

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF NAVAL ARCHITECTURE AND MARINE ENGINEERING

DEPARTMENT OF MARINE ENGINEERING

Propulsion Shafting Arrangement Modeling from Mechanical

Drawings using Deep Learning and YOLOv8

DIPLOMA THESIS

Naoum Panteleimon

Examination Committee Members

Christos Papadopoulos, Associate Professor NTUA (Supervisor)

George Papalambrou, Associate Professor NTUA

Konstantinos Anyfantis, Assistant Professor NTUA

Athens, March 2023

Acknowledgements

As I conclude my undergraduate studies, I would like to express my heartfelt
appreciation to all those who supported me during this journey. I am particularly
grateful to Dr. Christos Papadopoulos, my supervisor, for giving me the opportunity to
undertake this thesis under his guidance, and for equipping me with the resources to
explore and broaden my knowledge in the field of Artificial Intelligence. This
knowledge has proven to be invaluable when combined with my technical background
in Marine Engineering. I would also like to extend my gratitude to George Rossopoulos,
whose guidance and insightful suggestions were instrumental in the development of
this thesis, resulting in a robust and precise outcome. Finally, I wish to thank my family
for their unwavering support and encouragement, especially during the most
challenging times.

2

Abstract

The modern maritime industry is heading towards a digitalized future which
encompasses sustainable technological solutions which will automate operations in
all aspects of the maritime sector. The role of the Marine Engineer as a professional
encompasses the knowledge and the critical thinking required to solve problems and
overcome technical difficulties. One of them could be the ability to read mechanical
drawings.

The Marine Engineer is capable of identifying mechanical objects on a drawing,
for example the position of the vessel’s Main Engine on a General Arrangement Plan
and matching the identified geometries with their respective dimensions. Thus, the
engineer is able to extract the necessary data from a mechanical drawing which are
needed to solve further issues and make optimal decisions based on them.

In the present thesis, we evaluate the feasibility of developing an Artificial
Intelligence algorithm, which will employ the use of Deep Neural Networks, Object
Detection and OCR Techniques in order to understand the Propulsion Shaft
Arrangement of a vessel, identify and classify key objects in it, identify and extracting
dimensions and correlate their positions with their respective dimensions.

The purpose of this algorithm is to extract the necessary data to generate a
digital model of the vessel’s shafting arrangement capable to undergo further
processing such as being incorporated as a module in a Shaft Alignment software. Such
an integration will potentially accelerate the Shaft Alignment process instead of
manually entering the data into it and further lead a path in scale-up projects such as
shaft alignments of multiple vessels in a fleet.

Multiple Object Detection algorithms and different OCR models have been
proposed throughout computer vision applications such as R-CNN, SSD, RetinaNet,
thus we need to employ the necessary metrics to evaluate the most accurate fitted to
our application. On this particular thesis, the YOLOv8 (You Only Look Once – Version
8) has been employed, a cutting-edge, state-of-the art model (released at January
2023), which is an improvement of the previous YOLO versions introducing new
features and improvements to further enhance performance and accuracy.
Additionally, a large database of Shaft Arrangement drawings was generated by
performing augmentations, emulating noise, cropping and minimal rotations of the
image. We generated the necessary bounding boxes for the classes including several
objects necessary to identify such as the Propeller, Flanges, the Stern Tube Bearings,
the Shaft Bearing as well as the Propeller Shaft, the Intermediate Shaft and their
dimensions. The chosen model was trained for 200 epochs and achieved an average
of all classes Precision of 92.4%, Recall of 94.2% and mAp of 94%.

3

Contents

1 Introduction 1

1.1 Introduction to Artificial Intelligence 1

1.2 The role and ability of Marine Engineers 1

1.3 Our scope of work 2

2 Literature Review .. 3

2.1 Object Detection using SVMs & Edge Detection 3

2.2 Object Detection using Convolutional Neural Networks 4

2.2.1 Implementation of R-CNN Networks 4

2.2.2 Implementation of Single Shot Multibox Detectors (SSDs) 4

2.2.3 Implementation of YOLO algorithms in Object Detection 5

2.2.4 Regarding YOLOv8 5

3 Theoretical Background ... 6

3.1 Introduction to Computer Vision 6

3.2 Image Filtering Techniques 10

3.3 Machine Learning and Deep Neural Networks 16

3.3.1 Machine Learning 16

3.3.2 Overview on Neural Networks 25

3.3.3 Neural Network Architecture and Principles 29

3.3.4 Training Neural Networks and Backpropagation 31

3.3.5 Neural Network Performance Evaluation 34

3.3.6 Convolutional Neural Networks 38

3.3.7 Object Detection using CNNs 45

3.3.8 YOLO Versions and Improvements 50

3.3.9 YOLOv8 – A modern approach to Object Detection 54

4 Methodology.. 57

4.1 Shafting Arrangement Modeling Process 57

4.2 YOLOv8 and Transfer Learning 60

4.3 Object Detection Validation and Rules 61

4

4.4 Process Diagram for Shaft Modeling 63

4.5 Optical Character Recognition Techniques 65

5 Dataset Generation .. 66

5.1 Dataset Generation 66

5.2 Dataset Preprocessing Step 69

5.3 Dataset Inspection & Quality Evaluation 70

6 Training & Validation.. 76

6.1 Choosing YOLOv8 Model Variation 77

6.2 System Specifications for Training 77

6.3 YOLOv8 CLI and Python SDK 78

6.4 Roboflow API and Importing Training Dataset 78

6.5 YOLOv8 Training Hyperparameters 79

6.6 YOLOv8 Training Evaluation Metrics 81

6.6.1 Key Entities Detection Model Evaluation 81

6.6.2 Shafts Detection Model Evaluation 83

6.6.3 Dimensions Detection Model Evaluation 86

6.7 YOLOv8 Inference with Shaft Arrangement Samples 89

6.7.1 Key Entities Detection Model Inference 90

6.7.2 Shafts Detection Model Inference 92

7 Shaft Modeling Results .. 94

7.1 Details of the Application 94

7.2 Output Results for the Shaft Modeling 94

7.3 Additional Results worth noting 102

8 Conclusion & Future Work .. 103

8.1 Synopsis and Conclusion 103

8.2 Improvements using the developed software 104

8.3 Future work 105

9 Bibliography ... 106

5

List of Figures

Figure 3.1 Creation of a Digital Image 7

Figure 3.2 Grayscale intensity range 8

Figure 3.3 RGB Intensity Cube 8

Figure 3.4 Example of Shaft Arrangement Plan 9

Figure 3.5 Image Filtering Techniques 10

Figure 3.6 Color to Grayscale Conversion 12

Figure 3.7 Gaussian Distribution with μ=0 12

Figure 3.8 Noise Generation using the Gaussian Model for σ=0.5 13

Figure 3.9 Sobel-Feldman Filter result 15

Figure 3.10 The Machine Learning structure 17

Figure 3.11Example of Machine Learning 18

Figure 3.12 Linear Regression with errors 18

Figure 3.13 Implementation of Gradient Descent 19

Figure 3.14 Polynomial Example regression 21

Figure 3.15 Sigmoid Function for Classification Problems 21

Figure 3.16 Decision Boundary of Sigmoid Function 22

Figure 3.17 Classifiers in Multiclass Classification 24

Figure 3.18 Underfitting vs Overfitting Boundaries 24

Figure 3.19 A biological neuron 25

Figure 3.20 Perceptron Neuron 26

Figure 3.21 Step Activation Function 27

Figure 3.22 Sigmoid Activation Function 27

Figure 3.23 Tanh(x) with Sigmoid function comparison 28

Figure 3.24 ReLU Activation Function 29

Figure 3.25 A simple Neural Network 29

Figure 3.26 Deep Neural Network Architecture 30

Figure 3.27 Neural Network with 1 Hidden Layer 31

Figure 3.28 Precision - Recall Curve 35

Figure 3.29 F1 Score - Confidence Curve 36

Figure 3.30 Confusion Matrix Example 37

Figure 3.31 AUC-ROC Curve Example 37

Figure 3.32 Structure of a CNN 38

Figure 3.33 Image Convolution of Shaft Bearing Example 39

6

Figure 3.34 Step 1 of Convolution Example 40

Figure 3.35 Step 2 of Convolution Example 40

Figure 3.36 Convolution on a 3-channel image 41

Figure 3.37A Fully detailed Convolution Layer 41

Figure 3.38 Convolution Layer representation 42

Figure 3.39 Convolutional Neural Network example 42

Figure 3.40 Max Pooling and Avg Pooling 43

Figure 3.41 Pooling on Volume 43

Figure 3.42 The LeNet Architecture 44

Figure 3.43 AlexNet Architecture 44

Figure 3.44 Classification and Localization on Object Detection 45

Figure 3.45 Definition of IoU 46

Figure 3.46 One-Stage Methods compared to Two-Stage Methods 47

Figure 3.47 R-CNN Steps and Architecture 48

Figure 3.48 Faster R-CNN Steps and Architecture 48

1

1 Introduction

1.1 Introduction to Artificial Intelligence

Artificial Intelligence (AI) is the replication of human intelligence in machines, designed to

mimic human thinking and behavior. AI systems can analyze datasets, detect patterns, and

make informed decisions based on available information. Alan Turing's paper, "Computing

Machining and Intelligence," paved the way for theoretical computing and AI, as he explored

the possibility of computers exhibiting human-like intelligent behavior. AI has the potential to

revolutionize the work of marine engineers by enabling them to make data-driven decisions,

improve accuracy and efficiency, and foster innovation and creativity. By automating

repetitive tasks, AI software can reduce the risk of human error, thereby enhancing the safety

of maritime operations and marine engineering projects.

1.2 The role and ability of Marine Engineers

Marine engineers have a crucial role in the design and maintenance of merchant vessels. They

are responsible ensuring that the marine systems are well maintained and functional for the

vessels’ lifetime. One of the key skills that sets marine engineers apart is their ability to read

and understand mechanical design drawings. These drawings provide detailed information

about the layout and functionality of several marine systems such as E/R arrangements: (Main

Engine, Pumps, Filtering Systems, BWTS). Marine engineers use these drawings to understand

the inner workings of the arrangements depicted in them and be able to use the data from

them to operate, troubleshoot and maintain the ship’s systems. Such an ability to read and

interpret complex drawings is a critical aspect of their field of work and ultimately it is essential

to ensure the safety of the maritime operations.

2

Our present thesis will evaluate the feasibility of designing an AI software which is ultimately

capable of thinking like an engineer and understanding mechanical design drawings,

identifying crucial objects and correlating data from the objects detected to extract digital

twin of the drawing.

1.3 Our scope of work

Our focus will be on a designing an AI for modeling a particular drawing: The Shafting

Arrangement Plan. Specifically, the Shafting Arrangement Plan is a critical drawing of the

design and construction of a vessel. It is a detailed illustration that shows the placement, the

positions and dimensions of the vessel’s shafts, bearings and the components which are part

of the vessel’s propulsion system. The Shafting Arrangement Plan provides crucial information

to the marine engineer by helping them understand the principles of the vessel’s propulsion.

It includes the necessary data which ensure that the various components of the propulsion

system are aligned and spaced properly in order for the vessel to operate efficiently with

minimal vibration. The AI should be capable of understanding the structure and the positions

of the various mechanical components of the shafting arrangement plan and be able to extract

a digital twin of the shafting arrangement, with inputs able to be imported to a Shaft

Alignment software.

Using an accurate object detection model is really important for the development of the AI

because even the small errors in the shaft arrangement plan can lead to significant problems

in the shaft alignment process such as increased wear, tear on components and even

complete system failure. Therefore, it is necessary to apply validation criteria based on the

engineers’ knowledge and critical thinking which will be able to handle the digitalization of

the shaft with care and attention to detail.

In the following chapters, the overview of the literature is presented. Basic theoretical

concepts regarding machine learning, computer vision, object detection will be discussed on

great detail. The basic foundation of the shaft arrangement should be introduced along with

the key components of the shaft arrangement which will ultimately be our objects of

detection.

3

2 Literature Review

Studies regarding Object Detection and Data Extraction from Mechanical Drawings reveal the

great significance and interest of researchers in the fields of computer vision and engineering.

Progress has been made throughout the years as both the hardware of the machines and the

detection models improve throughout the years. In the field of object detection at mechanical

drawings, most of the applications are based on broader object detection studies using SVMs

and Edge Detection as well as their improved Deep Learning CNN algorithms such as SSDs,

(Single Shot Detector), R-CNNs (Region-based Convolutional Neural Network) and YOLO (You

Only Look Once) models.

2.1 Object Detection using SVMs & Edge Detection

In one of the initial studies in this field, P. Dosch, K. Tombre, C. Ah-Soon, and G. Massini (2000)

employed a combination of edge detection and support vector machine (SVM) algorithms for

detecting objects in architectural drawings. SVM is a machine learning algorithm utilized for

classification and regression analysis. In object detection, SVMs can recognize and locate

objects in drawings and images by identifying the hyperplane that separates the objects from

the background. The algorithm identifies the most suitable hyperplane that maximizes the

margin between objects and the background, offering a reliable technique for identifying

objects in noisy and cluttered drawing images. The aforementioned researchers utilized their

developed SVM to detect objects in architectural drawings by training it on a set of labeled

images with manual annotations. The algorithm learned to recognize objects and applied its

knowledge to detect the objects in new, unseen images. To enhance the accuracy of

detection, their SVM was combined with an Edge Detection algorithm that could identify

object and background boundaries. This provided additional information to the SVM

algorithm, enhancing its ability to make accurate digital modeling decisions. SVMs are useful

for object detection in mechanical drawings due to their robust ability to differentiate objects

from the background, and their versatility in handling various types of image features, such as

edges and textures.

4

2.2 Object Detection using Convolutional Neural Networks

2.2.1 Implementation of R-CNN Networks

Amongst modern researchers a deep-learning based approach is more spread, especially using

Convolutional Neural Networks. Girshick R. Donahue J. Darrel T. and Malik J. (2013) developed

the Regional Convolutional Neural Network (R-CNN) which was the first model to implement

convolutional neural networks in object detection. In the R-CNN method, the objects’ region

proposals are generated via a traditional object detection method, such as selective search

and then they are passed through a CNN to extract features from the proposed regions. These

features are then used to make object detection decisions using a classifier such as an SVM.

The combination of CNNs and SVMs enabled a much more computational-efficient way to

identify objects inside images than using an SVM alone. R-CNN was widely used since then for

computer vision applications, and it was improved by its successor Faster-RCNN which was

used in object detection at mechanical drawings such as Hu, H., Zhang, C. & Liang, Y. (2021)

who used a Faster-RCNN to detect roughness regions on drawings. R-CNN models are

continued to be used as solution and they are used for their efficiency and fast response in

detection results.

2.2.2 Implementation of Single Shot Multibox Detectors (SSDs)

Wei Liu, Dragomir Anguelov, et al. (2016) developed an SSD (Single Shot Multibox Detector)

which used Convolutional Neural Networks which could be trained end-to-end to make object

detection decisions directly from the input image. Their proposed method showed a

promising method in the future of object detection by outperforming traditional computer

vision models such as SVMs. The SSDs ability to make object detection decisions directly from

the feature maps allows SSD algorithms to be faster, more precise and efficient than SVMs,

which typically require multiple steps such as region proposal generation and feature

extraction. Gimenez, L. Robert, S. Suard, F. Zreik, K. (2016) incorporated SSDs in an attempt to

reconstruct 3D Building Models from scanned 2D floor plans. Using SSD algorithms over SVMs

enabled the researchers to handle wide range object sizes and aspect ratios. SVM algorithms

typically require fixed-sized feature vectors as inputs which can be a limitation in object

detection where objects can have a wide range of shapes and sizes. On the contrary, SSD

algorithms are designed to handle a variety of object sizes using anchor boxes which are

predefined bounding boxes which are used to generate region proposals of for object

5

detection. According to Z. Li and F. Zhou, the implementation of Convolutional Neural

Networks was considered a breakthrough in object detection enabling a robust and powerful

method to provide a robust and fast object detection whilst being able to handle objects with

different sizes and aspect ratios.

2.2.3 Implementation of YOLO algorithms in Object Detection

Following the previous Object Detection algorithms, Ali Farhadi (2016) developed the YOLO

(You Only Look Once) model which found much application in object detection solutions.

YOLO uses a single CNN to perform object detection without the need for regional proposals

or multiple stages of processing. This results in a much faster object detection than R-CNN and

SSD making it suitable for real-time applications. Additionally, YOLO is able to make object

detections based on a full image rather than individual regions, thus it allows to make

predictions for objects which are not fully contained within one region, a limitation which

appeared on R-CNN. This enabled researcher such as Nurminen, J.K., et al. to implement a

YOLO model for Object Detections in Design Diagrams even when there is noise or part of the

object is missing from the drawing. Since 2016 there have been multiple versions of YOLO

algorithms which are improved in both accuracy and prediction speed. The YOLO models have

been evolved vastly than their predecessors making them the most frequent choice of object

detection amongst researchers.

2.2.4 Regarding YOLOv8

YOLOv8 (Version 8) was released at January 10th, 2023, and it is the latest version of YOLO

boasting improvements in its accuracy and robustness. Thus, little to none research papers

have been done yet, considering this particular thesis one of the first examining a YOLO v8

Object Detection model. According to J. Solawetz (2023), representing Ultralytics, the leading

company in developing the YOLOv8 there are several reasons why to implement it in the new

object detection models:

1) YOLOv8 has the highest accuracy amongst its predecessors, achieving a mAp (50-95)

of 54.5% on the COCO dataset.

2) YOLOv8 has a well-structured CLI and Python commands, suitable for easier training

and application deployment.

3) Last but not least, YOLOv8 comes with bug improvements and a well-maintained

community with experts on the field of computer vision.

6

3 Theoretical Background

As explained by Wang and Lu (2015), Artificial Intelligence (AI) involves developing machines

and algorithms that can perform tasks requiring human-like intelligence, including recognizing

patterns, learning from data, and making decisions based on their training. The field of Object

Detection has seen a significant impact from AI in recent years, which involves identifying

instances of specific objects in images or videos.

With advances in computational power, AI algorithms can now perform this task with great

accuracy, even with complex and cluttered inputs. Convolutional Neural Networks (CNNs)

have emerged as the leading machine learning technique for object detection. These networks

use large pre-labeled image datasets and employ multiple processing layers to learn

increasingly complex features and object representations. However, unlike humans, machines

lack the ability to understand context and knowledge expertise and can only recognize objects

based on learned patterns.

To enhance AI's cognitive abilities for object detection in mechanical design drawings, it is

recommended to develop a set of validation rules that can emulate the decision-making

process of an intelligent marine engineer.

3.1 Introduction to Computer Vision

Digital Imaging and Conversion

The field of computer science that concentrates on enabling machines to interpret,

understand and analyze information is known as Computer Vision. It encompasses the

development of algorithms and models capable of analyzing images in the same way humans

do, including recognizing objects and detecting patterns.

In computer vision, the image itself is one of the key mathematical representations. It is

defined as a 2-dimensional array of pixel values and mathematically represented as a function.

function 𝑔:𝑅 → 𝑅2 :

𝑧 = 𝑔(𝑥, 𝑦) , 𝑥, 𝑦, 𝑧 ∈ 𝑅

7

where 𝑥, 𝑦 are the spatial coordinates of each pixel and the value of the function 𝑧 = 𝑔(𝑥, 𝑦)

represents the intensity of the pixel.

Although machines are able to only comprehend digital images which are discrete

representations of analog images. This can be achieved in 2 processes:

Digital Sampling: Involves the dividing of the image into a 2D grid of pixels and measuring the

intensity of light/color at each cell. Mathematically it is represented by a mapping function

which maps a continuous 2D image to a discrete grid:

𝑓: 𝑅2 → 𝑍2

Quantization: The intensity values are quantized; they are rounded to the nearest integer as

follows:

𝑓[𝑖, 𝑗] = 𝑟𝑜𝑢𝑛𝑑 (
𝑔(𝑥, 𝑦)

𝑞
) ∙ 𝑞

Where 𝑓 ∈ 𝑍2 is the quantized intensity value at the coordinate (𝑥, 𝑦), 𝑔(𝑥, 𝑦) is the

continuous intensity value at the same coordinate, 𝑞 is the quantization step and 𝑟𝑜𝑢𝑛𝑑(𝑋)

is the rounding function. The quantization step q determines the number of levels of intensity

that are used to represent the image. The smaller the 𝑞 , the finer the image representation

is, although it comes with a trade-off of a larger amount of image data to be processed.

This results in a matrix of discrete values which represent the image as seen in the image

below:

Figure 3.1 Creation of a Digital Image

Grayscale and Color Images

We have 2 different types of digital image models: The Grayscale and the Colored Image:

Grayscale Image: It is an image consisting only of shades of gray with no color (monochromatic

image), just like the one defined above. In a grayscale image each pixel is represented by a

single intensity value ranging from 0 (black) to 255 (white). The intensity value of a pixel

8

determines its shade of gray with the lower values being darker and the higher values being

lighter.

Figure 3.2 Grayscale intensity range

Colored Image: On the contrary, a colored image is an image which includes multiple color

channels, typically Red, Green and Blue (RGB). In a colored image, each pixel is represented

by three values (R, G, B) which represent the intensity of each color channel. The additive

combination of these three intensity values results in a specific color for each pixel. The figure

below represents a comparison between the grayscale intensity range and the colored range

which is illustrated as a cube, thus describing the digital colored pixel as a 3D vector:

Figure 3.3 RGB Intensity Cube

Comparison between Grayscale and Colored Images

Colored images provide a more natural representation of the world with color being an

important aspect of our perception. Although, comparing grayscale images to colored images,

the implementation of grayscale images is much preferred, when possible, in computer vision

models for the following reasons:

A) Simplicity: Grayscale images are simpler to process and analyze than colored images.

They contain only one channel of information representing the intensity of each pixel,

making it easier to detect edges, shapes and textures.

9

B) Reduced computational complexity: Grayscale images require fewer computations than

grayscale images, as there is less information to process, thus making grayscale images

faster and more efficient to work with.

C) Reduced noise: Color images tend to have more noise and variations in intensity than

grayscale images, which can pose difficulties in identifying accurately features and

detecting objects in them.

D) Increased Robustness: Grayscale images are often more robust to changes in lighting and

exposure conditions than colored images, where color information can be severely

affected.

E) Texture & Shape oriented: A plethora of computer vision and image processing

applications focus on detecting the shape and texture of objects rather than their color.

Grayscale images provide a much straight-forward representation of shape and texture

making them optimal to identify such features.

In our case scenario, Naval Architectural plans do not have a color-coded information on them

as the lines are black colored and the drawing background is white. Additionally, the texture

of the lines (width and linetype) and their shape are the most important features to identify

on our target geometrical entities of a mechanical drawing. Due to the factors above, it is only

reasonable to proceed our study by using grayscale digital input images.

Figure 3.4 Example of Shaft Arrangement Plan

10

3.2 Image Filtering Techniques

The necessity to import grayscale images to improve our object detection modeling in

accurately extracting features from mechanical design drawings, arises importance of

introducing a color-to-grayscale image filter.

Image filtering is a pre-processing step of great importance in computer vision which involves

transforming a digital image into a simplified or enhanced version of itself. Image Filtering can

be used to remove noise, removing unwanted features or highlighting certain features in

order to transform the image in an input suited for further processing an analysis.

There are different categories of image filtering techniques as shown in the graph below:

Figure 3.5 Image Filtering Techniques

Spatial Filtering: Refers to filters which operate on the pixel values of the image in their spatial

locations. They operate using convolution between the filter and the image:

Linear Filters perform linear transformation on the pixel intensity values with a set of weights

to produce a new image. This can be expressed using the convolution operator. Assuming

𝑓(𝑖, 𝑗) 𝜖 𝑍2 is an image and the filter or kernel is ℎ which includes the weights ℎ(𝑘, 𝑙) then,

their convolutional output image is denoted as:

𝑔 = 𝑓 ⊗ ℎ

𝑔(𝑖, 𝑗) = ∑𝑓(𝑖 − 𝑘, 𝑗 − 𝑙) ⋅ ℎ(𝑘, 𝑙)

𝑁

𝑘,𝑙

= ∑𝑓(𝑘, 𝑙) ⋅ ℎ(𝑖 − 𝑘, 𝑗 − 𝑙)

𝑁

𝑘,𝑙

Depending on the weights (filter coefficients) of the kernel ℎ we may have different

contributions of each input pixel in 𝑓, generating a variety of linear filters designed to operate

various image processing tasks such as smoothing, sharpening and edge detection. Such linear

filter examples include:

11

A) Gaussian filter: Which smoothens the image by weighting the neighboring pixels based

on a Gaussian distribution.

B) Sliding Average filter (Box filter): Replaces each pixel with the mean value of its

neighboring pixels, which helps to reduce noise.

C) Sobel filter: Detects edges in an image by computing the gradient of the image’s pixel

intensity.

Non-Linear Filters perform non-linear operations on the image intensities. considering the

kernel as a statistical estimator. Their objective is to estimate the intensity values of the pixel

when the pixels are in presence of noise. Commonly used non-linear filters include:

A) Median filter: It estimates the value of a pixel in an image by selecting the median value

as the pixel intensity value from a set of neighboring pixel values.

B) Bilateral filter: It considers the local intensity of a pixel and its spatial neighbors in order

to calculate their weighted average in a manner to preserve edge information and reduce

the image’s blurring.

Non-Linear filters are ideal to preserve image details but at the cost of higher computational

time due to their operations being more complex. As a general thumb of rule, fast linear filters

are effective for simple image processing tasks (such as smoothing and sharpening), however

when preserving image details is critical, a non-linear approach is much more applicable.

Grayscale Operation

The Grayscale Operation refers to a linear filter that transforms a color image into a grayscale

one. This operation involves reducing the richness of the color image from its RGB channels,

which are Red, Green, and Blue, to a single intensity channel or brightness. This grayscale

transformation is achieved by calculating a weighted average of the red, green, and blue color

channels to obtain a single grayscale intensity value for each pixel:

𝑓(𝑖, 𝑗) = 𝑤1 ∙ 𝑅(𝑖, 𝑗) + 𝑤2 ∙ 𝐺(𝑖, 𝑗) + 𝑤3 ∙ 𝐵(𝑖, 𝑗)

The most commonly used weighting combination is the luminance-based weighting, where

the red, green and blue channels are weighted as:

𝑤1 = 0.2989 𝑤2 = 0.5870 𝑤3 = 0.1140

After the weighted average is computed for each pixel, the resulting single intensity value

represents the grayscale version of that pixel. The final grayscale image is a 2D matrix of

intensity values as it can be seen in the figure below:

12

Figure 3.6 Color to Grayscale Conversion

Preprocessing using Image Filters

Prior training a computer vision model it is necessary to preprocess the data in a manner

which improves the model’s detection accuracy. Regarding scanned images, it is suggested

to generate a dataset which will include noise and minimal rotations (±1 deg.)

Noise Generation using Gaussian Distribution

Noise generation using the Gaussian distribution is a commonly used technique to simulate

real world image acquisition scenarios with poor light conditions and sensor noise present. A

Gaussian Distribution is defined as:

𝐺(𝑧) =
1

𝜎√2𝜋
𝑒

−
(𝑧−𝜇)2

2𝜎2 𝜇 = 0 → 𝑁𝑧(0, 𝜎2) =
1

𝜎√2𝜋
𝑒

−
𝑧2

2𝜎2

where 𝜇 is mean and 𝜎 the standard deviation. During noise generation, the 𝜇 = 0 ensure

that the noise will have a net effect of zero on the overall pixel intensities of the image.

Figure 3.7 Gaussian Distribution with μ=0

13

Using the Gaussian distribution, we are able to sample random values with random

probabilities which will be added on the pixel intensities, a linear operation such as:

𝐼𝑛𝑜𝑖𝑠𝑦 = 𝐼 + 𝑁(0, 𝜎2)

Τhe higher the standard deviation is 𝜎 ↑ , the result image will have more intense noise and

vice versa. For 𝜎 = 0.5 the result is shown in the figure below:

Figure 3.8 Noise Generation using the Gaussian Model for σ=0.5

Image Rotation

Image rotation by a certain angle around its center despite not being a filter, it’s a necessary

transformation for increasing the accuracy of our model. The rotation is performed by

transforming the 2D coordinates of each pixel by multiplying the matrix with the rotation

transformation matrix. For an image of a given height ℎ and width 𝑤 (in px) the transformation

of the image around its center (𝑤/2, ℎ/2) for any angle 𝜃 is:

[
𝑥′
𝑦′
1

] =

[

 𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃

𝑤

2
(1 − 𝑐𝑜𝑠𝜃) +

ℎ

2
𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 −
𝑤

2
𝑠𝑖𝑛𝜃 +

ℎ

2
(1 − 𝑐𝑜𝑠𝜃)

0 0 1]

∙ [
𝑥
𝑦
1
]

The first 2 rows perform the rotation and translation at the same time to keep the image in

the same initial position, while the last row is a homogenous transformation to keep the third

dimension unchanged.

14

Preprocessing Methods

Regarding To facilitate the thesis case, it is imperative to utilize an OCR (Optical Character

Recognition) algorithm to read the dimension numbers from the Shaft Arrangement Plan.

Various types of image processing filters can be employed to improve the accuracy of the

character recognition process in OCR, such as Edge Detection Filters (e.g. Sobel or Canny

filters) and Noise Reduction Filters (e.g. Median or Gaussian filters).

As per C. Patel et al (2012), these filters can augment the visibility of the numbers, making

them more distinguishable for the OCR model to precisely recognize them.

In addition, as per A. Singh (2012), some systems may utilize morphological filters or

binarization techniques, which depending on the image scenario, could escalate the

recognition accuracy by up to 30%.

Sobel Filter Edge Filter

As it is previously mentioned, the Sobel filter operated by convolving the image with 2 3x3

kernels, one for detecting the horizontal edges and another for the vertical edges. The Sobel-

Feldman kernels operate by calculating the gradient of the pixel intensity values. Since we are

interested in detecting areas where the intensity changes drastically, as these are likely to be

the boundaries between objects, it is reasonable to use the gradient as a measure of the rate

of change in pixel intensity values. Thus, the Sobel filter calculates the gradient in both

horizontal and vertical direction and the gradient magnitude is considered a measure of the

edge strength. The Sobel kernels are:

𝐺𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] 𝐺𝑦 = [
−1 −2 −1
0 0 0
1 2 1

]

And the gradient magnitude as well as the angle of orientation are

𝛻𝑓 = |𝐺| = √𝐺𝑥
2 + 𝐺𝑦

2 ≈ |𝐺𝑥| + |𝐺𝑦|

𝜃 = (
𝐺𝑦

𝐺𝑥
)

As W. Gao and X. Zhang (2010) suggest, the Sobel filter is computationally efficient, produces

clear distinct edges in the images and it appears robust on noisy images. Although the Sobel

filter is sensitive to intensity changes which can result in false edges being detected, it may

miss small or thin edges and it is not ideal for curved edges. With a plethora of edge detection

filters such as Canny, LoG and Hough filters, depending on the task the best filter is to be

chosen.

15

An example of performing the Sobel Edge Filter is shown in the figure below:

Figure 3.9 Sobel-Feldman Filter result

Open CV as a Computer Vision Library

The OpenCV software library is an open-source computer vision and machine learning library

that offers pre-trained algorithms and functions for computer vision applications, such as

object detection, video analysis, and image processing. The library is written in C++ and can

be used in several programming languages, including Python, Java, and C#.

According to G. Bradsky, the founder of OpenCV, it is useful in computer vision projects for

image processing because it provides many algorithms for image processing, such as filtering,

morphological operations, edge detection, and thresholding. These algorithms can be utilized

for tasks like image segmentation, image de-noising, and object recognition. OpenCV also has

pre-trained deep learning models for object detection that can be fine-tuned for specific use

cases.

Furthermore, Python's native PIL (Python Imaging Library) can also be used to open,

manipulate, and save images and has essential modules for image processing.

For our thesis object detection model, we can employ OpenCV and PIL libraries to access the

filters for image processing by integrating them as functions in our thesis’ shaft arrangement

object detection model.

16

3.3 Machine Learning and Deep Neural Networks

3.3.1 Machine Learning

Machine learning, as described by Arthur Samuel, refers to the ability of computers to learn

without being explicitly programmed. However, a more contemporary definition was

proposed by Tom Mitchell, which states that a computer program learns from experience E

with respect to some class of tasks T and performance measure P, if its performance at tasks

in T, as measured by P, improves with experience E. For example, in our object detection

model for mechanical design entities in mechanical drawing images, E refers to the experience

gained from multiple iterations of learning what objects need to be detected, T refers to the

task of detecting all available mechanical entities, and P refers to the accuracy of predictions

based on the engineer's knowledge. Machine learning problems can generally be classified as

either supervised or unsupervised learning. In supervised learning, the computer is given a

dataset and already knows what the correct output should be. Supervised learning problems

can be further classified as regression or classification problems. Regression problems involve

predicting results within a continuous output, while classification problems involve predicting

results in a discrete output, meaning that input variables are mapped into discrete categories.

A) Supervised Learning

The field of Supervised Learning involves using a dataset to learn a relationship between input

and output data. This approach includes two types of problems, namely "Regression" and

"Classification." A regression problem involves predicting continuous output values based on

input variables, while a classification problem involves predicting discrete output values by

assigning inputs to specific categories.

In our current thesis the problem of detecting certain objects inside an image input is a

broaden classification problem, since we have the digital image data as an input and as output

we have multiple discrete classes whether the objects we detect are for example “bearings”,

“flanges” or “propellers”.

B) Unsupervised Learning

Unsupervised Learning enables us to approach problems with minimal knowledge of what

our result output would be although we can derive structure from data where we don’t

necessarily know the effect of the variables. We derive such structure by clustering the data

based on relationships among the variables in the data with a lack of feedback on the

prediction results. A common unsupervised learning problem in business and marketing, is

17

given a dataset of customer data including the age, income, and location of customers an AI

can apply clustering algorithms to group customers into similar segments such as “young with

low income” or “elderly with high income”, which can be deemed useful in targeted

marketing and predictive advertisement applications.

Machine Learning Model Representation

To establish our notation for future reference we use 𝑥(𝑖) to denote the “input” variables

(features) and 𝑦(𝑖) to denote the “output” (or target) variable, which the AI is attempting to

predict. A pair (𝑥(𝑖), 𝑦(𝑖)) is called a training example and the dataset we will be using to learn

is a list of 𝑚 training examples (𝑥(𝑖), 𝑦(𝑖)): 𝑖 = 1,2, … ,𝑚 is defined as a training set. Note

that the superscript (𝑖) in notation is an index into the training set and not an exponentiation.

Additionally, we denote as 𝑋 the space of input values and 𝑌 the space of output values. In

an object classification problem, the 𝑋 ∈ 𝑓(𝑥𝛥, 𝑦𝛥) ∃ 𝛧 the image data in a matrix and 𝑌 ∈ 𝑍

which are the classes being detected.

To describe the supervised learning problem slightly more formally, the goal is, given a

training set, to learn a function ℎ ∶ 𝑋 → 𝑌 so that ℎ(𝑥) is an accurate predictor for the

corresponding value of y, with ℎ(𝑥) referred as a hypothesis function:

Figure 3.10 The Machine Learning structure

In a regression problem, the 𝑦 ∈ 𝑅 since it’s a continuous prediction but in a classification

problem, the 𝑦 ∈ 𝑍 since we predict discrete classes 𝑌 = {0,1,2… . }. A brief example would

be illustrative in our case explaining how to train a simple machine learning algorithm:

Assume we have a set of features 𝑥 and outputs 𝑦 which comprise a training set: (𝑥(𝑖), 𝑦(𝑖))

18

Feature Variables x Output Variables y

2104 460

1416 232

1534 315

852 178

… (m inputs) … … (m outputs)…

Figure 3.11Example of Machine Learning

Our goal is to learn a function ℎ which can accurately predict the y given the x. We assume

the hypothesis function is linear:

ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥

In order to achieve this goal, we are tasked to choose the parameters 𝜃0 and 𝜃1 in order for

the line to fit the points:

Figure 3.12 Linear Regression with errors

For point 𝑥(𝑖) with output 𝑦(𝑖) its projection on the line is ℎ𝜃(𝑥(𝑖)). Observing the problem

above is only natural to conclude that a well fit of the line derives with parameters 𝜃0 , 𝜃1

which minimize the average vertical distance between the points and the line itself:

1

2𝑚
 ∑[ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖)]

2
𝑚

𝑖=1

Τhe metric used above is defined as a loss function, more specifically the Mean Squared Error

loss function (the (1/2) halved mean is used for computational convenience):

𝐽(𝜃0, 𝜃1) =
1

2𝑚
∑[ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖)]

2
𝑚

𝑖=1

=
1

2𝑚
∑(�̂�(𝑖) − 𝑦(𝑖))

2
𝑚

𝑖=1

Therefore, our problem is rewritten as:

𝑚𝑖𝑛
 𝜃0𝜃1

 𝐽(𝜃0, 𝜃1)

19

Which means that we seek the possible best line, such so as the MSE of the vertical distances

of the scattered data points from the line will be the least, ideally passing through every point.

A visualization between the parameters and the J error and the parameters will help perceive

problem of the MSE minimization:

Figure 3.13 Implementation of Gradient Descent

As seen in the figure above we will successful if we consider a path of the parameters (𝜃0, 𝜃1)

which leads us to the very bottom of the graph where the value of the error is the minimum.

A solution to this is by taking the derivative (the tangent) of the loss function as a direction

to move forward with the steepest descent step by step. The size of each step is determined

by a parameter 𝑎 which is defined as the learning rate.

Thus, the Gradient Descent algorithm is defined as an optimizer to be repeated until

convergence:

𝜃𝑗 ≔ 𝜃𝑗 − 𝑎
𝜕

𝜕𝜃𝑗
𝐽(𝜃0, 𝜃1) → 𝜃𝑗 ≔ 𝜃𝑗 −

𝛼

𝑚
∑[ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖)]

2
𝑚

𝑖=1

The learning rate 𝑎 is an important parameter to our learning process which ensures that the

gradient descent algorithm converges in a reasonable time. If 𝑎 is too small the gradient

descent is slower, but if 𝑎 is large, the gradient descent may overshoot causing a possibility

to diverge from the minimum MSE. It is important to try multiple values of learning rates prior

to training any machine learning algorithm, although there are applications where the 𝑎 can

be variable depending on the convergence to the minimum value of the MSE.

20

Machine learning with Multiple Features

When multiple features are introduced, we may have multiple number of parameters at our

hypothesis function. Introducing the new notation:

𝑥𝑗
(𝑖)

= Value of the feature 𝑗 in the 𝑖-th training example (number)

𝑥(𝑖) = The features of the 𝑖-th training example (vector of features of the 𝑖-th example)

𝑚 = The number of training examples 𝑖 = {1,2,… ,𝑚}

𝑛 = The number of features 𝑗 = {1,2,… , 𝑛}

Thus, the hypothesis function accommodating those multiple features can be expressed as:

ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + ⋯+ 𝜃𝑛𝑥𝑛

ℎ𝜃(𝑥) = [𝜃0 … 𝜃𝑛][1 … 𝑥𝑛]−1 = 𝜃𝛵𝑥

The Gradient Descent can be rewritten for 𝑗 = {0,1,… , 𝑛}:

𝜃𝑗 ≔ 𝜃𝑗 −
𝛼

𝑚
∑[ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖)]

𝑚

𝑖=1

∙ 𝑥𝑗
(𝑖)

Two techniques that can potentially speed up the learning process are feature scaling and

mean normalization. Feature scaling involves dividing the input values by the range (e.g. the

max value minus the minimum value) of the input variable resulting in a new range of just 1

and mean normalization involves subtracting the average value for an input variable from the

values, resulting in a new average of just zero. To implement both of these techniques we

adjust the input values as seen below:

𝑥𝑖: =
𝑥𝑖 − 𝜇𝑖

𝑠𝑖

Where 𝜇𝑖 is the average of the values for the and 𝑠𝑖 = 𝑚𝑎𝑥 − 𝑚𝑖𝑛

There is further room to improve our features and form our hypothesis function by combining

multiple features into one, such as creating new features 𝑥3 = 𝑥1𝑥2 Such can create new

hypothesis functions such as

 Polynomial Hypothesis:

ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥1
2 + 𝜃3𝑥3

3 with 𝑥2 = 𝑥1
2 , 𝑥3 = 𝑥1

2

Square Root Hypothesis:

ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥1 + 𝜃2√𝑥1 with 𝑥2 = √𝑥1

21

Choosing an optimal hypothesis function may be a result of several trial-and-error efforts, so

it is recommended to try different hypothesis functions depending the input data and

choosing the one which gives the least error.

Figure 3.14 Polynomial Example regression

Classification Problems

Having a good overview of basic regression problems, we may proceed to classification

problems. A novice attempt classification one simple method is to employ linear regression

and map all predictions greater than 0.5 as 1 and all less 0.5 as 0, although such attempt

would not always work.

The classification problem is similar to the regression, except that the values we want to

predict take discrete values. Our initial focus will be on the binary classification problem at

which the 𝑦 = 0 𝑜𝑟 1. For instance, if we are attempting to build a classifier for shaft bearings

from images, then 𝑥(𝑖) may be the pixel intensities of the image representing the features of

the image and 𝑦 may be 1 if it is a shaft bearing (positive class) and 0 if it’s not (negative class).

The 𝑦(𝑖) ∈ {0,1} is also defined as the label for the training example.

For a classification problem, where our hypothesis values cannot be greater than 1, it is

reasonable to alter the form of the hypothesis function ℎ𝜃(𝑥) to satisfy 0 ≤ ℎ𝜃 ≤ 1.

Figure 3.15 Sigmoid Function for Classification Problems

22

Our new form of hypothesis uses the “Sigmoid Function” (Logistic Function) such that:

ℎ𝜃(𝑥) = 𝑔(𝜃𝑇𝑥)

If 𝑧 = 𝜃𝛵𝑥 :

𝑔(𝑧) =
1

1 + 𝑒−𝑧

The function 𝑔(𝑧) maps any real number to the (0,1) interval, making it suitable for

transforming an arbitrary valued function into a function suited for classification.

Now, ℎ𝜃(𝑥) represents the probability that our output is 1. For example, ℎ𝜃(𝑥) = 0.7

represents a probability of 70% that our output is 1. Obviously, the probability that our

prediction is 0 is the complement of the probability of being 1, in that case 30%:

ℎ𝜃(𝑥) = 𝑃(𝑦 = 1|𝑥; 𝜃) = 1 − 𝑃(𝑦 = 0|𝑥; 𝜃)

𝑃(𝑥; 𝜃) + 𝑃(𝑦 = 1|𝑥; 𝜃) = 1

In order to output a discrete 0 or 1 classification we may translate the output of the

hypothesis function as follows:

ℎ𝜃(𝑥) ≥ 0.5 → 𝑦 = 1 If the probability to be 1 is above 50% - Its 1

ℎ𝜃(𝑥) < 0.5 → 𝑦 = 0 If the probability to be 1 is below 50% - Its 0

Since the sigmoid function 𝑔(𝑧) ≥ 0.5 when 𝑧 ≥ 0 for our input of 𝜃𝑇𝑥 its safely perceived

that when 𝜃𝑇𝑥 ≥ 0 the ℎ𝜃(𝑥) = 𝑔(𝜃𝑇𝑥) ≥ 0.5, hence:

when 𝜃𝑇𝑥 ≥ 0 → 𝑦 = 1 and when 𝜃𝑇𝑥 < 0 → 𝑦 = 0 such may define the decision boundary

which separates the area where y=0 and y=1. Objects above the decision boundary are

classified as 1 and objects below the decision boundary are classified as 0.

Figure 3.16 Decision Boundary of Sigmoid Function

23

Additionally, we can’t continue to use the same MSE loss function for linear regression,

because the sigmoid would not be a convex, hence for the logistic regression the loss function

would be represented as:

𝐽(𝜃) =
1

𝑚
∑𝐶𝑜𝑠𝑡(ℎ𝜃(𝑥(𝑖)), 𝑦(𝑖))

𝑚

𝑖=1

With:

𝐶𝑜𝑠𝑡(ℎ𝜃(𝑥(𝑖)), 𝑦(𝑖)) = −𝑦 𝑙𝑜𝑔 𝑙𝑜𝑔 (ℎ𝜃(𝑥)) − (1 − 𝑦) 𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − ℎ𝜃(𝑥))

Thus, the expression above can be written as:

𝐽(𝜃) = −
1

𝑚
∑[𝑦(𝑖) 𝑙𝑜𝑔 𝑙𝑜𝑔 (ℎ𝜃(𝑥(𝑖))) + (1 − 𝑦(𝑖)) 𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − ℎ𝜃(𝑥(𝑖)))]

𝑚

𝑖=1

A vectorized implementation would be:

ℎ = 𝑔(𝑋𝜃)

The Gradient Descent is still considered a valid optimizer, although there are faster methods

to optimize the 𝜃 parameters such as ADAM, BFGS and L-BFGS.

Multiclass Classification Problems

Having a solid foundation of binary classification, we proceed to multiclass classification where

instead of 𝑦 = {0,1} we may have 𝑦 = {0,1,… , 𝑛}. We will approach this multiclass by dividing

the problem to n+1 binary classification problems, where in each one we predict the

probability that 𝑦 is one of our target classes against the rest of them. Thus the hypothesis:

𝑦 ∈ {0,1,… , 𝑛}

ℎ𝜃
(0)(𝑥) = 𝑃(𝑦 = 0|𝑥; 𝜃) Probability of our class being 0 amongst the rest of them

ℎ𝜃
(1)(𝑥) = 𝑃(𝑦 = 1|𝑥; 𝜃) Probability of our class being 1 amongst the rest of them

….

ℎ𝜃
(𝑛)(𝑥) = 𝑃(𝑦 = 𝑛|𝑥; 𝜃) Probability of our class being n amongst the rest of them

This approach would be visualized by defining appropriate decision boundaries to separate

the items of the target class with the items of the other classes. For example, given a dataset

with multiple classes, such as mechanical entities from shaft arrangement drawings, we define

decision boundaries as classifiers where at each case anything above it would be the target

object and anything below it would not be (one-vs-all principle). This decision boundary will

fit the classifier which will estimate the probability of y being a certain i-class:

24

Figure 3.17 Classifiers in Multiclass Classification

Hence, we will be able to detect more than a single class using multiple binary classification

problems.

Overfitting and Underfitting

Considering we want to optimize the classifiers we may attempt to use boundaries with fit our

data with higher accuracy. Such could be added by adding extra features on the predictor line,

however when adding more features there’s a great chance to overfit the dataset:

Figure 3.18 Underfitting vs Overfitting Boundaries

Underfitting: Our classifier is Underfitting when it is unable to capture the underlying trend

on the data, such that it may perform well on training data but poorly on test data, resulting

in poor prediction accuracy.

Overfitting: Our classifier is Overfitting when the classifier is generating localized adjustments

to fit the dataset but fails to generalize the underlying trend on them failing to detect new

data.

In order to prevent Overfitting and Underfitting we may employ techniques such as:

A) Regularization, which adds a penalty term to the loss function to prevent overfitting and

underfitting accordingly.

B) Cross-Validation: Dividing the data into training – test – and validation sets where the

model is being trained on the training set but validated for overfitting in a validation set.

C) Early-Stopping: Which can stop the training optimizer when the performance of the

validation starts to degrade.

D) Adding noise: In order to make the model more robust to small variations of the input.

25

3.3.2 Overview on Neural Networks

The concept of neural networks has its roots in the 1940s and 1950, when researchers such

as Warren McCulloch and Walter Pitts published a seminar paper titled “A logical calculus of

the ideas immanent to nervous activity “, (1943) proposing the idea of using mathematical

models to simulate the function of the human brain. This paper laid the foundation for the

field of artificial intelligence and the development of neural networks. In the following

decades researchers such as Hebb (1949) and Rosenblatt (1958) made important

contributions on understanding the behavior and training of artificial neural networks. Hebb

proposed the concept of “Hebbian learning” proposing that learning occurs when connections

between neurons are strengthened through repeated use, a principle documented as

“neurons that fire together, wire together”. This idea formed the basis for many early artificial

neural network models and it is still an important concept in modern machine learning.

Figure 3.19 A biological neuron

The main concept of artificial neural networks is to model the behavior of biological by using

simple mathematical functions to simulate the key aspects of the neural behavior. This

includes the ability to receive inputs, process those inputs and then produce an output along

with the ability to learn from that experience by adjusting the connections between neurons

based on past inputs. From a biological perspective, biological neurons are the building blocks

of the human brain and they are responsible for processing and transmitting information as

electrical signals. They receive inputs from other neurons, integrate the signals and produce

an output signal which is transmitted to other neurons.

This basic function inspired Rosenblatt (1958) by introducing the perceptron, the most

fundamental building block of artificial neural networks. It consists of a single artificial neuron

26

that receives inputs, performs a weighted sum of the inputs and produces and output based

on a threshold function as it can be seen by the figure below:

Figure 3.20 Perceptron Neuron

The perceptron consists of:

- Synapses which accept Inputs: 𝑥1, 𝑥2, 𝑥3 …𝑥𝑛 in numerical values. Those are considered

the stimuli of the artificial neuron

- Weights, which are assigned to each input and determine the influence on the

perceptron’s output.

- The summing junction, which adds all the signals with their weight products, creating the

sum denoted as z:

𝑧 = ∑𝑤𝑖𝑥𝑖

𝑛

𝑖=1

- The activation function, which acts as a threshold producing a binary output whose values

above the desired threshold are set to 1 and below the threshold is set to 0

𝑦 = 𝜎(𝑧) = 𝜎 (∑𝑤𝑖𝑥𝑖

𝑛

𝑖=1

)

The threshold function and the perceptron’s weights are being adjusted during its learning

process, enabling the model above to learn from experience and improve its performance

over time. Some researchers suggest adding a bias 𝑏𝑘 in the perceptron model in order to shift

the decision boundary of the perceptron, thus providing an additional degree of freedom to

the network’s output.

The perceptron output model could be rewritten as:

27

𝑦𝑘 = 𝜎 (∑𝑤𝑘𝑖𝑥𝑖 + 𝑏𝑘

𝑛

𝑖=1

)

As it is seen, by the perceptron model, the activation function poses a crucial role in

thresholding the weighted sum (with the bias). It’s binary decision (zero or one) is the factor

which represent the decision made by the perceptron. The first preceptor used a step

activation function which takes the value of 1 above a certain value and zero if it’s not reaching

the required threshold:

Figure 3.21 Step Activation Function

Depending on the application there are several types of activation functions which may

provide non-linearity to our model, such as but not limited to:

A) Sigmoid Activation Function

The sigmoid function is one of the most widely used activation functions which provide a

balance between linear and non-linear behavior. It has a characteristic “S” shaped curve

whose output approaches 1 as 𝑥 → +∞ and 0 as 𝑥 → −∞. Such can be described by the

function below:

𝜎(𝑧) =
1

1 + 𝑒−𝜆𝑧
 𝜎 ∶ 𝑅 → [0,1]

Figure 3.22 Sigmoid Activation Function

28

The 𝜆 ∈ 𝑅 is the steepness of the sigmoid function for fine-tuning the model. The sigmoid

function appears to be effective in several neural network applications, although it sometimes

outputs not so well calibrated results because near the edges of the function, the gradients

tend to minimize and changes in the 𝑦 axis do not respond to changes in the 𝑥 axis. This stops

the network from learning, an issue known as “Vanishing Gradient”.

B) Hyperbolic Tangent Function

The hyperbolic tangent activation function is similar to the sigmoid function (regarding its “S”

shape), but it maps its inputs at a range of [-1,1] instead of [0,1]

𝜎(𝑧) =
1

1 + 𝑒−2𝑧
 𝜎 ∶ 𝑅 → [−1,1]

Figure 3.23 Tanh(x) with Sigmoid function comparison

Between the Sigmoid and the Tanh activation functions, both of them merge linearity with

non-linear properties, but due to tanh(x) symmetry around the origin it can prevent the

“Vanishing Gradient” issue and thus can lead to better convergence. Although it is more

complex and depending the project, the sigmoid can produce better results.

C) ReLU (Rectified Linear Unit)

Amongst the most popular activation functions is the ReLU (Rectified Linear Unit) which will

be also used in our current thesis. It is defined as:

𝜎(𝑧) = (0, 𝑧) 𝜎 ∶ 𝑅 → [0,∞)

Its key advantage is its computational efficiency since its activated only for positive inputs (z).

Although, being zero at negative values the issue of “dying ReLU” arises, which may

consistently outputs 0, resulting in a deactivated unit with poor performance. To address this

issue there are different activation functions in the bibliography such as Leaky ReLU, Scaled

ELU (SELU) and Parametric ReLU (PELU).

29

The figure of the ReLU Activation Function is shown below:

Figure 3.24ReLU Activation Function

It is really important to choose a correct activation function as such will allow the network to

learn complex relationships between the inputs and the outputs. A well-chosen activation

function will improve the performance of the neural network and will reduce the risk of

overfitting, speed the convergence of the network and allow it to train with high accuracy.

3.3.3 Neural Network Architecture and Principles

Having an adequate understanding of the Artificial Neural Networks, the early researchers

attempted to model neural networks, although they faced limitations particular in computing

power, thus the field stagnated for decades. Up until 1980-1990 with the introduction of GPUs

for faster training, the first complete Neural Networks were developed. Neural Networks

consist of multiple Perceptrons which are organized in layers as shown in the graph below.

Figure 3.25 A simple Neural Network

30

There are 3 different types of Layers:

- Input Layer: Which is composed of neurons which receive the input data and pass them

to the next Layer. The number of nodes is determined by the dimensionality of our model

(for example, an object detection neural network would have as many input nodes as the

image’s pixels.

- Hidden Layers: Which are positioned between the input and the output layers. They are

called “hidden” because their activations are not directly observable. Their purpose is to

help the network learn more complex features passing the result to the next layer.

- Output Layer: Which is the final layer responsible for outputting the neural networks

predictions. The number of output nodes depends of the dimensionality of our model

(for example an object detection neural network would have as many input nodes as the

number of classes for detection, with their value being the accuracy of the prediction).

When adding multiple hidden layers, we construct a more complex model, a Deep Neural

Network (DNN). Those hidden layers allow the DNN to detect increasingly complex patterns

in the input data thus increasing the accuracy of the predictions. Assuming a DNN of multiple

Hidden Layers denoted ℎ1 , ℎ2 , ℎ3 , … , ℎ𝑛 the DNN can be presented by the following graph:

Figure 3.26 Deep Neural Network Architecture

Neural Network architectures may vary depending on the application, with the one above

being a Feed Forward DNN because the data flows in only one direction, in case the network

has a feedback loop as an extra input to the input layer, then this architecture is a Recurrent

Neural Network (RNN). In this particular thesis we will focus our interest on another variation,

Convolutional Neural Networks (CNNs) which will be discussed further in the next sections.

31

Depending on the architecture of the Neural Network, the model will able to handle large and

complex datasets, enabling it to perform demanding tasks in applications such as image

detection, voice recognition and time series predictions. While multiple layers and complex

neural networks may produce far more accurate results than simpler ones, they require much

more computational resources to be developed and train, they might overfit the input data

and such complexity poses a challenge for the researchers to understand why the network

made various decisions, to the point it might be treated as a “black box”. It is really important

for various tasks to implement and trials/errors various neural network designs with varying

layers and number of nodes as well as different activation functions prior choosing a final

architecture.

3.3.4 Training Neural Networks and Backpropagation

Assuming we want to train the neural network of the figure below consisting of 3 inputs

{𝑥1, 𝑥2, 𝑥3} and 1 output 𝑦𝑤 = 𝜎𝑤(𝑥):

Figure 3.27 Neural Network with 1 Hidden Layer

We denote as 𝑎𝑖
(𝑗)

= The activation unit 𝑖 at the layer 𝑗 and 𝑤(𝑗) = the matrix of weights

controlling the function mapping. We may perceive a mathematical representation of the

neural network starting from the first activation units:

𝑎1
(2)

= 𝜎 (𝑤11
(1)

𝑥1 + 𝑤12
(1)

𝑥2 + 𝑤13
(1)

𝑥3)

𝑎2
(2)

= 𝜎 (𝑤21
(1)

𝑥1 + 𝑤22
(1)

𝑥2 + 𝑤23
(1)

𝑥3)

𝑎3
(2)

= 𝜎 (𝑤31
(1)

𝑥1 + 𝑤32
(1)

𝑥2 + 𝑤33
(1)

𝑥3)

Thus, the output would be:

𝑦𝑤 = 𝜎𝑤(𝑥) = 𝑎1
(3)

= 𝜎 (𝑤11
(2)

𝑎1
(2)

+ 𝑤12
(2)

𝑎2
(2)

+ 𝑤13
(2)

𝑎3
(2)

)

32

We introduce the variable 𝑧𝑘
(2)

= 𝑤𝑘1
(1)

𝑥1 + 𝑤𝑘2
(1)

𝑥2 + ⋯+ 𝑤𝑘𝑛
(1)

𝑥𝑛 for the layer 𝑗 = 2 and

node 𝑘, as we can rewrite the expressions above as follows:

𝑎1
(2)

= 𝑔 (𝑧1
(2)

) 𝑎2
(2)

= 𝑔 (𝑧2
(2)

) 𝑎3
(2)

= 𝑔(𝑧3
(2)

)

The vector representation of the 𝑥 and 𝑧𝑗 is:

𝑥 = [𝑥1 ⋮ 𝑥𝑛] 𝑧(𝑗) = [𝑧1
(𝑗)

 ⋮ 𝑥𝑛
(𝑗)

]

If we denote 𝑥 = 𝑎(1) we can rewrite the equation as:

𝑧(𝑗) = 𝑤(𝑗−1)𝑎(𝑗−1) → 𝑧(𝑗+1) = 𝑤(𝑗)𝑎(𝑗)

And for 𝑎(𝑗) = 𝑔(𝑧(𝑗)) we may write our output result as:

𝜎𝑤(𝑥) = 𝑎(𝑗+1) = 𝑔(𝑧(𝑗+1))

If the network has 𝑠𝑗 units in the layer 𝑗 and 𝑠𝑗+1 units in the layer 𝑗 + 1 then the weights

matrix 𝑤(𝑗) will be of dimension 𝑠𝑗+1 𝑥 (𝑠𝑗 + 1)

Loss Function & Backpropagation:

Supposing we have 𝐿 = 3 Layers on our network (one input, one hidden and one output), and

𝑠𝑙 the number of nodes in the layer 𝑙 (𝑠1 = 3 , 𝑠2 = 3 , 𝑠3 = 1) and 𝐾 = 1 the number of

output nodes/classes, the Loss Function of can be defined as a more complex version of the

logistic regression we seen already:

In order to minimize our loss function 𝐽(𝑤) and optimize the weights 𝑤𝑗𝑖
(𝑙)

 similarly to the

gradient descent we need to calculate the partial derivatives:

𝜕

𝜕𝑤𝑖𝑗
(𝑙)

𝐽(𝑤)

For that we may employ the Backpropagation algorithm:

Given a training set {(𝑥(1), 𝑦(1)) , … , (𝑥(1), 𝑦(2)) } we set 𝛥𝑖𝑗
(𝑙)

≔ 0 for all (𝑙. 𝑖, 𝑗).

33

Backpropagation Algorithm

For the training examples 𝑡 = 1 to 𝑚 we perform the following steps:

1) Perform Forward Propagation to compute 𝑎(𝑙) for 𝑙 = 2,3,… , 𝐿 as following:

𝑎(1) = 𝑥 → 𝑧(2) = 𝑤(1)𝑎(1) → 𝑎(2) = 𝜎(𝑧(2)) → 𝑧(3) = 𝑤(2)𝑎(2) → 𝑎(3) = 𝜎(𝑧3)

…

𝑧(𝐿) = 𝑤(𝐿−1)𝑎(𝐿−1) → 𝑎(𝐿) = 𝜎(𝑧(𝐿))

2) Using 𝑦(𝑡), perform Loss Computation 𝛿(𝐿)

𝛿(𝐿) = 𝑎(𝐿) − 𝑦(𝑡)

𝐿 is the total number of layers and 𝑎(𝐿) is the vector of outputs of the activation unit of

the last layer. Hence the error values are the differences of the forward propagation

result and the correct outputs in y.

3) Perform Backpropagation of Error, to obtain the error values of the layers before the last:

𝛿(𝑙) = [𝑤(𝑙)]
𝑇

∗ 𝛿(𝑙+1) .∗ 𝑎(𝑙).∗ (1 − 𝑎(𝑙))

Till we calculate the values: 𝛿(𝐿−1) , 𝛿(𝐿−2) , … , 𝛿(2)

4) We calculate the 𝛥𝑖𝑗
(𝑙)

 necessary to perform the gradient calculations:

𝛥𝑖𝑗
(𝑙)

≔ 𝛥𝑖𝑗
(𝑙)

+ 𝑎𝑗
(𝑙)

𝛿𝑖
(𝑙+1)

We repeat the process till we meet convergence, therefore we have a final 𝛥 matrix which will

be used to calculate the partial derivatives:

5) Calculate the Partial Derivative matrix and the Partial Derivatives:

If 𝑗 ≠ 0

𝐷𝑖𝑗
(𝑙)

=
1

𝑚
(𝛥𝑖𝑗

(𝑙)
+ 𝜆𝑤𝑖𝑗

(𝑙)
)

If 𝑗 = 0

𝐷𝑖𝑗
(𝑙)

=
1

𝑚
(𝛥𝑖𝑗

(𝑙)
)

Thus, the partial derivatives are:

𝜕

𝜕𝑤𝑖𝑗
(𝑙)

𝐽(𝑤) = 𝐷𝑖𝑗
(𝑙)

6) Perform the weight updates, the weights of the neurons can be updated using the

computed partial derivatives (gradients) using an optimization algorithm of our choice

such as Gradient Descent.

7) We repeat the process until the loss function 𝐽(𝑤) reaches its minimum value.

34

3.3.5 Neural Network Performance Evaluation

Evaluating the performance of a neural network is an important step in the process of training

and deploying a machine learning model. There are several metrics that can be used to

evaluate the performance of a neural network besides the Mean Squared Error such as:

Accuracy: Accuracy is a simple and commonly used metric that uses the percentage of correct

predictions made by the model, relatively to the total number of predictions. It can be

computed using the following equation:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝑡𝑜𝑡𝑎𝑙

For example, if our model makes 100 predictions and 90 of them are correct, the accuracy of

the model would be 90%. It’s important to understand that accuracy might not be the best

metric to use as it can be misleading in cases where the dataset has an imbalanced class

distribution where accuracy could be high, but the model might not perform well on the

minority class. Thus, we introduce more metrics to evaluate its performance such as:

Precision and Recall: Assuming we want to predict a certain class (positive) and our model

detects a number of predictions, some of them are truly positive (TP) and some of them are

false positive (FP). Precision measures out of all the positive predictions (TP+FP) how many of

them are truly positive:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

For example, Precision poses the question: “Out of all predicted shaft bearings, which objects

are actually bearings?”

Moreover, we make predictions whether an entity is not of a certain class (negative) and out

model predicts that some of them are truly not of that class (true negative – TN) but some of

them are falsely not of that class (false Negative), making them real positive. Recall measures

out of all real positive predictions (TP + FN) how many of them are truly positive:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

For example, recall poses the question: “Out of all actual bearings (TP+FN), those who were

correctly labeled as bearings (TP) and those who were falsely labeled as not bearings (FP), how

many of them were correctly labeled as bearings?”

Both of those metrics provide us with a more nuanced understanding of the model’s

performance. High Precisions equals to the model being good at avoiding false positives, while

high Recall equals to the model being good at detecting truly positive instances. Sometimes

35

high precision comes with a trade-off of recall, a visualization of which can be seen in a

Precision-Recall Curve:

Figure 3.28 Precision - Recall Curve

Considering a compromise between precision and recall, it is recommended to complete the

Neural Network training process when there is a good balance between precision and recall

such as the point C in the figure above. A metric which applies such balance is

F1 Score: The F1 Score is a harmonic mean of precision and recall computed as below:

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

The F1 Score combines the precision and recall in a single metric as it is being able to offer

better perspective of the accuracy than the precision and recall alone. A high F1 Score

indicates that the model is making accurate predictions with a good balance between

precision and recall. On the contrary, a low F1 Score indicates an inaccurate model due to a

poor balance between precision and recall.

F1 Score – Confidence curve: Confidence is the threshold we have set on our classifier

(activator function) which determines the decision boundary for assigning the positive or

negative class labels. When the threshold is increased, our model becomes more conservative

in its predictions and only instances with high predicted probabilities will be assigned the

positive class. This results in fewer false positives, thus an increase in 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 but on the

same time the model may also miss some positive instances, which leads in a decrease in

𝑅𝑒𝑐𝑎𝑙𝑙. On the contrary when the threshold is decreased, reversely the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 decreases

and the 𝑅𝑒𝑐𝑎𝑙𝑙 increases. In order to be able to define an optimal threshold/confidence where

36

there is a balance between the Precision and the Recall, we employ the F1 Score – Confidence

curve:

Figure 3.29 F1 Score - Confidence Curve

In the figure above we can see that we can optimize the threshold at 0.24 to get an F1 Score

of 0.634. Although we aim for our curve to be as flat as possible to cover a wider variety of

confidence values especially high ones, for a relatively large number of F1 Score.

Confusion Matrix: The confusion matrix offers a summary of the true positives, true negatives,

false positives and false negatives of a model’s performance. As mentioned above:

- True Positives (TP): The number of instances that are really positive and predicted as

positive by the model.

- False Positives (FP): The number of instances that are really negative but falsely predicted

as positive by the model.

- True Negatives (TN): The number of instances that are really negative and predicted as

negative by the model.

- False Negatives (FN): The number of instances that are really positive but falsely

predicted as negative.

Where positive is denoted as the desired class we want to detect and negative as the rest of

the other classes. The confusion matrix provides a detailed breakdown of the model’s

performance and along with the precision and recall metrics we can diagnose how the model

behaves, especially regarding imbalanced class issues. By visualizing the confusion matrix, we

may be able to obtain a better understanding of how a trained neural network makes its

predictions, thus being able to identify areas to improve.

37

A Confusion Matrix for a model which detects mechanical entities from shaft arrangement

plans would be:

Figure 3.30 Confusion Matrix Example

The confusion matrix above has normalized values ranging from 0 to 100%. Each boxes

number represents the percentage of the predicted class being the true, which is a measure

of the Accuracy. For instance, for the bearing we have an accuracy of 85.57% (85.57%

predicted bearings are actually bearings).

AUC – ROC Curve: A notable mention is the AUC-ROC Curve (Area Under the Curve – Receiver

Operating Characteristics). It is a plot of the Recall (TPR) against the False Positive Rate:

𝐹𝑅𝑃 = 1 −
𝐹𝑃

𝑇𝑁 + 𝐹𝑃

Figure 3.31 AUC-ROC Curve Example

38

A perfect model would have an AUC-ROC = 1 being always accurate while a random classifier

would have an AUC-ROC = 0.5 being unable to distinguish positive from negative classes. We

aim for our model to be as close to the perfect classifier as possible. In conclusion, besides

the Mean Squared Error we ought to employ further metrics which will be able to improve

the accuracy and the robustness of the neural network as well as being indicators for further

improvement and development on the model itself.

3.3.6 Convolutional Neural Networks

Convolutional Neural Networks CNNs were first being developed by Yann Leucin, et al. (1980)

in their paper “Backpropagation Applied to Handwritten Zip Code Recognition”. LeCun

recognizes that DNNs and Feed Forward ANNs as fully connected networks are incapable of

handling grid-sized (2D/3D) inputs such as images, because their large size results in an even

larger number of parameters inside their hidden layers. To avoid this problem, LeCun was

inspired by the function of the human visual cortex. The visual cortex features a hierarchical

structure comprised of a series of layers which process different parts of the optical field and

share their stimuli to generate the visual signals. The early layers, process simple features

such as edges and lines and the later layers, process more complex features such as objects

and scenes. The concept of having multiple levels of abstraction to recognize objects and

patterns gave birth to the structure of the Convolutional Neural Networks. By implementing

a weight sharing strategy between multiple layers for extracting features occurred in

different locations of an image appears to drastically reduce the number of parameters

required for the neural network to learn (e.g., the number of weights would no longer depend

on the size of the input image).

The structure of a Convolutional Neural Network is composed of several layers which can be

seen in the figure below consisting of Convolution, Pooling and Fully Connected Layers.

Figure 3.32 Structure of a CNN

39

Convolutional Layers

The Convolutional Layers are the most important building blocks of the CNN responsible for

extracting features from the input image by applying a set of filters which produces a feature

map representing the learned features. Reminding the chapter previously mentioned, our

image can be represented by the matrix of the pixel intensities of the image with size equal to

the number of pixels horizontally and vertically. A convolutional layer is actually an application

of a linear filter which operates on convolution in order to produce a feature map.

In the convolution layer, a small kernel (the linear filter matrix) is slid across the input image

and the values of the filter are multiplied with the values in the corresponding region of the

input image. The result of these multiplications is then summed to produce a single output

value which is stored in the feature map. Then, the filter slides to its next position and the

process is repeated until the entire image is scanned. A detailed example may be illustrative

to present how Convolutional Layers work:

Example

Let’s consider the following image of a Shaft Bearing which for the sake of this example is

digitized at a 6x6 input data matrix of pixel intensities:

Figure 3.33 Image Convolution of Shaft Bearing Example

For the convolution layer we apply a 3x3 kernel (Kirsch filter) which is commonly used in edge

detection. For this particular example we may use the kernel for detecting the edges in the y

direction. For the convolution we may proceed using the following computational steps:

Step 1: Initiate the convolution by performing a scalar multiplication of the 3x3 kernel to the

first 3x3 batch of pixels and sum their values to a single number output:

[
4 9 2
5 6 2
2 4 5

] ∗ [
1 0 −1
1 0 −1
1 0 −1

] =
4 ∙ 1 + 9 ∙ 0 + 2 ∙ (−1) +
5 ∙ 1 + 6 ∙ 0 + 2 ∙ (−1) +
2 ∙ 1 + 4 ∙ 0 + 5 ∙ (−1) +

 = 2

The output of the multiplication is stored at the “Result” matrix which is the feature map as it

can be seen from the figure below:

40

Figure 3.34 Step 1 of Convolution Example

Step 2: We slide the 3x3 batch by a number denoted as Stride (𝑠 = 1) which signifies how

many steps further will the batch slide. We proceed by repeating the matrix multiplication

with the new 3x3 batch and adding the result to the next position of the feature map.

[
9 2 5
6 2 4
4 5 4

] ∗ [
1 0 −1
1 0 −1
1 0 −1

] =
9 ∙ 1 + 2 ∙ 0 + 5 ∙ (−1) +
6 ∙ 1 + 2 ∙ 0 + 4 ∙ (−1) +
4 ∙ 1 + 5 ∙ 0 + 4 ∙ (−1) +

 = 6

Figure 3.35 Step 2 of Convolution Example

Step 3: We repeat the multiplications using the steps above to complete and fill the feature

map for all its rows and columns.

A really helpful parameter is the padding value which provides us with the following benefits:

1) It allows us to use the convolution layer without necessarily shrinking the height and width

of the volumes, which is important for building deeper networks where the dimensions of

the feature maps would shrink.

2) It helps us keep information at the border of an image, otherwise very few values at the

next layer would be affected by pixels as the edges of the image.

41

Notably, when the input image has more than 3 channels (colored RGB image) the filter should

have a matching number of channels as well. Thus we operate convolution on a volume, such

means that in order to calculate one feature we perform convolution on each matching channel

separately and then we add the result together:

Figure 3.36 Convolution on a 3-channel image

Finally, to structure a convolution layer we may use more than one filter (for example 2) in

order to output more channels from the image in a same manner we add multiple nodes in a

CNN, which allows us to detect more features and extract hidden details. At the end of the

convolution, we may add an activation function such as ReLU at the result matrix along with a

bias b:

Figure 3.37A Fully detailed Convolution Layer

42

In order to shorten the such expression we may define a simpler representation of one

convolutional layer with the following parameters: Size 𝑓, Stride 𝑠 and Padding 𝑝 with n the

number of filters applied.

Figure 3.38 Convolution Layer representation

Using this notation, we may present a sample Convolutional Neural Network with three

convolutional layers:

Figure 3.39 Convolutional Neural Network example

It is observed that each layer convolution with an image produces a single channel output

(feature map). Thus, n filters produce an outcome of n channels. As the network progresses

the output of the convolutional layer is getting flattened and flattened up until it is connected

to a Fully Connected Layer. The Fully Connected Layer takes 7 × 7 × 40 = 1960 inputs 𝑥𝑖 and

using a single logistic regression or softmax regression filter the final output �̂� is generated.

Notably if we were to develop a Feedforward ANN consisting of 1 hidden layer with 100

neurons, we would have required 39 × 39 × 3 = 4563 input neurons and each neuron in the

hidden layer would have 4563 connections to the input (plus a bias term) for a total of:

(4563 + 1) ∙ 100 = 456,400 parameters. The output layer would have 100 neurons with each

neuron connected to all 100 neurons of the hidden layer (plus a bias term) consisting a total

of: (100 + 1) ∙ 100 = 10,100 parameters. Thus, the total number of parameters in the

Feedforward neural network would be 456,400 + 10,100 = 466,500. On the contrary the

convolutional above we used would be:

43

-3x3 kernel with 10 filters for 3 channels plus bias for each filter: 3 ∙ 3 ∙ 10 ∙ 3 + 10 = 280

-5x5 kernel with 20 filters for 10 channels plus bias for each filter: 5 ∙ 5 ∙ 20 ∙ 10 + 20 = 5020

-5x5 kernel with 40 filters for 20 channels plus bias for each filter: 5 ∙ 5 ∙ 40 ∙ 20 + 40 = 20040

-Fully Connected layer with 1960 inputs, making in total making a sum of: 27300 parameters

Comparing to a reasonably designed ANN for the same task we required ~17 times more

parameters than a CNN.

In order to speed up calculations inside a CNN we may employ Pooling Layers between the

Convolutional Layers:

Pooling Layer: A pooling layers are used to downsample and reduce the spatial dimensions of

feature maps produced by the convolutional layers as well as to make the features detected

more robust. There are 2 different types of pooling, max pooling and average (avg) pooling but

with most commonly used being the max pooling.

Figure 3.40Max Pooling and Avg Pooling

As it is seen in the figure above, the pooling layer partitions the input feature map into batches

of size 𝑓 , calculates the max/average based on the pooling type and slides to the next batch

with a stride 𝑠. It is important to understand that the pooling layer reduces only the height

and the width of the image, but not the number of channels:

Figure 3.41 Pooling on Volume

44

Notable CNN Architectures

Some notable CNN architectures which have been studied and used by the academia

throughout extended research are:

LeNet: LeNet was a pioneering CNN architecture which was proposed by Yann LeCun, et al.

(1998) and it was one of the first successful attempts to employ a CNN for character

recognition tasks such as recognizing handwritten digits. It was designed to accept a 32x32

grayscale image and classify it into 10 output classes corresponding to the digits 0 till 9. The

LeNet structure can be seen in the figure below:

Figure 3.42 The LeNet Architecture

It was trained using Backpropagation and Stochastic Gradient Descent optimization, achieving

high accuracy on the MNIST dataset consisting of handwritten digit images.

AlexNet: AlexNet was proposed by Alex Krizhevsky, et al. (2012) and it was designed to classify

images from the ImageNet dataset which contains over 1 million images and 1000 categories.

The AlexNet structure can be seen in the figure below:

Figure 3.43 AlexNet Architecture

45

3.3.7 Object Detection using CNNs

Object detection is considered a fundamental problem in computer vision which involves:

Identifying and Localizing objects within an image or a video sequence. The aim of object

detection models is to:

A) Classify the objects present in an image.

B) Determine their precise location and boundary extent.

The output of an Object Detection process is a set of object classes which have been detected

and their location usually as rectangular boundary defined as bounding box. Object detection

has always been a challenging integral amongst computer vision researchers as it requires the

ability to recognize objects being in different classes, scales, orientations and to handle

variations in lighting, viewpoint occlusion and background clutter.

In recent years, there has been significant progress regarding object detection using deep

learning, particularly with the development of CNNs which as we mentioned previously can

learn features and classifiers directly from the raw pixel data. Object detection found

numerous applications in the scientific and engineering field of research as well as in the

maritime industry with the development of autonomous ships, AI surveying and fault

detection/prediction and the field continues to be an active area of research with multiple

challenges and opportunities for further improvement.

Figure 3.44 Classification and Localization on Object Detection

Object Detection Evaluation Metrics

In order to evaluate and compare the predictive performance of different object detection

models, we may define some metrics specifically for the Object Detection process. The most

commonly used in Object Detection are the Intersection over Union (IoU) and the Mean

Average Precision (mAP)

Intersection Over Union (IoU): Considered one of the most popular metrics, the IoU measures

localization accuracy and calculates localization errors in object detection models. In order to

46

calculate the IoU between the predicted and the ground truth bounding boxes we first take

the intersecting area between the 2 corresponding bounding boxes for the same object.

Following this, we may calculate the total area covered by the two bounding boxes defined as

their “Union” and the area of overlap as their “Intersection”. The Intersection divided by the

Union gives us the ratio of the overlap to the total area and it represents how close the

predicted bounding box is to the original one:

Figure 3.45 Definition of IoU

Average Precision (AP) & Mean Average Precision (mAP): The Average Precision of a certain

class is defined as the area under its Precision-Recall curve as we have already discussed. For

all the given classes on the object detection model, the Mean Average Precision is a mean of

all the APs we have calculated for all available classes:

𝑚𝐴𝑃 =
1

𝑁
∑𝐴𝑃𝑖

𝑁

𝑖=1

Additionally, the Mean Average Precision over different IoU thresholds ranging from 0.5 to

0.95 is one of the most common metrics to consider denoted as: 𝑚𝐴𝑃[0.5−0.95]. In order to

evaluate different Object Detection models, it is widely accepted amongst the academia to

compare and validate them with some standardized image datasets such as the MS COCO

dataset and the PASCAL VOC dataset.

Methods of Object Detection using CNNs

Primarily the methods of Object Detection using CNNs can be divided into 2 main categories:

2-stage methods and one stage methods. Two stage methods firstly generate some candidate

object proposals and then classify those proposals into the specific categories defined. One

stage methods simultaneously extract and classify all the object proposals. According to X.

Jang et all (2019), two stage methods have a relatively slower detection speed but higher

detection accuracy comparing to the one-stage methods which have a much faster detection

speed mitigating a portion of their accuracy. Before employing a certain object detection

47

method is important to weigh the benefits of each method and compromise the model

accordingly.

Figure 3.46 One-Stage Methods compared to Two-Stage Methods

Two-Stage Methods for Object Detection

Two-Stage Methods treat object detection as a multistage process comprising of a region

proposal stage and an object detection stage. The main concept is to initially use a Region

Proposal algorithm to generate a set of candidate object proposals and then use a separate

object detection network to classify and refine those proposals. Using a two-stage method

provides benefits such as reducing a potentially large number of proposals which are used in

the classifier and providing robustness because the generated proposals allow the classifier to

focus on the classification task with minimal influence from the background. The most

commonly used Two-Stage Methods are:

A) R-CNN (Regional Convolutional Neural Network)

The R-CNN is consisting of a Regional Proposal step where a set of region proposals are

generative using Selective Search. Selective search is a common region proposal algorithm

which uses segmentation to group similar regions together. The output of this step is a set of

bounding boxes which are likely to contain an object. Then the output passes to a Feature

Extraction step which involves passing the bounding boxes through a pre-trained CNN (such

as AlexNet) to extract the feature vector from the output of the CNN. The next step involves

the classification of each region proposal into one of the predefined object classes by training

a Support Vector Machine (SVM) for each class. And finally, the R-CNN refines the region

proposals by applying bounding box regression. Bounding box regression adjusts the

coordinates of the bounding box to better fit the object in proposal.

R-CNN has been highly successful in object detection tasks (for example mAp=21% at the

PASCAL VOC2010), however it appears to have a slow runtime due to the computationally

48

expensive feature extraction step and its inability to jointly optimize the region proposal and

classification steps.

Figure 3.47 R-CNN Steps and Architecture

B) Faster R-CNN

As an improvement to the R-CNN Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun in

2015 developed Faster R-CNN. Its key improvements lay in its structure. Instead of a Selective

Search algorithm, Faster R-CNN consists of a Region Proposal Network (RPN) a CNN for

generating object proposals from a CNN backbone combined with a Feature Sharing technique

called RoI (Region of Interest) Pooling which allows Faster R-CNN to share the CNN’s features

across the RPN and the object detection network, unlike the original R-CNN. This allows the

Faster R-CNN to achieve greater speed and accuracy over the original R-CNN, paving the way

to modern object detection.

Figure 3.48 Faster R-CNN Steps and Architecture

One-Stage Methods for Object Detection

Unlike Two-Stage methods, One-Stage methods aim to simultaneously predict the object

location and its class. Compared to the Two-Stage methods, One-Stage methods have much

faster detection speed while maintaining a high degree of detection accuracy. The most

important methods are the SSD and YOLO.

49

A) SSD (Single Shot Detector)

SSD is considered a well robust object detection algorithm. Its architecture consists of a base

CNN which is usually a pre-trained CNN such as VGG-16, followed by several convolutional

layers. Those multiple convolutional layers are of different resolution in order to predict

objects of different scales thus being able to detect objects of different sizes. The SSD employs

a set of predefined anchor boxes at different scales and aspect rations for each prediction layer.

For each anchor box, SSD predicts the class probabilities using a SoftMax function to the output

of the convolutional filters as well as the bounding box offsets using a set of convolutional

filters which output the offset between the anchor box and the ground truth bounding box.

After the class probabilities and bounding box offsets have been predicted for each anchor box,

the SSD applies Non-Maximum Suppression (NMS) filtering, to remove overlapping detections

with lower confidence scores while keeping the ones with the highest confidence score.

B) YOLO (You Only Look Once)

YOLO (You Only Look Once) was first proposed by Joseph Redmon, et al. (2016) in their paper

"You Only Look Once: Unified, Real-Time Object Detection" (2016), achieving a great

performance in both terms of accuracy and speed on the PASCAL VOC dataset. Its architecture

consists of 24 convolutional layers followed by 2 fully connected layers. The first 20 convolution

layers of the model are pre-trained using ImageNet. YOLO’s main concept is to divide the input

image into a 𝑘 × 𝑘 grid. If the center of an object falls into a grid cell, then that grid in

responsible for detecting that object. Each grid cell predicts 𝐵 bounding boxes and respective

confidence scores for those bounding boxes. The confidence scores reflect how confident the

model is that the box contains an object and how accurate it thinks the predicted bounding

box is.

YOLO predicts multiple bounding boxes for each grid cell. During its training, YOLO assigns one

predictor to be responsible for predicting an object based on which prediction has the highest

IoU with the ground truth bounding box. As a result, this may lead to specialization between

50

the bounding box predictors, whilst each predictor gets better at forecasting certain sizes,

aspect ratios or classes of objects, leading to a great improvement of the model’s overall recall.

Figure 3.49 The YOLOv1 Architecture

Just like SSD, YOLO employs NMS filtering to identify and clear redundant and incorrect

bounding box for each object in the image. YOLO and especially its future versions are

considered to be one of the modern and best common practice approach model when it

comes to object detection applications. YOLO will be the object detection model we will be

using on this current thesis.

3.3.8 YOLO Versions and Improvements

Since its release, YOLO has undergone several versions and improvements in order to increase

its robustness, accuracy and speed. The first YOLOv1 even though it provided fast detection,

it suffered from lower accuracy compared to SSD. Since then, there have been several

upgrades to the YOLO architecture, notably:

YOLOv2: YOLOv2 was introduced in 2016 as the first improvement over the original YOLO

algorithm, designed to be fast and more accurate than YOLO and being able to detect a wider

range of object classes. YOLOv2 uses a different CNN backbone, Darknet-19 which is a VGGNet

variant with simple progressive convolution and pooling layers. A key improvement of YOLOv2

is the usage of anchor boxes just like SSD did in order to handle a wider variety of object sizes

and aspect ratios. Additionally, YOLOv2 uses batch normalization, which improves the

accuracy and stability of the model as well as a multi-scale training strategy which according

51

to Redmon (2016) involves training the model on images at multiple scales and then averaging

the predictions for improving the detection performance on small objects. Last but not least,

YOLOv2 integrates a new loss function which considered a weighted loss of the classification

(Binary cross-entropy loss), localization (SSE) and confidence loss (IoU Binary cross-entropy

loss). As a result, YOLOv2 improves significantly to its competitor models in both accuracy and

speed, making it the one-way choice for researchers to develop their Object Detection

applications.

Figure 3.50 YOLOv2 Comparison Graph

YOLOv3: YOLOv3 was introduced at 2018 to further improve the YOLO model. It improves its

backbone CNN using Darknet-53 which is a variant of the ResNet architecture with 54

convolutional layers, designed specifically for object detection with great accuracy. YOLOv3

features improved scaled anchor boxes with varied aspect ratios in order to improve the

detection of objects at different aspect ratios and scales. Additionally, it introduces the

concept of Feature Pyramid Networks (FPNs) which are CNNs constructing a pyramid of

feature maps with each level of the pyramid used to detect objects at different scales. As a

result, YOLO may now be able to handle a wider range of sizes and aspect ratios with being

more stable and robust.

YOLOv4: YOLOv4 was introduced at 2020 by Alexey Bochkovskiy, et al. (2020) and features a

novel CNN backbone named CSPNet (Cross-Stage Partial Network). Despite having a really

shallow structure it achieves top-notch results on object detection benchmarks. YOLOv4

improves its anchoring methods with a k-means clustering algorithm to help in grouping the

ground truth boxes into clusters and use the centroids of the clusters as anchor boxes. This

allows the anchor boxes to be more closely aligned with the detected objects’ shape and size.

52

In order to improve detection on imbalanced datasets, YOLOv4 features an improved loss

function named GHM Loss (Gradient Harmonized Miscalibration). Whereas traditional loss

functions such as focal loss and cross entropy treat all misclassifications equally and penalize

them with the same weight, leading to the model being biased to the majority class, GHM

measures the discrepancy between the predicted distribution and the predicted loss

distribution and then rescales the loss gradients resulting in improved accuracy and

robustness.

Figure 3.51 CSPNet Architecture

YOLOv5: YOLOv5 was introduced in 2020 and continues its improvements like the previous

versions did. YOLOv5 features a complex backbone CNN based on the EfficientNet

architecture, allowing higher accuracy and better generalization to a wider variety of objects.

Unlike the previous YOLO versions which were trained on the PASCAL VOC dataset, YOLOv5

was trained on a larger and more diverse dataset called D5. YOLOv5 further enhances the

anchor box generation using “dynamic anchor boxes” as an improved clustering technique.

Additionally, YOLOv5 features “Spatial Pyramid Pooling” (SPP) a type of pooling layer to

reduce spatial resolution on the feature maps while enabling detection at multiple scales. Last

but not least, YOLOv5 introduces a new IoU loss variant the CIoU loss which is designed to

further improve the model’s performance on imbalanced datasets.

Figure 3.52 YOLOv5 EfficientDet Architecture

53

YOLOv6: YOLOv6 was introduced in 2022 by Li, et al. (2022) further improving the YOLO model.

YOLOv6 features a new variant of the EfficientNet architecture named EfficientNet-L2. It is

more efficient than YOLOv5’s with fewer parameters and better efficiency. YOLOv6 improves

its anchor box generation featuring “dense anchor boxes” which are able to capture small

objects which might have been missed from traditional anchor box generation methods.

Figure 3.53 YOLOv6 Architecture

YOLOv7: YOLOv7 was introduced in July 2022 by Chien-Yao Wang and Alexey Bochkovskiy

(2022). It features an improved backbone DNN, the Extended Efficient Layer Aggregation

Network (E-ELAN) which consists of Convolutional Layers followed by a set of aggregation

modules, notably named Multi-Level Channel Attention (MCA) modules which perform both

spatial and channel attention operations in order to capture even the smallest of the object

features. It also features Global Feature Integration which integrates the features from all

convolutional layers and the MCA modules in combination with a novel gating mechanism to

control the flow of information amongst the convolutional layers, something which

significantly improves its detection accuracy and speed.

Figure 3.54 YOLOv7 E-ELAN Architecture

Not long after YOLOv7’s release, YOLOv8 was released which is considered the most

contemporary and state-of-the-art object detection model by Ultralytics LLC.

54

3.3.9 YOLOv8 – A modern approach to Object Detection

YOLOv8: YOLOv8 is currently the most state-of-the-art YOLO version being released at January

2023 by Ultralytics LLC and it is currently under development with multiple updates and an

active community surrounding it. YOLOv8 at the moment this thesis being written does not

have a published paper yet, thus our source comes only from the GitHub YOLOv8 repository

which is sustained by Ultralytics. According to the figure below, YOLOv8 is comprised of a

backbone which is a series of Convolutional Layers which pool the input image into multiple

resolution sizes and the features are pooled together into the YOLOv8 head which is used to

make to make the predictions based on an improved combination of box loss, class loss and

objectness loss.

Figure 3.55 YOLOv8 Architecture

55

One of YOLOv8’s greatest improvement amongst the rest of the versions is that it’s an anchor-

free model. YOLOv8 does not predict based on bounding box anchors which are proven to be

not effective into detecting objects where it’s one dimension is very greater than the other

(ℎ > 𝑤). As an anchor-free model with a novel head layer, appears to significantly improve

and speedup Non-Maximum Suppression and thus enhancing the detection speed of the

model. Additionally, new convolutions are being made on the network and the layers’

structure has been improved.

Moreover, during YOLOv8’s training process, the model augments images using mosaic

augmentation, this involves stitching 4 images together, forcing the model to learn objects in

new locations in partial occlusion and against surrounding pixels.

Figure 3.56 YOLOv8 Mosaic Augmentation

According to Jacob Solawetz, YOLOv8 is considered the best performing YOLO version from all

the previous ones because of its high rate of accuracy at the COCO and RF100 datasets, as well

as its continuous development and support from a growing community. More specifically:

COCO Dataset

YOLOv8 achieves a staggering 53.9% mAP on the COCO Dataset comparing to the previous

versions of YOLO as it can be seen from the figure below

Figure 3.57 YOLOv8 COCO Comparison

56

RF100 (Roboflow 100) Dataset

Roboflow 100 is a dataset containing 100 separate databases with 224,714 images, which

evaluates the model’s performance on various domains and applications. Regarding the

category “documents”

Figure 3.58 YOLOv8 on RF100 Documents Dataset

57

4 Methodology

At the following chapter we will describe the methods and steps which should be used in order

to perform the object detection on the shafting arrangement plan drawings as well as the

dimension recognition as well as their combination in order to extract the digital twin of the

shafting arrangement.

4.1 Shafting Arrangement Modeling Process

The Shafting Arrangement Plan is one of the most crucial ship design drawings necessary to

understand the propulsion system of the ship as well as the components necessary to transfer

the rotational motion from the vessel’s Main Engine to the propeller in order to produce the

required thrust to move the vessel.

Figure 4.1 A Shaft Arrangement Plan

The shaft arrangement is comprised of the following components:

A) Propeller Shaft, whose end is linked with the propeller via the propeller’s hub and secured

via the propeller’s aft nut.

B) Intermediate Shaft (or Shafts) which connect the Propeller Shaft with the Crankshaft of

the Main Engine (with or without the presence of a reduction gear whether the engine is

two-stroke or four-stroke)

58

C) Shaft Bearings, which bear the static and dynamic loads of the shaft arrangement. The

Intermediate Shaft is supported via Intermediate Shaft Bearings (Line Shaft Bearings) and

the Propeller Shaft is supported via 2 usually Stern Tube bearings an Aft and a Fore.

Modeling the Shaft Arrangement

In order to generate a digital model of the shaft arrangement which would be ready for further

calculations such as the Shaft Alignment we will represent the shaft arrangement as an FBD

(Free Body Diagram) where the shaft will be divided into 2 segments:

A) Propeller Shaft with diameter D1 and length L1

B) Intermediate Shaft with diameter D2 and length L2

For those segments we have to know:

1) The location of the center of the Bearings: Aft Stern Tube Bearing, Fwd Stern Tube

and the Intermediate Shaft Bearing. We may model the bearings as pinned supports

at which the reaction forces may be acted.

2) The location of the center of the Propeller: Where the weight of the propeller will be

acted upon the shaft.

A representation of the model of the shaft arrangement would be the following:

An approach to identify the positions mentioned above is to identify and detect the following

necessary objects:

1) Propeller or/and Propeller Hub in case the drawing does not depict the propeller and find

it’s center.

2) Aft End of the Propeller Shaft, which is the Propeller Nut. It is necessary to detect this

entity because its aft end indicates the start of the propeller shaft.

3) Aft Stern Tube Bearing and the Fwd Stern Tube Bearing (in some cases there’s only the

Aft Stern Tube Bearing) and find their center.

4) Flange Assembly between the intermediate and the propeller shaft, by finding its center

we identify the end of the propeller shaft and the start of the intermediate shaft.

5) Shaft Bearing (Line Bearing) and detect its center as a support.

59

6) Main Engine Flange and its center, which indicates the end of the intermediate shaft

and the start of the crankshaft.

Figure 4.2 Objects required to be detected

By detecting the aforementioned objects inside the image, we may have achieved to identify

the distances to the segments A till G, although the distance calculated will be expressed in

units of image pixels and not in real units (mm). For this reason, we need to detect the

dimensions inside the drawing as well. The dimensions we are required are expressed in the

following manner:

Figure 4.3 Representation of Dimensions

When a bounding box surrounds the dimension entity, we can correlate its sides location with

the object which is underneath it since both the dimension and the mechanical object have

the same starting and ending point. Additionally, we need to develop an OCR (Optical

60

Character Recognition) which will allow us to convert the number in the dimension to a real

integer dimension. One solution would be to train an OCR model from scratch, but a second

solution is to use an already pre-trained model. We may use an already pre-trained model for

this which will be highly accurate. Thus, it is also safe to derive an analogy between pixels and

real dimensions by calculating a weighted average of the ratio mm/px which will exclude any

dimension deviates from this average, as a false reading. This way we will have a way to

express the x-dimension units from pixels to mm and be able to model accurately.

Finally, we need to define the Diameters of the propeller shaft and the intermediate shaft. A

solution to this is to train a third model which detects the propeller shaft and the intermediate

shaft objects, will rotate them clockwise and pass them through an OCR. In case there are

multiple diameters in one of the shafts such as the propeller shaft, we will model it using the

average of the detected dimensions.

Figure 4.4 Propeller Shaft and Intermediate Shaft

4.2 YOLOv8 and Transfer Learning

The Object Detection model we will be using for this current thesis will be YOLOv8 which is a

state-of-the art object detection model. This thesis will be one of the few worldwide which

will have implemented YOLOv8 for their object detection model since YOLOv8 is still under

constant development. The number of images which are required to train an object detection

model vary and is dependent to multiple factors such as the level of accuracy required, the

variability of the dataset as well as the number of classes we want to detect. In our Object

Detection case for Shaft Arrangements for 7 classes a general rule of thumb would be to have

at least 2000 labeled images per class. Fortunately, we are not required to train YOLOv8 by

scratch since YOLOv8 has already been on large-scale image datasets such COCO and RF100

as we previously mentioned. Therefore, in order to take advantage of this starting point we

may only need fewer images in order to train YOLOv8 for the specific task of detecting

61

mechanical objects at shaft arrangement plans. This can be achieved using Transfer Learning.

At Transfer Learning we begin with our pre-trained YOLOv8 model on the COCO and RF100

datasets and we fine-tune it for our particular task. The concept of transfer learning lies on

the fact that the lower layers of the neural network which are responsible for capturing the

low-level features of the images (edges and corners) are generally applicable to a variety of

tasks. Thus, by leveraging the flexibility of the YOLOv8’s edge and corner detection we are

only required to train the higher layers of the DNN. With Transfer Learning we are able to

reduce significantly the images required for training with a minimum recommendation of 70

images per class.

4.3 Object Detection Validation and Rules

Assuming our object detection model identifies a number of objects in a given shafting

arrangement plan. A Neural Network might be accurately predicting objects, but it still cannot

think as an engineer. In order to mitigate the cases of errors which may arise in case of false

positives or false detections we are required to add validation rules which will apply to our

given objects. The ones we will implement will be the following:

A) The Shaft Arrangement has a centerline which is continuous from the propeller shaft to

the intermediate shaft. All bounding boxes of the objects being detected must pass

through this centerline, otherwise they don’t below in the shaft arrangement. This rule

stems from the fact that sometimes, the plan may contain appendixes with certain parts

of the arrangement which might totally ruin the modeling and usually are of different

scaling and sizes. Therefore, those objects must be excluded.

B) The Propeller Center is the center of the acting weight of the propeller. Although in case

the Propeller entity does not exist, treat the center of the weight as the center of the

Propeller Hub.

C) The Aft end of the propeller shaft is approximately distanced at 24.3% of the Propeller

Hub. According to a derived statistic from our database of vessels we were able to

conclude that there is a correlation between the length of the propeller hub and the aft

end of the propeller shaft which is:

𝑋𝐴𝑓𝑡[%] = −2.2130 ∙ 104 ∙ 𝐿ℎ𝑢𝑏 + 0.5536

Where 𝑋𝐴𝑓𝑡[%] is considered the length of the Aft End of the Propeller Shaft as a

percentage of the Propeller Hub, and its equal to the distance of the Propeller’s Shaft Aft

end from the aft end of the Propeller Hub. The graph below shows the cluster of the data

being collected from the given dataset (100 vessels)

62

It is reasonable to assume that the aft end of the propeller shaft is does not usually

exceed the cluster shown below, and in case the object detection model did not calculate

it, we can approximate it via the equation above.

Figure 4.5 Correlation between Aft End and Propeller Hub

D) There has to be an Aft Stern Tube Bearing Detected and we cannot detect more than

one Aft Stern Tubes. In case the Object Detection model detects the Fwd Stern Tube

Bearing as an Aft Stern Tube Bearing, the one who’s the most aft between them is the

Aft Stern Tube Bearing and the other should be the Fwd Stern Tube Bearing.

E) According to NTUA Lab of Marine Engineering, there is a validation statistic between

the length of the Propeller Shaft and the Length of the Intermediate Shaft which

approximately estimates that if the dimensionless sum of the propeller and

intermediate shaft is equal to 1, then the Propeller Shaft’s Length is the 49.4% of the

Total Shaft Length and the Intermediate Shaft’s Length is the 50.6% of the Total Shaft

Length with Standard Deviation of 2.2%

Figure 4.6 Propeller and Intermediate Shaft Correlation

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0 500 1000 1500 2000 2500 3000

A
ft

 E
n

d
 [

%
]

o
f

P
ro

p
el

le
r

H
u

b

Length of Propeller Hub

Aft End of Propeller / Propeller Hub

0 5 10 15 20

1

3

5

7

9

11

13

15

17

meters

Sh
ip

 N
u

m
b

er

Propeller Shaft Length Intermediate Shaft Length

y=-2.2130*10^4 + 0.5536

63

4.4 Process Diagram for Shaft Modeling

The process diagram for the Shaft Modeling Algorithm would be the following:

Figure 4.7 Shaft Modelling Algorithm Data Flow Diagram

The modeling in the following algorithm involves the use of 3 YOLO Object Detection Models,

one for detecting the primary mechanical entities, one for detecting the shafts and one for

64

detecting the dimensions, therefore it is important to train the algorithm for 3 separate

models. The process of the Shaft Modeling Algorithm is described as follows:

An Image of a Shaft Arrangement Plan will be used as an input, and this will be passed from 3

object detection models:

A) Key Entities Detection Model: (Aft End of Propeller, ASTB, FSTB, Propeller, Propeller

Hub, Shaft Flange, Shaft Bearing, Engine Shaft Flange)

B) Shaft Detection Model: (Propeller Shaft, Intermediate Shaft)

C) Dimension Detection Model: (Horizontal Dimensions)

The Key Entities Detection Model is responsible for detecting the aforementioned objects and

save their bounding box data in a YOLO Format file. Then the program reads this file and with

correlation to the class names file we associate which object is detected and where. We

convert those from YOLO Format to OpenCV Format and we pass the result to a validation

step which employs the aforementioned validations with the help of a counting class. Then

from the validated output for each object we save the bounding box coordinates and the

coordinates of its center (in pixel units). Thus, we know the distances from each segment that

models the shafting arrangement but in pixel units.

In order to convert those dimensions that we found in real units, we employ the use of the

Dimension Detection Model. The Dimension Detection model detects horizontal dimensions.

The bounding box of the horizontal dimension gives us the start point and the end point of

the dimension detected as well as its length in pixels. It includes the dimension number which

is the real in (mm) length of the object. Thus we can:

- Correlate which object has the same start point and end point as the detected dimension.

- Perform OCR inside the bounding box image which will output the real length dimension

and thus we can associate the mechanical entity with its real dimension, and we can also

provide our algorithm with an analogy of pixels to mm in the horizontal direction.

Any mechanical entity whose dimension could not be arbitrarily detected; its dimension will

be extracted from the final ratio which is being calculated as the median value of all ratios

from all dimensions excluding the ones which diverge from the median value as false units

not associated with the shaft arrangement.

Having the real lengths of the segments between the key mechanical entities we only miss

the important dimension of the Diameter of the segments. The diameters of the propeller

shaft can be detected using the Shaft Detection Model. It detects the bounding box of the

Propeller Shaft and the Intermediate Shaft, thus we can output the height of each bounding

65

box as well as the dimension number inside the bounding box of each shaft. This allows us to

rotate the image clockwise and perform OCR on the image segment we detected. This way

we are able to associate this dimension with the specified object (shaft or intermediate) and

thus we have the required information on the Shaft Diameter. In case there are multiple

dimensions, we have to calculate an average diameter of them all. And if a shaft misses its

diameter inside or the OCR fails to detect we either use the pixel to mm ratio from the other

shaft or in the worst-case scenario we approximate it using the pixel to mm ratio from the

horizontal dimensions.

Finally using the density of the material as an input alongside with the diameters we have

detected, we are able to calculate the weight and the moment of inertia for each segment

thus having the complete geometry of the shaft digitized.

In the next chapters we will discuss how we were able to generate the dataset necessary to

perform the object detection, the training process, and the algorithms deployment process

alongside with the results.

4.5 Optical Character Recognition Techniques

There are many available libraries which are specialized for reading numbers, notably

Tesseract which is exceptionally well at handling numbers and letters. For this particular thesis

we noted the most accurate results derived from the module “OCR.Space.”. OCR.Space is a

free OCR Service which scans images, in our case the detected entities image segments, and

exports the letters and numbers which have been recognized as character variables.

OCR.Space provides a free API with an API key which can be used in our Python programmed

application. The API offers a variety of engines which are either specialized for different

languages, handwriting and of course numbers. We choose the engine for numbers which is

optimized for detecting numbers. Although the accuracy may vary thus our API script should

be combined with additional filtering which may convert falsely detected numbers as letters

such as “0” and “O” or “1” and “I” and convert those to letters, as well as in the case of

diameters, to filter out any special characters “Φ” and only output the numerical part.

Figure 4.8 Performing OCR on Diameter example

66

5 Dataset Generation

The first step for developing our object detection application is the collection of the required

drawings of the shaft arrangement plan and generating the appropriate datasets for the

object detection training.

5.1 Dataset Generation

We collect a list of 100 Shaft Arrangement Plan drawings from the NTUA Laboratory of Marine

Engineering which are either in PDF format or scanned in PNG format. In case the file is at PDF

Format we convert it to PNG and create a library of images of Shaft Arrangement Plans. On

the figure below we can see examples from the drawings being used in the training dataset.

Figure 5.1 Examples from images in the Training Dataset

After the image collection, we ought to label the images for the objects which we want the

object detection model to detect. Such requires us to label manually 3 separate datasets one

67

for the “Key Entities” one for the “Shafts” and one for the “Dimensions”. The labeling can be

performed using a software named LabelImg. Using LabelImg, we set the directory path of the

database and the save directory as the same path. Manually we select the bounding box areas

of interest and add their respective classes. A labeling annotation process example can be

seen in the image below.

Figure 5.2 LabelImg Annotation labeling example

The save output of each image is a text which is presented in the format seen in the figure

below:

Figure 5.3 Bounding Box file output

The bounding box output file can be represented in 2 Formats: YOLO Format and PascalVOC

Format. The PascalVOC Format is being commonly used for transfer training an SSD and

MobileNet Object Detection Model, but since we use YOLOv8 we may use the YOLO Format.

The YOLO Format above is consisted of 5 columns the 1st column is an integer representing

the ID number of the detected object’s class and the 2nd – 4th columns represent the

coordinates of the bounding box of the respective object which is been detected. A notable

68

example of how YOLO datasets are being structured and its bounding boxes represented can

be seen in the figure below:

The origin of the image is being placed on the top-left corner of the image and its dimensions

are being normalized as (1,1), hence its position is represented as a percentage of their real

pixel dimension:

𝑋𝑌𝑂𝐿𝑂 =
𝑋𝑎𝑐𝑡𝑢𝑎𝑙

𝑊𝑖𝑑𝑡ℎ
 𝑌𝑌𝑂𝐿𝑂 =

𝑌𝑎𝑐𝑡𝑢𝑎𝑙

𝐻𝑒𝑖𝑔ℎ𝑡

When we want to represent a bounding box in YOLO Format, we may represent it using

its center and its width and height:

1st Column 2nd Column 3rd Column 4th Column 5th Column

Class ID X-center Y-center Width Height

The Class ID is the integer number {1,2,…𝑁} and it is associated with the row of the class file:

Figure 5.4 Class File representation

69

5.2 Dataset Preprocessing Step

Building a custom dataset can be a really lengthy time-consuming process, hence we may

accelerate the time required by using Roboflow, an online computer vision platform which

allows users to build computer vision models faster and more robust. Roboflow offers a series

of useful modules for data collection, preprocessing techniques and training techniques,

which are accompanied with a novel API to import our project datasets directly in our training

script. Before we create a new project, we need to create a Roboflow account and right after

we create a new project in the main dashboard screen. Next, we upload our dataset file

alongside with the class and bounding box files. Roboflow automatically recognizes the YOLO

annotation format and generates a Dataset version.

For each of the 3 datasets, Roboflow allows us to perform preprocessing transformations such

as modifying the image orientations, resizing, contrast and performing data augmentation.

For our current thesis we may employ the following preprocessing steps:

Preprocessing & Augmentation Steps

A) Grayscale: In case the input drawing (usually an CAD exported file) has lines with

different colors, we may convert it grayscale for the reasons we mentioned in the

theoretical part of the thesis.

B) Auto Orient: When an image is being captured it usually contains metadata which

dictates the orientation by which the image should be displayed on a native platform.

Although this might be an issue when the application is displaying images unaware of the

metadata. This preprocessing step discards EXIF rotations and standardizes pixel

ordering.

C) Static Crop: Static Crop allows us to generate cropped images from the original of a

random size ranging from 25%-75% for the height and the width which models faults and

horizontal misalignments when it comes to a scanned drawing, thus making the model

more robust in case of a scanned document.

D) Tile Operation: Splits the images into a 3x3 grid and generates new images from that grid.

It is really helpful with large images such as drawings when we want to detect efficiently

small objects such as the Stern Tube Bearings in our case.

E) Rotations: We may perform minimal rotations of ±1° which emulates a rotational

misalignment when it comes to a scanned drawing, thus making more robust to real-life

scanned scenarios.

70

F) Noise: We generate Gaussian noise of 1% of the noise in order to prevent overfitting and

make it more robust in case of scanned document noise

After performing this augmentation through Roboflow, we are able to generate a dataset

consisting of 888 images. We split and shuffle the image data into:

Train Set Validation Set Test Set

622 175 91

70% 20% 10%

5.3 Dataset Inspection & Quality Evaluation

For each of the generated datasets we may present an overview inspection of their attributes

and evaluate them as per their aspects. Notably our evaluation presents:

Dataset Details: Including, the number of images prior the augmentation, the number of the

Annotations found as well as the average number of annotations per image, the average

image size and the median image sizes being used.

Class Balance: It evaluates the balance between the class annotations, and we can see

whether a certain class is over-presented or under-presented. A balanced dataset is usually

more robust, unbiased towards the classes, and able to detect all of them accurately.

Dimension Insights: It evaluates the distribution of the sizes of our images in our dataset as

well as their aspect ratio distribution. Commonly for the majority of neural networks the input

images are usually square even if the aspect ratio of the original images is not. This is due to

the fully connected layers which perform on square arrays. Images which are close to square

sized can be resized by YOLO maintaining the detail of their features. Although too wide or

too narrow images can cause great distortions in the image features. Hence it is important to

have a dataset of images of a similar size, ideally not too narrow or wide.

Annotation Heatmap: The annotation heatmap visualizes the area on the image where the

objects are most commonly annotated. This is an important value for YOLOv8 as it

understands that an object found outside the heatmap area with the most probability is likely

to be a false positive annotation and should not be regarding during the models training.

The reports can be found for each dataset below.

70% 20% 10%

Train Set Validation Set Test Set

71

Key Entities Detection Dataset Report

72

Shaft Detection Dataset Report

73

Dimensions Detection Dataset Report

74

As we can see from the reports above, we have a total of 100 original images in our dataset

with 𝑛1 = 7.7 annotations per image (772 in total) for the Key Objects Dataset, 𝑛2 = 2.1

annotations per dataset for the Shafts Dataset (209 in total) and 𝑛3 = 12.8 for the

Dimensions Dataset (1276 in total). All the datasets are on average 7.76 megapixels with a

median size of 3832x2236. According to the Dimension Insights such dataset lies into the

Wide/Very wide spectrum of size distribution which is in the acceptable spectrum of dataset

images. As for the Annotation Heatmap we perceive the following spatial relations between

the key entities which are being detected:

Figure 5.5 Annotation Heatmaps for Key Object

YOLOv8 will be able to understand the positional relationships between the key objects: The

Propeller is a tall/narrow object which is located with great probability on the leftmost side of

the image, following the Propeller Hub, which has a rectangular heatmap and it is mostly

located on the central area of the Propeller’s heatmap. Next, the Aft and the Fwd Stern Tube

Bearings are visible with a spatial relation of the Aft always being at the left side of the Fwd.

The Stern Tube Bearing is mostly centrally located but it’s always before the Engine flange

which is perceived as a very narrow object (due to the engine’s flywheel). Thus, during YOLOv8

model’s training in the next chapter, YOLOv8 will be able to use those spatial relations to

detect false positive detected objects and exclude them by assigning them a low confidence

rate. It is necessary to understand that it is nearly impossible for example to detect a Propeller

75

near the Stern Tube and away from the Propeller Hub since it’s a violation of common

engineering logic. This is a significant step into partaking engineering knowledge and intuition

of some level to our Object Detection model in order for it to think and act as a Marine

Engineer and not plainly like an AI.

Similarly, we may have as an output the heatmap for the Shafts as seen in the figure below:

Figure 5.6 Annotation Heatmap of the Shaft Objects

Such heatmap reveals the spatial relation that the Propeller Shaft is to be detected on the left

side of the Intermediate Shaft. Notably the aforementioned relationships are standardized

since the Shaft Arrangement Plan is always being displayed as a Side View from the Starboard

size, hence the propeller will almost being located on the leftmost side and the engine part on

the rightmost side of the arrangement. Lastly, regarding the dimensions, as seen in the

heatmap below they are identified as wide objects which are mainly located on top of the

shaft arrangement, and on the bottom especially below the propeller hub:

Figure 5.7 Heatmap of Dimensions

Our datasets are now ready to be used for our training process of the three object detection

models which will be discussed on the next chapter.

76

6 Training & Validation

After creating our training datasets, we will use them to perform transfer learning on the

pretrained YOLOv8 models. After choosing the appropriate YOLOv8 model from those

available we train them using the YOLOv8 library from GitHub, we will validate our dataset,

perform interference with the test dataset and lastly, we will export the models in PyTorch

(.pt) format, ready to me used in our Shaft Arrangement Modeling software.

The steps to train the YOLOv8 Object Detection Models can be summarized into the following:

1) Step 1: Import the necessary Libraries (Ultralytics YOLO Library, PIL, OpenCV)

2) Step 2: Import the preprocessed ready-to-use dataset using the Roboflow API

3) Step 3: Perform the YOLOv8 training with the optimal parameters which are already

predefined by the YOLOv8 such as:

a. Loss Function: Weighted YOLOv8 IoU Binary cross-entropy loss function

𝐿𝑌𝑂𝐿𝑂𝑣8 = 𝑤1(𝐿𝐼𝑜𝑈, 𝐿𝐵𝐶𝐸) ∙ 𝐿𝐼𝑜𝑈 + 𝑤2(𝐿𝐼𝑜𝑈, 𝐿𝐵𝐶𝐸) ∙ 𝐿𝐵𝐶𝐸

b. Optimizer: Stochastic Gradient Descent (with momentum)

𝑤 ≔ 𝑤 − 𝜂𝛻𝐽𝑖(𝑤) − 𝑎𝛥𝑤

c. Learning Rate: Variable 𝜂 = 10−3 for the first 60 epochs and then 𝜂′ = 𝜂/10 till the

160 epochs which is again 𝜂′′ = 𝜂′/10 with Momentum Factor: 𝑎 = 0.9

d. Number of Epochs: 𝑒𝑝𝑜𝑐ℎ𝑠 = 200

4) Step 4: Perform training and evaluate the performance metrics in each iteration:

a. Box Loss: Represents how well the model fits the true bounding box

b. Class Loss: Represents how well the model predicts the object classes.

c. Dual Focal Loss: Alleviates the class imbalance of the dataset (DFL)

d. mAP0.50 & mAP0.50-0.95: Mean Average Precision which is already defined.

5) Step 5: Output the plots of the metrics and evaluate the model’s performance as well as

performing the validation for all the classes.

6) Step 6: Perform Inference with the trained YOLO model on our test dataset.

77

7) Step 7: Judge whether the performance of the trained YOLO model is acceptable. If it is

acceptable then we export the model, else we change the above parameters or we have

to improve our dataset.

6.1 Choosing YOLOv8 Model Variation

According to Ultralytics (GitHub), YOLOv8 has 5 model variations which vary with an increase

in performance, accuracy and parameters but with a substantial decrease in the processing

speed. Choosing a balance between speed and accuracy is reasonable when it comes to real-

time applications where the slightest increase in processing speed (ms) can reduce the FPS of

the detection, but in our case since it is a single image detection application, we are free to

choose the one which offers the best performance regardless the milliseconds increase which

is barely noticeable.

YOLOv8 Models

Model Model Size mAP(0.50-

0.95)
Speed (CPU) Parameters

YOLOv8n Tiny 37.3 80.4 ms 3.2 x 106

YOLOv8s Small 44.9 128.4 ms 11.2 x 106

YOLOv8m Medium 50.2 234.7 ms 25.9x 106

YOLOv8l Large 52.9 375.2 ms 43.7 x 106

YOLOv8x Extra Large 53.9 479.1 ms 68.2 x 106

Hence, we choose the YOLOv8x model the largest and most accurate of all which boasts a 53.9

accuracy on the COCO Dataset and has 68.2 million parameters which need to be fine-tuned

to our dataset.

6.2 System Specifications for Training

For the YOLO Object Detection application, we will be using the Google Collab resources which

come with an online interactable Jupyter Notebook and cloud computing service (Python 3

Google Computing Engine) with the following specifications:

A) GPU: Tesla T4 – 16GB GDDR – CUDA Enabled (2560 CUDA Cores) & FP32: 8.1 TFLOPS

B) CUDA: NVIDIA-SMI: 525.85.12 and CUDA Version 12.0

C) ENV: Linux with Python 3.8.10 - PyTorch 1.13.1 and Ultralytics YOLOv8.0.11

It is important to perform the command ‘nvidia-smi’ prior to the training to ensure that the

training is GPU Accelerated which significantly increases the training speed.

78

6.3 YOLOv8 CLI and Python SDK

YOLOv8 offers an amazing CLI for Linux accompanied with an excellent SDK for Python. As long

as the necessary libraries (according to GitHub requirements) are installed, YOLOv8 can be

used for detection and classification tasks with a training or prediction mode using the CLI as

seen below:

Figure 6.1 YOLOv8 CLI Example

Our task is set to detect, and we can simply choose between the train mode for training and

prediction mode for the inference. With the model option we choose the pretrained initial

model which will be used for transfer learning if we choose the training mode, or the final

model when we perform inference.

YOLOv8 is still on an experimental stage and new updates continue to be publicly released on

GitHub which add new functionality and improve the library’s performance and fix various

bugs.

6.4 Roboflow API and Importing Training Dataset

We import our training datasets using the Roboflow API. Using Roboflow we have already

annotated our Dataset, performed several preprocessing and augmentation steps and we

already split the images into a Training – Test – Validation set. Roboflow enables us to directly

import the dataset into the training notebook of Google Collab by simply installing the

Roboflow library. We use our API key to sign into our account and we import the project we

work on as well as the dataset with the appropriate variables which are generated at the

dataset export tool of Roboflow. A sample script can be seen below:

Figure 6.2 Roboflow API Importing Dataset to Google Collab

79

6.5 YOLOv8 Training Hyperparameters

We begin our YOLOv8 training using the simple CLI command as seen in the figure below:

Figure 6.3 YOLOv8 CLI Training Command

YOLOv8 already has predefined its architecture, its pretrained weights as well as its optimal

parameters which according to the YOLOv8 Ultralytics development team provide a robust

and accurate training:

Loss Function: YOLOv8 offers a weighted IoU Binary cross-entropy loss function, a linear

combination of the IoU Loss Function and the Binary Cross-Entropy Function:

𝐿𝐼𝑜𝑈 = 1 −
|𝐵 ∩ 𝐵𝑔𝑡|

|𝐵 ∪ 𝐵𝑔𝑡|
+

|𝐶 − 𝐵 ∩ 𝐵𝑔𝑡|

|𝐶|

With C the smallest box covering the predicted and ground truth bound boxes and the BCE

Loss Function:

𝐿𝐵𝐶𝐸 = 𝐻𝑝(𝑞) = −
1

𝑁
∑𝑦𝑖 ∙𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) ∙𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝑝(𝑦𝑖))

𝑁

𝑖=1

Thus, the YOLOv8 Loss can be modeled as:

𝐿𝑌𝑂𝐿𝑂𝑣8 = 𝑤1(𝐿𝐼𝑜𝑈, 𝐿𝐵𝐶𝐸) ∙ 𝐿𝐼𝑜𝑈 + 𝑤2(𝐿𝐼𝑜𝑈, 𝐿𝐵𝐶𝐸) ∙ 𝐿𝐵𝐶𝐸

Optimizer: YOLOv8 uses its own the Stochastic Gradient Descent (SGD) with momentum and

adaptable learning rate as an Optimizer:

𝑤 ≔ 𝑤 − 𝜂𝛻𝐽𝑖(𝑤) − 𝑎𝛥𝑤

SGD is considered one of the most well performing optimizers for object detection since it

appears to converge quickly especially when we have high-dimensional feature spaces.

YOLOv8’s SGD is able to handle image data really well since by randomly selecting mini batches

of pixel data from each iteration, it can avoid getting stuck at local minima and provide a good

training result. YOLOv8’s SGD has momentum as well which remembers the last update of the

weight 𝛥𝑤 and uses it in a linear combination with the SGD loss to determine the next update.

Learning Rate: YOLOv8 has an adaptable learning rate which varies depending on the epoch

we are: The first 60 use 𝜂 = 10−3 and between 60-160 use 𝜂 = 10−4 and above 160 𝜂 = 10−5

Lastly the momentum factor is 𝑎 = 0.9 according to the Optimizer above.

80

Epochs: An epoch refers to a complete iteration through the entire image dataset. During each

epoch, the YOLO model goes through all the bounding boxes in the dataset and updates its

model parameters based on the above loss function and the optimization algorithm. The

higher the number of epochs the more times the YOLO model will pass through the entire

dataset, although the choice of the epoch number has to be picked carefully because a low

epoch number can result in underfitting with the model not capturing the image features or

with a high epoch number the model can overfit and become biased to the training data while

performing poorly on new data. Hence, choosing an epoch number is often a matter of trial

and error. For our current model we will chose 𝑒𝑝𝑜𝑐ℎ𝑠 = 200. The batch number is set at 16.

By defining the above training parameters, we are able to commence the training on the 3

datasets on the YOLOv8x model consisting of 365 Layers and 68,160,312 parameters.

Figure 6.4 YOLOv8 Training Console Output Sample

The figure above shows the output of the Jupyter Notebook when the training process in

initiated. We can clearly see the architecture of the YOLOv8x network, and we can see for

each epoch: how much GPU Memory does it use, the Box Loss, the Class Loss, the Dual Focal

Loss and the Mean Average Precision.

81

6.6 YOLOv8 Training Evaluation Metrics

After we perform the training process for each Dataset we output and evaluate the results

from the model training:

6.6.1 Key Entities Detection Model Evaluation

The model reached its best version when exported at 𝑒𝑝𝑜𝑐ℎ = 179 with the following

performance metrics:

Object Detection Model - Key Entities - Metrics

Epoch Box Loss Class Loss Dual Focal Loss mAP0.50 mAP0.50-0.95

179 0.3614 0.2188 0.7767 0.976 0.773

Both the Box, Class and DF Loss are minimal (below 1) which reveal the model to be very

accurate in terms of prediction the bounding box and the object class correctly even when the

classes are under-represented. The Mean Average Precision for an IoU threshold of 0.5 is

mAP0.50 = 97.6, and the mAP for all thresholds of 0.5 – 0.95 is mAP0.50-0.95 = 77.3 which are

exceptionally high, hence our model is very precise and accurate on its predictions.

After the model’s training we may output the performance graphs of the training process:

Figure 6.5 YOLOv8 Key Entities Training Performance

According to the figure above, the box loss, class loss and train loss is being minimized safely

without overshoot for both the train and the validation sets, meaning that the model is well

robust against overfitting and the its performance on new data is acceptable. Both precision

and recall increase. Precision appears to be constant at the 80 first epochs and forth, and the

82

Recall appears to be increasing throughout the epochs. The mAP0.50 shows minimal increase

after the 100th epoch and the mean average precision for all thresholds of 0.5 – 0.95 appear

to increase adequately. We estimate that further training would not benefit the model and

would only lead to overfitting, hence no change in the training hyperparameters is required.

A representation of the Precision and the Recall of the model can be visualized with the

Precision-Recall Curve:

Figure 6.6 Precision - Recall Curve

The model appears to have a high precision even when the recall is high which signifies that a

model outputs a high ratio of true accurately labeled classes while keeping a low ratio of

falsely labeled classes. A better representation of their relationship can be seen in the F1

Score/Confidence curve below where F1 Score is the harmonic mean of Precision and Recall:

Figure 6.7 F1 - Confidence Curve

83

The curve appears to be flat at a high average F1 Score of 0.90 – 0.92 for a wide range of

confidence values up to 0.8 which means that the model remains precise with minimal false

detections, even when the model is conservative with higher confidence rate.

Lastly, we may output the confusion matrix which shows the behavior of our model on how

many predicted classes are accurately predicted:

Table 6.1 – Confusion Matrix for the Key Entities Detection Model

According to the Confusion Matrix above, our model seems to be predicting accurately the

majority of the classes very accurately with a minimal confusion of some entities with the

background lines which is on the spectrum of the acceptable error.

Overall, the Key Entities Detection Model is a very accurate YOLO model which is sufficient for

this thesis case and will be able to perform accurately on the vast majority of Shaft

Arrangement Plans, detecting all the necessary geometries needed to model the shaft, its

constraints, and their positions.

6.6.2 Shafts Detection Model Evaluation

In a similar manner we evaluate the performance of the Shafts Detection Model. The Shaft

Detection model has only 2 classes: Propeller Shaft and Intermediate Shaft hence training was

easier and faster to be performed.

84

The model reached its best version when exported at 𝑒𝑝𝑜𝑐ℎ = 200 with the following

performance metrics:

Object Detection Model - Key Entities - Metrics

Epoch Box Loss Class Loss Dual Focal Loss mAP0.50 mAP0.50-0.95

200 0.4659 0.3318 0.8058 0.957 0.832

Both the Box, Class and DF Loss are minimal (below 1) which reveal the model to be very

accurate in terms of prediction the bounding box and the object class correctly even when the

classes are under-represented. The Mean Average Precision for an IoU threshold of 0.5 is

mAP0.50 = 95.7, and the mAP for all thresholds of 0.5 – 0.95 is mAP0.50-0.95 = 83.2 which are

exceptionally high, hence our model is very precise and accurate on its predictions.

After the model’s training we may output the performance graphs of the training process:

Figure 6.8 YOLOv8 Key Entities Training Performance

According to the figure above, the box loss, class loss and train loss is being minimized safely

without overshoot for both the train and the validation sets, meaning that the model is well

robust against overfitting and the its performance on new data is acceptable. Both precision

and recall increase. Precision appears to be constant at the 80 first epochs and forth, and the

Recall appears to be increasing throughout the epochs. The mAP0.50 shows minimal increase

after the 100th epoch and the mean average precision for all thresholds of 0.5 – 0.95 appear

to increase adequately. We estimate that further training would not benefit the model and

would only lead to overfitting, hence no change in the training hyperparameters is required.

85

A representation of the Precision and the Recall of the model can be visualized with the

Precision-Recall Curve:

Figure 6.9 Precision - Recall Curve

The model appears to have a high precision even when the recall is high which signifies that a

model outputs a high ratio of true accurately labeled classes while keeping a low ratio of

falsely labeled classes. A better representation of their relationship can be seen in the F1

Score/Confidence curve below where F1 Score is the harmonic mean of Precision and Recall:

Figure 6.10 F1 - Confidence Curve

The curve appears to be flat at a high average F1 Score of 0.91 – 0.93 for a wide range of

confidence values up to 0.8 which means that the model remains precise with minimal false

detections, even when the model is conservative with higher confidence rate.

86

Lastly, we may output the confusion matrix which shows the behavior of our model on how

many predicted classes are accurately predicted:

Table 6.2 – Confusion Matrix for the Shaft Detection Model

According to the Confusion Matrix above, our model seems to be predicting accurately the

majority of the classes very accurately with a minimal confusion of the intermediate with the

background lines which is on the spectrum of the acceptable error.

Overall, the Shafts Detection Model is a very accurate YOLO model which is sufficient for this

thesis case and will be able to perform accurately on the vast majority of Shaft Arrangement

Plans, detecting the Propeller and Intermediate Shaft with a great accuracy.

6.6.3 Dimensions Detection Model Evaluation

Finally, we evaluate the performance of the Dimensions Detection Model. The Dimension

Detection model has only 1 class the horizontal dimension, and since each image includes a

variety of horizontal dimensions, the model should be able to learn and become robust and

accurate in detecting dimensions. Those dimensions will be later be passed on the OCR

module of the main program for the dimension extraction procedure.

87

The model reached its best version when exported at 𝑒𝑝𝑜𝑐ℎ = 200 with the following

performance metrics:

Object Detection Model - Key Entities - Metrics

Epoch Box Loss Class Loss Dual Focal Loss mAP0.50 mAP0.50-0.95

200 0.6297 0.4174 0.7989 0.833 0.4599

Both the Box, Class and DF Loss are minimal (below 1) which reveal the model to be very

accurate in terms of prediction the bounding box and the object class correctly even when the

classes are under-represented. The Mean Average Precision for an IoU threshold of 0.5 is

mAP0.50 = 83.3, and the mAP for all thresholds of 0.5 – 0.95 is mAP0.50-0.95 = 46.0 which are

exceptionally high, hence our model is very precise and accurate on its predictions.

After the model’s training we may output the performance graphs of the training process:

Figure 6.11 YOLOv8 Key Entities Training Performance

According to the figure above, the box loss, class loss and train loss is being minimized safely

without overshoot for both the train and the validation sets, meaning that the model is well

robust against overfitting and its performance on new data is acceptable. Both precision and

recall increase. Precision appears to be constant at the 80 first epochs and forth, and the Recall

appears to be increasing throughout the epochs. The mAP0.50 shows minimal increase after

the 100th epoch and the mean average precision for all thresholds of 0.5 – 0.95 appear to

increase adequately. We estimate that further training would not benefit the model and would

only lead to overfitting, hence no change in the training hyperparameters is required.

88

A representation of the Precision and the Recall of the model can be visualized with the

Precision-Recall Curve:

Figure 6.12 Precision - Recall Curve

The model appears to have a high precision even when the recall is high which signifies that a

model outputs a high ratio of true accurately labeled classes while keeping a low ratio of

falsely labeled classes. A better representation of their relationship can be seen in the F1

Score/Confidence curve below where F1 Score is the harmonic mean of Precision and Recall:

Figure 6.13 F1 - Confidence Curve

89

The curve appears to be flat at a high average F1 Score of 0.90 – 0.92 for a wide range of

confidence values up to 0.8 which means that the model remains precise with minimal false

detections, even when the model is conservative with higher confidence rate.

Lastly, we may output the confusion matrix which shows the behavior of our model on how

many predicted classes are accurately predicted:

Table 6.3 – Confusion Matrix for the Dimension Detection Dataset

According to the Confusion Matrix above, our model seems to be predicting accurately our

dimension class very accurately with a minimal confusion with the background lines which is

on the spectrum of the acceptable error.

Overall, the Dimension Detection Model is a very accurate YOLO model which is sufficient for

this thesis case and will be able to perform accurately on the vast majority of Shaft

Arrangement Plans, detecting the Propeller and Intermediate Shaft with a great accuracy.

6.7 YOLOv8 Inference with Shaft Arrangement Samples

Finally, we may perform Inference using the final trained models for each task:

1) Detecting the Key Entities (Propeller, Aft End, Aft Stern Tube Bearing, Fwd Stern Tube

Bearing, Flanges and Shaft Bearings)

2) Detecting the Shafts themselves: (Propeller Shaft, Intermediate Shaft)

3) Detecting Horizontal Dimensions

90

YOLOv8’s CLI will be proven useful again, because with a simple command and with prediction

mode we can easily define the model and the image, and the output shall be generated along

with a detection file of the bounding box coordinates. For each of the models:

6.7.1 Key Entities Detection Model Inference

The inference with the Key Entities Detection Model outputs the following results:

91

92

6.7.2 Shafts Detection Model Inference

We continue the inference using the Shaft Detection Model for a sample of images in our

dataset.

93

Figures 6.14 – 6.24 – Inference results with the trained Object Detection Models

Hence the model predicts with an amazing accuracy all the entities of the Shaft Drawing which

we want in order to develop a digital model of the Shaft Arrangement. The 3 models are now

ready to be implemented inside our main shaft modeling algorithm.

94

7 Shaft Modeling Results

Since our Object Detection Models are able to predict the bounding boxes of the mechanical

entities we want, we are able to use them for the Shaft Modeling.

7.1 Details of the Application

As we have previously mentioned in the Methodology section, our Application uses an image

of the Shaft Arrangement Plan as an input and it exports a data file which has the diameter 𝐷,

the weight 𝑤, the moment of inertia 𝐼 and the distance 𝐿 of each of the following segments:

A) AB Segment from Aft End of Propeller till the Center of the Propeller.

B) BC Segment from the Center of the Propeller till the Center of the Aft Stern Tube Bearing.

C) CD Segment from the Center of the Aft Stern Tube till the Fwd Stern Tube Bearing.

D) DE Segment from the Center of the Fwd Stern Tube Bearing till the Shaft Flange center.

E) EF Segment from the Center of the Shaft Flange till the Shaft Bearing Center

F) FG Segment from the Center of the Shaft Bearing till the Engine Flange Center.

The Center of the Propeller is modeled as the point load of the propeller weight and the center

of the aforementioned bearings are modeled as the reactions where the reaction forces are

acted upon. The Center of the Engine Flange as the end of the Intermediate Shaft could also

act as the center of the Main Engine’s weight, although in case there is a more detailed

analysis of the piston weights and the bearings in the crankshaft, the detailed analysis is

preferred.

7.2 Output Results for the Shaft Modeling

The model as inputs requires us to have the imported trained YOLOv8 models for the Key

Entities, the Shafts and the Dimension Object Detecting, alongside with their appropriate class

file. As long as we have imported the main libraries, we may run our main code and generate

the following outputs:

We initially perform the Inference with the input Shaft Arrangement Image with the

appropriate commands in order to export the inference image and the bounding box file:

95

Both the outputs are exported in the folder the project has been worked on. The inference

image we receive is the following:

From there we use the generated bounding box file (labels file) and import it in our script as a

Pandas dataframe:

Each of those columns represent the class ID number and their YOLO positions, hence develop

modules which can process such Pandas Dataframes and extract the necessary information of

the detected objects as well as convert the YOLO bounding box format to OpenCV format.

96

Following those necessary modules, we add a validation module for each of the detected class,

with a necessary first step to count how many objects have we detected as seen below.

After performing the necessary validations, we are able to export the validated bounding box

and its center for each validated object. Our following output consists of the times we

detected each object, the bounding box coordinates conversion and the message of the

validation. After the object is being validated its been assigned a validated status with a

validated center whose coordinates we output in the following report:

97

A figure of all validated object bounding boxes can be found in the figure below. The grid the

figure below has is in pixels units with the start of (0,0) at the up-left side of the canvas:

Since we have exported the validated geometry of the detected objects, we can now generate

the segments A to G which are required to model the shaft arrangement. We are able to

export their distances in pixel units:

Above the generated shaft line is a results of the average of the y-centers of all the objects

excluding the Shaft bearing, whose geometrical center does not belong in the shaft line.

Our next step is to convert those segment distances into real (mm) dimensions as well as

finding the diameter of the Propeller Shaft (Segment AE) and the Intermediate Shaft (Segment

EG). In order to find the Diameters in (mm) of the shafts we employ the use of our trained

YOLO shaft detection model, find the bounding boxes of the 2 shafts, and process them into

our OCR module with the necessary preprocessing and output the average diameter in case

the shaft has more than one diameters in its length:

98

In the figure below we perform the inference of the Shafts Detection Model with great

accuracy:

Our program extracts the bounding boxes of the 2 shafts and process them in our OCR routine:

Our OCR module performs the digits recognition using

the following steps:

Rotating Image: We rotate the image 90 degrees

clockwise for the characters to be readable by OCR

Space. Enhancing Details: We enhance the image by

performing Edge Sharpening and Noise removal in order

to make it easier to OCR the image successfully. Enlarging

image: We enlarge the image 3x its original size while

maintaining the aspect ratio using OpenCV’s native

library in order to make the characters larger. Securing a

connection with OCR Space using an API Key and

delivering the result in a tuple variable which contains

the numbers we have processed. Inside the tuple itself

99

we calculate the average of the diameters and output the average diameter for each one of

the shafts.

The last step is to calculate the real (in mm) lengths of the segments, which is the only

information missing from completing the shaft’s digital modeling. We employ the use of the

trained Dimension Object Detection model, and we perform inference with it to detect all the

available horizontal dimensions:

100

Our program now correlates the bounding boxes of the detected objects with the detected

segments we have from the Key Entities detection model. We remember that if the bounding

boxes of the dimensions and the segments (A-G) have common start and ending points (in

pixels) (𝑥𝑓𝑖𝑟𝑠𝑡 , 𝑥𝑙𝑎𝑠𝑡). Searching and comparing the available bounding box dimensions with

the already existing detected segment locations (adding a 10-pixel tolerance to smooth any

bounding box errors) we may derive that there are certain geometries which match 1-1 with

our dimensions which are the following below are:

The dimensions which are not intrinsically match the detected dimensions will either be

calculated as a percentage the propeller/intermediate shaft and in case there are

inadequate detection data we may use the horizontal mm/pixel ratio which is calculated

from the dimension detection procedure:

We have finally completed the Shafts Arrangement Geometry and we now know all the

necessary lengths and diameters for each segment. Our only last step to finalize this modeling

is to ask the user to enter the Density of the shaft’s material as well as the Young Modulus in

101

order to calculate for each segment its Weight Distribution and its Moment of Inertia using

the known formulas below:

𝑤 =
𝑊

𝐿
=

𝜌𝑉

𝐿
=

𝜌

𝐿
(
𝜋𝐷2

4
𝐿) → 𝑤 =

1

4
𝜌𝜋𝐷2

𝐼 =
1

4
𝜋 (

𝐷

2
)
4

=
1

4
𝜋 (

𝐷4

16
) → 𝐼 =

1

64
𝜋𝐷4

The segments which belong to the propeller shaft and the intermediate shaft respectfully have

the same diameter between them, thus the same weight distribution and moment of inertia.

We generate the final output report which contains the necessary length, weight and moment

for each segment:

We can compare the results with the reality since the actual dimensions match the ones

evaluated by our program. The Propeller Shaft is indeed 8,242 mm and the Intermediate Shaft

is indeed 10,000 mm. The geometry which is outputted by our Object Detection is valid and

it’s according to the drawing above. The generated report file is ready to be imported at the

NTUA Shaft Alignment and a great step has been made in order to automate the shaft

alignment procedure when it comes to align vessels in bulk quantities. Assuming our propeller

of Diameter D=8.3m (Z=3 blades) has a weight of 9800kg we may demonstrate the said model

by importing the output file of our program into the Shaft Alignment Program. On this stage

this will be performed manually and propose a future consideration of this being automatically

imported on the program by having our program exported as a plugin to NTUA’s software.

102

Figures 7.1 – Exported model into the Shaft Alignment Software by NTUA

7.3 Additional Results worth noting

We previously mentioned that according to NTUA Lab of Marine Engineering, there is a

validation statistic between the length of the Propeller Shaft and the Length of the

Intermediate Shaft which approximately estimates that if the dimensionless sum of the

propeller and intermediate shaft is equal to 1, then the Propeller Shaft’s Length is the 49.4%

of the Total Shaft Length and the Intermediate Shaft’s Length is the 50.6% of the Total Shaft

Length with Standard Deviation of 2.2%

Upon performing digitalization on 55 vessels from our dataset we came into the conclusion

that on average, the Propeller’s Shaft Length takes 𝐿𝑃𝑅 = 48,9% and the Intermediate Shaft’s

Length takes 𝐿𝑃𝑅 = 51.1% of the total shaft arrangement length (the sum of the propeller

and the intermediate shaft, not including the crankshaft length) with a standard deviation of

3%. This result comes in par with NTUA’s distribution of 49.4% and 50.6% with only a 0.5%

difference. Thus, we may derive that the analogy is correct with a deviation of 2-3%

0%

20%

40%

60%

80%

100%

Sh
ip

 1

Sh
ip

 4

Sh
ip

 7

Sh
ip

 1
0

Sh
ip

 1
3

Sh
ip

 1
6

Sh
ip

 1
9

Sh
ip

 2
2

Sh
ip

 2
5

Sh
ip

 2
8

Sh
ip

 3
1

Sh
ip

 3
4

Sh
ip

 3
7

Sh
ip

 4
0

Sh
ip

 4
3

Sh
ip

 4
6

Sh
ip

 4
9

Sh
ip

 5
2

Sh
ip

 5
5

Propeller/Intermediate Shaft Relationship

L_prop L_inter

103

8 Conclusion & Future Work

Marine engineers have a vital role in the design and maintenance of merchant vessels, with

their ability to read and understand mechanical design drawings being a critical aspect of their

field of work. The Shafting Arrangement Plan is a particularly important drawing for marine

engineers, as it provides crucial information about the vessel's propulsion system. The current

thesis aims to explore the design of an AI-driven software capable of understanding the

structure, position and key dimensions of the most traditional mechanical components

comprising a Propulsion Shafting System, and ultimately extracting automatically a draft

digital twin geometry that can be imported in a Shaft Alignment software for further analysis.

Such a tool could drive significant improvements in the efficiency and safety of maritime

operations and could potentially revolutionize the field of marine engineering.

8.1 Synopsis and Conclusion

In the current thesis we successfully trained 3 important object detection YOLO models with

great accuracy due to the YOLOv8’s state-of-the art performance and novel libraries, as well

as a large dataset of 100 different Shaft Arrangement Plan drawings which were preprocessed

and augmented accordingly. Using Google Collab’s GPU backend resources, we were able to

perform transfer learning to YOLOv8x COCO pretrained model and we extract the necessary

metrics to evaluate the model’s performance. Each one of the 3 models scored a high Mean

Average Precision metric, which signifies their ability to be highly accurate when it comes

detecting the mechanical entities, while at the same time avoiding overfitting due to their

great performance on the validation set and all that boast great Accuracy and Recall even if

it’s adjusted in a conservative confidence level. The developed Shaft Modeling software

enabled the user to import shafting system models successfully and implement a combination

of validations which mimic the traditional ‘human’ engineering way of thinking and acting,

thus it was able to normalize results in the way a marine engineer would do. Associating

horizontal dimensions and objects taking advantage of their explicit and quite predictable

position and sequence is an important step into training machines thinking like humans.

Encompassing OCR modules along with OCR preprocessing was necessary to digitize the Shaft

104

Arrangement’s dimensions and associate them with certain detected bounding box features.

This way we were able to successfully:

- Detect the positions of the important mechanical entities which consist of the segments

of our shaft arrangement (in pixels)

- Calculate the average diameters of the Propeller Shaft and the Intermediate Shaft as well

as calculating a pixel to mm ratio for the vertical direction.

- Detect the positions of each dimension with bounding boxes and OCR the dimension

features to extract their numerical values. Associating the dimension object lengths and

values we may calculate an average mm to pixel ratio for the horizontal dimensions.

- Correlate the detected dimension positions/values with the positions of the segments we

want to detect. Defining a small pixel tolerance (~10px) we may match the dimension

objects with their real dimension value.

- Enable calculation of the other segments as a percentage of the propeller shaft or the

intermediate shaft. In case of missing information, the user may utilize the mm to pixel

ratio to calculate any segments with known pixel size accordingly.

- Manually added the known input of the Young Modulus and the Material density to

calculate the Weight Distribution and the Young Modulus of each segment.

- The final report is generated in a file which may present the digital geometry of the shaft

and can be imported in the Shaft Alignment software which is already developed.

8.2 Improvements using the developed software

Supposing a naval architecture office is assigned by an owner's company to check and perform

shaft alignment on their fleet and the fleet consists of 150 vessels. Assuming each shaft

arrangement modeling requires a minimum of 30 dimensions, several of which are manually

calculated from the given dimensions, an engineer would have to manually enter to his Shaft

Alignment Software an average of 150 x 30 = 4500 dimensions. This can be deemed as a time

consuming and prone to mistakes process, whereas shaft alignment calculations have a very

little tolerance for such mistakes. Minimizing the human error and time waste from the

engineer's side, the developed software enables automating the shaft alignment process by

extracting the whole shaft geometry in less than a few seconds. Such software enhances the

engineer’s productivity and efficiency while providing accurate and precise calculations. Such

automation software presented in this thesis unlocks new pathways to further automating

multiple tasks in the maritime industry and making marine engineering more efficient and

focused on creativity where no AI can replace the human innovation and way of thinking.

105

8.3 Future work

This thesis is one of the first ones which employ the use of YOLOv8 as an object detection

architecture and our results reveal how efficient and fast is comparing to its predecessors and

other architectures available. Such progress reveals a new path to implement this thought

processing and principles to expand the work presented and potentially make the modeling

more efficient. Some recommended future scope of work would be:

i) Experimenting with newer Object Detection Architectures when they are released. In

case there more efficient networks which provide better results than YOLOv8 in the

future, one could potentially use more than one architecture to compare how they

perform in our Shaft Arrangement dataset.

ii) Notably 100 original images were comprising our training dataset since it is exceptionally

hard to find a vast number of unique drawings. Our dataset had to be augmented with

several preprocessing methods in order to produce an accurate detection model. One

future direction of work is to employ the use of Generative Adversarial Network (GANs).

GAN networks are able to generate new samples using existing data. If we use the

current images as input data to a properly developed GAN network, we can create a

larger and more diverse shaft arrangement dataset which can improve the accuracy and

generalizability of our detection model.

iii) Additionally, our dataset was lacking vessels which consist of more than one

Intermediate Shaft and/or have more than one Intermediate Shaft Bearings. Such vessels

are large container ships or VLCC carriers whose engine room is large comparing to our

dataset consisting of Bulk Carriers (mostly Kamsarmax and Suezmax vessels) and a few

Crude Oil carriers. One could try to gather more of those vessels and try to generalize

our digital shaft modeling software to encompass more than one intermediate shafts

and bearings.

iv) Performing a full integration of the Digital Shaft Modeling software into the Shaft

Alignment software as an internal plugin which accepts drawings as an input file and

exports the result data directly into the software without any external file generation.

v) Additionally, we can attempt to generalize the concept of digitizing drawings to not only

Shaft Arrangement plans but on further naval architecture drawings and implement

those modeling algorithms in automating the ship design and evaluation process.

106

9 Bibliography

[1]

Ablameyko SV, Uchida S (2007) Recognition of engineering drawing entities: review of

approaches. Int J Image Graph 07(04):709–733. https://doi.org/10.1142/ S0219467807002878

[2] Adam S, Ogier J, Cariou C, Mullot R, Labiche J, Gardes J (2000) Symbol and character recognition:

application to engineering drawings. Int J Doc Anal Recogn 3(2):89–101.

https://doi.org/10.1007/s100320000033

[3] Bodic PL, Locteau H, Adam S, Heroux P, Lecourtier Y, Knippel A (2009) Symbol detection using

region adjacency graphs and integer linear programming. In: 2009 10th international conference

on document analysis and recognition. IEEE, pp 1320–1324.

https://doi.org/10.1109/ICDAR.2009.202. http://ieeexplore.ieee.org/ document/5277721/

[4] Cordella L, Vento M (2000) Symbol recognition in documents: a collection of techniques? Int J

Docu Anal Recogn 3(2):73–88. https://doi.org/10.1007/s100320000036

[5]

De P, Mandal S, Das A, Bhowmick P (2014) A new approach to detect and classify graphic

primitives in engineering drawings. In: 2014 fourth international conference of emerging

applications of information technology. IEEE, pp 243–248. https://doi. org/10.1109/EAIT.2014.33

[6] Henderson TC (2014) Analysis of engineering drawings and raster map images. Springer

[7]

Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S

et al (2017) Speed/accuracy trade-offs for modern convolutional object detectors. In: IEEE CVPR,

vol 4

[8] Hui J (2018) Object detection: speed and accuracy comparison (faster R-CNN, R-FCN, SSD, FPN,

RetinaNet and YOLOv3).

[9] Jin L, Zhou Z, Xiong S, Chen Y, Liu M (1998) Practical technique in conversion of engineering

drawings to CAD form. In: IMTC/98 conference proceedings. IEEE instrumentation and

measurement technology conference. Where instrumentation is going (Cat. No. 98CH36222)

[10] Song J, Su F, Tai C-L, Cai S (2002) An object-oriented progressive-simplification based

vectorization system for engineering drawings: model, algorithm, and performance. IEEE Trans

Pattern Anal Mach Intell 24(8)

107

[11]

Karima M, Sadhal K, McNeil T (1985) From paper drawings to computer-aided design. IEEE

Comput Graph Applications

[12] Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X, Pietikainen M (2018) Deep learning for generic

object detection: a survey. arXiv preprint arXiv:1809.02165

[13]

Meng Z, Fan X, Chen X, Chen M, Tong Y (2017) Detecting small signs from large images. In: 2017

IEEE international conference on information reuse and integration (IRI). IEEE

[14] Kasturi R, Bow S, El-Masri W, Shah J, Gattiker J, Mokate U (1990) A system for interpretation of

line drawings. IEEE Trans Pattern Anal Mach Intell

[15] Pan SJ, Yang Q et al (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng

22(10):1345–1359

[16] Cordella L, Vento M (2000) Symbol recognition in documents: a collection of techniques? Int J

Docu Anal Recogn 3(2):73–88. https://doi.org/10.1007/s100320000036

[17]

Roth PM, Winter M (2008) Survey of appearance-based methods for object recognition. Inst. for

Computer Graphics and Vision, Graz University of Technology, Austria, Technical report

ICGTR0108 (ICG-TR-01/08)

[18] Ruo-yu Y, Feng S, Tong L (2010) Research of the structural-learning-based symbol recognition

mechanism for engineering drawings. In: 2010 6th international conference on digital content,

multimedia technology and its applications (IDC)

[19]

Smith R (2007) An overview of the Tesseract OCR engine. In: Ninth international conference on

document analysis and recognition (ICDAR 2007), vol 2. IEEE, pp 629–633

[20] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object

detection,” in CVPR, 2016,

[21] Uijlings JR, Van De Sande KE, Gevers T, Smeulders AW (2013) Selective search for object

recognition. Int J Comput Vishttps://doi.org/10.1109/ICDAR.2009.202.

http://ieeexplore.ieee.org/ document/5277721/

[22] G. Renton, P. Heroux, B. Gauzere, and S. Adam, “Graph neural network for symbol detection on

document images,” in ICDARW, vol. 1,

[23]

Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection

with Region Proposal Networks.

[24]

Rosenblatt, F. (1958). The Perceptron: A probabilistic model for information storage and

organization in the brain. Physcological Review, 65, Article 6.

108

[25] Sharma, S., Sharma, S., & Athaiya, A. (2020). Activation functions in neural networks.

International Journal of Engineering Applied Sciences and Technology, 4(12), 310-316.

[26] Solawetz, J. (2020, June 29, 2020). YOLOv5 New Version - Improvements And Evaluation.

https://blog.roboflow.com/yolov5-improvements-and-evaluation

[27] C. Moreno-Garcıa, E. Elyan, and C. Jayne, “New trends on digitization of complex engineering

drawings.” Neural Comput. Applic., vol. 31, no. 6, pp. 1695–1712, 2019

[28]

A. Rezvanifar, M. Cote, and A. Albu, “Symbol spotting for architectural drawings: State-of-the-art

and new industry-driven developments,” Trans. Comput. Vis. Appl., vol. 11, no. 1, p. 2, 2019. 1

[29] Lu, Z.: Detection of text regions from digital engineering drawings. IEEE Trans. Pattern Anal.

Mach. Intell.

[30]

He, S., Abe, N.: A clustering-based approach to the separation of text strings from mixed

text/graphics documents. Proc. - Int. Conf. Pattern Recognition

[31] Fan, K.C., Liu, C.H., Wang, Y.K.: Segmentation and classification of mixed text/graphics/image

documents. Pattern Recognition. Lett.

[32] M. Shaw, D. Garlan: Software architecture: perspective son an emerging discipline. Prentice Hall,

Englewood Cliffs

[33] K. Tombre, C. Ah-Soon, P. Dosch, G. Masini, S. Tabbone: Stable and robust vectorization: how to

make the right choices. In: Proc. 3rd Int. Workshop on Graphics Recognition, Jaipur (India),

[34]

E. Valveny, E. Marti: Application of deformable template matching to symbol recognition in

hand-written architectural drawings. In: Proc. 5th Int. Conf. on Document

Analysis and Recognition, Bangalore

[35] K. Wall, P. Danielsson: A fast sequential method for polygonal approximation of digitized curves

[36]

Lewis, R., Sequin, C. Generation of 3D building models from 2D architectural plans. Computer-

aided Design

[37] Ah-soon, C. A constraint network for symbol detection in architectural drawings. In: Tombre, K.,

Chhabra, A.K. (Eds.), Graphics Recognition. Springer, Berlin.

[38] Solawetz, J. (2023, January 25). What is Yolov8? the ultimate guide. Roboflow Blog. Retrieved

March 4, 2023, from https://blog.roboflow.com/whats-new-in-yolov8/

[39] Rath, S. (2023, January 23). Yolov8 ultralytics: State-of-the-art yolo models. LearnOpenCV.

Retrieved March 4, 2023, from https://learnopencv.com/ultralytics-yolov8/

