 1o erdeypévo. H Sradikaoia

ernavaAapBavetal €0g 0Tou TeAKA ermAgyetal éva rmiaioto.

Aodyog Toprg npog ‘Evwon (Intersection over Union)

Ia v vlornoinorn ormoloudnIoTe CUCTHHATOG AVIXVEUONS AVIIKEIPEV®V £ival arapaitn-
106 0 Oplopdg piag HPETPIKNG g opowdtntag petaiy 6o avukewpévov. H petpikr autn
Xpnotpornoteital 1000 yla 1 oUykplon g rpoBAeywng pe 1o aAndivo avukeipevo (ground
truth) yia mv a§loddynor tng, 600 Kat yia t) oUYKPLon S1apopetikav rpoBAéwemv petady
TOUG 1€ OKOTIO TNV ArtaAoipr] UunepBoAIKdA 0010V IpoBAéwewmv. To 0 EUPEWG XPNOTOTIO0U-
pevo peyebog yia 1o OKOmo autod sivat o Aoyog g TS mpog v éveor) (Intersection over
Union - IoU).

Znv MePI®OoT TG OUYKPI0NSG AVIKEIPIEVROV TTOU MEPTYPAPOVTIAL Ao rmAaiota oplobEtnong,
10 IoU opidetat wg 1o epBadov g Topng v duo mAaiciov, SnAadn tng rePloxrg mou avrKet
1000 010 £va TAaiolo 600 Kat oto dAAo, Tpog 1o epBadov g éveong toug, dndadr| tng cuvo-

AIKNG TEP1OXNG TTOU KAAUITTouV Kat ta §Uo miaiola, onwg gaivetat oto Zyxfapa 2.1.

Area of Overlap

loU =
Area of Union

Figure 2.1. IOU definition. Image from: https://pyimagesearch.com/2016/11/07/
intersection-over-union-iou-for-object-detection/


fig:gr-IOU
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
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2.3 ZuveAkuikd Nevpowvira Aiktua

Ta cuvediktika veupavika diktua (CNN) eivat éva €idog veupwvik®v diktuwv otn Pa-
S1a padnon, ta omoia xprnoponolouvial EUPEMS 0 MTPOBANIATA OITIKAG AvVAyVOPLoNg. L&
OUYKP10T] Pe AAAeg peBd60ug OITUIKTG avayvaplong, Oneg ot tagivopntég SVM, to CNN propet
va XE1P1oTel TV €1KOVA £10060U OT0 MBUPNTO ATTOTEAECA ATIO AKPO 08 AKPO XWPIg Kavéva

XAPAKINP1OTIKO O0XE61a0EVO ATIO TOV AvOp®ITOo.

Ta ouvedikukd veupevikd Siktua (CNN) avrjkouv otnv KAAOT TOV IIPOG T EUIPOS TPO-
@odotoupevav S1IKTU®V. ZUyKekplpéva anotedouvial ouvh9ng amnod éva otpopa e1o0odou (In-
put Layer), moAdariAd kpugd otpopata (Hidden Layers) kat éva otpopa eg6dou (Output
Layer). Ta Kpu@d otpoPAta ArtoteAouvial ard oUVEAKTIKA (cnn), oUyKevipatikd (pooling
layer) kat mAfpeg ouvdebepéva orpopata (fully connected layer). Ta mepioodtepa ouotn-
pata avayvoplong eikovev xpnotpornotovv CNN kabog autd Bacidovtal oto yeyovog ot ta
OTATIOTIKA TV £IKOVAV £ival PETA@PAoTIKA apPeTdBAnta Kal OUVEN®OG PIopel va yivel ek-
1abnon Kat avanapdctacn MOAA®V XApaKINPIOTIKGOV HEO® PIATP®V TTOU UTIAPXOUV OTd GUVE-
Akukd orpopata. Ta @idtpa autd sepappodovial ota EIKOVOOTOIXEIA TNG E1KOVAG HE OKOIIO
va e€ayxBouv TormKkd Xapaxinploukd, 6rou pe v enavdnyn mg Stadikaoiag autrg arox-
TOVIAl Xapaktnplouka uyndotepou ermunedou. 'Eva @idtpo eivatl otnv ouoia évag mivakag
n X n mou repiexel oplopéva Pdapn w, ta oroia Pdpn rmoAdamAaocialovial pe ta pixels g
ewkdvag otoixeio npog otoxeio (element wise operation). Egappoloviag Aoutdv 1o @iAtpo
oe pia e1kOva MPOKUITIEL lia véa avanapdaotaoct) autig, N oroia evoEXETal va Umootel mepe-
taipoe enegepyaoia. To péyebog tou @idtpou eivat ouvn9wng 3 X 3,5 X 5 1) 7 X 7 aAAd yevika
HIopel va MApetl orotadnrote Tur) £101 MOOTE VA UITOPEL va £§AYEL TIEPIOCOTEPA 1] AlyOtepa

XApaKTInplotka Kade @opd.

Ot Aeropépeteg g apXteKtovikng evog CNN 6ev akoAoudoUv KAIO10V OUYKEKPIIEVO
Kavova o oroiog da Mmpoo@epel olyoupa amnoteAéopata yla €va mpofAnpa Kat oUVEN®S 1
EMAOYN AUTOV Yivetal eprnelpikda/nelpapatikd. Kamnoieg ano auvtég tig Aemtopépeieg eivat to
€1b0g TV otpopdtev Kat 1o ANJYog Tou KAde £160Ug, N OEPA TOV OTPEPATOV, 01 S1a0TACELS
10V @EIATpeV o1 ouvaptnoelg anwielag K.a. H emdoyr g doprg evog poviédou ennpeddetat
onpaviika anod ta ouvoda dedopévev ota ornoia eknatbevovial Kat eAeyyxoviat. Mia pedodog
ou akoAoudeital ouxvd oxXeTKA pe 1o PEyedog Tou d1ktuou eival apyikd va Soxkipaotel pe
oXeuKd MiKpO 1Andog orpopdtov Kat otadlakd va auvfavetatr 6oo mapatnpeital PeAtioon

anodoong.
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ITAatpoppeg UALKOU

3.1 Kevrpwkrin Movada Enefepyaoty (CPU) kat Movada Enedep-
vaotég I'pagpirav (GPU)

Ot ouyxpoveg CPU £x0Uv KATAOKEUAOTEL OGS EMESEPYAOTEG YEVIKLG XP1ONG, OTOUG OIT0ioUg
£x0UV 1Pootebel H1APOPA XAPAKTINPIOTIKA WOTE VA UITOPOUV va UIootnpifouv éva eupu gdaopa
epappoyov. Ot CPU avrkouv otnv KAatyopia 1oV XOPIK®OV apXItEKTOVIKOV (spatial archi-
tectures) orou 1 uroAoyloukr Sopir] artotedeital arnd roAAariAég eneSepyaotikeég povadeg
erefepyaoiag. AUTEG Ol POVASeg PIMOPOUV va £X0UV £0RTEPIKO €Aeyxo (internal control),
apxeia kataxepniov (register files - RF) ywa v anobrjkevorn dedopévav kat va eivat 61-
aouvdedepéveg petadu toug yua v avtaddayn debopévav. Ot Siavuopatkég-CPU (Vec-
tor CPUs) 61a0¢touv nmoAdariaég povadeg ALU mou propouv va enegepyddoviatl apdAinia
roAAarAd Sedopéva. Ot reploodtepeg and autég UloBetouv 10 PoviEdo ektédeong Single-
Instruction Multiple-Data (SIMD), to omoio epappodel pepoveopéva peupatd EVIOA®V O
moAAdrAa otoixeia Hebopévwv tautdoyxpova. Eibwaitepo evdiapépov €xel n peAétn tou [17],
oty oroia egetdloviat Srapopeg teXVIKEG yia r) Pedtiotornoinon epappoyev Badiag pddnong

o€ K14, server Kat cluster moAAarmAcov CPU.

IMa v emiteudn pag ypryopns Kat arioteAeOPatikg e§ayayrg cuprnepacpdtev (infer-
ence) n/kat eknaidevong poviedov Badiag Madnong xpnowonoieitat evag ouvdiacpog tov
drabéopmv texvodoylmv ortou n CPU ocuvepyddetal e KATO10 EMITAXUVIL YEVIKOU 1] £181KOU
oxorou (r.x GPU, IPU). H CPU pnopei va 9eopnbel g 0 Bacikog opXNotpitng TV £p-
Y010V 0AGKANPOU TOU OUCTIHATOS, OUVTOVI{ovTag £va €UpU (PACHA UTTOAOYIOTIK®V EPYACIOV
VEVIKIG Xp1ong, eve 1 GPU extelel éva otevotepo @aopa 1o egeldikeupévav epyactdv. Ot
povadeg GPU dapépouv aro toug rapadooiakoug enesepyacteg PnXavika kat dopikd. Xto
oxnua 3.1, apoudiddovial oXNUATIKA 01 EMedepyaotikeég povadeg pag roAuvrnuprnvng CPU
kat pag GPU. Mia GPU uropet va riapiéxet x1Atadeg e€e1bikeupévoug rmuprveg ernegepyaciag
6edopévav kat apketd UYPnAr Pvrun mou @tavetl ta 64 n 128 GB. H uynAn rukvomnta tewv
nupfvav kabotd tig GPU 18avikég yia ektédeon Nevpovikewv Aiktuev (Neural Networks) ota
ortoia PIropouv va urtodoylotouv rapdaAAnda moAdoi veupaveg kabwg petadppadovial urtolo-

Y10TIKA 0g TIoAAanAaotaopd Kat poodfkn Siavuopdiav.
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Figure 3.1. Schematic comparison between the chip layout of a multi-core CPU and GPU
[18]

3.2 Graphcore Intelligence Processing Unit (IPU)

H povada IPU anoteAei éva véo €160g ermtaxuvir] 161K0U OKOITOU TTOU avartuxOnke arto
v Graphcore yia spappoyég Texvnirg Nonpoouvng kat Babidg Madnong. H IPU eivat
€vag TUIOG EIegepyaotr) pe S1aPpopetiky] apXteKoviky] aro auvtt] v GPU. 'Eva cuotmpa
IPU anoteAeital ano téooepa Paoka dopika otorxeia: IPU-tile, IPU-exchange, IPU-links

rat Siertagég PCle.

( Tile h

Tile-Memory

(SRAM) Tile-Core

Figure 3.2. [PU-tile

To PBaoikd dopkod otorxeio evog ouotrpatog IPU ewat to mAakidio-IPU (IPU-tile). Kade
povada IPU S1abéter moAdamdda mAakidia-tiles omou to kade tile amoteAeitatl amo evav multi-
threaded IPU-ene§epyaotr) (ipu-core) xkat tnv tormky) pvhun (Exfipa 3.2). To [PU nipoodeépet
HIKPEG KAt Katavepnpéveg pvnpes (SRAM) rou eivat torukd ouvbedepéveg petadu toug péow
£vOG TOAU ypryopou all-to-all diktvou erukowvwviag rmou ovopddetatl IPU-exchange. [Tpokette
yila éva on-chip 6iktuo mou ermrpénet v anodotiky) ermrovavia oe {Oveg UPnAou eUpoug
(high-bandwidth) petady wov tiles. ErmumAéov, kade povada IPU xprnowporotei U0 dienagpeég

PCle yia tnv avtadAayr Sedopévov pe tov kevipiko eneepyaotr) CPU tou ouotrjpatog. TéAog,



3.2.1 TIlpoypappatiotiko poviedo IPU

ka9e IPU mepigxetl 6éka Saouvdéoeirg IPU-Links mou emtpénouv v aneubeiag avialdayr)
debopévav petagu nmoddarmdev IPU, xopig autd va mepvouv ard ToV KEVIPIKO EMESEPYAOTH
(CPU) 1§ i revipkr) pvhun. ‘Eva cvotnpa propet va Si1abétel moAdardég povadeg IPU. Mua
Multi-IPU eivat pia ekoviky] ouokeur] IPU nou anoteAeitatl amo noAdanieg puokeg IPU kat
TIPOOPEPEL OAOUG TOUG TTOPOUSG PIVIHNG KAl UITOAOY10POU TOUG OaV Va avhKav o€ pid eviaia
ouokeur). Zto Zyfpa 3.3 nmapouotddetal £va armAoucteupévo Slaypappa g apXLlTEKTOVIKI)

evog ermtayxuvn IPU.

PCle

S —
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Exchange
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e = /a1
.
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Figure 3.3. Anjovotsuuévo Siaypaupa me apxiteKtoviky evog emrayvvr IPU.

3.2.1 IIpoypappatictiko poviédo IPU

O xpnoing da mpénet apXika va kabopiocetl 1o ouvodo tov puokev IPU mou Sa exteAé-
oouv 10 npoypappa-IPU kat to ouvoro auto dev propet va arddgel kata ) Sidpkewa mg

€KTEAEONG TOU TIpoypappatog. ‘Enetta, 1o nmpdypappa petayAntidetal o €va oUVOAO EVIOAGV
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nou katadaBaivel o eneSepyaotrig IPU. To mapayopevo nipoypappa-IPU akoAoubei pa 61-
abpopn kaboplopévng pong eAEYX0U Kat eKTEAEl UTTIOAOY1010UG O¢ peydAoug rmoAudidotatoug
Turoronpévoug mivakeg dedopévav, otabepou peyédoug, ou ovopdadoviatl Tavuotég (Ten-
SOrs). L YEVIKN MEPIMI®OOT], 01 TAVUOTEG €ivatl 6opég debopévav mou Xpnotponolovvial yia

mv neptypadr) Pabpuwtodv, 61avuopdIey KAl MVAKOV.

Ynidpxouv 600 Paoikég eviodég rou xprnotpornotel éva ekteAoupevo rpoypappa-IPU yua
va xepilotel 11g petaBAniég tavuotdv: aviypadr] 6edopiévev Kal EKTEAEOT UTTOAOYIOTIKGOV
ouvodwv (compute sets). Ka9s urtodoyiotikd ouvoAo amnotedeital amo moAAéEG KOpudEg (ver-
tices) o1 omoieg TEPIYPAPOUV TIS UMOAOYIOTIKEG £PYAOIEG OG TPOG €KTEAEOn. Ol KOPUPEG
KaBopidouv 1oV TPOIO pie TOV Ormoio €va UITOAOYIOTIKO OUVOAO X®pilel TG epyaoieg tou ot
PKPOTEPA KOPPATIA UTTOAOYIOU®V Td Ortoia PItopouV va eKTEAEOTOUV ITapdAAnlda aro rmoA-
Aardd IPU-tiles. Ka9e xopugr| ouvdéetal pe €va ouykekpipévo Aakidlo g IPU kat exteAet
éva P1KpO Koppatt Kodika rou eneepyddetat povo ) 61kn tou eioodo kat 5060 Sedopévav.
O ouvduaopodg 0A®V TV KOPUP®V artd tad ITOAAAITAG UTTOAOY10TIKA OUVOAd £vOG IPOoypApipia-

TO0G OXNMATISEL TOV UTTOAOY10TIKO ypd@o (Exnpa 3.4).

Compute Sets Each vertex reads,
performs computations
and writes a fixed set of

elements
Tensor variables
(data)
./\—> T3
T1
. T5
T2 >

T4

Figure 3.4. Graph representation of variables and processing

3.2.2 Movtédo eKTEAEONG £pYAocIOV plag povadag IPU

H IPU axoloudei 1o povtédo ektédeong Bulk-synchronous Parallel (BSP) [19] oto oroio
1 eKTéAEOT) gpyaoi®v nave ota tiles opyavavetal oe moAdardd dadoyxika Bripata. To kade

Brpa amotedeital ano tpia otddia:



3.2.2 Movtédo ektédeong epyaotav piag povadag IPU

e Torukog urtoAoyiopog (local computation): Xto otddio autd 6Aa ta tiles ektedouv
urntioAdoylopoug rapdAAnda arnoxAelotika ota dedopéva mou Ppiokovial otnv TOINKI)

toug pvrvny SRAM.

e Tuyxpoviopog (Synchronisation): To otadio autd e§acpadifer 6t o6Aa ta tiles éxouv

OAOKANP®OEL TOUG TOITIKOUG UTTIOAOY10110UG TOUG.

o AvtadAayn Asdopévav (Data-Exchnage): To tediko otadio eivat n aviaddayr) anapaitniov

dedopévav epocov 0Aa ta tiles exouv €10¢ABetl 0TO0 0TAS10 CUYXPOVICHOU.

H ouvoAwkr dadikaoia emmavadapfavetar kadog oAa ta tiles sioépyovial ek véou otn
(don tormkou urnodoylopou. Kade éva anod autd ta Prijpata npaypatonoteital napdaAinda
oe 6Aa ta tiles kat n povada IPU prnopet va Sewpndet 0t1 ektedel pia akoAoudia autmv TV
Brnpdrev (ExhHpa 3.5). H oepd tov ipog extédeon Prpdtov kadopiletatl amo éva mpoypappa
eAéyxou nou goptmvetal oe KA9e tile ard tv CPU yia tov €éAeyX0 TG EKTEAEONG UTIOAOYIOPOV

Kat avtaAdayng dedopévav.

A Step 1 Step 2
Tiles & >

< A
Y »
I:- I -:I . Sync
Compute
‘ Tiles work in
parallel
I - I O T
A
»

Time

Figure 3.5. Bull-synchronous parallel execution model across IPU tiles
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ErmAoyn aAyopiOpov

'Eva onpaviiké Koppdtt g epyaciag pou ntav n ermioyr) kataAAnAev pedodeov aviyveuong
nipoowrou (face detection) kat xapaxkinpiotikov npooorou (landmark detection). Ot ertt-
Aeypévol adyopiBpot Sa mpérnet va eivat oe 9€on va aviyveuoouv e akpifela v anokpion
10V BAepapwv otg pubpioelg kataypadng pag, addd kat va mAnpouv MPooHeTeg amaltn-
OE1§ ®WG IPOG TNV Taxuu|ta avixveuong. Xe autod 1o repdlaio, sgetdloupe kat aglodo-
youpe evaAdaktikég pebodoug 1600 yia v avixveuor IIpoo®Itou 000 KAl yid v avixveuor
opoorjuav. O1 petpikég agloAdynong mou Xpnotpornofnkav eivat o xpdvog eKtéAeong yia
Vv eaywyn pag avixyveuorng (detection speed) aAdd kat n akpifeia/opddtnta auvtr|g (accu-
racy). Emumpoobeta, n 6tabsopdtnta npo-eKnatdeupévev HoVIEA®V KAl UAOTION)OELS AVOLX-

10U KOO1Ka (open-source) aroteAoUv £§i00U ONPIAVIIKA KPITP1A Yld TV ETAOYT] 1aAG.

4.1 IIpodraypapig dedopévav

Ta 6edopéva ota oroia teAdkd Sa ekteAeotel 1) epappoyr) pag akoAoubouv jiia oelpd rpo-
dlaypadov oxetikd pe 1o riepiBailov kataypadng aida kat pe ) 9€on-otaon tou avlporou
Kata ) dapkela avtrg. H mepiotpodr) oug 1pe1g Xwpikeg draotdoeig opidovial og yaw, roll
Kat pitch kat edopévou ot 0 AvOP®IIOG £Xel T MPOCOXI) TOU €0TIAOHNEVE OV KAPEPA, Ot
TIHEG Toug Tieplopidoviatl oe +20°, £25°kat +40°avtiotoixa. To repiBAAAov oto oroio Kata-
ypdagoviat ta Pivieo eival KaAd @EOTIOPEVO KAl TO UMOKEIPEVO KAOETal apKETA KOVIA OtV
KAPEPA DOTE TO MTPOOMITIO TOU VA KAAUITIEL TOUAAYX10TOV T0 20% g e1kovag. TeéAog, o pubog
kataypadrg (Frames per Second - FPS) tng kapepag opidetat ota 500 FPS 1o ortoio onpaivet

0Tl 0 PEY10TOG XPOVog ereepyaoiag yia kKa9e kapé eivat 2 ms.

4.2 Aviyveuon IIpooconov

H aviyxveuon npoo®miou arnoteAel eva umonedio g aviXveuong avilkePEVOU TTOU XP1ol-
Horoteital yia myv avayveplon avoporvev MPOooEIIOV Ot €1KOVEG 1] Bivieo. ZidX0g tng
aviyXveuong MPOOKOIIOU £€ivadl O EVIOMIONOG T®V IIPOCWITOV Of Jld £1KOva KAl 1 oxebiaon

mAawiev oplobétnong (bounding boxes) yupw aro auvtd.

O1 paTeG TIPOOTIABEIEG AVIXVEUONS TTPOoMOINI®V Bacifoviav KUplng 0 TPOCEKTIKA OXeO1-

aopéva Xapaktnplotikd arno epeuvntég, ta oroia egayoviatl arnd pia e1kova Kat otr) CUVEXeld
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pogpodotouviatl oe évav ta§vount (classifier) yia v avixveuon mbavov meploxwv rou
TMEPIEXOUV £vad TIPHORMITI0. AUO KAAOIKOl AVIXVEUTEG TIPOOKMITOU £{val O AVIXVEUTHS MPOCOITOU
Haar-cascade towv Viola kat Jones [12] kat Histogram of Oriented Gradients (HOG) oe
ouvdlaopod pe evav tadvopnty SVM [11]. Eve ot pebdédot autoi nmapouciacav e§aipetikeg
emdooelg, 1 HUOKOAla KATAOKEUNG KAl KUPI®WG 1] avaykn yla PeAtioon tng emniboong twov
OUCTHATOV avayveoplong IPoomriou odrynoav otnv avartudn véeov pedodmv mou mpoo-
@PEPOUV TTOAU KaAUtepa anoteAéopatd.

H xpnon pnxavikng pdadSnong yla 1o mpoPAnpa g avayvepiong mpoomIiou YeEVIKOTEpd
€xel 0dnynoetl oe 1epaotia PeAtioon emboOceOV IOV CUCTNHATOV avayvoplong. Ot TeXVikeEg
PNXavikig padnong XPnoiponolovyv VEUpevika Siktua yia v e§ayoyr apKetd Heyaiou
aplBpou XapakinPloTK®V £VOG IIPOCAOIIOU, ATIOOTIOVIAS AEMTOPEPEIG TTANpodopieg yia eva
MPOOKII0 PEo® piag ewkovag. H egaywyn autr) npaypatoroteital péow piag diadikaociag ex-
naideuong 1OV S1IKTUGV, TTAPEXOVIAG O AUTA TV AUTOVOLia va EVIOTIIOOUV Kat va kabopioouv
1A ONPAVTIKOTEPA XAPAKINPLOTIKA NG £1KOvag. Ta veupwvikd SiKtua, Katl 1o OUYKeERPIPEVA
ta Zuvedikukd Nevpwvikd Aiktua (CNN) éxouv erutuyetl adloonpeioteg emboosig oe H1a-
@opa 1edia tng UMOAOYIOTIKLG 0pAoTg, OMKG 1] TaSivopunon eikovev [20] kat i avayvopion
npoooniev [21], [22]. Ta tedeutaia xpovia éxel mpotabei peydAog apibuog eEe1dikeupévav
otnv aviyveuorn npooonav poviedov [23], ta ornoia xepidovral oe 6U0 Baoikég KAtnyopieg wg

nipog 1 Hopr) toug:

e Ta povtéda evég otadiou (one-step models), orwg ta S3FD[24], RetinaFace[25] and
BlazeFace[10], xpnowpomnowouyv éva feed forward CNN [13] yia va ripocdiopicouv tnv
katnyopia (class) tov avukepévev evdlapépoviog Kadng Kat v akpiPry tonodeoia

TOUG otV £1Kkova (rmAaiolo oplodétnong).

e Ta povtéda 600 otadiwv (two-step models 1) region-based models), Bacilovtal otnv
Aettoupyeia v Regional CNN (R-CNN) [26]. Ta poviéda autd Xprnotjomnoiouy, oav
pato Prpa, évav adyopibpo avadninong (.. Selective Search [27]) 1) éva poviédo
(ouvridwg éva region-based CNN) to omolo déxetatl pa ewkova oav 10060 Kat mpo-
tetvel drapopetikég mbaveg neploxeg eviiapépoviog (Regions of Interest - Rol). Zinv
ouvexewa (6evtepo Prpa), xpnowonoieitat éva LZuveAdkuiko Neupoviko Aiktuo og fea-
ture extractor wote va UTOAOYIOEL XAPAKINPIOTIKA A0 AUTEG TIG TIPOTACELS KAl VA V-
tortioet v axkp1Pn S¢on v npooonev (rAaiowa oplobétnong). Iapadeiypata tétotwv
poviédov eivat ta CMS-RCNNI[28], R-FCN[29] kat "Face Detection Using Improved
Faster RCNN" [30].

To yeyovog 6t otr) KAatnyopia HovieAav evog otadiou dev mpaypatornolovviatl region pro-
posals ta kab1otd armlovotepa Kat tayxUtepd, aAAd n anodoot| Toug eivat PEIRPEVT) 08 OUYKP-
101 pe ta poviéda o otadiev. Asdopiévou 6Tt 10 €pyo Pag OToxeUel 1000 oty akpifela tov
AmoOTEAEORATOV 000 KAl oty taxut)ta ene§epyaoiag, amogpaocioape va punv Sigpeuvricoupe
ToUG aviyveutég duo otadinv kabwg dev €xouv oxedilaotel yia real-time epappoyég. Avtibeta,

01 AVIXVEUTEG £VOG 0Tadiou £xouv emTuxwg XpnowononOei os real-time spappoyég [31] [32].
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4.2.1 EmAseypévotl adyopidpot

I'a toug okoroug tng rapouoag ITtuxiakng Epyaociag e§epesuvnInkav tpeig Stapopetikoi

AVIXVEUTEG.

HOG - (Histogram of Oriented Gradients)

O npo1tog aAyop1Bpog rou ermAéxInke eivat o ailyopiOpog Histogram of Oriented Gra-
dients (HOG). Mia mipo-exkniatdeupévr) UAoIoinon tou avixveuty) eivat Siabéon péow g
B1BA10011kNg avoixtou kodika Dlib [33]. O avixveutrig HOG apxikd s§dyel XapaKtnplotka
arno g e1koveg £10060U, Ta oroia ot cuvéxela tpododotouvial oe evav tasvopnt) SVM. O
tadwvounmg SVM xpnowporotei pia texvikn oAtobaivoviog apabupou ndve oty eikéva yia
Vv avixveuon npooenev oe pa neploxr] 80x80 ewkovootoyeiov. O alyopidpog HOG €xet
XpnotwpornonBel eUpEmg OtV 6PACT] UTIOAOYI0T®V Y1d TNV AVIXVEUOT IPOCKOIOV KAl PITopel

va £ivatl anoteAeopatikog umnod S1aPpopeTikEG CUVONKES POTIOHOU Kat rtolag.

MTCNN - (Multi-task Cascaded Convolutional Network)

O &eutepog adyopiBpog ovopddetar Multi-Task Cascaded Convolutional Neural Net-
works 1) MTCNN, éva oUveAKTIKO veupaVviko Siktuo (CNN) to oroio dnuooieudnke o 2016
anoé toug Zhang et al.[34]. To poviédo aroteAeitatl amo pla VEUP®VIKA UTTo-8iKktua ta oroia

€KTEAOUVIAL OEPIAKA Y1d TNV AVIXVEUOT] KAl AvAAUOTH IPOCHIIOV O H1d E1KOVA.

To mpoto unodiktuo ovopddetat P-Net kat sivatl éva pikpd GUVEAKTIKO VEUPOVIKO SiK-
to. To 6iktuo autd AapBdavel tnv ekOvVa £10060U Katl ITAPAYEL £va 0UVOAO 0ploBetnpévav
mAaioiev rou sivat mbavo va reptExouv éva npoowno. To eutepo unodiktuo ovopdadetat R-
Net ka1 eivat éva ehappmg peyaAiutepo CNN rou AapBavet v £§o60 tou P-Net kat BeAtiovet
TG Tapayopeveg 9€0e1g TV MAALCIOV 0p100€tnong oty ekova. To tpito kat TeAeutaio Urt-
odiktuo, mou ovopdletat O-Net, eivat éva peyadutepo CNN mou xprnotpormnoteitat yia ov
EVIOTIIONO 0pOOHI@V ToU Ipoomriou. To O-Net AapBavetl tyv £€§o6o tou R-Net kat rapayet
€va oUVOAO aro 0pOoNd ITOU AVIIOTO1X0UV O¢ BaoiKd Onpeia ToU MPOo®ITOU, OTIOG Ol YOVIEG

1OV PAT®V, 1 AKPI g PUTNG Kal Ol YOVIEG TOU OTOPATOG.

BlazeFace

O 1pitog kat tedeutaiog adyopiBpog rou ermAeéxdnke ovopadetat BlazeFace, évag seAagppug
KAl arodoTikog AVIXVEUTHS MPOOHNIOV IMoU avartuyxdnke anod v Google to €tog 2020
Yla epappoyEéG IMOU OTOXEUOUV Ot eregepyaocia debopévav o mpaypatko Xpovo. AVHKel
OtV KATNyopia 1oV HovieAdev evog otadiou kat AapBavel wg eicodo eikoveg RGB peyédoug
128 X 128 X 3 swkovootoixeiov (pixel). H €§obog tou poviédou yia KAde IMPOO®ITO TTOU
aviyveuetal, €ivatl t€00eP1g OUVIETAYHEVEG TTAALI0IOU 0p1oBETNoNg, £81 MPOOEYYIOTIKEG OUVIE-

Taypéveg onpei®v/o0pooT|HeV IIPOCKITOU KAl £vVa OKOP £PITIOTO0UVNG Yia TV Kade avixveuor).
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4.3 ASodoynon Med0dwv Avixveuvong IIpoconou

IMpokeévou va mipoodlopiotei mo10g anod 1toug aldyopibpoug mou meptypadnKav mpo-
NYOUHEV®G £ival KAtaAANAoTepog yla v epyaocia autr], ekteAéoape rmelpdpata a§loAdynong

pe Bdon myv akpifela twv aviyveloemv KAt v taxutna enegepyaoiag.

4.3.1 ZUvoAa Acsdopivov

Ma mv adloddynon tov ermdeypévov alyopibpeov xpnoworotrjoape 6Uo ouvola Oe-

dopévev (datasets) rmou neprdapBavouv e1kOveg 1 €va 1 MEP1O0TEPA TTPOOKHIIA.

AFLW database

To npwto ouvolo debopévav rmou xpnotpono)fnke otnv epyacia pag ovopdaletat AFLW
[35] to oroio amoteAeitatl aro 21123 skoveg kat 24384 avBpwrmiva nipooena. To ouy-
KEKPIIEVO oUVOAO Sedopiévmv §1a0€tel €va EKTETAPEVO OUVOAO ETIKETMV TOU €KTIOG ATO TNV
9¢on tov npoooniov (ground-truth labels) mepiypdgpouv diadopa xpHopa XapaKiploTKa
OTI®G TO PUAO, Vv anokpuyrn (occlusion), mpdonma e n xopig yuaild kat g yovieg mept-

otpodrg (roll, pitch kat yaw).

AFLW subset

Ta v dadikaocia afloddynong v avixveutwv ermdéiape va @ATPAPOUHE TG EIKOVEG
g Paong AFLW kat va dnuioupyrjooupe €va unoouvolo dedopévav 1o ormoio ikavorotet
11§ Ipodlaypa@eg g epyaoiag pag. H exktevng Alota euketwv nou dadeter ) faon AFLW
dieukdAuve v Sadikaocia avty. Ta Paocikd kplfjpla eMAOYHS Yid TO AV £va MTPOCKI0 O
pla ewkoéva 9a eloaxdel 0To UTTOoUVOAO 1ag eival Ta arodeKtd Opla MEPIOTPOPNS OTIS TPEIG
X®PKES draotdoetg (yaw £200, roll+250, pitch+400). EmumAéov, KATO1EG £1KOVEG TIEPLEXOUV
nOAAArAd MPOOEITA PE AMOTEAEOPA KATIOlM AI0 AUTA vd IMANPOUV TIG ITPOUNOYE0ElS g
epyaoiag auing, eve kamnowa adda oy ida ekéva Oxl. Ze auty WV MEPINTRoD, 1) €1Kova
apX1KA TTaPapével oto urtoouvolo dedopévav pag. Edv pia and tig ermdeypéveg pedodoug bev
propel va aviyveloel KATIO0 ATTo Td MTPOCKITA OTNV E1KOVA TOTE TO MTPOO®ITO AUTO ATIOKAEiETAl

aro 1o UTooUVoAOo yia va s§aoealiotel i dikain agloAoynon tov pedodwv.

BioID database

To &eutepo ouvolro Sebopévwv ovopaletat BiolD kat arotedeital and 1521 eikoveg 23
dlapopetkOV TPooHnav. Ot ouvdnKeg OTIG OMOIEG KATAYPAPNKAV Ol £1KOVEG AUTEG eivatl
APKETA TAPOHOLEG HE TIG OUVINKEG Kataypa@rg rmou avaiudnkav ot Evotnra. Enopévag,
1 dokr) evog aviyveutr) npoomnev oto BiolD uropei va mapéxet pia 1oxupr) £vden yia to

nooo KaAd priopel va arodmoetl oto §1k6 pag ouvodo dedopévov (test-set).

IIposnefepyaocia 6cdopivav e10660u

Ot aviyxveutég HOG kat MTCNN propouv va eregepyaotouv onotadrrnote e1kova £10060u

ave€apttwg peyédoug. Aviibétwg to poviédo BlazeFace 6éxetat wg €10060 e1kdveg TUTIOTON)-



4.3.2 Ermidoon avixveutov oto urtoouvolo Sedopévav AWFL

pévou peyédoug 128 X 128 X 3 pixel. T'ia tov Adyo auto, mpooappodoaiie 10 peyebog tov

bebopévav e1006ou oe 128 X 128 yia v a§loAdynon Kat TV TPV aviXVeUuT®yV.

4.3.2 Enidoon aviyveutoV 0T0 UNooUvoAo dsdopéveov AWFL

IMa v a§loddynon v aviXveut®v pag xpnotponoidnkav ot petpikég Akpipelag (Pre-
cision) kat AvakAnong (Recall). IIpwv 6ddcoupe ToV OPIOPO AUTOV TOV PETPIKAV, da ITpErmet

apX1KaA va oplotouv ot évvoleg tov True Positive, False Positive kat False Negative.

Qg True Positive 9smpoUpie tnv aviyveuon &vog UTIAPXOVIOG TTPOCMITOU Yyid TNV oroid
10 IoU petady tou miaioiou oplobEtnong g aviyveuong Kat tou mAaioiou oploBEtnong tou
ground truth eivat peyadutepo arno 50%. Bewpoupe ot £xoupe pia False Positive rpoBAsyn
0TV 0 AVIXVEUTIG £0PAAPEVA AVIXVEUOE Hd TIEPLOXT] E1KOVAG OG ITPOOKIT0 eve dev eivat. Qg

False Negative opidoulie T1g TIEPUTTMOOELG OTI§ OTIO1EG SEV AVIXVEUTNKE £va UTTAPXOV IIPOCMITO.

H AvdaxkAnon (Recall) meptypddet rmooca armo 1a UTIAPKTA TPOo®IIA EVIOoTNKAV Pe akpifela,
eve 1 Akpifela (Precision) rieptypdgel mooa arnod 1a mpooEId Iou EVIOMIOINKAV HTAv rpay-
paukd npoownia kat oyt False Positives. H avdxkAnon kat n axkpifeia vnodoyidoviar wg

edng:

TP
Recall = ———
TP + FN
. TP
Precision = ——
TP + FP

TP = true positives, FN = false negatives, FP = false positives

ZUpgoeva pe 1a apandave n Akpifela 1ocoutatl pe 10 A0Yo 10V 0OOT®V MIPORALPERV TIPOG
TIG OUVOAIKEG TIPOPBAEWELS VG 1] AVAKANOT 100UTAL PE TO AOYO TOV 0ROTOV IPOPRAEPEDV TIPOG
10 OUVOAKO apdpuod avukepévav. TEAOG va ermonpavoupe ot ya ty dikain aloAoynorn) tewv
S1AQOPETIKOV EMMAEYHEVOV AVIXVEUTOV Xprjotporiotnoaiie évav ruprva CPU yia tyv ektédeon
TOV MEPAPATOV.

Ta arotedéopata tng agloddynong v TPV avixveutov napouctafoviat otov Ilivaka
4.1.

Algorithm Faces FN FP TP Precision (%) Recall (%) Time / Image (ms)

HOG 3425 687 7 2738 99.74 79.94 29.23
MTCNN 3425 294 37 3131 98.83 91.41 347.41
BlazeFace 3425 940 1 2485 99.96 72.56 32.73

Table 4.1. Results on face detection algorithms on subset of AFLW that meets project
requirements
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4.3.3 Enidoon aviyveutwv oto ouvoldo Sedopévov BiolD

H Badon 6edopévev BiolD, mepiexel 1521 ekdveg Kat Kade £1KOVA ATIEIKOVI(EL Eva PLOVO
npoowrio. To mepBaAdov Kataypadpng Kal 1a XapaKinelotkd tov dedopévev sivatl apketa
napopola pe avtda oto S1ko pag Test Set. H Baorn 6edopévav BiolD rapéyet eKETEG yia TEVIE
opoonua (landmarks) rmpoowriou mou reptypdpouv v 9eo1) TV patidv, addd dev mapexov-

tat groundtruth etkéteg yia ta mAdowa oprobétnong (bounding boxes) twv rpooonev.

H a&ioAoynon v aviyveutov BlazeFace kat MTCNN éytve Xprotlonoi)viag i PETPIKY)
opaAparog Xxetukng-Anootaong (relative-distance error) rmou neprypagetat oto [36] kaBwg
KAl o1 5U0 auTtol aviXVeutég MapAyouv aviXVveUOoelg MmOU €KTOG aro v deon (rmdaiowa opt-
00£11101G) TOU MPOO®ITOU MEPLypadpouv kat v J€on kamnowov onpeiov/opoonpev (land-
marks) tou pooeIou, Kat Imo oUyKekpipéva ) 9€on tou KEVIpou tou patou. To opdaipa
amootaong UIMoAOYIoNKe yia 1o KA9e pat {exwpiota Kat 1 péyiotn tnn anotedei v Baon
ouykplong. Av n andotaocr Tou mpaypatikou (groundtruth) kat avixveupévou Kevipikou
onpeiou Tou patoy eivatl pikpotepn 1) ion pe 0,25 1o1e 1 avixveuorn kpivetat og True Posi-

tive. Zto [Tivaka 4.2 rtapouoiddoviatl ta anotedéopata a§loAdynong.

Algorithm Faces Right average error Left average error TP FN
BlazeFace 1521 0.069% 0.073% 1497 24
MTCNN 1521  0.03% 0.043% 1514 10

Table 4.2. Results of BlazeFace on Biold database

To povtédo BlazeFace katdgepe va avixveuoet owotd 1497 ard to ouvolo tov 1521
npoowniwv otn Pdon 6edopévav BiolD. Qotdco, petd amd XEPOKIVNTN EMIOKOIN 0N TV
MAPAYOUEVOV AVIXVEUOE®V, Slarmotodnke o1l yla kade eikdva oto ouvodo dedopévav ur-
NPXE €va mAaiolo 0ploBEtnong Kat Kade mAaiolo eixe Eva MPOOKII0 OT0 E0WIEPIKO Tou. 'Etot,
10 poviédo BlazeFace €xet 100% ermtuyia otnv avixveuon Ipooon®v oto oUvolo dedopiévav
debopévav BiolD. IMapopola Sabikaocia akodoubnbnke yla v a§loAdynon 10U aviyXveutr)

MTCNN o oroiog emiong napryaye 100% owotég ipoBAeyerg.

Ta wmv adloddynon tou avixveutry HOG ntav arapaitnu) n Snpiovpyia eUKEI®OV oU
neplypdgpouv v 9£€01 10U IpooeI1iou (rmAaiola oploBetnong) eviog kade ekovag, Kabwg o ev
Aoy avixveutng Sev eivatl oe 9o va avixvevetl opoonpa/onpeia (landmarks) tou poowrou.
IMa tov okomd auto xpnotponowrdnkav ot apayopeveg ripoBAéwelg tou poviedou MTCNN
®g Baon ouykplong (ground truth) pe tg poBAEtelg e€06ou tou aviyveutr) HOG. Opoing, o
aviyveutg HOG katagepe va aviyveuoel 00otd oAd 1a Tpoo®Itd o Kade £1KOVA TOU GUVOAOU
BiolD.

Ta arotedéopata g napardve agloAoynong arotedouyv 1oxupr] évbeign ot Kat ot Tpeig

AVIXVEUTEG TIPOOMITOU da arnodooouv KaAd oto test set pag.
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4.3.4 Zupnepaopata otnv afloAdynon aviXveutoV NPOc®OIOU

Aro ta niepdpata aloAdynong rnpokuIttouy S1apopég T000 otV Taxutnta 0oo Katl otV
axpifela petady v piov avixveutov. To poviédo MTCNN arnoteAei a§ioruotn ermdoyr Ka-
9wg ota nepdpata agloAoynong oto urtoouvolo dedopévav AFLW gudavios Tov peyaAutepo
ap16uo True Positives (3131), srutuyxdavovrag Recall 91,41% kat Precision 98.83%. Qotooo,
pe Bdon ta anotedéopata agodoynong (ITivakag 4.1) @aivetar Sekabapa ot 10 PoOVIEAO
MTCNN &ev propet va xprnotporonOei yla ty epyaocia pag kabag n tayxvtnta pe v oroia

ene§epydletal ta 6edopéva e10660u urnodoyiletar repirou ota 333 ms ava ekova.

O1 pebodot aviyveuong npoowriou HOG kat BLazeFace arotelouv tayUtepeg evadAak-
Tkeg, pe tov HOG va eivatl o mo yprjyopog aviyvuems. To poviédo BlazeFace eivat ev-
TUTIOOLAKA YPHYOPO TIapd IO YEYOVOS OTL eival éva Badu veupaviko SIKTUO, EMITUYXAVOVTAS
Tautoxpova v uyndotepn axkpifeia (Precision - 99.96%) katl 10 pikpotepo apiOpo False
Positives (126). Qotooo, éva pelovéktnpua tou poviedou BlazeFace eivat ot 6ev Asttoupyet
KaAd og e1kOveg TIOAU UWnArg avdduong kabwg arateital nposnedepyaocia v debopévav
yla va Iipooappootouv oto KataAAnlo peyebog e10060u (128 X 128 X 3 pixel). H dwabikaoia
autn PIopet va 0dénynoet oe Kakr anodoor), Kabmg xavetat oAUt mAnpopopia amo v
€1KOVA, €181KA O0TaVv 1a MPOoEIa €Viog H1ag €1kovag Bpiokovial og peydAn anootacn arno
MV Kapepa rataypadrs. Autd ednyel xkat to xapndo mocootd Recall (72.56%) kat tov
uywnAo apOpo False Negatives (940) rou nétuxe kata v a§loAdynorn) pag oto UrtoouvoAo
bebopévav g Paong AFLW. Qotooo, 1 niepattépe aglodoynorn tou poviédou BlazeFace oto
ouvolo b6edopévav BiolD eixe wg anotédeopa 100% owotég aviyveuoelg. Aedopiévou ot 1o
niep1BAaAAov Kataypadrg Kat ta XapaKnplotikd 1eov sedopévav oto BiolD eivatl apketd rapo-
powa pe autd oto 61ko pag test Set Sewpoupe o 1o poviédo BlazeFace 9a €xel mapopowa

anodoorn /ocuprnepipopd Kat oto §1k6 pag ouvolo Sebopévamv.

O aviyveutig HOG arotedel ertiong pia adioruotn ermdoyr) yla ty epyacia pag. Me
Bdon ta arotedeopata adloAnyng €ivat 0 o yprjyopog avixveutr)g Kat ermtuyxavel Recall
80% oto urtoouvodo AFLW kat 100% o®otég avixvEeuoelg oto oUvoAo Sedopévav BiolD. Agilet
va onpelwdel g o avixveutrlg HOG €xetl xpnowonoinBel pe ermruyia yia v aviyveuon
TMIPOOMII®V O TIPAYHATIKO Xpovo [37]. Me Bdorn ta anotedéopata 1ou pag mapexoviatl @aive-
Tat ot n ektédeorn) tou aviyveutr) HOG nave os pia GPU prmopei va ermrtuyet taxutnta eneg-

epyaoiag 0.289 ms ava ekova.

Qotooo, évag rpododetog otdx0g g epyaociag pag eivat va Siepeuvndouv uldormoroetg
AVIXVEUTOV aro tov Topéa g Padiag padnong, kadwg ta tout IPU kat GPU propouv va

ETTITAXUVOUV ONHAVIIKA TNV EKTEAECT] TOUG.

Ia toug npoavadepbevieg Adyoug, ermAéiapie va Xpnotonotrjcoupe 1o poviédo Blaze-
Face y1a 1o otadio avixveuong npoooriou. H avadutikn niepiypadr) tou avixveutr BlazeFace

napatifetat oto ayyAko pnpa mg epyaciag.
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4.4 Eyelid-closure detection

MoA1g odorAnpndet 1o otddlo aviyxveuong npooorou Kat Anedet 1o rmAaioo oproYétnong
Eexvdel 1 51adikaoia kaSop1opov Tou rMocooToU KAeloipatog tov BAspdpav. Kdde avipariog
S1a@Epel @G TIPOG TOV TPOTTO IOV AVOTYOKAEIvVEL Ta patia tou. Ot dlapopég ou epgavifoviat
oUXVA a@opouv TNV TaXUTNnId e TV oroia KAEIvouv 1) avoiyouv ta pdatia Kat tov Baduo

ouoiEng (squeezing).

Metpirn Eye Aspect Ratio (EAR)

Ma va ipoodlopiotel MOCO avolXtd n KAsl0td gival ta pdta o pia §e5o0pévn XPOVIKT)
oy, xpetdlovrat €81 onpeia mou reptypa@ouv v 9éon v PAe@dpnv oty ekova: duo
otg yovieg, dUo oto ave PALpapo Kat U0 010 KAT® PAL@apo Om®g @aiveral oto Lxnpa
4.1. Edv autd ta onueia evioriotouv pe akpifela, tote priopouv va agloronSouv yia tov

UTIoAOY10110 pag petpikng rmou ovopaletal Eye Aspect Ratio (EAR) [38].

Figure 4.1. The 6 facial landmarks associated with the eye. Image from [38]

H uun ing petpikng EAR urnoAoyietat aro v diowon 4.1. O ap®untig autig g
e€lowong urnodoyiletl v andotacn Petady TV KAtaKOpueev onueiov (p2,p3,p5,p6), eve o
MaPOVOIAoTAG UTtoAoyilet tv andotaoct petaiu tv opigdvilev opoonuev onueiov (pl, p4).
Ot Tipég rmou AapBavet 1) v AOY® PETPIKT) KUpaivovial Kovid ot T éva otav ta pdtia givat
avoiytda kat rmAnotadet to undév otav ewvatl kAswotd. Ailel va avagepbei emiong ot o Adyog
Slaotacewv (aspect ratio) Tou avolytou patiov £xel pikpr Siakupavorn petaiy S1apopetikmv
avBponev Kat dev ennpeddetal ano Vv KA{paka mg eKACTOTE £1KOVAG KAl TV IIEPLOTPOPT)

TOU MPOOW®ITOU 010 ertinedo.

2 — p6|| + ||p3 - p5
EAR:IIp p6ll + [Ip3 — p5l| @.1)

2 x||pl — p4||

where pl, ... , p6 are the six 2D landmark locations of the eye.




4.4.1 Aviyveuon opoonuav rpoowrou - Landmark detection

Xpnoornoikviag autr) Ty arn £§0wor), PItopoulie va arnoduUyouie MTOAUNTAOKEG TEXVIKESG
enedepyaoiag e1kovag Kat armdd va Baciotoupie oTtov AGY0 TV Ar0OTACERV TV PAEPAPKV Yia
va 1pocdlopicoupe av €éva Atopo avolyokAsivel ta pdtia tou. Ia v avixveuorn v napa-
TIAV® ONPEIRV TTIOU TIEPTYPAPOUV TV Y£0r) TV PAsdpdprv o ka9e pdtt Sa Xpnopono|coupe

£€Vav aviXveutr] OpOCI®V.

4.4.1 Aviyxveuon opoonpav npoownovu - Landmark detection

H avixveuorn opoonpov Ipoo®iou, Voot KAl @G aviXVeuor) XApAKTINPLOTIKOV IIPOCHOITOU,
eivatl n 61adikaocia eviOMOPOU CUYKEKPIPIEVRV ONUEIOV Of €va TIPOO®IT0, OIS Ol YWOVIEG
TOU OTOPNATOG, I AKPN TG PUTNS KAl TO KEVIPO TV Patidv. Ot meplocdtepol aAiyopiopot
aviyxveuong opooueV PoonIou AapBavouv og icodo v 9¢or tou npooomniou. Enopévag,
n 6ladikaocia eviomopoU opooI®V TIPOCKOIIOU eival pia dradikaoia 6o Pnpatwv: eviorio-
HOG NG MEPLOXNS TOU MPOO®ITOU Ot €1KOva, dnAadr] o1 ouvieETaypEveG TOU TAAlGiou opt-
oBétnong, v oroia AapBavel Kal ernegepydadetal 0 aviXveutr|g OpooTH®V. Xto Zxnpa 4.2

paivovtal 6Uo apadetypata avixveuong opooHIGV.
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Figure 4.2. Example of 68-landmark detection on two faces. Image from [39].

4.4.2 Ermoyr aviVveuts OpOCHHGV

H 6euteprn), kat iowg 1 1o Ka9op1oTiKY) yla T0 arotéAeopa, Baoiky) emAoOyr IouU sixape
VA KAVOUE a@opoUoe TOV AVIXVEUTI] OPOCT|HGV.

O aAyopiBpog "Ensemble of Regression Trees" (ERT) [40] Sewpeitat pia anod tg mo
dnpogeig pebodoug yia v avixveuor opoonpav. [poopateg extetapéveg Epsuveg [41],[42]
aglodoyouv ot 0 aAyopiBpog ERT eival éva a§lormoto Kat yprjyopo HOVIEAO aViXVEUONS
0pOONU®V TO Oroio, CUPP®VA JE TOUS OUYYypagelg, ermtuyxavel tayxutnta ernegepyaociag
rnepirou 1 ms ava ewkéva. H uynldn taxuintd enedepyaciag mou mpoo@EPEL 1KAvoriotel 1o

rapadupo pEylotou Xpovou enegepyaoiag twv 2 ms yia v ouvodiky Siadikaocia aviyveuorng.
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Qot600, £KTOG Ao Vv YpHyopn tayxutnta eneiepyaoiag, eivatl e§ioou onpavikod o al-
yopOpog mou Sa ermdeyei va eivatr oe 9éon va mapéxel akpifeig avixvevoelg, €161KaA ya
1a onpeia mou meptypddouv 1 9on v patiwv. I'a 1o Adyo autd, Xproipiorno)oape 1o
oUvoAo Sebopévav BiolD yia va adlodoyrjooupe v akpifeia tov avixveUoemy Irou napayet o
aviyveutris ERT. H a§ioloynorn agopd t) nipo-exknatdeupévr vdoroinon rnou diatibetal péow
g B1BA10O1 KNG avoixtou kadika Dlib [33], n oroia €xel wg £€§060 68 opodoNA MTPOCHOIIOU
(Exnpa 4.2).

H petpikn a§loddynong rnou xprnowporotribnke ovopddetat inter-ocular distance nor-
malized error [42]. H Bdon dedopévav BiolD napéyet etikéteg (labels) mou neptypadouv v
groundtruth 9¢on kade patiov. I'ia k&9 ekova, divoviat ouvoAdika 10 eUyn cuvieTaypévev
(%, y), 5 yia ka9 pdat, ta oroia ernegepyactriKape yid va UTOAOYICOUE TO KEVIPIKO ornueio
yla xka9e patu Eexoplotd. Aviiotolxda, aro 1o oUVoAo TV 68 aviXVeEUPEveV Onpeiov rmou
e€ayet o aviyveut)g ERT, xpnowyionowoape ta €51 onpeia mou reptypadouv v 9éon kade
patou yla va Kabopiooupe eva KEVIPIKO ONUeio. XInv oUVEXEld, OUYKPIVAE TO KEVIPIKO
onpueio autd pe v groundtruth 9¢on kat uroAoyioape 1o o@ddpa yia kade pau exwpilota.
Erur¢ov, unodoyiotke kat o Péoog Xpovog ernegepyaoiag ava ewkova. Ta arotedéopata

niapatiBevrat otov Iivaxka 4.3.

Landmark Detector Right-Eye error Left-Eye error Time per image
Dlib’s 68-Landmark Detector 2.61 % 3.64 % 1.06 (ms)

Table 4.3. The evaluation error metric is measured as the euclidean distance of each
detected landmark to the true (annotated) landmark, divided by the inter-ocular distance
for scale invariance [42].

[Mapatnpoupe ot 0 aAyop1Oog rmapouciacs 1KAvoIo KA anoteAéopata Kabwg 1o opaApa
dev Eemepvd 1o 4% Kal 0 PECOG XPOVOG eKTEAEOTG eival mepinou 1 ms ava eikdva. Erurdéov,
a&ilet va avagepOei 6t 0 adyopiBpog ERT £xet xprotporownBel pe ermtuyia yla tyv aviyveuor)
g 9¢0NG TRV PATIWV O €1KOVEG KAl TOV UTIOAOY10H0 g petpikng Eye Aspect Ratio (EAR)
o€ TPaypatiko xpovo [37]. Me Bdon ta napandve, kpidnke ott o aviyveutrng Ensemble
of Regression Trees (ERT) [40] eivat kataAAnAog yla 1o otadio avixveuong opoori®v otd
mAaiola tng apouoag epyaciag.

H avaAutikr eptypaen tou avixveut] ERT napatiSetat oto ayyAko tpfjpa ing epyaoiag.
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O oto)0g g epyaociag autng ivat ) vAomnoinorn evog ouotrpatog aviyveuong PAspapio-
Hatog o€ IPaypatiko Xpovo. To cuotnpa auto Pnopet va X®piotel o évie diakpita Brypata

1a oroia mapouoiadoviat oto ZxHpa 5.1

Eye-blink detection pipeline

1
1 Step 2 Step 4 :
1 Face detection Landmark detection Step 5 1
! Stepl Steps Landmark detection 1
1 Image loading Face detection ) ]
1 & pre-processing post-processing post-processing 1
| T & EAR calculation .
l npu > BlazeFace > ERT |[—> .
1 Image I
1 1
1 1
1 1
1 1
1

Figure 5.1. Steps of the eyeblink detection pipeline.

[Mapakdt® 9a avadluooupe ocuvorika Kade Prjpa Sexmplotd kat da avagépoupe TG

TEXVIKEG BEATIOTOTION)OE®V TIOU XP1 OO0 0AE Yid Kabéva arno auvtd.

5.1 Poptwon £1KOVOV Kal NPo-enedepyacia

Zv tpgxouoa idtadn, ot e1kdveg ToUu oUVOAOU Sebopévav pag éxouv Siaotaor 640 X 480
pixels. 'OAeg o1 e1kOveg eival grayscale, mpaypa rmou onpaivel 0tt o mivakag rmou aviraplotd
MV POPTI®HEVT e1KOVa £xel 640 X 480 X 1 ewkovootorxeia (pixels). ITptv 6000Uv cav eicobog
oto poviédo BlazeFace, kavovikornolouviat avd batch kat np §idotaoct| toug petatpénetatl o
128 X 128 X 3 (RGB e1xkoveg).

Ia v QOpTeor Kat [po-£resepyacia 1oV e1KOVeV Xprnotporotnfnke n 18A100nkn Python
Imaging Library (PIL). H PIL eivat pia B18A100rkn avolktou Kodika g yAwooag rpoypap-
patiopou Python mou emitpénel v @QOPI®OT), TOV XEIPIONO KAl TNV ATTOONKeUOT TOAAGV
S1aPOPETIKAOV PNOPPOV APXEIDV EIKOVAG.

Ot 81ad1kaoieg POPT®ONG KAl IIPOEMESEPyaoiag Hiag e1kOvag anoteAouv XpovoPRopeg ep-
yaoieg mou propei va daprEécouv €mg Kat 2,7 (ms) avd ewwova. Ta va emtayuyvoupe
autég Tig epyaoieg, ouvdudaoape t PiBAoOnkn PIL pe ) B18A100nkn Multiprocessing tng

Python, 1 omoia srutpérnet tv agloroinon moAdarndov diepyaociov yla mapdAAndn eKtédeon
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O€ TIOAUTTUPNVOUG ETMESEPYAOTES.

[Ma v tapdAAnAn eKtéAeon) epyaociav xprjopornotmoaie tmyv kKAdon multiprocessing. Pool
1 oroia avartapiotd pua opdada diepyaociov. Kade diepyaoia €xetl tov §1k0 g Katavenpevo
XWPO Pvrung Kat extedeitat eviedwg avegapmra. TMvetat xprion g pebédou Pool.map(),
n oroia &é€xetal wg opiopata eva ouvolo dedopévav Katl tov aplfpod v depyaoiov Kabwg
Kal éva oUvoAo ouvaptroerVv rou Ya mpenel va ektedéoetn kKade Sigpyaoia. H pédodog autr)
X®piletl to oUvodo Sebopévav oe UTIOoUVOAQ, e BAoT) TV aplOpo TOV B1EPYATIOV IOV ETUAEYE-
tat Ka9e @opd, kat tpopodotel Eva dladopetikd urtoouvolo dedopévev oe kade pia amno tig
diepyaoieg ou dnuoupyel. Kd9e yevvnpévn Siepyaoia Sa xepiotel ) @optwon kat v
nipoeriegepyacia (aAAayn dtaoctdocewv oe 128x128x3 pixels, HEIATPOIN] 08 XPOUATIKO XOPO
RGB) tou untoouvodou Sedopiévmv Tou g £xel avatebel katl ot ouveéxela da EMmMOTPEYPEL TIG

enegepyaopéveg e1kOveg miow otnv Kupla diepyaoia.

5.2 Aviyveuon IlIpooonwv- BlazeFace

IMa 10 01dd10 TG avixveuong MPOo®ITOU X P OLHONIO0NKE Jila IPo-eKMA1SeUEVE) UAOTIOINOT)
tou poviédou BlazeFace péowm g BiBA00nkng MediaPipe [43]. IMa v Kataokeurn KAt k-
téAeon Tou poviédou, xpnowpornow}Onkav ot BiBAobnkeg Pabiag padnong Tensorflow kat
Keras. Tooo 1o Tensorflow, 6co kat to Keras anotedouv BiBA1001Keg avoiKtoU Kodika Kat
unootnpidoviat oe mAatdpoppeg vAkou IPU kat GPU. ITo ouykekpipéva yia thv UAOToinon
oe IPU xpnowonoujoape v ékdoorn 2.4 tou IPU Software Development Kit (SDK) rou ur-
ootnpidel v ékdoorn TensorFlow 2.4.4. H i6ia ¢kboorn tou TensorFlow xpnoipomnoiOnke
Kat yia v vdornoinon os GPU.

Ta avaAutikd XapaKIPloTIKA TRV EMTITAXUVIOV TTApatifevial 0to ayyAlko Tpnpa g ep-

yaoiag.

5.2.1 Inference ot nat@oppeg vAikou MK1 xat MK2 IPU

[Mpokepévou va emrtaxuvoupe arnotedeopatika to poviedo BlazeFace oe éva tout IPU,
énperne va Adfoupe unidyn pag 81adpopoug apdyovieg arod Toug Ortoioug ermnpeddetatl ) amno-
boorn. Ta XapaKiploTiKA IOV EMTAXUVIOV KAl T0 AOYIOHIKO ITOU XPIOIH0Io0nKe yla v
avarnudn g epappoyng raifouv emniong Paociko pédo oto otadio g Pedtiotoroinong. H
péyiotn duvatr) aglormnoinorn v UMoAOY1IoTIK®V duvatottey evog totrt IPU, 1) BeAtiotomnoinon
g Sraxeiplong g PvHHng Kat r €éAax10Tornoinon g rmKoveviag Petaiy KEVIPIKOU UITOA-

oylot) kat IPU eivat ot 1o kpiotpiot mapAayovieg 1ou ennpedouv v anddoor) 1ou PoviEAoU.

I'a va extedeotetl €va poviedo oe €éva ouotnpa [PU mpénet apyxika va petatpariei o Python
kOdikag ot éva npoypappa-IPU. To Tensorflow kat to Graphcore xpnotornotlouv pia 61-
adikaoia moAAev Bnpdtev yia ) dnpioupyia evog rpoypappatog-IPU. H Siadikaoia avadve-

tat ota akoAouda Prpata:

1. E§aywyn €vog umoAoylotikoU ypa¢ou (computational graph): To Tensorflow

£€ayel évav UroAoy10TIKO ypa@o aro tov rinyaio koedika (Python), o oroiog eivat pa
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avarapdaotact) T@V UTTOAOYIOH®V ITOU EKTEAOUVIAL ATIO TO HOVIEAO.

2. AvdAuon pe xpnion XLA: To Tensorflow xprnoiporiotel évav petayAotiotr] e81kou
oxkortou riou ovopadetatl XLA (Accelerated Linear Algebra) yia va ekteAéoet epdaopata
avaluong nave oty avarnapdotacn tou ypdgou uynlou erunedou. To XLA xpnot-

portoteital yia ) BeATIOTonoinon tou ypddou og UTIOAOYI00UG YPaPHIKAG dAyeBpag.

3. Graphcore XLA backend: To Graphcore xpnowporolei €va nipooappoopévo back-
end XLA yia va ektedel ToUg §1K0UG TOU PETACYNIATIOHOUS KAl BEATIOTOIO|0E1S OTOV
ypago. To mpooappoopévo backend srutpénet oty Graphcore va rpooappodet tig

BeAtiotorooeilg ota e181kA Yapakinplotika v totr [PU.

4. Metatponi ypagou ot scheduled-graph: St cuvéxela, o ypag@og avuototyiletat oe
Pla avanapdotaon ypeaeou xapnAodtepou srmredou rou ovopddetat scheduled-graph.
Autog o scheduled-graph sivat éva mANP®og MPOYPAPHATIONEVO GUVOAO AETTOUPYIOV

ToU Ya €KTEAEOTOUV O OCUYKEKPIIEVT] OELPA.

5. Metagpaon ot npoypappa IPU: O scheduled-graph petappddetatl ot ouvéxela oe
éva nipoypappa IPU, 6rou ka9e kopBog aviukabiotatal and v eKIEAEOT UITOAOY10-

TIK®OV oUVOA®V (compute sets).

6. Movtédo ektédeong BSP: To mpdypappa IPU tporonoteital epattépem o Pop@r) oy
taptddetl pe 1o poviedo apdaAAning extédeong BSP (bulk-synchronous parallel) evog
chip IPU, 10 oroio anoteAeital ano Prpata ouyXpoviopou, avtaAdayrg Se6opévev rat

UITIoAOy10p0U.

7. MetayAwttiotig Poplar: To veoSiapop@epévo mpdypappa XapnAovetat Kat mdadt
£€tol ®ote kade mAakidio (tile) va €xet ) 61kr) ToU €KO00T) TOU IIPOYPAPATOS HE OA®PT)
Brjpata ouyxpoviopou kat ermkowveviag. O petayAettoty)g Poplar (GCD - Graph
Compile Domain) xeipiletat i tedikr) €k6oon tou npoypdppatog os kade tile 1o omnoio:

(a) Extelel read/write povo oe 6edopéva otr tormkn pvrpn tou tile.
(b) IlepiExetl pntég evioAég ouyXpoviopou pe dAAa mAakidia. tiles.
(c) TMepiexet poutiveg ermkovaviag yia v aviadAayr) dsdopévav pe adda miakidua.

8. MetayA®Tttion Kat eKtéAeon: TEAOG, 1O IIPOKUITIOV MTPOYPAPHA TTOU (POPTOVETAL O

rae tile propet va petayAdotriotel pe évav oupPatiko PETAYA®@TILOT Yid va EKTEAEOTEL.

[Mapakat® @aiveral ) ouvolikry) dtadikaoia ng petatpornng (Zxnpa 5.2).
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Extract compute graph from code

High level graph representation of
NN model

Lower compute graph + perform transformations

Low level graph representation of
NN model (TensorFlow XLA/HLO)

Optimizations / schedule

A fully scheduled set of operations to
perform (low level Tensorflow XLA/HLO)

Convert schedule of operations

Figure 5.2. A framework lowering to run on an IPU

Y ouvexela 9a e€nyndouv 61dpopeg teXvikéG BEATIOTONOINONG TTOU XP1OTHono9nKav

yla 1 HEYIoTUToinon eV ermbooenv ndve ot 1peig Pacikoug dfoveg.

Maximizing compute capabilities

[a ) BéAniotn aglomnoinon g enedepyaotikng 10xU0g, 1o peyebog g naptidag (batch
size) émperne va ermAEXTel Pe TPOMO GOTE 10 mapayopevo rpoypappa-IPU (uroAoyiotikog
YPAPog) va X®pdel oty Torikn pvhun v tiles kat va aglornoteitatl ) ene§epyacukn 1oxuUg
tou IPU tout. H anattovpevn pvhun kabopiletal katd ) §1dpkela g PETAyADTIong Kat
artoteAeital and tov Kup1o Kodika (6ndadr) tig mpddelg ypappikng aAyeBpag), 10Ug TAVUOTEG
(Tensors) e10660u/e§060u kat tov KOSKa avtaddayrg debopévav. Eivat onpavuxo va onpet-
®Oel €6® o1 n T tou batch-size mpérnel va mapapével otabepr) Kad’0An ) drapkela ex-
T€AEONG TOU POVIEAOU Pag, S1apopeTika 9a IIPOKUPEL Pid Ve KATAOKEUT]/PETAYyADTIOO0T UTT-
oloylotikoU ypagou (re-compilation). H 6tadikacia petatpornrg tou ninyaiou Koadika oe Eva
nipoypappa-IPU nmapdayet £éva otatikd UTIOAOY10TIKO YPAPO KAl £101 Ol EVIOAEG EKTEAEOTG TTOU
poptwvovtat oto kade tile adAd kat n Katavopr) TOU QPOPTOU ernegepyaoiag eSaptivial dpeoa
ano v Tipn tou batch-size.

H apxikt] pag uAoroinon a@opd tr) eKTEAECT] TOU HOVIEAOU Hag O £va PEYAAO OUVOAO

6edopévav anobnkeupévo ot KeVIpiKY pvhpn. [a v ektédeon Kat ) PeEtayA®TTion tou
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poviédou ypnowpornorOnke n pédodog model.predict() tng PiBA0Onkng Keras kat to IPUS-
trategy API. To IPUStrategy armoteAei pia vniokAdor) tou tf.distribute.Strategy API g B16-
A06rkng Tensorflow yia tnv exktédeon e§aywyrg oupnepacpdtev (inference) oe éva evi-
ailo ouotnpa pe pia 1) neploootepeg ouvdedepéveg IPU. Ta apyikd mepdpata agopouv v
petayAotioon Kat ektéAeon tou poviédou BlazeFace ota MK1 kat MK2 IPU tout kavovtag
xpron dapopav peyebaov batch-size 1,2,4,8,16,32,64,128 oc ¢va ouvolo dedopévav 64000
eikovev. Ta anotedéopata nnapouoidadoviat otov [Tivaka 5.1 yia to MK1 kat otov 5.2 ya 1o
MK2.

Batch_Size Run_time (s) Throughput Time/image (ms) Compilation_time (s)

1 160.483 398.796 2.508 26.8
2 84.241 759.725 1.316 28.3
4 45.19 1416.243 0.706 34.6
8 30.209 2118.574 0.472 38.9
16 21.904 2921.841 0.342 49.1
32 18.696 3423.192 0.292 64.8

Table 5.1. Inference BlazeFace on one MK1 IPU. Run_time is the total time of execution for
processing 64000 images, Throughput (images/sec).

Batch_Size Run_time (s) Throughput Time/image (ms) Compilation_time (s)

1 134.029 477.509 2.094 126.7
2 70.832 903.546 1.107 131.8
4 42.739 1497.461 0.668 139,2
8 25.541 2505.775 0.399 144.7
16 21.291 3005.965 0.333 156,1
32 19.379 3302.544 0.303 236,4
64 14.1394 4526.370 0.221 240,2
128 15.3025 4182.311 0.2391 292.6

Table 5.2. Inference BlazeFace on one MK2 IPU. Run_time is the total time of execution for
processing 64000 images, Throughput (images/sec).

Me Baon ta napanave, BAénoupe ot 1o batch size 32 swvat n péyiotn Tipn mmou propet va
xpnotporoindel yia mv petayAAdtuion Kat ektéAeor tou povieédou BlazeFace oto MK1 IPU
tout. H anéboon tou poviedou (Throughput) eivat ion pe 3423 ekoveg ava SeutepoAemnto
Katl tayvmta enegepyaoiag av ewova 0,292 (ms). H peyadutepn Swadéomun pvhpn wg
beutepng yeviag MK2 tount oe ouykpton pe to MK1 (896 MiB évavii 304 MiB) pag eniétpeye va
Xprnotpornoooujie peyadutepa batch sizes yia tnv petayA@tiion Kat EKTAE0T TOU POVIEAOU.
Ta xadutepa anotedéopata Anednkav yua batch-size 64 srutuyyavoviag ene§epyaoia 4526
ekovev ava deutepoldertto (throughput) kat xpovo enefepyaociag ava ewwdva 0,221 (ms).
Enopévag, to batch size 32 yia to MK1 kat 64 yia to MK2 eivat ta emmdeypéva peyedn kat
o1 TIEpATEP® PeATiotornorjoeig mou Sa avaiudouv ot apovod €pyacia a@opouv autég Tig

TIHEG, EKTOG AV AVAPEPETAL H1APOPETIKA.
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Communication Overhead

O 6¢utepog Kpiolog rmapdyoviag Iou emnPeddel onpavilkd v anodoor eivat 1o KOotog
erukowveviag (I/0) 1ooo yia TG peta@opég Sedopévav petadu Tou Kevipikou urtodoyiotr) (CPU)
Kat g ouokeur|g (IPU), 600 kat g petagopeg 6edopiévav eviog g idlag tng ocuokeurg.
Ot petagopég dedopévav petaiy tou Kkevipikou urodoyiotr) (CPU) kat g cuokeurg (IPU)
npaypatorioovvial péoe denagav PCle, ol omoieg £xouv péytloto apdidpopo eupog {odvng
64 GB/s. Autég o1 peta@opég ival kootoBopeg Kat 11 BeAtiotonoinorn 1oug elval onpaviikn

yla v anoédoon.

IMa v tpogpodoocia tewv Hebopévev OTo P1OVIEAD 1ag ETTIPETTE APXIKA Va SNloupyroouE
éva avuiképevo Dataset pe tv Porbeia tou tf.Data API. To avukeipevo tf.data.Dataset
artotedel pla akodouBia otoxeiwv, omou KA9e oto1KEio avarnapiotatal g evag moAudiao-
tatog tavuotng (Tensor). Tiwa v petagopd tov 6edopévev amod KAl ImPog HPid CUCKEUT
IPU kataokeuddoviat §uo oupég FIFO (FirstInFirstOut queues) mou ovopaloviat IPUIn-
feedQueue xat IPUOutfeedQueue. Ot oupég autég Gnpioupyouviat autdpata otav éva
povtédo kataokeuddetal pe 1 PBAoOrnkn Keras kat kaAeitat to [PUStrategy API yua v

HETayAA®TION KAl EKTEAECT] TOU POVIEAOU.

v niapovoa epyacia e§epeuvnOnkav ouvoAlika t€0oeplg PUINIOEIS TTOU TIPOCEEPEL 1)

B1BA1091kn Poplar tng Graphcore mmou agopouv v petagopd kat diaxeipnon dedopévav.

H npotn pudSpion ovopddetal steps_per_execution kat opilet tov apibpo tov naptidev
(batches) rou eneepydloviat H1abox1KA Kata v eKtéAeon tou poviedou pag. H mposrmidey-
pévn Tar sivat 1, mpaypa mou onpaivel 0t Kata v S1dpKeld g EKTEAEONS TO POVIEAOU
d1aB8alel kat ene€epyadetat povo pia aptiba dedopévav ) @opda Kat otr) ouvexela rtdet arno
1w CPU va tpododotroet Ty eMOPEVH IAptida armo 1 KEVIPIKL Pvhpn. ®<€toviag 1o steps_-
per_execution oe upnAotepn T ONAiVEL TPAKTIKA 0Tl aAAddoupe tov pubpo tpododoaoiag
kat €10t 1o IPU tount AapBavetl rmoAdarAég naptideg Sedopéveov acuyypova. Auto petplalet
10 KOOT0G erukowvaviag petasy mg CPU kat IPU kat Bedtiwvel v 0UVOAKY| arddoor) tou
ouotnpatog. Eivat onpaviiko va avagépoupe oto onpeio autd ott 0 GUVOAIKOG aplBpog tav
naptibwv oto ouvolo dedopévav ennpeddet v T ToU steps_per_execution, kaBwg o rpw-
106 peretl va Sratpeitatl aro v deutepo. H e§lowon 5.1 mepiypdget tr) péyiotn T rou

propet va tedet ot pudpion steps_per_execution:

steps_per_execution,., = (dataset_length/ /batch_size) (5.1)

Agdopévou ot o dataset_length eivar 64000 kat ta batch-sizes eivatr 32 ywa to MK1
Kat 64 ya 1o MK2 IPU tourn, mpoKuUITtetl OTt 1] PEyloty Ty rmou propei va Adfet n puduion
steps_per_execution eivat 2000 kat 1000 avtiotoixa. ®<toviag 1 peylotn duvartr tpn ya
Vv ektédeon tou BlazeFace napatnprjoape avgnorn g arodoong katd 88% yia to MK1 kat

55% yla 1o MK2, oniwg @aivetal otov mivaka 5.3.



5.2.1 Inference oe matpoppeg vAikou MK1 kat MK2 IPU

Device Batch_Size Run_time (s) Throughput Time/image (ms)
MK1 32 8.746 7317.631 0.137
MK2 64 7.99 8010.013 0.125

Table 5.3. Inference results with steps_per_execution = num_of samples / batch-size.
Run_time is the total time of execution for processing 64000 images, Throughput (im-
ages/sec).

Y1 ouvéxela egepeuvrjoape 6Uo pubuioelg oxetkd pe v petagopd kat daxeipion Se-
dopévav evidg tou town [PU. H mpotn pudpion pag smrpénet va yopiocoupe ta miakidia
(tiles) tou IPU tout oe 6Uo opdadeg. H mpotn opdda ovopddetat 1/0 tiles kat extedei ppovo
Aettoupyieg I/0 yia tv avaktnon kat Anyn dedopévav, eve 1 deutepn opdda ovopddetat
Compute tiles xat sivat uneubuvr Povo yla v €KTEAEOT UTOAOYIOP®V. Avtiototxd, To
nipoypappa-IPU mmou goptwvetal oe kade tile xwpiletar oe dvo urmonpoypappata mou ek-
tedouvial tapdAAnAa, éva ya I[/0 kat éva yla unodoyilopouvg. Xto Lxnpa 5.3 napovoiddetat

1] POY| EKTEAEONG TV HUO UTIOTIPOYPAPHATROV.

The IPU-program runs across the entire
IPU

IPU is split into compute tiles and /O
J Z 3\7 tiles
V.

Q- -- e
I[e} I Compute 1
tiles ! tiles 1
T T T Y === S |
1 1 I 11 The IPU program splits into parallel sub-
1 O sub- | I Compute 1 programs. The IIQ sub-program consist
| Program | 1! sub-program 1 of stream copies or copies tolfrom
11 ! Streaming Memory
1 1 1
- = = 1 Ve e oo - o v 1
| 1
! 1
(\ L _/NT -_— s .

Sub-programs sync and join back to a
global program

Figure 5.3. Overlapping I/0O within IPU
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H tpogodooia evog peyddou oykou debopévav aro ) CPU prnopet va audfjoet tv Ka-
Yuotepnon (latency) kat va emnpedost onpaviikd 1) oUvoAlkr) anodoor tou cuotrpatog. H
xpnon 1/0-tiles propei va pewwoet 1o latency, kabwg ot Aettoupyieg petagopag dedopévav
KA1 UMTOAOY10R®V eKtedouvial rapdAAnda kat ave§dptta.

Zupoeova pe ta gyypapa odnywv (Documentation) tng Graphcore [44], i ermAoyrn tou
apiBpou v I/0 tiles mpoxkurmiel eprnelpika KAl propel dapépel avaloya pe 1 @UOTN
MG £PAPHOYNS KAl Td XAPAKINEIOTIKA TOU £KACTOTE POVIEAOU TPog ekTéAeor. ErmmAéov,
avagpepetal pnra ott o apBuog v I/0 tiles mpémnet va ermAextel POCEKTIKA KaBwg Prtopet
va eMNPeAcel ONHIAVIIKA TNV OUVOAIKY] arodoorn tou cuotrjpatog, dedopévou ot ta tiles autd

dev Nropouv va CUPPETEXOUV OE UTIOAOY1OH0UG.

H &eutepn pudnion ovopdletat Prefetch kat emtpénet v nmpo-@optoon dedopévav aro
) KRevrpikt) pviun oto IPU tout. H mpo-poptoon auvtry odnyet oto va urapxouv mavia oia-
9éoa Sedopéva npog enegepyaocia rpwv ta Xpeaotel 1o IPU Kat eMopéveg PEIOVETAL O XPOVOS
avapovrg yia autd. O ap1Bpog t@v 6e80Evav TTOU TIPO-@OPTOVOVTAL EAEYXETAL ATTO TO OploPd

prefect_depth. Opoiog pe mpwv, n tipn tou opiopatog prefetch_depth mpoxurtel epneipikd.

TéAog, Xpnowonotjoape pa t€taptn pudpion rmou ovopddetal asynchronous callback.
H evepyoroinon auvtg g puduiong Surnvaet éva srurdéov vipa (thread) to oroio eivat
Unevbuvo yia v petagopd v enegepyacpéveav dedopévav e§6dou aro to IPU mioe otn
CPU. H pudpion autr] sival Xprnoiin o€ MEPIITIOOELS TTOU XPNOTHOMOlEITal pia PeEYAaAn Tipn
yla ) puduion steps_per_execution kabwg 1 acUyXpovi @OpI®or MOAAATAGV aptidov
debopévav e10060u onpaivetl ot Ya napayBei avtiorotya kat éva peydlo ouvoldo enelepyao-

Hévev debopévav e€680u KAl 1 PETA@OPA AUTOV UIOPEl va eival apketd KootoBopa.

1o rmAaioio g epyaociag pag 61e€nx9n eva nieipapa avalfjinong rAéyparog (grid search)
HE OTOXO0 TV €UpPeOT TRV BEATIOTOV TIHGOV Yia 11§ pubpioeig I/0 tiles kat prefetch_depth. Ei-
val onpaviko va avagepbel ot yia 1o neipapa autd Xpnotpono|fnKav KAmoleg otabepeg
TIHEG Yia oplopéveg pubpiioestg. 1o ouykekpipéva, Xpnotonowoape ) péylotn duvatr) tpn
yia ) pudpton steps_per_execution, énAadn 1000 pe batch-size 32 MK1 IPU kat 2000 pe
batch-size 64 yia to MK2 IPU. Emiong evepyorowjoape kat ) pubuion asynchronous call-
back. Aepeuvrioape ) xpnon 16, 32, 64 kat 128 1/0O o cuvbuaopuo pe v mpoEoPTeor

EVOG £0G TPIOV TTapTidwv dedopévav.

Ot BéAtioteg pubpioeig yia to MK2 IPU towun fltav n) xprnon 64 I/0 tiles kat ipo-@oéptwon
6uo naptidbav dedopévav. H arnodoor) BeAtiwdnke katd 36,5%, oe oUYKPLon e Ta aroteAéo-
pata tou mivaka 5.3, ermtuyyavoviag Throughput 12614 (eikdveg/deutepodertto) kat taxutnta
eneepyaoiag 0.079 (ms) ava ewova. Ot i6ieg pubpioelg €dwoav aviiotolya ta Kadutepa
arotedéopata kat yia to MK1 IPU tout. H antodoon BeAtiodnke kata 28,1%, o oUyKplorn e
ta anoteAéopata tou [ivaka 5.3, emtuyxdvoviag Throughput 9374 (eikoveg/deutepodAernto)
Kat tayumta ene§epyaociag 0.107 (ms) ava ewkova. Ta armotedéopata rapouotalovial otov

ITivaka. 5.4.



5.2.2 Inference otn Tesla V100 GPU

Device Batch_Size Run_time (sec) Throughput Time/image (ms)
MK1 32 6,827 9374.475 0.107
MK2 64 5.074 12614.051 0.079

Table 5.4. Inference results with steps_per_execution = num_of _samples / batch-size,
64 dedicated 1/0 tiles and Prefetch enabled. Run_time is the total time of execution for
processing 64000 images, Throughput (images/sec).

On-Device Inference-Loop Implementation Approach

H apywkr bulk-inference vAomnoinon sivat Xpriotpn o€ MEPUTIOOEIS OMOU €vag PEYAA0G
oykog 6edopévav Ppioketal anmodnKeUPEVOS Ot KEVIPIKY Pvipan. Qotdoo, 1 epyacia autr
OTOXEVEL Otr) Snoupyia piag on-line epapoyng Orou n Kapepa kataypaens da tpopodotet
arteudeiag éva Pikpo apdpod dedopévav (r.x pia aptida e1KOVEV) OTOV AVIXVEUTE] IIPOCOITOV
KAt akoAoudwg otov aviyveutr) opoorjpev. 'a tov Aoyo auto, e§epeuvnOnke Kat avarrtuydnke
pa devtepn vdoroinor (v oroia oto &g 9a ovopalouyie on-device inference loop) n oroia
Srapadet kat enetepyadetal pia povo naptiba debopévav oe Kade emavaAnyn g eKEAEONG
10U Ppodxou egaywyng ocuprnepacpdtwv (inference loop).

Ia v nmpoogyylon autr, xpnowporow)9nke n pedodog tf.function(), mou mpoopépet
n PB1BAo9nkn Tensorflow, n oroia d&xetal pa ouvdaptnon Kodika Python wg €icobo kat
KATaoKeUuAdel évav urtoAoyiotiko ypdgo. H pédodog autr) ouvdudotnke jie 10V HETAYADTIIOT)
XLA yla Vv PEIayADTIon €vog PEATIOTOTIOUPEVOU YPAPOU KAl TV IPOoeyylon on-device
inference loop yta v amodotikn] ektédeon tou oe €va tout [IPU. H mpooéyyion on-device
inference loop extedel enaveldnppéva 10 MAPAYOPEVO HETAYADTTIONEVO YpAPNA O Hid
Hikpr) iaptida dedopévav e106dou, tapdayet ta dedopéva e€6dou kat, oty ouvéxela, {ntd v
eropevn naptidba dedopévov eicodou amo ) CPU. H Stadikacia autr) cuveyifetal péexpt va
urtoBAnSouv ot enegepyacia 6Aa ta debopéva e10660u.

Ia v vdonoinon autr) xpnotwponow)9nkav batch size 32 kat 64 yia T0Ug EMITAXUVIEG
vAwkou MKI1 kat MK2 avtiotoixa. Emiong, n tpr tou steps_per_execution opiotnke oe
1 xaSag eneepyalopaote pia maptiba dedopévav oe kade emavainin tng exktédeong. Ta

arnotedéopata rapouotddoviatl otov mivaka 5.5.

Device Batch_Size Run_time (sec) Throughput Time/image (ms)
MK1 32 7,052 9074.475 0.108
MK2 64 5,558 11514.051 0.08

Table 5.5. On-Device Inference loop results for MK1 and MK2 IPUs, Throughput (im-
ages/sec), Run_time is the total time of execution for processing 64000 images.

5.2.2 Inference otn Tesla V100 GPU

Ia v ektédeon inference oty GPU akolouBrjoape pia nmapopola dadikaocia. Xpnot-
poroiOnke o petayAdotiotis XLA yia v KAataokeur) evog BEATIOTOU UTOAOY10TIKOU YPA(OU

o ortoiog exteAeital péoa os pa tf.function(). H vdoroinon pag akoAouBel v mpoogyyion
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on-devide inference loop omou 1o poviédo pag AapBavel og eicodo pia 6éopn Sedopévav o
Kade emavAaAnyn ng eKTtEAEoN.

H peyaldutepn ouvoAikr) diadéoun pvhpun oto eonteplko g V100 pag emérpsye va
XPNOTHOTIOW)0oUPE Peyadutepa Peyedn maptidmv Katd 1 HETayAdTIon Kal EKTEAEOT TOU
poviédo BlazeFace. Ilpaypatonow)9nkav melpdpata pe peyédn naptideov éng xkat 512 os

€va ouvoAo 6edopévav 64000 eikovev. Ta amotedéopata napouactadoviat otov Iivaka 5.6.

Batch_Size Run_time (s) Throughput Time/image (ms)

32 9.81 6521.81 0.1532
64 5.416 11816,838 0.0846
128 2.792 22968.123 0.0436
256 1.704 37705.264 0.0266
512 0.815 79123.324 0.0127

Table 5.6. Buli-Inference on Tesla V100 GPU. Run_time is the total time of execution for
processing 64000 images, Throughput (images/sec).

Inpewovoupe €80 ot nf GPU eival ikavr va ene§epydletal peyaiutepa peyédn naptibeov
aro ta [PU Adyw tou o1t Srad€tel peyadutepn ouvoldikn pvhpn (32 GB évavtt 300 MiB yia to
MK1 ka1 900 Mib yia 1o MK2). H BéAtiotn anddoon ermtuyxavetat yla to pHeyioto egetalopevo
péyedog raptibag 512.

IV ouvexela eKtEAEOaE TIEPAPATA Y1d PIKPOTeEPa Peyedn naptdav (1 eng 16) yia va
egetdooupe ) kabuotépnon (latency) twv anoxkpioewv tg GPU. Ta anoteAéopata apouotd-

Covtat otov ITivaka 5.7.

V100
Batch size | Latency Time/image (ms)

1 3.724 3.724
2 3.789 1,895
4 3.794 0,949
6 3.873 0,645
8 3.83 0,478
10 3.829 0.382
12 3.866 0,322
14 3.972 0,283
16 4.189 0,261

Table 5.7. Low-latency approach results on V100 Tesla GPU, Latency (ms/batch).

5.3 Aviyveuon I[Ipooonwv Post-processing

To tpito otadio g vldoroionong ag@opd I HEIAPPAOo!] T@V AKATEPYAOT®V Sedopévav
€608wv Tensors tou BlazeFace oe mpaypatikég ouvietaypéveg bounding box rou nepiéyouv
TV MEPLOXT] TOU MPOO®ITOU. Ol EVIOIIOPEVEG OUVIETAYHEVES AVIIOTOLXOUV OTIG EIKOVEG £100-

bou 128x128 £1KOVOOTOIXEIOV KAl EMOPEVOG ETIPETIE VA TIS AVIIOTOXioOUNE KATAAAnAa otig



5.4 Avixveuon Opoornpeov

Sdraotdoelg NG apykng ewkovag (640x480 swkovootoixeia). Autd 1o otadlo exkteAeital arno
1 CPU tou ouotnpatog kat snegepyadetat 6edopéva oe naptideg. O anattoupevog Xpovog

ektéAeong umnoAoyidetal mepinou ota 0,2 ms ava ekova.

5.4 Aviyveuon Opoonpov

To tétapto Prjpa g vdoroinong pag agopd Tov evioImopo opoonpuev (landmarks) ota
TIPOOMITIA TTOU AVIXVEUTNKAV OT0 MPonyoupevo Prpa. Emnopéveg, o avixveutng opooniiev
AdpBavel og €i6060 TG ouvietaypéveg OV MAAIoinv oploBenong kat e§ayel ouvolika 68
onpeia MPOoMOITOU 08 KAYE MPOOKOIT0. Le aUTO 10 Bripa, XPNOoonoOnKe [11a po-eKNa1deUpEvn

vloroinor tou aviyveutr] ERT mou napéxetl ) avoixtou kwdika B18Ao0rkn Dlib.

O ot6x0g g gpyaciag eivat o mpoodloplopodg g petpikng EAR, 6nAadn tou moco
avoltd n kAewotd eival ta pdrta, oe kade Hedopévn XPOVIKI) OTIYHI KAl EMOPEVOS PAG
eVO1aPEPEL KUPIMG O EVIOTIIONOG NG YEong TV patiov. I'a tov Adyo autod, n vldortoinon pag
XPNOLPOMOlEl POVO TG CUVIETAYHEVEG TTIOU AVIIOTOX0UV ot 9éon 1oV patev (6 onpeia oe

kA9e pat - 12 ¢¢uyn ouvietaypévav) and 10 oUVOAO TV 68 evioriopévev onpeiov.

To yeyovog otl 0 Tpo-eKmatdeupévog adyop1Bpog ival ureubuvog yia v rpoéBieyn 68
onpel®V yia Kade e1kova £10060uU, Ao ta oroia Xpe1adopiacte Povo £va UTIooUvoAo, emnpeadet
TNV OUVOALKI) artodoor) tou poviédou addd kat 1o péyebog tou, kabwg rmpémnet va anobnkeuvet
TIEP1OO0OTEPES MTOCOTIKOTIOUIEVESG TIANPOPOPIEG OXETIKA HE TOV TPOTT0 TIPOBAeYng KAde pag
ané auteg TG Yoeig. Ta toug poavapepBévieg Adyoug, XpnotponofnKe Katl pia deutepn
nelpapatiky vdoroinon evog landmark detector (tov ortoio oto €€ng 9a ovopddoupe 12-
landmark predictor) yia tov evtoriopd tewv 12 opoorjpev mou meptyadouv v 9Eon tev
patov. X1o LZxnpa 5.4 gaivetatl n aviyveuorn 68 onpeiov ou pag 6ivel n po-eKnaldeupevn
vloroinorn g B1BA1001kng Dlib kat pia avixvevon 12 onpeiov arno tov 12-landmark de-
tector.

H avaduukn nieprypaer) tou 12-landmark detector mapatiSeviat oto ayyAikoé tpnpa g

epyaoiag.
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Figure 5.4. a) Depicts a detection of Dlib’s pre-trained 68-landmark detector. b) Depicts a
detection from our custom 12-landmark detector. The image is taken from the BiolD dataset
[36]

5.4.1 Ag%10A6ynon aviyveutwov ota ouvolda dedopévev IBUG-300W kat BioID
datasets

Ta v agloddynon 1oV aviXveutov 0OpOCH GOV XP1O1IOIIO|0ape apXKA t0 oUvolo Oe-
dopévev IBUG- 300W kat ) petpiky) Mean Average Error (MAE). Ta anoteAéopata napouoid-

Jovtatl otov mivaka 5.8.

Landmark Detectors Size Train-set error (%) Test-set error (%) Number of landmarks
Dlib 68-Landmark Detector 99.7 MB 6.9 % 6.2 % 68-points
12-Landmark Detector 25.6 MB 2.1 % 4.2 % 12-points

Table 5.8. Mean Average Error (MAE) evaluation

Ta myv nepattépe agloAoynor, og 1pog v akpifela kat v taxvtnid, 1V aviXveutmv
Xpnowornowjoape kat raAt ) Bdon dedopévav BiolD. H perpikn a§loddynong rou xpnot-
porowjoape ovopaletat inter-ocular distance normalized error [42] kat n ouvoAikn 6&t-
adwkaoia mou axkodoubnbnke €xet avadubei oto KepdAawo 4. Ta armotedéopata tng agi-

0Adynong pag napatibovrat otov [ivaka 5.9



5.4.2 TlapdAAnAn extédeon Siepyaoiov os moAurupnveg CPU

Landmark Detector Average error Time/image (ms)
Dlib’s 68-Landmark Detector 3.125 % 1.06
12-Landmark Detector 3.205 % 1.02

Table 5.9. Accuracy evaluation on the BiolD database

5.4.2 ITapaAAnAn exrtédeon Siepyaociodv oe noAunupnveg CPU

IMa v emrayxuvorn g dtadikaociag avixveuong opoor eV Xprotponotrjoape ) BiBAto-
9nkn multiprocessing, tng yAwooag mpoypappatiopou Python, yia v dnpoupyia moA-
AarmAov diepyaotov kat v mapdAAndn ektédeon auvtev oe roAurnupnveg CPU. Kade Siep-
yaoia goptavel Kat ektedel éva avilypado tou aviyveutr]. O apiBpog tov e1KOVQV Tou ertes-
epyaletat kade diepyaoia eivat N/P, orou N opiletal @G 0 0UVOAIKOG aplOpog TV E1IKOVEV
e10060u kat P wg 0o apBpog tov Siepyaciwv ou dnpioupyoupe. Extedéoape mepapata pe
1, 2, 4, 8, 16, 32 kat 64 Giepyaoieg oe éva ouvodo dedopévav 64000 potoypadiov. Ta

anoteAdeopata napouaoiaoviatl otov mivaka 5.10.

Processes Time/image (ms)
N=64000
1 1.059
2 0.563
4 0.316
8 0.157
16 0.089
32 0.071
64 0.060

Table 5.10. Multi-process CPU approach for landmark detection on a sequence of 64000
Jframes

5.5 Post-processing & Eye-blink Detection

To teAkO 0tad10 g UAoToinoNg Hag XPNoHorotel ta onpeia avapopdag mou egayet o
AVIXVUETHS OPOC @V Ylad va umtoAoyioet ) petpiky) Eye Aspect Ratio (EAR). Auto 1o otadio
ouvdudaletat e to otadlo aviyveuong opoonuav Kat ekteAeital mapdAAnia ot CPU pe xpnon

noAAarmA®v dlepyaciav.

'Eva apddetypa 1oV aviyveuoemv 0pO0 @V O £Va aVOlXTO Katl KAEI0TO PATL, Kadng KAt
1 YPAPIKI] AEKOVIOT TV TIHOV g petpikhg EAR otov da§ova tou xpdvou, rapouotaoviat

oto Zxfpa 5.5.
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Figure 5.5. The 6 facial landmarks associated with the eye and eyeblink response plot.
Image from [38]



Kegpalato E

A§loAoynon

Y& auto 1o Repdlalo, aglodoyeital n 0AOKANP®EVE) UAOTIOINOY yia TV aviXVeuor] Tou
IT0000TOU KAEIOIHATOS TV Hatiwv oe kade kape evog Bivieo. H mepapatukn Siatadn rou
Xpnotpormnoteitat ywa ) napovoa epyacia avadvetat oty Evomta 6.1. Ly Evotnta 6.2,
apouotadetal 1 OAOKANP®PEVE UAOTIOiNon KabBog KAl Ta £MTaXUVOHIEVA ATIOTEAEOPATA T@V
eMAEYPEVOV AAYOPIOH®V Yd TNV aviXVveuon MPoonIiou Kat opootieov. Emmifov, nmapouoid-
foupe MG KApakoveral 11 andédoon tou alyopiBpou pe dradopetikd vAiko CPU kat IPU
Kat eriong agtodoyoupe v anodoorn kd9e mAatpopiiag UAKOU IOU XP1o110Iow)0nKe 000V
agopd v kabuotépnorn (latency), v amnodoon (throughput) kat v evepyelakr anod-
6oorn. H Evotnta 6.3 avaduet ) duvatonta eneKTACTHOTTAS TG EKTEAEONG TOU PNatog

aviyveuong npoooIou os oAAarnia tout [PU.

6.1 IIepiparldov Ae§aywyng Ieipapatwv

Ot podlaypagég tou ermtaxuviry GPU Tesla V100 mou xpnowporot)9nke avaivoviat
ov Evéinta 5.2 tou ayyAwkou kepévou. H CPU eivat pia AMD EPYC 7551, g oroiag ot

nipodlaypageg ouvowifovratl otn deuteprn otAn tou [livaka 6.1.

Specification V100 Host

Clock Speed 2.0 GHz

Number of cores 32 (64 threads)
PCle controller PCle 3.0 (128 lines)

L1 cache 32 x 64 KiB
L2 cache 32 x 512 KiB
L3 cache 64 MB

Table 6.1. Specifications of GPU Host AMD EPYC 7551 CPU

IMa v adloddoynon otg miateopueg vdikou IPU, xprowonowoape €va ouotnpa [PU-
POD 16 ka1 éva ouotmpa Stakopiot] IPU-server. To mpwto £xel t€ooepa rack IPU-M2000s
pe 16 tout MK2-IPU O0UVOAIKA TTOU TPEXOUV O KEVIPIKO Hlakop1otr), eve 1o deUtepo eivatl
éva ouotnpa pe 8 kapteg C2 PCle 1o omoio ouvoAika diadéter 16 MK1-IPU tout. Ta Baowka
xapaxkinplotukd v tout [IPU MK1 kat MK2 avaAvoviat otnv Evotnta 5.2 tou ayyAikou

kepévou. H CPU tou ocuotrpatog IPU-server eivat pia Intel Xeon Platinum 8168, eve 1
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CPU 1tou ouotpatog IPU-POD 16 eivat pia CPU AMD-EPYC 7742. Ot ipodiaypagég Kat

yia tg 6vo CPU ouvowyifoviat ot 6eutepn kat tpitn otrAn tou Ilivaka 6.2 avtiotoka.

Specification MK1 Host MK2 Host

Clock Speed 2.70 GHz 2.25 GHz

Number of cores 24 (48 threads) 64 (128 threads)
PCle controller PCle 3.0 (48 lines) PCle 4.0 (128 lines)

L1 cache 24 x 32 KB 64 x 32 KB
L2 cache 24 x 1024 KB 64 x 512 KB
L3 cache 33 MB 256 MB

Table 6.2. Xapaktnpiotikd tov MK1 Host Intel Xeon Platinum 8168 CPU kat MK2 host,
AMD-EPYC 7742 CPU

6.2 Eye-Blink Response Detection

Y& autr) v evotnta 9a oudnIr)ooupEe Ta ATOTEAEoPATA TG EIMITAXUVOTNS TOV EMPEPOUS
Bnudtev tng vAonoinong pag (Data Preparation, BlazeFace, Ensemble of Regression Trees
(ERT)) kabwg kAt v OAOKANPGHEVI] UAOMONOY 1§ £PAPHOYHS Yid TNV aAviXVeUuor ng
petpikng EAR.

6.2.1 POoptwON E1IKOVOV KAl Npo-encepyaocia

Ta apxika PHpata eOPIROoNG Katl MPOEIECEPYATiag TOV EIKOVAOV E10000U eKTEAECTNKAV
artd noAdarnidég Siepyaoieg (processes) oe moAurrjpnveg CPU. O apiBpog tov Siepyaciav
0oploTNKeE va €ival 100g pe tov apibpo tov euokev upnvev g CPU tou ekdotote ouotn)-
patog (ITivakag 6.1 kat ITivakag 6.2). Ta anoteAéopata €mTaxuvong napouotaiovial otov

ITivaka 6.3.

System # Processes time per image (ms) Speedup
Naive version 1 2.6 -
AMD EPYC 7551 (GPU) 32 0.381 6.8
Intel Xeon Platinum 8168 (MK1) 24 0.438 5,9
MD-EPYC 7742 (MK2) 64 0.262 9,9

Table 6.3. Execution time of the combined image loading and pre-processing step for the
host CPUs of our systems.

Ao ta Mapandave arnoteAéopata mapatnPEOUE 0Tl KATAPEPAPE VA PEIWOOUE ONIAVIIKA
TOV AIAlttoUpevo XPOvo eKTEAEONS TV 6UO0 autwv Prnpdteov smrtuyxavoviag eva speedup

petadu 6 kat 10 povadov.

6.2.2 Aviyveuon IIpooonou oe nAat@oppeg vAikou IPU & GPU

[a v avixveuon mpooIiou Xprotponotr|nke to poviedo Blazeface. Ta v avartudn

G APXITEKTOVIKIG TOU VEUP®VIKOU S1KTUoU YprnotponowOnkav ta epyaleia TensorFlow



6.2.3 Avixveuon opoonpev os rioAurtupnveg CPU

v2.4.4 kai n evoepatopevn PBiBAodnkn Keras. Emiong, £yive xprion tou petayAetiotr) XLA
yla Vv €§ayeyn KAt eKTEAEOT] €vOg BEATIOTOTIOMPIEVOU UTIOAOYIOTIKOU YPAPOU Otlg ITAAT-
@oppeg vdikou IPU kat GPU. H aioAdynon Baociletal ota arnotedéopatd tov MApaKAt®

Ulorooswv:

e Extédeon g apxikrg vldoroinong tou poviedou BlazeFace otnv CPU (BA. Evounta
4.5).

e Extédeon tou BeATIOTOMOUPEVOU UIOAOYIOTIKOU ypadou pe Xprjon XLA otoug ermt-
tayuvideg MK1 xat MK2 IPU (BA. Evoungta 5.2).

e Extédeon tou PeATioTonoumnpévou UTIOAOYIOTIKOU ypadou pe Xprjon XLA otov ermi-
tayuvir) Tesla V100 GPU (BA. Evoiunta 5.2).

Ta anoteAéopata apouoiadoviatl otov mivaxka 6.4.

Implementaion Time/Image (ms) Speedup
BlazeFace serial version 32.727 -
MKI1 BlazeFace implementation 0.107 306
MK2 BlazeFace implementation 0.079 414
Tesla V100 BlazeFace implementation 0.0127 2576

Table 6.4. Performance comparison of different implementations of the BlazeFace model.
Speedup is calculated relative to the slowest implementation.

Armo ta amotedéopata ToU IMapandve mivaka BAEMoupe ot ermtuyxdavoupe éva speedup
g tagng tou 305X kat 414X exktedwviag 1o poviédo BlazeFace otoug erutayuvieg MK1-
IPU xat MK2-IPU avtiotoixa. H apketa peyadutepn 6iabéoman pvnun g Tesla V100 GPU
(32GB) pag emetpewe va tpegoupe 1o Poviedo pe peyadutepa batch-sizes (ewg xkat 512).
Auto 0dr)ynoe otV eniteudr) evog Kata 1moAu peyadutepou speedup g taeng tou 2576X,
0€ OXE0T) € TV aPX1KI] OE1P1aKY EKTEAEOT] TOU poviedou ot CPU. H meplopiopévn pvipn tov
MK1-IPU (312 Mib) kat MK2-IPU (918 Mib) tout pag meplopidel va Xpnot0mo)coupe ap-
KETA MIKPOTEPA PEYED TapTidmV 1KOVAV (32 kat 64 aviiotolKa) Kabog yia PeyaAUTepeg TIHES
fitav aduvato va petayAAetiotel 1o poviédo pag kat va tapaxfet o anapaitntog otatkog ur-

0AOY10TIKOG YpAdOog yia ektéAeorn ota IPU tourn.

6.2.3 Aviyveuon opoojpeVv oe noAunupnveg CPU

IMa v extédeon tou aviyveutr] Ensemble of Regression Trees (ERT) akoAoubrOnke pa
data-parallel ipooéyyion pe ) PorBeia tng P1BA106r)kng multiprocessing tng yA®ooag ripo-
ypappatiopou Python kavoviag xprjon moAAamdov diepyaoidv (processes) o€ TIOAUITUPIVEG
CPU (BA. Evomta 5.4.2). Zrov Ilivaka 6.5 rmapouociadoviatl ta arnotedéopata g apxXikng
og1plaKkng vldomoionong Kabwg Kat ta arotedéopata Ing EIMTAXUVOLEVNS UAOTIOONG e

XPr|o1n OAAATIAGV Slepyaciov.
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System # Processes Time/Image (ms) Speedup
Original serial version 1 1.06 -
AMD EPYC 7551 (GPU) 32 0.071 14,9
Intel Xeon Platinum 8168 (MK1) 24 0.078 13,6
MD-EPYC 7742 (MK2) 64 0.06 17,7

Table 6.5. Performance comparison of original sequential landmark-detection algorithm
with the multiprocessing-accelerated version. Speedup is calculated relative to the slowest
implementation.

6.2.4 Amnotedéopata odoxrAnpwpévng vdonoinong ywa Eye-Blink Response
Detection

H ouvoAkn Sadikaoia aviyveuong prnopet va xopiotel o 1pia xpovofopa PBrpata:

1. Poptwon, Anokwdikonoinon Kat nposnefepyaocia e1kovag: Ot e1kOVEG €ival aro-
Onkeupéveg oe poper) JPEG oe évav okAnpod dioko SSD (Solid State Drive). KdaSe
£1KOVA AVAKTATAl, ATIOKOO1KOTIOEITAl KAl PETATPETETAT O POP@T) TTivaka Tov 128x128x3
ewkovootoiyeiov. Kavoupe xprion modlardov Siepyaciev yia v rapdAAndn ered-
gpyaoia kade naptibag dedoptvav e10odou. H tayutnua ene§epyaoiag uroAdoyidetat
niepinou wg 0.4 (ms/ekova) yia 1 Intel Xeon Platinum 8168 CPU (MK1 Host), 0.3
(ms/ewova) yia v CPU AMD-EPYC 7742 CPU (MK2 Host) kat 0.4 (ms/ekdva) yua
wm AMD EPYC 7551 (GPU Host).

2. Face Detection oe IPU kat GPU: H CPU tpo@godortei ta npoenedepyaopéva dedopéva
OTOV EIMTAXUVTY], 0 0r10iog ernegepyadetal aptideg e1KOVOV KAl EIMOTPEPEL TA EVIOTIO-
péva rmiaiola oprobétnong (bounding boxes). H tayutnta enefepyaoiag rmou emruyyxavet
1o MK2 IPU tount eivat 0.079 (ms/s1kéva) pe batch size 64 eve to MK1 IPU tout 0.107
(ms/ewova) pe batch size 32. TéAdog, o xpovog exktédeong oty GPU V100 Tesla pe

batch size 512 sivat 0.013 (ms/skova).

3. Landmark Detection: To Brpa tng avixveuong opoonuev GEXETAl TA EVIOIIOPEVA
mAaiola ektedeitat eriong rapdAAnla ano rmoAdarAég diepyaoieg oe moAunupnveg CPU

Kdal 0 Xpovog ektedeong Kupaivetal petau 0,06 - 0,08 (ms/e1kova).

Ta napanave Prpata exktedovviatr dadoxikd oe €va ouvodo 64000 ewkoveav. O apt-
Spog 10V diepyaoiov eival icog pe tov peyioto apbpo twv Siabéopev ruphveav kade CPU.
Ta anoteAéopata g EKIEAE0NS OAGV TOV IMOAVAOV CUVOUAOH®V T®V POVIEA®V 1AG KAl TOV

mAQTPOoPHOV UAIKOU Tapouctadoviatl otov mivaka 6.6.



6.2.5 Emnidoorn vAwkou yia Low-Latency arokpioeig

Hardware Landmark model Time per image (ms)

MK2 IPU 68-point 0.712
MK2 IPU 12-point 0.694
MKI1 IPU 68-point 0.761
MKI1 IPU 12-point 0.731
Tesla VIOO 68-point 0.642
Tesla V100 12-point 0.603

Table 6.6. Anotsjlcouara 1wV CUVSUATUEVOV EGapUOY&U aviyveuong tou BAsepapiopartog.

H smteupévn tayuinua ene§epyaciag tng OAOKANP@HEVIG UAOMOioNg ot 81agopeg
mAatpoppeg UVAKoOU umnodoyiletal nepinou ota 1441 FPS owumyv MK2-IPU, 1367 FPS ouv
MK1-IPU kat 1658 FPS otwv Tesla V100 GPU. 'OAgg o1 mapandave tayUTnIeg KAVOITO10Uv
Vv apXKr anaitmorn v 500 FPS.

6.2.5 Emnidoon vAwkou yia Low-Latency anorpioetlg

H oAdoxkAnpopévr vlornoinor a§lodoyndnke mepattépm Katl yia TG Ipetg mAatdpopiieg UAIKOU
EKTEAOVIAG TIEPANATA PE PIKPOTepa Peyedn naptibwv. Ot petpikég aglodoynong eivat n Ka-

Yuotépnon, n anoboon Kat 1 EVEPYEIAKT] KATAVAA®OT.

KadSuotépnon (Latency)

H xabuotépnon petpiétatl oe X1A100td 10U HeUTePOAETIou avd naptida. AVUIpooeUet
TO OUVOAIKO XPOVO ITOU aratteital yla ) Anyn tov anoteAeopdtov aro éva batch. H ka-
Suotépnon neprlapBavet v §ay®yr] CUPMEPACHAT®V KAl TNV AVAKTNOT NG £5§060U aro )

OUOKEUT).

An66oon (Throughput)

H Anddoorn (Throughput) petpatal oe 1KOVEG avd SEUTEPOAETTTO KAl MTPOKUITIEL ATIO TI)
HETPnon 10U Xpovou Kabuotépnong Kat to batch size. Autr) 1 PETPIKY AVUITIPOORKIIEVEL TO
poptio 1ou propei va draxelpilotel 10 UAIKO yia pia epappoyn Iou XProlpornotel povieda

Babidg padnong.

Zta Zxnpata 6.1 kat 6.2 nmapouoiadovial ta anotedéopata oXETKA Pe v Kabuotepnon
(latency) kat v amnodoon (throughput) mou mapouciacav ot srmutaxuvvieg. ErmAégape va
Xpnotpornowooupe pikpa peyedn batch-size (1, 2, 4, 6, 8, 10, 12, 14 kat 16) yua ta
nelpdpata pag kabwg ouyva srmdéyoviat yia v avdrntudn real-time epappoyov [45]. Ta
aroteAéopata mPoEKuYayv aro tyv ektédeorn 1000 smavaAnwemv ave§aptnta aro 1o péyebog

naptidag.
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Figure 6.1. Latency results comparison for MK1, MK2 and V100
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Figure 6.2. Throughput results comparison for MK1, MK2 and V100

Amo ta napandve dtaypdppata napatneoupe ot toco ta totrt MK1 6co kat ta tout MK2
IPU £xouv kaAutepeg embO0eIg 000V A@OPA TV KaBUoTEPN O Kat v arodoor yia pikpotepa
batch sizes (1 ¢wg 8) oe ouykplon pe v GPU Tesla V100, omou dsv mapatnpeitat onpav-
KN augnor) g kabuotépnong éco auddvetat 1o batch size. Qotdoo, yia peyalutepa peyedn
naptidev (8 eng 16), n GPU V100 katdgepe va genepdoet 1o chip MK1 IPU, evo to chip MK2
IPU niétuxe v uynidtepn arnodoon (throughput) kabog kat ) xapnAdtepn rkabuotépnor).
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Katavadwon Evépyelag

H evepyelakr) KatavaAeor eival évag onpuavilkog rmapayoviag yia v a§loddynon pag
mAatpoppag vAikou. I'a v napakodovudnorn g Katavaimong evépyelag piag povadag IPU
n Graphcore ripoopépet 10 epyaleio ge-monitor. To avtiototxo epyaleio yia tv mapakoAoudnon)
pag GPU ovopadetat NNVIDIA SMI.

Evepyelarn Anodoon

H evepyelakn anodoorn petpatal oe e1KOveG avd deutepoderto ava Watt. Avurnpoowrnevet
TV EVEPYELAKI] ATIOTEAECHATIKOTNTA Hlag MAatpoppag UAkou. H katavdadwon esvépyelag
petpatal o S1apopeTIKEG XPOVIKEG OTIYHEG KATA v diapKela tou inference kat urtoAoyidetat
0 péoog 0pog. H evepyelakr) mpoxurttel arno v anodoon (throughput) kata v diapkrela

eKTEAeONG Slalpovpevn He 1) PEOT KATavaA®or.

Energy Efficiency
MK1 MK2 V100

1 4,74 8,02 4,62
2 8,45 14,86 13,2
4 15.61 24,97 21,97
6
8

Batch size

18,85 29,48 28,16
20,96 37,07 36,68

10 22,06 42,51 45,18
12 25,01 44,66 45,80
14 27,27 46,53 48,94
16 27,58 51,05 48,96

Table 6.7. Energy efficiency (images/sec/watt) for IPUs and GPU

Am6 oV Iapandve mivaka mapatnpoUpe OTL KAl Ol TPELG TTAATQOPHES UAIKOU yivoviat
1o anodotikég 600 audavetat 1o péyedog tou batch-size. BAeroupe ermiong ot 1) evepyelaxs)
anodoorn g povadag MK2 IPU eivatl ouykpiown pe autr) tng V100 GPU. Aro tv dAAn 1o
npatng yveviag MK1 IPU €xet acio9ntd xapnAotepn evepyelakn anodoor).

6.3 Hardware Scalability

6.3.1 ExtéAeon tou poviédou BlazeFace oe moAAanAég povadeg IPU

To povtédo aviyveuong npoooriou BlazeFace amotedel éva apKetd ypryopo KAl HIKPO
HOVIEAO 000V a@opd TO ATOTUNOUA NG AMAITOUHEVNS PUVAKNG, HE Aly0 MEPLOCOTEPES ATIO
ekato yadeg mapapérpous. To poviedo BlazeFace pmopet va petayAdetiotel kat va exte-
Aeotel amno éva IPU tout kat enmopévag propet va epappootei pia data-parallel poogyyion
yla Vv eKTEAEOT] TOU PoViEAou pag oe rtodAariAég IPU. O xprnotng mpénet va pubpioet apyika
Tov mapayovia avuypagng (replication factor) yia va opioet 10 mAnSog tov Siapopstikov

povadwv IPU mou 9a xpnotpornonBouv. v oUVEXELD O MNyaiog KOdika petayAotidetat
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yla va napayxBei o uroAoylotikog ypadog (mpoypappa-IPU) kat goptovetatl otig oAAaTAEg

povadeg IPU.

IMa va paypatornoinOet autod xpnotpono)fnke pia Asttoupyia ekkivnong Multi-instance/Single
host katd v omoia ekkivouviatl moAAamAd aviiypada tou Kodika pag otov 1610 Kevipiko
dlakopiotn) pe wv xpnon g mpirun. Kade instance AapBavetr kat enefepyadetatl eva 61-
APOPETIKO UTIOOUVOAOU Sebopévav kat Stabétetl evav Sexwplotd petaydwtuotr] (Graph Com-
pile Domain - GCD). Enopévag, kd9e instance/replica tou BlazeFace otnv ekaotote povada
IPU Aettoupyet autovopa kat ta enegepyaocpéva dSedopévou e§d66ou arootéAdoviat rmiom otov

Kevipké urodoyiotr) (CPU) §exopilota (Zxfpa 6.3).

==zl
=

, [rovaoo FRRRRE

HOST O

Process 0 |« | infoutfeeds | pojicag

Process1 |« > Replica 1l

ProcessN |« > ReplicaN

HOST 1

Process 0

Process 1

ProcessN |« » Replica 2N

Figure 6.3. Multi-instance replication

A%l0doyoupe v RApPakeopotta g arnodoong tou poviédou BlazeFace pe moAAaria
instances oto IPU-POD16 cluster pe 16 tout IPU MK2 kat oto IPU-Server cluster pe 16
tout IPU MK1. To test-set pag mepiExet 64000 1koOveg KAl KAYE AVIiypA@O TOU [1OVIEAOU
pag 9a enegepyaotel éva UnooUvodo ekovev ico pe 64000 / number_of instances. Ta
anotedéopata @aivoviat Xto Lxnua (6.4 gaivetal n KAPAK®OL g artodoong oe oxEon e

tov apduod tewv povadev IPU.



6.3.1 ExtéAdeon tou poviédou BlazeFace oe moAAarAég povadeg IPU

Speedup compared to single instance

2 4 6 8 10 12 14 16
Instances / Replicas

(a)

Speedup compared to single instance

é All (Ii é 1|O 1|2 1|4 1|6
Instances / Replicas
(b)

Figure 6.4. Multi-instance Speedup for a) MK1 IPU-Server with 16 MK1 IPU chips and b)
MK2 IPU-POD16 with 16 MK2 IPU chips

Me Bdon 1a napandave, 1 anddoorn @aivetal va KATPAKOVETAL 0XE60V YPAPIKA OE OXEOT)

He tov ap1buo v povadev IPU.
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6.3.2 EAaG)10Totl anaitoUpevol NOPot UAIKOU Nou NMANPOUYV Tig Npodraypaisg

H mAfjpng vldoroinon arotedeital and mnévie otddia: Qoptworn ekovag/mpoerneiepyacia
(ILP), avixveuon nipoowriou (FP), aviyxveuorn npooornou-peterneepyaoia (FDPP), aviyxveuor
opoonpou (LD) kat urtodoyiopog EAR (EAR). To otddio tng aviyxveuong mpoomnou exkteAeitat
oe pa mateoppa vAikou IPU 11 GPU, evo ta uniddouna otnv kevipiky) CPU. Ta Bryjpata ILP
rat LP urtoAoyidovtat pie ) Xpnon roAAarA®v d1epyaciav. Qg €K TOUTOU, 0 GUVOAIKOG XPOVOS

avixveuong g andkplong tou PAspapiopatog propei va oplotel og £§ng:

time = ILP + FD + FDPP + LD + EAR (6.1)

Mua tayxumnta aviyveuong 500 FPS 1coduvapei pe péyioto xpovo aviyveuong 2 ms. Qg
€K TOUTOU, Mpaypatornonoape Sidpopa MePApPata Katl otig TPEIg MAATQOpHeS UAIKOU yid va
Bpoune 1o eAddxioto anartoupevo batch-size kat tov apdpo diepyaoidv ou 1IKAVOIto1ovv v

anaitnon xpovou ektédeong < 2 ms. Ta arotedéopata napouvoialoviat otov ITivaka 6.8.

Device Host Processes batch_Size time/image (ms)
MK1 Intel Xeon P. 8168 8 10 1.744
MK2 AMD EPYC 7742 4 8 1.536
V100 AMD EPYC 7551 6 10 1.698

Table 6.8. Ejldayiotol anaitovpusvotl mopot uAukoU yia ektéjleon o€ ypovo <2ms)



Ke¢palaio

Analyzing Performance of IPU and GPU Platforms
for CNN-Based Model Training

Yo Kepddao 5 SiepeuvnBnke n €rmraxuvon ToU aviXveutr) npoowrniwv BlazeFace oe
U0 Srapopeuikeg mMAatpoppeg vAwkou (IPU, GPU). T'a v Siadikaoia e§aywyng ouprnepao-
patev (inference) emAex9nke va xpnoporonOel pia mpo-eKkmatdeupévr) vlomnoinorn Kadbwng
n exnaideuorn evog robust Kal AMOTEAECHATIKOU AVIXVEUTH €ival pia oAU Xpovofopa Kat
anartnuiky [23] [46]. Ze autd 1o kepadato Sa Siepeuvrioajie Kal Kat 9a CUYKPIVOUPE TIg
duvatdnieg v Sabéopwv emraxuviov UAikou (IPU, GPU) oy dadikaoia exknaidsuong

evog poviedou CNN Baociopévou og e1KOVEG.

Ia tov Adyo autd kataokevudaoape €va melpapdatko end-to-end training pipeline tou
poviédou BlazeFace pe Baon v nmpetotunn epyaca [10] kat ekteAéoape mepapatia yla va
ouykpivoupe tig duvatotnteg tov S1adéopnv ermraxuviov vAwkou (IPU, GPU) oty diadikaoia

eknaideuong evog poviédou CNN.

7.1 YAomnoinon

7.1.1 Ascdopéva

Ia v exknaibevorn tou poviedou BlazeFace smAéx9nkav 6o ouvoda Sedopévav. Ap-
XKA xpnolponoirjoape to ouvolo dedopévov FDDB [47] 10 oroio amoteAeital aro 2845
€1KOveg Kat reptypadet 5171 npoowria. To 6evtepo ouvodo Sedopévav ovopadetat 300W-LP

[48] o6mtou 0 oUVOAKOG ap1Bog detypdtov avépyetal ota 61255.

7.1.2 Aoylopiko

IMa v KATaoKeUr| TG APXITEKTOVIKEG TOU POVIEAOU KAl TNV eKTAideuon oe mAAtpopesg
vAwou IPU kat GPU ypnowonowjoape tg PiBAoOrkeg Tensorflow kat Keras. ITo ouy-
KERPIPEVA yia v eknaidsuon tou poviedou oe tout [PU xpnowonowoape 1o Poplar SDK
v2.4 krat n PBAoOnkn TensorFlow v2.4.4. H i6iwa €ékboon tng B1BA106nAng TensorFlow
Xpnotpornow)fnke kat yla ta rnepapata oty V100 Tesla GPU.
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7.1.3 A%10A0ynon anoteAcoPRATOV

H exnaidsuon tou poviédou npaypatono)fnke yia 150 eroxég oto ouvodo Sedopévav
FDDB kat yia 100 eroyég oto ouvodo dedopévav 300W-LP. Eival onpaviiko va avadpepOet
ot xpnoworo)fnke pia kapta C2 PCle, pe §Uo ocuvdedepéveg MK1 IPU, yia v eknaideuon
TOU PovieAou pag kabog n tr) tou TDP (250 W) cupBabidet pie autyv tev serutayuviov MK2
IPU ka1 Tesla V100 GPU. Ta amoteAéopata rapouotddovial oto Zxnpa 7.1 kat oto Lxnpa
7.2 yia ta ouvolda 6edopéveov FDDB kat 300W-LP avtictoiya.

2000 - 2XMK1 IPU
—e— Tesla V100

1750 A

1500 A

1250 A

Time (sec)

1000 A

750 4

500 1

250 4

2 3 4 5 6 7 8
Batch size

2000 A —eo— MK2 IPU
—e— Tesla V100

1800 A

1600 A

=

'

o

o
1

1200 A

Time (sec)

1000 A

800 A

600 -

400 -

2 4 6 8 10 12 14 16
Batch size

Figure 7.1. Training time of BlazeFace model on the FDDB dataset. (top) The results for

various batch sizes on V100 GPU and MK1 IPU chips. (bottom) The results for various batch
sizes on V100 GPU and MK2 IPU chips.
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Figure 7.2. Training time of BlazeFace model on the 300W-LP dataset. (top) The results
for various batch sizes on V100 GPU and MK]1 IPU chips. (bottom) The results for various
batch sizes on V100 GPU and MK2 IPU chips.
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Armo ta napandve dlaypdppata mapaineoupe ott Kal ta 6uo toun IPU uneptepouv tng
V100 Tesla GPU. ITio ouykekpipéva, 1 enidoorn tewv IPU yla pikpd peyédn naptidov (batch
sizes) eival ca@mg avetepn aAld akopa Kat yla peyadutepeg TIHEG 10 diktuo ekmaibevetat

oxedoV OT0 1100 Xpovo oe ouykplon pe v GPU.

Yta nelpapartd pag, mpaypartornorjoaple emiong Sokipeg pe peyaiutepa peyedn naptidev
yla v eknaidsvon tou poviedou pag oty GPU Tesla V100, kabmg ipoodEpet peyaAutepo
00O OUVOAIKNG Pviiing o ouykptor pe ug IPUs. TMa v eknaidevon ot Baon 6edopévav
FDDB, xpnowponotrjoape peyedn naptidov eéog 64 kat éng 128 yia ) Bdon Sebopévov
300W-LP. Mia Aermtopepni§ mapouoiaor t@V aroteAeopdiav g eknaideuong propeite va
Bpeite otoug mivakeg tou mapaptipatog A.1 xkat A.2. Autoi o1 TIiVAKEG TIEPIEXOUV KATIOEG
PO0OeTeg MANPOPOPIEG OYXETIKA 1€ TOUG OUVOAIKOUG XPOVOUG TaxUtntag eKkraideuong (xpovog
avda emnoxyr], Xpovog avad Brnpa), kadbwg Kat v ermrtuyxavopevr anoieia (loss) kat tnv anoisia

emkupwong (validation loss) yia kade exktéAdeon.

H unepriapaperpog batch size ernpeddel onpaviikd my eknaidsuon evog PovieAou Kat
9a mpérnet va e€etdletatl IPOooeKTIKA Pe PAOT Ta e181KA XAPAKTNPIOTIKA TOU EKACTOTE CUVOAOU
d6edopévav, TNV apXITEKTOVIKY TOU POVIEAOU Kal TOUG 51a0£01110UG UTTOAOY10TIKOUG TTOPOUS.
H xpnon peyaAutepou peyédoug naptidag propei va 0dnynoet o o otabepa Baprn (weights)
KAl taxutepn ouykAlon (convergence) [49] [50]. Auto ogeidetal oto yeyovog Ot éva peyaAutepo
Héyebog naptidag ermtpénel otov aAyopldpo BeATioTonoinong va XPnoonolEl IEPIOCOTEPES
mAnpogopieg amnod ta Sedopéva eknaideuong yia Tov UITOAOYIOHO TG OUVAPTIONG AMTWAELAG OF
OX£€0T) He T1g IaPpAEIPoUg ToU HovieAou. Me neploodtepeg Anpodopieg, ta peyédn mou um-
oloyilovtal ivat mo avurpooeIEUTIKA G IIPOG TNV MPAYHATIKY] UMTOKEIPIEV] KATAVOUT] TV
dedopévav kat Atydtepo euaiodnta otig Tuyaieg H1aKUPAVOELS, YEYOVOG TTOU PIopet va odnyr)-
O€1 O€ TI0 OTaBePES EVIHEPMOELS TV PAPWV £VOG POVIEAOU. Q0TO00, UTIAPXOUV KAl Oplopéva
pelovektpata otav xpnotpornotouvial peyadutepa peyedn naptidov, onwg n avaykn ya

MEPLOOOTEPT] PVIHI KAl TIEPIOOOTEPOUG UMOAOY10TIKOUG ITOPOUG.

A6 v aAAn mAeupd, ta pikpotepa peyedn naptidev odnyouv oe CUXVOTEPES EVIHEP®-
0€1§ PapoVv EVOOPAT®VOVTAG IT0 TTOIKiIAEG TTANpodopieg oto poviédo, aAda propeti va odnyn-
oouv og 1110 YopuPadet Bapn, kKabBiGg kKade aptida AVIIIIPOOEITEVEL POVO €va HIKPO Selypa
TOU OUVOAIKOU OUVOAOU 8edopévav Katl PImopel va UIOKETAl o Peyaduteprn petabAntotnta
detypatoAnyiag. ErmumAéov, éva pikpotepo péyebog maptidag propet va odnynoet oe o
Opaotikég aAdayég ota fAapn Kat Popet va anattel mo ouyveg IpooapHoyEG oTov aAyopiOpio
BeAtiotonoinong (optimizer). I'a mapadetypa, oplopévol aAyopiBpiot BeAtiotornoinong, Oornwg
0 SGD [51], amodidouv kaAuUtepa pe Pikpd peyedn naptibev, eved diAot, onwg o Adam [52],

propouv va S1axelplotouv Kat peyaiutepa peyedn naptidov.

Eivat onpavuko va onpewbetl oto onpeio autd Otl, €Ktog amod i) PeAtiorornoinorn tou
ouvoAou dedopévav el1006ou tf. Data.Dataset kat ) petayAottion pe XLA, 6ev paypatonowrjoape
rapia dAAn Aertopepr] pUYHION TV UNEPTIAPAPETP®V OTa TIElpdpata ekrnaibeuong (rt.X. op-

timizer, learning_rate k.Am.). O 010)0g T®V MEPAPATOV TTOU ITpaypatonowdnkav eivat va


table:fddb-training
table:300w-training

7.1.3 A§l0A0ynon arnotedeopdatmv

ouykpivoupe v anodoor g exnaidevong oe ka9 mMAatpoppa 6cov agopd TV TaxvtnTd

eKTEAEONG.

H xpnion peyadutepnv peyebov naptidov eixe og amotédeopa MoAU KaAutepeg €rmdo-
oeig ot V100 Tesla GPU. Ot GPU eivat BeAtiotornoinpéveg yla mapaAAnAiopo Kat uynar)
arodoor), YEyovog Iou 11§ Kab1otd KataAAnAeg yla yprjyopr eneiepyaocia peydiov naptibov
6edopévav. Qotooo, kabwg peldvetal 1o peyebog ng aptidag, n emPBapuvor) mou ouvdestal
He ) ouvexr petagopd dedopévav kat ) Saxeipion tng Pvnpng Uopst va yivel apketd

€vtovr) Kat va odnyroet oe XapnAotepeg emdooeg.

O1 IPU, a6 v dAAn mAeupd, arnodidouv kadutepa oe pikpd peyedn naptidov. Ocw-
poupe 6Tl auto ogeidetal oy distributed apyitektoviky) Toug, 1 oroia €ivatl BeAtiotomno-
Bévn yla nipdgetg mvakev kat high band eruxkowvovia upndng taxutntag Petady 1oV ototyeimv
enegepyaoiag (r.x. I/0 tiles, IPU exhange fabric). Auto ermtpénet otg IPUs va xpnot-
HOIIO10UV AroTEAEOHRATIKA TOUG MTOPOUS TOUS KAl va £Ie§epyadovial armoteAeOpatiKa PIKPES
naptibeg debopévav, pewwvoviag mapdAAnda v emPdpuvorn PVHPng mou ouvdéetal pe

peyaldutepa peyedn naptidov.
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Chapter E

Introduction

In recent years, the research and development in Al, and more specifically its subset
Machine Learning (ML), has gradually increased, spreading in several discipline fields. ML
consists of several algorithms and paradigms, in which the most impactful ones are brain-
inspired techniques. Among these, one that is based on Artificial Neural Networks (ANNs)
has overcome the human accuracy, namely Deep Learning (DL) [5]. The DL techniques
have shown many advantages over previous techniques, on the ability to work directly on
raw data in large quantities.

These networks are called Deep Neural Networks (DNNs) and have achieved great suc-
cesses in various research topics such as computer vision, natural language processing,
speech recognition. Among those topics, computer vision tasks such as image classifi-
cation [6], object detection [7] [8] and image segmentation [9] have attracted increasing
research interests due to the potential in a wide range of real-world applications like au-

tonomous driving, human-machine interaction and medical image analysis.

However, these applications often require vast amounts of data and compute resources
for both training the models and deploy inference tasks. The traditional CPUs, which are
considered the backbone of computational power, are often inadequate for handling effi-
ciently the scale and complexity of these tasks. Therefore, there is a significant demand
for better hardware accelerators that can handle the computational demands of these
applications. In recent years, the GPU and IPU have emerged as popular hardware accel-
erators for Machine Learning and Deep Learning tasks, due to their ability to parallelize
computations and perform matrix multiplications at high speeds. In this context, evaluat-
ing the performance of the available hardware accelerators is critical for the development
of effective and efficient Machine Learning and Deep Learning applications that can han-

dle the computational demands of the future.

In this thesis, we aim to evaluate the performance of GPU and IPU harware platforms
by deploying Machine Learning algorithms and Deep Learning models in both inference
and training tasks. To evaluate the inference task, we developed a real-world applica-
tion for eyeblink-conditioning, which involves detecting the closure of eyelids across time,
using solutions from the ML and DL fields. This is a critical task in neuroscientific re-

search, where eyeblink-conditioning experiments are frequently used to study the neural
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processes underlying learning and memory. By automating and accelerating the eyeblink
response detection process, we aimed to achieve real-time processing speeds and enable
neuroscientists to adjust conditioning experiments in real-time. For the training task,
we constructed an end-to-end training pipeline for a CNN image-based DL model called

BlazeFace, which is a face detection model developed by Google [10].

1.1 Motivation

Classical conditioning is a learning process that occurs through associations between
an environmental conditioned stimulus (CS) and a naturally occurring unconditioned
stimulus (US). One of the most famous examples of classical conditioning is Pavlov’s
experiment with dogs [53], in which the dog salivates in response to a bell tone. The con-
ditioned stimulus (CS) is a neutral stimulus (e.g., the sound of bell), the unconditioned
stimulus (US) is biologically potent (e.g., food) and the unconditioned response (UR) to
the US is an unlearned reflex response (e.g., salivation). After pairing is repeated the
organism exhibits a conditioned response (CR) to the conditioned stimulus (CS), when it

is presented alone.

The Erasmus MC Neuroscience department conducts a classical conditioning exper-
iment which is called Eyeblink conditioning [37]. In this experiment, the CS is a sound
that is paired with an airpuff to the subject’s eye, the US. Closure of the eyelid is the nat-
ural response to this airpuff. After a period of repeated paired presentations, an eyeblink
develops which precedes the airpuff. This eyeblink is produced from a learned associa-
tion between the tone and the upcoming airpuff and is therefore considered a conditioned

response (CR).

Eyeblink conditioning (EBC) is a well studied form of classical conditioning used by
scientists to extract valuable information about neural structures and mechanisms that
underlie learning and memory. Recent studies that make use of this particular condition-
ing method are [1], where they study what happens in human brains when new motor
skills are learned, [2], which studies the impact of several disorders from the autism
spectrum on the CRs and [3], where the EBC method is used to investigate cerebellar

dysfunction in schizophrenia disorders.

The subject is recorded with a high-speed camera, in order to capture the eyeblink re-
sponse. When this experiment is performed on humans, a wide area needs to be recorded
on video, as the subject moves relatively freely during the test and therefore the position
of the head is not fixed. An algorithm combination is then applied to each image in the

generated video to measure the closure of the eye.

An early approach for measuring the eyeblink response was to analyse the closing
of the eyelids in a video, frame by frame. Scientists had to manually select half of the

face in the first frame and then manually select the eye of interest. A template matching
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procedure [4] was then used to crop the eye region for each subsequent frame and finally
calculate the eyelid closure. The drawbacks of this approach were the need of manual
intervention (selecting the face and eye for each new trial) and the necessity of off-line
storage, as the actual video must be viewed and processed by a human before the eye-
blink graph can be extracted. In addition, the matching-template procedure is sensitive
in scale and rotation changes, which leads in dropped frames when the subject moves
during the recording of the video. Each blink video has a length of 2 second, shot at 333

frames per second (FPS), and therefore each video contains 666 frames.

Creating an automatic procedure of face and eye detection, at a processing speed that
is able to keep up with the video frame rate is an important step towards an online imple-
mentation of the eyeblink-response analysis. This would enable researchers to analyze
the experiment results in real-time, which in turn would alleviate the need of human
intervention and off-line storage. Furthermore, the exploration of using deep learning
networks for real-time image processing tasks is of great interest, as most of state-of-the-
art DNN approaches for face and landmark detection focus mostly on achieving a better
accuracy, whereas the complexity of the model and computational issues rather stay in
the background [23] [41].

In particular, Convolutional Neural Networks (CNNs) have been widely utilized and
they have shown state-of-the-art performances on computer vision (CV) image-based
tasks. With the advances in DNN development, larger models were introduced to tackle
harder and more complex tasks, and therefore these CNN based approaches require a
large amount of storage, run-time memory, as well as computation power in both training
and inference time. In real-world scenarios inference is performed after the neural net-
work has been trained and is used to classify or derive predictions from the given inputs.
While in the case of inference, the network only experiences the forward-pass, during the
training, it experiences both the forward-pass and the backward-pass. During the latter,
the prediction is compared with the label, and the error is used to update the weights
through the backpropagation process. As a consequence, training requires a much more

extensive computational effort compared to that for inference.

In practice, CNN based models run on machines equipped with suitable hardware
accelerators. The panorama of hardware solutions for the development and deployment
of DNNs is wide, with the most common being general purpose Central Processing Units
(CPU) and Graphics Processing Units (GPU). GPUs have evolved a lot over the years to
reach very high performance at the moment and surpass CPUs. However, there is still
a growing demand for specialized hardware accelerators with optimized memory hierar-
chies that can meet the compute and memory requirements of different types of complex
DNNs, while maintaining a reduced power and energy envelope [54]. An example of a
recent introduced DNN accelerator is Graphcore’s Intelligence Processsing Unit (IPU). The
IPU’s design is based on the Bulk Synchronous Parallel (BSP) [19] model of computation
and offers MIMD (Multiple Instruction, Multiple Data) parallelism. The IPU’s approach of
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accelerating computation is through shared memory, which is distinct from other hard-
ware design approaches. An IPU offers small and distributed memories that are locally
coupled to each other. There is no global memory, and cores must share data by pass-
ing messages over a high-bandwidth, all-to-all interconnect network. By evaluating the
performance of these hardware accelerators in terms of latency, power consumption, and
computational efficiency, we aim to provide insights into their strengths and weaknesses
for image processing applications and contribute to the ongoing development of effective

and efficient hardware and software solutions.

1.2 Thesis Scope

This thesis initially focuses on automating and accelerating the process of eyeblink-
response detection from video in order to achieve real-time processing speed. Solutions
provided from the fields of Machine Learning and Deep Learning are explored and com-
pared to find a suitable algorithm combination which satisfies our project’s requirements.
Detection consists of two distinct phases: detection of the human face, followed by detec-

tion of the eyelid closure.

In the current eyeblink conditioning setup, the camera records the blinks at a frame-
rate of 333 Hz, but it can go up to a maximum of 750 Hz. Neuroscientists have expressed
their interest to increase the camera framerate to 500 Hz. This means that the maximum
processing time for each frame is 2 ms. It is very unlikely that the selected algorithms
will satisfy this requirement out of the box. Therefore, we will need to accelerate the
chosen algorithms in order to reach the required processing speed. Machines equipped
with multi-core CPUs and device accelerators, GPUs and IPUs, will be used to accelerate
our selected solutions. Initially, different inference approaches on the different hardware
platforms will be explored and then optimizations will be applied to achieve the maximum

processing speed.

In addition to evaluating inference performance, this thesis also aims to test and
benchmark the training process of an image-based CNN face detection model, using the
BlazeFace model as an example. The training process is complex, requiring efficient uti-
lization of both CPUs and device accelerators, such as GPUs and IPUs. We will explore
and apply optimizations to various steps of the training pipeline to achieve optimal per-
formance. By evaluating both inference and training performance, we can compare and
contrast the capabilities of different hardware platforms, with a particular focus on GPUs
and IPUs.

1.3 Contribution

The following contributions were made by the work of this thesis:

e The performance of three different face detection algorithms is evaluated on two
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datasets containing a variety of face images. The BlazeFace model was selected as
the algorithm that best suits our project requirements because of its combination

of speed and accuracy.

e The BlazeFace face-detection model was accelerated on the GPU and IPU hardware
platforms. Two distinct inference approaches were explored: initially for bulk com-

putations and then a streamlined version for low-latency responses.

e An Ensemble of Regression Trees (ERT) is selected as the landmark-detection algo-

rithm, which is used to estimate the closure of the eyelid.

e The ERT algorithm was accelerated with the use of Python multiprocessing library
on a multi-core CPU system. A speedup of 14,8x and 17,5x was achieved compared

to the sequential implementation by using 32 and 64 processes respectively.

e The accelerated face and landmark-detection algorithms were combined and three
complete implementations for eyeblink-response detection were deployed on IPU
and GPU hardware platforms and achieved a detection speed of 1441 FPS on MK2-
IPU, 1367 FPS on MK1-IPU and 1658 FPS on Tesla V100 GPU, which are more than
the 500 FPS required for real-time processing.

e An end-to-end training pipeline for the BlazeFace model was constructed to further
test and compare the hardware accelerators for training CNN image-based models.
The conducted experiments indicated that IPUs outperform GPUs in training speed,

especially for small batch sizes where the IPUs were able to run 2-4 times faster.

1.4 Thesis organization

The rest of the thesis will be organized as follows: Chapter 2 provides background
information on the eyeblink conditioning experiment, object detection in computer vision
and convolutional neural networks. In Chapter 3 the different hardware platforms that
will be used in this project are analyzed. Chapter 4 covers different solutions for all the
tasks (face detection, landmark detection and eyelid-closure detection), which are needed
to tackle the eyeblink conditioning experiment. Furthermore, all proposed solutions are
compared and based on that a decision on which algorithms shall be used for each case
is made. Finally, the details of the selected algorithms are covered as well. Chapter 5
provides a design analysis and details for the acceleration of our selected algorithms. In
Chapter 6 the final implementation of the accelerated eyeblink-response detection is de-
scribed and evaluated on the different hardware accelerators (GPU, IPU). In Chapter 7 the
compute capabilities of the different hardware available platforms (IPU, GPU) are com-
pared in the computationally intensive process of training an image-based CNN model.

Finally, the thesis is concluded in Chapter 8.
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Background

In this chapter, we provide background information for a proper understanding of the
rest of the thesis. In Section 2.1, we describe the setup of the human eye-blink condi-
tioning system which is currently used by the Erasmus MC Neuroscience department.
Section 2.2 will cover the basics of object recognition and detection in computer vision.
Finally, in Section 2.3 the underlying knowledge of convolutional neural networks will be

discussed.

2.1 Eye-blink Conditioning

We have already described the eyeblink conditioning method in Chapter 1. In our
case of human eyeblink conditioning, the high-speed camera is positioned approximately
one meter away from the facing subject. The camera captures the subject’s face as well
as some surroundings. The subject is able to move freely a little without going out of the
camera’s scope. In order to minimize the movement and rotation of the face, the subject’s
attention is drawn towards the camera (e.g., there is a monitor showing a movie). Too
much movement or rotation of the face has a significant impact on the recorded data which
can be rendered useless. These properties (position, posture) are of great importance to
the selection of face detection algorithm for our project. Using a potentiometer coupled
to the eyelid [55] or an electromyography (EMG) on the muscle that closes the eyelid [56],
are other methods used to record the eyeblink response. However, computer vision offers

a much easier approach of recording the response.

2.2 Object Recognition and Detection

Computer vision is defined as the field of study that seeks to develop techniques to
help computers see and understand the content of digital images such as photographs
and videos. It is a multidisciplinary field that could broadly be called a subfield of artifi-
cial intelligence and machine learning, which may involve the use of specialized methods
and make use of general learning algorithms. A wide range of application fields, such
as medicine (medical image processing/analysis to diagnose a patient), robotics (au-
tonomous vehicles, mobile robots) and computer-human interaction, employ computer

vision tasks.
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In our case, to record the blink response with the use of computer vision without
human interaction, we shall primarily turn to the field of object recognition and detec-
tion. Object recognition in computer vision is the ability to determine whether or not an
image, or a region of the image, contains a specific object (e.g a vehicle). In a multi-class
approach, the goal of object recognition is to tell to which of the X discrete classes (e.g.
bike, plain, car, etc.) the object in the picture belongs. Object detection aims to determine
the location of some specific objects in digital images or videos. To be more specific, in
object detection tasks, the systems are required to not only give the label, but also the
location of the target instances. The location information is normally presented by giving
the coordinates of the bounding boxes, and the regions which contain the target objects

is called foreground, while the regions without targets are named background.

The methods to solve the object detection problem can be divided into hand-engineered
feature-based machine learning approaches, or CNN-based deep learning approaches.
For the machine learning-based approaches, the idea is to carefully design and extract
the features from the images [11][12], and then design the classifiers (e.g. support vector
machine) based on them. However, in recent years, deep learning-based approaches
[13][14][15] have achieved a significant performance improvement comparing to those
machine learning methods, and have been used in a wide range of real-world applications,
such as face detection, human pose estimation, etc. Another advantage of deep learning-
based methods is that feature extraction can be handled by typical convolution and/or
fully connected layers, which makes the whole process end-to-end during both training

and inference time.

2.2.1 Introductory Object Detection Concepts
Bounding Box

A bounding box is an ideal rectangle that serves as a point of reference for object
detection and denotes a collision box for that object. Axis-aligned bounding boxes are
mainly used in the task of object detection, where the aim is identifying the position and
type of multiple objects in the image. Therefore, in addition to the position of the object
inside an image it can be used to define additional characteristics of an object, such as

class (e.g face, no-face) and confidence (how likely is the object to be at that location).
There are two main conventions followed for representing axis-aligned bounding boxes:

e Specifying the box with respect to the coordinates of its top left (xpn, Ymin), and the

bottom right point (Xmax, Ymax)-

e Specifying the box with respect to its center (x., y.), and its width and height (w, h).
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Non-Maximum Suppresion

Non-Maximum-Suppression [16] is a computer vision method that selects a single en-
tity out of many overlapping entities. The criterion is usually discarding entities that are
below a given probability bound. It is a common issue of object detection tasks to have
multiple bounding boxes describing the same object. The NMS algorithm will select the
boxes with the maximum confidence and suppress all the other predictions overlaping
with the selected predictions by more than 50%. The procedure is repeated until one box
is finally selected (Fig. 2.1).

Figure 2.1. Non-Maximum Suppresion example. The NMS algorithm kept only one box with
the highest confidence. Image from: https://www.interstellarengine.com/ai/Non-maximum-
suppression.html.

Intersection Over Union

A mechanism to confirm that a detection is correct is necessary in every object de-
tection system. Most systems rely on the bounding box overlap ratio or intersection over
union measure, or IoU for short. As defined in [7], “the overlap ratio between a predicted
bounding box B, and ground truth bounding box By is given by equation 2.1,

U= area(Bp U By) @1
area(Bp N By)
where B, N By denotes the intersection of the predicted and ground truth bounding boxes
and B, U By their union” (Fig. 2.2), and where the area of a region is measured by the
number of pixels it contains. In most detection systems, a detection is considered ‘cor-
rect’ when this value is greater than 50%. This choice was generally made following the
PASCAL VOC [7] protocol.


https://www.interstellarengine.com/ai/Non-maximum-suppression.html
https://www.interstellarengine.com/ai/Non-maximum-suppression.html

Chapter 2. Background

Area of Overlap

loU =

Area of Union

Figure 2.2. IOU definition. Image from: https://pyimagesearch.com/2016/11/07/
intersection-over-union-iou-for-object-detection/

2.3 Convolutional Neural Networks

Convolutional networks, also known as convolutional neural networks, or CNNs, are
a specialized kind of neural networks in deep learning, which are widely used in visual
recognition problems. Compared to other visual recognition methods, such as SVM clas-
sifiers, CNN can handle the input image to the desired result end-to-end without any
human-designed features. A typical CNN consists of the combination of the following

components:

Convolutional Layer: Central to the convolutional neural network is the convolu-
tional layer (Fig. 2.3) that gives the network its name. This layer performs an operation
called a convolution. In the context of a convolutional neural network, a convolution is
a linear operation that involves the multiplication of the input with a set of weights, also
known as kernels or filters, which are determined through network training. These filters
have a predefined size, smaller than the input, and during training the filter convolution
operation is performed across the entire input in a sliding window fashion. If a filter is
designed to detect a specific type of feature in the input, then applying that filter sys-
tematically across the entire input image allows the filter an opportunity to discover that

feature anywhere in the image.

As the filter is applied systematically across the input array, the result is a two-
dimensional array comprised of output values that represent a filtering of the input. This
output array is called activation map or feature map, where each position value of the map

expresses the probability of the desired feature to be located in this area of the original
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Figure 2.3. Cornwolution Layer. Image taken from [57]

image. In addition, multiple filters per convolution layer can be used, outputting multiple
activation maps corresponding to different features (one for each filter), and therefore the
output of each convolution layer is a three-dimensional "image" of great depth, consisting

of different activation maps.

Convolutional layers are not only applied to input data, e.g. raw pixel values, but they
can also be applied to the output of other layers. The stacking of convolutional layers
allows a hierarchical decomposition of the input. Consider that the filters that operate di-
rectly on the pixel values learn to extract low-level features, such as lines. The filters that
operate on the output of the first line layers may extract features that are combinations
of lower-level features, such as features that comprise multiple lines to express shapes.
This process continues until very deep layers are extracting faces, animals, houses, and
so on. The order and the way in which the various convolutions (stride, padding) are done

are design choices of the CNN designer that we will not deal with in this work.

Activation Layer: Most systems that a Convolutional Neural Network is called upon
to mimic are natural systems, and for this reason their behavior is not completely linear.
In order to introduce the necessary non-linearity into the network, each convolutional
level is followed by an activation level which applies to its output a (non-linear) activa-

tion function. The most widely used activation function is the Rectified Linear Unit (ReLU).

Pooling Layer: We saw that convolutional layers in a CNN systematically apply trained
filters to input images in order to create feature maps that summarize the presence of
those features in the input. However, a limitation of the feature map outputs is that they
record the precise position of features in the input. This means that small movements in
the position of the feature in the input image will result in a different feature map. This
can happen with re-cropping, rotation, shifting, and other minor changes to the input
image. One approach to address this sensitivity is to down sample the feature maps by

using a Pooling layer.
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A pooling layer is a new layer added after the convolutional layer operating upon each
feature map separately to create a new set of the same number of pooled feature maps.
Pooling involves selecting a pooling operation, much like a filter to be applied to feature
maps. The size of the pooling operation or filter is smaller than the size of the feature
map. Two common pooling methods are average pooling and max pooling that summarize

the average presence of a feature and the most activated presence of a feature respectively.

This has the effect of making the resulting down-sampled feature maps more robust
to changes in the position of the feature in the image, referred to by the technical phrase

“local translation invariance”.

Fully connected layer: Typically, fully connected layers are added at the end of a
CNN to connect the hidden layers and the output layer. The parameters in fully connected
layers are trained to summarise the features and map them to a vector with each element

representing the score of an output class.

In CNNs, the convolutional layers usually takes most of the computation resources,
due to a large number of floating-point multiplications between the high-dimension con-
volutional kernels and the inputs, which are the bottleneck of execution speed for most
of the typical CNN models.

Training and Inference

Neural Networks learn to achieve the desired results by modifying their internal pa-
rameters, i.e., weights and biases. The phase in which the network learns is called
training. Once the network has been trained, it can be used to process unknown input

during the inference phase when deployed in practise.

One of the most used learning paradigms is supervised learning, thanks to the large
amount of (labeled) data that has become available in the so-called big-data era. Su-
pervised learning requires labeled data, i.e., input-output pairs, where the output is the
result that the network should obtain from the related input. Supervised learning consists

of three steps repeated until convergence:
1. Forward pass: the input is fed into the network that produces an output.

2. Backward pass: a loss L is computed comparing the produced output and the
desired output. The loss L is then used for the backpropagation algorithm [58],
which applying the chain rule of calculus computes the gradient oL/dw for each
weight (and bias) of the network.

3. Parameters update: each weight and bias is updated by an amount proportional to
its gradient. All the gradients can be multiplied by the same factor, defined learn-
ing rate, or more complex optimization algorithms can be used, such as Gradient
Descent with Momentum [59] or Adam [52].
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Other learning paradigms are unsupervised learning and reinforcement learning. Un-
supervised learning works with unlabeled data and consists of finding common patterns
and structures that data may have in common. Reinforcement learning involves the net-
work (agent) interacting in an environment. An interpreter assesses the correctness of
the interactions and returns a reward or punishment to the agent, who aims to maximize

the reward.
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Hardware Platform

3.1 General Purpose Processors and GPUs

3.1.1 Central Processing Unit (CPU)

As a wide variety of computing problems started to get more complex and computa-
tional intensive, the need of faster processors in order to tackle these problems became
essential. The focus of early implementations of CPUs, was on making a single processor
as fast as possible, resulting on a rapid increase of power consumption. Modern CPUs
are built as general-purpose processors, with several features added to be able to support
an extensive range of applications. CPUs belong to the category of spatial architectures
where the computational structure consists of multiple processing units. These units can
have internal control, register files (RF) to store data and be interconnected to exchange
data. Vector CPUs have multiple ALUs that can process multiple data in parallel. Most of
them adopt the Single-Instruction Multiple-Data (SIMD) execution model, which applies

a single instruction to different data simultaneously.

Among the different available technologies, CPU cores are the least used for DNNs in-
ference and training. CPUs have the advantage of being easily programmable to perform
any kind of task. Still, their throughput is limited by the small number of cores and,
therefore, by the small number of operations executable in parallel. However, the hard-
ware/software stack of CPUs is already well-established and understood and CPUs are
also inevitably present in any system. They can provide reasonable speedups on a broad
range of applications. In mobile and embedded domains, CPU is still the most widely
used computing system due to its high availability, portability and software support. The
work of [17],discusses a number of techniques for optimizing DL applications on mobile,

server and cluster of CPUs.
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3.1.2 Graphics Processing Units (GPU)

A CPU can efficiently work together with a Graphics Processing Unit (GPU) to increase
the throughput of data and the number of concurrent calculations within an application.
While individual CPU cores are faster (as measured by CPU clock speed) and smarter (as
measured by available instruction sets) than individual GPU cores, the sheer number of
GPU cores and the massive amount of parallelism that they offer makes them very well-
suited to accelerate programs with a large amount of data parallelism. Figure 3.1 shows

a schematic overview of the differences between a multi-core CPU and GPU.

Core Core

L1 Cache L1 Cache

Core Core

L1 Cache L1 Cache
L2 Cache L2 Cache

L3 Cache

L2 Cache

DRAM DRAM

CPU GPU

Figure 3.1. Schematic comparison between the chip layout of a multi-core CPU and GPU
[18]

A CPU can never be fully replaced by a GPU, as GPUs complements the CPU architec-
ture by allowing repetitive calculations within an application to be run in parallel while the
main program continues to run on the CPU. The CPU can be thought of as the taskmaster
of the entire system, coordinating a wide range of general-purpose computing tasks, with
the GPU performing a narrower range of more specialized tasks (usually mathematical).
Using the power of parallelism, a GPU can complete more work in the same amount of
time as compared to a CPU. GPUs were originally designed to create images for computer
graphics and video game consoles, but since the early 2010’s, GPUs are also utilized to

accelerate many applications/problems involving massive amounts of data.

In order to exploit data-parallelism on a GPU the programmer must divide the prob-
lem into parallelizable pieces that each get processed by a thread. GPUs are capable to
execute a large number of parallel threads. Threads are grouped in blocks and a set of
blocks comprises a grid. Blocks are organized as a 3D array of threads and each block
has a unique block ID (blockldx). Threads are executed by kernels, compiled functions
that gets executed on GPUs, and each thread is assigned a unique thread ID (threadldx).
The execution flow is shown in Fig. 3.2. The execution starts with a host(CPU) program

that launches a kernel on Device (GPU). The GPU scheduler generates a large number of
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threads to perform data-parallelism. Before starting the kernel, all the necessary data is
transferred from host to device memory. The CPU kick starts the kernel function then

execution flow is moved to the device.
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Figure 3.2. The GPU is comprised of a set of Streaming MultiProcessors (SM). Each SM is
comprised of several Stream Processor (SP) cores, as shown in (a). The GPU resources are
controlled by the programmer through the CUDA programming model, shown in (b). Image
Jfrom [60].

During execution, a thread block gets assigned to a Streaming Multiprocessor (SM).
The streaming multiprocessors (SMs) are the part of the GPU that actually runs our
GPU-kernels. Each SM contains:

e Several caches:

- Shared memory for fast data interchange between threads
— Constant cache for fast broadcast of reads from constant memory

— Texture cache to aggregate bandwidth from texture memory
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— L1 cache to reduce latency to local or global memory
e Execution cores for integer and floating-point operations
e Thousands of registers that can be partitioned among threads of execution.

e Warp schedulers that can quickly switch contexts between threads and issue in-

structions to warps that are ready to execute

Thread instructions are then executed in groups of 32, called warps. Threads in a
warp will perform the same operation on independent data. This execution model is re-
ferred to as SIMT (Single Instruction, Multiple Threads).

Even though GPUs have evolved deep memory hierarchies featuring both cache and
scratchpad memories [61], their power lies within their fundamental approach to hiding
memory latency and the ability to inexpensively switch among threads. In this approach,
when a warp of threads is awaiting operands from main memory, the hardware can sus-
pend them and switch to another warp that has received its operands from memory and

is ready to continue [62].

3.1.3 Programming tools

GPU-based systems are especially well suited for Deep Learning workloads, for both
DNNs’ inference and especially training. They contain up to thousands of cores to work ef-
ficiently on highly-parallel algorithms. Matrix multiplication, the core operation of DNNs,
belongs to this class of parallel algorithms. Among the GPU designers, Nvidia can be
considered the winner of the ANN/DL applications. In fact, the most popular DL frame-
works, such as TensorFlow [63], PyTorch [64] and Caffe [65], support execution on Nvidia
GPUs through the Nvidia cuDNN library [66], a GPU-accelerated library of primitives for
DNNs with highly-optimized implementations of standard layers. DL frameworks allow
to describe very complex neural networks in a few lines of code and run them on GPUs
without needing to know GPU programming. cuDNN is part of CUDA-X Al [67], a collec-

tion of Nvidia’s GPU acceleration libraries that accelerate DL and ML.

3.2 Graphcore Intelligence Processing Unit (IPU)

The Intelligence Processing Unit (IPU) is a new kind of massively parallel processor
developed by Graphcore specifically for Artificial Intelligence/Machine Learning (Al/ML)
workloads. Graphcore provides two generation of IPU chips, the first-generation Colossus
MK1 IPU processor - GC2 and the second-generation Colossus MK2 IPU processor -
GC2000. In this chapter, we introduce the fundamentals of the IPU’s architecture and its

programming paradigm.
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3.2.1 IPU Architecture

The cornerstone of an IPU-based system is the IPU processor which achieves efficient
execution of fine-grained operations across a relatively large number of parallel threads.
Each IPU processor contains four main components: IPU-tile, IPU-exchange, IPU-link

and the PCle interface.

An IPU processor contains multiple IPU tiles where each tile consists of a single multi-
threaded processor and its local memory (Figure 3.3). Each tile-core can run six parallel
threads in a "round-robin" fashion. There is always one supervisor thread that runs the
top level control program of the tile and spawns worker threads to execute tasks. The
tile-memories are implemented as SRAMs and therefore offer much higher bandwidth and
lower latency than DRAMs. An IPU chip communicates with the host (CPU) to transfer
back and forth required data through the PCle interface. While the first-generation IPU
uses only the local memory of its tiles to do so, the second-generation IPU has the option
to use external memory (DRAM) for storing model data and parameters. This data can be

streamed into the IPU when needed.

(" Tile

Tile-Memory

(SRAM) Tile-Core

Figure 3.3. [PU-tile

All tiles within an IPU are connected to an ultra-fast, all-to-all communication fab-
ric called the IPU-exchange, an on-chip interconnect for high-bandwidth, low-latency
communication among them. In addition, each IPU contains ten IPU-link interfaces; the
IPU-Link is an interconnect that allows different IPUs to exchange data directly, without
going through the host processor or host memory. Besided that, each IPU also contains
two PCle links for communication with CPU-based hosts. We illustrate the IPU architec-

ture with a simplified diagram in Figure 3.4

The IPU-exchange is what allows tiles on an IPU system to work together and exchange
data efficiently with each other. A system with multiple IPUs exposes the single IPU de-
vices independently, but it also exposes Multi-IPUs. A Multi-IPU is a virtual IPU device
that is comprised of multiple physical IPUs and offers all their memory and compute re-
sources as if they belonged to a single device. The combination of multiple physical IPUs
into a virtual single device, allows training and inference of models larger than a single

IPU’s capacity, while taking advantage of the cumulative compute power. Scaling an ap-
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plication to multiple IPUs comes with no additional development effort as the same APIs
can target one physical IPU or Multi-IPUs indifferently. Furthermore, in multi-processor
systems, the IPU exchange and the links work together to support tile-to-tile communi-

cation, regardless of where in the system the two endpoints are located.
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Figure 3.4. Simplified illustration of an IPU processor.
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3.2.2 Programming model

IPU-programs are executed on a set of IPUs. This set must be selected by the user
before compilation and it cannot change over the course of the program’s execution. A
program will follow a fixed control flow and operate on large multi-dimensional typed ar-
rays of data (of fixed size) called tensor variables. In the general case, tensors are data
structures that are used to describe scalars, vectors and matrices. A single variable may
be stored across the memory units of multiple tiles. Each element of the variable is placed

on or “mapped” to a specific tile. This is called the tile mapping of the variable.

There are two core operations that a running program uses to manipulate tensor
variables; copying data and executing compute sets. Each compute set consists of many
vertices that are compute tasks. The vertices determine how a compute set splits its tasks
into fine-grained, parallel pieces of computation to use the many tiles and threads on the
IPU. Each vertex is tied to a specific tile of the IPU and executes a small piece of code that
processes its own input and output. The combination of all the vertices from the multiple

compute sets in a program forms the computational graph (Fig. 3.5).
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Figure 3.5. Graph representation of variables and processing

In addition to the basic operations which each tile processor has an instruction set
specifically designed from scratch for machine learning and artificial intelligence tasks.

The instruction set contains:

e Control flow instructions (jumps, conditionals) that can execute arbitrary control
flow. The control flow on each processor is independent from those on the other

Processors.
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e Memory access instructions

e Arithmetic instructions for integers and floating-point operations. The floating-point
instructions include single-precision (32 bit) and half-precision (16 bit) floating-

point operations.

e Instructions to compute common transcendental functions (for example, the expo-

nential function)

e Instructions for random number generation.

3.2.3 Parallel Execution

The IPU uses a model of execution called bulk-synchronous parallel (BSP) model
[19], where the tiles within the IPU alternate between exchanging data and performing
computations on their local data. The execution of a task is organized into steps. Each
step is composed of a local computation phase, followed by a global synchronisation phase

and finally the data exchange:

e in the local computation phase, all tiles execute in parallel, operating solely on

their local data;

e as soon as a tile finishes executing, it enters the synchronisation phase where it’s

waiting on other tiles to finish their computation;

e finally when all the tiles have reached the synchronisation state, the data-exchange

phase begins, where required data is copied between the tiles.

Since data of a tensor variable are stored across the memory units of multiple tiles
and each tile can solely operate on its local data, explicit cross-tile data movement in-
structions are needed during execution of a task. There are data dependencies among the
participating tiles, where each tile may depend on the output results of other tiles to con-
tinue its computations, and therefore data exchanges between them occur via the IPU’s
exchange fabric. The global synchronisation phase ensures that all tiles have completed
performing their computations (fully or up until a certain point) before sending/receiving
data. The waiting period between syncs is not fixed but determined by the time taken for

the computation.

The whole process then repeats as all tiles re-enter the compute phase. Each of these
steps occurs in parallel across all tiles and the whole IPU can be viewed as executing a
sequence of these steps (Fig. 3.6). The order of the steps to be executed is determined
by a control program which is loaded on every tile by the host to control the execution of

compute and exchange sequences.
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Figure 3.6. Bull-synchronous parallel execution model across IPU tiles

3.2.4 Supported programming tools

Graphcore provides the Poplar Software Development Kit (SDK). This software sup-
ports many high-level machine-learning frameworks, C++ and assembly language for
programming the IPU. The IPU software supports, among others, TensorFlow [63], Keras
[68] and PyTorch [64], all user-friendly frameworks allowing programmers without spe-

cific hardware knowledge to access high-performance computing.

Keras is a high-level library, which is used for constructing models using a set of
high-level Layer objects, and runs on top of a machine-learning framework such as Ten-
sorFlow. TensorFlow is a powerful graph-modelling framework that is widely used for the
development, training and deployment of deep-learning models. These are two libraries

that provide many useful tools for developing deep-learning programs.

Graphcore provides an implementation of TensorFlow, which also includes Keras sup-
port for IPUs, that enables us to train, infer and evaluate models on the IPU hardware. At
the time of writing this thesis, version 2.4 of Poplar Software Development Kit (SDK) and

version 2.4.4 of TensorFlow were available for developing deep-learning applications.

3.3 Discussion

The architecture of IPUs differs significantly from CPUs and GPUs that are commonly
used for training machine-learning algorithms. However, even with the vectorized data
processing, CPUs are non-competitive with GPUs in aggregate floating-point arithmetic
on large and complex workloads. GPUs, on the other hand, have architecturally simpler

cores than CPUs but do not offer branch speculation or out of order processing. The typi-
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cal arrangment of GPUs is clusters, so all cores in a wrap execute the same instruction at
any point in time. Because of this architecture, GPUs excel at regular, dense, numerical,

data-flow-dominated workloads and tend to be more energy efficient than CPUs.

The IPU’s approach of accelerating computation is through distributed memory, which
is distinct from other hardware platforms. An IPU offers small and distributed memories
(SRAMs) that are locally coupled to each other through a very fast all-to-all communica-
tion fabric. Such a structure allows cores to access data from local memory at a fixed
cost that is independent of access patterns, making IPUs more efficient than GPUs when
executing workloads with irregular or random-data-access patterns as long as the work-

loads can fit in IPU memory.
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Algorithm selection

The algorithm selection is of great importance to this project. We need to make sure
that the selected algorithms are not only able to detect the eyeblink response accurately
in our recording settings, but also to fit additional requirements in terms of detection
speed. In this chapter, we investigate alternative methods for both face detection and

eyelid-closure detection.

4.1 Requirments for eyeblink-response algorithms

The recording settings of the eyeblink-response videos have previously described in
Section 2.1. A set of requirements was drafted regarding the location and posture of the

subject, and the recording environment.

Rotation in the three spatial dimensions is defined as yaw, roll and pitch. Since the
subject is focused on the screen that is in the same direction as the camera, these are
limited to +20°, £25°and +40°, respectively. We observe occlusion of the faces only
when the subject is wearing glasses. This requirement is considered a complex one be-
cause, while our detector may still be able to detect a face, when it is rotated in certain
angles, it is possible that the frame of the glasses partially occlude the eyes; as a re-
sult, the blink response can not be recorded. Although the environment in which the
videos are recorded must be well-lit, the high-speed camera captures the light flickering,
which causes illumination differences among subsequent frames in the video. Further-
more, a subject must sit close enough to the camera for their face to cover at least 20%
of the image. Finally, at this moment the camera records at 333 FPS, but the desire
has been expressed to increase this to 500 FPS. Therefore, the required frame rate shall

be set to 500 FPS which means that the maximum processing time for each frame is 2 ms.

4.2 Face-detection

Face detection has been one of the most studied subjects in computer vision for the
last 15 years and can therefore be considered as a mature and distinct field from the

generic object-detection field. Face detection is an essential early step for various tasks
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such as face recognition, facial-attribute classification, face editing, and face tracking,

and its performance has a direct impact on the effectiveness of those tasks.

Early face-detection efforts, followed the classical approach. They were mainly based
on hand-crafted features which are extracted from an image and then fed into a classifier
to detect likely face regions. Two well-known classical face detectors are the Haar-cascade
face detector by Viola and Jones [12] and the Histogram of Oriented Gradients (HOG) fol-
lowed by SVM (classifier) [11]. While these works represent great improvements on the
state-of-the art at their time, face-detection accuracy was still limited on challenging im-
ages with multiple variation factors like scale, occlusion, pose, expression, illumination

and more.

Newer models use Deep Neural Networks (DNNs) or Convolutional Neural Networks
(CNNs), which are a type of Neural Networks specialized in image-recognition tasks. Con-
volutional neural networks have achieved remarkable performance in a variety of com-
puter vision tasks, such as image classification [20] and face recognition [21], [22]. In-
spired by the good performance of CNNs in computer vision tasks, many CNN-based face

detection methods have been proposed in recent years [23].

Li et al. [69] proposed one of the early deep models for face detection, based on a
convolutional neural network cascade. The proposed CNN cascade operates at multiple
resolutions, quickly rejects the background regions in the fast low resolution stages, and
carefully evaluates a small number of candidates in the last high resolution stage. To im-
prove localization effectiveness, and reduce the number of candidates at later stages, they
introduce a CNN-based calibration stage after each of the detection stages in the cascade.
The proposed method achieves 14 FPS on a single CPU core for VGA-resolution images
and 100 FPS using a GPU. Zhang et al. [34] extended this approach by introducing the
Multi-Task Cascaded Convolutional Neural Network or MTCNN which is considered one
of the most popular face detection tools. This work leverages a cascaded architecture with
three stages of carefully designed deep convolutional networks to detect and locate the

face and five facial landmarks in a coarse-to-fine manner.

Two prominent approaches that most recent DNN face-detection models follow are the

single-stage approach and two-stage approach:

e Single-stage models, such as S3FD[24], RetinaFace[25] and BlazeFace[10], refer
broadly to architectures that use a single feed-forward full convolutional neural
network [13] to directly predict each proposal’s class and corresponding bounding
box without requiring a second stage per-proposal classification operation and box

refinement. Fig. 4.1(a) exhibits the basic architecture of one-stage detectors.

e Two-stage face detection models are mostly deriving from the work of Regional
CNN (R-CNN) [26]. Initially they use, as a first step, an algorithm (e.g. Selec-
tive Search [27]) or a Region proposal-based CNN model that accepts the image
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as input and proposes different possible Regions of Interest (Rol). Then a second
model (a CNN feature extractor) computes features from these proposals to infer the
bounding box coordinates and class of the object. Examples of such models are
CMS-RCNNJ[28], R-FCN[29] and "Face Detection Using Improved Faster RCNN" [30].

Fig. 4.1(b) shows the basic architecture of two-stage detectors.
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Figure 4.1. (a) shows the basic architecture of one-stage detectors, which predicts bound-
ing boxes from input images directly. (b) exhibits the basic architecture of two-stage de-
tectors, which consists of the region proposal network to feed region proposals into the
classifier and regressor. The Backbone network is acting as the basic _feature extractor for
the face detection task which takes images as input and outputs the feature maps of the
corresponding input image.

Two-stage detectors have high localization and object recognition accuracy, whereas
the one-stage detectors achieve high inference speed as they propose predicted boxes from
input images directly without the region proposal step. Since our project aims for both
accuracy and speed, we decided to not investigate two-stage detectors for this project as

they are not designed for real-time applications. In contrast, the single-stage detectors
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provide a good tradeoff between the accuracy and efficiency and therefore are more suit-

able for real-time applications [31] [32].

There are several other DNN architecture approaches that have been proposed and
used by the computer vision community to tackle the face detection task which are not
covered in this thesis. For a more detailed survey, the reader can refer to the extensive

survey of [23] and the many papers that survey points to.

4.2.1 Selected Algorithms

It is important to ensure that the selected face-detection algorithms satisfy the re-
quirements described in Section 4.1. Open access and availability are also two important
factors that we considered for the algorithm selection. Training an efficient face detec-
tion model is a very time-consuming and non-trivial task [23], and because there are
pre-trained face detector implementations available online, we shall use one of them
and adjust the model to meet the requirements of the project. Therefore, from the face-
detection architectures described in Section 4.2, we selected three algorithms which we

are going to test regarding accuracy and speed.

HOG

The first selected algorithm is the Histogram of Oriented Gradients (HOG) algorithm,
which is implemented using the Dlib library [33]. Dlib is a machine learning open-source
library which has been developed since 2002, and offers a pre-trained implementation
of a HOG face detector. The HOG algorithm implementation in Dlib is work of Dalal et
al. [11] combined with downscaling pyramid features from the work of Felzenszwalb et
al. [70]. The HOG detector is extracting features from given input images, which are fed
into a L-SVM based sliding window classifier, to classify an area of 80x80 pixels as a face
based on its trained models. The face detector from Dlib uses five classifiers trained on
3000 images of the Labeled Faces in the Wild (LFW) face dataset [71].

Even though it an early face-detection effort, the HOG algorithm is still widely used
(39313 citations) on the field of object and/or face detection. Previous work [37] has
successfully used a GPU-accelerated version of the HOG-algorithm-based face detector
in combination with a landmark detection model to detect the blinking of an eye in video

footage in real time.

Multi-Task Cascaded Convolutional Neural Networks

The second algorithm is called Multi-Task Cascaded Convolutional Neural Networks
or MTCNN, a CNN based method that was published in 2016 by Zhang et al.[34]. The

MTCNN model leverages a cascaded architecture with three stages of CNNs to predict face
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and five facial landmarks in a coarse-to-fine manner. More specifically, these three stages
are called: P-Net, R-Net and O-Net (Fig. 4.2).

Before the image is passed into the network an image pyramid is created, in order to
detect different sized faces within the image. In the P-Net stage, the algorithm produces
a candidate window sliding quickly through a small subset of CNNs. The second stage
contains the R-Net which refines the windows with the purpose of rejecting the large
number of non-face windows present in the reference image with additional CNNs. Finally
in the O-Net stage, deeper CNN layers are used to refine the result of the detected facial
features in the image and further locate five facial landmark points. Non-Maximum
Suppression (NMS) [16] is used to filter out bounding boxes based on their confidence

score and the degree of overlap between them.
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Figure 4.2. MTCNN - stage based iteration approach for face detection. Image from [34].

The MTCNN face-detector is considered a very popular early CNN-based face detection
effort with good accuracy results. In addition, a pre-trained implementation is publicly
available through the Python Package Index (PyPI) repository of software for the Python

programming language [72].
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BlazeFace

The third and last selected algorithm is called BlazeFace [10], a lightweight and well-
performing face detector developed by Google in the year 2020 for mobile GPU inference
and real-world applications. It takes as input RGB images (possibly a video frame) resized
to 128x128 pixels, represented as a 128 X 128 X 3 array of single precision float values in
the range [-1.0, 1.0]. The output for each detected face, is four bounding box coordinates,
six approximate facial keypoints coordinates (left and right eye-center points, nose tip,

mouth, left eye tragion , right eye tragion) and a detection confidence score.

In the recent work of [73], three face-detection models are selected and evaluated in
terms of speed for real-time applications . The widely-used HOG face-detection algorithm
is compared against two deep learning models, ResNet [74] and BlazeFace [10]. BlazeFace
was the fastest despite being a deep convolution model. The HOG algorithm came second
and the ResNet model was the slowest (deeper network). The authors conclude that
BlazeFace is a very good choice for real-world applications as apart from high inference
speed its accuracy results were also found to be quite satisfactory. Finally, it is important
to note that Google is providing a pre-trained implementation of BlazeFace through the

Mediapipe library [43].

4.3 Face-detection algorithm comparison

In order to determine which of the previously described algorithms is best suited for
our project, we need to evaluate them in terms of accuracy and speed. For that purpose,

we use a large collection of images of faces with annotated locations.

4.3.1 Dataset selection

The "Annotated Facial Landmarks in the Wild" (AFLW) dataset [35] is one of the se-
lected image collections for our evaluation phase. The BiolD database [36] is another

selected database on which we are going to test our algorithms.

AFLW database

The AFLW database contains 21123 images with 24384 annotated faces. These im-
ages are taken in real-life situations which means that the lighting, position, size and
rotation of the faces, background and occlusion are all uncontrolled. The resolution of
the images in the database varies. In addition to the location of the faces, annotations
for 21 landmarks (when visible), sex, occlusion, glasses, use of color, and three rotation
angles (roll, pitch and yaw) are also provided. This extensive annotation makes it easier

to test on a subset of images that meets our project’s requirements.
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AFLW subset

From the AFLW database, a subset of faces can be selected that is within our appli-
cation’s expected regions of rotation (yaw £20°, roll+25°, pitch4+40°). Faces with and
without glasses should both be detected. Lighting conditions are not annotated and can
therefore not be filtered. Occluded faces are not filtered out because it is not clear in what
way or to what extent they are occluded. Because some images contain multiple faces, it
can occur that one or more face(s) in an image meet the requirements, while others don't.
In this case, the image is initially left in the subset and we exclude a face from the subset

only when it doesn’t meet the project requirements.

BiolID database

The BiolD database, consists of 1521 grayscale images (384 x 288 pixel, grayscale)
of 23 different persons. The conditions on which the images were recorded strongly
resembles our project’s conditions and therefore testing a face detector on this database

will provide a strong indication of how well will this method perform on our test-set.

Pre-processing input data

While pre-processing of the input data is not required for the HOG and MTCNN meth-
ods, since they can operate on any input image size, that is not the case for the BlazeFace
model which accepts a fixed image size of 128 x 128 X 3 pixels. Therefore, we adjusted
the size of the input data to 128 X 128 pixels for the evaluation of the three detectors.
Resizing the input images affects the resolution. Recent work [75] concerns the effects of
image quality in detection tasks. Resizing images for object-detection tasks, in our case
human faces, can affect radically the output of the detector in terms of quality. To this
end we add an extra requirement, for selecting a subset of AFLW dataset, where images

above 900x900 pixels are excluded from the dataset.

4.3.2 Performance on constrained AFLW subset

For a fair performance comparison, we run each algorithm on a single CPU core.
Accuracy is measured using recall and precision, where recall describes how many of the
existing faces were indeed detected, while precision describes how many of the detected

faces were indeed real faces and not false positives. Recall and precision are calculated

as follows.
TP
Recall = ——
TP + FN
L TP
Precision = ————
TP + FP

TP = true positives, FN = false negatives, FP = false positives

A true positive stands for a correct detection of a face that is annotated in the database,

a false positive detection is when the face detector incorrectly detects an image region as
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a face and a false negative is a failure to detect an annotated face.The results on AFLW
subset of 3425 faces can been seen in Table 4.1 and visualized in Fig. 4.3 a) and Fig. 4.4
b).

Algorithm Faces FN FP TP Precision (%) Recall (%) Time / Image (ms)

HOG 3425 687 211 2738 92.84 79.94 29.23
MTCNN 3425 294 631 3131 83.17 91.41 347.41
BlazeFace 3425 940 126 2485 95.17 72.56 32.73

Table 4.1. Results on face detection algorithms on subset of AFLW that meets project
requirements
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Figure 4.3. a) Precision-Recall results of BlazeFace, HOG and MTCNN face detectors on
the AFLW database subset. b) Execution time results of BlazeFace, HOG and MTCNN face
detectors on the AFLW database subset.
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False Negatives

By analyzing the resutls (Table 4.1), we observe that the HOG failed to identify 687
faces (FN). Many of the faces seem to be partially occluded by a variety of objects, such
as hair, glasses, hands etc. Furthermore rotated faces, bad lighting and image blurriness
are other main causes of false negatives. MTCNN and BlazeFace detectors also suffer
from the same problems mentioned above. In addition one of the most common causes

of false negatives of the CNN remains a too small face size.

BlazeFace produced the most false negatives, 940 faces in total, which leads to lower
recall values. As we described before, BlazeFace has some extra requirements in order
to perform well and accurately. The face must occupy at least 20% of the image size, so
small faces are always a cause of false negatives. Another requirement is that the face
inside the image must be at most 2 meters away from the camera. Even though we have
a constrained subset of the AFLW dataset, to meet our project requirements, we don’t
have any information about the distance of each face from the camera. After manual
inspection of the false negatives we confirm that BlazeFace was unable to detect small
faces and faces that are far away from the camera. For this project however the faces in
the video will fill up at least 20% of the image, which has a resolution of 640 x 480, and
the subject is under 1 meter away from the camera. So both of these extra requirements

are covered.

We strongly believe that even though the recall value of BlazeFace is low, it will perform
much better on our test-set. We think it remains a good candicate for our project since
it is quite fast (lightweight DNN model architecture) and specifically developed for real-
time applications. In order to evaluate this hypothesis we are going to further evaluate

BlazeFace on the BiolD dataset that strongly resembles our test-set.

False Positives

The amount of false positives of each method is an important factor that we have to
take under consideration. It is important for our project that the face detector does not
generate too many false positives. We define a false positive as a as a face that is detected
by the face detector, but is not annotated in the AFLW database.

After manual inspection of the predictions, it turns out that the AFLW database con-
tains annotation mistakes. We found that from the 211 false positives that the HOG face
detector produced only 7 were valid (the detector classified a bounding box region as a face
while there is not face), and the rest do in fact have a face inside which in not annotated
in the AFLW database. This means the HOG face detector actually produces much less
false positives than the previous tests suggest. The same applies for MTCNN detector,
where out of the 631 false positives only 37 were valid. Finally, BlazeFace detector has
only 1 valid false positive and the rest 126 detections do in fact have a face inside. The

re-evaluated results can be seen in Table 4.2.
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Algorithm Faces FPitiqt FPre—cvaluated TP Precision (%)
HOG 3425 211 7 2738 99.74
MTCNN 3425 631 37 3131 98.83
BlazeFace 3425 126 1 2485 99.96

Table 4.2. Re-evaluated results on face-detection algorithms on subset of AFLW because
of annotation errors. FPyq indicates the number of false positives according to AFLW
database annotations, while FPe_cpauatea indicates the remaining valid false positives after
manual inspection

The reduced number of valid false positives indicates that all three methods have a
higher precision (last column in Table 4.2) than suggested in previous tests on the AFLW
database (last column in Table 4.1). The BlazeFace model achieved the highest precision
of 99.96%.

4.3.3 Perfomance on BiolID database

The BiolD database, contains 1521 images that strongly resembles our test-set and
every image depicts a single face. BiolD database provides annotations for five facial
landmarks but annotations for the groundtruth face boxes is not provided; therefore
we evaluated BlazeFace detector by using the relative-distance error metric described in
[36]. This distance error is computed as the euclidean distance of the center of each
detected eye-landmark that BlazeFace detects with the manually annotated groundtruth
eye-center point, which is provided from the dataset, divided by the inter-ocular dis-
tance of the eye for scale invariance. We calculate the distance error of both eyes, keep

the maximum value and if it is less or equal to 0.25 then we rate the face as a true positive.

Algorithm Faces Right average error Left average error TP FN
BlazeFace 1521 0.069% 0.073% 1497 24
MTCNN 1521  0.03% 0.043% 1514 10

Table 4.3. Results of BlazeFace on Biold database

BlazeFace was able to detect correctly 1497 faces over the total of 1521 faces (Table
4.3) inside the BiolD database by using the relative-distance error metric. However,
after manual inspection of the detections, we found that for every image in the dataset
there was only one detection box and each detection box had a face inside. Thus, the
BlazeFace model has 100% success on detecting faces on the BiolD database. A similar
procedure was followed to evaluate the MTCNN detector, which also produced 100%
correct predictions.

For the evaluation of the HOG detector it was necessary to generate labels describing
the position of the face within the image (bounding boxes) as this detector is not able to
detect facial landmarks. For this purpose the generated MTCNN model predictions were

used as a basis for comparison with the output predictions of the HOG detector. Similarly,



4.3.4 Conclusion on face-detection testing

the HOG algorithm also managed to correctly detect all faces in the BiolD dataset.
The results of the above evaluation are a strong indication that all three face detectors

will perform well in our test set.

4.3.4 Conclusion on face-detection testing

The above tested detectors have differences in both speed and accuracy. From our ex-
periments we found that MTCNN is the most accurate face detector in the AFLW dataset
subset, as it has the highest number of True Positives (3131) and achieves a Recall of
91.41%. It is a reliable option since it produced the lowest number of false negatives
(294), and was even able to detect many faces that were not annotated in the AFLW
database. However, it is much slower compared to the other two methods, and since
speed is an essential factor, the MTCNN model shall not be used as face detector for this

project.

Both HOG and BlazeFace are much faster alternatives, with HOG being the fastest
method. BlazeFace is quite fast despite the fact that it’s a Deep Neural Network, achieving
the highest precision and the lowest amount of false positives. On the downside, Blaze-
Face won’t operate well on very high-resolution images, since we have to resize them down
to 128 x 128 pixels and lose valuable information from the image which leads to poor per-
formance, for faces that are far away from the camera. This explains the poor recall and
the high amount of false negatives on the AFLW database subset. However, after testing
BlazeFace on the BiolD dataset, where the recording environment and setting are quite
similar with our test-set, the model achieved 100% correct detections; a strong indication
that BlazeFace will behave similarly on our dataset. Furthermore, an additional goal of
our work is to explore detector implementations from the field of deep learning, as the
IPU is a hardware chip specialized in machine learning and offers a great acceleration
potential by running a deep neural network on top of it though the TensorFlow and Keras
APL.

For the above-mentioned reasons, the BlazeFace algorithm shall be used for face

detection in this project.

4.4 Eyelid-closure detection

Once the face detection is finished and the location of the face has been obtained, the
next step is to detect the eyelid closure. The eye blink is a fast closing and reopening of
a human eye. Each individual has a somewhat different pattern of blinks. The pattern
differs in the speed of closing and opening, a degree of squeezing the eye and in a blink

duration. The eye blink lasts approximately 100-400 ms.

To capture the eye-blinks we shall follow the landmark detection approach, where the
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landmarks on the eyelids are used for eyelid-closure detection. On each eye, six land-
marks are located: two in the corners, two on the upper eyelid and two on the lower eyelid;
see Fig. 4.4. If these are accurate enough, they could be used directly for the calculation
of eyelid closure. These landmarks are already successfully used for blink detection by

computing a metric called eye aspect ratio (EAR), introduced by Soukupova and Cech [38].

Figure 4.4. The 6 facial landmarks associated with the eye. Image from [38]

Eye Aspect Ratio (EAR)

From the landmarks detected in the image, we derive the eye aspect ratio (EAR) that is
used as an estimate of the eye opening state. The numerator of this equation 4.1 computes
the distance between the vertical eye landmarks while the denominator computes the
distance between horizontal eye landmarks, weighting the denominator appropriately
since there is only one set of horizontal points but two sets of vertical points. Using this
simple equation, we can avoid complex image processing techniques and simply rely on
the ratio of eye landmark distances to determine if a person is blinking.

lIp2 — pél| + llp3 — p5I|

EAR = 4.1)
2 x||p1 — p4||

where pl, ... , p6 are the six 2D landmark locations of the eye.

The EAR is mostly constant when an eye is open and is getting close to zero while
closing an eye. It is partially person- and head-pose insensitive. The aspect ratio of the
open eye has a small variance among individuals and it is fully invariant to a uniform

scaling of the image and in-plane rotation of the face.
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4.4.1 Landmark detection

Detecting facial landmarks is a subset of the shape-prediction problem. Given an
input image, a shape predictor attempts to localize key points of interest along the shape.
Note that most facial landmark detection algorithms require the face to be first detected.
Therefore, the facial landmark-detection task is a two-step process: localize the face in

the image and detect the key facial structures on the face.

Given the face region, (x,y) coordinates of the face bounding box, we can then apply
the detection of key facial structures in the face region. There are many facial regions that
a landmark detector can localize such as the mouth, eyebrows, eyes, nose and jaw. Since
our project goal is to detect the eyelid closure, we are interested mainly in the landmarks

of the eye regions. Examples of landmark detection on two faces are presented in Fig. 4.5.
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Figure 4.5. Example of 68-landmark detection on two faces. Image from [39].

In [42], 48 methods of face alignment are compared in terms of speed and accuracy on
five databases. Most of the methods discussed in the survey focus on the detection of 68
landmarks while the database on which the most face alignment methods are evaluated,
is the HELEN database [76]. Out of the five databases, HELEN contains images with the
most similar conditions to the conditions in our project. The evaluation error metric is
measured as the Euclidean distance of each detected landmark to the true (annotated)
landmark, divided by the inter-ocular distance for scale invariance. According to [42], the
ERT algorithm performs second-best in speed and fifth-best in accuracy. The "Ensem-
ble of Regression Trees” (ERT) algorithm [40] is considered one of the most popular and
state-of-the-art methods for landmark detection/face alignment. This method belongs to
the class of cascaded regressors, which refines its estimates of the landmark locations in
a number of consecutive stages. The recent extensive survey of [41] also considers the
ERT algorithm as a reliable and fast landmark-detection model (according to the authors,
around 1 millisecond per face processing time). An ERT implementation is available
through the open-source machine-learning Dlib library [33] which is still actively used in

the modern research thanks to the open implementation and speed.
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Furthermore, the work of [41] analyzes facial landmark-detection models from the field
of deep-learning. The authors discuss the Practical Facial Landmark Detector (PFLD) [77].
PFLD follows a direct approach that enables fast facial landmark detection directly on a
mobile device. It is considered the only modern neural-network-based algorithm, whose
authors have shown it to work efficiently on a mobile device. In particular, the PFLD 0.25X
version uses a tweaked version of MobileNetV2 [78] as feature extractor and achieves an

inference speed of 1.2 miliseconds per frame.

4.4.2 Selected algorithm

It is important to ensure that the selected landmark detector fits our needs in terms
of speed and accuracy, as they have been described in Section 4.1. The PFLD 0.25X
was considered for this project but training efficiently a landmark-detection network from
scratch is a very time-consuming and non-trivial task. The actively-used ERT algorithm
is a suitable choice for this project as its high speed (1 ms per image) satisfies our 2 ms
maximum processing-time window for end-to-end eyelid-closure detection. Furthermore,
previous work [37] has introduced a multithreaded version of ERT landmark localizer,

that is used to calculate eyelid closure based on the Eye Aspect Ratio (EAR) in real-time.

Apart from high speed, the selected algorithm must be able to provide accurate land-
mark detections, especially for the detected facial landmarks around the eyes. Therefore,
we shall use once again the BiolD database to further review the accuracy of Dlib’s ERT
implementation, since it’s a very similar dataset to our test-set. The error was calculated
in the same way as in the above described survey [42]. From the 68 landmarks that the
algorithm predicts, we make use of the six detected landmarks on each eye to calculate
the center of each eye. We then compare the predicted centers with the annotated loca-
tions. We calculate the error for each eye separately and the average run-time per image.

The results are provided in Table 4.4.

Landmark Detector Right-Eye error Left-Eye error Time per image
Dlib’s 68-Landmark Detector 2.61 % 3.64 % 1.06 (ms)

Table 4.4. The evaluation error metric is measured as the euclidean distance of each
detected landmarlk to the true (annotated) landmark, divided by the inter-ocular distance
for scale invariance [42].

The error and the average run-time (1.06 ms, around 1000 FPS) are considered satis-
factory. The Ensemble of Regression Trees (ERT) [40] provides a quite fast and accurate
way to detect landmarks and a pre-trained implementation is available through the open-
source Dlib library. For the above mentioned reasons the Ensemble of Regression Trees

(ERT) algorithm shall be used for eyelid closure detection in this thesis.
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4.5 Details of the selected algorithms

In this section the selected algorithms of Section 4.3 and Section 4.4 will be discussed
in detail. Subsection 4.5.1 will discuss the BlazeFace face detector, while Subsection
4.5.2 will cover the ERT landmark detector.

4.5.1 Face detector

BlazeFace [10] is a lightweight and well-performing CNN face detection model tailored
for real-time world applications. The model has been introduced by Google and follows
the Single-Shot MultiBox Detector (SSD) approach which is based on a feed-forward con-
volutional network that produces a fixed-size collection of bounding boxes and scores for
the presence of object class instances (in our case face or no-face) in those boxes, followed

by a non-maximum suppression step to produce the final detections.

BlazeFace breakdown analysis

The early network is a feature extractor based on MobileNet V1/V2 [79] [78] which we
will refer to as the backbone network. This network outputs a rich feature representation
of the input image as a collection of stacked feature maps. Then a set of auxiliary convo-
lutional feature layers are added to the network. These layers produce multiple feature
maps of different sizes, in successive order, which are stacked after the feature maps
coming from the backbone. While a typical SSD model uses feature maps of sizes 1 X 1,
2X2,4%X4,8x%x8, and 16 X 16, BlazeFace uses two feature layers of size 16 X 16 and 8 X 8
without further downsampling (Fig.4.6 ).
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Figure 4.6. Anchor Sceme: SSD (left) vs. BlazeFace (right)

Each of the convolution feature layers is connected to two heads, one regressor to pre-
dict bounding boxes and one sigmoid classifier that produces a score for a category (face
or no-face). Fig. 4.7 shows the BlazeFace architecture that consist of backbone feature

extractor and auxiliary predictor layers. Each layer predicts some bounding boxes for
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the class human face. Eventually predictions from all the layers are accumulated in the

post-processing layer which provides the final prediction for the face as the output.

Input Image Convolutional Feature Layers
(128x128 pixels)
3 Feature
Extractor >
16x16 8x8
Regressor Regressor
& &
Classifier Classifier

v v

Figure 4.7. BlazeFace architecture that consists of base feature extractor and auxiliary
predictor layers.

Similar to SSD object-detection models, BlazeFace also relies on a set of pre-defined
fixed-size bounding boxes to position objects. These boxes are called anchors or priors.
Each feature map is divided into number of grids and each grid is associated to a set of
priors or default bounding boxes of different dimensions and aspect ratios. In total, there
are 896 anchors, and each of the two detection layers is associated with a specific num-
ber of scale anchors. The aspect ratio of the anchors is fixed at 1:1 (i.e., square anchor),
since the variance in human face aspect ratios is limited. As shown in Fig. 4.8 each grid
cell of a 8 X 8 feature map have six anchors and each of the anchors predict exactly one
bounding box. Therefore, we have 64 4riq—ceiis X 6anchors = 384 detections. Similarly, every
grid cell of a 16 X 16 feature map is associated with two anchors, and therefore we have

256 grid—cells X 2anchors = 512 detections.
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8x8 Feature Map 6 x Anchors
per grid cell
Input Image > P |
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Figure 4.8. Anchor boxes on a 8 X 8 feature map

Feature maps represent the dominant features of the images at different scales, so
having anchors on multi-scale feature maps increases the likelihood of human faces of
different sizes to be accurately localized and appropriately classified. The 8 X 8 feature
map anchors provide more accurate predictions for larger face sizes while anchors in the

16 X 16 feature map for smaller ones.

Since BlazeFace is not reducing the resolution below 8 X 8, the number of overlapping
anchors for a detected object is very large. The typical approach, is to make use of Non-
Maximum Suppression (NMS) [16], where only one of the several anchors that contain the
same face is selected as the final prediction. However, when NMS is used to subsequent
video frames a temporal jitter problem occurs because the predictions fluctuate greatly
between different anchors. To solve this, BlazeFace is using a blending strategy where
instead of selecting only one box, it constructs the final bounding box by calculating a
weighted mean between overlapping predictions. While this blending strategy incurs no
additional cost in the calculation, the authors of [10] reported an improve of the detection

accuracy by 10%.

4.5.2 Landmark detector

For landmark detection/localization we used the Ensemble of Regression Trees (ERT),
a cascade-regression-shaped predictor implementation found in DLib [33], which is based
on the work of Kazemi et al. [40]. The detector is trained on the iBUG 300-W dataset
[801,[81].

Landmark localization is the process of localizing the shape of specific landmarks on
an object. In the Eye-blink Conditioning (EBC) case study, it is used to estimate the
location of 68 (x, y)-coordinates that map to facial structures on the face. The indexes of

the 68 coordinates can be visualized on figure 4.9.
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These annotations are part of the 68 point iBUG 300-W dataset. It’s important to note
here that other flavors of facial landmark detectors exist, including the 194 point model
that can be trained on the HELEN dataset. Regardless of which dataset is used, the same
dlib framework can be leveraged to train a shape predictor on the input training data, this
is useful if we would like to train facial landmark detectors or custom shape predictors of

our own (we do train our own shape predictor for just detecting eye landmarks).
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Figure 4.9. Visualizing the 68 facial landmark coordinates from the iBUG 300-W dataset

ERT breakdown analysis

The process of landmark localization starts by placing an initial shape estimate over
the center of the faces detected by the face-detector (BlazeFace). This estimation is based
on the mean shape of all landmark configurations of images it has been trained with.
Then a forest of regression trees gradually calculates a shift of the landmark positions
towards the actual facial features based on calculated features and pixel intensity. This
is an iterative process, which is also called cascaded regression approach, where feature
calculation and landmark shifting using regression trees is happening for each lever of
the cascade. The results of all the regression trees in a level are added to the current
landmark estimation, which results in the landmark-shape estimate for the next level.

The iterative process can be summarized in the following steps.

e Initialization: Initialize the landmark shape estimate. This is the pre-trained

mean of all landmark shapes in the training set

o Feature computation: Calculate the similarity transform between the estimation

of the shape at the current cascade level and the original mean-shape estimation.
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The transformation is used to calculate the new location of the feature points for

the regression trees

¢ Regression-tree estimation: Traverse each regression tree in the forest based on
pixel intensity differences and add their results to the current landmark shape

estimate

e Repeat: Repeat the feature computation and regression tree estimation step for

each level of the cascade

The default ERT model of Dlib consists of 500 regression trees used by each of the 15
levels of the cascade. The depth of each regression tree is 5 layers leading to 16 possible
outputs, also known as leaves. In each level of the tree, either the right or the left child is
chosen, based on the intensity difference of two pixels. The critical point of this approach
is that the location of these pixels is indexed relative to the landmark-estimation shape of
the current cascade level. At each level of the cascade, the new locations of the required
pixels for the decision-splits of all 500 regression trees are calculated. The feature points
are indexed relative to the initial mean shape and undergo the same transformation to

calculate their position relative to the current shape estimate.
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Implementation

In this chapter, we will discuss the implementation details of the eye-blink detection
pipeline. This project can be divided in five distinct steps and can be visualized in Fig.
5.1.

Eye-blink detection pipeline

1

1 Step 2 Step 4 :
1 Face detection Landmark detection Step 5 1
! Step 1 . Step 3 . Landmark detection 1
1 Image loading Face detection h ]
1 & pre-processing post-processing post-processmg 1
] Input & EAR calculation .
! > > E—

: Image » BlazeFace > ERT :
1 1
1 1
1 1
1 1
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Figure 5.1. Steps of the eyeblink detection pipeline.

Implementation details and a number of applied optimization techniques for every step
of the above pipeline will be analyzed separately. Our goal is to achieve minimum latency
(the eyeblink detection pipeline must be able to run end-to-end in under 2ms or 500FPS)
and maximum throughput. Section 5.1 will cover a combined multi-core CPU implemen-
tation of the image loading and pre-processing steps. In Section 5.2, we will describe two
different implementation approaches for the face-detection step. A GPU-based system
and an IPU-based system will be used to accelerate the BlazeFace model and achieve
high speed inference. In Section 5.3 the face-detection post-processing step is analyzed.
Section 5.4 will discuss a multi-core CPU implementation of the original 68-landmark-
detection algorithm (ERT). In addition, a 12-landmark-detection (eyes-only) version of the
ERT algorithm will be trained from scratch and will be tested for this project. Finally, in
Section 5.5 a combined implementation of the landmark-detection post-processing and

EAR calculation steps will be discussed.
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5.1 Image Loading & Pre-processing

In the current eyeblink conditioning set-up, videos are recorded at a resolution of
640 X 480 pixels. All images are grayscale which means that every loaded image has a
shape of 640x480x1 pixels. BlazeFace expects a square RGB input image of 128x 128
pixels. To keep the original aspect ratio of our images unchanged, we initially padded each
image with zeros (distributing the zeros equally on the left and right sides of each image)
to make it square and then resized it to the desired size. Furthermore, we converted each
single-channel gray image into a three-channel gray image using channel replication to

match the desired format.

We make use of Python Imaging Library (PIL) [82] for loading and pre-processing our
input images. PIL is a free and open-source library of the Python programming language
that adds support for opening, manipulating, and saving many different image file for-
mats. The library supports basic image processing functionality (such as image resizing),
including point operations, filtering with a set of built-in convolution kernels, and colour

space conversions (i.e. from BGR to RGB).

Loading and pre-processing an image are time-consuming tasks which can take up
to 2.7 (ms) per image. To accelerate these tasks, we combine the PIL library with the
Python multiprocessing library which allows to leverage multiple CPU processors for par-
allel execution. The API used is similar to the classic threading module, however the
multiprocesing module avoids the limitations of the Global Interpreter Lock (GIL) by us-
ing subprocesses instead of threads. A global interpreter lock (GIL) is a mechanism used
in Python interpreter to synchronize the execution of threads so that only one native
thread can execute at a time, even if run on a multi-core processor. True parallelism in
Python is achieved by creating multiple processes, each having a Python interpreter with

its own separate GIL.

A convenient approach for parallel-processing tasks is provided by the Pool class
which represents a pool of worker processes, where each process has separate memory
location (i.e distributed memory) and runs completely independent. More specifically we
used pool’s map method, a parallel equivalent of the python built-in map method which
blocks the main execution until all computations finish. The map method chops the given
iterable list of image paths into a number of chunks which submits to the process pool
as separate tasks. Therefore, in our case each spawned process will handle the loading
and pre-processing of its assigned chunk of images and then return the processed images
back to the main process. Execution times for implementations using 1, 2, 4, 8, 16, 32

and 64 processes are shown in Table 5.1.

By running multiple processes over different input data sizes, we observe a relation
between the amount of work that each process will handle and the obtained speedup. In

cases where the input data size is small (i.e. N=640 images in total), the speedup factor
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is increasing to a certain point and then is getting lower as we add more processes to the
pool. This is because we are performing a lot of I/O operations where each PIL load image
method call results in I/O overhead. Another reason is that multiprocessing is not a ’free’
operation and there are overhead function calls, both at the Python level and operating
system level, for spawning and destroying the processes. By increasing the amount of
data to process (N=6400 and N=64000), we were able to achieve a speedup of 8.8 when

making use of 64 processes.

Processes Time per image (ms)
N=640 N=6400 N=64000
1 2.679 2.688 2.64
2 1.375 1.384 1.397
4 0.728 0.698 0.703
8 0.589 0.433 0.418
16 0.676 0.347 0.334
32 0.765 0.309 0.303
64 0.845 0.307 0.262

Table 5.1. Execution time of the image loading and pre-processing steps for a varying
number of CPU processes. N is the number of input images
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5.2 Face Detection - BlazeFace

In this section, we will discuss the acceleration of the face-detection step on various
hardware platforms. The TensorFlow and Keras APIs were the main tools we used for the
construction and deployment of our pre-trained BlazeFace model, which are both sup-
ported on IPU and GPU hardware platforms. More specifically for the IPU implementation
we used the 2.4 version of Poplar SDK with its IPU interface to TensorFlow 2.4.4. The
same version of TensorFlow was used for the GPU implementation. First we will present
the specifications of the used IPU and GPU chips and then we will discuss the design

process and optimizations made to efficiently leverage their compute power efficiently.

Google is providing a pre-trained model of BlazeFace through Mediapipe library [43].
The model is stored as a .tflite file from which we were able to extract the weights and
store them for future use. Next, we re-constructed the whole BlazeFace architecture from
scratch, using TensorFlow and Keras API, in order to load back the extracted weights.
This way we have the same pre-trained model ready for deployment (inference only) on
IPU and GPU hardware through TensorFlow API and IPU Software Development Kit (SDK).

5.2.1 Hardware Specifications

To understand the choices made in the implementation phase we take a closer look
at the architecture of the used IPU and GPU hardware chips. Specifications of each chip

can be seen in Table 5.2.

Specifications Nvidia V100 MK1 IPU MK2 IPU
Technology Node TSMC 12 nm TSMC 16 nm TSMC 7 nm
Die Area (mm?2) 815 900 823
Transistors (Bn) 21.1 23.6 59.4
Architecture SIMD MIMD MIMD
Cores 640 (Tensor-cores) 1216 (IPU-cores) 1472 (IPU-cores)
TeraFLOPS (FP16) 125 125 250

DRAM Capacity (GB) 32 N/A 2x64
DRAM BW (GB/sec) 900 N/A 64

SRAM Capacity (MB) 36 (RF+L1+L2) 300 900

SRAM BW (TB/sec) 224+14+3 (RF+L1+L2) 45 47.5

Max TDP (Watts) 300 150 300

Table 5.2. Details of chip-to-chip comparison between recent products from two leading
ML hardware competitors: NVIDIA and GraphCore.

5.2.2 Inference on MK1 & MK2 IPU chips

In order to accelerate the BlazeFace detector on an IPU chip efficiently, we had to
consider various factors by which our model performance is affected. Features of the
IPU hardware and the software used to develop play also a key role in the optimization
stage. The Tensorflow ML framework and Keras API were used for the development and

deployment of BlazeFace. In order to run the model on an IPU-based system we need to
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construct an IPU-program. The implementation flow from a high-level framework, such

as TensorFlow, to an IPU program is illustrated in Fig 5.2.

Extract compute graph from code

High level graph representation of
NN model

Lower compute graph + perform transformations

Low level graph representation of
NN model (TensorFlow XLA/HLO)

Optimizations / schedule

A fully scheduled set of operations to
perform (low level Tensorflow XLA/HLO)

Convert schedule of operations

Figure 5.2. A framework lowering to run on an IPU

Tensorflow and Graphcore use a multi-step process to optimize the performance of
machine learning models on IPU chips. The process can be broken down into the following

steps:

1. Extracting a computational graph: Tensorflow extracts a computational graph
from the source code (Python), which is a representation of the computations per-

formed by the model.

2. Analysis using XLA: Tensorflow uses a specific-domain compiler called XLA (Accel-
erated Linear Algebra) to perform analysis passes over the high-level graph repre-

sentation. XLA is used to optimize the graph for linear algebra computations.

3. Custom XLA backend: Graphcore uses a custom XLA backend to perform its
own transformations and optimizations on the graph. The custom backend allows

Graphcore to tailor the optimizations to the specific characteristics of IPU chips.
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4. Mapping to scheduled-graph: The graph is then mapped to a low-level graph
representation called scheduled-graph. This scheduled-graph is a fully scheduled

set of operations that will be computed in a particular order.

5. Translation to IPU program: The scheduled-graph is then translated into an IPU

program, where each node is replaced by the execution of compute sets.

6. Lowering to match IPU execution model: The IPU-program is further lowered into
a form that matches the bulk-synchronous parallel execution model of an IPU chip,

which consist of sync, exchange and compute steps.

7. Poplar compiler: The newly formed program is lowered again so that each tile has
its own version of the program with explicit synchronisation and communication
steps. This final version of a program in each tile is handled by the Poplar compiler

(GCD - Graph Compile Domain) and:

(@) Only reads and writes data in its own tile memory.
(b) Contains explicit synchronisation instructions to other tiles.
(c) Contains data communication routines to exchange with other tiles.

(d) Just runs that tile’s vertices when executing a compute set.

8. Compiling and execution: Finally, the resulted per-tile program can be compiled
with a conventional compiler to run on the tile. This final version of a program in

each tile

Overall, the process used by Tensorflow and Graphcore to optimize the performance
of machine learning models on IPU chips includes extracting a computational graph,
performing analysis and optimizations using XLA, mapping to a low-level representation,
translating to an IPU program, and lowering the program to match the execution model

of IPU chips, and finally, compiling the program for execution on the tile.

Optimizations techniques

Taking maximum advantage of the compute capabilities of the IPU, optimizing memory
management and minimizing communication between host and device are the most cru-
cial factors affecting model performance. Hence, we’ll go over the optimization techniques,

provided by the Poplar SDK, that we employed to enhance and maximize performance.

Maximizing compute capabilities: In the context of ML inference, the concept of
batch-size simply refers to the number of combined input samples (e.g., images) which
our model will process simultaneously. The purpose of adjusting batch size when test-
ing inference performance is to achieve an optimal balance between latency (speed) and
throughput (the total amount of processed samples over time). Because of the lighter load
of processing one image at a time, a batch size of 1 often produces the shortest latency
times, and can be a good indicator of how a system handles near-real-time inference de-

mands from client devices. Larger batch-sizes (8, 16, 32, 64, or 128) can result in higher
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throughput on test hardware, such as IPU or GPU, that is capable of completing more
inference work in parallel. However, this increased throughput can come at the expense

of latency.

To make optimal use of the processing power, the batch-size has to be selected in
a way that all kernel replicas and state variables fits in local memory of the tiles and
the processing power of the IPU is taken advantage of. The memory used by the Poplar
graph is allocated during compilation and is composed of the main code (i.e. linear al-
gebra operations), the input/output tensors and data exchange code. The BlazeFace
model can be considered a "small" model in terms of memory needs due to its lightweight
backbone network (inspired by MobileNet V1/V2). A Low memory footprint means more
In-Processor-Memory is available and larger batch-sizes can be used to improve perfor-

mance. Therefore, our starting point was multiple inference runs via larger batch-sizes.

It is important to note here that the value batch-size shall remain constant through
the whole execution of our model otherwise a new graph construction (re-compilation)
will occur. Because the computational graph is static, the execution instructions loaded
on the device depend directly on the batch-size value, as we are going to loop multiple
times over data and need to know the number of repetitions in advance. Furthermore,
with a different batch-size, a different distribution of the processing onto the tiles will be

required, in order to benefit from the synergies of larger batch-sizes.

The tf.distribute.Strategy is a TensorFlow API to distribute training or inference across
multiple device units. IPUStrategy is a subclass which targets a single system with one
or more [PUs attached and creating our model within the strategy scope was necessary
to ensure that it will be compiled and placed on the IPU. Our first implementation was
about testing for bulk computations where we load a large number of data from memory.
For this approach, the Keras build-in predict() method was initially used for inference on
a dataset of 64000 images and the results are presented in Table 5.3 for MK1 and Table
5.4 for MK2.

Batch_Size Run_time (s) Throughput Time/image (ms) Compilation_time (s)

1 160.483 398.796 2.508 26.8
2 84.241 759.725 1.316 28.3
4 45.19 1416.243 0.706 34.6
8 30.209 2118.574 0.472 38.9
16 21.904 2921.841 0.342 49.1
32 18.696 3423.192 0.292 64.8

Table 5.3. Inference BlazeFace on one MK1 IPU. Run_time is the total time of execution for
processing 64000 images, Throughput (images/sec).
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Batch_Size Run_time (s) Throughput Time/image (ms) Compilation_time (s)

1 134.029 477.509 2.094 126.7
2 70.832 903.546 1.107 131.8
4 42.739 1497.461 0.668 139,2
8 25.541 2505.775 0.399 144.7
16 21.291 3005.965 0.333 156,1
32 19.379 3302.544 0.303 236,4
64 14.1394 4526.370 0.221 240,2
128 15.3025 4182.311 0.2391 292.6

Table 5.4. Inference BlazeFace on one MK2 IPU. Run_time is the total time of execution for
processing 64000 images, Throughput (images/sec).

For MK1, batch-size 32 was the highest value we could use to fit our model inside the
local memory, obtaining a throughput of 3423 (images/sec) and 0.292 (ms) per image pro-
cessing time. Since the second-generation MK2 offers more computational power (1472
tiles vs 1216 tiles) and larger on-chip memory compared to MK1 (896 MiB vs 304 MiB),
we were able to fit our model with a batch-size up to 128, although best performance of
4526 (images/sec) and 0.221 (ms) per image processing time was obtained with batch
size 64. Therefore, 32 for MK1 and 64 for MK2 are the selected batch sizes for our project
and further optimizations that we will apply concerns only these values unless stated

otherwise.

Communication Overhead: Another crucial factor for maximizing IPU performance
is I/O optimization. This concerns both the data transfers between the host (CPU) and
device (IPU), as well as the memory transactions within the device itself. Data transfers
between the host (CPU) and device (IPU) are done via PCle. These transfers are costly and

minimizing them is important for performance.

All the computations of our model are combined into multiple operations in a Poplar
graph (see Section 3.2). These operations are called to be executed for each batch in our
dataset which adds overhead of passing control to the CPU for each batch. To amortize
this overhead, the inference operations are placed into a loop so that they can be executed
multiple times on the IPU without returning control to the host. However, the input data
needs to take the form of streams of values, and therefore a data pipeline from the dataset
into the inference loop on the IPU is needed. The tf.Data API is utilized to construct a
Dataset object from data in host memory. The tf.data.Dataset object is an abstraction
that represents a sequence of elements, where each element in our case is represented as
a multidimensional Tensor. When a Keras model is created inside of an IPUStrategy scope
it automatically creates data streams called IPUInfeedQueue and IPUOutfeedQueue for

efficiently feeding data to and from the IPU devices.

A data stream is a unidirectional communication from the host to the device, or the
opposite, and is defined to transfer a specific number of elements of a given type. This

means the buffer storage required by the stream is known. On the IPU side, a stream ob-
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ject (FIFO stream) is created and added to the computation graph, while on the host-side
the data stream is connected to a buffer allocated in memory. The actual data transaction
is done with a Copy program which copies data from the stream to a data-tensor, or from
a data-tensor to the stream. There is a maximum buffer size limit of 128 (MiB) per stream
copy operation for MK1 and 256 (MiB) for MK2. These I/O streams must synchronise
their data transfers, and for that, a callback function is used. The callback function will
be called for a device-to-host transfer as soon as the transfer is completed indicating to

host that it can read data from the buffer.

To improve I/O communication between host and IPU, we initially made use of steps_-
per_execution argument, which sets the number of batches processed sequentially in each
execution. The default value is 1, which means that the IPU will only process a single
batch and then wait for more data to arrive from the host. By setting steps_per_execution
to a higher value we feed our looped inference multiple batches of data asynchronously.
This alleviates the extra communication overhead between host and IPU and improved
the performance. The total number of batches in the dataset/testset is an important
factor that we need to consider when setting the value of steps_per_execution, as the
former must be divisible by the latter. Thus, the following empirical formula (Equation

5.1 describes the maximum value of steps_per_execution argument:

steps_per_execution,, = (dataset_length/ /batch_size) (5.1)

In our case, the dataset_length is 64000 and the batch-size is 32 for MK1 and 64
for MK2 IPU. Therefore, the maximum value of steps_per_execution is 2000 and 1000
respectively. By using the maximum value of steps_per_execution led to a 88% increase
in throughput for MK1 and 55% increase for MK2, as shown in Table 5.5.

Device Batch_Size Run_time (s) Throughput Time/image (ms)
MK1 32 8.746 7317.631 0.137
MK2 64 7.99 8010.013 0.125

Table 5.5. Inference results with steps_per_execution = num_of samples / batch-size.
Run_time is the total time of execution for processing 64000 images, Throughput (im-
ages/sec).

After optimizing the host’s data loading, we further explored two options provided by
IPU TensorFlow and Poplar regarding data movement within the IPU. The first option is
to split the IPU into two sets of tile groups, the I/0 tile group and the Compute tile group.
The former performs only I/O operations to fetch and receive data from outside the chip
while the latter can perform general computations. Thus, the IPU-program is also split
into two sub-programs to run in parallel, one for I/O and one for computations. The
execution flow when using overlapping I/O within IPU is shown in Figure 5.3. Feeding a
model enough data to process from the host is a common bottleneck, which affects sig-

nificantly overall performance. By using a number of dedicated I/O-tiles this bottleneck
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can be mitigated, as data transfer and computation overlap over time.

According to [44], the I/0 tiles must be able to hold at least a full micro-batch of data
and not all the memory on an I/0O tile is available for data as a portion of memory is
used for code and buffers. Furthermore, is considered more optimal to select a number
of I/0 tiles that is a power of two. The number of I/0O tiles should be carefully tuned,
since these tiles cannot participate in computations and using a large number can affect

performance. Contrary, using too few I/0 tiles can cause the transferred data-tensors to

not fit in the available tile memory.
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Figure 5.3. Overlapping I/O within IPU
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The second option is called Prefetch and allows TensorFlow and Poplar to move input
data logically closer to the IPU before it is needed. By enabling this option the IPU calls
the callback function (which is attached to the I/O streams) as soon as possible (i.e. im-
mediately after it releases the stream buffer from a previous transfer) enabling the host
to fill the buffer in advance of the transfer. This way, data are available to the IPU before
it is needed and therefore less time waiting for them is spent. The number of pre-fetched

dataset elements is controlled by the prefect_depth argument.

Furthermore, at the end of the execution on the IPU, a large amount of time is spent
dequeuing the resulted detections back to host for further processing (post-processing).
Combined with the fact that we have previously set the steps_per_execution to the max-
imum value, the IPU has to dequeue the whole processed dataset synchronously, which
is not efficient. The IPU provides another option called asynchronous callback, where
an extra thread is used during execution and is responsible for dequeuing the processed

data back to host as soon as they are ready.

A grid search experiment was conducted to explore the optimal values for both prefect
depth and I/0 tiles when running the BlazeFace model on both MK1 and MK2 IPU-chips
with a batch-size of 32 and 64 respectively. We investigated the use of 16, 32, 64 and
128 1/0 tiles in combination with prefetching one to three batches of data. We used
the maximum value of the steps_per_execution argument (1000 for Mk1 and 2000 for
MK?2) and the asynchronous callback option was also enabled. Allocating 64 tiles to I/O
overlap and prefetching up to two batches of data were the optimal configurations set-
tings for MK2 IPU chip. Our performance improved by 36.5%, compared to the results
of Table 5.5, obtaining a throughput of 12614 (images/sec) (Table. 5.6). In the case of
MK1 IPU chip, we obtained the best results with the same configuration settings, 64 1/0
tiles and a prefetch-depth of two batches. The memory of each tile inside a MK1 IPU
system is 256 KiB; almost three times smaller compared to a MK2 tile memory (624 KiB).
Therefore, even though a smaller batch-size of 32 is used, the same amount of 64 dedi-
cated 1I/0 tiles reported the best results. The performance improved by 28%, compared

to the results of Table 5.5, obtaining a throughput of 9374 images per second (Table. 5.6).

Device Batch_Size Run_time (sec) Throughput Time/image (ms)
MK1 32 6,827 9374.475 0.107
MK2 64 5.074 12614.051 0.079

Table 5.6. Inference results with steps_per_execution = num_of samples / batch-size,
64 dedicated 1/0 tiles and Prefetch enabled. Run_time is the total time of execution for
processing 64000 images, Throughput (images/sec).

Memory Utilization: We investigated the memory utilisation of both IPUs with the
PopVision Graph Analyzer Tool. As expected, we found that a portion of the memory

is consumed by code residing on tiles required to describe the local computation. The
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distribution of memory over tiles (Appendix Fig. A.2 & Fig. A.3) is even, suggesting
efficient memory use in general and effective load balancing among tiles on the IPU. The
memory usage spikes on the plot are caused by the 64 dedicated I/O tiles, which are

heavily utilized during execution as they constantly fetching data from Host-to-Device.

On-Device Inference-Loop Implementation Approach

Deep Neural Networks (DNN) approaches are being increasingly deployed for real-time
applications. The real-time nature of these applications creates a requirement for system
responsiveness, which imposes strict latency constraints on the inference of the underly-
ing DNN models. The selected BlazeFace model [10] for this project, is a distinct example
of a DNN model specifically designed for real-time applications. The bulk-inference ap-
proach is useful in cases where a large number of image data reside in memory and we
want to process them at once. However, the aim of this project is to build a "stream-
ing" application, where the recording camera directly feeds batches of image data in the
subsequent face detection and landmark detection steps. Thus, we experimented with a
second implementation approach, called on-device inference loop, in which we read and

process a single batch of data on every iteration of the loop.

For this approach, we decided to use a lower-level API, where we have more con-
trol over our inference task. Instead of using the build-in Keras predict() method we
constructed an on-device inference loop inside of a TensorFlow tf.function(). While the
build-in predict() method is useful for bulk-computation tasks, it performs poorly on
repetitive calls with a small amount of input data. After investigation, we found that on
every predict() call, infeed and outfeed queues are constructed for data manipulation and
as soon as execution is finished they get destroyed. This adds constant time overheads
on every iteration of our inference task. The creation of these queues on every iteration

is the default behavior of the build-in Keras predict() method which we cannot avoid.

The primary advantage of using tf.function() for inference on IPUs is its ability to con-
struct a computation graph from a Python function and optimize it for efficient execution
on the IPU hardware.

In contrast, the tf.function() decorator in TensorFlow allows you to create a graph func-
tion, which can be optimized for efficient execution on devices like IPUs and GPUs. By
converting the computation graph to an optimized form, tf.function() can eliminate some
of the overhead associated with dynamic execution in Python, allowing the computation
to be executed more efficiently on the IPU. Additionally, tf.function() can be combined
with XLA compilation and an on-device inference-loop, which can further accelerate the
inference process. When a TensorFlow model is executed on an IPU using tf.function(),
the input data is typically first transferred from the host to the IPU, where the model com-
putation is performed. The output data is then transferred back to the host for further

processing or storage. However, transferring data between the host and the IPU can be a
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bottleneck that limits the overall performance of the model.

The on-device inference-loop approach is designed to reduce the amount of data trans-
fer between the host and the IPU by keeping the input data and model weights on the
IPU and only transferring small batches of input data at a time. The inference loop works
by repeatedly executing the compiled graph on a small batch of input data, updating the
output data, and then fetching the next batch of input data from the host. This process
continues until all of the input data has been processed. The on-device inference loop is
managed by the Poplar SDK and is automatically used when executing TensorFlow models
on IPUs using tf.function(). Apart from loading and executing the model in a tf.function(),
we had to manually construct an outfeed FIFO queue, for extracting the output data back
to host.

Similarly to the bulk-computation approach we used a batch size of 32 and 64 to
compile our model for MK1 and MK2 IPUs respectively. We keep the number of 1/0 tiles
to 64 and same configuration for the outfeed queue but we set the steps_per_execution
value to one since we are processing only a single batch of data at a time. The results are

presented in Table 5.7.

Device Batch_Size Run_time (sec) Throughput Time/image (ms)
MK1 32 7,052 9074.475 0.108
MK2 64 5,558 11514.051 0.08

Table 5.7. On-Device Inference loop results for MK1 and MK2 IPUs, Throughput (im-
ages/sec), Run_time is the total time of execution for processing 64000 images.

We observe that the performance of the on-device inference loop approach is quite
similar to the bulk-inference approach. Besides achieving satisfactory processing times,
the advantage of this approach is that it can accept a single batch of input data directly
from the camera and extract the face locations in real-time. This means that the amount

of memory needed to store the videos is significantly reduced.

Low-latency experiments

As described before, larger batch sizes can improve the performance and scalability of
an application (see Tables 5.3 and 5.4). However, we wanted to investigate the trade-off
between latency and batch size on IPUs. Therefore, smaller batch sizes of 1, 2, 4, 6, 8, 16
will be investigated with the on-device inference loop approach to test our accelerators for
low-latency responses. In this case, we also set the steps_per_execution argument to one
and lowered the number of dedicated I/0 tiles to 32. The use of a larger number of I/0O
tiles were also investigated, but performance was decreased. This behavior is expected
since our small amount of data on every iteration is not enough to keep all the dedicated

tiles busy during execution, and the fact that these tiles cannot participate in computa-
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tions led to an underutilization of the IPU chip.

MK1 MK2
Batch size | Latency Time/image (ms) | Latency Time/image (ms)
1 1.97 1.97 1.701 1.701
2 2.108 1,054 1.841 0,921
4 2.337 0,585 2.077 0,519
6 2.894 0,482 2.293 0,382
8 3.058 0,382 2.831 0,353
10 3.526 0,352 3.112 0.311
12 4.283 0,356 3.545 0,295
14 4.478 0,319 3.734 0,266
16 5.042 0,315 4.148 0,259

Table 5.8. Low-latency approach results on MK1 & MK2 IPUs, Latency (ms/batch), steps_-
per_execution = 1, 32 dedicated I/ O tiles.

From the results in Table 5.8, we observe that the lowest latencies are obtained for
both IPU chips with a batch size of 1. As expected, the latency increases as the batch size
gets bigger.

5.2.3 Inference on Nvidia Tesla V100

The overall procedure of running a Deep Learning model on a GPU with Tensorflow

can be analyzed in the following steps:

1. Graph Construction: The first step is the construction of a TensorFlow graph,
which defines the computations to be executed. The graph is constructed by adding
operations (also known as "Ops") to the graph and connecting the inputs and out-
puts of the operations. A TensorFlow Op is a node in the computation graph that
takes one or more tensors as inputs, performs a computation on these inputs, and

returns zero or more tensors as outputs.

2. Session Creation: Next, a TensorFlow session is created. A TensorFlow session
is an object in TensorFlow that provides an environment for executing operations
in a TensorFlow computation graph. It is responsible for setting up the resources
necessary to execute the computation graph, such as allocating memory on the GPU

or CPU and managing variables.

3. Operation Initialization: Before executing the operations, another component of
Tensorflow framework, known as TensorFlow executor, is utilized to initialize the
operations in the graph. This includes allocating memory for the inputs and outputs

of each operation.

4. Operation Execution: Once the operations are initialized, the TensorFlow executor
traverses the graph and executes each operation individually. During execution,

the executor evaluates the inputs to the operations and dispatches the operations
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to the appropriate devices (such as CPUs or GPUs). Each TensorFlow Op has a
corresponding GPU or CPU implementation, usually written in C++ or CUDA, which
is precompiled so that it can be dispatched and executed efficiently. Additionally,
the executor manages the transfer of tensors between the GPU and CPU memory to

ensure that the computations are executed correctly.

5. Output Tensors: Finally, after the operations are executed, the TensorFlow execu-

tor returns the results of the computations (output tensors) to the CPU.

The TensorFlow executor and XLA (Accelerated Linear Algebra) compilation can work
together to improve the performance of TensorFlow programs. XLA provides an alternative
mode of running models: XLA optimization is performed on the TensorFlow graph, before
it is executed by the TensorFlow executor. XLA generates GPU kernels for the operations
that are specifically optimized for the given model. Because these kernels are unique to
the model, they can exploit model-specific information for optimization. The benefit of
this over the standard TensorFlow implementation is that XLA can fuse multiple opera-
tions (kernel fusion) into a small number of compiled kernels. Fusion can reduce memory
requirements and improve performance compared to executing operations individually,

as the standard TensorFlow executor does.

As we described in the previous section, the IPU operates by default on an opti-
mized computational graph by using a custom XLA (Accelerated Linear Algebra) compiler.
Similarly, XLA compilation was used to construct an optimized graph of BlazeFace face-
detector for efficient computations on the GPU-based system. We followed the same
on-device inference loop approach ("streaming" application) for executing on the GPU.
The higher amount of total memory inside the V100 enabled us to compile and run our
model with bigger batch sizes compared to the IPUs. We conducted several experiments
with batch sizes up to 512 on a test set of 64000 images. From the results in Table 5.9
we see that the optimal performance is obtained for the maximum investigated batch-size
of 512.

Batch_Size Run_time (s) Throughput Time/image (ms)

32 9.81 6521.81 0.1532
64 5.416 11816,838 0.0846
128 2.792 22968.123 0.0436
256 1.704 37705.264 0.0266
512 0.815 79123.324 0.0127

Table 5.9. Bullk-Inference on Tesla V100 GPU. Run_time is the total time of execution for
processing 64000 images, Throughput (images/sec).

Low-Latency Implementation on Tesla V100

The next step was to investigate low-latency responses on the V100 Tesla GPU, similar

to what we did with the IPU implementation. We conducted experiments for batch sizes
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up to

16 and and results are presented in Table 5.10.

V100
Batch size | Latency Time/image (ms)

1 3.724 3.724
2 3.789 1,895
4 3.794 0,949
6 3.873 0,645
8 3.83 0,478
10 3.829 0.382
12 3.866 0,322
14 3.972 0,283
16 4.189 0,261

Table 5.10. Low-latency approach results on V100 Tesla GPU, Latency (ms/batch).

5.2.4 Summary of optimizations for accelerating BlazeFace implementa-

tion

A multitude of different optimizations for running the face detection on IPU and GPU

have been investigated in this work, the final optimizations are summarized:

IPU optimizations

e We made use of the batching method in order to utilize the compute capabilities of

the IPUs efficiently while making sure that our model can be compiled and fit inside
the local memory. Maximum performance was obtained with a batch size of 32 for
MK1 and 64 for MK2.

e We combined the use of 64 dedicated I/0 tiles, where data streaming and compu-

tations are overlapping over time within the device, with the Prefetch option of the
Infeed and Outfeed streams. By enabling the Prefetch option, the CPU can populate

the Infeed stream with data before it is needed.

Because the maximum value of steps-per-execution is used, to minimize the com-
munication overhead as much as possible, the IPU has to dequeue a big amount of
data back to host synchronously. By using the asynchronous callback option we
enable the device to dequeue data as soon as they are ready by running an extra

thread during execution.

GPU optimizations

With a batch size of 512, maximum performance was obtained for the Tesla V100
GPU.
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e XILA-compilation generates an optimized model-specific graph by mainly fusing
small operation kernels. This leads to less memory requirements and improves

execution performance.

5.3 Face detection Post-processing

The face detection Blazeface model outputs 896 detections for every image, where
each detection contains four bounding box coordinates (x_center, y_center, width, height),
twelve landmark coordinates (x1,y1, ..., x12,y2) and a confidence score. The predicted
coordinates correspond to 128x128 pixel input image size and therefore we need to map

them on the original image dimensions (640x480 pixels).

The third stage is about translating the raw tensor outputs of BlazeFace into actual
bounding box coordinates which contain the face region. This stage is running on the
host CPU and it’s quite fast (0.2 ms per image) since we are able to post-process the raw

tensors in batches and therefore no further optimizations are needed.

5.4 Landmark Detection

Once the face has been detected, we continue with the landmark detection step. We
feed the bounding box coordinates, that we found in previous step, into the landmark
detector and a total of 68 facial points is detected on each face. For this step, we initially
used the default pre-trained 68-landmark detector of Dlib, which detects 68 facial points
on a given input image. The predictor is capable of detecting these points in real-time

processing speed with an average of 1.06 (ms) per image processing time.

Our project goal is to capture the eyeblink response (i.e. the ratio of eyelid closure in
time), and therefore we are mainly interested in localizing the location of the eyes. Of the

total of 68 localized points, we only make use of 12-eye_points and discard the rest.

Furthermore, by using the 68-point detectors the overall model speed and model

size is affected:

Model speed: Even though we’re only interested in a subset of the landmark predic-

tions, our model is still responsible for predicting the entire set of landmarks.

Model size: Since the model needs to know how to predict all landmark locations it
was trained on, it therefore needs to store quantified information on how to predict each
of these locations. The more information it needs to store, the larger our model size is.
For the above mentioned reasons, we decided to train an experimental custom landmark

detector to localize just the location of the eyes.
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5.4.1 Training an experimental custom Dlib landmark detector

Tools for training a custom landmark detector are publicly available through the open-
source Dlib library [33]. A landmark detector can be generated from an annotated dataset

and by setting certain training options.

Annotated dataset

To train our custom Dlib 12-Landmark detector, we’ll be utilizing the iBUG 300-
W dataset (but with a twist). To create the iBUG-300W dataset, researchers manually
annotated and labeled each of the 68 coordinates on a total of 7,764 images. The goal
of iBUG-300W is to train a landmark detector capable of localizing each individual facial
structure, including the eyes, eyebrows, nose, mouth, and jawline. The dataset itself
consists of 68 pairs of integer values — these values are the (x, y)-coordinates of the
facial structures depicted in Figure 4.9. Based on the visualization, we can derive which
coordinates map to which facial structure. From the total of 68 annotated landmarks
we are only interested to keep the ones related to the eyes (37 to 46). Therefore, we will
discard all the other annotations and use an adapted version of iBUG 300-W dataset for

training a custom 12-Landmark detector.

(a)

Figure 5.4. a) Depicts the original 68 facial landmarks of an image from the iBUG 300-W
dataset [81]. b) Depicts the adapted version with 12 eyes-only landmarks

Training hyperparametes

A set of hyperparameters must be carefully selected for the training process of the
landmark-detector. In machine learning, a hyperparameter is a parameter whose value is
used to control the learning process. These parameters affect the size, accuracy and speed
of the generated model. We will discuss briefly the seven most important hyperparameters

that we can set and tune:

e tree depth: Specifies the depth of the trees used in each cascade. This parameter
represent the “capacity” of the model. Smaller values of tree_depth will lead to
more shallow trees that are faster, but potentially less accurate. Larger values of

tree_depth will create deeper trees that are slower, but potentially more accurate.
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e nu: The nu option is a floating-point value (in the range [0, 1]) used as a regular-
ization parameter to help our model generalize. Value close to 1 will emphasize the
learning of fixed-data instead of patterns, thus raising the chances for over-fitting
to occur. While values closer to O will help our model generalize, a considerably

larger collection of training samples will be needed in order to perform well.

e cascade_depth: Is the number of cascades used to train the model. This parameter
affect either the size and accuracy of a model. Choosing a high number of cascades
results to a larger and potentially more accurate model. Using fewer cascades

results to a smaller model, but it could be less accurate.

e feature_pool_size: Controls the number of pixels used to generate features for the
random trees in each cascade. Larger amount of pixels will lead the algorithm to be

more robust and accurate but to execute slower.

e num_test_splits: Is the number of split features sampled at each node. This pa-
rameter is responsible for selecting the best features at each cascade during the

training process. The parameter affects the training speed and the model accuracy.

e oversampling amount: applies some translation deformation to the given bound-
ing boxes in order to make the model more robust against eventually misplaced face

regions.

e oversampling translation_jitter: Controls the amount of translation applied to
the dataset.

We refer the reader to the original work of Kazemi et al [40] for a more detailed analysis

of all the above parameters.

Hyperparameter tuning

A hyperparameter tuning algorithm called find_min_global [83] is publicly available
via the open-source Dlib library [33] which is based on the work of Cédric Malherbe and
Nicolas Vayatis [84]. The above algorithm was used to find the optimal hyperparameter
values that will then be used to train our custom landmark detector. A range of values

for the different hyperparameters and a maximum number of trials had to be selected.

Execution speed is an important factor on the basis of which the exploration space
of the different hyperparameters was chosen. Lower values were chosen for the hyperpa-
rameter tree_depth which greatly affects the speed of the trained model. However, beyond
a fast model we also want it to be able to produce accurate detections. For this reason
we chose to explore a larger range of values for the cascade_depth and feature_pool_size
hyperparameters. In addition, the num_test_splits hyperparameter does not affect the
size and speed of our model but can improve the accuracy, so we choose to explore a
larger range of values for this hyperparameter as well. Finally, values closer to zero were

explored for the nu hyperparameter as it will help our model to generalize. The selected
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value ranges for the different hyperparameters are summarized in the Table. 5.11.

Hyperparameters Lower bound Upper bound
tree depth 2 6
nu 0.001 0.2
cascade_depth 4 25
feature_pool_size 100 1000
num_test_splits 20 300
oversampling_amount 1 40
oversampling_translation_jitter 0.0 0.3

Table 5.11. Value range of the hyperparameters to be explored with the find-min-global

algorithm.

The optimal hyperparameter values obtained from running 1000 trials are presented

in the second column of Table.5.12. For completeness, in the first column of the same

table we present the hyperparameter values used in the pre-trained 68-landmark detec-

tion implementation provided by the Dlib library.

Hyperparameters Dlib 68-Landmark setting Custom detector settings
tree depth 10 4
nu 0.1 0.1033
cascade_depth 10 20
feature_pool_size 400 677
num_test_splits 20 295
oversampling_amount 20 29
oversampling_translation_jitter 0] 0

Table 5.12. Selected Hyperparameter values

The above hyperparameter settings were used to train our custom 12-Landmark de-

tector (eyes-only).

5.4.2 Evaluating on IBUG-300W and BiolID datasets

We initially evaluated the 68-Landmark detector and our custom 12-Landmark de-
tector by using the Mean Average Error (MAE) metric on the IBUG-300W dataset. The

results are presented in Table 5.13.

Landmark Detectors Size Train-set error (%) Test-set error (%) Number of landmarks
Dlib 68-Landmark Detector 99.7 MB 6.9 % 68-points
12-Landmark Detector 25.6 MB 2.1 % 12-points

Table 5.13. Mean Average Error (MAE) evaluation

To further review the accuracy and speed, we evaluate the models on the BiolD

database that strongly resembles our testset. We used, once again, the evaluation dis-

tance error metric, which has already been described in Section 4.4. The results are
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shown in Table. 5.14.

Landmark Detector Average error Time/image (ms)
Dlib’s 68-Landmark Detector 3.125 % 1.06
12-Landmark Detector 3.205 % 1.02

Table 5.14. Accuracy evaluation on the BiolD database

We observe that both models perform similarly in terms of accuracy and speed. Fig.
5.5.a) depicts a 68-landmark detection obtained from the pre-trained model of Dlib, while
5.5.b) depicts a 12-landmark detection obtained from our custom trained detector on an
image of the BiolD dataset.

Figure 5.5. a) Depicts a detection of Dlib’s pre-trained landmark detector iBUG 300-W
dataset. b) Depicts a detection from our custom 12-landmark detector. The image is taken
_from the BiolD dataset [36]

The implementations above are fast, but we can further accelerate the landmark-

detection stage with the use of multiple CPUs.
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5.4.3 Work-sharing with multiple processes

The landmark-detection stage is running on the host CPU and the multiprocessing
library shall be used for multi-core CPU acceleration. Each spawned process will handle
the landmark detection of N / P images, where N is defined as number_of_images divided
by the number of processes P. Execution times for implementations using 1, 2, 4, 8, 16,

32 and 64 processes are shown in Table 5.15.

Processes Time/image (ms)
N=64000
1 1.059
2 0.563
4 0.316
8 0.157
16 0.089
32 0.071
64 0.060

Table 5.15. Multi-process CPU approach for landmark detection on a sequence of 64000
frames

5.5 Landmark detection Post-processing & Eye-blink detection

The final stage uses the extracted landmarks of the eyes to calculate if a blink has
taken place by using the Eye Aspect Ratio (EAR) metric. This stage is combined with the

landmark detection step and is executed in parallel by multiple processes.

Calculating EAR & Eye-blinks

By calculating the EAR we can determine if a blink is taking place. It generally does not
hold that a low value of the EAR means that a person is blinking. A low value of the EAR
may occur when a subject closes his/her eyes intentionally for a longer time or performs
afacial expression, yawning, etc., or the EAR captures a short random fluctuation of the
landmarks. Investigating a larger temporal window (+3 images or video frames) will have
a big impact on a blink detection for a frame where an eye is the most closed when
blinking. An example of the landmark detections on an open and closed eye, as well as

the plotted eyeblink response of a processed video, can be seen in Fig. 5.6.
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Figure 5.6. The 6 facial landmarks associated with the eye and eyeblink response plot.
Image from [38]
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Chapter E

Evaluation

In this chapter, the final combined implementation for blink response detection is eval-
uated. The experimental setups that are used are discussed in Section 6.1. In Section
6.2, the accelerated results of the selected algorithms for the eyeblink-response detection
are discussed and compared to the original to review the achieved speedup. In addition,
we present how the algorithm performance scales with different CPU and IPU hardware
and also we evaluate hardware performance in terms of latency, throughput, and energy
efficiency. Section 6.3 discusses the scalability potential of running the face detection

step in multiple IPU chips.

6.1 Experimental set-up

The specifications of the Tesla V100 GPU that is used for evaluation has been previ-
ously described in Section 5.2. The CPU is an AMD EPYC 7551, of which the specifications

are summarized in the host column of Table 6.1, along with those of the host memory.

Specification V100 Host

Clock Speed 2.0 GHz

Number of cores 32 (64 threads)
PCle controller PCle 3.0 (128 lines)

L1 cache 32 x 64 KiB
L2 cache 32 x 512 KiB
L3 cache 64 MB

Table 6.1. Specifications of GPU Host AMD EPYC 7551 CPU

For the evaluation on the IPU hardware platfroms, we used an IPU-POD 16 system
and an IPU-server system. The former has four IPU-M2000s racks with 16 MK2 IPU chips
in total running on a host server, while the latter is a MK1 PCle card-based system with 8
C2 PClIe cards and 16 MK1 IPUs on a host server. Each C2 card is a PCle accelerator card
with two MK1 (first generation) IPU processors in it. Key features of MK1 and MK2 IPU
chips can be found in Section 5.2. The host CPU of the MK1 IPU-server is an Intel Xeon
Platinum 8168, while the host CPU of the IPU-POD 16 system is an AMD-EPYC 7742

CPU. The specifications for both CPUs are summarized in the second and third column
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of Table 6.2 respectively.

Specification MK1 Host MK2 Host

Clock Speed 2.70 GHz 2.25 GHz

Number of cores 24 (48 threads) 64 (128 threads)
PCle controller PCle 3.0 (48 lines) PCle 4.0 (128 lines)

L1 cache 24 x 32 KB 64 x 32 KB
L2 cache 24 x 1024 KB 64 x 512 KB
L3 cache 33 MB 256 MB

Table 6.2. Specifications of MK1 Host Intel Xeon Platinum 8168 CPU and MK2 host AMD-
EPYC 7742 CPU

6.2 Eye-Blink Response Detection Acceleration results

In this section we shall discuss the acceleration results of the face detection, landmark

detection and combined implementation for eyeblink-response detection.

6.2.1 Image Loading and pre-processing

The image-loading and pre-processing combined step is performed by multiple pro-
cesses on the host-side. The number of processes was set to be equal with the number
of physical cores of the host-CPU of each system (Table. 6.1 and Table. 6.2). Thus, 32
processes were used for MK1 Host and V100 Host while 64 for MK2 Host. The results are
presented in Table 6.3.

System # Processes Time/Image (ms) Speedup
Naive version 1 2.6 -
AMD EPYC 7551 (GPU) 32 0.381 6,8
Intel Xeon Platinum 8168 (MK1) 24 0.438 5,9
MD-EPYC 7742 (MK2) 64 0.262 9,9

Table 6.3. Execution time of the combined image loading and pre-processing step for the
host CPUs of our systems.

From the above results we observe that we can achieve a speedup between 6 to 10 X.

6.2.2 Face Detection on IPU & GPU

Face detection is performed by using the BlazeFace CNN model. The original imple-
mentation is constructed through TensorFlow 2.4.4 which provides an intergrated version
of Keras library. We maximize the data-level parallelism potential by employing the XLA-
compiled model graph on IPU and GPU hardware platforms with batched data. Three

different BlazeFace implementations are evaluated:
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e The original BlazeFace CPU implementation (see Section 4.5);

e The optimized BlazeFace on-device inference-loop implementation on MK1 and MK2
IPU chips (see Section 5.2);

e The optimized BlazeFace on-device inference-loop implementation on the Tesla V100
GPU (see Section 5.2).

The results are shown in Table 6.4.

Implementaion Time/Image (ms) Speedup
BlazeFace serial version 32.727 -
MK1 BlazeFace implementation 0.107 306
MK2 BlazeFace implementation 0.079 414
Tesla V100 BlazeFace implementation 0.0127 2576

Table 6.4. Performance comparison of different implementations of the BlazeFace model.
Speedup is calculated relative to the slowest implementation.

Compared to the original sequential version, we achieved a speedup of 306 x and 414 x
with the optimized MK1 and MK2 accelerated versions respectively. The larger amount of
memory on the V100 GPU (32GB) enabled us to exploit larger batch-sizes for our inference
task. By using a batch-size of 512 we managed to achieve a speedup of 2576X.

6.2.3 Landmark Detection on multi-core CPU

The landmark-detection algorithm uses an ensemble of regression trees to refine the
estimation of the landmark locations in an iterative process. A data-parallel approach is
implemented with multiprocessing library, making use of multiple processes (see Section

5.4.2). In Table 6.5 the accelerated implementations are compared to the sequential im-

plementation.
System # Processes Time/Image (ms) Speedup
Original serial version 1 1.06 -
AMD EPYC 7551 (GPU) 32 0.071 14,9
Intel Xeon Platinum 8168 (MK1) 24 0.078 13,6
MD-EPYC 7742 (MK2) 64 0.06 17,7

Table 6.5. Performance comparison of original sequential landmarlk-detection algorithm
with the multiprocessing-accelerated version. Speedup is calculated relative to the slowest
implementation.

By executing the detector on the Intel Xeon Platinum 8168 CPU (MK1 system) with
32-processes we achieve an approximate speedup of 14X compared to the sequential

implementation. Furthermore, a speedup of 15X is achieved by running the detector

137



Chapter 6. Evaluation

on the AMD EPYC 7551 CPU (GPU system) with 32 processes. Finally, the use of 64-
processes were investigated for the host CPU of MK2 and a speedup of 17.7X is obtained.

6.2.4 Combined implementation for eyeblink-response detection

Of the total process of the eye-blink response detection, we can distinguish three

major time consuming steps:

1. Image loading, decoding and pre-processing: The images are stored in the JPEG
format on a Solid State Drive (SSD). Every image is fetched, decoded and pre-
processed into a tensor array of 128x128x3 pixels. This is done by multiple pro-
cesses concurrently and takes approximately 0.4 (ms) per image for MK1 and V100
hosts and 0.3 ms for MK2 host.

2. Face Detection on IPU or GPU: One CPU thread sends the image data to the device
machine, which performs face detection on batches of images and returns an array
with detection boxes. This step takes approximately 0.079 (ms/image) on a MK2
IPU chip with a batch_size of 64 and 0.107 (ms/image) on a MK1 IPU chip with a
batch size of 32. The same step is taking 0.013 (ms/image) on a V100 Tesla GPU
with a batch_size of 512.

3. Landmark Detection: The landmark detection step is also performed by multiple
CPU processes (32 for MK1 and GPU systems, 64 for MK2), running in parallel,

which takes approximately 0.07(ms) per image to complete.

We run the above steps sequentially on a test-set of 64000 images. We utilized the
on-device inference loop implementation, which means that the accelerated face detec-
tion model processes one batch of data in each iteration. Furthermore, the number of
processes corresponds to the maximum number of cores available on each CPU for ac-
celerating the landmark detector. The results of running all possible combinations of the

selected algorithms on the available hardware platforms are provided in table 6.6.

Hardware Landmark model Time per image (ms)

MK2 IPU 68-point 0.712
MK2 IPU 12-point 0.694
MK1 IPU 68-point 0.761
MK1 IPU 12-point 0.731
Tesla V100 68-point 0.642
Tesla V100 12-point 0.603

Table 6.6. Results of the combined eyeblink-detection implementations

Some stages of our implementation, such as face-detection post-processing and landmark-
detection post-processing, have slightly different runtimes, as each platform uses a CPU
with different characteristics. However, the deviation observed during the execution of

these steps does not exceed 2%, so we consider that such a small deviation does not affect
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the overall performance of our implementation.

The achieved processing speed of the complete implementation on the different hard-
ware platforms is estimated to be approximately 1441 FPS on the MK2-IPU, 1367 FPS
on the MK1-IPU and 1658 FPS on the Tesla V100 GPU.All the above satisfies the initial
requirement of 500 FPS.

6.2.5 Low-Latency Hardware Performance

The complete implementation was further evaluated for all three hardware platforms
by running experiments with smaller batch sizes. The evaluation metrics are latency,

throughput and energy efliciency.

Latency is measured in milliseconds per batch. It represents the overall time to get
the output results from an input batch. The latency contains the inference and retrieval

of the output from the device.

Throughput is measured in images per second and is obtained from the latency time
measurement and the batch size. This measure represents the load that the hardware

can handle for an image-based deep learning application.

The latency and throughput results are visualized in Fig. 6.1 and Fig. 6.2. We ex-
perimented with various batch sizes of 1, 2, 4, 6, 8, 10, 12, 14 and 16 due to latency
constraint, where small batch sizes are mostly used, especially for real-time inference
applications [45]. The results were obtained by running 1000 iterations regardless of the

batch size.
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Figure 6.1. Latency results comparison for MK1, MK2 and V100
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Figure 6.2. Throughput results comparison for MK1, MK2 and V100

From the above plot diagrams we observe that both MK1 and MK2 IPU chips perform
better in terms of latency and throughput for smaller batch sizes (1 to 8) compared to
the Tesla V100 GPU where there is no significant increase in latency as the batch size
increases. However, for larger batch sizes, the V100 GPU managed to outperform the MK1
IPU-chip, while the MK2 IPU chip achieved the highest throughput and lowest latency.

Power Consumption

Power consumption metric is an important factor for hardware evaluation. We made
use of gc-monitor from Graphcore driver utilities to measure the power consumption of
the IPUs and nvidia-smi interface for the Tesla V100. The measurements are used to

compute the energy efficiency of each chip.

Energy efficiency

The energy efficiency is measured in images per second per Watt. It represents the
energy effectiveness of the hardware on an image-based deep learning application. The
power is measured multiple times over a few minutes of inference and averaged. The

energy efficiency is the throughput divided by the average power.

From the above table we observe that all three hardware platforms become more energy
efficient as the batch-size increases. We also see that the energy efficiency of the MK2 IPU
is comparable to that of the V100 GPU. On the other hand, the first generation MK1 IPU
has a disproportionately lower energy efficiency. The MK2 has the highest performance

of 51.05 images per second per watt.
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Energy Efficiency

Batchsize | ) MK2 V100

1 4,74 8,02 4,62
2 8,45 14,86 13,2
4 15.61 24,97 21,97
6 18,85 29,48 28,16
8 20,96 37,07 36,68

10 22,06 42,51 45,18
12 25,01 44,66 45,80
14 27,27 46,53 48,94
16 27,58 51,05 48,96

Table 6.7. Energy efficiency (images/sec/watt) for IPUs and GPU

6.3 Hardware Scalability

6.3.1 Face detection on multiple IPUs

As stated before BlazeFace face detection model is considered a quite fast (suitable
for real-time applications) and small model in terms of memory footprint, with little more
than 100K parameters. In this case, our model can fit inside a single IPU and therefore
the concept of data parallelism is well suited and shall be applied to deploy our model on
multiples IPUs. IPU-TensorFlow supports automatic data parallelism when multiple IPU
devices are configured with the system. Data parallelism is achieved by replication of the
Poplar graph, where the number of times the model is replicated is called the replication

factor, and higher replication factors allow higher data throughput.

For inference, the way of doing this is to use a Multi-instance/Single host launch
mode where multiple instances of our script are launched on the same host server with
mpirun. Each instance is connected to a single instance of the replicated model operating
independently on a different fraction of our dataset with a separate Graph Compile Domain
(GCD). Therefore, each independent replica of BlazeFace operates on a micro batch and
the results from each replica are enqueued in the outfeed queue and sent back to the

host (Fig. 6.3).



Chapter 6. Evaluation

e
HOST O

in/out feeds

[rovao FRRRRE
[roveon [RERRE

Process O <

» Replica0

Process 1 <

A

Replica 1

Process N |«

HOST 1
Process 0

Process 1

\ 4

Replica N

Process N I .

Replica 2N

Figure 6.3. Multi-instance replication

We evaluate the inference scalability of the BlazeFace model throughput with multiple
instances on the given IPU-POD16 cluster with 16 MK2 IPUs and the IPU-Server with 16

MKI1 IPUs. Our testing dataset contains 64000 images and each instance/replica of our

model will operate on a chunk of images equal to 64000 / number_of_instances. The

results can been seen in Table. 6.8 and Table. 6.9. From the speedup plots (Fig. 6.4.a

and Fig. 6.4.b), we observe that performance scales almost linearly with the number of

IPUs.

Configuration Throughput (img/s)

Speedup Scaling efficiency %

1 IPU 12454.997
2 IPU 17939,733
4 IPU 27187,765
8 IPU 37230,948
16 IPU 76555,858

—

2,18
2,98

100

72.01
54.56
37.36
38.45

Table 6.8. Inference scalability for BlazeFace model on an IPU-POD16 server, per replica

batch_size = 64

Configuration Throughput (img/s)

Speedup Scaling efficiency %

1 IPU 9374.475

2 IPU 16260,162
4 IPU 24464,831
8 IPU 42272,126
16 IPU 61657,032

[u—

1,73

4,51
6,57

100

86.72
65.24
56.36
41.11

Table 6.9. Inference scalability for BlazeFace model on an MK1 IPU-server, per replica

batch_size = 32
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Figure 6.4. Multi-instance Speedup for a) MK1 IPU-Server with 16 MK1 IPU chips and b)
MK2 IPU-POD16 with 16 MK2 IPU chips

6.3.2 Minimum hardware to meet the requirements

The required detection speed of the eyeblink response project is 500 frames per sec-
ond. Because possible future work for this project could be to investigate the possibilities
for a more mobile solution, an estimation is made of the minimum required hardware to
achieve a detection speed of 500 FPS.

The complete eyeblink-detection implementation consists of five stages: image loading/pre-
processing (ILP), face detection (FP), face-detection-post-processing (FDPP), landmark de-
tection (LD) and EAR computation (EAR). The face detection step is performed on an IPU
or GPU hardware platform while the rest on the host CPU. The ILP and LP steps are com-
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puted by using multiple processes. Therefore, we can define the total eyeblink response
detection time as:

time = ILP + FD + FDPP + LD + EAR (6.1)

A detection speed of 500 FPS equals a maximum detection time of 2 ms. Therefore,
we conducted several experiments with the low-latency approach on all three hardware
platforms to find the minimum required batch size and number of processes which satisfy

the execution time requirement of <2 ms. This can be seen in Table 6.9.

Device Host Processes batch_Size time/image (ms)
MK1 Intel Xeon P. 8168 8 10 1.744
MK2 AMD EPYC 7742 4 8 1.536
V100 AMD EPYC 7551 6 10 1.698

Table 6.10. Minimum required hardware for execution time <2 ms)

From this table we can deduce that a batch size of 10 and 8 CPU processes are the
maximum hardware that needs to be utilized. Note that this estimation requires a CPU

with comparable performance per thread as the ones used in our experimental set-ups.
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Analyzing Performance of IPU and GPU Platforms
for CNN-Based Model Training

In Chapter 5 we explored the potential of two IPU-based hardware systems (MK1 and
MK?2) and one GPU-based hardware system (Tesla V100) to accelerate a face detection
inference task with the goal of achieving real-time processing speed. A pre-trained CNN-
based model was chosen for the face detection step, as training a robust and accurate
Deep Neural Network model is a very time-consuming and non-trivial task [23] [46]. In
the inference, the network only experiences the forward-pass, during the training, it ex-
periences both the forward-pass and the backward-pass. As a consequence, the training
requires a much more extensive computational effort compared to that for the inference.
It involves the holistic use of all the resources in a server from storage and CPU for fetch-
ing and pre-processing the dataset to the specialized hardware (GPU, IPU) that perform

computation on the transformed data.

In this chapter we will explore and compare the capabilities of the available hardware
accelerators (IPU, GPU) in the computationally intensive process of training an image-
based CNN model.

7.1 Implementation

An open end-to-end training implementation of BlazeFace model will be constructed

from scratch.

7.1.1 BlazeFace architecture

Our starting point was the original work of [10] which provides all the information
needed to construct the model architecture. The overall network structure of BlazeFace
is provided in Fig. 7.1. It takes a 128 X 128 RGB image as input and extracts features
through 5 Single Blazeblocks and 6 Double Blazeblocks (Fig. 7.2).

The reader can also refer to the detailed analysis of BlazeFace in Section 4.5
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Figure 7.1. BlazeFace feature extraction network architecture
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7.1.2 Loss Function and Optimizer

BlazeFace follows the SSD approach which is based on a feed-forward convolutional
network that produces a fixed-size collection of bounding boxes and scores for the pres-
ence of object class instances (in our case face or no-face) in those boxes. Therefore, the

face detection task can be described as a combination of two different subtasks:
e Bounding Box detection, which is the localization of the face region in the image.

e Classification, which classifies a bounding box to the right class (in our case as face

or no-face) based on a confidence score.

Therefore, the loss function that will be used for training our model must combine the
cost functions of these two different subtasks. Recent implementations of single-stage
face detectors, such as S3FD [24] (2017) and EXTD(2019) [85], make use of multitask
loss function, which is originally introduced in [15]. This multitask loss function is a

weighted sum of the localization loss (loc) and the confidence loss (conf):

1 *
Las(p. y) + Lpox(t;, t; ) (7.1)

Ncls Nbox
The localization loss Lpo.(t;, ) is a Smooth L1 loss [86], where t; = (i, t, tw, th); and

i = (&, t, t,. t;); represent the coordinates of the predicted box and ground-truth box

L=

associated with the positive anchor.

Lioc(ti, )= > smoothy, (t; — t;) (7.2)
ie(x,y,w,h)

where

0.5x%,  iflxl <1
smooothy 1(x) = (7.3)

|x| — 0.5, otherwise

The network prediction for the class of an area of interest is given as a distinct prob-

ability distribution across two classes (face vs. no-face).

p = (po. p1) (7.4)

The classification loss Lgs(p, y) is binary cross-entropy [15], also called log loss, over
two classes (face vs. no-face/background). With a ground truth label y € 0,1 and a
probability estimate p = Pr(y = 1) , the log loss per sample is the negative log-likelihood

of the classifier given the true label:

Las(p, y) = —log(py) (7.5)

In our implementation, the two losses are normalized by Ns and Np. Wwhere the cls
term is normalized by the number of positive and negative anchors, and the box term is

normalized by the number of positive anchors.

As Optimizer we chose Adam [52], where he is one of the most widely used optimizers

in the field of image recognition and the learning rate was set to the default value (0.001).
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7.1.3 Training Datasets

Two datasets were selected for training the BlazeFace model. The first selected dataset
is called FDDB [47] and is one of the most commonly used benchmarks for face detec-
tion and consists of 2845 images with 5171 face annotations collected from journalistic
articles. It is a really challenging dataset mainly due to the fact that it is rich in occluded

and out-of-focus cases.

The second dataset is called 300W-LP [48] and it’s available through TensorFlow
Datasets (TFDS) library. TFDS exposes public research datasets as tf.data.Datasets
or/and as NumPy arrays. It does all the hard work of fetching the source data and
preparing it into a common format on disk, and it uses the tf.data API to build high-
performance input pipelines, which are TensorFlow 2.x-compatible and can be used with

tf.keras models.

The 300W-LP Dataset standardises multiple alignment databases with 68 landmarks,
including AFW, LFPW, HELEN, IBUG. From these, we kept only the face bounding boxes
for our training. The dataset contains a total of 61,225 samples which we split into 80%

train samples and 20% validation samples.

Data augmentation

Data Augmentation based on image manipulations offers a set of techniques to im-
prove the size and quality of a training dataset. It is usually based on the generation
of additional images or annotations based on transformations performed on the origi-
nal dataset. It is also one of most basic and widely used techniques for dealing the
overfitting problem and improving accuracy when training a Deep Neural Network model
[871I88][89]. The technique of data augmentation works in the following way: in each
epoch, when images are fed into the network to be trained, some changes are made to the
images so that they are not exactly the same with those seen by the model in previous
epochs. The modifications made to the images contain some randomness, i.e. many are
applied with a certain probability or their degree of influence is determined by some ran-

dom variable, so that the modified images are not repeated. Several methods for this exist:

Geometric transformations, also known as spatial transformations, are transforma-
tions of the image coordinate system. It refers to operations that transform an image
using variations of the shape. Some of the most frequent geometric transformations are

flipping, rotation, cropping, translation, or scaling.

Color transformation, also known as photometric transformations, are transforma-
tions over the pixels values in the matrices which compose an image, rather than the pixel
positions. Some of the most frequent color transformations are changes in brightness,

contrast, colorspaces and normalizations.
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To make our model more robust to various input object sizes and shapes, each training

image is randomly sampled by the following options:

e Photo-metric distortions (Random brightness, contrast, hue)
e Horizontal Flip
e Cropping

e Padding

Feeding data with tf.data.Dataset API

In the context of ML training, especially with Deep Neural Networks (DNN), the input
data pipeline accounts for significant resource usage and can greatly impact end-to-end
performance. A recent study [90] of ML model training with public datasets found that
pre-processing data accounts for up to 65% of epoch time, where an epoch is termed as
a complete pass over the training dataset. This shows that input data pipelines consume

a significant fraction of ML job resources and are important to optimize.

Hardware accelerators used for ML training further increase the need for efficient input
pipelines. The input data pipeline of DNN training can be characterized as a three-stage
extract, transform, load (ETL) process. The first stage reads input data from a storage sys-
tem. The second stage transforms the data, commonly on the CPU, to a format amenable
to ML training computation. Finally, the third stage loads the data onto the accelerator
device that executes the training computation. Today’s accelerators, such as GPUs and
IPUs, are tailored towards executing the linear algebra operations that are common in ML
computations and the input data pipeline operates in parallel with these computations.
Ideally, the data pipeline should steadily feed pre-processed data items to the accelerator
devices to keep them continuously busy processing data. However, DNN training is often
I/0-bound, bottlenecked by fetching the data from storage, or CPU-bound, bottlenecked

by applying data pre-processsing in memory.

Raw input data, such as images, undergo both offline and online pre-processing before
being ingested for model training. While some data transformations, such as normaliza-
tion, are applied during offline pre-processing, ML training also requires applying trans-
formations online as examples are fed to the model. For instance, image models commonly
rely on data augmentation, e.g. randomly distorting images, to improve accuracy [91]. As
described in previous sections, various pre-processing and data augmentation methods
(i.e. resizing, normalization, conversion to RGB color-space) are part of our overall train-

ing pipeline and therefore optimizing the pipeline is of key importance for the performance.

In order to optimize our input data pipeline we will make use of tf.data API which
enables us to efficiently utilize available host resources. The tf.data provides transforma-

tions that enable software pipelining, and parallel execution of computation and I/0. Key
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transformations that we used in order to build our input data pipeline are:

The prefetch transformation decouples the producer and consumer of data by using
an internal buffer, making it possible to overlap their computation. Input pipelines can
use this transformation to overlap host computation, host-to-device transfer, and device
computation. In particular, the transformation uses a background thread and an internal

buffer to prefetch elements from the input dataset ahead of the time they are requested.

The map transformation applies a user-defined function to each element of the input
dataset. When preparing data, input elements may need to be pre-processed. Because
input elements are independent of one another, the pre-processing can be parallelized
across multiple CPU cores. To make this possible, the map transformation provides the

num_parallel_calls argument to control the level of parallelism.

The cache transformation can cache a dataset, either in memory or on local storage.
This saves some operations (like file opening and data reading) from being executed dur-

ing each epoch

The shuffle transformation maintains a fixed-size buffer which is populated with ran-
dom data entries. Shuffling data serves the purpose of reducing variance and making
sure that our model remains general and overfits less. Since we perform computations on
batches of data , the batch gradient descent is activated. The idea behind batch gradient
descent is that by calculating the gradient on a single batch, we can get a fairly good
estimate of the "true" gradient. That way, we save computation time by not having to
calculate the "true" gradient over the entire dataset every time. Therefore, it is important
to create batches that are representative of the overall dataset, otherwise our estimation
of the gradient could be off.

In addition, the tf.data runtime contains an auto-tuning mechanism that allocates
CPU and RAM resources across various parts of the input pipeline in a way that mini-
mizes the (expected) latency of the input pipeline producing an element. This is called
tf.data. AUTOTUNE

Therefore, we made use of the tf.data.Dataset API to prepare our dataset, pre-process
our input images and apply data augmentation with multiple processes. The tf.data. AUTOTUNE
option was utilized to auto-tune the number of used processes. In addition, we enabled
data shuffling and configured the buffer size to be equal to the number of training sam-
ples. Finally, the prefetch and cache transformations were also applied with auto-tuning
enabled. By combining all these transformations we obtained a speedup of roughly 2x in

our total training time for all hardware platforms.
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7.1.4 Training BlazeFace on IPU and GPU hardware platforms

We utilized the Tensorflow and Keras APIs for constructing the model architecture
and performed training on IPU and GPU hardware platforms. More specifically for the
IPU implementation we used the Poplar SDK v2.4 with its IPU interface to TensorFlow
v2.4.4 which integrates the Keras library. The same version of TensorFlow was used for

the GPU implementation for fair comparison of the final results.

Training BlazeFace on MK1 and MK2 IPUs

In order to be able to train our model on an IPU-based system, our source code
first had to be compiled and translated into an IPU-program. This process has been
analyzed in more detail in Section 5.2.2. Porting our Tensorflow/Keras model into IPU was
relatively easy. Graphcore implementation of Keras provides the IPUStrategy subclass of
tf.distribute.Strategy API which targets a system with one or more IPUs attached. Creating
variables and Keras model within the scope of the IPUStrategy object is all we had to do
to ensure that they are placed on the IPU. Then, the Keras build-in fit() method was used
for the training process.

It is important to note that we had to decide all hyperparameter values in advance,
since the model compilation is static and the execution instructions loaded on the IPU
device depend directly on them. We mainly experimented with different values of the
batch-sizes, since our experiments mainly focus on the total runtime that each accelerator
needed to complete the training of our model for a certain number of epochs. For MK1, a
batch-size of 8 was the highest value we could use to fit our model within local memory,
while MK2’s larger available on-chip memory allowed us to use a batch-size equal to 16.

In addition, we used the maximum possible value of the steps_per_execution hyperpa-
rameter, for all the experiments we conducted, to reduce communication overheads and
maximize the performance of our model (see Section 5.2.2 for a more detailed analysis).
This value is set based on the selected batch-size value as the number of batches in our
datasets had to be divisible by the steps_per_execution argument. Furthermore, some
extra care had to be taken when we prepared the dataset for training our Keras model on
the IPU. The Poplar software stack does not support using tensors with shapes which are
not known when the model is compiled, so we made sure the sizes of our datasets were
also divisible by the selected batch-size of each experiment.

Keras models created inside of an IPUStrategy scope automatically create IPUIn-
feedQueue and IPUOutfeedQueue data streams for efficiently feeding data to and from the
IPU devices when using the build-in fit() method. The IPUInfeedQueue accepts batches of
input images directly from our tf.data.Datasets. Furthermore, the IPU is using a callback
function to indicate that the host can read data from the buffer (for IPU to host transfer) or
that the host can populate the stream (for host to IPU transfer). Similarly to the inference
task we enable the Prefetch option (see Section 5.2).

We followed Graphcore’s official documentation, which suggests to use a prefetch

depth of 3 when training a model.
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Training BlazeFace on Tesla V100 GPU

The tf.distribute.Strategy APl was also used to train the Keras model on the GPU-
based system. For a fair comparison, we enabled XLA compilation when training our
model on the GPU, as IPU-based systems use it by default to perform transformation-

s/optimizations on the model graph.

The fact that the V100 tesla GPU offers a much larger memory size than IPUs allowed
us to investigate larger batch sizes for training our model. We conducted experiments
with batch-size values up to 64 and 128 for FDDB and 300W-LP dataset respectively.
Again, an optimized tf.data.Dataset was constructed for feeding batches of data to the

GPU.



7.2 Training Evaluation of BlazeFace

7.2 Training Evaluation of BlazeFace

In this section we evaluate the training results of BlazeFace model on IPU and GPU
hardware platforms. The chosen evaluation metric is the total training time for a specific

amount of epochs.

7.2.1 Training Resutls
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Figure 7.3. Training time of BlazeFace model on the FDDB dataset. (top) The results for

various batch sizes on V100 GPU and MK1 IPU chips. (bottom) The results for various batch
sizes on V100 GPU and MK2 IPU chips.
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Figure 7.4. Training time of BlazeFace model on the 300W-LP dataset. (top) The results
for various batch sizes on V100 GPU and MK]1 IPU chips. (bottom) The results for various
batch sizes on V100 GPU and MKZ2 IPU chips.

The model was trained for 150 epochs on the FDDB dataset, consisting of 2845 images,
and for 100 epochs on the 300W-LP dataset, which was considerably larger with a total
of 61,225 training samples. We used a C2 PCle card with two MK1 IPUs attached, with a
TDP value of 250 W that matched the rest of our hardware accelerators.

The results, presented in Figure 7.3 and Figure 7.4 for FDDB and 300W-LP respec-
tively, show that both MK1 and MK2 IPUs outperform the V100 GPU in training speed.
Even for greater batch sizes, the network was trained almost twice as fast compared to

the GPU. Additionally, for very small batch sizes, the IPUs achieved superior performance.



7.2.1 Training Resutls

In our experiments, we also conducted tests with larger batch sizes for training our
model on the Tesla V100 GPU, as it offers a higher amount of total memory compared to
the IPUs. For training on the FDDB database, we employed batch sizes of up to 64 and
up to 128 for the 300W-LP database. A detailed presentation of the training results can
be found in Appendix Tables A.1 and A.2. These tables contain some additional informa-
tion about the overall training speed times (time per epoch, time per step) as well as the

achieved loss and validation loss for each run.

The choice of batch size should be carefully considered based on the specific charac-
teristics of the dataset, the model architecture, and the available computational resources
when training a model. Using a larger batch size can lead to more stable gradients and
faster convergence [49] [50]. This is because a larger batch size allows the optimization
algorithm to use more information from the training data to compute the gradient of the
loss function with respect to the model parameters. With more information, the gradients
computed are more representative of the true underlying distribution of the data and less
sensitive to random fluctuations, which can result in more stable updates. However,
there are also some trade-offs when using larger batch sizes, such as increased memory
usage and computational resources required for training. Additionally, large batches may

generalize less well than smaller batches, especially for models with a high capacity.

On the other hand, smaller batch sizes result in more frequent weight updates, incor-
porating more diverse information into the model, but may result in more noisy gradients
as each batch represents only a small sample of the overall dataset and can be subject to
more sampling variability. Furthermore, a smaller batch size may result in slower con-
vergence, requiring more careful tuning of the learning rate and other hyperparameters,
as smaller batches can result in more drastic changes to the gradient and may require
more frequent adjustments to the optimization algorithm. For example, some optimiza-
tion algorithms, such as SGD [51], perform better with small batch sizes, while others,
such as Adam [52], can handle larger batch sizes.

It is important to note that apart from optimizing the input tf.Data.Dataset and compil-
ing with XLA, we did not fine-tune any other hyperparameters in our training experiments
(i.e. learning rate, optimizer, etc.). The goal of the conducted experiments is to compare

the training performance on each platform in terms of execution speed.

Using larger batch sizes resulted in much better GPU performance. GPUs are opti-
mized for parallelism and high throughput, making them well-suited for processing large
batches of data quickly. However, as the batch size decreases, the overhead associated
with data transfer and memory management on GPUs becomes more pronounced, leading
to lower performance.

IPUs, on the other hand, perform better at small batch sizes. We argue that this
is due to their architecture, which is optimized for matrix operations and high-speed

communication between processing elements (i.e., I/O tiles, IPU exchange communication
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fabric). This allows the IPUs to effectively utilize their resources and process small batches

of data efficiently, while reducing the memory overhead associated with larger batch sizes.
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Conclusions

This chapter presents the conclusion of the thesis work. The contributions of this
research are discussed in Section 8.1. Section 8.2 provides a discussion on the final
results of the inference and training experiments conducted in this study, highlighting
the pros and cons of each hardware platform used. Lastly, Section 8.3 outlines possible

directions for future work in this area of research.

8.1 Contribution

The initial goal of this thesis was to construct and deploy a Machine Learning appli-
cation on IPU-based and GPU-based systems in order to evaluate their performance in
inference tasks. The goal of this application is to detect the amount of human eyelid clo-
sure in video data in a real-time processing speed of 500 frames per second. The selection
of the appropriate algorithms was of key importance for the whole project since we had to
maintain a balance between speed and accuracy. The execution time constrain for this
project was also a crucial factor, and so IPU and GPU hardware device accelerators were
used to accelerate the selected algorithms to fulfill the requirements. Creating an on-
line implementation would not only alleviate the need for large off-line data storage, but
also enable the neuroscientists to dynamically adjust eyeblink-conditioning experiments

based on immediately available feedback on the subject’s performance.

The detection process is divided into two major stages: the first stage detects the po-
sition of the human face in an image, while the second stage uses this face detection to
determine the amount of eyelid closure. The selection of the appropriate face detector was
based on a set of requirements that specify under which circumstances the detector must
be able to detect a face. Three face detectors, one classical ML approach and two deep
learning CNN-based models, were evaluated on a subset of images of the Annotated Fa-
cial Landmarks in the Wild database that meets these requirements. The MTCNN model
was the most accurate detector but also ten times slower compared to the other meth-
ods. Both the Histogram of Oriented Gradients (HOG) algorithm and BlazeFace model are
much faster alternatives, with the former being faster and the latter being more accurate.
Although both detectors were considered suitable for this project we decided to proceed

with BlazeFace as it was more accurate than HOG and had similar speed performance.
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In addition, BlazeFace is a DNN model and enabled us to test the inference performance
of different hardware accelerators, such as GPU and IPU (a dedicated Al-chip designed

for Machine Learning and Deep Neural Network workloads).

BlazeFace follows the Single-Shot Detection approach which is based on a feed-forward
convolutional network that produces a fixed-size collection of bounding boxes and scores
for the presence of faces in those boxes. It is implemented with TensorFlow and Keras
libraries and accelerated with the use of three different hardware accelerators (MK1-IPU,
MK2-IPU and V100 Tesla GPU) to exploit its data-level parallelism potential. To maximize
the utilization of IPU devices, multiple images were processed in batches concurrently
while further optimizations were applied in HOST-DEVICE and DEVICE-HOST communi-
cations. A final face-detection speed of 0.107 (ms) and 0.079 (ms) per image is achieved
on MK1 and MK2 IPU chips respectively. Furthermore a face-detection speed of 0.012
(ms) per image is achieved when the V100 GPU is used. The V100 GPU manages to out-
perform both IPUs in terms of image processing speed as the larger available memory (32

GB vs 300 Mib vs 900 Mib) allows larger batch sizes to be used during inference.

Once the face detection step is finished and the location of the face is acquired, we
can proceed with the second step of the eyelid closure detection. The followed landmark
detection approach to determine the closure of the eye directly from eyelid landmarks,
and therefore an algorithm for landmark detection was used. This approach is simple
and less computationally expensive compared to other available approaches in the lit-
erature. The original landmark detection algorithm, an Ensemble of Regression Trees
(ERT), detects 68 facial landmarks, 6 of which are on the eyelid (per eye), which can be
used directly to to compute the amount of eyelid closure. A second version of the same
algorithm was also investigated which detects only the 6 landmarks on each eye. This
12-point landmark detector is lighter and slightly faster compared to the original 68-point
detector as its responsible for predicting only a subset of the total number of facial land-
marks. However, the 68-point detector has the advantage that the other landmarks can
be used to analyze the movement of other face muscles during the eyeblink-conditioning
experiment. Although the ERT algorithm is not well-suited for data-level parallelism ac-
celeration because of its iterative nature, it is already quite fast sequentially (around 1 ms
per image - 1000 FPS). The algorithm was accelerated with the multiprocessing python
library by exploiting the task-level parallelism. The total number of frames of a video are
split up between multiple processes that work concurrently. This resulted in a landmark
detection of 0.06 ms per image with 64 processes, and therefore a speedup of 16.6X com-

pared to the original sequential implementation.

The final implementation of detecting the eyelid closure also includes steps such
as image loading-decoding from memory (approximately 0.7 ms per image by utilizing
multiple processes), data pre-processing and post-processing for face/landmark detection
steps. Combining the times for all the above steps resulted in a total eyeblink-response
detection time of roughly 1441 FPS on MK2-IPU, 1367 FPS on MK1-IPU and 1658 FPS on
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Tesla V100 GPU. The achieved results satisfy the required processing speed of 500 FPS.

An additional aim of this thesis was to evaluate the performance of IPUs and the V100
Tesla GPU on training an image-based CNN face detection model. The training procedure
is a complex task which consists of multiple steps that relies on efficient use of both CPUs
and device accelerators in order to work properly. The tf.data.Dataset API was used to
construct our training datasets. A number of data transformations and optimizations
were applied to efficiently utilize available host resources and load batches of data into
our accelerator devices. Both IPU-based systems achieve a superior performance com-

pared to the Tesla V100 GPU, especially for small batch-sizes.

Concisely, the following contributions have been made by this thesis:

e Three different face detectors have been evaluated on a subset of the "Annotated
Facial Landmarks in the Wild" (AFLW) dataset and on the BiolD database. The pre-
trained BlazeFace CNN-based model was selected as best suited for this project’s

requirements.

e The BlazeFace model was accelerated on three hardware accelerators by making
use of data-level parallelism. We achieved a speedup of 306X on MK1-IPU chip, a
speedup of 414X on MK2-IPU chip and a speedup of 2576X on a V100 Tesla GPU.

e The Ensemble of Regression Trees (ERT) algorithm was selected for landmark-

detection from which the amount of eyelid closure is also estimated.

e The ERT landmark detector was accelerated with the multiprocessing python library
by making use of multiple processes (maximum number of processes for each CPU).
This resulted in a speedup of 15X on the GPU Host, a speedup of 13.6X on the MK1
HOST and a maximum speedup of X17.7 on the MK2 Host.

e The accelerated face and landmark-detection algorithms were combined and the
final eyeblink-response detection algorithm achieves a detection speed of 1658 FPS
with Tesla V100 GPU and 32 CPU processes, 1441 FPS with MK2-IPU and 64
processes and 1367 FPS with MK1-IPU and 32 processes. Clearly, all the above

satisfies the original requirement of 500 FPS.

e An experimental open-source implementation of the BlazeFace face detector was
built from scratch to benchmark the performance of IPU and GPU hardware accel-
erators on the computationally intensive task of training. Both IPUs have superior

performance compared to the GPU.

8.2 Discussion

In this study, we compared the performance of the Tesla V100 GPU and the MK1/MK2
IPU chips for machine learning workloads. Our results showed that while the IPU was
faster than the GPU for training the BlazeFace network, the GPU was better suited for
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serving the trained models in inference scenarios.

The IPU’s high MIMD parallelism and ability to efficiently process small batches of
data allowed it to achieve faster training times than the GPU. However, the limited on-chip
memory of the IPUs is a factor that developers must consider carefully when deploying
training or inference experiments. If the size of a model exceeds the available memory of a
single IPU chip, developers must partition the model across multiple IPU chips. This pro-
cess involves dividing the model into smaller sub-models that fit into the memory of each
IPU chip, which can be trained in parallel across multiple IPUs. However, partitioning
a model is a complex task that requires considerable expertise in parallel programming
and distributed systems. Note that, we did not use any partitioning approaches in our
case. This is because the BlazeFace detector is a CNN-based model with a small memory
footprint due to its lightweight backbone network (inspired by MobileNetV1/V2 [78]) and
so it can be compiled and deployed in a single IPU chip.

Our results have important implications for the field of machine learning, image-based
applications and neuroscience, highlighting the need for careful selection of hardware
platforms for different types of workloads. Ultimately, the choice of hardware platform
should be based on careful consideration of factors such as model size, memory re-
quirements, latency requirements and available expertise in parallel programming and
distributed systems. Our study showed that while GPUs are still a popular and conve-
nient choice for deploying ML/DL image based workloads, the IPU can offer significant
performance advantages in certain scenarios.

One of the main architectural differences between the IPU and GPU is the way they
handle parallel processing. IPUs use a MIMD (multiple instruction, multiple data) archi-
tecture, which enables them to efficiently process small batches of data in parallel. GPUs,
on the other hand, use a SIMD (single instruction, multiple data) architecture, which is
better suited for processing large batches of data in parallel.

In addition to the architectural differences, there are other factors that should be con-
sidered when selecting a hardware platform for ML/DL workloads. These include factors
such as cost, power consumption, and ease of use. In terms of ease of use, GPUs are
generally more widely available and well-supported in the machine learning community,
making them a more convenient choice for deployment and serving but also more ex-
pensive. Many popular machine learning frameworks, such as TensorFlow and PyTorch,
have well-established support for GPU acceleration, making it relatively easy to train and

serve models on GPU-based hardware.

In contrast, the IPU is a relatively new and specialized architecture which is less widely
supported by machine learning frameworks and tools. This could make it more chal-
lenging to deploy and serve models on IPU-based hardware, and may require additional
engineering effort to optimize performance. Graphcore provides a software development
kit (SDK) for their IPU accelerators, which includes libraries and tools for developing and

optimizing machine learning applications. The Graphcore SDK is generally user-friendly
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with extensive documentation and examples provided to help developers get started. The

Graphcore IPU integrates with popular deep learning frameworks like TensorFlow and
PyTorch through the high-level APIs provided by the SDK.

In summary, we identify the following advantages and disadvantages of each hardware

platform:

Pros of using GPU-Based systems:

Parallelism: GPUs have a SIMD (Single Instruction, Multiple Data) architecture
adept at performing large-scale matrix operations commonly found in ML tasks.
This makes them especially suitable for deep learning tasks, such as convolutional

neural networks

Ecosystem Maturity: The GPU ecosystem is mature and well-established, offering
an abundance of tools, libraries, and community support. Developers can access
a vast array of resources, facilitating the discovery of solutions and optimization of

ML models for GPU execution.

Hardware Availability: GPUs are widely available and encompass various perfor-

mance levels and price points, accommodating different project sizes and budgets.

Cons of using GPU-Based systems:

Memory Hierarchy: The hierarchical memory structure of GPUs necessitates careful
management to optimize performance, which can be challenging for developers and
may result in suboptimal performance if not appropriately addressed, especially for
training ML/DL models.

Pros of using IPU-based systems:

Specialized Architecture: IPUs feature a fine-grained MIMD (Multiple Instruction,
Multiple Data) architecture, facilitating the execution of diverse instructions on
distinct data elements. This flexibility enables IPUs to achieve faster training times

and efficient processing of small batches of data.

Scalability: IPUs are designed for easy scaling, both within a single device and
across multiple devices, allowing developers to build large-scale ML systems with

high computational capacity.

Programmability: IPUs are designed to be more easily programmable, allowing de-
velopers to use popular ML frameworks like TensorFlow and PyTorch without the
need for extensive low-level optimization. This can lead to faster development cycles

and easier adaptation of existing models to the IPU platform.

Monitor Tools, extensive documentation and code examples in a dedicated GitHub

repository.
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Cons of using IPU-based systems:

e Limited on-chip memory, which requires careful consideration of memory require-

ments and partitioning of models.

e Ecosystem Maturity: Relatively new and specialized architecture, which may require

additional engineering effort to optimize performance.

e Learning Curve: Since IPUs have a unique architecture and programming model,
there might be a steeper learning curve when adapting existing code or developing
new models for the IPU platform, especially for developers who are already familiar

with GPU programming.

8.3 Future work

The work conducted for this thesis investigated the combination of a deep learning
CNN face detection model and a machine learning landmark detector to create an accu-
rate and fast eyeblink response detection system. The current application showed that
with the chosen algorithms, the desired speed of 500 FPS and a satisfactory detection
accuracy can be achieved. However, accuracy is a critical factor in blink detection. More
challenging recording settings may result in more false positive or false negative detec-
tions, leading to inaccurate conclusions about a person’s behavior or state. Consequently,
one of the directions for future work is to investigate more sophisticated deep learning
algorithms for both the face and landmark detection steps to achieve better accuracy.
Deep learning models can be trained on large datasets of eye images to learn the patterns

and features that distinguish between eye blinks and other eye movements.

In addition, the current setup requires specialized hardware, such as cameras, to be
effective. Future work can focus on developing eye blink detection solutions that can be
implemented on portable devices, such as smartphones or smart glasses. This would
make eye blink detection more accessible and usable in everyday life and provide addi-
tional data for research on eye blink patterns and their relation to attention, fatigue, and

stress.

Furthermore, the intermediate stages of face and landmark detection used to achieve
eyeblink response detection provide intriguing new opportunities for further research.
The neuroscientists have expressed an interest in seeing how facial muscles in the face
are working during the experiment. A total of 68 facial landmarks are detected using
the landmark detection method, which can be used to track the movement of other facial
features. In addition, many landmark detectors claim to be able to find up to 192 land-
marks, and they can be used if a more accurate analysis of the face is needed for this line

of future research.

Another important direction for future work is to evaluate the different hardware
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platforms in various real-world scenarios to gain insights into their relative strengths and
weaknesses. Experiments can be conducted to compare their performance and suitability
in object detection and recognition tasks, medical image analysis, and natural language
processing. This knowledge can then be used to develop more efficient and effective soft-
ware and hardware solutions, ultimately advancing the field of machine learning and

improving its practical applications.
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Appendix

FDDB Dataset

Device batch_Size time/epoch (sec) time/step (ms) total_training time loss val _loss
V100 2 13-14 14-14 2024.504 0.1468 0.2553
V100 4 6-7 14-15 1051.215 0.1599 0.2676
V100 8 4 17-18 649.135 0.1298 0.2625
V100 16 3-4 26-32 508.300 0.1789 0.3201
V100 32 3 42-45 421.285 0.2157 0.4142
V100 64 2 70-72 348.398 0.3046 0.6090
2xMK1 2x1 2-3 2-3 265,823 0.1826 0.2671
2xMK1 2x2 2-3 3-4 240,676 0.1805 0.2679
2xMK1 2x4 2-3 6-8 243,615 0.1971 0.3362
2xMK1 2x8 OOM - - - -

MK2 2 5-6 5-6 602.478 0.1698 0.2649
MK2 4 3-4 3-5 545.570 0.1512 0.2694
MK2 8 3 7-8 430,255 0.1306 0.2764
MK2 16 3 12-13 423.668 0.1459 0.3184
MK2 32 OOM - - - -

Table A.1. Training BlazeFace on FDDB dataset, epochs = 150, steps_per_epoch = (num_-
of _samples // batch_size), Out of Memory (OOM) declares that the model could not fit inside
the local memory of the IPU
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300W-LP Dataset

Device Batch_Size time/epoch (sec) time/step (ms) total training time loss val loss
V100 8 96-112 15-17 9908.442 0.0529 0.0293
V100 16 64-69 21-22 6610.478 0.0577 0.0357
V100 32 36-38 24-26 3746.590 0.0520 0.0272
V100 64 25-27 33-37 2670.356 0.0502 0.0264
V100 128 19-21 51-56 2059.075 0.0420 0.0291
2xMK1 2x1 18 0.6-0.7 1803,62 0.0777 0.0422
2xMK1 2x2 11-12 0.8-0.9 1163,5 0.0594 0.0328
2xMK1 2x4 8 1 843,959 0.0543 0.0261
2xMK1 2x8 OOM - - - -

MK2 2 29 1 2965.834 0.0503 0.0413
MK2 4 18 1 1824,855 0.0601 0.0361
MK2 8 13 2 1368.401 0.0592 0.0304
MK2 16 10 3 1011.710 0.0497 0.0271
MK2 32 OOM - - - -

Table A.2. Training BlazeFace on 300w-LP dataset for 100 epochs, steps_per_epoch =
(num_of samples // batch_size), Out of Memory (OOM) declares that the model could not fit
inside the local memory of the IPU
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Figure A.1. The (maximum) memory consumption (vertical axis) across the 1216 tiles
(horizontal axis) of a MK1 IPU for a batch size of 32. The horizontal line denotes the
maximum available tile memory. The pink area represents always live memory, whereas
the blue indicates maximum transient memory use on a tile level.
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Figure A.2. The (maximum) memory consumption (vertical axis) across the 1472 tiles
(horizontal axis) of a MK2 IPU for a batch size of 64. The horizontal line denotes the
maximum available tile memory. The pink area represents always live memory, whereas
the blue indicates maximum transient memory use on a tile level.
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