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“When one admits that nothing is certain one must, I think, also add that
some things are more nearly certain than others.”

Bertrand Russell, Am I An Atheist Or An Agnostic? 1947



Abstract

In recent years, growing concern for the reliability of ship structures has emerged among
stakeholders in the maritime sector. In looking to enable a paradigm shift towards predictive
maintenance, the field of Structural Health Monitoring (SHM) has emerged as a viable option.
The goal of SHM systems is to infer the existence or level of structural degradation using large
amounts of in situ sensor-obtained data. In the present work, the problem of damage diagnosis
in stiffened panel geometries is treated. Out-of-plane deflections of the panel’s plate elements
are considered as the damage case of interest, while strain response data are employed as the
damage-sensitive features. By accounting for different sources of operational variability, two
different approaches that rest on a probabilistic foundation are employed for damage detection.
In the first, the problem is cast as one of multi-class classification, where the different classes
correspond to discrete deflection levels, and a detection theory-based classifier is employed.
In the second, the problem is treated as one of probabilistic regression, where the goal is to
map strain readings to the probability distribution of the deflection magnitude. Both methods
are implemented on a realistic stiffened panel geometry, based on an existing vessel, with all
the employed data acquired through a numerical workflow that involves a high-fidelity Finite
Element (FE) model and a surrogate model.

Keywords: Structural health monitoring, hull stiffened panel, uncertainty quantification,
surrogate modeling, strain sensing
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Περίληψη

Τα τελευταία χρόνια έχει σημειωθεί αυξανόμενο ενδιαφέρον για την αξιοπιστία των

ναυπηγικών κατασκευών από τα ενδιαφερόμενη μέρη που εμπλέκονται στον ναυτιλια-

κό τομέα. Επιδιώκοντας την πυροδότηση μιας μεταβολής παραδείγματος προς την

προγνωστική συντήρηση, ο τομέας της Παρακολούθησης Δομικής Ακεραιότητας (ΠΔΑ)

κατασκευών έχει αναδειχθεί ως βιώσιμη επιλογή. Ο στόχος των συστημάτων ΠΔΑ

είναι η εξαγωγή συμπερασμάτων σχετικά με την ύπαρξη ή το βαθμό δομικής υπο-

βάθμισης, χρησιμοποιώντας μεγάλες ποσότητες δεδομένων από επιτόπιους αισθητήρες.

Στην παρούσα εργασία, το πρόβλημα της διάγνωσης βλαβών εστιάζεται στις γεωμε-

τρίες ενισχυμένων ελασμάτων. Ως βλάβες ενδιαφέροντος θεωρούνται οι βυθίσεις των

επιμέρους πλακιδίων του ενισχυμένου ελάσματος, ενώ ως παράμετροι προς εποπτε-

ία λαμβάνονται οι αποκρίσεις παραμόρφωσης του συστήματος. Λαμβάνοντας υπόψη

διαφορετικές πηγές επιχειρησιακής μεταβλητότητας, δύο διαφορετικές προσεγγίσεις

πιθανοθεωρητικής φύσεως χρησιμοποιούνται για τον εντοπισμό βλαβών. Στην πρώτη

προσέγγιση, το πρόβλημα ανίχνευσης προσεγγίζεται ως ένα πρόβλημα ταξινόμησης

πολλαπλών κλάσεων, όπου οι επιμέρους κλάσεις αντιστοιχούν σε διαφορετικά επίπεδα

βυθίσεων, ενώ χρησιμοποείται ένας ταξινομητής βασισμένος στην θεωρία ανίχνευσης.

Στην δεύτερη, το πρόβλημα συντάσσεται ως πρόβλημα πιθανοθεωρητικής παλινδρόμη-

σης, όπου ο στόχος είναι η αντιστοίχιση των μετρήσεων παραμόρφωσης στις κατανομές

πιθανότητας των διαφόρων μέτρων βύθισης. Και οι δύο μέθοδοι εφαρμόζονται σε μια

ρεαλιστική γεωμετρία ενισχυμένου ελάσματος, βασισμένη σε ένα υπάρχον πλοίο, με όλα

τα δεδομένα να εξάγονται μέσω μιας αριθμητικής ροής εργασιών που περιλαμβάνει

ένα μοντέλο Πεπερασμένων Στοιχείων (ΠΣ) υψηλής ακρίβειας και ένα υποκατάστατο

μοντέλο.

Λέξεις-κλειδιά: Παρακολούθηση δομικής ακεραιότητας κατασκευής, ενισχυμένο

έλασμα γάστρας, ποσοτικοποίηση αβεβαιοτήτων, υποκατάστατη μοντελοποίηση,

αισθητήρια μέτρηση παραμόρφωσης
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Chapter 1

Introduction

1.1 Current state of damage identification practices
Preservation of structural integrity is a challenging task for infrastructure systems with
geometry- and operational-level complexities, such as ships, offshore and land-based structures.
This task starts as early as the design phase, which is viewed as the optimal time to incorporate
measures for reducing failure risk, and continues through the entire service life of the asset
by planning proper preventive maintenance regimes. For ship structures, which lie within
our primary area of interest, these are framed around periodic surveys and self-regulatory
inspections. The former are undertaken by classification societies, which act as private
third parties under the auspices of the International Association of Classification Societies
(IACS), while the latter are promoted by industry initiatives [1, 2]. Due to scale, time and
access constraints, inspection practitioners typically perform visual examinations on certain
damage-prone locations, following empirically-derived guidelines. If the visual method does
not suffice, a suitable Non-Destructive Testing (NDT) technique is deployed on-site for a more
refined assessment. The current NDT methods that dominate the field can be classified into
three main categories; namely, (enhanced) visual and radiographic, acoustic, and magnetic
techniques [3]. Once structural damage has been identified by means of the employed
inspection method, the operator must determine whether or not appropriate repair/renewal and
maintenance should be performed. Selecting a suitable repair alternative involves a great deal
of judgment and engineering insight, and is typically a trade-off between robustness and cost.

For a system with significant structural redundancy, like a ship structure [4], this methodology
has proven effective to safeguard its integrity, primarily until the next special survey. Admittedly,
however, there are several inherent limitations in visual and NDT techniques, placing current
practice in a less than optimal position. The human factor is one ring of the chain that poses
significant influences on the inspection outcomes, while also being very difficult to quantify
due to its multivariable, complex nature. Technical constraints as well as external and/or
uncontrollable factors also add up to the variables affecting the inspection performance. In any
case, existing procedures, at their core, provide discrete measurement points in time and are
mostly preferred to be performed in-shore, which is quite unsuited to the important concept of
a continuously safe operating envelope. Given the operational and aging process stochasticity
involved in ship structures, the aforementioned may precipitate unforeseeable events, which,
in the worst-case scenario, may be translated into a total structural failure of the asset (i.e.,
hull girder collapse) with catastrophic economical, social, and environmental consequences.

Normally, the likelihood of a hull girder collapse grows with the accumulation of localized,
unrepaired damage at individual structural components of the hull, which reduces their ultimate
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Chapter 1. Introduction

strength performance. The risk increases even more when damage occurs to elements furthest
from the ship’s cross-section neutral axis (i.e., the main deck or bottom), where stresses
during regular navigation are greatest. Parameters that can affect the ultimate strength of these
structural elements range from material uncertainties to externally induced factors. One that is
of high influence and potentially may go undetected is associated with the fabrication-related
initial imperfections (i.e., initial distortions and residual stresses) [3], inherent to welded
thin-walled structures. Considering that the ship structure is in essence an assembly of plates
and stiffened panels, it is evident that the initial deflections of plate elements are of primary
detection interest for ensuring safe structural operation. This applies particularly in the
case of plates in compression, where the impact of initial deflections magnifies significantly,
considering that the added destabilizing moment causes the plate to enter a pre-buckled state
almost immediately after loading starts. The recent accident of the 8000 TEU containership
MOL Comfort in the hogging condition (i.e., convex hull girder bending) could be cited as an
example of this type. According to the relevant investigation reports [5–7], evidence suggests
that the occurrence of pre-existing buckling damage in the shell plates of her midship bottom
(see Figure 1.1a) most likely acted as a catalyst for the accident. Apparently then, the degraded
double bottom structure in tandem with other, relatively intractable factors (e.g., misdeclared
cargo weights, bottom local loads, whipping vibrations, etc.) led to an unexpected overloading
scenario amidships, as seen in Figure 1.1b.

(a) (b)

Figure 1.1: Photos capturing (a) the buckling deformations observed in the bottom shell
plating of a sister vessel of MOL Comfort, and (b) her condition at the time of the accident.
Reproduced from Sumi et al. [7].

Although the preceding is undoubtedly not a singular example of the inadequacy of the
existing conventional regime, it is one of the more profound examples illustrating the need
for enabling a paradigm shift into a more holistic and proactive approach to maintenance,
i.e., Condition-based Maintenance (CBM). Indeed, the maritime sector, empowered by
the advancements brought by the fourth industrial revolution (Industry 4.0), has recently
turned its sights towards this direction as a means of staying ahead of the competition and

2
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globalizing. Essentially, CBM recommends maintenance actions (i.e., decisions) based on
data gathered through a process of condition monitoring allowing operators to gain access to
salient benefits [8]. Weighed against preventive maintenance, the primary advantages CBM
offers are the increased system reliability as well as the significant cost savings due to the
reduced material wastage and the decreased mean downtime as a result of less reliance on
periodic inspections. The next section delves into the concepts of Digital Twin (DT) and
Structural Health Monitoring (SHM), which both play an increasingly important role in the
realization of the CBM paradigm.

1.2 Digital Twin technology and Structural Health Monitoring
The DT concept was originally introduced by Michael Grieves at the University of Michigan
in 2002. In 2010, the National Aeronautics and Space Administration (NASA) formalized the
DT concept in a draft strategic roadmap, with the intention of using it to run simulations of
space capsules targeted at their service performance and operational safety upgrades [9].

From a practical perspective, a DT can be defined as the computerized companion of a
real-world physical asset, i.e., the Physical Twin (PT), intended to serve as a dynamic and
accurate replica of the PT’s behavior within a target setting [10–12]. To ensure solid physical
interpretability, the DT should be augmented with high-fidelity physics-based models, which
will be constantly updated as data from permanently installed sensors on the PT will be
received in a real-time fashion. The DT can then be leveraged for conducting different
“what-if” scenarios of service function (i.e., operation, inspection, etc.) for the life-cycle
integrity management of the PT. The extant literature underlines many of the prospective and
immediate benefits of the DT intervention in the industrial arena that accumulate to the PT’s
overall efficiency, including risk [13] and cost [14] reduction; security [15], resilience [16],
and reliability [10, 17] enhancement; and, of course, decision-making assistance [18–20].

The breadth of the aforementioned potential benefits has ignited great interest across different
sectors of the engineering spectrum. Speaking of the maritime industry, it appears more
natural for classification societies to incorporate DT-related technologies into their pool of
future plans compared to shipping companies themselves. Namely, in [21], authors already
implied that classification societies, in an effort to keep pace with digitalization, should take
the initiative to proactively reduce the risk of operational errors, and, indeed, several major
ones have referred to the DT concept as the backbone in their strategy for digitalization [22–24].
An example of a DT of an Floating Production Storage and Offloading (FPSO) hull structure
is represented in Figure 1.2.

As a modern branch of structural engineering founded on remote data retrieval schemes,
SHM plays a key role in the future trajectory of DT technology development. Essentially, the
main challenge behind every SHM system deployed on a given asset is to infer the state of
its structural health from (filtered and processed) in-situ sensor signal data. It is a field that

3



Chapter 1. Introduction

Figure 1.2: DT technology for an FPSO hull structure: Interaction between the physical space
and the digital space. Reproduced from [22].

encompasses knowledge and expertise sourcing from a variety of disciplines (e.g., structural
engineering, data management, computer science, etc.) and has been a major subject of
study for the better part of the last four decades [25]. The three primary drivers for SHM, as
discussed in the relevant literature, are: (1) the life-safety gains attainable by continuously
monitoring critical components; (2) the economic benefits attainable by avoiding unnecessary
inspection and maintenance actions that could result in disruptive and costly downtime; and (3)
the potential for optimized performance of newly erected structures, whose health state may
be monitored and, by extension, determined from the onset [26]. SHM methodologies can be
broadly classified as either diagnostic or prognostic, depending on whether they are used for
pre- or post-event analysis. By definition, diagnostics is intended to shed light on the presence
(Level I), location (Level II), and extent (type and/or severity —- Level III) of the damage,
whereas prognostics on the remaining useful life of the monitored system (Level IV) [27].
This work’s center of gravity resides in the diagnostic aspect.

Regardless of the event analysis considered, SHM methodologies may be further partitioned in
a formal manner into two subsets; the model-based and the data-based ones [28]. Model-based
approaches use the predictions of a representative physics-based model of the target structure,
typically within a Finite Element (FE) model updating setting. Therefore, any health-related
decisions can be made based on the changes in the updated structural parameters. The
model updating problem is an inverse problem in mathematics and, thus, has an inherent
capability to implicitly quantify uncertainties arising from both inherent (physical) variability
and prediction/modeling errors, bridging the gap to real-world applications. Despite the
success of this approach for damage identification purposes, a critical challenge still remains.
Capturing relatively small-scale damage states necessitates high-resolution FE models, which
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in turn leads to a high-dimensional inverse problem that can quickly become computationally
intractable. In the data-driven paradigm, SHM problems may be posed in the context of
Statistical Pattern Recognition (SPR) [29], where the characteristics of the current structural
condition are identified directly by analyzing, in probabilistic terms, the change of structural
response patterns induced by the presence of damage. The primary distinction between the two
methods resides in the fact that, in the data-driven method, only information from previously
collected data (training data) is available, without the need to explicitly analyze any model.
The pragmatic and agile nature of this approach equates to the real-time operation of the
applied damage identification algorithm, which suits better for deploying CBM on complex
systems. Propelled by the latter statement, the detection problem pursued in this work is cast
within a data-driven scheme.

1.3 Vibration- and strain-based SHM methodologies
Within the framework of SHM, the damage to be identified is defined as “changes introduced
into a system that adversely affect its current or future performance” [25]. As Axiom IVa
of SHM states [30], however, sensors cannot directly measure damage. This indicates that
measured quantities need to be collected, wherein features informative of the structure’s health
state lie. Both static and dynamic response data have been utilized for SHM applications. The
latter approach, is broadly known as vibration-based SHM, whereas the former, as (static)
strain-based SHM.

Vibration responses (i.e., accelerations, dynamic strains) and, primarily, their extracted
features (e.g., vibration frequencies, mode shapes, modal curvatures, etc.) have long occupied
a prominent place in SHM systems, shaping low-cost solutions suitable for continuous
monitoring of large-scale structures [31–33]. Significant effort has been devoted to vibration-
based damage detection and/or localization within SHM in recent research activities as well,
such as those concerned with civil infrastructure systems [34–39], aerospace structures [40–42],
ship hull structures [43–45], as well as with critical parts of offshore [46, 47] and onshore [48–
50] wind turbines. However, small-scale damage states in extensive structures that operate
under considerable ambient vibration (e.g., a localized manufacturing defect in a 250 m ship
hull) can pose difficulties for conventional vibration-based techniques in distinguishing the
resultant differences in the dynamic characteristics. Approaches exploiting static responses,
on the other hand, are not bound by such limitations since they directly transform the strain
redistribution caused by damage to information on its presence and/or extent. In this direction,
a sensor layout that registers static strains might well serve the aforementioned purpose.
Static strain-based approaches can be found in some legacy studies published in the pertinent
literature [51, 52]. Recent studies [53–58] and practical applications [59] have effectively
implemented the same principle for SHM of aerospace structures. The concept of strain-based
SHM is also finding applications in the field of marine engineering. Namely, it has been used
for problems concerning simplified thin-walled geometries that abstractly represent a ship
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hull [60, 61], as well as a more representative structure, i.e., a marine vessel [62].

1.4 Thesis objectives and overview
The previous sections were aimed at providing a condensed version of the necessary context
so that the reader naturally arrives at the centerpiece of this thesis. Namely, using the MOL
Comfort accident as a motivation while acknowledging the overall added value of SHM
implementation, this work envisages the design of SHM detectors capable of identifying
localized damages in large-scale structures through a limited number of strain sensors.
Considering that most large-scale structures operate in a stochastic environment, a crucial
feature of this study is the identification and early allowance of potential sources of variability
in the design phase; therein appears to lie both the challenge and the novelty value of this thesis.
This can be accomplished by describing the various sources of uncertainty as basic random
variables, which suggests that a probabilistic treatment of the problem is to be required.

In this direction, the present work aims to assess probabilistic neural networks and binary
signal detection theory as formulation tools for the detection problem under operational
and fabrication-induced geometric variability. From this point onward, these are grouped
under the heading of input source variability, for the sake of brevity. For demonstration
purposes, an 8000 TEU and 316 m long containership (i.e., MOL Comfort) is considered as the
representation of the large-scale critical structure. The localized damage of detection interest is
represented by an array of bathtub-shaped plate deflections, typical of shipbuilding and repair
operations, located at the external bottom of the central hold, which exceed a deterministic
maximum allowable limit. Strain response data are employed as the damage-sensitive features,
obtained from a surrogate model trained on the outputs of a high-fidelity FE model.

The succeeding chapters build on the aforementioned subjects and describe in depth the
rationale and procedures followed to methodically arrive at the purpose of this thesis. In
Chapter 2 the theoretical underpinnings related to the concepts and tools used in this thesis
are laid out. In Chapter 3 the development of the problem at hand is described followed by
the details on the FE modeling procedure. The procedure behind the choice of the damage-
sensitive features is presented in Chapter 4 along with the construction of the surrogate model
used to alleviate the burdensome computational demands of the numerical modeling campaign.
Chapter 5 features the formulation of the damage identification methods employed in this
work, as well as a review of the results and discussion upon them. Finally, Chapter 6 concludes
with a summary of this work, some concluding remarks on the subject, and suggestions for
future extensions.

6



Chapter 2

Theoretical background

This chapter presents in theoretical terms the basic concepts and tools of analysis tied with
the technical portion of this thesis. By the end of this chapter, the reader should have a solid
understanding of the concepts such as Statistical Pattern Recognition (SPR), Uncertainty
Quantification (UQ), Monte Carlo Simulation (MCS), surrogate modeling, Finite Element
Method (FEM), detection theory, and Artificial Neural Networks (ANNs). For a further
exposure to the discussed topics, the interested reader is referred to the cited references
encountered throughout this chapter.

2.1 SHM as a problem in Statistical Pattern Recognition
Pattern recognition is not a new field of research; applications around the topic trace back up
to the early 1970s. In its most basic definition, it may be defined as a tool dedicated to the
automated recognition of regularities in data. Basic mathematical models framed around a
shared domain concerning a particular application can oftentimes be used to extract patterns
from a data-set and associate them with different classes. In the early 1990s, however, it was
realized that rather of depending on models designed by researchers to classify data, machines
could be used to learn from the data and use that knowledge to generate the most probable
outcome (i.e., prediction) of an unseen event. The outcome of this prediction is the product
of Statistical Pattern Recognition (SPR) algorithms, which are part of the broader field of
Machine Learning (ML).

In the context of SHM, the SPR paradigm starts with sensor data from the monitored
structure and ends with damage identification to assess its structural condition. The goal
is to distinguish between variations of the measured response associated with the healthy
state under operational and environmental variability, and those related to damaged structural
conditions. In accordance with the description provided by Farrar et al. [63], the SPR paradigm
can be partitioned into four stages: (1) operational evaluation; (2) data acquisition; (3) feature
extraction and generation; and (4) statistical model development. Inherent in the last three
stages are the numerical physics-based models and the ML algorithms.

Typically, the ML algorithms employed in statistical model development fall into one of the
following categories:

(i) Group classification: In this case, the algorithm predicts a discrete class label for a given
input.

(ii) Regression analysis: In this case, the algorithm predicts one or more continuous variables.

(iii) Outlier detection: In this case, the algorithm is expected to only indicate whether or not
the data originates from normal operating conditions.
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The appropriate algorithm is selected based on whether supervised or unsupervised learning
is possible, which is directly tied to data availability, as well as on the characteristics of the
data to be analyzed. Supervised learning refers to the training of algorithms with data derived
from the structure in both its intact and damaged states. In this case, group classification and
regression are the most common tasks. Unsupervised learning refers to the case where all
available training data come from the undamaged state. This type of learning suits well for
outlier detection. However, it only gives indications about the presence of damage. Conversely,
in the supervised mode, the statistical algorithms can be used to address the entirety of
the damage identification hierarchy. The present study focuses on supervised learning, as
the problem at hand solely involves fully labeled data obtained numerically using a Finite
Element (FE) model.

Consistent with the aims of the SPR paradigm, this study employs a probabilistic framework
to tackle the damage identification problem from two different perspectives. In the first,
the problem is viewed through the prism of detection theory [64]. In this setting, damage
identification is treated as a discrimination problem (binary and potentially, multi-class
classification) in which classes are associated with different levels of deflection. Detection
theory-based classifiers rely on a robust probabilistic foundation and are therefore capable of
capturing uncertainty present in the data as well as quantifying predictive uncertainty, since
they are assessed through performance metrics that quantify the risk associated with a decision.
In the SHM literature, this is a prevalent and well-established methodology [62, 65–69].

In the second, the damage identification problem is expressed by casting it as one of probabilistic
regression. In this case, the goal is to learn a mapping between features of interest (i.e., in
our case strain readings), and a quantity that can be considered as an indicator of damage
(i.e., plate deflection magnitude), or more accurately, a probability distribution of that quantity.
By setting an appropriate threshold on the latter, that signifies the existence of damage, then the
problem of damage identification can be tackled directly. This approach has been implemented
using a variety of techniques, including Bayesian neural networks [70], Gaussian process
regression [71, 72], and probabilistic neural networks [73, 74], the latter of which will be
employed in the current study.

2.2 Probabilistic analysis of structures and Uncertainy Quantification
2.2.1 Sources and types of uncertainty

There is no argument that, in practice, structural systems are subject to a multitude of uncertainty
sources. Uncertainties generally fall into two categories; namely, aleatoric and epistemic [75].
The concept of “aleatoric uncertainty” is related to the unavoidable inherent randomness
or variability of the systems. Aleatoric uncertainty in engineering problems may become
present in structural loads, as well as in material properties, structural dimensions (scantlings),
and fabrication-related geometric tolerances, just to mention a few. Errors associated with
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the deployed data acquisition system (e.g., measurement noise, sensor misplacements, etc.)
also fall under this category. Essentially, inherent variability is a state of nature, and the
accompanying uncertainty is irreducible; in layman’s terms, aleatoric uncertainty is something
we have to live with. Due to its random nature, it is typically described in probabilistic terms
with a probability density function (PDF). In contrast, epistemic uncertainty is associated
with the discrepancies in relation to the real state of nature that result from the lack of
knowledge/modeling errors in general. Foremost among the sources of epistemic uncertainty
is the prediction error related to the computational modeling procedures that have gained
popularity in the last decades for several applications of practical interest in science and
engineering. Theoretically, the uncertainty associated with these types of errors can be
reduced by employing better physical-mathematical models or gathering additional data. From
a more practical standpoint, the prediction error component is oftentimes represented under
an idealized additive White Gaussian Noise (WGN) assumption, together with the uncertainty
arising from measurement noise.

2.2.2 Monte Carlo Simulation-based UQ

The response of a system subject to uncertain inputs is inherently stochastic. Uncertainty
quantification (UQ) is gaining increasing importance in computational analysis of complex
physical systems, particularly in the areas of risk analysis, reliability analysis, and decision-
making. Within a forward propagation framework, UQ analyzes and quantifies the impact
of input uncertainties on the system response. Typically, the system is represented by a
deterministic computational model M (e.g., an FE model). The input is described as a random
vector X that includes 𝑑 possibly coupled parameters, and has a joint PDF denoted as 𝑓X.
The computational model converts a specific realization of X = x into an uncertain output
𝑦 = M(x), which, for the sake of simplicity, is assumed here to be an observed realization of
a univariate random variable 𝑌 . The generalization to multivariate outputs is trivial.

In UQ problems, various properties of 𝑌 , such as its underlying PDF 𝑓𝑌 , its moments, and
its sensitivity to the different components 𝑋𝑖 of X, are of interest. Specifically, to estimate
the main statistical descriptors of the outputs represented by 𝑌 ∼ 𝑓𝑌 , the mean value can be
expressed as:

𝜇𝑌 = E[𝑦] = E[M(x)] =
∫
𝑆 𝑓X

M(x) 𝑓X(x)𝑑x (2.1)

where 𝑆 𝑓X = {x ∈ R𝑑 : 𝑓X(x) > 0} is the support of 𝑓X(x); subsequently, the variance can be
expressed as:

𝜎2
𝑌 = V[𝑦] = V[M(x)] = E[M2] − E[M]2 (2.2)

Considering that M is often a complex model that is explicitly unknown, the integrals in
these equations are analytically intractable. The system’s behavior can only be determined
in a point-by-point fashion in relation to the inputs x( 𝑗) sampled from 𝑓X, where the model
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generates responses 𝑦 ( 𝑗) = M(x( 𝑗)) (non-intrusive or “black-box” method). The standard, and
most general, method for tackling problems of this type is the Monte Carlo Simulation (MCS)
method.

MCS is a sampling-based approach that is used to compute summary statistics for the
quantity of interest (QoI) and evaluate its probability density. To approximate the integrals
in Equation 2.1 and 2.2, sampling methods rely on the law of large numbers. Essentially,
the concept behind it is that the PDF of the QoI can be estimated by repeatedly running the
simulation with inputs randomly drawn from their corresponding PDF. There are three steps
in its implementation:

1. Random sampling: Draw 𝑁𝑀𝐶 points x( 𝑗) as independent and identically distributed
(i.i.d) samples from 𝑓X using a random number generator that usually implements the
inverse-transform technique (see [76] for further details).

2. Numerical experimentation: Evaluate the output for the 𝑗 th sample, 𝑦 ( 𝑗) = M(x( 𝑗)).
3. Statistical analysis: Compute the statistics on the discrete output points 𝑦 ( 𝑗) .

Elaborating on the third step, the expected value of 𝑌 in Equation 2.1 can be estimated as:

𝜇𝑌 =
1

𝑁𝑀𝐶

𝑁𝑀𝐶∑︁
𝑗=1

𝑦 ( 𝑗) =
1

𝑁𝑀𝐶

𝑁𝑀𝐶∑︁
𝑗=1

M(x( 𝑗)) (2.3)

while the unbiased estimate of the variance (Equation 2.2) is computed as:

𝜎2
𝑌 =

1
𝑁𝑀𝐶 − 1

©­«
𝑁𝑀𝐶∑︁
𝑗=1

(
𝑦 ( 𝑗)

)2
− 𝑁𝑀𝐶𝜇2

𝑌
ª®¬ (2.4)

MCS has many advantages, including being non-intrusive, robust, versatile, and easy to apply.
Particularly, its prediction capability remains robust against the problem of high dimensionality
in the probabilistic UQ framework, owing to the randomization of all input variables for
each sample. However, because it is a sampling technique, the obtained results are subject
to sampling errors. According to the central limit theorem [77], the statistical error of mean
𝜇𝑌 and variance 𝜎2

𝑌 is proportional to the square root of the sample size 𝑁𝑀𝐶 , which means
that to get another digit of accuracy (factor of 10) requires about 100 times more samples.
This makes MCS a very time-consuming method, rendering its application impracticable for
simulations with great complexity and detail.

One method for achieving converged statistics with fewer iterations is Latin Hypercube
Sampling (LHS). LHS is a well-known sampling technique based on a random process
that achieves a better representation of the parameter space than pure random sampling,
which exhibits clustering. One-dimensional LHS is implemented by splitting the cumulative
distribution function (CDF) 𝐹𝑋 of a random variable 𝑋 into 𝑛 equal partitions (called strata;
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LHS is a stratified approach) and then selecting a random data point in each partition, i.e.,
𝐹𝑋 (𝑥𝑖). This method has the advantage of guaranteeing that at least one value from each
partition is included in the sample. An example of LHS is illustrated in Figure 2.1. The
𝑦-axis displays a small number of indicative samples drawn from the uniform distribution.
The points are evaluated using the inverse CDF 𝐹−1

𝑋 represented by the arrows going through
𝐹𝑋 (as described before) for a standard normal distribution. If sufficient samples are collected,
the resulting distribution will correspond to the PDF representing 𝑋 . This approach can be
extended to any distribution.

𝑥𝑖 ∼ 𝑁 (0, 1)
0

1

LH
S
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rv
al

Sa
m

pl
in

g

Figure 2.1: An example of LHS with a normal distribution. Reproduced from [78].

2.2.3 Surrogate modeling

The computational costs of UQ within a statistical simulation scheme, such as the one described
before, requires the use of surrogate modeling to gain computational efficiency. Surrogate
modeling, also known as metamodeling, refers to the practice of constructing an approximate,
yet less expensive, representation of the input-output relationship of a complex, physical
process. The produced model can then be evaluated at negligible cost to predict the outputs
for a new set of inputs that exist within the initial observation domain. The rise of Machine
Learning (ML) and data-driven modeling has made the concept of surrogate modeling even
more viable, with potential applications in many areas, including SHM [79–82], materials
science [83, 84], radiation dosimetry [85], and many others.

In general, a surrogate model does not maintain any virtual representation of the exact nature
of the physical system of interest, but rather approximates its complex behavior exclusively
based on a finite set of simulation data (support points) without requiring problem-specific
knowledge (black-box model). Therefore, operational (e.g., loads) or state (e.g. damage
features) information about the structure is integrated within the constructed surrogate model,
allowing immediate access to predictions when a batch of input data is obtained from the
system. As the approximate function is created based on the information carried by the support
points, it is essential to generate informative pairs of data samples. To this end, the employed
physics-based model M is typically exploited within a simulation framework, which ends up
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with a list of data points (or better known as training data), expressed as:{
x( 𝑗); y( 𝑗)

}
(2.5)

Where x( 𝑗) is the 𝑗 th input vector from the sampling plan, and y( 𝑗) includes the corresponding
outputs from evaluating the model M, i.e., y( 𝑗) = M(x( 𝑗)). The learning stage of the surrogate
models is usually undertaken offline, whereas only the evaluation of model predictions occurs
during the online stage, allowing for future re-use and re-production. In case of changes to the
physical system, however, the surrogate model normally needs to be retrained.

Depending on the degree of non-linearity of the mapping function a different modeling approach
may be used. Among the most prevalent approximation approaches are linear/polynomial
regression, Gaussian processes, neural networks, and support vector machines, to name a few.
In this work, a standard feed-forward back-propagation Artificial Neural Network (ANN) was
employed to construct a surrogate that learns a mapping between the parameters describing
the input source variability and the strain response. The ANN model is selected due to its
advantages in estimating complex functions over high-dimensional manifolds, as well as
its re-usability and the modern hardware technologies built for deep learning. In addition,
using gradient descent and back-propagation greatly minimizes the optimization procedure’s
computational expense. These terms are defined in further detail in the section related to
ANNs.

2.3 Preliminaries on Finite Element procedures
The recent advances in computational resources have allowed the development of high-fidelity
numerical models to address the increased complexity of modern engineering systems. This
work makes use of such a model to generate a sufficient amount of structural response
data (i.e., strains) that is necessary for training the employed surrogate model. For its
formulation, the Finite Element Method (FEM) was employed, which is a widely used
numerical technique for the simulation of complex physical phenomena. The following are
the basic theoretical components of FEM tailored to the scopes of the present study.

2.3.1 Formulation of the Finite Element Method

The FEM is a discretization method for the approximate solution of partial differential
equations pertaining to complex domains. Essentially, the physical system that may be of
interest, such as the component shown in Figure 2.2, is reduced to a discrete form of simpler
constituent parts, referred to as finite elements, interconnected at a discrete number of nodes.
Of course, this abstraction cannot precisely reflect the response of the continuum, which
is described by variables at an infinite number of points. For solving structural mechanics
problems, the standard approach is the displacement-based FEM [86]. In this case, the analyst
seeks to calculate the displacement field of the model, a method that has been initially used in
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the analysis of beams and truss structures. The displacement-based FEM is a very general
formulation and provides the basis of almost all FE analyses in practice. Its formulation is
based on the idea of virtual work, which is similar to the Ritz/Galerkin method to minimize
the system’s total potential (see [86]).

Figure 2.2: Two-dimensional model of a gear tooth comprised of triangular elements.
Reproduced from Cook [87].

To demonstrate the general FEM formulation as approached in [86], let us suppose a general
3D body in steady-state conditions that is adequately supported on the area 𝑆u with prescribed
displacements

{
U𝑆u

}
. The body is considered to be subjected to surface loads

{
f𝑆f

}
on the

surface area 𝑆f, body forces
{
f𝐵

}
, and concentrated forces

{
F𝑖

}
where 𝑖 denotes the point

where the load is applied. Generally, these forces have three components corresponding to the
three coordinate axes 𝑋 , 𝑌 , 𝑍: {

f𝑆f
}
=

[
𝑓 𝑆f
𝑋 , 𝑓

𝑆f
𝑌 , 𝑓

𝑆f
𝑍

]𝑇
,{

f𝐵
}
=

[
𝑓 𝐵𝑋 , 𝑓

𝐵
𝑌 , 𝑓

𝐵
𝑍

]𝑇
,{

F𝑖
}
=

[
𝐹𝑖𝑋 , 𝐹

𝑖
𝑌 , 𝐹

𝑖
𝑍

]𝑇 (2.6)

The displacements of the body from the unloaded configuration are:

{U} = [𝑈, 𝑉, 𝑊]𝑇 (2.7)

where we demand {U} = {
U𝑆u

}
on 𝑆u. The strains corresponding to {U} are:

{𝛆} = [𝜀𝑋𝑋 , 𝜀𝑌𝑌 , 𝜀𝑍𝑍 , 𝜀𝑋𝑌 , 𝜀𝑌𝑍 , 𝜀𝑍𝑋]𝑇 (2.8)
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and are related to {U} through the well-known strain-displacement relations of the form:

𝜀𝑋𝑋 =
𝜕𝑈

𝜕𝑋
; 𝜀𝑌𝑌 =

𝜕𝑉

𝜕𝑌
; 𝜀𝑍𝑍 =

𝜕𝑊

𝜕𝑍

𝜀𝑋𝑌 =
𝜕𝑈

𝜕𝑌
+ 𝜕𝑉
𝜕𝑋

; 𝜀𝑌𝑍 =
𝜕𝑉

𝜕𝑍
+ 𝜕𝑊
𝜕𝑌

; 𝜀𝑍𝑋 =
𝜕𝑊

𝜕𝑋
+ 𝜕𝑈
𝜕𝑍

(2.9)

The stresses corresponding to {𝛆} are:

{𝛔} = [𝜎𝑋𝑋 , 𝜎𝑌𝑌 , 𝜎𝑍𝑍 , 𝜏𝑋𝑌 , 𝜏𝑌𝑍 , 𝜏𝑍𝑋]𝑇 (2.10)

where
{𝛔} = [C] {𝛆} + {𝛔′} (2.11)

with [C] denoting the constitutive matrix and the vector {𝛔′} denoting given initial stresses.
Therefore, the problem to be solved is defined by the geometry of the body, the external loads
acting upon it, the boundary conditions, the material law and the initial stresses. Ultimately,
the goal is to determine the displacement field, which in turn allows us to calculate the strains
and stresses involved.

At this point, we can concisely state the principle of virtual work, i.e., that the total virtual
work performed by actual forces through geometrically compatible virtual displacements is
zero for a system in equilibrium. This can be stated as:∫

𝑉

{
𝛆
}𝑇 {𝛔} 𝑑𝑉 =

∫
𝑉

{
U
}𝑇 {

f𝐵
}
𝑑𝑉 +

∫
𝑆f

{
U𝑆f

}𝑇 {
f𝑆f

}
𝑑𝑆 +

∑︁
𝑖

{
U𝑖

}𝑇 {
F𝑖

}
(2.12)

where
{
U
}

is the virtual displacement field and
{
𝛆
}

denotes the corresponding virtual strains.

As indicated earlier, the fundamental concept of FEM is the approximation of the body as an
assemblage of finite elements, which are connected through nodal points along their boundaries.
In each element, the displacements are assumed to be a function of the displacements at the
nodes. Therefore, for a given element 𝑒, we can write:

{u}(𝑒) = [H] (𝑒) {Û
}

(2.13)

where [H] (𝑒) is the matrix of shape functions, the superscript 𝑒 indicates the element 𝑒, and{
Û
}
= [𝑈1𝑉1𝑊1 𝑈2𝑉2𝑊2 . . . 𝑈𝑁𝑉𝑁𝑊𝑁 ]𝑇 is a 3𝑁-dimensional vector containing all

nodal displacements. The mathematical expression of the shape functions is defined when
selecting the element types to be set into the model. This is generally an application-dependent
task and consists a crucial part in FEM as the shape functions essentially dictate the nature
of the approximation of the field quantity (i.e., the displacement). To meet displacement
compatibility, the shape functions should offer displacement continuity within the elements
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and across the interrelement boundaries. Physically, these constraints ensure that there are no
gaps or overlaps as elements deform.

With the assumptions on the displacements in Equation 2.13 the corresponding element strains
can be evaluated,

{𝛆}(𝑒) = [B] (𝑒) {Û
}

(2.14)

where [B] (𝑒) is the matrix of derivatives of shape functions constructed based on the relations
of Equation 2.8. The strain compatibility requirement is automatically satisfied when continuity
of the displacement field is valid.

Finally, the stresses in a finite element follow from inserting the element strains into Equa-
tion 2.11,

{𝛔}(𝑒) = [C] (𝑒) {𝛆}(𝑒) + {𝛔′}(𝑒) (2.15)

where [C] (𝑒) is the constitutive matrix of element 𝑒, and {𝛔′}(𝑒) are the given element initial
stresses.

By rewriting Equation 2.12 as a sum of integration over the volume and areas of all finite
elements, one may deduce the equilibrium equations that correspond to the finite element
assemblage: ∑︁

𝑒

∫
𝑉 (𝑒)

{
𝛆
} (𝑒)𝑇 {𝛔}(𝑒) 𝑑𝑉 (𝑒) =

∑︁
𝑒

∫
𝑉 (𝑒)

{
U
} (𝑒)𝑇 {

f𝐵
} (𝑒)

𝑑𝑉 (𝑒)

+
∑︁
𝑒

∫
𝑆
(𝑒)
1 ...𝑆

(𝑒)
𝑞

{
U𝑆

} (𝑒)𝑇 {
f𝑆

} (𝑒)
𝑑𝑆(𝑒) +

∑︁
𝑖

{
U𝑖

}𝑇 {
F𝑖

} (2.16)

where 𝑒 = 1, 2, . . . , 𝑘 with 𝑘 being the total number of elements, and 𝑆(𝑒)1 . . . 𝑆(𝑒)𝑞 denotes the
element surfaces that are part of the body surface 𝑆.

Substituting the virtual displacements and strains in the above equation with the expressions
given by Equation 2.13 and Equation 2.14, yields:{

Û
}𝑇 [∑︁

𝑒

∫
𝑉 (𝑒)

[B] (𝑒)𝑇 [C] (𝑒) [B] (𝑒) 𝑑𝑉 (𝑒)
]
{Û} =

{
Û
}𝑇
{R} (2.17)

In order to obtain the equations for the unknown nodal point displacements, we use the
principle of virtual work by imposing unit virtual displacements for all components of

{
Û
}
.

The result is:
[K]{Û} = {R} (2.18)

The matrix [K] is the stiffness matrix of the element assemblage,

[K] =
∑︁
𝑒

∫
𝑉 (𝑒)

[B] (𝑒)𝑇 [C] (𝑒) [B] (𝑒) 𝑑𝑉 (𝑒) (2.19)
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and {R} is the load vector that includes the effect of the element body forces expressed as
equivalent forces on every node.

The preceding formulation demonstrates that the principle of virtual displacements incorporates
the three conditions that must be satisfied in a structural problem; equilibrium, compatibility,
and the constitutive law. It should be stressed that the first criterion is satisfied in an average
or integral sense, as equilibrium within each element cannot be achieved in its entirety. With
an appropriate FE discretization, however, the differential equation of equilibrium is satisfied
more precisely as the mesh of the elements is repeatedly refined.

2.3.2 FE modeling of stiffened thin-walled structures

Thin-walled structures are to be found in various engineering fields, especially in the field of
shipbuilding. This has been justified by the demand for structural systems that are optimized
to be lighter, more efficient, and offer increased strength and stiffness. The ship hull structure
is an excellent example of thin-walled structures, as it can essentially be viewed as a box girder
composed of several stiffened panels that comprise plates together with primary and secondary
structural members. A typical stiffened panel structure can be displayed in Figure 2.3. A
distinctive characteristic of this type of structures is that one of the dimensions of their main
structural components is much smaller than the rest, i.e., their thickness. In light of this, it
is reasonable to ponder over the earlier realization and suppose that 2D plane (membrane)
elements are adequate for modeling thin-walled structures. However, in realistic applications,
a ship operates under a complex system of loads with several localized effects. Membrane
elements, by their very nature, are unable to sustain out of plane loading leading to the
alternative of 3D solid or 2D shell elements. On the other hand, solid elements require a
relatively higher computational cost in contrast to shell elements. Therefore, shell elements
can operate as a compromise between those two extremes offering reliable and effective model
representations for thin-walled structures.

Figure 2.3: Typical stiffened panel structure. Reproduced from Paik [88].

Regarding beam structural members, these can be analyzed by a sequence of different
mathematical models, each one yielding a different prediction accuracy level. Namely, an
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hierarchy of models ranging from Bernoulli or Timoshenko beam theory to a full three-
dimensional continuum is at the analyst’s disposal. In this context, studying the structural
response of beam structural members in detail lies beyond the scope of this work. It is
thus evident that using beam elements instead of solid or shell elements to represent beam
members in a stiffened geometry is the optimal choice for this matter, as the latter ones would
provide unnecessary and costly accuracy. At this point, further information on beam and shell
elements is provided.

Starting with beam elements, these are typically defined by two or three nodes and are
abstracted to 1D elements by storing the 2D cross-section as separate beam section property.
This reduced representational scheme offers large computational time savings. The most
comprehensive model that can be thought of for a beam element is the spatial one, which
simultaneously carries axial, bending, and torsional loads. This means that, at each node of
the beam, there are three translational displacements in the x, y, and z directions, and three
rotational degrees of freedom (DOFs) with respect to the x, y, and z axes. A typical FE beam
with six DOFs per node along with the local element reference frame and the associated
Cartesian coordinates system are shown in Figure 2.4.

Figure 2.4: 3D beam element with six DOFs at each node in local coordinates. Reproduced
from Goda et al. [89].

Beam elements are very widely used in structural engineering and are well-suited for linear,
large rotation, and large strain nonlinear applications of any slender or stout structural entity.
Generally, the applicability of the element may be assessed using the slenderness ratio of a
beam structure. For large ratios (slender beam), the Bernoulli-Euler beam theory holds, and for
smaller ones (stout beam), the Timoshenko beam theory prevails. Nevertheless, overly “thick”
beams cannot be analyzed by 1D beam elements due to the limitations of Timoshenko’s shear
deformation theory, as variations in the distribution of shear stresses cannot be accounted
for. As for their stiffness properties, these can be calculated in many cases by the solution
of the differential equations of equilibrium, and such derivations are well-established in the
literature. However, it can be also effective to evaluate the stiffness matrices using the FE
formulation, i.e., the virtual work principle described earlier, in particular when considering
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complex beam geometries [86].

Shell elements are 2D elements but can incorporate both bending and membrane actions, with
their physical thickness represented implicitly via the underlying mathematical model of a
given element formulation. Generally, they are are either triangular or quadrilateral in terms
of their shape. For higher-order schemes, quadrilateral shells are preferred as they provide
better results, numerical stability, and accuracy. A quadrilateral shell element is typically
defined by four, eight, or nine nodes with three translational and three rotational DOFs at each
node. However, in many cases, shell element formulations do not include a rotational DOF
about the local 𝑧-axis, which is often termed as the drilling DOF.

To formulate a general shell element, two approaches have been established. First, shell
elements can be developed directly through the superposition of plane stress and plate bending
elements, and therefore the ingredients for obtaining the necessary stiffness matrices are
available in elements already described in the literature. This approach is suited for the
formulation of flat shells or facets, which are a special case of the general curved shell element.
Figure 2.5 illustrates a flat rectangular shell element in a local coordinate system 𝑥𝑦𝑧, subject
simultaneously to “in-plane” (far-right) and “bending” (middle) actions.

Figure 2.5: Formation of flat shell element. Reproduced from Bathe [86].

Second, shell elements can be formed by using degenerated isoparametric continuum elements,
as illustrated in Figure 2.6. The first degenerated shell element was introduced by Ahmad et
al. [90]. The initial step in this process is to discretize directly the 3D continuum equations.
Then, by incorporating the assumptions that originals normal to the middle surface are
inextensible and remain straight, and that elastic modulus in the normal direction is zero,
the 3D formulation is degraded. This approach provides the most general shell element
formulation as it is not dependent upon any shell theory, with the reduction to the resultant
form typically carried out numerically rather than analytically. This formulation occupies
a middle ground between facets and curved elements based on classical shell theory that is
obviously more complex mathematically.
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Figure 2.6: (a) A 20-node solid element. (b) Elimination of four midedge nodes yields a
16-node element. (c) Further constraint yields an eight-node element. Reproduced from
Cook [87].

2.3.3 Modeling and validation procedures

Modeling is the simulation of a physical structure or process using an analytical or numerical
substitute selected in accordance with the phenomenon to be predicted. On the basis of this
definition, it is evident that the mathematical model adopted controls the accuracy of the
physical problem to be described. For an analyst, a thorough understanding of the physics
of the underlying problem, as well as the behavior and constraints of each element type, is
necessary to successfully complete the FE modeling procedure. In essence, the expected
behavior of the structure, i.e., the consequent mode of deformation in terms of structural
mechanics, should be aligned with how elements are able to behave and the intended boundary
conditions.

In addition, anticipating the variations related to the gradients of the field quantity in a
qualitative and/or quantitative manner is pivotal in obtaining a good mesh structure. The
mesh density level must be defined in a way that avoids too coarse of a discretization
leading to inadequate representations, or unnecessarily fine discretization leading to a waste
of computational resources. Moreover, in many cases where common sources of stress
concentrations exist in the model (e.g., openings, fillets, etc.), a “graded mesh” (i.e., a
gradation of element sizes) should be implemented to provide a more detailed modeling of
these regions. Such a technique provides essential efficiency for reducing the computational
burden without sacrificing accuracy. It is, however, more an art and experience than a
predetermined sequence of steps, as no general rule exists on either the number or the size of
elements that guarantee good accuracy.

The FE modeling process is completed once the boundary conditions are prescribed correctly.
Boundary conditions of a mechanical system include the external loads and imposed dis-
placements, both of which should appear at a node. Applying boundary control is to ensure
that a unique solution can be obtained. More specifically, in order to avoid singularities
during matrix decomposition, constraints must be sufficient to prevent all possible rigid-body
motions. However, more often than not, boundary conditions are not obvious in a real-world
problem, and the classic notions of support conditions do not apply exactly. Defects of a
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poorly executed boundary control are identified either by error messages from the software or
by the unexpectedly deformed shape of the structure due to misrepresented supports. Similar
considerations apply to the determination of loads.

Finally, the analyst should validate the results in as many ways as reasonably possible after
obtaining a solution. This ensures that the generated results are in line with both the analyst’s
expectations and the laws of physics. Displacements should be examined first, as these are
the primary results from which strains and stresses are derived. Unexpected deformations,
directions, and magnitudes in the displacement field indicate that the solution derived should
not be trusted and should be revised. A further and most crucial stage of validation is comparing
FE results with results acquired in other ways, whether that is from analytical solutions,
existing similar structures, experiments, or even expectations of the analyst. Ultimately, the
FE model is considered acceptable if the obtained results are realistic and the error estimates
obtained from the aforementioned comparison are small. Otherwise, the procedure should be
repeated once the model has been modified to achieve satisfactory results.

2.4 Detection theory
The field of detection theory arose with the development of communications and radar
technology during the past century [91]. Peterson et al. developed the basic principle in
1954 [92] as a method for determining the effectiveness of statistical tests and classifiers. Later
in 1966, it was employed in psychophysics; see, e.g., Swets & Green [93].

Detection theory follows directly from the theory of statistical hypothesis testing [64] and
consists of a range of techniques for designing optimal detectors for signals buried in noise.
In this light, detection theory can be considered as well-suited for SHM, which by definition
seeks to transform data that include uncertainty into decisions on the health state of the system.

2.4.1 Damage detection

For a given damage detection problem, the goal is to correctly decide whether damage is
present or not. This dichotomy directly indicates the use of the Likelihood Ratio Test (LRT)
principle, which is, in essence, a statistical hypothesis test involving two mutually exclusive
hypotheses. Naturally, the same tools can be used for multi-class problems, i.e., deciding
among multiple possible statistical situations, as will be the case in this work. However, since
this can be accomplished by simply extending the principles of the binary case, it will be
omitted for the sake of brevity.

In this context, one of the two competing hypotheses is conventionally referred to as the
null hypothesis 𝐻0, and the other as the alternative hypothesis 𝐻1. The former is naturally
assumed as the healthy state 𝐻 and the latter as the damaged state 𝐷 of the system when it
comes to damage detection. The data that serves as the basis for the decision is collected in an
𝑑-dimensional random vector x, where 𝑑 corresponds to the number of installed sensors. In the
general case, vector x is considered to follow a multivariate distribution, with joint probability
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density function (PDF) 𝑓𝐻 ( · ;𝚯𝐻), 𝑓𝐷 ( · ;𝚯𝐻) in the healthy and damaged states, respectively.
The distribution parameter vectors 𝚯𝐻 ,𝚯𝐷 ∈ 𝐷𝚯𝐻 , 𝐷𝚯𝐷 ⊂ R𝑑𝚯 are deterministic, and can
be estimated from the available data, according to the employed distribution model, e.g., in
the case of the multi-normal distribution they correspond to the mean vector and covariance
matrix. Ultimately, the detection problem can be stated formally as the problem of testing
between:

𝐻0 ≡ 𝐻 : x ∼ 𝑓𝐻 (x;𝚯𝐻)
𝐻1 ≡ 𝐷 : x ∼ 𝑓𝐷 (x;𝚯𝐷)

(2.20)

Given some vector x′ of observations, one can link x′ with one of the two health states (𝐻
or 𝐷) by comparing the conditional probability of 𝐻 occurring, Pr(𝐻 | x′), with the one of
𝐷 occurring, Pr(𝐷 | x′). To be more exact, we say that x′ is associated with 𝐷 if and only if
Pr(𝐷 | x′) is greater than Pr(𝐻 | x′), and vice versa, or mathematically given by:

Pr(𝐷 | x′)
𝐻
<
>
𝐷

Pr(𝐻 | x′) (2.21)

In most cases, these probabilities are not readily available, hence Bayes’ rule is applied to
derive the following expressions:

Pr(𝐻 | x′) = 𝑓𝐻 (x′ |𝐻) Pr(𝐻)
𝑓 (x′) (2.22)

Pr(𝐷 | x′) = 𝑓𝐷 (x′ |𝐷) Pr(𝐷)
𝑓 (x′) (2.23)

In both instances, the evidence term 𝑓 (x′) in the denominator is identical, therefore it can be
cleared from the equation. Moreover, the prior probabilities Pr(𝐻) and Pr(𝐷) for each class
can normally be regarded as being equivalently probable. Considering all of this, we define
the LRT as:

𝐿 (x′) = 𝑓𝐷 (x′;𝚯𝐷)
𝑓𝐻 (x′;𝚯𝐻)

𝐻
<
>
𝐷

𝛾 (2.24)

where 𝐿 (·) is the likelihood ratio and 𝛾 ∈ (0, +∞) is the decision threshold which helps in
making decision either in favor of 𝐻 or 𝐷 by partitioning the feature space, such that:

x′ ∈ 𝑆𝐻 |𝐻 is true

x′ ∈ 𝑆𝐷 |𝐷 is true
, 𝑆𝐻 , 𝑆𝐷 ⊂ R𝑑 (2.25)
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It is evident that the problem of damage detection using LRT-based detectors within a
supervised learning regime boils down to the selection of the appropriate probability models
that capture the likelihood functions 𝑓𝐻 (x |𝐻) and 𝑓𝐷 (x |𝐷), given the available data. This is a
distinct problem that could be treated using several methods. Representative examples of such
methods include probability plots, goodness-of-fit tests, and Kernel Density Estimation (KDE).
The non-parametric method of KDE is an appealing option in that it does not require a priori
specification of any particular functional form, which can potentially produce unnecessary
bias (i.e., systematic error) in the employed procedure. Therefore, it is selected as the default
tool in the process of the formulation of the first damage identification technique. A PDF
estimated by KDE in the univariate case may be defined from a finite data sample as follows:

𝑓ℎ (𝑥) = 1
𝑚ℎ

𝑚∑︁
𝑖=1

𝐾
(𝑥 − 𝑥𝑖

ℎ

)
, 𝑥 ∈ R, ℎ > 0 (2.26)

where 𝑥𝑖 refers to the 𝑖th observation out of a total of 𝑚 observations in the available data-set,
ℎ is known as the bandwidth, and 𝐾 is the kernel function. Similarly, KDE can be extended
for the multivariate case:

𝑓H(x) = 1
𝑚 |H|

𝑚∑︁
𝑖=1

𝐾
(
H−1 (x − x𝑖)

)
, x ∈ R𝑑 (2.27)

where H is a non-singular matrix generalizing the univariate bandwidth ℎ. For more details
on kernel functions and kernel methods the reader may refer to [94].

2.4.2 Performance criteria

In testing 𝐻 versus 𝐷, or any pair of hypotheses in general, the decision of whether to reject or
fail to reject the null hypothesis carries the risk of incorrectly inferring a hypothesis that does
not reflect the true state of affairs. This amount of risk can be formally represented by the
well-known Type I and Type II errors in the context of classical hypothesis testing. A Type I
error, or false positive (𝐹𝑃), occurs when the test falsely rejects the null hypothesis, which
in the case of damage detection means that the structure’s condition has been identified as
damaged when actually the opposite holds. A Type II error, or false negative (𝐹𝑁), refers to
the case where the alternative hypothesis is falsely rejected, or in diagnostic terms, the case in
which the structure is incorrectly diagnosed as being in the healthy state.

Tied to the errors made by the test are the performance criteria. Two important performance
criteria are the probability of detection 𝑃D (also called true positive rate), which corresponds
to the probability of declaring damage detection under 𝐷, and the probability of false alarm
𝑃FA (also called false positive rate), which refers to the probability of declaring damage
detection under 𝐻. The former is defined as the complement probability associated with Type
II error, while the latter is equivalent to Type I error. Mathematically, they can be expressed
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using the following integrals:

𝑃D = Pr{𝐿 (x;𝚯𝐻 ,𝚯𝐷) > 𝛾;𝐷} =
∫ +∞

𝜀𝑇

𝑓𝐷 (x;𝚯𝐷)𝑑𝑥 (2.28)

𝑃FA = Pr{𝐿 (x;𝚯𝐻 ,𝚯𝐷) > 𝛾;𝐻} =
∫ +∞

𝜀𝑇

𝑓𝐻 (x;𝚯𝐻)𝑑𝑥 (2.29)

The aforementioned metrics are included in the schematic of Figure 2.7 for an indicative
univariate case of a binary detection problem, as the shaded areas under the curves. As
indicated by Equation 2.28 and 2.29, these performance metrics depend on the detection
threshold 𝛾, which, in turn, corresponds to a strain response threshold, denoted by 𝜀𝑇 , in
tandem with the methodology applied in this study. For a given problem, the detector should
be formulated to deliver the highest accuracy level by maximizing 𝑃D and minimizing 𝑃FA.
However, there is an inherent trade-off between these two metrics, and a single, ideal threshold
value that optimizes both simultaneously cannot be found. Therefore, the selection of the
decision boundary is application-dependent and is frequently determined by failure criteria,
inspection regulations, etc. When economic concerns drive SHM applications the goal is to
minimize Type I errors, or, equivalently, minimize 𝑃FA, whereas when life safety issues drive
the SHM systems the goal is to minimize Type II errors, or, equivalently, maximize 𝑃D.
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Figure 2.7: Schematic representation of binary classification problem and associated error
types.

When hypothesis 𝐷 is only rarely true, the primary factor in the average total cost of a system
is connected to Type I errors, which result in some costly action to be taken in vain. In these
conditions it is desirable for the observer to determine an affordable value of 𝑃FA and to seek
a decision strategy that attains this value while simultaneously maximizing 𝑃D. Therefore, for
a desirable 𝑃FA = 𝛼, where 𝛼 is the significance level of the test, Equation 2.29 can be solved
with respect to the decision threshold as indicated by Equation 2.30:

𝜀𝑇 = 𝐹−1
𝐻 (1 − 𝑃FA |𝐻) (2.30)
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where 𝐹−1
𝐻 (·) is the inverse CDF under 𝐻. The obtained threshold value can then be

employed for the calculation of the 𝑃D according to Equation 2.28. This approach to optimal
decision-making is known as the Neyman-Pearson (NP) criterion for damage detection [64].

2.4.3 Receiver Operating Characteristic (ROC) curves

A common way to holistically assess the performance of a binary detector is through the use
of Receiver Operating Characteristic (ROC) curves. The ROC curve essentially shows 𝑃D as
a function of 𝑃FA (see Figure 2.8) as the decision threshold spans through all possible values.
This means that each point on the ROC curve belongs to a particular threshold, despite the fact
that the threshold values are not obvious from the plot. The effect of modifying the threshold
point is illustrated in Figure 2.8a along with the corresponding ROC curve in Figure 2.8b.

The diagonal line (dash line) that separates the ROC space into two areas represents a classifier
that makes random classifications. Any point within the upper-left triangle indicates that the
classifier has some understanding of the classes; the closer the ROC plot is to the upper-left
corner, the greater the classifier’s overall accuracy. Conversely, every point in the lower-right
triangle indicates that the classifier is performing worse than random, i.e., the classifier
possesses some knowledge about the classes but applies it improperly.

Figure 2.8: The correlation between the decision threshold (a) and the position on the ROC
curve (b). By shifting the threshold to the right, the ROC curve points are obtained from right
to left.

In most cases, the expressions defining the performance metrics are not available in closed
form, which makes computational methods the only rational choice for their calculation.
Monte Carlo (MC)-based schemes are arguably the most commonly used such methods and
are based around the following principle. Namely, a sample of available data of size 𝑚 is
passed through Equation 2.24 and for a given threshold value, the true positives (𝑇𝑃) and
false positives (𝐹𝑃) are tallied. Then, the 𝑃D can be estimated as the true positive rate, i.e.,
𝑇𝑃/𝑚, while the 𝑃FA as the false positive rate, i.e., 𝐹𝑃/𝑚. Considering that, as already
discussed, KDE-based PDFs were exclusively used throughout this work, MC methods were
similarly used exclusively for the calculation of the performance metrics. The aforementioned
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procedure will be described in greater depth in the section where the LRT-based detector is
formulated.

2.5 Artificial Neural Networks
2.5.1 Introduction

Human-level intellectual and processing power capabilities are coming from the biological
neural network that is composed of numerous chemically connected neurons; the functional
units of the nervous system. Neurons take in information from several sources and each one
produces a distinct output that can be, in turn, transmitted to other neurons. These functional
units are essentially connected to one another via axons and dendrites, and the connecting sites
between those two neuron parts are known as synapses. Synaptic architecture and strength
frequently change in response to environmental stimuli, which is how learning occurs in
organisms [95].

Although Artificial Neural Networks (ANNs), indisputably, do not reach the complexity of the
brain, the study of these computing systems has been inspired by the simplified description of
the biological mechanism above. As a matter of fact, there are two key similarities between
ANNs and their biological counterparts [96]. First, the building blocks of both networks
are simple computational units configuring a densely interconnected, parallel structure, and,
second, the connections between neurons determine the function of the network. With this
underlying rough analogy now established, it is believed that to aid the discussion, things must
be put into perspective by first providing a concise definition of what ANNs are and how they
function before diving deeper into their constituent parts. In this brief introduction to ANNs,
focus will be placed on the fully connected, feed-forward ANN or Multilayer Perceptron
(MLP), which is the most common and general-purpose ANN type.

Learning with ANNs is intrinsically connected with the term Deep Learning (DL), a specific
subfield of ML that excels at handling unstructured data. Essentially, ANNs are intelligent
pattern recognition techniques that use a densely interconnected network of neuronodes to
learn ever deeper layers of meaningful representations [97]. Just as external stimuli are needed
for learning in biological organisms, the external stimulus in ANNs is provided by the training
data containing examples of input-output pairs of the function to be learned. Training inputs
flow sequentially between layers, and each transition applies a new transformation to the
incoming representation of the dataset. Each connection linking the neurons is assigned a
weight that reflects its strength from one layer to the next. These weights are a set of numerical
values that contain the information learned by the network. More specifically, their values are
changed in a way that minimizes a certain loss function between the expected and current
model output, with the help of an optimization function that implements the back-propagation
algorithm. By gradually changing the weights of neurons over numerous inputs and outputs,
the computed function is progressively refined to achieve more accurate predictions in future

25



Chapter 2. Theoretical background

calculations. Once properly trained, the ANN is able to make good predictions for unseen
inputs as long as the latter lie within the training domain. This ability is referred to as model
generalization.

In the following subsections, an attempt is made at providing insights into the concepts of
network architecture, activation functions, and model training. A subsection is also dedicated
to a class of probabilistic data-driven models called Probabilistic Neural Networks (PNNs),
which are used in the second damage identification approach of this work.

2.5.2 Architecture

An artificial neuron is a simple mathematical model and the building block of an ANN.
The basic architecture of a neuron is shown in Figure 2.9. The input layer contains a set of
𝑚 nodes, connected to neuron 𝑘 , that transmits 𝑚 features [𝑥0, . . . , 𝑥 𝑗 , . . . , 𝑥𝑚] with respective
weights [𝑤𝑘0, . . . , 𝑤𝑘 𝑗 , . . . , 𝑤𝑘𝑚] to an output node 𝑢𝑘 . The term 𝑤𝑘0 with 𝑥0 = +1 acts
as an equivalent of the bias value 𝑏𝑘 that increases or decreases the net input in order for
the neuron to span a target input range. The resulting products are summed up in a linear
combination through a summing junction Σ. The output of the summing junction is then
filtered by a selected activation function 𝜙(·), which determines the output 𝑦𝑘 of the neuron.
The aforementioned are summarized in mathematical terms by the following equations:

𝑢𝑘 =
𝑚∑︁
𝑗=1
𝑤𝑘 𝑗𝑥 𝑗 + 𝑏𝑘 =

𝑚∑︁
𝑗=0
𝑤𝑘 𝑗𝑥 𝑗

𝑦𝑘 = 𝜙(𝑢𝑘 )
(2.31)

Figure 2.9: Basic structure of an artificial neuron. Reproduced from Haykin [98].

The arrangement of neurons in a neural network is referred to as the network topology or
architecture. The type of architecture used in ANNs is intrinsically linked to the learning
algorithm. ANN architectures can be loosely classified as either single- or multi-layer networks.
This subsection discusses these architecture styles.
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Single-layer perceptrons

The perceptron model was proposed by Rosenblatt [99] as an algorithm capable of supervised
learning. The perceptron is the simplest version of an ANN and is, basically, a linear type
classifier that can be applied for binary decision problems. It only contains a single neuron
whose synaptic weights and bias can be adjusted. According to the perceptron convergence
theorem given by Rosenblatt, convergence is only assured if the patterns used to train the
perceptron fall neatly into two linearly distinct classes. Between the two classes, a hyperplane
will represent the decision boundary.

In a layered model, the neurons are arranged in a layered fashion. The simplest structure of
this model type is the single-layer network, where one or many input units compose an input
layer connected to one or many output units that constitute the output layer. There is no signal
transmission between the neurons in the output layer and their counterparts in the input layer
(i.e., feed-forward or acyclic network). Since no computing occurs at the input layer, this
layer is disregarded and the network is referred to as a single-layer network or single-layer
perceptron. An indicative architecture of a single-layer perceptron is shown in Figure 2.10. A
single-layer network with 𝑚 output neurons clearly corresponds to 𝑚 separate perceptrons.

Figure 2.10: Indicative architecture of a single-layer perceptron.

Multilayer perceptrons (MLPs)

A multilayer perceptron (MLP) is the leading paradigm of feed-forward ANNs finding
applications in numerous domains. To train this class of ANN models a feed-forward,
supervised learning technique is implemented. The architecture of an MLP comprises an input
layer, hidden layer(s), and an output layer, where connections are always made on a forward,
layer-by-layer basis. Within a strict feed-forward MLP setting, a neuron on layer 𝑖 always
connects to a neuron on layer 𝑖 + 1, with no internal loops nor skipping layers being allowed.
It is evident that this type of network represents a generalization of single-layer perceptrons.

MLPs are used in conjunction with the back-propagation algorithm, which performs two
phases of data flow; in the feed-forward phase, the inputs for a training instance are fed into the
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network and propagated forward through the hidden layers, whereas in the backward phase,
the predicted outcome is compared to the observed value leading to a prediction error; the
weights of the network are updated right after in accordance with the error signal. Hence the
name “back-propagation”.

An indicative architecture of an MLP with more than two hidden layers may be seen in
Figure 2.11. As indicated by the direction of the arrows, information processing flows from
left to right layer-wise.

Figure 2.11: Indicative architecture of a multilayer perceptron.

2.5.3 Types of activation functions

Activation functions are a key component in ANNs as they add non-linearity to the network.
This property becomes significant when a transition is made from the single-layered perceptron
to the multi-layered architectures. If a neural network simply employs linear activations, its
representational capacity will not be enhanced compared to a single-layer linear network,
regardless of how deep the network may be. This derives from the fact that the repeated
application of many linear transformations is itself a linear transformation. Additionally, of
critical importance for the neural network design is the choice of the output layer activation,
as it defines the type of predictions the model can make. To choose activation functions
sensibly, it is generally necessary to assess their monotonicity, range, and differentiability as
these properties affect the learning and generalization capabilities of ANNs. Some activation
functions that are regularly employed are now presented, concretely.

One of the classical activation functions 𝜙(·) used in the earliest days of neural network
development is the Heaviside step function, also known as the unit step function. The step
function serves as a threshold that decides whether or not the neuron generates a signal;
its derivative is zero at all values of 𝑢 other than the selected threshold value, where it is
discontinuous and non-differentiable, as seen in Figure 2.12a. The formula of the Heaviside
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step function is:

𝜙(𝑢) =


1 if 𝑢 ≥ 0

0 if 𝑢 < 0
(2.32)

Another standard activation function is the sigmoid function. The sigmoid function is a
differentiable approximation of the Heaviside step function and was, for many years, the
most popular tool of choice for introducing non-linearity in ANNs. Its output exists within
[0, 1], which is useful for doing computations that should be interpreted as probabilities. The
mathematical formulation of the sigmoid function is as follows:

𝜙(𝑢) = 1
1 + exp (−𝑢) (2.33)

The hyperbolic tangent function, or tanh, has a similar structure to the sigmoid function,
with the exception that it is rescaled horizontally and translated vertically to [−1, 1]. When
both positive and negative outputs are sought for classification problems, the tanh function
is preferred over the sigmoid function. In addition, its mean-centering and greater gradient
(due to stretching) make it easier to train than the sigmoid. The tanh activation function is
formulated as:

𝜙(𝑢) = exp (2𝑢) − 1
exp (2𝑢) + 1

(2.34)

As illustrated in Figure 2.12b and 2.12c, the primary issue with sigmoidal functions is
that their derivative goes to zero as |𝑢 | −→ ∞, which slows down the learning process of
gradient-based networks. This is particularly the case in deep-structured architectures; when
the gradient propagates and multiplies backward through each layer, the gradient’s effect on
the network parameters becomes insignificant. Thus, the network scarcely learns from the
training instances.

The rectified linear unit (ReLU) function tackles the problem of vanishing gradients by
having a gradient of one for positive inputs, and zero for negative inputs. ReLU is also
computationally efficient since it does not involve the evaluation of an exponential or any
other computation-intensive process. Additionally, the present function introduces sparsity in
the model, which may lead to multiple benefits, such as the increased likelihood of sparse
representations being linearly separable and the absence of highly entangled information,
typical of ANNs that use dense representations [100]. As a result of these mathematical
properties, ReLU has become the de-facto activation function in DL. The mathematical
formulation of the ReLU function is given by Equation 2.35 while an indicative graph is
shown in Figure 2.12d:

𝜙(𝑢) = max(0, 𝑢) (2.35)
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Figure 2.12: Various activation functions; namely, (a) Heaviside, (b) sigmoid, (c) tanh, and
(d) ReLU.

2.5.4 Training process

Fundamentally, the basic concept of ANN model training is based on a maximum likelihood
estimate in which the unknown parameters (i.e, weights and biases) are optimized such that
the observed data obtain the greatest probability of occurrence conditioned on the inputs [101].
This is translated into the minimization of a scalar function, known as the loss function 𝐿,
which is defined in terms of the predicted and observed values of the model. Mathematically,
this can be expressed as:

𝛉∗ = argmin
𝛉

𝑚∑︁
𝑗=1

𝐿 ( 𝑦̂ 𝑗 (𝛉), 𝑦 𝑗 ) (2.36)

where 𝛉 = [𝑤1, 𝑤2, . . . , 𝑤𝑛]𝑇 is the unknown parameter vector (i.e., 𝑛 weights and biases), 𝛉∗

contains the optimal values of 𝛉, 𝑦 is the observed value in the training sample, 𝑦̂ denotes the
predicted outcome, and 𝑚 is the number of training instances. The loss function can generally
be any function that is differentiable and several types are reported in the literature [97].
Their use depends on the specific task at hand. For example, in classification problems, the
loss function might be based on the number of correctly classified examples. In regression
problems, the loss function might be based on the mean squared error between the predicted
and true values.

At the beginning of training, the unknown weights and biases are initialized at random and then
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tuned iteratively to minimize the loss function. The calculations at the heart of ANNs involve
matrix multiplications and activation functions. Since these operations are all differentiable,
and the unknown parameter vector is typically high-dimensional, gradient-based optimization
algorithms naturally come to the forefront. Analytically calculating the gradient of the loss
function ∇𝐿 for each neuron is one naive way for estimating the gradient, considering the
considerably large number of neurons of modern ANNs. On the other hand, since their
structure is a composition of many differentiable simple functions chained together, the
application of automatic differentiation is well-suited. The back-propagation algorithm, whose
concept was introduced earlier, is a special case of automatic differentiation and is nowadays
built into distributed training frameworks, like TensorFlow.

Among the existing gradient-based optimization methods, the steepest (or gradient) descent
method is the most common option in ANN training owing to its simplicity. Despite not
being the most efficient one, gradient descent has proved to be a successful optimization
method for ML problems. Normally, gradient descent only gives convergence to some local
minimum; however, it has been shown that differences between local minima and the real
global minimum become trivial as the complexity of the model increases. Because of the slow
nature of gradient descent in ML, the training process can be optimized by carefully defining
a pre-selected parameter known as the learning rate 𝛼. Typically, as the conclusion of training
approaches, the learning rate is decreased gradually to prevent falling short of the minimum.

The gradient at each update step can be calculated on all training data available; this is known
as batch gradient descent (BGD). Essentially, BGD takes the average gradients across all
data points to update the network’s parameters. On large datasets, it is evident that this
procedure is computationally expensive, but is guaranteed to converge to the global minimum
for relatively smooth error manifolds. Stochastic gradient descent (SGD) is an alternative to
BGD that calculates gradients using a single random training sample at each step. SGD can
more easily escape shallow local minima due to the stochasticity introduced and thus speeds
up the algorithm. One drawback of stochasticity is that the loss function does not decrease
monotonically and does not converge to the real minimum. In order to reach the global
minimum, one approach is to gradually decrease the learning rate throughout the training
process. Mini-batch gradient descent (MGD) is a strategy that strikes a middle ground between
BGD and SGD. MGD randomly takes a certain number of instances, i.e., mini-batches, to
calculate model error. This method combines the advantages of the two preceding methods to
provide the optimal balance between stability, speed, and memory requirements.

The mathematical description of the update rule of gradient descent along with the gradient of
the loss function with respect to the parameter vector is now presented in Equation 2.37. In
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Figure 2.13 a visual example of gradient descent down a 2D loss surface is presented.

∇𝐿 (𝛉) =
[
𝜕𝐿

𝜕𝑤1
,
𝜕𝐿

𝜕𝑤2
, . . . ,

𝜕𝐿

𝜕𝑤𝑛

]𝑇
𝛉 = 𝛉 − 𝛼∇𝐿 (𝛉)

(2.37)

Figure 2.13: Illustration of a 2D loss surface atop the parameter space (two learnable parame-
ters) and successful discovery of an optimum solution using gradient descent. Reproduced
from Chollet [97].

2.5.5 Probabilistic Neural Networks

The nature of ANNs as universal function approximators makes them powerful tools to
capture any complex nonlinear relationship between variables. One drawback of standard
point estimate ANNs, however, is that they do not provide uncertainty measures for the model
output in regression tasks; in the case of classification, contrariwise, a standard ANN can be
seen as a probabilistic classifier where the estimated outputs are class probabilities. This poses
problems for engineering applications where a measure of uncertainty is essential for risk
and reliability assessment, as well as rational decision-making. Thus, ML-based probabilistic
models are of interest for application in real-world, complex structures.

A feature inherent to probabilistic models is that they provide important statistics, such as mean
and variance. Therefore, a model built with feed-forward ANNs that estimates the parameters
of an assumed probability distribution over a target variable can be viewed as one of this
sort and thus consists a Probabilistic Neural Network (PNN). The mean-variance estimation
(MVE) method, which was first proposed by Nix and Weigend [102], is one technique that
employs PNNs for the construction of prediction intervals (PIs), where the uncertainty in
target values is treated as a normally distributed error term. Therefore, for a given set of input
vectors x and target scalars 𝑡 containing noise, the prediction problem can be expressed as:

𝑡 = 𝑦 + 𝑒 = 𝑔(x) + 𝑒 (2.38)
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where 𝑒 is a zero-mean random variable. Uncertainty in Equation 2.38 can be measured by
the variance of 𝑡, and 𝑦 = 𝑔(x) is the mean of 𝑡.

Within the MVE framework, two separate ANNs, whose architectures need not be identical,
are employed to estimate the mean and variance. This offers considerable flexibility with
respect to the variance structure of the data, and allows for the model to capture local patterns
in the data and efficiently approximate cases with non-stationary (heteroscedastic) variance.
A schematic representation of this technique is depicted in Figure 2.14. As shown, the model
inputs, i.e., an input vector or more simply a value 𝑥𝑖, are fed to the two ANNs used to estimate
the prediction mean and variance, denoted as 𝑁𝑁𝑦 and 𝑁𝑁𝜎, respectively. As mentioned
in the previous subsections, these apply a composition of non-linear functions that result in
predictions of the mean and variance, denoted as 𝑦̂ and 𝜎̂2, respectively. Training the model
amounts to simultaneously training the two networks using a common loss function, following
the same general process as in Equation 2.36, but using a different expression for the loss.
This is necessary since, in this case, the model produces outputs that correspond to the mean
and variance of a normal distribution, which cannot be compared in a 1-to-1 fashion with the
target data, since they contain no variance. Therefore, the loss function is described through
an equivalent expression, i.e., using a likelihood function, and thus the problem of calibrating
model parameters is solved within a Maximum Likelihood Estimation (MLE) framework.
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Figure 2.14: Schematic representation of the MVE method.

Considering that the error 𝑒 in the predictions is Gaussian, the goal of the MLE may be
formally written as:

𝑤𝑦, 𝑤𝜎 = argmax
𝑤𝑦 ,𝑤𝜎


𝑛∏
𝑖=1

1√︃
2𝜋𝜎̂2

𝑖

exp

(
− (𝑡𝑖 − 𝑦̂𝑖)2

2𝜎̂2
𝑖

) (2.39)
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where 𝑤𝑦, 𝑤𝜎 correspond to the parameters of 𝑁𝑁𝑦 and 𝑁𝑁𝜎 respectively, 𝑡𝑖 corresponds to
a target value, 𝑦̂𝑖, 𝜎̂𝑖 are the ANN predictions, and 𝑛 is the number of samples. The different
predictions can be considered to be statistically independent, and consequently the likelihood
over the entire data-set can be obtained as the product of individual terms.

Ultimately, it is more computationally convenient to take the logarithm of the likelihood,
which transforms the product to a sum and then multiplying this by -1, which makes this a
minimization problem. The resultant loss function is known as the negative log-likelihood
(𝑁𝐿𝐿) and can be expressed as:

𝑁𝐿𝐿 =
𝑛∑︁
𝑖=1

− log
©­­«

1√︃
2𝜋𝜎̂2

𝑖

exp

(
− (𝑡𝑖 − 𝑦̂𝑖)2

2𝜎̂2
𝑖

)ª®®¬ (2.40)

Using the quotient and power properties of logarithms and ignoring the constant terms of
Equation 2.40, yields:

𝑁𝐿𝐿 =
1
2

𝑛∑︁
𝑖=1

(
ln 𝜎̂2

𝑖 +
(𝑡𝑖 − 𝑦̂𝑖)2

𝜎̂2
𝑖

)
(2.41)

and eventually the optimization problem can be stated as:

𝑤𝑦, 𝑤𝜎 = argmin
𝑤𝑦 ,𝑤𝜎

𝑁𝐿𝐿 (2.42)

Similar to conventional ANNs, described in the previous subsection, this optimization problem
can be solved using the back-propagation algorithm with the aid of automatic differentiation
until the loss function has been sufficiently minimized. The constructed PIs with a (1 − 𝛼)%
confidence level computed by the trained model are,

PIs =
[
𝑦̂ − 𝑧1− 𝛼

2

√︁
𝜎̂2, 𝑦̂ + 𝑧1− 𝛼

2

√︁
𝜎̂2

]
(2.43)

Two indexes that are commonly used for evaluating the performance of PIs are the prediction
interval coverage probability (PICP) and the prediction interval normalized average width
(PINAW). PICP is the fraction of targets that lie within the lower and upper bounds of intervals,
and a large PICP value indicates that a high amount of testing data have fallen within the PIs.
The use of the PINAW metric serves the purpose of assessing the sharpness of PIs. In practice,
for useful and reliable PIs, the value of PICP should not be less than the confidence level of
PIs, and their width, as measured by the PINAW index, should be as small as possible, given
that narrower PIs are theoretically more useful. These indexes are calculated in accordance
with the definitions provided by Khosravi et al. [103]. Namely, PICP is defined as:

PICP =
1
𝑛

𝑛∑︁
𝑖=1

𝑐𝑖 (2.44)
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where, 𝑐𝑖 = 1 if 𝑡𝑖 ∈ [𝐿𝑖,𝑈𝑖], otherwise 𝑐𝑖 = 0; 𝐿𝑖 and𝑈𝑖 are the lower and upper bounds of
the 𝑖th PI respectively. PINAW is defined as follows:

PINAW =
𝑛∑︁
𝑖=1

𝑈𝑖 − 𝐿𝑖
𝑛𝑅

(2.45)

where 𝑅 is the difference between the maximum and minimum target values in the test data-set,
used to normalize the PI average width into a percentage value.

The method described here can capture aleatoric uncertainty but not epistemic uncertainty. In
the context of ANNs, epistemic uncertainty is typically interpreted as uncertainty regarding
the model parameters, i.e., the network’s weights. This is a special case of what is referred to
as approximation uncertainty. To quantify this kind of uncertainty, Bayesian neural networks
have been proposed as a Bayesian extension of ANNs [104, 105]. In Bayesian networks, each
real number representing a weight is replaced by a probability distribution (again, typically a
Gaussian), and learning amounts to Bayesian inference. However, this is out of the scope of
this study and was only mentioned for the sake of completeness.
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Problem definition

This section unfolds the particulars of the problem under consideration. The first part presents
the general problem this work was concerned with. This is followed by the presentation
of the employed case study, including all geometry-related considerations as well as the
quantification of the input source variability taken into account. Finally, the development of
the physics-based model of the structure used to generate synthetic strain data is introduced.

3.1 Problem description
As already presented in the introduction chapter of this thesis, this work revolves around the
design of a localized SHM system on a large-volume structure, one that remains robust against
various uncertainties in its damage detection performance, all while using a minimal strain
sensing scheme. This concept is especially intriguing for the life-cycle monitoring of integral
structural components with confined spaces, such as the double bottom compartment of a
modern commercial ship, where conventional visual and/or NDT inspection is hindered. In
practice, the successful in-service implementation of such a system revolves around three
main aspects.

The first step consists of making informed decisions on the potential regions where damage
might occur, with the goal of increasing the likelihood that the local diagnostic system
will provide substantial health monitoring value for the entire structure. For this purpose,
empirical findings from past inspections and accident investigations can be leveraged as viable
information. These can be used to guide the choice of the number and location of sensors
that comprise the SHM system. The second aspect pertains to the premise that damage
identification requires a comparison between two system states [30]. Therefore, the employed
damage-sensitive features must be such as to effectively reflect the transition of the structural
system from one state to another, i.e., from the healthy to the damaged state. In the proposed
framework, the disturbance in the strain field caused by the existence of excessive deflections in
the plate elements of the stiffened panel is expected to serve this purpose. However, obtaining
a prediction on the magnitude of the damage given some strain response data is not sufficient
on its own for damage identification. A criterion must be defined to determine whether a plate
deflection corresponds to the intact or the damaged condition. In this work, this criterion is
encapsulated in the maximum allowable threshold value of 8 mm following the requirements of
IACS [106]. Finally, a crucial aspect is the ability of the system to systematically incorporate
potential sources of uncertainty, both in the inputs and the predictions, which in the case
presented herein is achieved through the use of methods that rely on a probabilistic foundation.

Taking now a bird’s-eye view of the problem, it can be stated that an SHM system like the
one conceptually defined above, is intended to inform inspection whenever the underlying
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conditions require doing so, thereby facilitating a CBM approach as opposed to the current
time-based one. This can be neatly captured by a framework based on the concept of an alarm
strain threshold indicator introduced in the last chapter.

3.2 Case study description
3.2.1 Reference system configuration

The subject geometry considered in this study is an idealized version of the double bottom
assembly in the midship part of MOL Comfort, with the vessel’s class-specific bottom plans
serving as the basis [107]. The problem is simplified by focusing on a specific geometric
domain, namely the double bottom module shown in Figure 3.1c, rather than the entire ship
structure shown in Figure 3.1a and 3.1b. This reduction to the problem was possible because
it was assumed that the damage of interest occurs only in particular unsupported platings
located at the external bottom of Cargo Hold No. 6. Without any loss of generality, following
the insights retrieved from a survey on one of MOL Comfort’s sister vessels, it was decided to
take the region denoted by the hatched rectangle as the suspect area for strain sensor placement.
Essentially, the highlighted region in question encompasses the damage-critical zone and
any nearby platings that could potentially be affected by the produced damage. We can thus
safely infer that the section of the bottom (hereinafter referred to as “stiffened panel” for the
sake of internal consistency) bounded lengthwise by the two watertight bulkheads of the hold
and, breadthwise, by the centreline and outboard girders, is sufficient enough to allow for the
stress/strain redistribution after damage.
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Figure 3.1: (a) Reference vessel side view, (b) section cut amidships, and (c) 3D view of the
isolated stiffened panel geometry along with the exerted loading regime. Hatched area denotes
the monitoring region.
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A detailed top view of the external bottom which contains the monitoring region is shown in
Figure 3.2a with the 𝑥 axis taken parallel to the ship’s centreline and the 𝑦 axis normal to it.
The idealized panel, framed both longitudinally and transversely, is a grillage-type structure
with dimensions 27 m × 18 m × 2.2 m (𝐿 × 𝐵 × ℎDB). The typical span between adjacent
transverse floors is denoted by 𝑎 equal to 3600 mm. Longitudinal stiffeners are non-uniformly
distributed breadthwise, with spacing values varied at 𝑏1 = 898 mm, 𝑏2 = 851 mm, and
𝑏2 = 850 mm, while there are five girders in number extending between the watertight
bulkhead ends. In addition, Table 3.1 presents the scantlings of the structural members that
comprise the transverse cross-section of the stiffened panel.

Table 3.1: Structural scantlings (plate, stiffeners, and primary supporting members).

Type Geometry Dimensions (mm)

1 Angle 250 × 90 × 11/16
2 T 400 × 11 + 150 × 18

Plate

External bottom 20
Inner bottom 15
Girder 14
Floor 11

Additionally, the monitoring region with potential sensor locations is illustrated using the
green and red ellipses that indicate the plate elements where initial deflections are considered
possible to occur. A distinction is made between those deflections that will grow beyond the
acceptable threshold (red ellipses) and those that will remain within nominal limits (green
ones). On a side note, the maximum potential out-of-plane deflection was taken as 20 mm in
the design, which is comparable to the deflection levels found during the investigations after
the MOL Comfort accident. To model the welding-related bathtub shape of the deflection (Δ𝑧)
at any location (𝑢, 𝑣) on a plate element located between stiffeners, a sinusoidal expression
was employed. This expression is defined as follows:

Δ𝑧(𝑢, 𝑣;𝑊o) = 𝑊o sin
(𝜋𝑢
𝑎

)
sin

(𝜋𝑣
𝑏

)
(3.1)

where 𝑊o denotes the amplitude of the deflection, 𝑢 ∈ [0, 𝑎] and 𝑣 ∈ [0, 𝑏]. It is of note
also that since, in practice, welding techniques lead to inward deformation for most panels, it
was assumed that the condition of the initial deflections of the platings was of the symmetric
sinusoidal one.

An indicative schematic of the potential sensor locations within the monitoring region is
illustrated in Figure 3.2b. As indicated, these register the strain values at the center of each
plate element, which was considered as the optimal location given the geometry of the target
damage. In total, the number of available sensor locations is 𝑁𝑠 = 30, while each sensor can
monitor 𝑁𝑐 = 3 strain components, namely normal strain along the 𝑥 and 𝑦 axes, denoted as
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𝜀xx and 𝜀yy respectively, and the in-plane shear strain component 𝜀xy. Note that the naming
conventions follow those shown in Figure 3.2.
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Figure 3.2: (a) Structural geometry and (b) deployed sensor topology. Green ellipses indicate
the healthy platings, i.e.,𝑊o ∈ [0, 8] mm, while the red ones indicate the probable damaged
platings, i.e.,𝑊o ∈ [8, 20] mm.

3.2.2 Input source variability definition

To effectively describe the input source variability, the basic random variables must be stated
and associated with their respective PDFs. In terms of operational variability, the basic
random variables correspond to the loads acting on the double-bottom structure. In this
work, the loading scenario selected for the reference vessel and, by extension, the stiffened
panel geometry, corresponds to still-water (steady-state) conditions. While this may appear
restrictive in a realistic field scenario, the relatively slow temporal evolution of out-of-plane
deflections allows for monitoring strategies with a less frequent sampling ratio (i.e. when
the ship is in harbor or sailing in calm weather) without sacrificing on the quality of system
predictions.

In this context, the loads acting at the panel level (see Figure 3.1c) are the hull girder bending
stresses (𝑆xx) which are compressive since hogging is dominant in containerships [1], the
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transverse in-plane compressive stresses (𝑆yy) due to side sea pressure, the direct lateral action
of bottom sea pressure (𝑃) on the hull exterior and the cargo weight (𝑄) per unit length on the
inner bottom. To avoid confusion with 𝜎, which represents standard deviation, it should be
highlighted that 𝑆 in this work relates to stress. Each of these load terms was assumed to follow
a normal marginal distribution, namely: 𝑆xx ∼ N

(
𝑠xx; 𝜇𝑆xx , 𝜎

2
𝑆xx

)
, 𝑆yy ∼ N

(
𝑠yy; 𝜇𝑆yy , 𝜎

2
𝑆yy

)
,

𝑃 ∼ N (
𝑝; 𝜇𝑃, 𝜎2

𝑃

)
, and 𝑄 ∼ N

(
𝑞; 𝜇𝑄 , 𝜎2

𝑄

)
.

All of the aforementioned parameters depend on the vessel’s loading condition. Typically,
loading conditions are discrete and strictly determined based on a vessel’s expected operation.
In order to reflect the whole operational profile of the vessel in terms of still-water loading, it
was decided that the distributions would be defined independently for each loading scenario.
Thus, their means were assumed to be equal to their respective nominal values, as determined
by the loading manual of the vessel under each condition. The variance was computed
using estimated coefficients of variation (CoVs) that can be obtained from the literature for
each parameter. Ultimately, a total of 72 loading conditions were considered with mean
ranges 𝜇𝑆xx ∈ [42.9, 135.5] MPa, 𝜇𝑆yy ∈ [15.1, 26.7] MPa, 𝜇𝑃 ∈ [0.11, 0.15] MPa and
𝜇𝑄 ∈ [59.5, 151.4] kN/m. The reader can refer to Appendix A to obtain a more detailed
insight into the population means corresponding to each loading condition. Their respective
CoVs were taken as 3.33% [5] for 𝑆xx, 1% for 𝑆yy and 𝑃, which was assumed based on the
low variability of these parameters due to their dependence on vessel trim, and finally 25% for
𝑄 taken indicatively following [108]. Ultimately, the load-related variability can be described
concisely using a random vector L ∈ 𝐷L ⊂ R4, which is arranged as L = [ 𝑆xx, 𝑆yy, 𝑃, 𝑄 ]𝑇
and has a joint PDF given by:

𝑓L(L = l; 𝛍L,𝚺L) = 1
(2𝜋)4/2 |𝚺L |1/2 exp

(
−1

2
(
l − 𝛍L

)𝑇 𝚺−1
L

(
l − 𝛍L

) )
(3.2)

where 𝛍L ∈ 𝐷𝛍L ⊂ R4 and 𝚺L ∈ 𝐷𝚺L ⊂ R4×4 are the mean vector and positive semi-definite
covariance matrix of vector variable L respectively:

𝛍L = [ 𝜇𝑆xx , 𝜇𝑆yy , 𝜇𝑃, 𝜇𝑄 ]𝑇 (3.3)

𝚺L = diag

©­­­­­«

𝜎𝑆xx

𝜎𝑆yy

𝜎𝑃

𝜎𝑄


ª®®®®®¬
·


1 𝑐12 𝑐13 𝑐14

𝑐12 1 𝑐23 𝑐24

𝑐13 𝑐23 1 𝑐34

𝑐14 𝑐24 𝑐34 1


· diag

©­­­­­«

𝜎𝑆xx

𝜎𝑆yy

𝜎𝑃

𝜎𝑄


ª®®®®®¬

(3.4)

with diag(·) denoting the diagonal matrix. Given that the various parameters exhibit physical
correlation, this has been accounted for through the inclusion of correlation terms in the
non-diagonal entries of the matrix. Their values were chosen based on physics-related
considerations and were set to 𝑐12 = 0.2, 𝑐13 = 0.2, 𝑐14 = 0.5, 𝑐23 = 0.9, 𝑐24 =
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3.2. Case study description

0.2, 𝑐34 = 0.2. In general, however, since these are assumed for illustrative purposes, they
can be conveniently replaced in practice if further information is available.

Apart from the load-related parameters, the input source variability also contains the out-of-
plane deflection amplitude𝑊o, which according to Teixeira et al. [109] can be described using
a lognormal distribution, i.e.,𝑊o ∼ lnN

(
𝑤o; 𝜇𝑊o , 𝜎

2
𝑊o

)
. For the sake of comprehension, its

functional form is provided by Equation 3.5. Given the mean value 𝑚𝑊o and variance 𝑣𝑊o ,
the lognormal distribution population parameters 𝜇𝑊o and 𝜎𝑊o can be calculated through the
method of moments as described by Equation 3.6. As a result, the parameters of the PDF
representing𝑊o are 𝜇𝑊o = 0.511 mm and 𝜎𝑊o = 1.114 mm. Finally, a visual representation of
the underlying statistical structure of𝑊o is presented in Figure 3.3. Based on the distribution,
it appears that𝑊o is less than 8 mm in 92% of the observations, and is greater than 8 mm in
8% of the observations.

𝑓𝑊o (𝑊o = 𝑤o; 𝜇𝑊o , 𝜎𝑊o) =


1√
2𝜋𝜎𝑊o𝑤o

exp

(
−1

2

(
ln𝑤o − 𝜇𝑊o

𝜎𝑊o

)2
)

if 𝑤o > 0

0 elsewhere

(3.5)

𝜇𝑊o = ln
©­­«

𝑚2
𝑊o√︃

𝑣𝑊o + 𝑚2
𝑊o

ª®®¬ , 𝜎𝑊o =

√√√
ln

(
𝑣𝑊o

𝑚2
𝑊o

+ 1

)
(3.6)
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3.3 Finite Element Modeling
In response to the increased complexity of the problem at hand, an FE model of the stiffened
panel geometry was generated. The FE model was ultimately intended to serve as a synthetic
data generator whereby a computationally cheap surrogate model can be further trained to
alleviate its burdensome computational demands. For this purpose, the ANSYS Mechanical
commercial software by means of its integrated scripting language (APDL1) has been employed.
This allowed the model to be parameterized in terms of the input source variability parameters
to enable an MCS-based iterative solution scheme. An indicative view of the FE model of the
analyzed system may be seen in Figure 3.4. The problem has been cast in a linear static setting
with the material being regarded as linear elastic and isotropic, as it was expected that the
applied loads would not result in plastic deformation. In this context, a Young’s modulus of
207 GPa and a Poisson’s ratio of 0.3 were used as representative values of shipbuilding steels.

To streamline the modeling process, a grid of effective girders and floors was used to emulate
the stiffness contributed to the overall system by the inner bottom shell. These were represented
by 2-node linear beam elements with cross sectional properties equivalent to the original
topology. The same element type was registered for the stiffeners of the panel. The external
bottom was discetized using 4-node quadrilateral shell elements with a nominal global mesh
size of 900 mm. Selective mesh refinement was adopted to maintain a feasible analysis without
sacrificing accuracy, with the finest element size (∼100 mm) used in the region concerned
with initial deflections (monitoring area). This was gradually succeeded through transition
layers of moderately distorted elements arranged in a way that mesh compatibility was never
compromised, as seen in Figure 3.4a. The obtained mesh resolution of a total content of 𝑁𝑒 =
9422 shell elements ensured an almost unity aspect ratio of element size for the subject area
and was able to capture the intended deflection amplitudes of the steel platings.

Regarding the loads, the in-plane stresses (𝑆xx, 𝑆yy) were applied using their equivalent
concentrated loads (𝑁x, 𝑁y) by first coupling the fore and outboard edges of the panel with
a reference node, as seen in Figure 3.4a. Essentially, coupling is a way to force a set of
nodes to have the same DOF value; this way, each side remained straight and normal to the
corresponding in-plane load throughout the whole loading procedure. Water pressure 𝑃 and
container weight 𝑄 were applied as a surface load distributed over the outer bottom and as a
grid of line loads appropriately distributed on the effective beam elements, respectively.

As far as boundary conditions are concerned, symmetry conditions were applied along the
free edge of the panel coinciding with the centreline of the ship. All nodal displacements at
the remaining model edges were constrained in the vertical direction with zero displacement
conditions. Moreover, free rotation around their respective axis was constrained using the same
condition, as both the transverse and the side longitudinal bulkheads are usually much stiffer

1ANSYS Parametric Design Language
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Figure 3.4: (a) FE mesh resolution of the modeled geometry with imposed boundary control
and applied loads, and (b) inset display of an indicative initial deflection (with magnification
factor of 10).

than the remaining double bottom configuration. Finally, in order to avoid rigid body motions
in the longitudinal direction, the displacement of the aft end section nodes was constrained in
that direction imposing zero displacement. The imposed boundary conditions of the model
are visually summarized in Figure 3.4a. Where 𝑢x, 𝑢y, and 𝑢z denote the translations along 𝑥,
𝑦 and 𝑧 axes. Similar, 𝜃x, 𝜃y and 𝜃z denote the rotations around 𝑥, 𝑦 and 𝑧 axes.

For the damage, the deflection of the element nodes within each local plating was defined by
changing their vertical position following Equation 3.1, considering a local coordinate system
with the axes set as shown in Figure 3.4b.

In addition, before employing the developed FE model to obtain synthetic strain response
data, it was considered essential to conduct a qualitative exploration to test the validity of
the adopted modeling approach. Due to the complexity of the system of interest, it was not
possible to obtain a solution to the problem by straightforward analytical techniques to act as a
reference for comparative tests. Besides that, neither experimental data nor studies on existing
similar structures have been found in the broader literature. Therefore, in the absence of these
means, it was decided to rely on the expectations and the engineering judgment of the writer.

Due to the complex interplay between the combined loads applied to the FE model, it
was decided that splitting the applied loads into individual components would be a good
modeling practice for this non-formal validation process. This was implemented so as to better
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understand the effect induced by each load type individually. Each one was thereafter evaluated
independently for each set of strength attachments supporting the exterior bottom. This
indicates that triplets of baseline FE analyses were carried out for each individual external load,
corresponding to a stiffener-, girder-, and floor-only case. The deformed shape of the structure
was eventually displayed for each of these sub-cases computed by the solver, demonstrating
that it agrees well with the intuitive approximation of its corresponding counterpart. The
analysis was brought to a conclusion by assessing the FE model in a similar manner with all
of its members assembled. Overall, the collected findings revealed sufficient validity for the
model to be deployed as a credible generator of synthetic data.

On a closing note, it should be pointed that the elapsed time per simulation was on average 45
sec using an Intel® Core™ i5-5200U CPU with 6 GB RAM (parallel ANSYS® processing over
2 threads). Considering that the forward uncertainty propagation of the input source variability
to the strain response data is associated with a significant number of model evaluations within
an MCS, it can be determined that, to generate training data for the damage identification
models at reasonable offline cost, a surrogate would be required.
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Feature selection and surrogate modeling

Having developed the high-fidelity model, a two-step exploratory study is described, which
was undertaken to analyze the damage-sensitive information specific to each strain component
and eventually arrive at the most insightful one to be used in the damage identification process.
The section is concluded with a description of the surrogate model used to automate the
prediction of the selected damage-sensitive features.

4.1 Exploratory analysis for feature selection
Identifying damage-sensitive features from the collected system response data is crucial for
the design of reliable SHM architectures. However, not all quantities provide high damage
detection performance, nor do they necessarily connect in any meaningful way to damage
presence, not even under a most powerful ML algorithm manipulation. The physics-based FE
model described in the previous section was used to assess the discriminating power of each
component of the strain tensor recovered from the 𝑗 th strain sensor 𝛆( 𝑗)𝑠 =

[
𝜀
( 𝑗)
xx , 𝜀

( 𝑗)
yy , 𝜀

( 𝑗)
xy

]𝑇
,

𝑗 = 1, . . . , 𝑁𝑠.

As a preliminary step towards feature selection, an exploratory study was undertaken on a
deterministic level exclusively within the numerical environment. As we are interested in
the strain field perturbation induced by the existence of damage, studying the strain field
difference between the healthy and damaged states can provide significant insight. This can be
determined by subtracting the strain results extracted from the integration points of each shell
element 𝑒 referring to a damaged case scenario, from the respective quantities corresponding
to a healthy case scenario. In mathematical terms, this is interpreted as the formulation of a
column vector 𝛆Diff

𝑖 =
{
𝜀D
𝑖, 𝑒 − 𝜀H

𝑖, 𝑒

}𝑁𝑒

𝑒=1
where “𝑖” denotes the different strain components (i.e.,

xx, yy or xy), superscript “H” stands for healthy, and “D” for damaged. Each vector related to
a strain component is in turn collected to a matrix EDiff =

[
𝛆Diff

xx , 𝛆
Diff
yy , 𝛆

Diff
xy

] ∈ R𝑁𝑒×𝑁𝑐 .

For the healthy state a single realization of 𝑁𝑠 independent and identically distributed (i.i.d.)
random variables

{
𝑤

( 𝑗)
o

}𝑁𝑠

𝑗=1
was drawn from the PDF of 𝑊o. To ensure that the reference

healthy state scenario complied with the regulations offered by IACS, an upper cutoff limit of
8 mm (truncation in the PDF) was set for 𝑊o. For the damaged case, initial deflections of
20 mm were considered in the damage-critical zone, while the rest of the adjacent platings
were kept at their previous values. A representative load case was selected for demonstration
purposes. As seen in Figure 4.1 which plots the strain difference in the vicinity of the
damage-critical zone, 𝜀yy was the feature that directly correlates to damage presence. This is
consistent with the problem physics, since according to plate theory the strains in the short
dimension are the ones that are dominant in plate bending. Based on the results of this
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deterministic analysis, it was determined that the 𝜀xy component should be discarded, as it
reaches its maximum magnitude values in the corners of each plate element, which does not
follow along with the deployed sensor topology.
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Figure 4.1: Strain differences (a) 𝛆Diff
yy , (b) 𝛆Diff

xx , and (c) 𝛆Diff
xy of the healthy and damaged

structure for indicative load and deflection realizations. The gray elements indicate the area
where there is zero strain difference or the strain difference is buried beneath the system’s
noise level (5 με).

The next analysis was aimed at comparing the damage-sensitivity of the two remaining
candidate features, 𝜀xx and 𝜀yy, in statistical terms. For the healthy state, a number of 𝑁𝑀𝐶 =

500 samples of initial deflection vectors
{[
𝑤 (1)

o,𝑖 , . . . , 𝑤
( 𝑗)
o,𝑖 , . . . , 𝑤

(𝑁𝑠)
o,𝑖

]}𝑁𝑀𝐶

𝑖=1
∈ R𝑁𝑀𝐶×𝑁𝑠 , were

drawn from the PDF of𝑊o within the context of an MCS supported by the LHS method. For
the damaged case, the maximum deflection of 20 mm was applied again to specific plate
elements, those containing sensors numbered from 𝑗 = 13, . . . , 18 according to the notation of
Figure 3.2b, while for the rest, the same values as in the healthy case were retained. This was
done to examine whether damage in its most severe form propagates to the nearby platings.
The mean difference between a feature observed at the healthy state and the corresponding one
observed at the damaged state is presented in Figure 4.2. In Figure 4.3, indicative histograms
of these features from sensors 𝑗 = 8, 18 are plotted to illustrate their statistical structure. As
indicated, the sensors most sensitive to the strain field disturbance were the ones located
in the damage-critical zone (thus, 𝑗 = 13, . . . , 18), while the highest sensitivity of 𝜀yy was
again evident. Furthermore, a statistical conclusion that may be extracted is that the strain
response in the damage-critical zone was statistically independent of the initial deflections
far from its immediate vicinity. Ultimately, the damage-sensitive features that will guide
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the damage identification strategy can be arranged in the (damage-sensitive) feature vector
𝛆 =

[
𝜀(13)

yy , 𝜀(14)
yy , 𝜀(15)

yy , 𝜀(16)
yy , 𝜀(17)

yy , 𝜀(18)
yy

]𝑇
∈ 𝐷𝛆 ⊂ R𝑑𝛆 with 𝑑𝛆 ∈ Z+.
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4.2 ANN-based surrogate modeling for strain estimates
To quantify the uncertainty in the present damage detection framework, a large amount of
analyses is required. Specifically, the number of MCS samples in order to obtain estimates for
the mean and standard deviation of 𝜀yy with an acceptable error of around 1% and a level of
significance of 5% was estimated to be ∼ 104. This was approximated using a representative
value of the standard deviation of the sample obtained from the previous statistical exploration
while following a well-established process [76] based on sampling distributions and the
central limit theorem. The large number of required simulations highlights the need for
the construction of a surrogate model F . As such, an ANN model was employed and
ultimately used in place of the original numerical model M created in the previous chapter. A
visualization of the adopted ANN-based surrogate modeling process is provided in Figure 4.4.
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𝑖 = 1, . . . , 𝑁

(Damage-sensitive)
feature vector

𝛆𝑖

Baseline state vector
X𝑘
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X𝑘 −→ 𝛆̂𝑘 ≈ 𝛆𝑘

Surrogate model F
feature vector

𝛆̂𝑖

FE model M

M Surrogate F

Figure 4.4: ANN-based surrogate modeling strategy.

The numerical model was exploited to create a baseline set 𝑫base of synthetic data that would
be used for training, validation and testing purposes, which was necessary for the construction
of the surrogate model. Therefore, 𝑛 = 2000 observations were uniformly sampled from
the support set of all 34 input source variability parameters in order to encompass all
potential solution trends. The resulting base set was formulated as 𝑫base = {x𝑘 ; 𝜺𝑘 }𝑛𝑘=1, where

x𝑘 =
[
𝑠xx,𝑘 , 𝑠yy,𝑘 , 𝑝𝑘 , 𝑞𝑘 , 𝑤

(1)
o,𝑘 , . . . , 𝑤

( 𝑗)
o,𝑘 , . . . , 𝑤

(30)
o,𝑘

]𝑇
is the 𝑘th instance of the input state

vector, and 𝛆𝑘 =
[
𝜀(13)

yy,𝑘 , . . . , 𝜀
( 𝑗)
yy,𝑘 , . . . , 𝜀

(18)
yy,𝑘

]𝑇
is the corresponding output feature vector. The

lower and upper bounds for each random variable were set according to their corresponding
ranges.

From the total number of samples in 𝑫base, 80% were assigned for training and 20% for
testing purposes. The training 𝑫train and testing 𝑫test data-sets were ensured to be mutually
exclusive to avoid compromising the measure of generalization of the surrogate. To enhance
network performance, the input data prior to training were standardized so that they have a
zero mean and unit standard deviation, while the outputs (targets) were normalized so that
they lie within the [0, 1] range. Data normalization/standardization is a very common practice
for regression tasks, where various continuous variables are usually measured at different
scales. The employed neural network consisted of 4 hidden layers, with 32 neurons each,
between the 34-dimensional input layer and the 6-dimensional output layer. ReLU activation
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4.2. ANN-based surrogate modeling for strain estimates

was used for all layers except the output one, where a sigmoid function was employed, aligned
with the re-scaling scheme imposed to the output vectors. In terms of training, the Adaptive
moment (Adam) optimizer based on mini-batch gradient descent was used with a learning
rate of 0.005 and a batch size of 128. Training lasted 1500 epochs (i.e., 1500 iterations over
all the training data) and the Mean Squared Error (MSE) was used as the loss function. A
schematic representation of the ANN architecture design as applied for the task at hand can be
found in Figure 4.5.
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Figure 4.5: A schematic illustration of the ANN used as surrogate model for strain measurement
prediction.

The ANN hyperparameters were tuned using heuristics based around a k-fold cross validation
process of 10 folds and ultimately the network was trained over the entire data-set. During
the 10-fold cross-validation procedure, the entire available data-set was split into 10 sets
and the model was trained using the data from all sets except one (i.e., 9 of the 10 sets)
while the remaining one was used for validation. This procedure was repeated for all 10
possible validation sets and the final validation score was obtained as the average of their
respective scores. This method ensured good data splitting and better model generalization.
Graphical representation of the validation and training Mean Absolute Error (MAE) curves
derived from the average per-epoch MAE scores for all folds over all training epochs is
provided in Figure 4.6a. To further assess the performance of the ANN model, the metric of
coefficient of determination, known as 𝑅2, was employed, which is widely used in DL-based
applications [61, 84, 110]. In general, the larger the 𝑅2 is, the higher the accuracy of the
trained model is, and a value larger than 0.8 is believed to represent a high degree of accuracy.
The value of 𝑅2

𝑗 between strain predictions and their corresponding targets, corresponding to
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the 𝑗 th strain component 𝜀( 𝑗)yy , is defined as:

𝑅2
𝑗 = 1 −

𝑛test∑︁
𝑘=1

(𝜀( 𝑗)yy,𝑘 − 𝜀
( 𝑗)
yy,𝑘 )2

𝑛test∑︁
𝑘=1

(𝜀( 𝑗)yy − 𝜀( 𝑗)yy,𝑘 )2

, 𝑗 = 13, . . . , 18 (4.1)

where 𝑛test is the size of 𝑫test; 𝜀( 𝑗)yy,𝑘 is the 𝑘th strain observation; 𝜀( 𝑗)yy,𝑘 is the 𝑗 th component of
the 𝑘th predicted output vector 𝛆̂𝑘 = F (x𝑘 ); and 𝜀( 𝑗)yy is the mean of the observed responses
for all test samples. Then, the weighted (i.e., averaged) 𝑅2 score over the outputs obtained
from 𝑫test is calculated as:

𝑅2 =



R2


𝑑𝛆

(4.2)

where R2 =
{
𝑅2
𝑗

}18

𝑗=13
∈ R𝑑𝛆 , and ∥·∥ is the 𝐿1-norm. The weighted 𝑅2 score is presented in

Figure 4.6b. From the latter two performance metrics, it can be ascertained that the model
has been trained effectively with no over-fitting having occurred and that a sufficiently high
performance has been achieved for the regression task (𝑅2 = 0.994).
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Figure 4.6: Evolution of ANN-based surrogate MAE over epochs (a) and indicative regression
fit (b).

The statistical structure of the surrogate model error 𝜼 = 𝛆 − 𝛆̂ was further assessed using a
pairplot presented in Figure 4.7. Histograms of the error term for individual strain components
are what is contained in the diagonal entries, with scatter plots showcasing the joint distribution
of different components being included in the upper triangular section and KDE-based joint
distributions in the lower one. The error histograms are fitted with normal probability
distributions and the results of the corresponding summary statistics are collected in Table 4.1
with units in microstrains. It is evident that the error structure is typical of what is known
as prediction error, which showcases zero-mean behavior with standard deviation (∼ 10 με)
within the limits often found across relevant literature [62, 80]. Ultimately, it can be said the
surrogate model error follows a zero-mean and uncorrelated multivariate Gaussian distribution
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4.2. ANN-based surrogate modeling for strain estimates

with variance 𝜎2
𝜼 = 10 με, that is, 𝜼 ∼ N(0,𝚺𝜼 = 𝑰𝑑𝛆𝜎

2
𝜼 ), where 𝑰𝑑𝛆 is the 𝑑𝛆 × 𝑑𝛆 identity

matrix. This error term is commonly added to FE-data for synthetic data generation, in order
to incorporate the effects of added noise. Considering that the surrogate error was found to
be statistically equivalent, it was decided that when the surrogate is used for synthetic data
generation, no further noise addition would be required.
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Figure 4.7: Involved error in the surrogate model construction.

Table 4.1: Surrogate model error distribution mean and standard deviation.

ID 13 ID 14 ID 15 ID 16 ID 17 ID 18

𝜇
( 𝑗)
𝜂 [με] -1.3 -3.2 0.1 1.6 1.0 -0.3

𝜎
( 𝑗)
𝜂 [με] 10.8 11.5 12.3 11.4 10.5 10.7

Ultimately, with the trained ANN, a large set of predicted strain responses can be obtained for
the purposes of adequately training the employed damage identification methods. Namely,
applying the surrogate model F on the full set of an appropriate number of samples for the
task at hand, e.g., 𝑁 , gives: 𝑫F = {x𝑖; 𝜺̂𝑖}𝑁𝑖=1. As described at the beginning of the previous
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section, 𝑁 for our case was estimated to be ∼ 104, which can now be formally confirmed by
producing a convergence plot of the Monte Carlo (MC) mean estimator of an indicative strain
feature, as shown in Figure 4.8. Lower and upper bounds correspond to confidence intervals
of 95%.

Figure 4.8: Monte Carlo convergence graph.
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Chapter 5

Damage identification methods

In this chapter, using the essential theoretical context presented in the second chapter and
tailoring it to the problem at hand, the formulation of the employed damage identification
approaches is provided, and their performance is assessed on different representative damage
scenarios. The first approach is termed as “detection theory-based approach” since elements
from detection theory were used, while the second one is referred to as “probabilistic
regression-based approach” to remain consistent with the original paper of Nix and Weigend
[102].

5.1 Detection theory-based approach
In Section 2.4 it was mentioned that the Likelihood Ratio Test (LRT) is fundamentally built
around binary detection problems. Thus, in order to use it to assess the existence of a damage
feature that is described by a nominally continuous variable (i.e., herein, the amplitude
𝑊o of out-of-plane deflections), this variable must be effectively described using a discrete
expression. For this reason, it was decided that for the six plates in the damage-critical zone,
the effective 𝑊o range, i.e., 8 − 20 mm, would be partitioned into 𝑖 = 12 discrete damage
states (DS-𝑖), each corresponding to a range spanning 1 mm. Accordingly, DS1 corresponds
to 𝑊o ∈ [8, 9] mm, DS2 to 𝑊o ∈ (9, 10], etc. For the healthy state H, on the other hand, it
was considered that deflections would be measured after construction or repair operations
during the quality assurance process, so they were taken to be deterministic and known a priori.
Each damage state tested against a particular reference healthy state yields a distinct binary
hypothesis test, which ultimately results in a total of 12 LRTs. For each test, the employed
LRT-based detector will be called to determine whether the registered strain values correspond
to the damage state in question. It is evident that the discretization of the problem not only
enables damage identification but also offers a prediction range for the deflection magnitude.

According to the definition of the LRT provided in Section 2.4, it is necessary to select
appropriate PDFs for the strain response data that correspond to the healthy and damaged
states. For the latter, this amounts to 12 different PDFs, each corresponding to a particular
damage state as defined earlier. In this work, non-parametric KDE-based PDFs were fitted
using strain response data corresponding to each case obtained from the surrogate model using
the following process. For the healthy state, since deflections were assumed deterministic,
plates were assigned a particular instance of i.i.d. measure observations that were drawn
from the lognormal distribution while ensuring that they lie under the damage threshold of
8 mm. Load realizations were subsequently obtained for each of the 72 loading conditions.
This was achieved by drawing 140 samples from each loading condition using the joint PDF
described in Equations (3.2) to (3.4). This ultimately led to a total of 10080 samples from the

53



Chapter 5. Damage identification methods

random variables describing the input source variability. These were then fed to the surrogate
to obtain an equal number of strain response samples, which were used to fit the KDE-based
PDF for the healthy state. A similar process was employed to fit PDFs for the damaged states,
with the only difference being that for the initial plate deflections of the six plates within
the damage-critical zone, samples were drawn uniformly from each range. For example, for
DS1, samples were drawn from U[8, 9], for DS2 from U[9, 10], and so on. Ultimately, a
total of 13 data-sets were produced; one for the healthy class 𝑫H, and 12 for the different
damage classes, each labeled as 𝑫DS−𝑖. The estimated KDE densities corresponding to each
structural condition are shown for a particular sensor (ID 14) in Figure 5.1. For this sensor, the
out-of-plane deflection for the reference healthy state corresponds to 2.9 mm, as determined by
the i.i.d sampling process. Observing Figure 5.1 reveals that as the level of damage increases,
the overlap between the distributions decreases, suggesting that the proportion of misclassified
strain data points will progressively decrease for more severe damage states.
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Figure 5.1: Estimated KDE densities for all damage states and the reference 2.9 mm healthy
state (sensor ID 14).

The assessment of the detector was implemented in two stages for the same sensor, which was
considered representative of the overall problem. In the first stage the probability of detection
(𝑃D) curve was produced which shows the 𝑃D as a function of the deflection level and for
different acceptable probabilities of false alarm (𝑃FA). Since the estimates of the PDFs in
Equation 2.24 are provided as the kernel density estimates under the reference healthy state
H and the 𝑖th damage state DS-𝑖, MC methods were employed to calculate the 𝑃D given a
specific acceptable 𝑃FA level. Namely, for the reference healthy state the strain threshold
𝜀𝑇 corresponding to the desired 𝑃FA was obtained from Equation 2.30 using the calculated
empirical inverse CDF. Then the LRT (Equation 2.24) was conducted within an iterative
process for every data point in the 𝑫DS−𝑖 considering this particular threshold value, and
if the ratio was above it, the effective data point was counted as a 𝑇𝑃. If the ratio for the
occurring data point was below the threshold, the algorithm iterated to the next data point in
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5.1. Detection theory-based approach

the sequence. The sum of the total 𝑇𝑃 divided by the number of elements in 𝑫DS−𝑖 yielded
the 𝑃D value for the 𝑖th hypothesis test. This process was repeated for every other 𝑃FA level,
while retaining the same data-sets. The results are summarized in Figure 5.2. Analyzing those
results led to the conclusion that the employed detector was highly accurate, regardless of
the false alarm threshold, for more severe damage states. Conversely, for those closer to the
8 mm threshold, its performance was overall diminished and also significantly affected by the
imposed 𝑃FA threshold.
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Figure 5.2: Detection performance for sensor ID 14 for different damage states for a 2.9 mm
healthy state deflection magnitude.

In the second stage of assessing the performance of the proposed framework, ROC curves
were produced for the detector that correspond to the different damage states and two different
scenarios for the healthy state. In the first healthy state scenario, an out-of-plane deflection
of 5 mm was considered, which corresponds to an intermediate case, while in the second
the limit case was considered, i.e., 8 mm. Implementation-wise, generating the ROC curves
involved defining a finite but sufficiently large set of thresholds 𝜀𝑇,𝑘 ranged from the minimum
value of 𝑫H to the maximum value of 𝑫DS−𝑖. Next, a particular threshold value was chosen,
and the likelihood ratio of each element in 𝑫DS−𝑖 was compared to that threshold. The trials
above the threshold counted as 𝑇𝑃, whereas the trials below the threshold counted as 𝐹𝑃. The
𝑃FA was then simply the ratio of the number of 𝐹𝑃 to the total number of the elements in
𝑫H (undamaged trials), and similarly the 𝑃D was the ratio of 𝑇𝑃 to the number of elements
in 𝑫DS−𝑖 (damaged trials). The process was repeated for all threshold values 𝜀𝑇,𝑘 and the
resulting probability pairs were plotted. The ROC curves that correspond to the 5 mm case are
plotted in Figure 5.3a while those corresponding to the 8 mm case are shown in Figure 5.3b.
The gray area (lower triangle) represents a lack of information gain, and any conclusions
drawn from it are based completely on random chance. The positive correlation between the
magnitude of the excessive deflection and detector performance was confirmed by both sets
of curves. Furthermore, what became clear was that detection performance was adversely
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affected by the acceptable (healthy state) deflection magnitude. Taking all these findings into
account, it may be concluded that the key factor determining detection performance was the
relative difference between the out-of-plane deflection for the healthy and damaged states.

Figure 5.3: ROC curves (sensor ID 14) for a 5 mm (a) and an 8 mm (b) healthy state deflection
magnitude.

5.2 Probabilistic regression-based approach
For the probabilistic regression-based approach, there is no need to discretize the problem since
the employed mean–variance estimation (MVE) method is capable of learning a continuous
mapping between monitored strains 𝛆 and out-of-plane deflections 𝑊o. As mentioned in
subsection 2.5.5, this method is capable of quantifying predictive uncertainty by assuming a
Gaussian prediction error model, which in turn allows for the estimation of not only the mean
𝑊o, but also the associated variance.

Two separate ANNs are employed by this method to learn the mappings between the inputs
and mean and variance terms, which, for the sake of uniformity with the already-introduced
notation, have been denoted here as 𝑁𝑁𝑊o and 𝑁𝑁𝜎, respectively. In the proposed damage
identification framework, these were trained using data obtained from a single potential strain
sensor 𝜀( 𝑗)yy of the damage-critical zone ( 𝑗 = 13, . . . , 18) and sought to predict the mean and
variance of the normally distributed𝑊o that corresponds to the same plate on which the sensor
is located. Ultimately, the same 10080 load samples as in the detection theory-based case
were employed, but this time out-of-plane deflections were drawn from a uniform distribution
over the entire permissible range, i.e.,𝑊o ∼ U[0, 20] mm.

This is the fundamental difference between the two approaches, namely that the one using
probabilistic regression does not require an a priori separation into different states (healthy
and damaged). Rather, by efficiently learning to predict the parameters of the probability
distribution of𝑊o, conditioned on strain response data, it is able to accommodate any deflection
threshold, as long as it lies within its training set. Transforming the predicted𝑊o distribution
into a decision on the existence of damage is straightforward and will be described later.
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When it comes to the hyperparameters of the two ANNs, again as in the training process
of the surrogate model, a heuristic trial-and-error process was employed to determine them.
On the one hand, for 𝑁𝑁𝑊o two hidden layers with 16 neurons each were used between the
1-dimensional input and output layers. On the other hand, 3 hidden layers of 64, 64 and
32 units were required for 𝑁𝑁𝜎. For both networks, ReLU activation was used throughout
except in the output layers, where a linear one was employed. However, since variance is
by definition positive, the softplus function log (1 + exp (·)) was passed through the second
output to impose a positivity constraint, and also a minimum variance (i.e., 10−3) was added
for numerical stability. As in the detection theory-based approach, the training samples were
obtained from the constructed surrogate model, and were split to 60% for training, 15% for
validation, i.e., hyperparameter tuning, and the remaining 25% was used for testing the model.
The data were standardized for the same reasons as stated in section 4.2, while no processing
was applied to the targets and separated into batches of 128 prior to training. The 𝑁𝐿𝐿 was
used as the loss function, while Root Mean Square propagation (RMSprop) with a learning
rate of 10−4 was selected to be the optimizer. A maximum of 3000 epochs was selected for
training, but an early stopping criterion was employed with a patience of 300 epochs. This
meant that if the 𝑁𝐿𝐿 for the validation set failed to improve for 300 successive epochs, then
training was to be terminated.

The evolution of the 𝑁𝐿𝐿 over the training epochs is plotted for the same sensor as in the first
method (i.e., ID 14) in Figure 5.4a for a representative instance of training the model. As
indicated, the early stopping criterion has been triggered and ∼ 2570 epochs were required
for training, while it is clear that no overfitting has occurred. The predictive capabilities of
the trained model are illustrated in Figure 5.4a. In that, instances of𝑊o from the test set are
depicted using a scatter plot, while the mean prediction of the probabilistic regression model
is plotted with the red curve and the 95% PIs with the green curves. Observing the figure it is
made clear that the trained model was capable of capturing the mean behavior of the data, as
well as their heteroscedastic behavior. Moreover, an illustrative example of the out-of-plane
deflection PDFs is provided using the blue curves, which correspond to different potential
strain response measurements.

Apart from the visual inspection, the PICP and PINAW indexes introduced in subsection 2.5.5
were used to evaluate the quality of the constructed PIs, which is indicative of the model’s
performance. Namely, the acquired values were PICP = 96.90% and PINAW = 46.56%,
which indicate high percentage of coverage, i.e., higher than the preset confidence level, and
relatively narrow widths considering the intrinsically high sparsity of𝑊o data. These results
further support our assertion that the model generates predictions with high accuracy and fairly
high certainty. Furthermore, the PICP index can be visually interpreted by Figure 5.5. On the
x-axis of the plot are the true targets of𝑊o and on the y-axis are the predicted distributions of
𝑊o, where the 95th percentiles are shown as vertical blue bars. Green and red dots represent
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Figure 5.4: Evolution of NLL loss function over epochs (a) and probabilistic regression model
predictions for the mean and 95% PIs versus target data (b) corresponding to sensor ID 14.

the means of the distributions, where green denotes that the true 𝑊o falls within the 95th
percentile range (“hit”) and red denotes that it does not (“miss”). As already suggested by
the PICP index, this model has 97% hits and 3% misses, meaning that it tends to be slightly
under-confident in its predictions.
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Figure 5.5: Performance of the probabilistic regression model for the synthetic deflection data.

As mentioned, with the trained model at hand it is fairly simple to tackle the damage detection
problem. The process that may be followed is illustrated in Figure 5.6. As a first step, an alarm
threshold of 𝑊o = 8 mm is considered. Due to the presence of uncertainty, this cannot be
mapped to a unique strain value by which to obtain a strain threshold for damage identification.
As evidenced by Figure 5.6a, a potential strain reading may correspond to various out-of-plane
deflections, associated with a different probability of occurrence. Therefore, in order to
set the strain threshold, the out-of-plane deflection threshold must be associated with some
probability of occurrence, or more pertinently for this case a probability of exceedance. This
constitutes a particularly reasonable choice since it imbues the system with a consideration of
risk, expressed as the maximum allowed probability of damage occurrence.

Thus, a more accurate description of the alarm threshold would be that of the strain measurement
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for which Pr[𝑊o ≥ 8] = 5%. This threshold can be readily obtained using the trained
probabilistic regression model through a simple grid search process which, for the case
illustrated in Figure 5.6, led to an estimated value of 𝜀𝑇 = 286 με. With that in hand, the
trained model can be leveraged again to estimate the probability of detection and probability
of false alarm. More specifically, 104 𝑊o samples were generated for every strain response
value contained in the test set. Then, the strain measurements for which the generated 𝑊o

samples were up to 0.1% from𝑊o = 8 mm were retained and plotted using a histogram (see
Figure 5.6b) on top of which then a KDE-based PDF was fitted (see Figure 5.6c). Using that
PDF and the strain response threshold determined earlier, the probability of false alarm can
be stated as 𝑃FA = Pr[𝜀 ≤ 𝜀𝑇 ], which can be easily calculated using the Cumulative Density
Function (CDF) of the strain distribution, which is depicted in Figure 5.6d. The complement
of this probability can be viewed as an equivalent expression of the probability of detection.
Considering that adapting this process to any threshold value associated with a desirable
probability of exceedance, highlights the versatility of the probabilistic regression-based
approach. However, it must be noted that the method is bound by a strong assumption in terms
of the distribution model of the predictions, which might hinder its accuracy in cases where
more complex data distributions are observed or when they span higher dimensions.
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Figure 5.6: Probability of non-exceedance of alarm strain threshold for a given exceedance
probability (5% selected herein) of the maximum allowable deflection (8 mm).
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Chapter 6

Concluding remarks

The goal of the present work was to investigate an SHM system for damage identification
of excessive plate deflections in large-scale ship structures, which constitute a particularly
important damage mode as they may act as triggers for buckling collapse. The implementation
of the methods was carried out in a numerical setting, using a high-fidelity FE model and
an ANN-based surrogate to generate synthetic strain response data. Different sources of
uncertainty affecting structural loading, as well as the damage mode, were considered and
propagated to the synthetic data through an MCS. Static strain response was employed as
the damage-sensitive feature, with the particular strain monitoring locations and components
selected by an exploratory analysis of the strain response.

Two alternative methods for damage identification were employed, both capable of quantifying
predictive uncertainty. The first employed a detection theory-based approach which treated
the problem as a series of binary classification tasks between a healthy state and damaged
states corresponding to progressively more severe damage levels. The method showcased
decreased accuracy for less severe damage cases, thus compromising its potential for early
detection. Conversely, the alternative method, based around a probabilistic regression model
(MVE method), which mapped strain to out-of-plane deflection was proven to be more robust
to damage extent. Furthermore, it offers significantly greater flexibility as it does not require
discretizing the problem into different binary ones and can also account for varying thresholds.
Moreover, it offers an inherent quantification of decision-related risk as it requires a probability
of exceedance for a specific out-of-plane detection threshold in order to set corresponding strain
measurement alarm thresholds. Despite its improved flexibility, it may still be insufficient for
high-dimensional problems or ones where the predictive data distribution is complex, due
to its assumption of Gaussian prediction error at each point. Finally, it is by definition not
capable to update its predictive capacity as more data becomes available, a task for which
Bayesian methods are suitable and which can be viewed as a natural extension to this work.
Essentially, Bayesian methods relate to probabilistic approaches for model updating (inverse
problem) where the goal is to evaluate the posterior PDF of the unknown model parameters
that are of interest conditioned on the measured data. The deployment of more complex sensor
topologies coupled with optimization of sensor placements is also encouraged, either within
the framework shown here or by applying the Bayesian approach mentioned previously.
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Appendix A

Loading Conditions Summary Table

In the present appendix, the mean values associated with the marginal distributions of the four
load-related random variables are provided in table form for all 72 loading conditions.

Table A.1: Population mean values of the load-related random variables for each loading
condition.

Condition No. 𝜇𝑆xx (MPa) 𝜇𝑆yy (MPa) 𝜇𝑃 (kPa) 𝜇𝑄 (kN/m)

1 117.76 15.18 110.84 71.41
2 102.39 15.16 110.79 71.41
3 98.43 15.18 110.85 71.41
4 81.76 15.18 110.86 77.78
5 71.20 15.18 110.85 77.78
6 63.90 15.18 110.84 77.78
7 82.64 15.19 110.87 67.70
8 69.24 15.18 110.85 67.70
9 63.68 15.19 110.88 67.70

10 81.01 15.18 110.85 64.33
11 68.69 15.17 110.81 64.33
12 60.72 15.17 110.80 64.33
13 58.18 15.18 110.86 64.12
14 49.32 15.18 110.84 64.12
15 43.34 15.18 110.83 64.12
16 66.73 15.18 110.86 59.55
17 53.72 15.18 110.83 59.55
18 43.27 15.16 110.77 59.55
19 121.60 18.06 120.91 71.41
20 110.57 18.07 120.92 71.41
21 101.51 18.06 120.91 71.41
22 114.60 18.05 120.86 95.22
23 99.85 18.04 120.83 95.22
24 96.33 18.07 120.92 95.22
25 105.92 18.07 120.92 107.12
26 94.12 18.06 120.89 107.12

(Continued on next page)
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Appendix A. Loading Conditions Summary Table

Table A.1 (Continued).

Condition No. 𝜇𝑆xx (MPa) 𝜇𝑆yy (MPa) 𝜇𝑃 (kPa) 𝜇𝑄 (kN/m)

27 88.26 18.07 120.92 107.12
28 71.47 18.06 120.89 108.12
29 61.62 18.05 120.86 108.12
30 57.32 18.06 120.90 108.12
31 59.39 18.05 120.87 90.27
32 50.66 18.04 120.85 90.27
33 46.83 18.06 120.90 90.27
34 57.80 18.02 120.76 90.06
35 46.03 18.01 120.73 90.06
36 42.91 18.03 120.81 90.06
37 135.46 21.16 130.86 71.41
38 125.18 21.12 130.76 71.41
39 129.76 21.13 130.77 71.41
40 132.63 21.15 130.83 95.22
41 122.53 21.16 130.87 95.22
42 104.09 21.11 130.71 95.22
43 124.94 21.15 130.85 107.12
44 111.46 21.14 130.81 107.12
45 107.95 21.17 130.91 107.12
46 107.46 21.16 130.87 119.02
47 103.79 21.21 131.02 119.02
48 93.25 21.18 130.94 119.02
49 87.45 21.16 130.88 129.75
50 76.35 21.15 130.83 129.75
51 73.19 21.18 130.93 129.75
52 70.08 21.18 130.94 120.86
53 58.36 21.17 130.90 120.86
54 51.38 21.16 130.88 120.86
55 126.82 26.35 146.05 71.41
56 131.63 25.46 143.54 71.41
57 130.14 24.34 140.36 71.41
58 127.32 26.30 145.91 95.22
59 117.42 26.32 145.95 95.22
60 108.18 26.32 145.94 95.22

(Continued on next page)
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Table A.1 (Continued).

Condition No. 𝜇𝑆xx (MPa) 𝜇𝑆yy (MPa) 𝜇𝑃 (kPa) 𝜇𝑄 (kN/m)

61 120.81 26.29 145.86 107.12
62 115.00 26.33 145.98 107.12
63 108.58 26.34 146.01 107.12
64 132.63 26.23 145.70 119.02
65 123.33 26.25 145.75 119.02
66 115.41 26.23 145.71 119.02
67 115.63 26.34 146.01 142.83
68 104.31 26.34 146.02 142.83
69 95.88 26.34 146.00 142.83
70 111.33 26.33 145.99 151.37
71 99.78 26.35 146.03 151.37
72 88.00 26.32 145.96 151.37
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