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PREFACE 

Enrolling for a PhD studentship is one of the most important decisions that one has to 

make in one’s life. This holds no matter whether one wishes to follow an academic path or a 

career in industry. When I came back to Greece from Belgium, after an unsuccessful pursuit of a 

research project that would have demanded an investment of time, money and mental stamina on 

my part for a period of at least 4 years, I was at a crossroads of my life on both professional and 

personal levels. I was determined to do a PhD, but I did not have any clue about who/what 

would be a suitable advisor, research group, or project for me. Beyond anything else, I wanted to 

be sure that I would spend the following years of my life learning a lot of new things that would 

enrich my arsenal of knowledge for my subsequent entry to the job market. In other words, I 

wanted to ensure my proper training as a future researcher. All of a sudden, I came to realize that 

maybe the best option would be to address one of the Professors who taught me in my 

undergraduate studies and inspired me with their spirit, knowledge and experience in the first 

place. After some thought, I sent an e-mail to Prof. Theodorou and expressed my intention to 

become a member of his group and undertake my PhD studies under his mentorship. This email 

is probably the most important message I have sent up to now.  I had first met Prof. Theodorou 

in the first year of my undergraduate studies, where I was impressed by his professionalism, way 

of thinking, teaching and interacting with the class. What impressed me the most, however, was 

his kindness and his willingness to help the students when they had a difficult time with his 

assigments. A few years later, he offered me the opportunity to become a member of his group 

and honored me with an extremely challenging subject. He supported me with patience and 

persistence from my first to my very last day of my PhD. He kept believing in me at times when 

I did not believe in my own self and I felt sure that I would not make it eventually. For all these 

reasons, I want to thank him and I very much hope that my PhD will only be the start of our 

collaboration. 
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Next, I want to thank Dr. Aristotelis Sgouros with whom I have spent countless hours of 

research, coding, and learning. Without him, this PhD would be poorer. It is not only the amount 

of time that he invested for the projects of the PhD, but also the knowledge, way of thinking and 

problem-solving skills that he transferred to me. I want to thank him for being my friend 

together with Ioanna, and for making this journey so much more fun than it would have been if I 

were just working alone. They made me feel blessed, because the last five years of my life were 

not just work, but also joy and beautiful moments that I will remember when I am old. In the 

same spirit, I also want to thank Dr. Apostolos Lakkas, since it was his hard work, insight and 

perseverance which constituted the basis upon which my research was built. He was the first one 

who started hitting one ―wall‖ after another in this difficult subject, before I was even ready to 

start performing calculations. He was the one whom I first turned to when I was completely lost; 

thanks to him, my introduction to the subject was smoother. Furthermore, I wish to thank the 

senior members of the group, Dr. Stefanos Annogiannakis, Dr. Georgios Vogiatzis, Dr. 

Grigorios Megariotis and Dr. Nikolaos Romanos for welcoming me in the CoMSE family and 

offering me a warm and pleasant work environment during these years. 

I also wish to express my gratitude to the most important person in my life, my wife, 

Catherine, who endured with patience and understanding my bad mood and who was always 

there to listen, help and advise me. In her I have found the ideal partner, the one who will help 

me evolve and prosper, congratulating me when I succeed, and aiding me to recover when 

difficulties arise. It would be a serious omission on my part not to mention our beautiful dog 

Sandy, which was constantly keeping me company all the days that I worked from home, sitting 

beside me and falling asleep with the sound of the keyboard. Although I feel gratitude for the 

home I returned to when getting back from work, I also feel sorry about a recent loss in my 

family. In the middle of my PhD I lost my grandfather. After the loss of my father, he was the 

man that I envisaged as my role model. I feel the need to thank both of them for all the lessons 

they taught me and for the sacrifices they made. This PhD is a result of wise choises they made 

many years ago. I will work to make them proud as if they were beside me in every step. Partly, 

my thesis is dedicated to their memory.  

This PhD would be completely unfeasible without financial support, given the amount of 

time that I had to sacrifice so that I could learn, research, produce results, debug, start all over 

from the beginning a handful of times, write productive code and scripts, and at the same time 

write papers to output my research to the community. I want to express my deep gratitude to Dr. 

Grigorios Megariotis for including me in the ELIDEK project that he prepared and supervised 
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with Prof. Theodorou. I want to thank the Special Account of Research Funding of the National 

Technical University of Athens for honoring me with a personal fellowship. Special thanks to 

the National Supercomputing Infrastructure, ARIS, represented by Dr. Dimitrios Dellis, for the 

computational resources the he granted me for developing, testing and producing results.  

Closing this prologue, I would like to give my own humble advise to any PhD student (or 

not) who happens to read the present thesis. When doing a PhD, one has to rely mostly on his 

patience, endurance and will to learn from failure. If someone asked me what is the most 

important lesson that I learned during my PhD, that would be the way to manage failure and turn 

it into an advantage. What is success anyway? Would we be successful if anything we tried 

happened to be correct in the first place, be it an experiment, a paper, a research proposal, a 

computation, a code, you name it.. No. My definition of success is the ability of never giving up. 

I like to envision success as an ascending ladder whose steps are situations of ―failure‖; without 

the steps, you stay at the same level forever: ―The only difference between the master and the 

student is that the master has failed more times than the student has even tried.‖
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SUMMARY 

Polymer Self-Consistent Field Theory (SCFT) is an established theoretical tool, broadly used by 

modelers in academic and industrial environments to obtain quantitative predictions on the 

equilibrium behavior of inhomogeneous polymer systems such as polymer blends, copolymer 

melts, gas-polymer and solid/polymer interfaces. This fact has made SCFT one of the most 

commonly invoked frameworks when someone needs to address polymer systems at length 

scales inaccessible to particle-based methodologies. Furthermore, the growing interest in the 

design of nanocomposite materials involving interfaces of polymer melts with inorganic fillers 

and the need for fast calculations to predict or even manipulate the nanoscale self-assembly 

properties of composite materials have also been driving forces for the development of rigorous 

theoretical models to investigate how these materials will respond under various conditions. 

When conducting SCFT calculations, the primary task is to solve the Edwards diffusion 

equation. This is a ―reaction and diffusion‖ partial differential equation (PDE) with contour 

length playing the role of time, whose solution is a restricted partition function, i.e., a quantity 

proportional to the probability density that a segment which finds itself at a specific contour 

length from the start of a chain, will occupy a certain position in space. In the context of this 

PhD, the numerical solution of the PDE is performed via a custom-made in-house code named 

RuSseL. The one-dimensional version of the code applies a Finite-Differences (FD) scheme, 

while the three-dimensional version is based on the Finite Element Method (FEM) and can be 

applied in systems of arbitrary geometry. 

The first system we addressed was a single polystyrene-grafted silica nanoparticle embedded 

in polystyrene melt at infinite dilution. The density profiles of matrix and grafted chains, along 

with additional structural characteristics such as the chain shape, profiles of middle/end 

segments and adsorbed/free segments were derived for various particle radii, lengths of grafted 

chains and grafting densities. We have estimated the thickness of the brush across the whole 

range of parameters and compared our results with experimental findings and scaling laws 
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reported in the literature. The free energy of the system was also derived for the same 

parameters. Having studied the behavior of the grafted particle inside homopolymer melts, we 

went a step further and investigated the structural and thermodynamic properties of a system 

comprising the same particle in contact with vacuum. The difference in the free energy of the 

two systems (in presence and absence of polymer melt) allowed us to estimate the solvation 

Gibbs free energy as a function of the grafting density, intensity of solid/polymer interactions, 

particle size, and lengths of grafted and matrix chains. 

Next, we implemented our SCFT model in a system of two opposing polystyrene-grafted 

silica plates to derive the potential of mean force (PMF); i.e., the free energy of the system as a 

function of the plate-to-plate distance. This system is mathematically equivalent to one 

containing two grafted particles of extremely large particle radius. The PMF was derived as a 

function of the length of grafted chains, grafting density and intensity of solid/polymer 

interactions. In addition, we allowed the two plates to be grafted with different numbers and/or 

lengths of grafted chains, in order to investigate the impact of grafting asymmetries on the PMF 

and therefore stability of the nanocomposite system. Such asymmetries are expected to occur 

when these systems are prepared experimentally. In all cases, we also calculated the PMF 

between the two brushes in the absence of melt chains by applying a canonical ensemble 

formulation. 

All these calculations can be also performed in three-dimensions using the FEM version of 

RuSseL. This 3D implementation avoids any smearing of the grafting points, normal or parallel 

to the solid surfaces. We undertook detailed benchmarks on a system of a single nanoparticle 

immersed in polymer melt and performed a direct comparison between 1D- and 3D-SCFT 

calculations over a broad range parameters in order to assess the validity of the smearing 

approximation in terms of both chain structure and system thermodynamics. 

Moreover, in 3D we are able to impose a variety of irregular grafting distributions on the 

solid surfaces. We have shown that different grafting distributions result in variations in brush 

thickness and free energy relative to the case of equidistant grafting, which is the most usual 

assumption when performing such calculations. Adding the grafting distributions to the degrees 

of freedom  involved in the computational design of polymer-grafted nanoparticle systems takes 

us closer to experimental practice and to nanocomposites with tailor-made self-assembly 

properties. In this spirit, we have also determined the PMF between two spherical polystyrene-

grafted silica nanoparticles in polystyrene matrix for various grafting distributions. 
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Finally, in order to have the ability to run 3D-SCFT calculations on multi-nanoparticle 

systems in presence or absence of polymer matrix, we have added in RuSseL the functionality of 

imposing periodic boundary conditions on the box edges, when the solution of the Edwards 

diffusion equation takes place. The user can now insert any number of grafted nanoparticles 

inside the periodic box, arranged in a crystalline or amorphous structure, and run SCFT 

calculations, as one would do in a particle-based simulation. 
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ΠΔΡΙΛΗΨΗ 

Η Θεωρία Ασηο-Σσνεπούς Πεδίοσ έρεη εδξαηδσζεί πιένλ σο έλα επξέσο δηαδεδνκέλν 

ππνινγηζηηθό εξγαιείν γηα ηελ πνζνηηθή πξόβιεςε ηεο ζπκπεξηθνξάο αλνκνηνγελώλ 

πνιπκεξηθώλ ζπζηεκάησλ, όηαλ απηά ηεινύλ ππό ζεξκνδπλακηθή ηζνξξνπία. Ωο εθ ηνύηνπ 

εθαξκόδεηαη νινέλα θαη πεξηζζόηεξν γηα ηελ πεξηγξαθή λαλνζύλζεησλ πιηθώλ, π.ρ., 

ζπζηήκαηα όπνπ αλόξγαλα ζσκαηίδηα δηαζπείξνληαη ζε πνιπκεξηθέο κήηξεο πξνθεηκέλνπ λα 

βειηησζνύλ νη ηδηόηεηεο ηνπ πιηθνύ. 

Τν κνληέιν πνπ ρξεζηκνπνηνύκε δηέπεηαη από ηε κεξηθή δηαθνξηθή εμίζσζε Edwards, ηεο 

νπνίαο ε ιύζε είλαη ε δεζκεπκέλε ππθλόηεηα πηζαλόηεηαο λα βξεζεί έλα ζπγθεθξηκέλν ηκήκα 

πνιπκεξηθήο αιπζίδαο ζε έλα ζεκείν κέζα ζην ρσξίν επίιπζεο. Γηα ηελ επίιπζε ηεο εμίζσζεο 

απηήο, θαζώο θαη ηελ όιε εθαξκνγή ηνπ ζεσξεηηθνύ καο κνληέινπ, αλαπηύρζεθε έλαο 

πξσηόηππνο θώδηθαο, ν νπνίνο θέξεη ηελ νλνκαζία RuSseL. Ο θώδηθαο απηόο επηθαιείηαη ηε 

κέζνδν ησλ πεπεραζμένων διαθορών γηα ηελ επίιπζε ηεο εμίζσζεο Edwards ζε κία δηάζηαζε, 

θαη αληίζηνηρα ηελ κέζνδν ησλ πεπεραζμένων ζηοιτείων γηα επίιπζή ηεο ζε ηξηδηάζηαηα ρσξία 

απζαίξεηεο γεσκεηξίαο. 

Δίλαη αξθεηά δηαδεδνκέλε πξαθηηθή ε ρεκηθή πξόζδεζε πνιπκεξηθώλ αιπζίδσλ ζηελ 

επηθάλεηα αλόξγαλσλ λαλνζσκαηηδίσλ, πξνθεηκέλνπ λα επηηεπρζεί νκνηόκνξθε δηαζπνξά ηνπο 

εληόο ηνπ πνιπκεξηθνύ ηήγκαηνο. Τν πξώην ζύζηεκα πνπ κειεηήζεθε ζηα πιαίζηα ηεο 

παξνύζαο δηαηξηβήο ήηαλ απηό ελόο λαλνζσκαηηδίνπ ππξηηίαο εκβαπηηζκέλνπ ζε κήηξα 

πνιπζηπξελίνπ θαη θέξνληνο ζηελ επηθάλεηά ηνπ ρεκηθά πξνζδεδεκέλεο αιπζίδεο 

πνιπζηπξελίνπ. Τόζν νη δνκηθέο όζν θαη νη ζεξκνδπλακηθέο ηδηόηεηεο ηνπ ζπζηήκαηνο 

κειεηήζεθαλ ζε έλα επξύ θάζκα ηηκώλ αθηίλαο ζσκαηηδίνπ, ππθλόηεηαο θαη κήθνπο 

πξνζδεδεκέλσλ αιπζίδσλ. 

Δλ ζπλερεία, έρνληαο αλαιύζεη ηελ ζπκπεξηθνξά ελόο ζσκαηηδίνπ εληόο πνιπκεξηθνύ 

ηήγκαηνο, πξνρσξήζακε ζηε δηεξεύλεζε ησλ δνκηθώλ ηδηνηήησλ ησλ ρεκηθά πξνζδεδεκέλσλ 

αιπζίδσλ, όηαλ ην ζσκαηίδην είλαη εθηεζεηκέλν ζην θελό. Τν ζύζηεκα απηό κπνξεί λα ζεσξεζεί 
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ηζνδύλακν ελόο ζπζηήκαηνο όπνπ νη πξνζδεδεκέλεο αιπζίδεο βξίζθνληαη ζε ηζνξξνπία κε έλαλ 

κακό διαλύηη. Αλαπηύζζνληαο έλαλ απζηεξό καζεκαηηθό θνξκαιηζκό, ν νπνίνο βαζίζηεθε ζηε 

ζεσξία πεξί δηαιύησζεο ηνπ Ben-Naim, ππνινγίζακε ηελ ελεύθερη ενέργεια διαλύηωζης ελόο 

λαλνζσκαηηδίνπ ππξηηίαο, όηαλ απηό κεηαθέξεηαη από ην θελό ζε έλα πνιπκεξηθό ηήγκα. 

Γηαπηζηώζακε όηη νη ρεκηθά πξνζδεδεκέλεο αιπζίδεο παίδνπλ ζεκαληηθό ξόιν ζηνλ θαζνξηζκό 

ηεο ελεύθερης ενέργειας διαλύηωζης, ηόζν ιόγσ ελζαιπηθώλ όζν θαη ιόγσ εληξνπηθώλ 

παξαγόλησλ. 

Καηόπηλ, ε κεζνδνινγία καο εθαξκόζηεθε ζε ζύζηεκα δύν εκηάπεηξσλ επίπεδσλ πιαθώλ 

ππξηηίαο, αλάκεζα ζηηο νπνίεο βξίζθεηαη είηε πνιπκεξηθό ηήγκα πνιπζηπξελίνπ είηε θελό. Οη 

δύν πιάθεο θέξνπλ ρεκηθά πξνζδεδεκέλεο αιπζίδεο πνιπζηπξελίνπ, ελώ επηηξέπνπκε ζηηο 

πιάθεο λα θέξνπλ δηαθνξεηηθό αξηζκό αιπζίδσλ ή/θαη αιπζίδεο δηαθνξεηηθνύ κήθνπο. 

Μειεηώληαο εθηελώο ηε ζεξκνδπλακηθή ηνπ ζπζηήκαηνο ππό έλα πιήζνο ζρεδηαζηηθώλ βαζκώλ 

ειεπζεξίαο, πξνρσξήζακε ζηελ εμαγσγή ελόο δηαγξάκκαηνο θάζεσλ ην νπνίν ππνδεηθλύεη ηηο 

πεξηνρέο ζηαζεξόηεηαο ηνπ ζπζηήκαηνο (ην ζύζηεκα ζεσξείηαη ζηαζεξό όηαλ νη δύν πιάθεο δελ 

κπνξνύλ λα πιεζηάζνπλ ε κία ηελ άιιε πεξηζζόηεξν από κία ειάρηζηε απόζηαζε). 

Όινη νη πξναλαθεξζέληεο ππνινγηζκνί κπνξνύλ πιένλ λα πξαγκαηνπνηεζνύλ κε κεγαιύηεξε 

ιεπηνκέξεηα ζε ηξεηο δηαζηάζεηο, όπνπ αμηνπνηείηαη ε κέζνδνο ησλ πεπεραζμένων ζηοιτείων. 

Πξαγκαηνπνηήζακε κηα ελδειερή ζύγθξηζε κεηαμύ ηνπ κνλνδηάζηαηνπ θαη ηνπ ηξηδηάζηαηνπ 

κνληέινπ σο πξνο ηελ πνζνηηθή πξόβιεςε ησλ δνκηθώλ θαη ζεξκνδπλακηθώλ ηδηνηήησλ ελόο 

ζσκαηηδίνπ ππξηηίαο κε ρεκηθά πξνζδεδεκέλεο αιπζίδεο πνιπζηπξελίνπ πνπ βξίζθεηαη εληόο 

πνιπκεξηθήο κήηξαο πνιπζηπξελίνπ. Δπηπξνζζέησο, εθκεηαιιεπόκελνη ηηο δπλαηόηεηεο ηνπ 

ηξηζδηάζηαηνπ κνληέινπ, εξεπλήζακε ηνλ ηξόπν κε ηνλ νπνίν επεξεάδεηαη ε ειεύζεξε ελέξγεηα 

ηνπ ζπζηήκαηνο θαη ε δνκή ησλ πξνζδεδεκέλσλ αιπζίδσλ, όηαλ απηέο είλαη κε νκνηόκνξθα 

θαηαλεκεκέλεο ζηελ επηθάλεηα ηνπ ζσκαηηδίνπ.  Δμ άιινπ, αλαπηύμακε ηε δπλαηόηεηα 

επίιπζεο ηεο ζεσξίαο απην-ζπλεπνύο πεδίνπ ζε ηξεηο δηαζηάζεηο κέζα ζε ρσξία 

ραξαθηεξηδόκελα από πεξηνδηθέο νξηαθέο ζπλζήθεο.  Η δπλαηόηεηα απηή επηηξέπεη ηνλ 

ππνινγηζκό ηεο δνκήο θαη ηεο ειεύζεξεο ελέξγεηαο ζπζηεκάησλ πνιιώλ λαλνζσκαηηδίσλ 

δηεζπαξκέλσλ κέζα ζε ζπλερείο πνιπκεξηθέο θάζεηο ζε θξπζηαιιηθέο ή άκνξθεο δηαηάμεηο.  

Αλνίγεη, έηζη, ην δξόκν γηα ηνλ πξνζδηνξηζκό ηεο ζεξκνδπλακηθά επζηαζέζηεξεο δηάηαμεο γηα 

δεδνκέλεο κνξηαθέο παξακέηξνπο ζρεδηαζκνύ (ρεκηθή ζύζηαζε, κέγεζνο θαη θιάζκα όγθνπ 

λαλνζσκαηηδίσλ, ππθλόηεηα πξόζδεζεο αιπζίδσλ ζηελ επηθάλεηά ηνπο, ρεκηθή ζύζηαζε θαη 

κνξηαθά βάξε πξνζδεδεκέλσλ θαη ειεύζεξσλ αιπζίδσλ).  



Πεπίληψη 

xix 

Τέινο, παξνπζηάδνπκε απνηειέζκαηα πνπ αθνξνύλ ζην δσναμικό μέζης δσνάμεως πνπ 

αλαπηύζζεηαη κεηαμύ δύν ζθαηξηθώλ λαλνζσκαηηδίσλ ππξηηίαο, ηα νπνία θέξνπλ πξνζδεκέλεο 

αιπζίδεο πνιπζηπξελίνπ θαη βξίζθνληαη ζε κήηξα πνιπζηπξελίνπ. Τν δσναμικό μέζης δσνάμεως 

ηζνύηαη κε ηε κεηαβνιή ηεο ειεύζεξεο ελέξγεηαο ηνπ ζπζηήκαηνο ησλ δύν λαλνζσκαηηδίσλ 

θαζώο κεηαβάιιεηαη ε κεηαμύ ηνπο απόζηαζε. Τν δπλακηθό απηό ππνινγίζηεθε γηα ηξεηο 

δηαθνξεηηθνύο ιόγνπο κεθώλ ειεύζεξσλ/πξνζδεδεκέλσλ αιπζίδσλ θαη γηα ηξεηο δηαθνξεηηθνύο 

ζρεηηθνύο πξνζαλαηνιηζκνύο ησλ ζσκαηηδίσλ, νη νπνίνη αιιάδνπλ κε ηελ θαηαλνκή κε ηελ 

νπνία εκθπηεύνληαη νη αιπζίδεο ζηηο επηθάλεηεο ηνπο.
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NOMENCLATURE 

Symbols 

Latin symbols 

Abulk Free energy of a system of isolated end-pinned and unperturbed chains in 

bulk polymer melt 

bk Kuhn length, [nm] 

C∞ Chain stiffness/characteristic ratio 

d Standard deviation of Gaussian pulse, [nm]  

D Great-circle distance (arc length) between two points on a spherical surface, 

[nm] 

f(ρ) Excess Helmholtz energy density, [mJ/m
3
] 

fmix Field relaxation parameter/mixing fraction 

h Segment-surface distance, [nm] 

hads Distance from solid surface where segments are considered to be adsorbed, 

[nm] 

gg,ih  Distance of grafting point ig from the Dirichlet wall, [nm]  

1/2
2

gh  Root mean square thickness of the polymer brush, [nm] 

hHS Thickness of hard-sphere wall, [nm] 

hM Thickness of fine-mesh region, [nm] 

href,q=0 Reference grafting point distance from the Dirichlet wall, [nm] 

i The imaginary unit 

ig Grafted chain index 

kB Boltzmann constant, [J/K] 

lC-C carbon-carbon bond length, [nm] 



Nomenclature 

 

xxviii 

Mmonomer Molar mass per skeletal carbon, [g/mol] 

N Variable spanning the contour of a polymer chain, [skeletal bonds] 

NA Avogadro’s number, [mol
–1

] 

ng
 Number of chains grafted on solid surfaces, [chains] 

nch Number of chains per area at a certain distance from a solid surface, 

[chains/nm
2
] 

ref

chn  
Number of chains per area concerning reference chains, which obey the 

Gaussian chain model and have infinite length, [chains/nm
2
] 

nm Mean number of matrix chains in a certain region 

Ng Number of skeletal carbon-carbon bonds constituting a grafted chain 

Nm Number of skeletal carbon-carbon bonds constituting a matrix chain 

NSW Switching contour point for hybrid chain discretization 

p Grafting point coordinates on the surface of a nanoparticle  

P(p) Insertion probability of candidate grafting point 

qg(r,N) Restricted partition function of a grafted chain 

gg,iq  Propagator of grafted chain with index ig 

qm(r,N) Restricted partition function of a matrix chain 

Qg Partition function of grafted chains, [nm
–3

] 

Qm Partition function of matrix chains, [nm
–3

] 

r Distance between segment and center of nanoparticle, [nm] 

r Position coordinates in the three-dimensional space 

rgi Grafting point coordinates 

RG,g Unperturbed radius of gyration of grafted chains, [nm] 

RG,m Unperturbed radius of gyration of matrix chains, [nm] 

RS Spherical nanoparticle radius, [nm] 

edgeR  Periodic boundaries of the three dimensional domain 

SR  Dirichlet boundaries representing solid or gas surfaces 

SS Nanoparticle surface area, [nm
2
] 

T Temperature, [K] 



Nomenclature 

xxix 

uG Harmonic potential for bonded interactions along a Gaussian chain, [J] or 

[kBT] 

uHamaker,A Attractive term of Hamaker potential, [J] or [kBT] 

uHamaker,R Repulsive term of Hamaker potential, [J] or [kBT] 

uHS Hard-sphere potential, [J] or [kBT] 

uS(r) Potential energy per segment exerted by the solid surfaces, [J] or [kBT] 

V Volume of the simulation domain, [nm
3
] 

Vmax,coarse Max element volume in the coarse-mesh region, [Å
3
] 

Vmax,fine Max element volume in the fine-mesh region, [Å
3
] 

Vmin,coarse Min element volume in the coarse-mesh region, [Å
3
] 

Vmin,fine Min element volume in the fine-mesh region, [Å
3
] 

WA Work of adhesion, [J] or [kBT] 

WC Work of cohesion, [J] or [kBT] 

WI Work of immersion, [J] or [kBT] 

WS Work of spreading, [J] or [kBT] 

w(r) Chemical potential field per segment, [J] or [kBT] 

( )w r  Self-consistent field per segment, equal to iw(r)+uS(r), [J] or [kBT] 

bulk ( )w r  Value of the field in the bulk polymer region, [J] or [kBT]  

ifc ( )w r  bulk( ) ( )w w r r , [J] or [kBT] 

         

 

Greek Symbols 

APS Polystyrene Hamaker constant, [J] or [kBT] 

2SiOA  Silica Hamaker constant, [J] or [kBT] 

γ Chain geometric factor sin(θ/2) with θ being the angle between two 

successive skeletal bonds 

sys

a  System free energy with respect to a reference system, [mJ], where sys is a 

variable denoting the kind of the system, e.g., SM, SG, SGV (see 

Abbreviations); a denotes the kind of energy term, e.g., coh, field, m, g, s. 

δr Bin thickness for partitioning of the 3D domain, [nm]  

Γγ
tol

 Free energy tolerance, [mJ/m
2
] 
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sys

aE  System free energy with respect to a reference system, [mJ], where sys is a 

variable denoting the kind of the system, e.g., SM, SG, SGV (see 

Abbreviations); a denotes the kind of energy term, e.g., coh, field, m, g, s; E 

denotes the thermodynamic potential, e.g., Ω, Α, G, U, H.  

ΓΝ Chain contour step, [skeletal bonds] 

εg
tol

 Relative grafting density tolerance 

sys

aE  System free energy, [mJ], where sys is a variable denoting the kind of the 

system, e.g., SM, SG, SGV (see Abbreviations); a denotes the kind of 

energy term, e.g., coh, field, m, g, s; E denotes the thermodynamic potential, 

e.g., Ω, Α, G, U, H. 

θ Azimuthal angle, [rad] 

κT Isothermal compressibility of the polymer melt at temperature T, [Pa
–1

] 

ρg(r) Segment density profile of grafted chain segments, [segments/m
3
] 

ρm(r) Segment density profile of matrix chain segments, [segments/m
3
] 

ρmass,bulk Mass density of the bulk polymer melt, [kg/m
3
] 

ρseg,bulk Molar segment density in the bulk polymer melt, [segments/m
3
] 

ζg Grafting density, [chains nm
–2

] 

ζg,seg Segmental grafting density, [skeletal carbons nm
–2

] 

ζ
αβ

 Interfacial free energy per interface area in a heterogeneous system involving 

phases α, β, [mJ/m
2
] 

ζPS Polystyrene monomer effective diameter, [nm] 

2SiO  Silica effective diameter, [nm] 

θ Inclination angle, [rad] 

θ(r) Total reduced segment density profile of polymer segments 

θg(r) Reduced segment density profile of grafted chain segments 

θg,end(r) Reduced segment density profile of end segments of grafted chains 

θg,middle(r) Reduced segment density profile of middle segments of grafted chains 

θg,start(r) Reduced segment density profile of first segments of grafted chains 

θm(r) Reduced segment density profile of matrix chain segments 

ads

m ( ) r  Reduced segment density profile of adsorbed matrix chain segments  

θm,end(r) Reduced segment density profile of end segments of matrix chains 
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m ( ) r  Reduced segment density profile of free matrix chain segments 

θm,middle(r) Reduced segment density profile of middle segments of matrix chains 

θm,start(r) Reduced segment density profile of first segments of matrix chains 
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BD Brownian Dynamics 
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FD Finite Differences 

FEM Finite Element Method 

GMG Grafted-Matrix-Grafted interfaces 

GMV Grafted-Matrix-Vacuum interfaces 

GVG Grafted-Vacuum-Grafted interfaces 

HFD Helfand 

HS Hard-sphere wall/potential 

HW High-wetting solid/polymer interface 

IC Initial Conditions 

LJ Lennard Jones 

LW Low-wetting solid/polymer interface 

MC Monte Carlo 

MD Molecular Dynamics 

MV Matrix-Vacuum interface 

NP Nanoparticle 

NW Non-wetting solid/polymer interface 

PBC Periodic Boundary Conditions 

PDE Partial Differential Equation 

PGNs Polymer-grafted nanoparticles 

PNCs Polymer nanocomposites 

PW Perfect-wetting solid/polymer interface 

SCFT Self-Consistent Field Theory 

SGT Square Gradient Theory 
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SL Sanchez-Lacombe 

SGM Solid-Grafted-Matrix interfaces 

SGV Solid-Grafted-Vacuum interfaces 

SM Solid-Matrix interface 

SV Solid-Vapor interface 

VM Vacuum-Matrix interface 
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1. INTRODUCTION 

The subject of the present thesis is the application of Self-Consistent Field Theory (SCFT) in 

gas/polymer and solid/polymer interfaces.
1–5

 SCFT is a strong theoretical tool for describing the 

thermodynamics of heterogeneous and complex polymer systems. It is quite accurate when 

addressing high density and large molecular weight systems (e.g., polymer melts). Another 

important advantage when applying a SCFT formulation is that the excess free energy of the 

system investigated (relative to an ideal gas of noninteracting chains) is directly derived. 

Although particle-based methodologies
6
 built on the foundations of classical statistical 

mechanics (as opposed to quantum statistical mechanics), e.g., Molecular Dynamics (MD) and 

Metropolis Monte-Carlo (MC), have enjoyed remarkable growth during the last decades, 

supported by the fast development of computer hardware, their application is rather impractical 

when it comes to large length and time scales, even on the most sophisticated supercomputers.
7
 

Addressing this issue, SCFT aims to reduce significantly the computational cost of 

calculating properties of large polymeric systems, by introducing a saddle point approximation 

in calculating the partition function of the system. Specifically, field-theory is based on 

replacing the integration of degrees of freedom related to the generalized coordinates of atoms or 

chain segments by functional integrations over a fluctuating density field, ρ(r), and a spatially 

varying chemical potential field, w(r), which is thermodynamically conjugate to the density 

field. Their introduction serves to decouple the interactions among polymer chain segments and 

replace them with the interaction of each chain segment with the field emanating from the rest of 

the chain segments
8
 and any solid surfaces present (Appendix B). The way that the distribution 

of chain conformations is affected by the field is described by a partial differential equation 

known as the Edwards diffusion equation.  By virtue of a saddle-point approximation (Appendix 

C), the functional integral expressing the partition function is replaced by its dominant term and 

the fluctuating density and chemical potential fields are replaced by average position-dependent 

values depending on the conformational distribution of chains.  Thus, one obtains a system of 
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partial differential, integral, and algebraic equations with respect to the conformational 

distribution, which have to be solved self-consistently: conformations shape the local densities 

of all types of segments present and the chemical potential field, while the field dictates the 

conformational distribution.  Solution of this system of equations gives all structural and 

thermodynamic properties of the inhomogeneous polymer system at equilibrium. 

 

1.1. Polymer brushes and grafted nanoparticles 

Polymer brushes are important in a wide variety of applications such as nanotechnology, 

membranes and biomedicine.
9–12

 They are also used for steric stabilization of nanoparticles 

(NP’s) inside a polymer matrix, leading to mechanical reinforcement and an improvement of its 

physicochemical properties.
13–16

 

The dispersion state of NP’s inside the polymer matrix depends on solid/solid, solid/polymer 

interactions as well as on entropic effects. In most cases, the embedded NP’s are attracted to 

each other via Van der Waals forces and agglomerate.
17

 A widely used methodology to 

overcome this spontaneous behavior is to chemically graft polymer chains on the NP surface, 

which may or may not be identical to those of the matrix. In such systems, the key factors 

influencing NP dispersion are the size and shape of the NPs, the grafted to matrix molecular 

weight ratio and the grafting density.
18–20

 D. Trombly et al.
21

 studied the effect of solid curvature 

on polymer-mediated interactions among grafted NP’s and demonstrated that the dependency of 

NP separation on the grafting density becomes weaker with increasing particle curvature. 

When the matrix chains are of the same chemistry with the grafted chains, they can serve as 

a good solvent for the brush, leading to a well-dispersed set of NPs. It is more probable for the 

matrix chains to wet the brush, when their length is less than that one of grafted chains.
18,22,23

 

The penetration of matrix chains of molecular weight greater than or equal to that of the grafted 

chains is accompanied by a large conformational entropy cost, thus it is thermodynamically 

unfavored. This phenomenon is reported in the literature as autophobic dewetting.
20,23

 One way 

to reduce the possibility for autophobic dewetting is to disperse smaller NPs; when grafted 

chains are attached to smaller particles, they enjoy more available space, therefore the 

penetration of matrix chains is facilitated and the associated conformational entropy cost is 

mitigated.
20,21,24

 

As already mentioned, another important parameter for particle dispersion is the solid 

surface grafting density. When the grafting density is lower than the a threshold value, the 



1.1. Polymer brushes and grafted nanoparticles  

3 

particle cores are no longer screened from the grafted chains surrounding them, so they attract 

each other, leading to aggregation. This is known as allophobic dewetting. Sunday et al.
22

 

derived experimentally a phase diagram demonstrating the regions where autophobic or 

allophobic dewetting and complete wetting occurs. Nonetheless, there is both computational
25–28

 

and experimental
18,22,29–31

 evidence that there is also a higher limit of grafting density to achieve 

proper dispersion; higher values of grafting density prevent matrix chains from penetrating the 

brushes and autophobic dewetting is again exhibited. 

SCFT has been widely used in systems of block copolymers and polymer blends.
32–35

 In the 

field of polymer brushes, atomistic MD simulations have been performed by Ndoro et al.,
36

 

while Meng et al.
37

 and Kalb et al.
38

 have performed coarse-grained MD simulations 

representing the polymer chains using the Kremer-Grest bead-spring model. Using the same 

model, Ethier and Hall
39

 studied the structure and entanglements of grafted chains on isolated 

polymer grafted NPs. 

In the context of SCFT, the incorporation of grafted chains in a solid/polymer melt 

interfacial system demands the solution of an additional Edwards diffusion equation with 

challenging initial conditions.
40

 Remarkable efforts have been made to bypass the numerical 

difficulties associated with the delta function constraining the end of the grafted chains to the 

surface of the solid substrate. Implementing a spectral formulation, Chantawansri et al.
41

 

described a method to distribute the grafting points normal to the substrate, in such a manner 

that a Dirac-delta function is approximated for both compressible and incompressible models. 

Major experimental work has been conducted to understand the behavior of polymer grafted 

NPs and their influence on the structural, dynamical, and mechanical properties of the composite 

material.
15,16,22,42–45

 Experimentalists are also interested in studying the interactions between 

grafted NPs in the absence of a host polymer matrix.
43,46

 Furthermore, polymer grafted 

nanoparticles (PGNs) are quite promising for the manufacturing of membrane materials.
47–50

 

Modeling the dynamical properties of NPs and polymer chains grafted on their surface is 

also an area of great academic interest.
51–56

 Miller and Hore
57

 performed DPD simulations to 

model the dynamics of the grafted corona under melt and solution conditions.  They found that, 

with increasing confinement, the relaxation times of the grafted chains also increased. The 

segmental and chain dynamics in a system of high loading of grafted nanoparticles was studied 

with molecular dynamics by Lin et al.,
58

 where they demonstrated that the polymer dynamics 

highly depends on the number of contacts between a chain segment and the surrounding NPs. A 
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recent review regarding the dynamics of polymer chains and NPs in nanocomposite systems has 

been compiled by Bailey and Winey.
59

 

 

1.2. Motivation 

This project was an idea of Prof. Theodorou after many efforts together with Dr. Vogiatzis to 

determine the potential of mean force between nanoparticles using particle-based methods. They 

were able to describe well the structural properties of polymer brushes grafted on nanoparticles 

and melt chains at interfaces,
23

 but it was computationally too expensive to determine changes in 

the free energy of multi-nanoparticle systems brought about by varying nanoparticle 

configurations. It soon became clear that a continuum approach would be necessary to perform 

such calculations in reasonable time. A long time ago, Prof. Theodorou had developed lattice-

based theoretical frameworks inspired by the work of Dill and Flory, Helfand, and Scheutzens 

and Fleer.
60–65

 Given that Self-Consistent Field Theory was growing fast as a tool to derive the 

free energy of interfaces created in polymer blends and copolymer melts,
5
 he decided to try the 

same methodology as a tool to describe gas/polymer and solid/polymer interfaces. At first, 

lattice-based models were employed and indeed SCFT proved quite accurate in predicting the 

surface tension of polymer films and the adhesion tension of solid/polymer interfaces, when 

combined with an appropriate equation of state. The next step was to formulate and develop, 

with Kostas Daoulas,
66

 a continuum model which addressed melt/solid interfaces in one 

dimension, and again SCFT proved itself as a fast and accurate method, especially in relation to 

atomistic molecular dynamics simulations.
2
 The need to address more complex systems led Prof. 

Theodorou to the development of a three-dimensional SCF framework based on the Finite 

Elements Method (FEM) for the solution of the Edwards diffusion equation. Using an open-

source FEM code called FEAP, calculations were extremely slow. This was quite disappointing, 

especially if one intended to take into consideration systems where grafted chains are also 

present, but the advantage of SCFT to directly derive the free energy of any interfacial system 

was too good to quit efforts. A project was then started by Dr. Apostolos Lakkas and Prof. 

Theodorou, and later by myself together with Dr. Aristotelis Sgouros, to develop our own code 

based on FEM which we fully controlled and optimized.
67

 We are now at a point where the full 

convergence of a large SCFT calculation needs a few days (using 3 cores per calculation), 

including the solution of the Edwards diffusion equation in the presence of grafted chains. Just 



1.3. Aim of the thesis  

5 

for the history, when Prof. Theodorou tried to run calculations with FEAP, full convergence 

required a few months, without grafted chains being present in the system. 

 

1.3. Aim of the thesis 

The main goal of this PhD was to develop a generic theoretical model based on Self-Consistent 

Field theory (SCFT) to describe in detail the structural and thermodynamic properties of 

solid/polymer interfaces. In particular, we were interested in systems where the solid interfaces 

are chemically grafted with polymer chains. In addition, we wished to build upon the knowledge 

and frameworks which invoke Fourier-spaced methodogies and develop a real-space based 

numerical implementation, based on the Finite Element Method, to calculate the equilibrium 

structure and interactions of interfacial systems involving polymer melts, solid surfaces, and 

grafted chains at a mesoscopic level, still maintaining a high level of predictive power. 

Mathematically and numerically speaking, the challenge was to model realistic (nano)composite 

systems involving large length scales ( 100 nm) within reasonable computation time. This 

effort became more difficult considering our need to incorporate grafted chains in our model, 

which are mathematically inserted in the formalism by means of Dirac-delta functions. The 

commercial software that we have initially used to solve the Edwards diffusion equation (the 

main partial differential equation (PDE) involved in our calculations) was not able to yield an 

accurate and stable solution when the initial conditions were assigned at specific points of the 

FEM mesh. Hence, another goal of this project was to build from scratch our own code to handle 

a finite element mesh, assemble the matrices corresponding to the weak formulation of our PDE, 

and link to an external solver for the solution of the resulting linear system of equations. Finally, 

the ultimate goal was to make our code as user-friendly, fast and stable as possible, so that 

anyone can use it for their own purposes and predict the properties of nanocomposite systems 

involving solid/polymer and gas/polymer interfaces. 

 

 

 

 

 



Chapter 1. Introduction 

6 

1.4. Outline of the thesis 

In Chapter 2 we develop the theoretical and numerical background that one will have to be 

familiar with in order to follow the rest of the thesis. In Chapter 3 we present the code that has 

been developed in the context of this PhD thesis to perform calculations based on Self-

Consistent Field Theory in heterogeneous polymer systems, namely, gas/polymer and 

solid/polymer interfaces. In Chapter 4 we present results regarding the system of a single 

polystyrene-grafted silica nanoparticle embedded in polystyrene matrix. We elaborate on the 

structural properties and the size of the brush and on the thermodynamics of the system. 

Furthermore, we examine the system of the same grafted nanoparticle exposed to vacuum and 

derive its solvation free energy under various conditions. In Chapter 5 we present results 

obtained via the three-dimensional code on the same single grafted nanoparticle system 

embedded in a molten polymer matrix. We perform a thorough comparison between 1D and 3D 

solutions for the structural and thermodynamic properties of the system and evaluate the 

smearing approximation under various conditions. Moreover, we present three-dimensional 

profiles of grafted chains and reveal their configurations for different chain molecular weights, 

grafting densities, and particle radii. We also calculate the variation of the free energy of the 

system when the grafted chains are non-equidistantly grafted on the surface of the particle and 

illustrate the corresponding grafted chain configurations. In Chapter 6 we determine the 

potential of mean force between two polystyrene-grafted solid surfaces immersed in a 

polystyrene melt. The surfaces may be of planar or spherical geometry. In the latter, calculations 

were conducted in 3D, allowing us to quantify the effect of the distribution of grafting points on 

the surfaces of the nanoparticles on the resulting potential of mean force. Finally, in Chapter 7, 

we conclude the Ph.D. thesis by summarizing the key scientific and methodological advances 

developed in its context. 
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2.THEORETICAL AND NUMERICAL 

BACKGROUND 

2.1. Polymer physics 

2.1.1. Gaussian chain model – Bonded interactions 

The Gaussian-thread model is an ideal chain model quite often used for describing the bonded 

interactions along a polymer chain.
1,3,66

 This model treats polymer chains as continuous, linearly 

elastic threads and associates each differential contour segment along the chain with a harmonic 

potential. Integrating over the total contour of the chain, as shown in eq 2.1, one can calculate 

the free energy functional governing chain configurations. 

 

2

B
G 2

G, 0

( )
[ ( )]

4

cN

c

c

N k T d N
u N dN

R dN
 

r
r  2.1 

The square brackets denote that uG is a functional of the space curve r(N) defining the 

configuration of the chain with N being the variable spanning the contour of the chain and Nc 

being the total length of the chain, which is of kind c (c = m for matrix chains and c = g for 

grafted chains). There is some latitude in defining a segment.  Kuhn segments may be used, in 

which case: 
2 2

G, k/ 6 /c cN R b , but chemical segments can also be used. Equation 2.1 is 

commonly referred to as the Edwards Hamiltonian. Essentially, we think of the polymer chain 

as a random walk of a specific number of steps, which depends on the chemical structure of the 

chain. The step size of this random walk is known as the Kuhn segment length and it is usually 

denoted with bk. 
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2.1.2. Edwards diffusion equation 

In the context of the Gaussian chain model, the random walk of the polymer chain segments is 

mathematically modeled via the Edwards diffusion equation 2.2. Solving this transient PDE 

involving the field, wʹ, is the first and most essential step of an SCFT calculation. For a detailed 

derivation of the Edwards equation, the reader is referred to ref 3. 
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where, 
2

G,c

c

R
D

N
 and ( )a w  r .  

with N being the variable spanning the contour of the chain and r denoting position in three-

dimensional space. The index c is replaced by the symbol m for matrix chains and by g for 

grafted chains. Nc is the length of a kind c chain measured in skeletal carbon-carbon bonds and 

RG,c its radius of gyration. From the point of view of a chemical engineer, the Edwards equation 

is a diffusion and reaction equation, the contour length N playing the role of time and D being 

the diffusivity.  The term aqc is a sink term as would result from the presence of a first-order 

irreversible chemical reaction in the domain.  Equation 2.2 must be solved for all different kinds 

of chains appearing in the system, e.g., matrix or grafted on solid surfaces.  

The solution, qc, of this PDE is called the restricted partition function or chain propagator. 

It is proportional to the probability that the chain segment which lies at contour length N finds 

itself at position r, no matter where the chain may have started. Furthermore, it is normalized by 

the corresponding probability of a chain which performs its random walk in absence of any 

field. 

The distinction between matrix and grafted chains reveals itself through the corresponding 

initial conditions, which are given by eq 2.3 and 2.4, respectively. This means that matrix chains 

of zero length have no chance to feel the field wʹ; therefore their propagator equals that one of a 

field-free chain, which as mentioned before, is the normalization reference for the propagator. 

On the other hand, the starting end of a grafted chain must be bound at a specific point of the 

domain, and the way to describe this in terms of probabilities is to impose non-zero probability 

only at the grafting points and zero everywhere else, i.e., a delta-function initial condition which 

spikes at the grafting points, as eq 2.4 suggests.
40
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On the solid surfaces, SR , Dirichlet boundary conditions are imposed with zero propagator 

value. On the edges of the simulation box, one can either assign Neumann boundary conditions 

with zero propagator flux, or periodic boundary conditions; for details regarding the 

implementation of periodic BCs in 1D and 3D, the reader is referred to Sections 2.3.3 and 3.9, 

respectively. We mathematically describe the BCs in eq 2.5 below. 
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 2.5 

 

2.1.3. Physical interpretation of the field, w    

When the field is equal to zero everywhere inside the domain, then eq 2.2 is a simple diffusion 

equation governing the propagation of polymer segments in space. This is mathematically 

equivalent to a particle performing a random Brownian walk. On the other hand, when the field 

assumes values different from zero at a point of the domain r, it can be envisioned as a drain 

term that ―absorbs‖ or a source term that ―generates‖ polymer segments. When the field is 

positive at a certain position r, it repels the polymer segments and therefore the probability of 

finding a segment in that position decreases with respect to the random walk case. Conversely, 

when the field is negative, it attracts the polymer segments, thus the probability of finding 

segments at r increases with respect to the random walk case. 

To better demonstrate the effect of the field on the solution of eq 2.2, we have first compared 

the numerical solution of eq 2.2, in the absence of the field w, with a particle based Brownian 

dynamics simulation and the analytical solution given by the following eq 2.6. Equation 2.6 

describes the evolution of the concentration profile during diffusion of mass initially placed at 

uniform concentration M  within a rectangular parallelepiped extending over the region xL<x<xR, 

yL<y<yR, yL<y<yR.  If one of the dimensions of the parallelepiped is very small relative to 4Dt , 

the other two being very large, the solution given by equation 2.6 is well approximated by a 

Gaussian, i.e., by the Green’s function for unidimensional diffusion in that direction.  
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The results of this comparison are presented in the following Figure 2.1. Furthermore, to 

demonstrate the importance of contour discretization to the accuracy of the FEM solution, the 

comparison is performed for the case of 20 and 200 contour-discretization points for the solution 

of the PDE via the implementation of FEM in RuSseL3D. The initial conditions are q = 0 

everywhere, except for a rectangular parallelepiped with dimensions 400 × 400 × 5 Å
3
 where the 

initial value of the solution is equal to unity, q = M = 1. The solution is tracked over a domain of 

size 100 × 100 × 100 Å
3 

centered at the origin.  It is clear how, with increasing time (contour 

length), the solution propagates towards the edges of the simulation box. Furthermore, when 

solving with FEM, appropriate chain discretization is crucial to get accurate results. 

 

Figure 2.1 Comparison of numerical and analytical solutions of the Edwards diffusion equation against Brownian 

dynamics simulation. In column (a) the contour of a chain is discretized using 20 points for the numerical solution, 

whereas in panel (b) it is discretized using 200 points. Blue color corresponds to the FEM solution with RuSseL, red 

color corresponds to 3D Brownian dynamics motion and green color corresponds to the analytical solution given by 

equation 2.6. Brownian dynamics agrees with the analytical solution in all cases. The FEM solution agrees with the 

Brownian dynamics and with the analytical solution only when discretization along the contour direction (time) is 

adequately fine. 
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Now, in presence of a reaction term, w, the analytical eq 2.6 is modified to incorporate an 

additional term, yielding the following eq 2.7.
68,69

 It is important to note that eq 2.7 is valid only 

if w is constant in both space and time. Nonetheless, it helps understand the physics behind the 

reaction term of the Edwards equation, which would be the same, if the field was a function of r, 

as in the case of SCFT calculations. 

 
const 0 0

( , ) ( , ) exp( )
w w

q z t q z t w t
   

    2.7 

Equation 2.7 suggests that, when the field increases (which happens in SCF when the density 

at a certain point increases), then the exponential term suppresses the solution relative to its 

zero-field value. Conversely, when the field decreases, the exponential term boosts the value of 

the solution relative to its zero-field value. In the following Figure 2.2, we present the evolution 

of the solution for different (constant in space) values of the field w, while in Figure 2.3, we 

demonstrate the spatial integral of the propagator, Q. 
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Figure 2.2 Spatial configuration of the chain propagator, q, evaluated at contour N = 10 for different values of the 

field, w. The propagator has been calculated by solving the partial differential equation 2.2 via the analytical 

equation 2.7. 

 

Figure 2.3 Spatial integral, Q, of chain propagator, q, for different values of the field, w. Q is evaluated with 

respect to chain contour, N, which plays the role of time in the solution of the partial differential equation 2.2 via 

the analytical equation 2.7. 

Looking at Figure 2.3 it becomes clear that, when the field is equal to zero, then the solution 

of the diffusion equation is conserved inside the domain of interest as ―time‖ passes (i.e., as 

contour variable N increases), since the integral of the propagator remains constant (black lines 

in Figure 2.2 and Figure 2.3). On the contrary, when the field is negative, it leads to 

―production‖ of q with increasing N (blue and green lines in Figure 2.2 and Figure 2.3), whereas 

positive field values lead to ―absorption‖ of q with increasing N (red and purple line in Figure 

2.2 and Figure 2.3). 
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2.1.4. Nonbonded polymer interactions 

In this section, we analyze the different equations of state (EoS) that can be used for the 

description of the nonbonded interactions between polymer chain segments. From every such 

equation, we derive a relationship for the free energy density as a function of the molecular 

density of the polymer, a relationship for the SCF, wʹ, as a function of the molecular density, and 

finally an expression for the partition function of the system as a function of the molecular 

density and the SCF, wʹ.  

Equation 2.8 connects the field configuration, wʹ(r), and the molecular segment density of 

the polymer. It is written in terms of the interfacial field, wʹifc, referred to the value of the field in 

the bulk polymer region, wʹbulk. Subtracting wʹbulk from wʹ guarantees that the chemical potential 

field wʹifc is zero in the bulk phase. 
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( ) ( ) ( )
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     
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  
  

     
        

  
r r

r r r  2.8 

with  ,f  
 
being the excess (relative to an ideal gas of chains) Helmholtz energy density of 

intermolecular interactions as a function of the local segment density and its gradient, uS being 

the field exerted on a segment by any solid phases present and m g     being the total 

segment density. The third term appearing on the right-hand side of eq 2.8 is known as the 

square-gradient theory (SGT) term. It is quite useful when addressing gas/polymer interfaces, 

since it helps in achieving quantitative agreement between Self-Consistent Field calculations, 

atomistic molecular dynamics simulations and experiment.
2
 For details on the evaluation of the 

SGT term in spherical coordinates, the reader is referred in Appendix G. 
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2.1.4.1. Helfand EoS 

Considering a compressible polymer melt, the Helfand EoS
65

 penalizes deviations of the local 

segment density from its value in the bulk region. According to Helfand, the segment density 

variations are governed by a harmonic-type free energy density given in the following eq 2.9, 

and the corresponding configuration of the SCF, wʹ, must satisfy eq 2.8. The free energy density 

and its derivative are given by eqs 2.9 and 2.10, respectively. Figure 2.4a and c present 

evaluations of the free energy density and field terms from the HFD SL-EoS. 

 

2

HFD

EoS

seg,bulk

1
( ) 1

2 T

f



 

 
   

 
 2.9 

 
 HFD

EoS

seg,bulk seg,bulk( )

1
1

T

f

 

 

   


 
     r

 2.10 

 

2.1.4.2. Sanchez-Lacombe EoS 

When wishing to describe the properties of a gas/polymer interfacial system, the Helfand model 

has trouble grasping the high density gradients developing there. This is because it rests on a 

quadratic approximation to the Helmholtz energy density for high densities, around those of the 

bulk liquid, which is not appropriate for the description of the low-density vapor region. A 

model based on an EoS that can capture vapor/liquid equilibrium would be expected to perform 

better.  Indeed, the Sanchez-Lacombe (SL) EoS
70,71

 is quite accurate in reproducing the density 

profiles and free energies at vapor/polymer interfaces, especially when combined with a density 

gradient correction term.
2
 

To invoke the SL EoS, a set of parameters are needed. The first one is the number of SL 

segments, rSL, constituting a molecule or a polymer chain. The attractive energy between SL 

segments in adjacent sites is denoted by ε
*
, whereas the hard core volume of a SL segment is 

denoted by σ
*
. Having introduced these quantities, we also define the characteristic SL 

temperature, T
* 

= ε
*
/(kB∙T), pressure, P

* 
= ε

*
/ σ

*
, and mass density, ρ

* 
= M/(rSL∙σ

*
∙NA).  The SL 

EoS is presented in eq 2.11. 

 
2

SL

1
ln(1 ) 1 0P T

r
  

  
       

  
 2.11 
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where the tilde variables symbolize the reduced temperature, pressure, and density. The free 

energy density and its first derivative are then given by eqs 2.12 and 2.13, respectively.  

  SL * 2

EoS (1 ) ln(1 )f P T T            2.12 

 
 

 
SL

EoS * SL
B

( )

2 ( ) ln(1 ( ))
c

f r
k T T

N
 


 




  
    

  r

r r  2.13 

Figure 2.4b and d present evaluations of the free energy density and field terms from the SL-

EoS. The Sanchez-Lacombe EoS has a firm theoretical basis in a mean field statistical 

mechanical analysis of a lattice fluid composed of chains and voids, reminiscent of Flory-

Huggins theory with voids playing the role of solvent molecules.
70,71
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Figure 2.4 Free energy density and field as functions of segment density. Top panels depict f(ρ) − f(ρseg,bulk) (red 

line) and  
seg,bulk

d / d d / df f
 

   


   (dotted line) from (a) Helfand and (b) Sanchez-Lacombe free energy 

densities. Bottom panels depict ifc bulk
' ' 'w w w   from (c) Helfand and (d) Sanchez-Lacombe free energy 

densities, in absence of solid/polymer interactions and gradient correction. 
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2.1.4.3. Compressibility considerations 

As shown in eq 2.9, when using the HFD EoS, the free energy density is dictated by two free 

parameters; namely, the isothermal compressibility, κT, and the density of the bulk polymer melt, 

ρseg,bulk. A simple way to decide the values of these parameters is to either retrieve relevant 

experimental data or fit them in a way that reproduces the surface tension of the fluid. 

Nonetheless, setting these parameters to constant values leads to inaccurate qualitative 

predictions for the surface tension with varying chain molecular weight or temperature. For 

example, in Figure 2.5h, the predicted surface tension from HFD (with κT,exp = 3.97 GPa
–1

 and 

ρmass,bulk = 953 g/cm
3
) appears to be a decreasing function of chain length, whereas the opposite 

trend has been observed from simulations
72

 and experiments.
73,74

 The surface tension is indeed 

an increasing function of chain length, since cohesive interactions of the polymer melt are 

enhanced with increasing chain length. 

A reasonable approach for fixing these parameters would be to set them equal to the ones 

predicted by the SL model for a specific chain length and temperature, using the following eq 

2.14.
71

 Using HFD with κT,SL (see Table 2-1), even though producing correct qualitative 

behavior with varying Nm and T, leads to rather high values of the surface tension (see squares in 

Figure 2.5h); the deviation becomes larger with the addition of a square-gradient term (see 

purple crosses in Figure 2.5h). 

 1 * 2

,SL seg,bulk

seg,bulk seg,bulk SL m

1 1 2

1
T TP

r N T
 

 


 

     

 2.14 

An alternative way to determine these parameters is to fit them directly to experimental or 

theoretically predicted surface tension (from a suitable EoS such as SL-SGT) for each chain 

length. Table 2-1 reports the optimized isothermal compressibilities for HFD and HFD-SGT for 

each chain length, according to the values of surface tension obtained via the SL-SGT model 

(compare SL-SGT with HFD/κΤ,opt and HFD-SGT in Figure 2.5h). Compressibilites were 

optimized using the Secant method. 

It is mentioned that, even though the reduced density profiles do not appear to be dependent 

on chain length, the actual density profiles do change, as indicated by the chain length-

dependent ρseg,bulk values in Table 2-1; it is the shape of these profiles that remains the same. 
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Table 2-1. Bulk densities and compressibilities from the SL EoS, and optimized compressibilities for the HFD, 

HFD/SGT EoS. 

Nm ρmass,bulk (g/cm
3
) κT,SL (GPa

–1
) 

κΤ,HFD,opt        

(GPa
–1

) 

κΤ,HFD/SGT,opt 

(GPa
–1

) 

24 0.93997 1.50804 4.56055 15.96570 

48 0.94216 1.46935 4.36072 14.88736 

96 0.94324 1.45060 4.26308 14.39257 

192 0.94378 1.44137 4.21460 14.15635 

384 0.94405 1.43679 4.18998 14.03992 

768 0.94418 1.43451 4.17748 13.98211 

1536 0.94425 1.43337 4.17119 13.95340 

 

 

Figure 2.5 Effect of compressibility on density profiles and adhesion tension.  (a-g) Reduced density profiles at the 

free surface of a melt from SL and HFD for various sets of isothermal compressibilities (Table 2-1), with and 

without SGT. Chain length varies from Nm = 24 up to 1536 skeletal bonds. The solid lines become thicker with 

increasing Nm, while the dashed lines are guides to the eye. (h) The surface tension from the corresponding profiles 

in (a-g). 
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2.1.5. Solid/polymer interactions 

In the most general cases of our calculations, the solid/polymer interactions are described by the 

following eq 2.15. 

 S Hamaker,A Hamaker,R HS cSWu u u u u     2.15 

The first two terms are the attractive (uHamaker,A) and repulsive (uHamaker,R) interactions as 

described by the Hamaker potential for sphere-sphere or sphere-planar surface geometries. The 

third term (uHS) corresponds to a hard-sphere wall at distance hHS from the solid surface; it is 

implemented as a Dirichlet BC that brings the propagator, q, to zero and prevents numerical 

problems that may be caused by uHamaker,R blowing up at small distances.  

The usual Hamaker constants invoked for modeling PS-SiO2 interactions,
23

 when applied to 

our model, yield weak adhesion indicative of superhydrophobic
75

 interfaces (contant angle θc 

158.9
○
).

28
 This is because, while the SL EoS generates realistically broad

2
 gas/polymer density 

profiles, at the solid/polymer interface the free energy penalty arising due to the square gradient 

term (which punishes steep profiles developing in the vicinity of the solid) makes interactions 

less favorable.
24,28,76

  

The essence of Hamaker theory
17

 is to treat the interacting bodies as collections of 

homogeneously distributed infinitesimal domains interacting with a Lennard-Jones potential. 

Subsequently, integration over the volume of the bodies takes place to account for interactions 

amongst all possible pairs, resulting in the total potential. The Hamaker constant of the effective 

solid/polymer interaction is calculated by the geometric mean, 
2 2PS-SiO PS SiOA A A . Vogiatzis 

and Theodorou
23

 employed an effective solid/polymer interaction, 
2 2

eff

PS-SiO PS SiO PSA A A A  , 

instead of 
2PS-SiOA , in order to restore the proper effective cohesive interactions at the 

solid/polymer interface. Herein, we opted to work with 
2PS-SiOA , since the energy of cohesion of 

the polymer is taken into account as part of the free energy density,  ( ), ( )f  r r . 

Furthermore, the effective collision diameter can be calculated as being the effective 

diameters of solid and polymeric segment interaction sites, respectively. In each of the following 

cases of interacting geometries, a wall distance was used, hHS, so that the maximum of the 

repulsive term felt by the polymer segments does not exceed 5 kBT, as shown in the following 

Figure 2.6. 
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Figure 2.6 Interaction energy uS(h) between a PS monomer unit and a planar SiO2 substrate as calculated from the 

Hamaker potential at T = 500 K. The blue line, hHS = 0.4 nm, intersects the uS(h) curve at uS = 5 kBT and depicts the 

distance of the hard-sphere wall from the surface employed in the calculations. The orange dashed line depicts the 

distance of the grafting points from the solid surface (hg), and the red dashed line delimits the critical distance (hads), 

below which a matrix chain segment is considered adsorbed on the solid surface.  

 

2.1.5.1. Hamaker Sphere-sphere 

For the purpose of calculating the potential energy of dispersive interactions between 

polystyrene segments, belonging to either matrix or grafted chains, and a silica NP immersed in 

the polymer melt, we consider the atactic polystyrene monomers as small spheres with an 

effective radius 31

seg

3

4
a


 , interacting with the spherical silica NP of radius α2 = RS. The 

solid/polymer interaction potential per monomer can be split into an attractive
17

 and a repulsive 

term.
77

 The two terms, uA and uR, respectively, are functions of the center-to-center distance, r12, 

between two interacting spherical bodies: 
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where 
212 PS-SiOA A is the Hamaker constant and ζeff is the effective collision diameter. 

 

2.1.5.2. Hamaker Sphere-planar surface 

The attractive and the repulsive components from the interaction of a spherical NP with a semi-

infinite solid terminating at a flat surface can be obtained in the context of Hamaker theory as 

follows: 

 12
A

1 1
ln

6 2 2

A r
u

r r r

  
           

 2.18 
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A r r
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    
  

  

 2.19 

with 12 1/r d a  , a1 being the radius of the spherical NP and d12 being the distance between the 

surface of the spherical NP and the solid surface. We have uS = uA + uR for this case, which is 

shown in Figure 2.6 as a function of h = d12 + a1. 

2.1.5.3. Hamaker Planar-planar surface 

 Correspondingly, the attractive and repulsive terms of the Hamaker interaction between two 

semi-infinite planar surfaces (i.e., their length, L, is much higher than the distance between 

them, hSS) is given by the following eqs 2.20 and 2.21, respectively. 

 
SMS

A S 8

SS

1

π 12

A
u S

h
   2.20 

 

6

SMS S
R S 8

SSπ 360

A
u S

h


  2.21 

where ASMS is the polymer-mediated Hamaker constant between the two plates. 

 

2.1.5.4. Square well and ramp potential  

The code offers the possibility of selecting from a range of different wall potentials. In this way, 

the wetting degree of the interface can be altered according to the properties of the specific 

system that the user wishes to reproduce. The current section demonstrates evaluations with the 

square well and ramp potentials. 
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Figure 2.7 illustrates the density profiles of polyethelene (PE) melt near solid surfaces as a 

function of the contact angle, using the Helfand (HFD), Sanchez-Lacombe (SL) and SL coupled 

with a square-gradient correction term (SL-SGT). The solid/polymer interactions have been 

described via the square well (usquare_well, left) or the ramp (uramp, right) potential. The functional 

forms of the square well and ramp potentials are given in eqs 2.22 and 2.23, respectively. 

 square_well square_well square_well  u h     2.22 

 
ramp

ramp ramp

ramp

max ,0
h

u





 
   

 
 2.23 

where σsquare_well/σramp and ζsquare_well/ζramp correspond to the depth and the width of the square 

well/ramp potential.  

 

Figure 2.7 Density profiles of polyethylene in contact with solid interfaces of different affinity. Contact angle 

assumes the values, θ = {180
○
: red, 120

○
: blue, 60

○
: green, 45

○
: magenta, 0

○
: violet, and acos(3)

 ○
: orange} and  

density profiles are derived with (a,d) HFD, (b,e) SL and (c,f) SL-SGT equation of state in conjunction with square 

well (left panels) or ramp (right panels) potential. We observe that as the contact angle decreases, the density 

profile of the polymer segments near the surface is increased, suggesting an enhanced affinity of the polymer 

segments to the solid surface.  

 

The range of these potentials was set to 0.65 nm and the position of the hard sphere wall is 

equal to hHS = 0.45 nm.
66,78

 For each one of the cases presented in Figure 2.7, the depth of the 

potential was optimized with the Secant optimization scheme in order to match the target 
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contact angles, θ = acos(‒ γ
SM

 / γ
VM

), with γ
SM

 and γ
VM

 being the interfacial free energy of the 

solid-matrix (SM) and vapor-matrix (VM) system, respectively. It is further noted that, for a 

planar interface, γ
VM

 = ζ
VM

 is the surface tension, and γ
SM

 = − (ζ
SV

 − ζ
SM

)
79

 corresponds to 

minus the adhesion tension; thus, the contact angle can be also estimated as θ = acos[(ζ
SV

 − ζ
SM

) 

/ ζ
VM

)]. 

In absence of solid surfaces (red lines in Figure 2.7, θ = 180
○
), the profiles exhibit a 

characteristic sigmoidal shape, whereas the corresponding surface tension becomes γ
VM

 ~ 73.0, 

12.0 and 29.5 mJ/m
2
 for HFD, SL and SL-SGT, respectively.

2,78
 In HFD, the isothermal 

compressibility was set equal to κT = 1.43 GPa
−1

,
66,78

 while the compressibility is roughly the 

same in the SL models (Table 2-1). The experimental surface tension of PE is 26.6-27.7 

mJ/m
2
,
80

 whereas the corresponding atomistic profile has a span of ~ 1 nm;
2
 hence, the SL-SGT 

model is more suitable for describing vacuum/polymer interfaces. 

With increasing intensity of solid/polymer interactions (uS), the density profiles move closer 

to the solid surfaces and become more pronounced, especially when the HFD equation of state is 

employed. Note that the profile obtained with a square well potential for θ = 45.3
○
 is identical to 

the corresponding profiles in refs 
66,78

. 

Another interesting observation is that, even though the compressibilities of these models are 

quite similar, the density profiles from SL and SL-SGT are more expanded because they allow 

the formation of gas phases inside the polymer melt itself. Moreover, they are less pronounced 

due to the existence of a logarithmic term that suppresses large fluctuations of the density above 

unity. In SL-SGT, the profiles are almost identical for a given contact angle regardless of the 

functional form of the potential (i.e., square well vs ramp). 

2.1.5.5. Hamaker-like integration of arbitrary pair-wise potentials 

Let there be a sphere with radius RS and constant interaction site density ρ1. Assuming that a 

point-like object P lying at a distance r from the center O of the sphere interacts via a central 

pair-wise potential u(r) with all sites in the sphere, the total interaction energy between the point 

and the sphere can be calculated as: 

      
s

s

SP s 1 s, d , ,

r R

r R

E r R r R r r u r





    S  2.24 

where  s , ,R r rS  is the area of a spherical cap of radius r centered at P which lies inside the 

given sphere (Figure 2.8). 
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Figure 2.8 A point (P) at distance r = |rP–rO| from a sphere of radius Rs centered at O. 

 

To calculate S, we need to perform the following integration: 

    
02

2 2 2 2

s 0 0

0 0

, , d d  sin 2 cos 2 2 1 cosR r r r r r r



                 S  2.25 

From the generalized Pythagorean theorem, we can write: 

 

2 2 2
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s
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r r R
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 2.26 

Combining eqs 2.25 and 2.26, we get: 

  
2 2 2

2 s
s , , 2 1

2

r r R
R r r r

r r


  
   

 
S  2.27 

or 

    
22

s s, ,
r

R r r R r r
r

 
    
 

S  2.28 

In situations where the pair potential, u(r), becomes zero beyond a cut-off distance, r > rc, 

the upper integration bound in eq 2.24 becomes: 

      
 s c

c

s

min ,

SP s 1 s, d , ,

r R r

r r

r R

E r R r R r r u r







    S  2.29 

In the limit Rs → ∞, eq 2.29 yields the interaction between a point and an infinite planar 

wall. Let us call the energy of this interaction    
s

LP SP s lim ,
R

E R E R R


 . To calculate ELP, we 

work as follows: let ri be the position of the considered point at distance h from the solid planar 

surface. The elementary properties of the planar surface can be expressed in cylindrical 
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coordinates (R, z, θ) with respect to segment ri. Assuming again a constant density of interaction 

sites in the solid, ρ1, the number of segments in an elementary ring equals: 

 1d 2 d dN R R z   2.30 

Subsequently, the total interaction energy is calculated as: 

    LP 1

0

2 d d  
h

E h z R Ru r
 

    2.31 

Given that, 2 2R r z   and 
  22

2 2 2 2

dd 1 1

d 2 d

ir z zR r

r rr z r z

 
 

 
, eq 2.31 becomes: 

    LP 12 d d  
h z

E h z r ru r
 

    2.32 

Equation 2.32 is equivalent to eq 2.24 in the limit Rs → ∞. 

We developed a curvature-dependent potential by setting the pairsise potential to the square 

well of eq 2.33. 

 SW SW

SW

SW

,
( )

0,

r
u r

r

 




 


 2.33 

with ζSW being a cutoff distance and εSW being the well depth of the potential. The point-sphere 

integration of eq 2.33 yields: 

    cSW SW SW c SW SW

S

1
, , ,u C g R h g h h h

h R
    

 2.34 

with: 

    
4 3 2

2

SW S S( , ) 2 2 2
4 3 2

x x x
g x h h R h hR       2.35 

where Sh r R   is the distance of the segment from the surface,  c S SWmin 2 ,R h R   , 

SW 1 SWC    is a constant, and ρ1 is the number density of interaction sites in the solid. 

Regarding the point-surface interaction (or, equivalently, the limit RS → ∞): 

  
S

3 3
2SW

cSW SW SW SW SWlim ,
3R

h
u C h h


  



 
    

 
 2.36 

When we address systems of planar geometry, the coefficients of the force field were fitted 

in such a way as to reproduce the experimental work of adhesion from ref 
81

, corresponding to 
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high- and perfect-wetting degrees (see Table 2-2 and Table 4-2 of later chapter). However, such 

a potential does not account for the loss of solid interaction sites with increasing curvature. In 

other words, the solid/polymer interactions are expected to become weaker when the size of the 

NP decreases, since the polymer segments interact with fewer solid sites. In fact, Figure 2.9 

illustrates evaluations of ucSW over a broad range of RS values. The solid/polymer interactions 

are naturally adjusted with varying curvature, whereas in the limit of RS → ∞ (where eqs 2.34 

and 2.36) become equivalent, the functional dependence resembles the one of the ramp potential. 

In the limit RS → 0, eq 2.34 collapses to the square well potential of eq 2.33, i.e., 
S

cSW SW
0

lim
R

u u


 , 

for 

1

3

1 S

4

3
R 




 
 
 

 

 

Figure 2.9 Evaluations of ucSW using eq 2.34 for CSW = – 37.5∙10
6
 J/m

3
, ζSW = 1.28 nm, and T = 500 K. Stars depict 

evaluations of eq 2.36 for planar surfaces. 

 

2.1.5.6. Tabulated potentials 

Besides analytic functional forms, one can make use of tabulated potentials as well. Even though 

such potentials might be cumbersome to work with, they are more flexible, in the sense that, in 

many cases, they allow for reproduction of density profiles of arbitrary shape. For example, one 

can optimize the tabulated potential to reproduce a target density profile, θtarget, via iterative 

Boltzmann inversion, as shown in eq 2.37. 

 
1

S, S, 1 B

target

( )
( ) ( ) ln

( )

i
i iu u ak T








 
    

 

r
r r

r
 2.37 
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with a being a relaxation parameter. This process can be envisioned as reverse engineering the 

self-consistent field; instead of trying to predict the density profiles for a given field, the 

optimizer attempts to find the field that reproduces the target density profiles. 

Figure 2.10 depicts the density profile at a polyethylene-graphite interface at temperature T = 

450 K, obtained from atomistic molecular dynamics simulations
72

 and the optimized density 

profiles obtained with RuSseL using the Helfand
65

 and ideal free energy density. In the latter 

case, intermolecular interactions among chain segments are turned off, while chain segments 

interact explicitely with the solid wall. The corresponding tabulated potentials are demonstrated 

in Figure 2.10c. 

 

Figure 2.10 Demonstration of tabulated solid/polymer potentials and resulting density profiles.  (a,b) Target 

(circles) and fitted density profiles of polyethylene segments, obtained via the Helfand EoS (dots), Sanchez-

Lacombe EoS (dashes) and ideal gas of chain segments (solid lines). In (a), the target profile corresponds to a 

profile of C100/graphite interface at 450 K obtained via atomistic molecular dynamics simulations.
72

 In (b), the 

target profile equals θ = 0 for h   [1,2), θ = 1.1 for h   [2,3), and θ = 1.0 everywhere else. Panels (c,d) depict the 

tabulated potentials, uS(r), corresponding to profiles (a) and (b), respectively. The horizontal dotted lines are guides 

to the eye. 

 

According to Figure 2.10a, it is possible to reproduce the MD profiles exactly, given that the 

underlying EoS does not impose any particular constraints. For example, it is impossible to 

reproduce these profiles exactly when using the Sanchez-Lacombe EoS, since the logarithmic 

term does not allow the density to exceed the characteristic SL density, ρ
*
. Similarly, Figure 

2.10b depicts an exotic target density profile, where θ = 0 for h [1,2), θ = 1.1 for h   [2,3), and 

θ = 1.0 everywhere else. As in the previous case, the target profile has been reproduced with 
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HFD, SL, and IG EoS in the presence of the corresponding tabulated potentials shown in Figure 

2.10d. 

 

2.2. Thermodynamic description of polymer interfaces 

2.2.1. Systems involving polymer melt 

The thermodynamics of the polymer-grafted NP(s) or planar surface(s) immersed in a polymer 

matrix is described using the grand canonical ensemble, which is defined relative to a bulk 

phase of monodispersed matrix chains, each of length Nm, occupying a volume equal to the 

polymer-accessible volume of the system, and a set of ng isolated end-pinned unperturbed 

chains, each of length Ng. The temperature, T, is the same between the system under 

investigation and the reference system (see also Appendix D). The grand potential of the system 

is determined as the sum of individual energetic and entropic terms as shown in the following eq 

2.38. 

 
SGM SGM M G,bulk SGM SGM SGM SGM SGM

coh field m g SA A U            2.38 

where
SGM

coh is the cohesive interaction component (relative to the bulk melt chains) arising due 

to segment-segment interactions in the polymer,  

   SGM

coh seg,bulkd ( ), ( ) ,f r r f         r 0
R

 2.39 

SGM

field  is the interaction energy between the density field and the chemical potential field,  

  SGM

field seg,bulk bulkd ( ) '( ) 'w w     r r r
R

 2.40 

SGM

SU  is the contribution of the potential energy exterted from the solid to the polymer 

segments, 

  SGM

S Sd ( ) ( )U u   r r r
R

 2.41 

SGM

m  describes the translational and conformational entropy (relative to the bulk melt 

entropy) of noninteracting matrix chains subject to a chemical potential Nmμm,  

   seg,bulkSGM

m m bulk

m

' ' 1
V

Q w w
N




      2.42 
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and 
SGM

gA  is associated with the conformational entropy of ng grafted chain subject to the field 

bulk' 'w w : 

 

g g

g

g g g

ref , 0SGM

g g g,

1 1 g, , 0

1 1
ln ; ' ' ln

n n

q

i bulk

i i i q

r
A Q w w

r 



  

     
  r  2.43 

The second term appearing in the right-hand side of eq 2.43 is necessary for renormalizing 

the free energy term with respect to the distance of the grafting points from the solid/Dirichlet 

surface. For more information, see Section 3.7.4. 

ΓΩcoh is the free energy term which incorporates the cohesive interactions between polymer 

segments; it is a direct manifestation of the compressibility and density deviations of the 

polymer melt from its bulk value, due to the presence of the interface. Regarding the second 

term, ΓΩfield, it describes the interaction between the chemical potential field, w(r), and its 

conjugate field, ρ(r). Another practical way one can think of this term is the following: the field 

w expresses by definition the variation of the Gibbs free energy of the system with respect to the 

amount of material, in our case polymer segments, that exists in the system. Weighting this 

potential/field by the density of segments, ρ, i.e., taking the product w(r)∙ρ(r), and integrating 

over the domain of interest is a rigorous way to determine the total amount of energy associated 

with this chemical potential field. 

The terms ΓΩm and ΓAg are entropic terms associated with matrix and grafted chain 

conformations, respectively. In Section 4.2.9, we have considered the latter term as the sum of 

two sub-contributions: a term which represents the contribution of grafted chains to the energy 

of the field and a purely entropic contribution which depends on the stretching of grafted chains 

relative to their unperturbed configurations. 

 

2.2.2. Systems in vacuum 

In the absence of matrix chains (i.e., systems of isolated grafted-NPs or brushes), the 

thermodynamics is described via the Helmholtz free energy of the following eq 2.44. 

 
SGV SGV G,bulk SGV SGV SGV SGV

coh field g SA A A A A A U          2.44 

The first two terms on the right-hand side of eq 2.44 represent the cohesive (eq 2.45) and 

field (eq 2.46) interactions. The last two terms of eq 2.44 are again given by eqs 2.43 and 2.41 

presented in the previous Section 2.2.1, with the density and field obtained for the isolated 

grafted-NP or brush and V replacing M in the superscript on the left-hand side. 
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   SGV

coh d ( ), ( )A f r r    r
R

 2.45 

  SGV

field d ( ) '( )A w   r r r
R

 2.46 

 

2.2.3. Macroscopic Work Functions 

To better understand the thermodynamic properties of polymer interfaces, we define four 

macroscopic work functions; the work of cohesion (WC), work of immersion (WI), work of 

adhesion (WA), and work of spreading (WS), which are calculated via the following eqs 2.47-

2.50. They refer to the reversible work that must be expended to separate the interfaces and they 

are conceptually opposite to Gibbs free energies of these interfaces. Hence, spontaneity is 

expressed by opposite signs.
82

 

 VM

C 2W   2.47 

 SV SM SM VM

I adh ccosW          2.48 

  SV SM VM SM VM VM

A adh ccos 1W               2.49 

  SV SM VM SM VM VM

S adh ccos 1W               2.50 

where for planar surfaces 
VM VM   is the surface tension,  SV SM SM      is the adhesion 

tension,
79

 and θ the contact angle of the corresponding solid-fluid-vapor interface. 

WC is the free energy per unit surface for making two polymer free surfaces and WI is a 

measure of adhesion between a solid surface and the polymer. WA corresponds to the reversible 

work per unit surface required to separate two phases in contact. WS quantifies the spontaneity of 

the wetting process: positive values indicate spontaneous spreading across the interface (perfect 

wetting), while negative values indicate finite contact angles (partial or no wetting).  

Table 2-2 describes four SiO2-PS interfaces with different wetting degrees in planar 

geometries. The two rightmost columns report the expected contact angle (θc) and work of 

spreading (WS) for each wetting degree. 
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Table 2-2 Wetting degree of planar solid surfaces for length of matrix chains equal to Nm = 768 at T = 500 K.  The 

surface tension of the corresponding liquid-vacuum interface equals ζ
VM

 = 27.93 mJ/m
2
. The inequalities indicate 

the NW, LW, HW and PW bounds. θc is the contact angle and WS is the work of spreading on the planar 

surface.
28,72

 The values of CSW,HW and CSW,PW are given in the calculation details reported in Table 4-2. 

type wetting Hamaker
17

 CSW θc (°) WS (mJ/m
2
) 

NW nonwetting No 0 180° –55.8 = –2γ
VM

 

LW low wetting Yes 0 180° > 158.9° > 90° –γ
VM

 > –54.0 > –2γ
VM

 

HW high wetting Yes CSW,HW 90° > 67° > 0° 0 > –17.0 > –γ
VM

 

PW perfect wetting Yes CSW,PW Imaginary 15.3 > 0 

 

2.3. Finite Differences 

2.3.1. Semi-implicit Time-stepping 

The code supports the solution of 1D partial differential equations with a semi-implicit Finite 

Differences scheme, also known as the Crank-Nicholson method.
66,78,83,84

 In this scheme, the 

unknown solution at a certain spatial point, 
N

hq , is expressed in terms of a central differences 

scheme, averaged between two successive contour points, N and N+ΓN, as shown in the 

following eq 2.51.  

 
1 1 12

1 1 1 1

2 2 2

2 21 1

2 2

N N N N N N

h h h h h hq q q q q qq

h h h

  

      
 

  
 2.51 

while the first derivative of the solution, q, with respect to the contour variable N is 

approximated via the Finite Differences eq 2.52, hence, the matrix form of the partial differential 

equation to be solved is given by eq 2.53. 

 
1N N

h h hq q q

N N

 


 
 2.52 

 
ifc, ifc,1 1 1

1 1 1 1

' '
1 2 1 2

2 2

h hN N N N N N

h h h h h h

N w N w
Dq D q Dq Dq D q Dq

 
  

   

    
            

   
 

  2.53 

where the diffusion coefficient is now given by 
2

G,

22

c

c

R N
D

N h





. In matrix-vector notation, eq 2.53 

can be written as presented in the following eq 2.54. 

 
1

2 2

N NN N
D D    

       
   
I T W q I T W q  2.54 
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where I is the identity matrix and we have defined the matrices T and W via eq 2.55 and 2.56, 

respectively. 

 

-2 1 1

1 -2 1

1 -2 1
=

.. .. ..

1 -2 1

1 1 -2

 
 
 
 
 
 
 
 
  

T  2.55 

 

(0)

(Δ )

(2Δ )
=

..

( -Δ )

( )

w

w h

w h

w L h

w L

 
 
 
 
 
 
 
 
  

W  2.56 

Alternatively, eq 2.54 can be written in terms of the stiffness matrix, 
Δ

= - +
2

N
DK I T W , and 

the vector denoting the right-hand side, 
Δ

= + -
2

 
 
 

NN
DR I T W q  (i.e., the solution vector at the 

previous contour-step weighted by 
Δ

+ -
2

N
DI T W ), as follows: 

 

+1

1 1 1 1 1

+1

2 2 2 2 2

+1

+1 3 3 3 3 3

+1

-1 -1 -1 -1

+1

=

N

N

N

N

N

n-1 n n n n

N

n n n n n

b c a q R

a b c q R

a b c q R
q =

.. .. .. .. ..

a b c q R

c a b q R

    
    
    
    

     
    
    
    
         

RK  2.57 

where ia D  , 
ifc,

1 2
2

h

i

N w
b D


    and ic D  . Note that eq 2.57 has been written in the 

most general form, i.e., without imposing any boundary conditions; all nodes are equivalent and, 

as a result, the domain is periodic.   

 

2.3.2. Implicit time-stepping  

A more stable but computationally more demanding way to solve the time-dependent partial 

differential equation is to exress the unknown solution at every spatial point, 
N

hq , in terms of the 

next contour step, N+ΓN, according to eq 2.58 presented below.  
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1 1 12

1 1

2 2

21

2

N N N

h h hq q qq

h h

  

  


 
 2.58 

In order to solve the time/contour dependent Edwards diffusion equation, we discretize the 

domain of interest into uh intervals and the chain contour length variable into uc intervals, where 

h

L
u

h



 and c
c

N
u

N



, respectively. The spatial and chain contour length step intervals, Γh and 

ΓΝ respectively, are chosen so that maximum accuracy and stability are obtained with minimum 

computational cost (see Appendix H).  

In both discretization schemes, we end up having to solve a linear system of equations, but 

the implicit contour stepping method (also known as ―backward differences‖) allows for larger 

contour steps without reaching the numerical stability limits of the semi-implicit case. The first 

derivative of the chain propagator, q, is again given by eq 2.52. 

Combining eqs 2.52 and 2.58, we obtain the space and chain-contour discretized form of the 

Edwards diffusion equation, as presented in eq 2.59 below. 

  1 1 1

1 ifc, 12 1 4 2N N N N

h h h h hDq D c w q Dq q  

 
        2.59 

where the diffusion coefficient is given by, 
2

G,

22

c

c

R N
D

N h





. In matrix-vector notation, eq 2.59 is 

written as: 

   12 N ND N    I T W q q  2.60 

where I is the identity matrix, and the matrices T and W are those given by eqs 2.55 and 2.56, 

respectively. It is observed that in contrast to the semi-implicit scheme developed in the previous 

section, in the implicit one, the right-hand side is just the solution vector evaluated in the 

previous contour step. As a result, the entries of the matrix form in eq 2.57 are modified as 

follows: 2ia D  , ifc,1 4i hb D N w     , 2ic D  and 
NR q . 

 

2.3.3. Boundary conditions in 1D matrices 

In formulating the matrices presented above, we have not taken into consideration the boundary 

conditions that occur from the physics of the problem. Given the single dimensionality of the 

systems addressed via the Finite Differences version of RuSseL, they are mathematically 

represented by a line, which is bounded by one point on the left and another one on the right.  
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In most cases, where aperiodic systems are addressed, at least one of the bounding points 

needs to be assigned a Dirichlet boundary condition (also known as essential or absorbing 

boundary condition). In our case, the physical interpretation of this type of boundary condition is 

that the polymer melt is in contact with solid or gas surface, and thus, the polymer segments are 

not allowed to reach the surface.  

On the other point of the domain, we can assign either a Dirichlet boundary condition as 

well, or a Neumann boundary condition and, therefore, specify a certain value for the derivative 

of the solution rather than the solution itself. If the right hand side of the domain corresponds to 

the position where the bulk polymer region starts and the system is considered to be symmetric, 

then the solution derivative is set equal to zero.  

In order to better demonstrate the above analysis regarding boundary conditions in one-

dimensional domains, we present the linear system of equations to be solved, in the case where 

Dirichlet or Neumann boundary conditions are imposed on both boundary points.  

2.3.3.1. Dirichlet-Dirichlet system 

In a system with Dirichlet boundary conditions at i = 1 and i = n, eq 2.57 becomes: 

 

1 1

2 2 2 2 2

3 3 3 3 3

-1 -1 -1 -1

0 0

n-1 n n n n

n n n

q R

a b c q R

a b c q R
=

.. .. .. .. ..

a b c q R

b q R

    
    
    
    
    
    
    
    
         

DIR

DIR

1 0 0

 2.61 

In practice, applying the Dirichlet BC to the i
th

 node of the domain entails the following 

substitutions: 0ia  , 1ib  , 0ic  , and 
DIR

i iR R  (corresponding to a fixed qi value). 

2.3.3.2. Neumann-Neumann system 

If zero-derivative boundary conditions are imposed on the left (i = 1) and right (i = n) edges of 

the domain, then the matrix T needs to be modified, which in turn, influences the final stiffness 

matrix and the right-hand side vector. In this case of boundary conditions, the matrix T is given 

by eq 2.62 and 2.63, for the semi-implicit and the implicit contour stepping scheme, respectively. 
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-1 1

1 -2 1

1 -2 1
=

.. .. ..

1 -2 1

1 -1

 
 
 
 
 
 
 
 
  

T

0

0

 2.62 

 

-2

1 -2 1

1 -2 1
=

.. .. ..

1 -2 1

-2

 
 
 
 
 
 
 
 
  

T

2 0

0 2

 2.63 

 

2.3.4. Solving the linear system of equations 

In the case of non-periodic systems (a1 = cn = 0), where the stiffness matrix assumes a 

tridiagonal form, the linear system of equations is solved with the Thomas algorithm.
85

  

As in the conventional lower-upper (LU) decomposition algorithm, the solution of the 

tridiagonal system comprises three essential steps: decomposition, forward substitution, and 

backward substitution, which are presented below: 

 1

1

Decomposition: 

,  2,..., 1

i
i

i

i i i i

a
a

b

b b a c i n









    

 2.64 

 1Forward Substitution: ,  2,...,i i i iR R a R i n    2.65 

 

1

1
1 1

Backward Substitution: 

,  1,...,1

N n
n

n

N
N i i i
i

i

R
q

b

R c q
q i n

b




 







   


 2.66 

On the other hand, when considering periodic systems, the linear system of equations is 

solved with a more general (but computationally more expensive) solver, which is based on the 

traditional Gauss Elimination method with full pivoting functionality.
86
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2.4. Finite Element Method 

Usually, researchers solve the SCFT equations using (pseudo-)spectral methods.
34,87–89

 The 

main concept in these methods is to expand the solution of the differential equation as a sum of 

certain basis functions and then determine the coefficients appearing in the summation so that 

the differential equation is satisfied with minimum error. Those methods are most often based on 

Fast Fourier Transform solvers and offer high calculation speed and near linear scaling, 

O(nlogn), with respect to domain discretization.
89

  The main drawbacks of these methodologies 

is that they perform best for specific boundary conditions and become less practical when 

applied in complex geometries.
32,35,88,90

 

On the other hand, the Finite Element Method (FEM) is a widespread numerical technique 

for the solution of partial differential equations governing various physics and engineering 

problems.
91,92

 The FEM is governed by the same idea of solution expansion in terms of a 

number of basis functions. The main difference between FEM and spectral methods is that the 

first use basis functions that are nonzero only in small subdomains (called elements), whereas in 

spectral methods, they can be nonzero in the whole domain of interest. Another key advantage 

of the FEM is that it can be readily applied to nonlinear problems, where the coefficients 

appearing in the PDE are dependent on the solution itself. Spectral methods are most frequently 

used in cases of constant-coefficient PDEs. 

The core concept of the FEM lies in the discretization of the domain of interest Ω into 

smaller subdomains, Ωe, of certain shape, called elements. In other words, it approximates both 

the geometry and the solution of the PDE by partitioning the original geometry in a finite 

number of pieces. The approximation accuracy increases with finer discretization, but so does 

the computational cost.  

The most general form of a PDE is described by the following set of equations, where the 

operators L and B are allowed to be functions of the solution, q (rendering the problem nonlinear 

as mentioned): 

 , in Ω
q

Lq f
t


 


 2.67 

 , in Bq g   2.68 

Equations 2.67 and 2.68 constitute the strong form of the PDE. It is called ―strong‖, because 

it allows for the solution, q, to belong in an infinite space of functions. Before the problem is 

ready to be solved via the FEM, the weak or variational form of the PDE must be derived. In 



2.4. Finite Element Method  

37 

contrast to the solution of the strong form, the solution corresponding to the weak formulation 

belongs to a more restricted space of functions, which must satisfy certain conditions. Namely, 

these functions belong to a Hilbert space, which are a subcategory of Sobolev spaces. 

In practice, the weak form requires from the solution to have a certain degree of smoothness. 

Usually, the basis functions of the solution space are Lagrangian polynomials, whose order is 

selected by the user in order to achieve the desired accuracy. The order of these basis functions 

is also reported as the order of the elements discretizing the domain of the system. Again, 

accuracy increases with higher element order. Consequently, the accuracy of calculating the real 

solution, q, is controlled by tuning both the number and the order of elements which partition the 

domain, Ω. 

In one-dimensional (1D) problems, the elements are just line segments, in two-dimensional 

(2D) problems, they can be triangles or quadrilaterals and in three-dimensional problems (3D) 

they can be tetrahedrals, hexahedrals, prisms or pyramids. The elements are interconnected in 

the nodes, where the solution of the PDE is actually computed. Basis functions are defined such 

that they are equal to one at their respective nodes and zero at all the other nodes of the mesh. At 

any point of the geometry which finds itself between the nodes of a finite element mesh, the 

solution can be determined via interpolation using again the same basis functions. The FEM 

solution, qh, approximating the exact solution of the PDE, q, is given by the following eq 2.69, 

where θ
j
 is the symbol for the basis function corresponding to node j. 

 j

h j

j

q q   2.69 

It becomes clear that the solution qh is a linear combination of the basis functions, θ
j
, and qj 

are the coefficients (weights) multiplying these basis functions which approximate q with qh. 

Given that the basis functions are set and known, the very purpose of the FEM is to calculate the 

coefficients qj of eq 2.69. Whatever may be the nature of the problem (e.g., linear or nonlinear, 

static or time-dependent) or the FEM variant applied, the determination of the qj coefficients is 

achieved by solving a linear system of equations of the following form: 

 h Kq b  2.70 

As a matter of tradition in the FEM language, K is called the stiffness matrix, while b is 

called the load vector. In the sequence of steps needed to solve a FEM problem, there is an 

essential step lying between the meshing and the solution of the linear system in eq 2.70. It is the 
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assembly of the stiffness matrix, K, and the load vector, b. In terms of computational time and 

memory cost, the assembly stage can be more demanding than the meshing or the solution. 

In the FEM, we require the weak form of the PDE to hold for all test functions in a Hilbert 

function space, instead of the strong form to hold for every point belonging in Ω. In other words, 

the weak form relaxes the requirement of the strong form, where all the terms appearing in the 

equation must be well defined at all points, and only requires equality in an integrated sense. 

One of the benefits of the FEM is the possibility to appropriately select the test and the basis 

functions. In Galerkin’s method, specifically, the test and basis functions belong to the same 

Hilbert and to be more specific, they are both polynomials of the same order. Usually, test and 

basis functions are selected to be nonzero in a very small geometrical region. This implies that 

the integrals appearing in the weak formulation are zero everywhere, except for the limited 

regions, where the test and basis functions overlap, since all of the these integrals include 

products of these functions or their gradients. 

The strong form of the Edwards PDE is given by eq 2.2. Regarding the boundary conditions, 

it is obvious that no polymer segments are allowed to occupy any space on the solid or vacuum 

boundaries, therefore the propagator on these boundaries is equal to zero: q(r,N) = 0 Ɐ r

∂Ωsolid. Neumann boundary conditions with zero propagator flux or periodic boundary 

conditions can be applied on the periodic faces of the simulation box. For a thorough discussion 

regarding periodic boundary conditions on three-dimensional domains discretized via the FEM, 

the reader is refered to Section 3.9. 

 

2.4.1. Steady-state analysis 

To obtain the weak form of Edwards, we start by multiplying eq 2.2 with the test functions θ
i
(r) 

and then integrate over the volume V of the domain Ω and therefore the strong form is replaced 

by i number of integral equations: 
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Having obtained the i number of equations that we need, we proceed by expressing the 

solution q as a linear combination of the basis functions θj(r), as shown in the following 

equation 2.72, and therefore j number of unknowns occur, which are the coefficients/weights, qj, 

multiplying the basis functions at each point of the domain. These unknown coefficients are 

usually called the degrees of freedom of the FEM analysis. 

 
1

( )
numNodes

j

j

j

q q 


  r  2.72 

Furthermore, when we impose Dirichlet boundaty conditions, q = 0, or Neumann boundary 

conditions where the flux of the solution is equal to zero, q  0 , then the surface integral 

appearing in eq 2.71 is also equal to zero. Considering the removal of this boundary term and 

combining eqs 2.71 and 2.72, the following eq 2.73 occurs. 
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In matrix-vector notation, eq 2.73 can be written as Kq 0 , where the entries of the 

striffness matrix, K, and the solution vector, q, are equal to: 

( ) ( ) ( ) ( ) di j i j

ij

V

K D a V         r r r r and 
T

1 2 numnpq q q   q , respectively. So, in 

steady-state FEM analysis, we need to solve a linear system of equations with a certain right-

hand side (which in this specific case is equal to zero) and at the same time the boundary 

conditions must be satisfied. Initial conditions are not encountered, since time is not a parameter 

of the problem. 

 

2.4.2. Transient analysis 

In transient analysis, we need to include a time-dependent term, which also has to be multiplied 

by a test function, θ
i
, and integrated over the domain volume, V: 

 
( , )

( ) d ( ) ( ) ( ) ( ) ( ) d 0
numnp

i i j i j
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r

r r r r r  2.74 



Chapter 2. Theoretical and Numerical Background  

40 

Again, using the expansion of the solution q in terms of the basis functions θ
j
, the discretized 

weak form for every test function θ
i
 can be written as follows: 
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Notice that now—in contrast to the steady-state case—the qj coefficients are functions of the 

time-variable, N, while the basis and test functions depend just on spatial coordinates. The last 

step is to discretize the time-derivative of the solution qj at point j with respect to the time-

variable, N. One approach would be to use FEM for the time domain as well, but this can be 

rather computationally expensive. Alternatively, an independent discretization of the time 

domain is applied using the Finite Differences method. In its simplest form, this can be 

expressed with the following difference approximation: 

 
, ,( )j j N N j Nq qq N

N N
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 2.76 

Two potential Finite Differences approximations are possible. The first one is to express the 

unknown coefficients qj in terms of N+ΓΝ (implicit method), whereas the second one is to 

express them in terms of N (explicit method). Herein, we choose to apply the first option, 

because it is more stable than the second one. Hence, eq 2.75 is modified as follows: 
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  2.77 

Or in matrix-vector notation form, eq 2.77 is written as: 
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 1N NAq = Cq  2.78 

where: 

T

1, 2, ,...N N N numnp Nq q q   q  

T

1 1, 1 2, 1 , 1...N N N numnp Nq q q   
   q  

( ) ( )di j

ij

V

C V   r r  

( ) ( )di j

ij

V

K D V    r r  

( ) ( )di j

ij

V

W a V   r r  

N N    A C K W  

So, in transient FEM analysis, we need to solve a (large) linear system of equations in order 

to compute the solution, qj,N+ΔN, knowing the solution at the previous time-step, qj,N. Besides 

boundary conditions, initial conditions, qj,0 are imperative for the numerical solution of the PDE. 

 

2.4.3. Integration via Gauss-quadrature 

In this paragraph, we sketch the integration procedure which is most commonly used in the 

context of the FEM, namely the Gauss Quadrature method. In the previous section, we started 

from the strong form of the Edwards diffusion equation and, after some mathematical 

considerations, we ended up with the weak form of the differential equation. In order to solve 

the weak form and obtain its numerical solution, q, we first need to evaluate a set of integrals 

and assembly the matrices A and C appearing in eq 2.78. In all these integrals, the integrand 

depends exclusively on the basis functions that we use to discretize the domain and the solution 

and their derivatives. These basis functions are defined in natural coordinates, i.e., the 

coordinates of the nodes of the standard element. This offers the advantage that all these 

integrals appearing in the weak formulation can be readily evaluated using a Gauss Quadrature 

numerical scheme. 

Let us denote by ξ the natural coordinates of the standard element and r the real coordinates 

in the domain of interest. For the case of first order tetrahedral elements, the vector ξ comprises 

four elements. Therefore, each coordinate system is defined as follows: 
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The problem is that the actual elements that are used for the discretization of the domain 

have not the shape of the standard elements, where the basis functions are defined (eq 2.80) and 

the Gauss Quadrature can be applied. 

 

1 1 2 3 4 1

2 1 2 3 4 2

3 1 2 3 4 3

4 1 2 3 4 4

( , , , )

( , , , )

( , , , )

( , , , )

     

     

     

     









 2.80 

Furthermore, the nodal points constituting the actual elements are defined in real 

coordinates. In fact, the difference in shape of the domain elements from the standard element is 

usually quantified as the element quality of the mesh. When a complex geometry part is meshed 

with a small number of elements, they need to stretch/deform in order to capture the anomalies 

of the geometry and this results in poor element quality. In those cases, the number of elements 

(and hence nodal points) needs to be increased, so that the smaller elements are closer in shape 

to their standard models. Nevertheless, there will always be a deviation of the actual elements 

from their standard shape and the nodal points will be defined in real instead of natural 

coordinates. 

A mechanism is therefore needed to perform a transition from real to natural coordinates and 

be able to perform the Gauss Quadrature. The mathematical operation that lets us map the basis 

functions and elements from real to natural coordinates and vice-versa, is called isoparametric 

transformation and it is defined by the following eq 2.81. 
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and the Jacobian of the transformation in eq 2.81 (from natural to real coordinates) is defined by 

the matrix of eq 2.82 below. 
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Similarly, the solution q at a certain point of the domain in real coordinates can be 

associated with the standard element via the following eq 2.83. 
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where q
i
 is the solution of the PDE at the nodal point i of the domain. Finally, in order to 

calculate the integral of q with Gauss Quadrature, we use the following eq 2.84. 

 
GP

GP GP GP

1 1 1

( )d ( ) d ( ) ( )
numnumel numel

e
i i j

Q q q w q
  

     r r ξ J ξ ξ ξ J
R

 2.84 

where numel is the total number of elements used for discretizing the domain of interest, numGP 

is the number of Gauss points used for integrating a quantity via Gauss Quadrature, wGP is the 

weight of the Gauss point which finds itself in natural coordinates ξGP inside the current 

element e, and q is the value of the propagator (or any other integrated quantity) at natural 

coordinates ξGP. 
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3. RUSSEL 

3.1. Description 

The parameters of a theoretical calculation with RuSseL are set in an input file which is parsed 

line-by-line by a dedicated subroutine, when the runtime execution of the programs starts. The 

parsing subroutine searches for special identifiers that are related to certain variables needed for 

execution. In cases where an input line lacks any special identifier, it is either skipped or the 

variable corresponding to the identifier is assigned a default value; therefore, with few 

exceptions, the order of the commands in the input file does not matter. In addition, the parser 

has been equipped with an error handling section, which checks (i) whether the user has 

specified all imperative variables, such as the temperature, T, or the mass density of the bulk 

polymer, ρseg,bulk, (ii) the viability of user input regarding the specified variables, e.g., both 

temperature, T,  and mass density, ρseg,bulk must be given values that are greater than zero. If an 

issue is encountered while parsing the input file, the code prints a relevant error message and 

terminates execution. If solid surfaces are present, then the parameters of the polymer and the 

solid related to their interaction are also required. 
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Figure 3.1 RuSseL input file: specifying polymer parameters. The user specifies the temperature of the polymer 

melt along with other polymer related parameters such as: mass density, monomer mass and isothermal 

compressibility at given temperature. The length of matrix and grafted chains is also given along with the radius of 

gyration associated with a single monomer of the chain. In this specific example, we are running a calculation 

regarding polystyrene melt at 500 K.  

 

The mass of the polymer chains and the coarse-graining degree are set by the molecular 

weight of the monomer unit constituting the polymer chains, mmonomer, whereas the radius of 

gyration of the chains is set indirectly based on the following relation 3.1. 
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with C∞ being the characteristic ratio and lC-C being the chemical bond length between 

consecutive polymer segments. These parameters are also defined by the user through the input 

file. Besides the characteristic ratio and the bond length, the user must also specify the length of 

the chains in terms of skeletal bonds along the backbone of the chain and the contour 

discretization scheme that will be used for the solution of Edwards (i.e., uniform, nonuniform or 

hybrid).  

Next, the user has to specify the number of Dirichlet boundary faces that are present in the 

geometry and for each one of those, (s)he has to give the type (i.e., planar surface or spherical 

particle) and the id that has been assigned to the boundary during the meshing process. 

Furthermore, for each of these Dirichlet boundaries, the user must give the values of the 

parameters which are needed to determine the intensity of the solid/polymer interactions (Figure 

3.2).  
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Figure 3.2 RuSseL input file: specifying solid parameters.  User specifies the number and type of Dirichlet faces, 

i.e., planar vs spherical. In this specific example, a spherical nanoparticle is present in the system with radius 84 Å 

and the distance of the hard-sphere wall is set at 3.98 Å. The center of the particle is located at (xcenter, ycenter, zcenter) = 

(0.0, 0.0, 0.0) Å and its Hamaker parameters are equal to ζsolid = 3.0 Å and Αsolid = 6.43∙10
–20

 J. The spherical 

boundary surface representing the particle was assigned the id 6 by the mesher. 

 

Afterwards, the FEM mesh which is used to discretize the 3D domain is imported. This mesh 

is externally created by the open-source mesher GMSH
93

 and the code is designed to read it 

appropriately. There is also the possibility to read meshes created by COMSOL which are 

usually stored in a .mphtxt ASCII file. The mesh-file comprises the nodal coordinates, the 

element connectivity of the nodes and the identity of those nodes which lie in the boundaries 

where Dirichlet boundary conditions are imposed. Afterwards, we need to discretize the 

controur of the matrix and the grafted chains according to the contour scheme that has been 

selected by the user.  

The cohesion of the polymer is specified by assigning an appropriate equation of state which 

is accompanied by necessary parameters, e.g., for Helfand, it is the isothermal compressibility 

κT; for Sanchez-Lacombe, we need to specify the characteristic temperature (Τ
*
), pressure (P

*
) 

and density (ρ
*
). So far, the code offers to possibility to run SCFT calculations using the 

Helfand,
65

 and the Sanchez-Lacombe
73

 equations of state. In addition, the free energy densities 

can be combined with a square gradient term to address gas/polymer interfaces more 

accurately.
2,94

 Nevertheless, the code has been written in a generic way, so that any other 

appropriate model can be inserted and used.
24

 In general, our code is able to perform SCFT 

calculations for any thermoplastic polymer melt, given than an appropriate EoS and the relevant 

parameters are provided. 

Subsequently, the user has to specify some parameters regarding the convergence of the field 

(Figure 3.3). Specifically, the user specifies the tolerance in the norm of the field and the energy 

of the system. When one of the two errors becomes lower than the corresponding tolerance, the 

equilibration procedure is considered to have converged. There is also the option to start a fresh 

calculation, where the field configuration is initialized to zero, or restart from an already existing 

field configuration, which is stored in binary format. In this section, the user also has to specify 

whether the stiffness matrix is expected to be symmetric or not, and if symmetric, if positive 
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definite or not. In every case considered in the context of this thesis, the stiffness matrix is 

symmetric and positive definite. For these definitions, the reader is referred to the reference 

manual of MUMPS or any advanced linear algebra textbook. 

 

Figure 3.3 RuSseL input file: specifying file convergence parameters. In this section, the field and energy error 

tolerance are specified along with the maximum number of iterations to achieve convergence. The user can also 

select to start a fresh calculation, where the field is initialized to zero everywhere inside the domain, or read an 

already existing field configuration from a binary file. Usually, the stiffness matrices occurring by the weak 

formulation of Edwards are symmetric and positive definite, but the user can also select a nonsymmetric option if 

not completely sure about the structure of the matrix to be fed in the solver of the linear system.  

 

When the initialization stage is completed, the code enters the main part of the SCFT 

calculation, namely the field equilibration procedure. In every iteration, the stiffness matrices for 

the solution of Edwards for matrix and grafted chains are assembled according to the element 

connectivity. Afterwards, given the appropriate initial and boundary conditions, the Edwards 

PDE is solved using the open-source MUMPS solver v5.2.1.
95,96

 A useful feature of RuSseL is 

that the solution q(r,N) can be interpolated across the contour variable, N, of the chains. This 

offers the flexibility to work with different contour discretization for matrix and grafted chains 

for the solution of the PDE.  

Afterwards, the new field configuration, wʹnew(r), is computed and compared to that of the 

previous iteration. For large chains or systems with low isothermal compressibility, κT, the 

aforementioned iterative scheme diverges, because the field becomes extremely steep along the 

considered interfacial region. Addressing this fact, a relaxation of the calculated field is 

performed by mixing it with a fraction of the field of the previous iteration, as shown in the 

following eq 3.2. 
 

 mix mix new mix old' ( ) ' ( ) (1 ) ' ( )w a w a w  r r r  3.2 

with amix being the relaxation parameter. 

RuSseL is written in Fortran95 and there are thoughts of ―translating‖ it in C++, which offers 

better feature development scalability and more friendly object-oriented features and data 

structures. It is written to support execution in both shared and distributed parallel systems using 

the broadly known Message Passing Interface (MPI). Parallelization and scalability benchmarks 

are presented in Section 3.7.5. 
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3.2. Code Flow 

Based on the resulting restricted partition function, qc, which is obtained by solving the 

Edwards PDE 2.2, one can compute the spatial density distributions of chain segments using eq 

3.3, which in turn dictates an updated configuration of the chemical potential field, wʹ, according 

to eq 2.8. The iterative field convergence procedure can be summarized as follows: 

1. Parse the input file and set up the essential parameters of the SCFT calculation. 

2. Decide what the initial configuration of the field will be: either equal to zero everywhere 

or imported from file, in order to continue from a specific configuration. 

3. Equation 2.2 is solved for the matrix chains of length Nm, applying the initial condition of 

eq 2.3 and boundary conditions of eq 2.5. 

4. Equation 2.2 is solved for the grafted chains of length Ng, applying the initial conditions of 

eq 2.4 and boundary conditions of eq 2.5. For details regarding the numerical calculation of the 

delta function at each grafting point, the reader is referred to Section 3.6.2.1. 

5. Determine the density profiles of matrix, θm, and grafted, θg, chain segments using eq 3.3. 

6. Update the spatial configuration of the field, wʹ, using eq 2.8. 

7. Calculate the free energy of the system using eq 2.38. 

8. Repeat steps 3 to 6 until the energy difference between two successive SCF iterations has 

been achieved. 

In Figure 3.4 below, we present the flow diagram of the three-dimensional version of 

RuSseL, which consists of two main parts: the initialization stage (yellow background, left) and 

the iterative stage (blue background, right). 
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Figure 3.4 Flow diagram of RuSseL3D. 
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3.3. Commercial software vs RuSseL 

When we first started running SCFT calculations, we addressed systems comprising exclusively 

matrix chains. In order to solve the Edwards PDE, we used the FEM as implemented by 

mainstream commercial software. The most challenging part when including grafted chains in 

the system is the initial condition of eq 2.4. Because the commercial software would not let us 

assign initial conditions on indivual points of the mesh (which is necessary for introducing 

grafted chains in the SCFT mathematical model, according to eq 2.4), we opted to approximate 

Dirac-delta functions with Gaussian distributions of a certain standard deviation. For instance, 

in Figure 3.5a, we depict the density profiles of matrix and grafted chains in a molten 

polyethylene film sandwiched between repulsive solid walls. All chains had length equal to Nm 

= Ng = 100 skeletal bonds and the simulation temperature was equal to 450 K. The simulation 

box had size equal to 88010 nm
3
. In Figure 3.5b, we present the density profiles of 

polystyrene melt of Nm = 100 skeletal bonds at T = 500 K in a spherical geometry. 

 

Figure 3.5 Density profiles of matrix and grafted chains in a polyethylene film. a) Reduced segment density 

profiles of grafted and matrix chains in a polyethylene film sandwiched between repulsive solid surfaces bearing 

terminally grafted polyethylene chains. The grafting density was equal to 0.15 nm
–2

, corresponding to 9 grafted 

chains per flat surface. Temperature was equal to 450 K (isothermal compressibility, κT = 1.43 GPa
–1

) and the 

simulation box had size 8810 nm
3
. Both matrix and grafted chains had length equal to Nm = Ng = 100 skeletal 

carbon bonds.
 
In order to obtain this solution, a spatial mesh of ~5∙10

5
 mesh points and 100 chain contour points 

had to be used. b) Segment density profile of polystyrene matrix chains in contact with a spherical repulsive wall of 

radius equal to 8 nm. All chains had length equal to Nm = 100 skeletal carbon bonds and the temperature was equal 

to 500 K (isothermal compressibility, κT = 1.07
 
GPa

–1
). The simulation box had size 202020 nm

3
. This was the 

best density configuration that we were able to obtain and it required a spatial discretization of 9∙10
5
 mesh points, 

because of the lower isothermal compressibility of polystyrene. Polystyrene chains were also discretized with 100 

contour points. 

 



3.4. Calculated properties  

51 

We faced some technical difficulties in solving our problem by means of commercial 

software. The main problem was the bad interpolation that it applied to the imported updated 

field configuration. As a consequence of this bad interpolation, an extremely dense mesh 

(roughly 9∙10
5
 mesh points) had to be used to clear out the noise in the calculated profiles, which 

led to a high computational cost per iteration (above 50 min for simple free-film systems). 

No matter how hard we tried during the first year of this PhD thesis, we could not 

circumvent the interpolation performed automatically by the commercial software or assign 

values directly to individual points of the mesh. Another significant issue arose from the 

substitution of delta functions with Gaussian distributions. Despite the fact that the latter are 

infinitely differentiable, they impose a maximum grafting density that can be set in the 

calculation; increasing the grafting density means that we need to reduce the standard deviation 

of the Gaussian distributions so that they do not overlap. Reduction of the standard deviation of 

Gaussian pulses needs to be accompanied by a refinement of both the spatial mesh and the 

contour mesh of the chains, otherwise the solution of the PDE will not converge due to 

numerical issues. 

In our code, RuSseL, which we control fully, we are able to set the grafting points exactly the 

way we wish. All solution steps are implemented in the same code, i.e., solution of Edwards, 

propagator convolution, and update of the field configuration based on an appropriate equation 

of state. This also enables us to run our field-iterative scheme without being dependent on 

external packages, e.g., Matlab, to feed the post-processed PDE solution back to the main 

software solving the PDE. This fact leads to considerable profit related to data I/O.  

 

 

3.4. Calculated properties 

3.4.1. Total and partial segment density profiles 

To begin with, having obtained the propagators qm and qg from the solution of eq 2.2, the density 

profiles of matrix and grafted chain segments, θm(r) and θg(r), respectively, are calculated via 

the convolution eq 3.3. The total reduced segment density is just the sum of θm and θg. Such 

reduced segment density profiles are presented in the following Figure 3.6 and Figure 3.7. 

Having calculated the reduced profile θ, the corresponding segmental or mass density profiles 

can be retrieved by multiplying θ with ρseg,bulk or ρmass,bulk of the polymer melt, respectively. 
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  r r r  3.3 

 

 

Figure 3.6 Density profiles of matrix and grafted chains in various kinds of planar interfaces. Reduced segment 

density profiles of matrix (m, green) and grafted (g
−
: orange, g

+
: red) chains which are in contact with planar solid 

surfaces. The panels on the left/right correspond to single/opposing (VM/VMV) vacuum-matrix, (SM/SMS) solid-

matrix, (GM/GMG) grafted-matrix, and (GV/GVG) grafted-vacuum interfaces; V: vacuum, S: solid, G: grafted, and 

M: matrix. The insets depict graphical representations of each system; the dots represent grafting points, and the 

vertical lines denote the boundaries where Dirichlet boundary conditions, qc = 0, are imposed. The polymer-grafted 

surfaces (G) at the left and right boundaries exhibit grafting densities and grafted chain lengths equal to 
g g

( , )N
 

= (0.8 nm
–2

, 50 skeletal bonds) and (0.4 nm
–2

, 200 skeletal bonds), respectively. The distance between the 

boundaries of the domain was set to L = 20 nm. Matrix chains have a chain length equal to 100 skeletal bonds. 

Solid/polymer interactions correspond to perfectly wetting polystyrene films with the hybrid Hamaker-ramp 

potential (see Section 2.1.5) at a temperature equal to T = 500 K (for parameter values, see Table 4-2). 
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Figure 3.7 Density profiles of matrix and grafted chains in various kinds of spherical interfaces.  The physical 

systems are (VM) spherical cavity, (SM) polymer melt/smooth nanoparticle, (GM) polymer melt/grafted 

nanoparticle, and (GV) a grafted nanoparticle in vacuum. In all cases, the radius of the nanoparticle/cavity is equal 

to 2 nm. 

 

 

Figure 3.8 Total and partial reduced segment density profile of a perfectly wetted SiO2/PS GMV system. For 

parameter values, see Table 4-2. Grafting density is ζg = 0.4 nm
–2

, length of grafted chains Ng = 50 skeletal bonds 

and length of matrix chains Nm = 100 skeletal bonds. 

 

3.4.2. Brush thickness 

The dimensions of the grafted brush can be quantified in terms of the root mean squared brush 

thickness, which is calculated with eq 3.4; it is a functional of the density profile and 

corresponds to the rms distance of grafted chain segments from the solid surface. 
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In eq 3.4, h(r) is the distance between a segment located at r and the solid surface. Another 

frequently used measure for quantifying the thickness of the brush is the characteristic distance 

h99%, which is the distance between the center of the NP and a surface, 
99%hR , parallel to the 

surface of the NP, which encloses 99% of grafted chain segments (eq 3.5). 

 
99%

g g gd ( ) 0.99N n  r r
R

 3.5 

with R99% being the three-dimensional domain enclosed between solidR  and 
99%hR . 

 

3.4.3. Profiles of individual chain segments 

RuSseL allows for decomposition of the density profiles into contributions of individual chain 

segments, such as chain ends and middle segments.
2,72,97

 The contribution of the N
th

 segment to 

the corresponding density profile of the kind-c chain can be retrieved by the following eq 3.6. 

 , m

1
( ) ( , ) ( , )c N c c

c

q N q N N
N

  r r r  3.6 

Setting N to 1 or Nc results in the density profile of the end segments, which can be a useful 

measure of the tendency of chains ends to segregate at the interfaces.
2,24,72

 Setting N = Nc/2, on 

the other hand, results in the reduced density profiles of middle segments; comparisons between 

end and middle segment profiles provide useful information regarding the overall shape of the 

chains.
2
 

Figure 3.9 depicts the segmental density profiles, θc,N, for the chain ends (N = 1, Nc) and 

middle segments (N = Nc/2) of grafted and matrix chains. The first segment of the grafted chains 

(N = 1) corresponds to the grafting point and features a sharp peak at h = hg. The middle and the 

last end segment of the grafted chains exhibit continuous density profiles, and the latter spreads 

further towards the matrix region. The density profiles of matrix chain segments are suppressed 

in the vicinity of the grafted chains, since the latter reduce the available accessible space. Unlike 

grafted chains, the two end segments of the matrix chains are equivalent due to symmetry, hence 

their corresponding distributions are identical, 
mm,1 m,N  . The ends of the matrix chains 

feature more pronounced profiles near the interfaces compared to the middle segments. 
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Figure 3.9 End/middle density profiles of grafted and matrix chains in a perfectly wetted SiO2/PS interface.  (a) 

Reduced density profiles of starting, middle and end segments of grafted and matrix chains; (b) the corresponding 

normalized distributions obtained via eq 3.7. Insets illustrate schematically the starting, middle and end segments of 

grafted and matrix chains. The profiles concern a perfectly wetted SiO2/PS interface (for parameter values, see 

Table 4-2) with grafting density ζg = 0.4 nm
–2

, length of grafted chains Ng = 50 skeletal bonds and length of matrix 

chains Nm = 100 skeletal bonds.  

 

The tendency of chain segments to segregate at the interface(s) can be better quantified in 

terms of the normalized segment distribution, which is calculated via the following eq 3.7. The 

reduced density of the N
th

 segment of the chain is expressed relative to the total segment density 

of kind c chains (eq 3.7), consequently, in a bulk polymer phase, , 1c N  .  

 
,

,

( )
( )

( )

c c N

c N

c

N 





r
r

r
 3.7 

According to Figure 3.9b, the segment density profiles of matrix chains become , 1c N   

across the bulk region. Near the solid/polymer and polymer/vacuum interfaces, the profiles of 

end segments of matrix chains are enhanced significantly by m,1 6  and 
mm, 100N , 

respectively, whereas the profiles of middle segments are slightly less than the bulk value, 

mm, /2 1N  . The corresponding profiles for the two ends belonging to grafted chains are highly 

asymmetric, since g,1 210  and 
gg,

0.6
N

  at the grafting point, while g,1 0  and 
gg,

180
N

  

at the edge of the free surface. The middle segments of grafted chains exhibit suppressed profiles 
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at the interfaces and over most of the region occupied by matrix chain segments. This effect 

regarding middle segments is much more pronounced than for matrix chains; at the polymer-

vacuum interface, 
gg, /2

1
N

 . 

Besides the end and middle segments, RuSseL gives the option to export the density profile 

of any other segment specified by the user. The contour plots presented in the following Figure 

3.10 depict θc,N and ,c N  for all segments belonging to grafted and matrix chains. 
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Figure 3.10 Contour plots of the reduced density of segments belonging to (a) grafted and (b) matrix chains.  The 

ordinate indicates the index of each segment along the contour of the chain, whereas the abscissa is the distance of 

the segment from the left solid surface. Blue/red color corresponds to low/high values of the displayed quantity, as 

denoted by the color bars. The contour plots in (c) and (d) depict the corresponding normalized segmental density 

profiles, defined in eq 3.7. All profiles concern a perfectly wetting SiO2/PS GMV interface (for parameter values, 

see Table 4-2) with grafting density ζg = 0.4 nm
–2

, length of grafted chains Ng = 50 skeletal bonds, length of matrix 

chains Nm = 100 skeletal bonds. The horizontal line is a guide to the eye; it crosses the region corresponding to 

middle segments. 

 

3.4.4. Adsorbed vs free chain segments 

RuSseL offers the option to decompose the density profiles into contributions of adsorbed and 

free segments based on segment-surface distance criteria. Essentially, whenever a chain segment 

lies at a distance lower than hads from the surface, it is classified as adsorbed to the surface. This 

is purely a geometric distinction based on a critical distance from the solid surface, which is 

defined by ther user through the input file. There are several approaches to setting the critical 

distance, depending on the specific application, namely: 
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 Solid adsorption: hads can be tuned based on the peaks of the density profile (e.g., in ref 

98
, hads was set equal to 0.6 nm, which is the distance between the first two peaks of the 

polyethylene/graphite density profile), or based on the strength of solid/polymer interactions 

(e.g., in ref 
28

, hads was set equal to 1.28 nm, where the PS/silica interactions, as described by the 

Hamaker potential, become extremely weak). 

 Segregation at polymer/vacuum interfaces: in ref 2, hads was set equal to a distance where 

the reduced density θ reaches the value 0.5. 

 Brush penetration: hads can also be set to the span of the grafted brush, hg,99%, in order to 

quantify the tendency of the matrix chains to penetrate the brushes, or the tendencies of 

opposing brushes to penetrate each other. 

Based on the distribution of adsorbed and free segments of a chain, it is possible to classify 

the chain into several states and sub-states, which are reported in Table 3-1. 

A chain that is comprised entirely of free segments is classified as free (f); otherwise, in case 

it includes adsorbed segments, it is treated itself as adsorbed ( a 
). Adsorbed chains can be 

further classified into fully ( fulla
) and partially adsorbed ( parta

). Moreover, the free segments 

belonging to partially adsorbed chains can be classified into free loops ( loop_fa
) and free tails (

tail_fa
). In the same way, adsorbed segments belonging to adsorbed chains can be classified into 

adsorbed loops ( loop_aa
) and adsorbed tails ( tail_aa

). Adsorbed chain segments can be further 

characterized as trains or bridges.
2,66,98,99

 As can be imagined, grafted chains cannot be 

classified to be free, since in most cases, the grafting points are located below hads; nevertheless, 

this classification procedure can unveil meaningful sub-states, such as fully and partially 

adsorbed grafted chains, as well as grafted bridges. 

Figure 3.11 demonstrates some representative examples, whereas Figure 3.12 depicts the 

density profiles of the aforementioned states for a perfectly wetted SMS system (for parameter 

values, see Table 4-2), where the adsorption distance is set at 6 nm for both the left and the right 

plate, i.e., ads ads 6 nmh h   . 
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Figure 3.11 Schematic representation of the adsorbed states of a chain. Illustration of a (i) free chain, f, (ii) a fully 

adsorbed chain to the left surface, fulla
, (iii) a partially adsorbed chain to the right surface, parta

, which features 

loops and tails outside ( loop_fa
, tail_fa

) and inside ( loop_aa
, tail_aa

) the adsorption region, and (iv) a chain that is 

partially adsorbed on both surfaces forming a bridge, bridgea . 

 

The first step of the classification procedure is to calculate the restricted partition functions 

of free (
f

cq ), fully adsorbed (
-
fulla

cq , fulla

cq


), and non-adsorbed (
-!a

cq ,
!a

cq


) chains with respect to the 

left (−) and the right (+) surface; e.g., see Figure 3.12a. It is stressed that a chain which is not 

adsorbed on a specific surface is not necessarily free, since it might be adsorbed on the 

opposing surface. 

To calculate each one of these propagators, the Edwards diffusion eq 2.2 is solved with the 

additional constraint that the Dirichlet boundary condition, qc(h, N) = 0, is set to all the nodes 

which find themselves at distance, h, within the ranges specified at the rightmost column of 

Table 3-1. In other words, Edwards is solved in such a way that chain segments are prevented 

from accessing these regions of the domain. Subsequently, the density profiles corresponding to 

these states and sub-states are determined via convolution integrals and their relations specified 

in Table 3-1 below.  
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Figure 3.12 Density profiles of chain segments belonging to different adsorbed states. (a) Reduced segment density 

profiles of free (f), fully adsorbed ( fulla
), and non-adsorbed (!a


) chains with respect to the left (−) and right (+) 

solid surfaces indicated by the dashed red lines. (b) Profiles of chains adsorbed on the left surface, decomposed into 

contributions of fully and partially adsorbed chains, loops, tails, and bridges. The profiles were obtained from a 

perfectly wetted SiO2/PS SMS system (for parameter values, see Table 4-2) with grafting density, ζg = 0.4 nm
–2

, 

length of grafted chains, Ng = 50 skeletal bonds, length of matrix chains, Nm = 100 skeletal bonds. 
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Table 3-1 Reduced densities, partition functions, and constraints for evaluating each state and sub-state regarding 

adsorbed and free chain segments.  

State 
Symbol 

(α) 

Reduced Segment 

Density 

Restricted  

Part. Function 

Dirichlet 

Nodes, qc(h, N) = 0 

free f  f f f, , ,c c c cC q q N h   
f

cq  
ads ads

[0, ] [ , ]h h h L
 

   

adsorbed fully  
fulla

  full full fulla a a
, , ,c c c cC q q N h

  

  fulla

cq


 ads ads
[ , ] or [0, ]h h L h h

 
   

not adsorbed !a
  !a !a !a

, , ,c c c cC q q N h
  

  
!a

cq


 ads ads
[0, ] or [ ],h h h h L 

   

adsorbed a 
 

a !a

c c c  
 

   - - 

adsorbed partially 
parta

 
part full

a aa

c c c  
 

   -
 

- 

loops 
loopa

  loop loop loopa a a
, , ,c c c cC q q N h

  

  
loop full

a a!a

c c c c
q q q q

 

  

 

- 

tails outside the adsorbed 

region tail_fa
  tail_f loopa a !a

2 , , ,c c c cC q q N h
  

  - - 

tails inside the adsorbed 

region tail_aa
  tail_a loop full

a a a
2 , , ,c c c cC q q N h

  

  - - 

bridges 
bridgea  

bridgea a a f

c c c c c    
 

     - - 

 

It is noted that loop
a


 states corresponding to free or adsorbed segments are denoted as loop_f
a


 

and loop_a
a


, respectively; hence, loop loop_f loop_a
a a a
  

  . Moreover, free/adsorbed states have been 

defined in a way so that the following relations, 3.8, 3.9, 3.10, are satisfied. 

 partfull
aaa

c c c  


   3.8 

 part loop_f loop_a tail_f tail_aa a a a a

c c c c c    
    

     3.9 

 bridgeaa a f

c c c c c    
 

     3.10 

Finally, we mention here that the profiles of the bridges are a measure of the overlap 

between the profiles of adsorbed chains at the opposing surfaces; thus, in situations that the 

separation distance of these surfaces is large enough, θbridge → 0. 
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3.4.5. Chains per area profiles 

In three dimensions, the chains/area can be defined as the number of chain segments which cross 

at least once a surface 
0hR  and it is a measure of chain orientation introduced in references 

2,64,66
. A meaningful choice for 

0hR  would be a surface which is parallel to the surface of the 

solid ( solidR ) at distance h0;  
01 2 1 2 solid 0min , ,h h   r r r rR R . References 

2,64,66
 include a 

detailed explanation of the chains/area calculation in one dimension; in this thesis, we present a 

more general formalism in three dimensions, which is compatible with smooth surfaces of 

arbitrary shape. For both matrix and grafted chains, the number of chains per unit area can be 

determined using the following eqs 3.11 and 3.12.
2,24,64,66

  

 
0

shape

,
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0

ch, 0 int, 0

1 1
( ) ( ) ( )dc c c

h c

n h p h
S N

  r r
R

 3.12 

Initially, we estimate the probability pint,c(h0) that a chain of kind c will intersect the surface 

0hR at least once (regardless of where in R it may have started) using eq 3.11. 
0

shape

,c h
q

 
is the 

restricted partition function of all kind c chains (i.e., matrix or grafted) that are unable to cross 

the surface at distance h0 from the interface, and it is calculated by solving the Edwards 

diffusion equation with the additional Dirichlet boundary condition, 
0

( , ) 0,c hq N   r r R . 

Moreover, 
0hS  is the surface area of 

0hR , and ( )dc r r
R

 is the total number of type-c chains. 

nch,c(h0) corresponds to the number of type-c chains per unit area that pass (at least once) through 

the surface at which finds itself at distance h0 from the solid surface. By this definition, near the 

grafting points, the chains/area will be equal to the grafting density, as illustrated by the dashed 

line in the following Figure 3.13. 
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Figure 3.13 Chains/area profile in a perfectly wetted GMV SiO2/PS system.  For parameter values, see Table 4-2. 

Grafting density ζg = 0.4 nm
–2

, length of grafted chains Ng = 50 skeletal carbon bonds, length of matrix chains Nm = 

100 skeletal carbon bonds and domain length L = 10 nm. 

 

3.4.6. Profiles of individual grafted chains 

In 3D, we are able to determine the density profiles of segments belonging to a specific grafted 

chain or group of grafted chains. This happens by evaluating the restricted partition function of 

the ig
th

 grafted chain via the following initial condition: 
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In other words, after the iterations on the field have converged, we solve eq 2.2 using the 

initial condition value corresponding to the grafted chain of interest and all other grafted chains 

are assigned an initial value equal to zero so that they do not interfere in the solution. 

Afterwards, we substitute the resulting propagator in the convolution eq 3.3 and calculate the 

spatial distribution of segments belonging to the grafted chain ig: 
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3.5. Chain discretization 

3.5.1. Different discretization for matrix and grafted chains 

An important step towards the acceleration of our 3D calculations is the ability to solve the 

Edwards equation for matrix chains with different contour discretization than grafted chains. 

The chain contour step, di = ni-ni-1, is a vital parameter for the numerical solution of the PDE. 

Low di values result in finer discretization (more steps, ns) and thus higher accuracy and 

computational cost. The initial solution steps are sensitive to di—especially for grafted chains—

whereas the latter steps are not; therefore, applying the same discretization for matrix chains is 

overkill. In our code, we have introduced the feature of different contour discretization for 

matrix and grafted chains and furthermore the corresponding chain propagators can be 

convolved in contour space through one-dimensional interpolation. 

 

3.5.2. Uniform vs nonuniform discretization 

It is essential to benchmark the solution of Edwards under different contour discretization 

schemes, especially for grafted chains which are more sensitive due to their delta initial 

condition (eq 2.4). At a first stage, we compare a uniform and a nonuniform discretization, 

where the latter is based on a Chebyshev expression given in the following eq 3.15.
89
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   

   
 3.15 

where N is the length of the chain, i is the contour index and ni is the contour point value. 

Following this formula, the chain contour step, di, is smaller at the initial steps and gradually 

increases, reducing the total number of required contour steps, ns, to obtain accurate results.  

Figure 3.14a presents the profile of the chain propagator, q(r,N), for N = 10.5 along the line 

{x = y = 0} with the uniform (left) and nonuniform (right) scheme, while the bottom panels 

display the error with respect to the exact solution. The error of the uniform scheme is noticeable 

for ns ≤ 64, whilst with the nonuniform scheme the required ns is halved. We come to the same 

conclusion in the case where ICs are applied at a single mesh point, as shown in Figure 3.14b. 

The latter case is directly related to assigning ICs for the grafted chains. 
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Figure 3.14. Contour discretization benchmarks: uniform vs nonuniform discretization.  Effect of chain contour 

discretization on the solution of the Edwards PDE for PS chains in contact with a solid surface. (a) The ICs of 

grafted chains are imposed at points lying at Ωrect = |x|, |y|, |z| < 2.5. Top panels depict qg(z,N) for N = 10.5 and 

bottom panels show the error with respect to the exact solution. (b) qg(rgi,N) versus N where the ICs are applied at a 

single point of the domain. 

 

At the next step, we wish to render the chain discretization independent of the chain length. 

Until a certain contour point, Nc,SW, we perform a Chebyshev-based contour discretization which 

is the same no matter the length of the chain to be discretized. The value of Nc,SW is determined 

after a series of benchanks, which are presented in Section 3.7.2. Beyond that point, the 

discretization is uniform, the step size is the same for any chain length and what changes is just 

the number of points. Mathematically, this hybrid contour discretization scheme is expressed via 

eq 3.16. 

Applying the scheme described above, which is illustrated in Figure 3.15, we manage to 

maintain a fair weighting of the ends of the chains, no matter its length, while keeping an 

economical discretization of the rest of the chain. This allows for larger chains to be addressed 

and accuracy to be ensured.
67

 

 

 

 

 

 



Chapter 3. RuSseL  

 

66 

3.5.3. Hybrid chain contour discretization 

The efficiency of solving eq 2.2 can be enhanced by invoking a contour discretization which is 

finer near the starting end of the chain and gradually increases to a maximum value. Equation 

3.16 illustrates the hybrid (asymmetric) discretization scheme, which is used in all calculations 

performed with the three-dimensional version of RuSseL. The chain contours are discretized 

nonuniformly based on a Chebyshev polynomial
67,89

 until a threshold contour length, Nc,SW. 

After that point, a uniform discretization is used. 
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 3.16 

where, Nc,i is the contour length of a kind-c chain at discretization step i; ic,SW = Nc,SW / ΓNc,ave is 

the number of steps up to a switching point, 
,SW,SW , cc c iN N ; ΓNc,ave is the average contour step 

size for Nc,i ≤ Nc,SW; is the maximum contour step; ic,total = ic,SW + (Nc – Nc,SW) / ΓNc,max is the 

total number of contour steps. 

Figure 3.15 illustrates an indicative discretization for a case with Nc = 92.0, Nc,SW = 40.0 and 

ΓNc,ave = 1.0. Using this hybrid chain discretization scheme, we manage to maintain a fair 

weighting of the ends of the chain no matter its length, while keeping an economical 

discretization for the rest of the chain. This allows for larger chains to be addressed accurately 

with minimal cost.
67

 The efficiency of the scheme can be further enhanced by incorporating 

different sets of (Nm,SW, ΓNm,ave) and (Ng,SW, ΓNg,ave) for the matrix and grafted chains, 

respectively. It is noted that the convolution integral in eq 3.3 requires a symmetric 

discretization scheme (eq 3.17), which receives values from the asymmetric scheme in eq 3.16 

via interpolation along the contour of the chain. 
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with ic,conv = Nc / ΓNc,ave being the number of steps for propagator convolution. 
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Figure 3.15 Hybrid chain contour discretization scheme as implemented in the three-dimensional version of 

RuSseL.  Panel (a) depicts the chain contour and critical contour point, Nc,SW = 40.0 (green dotted line), indicating 

the point where the discretization switches from Chebyshev to uniform. Panel (b) depicts the corresponding step 

size employed for the solution of the Edwards eq 2.2 and its value, ΓNc,max, after the switching point. 

 

3.6. Convergence and Initial Conditions of Grafted Chains 

The initial conditions of grafted chains for the solution of Edwards eq 2.2 are given by eq 3.18 

below. 
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In eq 3.18,  
gg,i r r is the Dirac-delta function, firing at the grafting points and associating 

each grafting point with its corresponding value of the initial condition. ρseg,bulk is the segment 

density in the bulk polymer melt. The Dirac-delta function triggered at the grafting points is 

consistent with the physical meaning of the restricted partition function; the probability of 

finding the first segment of a grafted chain ig is nonzero only at the corresponding grafting point, 

gg,ir , and zero everywhere else inside the domain of interest. It is noted that the Dirichet 
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boundaries make the surface SR  inaccessible to both matrix and grafted chains; hence, the 

latter are grafted at a distance 
gg,ih  from the solid surface.

40,41,67,100
 

 

3.6.1. 1D calculations 

When invoking SFCT, there is a special difficulty associated with the mathematical description 

of grafted chains, whose one end is grafted to the solid surface. The chain propagator of these 

chains is subject to the Dirac-delta function initial condition in eq 2.4.
41

 Moreover, the 

denominator on the right-hand side of eq 2.4 is numerically challenging, since the chain 

propagator of matrix chains goes to zero close to the solid surface. A commonly used approach 

to address these issues is to reposition the grafting points to a surface close to the solid instead of 

right on top of it.
67,88,100

  

Regarding the numerical implementation of the delta function, smearing of the grafting 

points in the direction normal to the solid surface is often introduced by treating the grafting 

point density as a Gaussian distribution
41

 or as a rectangular function. Guided by these studies, 

in the 1D version of RuSseL, we set the location of the grafting points at the discretization nodal 

point which is nearest to the hard-sphere wall. In 1D systems of spherical symmetry, e.g., single 

grafted nanoparticle in a polymer matrix or contact with vacuum, the grafting points degenerate 

into a grafting ―spherical shell‖ with radius slightly larger than that of the NP itself (Figure 3.16 

orange arrow) and thickness Γh. 
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Figure 3.16 Schematic illustration of a grafted nanoparticle inside polymer melt. (a) A particle-based representation 

of a nanoparticle with polymer chains grafted ar rg (orange), embedded in a polymer matrix (green chains). (b) In 

unidimensional SCFT calculations, the chains are replaced by a density field and the grafting points are smeared 

normal to the radial direction. rads depicts the critical distance from the center of the NP, based on which the matrix 

chains are categorized as adsorbed (e.g., see red circles in (a)) or free.  

 

Smearing of the grafting points means that they become delocalized throughout the surface 

near the solid substrate, suggesting a smoothed distribution of grafting points, which practically 

ignores the presence of a grafting point at a specific surface point; e.g., in Figure 3.16b the 

grafting points have been smeared across a spherical cell highlighted by an orange dotted circle. 

In doing so, eq 3.18 for the ICs of grafted chains can be written as follows: 
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where ζg = ng/SS is the grafting density, SS is the surface area of the solid, and 
ghS  is the surface 

area over which the grafting points are smeared. To make eq 3.19 applicable for both spherical 

and planar geometries, it has been written in terms of h and hg, which denote segment-surface 

and point-surface distance, respectively. Consequently, in spherical geometries, Sh r R  ; this 

relation is ill-defined in planar geometries, since r, SR  . The three-dimensional delta 

function  
gg,i r r  is approximated as  

gg / hh h S   for all ig. 
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For planar surfaces with area SS, the Edwards eq 2.2 is evaluated across the normal direction 

with respect to the surface, and the differential dr of the spatial integration equals the volume of 

the layer, Sd dS hr . The delta function in eq 3.19 is set to the inverse discretization step in the 

h direction; i.e.,  g 1/h h h    , with Γh being the width of the intervals in which h is 

subdivided in the numerical solution.  

On the other hand, for spherical NPs with area equal to SS = 4πRS
2
, the Edwards eq 2.2 can 

be evaluated across a radial direction (normal to the surface) as shown in Appendix F.  

 

3.6.2. 3D calculations 

In the three-dimensional version of RuSseL, where the FEM numerical scheme is applied, the 

initial condition of the grafting points is evaluated exactly upon the desired points of the domain 

and the delta function is again evaluated as the inverse volume assigned to the nodal point.
67

 

The stability of the 3D-SCFT algorithm is accomplished by means of a successive 

substitution scheme, which is typically used in these calculations, and a mixing parameter which 

acts on the field and has to be lower than a maximum value.
101

 This maximum value is always 

lower than unity and depends on the length of the chains (Section 3.7.3) and the isothermal 

compressibility, κT, as shown in eqs 3.20 and 3.21 below. 

  ifc mix ifc,next mix ifc,prev
' ' 1 'w a w a w    3.20 

 
mix

mix

g m
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a
N N


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where λmix is proportional to κT. 

At each iteration of the SCF algorithm, the linear system of equations arising from the 

discretization of the weak form of the Edwards equation is solved by the open-source direct 

solver MUMPS,
95,96,102

 which is also linked to our code. The iterative scheme is executed until 

the error in successive evaluations of the total free energy is lower than a set tolerance, ΓE
tol

. 

As iterations proceed, there is another source of error that needs to be controlled. Ideally, the 

delta function values, for the initial condition at each grafting point, are independent of the 

configuration of the field. In practice, however, the number of grafted chains corresponding to 

the current field configuration deviates slightly from that corresponding to the specified grafting 

density. For that reason, the number of grafted chains is restored through numerical evaluation 
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of the proper value of the delta function at each one of the grafting points. This delta evaluation 

involves the solution of the Edwards equation ng times; therefore, it is performed sparsely at 

certain stages of the field iteration process. In particular, the numerical evaluation of the delta 

function is performed if the relative error in the number of grafted chains exceeds εg
tol

 = 0.5%. 

When this happens, the field equilibration procedure pauses, delta values and initial conditions 

at each grafting point are updated, and afterwards, field convergence proceeds with the updated 

grafting point initial conditions. Below we sketch the procedure of the numerical calculation of 

initial conditions.   

3.6.2.1. Numerical Estimation of the Delta Function on the Grafting Points 

To begin with, a tentative approximation of the delta function is obtained as the inverse volume 

assigned to the grafting point (node) of the mesh: 
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with 
gel,iL  being a list including all elements sharing the common point (node) ig, and Vel,j the 

volume of the j
th

 element. The factor 4 is because each (tetrahedral) element has 4 nodes. 

Ideally, solving the PDE 2.2 using the initial condition in eq 3.18 subject to δtentative should 

yield exactly ng grafted chains; there is, however, a slight deviation from this number during 

field equilibration. In order to correct for this, for each grafted chain ig, the corresponding delta 

function  
gg,i r r  is calculated as follows: 

1) The tentative restricted partition function 
gg, ,tentativeiq  of the ig

th
 grafted chain is calculated 

by evaluating the PDE 2.2 subject to the tentative initial condition in eq 3.23 (i.e., eq 3.18 

with δ → δtentative and ng = 1). 
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with qm being the propagator of matrix chains subject to a field ifcw  . 

2) The tentative density field of the ig
th

 chain is calculated via convolution: 
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3) The number of grafted chains (which, ideally, is 1 in this case) is calculated by integrating 

eq 3.24. 
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4) By taking advantage of the linear dependence of 
gg, ,tentativein  on  

gtentative g,i r r , the delta 

function value which yields exactly one grafted chain is given by eq 3.26. 
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Finally, we compute the correct value of the initial condition via eq 3.28 and solve Edwards 

once again for all grafting points, where each grafting point has its own initial condition and the 

propagator is zero everywhere else inside the domain, as suggested by eq 3.18. 
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where 
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The updated value, δnumerical, requires the solution of Edwards ng times, but this happens 

rarely compared to the total number of Edwards solutions required for equilibration of the field. 

In the most intensive 3D-SCFT calculations, meaning low isothermal compressibility or high 

chain length and therefore steeper field in the interface, the number of iterations for field 

equilibration varies between 10
3
 and 2∙10

3
. For each one of these iterations, the Edwards 

equation must be solved 2 times, once for matrix and once for grafted chains, giving us a 

number of Edwards equation solutions on the order of 2-4∙10
3
. With a relative tolerance in the 

number of grafted chains equal to εg
tol

 = 0.5% (which is quite strict), delta update takes place on 

the order of 3 times. For the largest grafting density and particle radius that we have addressed 

so far, we had 644 grafted chains and therefore approximately 3∙644 = 1932 Edwards equation 

solutions were required, so we can say that for the largest systems addressed in this work, we 

had roughly a 100% overhead, which is the cost of analytically treating each grafted chain on its 

own. 
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We mention, however, at this point, that calculating the initial condition of grafted chains is 

a trivially parallel operation, meaning that each grafted chain can be assigned to a subset of CPU 

processes and no communication is required whatsoever among processes working on different 

grafted chains, because each grafted chain must be treated as if no other grafted chains exist in 

the system. The total number of Edwards solutions is given by a relationship of the form: 

 gTotal Edwards solutions = 2 field_iterations k n    3.29 

with k being the number of delta updates to meet the tolerance regarding the number of grafted 

chains.  

 

 

3.7. Benchmarks of RuSseL3D 

3.7.1. Spatial Discretization 

In all 3D-SCFT calculations, domain discretization is mainly controlled by tuning the maximum 

allowed element volume, when the meshing process is executed. When decreasing the maximum 

element volume that the mesher is allowed to create, the discretization becomes finer and vice-

versa. 

Furthermore, given the steepness of the solution of the PDE near the solid surfaces, we need 

to ensure that a finer discretization is applied in those regions, while maintaining a coarser mesh 

outside that region, to prevent the number of mesh points from increasing dramatically. Hence, a 

second degree of freedom is introduced to control the number of mesh points. It is the width of 

the spherical cell which defines the subdomain where the finer meshing will be applied. In the 

context of the Helfand EoS (which is used in all 3D-SCFT calculations presented in this thesis), 

the steepness of the solution is detected below a distance of 0.5 nm from the solid surface; 

hence, the width of the spherical mesh is set equal to this distance, hM = 0.5 nm. Beyond that 

distance, conditions resembling bulk prevail and a coarser mesh is applied. In Figure 3.17 we 

demonstrate the dependence of the free energy terms on the maximum element volume inside 

the dense-mesh region and in Figure 3.18 the corresponding total free energy. 
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Figure 3.17 Spatial discretization benchmarks: free energy terms as functions of element size.  Individual free 

energy terms as functions of the maximum element volume in a system of a single nanoparticle embedded in 

polystyrene matrix and grafted with one polystyrene chain on its surface. In panel (a), we present the dependence of 

the cohesive term (red color), as obtained from eq 2.39, and the term of the chemical potential field (blue color), as 

obtained from eq 2.40. In panel (b), we present the dependence of the conformational entropy of matrix chains (red 

color), as obtained from eq 2.42, and the conformational entropy of grafted chains (blue color), as obtained from eq 

2.43. 

 

Figure 3.18 Spatial discretization benchmarks: total free energy as a function of element size.  Total free energy 

obtained from eq 2.38 as a function of the maximum element volume in a system of a single nanoparticle embedded 

in polystyrene matrix and grafted with one polystyrene chain on its surface. 
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3.7.2. Contour Discretization 

In Figure 3.19 below, we present the benchmarks of RuSseL with respect to the contour 

discretization of grafted chains, which is varied through the average contour step, ΓNg, along a 

grafted chain and the contour point, NSW, where the discretization switches from Chebyshev to 

uniform (see Section 3.5.3). The benchmarks concern the free energy per NP area, ΓΩ/SS, of a 

system of one spherical silica NP embedded in polystyrene matrix and whose surface is grafted 

with polystyrene chains. 

 

Figure 3.19 Contour discretization benchmarks: total free energy as a function of the contour step.  Total free 

energy (eq 2.38) in a system of a single nanoparticle embedded in polystyrene matrix and grafted with one 

polystyrene chain on its surface, as a function of the step size, ΓNg, used for the discretization of grafted chains with 

length Ng equal to (a) 60, (b) 120 skeletal carbon bonds. In case (a), we also report the effect of the switching point, 

NSW. 

 

3.7.3. Field Mixing Fraction 

In order to ensure the convergence of the 3D-SCFT calculation leading to the equilibrated 

configuration of the self-consistent field, we need to multiply the updated field resulting from 

the solution of the Edwards PDE and the convolution of chain propagators, with a fraction 

value which is always lower than unity and depends on the length of the chains and the 

isothermal compressibility of the polymer melt. 
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Figure 3.20 Field mixing/update benchmarks performed in the three dimensional verison of RuSseL.  (a) Field 

mixing fraction which has to be used in the field equilibration procedure, as a function of chain length measured in 

skeletal bonds. Both axes are presented in logarithmic scale. For a given value of chain length, Nc, if a larger 

fraction value is used than the one predicted by the blue line, the SCFT algorithm will most likely diverge. When 

both matrix and grafted chains are present in the system, the fraction must be determined with respect to the 

maximum chain length. (b) Number of SCFT algorithm steps required for field equilibration as a function of the 

fraction parameter. The satisfying fitting of the linear regression suggests a power-law dependence. 

 

In Figure 3.20a, we present the dependence of the field mixing fraction, fmix, on chain length. 

It is noted that, when both matrix and grafted chains are present in the system, then the value of 

the fraction has to be determined with respect to the maximum length between the two kinds of 

chains, otherwise the algorithm will diverge. In panel b of the same figure we present the 

number of steps required for field equilibration as a function of the field mixing parameter. The 

same benchmarks have been conducted with the one-dimensional version of RuSseL, where a 

similar trend is exhibited (see Appendix I). 

 

3.7.4. Renormalization of Configurational Entropy of Grafted Chains 

The free energy contribution associated with the configurational entropy of grafted chains is 

originally given by eq 3.30. 
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Equation 3.30 is sensitive to the distance of each one of the grafting points from the solid 

surface. The equality between Qg and qm is based on the very definition of the restricted partition 

function and it is further discussed in the proof presented in Appendix E. Taking advantage of 

the fact that the unique space-dependent variable in eq 3.30 is the propagator qm, and that it 
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decreases linearly with distance from the surface in the region close to the Dirichlet boundary 

(see Figure 3.21a), we can normalize this entropic term with respect to a reference distance, 

href,q=0, by adding the second term appearing on the right-hand side of eq 3.31. 
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with 
gg,ih  denoting the distance of the grafting point ig from the solid surface. As demonstrated 

in Figure 3.21b, eq 3.31 is insensitive to the distance of the grafting points from the surface. It is 

noted that when h = href,q=0 (dashed vertical line in Figure 3.21), the normalized value of the free 

energy of grafted chains is equal to its non-normalized value. 

 

 

Figure 3.21 Variation of free energy with increasing distance of the grafting point from the Dirichlet wall.  (a) 

Chain propagator of matrix chains, qm, evaluated at the grafting points as a function of the distance of the grafting 

point from the solid surface. The dashed line is a guide to the eye. (b) Conformational entropy of grafted chains as a 

function of the distance of the grafting point from the solid surface. Red points correspond to the non-normalized 

conformational entropy (eq 3.30), while blue points correspond to the normalized conformational entropy (eq 3.31) 

for href,q=0 = 0.05 nm (black dashed line). This benchmark was conducted in a planar system of polystyrene melt at T 

= 500 K. Chain length of matrix and grafted chains was equal to Nm = Ng = 100 skeletal carbon bonds. Box size was 

4×4×5 nm
3
. One polystyrene chain (ng = 1) was grafted on the solid/Dirichlet wall. 
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3.7.5. Parallelization and Scalability 

We have performed a series of benchmarks on the Greek national supercomputing system, 

ARIS, to investigate the scaling of our code with respect to the number of threads and/or 

processes when using the OpenMP or MPI protocols, respectively. These benchmarks are 

presented in the following Figure 3.22.  They were performed for two different mesh sizes, i.e., 

one consisting of 88529 nodes (red color) and a larger one consisting of 249084 nodes. In all 

cases, there is a certain speedup when running on multiple cores, but the efficiency suggests a 

sublinear scaling. Nonetheless, it has to be noted that in all cases the speed-controlling stage is 

the solution of the Edwards equation which is performed by the opensource solver MUMPS. In 

fact, we have measured the time that the code spends to solve Edwards and the total amount of 

time that the code spends before and after calling MUMPS to solve the PDE. Results are 

reported in the following Table 3-2 (smaller mesh) and Table 3-3 (larger mesh). It is clear that 

the stages before PDE solution (i.e., initialization, chain contour discretization, spatial mesh 

import, matrix assembly) and those after the PDE solution (field update, export of structural and 

thermodynamic quantities) are just 3% of the overall code running duration. This is a clear 

indication that the scaling observed in Figure 3.22 concerns the solver itself and could perhaps 

be improved in later versions of the solver.  Another solver might possibly be more suitable for 

our matrices. MUMPS does not offer a (close to) linear scaling for the numbers of nodes on 

which the benchmarks were conducted (~10
4
, ~10

5
). Nonetheless, comparing the scaling of the 

larger to the smaller mesh, one comes to the conclusion that MUMPS could indeed offer a better 

scaling at much higher orders of matrices, i.e., > 10
6
. For detailed instructions on the 

compilation of the three-dimensional version of RuSseL and linkage with the necessary libraries, 

e.g., MUMPS, MPI, the reader is referred to Appendix J. 
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Figure 3.22 RuSseL parallelization benchmark with OpenMP and MPI protocol.  Red color corresponds to a small 

spatial mesh of 88529 nodes, while blue color corresponds to a larger spatial mesh of 249084 nodes. Top panels 

report the speedup (left) and efficiency (right) with increasing number of MPI processes and one OpenMP thread. 

Bottom panels report the speedup (left panel) and efficiency (right) with increasing number of OpenMP threads and 

one MPI process. The broken lines are guides to the eye. 

 

The speedup and efficiency were calculated using the following eqs 3.32 and 3.33, respectively. 

 
serial time per field iteration

speedup
parallel time per field iteration

  3.32 

 
speedup

efficiency
#  procs/threads

  3.33 
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Table 3-2. Scaling of Edwards solution time in a spatial mesh of 88529 nodes. 

88529 nodes mpiprocs/node threads/proc 

total 

code 

time  

(s) 

total 

code 

time  

per 

iteration 

(s) 

non-mumps  

code time 

per iteration 

(s) 

SERIAL 1 1 113 113 3.0 2.7% 

MPI 

2 1 248 83 4.0 4.8% 

3 1 225 75 2.3 3.1% 

4 1 204 68 3.3 4.9% 

8 1 176 59 4.0 6.8% 

16 1 158 53 3.7 7.0% 

OpenMP 

1 1 113 113 3.0 2.7% 

1 2 324 108 4.3 4.0% 

1 3 303 101 4.3 4.3% 

1 4 302 101 3.7 3.6% 

 

Table 3-3 Scaling of Edwards solution time in a spatial mesh of 249084 nodes. 

249084 nodes mpiprocs/node threads/proc 

total 

code 

time 

(s)  

total 

code 

time  

per 

iteration 

(s) 

non-mumps  

code time 

per iteration 

(s) 

SERIAL 1 1 861 431 10.0 2.3% 

MPI 

2 1 620 310 10.0 3.2% 

3 1 511 256 10.5 4.1% 

4 1 236 236 10.0 4.2% 

8 1 198 198 10.0 5.1% 

20 1 327 164 11.0 6.7% 

OpenMP 

1 1 861 431 10.0 2.3% 

1 2 385 385 10.0 2.6% 

1 3 353 353 10.0 2.8% 

1 4 344 344 10.0 2.9% 

 

Looking at the tables above, we observe that communication overhead between MPI 

processes increases with the number of processes and this is reflected in the increased fraction of 

time spent on ―non-mumps‖ code in relation to the total code execution time. When using 

OpenMP, on the other hand, commumication time does not scale; this is reasonable since, in this 

protocol, threads work on shared memory. 
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3.8. Grafting Point Distributions 

Hereafter, the coordinates of grafting points across the sphere surface will be described in 

spherical coordinates, (r, θ, θ), using the convention: [0, )r  , distance from the origin; 

[ / 2, / 2]    , inclination angle;  [ , ]    , azimuthal angle. 

The NPs with equidistributed grafting points on their surface were generated using the 

algorithm presented in ref 
103

. The algorithm produces distributions comprising almost 

equidistant grafting points, albeit it does not produce the exact number of grafting points (the 

discrepancy is however negligible). For example, Figure 3.23a depicts the coordinates of 500 

grafting points across the (θ, θ) space and Figure 3.23e the corresponding distribution across the 

surface of a NP with RS = 8 nm. To generate the nanoparticles with irregular grafted chain 

distributions on their surface, we devised a Monte Carlo sampling scheme comprising two 

stages, which are explained below. 
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Figure 3.23 Demonstration of irregular grafting distributions on a spherical surface.  (a) Coordinates of 500 

equidistributed grafting points across the (θ, θ) space using the algorithm of ref 
103

. Probability maps for (b) 

uniform and (c,d) biased grafting point distributions from eq 3.34; details concerning c, d are presented in the text. 

Blue, green and red color corresponds to P = 0, 0.5 and 1.0, respectively. Panels (e-h) illustrate the front and back 

side of spheres with RS = 8 nm (average ζg ~ 0.62 nm
–2

), whose grafting points are distributed according to the 

corresponding probability maps in panels (a-d), respectively. 

 

First, a candidate random point, p, at the surface of the sphere is sampled uniformly across 

the surface of the sphere. The insertion of the grafting point at p is accepted with a probability 

P(p) = P(r, θ, θ). The process is repeated until the required number of grafted chains is 

achieved. The probability maps are obtained by summing Gaussian pulses of a homogeneous 

probability distribution, as shown in the following eq 3.34. 

  
GP 2

0 2
1

min 1, max 0, exp
2

n

i
i

i i

D
P P P

d

   
       

   
p  3.34 
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where  0 0,1P   is the background probability (acceptance probability in absence of any bias), 

the operator Σ sums over nGP Gaussian pulses centered at pi, the pre-exponential factor 

 0 0,1iP P P    is the maximum acceptance probability, and di the standard deviation of the 

Gaussian pulse. D(p,pi) = rω(p,pi), is the great-circle distance (arc-length) between points p and 

pi; and ω is the great-circle angle; for two points pj and pi, ω is defined as follows: 

  ( , ) arccos sin sin cos cos cosj i j i j i j i        p p  3.35 

In the trivial case, P(p) = c, with  0,1c , the grafting points are uniformly distributed on 

the sphere surface. By bounding the probability Pi between –P0 and 1–P0, the total probability is 

bounded between [0, 1]. Note that, if the Gaussian pulses lie too close together, their sum might 

exceed this bound; in this case, the insertion probability is restricted between 0 and 1 (see eq 

3.34).  

Figure 3.23b and Figure 3.23c,d illustrate uniform and biased probability maps, respectively, 

whereas panels (f-h) present indicative distributions of 500 points on the surface of a sphere 

with RS = 8 nm. In Figure 3.23c and g, the background probability is set to P0 = 0.05, and there 

is a single attractive biasing pole which finds itself at position (θ, θ) = (0, –π/2) with Pi = 0.95 

and di = 4 nm. Figure 3.23d and h present a more complicated distribution, where: P0 = 0.2, 

there are two repulsive poles at (0, ±π/2) with Pi = –0.2 and di = 8 nm, and four attractive poles 

at (±π/2, 0), (0, –π), (0, 0) with Pi = 0.8 and di = 2 nm. 

According to the case in Figure 3.23f for a uniform distribution, the grafting points appear 

much more clustered than the equidistributed case in Figure 3.23e. Emanation of grafted chains 

from grafting points that lie very close to each other can be unphysical due to excluded volume 

effects; the latter can be taken into account by imposing a minimum distance between the 

grafting points below which the candidate insertion is rejected. 

 

 

 

3.9. 3D Periodic Boundary Conditions 

The ultimate goal of developing RuSseL is the possibility to address multiple grafted 

nanoparticles inside a polymer melt. This will allow for the determination of the free energy for 

a specific number of NPs which may be arranged in various disordered or lattice-like 
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configurations, e.g., body-centered cubic (bcc) or face-centered cubic (fcc), and this way one can 

obtain the most stable configuration. To perform such calculations in a computationally efficient 

manner, we needed to add a nontrivial feature in the three-dimensional version of RuSseL: the 

ability to address systems with periodic boundary condtions (PBC).  

In particle-based computational methods, e.g., molecular dynamics, PBCs are imposed by 

invoking the minimum image convention. They enable a simulation to be performed using a 

relatively small number of particles, in a way that the particles experience forces as if they found 

themselves in a bulk material. In two-dimensions, each box is surrounded by eight neighbors, 

whereas in three-dimensions each cubic box has 26 neighbors. The coordinates of the particles 

in the image boxes can be computed simply by adding or subtracting integer multiples of the 

box sides. Should a particle leave the box during the simulation, then it is replaced by an image 

particle that enters from the opposite side, as illustrated in Figure 3.24. 

 

Figure 3.24 Illustration of periodic boundary conditions in two dimensions.  The central box is the primary domain 

of the simulation and it has eight neighboring images. Should a particle leave from one face of the main box, then it 

re-enters the primary box from the opposite face.  

 

3.9.1. Spherical Nanoparticles in Polymer Matrix 

In a continuum methodology such as the Finite Element Method, we do not have access to 

the exact coordinates of the chain segments; we only know the probability of finding a chain 

segment at the mesh points of the domain. This probability is commensurate to the restricted 

partition function, q, which is the solution of the Edwards diffusion eq 2.2. The periodic systems 

that we wish to address consist of multiple polystyrene-grafted silica nanoparticles embedded 

inside a polystyrene matrix. In the first system shown in Figure 3.25, the NPs are arranged in a 
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simple cubic lattice configuration, while in the alternative system they assume body-centered 

cubic (bcc) configuration. 

 

Figure 3.25 Periodic systems of multiple grafted nanoparticles embedded in polystyrene matrix. Nanoparticles are 

arranged in a) simple cubic lattice, b) body-centered cubic lattice (bcc). In each case, the volume accessible to 

polymer inside a unit cell of the structure is shown. 

 

In order to ensure the periodicity of the system, we have to require that the solution at the 

points of one periodic face of the domain be exactly equal to the solution at the corresponding 

point on the opposing face. This requires that the opposite faces along each dimension are 

symmetrically meshed, otherwise an interpolation would have to be performed and this would 

add considerable complexity and overhead in the solution of the PDE. To ensure the symmetry 

of the mesh on the boundaries of the box, we first mesh one of the two faces representing each 

periodic dimension and then we take advantage of the ―copy mesh‖ feature of the GMSH 

mesher,
93

 which allows us to transfer the mesh of an already meshed face to another face of the 

geometry, as we demonstrate in the following Figure 3.26. 
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Figure 3.26 A symmetric triangular mesh on the opposite faces of a cubic domain. Demonstration of the ―copy 

mesh‖ feature which allows for creation of perfectly symmetric triangular meshes on opposite faces. For clarity, we 

only show the symmetry of the mesh on the periodic faces normal to the x-axis. 

 

Having established that, for a pair of opposing periodic faces, the nodes of one face have 

symmetric coordinates with respect to the points of the other face, we create a hash table or 

dictionary in our code, whose key-value pairs are the id’s of the opposing nodes. A hash table is 

an array-like data structure which stores data in an associative manner and therefore maps keys 

to values. In our case, the keys are the id’s of the nodes belonging to the source (src) face and 

the corresponding values are the id’s of the nodes belonging to the destination (dst) face. In 

other words, each node of the src face knows exactly its symmetric point that lies on the dst 

face. The hash table associating the periodic node pairs is built by taking advantage of the fact 

that the coordinates of the nodes of periodic pairs satisfy the following conditions (the origin is 

located at the center of the simulation box): 

Periodic node pairs along the x-axis: xsrc = ‒ xdest, ysrc = ydest, zsrc = zdest 

Periodic node pairs along the y-axis: xsrc = xdest, ysrc = ‒ ydest, zsrc = zdest 

Periodic node pairs along the z-axis: xsrc = xdest, ysrc = ydest, zsrc = ‒ zdest 

These periodic node pairs need to be taken into account to create the corresponding rows and 

columns of the FEM stiffness matrix. It is stressed at this point that in our three-dimensional 

FEM based methodology we take advantage of the sparsity of the stiffness matrix. Instead of 

storing and feeding it to the MUMPS
95,96

 solver in its full form, we rather store the ids of the 

neighboring node pairs, which, by the definition of the basis functions, are those contributing 
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nonzero values to the corresponding rows and columns of the stiffness matrix. The reader is 

reminded that for two neighboring nodes, n1 and n2, the nonzero entries of the stiffness matrix 

(considering of course the fact that each node is also neighbor with itself) will be: 

p1: (n1,n1), p2: (n1,n2), p3: (n2,n1), p4: (n2,n2) 

where we denote by pi the id of each node-pair. 

For a certain src-dst periodic pair, let the id of the (src, src) nonzero entry in the FEM 

stiffness matrix be denoted by p1, the (src, dst) pair by p2, the (dst, src) by p3 and the (dst, dst) 

pair by p4. Let us also denote by val, the nonzero value of the pi = id(row, col) entry of the 

stiffness matrix. For periodicity to be applied in the context of the Finite Element Method, the 

modifications shown in the following eqs 3.36-3.39 must be ensured for all src-dst periodic node 

pairs before the solution of the Edwards diffusion equation. 

 1 1 2( ) ( ) ( )val p val p val p   3.36 

 2( ) 0.0val p   3.37 

 3( ) 1.0val p   3.38 

 4( ) 1.0val p   3.39 

In order to validate that the periodicity constraint is indeed satisfied, we compare the density 

profiles of matrix chains (in absence of grafted chains) in a system where PBCs are applied on 

all faces of the simulation box and in a system where Neumann BCs are applied with zero 

propagator flux. In these cases, we simply address a bulk polymer system and therefore the 

density profile of matrix chain segments must be equal to unity everywhere inside the domain, 

as we demonstrate in the following Figure 3.27. 
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Figure 3.27 Neumann vs periodic boundary conditions.  Reduced segment density profile of matrix chains in a bulk 

polystyrene melt obtained with periodic and Neumann boundary conditions with zero propagator flux. Profiles are 

plotted across the a) x, b) y, c) z axis to demonstrate that density assumes its bulk value everywhere, as it should. 

The size of the periodic box is equal to 1 × 2 × 3 nm
3
. 

 

In the following figures we present the segment density profiles of matrix and grafted chain 

segments in a system where the grafted nanoparticles are arranged in a (a) a bcc configuration 

and therefore each periodic cell includes 4 silica nanoparticles in polystyrene melt (illustrated in 

the following Figure 3.28a) and (b) a simple cubic-lattice configuration where each periodic cell 

includes 1 silica nanoparticle in polystyrene melt (illustrated in Figure 3.28b). 
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Figure 3.28 Demonstration of different nanoparticle configurations.  Illustration of the (a) body centerd cubic (bcc), 

(b) cubic configuration of polystyrene-grafted silica nanoparticles embedded inside melt of polystyrene chains. 

Nanoparticle radius is equal to RS = 2 nm. The size of the periodic box is equal to 8  8  8 nm
3
. 
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Figure 3.29 3D density profile of matrix chains for different particle configurations.  (a) bcc, (b) cubic arrangement 

of polystyrene-grafted silica nanoparticles. The length of the matrix and grafted chains is equal to Nm = 24 and Ng = 

48 skeletal carbon bonds, respectively. The grafting density is 0.5 chains/nm
2
. The radius of the nanoparticles is RS 

= 2 nm. The size of the periodic box is 8  8  8 nm
3
. 

 

Figure 3.30 3D density profile of grafted chains for different particle configurations.  (a) bcc, (b) cubic 

arrangement of polystyrene grafted silica nanoparticles. The length of the matrix and grafted chains is equal to Nm = 

24 and Ng =48 skeletal carbon bonds, respectively. The grafting density is 0.5 chains/nm
2
. The radius of the 

nanoparticles is RS = 2 nm. The size of the periodic box is 8  8  8 nm
3
. 

 

In the following Table 3-4, we report the free energy of the two different configurations (i.e., 

bcc vs cubic lattice). The free energy of the bcc lattice was found to be higher than that of the 

cubic lattice, which indicates that for this specific distance between the particles, the latter 

cannot tolerate the addition of another particle in the middle (i.e., transition from cubic to bcc). 
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For a lot of applications, this is good, since it means that, at equilibrium, the grafted particles do 

not want to form aggregates, but they rather want to stay away from each other. 

Table 3-4 Free energy per nanoparticle surface in the bcc and cubic nanoparticle configuration. 

Free energy per nanoparticle 

surface (mJ/m
2
) 

BCC CUBIC 

9.38 3.99 

 

3.9.2. Spherical Nanoparticles in Vacuum 

Using the Sanchez-Lacombe EoS, we can also run SCFT calculations in three-dimensional 

domains, where the solid particles and the chains grafted on their surfaces are exposed to 

vacuum. Using Helfand to describe polymer/vacuum interfaces is not an option, since it cannot 

lead to field convergence when no matrix chains exist in the system. It is noted that, even in the 

case of the SL EoS, the explicit presence of grafting points via non-smeared delta functions is a 

factor that creates numerical difficulties due to the logarithmic term that is present in eqs 2.12 

and 2.13, but eventually the field can converge at a fair speed.  

First, we present the structure of a polystyrene-grafted silica nanoparticle in contact with 

vacuum and then, as a proof of concept, we demonstrate the 3D density profiles of grafted 

chains in a periodic system of polystyrene-grafted silica nanoparticles in vacuum and arranged 

in a cubic lattice, as we did in the previous section where the silica particles where embedded in 

polystyrene matrix. In Figure 3.31 we present the density of grafted chain segments in 3D, when 

one polystyrene chain is grafted on the surface of the NP and exposed to vacuum, and when the 

same grafted NP finds itself inside polystyrene melt. In Figure 3.32, we present the 

corresponding projections of the 3D density profile of a grafted chain with length Ng = 96 (third 

column of Figure 3.31), along the radial direction, i.e., a line which emanates from the surface of 

the NP and ends at a corner of the periodic simulation box. As we show below, this is quite 

useful to predict how drastically the 3D configuration of a polymer chain changes when 

transferred from vacuum into homopolymer melt of the same chemistry. 
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Figure 3.31 Three-dimensional density profile of grafted chain segments in contact with vacuum or melt.  A single 

polystyrene chain is grafted on the surface of a silica NP. The length of the grafted chain assumes the values Ng = 

{24, 48, 96} skeletal carbon bonds, varying from left to right. The NP is either exposed to vacuum (SGV, first row) 

or embedded in polystyrene matrix (SGM, second row). The radius of the NP is 2 nm. In the SGM case, the length 

of the matrix chains is equal to that of the grafted chains, Nm = Ng. 

 

 

Figure 3.32 One-dimensional density profile of grafted chain segments in contact with vacuum or melt.  A single 

polystyrene chain is grafted on the surface of a silica NP. The grafted NP is either embedded in polystyrene melt 

(SGM, left panel) or exposed to vacuum (SGV, right panel). The length of the grafted chain is Ng = 96 skeletal 

bonds. The radius of the NP is RS = 2 nm. These profiles are projections of the corresponding three-dimensional 

profiles presented in Figure 3.31 (rightmost column, Ng = 96). The segment-depleted zone has a thickness equal to 

RS + hHS, where hHS = 0.4 nm, is the thickness of the Hamaker hard-sphere wall. In the SGM case, Nm = Ng = 96. 

 

Looking at Figure 3.31, we can see how different the configuration of the chain becomes 

when it is exposed to vacuum (equivalent to a poor solvent) as opposed to when it is in contact 

with matrix chains of the same chemistry (equivalent to a theta solvent). To be more specific, the 
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profile of grafted chain segments assumes a completely spherical shape in the SGV system, 

whereas in SGM chain segments seem to be more diffuse in space. This is an expected behavior, 

because the vacuum is considered to be a poor solvent for chain segments, which means that the 

interactions between segments and vacuum are quite unfavorable. Hence, the chain responds by 

miniming the surface area that is exposed to vacuum. Chain segments do not have a reason to 

get closer to the solid surface either, since the Hamaker interactions that we have employed for 

these calculations are extremely weak to attract the polymer segments. As a net result, the 

cohesion of the polymer dominates the structure of the chain and drives the segments to get as 

close to each other as possible. With increasing chain length, Ng (SGV row, from left to right), 

the radius of the sphere increases. 

On the contrary, in the SGM system, the interaction between grafted chain segments with 

those of the matrix is favorable, since they are chemically identical, thus the segments are 

thermodynamically allowed to explore more space in the three-dimensional domain. With 

increasing chain length (SGM row, from left to right), the grafted chain swells more towards the 

bulk, gradually reaching higher distances from the surface of the NP; in the case where Ng = Nm 

= 96 we can see that there are even grafted segments reaching the edge of the box. The 

difference in the configuration of the grafted chain is also reflected in the one-dimensional 

profiles of Figure 3.32, resulting from the projection of the corresponding three-dimensional 

profiles of Figure 3.31. 

In the following Table 3-5, we report the free energy, normalized with respect to the area of 

the NP, as a function of chain length, Ng, for the system of single NP grafted with one 

polystyrene chain embedded in polystyrene matrix (solid-grafted-matrix, SGM) and for the same 

particle exposed to vacuum (solid-grafted-vacuum, SGV). In Figure 3.33, we present a graphical 

representation of the chain length dependence of the free energy of the two systems. 

Table 3-5 Free energy in mJ/m
2
 of a silica NP grafted with one polystyrene chain.The NP is embedded in 

polystyrene matrix (SGM) or exposed to vacuum (SGV). In the SGM case, the length of the matrix chains is equal 

to that of grafted chains, Nm = Ng. The radius of the particle is RS = 2 nm. 

Ng 

 
SGM 

 
SGV 

ΓΩcoh/SS 

(mJ/m2) 

ΓΩfield/SS 

(mJ/m2) 

ΓΩm/SS 

(mJ/m2) 

ΓΩg/SS 

(mJ/m2) 

ΓΩ/SS 

(mJ/m2) 

ΓΩ  

(10–17 mJ) 

ΓAcoh/SS 

(mJ/m2) 

ΓAfield/SS  

(mJ/m2) 

ΓΩm /SS 

(mJ/m2) 

ΓAg/SS 

(mJ/m2) 

ΓA/SS 

(mJ/m2) 

ΓA  

(10–17 mJ) 

24 55.09 -42.84 1.44 0.40 14.09 70.82 -4.44 4.84 0.00 1.60 2.00 10.07 

48 54.65 -41.44 0.78 0.39 14.38 72.30 -9.36 9.89 0.00 2.42 2.95 14.83 

96 55.12 -41.41 0.46 0.39 14.56 73.20 -19.29 18.92 0.00 4.37 4.01 20.16 
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Figure 3.33 Free energy, in mJ/m
2
, of a silica NP grafted with one polystyrene chain. The NP is embedded in 

polystyrene matrix (SGM) or exposed to vacuum (SGV). In the SGM case, the length of the matrix chains is equal 

to that of grafted chains, Nm = Ng. The radius of the particle is RS = 2 nm. 

 

The first observation regarding the energies reported in Table 3-5 is that the free energy of 

the SGV system is quite lower than the energy of the corresponding SGM. At first, this seems to 

be unexpected, since one would argue that the cohesive interactions among polymer segments of 

the same chemistry would favor the incorporation of the grafted NP inside the polymer melt. 

Nonetheless, in this specific case, the lower energy of the SGV system can be explained by 

considering that we have addressed the edge case where the Hamaker interactions between chain 

segments and NP surface are extremely weak and, furthermore, only one chain is grafted on the 

surface of the particle. 

To be more specific, since only one polymer chain is grafted on the surface of the NP, which 

assumes a spherical configuration in shape in SGV as explained earlier, the area of interaction 

between polymer and vacuum is not so large as to raise the energy of the system. At the same 

time, in SGM, the area of interaction between grafted chain segments and the solid surface is 

quite larger. The solid, however, is practically equivalent to vacuum for the polymer segments, 

because the attraction exerted on them is negligible. These two phenomena explain why the total 

energy of the SGV system is lower than that of the SGM system in this limiting case examined 

here. Had the solid/polymer interactions been stronger and/or more chains been grafted on the 

surface of the NP (which would imply that larger area in total woule be exposed to vacuum in 

the SGV case), then the energy of SGM would indeed become lower than that of SGV. 

Instead of normalizing the free energy of SGV and SGM with respect to the surface of the 

NP, an alternative approach would be to normalize the total energy of the system (in the SGM 

case we need to add the contribution of the bulk, which is mainly entropic) with respect  to the 
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number of polymer segments in the system. In the following Table 3-6 and Table 3-7, we 

present the results of the approach for the SGV and SGM system, respectively. 

Table 3-6 Free energy in mJ/segment of a silica NP grafted with one polystyrene chain and exposed to vacuum. 

SGV 

# chains,  

ng 

segments per 

chain 

Ng 

ΓA/SS  

(mJ/m
2
) 

AG,bulk/SS  

(mJ/m
2
) 

A = ΓΑ + ΑG,bulk 

(10
–17

 mJ) 

Aseg = A/(ng∙Ng) 

(10
–17

 mJ/seg) 

1 24 2.00 0.0 10.07 0.42 

1 48 2.95 0.0 14.83 0.31 

1 96 4.01 0.0 20.16 0.21 

 

Table 3-7 Free energy in mJ/segment of a silica NP grafted with one polystyrene chain and embedded in 

polystyrene matrix. 

SGM 

# chains,  

ng + nm 

segments per 

chain, 

Ng = Nm = N 

ΓΩ/SS  

(mJ/m
2
) 

ΩΜ,bulk/SS  

(mJ/m
2
) 

Ω = ΓΩ + 

ΩΜ,bulk 

(10
–17

 mJ) 

Ωseg = 

Ω/[(ng+nm)∙Ng] 

(10
–17

 mJ/seg) 

1203 24 14.09 – 0.81 66.75 0.0023 

603 48 14.38 22.54 185.59 0.0064 

302 96 14.56 70.92 429.69 0.0148 

 

At this point, we need to remind the reader that the reference states correspond to a 

homogeneous system (grand potential, ΩM,bulk) of matrix chains of length Nm at temperature T, 

subject to a chemical potential, μΜNm, and occupying the same polymer accessible volume as 

the interfacial system, and a system of a single end-pinned and unperturbed (there are no 

interfaces) grafted chains of length Ng (Helmlholtz energy, ΑG,bulk) interacting with a bulk phase 

of matrix chains of length Ng at temperature T. In our code, we consider that AG,bulk = 0. 

Regarding the SGM system, we observe that Ωseg increases considerably with increasing chain 

length, despite the fact that the total number of segments Nm∙nm + Ng∙ng remains constant and, 

approximately, so does the quantity ΓΩ/SS. 

Regarding the SGV system, we observe that the free energy per segment decreases with 

increasing chain length, This can be explained by the fact that the size of the sphere which is 

formed in the SGV system (first row of ) increases with the number of segments of the grafted 

chain. When the size of the sphere increases, its volume rises faster than its surface, which 

practically means that the number of segments of the grafted chain that form a bulk region (and 

therefore have zero contribution to the energy of the system) rises faster than the number of 
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segments in the vacuum/polymer interface. Finally, we can see that the energies per segment of 

the SGM system are orders of magnitude smaller than the corresponding energies in the SGV 

system, which underlines the large cost in free energy that is associated with exposure of 

polymer segments to vacuum in the SGV case. 

Finally, in Figure 3.34 below we present the three-dimensional density profile of grafted 

chains in a cubic lattice configuration of polystyrene-grafted particles exposed to vacuum. All 

particles have a radius equal to RS = 2 nm and periodic boundary conditions are imposed on the 

edges of the simulation box. 

 

Figure 3.34 Three-dimensional density profiles of polystyrene chains grafted on the surfaces of silica particles 

arranged in a cubic lattice and exposed to vacuum. The length of grafted chains assumes the values Ng = {24, 48, 

96} skeletal carbon bonds and varies from left to right. The radius of all NPs is equal to RS = 2 nm. The lattice 

parameter is 4 nm and the coordination number of the lattice is 6. Periodic boundary conditions are imposed on the 

edges of the simulation box, and the surface of each NP inside the box is grafted with two polystyrene chains; this 

corresponds to grafting density, ζg = 0.3 nm
–2

. 
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4.SINGLE NANOPARTICLE CALCULATIONS 

In this chapter, we present our findings regarding systems of a single polystyrene-grafted silica 

nanoparticle. The particle is either embedded in polystyrene matrix or exposed to vacuum. As a 

reference, we begin by analyzing the thermodynamics of a bare (i.e., non-grafted) silica particle 

inside polystyrene melt. To investigate the structural properties of grafted chains and their 

impact on the free energy of the system, we systematically vary the molecular weight of grafted 

chains, the grafting density, the size of the particle and the strength of solid/polymer 

interactions. For the convenience of the reader, we present in Table 4-1 all the different systems 

addressed in this chapter. Furthermore, in Table 4-2 we report the values of all parameters 

required for our SCFT calculations. 
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Table 4-1 Explanation of symbols for the different interfacial systems and free energy contributions examined in 

this chapter.  Energy contributions are reported using the conventions: 
sys

aE  (system energy), 
sys

aE  (energy with 

respect to a reference system), 
*,o SGM SGV

s,a aG A    (solvation free energy). With S/sys sys

a aE S  we refer 

to the energy of the solid per unit area. The meaning superscripts (sys), subscripts (a) and symbol (E) is presented 

below. 

Superscript 

(sys)  
system 

Physical system for each geometry type 

spherical planar (Rs →∞) 

VM vacuum-matrix cavity/bubble 
free matrix surface 

MV matrix-vacuum droplet 

SM solid-matrix bare NP/matrix bare solid surface/matrix 

SGM solid-grafted-matrix grafted NP/matrix brush/matrix 

SGV solid-grafted-vacuum isolated grafted NP isolated brush 

M matrix bulk melt phase of matrix polymer chains 

A,bulk grafted isolated end-pinned and unperturbed chains in bulk melt 

 
      

Subscript (a) energy component equation   

 - total energy 2.38 or 2.44  

coh cohesion 2.39 or 2.45   

field field 2.40 or 2.46   

m 
translational entropy of 

matrix chains 
2.42 

  

g 
conformational entropy of 

grafted chains 
2.43 

  

S solid field 2.41   

  

Symbol (E) thermodynamic potential     

A Helmholtz free energy     

Ω grand potential     

G Gibbs free energy   

U internal energy     

H enthalpy     
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Table 4-2 Parameters of 1D-SCFT calculations. 

component parameter value source 

System T 500 K - 

ref, 0qh   0.05 nm 24 

gg, , 0i qh   0.05 nm 24 

Chain stiffness 
kb  1.83 nm 23 

C-Cl  0.154 nm - 

  0.829 3 

monomerm  52.08 g/mol - 

Hamaker 
HSh  ~0.4 nm 24 

PS  0.37 nm 23 

2SiO  0.30 nm 23 

PSA  5.84·10–20 J 23 

2SiOA  6.43·10–20 J 23 

ucSW 
CSW,HW –3.75 10–13 J/m3 

Fitted to WA = 38.8 

mJ/m2 from 104 

 
CSW,PW –5.88 10–13 J/m3 

Fitted to WA = 71.1 

mJ/m2 from 104 

 ζSW 1.28 nm - 

Sanchez-Lacombe ρ* 1105 kg/m3 70 

 P* 357 MPa 70 

 T* 735 K 70 

Square Gradient κ 0.2233·10–66 J m5  2 

Edwards Diffusion h  0.05 nm 24 

N  0.25 24 
tol

ifcw  10–6 B
k T  

24 

 

4.1. Bare surfaces exposed to melt 

4.1.1. Background 

4.1.2. Structure 

The present section investigates the thermodynamics of solid-matrix systems (SM) with varying 

strength of solid/polymer interactions and curvature. The strength of solid/polymer interactions 

in relation to the cohesion of the polymer dictates the tendency of the latter to wet the solid 

surface. The wetting degree can be classified as nonwetting (NW), low (LW), high (HW), and 

perfect wetting (PW).  

Figure 4.1a illustrates a spherical cell with radius RS exposed to a phase of matrix chains of 

length Nm and characterized by a chemical potential μmNm, with μm being the chemical potential 

per monomer unit of a matrix chain. In the presence or absence of solid/polymer interactions, the 

system corresponds to a solid/matrix (SM) or a vacuum/matrix (VM) interface, respectively. In 

Figure 4.1b, the solid surface has been grafted with g g gn  S  chains of length equal to Ng, with 
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ζg and Sg being the grafting density and surface area of the sphere, respectively. This system will 

be symbolized with SGM. In constrast, Figure 4.1c illustrates an isolated grafted NP, meaning 

that the NP and the chains grafted on its surface are exposed to vacuum; this system will be 

denoted by SGV. 

 

 

 

Figure 4.1 Demonstration of the kinds of interfacial systems that are addressed in this chapter.  Bead spring 

representation of (a) bare NP-matrix (SM) or vacuum-matrix (VM), (b) grafted NP-matrix (SGM), and (c) grafted 

NP-vacuum (SGV) systems. The solid core of the spherical NP has radius RS. Green/orange beads depict segments 

of matrix/grafted chains. The density profiles of matrix (green), grafted (orange) and total (black) segments in (d), 

(e) and (f) correspond to the systems in (a), (b) and (c), respectively. The dotted curves mark the position of 

grafting points (g, orange), and the edge of the solid sphere (s, black). The dashed curves illustrate the location of 

characteristic interfaces across the domain (e.g., SM, SG, GM, GV). The black dotted lines represent the 

boundaries on which Dirichlet BCs are imposed with propagator value equal to unity, corresponding to bulk 

conditions. 

 

The system of Figure 4.1a is discussed in the current Section 4.1, of Figure 4.1b in Section 

4.2 and that of Figure 4.1c in Section 4.3. Ri symbolizes the distance between the center of the 

sphere and a characteristic interface i; e.g., i = g, s, SG, GM, etc. as shown in Figure 4.1. The 

way interfaces are drawn on the basis of the continuous density profiles obtained by SCF is 

explained in Section 4.3. The distance between any point r and the surface of the NP along the 

radial direction is denoted by S Sh R r R   r . Likewise, the distance between an interface i 

and the edge of the spherical core is defined as: 
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 Si ih R R   4.1 

and its corresponding surface area as: 

 
24i iRS  4.2 

In addition, the number of grafted segments per NP area will be denoted as: 

 
2

g,seg g g g G,g2

C-C

6
N R

C l
  



   4.3 

with C being Flory’s characteristic ratio, lC-C the length of a skeletal carbon-carbon bond along 

the polymer chain, and RG,g the unperturbed root mean squared radius of gyration of a grafted 

chain. It is noted here that the term ζgRG,g
2
 is a common threshold value to characterize brush 

conformations.  

Under non-wetting (NW) conditions (the reader is referred to Table 2-2 in Section 2.2.3), the 

polymer does not experience any forces from the solid and the interface is equivalent to a 

vacuum-matrix one (nonwetting). In LW, the solid/polymer interactions are described by the 

Hamaker potential17 presented in Section 2.1.5, which yields low wetting when applied in our 

model (θc 158.9
○
, see Section 2.2.3). In the HW and PW systems, in addition to the Hamaker 

potential, the polymer
28

 segments interact with the ucSW potential of eq 2.34 (Section 2.1.5.5), 

which has been fitted to yield the experimentally measured work of adhesion.
81

 

 

 

Figure 4.2 Density profiles for different particle radii and solid wetting degree.  (a-d) Density profiles of NW, LW, 

HW and PW systems in Table 2-2 for RS = {5: red, 20: blue, 80: green, 320: purple, 1280: orange, 5120: brown and 

∞: pink} nm. Colors vary in the direction of blue arrows. The vertical dashed line depicts the position of the 

imposed hard sphere wall, hHS 0.4 nm. 

 

The density profiles corresponding to different wetting conditions are illustrated in Figure 

4.2a-d as a function of curvature. According to numerous atomistic simulations,
36,105–107

 

repulsive solid/polymer interactions lead to the emergence of a depletion zone near the solid.  

Excluded volume repulsion at short distances from the solid is modeled here by a hard sphere 
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wall, represented by the blue vertical dashed lines in Figure 4.2a-d. The profiles shift toward the 

bulk or the solid phase depending on the strength of solid/polymer interactions. The shift is 

attributed to a complex interplay between three factors: (1) tendency of the interface to minimize 

its surface area assuming a curved shape, (2) entropic penalty associated with chain 

confinement, and (3) enthalpic gain from the solid/polymer interactions (in the cases of high and 

perfect wetting). 

Mechanism (1) can be understood as follows: Let there be two (infinitely) sharp 

vacuum/polymer interfaces at distance R1 and R2 > R1 from the center of an imposed cavity with 

radius RS ≤ R1. The area of the first interface (
24i iRS ) is smaller than that of the second by a 

factor (R1/R2); hence, it has a lower surface free energy and is more stable. As a result, the stable 

solution corresponds to R1 = RS. 

Realistic polymer profiles are not infinitely sharp. In fact, as the length of the chains 

increases, the entropy associated with bonded interactions along the chain contributes to the 

smoothness of the profile. A chain segment at the edge of the film experiences a net force 

toward the bulk phase from its interchain neighbor segments. The net force becomes zero in a 

situation where a segment and its neighbors reside in the same plane, which means that the chain 

is oriented paraller to the edge of the film, corresponding to an improbable configuration. This 

entropic factor resists the collapse of the interface at RS and pushes the chain segments toward 

the bulk phase (mechanism (2)). It is observed from Figure 4.2a that this mechanism prevails 

under nonwetting conditions and at lower curvature. 

Regarding mechanism (3), the enthalpic gain from the solid/polymer interactions, in relation 

to the cohesive segment-segment interactions, increases with increasing RS. Larger NPs exert 

stronger attraction on the polymer segments. As a result, the interface tends to shift toward the 

solid with increasing RS. 

The interplay between mechanisms (1) and (2) is demonstrated by the profiles of the NW 

system in Figure 4.2a, which is equivalent to a vacuum/matrix (nanobubble) system. Indeed, the 

interface shifts toward the cavity with decreasing RS, since the tendency to minimize the surface 

area surpasses the entropic penalty of chain confinement. 

In the LW system (Figure 4.2b), the enthalpic solid/polymer interactions (albeit weak) 

counterbalance the entropic penalty with increasing RS, and as a result, the position/shape of the 

profiles is about constant, i.e., independent from RS. The trend is reversed in the HW and PW 

systems (Figure 4.2c,d), wherein the profiles shift toward the solid with increasing RS and 
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become more pronounced; it is notable that the profile of the PW system develops a peak at 

large RS. We remind the reader that it is not straightforward to capture with an SCF treatment the 

layering effects seen in atomistic simulations; rather, smoothed density profiles are obtained in 

most cases. If one wishes, one can reproduce the layering effects by appropriately tuning the 

field exerted by the solid, e.g., via Boltzmann inversion (e.g., see Figure 2.10).
76

 

In the extreme situation of very small RS, the profiles become about the same for all cases 

(NW, LW, HW, and PW) both position- and shape-wise. The solid/polymer interactions are 

mitigated as the NP radius decreases and it is eventually experienced as a cavity (e.g., compare 

Figure 4.2a-d for RS = 5 nm. 

 

 

4.1.3. Thermodynamics 

Figure 4.3 presents the free energy per NP area (
SM SM

S/   S ) for each system in Table 

2-2.  In the limit RS → ∞, Γγ
SM

 plateaus to the interfacial free energy of the planar solid/polymer 

interface.
2
 The hyperbolic-like dependence at low RS is attributed to the mismatch between the 

actual position of the SM interface and the edge of the sphere, based on which we have 

normalized the total free energy, e.g., compare RS with RSM in Figure 4.1a,d. As a result, Γγ
SM

 is 

larger than the actual interfacial free energy by a factor  
2

SM S/R R . 

By normalizing the free energy with respect to the area of the SM interface, we can derive 

the adhesion tension of an SM as follows: 

  
2SM

SM SV SM SM S
adh 2

SM SM

R

R
   


     

S
 4.4 

under the approximation that the solid is incompressible.
108

 Similarly, the surface tension of the 

VM (or MV) interfaces can be calculated as: 

 

2VM
VM VM S

2

VM VM

R

R
 


  

S
 4.5 

It is noted here that in the NW case, where the solid does not exert any potential on the 

polymer segments (ζ
SV

 = 0), the solid is experienced as a vacuum phase, and thus, 

SM SM VM

adh     . 
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Figure 4.3 Adhesion tension as function of the wetting degree and particle radius.  (a) Free energy per NP core area, 

SM SM

S/   S , and (b) negative of the adhesion tension,  SM SV SM

adh
      , for the aforementioned 

systems. The horizontal dotted lines depict the limiting values corresponding to planar solid surfaces. In all cases, 

the chain length of matrix chains is equal to Nm = 768 skeletal carbon bonds. 

 

In planar geometries (large RS), the position of a vacuum/liquid interface can be defined as 

the position R0.5, where θ(R0.5) = 0.5.
2,72

 This concept can be generalized to curved geometries in 

terms of the radius Rαβ,eq of the Gibbs equimolar dividing surface, which, for two phases α and β 

in contact, satisfies the integral presented in eq 4.6 below. 

 2 ,

0

( ) 0r r dr  


     4.6 

where 

 
,eq,

,eq

,

,

r R

r R



 










 
 



 4.7 

with ρα and ρβ being the bulk densities of phases α and β, respectively.
109

 Dividing the grand 

potential by 
2

,eqR  leads to ―scale invariant‖ surface energies, whereas additional first-order 

corrections can be introduced in terms of the Tolman length.
109,110

 The curvature affects the 
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position of the equimolar dividing surface in a different manner when applied to convex (MV 

system, droplet) or concave (MV, cavity) interfaces. RMV,eq (RVM,eq) shifts towards the gas (bulk) 

phase relative to R0.5 when applied to convex (concave) interface. 

Figure 4.3b illustrates 
SM

adh  for each system in Table 2-2 as a function of RS. For each case, 

RSM has been estimated based on the Gibbs equimolar dividing surface, applied to either VM or 

SM interfaces (eqs 4.6 and 4.7). For RS < 10 nm, ζ
VM

 becomes slightly lower than its value for 

the planar system ( 28.0 mJ/m
2
),

2,28
 indicating that the approximation of the Gibbs dividing 

surface becomes insufficient.
109

 For that reason, first-order corrections are introduced based on 

the Tolman length, which is equal to the distance between Req and the surface of tension and is 

usually on the order of few molecular diameters.
111,112

 

The LW interface exhibits similar behavior to NW across the full RS range, because the 

solid/polymer interactions are weak. On the contrary, the HW and PW systems exhibit a rather 

rich behavior. For RS < 100 nm, 
SM

adh  departs from its planar value, whereas at RS 1-2 nm, it 

becomes positive. The change in sign below a specific NP radius indicates that the 

polymer/polymer cohesive interactions become stronger than the solid/polymer ones. Finally, in 

the extreme case of very small NPs, the free energies converge to that of the vacuum/matrix 

system; this effect is also reflected by the fact that the density profiles in Figure 4.2a-d are 

practically identical for RS = 2 nm. 



Chapter 4. Single Nanoparticle Calculations  

 

106 

 

Figure 4.4 Macroscopic work functions with varying wetting degree and particle radius.  (a) Work of adhesion, (b) 

work of spreading, and (c) contact angle of the LW, HW, and PW systems with Nm = 768 (384 styrene units per 

chain) at 500 K (see Table 2-2), as functions of the core radius RS. The surface tension of a planar melt surface is 

equal to 27.93 mJ/m
2
. Horizontal dotted lines depict limiting cases corresponding to planar geometries and equal 

experimental values from ref 
81

. 

 

WC is the free energy of two free polymer surfaces and is equivalent to the evaluations in 

Figure 4.3b for the NW interface  SV SM VM

adh0,     . WI is equivalent to minus the Gibbs 

solvation free energy per unit area. Since 
SM

I adhW  , it can be inferred from the evaluations in 

Figure 4.3b for the LW, HW, and PW cases. WA is the reversible work required to separate the 

polymer melt from the solid surface. As shown in Figure 4.4a, it assumes its maximum value in 

the limit of large NPs, corresponding to the experimental HW and PW systems from ref 
81

, 

denoted by the dotted lines. With increasing RS, it is easier to separate the polymer from the 

solid (WA decreases), and in the limit RS → 0, zero work is required for the separation. 

WS describes the tendency of a melt to spread on a surface. Positive values indicate 

spontaneous spreading across the surface (imaginary contact angle, θc). Negative values indicate 
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partial or no spreading (0 ≤ θc ≤ 180
○
). WS and the corresponding θc in Figure 4.4b,c suggest a 

rather complex behavior with respect to curvature. For example, in the most strongly interacting 

solid/polymer interface (PW), the polymer wets the solid spontaneously for RS > 3 nm (WS > 0, 

imaginary θc), whereas with decreasing RS, the wetting tendency gradually decreases from high 

to low and eventually to nonwetting for very small NPs. 

The aforementioned results and insights conform with findings of molecular dynamics 

simulations that report enhanced adhesion on soft surfaces with increasing NP size.
113,114

 In 

addition, experiments based on the capillary rise method applied on magnetic micropowders
115

 

demonstrate that θc is indeed a decreasing function of RS, as presented in Figure 4.4c.
116

  

 

4.1.4. Concluding remarks 

In this section, we examined the case of a bare NP embedded inside the polymer melt. This 

system serves as a reference for the limiting case where the grafting density and/or length of 

grafted chains is extremely small. Three mechanisms govern the position of the profile relative 

to the solid surface. The first mechanism is related to the size of the NP; the larger the curvature, 

the closer the polymer profile gets to the solid surface. The second mechanism is related with the 

conformational entropy of each polymer chain. With increasing chain molecular weight, chains 

are pushed towards the bulk polymer region. The third mechanism prevails for strong 

solid/polymer interactions; when these interactions are getting stronger in relation to the 

cohesion of the polymer itself, then the polymer segments are pulled towards the solid. 

We compared the thermodynamics of the bare solid/polymer system with experimentally 

measured work functions and for various solid curvatures, ranging from flat surfaces to very 

small particles. In the spherical cases, a proper renormalization of the free energy of the system 

was required with respect to the area of the interface. To this end, we generalized the notion of 

the Gibbs equimolar dividing surface for spherical geometries. The main finding here was that 

the experimentally measurable properties of any solid/polymer interface (here it was silica-

polystyrene) are deviating from those of the corresponding flat interface, when the curvature of 

the solid is high and the solid/polymer interactions are strong. 
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4.2. Grafted nanoparticle inside a polymer matrix 

4.2.1. Background 

We say that the matrix chains wet the grafted polymer brush when they are able to interpenetrate 

with grafted chains and therefore access the space occupied by the polymer brush. Such a 

situation leads to a well-dispersed set of NPs. It has been seen that, in most cases, matrix chains 

are able to wet the brush, when their molecular weight is less than that of the grafted chains.
22

 

Depending on the grafting density, when matrix chains are longer than the grafted chains, it is 

harder for them to penetrate into the interfacial region due to the higher entropy loss they 

experience (autophobic dewetting).  

Various studies employing particle-based simulation methods exist in literature addressing 

nanoparticles in a polymer melt
117–119

 or solution, as well as isolated NPs.
120–122

 Dissipative 

Particle Dynamics (DPD)
123

 and Density Functional Theory calculations addressing systems of 

polymer brushes are also reported. Vogiatzis et al.
23

 devised a hybrid particle-field approach 

called FOMC (Fast Off-Lattice Monte Carlo), which is a coarse-grained class of Monte Carlo 

simulations, where the nonbonded interactions are described by a mean-field inspired 

Hamiltonian. 

 

4.2.2. Validation against FOMC 

The following Figure 4.5 depicts the reduced radial segment density profiles of matrix and 

grafted chains from Fast Off-Lattice Monte Carlo (FOMC) simulations, SCFT/SL and SCFT/SL 

+ SGT. Beyond a certain distance from the solid surface, our SCF model results in practically 

identical radial segment density profiles to those obtained by FOMC. This is true for both the 

Helfand and the Sanchez-Lacombe Hamiltonian. 
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Figure 4.5 Comparison of SCFT with FOMC in deriving density profiles of grafted chains. Radial segment density 

distribution for matrix (m) and grafted (g) chains on a NP with RS = 8 nm, from FOMC
23

 (top), SCFT with HFD 

(middle), and SCFT with SL + SGT (bottom). In panels (a-c), Mg = 20 kg/mol, Mm = 100 kg/mol, and ζg varies 

from 0.2 to 1.1 nm
–2

. In panels (d-f), ζg = 0.5 nm
–2

, Mm = 100 kg/mol and Mg varies from 10 to 70 kg/mol.  

 

Nevertheless, there is a discrepancy near the surface of the NP, which could be related to the 

fact that unidimensional SCFT cannot describe the packing of chain segments or the anchoring 

of grafted segment at discrete points close to the solid surface, while FOMC invokes not an 

atomistic, but rather a coarse-grained model. Another observation is that the SCFT/SL + SGT 

model provides smoother radial density profiles for grafted chain segments in comparison to 

FOMC or SCFT/HFD. This mainly has to do with the incorporation of the square gradient term 

in the description of the nonbonded interactions, which does not affect the long-ranged segment 

interactions, but the smoothness of the density profiles in the region near the solid surface. 

Furthermore, SCFT features a depletion region ranging from the solid surface up to a distance 

equal to hHS = 0.4 nm (the position of the aforementioned hard-sphere wall), wherein the 

repulsive interactions from the Hamaker potential are very strong. 

It is underlined at this point that the density profiles obtained via the SCFT/SL + SGT model 

are closer to the corresponding ones obtained from atomistic molecular dynamics simulations 
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than FOMC.
36,105–107

 If the oscillations of the atomistic density profiles are averaged out, then 

the smeared analogues from atomistic MD come out quite close to the density profiles of 

SCFT/SL + SGT in terms of the position of the peak and the width of the depletion zone near the 

solid surface. 
36,105–107

 Interestingly, the peak of the density profiles appears to become less 

pronounced in atomistic simulations with increasing grafting density, presumably due to 

excluded volume effects.
36,107

 

 

4.2.3. Radial density profiles from the SL EoS: exploration of RS, σg, Mg parameter space 

Figure 4.6 presents the reduced segment density profiles of grafted and matrix chains across the 

(RS, ζg, Μg) parameter space. In all cases, grafted and matrix chains have the same molar mass, 

Mm = Mg. 

 

Figure 4.6 Density profiles as functions of molecular weight, grafting density and particle radius.  Density profiles 

of grafted (solid lines) and matrix (dashed lines) chains with molar mass Mg = {1.25: red, 2.5: blue, 5: green, 10: 

violet, 20: orange, 40: brown, 80: pink} kg/mol. In all cases, Mm = Mg. Legend in rectangles: RS (nm), ζg (nm
-2

). 

 

Overall, the density profiles of grafted chains expand with increasing ζg, Mg, and RS. 

Concerning the latter parameter, with increasing particle radius (i.e., decreasing curvature), the 

grafted chain segments have less available space to explore near the surface, so they experience 

crowding and extend further towards the bulk phase of the polymer. In general, the density 

profiles exhibit a rather rich behavior which could be classified into three distinct regimes: 
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(i) Mushroom regime. In the region of low ζg, Mg, and RS, the radial density profiles of the 

grafted chains become very suppressed and their peaks are much lower than the bulk density. 

That the grafted chains are short and the distance between them is relatively large implies that 

they cannot experience the presence of each other. In other words, the density distributions of 

individual chains do not overlap and therefore chains tend to form mushroom-like 

configurations.
124

 This effect is expected to be more pronounced at small RS, since chains would 

have more available space thanks to the increased curvature. On the other hand, matrix chains 

can readily penetrate the brush and reach the surface of the NP.  

(ii) Dense brush regime. With increasing ζg, Mg, and RS, the density profiles become more 

pronounced and feature extended regions with bulk densities; e.g., see Figure 4.6 for ζg ≥ 0.8     

nm
–2

 and RS ≥ 64 nm. Towards the bulk phase, the density profiles feature a characteristic 

sigmoid shape
2
 suggesting stretched brushes. The profiles of matrix and grafted chains intercect 

at reduced densities: m g 0.5  . The presence of chemically grafted chains on the particle 

surface inhibits the penetration of matrix chains into the solid/polymer interfacial region and the 

strength of this exclusion of matrix chains increases with increasing ζg, Mg, and RS. 

(iii) Crowding regime. In the case of extremely high grafting densities (ζg ≥ 1.6 nm
–2

) and 

low curvatures (e.g., RS ≥ 64 nm), the crowding experienced by the grafted chain segments 

reaches a level where their densities slightly exceed the bulk density (see dashed grey line in the 

plots of Figure 4.6). In other words, the compressing forces imposed by the stretching of grafted 

chains overcome the tendency of the equation of state to maintain bulk density; hence, density 

exceeds this level. In this regime, matrix chains are completely unable to reach the surface of the 

NP, even for the shortest grafted chains (Mg = 1.25 kg/mol). 

In Figure 4.6 and for given grafting density, ζg, and NP radius, RS, the edges of the density 

profiles are shifted by about a constant amount along the abscissa (especially when the system is 

driven towards the crowding regime), whenever the molecular weight of grafted chains, Mg, is 

doubled; this effect becomes more pronounced with increasing RS. Given that the density 

profiles are presented in semi-log plots, this observation leads to the conclusion that the edges of 

the profiles follow a power-law with respect to Mg, for constant ζg and RS. The scaling exponent 

of this power-law exhibits a complicated dependence on ζg and RS, as we demonstrate in Section 

4.2.7. 

In Figure 4.7, we present the total segment density profiles of polystyrene (i.e., sum of 

grafted and matrix chain segments), when in contact with a silica surface. Even though the total 

profiles are practically insensitive to Mg (except under very crowded conditions), they slightly 
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increase near the silica surface with increasing ζg and deviate from unity across the brush region, 

under conditions of intense segment crowding. 

 

Figure 4.7 Total density profile as function of molecular weight, grafting density and particle radius.  Total 

segment density profiles for grafted chain molar mass equal to Mg = {1.25: red, 2.5: blue, 5: green, 10: violet, 20: 

orange, 40: brown, 80: pink} kg/mol. In all cases, Mm = Mg. Legend in rentangles: RS (nm), ζg (nm
–2

). The dashed 

line, θ = 1, is a guide to the eye. The little blip at h = 0.44 nm is caused by the grafting poins.  

 

 

 

 



4.2. Grafted nanoparticle inside a polymer matrix  

113 

4.2.4. Density profiles of adsorbed polymer segments 

Chain segments cannot propagate against the solid surface. Consequently, their conformations 

are dictated by configurational entropy effects different from those prevailing in the bulk 

polymer melt. In addition, the presence of the NP (or planar surface) creates an attraction of 

chain segments (which belong either to matrix or grafted chains) towards the solid surface. The 

strength of this interaction, in relation to the cohesive interactions of the polymer, determines the 

wetting behavior of the polymer melt on the solid surface. Low, moderate and high energy 

surfaces lead to low, high (e.g., treated silica
81

) and perfect (e.g., untreated silica
81

) wetting 

conditions, respectively, which may affect the local configurations of grafted and matrix chains, 

in comparisons to configurations that would be dictated by purely entropic phenomena. 

In order to investigate these effects, a distinction is made between ―adsorbed‖ and ―free‖ 

chains. By definition, grafted chains are adsorbed, therefore the aforementioned distinction 

concerns primarily the matrix chains. The value of the characteristic distance of closest approach 

to the NP surface, below which a matrix chain is considered to be adsorbed, is set at hads = 1.28 

nm. This is the starting point of the tail of the Hamaker potential emanating from the solid, i.e., 

where the Hamaker potential assumes a value equal to B0.005k T . It should be emphasized at 

this point that the distinction between adsorbed and free chains is not based on chain dynamics, 

but rather on a geometric criterion revealing the tendency/ability of matrix chain segments to 

penetrate the brush and experience the potential exerted by the solid surface.  

The reduced density of free matrix chain segments can be derived from the convolution 

integral of eq 4.8. 

 
m

free free free

m m m m

m 0

1
( ) d ( , ) ( , )

N

Nq N q N N
N

  r r r  4.8 

where 
free

mq  is the propagator of the free matrix chains, following the discussion in Section 3.4.4. 

Subsequently, the reduced density of segments belonging to adsorbed matrix chain segments is 

obtained as in eq 4.9 below. 

 
ads free

m m m( ) ( ) ( )   r r r  4.9 
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Figure 4.8 Adsorbed and free segment density profiles as functions of molecular weight, grafting density and 

particle radius.
ads

m (solid lines) and 
free

m (dashed lines) profiles of adsorbed and free matrix chains with molar 

mass equal to Mm = {1.25: red, 2.5: blue, 5: green, 10: violet, 20: orange, 40: brown, 80: pink } kg/mol. In all cases, 

Mg = Mm. Legend in rectangles: RS (nm), ζg (nm
–2

). 

 

Figure 4.8 presents the reduced density profiles of free (
free

m ) and adsorbed (
ads

m ) matrix 

chains across the (Mg, ζg, RS) parameter space. The profiles of segments belonging to free chains 

assume a value equal to unity in the bulk region, while going by definition to zero when 

approaching at distance equal to hads from the solid surface. According to Figure 4.8, matrix 

chains can easily penetrate the brush in the mushroom regime. With increasing ζg and RS, matrix 

chains experience noticeable resistance in penetrating the region occupied by grafted chains, 

while 
ads

m 0   upon transitioning to the crowding regime. 

 

4.2.5. Chains per area density profiles 

The mathematical definition of this structural property is given in Section 3.4.5. At this 

point, for the sake of comparison, we define a reference chain which obeys the Gaussian chain 

model and has infinite length. Given this definition, the reference chain will cross any shell-

surface at least once. Hence, and since the number of grafted chains equals 
2

g g S4n R  , the 

number of these reference chains passing through a surface separated by h from the surface of 

the solid per unit area of that surface is given by eq 4.10. 
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2

gref S
ch,g g2

S S4 ( )

n R
n

R h R h




 
   

  
 4.10 

In Figure 4.9a, we present nch for matrix and grafted chains, while Figure 4.9b illustrates the 

normalized number nch,g/ζg for the grafted chains across the considered parameter space (RS, ζg, 

Mg). In both panels, the corresponding 
ref

ch,gn  are represented by dotted lines. In the flat geometry 

case, 
ref

ch,g gn  throughout the whole domain, while for finite curvatures, 
ref

ch,gn decreases with 

distance from the surface according to eq 4.10, and this is reasonable, since the polymer chains 

enjoy more available space to diffuse. 
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Figure 4.9 Chains per area profiles for various molecular weights, grafting densities and particle radii.  Profiles of 

(a) nch of matrix (dashed lines) and grafted (solid lines), (b) nch/ζg of grafted chains. Molecular weight of grafted 

chains is equal to Mg = {1.25: red, 2.5: blue, 5: green, 10: violet, 20: orange, 40: brown, 80: pink} kg/mol. In all 

cases, Mg = Mm. Legend in rectangles: RS (nm), ζg (nm
–2

). The dotted lines depict 
ref

ch,g g/n  for the reference chain 

from eq 4.10. The horizontal dashed lines denote the grafting density. 

 

The behavior of the chains/area profiles with increasing grafting density or molar mass is 

consistent with the reduced density profiles of Figure 4.6. For low NP radius, the chains/area 

profiles are insensitive to grafting density, a picture that is consistent with the mushroom regime. 

Higher grafting density or molar mass leads to gradual extension of grafted chains towards the 

bulk region and a simultaneous exclusion of matrix chain segments from the solid/polymer 
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interface. For larger NPs and grafting densities, the crowding phenomena inside the interfacial 

region intensify and push the grafted chain segments further towards the bulk region.  

As expected, in the planar geometry case, the number of grafted chains per area on the 

surface of the solid equals the grafting density throughout a broad region of the profile and starts 

to deviate upon approaching the region where ends terminate, where the number of grafted 

chains per area decreases. It is also noted that, since the hard sphere wall is located at 0.4 nm 

from the solid surface, the maximum nch,g assumed by the chains is 
2 2

ch g NP NP HS/ ( )n R R h  , 

albeit nch = ζg upon extrapolation towards h → 0. 

 

4.2.6. Chain end segregation at the interface 

As already discussed in Section 3.4.3, the reduced density of the N
th

 segment, θc,N, of a chain of 

type c and located at r can be retrieved by eq 3.6. Normalizing this quantity with the 

corresponding density in the bulk phase (
bulk

, 1/c N cN  ; since q = 1 in the bulk), we obtain a 

quantity of particular interest, which denotes the tendency of a region to attract or repel 

particular segments.  

Figure 4.10 depicts the reduced density profiles of the end segments of grafted and matrix 

chains across the investigated parameter space. As expected, the density of free ends of grafted 

chains increases with increasing grafting density, ζg, as well as with increasing RS, since there is 

less space for the grafted chains to develop their conformations. With increasing grafting 

density, the profiles of chain ends are shifted towards the bulk region. In the crowding regime, 

where ζg and RS are high, chain ends are segregated far from the solid surface, suggesting that 

grafted chains are stretched. These profiles resemble those obtained for incompressible brushes, 

such as those in ref 
125

, and with the more extreme case of Alexander model.
126,127

 In the latter 

case, all chain ends are by definition concentrated at the edge of the brush, hedge, the position of 

which is denoted by the vertical dotted lines in Figure 4.10 (Appendix A). 
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Figure 4.10 Chain-end density profiles for different molecular weights, grafting densities and particle radii.  Chain-

end density profiles, θend, of grafted (solid lines) and matrix (dashed lines) chains with molar mass equal to Mg = 

{1.25: red, 2.5: blue, 5: green, 10: violet, 20: orange, 40: brown, 80: pink} kg/mol. Vertical dotted lines illustrate 

predictions for the position of chain ends from Alexander model for the corresponding Mg, ζg and RS. In all cases, 

Mg = Mm. Legend in rectangles: RS (nm), ζg (nm
–2

). 

 

In the mushroom regime, the chain ends from Alexander model are segregated much closer 

to the solid wall as compared to our SCFT model. This is attributed to the following factors: 

(i) The Alexander model requires constant segment density of the grafted polymer and equal 

to the bulk melt; therefore, in the mushroom regime, where interpenetration of matrix and 

grafted chains becomes significant, it needs to squeeze the profiles of grafted chain segments in 

order to maintain the bulk density and conserve the amount of material at the same time. 

(ii) The segments in our SCFT model experience an additional repulsive interaction which is 

modeled by a hard-sphere wall located at hHS  0.4 nm. 

Clearly, the Alexander model with fixed density is not appropriate to describe the mushroom 

regime and, more generally, regimes where the matrix chains can penetrate the brush. 

Nevertheless, it is expected to perform very well under poor solvent conditions (e.g., polymer-

vacuum interfaces), which lead to a collapsed brush across the solid surface. 

 

4.2.7. Scaling of grafted polymer layers 

Extensive research has been conducted to understand the behavior of polymer brushes in terms 

of their configurations near and far from the grafting surface.
18,19,50,88,128,129

 The expansion of the 
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grafted polymer chains exhibits a complicated behavior with respect to ζg, Mg and RS. In this 

section, an analysis is performed to elucidate the behavior of the mean brush thickness, 
1/2

2

gh , 

when these parameters are varied. Brush thickness is directly related to the density profiles 

presented in Section 4.2.3 of the present thesis.
130

 For details regarding the calculation of the 

brush thickness, the reader is refered to Section 3.4.2. 

The scaling behavior of polymer brushes shows quite a similar behavior to star polymers. 

According to Daoud and Cotton,
131

 the radius of a star polymer (Rstar) in a solvent exhibits a 

power-law dependence of the form: star star star

n m kR N f v , where Nstar is the number of segments 

constituting a branch, fstar is the number of branches, v = 0.5 – τ is the monomer excluded volume 

parameter, τ is the Flory-Huggins parameter
60

 and n, m, k are the corresponding scaling 

exponents.
60,132,133

 Daoud and Cotton
131

 classified the behavior of stars into three distinct 

regimes:  

(i) 
1/2 2

star starN f v
: 

3/5 1/5 1/5

star star star kR N f v b  

(ii) 
1/2 2 1/2

star star starf v N f
: 

1/2 1/4

star star star kR N f b  

(iii) 
1/2

star starf N : 
1/3 1/3

star star star kR N f b  

with bk being the Kuhn length. By substituting fstar → ζg and Νstar → Mg, and by ignoring the 

influence of the core of the NP to the brush, the model by Daoud and Cotton
131

 could be applied 

to describe the scaling of polymer brushes via the following eq 4.11. 

 
1/2

2

g g g g

n mh M l  4.11 

where lg is a coefficient with dimensions (kg mol
–1

)
–n

 nm
2m+1

. 

It should be noted here that the first regime of the Daoud & Cotton model, 
1/2 2

star starN f v
, 

cannot be addressed through our calculations, since the latter are performed in melt conditions 

(equivalent to theta solvent conditions), where the Flory-Huggins parameter, τ, is equal to 0.5 

and therefore the quantity v
–2

 goes to infinity (excluded volume parameter, v, is equal to zero). 

Another important difference between Daoud and Cotton’s model and ours is that, in NPs, the 

grafted chains emanate from different grafting points, whereas in star polymers, chains emanate 

from the same point. Hence, under theta or good solvent conditions and for large curvatures, 

grafted chains will not interact with each other and the dependence of brush height on grafting 

density will be weak. The situation might be different under poor solvent conditions, where the 

brushes are partially or fully collapsed (depending on how large the parameter τ is). 
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Figure 4.11 illustrates brush height evaluations for NPs with RS = 8 nm, obtained from SCFT 

calculations with RuSseL,
76

 from FOMC (blue ―+‖) and from small angle neutron scattering 

(SANS)
134

 measurements (red ―×‖). Overall, eq 4.11 can describe accurately the scaling of PS 

brushes grafted on SiO2 NPs with radius equal to 8 nm, since both 
1/2

2

gh  and 99%h  appear to 

obey the scaling 
0.5 0.25

g gM  . It is observed that evaluations from SCFT appear shifted with 

respect to FOMC. This is attributed to that in FOMC, the increased density near the solid 

surfaces increases the weight of smaller hg in the integration of eq 3.4; thus, it leads to decreased 

overall 
1/2

2

gh . In addition, 
g

1/2
2

g
0

lim 0
M

h


 in RuSseL, since the length of grafted chains goes 

to zero. For the same reasons, h99% points obtained with RuSseL lie slightly higher than FOMC 

and SANS values, while the minimum value of h99% is equal to the radius of the NP. 
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Figure 4.11 Daoud and Cotton scaling law for brush thickness.  Evaluation of (a) h99% and (b) 
1/2

2

gh  as a 

function of Mg
0.5

ζg
0.25

 for RS = 8 nm, from FOMC (+),
23

 SANS measurements (×),
134

 and SCFT/RuSseL: in the latter 

case, colors denote chains with molar mass Mg = {1.25: red, 2.5: blue, 5: green, 10: violet, 20: orange, 40: brown, 

80: pink } kg/mol, and shapes denote different grafting densities, ζg = {0.1: , 0.4: O, 0.8: ◇, 1.2: △, 1.6: ☆} nm
–

2
. Dashed lines are guides to the eye. 

 

In the following, we test the scaling laws proposed by Daoud and Cotton across the full 

parameter space explored herein. Figure 4.12 displays evaluations of 
1/2

2

gh plotted versus the 

quantity Mg
0.5

ζg
0.25

 and for NP radius equal to 1, 4, 16 and 64 nm, as well as for flat surfaces, 

and for various Mg and ζg. 
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Figure 4.12 Brush thickness scaling law for different particle radii.  Evaluations of the mean brush thickness, 
1/2

2

gh , as a function of (a-e) Mg
0.5

ζg
0.25

 proposed by Daoud and Cotton and (f-j) Mg
n
ζg

m
, where n, m are the 

optimized exponents from Figure 4.14a. Colors denote chains with Mg = {1.25: red, 2.5: blue, 5: green, 10: violet, 

20: orange, 40: brown, 80: pink} kg/mol. Shapes denote different grafting densities, ζg = {0.1: , 0.4: O, 0.8: ◇, 

1.2: △, 1.6: ☆} nm
–2

. In all cases, Mg = Mm. 

 

An interesting behavior is manifested in these plots, which reveals three distinct regimes: (i) 

for NP with small RS (e.g., Figure 4.12a), the curves for specific Mg (same colors) are 

disconnected and feature a very weak slope; (ii) for NPs with intermediated sizes RS = 4-8 nm 

(e.g., Figure 4.12b), the curves for specific Mg connect with each other, suggesting that the 

Mg
0.5

ζg
0.25

 law is fairly accurate in describing this regime;
23

 (iii) for NPs with larger sizes RS > 8 

nm (e.g., Figure 4.12c,e), the curves appear disconnected as in the case of small NPs, the 

difference now being that the slope for each individual Mg curve appears to be stronger. This 
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analysis suggests that even though the Mg
0.5

ζg
0.25

 correlation appears to describe the scaling of 

the brush with reasonable accuracy for RS 4-8 nm, it becomes inaccurate for NPs with 

relatively large or small radius. 

In view of these observations, one can optimize the n, m exponents for each RS to retrieve 

the power-law in eq 4.11. According to Figure 4.6, for constant RS and ζg, the density profiles 

expand by a roughly constant factor when doubling Mg; thus, it is reasonable to assume that 

1/2
2

g g

nh M  with n being a function of (RS, ζg). Figure 4.13 presents the optimized n 

exponent from fitting RuSseL results against the power-law 
1/2

2

g g

nh M  over all RS and ζg. 

 

Figure 4.13 Optimized n exponents of the power-law in eq 4.11 for set grafing density, ζg, and NP radius, RS.  The 

rightmost column depicts the fit with eq 4.12. 

 

Given that the 1D model employed herein might not be able to describe accurately the chain 

configurations at low grafting densities or molecular weights of grafted chains, due to the 

inevitable smearing of grafting points, we decided not to take into account the cases 

corresponding to values of 
2

g g 3R  , and ζg = 0.1 nm
–2

 (which exclude the larger part of cases 

corresponding to the mushroom regime) when fitting the scaling exponents for the master eq 

4.11. 

For large ζg, the exponent n presents a stronger dependence on RS than ζg; thus, for 

simplicity, one could treat n as being a function of RS exclusively. Consequently, the data for ζg 

> 0.1 nm
–2

 were fitted to a sigmoid function of the following form: 
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min s max

d

1 3
tanh ln

2 2

R
n n n n

R

  
   

  
 4.12 

with nmin = 0.5 and nmax = 1, being the minimum and maximum values of n, Rd = 113.7 nm and 

ns = 0.4337. Subsequently, with n set, one can optimize the exponent of ζg with respect to RS 

aiming at aligning the data points for a given RS. Figure 4.12f-j displays evaluations of 
1/2

2

gh

using the optimized n and m exponents presented in Figure 4.14a. 

 

Figure 4.14 Optimized scaling exponents for the prediction of brush thickness scaling.  (a) The optimized n 

(circles) and m (squares) exponents of eq 4.11 and lg (diamonds) as functions of RS. The rightmost data points 

correspond to flat surfaces. (b) Evaluations of eq 4.11 using the n, m and lg parameters in (a). Colors denote chains 

with molar mass Mg = {1.25: red, 2.5: blue, 5: green, 10: violet, 20: orange, 40: brown, 80: pink} kg/mol. Shapes 

denote different grafting densities, ζg = {0.1: , 0.4: O, 0.8: ◇, 1.2: △, 1.6: ☆} nm
–2

. The size of the symbols 

increases slightly with RS. The inset in (b) depicts a zoomed region of the master curve. In all cases, Mg = Mm. 

 

Using these optimized n, m exponents, 
1/2

2

gh increases linearly with Mg
n
ζg

m
 over the full 

range of examined RS (from 1 nm to ∞). In addition, the curves in Figure 4.12 can be collapsed 

onto the master curve shown in Figure 4.14b, where 
1/2

2

gh  is plotted against eq 4.11 with lg 

being the slopes of the individual curves in Figure 4.12f-j (see green diamonds in Figure 4.14a). 

Overall, the data points in Figure 4.14b are in good quantitative agreement with eq 4.11, with 

the exception of the low Mg, ζg regime where 
1/2

2

gh  plateaus; see zoomed region in Figure 

4.14b. 
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4.2.8. Thermodynamics 

In Figure 4.15, the plots (a-e) depict individual grand potential terms (eqs 2.39-2.43) over 

the parameter space (RS, ζg, Mg). Regarding the cohesive interaction term per unit solid surface               

(
SGM

coh S/ S  in Figure 4.15a), it decreases steeply in the vicinity of small RS and this is attributed 

to that, when high curvatures are involved (small RS), the surface of the spherical cells where we 

integrate 
SGM

coh  is larger than the surface SS  of the NP (by which we normalize all energy 

quantities), by a factor  
2 2

S S/R h R . At low grafting densities, (mushroom regime, circles in 

Figure 4.15a), 
SGM

coh S/ S  appears to be insensitive to molecular weight, Mg, for Mg up to 80 

kg/mol; i.e., all different colored lines with circular markers collapse onto the same curve in 

Figure 4.15a. 
SGM

coh S/ S  deviates notably with increasing Mg and RS. This is a consequence of 

ρg exceeding ρseg,bulk due to chain crowding (e.g., see bottom-right panels of Figure 4.7) and this 

enhances the cohesion of the brush, when the SL-EoS is used. To be more specific, as shown in 

Figure 2.4, the minimum of    bulkf f   for SL is about – 0.5 mJ/m
3
 for reduced densities 

slightly larger than one; thus, accumulation of these negative values over the integration of 

larger and larger brushes, due to crowding, leads to eventual decrease of 
SGM

coh S/ S . 

Similarly, the field term (
SGM

field S/ S  in Figure 4.15b) presents the same qualitative behavior 

as 
SGM

coh S/ S  for the exact same reasons: (i) steep initial decline due to high curvature, (ii) 

accumulation of negative values (see  
seg,bulk

d / d /f d f d
 

   


  in Figure 2.4 for θ > 1) by 

integrating over gradually larger brushes. 

Considering the solid/polymer interaction term ( S S/U S ), it is practically insensitive to 

chain molar mass; i.e., in Figure 4.15c, the energies for different chain molar masses do not 

exhibit noticeable variations with each other, irrespectively of the size of NP. With increasing 

grafting density, it is obvious that the adhesion between the solid and the polymer is enhanced, 

because of the increased density of polymer segments close to the surface, as it is depicted in the 

total segment density profiles presented in Figure 4.7. 
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Figure 4.15 Total free energy and individual terms as functions of molecular weight, grafting density and particle 

radius.  (a-e) Partial contributions to the grand potential per unit area from eqs 2.39-2.43. (f) Total grand potential 

per unit area. Colors denote chains with molar mass Mg = {1.25: red, 2.5: blue, 5: green, 10: violet, 20: orange, 40: 

brown, 80: pink} kg/mol, and shapes denote different grafting densities, ζg = {0.1: , 0.4: O, 0.8: ◇, 1.2: △, 1.6: ☆
} nm

–2
. In all cases Mm = Mg. Bands denote scale changes along the axes. 

 

In all cases, the entropy term associated with the partition function of matrix chains                                       

(
SGM

m S/ S  in Figure 4.15d) appears to be rather weak. It shifts upwards by a constant amount 

with increasing grafting density, because grafted chains claim more space in the interfacial 

region, leaving the matrix chains with fewer available conformations. 

Regarding the entropy term associated with grafted chains (
SGM

g S/A S  in Figure 4.15e), it 

exhibits a rather interesting behavior: in the mushroom regime (ζg = 0.1 nm
-2

, circles in Figure 

4.15e), 
SGM

g S/A S  appears to be flat and rougly equal to zero, indicating that for low grafting 
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densities there is no entropic penalty with increasing RS associated with brush conformations. 

On the contrary, for larger ζg (squares and stars), 
SGM

g S/A S  increases with RS up to 100 nm 

and plateaus to finite values in the limit of planar surfaces. This response is attributed to the 

stretching of grafted chains caused by crowding phenomena. A direct manifestation of this effect 

is presented in Figure 4.10, which depicts the segregations of grafted chain ends towards the 

bulk phase under crowded conditions.  

The total grand potential from eq 2.38 is presented in Figure 4.15f. Across the mushroom 

regime (ζg = 0.1 nm
–2

, circles), 
SGM

coh S/ S  exhibits a monotonic decrease and plateaus to a 

value commensurate to the surface tension of PS for RS ≥ 100 nm, which is about γPS 25.9 

mN/m at T = 500 K.
2
 It is noted that, in the limiting case ζg → 0 and RS → ∞, and in absence of 

the Hamaker potential, 
SGM

PS coh S/   S . With increasing ζg, the grand potential features a 

minimum at RS 10 nm, after which it increases in a way suggesting the domination of the 

stretching term in Figure 4.15e. 

 

4.2.9. Contributions to chain stretching  

The entropy term associated with grafted chains in Figure 4.15e does not reflect the total 

conformational contribution to the grand potential, since the partition function in eq 2.43 is 

evaluated in presence of the field. Consequently, in the context of SCFT, the free energy 

associated with the conformations of grafted chains can be estimated by the following eqs 4.13 

and 4.14. 

 
g g

conf g fieldA A A     4.13 

with 
g

fieldA  being the field experienced by the grafted chains: 

 
g

g

g

g

field g, ifc

1
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i

A w


  
    

  
 r r r

R

 4.14 

and 
gg,i  being the segment density associated with the ig

th
 grafted chain. 

At this point, it is worth analyzing and comparing the conformation free energy of grafted 

chains with a rough estimate of the free energy obtained from the density profiles of the grafted 

chain ends. In the one-dimensional calculations employed in this chapter, grafted chain 

conformations are reflected random walks starting at hg. Assuming that the system finds itself in 

the dense brush rather than the mushroom regime, the number of conformations of a chain such 
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that the end-to-end vector projection normal to the solid surface is between h and h + Γh, can be 

estimated through the corresponding number in the unperturbed melt. It will be proportional to 

fend(h)dh, where the probability density fend(h) is given by the following eq 4.15 in the context of 

the Gaussian chain model. 

 

1/2
2

end 2 2

end,g end,g

3 3
( ) exp , 0

2 2

h
f h h

R R

   
     
   
   

 4.15 

Note that this is based on the assumption that a grafted chain will access all conformations 

accessible to it at given value of the end-to-end distance. In reality, as is obvious from the 

profiles in Figure 4.9 and Figure 4.10, grafted chains are more stretched near their grafted end 

(indicative of the concentrated polymer brush regime, as called in literature
135,136

) and less 

stretched near the free end. Based on eq 4.15, the Helmholtz energy contribution, Achain, of a 

Gaussian chain grafted at 
gg,ir whose free end lies at point r, is given by eq 4.16 within an 

additive constant. In eqs 4.15 and 4.16, 
2

end,gR  is the mean squared end-to-end distance of an 

unperturbed chain of length equal to Ng. 

 
 

g

2
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
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r r
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Let g,end g,end seg,bulk    be the local number density (segments per unit volume) of free ends 

of grafted chains; note that each grafted chain contributes one free end. Consecutively, 

integrating ρg,end across the domain results the total number of grafted chains, i.e., 

g,end g( )d n  r r
R

. The total stretching free energy of grafted chains in our system equals (within 

an additive constant): 

 g

stretch g,end chain( ) ( )dA A  r r r
R

 4.17 

and it can be approximated across the dense brush regime as: 

  
2g

stretch g,end chain S( ) ( )4 dA h A h R h h  
R

 4.18 

in spherical and: 
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 g

stretch g,end chain S( ) ( ) dA h A h S h 
R

 4.19 

in planar geometries. In the special case of Alexander’s model, in which all chain ends are 

segregated at the edge of the film,  g,end g edgeh h    , thus eq 4.19 can be written as follows: 

 
g

stretch S g chain edge( )A A hS  4.20 

with hedge given by eq A3 in Appendix A. In Figure 4.16, we demonstrate a comparison between 

the stretching energy term obtained by the Alexander model (lines) and our SCFT theoretical 

model (markers); the latter is calculated either from: (a) 
g

confA  given by eqs 4.13 and 4.14 or (b) 

g

stretchA  given by eqs 4.17 and 4.18.  

 

Figure 4.16 Conformational entropy of grafted chains for different molecular weight, grafting density and particle 

radius.  Evaluations of (a) 
g

confA and (b) 
g

stretchA . Markers correspond to evaluations from our SCFT theoretical 

model, whereas lines correspond to 
g

stretchA  from the model of Alexander. Colors denote chains with different 

molecular weight, Mg = {5: red, 20: blue, 80: green} kg/mol. Shapes/lines denote different grafting density, ζg = 

{0.1: circles/dashes, 0.8: squares/dots, 1.6: stars/solid lines} nm
–2

. In all cases, Mg = Mm. The rightmost data 

correspond to flat surfaces. 

 

We mention at this point that the Alexander model, which we develop in Appendix A, is 

similar to the hdry region that Midya et al.
50

 report in the context of their two-layer theoretical 
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model for the description of nanoparticle brushes. In that work,
50

 the authors state that in curved 

surfaces and for constant grafting density, the free energy associated with the stretching of 

grafted chains does not increase indefinitely with increasing length of grafted chains, but it 

rather saturates at a maximum value. This is well expected, since at some point the grafted 

chains cannot feel the presence of each other due to the curvature of the solid surface and 

therefore become unperturbed. It must be pointed out, however, that, in the case of planar 

surfaces, the grafted chains experience the presence of each other indefinitely due to steric 

confinement and thus 
g

stretchA increases monotonically with Ng in this regime. Our model is 

consistent with this behavior: 
g

confA  and 
g

stretchA are about to form a plateau with increasing Ng 

across the small RS regime, whereas in the limit of flat surfaces, they appear to increase 

indefinitely with Ng. 

It is observed that for larger grafting densities, our SCFT results and Alexander’s model are 

in good agreement for all chain lengths and in describing the conformational entropy of grafted 

chains as a function of nanoparticle radius. A large discrepancy between the two models occurs 

for lower grafting density; there, the totally stretched chains assumption of the Alexander model 

and the requirement to maintain bulk density everywhere result in suppressed grafted chains and 

thus lower 
g

stretchA  (compare the evaluations of Alexander’s model at low grafting densities in 

Figure 4.10). On the contrary, in the mushroom regime, the profiles of grafted chains obtained 

with our model appear broader and this is reflected in the increased contribution to the 

conformation component of the free energy.  

 

4.2.10. Concluding remarks 

The conformations and size of a polymer brush grafted on a solid surface, which is immersed in 

a homopolymer melt of the same chemical constitution as the grafted chains, are complex and 

depend on a number of molecular parameters. In this section, we first explored the system of a 

bare and then a grafted single nanoparticle immersed in a polymer matrix, and next, we will 

proceed by addressing the system of the same grafted particle in contact with vacuum and derive 

its solvation free energy. In each case, a broad parameter space is explored. 

Given the radial symmetry of these systems, we used the one-dimensional version of 

RuSseL,
76

 where the Edwards diffusion equation is solved via an implicit Finite Differences 

numerical scheme. A smearing approximation is introduced to address the presence of grafting 
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points in this one-dimensional model. The parametrization of the system corresponds to a 

particular chemical constitution, i.e., silica/polystyrene), which is readily accessible experiment-

ally.
14,15,22,43,81,134,137,138

 

The segment density distributions and conformations of grafted and matrix chains have been 

derived for various surface grafting densities, nanoparticle radii and molar mass of grafted 

chains (which was always equal to the molar mass of matrix chains). We distinguish three 

different regimes to categorize the behavior of the brushes: the mushroom regime, the dense 

brush regime and the crowding regime. The response of the system in each one of these regimes 

is quantified in terms of the chains/area profiles, the distribution of grafted and matrix chain 

ends, as well as the segment density profiles of adsorbed and free matrix chains. It becomes 

clear that, with increasing grafting density and chain molar mass, grafted chains need to 

stretch/swell towards the bulk region in order to adjust to their gradual conformational 

restriction; therefore, the penetration of matrix chain segments inside the brush is inhibited. 

The dependence of the brush thickness was examined with respect to all the aforementioned 

parameters in order to thoroughly investigate and clarify the behavior reported in literature. The 

scaling law, 
1/2 1/4

star star star kR N f b , proposed by Daoud and Cotton in the intermediate regime, 

1/2 2 1/2

star star starf v N f
, is accurate over a specific range of NP radii, specifically from 4 nm to 

8 nm. For larger NPs, the scaling exponents exhibit a complicated behavior and thus a more 

general equation must be implemented, which treats the exponents of the molecular weight, Mg, 

and grafting density, ζg, as functions NP radius/curvature. 

Adjusting also the pre-exponential factor of the scaling law, a master curve can be obtained, 

which provides a faithful description of SCFT predictions for the brush height given the 

molecular weight of grafted chains, grafting density and NP radius. This master curve seems to 

be quite accurate, especially in the region of high molecular weight and grafting density. In the 

mushroom regime, brush height exhibits a weak dependence on grafting density and NP radius 

and it is proportional to the square root of molecular weight. In the crowding regime, the brush 

scales linearly with grafting density and molecular weight, while the density profiles of grafted 

chain segments, and in general the overall behavior of brushes compares well with the 

Alexander model for incompressible brushes.  

In calculating the free energy of the system, the term associated with the conformational 

entropy of grafted chains does not depend on NP radius for low grafting densities and molar 

masses (Figure 4.15e). The same plot reflects that with increasing grafting density or molar 
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mass, chains need to stretch and, therefore, the free energy penalty associated with chain 

stretching increases. This entropic contribution of grafted chains becomes dominant for high 

grafting densities and molar masses. The entropic term associated with matrix chains has a 

minor contribution to the total free energy of the system. 

The stretching free energy of grafted chains has been calculated with two different ways: 1. 

from the configurational partition functions of grafted chains, 2. approximately, from the density 

profiles of grafted chain ends. In either case, a good agreement was observed with the Alexander 

model in the limit of large grafting densities. 

 

4.3. Grafted nanoparticle in contact with vacuum.  Solvation free energy of a 

nanoparticle 

4.3.1. Background 

Dissolving liquid molecules or nanosized particles in different liquids or gaseous solvents is 

important in a variety of applications, such as pharmacokinetics,
139,140

 drug development,
141,142

 

design of responsive NPs for targeted drug delivery,
143

 and many more. Being able to predict the 

distribution of a molecule or NP across multiple phases is thus critical to various chemical, 

materials and biomolecular engineering processes. In the field of environmental protection, 

researchers are concerned about the transport properties of environmental contaminants,
144,145

 

and about the partitioning of organic pollutants, such as polychlorinated biphenyls (PCBs),
146

 

between the atmosphere, water, and tissues of living organisms. 

The tendency of a particle (P) to distribute itself between two fluid phases formed by 

immiscible or partially miscible components A and B can be quantified in terms of the 

equilibrium partition (distribution) coefficient, K
A/B

, which satisfies the following relation: 

 
*o,PA *o,PB A/B

S S lnG G RT K     4.21 

where 
*o,P P PV

S S S

j jG G G    is the Gibbs free energy of solvation (also referred to as solvation 

free energy) of the particle in phase j, 
P

S

jG  is the Gibbs energy of the particle immersed in a 

homogeneous phase of type j, and 
PV

SG  is the Gibbs energy of the particle in vacuum. Upon 

reaching equilibrium (Gibbs energy at a minimum under prescribed temperature and 

pressure),
144

 the activities, or, for very dilute systems, the concentrations of particles in each 

phase, C
A
 and C

B
, are related to K

A/B
 as follows: 
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A B A

A/B

B A B

C k
K

C k




   4.22 

with k
i→j

 signifying the rate constant for transfer from phase i to phase j. The partition 

coefficient was initially introduced by Hansch and Fujita to predict the distribution of various 

compounds between octanol and water.
147

 Such coefficients are also used in metallurgy and as a 

measure of activity of agrochemicals.
148

 In literature, there is a wealth of data regarding the 

partition coefficients of polystyrene
149–152

 and n-alkanes (up to C8)
148

 in water-chloroform and 

octanol-water
148

 systems. 

The theoretical basis of solvation had been established by Ben-Naim,
153

 whose framework 

introduces the notion of a pseudo-chemical potential, directly related to the free energy of 

solvation under constant temperature and pressure. In general, solvation is considered to 

comprise two main stages. At first, a cavity must be formed in the bulk solvent, where the solute 

molecule will enter the system. In the second stage, the solute molecule enters the system and 

starts interacting with the molecules of the solvent surrounding it. Graziano
154

 derived the Ben 

Naim pseudo-chemical potential for a solute molecule inside a Van der Waals liquid solvent and 

in the limit of infinite dilution.  

The experimental determination of partition coefficients for NPS and large organic molecules 

(e.g., C60 fullerenes
155

) is highly nontrivial due to the difficulty of the NP/A,B blend systems to 

reach true equilibrium. According to Praetorius et al.,
144

 the concept of the partition coefficient 

for NPs has been misused extensively in the literature. Depending on the surface chemistry of 

the NPs and on the blend properties, instead of homogeneously dispersing across the blend, the 

NPs may tend to: (i) agglomerate and form their own phase, (ii) segregate to the liquid/liquid 

interface, or (iii) adsorb irreversibly to a solid surface. In such cases, the measured partition 

coefficients are not representative of thermodynamic equilibrium between the A and B phases 

and depend on the experimental conditions (e.g., concentration of the NPs, duration of the 

experiment, etc.).   

The aforementioned limitations have been discussed by several researchers,
144,155,156

 whereas 

in many cases ―apparent‖ partition coefficients are being reported.
157–159

 Regardless, it has been 

argued
144

 that the applicability of such ―apparent‖ partition coefficients as fate descriptors may 

be inappropriate for risk-assessment models. These experimental artifacts can be bypassed by 

physics-based calculations, capable of sampling the partition coefficients and the corresponding 

solvation free energies under true equilibrium conditions.  
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In this section, we develop a generic theoretical framework for the determination of the 

solvation free energy of bare and grafted NPs in polymers as a function of the NP/polymer 

degree of wetting, NP curvature, surface grafting density, and lengths of grafted and matrix 

chains, which are assumed to be of the same chemical constitution. To obtain the free energy of 

solvation of a NP, we perform two SCF theoretic calculations: one on a NP immersed in the 

polymer matrix at infinite dilution (which has been extensively investigated in the previous 

Section 4.2) and a second one on the isolated NP in vacuo. In the latter state, where calculations 

in absence of any bulk melt or solvent are required, one has to invoke compressible SCFT.  

Various approaches are reported in the literature, many of which are based on lattice-fluid 

models, where the free-volume effects are reproduced by introducing vacancies as an additional 

pseudo-component.
80,160,161

 Herein, we avoid the use of a quasi-solvent of vacancies by 

employing the Sanchez-Lacombe EoS
70,71

 combined with a square gradient correction term. 

Using these tools, we can achieve a quantitative description of the behavior of the spherical or 

planar grafted polymer brush exposed to vacuum, which is analogous to bringing it in contact 

with a poor solvent. 

By imposing Dirichlet BCs for the restricted partition functions of matrix and grafted chains 

on the NP surface
40,162

 (instead of reflective boundary conditions)
41,163

, we can model realistic 

wetting conditions at the solid/polymer interface. In addition, the short-range potential that is 

employed herein (Hamaker-square well, cSW, see Section 2.1.5.5) takes into account the convex 

geometry of the NPs and deals appropriately with the loss of interaction sites with increasing 

curvature. As a result, we can explicitly predict the evolution of polymer affinity to the solid 

surface (zero, low, high and perfect wetting) with increasing curvature. We demonstrate that the 

behavior of the system is quite different when addressing planar and spherical 

interfaces
26,28,164,165

 and compare the overall behavior against theoretical
113,114,166

 and 

experimental
81,116

 observations. 

 

4.3.2. Description of the model 

For the convenience of the reader, a tabular description of the types of systems considered is 

provided in Table 4-1 (section sys). Each type of system was studied for different radii of the 

spherical shell, lengths of matrix and grafted chains, and strength of solid/polymer interactions. 

In the ―code‖ denoting the system type, the left- and right-most characters refer to the 
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(nano)phase inside the innermost spherical cell and to the outer bulk phase, respectively, while 

the intermediate character (if any) refers to the intermediate (nano)phase. 

4.3.3. Structure 

Figure 4.17 illustrates the profiles of grafted chains either in contact with vacuum (SGV 

systems, solid lines) or exposed to a polymer matrix (SGM systems, dashed lines) in dependence 

of the chain length Ng (varying colors), grafting density ζg (left-to-right), and NP radius RS (top 

to bottom). Overall, the profiles expand with increasing Ng, ζg, and, to certain extent, with RS. 

 

Figure 4.17 Density profiles of grafted chains in contact with melt and vacuum.  Grafted chains are either isolated 

(solid lines) or exposed to a matrix phase of the same chemical constitution and chain length (dashed lines with fill).  

Results are shown in dependence of the chain length of grafted chains Ng = {48: red, 192: blue, 768: green} skeletal 

bonds, grafting density ζg = {0.05, 0.1, 0.4, 0.8} nm
–2

 (left to right) and NP radius RS = {2, 8, 32, ∞} nm (top to 

bottom). Legends denote [RS, ζg] in [nm, nm
–2

] units. All cases correspond to the high-wetting system (HW) in 

Table 2-2. 

 

The shape of the brushes is qualitatively different between the SGM and SGV systems. In 

the presence of matrix chains, the brushes swell considerably towards the bulk polymer phase. 

In absence of melt, the brushes collapse towards the solid surface, since there is an energy cost 

associated with them being exposed to vacuum. The varying area under the profiles for the same 

ζg,seg = ζgNg is due to the curvature and logarithmic h-axis used; integration in spherical 

coordinates yields the exact same areal density of grafted segments ζg,seg. 
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Let us first consider some limiting cases for the SGM systems (melt/ideal solvent 

conditions). Across the mushroom regime
167

 (ζgRG,g
2
 < 1; leftmost panels in Figure 4.17), grafted 

chains do not experience the presence of each other and exhibit the characteristic scaling of 

random coils, i.e., 
1/2

2 0.5

g gh N . 

For larger grafting densities and chain lengths (ζgRG,g
2
 > 1, brush regime), the scaling 

depends on both Ng and ζg. The scaling exponents (n, m) gradually increase from (0.5, 0) to (1, 

1) with increasing RS and ζg (to a lesser extent with the latter),
24

 and eventually, in planar 

geometries, the scaling becomes linear, e.g., 
1/2

2

g g g g,segh N  .
24,168

 The configuration of 

the brush (or parts of it) depends on the chain crowding conditions, which can be quantified in 

terms of the number of grafted chains passing through a surface at distance h from the NP, 

which can be calculated via the following eq 4.23. 

  
2ref

ch,g g S S/n R R h     4.23 

Above a threshold value of 
ref

ch,gn , the grafted chains are gradually restricted, and therefore 

they start stretching  (concentrated polymer brush, CPB).
129,135

 On the other hand, fow low 
ref

ch,gn , 

grafted chains enjoy a lot of available space and thus exhibit the scaling of semi-dilute polymer 

brushes (SDPB: n 0.5-0.6).
129,135

 In the case of spherical NPs, brushes can assume hybrid 

CPB-SDPB configurations, wherein they are concentrated (CPB) close to the NP surface (high 

ref

ch,gn  at low h), and semi-dilute (SDPB) after exceeding a critical distance from the NP surface 

(low 
ref

ch,gn  at high h).
135

 For chains grafted on planar surfaces, the CPB or SDPB regime persist 

indefinitely, since segments lying at higher distances do not enjoy any additional space than 

those near the NP surface, 
S

ref

ch,g glim
R

n 


 . Our model is consistent with this behavior and this has 

been demonstrated in Section 4.2.9 in terms of the conformational entropy penalty of grafted 

chains due to stretching as a function of chain length. 

The length of matrix chains, Nm, also affects the thickness of the brush; in cases where 

matrix chains are considerably shorter than the grafted chains, they tend to penetrate into the 

interfacial region and swell the brush.
28

 For detailed information regarding the scaling of the 

brush/melt systems and the effects of varying the length of matrix chains, the reader is referred 

to Section 4.2.7. 
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Concerning the systems of isolated grafted NPs (SGV), where grafted chains can be 

considered as being in contact with a poor solvent (vacuum), polymer brushes tend to collapse in 

the region around the solid surface. Their shape depends exclusively on the segmental density, 

ζg,seg. This is demonstrated in Figure 4.18, where the grafted chain profiles of equal ζg,seg are 

seen to collapse together, regardless of the NP curvature. 

 

Figure 4.18 Density profiles of chains exposed to vacuum and grafted on spherical particles.  Chains are grafted on 

high-wetting (HW, see Table 2-2) solid surfaces, exposed to vacuum (SGV) with RS = (a) 2, (b) 8, (c) 32 and (d) ∞ 

nm. In all cases, Ng = {48: solid lines, 192: dotted lines, 768: dashed lines} skeletal bonds and ζg = {0.05: red, 0.2: 

blue, 0.8: green} nm
–2

. The numbers on the individual curves denote the segment density per NP area, ζg,seg (in nm
–2

 

units). The vertical dotted lines correspond to hedge,HS from eq 4.25. The inset in panel (a) depicts the maximum of 

the profiles in panels (a)-(d) capped at 1 (eq 4.26); RS increases in the direction of the blue arrow. Curves in the 

inset are fits with eq 4.27 and vertical lines depict ζg,seg99% from eq 4.28. 

 

One can again discern two distinct regimes, a dense brush and a mushroom one. Here we use 

the term mushroom to describe conformations in the low ζg,seg regime, even though collapsed 

chains may actually look like pancakes
169

 or globules
170

 in the HW and PW cases, respectively. 

It is noted that the apparent gradual rise of the profile next to the solid in Figure 4.18 (which is 
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in contrast to the very sharp drop of the density on the vacuum side) is an illusion due to 

logarithmic scaling of the x-axis. 

For large ζg,seg values (brush regime), the profiles are fully developed and feature a broad 

bulk-like region. Their thickness can be predicted accurately by Alexander’s model for 

incompressible brushes,
126,127

 which has been extended to curved surfaces.
24,48,50

 The edge of the 

dense brushes can be predicted as a function of curvature from eq 4.24.
24

 

 

1/3

g,seg 2 3

edge S S S S

seg,bulk

3
[ ]h R R R R





 
    
 

 4.24 

A more general version of eq 4.24 is the following: 

 edge,HS S HS edge S HS HS[ , ] [ ]h R h h R h h    4.25 

Equation 4.25 takes into account the excluded volume interactions (hard sphere wall 

positioned at hHS) and offers more accurate predictions for intermediate values of ζg,seg. Indeed, 

as shown in Figure 4.18, at high ζg,seg and RS, the edges of the dense brushes coincide with the 

predictions of eq 4.25. Note that, with hedge known, the root mean squared brush thickness for 

this model is simply 
1/2

2

g edge / 3h h .
24

 Below a threshold ζg,seg, the brushes are only partially 

formed (mushroom regime) and the aforementioned model breaks down; e.g., the vertical lines 

in Figure 4.18 lie below the edges of the mushrooms.
167

 

The mushroom-to-brush crossover can be quantified in terms of the evolution of the 

maximum segment density: 

 g,max gmax( )   4.26 

This is illustrated in the inset of Figure 4.18a for the case of HW systems, whose enlarged 

version is presented in Figure 4.19, both in terms of ζg,seg and of the dimensionless quantity 

2 2

g G,g g,seg G,g g/R R N  , which is commonly used to estimate the mushroom-to-brush 

crossover.
24,129

 The evolution of θg,max is described accurately by the following eq 4.27. 

 

br

g,seg

g,max g,seg br

br

[ ] tanh




  


  
  
   

 4.27 

where ζbr is a characteristic areal segmental density, βbr a stretching exponent, and 

g,seg
br g,maxlim


 


 . By setting θg,max / θbr = 0.99 and solving eq 4.27 for ζg,seg: 
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   br1/1

g,seg99% br tanh 0.99


    4.28 

we can derive a characteristic areal density corresponding to the formatinon of the 99% of the 

brush. The corresponding fitting coefficients of eq 4.27, and ζg,seg99% from eq 4.28 are reported 

in Table 4-3. Looking at this table, it is observed that the critical value of ζgRG,g
2 

is on the order 

of unity and increases with decreasing particle radius. As we will discuss later, such 

characteristic length scales are related with the free energy of solvation and its evolution with 

the mushroom-to-brush crossover. 

 

Figure 4.19 Maximum density of grafted chains exposed to vacuum for various wetting degrees.  The maximum of 

the profiles capped at 1 of (a) low-, (b) high- and (c) perfect-wetting solid surfaces exposed to vacuum (SGV) with 

RS = {2: red circles, 8: blue squares, 32: green triangles, ∞: violet asterisks} nm. Markers depict evaluations from 

the SCFT calculations and lines illustrate fits with eq 4.27; the corresponding fitting coefficients are reported in 

Table 4-3. The vertical lines depict ζg,seg99% from eq 4.28. Panels (d-e) depict the same data as (a-c), but with respect 

to the dimensionless quantity 
2 2

g G,g g,seg G,g g
/R R N  . 
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Table 4-3 Fitting coefficient for eq 4.27.  

type Rs (nm) θbr ζbr (nm
–2

) βbr ζg,seg99% (nm
–2

) (ζgRG,g
2
)99% 

LW 

2 0.998 27.2 1.04 69.3 2.7 

8 1.001 13.3 1.08 32.8 1.3 

32 1.003 10.6 1.10 25.7 1.0 

∞ 1.005 9.7 1.10 23.5 0.9 

HW 

2 1.002 19.3 0.81 64.2 2.5 

8 1.004 9.3 0.86 28.8 1.1 

32 1.006 7.5 0.89 22.4 0.9 

∞ 1.009 7.0 0.90 20.6 0.8 

PW 

2 1.006 15.4 0.81 51.2 2.0 

8 1.032 7.8 0.87 23.9 0.9 

32 1.043 6.5 0.90 19.2 0.7 

∞ 1.047 6.1 0.91 17.8 0.7 

 

4.3.4. Thermodynamics and solvation free energy 

Figure 4.20a,b illustrates the free energy density per NP core area of a grafted HW planar 

surface exposed to polymer melt of the same chemical constitution (Γγ
SGM

) and vacuum (Γγ
SGV

, 

but with a minus sign), as a function of ζg,seg, respectively. Figure 4.20c presents the sum of 

these quantities (eq 4.29), i.e., the free energy of solvation per NP area. 

 
o SGM SGV o

S S s/G         S  4.29 
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Figure 4.20 Solvation free energy in a planar SiO2/PS system.  (a) Free energy per solid surface area of a grafted, 

high-wetting NP (HW, see Table 2-2) of extremely small curvature (i.e., planar interface) embedded in a matrix 

phase of the same chemical constitution and chain length (Ng = Nm), (b) negative free energy per unit surface of an 

isolated grafted NP and (c) solvation free energy, per solid surface area, as functions of ζg,seg = ζgNg. The values on 

the ordinate of panel (c) are obtained by direct summation of those in (a) and (b). The blue/magenta lines indicate 

limiting values for ζg,seg → 0, and for characteristic ζg,seg of fully developed brushes, respectively. The vertical line 

denotes ζg,seg99% from eq 4.28, which is indicative of the mushroom-to-brush crossover. 

 

For very low ζg and Ng, the contribution of the grafted chains to the free energy in Figure 

4.20a is marginal. The free energy of the SGM system tends to the negative adhesion tension of 

a corresponding SM interface, 
g,seg S

S

SGM SM SM

adh
0

lim lim
R

R


  

 



     (see blue curve in Figure 4.3a or b 

in the planar limit). For the SGV system in Figure 4.20b, 
g,seg

SGV

0

lim 0





  ; therefore, its 

contribution to the solvation free energy is zero in this limit, hence: 
g,seg S

S

o SM SM

S adh
0

lim lim
R

R


  


 



    

. With increasing ζg,seg and up to a characteristic value, we notice a transition region. The free 

energy per unit surface of the SGM system in Figure 4.20a remains constant (
S

SGM GM

adh
lim
R

 


 

), because there is still no enthalpic gain with increasing area of the homogeneous GM interface. 
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Furthermore, at low ζg,seg, grafted chains have not been stretched enough for entropic penalties 

to start affecting the thermodynamics of the system. In contrast, the free energy per unit surface 

of the SGV system increases gradually from 0 up to a temporary plateau value (magenta line in 

Figure 4.20b). This value depends on the free energies of the inner SG and the outer GV 

interfaces (e.g., see Figure 4.1). At a characteristic value of ζg,seg, which is indicative of the 

mushroom to dense brush crossover, 
S S S

SGV SG GV SG GV

adh
lim lim lim
R R R

    
  

      . 

It is noted that after the mushroom to brush crossover, the outer polymer/vacuum interface of 

a GV system can be considered equivalent to that of a MV system, since grafted and matrix 

chains are of the same length and chemical constitution, 
GV MV

  . As a result, the contribution 

of 
SG

adh  to 
o

S
 from SGM and SVG cancels out, and therefore

S

o GV

Slim
R

 


  . The 

characteristic value of ζg,seg for this behavior to emerge appears to be somewhat smaller than the 

characteristic length ζg,seg99%, obtained from eq 4.28  (vertical line in Figure 4.20). 

For larger ζg,seg, Γγ
SGM

 and Γγ
SGV

 deviate significantly from the aforementioned plateau 

values (blue/magenta lines in Figure 4.20a,b), due to chain stretching. In planar configurations, 

the stretching free energy increases about monotonically with Ng (at constant grafting density, 

ζg), since the contours of neighboring grafted chains interact indefinitely; thus, Γγ
SGM

 and Γγ
SGV

 

both increase indefinitely as well.
24,50

 At ζg,seg 10 nm
2

, a weak minimum is exhibited, because 

the entropy penalty associated with the conformations of grafted chains in the SGV system is 

slightly higher than in the SGM system. 

The conformational entropy effect becomes more pronounced when considering denser 

brushes, because the chains experience additional confinement and stretch even more. However, 

o

S
 appears to be rather insensive to chain stretching, indicating that these entropic chain 

stretching contributions in the SGM and SGV systems are about equal and cancel out; hence, 

S

o GV

S
lim
R

 




   across this regime. This is reasonable, since the structure of densely grafted 

SGM is quite similar to that of SGV in terms of their segment profiles (e.g., compare profiles in 

the bottom panel of Figure 4.17), and so are their profiles of end-segments, which tend to 

segregate to the polymer/vacuum interface
24

 in agreement with Alexander’s model for 

incompressible brushes.
126,127

 Thus, the solvation free energy per unit surface of a very large NP 

well-coated with a thick layer of grafted chains becomes practically equal to minus the melt 

surface tension. 
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 Figure 4.21 presents 
o

S



  and 

o o

S S S
G 

 
   S versus ζg,seg (left and right ordinates) for 

various NP sizes and surface potentials. 

 

Figure 4.21 Solvation free energy of spherical SiO2 nanoparticles of various radii. 
o

S
  and 

o

SG  (left and right 

ordinates) versus ζg,seg, for low wetting (red circles), high wetting (blue triangles), and perfect wetting (green stars) 

surfaces with RS equal to (a) 2 nm, (b) 8 nm and (c) ∞. The horizontal dotted lines depict 
SM SM 2 2

adh SM S
/R R   

from Figure 4.3a with RSM set to hedge,HS. The vertical lines illustrate the mushroom-to-brush crossover, ζg,seg99% (eq 

4.28). The dashed magenta lines depict predictions across the high ζg,seg regime obtained via eq 4.25, for 

GV GV,edge S edge,HS
R R R h   (eq 4.25). In all cases, Nm = Ng. 

 

Similar to the planar case, the effect of grafted chains is negligible at low ζg,seg; thus, 

SGV 0  and 
*o SGM SM

S     . Indeed, as shown in Figure 4.21, 
*o

S  tends to γ
SM

 with 

decreasing ζg,seg. The value of solvation free energy in the limit ζg,seg → 0 is represented by the 

horizontal dotted lines and can be expressed in terms of the adhesion tension of a planar 

interface via eq 4.4 as follows: 
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g,seg

*o SM SG

S S adh SM
0

lim G


 

 S S  4.30 

where 
2

SM SM4 RS  and RSM is the position of the inner SM interface. 

With increasing ζg,seg and up to a threshold value, a characteristic transition is observed, 

during which the contributions of the SM and SG interfaces to 
*o

SG  are gradually screening 

each other and the latter starts being dominated by the GV interface of the SGV system. That 

threshold value appears to be slightly smaller than ζg,seg99% from eq 4.28 (vertical lines in Figure 

4.21). 

For large ζg,seg, 
*o

SG  can be reasonably approximated in terms of the surface tension of the 

GV interface via eq 4.5, as follows: 

 
*o SGV GV

S S GV g,seg g,seg99%,  G      S S  4.31 

with SGV being the area of the outer GV interface and ζg,seg99% a characteristic areal density 

indicative of the mushroom-to-brush crossover.  

Supposing that a GV interface can be described reasonably well as an incompressible brush, 

its position can be approximated as GV,edge edge,HS SR h R   from eqs 4.24 and 4.25. Indeed, 

according to Figure 4.21b,c, 
*o

SG  for intermediate and large RS is in good match with the 

predictions of eq 4.31 for RGV → RGV,edge (compare with magenta curves). 

In the case of the smaller NP considered here (see Figure 4.21a), there is a slight deviation 

between the magenta curve and the points. Describing highly curved interfaces with simple 

relations such as eq 4.31 is nontrivial because there are sensitive curvature-dependent 

mechanisms at play. For starters, the profiles of SGM and SGV differ substantially, even for 

cases with large ζg,seg, e.g., compare the top-right panel of Figure 4.17 with the panels below it 

for larger RS. As a result, the chains stretch in a different manner and therefore entropic 

contributions do not exactly cancel out (this mechanism is discussed in depth in Section 4.3.4.1). 

In addition to this, the approximation RGV → RGV,edge is moderate at high curvatures. Indeed, as 

shown in Figure 4.18a, the actual position of the film is consistently lower than RGV,edge at large 

ζg,seg. 

The order of magnitude of calculated solvation free energies is noteworthy. 
*o

SG  depends 

on the size of the particle being solvated. According to Lum-Chandler-Weeks theory of 

hydrophobicity
166

 and the present findings (eq 4.31), it scales proportionally with the area of the 
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interface. Consequently, it scales about quadratically with the effective particle radius (taking 

into account the thickness of a grafted brush), while in the case of a macroscopic particle 

bounded by a practically planar surface, it tends to infinity. 

Quantitatively, the solvation of usual organic molecules 
*o

SG  is in the order of decades of 

kJ/mol,
146

 whereas for large particles, it may span hundeds of kJ/mol (e.g., solvation free energy 

of C60 in a variety of common solvents (j) is in the order of 60*o,C

S 100 kJ/mol
j

G   ). Given that 

the average radius of C60 equals 
60CR  0.35 nm

171
 and supposing that solvation scales 

quadratically with radius, a particle with RS = 2 nm and the same solvation free energy per 

particle area would have a solvation free energy of 60

60

*o,C 2 2

S S C
/ 3300 kJ/mol

j
G R R   , which is in 

accordance with the order of magnitude depicted in Figure 4.21a for RS = 2 nm. 

4.3.4.1. Contribution of individual free energy terms 

The present section investigates the contribution of individual free energy terms per NP core 

area to the grand potential of SGM systems (
SGM SGM

s
/   S ), Helmholtz free energy of SGV 

systems (
SGV SGV

s
/A   S ) and solvation free energy (

*o SGM SGV

s s s
       ) as a function of ζg, 

Ng, and curvature. As a test case, Figure 4.22a-d illustrate the energy terms of grafted NPs with 

RS = 2 nm and Figure 4.22f-i the corresponding contributions of a planar brush. The total energy 

of the NP and planar surface system is shown in Figure 4.22e and j, respectively. 

The term coh+field coh field

sys sys sys        is a functional of the total density profile (eqs 2.39 and 

2.40) and refers to the combination of the cohesion and field terms; the latter incorporates 

entropic penalties as well, as explained in Section 2.2. As demonstrated in Figure 4.22a and f, 

there is a substantial difference in this term between the limiting cases of high and zero 

curvatures. For not too densely grafted NPs (low ζg), 
SGM

coh+field  remains approximately constant. 

SGM

coh+field  is affected by the total segment density distribution close to the NP surface (ρ = ρg + 

ρm), which remains approximately the same with increasing ζg,seg (since G = M). The latter fact 

would not be true if G ≠ M, since the MG interface would add to the free energy a factor ~

GM

GMS . 
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Figure 4.22 Solvation free energy terms as functions of the amount of grafted material.  Individual free energy 

contributions to Γγ
SGM

, Γγ
SGV

 and 
*o SGM SGV

s s s
       , as functions of the amount of grafted segments per NP 

core area, ζg,seg = ζgNg. Panels (a-e) depict energy contributions for NPs with RS = 2 nm, whereas panels (f-j) 

concern a planar surface (RS → ∞). Evaluations have been performed for ζg (nm
–2

) = 0.05 (O), 0.1 (△), 0.2(☆), 0.4 

Ng = 24 (pink), 48 (brown), 96 (red), 192 (blue), 384 (green) and 768 (violet), and Nm = 

Ng. 

 

The difference between the two curvatures reveals itself in the SGV systems. With 

increasing ζg,seg two new interfaces are emerging, one close to the wall (SG) and one exposed to 

the vacuum phase (GV). For high curvatures, the free energy is dominated by the area of the GV 

interface which increases approximately quadratically with ζg,seg; hence, its contribution to the 

free energy is on the order of ~
GV

GVS . In the planar case, on the other hand, the surface area 

of both the SG and GV interfaces remain the same and thus the free energy plateaus to a value 

that depends on both the adhesion tension of the SG interface and the surface tension of the GV 

interface. 



4.3. Grafted nanoparticle in contact with vacuum.  Solvation free energy of a nanoparticle  

147 

In addition to these considerations, for very large ζg and low curvature (dense chain 

packing), the reduced density exceeds unity in the planar system (θ > 1), and coh+field

sys  becomes 

slightly negative as shown in Figure 4.22f due to the entropic contributions of the field term (for 

information see Figure 2.4 of Section 2.1.4.2). In any case, the contributions of the cohesive and 

field terms to the free energy of the planar SGM and SGV systems are approximately equal and 

thus the net sum is around zero. As a result, the solvation free energy plateaus to the negative 

surface tension, as shown in Figure 4.22f. 

The evolution of solid

sys  with increasing ζg,seg is depicted in Figure 4.22b and g. In SGM 

systems, 
SGM

solid is practically constant since the area of the SG interface does not change. In 

SGV systems, 
SGV

solid 0   when ζg,seg = 0 (there are no grafted chains to interact with the wall) 

and saturates to the same value as in the SGM system at the point where the brush has been fully 

formed. Consequently, for ζg,seg  ζg,seg99%, the solid/polymer interactions are the same (

SGM

solid = 
SGV

solid ) and their contribution to the solvation free energy cancels out. 

The entropic contribution from eq 2.42 (which depends exlusively on matrix chains) appears 

to be very similar between the high and zero curvature geometries (compare Figure 4.22c and 

h). In situations where Ng ≤ Nm, these contributions are subtle; this is not the case when Nm 

Ng (see Figure 4.23  of the following Section 4.3.4.2). 

The entropic contributions associated with the conformations of grafted chains are quite 

different between SGM (
SGM

g ) and SGV (
SGV

g ) systems in high curvature geometries, 

whereas in planar geometries they are quite similar; compare Figure 4.22d and i. In planar 

geometries, and for large ζg,seg—where such entropic factors become significant—the structure 

of the grafted chains is similar between SGM and SGV. In both cases, brush thickness can be 

approximated very well by that of an incompressible Alexander brush,
126,127

 and as a result the 

grafted chains experience similar stretching, whether they are in contact with melt or exposed to 

vacuum. Hence, this entropic contribution is counterbalanced and does not affect solvation. 

This is not the case for high curvatures (Figure 4.22d): at very low ζg,seg, all grafted chain 

segments tend to fully collapse towards the solid surface (to avoid interacting with vacuum), but 

this generates an entropic penalty. At ζg,seg ~10 nm
–2

, where the brush has been partially 

developed (e.g., see Figure 4.18a for RS = 2 nm), we notice that entropy starts decreasing, since 

beyond a certain distance from the solid, segments enjoy more available space. Finally, when the 
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brush is fully developed, the behavior of entropy switches back to what is expected; thicker 

brushes are accompanied by higher entropic cost. 

It is worth noting that the points of our SCFT model for the 2 nm NP in Figure 4.21 lie 

above the theoretical magenta line (instead of below). This happens because the position of the 

GV interface has been estimated in terms of the edge of an Alexander brush, which is a poor 

approximation for small NPs. It lies further than the actual position of the GV interface (Figure 

4.18a; thus, the estimation from the magenta line in Figure 4.21 underestimates the solvation 

free energy. 

4.3.4.2. Effect of varying the length of matrix chains 

In the previous sections, we considered cases where the length of grafted chains was equal to 

that of the matrix chains (Ng = Nm). In general, polymer blends with different chain sizes, but the 

same chemical constitution, are considered completely miscible.
172

 However, in the presence of 

grafted chains, the ratio Ng/Nm has a profound effect on the quality of the solvent.
24,28,48

 

In situations where Nm ≥ Ng, matrix chains cannot readily penetrate the brush, due to the 

manifestation of the entropic penalty of confinement discussed in Section 4.1.2 (mechanism 2). 

Matrix chain segments are pulled towards the polymer phase by their intramolecular neighbors. 

At the same time, penetration of the (larger) matrix chains into the region occupied by the 

grafted chains would reduce the number of available conformations of the latter. As a result, 

matrix chains are effectively repelled from the brush (which remains unperturbed
23,24,28,164

) 

favoring the agglomeration tendency of the NPs.
25,27,28,37

 

On the other hand, when Nm < Ng, the matrix-grafted interactions become entropically 

favorable, and therefore, the penetration of matrix chains into the brush is thermodynamically 

promoted. In this case, grafted chains experience the melt as if it were an athermal solvent. The 

segregation of matrix chain segments inside the interfacial region can significantly affect the 

configurations of grafted chains and even lead to excessive swelling in some situations.
24,28

 The 

quality of the solvent is enhached with increasing Ng/Nm, and as a result, the favorable grafted-

matrix interactions resist the attraction between NPs.
25,27,28,37

 

In this paragraph, we investigate the effect of chain length ratio, Ng/Nm, on the solvation free 

energy. 
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Figure 4.23 Solvation free energy of a SiO2 particle for different matrix/grafted length ratios. 
*o

S
 and 

*o

S
G (left 

and right ordinates) versus Ng/Nm for high wetting surfaces with RS equal to (a) 2nm, (b) 32 nm and (c) ∞. The 

chain length of grafted chains is denoted by different colors: Ng = {4: red, 192: blue, 768: green} and the grafting 

density by different line styles: ζg = {0.1: dotted, 0.2: dashed, 0.4: solid} nm
–2

. 

 

Figure 4.23 depicts 
*o

S and 
*o

SG as a function of Ng/Nm. Starting with the case of the 

smallest NP considered herein (Figure 4.23a), we notice that 
*o

SG  is practically insensitive to 

Ng/Nm. However, for larger NP sizes, 
*o

SG increases with Ng/Nm, with this effect reaching 

maximum intensity in the planar geometry limit. This is attributed to both the free energy 

penalty arising from the stretching of the grafted chains (eq 2.43) and to the translational entropy 

of matrix chains (eq 2.42). Note that the length of matrix chains, Nm, appears in the denominator 

of eq 2.42, indicating that the brush is penetrated by more matrix chains. This effect becomes 

more pronounced in denser brushes or in the planar limit, where the high confinement leads to 

an abrupt scaling of the height of the brush with both ζg and Ng, and the associated entropic 
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penalties in eqs 2.42 and 2.43 are maximized. On the contrary, this effect is mitigated at high 

particle curvatures, where the matrix chains can readily surround the grafted chains. It is thus 

proven that, apart from the interactions between NPs or the scaling of the brush,
165

 curvature 

plays an essential role on solvation free energy as well. 

 

4.3.5. Model for estimation of partition coefficients 

The solvation free energy of a grafted NP depends on the comparison between the free energy of 

a grafted NP exposed to i) vacuum (SGV), and ii) a polymer matrix (SGM). Different behaviors 

are expected for different ranges of the amount of grafted material, 
2

g,seg g G,g2

inf C-C

6
R

C l
  , and the 

chain crowding conditions as quantified by ref

ch,gn (eq 4.23). For starters, we will consider cases 

where Ng ≥ Nm, and the brush does not experience particular swelling. 

 

Figure 4.24 Schematic illustration of regimes I-IV, in terms of the amount of grafted material ζg,seg and chain 

crowding.  The crowding is quantified by 
ref

ch,g
n (eq 4.23). The bead-spring configurations of the second (fourth) row 

of the grid depict representative SGM (SGV) configurations. The dominant contributions to the free energy are 

shown below each illustration. The last row of the grid depicts the dominant terms of the solvation free energy (eq 

4.33). 
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Equation 4.32 illustrates a generic model for the quantitative predictions of solvation free 

energy in terms of ΓΩ
SM

 and ΓA
GV

: 

        

SM

g,seg

*o,SGM SM GM GV

s g ,seg s g ,seg s g ,seg s g ,seg g,seg99%

GM GV

g,seg99% g,seg

, ~ 0

, ~ 1 , ,  ,  0

,

G R F R A F R

A



    

 



        

   







 4.32 

where 
2

g,seg99% G,g g
/R N  is in the order of unity for RS > 8 nm (see Table 4-3). Altervatively, we 

can describe 
*o

sG in terms of the interfacial free energies, as shown in the following eq 4.33. 

        

SM

adh SM g,seg

*o,SGM SM GM GV
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The main parameters of this model are the surface tension (ζ
GV

), adhesion tension (
SM

adh ), 

interfacial tension (ζ
GM

, in case G ≠ M) as well as the corresponding interfacial areas. The 

ranges of each branch are determined based on the amount of grafted polymer per unit NP area, 

ζg,seg, and are indicative of four characteristic regimes discussed below. 

Regime I: very short and sparsely grafted brushes, ζg,seg 0 (
2

g G,g
1R  ); see Figure 4.24 

(Regime I). The contribution of the brush is marginal and 
*o

sG  depends explicitly on the 

adhesion tension as indicated by the first branch of eq 4.33. 

Regime II: partially developed brushes ( g,seg g,seg99%   or 
2

g G,g
1R  ); see Figure 4.24 

(Regime II). The evolution of 
*o

sG during the formation of the brush is mainly affected by the 

strong enthalpic interactions arising due to the formation of the GM (in case G ≠ M) and GV 

interfaces. In addition, 
*o

sG  is also affected by the expansion/shrinkage of the SG/SM interface 

near the solid surface. In situations where the strength of the solid/grafted and solid/matrix 

interaction is similar, the effect of SG and SM interfaces is miniscule. In high curvature 

geometries (small NPs), the size of the SG/SM interface is much smaller than that of the GM 

and GV interfaces; hence, the effect of enthalpic and entropic contributions to 
*o

sG has been 

lumped in function F which has been computed above through SCFT calculations for 

determining the solvation free energy across regime II, where no limiting rules apply. In 

practice, F resembles a half-sigmoid function which rises more or less monotonically from 0 to 

1. 
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Regime III: fully formed (
g,seg g,seg99%   or 

2

g G,g 1R  ) but not too dense chain packing 

(low 
ref

ch,gn , SDPB
129,135

); see Figure 4.24 (Regime III). The SG interfaces become identical in the 

SGM and SGV systems; thus, the contribution of the SG interface to the *o

sG  fully cancels out. 

As a result, the solvation free energy depends explicitly on the interplay between the enthalpic 

contributions of the GM and SG interfaces, as illustrated by the third branch of eq 4.33. 

Regime IV: fully formed (
g,seg g,seg99%   or 

2

g G,g 1R  ) but very dense chain packing (high 

ref

ch,gn , CPB
129,135

); see Figure 4.24 (Regime IV). The entropic phenomena associated with chain 

stretching become non-negligible. It turns out, however, that for large ζg,seg, the entropy related 

to grafted chain conformations is not so different between SGM and SGV systems. Thus the 

entropic contributions in the two systems cancel out, and the solvation free energy is practically 

determined by the enthalpic interactions of the GM and GS interfaces. Similar to Regime III, the 

evolution of *o

sG can be described by the third branch of eq 4.33. For spherical particles and if 

the grafted chains are long enough, the brush may assume a hybrid CPB-SDPB configuration (a 

combination of Regimes III and IV); near the particle, the chains are oriented normal to the 

particle surface (CPB), whereas above a critical distance, they assume SDPB-like 

configurations.
129,135

 

Having presented these considerations regarding the structure of the brush near and far from 

the particle, we emphasize that the solvation free energy of the grafted particle depends strongly 

on the total amount of grafted polymer, ζg,seg, and not so much on whether the brush assumes 

SDPB (Regime III), CPB (Regime IV) or hybrid CPB-SDPB configurations.
129,135

 Especially in 

situations where the relevant height of the brush in the SGV and SGM systems is similar (e.g., in 

the limit where Ng → ∞), any entropic contributions to the solvation energy cancel out, when 

taking the difference of the free energy of the two systems. 

The parametrization of eq 4.33 is straightforward for moderate to large NPs. The free 

energies of the planar SM and GV interfaces can be determined based on surface tension 

theories
104

 and Flory’s τ-parameter.
173

 The interfacial areas close to the NP, SSM and SSG, are 

practically equal to SS, while the surface area of the MG and GV interfaces can be estimated by 

brush scaling measures. SGV can be determined analytically via eq 4.25, and SGM can be 

estimated by more elaborate scaling laws from SCFT calculations
24

 or theoretical 

predictions.
131,164,167
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In the limit of very small NPs, the model becomes less accurate because the boundary 

between the interfaces becomes fuzzier and the determination of the interface area is nontrivial. 

In addition, due to the mismatch of the SGM and SGV profiles, the entropic effects do not 

exactly cancel out and become important. To add to the above, in situations where the matrix 

chains are much shorter than the grafted ones (Nm/Ng 1), entropic contributions become even 

more significant,
28

 whereas these are not taken into account by the model in eq 4.33. In all these 

situations, calculations via SCFT-based models are particularly valuable. 

Having calculated the solvation free energy for two different systems in terms of the 

chemical constitution of the matrix phase, the partition coefficient of a nanoparticle between two 

different matrices can be retrieved via eqs 4.21 and 4.33 as follows: 
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Note that the terms concerning the SGV system have been canceled out. With 1 2M /M
K  

known as a function of ζg,seg and the chemical constitution of the SGM1 and SGM2 systems, one 

can potentially design the grafting for optimal partitioning of NPs in blends.
174

 

 

4.3.6. Concluding remarks 

The solvation of a grafted NP inside a polymer matrix is a complex phenomenon whose 

thermodynamics depends on multiple factors. The curvature of the particle, the amount of 

grafted material, the lengths of matrix and grafted chains, and the affinity of the polymer 

segments to the particle are essential parameters to be examined when attempting such a 

calculation.  

Calculation of the solvation free energy of a grafted NP requires analyzing two different 

systems; the grafted NP embedded in the polymer matrix (Section 4.2) and the same NP exposed 

to vacuum. In the latter case, the grafted polymer chains are in contact with a poor solvent and a 

compressible model is required for the nonbonded interactions in order to capture the density 

profiles of polymer segments around the solid surface. Furthermore, the presence of the solid is 

explicitly taken into account in the present work, by strictly preventing all polymer segments 

from reaching a zone near the solid surface, through essential Dirichlet BCs. This brings our 
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SCF theoretical framework closer to a molecular dynamics representation of the solid/polymer 

interface. 

In this section, we addressed the system of a grafted NP which is exposed to vacuum. In 

constrast to the system of the same NP embedded inside the polymer matrix (Section 4.2), where 

the grafting density, ζg, and the length of the grafted chains, Ng, are individually affecting the 

profiles of grafted chain segments and the energy of the system, in the vacuum case, it is the 

product of the grafting density and length of grafted chains, ζg,seg, that makes the difference. This 

product is equal to the total number of segments belonging to grafted chains divided by the area 

of the solid surface. Furthermore, we demonstrated how important the presence of the melt is to 

the configurations of grafted chains: when in melt, matrix chain segments interpenetrate the 

region occupied by the grafted chains, and the latter start to swell towards the bulk, since the 

favorable cohesive interactions with matrix chain segments (which herein were chemically 

identical to grafted chain segments) overcompensate the entropic cost associated with their 

stretching. On the contrary, when in contact with vacuum, grafted chains want to minimize their 

exposure to the vacuum and therefore they are pulled towards the surface of the solid or collapse 

upon themselves, assuming pancake or globule-like configurations at low grafting densities. 

Having connected our thermodynamic framework with the solvation free energy as defined 

by Ben-Naim, we determined the solvation free energy of a polystyrene-grafted silica 

nanoparticle inside a polystyrene matrix, by taking the direct difference of the grand potential of 

the solid-grafted-matrix system and the Helmholtz energy of the solid-grafted-vacuum system. 

This calculation was performed for the whole range of solid/polymer interactions. Depending on 

the amount of grafted polymer and the curvature of the particle, entropic phenomena associated 

with the conformations of grafted chains are cancelling out or not.  

It is clear that the solvation free energy of the grafted particle in the polymer melt is strongly 

negative. It is mainly the enthalpic interactions between matrix and grafted chain segments that 

render the melt a much more favorable environment for the grafted NP than vacuum. Entropic 

phenomena also contribute to the solvation of the particle, since the melt chains wet the grafted 

chains and offer them a higher number of available configurations. The role of entropy, 

however, becomes more pronounced only at higher curvatures. The net result of this complex 

interplay of a large number of parameters is that, even in the case of weak solid/polymer 

interactions, where a bare NP would not gain anything when transferred from vacuum into the 
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polymer, if enough chains are grafted on its surface, then its incorporation into the matrix is 

thermodynamically favored (see Figure 4.21). 

The theoretical calculations employed herein revealed three regions in the ζg,seg space with 

different behavior of the solvation free energy. When ζg,seg tends to zero, then the solvation free 

energy is equal to minus the adhesion tension between the polymer and the solid being 

immersed in the polymer melt times the surface area of the NP. On the other hand, when ζg,seg 

becomes larger than a threshold value, the behavior of solvation free energy is dominated by the 

surface tension of the grafted-matrix (if any) and grafted-vacuum interfaces. The SCFT 

calculations performed herein give a direct insight on the solvation free energy in the 

intermediate regions of the ζg,seg space, where there is not an analytic or numerical model to 

follow. Furthermore, the behavior in each one of these regions is quite different in the limit of 

infinite and very small particle radius. 

Based on our calculations, we went a step further and proposed a model for the qualitative 

prediction of the solvation free energy as a function of the radius of the NP and the number of 

grafted segments, ζg,seg (eqs 4.32, 4.33). This model is intended to be general, i.e., cover the case 

of chemically dissimilar matrices M1 and M2. Looking at these equations, if one knows the value 

of surface tension, ζ
GM1

 and ζ
GM2

, between the grafted chains, G, and two chemically different 

polymer melts, M1 and M2, and the adhesion tension of each polymer matrix to the particle 

surface, ζ
SM1

 and ζ
SM2

, then the equation can predict quite accurately the solvation free energy in 

the limits of very low, and high amount of grafted material without having to perform SCFT 

calculations. The reason this is expected to perform well is because solvation is dominated by 

enthalpy across these regimes and thus one can perform direct estimations based on the surface 

energies and the area of G/M1 and G/M2 interfaces. 

To test these predictions, our SCFT model will be extended in order to address polymers of 

different chemical constitution (e.g., different grafted and matrix chains or block copolymers). 

Having obtained information regarding the free energy of solvation of a grafted NP inside a 

polymer matrix which chemically different from the brush , we will be able to directly determine 

the equilibrium partition coefficient of the NP between two different polymer melts, which is 

quite hard to do experimentally.
144

 

According to Praetorius et al.,
144

 knowing the solvation free energies and the corresponding 

partition coefficient is only one part of the problem. In addition, one needs information on other 

thermodynamic properties of the system; namely, the free energy of solid/liquid
24,67,72

 and 

liquid/liquid
94,175–183

 interfaces, and the potential of mean force, which is directly related to the 
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aggregation tendencies of the NPs. Using this information, one can obtain a broader picture 

regarding the thermodynamics and evolution of a composite system. Several of the aforemention 

tasks have been reported in literature in one dimension.
24,67,72,184

 In Section 6.3, we present 

results obtained with our three-dimensional version of RuSseL, regarding the potential of mean 

force between two spherical grafted NPs as a function of grafting density, chain length and 

spatial distribution of grafted chains across the NP surface. The SCF approach offers a 

convenient theoretical framework for obtaining this information
27,28

 and ultimately linking it to 

atomic-level structure and interactions in the context of multiscale modeling. 
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5. THREE DIMENSIONAL CALCULATIONS AND 

COMPARISON WITH 1D 

5.1. Background 

In this chapter, we investigate the influence of dimensionality on the computational study of 

polymer nanocomposites in the context of Self-Consistent Field Theory and using a real-space 

framework based on the Finite Element method. We perform calculations in a three dimensional 

domain to address the system of a single silica-grafted nanoparticle and compare the results 

against those obtained with the one-dimensional calculations, which were presented in Section 

4.2. 

We find that the one-dimensional representation is quite close to the three-dimensional one 

when it comes to predicting the thickness of the brush and its scaling with respect to grafting 

density, chain length and particle size. Nonetheless, differences arise when calculating the free 

energy of the system in the mushroom regime. Moreover, the three-dimensional profiles of 

grafted chains more realistically reproduce the spikes corresponding to the grafting points. This 

is caused by the inevitable smearing of the grafting points, which degenerate into a single point 

when using a one-dimensional representation. Furthermore, in three-dimensions, each grafted 

chain maintains its identity and its own configuration inside the domain. We compare the two 

geometric levels of description based on the free energy of a system of a single polystyrene-

grafted silica nanoparticle embedded in polystyrene matrix. We demonstrate the density profile 

of a single grafted chain as a 3D plot inside the domain and visualize the mushroom and dense 

brush configurations. We also determine the variations of the free energy and the structural 

properties of the system as functions of the distribution of grafting points around the spherical 

particle.  
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Theoretical frameworks and computer simulations have been very useful for guiding and 

verifying experimental studies and help resolve major issues of industrial interest.
45,47,129,185,186

 A 

variety of theoretical and simulation methodologies have been employed to address systems of 

polymer grafted nanoparticles, like the Polymer-Reference Interaction Site Model (PRISM),
119

 

Self-Consistent Field Theory (SCFT),
21,41,187,188

 Density Functional Theory (DFT),
189–193

 

Molecular Dynamics (MD),
36,38,39,50,55,56,58,105–107,117,120,194–200

 Dissipative Particle Dynamics 

(DPD),
57,123,184,201

 as well as machine-learning frameworks.
202,203

 In addition to these studies, 

multiple scaling laws regarding the height of the brush have been proposed to describe the 

structural behavior of grafted chains in the solid/polymer interfacial region over a broad range of 

experimental conditions.
18,19,24,50,130,164

  

The free energy of brushes and PGNPs exposed to polymeric bulk phases constitutes a 

useful tool for the prediction of stable configurations and surface properties of materials. For 

instance, the strength of solid/polymer and vacuum/polymer interfaces can be quantified in 

terms of the adhesion tension and surface tension, respectively. The partition of PGNPs in 

polymer blends in thermodynamic equilibrium can be predicted via the solvation free energy.
136

 

The agglomeration tendencies of PGNPs in a polymer matrix can be quantified in terms of the 

potential of mean force (PMF), i.e. the variation in the free energy of systems of multiple 

PGNPs in dependence of the configuration of their centers. The latter has been investigated 

thoroughly via traditional methodologies such as SCFT,
21,25,28,163,204

 MD
37,117,165,199,205,206

 and 

DPD.
184

 Recently, the PMF between single-chain-grafted nanoparticles (tadpoles) has been 

derived by a deep neural network methodology which has been trained on a set of equilibrated 

trajectories obtained via MD simulations.
202

 In the context of machine-learning inspired 

methodologies, Xuan et al.
203

 devised a combination of mean-field theory with a deep learning 

framework to accelerate the investigation of polymer phases in incompressible block copolymer 

systems. 

The main advantage of SCFT relative to the aforementioned methods is that it allows for 

direct calculation of the free energy and structural features of the brushes at a relatively low 

computational cost. Over the years, several SCFT frameworks have been developed for 

incompressible,
35,41,83,90,187,207

 and compressible
41,66,90,208

 models; the latter take into account the 

density deviations and potential formation of cavities, at the cost of additional complexity. 

Scheutjens and Fleer were pioneers in conducting lattice-based Self-Consistent Field 

calculations, 
62

 whereas Matsen and Kim started describing polymer brushes using the so-called 
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Strong-Stretching Theory (SST).
88

 They explored the capabilities and limitations of the latter 

computational approach and set the foundations of the mathematical description of polymer 

brushes via SCFT along with Müller.
40

 3D implementations of SCFT are less common in the 

literature, because they imply a high computational cost. For instance, 3D-SCFT calculations 

have been conducted by the group of Fredrickson on block polymer systems and in arbitrary 

domains.
35,90

 Daoulas and Müller
208

 have devised a 3D-SCFT methodology to determine the 

thermodynamically favored morphology of amphiphilic molecules by discretizing the domain of 

interest with a finite volume scheme. 

Being one-dimensional, the 1D-SCFT model exhibits limited flexibility in describing more 

elaborate geometries, such as pairs of interacting NPs,
169

 dry PGNP lattices,
50

 and irregular 

grafting distributions such as single-chain-grafted NPs,
202,209,210

 all being experimentally 

relevant. Moreover, the smearing approximation is expected to break down in the limit of very 

low grafting densities (mushroom regime),
24

 where the grafted chains can assume intricate 

configurations such as pancakes
169

 and globules.
170

 There has been considerable effort in the 

past to simulate systems of nonuniform grafting of solid surfaces.
20,211–214

 Frischknecht et al.
20

 

have employed both an incompressible SCFT and a (compressible) DFT model, where they 

investigated the interactions between grafted nanorods (NRs) immersed in homopolymer matrix. 

Koski et al.
213,214

 have used a Dynamic Mean-Field Theory model, which is a combination of 

Brownian dynamics motion of polymer segments and a Hamiltonian that depends on a density 

field. Having direct access to segment coordinates from the solution of the BD equation in 2D, 

they were able to explicitly attach the grafting points on the solid surfaces according to 

nonuniform patters and investigate the resulting agglomeration of the NRs. 

In this section, the Edwards diffusion equation is solved in a three-dimensional domain by 

means of the Finite Element Method.
35,67,92

 The strong form of the PDE is transformed into the 

corresponding weak form (see Section 2.4) and the domain is discretized in a finite number of 

elements using an open source 3D meshing tool.
93

 The FEM allows us to define a denser mesh 

near the solid/polymer interfaces, where the propagator/solution is steeper due to Dirichlet 

boundary conditions imposed on the solid boundaries, and at the same time maintain a coarser 

mesh in the bulk polymer region. In an effort to stay as close to the atomistic representation of 

the grafted chains as possible, we explicitly instruct the mesher to create points at specific 

coordinates, where the grafting point initial conditions will be assigned. During the equilibration 

of the field and the solution of the Edwards diffusion equation, each grafting point will assume 
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its own delta function value and initial condition; no smearing of grafting points takes place, 

normal or parallel to the solid surface.
24,41

 

We first validate the 3D-SCFT model by conducting direct comparisons with its 1D-SCFT 

counterpart on the same systems. The structural and thermodynamic properties of a single silica 

NP equidistantly grafted with polystyrene (PS) chains in a molten PS matrix are investigated 

over a broad parameter space, where we vary the length of grafted (Ng) and matrix (Nm) chains, 

grafting density (ζg) and NP radius (RS). We test the smearing approximation invoked in 1D-

SCFT by probing the low Ng, ζg range. Interestingly, the mean-field structural and 

thermodynamic properties of the 1D- and 3D-SCFT models are in reasonable agreement. Having 

validated the 3D-SCFT model, we turn our attention to the total and single-chain 3D spatial 

distributions and how they are affected by Ng, ζg and RS. By taking advantage of the single-chain 

representation of the 3D-SCFT method, we explore the effect of equidistributed and exotic 

irregular grafting distributions (such as single- and dual-pole, and ―ring‖-like) on brush structure 

and thermodynamics. 

The majority of literature studies which are based on SCFT employ an incompressible 

Hamiltonian.
35,41,83,90,187,207

 Practically, this means that the total segment density of the system 

must be constant throughout the calculation. This way, one avoids the computational penalties 

and convergence difficulties associated with penalizing density fluctuations in a compressible 

model (e.g., harmonic type penalty in the case of Helfand EoS,
65

 logarithmic term when using 

SL).
71

 Nonetheless, the incompressibility constraint comes with some drawbacks: first of all, one 

can monitor only entropic contributions to the total free energy of the system, since no cohesive 

term appears in the Hamiltonian. Moreover, it is not possible to combine an incompressible 

model with Dirichlet BCs, which need to be imposed on the solid surfaces to confine the 

polymer segments.
1,35,90

 Another system that is hard to simulate with an incompressible model is 

one of polymer chains which are grafted on solid surfaces in the absence of any free melt chains 

(see Section 4.3). For more information on such systems, the reader is referred to references 

28,136
. 

The methodology presented in the current section combines the virtues of three-dimensional 

calculations, an explicit excess Helmholtz energy density functional describing the nonbonded 

interactions among polymer segments, realistic presence of a solid surface through Dirichlet 

boundary conditions, and strict mathematical representation of chains grafted on the solid 

surface. The goal of the 3D model developed in the context of this PhD thesis is to achieve a 
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representation that is as close as possible to atomistic simulations and at the same time takes 

advantage of the power of field-theoretic calculations. Having such a computational tool to 

represent one or more grafted NPs in arbitrary 3D domains can prove to be quite helpful in 

reproducing or designing complex systems that experimentalists are interested in, such as the 

ones studied in the recent work by Rungta et al.,
215

 where chains of two different molecular 

weights were grafted on the surface of silica colloidal particles via controlled radical 

polymerization. 

 

5.2. Spatial discretization 

The FEM allows us to define a denser mesh near the solid/polymer interfaces, where the 

propagator/solution is steeper due to the Dirichlet BCs imposed on the solid boundaries, and at 

the same time maintain a coarser mesh in the bulk polymer region above a threshold distance, 

hM, as shown in Figure 5.1 below. The density of nodal points in each region (fine/coarse) is 

controlled via the maximum element size, Vmax,fine/coarse and the minimum element size, 

Vmin,fine/coarse. 
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Figure 5.1 Meshing illustration of a NP with RS = 4 nm inside a box with dimensions 45 × 45 × 45 nm
3
.  (a) A 

perspective view showing the mesh at the periodic and Dirichlet (solid) boundaries. (b) A xz-slice passing through 

the center of the NP (created with the ―Slice‖ operation of Paraview software
216,217

). The inset provides with an 

enlarged view of the solid/polymer interface. 
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5.3. Calculation Details  

The radius of the NP assumes the values RS = {1, 2, 4, 8} nm. The length of grafted chains is 

equal to Ng = {24, 48, 96, 192, 384} skeletal bonds. The length of matrix chains is always equal 

to that of the grafted chains, i.e., Nm = Ng. 

The dimensions of the box in all directions are large enough (L ≥ 9 RG,g, after excluding the 

volume occupied by the NP) to ensure that the solution of PDE 2.2 is not influenced by finite 

size effects. As already mentioned in the previous section, the mesh is denser near the surface of 

the particle and coarser in the bulk box region (see Figure 5.1). In the dense region, which has a 

width hM = 0.5 nm, the minimum element volume is Vmin,fine = 1.0 Å
3
 and the maximum element 

volume is Vmax,fine = 2.4 Å
3
. These values were selected according to the mesh benchmarks 

presented in Section 3.7.1. In the coarse mesh region, the minimum element volume is Vmin,coarse 

= 2.4 Å
3
 and the maximum element volume is Vmax,coarse = 20 Å

3
. These values are also reported 

in Table 5-1. 

Regarding the chain contour discretization, we used the hybrid scheme that we presented in 

Section 3.5.3. According to the relative benchmarks presented in Section 3.7.2, and in order to 

keep the computational cost at the minimum level, we decided the following: for both grafted 

and matrix chains, the switching contour point is set at Nm,SW = Ng,SW = 40.0. The average 

contour step size for matrix and grafted chains is ΓΝm,ave = 1.0 and ΓNg,ave = 0.8, respectively. 

For the convenience of the reader, all parameters of the 3D-SCFT calculations of this chapter are 

presented in the following Table 5-1. 
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Table 5-1 Parameters of 3D-SCFT calculations. 

component parameter value description source 

System T 500 K temperature - 

Grafting points 
ref, 0qh   

0.44 nm 
Reference g-point-HS wall 

distance 
- 

 
gg,ih

 
0.44 nm g-point-HS wall distance - 

Chain characteristics 
kb  1.83 nm Kuhn length 23

 

lC-C 0.154 nm 
Backbone carbon bond 

length 
- 

  0.829 Geometric factor 3 

Mmonomer

 
52.08 g/mol 

Segment molar mass (1/2 

repeat unit) 
- 

Helfand EoS ρmass,bulk 953 kg/m
3
 mass density @500K 23

 

 
κΤ 3.97 GPa

–1
 

isothermal compressibility 

@500K 

28,67
 

Solid/polymer 

interactions HSh  0.4 nm Hard sphere wall  
24

 

PS  0.37 nm PS effective diameter 23
 

2SiO  0.30 nm SiO2 effective diameter 23
 

PSA  5.84·10
-20

 J PS Hamaker constant 23
 

2SiOA  6.43·10
-20

 J SiO2 Hamaker constant 23
 

Mesh discretization hM

 
0.5 nm Width of dense mesh region - 

Vmin,fine 1.0 Å
3
 

Min element volume in 

dense region 
- 

Vmax,fine

 
2.4 Å

3
 

Max element volume in 

dense region 

Section 

3.7.1 
 

Vmin,coarse 2.4 Å
3
 

Min element volume in 

coarse region 
- 

 
Vmax,coarse 20.0 Å

3
 

Max element volume in 

coarse region 
- 

Contour discretization 
Nm,sw

 40.0 
Switching point of matrix 

chains 

Section 

3.7.2 

ΔNm,ave
 1.0 (edw), 0.4 (conv) 

Average step size for matrix 

chains for the PDE (edw) 

and convolution (conv) 

Section 

3.7.2 

Ng,sw
 40.0 

Switching point of grafted 

chains 

Section 

3.7.2 

ΔNg,ave
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5.4. Assessment of the Smearing Approximation: 1D- versus 3D-SCFT 

All calculations described in the current section are conducted with the three-dimensional 

version of RuSseL in a system of a single silica NP with equidistantly grafted polystyrene chains 

on its surface. The system is the same as the one addressed in Section 4.2, where a one-

dimensional formulation has been employed, taking advantage of the spherical symmetry of the 

problem after smearing over all polar and azimuthal angles at each radial distance. We study the 

same system here with 3D-SCFT, aiming to reveal the similarities and differencces between the 

two levels of geometry, when employing SCFT calculations on solid/polymer interfaces. 

 

5.4.1. Smeared segment density profiles  

Besides the size of the brush (which we elaborate on in Section 4.2.7), it is useful to determine 

first the density profile of polymer segments belonging to grafted polymer chains around the 

solid surface and towards the bulk polymer melt. In Figure 5.2 below, we present the density of 

grafted polystyrene segments for different values of the particle radius, RS, grafting density, ζg, 

and length of grafted chains, Ng. In all cases, the length of matrix chains is equal to that of 

grafted chains, Nm = Ng. 

 

Figure 5.2 Density profiles of grafted chains obtained with 1D- and 3D- SCFT calculations.  Comparison of 1D-

SCFT (dotted green lines) and 3D-SCFT (solid red lines) smeared density profiles of grafted polystyrene chains. r-

axis is presented in logarithmic scale. The NP size increases from left to right as RS = {1, 2, 4, 8} nm. The (ζg/nm
–2

, 

Ng) combination varies from top to bottom as (0.1, 48), (0.8, 48), (0.1, 384) and (0.8, 384). In all cases, grafted 

chains are equidistantly distributed and Nm = Ng. Regarding the smearing in 3D, bin thickness is δr = 0.05 nm (eq 

5.1).  
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In order to perform a transition from the density field evaluated at the points of the three-

dimensional mesh to a 1D profile representation, we perform a partitioning of the 3D domain in 

spherical cells with thickness δr, and the average density is calculated according to eq 5.1 below. 

   ,

nodes, /2 /2 nodes, /2 /2i i

c c i i i

i r r r r r i r r r r r

r V V
   

 
         

    5.1 

Figure 5.2 presents the smeared density profile of grafted polystyrene segments (θg) for 

different particle radii, RS, grafting densities, ζg, and grafted chain length Ng; keeping Ng = Nm. 

For clarity, the abscissa (radial distance axis) is presented in logarithmic scale. Overall, the 

density profiles obtained via 1D- and 3D-SCFT calculations are in excellent agreement. There 

is, however, a substantial difference at low r. In 3D-SCFT, the density profiles reproduce 

exactly the density cusp on the grafting point that one expects to see when grafting polymer 

chains on a surface. This cusp does not exist in the profiles derived by 1D-SCFT, since the 

grafting points are completely smeared parallel to the solid surface; hence the cusp is replaced 

by a small increase in the density profile. The total segment density profile (i.e., sum of the 

profiles of grafted and matrix chains) is presented in the following Figure 5.3. 

 

Figure 5.3 Total segment density profiles obtained with 1D- and 3D- SCFT calculations.  Comparison of 1D-SCFT 

(dotted green lines) and 3D-SCFT (solid red lines) smeared total density profiles of grafted and matrix polystyrene 

chains. r-axis is presented in logarithmic scale. The size of the NP is varied from left to right panels, assuming 

values RS = {1, 2, 4, 8} nm. The (ζg/nm
–2

, Ng) combination varies from top to bottom as (0.1, 48), (0.8, 48), (0.1, 

384) and (0.8, 384). In all cases, the grafted chains are equidistantly distributed and Nm = Ng. Regarding the 

smearing in 3D, bin thickness is δr = 0.05 nm (eq 5.1). 
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As was demonstrated in Section 4.2.3, the shape of the density profile at the solid interface 

depends on several factors, such as the interplay between the surface and adhesion tension, the 

manifestation of entropic penalties due to confinement and curvature. In the current model, the 

cohesive interactions are much stronger than the adhesive ones, attracting the polymer film 

further towards the bulk phase.
53

 Radially averaging the density across the (high) density region 

at the grafting point and intermediate (low) density region between the grafting points, results in 

the generation of a density drop, right after the grafting point. This effect is observed in both the 

grafted (Figure 5.2) and total (Figure 5.3) smeared density profiles, and it is reminiscent of the 

excluded volume effects reported in atomistic simulations.
56,194,218

 

 

 

Figure 5.4 Contour plot of the density and self-consistent field near a spherical nanoparticle.  Contour plot of the 

segment density of (a) grafted, and (b) matrix chains, and (c) self-consistent field, evaluated on a planar cross-

section of the three-dimensional domain, which contains the grafting point. High/moderate/low density regions are 

indicated by red/white/blue color. The size of the particle is RS = 1 nm and one single polystyrene chain is grafted 

on its surface with length Ng = Nm = 384 skeletal bonds (corresponding to the left-most column, third row of Figure 

5.2). 

 

Aiming to provide the reader with a more informative illustration of the density profile of 

grafted chain segments, we present in Figure 5.4 a contour plot of the density profile, which is 

depicted on a plane parallel to a pair of parallel box faces and passing through the sphere center 

and the grafting point on the particle surface. Furthermore, we show the same contour plot for 

the density profile of matrix chain segments (panel b) and the self-consistent field, ifcw  (panel c). 

 

 

 

5.4.2. Brush thickness 

In Section 4.2.7, we demonstrated that the scaling of the brush with respect to chain length 

and grafting density is subject to a scaling law of the following form: 
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1/2

2

g g g~ n mh N   5.2 

where the scaling exponents m and n are functions of RS. In Figure 5.5 below, instead of plotting 

the brush thickness with respect to the product Ng
n
ζg

m
, we opted to render this quantity 

dimensionless by multiplying with (Rg
2
/Ng)

m
. 

 

Figure 5.5 Comparison of 1D- (transparent markers) and 3D-SCFT (solid markers) calculations in predicting the 

brush thickness.  The latter is calculated via eq 3.4. The scaling exponents n, m appearing in the x-axis are retrieved 

from Section 4.2.7. The NP size increases from left to right as RS = {1, 2, 4, 8} nm. The length of grafted chains is 

denoted by different colors; Ng = {24: red, 48: blue, 96: green, 192: purple, 384: orange} skeletal bonds. Grafting 

density is denoted by different shapes; ζg = {0.1: square, 0.2: circle, 0.4: diamond, 0.8: triangle} nm
–2

. In all cases, 

the grafted chains are equidistantly distributed and Nm = Ng. 

 

Figure 5.5 illustrates the mean brush thickness (varying RS, ζg and Ng) against Ng
n–m 

(ζgRg
2
)
m
. 

Evaluations with 1D-SCFT/3D-SCFT are represented by transparent/solid markers. It becomes 

clear that, despite the smearing approximation, the 1D model gives identical results with the 3D 

one, for the whole range of examined parameters. It is also observed that both models reveal a 

deviation from the suggested scaling when the parameters of the system correspond to the 

mushroom regime (i.e., squares and circles in Figure 5.5), meaning that this scaling law cannot 

reproduce the scaling of the brush in this regime; this is in accordance with the findings in 

Section 4.2.7. 
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5.4.3. Thermodynamics 

 

Figure 5.6 Comparison of 1D- (dotted lines) and 3D-SCFT (solid lines) calculations in predicting the total free 

energy.  Individual free energy components are also evaluated in a system of a single polystyrene-grafted silica NP 

embedded in polystyrene matrix. The NP size increases from left to right as RS = {1, 2, 4, 8} nm. The length of 

grafted chains is denoted by different colors; Ng = {24: red, 48: blue, 96: green, 192: purple, 384: orange} skeletal 

bonds. Grafting density is denoted by different shapes; ζg = {0.1: square, 0.2: circle, 0.4: diamond, 0.8: triangle} 

nm
–2

. In all cases, the grafted chains are equidistantly distributed and Nm = Ng. 

 

Figure 5.6 compares 1D- and 3D-SCFT models in predicting the dependence of the total (eq 

2.38) and individual free energy components (eqs 2.39-2.43) per NP area, for the same values of 

RS, ζg and Ng where the structural properties of the brush were determined and assessed. 

We observe that the cohesive and field terms are quantitatively different between 1D and 

3D, the main difference being their sensitivity to the grafting density (different symbols). In 3D, 

Ωcoh and Ωfield are calculated based on the spatial integration of f(ρ(r)) and its derivative (see eqs 

2.39 and 2.40), whereas in 1D, they are functions of the smeared density profile f(ρ(r)). 

Regarding the cohesive term (first row of Figure 5.6), it is simply an integration of the 

excess Helmholtz energy density of the system (eq 2.39), which is determined in this section 

using a Helfand Hamiltonian (eq 2.9). Consequently, this free energy term drops as the density 

at the interface gets closer to the one in the bulk. In both models, as the grafting density 

increases, the total segment density increases towards the bulk values, with this effect being 

more pronounced in the 1D case (see Figure 4.7 and Figure 5.3). Hence, it is reasonable that 
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there is a slightly steeper drop of the cohesive term with increasing grafting density in the 1D 

than in the 3D case. 

The field term (second row of Figure 5.6) depends on the density derivative of the free 

energy (eqs 2.8 and 2.40). The 3D model is more sensitive than its 1D counterpart since the 

delta functions impose a steep density field close to the grafting points and, as the grafting 

density increases, more of these grafting points exist near the solid surface. 

The conformational entropy of matrix chains, ΓΩm (eq 2.42), is an increasing (decreasing) 

function of ζg (Ng) and is practically identical in both models; i.e., see third row of panels in 

Figure 5.6. 

Regarding the conformational entropy of grafted chains ΓΩg (eq 2.43), it increases with ζg 

and to a lesser extent with Ng (same symbols different colors), indicating that the chains are 

being stretched; see fourth row of Figure 5.6.
24

 This effect becomes more pronounced with 

increasing RS (decreasing curvature), because chains experience more confinement. However, 

the slope corresponding to 3D-SCFT is consistently higher than the one obtained by 1D-SCFT. 

The smearing approximation invoked in 1D-SCFT entails that the grafting points are delocalized 

in the tangential direction relative to the NP. The model understands the stretching only as a 

variation of the distance between a projection of the free chain end and the grafted end. On the 

other hand, in 3D, the grafting points are fixed as would be the case in reality, and it is more 

costly for the chain to assume configurations that stretch it tangentially with respect to the 

grafting point. 

As a general conclusion, the total free energy of the system is qualitatively similar between 

the two models, whereas the quantitative differences between the two levels of geometry are 

mitigated with increasing particle radius. This is expected, since the mushroom regime is more 

difficult to prevail at lower solid curvatures. 
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5.4.4. Equidistributed Grafted Nanoparticles: 3D Spatial Distributions 

 

Figure 5.7 3D density profiles of chains equidistantly grafted on spherical NPs of various radii.  (a) Spatial 

distributions of polystyrene chains equidistantly grafted on the surface of a silica NP embedded in polystyrene 

matrix. (b) Spatial distributions of individual polystyrene chains on the surface of a silica NP. The size of the NP is 

varied from left to right panels assuming values RS = {1, 2, 4, 8} nm. The (ζg/nm
–2

, Ng) combination varies from top 

to bottom as (0.1, 48), (0.8, 48), (0.1, 384) and (0.8, 384). Denser color corresponds to higher values of densi ty and 

vice-versa. For clarity, the NP core is overlaid with 10% opacity. Calculation parameters can be found in Table 5-1. 

In all cases, Nm = Ng. 

 

Going a step further in the 3D description of this system, we present in Figure 5.7a the 

spatial distribution of all grafted chain segments inside the simulated domain, as a function of RS 

for two extreme cases of grafting density and chain length considered here. Denser color 

corresponds to higher segment density and vice-versa. We could manipulate color opacity at 

higher density values to demonstrate the grafting points, but we considered best to present the 

system as it would look like in a particle based simulation. 

It becomes clear how the size of the brush increases with chain length and grafting density. 

The positions of the grafting points are clearly visible in cases of short and sparsely grafted 

chains which do not interpenetrate each other (mushroom regime), whereas, when NPs are more 

densely grafted, the density cloud becomes so dense that the grafting points disappear inside this 

cloud; e.g., compare (ζg/nm
–2

, Ng) = (0.1, 48) with (0.8, 48) in Figure 5.7a. Increasing RS results 

in significant swelling, since the chains have less available space and stretch further towards the 

bulk phase. 

It is possible to isolate specific chains out of the total number of chains grafted on the 

surface of the NP and see how the corresponding segment density behaves. After the iterative 
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scheme is terminated and the field is equilibrated, in order to derive the density profile of 

segments emanating from a specific grafted chain, ig, we need to solve the Edwards eq 2.2 using 

the initial condition value corresponding to this specific chain (eq 3.18); all other grafted chains 

are assigned an initial value equal to zero, so that they do not interfere in the solution. Solving 

the Edwards equation under these conditions results in the individual grafted chain propagator, 

gg,iq , which can be convolved (see eqs 3.13 and 3.14) with respect to the contour variable, N, 

and give the desired density profile. 

In Figure 5.7b, we present the evolution of the spatial distributions of segments belonging to 

individual grafted chains emanating from the surface of the particle. The configurations are 

affected by bonded interactions, interactions with the low affinity wall,
76,136

 nonbonded 

interactions with matrix chain segments, but also nonbonded interactions with the rest of grafted 

chains existing in the system which are deliberately not illustrated. 

This kind of isolated representation of the density segments belonging to a single grafted 

chain is serving very well as a visualization of the shape of individual chains. In situations with 

long chains and small NPs, the cloud of polymer segments completely surrounds the NP surface; 

e.g., inspect cases with Ng = 384 and RS = 1 nm in Figure 5.7b. Increasing the RS reduces the 

available space and the chains extend towards the bulk polymer region rather than surrounding 

the solid surface. Another observation made on the basis of Figure 5.7b is that the effect of 

grafting density on the shape assumed by grafted chains (keeping the chain length constant) 

becomes stronger for larger particle size. Furthermore, it seems that, for all particle sizes, 

increasing the chain length (keeping constant grafting density) mainly affects the height of the 

brush rather than its shape. 
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5.5. Irregular Grafting Point Distributions: Structure and Thermodynamics 

In this section, we demonstrate a definite advantage of 3D-SCFT relative to its 1D counterpart, 

which is the determination of brush thickness and free energy of the system with varying 

distribution of grafting points around the solid surface. In our calculations, we opted to keep the 

radius of the particle (RS = 4 nm) and number of grafted chains (ng = 80) constant and vary the 

chain length in addition to the distribution of grafting points. 

 

Figure 5.8 3D density profiles of chains irregularly grafted on spherical NPs of various radii.  Spatial distributions 

of polystyrene chains (a) equidistantly, and (b, c, d) irregularly grafted on the surface of a silica NP embedded in 

polystyrene matrix. For each grafted chain distribution, we present the density profiles for two chain lengths; Ng = 

{48, 384}. The row ―g-point‖ illustrates the positions of the grafting points on a sphere with radius RS + hHS. The 

parameter values of the biased distributions (eq 3.34) are presented in parentheses in the heading of each panel. 

Denser color corresponds to higher values of density and vice-versa. For clarity, the NP core is overlaid with 10% 

opacity. Calculation parameters can be found in Table 5-1. In all cases, RS = 4 nm, ng = 80 and Nm = Ng. 

 

In Figure 5.8, we present the density cloud of grafted segments in three-dimensional space 

for different grafting distributions, namely uniform (random) distributions (panel b), a ―ring‖-

like distribution (panel c) and a pair of grafting point-rich poles (panel d). For reference, we also 

present, in panel a, the density cloud corresponding to the equidistant distribution of grafting 

points for the same system parameters. In the non-equidistant cases, we also report the set of 

parameters used to sample the grafting points according to the corresponding probability map 

from eq 3.34. We suggest that the reader revisit Section 3.8 for details regarding the generation 

of grafting points. 

To better understand how the cloud of grafted chain segments evolves for different 

distributions and values of chain length, we illustrate it in two different NP orientations. In most 

cases, it is difficult to detect the position of grafting points visually, so we also provide a VMD 
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representation of the NP and the grafting points for each distribution (―g-point‖ row of Figure 

5.8). 

It is clear that the grafted segment cloud may become distorted in the uniform case with 

respect to the equidistant case, leading to the formation of segment-rich and segment-deprived 

regions inside the domain (e.g., compare Figure 5.8a with Figure 5.8b) The distortion of the 

overall segment cloud becomes significant in cases with primarily equatorial and primarily 

bipolar grafting. In particular, Figure 5.8c illustrates a case with two repulsive Gaussian pulses 

applied to the poles of the NP, resulting to a ring-like configuration. Figure 5.8d depicts the 

opposite scenario with attractive Gaussian pulses applied to the poles of the NP, resulting in a 

dual-pole PGNP. It appears that the overall shape of the density cloud becomes more 

homogeneous with increasing chain length, since chains are given the opportunity to explore the 

segment depleted regions, especially in cases of high particle curvature. Varying the grafting 

point distributions is expected to alter dramatically the self-assembly properties of these 

systems. 

According to the following Figure 5.9, with increasing segregation of the grafting points, the 

smeared density profiles are suppressed near and enhanced far from the interface, relative to the 

equidistant case, indicating that the brushes become more swollen on average. The 

corresponding density profiles occurring from equidistant grafting are practically identical 

between 3D-SCFT and 1D-SCFT (see Figure 5.2); thus, we conclude that the smearing 

approximation becomes less accurate with increasing segregation of the grafting points on the 

solid surface. 
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Figure 5.9 Assessement of smearing approximation when chains are irregularly grafted on a spherical NP.  

Difference of the smeared density profiles of (a-c) uniform, (d-f) ring and (g-i) dual pole grafted schemes from the 

smeared density profiles of equidistantly grafted NPs, for the same particle radius, RS, number of grafted chains, ng, 

and length of grafted and matrix chains, Ng = Nm. Ng equals 24, 96 and 384 skeletal bonds from top to bottom 

panels. The insets in the top panels illustrate the distribution of grafting points in each case. The parameter values of 

the biased distributions (eq 3.34) are presented in parentheses in the heading of each panel. Calculation parameters 

can be found in Table 5-1. In all cases, RS = 4 nm, ng = 80, and Nm = Ng. 
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Figure 5.10 3D density profiles of individual chains grafted on a spherical NP.  Spatial distributions of polystyrene 

chains of (a, b) all and (c, d) three individual polystyrene chains (depicted by red, blue and green color) uniformly 

grafted on the surface of a silica NP embedded in polystyrene matrix; i.e., same configuration as in  Figure 5.8b. 

The length of grafted chains is equal to (a, c) 48, (b, d) 384 backbone carbon atoms. Denser color corresponds to 

higher values of density and vice-versa. In (a, b), the NP core is overaid with 10% opacity. Calculation parameters 

can be found in Table 5-1. In all cases, RS = 4 nm, ng = 80 and Nm = Ng. 

 

In Figure 5.10, we have isolated three random grafted chains of the uniform distribution case 

shown in Figure 5.8b to visualize the density profile and the interactions between segments of 

two different chains which happen to lie closer to each other, so that their profiles overlap in 

space (see green and red cloud for high chain length case in Figure 5.10). On the contrary, the 

cloud of the blue chain segments suggests that it is far from the green and red chains, so that it 

does not interact with them. Nonetheless, it can still interact with another subset of the grafted 

chains which are deliberately not illustrated. 
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Figure 5.11 Brush thickness and free energy evaluation for various grafting distributions.  (a-e) Mean brush 

thickness and (f-j) free energy in a system of polystyrene chains grafted according to various distrbutions on the 

surface of a silica NP embedded in polystyrene melt. Both the mean brush thickness and the free energy are 

normalized with respect to those obtained for the case of equidistant chain grafting with RS = 4 nm, ng = 80 and Nm 

= Ng. In each panel, the distribution of grafting points corresponds to the image presented in the first row of the 

figure. The individual free energy components are illustrated in Figure 5.12. Calculation parameters can be found in 

Table 5-1. 

 

In Figure 5.11, we present how the total free energy of the system is affected from the 

distribution of grafted chains on the solid surface and as a function of chain length, Ng. In the 

first column, we present free energy variations with respect to three different samplings of 

grafting points from a uniform probability distribution. The free energy variation is minor and 

can serve as a metric for the deviation in the free energy with respect to the exact positions of 

the grafting points. 

In the remaining columns of Figure 5.11, we illustrate the evolution of the free energy with 

respect to chain length for four different distribution cases: (i) one attractive pole, (ii) two 

attractive poles which result in a grafting point-deprived zone around the equator of the NP, (iii) 

one repulsive pole and (iv) a ring-like configuration with two repulsive poles which result in a 

grafting point-rich zone around the equator of the NP. In each of these cases, we also vary the 

intensity of attraction or repulsion of grafting points, which is practically controlled by the 

standard deviation di used in the generation of grafting points via eq 3.34. Moreover, in all cases, 

the free energy of the system is normalized with respect to the corresponding free energy of the 

same system (in terms of RS, ng, and Ng) with equidistantly placed grafting points. 
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With these considerations, it is clear that the free energy of the system is always higher when 

the chains are not regularly grafted on its surface. Both the thickness of the brush and the free 

energy of the system increase when the distribution compels the grafted chains to get closer to 

each other. When the center of the Gaussian distribution of grafting points is attractive in nature, 

it is easier for the grafting point generation algorithm to bring the chains closer to each other, 

and this has a clear impact on increasing the free energy of the system compared to the cases of 

repulsive centers (compare panels g, h with i, j). An interesting behavior of the brush thickness 

is observed in panels b and c; beyond a certain value of the chain length, the thickness of the 

brush starts decreasing. This is explained by the fact that, given the crowding of grafting points, 

only longer grafted chains are given the opportunity to explore more space, which in turn is 

offered by the curvature of the particle. In other words, as the length of the chains increases, the 

cloud of segments becomes more uniform and tends to that of the equidistant grafting case. In 

Figure 5.12 below, we present the dependence of all free energy terms on the distribution of 

grafting points and chain length. 
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Figure 5.12 Free energy components in a system of polystyrene chains grafted according to various distributions on 

the surface of a silica NP embedded in polystyrene melt.  All components are normalized with respect to those 

obtained for the case of equidistant chain grafting with RS = 4 nm, ng = 80 and Nm = Ng. In each panel, the 

distribution of grafting points corresponds to the image presented in the ―g-point‖ row above. Calculation 

parameters can be found in Table 5-1. 

 

It is mentioned here that in all calculations of this chapter, there is the freedom for two 

grafted chains to emanate from the exact same point on the surface of the NP. This effect does 

not cause convergence issues in the SCF algorithm, nor does it generate significant uncertainties 

in the values reported herein. There is, however, an option to use the grafting point generation 

algorithm presented in Section 3.8, while at the same time imposing a minimum distance 

between the grafting points. This restriction affords more chemical realism and can prove to be 

quite useful when the free energy differences are expected to be comparable to the error of the 
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algorithm, e.g., in the case of two grafted NPs moving relative to each other, whose potential of 

mean force needs to be calculated. 

 

5.6. Concluding remarks 

In this chapter, we directly compare the usually implemented 1D-SCFT models against a fully 

three-dimensional SCFT model solved by the Finite Element Method. We demonstrate that, 

when addressing a single equidistantly grafted nanoparticle, the two models give identical 

results as regards the smeared density profiles, the size of the brush, and the free energy term 

associated with the conformational entropy of matrix chains. Nevertheless, even in this simplest 

of cases, there is a slight deviation between the two models when calculating the total free 

energy of the system, especially when the combination of grafting density, chain length and 

particle radius brings the system into the mushroom regime. 

Taking advantage of the 3D-SCFT framework, we have also addressed systems where the 

grafted chains are non-equidistantly grafted on the surface of the NP. It is obvious that such a 

system cannot be addressed by 1D (or even 2D) models, where smearing of the grafting points 

takes place parallel to the surface of the particle. As we show, when the grafting point 

distribution brings grafted chains closer to each other, then the free energy of the system 

increases slightly with respect to the equidistant case, as a consequence of the entropic cost 

associated with stretching of chains grafted close to each other. 

Furthermore, the distribution of configurations of each individual chain can be quite 

different depending on the distribution of grafting points, since neighboring grafted chains 

influence its conformation. To the best of our knowledge, this is the first time that the structure 

of an individual grafted chain around the grafting surface is mapped in the context of a field-

theoretic formulation. Nonuniform distributions of grafting points can lead to pronounced 

deviations of the grafted segment from sphericity, as exemplified by cases of grafting primarily 

around the two poles or primarily in the vicinity of the equator. 
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6.CALCULATIONS INVOLVING TWO 

PARTICLES/SURFACES 

6.1. Background 

Grafting polymer chains on solid surfaces is a standard procedure for the steric stabilization of 

nanocomposite systems.
19,186,219

 Various methods for the experimental synthesis of such systems 

are reported in the literature.
220–222

 Understanding the behavior of grafted polymer brushes 

requires a thorough investigation of the thermodynamics of the systems under different 

conditions. In the case of two or more nanoparticles embedded inside a polymer melt, the 

challenge is to keep them in a well-dispersed state by overcoming their tendency to form 

aggregates. When inorganic particles are bare, the attractive Van der Waals forces
17

 drive them 

to come closer to each other. One of the possible ways to get around this behavior is to graft 

polymer chains on the surface of the particles. Achieving a proper dispersion of nanoparticles 

inside the polymer melt is associated with a considerable enhancement of its properties.
14,15,42–44

 

Major computational research has been conducted on systems comprising a single grafted 

nanoparticle embedded in a solvent or homopolymer matrix, using theoretical formulations
204,223

 

or atomistic simulations.
23,36,38,192,224

 Moreover, considerable work has addressed the behavior of 

grafted and matrix chains in systems comprising multiple grafted solid surfaces.
10–

12,21,25,26,37,118,206,225
 Munao et al.

206
 demonstrated the effect of a third nanoparticle, when inserted 

in a system of two interacting grafted silica nanoparticles, while Martin et al.
118

 investigated the 

effect of polydispersity of grafted chains on the structural properties of the nanocomposite 

system. 

Materials consisting entirely of matrix-free grafted plates or hairy nanoparticles (also 

referred to as ―particle solids‖, exhibit interesting mechanical and optical properties, while they 

behave as tough glasses when assembling in specific configurations.
46,226–228

 Barnett and 

Kumar
120,229

 have published several works, where they report the use of such materials in the 

design of membranes for separation processes. In their recent work, Biltchak et al.
48

 studied the 

effect of addition of matrix chains to a neat grafted nanoparticle-based membrane on its 

selectivity in separations of gases of different molecular size. Mydia et al.
50

 developed a two-

layer theoretical model to describe the configurations of the grafted chains in the vicinity of the 
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grafted nanoparticles and at intermediate distances between them and they compared their model 

with atomistic molecular dynamics simulations.  

 

6.2. Planar surfaces 

In this section, we present a SCFT analysis to examine the structural and thermodynamic 

properties of polystyrene (PS) melt confined between two silica plates, either grafted or bare, as 

well as of the same plates in absence of any melt. In fact, as discussed in Section 4.3, when no 

matrix chains exist between the two grafted surfaces, or they exist but their molecular weight is 

significantly larger than that of the grafted chains, the latter behave as if they were in contact 

with a poor solvent. Following Flory’s theory, when matrix chains are chemically identical to 

the grafted chains and their molecular weight is similar to that of the grafted chains, then the 

system is analogous to one wherein the grafted chais are embedded inside a theta solvent. 

Finally, when matrix chains are much shorter than the grafted chains, the latter are starting to 

swell towards the bulk polymer region as if they were in contact with a good solvent.  

Herein, we derive the potential of mean force between the plates by varying the distance 

between them. Studying the thermodynamics in such planar geometry is quite important in the 

field of biomembranes and other biological applications.
230,231

 One could consider this planar 

geometry study as the equivalent of investigating the potential of mean force between spherical 

particles, whose radius is large enough, in comparison to chain dimensions, for their curvature to 

be negligible. 

The problem of polymer chains grafted on planar surfaces has been addressed in the past by 

several studies.
40,88,163,187

 By removing the incompressibility assumption and imposing Dirichlet 

boundary conditions at the solid surfaces, we make a step forward towards the investigation of 

systems with realistic interfacial free energies. Furthermore, we explicitly describe the 

solid/polymer and solid/solid interactions via the Hamaker potential, and we explore their 

influence on the resulting PMF. Without these considerations, we would not be able to apply our 

methodology in systems comprising exclusively grafted chains, i.e. systems in absence of matrix 

chains, since the incompressibility condition requires that the total segment density profile be 

uniform across the entire domain of interest.
88

 Furthermore, such approaches, when applied in 

three dimensions, allow for the investigation of systems of complex geometry, where the use of 

Fourier based methodologies is not recommended, since no symmetry appears and no periodic 

boundary conditions can be implemented.
35
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In the majority of computational works, it is assumed that the plates have the same grafting 

density and molecular weight as the grafted chains.
40,88,163,187

 In reality, it is rather hard for 

experimetalists to prepare such a perfectly symmetric system. Herein, we increase the degrees of 

freedom of the system by allowing the grafted chains on each plate to have different molecular 

weights, whereas each plate may also have its own grafting density. The goal is to reveal the 

influence of these kinds of asymmetries on the PMF between the two grafted plates when 

varying the distance between them, and to propose a scaling law that accounts for all these 

design aspects. 

We build our thermodynamic reference system by deriving the free energy of a single bare 

or grafted silica plate, either isolated or in contact with polystyrene matrix chains. Next, we 

calculate the PMF of a system which contains exclusively matrix chains. The melt is assumed to 

be at equilibrium with a bulk phase melt at all times and it is gradually squeezed by reducing the 

distance between the two silica surfaces. Having established the thermodynamics of the 

reference systems, we demonstrate results regarding the structure and PMF in a system of two 

grafted silica plates over a large parameter space, involving the molecular weight of matrix, the 

molecular weight of grafted chains on each plate and the grafting density of each plate. 

Understanding the behavior of matrix and grafted chains in this planar geometry is a stepping 

stone towards the corresponding spherical case, i.e., two or more polystyrene grafted silica 

nanoparticles embedded in polystyrene melt.  

The following Figure 6.1 illustrates a mesoscopic bead-spring representation of the system 

under investigation. 
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Figure 6.1 Demonstration of two opposing grafted surfaces.  (a) Bead-spring representation of two opposing 

grafted silica walls embedded in melt (GMG system) comprising matrix chains of length Nm. The silica wall on the 

left (right) is grafted with  S Sg g
 ( )S S    grafted chains of length 

g g
 ( )N N  . (c) The same system as (a), but in 

absence of matrix chains (GVG system). Additionally, the corresponding reduced density profiles from the 

opposing grafted silica walls in the (b) presence and (d) absence of matrix chains are shown. 

 

Two opposing silica plates at distance hSS are grafted with PS chains, while matrix chains 

may or may not occupy the space between the grafted plates. Hereafter, the matrix chains are 

denoted by m, the chains grafted on the left silica plate are denoted by g
–
, and the chains grafted 

on the right silica plate are denoted by g
+
. When polymer melt exists between the two plates, it 

comprises a total number of nm monodispersed chains of length equal to Nm skeletal bonds. The 

melt, when present, is at equilibrium with a bulk polymer phase at chain length equal to Nm of 

temperature T and pressure P. The left/right surfaces are grafted with ng
–
/ng

+
 chains of length Ng

–

/Ng
+
 skeletal bonds, whereas the corresponding grafting density equals 

Sg g
/N S    with SS 

denoting the area of each surface. As mentioned before, the grafting density and molecular 

weight of grafted chains are allowed to vary between the two plates. It is apparent from the 

density profiles in Figure 6.1b,d, corresponding to systems with (Figure 6.1a ) and without 

(Figure 6.1c) matrix chains, that, in the former case, the extension of each brush towards the 

opposing plate is favored.  
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6.2.1. Vacuum/Melt and Solid/Melt Interphases 

Figure 6.2 presents the free energy of VM (surface tension) and SM (minus adhesion tension) 

interphases as a function of chain length. In Figure 6.1, the free energies have been evaluated 

with the HFD EoS. In Figure 6.2b, the SL-SGT model is considered with the original Hamaker 

potential corresponding to low wetting conditions (LW), and with the addition of the ramp 

potential, which has been adjusted to reproduce the work of adhesion of PS melts in contact with 

treated (high wetting, HW) and untreated (perfect wetting, PW) silica.
81

 For more information 

regarding the intensity of solid/polymer interactions, the reader is referred to Section 2.1.5, 

Table 2-2 and Table 4-2. 

 

Figure 6.2 Free energy of interfaces with different wetting degree.  The free energy of vacuum/melt (VM, circles) 

and bare solid/melt (SM) with low wetting (LW, triangles), high wetting (HW, squares) and perfect wetting (PW, 

stars), as a function of chain length using (a) Helfand (HDF) EoS, (b) Sanchez-Lacombe EoS combined with a 

square-gradient term (SL-SGT). Bands denote scale changes along the axes. The right panels depict the 

corresponding reduced segment density profiles of VM and SM interphases with HFD (c,d) and SL-SGT (e,f) for 

Nm = {24, 48, 96, 192, 384, 768 and 1536} skeletal bonds. Even though the thickness of the lines increases with 

increasing Nm, the density profiles practically coincide for all chain lengths; thus, the reader has to zoom 

considerably to notice any deviations. The dotted lines in (c-f) are guides to the eye. 

 

In interphases with low wetting, the free energies are qualitatively similar for VM and SM; 

they differ by about 
SM

S  across the chain molar mass range explored herein (with 
SM

S being the 

free energy component associated with solid/polymer interactions). This is attributed to the fact 

that the density profiles for these cases are very similar (e.g., compare Figure 6.2c with Figure 
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6.2d, and Figure 6.2e with the LW curve in Figure 6.2f); thus any differences in the free 

energies can be attributed to the silica/polystyrene Hamaker interactions. Increasing the strength 

of the ramp potential enhances the solid/polymer interactions as indicated by the more negative 

free energies in Figure 6.2b, and the more pronounced peaks exhibited by the density profiles of 

Figure 6.2f. 

The free energy from SL in Figure 6.2b appears to be an increasing function of chain length, 

and this behavior is anticipated, since the cohesion of the polymer increases with increasing 

chain length.
72–74

 In contrast, HFD (Figure 6.2a) exhibits the opposite trend and this is attributed 

to that all evaluations have been performed using a constant isothermal compressibility for the 

polymer melt. In Section 2.1.4, we demonstrate that tuning the HFD compressibilities (with and 

without employing the square-gradient term) based on the predictions of SL, or even fitting them 

directly to the experimental measurents of surface tension, allows restoring the proper chain 

length dependence in the thermodynamic behavior of the system. 

To better quantify the thermodynamics of these films, we use again the four macroscopic 

wetting functions introduced in Section 2.2.3, namely, the work of cohesion (Wc), the work of 

adhesion (WA), the work of spreading (WS) and the work of immersion (WI) defined by eqs 2.47-

2.50, respectively. 

In Table 6-1, we report the wetting functions and contact angles of the PS/SiO2 interphases 

studied here for Nm = 384; they remain practically the same with increasing chain length, as 

shown in Figure 6.3.  

 

Figure 6.3 Wetting functions of silica/PS interfaces.  Calculations were performed with the SL-SGT (markers) and 

HFD (lines) EoS in absence of the ramp potential (low wetting). The wetting functions are the following: work of 

adhesion (red/circles), work of spreading (blue/triangles), work of immersion (green/squares), and work of cohesion 

(violet/stars). 

 

Mg (kg/mol) 
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We remind the reader that the work of adhesion, WA, corresponds to the reversible work 

required to separate two phases in contact. It is noted that, in the absence of the ramp potential, 

WA is significantly lower than in the HW and PW cases, where σramp has been fitted to 

experimentally reported values of WA. The work of spreading, WS, quantifies the spontaneity of 

the wetting process: positive values indicate spontaneous spreading across the interface (perfect 

wetting), while negative values indicate finite contact angles (partial or no wetting). In the LW 

and HW interfaces, WS remains negative across the full molar mass regime investigated here, 

indicating that the corresponding solid-fluid-vapor interface will form finit contact angles. The 

PW interface, on the other hand, exhibits positive WS; thus, PS will spread spontaneously on the 

silica surface. 

Table 6-1 Interfacial energies and wetting functions for Nm = 384 in units of mJ/m
2
. 

EoS Wetting γ
VM

 γ
SM

 σ
SV

–σ
SM

 WA WS WI WC θ (°) 

HFD low (LW) 28.85 21.97 –21.97 6.88 –50.81 –21.97 57.70 139.6 

SL-SGT low (LW) 27.89 26.02 –26.02 1.86 –53.91 –26.02 55.77 158.9 

SL-SGT high (HW) 27.89 –10.91 10.91 38.8
81

 –16.97 10.91 55.77 67.0 

SL-SGT perfect (PW) 27.89 –43.21 43.21 71.1
81

 15.33 43.21 55.77 - 

 

6.2.2. Grafted/Vacuum (GV) and Grafted/Melt (GM) interfaces 

Figure 6.4, depicts the reduced density profiles of PS grafted chains in (a) GV and (b) GM 

systems in absence of the ramp potential (low wetting) as a function of ζg and Ng. 

 

Figure 6.4 Reduced density profiles of polystyrene brushes exposed to polymer melt or vacuum.  Calculations were 

performed with SL-SGT EoS in absence of the ramp potential in (a) grafted/vacuum (GV) and (b) grafted/melt 

(GM) systems for chain length of grafted chains equal to Ng = {24: red, 48: blue, 96: green, 192: violet} skeletal 

bonds and grafting density, ζg = {0.1: solid lines, 0.2: dashes, 0.4: dots, 0.8: short dashes} chains/nm
2
. The numbers 

in (a) correspond to the values of the product ζg,seg in nm
–2

 units. 

 

The behavior of grafted chains in this planar geometry can be classified into three distinct 

regimes depending on the combinations of ζg and Νg. We remind the reader at this point that 
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2

g,seg g g g G,g2

C-C

6
N R

C l
  



  ) and the number of chains per area is given by eq 4.10, thus in 

planar geometries, it is equivalent to the grafting density ζg. 

1. Mushroom regime (ζg,seg 0 or 2

g G,g 1R  , short and sparsely grafted brushes). The density of 

the profiles is less than the bulk density and chains assume random-coil configurations.
232

 

Increasing ζg or Ng has a minor effect on the thickness of the profiles but rather makes them 

more pronounced. 

2. Dense brush regime (ζg,seg > ζg,seg99% or 2

g G,g 1R  , low ref

ch,gn , fully formed brush but not too 

dense chain packing). The brushes become stretched
24,232

 and feature extended regions with bulk 

density. The thickness of the profiles depends strongly on both ζg and Ng, reaching the limiting 

case behavior 
1 1

g g
N , i.e., the dimensions of the brushes become proportional to their mass. 

3. Crowding regime (ζg,seg > ζg,seg99% or 2

g G,g 1R  , high ref

ch,gn , very dense chain packing). In 

this regime, the crowding of the chains becomes so intense that the density of the grafted chains 

surpasses slightly the bulk one, as we have already demonstrated in Figure 2.4. This happens 

because the entropic penalty due to stretching overcomes the enthalpic penalty due to deviations 

from the bulk density. 

There are, however, noticeable differences between the two systems. In GV, the thickness of 

the density profiles becomes commensurate to the number of the grafted PS segments, ζg,seg, as 

already presented in Figure 4.18 of the present thesis for the system of a single spherical 

particle. Moreover, the density profiles in Figure 6.4a collapse together for constant ζg,seg values, 

i.e., for constant amount of grafted material. In GV, the tails of the profiles feature a sigmoid 

region on the order of 1 nm at the polymer/vacuum interface
2,72

, whereas in GM they are much 

more expanded towards the bulk region.
23,24

 Finally, in both GV and GM, the profiles become 

slightly more pronounced with increasing ζg in the vicinity of the grafting points (~ 0.4 nm). The 

dimensions of the brush are again quantified in terms of the root mean squared brush thickness 

(eq 3.4) and the height of the surface which encloses 99% of grafted chain segments (eq 3.5). 

Figure 6.5a,b illustrates evaluations of 
1/2

2

g
h and 99%h  against the scaling law 

1 1

g g
N  in 

GV (left column) and GM with the matrix chains either being equal in length to the grafted 

chains (Nm = Ng; central column), or varying between 24 and 1536 skeletal bonds (right 

column). Figure 6.5c depicts the ratio 
1/2

2

99% g
/h h  which can be thought of as a measure of the 
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shape of the profile. A striking difference between the two systems is that, in the first one, the 

measures of the brush thickness collapse to a single master curve across the full regime. This is 

because in GV, the shape of the collapsed films is a function of the mass of the film (~ζgNg) and 

does not depend on the individual factors (ζg, Ng); see Figure 6.4a. 

 

Figure 6.5 Thickness of polymer brushes exposed to polymer melt or vacuum.  (a) h99%, (b) 
1/ 2

2

g
h and (c) their 

ratio 
1/ 2

2

99% g
/h h versus the scaling ζgNg using the SL-SGT (markers) and HFD (solid lines) EoS. The panels on the 

left column correspond to the GV system. The panels in the central column regard the GM system where Nm = Ng. 

The rightmost column depicts results for the GM system as well, but with Nm varying from 24 to 1536 skeletal 

bonds. Different colors and symbols denote different values of the surface grafting density: ζg = {0.1: red circles, 

0.2: blue triangles, 0.4: green stars, 0.8: violet crosses} nm
–2

. The length of grafted chains, Ng, increases implicitely 

in each panel from left to right, according to the scaling law expression presented in the labels of the x-axis. In the 

rightmost column, the size of the symbols increases with the length of matrix chains. All cases have been evaluated 

in absence of the ramp potential (low wetting). 

 

Across the mushroom regime, the brush thickness is practically independent of ζg. The 

thickness in vacuum is independent of Ng as well, indicating collapse of the sparsely grafted 

chains on the surface. In the case where melt chains are present, the thickness exhibits a random 

walk-like Ng-dependence, and scales approximately as ~Ng
0.5

. The shape of the brushes, as 

quantified by the ratio 
1/2

2

99% g/h h , is quite sensitive to the grafting density in presence of 
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matrix chains. In GV, the brush ratio decreases with respect to the predictions from Alexander’s 

model
126,127

 for incompressible brushes, whilst the opposite trend is exhibited in the GM system.  

Across the dense brush regime, the brush dimensions depend strongly on both ζg and Ng. For 

very large ζg and Νg the brush thickness scales as ~ ζg,seg, no matter the solvent conditions 

(vacuum or melt). This means that the dimensions of the brushes become proportional to their 

mass and the ratio 
1/2

2

99% g/h h approaches the limiting value of 3 predicted by Alexander’s 

model.
126,127

 

Regarding the effect of matrix chains on the scaling of the brushes, it appears that, as long as 

Ng ≤ Nm, the brush dimensions are practically independent of Nm. For m gN N , on the other 

hand, the brushes expand with decreasing Nm due to the fact that the matrix chains can readily 

penetrate the brushes, thus the latter swell towards the bulk region. A similar behavior has been 

recently observed by Bilchak et al.
48

 Therefore, modulating Nm
 
allows for the tuning of solvent 

conditions, from theta solvet (Nm = Ng) up to good solvent (Nm < Ng) conditions. Regarding the 

ratio 
1/2

2

99% g/h h , it features a complicated behavior with varying Nm, where it 

decreases/increases for low/high ζg. 

It seems that, regardless of the choice of the free energy density equation [e.g., compare lines 

(HFD) with markers (SL-SGT) in Figure 6.5] or the strength of the solid/polymer interactions 

(see Figure 6.6), the structural features and the scaling behaviors of GM systems are 

quantitavely very similar. In addition, the shortcoming of using HFD with constant isothermal 

compressibility, κT, does not have a practical effect on the structural properties of grafted chains 

and on the potential of mean force of the system, as will be shown below.  
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Figure 6.6 Thickness of brushes grafted on surfaces of different wetting degree.  (a) 99%h , (b) 
1/ 2

2

g
h , and (c) 

their ratio 
1/ 2

2

99% g
/h h  compared to the scaling law ζg

1
Νg

1
 in GM systems where the length of grafted chains is 

equal to that of matrix chains, Ng = Nm. Different line styles denote intefaces with low (solid lines), high (dashed 

lines) and perfect (dots) wetting. Different colors denote different grafting density, ζg = {0.1: red, 0.2: blue, 0.4: 

green, 0.8: violet} nm
–2

. 

 

Figure 6.7 illustrates the total grand potential per unit area of grafted/vacuum (γ
GV

) and 

grafted/melt (γ
GM

) interfaces as a function of Ng and ζg, as well as the partial contributions from 

the solid/polymer interactions (γS), and the entropy of matrix (γm) and grafted chains (γg). Some 

key remarks regarding the evaluation of each term with SL-SGT are summarized below. 

 γS is purely of enthalpic origin and thus it is a functional of the total density profiles. It 

becomes more attractive with increasing ζg, since the profiles become more pronounced in the 

vicinity of the solid (e.g., see Figure 6.4). In GV, γS
GV

 decreases with increasing Ng, since 

increasing Ng means higher amount of material near the solid surface. In GM, γS
GM

 is 

independent of Ng, since the total density profiles are also invariant to Ng, e.g., compare 

profiles in Figure 6.2c-f for different chain lengths. 

 γm describes the entropic contribution of the matrix chains. Looking at the GM panels, it 

decreases precipitously with increasing Ng/Nm, since the grafted chains occupy more space in 

the vicinity of the interface, leaving the matrix chains with fewer available conformations. 
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Note that, by keeping Ng fixed, γm scales with Nm about as 
1

m mN 
; which is consistent with 

eq 2.42. In GV systems, this term is of course zero, since there are no matrix chains at all. 

 γg quantifies the entropic contribution of the grafted chains and it is an indicator of the 

stretching of the brush. It increases monotonically with increasing Ng and ζg, since the grafted 

chains expand and stretch further towards the bulk region. In addition, γg
GM

 increases with 

decreasing Nm, since the grafted chain-melt interactions are enhanced and, as a result, the 

brushes swell as shown in Figure 6.5b,c (rightmost column). 

 γ is the total free energy of the interfacial systems per unit area. It increases with increasing 

molecular weight of grafted chains and appears to be dominated by the conformational entropy 

of grafted chains, γg. 

 

Figure 6.7 Free energy of polymer brushes exposed to polymer melt or vacuum.  Partial contributions to the grand 

potential (a) γS, (b) γm, (c) γg and (d) total grand potential, γ, per unit area, using the SL-SGT (markers) and HFD 

(solid lines) EoS. The panels on the left column correspond to the GV system. The panels in the central column 

depict results regarding the GM system, for Ng = Nm. The rightmost column depicts results for the GM system as 

well, but with Nm varying from 24 up to 1536 segments. Different colors and symbols correspond to different values 

of the surface grafting density: ζg = {0.1: red circles, 0.2: blue triangles, 0.4: green stars, 0.8: violet crosses} 

chains/nm
2
. The chain length of grafted chains, Ng, increases implicitly in each panel from left to right, according to 

the scaling law expression presented in the labels of the x-axis. In the rightmost column, the size of the symbols 

increases with the chain length of matrix chains. All cases have been evaluated in absence of the ramp potential. 
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Overall, the evaluations of the free energy terms with HFD are in good qualitative agreement 

with SL-SGT. Furthermore, it appears that γS
GM

 evaluated with HFD is more negative than when 

the SL-SGT EoS is used, because the density profiles lie closer to the silica surface in the former 

model (e.g., compare Figure 6.2d,f). In their recent work concerning neat grafted nanoparticles, 

Mydia et al.
50

 report that, for constant grafting density, the stretching energy does not increase 

monotonically with the chain length. This behavior is attributed to the curved space around the 

nanoparticles, since, at some point, the grafted chains do not experience the presence of each 

other and become unperturbed. For planar surfaces, however, the threshold chain length 

becomes infinitely large, since no curvature is involved and the chains will always experience 

the presence of each other, considering that the dimensionless quantity ζgRg
2
 is above a 

threshold value as well.
24

 

 

6.2.3. Polystyrene melt capped between two bare silica surfaces (SMS) 

In this paragraph, we study the potential of mean force (PMF) between two approaching bare 

silica surfaces. This means that only matrix chains are present in the system. This situation 

corresponds to the limiting case of extremely low grafting densities, where allophobic dewetting 

occurs and the enthalpic interactions between the two solid surfaces prevail. The matrix chains 

are gradually restricted in terms of available conformations as the distance between the two 

plates decreases. For these calculations, the PMF
SMS

 is expressed with respect to the free 

energies of the single SM interfaces for the same chain length, as shown in the following eq 6.1. 

In other words, the reference system is that of the same plates being at infinite distance from 

each other. 

 
ss

SMS SMS SMS SMS SMS SMS SMPMF lim 2
h

     


       6.1 

with γ
SM

 being the free energy of a SM interface in presence of matrix chains of length Nm, 

depicted in Figure 6.2a,b. Note that, with PMF
SMS

 known, the disjoining pressure can be 

calculated as: 

 
SMS

ss

ss ,

( )

T

h
h



 
   

 
 6.2 

Due to numerical issues that arise when employing the SL EoS, the initial configuration of 

the field can affect the outcome of the converged solution. To investigate this effect, we 

performed our calculations using two different compression methods: 
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1. In the first method, the calculations were performed in a decremental fashion, in which the 

intial configuration of the field was set to the field corresponding to the converged calculation 

for a slightly larger domain: ifc,init ss ifc,final ss' ( ) ' ( )h h h  w w  

2. In the calculations corresponding to the second method, the initial configuration of the field 

was set to zero across the domain: ifc,init' w 0   

Using the first method, it is easier to derive a solution which corresponds to a stable 

configuration. The second method, on the other hand, can provide a measure of the stability of 

the films in terms of their tendency to collapse and their sensitivity to fluctuations about 

equilibrium (e.g., their response during the formation of a cavity). 

Figure 6.8 illustrates evaluations of PMF
SMS

 with HFD (a), and with SL-SGT under low (b, 

LW), high (c, HW) and perfect (d, PW) wetting situations, using the first method for 

decremental compression. The same results obtained via the second method are presented in 

Figure 6.9. 
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Figure 6.8 Potential of mean force, in mJ/m
2
, for the system of approaching bare silica surfaces in a melt (SMS).  

Calculations were performed with (a) HFD, (b) SL-SGT (LW), (c) SL-SGT (HW) and (d) SL-SGT (PW), for Nm = 

{24: red, 96: green, 384: orange} skeletal bonds. The calculations were performed in a decremental fashion, in 

which 
ifc,init ss ifc,final ss

( ) ( )h h h   w w , with a compression rate equal to −0.1 nm/evaluation. The inset graphs in 

(b-d) depicts snapshots of the density profiles at plate-plate distances denoted by the arrows, for Nm = 384. Bands 

denote scale changes along the axes. The dashed lines display the Hamaker potential contribution to the solid/solid 

interaction, shifted by twice the solid/polymer adhesion tension. 
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Figure 6.9 Potential of mean force, in mJ/m
2
, for the system of approaching bare silica surfaces (SMS) starting with 

zero field. Calculations were performed with (a) HFD, (b) SL-SGT (LW), (c) SL-SGT (HW) and (d) SL-SGT 

(PW), for Nm = {24: red, 96: green, and 384: orange}. The initial configuration of the field was set to 
ifc,init
 w 0 . 

The inset in panel (a) depicts the critical plate-plate distance for the matrix chains to evacuate the system, against 

their radius of gyration. The schematic of the inset depicts the film situation for hss larger and lower than ~3Rg. The 

inset graphs in (b-d) depict snapshots of the density profiles at plate-plate distances denoted by the arrows amd their 

fill corresponds to the color of the corresponding chain length. Bands denote scale changes along the axes. The 

dashed lines display the Hamaker potential contribution to the solid/solid interactions, shifted by twice the 

solid/polymer adhesion tension.  

 

In the case of HFD, regardless of the compression approach, PMF
SMS

 increases with 

decreasing plate-plate distance, suggesting the manifestation of a repulsive force that resists the 

attractive interactions between the surfaces. These repulsive forces are dominated by the loss of 

solid/polymer interactions; with decreasing hss, the mass of the film decreases and there are 

fewer interaction sites. The sign of these forces depends on an interplay between the strength of 

the solid/polymer and solid/solid interactions. If the latter become much stronger than the 

former, the solid/solid forces will dominate and PMF
SMS

 will become attractive. The steadily 
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increasing forces in this case can be, however, a misleading result, because HFD does not 

account for the gaseous phases which may arise during the process. 

According to evaluations with SL-SGT under low wetting (LW) conditions (Figure 6.8b), 

the functional dependence of PMF
SMS

 is quite similar to that of HFD. However, below a critical 

plate-plate distance, hss
crit

, PMF
SMS

 decreases abruptly, indicating a phase transition. At these 

distances, it is impossible for SCF to maintain a metastable film; hence, a cavity is formed and 

the calculation converges to the more stable solution, θ = 0. The films remain stable above hss
crit

 

(on the order of 3.5 nm), regardless of Nm (Figure 6.8b).  

Upon departure of the melt from the gap between the plates, the only contribution to the free 

energy is due to plate-plate interactions which are described here by means of the Hamaker 

potential; therefore, leading to the the eventual contact of the adjacent solid surfaces. Note that 

for LW surfaces, 
SMS SMS SMS

SS
PMF ( )  


  φ 0  (depicted by dashed lines in Figure 6.8b) is 

negative, indicating that the solid/polymer interactions are really weak for the LW films and 

these films are actually metastable with respect to cavitation across the entire range of 

thicknesses. 

A similar picture has been reported by past simulations from a variable-density lattice based 

SCF model.
233

 In that model, the interactions in flat geometries become insignificant for hSS 

slightly larger or equal than 
0.5

2

g
4 R , whereas the maximum recorded force per radius before 

cavitation in a crossed cylinder geometry was on the order of ~0.01 mN/m when considering 

high energy surfaces and 0.1 mN/m for low energy surfaces. 

With enhanced solid/polymer interactions, the stability of the capped polymer films is 

reinforced considerably. According to the more reliable solution scheme where the domain 

length is adjusted decrementally, the HW and PW films remain stable throughout the full hss 

range examined here, always converging to the stable, polymer-filled equilibrium solution of the 

problem (see Figure 6.8c,d). In contrast to LW films, the PMF
SMS

 of the HW and PW ones 

increases steadily for hSS less than 2.5 nm, whereas in the limit of low hss, the density decreases 

significantly due to entropy confinement. A significant free energy barrier of approximately                     

–γ∞
SMS

, on the order of 20 mN/m in the HW case and 80 mN/m in the PW case, has to be 

overcome for the polymer to be expelled completely and the solids to come in direct contact at 

SMS SMS SMS

SS inf
PMF ( )    φ 0 . 

There is, however, a striking difference between the HW and PW films. The HW films can 

be considered as metastable with respect to cavitation, since, after crossing a barrier of ~ −γinf
SMS
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with decreasing hSS, they can be trapped in the global minimum of attractive Hamaker 

interactions between the bare solids (see minima of the dashed lines in Figure 6.8c), as in the 

case of the LW film. The PW film, on the other hand, is indeed stable down to thicknesses of ca. 

1.5 nm, since the minimum of the Hamaker potential lies way higher (~ 60 mJ/m
2
) than the 

plateau PMF
SMS

 value at large hSS. 

 

6.2.4. Interacting grafted surfaces in melt (GMG) 

The current section presents evaluations of the potential of mean force of approaching grafted 

surfaces. To facilitate comparisons across the wide parameter space considered for these 

calculations, the PMF
GMG

 will be expressed in terms of the reduced surface-surface distance 

which is defined by the following eq 6.3. 

 
ss

ss 0.5 0.5
2 2

g g

2h
h

h h 




 6.3 

with 
0.5

2

g
h   and 

0.5
2

g
h   being the root mean squared brush thickness of the single grafted 

surfaces (infinite surface-surface distance) at the same temperature and in the presence of matrix 

chains of length Nm (brush thickness from Figure 6.5). A similar normalization can be obtained 

by dividing hss with 
0.5

2

gR ,  since 
0.5

2

g gR N  and 
0.5

2

g gN h  across the dense brush 

regime. Nevertheless, normalizing the plate-plate distance as shown in eq 6.3 is a more natural 

approach for making such comparisons, because it allows evaluating the tendencies of the 

brushes to interpenetrate. Furthermore, 
0.5

2

gh  takes account of the chain perturbations when 

varying the melt conditions that are less sensitive to the particular equation of state in the 

nonbonded free energy density model. 

As in the SMS systems, PMF
GMG

 will be expressed relative to the free energy of the G
−
M 

and G
+
M systems in the presence of matrix chains of length Nm (see Figure 6.7) as presented in 

eq 6.4 below. In other words, PMF
GMG

 is expressed with respect to the free energy of the 

systems at infinite plate-plate separation. Regarding the segment-solid interactions, LW 

conditions are employed throughout this section, unless otherwise stated. 

 +

SS

GMG GMG GMG GMG GMG GMG G M G MPMF lim
h

      





        6.4 



6.2. Planar surfaces  

199 

At first, we present the PMF
GMG

 for the simplest case where the opposing surfaces are 

grafted symmetrically with respect to ζg and Νg for varying Nm/Ng. Figure 6.10 illustrates 

PMF
GMG

 as a function of the plate-plate distance, hss, whereas Figure 6.11 depicts the 

corresponding density distribution across the examined parameter space for Nm = Ng. 

According to Figure 6.10, the brushes start experiencing the presence of each other at 

distances in the order of 4-5 ssh , while, for larger ssh , GMGPMF 0 . At lower separation 

distances, the brushes interact strongly with each other and PMF
GMG

 increases. In systems with 

low ζg (mushroom regime), the brushes are relatively soft and thus the PMF increases at lower 

ssh . In dense systems, on the other hand, the brushes are more compact and as a result the PMF 

increases abruptly at larger ssh , on the order of 3-3.5 (see bottom right panel of Figure 6.10. This 

regime coheres with the predictions of the Alexander model for incompressible brushes,
126,127

 

where, regardless of Ng and ζg, the predicted separation distance of two Alexander brushes in 

contact is ss,min 2 3 3.4h  . This is proved by considering that, in planar surfaces, the edge of a 

brush with chain length Ng and grafting density ζg is: 

 g g

edge,g

seg,bulk

N
h




  6.5 

thus, the separation distance between two Alexander brushes (grafted with 
g

  , 
g

N   and 
g

  , 

g
N  ) in contact is calculated as follows: 

 g g g g

ss,min edge,g edge,g
seg,bulk

N N
h h h

 



   

 


    6.6 

The root mean squared brush thickness of an Alexander brush is equal to:
24

 

 
1/2 edge,g2

g
3

h
h   6.7 

hence, in terms of reduced units, the plate-to-plate distance, hss,min, becomes: 

 

- +

edge,g edge,g edge,g edge,g

ss,min 1/2 1/2
2 2

edge,g edge,g
g g

2 2 2 3

3 3

h h h h
h

h h
h h

   

 

 
  

 

 6.8 

Regarding the effect of varying the chain length of matrix chains on PMF
GMG

, for Nm/Ng ≤ 1, 

PMF
GMG

 becomes strictly repulsive, with the exception of the case for densely grafted and long 
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grafted chains, ζg = 0.4 nm
–2

, Ng = 768. Increasing Nm/Ng leads to the manifestation of attractive 

interactions as indicated by the formation of a minimum in PMF
GMG

 (autophobic dewetting). 

These interactions become slightly stronger with increasing Ng, and even stronger with 

increasing ζg. The enhancement of the attractive interactions with increasing grafting density has 

been also observed in several theoretical
25–27

 and experimental studies.
18,22,29–31
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Figure 6.10 Potential of mean force in a symmetric system of approaching grafted silica surfaces in contact with 

melt  Calculations were performed with the SL EoS. Colors correspond to different matrix-to-grafted chain length 

ratios, Nm/Ng = {0.5: red, 1: blue, 2: green} skeletal bonds. The labels in brackets denote ζg (nm
–2

) and Ng (skeletal 

bonds). Lines are guides to the eye. 

 

Figure 6.11 Reduced density distributions corresponding to the PMF
GMG

 panels in Figure 6.10.  Profiles are derived 

as functions of the plate-plate distance (abscissa) and the distance from the left wall (ordinate) in reduced units. 

Red/green/blue colors correspond to regions with high density (θc = 1) of c = g
–
/m/g

+
 chains, respectively. Grey 

denotes regions which lie outside the modeled domain or have not been evaluated at all. Labels in brackets denote 

ζg (nm
–2

) and Ng (skeletal bonds). 
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Figure 6.12 illustrates the contribution of individual free energy terms to PMF
GMG

 for a case 

with ζg = 0.2 nm
–2

 and Ng = 192 skeletal bonds. It appears that the attractive part of PMF
GMG

 is 

dominated by the entropic contribution of the grafted chains, 
GMG

g , shown in panel Figure 

6.12c. In addition, the terms responsible for the cohesive and the chemical potential-density 

field interactions change due to minor variations in the mean density profile and exhibit an 

opposite trend to that of 
GMG

g , albeit weaker. That PMF
GMG

 becomes more repulsive when Nm 

< Ng is attributed to the matrix chains being able to penetrate the space occupied by the brush, 

compelling the grafted chains of the two surfaces to expand in space until they interact with each 

other, thus keeping the two surfaces separated. In other words, the solvent conditions improve 

with decreasing Nm/Ng; hence, the brushes prefer to interact with the solvent molecules than with 

each other.  

 

Figure 6.12 Free energy partial contributions to the potential of mean force, in mJ/m
2
, of two approaching 

symmetrically grafted surfaces in contact with melt.  Grafting density, ζg = 0.2 nm
–2

, length of grafted chains, Ng = 

192, matrix-to-grafted length ratio, Nm/Ng = {0.5: circles, 1: triangles, 2: stars}. (a) cohesive interactions, (b) 

solid/polymer interactions, (c) entropic contribution from grafted chain conformations, (d) density-field 

interactions, (e) entropic contribution of matrix chains and (f) total grand potential. 

 

In general, the evolution of the energy term associated with solid/polymer interactions, 

GMG

S , with decreasing plate-plate distance, depends on an interplay between two processes: (i) 

the thinner the film becomes, the fewer polymer segments can interact with the solid, thus 
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leading to increased 
GMG

S (less attractive). (ii) the brushes can become slightly denser with 

decreasing ssh , hence leading to decreased 
GMG

S (more attractive). Indeed, for Nm > Ng, 
GMG

S  is 

dominated by the first process, since it increases monotonically with decreasing ss
h . However, 

for Nm < Ng, it features an interesting behavior where it initially increases with decreasing ss
h , 

while for ss
h < 3.8 it decreases, indicating that the second process dominates. 

Let us now investigate the effect of asymmetry of the opposing grafted surfaces in terms of 

the relative chain lengths and grafting densities. In particular, Figure 6.13 illustrates evaluations 

of PMF
GMG

 for constant chain length and grafting density at the lower face                                                          

(
2

g g
96,  0.2 nmN 



   ) and varying 
g g

/N N  , m g
/N N  and 

g g
/   . Similarly, Figure 6.14 and 

and Figure 6.15 depict the same evaluations, but for four times larger g
N   and for two times 

larger g
  , respectively.  

 

Figure 6.13 Potential of mean force betweem two approaching asymmetrically grafted silica surfaces in contact 

with melt.  
g

  = 0.2 nm
–2

 and 
g

N  = 96 skeletal bonds. Colors correspond to evaluations for m g
/N N  = {0.5: 

red, 1: blue, 2: green, 4: purple}, and the labels in brackets denote the ratios 
g g

/   and
g g

/N N  . Lines and 

markers correspond to evaluations with the HFD and SL EoS, respectively. Inset cartoons: each bead denotes a 

segment of 24 PS skeletal bonds. 
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Figure 6.14 Potential of mean force between two approaching asymmetrically grafted silica surfaces in contact 

with melt (case 2).  
g

  = 0.2 nm
–2

 and 
g

N   = 384 skeletal bonds. Colors correspond to evaluations for 

m g
/N N  = {0.5: red, 1: blue, 2: green, 4: purple}, and the labels in brackets denote the ratios 

g g
/   and

g g
/N N  . Lines and markers correspond to evaluations with the HFD and SL EoS, respectively. Inset cartoons: 

each bead denotes a segment of 96 PS skeletal bonds. 
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Figure 6.15 Potential of mean force between two approaching asymmetrically grafted silica surfaces in contact 

with melt (case 3).  
g

   0.4 nm
–2

 and 
g

N   = 96 skeletal bonds. Colors correspond to evaluations for m g
/N N 

= {0.5: red, 1: blue, 2: green, 4: purple}, and the labels in brackets denote the ratios 
g g

/   and 
g g

/N N  . Lines 

and markers correspond to evaluations with the HFD and SL EoS, respectively. Inset cartoons: each bead denotes a 

segment of 24 PS skeletal bonds. 

 

Irrespectively of the degree of asymmetry, adjacent brushes experience the presence of each 

other at distances ssh commensurate with 4 to 5, similarly to the symmetric case in Figure 6.10. 

By keeping 
g

  and 
g

N  constant and the ratio m g
/N N    fixed at different values (same 

colors), and varying g
  and g

N  , some general trends are emerging: the attractive interactions 

between the surface become stronger with increasing 
g g

/    ratios (from top to bottom panels) 

and with decreasing  
g g

/N N   (from right to left panels). 

That PMF
GMG

 becomes more attractive with increasing 
g g

/  

 
is to be expected: upon 

increasing g
 

 
the mean grafting density increases as well, thus PMF

GMG
 becomes more 

attractive, as in the case of symmetric surfaces in Figure 6.10. However, that the interactions 

become more attractive with decreasing has to be reconciled with the findings reported in Figure 

6.10 for symmetrically grafted surfaces. To interpret this effect, one should take into account 
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that during these evaluations, the ratio m g
/N N   was fixed, whereas varying g

   and g
N   can 

have direct implications to the effective ration of Nm with respect to the average size of grafted 

chains.  

Let gN  be the average chain length of grafted chains in the two surfaces, estimated as the 

weighted average of grafted chain length with respect to the grafting densities: 

 
g g g g

g

g g

N N
N

 

 

   

 





 6.9 

m g
/N N

 
is a measure of the length of matrix chains in relation to that of grafted chains. Based 

on eq 6.9, it is evident that, upon decreasing 
g g

/N N   at constant 
g

N  and 
g g

/   , g
N  decreases 

as well and thus the effective ratio m g
/N N  increases. Increasing the size of matrix chains was 

shown to enhance the attractive interactions in Figure 6.10, and therefore the results shown in 

Figure 6.13 are consistent with this trend. 

An alternative way to interpret and isolate the effect of asymmetry is to vary the ratios 

g g
/    and 

g g
/N N  , while keeping constant the effective ratio m g

/N N  based on eq 6.9. Figure 

6.16 demonstrates the results of this process, wherein the top left panel depicts the reference 

symmetric case (ζg = 0.2 nm
–2

, Ng = 96), and the asymmetry with respect to ζg (Ng) increases 

from top-to-bottom (left-to-right). As we can see in this figure, varying 
g g

/    or 
g g

/N N   

individually has a minor effect on PMF
GMG

.  This finding is important, because it shows that 

minor deviations in ζg and Ng do not affect the resulting PMF
GMG

 provided that m g
/N N  remains 

constant. On the other hand, PMF
GMG

 can become very attractive in extreme cases of 

asymmetry, where both the asymmetry in ζg and Ng increases (e.g., see bottom right panel in 

Figure 6.16), and this is mainly attributed to the increased average grafting density. 
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Figure 6.16 Potential of mean force between two approaching asymmetrically grafted silica surfaces in contact 

with melt (case 4).  Colors correspond to evaluations for m g
/N N

 
= {0.5: red, 1: blue, 4: purple}, whereas the 

small legends in brackets below the insets denote the ratios 
g g

/    and 
g g

/N N  , respectively. The top left panel 

corresponds to the reference symmetric case with 
ref

g g g
     = 0.2 nm

–2
 and 

ref

g g g
=N N N  = 96. The 

actual 
g

  and 
g

N   for each case can be retrieved as follows: 
1/ 2ref

gg
m 



   and 
1/ 2ref

gg
N N n



  , with 

g g g g
[ , ] [ / , / ]m n N N      being the numbers at the legends under the insets. It should be noted that inset 

schematics belonging to panels other than the corner ones are only approximate; in these cases, 
g

   and 
g

N   are 

scaled by a factor of 2 . 

 

Figure 6.17 presents the PMF
GMG

 for symmetric systems as a function of the energy of the 

solid surface, i.e., the strength of solid/polymer interactions. It seems that, regardless of ζg, Ng 

and the ratio Nm/Ng, the affinity of the polymer chain segments to the solid (wetting degree) has 

a minor effect on the PMG
GMG

. In each case, the PMF becomes less pronounced for higher 

wetting degree, albeit the effect is minor. 
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Figure 6.17 Potential of mean force between two approaching grafted silica surfaces in melt for different wetting 

degrees.  Calculations were performed with SL EoS for ζg equal to (a) 0.1, (b) 0.2 and (c) 0.4 nm
–2

 and Ng = 192. 

Colors correspond to evaluations for Nm/Ng = {0.5: red, 1: blue, 2: green}, whereas differet line styles denote 

interfaces with low (solid lines), high (dashed lines) and perfect (dots) wetting. 

 

6.2.5. Interacting grafted surfaces in vacuum (GVG) 

This paragraph presents evalutation of the potential of mean force between approaching grafted 

surfaces separated by vacuum, denoted by PMF
GVG

. Figure 6.18 presents evaluations of PMF
GVG

 

with the chain length of grafted chains, Ng, varying from 24 to 768 skeletal bonds and the 

grafting density, ζg, varying from 0.1 to 0.4 nm
–2

. Low wetting (LW) conditions have been used 

for solid/polymer interactions.  
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Figure 6.18 Potential of mean force between two opposing grafted surfaces exposed to vacuum (GVG).  

Calculations were performed with the SL-SGT EoS. Values of ζg (in nm
–2

) and Ng are indicated inside the brackets. 

Horizontal blue lines mark minus the average surface free energy of the individual grafted films. Vertical blue lines 

mark the thickness hss, that would correspond to the total mass of grafted polymer at bulk density. Insets: each bead 

denotes a segment of 24 PS skeletal bonds. Bands denote scale changes along the axes. 

 

Looking at Figure 6.18 above, the evolution of PMF
GVG

 with decreasing plate-plate distance 

can be classified in three distinct regimes described below. Chain configurations across these 

regimes are illustrated in the inset of Figure 6.20. 

1. For large separation distances, the opposing polymer brushes interact weakly with each other 

and the dominant contribution to PMF
GVG

 is that of solid/polymer and solid/solid Hamaker 

interactions (e.g., compare with the dotted lines in Figure 6.8b,d). 

2. Below a critical plate-plate distance, PMF
GVG

 decreases abruptly, indicating the manifestation 

of a phase transition, where the opposing brushes interpenetrate each other and form a single 

film in the central region of the system. In addition, low density regions are formed in the 

vicinity of the solid surfaces, indicating that the brushes have been stretched significantly 

towards the bulk region that has formed. 

3. Decreasing the plate-plate separation further makes the brushes more compact. The low-

density regions next to the solid plates become suppressed, until the free energy becomes 

commensurate to minus the mean surface free energy of isolated brushes,  
+G V VG0.5  



  . 
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Further squeezing of the brushes leads to increased reduced densities above unity, as indicated 

by the vertical dashed lines in Figure 6.18. 

Figure 6.19 illustrates the segment density profiles corresponding to the PMF
GVG

 

calculations of Figure 6.18.  

 

Figure 6.19 Reduced segment density distributions corresponding to the PMF
GVG

 panels in Figure 6.18.  The 

profiles were derived as functions of the plate-plate distance (abscissa) and the distance from the left wall (ordinate) 

in reduced units. Red/blue colors correspond to regions with high density (θc = 1) of c = g
−
, g

+
 chains. White 

corresponds to vacuum. Grey denotes regions which lie outside the modeled domain or have not been evaluated at 

all. Labels in brackets denote ζg (in nm
–2

) and Ng.   

 

A more detailed picture can be unveiled by inspecting the evolution of individual 

contributions to the energy terms, which are shown in Figure 6.20 below.  
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Figure 6.20 Free energy partial contributions to the potential of mean force of two approaching grafted surfaces 

exposed to vacuum. Grafting density, ζg = 0.2 nm
–2

 and length of grafred chains, Ng = 192 skeletal bonds. (a) 

cohesive interactions, (b) solid/polymer interactions, (c) entropic contribution from grafted chains, (d) density-field 

interactions, (e) stretching contribution from grafted chains, (f) total grand potential. The vertical lines denote plate-

plate distances where the reduced density exceeds unity. The horizontal dotted line in (f) depicts 

 
+

G V VG
0.5  



  . The insets in (f) depict grafted chain configurations across the 1
st
, 2

nd
 and 3

rd
 regime. Bands 

denote scale changes along the axes. 

 

The thermodynamics of the merger seems to be dominated by cohesive interactions among 

chain segments. According to Figure 6.20a, below some critical distance, the abrupt drop of the 

cohesive term (
GVG

coh ) indicates the enthalpic gain upon film merging. At the same time, the more 

positive solid/polymer interactions in Figure 6.20b (
GVG

S ) indicate the enthalpic penalty due to 

the departure of a large portion of the brushes from the solid surfaces.  

The term associated with the entropy of the grafted chains (
GVG

g ) in Figure 6.20c is of 

particular interest. At a first glance, it does not quite reflect the entropic penalty due to the 

stretching of grafted chains. However, this can be attributed to that 
GVG

g  itself does not reflect 

the total conformational contribution to the grand potential, since it is evaluated in presence of 

the field.
24

 The conformational component of the grafted chains can be retrieved as follows:
24

  

 
GVG GVG GVG

g,conf g g,field     6.10 

with 
GVG

g,field being the field experienced by the grafted chains: 
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   GVG

g,field solid ifcg g
d ( ) ( ) ( )S w   

   r r r r
R

 6.11 

Indeed, as indicated in Figure 6.20e, the conformational entropy of the grafted chains 

increases abruptly below a critical distance (entropic penalty due to stretching) and then 

decreases with decreasing ssh , as the film becomes more compact and the grafted chains 

become less stretched. In summary, the manifestation of the phase transition depends on an 

interplay among three dominant factors: 

 An enthalpic gain due to the lower surface area of the merged brushes, which increases 

with increasing surface tension, i.e., higher energy cost of grafted chain segments being 

exposed to vacuum.  

 An enthalpic loss due to detachment of the grafted film from the solid surfaces that 

depends on the strength of solid/polymer interactions. 

 A conformational penalty associated with chain stretching. 

As far as the equilibrium plate-to-plate distance (after the merger) is concerned, for low ζg,seg 

products, this is on the order of 1.5 ssh , or 0.75  g g
h h  . This means that the two silica plates 

come considerably closer to each other than the sum of the individual root-mean-squared brush 

thickness, since the brushes lie in the mushroom regime and can readily interpenetrate each 

other. On the other hand, for the case of high ζg,seg, the brushes are more compact, and hence, 

one could make meaningful predictions using Alexander’s model for incompressible brushes 

(Appendix A).
126,127

 Indeed, the denser brushes investigated here become compact (ρ > ρseg,bulk) 

at separation distances on the order of ss
2 3 3.4h , e.g., compare with the vertical line in the 

bottom-right panel of Figure 6.18. 

Overall, the effect of asymmetry on the equilibrium distance is expected to be minor. Indeed, 

according to Figure 6.18, brushes with equal ζg,seg become compact at similar distances. For 

example, compare the case (ζg, Ng) = (0.4 nm
–2

, 48) with (0.1 nm
–2

, 192) and the case (0.4 nm
–2

, 

192) with (0.1 nm
–2

, 768). 

 

6.2.6. Concluding remarks 

All of the above results regarding the potential of mean force between two planar surfaces (or 

equivalently of particles with radius large in relation to the chain dimensions) imply some 

design rules that one can be guided by when addressing such nanostructured systems. 
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As mentioned earlier, addressing the system of bare solid surfaces can give us an insight on 

what happens in the limit of very low grafting density. At moderate distances, the behavior of 

the PMF depends on an interplay between the strength of the solid/polymer, polymer/polymer 

and solid/solid interactions, as quantified by the wetting/spreading phenomena taking place at a 

single solid/polymer interface. 

Fow low wetting conditions (θ > 90
○
), the PMF becomes weakly repulsive from distances on 

the order of 3.5-10 nm, but the polymer film is metastable with respect to the chains evacuating 

the gap and the solid surfaces snapping into direct contact with each other. The spontaneous 

manifestation of cavities can lead to eventual collapse of the surfaces, leading to agglomeration. 

This is a manifestation of the allophobic dewetting phenomenon observed in the low wetting 

condition examined here. On the contrary, for high (θ < 90
○
) and perfect (imaginary θ) wetting 

conditions, the PMF is practically zero at large distances and starts rising steeply below ca. 2 

nm. A free energy barrier on the order of 20-80 mJ/m
2
 has to be overcome for the solid surfaces 

to come into direct contact. The system is stabilized in terms of the solid surfaces sticking to 

each other, and is trapped in a potential whose depth is on the order of ca. 20 mJ/m
2
 with respect 

to a melt-free system, e.g., with respect to the dotted lines shown in Figure 6.8. Matrix chains 

adhering to the solid surfaces resist compression and screen the solid/solid attractive 

interactions, as if they were grafted. The PMF between bare solid surfaces does not depend 

strongly on the length of matrix chains; therefore, varying the molecular weight of matrix chains 

does not have a significant effect on the stability of the system. 

In the case of low wetting, the presence of grafted chains is imperative for the solid surfaces 

to be stabilized. In particular, when the grafted chain lengths and grafting densities are 

sufficiently high (see Figure 6.17), the grafted chains effectively screen the solid/solid 

interactions, preventing the two plates from approaching each other at a distance where they 

would experience the full depth of the plate-plate distance.  In many cases, the PMF can become 

strictly repulsive, but a prerequisite for this is that the grafted chains be longer than those of the 

matrix.  The longer the grafted chains in comparison to the matrix chains, the steeper the 

repulsive PMF that develops and the longer the range over which it manifests itself. Short matrix 

chains are able to penetrate the brush of long grafted chains and swell it, increasing the range of 

the repulsive interaction. In this case, the most important design rule that has to be met, as 

already reported in experimental studies,
18,22,29–31

 is that the grafted chains need to be longer than 

the matrix chains, Nm/Ng ≤ 1. On the other hand, when the matrix chains start becoming larger 

than the grafted, then immediately an attractive well is exhibited in the PMF (autophobic 
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dewetting); solvent conditions become worse for the grafted chains. Moreover, this behavior is 

intensified at high surface grafting densities. In these cases, the density of grafted chain 

segments near the interface is so high, that matrix chains are not able to penetrate into the region 

occupied by the grafted chains, even if matrix chains have lower molecular weight. Thus, the use 

of excessive grafting densities is to be avoided for the purpose of steric stabilization, even if Ng 

> Nm. 

For the asymmetric cases, where the grafting density or the molecular weight of grafted 

chains differs on each silica plate, it seems that the introduction of asymmetries does not give 

rise to a minimum in the PMF, as long as deviations from the symmetric case are small, and the 

effective ratio m g/N N  (see eq 6.9) is kept constant. Individually, adjusting the asymmetry on 

the grafting density or on the molecular weight of grafted chains does not alter significantly the 

PMF, with the former having a stronger influence. This implies that,when experimentalists are 

trying to achieve the dispersion of two slabs (or large grafted particles) inside a polymer melt, 

there is some room for deviation from symmetry, especially as regards the molecular weight of 

grafted chains. Nonetheless, when there are large discrepancies between both the grafting 

densities and the molecular weight ratios, then the system will eventually exhibit an attractive 

well. Again, this phenomenon is more pronounced when the molecular weight of matrix chains 

increases.  

The characteristics of the well-depth of PMF
GMG

 reflect the ―softness‖ of the brush as well as 

the associated tendency to penetrate into each other.
25

 Wrapping together all the parameters 

which influence the attractive well of the PMF
GMG

 between the two plates, one can generate 

empirical design rules regarding the prediction of stable configurations of opposing plates 

(membranes or fine particles) as a function of the mean grafting density, the chain length of 

grafted chains and the chain length of matrix chains.  

According to Hasegawa et al.,
26

 PMF is expected to become repulsive for 
2 1/ 2

g k k,g
b N

 
 , with 

2 2

k, C-C k
/

c c
N N C l b


  being the number of Kuhn segments that comprise a chain. In addition, as 

has been demonstrated in Section 6.2.4 of the present thesis, PMF
GMG

 becomes more attractive 

when the length of matrix chains increases with respect to the effective length of grafted chains, 

m g/N N  (or k,m k,g/N N  in Kuhn units). Note that the effective ratio, m g/N N , takes account of 

the asymmetry in both the grafting density and the chain length in the two plates. Putting all 

these together, it would be instructive to present the depth of the attractive well as a function of 
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the dimensionless quantity  2 1/ 2

g k k,g k,m k,g
/b N N N , or 

2 1/2

g k k,g k,m
b N N


 for simplicity. Such 

comparisons are shown in the master plot of Figure 6.21 below, against all the data gathered 

here for both the symmetric and asymmetric surfaces. 

 

Figure 6.21 Well-depth of PMF
GMG

 as a function of all design degrees of freedom of the interfacial systems of two 

plates.  The degrees of freedom are combined in the dimensionless quantity: 
2 1/ 2

g k k,g k,m
b N N



. Green/red shades 

illustrate regime with repulsive/attractive interactions between the opposing plates. The vertical dashed line is a 

guide to the eye. 

 

According to Figure 6.21 presented above, the attractive interactions become negligible for 

2 1/ 2

g k k,g k,m
b N N



<5, therefore for such combinations, the surfaces are expected to stabilize. For 

larger values, on the other hand, in most cases the plates tend to stick to each other 

(aggregation). Furthermore, we must take into account that in the limit of very small average 

grafting density, the system will be led towards the case of bare solid plates in contact with 

vacuum, thus the melt is expected to evacuate the gap and the plates will spontaneously come in 

contact to each other, According to our calculations, the polystyrene melt remains stable even 

for low grafting densites, on the order of 0.1 nm
–2

 (
2

k
0.33b



), thus for these systems, the region 

of stability could be traced along the range 
2 1/ 2 1

g k k,g k,m
0.33 5b N N


  . Our findings conform with 

experimental studies concerning systems of the same
22,30,31

 or similar
18,29,30

 chemical 

constitution and with theoretical investigations,
5,25,26

 whilst accounting for the effect of 

asymmetry as well. 

6.3. Spherical Surfaces 

6.3.1. Background 

The ability to efficiently disperse inorganic NPs inside polymer matrices is essential for the 

design and manufacturing of well-behaving nanocomposite materials.
7,135,186,234

 The mechanical 

and viscoelastic properties of polymeric materials are enhanced when hosting well dispersed 
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nano-sized particles.
42,196,235–237

 There is plenty of experimental studies where the structural, 

dynamic and mechanical properties of PGNs are investigated.
14–16,42–44,81,138

 Furthermore, it is of 

high interest to the academic community and industrial practice to investigate the properties of 

PGNs when they are isolated from any polymer melt or solvent.
43,199,226,227,238

 The latter systems 

are particularly important for the design of state-of-the-art separation membranes.
47,50,120,229

 

The interactions between two particles which are embedded in polymer melt or a solvent are 

strongly dependent on the NP size.
21,24

 Spherical NPs with small radius are easier to disperse, 

because their shape and increased curvature offer more space to the grafted chains to adopt a 

variety of conformations; hence the NPs are prevented from collapsing together.
204,239

 Martin et 

al.
195

 have performed a detailed investigation of the PGN interactions in the case of dissimilar 

chemistry between grafted and matrix chains, giving insights on the role of enthalpic 

interactions on the potential of mean force and stabilization of the system. Ghanbari et al.
240

 

have studied the dependence of the dynamics of matrix and grafted chains on the grafting 

density and molecular weight of matrix chains via coarse-grained molecular dynamics 

simulations. 

 

 

6.3.2. PMF between two grafted silica nanoparticles 

For the case of two interacting silica NPs in polymer melt, the geometry and discretization of the 

considered domain is presented in Figure 6.22. The two NPs have the same radius, RS = 2 nm, 

which is kept constant in all PMF calculations. As shown by the orientation of axes in Figure 

6.22, the surface-to-surface distane, hSS, between the two particles is varied along the x-axis. 
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Figure 6.22 Meshing illustration of two NPs with RS = 2 nm inside a box with dimensions 30 × 22 × 22 nm
3
. (a) 

Perspective view showing the mesh at the periodic (edge) and Dirichlet (solid) boundaries. (b) An xy-slice passing 

through the centers of the NPs (created with the Slice operation of the Paraview software). For the calculation of the 

PMF, the distance between the two NPs is varied along the x-axis. The inset depicts an enlarged view of the 

solid/polymer interface; the solid red line corresponds to the distance of grafting points from the solid surface, while 

the dotted magenta line corresponds to the thickness of the fine-mesh region. 

  

The grafting distributions we have addressed are illustrated in Figure 6.23 below and they 

correspond to: equidistant grafting with density ζg = 0.8 nm
–2

 corresponding to 40 grafted chains 

per NP
 
(―E40-E40‖), equidistant grafting with density ζg = 0.3 nm

–2
 corresponding to 15 grafted 

chains per NP (―E15-E15‖), and nonequidistantly grafted chains where the relative orientation of 

grafting of the two NPs is: parallel to each other and parallel to the x-axis (―H15-H15‖, for 

parameters of grafting see third row of Table 6-2), parallel to each other and perpendicular to the 

x-axis (―V15-V15‖, for parameters of grafting see fourth row of Table 6-2) and perpendicular to 

each other (―H15-V15‖, for parameters of grafting see fifth row of Table 6-2). 



Chapter 6. Calculations involving two particles/surfaces  

 

218 

Table 6-2. Parameters for distributing grafting points on the surface of two spherical NPs. Two equidistant and 

three non-equidistant cases are examined: equidistant grafting with density 0.8 nm
–2

 (E40-E40), equidistant grafting 

with density 0.3 nm
–2

 (E15-E15), horizontal parallel orientation (H15-H15), vertical parallel orientation (V15-V15) 

and perpendicular orientation (H15-V15). The radius of the two NPs is RS = 2 nm. 

Distribution 

(Particle radius, RS = 2 

nm) 

NP1 NP2 

Pole1 

(θ, θ) 

Pole2 

(θ, θ) 

Pole1 

(θ, θ) 

Pole2 

(θ, θ) 

E40-E40 
Algorithm of ref 103 for generation of 40 grafting 

points on the surface of each NP 

E15-E15 
Algorithm of ref 103 for generation of 15 grafting 

points on the surface of each NP 

H15-H15 (0.0, 0.0) (π, 0.0) (0.0, 0.0) (π, 0.0) 

V15-V15 (+π/2, 0.0) (–π/2, 0.0) (+π/2, 0.0) (–π/2, 0.0) 

H15-V15 (0.0, 0.0) (π, 0.0) (+π/2, 0.0) (–π/2, 0.0) 

 

 In the equidistant grafting cases, E40-E40 and E15-E15, we have implemented the 

algorithm of ref 
103

 to generate 40 and 15 chains per NP, respectively. In Figure 6.24, we present 

the density profiles of grafted chain segments in the three-dimensional space for surface-to-

surface distance equal to hSS = {2.20, 6.12, 12.09} nm and for all different grafting orientations 

of the NPs. In this figure, the length of matrix chains is equal to that of grafted chains, Nm = Ng = 

96 skeletal carbon bonds. 
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Figure 6.23 VMD representation of distributions of grafting points for PMF calculation between two spherical 

particles. Two equidistant and three non-equidistant cases are examined: equidistant grafting with density 0.8 nm
–2

 

(E40-E40), equidistant grafting with density 0.3 nm
–2

 (E15-E15), horizontal parallel orientation (H15-H15), vertical 

parallel orientation (V15-V15) and perpendicular orientation (H15-V15). The radius of the two NPs is RS = 2 nm. 
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Figure 6.24 Three-dimensional density profiles of polystyrene chains grafted on the surfaces of two silica NPs. The 

brush of the left NP is plotted with red color, while that one of the right NP is plotted with green color. Five 

different grafting cases are considered: equidistant grafting with 40 grafted chains per NP (E40-E40), equidistant 

grafting with 15 grafted chains per NP (E15-E15), and three non-equidistant cases with 15 grafted chains per NP: 

H15-H15, V15-V15 and H15-V15).  

 

In Figure 6.25 and Figure 6.26, we plot the PMF between for equidistant and non-equidistant 

grafting, respectively, and for varying matrix-to-grafted chain length ratio. On the x-axis, we 

vary the surface-to-surface NP distance, which assumes the values hSS = {2.20, 2.80, 3.46, 4.12, 

4.80, 5.46, 6.12, 12.09, 12.76, 13.42, 14.08} nm. In the last four distances, the brushes of the 

two NPs do not interact with each other (e.g., see the third column of Figure 6.24, so the average 

free energy density of the system in these distances is equivalent to the energy of the particles 

when they are at infinite distance from each other. All energies are expressed with reference to 

the free energy of the two grafted particles at infinite distance. On the y-axis, we report this 

(relative) free energy in kJ/mol. In Table 6-3, Table 6-4 and Table 6-5, we report the values of 

the PMF for different values of the Nm/Ng ratio and varying the grafting distribution. These data 

are also illustrated in the master plot of Figure 6.28. In all cases, we have taken into account the 

Hamaker interaction between the silica-silica surfaces, which in the distances of interest is 

negligible compared to the PMF of the system. Nonetheless, it is interesting to observe that the 
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grafted chains prevent the particles from getting closer than 2.2 nm, where they could potentially 

collapse easier due to the well of the silica-silica interaction. One could certainly argue that this 

Hamaker potential concerns bare particles and therefore if they were grafted (as in our case), the 

entropic factors associated with grafted chains would counterbalance this attraction of the 

particles. This is totally reasonable, nonetheless, the logic behind our calculations and distance 

sampling is that, if the particles are not even allowed (due to the presence of grafted chains) to 

come at distance where their Hamaker attraction would be a factor promoting destabilization, 

then there is absolutely no way that the thermodynamics will allow them to coagulate. The 

Hamaker potential between two bare silica particles with RS = 2 nm is depicted in the following 

Figure 6.27. The absolute values of the potential for surface-to-surface distances larger than 2.2 

nm (which is the minimum distance for PMF calculations with SCFT, see dashed line in Figure 

6.27) are lower than 0.2 kJ/mol. 
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Figure 6.25 Potential of mean force between two silica NPs equidistantly grafted with polystyrene chains.  The two 

NPs are embedded in a matrix of polystyrene chains and the matrix to grafted chain length ratio assumes the values 

Nm/Ng = {0.25: red, 1.0: blue: 4.0: green}. The x-axis represents the surface-to-surface distance between the two 

NPs. In the left panel, each NP is grafted with 40 polystyrene chains, while in the right panel, each NP is grafted 

with 15 polystyrene chains. The radius of the particles is equal to RS = 2 nm. 

 

 

Figure 6.26 Potential of mean force between two silica NPs non-equidistantly grafted with polystyrene chains. The 

two NPs are embedded in a matrix of polystyrene chains and the matrix to grafted chain length ratio assumes the 

values Nm/Ng = {0.25: red, 1.0: blue, 4.0: green}. The x-axis represents the surface-to-surface distance between the 

two NPs. In the left/middle/right panel, the two NPs are grafted according to H15-H15, H15-V15 and V15-V15 

orientations, respectively (see Table 6-2 and Figure 6.23). The radius of the particles is equal to RS = 2 nm. 
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Figure 6.27 Hamaker interaction between two bare silica NPs with radius RS = 2 nm. Blue color corresponds to the 

attractive term, red color to the repulsive term, and the final potential is depicted with green color. The depth of this 

potential is equal to –18.7 kJ/mol and the width of the potential is approximately 1.5 nm (after this distance the 

potential assumes absolute values lower than 0.2 kJ/mol). 

 

Table 6-3 Potential of mean force between silica NPs embedded in polystyrene matrix of length Nm = 24 skeletal 

bonds. The radius of the NPs is equal to RS = 2 nm and the length of grafted chains is equal to Ng = 96 skeletal 

bonds. The PMF is reported for all grafting distributions that we have investigated. The values of the present table 

are plotted in the left panel of Figure 6.28. 

Nm = 24 

hSS 

(nm) 

E40-E40 

(kJ/mol) 

E15–E15 

(kJ/mol) 

H15-H15 

(kJ/mol) 

V15-V15 

(kJ/mol) 

H15-V15 

(kJ/mol) 

2.20 80.56 12.53 43.30 9.83 19.42 

2.80 77.53 11.90 24.48 3.98 14.31 

3.46 55.33 8.73 19.01 4.81 7.86 

4.12 41.02 5.75 18.31 5.38 13.23 

4.80 29.66 3.49 10.43 3.15 7.90 

5.46 17.00 5.38 6.91 2.38 6.35 

6.12 14.26 –1.45 5.82 0.00 3.26 

12.09 3.01 1.16 0.99 1.31 1.21 

12.76 –1.57 –1.08 1.38 0.45 –1.46 

13.42 1.37 1.04 –1.38 –1.61 3.65 

14.08 –2.81 –1.12 –0.99 0.87 –3.40 
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Table 6-4 Potential of mean force between silica NPs embedded in polystyrene matrix of length Nm = 96 skeletal 

bonds. The radius of the NPs is equal to RS = 2 nm and the length of grafted chains is equal to Ng = 96 skeletal 

bonds. The PMF is reported for all grafting distributions that we have investigated. The values of the present table 

are plotted in the middle panel of Figure 6.28. 

Nm = 96 

hSS 

(nm) 

E40-E40 

(kJ/mol) 

E15–E15 

(kJ/mol) 

H15-H15 

(kJ/mol) 

V15-V15 

(kJ/mol) 

H15-V15 

 (kJ/mol) 

2.20 29.67 2.69 18.84 1.38 7.70 

2.80 25.32 1.92 9.36 –3.52 4.67 

3.46 13.89 0.12 5.42 –0.76 0.33 

4.12 11.85 0.33 7.43 0.30 4.09 

4.80 7.16 –2.20 3.60 –0.39 2.13 

5.46 2.22 1.14 –0.30 0.21 0.84 

6.12 –0.43 –4.66 –0.24 –1.92 –0.53 

12.09 2.08 0.75 1.29 1.32 0.67 

12.76 –1.99 –0.59 0.73 –0.78 –0.98 

13.42 1.21 0.21 –1.85 –1.77 3.39 

14.08 –1.30 –0.37 –0.17 1.22 –3.08 

 

Table 6-5 Potential of mean force between silica NPs embedded in polystyrene matrix of length Nm = 384 skeletal 

bonds. The radius of the NPs is equal to RS = 2 nm and the length of grafted chains is equal to Ng = 96 skeletal 

bonds. The PMF is reported for all grafting distributions that we have investigated. The values of the present table 

are plotted in the right panel of Figure 6.28. 

Nm = 384 

hSS 

(nm) 

E40-E40 

(kJ/mol) 

E15–E15 

(kJ/mol) 

H15-H15 

(kJ/mol) 

V15-V15 

(kJ/mol) 

H15-V15 

(kJ/mol) 

2.20 13.25 –0.32 11.64 –1.21 4.13 

2.80 8.65 –0.90 4.63 –5.33 1.91 

3.46 0.88 –2.40 1.17 –2.48 –1.91 

4.12 2.74 –1.16 4.15 –1.08 1.61 

4.80 0.43 –3.69 1.38 –1.37 0.65 

5.46 –2.11 0.00 –2.56 –0.20 –0.61 

6.12 –4.46 –5.49 –2.08 –2.52 –1.44 

12.09 1.99 0.67 1.31 1.35 0.61 

12.76 –2.00 –0.41 0.49 –1.14 –0.81 

13.42 1.15 0.01 –1.97 –1.51 3.36 

14.08 –1.14 –0.26 0.17 1.30 –3.17 
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Figure 6.28 Potential of mean force between two grafted silica NPs embedded in polystyrene matrix.  The matrix to 

grafted chain length ratio assumes the values Nm/Ng = {0.25: left panel (Table 6-3), 1.0: middle panel (Table 6-4), 

4.0: right panel (Table 6-5)}. In each panel, we vary the grafting orientation on the surfaces of the two NPs: {E40-

E40: red, E15-E15: blue, H15-H15: green, H15-V15: purple, V15-V15: yellow}. The x-axis represents the surface-

to-surface distance between the two NPs. The radius of the particles is equal to RS = 2 nm. 

 

Looking at Figure 6.25 and Figure 6.26, we observe that when Nm < Ng, the PMF increases 

with decreasing surface-to-surface NP distance. This is totally expected, since the smaller matrix 

chains can interpenetrate into the brushes and swell them towards the bulk, increasing the 

conformational cost associated with their conformations. The error in the estimated free energy 

is a consequence of the randomness of the mesh of elements that is used for the solution of 

Edwards in each case, which is directly related to the delta function and initial condition 

assigned in the propagator of each grafting chain.  

We can qualitatively compare our plot with the black line of Figure 5 of ref 206 and see the 

satisfying agreement between the two plots. It would not be of essence to quantitatively compare 

the two plots, because in the case of Munao et al.,
206

 a hybrid particle-field methodology is 

implemented and furthermore, there are some differences in the parametrization of the system. 

For example, the description bonded and nonbonded interactions, and therefore the 

compressibility of the polymer, between the two models may be quite different which is directly 

related to density deviations and their impact on the energy of the system. 

In Figure 6.28, we can clearly see the impact of the matrix-to-grafted chain length ratio 

(increasing from left panel to the right) on the stability of the system. When the length of matrix 

chains becomes equal to that of grafted chains (middle panel), then only the E40-E40 and H15-

H15 distributions are able to maintain the stability of the system. Furthermore, when Nm = 4Ng, 

having 15 chains grafted per particle in H15-H15 distribution (green line), becomes equivalent 

to having 40 chains equidistanly distributed on each particle (red line).  
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6.3.3. Concluding Remarks 

In this last chapter of the thesis, we have presented thorough calculations regarding the 

interactions of two spherical silica nanoparticles which are grafted with polystyrene chains and 

they are embedded inside polystyrene melt. These calculations are quite valuable because they 

provide with information on how the particles tend to behave under conditions of 

thermodynamic equilibrium.  

Since the two particles are quite small, having a radius equal to 2 nm, these calculations can 

be considered as the opposite end of the extreme case where the particles are infinitely large, i.e., 

solid planar surfaces (Section 6.2). To investigate this system, we had to perform three-

dimensional calculations where the distance of the two particles is varied and the energy of the 

system at each distance is measured resulting in the so-called potential of mean force. The 

entropy of grafted chains when the two particles get closer to each other decreases, since there is 

less available space and therefore the number of available conformations also decreases. This 

results in a free energy rise which prevents the system from coagulating. 

We have derived the potential of mean of mean force of the system and the ability of grafted 

chains to stabilize the nanocomposite system, for different matrix-to-grafted chain length and 

most importantly, for different distribution of the grafting points on the surfaces of the two 

particles. We found that, when the relative grafting orientation results in extreme crowding of 

grafted chain segments, then the free energy rises more than the case of equidistant grafting. In 

other words, keeping all other parameters of the system constant, including the number of 

grafted chains, the grafting distribution plays a decisive role in the dispersion of the particles. 

This is a rather novel finding, especially in the context of a field-based method, since it proves 

that experimentalists can indeed tune the dispersion of chains on the solid surfaces to alter its 

equilibrium tendencies. 

<
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7. SCIENTIFIC AND METHODOLOGICAL 

ADVANCES 

The current section summarizes all the methodological advances and computational tools 

developed by the author and collaborators.  

 We have compiled a thorough and generalized Self-Consistent Field Theory mathematical 

formulation for addressing gas/polymer and solid/polymer interfaces, where the latter involve 

chains grafted on the solid surface. 

 We have developed a Self-Consistent Field-based thermodynamic formulation for calculating 

the solvation free energy of a grafted particle inside a polymer matrix. This formalism serves 

as the basis for quantitative and fast calculation of the solvation free energy and the free 

energy of transferring one or more nanoparticles between different melt or solvent 

environments. Moreover, to more accurately perform these calculations, we have devised a 

curvature-dependent Hamaker potential to address solid/polymer interactions. This potential 

takes into account the loss of interacting sites when the radius of the particle decreases. 

 Regarding the potential of mean force between two opposing solid surfaces, the solid/polymer 

and solid/solid interactions are described by means of a Hamaker potential in conjunction 

with a ramp potential. We built thermodynamic reference by examining the free energy of 

single surfaces, either bare or grafted, under various wetting conditions in terms of the 

corresponding contact angles and macroscopic wetting functions (i.e., work of cohesion, 

adhesion, spreading and immersion). Subsequently, the potential of mean force between bare 

and grafted plates is derived. These calculations provide us with design rules for the steric 

stabilization of (fine) grafted particles under various conditions. 

 We devised a numerical scheme which is based on the broadly used Finite Element Method 

and combines the virtues of three-dimensional calculations, an explicit Helmholtz energy 
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density functional describing the nonbonded interactions among polymer segments and strict 

mathematical representation of chains grafted on solid surfaces. 

 The three-dimensional code offers the possibility to model grafted polymer chains on the 

solid surfaces according to irregular grafting distributions. For this purpose, we have written a 

python script which performs a Monte Carlo sampling on the surface of the particle and grafts 

polymer chains according to a certain probability distribution. The same script also handles 

the generation of equidistant grafting points. 

 At a post-processing level, our code gives the ability to calculate the density profiles of 

segments belonging to individual grafted chains and illustrate it in 3D plots. 

 Since we wanted our code to address systems of more than two nanoparticles, we have also 

developed the feature of periodic boundary conditions in the solution of the Edwards 

diffusion equation by the Finite Element Method. This type of boundary conditions requires 

an association between the nodes of the element which find themselves in opposing faces of 

the periodic box, so that proper modification of the stiffness matrix can be applied. 

Furthermore, a lot of refactoring was necessary for the code to execute these additional steps 

with minimum overhead. 

 Using the aforementioned feature of periodic boundary conditions and the mathematical and 

numerical formalism developed in the context of this thesis, one can perform SCFT based 

theoretical calculations with multiple polymer-grafted nanoparticles (of any shape) which 

may be embedded in polymer melt or exposed to vacuum (i.e., particle solids). 
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APPENDICES 

Appendix A Brush Height of Constant Density: Alexander Model 

It is instructive to compare the brush height predictions of SCFT with the predictions of a 

simpler brush model such as that of incompressible Alexander brushes. Let hedge be the edge of 

a brush comprising ng grafted chains of length Ng, emanating from a NP with radius, RS, such as 

the one shown in Figure A.1a. 

For simplicity let us assume that the segment density is constant and equal to ρseg,bulk  across 

the region occupied by the brush of grafted chains, 
S S edge,R R h   , which are terminated at 

hedge; Figure A.1c presents the corresponding density profile for this model. Consequently, the 

volume occupied by the brush can be calculated as the number of the brush segments in this 

region, divided by its segment density, as show in the following eq A1. 

 
2

g g g S g

seg,bulk seg,bulk

4n N R N
V

 

 
   A1 

where  2

g g S/ 4N R   is the grafting density. Alternatively, the volume of a brush of constant 

density that terminates at distance hedge can be calculated via eq A2. 

  
3

3

S edge S

4

3
V R h R    

  
 A2 

Combining eqs A1 and A2 and solving with respect to hedge, we get the following expression: 
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Figure A.1 (a) A nanoparticle with grafted chains forming a brush of height hedge. (b) In the limit RS → ∞, the 

surface of the NP becomes flat. (c) The segment density profile of a brush with constant segmental density, ρseg,bulk. 

 

With hedge known and given that the density profiles are uniform, h99% can be calculated as 

follows: 

 99% edge S0.99h h R   A4 

Similarly, the mean brush thickness 
1/2

2

gh  can be obtained by eq A5. 
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In the limit of very large NPs (flat surfaces), 
1/2

2

gh  becomes: 
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NP NP

1/2 g g2

g edge

seg,bulk

1
lim lim

3 3R R

N
h h



 
   A6 

Thus, for this model, appears to be proportional to ζg and Ng in the limit of large NPs/flat 

surfaces (i.e., see Figure A.1b). 

The thermodynamics of these brushes can be described by a total free energy given by the 

following eq A7: 

 total coh stretchA A A   A7 

where Acoh is the contribution from the cohesive interactions described by the free energy 

density (i.e., Acoh   Ωcoh from eq 2.39), while Astretch is the entropic contribution from the 

stretched grafted chains. Given that the grafted chains are terminated at the edge of the brush, 

and assuming that they can be described as Gaussian strings, the contribution of the brushes to 

the free energy due to stretching can be approximated by the following eq A8. 

 2B
stretch solid g edge2

end,g

3

2

k T
A h

R
 S  A8 

Combining eqs A3 and A8, the stretching free energy per unit area as a function of RS is given 

by eq A9. 
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Appendix B  Grand canonical partition function and Hamiltonian 

We consider a polymer melt within an arbitrarily shaped three-dimensional region R  
of volume 

V at temperature T.  The region R  is not necessarily convex. It is partly bounded by one or 

multiple solid surfaces, which exert an external potential us(r) per polymer segment at each 

position r  R.   The boundary of the domain R will be referred to as R.  Part of R may be 

defined by solid surfaces, while the rest of R will be characterized by zero-flux Neumann 

boundary conditions. 

The polymer consists of matrix chains of length Nm skeletal bonds each.  In addition, there 

are chains terminally grafted on the solid surfaces, the length of each grafted chain being Ng 

segments. Both matrix and grafted chains are assumed to be monodisperse, but matrix chains 

can have different chain length from grafted chains. In the context of the present work, matrix 

and grafted chains are of the same chemical composition; hence the potential energy field per 

segment, us(r), is applicable to both. 

We use the symbols nm and ng to denote the numbers of matrix and grafted chains, 

respectively.  The number ng will be fixed. The number nm is free to fluctuate, subject to the 

condition that the matrix chains in the interfacial region are in equilibrium with a bulk polymer 

phase at temperature T, whose density, in segments per unit volume, is seg,bulk. Of course, 

seg,bulk can be determined from the temperature T and the pressure P of the bulk polymer phase 

through an appropriate equation of state. From the same equation of state one can determine the 

chemical potential m per chain segment in the bulk polymer. 

In general, the mean segment density of polymer in the considered interfacial region, 

m m g g

seg

n N n N

V



 , will be different from seg,bulk. The interfacial region and the bulk one will 

be at equilibrium; the chemical potential m of matrix chain segments in R is the same as in a 

bulk phase of matrix chains. 

 The unperturbed mean square radii of gyration of matrix and grafted chains will be 

denoted as 2 2

G,g G,m and R R , respectively.  The grafting points (starts of the grafted chains) 

will be denoted by 
gg,ir , ig=1,  2, …, ng.  They all lie on solid surfaces which belong to R . In 

practice, the grafting point is located at a finite distance from the solid surface. Technically 

speaking, it is not possible to attach the end of the chain exactly on the surface, because this 
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would result in a conflict between the grafted chains initial condition and the Dirichlet boundary 

conditions imposed on the solid boundaries. 

The matrix chains in the interfacial region of volume V at temperature T and chemical 

potential μmNm follow the probability distribution of the grand canonical ensemble. Treating all 

chains as Gaussian strings and describing the nonbonded interactions by an equation of state in 

conjunction with a gradient term,  ˆ ˆ, ( )f    r r , we can write the grand partition function 

for the polymer contained in R as: 
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where β = 1/(kBT),  
mi

 RD  symbolizes a functional integral over all paths  
mi

NR , 

m0 N N  , of a matrix chain im ( m m1 i n  ) and  g  RD  symbolizes a functional integral 

over all paths  
gi

NR , g0 N N  , of a grafted chain ig ( g g1 i n  ). m g,A A are normalizing 

factors per matrix and per grafted chain, respectively, appearing in the path integral formulation. 

They must be the same between the interfacial system and the bulk polymer and render the 

grand partition function, Ξ, dimensionless. 

The functional  ˆ ˆ( ), ( )f  r r
 
is the Helmholtz energy density (Helmholtz energy per unit 

volume) describing the nonbonded interactions between polymer segments, obtainable from an 

appropriate equation of state. Herein we identify f with an excess Helmholtz energy, i.e., the 

Helmholtz energy of a real polymer fluid consisting of a certain number of chains in a given 

volume minus the Helmholtz energy of an equal number of noninteracting (ideal gas) chains 

occupying the same volume. uS(r) is the total potential energy exerted by the solid on a polymer 

segment as a function of the position r of that segment. 

In the absence of a field, the probability density distribution (statistical weight) of a matrix 

chain conformation/path,  
mi

NR , and the corresponding one of a grafted chain,  
gi

NR , are 

given by eqs B2 and B3, respectively, in the context of the Gaussian chain model. 
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 The reduced segment density operators m g
ˆ ˆ( ),  ( ) r r  are defined as shown in eqs B4 and 

B5 respectively. 
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and we set the total reduced segment density operator as m g
ˆ ˆ ˆ( ) ( ) ( )   r r r . Next, we wish to 

re-express the Boltzmann factor on the right-hand side of eq B1 in terms of a density field, ρ(r), 

and a chemical potential field, w(r). To begin with, this term can be written as presented in the 

following eq B6.
5
 

     s s
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 B6 

Next, we write the Dirac-delta functional as the inverse Fourier transform of eq B7, which 

involves the two aforementioned fields.  

    ˆ ˆ[ ( ) ( )] ( ) exp d ( )[ ( ) ( )]C w i w         r r r r r r rD  B7 

with C being a normalization constant.
80

 

Combining eqs B6 and B7, the following expression is obtained for the Boltzmann factor of 

the grand partition function of the system. 
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 Within the functional integral of the right-hand side of eq B8, there is a term 

incorporating the density operator, ˆ ( ) r , which is the sum of m
ˆ ( ) r  and g

ˆ ( ) r . Introducing the 
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definitions for these operators, eqs B4 and B5 respectively, that term can be written as in the 

following eq B9. 
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Combining eqs B1, B8 and B9 the following equation is obtained for the grand partition 

function.  
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 The next step is to define the single chain partition functions (or functionals to be 

technically accurate) of a matrix and a grafted chain, m[ ( )]Q iw r  and 
gg g,[ ; ( )]iQ iwr r  respectively, 

in the field iw(r) by the following eqs B11 and  B12. 
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where,    
m mm m,freei i Z V     R RD P  is the configurational integral of a field-free matrix chain 

and    
gg g gg,g g,free(0)

i ii i Z      
   R rR RD P  is the configuration integral of a field-free 

grafted chain. m[ ( )]Q iw r is the configurational integral or partition function of a single matrix 

chain of length Nm, whose segments are subject to the field iw(r), relative to the corresponding 

partition function of a field-free chain (i.e., Gaussian string performing a random-walk) and is 

dimensionless by definition.  In like manner, 
gg g,[ ; ( )]iQ iwr r  is the partition function of a grafted 

chain of length Ng, which starts at 
gg,ir and whose segments are subject to the field iw(r), relative 

to the partition function of a field-free chain of the same length starting at 
gg,ir . It is 

dimensionless as well. 

Combining eqs B10, B11 and B12 the grand partition function becomes: 
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We set the grand partition function to be equal to: 

       ( ) ( ) exp ( ), ( ), ( )C w H w        r r r r rD D  B14 

where the Hamiltonian of the system, H, is a functional of the segment density, ρ(r), of its 

spatial gradient, and of the chemical potential field, w(r).  Finally, using eqs B13 and B14, the 

general form of the Hamiltonian is given by eq B15. 
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Appendix C Saddle point approximation 

In the context of Self-Consistent Field Theory, we need to replace the functional integral of eq 

B15 with its dominant term, i.e., the density and field configurations which have the highest 

probability and thus the maximum contribution to the Hamiltonian of the system. In order to 

determine those configurations, we need to perform a so-called saddle-point approximation, i.e., 

find the stationary point of the Hamiltonian functional with respect to ρ(r) and w(r). To this end, 

we first set the functional derivative of the Hamiltonian with respect to w(r) equal to zero, as 

shown in eq C1. 

 
g

g

g

g g,m
m m m,free

1

ln [ ; ( )][ ( )]1 1
0 ( ) exp( ) 0

n
i

i

Q iwQ iwH
i Z V

w w w


 

    

     
r rr

r A  C1 

Following eq B11, we write: 
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Likewise, following equation B12, we can write: 
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and thus 
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Combining eqs C1, C2 and C4, the following eq C5 is obtained for the density field, ρ(r). 
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The saddle point approximation requires that the functional derivative of the Hamiltonian 

with respect to the density field, ρ(r), be also equal to zero: 
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After the saddle point approximation, the Hamiltonian of the system, from eq B15, is given 

by eq C7. 
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Appendix D Free energy terms 

According to the saddle point approximation considerations which were developed in the 

previous section, the grand potential of our interfacial polymer system, occupying volume V at 

temperature T and chain chemical potential μmNm is given by eq D1. 

 m g

1 1
( , , , ) ln ln exp( )n V T H H 

 
           D1 

Any multiplicative factor arising in  upon introduction of the saddle point approximation 

contributes an additive constant to , which will cancel upon referring  to an equal amount of 

polymer in the bulk. Ω is an extensive—system size-dependent—thermodynamic property. It is 

convenient to express the system thermodynamics with reference to a bulk phase of matrix 

chains occupying volume V at temperature T and chemical potential μmNm, a set of  ng isolated 

end-pinned unperturbed chains of length Ng at temperature T, and an isolated bare nanoparticle, 

as described below. 

The grand potential of an amount of bulk polymer occupying volume V at temperature T and 

chemical potential Nmm is: 

 bulk m bulk bulk
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with 
bulkH  being the effective Hamiltonian of eq C6 applied to bulk polymer: 
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Note that, for all forms of the local free energy density f considered here, 
f







0  in the 

bulk polymer phase. 

Application of eq C5 for the density to the bulk polymer gives: 
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Combining eqs D3 and D4, 
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In the bulk melt, the self-consistent field from eq C6 becomes: 
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and thus the matrix chain partition function from eq B11 takes the form 
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On the other hand, for a set of isolated end-pinned unperturbed chains of length Ng at 

temperature T, which are identical in length and chemical composition to our grafted chains, the 

total Helmholtz energy in the context of our model is given by eq D8. 
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Subtracting eqs D5 and D8 from eq C7: 
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In eq D9, we have made the following substitution: 

 ( ) ( ),  a real field.iw wr r  D10 

The second integral in eq D9, referring to a homogeneous bulk phase of matrix chains, can 

be performed immediately, yielding a factor of V times the integrand. 
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By expressing eq C6 in terms of the real field from eq D10, 

s( ) ( )f w f u      r r , and by substituting it to eq D9, the latter can be expressed as 

follows: 
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wherein the first term is the contribution of the cohesive interactions, the second term is the 

interaction energy between the density field and the chemical potential field, the third term 

describes the polymer-solid interactions, the fourth term describes the translational and 

conformational entropy (relative to the bulk melt) of the matrix chains, and the fifth term is 

associated with the conformational entropy of  the ng grafted chains subject to the field w . 
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Appendix E  Derivation of Segment Balance Equations 

To deal with the grafted and the matrix chains in the presence of the field w, we introduce the 

propagator G(rstart, r, s) following Edwards
241

: 
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start( , , )G Nr r  has dimensions of inverse volume. It is proportional to the conditional 

probability that a chain, which has started at startr and is subject to the field w(r) on its segments, 

finds itself at position r at contour length N, as depicted in Fig. S1. The denominator in eq E1 is 

a partition function for a field-free chain, represented as a Gaussian string, which has started at 

startr  and may end anywhere in the system.  The denominator is independent of startr  and r ; it 

depends only on N. 

                                             

Figure S1. Schematic representation of a Gaussian string starting at 0N    and ending at N N  . 

 

We also define the restricted partition function of a matrix chain in the presence of the field 

w(r) by the following eq E2. 
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This quantity is dimensionless and proportional to the probability that the segment at contour 

length N of a matrix chain subject to the field finds itself at position r, regardless of where in the 

system the particular matrix chain may have started. It is reduced by the corresponding 

probability of a field-free chain. Thus, it equals unity for a field-free chain. The partition 
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function of a matrix chain, Qm, is related to the corresponding restricted one by the equation: 

 m m m

1
( ) d  ( , )

V

Q w q N
V

  r r r . It is also dimensionless and normalized such that it would be 

unity for a field-free chain in volume V. 

The partition function, Qg, of a chain which is grafted at rg, relative to a field-free chain of 

equal length, is given by eq E3. 
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But, by definition, g g g g( , , ) ( , , )G N G Nr r r r , so: 
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Following eq E1, the propagator of a grafted chain, whose grafted end lies at coordinates rg, 

can be written as: 
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So far, we denote by  R  the curve in three-dimensional space, which is followed by a 

Gaussian thread of length N. At this point, we introduce the symbol  R , which represents the 

curve in three-dimensional space, which is followed by a Gaussian thread of length NgN. Using 

these definitions and combining eqs E1 and E2, the restricted partition function of a matrix 

chain can be written as follows. 
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  E6 

Next, we consider the product g m g( , , ) ( , )G N q N Nr r r . By eqs E5 and E6, the numerator 

of this product will be equal to the following expression. 
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Changing the integration variable from N to gN N   in the second line, eq E7 is modified to: 
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where now the functional integration is performed over all paths  R  of an Ng segment-long 

(grafted) chain.   

On the other hand, the denominator of the product g m g( , , ) ( , )G N q N Nr r r  becomes: 
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Dividing eq E8 with E9, we obtain: 
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Combining eqs E3 and E5, we can write the following eq E11 for the partition function of a 

grafted chain. 
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Dividing eq E10 with E11, we obtain the following expression: 

 

         

       

     

g

g g

g

g m g

0g g

g

0 0

g

0

g

1
d  ( , , ) ( , )

; ( )

 (0) ( ) exp d ( )

        =

(0) exp d ( )

(0)

        =

N

N N

N

N G N q N N
Q w

dN N N w N

N w N

  

 



 

 

 


  

  
            

  

  
           

  

      



  

 

r r r
r r

R R R r R r R

R R R r R

R R R r

D P

D P

D P    

       

 

g g

g

g

g

0 0

g

0

(0)0
Field 

( ) exp d ( )

 

(0) exp d ( )

       d ( )

N N

N

N

w

dN N N w N

N w N

N N

 

 





 

  
      

  

  
           

  

  

  

 


R r

R r R

R R R r R

R r

D P

 

 E12 

Using the definition eq B5, we can write: 
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where g ( ) r  is the reduced density and g ( ) r  the segment density contributed by the considered 

grafted chain, at position r. 

 Taking into account eq E4, which relates the partition function of a grafted chain to the 

restricted partition function of a matrix chain, we rewrite eq E13 for a specific grafted chain, ig, 

as:  
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The total reduced density due to all grafted chains will be: 
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Let us set  

 
 

g

g

g
g

g

g

1
seg,bulk m g

( , ) ( , , )
,

n

i

i
i

N
q N G N

q N

r r r
r

 E16 

With this definition,  
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Appendix F  Solution of Edwards in 1D spherical coordinates 

In spherical polar coordinates the Laplacian is written as follows: 
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In the planar surface case, ( , )u u z t , 
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 with z being the direction normal 

to the surface. Therefore, the Edwards diffusion equation in Cartesian coordinates assumes the 

one-dimensional form: 
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with t corresponding to the contour length along a chain, u being a restricted partition function 

(propagator), D determined by the conformational stiffness, and a by the self-consistent field 

(compare eq 1 in main text). 

In the case of a spherical nanoparticle with uniformly smeared grafting points on its surface, 

there is spherical symmetry. There is no dependence on the polar and azimuthal angles, 

( , )u u r t  and the Edwards diffusion equation in spherical polar coordinates simplifies to: 
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If we set 

 ( , ) ( , )r t ru r t   F4 

eq F3 becomes 
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Appendix G Derivation of the density gradient term from the square 

gradient and the Laplacian 

The general expression of the gradient term of the free energy in three dimensions is the 

following: 

  
3

2

SGT ( )  d    r r

R

 G1 

with ( ) r  being the local segment density and  the influence parameter. The corresponding free 

energy function used in our calculations is 

        
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with  ( ),f  r 0  being the Helmholtz energy density of a homogeneous polymer fluid of segment 

density ( ) r  at the considered temperature, calculated from an equation of state. In many cases, 

the gradient term ESGT can be calculated instead from the Laplacian of the density, as will be 

shown below. 

In planar geometries one can take advantage of the homogeneity along the planar (x, y) 

directions (i.e., cylindrical symmetry). Since / / 0x y       , the gradient term can be 

written as follows:  

 
1

2

SGT

d
/  d

d
h

h




 
   

 


R

S  G3 

with h being the segment-surface distance and S  the considered surface area. Alternatively, the 

gradient term can be written in terms of the Laplacian as follows: 
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Either ρ = 0 at the Dirichlet boundaries (q = 0)  or dρ/dz=0 at the Neumann boundaries 

(dq/dz=0); thus, eq G4 becomes: 
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In systems with spherical homogeneity with respect to the center of the nanoparticle one can 

express eq G1 as follows: 

 
2

2

SGT

0

d
 4 d

d

R

r r
r


 

 
   

 
  G6 

with r being the distance between the center of the spherical nanoparticle and the polymer 

segment. The gradient term can be written in terms of the Laplacian as follows: 
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Thus, eq G7 becomes: 
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Appendix H Space and contour discretization benchmarks in RuSseL1D 

>  

Figure H.1 Evaluations of the grand potential from systems with matrix (m) (a, b) and with matrix and grafted 

(m+g) (c, d), for various degrees of spatial (Γh) and chain contour (ΓN) discretization and integration methods. (a), 

(c) and (b), (d) panels correspond to evaluations of the convolution integrals with the Simpson and rectangle 

integration methods, respectively. These evaluations were performed in planar geometries, for molecular weights of 

grafted and matrix chains Mg = Mm = 5.2 kg/mol, grafting density ζg = 0.5 nm
–2

 (when grafted chains are present) 

and in absence of any solid/polymer interactions. 
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Figure H.2 Evaluations of the mean brush thickness for various degrees of spatial and chain-contour 

discretizations. (a) and (b) panels correspond to evaluations of the convolution integrals with the Simpson and 

rectangle integration methods, respectively. These evaluations were performed in planar geometries, for molecular 

weights of grafted and matrix chains Mg = Mm = 5.2 kg/mol, grafting density ζg = 0.5 nm
–2

 (when grafted chains are 

present) and in absence of any solid/polymer interactions. 

 

Figure H.1 and Figure H.2 illustrate a sensitivity analysis of the grand potential and the 

mean brush thickness on the degree of spatial (Γh) and chain-contour discretization using either 

the Simpson or the rectangle integration method for the evaluation of convolution integrals. 

Overall, Simpson’s rule has slightly better performance in terms of accuracy than the rectangle 

method. It is noteworthy that in presence of grafted chains, the solution becomes more sensitive 

to ΓN with decreasing Γh. This can be attributed to that smaller Γh values lead to sharper delta 

funtions, Γ(h) Γh
-1

; hence, much smaller ΓN steps are required.  

An advantage of the rectangle method is that it results in slightly more accurate prediction of 

the grafting density via the segment balance equation; in detail, the error with the Simpson and 

the rectangle method is in the order of ~10
–4

 and ~10
–5

, respectively. In addition, it offers the 

possibility to compute the gradient energy term via both the square gradient and the Laplacian of 

the segment density (see Appendix G above). This probably has to do with that Simpson’s rule 

does not weight all the points evenly; e.g., in Simpson ¾ rule, the weitghts on the first and last 

poin is ¾, while the weight of the remaining points alternates between 4/3 and 2/3. 
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Appendix I Field mixing fraction benchmarks in RuSseL1D 

Figure I.1a and c presents the number of steps to achieve field convergence as a function of the 

field mixing fraction (fmix). The number of steps for convergence is inversely proportional to fmix. 

Figure I.1b and d depict the optimum values of amix as a function of the molar mass of the 

grafted chains. Slightly larger amix value than those depicted in Figure I.1 (right) can critically 

affect the stability of the iterative scheme. According to our tests, three different situations may 

arise for large amix values and in the context of the Sanchez-Lacombe equation of state: (i) the 

field equilibration procedure diverges, (ii) 
max

ifcw oscillates indefinitely around a value that is 

larger than the accepted tolerance, 
tol

ifcw , (see Figure I.2b) or (iii) the field converges to an 

unphysical solution (e.g., the matrix chains or part of them become extinct, as shown in Figure 

I.2c). 

 

Figure I.1 (a, c) Number of steps to achieve field convergence (
max

ifcw ≤ 10
–5 

kBT) for various chain molecular 

weights. (b, d) Optimal field mixing fraction, amix, versus chain molar mass, Mg. In (a,b), the Sanchez-Lacombe 

EoS was used in conjunction with the square gradient theory term, while in (c,d) the Helfand free energy density 

was used. In all cases, the molecular weight of matrix chains is equal to that of grafted chains, Mg = Mm. The radius 

of the particle is equal to RS = 8 nm and the grafting density is equal to ζg = 0.8 nm
-2

. 
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Figure I.2 Reduced radial density profiles for a system with chain molecular weight Mg = Mm = 5 kg/mol, grafting 

density ζg = 0.8 nm
-2

 and particle radius RS = 8 nm. The field mixing fraction, amix, for each case was set to (a) 2∙10
-

3
, (b) 2.5∙10

-3
 and (c) 5∙10

-3
; the corresponding maximum field errors are 

max

ifc
w = 10

-6
, 0.42 and 0.6 kBT. 
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Appendix J Instructions for compiling RuSseL3D and its dependencies 

GCC-5.1.0 

Before performing the steps shown below, it is highly recommended to 

execute the following command: 

$unset LIBRARY_PATH CPATH C_INCLUDE_PATH PKG_CONFIG_PATH 

CPLUS_INCLUDE_PATH INCLUDE LD_LIBRARY_PATH 

After downloading gcc-5.1.0.tar.gz from https://ftp.gnu.org/gnu/gcc/, 

you can follow the instructions presented below: 

 $tar xzf gcc-5.1.0.tar.gz 

 $cd gcc-5.1.0 

 $./contrib/download_prerequisites 

 $cd ../ 

 $mkdir objdir 

 $cd objdir 

 $pwd/../gcc-5.1.0/configure –-prefix=$HOME/GCC-5.1.0 –-disable-

multilib 

 $make –j 6 

 $make install –j 6 

 Go to home (~) directory and open the .bashrc (hidden) file: 

$vi .bashrc 

and add the following snippets: 

alias gfortran=/pathToGCC/bin/gfortran 

alias gcc=/pathToGCC/bin/gcc 

alias g++=/pathToGCC/bin/g++ 

export LD_LIBRARY_PATH=/pathToGCC/lib64 

In order for the changes of the .bashrc file to be activated, you 

must issue the following command (obviously while in the home 

directory): 

$source .bashrc 

OPENMPI-4.0.5 

We need to connect openmpi wrapper compilers with the gcc compilers 

that we have already installed. Before doing so, the openmpi requires 

for some reason that all *.la static libraries are removed from 

gcc/lib directory (at least that was the case when I tried to install 

it myself).  

$cd pathToGCC/lib 

$rm *.la 

Be careful not to remove the *.a files as well! Otherwise the gcc 

compilers must be recompiled to retrieve those static libraries. 

Download openmpi-5.2.1.tar.gz using the link https://www.open-

mpi.org/software/ompi/v4.0/ and then issue the following: 

 $tar xzf openmpi-4.0.5.tar.gz 

 $./configure –prefix=pathToOpenmpi/openmpi --disable-mca-dso 

CC=pathToGCC/bin/gcc CXX=pathToGCC/bin/g++ FC=pathToGCC 

/bin/gfortran 

 $make –j 6 all install 
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 Go to home (~) directory and open the .bashrc (hidden) file: 

$vi .bashrc 

and add the following snippets: 

export LD_LIBRARY_PATH=/pathToOpenmpi/lib 

export OPAL_PREFIX=/pathToOpenmpi 

alias mpicc=/pathToOpenmpi/bin/mpicc 

alias mpifort=/pathToOpenmpi/bin/mpifort 

alias mpirun=/pathToOpenmpi/bin/mpirun –mca btl vader,self 

In order for the changes of the .bashrc file to be activated, you 

must issue the following command (obviously while in the home 

directory ): 

$source .bashrc 

 When running the application with mpirun, you might deal with a 

message saying that the library libmpi.so.1 was not found or does 

not exist. You can bypass this problem by performing the following: 

o $cd pathToOpenmpi/lib 

o $ln –s libmpi.so limpi.so.1 

Most likely the application will run without issues this time. 

MAKE SURE THAT OPENMPI HAS BEEN COMPILED WITH THE NON-DEFAULT GNU 

COMPILER! 

OPENBLAS-0.3.7 

Download openblas-0.3.7.tar.gz from https://www.openblas.net/ and then 

issue the following: 

 $tar xzf openblas-0.3.7.tar.gz 

 $make –j 6 FC=/pathToGCC/bin/gfortran CC=/pathToGCC/bin/gcc 

PREFIX=/pathToInstall 

 $make –j 6 FC=/pathToGCC/bin/gfortran CC=/pathToGCC/bin/gcc 

PREFIX=/pathToInstall install 

 Go to home (~) directory and open the .bashrc (hidden) file: 

$vi .bashrc 

and add the following snippets: 

export LD_LIBRARY_PATH=/pathToOpenblas/lib 

MAKE SURE THAT OPENBLAS HAS BEEN COMPILED WITH THE NON-DEFAULT GNU 

COMPILER! 

PARMETIS-4.0.2 

Download parmetis-4.0.2.tar.gz using the link 

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/download and then 

issue the following: 

 $tar xzf parmetis-4.0.2.tar.gz 

 $mkdir parmetis 

 $mkdir metis  

 $cd parmetis-4.0.2/ 

 $make –j 6 config cc=/pathToOpenmpi/bin/mpicc 

cxx=/pathToOpenmpi/bin/mpicxx prefix=~/pathToParmetis/parmetis 

shared=1 

 $make –j 6 install 

 $cd ../parmetis-4.0.2/metis 
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 $make –j 6 config cc=/pathToOpenmpi/bin/mpicc 

cxx=/pathToOpenmpi/bin/mpicxx prefix=~/pathToMetis/metis shared=1 

 $make –j 6 install 

 $cp metis/include/metis.h parmetis/include 

 $vi parmetis/include/parmetis.h 

replace: #include <metis.h> with: #include “metis.h” 

replace: #include <mpi.h> with: #include 

/pathToOpenmpi/include/mpi.h 

 Go to home (~) directory and open the .bashrc (hidden) file: 

$vi .bashrc 

and append the following library paths in LD_LIBRARY_PATH variable: 

export LD_LIBRARY_PATH=…:/pathToParmetis/lib 

export LD_LIBRARY_PATH=…:/pathToMetis/lib 

In order for the changes of the .bashrc file to be activated, you 

must issue the following command (obviously while in the home 

directory): 

$source .bashrc 

 Create a file named test.cpp in the pathToParmetis directory: 

$vi test.cpp 

 And copy-paste the following code snippet: 

   ------------------------------------------ 

#include <iostream> 

#include “metis/include/metis.h” 

#include “parmetis/include/parmetis.h” 

 

int main(){ 

    std::cout << “Test!” << std::endl; 

    return 0; 

} 

   ------------------------------------------ 

 $mpic++ test.cpp 

 $mpirun a.out 

If you get “Test!” on your screen, then everything is ok! 

(probably) 

MAKE SURE THAT PARMETIS HAS BEEN COMPILED WITH THE NON-DEFAULT MPI 

COMPILER! 

LAPACK-3.9.0 

Download lapack-3.9.0.tar.gz from http://www.netlib.org/lapack/ and 

then issue the following: 

 $tar xzf lapack-3.9.0.tar.gz 

 $cp make.inc.example make.inc 

 $vi make.inc 

Set gcc and gfortran compiler paths. 

 In the end of the file, link with openblas. 

 make –j 6 

FOR THE SERIAL MUMPS COMPILATION, LAPACK DOES NOT NEED TO BE INSTALLED 

BECAUSE OPENBLAS CONTAINS ITS OWN SERIAL LAPACK LIBRARY. 
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SCALAPACK-2.0.2 

Download scalapack-2.0.2.tar.gz from http://www.netlib.org/scalapack/ 

and then issue the following: 

 $tar xzf scalapack-2.0.2.tar.gz 

 $cp SLmake.inc.example SLmake.inc 

 $vi SL.make.inc 

Set FCFLAGS, FFFLAGS compiler/cpu optimization variables: 

 FC=/pathToOpenmpi/bin/mpifort 

 CC=/pathToOpenmpi/bin/mpicc 

  FCFLAGS=-O3 –msse2 

  CCFLAGS=-O3 –msse2 

           BLASLIB=-L/pathToOpenblas –lopenblas 

  LAPACKLIB=-L/pathToOpenblas –lopenblas 

  (openblas library contains both lapack and blas) 

 make –j 6 

 Go to home (~) directory and open the .bashrc (hidden) file: 

$vi .bashrc 

and add the following snippets: 

export LD_LIBRARY_PATH=/pathToScalapack 

 

MAKE SURE THAT SCALAPACK HAS BEEN COMPILED WITH THE NON-DEFAULT MPI 

COMPILER! 

MUMPS-5.2.1 

Download mumps-5.2.1.tar.gz using the link 

http://mumps.enseeiht.fr/index.php?page=dwnld (you will actually have 

to send a request and then receive the source code via email) and then 

issue the following: 

 $tar xzf mumps-5.2.1.tar.gz 

 $vi pathToMumps/Makefile.inc 

 If the serial version of mumps is to be compiled: 

 CC=pathToGCC/bin/gcc 

 FC=pathToGCC/bin/gfortran 

 FL=pathToGCC/bin/gfortran 

LAPACK=-L/pathToScalapack/ -llapack 

 

 If the parallel version of mumps is to be compiled: 

 CC=pathToOpenmpi/bin/mpicc 

 FC=pathToOpenmpi/bin/mpifort 

 FL=pathToOpenmpi/bin/mpifort 

LAPACK=-L/pathToScalapack/ -lscalapack 

 SCALAP=-L/pathToScalapack/ -lscalapack 

 

 OPTF=-O3 –msse2 (or fma, avx: depends on compiler and cpu) 

 OPTL=-O3 –msse2 (or fma, avx: depends on compiler and cpu) 

 OPTC=-O3 –msse2 (or fma, avx: depends on compiler and cpu) 

 $make –j 6
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