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Abstract

The purpose of this research was to discover if Reinforcement Learning (RL)
could produce remarkable results in assisting an autonomous ship to minimize
the Total Fuel Oil Consumption (TFOC). Furthermore, if the first goal was
to be achieved, a second equally important objective was the discovery of the
most suitable RL agent for this initiative.

In this particular case study, the environment consisted of the sea area
- which can be explored by the ship - the existing boundaries, - such as
islands, rocky islets and land where the access is forbidden - and the weather
conditions.

The first part was related to the environment construction. A grid-world
environment was selected and the testing route represented a short journey
between two ports in the area of the Faroe Islands: Tórshavn and Krambat-
angi. There was no particular reason for choosing this exact course, other
than the fact that this was the first constructed environment, and since it
was capable of acting as proof of concept for the needs of the project, it was
decided to be the final environment.

The boundaries were transformed according to a computationally cost-
effective technique that was developed for the purpose of this task. In order
to achieve this, some of the accuracy, as regarding the boundaries position,
was sacrificed. This decision was made taking into consideration the massive
amount of computations being executed during a Reinforcement Learning
experiment. The aforementioned choice did not really substantially affect
the problem at hand at all.

Since permitting an actual ship to explore its environment for the sake of
learning is an unnecessary and costly enterprise (ship rental, fuel costs, crew
related costs, ...), relevant simulations are implemented instead.

A reliable fuel consumption process was mandatory for the success of this
project. To achieve that, data were obtained from a shipping company, which
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were used to train an Artificial Neural Network (ANN). A Long Short Term
Memory (LSTM) ANN was implemented as it has been proven to be superior
at tracking a time-series outcome. Especially when the previous observations
are not independent form the current ones. The following features were
used as inputs; Speed overground, Significant Waves Height, Draught AFT,
Draught FWD and Distance Overground.

A weather approximating function was designed in order to be applied
into the environment. A storm center that interfered with the minimum
distance route was chosen, in order to examine if the agent was capable of
learning to choose the longer but cheaper route - the one where the minimum
amount of fuel was consumed.

Since the environment’s state space was really large, it appeared like a
Deep Q-Network (DQN) agent would be the best option for this project. A
value-approximating agent was required, in order to predict the values of
states that had not been experienced before. However, the limits of the Q-
learning agent were put to the test and the improved and more sophisticated
rainbow agent was employed in order to detect the best available option.

The results revealed the dominance of the rainbow agent. Q-learning
agent, as expected, was limited from the state’s space size. While, on the
other hand, the DQN agent was extremely unstable and sensitive to hyper-
parameters tuning. This application, also demonstrates the feasibility of
minimizing the Total Fuel Oil Consumption (TFOC) using Reinforcement
Learning (RL).
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Chapter 1

Statement of the Problem

1.1 Motivation

The urge of the climate crisis has led to truly significant work on the perfor-
mance issues. Almost every business nowadays in the energy, industrial and
agricultural sectors is investigating how to reduce the harmful emissions.

In shipping, which according to data from ”Our World in Data” accounts
for 1.7 % of the total CO2 produced, emissions are caused from burning
petrol and diesel [1]. As expected, the greatest proportion is caused for the
needs of freight maritime trips.

The shipping industry, due to new regulations, appears to be making enor-
mous efforts to reduce its carbon footprint. There have been advancements
in internal combustion engines, in the direction of burning more environmen-
tally friendly fuels: at first like LNG and soon like biomass from agricultural
waste. New ships are designed with the goal of having no ballast system.
Nowadays, all ships are equipped with Sulfur Scrubber Systems that lead to
reduction up to 98 % of SOx emissions. Noticeable work is being done on the
efficiency of the propeller and rudder systems. Great care and thoughtfulness
is apparent to the hull paint technology as well. Applying appropriate paint
on the correct hull area results in reducing the frictional resistance of the
ship, ensuing in 3-8 % of fuel savings. Exhaust Gas Recirculation and the
use of water inside the fuel are tools that assure decreased NOx emissions.

Right now one of the most promising technological sectors seems to be
Artificial Intelligence (AI). The question that naturally arises is: can AI be of
substantial use in order to achieve solid advancements on the aforementioned
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environmental issues?
Recognizing these hard facts, an attempt was completed in researching if

it is possible to train AI to make judgements for the course of a ship regarding
its route and its speed. The final goal was to minimize the total amount of
Heavy Fuel Oil (HFO) burnt. Of course, this approach could be expanded
for any type of fuel.

Reinforcement learning is a type of Machine Learning and thereby also a
branch of AI. It offers the opportunity to the machine and software agents
to automatically determine the ideal behaviour within a specific context.
The desired goal is achieved by maximizing its performance by strategically
assigning rewards and punishments. Based on the algorithm, a reinforcement
learning agent learns from the consequences of its actions, rather than from
being explicitly taught.

In 2015, Google’s Deepmind published the paper Human-level control
through deep reinforcement learning in Nature journal [2]. It was a true
breakthrough in the area. A Deep Q-Network was demonstrated that was
capable of learning to control a policy, by directly using raw pixels data and
the score of the games. Such experiments offered the evidence that this artifi-
cial network was truly able of producing better performance results compared
to both previous existing algorithms and professional humans, across a set
of 49 well-known games.

1.2 Objective

A Deep Q-Network (DQN) agent was utilized using the standard RL environ-
ment Grid World, in order to describe a real environment consisted of land,
islands and sea water. Storms were included representing the changes in the
weather. The goal was to design a single agent that was capable of learning
to minimize the Total Fuel Oil Consumption (TFOC) by maximizing the
future rewards.

As it is already described Reinforcement Learning (RL) is a computa-
tional procedure of an agent following a trial and error paradigm, the real-
life example would be an agent taking decisions for a ship. Obviously this
cannot be achieved due both to financial and practical reasons. Therefore
what is needed instead, is an appropriate entity simulating all the necessary
ship characteristics. The most important of which, is the fuel consumption.
Of course, features like speed and loading conditions should be taken into
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account, as they affect TFOC.
Total Fuel Oil Consumption can be predicted using empirical formulas or

by implementing a simple predictive Artificial Neural Network (ANN). The
most suitable result is definitely a method capable of producing trustworthy
time-sequential results. The above mentioned desire led to choosing a type
of ANN, that possesses memory of previous results, called Long Short Term
Memory (LSTM) ANN.

1.3 Structure

This thesis starts by presenting all the necessary background information for
reading it in Chapter 2. Reinforcement Learning (RL) is explained and all
the necessary mathematical concepts are introduced. The various types of
agents are demonstrated. The used feature reduction methods are displayed,
while a proper initial report to the sophisticated architecture of Long Short
Term Memory (LSTM) ANN is completed. Finally, there are a few words
dedicated to the applied coding language; Julia.

In Chapter 3, related papers and literature in general are reviewed.
In Chapter 4, the grid world environment design and construction is dis-

cussed. This process includes choosing real routes and importing, in the
appropriate (computationally cost-effective) form, all the existing bound-
aries such as lands, islands and shallow water areas. The weather modelling
details are displayed. Last but not least, the three implemented agents are
presented.

In Chapter 5, the Total Fuel Oil Consumption (TFOC) prediction pro-
cess is unveiled. The first steps include the data pre-processing and feature
reduction. Then, the LSTM data preparation, loss function, optimizer and
the final architecture are displayed.

In Chapter 6, the challenges regarding the Reinforcement Learning (RL)
are presented. More specifically, the local optimums, hyper-parameters sen-
sitivity, rewarding strategy and the dense or sparse environment dilemma are
settled.

In Chapter 7, the Long Short Term Memory (LSTM) ANN implemen-
tation is discussed. The over-fitting issue is the major concern. The final
results are presented.

In Chapter 8, the comparison between the three types of agents (Q-
learning, DQN and rainbow) comes a conclusion. The clear dominant agent
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for this application is recognised as the results are displayed.
In Chapter 9, the summary and conclusions can be found.
In Chapter 10, there are recommendations for future work. These in-

clude the improvement of the weather modelling, the handling of the speed
parameter, the insertion of engine data to the predictive model, a live action
methodology, the manipulation of changes in draught and trim and last but
not least, the hyper-parameters calibration.

1.4 Literature

The book [3] from Richard S. Sutton and Andrew G. Barto is considered a
great starter to study Reinforcement Learning. The second edition does not
include fresher ideas like DQNs.

The thesis [4] from Joan Petersen, provides excellent intuition on handling
ship data.

The thesis [5] from Orfeas Bourchas on Neural Networks for the Pre-
diction of Fuel Oil Consumption for Containerships, is the closest LSTM
implementation for the exact same issue tackled in this thesis regarding the
Total Fuel Oil Consumption (TFOC).

The article [6] from Christos Gkerekos, Iraklis Lazakis, Gerasimos Theodokatos
presents a comprehensive comparison between various regression algorithms
for fuel consumption prediction.

The article [7] from Lucia Moreira, Roberto Vettor and Carlos Guedes
Soares, displayed explicitly the neural network approach for predicting fuel
consumption. Interestingly, it seems that using engine data leads to almost
perfect prediction while applying only weather data leads to relatively sig-
nificant inaccuracy.

The technical report [8] from Markus Mathisen Johansen is an initial ap-
proach in using reinforcement learning for a ship. The environment approach
was based on the Mountain Car Environment and the Q-learning agent was
used. The final goal was achieving some ship manoeuvres in ports and the
application was trivial.
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Chapter 2

Background

Long Short Term Memory (LSTM) Artificial Neural Network (ANN) was
implemented to obtain a reliable approximating (predictive) function for the
Total Fuel Oil Consumption (TFOC). To train the aforementioned predic-
tive model, appropriately processed data were required. Also, the necessary
features had to be selected. Finally, an agent was mostly punished for the
amount of fuel burnt throughout each journey (episode). Three different
agents were put to the test.

2.1 Reinforcement Learning

Influence We as humans, more often than not, tend to learn by experi-
menting, observing the results and deciding whether we liked the outcome or
not. From another perspective, we learn by interacting with the environment
we live in, even from a very young age. Reinforcement Learning (RL) is a
Machine Learning (ML) paradigm inspired by that same way we as humans
learn; we try, we fail and then we try some more.

Conclusively, Reinforcement Learning is a Machine Learning training pro-
cedure based on rewarding or punishing behaviours. A RL agent explores a
dynamic environment through a computational approach. It takes actions
and according to them, it gradually learns by trial and error.

Its goal is to maximize the total reward. Despite the fact the designer
sets the rewards and punishments, there are no hints whatsoever given to
the Artificial Intelligence (AI) as to how to solve the problem at hand. It
is up to the agent to figure out how to perform the desired task in order to
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maximize the reward.

Machine Learning paradigms Reinforcement Learning is considered to
be one of the three basic machine learning paradigms. The other two are
supervised and unsupervised learning.

Supervised learning is using a training set, where the outcomes are known
from an external supervisor. The goal here is the ability to later generalize
to situations that are not present in the training procedure.

However, this paradigm can not be applied to situations where there
are not known outcomes. The process of finding the hidden structure of
situation like these is called unsupervised learning. Although, it seems like
reinforcement learning and unsupervised learning are pretty much selfsame
because both do not get a feedback in terms of corrected behaviour, they are
not. And that is because Reinforcement Learning instead of trying to unveil
a hidden structure, it tries to maximize the reward.

Architecture An agent is initially placed in a state inside an environment.
It interacts with the environment by taking actions. Every time it completes
one set of actions, this leads in changing states and receiving rewards. These
rewards can either be good or bad (punishments).

The ultimate goal is to unveil a solution that maximizes the overall re-
ceived reward. The reward signal is how it is communicated to the agent what
the designer would like it to achieve, not how this will be accomplished.

Figure 2.1: Reinforcement Learning (RL) architecture

Generally, it is desired to maximize the expected return. This is not the
same with the sequence of returns described by the following equation.
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Gt = Rt+1 +Rt+2 + ...+RT (2.1)

A well-known concept in RL is discounting. By using this approach, the
agent is trying to select actions in order to maximize over time the discounted
rewards.

Gt = Rt+1 + γ ·Rt+2 + γ2 ·Rt+3 + ...

=
∞∑
k=0

γk ·Rt+k+1

= Rt+1 + γ ·Gt+1, 0 ≤ γ ≤ 1

(2.2)

Delayed reward What is important to be noted is that despite the fact
that the agent is mapping situations to actions and rewards, one particular
action usually does not only affect the immediate reward but also many
more rewards to come. This observation leads to another really crucial RL
characteristic; the delayed reward. The agent really can not know what will
be the gained total reward before the end of an episode. Especially if the
focus is on episodic implementations like the one discussed here. Usually,
the agents starts by experimenting with random actions until it eventually
discovers really sophisticated solutions.

Exploration-Exploitation dilemma Last, one of the main challenges
of Reinforcement Learning is the trade-off between exploitation and explo-
ration. An agent desiring to instantly achieve the maximum reward, it has
to exploit situations already experienced before. However, if it only exploits,
then it will never explore options that will lead to a sequence of situations
and actions with significantly greater total reward. This mathematical prob-
lem has been studied for decades. Still, however, there is no clear and definite
answer.

Mathematical formalization The problem is formalized mathematically
using some concepts from dynamical systems theory. The most useful tool
of all is Markov Decision Process (MDP).
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2.2 Markov Decision Process

Definition In mathematics, Markov Decision Process (MDP) is called a
discrete time stochastic control process. It is actually a classic formalization
of sequential decision. It works as a great framework for modelling such
situations and is extremely helpful for solving optimization problems using
dynamic programming.

RL implementation For Reinforcement Learning purposes, it is extremely
helpful since it can model extremely well situations where actions do not only
influence the immediate rewards, but also affect subsequent situations/states
and subsequently future rewards [9].

What is normally done in MDPs, is calculating the value q∗(s, α) of tak-
ing action α while being in state s, or sometimes (depending on the project’s
needs) the value υ∗(s) of each state s, considering that optimal action selec-
tions are given.

An illustration of the sequence produced by MDP and the agent is the
following:

S0, A0, R1, S1, A1, R2, S2, A2, R3, S3, ... (2.3)

In a finite MDP where there are finite number of elements regarding the
states, actions and rewards, reward Rt and state St at time step t have easily
defined discrete probability distributions on the preceding state and action.

Environment dynamics Of course, if we sum the above probability dis-
tributions for every action α and every state s, we get that,∑

s′∈S

∑
r∈R

p(s′, r|s, α) = 1, ∀s ∈ S, α ∈ A(s) (2.4)

The dynamics of the environment in a MDP are described by the above
equations. Also, in order to have the famous ”Markov Property”, the state
has to include information about all the aspects of the past interactions that
could make a difference in the future.
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2.3 Value Functions & Policies

In plain words, the values correspond to ”how good” a situation is for the
agent in terms of expected rewards. The action-state value functions Q(α|s)
and the state value functions V (s) are just functions estimating ”how good”
these situations are. On the other hand, policy is the probability of choosing
action α if the agent is in state s. The notation used is π(α|s).

Definition The definition of the value function of a state s under policy π
is the following,

υπ(s) = E
π
[Gt|St = s]

= E
π

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣St = s

]
,∀s ∈ S

(2.5)

The definition of the value function of taking action α while in a state s
under policy π is the following,

qπ(s) = E
π
[Gt|St = s, At = α]

= E
π

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣St = s, At = α

]
(2.6)

Bellman equation Finally, by using the definition (2.5) of the value func-
tion and the recursive relationship displayed in (2.2), one of the most popular
equations in Reinforcement Learning and Dynamic Programming (DP) pops
up; the Bellman Equation.

υπ(s) =
∑
α

π(α|s)
∑
s′,r

p(s′, r|s, a) · [r + γυπ(s
′)], ∀s ∈ S (2.7)

The Bellman Equation expresses the relationship between the value of
current state and the values of the next states. It averages over all the
possibilities by using as weights every probability of occurring.

Finally, it is important to define the optimal policy and the optimal value
functions. A policy π is better than a policy π′ (π ≥ π′) if and only if
υπ(s) ≥ υπ′(s),∀s ∈ S.
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We denote the optimal policy as π∗. This policy corresponds to the
optimal value function as following,

υ∗(s) = maxπυπ(s), ∀s ∈ S (2.8)

Similarly, for optimal action-value functions,

q∗(s, α) = maxπqπ(s, a)

= E[Rt + γυ∗(St+1)|St = s, At = α]
(2.9)

Value Iteration Value iteration algorithms combine policy evaluation and
policy improvement. A simple update equation is the following,

υk+1 = maxα E[Rt+1 + γυk(St+1)|St = s, At = α], ∀s ∈ S (2.10)

Figure 2.2: Reinforcement Learning (RL) policy iteration

2.4 Q-Learning

The most common learning algorithm in Reinforcement Learning is Q-learning
[10]. A table which contains the values of all the states-actions pairs is con-
structed. Every time the agent completes some moves, the Q-learning table
is updated using the Bellman equation.
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Q(St, At)← (1− α) ·Q(St, At) + α · (Rt + γmaxaQ(St+1, a)) (2.11)

The working mechanism of Q-learning includes the following steps:

1. Initialize Q-table

2. Choose an action

3. Perform action

4. Measure reward

5. Update Q-table

After a lot of iterations a good enough Q-table is ready.
It is considered to be one of the very early breakthroughs in RL. It is

an off-policy Temporal Difference (TD) control algorithm first introduced by
Watkins in 1989.

This approach drastically simplified the algorithm’s analysis and was the
inspiration for the early convergence proofs.

2.5 The Deadly Triad

What is already known in Reinforcement Learning is the existence of a phe-
nomenon called ”The Deadly Triad”. Every time a designer decides to si-
multaneously use the following three characteristics, the great danger of in-
stability and divergence arises [11].

Function approximation It is a great tool for cases when the state space
is larger than the available memory and computational resources. In such
case, it is extremely useful to be able of predicting the value functions for
states.

Bootstrapping This is the process of updating targets using existing es-
timates rather than using only actual rewards and complete sequence of re-
turns.
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Off-policy training In this type of training the algorithm is evaluating
and improving a target policy that is different from the observational policy.
With off-policy learning method, in order to update the policy, the best Q-
value of the next state is used . The major issue with off-policy is the danger
of not updating this value sufficiently often to prevent it from diverging[19].

The first RL architecture that solved the mentioned issue is the Deep
Q-Network (DQN).

2.6 Deep Q-Network (DQN)

In order to tackle problems related with a large state-space, a neural net-
work Qϕ is used for the estimation of Qπ, where ϕ is corresponding to the
parameters.

DQN provides a set of three methods, discussed further below, to stabilize
the learning process;

i clipping the TD-error,

ii using experience replay and

iii implementing two separate networks (the online network and the target
network).

Figure 2.3: DQN and RL environment
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Weights update The weights are updated according to the following re-
lationship.

θk+1 ← θk − α · ∇θ · E
s′ p(s′|s,α)

[
(Qθ − target(s′))2

]∣∣∣∣∣
θ=θk

(2.12)

Tackling deadly triad Deep Q-Networks refer to a combination of Q-
learning and deep neural network function approximation. The major im-
provement of DQN over the Q-learning algorithms is the existence of a par-
allel target neural network, which is periodically synchronized with the main
neural network [12]. The bootstrapped target value in the DQN is calculated
in the target network. The periodical synchronization offers the advantage
of providing more accurate and stable target values to the main network.

Mechanism For a great number of problems it is not ideal to represent the
Q-function as a table that contains values for every combination of action α
and state s.

Figure 2.4: DQN and Q-learning comparison

Instead, it is preferred to train a function approximator, such as an ANN
with parameters θ in order to estimate the Q-values.

Q(s, α; θ) ≈ Q∗(s, α) (2.13)
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The aforementioned is usually achieved by minimizing the following loss
function,

Li(θi) = E
[
(r + γmaxα′Q(s′, α′; θi−1 −Q(s, α; θi))2

]
(2.14)

Experience replay If the loss is computed using just the last transition
{s, α, r, s′} the equation above is reduced to standard Q-learning. At each
time step, a data collection process is active. Therefore, the transitions are
stored in a circular buffer called the replay buffer. Then, during the training
procedure instead of just using the latest transition to compute the loss and
its gradient, these are computed using a mini-batch of transitions sampled
from the replay buffer.

Figure 2.5: DQN internal structure

This methodology offers two great advantages,

• greater data efficiency because of reusing each transition in many up-
dates

• and better stability due to use of uncorrelated transitions in a batch.
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2.7 Rainbow Agent

The rainbow agent is actually an extension to the DQN agent. The exact
structure of the rainbow agent can be found in the relevant article [13].
However, for the sake of completeness, the most important parts are discussed
below.

Prioritized experience replay DQN samples uniformly from the mem-
ory buffer, which means that all samples are considered equal. However, not
all data has the same amount of useful information. In order to improve
this issue, the first proposal is the use of prioritized experience replay. Sam-
ples transitions according to the probability pt which is relative to the last
encountered absolute Temporal Difference (TD) error.

pt ∝
∣∣Rt+1 + γt+1 ·max

a′
qθ̄(St+1, α

′)− qθ(St, At)
∣∣ω (2.15)

Dueling networks It is specifically designed for the use of value based RL.
It features two streams of computations named the value and the advantage
stream which actually share a common encoder and are finally merged by
a special aggregator. The above characteristics correspond to the following
equation.

qθ(s, a) = υη(fξ(s)) + αψ(fξ(s), α)−
∑

a′ αψ(fξ(s), a
′)

Nactions

(2.16)

where,

• ξ, η, ψ, are the parameters of the convolutional encoder.

• fξ, is the encoder

• υη, is the value stream

• αψ, is the advantage stream

• θ = {ξ, η, ψ}, is their concatenation
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Multi-step learning As already suggested by the book of Sutton and
Barto, instead of using Q-learning which accumulates single rewards, a forward-
view multi steps target can be implemented. The truncated n-step return
from a given state St is given by the following equation.

R
(n)
t =

n−1∑
k=0

γ
(k)
t ·Rt+k+1 (2.17)

Visibly, an alternative loss function must be defined.

Distributional RL It is possible to approximate the distribution of re-
turns instead of approximating the expected return. In 2017 a model was
proposed by Bellemare, Dabney and Munos that used a discrete support z
in a vector with Natoms, defined by:

zi = υmin + (i− 1) · υmax − υmin
Natoms − 1

, for i ∈ {1, ..., Natoms} (2.18)

The approximating distribution dt at time t is defined on this support,
with the probability mass piθ(St, At) on each atom i, such that dt = (z, pθ(St, At)).
The goal is to update θ such that this distribution closely matches the actual
distribution of returns.

A distributional variant of Q-learning is then derived by first constructing
a new support for the target distribution and later minimizing the Kullbeck-
Leibler divergence between the distribution dt and the target distribution
d′t.

d′t = (Rt+1 + γt+1 · z, pθ̄(St+1, ᾱ
∗
t+1)), DKL(Φzd

′
t||dt) (2.19)

where,

• Φz, is a L2 projection of the target distribution onto the fixed support
z

• ᾱ∗
t+1 = argmaxaqθ̄(St+1, a), is the greedy action

• qθ̄(St+1, a) = zTpθ(St+1, a), are the mean action values in state St+1

In the exact same way that the parameters are frozen in the non-distributional
DQN, they are frozen here too. The parameterized distribution can be rep-
resented by an ANN but with NatomsxNactions outputs. A softmax function
is applied in order to ensure the normalization process.
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Noisy sets In order to ignore noisy streams, but at the same time be
able to complete state-conditional exploration a noise layer transformation
is being used.

y = (b+Wx) + (bnoisy ⊙ ϵb + (Wnoisy ⊙ ϵw)x) (2.20)

2.8 Feature Reduction

Principal Component Analysis (PCA) Principal Component Analysis
is a feature reduction method that is used to reduce the dimensionality of
large data sets by decreasing the number of variables used, ensuring that the
smaller produced data set contains most of the information of the initial data
set [14].

Minimizing the size of the data set results to an expense as regarding the
accuracy, but contributes to overcoming issues related to over-fitting.

The PCA consists of the following steps:

1. Standardization
This process is also known as Z Score Transformation. The purpose is
to compare data for disparate distributions.

Z =
x− µ
σ

(2.21)

where,

• Z, standard score

• x, observed value

• µ, mean of the sample

• σ, standard deviation of the sample

2. Covariance matrix computation
The goal of this step is to identify correlations between variables.

For instance, the covariance matrix of a 3-dimensional data set is shown
below:

covariance matrix =

cov(x, x) cov(x, y) cov(x, z)
cov(y, x) cov(y, y) cov(y, z)
cov(z, x) cov(z, y) cov(z, z

 (2.22)
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3. Eigenvectors and eigenvalues of covariance matrix
Through this process the principal components are identified. Principal
components are new variables that are constructed as mixtures of the
initial variables. These combinations are constructed in such way that
the new variables are uncorrelated.

Geometrically speaking, principal components represent the directions
of data that correspond to the maximum amount of variance.

4. Principal components construction
The first principal component accounts for the largest possible variance
in the data set. The second principle component is calculated in the
same way, but with the following condition: it must be uncorrelated
with the first principal component. The procedure goes on.

Pearson’s Correlation Coefficient Pearson’s correlation coefficient is a
measure of linear correlation between two sets of data.

The equation governing the results is the following.

r =

∑
(xi − x̄) · (yi − ȳ)√∑
(xi − x̄)2

∑
(yi − ȳ)2

(2.23)

where,

• r, correlation coefficient

• xi, values of the x-variable in sample

• yi, values of the y-variable in sample

• x̄, mean of the values of the x-variable

• ȳ, mean of the values of the y-variable

Spearman’s Rank Correlation Coefficient Spearman’s correlation mea-
sures the strength and direction of monotonic association between two vari-
ables. It is used complementary to Pearson’s correlation.

The equation through which this coefficient is calculated is the following.

ρ = 1− 6
∑
d2i

n(n2 − 1)
(2.24)

where,
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• ρ, is the Spearman’s rank correlation coefficient

• di, it the difference between the two ranks of each observation

• n, is the number of observations

2.9 Long Short Term Memory (LSTM) ANN

Goal Long Short Term Memory (LSTM) networks are a special category
of Recurrent Neural Network (RNN) which are capable of learning long time
dependencies [15]. Their greatest advantage is the ability of remembering
information for long periods of time and are widely used when there is need
for time-sequential prediction, or generally for time-series prediction.

Architecture In LSTMs the repeating module has four neural network
layers interacting.

Figure 2.6: LSTM module

Equations The equations governing the LSTM are the following.

1. Forget gate layer
This layer is responsible for deciding what information are going to be
thrown away. It takes a look at inputs xt and the input of the previous
output ht−1 and outputs a number between 0 and 1.

ft = σ(Wf · [ht−1, xt] + bf ) (2.25)
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2. Deciding which information will be stored
This part is consisted of a sigmoid layer named ”input gate layer”
which decides which values will be updated. Next, there is a tanh layer
responsible for creating a new vector of candidate values C̃t that could
be added to the state.

it = σ(Wi[ht−1, xt] + bi) (2.26)

C̃t = tanh(WC [ht−1, xt] + bC) (2.27)

The old state is multiplied by ft in order to forget the things that were
decided during the previous layer. Finally, these are the new candidate
values transformed by how much it was decided to update each state
value.

Ct = ft · Ct−1 + it · C̃t (2.28)

3. Deciding on the output
Finally, there is a sigmoid layer responsible for deciding which parts
of the inner state will be output. Then there is a tanh, that clips the
data be between -1 and 1, multiplied by the sigmoid layer in order to
maintain only the desired output.

ot = σ(Wo[ht−1, xt] + bo) (2.29)

ht = ot · tanh(Ct) (2.30)

Of course there are variants of the LSTM module, however, the aforemen-
tioned is all the background information needed for this thesis’ demands.

2.10 Julia Coding Language

Julia Language was selected for coding. It first appeared on 2012 and it is
steadily growing over the last couple of years. It is a high-level and high-
performance dynamic programming language. It has been known for the
excellent performance to lines of coding ratio and it is really promising for
the future.
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It is very well suited for computational science [16] and thus was the
reason for being chosen for this application.

Some really useful packages were used. The most important of them for
the completion of the coding part are mentioned below.

• Flux.jl
A complete package for neural networks and training [17].

• ReinforcementLearning.jl
Well designed package for handling all of the Reinforcement Learning
procedures easily [18].

• DataFrames.jl
A convenient package for handling large data sets.

• Hyperopt.jl
A great package for tuning the hyper-parameters either by using the
Random Sample procedure or Hyperband [19].
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Chapter 3

Reinforcement Learning

3.1 Grid-world Environment

General In Reinforcement Learning, environment is the world where the
agent lives and interacts. In this application it the sufficient simulation of
the marine environment was demanded. This included the area where the
ship (agent) was moving, the boundaries through which it was forbidden to
pass and of course the weather conditions.

Figure 3.1: Squared grid-world
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Limitation What is important to be stated is the fact that the grid-world’s
squares size was limited due to functional reasons, related with the consump-
tion’s predictive model reliability. Since, the LSTM model was trained using
data points in 10-minute intervals, it was crucial to keep the time needed
for each of the agent’s moves approximately at the same duration - or even
lower. Therefore, it was ensured that the predictive model produced accurate
estimations.

Distance estimation To do so, the distances from one state to the other
were calculated using the Haversine formula. This equation is considered
common knowledge in navigation, to estimate great-circles distances between
two points lying on a sphere, using their longitudes and latitudes.

d = 2 ·R · atan2(
√
a,
√
1− a) (3.1)

where,

a = sin2
( lat2 − lat1

2

)
+ cos(lat1) · cos(lat2) · sin2

( lon2 − lon1

2

)
(3.2)

Environment parameters In order for this environment to make sense,
there were some parameters that were defined in an appropriate struct. These
are presented in table 3.1.

Environment and ship related parameters
Grid-world dimensions 50x50

Available velocities
Minimum 6 knots
Maximum 14 knots

Acceleration options
Deceleration ”-2 knots”

Constant speed
Acceleration ”+2 knots”

Heading all neighboring states
Starting Point (-6.733535,61.997345)
Goal Point (-6.691500,61.535580)

ETA 6.5 hours
Draught AFT 15.2 m
Draught FWD 15.1 m

Table 3.1: Environment and ship related parameters
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3.2 Computationally Cost-effective Boundaries

Construction

Figure 3.2: Polygon boundaries of reduced points

The goal was to check at every step if the agent was ending up inside any
of the boundaries. Mathematically this meant checking if the final point was
inside a polygon or not. It is clear that as the number of points of a polygon
increased, the computations for the intersection check grew.

Clearly, when the edges of a polygon that represented a physical bound-
ary, like an island, were reduced, the accuracy was lowered too. However,
since the agent corresponded to a ship, it did not truly matter, as long as
the initial polygon was included in the constructed one.

Since near lands and islands, normally there are shallow waters a ship
does not approach, the aforementioned modification was not an issue at all.
Conclusively, there could be made some concession in accuracy without any
substantial concerns for the final boundaries design.

Also, it should be pointed out that the new boundaries were designed on
top of the states/squares boundaries as is already depicted in figure 3.2.
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The algorithm followed for the construction of the computationally cost-
effective new boundaries was comprised of the following steps.

1. Generate each point’s square boundaries

In this first step, it was detected the square/state in which each of the
points belonged. For every single one of these points, there were four
points generated equal to the four edges of the square/state.

2. Delete all points lying inside the initial polygon

In this step, all the generated points from step 1 that were lying inside
the initial polygon were deleted. As already mentioned, it was crucial
to only retain the points outside of the polygon.

3. Eliminate all duplicate points

Since the goal was to achieve the lowest amount of points, there was
no use in retaining duplicate points.

4. Sort the boundary points

When the polygon’s points were not sorted in order, according to the
minimum distance between them, a strange polygon with intersected
lines was produced, which definitely did not reflect the actual desired
output.

5. Delete consecutive collinear points

Consecutive collinear points (especially on the horizontal and vertical
axis) had nothing more to offer than costly computations. That is
why, a germane function was implemented in order to get rid of all
those useless points.

For three random 2-D points (x1, y1), (x2, y2) and (x3, y3). If the deter-
minant of these three is equal to zero, then they are collinear.

det =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ = x1 · (y2 − y3) + x2 · (y3 − y1) + x3 · (y1 − y2) (3.3)

36



The figure 3.2 displays how the final result looked like. The red points
were the final points left on the newly constructed polygons. The black line
polygons were the initial ones and the blue polygons were the final ones, after
points reduction.

3.3 Weather Modelling

As regarding the weather modelling, there is a wide margin for improvement.
Since, however the main topic of this thesis was not the weather modelling,
but validating that the RL approach was capable of yielding the desired
results, the simplest weather modelling option was implemented.

As a result a circular storm was inserted. Anywhere outside the storm,
the sea state was considered calm. However, inside this stormy area, the
significant waves height parameter had much greater values. Consequently,
when the ship passed through this surface it drastically increased the fuel oil
consumption.

Weather parameters
Storm center (0.85,0.4)
Storm radius 0.07

Bad weather significant waves height (m) 3.5
Calm weather significant waves height (m) 0.7

Table 3.2: Storm details

3.4 Agents

All of the following agents were tested extensively. The given values of the
parameters below correspond to stable learning for a multiple runs of exper-
iments.

3.4.1 Q-learning

The Q-learning agent also operated as proof of concept of the software devel-
opment, since it was one of the easiest to implement. When the Q-learning
agent obtained the desired behaviour, most of the times meant that every-
thing up to this point was okay.
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Q-learning agent
Learning rate 0.5

Initial ϵ 0.99
Warm-up steps 10000
Decay steps 5000

Final ϵ 0.1
Trajectory State, action, reward, terminal

Table 3.3: Q-learning agent hyper-parameters

3.4.2 Deep Q-Network

Inputs The input of a Deep Q-Network (DQN) was the state the agent
was at. The state included the following information:

• Position on x-axis

• Position on y-axis

• Current speed

Normalization Since it is widely known that the normalization process
significantly increases the learning speed and stability of neural networks, all
the inputs were normalized with the appropriate values.

In the table 3.4, are shown the values according to which the normaliza-
tion process took place.

Input normalization
State parameter Minimum Maximum

Position X 1 50
Position Y 1 50
Speed (kn) 6 14

Significant waves height (m) 0 4.1

Table 3.4: Normalization for the DQN inputs

Parameters After extensive search and hyper-parameters calibration, the
following is a set of values that successively led to the desired behaviour.
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Deep Q-Network parameters
Parameter Approximating network Target network

h1 20 20
h2 30 30
h3 20 20

Activation function relu
Learning rate 10−4 10−4

Update frequency 4 100
Batch size 64 64

Update horizon 5 5
Minimum replay history 500

Trajectory capacity 1500
Discount rate 0.99
Warmup steps 300000
Decay steps 100000

Table 3.5: Deep Q-Network hyper-parameters

3.4.3 Rainbow

The inputs and normalization process was copied from the Deep Q-Network
(DQN) agent. So the aforementioned information are true for Rainbow Agent
too. The used parameters are depicted in table 3.6.

Rainbow agent hyper-parameters In order for the RL agent to be learn-
ing, a hyper-parameters optimization was mandatory. After completing this
procedure, the results as regarding those parameters were the following.
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Raibow agent parameters
Parameter Approximating network Target network

h1 40 40
h2 35 35
h3 25 25

Activation function relu
Learning rate 15 · 10−5 15 · 10−5

Update frequency 6 325
Batch size 150 150

Number of atoms 51
Minimum replay history 500

Trajectory capacity 1280
Discount rate 0.99
Warmup steps 30000
Decay steps 10000

Table 3.6: Rainbow agent hyper-parameters
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Chapter 4

Total Fuel Oil Consumption
(TFOC) prediction

4.1 Data Pre-processing

This is the pre-process procedure which was executed at least two times.
Once for the feature reduction method and a second time for the final imple-
mentation of the ANN. For figuring out the details of this process, the article
[20] was extremely helpful.

1. Complete missing values

In the first step of the data pre-processing, an effort was made in order
to recover a number of data points by appropriately completing some
individual missing values. Namely, if among the time-sequential data
provided by the shipping company there were one, two or three missing
values among existing values, these were replaced by the arithmetic
mean of the neighbour ones.

2. Transforming to step distance

The distance in the data set was measured as nautical miles covered
from an initial reference point. The appropriate modification was made
to get distance per agent’s step, which is equal to the distance difference
of every two sequential data points.

3. Choose sub-data set and delete missing values
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For the features which were selected, for each data point there was a
missing value, the entire time-row was deleted.

4. Split data according to draught

Since the ship, the one which the data was drawn from, is a tanker car-
rying oil from oil-producing countries to oil-importing countries, about
half of the voyages were performed in full-load condition, while the rest
of them were performed in ballast condition. Hence, there were really
no intermediate draught values. In favour of helping out the ANN’s
training, the data were split into three categories.

• all data combined

• ballast condition data, TM < 12.5 m

• loaded condition data, TM > 12.5 m

5. Statistical outliers rejection

In last part, the following steps [21] were followed:

(a) Speed was used as a primary parameter pprimary

(b) The speed data was split in groups of values with range 1 knot.

(c) The entire data was grouped according to the aforementioned
split.

(d) Distance and Fuel Consumption were used as secondary intercon-
nected parameters.

(e) The mean values and standard deviations of the secondary pa-
rameters were calculated in each group Gi

(f) A threshold outlier factor k was chosen.

Finally, if the following inequality was fulfilled, then the data point was
deleted.

|p2ij −mp2ij | > k · σp2ij (4.1)

where,

• i, corresponds to the group number

• j, corresponds to the number of element
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4.2 Feature Reduction

In order to decide on the final features, a feature reduction process was im-
plemented. The initial inputs were the following. As regarding the speed
and the distance features the over-ground values were chosen, since these
reflected the actual distances covered to reach the desired destination. How-
ever, it would make more sense in future work to use through-water values
for predicting the fuel consumption.

• Speed (OG)

• Draught AFT

• Draught FWD

• Distance (OG)

• Significant waves height

• Mean wave period

• Wind speed relative

• Current speed relative

• Time passed from last propeller polishing

• Time passed from last hull cleaning

Principal Component Analysis (PCA) The Principal Component Anal-
ysis led to the conclusion that there was no purpose in using more than six
input features. The initial experiments implemented six inputs. However,
this choice led to extreme over-fitting. In an attempt to tackle this issue, the
choice of five inputs was eventually made.
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Figure 4.1: Principal Component Analysis

Correlation coefficients For the sake of discovering how the various vari-
ables were correlated one by one, it was extremely useful to calculate the
following two metrics.

• Pearson’s correlation coefficient

• Spearman’s rank correlation coefficient

Hence, the linear and the monotonous relationships between the variables
were clear.

A strong linear relationship was evident between the significant waves
height, mean waves period and relative wind speed. Thus, only one from
these three features was selected for the final model. Furthermore, there
were some variables which seemed extremely important linear-wise for the
fuel consumption prediction. These were; speed, draughts and significant
waves height. So far, the results seemed in total harmony with the physical
intuition.
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There also existed a monotonous relationship between the before men-
tioned weather features. As regarding the importance for the fuel consump-
tion prediction, according to this metric, the most important appeared to
be; speed, distance, draughts and relative wind speed or significant waves
height.

Figure 4.2: Pearson’s correlation coefficient

By recognising the fact that significant waves height was a more important
parameter than relative wind speed, both by the metrics produced from the
data set on hand, and the physical reality.

Needless to say, extensive experiments were conducted. Ultimately, this
process led to following the final selection:

• Speed OG

• Draught AFT

• Draught FWD

• Distance OG

• Significant waves height

45



Figure 4.3: Spearman’s rank correlation coefficient

4.3 Long Short Term Memory (LSTM) ANN

Implementation

Final pre-processing procedure The pre-processing procedure was re-
peated and some more steps were implemented.

1. Z Score transformation

This standardization procedure speeded up learning and led to faster
convergence. This process constrained the inputs to almost the same
range and distributed the values appropriately.

2. Time sequential data

It was crucial to feed the LSTM ANN with time-sequential data. A rel-
evant routine was implemented where the data was packaged in batches
with guaranteed time continuity.

3. Moving average

Last but not least, in addition to the outliers rejection procedure, a
moving average function was performed to smooth out outlier values.
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4. Final data discard

All data points which size was less than the chosen sequence length of
the ANN model were discarded.

5. Data split

The data were split at 70 % of the data set. The majority of them was
used for the training procedure while the rest 30 % was employed for
testing.

6. Shuffling

Finally the training and the testing data were shuffled.

Loss function The Huber loss function was implemented since it is less
sensitive to outliers than squared loss functions. It is also appropriate for
regression models.

Lδ(y, ŷ) =

{
1
2
(y − ŷ)2, if (y − ŷ) < δ

δ · (|y − ŷ| − 1
2
δ), otherwise

(4.2)

Optimizer The ADAM optimizer was selected for this application because
of the opportunity it offered for minimum oscillation, while at the same time
it takes big-enough steps in order to avoid the local optimums along the way.

mt = β1mt−1 + (1− β1) ·
( ∂L
∂wt

)
· υt = β2 · υt−1 + (1− β2) ·

( ∂L
∂wt

)2

(4.3)

where the parameters used were,

• β1, β2, decay rates of the average of gradients

• α, learning rate

• ϵ, small constant in order to avoid division by zero

Finally, the weights update was accomplished using the following formula:

wt+1 = wt − m̂t ·
( α√

υ̂t + ϵ

)
(4.4)

47



where,

m̂t =
mt

1− βt1
· υ̂t =

υt
1− βt2

(4.5)

ANN architecture The final architecture was an LSTM ANN compro-
mised of 65 nodes connected with a dense layer consisted of 65 nodes leading
to one predicting node.
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Chapter 5

Challenges

5.1 Local Optimums

This was one of the most persistent issues faced. When the model was not
capable of learning, it was because one of the two problematic cases. The first
one corresponded to falling to a local optimum and sticking to it (Figure 5.3).
The second one involved the extensive oscillation, not necessarily around the
desired solution (Figures 5.4, 5.5).

The second issue occurred mostly due to the extreme DQN hyper-parameters
sensitivity and will be discussed extensively in the next section.

The first issue, although, it partially arose due to poor hyper-parameters
calibration as well, had a further explanation.

The initial approach as regarding the reward process design, was the
following; the agent got a punishment at each step proportional to the total
amount of fuel burnt. Moreover, when total time did surpass the estimated
time of arrival, the agent would get a big punishment at the state it was in
at the moment and the episode ended. However, this approach did not assist
the agent to realize that being closer to the arrival port by the end of time,
was a much better result than being far away.

By altering the reward approach, the system dynamics seemed to be more
stable. Even when the agent fell into local optimums, these localities made
more sense than the ones before. In the figure 5.1, a common local optimum
fall result, before the changed reward approach, is displayed.
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Figure 5.1: Local optimum before the changes in rewarding approach

The final reward approach The proposed and working solution was the
agent to be punished, when the time ended, not by a constant number, but
specifically by a reward proportional to the distance for the final destina-
tion. In figure 5.2 a common local optimum fall, after the aforementioned
realization, is displayed.

5.2 DQN Hyper-parameters Sensitivity

One of the most confusing things to overcome during this thesis was the
following issue; even in the simplest versions and environments, the DQN
agent did not seem to be capable of learning. Until it was later realised, how
sensitive it really was as regarding the hyper-parameters. If these parameters
were not tuned in the exact needed range, the agent did not seem to learn.

The most common outcome during all these trials was the following. The
agent in a condition where it was incapable of learning, kept falling into
a situation where it did not ever manage to reach the arrival port. This
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Figure 5.2: Local optimum after the changes in rewarding approach

occurred even when the agent was forced to discover that the best solutions
were always those where the arrival to the goal point is achieved.

Also, the greater the state space was, the narrower the range of stable
hyper-parameters got. This led to the need of extensive hyper-parameters
calibration and finally to the introduction of the more sophisticated rainbow
agent.

Intrinsic randomness Additionally, there was a significant number of
times when the agent did seem to learn. However, if the process was restarted
with the same hyper-parameters, the agent could not achieve the desired
behaviour.

This phenomenon was the result of an unstable set of hyper-parameters
along with the intrinsic randomness inserted in the model due to the ini-
tialization of weights and biases of the neural networks. In order to resolve
those issues, an extensive hyper-parameters tuning was compulsory, ensuing
to finding the most stable hyper-parameters.
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In the figures 5.3, 5.4 and 5.5, there are examples where the above prob-
lems are depicted.

Figure 5.3: Failed hyper-parameters tuning attempt: Steady local optimum

5.3 Rewards of Different Magnitudes

This challenge was caused as a consequence of a miscalculation in the rewards
distribution. The initial approach included a punishment at each step equal
to the mass of fuel burnt (which was approximately 0.15), while a huge pun-
ishment was assigned every time the Estimated Time of Arrival (ETA) was
surpassed. The different order of magnitude between these two punishments
is clear.

As a result, this approach truly caused issues in the neural network up-
dating procedure. It forced the agent to ”ignore” its fuel consumption. It
was indicated by the results that the agent was ”caring”, when stable hyper-
parameters where used, only about the greater rewards of the two.

It became evident that the order of magnitude should be kept constant
since a neural network’s training procedure was implemented. The dis-
tributed rewards were clipped to the (-1,0) span.
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Figure 5.4: Failed hyper-parameters tuning attempt: Extensive oscillation

Figure 5.5: Failed hyper-parameters tuning attempt: ”Ignoring” better re-
sults
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5.4 Dense Environment

Since the LSTM model was responsible for predicting the reward values -
which were equal to the amount of fuel burnt- each step should roughly
correspond to a 10-minute long movement, in order to be accurate.

The initial viewpoint was the implementation of ”if” statements, which
indicated when the 10 minutes had passed. However, it was clear later on
that a movement from one state to another, should not approximately take
10 minutes, but much lower. Hence, in the final approach a denser state
space was constructed; each step was taking approximately one minute. This
resulted in attaining greater run speed; for one simulation. Furthermore, the
LSTM estimations were monitored to be closer to 10 minutes and thus the
predictions were more accurate. Finally, it allowed for a greater variety of
moves that a ship may execute during a 10-minute period.
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Chapter 6

LSTM Performance

6.1 LSTM Over-fitting

In order to tackle this issue of over-fitting and also manage to generalize ap-
propriately, it was required to reduce the input features to the bare minimum,
while at the same time choosing the best ones.

Physical understanding of the problem, is not always the way to go in
such models where statistical dependencies are more important. The feature
inputs that were finally chosen are the following.

• Speed OG

• Draught AFT

• Draught FWD

• Distance OG

• Significant waves height

Since the measurements’ frequency was 10 minutes and normally ships
during voyages keep a constant and steady speed, a logic hypothesis would
be that the distance is irrelevant. Since most of the times distance can be
calculated by the speed scaled with time. The Principal Component Analysis
indicates the use of five features and thus another weather feature could be
used. However, this selection provided really poor results as regarding the
performance on unseen data.

So contrary to common sense, choosing the distance as input feature
provided much better results.
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6.2 Final Prediction Results

Training parameters selection The training hyper-parameters used for
the ANN model were the following. The split point refers to the percentage
of data points used for training.

Training parameters
Sequence length 3

Split point 70 %
Batch size 12

LSTM nodes 65
Dense nodes 20

ϵ (learning rate) 10−4

Epochs 1000

Table 6.1: Parameters for LSTM ANN training

Error The average error was kept under 5 %, and the maximum error did
not exceed 80 %.

Tracking A better understanding of the results can be achieved through
the actual plotting of the tracking.
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Figure 6.1: Prediction time-series for voyage 1 (training data)

Figure 6.2: Prediction time-series for voyage 2 (training data)
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Figure 6.3: Prediction time-series for voyage 3 (training data)

Figure 6.4: Prediction time-series for voyage 4 (training data)
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Figure 6.5: Prediction time-series for voyage 5 (training data)

Figure 6.6: Prediction time-series for voyage 6 (test data)
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Figure 6.7: Prediction time-series for voyage 7 (test data)

Figure 6.8: Prediction time-series for voyage 8 (test data)
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Chapter 7

Comparison

7.1 Q-learning Agent

The Q-learning agent was the simplest implementation of a RL agent. It
offered speed, especially if it was combined with a learning option like Tem-
poral Difference (TD). However, it was not the best option when a large
state space was required. That was because in order to evaluate the different
state-action pairs, it was mandatory to experience them all at least once.

At experiments where the state space was kept small enough, the Q-
learning agent was clearly superior to the other two. It was both faster and
more stable. However, when the state space got increased it seemed, as
expected, to lose its powers.

The simplistic but powerful approach the Q-learning offers, makes it seem
like an undeniable choice when the problem’s requirements allow it. In this
certain problem, especially if at some point scales to environments of greater
area, a dense state space is required. Hence, overall, definitely this agent is
not the best alternative.

Next, there are a typical plot of the rewards compared to the number
of episodes and the desired output produced by the agent. Also, a velocity
profile for one of the best solutions is provided.
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Figure 7.1: Route followed by Q-learning agent after training

Figure 7.2: Rewards achieved by Q-learning agent
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Figure 7.3: Velocity profile by Q-learning agent

7.2 Deep Q-Network (DQN) Agent

This is the indicated agent when a large state space is required. Although
initially seemed the one method to go, however it was discovered that it was
extremely sensitive to the hyper-parameters. Every time the state space grew
larger, the hyper-parameters range where the learning is achieved seemed to
become narrower.

Definitely, a more sophisticated method than random sampling was re-
quired for hyper-parameters tuning. However, the DQN agent’s learning
process seemed to be a lot more stable than the Q-learning’s for large state
spaces.

Below, there are a plot of rewards compared to number of episodes, the
best solution of the learning’s procedure and a velocity profile.
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Figure 7.4: Route followed by DQN agent after training

Figure 7.5: Rewards gathered by DQN agent
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Figure 7.6: Velocity profile by DQN agent

7.3 Rainbow Agent

The rainbow agent includes all the latest improvements on the field of RL
agents. Instead of approximating expected returns, it approximates proba-
bility distributions. It is certainly more sophisticated.

To all intents and purposes, it offered a more stable learning procedure
compared to the DQN agent. The range of stable hyper-parameters seemed
to be greater than this of the latter. Also, after many experiments it was
realized that the oscillations were not as intense as the DQN agent’s.

Overall, it definitely proved to be the best option for this application
while at the same time maintains all the pros of the DQN agent.
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Figure 7.7: Route followed by rainbow agent after training

Figure 7.8: Rewards gathered by rainbow agent
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Figure 7.9: Velocity profile by rainbow agent
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Chapter 8

Summary, Conclusions &
Recommendations

8.1 Summary

Overall, if this project could be characterized for what it is, it is probably a
solid start for an overall project of minimizing TFOC using Reinforcement
Learning. There are various things that have to be included, which are all
mentioned in the next chapter as recommendations. This work aims to work
as a foundation for future research projects on this subject.

Agents The use and comparison of different agents seems to have declared
a clear winner between those three for the requirements of this project. Rain-
bow agent seemed to be both the most stable and the most efficient in han-
dling large state-spaces. Q-learning would be the definite answer only in the
case where a small-sized grid is chosen.

Julia language The Julia Lang was a great opportunity since it is really
promising for the future. There is a great community, with people really
eager to help and grow together. However, the language itself right now has
some corners that are hard to avoid and can cause a lot of discomfort in
an attempt to develop new work. Since this research project was something
fresh, on terms of coding this language proved to be both a curse and a gift.
The running time was significantly faster and the coding significantly shorter
than other language; such as Python.
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8.2 Conclusions

LSTM implementation The LSTM implementation looking back was
not necessary for the length and scope of this approach. It could be done,
with a simple Artificial Neural Network (ANN) which would be easier to
implement. However, the research project was from the start faced with a
product-oriented perspective, without any prior knowledge as to how far it
would get. In the end, I personally am really glad for all the knowledge I got
from this ambitious approach and I really enjoyed it, despite the adversities
caused by thinking it as a whole product. However, it needs to be stated,
that if anyone just tries to replicate the results up to this point, it is possible
to do so with a simple ANN or just some simplified functions punishing
appropriately for each parameter (speed, distance, draught, weather).

Also, what needs to be mentioned is that since ANN are somewhat sta-
tistical models, it is common to get unreliable results for some value ranges.

What made great difference The computationally cost-effective approach
as regarding the boundaries really made the runtime a lot faster, without
sacrificing anything of value. Also, clipping the reward values for the DQN
agent’s loss function was key to stabilizing the results. This whole project,
could not be done without the use of powerful GPUs, provided from the
Laboratory of Marine Engineering (LME) and the excellent Julia package
for CUDA [22].

8.3 Recommendations

8.3.1 Weather Model Improvement

The weather model could be further improved step-by-step in order to reflect
realistically the sea conditions. The immediate next step could be adding
weather storms with Gaussian distribution models. The final step is using
live weather data and storm forecasts.

As regarding the available models, live data from a well-known provider
seems to be the best and most trustworthy source. However, there is also the
option, at least as an intermediate step of using a neural network in order
to predict the weather forecasts. This might be an attractive approach,
depending on the goals of the researcher.
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8.3.2 Speed Parameter

Since the agent is taking decisions no different than those a ship’s captain
would take, it is crucial to handle the same parameters as a human would.
It is not possible to choose the speed over-ground a ship will cover. What
the captain really handles usually is the instructed speed. Therefore, the
best option would be the development of a model which predicts the speed
over ground using as inputs the instructed speed and the weather conditions.
The exact same procedure is recommended to be applied for the distance
over ground.

Figure 8.1: A schematic for improved implementation of speed

Also, what is needed to be explored is the velocity control which is de-
pendent on the Estimated Time of Arrival (ETA) in order to minimize the
fuel consumption. In this thesis, since changing velocities between the states
due to the simplified weather model is not required, the ship is constantly
using the average needed speed in order to achieve the objective.

8.3.3 Engine Data for the Prediction Process

All the available models using as inputs weather data, without any clue about
the engine data seem be inaccurate up to 10 %. In an attempt to tackle this
issue, it could be examined, if the addition of engine data into the regression
models for the fuel consumption offers greater accuracy. It is not an unusual
policy for ship captains to keep steady values for the revolutions of the engine
throughout different segments of a voyage.
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8.3.4 Live Action Methodology

When a long voyage is to be made, lasting three days or even more, it is not
possible to decide on a route beforehand. That is because of the change in
the weather conditions. So the recommended procedure would be to decide
on a route beforehand and re-training the agent every x hours in order to
achieve a close to optimal result.

For instance, in the example in figure 8.2, the route is decided beforehand
when there is information for a storm in the first part. Ship follows this route,
but after a while information for a new storm at the second part arise. The
agent is being retrained-specifically for the remaining part. It learns to go
around the storm and thus achieve the minimum fuel oil consumption.

Figure 8.2: An example of live action methodology
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8.3.5 Dynamic Change of Draughts and Trim

Throughout a ship’s voyage there is change both in draughts and trim. These
changes account up to 1-2 % of the total ship’s displacement, which is not a
negligible amount. This is partially because great amounts of fuel are being
burnt but also due to other, less significant, factors as well. This phenomenon
results in differences that do alter the consumption and should be taken into
account. What is really important to be considered is the fact that the
resistance ships are experiencing, can be greatly reduced if they are sailing
very close to the optimized trim values for each draught/displacement value.
Thus, the trim parameter, can really be used in the final version as a control
parameter.

8.3.6 DQN Hyper-parameters tuning

The hyper-parameters tuning was completed using the really painful proce-
dure of random sampling. If the hyper-parameter tuning procedure is im-
plemented using more sophisticated techniques that would reduce the total
amount of time needed to find the correct values. This can really contribute
into making real progress in this project. Some recommendations are the
use of genetic algorithms and grid search. Also, an interesting consideration
may be the use of the convergence speed as evaluation metric. Right now,
the available packages in Julia are a bit restricting, however in the next few
months this job will be surely easier to do.

72



Bibliography

[1] Hannah Ritchie, Max Roser, and Pablo Rosado. “CO2 and greenhouse
gas emissions”. In: Our world in data (2020).

[2] Volodymyr Mnih et al. “Human-level control through deep reinforce-
ment learning”. In: nature 518.7540 (2015), pp. 529–533.

[3] Andrew Barto & Richard S. Sutton. Reinforcement Learning: An In-
troduction. 1992.

[4] Joan P Petersen, Ole Winther, and Daniel J Jacobsen. “A machine-
learning approach to predict main energy consumption under realis-
tic operational conditions”. In: Ship Technology Research 59.1 (2012),
pp. 64–72.

[5] Bourchas Orfeas. “Neural networks for the prediction of fuel oil con-
sumption for containerships”. 2021. url: https://dspace.lib.ntua.
gr/xmlui/handle/123456789/52927.

[6] Christos Gkerekos, Iraklis Lazakis, and Gerasimos Theotokatos. “Ma-
chine learning models for predicting ship main engine Fuel Oil Con-
sumption: A comparative study”. In: Ocean Engineering 188 (2019),
p. 106282.
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