
National Technical University of
Athens

School of Electrical and Computer Engineering
Data Science and Machine Learning

Recognition and localization of audio-visual
events with machine learning technique

Postgraduate Diploma Thesis
of

NIKOLAOS D. MAKARIS

Supervisor: Stefanos Kollias
Professor N.T.U.A.

Co-Supervisor: Paraskevi Tzouveli
Labatory teaching staff N.T.U.A.

Artificial Intelligence and Learning Systems (AILS) Laboratory
Athens, March 2023

National Technical University of Athens
School of Electrical and Computer Engineering
Data Science and Machine Learning
Artificial Intelligence and Learning Systems (AILS) Laboratory

Recognition and localization of audio-visual
events with machine learning technique

Postgraduate Diploma Thesis
of

NIKOLAOS D. MAKARIS

Supervisor: Stefanos Kollias
Professor N.T.U.A.

Approved by the three-member examination committee on 17th March 2023.

(Sign) (Sign) (Sign)

.......................
Stefanos Kollias Georgios Stamou Athanasios Voulodimos

Professor N.T.U.A. Professor N.T.U.A. Assistant Professor N.T.U.A.

Athens, March 2023

5

(Sign)

...
MAKARIS NIKOLAOS
Post graduate of Data Science And Machine Learning N.T.U.A

copyright 2023 – All rights reserved MAKARIS NIKOLAOS, 2023.
All rights reserved.

The copying, storage and distribution of this work, in whole or in part, for
commercial purposes shall be prohibited. Reproduction is authorized, storage
and distribution for non-profit, educational or research nature, provided that the
source is indicated and keeps this message. Queries related to using the task
for profit should be addressed to the Member States. The Commission author.
The views and conclusions contained in this paper express the author and should
not be interpreted as representing the official positions of the National Technical
University of Athens.

National Technical University of Athens
School of Electrical and Computer Engineering
Data Science and Machine Learning
Artificial Intelligence and Learning Systems (AILS) Laboratory

Περίληψη

Η αναγνώριση οπτικοακουστικών γεγονότων και η επιχώρια προσαρμογή είναι ένα δύσκολο
έργο που περιλαμβάνει την αναγνώριση γεγονότων που είναι τόσο ορατά όσο και ηχητικά σε
ένα βίντεο. Σε αυτήν τη μελέτη, προτείνουμε μια καινοτόμο προσέγγιση για την αντιμετώπιση
αυτής της πρόκλησης χρησιμοποιώντας έναν οπτικοακουστικό μηχανισμό οπτικής προσοχής
για τη διερεύνηση οπτικοακουστικών συσχετίσεων και τη χρήση ενός διπλού πολυτροπικού
δικτύου υπολειπόμενων εκπομπών (DMRN) για τη σύντηξη πληροφοριών μεταξύ των δύο
τρόπων.

Η μεθοδολογία μας περιλαμβάνει την εξαγωγή χαρακτηριστικών (οπτικοακουστικών ή
οπτικών) από διάφορα προ-εκπαιδευμένα μοντέλα, τα οποία έχουν αναπτυχθεί για εργασίες
όπως αναγνώριση εικόνας ή αναγνώριση ήχου. Στη συνέχεια ορίζουμε καινοτόμες αρχιτεκτονικές
για τα πολυτροπικά δίκτυα, με στόχο τον αποτελεσματικό εντοπισμό των γεγονότων-στόχων
στα οπτικοακουστικά δεδομένα.

Για να αξιολογήσουμε την απόδοση της προτεινόμενης προσέγγισής μας, την εφαρμόζουμε
στο σύνολο δεδομένων AVE και συγκρίνουμε τα αποτελέσματα με αυτά που αναφέρονται σε
άλλες σχετικές μελέτες. Διαπιστώνουμε ότι η προσέγγισή μας επιτυγχάνει καλύτερη ακρίβεια
στην αναγνώριση των γεγονότων.

Η μελέτη αυτή συμβάλλει στον τομέα της αναγνώρισης οπτικοακουστικών γεγονότων
και της τοπικοποίησης με την εισαγωγή ενός νέου πλαισίου που συγχωνεύει αποτελεσματικά
τις οπτικοακουστικές πληροφορίες, οδηγώντας ενδεχομένως σε βελτιωμένη απόδοση και
ταχύτερους χρόνους επεξεργασίας σε διάφορες εφαρμογές τοπικοποίησης.

Λέξεις Κλειδιά
Αναγνώριση οπτικοακουστικών συμβάντων, Εντοπισμός συμβάντων, Πολυτροπική σύντηξη,

Οπτική προσοχή με γνώμονα τον ήχο, Προεκπαιδευμένα μοντέλα, Εξαγωγή χαρακτηριστικών
γνωρισμάτων, Σύνολο δεδομένων AVE

1

Abstract

Audio-visual event recognition and localization is a challenging task that involves iden-
tifying events that are both visible and audible in a video. In this study, we propose a
novel approach to address this challenge by employing an audio-guided visual attention
mechanism to explore audio-visual correlations and leveraging a dual multimodal residual
network (DMRN) to fuse information across the two modalities.

Our methodology includes extracting features (audio or visual) from various pre-
trained models, which have been developed for tasks such as image recognition or audio
recognition. We then define novel architectures for the multimodal networks, aiming to
effectively localize the target events in the audio-visual data.

To evaluate the performance of our proposed approach, we apply it to the AVE dataset
and compare the results with those reported in other relevant studies. We find that our
approach achieves better accuracy in recognizing the events.

This study contributes to the field of audio-visual event recognition and localization by
introducing a novel framework that effectively fuses audio and visual information, poten-
tially leading to improved performance and faster processing times in various localization
applications.

Keywords
Audio-visual event recognition, Event localization, Multimodal fusion, Audio-guided

visual attention, Pre-trained models, Feature extraction, AVE dataset

3

Acknowledgements

Ευχαριστώ τον καθηγητή Στέφανο Κόλλια και τα μέλη του εργαστηρίου Συστημάτων
Τεχνητής Νοημοσύνης και Μάθησης για την ευκαιρία που μου δόθηκε να εργαστώ στο
συγκεκριμένο θέμα της διπλωματικής εργασίας μου.

Ευχαριστώ ιδιαίτερα την ΕΔΙΠ κα Παρασκευή Τζούβελη καθώς και τον διδακτορικό Έντι
Δερβάκο, που μου προσέφεραν την κάθε δυνατή βοήθεια και σωστή καθοδήγηση κατά την
εκπόνηση της διπλωματικής μου εργασίας.

Eπίσης, θα ήθελα να ευχαριστήσω τους καθηγητές Γεώργιο Στάμου και Αθανάσιο Βουλόδημο
που συμμετέχουν στην τριμελή επιτροπή.

Τέλος, θέλω να ευχαριστήσω πολύ τους φίλους μου για την υποστήριξη που μου προσέφεραν
καθ’ όλη τη διάρκεια εκπόνησης της μεταπτυχιακής διπλωματικής μου εργασίας και την
οικογένειά μου που είναι πάντα δίπλα μου.

5

6

Contents 7

Contents

Περίληψη 1

Abstract 3

Acknowledgements 5

1 Introduction 15
1.1 Subject of diploma thesis . 15
1.2 Similar work . 15
1.3 Document format . 16

I Theory 17

2 Description of the concept 19
2.1 Audio and Visual Event localization . 19
2.2 Audio and Visual module . 21

3 Theoretical background 23
3.1 Machine learning and Neural networks . 23

3.1.1 Neural networks . 23
3.1.2 Transfer Learning . 23
3.1.3 Pre-processing . 23
3.1.4 Feature extraction . 24
3.1.5 Embeddings . 24
3.1.6 Dimensionality reduction . 25
3.1.7 Principal Component Analysis (PCA) 26
3.1.8 Principal Component Analysis (PCA) Application 26
3.1.9 Sequence labeling . 27
3.1.10 Recurrent neural networks . 27

3.1.10.1 Long Short-Term Memory Networks (LSTMs) 28
3.1.10.2 Gated Recurrent Unit (GRU) 29
3.1.10.3 Differences and advantages between the two networks . . . 29

3.1.11 Convolutional Neural Networks (CNN/ConvNet) 30

8 Contents

3.2 Multimodal machine learning . 30
3.3 Audio module . 31

3.3.1 Representations of audio signals . 31
3.3.2 Audio used in machine learning . 33
3.3.3 Audio neural networks . 33
3.3.4 VGGish . 34
3.3.5 Wav2vec . 35
3.3.6 vq-Wav2vec . 35

3.3.6.1 VQ-Wav2vec kmeans . 36
3.3.7 Wav2vec 2.0 . 36

3.3.7.1 Wav2vec Vox New . 36
3.3.7.2 Wav2vec and wav2vec 2.0 36

3.3.8 Musicnn . 37
3.3.9 Yamnet . 37
3.3.10 Openl3 . 38

3.4 Visual module . 39
3.4.1 Visual tasks . 40
3.4.2 Segmentation . 41

3.5 Visual neural networks . 41
3.5.1 VGG-19 . 42
3.5.2 Xception . 42
3.5.3 ResNet50 and ResNet152 . 42
3.5.4 Inceptionv3 . 42
3.5.5 MobileNet . 42
3.5.6 Densenet201 . 43
3.5.7 Nasnetlarge . 43
3.5.8 EfficientNetB7 . 43
3.5.9 EfficientNetV2l . 43
3.5.10 ConvNextXlarge . 43
3.5.11 Maskformer . 44

II Practical part 45

4 Data 47
4.1 Datasets . 47

4.1.1 AVE: The Audio-Visual Event Dataset 47
4.1.2 Audio-Set . 48
4.1.3 LibriSpeech . 48
4.1.4 Libri-Light . 49
4.1.5 Imagenet . 49
4.1.6 MagnaTagATune (MTT) dataset . 49

Contents 9

4.1.7 Million Song Dataset (MSD) . 49

5 Implementation 51
5.1 Audio-Visual objective . 51
5.2 Audio-Visual event localization parts . 51
5.3 Pre-processing, feature extraction and transformation of features 54
5.4 Pretrained models for audio feature extraction 54

5.4.1 VGGish . 54
5.4.2 Wav2vec, vq-Wav2vec and Wav2vec 2.0 54
5.4.3 musicnn . 56

5.4.3.1 MTT and MSD musicnn 57
5.4.3.2 musicnn VGG MTT . 57

5.4.4 Yamnet . 58
5.4.5 Openl3 . 58

5.5 Pretrained models for visual feature extraction 58
5.5.1 VGG-19 . 59
5.5.2 Xception . 59
5.5.3 ResNet50 and ResNet152 . 59
5.5.4 Inceptionv3 . 60
5.5.5 MobileNet . 60
5.5.6 Densenet201 . 60
5.5.7 Nasnetlarge . 60
5.5.8 EfficientNetB7 . 60
5.5.9 EfficientNetV2l . 61
5.5.10 ConvNextXlarge . 61
5.5.11 Maskformer . 61

5.5.11.1 Class query logits and mask query logits as visual features 61
5.5.11.2 Implementation . 62

5.6 AV-att model . 62
5.7 DMRN model . 63
5.8 Attention map . 65

5.8.1 Attention map visualization . 65
5.9 Audio only model . 66
5.10 Visual only model . 66
5.11 AV att model with GRU . 66
5.12 DMRN model with GRU . 66

6 Experimental results 67
6.1 Results and comparison between different models 67

6.1.1 Accuracy for best models . 68
6.1.2 Accuracy for audio models with video vgg-19 68

6.1.3 Accuracy for video models with audio VGG-like 70
6.1.4 Accuracy for various models . 71
6.1.5 Wav2vec audio feature extraction models and different methods . . . 73
6.1.6 Comparison between the audio models by using Audio only network 74
6.1.7 Comparison between the video models by using Video-only network 75
6.1.8 Video model Efficientnetb7 for different transformations and audio

features . 76
6.2 Comparison of models by time and other metrics 77
6.3 Comparison between the audio models (Using video VGG-19) 80
6.4 Comparison between the video models (Using audio VGG-like) 88

III Conclusion 93

7 Conclusion and future work 95
7.1 Conclusions . 95
7.2 Future work . 95

Bibliography 96

List of Figures

2.1 Depiction of audio-visual event localization: Observe that the green and red
bounding boxes for video or audio data signify the labels observed for single-
modality data. Meanwhile, the ground truth labels can be found in the
bottom row. It is important to note that non-background event labels are
assigned only if cross-modality data displays the same label information.[1] 20

2.2 Illustration of the audio-visual event localization. [2] 21

3.1 The LSTM cell internals. [3] . 28
3.2 LSTM and GRU simplified. [4] . 29
3.3 Audio signal of a musical track [5] . 31
3.4 Mel Spectrogram, Log-Mel Spectrogram, MFCC [5] 32
3.5 Musicnn neural network [6] . 37
3.6 Vgg neural network [6] . 37
3.7 Color image representation and RGB matrix [7] 39

4.1 The AVE dataset. Some examples in the dataset are shown. The distribu-
tion of videos in different categories and the distribution of event lengths
are illustrated boundaries. [2] . 48

5.1 Audio-visual event localization network . 52
5.2 Parts for audio-visual event localization network 53
5.3 Musicnn frontend . 56
5.4 Musicnn midend . 57
5.5 Musicnn backend . 57
5.6 AV-att model architecture . 63
5.7 (a) Audio-guided visual attention mechanism. (b) Dual multimodal residual

network for audiovisual feature fusion [2] . 64
5.8 DMRN model architecture . 65
5.9 DMRN model architecture with attention 66

11

List of Tables

4.1 The 28 event categories of the AVE dataset along with their number of videos 47

6.1 Best models accuracy per class . 68
6.2 Best models accuracy . 68
6.3 Accuracy of models using audio features extracted by different models and

visual features from VGG-19 . 69
6.4 Accuracy of models using video features extracted by different models and

audio features from VGG-like . 70
6.5 Accuracy for different models for various pretrained features used (Audio

and Visual) . 71
6.6 Training time for different models for various pretrained features used (Au-

dio and Visual) . 72
6.7 Testing time for different models for various pretrained features used (Audio

and Visual) . 72
6.8 Accuracy for different wav2vec models . 73
6.9 Model accuracy for Audio-only network part 1 74
6.10 Model accuracy for Audio-only network part 2 74
6.11 Accuracy for video models by using Video-only network 75
6.12 Efficientnetb7 model for different transformations 76
6.13 Metrics for Xception for the AV-att model 77
6.14 Metrics for Convnextxlarge for the AV-att model 77
6.15 Metrics for openl3-convnextxlarge . 77
6.16 Tensorflow keras models and the best accuracy achieved 78
6.17 Classification report for Vgg-original for AV-att and DMRN models 80
6.18 Classification report for Wav2vec-small for AV-att and DMRN 81
6.19 Classification report for Mtt-musicnn-cnn for AV-att and DMRN models . . 82
6.20 Classification report for Yamnet-pca for AV-att and DMRN-GRU 83
6.21 Classification report for Openl3 for AV-att and DMRN-GRU models 84
6.22 Classification report for Openl3 . 85
6.23 Classification report for NasNetLarge . 86
6.24 Classification report for Nasnetlarge for AV-att and DMRN-GRU 88
6.25 Classification report for EfficientnetB7 for AV-att and DMRN 89
6.26 Classification report for Efficientnetv2l for AV-att and DMRN-GRU 90
6.27 Classification report for Convnextxlarge for AV-att-GRU and DMRN-GRU 91

13

14 List of Tables

6.28 Classification report for Convnextxlarge-7-7-490 for AV-att and DMRN . . 92

Chapter 1

Introduction

1.1 Subject of diploma thesis
In this diploma thesis, the problem of audio-visual event localization in unconstrained

videos is examined. An audio-visual event is defined as an event that is both visible and
audible in a video segment.

Audio-visual event localization in unconstrained videos is investigated. An audio-
visual event is defined as an occurrence that can be both seen and heard within a video
segment. The Audio-Visual Event (AVE) dataset is used in order to systematically study
supervised audio-visual event localization. An audio-guided visual attention mechanism to
explore audio-visual correlations and multiple networks is investigated in order to merge
information from the two modalities. The experimental results reveal that jointly modeling
auditory and visual modalities surpasses independent modeling.

Furthermore, multiple pre-trained models are used for the feature extraction (Audio
and Visual). Some of these models could be trained on a similar task, i.e. image recognition
and some other in relevant tasks, i.e. image segmentation for the visual module, or speaker
recognition for the audio module.

1.2 Similar work
This diploma thesis is inspired heavily by the ”Audio-Visual Event Localization in

Unconstrained Videos” paper by Tian et. al [2].
Furthermore, the paper ”Dual-modality seq2seq network for audio-visual event local-

ization” by Yan-Bo Lin, Yu-Jhe Li, and Yu-Chiang Frank Wang [1] presents a deep neural
network called Audio-Visual sequence-to-sequence dual network (AVSDN) for audio-visual
event localization. This task involves identifying events that are both visible and audible
in a video, either at the frame or video level.

The proposed AVSDN model jointly takes both audio and visual features at each time
segment as inputs and learns global and local event information in a sequence-to-sequence
manner. This can be achieved in either fully supervised or weakly supervised settings. The

15

16 Chapter 1. Introduction

authors’ empirical results confirm that their proposed method performs favorably against
recent deep learning approaches in both fully supervised and weakly supervised settings.
By considering both audio and visual information, the AVSDN model demonstrates a more
effective approach to localizing audio-visual events in videos.

1.3 Document format
In Chapter 2, the concept of AVE Localization and recognition in unconstrained videos

is discussed. Chapter 3 delves into the theoretical aspects of machine learning, neural net-
works, and key concepts necessary for understanding the experiments. A brief description
of the audio and visual modules is also provided.

Chapter 4 introduces the datasets utilized in this work for model training and testing,
as well as a brief description of the datasets used in the pre-trained models serving as
feature extractors.

Chapter 5 details the implementation of the neural networks and models employed in
this work. Chapter 6 presents the results of most experiments, and Chapter 7 concludes
the discussion with a summary, possible future works, and final thoughts.

Part I

Theory

17

Chapter 2

Description of the concept

This chapter describes the subject of this diploma thesis about Audio and Visual Event
localization.

2.1 Audio and Visual Event localization
In this diploma thesis, the problem of audio-visual event recognition and localization

in unconstrained videos is examined, shown in Figure 2.2. An audio-visual event is defined
as an event that is both visible and audible in a video segment [2].

A significant amount of visual and auditory signals are present in real-world activi-
ties, and numerous studies in neurobiology and human perception indicate that there are
considerable perceptual benefits to integrating visual and auditory information. In com-
putational models, this integration is evident in lip reading, where the correlation between
speech and lip movements provides a robust cue for language comprehension. Another
example is sound synthesis, where physical interactions with various materials produce be-
lievable sound patterns. Despite the advancements in these models, they remain limited
to certain constrained domains.

As a result, some researchers have started to explore the correspondence between visual
scenes and sounds, achieving cross-modality scenarios. However, these cross-modality
learning methods often presume that audio and visual content in a video are always present
and matched, which may not be practical for analyzing and understanding unconstrained
videos in the real world.

Audio-visual event localization aims to address this issue by identifying events of in-
terest that have both visible and audible components in a video, as shown in Figure 2.1.
This task helps to better understand and analyze real-world videos by simultaneously
considering both the visual and auditory aspects of events.

19

20 Chapter 2. Description of the concept

Figure 2.1: Depiction of audio-visual event localization: Observe that the green and red
bounding boxes for video or audio data signify the labels observed for single-modality

data. Meanwhile, the ground truth labels can be found in the bottom row. It is
important to note that non-background event labels are assigned only if cross-modality

data displays the same label information.[1]

The Audio-Visual Event (AVE) dataset (described in 4.1.1) is used to systemically
investigate the following temporal localization task: supervised audio-visual event local-
ization.

This problem is treated as a sequence labeling problem. The goal of event localization
is to predict the event label for each video segment, which contains both audio and visual
tracks, for an input video sequence.

2.2 Audio and Visual module 21

Figure 2.2: Illustration of the audio-visual event localization. [2]

2.2 Audio and Visual module
The audio-visual correlations are explored with several Audio-Visual Event localization

networks.
The two deep neural network models that were proposed in [2] for audio-visual event

localization, the AV-ATT model and the DMRN model, are used but are modified, so they
can be versatile and be used with other feature extraction models.

The AV-ATT model is an attention-based audio-visual fusion model that leverages
audio and visual information to localize audio-visual events. The model consists of two
branches: an audio branch that processes the audio features and a visual branch that
processes the visual features. The outputs of the two branches are then combined using
an attention mechanism that takes into account the correlations between the audio and
visual information.

The DMRNmodel is a dual-modality recurrent network that combines audio and visual
information in a recurrent manner to localize audio-visual events. The model consists
of two parallel recurrent networks: an audio recurrent network and a visual recurrent
network. The two networks process the audio and visual features respectively, and the
outputs are combined to generate the final prediction.

The network is composed of 5 main modules:

1. feature extraction

2. audio-guided visual attention

3. temporal modeling

22 Chapter 2. Description of the concept

4. multimodal fusion

5. temporal labeling

In summary, these five modules work together to perform audio-visual event localiza-
tion in videos. The feature extraction module extracts the audio and visual features, the
audio-guided visual attention module leverages the audio information to guide the visual
attention, the temporal modeling module models the temporal dynamics of the features,
the multimodal fusion module combines the audio and visual features, and the temporal
labeling module predicts the start and end times of the events.

In this diploma thesis, various different models are used for the feature extraction
module for both the audio and visual part. The specific models used and the way that
the feature extraction happens will be described in the following chapters.

Moreover, some different temporal modeling techniques will be assessed.

Chapter 3

Theoretical background

3.1 Machine learning and Neural networks
Some core key concepts of neural networks and machine learning are briefly explained.

3.1.1 Neural networks

Neural networks are a type of machine learning model that are designed to recognize
patterns in data. They are inspired by the structure and function of the human brain and
are capable of learning and generalizing from examples. Neural networks are widely used
in a variety of tasks including image and sound recognition. [8]

3.1.2 Transfer Learning

Transfer learning is a commonly used process where a model that has been trained on
one problem is utilized for a second, related problem.

In the context of deep learning, transfer learning involves taking a neural network
model that has already been trained on a similar problem and using one or more of its
layers in a new model that is being trained on a problem of interest.

This technique is often employed in a supervised learning scenario, where the input
data remains the same but the target may differ. For instance, the model may be trained
on a set of visual categories such as cats and dogs in the first scenario and then trained
on a different set of visual categories such as ants and wasps in the second scenario. [8]

3.1.3 Pre-processing

Pre-processing refers to the steps taken to prepare and clean the data before feeding it
into a machine learning model. This is an important step in the machine learning pipeline
as the quality of the input data has a direct impact on the performance of the model.
Pre-processing can involve several tasks such as data cleaning, data normalization, data
augmentation, and data transformation.

23

24 Chapter 3. Theoretical background

Data cleaning is the process of removing missing, duplicated, or irrelevant data. This
step is necessary to avoid any errors or biases in the data.

Data normalization is the process of scaling the data so that it falls within a specific
range. This is important because many machine learning algorithms are sensitive to the
scale of the input features and normalizing the data helps to ensure that the features are
equally weighted.

Data augmentation is the process of artificially increasing the size of the data set by
transforming the existing data in various ways. This can help to improve the performance
of the model by providing it with more diverse data.

Data transformation is the process of converting the data into a suitable format for the
machine learning model. This can involve feature engineering, dimensionality reduction,
and feature scaling.

In summary, pre-processing is an important step in the machine learning pipeline that
helps to ensure that the data is clean, normalized, and transformed into a suitable format
for the model to effectively learn from it.

3.1.4 Feature extraction

Feature extraction is the process of selecting a set of relevant features from raw data
that can be used to train a machine-learning model. In image recognition, features may
include the edges, shapes, and textures of objects in the image. In sound recognition,
features may include the frequency and time-domain representation of the sound signal.[9]

Furthermore, extracting features can happen by using a pre-trained model. This typi-
cally happens by taking the activations of one of the layers of the model, and using these
activations as a form of representation for the input data. This is often done when the
pre-trained model has already learned useful representations for the input data and these
activations can be used as a form of transfer learning.

It is possible to utilize a pre-trained image classification model and extract features
from one of its intermediate layers for a different task, such as object detection or segmen-
tation. By utilizing the activations of an intermediate layer, an individual can leverage
the knowledge learned by the pre-trained model, avoiding the need for training a large,
complex model from scratch.

3.1.5 Embeddings

An embedding is a low-dimensional representation that allows high-dimensional vectors
to be transformed into a more manageable form. This is particularly useful in machine
learning when working with large input vectors, such as those that represent words in
sparse vector form. An effective embedding should preserve the semantic meaning of
the input, positioning semantically similar inputs close together in the embedding space.
Additionally, embeddings can be learned and utilized across multiple models.

3.1.6 Dimensionality reduction 25

Embeddings can be used as features in machine learning models. An embedding is
a learned representation of a high-dimensional input that aims to capture some of its
semantic meaning. By transforming the input into a lower-dimensional space, embeddings
can be used to extract useful features that can be fed into a machine learning model to
make predictions. The embeddings can be learned specifically for the task at hand or
pre-trained on a large dataset and then fine-tuned for the specific task.

Audio embeddings and audio features are related concepts, but they serve different
purposes and have some key differences.

Audio features are typically hand-crafted or engineered features extracted from audio
signals, designed to capture specific characteristics of the signal, such as pitch, tempo,
or spectral content. Common audio features include Mel-frequency cepstral coefficients
(MFCCs), chroma features, spectral contrast, and zero-crossing rate. These features are
often used as inputs to machine learning algorithms for tasks like audio classification,
speech recognition, and music analysis.

Audio embeddings are learned representations of audio signals generated by training
deep neural networks on large datasets. Audio embeddings are designed to capture high-
level and abstract information present in the audio signal, often in a more compact and
efficient form. These embeddings can be used as features for various tasks, but they are
learned from data rather than being explicitly engineered like traditional audio features.

3.1.6 Dimensionality reduction

Dimensionality reduction is the process of reducing the number of variables or features
in a dataset while preserving as much relevant information as possible. It is widely used
in data analysis, machine learning, and statistics to improve computational efficiency, re-
duce noise, and facilitate visualization or interpretation of high-dimensional data. Various
methods can be employed for dimensionality reduction, such as calculating the mean of an
array, PCA, and other techniques. These methods are based on general principles found
in machine learning and statistics literature, such as ”Pattern Recognition and Machine
Learning” by Christopher M. Bishop [10] and ”The Elements of Statistical Learning” by
Trevor Hastie, et al [11].

(a) Calculating the mean
One simple approach to dimensionality reduction is to calculate the mean of an array,
which reduces the dimensionality to a single value. This method can be useful when
the primary interest is in understanding the central tendency of the data rather than
the detailed variations in the data. However, this approach can result in a significant
loss of information, as the mean only captures the data’s average value and discards
any variations or patterns in the data.

(b) PCA (Principal Component Analysis)

26 Chapter 3. Theoretical background

PCA is a widely used linear dimensionality reduction technique that projects the
original data onto a lower-dimensional space while retaining as much of the data’s
variance as possible. It involves computing the eigenvectors and eigenvalues of the
data’s covariance matrix and selecting the principal components corresponding to
the highest eigenvalues. PCA can be useful for revealing patterns and structure in
high-dimensional data, improving computational efficiency, and reducing noise. It is
well-suited for situations where the data’s relevant information is contained in the
principal components, but it may not perform well when the data has a non-linear
structure. Further information about PCA can be found at chapter 3.1.7

(c) Other methods
There are several other dimensionality reduction techniques that can be employed
depending on the problem’s specific characteristics and requirements, such as t-
distributed Stochastic Neighbor Embedding (t-SNE), Linear Discriminant Analysis
(LDA) and Autoencoders. In this diploma thesis, only the first two methods (a), (b)
have been used, so there will be no further analysis of the other methods.

These methods provide different trade-offs in terms of computational complexity, in-
terpretability, and ability to capture the underlying structure of the data. The choice
of an appropriate dimensionality reduction technique depends on the specific goals and
requirements of the analysis.

3.1.7 Principal Component Analysis (PCA)

Principal Components Analysis (PCA) is a commonly used unsupervised technique
for reducing the dimensionality of data. It is a way of constructing relevant features or
variables from the original data through linear (linear PCA) or non-linear (kernel PCA)
combinations. This article will focus specifically on the popular and widely used linear
PCA method.

The goal of PCA is to linearly transform correlated variables into a smaller set of
uncorrelated variables. This is accomplished by projecting the original data onto a reduced
space using the eigenvectors of the covariance or correlation matrix, also known as the
principal components (PCs).

The projected data is a linear combination of the original data and captures most of
the variance in the data (Jolliffe [12]). In essence, PCA is an orthogonal transformation of
the data into a series of uncorrelated data in the reduced space, where the first component
explains the most variance, and each subsequent component explains less.

3.1.8 Principal Component Analysis (PCA) Application

As previously stated in 3.1.7 Principal Components Analysis (PCA) is a commonly
used for reducing the dimensionality of data.

3.1.9 Sequence labeling 27

Performing PCA (Principal Component Analysis) on audio or visual features can be
done in different ways depending on the goal and the structure of the data. Here two
scenarios are described.

1. Performing PCA on each video’s audio or visual features separately
In this scenario, the analyst applies PCA to the audio (or visual) features of each
video individually [10]. The motivation behind this approach is to analyze or visu-
alize the features of each video separately, which might be useful if the audio (or
visual) characteristics of the videos are significantly different from each other. By
applying PCA separately for each video, the information from different videos is
not mixed. However, one potential drawback of this approach is that the principal
components for different videos might not be aligned, which can make it challenging
to compare the results across videos directly.

2. Performing PCA on the entire audio or visual features array for all videos
In this scenario, the analyst concatenates the features of all videos and applies PCA
on the combined dataset. This approach aims to analyze the common patterns or
variations across all the videos. By applying PCA on the entire dataset, the principal
components will be aligned across videos, which facilitates the comparison of results
directly. However, it is crucial to ensure that the data’s structure is consistent and
that there’s no unintended mixing of information from different videos.

3.1.9 Sequence labeling

The sequence labeling problem involves assigning a label to each element in a sequence
of inputs. This can be useful for solving a wide range of tasks, such as named entity
recognition, part-of-speech tagging, and sentiment analysis.

For example, in the named entity recognition task, the goal is to identify and catego-
rize named entities, such as people, organizations, and locations, in a given sentence or
document. A typical sequence labeling approach would involve first extracting features
from the input sequence and then using these features to make predictions about the labels
of each element in the sequence.

In the paper ”Sequence to Sequence Learning with Neural Networks” [13] the authors
explore the use of neural networks for solving sequence-to-sequence problems, including
sequence labeling. They present an overview of the different types of neural networks that
can be used for this task, including recurrent neural networks (RNNs) and long short-term
memory (LSTM) networks. They also discuss the challenges of training these networks
and present some of the latest techniques for improving their performance. [13]

3.1.10 Recurrent neural networks

Recurrent Neural Networks (RNNs) are popular models used in the field of deep learn-
ing for sequential data processing.

28 Chapter 3. Theoretical background

RNNs are a type of neural network that are designed to handle sequences of data,
such as time series, text, and speech. They have an internal memory that allows them to
maintain information about the sequence over time. This allows them to learn patterns and
relationships in sequences of data that might not be apparent using traditional feedforward
neural networks. They have been widely used in various applications, including speech
recognition, machine translation, and sentiment analysis.

3.1.10.1 Long Short-Term Memory Networks (LSTMs)

LSTMs are a type of RNN that are specifically designed to handle long-term depen-
dencies in sequences. They do this by using gates to control the flow of information into
and out of the internal memory, allowing them to keep information about the sequence
for a longer period of time and avoid the vanishing gradient problem that can occur in
traditional RNNs.

Specifically, LSTM, introduced by Hochreiter and Schmidhuber in 1997 [14], is an RNN
architecture with a memory cell and three gates (input, forget, and output) that control
the flow of information within the network. The memory cell stores the internal state,
while the gates regulate the information flow, allowing the network to learn long-range
dependencies by selectively remembering and forgetting information.

Figure 3.1: The LSTM cell internals. [3]

3.1.10 Recurrent neural networks 29

3.1.10.2 Gated Recurrent Unit (GRU)

The Gated Recurrent Unit (GRU) is a type of Recurrent Neural Network (RNN) that
was introduced in 2014 by Cho et al. at the paper ”On the Properties of Neural Machine
Translation: Encoder-Decoder Approaches” [15]. The GRU model is designed to handle
the vanishing gradient problem that is often encountered when training RNNs.

The GRU model uses gating mechanism to control the flow of information through the
network, which allows it to effectively capture long-term dependencies in the input data.
The gating mechanism in the GRU model consists of two gates - the reset gate and the
update gate. These gates determine the extent to which the hidden state of the network
should be updated based on the current input and the previous hidden state.

GRU, is a simplified version of LSTM with fewer parameters. It combines the forget
and input gates into a single ”update” gate and merges the cell state and hidden state.
GRUs have fewer weights and are computationally more efficient than LSTMs, while still
effectively capturing long-range dependencies in sequences.

GRUs have been widely used in various sequence modeling tasks, including language
modeling, machine translation, and speech recognition. They have been shown to perform
well in comparison to traditional RNNs and LSTMs while being computationally more
efficient.

More information about the difference between LSTMs and GRUs can be found in [4]

Figure 3.2: LSTM and GRU simplified. [4]

3.1.10.3 Differences and advantages between the two networks

1. Complexity
GRUs have fewer parameters and are computationally more efficient than LSTMs,

30 Chapter 3. Theoretical background

making them faster to train and less prone to overfitting on smaller datasets.

2. Performance
LSTMs and GRUs can exhibit similar performance on various tasks, but LSTMs
might have a slight edge when capturing very long-range dependencies due to their
more complex gating mechanism.

3. Ease of implementation
GRUs are simpler to implement and understand compared to LSTMs, which can be
an advantage for researchers and practitioners looking to build custom models or
adapt existing ones.

3.1.11 Convolutional Neural Networks (CNN/ConvNet)

Convolutional Neural Networks (CNNs) are a type of deep learning neural network
that have been specifically designed for image recognition tasks. They are called ”con-
volutional” because they use a mathematical operation called convolution to process the
input data. The convolution operation involves taking small pieces of the input image,
called kernels or filters, and using them to scan the image, producing a new image where
each pixel is a function of the values in the original image within the kernel. The result is
a filtered version of the original image that can highlight certain features or patterns. [16]

In a CNN, these convolutional layers are stacked on top of each other, each one pro-
cessing the output of the previous layer. The filtered images produced by the convolutional
layers are then processed by additional layers, such as pooling layers and fully connected
layers, which help to extract and refine the features of the image.

One of the key strengths of CNNs is their ability to learn hierarchical representations
of images. They can learn low-level features, such as edges and textures, and then use
these features to learn higher-level features, such as shapes and objects. This hierarchical
representation is what makes CNNs so powerful for image recognition tasks.

Overall, CNNs have been widely used in various applications, including image classifi-
cation, object detection, semantic segmentation, and image generation.

3.2 Multimodal machine learning
The goal of multimodal machine learning is to study and learn the joint representations

of multiple input modalities, such as speech and video, image and text. The fusion of
features is a critical aspect of multimodal learning, and various fusion models have been
proposed, including statistical models, Multiple Kernel Learning, and Graphical models.
Despite some research on multimodal deep networks, particularly focusing on joint audio-
visual representation learning through Autoencoder or deep Boltzmann machines, the
authors of this paper aim to explore the best models to combine audio and visual features
for the purpose of localization.

3.3 Audio module 31

3.3 Audio module
Audio refers to the sound signals that are used to convey information or create music.

The term is most often used to describe signals that are recorded or transmitted for the
purpose of producing sound through speakers or headphones. Audio signals can be repre-
sented in a variety of formats, including analog and digital signals, and can be processed
using a wide range of techniques to produce desired effects or enhance the quality of the
sound.

Figure 3.3: Audio signal of a musical track [5]

3.3.1 Representations of audio signals

Spectrograms, Mel spectrograms, Log-Mel spectrograms, and MFCCs are different
representations of audio signals that capture different aspects of the spectral and temporal
information. They are used as features for various audio processing and machine learning
tasks, depending on the specific requirements and constraints of the problem at hand.

1. Spectrogram
A spectrogram is a visual representation of the frequency content of a signal as it
varies over time. It is obtained by computing the Short-Time Fourier Transform
(STFT) of the input signal. The horizontal axis represents time, the vertical axis
represents frequency, and the color intensity at each point corresponds to the mag-
nitude of the signal at that time and frequency. Spectrograms are commonly used
in audio processing for tasks such as speech recognition, music analysis, and envi-
ronmental sound classification.

2. Mel Spectrogram
A Mel spectrogram is a spectrogram where the frequency axis is scaled according to
the Mel scale, which approximates the human auditory system’s response to different
frequencies. The Mel scale is a nonlinear transformation of the frequency axis that
emphasizes lower frequencies, which are more relevant for human perception. Mel

32 Chapter 3. Theoretical background

spectrograms are used as features for various audio processing tasks, as they provide
a more perceptually meaningful representation of the audio signal.

3. Log-Mel Spectrogram
A Log-Mel spectrogram is a Mel spectrogram where the magnitude values are trans-
formed using a logarithmic function. This transformation is applied to mimic the
human auditory system’s logarithmic perception of loudness. The Log-Mel spectro-
gram is a common feature representation for speech and audio recognition tasks, as
it captures both the spectral and temporal characteristics of the audio signal in a
compact and perceptually meaningful way.

4. Mel-Frequency Cepstral Coefficients (MFCCs)
MFCCs are a compact representation of the spectral envelope of an audio signal.
They are obtained by computing the Discrete Cosine Transform (DCT) of the log-
Mel spectrogram. MFCCs capture the coarse spectral shape of the audio signal while
discarding high-frequency details, making them robust to noise and small variations
in the signal. MFCCs have been widely used as features for speech and speaker
recognition, as well as other audio processing tasks.

Figure 3.4: Mel Spectrogram, Log-Mel Spectrogram, MFCC [5]

3.3.2 Audio used in machine learning 33

3.3.2 Audio used in machine learning

Audio signals are used in a variety of applications of audio processing using machine
learning in the field of music and audio analysis. [17] Some of these include:

• Music Information Retrieval (MIR): This field involves the automatic extraction
of information from music and audio signals, such as genre classification, mood
classification [18, 5], and content-based retrieval of music.

• Speech Processing: This field deals with the processing of speech signals, such as
speech recognition, speaker recognition, and language identification.

• Audio Source Separation: This involves separating audio signals into their con-
stituent sources, such as separating vocals from music in a song, or separating dif-
ferent speakers in a multi-speaker recording.

• Music Generation: This involves generating new music or audio signals using ma-
chine learning algorithms, such as generative models or recurrent neural networks.

• Music Transcription: This involves transcribing audio signals into symbolic repre-
sentations, such as sheet music or MIDI files.

3.3.3 Audio neural networks

Audio Neural Network models are a type of machine learning models that are specif-
ically designed to process audio signals. These models are based on deep learning tech-
niques and are capable of extracting meaningful representations of audio signals in an
unsupervised manner. The main goal of these models is to automatically learn high-level
representations of audio signals that can be used for various applications such as speech
recognition, audio classification, music information retrieval, and sound event detection.

One of the most commonly used audio neural network models is Convolutional Neural
Networks (CNNs). CNNs have been used for tasks such as audio classification and sound
event detection. They are trained to learn filters that can extract features from raw audio
signals and classify them into different categories.

For example, a very popular convolutisonal neural network is the VGG, which stands
for ”Very Deep Convolutional Networks for Large-Scale Image Recognition,”. VGG is a
deep convolutional neural network architecture that was introduced in the 2014 paper
”Very Deep Convolutional Networks for Large-Scale Image Recognition” by Karen Si-
monyan and Andrew Zisserman [19]. The architecture consists of multiple convolutional
layers, followed by a series of fully connected layers, and is designed for large-scale im-
age recognition. The architecture is named VGG due to its use of multiple convolutional
layers and its ability to learn very deep representations of the input image data. The
VGGish model is a variant of the VGG architecture specifically designed for audio data.
The VGGish model takes log mel spectrogram audio inputs and produces 128-dimensional

34 Chapter 3. Theoretical background

embeddings of each audio segment. These embeddings can then be used as input to other
models for various audio-related tasks such as event classification or segmentation.

Another type of audio neural network models are Recurrent Neural Networks (RNNs),
which have been used for tasks such as speech recognition and audio-to-text conversion.
RNNs can handle sequential data, which makes them ideal for processing audio signals.
In particular, the Long Short-Term Memory (LSTM) network, a type of RNN, has been
used for speech recognition tasks due to its ability to handle long sequences of data and
its ability to capture dependencies between audio frames.

Another popular audio neural network model is the Wav2Vec model, which is a self-
supervised audio representation learning model. Wav2Vec can be used for various audio-
related tasks such as speaker recognition, language identification, and acoustic event de-
tection.

There are various other audio neural network models that have been proposed and
used for different applications. Each model has its own strengths and weaknesses and the
choice of the model depends on the specific task and the data available for training. [8]

Bellow several models for audio tasks are explained that will be used in this diploma
thesis.

3.3.4 VGGish

VGGish is a modification of the VGG model[19], particularly Configuration A with 11
weight layers. The changes made to the model include a change in the input size to 96x64
to accommodate log mel spectrogram audio inputs. The last group of convolutional and
max pooling layers have been dropped, reducing the number of groups to four. The final
layer, which was a 1000-wide fully connected layer, has been replaced with a 128-wide
fully connected layer to act as a compact embedding layer. The model definition provided
only includes the layers up to the 128-wide embedding layer, which does not include a
final non-linear activation. When using this model for training, it is necessary to add a
non-linearity before adding more layers.

The original AudioSet release by Gemmeke et al. in 2017 [20] included 128-dimensional
embeddings for each AudioSet segment that were generated from a VGG-style audio clas-
sification model. This model was trained on a vast dataset from YouTube, which was later
referred to as YouTube-8M).

A TensorFlow definition of this model is provided, which is called VGGish [21], as well
as supporting code to extract input features for the model from audio waveforms and to
post-process the model embedding output into the same format as the released embedding
features.

VGGish can serve a purpose as a feature extractor in audio processing: It transforms
audio input into a compact, semantically rich 128-dimensional embedding, which can then
be utilized as input to a subsequent classification model. The advantage of using VGGish
is that the subsequent model can be relatively shallow, as the VGGish embedding provides

https://research.google.com/youtube8m/

3.3.5 Wav2vec 35

a more condensed semantic representation than raw audio features.

3.3.5 Wav2vec

Wav2vec [22] proposes a new method for unsupervised pre-training of speech recog-
nition models using raw audio data. The method is based on a self-supervised learning
approach that learns to predict a set of masked features from the input waveform.

Previous approaches to pre-training speech recognition models have relied on super-
vised training, where the model is trained on labeled speech data. However, labeled data is
often expensive and time-consuming to collect, limiting the scalability of these approaches.
In contrast, the Wav2vec method aims to leverage large amounts of unlabeled speech data
to improve speech recognition performance.

The core idea behind Wav2vec is to pre-train a model on a large dataset of unlabelled
speech data in a self-supervised way. The model learns to predict masked features from
the input waveform, where the masked features are a subset of the original features that
are randomly masked during training. The model is then fine-tuned on labeled data for
the speech recognition task.

The Wav2vec model was trained on the 960 hours of training data from the LibriSpeech
dataset [23], described in 4.1.3, which consists of over 1,000 speakers and a wide range
of acoustic conditions. The model was trained in a self-supervised way, using a masked
prediction task, to learn fixed-length representations of the speech signal that are suitable
for downstream speech recognition tasks.

3.3.6 vq-Wav2vec

VQ-Wav2Vec [24] proposes a new self-supervised learning method for learning discrete
representations of speech signals. The method is an extension of the original Wav2vec [22]
method and uses vector quantization to discretize the continuous speech representations
learned by the model.

Previous methods for speech recognition have relied on hand-crafted feature extraction
and modeling techniques, which can be time-consuming and difficult to optimize. In
contrast, the vq-wav2vec method learns representations directly from the raw audio signal
in a self-supervised way.

The core idea behind the vq-wav2vec method is to use a vector quantization algorithm
to discretize the continuous speech representations learned by the model into a finite
set of discrete codes. These codes can be used as input features for downstream speech
recognition models.

The authors of [24] evaluate the vq-wav2vec method on several benchmark datasets
and show that it outperforms previous methods for unsupervised speech representation
learning. They also demonstrate that the method is robust to variations in audio quality
and can be used to learn representations for multilingual speech recognition.

36 Chapter 3. Theoretical background

3.3.6.1 VQ-Wav2vec kmeans

VQ-Wav2vec_kmeans [24] builds upon the original VQ-Wav2vec [24] method by in-
corporating a k-means clustering algorithm to discretize the continuous speech repre-
sentations learned by the model. This is done in order to further reduce the memory
requirements for storing the representations, as well as to make them more interpretable.

3.3.7 Wav2vec 2.0

Wav2Vec 2.0 [25] is a self-supervised learning framework for speech processing de-
veloped by Facebook AI Research (FAIR). It is a continuation of the original Wav2Vec
framework, which used self-supervised learning to learn speech representations.

The main idea behind Wav2Vec 2.0 is to use a transformer-based model to learn
contextualized representations of speech. The model is trained using a self-supervised
learning task called contrastive predictive coding (CPC), which involves predicting future
audio samples given past samples. This task is designed to encourage the model to learn
high-level features of speech, such as phonemes and words, that can be used for downstream
tasks.

The Wav2Vec 2.0 framework has achieved state-of-the-art performance on several
speech processing tasks, including speech recognition and speaker verification. It has
also been used to pretrain speech models for downstream tasks, such as automatic speech
recognition and speaker recognition. [25]

3.3.7.1 Wav2vec Vox New

Wav2vec Vox New [25] builds upon the original Wav2vec 2.0 [25] method by incor-
porating an additional training objective that encourages the model to learn speaker-
discriminative representations. The method adds a new contrastive loss term to the orig-
inal masked prediction loss used in Wav2vec 2.0. This new loss term encourages the
model to learn speech representations that are discriminative across different speakers, in
addition to being discriminative across different time steps within the same audio clip.

3.3.7.2 Wav2vec and wav2vec 2.0

Wav2vec [22] and wav2vec 2.0 [25] are two different self-supervised learning methods
for speech recognition developed by Facebook AI Research. The two methods differ in
their approach to feature extraction and modeling.

The main difference between wav2vec and wav2vec 2.0 is the type of neural network
used for feature extraction. Wav2vec uses CNNs to learn fixed-length representations,
while wav2vec 2.0 uses transformers to learn variable-length representations. The two
methods have achieved state-of-the-art results on various speech-related tasks and have
contributed to advancing the field of speech recognition and natural language processing.

3.3.8 Musicnn 37

3.3.8 Musicnn

Musicnn, pronounced as ”musician”, is a collection of pre-trained convolutional neural
networks for music audio tagging that are designed with musical considerations. The
repository also offers pre-trained vgg-style models. [26]

These pre-trained deep convolutional neural networks for music audio tagging are
trained with two different datasets: the MagnaTagATune dataset (the MTT of 19k train-
ing songs) and the Million Song Dataset (the MSD of 200k training songs).

Musicnn is a musically motivated convolutional neural network (CNN) trained for
music audio tagging. It consists of a CNN front-end that is musically motivated, of a
densely connected mid-end, and a temporal-pooling back-end is employed for the output
layers.

Figure 3.5: Musicnn neural network [6]

Vgg is a computer vision baseline model that we trained for music audio tagging. This
naive adaption of a vision CNN for audio-spectrograms stacks several 3x3 CNN layers with
max pooling.

Figure 3.6: Vgg neural network [6]

3.3.9 Yamnet

YAMNet is a deep net that is trained on the AudioSet dataset, which contains millions
of 10-second audio clips from YouTube videos. AudioSet is a large-scale dataset of man-
ually annotated audio events covering a wide range of sounds, including human sounds,
animal sounds, and environmental sounds. YAMNet is designed to predict audio events
from the AudioSet ontology, which consists of a hierarchical structure of 527 audio event
classes.

YAMNet is built using the MobileNet_v1 depthwise-separable convolution architec-
ture. The model is designed to be lightweight and efficient, making it suitable for deploy-
ment on mobile devices or other resource-constrained environments. YAMNet is capable
of providing high-quality audio event classification while maintaining low computational
requirements.

YAMNet’s audio event classifier is trained using log-mel spectrogram features, which
are extracted from the audio clips in the AudioSet dataset. These features are then used

38 Chapter 3. Theoretical background

as input to the YAMNet model for audio event prediction. The YAMNet model has been
shown to achieve state-of-the-art performance in audio event classification tasks.

3.3.10 Openl3

OpenL3 is an audio (and image) embedding library developed by the research team
at OpenAI. It is a deep neural network trained to generate embeddings (a compact, low-
dimensional representation) of audio recordings that capture the characteristics of the
audio signal. OpenL3 is designed to work with a wide range of audio sources, including
music and speech, and can be used in various audio-related applications, such as music
classification, content-based retrieval, and recommendation systems.

One of the key features of OpenL3 is its ability to generalize to unseen audio data.
This means that it can produce embeddings for new audio recordings that are similar to
those it has seen in the training data, even if the new recordings are from different domains
or are of different types of audio. This makes OpenL3 well-suited for use in real-world
applications where the data is constantly changing.

OpenL3 is also designed to be fast and efficient, making it suitable for use on a wide
range of devices, from laptops to mobile devices. It is available as an open-source library,
allowing developers to easily integrate it into their audio-related projects.

The audio and image embedding models provided in Openl3 are published as part of
the Look, Listen, and Learn More: Design Choices for Deep Audio Embeddings [27] by
Cramer et al. and are based on the Look, Listen and Learn approach by Arandjelovic et
al. [28]. More details about the embedding models and how they were trained are in Look,
Listen, and Learn More: Design Choices for Deep Audio Embeddings [27] by Cramer et
al

3.4 Visual module 39

3.4 Visual module
Visual refers to anything related to the sense of sight or the perception of images. In

the context of computer vision and digital processing, visual usually refers to the represen-
tation and manipulation of images or videos, which are essentially two-dimensional (2D)
or three-dimensional (3D) arrays of pixel values.

In digital representation, images and videos are represented as arrays of discrete pixel
values. Each pixel corresponds to a particular point in the image or video frame and has
a specific value or set of values that represent its color or intensity.

For grayscale images, each pixel is represented by a single value, usually an integer
ranging from 0 to 255, where 0 represents black and 255 represents white. In the case of
color images, each pixel is typically represented by a set of three values, corresponding
to the red (R), green (G), and blue (B) channels of the image. Each channel has a value
range of 0 to 255, where higher values indicate higher intensities of the respective color
component. This representation is called the RGB color model.

An example of an image of dimension 10x5 of pixels and their RGB representation can
be found in Figure 3.7.

Figure 3.7: Color image representation and RGB matrix [7]

For videos, the visual representation is similar to that of images, but with an additional
dimension for time. A video is a sequence of image frames, where each frame is represented
as a 2D array of pixel values (grayscale or color). Videos can be represented in various
formats and compression schemes to optimize storage and transmission requirements.

In summary, visual representations in digital form involve discretizing the continuous
visual world into arrays of pixel values, which can then be processed and analyzed by
computer algorithms, including machine learning and neural networks.

More information about the digital representation of images and videos can be found
in [29, 30, 31].

40 Chapter 3. Theoretical background

3.4.1 Visual tasks

Visual tasks in machine learning and neural networks involve the processing and un-
derstanding of visual data, such as images or videos, to perform various tasks. Some
common visual tasks include:

Image classification: The goal of image classification is to assign an input image to
one of several predefined categories or classes. This is a fundamental task in computer
vision and serves as a building block for many other tasks. A popular deep learning model
for image classification is the Convolutional Neural Network (CNN) (LeCun et al., 1998)
[32].

Object detection: Object detection involves not only classifying objects within an
image but also determining their location by providing bounding boxes around each de-
tected object. Models like R-CNN (Girshick et al., 2014) [33], Faster R-CNN (Ren et al.,
2015) [34], and YOLO (Redmon et al., 2016) [35] are well-known for object detection.

Semantic segmentation: In semantic segmentation, the objective is to assign a
class label to each pixel in the image. This allows for a more detailed understanding of the
image content compared to image classification. Models like Fully Convolutional Networks
(FCN) (Long et al., 2015) [36] and DeepLab (Chen et al., 2018) [37] are widely used for
semantic segmentation.

Instance segmentation: Instance segmentation goes a step further than semantic
segmentation by differentiating between individual instances of the same class within an
image. Models like Mask R-CNN (He et al., 2017) [38] are popular for instance segmen-
tation tasks.

Image generation: Image generation tasks involve the creation of new, realistic
images based on certain conditions, such as generating images conditioned on text de-
scriptions or other images. Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014) [39] and Variational Autoencoders (VAEs) (Kingma and Welling, 2013) [40] are
widely used for image generation.

These tasks represent just a few examples of the many visual tasks addressed in ma-
chine learning and neural networks. The success of deep learning models in tackling these
problems has led to significant advancements in computer vision and its applications across
various domains.

Some domains are autonomous vehicles, medical imaging (such as ”A Deep Neural
Architecture for Harmonizing 3-D Input Data Analysis and Decision Making in Medical
Imaging” by Kollias et. al [41] and ”AI-MIA: COVID-19 Detection and Severity Analysis
through Medical Imaging” by Kollias et. al [42]), surveillance, facial expressions detection
(such as FaceRNET: a Facial Expression Intensity Estimation Network by Kollias et al.
[43] and Affect Analysis in-the-wild: Valence-Arousal, Expressions, Action Units and a
Unified Framework [44]) and multimedia content analysis.

3.4.2 Segmentation 41

3.4.2 Segmentation

Segmentation models are a class of deep learning models designed to perform image
segmentation tasks. Image segmentation is the process of partitioning an image into
multiple segments, where each segment corresponds to an object or a region of interest.
The goal is to assign a label to every pixel in the image, such that pixels with the same
label belong to the same object or region.

There are two main types of image segmentation:

• Semantic segmentation
In this task, the model assigns a class label to each pixel in the image, grouping all
pixels belonging to the same object class. However, it does not differentiate between
individual instances of the same class. For example, in an image containing multiple
cars, all car pixels would be labeled as ”car” without distinguishing between the
different cars.

• Instance segmentation
In this task, the model not only assigns a class label to each pixel but also differ-
entiates between individual instances of the same class. For instance, in an image
with multiple cars, each car would be assigned a unique label, allowing the model to
distinguish between them.

Class query logits and mask query logits are terms that are often used in the context
of segmentation models, particularly those based on transformers.

Class query logits:
These refer to the logits generated by the model for predicting the class or category

of each object or region in an image. These logits are usually passed through a softmax
activation function to generate probabilities for each class, and the class with the highest
probability is then assigned to the object or region.

Mask query logits:
These logits are associated with predicting the binary mask for each object or region

in an image, indicating which pixels belong to the object and which do not. Mask query
logits are usually passed through a sigmoid activation function to generate probabilities for
each pixel belonging to the object, and a threshold is applied to convert these probabilities
into binary values.

3.5 Visual neural networks
Visual neural networks are a type of deep learning model specifically designed to pro-

cess and analyze visual data such as images and videos. These networks can learn to
recognize patterns and features in visual data by automatically extracting hierarchical
features through their layers. Visual neural networks have been highly successful in a

42 Chapter 3. Theoretical background

wide range of computer vision tasks, such as image classification, object detection, and
semantic segmentation.

3.5.1 VGG-19

VGG-19 is a specific deep convolutional neural network architecture introduced by
Simonyan and Zisserman [19].

VGG-19 has 19 layers, including 16 convolutional layers, 3 fully connected layers, and 5
max-pooling layers. VGG-19 is known for its deep architecture and has achieved excellent
performance in various computer vision tasks, including the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC).

One of the key aspects of the VGG-19 architecture is its use of small 3x3 convolutional
filters throughout the network, which allows for the efficient capturing of local spatial
information in images. Although VGG-19 is highly accurate, it is also computationally
intensive due to its depth and large number of parameters. As a result, more recent
architectures, such as ResNet and EfficientNet, have been developed to provide similar or
better performance with fewer parameters and reduced computational requirements.

3.5.2 Xception

Xception is a deep convolutional neural network architecture that replaces the standard
Inception modules with depthwise separable convolutions. It aims to improve the efficiency
and performance of the network. More information about Xception can be found in [45]

3.5.3 ResNet50 and ResNet152

ResNet (Residual Network) is a family of deep convolutional neural networks known for
their ability to effectively handle very deep architectures by introducing skip connections
or residual connections. ResNet50 has 50 layers, while ResNet152 has 152 layers. [46]

3.5.4 Inceptionv3

InceptionV3 is an improved version of the Inception architecture that introduces var-
ious optimizations, such as factorized convolutions and label smoothing, to improve the
network’s performance and efficiency. [47]

3.5.5 MobileNet

MobileNet is a family of efficient convolutional neural networks designed for mobile
and embedded vision applications. It uses depthwise separable convolutions to reduce the
number of parameters and computational complexity. [48]

3.5.6 Densenet201 43

3.5.6 Densenet201

DenseNet (Densely Connected Convolutional Network) is a deep convolutional neural
network architecture that connects each layer to every other layer in a feed-forward fashion,
improving gradient flow and encouraging feature reuse. [49]

3.5.7 Nasnetlarge

NASNet (Neural Architecture Search Network) is a family of convolutional neural net-
works discovered through a search algorithm that automatically learns to design network
architectures. NASNetLarge is a larger variant optimized for better accuracy. [50]

3.5.8 EfficientNetB7

EfficientNet is a family of convolutional neural networks that introduce a systematic
approach to scaling up network width, depth, and resolution. EfficientNetB7 is one of the
larger variants with better accuracy. [51]

3.5.9 EfficientNetV2l

EfficientNetV2 is an improved version of the EfficientNet family, which introduces
various optimizations, such as Fused-MBConv and progressive learning, to achieve better
performance and efficiency. [52]

3.5.10 ConvNextXlarge

The dawn of the ”Roaring 20s” in visual recognition was marked by the emergence
of Vision Transformers (ViTs), which quickly outpaced ConvNets (3.1.11) to become the
leading image classification model. However, applying a basic ViT to general computer
vision tasks, such as object detection and semantic segmentation, poses certain challenges.
It is through hierarchical Transformers, like Swin Transformers, that several ConvNet pri-
ors were reintroduced, enabling Transformers to serve as a versatile vision backbone and
exhibit impressive performance in a broad range of vision tasks. Despite this, the success
of these hybrid approaches is mostly credited to the inherent advantages of Transform-
ers, rather than the innate inductive biases of convolutions. In this research, the authors
reevaluate the design spaces and explore the potential of a pure ConvNet. By incremen-
tally updating a standard ResNet towards the design of a vision Transformer, they uncover
key components responsible for the performance disparity. This investigation leads to the
development of a series of pure ConvNet models, named ConvNeXt. Composed entirely
of conventional ConvNet modules, ConvNeXts compete with Transformers regarding ac-
curacy and scalability, achieving an 87.8% ImageNet top-1 accuracy and surpassing Swin
Transformers in COCO detection and ADE20K segmentation, all while maintaining the
simplicity and efficiency inherent to standard ConvNets. [53]

44 Chapter 3. Theoretical background

3.5.11 Maskformer

MaskFormer is a deep-learning model for semantic segmentation tasks. It was intro-
duced in the paper ”Per-Pixel Classification is Not All You Need for Semantic Segmenta-
tion” by Cheng et al [54]. The model employs a transformer-based architecture to predict
per-pixel masks for objects or regions in an image.

In contrast to previous methods, which relied on per-pixel classification, MaskFormer
predicts masks for each object or region in a more efficient manner. The model consists of
two main components: a class query module and a mask query module. The class query
module predicts the class label for each object or region in the image, while the mask
query module predicts the corresponding masks.

The architecture uses a single transformer-based backbone, which makes the model
more efficient compared to other methods that require separate branches for different
tasks.

Part II

Practical part

45

Chapter 4

Data

This chapter presents the sets of data used in this work, for model training and testing
and also describes briefly the datasets that were used on the pre-trained models that were
used as feature extractors. The AVE dataset 4.1.1 was used for model training and testing
the Audio model, the Visual model, and the Audio-Visual models.

4.1 Datasets

4.1.1 AVE: The Audio-Visual Event Dataset

The Audio-Visual Event (AVE) dataset introduced in the Audio-Visual Event Local-
ization in Unconstrained Videos paper [2] is suitable for our purpose of Audio-Visual event
localization.

The AVE dataset is a compilation of 4143 videos selected from AudioSet [20], each
showcasing one of 28 different event categories. These videos have been annotated with
the temporal boundaries of audio-visual events, with each event lasting a minimum of
2 seconds. The start and the end time of each audio-visual event has been annotated,
marking the temporal boundaries with a resolution of 1 second.

bell man dog plane car woman copt. violin flute ukul. frying truck shofar moto.
188 176 171 184 188 175 178 187 172 163 182 138 102 99
guitar train clock banjo goat baby bus chain. cat horse toilet rodent acco. mand.
186 176 160 183 100 83 69 160 60 64 180 109 154 156

Table 4.1: The 28 event categories of the AVE dataset along with their number of videos

So there is at least a 2-second-long segment, where both the sound source and the
sound are clearly visible and audible. AVE encompasses a broad array of audio-visual
events, including human speech, animal sounds, musical performances, and vehicle noises,
among others, and draws from a diverse range of domains, including human activities,
animal activities, music, and vehicles. A visualization of the data and its statistics can
be found in Figure 4.1. The number of videos for each event category varies, with the

47

48 Chapter 4. Data

minimum being 60 and the maximum being 188 (as seen in table 4.1), and over two-thirds
(66.4%) of the videos in the AVE include audio-visual events that span the full 10-second
duration.

The videos are unconstrained because videos from AudioSet [20] originated from Youtube
and have diverse editing artifacts and significant complexity of content.

Videos in AVE dataset are divided into training (3339), validation (402), and testing
(402) sets. For supervised audio-visual event localization task, randomly sample videos
are selected from each event category to build the train/val/test datasets.

Figure 4.1: The AVE dataset. Some examples in the dataset are shown. The distribution
of videos in different categories and the distribution of event lengths are illustrated

boundaries. [2]

4.1.2 Audio-Set

AudioSet is a large-scale dataset of audio events, containing more than 2 million 10-
second audio clips from YouTube videos. The dataset covers 527 audio event classes
organized in a hierarchical ontology. It was created to advance the development of machine
learning models for audio event recognition and understanding. AudioSet is often used for
tasks such as audio classification, audio event detection, and audio tagging. [20]

4.1.3 LibriSpeech

LibriSpeech [23] is a large-scale corpus of read English speech data created by the
Linguistic Data Consortium. The dataset consists of approximately 1,000 hours of speech
from public-domain audiobooks (the LibriVox project), read by native English speakers,
and is split into several subsets for different purposes, including training, development,
and testing. The dataset covers a wide range of topics, speakers, and acoustic conditions,
making it suitable for training and evaluating automatic speech recognition (ASR) systems.

The LibriSpeech dataset has become a widely used benchmark for evaluating ASR
systems, and has been used to train and evaluate many state-of-the-art ASR models,
including the original Wav2vec model [22] (which was described in 3.3.5). The availability
of the dataset has enabled the development of more accurate and robust speech recognition
systems, with potential applications in a variety of speech-related tasks.

https://librivox.org/

4.1.4 Libri-Light 49

4.1.4 Libri-Light

The LibriLight dataset[55] is a subset of the larger LibriSpeech dataset[23].
Libri-Light is a dataset designed for the development of unsupervised and semi-supervised

speech recognition models. It is derived from the LibriSpeech dataset and contains around
60,000 hours of untranscribed audio data.

Libri-Light also includes a smaller, labeled subset that can be used for supervised
training and evaluation. The dataset is particularly useful for training automatic speech
recognition (ASR) systems and evaluating their performance in low-resource settings.

4.1.5 Imagenet

ImageNet is a large-scale dataset for visual object recognition, consisting of more than
14 million images organized into a hierarchical structure based on the WordNet ontology.
The dataset contains images from over 20,000 categories, with each category containing
several hundred images. ImageNet has been widely used for tasks such as image classifi-
cation, object detection, and fine-grained recognition. The annual ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) has spurred the development of many state-of-
the-art computer vision models. [56]

4.1.6 MagnaTagATune (MTT) dataset

The MTT dataset considers this 50-tags vocabulary: guitar, classical, slow, techno,
strings, drums, electronic, rock, fast, piano, ambient, beat, violin, vocal, synth, female,
indian, opera, male, singing, vocals, no vocals, harpsichord, loud, quiet, flute, woman,
male vocal, no vocal, pop, soft, sitar, solo, man, classic, choir, voice, new age, dance, male
voice, female vocal, beats, harp, cello, no voice, weird, country, metal, female voice, choral.

4.1.7 Million Song Dataset (MSD)

The MSD dataset considers this 50-tags vocabulary: rock, pop, alternative, indie, elec-
tronic, female vocalists, dance, 00s, alternative rock, jazz, beautiful, metal, chillout, male
vocalists, classic rock, soul, indie rock, Mellow, electronica, 80s, folk, 90s, chill, instru-
mental, punk, oldies, blues, hard rock, ambient, acoustic, experimental, female vocalist,
guitar, Hip-Hop, 70s, party, country, easy listening, sexy, catchy, funk, electro, heavy
metal, Progressive rock, 60s, rnb, indie pop, sad, House, happy.

Chapter 5

Implementation

For the implementation, several models were tested. From a simple audio model and a
simple visual model to the AV-att and DMRN model, some new models that utilize GRUs
were implemented and tested in the AVE dataset.

Various Feature

5.1 Audio-Visual objective
The objective of event localization is to determine the event label for each segment in a

video sequence, which encompasses both audio and visual components. The video sequence
is divided into T non-overlapping segments, each lasting 1 second, and denoted as 𝑉𝑡, 𝐴𝑡,
t=1,..., Τ where 𝑉𝑡 represents the visual content and 𝐴𝑡 the corresponding audio. The
event label, 𝑦𝑡𝑘, for a given segment is represented as 𝑦𝑡𝑘|𝑦𝑡𝑘 ∈ 0, 1, 𝑘 = 1, ..., 𝐶,∑𝐶

𝑘=1 𝑦𝑡𝑘 =
1, where C is the number of AVE events plus one background label.

During training, the event label yt for each visual segment Vt or audio segment At
is provided. This task examines whether audio and visual information can improve event
localization in audio space, visual space, and the joint audio-visual space.

5.2 Audio-Visual event localization parts
The ”Audio-Visual Event Localization Network” is composed of 5 main modules:

(a) feature extraction

(b) audio-guided visual attention

(c) temporal modeling

(d) multimodal fusion

(e) temporal labeling

51

52 Chapter 5. Implementation

The network can be seen in Figure 5.1.
For the first module, i.e. the feature extraction module, two branches are used to

extract features from the audio and visual modalities of the videos. Several pre-trained
models are used to extract the audio and the visual features.

Those features are then used for audio-guided visual attention. The audio features and
the output of the audio guided visual attention are then passed to two different recurrent
neural networks (RNNs) for temporal modeling. Two types of RNNs where used:

• long short-term memory (LSTM)

• gated recurrent units (GRU)

The LSTMs were used in the paper of [2]
The output of the LSTMs or GRUs is then combined together in the multimodal fusion

module.
Two different techniques are used for audiovisual feature fusion. These are:

• a simple concatenation of the audio and visual output

• Dual multimodal residual network (DMRN)

Finally, after the fusion the temporal labeling happens, and the prediction for each
video segment is made.

Figure 5.1: Audio-visual event localization network

5.2 Audio-Visual event localization parts 53

The network will be divided into two parts.
In the first part, the focus will be on the extraction of features for audio and visual

modalities. The process of extracting features involves using a model and taking one of
its layers as the output, which can be considered as a representation of the input data.

In the second part, the extracted features will be taken as input. The discussion will
encompass the various other modules involved in the audio-visual event localization task,
including audio-guided visual attention, temporal modeling, multimodal fusion, temporal
labeling, and the neural network models used to implement these. Temporal modeling is
an essential aspect of this task, as it helps to capture the temporal dependencies between
the audio and visual modalities. The audio-guided visual attention mechanism is used to
selectively attend to the most relevant visual information based on the audio input. The
multimodal fusion step combines the information from both modalities to produce a final
representation. Finally, the temporal labeling step maps the final representation to the
desired output, which is the prediction of the event. These parts can be seen in Figure
5.2.

Figure 5.2: Parts for audio-visual event localization network

54 Chapter 5. Implementation

5.3 Pre-processing, feature extraction and transformation
of features

Numerous pre-trained models necessitate that input data, whether audio or visual,
adhere to a specific format, a process referred to as preprocessing.

As mentioned earlier, employing a pre-trained model for feature extraction entails
utilizing a layer preceding the output layer to obtain representations of the input data.

Subsequently, the data extracted from the layer must be converted into a suitable
format for input into classification models, such as AV-att and DMRN.

The conversion involves dimensionality reduction, concatenation, and other methods.
The approach varies depending on the pre-trained model and is not restricted to a single
method.

5.4 Pretrained models for audio feature extraction
Several pre-trained models were used that transform audio input into a compact, 128-

dimensional (or similar dimension) embedding, which can then be utilized as input to a
subsequent classification model. These models will be hereby called feature extraction
models. This dimension is per-second so the output for the 10-second videos will be of
dimension 10 x 128 (or in general 10 x 𝑑, where d is the dimension).

5.4.1 VGGish

VGGish [57], based on the VGG model [19], is the model that was used in Tian et. al.
[2] as the audio feature extraction model.

The length of the audio sequences is set to be 10 seconds and the sample rate to 16kHz.
Then the audio files are loaded in a loop. So, the steps inside the loop are:

• Load an audio file

• Convert audio file into a log mel spectogram.

• The input and output tensors of the VGGish model are then obtained, and the input
batch is fed into the model to produce the embedding batch.

• The embedding batch is then stored in the audio features array.

More details on how the VGGish model is trained and used to extract features can be
found in Hershey et al. [57] paper and in the repository of the model [58]

5.4.2 Wav2vec, vq-Wav2vec and Wav2vec 2.0

• Wav2vec Large [22] pretrained in the Librispeech dataset [23]

• VQ-Wav2vec [24] pretrained in the Librispeech dataset [23]

5.4.2 Wav2vec, vq-Wav2vec and Wav2vec 2.0 55

• VQ-Wav2vec_kmeans [24] pretrained in the Librispeech dataset [23]

• VQ-Wav2vec Roberta on K-means codes (or beart kmeans)[24] pretrained in the
Librispeech dataset [23]

• Wav2Vec 2.0 Base [25] (described in 3.3.7) pretrained in the Librispeech dataset [23]
(described in 4.1.3) with no fine-tuning
The base model pre-trained on 960 hours of Librispeech on 16kHz sampled speech
audio

• Wav2vec Vox New [25] (described in 3.3.7.1) pretrained in the Libri-Light dataset
(audio data from LibriVox (LV-60k)) (described in 4.1.4)

These pre-trained models were downloaded from Facebook research fairseq repository[59]
The length of the audio sequences is set to be 10 seconds and the sample rate to 16kHz.

If the audio is less than 10 seconds then the remaining time is filled with empty value, in
order to be exactly 10 seconds.

The wav2vec feature extractor consists of several convolutional layers that transform
the input waveform into a higher-level representation. The output shape of z depends on
the specific wav2vec model and its architecture, particularly the number and size of the
convolutional layers. In general, the output shape of z will be (batch_size, num_features,
T), where batch_size is the number of input waveforms (in this case, 1), num_features is
the number of feature channels produced by the feature extractor, and T is the number
of time steps in the output representation, which is determined by the stride and kernel
size of the convolutional layers.

Three approaches were made to extract the features.

1. In the first approach, the audio file was divided into segments of one second each (as
an array), and each segment was passed through a pre-trained wav2vec model. The
resulting features were then concatenated, and PCA was performed on the entire
array of audio features. This method serves as the standard approach.

2. In the second approach, similar to the first, the audio file was divided into segments
of one second each (as an array), and each segment was passed through a pre-trained
wav2vec model. However, in this case, the dimensions were reduced by performing
PCA or calculating the mean for each segment. The reduced feature arrays for each
individual second were then concatenated to form the full 10-second audio features.
This method is referred to as the ”per second (PS)” approach.

3. In the third approach, the entire audio file (as an array) was passed through a pre-
trained wav2vec model. The dimensions were then reduced by calculating the mean.
If necessary, zeros were added to the end of the array to create a more rounded
shape, making it easier to reduce to the desired format (10 x 128 or 10 x d). This
method is referred to as the ”np-mean (np-m)” approach.

56 Chapter 5. Implementation

From the results of the experiments, (6.1.1 and 6.1.6) it is shown that the standard
approach was the best out of the three.

5.4.3 musicnn

Musicnn allows someone to extract features at every layer of the model.
Out of the pretrained extractor, the output of the model is available (the taggram

and its associated tags) and all the intermediate representations of it (we refer to those
as features). These features are ’timbral’, ’temporal’, ’cnn1’, ’cnn2’, ’cnn3’, ’mean_pool’,
’max_pool’, ’penultimate’.

These different key-features correspond to the outputs of the different layers that the
musicnn model has. The basic bulding blocks of the model has been shown in Figure 3.5.

The musically motivated CNN front-end is the convolutional layer responsible for pro-
cessing log-mel spectrogram inputs. A musically motivated CNN is employed, as illus-
trated in the left figure, comprising a convolutional layer with various filter shapes that
have different receptive fields to capture musically relevant contexts, which are depicted
in the right figure 5.3:

Figure 5.3: Musicnn frontend

TimbralCNNs utilize vertical filters to capture timbral traces. Temporal CNNs use
horizontal filters to capture long and short temporal dependencies in spectrograms. Both
timbral and temporal features might contain information related to these low-level fea-
tures.

The dense layers mid-end is tasked with extracting higher-level representations from
the low-level features computed by the front-end. It features residual connections that
facilitate training and dense connections that allow the back-end to consider information
extracted at different hierarchical levels. (figure 5.4)

5.4.3 musicnn 57

Figure 5.4: Musicnn midend

The dense temporal-pooling back-end is responsible for predicting tags based on the
extracted features. Notably, it accommodates variable-length inputs, as the temporal-
pooling layers of the back-end can adapt any feature-map length to a fixed feature-map
size. (Figure 5.5)

Figure 5.5: Musicnn backend

Features extracted from the musicnn model are then reshaped to a format appropriate
for the task. (i.e. 10 x 128 or (10 x 𝑑1))

The full audio of 10 seconds is loaded to the musicnn model.
This happens by calculating the mean and also filling with zeros when appropriate to

make the mean to be easier.
Furthermore, features from ’cnn1’, ’cnn2’, ’cnn3’ layers were not only transformed into

the appropriate format of 10x64, but also combined together to create a new audio feature
table. So, the avg, the sum and the concatenation of them was calculated.

From the results of the experiments, (6.1.1 and 6.1.6) it is shown that the concatenation
of these features performed the best.

5.4.3.1 MTT and MSD musicnn

Both MagnaTagATune (MTT) and Million Song Dataset (MSD) musicnn were tried.
MTT musicnn seems to perform better.

5.4.3.2 musicnn VGG MTT

Out of the extractor, the output of the model is available(the taggram and its associated
tags) and all the intermediate representations of it (referred to as features). The features

58 Chapter 5. Implementation

are: ’pool1’, ’pool2’, ’pool3’, ’pool4’, ’pool5’.
The full audio is loaded to the musicnn VGG model, but it was speedup because the

model was trained for 3-second audio. So the audio is speedup a little more than 3x.
These key-features correspond to the outputs of the different layers of the vgg model

as shown in figure 3.6.
Features extracted from the musicnn model are then reshaped to a format appropriate

for the task. (i.e. 10 x 128 or (10 x 𝑑1))
From the results, (6.1.1 and 6.1.6), pool4 is shown to be the best feature appropriate

for the task of this diploma thesis.

5.4.4 Yamnet

YAMNet audio event classifier is used to extract audio embeddings. These audio
embeddings then can be used to create the audio features.

The full audio of each song is loaded into the model and the embeddings are exported.
Three different approaches were made.

1. In the first approach, dimensionality reduction is made in the embeddings by calcu-
lating the mean of some data and reshaping, it multiple times. This results in an
array of 10 x 128 for each song.

2. In the second approach, a small dimensionality reduction happens first by calculat-
ing the mean. But then the whole audio features array is calculated and PCA is
performed in order to get the audio features table, were an audio feature array is of
dimension 10x128.

3. In the third approach, a small dimensionality reduction happens first by calculating
the mean. Each song retains a high number of features (10 x 1024).

From the results of the experiments, (6.1.1 and 6.1.6) it is shown that PCA is a much
better method for retaining information than calculating the mean. Furthermore, it is
shown that PCA practically retains high level information about the features, as the
accuracy metric of these two features is almost the same.

5.4.5 Openl3

The audio of each song is loaded into the model as clips of 1 sec. The embeddings
of every clip are then exported. After this, a dimensionality reduction happens through
calculating the mean. Then, all data from the clips are concatenated together and are
reduced in the end by a PCA transformation. They are reduced to a dimension of 10x128.

5.5 Pretrained models for visual feature extraction
Several pre-trained models were used that transform visual input into a compact, 7 ×

7 x 512 - D (or similar dimension) feature map embedding, which can then be utilized as

5.5.1 VGG-19 59

input to a subsequent classification model. This dimension is per-second so the output for
the 10-second videos will be of dimension 10 x 7 × 7 x 512 (or in general 10 x 𝑑1 x 𝑑2 x
𝑑3).

In the given process, a loop iterates through each video in the dataset. During each
iteration, the video is read and its frames are resized to dimensions of 224 x 224 (or in
some cases a different dimension). Sixteen frames are chosen from the video at regular
intervals, with one frame per second. A pre-trained model is employed to extract features
from each of these selected frames. The extracted features are then averaged across all 16
frames to obtain a single feature vector for each second of the video. Finally, these feature
vectors are saved in an array.

5.5.1 VGG-19

The loaded pretrained VGG-19 model generates the output from the block5_pool
layer, which consists of the feature maps obtained from the final pooling layer in the
VGG19 network. The output is a 7x7x512-D array per second, so a 10x7x7x512-D array
per video.

This is the model of Tian et al. [2] that was used as a baseline visual feature extraction
model.

5.5.2 Xception

Two approaches were followed in the xception model.
1. The loaded pretrained Xception model generates the output from the avg_pool

layer, which consists of the feature maps obtained from the final pooling layer in the
Xception network. The avg pool layer has output shape a 1x2048 shape. This was reshaped
to a 7x7x42-D array per second (after adding zeros to make it 1x2058), so a 10x7x7x42-D
array per video.

2. The loaded pretrained Xception model generates the output from the block14 sep-
conv2 act layer, which consists of the feature maps obtained from a previous layer in the
Xception network. The block14 sepconv2 act layer has an outputof shape 10x10x2048.
This was reduced by calculating the mean to a 10x10x512-D array per second, so a
10x10x10x512-D array per video.

5.5.3 ResNet50 and ResNet152

The loaded pretrained ResNet50 and ResNet152 models generates the output from
the conv5 block3 out layer, which consists of the feature maps obtained from the last
activation layer in the ResNet50 and ResNet152 network. The conv5 block3 out layer has
an outputof shape 7x7x2048. This was reduced by calculating the mean to a 7x7x512-D
array per second, so a 10x7x7x512-D array per video.

60 Chapter 5. Implementation

5.5.4 Inceptionv3

The loaded pretrained Inceptionv3 model generates the output from the mixed10 layer,
which consists of the feature maps obtained from a previous layer in the Inceptionv3
network. The mixed10 layer has an outputof shape 8x8x2048. This was reduced by
calculating the mean to a 8x8x512-D array per second, so a 10x8x8x512-D array per
video.

5.5.5 MobileNet

The loaded pretrained MobileNet model generates the output from the conv pw 13 relu
layer, which consists of the feature maps obtained from a previous layer in the MobileNet
network. The conv pw 13 relu layer has an outputof shape 7x7x1024. This was reduced
by calculating the mean to a 7x7x512-D array per second, so a 10x7x7x512-D array per
video.

5.5.6 Densenet201

The loaded pretrained Densenet model generates the output from the relu layer, which
consists of the feature maps obtained from a previous layer in the Densenet network. The
relu layer has an outputof shape 7x7x1920. This was reduced by calculating the mean to
a 7x7x512-D array per second, so a 10x7x7x512-D array per video.

5.5.7 Nasnetlarge

In this pretrained model each video is read and its frames are resized to dimensions of
331x331.

The loaded pretrained Nasnetlarge model generates the output from the activation_259
layer, which consists of the feature maps obtained from a previous layer in the Nasnetlarge
network. The activation_259 layer has an outputof shape 11x11x4032. This was reduced
by calculating the mean to a 11x11x504-D array per second, so a 10x11x11x504-D array
per video.

5.5.8 EfficientNetB7

In this pretrained model each video is read and its frames are resized to dimensions of
600x600

The loaded pretrained EfficientNetB7 model generates the output from the top_activation
layer, which consists of the feature maps obtained from a previous layer in the Efficient-
NetB7 network. The top_activation layer has an outputof shape 19x19x2560. Three
approaches then were followed.

1. The dimensions were reduced by calculating the mean to a 19x19x256-D so a
10x19x19x256-D array per video. Through a PCA this was transformed into a 10x7x7x256-
D

5.5.9 EfficientNetV2l 61

2. The dimensions were reduced by calculating the mean to a and a 19x19x128-D array
per second, and 10x19x19x128-D array per video accordingly.

3. The dimensions were reduced by performing PCA when extractinng features,
specifically after averaging features for 16 frames in each second, perform a pca from
a 10x19x19x2560 to a 10x19x19x128 array.

5.5.9 EfficientNetV2l

In this pretrained model each video is read and its frames are resized to dimensions of
480x480.

The loaded pretrained EfficientNetV2l model generates the output from the top ac-
tivation layer, which consists of the feature maps obtained from a previous layer in the
EfficientNetV2l network. The top activation layer has an output of shape 15x15x1280.
This was reduced by performing PCA to each feature to a 15x15x128-D array per second,
so a 10x15x15x128-D array per video.

5.5.10 ConvNextXlarge

The loaded pretrained ConvNextXlarge model generates the output from the ”convnext
xlarge stage 3 block 2 identity” layer, which consists of the feature maps obtained from
a previous layer in the ConvNextXlarge network. The ”convnext xlarge stage 3 block 2
identity” layer has an output of shape 7x7x2048. This was reduced by performing PCA
to each feature to a 7x7x204-D array per second, so a 10x7x7x204-D array per video. A
second approach was also made, and it was reduced by performing PCA to each feature
to a 7x7x490-D array per second, so a 10x7x7x2490-D array per video.

5.5.11 Maskformer

The MaskFormer model, trained on ADE20k semantic segmentation with a large-
sized version and a Swin backbone, was initially presented in the paper titled ”Per-Pixel
Classification is Not All You Need for Semantic Segmentation” [54].

5.5.11.1 Class query logits and mask query logits as visual features

Class query logits and mask query logits are intermediate representations within a
segmentation model, and while they are primarily used for segmentation tasks, they can
potentially be used as visual features.

However, there are some caveats to consider:
Representational power: Class query logits and mask query logits may not capture

as much information as the embeddings from earlier layers in the model, such as feature
maps produced by convolutional layers or transformer blocks. These earlier layers often
contain richer and more diverse features, making them more suitable as visual features.

62 Chapter 5. Implementation

Task specificity: The class query logits and mask query logits are designed specifically
for segmentation tasks, meaning that their usefulness as visual features for other tasks (e.g.,
classification, detection, or retrieval) might be limited. It would be more appropriate to
use features extracted from earlier layers in the model or from a model specifically designed
for the task of interest.

Dimensionality: Class query logits and mask query logits can be high-dimensional,
depending on the number of classes and the size of the masks. This could pose challenges
when using them as features, as high-dimensional data often requires more computational
resources and can suffer from the curse of dimensionality. In such cases, dimensionality re-
duction techniques, such as PCA or t-SNE, may be necessary to reduce the dimensionality
of the extracted features.

5.5.11.2 Implementation

Class query logits and mask query logits are selected as visual features. Through
calculating the mean, and reshaping they are reduced in size.

Class queries logits are reduced to 10x10x151 dimension (per second) and mask queries
logits are reduced to 10x16x160(per second).

From the results of the experiments, (6.1.1 and 6.1.7) it is shown that maskformer
class logits hold some valuable information about the task of this diploma thesis.

5.6 AV-att model
The authors of [2] propose two deep neural network models for audio-visual event

localization: the AV-ATT model and the DMRN model.
The AV-ATT model is an attention-based audio-visual fusion model that leverages

audio and visual information to localize audio-visual events. The model consists of two
branches: an audio branch that processes the audio features and a visual branch that
processes the visual features. The outputs of the two branches are then combined using
an attention mechanism that takes into account the correlations between the audio and
visual information.

The DMRNmodel is a dual-modality recurrent network that combines audio and visual
information in a recurrent manner to localize audio-visual events. The model consists
of two parallel recurrent networks: an audio recurrent network and a visual recurrent
network. The two networks process the audio and visual features respectively, and the
outputs are combined to generate the final prediction.

Both the AV-ATT and DMRN models are trained end-to-end using a binary cross-
entropy loss function that minimizes the difference between the predicted and ground-truth
event boundaries. The authors evaluate the two models on a large-scale audio-visual event
localization dataset and show that they outperform several state-of-the-art methods for
audio-visual event localization.

5.7 DMRN model 63

The audio branch applies a linear transformation to the audio features to project them
into a lower-dimensional space, while the visual branch uses a linear transformation to
project the visual features into a lower-dimensional space.

The audio-guided visual attention module uses the audio features to guide the attention
mechanism to attend to the most relevant parts of the visual features. This is done by
computing a set of attention scores, which are used to weight the visual features and
generate an attended representation of the visual features. This can be seen in 5.7

For the temporal modeling module, two Bidirectional LSTMs (Bi-LSTMs) are used to
capture the temporal dependencies in both the audio and visual features. The audio and
visual features are fed into separate Bi-LSTMs, and the outputs from the two Bi-LSTMs
are concatenated and passed through two fully connected layers for prediction.

The multimodal fusion module concatenates the outputs from the two Bi-LSTMs, and
the resulting representation is passed through two fully connected layers to produce the
final prediction.

The final module, temporal labeling, produces a prediction for the audio-visual event
category for each time step in the input video. The prediction is made using a softmax
activation function.

Figure 5.6: AV-att model architecture

5.7 DMRN model
The DMRN model is a deep learning model for audio-visual multi-modal fusion and

classification. The model is called TBMRF_Net, which stands for Two-Branch/Dual
Multi-Modal Residual Fusion Network.

64 Chapter 5. Implementation

Figure 5.7: (a) Audio-guided visual attention mechanism. (b) Dual multimodal residual
network for audiovisual feature fusion [2]

The model takes two inputs, audio and video, and performs multiple operations to
generate a prediction. The operations are divided into several blocks, including audio-
visual attention, temporal modeling, and feature fusion.

• Audio-Visual Attention The visual input is first passed through a linear layer to
produce a dense representation, then the audio input is also passed through a linear
layer to produce another dense representation. These two representations are then
combined to produce an attention map, which is used to weight the visual input and
produce an attended visual representation.

• Temporal Modeling The attended visual representation and audio input are then
passed through a bidirectional LSTM layer to capture their temporal information.

• Feature Fusion and prediction The outputs from the bidirectional LSTMs are then
passed through multiple TBMRF blocks, which perform multi-modal fusion. This
can be seen in Figure 5.7 The final output from the TBMRF blocks is passed through

5.8 Attention map 65

a linear layer to produce the final prediction.

The model is trained using a softmax cross-entropy loss to classify the input audio-
visual data into one of several predefined classes.

Figure 5.8: DMRN model architecture

5.8 Attention map
The attention network adaptively learns which visual regions in each segment of a

video to look for the corresponding sounding object or activity.

5.8.1 Attention map visualization

Visualization takes the affine_h layer as input to visualize the data.

66 Chapter 5. Implementation

Figure 5.9: DMRN model architecture with attention

5.9 Audio only model
Inspired by the AV_att model 5.6 a simple model for only audio input is computed.

This model can predict the labels that we want for a video, by only using the audio input
of it.

5.10 Visual only model
Inspired by the AV_att model 5.6 a simple model for only video input is computed.

This model can predict the labels that we want for a video, by only using the visual input
of it.

5.11 AV att model with GRU
A novel model is proposed that replaces the LSTMs that are used for temporal mod-

eling with GRUs.

5.12 DMRN model with GRU
A novel model is proposed that replaces the LSTMs that are used for temporal mod-

eling with GRUs.

Chapter 6

Experimental results

6.1 Results and comparison between different models
In tables 6.3 and 6.4 there are different results for the various audio and video models

used to extract the audio and visual features accordingly. The extracted features were
tested with the A+Vatt model and the DMRN model of [2]. The audio features from the
paper were extracted using vggish and the visual features from the paper were extracted
using VGG-19

Several combinations from audio and visual features have a better accuracy than the
inspired paper [2] with the percentage of accuracy at 81%.

Furthermore, the best-performing audio model (with the default visual model VGG-
19) is the Openl3 with an accuracy of 0.74, and the best-performing visual model (with
the default of VGG-like) is the Convnextxlarge model with an accuracy of 0.8.

67

68 Chapter 6. Experimental results

6.1.1 Accuracy for best models

Table 6.1: Best models accuracy per class

Models bell man dog plane car woman copt. violin flute ukul. frying truck shofar moto. guitar
Original 0.9 0.72 0.62 0.8 0.72 0.77 0.58 0.71 0.92 0.75 0.87 0.66 0.73 0.8 0.78
Mtt mus - Effb7 0.87 0.78 0.7 0.79 0.83 0.83 0.67 0.91 0.97 0.97 0.86 0.91 0.86 0.9 0.96
openl3-convnxtx 0.89 0.81 0.67 0.89 0.69 0.86 0.79 0.89 0.94 0.93 0.84 0.89 0.92 0.91 0.9
yamnet-effv2l 0.88 0.63 0.61 0.8 0.83 0.65 0.68 0.83 0.94 0.97 0.88 0.94 0.91 0.89 0.94
Models train clock banjo goat baby bus chain. cat horse toilet rodent acco. mand. backgr.
Original 0.94 0.9 0.78 0.84 0.73 0.56 0.84 0.3 0.42 0.87 0.6 0.84 0.66 0.53
Mtt mus - Effb7 0.96 0.98 0.89 0.81 0.75 0.8 0.86 0.64 0.78 0.89 0.9 0.85 0.89 0.46
openl3-convnxtx 0.96 0.94 0.9 0.89 0.79 0.77 0.82 0.7 0.52 0.85 0.88 0.82 0.89 0.5
yamnet-effv2l 0.94 1 0.87 0.84 0.53 0.67 0.83 0.49 0.49 0.83 0.88 0.85 0.89 0.43

Table 6.2: Best models accuracy

Models accuracy macro avg weighted avg
Original 0.73 0.73 0.73
Mtt mus - Effb7 0.81 0.84 0.8
openl3-convnxtx 0.8 0.83 0.8
yamnet-effv2l 0.78 0.79 0.76

6.1.2 Accuracy for audio models with video vgg-19

6.1.2 Accuracy for audio models with video vgg-19 69

Table 6.3: Accuracy of models using audio features extracted by different models and
visual features from VGG-19

Model Name AV_att DMRN

Original(vggish) 72.84% 73.08%
Empty Audio Input 53% 57%

wav2vec 63% 59%
wav2vec per second 53% 58%
wav2vec 2 np mean 58% 56%

vq-wav2vec 65% 65%
vq-wav2vec per second 60% 58%
vq-wav2vec-kmeans 63% 63%

vq-wav2vec-kmeans per second 62% 61%
vq-wav2vec-beart-kmeans 63% 63%

wav2vec small 66% 65%
wav2vec vox new 63% 60%

Musicnn mtt timbral 408 57.89% 53.4%
Musicnn mtt temporal 153 55.77% 58.8%

Musicnn mtt cnn1 64 66.37% 64.9%
Musicnn mtt cnn2 64 67.56% 68.08%
Musicnn mtt cnn3 64 66.09% 66%

Musicnn mtt cnn sum 64 68.28% 66.04%
Musicnn mtt cnn avg 64 64.82% 67.06%

Musicnn mtt cnn combined 192 68.43% 63.4%
Musicnn mtt mean_pool 75 59.8% 64.05%
Musicnn mtt max_pool 75 59.65% 60.05%
Musicnn mtt penultimate 20 58.89% 55.79%

Musicnn msd cnn1 64 59.32% 63.13%
Musicnn msd cnn2 64 63.26% 63.63%
Musicnn msd cnn3 64 64.30% 62.76%

Musicnn msd cnn sum 64 64.23% 62.14%
Musicnn msd cnn avg 64 64.03% 62.24%

Musicnn msd cnn combined 192 66.19% 19.5%
Musicnn msd mean_pool 75 59.84% 59.95%
Musicnn msd max_pool 75 59.05% 62.72%
Musicnn msd penultimate 20 56.32% 57.21%

Musicnn vgg pool1 128 56.74% 55.65%
Musicnn vgg pool2 128 62.96% 57.67%
Musicnn vgg pool3 128 65.17% 63.53%
Musicnn vgg pool5 16 54.4% 55.6%

Yamnet 66.27% 67.79%
Yamnet PCA 71.39% 69.4%

Open3l 73.83% 70.85%

70 Chapter 6. Experimental results

6.1.3 Accuracy for video models with audio VGG-like

Table 6.4: Accuracy of models using video features extracted by different models and
audio features from VGG-like

Model Name AV_att DMRN

Original(VGG-19) 72.84% 73.08%
Empty Visual Input 59.58% 58.41%
Xception 10-10-512 66.12% 67.46%
Xception 7-7-42 66.37% 66.44%

ResNet50 70% 64.55%
ResNet152 70.87% 65.17%
InceptionV3 59.88% 53.78%
MobileNet 68.06% 60.75%

DenseNet201 61.74% 62.43%
NASNetLarge 73.41% 71.52%

EfficientNetB7 7-7-256 63.78% 60.35%
EfficientNetB7 19-19-128 67.56% 59.36%

EfficientNetV2l 77.2% 77.4%
Convnextxlarge 77.9% 78.31%

Convnextxlarge 7-7-490 78.14% 78.22%
MaskFormer masks 60.94% 61.02%
MaskFormer class 62.44% 60.17%

6.1.4 Accuracy for various models 71

6.1.4 Accuracy for various models

Table 6.5: Accuracy for different models for various pretrained features used (Audio and
Visual)

audio / visual Model vgg-19 resnet50 resnet152 mobilenet efficientnetb7 xception NasNetLarge convnextxl convnextxl 490 maskf. mask maskf. class efficientnetv2l
AV-att 0.73 0.71 0.7 0.67 0.79 0.64 0.73 0.78 0.79 0.6 0.7 0.77
AV-att-GRU 0.71 0.68 0.69 0.66 0.79 0.65 0.66 0.78 0.79 0.59 0.68 0.79
DMRN 0.73 0.68 0.66 0.63 0.78 0.55 0.57 0.77 0.78 0.54 0.67 0.76VGG-like

DMRN-GRU 0.69 0.61 0.53 0.58 0.78 0.65 0.69 0.77 0.76 0.56 0.57 0.79
AV-att 0.66 0.58 0.62 0.53 0.7 0.64 0.63 0.75 0.77 0.37 0.59 0.75
AV-att-GRU 0.64 0.52 0.6 0.55 0.74 0.52 0.61 0.75 0.76 0.32 0.59 0.71
DMRN 0.62 0.54 0.57 0.5 0.74 0.62 0.6 0.74 0.77 0.38 0.53 0.72vq-wav2vec

DMRN-GRU 0.64 0.44 0.46 0.46 0.71 0.52 0.65 0.77 0.76 0.35 0.56 0.74
AV-att 0.66 0.61 0.64 0.56 0.77 0.59 0.6 0.76 0.78 0.4 0.62 0.7
AV-att-GRU 0.65 0.6 0.61 0.59 0.75 0.66 0.66 0.75 0.78 0.39 0.62 0.74
DMRN 0.68 0.57 0.63 0.56 0.74 0.18 0.64 0.75 0.76 0.43 0.59 0.71wav2vec small

DMRN-GRU 0.67 0.18 0.2 0.2 0.76 0.6 0.62 0.75 0.77 0.43 0.18 0.75
AV-att 0.66 0.61 0.62 0.57 0.77 0.64 0.64 0.77 0.78 0.48 0.64 0.77
AV-att-GRU 0.64 0.58 0.59 0.6 0.81 0.68 0.67 0.78 0.8 0.48 0.63 0.78
DMRN 0.58 0.04 0.18 0.18 0.67 0.61 0.18 0.71 0.73 0.18 0.21 0.72mtt musicnn cnn

DMRN-GRU 0.55 0.03 0.03 0.03 0.72 0.18 0.57 0.63 0.68 0.34 0.2 0.63
AV-att 0.63 0.49 0.56 0.58 0.77 0.68 0.68 0.76 0.78 0.46 0.61 0.76
AV-att-GRU 0.63 0.59 0.54 0.55 0.69 0.69 0.69 0.77 0.77 0.44 0.58 0.77
DMRN 0.54 0.03 0.03 0.18 0.6 0.18 0.03 0.74 0.72 0.18 0.03 0.36msd musicnn cnn

DMRN-GRU 0.18 0.03 0.03 0.03 0.6 0.03 0.18 0.18 0.73 0.04 0.03 0.65
AV-att 0.65 0.6 0.59 0.58 0.76 0.62 0.65 0.72 0.75 0.42 0.59 0.75
AV-att-GRU 0.64 0.64 0.6 0.55 0.73 0.66 0.68 0.76 0.76 0.42 0.6 0.75
DMRN 0.64 0.48 0.57 0.5 0.72 0.62 0.63 0.72 0.74 0.42 0.47 0.7musicnn MTT vgg

DMRN-GRU 0.59 0.18 0.42 0.18 0.69 0.61 0.6 0.73 0.75 0.18 0.18 0.72
AV-att 0.71 0.65 0.68 0.65 0.74 0.68 0.66 0.77 0.77 0.64 0.68 0.73
AV-att-GRU 0.7 0.69 0.68 0.67 0.78 0.69 0.74 0.76 0.79 0.63 0.69 0.75
DMRN 0.69 0.65 0.63 0.66 0.76 0.65 0.67 0.77 0.77 0.65 0.66 0.78yamnet pca

DMRN-GRU 0.72 0.65 0.65 0.65 0.76 0.65 0.67 0.77 0.77 0.64 0.67 0.76
AV-att 0.74 0.66 0.67 0.65 0.73 0.65 0.65 0.78 0.79 0.6 0.67 0.77
AV-att-GRU 0.74 0.68 0.66 0.66 0.79 0.67 0.71 0.8 0.77 0.6 0.72 0.76
DMRN 0.71 0.63 0.61 0.63 0.74 0.63 0.18 0.78 0.77 0.6 0.63 0.75openl3

DMRN-GRU 0.72 0.64 0.64 0.61 0.76 0.64 0.63 0.78 0.77 0.6 0.6 0.76

72 Chapter 6. Experimental results

Table 6.6: Training time for different models for various pretrained features used (Audio
and Visual)

audio / visual Model vgg-19 resnet50 resnet152 mobilenet efficientnetb7 xception NasNetLarge convnextxl convnextxl 490 maskf. mask maskf. class efficientnetv2l
AV-att 1146 1211 1125 1179 8899 2927 4630 774 1429 1073 778 1559
AV-att-GRU 1138 1182 1115 1072 8802 2353 3167 592 1020 1105 731 1575
DMRN 1152 1243 1126 1141 8977 2465 4989 906 1151 1174 826 1474VGG-like

DMRN-GRU 1321 1119 1151 1167 8907 2589 3225 675 1258 1154 800 1623
AV-att 1065 1171 1270 1261 9022 2553 4689 716 1505 1146 780 1327
AV-att-GRU 1090 1331 1278 1037 8934 2773 3080 599 1334 1123 775 1192
DMRN 1178 1133 1239 1229 9015 4117 4412 764 1465 1192 833 1463vq-wav2vec

DMRN-GRU 1218 1383 1437 1155 9456 2761 3022 647 1494 1133 792 1482
AV-att 1147 1146 1778 1879 9600 2595 3066 696 1531 1148 800 1314
AV-att-GRU 1102 1107 1756 1833 9590 2555 2830 586 1294 1152 778 1204
DMRN 1181 1314 1851 1983 9618 2582 3111 744 1477 1196 827 1367wav2vec small

DMRN-GRU 1169 1800 1945 1949 9400 2502 2945 673 1264 1186 838 1340
AV-att 1938 1951 1928 1998 8979 2635 3168 718 1558 1116 789 1391
AV-att-GRU 1946 1963 1929 1951 8901 2604 3224 603 1339 1095 790 1435
DMRN 1977 2062 2039 1537 2131 2531 3082 782 1512 1161 858 1596mtt musicnn cnn

DMRN-GRU 2010 1979 2045 1310 2111 2413 3096 661 1243 1195 877 1414
AV-att 1425 1135 1251 1232 2094 2492 3002 710 1332 1185 980 1554
AV-att-GRU 1356 1070 1130 1218 2575 2382 3041 613 1189 1442 981 1773
DMRN 1370 1313 1274 1234 2666 2322 3104 773 1424 1665 1062 1822msd musicnn cnn

DMRN-GRU 1364 1169 1262 1338 2562 2357 2877 694 1317 1749 963 1755
AV-att 1112 1463 1345 1109 2136 2775 3159 640 1270 1447 930 1649
AV-att-GRU 1229 1411 1288 1132 2085 2761 3224 595 1143 1426 880 1587
DMRN 1148 1486 1382 1147 2125 2595 3083 751 1356 1559 913 1704musicnn MTT vgg

DMRN-GRU 1337 1511 1425 1155 2232 2556 3093 707 1514 1495 1031 1684
AV-att 1104 1441 1309 1105 2224 2582 3001 687 1345 1535 834 1640
AV-att-GRU 1460 1373 1154 1063 2068 2503 3016 582 1336 1376 859 1625
DMRN 1169 1389 1302 1143 2111 2668 3110 741 1498 1523 851 1506yamnet pca

DMRN-GRU 1695 1565 1275 1111 2222 2669 2871 719 1320 1432 810 1753
AV-att 1195 1535 1187 1100 2671 2517 5136 654 1268 1382 807 1682
AV-att-GRU 1528 1380 1044 1069 2646 2412 2959 607 1339 1331 803 1485
DMRN 1219 1479 1160 1207 2626 2482 5030 742 1362 1375 826 1659openl3

DMRN-GRU 1515 1447 1157 1125 2790 2379 3021 665 1307 1302 823 1580

Table 6.7: Testing time for different models for various pretrained features used (Audio
and Visual)

audio / visual Model vgg-19 resnet50 resnet152 mobilenet efficientnetb7 xception NasNetLarge convnextxl convnextxl 490 maskf. mask maskf. class efficientnetv2l
AV-att 12 10 7 8 122 19 36 10 14 15 6 14
AV-att-GRU 15 9 7 7 120 17 30 7 14 15 10 64
DMRN 7 28 7 15 122 19 34 8 10 15 10 15VGG-like

DMRN-GRU 16 18 7 7 120 19 23 8 15 15 10 16
AV-att 15 7 9 7 123 25 34 7 11 7 10 17
AV-att-GRU 7 7 10 15 123 29 25 7 13 7 6 16
DMRN 15 7 9 15 145 27 30 6 15 7 6 10vq-wav2vec

DMRN-GRU 7 9 10 7 130 21 23 9 14 7 10 14
AV-att 15 8 15 17 133 18 77 7 13 7 6 7
AV-att-GRU 13 15 15 15 159 25 48 9 60 7 10 8
DMRN 7 16 16 16 127 22 34 7 13 7 6 8wav2vec small

DMRN-GRU 16 16 16 15 128 20 23 7 10 15 6 13
AV-att 20 22 20 19 121 29 30 21 13 27 7 8
AV-att-GRU 17 18 17 18 116 30 23 7 12 11 10 15
DMRN 14 24 18 12 25 56 53 7 32 13 8 17mtt musicnn cnn

DMRN-GRU 17 16 19 10 26 28 34 7 12 29 32 13
AV-att 14 15 7 11 26 59 53 20 12 11 10 28
AV-att-GRU 15 7 7 7 27 30 35 7 13 11 8 11
DMRN 11 9 13 10 26 17 31 21 14 14 9 14msd musicnn cnn

DMRN-GRU 13 39 15 7 27 17 24 8 13 13 9 14
AV-att 7 14 13 7 19 30 30 7 12 17 7 13
AV-att-GRU 15 13 29 15 26 21 24 7 30 13 41 13
DMRN 7 14 10 15 25 18 52 30 12 17 9 16musicnn MTT vgg

DMRN-GRU 14 13 12 7 14 25 34 7 11 14 7 18
AV-att 7 11 10 15 28 23 24 7 12 13 9 12
AV-att-GRU 12 9 26 15 26 30 36 7 7 12 9 15
DMRN 7 14 10 8 26 20 34 6 9 12 8 13yamnet pca

DMRN-GRU 20 15 10 15 19 22 47 6 14 13 29 14
AV-att 8 13 10 15 27 54 36 20 7 13 10 13
AV-att-GRU 10 14 15 16 28 42 72 7 12 11 10 17
DMRN 10 11 7 15 20 21 35 27 9 11 7 14openl3

DMRN-GRU 16 11 7 15 21 28 79 7 12 11 10 12

6.1.5 Wav2vec audio feature extraction models and different methods 73

6.1.5 Wav2vec audio feature extraction models and different methods

Table 6.8: Accuracy for different wav2vec models

Class VGG-like wav2vec wav2vec
PS

wav2vec 2
np-mean 128

wav2vec 2
np-mean 99

vq-wav2vec vq-wav2vec
PS

vq-wav2vec
kmeans

beart
k-means

wav2vec 2
(base)

wav2vec 2
(vox new)

bell 0.9 0.87 0.84 0.79 0.82 0.86 0.85 0.86 0.81 0.87 0.88
man 0.72 0.55 0.52 0.35 0.27 0.56 0.38 0.43 0.42 0.43 0.61
dog 0.62 0.57 0.49 0.31 0 0.52 0.36 0.62 0.57 0.5 0.48
plane 0.8 0.78 0.75 0.79 0.72 0.75 0.72 0.78 0.79 0.84 0.78
car 0.72 0.72 0.6 0.58 0.55 0.67 0.56 0.71 0.73 0.71 0.64
woman 0.77 0.59 0.37 0.68 0.43 0.63 0.47 0.66 0.63 0.67 0.64
copt. 0.58 0.57 0.44 0.53 0.58 0.55 0.48 0.71 0.63 0.55 0.45
violin 0.71 0.66 0.39 0.61 0.57 0.73 0.63 0.83 0.83 0.78 0.65
flute 0.92 0.82 0.44 0.55 0.49 0.65 0.56 0.65 0.69 0.78 0.77
ukul. 0.75 0.82 0.43 0.55 0.19 0.62 0.62 0.61 0.56 0.69 0.72
frying 0.87 0.82 0.8 0.73 0.77 0.82 0.8 0.81 0.78 0.8 0.81
truck 0.66 0.54 0.65 0.53 0.67 0.52 0.54 0.63 0.69 0.62 0.56
shofar 0.73 0.82 0.41 0.58 0.48 0.78 0.58 0.7 0.62 0.75 0.81
moto. 0.8 0.75 0.67 0.77 0.78 0.65 0.84 0.81 0.79 0.78 0.76
guitar 0.78 0.66 0.53 0.57 0.52 0.65 0.62 0.73 0.62 0.67 0.75
train 0.94 0.83 0.81 0.76 0.79 0.76 0.77 0.86 0.83 0.82 0.78
clock 0.9 0.91 0.86 0.86 0.87 0.84 0.85 0.88 0.85 0.88 0.88
banjo 0.78 0.49 0.49 0.71 0.62 0.49 0.56 0.58 0.58 0.7 0.39
goat 0.84 0.46 0.4 0.54 0.56 0.58 0.46 0.62 0.72 0.6 0.59
baby 0.73 0.53 0.36 0.25 0 0.57 0.48 0.56 0.5 0.65 0.54
bus 0.56 0.56 0.72 0.62 0.63 0.48 0.46 0.48 0.64 0.55 0.36
chain. 0.84 0.8 0.7 0.64 0.55 0.78 0.72 0.76 0.71 0.77 0.74
cat 0.3 0.47 0 0.25 0.45 0.21 0.43 0.3 0.48 0 0.32
horse 0.42 0.55 0.55 0.42 0 0.6 0.5 0.39 0.38 0 0.45
toilet 0.87 0.8 0.74 0.67 0.78 0.77 0.74 0.77 0.77 0.72 0.75
rodent 0.6 0.67 0.53 0.62 0.58 0.64 0.58 0.51 0.65 0.62 0.56
acco. 0.84 0.8 0.82 0.87 0.75 0.74 0.82 0.8 0.84 0.83 0.79
mand. 0.66 0.6 0.52 0.41 0.4 0.57 0.39 0.55 0.48 0.41 0.41
backgr. 0.53 0.43 0.43 0.42 0.42 0.42 0.41 0.4 0.46 0.45 0.46
accuracy 0.73 0.66 0.56 0.58 0.55 0.63 0.58 0.65 0.64 0.66 0.63
macro avg 0.73 0.67 0.56 0.58 0.52 0.64 0.59 0.66 0.66 0.64 0.63
weighted avg 0.73 0.65 0.56 0.58 0.53 0.62 0.58 0.64 0.64 0.64 0.63

74 Chapter 6. Experimental results

6.1.6 Comparison between the audio models by using Audio only net-
work

Table 6.9: Model accuracy for Audio-only network part 1

Model accuracy Model accuracy
VGG-like 0.62 beart k-means 0.31
wav2vec 0.38 wav2vec 2 (base) 0.4
wav2vec PS 0.31 wav2vec 2 (vox new) 0.34
wav2vec 2 np-mean 128 0.18 empty 0.18
wav2vec 2 np-mean 99 0.18 Openl3 0.59
vq-wav2vec 0.41 Yamnet 0.6
vq-wav2vec PS 0.28 Yamnet pca 128 0.65
vq-wav2vec-kmeans 0.31 Yamnet 1024 0.66
vq-wav2vec-kmeans PS 0.26

Table 6.10: Model accuracy for Audio-only network part 2

MTT Musicnn model Accuracy MSD Musicnn model Accuracy MTT VGG model Accuracy
cnn1 64 0.39 cnn1 128 0.2 pool1 128 0.32
cnn2 64 0.42 cnn1 64 0.4 pool2 128 0.41
cnn3 64 0.38 cnn2 64 0.44 pool3 128 0.44
cnn avg 64 0.4 cnn3 64 0.41 pool4 128 0.47
cnn concat 192 0.48 cnn avg 64 0.43 pool5 16 0.28
cnn sum 64 0.39 cnn concat 192 0.48
max pool 75 0.42 cnn sum 64 0.43
mean pool 75 0.39 max pool 75 0.4
penultimate 20 0.37 mean pool 75 0.43

penultimate 20 0.36
temporal 153 0.3
timbral 408 0.37

6.1.7 Comparison between the video models by using Video-only network 75

6.1.7 Comparison between the video models by using Video-only net-
work

Table 6.11: Accuracy for video models by using Video-only network

Video only model Accuracy
VGG-19 0.56
empty 0.18
xception 7-7-42 0.32
xception 10-10-512 0.52
resnet50 0.56
resnet152 0.54
inceptionv3 8-8-512 0.18
mobilenet 0.48
densenet201 7-7-640 0.22
nasnetlarge 11-11-504 0.6
efficientnetb7 7-7-256 0.48
efficientnetb7 19-19-128 0.55
efficientnetb7 19-19-128 pca 0.67
efficientnetv2l 15-15-128 0.71
convnextxlarge 7-7-204 0.74
convnextxlarge 7-7-490 0.74
maskformer mask 10-16-160 0.18
maskformer class 10-10-151 0.46

76 Chapter 6. Experimental results

6.1.8 Video model Efficientnetb7 for different transformations and au-
dio features

Table 6.12: Efficientnetb7 model for different transformations

Audio Feature VGG-like mtt musicnn

Class / Visual Feature efficientnetb7
7-7-256

efficientnetb7
19-19-128

efficientnetb7
19-19-128 pca

efficientnetb7
19-19-128 pca

bell 0.89 0.89 0.88 0.87
man 0.52 0.71 0.7 0.78
dog 0.37 0.57 0.65 0.7
plane 0.76 0.77 0.87 0.79
car 0.67 0.65 0.79 0.83
woman 0.64 0.79 0.75 0.83
copt. 0.54 0.45 0.78 0.67
violin 0.76 0.71 0.88 0.91
flute 0.76 0.83 0.93 0.97
ukul. 0.69 0.64 0.91 0.97
frying 0.81 0.88 0.86 0.86
truck 0.7 0.61 0.9 0.91
shofar 0.64 0.61 0.92 0.86
moto. 0.83 0.64 0.86 0.9
guitar 0.76 0.7 0.91 0.96
train 0.91 0.91 0.92 0.96
clock 0.78 0.89 0.87 0.98
banjo 0.68 0.73 0.81 0.89
goat 0.29 0.72 0.67 0.81
baby 0.57 0.62 0.59 0.75
bus 0.72 0.53 0.86 0.8
chain. 0.81 0.89 0.88 0.86
cat 0.3 0.15 0.32 0.64
horse 0.23 0.25 0.23 0.78
toilet 0.76 0.83 0.83 0.89
rodent 0.63 0.63 0.75 0.9
acco. 0.82 0.85 0.88 0.85
mand. 0.46 0.66 0.77 0.89
backgr. 0.39 0.44 0.52 0.46
accuracy 0.64 0.68 0.77 0.81
macro avg 0.65 0.67 0.78 0.84
weighted avg 0.64 0.67 0.77 0.8

6.2 Comparison of models by time and other metrics 77

6.2 Comparison of models by time and other metrics

Table 6.13: Metrics for Xception for the AV-att model

Metric \ Model Xception 7-7-42 Xception 10-10-512
accuracy 0.69 0.7
macro avg 0.68 0.67
weighted avg 0.69 0.69
Training time 322 2445
Testing time 3 30

Table 6.14: Metrics for Convnextxlarge for the AV-att model

Metric \ Model convnextxlarge 7-7-204 convnextxlarge 7-7-408
accuracy 0.78 0.79
macro avg 0.81 0.82
weighted avg 0.78 0.79
Training time 774 1429
Testing time 10 14

Table 6.15: Metrics for openl3-convnextxlarge

Metric \ Model AV-att AV-att-GRU DMRN DMRN-GRU
Training time 654 607 742 665
Testing time 20 7 27 7
Accuracy 0.78 0.8 0.78 0.78

78 Chapter 6. Experimental results

Table 6.16: Tensorflow keras models and the best accuracy achieved

Model Size (MB) Parameters Depth Best Accuracy
Xception 88 22.9M 81 0.69
VGG19 549 143.7M 19 0.73
ResNet50 98 25.6M 107 0.71
ResNet152 232 60.4M 311 0.7
InceptionV3 92 23.9M 189 0.61
MobileNet 16 4.3M 55 0.66
DenseNet201 80 20.2M 402 0.62
NASNetLarge 343 88.9M 533 0.73
EfficientNetB7 256 66.7M 438 0.79
EfficientNetV2L 479 119.0M - 0.79
ConvNeXtXLarge 1310 350.1M - 0.79

6.2 Comparison of models by time and other metrics 79

80 Chapter 6. Experimental results

6.3 Comparison between the audio models (Using video
VGG-19)

Table 6.17: Classification report for Vgg-original for AV-att and DMRN models

AV-att DMRN
Class precision recall f1-score precision recall f1-score
bell 0.83 0.99 0.9 0.83 0.95 0.89
man 0.7 0.75 0.72 0.63 0.7 0.66
dog 0.61 0.63 0.62 0.53 0.74 0.62
plane 0.8 0.81 0.8 0.7 0.81 0.75
car 0.71 0.73 0.72 0.73 0.77 0.75
woman 0.73 0.81 0.77 0.81 0.75 0.78
copt. 0.62 0.54 0.58 0.7 0.53 0.61
violin 0.62 0.83 0.71 0.62 0.89 0.73
flute 0.89 0.96 0.92 0.92 0.94 0.93
ukul. 0.75 0.76 0.75 0.69 0.68 0.69
frying 0.82 0.92 0.87 0.83 0.91 0.87
truck 0.71 0.62 0.66 0.89 0.6 0.71
shofar 0.84 0.65 0.73 0.9 0.68 0.77
moto. 0.79 0.81 0.8 0.67 0.92 0.78
guitar 0.9 0.69 0.78 0.86 0.74 0.79
train 0.95 0.92 0.94 0.9 0.91 0.91
clock 0.96 0.85 0.9 0.98 0.8 0.88
banjo 0.76 0.81 0.78 0.76 0.74 0.75
goat 0.88 0.8 0.84 0.65 0.74 0.69
baby 0.89 0.62 0.73 0.84 0.6 0.7
bus 0.42 0.83 0.56 0.43 0.81 0.56
chain. 0.8 0.88 0.84 0.83 0.91 0.87
cat 0.27 0.33 0.3 0.5 0.52 0.51
horse 0.48 0.37 0.42 0.46 0.37 0.41
toilet 0.86 0.87 0.87 0.86 0.96 0.91
rodent 0.67 0.55 0.6 0.84 0.86 0.85
acco. 0.76 0.94 0.84 0.81 0.97 0.88
mand. 0.67 0.65 0.66 0.66 0.53 0.59
backgr. 0.55 0.5 0.53 0.58 0.51 0.54
accuracy 0.73 0.73
macro avg 0.73 0.74 0.73 0.74 0.75 0.74
weighted avg 0.73 0.73 0.73 0.74 0.73 0.73

6.3 Comparison between the audio models (Using video VGG-19) 81

Table 6.18: Classification report for Wav2vec-small for AV-att and DMRN

AV-att DMRN
Class precision recall f1-score precision recall f1-score
bell 0.78 0.97 0.87 0.8 0.98 0.88
man 0.43 0.43 0.43 0.56 0.46 0.5
dog 0.42 0.6 0.5 0.54 0.51 0.52
plane 0.83 0.86 0.84 0.74 0.85 0.79
car 0.63 0.82 0.71 0.61 0.67 0.64
woman 0.68 0.66 0.67 0.68 0.69 0.69
copt. 0.7 0.46 0.55 0.7 0.47 0.56
violin 0.72 0.87 0.78 0.79 0.87 0.83
flute 0.69 0.9 0.78 0.7 0.86 0.77
ukul. 0.78 0.62 0.69 0.71 0.69 0.7
frying 0.74 0.88 0.8 0.73 0.84 0.78
truck 0.72 0.54 0.62 0.78 0.53 0.63
shofar 0.78 0.73 0.75 0.85 0.73 0.79
moto. 0.7 0.88 0.78 0.77 0.83 0.79
guitar 0.72 0.62 0.67 0.75 0.62 0.68
train 0.85 0.78 0.82 0.79 0.77 0.78
clock 0.96 0.81 0.88 0.95 0.86 0.9
banjo 0.71 0.69 0.7 0.69 0.6 0.64
goat 0.54 0.66 0.6 0.57 0.79 0.66
baby 0.64 0.65 0.65 0.79 0.52 0.63
bus 0.38 0.97 0.55 0.66 0.86 0.75
chain. 0.83 0.72 0.77 0.7 0.83 0.76
cat 0 0 0 0.51 0.55 0.53
horse 0 0 0 0.44 0.37 0.41
toilet 0.65 0.82 0.72 0.8 0.86 0.83
rodent 0.59 0.66 0.62 0.65 0.55 0.59
acco. 0.73 0.96 0.83 0.68 0.95 0.79
mand. 0.45 0.37 0.41 0.59 0.56 0.57
backgr. 0.48 0.42 0.45 0.52 0.51 0.51
accuracy 0.66 0.68
macro avg 0.62 0.67 0.64 0.69 0.7 0.69
weighted avg 0.65 0.66 0.64 0.68 0.68 0.67

82 Chapter 6. Experimental results

Table 6.19: Classification report for Mtt-musicnn-cnn for AV-att and DMRN models

AV-att DMRN
Class precision recall f1-score precision recall f1-score
bell 0.75 1 0.86 0.78 0.98 0.87
man 0.63 0.59 0.61 0.78 0.4 0.53
dog 0.5 0.53 0.51 0.42 0.43 0.42
plane 0.83 0.74 0.79 0.75 0.75 0.75
car 0.64 0.7 0.67 0.46 0.65 0.54
woman 0.68 0.67 0.67 0.63 0.72 0.67
copt. 0.73 0.52 0.61 0.48 0.55 0.51
violin 0.59 0.72 0.65 0.63 0.74 0.68
flute 0.83 0.86 0.85 0.85 0.88 0.87
ukul. 0.67 0.64 0.66 0.47 0.6 0.53
frying 0.74 0.77 0.76 0.73 0.83 0.78
truck 0.98 0.5 0.66 0.82 0.5 0.62
shofar 0.78 0.83 0.81 0.7 0.83 0.76
moto. 0.68 0.79 0.73 0.78 0.81 0.8
guitar 0.83 0.78 0.8 0.85 0.66 0.74
train 0.82 0.87 0.84 0.86 0.81 0.84
clock 0.88 0.84 0.86 0.91 0.84 0.87
banjo 0.73 0.67 0.7 0.74 0.58 0.65
goat 0.55 0.65 0.59 0.34 0.57 0.43
baby 0.67 0.68 0.68 0 0 0
bus 0.42 0.78 0.54 0.6 0.86 0.7
chain. 0.68 0.87 0.76 0.73 0.83 0.78
cat 0.36 0.24 0.29 0.2 0.27 0.23
horse 0.47 0.7 0.56 0 0 0
toilet 0.88 0.91 0.9 0.82 0.91 0.86
rodent 0.69 0.66 0.68 0.55 0.42 0.48
acco. 0.71 0.94 0.81 0.68 0.88 0.77
mand. 0.55 0.49 0.52 0.57 0.35 0.43
backgr. 0.55 0.48 0.51 0.47 0.48 0.47
accuracy 0.68 0.63
macro avg 0.68 0.7 0.69 0.61 0.62 0.61
weighted avg 0.69 0.68 0.68 0.63 0.63 0.62

6.3 Comparison between the audio models (Using video VGG-19) 83

Table 6.20: Classification report for Yamnet-pca for AV-att and DMRN-GRU

AV-att DMRN
Class precision recall f1-score precision recall f1-score
bell 0.82 0.96 0.88 0.81 0.96 0.88
man 0.65 0.56 0.6 0.79 0.7 0.74
dog 0.52 0.73 0.6 0.49 0.83 0.62
plane 0.76 0.82 0.79 0.7 0.85 0.77
car 0.7 0.69 0.69 0.65 0.8 0.72
woman 0.6 0.75 0.67 0.7 0.77 0.73
copt. 0.65 0.61 0.63 0.7 0.62 0.66
violin 0.66 0.79 0.72 0.69 0.82 0.75
flute 0.84 0.94 0.89 0.76 0.88 0.81
ukul. 0.76 0.93 0.84 0.72 0.88 0.79
frying 0.76 0.93 0.83 0.79 0.9 0.84
truck 0.74 0.58 0.65 0.79 0.79 0.79
shofar 0.9 0.73 0.81 0.67 0.7 0.69
moto. 0.69 0.91 0.78 0.68 0.81 0.74
guitar 0.83 0.8 0.81 0.86 0.78 0.81
train 0.84 0.93 0.88 0.9 0.92 0.91
clock 0.99 0.94 0.96 0.99 0.97 0.98
banjo 0.86 0.87 0.86 0.8 0.85 0.82
goat 0.61 0.67 0.64 0.61 0.76 0.68
baby 0.53 0.65 0.58 0.71 0.75 0.73
bus 0.51 0.83 0.63 0.43 0.81 0.56
chain. 0.81 0.96 0.88 0.74 0.87 0.8
cat 0.36 0.36 0.36 0 0 0
horse 0 0 0 0 0 0
toilet 0.75 0.82 0.78 0.74 0.93 0.82
rodent 0.62 0.69 0.65 0.66 0.6 0.63
acco. 0.72 0.93 0.81 0.69 0.96 0.8
mand. 0.79 0.72 0.75 0.76 0.73 0.75
backgr. 0.53 0.35 0.42 0.53 0.29 0.38
accuracy 0.71 0.72
macro avg 0.68 0.74 0.7 0.67 0.74 0.7
weighted avg 0.7 0.71 0.7 0.69 0.72 0.69

84 Chapter 6. Experimental results

Table 6.21: Classification report for Openl3 for AV-att and DMRN-GRU models

AV-att DMRN-GRU
Class precision recall f1-score precision recall f1-score
bell 0.8 0.98 0.88 0.82 0.97 0.89
man 0.72 0.75 0.74 0.6 0.72 0.66
dog 0.59 0.72 0.65 0.58 0.76 0.66
plane 0.84 0.81 0.83 0.73 0.82 0.77
car 0.62 0.71 0.66 0.6 0.58 0.59
woman 0.86 0.83 0.85 0.75 0.83 0.79
copt. 0.78 0.71 0.74 0.78 0.49 0.6
violin 0.73 0.78 0.76 0.79 0.79 0.79
flute 0.81 0.96 0.88 0.9 0.89 0.89
ukul. 0.72 0.89 0.79 0.82 0.75 0.78
frying 0.75 0.88 0.81 0.83 0.93 0.87
truck 0.95 0.69 0.8 0.75 0.77 0.76
shofar 0.9 0.74 0.81 0.86 0.84 0.85
moto. 0.81 0.95 0.87 0.8 0.88 0.84
guitar 0.97 0.77 0.86 0.94 0.89 0.91
train 0.85 0.89 0.87 0.82 0.86 0.84
clock 0.99 0.85 0.92 0.95 0.84 0.89
banjo 0.69 0.7 0.7 0.63 0.82 0.71
goat 0.8 0.55 0.65 0.5 0.57 0.54
baby 0.76 0.94 0.84 1 0.6 0.75
bus 0.52 0.92 0.67 0.43 0.64 0.52
chain. 0.79 0.94 0.86 0.72 0.81 0.76
cat 0 0 0 0.33 0.27 0.3
horse 0.39 0.6 0.48 0 0 0
toilet 0.78 0.85 0.81 0.83 0.78 0.8
rodent 0.67 0.6 0.63 0.79 0.65 0.71
acco. 0.73 0.98 0.84 0.83 0.93 0.88
mand. 0.77 0.76 0.76 0.84 0.66 0.74
backgr. 0.55 0.45 0.5 0.51 0.48 0.49
accuracy 0.74 0.72
macro avg 0.73 0.77 0.74 0.72 0.72 0.71
weighted avg 0.74 0.74 0.73 0.72 0.72 0.71

6.3 Comparison between the audio models (Using video VGG-19) 85

Table 6.22: Classification report for Openl3

Class Precision Recall F1Score Support
Church bell 0.81 0.96 0.88 140

Male speech, man speaking 0.65 0.64 0.65 126
Bark 0.63 0.72 0.67 89

Fixedwing aircraft, airplane 0.87 0.87 0.87 160
Race car, auto racing 0.70 0.82 0.76 128

Female speech, woman speaking 0.88 0.79 0.84 135
Helicopter 0.83 0.65 0.73 133

Violin, fiddle 0.88 0.74 0.80 151
Flute 0.83 0.92 0.87 161
Ukulele 0.94 0.76 0.84 152

Frying (food) 0.78 0.88 0.83 139
Truck 0.86 0.78 0.82 124
Shofar 0.88 0.80 0.83 88

Motorcycle 0.87 0.71 0.78 75
Acoustic guitar 0.86 0.87 0.86 178
Train horn 0.91 0.88 0.89 158

Clock 0.99 0.89 0.94 160
Banjo 0.69 0.77 0.73 175
Goat 0.75 0.65 0.70 89

Baby cry, infant cry 0.68 0.60 0.64 63
Bus 0.50 0.75 0.60 36

Chainsaw 0.70 0.94 0.80 126
Cat 0.46 0.36 0.41 33
Horse 0.38 0.47 0.42 43

Toilet flush 0.80 0.75 0.78 109
Rodents, rats, mice 0.74 0.74 0.74 80

Accordion 0.82 0.94 0.88 107
Mandolin 0.70 0.76 0.73 147

Background 0.50 0.40 0.45 715
Accordion 0.73 0.93 0.81 107
Mandolin 0.76 0.76 0.76 147

Background 0.50 0.47 0.48 715
Accuracy 0.74 4020

Macro avg 0.75 0.75 0.75 4020
Weighted avg 0.74 0.74 0.74 4020

86 Chapter 6. Experimental results

Table 6.23: Classification report for NasNetLarge

Class Precision Recall F1Score Support
Church bell 0.87 0.99 0.93 140

Male speech, man speaking 0.63 0.74 0.68 126
Bark 0.62 0.60 0.61 89

Fixedwing aircraft, airplane 0.75 0.80 0.77 160
Race car, auto racing 0.73 0.74 0.73 128

Female speech, woman speaking 0.72 0.61 0.66 135
Helicopter 0.63 0.56 0.59 133

Violin, fiddle 0.65 0.85 0.73 151
Flute 0.97 0.94 0.96 161
Ukulele 0.80 0.82 0.81 152

Frying (food) 0.82 0.97 0.89 139
Truck 0.88 0.78 0.83 124
Shofar 0.89 0.66 0.76 88

Motorcycle 0.69 0.79 0.73 75
Acoustic guitar 0.84 0.78 0.81 178
Train horn 0.97 0.99 0.98 158

Clock 0.95 0.97 0.96 160
Banjo 0.84 0.81 0.83 175
Goat 0.67 0.72 0.69 89

Baby cry, infant cry 0.91 0.32 0.47 63
Bus 0.65 0.97 0.78 36

Chainsaw 0.83 0.82 0.82 126
Cat 0.59 0.52 0.55 33
Horse 0.39 0.30 0.34 43

Toilet flush 0.81 0.84 0.83 109
Accordion 0.77 0.93 0.84 107
Mandolin 0.69 0.67 0.68 147

Background 0.49 0.47 0.48 715
Accuracy 0.73 4020

Macro avg 0.76 0.75 0.74 4020
Weighted avg 0.73 0.73 0.73 4020

6.3 Comparison between the audio models (Using video VGG-19) 87

88 Chapter 6. Experimental results

6.4 Comparison between the video models (Using audio
VGG-like)

Table 6.24: Classification report for Nasnetlarge for AV-att and DMRN-GRU

AV-att DMRN
Class precision recall f1-score precision recall f1-score
bell 0.87 0.99 0.93 0.72 0.98 0.83
man 0.63 0.74 0.68 0.6 0.56 0.58
dog 0.62 0.6 0.61 0.53 0.58 0.55
plane 0.75 0.8 0.77 0.72 0.76 0.74
car 0.73 0.74 0.73 0.69 0.59 0.63
woman 0.72 0.61 0.66 0.75 0.61 0.67
copt. 0.63 0.56 0.59 0.59 0.61 0.6
violin 0.65 0.85 0.73 0.57 0.74 0.65
flute 0.97 0.94 0.96 0.92 0.96 0.94
ukul. 0.8 0.82 0.81 0.67 0.83 0.74
frying 0.82 0.97 0.89 0.83 0.93 0.87
truck 0.88 0.78 0.83 0.67 0.68 0.67
shofar 0.89 0.66 0.76 0.9 0.65 0.75
moto. 0.69 0.79 0.73 0.65 0.95 0.77
guitar 0.84 0.78 0.81 0.84 0.69 0.76
train 0.97 0.99 0.98 0.83 0.99 0.9
clock 0.95 0.97 0.96 0.73 0.63 0.68
banjo 0.84 0.81 0.83 0.85 0.83 0.84
goat 0.67 0.72 0.69 0.87 0.78 0.82
baby 0.91 0.32 0.47 0.64 0.51 0.57
bus 0.65 0.97 0.78 0.67 0.86 0.76
chain. 0.83 0.82 0.82 0.84 0.89 0.86
cat 0.59 0.52 0.55 0.22 0.45 0.29
horse 0.39 0.3 0.34 0.41 0.44 0.43
toilet 0.81 0.84 0.83 0.79 0.91 0.84
rodent 0.86 0.78 0.82 0.8 0.64 0.71
acco. 0.77 0.93 0.84 0.67 0.75 0.71
mand. 0.69 0.67 0.68 0.64 0.57 0.6
backgr. 0.49 0.47 0.48 0.54 0.43 0.48
accuracy 0.73 0.69
macro avg 0.76 0.75 0.74 0.69 0.72 0.7
weighted avg 0.73 0.73 0.73 0.69 0.69 0.69

6.4 Comparison between the video models (Using audio VGG-like) 89

Table 6.25: Classification report for EfficientnetB7 for AV-att and DMRN

AV-att DMRN
Class precision recall f1-score precision recall f1-score
bell 0.83 0.96 0.89 0.82 0.99 0.9
man 0.73 0.74 0.74 0.72 0.81 0.76
dog 0.63 0.67 0.65 0.51 0.69 0.59
plane 0.77 0.82 0.8 0.77 0.85 0.81
car 0.75 0.85 0.8 0.77 0.75 0.76
woman 0.83 0.69 0.75 0.92 0.73 0.81
copt. 0.76 0.65 0.7 0.68 0.68 0.68
violin 0.88 0.92 0.9 0.75 0.93 0.83
flute 0.98 0.99 0.98 0.85 0.94 0.89
ukul. 0.96 0.91 0.94 0.99 0.88 0.93
frying 0.82 0.96 0.88 0.77 0.96 0.86
truck 0.91 0.9 0.9 0.86 0.9 0.88
shofar 0.86 0.91 0.88 0.82 0.99 0.9
moto. 0.89 0.95 0.92 0.9 0.85 0.88
guitar 0.93 0.96 0.95 0.98 0.94 0.96
train 0.93 0.97 0.95 0.92 0.98 0.95
clock 0.98 0.92 0.95 0.96 1 0.98
banjo 0.86 0.79 0.82 0.82 0.86 0.84
goat 0.8 0.85 0.83 0.76 0.85 0.8
baby 0.9 0.6 0.72 0.7 0.63 0.67
bus 0.65 0.97 0.78 0.6 1 0.75
chain. 0.86 0.91 0.88 0.84 0.84 0.84
cat 0.47 0.42 0.44 0.72 0.55 0.62
horse 0.31 0.19 0.23 0.21 0.16 0.18
toilet 0.85 0.91 0.88 0.82 0.9 0.86
rodent 0.87 0.76 0.81 0.86 0.78 0.82
acco. 0.78 0.93 0.85 0.82 0.95 0.88
mand. 0.77 0.88 0.82 0.83 0.86 0.84
backgr. 0.55 0.5 0.52 0.57 0.41 0.48
accuracy 0.79 0.78
macro avg 0.8 0.81 0.8 0.78 0.82 0.79
weighted avg 0.79 0.79 0.79 0.77 0.78 0.77

90 Chapter 6. Experimental results

Table 6.26: Classification report for Efficientnetv2l for AV-att and DMRN-GRU

AV-att DMRN
Class precision recall f1-score precision recall f1-score
bell 0.83 0.98 0.9 0.82 0.96 0.88
man 0.66 0.71 0.68 0.68 0.72 0.7
dog 0.61 0.61 0.61 0.65 0.74 0.69
plane 0.66 0.89 0.76 0.74 0.91 0.82
car 0.83 0.75 0.79 0.78 0.85 0.82
woman 0.86 0.66 0.75 0.89 0.59 0.71
copt. 0.73 0.62 0.67 0.75 0.69 0.72
violin 0.79 0.79 0.79 0.8 0.9 0.85
flute 0.92 0.97 0.94 0.9 0.96 0.93
ukul. 0.93 0.98 0.96 0.81 0.98 0.89
frying 0.9 0.96 0.93 0.91 0.91 0.91
truck 0.96 0.84 0.9 0.93 0.9 0.91
shofar 0.84 0.81 0.82 0.82 0.84 0.83
moto. 0.89 1 0.94 0.82 0.95 0.88
guitar 0.89 0.87 0.88 0.92 0.79 0.85
train 0.89 1 0.94 0.97 0.96 0.96
clock 0.98 0.97 0.97 0.93 0.99 0.96
banjo 0.77 0.75 0.76 0.84 0.81 0.82
goat 0.92 0.98 0.95 0.91 0.98 0.94
baby 0.87 0.41 0.56 0.65 0.76 0.7
bus 0.76 0.89 0.82 0.66 0.97 0.79
chain. 0.91 0.97 0.94 0.82 0.97 0.89
cat 0.53 0.52 0.52 0.64 0.64 0.64
horse 0.62 0.47 0.53 0 0 0
toilet 0.88 0.91 0.89 0.92 0.94 0.93
rodent 0.89 0.9 0.89 0.9 0.81 0.86
acco. 0.83 0.91 0.87 0.84 0.97 0.9
mand. 0.72 0.78 0.75 0.77 0.86 0.82
backgr. 0.57 0.53 0.55 0.58 0.48 0.53
accuracy 0.79 0.79
macro avg 0.81 0.81 0.8 0.78 0.82 0.8
weighted avg 0.79 0.79 0.78 0.78 0.79 0.78

6.4 Comparison between the video models (Using audio VGG-like) 91

Table 6.27: Classification report for Convnextxlarge for AV-att-GRU and DMRN-GRU

AV-att DMRN
Class precision recall f1-score precision recall f1-score
bell 0.84 0.92 0.88 0.81 0.97 0.88
man 0.66 0.8 0.73 0.59 0.67 0.63
dog 0.54 0.63 0.58 0.52 0.67 0.59
plane 0.93 0.88 0.9 0.85 0.89 0.87
car 0.75 0.63 0.69 0.79 0.83 0.81
woman 0.75 0.67 0.71 0.66 0.65 0.65
copt. 0.81 0.87 0.84 0.77 0.81 0.79
violin 0.84 0.88 0.86 0.81 0.82 0.81
flute 0.85 0.96 0.9 0.81 0.96 0.88
ukul. 0.96 0.86 0.91 0.92 0.88 0.9
frying 0.83 0.81 0.82 0.81 0.84 0.82
truck 0.88 0.91 0.89 0.84 0.84 0.84
shofar 0.96 0.73 0.83 0.84 0.91 0.87
moto. 0.9 0.88 0.89 0.82 0.87 0.84
guitar 0.86 0.85 0.86 0.89 0.84 0.87
train 0.89 0.99 0.93 0.82 0.99 0.9
clock 0.99 0.91 0.95 0.95 0.9 0.92
banjo 0.91 0.86 0.88 0.82 0.87 0.85
goat 0.82 0.88 0.85 0.91 0.91 0.91
baby 0.97 0.62 0.76 0.72 0.57 0.64
bus 0.65 0.92 0.76 0.75 1 0.86
chain. 0.9 0.82 0.86 0.86 0.9 0.88
cat 0.6 0.55 0.57 0.36 0.48 0.42
horse 0.57 0.67 0.62 0.51 0.42 0.46
toilet 0.85 0.91 0.88 0.9 0.87 0.88
rodent 0.82 0.78 0.79 0.85 0.86 0.86
acco. 0.8 0.95 0.87 0.82 0.95 0.88
mand. 0.82 0.93 0.87 0.81 0.8 0.81
backgr. 0.52 0.49 0.5 0.57 0.42 0.48
accuracy 0.78 0.77
macro avg 0.81 0.81 0.81 0.77 0.81 0.79
weighted avg 0.78 0.78 0.78 0.76 0.77 0.76

92 Chapter 6. Experimental results

Table 6.28: Classification report for Convnextxlarge-7-7-490 for AV-att and DMRN

AV-att DMRN
Class precision recall f1-score precision recall f1-score
bell 0.86 0.99 0.92 0.85 1 0.92
man 0.64 0.73 0.68 0.71 0.7 0.7
dog 0.67 0.52 0.58 0.58 0.73 0.65
plane 0.91 0.81 0.86 0.91 0.91 0.91
car 0.82 0.73 0.77 0.72 0.75 0.73
woman 0.71 0.76 0.74 0.81 0.73 0.77
copt. 0.77 0.86 0.81 0.76 0.84 0.8
violin 0.83 0.93 0.88 0.81 0.95 0.87
flute 0.91 0.9 0.9 0.86 0.88 0.87
ukul. 0.9 0.93 0.91 0.85 0.93 0.89
frying 0.89 0.86 0.87 0.86 0.91 0.89
truck 0.93 0.78 0.85 0.87 0.83 0.85
shofar 1 0.85 0.92 0.88 0.84 0.86
moto. 0.89 0.99 0.94 0.87 0.88 0.87
guitar 0.87 0.84 0.86 0.86 0.8 0.83
train 0.87 0.92 0.9 0.89 0.89 0.89
clock 0.99 0.88 0.93 0.99 0.88 0.93
banjo 0.91 0.87 0.89 0.85 0.93 0.89
goat 0.88 0.99 0.93 0.8 0.99 0.88
baby 0.82 0.57 0.67 0.8 0.57 0.67
bus 0.71 0.94 0.81 0.66 0.81 0.73
chain. 0.88 0.86 0.87 0.89 0.79 0.84
cat 0.66 0.58 0.61 0.63 0.52 0.57
horse 0.57 0.49 0.53 0.45 0.21 0.29
toilet 0.87 0.89 0.88 0.84 0.87 0.86
rodent 0.88 0.88 0.88 0.84 0.8 0.82
acco. 0.81 0.93 0.87 0.82 0.93 0.87
mand. 0.84 0.93 0.88 0.9 0.84 0.87
backgr. 0.52 0.51 0.52 0.5 0.47 0.48
accuracy 0.79 0.78
macro avg 0.82 0.82 0.82 0.8 0.8 0.79
weighted avg 0.79 0.79 0.79 0.77 0.78 0.77

Part III

Conclusion

93

Chapter 7

Conclusion and future work

7.1 Conclusions
Numerous models have been discovered that surpass previous state-of-the-art perfor-

mance in localization tasks.
Wav2vec, despite being designed for speech recognition, can provide valuable audio

feature information for event localization.
Similarly, MaskFormer classes, though intended for segmentation, offer valuable visual

feature information for event localization.
Using GRU reduces time while maintaining similar accuracy levels.
Feature dimensions are important, but when handled properly, they can be reduced

with minimal data loss, resulting in faster models. PCA is a preferable approach compared
to mean averaging. Moreover, it is more effective to perform PCA for each audio file, rather
than after all features have been extracted.

7.2 Future work
As was shown in musicnn mtt and musicnn msd, combination of multiple layers of the

same pre-trained model can lead to better performance of the audio features. This should
be further explored. These features could be concatenated or otherwise a PCA could be
performed to reduce the dimensions.

Furthermore, there is the possibility that a combination of audio or visual features
from different pretrained models could extract a better audio/visual feature. These could
happen if these models were trained on different datasets.

There are multiple other pretrained models that could be used for this task.
This task should run for other datasets, such as: VGG sound, VGG-SS (VGG-Sound

Source), Kinetics, LLP dataset.

95

Bibliography

[1] Yan-Bo Lin, Yu-Jhe Li, and Yu-Chiang Frank Wang. Dual-modality seq2seq network
for audio-visual event localization, 2019.

[2] Yapeng Tian, Jing Shi, Bochen Li, Zhiyao Duan, and Chenliang Xu. Audio-visual
event localization in unconstrained videos, 2018.

[3] Jennifer Joana Gago, Valentina Vasco, Bartek Łukawski, Ugo Pattacini, Vadim
Tikhanoff, Juan Victores, and Carlos Balaguer. Sequence-to-Sequence Natural Lan-
guage to Humanoid Robot Sign Language. July 2019.

[4] Junhui Zhao, Yiwen Nie, Shanjin Ni, and Xiaoke Sun. Traffic data imputation and
prediction: An efficient realization of deep learning. IEEE Access, 8:46713–46722,
2020.

[5] Konstantinos Pyrovolakis, Paraskevi Tzouveli, and Giorgos Stamou. Multi-modal
song mood detection with deep learning. Sensors, 22(3):1065, jan 2022.

[6] jordipons/musicnn. Musicnn. https://github.com/jordipons/musicnn, 2020.

[7] Bhupendra Pratap Singh. Imaging Applications of Charge Coupled Devices (CCDs)
for Cherenkov Telescope. May 2015.

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[9] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Net-
works, 61:85–117, jan 2015.

[10] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer, 2008.

[11] Jerome Friedman. The Elements of Statistical Learning Data Mining, Inference, and
Prediction. Springer-Verlag New York, 2009.

[12] I. T. Jolliffe. Principal Component Analysis. Springer New York, May 2006.

[13] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with
neural networks, 2014.

97

https://github.com/jordipons/musicnn
http://www.deeplearningbook.org

98 Bibliography

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-
putation, 9(8):1735–1780, nov 1997.

[15] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On
the properties of neural machine translation: Encoder-decoder approaches, 2014.

[16] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks,
2015.

[17] Geoffroy Peeters and Gaël Richard. Deep learning for audio and music. In Multi-
faceted Deep Learning, pages 231–266. Springer International Publishing, feb 2012.

[18] Konstantinos Pyrovolakis, Paraskevi Tzouveli, and George Stamou. Mood detection
analyzing lyrics and audio signal based on deep learning architectures. In 2020 25th
International Conference on Pattern Recognition (ICPR). IEEE, jan 2021.

[19] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition, 2014.

[20] Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence,
R. Channing Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and
human-labeled dataset for audio events. In 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, mar 2017.

[21] Shawn Hershey, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke, Aren
Jansen, R. Channing Moore, Manoj Plakal, Devin Platt, Rif A. Saurous, Bryan Sey-
bold, Malcolm Slaney, Ron J. Weiss, and Kevin Wilson. CNN architectures for
large-scale audio classification. In 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, mar 2017.

[22] Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec:
Unsupervised pre-training for speech recognition. In Interspeech 2019. ISCA, sep
2019.

[23] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech:
An ASR corpus based on public domain audio books. In 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, apr 2015.

[24] Alexei Baevski, Steffen Schneider, and Michael Auli. vq-wav2vec: Self-supervised
learning of discrete speech representations. arXiv, 2019.

[25] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec
2.0: A Framework for Self-Supervised Learning of Speech Representations. CoRR,
abs/2006.11477, 2020.

[26] Jordi Pons and Xavier Serra. musicnn: Pre-trained convolutional neural networks for
music audio tagging, 2019.

Bibliography 99

[27] Aurora Linh Cramer, Ho-Hsiang Wu, Justin Salamon, and Juan Pablo Bello. Look,
listen, and learn more: Design choices for deep audio embeddings. In ICASSP 2019
- 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, may 2019.

[28] Relja Arandjelović and Andrew Zisserman. Look, listen and learn, 2017.

[29] Rafael C. Gonzalez. Digital image processing. Prentice Hall, 2002.

[30] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010.

[31] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment:
From error visibility to structural similarity. IEEE Transactions on Image Processing,
13(4):600–612, apr 2004.

[32] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[33] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hier-
archies for accurate object detection and semantic segmentation, 2013.

[34] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks, 2015.

[35] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, jun 2016.

[36] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks
for semantic segmentation, 2014.

[37] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig
Adam. Encoder-decoder with atrous separable convolution for semantic image seg-
mentation, 2018.

[38] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn, 2017.

[39] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks,
2014.

[40] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013.

[41] Dimitrios Kollias, Anastasios Arsenos, and Stefanos Kollias. A deep neural architec-
ture for harmonizing 3-d input data analysis and decision making in medical imaging.
March 2023.

100 Bibliography

[42] Dimitrios Kollias, Anastasios Arsenos, and Stefanos Kollias. Ai-mia: Covid-19 detec-
tion and severity analysis through medical imaging, 2022.

[43] Dimitrios Kollias, Andreas Psaroudakis, Anastasios Arsenos, and Paraskeui The-
ofilou. Facernet: a facial expression intensity estimation network, 2023.

[44] Dimitrios Kollias and Stefanos Zafeiriou. Affect analysis in-the-wild: Valence-arousal,
expressions, action units and a unified framework, 2021.

[45] François Chollet. Xception: Deep learning with depthwise separable convolutions,
2016.

[46] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition, 2015.

[47] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision, 2015.

[48] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weĳun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications, 2017.

[49] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks, 2016.

[50] Barret Zoph, Vĳay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning trans-
ferable architectures for scalable image recognition, 2017.

[51] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolu-
tional neural networks. 2019.

[52] Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller models and faster training.
2021.

[53] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell,
and Saining Xie. A convnet for the 2020s, 2022.

[54] Bowen Cheng, Alexander G. Schwing, and Alexander Kirillov. Per-pixel classification
is not all you need for semantic segmentation, 2021.

[55] Jacob Kahn, Morgane Rivière, Weiyi Zheng, Evgeny Kharitonov, Qiantong Xu,
Pierre-Emmanuel Mazaré, Julien Karadayi, Vitaliy Liptchinsky, Ronan Collobert,
Christian Fuegen, Tatiana Likhomanenko, Gabriel Synnaeve, Armand Joulin, Abdel-
rahman Mohamed, and Emmanuel Dupoux. Libri-light: A benchmark for asr with
limited or no supervision. 2019.

Bibliography 101

[56] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet:
A large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, jun 2009.

[57] Shawn Hershey, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke, Aren
Jansen, R. Channing Moore, Manoj Plakal, Devin Platt, Rif A. Saurous, Bryan Sey-
bold, Malcolm Slaney, Ron J. Weiss, and Kevin Wilson. Cnn architectures for large-
scale audio classification, 2016.

[58] tensorflow/models. Models for audioset: A large scale dataset of au-
dio events. https://github.com/tensorflow/models/tree/master/research/
audioset/vggish, 2021.

[59] Facebook AI Research. Wav2vec example in fairseq. https://github.com/
facebookresearch/fairseq/blob/main/examples/wav2vec/README.md, 2021.

[60] Simon Haykin. Neural Networks and Learning Machines. Papasotiriou, 3rd edition
edition, 2010. Translator: Gkagkatsiou, Eleni.

[61] Liyun Gong, Miao Yu, Vassilis Cutsuridis, Stefanos Kollias, and Simon Pearson. A
novel model fusion approach for greenhouse crop yield prediction. Horticulturae,
9(1):5, dec 2022.

https://github.com/tensorflow/models/tree/master/research/audioset/vggish
https://github.com/tensorflow/models/tree/master/research/audioset/vggish
https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec/README.md
https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec/README.md

	Περίληψη
	Abstract
	Acknowledgements
	Introduction
	Subject of diploma thesis
	Similar work
	Document format

	I Theory
	Description of the concept
	Audio and Visual Event localization
	Audio and Visual module

	Theoretical background
	Machine learning and Neural networks
	Neural networks
	Transfer Learning
	Pre-processing
	Feature extraction
	Embeddings
	Dimensionality reduction
	Principal Component Analysis (PCA)
	Principal Component Analysis (PCA) Application
	Sequence labeling
	Recurrent neural networks
	Long Short-Term Memory Networks (LSTMs)
	Gated Recurrent Unit (GRU)
	Differences and advantages between the two networks

	Convolutional Neural Networks (CNN/ConvNet)

	Multimodal machine learning
	Audio module
	Representations of audio signals
	Audio used in machine learning
	Audio neural networks
	VGGish
	Wav2vec
	vq-Wav2vec
	VQ-Wav2vec kmeans

	Wav2vec 2.0
	Wav2vec Vox New
	Wav2vec and wav2vec 2.0

	Musicnn
	Yamnet
	Openl3

	Visual module
	Visual tasks
	Segmentation

	Visual neural networks
	VGG-19
	Xception
	ResNet50 and ResNet152
	Inceptionv3
	MobileNet
	Densenet201
	Nasnetlarge
	EfficientNetB7
	EfficientNetV2l
	ConvNextXlarge
	Maskformer

	II Practical part
	Data
	Datasets
	AVE: The Audio-Visual Event Dataset
	Audio-Set
	LibriSpeech
	Libri-Light
	Imagenet
	MagnaTagATune (MTT) dataset
	Million Song Dataset (MSD)

	Implementation
	Audio-Visual objective
	Audio-Visual event localization parts
	Pre-processing, feature extraction and transformation of features
	Pretrained models for audio feature extraction
	VGGish
	Wav2vec, vq-Wav2vec and Wav2vec 2.0
	musicnn
	MTT and MSD musicnn
	musicnn VGG MTT

	Yamnet
	Openl3

	Pretrained models for visual feature extraction
	VGG-19
	Xception
	ResNet50 and ResNet152
	Inceptionv3
	MobileNet
	Densenet201
	Nasnetlarge
	EfficientNetB7
	EfficientNetV2l
	ConvNextXlarge
	Maskformer
	Class query logits and mask query logits as visual features
	Implementation

	AV-att model
	DMRN model
	Attention map
	Attention map visualization

	Audio only model
	Visual only model
	AV att model with GRU
	DMRN model with GRU

	Experimental results
	Results and comparison between different models
	Accuracy for best models
	Accuracy for audio models with video vgg-19
	Accuracy for video models with audio VGG-like
	Accuracy for various models
	Wav2vec audio feature extraction models and different methods
	Comparison between the audio models by using Audio only network
	Comparison between the video models by using Video-only network
	Video model Efficientnetb7 for different transformations and audio features

	Comparison of models by time and other metrics
	Comparison between the audio models (Using video VGG-19)
	Comparison between the video models (Using audio VGG-like)

	III Conclusion
	Conclusion and future work
	Conclusions
	Future work

	Bibliography

