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PREFACE

Enrolling for a PhD studentship is one of the most important decisions that one has to
make in one’s life. This holds no matter whether one wishes to follow an academic path or a
career in industry. When | came back to Greece from Belgium, after an unsuccessful pursuit of a
research project that would have demanded an investment of time, money and mental stamina on
my part for a period of at least 4 years, | was at a crossroads of my life on both professional and
personal levels. | was determined to do a PhD, but | did not have any clue about who/what
would be a suitable advisor, research group, or project for me. Beyond anything else, | wanted to
be sure that | would spend the following years of my life learning a lot of new things that would
enrich my arsenal of knowledge for my subsequent entry to the job market. In other words, I
wanted to ensure my proper training as a future researcher. All of a sudden, | came to realize that
maybe the best option would be to address one of the Professors who taught me in my
undergraduate studies and inspired me with their spirit, knowledge and experience in the first
place. After some thought, I sent an e-mail to Prof. Theodorou and expressed my intention to
become a member of his group and undertake my PhD studies under his mentorship. This email
IS probably the most important message | have sent up to now. | had first met Prof. Theodorou
in the first year of my undergraduate studies, where | was impressed by his professionalism, way
of thinking, teaching and interacting with the class. What impressed me the most, however, was
his kindness and his willingness to help the students when they had a difficult time with his
assigments. A few years later, he offered me the opportunity to become a member of his group
and honored me with an extremely challenging subject. He supported me with patience and
persistence from my first to my very last day of my PhD. He kept believing in me at times when
| did not believe in my own self and | felt sure that | would not make it eventually. For all these
reasons, | want to thank him and | very much hope that my PhD will only be the start of our
collaboration.
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Next, | want to thank Dr. Aristotelis Sgouros with whom | have spent countless hours of
research, coding, and learning. Without him, this PhD would be poorer. It is not only the amount
of time that he invested for the projects of the PhD, but also the knowledge, way of thinking and
problem-solving skills that he transferred to me. | want to thank him for being my friend
together with loanna, and for making this journey so much more fun than it would have been if |
were just working alone. They made me feel blessed, because the last five years of my life were
not just work, but also joy and beautiful moments that I will remember when I am old. In the
same spirit, | also want to thank Dr. Apostolos Lakkas, since it was his hard work, insight and
perseverance which constituted the basis upon which my research was built. He was the first one
who started hitting one “wall” after another in this difficult subject, before I was even ready to
start performing calculations. He was the one whom 1 first turned to when | was completely lost;
thanks to him, my introduction to the subject was smoother. Furthermore, | wish to thank the
senior members of the group, Dr. Stefanos Annogiannakis, Dr. Georgios Vogiatzis, Dr.
Grigorios Megariotis and Dr. Nikolaos Romanos for welcoming me in the COMSE family and
offering me a warm and pleasant work environment during these years.

| also wish to express my gratitude to the most important person in my life, my wife,
Catherine, who endured with patience and understanding my bad mood and who was always
there to listen, help and advise me. In her | have found the ideal partner, the one who will help
me evolve and prosper, congratulating me when | succeed, and aiding me to recover when
difficulties arise. It would be a serious omission on my part not to mention our beautiful dog
Sandy, which was constantly keeping me company all the days that | worked from home, sitting
beside me and falling asleep with the sound of the keyboard. Although I feel gratitude for the
home | returned to when getting back from work, | also feel sorry about a recent loss in my
family. In the middle of my PhD I lost my grandfather. After the loss of my father, he was the
man that | envisaged as my role model. | feel the need to thank both of them for all the lessons
they taught me and for the sacrifices they made. This PhD is a result of wise choises they made
many years ago. | will work to make them proud as if they were beside me in every step. Partly,
my thesis is dedicated to their memory.

This PhD would be completely unfeasible without financial support, given the amount of
time that | had to sacrifice so that | could learn, research, produce results, debug, start all over
from the beginning a handful of times, write productive code and scripts, and at the same time
write papers to output my research to the community. | want to express my deep gratitude to Dr.

Grigorios Megariotis for including me in the ELIDEK project that he prepared and supervised
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with Prof. Theodorou. | want to thank the Special Account of Research Funding of the National
Technical University of Athens for honoring me with a personal fellowship. Special thanks to
the National Supercomputing Infrastructure, ARIS, represented by Dr. Dimitrios Dellis, for the
computational resources the he granted me for developing, testing and producing results.

Closing this prologue, I would like to give my own humble advise to any PhD student (or
not) who happens to read the present thesis. When doing a PhD, one has to rely mostly on his
patience, endurance and will to learn from failure. If someone asked me what is the most
important lesson that | learned during my PhD, that would be the way to manage failure and turn
it into an advantage. What is success anyway? Would we be successful if anything we tried
happened to be correct in the first place, be it an experiment, a paper, a research proposal, a
computation, a code, you name it.. No. My definition of success is the ability of never giving up.
| like to envision success as an ascending ladder whose steps are situations of “failure”; without
the steps, you stay at the same level forever: “The only difference between the master and the

student is that the master has failed more times than the student has even tried.”
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SUMMARY

Polymer Self-Consistent Field Theory (SCFT) is an established theoretical tool, broadly used by
modelers in academic and industrial environments to obtain quantitative predictions on the
equilibrium behavior of inhomogeneous polymer systems such as polymer blends, copolymer
melts, gas-polymer and solid/polymer interfaces. This fact has made SCFT one of the most
commonly invoked frameworks when someone needs to address polymer systems at length
scales inaccessible to particle-based methodologies. Furthermore, the growing interest in the
design of nanocomposite materials involving interfaces of polymer melts with inorganic fillers
and the need for fast calculations to predict or even manipulate the nanoscale self-assembly
properties of composite materials have also been driving forces for the development of rigorous
theoretical models to investigate how these materials will respond under various conditions.

When conducting SCFT calculations, the primary task is to solve the Edwards diffusion
equation. This is a “reaction and diffusion” partial differential equation (PDE) with contour
length playing the role of time, whose solution is a restricted partition function, i.e., a quantity
proportional to the probability density that a segment which finds itself at a specific contour
length from the start of a chain, will occupy a certain position in space. In the context of this
PhD, the numerical solution of the PDE is performed via a custom-made in-house code named
RuSseL. The one-dimensional version of the code applies a Finite-Differences (FD) scheme,
while the three-dimensional version is based on the Finite Element Method (FEM) and can be
applied in systems of arbitrary geometry.

The first system we addressed was a single polystyrene-grafted silica nanoparticle embedded
in polystyrene melt at infinite dilution. The density profiles of matrix and grafted chains, along
with additional structural characteristics such as the chain shape, profiles of middle/end
segments and adsorbed/free segments were derived for various particle radii, lengths of grafted
chains and grafting densities. We have estimated the thickness of the brush across the whole

range of parameters and compared our results with experimental findings and scaling laws
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Summary

reported in the literature. The free energy of the system was also derived for the same
parameters. Having studied the behavior of the grafted particle inside homopolymer melts, we
went a step further and investigated the structural and thermodynamic properties of a system
comprising the same particle in contact with vacuum. The difference in the free energy of the
two systems (in presence and absence of polymer melt) allowed us to estimate the solvation
Gibbs free energy as a function of the grafting density, intensity of solid/polymer interactions,
particle size, and lengths of grafted and matrix chains.

Next, we implemented our SCFT model in a system of two opposing polystyrene-grafted
silica plates to derive the potential of mean force (PMF); i.e., the free energy of the system as a
function of the plate-to-plate distance. This system is mathematically equivalent to one
containing two grafted particles of extremely large particle radius. The PMF was derived as a
function of the length of grafted chains, grafting density and intensity of solid/polymer
interactions. In addition, we allowed the two plates to be grafted with different numbers and/or
lengths of grafted chains, in order to investigate the impact of grafting asymmetries on the PMF
and therefore stability of the nanocomposite system. Such asymmetries are expected to occur
when these systems are prepared experimentally. In all cases, we also calculated the PMF
between the two brushes in the absence of melt chains by applying a canonical ensemble
formulation.

All these calculations can be also performed in three-dimensions using the FEM version of
RuSseL. This 3D implementation avoids any smearing of the grafting points, normal or parallel
to the solid surfaces. We undertook detailed benchmarks on a system of a single nanoparticle
immersed in polymer melt and performed a direct comparison between 1D- and 3D-SCFT
calculations over a broad range parameters in order to assess the validity of the smearing
approximation in terms of both chain structure and system thermodynamics.

Moreover, in 3D we are able to impose a variety of irregular grafting distributions on the
solid surfaces. We have shown that different grafting distributions result in variations in brush
thickness and free energy relative to the case of equidistant grafting, which is the most usual
assumption when performing such calculations. Adding the grafting distributions to the degrees
of freedom involved in the computational design of polymer-grafted nanoparticle systems takes
us closer to experimental practice and to nanocomposites with tailor-made self-assembly
properties. In this spirit, we have also determined the PMF between two spherical polystyrene-

grafted silica nanoparticles in polystyrene matrix for various grafting distributions.

XV



Summary

Finally, in order to have the ability to run 3D-SCFT calculations on multi-nanoparticle
systems in presence or absence of polymer matrix, we have added in RuSseL the functionality of
imposing periodic boundary conditions on the box edges, when the solution of the Edwards
diffusion equation takes place. The user can now insert any number of grafted nanoparticles
inside the periodic box, arranged in a crystalline or amorphous structure, and run SCFT

calculations, as one would do in a particle-based simulation.
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IIEPIAHYH

H Ocwpio Avto-Zovermods Ilediov €xer edpadmbel mAéov g éva gupémg dadedoUEVO
VTOAOYIOTIKO €PYOAEIO YL TNV TOGOTIKN TPOPAEYN 1TNG GULUTEPLPOPAS OVOLOLOYEVDV
TOAVUEPIKDOV GLGTNUATOV, OTAV aLTd TEAOVV VIO Beppodvvaukn soppomic. g €K TOVTOV
epapuoletar OAOEVOL KOU TEPIGGOTEPO YO TNV TEPLYPAPY) VOVOGLVOET®V VAIK®OV, T.Y.,
GLGTNLLOTO OTOL OVOPYOVE GOUATIONW OUCTEIPOVTOL GE TOAVUEPIKEG UNTPES TPOKELEVOL VL
BeATiwBovV 01 1010TNTEG TOL VAIKOV.

To povtélo mov ypnoomolodpe démetan amd T uepikn dapopikn e&icworn Edwards, g
omoiag M Avon glvar 1 decpevpévn mokvotta Thovotntog vo Ppebel Eva cuykekpévo Tunquo
TOAVUEPIKNG 0ALGId0G o€ €va onpeio pésa oto ywpio enilvong. [a v enilvon g e€icwong
avtng, kabmg Kot v OAN €papuoyn Tov BewpnTikod HOG HOVTEAOL, ovomTTOYONKE £vog
TPOTOTLTOG KMOKOG, 0 0moiog Pépel TV ovopacio RuSsel. O kmdikog avtdg emkareitol T
1EB0d0 TV TETEPATUEVWY dlapopdy Yo TV midvon g e&iomong Edwards oe pia didotaon,
Kot avtiotoryo TNV HEB0SO TOV TETEPATUEV@Y aTOLYEIY Y10 ETIAVGT TG GE TPOLICTATA YWPTa
avBaipetng yeopetpiog.

Eivor apketd owadedopévn mpokTikn 1 yNUIKN TPOGOEST TOALUEPIKAOV OALGIO®V GTNV
EMPAVELD, AVOPYOVOV VOVOSOUATIOIMV, TPOKEWEVOD Vo emttevyBel opodpopen dtosmopd Tovg
EVTOG TOL TOAVLUEPIKOV TNYUATOS. To mMpdTo cLoTNUA OV HeEAETNONKE oTO TAoiclo TNG
Tapovoas OTPPnNg MTov avtd evog vOvooopatidiov mupttiog epPonTicpuévov 6e pNTPO
TOAVGTUPEVIOV KOl  QEPOVTIOS OTNV  EMPAVEIL TOL YNUIKE TPOCOEOEUEVEC  AAVGIOES
noAvotupeviov. Toco ot dopikég 660 kot ot OepLOdLVOUIKES 1OLOTNTEC TOL GULGTHLOTOG
peAetOnkav oe éva gupld QACHO TIHAOV OKTIVOG COUOTIOION, TLUKVOTNTOG KOl UAKOLG
TPOCOESEUEVOV OAVGIO®V.

Ev ocvuveyela, éyovtoc avoldoel TV ouumeploopd evOg GOUOTIOION €VTOG TOALUEPIKOD
TIYLOTOG, TPOYWPNOUUE TN SEPEHVNON TOV SOMK®OV 1O10THTOV TOV YNIKA TPOGIESEUEVDV

aAvcidwv, 6tav To cmpatiow sivar exktedeyévo 6to kevd. To chotnua owtd propel va Bempndel
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16000VOUO EVOG GUGTILLOTOG OTTOV 01 TPOGOEOEUEVES OAVGIdES BpioKovToL GE 1GOPPOTIN LE EVOV
Kaxo 01040tH. AvamtHoeovTag Evay avoTtnpo Ladnuatikd eopuoicud, o onoiog Pacictnke 6t
Oewpio mepl dSwwAvtwong tov Ben-Naim, vroloyicape v eledbepn evépyeia drodvtwong evog
Vovoo®poTdion mopttiag, 6tav ovTtd HETOEEPETOL OO TO KEVO O €vO. TOAVUEPIKO TNHYUO.
AlmoTOoOUE OTL O1 YNUIKE TPOCIEIEUEVEG aAVGIOEC TaloVV CNUAVTIKO pOAO GTOV KOOOPIGULO
™G eAedlepns evépyetog olaldtwong, 1060 AOY® eVOOATIKOV OGO KOl AOY® EVIPOMIKOV
TOPAYOVIOV.

Kotoémv, n pebodoroyia pog e@aprocsTnKe 6€ cLGTNIO SVO NUATEP®Y ETMTESOV TAUKOV
TopLtiag, avAaLeEcso oTic omoieg Ppioketorl gite mMOALUEPIKO THYUO TOAVGTVPEVIOL gite KEVO. Ot
OO0 TAGKES PEPOVY YMUKG TPOGOEOEUEVES AAVGIOES TOAVGTVUPEVIOD, EV(M EMTPEMOVUE OTIG
TAGKES VO QEPOLV  JOPOPETIKO apBrd aALGIdwV 1/kol oAVGIdeS dOPOPETIKOD  UNKOLG.
Meletmdvtag EKTEVAOG TN BEPHOSVVOIKT] TOV GLGTAHKATOG VIO £vo TAN00G GYEJACTIKAOV Badudv
elevBepiag, mpoywpnoape otV e£ay®YN €VOG SoyPAULATOS PACEMY TO OTOI0 VITOOEIKVVEL TIG
TEPLOYES 0TABEPOTNTAG TOV GLOTNLATOG (TOo cVoTNUA Bewpeitar 6Tabdepd dTaV 01 dVO TAAKES dEV
UTOpOVV Vo TANGIAGOLV 1 pia TV GAAN TEPLGGATEPO Ao pio EAGYIOTN 0TOGTOON).

OLot o1 mpoavaeepBEVTEC VTOAOYIGHOL HTOPOVV TAEOV VO TPAYLOTOTOO0VY pE peyahdtepn
AemTopépElD OE TPELS SLOOTAGELS, Omov a&tomoteital 1 pEB0OOC TOV mETEPATUEVWY OTOLYEIWV.
[Ipaypoatomomooape por evoeheyn cvykpion petad Tov HOVOSIIGTUTOV KOl TOV TPLOEGTOTOL
HOVTELOL ®G TTPOG TNV TOGOTIKN TPOPAEYN TOV SOMK®V Kol BEPULOSVVAUIKAOV 1010THNTOV EVOG
COUATIOON TUPITIOG HE YMNUIKA TPOCOEIEUEVES OAVGTOEG TOAVGTLPEVIOL TTOV PBploKeTal EVTOG
TOAVPEPIKNG pTpag ToAvatupeviov. Emmpochétme, ekpetaiievdpevol Tic duvatdnes tov
TPIGOLAGTATOV LOVTELOV, EPEVVIIGALLE TOV TPOTO LE TOV 0Tolo enmpedleTar 1 eAevBepn evépyela
TOV GULGTNUATOS KOl 1 SOUN T®V TPOGOEOEUEVOV OAVGIOMYV, OTAV OVTEG Elval PN OROOHOPPOL
KOTOVEUNUEVEG OTNV EMPAVEID. TOV copatdiov. EE dilov, avoamtdéope tn ovvatdOTnT
emilvong g Oeswplog avto-cvvemovg mediov o€ TpElg Ownotdoelg péca oe  ympio
xopokmnpiopeva ond meplodikég oplakés ovvOnkes. H duvatdtmro ot emtpénel Tov
VTOAOYIGUO TNG OOUNG Kol NG €AeOOepNC eVEPYELNG GUOTNUATOV TOAAMV VAVOGHOUOTIOI®V
OlEoTAPUEVOV HECOH, OE GLVEXEIS TOAVUEPIKES PAGEIS OE KPUOTOAMKEG 1| AUOPPES OUTAEELC.
Avolyet, €101, T0 dpOLO YL TOV TPOGOOPIGHO TG Beppodvvapkd svotabéotepng didtalng y
OEOOUEVES LOPLOKEG TOPAUETPOVS CXEOOGHOL (YNUIKN cvotaot, péyebog Kot kKAdopo Oykov
VOVOGOUOTIOI®V, TUKVOTNTA TPOGOESTG AAVGIO®MY GTNV EMPAVELL TOVE, YNUIKY] GVOTOCT Kol

poprokd Bapn mpocdedepévav Kot eEAeH0Ep®V aAVGIO®V).
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Hepiinyn

Téhog, mapovcldlovpe AmMOTEAEGLATO TTOV OPOPOVV GTO OVVOUIKO UECHS OVVOUEDS TOV
OVOTTTUCCETOL PETAED OVO COULPIKMV VOVOSMUATIOIWV TUPLTIOG, To OTOi0l PEPOVV TPOGOEUEVEG
aAvcideg ToAvoTupeviov kot piokovial o€ unTpa morlvatvpeviov. To dvvouiko péons ovviuews
1oovTo e TN HETABOAN NG eAevbepng EVEPYELNG TOL GLGTHUATOG T®V OVO VOVOCOUOTIOIWV
kaBmg petafdrieton n peta&d tovg omdotact. To dvvoukd avTd VTOAOYIGTNKE YO TPELS
SUPOPETIKOVG AOYOVG UNKDV EAEHOEP®V/TPOGOIEOEUEVOV OAVGIOMV KO Y10l TPELG OLUPOPETIKOVGS
OYETIKOVG TPOGOVOTOMGHOVG TOV COUATIOMY, 0l 0moiot aAAALOVY e TNV KATOVOUN HE TNV

omoio EUGLTEVOVTOL ot aAvGideg oTIg EMUPAVELES TOVC.

XiX



LIST OF FIGURES

Figure 2.1 Comparison of numerical and analytical solutions of the Edwards diffusion equation against
Brownian dynamics SIMUIALION. ..........cooiiiiiiiiiice s 10

Figure 2.2 Spatial configuration of the chain propagator, g, evaluated at contour N = 10 for different

AV LD LT oL i LR ] (o TR 12
Figure 2.3 Spatial integral, Q, of chain propagator, g, for different values of the field, W'..................... 12
Figure 2.4 Free energy density and field as functions of segment density. .........c.ccocvvreneneneieisieinnens 16
Figure 2.5 Effect of compressibility on density profiles and adhesion tension. .............cccccoevereiciennnnns 18

Figure 2.6 Interaction energy us(h) between a PS monomer unit and a planar SiO, substrate as calculated

from the Hamaker potential at T =500 K. ......cccoiiiiiiiiniiiiie e 20
Figure 2.7 Density profiles of polyethylene in contact with solid interfaces of different affinity............. 22
Figure 2.8 A point (P) at distance r = |re—ro| from a sphere of radius Rs centered at O..........cccccvevinnnne 24
Figure 2.9 Evaluations of uesy using eq 2.34 for Cgy = — 37.5-10° J/m°, 65w = 1.28 nm, and T = 500 K.26
Figure 2.10 Demonstration of tabulated solid/polymer potentials and resulting density profiles. ............ 27
Figure 3.1 RuSseL input file: specifying polymer parameters. The..........cccoviiiiininineneneeees 45
Figure 3.2 RuSseL input file: specifying solid parameters. ........ccccoveiiiiieieiecie e 46
Figure 3.3 RuSseL input file: specifying file convergence parameters..........ccocceveeveeveieeviese s eceseene e 47
Figure 3.4 Flow diagram Of RUSSEL3D. ......ccviiiiieieiieee ettt ettt sttt s te et sre et sta e enas 49
Figure 3.5 Density profiles of matrix and grafted chains in a polyethylene film. ..........c.cccoooiiiinen. 50
Figure 3.6 Density profiles of matrix and grafted chains in various kinds of planar interfaces. ............... 52
Figure 3.7 Density profiles of matrix and grafted chains in various kinds of spherical interfaces............ 53

Figure 3.8 Total and partial reduced segment density profile of a perfectly wetted SiO,/PS GMV system.

....................................................................................................................................................... 53
Figure 3.9 End/middle density profiles of grafted and matrix chains in a perfectly wetted SiO,/PS

1] 7T = TSSOSO 55
Figure 3.10 Contour plots of the reduced density of segments belonging to (a) grafted and (b) matrix

(010 10U 57

XX



List of Figures

Figure 3.11 Schematic representation of the adsorbed states of a chain. .............ccoccevviiviiiiiii e, 59
Figure 3.12 Density profiles of chain segments belonging to different adsorbed states. .............ccccveueeee. 60
Figure 3.13 Chains/area profile in a perfectly wetted GMV SiOy/PS SYSteM. .......cocevvvvevieiiniicieseeiee 63
Figure 3.14. Contour discretization benchmarks: uniform vs nonuniform discretization. ........................ 65

Figure 3.15 Hybrid chain contour discretization scheme as implemented in the three-dimensional version

OF RUSSEL. ...ttt bbbt bbb e 67
Figure 3.16 Schematic illustration of a grafted nanoparticle inside polymer melt. ..............ccccooeieiins 69
Figure 3.17 Spatial discretization benchmarks: free energy terms as functions of element size............... 74
Figure 3.18 Spatial discretization benchmarks: total free energy as a function of element size. .............. 74

Figure 3.19 Contour discretization benchmarks: total free energy as a function of the contour step........ 75
Figure 3.20 Field mixing/update benchmarks performed in the three dimensional verison of RuSseL. ...76
Figure 3.21 Variation of free energy with increasing distance of the grafting point from the Dirichlet

1T L PSSRSO 77
Figure 3.22 RuSseL parallelization benchmark with OpenMP and MPI protocol.............ccccovveiiiiinnnns 79
Figure 3.23 Demonstration of irregular grafting distributions on a spherical surface. ..........cccccocvvvenenne. 82
Figure 3.24 lllustration of periodic boundary conditions in two dimensions. ...........c.ccceevvieiieeveseecnee. 84
Figure 3.25 Periodic systems of multiple grafted nanoparticles embedded in polystyrene matrix. .......... 85
Figure 3.26 A symmetric triangular mesh on the opposite faces of a cubic domain. ............cc.ccoeeeevene. 86
Figure 3.27 Neumann vs periodic boundary CONGItIONS. .........ccccvvveiiiiiiiieicse e 88
Figure 3.28 Demonstration of different nanoparticle configurations. ...........cccccoceeveviiie s, 89
Figure 3.29 3D density profile of matrix chains for different particle configurations..............c.ccccoevennne. 90
Figure 3.30 3D density profile of grafted chains for different particle configurations.............c.cccccevenie. 90
Figure 3.31 Three-dimensional density profile of grafted chain segments in contact with vacuum or melt.
....................................................................................................................................................... 92
Figure 3.32 One-dimensional density profile of grafted chain segments in contact with vacuum or melt.
....................................................................................................................................................... 92
Figure 3.33 Free energy, in mJ/m?, of a silica NP grafted with one polystyrene chain..............c.cco........ 94
Figure 3.34 Three-dimensional density profiles of polystyrene chains grafted on the surfaces of silica
particles arranged in a cubic lattice and exposed t0 VACUUM. ...........cccvveieieeieseeiese e 96
Figure 4.1 Demonstration of the kinds of interfacial systems that are addressed in this chapter. ........... 100
Figure 4.2 Density profiles for different particle radii and solid wetting degree............ccocvevvrerennnnn 101
Figure 4.3 Adhesion tension as function of the wetting degree and particle radius............c.cccceeerennnnne. 104
Figure 4.4 Macroscopic work functions with varying wetting degree and particle radius. .................... 106
Figure 4.5 Comparison of SCFT with FOMC in deriving density profiles of grafted chains. ................ 109

Figure 4.6 Density profiles as functions of molecular weight, grafting density and particle radius. ...... 110

Figure 4.7 Total density profile as function of molecular weight, grafting density and particle radius..112

XXi



Figure 4.8 Adsorbed and free segment density profiles as functions of molecular weight, grafting density
T aLo T (o] I - Vo [T USSR 114

Figure 4.9 Chains per area profiles for various molecular weights, grafting densities and particle radii.

..................................................................................................................................................... 116
Figure 4.10 Chain-end density profiles for different molecular weights, grafting densities and particle

Lo | TSROSO PP P PTPPPPRPRPIN 118
Figure 4.11 Daoud and Cotton scaling law for brush thiCKness. ...........ccccoereiiiiiiiiineee 121
Figure 4.12 Brush thickness scaling law for different particle radii...........cccooeieiiiiiinciccce 122
Figure 4.13 Optimized n exponents of the power-law in eq 4.11 for set grafing density, a4, and NP

=10 LT T = R 123
Figure 4.14 Optimized scaling exponents for the prediction of brush thickness scaling...........ccccco..... 124

Figure 4.15 Total free energy and individual terms as functions of molecular weight, grafting density and

PANTICIE TATTUS. ...t b ettt ettt e e e ane s 126
Figure 4.16 Conformational entropy of grafted chains for different molecular weight, grafting density

AN PAFTICIE TAGIUS. .. .ecvveiiececcic sttt sb e et et e s ae e b e s beesbesbeeteesbesbeeseesteeneeneas 129
Figure 4.17 Density profiles of grafted chains in contact with melt and vacuum. .........c..cccccceeeviveiennne 135
Figure 4.18 Density profiles of chains exposed to vacuum and grafted on spherical particles. .............. 137
Figure 4.19 Maximum density of grafted chains exposed to vacuum for various wetting degrees......... 139
Figure 4.20 Solvation free energy in a planar SiO/PS SYStEM. ......ccceiviiieiieiieie e 141
Figure 4.21 Solvation free energy of spherical SiO, nanoparticles of various radii..............cccccevvenennens 143
Figure 4.22 Solvation free energy terms as functions of the amount of grafted material. ...................... 146
Figure 4.23 Solvation free energy of a SiO, particle for different matrix/grafted length ratios. ............. 149

Figure 4.24 Schematic illustration of regimes I-1V, in terms of the amount of grafted material oy, and
CRAIN CPOWOING. .ttt bbbt b bbb et ene s 150

Figure 5.1 Meshing illustration of a NP with Rs = 4 nm inside a box with dimensions 45 x 45 x 45 nm°,

..................................................................................................................................................... 162
Figure 5.2 Density profiles of grafted chains obtained with 1D- and 3D- SCFT calculations................ 165
Figure 5.3 Total segment density profiles obtained with 1D- and 3D- SCFT calculations..................... 166
Figure 5.4 Contour plot of the density and self-consistent field near a spherical nanoparticle. .............. 167
Figure 5.5 Comparison of 1D- (transparent markers) and 3D-SCFT (solid markers) calculations in

predicting the brush thiCKNESS. ..o 168
Figure 5.6 Comparison of 1D- (dotted lines) and 3D-SCFT (solid lines) calculations in predicting the

LE0] r= LI =TT =T 1= o | PSR PSRR 169
Figure 5.7 3D density profiles of chains equidistantly grafted on spherical NPs of various radii........... 171
Figure 5.8 3D density profiles of chains irregularly grafted on spherical NPs of various radii. ............. 173

podll



List of Figures

Figure 5.9 Assessement of smearing approximation when chains are irregularly grafted on a spherical

N P ettt R bR bR £ Rt R Rt R e R e R e R Rt e R bR bttt et s 175
Figure 5.10 3D density profiles of individual chains grafted on a spherical NP. ...........cccccoveviiiviiennns 176
Figure 5.11 Brush thickness and free energy evaluation for various grafting distributions. ................... 177

Figure 5.12 Free energy components in a system of polystyrene chains grafted according to various

distributions on the surface of a silica NP embedded in polystyrene melt. .............ccccooevveinnnn. 179
Figure 6.1 Demonstration of two opposing grafted SUITACES. ..........ccoveiereieieie e 184
Figure 6.2 Free energy of interfaces with different wetting degree..........cccoeveieiiiienneneseeeee 185
Figure 6.3 Wetting functions of SiliCa/PS INErTACES. ..........coviiiiiiiiiiieeee e 186
Figure 6.4 Reduced density profiles of polystyrene brushes exposed to polymer melt or vacuum......... 187
Figure 6.5 Thickness of polymer brushes exposed to polymer melt or vacuum. ...........cccceoeveieriennnnnn. 189
Figure 6.6 Thickness of brushes grafted on surfaces of different wetting degree. ..........c.ccoceveverennnnn. 191
Figure 6.7 Free energy of polymer brushes exposed to polymer melt or vaCuum...........c.ccccevevvervennnnn. 192

Figure 6.8 Potential of mean force, in mJ/m?, for the system of approaching bare silica surfaces in a melt
(1175 SRR PS 195

Figure 6.9 Potential of mean force, in mJ/m?, for the system of approaching bare silica surfaces (SMS)

STArting With Zero FIBld. .....ccve e s 196
Figure 6.10 Potential of mean force in a symmetric system of approaching grafted silica surfaces in

CONEACT WITH MEIT ...ttt 201
Figure 6.11 Reduced density distributions corresponding to the PMF®M® panels in Figure 6.10............ 201

Figure 6.12 Free energy partial contributions to the potential of mean force, in mJ/m?, of two
approaching symmetrically grafted surfaces in contact with melt. ...........c..ccooo v, 202
Figure 6.13 Potential of mean force betweem two approaching asymmetrically grafted silica surfaces in
CONEACE WITN MEIL. ..ttt sbe e et e sreeeenes 203
Figure 6.14 Potential of mean force between two approaching asymmetrically grafted silica surfaces in
CONEACT WITh MEIT (CASE 2). ... 204
Figure 6.15 Potential of mean force between two approaching asymmetrically grafted silica surfaces in
CONEACT WIth MEIT (CASE 3). ..veeiieiieee s 205
Figure 6.16 Potential of mean force between two approaching asymmetrically grafted silica surfaces in
CONEACT WITh MEIT (CASE 4). ... 207
Figure 6.17 Potential of mean force between two approaching grafted silica surfaces in melt for different
WETTING GBOIEES. ...ttt ettt b e bbbt s bbbttt b e bbb et enn e et 208

Figure 6.18 Potential of mean force between two opposing grafted surfaces exposed to vacuum (GVG).



Figure 6.20 Free energy partial contributions to the potential of mean force of two approaching grafted
SUITaces EXPOSEA t0 VACUUIM. ......oiuieiiiieiieiie et sie et te et sr e te et e s beeta e besreeseesbeeneestesraeneeneas 211

Figure 6.21 Well-depth of PMF®M® as a function of all design degrees of freedom of the interfacial
SYSEEMS OF TWO PIALES. ...evveiee et sttt sb e s be s e e stesreeseeneas 215

Figure 6.22 Meshing illustration of two NPs with Rs = 2 nm inside a box with dimensions 30 x 22 x 22

Figure 6.23 VMD representation of distributions of grafting points for PMF calculation between two
SPNEFICAI PAITICIES. ... 219
Figure 6.24 Three-dimensional density profiles of polystyrene chains grafted on the surfaces of two

o T NSRS 220
Figure 6.25 Potential of mean force between two silica NPs equidistantly grafted with polystyrene

(00T TSRS 222
Figure 6.26 Potential of mean force between two silica NPs non-equidistantly grafted with polystyrene

(00T TSRS 222
Figure 6.27 Hamaker interaction between two bare silica NPs with radius Rs =2 nm............c.cccccevennee 223

Figure 6.28 Potential of mean force between two grafted silica NPs embedded in polystyrene matrix. 225

XXiV



LIST OF TABLES

Table 2-1. Bulk densities and compressibilities from the SL EoS, and optimized compressibilities for the

HFED, HFED/SGT EOS. ..ottt sttt sttt sttt sa st a sttt ne s ne st e nnens 18
Table 2-2 Wetting degree of planar solid surfaces for length of matrix chains equal to N,, =768 at T =

500 K. oottt ettt bttt b b bt R bR et R e s e Re et e R et e Re et e Re et et e a et ete e ere et ere e ere e 31
Table 3-1 Reduced densities, partition functions, and constraints for evaluating each state and sub-state

regarding adsorbed and free Chain SEGMENTS..........ccccviiiiieiiiei s 61
Table 3-2. Scaling of Edwards solution time in a spatial mesh of 88529 nodes. ..........cc.ccoceveveieiiennnnnn 80
Table 3-3 Scaling of Edwards solution time in a spatial mesh of 249084 NOdes. .........cccccevvviveveieciiennns 80
Table 3-4 Free energy per nanoparticle surface in the bce and cubic nanoparticle configuration............. 91
Table 3-5 Free energy in mJ/m? of a silica NP grafted with one polystyrene chain. ...........ccccccoevueuenne.. 93

Table 3-6 Free energy in mJ/segment of a silica NP grafted with one polystyrene chain and exposed to
(722 L1 [ o PO TP TP U R PU T OPPPURRPRRURTPN 95
Table 3-7 Free energy in mJ/segment of a silica NP grafted with one polystyrene chain and embedded in
POIYSEYFENE MALIIX. ..vviitiiiie ettt be et et e s be e r e beeae e st e sbe e st e sbeeneesbesreebestaeneesras 95

Table 4-1 Explanation of symbols for the different interfacial systems and free energy contributions

eXamined iN thiS ChAPLE. ........iii e et re s 98
Table 4-2 Parameters of 1D-SCFT CalCUIALIONS. ......ccveviiiiieiie et nne s 99
Table 4-3 Fitting COETFICIENT TOr €0 4.27. .....o it 140
Table 5-1 Parameters of 3D-SCFT CalCUIALIONS. .......cvevviiiiie e 164
Table 6-1 Interfacial energies and wetting functions for Ny, = 384 in units of mI/m% .......c.cocvvevveviennn, 187
Table 6-2. Parameters for distributing grafting points on the surface of two spherical NPs. .................. 218

Table 6-3 Potential of mean force between silica NPs embedded in polystyrene matrix of length Ny, = 24

SKEIBLAL DONMS. ...ttt s e s st be e b e et e e ebeeeabeenbeesbeesbeesreesneennns 223
Table 6-4 Potential of mean force between silica NPs embedded in polystyrene matrix of length N, = 96
SKEIBTAL DONMS. ...t et s e sttt b e et e e st e e e rb e e be e sbeesbeesreesneennns 224

XXV



Table 6-5 Potential of mean force between silica NPs embedded in polystyrene matrix of length N, =
384 SKEIELAl DONGS. ......eeviiicieieeie bbb 224

XXVi



NOMENCLATURE

Symbols

Latin symbols

Abuik Free energy of a system of isolated end-pinned and unperturbed chains in
bulk polymer melt

bk Kuhn length, [nm]

Co Chain stiffness/characteristic ratio

d Standard deviation of Gaussian pulse, [nm]

D Great-circle distance (arc length) between two points on a spherical surface,
[nm]

f(p) Excess Helmholtz energy density, [mJ/m?]

fmix Field relaxation parameter/mixing fraction

h Segment-surface distance, [nm]

Nads Distance from solid surface where segments are considered to be adsorbed,
[nm]

hg,ig Distance of grafting point iy from the Dirichlet wall, [nm]

<hgz>1/2 Root mean square thickness of the polymer brush, [nm]

hhs Thickness of hard-sphere wall, [nm]

hw Thickness of fine-mesh region, [nm]

Nref g=0 Reference grafting point distance from the Dirichlet wall, [nm]

i The imaginary unit

Ig Grafted chain index
Ks Boltzmann constant, [J/K]
lcc carbon-carbon bond length, [nm]
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Nomenclature

Mmonomer

N
Na
Ng
Neh

ref

r]ch

Nm

Ng

Nm
Nsw

p

P(p)
Qg(r:N)
Uy,

qm(r’N)
Qg
Qm

Molar mass per skeletal carbon, [g/mol]
Variable spanning the contour of a polymer chain, [skeletal bonds]
Avogadro’s number, [mol ]

Number of chains grafted on solid surfaces, [chains]

Number of chains per area at a certain distance from a solid surface,
[chains/nm?]

Number of chains per area concerning reference chains, which obey the
Gaussian chain model and have infinite length, [chains/nm?]

Mean number of matrix chains in a certain region

Number of skeletal carbon-carbon bonds constituting a grafted chain
Number of skeletal carbon-carbon bonds constituting a matrix chain
Switching contour point for hybrid chain discretization

Grafting point coordinates on the surface of a nanoparticle

Insertion probability of candidate grafting point

Restricted partition function of a grafted chain

Propagator of grafted chain with index iq

Restricted partition function of a matrix chain

Partition function of grafted chains, [nm]

Partition function of matrix chains, [nm ]

Distance between segment and center of nanoparticle, [nm]
Position coordinates in the three-dimensional space
Grafting point coordinates

Unperturbed radius of gyration of grafted chains, [nm]
Unperturbed radius of gyration of matrix chains, [nm]

Spherical nanoparticle radius, [nm]

Periodic boundaries of the three dimensional domain

Dirichlet boundaries representing solid or gas surfaces
Nanoparticle surface area, [nm?]

Temperature, [K]
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Nomenclature

Uc

UHamaker,A
UHamaker, R
Uns

us(r)

Vv
Vimax,coarse
Vmax,fine
Vmin,coarse
Vmin,fine
Wa

We

W,

Wsg

w(r)
w'(r)
Wy (1)

Wi’fc ( r)

Greek Symbols
Aps
ASiOZ

l4

sys

Va

or
Aytol

Harmonic potential for bonded interactions along a Gaussian chain, [J] or
[keT]

Attractive term of Hamaker potential, [J] or [kgT]
Repulsive term of Hamaker potential, [J] or [ksT]
Hard-sphere potential, [J] or [ksT]

Potential energy per segment exerted by the solid surfaces, [J] or [kgT]
Volume of the simulation domain, [nm?]

Max element volume in the coarse-mesh region, [A%]
Max element volume in the fine-mesh region, [A%]
Min element volume in the coarse-mesh region, [A®%]
Min element volume in the fine-mesh region, [A’]
Work of adhesion, [J] or [KsT]

Work of cohesion, [J] or [kgT]

Work of immersion, [J] or [ksT]

Work of spreading, [J] or [ksT]

Chemical potential field per segment, [J] or [kgT]

Self-consistent field per segment, equal to iw(r)+us(r), [J] or [ksT]
Value of the field in the bulk polymer region, [J] or [ksT]

W(r) = Wey (), [J] or [keT]

Polystyrene Hamaker constant, [J] or [kgT]

Silica Hamaker constant, [J] or [kgT]

Chain geometric factor sin(6/2) with 6 being the angle between two
successive skeletal bonds

System free energy with respect to a reference system, [mJ], where sys is a

variable denoting the kind of the system, e.g., SM, SG, SGV (see
Abbreviations); a denotes the kind of energy term, e.g., coh, field, m, g, s.

Bin thickness for partitioning of the 3D domain, [nm]

Free energy tolerance, [mJ/m?]
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Nomenclature

AE”

tol

sys
Ea

0

KT

py(r)
pm(r)
Pmass,bulk
Pseg,bulk
Og

0Og,seq

o

Ops

Osio,

®

o(r)

¢g(I)
¢g.end(r)
@g,middie(r)
g start(r)
om(r)

ads

iy

§0m,end(r)

System free energy with respect to a reference system, [mJ], where sys is a

variable denoting the kind of the system, e.g., SM, SG, SGV (see
Abbreviations); a denotes the kind of energy term, e.g., coh, field, m, g, s; E

denotes the thermodynamic potential, e.g., Q, 4, G, U, H.
Chain contour step, [skeletal bonds]

Relative grafting density tolerance

System free energy, [mJ], where sys is a variable denoting the kind of the

system, e.g., SM, SG, SGV (see Abbreviations); a denotes the kind of
energy term, e.g., coh, field, m, g, s; E denotes the thermodynamic potential,

e.g., 0, 4,G, U, H.

Azimuthal angle, [rad]

Isothermal compressibility of the polymer melt at temperature T, [Pa ']
Segment density profile of grafted chain segments, [segments/m?]
Segment density profile of matrix chain segments, [segments/m°]
Mass density of the bulk polymer melt, [kg/m?]

Molar segment density in the bulk polymer melt, [segments/m®]
Grafting density, [chains nm™]

Segmental grafting density, [skeletal carbons nm 2]

Interfacial free energy per interface area in a heterogeneous system involving

phases a, , [mJ/m?]
Polystyrene monomer effective diameter, [nm]

Silica effective diameter, [nm]

Inclination angle, [rad]

Total reduced segment density profile of polymer segments

Reduced segment density profile of grafted chain segments

Reduced segment density profile of end segments of grafted chains
Reduced segment density profile of middle segments of grafted chains
Reduced segment density profile of first segments of grafted chains

Reduced segment density profile of matrix chain segments
Reduced segment density profile of adsorbed matrix chain segments

Reduced segment density profile of end segments of matrix chains
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Nomenclature

(9 Reduced segment density profile of free matrix chain segments
@m middle() Reduced segment density profile of middle segments of matrix chains
Pm.start(r) Reduced segment density profile of first segments of matrix chains

Abbreviations

BC Boundary Conditions

BD Brownian Dynamics

EoS Equation of State

FD Finite Differences

FEM Finite Element Method

GMG Grafted-Matrix-Grafted interfaces
GMV Grafted-Matrix-Vacuum interfaces
GVG Grafted-Vacuum-Grafted interfaces
HFD Helfand

HS Hard-sphere wall/potential

HW High-wetting solid/polymer interface
IC Initial Conditions

LJ Lennard Jones

LW Low-wetting solid/polymer interface
MC Monte Carlo

MD Molecular Dynamics

MV Matrix-Vacuum interface

NP Nanoparticle

NW Non-wetting solid/polymer interface
PBC Periodic Boundary Conditions

PDE Partial Differential Equation

PGNs Polymer-grafted nanoparticles
PNCs Polymer nanocomposites

PW Perfect-wetting solid/polymer interface
SCFT Self-Consistent Field Theory

SGT Square Gradient Theory
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Nomenclature

SL
SGM
SGV
SM
SV
VM

Sanchez-Lacombe
Solid-Grafted-Matrix interfaces
Solid-Grafted-Vacuum interfaces
Solid-Matrix interface
Solid-Vapor interface

Vacuum-Matrix interface
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1. INTRODUCTION

The subject of the present thesis is the application of Self-Consistent Field Theory (SCFT) in
gas/polymer and solid/polymer interfaces.’® SCFT is a strong theoretical tool for describing the
thermodynamics of heterogeneous and complex polymer systems. It is quite accurate when
addressing high density and large molecular weight systems (e.g., polymer melts). Another
important advantage when applying a SCFT formulation is that the excess free energy of the
system investigated (relative to an ideal gas of noninteracting chains) is directly derived.
Although particle-based methodologies® built on the foundations of classical statistical
mechanics (as opposed to quantum statistical mechanics), e.g., Molecular Dynamics (MD) and
Metropolis Monte-Carlo (MC), have enjoyed remarkable growth during the last decades,
supported by the fast development of computer hardware, their application is rather impractical
when it comes to large length and time scales, even on the most sophisticated supercomputers.’
Addressing this issue, SCFT aims to reduce significantly the computational cost of
calculating properties of large polymeric systems, by introducing a saddle point approximation
in calculating the partition function of the system. Specifically, field-theory is based on
replacing the integration of degrees of freedom related to the generalized coordinates of atoms or
chain segments by functional integrations over a fluctuating density field, p(r), and a spatially
varying chemical potential field, w(r), which is thermodynamically conjugate to the density
field. Their introduction serves to decouple the interactions among polymer chain segments and
replace them with the interaction of each chain segment with the field emanating from the rest of
the chain segments® and any solid surfaces present (Appendix B). The way that the distribution
of chain conformations is affected by the field is described by a partial differential equation
known as the Edwards diffusion equation. By virtue of a saddle-point approximation (Appendix
C), the functional integral expressing the partition function is replaced by its dominant term and
the fluctuating density and chemical potential fields are replaced by average position-dependent

values depending on the conformational distribution of chains. Thus, one obtains a system of
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partial differential, integral, and algebraic equations with respect to the conformational
distribution, which have to be solved self-consistently: conformations shape the local densities
of all types of segments present and the chemical potential field, while the field dictates the
conformational distribution.  Solution of this system of equations gives all structural and

thermodynamic properties of the inhomogeneous polymer system at equilibrium.

1.1. Polymer brushes and grafted nanoparticles
Polymer brushes are important in a wide variety of applications such as nanotechnology,
membranes and biomedicine.®*? They are also used for steric stabilization of nanoparticles
(NP’s) inside a polymer matrix, leading to mechanical reinforcement and an improvement of its
physicochemical properties.***°

The dispersion state of NP’s inside the polymer matrix depends on solid/solid, solid/polymer
interactions as well as on entropic effects. In most cases, the embedded NP’s are attracted to
each other via Van der Waals forces and agglomerate.'” A widely used methodology to
overcome this spontaneous behavior is to chemically graft polymer chains on the NP surface,
which may or may not be identical to those of the matrix. In such systems, the key factors
influencing NP dispersion are the size and shape of the NPs, the grafted to matrix molecular
weight ratio and the grafting density.**?° D. Trombly et al.** studied the effect of solid curvature
on polymer-mediated interactions among grafted NP’s and demonstrated that the dependency of
NP separation on the grafting density becomes weaker with increasing particle curvature.

When the matrix chains are of the same chemistry with the grafted chains, they can serve as
a good solvent for the brush, leading to a well-dispersed set of NPs. It is more probable for the
matrix chains to wet the brush, when their length is less than that one of grafted chains.*®?*?®
The penetration of matrix chains of molecular weight greater than or equal to that of the grafted
chains is accompanied by a large conformational entropy cost, thus it is thermodynamically
unfavored. This phenomenon is reported in the literature as autophobic dewetting.?>* One way
to reduce the possibility for autophobic dewetting is to disperse smaller NPs; when grafted
chains are attached to smaller particles, they enjoy more available space, therefore the
penetration of matrix chains is facilitated and the associated conformational entropy cost is
mitigated.?®?%2*

As already mentioned, another important parameter for particle dispersion is the solid

surface grafting density. When the grafting density is lower than the a threshold value, the
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particle cores are no longer screened from the grafted chains surrounding them, so they attract
each other, leading to aggregation. This is known as allophobic dewetting. Sunday et al.?
derived experimentally a phase diagram demonstrating the regions where autophobic or
allophobic dewetting and complete wetting occurs. Nonetheless, there is both computational®> %
and experimental'®222°! evidence that there is also a higher limit of grafting density to achieve
proper dispersion; higher values of grafting density prevent matrix chains from penetrating the
brushes and autophobic dewetting is again exhibited.

SCFT has been widely used in systems of block copolymers and polymer blends.*° In the
field of polymer brushes, atomistic MD simulations have been performed by Ndoro et al.,*
while Meng et al.®” and Kalb et al.® have performed coarse-grained MD simulations
representing the polymer chains using the Kremer-Grest bead-spring model. Using the same
model, Ethier and Hall*® studied the structure and entanglements of grafted chains on isolated
polymer grafted NPs.

In the context of SCFT, the incorporation of grafted chains in a solid/polymer melt
interfacial system demands the solution of an additional Edwards diffusion equation with
challenging initial conditions.® Remarkable efforts have been made to bypass the numerical
difficulties associated with the delta function constraining the end of the grafted chains to the
surface of the solid substrate. Implementing a spectral formulation, Chantawansri et al.*
described a method to distribute the grafting points normal to the substrate, in such a manner
that a Dirac-delta function is approximated for both compressible and incompressible models.

Major experimental work has been conducted to understand the behavior of polymer grafted
NPs and their influence on the structural, dynamical, and mechanical properties of the composite
material.">'®224%4 Experimentalists are also interested in studying the interactions between
grafted NPs in the absence of a host polymer matrix.***° Furthermore, polymer grafted
nanoparticles (PGNs) are quite promising for the manufacturing of membrane materials.*”*°

Modeling the dynamical properties of NPs and polymer chains grafted on their surface is
also an area of great academic interest.>>*® Miller and Hore>’ performed DPD simulations to
model the dynamics of the grafted corona under melt and solution conditions. They found that,
with increasing confinement, the relaxation times of the grafted chains also increased. The
segmental and chain dynamics in a system of high loading of grafted nanoparticles was studied

|.,58

with molecular dynamics by Lin et al.,> where they demonstrated that the polymer dynamics

highly depends on the number of contacts between a chain segment and the surrounding NPs. A
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recent review regarding the dynamics of polymer chains and NPs in nanocomposite systems has

been compiled by Bailey and Winey.*

1.2. Motivation

This project was an idea of Prof. Theodorou after many efforts together with Dr. Vogiatzis to
determine the potential of mean force between nanoparticles using particle-based methods. They
were able to describe well the structural properties of polymer brushes grafted on nanoparticles
and melt chains at interfaces,? but it was computationally too expensive to determine changes in
the free energy of multi-nanoparticle systems brought about by varying nanoparticle
configurations. It soon became clear that a continuum approach would be necessary to perform
such calculations in reasonable time. A long time ago, Prof. Theodorou had developed lattice-
based theoretical frameworks inspired by the work of Dill and Flory, Helfand, and Scheutzens
and Fleer.>® Given that Self-Consistent Field Theory was growing fast as a tool to derive the
free energy of interfaces created in polymer blends and copolymer melts,> he decided to try the
same methodology as a tool to describe gas/polymer and solid/polymer interfaces. At first,
lattice-based models were employed and indeed SCFT proved quite accurate in predicting the
surface tension of polymer films and the adhesion tension of solid/polymer interfaces, when
combined with an appropriate equation of state. The next step was to formulate and develop,
with Kostas Daoulas,®® a continuum model which addressed melt/solid interfaces in one
dimension, and again SCFT proved itself as a fast and accurate method, especially in relation to
atomistic molecular dynamics simulations.? The need to address more complex systems led Prof.
Theodorou to the development of a three-dimensional SCF framework based on the Finite
Elements Method (FEM) for the solution of the Edwards diffusion equation. Using an open-
source FEM code called FEAP, calculations were extremely slow. This was quite disappointing,
especially if one intended to take into consideration systems where grafted chains are also
present, but the advantage of SCFT to directly derive the free energy of any interfacial system
was too good to quit efforts. A project was then started by Dr. Apostolos Lakkas and Prof.
Theodorou, and later by myself together with Dr. Aristotelis Sgouros, to develop our own code
based on FEM which we fully controlled and optimized.®” We are now at a point where the full
convergence of a large SCFT calculation needs a few days (using 3 cores per calculation),
including the solution of the Edwards diffusion equation in the presence of grafted chains. Just
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for the history, when Prof. Theodorou tried to run calculations with FEAP, full convergence

required a few months, without grafted chains being present in the system.

1.3. Aim of the thesis

The main goal of this PhD was to develop a generic theoretical model based on Self-Consistent
Field theory (SCFT) to describe in detail the structural and thermodynamic properties of
solid/polymer interfaces. In particular, we were interested in systems where the solid interfaces
are chemically grafted with polymer chains. In addition, we wished to build upon the knowledge
and frameworks which invoke Fourier-spaced methodogies and develop a real-space based
numerical implementation, based on the Finite Element Method, to calculate the equilibrium
structure and interactions of interfacial systems involving polymer melts, solid surfaces, and
grafted chains at a mesoscopic level, still maintaining a high level of predictive power.
Mathematically and numerically speaking, the challenge was to model realistic (nano)composite
systems involving large length scales (< 100 nm) within reasonable computation time. This
effort became more difficult considering our need to incorporate grafted chains in our model,
which are mathematically inserted in the formalism by means of Dirac-delta functions. The
commercial software that we have initially used to solve the Edwards diffusion equation (the
main partial differential equation (PDE) involved in our calculations) was not able to yield an
accurate and stable solution when the initial conditions were assigned at specific points of the
FEM mesh. Hence, another goal of this project was to build from scratch our own code to handle
a finite element mesh, assemble the matrices corresponding to the weak formulation of our PDE,
and link to an external solver for the solution of the resulting linear system of equations. Finally,
the ultimate goal was to make our code as user-friendly, fast and stable as possible, so that
anyone can use it for their own purposes and predict the properties of nanocomposite systems

involving solid/polymer and gas/polymer interfaces.
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1.4. Outline of the thesis

In Chapter 2 we develop the theoretical and numerical background that one will have to be
familiar with in order to follow the rest of the thesis. In Chapter 3 we present the code that has
been developed in the context of this PhD thesis to perform calculations based on Self-
Consistent Field Theory in heterogeneous polymer systems, namely, gas/polymer and
solid/polymer interfaces. In Chapter 4 we present results regarding the system of a single
polystyrene-grafted silica nanoparticle embedded in polystyrene matrix. We elaborate on the
structural properties and the size of the brush and on the thermodynamics of the system.
Furthermore, we examine the system of the same grafted nanoparticle exposed to vacuum and
derive its solvation free energy under various conditions. In Chapter 5 we present results
obtained via the three-dimensional code on the same single grafted nanoparticle system
embedded in a molten polymer matrix. We perform a thorough comparison between 1D and 3D
solutions for the structural and thermodynamic properties of the system and evaluate the
smearing approximation under various conditions. Moreover, we present three-dimensional
profiles of grafted chains and reveal their configurations for different chain molecular weights,
grafting densities, and particle radii. We also calculate the variation of the free energy of the
system when the grafted chains are non-equidistantly grafted on the surface of the particle and
illustrate the corresponding grafted chain configurations. In Chapter 6 we determine the
potential of mean force between two polystyrene-grafted solid surfaces immersed in a
polystyrene melt. The surfaces may be of planar or spherical geometry. In the latter, calculations
were conducted in 3D, allowing us to quantify the effect of the distribution of grafting points on
the surfaces of the nanoparticles on the resulting potential of mean force. Finally, in Chapter 7,
we conclude the Ph.D. thesis by summarizing the key scientific and methodological advances

developed in its context.



2. THEORETICAL AND NUMERICAL

BACKGROUND

2.1. Polymer physics

2.1.1. Gaussian chain model — Bonded interactions

The Gaussian-thread model is an ideal chain model quite often used for describing the bonded
interactions along a polymer chain.»*® This model treats polymer chains as continuous, linearly
elastic threads and associates each differential contour segment along the chain with a harmonic
potential. Integrating over the total contour of the chain, as shown in eq 2.1, one can calculate

the free energy functional governing chain configurations.

Nc
B

G[r(N)]_ 2.1

é 0

The square brackets denote that ug is a functional of the space curve r(N) defining the
configuration of the chain with N being the variable spanning the contour of the chain and N¢
being the total length of the chain, which is of kind ¢ (c = m for matrix chains and ¢ = g for

grafted chains). There is some latitude in defining a segment. Kuhn segments may be used, in
which case: N,/ Réc =6/b7, but chemical segments can also be used. Equation 2.1 is

commonly referred to as the Edwards Hamiltonian. Essentially, we think of the polymer chain
as a random walk of a specific number of steps, which depends on the chemical structure of the
chain. The step size of this random walk is known as the Kuhn segment length and it is usually
denoted with by.
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2.1.2. Edwards diffusion equation

In the context of the Gaussian chain model, the random walk of the polymer chain segments is
mathematically modeled via the Edwards diffusion equation 2.2. Solving this transient PDE
involving the field, w’, is the first and most essential step of an SCFT calculation. For a detailed

derivation of the Edwards equation, the reader is referred to ref 3.

aQC (r7 N) _ RG,C2 2 ! _
VAN AW ()AL N) =0 y
9, (r,N)

— = 2 =
N Dvq.(r,N)+aqg.(r,N)=0

RZ
where, D = I\T'° and a=Bw(r).

c

with N being the variable spanning the contour of the chain and r denoting position in three-
dimensional space. The index c is replaced by the symbol m for matrix chains and by g for
grafted chains. N is the length of a kind ¢ chain measured in skeletal carbon-carbon bonds and
Re,c its radius of gyration. From the point of view of a chemical engineer, the Edwards equation
is a diffusion and reaction equation, the contour length N playing the role of time and D being
the diffusivity. The term aqc is a sink term as would result from the presence of a first-order
irreversible chemical reaction in the domain. Equation 2.2 must be solved for all different kinds
of chains appearing in the system, e.g., matrix or grafted on solid surfaces.

The solution, qc, of this PDE is called the restricted partition function or chain propagator.
It is proportional to the probability that the chain segment which lies at contour length N finds
itself at position r, no matter where the chain may have started. Furthermore, it is normalized by
the corresponding probability of a chain which performs its random walk in absence of any
field.

The distinction between matrix and grafted chains reveals itself through the corresponding
initial conditions, which are given by eq 2.3 and 2.4, respectively. This means that matrix chains
of zero length have no chance to feel the field w’; therefore their propagator equals that one of a
field-free chain, which as mentioned before, is the normalization reference for the propagator.
On the other hand, the starting end of a grafted chain must be bound at a specific point of the
domain, and the way to describe this in terms of probabilities is to impose non-zero probability
only at the grafting points and zero everywhere else, i.e., a delta-function initial condition which

spikes at the grafting points, as eq 2.4 suggests.*’
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On the solid surfaces, 0R, Dirichlet boundary conditions are imposed with zero propagator

value. On the edges of the simulation box, one can either assign Neumann boundary conditions
with zero propagator flux, or periodic boundary conditions; for details regarding the
implementation of periodic BCs in 1D and 3D, the reader is referred to Sections 2.3.3 and 3.9,

respectively. We mathematically describe the BCs in eq 2.5 below.

rN)=0,Vreo
BCs: {qC( ) Rs 2.5

VQ.(r,N) =0 orqg.: periodic,V r € OR .

2.1.3. Physical interpretation of the field, w’

When the field is equal to zero everywhere inside the domain, then eq 2.2 is a simple diffusion
equation governing the propagation of polymer segments in space. This is mathematically
equivalent to a particle performing a random Brownian walk. On the other hand, when the field
assumes values different from zero at a point of the domain r, it can be envisioned as a drain
term that “absorbs” or a source term that “generates” polymer segments. When the field is
positive at a certain position r, it repels the polymer segments and therefore the probability of
finding a segment in that position decreases with respect to the random walk case. Conversely,
when the field is negative, it attracts the polymer segments, thus the probability of finding
segments at r increases with respect to the random walk case.

To better demonstrate the effect of the field on the solution of eq 2.2, we have first compared
the numerical solution of eq 2.2, in the absence of the field w’, with a particle based Brownian
dynamics simulation and the analytical solution given by the following eq 2.6. Equation 2.6
describes the evolution of the concentration profile during diffusion of mass initially placed at

uniform concentration M within a rectangular parallelepiped extending over the region X, <x<xg,

YL<Y<VYR, YL<Y<Yr. If one of the dimensions of the parallelepiped is very small relative to /4Dt ,
the other two being very large, the solution given by equation 2.6 is well approximated by a

Gaussian, i.e., by the Green's function for unidimensional diffusion in that direction.
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The results of this comparison are presented in the following Figure 2.1. Furthermore, to
demonstrate the importance of contour discretization to the accuracy of the FEM solution, the
comparison is performed for the case of 20 and 200 contour-discretization points for the solution
of the PDE via the implementation of FEM in RuSseL3D. The initial conditions are q = 0
everywhere, except for a rectangular parallelepiped with dimensions 400 x 400 x 5 A® where the
initial value of the solution is equal to unity, g = M = 1. The solution is tracked over a domain of
size 100 x 100 x 100 A® centered at the origin. It is clear how, with increasing time (contour
length), the solution propagates towards the edges of the simulation box. Furthermore, when
solving with FEM, appropriate chain discretization is crucial to get accurate results.
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Figure 2.1 Comparison of numerical and analytical solutions of the Edwards diffusion equation against Brownian
dynamics simulation. In column (a) the contour of a chain is discretized using 20 points for the numerical solution,
whereas in panel (b) it is discretized using 200 points. Blue color corresponds to the FEM solution with RuSseL, red
color corresponds to 3D Brownian dynamics motion and green color corresponds to the analytical solution given by
equation 2.6. Brownian dynamics agrees with the analytical solution in all cases. The FEM solution agrees with the
Brownian dynamics and with the analytical solution only when discretization along the contour direction (time) is
adequately fine.
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Now, in presence of a reaction term, w’, the analytical eq 2.6 is modified to incorporate an
additional term, yielding the following eq 2.7.%% It is important to note that eq 2.7 is valid only
if w' is constant in both space and time. Nonetheless, it helps understand the physics behind the
reaction term of the Edwards equation, which would be the same, if the field was a function of r,

as in the case of SCFT calculations.

Q(Z,1)],_ e = A1), -EXP(-W'L) 2.7

Equation 2.7 suggests that, when the field increases (which happens in SCF when the density

at a certain point increases), then the exponential term suppresses the solution relative to its
zero-field value. Conversely, when the field decreases, the exponential term boosts the value of
the solution relative to its zero-field value. In the following Figure 2.2, we present the evolution
of the solution for different (constant in space) values of the field w’, while in Figure 2.3, we

demonstrate the spatial integral of the propagator, Q.

11
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Figure 2.2 Spatial configuration of the chain propagator, g, evaluated at contour N = 10 for different values of the

field, w'. The propagator has been calculated by solving the partial differential equation 2.2 via the analytical
equation 2.7.
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Figure 2.3 Spatial integral, Q, of chain propagator, q, for different values of the field, w'. Q is evaluated with
respect to chain contour, N, which plays the role of time in the solution of the partial differential equation 2.2 via
the analytical equation 2.7.

Looking at Figure 2.3 it becomes clear that, when the field is equal to zero, then the solution
of the diffusion equation is conserved inside the domain of interest as “time” passes (i.e., as
contour variable N increases), since the integral of the propagator remains constant (black lines
in Figure 2.2 and Figure 2.3). On the contrary, when the field is negative, it leads to
“production” of q with increasing N (blue and green lines in Figure 2.2 and Figure 2.3), whereas

positive field values lead to “absorption” of ¢ with increasing N (red and purple line in Figure
2.2 and Figure 2.3).

12
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2.1.4. Nonbonded polymer interactions
In this section, we analyze the different equations of state (EoS) that can be used for the
description of the nonbonded interactions between polymer chain segments. From every such
equation, we derive a relationship for the free energy density as a function of the molecular
density of the polymer, a relationship for the SCF, w’, as a function of the molecular density, and
finally an expression for the partition function of the system as a function of the molecular
density and the SCF, w'.

Equation 2.8 connects the field configuration, w'(r), and the molecular segment density of
the polymer. It is written in terms of the interfacial field, w'iz;, referred to the value of the field in
the bulk polymer region, w'pyk. Subtracting w'yx from w’ guarantees that the chemical potential

field W'iz is zero in the bulk phase.

of [p,Vp]
op

of [p.Vp]
op

V. of [p,Vp]
oVp

P=Psegbulk p:p(r)

W (1) =w'(r)—wj, = - +ug(r) 2.8

p=p(r)

with f [p,Vp] being the excess (relative to an ideal gas of chains) Helmholtz energy density of

intermolecular interactions as a function of the local segment density and its gradient, us being

the field exerted on a segment by any solid phases present and p = p, +p, being the total

segment density. The third term appearing on the right-hand side of eq 2.8 is known as the
square-gradient theory (SGT) term. It is quite useful when addressing gas/polymer interfaces,
since it helps in achieving quantitative agreement between Self-Consistent Field calculations,
atomistic molecular dynamics simulations and experiment.? For details on the evaluation of the

SGT term in spherical coordinates, the reader is referred in Appendix G.

13
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2.1.4.1. Helfand EoS

Considering a compressible polymer melt, the Helfand EoS® penalizes deviations of the local
segment density from its value in the bulk region. According to Helfand, the segment density
variations are governed by a harmonic-type free energy density given in the following eq 2.9,
and the corresponding configuration of the SCF, w’, must satisfy eq 2.8. The free energy density
and its derivative are given by egs 2.9 and 2.10, respectively. Figure 2.4a and c present

evaluations of the free energy density and field terms from the HFD SL-EoS.

2
1
fET)ED(p)=—£ P —1J 2.9
2K-T pseg,bulk
Aeas (P) _ 1 { P _1J 2.10
ap p=p(r) KTpseg,bqu pseg,bulk

2.1.4.2. Sanchez-Lacombe Eo0S

When wishing to describe the properties of a gas/polymer interfacial system, the Helfand model
has trouble grasping the high density gradients developing there. This is because it rests on a
quadratic approximation to the Helmholtz energy density for high densities, around those of the
bulk liquid, which is not appropriate for the description of the low-density vapor region. A
model based on an EoS that can capture vapor/liquid equilibrium would be expected to perform
better. Indeed, the Sanchez-Lacombe (SL) EoS’®" is quite accurate in reproducing the density
profiles and free energies at vapor/polymer interfaces, especially when combined with a density
gradient correction term.?

To invoke the SL EoS, a set of parameters are needed. The first one is the number of SL
segments, rs;, constituting a molecule or a polymer chain. The attractive energy between SL
segments in adjacent sites is denoted by ¢, whereas the hard core volume of a SL segment is
denoted by »". Having introduced these quantities, we also define the characteristic SL
temperature, T = ¢ /(kg'T), pressure, P" = ¢/ »", and mass density, p” = M/(rs.v *Na). The SL

EoS is presented in eq 2.11.

p2+P+T{|n(1—p)+[1—i)p}=O 2.11
I

SL
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where the tilde variables symbolize the reduced temperature, pressure, and density. The free

energy density and its first derivative are then given by eqs 2.12 and 2.13, respectively.

feos (P): P*[fﬁ—ﬁz +'l:(1—[))|n(1_/3)} 51
afESoLs(P) B N T T .
Tp:p(r) =kgT (N—C]{ 2p(r)-TInQ1 p(r))} 913

Figure 2.4b and d present evaluations of the free energy density and field terms from the SL-
EoS. The Sanchez-Lacombe EoS has a firm theoretical basis in a mean field statistical
mechanical analysis of a lattice fluid composed of chains and voids, reminiscent of Flory-

Huggins theory with voids playing the role of solvent molecules.”®™
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2.1. Polymer physics

2.1.4.3. Compressibility considerations

As shown in eq 2.9, when using the HFD EoS, the free energy density is dictated by two free
parameters; namely, the isothermal compressibility, «r, and the density of the bulk polymer melt,
Psegbulk- A simple way to decide the values of these parameters is to either retrieve relevant
experimental data or fit them in a way that reproduces the surface tension of the fluid.
Nonetheless, setting these parameters to constant values leads to inaccurate qualitative
predictions for the surface tension with varying chain molecular weight or temperature. For
example, in Figure 2.5h, the predicted surface tension from HFD (with x7ex, = 3.97 GPa* and
pmasspulk = 953 g/cm?) appears to be a decreasing function of chain length, whereas the opposite
trend has been observed from simulations’® and experiments.”" The surface tension is indeed
an increasing function of chain length, since cohesive interactions of the polymer melt are
enhanced with increasing chain length.

A reasonable approach for fixing these parameters would be to set them equal to the ones
predicted by the SL model for a specific chain length and temperature, using the following eq
2.14.™ Using HFD with xrs. (see Table 2-1), even though producing correct qualitative
behavior with varying Nr, and T, leads to rather high values of the surface tension (see squares in
Figure 2.5h); the deviation becomes larger with the addition of a square-gradient term (see

purple crosses in Figure 2.5h).

Ky ,SLil = fp*ﬁseg,bulkz ~1 += 1 - E 2.14
1- pseg,bulk pseg,bulk I’SL Nm T

An alternative way to determine these parameters is to fit them directly to experimental or
theoretically predicted surface tension (from a suitable EoS such as SL-SGT) for each chain
length. Table 2-1 reports the optimized isothermal compressibilities for HFD and HFD-SGT for
each chain length, according to the values of surface tension obtained via the SL-SGT model
(compare SL-SGT with HFD/k7qx and HFD-SGT in Figure 2.5h). Compressibilites were
optimized using the Secant method.

It is mentioned that, even though the reduced density profiles do not appear to be dependent
on chain length, the actual density profiles do change, as indicated by the chain length-

dependent pseq buik Values in Table 2-1; it is the shape of these profiles that remains the same.

17



Chapter 2. Theoretical and Numerical Background

Table 2-1. Bulk densities and compressibilities from the SL EoS, and optimized compressibilities for the HFD,
HFD/SGT EoS.

Nm Pmass,oulk (97 Cm3) ktsL (G Pail) ’Eg_gaDﬂr))t KT,(FgIE)/;gsiI'),opt

24 0.93997 1.50804 4.56055 15.96570

48 0.94216 1.46935 4.36072 14.88736

96 0.94324 1.45060 4.26308 14.39257

192 0.94378 1.44137 4.21460 14.15635

384 0.94405 1.43679 4,18998 14.03992

768 0.94418 1.43451 417748 13.98211

1536 0.94425 1.43337 417119 13.95340
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Figure 2.5 Effect of compressibility on density profiles and adhesion tension. (a-g) Reduced density profiles at the
free surface of a melt from SL and HFD for various sets of isothermal compressibilities (Table 2-1), with and
without SGT. Chain length varies from N,, = 24 up to 1536 skeletal bonds. The solid lines become thicker with
increasing Ny,, while the dashed lines are guides to the eye. (h) The surface tension from the corresponding profiles

in (a-g).
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2.1. Polymer physics

2.1.5. Solid/polymer interactions
In the most general cases of our calculations, the solid/polymer interactions are described by the
following eq 2.15.

Us =U +U +Ups + Uy 2.15

Hamaker,A Hamaker,R

The first two terms are the attractive (Upamakera) and repulsive (Upamakerr) iNteractions as
described by the Hamaker potential for sphere-sphere or sphere-planar surface geometries. The
third term (uns) corresponds to a hard-sphere wall at distance hys from the solid surface; it is
implemented as a Dirichlet BC that brings the propagator, q, to zero and prevents numerical
problems that may be caused by Unamaker g DIOWING up at small distances.

The usual Hamaker constants invoked for modeling PS-SiO, interactions,?® when applied to
our model, yield weak adhesion indicative of superhydrophobic’ interfaces (contant angle 6, ~
158.9°).% This is because, while the SL EoS generates realistically broad? gas/polymer density
profiles, at the solid/polymer interface the free energy penalty arising due to the square gradient
term (which punishes steep profiles developing in the vicinity of the solid) makes interactions
less favorable.?*2%:7

The essence of Hamaker theory'” is to treat the interacting bodies as collections of
homogeneously distributed infinitesimal domains interacting with a Lennard-Jones potential.
Subsequently, integration over the volume of the bodies takes place to account for interactions

amongst all possible pairs, resulting in the total potential. The Hamaker constant of the effective

solid/polymer interaction is calculated by the geometric mean, A g, =1/A35A5ioz . Vogiatzis

and Theodorou®® employed an effective solid/polymer interaction, e;f_Sioz = AsAsio, = As
instead of A;S_Sioz, in order to restore the proper effective cohesive interactions at the

solid/polymer interface. Herein, we opted to work with Aps_Sioz , since the energy of cohesion of

the polymer is taken into account as part of the free energy density, f [p(r), Vp(r)] .

Furthermore, the effective collision diameter can be calculated as being the effective
diameters of solid and polymeric segment interaction sites, respectively. In each of the following
cases of interacting geometries, a wall distance was used, hys, so that the maximum of the
repulsive term felt by the polymer segments does not exceed 5 kgT, as shown in the following

Figure 2.6.
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o
L8]
T

A (nm)

Figure 2.6 Interaction energy us(h) between a PS monomer unit and a planar SiO, substrate as calculated from the
Hamaker potential at T = 500 K. The blue line, hys = 0.4 nm, intersects the us(h) curve at us = 5 kgT and depicts the
distance of the hard-sphere wall from the surface employed in the calculations. The orange dashed line depicts the
distance of the grafting points from the solid surface (hg), and the red dashed line delimits the critical distance (hags),
below which a matrix chain segment is considered adsorbed on the solid surface.

2.1.5.1. Hamaker Sphere-sphere

For the purpose of calculating the potential energy of dispersive interactions between
polystyrene segments, belonging to either matrix or grafted chains, and a silica NP immersed in

the polymer melt, we consider the atactic polystyrene monomers as small spheres with an

effective radius a, = 3/ 3 , interacting with the spherical silica NP of radius a; = Rs. The
7 seg

solid/polymer interaction potential per monomer can be split into an attractive’’ and a repulsive
term.”” The two terms, ua and ug, respectively, are functions of the center-to-center distance, ri,

between two interacting spherical bodies:

uA:—i 22,2, ~+ 222, ~+In rlzz—(a1+a2)2 2.16
6 r122_("311'1"’312) '122_(a1_a2) r122_(‘311_8-2
u, =
rlzz—7r12(a1+a2)+6(af+7a1a2+a22) ruz+7r12(a1+a2)+6(a12+7a1a2+a22)
A, Oy (r,-a,-a,) (r,+a +a,) 2.17
37800 r, r,”+7r,(a - a2)+6(af—7ala2+a2 ) ‘-7r,(a - a2)+6(a12—7a1a2+a22)

(12+a1_a2)7 (rlz_al_'_az)7
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2.1. Polymer physics

where A, = Ao, is the Hamaker constant and oerr is the effective collision diameter.

2.1.5.2. Hamaker Sphere-planar surface
The attractive and the repulsive components from the interaction of a spherical NP with a semi-
infinite solid terminating at a flat surface can be obtained in the context of Hamaker theory as

follows:
g =-Pefl 1 +|n(r—j 2.18
6 (r 2+r 2+r1'
6 ' oy
U, = A, "egf 8+r 7+6 7r 519
7560 a | (2+r') r'

with r'=d,, /&, a; being the radius of the spherical NP and d;, being the distance between the

surface of the spherical NP and the solid surface. We have us = ua + ug for this case, which is

shown in Figure 2.6 as a function of h = dj, + a;.

2.1.5.3. Hamaker Planar-planar surface
Correspondingly, the attractive and repulsive terms of the Hamaker interaction between two
semi-infinite planar surfaces (i.e., their length, L, is much higher than the distance between

them, hss) is given by the following eqgs 2.20 and 2.21, respectively.

ASMS 1
uA:_SS 220
n 12h
6
U =5, s 05" 2.21
n 360hy

where Agys Is the polymer-mediated Hamaker constant between the two plates.

2.1.5.4. Square well and ramp potential

The code offers the possibility of selecting from a range of different wall potentials. In this way,
the wetting degree of the interface can be altered according to the properties of the specific
system that the user wishes to reproduce. The current section demonstrates evaluations with the

square well and ramp potentials.
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Chapter 2. Theoretical and Numerical Background

Figure 2.7 illustrates the density profiles of polyethelene (PE) melt near solid surfaces as a
function of the contact angle, using the Helfand (HFD), Sanchez-Lacombe (SL) and SL coupled
with a square-gradient correction term (SL-SGT). The solid/polymer interactions have been
described via the square well (Usquare weit, 1€ft) or the ramp (Uramp, right) potential. The functional

forms of the square well and ramp potentials are given in eqs 2.22 and 2.23, respectively.

usquare_well = Usquare_well v h < O-square_well 222
o. —h
_ ramp
uramp - Uramp max !O 2.23
Uramp

where vsquare well/Oramp aNd Gsquare well/oramp COrrespond to the depth and the width of the square

well/ramp potential.
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Figure 2.7 Density profiles of polyethylene in contact with solid interfaces of different affinity. Contact angle
assumes the values, 6 = {180°: red, 120°: blue, 60°: green, 45°: magenta, 0°: violet, and acos(3) °: orange} and
density profiles are derived with (a,d) HFD, (b,e) SL and (c,f) SL-SGT equation of state in conjunction with square
well (left panels) or ramp (right panels) potential. We observe that as the contact angle decreases, the density
profile of the polymer segments near the surface is increased, suggesting an enhanced affinity of the polymer
segments to the solid surface.

The range of these potentials was set to 0.65 nm and the position of the hard sphere wall is
equal to hys = 0.45 nm.®®"® For each one of the cases presented in Figure 2.7, the depth of the
potential was optimized with the Secant optimization scheme in order to match the target
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2.1. Polymer physics

contact angles, & = acos(— y*™ / y'™), with »*™ and yY™ being the interfacial free energy of the
solid-matrix (SM) and vapor-matrix (VM) system, respectively. It is further noted that, for a

VM SV SM\79
o — 0

planar interface, y"™ = ¢'™ is the surface tension, and y* = — corresponds to

minus the adhesion tension; thus, the contact angle can be also estimated as 6 = acos[(¢>" — 6>
1 6"™™)].

In absence of solid surfaces (red lines in Figure 2.7, & = 180°), the profiles exhibit a
characteristic sigmoidal shape, whereas the corresponding surface tension becomes '™ ~ 73.0,
12.0 and 29.5 mJ/m? for HFD, SL and SL-SGT, respectively.>’® In HFD, the isothermal
compressibility was set equal to xr = 1.43 GPa *,°"® while the compressibility is roughly the
same in the SL models (Table 2-1). The experimental surface tension of PE is 26.6-27.7
mJ/m? ¥ whereas the corresponding atomistic profile has a span of ~ 1 nm;? hence, the SL-SGT
model is more suitable for describing vacuum/polymer interfaces.

With increasing intensity of solid/polymer interactions (us), the density profiles move closer
to the solid surfaces and become more pronounced, especially when the HFD equation of state is
employed. Note that the profile obtained with a square well potential for & = 45.3° is identical to
the corresponding profiles in refs ®®7.

Another interesting observation is that, even though the compressibilities of these models are
quite similar, the density profiles from SL and SL-SGT are more expanded because they allow
the formation of gas phases inside the polymer melt itself. Moreover, they are less pronounced
due to the existence of a logarithmic term that suppresses large fluctuations of the density above
unity. In SL-SGT, the profiles are almost identical for a given contact angle regardless of the

functional form of the potential (i.e., square well vs ramp).

2.1.5.5. Hamaker-like integration of arbitrary pair-wise potentials

Let there be a sphere with radius Rs and constant interaction site density p;. Assuming that a
point-like object P lying at a distance r from the center O of the sphere interacts via a central
pair-wise potential u(r’) with all sites in the sphere, the total interaction energy between the point

and the sphere can be calculated as:
r+R
Ee (nR)=p; [ dris(R,r.r)u(r) 2.24
R
where S(R,r',r) is the area of a spherical cap of radius r”centered at P which lies inside the

given sphere (Figure 2.8).
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Chapter 2. Theoretical and Numerical Background

Figure 2.8 A point (P) at distance r = |rp—ro| from a sphere of radius R, centered at O.

To calculate S, we need to perform the following integration:

2z

90
S(R,r',r)= jd(pjd@ r'sing =-2zr" cos @, + 271" = 2zr'* (1-cos 6, ) 2.25
0 0

From the generalized Pythagorean theorem, we can write:

RZ=r?+r"-2r'rcosé,

P22 _R2 2.26
Cosly = ————
2r'r
Combining egs 2.25 and 2.26, we get:
r24r? _Rsz
S(R,rry=27r?1-—— 2.27
( S ) ( 2r!r ]
or
r!
S(Rs,r',r)zﬂr (R =(r-r] 2.28

In situations where the pair potential, u(r), becomes zero beyond a cut-off distance, r > r,

the upper integration bound in eq 2.24 becomes:

min(r+Rg,1;)
ESP(r’Rs):pl J. dr'S(Rs'r"r)ur'<rC (r,) 229
r—Rg

In the limit Rs — oo, eq 2.29 yields the interaction between a point and an infinite planar

wall. Let us call the energy of this interaction E,(R) = RIsim Es (R,R;). To calculate Erp, we

work as follows: let r; be the position of the considered point at distance h from the solid planar
surface. The elementary properties of the planar surface can be expressed in cylindrical
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2.1. Polymer physics

coordinates (R, z, ¢) with respect to segment r;. Assuming again a constant density of interaction

sites in the solid, p1, the number of segments in an elementary ring equals:

dN = p,27RdRdz 2.30

Subsequently, the total interaction energy is calculated as:

E,» (h)=27p, [ dz[dR Ru(r) 2.31
h 0

d(r2—(z-z,)
Given that, R=+/r?—2z2 and d_R:% ! ( ( ) )= r , €q 2.31 becomes:

dr /rZ_ZZ dr r2_ZZ
ELP(h)zzyzplj.dzjdr ru(r) 2.32
h z

Equation 2.32 is equivalent to eq 2.24 in the limit Ry — oo.
We developed a curvature-dependent potential by setting the pairsise potential to the square

well of eq 2.33.

Equr I < Oy

Ugy (1) ={ 2.33

0,r>oy,

with asw being a cutoff distance and esw being the well depth of the potential. The point-sphere

integration of eq 2.33 yields:

Ussyy =CSWﬁ[gsw(Rc,h)—gsw(h,h)],h<aSW 2.34
with:
XX x?
gSW(x,h)=—Z+€(2h+2RS)—?(h2+2hRS) 2.35

where h=r—R; is the distance of the segment from the surface, R, =min(h+2R;, 0y, ),

Cqw = P65, IS a constant, and p; is the number density of interaction sites in the solid.

Regarding the point-surface interaction (or, equivalently, the limit Rs — 0):

Rg—0 3

3 3
lim u_,, =Cq, (mmswz(asw —h)j,h<asw 2.36

When we address systems of planar geometry, the coefficients of the force field were fitted

in such a way as to reproduce the experimental work of adhesion from ref 8, corresponding to
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high- and perfect-wetting degrees (see Table 2-2 and Table 4-2 of later chapter). However, such
a potential does not account for the loss of solid interaction sites with increasing curvature. In
other words, the solid/polymer interactions are expected to become weaker when the size of the
NP decreases, since the polymer segments interact with fewer solid sites. In fact, Figure 2.9
illustrates evaluations of ucsw over a broad range of Rs values. The solid/polymer interactions
are naturally adjusted with varying curvature, whereas in the limit of Rs — o (where eqs 2.34

and 2.36) become equivalent, the functional dependence resembles the one of the ramp potential.

In the limit Rs — 0, eq 2.34 collapses to the square well potential of eq 2.33, i.e., limu, =ug,,

Rs—0
4 -1
for p, = (gnRjj

Uesw / (kBT)

_8\II\II\II‘IIII‘II\II\II\II\II
0 25 5 75 10 125 15

h(A)

Figure 2.9 Evaluations of u.gw using eq 2.34 for Csyy = — 37.5:10° J/m®, ogw = 1.28 nm, and T = 500 K. Stars depict
evaluations of eq 2.36 for planar surfaces.

2.1.5.6. Tabulated potentials

Besides analytic functional forms, one can make use of tabulated potentials as well. Even though
such potentials might be cumbersome to work with, they are more flexible, in the sense that, in
many cases, they allow for reproduction of density profiles of arbitrary shape. For example, one
can optimize the tabulated potential to reproduce a target density profile, grger, Via iterative

Boltzmann inversion, as shown in eq 2.37.

Us,(r) =us, ,(r)+ak,T In(M] 2.37
Y ’ (otarget (r)
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2.1. Polymer physics

with a being a relaxation parameter. This process can be envisioned as reverse engineering the
self-consistent field; instead of trying to predict the density profiles for a given field, the
optimizer attempts to find the field that reproduces the target density profiles.

Figure 2.10 depicts the density profile at a polyethylene-graphite interface at temperature T =
450 K, obtained from atomistic molecular dynamics simulations’® and the optimized density
profiles obtained with RuSseL using the Helfand® and ideal free energy density. In the latter
case, intermolecular interactions among chain segments are turned off, while chain segments
interact explicitely with the solid wall. The corresponding tabulated potentials are demonstrated

in Figure 2.10c.

(a) 3-5 [ T T T ' T ‘ T ] (b) 1'5 E T T T T T T T T ‘ T T T T | T T T IE
3 L > target - 1.25 ? e ] E
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Figure 2.10 Demonstration of tabulated solid/polymer potentials and resulting density profiles. (a,b) Target
(circles) and fitted density profiles of polyethylene segments, obtained via the Helfand EoS (dots), Sanchez-
Lacombe EoS (dashes) and ideal gas of chain segments (solid lines). In (a), the target profile corresponds to a
profile of Cyoe/graphite interface at 450 K obtained via atomistic molecular dynamics simulations.”” In (b), the
target profile equals ¢ = 0 for h € [1,2), ¢ = 1.1 for h e [2,3), and ¢ = 1.0 everywhere else. Panels (c,d) depict the
tabulated potentials, us(r), corresponding to profiles (a) and (b), respectively. The horizontal dotted lines are guides
to the eye.

According to Figure 2.10a, it is possible to reproduce the MD profiles exactly, given that the
underlying EoS does not impose any particular constraints. For example, it is impossible to
reproduce these profiles exactly when using the Sanchez-Lacombe Eo0S, since the logarithmic
term does not allow the density to exceed the characteristic SL density, p". Similarly, Figure
2.10b depicts an exotic target density profile, where ¢ =0 for he [1,2), ¢ = 1.1 for h ¢ [2,3), and

@ = 1.0 everywhere else. As in the previous case, the target profile has been reproduced with
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Chapter 2. Theoretical and Numerical Background

HFD, SL, and IG EoS in the presence of the corresponding tabulated potentials shown in Figure
2.10d.

2.2. Thermodynamic description of polymer interfaces

2.2.1. Systems involving polymer melt

The thermodynamics of the polymer-grafted NP(s) or planar surface(s) immersed in a polymer
matrix is described using the grand canonical ensemble, which is defined relative to a bulk
phase of monodispersed matrix chains, each of length N, occupying a volume equal to the
polymer-accessible volume of the system, and a set of ny isolated end-pinned unperturbed
chains, each of length Ng. The temperature, T, is the same between the system under
investigation and the reference system (see also Appendix D). The grand potential of the system
is determined as the sum of individual energetic and entropic terms as shown in the following eq

2.38.
AQSEM — SM _ M _ pGhuk _ 5 SEM +AQ?iSI'(\jA +AQrSnGM +AA§GM _l_AUSSGM 538

coh

where AQM is the cohesive interaction component (relative to the bulk melt chains) arising due

coh

to segment-segment interactions in the polymer,

AQSM = J.Rdr{f (1), V()] = [ Pugiar: O} 2.39

AQSY is the interaction energy between the density field and the chemical potential field,
AQESIZA = _J'R dr {p(l’)W'(l’) - pseg,bquW'bqu } 240

AUZ®™ is the contribution of the potential energy exterted from the solid to the polymer

segments,

AUSM = L{dr{p(r)us(r)} 2.41

AQ®™  describes the translational and conformational entropy (relative to the bulk melt

entropy) of noninteracting matrix chains subject to a chemical potential Nyzm,

V
AQSM = Ps;,;:lnk (Qm [W'— W', ] _1) 2.42
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2.2. Thermodynamic description of polymer interfaces

and AAJS ®M is associated with the conformational entropy of ng grafted chain subject to the field
W= Wy

Mg

AAJSGM - _%2”‘(29 [rg,ig ;W'_W'bmk}%zm ::ref,q—o 243

ig=L  Tg,i,0=0

The second term appearing in the right-hand side of eq 2.43 is necessary for renormalizing
the free energy term with respect to the distance of the grafting points from the solid/Dirichlet
surface. For more information, see Section 3.7.4.

AQcon IS the free energy term which incorporates the cohesive interactions between polymer
segments; it is a direct manifestation of the compressibility and density deviations of the
polymer melt from its bulk value, due to the presence of the interface. Regarding the second
term, AQjseq, it describes the interaction between the chemical potential field, w'(r), and its
conjugate field, p(r). Another practical way one can think of this term is the following: the field
w’ expresses by definition the variation of the Gibbs free energy of the system with respect to the
amount of material, in our case polymer segments, that exists in the system. Weighting this
potential/field by the density of segments, p, i.e., taking the product w'(r)-p(r), and integrating
over the domain of interest is a rigorous way to determine the total amount of energy associated
with this chemical potential field.

The terms AQ, and AAgy are entropic terms associated with matrix and grafted chain
conformations, respectively. In Section 4.2.9, we have considered the latter term as the sum of
two sub-contributions: a term which represents the contribution of grafted chains to the energy
of the field and a purely entropic contribution which depends on the stretching of grafted chains

relative to their unperturbed configurations.

2.2.2. Systems in vacuum
In the absence of matrix chains (i.e., systems of isolated grafted-NPs or brushes), the

thermodynamics is described via the Helmholtz free energy of the following eq 2.44.
AASGV — ASGV _ AG,bqu — SOGhV + S|eG|(;/ +AA§GV +AUSSGV 244

The first two terms on the right-hand side of eq 2.44 represent the cohesive (eq 2.45) and
field (eq 2.46) interactions. The last two terms of eq 2.44 are again given by eqs 2.43 and 2.41
presented in the previous Section 2.2.1, with the density and field obtained for the isolated

grafted-NP or brush and V replacing M in the superscript on the left-hand side.
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ARSSY = L{dr{f [p(r), Vo(n)]} 2.45

ot ==, dr {p(w(r)} 2.46

2.2.3. Macroscopic Work Functions

To better understand the thermodynamic properties of polymer interfaces, we define four
macroscopic work functions; the work of cohesion (W¢), work of immersion (W), work of
adhesion (W,), and work of spreading (Ws), which are calculated via the following eqs 2.47-
2.50. They refer to the reversible work that must be expended to separate the interfaces and they
are conceptually opposite to Gibbs free energies of these interfaces. Hence, spontaneity is

expressed by opposite signs.®

W, =20 2.47

W, =c% -c™ =52} =™ cos 6, 2.48
W,=0" -c™M+c™ =03 +0™ =" (cos6, +1) 2.49
Wy=0" -c™-c™=0pp —c™ =" (cosd, -1) 2.50

where for planar surfaces o = "™ is the surface tension, (GSV —oM ) =—»*™ is the adhesion

tension,”® and @ the contact angle of the corresponding solid-fluid-vapor interface.

W is the free energy per unit surface for making two polymer free surfaces and W, is a
measure of adhesion between a solid surface and the polymer. Wa corresponds to the reversible
work per unit surface required to separate two phases in contact. Ws quantifies the spontaneity of
the wetting process: positive values indicate spontaneous spreading across the interface (perfect
wetting), while negative values indicate finite contact angles (partial or no wetting).

Table 2-2 describes four SiO,-PS interfaces with different wetting degrees in planar
geometries. The two rightmost columns report the expected contact angle (6;) and work of

spreading (Ws) for each wetting degree.
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2.3. Finite Differences

Table 2-2 Wetting degree of planar solid surfaces for length of matrix chains equal to N,, = 768 at T = 500 K. The
surface tension of the corresponding liquid-vacuum interface equals ¢¥™ = 27.93 mJ/m? The inequalities indicate
the NW, LW, HW and PW bounds. 6. is the contact angle and Ws is the work of spreading on the planar
surface.®" The values of Cgy 1w and Csy pw are given in the calculation details reported in Table 4-2.

type wetting Hamaker’”  Cgw 0. (°) Ws (mJ/m?)

NW nonwetting No 0 180° —55.8 = —2y"M
LW low wetting Yes 0 180° > 158.9°>90° "M >_54.0>-2y"
HW high wetting Yes Cawrw 90° > 67° > 0° 0>-17.0> "™
PW perfect wetting  Yes Cswpw Imaginary 153>0

2.3. Finite Differences
2.3.1. Semi-implicit Time-stepping

The code supports the solution of 1D partial differential equations with a semi-implicit Finite
Differences scheme, also known as the Crank-Nicholson method.®®"8%384 |n this scheme, the
unknown solution at a certain spatial point, g, is expressed in terms of a central differences
scheme, averaged between two successive contour points, N and N+AN, as shown in the
following eq 2.51.

while the first derivative of the solution, g, with respect to the contour variable N is

approximated via the Finite Differences eq 2.52, hence, the matrix form of the partial differential
equation to be solved is given by eq 2.53.
N

aqh — th-*—1 _qh 252
oN AN

AN W' AN Sw".
_thflml + (1"' 2D+ #] th+1 - DQh+1N+1 = thle + [1_ 2D - #j th + DQh+1N

2.53

e - L _ R /AN _ :
where the diffusion coefficient is now given by D = W. In matrix-vector notation, eq 2.53

C

can be written as presented in the following eq 2.54.

(I—DT+%W)qN“:(I+DT—%quN 2.54
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where 1 is the identity matrix and we have defined the matrices T and W via eq 2.55 and 2.56,

respectively.

2 1 1
1 1
= 1 21 255
1 2 1
_1 1 -
() .
w(Ah)
W= w(2Ah) 256
w(L - Ah)
L w(L) |

Alternatively, eq 2.54 can be written in terms of the stiffness matrix, K= I-DT+%W, and

the vector denoting the right-hand side, R:(I+DT-%quN (i.e., the solution vector at the

previous contour-step weighted by I+DT -%W ), as follows:

b, ¢ a (g™ | R
a‘2 2 CZ qZ’\H1 RZ
N+1
Ko"i=R=| &% % =l R 257
an-l bn-l Cn 1 qr:\IIl Rn-l
_Cn an bn . _ql‘,]\‘+1_ L Rn _
AN ﬂwifc,h - .
where & =-D, b =1+ 2D+T and ¢, =—D. Note that eq 2.57 has been written in the

most general form, i.e., without imposing any boundary conditions; all nodes are equivalent and,

as a result, the domain is periodic.

2.3.2. Implicit time-stepping
A more stable but computationally more demanding way to solve the time-dependent partial

differential equation is to exress the unknown solution at every spatial point, g, , in terms of the

next contour step, N+AN, according to eq 2.58 presented below.
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2.3. Finite Differences

2 N+1 N+1 N+1
Zh? — % qh+l 22112 +qh—l 258

In order to solve the time/contour dependent Edwards diffusion equation, we discretize the

domain of interest into uy, intervals and the chain contour length variable into u. intervals, where

L N . . . .
u, = h and u, = AI\CI , respectively. The spatial and chain contour length step intervals, Ah and

AN respectively, are chosen so that maximum accuracy and stability are obtained with minimum
computational cost (see Appendix H).

In both discretization schemes, we end up having to solve a linear system of equations, but
the implicit contour stepping method (also known as “backward differences”) allows for larger
contour steps without reaching the numerical stability limits of the semi-implicit case. The first
derivative of the chain propagator, g, is again given by eq 2.52.

Combining egs 2.52 and 2.58, we obtain the space and chain-contour discretized form of the

Edwards diffusion equation, as presented in eq 2.59 below.

-2Dq, "™ +(1+4D +Acpw, , ) g, * - 2Dq, " * = g," 2.59
where the diffusion coefficient is given by, D = SECZAAh’\ZI . In matrix-vector notation, eq 2.59 is
written as:

(1-2DT+ANW)g""* =g" 2.60

where 1 is the identity matrix, and the matrices T and W are those given by eqgs 2.55 and 2.56,
respectively. It is observed that in contrast to the semi-implicit scheme developed in the previous
section, in the implicit one, the right-hand side is just the solution vector evaluated in the

previous contour step. As a result, the entries of the matrix form in eq 2.57 are modified as

follows: 8 =-2D, by =1+4D+ANAw,,, ¢, =—2Dand R=q".

2.3.3. Boundary conditions in 1D matrices

In formulating the matrices presented above, we have not taken into consideration the boundary
conditions that occur from the physics of the problem. Given the single dimensionality of the
systems addressed via the Finite Differences version of RuSseL, they are mathematically
represented by a line, which is bounded by one point on the left and another one on the right.
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In most cases, where aperiodic systems are addressed, at least one of the bounding points
needs to be assigned a Dirichlet boundary condition (also known as essential or absorbing
boundary condition). In our case, the physical interpretation of this type of boundary condition is
that the polymer melt is in contact with solid or gas surface, and thus, the polymer segments are
not allowed to reach the surface.

On the other point of the domain, we can assign either a Dirichlet boundary condition as
well, or a Neumann boundary condition and, therefore, specify a certain value for the derivative
of the solution rather than the solution itself. If the right hand side of the domain corresponds to
the position where the bulk polymer region starts and the system is considered to be symmetric,
then the solution derivative is set equal to zero.

In order to better demonstrate the above analysis regarding boundary conditions in one-
dimensional domains, we present the linear system of equations to be solved, in the case where

Dirichlet or Neumann boundary conditions are imposed on both boundary points.

2.3.3.1. Dirichlet-Dirichlet system

In a system with Dirichlet boundary conditions ati =1 and i = n, eq 2.57 becomes:

1 0 01 q | [R%]
a, bz C, qz Rz
8 bs Cs Qs - R3 261
a'n-l bn-l Cn-l qn»l I:an-l
| 0 0 b, || g, | _RnDIR |

In practice, applying the Dirichlet BC to the i node of the domain entails the following

substitutions: & =0, b =1, ¢, =0, and R, =R"”® (corresponding to a fixed g; value).

2.3.3.2. Neumann-Neumann system

If zero-derivative boundary conditions are imposed on the left (i = 1) and right (i = n) edges of
the domain, then the matrix T needs to be modified, which in turn, influences the final stiffness
matrix and the right-hand side vector. In this case of boundary conditions, the matrix T is given

by eq 2.62 and 2.63, for the semi-implicit and the implicit contour stepping scheme, respectively.
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(-1 1 0
1 21
1 21
T= 2.62
1 21
_0 1 -
(2 2 0|
1 2 1
1 21
1 21
_0 2 -

2.3.4. Solving the linear system of equations
In the case of non-periodic systems (a; = ¢, = 0), where the stiffness matrix assumes a
tridiagonal form, the linear system of equations is solved with the Thomas algorithm.®

As in the conventional lower-upper (LU) decomposition algorithm, the solution of the
tridiagonal system comprises three essential steps: decomposition, forward substitution, and

backward substitution, which are presented below:

a
o a «——
Decomposition: b, 2.64

b «<b-ac, i=2..,n-1

Forward Substitution: R, <~ R —aR ,, i=2,..,n 2.65

N+1

g et

Backward Substitution: 2.66

N+1
qiN+l « R _CiQi+1+ i—
On the other hand, when considering periodic systems, the linear system of equations is
solved with a more general (but computationally more expensive) solver, which is based on the

traditional Gauss Elimination method with full pivoting functionality.®
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2.4. Finite Element Method

Usually, researchers solve the SCFT equations using (pseudo-)spectral methods.**#*° The
main concept in these methods is to expand the solution of the differential equation as a sum of
certain basis functions and then determine the coefficients appearing in the summation so that
the differential equation is satisfied with minimum error. Those methods are most often based on
Fast Fourier Transform solvers and offer high calculation speed and near linear scaling,
O(nlogn), with respect to domain discretization.*® The main drawbacks of these methodologies
is that they perform best for specific boundary conditions and become less practical when
applied in complex geometries, 323288

On the other hand, the Finite Element Method (FEM) is a widespread numerical technique
for the solution of partial differential equations governing various physics and engineering
problems.”** The FEM is governed by the same idea of solution expansion in terms of a
number of basis functions. The main difference between FEM and spectral methods is that the
first use basis functions that are nonzero only in small subdomains (called elements), whereas in
spectral methods, they can be nonzero in the whole domain of interest. Another key advantage
of the FEM is that it can be readily applied to nonlinear problems, where the coefficients
appearing in the PDE are dependent on the solution itself. Spectral methods are most frequently
used in cases of constant-coefficient PDEs.

The core concept of the FEM lies in the discretization of the domain of interest Q into
smaller subdomains, €, of certain shape, called elements. In other words, it approximates both
the geometry and the solution of the PDE by partitioning the original geometry in a finite
number of pieces. The approximation accuracy increases with finer discretization, but so does
the computational cost.

The most general form of a PDE is described by the following set of equations, where the
operators L and B are allowed to be functions of the solution, g (rendering the problem nonlinear

as mentioned):

gt—q+Lq=f,inQ 2.67
Bg=g, inoQ 2.68

Equations 2.67 and 2.68 constitute the strong form of the PDE. It is called “strong”, because

it allows for the solution, g, to belong in an infinite space of functions. Before the problem is
ready to be solved via the FEM, the weak or variational form of the PDE must be derived. In
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2.4. Finite Element Method

contrast to the solution of the strong form, the solution corresponding to the weak formulation
belongs to a more restricted space of functions, which must satisfy certain conditions. Namely,
these functions belong to a Hilbert space, which are a subcategory of Sobolev spaces.

In practice, the weak form requires from the solution to have a certain degree of smoothness.
Usually, the basis functions of the solution space are Lagrangian polynomials, whose order is
selected by the user in order to achieve the desired accuracy. The order of these basis functions
is also reported as the order of the elements discretizing the domain of the system. Again,
accuracy increases with higher element order. Consequently, the accuracy of calculating the real
solution, q, is controlled by tuning both the number and the order of elements which partition the
domain, Q.

In one-dimensional (1D) problems, the elements are just line segments, in two-dimensional
(2D) problems, they can be triangles or quadrilaterals and in three-dimensional problems (3D)
they can be tetrahedrals, hexahedrals, prisms or pyramids. The elements are interconnected in
the nodes, where the solution of the PDE is actually computed. Basis functions are defined such
that they are equal to one at their respective nodes and zero at all the other nodes of the mesh. At
any point of the geometry which finds itself between the nodes of a finite element mesh, the
solution can be determined via interpolation using again the same basis functions. The FEM
solution, gn, approximating the exact solution of the PDE, q, is given by the following eq 2.69,

where ¢/ is the symbol for the basis function corresponding to node j.
d, = 9,0’ 2.69
i

It becomes clear that the solution g, is a linear combination of the basis functions, ¢/, and q;
are the coefficients (weights) multiplying these basis functions which approximate g with qp.
Given that the basis functions are set and known, the very purpose of the FEM is to calculate the
coefficients g; of eq 2.69. Whatever may be the nature of the problem (e.g., linear or nonlinear,
static or time-dependent) or the FEM variant applied, the determination of the g; coefficients is

achieved by solving a linear system of equations of the following form:

Kg, =b 2.70

As a matter of tradition in the FEM language, K is called the stiffness matrix, while b is
called the load vector. In the sequence of steps needed to solve a FEM problem, there is an

essential step lying between the meshing and the solution of the linear system in eq 2.70. It is the

37



Chapter 2. Theoretical and Numerical Background

assembly of the stiffness matrix, K, and the load vector, b. In terms of computational time and
memory cost, the assembly stage can be more demanding than the meshing or the solution.

In the FEM, we require the weak form of the PDE to hold for all test functions in a Hilbert
function space, instead of the strong form to hold for every point belonging in Q. In other words,
the weak form relaxes the requirement of the strong form, where all the terms appearing in the
equation must be well defined at all points, and only requires equality in an integrated sense.
One of the benefits of the FEM is the possibility to appropriately select the test and the basis
functions. In Galerkin’s method, specifically, the test and basis functions belong to the same
Hilbert and to be more specific, they are both polynomials of the same order. Usually, test and
basis functions are selected to be nonzero in a very small geometrical region. This implies that
the integrals appearing in the weak formulation are zero everywhere, except for the limited
regions, where the test and basis functions overlap, since all of the these integrals include
products of these functions or their gradients.

The strong form of the Edwards PDE is given by eq 2.2. Regarding the boundary conditions,
it is obvious that no polymer segments are allowed to occupy any space on the solid or vacuum
boundaries, therefore the propagator on these boundaries is equal to zero: q(r,N) =0 V re
0Qs0lig- Neumann boundary conditions with zero propagator flux or periodic boundary
conditions can be applied on the periodic faces of the simulation box. For a thorough discussion
regarding periodic boundary conditions on three-dimensional domains discretized via the FEM,
the reader is refered to Section 3.9.

2.4.1. Steady-state analysis
To obtain the weak form of Edwards, we start by multiplying eq 2.2 with the test functions ¢'(r)
and then integrate over the volume V of the domain Q and therefore the strong form is replaced

by i number of integral equations:
-DV?%q(r)+aq(r)=0
~DV?q(r)¢'(r) +aq(r)e'(r) =0
-D j V2q(r)e' (r)dv +a j q(re'(r)dv =0 2.71
\ \

—D{ [v-[¢'vam v - ve'(r) -Vq(r)dv}+ afq(r)¢'(ndv =0

D{jwi (n)-van)av - | ¢'(n[va(r)- n]dv}+ afq(r)e'(ndv =0

ov
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Having obtained the i number of equations that we need, we proceed by expressing the
solution g as a linear combination of the basis functions ¢;(r), as shown in the following
equation 2.72, and therefore j number of unknowns occur, which are the coefficients/weights, g;,
multiplying the basis functions at each point of the domain. These unknown coefficients are

usually called the degrees of freedom of the FEM analysis.

numNodes .
a= D, g;'(r) 2.72
j=1
Furthermore, when we impose Dirichlet boundaty conditions, g = 0, or Neumann boundary
conditions where the flux of the solution is equal to zero,Vq =0, then the surface integral
appearing in eq 2.71 is also equal to zero. Considering the removal of this boundary term and

combining egs 2.71 and 2.72, the following eq 2.73 occurs.

{j Vo'(n)- v(nqu 0 (r)jdwajqo (r)("qu 0 (r)jd }

numnp numnp

DZ q, jw (r)-Vo'(r)dv +az q, jgo (Mg’ (r)dv =0 2.73
numnp
Z q, j [DVe'(r)- Vo' (r)+ap' (r)e’ (r) JiV =0

In matrix-vector notation, eq 2.73 can be written as Kq=0, where the entries of the

striffness ~ matrix, K, and the solution vector, g, are equal to:

i . i . T . .

K; =_[[Dv(p (rn)-Ve'(r)+ap (r)go‘(r)]dv and q=[q1 q - qnumnp] , respectively. So, in
\%

steady-state FEM analysis, we need to solve a linear system of equations with a certain right-
hand side (which in this specific case is equal to zero) and at the same time the boundary
conditions must be satisfied. Initial conditions are not encountered, since time is not a parameter

of the problem.

2.4.2. Transient analysis
In transient analysis, we need to include a time-dependent term, which also has to be multiplied

by a test function, (pi, and integrated over the domain volume, V:

I(ﬁq“ N) (r)jdvf%pq(mj DVo'(r)-Vo!(r+ap' (Ne'(N |V =0 274

\
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Again, using the expansion of the solution ¢ in terms of the basis functions ¢, the discretized

weak form for every test function ¢' can be written as follows:

J[ ‘ (Zq (N)’ (r)jqo (r)}dv +"§pq ([[0Ve'0) Vo' a0 ' v <0<

[ o )<o (N (r)}dh"qu M)[[0ve'0)-Ve'r) +a0 ') v -0
2.75

numnp

Zj S e v + Z q, (N)I[Dw (N-Vo'(N+ap' (Ne' (N |V =0 <

=l v
numnp numnp

Z q( ) fco(r)co (r)dV+Zq(N)j[Dw (Vo' () +ap'(Ne' () Jv =0

Notice that now—in contrast to the steady-state case—the g; coefficients are functions of the
time-variable, N, while the basis and test functions depend just on spatial coordinates. The last
step is to discretize the time-derivative of the solution g; at point j with respect to the time-
variable, N. One approach would be to use FEM for the time domain as well, but this can be
rather computationally expensive. Alternatively, an independent discretization of the time
domain is applied using the Finite Differences method. In its simplest form, this can be

expressed with the following difference approximation:
aqj(N) < djn+an —djn
ON AN

Two potential Finite Differences approximations are possible. The first one is to express the

2.76

unknown coefficients g; in terms of N+AN (implicit method), whereas the second one is to
express them in terms of N (explicit method). Herein, we choose to apply the first option,
because it is more stable than the second one. Hence, eq 2.75 is modified as follows:

numnp

Z(—q - jf o' Y + 20, [[0V0 ) () rar ' () Y 0

1 numnp numnp numnp

— Z q,.. Asto (e’ (NAV - — Z a. j«p (Ne' (NAV + Z I I[Dw (Vo' () +ag' (Ne' (N vV =0 =

numnp numnp numnp

Z 0o I 9'(Ng’ (Vv - Z d, j 9'(Ng’ (NaV + Z Uy j [ANDV'(r)- Vo' (1) + ANag' (r)g' (r) |V =0 <

numnp numnp

Z ST j [#' ()¢’ (r) + ANDV ' (r)- Vo' (r) + ANag' (r)g (r) OV = Z g, I ¢'(Ng' (Ndv
2.77

Or in matrix-vector notation form, eq 2.77 is written as:
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Aq,., =Cq, 2.78

where:
qN = I:ql,N q2,N qnumnp,N :IT

.
qN+l:|:ql,N+1 Qoner o qnumnp,N+l}

C; =[o'(Ne’(Ndv
Ky = [DVg'(r)- Vo' (r)dv

W, = [ag' (r)g’ (r)dv

A =C+ANK + ANW
So, in transient FEM analysis, we need to solve a (large) linear system of equations in order
to compute the solution, gjn+4n, Knowing the solution at the previous time-step, gjn. Besides

boundary conditions, initial conditions, ;o are imperative for the numerical solution of the PDE.

2.4.3. Integration via Gauss-quadrature
In this paragraph, we sketch the integration procedure which is most commonly used in the
context of the FEM, namely the Gauss Quadrature method. In the previous section, we started
from the strong form of the Edwards diffusion equation and, after some mathematical
considerations, we ended up with the weak form of the differential equation. In order to solve
the weak form and obtain its numerical solution, g, we first need to evaluate a set of integrals
and assembly the matrices A and C appearing in eq 2.78. In all these integrals, the integrand
depends exclusively on the basis functions that we use to discretize the domain and the solution
and their derivatives. These basis functions are defined in natural coordinates, i.e., the
coordinates of the nodes of the standard element. This offers the advantage that all these
integrals appearing in the weak formulation can be readily evaluated using a Gauss Quadrature
numerical scheme.

Let us denote by & the natural coordinates of the standard element and r the real coordinates
in the domain of interest. For the case of first order tetrahedral elements, the vector & comprises

four elements. Therefore, each coordinate system is defined as follows:
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r=[x y z],x,v,z e®
‘::[51 ‘fz 53 54:1_51_52_53]151152’53154 E[O,l]

The problem is that the actual elements that are used for the discretization of the domain

2.79

have not the shape of the standard elements, where the basis functions are defined (eq 2.80) and

the Gauss Quadrature can be applied.

?(61,6:83:8) =&
?,(8.6,,83.64) =6,
?:(81:67,83.84) =&
?4(61:65:83:84) =&,

Furthermore, the nodal points constituting the actual elements are defined in real

2.80

coordinates. In fact, the difference in shape of the domain elements from the standard element is
usually quantified as the element quality of the mesh. When a complex geometry part is meshed
with a small number of elements, they need to stretch/deform in order to capture the anomalies
of the geometry and this results in poor element quality. In those cases, the number of elements
(and hence nodal points) needs to be increased, so that the smaller elements are closer in shape
to their standard models. Nevertheless, there will always be a deviation of the actual elements
from their standard shape and the nodal points will be defined in real instead of natural
coordinates.

A mechanism is therefore needed to perform a transition from real to natural coordinates and
be able to perform the Gauss Quadrature. The mathematical operation that lets us map the basis
functions and elements from real to natural coordinates and vice-versa, is called isoparametric

transformation and it is defined by the following eq 2.81.

r)= Zcoi @r' 2.81

and the Jacobian of the transformation in eq 2.81 (from natural to real coordinates) is defined by

the matrix of eq 2.82 below.

OX OX OX OX
05 05, 0& 0¢,
j_or_ |y oy %y o 2.82

& |05 0 09 0,
0z 0z 0z 0z

05 0g, 05y 05,
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Similarly, the solution g at a certain point of the domain in real coordinates can be

associated with the standard element via the following eq 2.83.

10 =Y 0@ 283

where ¢' is the solution of the PDE at the nodal point i of the domain. Finally, in order to

calculate the integral of g with Gauss Quadrature, we use the following eq 2.84.

numel numel NUMgp

Q=[ andr=2 [a@Jde= 3, 3, W (5o )a(Gee ) 2.84

i=1  j=1
where numel is the total number of elements used for discretizing the domain of interest, numgp
is the number of Gauss points used for integrating a quantity via Gauss Quadrature, wgp is the
weight of the Gauss point which finds itself in natural coordinates &gp inside the current
element e, and q is the value of the propagator (or any other integrated quantity) at natural

coordinates Egp.

43



3. RUSSEL

3.1. Description

The parameters of a theoretical calculation with RuSseL are set in an input file which is parsed
line-by-line by a dedicated subroutine, when the runtime execution of the programs starts. The
parsing subroutine searches for special identifiers that are related to certain variables needed for
execution. In cases where an input line lacks any special identifier, it is either skipped or the
variable corresponding to the identifier is assigned a default value; therefore, with few
exceptions, the order of the commands in the input file does not matter. In addition, the parser
has been equipped with an error handling section, which checks (i) whether the user has
specified all imperative variables, such as the temperature, T, or the mass density of the bulk
polymer, psegpul, (ii) the viability of user input regarding the specified variables, e.g., both
temperature, T, and mass density, psegoui Must be given values that are greater than zero. If an
issue is encountered while parsing the input file, the code prints a relevant error message and
terminates execution. If solid surfaces are present, then the parameters of the polymer and the
solid related to their interaction are also required.
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3.1. Description

Figure 3.1 RuSseL input file: specifying polymer parameters. The user specifies the temperature of the polymer
melt along with other polymer related parameters such as: mass density, monomer mass and isothermal
compressibility at given temperature. The length of matrix and grafted chains is also given along with the radius of
gyration associated with a single monomer of the chain. In this specific example, we are running a calculation
regarding polystyrene melt at 500 K.

The mass of the polymer chains and the coarse-graining degree are set by the molecular
weight of the monomer unit constituting the polymer chains, Mmonomer, Whereas the radius of

gyration of the chains is set indirectly based on the following relation 3.1.

2
<R§C > _ %Cwlc-cz 31

c

with C,, being the characteristic ratio and lc.c being the chemical bond length between
consecutive polymer segments. These parameters are also defined by the user through the input
file. Besides the characteristic ratio and the bond length, the user must also specify the length of
the chains in terms of skeletal bonds along the backbone of the chain and the contour
discretization scheme that will be used for the solution of Edwards (i.e., uniform, nonuniform or
hybrid).

Next, the user has to specify the number of Dirichlet boundary faces that are present in the
geometry and for each one of those, (s)he has to give the type (i.e., planar surface or spherical
particle) and the id that has been assigned to the boundary during the meshing process.
Furthermore, for each of these Dirichlet boundaries, the user must give the values of the
parameters which are needed to determine the intensity of the solid/polymer interactions (Figure
3.2).
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777777777777777777777777777 SOLID PARAMETERS

Figure 3.2 RuSseL input file: specifying solid parameters. User specifies the number and type of Dirichlet faces,
i.e., planar vs spherical. In this specific example, a spherical nanoparticle is present in the system with radius 84 A
and the distance of the hard-sphere wall is set at 3.98 A. The center of the particle is located at (Xcenter, Yeenters Zeenter) =
(0.0, 0.0, 0.0) A and its Hamaker parameters are equal t0 oyiig = 3.0 A and Agiq = 6.43:10%° J. The spherical
boundary surface representing the particle was assigned the id 6 by the mesher.

Afterwards, the FEM mesh which is used to discretize the 3D domain is imported. This mesh
is externally created by the open-source mesher GMSH® and the code is designed to read it
appropriately. There is also the possibility to read meshes created by COMSOL which are
usually stored in a .mphtxt ASCII file. The mesh-file comprises the nodal coordinates, the
element connectivity of the nodes and the identity of those nodes which lie in the boundaries
where Dirichlet boundary conditions are imposed. Afterwards, we need to discretize the
controur of the matrix and the grafted chains according to the contour scheme that has been
selected by the user.

The cohesion of the polymer is specified by assigning an appropriate equation of state which
is accompanied by necessary parameters, e.g., for Helfand, it is the isothermal compressibility
xr; for Sanchez-Lacombe, we need to specify the characteristic temperature (7°), pressure (P")
and density (p’). So far, the code offers to possibility to run SCFT calculations using the
Helfand,® and the Sanchez-Lacombe’ equations of state. In addition, the free energy densities
can be combined with a square gradient term to address gas/polymer interfaces more
accurately.>® Nevertheless, the code has been written in a generic way, so that any other
appropriate model can be inserted and used.?* In general, our code is able to perform SCFT
calculations for any thermoplastic polymer melt, given than an appropriate EoS and the relevant
parameters are provided.

Subsequently, the user has to specify some parameters regarding the convergence of the field
(Figure 3.3). Specifically, the user specifies the tolerance in the norm of the field and the energy
of the system. When one of the two errors becomes lower than the corresponding tolerance, the
equilibration procedure is considered to have converged. There is also the option to start a fresh
calculation, where the field configuration is initialized to zero, or restart from an already existing
field configuration, which is stored in binary format. In this section, the user also has to specify

whether the stiffness matrix is expected to be symmetric or not, and if symmetric, if positive
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definite or not. In every case considered in the context of this thesis, the stiffness matrix is
symmetric and positive definite. For these definitions, the reader is referred to the reference

manual of MUMPS or any advanced linear algebra textbook.

XGENCE  PARAMETERS o

0: zero everywhere; 1: read from file; 2: zero everywhere and -kapa at dir. BCs)

0: nonsymmetric; 1: symmetric def. pos 2: general symmetric)

Figure 3.3 RuSseL input file: specifying file convergence parameters. In this section, the field and energy error
tolerance are specified along with the maximum number of iterations to achieve convergence. The user can also
select to start a fresh calculation, where the field is initialized to zero everywhere inside the domain, or read an
already existing field configuration from a bhinary file. Usually, the stiffness matrices occurring by the weak
formulation of Edwards are symmetric and positive definite, but the user can also select a nonsymmetric option if
not completely sure about the structure of the matrix to be fed in the solver of the linear system.

When the initialization stage is completed, the code enters the main part of the SCFT
calculation, namely the field equilibration procedure. In every iteration, the stiffness matrices for
the solution of Edwards for matrix and grafted chains are assembled according to the element
connectivity. Afterwards, given the appropriate initial and boundary conditions, the Edwards
PDE is solved using the open-source MUMPS solver v5.2.1.%% A useful feature of RuSseL is
that the solution q(r,N) can be interpolated across the contour variable, N, of the chains. This
offers the flexibility to work with different contour discretization for matrix and grafted chains
for the solution of the PDE.

Afterwards, the new field configuration, w'ew(r), is computed and compared to that of the
previous iteration. For large chains or systems with low isothermal compressibility, xt, the
aforementioned iterative scheme diverges, because the field becomes extremely steep along the
considered interfacial region. Addressing this fact, a relaxation of the calculated field is
performed by mixing it with a fraction of the field of the previous iteration, as shown in the

following eq 3.2.

W (1) =8, W', (N + (@ —a;, )W () 3.2
with amix being the relaxation parameter.

RuSseL is written in Fortran95 and there are thoughts of “translating” it in C++, which offers
better feature development scalability and more friendly object-oriented features and data
structures. It is written to support execution in both shared and distributed parallel systems using
the broadly known Message Passing Interface (MPI). Parallelization and scalability benchmarks

are presented in Section 3.7.5.
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3.2. Code Flow

Based on the resulting restricted partition function, g, which is obtained by solving the
Edwards PDE 2.2, one can compute the spatial density distributions of chain segments using eq
3.3, which in turn dictates an updated configuration of the chemical potential field, w’, according
to eq 2.8. The iterative field convergence procedure can be summarized as follows:

1. Parse the input file and set up the essential parameters of the SCFT calculation.

2. Decide what the initial configuration of the field will be: either equal to zero everywhere
or imported from file, in order to continue from a specific configuration.

3. Equation 2.2 is solved for the matrix chains of length N, applying the initial condition of
eq 2.3 and boundary conditions of eq 2.5.

4. Equation 2.2 is solved for the grafted chains of length Ng, applying the initial conditions of
eq 2.4 and boundary conditions of eq 2.5. For details regarding the numerical calculation of the
delta function at each grafting point, the reader is referred to Section 3.6.2.1.

5. Determine the density profiles of matrix, ¢m, and grafted, ¢4, chain segments using eq 3.3.

6. Update the spatial configuration of the field, w’, using eq 2.8.

7. Calculate the free energy of the system using eq 2.38.

8. Repeat steps 3 to 6 until the energy difference between two successive SCF iterations has
been achieved.

In Figure 3.4 below, we present the flow diagram of the three-dimensional version of
RuSseL, which consists of two main parts: the initialization stage (yellow background, left) and

the iterative stage (blue background, right).
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Figure 3.4 Flow diagram of RuSseL3D.
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3.3. Commercial software vs RuSseL

When we first started running SCFT calculations, we addressed systems comprising exclusively
matrix chains. In order to solve the Edwards PDE, we used the FEM as implemented by
mainstream commercial software. The most challenging part when including grafted chains in
the system is the initial condition of eq 2.4. Because the commercial software would not let us
assign initial conditions on indivual points of the mesh (which is necessary for introducing
grafted chains in the SCFT mathematical model, according to eq 2.4), we opted to approximate
Dirac-delta functions with Gaussian distributions of a certain standard deviation. For instance,
in Figure 3.5a, we depict the density profiles of matrix and grafted chains in a molten
polyethylene film sandwiched between repulsive solid walls. All chains had length equal to Np,
= Ny = 100 skeletal bonds and the simulation temperature was equal to 450 K. The simulation
box had size equal to 8x80x10 nm® In Figure 3.5b, we present the density profiles of

polystyrene melt of Ny, = 100 skeletal bonds at T =500 K in a spherical geometry.

a) 125 4 b)
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0.75} -
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0.251 - 02k 4
'] '] 1 1 1 1
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Figure 3.5 Density profiles of matrix and grafted chains in a polyethylene film. a) Reduced segment density
profiles of grafted and matrix chains in a polyethylene film sandwiched between repulsive solid surfaces bearing
terminally grafted polyethylene chains. The grafting density was equal to 0.15 nm™?, corresponding to 9 grafted
chains per flat surface. Temperature was equal to 450 K (isothermal compressibility, xr = 1.43 GPa ) and the
simulation box had size 8x8x10 nm?®. Both matrix and grafted chains had length equal to Ny, = Ng = 100 skeletal
carbon bonds. In order to obtain this solution, a spatial mesh of ~5-10°> mesh points and 100 chain contour points
had to be used. b) Segment density profile of polystyrene matrix chains in contact with a spherical repulsive wall of
radius equal to 8 nm. All chains had length equal to N,, = 100 skeletal carbon bonds and the temperature was equal
to 500 K (isothermal compressibility, xr = 1.07 GPa*). The simulation box had size 20x20x20 nm®. This was the
best density configuration that we were able to obtain and it required a spatial discretization of 9-10°> mesh points,
because of the lower isothermal compressibility of polystyrene. Polystyrene chains were also discretized with 100
contour points.
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We faced some technical difficulties in solving our problem by means of commercial
software. The main problem was the bad interpolation that it applied to the imported updated
field configuration. As a consequence of this bad interpolation, an extremely dense mesh
(roughly 9-10° mesh points) had to be used to clear out the noise in the calculated profiles, which
led to a high computational cost per iteration (above 50 min for simple free-film systems).

No matter how hard we tried during the first year of this PhD thesis, we could not
circumvent the interpolation performed automatically by the commercial software or assign
values directly to individual points of the mesh. Another significant issue arose from the
substitution of delta functions with Gaussian distributions. Despite the fact that the latter are
infinitely differentiable, they impose a maximum grafting density that can be set in the
calculation; increasing the grafting density means that we need to reduce the standard deviation
of the Gaussian distributions so that they do not overlap. Reduction of the standard deviation of
Gaussian pulses needs to be accompanied by a refinement of both the spatial mesh and the
contour mesh of the chains, otherwise the solution of the PDE will not converge due to
numerical issues.

In our code, RuSseL, which we control fully, we are able to set the grafting points exactly the
way we wish. All solution steps are implemented in the same code, i.e., solution of Edwards,
propagator convolution, and update of the field configuration based on an appropriate equation
of state. This also enables us to run our field-iterative scheme without being dependent on
external packages, e.g., Matlab, to feed the post-processed PDE solution back to the main

software solving the PDE. This fact leads to considerable profit related to data 1/0.

3.4. Calculated properties

3.4.1. Total and partial segment density profiles

To begin with, having obtained the propagators gm and dy from the solution of eq 2.2, the density
profiles of matrix and grafted chain segments, pm(r) and ¢q(r), respectively, are calculated via
the convolution eq 3.3. The total reduced segment density is just the sum of ¢y and ¢g4. Such
reduced segment density profiles are presented in the following Figure 3.6 and Figure 3.7.
Having calculated the reduced profile ¢, the corresponding segmental or mass density profiles
can be retrieved by multiplying ¢ with pseq buik OF pmasspuik OF the polymer melt, respectively.

o1



Chapter 3. RuSseL

1
2.0 =1 [ dNg, (r,N)g,, (. N, - N) 3.3
co
single surfaces opposing surfaces
F T T T T I T T T T I T T T T | T T T T |: F T T T T | T T T T I T T T T I T T T T | B
1 & el E
0.8 ElS E
S 0.6F M3 E
0.4F ElS E
0.2F Sk |2 E
0 _ I 1 L 1 L I 1 L 1 1 | L L 1 1 I_ »
;. I T T T T I T T T T | T T T T IE;‘
15 5y
0.8E E[:
S 0.6 SM_2&
0.4 =
0.2 =
0 I 1 L 1 L I 1 1 1 L | 1 L 1 L I_
I T T T I T T T | T T T I:
1 E
0.8 / E
s 0.6 =
0.4 =
0.2 =
O I I L Il L I 1 1 1 L | 1 L 1 L |:
I T T T T I T T T T | T T T T |:
1 E
0.8 =
s 06 GV 3
0.4 =
0.2 E
0 1 1 1 1 I 1 1 1 Il I 1 1 1 1 | 1 1 1 1 I*
0 5 10 15 200 5 10
h (nm) h (nm)

Figure 3.6 Density profiles of matrix and grafted chains in various kinds of planar interfaces. Reduced segment
density profiles of matrix (m, green) and grafted (g~: orange, g*: red) chains which are in contact with planar solid
surfaces. The panels on the left/right correspond to single/opposing (VM/VMV) vacuum-matrix, (SM/SMS) solid-
matrix, (GM/GMG) grafted-matrix, and (GV/GVG) grafted-vacuum interfaces; V: vacuum, S: solid, G: grafted, and
M: matrix. The insets depict graphical representations of each system; the dots represent grafting points, and the
vertical lines denote the boundaries where Dirichlet boundary conditions, g, = 0, are imposed. The polymer-grafted

surfaces (G) at the left and right boundaries exhibit grafting densities and grafted chain lengths equal to (Ug— : Ng,)

= (0.8 nm?, 50 skeletal bonds) and (0.4 nm 200 skeletal bonds), respectively. The distance between the
boundaries of the domain was set to L = 20 nm. Matrix chains have a chain length equal to 100 skeletal bonds.
Solid/polymer interactions correspond to perfectly wetting polystyrene films with the hybrid Hamaker-ramp
potential (see Section 2.1.5) at a temperature equal to T = 500 K (for parameter values, see Table 4-2).
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Figure 3.7 Density profiles of matrix and grafted chains in various kinds of spherical interfaces. The physical
systems are (VM) spherical cavity, (SM) polymer melt/smooth nanoparticle, (GM) polymer melt/grafted
nanoparticle, and (GV) a grafted nanoparticle in vacuum. In all cases, the radius of the nanoparticle/cavity is equal
to 2 nm.
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Figure 3.8 Total and partial reduced segment density profile of a perfectly wetted SiO,/PS GMV system. For
parameter values, see Table 4-2. Grafting density is o, = 0.4 nm?, length of grafted chains Ny = 50 skeletal bonds
and length of matrix chains N, = 100 skeletal bonds.

3.4.2. Brush thickness
The dimensions of the grafted brush can be quantified in terms of the root mean squared brush
thickness, which is calculated with eq 3.4; it is a functional of the density profile and

corresponds to the rms distance of grafted chain segments from the solid surface.

i d h 2 g 1/2
(h?)" = Lol 40 3.4
J, 40
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In eq 3.4, h(r) is the distance between a segment located at r and the solid surface. Another

frequently used measure for quantifying the thickness of the brush is the characteristic distance

hagw, Which is the distance between the center of the NP and a surface, o®,,  , parallel to the

surface of the NP, which encloses 99% of grafted chain segments (eq 3.5).
[, dro,(r)=0.99N,n, 35

with Rege; being the three-dimensional domain enclosed between 0R,,; and OR,,

3.4.3. Profiles of individual chain segments
RuSseL allows for decomposition of the density profiles into contributions of individual chain
segments, such as chain ends and middle segments.?"°" The contribution of the N™ segment to

the corresponding density profile of the kind-c chain can be retrieved by the following eq 3.6.

1
¢C,N (r):N_qc(r’N)qm(r’ NC_N) 3.6

c

Setting N to 1 or N results in the density profile of the end segments, which can be a useful
measure of the tendency of chains ends to segregate at the interfaces.>**’? Setting N = N¢/2, on
the other hand, results in the reduced density profiles of middle segments; comparisons between
end and middle segment profiles provide useful information regarding the overall shape of the
chains.?

Figure 3.9 depicts the segmental density profiles, ¢cn, for the chain ends (N = 1, N¢) and
middle segments (N = N./2) of grafted and matrix chains. The first segment of the grafted chains
(N = 1) corresponds to the grafting point and features a sharp peak at h = hy. The middle and the
last end segment of the grafted chains exhibit continuous density profiles, and the latter spreads
further towards the matrix region. The density profiles of matrix chain segments are suppressed
in the vicinity of the grafted chains, since the latter reduce the available accessible space. Unlike

grafted chains, the two end segments of the matrix chains are equivalent due to symmetry, hence

their corresponding distributions are identical, ¢,,=¢,, . The ends of the matrix chains

feature more pronounced profiles near the interfaces compared to the middle segments.
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Figure 3.9 End/middle density profiles of grafted and matrix chains in a perfectly wetted SiO,/PS interface. (a)
Reduced density profiles of starting, middle and end segments of grafted and matrix chains; (b) the corresponding
normalized distributions obtained via eq 3.7. Insets illustrate schematically the starting, middle and end segments of
grafted and matrix chains. The profiles concern a perfectly wetted SiO,/PS interface (for parameter values, see
Table 4-2) with grafting density oy = 0.4 nm?, length of grafted chains Ng = 50 skeletal bonds and length of matrix
chains N, = 100 skeletal bonds.

The tendency of chain segments to segregate at the interface(s) can be better quantified in
terms of the normalized segment distribution, which is calculated via the following eq 3.7. The
reduced density of the N™ segment of the chain is expressed relative to the total segment density

of kind c chains (eq 3.7), consequently, in a bulk polymer phase, ¢, =1.

5., (1) = 2Len 1) 37
@,(r)

According to Figure 3.9b, the segment density profiles of matrix chains become ¢_, =1

across the bulk region. Near the solid/polymer and polymer/vacuum interfaces, the profiles of

end segments of matrix chains are enhanced significantly by ¢.,~6 and ¢,, ~100,

respectively, whereas the profiles of middle segments are slightly less than the bulk value,

P, 12 <1. The corresponding profiles for the two ends belonging to grafted chains are highly

asymmetric, since ¢, ~210 and €7’g,Ng ~0.6 at the grafting point, while ¢,, ~0 and (/NJg,Ng ~180

at the edge of the free surface. The middle segments of grafted chains exhibit suppressed profiles
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at the interfaces and over most of the region occupied by matrix chain segments. This effect

regarding middle segments is much more pronounced than for matrix chains; at the polymer-
vacuum interface, (Z)g'Ng L, <1,

Besides the end and middle segments, RuSseL gives the option to export the density profile
of any other segment specified by the user. The contour plots presented in the following Figure

3.10 depict g and ¢, for all segments belonging to grafted and matrix chains.
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Figure 3.10 Contour plots of the reduced density of segments belonging to (a) grafted and (b) matrix chains. The
ordinate indicates the index of each segment along the contour of the chain, whereas the abscissa is the distance of
the segment from the left solid surface. Blue/red color corresponds to low/high values of the displayed quantity, as
denoted by the color bars. The contour plots in (c) and (d) depict the corresponding normalized segmental density
profiles, defined in eq 3.7. All profiles concern a perfectly wetting SiO,/PS GMV interface (for parameter values,
see Table 4-2) with grafting density ¢, = 0.4 nm?, length of grafted chains Ng = 50 skeletal bonds, length of matrix
chains N, = 100 skeletal bonds. The horizontal line is a guide to the eye; it crosses the region corresponding to
middle segments.

3.4.4. Adsorbed vs free chain segments

RuSseL offers the option to decompose the density profiles into contributions of adsorbed and
free segments based on segment-surface distance criteria. Essentially, whenever a chain segment
lies at a distance lower than hygs from the surface, it is classified as adsorbed to the surface. This
is purely a geometric distinction based on a critical distance from the solid surface, which is

defined by ther user through the input file. There are several approaches to setting the critical

distance, depending on the specific application, namely:
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e Solid adsorption: hags can be tuned based on the peaks of the density profile (e.g., in ref
% has Was set equal to 0.6 nm, which is the distance between the first two peaks of the
polyethylene/graphite density profile), or based on the strength of solid/polymer interactions
(e.g., in ref 8, h.gs was set equal to 1.28 nm, where the PS/silica interactions, as described by the
Hamaker potential, become extremely weak).

e Segregation at polymer/vacuum interfaces: in ref 2, hags Was set equal to a distance where
the reduced density ¢ reaches the value 0.5.

e Brush penetration: hygs can also be set to the span of the grafted brush, hggge, in order to
quantify the tendency of the matrix chains to penetrate the brushes, or the tendencies of
opposing brushes to penetrate each other.

Based on the distribution of adsorbed and free segments of a chain, it is possible to classify
the chain into several states and sub-states, which are reported in Table 3-1.

A chain that is comprised entirely of free segments is classified as free (f); otherwise, in case

it includes adsorbed segments, it is treated itself as adsorbed (a*). Adsorbed chains can be

further classified into fully (a;,) and partially adsorbed (agart). Moreover, the free segments
belonging to partially adsorbed chains can be classified into free loops (aﬁmp_f) and free tails (
afai,_f ). In the same way, adsorbed segments belonging to adsorbed chains can be classified into

adsorbed loops (ai,op_a) and adsorbed tails (afa”_a). Adsorbed chain segments can be further

characterized as trains or bridges.?®*%% As can be imagined, grafted chains cannot be
classified to be free, since in most cases, the grafting points are located below h,gs; nevertheless,
this classification procedure can unveil meaningful sub-states, such as fully and partially
adsorbed grafted chains, as well as grafted bridges.

Figure 3.11 demonstrates some representative examples, whereas Figure 3.12 depicts the
density profiles of the aforementioned states for a perfectly wetted SMS system (for parameter

values, see Table 4-2), where the adsorption distance is set at 6 nm for both the left and the right

plate, i.e., h, . =h’ =6 nm.

ads ads
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Figure 3.11 Schematic representation of the adsorbed states of a chain. Illustration of a (i) free chain, f, (ii) a fully
adsorbed chain to the left surface, a;,,, (iii) a partially adsorbed chain to the right surface, a;art , which features
loops and tails outside (aﬁ,op_f , a:a"_f ) and inside (<':1|+00|0_a1 ,a:a”_a) the adsorption region, and (iv) a chain that is

partially adsorbed on both surfaces forming a bridge, a,,q -

The first step of the classification procedure is to calculate the restricted partition functions

of free (q'), fully adsorbed (g* , g ), and non-adsorbed (g , " ) chains with respect to the

left (—) and the right (+) surface; e.g., see Figure 3.12a. It is stressed that a chain which is not
adsorbed on a specific surface is not necessarily free, since it might be adsorbed on the
opposing surface.

To calculate each one of these propagators, the Edwards diffusion eq 2.2 is solved with the
additional constraint that the Dirichlet boundary condition, qgc(h, N) = 0, is set to all the nodes
which find themselves at distance, h, within the ranges specified at the rightmost column of
Table 3-1. In other words, Edwards is solved in such a way that chain segments are prevented
from accessing these regions of the domain. Subsequently, the density profiles corresponding to
these states and sub-states are determined via convolution integrals and their relations specified
in Table 3-1 below.
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Figure 3.12 Density profiles of chain segments belonging to different adsorbed states. (a) Reduced segment density
profiles of free (f), fully adsorbed (alfiuII ), and non-adsorbed (!ai) chains with respect to the left (—) and right (+)

solid surfaces indicated by the dashed red lines. (b) Profiles of chains adsorbed on the left surface, decomposed into
contributions of fully and partially adsorbed chains, loops, tails, and bridges. The profiles were obtained from a
perfectly wetted SiO,/PS SMS system (for parameter values, see Table 4-2) with grafting density, ¢; = 0.4 nm2,
length of grafted chains, Ng = 50 skeletal bonds, length of matrix chains, Ny, = 100 skeletal bonds.
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Table 3-1 Reduced densities, partition functions, and constraints for evaluating each state and sub-state regarding
adsorbed and free chain segments.

State Symbol Reduced Segment Restricted Dirichlet
(a) Density Part. Function Nodes, g.(h, N) =0
f £ f f
free f ¢! =C(af,q,N,,h) q hel0,h, JUIh.,., L]
adsorbed fully Ay (p:fi”" = ( B ,qafu" N, h) :fi“" helh,, Llorhe[0h}]
not adsorbed la* (p =C (qc ,qC N, h) qf:ai he[0,h Jorhel[h,,
+ a* la*
adsorbed a 0, =Q.—¢,
adsorbed partially a;an . Bt _ (0«: (/)Cé‘ﬁ"
+ - + a\,iqu _ 1a* b
loops at, o= c( e g N, h) 0 =d,-q" -q
tails outside the adsorbed + i o
region A ¢ 3 2C( N, h)
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It is noted that aiop states corresponding to free or adsorbed segments are denoted as aﬁmp_f

and aiop_a, respectively; hence, aﬁmp :afmm_f + ;opa- Moreover, free/adsorbed states have been

defined in a way so that the following relations, 3.8, 3.9, 3.10, are satisfied.

¢:’ — (Dgfull +§0:5m 3.8

gpca;ran — ¢aluopf + ¢:Ioop a + ¢(";"taulf gpatall a 3.9
a a* Apridge

Q.=+ +o, - 3.10

Finally, we mention here that the profiles of the bridges are a measure of the overlap
between the profiles of adsorbed chains at the opposing surfaces; thus, in situations that the

separation distance of these surfaces is large enough, gprigge — 0.
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3.4.5. Chains per area profiles

In three dimensions, the chains/area can be defined as the number of chain segments which cross

at least once a surface d®, and it is a measure of chain orientation introduced in references

2645 " A meaningful choice for 6®, would be a surface which is parallel to the surface of the

2,64,66

solid (OR,;, ) at distance hy; min(||r1 —).r, € OR, T, € OR 4 ) = h,. References include a

detailed explanation of the chains/area calculation in one dimension; in this thesis, we present a
more general formalism in three dimensions, which is compatible with smooth surfaces of
arbitrary shape. For both matrix and grafted chains, the number of chains per unit area can be

determined using the following egs 3.11 and 3.12,>24%4%

J e (r N )dr

3.11
J.ch(r, N, )dr

pint,c (hO) =1-

11
Mo () = Pce () -, 2o (1) 3.12
hy c

Initially, we estimate the probability pinc(ho) that a chain of kind ¢ will intersect the surface

ORy, at least once (regardless of where in ® it may have started) using eq 3.11. qshhape is the

restricted partition function of all kind c chains (i.e., matrix or grafted) that are unable to cross
the surface at distance ho from the interface, and it is calculated by solving the Edwards

diffusion equation with the additional Dirichlet boundary condition, q.(r,N)=0,VreoR,, .
Moreover, S, is the surface area of o®,, , and J‘R p.(r)dr is the total number of type-c chains.

nenc(ho) corresponds to the number of type-c chains per unit area that pass (at least once) through
the surface at which finds itself at distance ho from the solid surface. By this definition, near the
grafting points, the chains/area will be equal to the grafting density, as illustrated by the dashed
line in the following Figure 3.13.
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Figure 3.13 Chains/area profile in a perfectly wetted GMV SiO,/PS system. For parameter values, see Table 4-2.
Grafting density oy = 0.4 nm2, length of grafted chains Ng = 50 skeletal carbon bonds, length of matrix chains Ny, =
100 skeletal carbon bonds and domain length L = 10 nm.

3.4.6. Profiles of individual grafted chains

In 3D, we are able to determine the density profiles of segments belonging to a specific grafted
chain or group of grafted chains. This happens by evaluating the restricted partition function of

the iy grafted chain via the following initial condition:

N . or-r,.
Gy, (1,0) = — 1) 3.13
9.ig

psegbulk qm( 9.y’ g)

In other words, after the iterations on the field have converged, we solve eq 2.2 using the
initial condition value corresponding to the grafted chain of interest and all other grafted chains
are assigned an initial value equal to zero so that they do not interfere in the solution.
Afterwards, we substitute the resulting propagator in the convolution eq 3.3 and calculate the

spatial distribution of segments belonging to the grafted chain ig:

1 Ny ig
¢g| (r N_ I ng,ig (r’ N)Qm (r’ Ng,ig - N) 3.14
0

9.1y
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3.5. Chain discretization

3.5.1. Different discretization for matrix and grafted chains

An important step towards the acceleration of our 3D calculations is the ability to solve the
Edwards equation for matrix chains with different contour discretization than grafted chains.
The chain contour step, di = nj-n;_1, is a vital parameter for the numerical solution of the PDE.
Low d; values result in finer discretization (more steps, ns) and thus higher accuracy and
computational cost. The initial solution steps are sensitive to di—especially for grafted chains—
whereas the latter steps are not; therefore, applying the same discretization for matrix chains is
overkill. In our code, we have introduced the feature of different contour discretization for
matrix and grafted chains and furthermore the corresponding chain propagators can be

convolved in contour space through one-dimensional interpolation.

3.5.2. Uniform vs nonuniform discretization

It is essential to benchmark the solution of Edwards under different contour discretization
schemes, especially for grafted chains which are more sensitive due to their delta initial
condition (eq 2.4). At a first stage, we compare a uniform and a nonuniform discretization,

where the latter is based on a Chebyshev expression given in the following eq 3.15.%

n =N {1—00{%}} 3.15

where N is the length of the chain, i is the contour index and n; is the contour point value.
Following this formula, the chain contour step, d;, is smaller at the initial steps and gradually
increases, reducing the total number of required contour steps, ns, to obtain accurate results.
Figure 3.14a presents the profile of the chain propagator, q(r,N), for N = 10.5 along the line
{x =y = 0} with the uniform (left) and nonuniform (right) scheme, while the bottom panels
display the error with respect to the exact solution. The error of the uniform scheme is noticeable
for ng < 64, whilst with the nonuniform scheme the required ns is halved. We come to the same
conclusion in the case where ICs are applied at a single mesh point, as shown in Figure 3.14b.

The latter case is directly related to assigning ICs for the grafted chains.
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Figure 3.14. Contour discretization benchmarks: uniform vs nonuniform discretization. Effect of chain contour
discretization on the solution of the Edwards PDE for PS chains in contact with a solid surface. (a) The ICs of
grafted chains are imposed at points lying at Qe = [X|, [y, [z| < 2.5. Top panels depict gg(z,N) for N = 10.5 and
bottom panels show the error with respect to the exact solution. (b) gg(rgi,N) versus N where the ICs are applied at a
single point of the domain.

At the next step, we wish to render the chain discretization independent of the chain length.
Until a certain contour point, N¢sw, we perform a Chebyshev-based contour discretization which
is the same no matter the length of the chain to be discretized. The value of N¢,sw is determined
after a series of benchanks, which are presented in Section 3.7.2. Beyond that point, the
discretization is uniform, the step size is the same for any chain length and what changes is just
the number of points. Mathematically, this hybrid contour discretization scheme is expressed via
eq 3.16.

Applying the scheme described above, which is illustrated in Figure 3.15, we manage to
maintain a fair weighting of the ends of the chains, no matter its length, while keeping an
economical discretization of the rest of the chain. This allows for larger chains to be addressed

and accuracy to be ensured.®’
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3.5.3. Hybrid chain contour discretization

The efficiency of solving eq 2.2 can be enhanced by invoking a contour discretization which is
finer near the starting end of the chain and gradually increases to a maximum value. Equation
3.16 illustrates the hybrid (asymmetric) discretization scheme, which is used in all calculations
performed with the three-dimensional version of RuSseL. The chain contours are discretized
nonuniformly based on a Chebyshev polynomial®”®® until a threshold contour length, Ncsw.

After that point, a uniform discretization is used.

N4, |1-cos 72'_; , 0<i<ig,
N, =1 2i; g ' 3.16

Nc,sw +(| e sw )ANc,max’ lesw <1< ot

where, N is the contour length of a kind-c chain at discretization step i; icsw = Ncsw / AN ave 1S

the number of steps up to a switching point, N gy, =N ; ANcave IS the average contour step

Clgsw !
size for N¢i < N¢sw; is the maximum contour step; icotat = lc.sw + (Nc — Nesw) / ANcmax 1S the
total number of contour steps.

Figure 3.15 illustrates an indicative discretization for a case with N; = 92.0, N¢sw = 40.0 and
ANcave = 1.0. Using this hybrid chain discretization scheme, we manage to maintain a fair
weighting of the ends of the chain no matter its length, while keeping an economical
discretization for the rest of the chain. This allows for larger chains to be addressed accurately
with minimal cost.®” The efficiency of the scheme can be further enhanced by incorporating
different sets of (Nmsw, ANmavwe) and (Ngsw, ANgawe) for the matrix and grafted chains,
respectively. It is noted that the convolution integral in eq 3.3 requires a symmetric
discretization scheme (eq 3.17), which receives values from the asymmetric scheme in eq 3.16

via interpolation along the contour of the chain.

N, =%N{1—co{n;ﬂ 3.17
’ IC,COnV

With i¢conv = Ne / AN¢.ave being the number of steps for propagator convolution.
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Figure 3.15 Hybrid chain contour discretization scheme as implemented in the three-dimensional version of
RuSseL. Panel (a) depicts the chain contour and critical contour point, N sw = 40.0 (green dotted line), indicating
the point where the discretization switches from Chebyshev to uniform. Panel (b) depicts the corresponding step
size employed for the solution of the Edwards eq 2.2 and its value, AN max, after the switching point.

3.6. Convergence and Initial Conditions of Grafted Chains
The initial conditions of grafted chains for the solution of Edwards eq 2.2 are given by eq 3.18
below.

Ny 5(r—rg’ig)

N
qy(r,0)=—2"->"

Psegpuik ig=1 O, (rg’ig , Ng) 3.18

Ineq 3.18, 5(r —Iy, ) is the Dirac-delta function, firing at the grafting points and associating

each grafting point with its corresponding value of the initial condition. psegpui 1S the segment
density in the bulk polymer melt. The Dirac-delta function triggered at the grafting points is
consistent with the physical meaning of the restricted partition function; the probability of
finding the first segment of a grafted chain iq is nonzero only at the corresponding grafting point,

Iyi,» and zero everywhere else inside the domain of interest. It is noted that the Dirichet
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boundaries make the surface 0R; inaccessible to both matrix and grafted chains; hence, the

latter are grafted at a distance hy; from the solid surface.***"1%

3.6.1. 1D calculations

When invoking SFCT, there is a special difficulty associated with the mathematical description
of grafted chains, whose one end is grafted to the solid surface. The chain propagator of these
chains is subject to the Dirac-delta function initial condition in eq 2.4.*' Moreover, the
denominator on the right-hand side of eq 2.4 is numerically challenging, since the chain
propagator of matrix chains goes to zero close to the solid surface. A commonly used approach
to address these issues is to reposition the grafting points to a surface close to the solid instead of
right on top of it.%"#1%

Regarding the numerical implementation of the delta function, smearing of the grafting
points in the direction normal to the solid surface is often introduced by treating the grafting
point density as a Gaussian distribution** or as a rectangular function. Guided by these studies,
in the 1D version of RuSseL, we set the location of the grafting points at the discretization nodal
point which is nearest to the hard-sphere wall. In 1D systems of spherical symmetry, e.g., single
grafted nanoparticle in a polymer matrix or contact with vacuum, the grafting points degenerate
into a grafting “spherical shell” with radius slightly larger than that of the NP itself (Figure 3.16

orange arrow) and thickness Ah.
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b = oR”
grafting adsorbed Dirichlet BC Neumann BC box

points points q(r,N)=0 Vg(r.,N)=0

Figure 3.16 Schematic illustration of a grafted nanoparticle inside polymer melt. (a) A particle-based representation
of a nanoparticle with polymer chains grafted ar ry (orange), embedded in a polymer matrix (green chains). (b) In
unidimensional SCFT calculations, the chains are replaced by a density field and the grafting points are smeared
normal to the radial direction. r.4s depicts the critical distance from the center of the NP, based on which the matrix
chains are categorized as adsorbed (e.g., see red circles in (a)) or free.

Smearing of the grafting points means that they become delocalized throughout the surface
near the solid substrate, suggesting a smoothed distribution of grafting points, which practically
ignores the presence of a grafting point at a specific surface point; e.g., in Figure 3.16b the
grafting points have been smeared across a spherical cell highlighted by an orange dotted circle.
In doing so, eq 3.18 for the ICs of grafted chains can be written as follows:

S, o,N, o(h-h)

g, (hy,0)=— 3.19
o Shg pseg.bulk qm (hg’ Ng)

where oy = ng/Ss is the grafting density, Ss is the surface area of the solid, and Shg is the surface

area over which the grafting points are smeared. To make eq 3.19 applicable for both spherical

and planar geometries, it has been written in terms of h and hg, which denote segment-surface

and point-surface distance, respectively. Consequently, in spherical geometries, h=r—R; this

relation is ill-defined in planar geometries, since r, Ry —oo. The three-dimensional delta

function 5(r—rg]ig) is approximated as 6(h—hg)/8hg for all i.
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For planar surfaces with area Ss, the Edwards eq 2.2 is evaluated across the normal direction

with respect to the surface, and the differential dr of the spatial integration equals the volume of

the layer, dr — S.dh . The delta function in eq 3.19 is set to the inverse discretization step in the

h direction; i.e., 5(h—hg)z1/Ah, with Ah being the width of the intervals in which h is

subdivided in the numerical solution.
On the other hand, for spherical NPs with area equal to Ss = 47Rs?, the Edwards eq 2.2 can

be evaluated across a radial direction (normal to the surface) as shown in Appendix F.

3.6.2. 3D calculations

In the three-dimensional version of RuSseL, where the FEM numerical scheme is applied, the
initial condition of the grafting points is evaluated exactly upon the desired points of the domain
and the delta function is again evaluated as the inverse volume assigned to the nodal point.®’

The stability of the 3D-SCFT algorithm is accomplished by means of a successive
substitution scheme, which is typically used in these calculations, and a mixing parameter which
acts on the field and has to be lower than a maximum value.'®* This maximum value is always
lower than unity and depends on the length of the chains (Section 3.7.3) and the isothermal

compressibility, «r, as shown in egs 3.20 and 3.21 below.

w Iifc - amixWIifc,next + (l_ ami>< )Wlifc,prev 320
A
mix — 3.21
max(N,, N, )

where Anix IS proportional to «r.

At each iteration of the SCF algorithm, the linear system of equations arising from the
discretization of the weak form of the Edwards equation is solved by the open-source direct
solver MUMPS,*>%1% \which is also linked to our code. The iterative scheme is executed until
the error in successive evaluations of the total free energy is lower than a set tolerance, AE™.

As iterations proceed, there is another source of error that needs to be controlled. Ideally, the
delta function values, for the initial condition at each grafting point, are independent of the
configuration of the field. In practice, however, the number of grafted chains corresponding to
the current field configuration deviates slightly from that corresponding to the specified grafting
density. For that reason, the number of grafted chains is restored through numerical evaluation
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of the proper value of the delta function at each one of the grafting points. This delta evaluation
involves the solution of the Edwards equation ng times; therefore, it is performed sparsely at
certain stages of the field iteration process. In particular, the numerical evaluation of the delta
function is performed if the relative error in the number of grafted chains exceeds egm' = 0.5%.
When this happens, the field equilibration procedure pauses, delta values and initial conditions
at each grafting point are updated, and afterwards, field convergence proceeds with the updated
grafting point initial conditions. Below we sketch the procedure of the numerical calculation of

initial conditions.

3.6.2.1. Numerical Estimation of the Delta Function on the Grafting Points
To begin with, a tentative approximation of the delta function is obtained as the inverse volume

assigned to the grafting point (node) of the mesh:

Olentative (I’ — 1y, ) = Vi = T 3.22

with Lel,ig being a list including all elements sharing the common point (node) ig, and Vg the

volume of the j" element. The factor 4 is because each (tetrahedral) element has 4 nodes.
Ideally, solving the PDE 2.2 using the initial condition in eq 3.18 subject t0 Jientative Should
yield exactly ny grafted chains; there is, however, a slight deviation from this number during

field equilibration. In order to correct for this, for each grafted chain ig, the corresponding delta

function 5(r— Mo, ) is calculated as follows:

1) The tentative restricted partition function quig,temaﬂve of the igth grafted chain is calculated

by evaluating the PDE 2.2 subject to the tentative initial condition in eq 3.23 (i.e., eq 3.18

With 5 — 5tentative and ng = 1).

qg ( )_ §tentative (r_rg,i,gl ) Ng -1

r.,0)= 3.23
Qg ?
qm (rg,ig ’ Ng ) ' pseg,bulk
with gm being the propagator of matrix chains subject to a field Wifc' .
2) The tentative density field of the igth chain is calculated via convolution:
1
gog,ig,tentative (r) = N J- qug,ig,tentative (r’ N)qm (r’ Ng,ig - N) 324
g,ig 0
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3) The number of grafted chains (which, ideally, is 1 in this case) is calculated by integrating
eq 3.24.

_ loseg,bulk

ng,ig tentative — N— I d r¢g,ig tentative (r) 3.25

giy ®

4) By taking advantage of the linear dependence of ng,ig,temaﬁve on o,

tentative

(r — Ty, ) , the delta

function value which yields exactly one grafted chain is given by eq 3.26.

o,

numerical

(r—rg’ig)z;é (r—rgyig) 3.26

n tentative
g.ig ,tentative

Finally, we compute the correct value of the initial condition via eq 3.28 and solve Edwards
once again for all grafting points, where each grafting point has its own initial condition and the

propagator is zero everywhere else inside the domain, as suggested by eq 3.18.

qg(no):qu,ig (r,O) 3.27
ip=1
where

N r—r,;
Qg (r,0) = — o) 3.28
! pseg,bulk qm (rg,ig ! Ng)

numerical (

The updated value, dnumericat, requires the solution of Edwards ng times, but this happens
rarely compared to the total number of Edwards solutions required for equilibration of the field.
In the most intensive 3D-SCFT calculations, meaning low isothermal compressibility or high
chain length and therefore steeper field in the interface, the number of iterations for field
equilibration varies between 10° and 2:10°. For each one of these iterations, the Edwards
equation must be solved 2 times, once for matrix and once for grafted chains, giving us a
number of Edwards equation solutions on the order of 2-4-10°. With a relative tolerance in the
number of grafted chains equal to agto' = 0.5% (which is quite strict), delta update takes place on
the order of 3 times. For the largest grafting density and particle radius that we have addressed
so far, we had 644 grafted chains and therefore approximately 3-644 = 1932 Edwards equation
solutions were required, so we can say that for the largest systems addressed in this work, we
had roughly a 100% overhead, which is the cost of analytically treating each grafted chain on its

own.
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We mention, however, at this point, that calculating the initial condition of grafted chains is
a trivially parallel operation, meaning that each grafted chain can be assigned to a subset of CPU
processes and no communication is required whatsoever among processes working on different
grafted chains, because each grafted chain must be treated as if no other grafted chains exist in

the system. The total number of Edwards solutions is given by a relationship of the form:

Total Edwards solutions = 2-field_iterations +k - n 3.29

with k being the number of delta updates to meet the tolerance regarding the number of grafted

chains.

3.7. Benchmarks of RuSseLL3D
3.7.1. Spatial Discretization

In all 3D-SCFT calculations, domain discretization is mainly controlled by tuning the maximum
allowed element volume, when the meshing process is executed. When decreasing the maximum
element volume that the mesher is allowed to create, the discretization becomes finer and vice-
versa.

Furthermore, given the steepness of the solution of the PDE near the solid surfaces, we need
to ensure that a finer discretization is applied in those regions, while maintaining a coarser mesh
outside that region, to prevent the number of mesh points from increasing dramatically. Hence, a
second degree of freedom is introduced to control the number of mesh points. It is the width of
the spherical cell which defines the subdomain where the finer meshing will be applied. In the
context of the Helfand EoS (which is used in all 3D-SCFT calculations presented in this thesis),
the steepness of the solution is detected below a distance of 0.5 nm from the solid surface;
hence, the width of the spherical mesh is set equal to this distance, hy = 0.5 nm. Beyond that
distance, conditions resembling bulk prevail and a coarser mesh is applied. In Figure 3.17 we
demonstrate the dependence of the free energy terms on the maximum element volume inside

the dense-mesh region and in Figure 3.18 the corresponding total free energy.
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Figure 3.17 Spatial discretization benchmarks: free energy terms as functions of element size. Individual free
energy terms as functions of the maximum element volume in a system of a single nanoparticle embedded in
polystyrene matrix and grafted with one polystyrene chain on its surface. In panel (a), we present the dependence of
the cohesive term (red color), as obtained from eq 2.39, and the term of the chemical potential field (blue color), as
obtained from eq 2.40. In panel (b), we present the dependence of the conformational entropy of matrix chains (red
color), as obtained from eq 2.42, and the conformational entropy of grafted chains (blue color), as obtained from eq

2.43.
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Figure 3.18 Spatial discretization benchmarks: total free energy as a function of element size. Total free energy
obtained from eq 2.38 as a function of the maximum element volume in a system of a single nanoparticle embedded
in polystyrene matrix and grafted with one polystyrene chain on its surface.
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3.7.2. Contour Discretization

In Figure 3.19 below, we present the benchmarks of RuSseL with respect to the contour
discretization of grafted chains, which is varied through the average contour step, ANg, along a
grafted chain and the contour point, Nsw, where the discretization switches from Chebyshev to
uniform (see Section 3.5.3). The benchmarks concern the free energy per NP area, AQ/Ss, of a
system of one spherical silica NP embedded in polystyrene matrix and whose surface is grafted

with polystyrene chains.
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Figure 3.19 Contour discretization benchmarks: total free energy as a function of the contour step. Total free
energy (eq 2.38) in a system of a single nanoparticle embedded in polystyrene matrix and grafted with one
polystyrene chain on its surface, as a function of the step size, ANy, used for the discretization of grafted chains with
length Nq equal to (a) 60, (b) 120 skeletal carbon bonds. In case (a), we also report the effect of the switching point,

Nsw.

3.7.3. Field Mixing Fraction

In order to ensure the convergence of the 3D-SCFT calculation leading to the equilibrated
configuration of the self-consistent field, we need to multiply the updated field resulting from
the solution of the Edwards PDE and the convolution of chain propagators, with a fraction
value which is always lower than unity and depends on the length of the chains and the

isothermal compressibility of the polymer melt.

75



Chapter 3. RuSseL

(a) D aans (b) ———
™ 0.5 17 P —— =743
- M s _—= _ o (] \" y -
0.020 N 5ol - |
..
£0.010F ' 1 5 ...
s X
Sy =3
I ) g ® e
0.005 |- { =
3 & ‘.\
"o .
1 1 T | s 10_ — L 1 PR A I73
10 100 10~ 10 -
Nc Amix

Figure 3.20 Field mixing/update benchmarks performed in the three dimensional verison of RuSseL. (a) Field
mixing fraction which has to be used in the field equilibration procedure, as a function of chain length measured in
skeletal bonds. Both axes are presented in logarithmic scale. For a given value of chain length, N, if a larger
fraction value is used than the one predicted by the blue line, the SCFT algorithm will most likely diverge. When
both matrix and grafted chains are present in the system, the fraction must be determined with respect to the
maximum chain length. (b) Number of SCFT algorithm steps required for field equilibration as a function of the
fraction parameter. The satisfying fitting of the linear regression suggests a power-law dependence.

In Figure 3.20a, we present the dependence of the field mixing fraction, fyix, on chain length.
It is noted that, when both matrix and grafted chains are present in the system, then the value of
the fraction has to be determined with respect to the maximum length between the two kinds of
chains, otherwise the algorithm will diverge. In panel b of the same figure we present the
number of steps required for field equilibration as a function of the field mixing parameter. The
same benchmarks have been conducted with the one-dimensional version of RuSseL, where a

similar trend is exhibited (see Appendix I).

3.7.4. Renormalization of Configurational Entropy of Grafted Chains
The free energy contribution associated with the configurational entropy of grafted chains is

originally given by eq 3.30.

AA, = —%iln Q, |:rg,ig ;w’—wgu.k} = —%iln a, |:rg,ig ?W'—Wéud 3.30

Equation 3.30 is sensitive to the distance of each one of the grafting points from the solid
surface. The equality between Qg and g, is based on the very definition of the restricted partition
function and it is further discussed in the proof presented in Appendix E. Taking advantage of

the fact that the unique space-dependent variable in eq 3.30 is the propagator gm, and that it
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decreases linearly with distance from the surface in the region close to the Dirichlet boundary
(see Figure 3.21a), we can normalize this entropic term with respect to a reference distance,

href,g=0, DY adding the second term appearing on the right-hand side of eq 3.31.

AAJ :_%Zgang [rg,ig;wl_wlbum}_%ilnm 331
=

L Tgi0-0

with hg’ig denoting the distance of the grafting point iy from the solid surface. As demonstrated
in Figure 3.21b, eq 3.31 is insensitive to the distance of the grafting points from the surface. It is

noted that when h = hyf,=0 (dashed vertical line in Figure 3.21), the normalized value of the free

energy of grafted chains is equal to its non-normalized value.
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Figure 3.21 Variation of free energy with increasing distance of the grafting point from the Dirichlet wall. (a)
Chain propagator of matrix chains, g, evaluated at the grafting points as a function of the distance of the grafting
point from the solid surface. The dashed line is a guide to the eye. (b) Conformational entropy of grafted chains as a
function of the distance of the grafting point from the solid surface. Red points correspond to the non-normalized
conformational entropy (eq 3.30), while blue points correspond to the normalized conformational entropy (eq 3.31)
for hyer g=0 = 0.05 nm (black dashed line). This benchmark was conducted in a planar system of polystyrene melt at T
=500 K. Chain length of matrix and grafted chains was equal to Ny, = Ng = 100 skeletal carbon bonds. Box size was
4x4x5 nm>. One polystyrene chain (ng = 1) was grafted on the solid/Dirichlet wall.
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3.7.5. Parallelization and Scalability

We have performed a series of benchmarks on the Greek national supercomputing system,
ARIS, to investigate the scaling of our code with respect to the number of threads and/or
processes when using the OpenMP or MPI protocols, respectively. These benchmarks are
presented in the following Figure 3.22. They were performed for two different mesh sizes, i.e.,
one consisting of 88529 nodes (red color) and a larger one consisting of 249084 nodes. In all
cases, there is a certain speedup when running on multiple cores, but the efficiency suggests a
sublinear scaling. Nonetheless, it has to be noted that in all cases the speed-controlling stage is
the solution of the Edwards equation which is performed by the opensource solver MUMPS. In
fact, we have measured the time that the code spends to solve Edwards and the total amount of
time that the code spends before and after calling MUMPS to solve the PDE. Results are
reported in the following Table 3-2 (smaller mesh) and Table 3-3 (larger mesh). It is clear that
the stages before PDE solution (i.e., initialization, chain contour discretization, spatial mesh
import, matrix assembly) and those after the PDE solution (field update, export of structural and
thermodynamic quantities) are just 3% of the overall code running duration. This is a clear
indication that the scaling observed in Figure 3.22 concerns the solver itself and could perhaps
be improved in later versions of the solver. Another solver might possibly be more suitable for
our matrices. MUMPS does not offer a (close to) linear scaling for the numbers of nodes on
which the benchmarks were conducted (~10*, ~10°). Nonetheless, comparing the scaling of the
larger to the smaller mesh, one comes to the conclusion that MUMPS could indeed offer a better
scaling at much higher orders of matrices, i.e., > 10° For detailed instructions on the
compilation of the three-dimensional version of RuSseL and linkage with the necessary libraries,
e.g., MUMPS, MPI, the reader is referred to Appendix J.
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Figure 3.22 RuSseL parallelization benchmark with OpenMP and MPI protocol. Red color corresponds to a small
spatial mesh of 88529 nodes, while blue color corresponds to a larger spatial mesh of 249084 nodes. Top panels
report the speedup (left) and efficiency (right) with increasing number of MPI processes and one OpenMP thread.
Bottom panels report the speedup (left panel) and efficiency (right) with increasing number of OpenMP threads and
one MPI process. The broken lines are guides to the eye.

The speedup and efficiency were calculated using the following egs 3.32 and 3.33, respectively.

serial time per field iteration

speedup = 3.32

parallel time per field iteration

speedup

it o 3.33
# procs/threads

efficiency =
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Table 3-2. Scaling of Edwards solution time in a spatial mesh of 88529 nodes.

total
total code non-mumps
88529 nodes mpiprocs/node | threads/proc co de time co<_je time
time per per iteration
(s) iteration (s)
(s)

SERIAL 1 1 113 113 3.0 2.7%

2 1 248 83 4.0 4.8%

3 1 225 75 2.3 3.1%

MPI 4 1 204 68 3.3 4.9%

8 1 176 59 4.0 6.8%

16 1 158 53 3.7 7.0%

1 1 113 113 3.0 2.7%

1 2 324 108 4.3 4.0%

OpenMP 1 3 303 101 43 43%

1 4 302 101 3.7 3.6%

Table 3-3 Scaling of Edwards solution time in a spatial mesh of 249084 nodes.
total
total code non-mumps
249084 nodes mpiprocs/node | threads/proc co de tme co<_je time
time per per iteration
(s) iteration (s)
(s)

SERIAL 1 1 861 431 10.0 2.3%
2 1 620 310 10.0 3.2%
3 1 511 256 10.5 4.1%
MPI 4 1 236 236 10.0 4.2%
8 1 198 198 10.0 5.1%
20 1 327 164 11.0 6.7%
1 1 861 431 10.0 2.3%
1 2 385 385 10.0 2.6%
OpenMP 1 3 353 353 100  28%
1 4 344 344 10.0 2.9%

Looking at the tables above, we observe that communication overhead between MPI
processes increases with the number of processes and this is reflected in the increased fraction of
time spent on “non-mumps” code in relation to the total code execution time. When using
OpenMP, on the other hand, commumication time does not scale; this is reasonable since, in this

protocol, threads work on shared memory.
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3.8. Grafting Point Distributions

Hereafter, the coordinates of grafting points across the sphere surface will be described in
spherical coordinates, (r, 6, ¢), using the convention: re[0,), distance from the origin;
0 e[-x12,712], inclination angle; ¢ €[-x, x], azimuthal angle.

The NPs with equidistributed grafting points on their surface were generated using the
algorithm presented in ref '°. The algorithm produces distributions comprising almost
equidistant grafting points, albeit it does not produce the exact number of grafting points (the
discrepancy is however negligible). For example, Figure 3.23a depicts the coordinates of 500
grafting points across the (6, ¢) space and Figure 3.23e the corresponding distribution across the
surface of a NP with Rs = 8 nm. To generate the nanoparticles with irregular grafted chain
distributions on their surface, we devised a Monte Carlo sampling scheme comprising two

stages, which are explained below.
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Figure 3.23 Demonstration of irregular grafting distributions on a spherical surface. (a) Coordinates of 500
equidistributed grafting points across the (6, ¢) space using the algorithm of ref . Probability maps for (b)
uniform and (c,d) biased grafting point distributions from eq 3.34; details concerning c, d are presented in the text.
Blue, green and red color corresponds to P = 0, 0.5 and 1.0, respectively. Panels (e-h) illustrate the front and back
side of spheres with Rs = 8 nm (average o4 ~ 0.62 nm?), whose grafting points are distributed according to the
corresponding probability maps in panels (a-d), respectively.

First, a candidate random point, p, at the surface of the sphere is sampled uniformly across
the surface of the sphere. The insertion of the grafting point at p is accepted with a probability
P(p) = P(r, 6, ¢). The process is repeated until the required number of grafted chains is
achieved. The probability maps are obtained by summing Gaussian pulses of a homogeneous

probability distribution, as shown in the following eq 3.34.

Nep 2
P(p):min[l, max(o, P0+2Piexp[— Z%ZDJ 3.34

i=1
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where P, e[O,l] is the background probability (acceptance probability in absence of any bias),
the operator ¥ sums over ngp Gaussian pulses centered at p;, the pre-exponential factor
P €[-P,,1-P,] is the maximum acceptance probability, and d; the standard deviation of the

Gaussian pulse. D(p,pi) = ro(p,pi), is the great-circle distance (arc-length) between points p and

pi; and w is the great-circle angle; for two points p; and p;, w is defined as follows:
o(p;,p;) = arccos(sin 0, sin g, +cos 6, cos b, COS‘(DJ- - ‘) 3.35

In the trivial case, P(p) = c, with C€ (0,1], the grafting points are uniformly distributed on

the sphere surface. By bounding the probability P; between —P, and 1-Py, the total probability is
bounded between [0, 1]. Note that, if the Gaussian pulses lie too close together, their sum might
exceed this bound; in this case, the insertion probability is restricted between 0 and 1 (see eq
3.34).

Figure 3.23b and Figure 3.23c,d illustrate uniform and biased probability maps, respectively,
whereas panels (f-h) present indicative distributions of 500 points on the surface of a sphere
with Rs = 8 nm. In Figure 3.23c and g, the background probability is set to Py = 0.05, and there
is a single attractive biasing pole which finds itself at position (6, ¢) = (0, —n/2) with P; = 0.95
and d; = 4 nm. Figure 3.23d and h present a more complicated distribution, where: Po = 0.2,
there are two repulsive poles at (0, +n/2) with P; = -0.2 and d; = 8 nm, and four attractive poles
at (zn/2, 0), (0, —m), (0, 0) with P;=0.8 and dj = 2 nm.

According to the case in Figure 3.23f for a uniform distribution, the grafting points appear
much more clustered than the equidistributed case in Figure 3.23e. Emanation of grafted chains
from grafting points that lie very close to each other can be unphysical due to excluded volume
effects; the latter can be taken into account by imposing a minimum distance between the

grafting points below which the candidate insertion is rejected.

3.9. 3D Periodic Boundary Conditions
The ultimate goal of developing RuSseL is the possibility to address multiple grafted
nanoparticles inside a polymer melt. This will allow for the determination of the free energy for

a specific number of NPs which may be arranged in various disordered or lattice-like
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configurations, e.g., body-centered cubic (bcc) or face-centered cubic (fcc), and this way one can
obtain the most stable configuration. To perform such calculations in a computationally efficient
manner, we needed to add a nontrivial feature in the three-dimensional version of RuSseL: the
ability to address systems with periodic boundary condtions (PBC).

In particle-based computational methods, e.g., molecular dynamics, PBCs are imposed by
invoking the minimum image convention. They enable a simulation to be performed using a
relatively small number of particles, in a way that the particles experience forces as if they found
themselves in a bulk material. In two-dimensions, each box is surrounded by eight neighbors,
whereas in three-dimensions each cubic box has 26 neighbors. The coordinates of the particles
in the image boxes can be computed simply by adding or subtracting integer multiples of the
box sides. Should a particle leave the box during the simulation, then it is replaced by an image
particle that enters from the opposite side, as illustrated in Figure 3.24.
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Figure 3.24 lllustration of periodic boundary conditions in two dimensions. The central box is the primary domain
of the simulation and it has eight neighboring images. Should a particle leave from one face of the main box, then it
re-enters the primary box from the opposite face.

3.9.1. Spherical Nanoparticles in Polymer Matrix

In a continuum methodology such as the Finite Element Method, we do not have access to
the exact coordinates of the chain segments; we only know the probability of finding a chain
segment at the mesh points of the domain. This probability is commensurate to the restricted
partition function, g, which is the solution of the Edwards diffusion eq 2.2. The periodic systems
that we wish to address consist of multiple polystyrene-grafted silica nanoparticles embedded

inside a polystyrene matrix. In the first system shown in Figure 3.25, the NPs are arranged in a
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simple cubic lattice configuration, while in the alternative system they assume body-centered

cubic (bcc) configuration.

Figure 3.25 Periodic systems of multiple grafted nanoparticles embedded in polystyrene matrix. Nanoparticles are
arranged in a) simple cubic lattice, b) body-centered cubic lattice (bcc). In each case, the volume accessible to
polymer inside a unit cell of the structure is shown.

In order to ensure the periodicity of the system, we have to require that the solution at the
points of one periodic face of the domain be exactly equal to the solution at the corresponding
point on the opposing face. This requires that the opposite faces along each dimension are
symmetrically meshed, otherwise an interpolation would have to be performed and this would
add considerable complexity and overhead in the solution of the PDE. To ensure the symmetry
of the mesh on the boundaries of the box, we first mesh one of the two faces representing each
periodic dimension and then we take advantage of the “copy mesh” feature of the GMSH
mesher,” which allows us to transfer the mesh of an already meshed face to another face of the

geometry, as we demonstrate in the following Figure 3.26.
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Figure 3.26 A symmetric triangular mesh on the opposite faces of a cubic domain. Demonstration of the “copy
mesh” feature which allows for creation of perfectly symmetric triangular meshes on opposite faces. For clarity, we
only show the symmetry of the mesh on the periodic faces normal to the x-axis.

Having established that, for a pair of opposing periodic faces, the nodes of one face have
symmetric coordinates with respect to the points of the other face, we create a hash table or
dictionary in our code, whose key-value pairs are the id’s of the opposing nodes. A hash table is
an array-like data structure which stores data in an associative manner and therefore maps keys
to values. In our case, the keys are the id’s of the nodes belonging to the source (src) face and
the corresponding values are the id’s of the nodes belonging to the destination (dst) face. In
other words, each node of the src face knows exactly its symmetric point that lies on the dst
face. The hash table associating the periodic node pairs is built by taking advantage of the fact
that the coordinates of the nodes of periodic pairs satisfy the following conditions (the origin is
located at the center of the simulation box):

Periodic node pairs along the x-axis: Xsrc = — Xdest, Ysrc = Ydest» Zsrc = Zdest
Periodic node pairs along the y-axis: Xsrc = Xdest, Ysrc = — Ydests Zsrc = Zdest
Periodic node pairs along the z-axis: Xsrc = Xdest, Ysrc = Ydests Zsrc = — Zdest

These periodic node pairs need to be taken into account to create the corresponding rows and
columns of the FEM stiffness matrix. It is stressed at this point that in our three-dimensional
FEM based methodology we take advantage of the sparsity of the stiffness matrix. Instead of
storing and feeding it to the MUMPS® solver in its full form, we rather store the ids of the

neighboring node pairs, which, by the definition of the basis functions, are those contributing
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nonzero values to the corresponding rows and columns of the stiffness matrix. The reader is
reminded that for two neighboring nodes, n; and n,, the nonzero entries of the stiffness matrix
(considering of course the fact that each node is also neighbor with itself) will be:

p1: (N1,N1), P2: (N1,n2), p3: (N2,N1), Pa: (N2,Nz)
where we denote by p; the id of each node-pair.

For a certain src-dst periodic pair, let the id of the (src, src) nonzero entry in the FEM
stiffness matrix be denoted by p;, the (src, dst) pair by p, the (dst, src) by ps and the (dst, dst)
pair by ps. Let us also denote by val, the nonzero value of the p; = id(row, col) entry of the
stiffness matrix. For periodicity to be applied in the context of the Finite Element Method, the
modifications shown in the following eqs 3.36-3.39 must be ensured for all src-dst periodic node

pairs before the solution of the Edwards diffusion equation.

val(p,) < val(p,)+val(p,) 3.36
val(p,) < 0.0 3.37
val(p,) «-1.0 3.38
val(p,) < +1.0 3.39

In order to validate that the periodicity constraint is indeed satisfied, we compare the density
profiles of matrix chains (in absence of grafted chains) in a system where PBCs are applied on
all faces of the simulation box and in a system where Neumann BCs are applied with zero
propagator flux. In these cases, we simply address a bulk polymer system and therefore the
density profile of matrix chain segments must be equal to unity everywhere inside the domain,

as we demonstrate in the following Figure 3.27.
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Figure 3.27 Neumann vs periodic boundary conditions. Reduced segment density profile of matrix chains in a bulk
polystyrene melt obtained with periodic and Neumann boundary conditions with zero propagator flux. Profiles are
plotted across the a) X, b) y, c) z axis to demonstrate that density assumes its bulk value everywhere, as it should.
The size of the periodic box is equal to 1 x 2 x 3 nm®.

In the following figures we present the segment density profiles of matrix and grafted chain
segments in a system where the grafted nanoparticles are arranged in a (a) a bcc configuration
and therefore each periodic cell includes 4 silica nanoparticles in polystyrene melt (illustrated in
the following Figure 3.28a) and (b) a simple cubic-lattice configuration where each periodic cell
includes 1 silica nanoparticle in polystyrene melt (illustrated in Figure 3.28b).
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(®)
@

Figure 3.28 Demonstration of different nanoparticle configurations. Illustration of the (a) body centerd cubic (bcc),
(b) cubic configuration of polystyrene-grafted silica nanoparticles embedded inside melt of polystyrene chains.
Nanoparticle radius is equal to Rs = 2 nm. The size of the periodic box is equal to 8 x 8 x 8 nm®.
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Figure 3.29 3D density profile of matrix chains for different particle configurations. (a) bcc, (b) cubic arrangement
of polystyrene-grafted silica nanoparticles. The length of the matrix and grafted chains is equal to Ny, = 24 and Ng =
48 skeletal carbon bonds, respectively. The grafting density is 0.5 chains/nm?. The radius of the nanoparticles is Rg
= 2 nm. The size of the periodic box is 8 x 8 x 8 nm®.
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Figure 3.30 3D density profile of grafted chains for different particle configurations. (a) bcc, (b) cubic
arrangement of polystyrene grafted silica nanoparticles. The length of the matrix and grafted chains is equal to N, =
24 and Ny =48 skeletal carbon bonds, respectively. The grafting density is 0.5 chains/nm?. The radius of the

nanoparticles is Rs = 2 nm. The size of the periodic box is 8 x 8 x 8 nm°.

In the following Table 3-4, we report the free energy of the two different configurations (i.e.,
bcc vs cubic lattice). The free energy of the bcc lattice was found to be higher than that of the
cubic lattice, which indicates that for this specific distance between the particles, the latter
cannot tolerate the addition of another particle in the middle (i.e., transition from cubic to bcc).
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For a lot of applications, this is good, since it means that, at equilibrium, the grafted particles do

not want to form aggregates, but they rather want to stay away from each other.

Table 3-4 Free energy per nanoparticle surface in the bce and cubic nanoparticle configuration.

Free energy per nanoparticle BCC CUBIC

surface (mJ/m?) 9.38 3.99

3.9.2. Spherical Nanoparticles in Vacuum

Using the Sanchez-Lacombe EoS, we can also run SCFT calculations in three-dimensional
domains, where the solid particles and the chains grafted on their surfaces are exposed to
vacuum. Using Helfand to describe polymer/vacuum interfaces is not an option, since it cannot
lead to field convergence when no matrix chains exist in the system. It is noted that, even in the
case of the SL EoS, the explicit presence of grafting points via non-smeared delta functions is a
factor that creates numerical difficulties due to the logarithmic term that is present in eqs 2.12
and 2.13, but eventually the field can converge at a fair speed.

First, we present the structure of a polystyrene-grafted silica nanoparticle in contact with
vacuum and then, as a proof of concept, we demonstrate the 3D density profiles of grafted
chains in a periodic system of polystyrene-grafted silica nanoparticles in vacuum and arranged
in a cubic lattice, as we did in the previous section where the silica particles where embedded in
polystyrene matrix. In Figure 3.31 we present the density of grafted chain segments in 3D, when
one polystyrene chain is grafted on the surface of the NP and exposed to vacuum, and when the
same grafted NP finds itself inside polystyrene melt. In Figure 3.32, we present the
corresponding projections of the 3D density profile of a grafted chain with length Ny = 96 (third
column of Figure 3.31), along the radial direction, i.e., a line which emanates from the surface of
the NP and ends at a corner of the periodic simulation box. As we show below, this is quite
useful to predict how drastically the 3D configuration of a polymer chain changes when

transferred from vacuum into homopolymer melt of the same chemistry.
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Figure 3.31 Three-dimensional density profile of grafted chain segments in contact with vacuum or melt. A single
polystyrene chain is grafted on the surface of a silica NP. The length of the grafted chain assumes the values Nq =
{24, 48, 96} skeletal carbon bonds, varying from left to right. The NP is either exposed to vacuum (SGV, first row)
or embedded in polystyrene matrix (SGM, second row). The radius of the NP is 2 nm. In the SGM case, the length
of the matrix chains is equal to that of the grafted chains, N, = Ng.
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Figure 3.32 One-dimensional density profile of grafted chain segments in contact with vacuum or melt. A single
polystyrene chain is grafted on the surface of a silica NP. The grafted NP is either embedded in polystyrene melt
(SGM, left panel) or exposed to vacuum (SGV, right panel). The length of the grafted chain is Ny = 96 skeletal
bonds. The radius of the NP is Rs = 2 nm. These profiles are projections of the corresponding three-dimensional
profiles presented in Figure 3.31 (rightmost column, Ny = 96). The segment-depleted zone has a thickness equal to
Rs + hys, where hys = 0.4 nm, is the thickness of the Hamaker hard-sphere wall. In the SGM case, N, = Ng = 96.

Looking at Figure 3.31, we can see how different the configuration of the chain becomes
when it is exposed to vacuum (equivalent to a poor solvent) as opposed to when it is in contact

with matrix chains of the same chemistry (equivalent to a theta solvent). To be more specific, the
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profile of grafted chain segments assumes a completely spherical shape in the SGV system,
whereas in SGM chain segments seem to be more diffuse in space. This is an expected behavior,
because the vacuum is considered to be a poor solvent for chain segments, which means that the
interactions between segments and vacuum are quite unfavorable. Hence, the chain responds by
miniming the surface area that is exposed to vacuum. Chain segments do not have a reason to
get closer to the solid surface either, since the Hamaker interactions that we have employed for
these calculations are extremely weak to attract the polymer segments. As a net result, the
cohesion of the polymer dominates the structure of the chain and drives the segments to get as
close to each other as possible. With increasing chain length, Ny (SGV row, from left to right),
the radius of the sphere increases.

On the contrary, in the SGM system, the interaction between grafted chain segments with
those of the matrix is favorable, since they are chemically identical, thus the segments are
thermodynamically allowed to explore more space in the three-dimensional domain. With
increasing chain length (SGM row, from left to right), the grafted chain swells more towards the
bulk, gradually reaching higher distances from the surface of the NP; in the case where Ng = N,
= 96 we can see that there are even grafted segments reaching the edge of the box. The
difference in the configuration of the grafted chain is also reflected in the one-dimensional
profiles of Figure 3.32, resulting from the projection of the corresponding three-dimensional
profiles of Figure 3.31.

In the following Table 3-5, we report the free energy, normalized with respect to the area of
the NP, as a function of chain length, Ng, for the system of single NP grafted with one
polystyrene chain embedded in polystyrene matrix (solid-grafted-matrix, SGM) and for the same
particle exposed to vacuum (solid-grafted-vacuum, SGV). In Figure 3.33, we present a graphical
representation of the chain length dependence of the free energy of the two systems.

Table 3-5 Free energy in mJ/m? of a silica NP grafted with one polystyrene chain.The NP is embedded in
polystyrene matrix (SGM) or exposed to vacuum (SGV). In the SGM case, the length of the matrix chains is equal
to that of grafted chains, N, = Ng. The radius of the particle is Rs = 2 nm.

SGM SGV
Ng AQfedlSs  AQulSs  AQySs  AQ/Sg AQ AAon/Ss APgeadlSs  AQu/Ss  AAGSs  AAISg AA
(mim?) (MIm?) miIm’) mIm?) (20 mj) (md/im?) (mdim?) (MIm?  (MIm?) (Mim?) (107 m))
24 -42.84 1.44 0.40 14.09 70.82 -4.44 4.84 0.00 1.60 2.00 10.07
48 -41.44 0.78 0.39 14.38 72.30 -9.36 9.89 0.00 2.42 2.95 14.83
96 -41.41 0.46 0.39 14.56 73.20 -19.29 18.92 0.00 4.37 4.01 20.16
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Figure 3.33 Free energy, in mJ/m?, of a silica NP grafted with one polystyrene chain. The NP is embedded in
polystyrene matrix (SGM) or exposed to vacuum (SGV). In the SGM case, the length of the matrix chains is equal
to that of grafted chains, Ny, = Ng. The radius of the particle is Rs = 2 nm.

The first observation regarding the energies reported in Table 3-5 is that the free energy of
the SGV system is quite lower than the energy of the corresponding SGM. At first, this seems to
be unexpected, since one would argue that the cohesive interactions among polymer segments of
the same chemistry would favor the incorporation of the grafted NP inside the polymer melt.
Nonetheless, in this specific case, the lower energy of the SGV system can be explained by
considering that we have addressed the edge case where the Hamaker interactions between chain
segments and NP surface are extremely weak and, furthermore, only one chain is grafted on the
surface of the particle.

To be more specific, since only one polymer chain is grafted on the surface of the NP, which
assumes a spherical configuration in shape in SGV as explained earlier, the area of interaction
between polymer and vacuum is not so large as to raise the energy of the system. At the same
time, in SGM, the area of interaction between grafted chain segments and the solid surface is
quite larger. The solid, however, is practically equivalent to vacuum for the polymer segments,
because the attraction exerted on them is negligible. These two phenomena explain why the total
energy of the SGV system is lower than that of the SGM system in this limiting case examined
here. Had the solid/polymer interactions been stronger and/or more chains been grafted on the
surface of the NP (which would imply that larger area in total woule be exposed to vacuum in
the SGV case), then the energy of SGM would indeed become lower than that of SGV.

Instead of normalizing the free energy of SGV and SGM with respect to the surface of the
NP, an alternative approach would be to normalize the total energy of the system (in the SGM
case we need to add the contribution of the bulk, which is mainly entropic) with respect to the

94



3.9. 3D Periodic Boundary Conditions

number of polymer segments in the system. In the following Table 3-6 and Table 3-7, we

present the results of the approach for the SGV and SGM system, respectively.

Table 3-6 Free energy in mJ/segment of a silica NP grafted with one polystyrene chain and exposed to vacuum.

SGV
# chains, Segmﬁn.ts per AA/Sg AG,bqu/SS A=AA4+ Ag pulk Aseg = A/(ng‘Ng)
Ny ¢ ’\?'n (mI/m?) (mI/m?) (10 mJ) (107" mJ/seg)
g
1 24 2.00 0.0 10.07 0.42
1 48 2.95 0.0 14.83 0.31
1 96 4,01 0.0 20.16 0.21

Table 3-7 Free energy in mJ/segment of a silica NP grafted with one polystyrene chain and embedded in
polystyrene matrix.

SGM
# chains, segments per AQ/Ss Qi pulk/Ss Q=AQ+ Lseg =
ng+n chain, (md/m?) (md/m?) Dk U1(Ag+nm) Nl
97 Ng=Np=N (10" mJ) (10" mJ/seq)
1203 24 14.09 - 081 66.75 0.0023
603 48 14.38 22.54 185.59 0.0064
302 96 14.56 70.92 429.69 0.0148

At this point, we need to remind the reader that the reference states correspond to a
homogeneous system (grand potential, Qmpuk) Of matrix chains of length Ny, at temperature T,
subject to a chemical potential, :vNm, and occupying the same polymer accessible volume as
the interfacial system, and a system of a single end-pinned and unperturbed (there are no
interfaces) grafted chains of length Ny (Helmlholtz energy, 4 pui) interacting with a bulk phase
of matrix chains of length Ny at temperature T. In our code, we consider that Agpuk = O.
Regarding the SGM system, we observe that Qg4 increases considerably with increasing chain
length, despite the fact that the total number of segments Nm-nm + Ng-ng remains constant and,
approximately, so does the quantity AQ/Ss.

Regarding the SGV system, we observe that the free energy per segment decreases with
increasing chain length, This can be explained by the fact that the size of the sphere which is
formed in the SGV system (first row of ) increases with the number of segments of the grafted
chain. When the size of the sphere increases, its volume rises faster than its surface, which
practically means that the number of segments of the grafted chain that form a bulk region (and

therefore have zero contribution to the energy of the system) rises faster than the number of
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segments in the vacuum/polymer interface. Finally, we can see that the energies per segment of
the SGM system are orders of magnitude smaller than the corresponding energies in the SGV
system, which underlines the large cost in free energy that is associated with exposure of
polymer segments to vacuum in the SGV case.

Finally, in Figure 3.34 below we present the three-dimensional density profile of grafted
chains in a cubic lattice configuration of polystyrene-grafted particles exposed to vacuum. All
particles have a radius equal to Rs = 2 nm and periodic boundary conditions are imposed on the

edges of the simulation box.

N,=24

N, =96

g

Figure 3.34 Three-dimensional density profiles of polystyrene chains grafted on the surfaces of silica particles
arranged in a cubic lattice and exposed to vacuum. The length of grafted chains assumes the values Ny = {24, 48,
96} skeletal carbon bonds and varies from left to right. The radius of all NPs is equal to Rs = 2 nm. The lattice
parameter is 4 nm and the coordination number of the lattice is 6. Periodic boundary conditions are imposed on the
edges of the simulation box, and the surface of each NP inside the box is grafted with two polystyrene chains; this
corresponds to grafting density, o4 = 0.3 nm?,
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4 . SINGLE NANOPARTICLE CALCULATIONS

In this chapter, we present our findings regarding systems of a single polystyrene-grafted silica
nanoparticle. The particle is either embedded in polystyrene matrix or exposed to vacuum. As a
reference, we begin by analyzing the thermodynamics of a bare (i.e., non-grafted) silica particle
inside polystyrene melt. To investigate the structural properties of grafted chains and their
impact on the free energy of the system, we systematically vary the molecular weight of grafted
chains, the grafting density, the size of the particle and the strength of solid/polymer
interactions. For the convenience of the reader, we present in Table 4-1 all the different systems
addressed in this chapter. Furthermore, in Table 4-2 we report the values of all parameters

required for our SCFT calculations.
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Chapter 4. Single Nanoparticle Calculations

Table 4-1 Explanation of symbols for the different interfacial systems and free energy contributions examined in
this chapter. Energy contributions are reported using the conventions: E;”* (system energy), AE” (energy with

0 _

respect to a reference system), AG; . AQiGM —AA:GV (solvation free energy). With 7. = E>** [ Sg we refer

> =
to the energy of the solid per unit area. The meaning superscripts (sys), subscripts (a) and symbol (E) is presented
below.

Superscript

system

Physical system for each geometry type

(sys) spherical planar (R; —o0)
VM vacuum-matrix cavity/bubble .
) free matrix surface
MV matrix-vacuum droplet
SM solid-matrix bare NP/matrix bare solid surface/matrix
SGM solid-grafted-matrix grafted NP/matrix brush/matrix
SGV solid-grafted-vacuum isolated grafted NP isolated brush
M matrix bulk melt phase of matrix polymer chains
A,bulk grafted isolated end-pinned and unperturbed chains in bulk melt
Subscript (a) energy component equation
- total energy 2.38 or 2.44
coh cohesion 2.39 or 2.45
field field 2.40 or 2.46
mo Ty
conformational entropy of
g grafted chains P 2.43
S solid field 2.41
Symbol (E) thermodynamic potential
A Helmholtz free energy
Q grand potential
G Gibbs free energy
U internal energy
H enthalpy
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4.1. Bare surfaces exposed to melt

Table 4-2 Parameters of 1D-SCFT calculations.

component parameter value source
System T 500 K -
24
href’q:0 0.05 nm
Ny a0 0.05 nm 2
Chain stiffness bk 1.83nm 23
~ . nm
lec 0.154
Y 0.829 3
M, onomer 52.08 g/mol
Hamaker 24
hHS ~0.4 nm
Opg 0.37 nm 2
Osio, 0.30 nm 2
A 5.84-10% 2
Ao, 6.43-10 2] 2
u _ Fitted to W, = 38.8
csw Csw.iw -3.7510 83 Jm® myjm frgm 104
_ Fitted to Wo = 71.1
Cswpw -5.88 10 3 Jym® myjm? frg\m 104
Osw 1.28 nm -
Sanchez-Lacombe Py 1105 kg/m® 70
p* 357 MPa 70
T 735 K 70
Square Gradient K 0.2233-10%Jm® 2
Edwards Diffusion Ah 0.05 nm 2
AN 0.25 24
rtol 6 24
AW, 10 KT

4.1. Bare surfaces exposed to melt

4.1.1. Background

4.1.2. Structure

The present section investigates the thermodynamics of solid-matrix systems (SM) with varying
strength of solid/polymer interactions and curvature. The strength of solid/polymer interactions
in relation to the cohesion of the polymer dictates the tendency of the latter to wet the solid
surface. The wetting degree can be classified as nonwetting (NW), low (LW), high (HW), and
perfect wetting (PW).

Figure 4.1a illustrates a spherical cell with radius Rs exposed to a phase of matrix chains of
length N, and characterized by a chemical potential umNm, with uy, being the chemical potential
per monomer unit of a matrix chain. In the presence or absence of solid/polymer interactions, the
system corresponds to a solid/matrix (SM) or a vacuum/matrix (VM) interface, respectively. In

Figure 4.1b, the solid surface has been grafted with n, = o5, chains of length equal to Ng, with

99



Chapter 4. Single Nanoparticle Calculations

oy and Sy being the grafting density and surface area of the sphere, respectively. This system will
be symbolized with SGM. In constrast, Figure 4.1c illustrates an isolated grafted NP, meaning
that the NP and the chains grafted on its surface are exposed to vacuum; this system will be
denoted by SGV.

(a) Solid-Matrix or Vacuum-Matrix  (b) Solid-Grafted-Matrix (¢) Solid-Grafted-Vacuum
(SM or VM)

ay('Dir,
s SG GV
(d) ® oG
1 ! |
|
08 [ grafied 0.8 0.8
< 0.6 F— matrix 1 06 F s 06
04 p— total { o4} 0.4
02 } 02 02
0 : , 0 : 0
20 -10 0 10 20 20 -10 0 10 20 20 -10 0 10

r(nm) r(nm) r (nm)

Figure 4.1 Demonstration of the kinds of interfacial systems that are addressed in this chapter. Bead spring
representation of (a) bare NP-matrix (SM) or vacuum-matrix (VM), (b) grafted NP-matrix (SGM), and (c) grafted
NP-vacuum (SGV) systems. The solid core of the spherical NP has radius Rs. Green/orange beads depict segments
of matrix/grafted chains. The density profiles of matrix (green), grafted (orange) and total (black) segments in (d),
(e) and (f) correspond to the systems in (a), (b) and (c), respectively. The dotted curves mark the position of
grafting points (g, orange), and the edge of the solid sphere (s, black). The dashed curves illustrate the location of
characteristic interfaces across the domain (e.g., SM, SG, GM, GV). The black dotted lines represent the
boundaries on which Dirichlet BCs are imposed with propagator value equal to unity, corresponding to bulk
conditions.

The system of Figure 4.1a is discussed in the current Section 4.1, of Figure 4.1b in Section
4.2 and that of Figure 4.1c in Section 4.3. R; symbolizes the distance between the center of the
sphere and a characteristic interface i; e.g., i = g, s, SG, GM, etc. as shown in Figure 4.1. The
way interfaces are drawn on the basis of the continuous density profiles obtained by SCF is

explained in Section 4.3. The distance between any point r and the surface of the NP along the
radial direction is denoted by h=|r|-Ry=r—R;. Likewise, the distance between an interface i

and the edge of the spherical core is defined as:
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4.1. Bare surfaces exposed to melt

h=R-R 41

and its corresponding surface area as:
Si = 47Z'Ri2 42
In addition, the number of grafted segments per NP area will be denoted as:

6 2

O :GgNg :mO-QRG‘g 4.3

0.5€g

with C,, being Flory’s characteristic ratio, lc.c the length of a skeletal carbon-carbon bond along
the polymer chain, and Rg4 the unperturbed root mean squared radius of gyration of a grafted
chain. It is noted here that the term o4Rg,4” is a common threshold value to characterize brush
conformations.

Under non-wetting (NW) conditions (the reader is referred to Table 2-2 in Section 2.2.3), the
polymer does not experience any forces from the solid and the interface is equivalent to a
vacuum-matrix one (nonwetting). In LW, the solid/polymer interactions are described by the
Hamaker potential'” presented in Section 2.1.5, which yields low wetting when applied in our
model (6, ~158.9°, see Section 2.2.3). In the HW and PW systems, in addition to the Hamaker
potential, the polymer?® segments interact with the ucsw potential of eq 2.34 (Section 2.1.5.5),

which has been fitted to yield the experimentally measured work of adhesion.?
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Figure 4.2 Density profiles for different particle radii and solid wetting degree. (a-d) Density profiles of NW, LW,
HW and PW systems in Table 2-2 for Rs = {5: red, 20: blue, 80: green, 320: purple, 1280: orange, 5120: brown and
oo: pink} nm. Colors vary in the direction of blue arrows. The vertical dashed line depicts the position of the
imposed hard sphere wall, hys ~ 0.4 nm.

The density profiles corresponding to different wetting conditions are illustrated in Figure
4.2a-d as a function of curvature. According to numerous atomistic simulations,31%%-107
repulsive solid/polymer interactions lead to the emergence of a depletion zone near the solid.

Excluded volume repulsion at short distances from the solid is modeled here by a hard sphere
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wall, represented by the blue vertical dashed lines in Figure 4.2a-d. The profiles shift toward the
bulk or the solid phase depending on the strength of solid/polymer interactions. The shift is
attributed to a complex interplay between three factors: (1) tendency of the interface to minimize
its surface area assuming a curved shape, (2) entropic penalty associated with chain
confinement, and (3) enthalpic gain from the solid/polymer interactions (in the cases of high and
perfect wetting).

Mechanism (1) can be understood as follows: Let there be two (infinitely) sharp
vacuum/polymer interfaces at distance R; and R, > Ry from the center of an imposed cavity with

radius Rs < Ry. The area of the first interface (5, = 47R?) is smaller than that of the second by a

factor (R1/Ry); hence, it has a lower surface free energy and is more stable. As a result, the stable
solution corresponds to R; = Rs.

Realistic polymer profiles are not infinitely sharp. In fact, as the length of the chains
increases, the entropy associated with bonded interactions along the chain contributes to the
smoothness of the profile. A chain segment at the edge of the film experiences a net force
toward the bulk phase from its interchain neighbor segments. The net force becomes zero in a
situation where a segment and its neighbors reside in the same plane, which means that the chain
is oriented paraller to the edge of the film, corresponding to an improbable configuration. This
entropic factor resists the collapse of the interface at Rs and pushes the chain segments toward
the bulk phase (mechanism (2)). It is observed from Figure 4.2a that this mechanism prevails
under nonwetting conditions and at lower curvature.

Regarding mechanism (3), the enthalpic gain from the solid/polymer interactions, in relation
to the cohesive segment-segment interactions, increases with increasing Rs. Larger NPs exert
stronger attraction on the polymer segments. As a result, the interface tends to shift toward the
solid with increasing Rs.

The interplay between mechanisms (1) and (2) is demonstrated by the profiles of the NW
system in Figure 4.2a, which is equivalent to a vacuum/matrix (nanobubble) system. Indeed, the
interface shifts toward the cavity with decreasing Rs, since the tendency to minimize the surface
area surpasses the entropic penalty of chain confinement.

In the LW system (Figure 4.2b), the enthalpic solid/polymer interactions (albeit weak)
counterbalance the entropic penalty with increasing Rs, and as a result, the position/shape of the
profiles is about constant, i.e., independent from Rs. The trend is reversed in the HW and PW

systems (Figure 4.2c,d), wherein the profiles shift toward the solid with increasing Rs and
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become more pronounced; it is notable that the profile of the PW system develops a peak at
large Rs. We remind the reader that it is not straightforward to capture with an SCF treatment the
layering effects seen in atomistic simulations; rather, smoothed density profiles are obtained in
most cases. If one wishes, one can reproduce the layering effects by appropriately tuning the
field exerted by the solid, e.g., via Boltzmann inversion (e.g., see Figure 2.10).”

In the extreme situation of very small Rg, the profiles become about the same for all cases
(NW, LW, HW, and PW) both position- and shape-wise. The solid/polymer interactions are
mitigated as the NP radius decreases and it is eventually experienced as a cavity (e.g., compare

Figure 4.2a-d for Rs =5 nm.

4.1.3. Thermodynamics

Figure 4.3 presents the free energy per NP area (Ay™ = AQ® / s.) for each system in Table

2-2. In the limit Rs — oo, Ay*™ plateaus to the interfacial free energy of the planar solid/polymer
interface.” The hyperbolic-like dependence at low Rs is attributed to the mismatch between the
actual position of the SM interface and the edge of the sphere, based on which we have

normalized the total free energy, e.g., compare Rs with Rgy in Figure 4.1a,d. As a result, Ay*™ is
larger than the actual interfacial free energy by a factor ~ (RSM I R )2 .
By normalizing the free energy with respect to the area of the SM interface, we can derive

the adhesion tension of an SM as follows:

Ang R2
oo = (GSV oM ) =— 5 =-Ay™ —R;,lz 4.4

under the approximation that the solid is incompressible.'®® Similarly, the surface tension of the

VM (or MV) interfaces can be calculated as:

oM AQ™ — AyM R52

SVM RVM2

4.5

It is noted here that in the NW case, where the solid does not exert any potential on the
polymer segments (¢°Y = 0), the solid is experienced as a vacuum phase, and thus,

SM _ _SM _ _VM
Oy =0 =0 .
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Figure 4.3 Adhesion tension as function of the wetting degree and particle radius. (a) Free energy per NP core area,

A]/SM = AQ™M I S5, and (b) negative of the adhesion tension, —ofd'\: = —(O'SV —O'SM), for the aforementioned

systems. The horizontal dotted lines depict the limiting values corresponding to planar solid surfaces. In all cases,
the chain length of matrix chains is equal to N, = 768 skeletal carbon bonds.

In planar geometries (large Rs), the position of a vacuum/liquid interface can be defined as
the position Ry, where ¢(Ros) = 0.5.%"2 This concept can be generalized to curved geometries in
terms of the radius R,s¢q Of the Gibbs equimolar dividing surface, which, for two phases « and g

in contact, satisfies the integral presented in eq 4.6 below.

J'rz[p(r)—p“ﬁ]drzo 4.6
0
where
P T<R .
pr = ’e 47
P’ >R,

with p, and p; being the bulk densities of phases « and g, respectively.'® Dividing the grand
potential by Raﬂ,eqz leads to “scale invariant” surface energies, whereas additional first-order

corrections can be introduced in terms of the Tolman length.'®*° The curvature affects the
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position of the equimolar dividing surface in a different manner when applied to convex (MV
system, droplet) or concave (MV, cavity) interfaces. Rmv.eq (Rvm,eq) Shifts towards the gas (bulk)

phase relative to Ry s when applied to convex (concave) interface.

Figure 4.3b illustrates —o2) for each system in Table 2-2 as a function of Rs. For each case,

Rsm has been estimated based on the Gibbs equimolar dividing surface, applied to either VM or
SM interfaces (eqs 4.6 and 4.7). For Rs < 10 nm, ¢"™ becomes slightly lower than its value for

the planar system (~28.0 mJ/m?),%%

indicating that the approximation of the Gibbs dividing
surface becomes insufficient.’®® For that reason, first-order corrections are introduced based on
the Tolman length, which is equal to the distance between Req and the surface of tension and is
usually on the order of few molecular diameters.****12

The LW interface exhibits similar behavior to NW across the full Rs range, because the

solid/polymer interactions are weak. On the contrary, the HW and PW systems exhibit a rather

rich behavior. For Rs < 100 nm, —c2 departs from its planar value, whereas at Rs ~1-2 nm, it

becomes positive. The change in sign below a specific NP radius indicates that the
polymer/polymer cohesive interactions become stronger than the solid/polymer ones. Finally, in
the extreme case of very small NPs, the free energies converge to that of the vacuum/matrix
system; this effect is also reflected by the fact that the density profiles in Figure 4.2a-d are

practically identical for Rs =2 nm.
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Figure 4.4 Macroscopic work functions with varying wetting degree and particle radius. (a) Work of adhesion, (b)
work of spreading, and (c) contact angle of the LW, HW, and PW systems with N,, = 768 (384 styrene units per
chain) at 500 K (see Table 2-2), as functions of the core radius Rs. The surface tension of a planar melt surface is
equal to 27.93 mJ/m% Horizontal dotted lines depict limiting cases corresponding to planar geometries and equal
experimental values from ref 5.

W is the free energy of two free polymer surfaces and is equivalent to the evaluations in

Figure 4.3b for the NW interface (asv =0,-o) =O'VM). W, is equivalent to minus the Gibbs

solvation free energy per unit area. Since W, = o5, , it can be inferred from the evaluations in

Figure 4.3b for the LW, HW, and PW cases. Wa is the reversible work required to separate the
polymer melt from the solid surface. As shown in Figure 4.4a, it assumes its maximum value in
the limit of large NPs, corresponding to the experimental HW and PW systems from ref &,
denoted by the dotted lines. With increasing Rs, it is easier to separate the polymer from the
solid (Wa decreases), and in the limit Rs — 0, zero work is required for the separation.

Ws describes the tendency of a melt to spread on a surface. Positive values indicate

spontaneous spreading across the surface (imaginary contact angle, 6.). Negative values indicate
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partial or no spreading (0 < 6, < 180°). Ws and the corresponding 6. in Figure 4.4b,c suggest a
rather complex behavior with respect to curvature. For example, in the most strongly interacting
solid/polymer interface (PW), the polymer wets the solid spontaneously for Rs > 3 nm (Ws > 0,
imaginary 6.), whereas with decreasing Rs, the wetting tendency gradually decreases from high
to low and eventually to nonwetting for very small NPs.

The aforementioned results and insights conform with findings of molecular dynamics
simulations that report enhanced adhesion on soft surfaces with increasing NP size."**** In
addition, experiments based on the capillary rise method applied on magnetic micropowders**®

demonstrate that 6 is indeed a decreasing function of R, as presented in Figure 4.4c.*®

4.1.4. Concluding remarks

In this section, we examined the case of a bare NP embedded inside the polymer melt. This
system serves as a reference for the limiting case where the grafting density and/or length of
grafted chains is extremely small. Three mechanisms govern the position of the profile relative
to the solid surface. The first mechanism is related to the size of the NP; the larger the curvature,
the closer the polymer profile gets to the solid surface. The second mechanism is related with the
conformational entropy of each polymer chain. With increasing chain molecular weight, chains
are pushed towards the bulk polymer region. The third mechanism prevails for strong
solid/polymer interactions; when these interactions are getting stronger in relation to the
cohesion of the polymer itself, then the polymer segments are pulled towards the solid.

We compared the thermodynamics of the bare solid/polymer system with experimentally
measured work functions and for various solid curvatures, ranging from flat surfaces to very
small particles. In the spherical cases, a proper renormalization of the free energy of the system
was required with respect to the area of the interface. To this end, we generalized the notion of
the Gibbs equimolar dividing surface for spherical geometries. The main finding here was that
the experimentally measurable properties of any solid/polymer interface (here it was silica-
polystyrene) are deviating from those of the corresponding flat interface, when the curvature of
the solid is high and the solid/polymer interactions are strong.
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4.2. Grafted nanoparticle inside a polymer matrix
4.2.1. Background
We say that the matrix chains wet the grafted polymer brush when they are able to interpenetrate
with grafted chains and therefore access the space occupied by the polymer brush. Such a
situation leads to a well-dispersed set of NPs. It has been seen that, in most cases, matrix chains
are able to wet the brush, when their molecular weight is less than that of the grafted chains.?
Depending on the grafting density, when matrix chains are longer than the grafted chains, it is
harder for them to penetrate into the interfacial region due to the higher entropy loss they
experience (autophobic dewetting).

Various studies employing particle-based simulation methods exist in literature addressing

W9 or solution, as well as isolated NPs.***# Dissipative

nanoparticles in a polymer melt
Particle Dynamics (DPD)*? and Density Functional Theory calculations addressing systems of
polymer brushes are also reported. Vogiatzis et al.” devised a hybrid particle-field approach
called FOMC (Fast Off-Lattice Monte Carlo), which is a coarse-grained class of Monte Carlo
simulations, where the nonbonded interactions are described by a mean-field inspired

Hamiltonian.

4.2.2. Validation against FOMC

The following Figure 4.5 depicts the reduced radial segment density profiles of matrix and
grafted chains from Fast Off-Lattice Monte Carlo (FOMC) simulations, SCFT/SL and SCFT/SL
+ SGT. Beyond a certain distance from the solid surface, our SCF model results in practically
identical radial segment density profiles to those obtained by FOMC. This is true for both the
Helfand and the Sanchez-Lacombe Hamiltonian.
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Figure 4.5 Comparison of SCFT with FOMC in deriving density profiles of grafted chains. Radial segment density
distribution for matrix (m) and grafted (g) chains on a NP with Rs = 8 nm, from FOMC? (top), SCFT with HFD
(middle), and SCFT with SL + SGT (bottom). In panels (a-c), My = 20 kg/mol, M, = 100 kg/mol, and oy varies
from 0.2 to 1.1 nm 2. In panels (d-f), 0q=0.5 nm 2, M, = 100 kg/mol and M, varies from 10 to 70 kg/mol.

Nevertheless, there is a discrepancy near the surface of the NP, which could be related to the
fact that unidimensional SCFT cannot describe the packing of chain segments or the anchoring
of grafted segment at discrete points close to the solid surface, while FOMC invokes not an
atomistic, but rather a coarse-grained model. Another observation is that the SCFT/SL + SGT
model provides smoother radial density profiles for grafted chain segments in comparison to
FOMC or SCFT/HFD. This mainly has to do with the incorporation of the square gradient term
in the description of the nonbonded interactions, which does not affect the long-ranged segment
interactions, but the smoothness of the density profiles in the region near the solid surface.
Furthermore, SCFT features a depletion region ranging from the solid surface up to a distance
equal to hys = 0.4 nm (the position of the aforementioned hard-sphere wall), wherein the
repulsive interactions from the Hamaker potential are very strong.

It is underlined at this point that the density profiles obtained via the SCFT/SL + SGT model

are closer to the corresponding ones obtained from atomistic molecular dynamics simulations
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than FOMC.**%1% f the oscillations of the atomistic density profiles are averaged out, then
the smeared analogues from atomistic MD come out quite close to the density profiles of
SCFT/SL + SGT in terms of the position of the peak and the width of the depletion zone near the
solid surface. **1%197 |nterestingly, the peak of the density profiles appears to become less
pronounced in atomistic simulations with increasing grafting density, presumably due to

excluded volume effects. 617

4.2.3. Radial density profiles from the SL EoS: exploration of Rs, 63, My parameter space

Figure 4.6 presents the reduced segment density profiles of grafted and matrix chains across the
(Rs, o4, My) parameter space. In all cases, grafted and matrix chains have the same molar mass,
Mm = M.
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Figure 4.6 Density profiles as functions of molecular weight, grafting density and particle radius. Density profiles
of grafted (solid lines) and matrix (dashed lines) chains with molar mass My = {1.25: red, 2.5: blue, 5: green, 10:
violet, 20: orange, 40: brown, 80: pink} kg/mol. In all cases, My, = My. Legend in rectangles: Rs (nm), (nm).

Overall, the density profiles of grafted chains expand with increasing o4, Mg, and Rs.
Concerning the latter parameter, with increasing particle radius (i.e., decreasing curvature), the
grafted chain segments have less available space to explore near the surface, so they experience
crowding and extend further towards the bulk phase of the polymer. In general, the density

profiles exhibit a rather rich behavior which could be classified into three distinct regimes:
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4.2. Grafted nanoparticle inside a polymer matrix

(i) Mushroom regime. In the region of low oy, My, and Rs, the radial density profiles of the
grafted chains become very suppressed and their peaks are much lower than the bulk density.
That the grafted chains are short and the distance between them is relatively large implies that
they cannot experience the presence of each other. In other words, the density distributions of
individual chains do not overlap and therefore chains tend to form mushroom-like
configurations.™* This effect is expected to be more pronounced at small Rs, since chains would
have more available space thanks to the increased curvature. On the other hand, matrix chains
can readily penetrate the brush and reach the surface of the NP.

(if) Dense brush regime. With increasing oy, Mg, and Rs, the density profiles become more
pronounced and feature extended regions with bulk densities; e.g., see Figure 4.6 for o4 > 0.8
nm? and Rs > 64 nm. Towards the bulk phase, the density profiles feature a characteristic

sigmoid shape? suggesting stretched brushes. The profiles of matrix and grafted chains intercect

at reduced densities: ¢, =¢, =0.5. The presence of chemically grafted chains on the particle

surface inhibits the penetration of matrix chains into the solid/polymer interfacial region and the
strength of this exclusion of matrix chains increases with increasing aq, Mg, and Rs.

(iii) Crowding regime. In the case of extremely high grafting densities (o5 > 1.6 nm ) and
low curvatures (e.g., Rs > 64 nm), the crowding experienced by the grafted chain segments
reaches a level where their densities slightly exceed the bulk density (see dashed grey line in the
plots of Figure 4.6). In other words, the compressing forces imposed by the stretching of grafted
chains overcome the tendency of the equation of state to maintain bulk density; hence, density
exceeds this level. In this regime, matrix chains are completely unable to reach the surface of the
NP, even for the shortest grafted chains (Mg = 1.25 kg/mol).

In Figure 4.6 and for given grafting density, oy, and NP radius, Rs, the edges of the density
profiles are shifted by about a constant amount along the abscissa (especially when the system is
driven towards the crowding regime), whenever the molecular weight of grafted chains, M, is
doubled; this effect becomes more pronounced with increasing Rs. Given that the density
profiles are presented in semi-log plots, this observation leads to the conclusion that the edges of
the profiles follow a power-law with respect to My, for constant oy and Rs. The scaling exponent
of this power-law exhibits a complicated dependence on g4 and Rs, as we demonstrate in Section
4.2.7.

In Figure 4.7, we present the total segment density profiles of polystyrene (i.e., sum of
grafted and matrix chain segments), when in contact with a silica surface. Even though the total

profiles are practically insensitive to My (except under very crowded conditions), they slightly
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increase near the silica surface with increasing oy and deviate from unity across the brush region,
under conditions of intense segment crowding.
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Figure 4.7 Total density profile as function of molecular weight, grafting density and particle radius. Total
segment density profiles for grafted chain molar mass equal to My = {1.25: red, 2.5: blue, 5: green, 10: violet, 20:
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4.2. Grafted nanoparticle inside a polymer matrix

4.2.4. Density profiles of adsorbed polymer segments

Chain segments cannot propagate against the solid surface. Consequently, their conformations
are dictated by configurational entropy effects different from those prevailing in the bulk
polymer melt. In addition, the presence of the NP (or planar surface) creates an attraction of
chain segments (which belong either to matrix or grafted chains) towards the solid surface. The
strength of this interaction, in relation to the cohesive interactions of the polymer, determines the
wetting behavior of the polymer melt on the solid surface. Low, moderate and high energy
surfaces lead to low, high (e.g., treated silica®) and perfect (e.g., untreated silica™) wetting
conditions, respectively, which may affect the local configurations of grafted and matrix chains,
in comparisons to configurations that would be dictated by purely entropic phenomena.

In order to investigate these effects, a distinction is made between “adsorbed” and “free”
chains. By definition, grafted chains are adsorbed, therefore the aforementioned distinction
concerns primarily the matrix chains. The value of the characteristic distance of closest approach
to the NP surface, below which a matrix chain is considered to be adsorbed, is set at h,gs = 1.28

nm. This is the starting point of the tail of the Hamaker potential emanating from the solid, i.e.,
where the Hamaker potential assumes a value equal to ~—0.005k,T . It should be emphasized at

this point that the distinction between adsorbed and free chains is not based on chain dynamics,
but rather on a geometric criterion revealing the tendency/ability of matrix chain segments to
penetrate the brush and experience the potential exerted by the solid surface.

The reduced density of free matrix chain segments can be derived from the convolution

integral of eq 4.8.

Nm
o (r) =—=— [ dNgi™ (r, N)af(r,N,, —N) 4.8
0

1
N

m

free
m

where ¢, is the propagator of the free matrix chains, following the discussion in Section 3.4.4.

Subsequently, the reduced density of segments belonging to adsorbed matrix chain segments is

obtained as in eq 4.9 below.

Pn° (1) =@, () =937 (1) 4.9
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Figure 4.8 Adsorbed and free segment density profiles as functions of molecular weight, grafting density and

particle radius. ¢’ (solid lines) and ¢ (dashed lines) profiles of adsorbed and free matrix chains with molar

mass equal to M, = {1.25: red, 2.5: blue, 5: green, 10: violet, 20: orange, 40: brown, 80: pink } kg/mol. In all cases,
Mg = M. Legend in rectangles: Rs (nm), oq (nm).

) and adsorbed (@>*

m

Figure 4.8 presents the reduced density profiles of free (i

o ) matrix
chains across the (Mg, g, Rs) parameter space. The profiles of segments belonging to free chains
assume a value equal to unity in the bulk region, while going by definition to zero when
approaching at distance equal to h,gs from the solid surface. According to Figure 4.8, matrix
chains can easily penetrate the brush in the mushroom regime. With increasing o4 and Rs, matrix

chains experience noticeable resistance in penetrating the region occupied by grafted chains,

ads
m

while ¢-° — 0 upon transitioning to the crowding regime.

4.2.5. Chains per area density profiles
The mathematical definition of this structural property is given in Section 3.4.5. At this
point, for the sake of comparison, we define a reference chain which obeys the Gaussian chain

model and has infinite length. Given this definition, the reference chain will cross any shell-
surface at least once. Hence, and since the number of grafted chains equals n, =o,47R 2 the

number of these reference chains passing through a surface separated by h from the surface of
the solid per unit area of that surface is given by eq 4.10.
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2
n R
ny =—3% =g | —2 4.10
M9 47z(Ry +h)? Q[RSHJ

In Figure 4.9a, we present ne, for matrix and grafted chains, while Figure 4.9b illustrates the

normalized number nen g/og for the grafted chains across the considered parameter space (Rs, ag,

ref

Mg). In both panels, the corresponding N, are represented by dotted lines. In the flat geometry

ref

iy = 0, throughout the whole domain, while for finite curvatures, Ny decreases with

case, N

distance from the surface according to eq 4.10, and this is reasonable, since the polymer chains

enjoy more available space to diffuse.
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Figure 4.9 Chains per area profiles for various molecular weights, grafting densities and particle radii. Profiles of
(@) ng, of matrix (dashed lines) and grafted (solid lines), (b) ne/og of grafted chains. Molecular weight of grafted
chains is equal to My = {1.25: red, 2.5: blue, 5: green, 10: violet, 20: orange, 40: brown, 80: pink} kg/mol. In all

cases, My = My,. Legend in rectangles: Rs (nm), o (nm?). The dotted lines depict ng‘;fg / 0, for the reference chain
from eq 4.10. The horizontal dashed lines denote the grafting density.

The behavior of the chains/area profiles with increasing grafting density or molar mass is
consistent with the reduced density profiles of Figure 4.6. For low NP radius, the chains/area
profiles are insensitive to grafting density, a picture that is consistent with the mushroom regime.
Higher grafting density or molar mass leads to gradual extension of grafted chains towards the

bulk region and a simultaneous exclusion of matrix chain segments from the solid/polymer
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4.2. Grafted nanoparticle inside a polymer matrix

interface. For larger NPs and grafting densities, the crowding phenomena inside the interfacial
region intensify and push the grafted chain segments further towards the bulk region.

As expected, in the planar geometry case, the number of grafted chains per area on the
surface of the solid equals the grafting density throughout a broad region of the profile and starts
to deviate upon approaching the region where ends terminate, where the number of grafted

chains per area decreases. It is also noted that, since the hard sphere wall is located at ~ 0.4 nm
from the solid surface, the maximum n, g assumed by the chains is Ny = o, R’/ (Ryp +N6)?,

albeit ncn = o4 upon extrapolation towards h — 0.

4.2.6. Chain end segregation at the interface
As already discussed in Section 3.4.3, the reduced density of the N™ segment, @cn, Of a chain of

type ¢ and located at r can be retrieved by eq 3.6. Normalizing this quantity with the

bulk

corresponding density in the bulk phase (¢, =1/N; since g = 1 in the bulk), we obtain a

quantity of particular interest, which denotes the tendency of a region to attract or repel
particular segments.

Figure 4.10 depicts the reduced density profiles of the end segments of grafted and matrix
chains across the investigated parameter space. As expected, the density of free ends of grafted
chains increases with increasing grafting density, a4, as well as with increasing Rs, since there is
less space for the grafted chains to develop their conformations. With increasing grafting
density, the profiles of chain ends are shifted towards the bulk region. In the crowding regime,
where oy and Rs are high, chain ends are segregated far from the solid surface, suggesting that
grafted chains are stretched. These profiles resemble those obtained for incompressible brushes,
such as those in ref '* and with the more extreme case of Alexander model.****?” In the latter
case, all chain ends are by definition concentrated at the edge of the brush, hegge, the position of

which is denoted by the vertical dotted lines in Figure 4.10 (Appendix A).
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Figure 4.10 Chain-end density profiles for different molecular weights, grafting densities and particle radii. Chain-
end density profiles, geng, Of grafted (solid lines) and matrix (dashed lines) chains with molar mass equal to Mgy =
{1.25: red, 2.5: blue, 5: green, 10: violet, 20: orange, 40: brown, 80: pink} kg/mol. Vertical dotted lines illustrate
predictions for the position of chain ends from Alexander model for the corresponding My, o5 and Rs. In all cases,
Mg = M. Legend in rectangles: Rs (nm), g4 (hm).

In the mushroom regime, the chain ends from Alexander model are segregated much closer
to the solid wall as compared to our SCFT model. This is attributed to the following factors:

(i) The Alexander model requires constant segment density of the grafted polymer and equal
to the bulk melt; therefore, in the mushroom regime, where interpenetration of matrix and
grafted chains becomes significant, it needs to squeeze the profiles of grafted chain segments in
order to maintain the bulk density and conserve the amount of material at the same time.

(if) The segments in our SCFT model experience an additional repulsive interaction which is
modeled by a hard-sphere wall located at hys ~ 0.4 nm.

Clearly, the Alexander model with fixed density is not appropriate to describe the mushroom
regime and, more generally, regimes where the matrix chains can penetrate the brush.
Nevertheless, it is expected to perform very well under poor solvent conditions (e.g., polymer-

vacuum interfaces), which lead to a collapsed brush across the solid surface.
4.2.7. Scaling of grafted polymer layers

Extensive research has been conducted to understand the behavior of polymer brushes in terms

of their configurations near and far from the grafting surface. 319088128129 The axnansion of the
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4.2. Grafted nanoparticle inside a polymer matrix

grafted polymer chains exhibits a complicated behavior with respect to oy, Mg and Rs. In this

section, an analysis is performed to elucidate the behavior of the mean brush thickness, <hgz>1/2 :

when these parameters are varied. Brush thickness is directly related to the density profiles
presented in Section 4.2.3 of the present thesis.™*® For details regarding the calculation of the
brush thickness, the reader is refered to Section 3.4.2.

The scaling behavior of polymer brushes shows quite a similar behavior to star polymers.

131

According to Daoud and Cotton,™" the radius of a star polymer (Rsr) in a solvent exhibits a

power-law dependence of the form: R N,."f. "™, where Ny is the number of segments

star - star star
constituting a branch, fg,, is the number of branches, v = 0.5 — y is the monomer excluded volume

parameter, y is the Flory-Huggins parameter®™ and n, m, k are the corresponding scaling

1

exponents.®***2!¥ Daoud and Cotton'*! classified the behavior of stars into three distinct

regimes:
(|) NStalr > fstarllzv—Z . Rstar . Nstar3/5 fstar1/5VlISbk
(i) f,"v?>N, >f "R, ~N,""f. "Db,
(iii) f"*>N_ : R, ~N,"f."b

with by being the Kuhn length. By substituting fsar — o3 and Ngar — Mg, and by ignoring the
influence of the core of the NP to the brush, the model by Daoud and Cotton*** could be applied

to describe the scaling of polymer brushes via the following eq 4.11.

2\12 noom
(h?)" =M,"a,", 4.11
where |, is a coefficient with dimensions (kg mol™)™ nm?™*,
It should be noted here that the first regime of the Daoud & Cotton model, N, > f_ '*v?,

cannot be addressed through our calculations, since the latter are performed in melt conditions
(equivalent to theta solvent conditions), where the Flory-Huggins parameter, y, is equal to 0.5
and therefore the quantity v 2 goes to infinity (excluded volume parameter, v, is equal to zero).
Another important difference between Daoud and Cotton’s model and ours is that, in NPs, the
grafted chains emanate from different grafting points, whereas in star polymers, chains emanate
from the same point. Hence, under theta or good solvent conditions and for large curvatures,
grafted chains will not interact with each other and the dependence of brush height on grafting
density will be weak. The situation might be different under poor solvent conditions, where the

brushes are partially or fully collapsed (depending on how large the parameter y is).
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Figure 4.11 illustrates brush height evaluations for NPs with Rs = 8 nm, obtained from SCFT
calculations with RuSseL,”® from FOMC (blue “+”) and from small angle neutron scattering

(SANS)™* measurements (red “x”). Overall, eq 4.11 can describe accurately the scaling of PS

brushes grafted on SiO, NPs with radius equal to 8 nm, since both <h92>1/2 and (N, ) appear to

obey the scaling ~ Mgo'sago'zs. It is observed that evaluations from SCFT appear shifted with

respect to FOMC. This is attributed to that in FOMC, the increased density near the solid

surfaces increases the weight of smaller hy in the integration of eq 3.4; thus, it leads to decreased

,\1/2 .. . 2\2 . . .
overall <hg > . In addition, h!Ilmo<hg > ~0 in RuSseL, since the length of grafted chains goes

to zero. For the same reasons, hggy, points obtained with RuSseL lie slightly higher than FOMC
and SANS values, while the minimum value of hgge is equal to the radius of the NP.
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Figure 4.11 Daoud and Cotton scaling law for brush thickness. Evaluation of (a) hggy and (b) <hgz> as a

function of M>°¢,”% for Rs = 8 nm, from FOMC (+),®> SANS measurements (x),"** and SCFT/RuSseL: in the latter
case, colors denote chains with molar mass My = {1.25: red, 2.5: blue, 5: green, 10: violet, 20: orange, 40: brown,
80: pink } kg/mol, and shapes denote different grafting densities, o4 = {0.1: [J, 0.4: O, 0.8: &, 1.2: A, 1.6: %} nm~
2, Dashed lines are guides to the eye.

In the following, we test the scaling laws proposed by Daoud and Cotton across the full

parameter space explored herein. Figure 4.12 displays evaluations of <h92>1/2 plotted versus the

quantity My °64>** and for NP radius equal to 1, 4, 16 and 64 nm, as well as for flat surfaces,

and for various My and a.
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Figure 4.12 Brush thickness scaling law for different particle radii. Evaluations of the mean brush thickness,

<h92>“2, as a function of (a-e) My °s,>*® proposed by Daoud and Cotton and (f-j) Mg"o,", where n, m are the

optimized exponents from Figure 4.14a. Colors denote chains with My = {1.25: red, 2.5: blue, 5: green, 10: violet,
20: orange, 40: brown, 80: pink} kg/mol. Shapes denote different grafting densities, o4 = {0.1: [, 0.4: O, 0.8: <,
1.2: A, 1.6: %} nm™2 In all cases, My = M,

An interesting behavior is manifested in these plots, which reveals three distinct regimes: (i)
for NP with small Rs (e.g., Figure 4.12a), the curves for specific My (same colors) are
disconnected and feature a very weak slope; (ii) for NPs with intermediated sizes Rs = 4-8 nm
(e.g., Figure 4.12b), the curves for specific My connect with each other, suggesting that the
Mg>°0,>% law is fairly accurate in describing this regime; (iii) for NPs with larger sizes Rs > 8
nm (e.g., Figure 4.12c,e), the curves appear disconnected as in the case of small NPs, the

difference now being that the slope for each individual My curve appears to be stronger. This
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4.2. Grafted nanoparticle inside a polymer matrix

analysis suggests that even though the ~ M,*°s,>*° correlation appears to describe the scaling of

the brush with reasonable accuracy for Rs ~4-8 nm, it becomes inaccurate for NPs with
relatively large or small radius.

In view of these observations, one can optimize the n, m exponents for each Rs to retrieve
the power-law in eq 4.11. According to Figure 4.6, for constant Rs and oy, the density profiles

expand by a roughly constant factor when doubling Mg; thus, it is reasonable to assume that

<h92>1/2 ~M," with n being a function of (Rs, o). Figure 4.13 presents the optimized n

exponent from fitting RuSseL results against the power-law <hgz>1/2 ~M," overall Rs and o

O, (nm'z)

R, (nm)

Figure 4.13 Optimized n exponents of the power-law in eq 4.11 for set grafing density, o4, and NP radius, Rs. The
rightmost column depicts the fit with eq 4.12.

Given that the 1D model employed herein might not be able to describe accurately the chain
configurations at low grafting densities or molecular weights of grafted chains, due to the
inevitable smearing of grafting points, we decided not to take into account the cases

corresponding to values of o Rg2 <3,and g4 = 0.1 nm 2 (which exclude the larger part of cases
corresponding to the mushroom regime) when fitting the scaling exponents for the master eq
4.11.

For large a4, the exponent n presents a stronger dependence on Rs than agy; thus, for

simplicity, one could treat n as being a function of Rs exclusively. Consequently, the data for oy

> 0.1 nm 2 were fitted to a sigmoid function of the following form:
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n=n., 1tanh nsln& +§nmaX 4.12
2 Ry) 2

With Nmin = 0.5 and Nmax = 1, being the minimum and maximum values of n, Ry = 113.7 nm and

ns = 0.4337. Subsequently, with n set, one can optimize the exponent of o4 with respect to Rs
aiming at aligning the data points for a given Rs. Figure 4.12f-j displays evaluations of <hg2>1/2

using the optimized n and m exponents presented in Figure 4.14a.
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Figure 4.14 Optimized scaling exponents for the prediction of brush thickness scaling. (a) The optimized n
(circles) and m (squares) exponents of eq 4.11 and Iy (diamonds) as functions of Rs. The rightmost data points
correspond to flat surfaces. (b) Evaluations of eq 4.11 using the n, m and | parameters in (a). Colors denote chains
with molar mass My = {1.25: red, 2.5: blue, 5: green, 10: violet, 20: orange, 40: brown, 80: pink} kg/mol. Shapes
denote different grafting densities, o, = {0.1: [0, 0.4: O, 0.8: ¢, 1.2: A, 1.6: %} nm 2 The size of the symbols
increases slightly with Rs. The inset in (b) depicts a zoomed region of the master curve. In all cases, Mg = My,

Using these optimized n, m exponents, <hgz>l/2 increases linearly with My"s," over the full
range of examined Rs (from 1 nm to o). In addition, the curves in Figure 4.12 can be collapsed
onto the master curve shown in Figure 4.14b, where <h92>1/2 is plotted against eq 4.11 with I,

being the slopes of the individual curves in Figure 4.12f-j (see green diamonds in Figure 4.14a).
Overall, the data points in Figure 4.14b are in good quantitative agreement with eq 4.11, with

. R 1/2 R R .
the exception of the low My, g4 regime where <h92> plateaus; see zoomed region in Figure

4.14b.
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4.2. Grafted nanoparticle inside a polymer matrix

4.2.8. Thermodynamics
In Figure 4.15, the plots (a-e) depict individual grand potential terms (eqs 2.39-2.43) over
the parameter space (Rs, oy, Mg). Regarding the cohesive interaction term per unit solid surface

(AQEM [ s in Figure 4.15a), it decreases steeply in the vicinity of small Rs and this is attributed

coh

to that, when high curvatures are involved (small Rs), the surface of the spherical cells where we

SGM
coh

integrate AQ is larger than the surface S5 of the NP (by which we normalize all energy

quantities), by a factor (Rs+h)2 /R, At low grafting densities, (mushroom regime, circles in

Figure 4.15a), AQSM /5. appears to be insensitive to molecular weight, Mg, for My up to 80

coh

kg/mol; i.e., all different colored lines with circular markers collapse onto the same curve in

Figure 4.15a. AQ>S / 5. deviates notably with increasing My and Rs. This is a consequence of

coh
pg exceeding psegbuik due to chain crowding (e.g., see bottom-right panels of Figure 4.7) and this

enhances the cohesion of the brush, when the SL-EoS is used. To be more specific, as shown in
Figure 2.4, the minimum of f (p)— f (pbulk) for SL is about — 0.5 mJ/m® for reduced densities

slightly larger than one; thus, accumulation of these negative values over the integration of

larger and larger brushes, due to crowding, leads to eventual decrease of AQM /.

coh

Similarly, the field term (AQ;SY / S, in Figure 4.15b) presents the same qualitative behavior

as AQSM /s, for the exact same reasons: (i) steep initial decline due to high curvature, (ii)

coh

accumulation of negative values (see —pdf /d p|+| pdf /dp]| in Figure 2.4 for ¢ > 1) by

P=Pregik
integrating over gradually larger brushes.

Considering the solid/polymer interaction term (AUg/Ss), it is practically insensitive to
chain molar mass; i.e., in Figure 4.15c, the energies for different chain molar masses do not
exhibit noticeable variations with each other, irrespectively of the size of NP. With increasing
grafting density, it is obvious that the adhesion between the solid and the polymer is enhanced,
because of the increased density of polymer segments close to the surface, as it is depicted in the
total segment density profiles presented in Figure 4.7.
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Figure 4.15 Total free energy and individual terms as functions of molecular weight, grafting density and particle
radius. (a-e) Partial contributions to the grand potential per unit area from eqgs 2.39-2.43. (f) Total grand potential
per unit area. Colors denote chains with molar mass My = {1.25: red, 2.5: blue, 5: green, 10: violet, 20: orange, 40:
brown, 80: pink} kg/mol, and shapes denote different grafting densities, o, = {0.1: (J, 0.4: O, 0.8: ¢, 1.2: A, 1.6: %
} nm 2 Inall cases My, = M,. Bands denote scale changes along the axes.

In all cases, the entropy term associated with the partition function of matrix chains
(AQM [ s in Figure 4.15d) appears to be rather weak. It shifts upwards by a constant amount

with increasing grafting density, because grafted chains claim more space in the interfacial

region, leaving the matrix chains with fewer available conformations.
Regarding the entropy term associated with grafted chains (AASGM /S5 in Figure 4.15e), it
exhibits a rather interesting behavior: in the mushroom regime (¢ = 0.1 nm?, circles in Figure

4.15e), AASGM | S5 appears to be flat and rougly equal to zero, indicating that for low grafting
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4.2. Grafted nanoparticle inside a polymer matrix

densities there is no entropic penalty with increasing Rs associated with brush conformations.
On the contrary, for larger oy (squares and stars), AA§GM I S5 increases with Rs up to ~ 100 nm

and plateaus to finite values in the limit of planar surfaces. This response is attributed to the
stretching of grafted chains caused by crowding phenomena. A direct manifestation of this effect
is presented in Figure 4.10, which depicts the segregations of grafted chain ends towards the
bulk phase under crowded conditions.

The total grand potential from eq 2.38 is presented in Figure 4.15f. Across the mushroom

regime (g = 0.1 nm 2, circles), AQSM /s, exhibits a monotonic decrease and plateaus to a

coh
value commensurate to the surface tension of PS for Rs > 100 nm, which is about yps ~25.9

mN/m at T = 500 K.?2 It is noted that, in the limiting case oy — 0 and Rs — o, and in absence of

SGM
coh

the Hamaker potential, y.s =AQ ;" /S;. With increasing oy, the grand potential features a

minimum at Rs ~10 nm, after which it increases in a way suggesting the domination of the

stretching term in Figure 4.15e.

4.2.9. Contributions to chain stretching

The entropy term associated with grafted chains in Figure 4.15e does not reflect the total
conformational contribution to the grand potential, since the partition function in eq 2.43 is
evaluated in presence of the field. Consequently, in the context of SCFT, the free energy
associated with the conformations of grafted chains can be estimated by the following eqgs 4.13
and 4.14.

gonf = A'A\J + AAf(\?eld 4.13

with AA[,, being the field experienced by the grafted chains:

AAL = _J‘dr{ipg,ig (r)w (r)} 4.14

and Py, being the segment density associated with the igth grafted chain.

At this point, it is worth analyzing and comparing the conformation free energy of grafted
chains with a rough estimate of the free energy obtained from the density profiles of the grafted
chain ends. In the one-dimensional calculations employed in this chapter, grafted chain
conformations are reflected random walks starting at hy. Assuming that the system finds itself in

the dense brush rather than the mushroom regime, the number of conformations of a chain such
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that the end-to-end vector projection normal to the solid surface is between h and h + Ah, can be
estimated through the corresponding number in the unperturbed melt. It will be proportional to
fena(n)dh, where the probability density fe,q(h) is given by the following eq 4.15 in the context of
the Gaussian chain model.

1/2
~ 3 3h?
fend (h) - (W} expEmj 1 h > 0 415

Note that this is based on the assumption that a grafted chain will access all conformations
accessible to it at given value of the end-to-end distance. In reality, as is obvious from the
profiles in Figure 4.9 and Figure 4.10, grafted chains are more stretched near their grafted end

135,136

(indicative of the concentrated polymer brush regime, as called in literature ) and less

stretched near the free end. Based on eq 4.15, the Helmholtz energy contribution, Acpain, Of &

Gaussian chain grafted at I;; whose free end lies at point r, is given by eq 4.16 within an

additive constant. In egs 4.15 and 4.16, <Rendyg2> is the mean squared end-to-end distance of an

unperturbed chain of length equal to Ng.

3k, T (I’ Ty, )2
2 <Rend'92>

Let Oy ens = PyenaPsegpu € the local number density (segments per unit volume) of free ends

Avein (1) = 4.16

of grafted chains; note that each grafted chain contributes one free end. Consecutively,

integrating pgend across the domain results the total number of grafted chains, i.e.,

_[ Pyena (N)dr =n, . The total stretching free energy of grafted chains in our system equals (within
R

an additive constant):
giretch = _[pg,end (r) A:hain (r)dr 417
R,

and it can be approximated across the dense brush regime as:
2
&%retch - _[pg,end (h)Achain (h)472'( RS + h) dh 418
R

in spherical and:
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A%retch = ng,end (h) A:hain (h)SSdh 4 19
R

in planar geometries. In the special case of Alexander’s model, in which all chain ends are

segregated at the edge of the film, p, ., =0,0 (h - hedge) , thus eq 4.19 can be written as follows:

gtretch - SSO-g A\:hain (hedge) 4.20

with hegge given by eq A3 in Appendix A. In Figure 4.16, we demonstrate a comparison between
the stretching energy term obtained by the Alexander model (lines) and our SCFT theoretical

model (markers); the latter is calculated either from: (a) A2, given by eqgs 4.13 and 4.14 or (b)

A .. given by egs 4.17 and 4.18.
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Figure 4.16 Conformational entropy of grafted chains for different molecular weight, grafting density and particle

radius. Evaluations of (a) A2 . and (b) AJ.., . Markers correspond to evaluations from our SCFT theoretical

model, whereas lines correspond to AS ., from the model of Alexander. Colors denote chains with different

molecular weight, My = {5: red, 20: blue, 80: green} kg/mol. Shapes/lines denote different grafting density, 4 =
{0.1: circles/dashes, 0.8: squares/dots, 1.6: stars/solid lines} nm™. In all cases, Mg = M. The rightmost data
correspond to flat surfaces.

We mention at this point that the Alexander model, which we develop in Appendix A, is
similar to the hyy region that Midya et al.> report in the context of their two-layer theoretical
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model for the description of nanoparticle brushes. In that work,* the authors state that in curved
surfaces and for constant grafting density, the free energy associated with the stretching of
grafted chains does not increase indefinitely with increasing length of grafted chains, but it
rather saturates at a maximum value. This is well expected, since at some point the grafted
chains cannot feel the presence of each other due to the curvature of the solid surface and
therefore become unperturbed. It must be pointed out, however, that, in the case of planar

surfaces, the grafted chains experience the presence of each other indefinitely due to steric

confinement and thus AJ.., increases monotonically with Ng in this regime. Our model is

consistent with this behavior: A, and AJ.., are about to form a plateau with increasing Ngq

tret
across the small Rs regime, whereas in the limit of flat surfaces, they appear to increase
indefinitely with Ng.

It is observed that for larger grafting densities, our SCFT results and Alexander’s model are
in good agreement for all chain lengths and in describing the conformational entropy of grafted
chains as a function of nanoparticle radius. A large discrepancy between the two models occurs
for lower grafting density; there, the totally stretched chains assumption of the Alexander model

and the requirement to maintain bulk density everywhere result in suppressed grafted chains and
thus lower AJ.. (compare the evaluations of Alexander’s model at low grafting densities in

Figure 4.10). On the contrary, in the mushroom regime, the profiles of grafted chains obtained
with our model appear broader and this is reflected in the increased contribution to the

conformation component of the free energy.

4.2.10. Concluding remarks
The conformations and size of a polymer brush grafted on a solid surface, which is immersed in
a homopolymer melt of the same chemical constitution as the grafted chains, are complex and
depend on a number of molecular parameters. In this section, we first explored the system of a
bare and then a grafted single nanoparticle immersed in a polymer matrix, and next, we will
proceed by addressing the system of the same grafted particle in contact with vacuum and derive
its solvation free energy. In each case, a broad parameter space is explored.

Given the radial symmetry of these systems, we used the one-dimensional version of
RuSseL,”® where the Edwards diffusion equation is solved via an implicit Finite Differences

numerical scheme. A smearing approximation is introduced to address the presence of grafting

130



4.2. Grafted nanoparticle inside a polymer matrix

points in this one-dimensional model. The parametrization of the system corresponds to a
particular chemical constitution, i.e., silica/polystyrene), which is readily accessible experiment-
aIIy.14’15'22'43’81’134’137'138

The segment density distributions and conformations of grafted and matrix chains have been
derived for various surface grafting densities, nanoparticle radii and molar mass of grafted
chains (which was always equal to the molar mass of matrix chains). We distinguish three
different regimes to categorize the behavior of the brushes: the mushroom regime, the dense
brush regime and the crowding regime. The response of the system in each one of these regimes
is quantified in terms of the chains/area profiles, the distribution of grafted and matrix chain
ends, as well as the segment density profiles of adsorbed and free matrix chains. It becomes
clear that, with increasing grafting density and chain molar mass, grafted chains need to
stretch/swell towards the bulk region in order to adjust to their gradual conformational
restriction; therefore, the penetration of matrix chain segments inside the brush is inhibited.

The dependence of the brush thickness was examined with respect to all the aforementioned

parameters in order to thoroughly investigate and clarify the behavior reported in literature. The

l/Zf

scaling law, R, ~ N Y“p,, proposed by Daoud and Cotton in the intermediate regime,

Star star star

> f_ "2 is accurate over a specific range of NP radii, specifically from 4 nm to

star star

f Y2y 2> N

star
8 nm. For larger NPs, the scaling exponents exhibit a complicated behavior and thus a more
general equation must be implemented, which treats the exponents of the molecular weight, M,
and grafting density, oy, as functions NP radius/curvature.

Adjusting also the pre-exponential factor of the scaling law, a master curve can be obtained,
which provides a faithful description of SCFT predictions for the brush height given the
molecular weight of grafted chains, grafting density and NP radius. This master curve seems to
be quite accurate, especially in the region of high molecular weight and grafting density. In the
mushroom regime, brush height exhibits a weak dependence on grafting density and NP radius
and it is proportional to the square root of molecular weight. In the crowding regime, the brush
scales linearly with grafting density and molecular weight, while the density profiles of grafted
chain segments, and in general the overall behavior of brushes compares well with the
Alexander model for incompressible brushes.

In calculating the free energy of the system, the term associated with the conformational
entropy of grafted chains does not depend on NP radius for low grafting densities and molar
masses (Figure 4.15e). The same plot reflects that with increasing grafting density or molar

131



Chapter 4. Single Nanoparticle Calculations

mass, chains need to stretch and, therefore, the free energy penalty associated with chain
stretching increases. This entropic contribution of grafted chains becomes dominant for high
grafting densities and molar masses. The entropic term associated with matrix chains has a
minor contribution to the total free energy of the system.

The stretching free energy of grafted chains has been calculated with two different ways: 1.
from the configurational partition functions of grafted chains, 2. approximately, from the density
profiles of grafted chain ends. In either case, a good agreement was observed with the Alexander
model in the limit of large grafting densities.

4.3. Grafted nanoparticle in contact with vacuum. Solvation free energy of a

nanoparticle

4.3.1. Background

Dissolving liquid molecules or nanosized particles in different liquids or gaseous solvents is
important in a variety of applications, such as pharmacokinetics,”**** drug development,#*142
design of responsive NPs for targeted drug delivery,*** and many more. Being able to predict the
distribution of a molecule or NP across multiple phases is thus critical to various chemical,
materials and biomolecular engineering processes. In the field of environmental protection,

researchers are concerned about the transport properties of environmental contaminants,**4**

and about the partitioning of organic pollutants, such as polychlorinated biphenyls (PCBs),*°
between the atmosphere, water, and tissues of living organisms.

The tendency of a particle (P) to distribute itself between two fluid phases formed by
immiscible or partially miscible components A and B can be quantified in terms of the

equilibrium partition (distribution) coefficient, KB, which satisfies the following relation:

AG™ — AGP™ = -RT InK*® 4.21

where AG*" =GJ —G{Y is the Gibbs free energy of solvation (also referred to as solvation

free energy) of the particle in phase j, G is the Gibbs energy of the particle immersed in a

homogeneous phase of type j, and G{¥ is the Gibbs energy of the particle in vacuum. Upon

reaching equilibrium (Gibbs energy at a minimum under prescribed temperature and

144

pressure),” the activities, or, for very dilute systems, the concentrations of particles in each

phase, C* and CB, are related to K*® as follows:
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CA k B—>A

Al
KA® o5 = R 4.22

with k' signifying the rate constant for transfer from phase i to phase j. The partition
coefficient was initially introduced by Hansch and Fujita to predict the distribution of various
compounds between octanol and water.*” Such coefficients are also used in metallurgy and as a

measure of activity of agrochemicals.**® In literature, there is a wealth of data regarding the

149-152 148

partition coefficients of polystyrene in water-chloroform and

148

and n-alkanes (up to C8)
octanol-water™ systems.

The theoretical basis of solvation had been established by Ben-Naim,'>* whose framework
introduces the notion of a pseudo-chemical potential, directly related to the free energy of
solvation under constant temperature and pressure. In general, solvation is considered to
comprise two main stages. At first, a cavity must be formed in the bulk solvent, where the solute
molecule will enter the system. In the second stage, the solute molecule enters the system and
starts interacting with the molecules of the solvent surrounding it. Graziano™* derived the Ben
Naim pseudo-chemical potential for a solute molecule inside a Van der Waals liquid solvent and
in the limit of infinite dilution.

The experimental determination of partition coefficients for NPs and large organic molecules

155

(e.g., Ceo fullerenes™) is highly nontrivial due to the difficulty of the NP/A,B blend systems to

reach true equilibrium. According to Praetorius et al.,***

the concept of the partition coefficient
for NPs has been misused extensively in the literature. Depending on the surface chemistry of
the NPs and on the blend properties, instead of homogeneously dispersing across the blend, the
NPs may tend to: (i) agglomerate and form their own phase, (ii) segregate to the liquid/liquid
interface, or (iii) adsorb irreversibly to a solid surface. In such cases, the measured partition
coefficients are not representative of thermodynamic equilibrium between the A and B phases
and depend on the experimental conditions (e.g., concentration of the NPs, duration of the
experiment, etc.).

144,155,156 whereas

The aforementioned limitations have been discussed by several researchers,
in many cases “apparent” partition coefficients are being reported.”*" > Regardless, it has been
argued™* that the applicability of such “apparent” partition coefficients as fate descriptors may
be inappropriate for risk-assessment models. These experimental artifacts can be bypassed by
physics-based calculations, capable of sampling the partition coefficients and the corresponding

solvation free energies under true equilibrium conditions.
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In this section, we develop a generic theoretical framework for the determination of the
solvation free energy of bare and grafted NPs in polymers as a function of the NP/polymer
degree of wetting, NP curvature, surface grafting density, and lengths of grafted and matrix
chains, which are assumed to be of the same chemical constitution. To obtain the free energy of
solvation of a NP, we perform two SCF theoretic calculations: one on a NP immersed in the
polymer matrix at infinite dilution (which has been extensively investigated in the previous
Section 4.2) and a second one on the isolated NP in vacuo. In the latter state, where calculations
in absence of any bulk melt or solvent are required, one has to invoke compressible SCFT.

Various approaches are reported in the literature, many of which are based on lattice-fluid
models, where the free-volume effects are reproduced by introducing vacancies as an additional
pseudo-component.?1%1%! Herein, we avoid the use of a quasi-solvent of vacancies by

employing the Sanchez-Lacombe EoS™"

combined with a square gradient correction term.
Using these tools, we can achieve a quantitative description of the behavior of the spherical or
planar grafted polymer brush exposed to vacuum, which is analogous to bringing it in contact
with a poor solvent.

By imposing Dirichlet BCs for the restricted partition functions of matrix and grafted chains

40,162 41183 "\ve can model realistic

on the NP surface (instead of reflective boundary conditions)
wetting conditions at the solid/polymer interface. In addition, the short-range potential that is
employed herein (Hamaker-square well, cSW, see Section 2.1.5.5) takes into account the convex
geometry of the NPs and deals appropriately with the loss of interaction sites with increasing
curvature. As a result, we can explicitly predict the evolution of polymer affinity to the solid
surface (zero, low, high and perfect wetting) with increasing curvature. We demonstrate that the
behavior of the system is quite different when addressing planar and spherical

26,28,164,165

interfaces and compare the overall behavior against theoretical®**!*1% and

experimental®**'® observations.

4.3.2. Description of the model

For the convenience of the reader, a tabular description of the types of systems considered is
provided in Table 4-1 (section sys). Each type of system was studied for different radii of the
spherical shell, lengths of matrix and grafted chains, and strength of solid/polymer interactions.

In the “code” denoting the system type, the left- and right-most characters refer to the
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4.3. Grafted nanoparticle in contact with vacuum. Solvation free energy of a nanoparticle

(nano)phase inside the innermost spherical cell and to the outer bulk phase, respectively, while
the intermediate character (if any) refers to the intermediate (nano)phase.

4.3.3. Structure

Figure 4.17 illustrates the profiles of grafted chains either in contact with vacuum (SGV
systems, solid lines) or exposed to a polymer matrix (SGM systems, dashed lines) in dependence
of the chain length Ny (varying colors), grafting density o4 (left-to-right), and NP radius Rs (top
to bottom). Overall, the profiles expand with increasing Ng, o4, and, to certain extent, with Re.
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Figure 4.17 Density profiles of grafted chains in contact with melt and vacuum. Grafted chains are either isolated
(solid lines) or exposed to a matrix phase of the same chemical constitution and chain length (dashed lines with fill).
Results are shown in dependence of the chain length of grafted chains Ng = {48: red, 192: blue, 768: green} skeletal
bonds, grafting density ¢, = {0.05, 0.1, 0.4, 0. 8} nm 2 (left to right) and NP radius Rs = {2, 8, 32, co} nm (top to
bottom). Legends denote [Rs, a5] in [nm, nm™] units. All cases correspond to the high-wetting system (HW) in
Table 2-2.

The shape of the brushes is qualitatively different between the SGM and SGV systems. In
the presence of matrix chains, the brushes swell considerably towards the bulk polymer phase.
In absence of melt, the brushes collapse towards the solid surface, since there is an energy cost
associated with them being exposed to vacuum. The varying area under the profiles for the same
ogsegy = 0gNg 1S due to the curvature and logarithmic h-axis used; integration in spherical

coordinates yields the exact same areal density of grafted segments o seg.
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Let us first consider some limiting cases for the SGM systems (melt/ideal solvent
conditions). Across the mushroom regime®®’ (agRG,g2 < 1; leftmost panels in Figure 4.17), grafted

chains do not experience the presence of each other and exhibit the characteristic scaling of
random coils, i.e., <h92>1/2 ~N,%.

For larger grafting densities and chain lengths (c;gRQg2 > 1, brush regime), the scaling
depends on both Ng and ¢4. The scaling exponents (n, m) gradually increase from (0.5, 0) to (1,

1) with increasing Rs and oy (to a lesser extent with the latter),* and eventually, in planar

geometries, the scaling becomes linear, e.g., <hg2>l/2 ~ N, ~ 0y 2% The configuration of

,5eg *
the brush (or parts of it) depends on the chain crowding conditions, which can be quantified in
terms of the number of grafted chains passing through a surface at distance h from the NP,

which can be calculated via the following eq 4.23.
e =o,[Re/(Rs+h)] 4.23

Above a threshold value of ncrf:g , the grafted chains are gradually restricted, and therefore

ref

they start stretching (concentrated polymer brush, CPB)."***** On the other hand, fow low N, ,

grafted chains enjoy a lot of available space and thus exhibit the scaling of semi-dilute polymer
brushes (SDPB: n ~0.5-0.6).2!® |n the case of spherical NPs, brushes can assume hybrid

CPB-SDPB configurations, wherein they are concentrated (CPB) close to the NP surface (high

n;f:g at low h), and semi-dilute (SDPB) after exceeding a critical distance from the NP surface

(low ncrre:g at high h).**® For chains grafted on planar surfaces, the CPB or SDPB regime persist

indefinitely, since segments lying at higher distances do not enjoy any additional space than

those near the NP surface, lim n™ = Oy - Our model is consistent with this behavior and this has

fim
been demonstrated in Section 4.2.9 in terms of the conformational entropy penalty of grafted
chains due to stretching as a function of chain length.

The length of matrix chains, N, also affects the thickness of the brush; in cases where
matrix chains are considerably shorter than the grafted chains, they tend to penetrate into the
interfacial region and swell the brush.?® For detailed information regarding the scaling of the
brush/melt systems and the effects of varying the length of matrix chains, the reader is referred
to Section 4.2.7.
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Concerning the systems of isolated grafted NPs (SGV), where grafted chains can be
considered as being in contact with a poor solvent (vacuum), polymer brushes tend to collapse in
the region around the solid surface. Their shape depends exclusively on the segmental density,
ogseg- 1His is demonstrated in Figure 4.18, where the grafted chain profiles of equal oyseq are

seen to collapse together, regardless of the NP curvature.
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Figure 4.18 Density profiles of chains exposed to vacuum and grafted on spherical particles. Chains are grafted on
high-wetting (HW, see Table 2-2) solid surfaces, exposed to vacuum (SGV) with Rg = (a) 2, (b) 8, (¢) 32 and (d) «
nm. In all cases, Ny = {48: solid lines, 192: dotted lines, 768: dashed lines} skeletal bonds and ¢4 = {0.05: red, 0.2:
blue, 0.8: green} nm 2. The numbers on the individual curves denote the segment density per NP area, Ogseg (iN nm2
units). The vertical dotted lines correspond to hegge s from eq 4.25. The inset in panel (a) depicts the maximum of
the profiles in panels (a)-(d) capped at 1 (eq 4.26); Rs increases in the direction of the blue arrow. Curves in the
inset are fits with eq 4.27 and vertical lines depict oy sege00 from eq 4.28.

One can again discern two distinct regimes, a dense brush and a mushroom one. Here we use
the term mushroom to describe conformations in the low ogyseq regime, even though collapsed

169

chains may actually look like pancakes'® or globules*” in the HW and PW cases, respectively.

It is noted that the apparent gradual rise of the profile next to the solid in Figure 4.18 (which is
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Chapter 4. Single Nanoparticle Calculations

in contrast to the very sharp drop of the density on the vacuum side) is an illusion due to
logarithmic scaling of the x-axis.

For large oyseq Values (brush regime), the profiles are fully developed and feature a broad
bulk-like region. Their thickness can be predicted accurately by Alexander’s model for

126,127

incompressible brushes, which has been extended to curved surfaces.?**®*° The edge of the

dense brushes can be predicted as a function of curvature from eq 4.24.%

seg,bulk

1/3
3o
hedge[RS] = ( 2 R52 + Rss] - RS 424

A more general version of eq 4.24 is the following:

hedge,HS[RS' hHS] = hedge[RS + hHS] + hHS 425

Equation 4.25 takes into account the excluded volume interactions (hard sphere wall
positioned at hys) and offers more accurate predictions for intermediate values of oy seq. Indeed,
as shown in Figure 4.18, at high oyseq and Rs, the edges of the dense brushes coincide with the

predictions of eq 4.25. Note that, with hegge known, the root mean squared brush thickness for
this model is simply <h92>1/2 ~ Ny /3 % Below a threshold o s, the brushes are only partially

formed (mushroom regime) and the aforementioned model breaks down; e.g., the vertical lines
in Figure 4.18 lie below the edges of the mushrooms.*®’
The mushroom-to-brush crossover can be quantified in terms of the evolution of the

maximum segment density:

Py max = MaX () 4.26

This is illustrated in the inset of Figure 4.18a for the case of HW systems, whose enlarged

version is presented in Figure 4.19, both in terms of oyseq and of the dimensionless quantity

0,Rsy’ =0,eRsq /Ny, which is commonly used to estimate the mushroom-to-brush

crossover.”'?* The evolution of gy max is described accurately by the following eq 4.27.

ﬂbr
tanh || Zes
qog,max [ag,seg] ~ Oy an - 4.27

Gbr

where o, IS a characteristic areal segmental density, pn- a stretching exponent, and

@ = lim @ . By setting g max / gor = 0.99 and solving eq 4.27 for og seq:

Ug,seg —>00
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O ysogoss = Oy tanh*(0.99)" 4.28

0,5eg99%
we can derive a characteristic areal density corresponding to the formatinon of the 99% of the
brush. The corresponding fitting coefficients of eq 4.27, and oy sego90s from eq 4.28 are reported
in Table 4-3. Looking at this table, it is observed that the critical value of ;R 4’ is on the order
of unity and increases with decreasing particle radius. As we will discuss later, such
characteristic length scales are related with the free energy of solvation and its evolution with

the mushroom-to-brush crossover.
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Figure 4.19 Maximum density of grafted chains exposed to vacuum for various wetting degrees. The maximum of
the profiles capped at 1 of (a) low-, (b) high- and (c) perfect-wetting solid surfaces exposed to vacuum (SGV) with
Rs = {2: red circles, 8: blue squares, 32: green triangles, co: violet asterisks} nm. Markers depict evaluations from
the SCFT calculations and lines illustrate fits with eq 4.27; the corresponding fitting coefficients are reported in
Table 4-3. The vertical lines depict oy seqe90 from eq 4.28. Panels (d-e) depict the same data as (a-c), but with respect

- - . 2 2
to the dimensionless quantity o.R. " =0 R “/N_.

gseg  Gg
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Table 4-3 Fitting coefficient for eq 4.27.

type R, (nm) Db apr (NM?) Bor  Ogseqooen (MM °)  (04Rc.0")oou
2 0.998 27.2 1.04 69.3 2.7
LW 8 1.001 13.3 1.08 32.8 1.3
32 1.003 10.6 1.10 25.7 1.0
1.005 9.7 1.10 23.5 0.9
2 1.002 19.3 0.81 64.2 2.5
HW 8 1.004 9.3 0.86 28.8 1.1
32 1.006 75 0.89 22.4 0.9
1.009 7.0 0.90 20.6 0.8
2 1.006 15.4 0.81 51.2 2.0
PW 8 1.032 7.8 0.87 23.9 0.9
32 1.043 6.5 0.90 19.2 0.7
© 1.047 6.1 0.91 17.8 0.7

4.3.4. Thermodynamics and solvation free energy
Figure 4.20a,b illustrates the free energy density per NP core area of a grafted HW planar

SGM SGV

surface exposed to polymer melt of the same chemical constitution (Ay>~™) and vacuum (Ay>~",

but with a minus sign), as a function of oyseq, respectively. Figure 4.20c presents the sum of

these quantities (eq 4.29), i.e., the free energy of solvation per NP area.

Ay =A™ — Ay = AG 1 S, 4.29
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Figure 4.20 Solvation free energy in a planar SiO,/PS system. (@) Free energy per solid surface area of a grafted,
high-wetting NP (HW, see Table 2-2) of extremely small curvature (i.e., planar interface) embedded in a matrix
phase of the same chemical constitution and chain length (Ng = Ny, (b) negative free energy per unit surface of an
isolated grafted NP and (c) solvation free energy, per solid surface area, as functions of ¢y sy = 5gNg. The values on
the ordinate of panel (c) are obtained by direct summation of those in (a) and (b). The blue/magenta lines indicate
limiting values for 64 — 0, and for characteristic o4q Of fully developed brushes, respectively. The vertical line
denotes oy seqoge, from eq 4.28, which is indicative of the mushroom-to-brush crossover.

For very low g4 and Ng, the contribution of the grafted chains to the free energy in Figure

4.20a is marginal. The free energy of the SGM system tends to the negative adhesion tension of

a corresponding SM interface, lim Ay™" = lim Ay™ = -2 (see blue curve in Figure 4.3a or b

Ogseq —0 Ry —w
Ry —

in the planar limit). For the SGV system in Figure 4.20b, Ilim Ay =0; therefore, its

Ogseq —0

contribution to the solvation free energy is zero in this limit, hence: lim Ay’ = lim Ay™ =—o

Ogseg Ry —

Ry —
. With increasing ogseg and up to a characteristic value, we notice a transition region. The free

energy per unit surface of the SGM system in Figure 4.20a remains constant ( lim Ay*" ~ -V

Ry —o0 adn

), because there is still no enthalpic gain with increasing area of the homogeneous GM interface.

141



Chapter 4. Single Nanoparticle Calculations

Furthermore, at low oy, grafted chains have not been stretched enough for entropic penalties
to start affecting the thermodynamics of the system. In contrast, the free energy per unit surface
of the SGV system increases gradually from O up to a temporary plateau value (magenta line in
Figure 4.20b). This value depends on the free energies of the inner SG and the outer GV

interfaces (e.g., see Figure 4.1). At a characteristic value of gyseq, Which is indicative of the

SGV

mushroom to dense brush crossover, lim Ay

Rs —o Rs —o Rs —

~ 1lim Ay + lim Ay® ~ —5%¢ + 5°".

It is noted that after the mushroom to brush crossover, the outer polymer/vacuum interface of

a GV system can be considered equivalent to that of a MV system, since grafted and matrix
chains are of the same length and chemical constitution, o° ~ &’ . As a result, the contribution

of oS to Aylfrom SGM and SVG cancels out, and therefore lim Ay ~-c®. The

Rg—0
characteristic value of gy seq for this behavior to emerge appears to be somewhat smaller than the
characteristic length ogsegoou, Obtained from eq 4.28 (vertical line in Figure 4.20).

M and Ay*®V deviate significantly from the aforementioned plateau

For larger ogseg, Ay°°
values (blue/magenta lines in Figure 4.20a,b), due to chain stretching. In planar configurations,
the stretching free energy increases about monotonically with Ny (at constant grafting density,
ay), since the contours of neighboring grafted chains interact indefinitely; thus, Ay**™ and Ay*®Y
both increase indefinitely as well.?**° At 6y ~ 10 nm™2, a weak minimum is exhibited, because
the entropy penalty associated with the conformations of grafted chains in the SGV system is
slightly higher than in the SGM system.

The conformational entropy effect becomes more pronounced when considering denser

brushes, because the chains experience additional confinement and stretch even more. However,
Ay:° appears to be rather insensive to chain stretching, indicating that these entropic chain

stretching contributions in the SGM and SGV systems are about equal and cancel out; hence,

lim Ay ~—o®"
Rs —>

across this regime. This is reasonable, since the structure of densely grafted

SGM is quite similar to that of SGV in terms of their segment profiles (e.g., compare profiles in
the bottom panel of Figure 4.17), and so are their profiles of end-segments, which tend to
segregate to the polymer/vacuum interface?® in agreement with Alexander’s model for
incompressible brushes.*?***" Thus, the solvation free energy per unit surface of a very large NP
well-coated with a thick layer of grafted chains becomes practically equal to minus the melt

surface tension.
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Figure 4.21 presents Ay;” and AG.* = Ay.°S,Versus ogseg (left and right ordinates) for

various NP sizes and surface potentials.
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Figure 4.21 Solvation free energy of spherical SiO, nanoparticles of various radii. Ays° and AGs° (left and right
ordinates) versus ggeq, for low wetting (red circles), high wetting (blue triangles), and perfect wetting (green stars)
surfaces with R equal to (a) 2 nm, (b) 8 nm and (c) o. The horizontal dotted lines depict Ay™ =-o'R. >/ R/

adh © "SM
from Figure 4.3a with Rgy Set to hegge ns. The vertical lines illustrate the mushroom-to-brush crossover, ogsegoon (€0
4.28). The dashed magenta lines depict predictions across the high ogsq regime obtained via eq 4.25, for

R, =R = Ry +h s (0 4.25). Inall cases, N, = Ny,

GV,edge

Similar to the planar case, the effect of grafted chains is negligible at low oyseq; thus,
Ay*Y ~0 and Ay° ~ Ay*™ ~ Ay*™ . Indeed, as shown in Figure 4.21, Ay.° tends to y°™ with

decreasing ogseq. The value of solvation free energy in the limit ogsqg — 0 is represented by the
horizontal dotted lines and can be expressed in terms of the adhesion tension of a planar

interface via eq 4.4 as follows:
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lim AG® ~ y*™M8, ~ 0o Sem 4.30

Ogseg—>0

where S, =47Rg,” and Rgy is the position of the inner SM interface.
With increasing ogseg and up to a threshold value, a characteristic transition is observed,
during which the contributions of the SM and SG interfaces to AG.° are gradually screening

each other and the latter starts being dominated by the GV interface of the SGV system. That
threshold value appears to be slightly smaller than oy sega0s from eq 4.28 (vertical lines in Figure
4.21).

For large ogseq, AGS° can be reasonably approximated in terms of the surface tension of the

GV interface via eq 4.5, as follows:

AGS® ~ 7>V S ~ =0 Sy gy 20, 4.31

Seg = 7 g,5eg99%
with Sgv being the area of the outer GV interface and oysegooos @ Characteristic areal density
indicative of the mushroom-to-brush crossover.

Supposing that a GV interface can be described reasonably well as an incompressible brush,

its position can be approximated as Rgy e = Nuggers +Rs from eqs 4.24 and 4.25. Indeed,

according to Figure 4.21b,c, AG.°® for intermediate and large Rs is in good match with the

predictions of eq 4.31 for Rey — Rgv,edge (COMpare with magenta curves).

In the case of the smaller NP considered here (see Figure 4.21a), there is a slight deviation
between the magenta curve and the points. Describing highly curved interfaces with simple
relations such as eq 4.31 is nontrivial because there are sensitive curvature-dependent
mechanisms at play. For starters, the profiles of SGM and SGV differ substantially, even for
cases with large oqseq, €.9., compare the top-right panel of Figure 4.17 with the panels below it
for larger Rs. As a result, the chains stretch in a different manner and therefore entropic
contributions do not exactly cancel out (this mechanism is discussed in depth in Section 4.3.4.1).
In addition to this, the approximation Rey — Rgv,edge IS moderate at high curvatures. Indeed, as
shown in Figure 4.18a, the actual position of the film is consistently lower than Rgyv edge at large
04g,seg-

The order of magnitude of calculated solvation free energies is noteworthy. AG.° depends

on the size of the particle being solvated. According to Lum-Chandler-Weeks theory of
166

hydrophobicity™ and the present findings (eq 4.31), it scales proportionally with the area of the
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interface. Consequently, it scales about quadratically with the effective particle radius (taking
into account the thickness of a grafted brush), while in the case of a macroscopic particle

bounded by a practically planar surface, it tends to infinity.

Quantitatively, the solvation of usual organic molecules ‘AG;" is in the order of decades of

kJ/mol,**® whereas for large particles, it may span hundeds of kJ/mol (e.g., solvation free energy

*,

of Cgo in a variety of common solvents (j) is in the order of AG.*“*’ =—-100 kJ/mol). Given that
the average radius of Ceo equals R, ~ 0.35 nm'"* and supposing that solvation scales
quadratically with radius, a particle with Rs = 2 nm and the same solvation free energy per
particle area would have a solvation free energy of AG"“'R’ /R *=-3300 kJ/mol, which is in

accordance with the order of magnitude depicted in Figure 4.21a for Rs = 2 nm.

4.3.4.1. Contribution of individual free energy terms

The present section investigates the contribution of individual free energy terms per NP core

SGM

area to the grand potential of SGM systems (Ay™™" = AQ™" /. ), Helmholtz free energy of SGV

systems (Ay*°" = AA*Y ] 5.) and solvation free energy (A7, = Ay = Ay*®") as a function of ay,

Ng, and curvature. As a test case, Figure 4.22a-d illustrate the energy terms of grafted NPs with
Rs =2 nm and Figure 4.22f-i the corresponding contributions of a planar brush. The total energy
of the NP and planar surface system is shown in Figure 4.22e and j, respectively.

The term Ay op e = AVoy + A7 is a functional of the total density profile (eqs 2.39 and

2.40) and refers to the combination of the cohesion and field terms; the latter incorporates
entropic penalties as well, as explained in Section 2.2. As demonstrated in Figure 4.22a and f,

there is a substantial difference in this term between the limiting cases of high and zero

curvatures. For not too densely grafted NPs (low ay), A}/foiﬂield remains approximately constant.

A}/ffhyﬁeld is affected by the total segment density distribution close to the NP surface (p = pg +

pm), Which remains approximately the same with increasing oyseg (Since G = M). The latter fact

would not be true if G # M, since the MG interface would add to the free energy a factor ~

GM
Sem0 .
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Figure 4.22 Solvation free energy terms as functions of the amount of grafted material. Individual free energy

contributions to Ay**™, Ay**Y and A}/:O = A]/SSGM —A}/:GV, as functions of the amount of grafted segments per NP

core area, ogsq = 0gNg. Panels (a-e) depict energy contributions for NPs with Rs = 2 nm, whereas panels (f-j)
concern a planar surface (Rs — o). Evaluations have been performed for o, (nm™?) = 0.05 (O), 0.1 (A), 0.2(3), 0.4
(1)) and 0.8 (pentagons), Ny = 24 (pink), 48 (brown), 96 (red), 192 (blue), 384 (green) and 768 (violet), and Ny, =
Ng.

The difference between the two curvatures reveals itself in the SGV systems. With
increasing oy seg tWo new interfaces are emerging, one close to the wall (SG) and one exposed to
the vacuum phase (GV). For high curvatures, the free energy is dominated by the area of the GV

interface which increases approximately quadratically with oyseq; hence, its contribution to the

free energy is on the order of ~—SGVO'GV. In the planar case, on the other hand, the surface area

of both the SG and GV interfaces remain the same and thus the free energy plateaus to a value
that depends on both the adhesion tension of the SG interface and the surface tension of the GV

interface.
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In addition to these considerations, for very large oy and low curvature (dense chain

packing), the reduced density exceeds unity in the planar system (¢ > 1), and Ay, bECOMES

slightly negative as shown in Figure 4.22f due to the entropic contributions of the field term (for
information see Figure 2.4 of Section 2.1.4.2). In any case, the contributions of the cohesive and
field terms to the free energy of the planar SGM and SGV systems are approximately equal and
thus the net sum is around zero. As a result, the solvation free energy plateaus to the negative

surface tension, as shown in Figure 4.22f.

The evolution of Aygy, with increasing oysq is depicted in Figure 4.22b and g. In SGM
systems, A]/SSC,(EZ” is practically constant since the area of the SG interface does not change. In

SGV systems, Ayoms =0 when oy = 0 (there are no grafted chains to interact with the wall)
and saturates to the same value as in the SGM system at the point where the brush has been fully

formed. Consequently, for ogseg > 0gsegoon, the solid/polymer interactions are the same (

AJ/SSC,(EEA = A)/SSO(EX) and their contribution to the solvation free energy cancels out.

The entropic contribution from eq 2.42 (which depends exlusively on matrix chains) appears

to be very similar between the high and zero curvature geometries (compare Figure 4.22c and

h). In situations where Ng < N, these contributions are subtle; this is not the case when Ny, <
Ng (see Figure 4.23 of the following Section 4.3.4.2).

The entropic contributions associated with the conformations of grafted chains are quite

SGM

different between SGM (Ay,

) and SGV (Ay,°") systems in high curvature geometries,

whereas in planar geometries they are quite similar; compare Figure 4.22d and i. In planar
geometries, and for large oqseg—Where such entropic factors become significant—the structure
of the grafted chains is similar between SGM and SGV. In both cases, brush thickness can be
approximated very well by that of an incompressible Alexander brush,*?**!*" and as a result the
grafted chains experience similar stretching, whether they are in contact with melt or exposed to
vacuum. Hence, this entropic contribution is counterbalanced and does not affect solvation.

This is not the case for high curvatures (Figure 4.22d): at very low oyseq, all grafted chain
segments tend to fully collapse towards the solid surface (to avoid interacting with vacuum), but
this generates an entropic penalty. At gy ~10 nm2, where the brush has been partially
developed (e.g., see Figure 4.18a for Rs = 2 nm), we notice that entropy starts decreasing, since

beyond a certain distance from the solid, segments enjoy more available space. Finally, when the
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brush is fully developed, the behavior of entropy switches back to what is expected; thicker
brushes are accompanied by higher entropic cost.

It is worth noting that the points of our SCFT model for the 2 nm NP in Figure 4.21 lie
above the theoretical magenta line (instead of below). This happens because the position of the
GV interface has been estimated in terms of the edge of an Alexander brush, which is a poor
approximation for small NPs. It lies further than the actual position of the GV interface (Figure
4.18a; thus, the estimation from the magenta line in Figure 4.21 underestimates the solvation

free energy.

4.3.4.2. Effect of varying the length of matrix chains
In the previous sections, we considered cases where the length of grafted chains was equal to
that of the matrix chains (Ng = Ni). In general, polymer blends with different chain sizes, but the
same chemical constitution, are considered completely miscible.'”> However, in the presence of
grafted chains, the ratio Ny/Ny, has a profound effect on the quality of the solvent.*#348

In situations where Ny, > Ng, matrix chains cannot readily penetrate the brush, due to the
manifestation of the entropic penalty of confinement discussed in Section 4.1.2 (mechanism 2).
Matrix chain segments are pulled towards the polymer phase by their intramolecular neighbors.
At the same time, penetration of the (larger) matrix chains into the region occupied by the
grafted chains would reduce the number of available conformations of the latter. As a result,
matrix chains are effectively repelled from the brush (which remains unperturbed?*2423.164y
favoring the agglomeration tendency of the NPs.2>2":2837

On the other hand, when Nn < Ng, the matrix-grafted interactions become entropically
favorable, and therefore, the penetration of matrix chains into the brush is thermodynamically
promoted. In this case, grafted chains experience the melt as if it were an athermal solvent. The
segregation of matrix chain segments inside the interfacial region can significantly affect the
configurations of grafted chains and even lead to excessive swelling in some situations.?*?® The
quality of the solvent is enhached with increasing Ng/Np, and as a result, the favorable grafted-
matrix interactions resist the attraction between NPs.?>2"2837
In this paragraph, we investigate the effect of chain length ratio, Ng/Nm, on the solvation free

energy.
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Figure 4.23 Solvation free energy of a SiO, particle for different matrix/grafted length ratios. Ay;" and AG;’ (left

and right ordinates) versus Ng/Np, for high wetting surfaces with Rs equal to (a) 2nm, (b) 32 nm and (c) . The
chain length of grafted chains is denoted by different colors: Ng = {4: red, 192: blue, 768: green} and the grafting
density by different line styles: ¢, = {0.1: dotted, 0.2: dashed, 0.4: solid} nm 2.

Figure 4.23 depicts Ay.’and AG.°as a function of Ng/Np. Starting with the case of the
smallest NP considered herein (Figure 4.23a), we notice that AG.° is practically insensitive to

Ng/Nm. However, for larger NP sizes, AG.°increases with Ng/Npm, with this effect reaching

maximum intensity in the planar geometry limit. This is attributed to both the free energy
penalty arising from the stretching of the grafted chains (eq 2.43) and to the translational entropy
of matrix chains (eq 2.42). Note that the length of matrix chains, N, appears in the denominator
of eq 2.42, indicating that the brush is penetrated by more matrix chains. This effect becomes
more pronounced in denser brushes or in the planar limit, where the high confinement leads to

an abrupt scaling of the height of the brush with both o4 and Ny, and the associated entropic
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penalties in egs 2.42 and 2.43 are maximized. On the contrary, this effect is mitigated at high
particle curvatures, where the matrix chains can readily surround the grafted chains. It is thus

165
h,

proven that, apart from the interactions between NPs or the scaling of the brus curvature

plays an essential role on solvation free energy as well.

4.3.5. Model for estimation of partition coefficients
The solvation free energy of a grafted NP depends on the comparison between the free energy of
a grafted NP exposed to i) vacuum (SGV), and ii) a polymer matrix (SGM). Different behaviors

are expected for different ranges of the amount of grafted material, o, = o, RG,gz, and the

g9.5eg I 2
inf "C-C

chain crowding conditions as quantified by ncr,ifg (eq 4.23). For starters, we will consider cases

where Ng > N, and the brush does not experience particular swelling.

ag,ijg) - 0 O-g.scg (<IIO)-g.seg99% (HI) g ag.seg > 0-:,15::9)9% 2 hlgh ”::‘L’
SGM
AQ3M = ;335\\1 q:l‘l\xtsi\\l_’ﬂ““"tv'\iﬁo;—:l(l;‘ sM ﬁ“.“*\ﬂqu:(h' ‘SM o™ 705(;5. HAQ
SGV
—ALXY 0 0— Q;?l(lu"y.\'nfo“v‘g(;\' 023)1\3‘5"1*0'6\’50\‘ (T;::l‘rsvm\l_a(jv‘g(_;\* \Q\:
AG;O ”ihu"&\l 70:?1?35\\1_’{7( M"\n iM 70—(W‘S’(}V o '.\“34 M 70-0\"50\' o ”‘\ M _0.(;\'5(;\’

Figure 4.24 Schematic illustration of regimes I-1V, in terms of the amount of grafted material g5y and chain
ref
ch,g

of the grid depict representative SGM (SGV) configurations. The dominant contributions to the free energy are
shown below each illustration. The last row of the grid depicts the dominant terms of the solvation free energy (eq
4.33).

crowding. The crowding is quantified by N, . (eq 4.23). The bead-spring configurations of the second (fourth) row

150



4.3. Grafted nanoparticle in contact with vacuum. Solvation free energy of a nanoparticle

Equation 4.32 illustrates a generic model for the quantitative predictions of solvation free

energy in terms of AQ*™ and AA®:

AQ™ , O ™ 0
AG*™ (o, R )~1A0" [1-F (o, . R )]+ (a0 - 2™ ) F(o,., R) ., 0<0,. <0, 0 4.32
AQ™ — AA®Y , O <o

0,5eg99% g,seg

where 0. o0, RG'g2 I'N, is in the order of unity for Rs > 8 nm (see Table 4-3). Altervatively, we

can describe AG_°in terms of the interfacial free energies, as shown in the following eq 4.33.

SM
O i Osm ! o-g.seg ~0
AG " (0' R ) ~q-cs [1— F (cr R )] +(o™s,, —c%s,)F (0' R ) 0<o, <o 4.33
s gseg? s adh ~ SM gseg?! s GM GV gseg? s 1 g,seg g,5eg99%
GM GV
O Sem —0 Sev J Oy seqoon < O seg

The main parameters of this model are the surface tension (¢°), adhesion tension (-2,

interfacial tension (6®, in case G # M) as well as the corresponding interfacial areas. The
ranges of each branch are determined based on the amount of grafted polymer per unit NP area,

og,seq, and are indicative of four characteristic regimes discussed below.

Regime |: very short and sparsely grafted brushes, ogseq ~0(GQRGQ2 <1); see Figure 4.24

(Regime I). The contribution of the brush is marginal and AG.° depends explicitly on the

adhesion tension as indicated by the first branch of eq 4.33.

Regime II: partially developed brushes (o,.., <o, or agRG,g2 <1); see Figure 4.24

g,5eg 0,5e999%
(Regime I1). The evolution of AG.°during the formation of the brush is mainly affected by the
strong enthalpic interactions arising due to the formation of the GM (in case G # M) and GV
interfaces. In addition, AG_® is also affected by the expansion/shrinkage of the SG/SM interface

near the solid surface. In situations where the strength of the solid/grafted and solid/matrix
interaction is similar, the effect of SG and SM interfaces is miniscule. In high curvature

geometries (small NPs), the size of the SG/SM interface is much smaller than that of the GM
and GV interfaces; hence, the effect of enthalpic and entropic contributions to AG_°has been

lumped in function F which has been computed above through SCFT -calculations for
determining the solvation free energy across regime IlI, where no limiting rules apply. In
practice, F resembles a half-sigmoid function which rises more or less monotonically from 0 to
1.
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Regime IlI: fully formed (o, . >0 or agRGg2 >1) but not too dense chain packing

g,seg 0,5e999%

(low nj; , SDPB™'®); see Figure 4.24 (Regime I11). The SG interfaces become identical in the

SGM and SGV systems; thus, the contribution of the SG interface to the AG_° fully cancels out.

As a result, the solvation free energy depends explicitly on the interplay between the enthalpic
contributions of the GM and SG interfaces, as illustrated by the third branch of eq 4.33.

Regime 1V: fully formed (. . > o

g,seg 0,5e999%

or o, RG'g2 >1) but very dense chain packing (high

NG, , CPB'1%); see Figure 4.24 (Regime V). The entropic phenomena associated with chain

stretching become non-negligible. It turns out, however, that for large oyseq, the entropy related
to grafted chain conformations is not so different between SGM and SGV systems. Thus the
entropic contributions in the two systems cancel out, and the solvation free energy is practically
determined by the enthalpic interactions of the GM and GS interfaces. Similar to Regime Ill, the

evolution of AG;°can be described by the third branch of eq 4.33. For spherical particles and if

the grafted chains are long enough, the brush may assume a hybrid CPB-SDPB configuration (a
combination of Regimes Il and 1V); near the particle, the chains are oriented normal to the
particle surface (CPB), whereas above a critical distance, they assume SDPB-like
configurations. %1%

Having presented these considerations regarding the structure of the brush near and far from
the particle, we emphasize that the solvation free energy of the grafted particle depends strongly
on the total amount of grafted polymer, oyseg, and not so much on whether the brush assumes
SDPB (Regime I11), CPB (Regime IV) or hybrid CPB-SDPB configurations.***** Especially in
situations where the relevant height of the brush in the SGV and SGM systems is similar (e.g., in
the limit where Ny — o), any entropic contributions to the solvation energy cancel out, when
taking the difference of the free energy of the two systems.

The parametrization of eq 4.33 is straightforward for moderate to large NPs. The free
energies of the planar SM and GV interfaces can be determined based on surface tension
theories’® and Flory’s y-parameter.'’® The interfacial areas close to the NP, Ssw and Ssc, are
practically equal to Ss, while the surface area of the MG and GV interfaces can be estimated by
brush scaling measures. Sgv can be determined analytically via eq 4.25, and Sem can be
estimated by more elaborate scaling laws from SCFT calculations® or theoretical

predictions. 3164167
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In the limit of very small NPs, the model becomes less accurate because the boundary
between the interfaces becomes fuzzier and the determination of the interface area is nontrivial.
In addition, due to the mismatch of the SGM and SGV profiles, the entropic effects do not
exactly cancel out and become important. To add to the above, in situations where the matrix
chains are much shorter than the grafted ones (Nm/Ng < 1), entropic contributions become even
more significant,?® whereas these are not taken into account by the model in eq 4.33. In all these
situations, calculations via SCFT-based models are particularly valuable.

Having calculated the solvation free energy for two different systems in terms of the
chemical constitution of the matrix phase, the partition coefficient of a nanoparticle between two

different matrices can be retrieved via eqgs 4.21 and 4.33 as follows:

_RTIn KM]/MZ _ AGS*O‘SGMI —AG:O‘SGMZ

O SSM] t O SSM2 ) Oy 0
sM, SM, _ GM, oM,
- (_Gadh SSM1 + Gadh SSM2 )[1 F (Ug.seg ! Rs )] + (G SGM1 o SGM2 ) F (Gg‘seg ' Rs) ! 0 < O-g,seg < Gg‘seg.%%
GM, GM,
(e} SGM] -0 SGMZ ' O-g,seg,%% < O-g,seg

Note that the terms concerning the SGV system have been canceled out. With K MMz
known as a function of oy seq and the chemical constitution of the SGM; and SGM, systems, one

can potentially design the grafting for optimal partitioning of NPs in blends.™

4.3.6. Concluding remarks

The solvation of a grafted NP inside a polymer matrix is a complex phenomenon whose
thermodynamics depends on multiple factors. The curvature of the particle, the amount of
grafted material, the lengths of matrix and grafted chains, and the affinity of the polymer
segments to the particle are essential parameters to be examined when attempting such a
calculation.

Calculation of the solvation free energy of a grafted NP requires analyzing two different
systems; the grafted NP embedded in the polymer matrix (Section 4.2) and the same NP exposed
to vacuum. In the latter case, the grafted polymer chains are in contact with a poor solvent and a
compressible model is required for the nonbonded interactions in order to capture the density
profiles of polymer segments around the solid surface. Furthermore, the presence of the solid is
explicitly taken into account in the present work, by strictly preventing all polymer segments
from reaching a zone near the solid surface, through essential Dirichlet BCs. This brings our
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SCF theoretical framework closer to a molecular dynamics representation of the solid/polymer
interface.

In this section, we addressed the system of a grafted NP which is exposed to vacuum. In
constrast to the system of the same NP embedded inside the polymer matrix (Section 4.2), where
the grafting density, oy, and the length of the grafted chains, Ny, are individually affecting the
profiles of grafted chain segments and the energy of the system, in the vacuum case, it is the
product of the grafting density and length of grafted chains, oyeq, that makes the difference. This
product is equal to the total number of segments belonging to grafted chains divided by the area
of the solid surface. Furthermore, we demonstrated how important the presence of the melt is to
the configurations of grafted chains: when in melt, matrix chain segments interpenetrate the
region occupied by the grafted chains, and the latter start to swell towards the bulk, since the
favorable cohesive interactions with matrix chain segments (which herein were chemically
identical to grafted chain segments) overcompensate the entropic cost associated with their
stretching. On the contrary, when in contact with vacuum, grafted chains want to minimize their
exposure to the vacuum and therefore they are pulled towards the surface of the solid or collapse
upon themselves, assuming pancake or globule-like configurations at low grafting densities.

Having connected our thermodynamic framework with the solvation free energy as defined
by Ben-Naim, we determined the solvation free energy of a polystyrene-grafted silica
nanoparticle inside a polystyrene matrix, by taking the direct difference of the grand potential of
the solid-grafted-matrix system and the Helmholtz energy of the solid-grafted-vacuum system.
This calculation was performed for the whole range of solid/polymer interactions. Depending on
the amount of grafted polymer and the curvature of the particle, entropic phenomena associated
with the conformations of grafted chains are cancelling out or not.

It is clear that the solvation free energy of the grafted particle in the polymer melt is strongly
negative. It is mainly the enthalpic interactions between matrix and grafted chain segments that
render the melt a much more favorable environment for the grafted NP than vacuum. Entropic
phenomena also contribute to the solvation of the particle, since the melt chains wet the grafted
chains and offer them a higher number of available configurations. The role of entropy,
however, becomes more pronounced only at higher curvatures. The net result of this complex
interplay of a large number of parameters is that, even in the case of weak solid/polymer

interactions, where a bare NP would not gain anything when transferred from vacuum into the
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polymer, if enough chains are grafted on its surface, then its incorporation into the matrix is
thermodynamically favored (see Figure 4.21).

The theoretical calculations employed herein revealed three regions in the gyseq Space with
different behavior of the solvation free energy. When gy seq tends to zero, then the solvation free
energy is equal to minus the adhesion tension between the polymer and the solid being
immersed in the polymer melt times the surface area of the NP. On the other hand, when oy eq
becomes larger than a threshold value, the behavior of solvation free energy is dominated by the
surface tension of the grafted-matrix (if any) and grafted-vacuum interfaces. The SCFT
calculations performed herein give a direct insight on the solvation free energy in the
intermediate regions of the gy Space, where there is not an analytic or numerical model to
follow. Furthermore, the behavior in each one of these regions is quite different in the limit of
infinite and very small particle radius.

Based on our calculations, we went a step further and proposed a model for the qualitative
prediction of the solvation free energy as a function of the radius of the NP and the number of
grafted segments, ogseq (€0s 4.32, 4.33). This model is intended to be general, i.e., cover the case
of chemically dissimilar matrices M; and M,. Looking at these equations, if one knows the value
of surface tension, ™ and 6°™2, between the grafted chains, G, and two chemically different
polymer melts, M; and M, and the adhesion tension of each polymer matrix to the particle

surface, o°™* and o°M?

, then the equation can predict quite accurately the solvation free energy in
the limits of very low, and high amount of grafted material without having to perform SCFT
calculations. The reason this is expected to perform well is because solvation is dominated by
enthalpy across these regimes and thus one can perform direct estimations based on the surface
energies and the area of G/M; and G/M; interfaces.

To test these predictions, our SCFT model will be extended in order to address polymers of
different chemical constitution (e.g., different grafted and matrix chains or block copolymers).
Having obtained information regarding the free energy of solvation of a grafted NP inside a
polymer matrix which chemically different from the brush , we will be able to directly determine
the equilibrium partition coefficient of the NP between two different polymer melts, which is
quite hard to do experimentally.'**

According to Praetorius et al.,*** knowing the solvation free energies and the corresponding
partition coefficient is only one part of the problem. In addition, one needs information on other

24,67,72
d 67,

thermodynamic properties of the system; namely, the free energy of solid/liqui and

d94,175—183

liquid/liqui interfaces, and the potential of mean force, which is directly related to the
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aggregation tendencies of the NPs. Using this information, one can obtain a broader picture
regarding the thermodynamics and evolution of a composite system. Several of the aforemention
tasks have been reported in literature in one dimension.?*®""2% |n Section 6.3, we present
results obtained with our three-dimensional version of RuSseL, regarding the potential of mean
force between two spherical grafted NPs as a function of grafting density, chain length and
spatial distribution of grafted chains across the NP surface. The SCF approach offers a

27,28

convenient theoretical framework for obtaining this information and ultimately linking it to

atomic-level structure and interactions in the context of multiscale modeling.
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5. THREE DIMENSIONAL CALCULATIONS AND

COMPARISON WITH 1D

5.1. Background

In this chapter, we investigate the influence of dimensionality on the computational study of
polymer nanocomposites in the context of Self-Consistent Field Theory and using a real-space
framework based on the Finite Element method. We perform calculations in a three dimensional
domain to address the system of a single silica-grafted nanoparticle and compare the results
against those obtained with the one-dimensional calculations, which were presented in Section
4.2.

We find that the one-dimensional representation is quite close to the three-dimensional one
when it comes to predicting the thickness of the brush and its scaling with respect to grafting
density, chain length and particle size. Nonetheless, differences arise when calculating the free
energy of the system in the mushroom regime. Moreover, the three-dimensional profiles of
grafted chains more realistically reproduce the spikes corresponding to the grafting points. This
is caused by the inevitable smearing of the grafting points, which degenerate into a single point
when using a one-dimensional representation. Furthermore, in three-dimensions, each grafted
chain maintains its identity and its own configuration inside the domain. We compare the two
geometric levels of description based on the free energy of a system of a single polystyrene-
grafted silica nanoparticle embedded in polystyrene matrix. We demonstrate the density profile
of a single grafted chain as a 3D plot inside the domain and visualize the mushroom and dense
brush configurations. We also determine the variations of the free energy and the structural
properties of the system as functions of the distribution of grafting points around the spherical

particle.
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Theoretical frameworks and computer simulations have been very useful for guiding and
verifying experimental studies and help resolve major issues of industrial interest.*>47129185.186 o
variety of theoretical and simulation methodologies have been employed to address systems of
polymer grafted nanoparticles, like the Polymer-Reference Interaction Site Model (PRISM),**
Self-Consistent Field Theory (SCFT),22418"18 Density Functional Theory (DFT),*% %
Molecular Dynamics (MD),*38:395055,56:58105-107,117.120.194-200  pyjesinative Particle Dynamics
(DPD),>" 123184201 a5 \well as machine-learning frameworks.?®*?%® |In addition to these studies,
multiple scaling laws regarding the height of the brush have been proposed to describe the
structural behavior of grafted chains in the solid/polymer interfacial region over a broad range of
experimental conditions,81924°0.130.164

The free energy of brushes and PGNPs exposed to polymeric bulk phases constitutes a
useful tool for the prediction of stable configurations and surface properties of materials. For
instance, the strength of solid/polymer and vacuum/polymer interfaces can be quantified in
terms of the adhesion tension and surface tension, respectively. The partition of PGNPs in
polymer blends in thermodynamic equilibrium can be predicted via the solvation free energy.**
The agglomeration tendencies of PGNPs in a polymer matrix can be quantified in terms of the
potential of mean force (PMF), i.e. the variation in the free energy of systems of multiple
PGNPs in dependence of the configuration of their centers. The latter has been investigated
thoroughly via traditional methodologies such as SCFT 21228163204 |\ 37 117,165199.205206 5
DPD.’ Recently, the PMF between single-chain-grafted nanoparticles (tadpoles) has been
derived by a deep neural network methodology which has been trained on a set of equilibrated
trajectories obtained via MD simulations.*®* In the context of machine-learning inspired
methodologies, Xuan et al.?®® devised a combination of mean-field theory with a deep learning
framework to accelerate the investigation of polymer phases in incompressible block copolymer
systems.

The main advantage of SCFT relative to the aforementioned methods is that it allows for
direct calculation of the free energy and structural features of the brushes at a relatively low
computational cost. Over the years, several SCFT frameworks have been developed for

85,41,83,90.187,207 416690208 1 hdels: the latter take into account the

incompressible, and compressible
density deviations and potential formation of cavities, at the cost of additional complexity.
Scheutjens and Fleer were pioneers in conducting lattice-based Self-Consistent Field

calculations, ® whereas Matsen and Kim started describing polymer brushes using the so-called
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Strong-Stretching Theory (SST).% They explored the capabilities and limitations of the latter
computational approach and set the foundations of the mathematical description of polymer
brushes via SCFT along with Miiller.** 3D implementations of SCFT are less common in the
literature, because they imply a high computational cost. For instance, 3D-SCFT calculations
have been conducted by the group of Fredrickson on block polymer systems and in arbitrary
domains.**° Daoulas and Miiller®® have devised a 3D-SCFT methodology to determine the
thermodynamically favored morphology of amphiphilic molecules by discretizing the domain of
interest with a finite volume scheme.

Being one-dimensional, the 1D-SCFT model exhibits limited flexibility in describing more
elaborate geometries, such as pairs of interacting NPs,'®® dry PGNP lattices,>® and irregular

grafting distributions such as single-chain-grafted NPs,20%209210

all being experimentally
relevant. Moreover, the smearing approximation is expected to break down in the limit of very
low grafting densities (mushroom regime),®* where the grafted chains can assume intricate

169 and globules.” There has been considerable effort in the

configurations such as pancakes
past to simulate systems of nonuniform grafting of solid surfaces.?>**"?!* Frischknecht et al.?
have employed both an incompressible SCFT and a (compressible) DFT model, where they
investigated the interactions between grafted nanorods (NRs) immersed in homopolymer matrix.
Koski et al.?*?'* have used a Dynamic Mean-Field Theory model, which is a combination of
Brownian dynamics motion of polymer segments and a Hamiltonian that depends on a density
field. Having direct access to segment coordinates from the solution of the BD equation in 2D,
they were able to explicitly attach the grafting points on the solid surfaces according to
nonuniform patters and investigate the resulting agglomeration of the NRs.

In this section, the Edwards diffusion equation is solved in a three-dimensional domain by
means of the Finite Element Method.**®"? The strong form of the PDE is transformed into the
corresponding weak form (see Section 2.4) and the domain is discretized in a finite number of
elements using an open source 3D meshing tool.** The FEM allows us to define a denser mesh
near the solid/polymer interfaces, where the propagator/solution is steeper due to Dirichlet
boundary conditions imposed on the solid boundaries, and at the same time maintain a coarser
mesh in the bulk polymer region. In an effort to stay as close to the atomistic representation of
the grafted chains as possible, we explicitly instruct the mesher to create points at specific
coordinates, where the grafting point initial conditions will be assigned. During the equilibration
of the field and the solution of the Edwards diffusion equation, each grafting point will assume
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its own delta function value and initial condition; no smearing of grafting points takes place,
normal or parallel to the solid surface.?**

We first validate the 3D-SCFT model by conducting direct comparisons with its 1D-SCFT
counterpart on the same systems. The structural and thermodynamic properties of a single silica
NP equidistantly grafted with polystyrene (PS) chains in a molten PS matrix are investigated
over a broad parameter space, where we vary the length of grafted (Ng) and matrix (Nm) chains,
grafting density (65) and NP radius (Rs). We test the smearing approximation invoked in 1D-
SCFT by probing the low Ng oy range. Interestingly, the mean-field structural and
thermodynamic properties of the 1D- and 3D-SCFT models are in reasonable agreement. Having
validated the 3D-SCFT model, we turn our attention to the total and single-chain 3D spatial
distributions and how they are affected by Ny, o4 and Rs. By taking advantage of the single-chain
representation of the 3D-SCFT method, we explore the effect of equidistributed and exotic
irregular grafting distributions (such as single- and dual-pole, and “ring”-like) on brush structure
and thermodynamics.

The majority of literature studies which are based on SCFT employ an incompressible
Hamiltonian.*#+8390.187.207 practically, this means that the total segment density of the system
must be constant throughout the calculation. This way, one avoids the computational penalties
and convergence difficulties associated with penalizing density fluctuations in a compressible
model (e.g., harmonic type penalty in the case of Helfand EoS,* logarithmic term when using
SL).”* Nonetheless, the incompressibility constraint comes with some drawbacks: first of all, one
can monitor only entropic contributions to the total free energy of the system, since no cohesive
term appears in the Hamiltonian. Moreover, it is not possible to combine an incompressible
model with Dirichlet BCs, which need to be imposed on the solid surfaces to confine the
polymer segments.>*>% Another system that is hard to simulate with an incompressible model is
one of polymer chains which are grafted on solid surfaces in the absence of any free melt chains
(see Section 4.3). For more information on such systems, the reader is referred to references
28,136'

The methodology presented in the current section combines the virtues of three-dimensional
calculations, an explicit excess Helmholtz energy density functional describing the nonbonded
interactions among polymer segments, realistic presence of a solid surface through Dirichlet
boundary conditions, and strict mathematical representation of chains grafted on the solid

surface. The goal of the 3D model developed in the context of this PhD thesis is to achieve a
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representation that is as close as possible to atomistic simulations and at the same time takes
advantage of the power of field-theoretic calculations. Having such a computational tool to
represent one or more grafted NPs in arbitrary 3D domains can prove to be quite helpful in
reproducing or designing complex systems that experimentalists are interested in, such as the

.,%® where chains of two different molecular

ones studied in the recent work by Rungta et a
weights were grafted on the surface of silica colloidal particles via controlled radical

polymerization.

5.2. Spatial discretization

The FEM allows us to define a denser mesh near the solid/polymer interfaces, where the
propagator/solution is steeper due to the Dirichlet BCs imposed on the solid boundaries, and at
the same time maintain a coarser mesh in the bulk polymer region above a threshold distance,
hm, as shown in Figure 5.1 below. The density of nodal points in each region (fine/coarse) is

controlled via the maximum element size, Vmaxfine/coarse aNd the minimum element size,

Vmin,fine/coarse-
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(a)

&

(b)

Figure 5.1 Meshing illustration of a NP with Rs = 4 nm inside a box with dimensions 45 x 45 x 45 nm°. (a) A
perspective view showing the mesh at the periodic and Dirichlet (solid) boundaries. (b) A xz-slice passing through
the center of the NP (created with the “Slice” operation of Paraview software*®?'"). The inset provides with an

enlarged view of the solid/polymer interface.
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5.3. Calculation Details

The radius of the NP assumes the values Rs = {1, 2, 4, 8} nm. The length of grafted chains is
equal to Ng = {24, 48, 96, 192, 384} skeletal bonds. The length of matrix chains is always equal
to that of the grafted chains, i.e., Nm = Ng.

The dimensions of the box in all directions are large enough (L > 9 Rg g, after excluding the
volume occupied by the NP) to ensure that the solution of PDE 2.2 is not influenced by finite
size effects. As already mentioned in the previous section, the mesh is denser near the surface of
the particle and coarser in the bulk box region (see Figure 5.1). In the dense region, which has a
width hy = 0.5 nm, the minimum element volume is Vi fine = 1.0 A3 and the maximum element
volume is Vimaxsine = 2.4 A3, These values were selected according to the mesh benchmarks
presented in Section 3.7.1. In the coarse mesh region, the minimum element volume iS Vin coarse
= 2.4 A% and the maximum element volume is Vimax coarse = 20 A3, These values are also reported
in Table 5-1.

Regarding the chain contour discretization, we used the hybrid scheme that we presented in
Section 3.5.3. According to the relative benchmarks presented in Section 3.7.2, and in order to
keep the computational cost at the minimum level, we decided the following: for both grafted
and matrix chains, the switching contour point is set at Nmsw = Ngsw = 40.0. The average
contour step size for matrix and grafted chains is ANmave = 1.0 and ANgave = 0.8, respectively.
For the convenience of the reader, all parameters of the 3D-SCFT calculations of this chapter are

presented in the following Table 5-1.
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Table 5-1 Parameters of 3D-SCFT calculations.

component parameter value description source
System T 500 K temperature -
Grafting points Reference g-point-HS wall i
href,q:0 0.44 nm distance
hg’ig 0.44 nm g-point-HS wall distance -
Chain characteristics bk 1.83 nm Kuhn length 23
Backbone carbon bond
IC—C 0.154 nm Iength -
Y 0.829 Geometric factor 3
M 52 08 a/mol Segment molar mass (1/2 i
onomer e repeat unit)
Helfand EoS Prass bulk 953 kg/m® mass density @500K 23
_ isothermal compressibilit
Kr 3.97 GPa* @soopK ' ne
Solid/polymer s 0.4 nm Hard sphere wall 2
interactions
Opg 0.37 nm PS effective diameter 23
Osio, 0.30 nm SiO, effective diameter 23
A 5.84-10%) PS Hamaker constant 23
Ao, 6.43-10%°J SiO, Hamaker constant 2
Mesh discretization hm 0.5 nm Width of dense mesh region -
o 3 Min element volume in i
Viin fine LOA dense region
' 3 Max element volume in Section
Vinax fine 24 A dense region 3.7.1
_ 3 Min element volume in i
Viin coarse 24A coarse region
3 Max element volume in
Vinax coarse 200 A coarse region i
Contour discretization N 400 Switching point of matrix ~ Section
msw ' chains 3.7.2
Average step size for matrix Secti
ANpae 10 (edw), 04 (conv) chains for the PDE (edw) 250"
and convolution (conv) o
N 400 Switching point of grafted  Section
gsw ' chains 3.7.2
Average step size for grafted Secti
ANgae 0.8 (edw), 0.4 (conv) chains for the PDE (edw) §°7'g”
and convolution (conv) o
Convergence Field mixing fraction Section
i 05 373
AE™/Ss 10°° (mJ/m?) Free energy tolerance -
£g” 0.5% Grafting density tolerance -
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5.4. Assessment of the Smearing Approximation: 1D- versus 3D-SCFT

All calculations described in the current section are conducted with the three-dimensional
version of RuSseL in a system of a single silica NP with equidistantly grafted polystyrene chains
on its surface. The system is the same as the one addressed in Section 4.2, where a one-
dimensional formulation has been employed, taking advantage of the spherical symmetry of the
problem after smearing over all polar and azimuthal angles at each radial distance. We study the
same system here with 3D-SCFT, aiming to reveal the similarities and differencces between the

two levels of geometry, when employing SCFT calculations on solid/polymer interfaces.

5.4.1. Smeared segment density profiles

Besides the size of the brush (which we elaborate on in Section 4.2.7), it is useful to determine
first the density profile of polymer segments belonging to grafted polymer chains around the
solid surface and towards the bulk polymer melt. In Figure 5.2 below, we present the density of
grafted polystyrene segments for different values of the particle radius, Rs, grafting density, g,
and length of grafted chains, Ng. In all cases, the length of matrix chains is equal to that of

grafted chains, Nm = Ng.
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Figure 5.2 Density profiles of grafted chains obtained with 1D- and 3D- SCFT calculations. Comparison of 1D-
SCFT (dotted green lines) and 3D-SCFT (solid red lines) smeared density profiles of grafted polystyrene chains. r-
axis is presented in logarithmic scale. The NP size increases from left to right as Rs = {1, 2, 4, 8} nm. The (ag/nm’z,
Ng) combination varies from top to bottom as (0.1, 48), (0.8, 48), (0.1, 384) and (0.8, 384). In all cases, grafted
chains are equidistantly distributed and N, = Ng. Regarding the smearing in 3D, bin thickness is or = 0.05 nm (eq
5.1).
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In order to perform a transition from the density field evaluated at the points of the three-
dimensional mesh to a 1D profile representation, we perform a partitioning of the 3D domain in
spherical cells with thickness Jr, and the average density is calculated according to eq 5.1 below.

P (I‘) = Z ¢c,ivi/ Z V, 5.1
ienodes,r—

ienodes,r—r/2<f <r+5r/2 Sri2<r<r+r/2

Figure 5.2 presents the smeared density profile of grafted polystyrene segments (py) for
different particle radii, Rs, grafting densities, oy, and grafted chain length Ng; keeping Ng = Np,.
For clarity, the abscissa (radial distance axis) is presented in logarithmic scale. Overall, the
density profiles obtained via 1D- and 3D-SCFT calculations are in excellent agreement. There
is, however, a substantial difference at low r. In 3D-SCFT, the density profiles reproduce
exactly the density cusp on the grafting point that one expects to see when grafting polymer
chains on a surface. This cusp does not exist in the profiles derived by 1D-SCFT, since the
grafting points are completely smeared parallel to the solid surface; hence the cusp is replaced
by a small increase in the density profile. The total segment density profile (i.e., sum of the
profiles of grafted and matrix chains) is presented in the following Figure 5.3.

R=l 2 4 8 Oul
T
0.:15 V | / f 10.1.48
i NI EE TS R ST
1 H
0.5 V 10.8.48
LY STESRTVIR AERUSAIR | WP | A
0.; M f 1 101,384
(V] SVERNSHNFIRE VBRSNS FERSUIR | S
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05 V 10.8,384
| LLAE— SNV | P

1 10 1 10 1 10 1 10
r (nm)
Figure 5.3 Total segment density profiles obtained with 1D- and 3D- SCFT calculations. Comparison of 1D-SCFT
(dotted green lines) and 3D-SCFT (solid red lines) smeared total density profiles of grafted and matrix polystyrene
chains. r-axis is presented in logarithmic scale. The size of the NP is varied from left to right panels, assuming
values Rs = {1, 2, 4, 8} nm. The (ag/nm‘z, Ng) combination varies from top to bottom as (0.1, 48), (0.8, 48), (0.1,

384) and (0.8, 384). In all cases, the grafted chains are equidistantly distributed and Ny, = Ng. Regarding the
smearing in 3D, bin thickness is or = 0.05 nm (eq 5.1).
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5.4. Assessment of the Smearing Approximation: 1D- versus 3D-SCFT

As was demonstrated in Section 4.2.3, the shape of the density profile at the solid interface
depends on several factors, such as the interplay between the surface and adhesion tension, the
manifestation of entropic penalties due to confinement and curvature. In the current model, the
cohesive interactions are much stronger than the adhesive ones, attracting the polymer film
further towards the bulk phase.>® Radially averaging the density across the (high) density region
at the grafting point and intermediate (low) density region between the grafting points, results in

the generation of a density drop, right after the grafting point. This effect is observed in both the

grafted (Figure 5.2) and total (Figure 5.3) smeared density profiles, and it is reminiscent of the
56,194,218

excluded volume effects reported in atomistic simulations.

()

Figure 5.4 Contour plot of the density and self-consistent field near a spherical nanoparticle. Contour plot of the
segment density of (a) grafted, and (b) matrix chains, and (c) self-consistent field, evaluated on a planar cross-
section of the three-dimensional domain, which contains the grafting point. High/moderate/low density regions are
indicated by red/white/blue color. The size of the particle is Rs = 1 nm and one single polystyrene chain is grafted
on its surface with length Ng = N, = 384 skeletal bonds (corresponding to the left-most column, third row of Figure
5.2).

Aiming to provide the reader with a more informative illustration of the density profile of
grafted chain segments, we present in Figure 5.4 a contour plot of the density profile, which is
depicted on a plane parallel to a pair of parallel box faces and passing through the sphere center

and the grafting point on the particle surface. Furthermore, we show the same contour plot for

the density profile of matrix chain segments (panel b) and the self-consistent field, W, (panel c).

5.4.2. Brush thickness
In Section 4.2.7, we demonstrated that the scaling of the brush with respect to chain length

and grafting density is subject to a scaling law of the following form:
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1/2 n m
(h?)" ~N,"o, 5.2
where the scaling exponents m and n are functions of Rs. In Figure 5.5 below, instead of plotting
the brush thickness with respect to the product Ng'oy", we opted to render this quantity

dimensionless by multiplying with (Rgleg)m.

L O[O D A B P L L L L ML L L UL L R
[ Rs=1nm T Rg=2nm T Rs=4nm T Rs=8nm ]
80 - n=0.51 —+n=051 —+n=0.53 +n=055 54
—_ - m=0.04 + m=0.09 s T m=017 & +m=028 N ]
£ oof 1 ¢ + e’ T e & ]
o - + + & + :
= a0k o T s T ae? T L b
= C o T o T ot T ug® ]
20F o T -~ T T2 :
07..\.l\..\l...\l.\..v....\\...I\...IH"\\..I\\..I.\..V.L.u....lu\.....\\...7

0 5 10 15 0 5 10 15 0 5 10 0 5 10

Ngn—m (Uch,gQ)m

Figure 5.5 Comparison of 1D- (transparent markers) and 3D-SCFT (solid markers) calculations in predicting the
brush thickness. The latter is calculated via eq 3.4. The scaling exponents n, m appearing in the x-axis are retrieved
from Section 4.2.7. The NP size increases from left to right as Rs = {1, 2, 4, 8} nm. The length of grafted chains is
denoted by different colors; Ny = {24: red, 48: blue, 96: green, 192: purple, 384: orange} skeletal bonds. Grafting
density is denoted by different shapes; ¢, = {0.1: square, 0.2: circle, 0.4: diamond, 0.8: triangle} nm2 In all cases,
the grafted chains are equidistantly distributed and Ny, = Ng.

Figure 5.5 illustrates the mean brush thickness (varying Rs, o4 and Ng) against Ny ™ (6,R,)"™.
Evaluations with 1D-SCFT/3D-SCFT are represented by transparent/solid markers. It becomes
clear that, despite the smearing approximation, the 1D model gives identical results with the 3D
one, for the whole range of examined parameters. It is also observed that both models reveal a
deviation from the suggested scaling when the parameters of the system correspond to the
mushroom regime (i.e., squares and circles in Figure 5.5), meaning that this scaling law cannot
reproduce the scaling of the brush in this regime; this is in accordance with the findings in
Section 4.2.7.
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5.4.3. Thermodynamics
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Figure 5.6 Comparison of 1D- (dotted lines) and 3D-SCFT (solid lines) calculations in predicting the total free
energy. Individual free energy components are also evaluated in a system of a single polystyrene-grafted silica NP
embedded in polystyrene matrix. The NP size increases from left to right as Rs = {1, 2, 4, 8} nm. The length of
grafted chains is denoted by different colors; Ny = {24: red, 48: blue, 96: green, 192: purple, 384: orange} skeletal
bonds. Grafting density is denoted by different shapes; o, = {0.1: square, 0.2: circle, 0.4: diamond, 0.8: triangle}
nm2 In all cases, the grafted chains are equidistantly distributed and Ny, = Ng.

Figure 5.6 compares 1D- and 3D-SCFT models in predicting the dependence of the total (eq
2.38) and individual free energy components (eqs 2.39-2.43) per NP area, for the same values of
Rs, o4 and Ng where the structural properties of the brush were determined and assessed.

We observe that the cohesive and field terms are quantitatively different between 1D and
3D, the main difference being their sensitivity to the grafting density (different symbols). In 3D,
Qcon and Qsierg are calculated based on the spatial integration of f(o(r)) and its derivative (see eqs
2.39 and 2.40), whereas in 1D, they are functions of the smeared density profile f(o(r)).

Regarding the cohesive term (first row of Figure 5.6), it is simply an integration of the
excess Helmholtz energy density of the system (eq 2.39), which is determined in this section
using a Helfand Hamiltonian (eq 2.9). Consequently, this free energy term drops as the density
at the interface gets closer to the one in the bulk. In both models, as the grafting density
increases, the total segment density increases towards the bulk values, with this effect being

more pronounced in the 1D case (see Figure 4.7 and Figure 5.3). Hence, it is reasonable that
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there is a slightly steeper drop of the cohesive term with increasing grafting density in the 1D
than in the 3D case.

The field term (second row of Figure 5.6) depends on the density derivative of the free
energy (egs 2.8 and 2.40). The 3D model is more sensitive than its 1D counterpart since the
delta functions impose a steep density field close to the grafting points and, as the grafting
density increases, more of these grafting points exist near the solid surface.

The conformational entropy of matrix chains, AQn, (eq 2.42), is an increasing (decreasing)
function of oy (Ng) and is practically identical in both models; i.e., see third row of panels in
Figure 5.6.

Regarding the conformational entropy of grafted chains AQq (eq 2.43), it increases with oy
and to a lesser extent with Ny (same symbols different colors), indicating that the chains are
being stretched; see fourth row of Figure 5.6.2* This effect becomes more pronounced with
increasing Rs (decreasing curvature), because chains experience more confinement. However,
the slope corresponding to 3D-SCFT is consistently higher than the one obtained by 1D-SCFT.
The smearing approximation invoked in 1D-SCFT entails that the grafting points are delocalized
in the tangential direction relative to the NP. The model understands the stretching only as a
variation of the distance between a projection of the free chain end and the grafted end. On the
other hand, in 3D, the grafting points are fixed as would be the case in reality, and it is more
costly for the chain to assume configurations that stretch it tangentially with respect to the
grafting point.

As a general conclusion, the total free energy of the system is qualitatively similar between
the two models, whereas the quantitative differences between the two levels of geometry are
mitigated with increasing particle radius. This is expected, since the mushroom regime is more

difficult to prevail at lower solid curvatures.
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5.4.4. Equidistributed Grafted Nanoparticles: 3D Spatial Distributions
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Figure 5.7 3D density profiles of chains equidistantly grafted on spherical NPs of various radii. (a) Spatial
distributions of polystyrene chains equidistantly grafted on the surface of a silica NP embedded in polystyrene
matrix. (b) Spatial distributions of individual polystyrene chains on the surface of a silica NP. The size of the NP is
varied from left to right panels assuming values Rs = {1, 2, 4, 8} nm. The (ag/nm’z, Ng) combination varies from top
to bottom as (0.1, 48), (0.8, 48), (0.1, 384) and (0.8, 384). Denser color corresponds to higher values of density and
vice-versa. For clarity, the NP core is overlaid with 10% opacity. Calculation parameters can be found in Table 5-1.
In all cases, N, = Ng.

Going a step further in the 3D description of this system, we present in Figure 5.7a the
spatial distribution of all grafted chain segments inside the simulated domain, as a function of Rs
for two extreme cases of grafting density and chain length considered here. Denser color
corresponds to higher segment density and vice-versa. We could manipulate color opacity at
higher density values to demonstrate the grafting points, but we considered best to present the
system as it would look like in a particle based simulation.

It becomes clear how the size of the brush increases with chain length and grafting density.
The positions of the grafting points are clearly visible in cases of short and sparsely grafted
chains which do not interpenetrate each other (mushroom regime), whereas, when NPs are more
densely grafted, the density cloud becomes so dense that the grafting points disappear inside this
cloud; e.g., compare (ag/nm‘z, Ng) = (0.1, 48) with (0.8, 48) in Figure 5.7a. Increasing Rs results
in significant swelling, since the chains have less available space and stretch further towards the
bulk phase.

It is possible to isolate specific chains out of the total number of chains grafted on the

surface of the NP and see how the corresponding segment density behaves. After the iterative
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scheme is terminated and the field is equilibrated, in order to derive the density profile of
segments emanating from a specific grafted chain, ig, we need to solve the Edwards eq 2.2 using
the initial condition value corresponding to this specific chain (eq 3.18); all other grafted chains
are assigned an initial value equal to zero, so that they do not interfere in the solution. Solving

the Edwards equation under these conditions results in the individual grafted chain propagator,

Ay, » which can be convolved (see egs 3.13 and 3.14) with respect to the contour variable, N,

and give the desired density profile.
In Figure 5.7b, we present the evolution of the spatial distributions of segments belonging to
individual grafted chains emanating from the surface of the particle. The configurations are

1,/51%% nonbonded

affected by bonded interactions, interactions with the low affinity wal
interactions with matrix chain segments, but also nonbonded interactions with the rest of grafted
chains existing in the system which are deliberately not illustrated.

This kind of isolated representation of the density segments belonging to a single grafted
chain is serving very well as a visualization of the shape of individual chains. In situations with
long chains and small NPs, the cloud of polymer segments completely surrounds the NP surface;
e.g., inspect cases with Ng = 384 and Rs = 1 nm in Figure 5.7b. Increasing the Rs reduces the
available space and the chains extend towards the bulk polymer region rather than surrounding
the solid surface. Another observation made on the basis of Figure 5.7b is that the effect of
grafting density on the shape assumed by grafted chains (keeping the chain length constant)
becomes stronger for larger particle size. Furthermore, it seems that, for all particle sizes,
increasing the chain length (keeping constant grafting density) mainly affects the height of the

brush rather than its shape.
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5.5. Irregular Grafting Point Distributions: Structure and Thermodynamics

In this section, we demonstrate a definite advantage of 3D-SCFT relative to its 1D counterpart,
which is the determination of brush thickness and free energy of the system with varying
distribution of grafting points around the solid surface. In our calculations, we opted to keep the
radius of the particle (Rs = 4 nm) and number of grafted chains (ng = 80) constant and vary the

chain length in addition to the distribution of grafting points.
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Figure 5.8 3D density profiles of chains irregularly grafted on spherical NPs of various radii. Spatial distributions
of polystyrene chains (a) equidistantly, and (b, c, d) irregularly grafted on the surface of a silica NP embedded in
polystyrene matrix. For each grafted chain distribution, we present the density profiles for two chain lengths; Ny =
{48, 384}. The row “g-point” illustrates the positions of the grafting points on a sphere with radius Rs + hys. The
parameter values of the biased distributions (eq 3.34) are presented in parentheses in the heading of each panel.
Denser color corresponds to higher values of density and vice-versa. For clarity, the NP core is overlaid with 10%
opacity. Calculation parameters can be found in Table 5-1. In all cases, Rs =4 nm, ny = 80 and Ny, = Ng.
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In Figure 5.8, we present the density cloud of grafted segments in three-dimensional space
for different grafting distributions, namely uniform (random) distributions (panel b), a “ring”-
like distribution (panel c) and a pair of grafting point-rich poles (panel d). For reference, we also
present, in panel a, the density cloud corresponding to the equidistant distribution of grafting
points for the same system parameters. In the non-equidistant cases, we also report the set of
parameters used to sample the grafting points according to the corresponding probability map
from eq 3.34. We suggest that the reader revisit Section 3.8 for details regarding the generation
of grafting points.

To better understand how the cloud of grafted chain segments evolves for different
distributions and values of chain length, we illustrate it in two different NP orientations. In most

cases, it is difficult to detect the position of grafting points visually, so we also provide a VMD
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representation of the NP and the grafting points for each distribution (“g-point” row of Figure
5.8).

It is clear that the grafted segment cloud may become distorted in the uniform case with
respect to the equidistant case, leading to the formation of segment-rich and segment-deprived
regions inside the domain (e.g., compare Figure 5.8a with Figure 5.8b) The distortion of the
overall segment cloud becomes significant in cases with primarily equatorial and primarily
bipolar grafting. In particular, Figure 5.8c illustrates a case with two repulsive Gaussian pulses
applied to the poles of the NP, resulting to a ring-like configuration. Figure 5.8d depicts the
opposite scenario with attractive Gaussian pulses applied to the poles of the NP, resulting in a
dual-pole PGNP. It appears that the overall shape of the density cloud becomes more
homogeneous with increasing chain length, since chains are given the opportunity to explore the
segment depleted regions, especially in cases of high particle curvature. Varying the grafting
point distributions is expected to alter dramatically the self-assembly properties of these
systems.

According to the following Figure 5.9, with increasing segregation of the grafting points, the
smeared density profiles are suppressed near and enhanced far from the interface, relative to the
equidistant case, indicating that the brushes become more swollen on average. The
corresponding density profiles occurring from equidistant grafting are practically identical
between 3D-SCFT and 1D-SCFT (see Figure 5.2); thus, we conclude that the smearing
approximation becomes less accurate with increasing segregation of the grafting points on the

solid surface.
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Figure 5.9 Assessement of smearing approximation when chains are irregularly grafted on a spherical NP.
Difference of the smeared density profiles of (a-c) uniform, (d-f) ring and (g-i) dual pole grafted schemes from the
smeared density profiles of equidistantly grafted NPs, for the same particle radius, Rs, number of grafted chains, n,
and length of grafted and matrix chains, Ny = Ny Ng equals 24, 96 and 384 skeletal bonds from top to bottom
panels. The insets in the top panels illustrate the distribution of grafting points in each case. The parameter values of
the biased distributions (eq 3.34) are presented in parentheses in the heading of each panel. Calculation parameters
can be found in Table 5-1. In all cases, Rs = 4 nm, ng = 80, and Ny, = Ng.
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Figure 5.10 3D density profiles of individual chains grafted on a spherical NP. Spatial distributions of polystyrene
chains of (a, b) all and (c, d) three individual polystyrene chains (depicted by red, blue and green color) uniformly
grafted on the surface of a silica NP embedded in polystyrene matrix; i.e., same configuration as in Figure 5.8b.
The length of grafted chains is equal to (a, ¢) 48, (b, d) 384 backbone carbon atoms. Denser color corresponds to
higher values of density and vice-versa. In (a, b), the NP core is overaid with 10% opacity. Calculation parameters
can be found in Table 5-1. In all cases, Rs = 4 nm, ng = 80 and Ny, = Ng.

In Figure 5.10, we have isolated three random grafted chains of the uniform distribution case
shown in Figure 5.8b to visualize the density profile and the interactions between segments of
two different chains which happen to lie closer to each other, so that their profiles overlap in
space (see green and red cloud for high chain length case in Figure 5.10). On the contrary, the
cloud of the blue chain segments suggests that it is far from the green and red chains, so that it
does not interact with them. Nonetheless, it can still interact with another subset of the grafted
chains which are deliberately not illustrated.
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Figure 5.11 Brush thickness and free energy evaluation for various grafting distributions. (a-e) Mean brush
thickness and (f-j) free energy in a system of polystyrene chains grafted according to various distrbutions on the
surface of a silica NP embedded in polystyrene melt. Both the mean brush thickness and the free energy are
normalized with respect to those obtained for the case of equidistant chain grafting with Rs = 4 nm, ny = 80 and Ny,
= Ng. In each panel, the distribution of grafting points corresponds to the image presented in the first row of the
figure. The individual free energy components are illustrated in Figure 5.12. Calculation parameters can be found in
Table 5-1.

In Figure 5.11, we present how the total free energy of the system is affected from the
distribution of grafted chains on the solid surface and as a function of chain length, Ng. In the
first column, we present free energy variations with respect to three different samplings of
grafting points from a uniform probability distribution. The free energy variation is minor and
can serve as a metric for the deviation in the free energy with respect to the exact positions of
the grafting points.

In the remaining columns of Figure 5.11, we illustrate the evolution of the free energy with
respect to chain length for four different distribution cases: (i) one attractive pole, (ii) two
attractive poles which result in a grafting point-deprived zone around the equator of the NP, (iii)
one repulsive pole and (iv) a ring-like configuration with two repulsive poles which result in a
grafting point-rich zone around the equator of the NP. In each of these cases, we also vary the
intensity of attraction or repulsion of grafting points, which is practically controlled by the
standard deviation d; used in the generation of grafting points via eq 3.34. Moreover, in all cases,
the free energy of the system is normalized with respect to the corresponding free energy of the

same system (in terms of Rs, ng, and Ng) with equidistantly placed grafting points.
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With these considerations, it is clear that the free energy of the system is always higher when
the chains are not regularly grafted on its surface. Both the thickness of the brush and the free
energy of the system increase when the distribution compels the grafted chains to get closer to
each other. When the center of the Gaussian distribution of grafting points is attractive in nature,
it is easier for the grafting point generation algorithm to bring the chains closer to each other,
and this has a clear impact on increasing the free energy of the system compared to the cases of
repulsive centers (compare panels g, h with i, j). An interesting behavior of the brush thickness
is observed in panels b and c; beyond a certain value of the chain length, the thickness of the
brush starts decreasing. This is explained by the fact that, given the crowding of grafting points,
only longer grafted chains are given the opportunity to explore more space, which in turn is
offered by the curvature of the particle. In other words, as the length of the chains increases, the
cloud of segments becomes more uniform and tends to that of the equidistant grafting case. In
Figure 5.12 below, we present the dependence of all free energy terms on the distribution of

grafting points and chain length.
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Figure 5.12 Free energy components in a system of polystyrene chains grafted according to various distributions on
the surface of a silica NP embedded in polystyrene melt. All components are normalized with respect to those
obtained for the case of equidistant chain grafting with Rg = 4 nm, ng = 80 and Ny, = Ng. In each panel, the
distribution of grafting points corresponds to the image presented in the “g-point” row above. Calculation
parameters can be found in Table 5-1.

It is mentioned here that in all calculations of this chapter, there is the freedom for two
grafted chains to emanate from the exact same point on the surface of the NP. This effect does
not cause convergence issues in the SCF algorithm, nor does it generate significant uncertainties
in the values reported herein. There is, however, an option to use the grafting point generation
algorithm presented in Section 3.8, while at the same time imposing a minimum distance
between the grafting points. This restriction affords more chemical realism and can prove to be

quite useful when the free energy differences are expected to be comparable to the error of the
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algorithm, e.g., in the case of two grafted NPs moving relative to each other, whose potential of

mean force needs to be calculated.

5.6. Concluding remarks

In this chapter, we directly compare the usually implemented 1D-SCFT models against a fully
three-dimensional SCFT model solved by the Finite Element Method. We demonstrate that,
when addressing a single equidistantly grafted nanoparticle, the two models give identical
results as regards the smeared density profiles, the size of the brush, and the free energy term
associated with the conformational entropy of matrix chains. Nevertheless, even in this simplest
of cases, there is a slight deviation between the two models when calculating the total free
energy of the system, especially when the combination of grafting density, chain length and
particle radius brings the system into the mushroom regime.

Taking advantage of the 3D-SCFT framework, we have also addressed systems where the
grafted chains are non-equidistantly grafted on the surface of the NP. It is obvious that such a
system cannot be addressed by 1D (or even 2D) models, where smearing of the grafting points
takes place parallel to the surface of the particle. As we show, when the grafting point
distribution brings grafted chains closer to each other, then the free energy of the system
increases slightly with respect to the equidistant case, as a consequence of the entropic cost
associated with stretching of chains grafted close to each other.

Furthermore, the distribution of configurations of each individual chain can be quite
different depending on the distribution of grafting points, since neighboring grafted chains
influence its conformation. To the best of our knowledge, this is the first time that the structure
of an individual grafted chain around the grafting surface is mapped in the context of a field-
theoretic formulation. Nonuniform distributions of grafting points can lead to pronounced
deviations of the grafted segment from sphericity, as exemplified by cases of grafting primarily

around the two poles or primarily in the vicinity of the equator.
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6.1. Background

6.CALCULATIONS INVOLVING TWO

PARTICLES/SURFACES

6.1. Background

Grafting polymer chains on solid surfaces is a standard procedure for the steric stabilization of
nanocomposite systems.'**%?!° \/arious methods for the experimental synthesis of such systems
are reported in the literature.”® %2 Understanding the behavior of grafted polymer brushes
requires a thorough investigation of the thermodynamics of the systems under different
conditions. In the case of two or more nanoparticles embedded inside a polymer melt, the
challenge is to keep them in a well-dispersed state by overcoming their tendency to form
aggregates. When inorganic particles are bare, the attractive Van der Waals forces'” drive them
to come closer to each other. One of the possible ways to get around this behavior is to graft
polymer chains on the surface of the particles. Achieving a proper dispersion of nanoparticles
inside the polymer melt is associated with a considerable enhancement of its properties.**1>4244

Major computational research has been conducted on systems comprising a single grafted
nanoparticle embedded in a solvent or homopolymer matrix, using theoretical formulations®*??®
or atomistic simulations.?*30%819222¢ Moreover, considerable work has addressed the behavior of
grafted and matrix chains in systems comprising multiple grafted solid surfaces.'®"
12.21,2526,37,118.206225 Munao et al.>® demonstrated the effect of a third nanoparticle, when inserted
in a system of two interacting grafted silica nanoparticles, while Martin et al.*® investigated the
effect of polydispersity of grafted chains on the structural properties of the nanocomposite
system.

Materials consisting entirely of matrix-free grafted plates or hairy nanoparticles (also
referred to as “particle solids”, exhibit interesting mechanical and optical properties, while they
behave as tough glasses when assembling in specific configurations.*®**?® Barnett and
Kumar'?®?® have published several works, where they report the use of such materials in the
design of membranes for separation processes. In their recent work, Biltchak et al.*® studied the
effect of addition of matrix chains to a neat grafted nanoparticle-based membrane on its
selectivity in separations of gases of different molecular size. Mydia et al.*® developed a two-

layer theoretical model to describe the configurations of the grafted chains in the vicinity of the
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grafted nanoparticles and at intermediate distances between them and they compared their model

with atomistic molecular dynamics simulations.

6.2. Planar surfaces

In this section, we present a SCFT analysis to examine the structural and thermodynamic
properties of polystyrene (PS) melt confined between two silica plates, either grafted or bare, as
well as of the same plates in absence of any melt. In fact, as discussed in Section 4.3, when no
matrix chains exist between the two grafted surfaces, or they exist but their molecular weight is
significantly larger than that of the grafted chains, the latter behave as if they were in contact
with a poor solvent. Following Flory’s theory, when matrix chains are chemically identical to
the grafted chains and their molecular weight is similar to that of the grafted chains, then the
system is analogous to one wherein the grafted chais are embedded inside a theta solvent.
Finally, when matrix chains are much shorter than the grafted chains, the latter are starting to
swell towards the bulk polymer region as if they were in contact with a good solvent.

Herein, we derive the potential of mean force between the plates by varying the distance
between them. Studying the thermodynamics in such planar geometry is quite important in the
field of biomembranes and other biological applications.?*#* One could consider this planar
geometry study as the equivalent of investigating the potential of mean force between spherical
particles, whose radius is large enough, in comparison to chain dimensions, for their curvature to
be negligible.

The problem of polymer chains grafted on planar surfaces has been addressed in the past by
several studies.*%'%3187 By removing the incompressibility assumption and imposing Dirichlet
boundary conditions at the solid surfaces, we make a step forward towards the investigation of
systems with realistic interfacial free energies. Furthermore, we explicitly describe the
solid/polymer and solid/solid interactions via the Hamaker potential, and we explore their
influence on the resulting PMF. Without these considerations, we would not be able to apply our
methodology in systems comprising exclusively grafted chains, i.e. systems in absence of matrix
chains, since the incompressibility condition requires that the total segment density profile be
uniform across the entire domain of interest.® Furthermore, such approaches, when applied in
three dimensions, allow for the investigation of systems of complex geometry, where the use of
Fourier based methodologies is not recommended, since no symmetry appears and no periodic

boundary conditions can be implemented.®
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6.2. Planar surfaces

In the majority of computational works, it is assumed that the plates have the same grafting
density and molecular weight as the grafted chains.**®81%187 |n reality, it is rather hard for
experimetalists to prepare such a perfectly symmetric system. Herein, we increase the degrees of
freedom of the system by allowing the grafted chains on each plate to have different molecular
weights, whereas each plate may also have its own grafting density. The goal is to reveal the
influence of these kinds of asymmetries on the PMF between the two grafted plates when
varying the distance between them, and to propose a scaling law that accounts for all these
design aspects.

We build our thermodynamic reference system by deriving the free energy of a single bare
or grafted silica plate, either isolated or in contact with polystyrene matrix chains. Next, we
calculate the PMF of a system which contains exclusively matrix chains. The melt is assumed to
be at equilibrium with a bulk phase melt at all times and it is gradually squeezed by reducing the
distance between the two silica surfaces. Having established the thermodynamics of the
reference systems, we demonstrate results regarding the structure and PMF in a system of two
grafted silica plates over a large parameter space, involving the molecular weight of matrix, the
molecular weight of grafted chains on each plate and the grafting density of each plate.
Understanding the behavior of matrix and grafted chains in this planar geometry is a stepping
stone towards the corresponding spherical case, i.e., two or more polystyrene grafted silica
nanoparticles embedded in polystyrene melt.

The following Figure 6.1 illustrates a mesoscopic bead-spring representation of the system

under investigation.
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Figure 6.1 Demonstration of two opposing grafted surfaces. (a) Bead-spring representation of two opposing
grafted silica walls embedded in melt (GMG system) comprising matrix chains of length N.,. The silica wall on the

left (right) is grafted with O’g-Ss (Ugﬁs) grafted chains of length Ng- (Ng+ ). (c) The same system as (a), but in

absence of matrix chains (GVG system). Additionally, the corresponding reduced density profiles from the
opposing grafted silica walls in the (b) presence and (d) absence of matrix chains are shown.

Two opposing silica plates at distance hss are grafted with PS chains, while matrix chains
may or may not occupy the space between the grafted plates. Hereafter, the matrix chains are
denoted by m, the chains grafted on the left silica plate are denoted by g-, and the chains grafted
on the right silica plate are denoted by g*. When polymer melt exists between the two plates, it
comprises a total number of n,, monodispersed chains of length equal to N, skeletal bonds. The
melt, when present, is at equilibrium with a bulk polymer phase at chain length equal to Ny, of

temperature T and pressure P. The left/right surfaces are grafted with ny /ng" chains of length Ng~

INg" skeletal bonds, whereas the corresponding grafting density equals o.=N_. /'S, with Sg

denoting the area of each surface. As mentioned before, the grafting density and molecular
weight of grafted chains are allowed to vary between the two plates. It is apparent from the
density profiles in Figure 6.1b,d, corresponding to systems with (Figure 6.1a ) and without
(Figure 6.1c) matrix chains, that, in the former case, the extension of each brush towards the

opposing plate is favored.
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6.2.1. Vacuum/Melt and Solid/Melt Interphases

Figure 6.2 presents the free energy of VM (surface tension) and SM (minus adhesion tension)
interphases as a function of chain length. In Figure 6.1, the free energies have been evaluated
with the HFD EoS. In Figure 6.2b, the SL-SGT model is considered with the original Hamaker
potential corresponding to low wetting conditions (LW), and with the addition of the ramp
potential, which has been adjusted to reproduce the work of adhesion of PS melts in contact with
treated (high wetting, HW) and untreated (perfect wetting, PW) silica.®* For more information
regarding the intensity of solid/polymer interactions, the reader is referred to Section 2.1.5,
Table 2-2 and Table 4-2.
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Figure 6.2 Free energy of interfaces with different wetting degree. The free energy of vacuum/melt (VM, circles)
and bare solid/melt (SM) with low wetting (LW, triangles), high wetting (HW, squares) and perfect wetting (PW,
stars), as a function of chain length using (a) Helfand (HDF) EoS, (b) Sanchez-Lacombe EoS combined with a
square-gradient term (SL-SGT). Bands denote scale changes along the axes. The right panels depict the
corresponding reduced segment density profiles of VM and SM interphases with HFD (c,d) and SL-SGT (e,f) for
Nm = {24, 48, 96, 192, 384, 768 and 1536} skeletal bonds. Even though the thickness of the lines increases with
increasing N, the density profiles practically coincide for all chain lengths; thus, the reader has to zoom
considerably to notice any deviations. The dotted lines in (c-f) are guides to the eye.

In interphases with low wetting, the free energies are qualitatively similar for VM and SM,;

M

they differ by about ».> across the chain molar mass range explored herein (with y>™ being the

free energy component associated with solid/polymer interactions). This is attributed to the fact

that the density profiles for these cases are very similar (e.g., compare Figure 6.2c with Figure
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6.2d, and Figure 6.2e with the LW curve in Figure 6.2f); thus any differences in the free
energies can be attributed to the silica/polystyrene Hamaker interactions. Increasing the strength
of the ramp potential enhances the solid/polymer interactions as indicated by the more negative
free energies in Figure 6.2b, and the more pronounced peaks exhibited by the density profiles of
Figure 6.2f.

The free energy from SL in Figure 6.2b appears to be an increasing function of chain length,
and this behavior is anticipated, since the cohesion of the polymer increases with increasing
chain length.”>™ In contrast, HFD (Figure 6.2a) exhibits the opposite trend and this is attributed
to that all evaluations have been performed using a constant isothermal compressibility for the
polymer melt. In Section 2.1.4, we demonstrate that tuning the HFD compressibilities (with and
without employing the square-gradient term) based on the predictions of SL, or even fitting them
directly to the experimental measurents of surface tension, allows restoring the proper chain
length dependence in the thermodynamic behavior of the system.

To better quantify the thermodynamics of these films, we use again the four macroscopic
wetting functions introduced in Section 2.2.3, namely, the work of cohesion (W), the work of
adhesion (W,), the work of spreading (Ws) and the work of immersion (W,) defined by eqs 2.47-
2.50, respectively.

In Table 6-1, we report the wetting functions and contact angles of the PS/SiO; interphases
studied here for N, = 384; they remain practically the same with increasing chain length, as

shown in Figure 6.3.
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Figure 6.3 Wetting functions of silica/PS interfaces. Calculations were performed with the SL-SGT (markers) and
HFD (lines) EoS in absence of the ramp potential (low wetting). The wetting functions are the following: work of
adhesion (red/circles), work of spreading (blue/triangles), work of immersion (green/squares), and work of cohesion
(violet/stars).
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We remind the reader that the work of adhesion, Wy, corresponds to the reversible work
required to separate two phases in contact. It is noted that, in the absence of the ramp potential,
W, is significantly lower than in the HW and PW cases, where ovmp has been fitted to
experimentally reported values of Wa. The work of spreading, Ws, quantifies the spontaneity of
the wetting process: positive values indicate spontaneous spreading across the interface (perfect
wetting), while negative values indicate finite contact angles (partial or no wetting). In the LW
and HW interfaces, Ws remains negative across the full molar mass regime investigated here,
indicating that the corresponding solid-fluid-vapor interface will form finit contact angles. The
PW interface, on the other hand, exhibits positive Ws; thus, PS will spread spontaneously on the

silica surface.

Table 6-1 Interfacial energies and wetting functions for N, = 384 in units of mJ/mZ.

EoS Wetting M > - Wi Wy W, We 0(°)

HFD low (LW) 2885  21.97 —21.97 6.88 -50.81 —21.97 57.70  139.6
SL-SGT low (LW) 2789  26.02 ~26.02 1.86 -53.91 —26.02 55.77  158.9
SL-SGT high (HW) 27.89  -10.91 10.91 38.8% -16.97 10.91 55.77  67.0
SL-SGT  perfect (PW)  27.89  -43.21 43.21 71.1% 15.33 43.21 55.77 -

6.2.2. Grafted/VVacuum (GV) and Grafted/Melt (GM) interfaces
Figure 6.4, depicts the reduced density profiles of PS grafted chains in (a) GV and (b) GM
systems in absence of the ramp potential (low wetting) as a function of oy and N.

(a) GV (grafted/vacuum) (b) GM (grafted/melt), N=N,

' N RN NN N N
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Figure 6.4 Reduced density profiles of polystyrene brushes exposed to polymer melt or vacuum. Calculations were
performed with SL-SGT EoS in absence of the ramp potential in (a) grafted/vacuum (GV) and (b) grafted/melt
(GM) systems for chain length of grafted chains equal to Ny = {24: red, 48: blue, 96: green, 192: violet} skeletal
bonds and grafting density, o4 = {0.1: solid lines, 0.2: dashes, 0.4: dots, 0.8: short dashes} chains/nm® The numbers
in (&) correspond to the values of the product g g in nm ? units.

The behavior of grafted chains in this planar geometry can be classified into three distinct

regimes depending on the combinations of oy and Ny. We remind the reader at this point that
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o,.,=0o,N LagRG’gZ) and the number of chains per area is given by eq 4.10, thus in

g.5eg g'Vg ~ C I 2
o C-C
planar geometries, it is equivalent to the grafting density oy.

1. Mushroom regime (cg,seq~ 0 Or o, Reyg2 <1, short and sparsely grafted brushes). The density of

the profiles is less than the bulk density and chains assume random-coil configurations.?*?
Increasing oy or Ng has a minor effect on the thickness of the profiles but rather makes them
more pronounced.

2. Dense brush regime (oyseq > 0gsegoos OF o,R;,* >1, low nf' , fully formed brush but not too

ch,g !

d24,232

dense chain packing). The brushes become stretche and feature extended regions with bulk

density. The thickness of the profiles depends strongly on both g4 and Ng, reaching the limiting
case behavior ~ N ', i.e., the dimensions of the brushes become proportional to their mass.

3. Crowding regime (ogseg > 0gsegoon OF o,Rs,” >1, high ngf{g, very dense chain packing). In

this regime, the crowding of the chains becomes so intense that the density of the grafted chains
surpasses slightly the bulk one, as we have already demonstrated in Figure 2.4. This happens
because the entropic penalty due to stretching overcomes the enthalpic penalty due to deviations
from the bulk density.

There are, however, noticeable differences between the two systems. In GV, the thickness of
the density profiles becomes commensurate to the number of the grafted PS segments, oy seq, aS
already presented in Figure 4.18 of the present thesis for the system of a single spherical
particle. Moreover, the density profiles in Figure 6.4a collapse together for constant o seq Values,
i.e., for constant amount of grafted material. In GV, the tails of the profiles feature a sigmoid

region on the order of 1 nm at the polymer/vacuum interface®

, Whereas in GM they are much
more expanded towards the bulk region.?*** Finally, in both GV and GM, the profiles become
slightly more pronounced with increasing gy in the vicinity of the grafting points (~ 0.4 nm). The
dimensions of the brush are again quantified in terms of the root mean squared brush thickness

(eq 3.4) and the height of the surface which encloses 99% of grafted chain segments (eq 3.5).
Figure 6.5a,b illustrates evaluations of (h?)"“and hy,, against the scaling law ~o,'N." in

GV (left column) and GM with the matrix chains either being equal in length to the grafted
chains (Nm = Ng; central column), or varying between 24 and 1536 skeletal bonds (right

column). Figure 6.5c depicts the ratio h,, /<th>”2 which can be thought of as a measure of the
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shape of the profile. A striking difference between the two systems is that, in the first one, the
measures of the brush thickness collapse to a single master curve across the full regime. This is
because in GV, the shape of the collapsed films is a function of the mass of the film (~g4Ng) and
does not depend on the individual factors (g4, Ng); see Figure 6.4a.
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Figure 6.5 Thickness of polymer brushes exposed to polymer melt or vacuum. (a) hggs, (b) <hgz >“2 and (c) their

ratio h, /<hg2>“2versus the scaling ogNg using the SL-SGT (markers) and HFD (solid lines) EoS. The panels on the

left column correspond to the GV system. The panels in the central column regard the GM system where Ny, = Ng.
The rightmost column depicts results for the GM system as well, but with N, varying from 24 to 1536 skeletal
bonds. Different colors and symbols denote different values of the surface grafting density: o4 = {0.1: red circles,
0.2: blue triangles, 0.4: green stars, 0.8: violet crosses} nm 2. The length of grafted chains, Ng, increases implicitely
in each panel from left to right, according to the scaling law expression presented in the labels of the x-axis. In the
rightmost column, the size of the symbols increases with the length of matrix chains. All cases have been evaluated
in absence of the ramp potential (low wetting).

Across the mushroom regime, the brush thickness is practically independent of o4 The
thickness in vacuum is independent of Ny as well, indicating collapse of the sparsely grafted
chains on the surface. In the case where melt chains are present, the thickness exhibits a random

walk-like Ng-dependence, and scales approximately as ~Ng°'5. The shape of the brushes, as

quantified by the ratio hgg%/<hgz>m, IS quite sensitive to the grafting density in presence of
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Chapter 6. Calculations involving two particles/surfaces

matrix chains. In GV, the brush ratio decreases with respect to the predictions from Alexander’s
model*?®*?" for incompressible brushes, whilst the opposite trend is exhibited in the GM system.

Across the dense brush regime, the brush dimensions depend strongly on both ¢y and Ng. For
very large oy and Ny the brush thickness scales as ~ ogseg, NO Matter the solvent conditions

(vacuum or melt). This means that the dimensions of the brushes become proportional to their

mass and the ratio hyg, /<hgz>1/2 approaches the limiting value of \/§ predicted by Alexander’s

model 126,127
Regarding the effect of matrix chains on the scaling of the brushes, it appears that, as long as

Ng < Nm, the brush dimensions are practically independent of Np. For N < N, on the other

hand, the brushes expand with decreasing Ny, due to the fact that the matrix chains can readily
penetrate the brushes, thus the latter swell towards the bulk region. A similar behavior has been
recently observed by Bilchak et al.*® Therefore, modulating Ny, allows for the tuning of solvent
conditions, from theta solvet (N, = Ng) up to good solvent (N, < Ng) conditions. Regarding the

ratio hgg%/<hgz>1'2, it features a complicated behavior with varying Ny, where it

decreases/increases for low/high gy,

It seems that, regardless of the choice of the free energy density equation [e.g., compare lines
(HFD) with markers (SL-SGT) in Figure 6.5] or the strength of the solid/polymer interactions
(see Figure 6.6), the structural features and the scaling behaviors of GM systems are
quantitavely very similar. In addition, the shortcoming of using HFD with constant isothermal
compressibility, xr, does not have a practical effect on the structural properties of grafted chains

and on the potential of mean force of the system, as will be shown below.
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Figure 6.6 Thickness of brushes grafted on surfaces of different wetting degree. (a) hgg% , (b) <hgz>u2 , and (c)

their ratio h /<hgz>1/2 compared to the scaling law ag,lNg1 in GM systems where the length of grafted chains is

equal to that of matrix chains, Ng = Ny, Different line styles denote intefaces with low (solid lines), high (dashed
lines) and perfect (dots) wetting. Different colors denote different grafting density, o, = {0.1: red, 0.2: blue, 0.4:
green, 0.8: violet} nm ™2

Figure 6.7 illustrates the total grand potential per unit area of grafted/vacuum (V) and
grafted/melt (y°™) interfaces as a function of Ng and oy, as well as the partial contributions from
the solid/polymer interactions (ys), and the entropy of matrix (ym) and grafted chains (yg). Some
key remarks regarding the evaluation of each term with SL-SGT are summarized below.

e s is purely of enthalpic origin and thus it is a functional of the total density profiles. It
becomes more attractive with increasing oy, since the profiles become more pronounced in the
vicinity of the solid (e.g., see Figure 6.4). In GV, ys®" decreases with increasing Ng, since
increasing Ny means higher amount of material near the solid surface. In GM, ys®™ is
independent of Ny, since the total density profiles are also invariant to Ny, €.g., compare
profiles in Figure 6.2c-f for different chain lengths.

e ym describes the entropic contribution of the matrix chains. Looking at the GM panels, it
decreases precipitously with increasing Ng¢/Nm, since the grafted chains occupy more space in

the vicinity of the interface, leaving the matrix chains with fewer available conformations.
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Note that, by keeping N fixed, ym scales with Np, about as y,, ~ N,, ™ ; which is consistent with

eq 2.42. In GV systems, this term is of course zero, since there are no matrix chains at all.

e y; quantifies the entropic contribution of the grafted chains and it is an indicator of the

stretching of the brush. It increases monotonically with increasing Ng and oy, since the grafted

chains expand and stretch further towards the bulk region. In addition, VgGM increases with

decreasing Np, since the grafted chain-melt interactions are enhanced and, as a result, the

brushes swell as shown in Figure 6.5b,c (rightmost column).

e y is the total free energy of the interfacial systems per unit area. It increases with increasing

molecular weight of grafted chains and appears to be dominated by the conformational entropy

of grafted chains, y,.

~
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Figure 6.7 Free energy of polymer brushes exposed to polymer melt or vacuum. Partial contributions to the grand
potential (a) ys, (b) ym, (C) y5 and (d) total grand potential, y, per unit area, using the SL-SGT (markers) and HFD
(solid lines) EoS. The panels on the left column correspond to the GV system. The panels in the central column
depict results regarding the GM system, for Ng = Np,. The rightmost column depicts results for the GM system as
well, but with N, varying from 24 up to 1536 segments. Different colors and symbols correspond to different values
of the surface grafting density: o, = {0.1: red circles, 0.2: blue triangles, 0.4: green stars, 0.8: violet crosses}
chains/nm?. The chain length of grafted chains, Ng, increases implicitly in each panel from left to right, according to
the scaling law expression presented in the labels of the x-axis. In the rightmost column, the size of the symbols

increases with the chain length of matrix chains. All cases have been evaluated in absence of the ramp potential.
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6.2. Planar surfaces

Overall, the evaluations of the free energy terms with HFD are in good qualitative agreement
with SL-SGT. Furthermore, it appears that ys°™ evaluated with HFD is more negative than when
the SL-SGT EO0S is used, because the density profiles lie closer to the silica surface in the former
model (e.g., compare Figure 6.2d,f). In their recent work concerning neat grafted nanoparticles,
Mydia et al.*® report that, for constant grafting density, the stretching energy does not increase
monotonically with the chain length. This behavior is attributed to the curved space around the
nanoparticles, since, at some point, the grafted chains do not experience the presence of each
other and become unperturbed. For planar surfaces, however, the threshold chain length
becomes infinitely large, since no curvature is involved and the chains will always experience
the presence of each other, considering that the dimensionless quantity agRg2 is above a

threshold value as well.?*

6.2.3. Polystyrene melt capped between two bare silica surfaces (SMS)

In this paragraph, we study the potential of mean force (PMF) between two approaching bare
silica surfaces. This means that only matrix chains are present in the system. This situation
corresponds to the limiting case of extremely low grafting densities, where allophobic dewetting
occurs and the enthalpic interactions between the two solid surfaces prevail. The matrix chains
are gradually restricted in terms of available conformations as the distance between the two

plates decreases. For these calculations, the PMF™®

is expressed with respect to the free
energies of the single SM interfaces for the same chain length, as shown in the following eq 6.1.
In other words, the reference system is that of the same plates being at infinite distance from

each other.

PMFSMS — ]/SMS _yiMS — 7/SMS _ Ilm ySMS — 7/SMS _27/SM 61

hss—)cm
with »°™ being the free energy of a SM interface in presence of matrix chains of length N,
depicted in Figure 6.2a,b. Note that, with PMF°™° known, the disjoining pressure can be
calculated as:

a}/SMS
H(hss) = _( 6.2
oh, T

Due to numerical issues that arise when employing the SL EoS, the initial configuration of
the field can affect the outcome of the converged solution. To investigate this effect, we

performed our calculations using two different compression methods:
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1. In the first method, the calculations were performed in a decremental fashion, in which the

intial configuration of the field was set to the field corresponding to the converged calculation

for a slightly larger domain: W' ;i (h) = W' 4o (N +AD)

2. In the calculations corresponding to the second method, the initial configuration of the field

was set to zero across the domain: w'; ;. =0

Using the first method, it is easier to derive a solution which corresponds to a stable
configuration. The second method, on the other hand, can provide a measure of the stability of
the films in terms of their tendency to collapse and their sensitivity to fluctuations about
equilibrium (e.g., their response during the formation of a cavity).

Figure 6.8 illustrates evaluations of PMF™® with HFD (a), and with SL-SGT under low (b,
LW), high (c, HW) and perfect (d, PW) wetting situations, using the first method for
decremental compression. The same results obtained via the second method are presented in

Figure 6.9.
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Figure 6.8 Potential of mean force, in mJ/m? for the system of approaching bare silica surfaces in a melt (SMS).
Calculations were performed with (a) HFD, (b) SL-SGT (LW), (¢) SL-SGT (HW) and (d) SL-SGT (PW), for Ny, =
{24: red, 96: green, 384: orange} skeletal bonds. The calculations were performed in a decremental fashion, in

- ’
which Wi init

(h)=w

ifc,final

(h, +Ah), with a compression rate equal to —0.1 nm/evaluation. The inset graphs in

(b-d) depicts snapshots of the density profiles at plate-plate distances denoted by the arrows, for N, = 384. Bands
denote scale changes along the axes. The dashed lines display the Hamaker potential contribution to the solid/solid
interaction, shifted by twice the solid/polymer adhesion tension.
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Figure 6.9 Potential of mean force, in mJ/m?, for the system of approaching bare silica surfaces (SMS) starting with
zero field. Calculations were performed with (a) HFD, (b) SL-SGT (LW), (¢) SL-SGT (HW) and (d) SL-SGT
(PW), for Np, = {24: red, 96: green, and 384: orange}. The initial configuration of the field was setto Wy . =0.
The inset in panel (a) depicts the critical plate-plate distance for the matrix chains to evacuate the system, against
their radius of gyration. The schematic of the inset depicts the film situation for hg larger and lower than ~3R,. The
inset graphs in (b-d) depict snapshots of the density profiles at plate-plate distances denoted by the arrows amd their
fill corresponds to the color of the corresponding chain length. Bands denote scale changes along the axes. The
dashed lines display the Hamaker potential contribution to the solid/solid interactions, shifted by twice the
solid/polymer adhesion tension.

In the case of HFD, regardless of the compression approach, PMF*™® increases with
decreasing plate-plate distance, suggesting the manifestation of a repulsive force that resists the
attractive interactions between the surfaces. These repulsive forces are dominated by the loss of
solid/polymer interactions; with decreasing hs, the mass of the film decreases and there are
fewer interaction sites. The sign of these forces depends on an interplay between the strength of
the solid/polymer and solid/solid interactions. If the latter become much stronger than the

FSMS

former, the solid/solid forces will dominate and PM will become attractive. The steadily
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increasing forces in this case can be, however, a misleading result, because HFD does not
account for the gaseous phases which may arise during the process.

According to evaluations with SL-SGT under low wetting (LW) conditions (Figure 6.8b),
the functional dependence of PMF*™® is quite similar to that of HFD. However, below a critical
plate-plate distance, hs™", PMF™S decreases abruptly, indicating a phase transition. At these
distances, it is impossible for SCF to maintain a metastable film; hence, a cavity is formed and
the calculation converges to the more stable solution, ¢ = 0. The films remain stable above he"™
(on the order of 3.5 nm), regardless of N, (Figure 6.8b).

Upon departure of the melt from the gap between the plates, the only contribution to the free
energy is due to plate-plate interactions which are described here by means of the Hamaker

potential; therefore, leading to the the eventual contact of the adjacent solid surfaces. Note that
for LW surfaces, PMF™ (9 =0)= 55" — > (depicted by dashed lines in Figure 6.8b) is

negative, indicating that the solid/polymer interactions are really weak for the LW films and
these films are actually metastable with respect to cavitation across the entire range of
thicknesses.

A similar picture has been reported by past simulations from a variable-density lattice based

SCF model.?®® In that model, the interactions in flat geometries become insignificant for hss
slightly larger or equal than 4<R92>°'5, whereas the maximum recorded force per radius before

cavitation in a crossed cylinder geometry was on the order of ~0.01 mN/m when considering
high energy surfaces and 0.1 mN/m for low energy surfaces.

With enhanced solid/polymer interactions, the stability of the capped polymer films is
reinforced considerably. According to the more reliable solution scheme where the domain
length is adjusted decrementally, the HW and PW films remain stable throughout the full hg
range examined here, always converging to the stable, polymer-filled equilibrium solution of the
problem (see Figure 6.8c,d). In contrast to LW films, the PMF™® of the HW and PW ones
increases steadily for hss less than 2.5 nm, whereas in the limit of low hg, the density decreases
significantly due to entropy confinement. A significant free energy barrier of approximately
.3 on the order of 20 mN/m in the HW case and 80 mN/m in the PW case, has to be
overcome for the polymer to be expelled completely and the solids to come in direct contact at
PMF™ (¢ = 0) =7 - 7.

There is, however, a striking difference between the HW and PW films. The HW films can

be considered as metastable with respect to cavitation, since, after crossing a barrier of ~ _yinfSMS
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with decreasing hss, they can be trapped in the global minimum of attractive Hamaker
interactions between the bare solids (see minima of the dashed lines in Figure 6.8c), as in the
case of the LW film. The PW film, on the other hand, is indeed stable down to thicknesses of ca.
1.5 nm, since the minimum of the Hamaker potential lies way higher (~ 60 mJ/m?) than the

plateau PMF*™® value at large hss.

6.2.4. Interacting grafted surfaces in melt (GMG)

The current section presents evaluations of the potential of mean force of approaching grafted
surfaces. To facilitate comparisons across the wide parameter space considered for these
calculations, the PMF®M® will be expressed in terms of the reduced surface-surface distance

which is defined by the following eq 6.3.

2h
hss = = 63

<h9’2 >0‘5 * <h9*2>0.5

0.5 0.5
with <hg_2> and <hg+2> being the root mean squared brush thickness of the single grafted

surfaces (infinite surface-surface distance) at the same temperature and in the presence of matrix

chains of length N, (brush thickness from Figure 6.5). A similar normalization can be obtained
by dividing hs with <Rgz>°'5, since <Rgz>°'5 ~N, and N, ~<hgz>°'5 across the dense brush

regime. Nevertheless, normalizing the plate-plate distance as shown in eq 6.3 is a more natural

approach for making such comparisons, because it allows evaluating the tendencies of the

brushes to interpenetrate. Furthermore, <h92>0'5 takes account of the chain perturbations when

varying the melt conditions that are less sensitive to the particular equation of state in the
nonbonded free energy density model.

As in the SMS systems, PMF®™C will be expressed relative to the free energy of the G'M
and G*M systems in the presence of matrix chains of length Ny, (see Figure 6.7) as presented in

eq 6.4 below. In other words, PMF®M®

is expressed with respect to the free energy of the
systems at infinite plate-plate separation. Regarding the segment-solid interactions, LW

conditions are employed throughout this section, unless otherwise stated.

PMESMG _ yGMG _ySMG _ }/GMG _ lim }/GMG _ yGMG _yG’M _}/G*M 6.4

hgg —o0
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At first, we present the PMF®MC for the simplest case where the opposing surfaces are
grafted symmetrically with respect to oy and Ny for varying Nm/Ng. Figure 6.10 illustrates
PMF®ME as a function of the plate-plate distance, hs, whereas Figure 6.11 depicts the
corresponding density distribution across the examined parameter space for Ny, = Ng.

According to Figure 6.10, the brushes start experiencing the presence of each other at

distances in the order of 4-5 h., while, for larger h,, PMF™® =0. At lower separation

distances, the brushes interact strongly with each other and PMF®M€ increases. In systems with

low a4 (mushroom regime), the brushes are relatively soft and thus the PMF increases at lower

h, . In dense systems, on the other hand, the brushes are more compact and as a result the PMF

increases abruptly at larger ﬁss , on the order of 3-3.5 (see bottom right panel of Figure 6.10. This

regime coheres with the predictions of the Alexander model for incompressible brushes,!?®?

where, regardless of Ny and oy, the predicted separation distance of two Alexander brushes in

contact is h

ss,min

=23 ~3.4. Thisis proved by considering that, in planar surfaces, the edge of a

brush with chain length Ng and grafting density oy is:

h %Ny 6.5

edge,g
p seg,bulk

thus, the separation distance between two Alexander brushes (grafted with Ty Ng, and Ty

Ng+ ) in contact is calculated as follows:

o N +o0.N,
h =h +h — g g g g 66

ss,min edge,g” edge,g*
pseg,bulk

The root mean squared brush thickness of an Alexander brush is equal to:**

_ Poeg 6.7

<hg2>1/2 _ \/é

hence, in terms of reduced units, the plate-to-plate distance, hss min, becomes:

ﬁss,min =2 hedge'gi ’ hedge’w =2 hedge,g’ + hedge,g+ = 2\/§ 6.8

<h92>1/2 * <h9+2>1/2 hej;%g + hej;%m

Regarding the effect of varying the chain length of matrix chains on PMF®MC, for N/Ng < 1,

PMF®ME hecomes strictly repulsive, with the exception of the case for densely grafted and long
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grafted chains, o5 = 0.4 nm?, Nq = 768. Increasing Ny/N, leads to the manifestation of attractive

FGMG

interactions as indicated by the formation of a minimum in PM (autophobic dewetting).

These interactions become slightly stronger with increasing Ng, and even stronger with
increasing aq. The enhancement of the attractive interactions with increasing grafting density has

|25—27 18,22,29-31

been also observed in several theoretica and experimental studies.
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Figure 6.10 Potential of mean force in a symmetric system of approaching grafted silica surfaces in contact with
melt Calculations were performed with the SL EoS. Colors correspond to different matrix-to-grafted chain length
ratios, Nm/Ng = {0.5: red, 1: blue, 2: green} skeletal bonds. The labels in brackets denote o (nm™) and Ng (skeletal
bonds). Lines are guides to the eye.
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Figure 6.11 Reduced density distributions corresponding to the PMFM® panels in Figure 6.10. Profiles are derived
as functions of the plate-plate distance (abscissa) and the distance from the left wall (ordinate) in reduced units.
Red/green/blue colors correspond to regions with high density (. = 1) of ¢ = g/m/g" chains, respectively. Grey
denotes regions which lie outside the modeled domain or have not been evaluated at all. Labels in brackets denote
ay (nm™?) and N, (skeletal bonds).
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Figure 6.12 illustrates the contribution of individual free energy terms to PMF®MC for a case

with o5 = 0.2 nm2 and N = 192 skeletal bonds. It appears that the attractive part of PMFMC s

dominated by the entropic contribution of the grafted chains, ;/gGMG, shown in panel Figure

6.12c. In addition, the terms responsible for the cohesive and the chemical potential-density

field interactions change due to minor variations in the mean density profile and exhibit an
opposite trend to that of )/gGMG, albeit weaker. That PMF®M® becomes more repulsive when Np,

< Ny is attributed to the matrix chains being able to penetrate the space occupied by the brush,
compelling the grafted chains of the two surfaces to expand in space until they interact with each
other, thus keeping the two surfaces separated. In other words, the solvent conditions improve

with decreasing Nm/Ng; hence, the brushes prefer to interact with the solvent molecules than with

each other.
@ gpEr T T T T T W gppET T T T T T T T T T T
o C - 1t r . N
= E T o, 123 - Ttk .
d 0F # ] °s 0F /r ]
© C o/ 1 o, L/ ]
g5 002 ¥ 4 230024 E
= C .’i 1 | I J - = HJ | 1 1 | I ]
M gppPFa T T 1 1 1T 3@ gpET 7T T T T T T
2 M = : ]
u:?,‘ 0F = o_r:E\ e L o
E C ] % L ]
z 002 + Z0.02F B
N AR IR NN EU R M B [ I N NI I B
© 00F L U ® 02 5T N e T T T
Q oo 4 QO LN ]
=5 Eo 1z Eox ]
" B - \ 3 [ e
S of | e 188 0f rwe :
o' Y F'S 1 r N
Z —0.02F *“TX 4z -0.02F >
= o N I RN BRTR NI B i R R AN NI R B
3 35 4 45 5 55 3 35 4 45 5 55

2hy / (hy + hy) 2hy | (hy + hy)

Figure 6.12 Free energy partial contributions to the potential of mean force, in mJ/m? of two approaching
symmetrically grafted surfaces in contact with melt. Grafting density, o4 = 0.2 nm?, length of grafted chains, Ng =
192, matrix-to-grafted length ratio, N./Ng; = {0.5: circles, 1: triangles, 2: stars}. (a) cohesive interactions, (b)
solid/polymer interactions, (c) entropic contribution from grafted chain conformations, (d) density-field
interactions, (e) entropic contribution of matrix chains and (f) total grand potential.

In general, the evolution of the energy term associated with solid/polymer interactions,
J/SGMG, with decreasing plate-plate distance, depends on an interplay between two processes: (i)

the thinner the film becomes, the fewer polymer segments can interact with the solid, thus
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6.2. Planar surfaces

leading to increased ;/SGMG (less attractive). (ii) the brushes can become slightly denser with

decreasing ﬁss , hence leading to decreased )/SGMG (more attractive). Indeed, for Ny, > Ng, ySGMG is

dominated by the first process, since it increases monotonically with decreasing h,. However,

for Nm < N, it features an interesting behavior where it initially increases with decreasing h,,,

while for ﬁss < 3.8 it decreases, indicating that the second process dominates.

Let us now investigate the effect of asymmetry of the opposing grafted surfaces in terms of
the relative chain lengths and grafting densities. In particular, Figure 6.13 illustrates evaluations

of PMF®M® for constant chain length and grafting density at the lower face

(N, =9, o =02 nm~*) and varying Ny /N, Np /N _and o . /o . Similarly, Figure 6.14 and
and Figure 6.15 depict the same evaluations, but for four times larger N, and for two times

larger o, respectively.

Ll bl A | T l T I T
N Nm/Ng* m Y

[1/2,1/213

w‘llll

0.2
0.1

llllffllllll T
lllll\\lllllllllH

Illllll ll]ll
IlIl

—0.1

0.2
0.1

(mJ/m?)

‘ymf

—0.1

GMG

y

0.2
0.1

—-0.1

GMG
(=]
IR AR AR R RN LRRR N LR RN RN RN LR RRRR ERRRN AN

l 1 l 1 l 1 I 1 I 1 l 1 1 l 1 I 1 I 1 I 1 l 1 l 1 1 I 1 I 1 I 1 I 1 l 1 l 1
2 25 3 35 4 45 2 25 3 35 4 45 2 25 3 35 4 45

2hy [ (hy + hy)

Figure 6.13 Potential of mean force betweem two approaching asymmetrically grafted silica surfaces in contact

with melt. o-g, =0.2nm?and Ng_ = 96 skeletal bonds. Colors correspond to evaluations for N, / Ng, ={0.5:

red, 1: blue, 2: green, 4: purple}, and the labels in brackets denote the ratios Oy /Gg, and Ng+ /Ng,. Lines and

markers correspond to evaluations with the HFD and SL EoS, respectively. Inset cartoons: each bead denotes a
segment of 24 PS skeletal bonds.
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Figure 6.14 Potential of mean force between two approaching asymmetrically grafted silica surfaces in contact

with melt (case 2). O'g_ = 0.2 nm? and Ng_ = 384 skeletal bonds. Colors correspond to evaluations for
N,/ Ng_ = {0.5: red, 1: blue, 2: green, 4: purple}, and the labels in brackets denote the ratios O'g+ /ag_ and

Ng+ / Ng_. Lines and markers correspond to evaluations with the HFD and SL EoS, respectively. Inset cartoons:

each bead denotes a segment of 96 PS skeletal bonds.
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Figure 6.15 Potential of mean force between two approaching asymmetrically grafted silica surfaces in contact

with melt (case 3). o-g, 0.4 nm~?and Ng_ = 96 skeletal bonds. Colors correspond to evaluations for N, / Ng_

= {0.5: red, 1: blue, 2: green, 4: purple}, and the labels in brackets denote the ratios ag+ /ag_ and Ng+ /Ng_. Lines

and markers correspond to evaluations with the HFD and SL EoS, respectively. Inset cartoons: each bead denotes a
segment of 24 PS skeletal bonds.

Irrespectively of the degree of asymmetry, adjacent brushes experience the presence of each

other at distances h, commensurate with 4 to 5, similarly to the symmetric case in Figure 6.10.

By keeping o and N g constant and the ratio N, / N, fixed at different values (same

colors), and varying o,.and N_., some general trends are emerging: the attractive interactions

g+
between the surface become stronger with increasing Ty / Oy ratios (from top to bottom panels)
and with decreasing Ny /Ng, (from right to left panels).

That PMFM® becomes more attractive with increasing o /o is to be expected: upon

increasing o,. the mean grafting density increases as well, thus PMF®M® becomes more

attractive, as in the case of symmetric surfaces in Figure 6.10. However, that the interactions
become more attractive with decreasing has to be reconciled with the findings reported in Figure

6.10 for symmetrically grafted surfaces. To interpret this effect, one should take into account
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that during these evaluations, the ratio N, / N,- was fixed, whereas varying o,. and N. can

have direct implications to the effective ration of Ny, with respect to the average size of grafted

chains.
Let Ng be the average chain length of grafted chains in the two surfaces, estimated as the
weighted average of grafted chain length with respect to the grafting densities:
o, Ng, +0 Ng+

N, = 6.9
o_+0,
g g

N,, /N, is a measure of the length of matrix chains in relation to that of grafted chains. Based

on eq 6.9, it is evident that, upon decreasing Ng+ /Ng, at constant Ng, and Ty /ag, , N; decreases

as well and thus the effective ratio N, /N increases. Increasing the size of matrix chains was

shown to enhance the attractive interactions in Figure 6.10, and therefore the results shown in
Figure 6.13 are consistent with this trend.

An alternative way to interpret and isolate the effect of asymmetry is to vary the ratios

o 1o, and Ny NG while keeping constant the effective ratio N, /N; based on eq 6.9. Figure

6.16 demonstrates the results of this process, wherein the top left panel depicts the reference

symmetric case (oq = 0.2 nm?, Ng = 96), and the asymmetry with respect to oy (Ng) increases
from top-to-bottom (left-to-right). As we can see in this figure, varying T, /ag_ or Ng+ /Ng_
individually has a minor effect on PMF®™®. This finding is important, because it shows that
minor deviations in o5 and Ny do not affect the resulting PMF®™® provided that N, /N remains

constant. On the other hand, PMF®™® can become very attractive in extreme cases of
asymmetry, where both the asymmetry in oy and Ny increases (e.g., see bottom right panel in

Figure 6.16), and this is mainly attributed to the increased average grafting density.
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Figure 6.16 Potential of mean force between two approaching asymmetrically grafted silica surfaces in contact

with melt (case 4). Colors correspond to evaluations for N / Ng = {0.5: red, 1: blue, 4: purple}, whereas the

small legends in brackets below the insets denote the ratios ag+ /ag_ and Ng+ / Ng_ , respectively. The top left panel

corresponds to the reference symmetric case with agref =0, =0.= 0.2 nm*? and NQEf :Ng, = Ng+ = 96. The

ref _+1/2

. f & .
actual 0. and Ngi for each case can be retrieved as follows: Oy :aée m™? and Ngi =N, n™, with

[m,n]:[ag+ /ag_,Ng+ / Ng_] being the numbers at the legends under the insets. It should be noted that inset

schematics belonging to panels other than the corner ones are only approximate; in these cases, th and Ngi are

scaled by a factor of i\/E .

Figure 6.17 presents the PMF®M® for symmetric systems as a function of the energy of the
solid surface, i.e., the strength of solid/polymer interactions. It seems that, regardless of oy, N
and the ratio Nm/Ng, the affinity of the polymer chain segments to the solid (wetting degree) has

GGMG

a minor effect on the PM . In each case, the PMF becomes less pronounced for higher

wetting degree, albeit the effect is minor.
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Figure 6.17 Potential of mean force between two approaching grafted silica surfaces in melt for different wetting
degrees. Calculations were performed with SL EoS for ¢, equal to (a) 0.1, (b) 0.2 and (c) 0.4 nm~ and N, = 192.
Colors correspond to evaluations for N/Ng = {0.5: red, 1: blue, 2: green}, whereas differet line styles denote
interfaces with low (solid lines), high (dashed lines) and perfect (dots) wetting.

6.2.5. Interacting grafted surfaces in vacuum (GVG)

This paragraph presents evalutation of the potential of mean force between approaching grafted
surfaces separated by vacuum, denoted by PMF®V®. Figure 6.18 presents evaluations of PMFC®Y®
with the chain length of grafted chains, Ng, varying from 24 to 768 skeletal bonds and the
grafting density, og, varying from 0.1 to 0.4 nm 2. Low wetting (LW) conditions have been used

for solid/polymer interactions.
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Figure 6.18 Potential of mean force between two opposing grafted surfaces exposed to vacuum (GVG).
Calculations were performed with the SL-SGT EoS. Values of g (in nm) and Ng are indicated inside the brackets.
Horizontal blue lines mark minus the average surface free energy of the individual grafted films. Vertical blue lines
mark the thickness hg, that would correspond to the total mass of grafted polymer at bulk density. Insets: each bead
denotes a segment of 24 PS skeletal bonds. Bands denote scale changes along the axes.

Looking at Figure 6.18 above, the evolution of PMF®Y®

with decreasing plate-plate distance
can be classified in three distinct regimes described below. Chain configurations across these
regimes are illustrated in the inset of Figure 6.20.

1. For large separation distances, the opposing polymer brushes interact weakly with each other
and the dominant contribution to PMF®V® is that of solid/polymer and solid/solid Hamaker
interactions (e.g., compare with the dotted lines in Figure 6.8b,d).

2. Below a critical plate-plate distance, PMF®V® decreases abruptly, indicating the manifestation
of a phase transition, where the opposing brushes interpenetrate each other and form a single
film in the central region of the system. In addition, low density regions are formed in the
vicinity of the solid surfaces, indicating that the brushes have been stretched significantly
towards the bulk region that has formed.

3. Decreasing the plate-plate separation further makes the brushes more compact. The low-
density regions next to the solid plates become suppressed, until the free energy becomes

commensurate to minus the mean surface free energy of isolated brushes, _0,5(,,G’V +],VG*).

209



Chapter 6. Calculations involving two particles/surfaces

Further squeezing of the brushes leads to increased reduced densities above unity, as indicated

by the vertical dashed lines in Figure 6.18.

Figure 6.19 illustrates the segment density profiles corresponding to the PM

calculations of Figure 6.18.
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Figure 6.19 Reduced segment density distributions corresponding to the PM
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panels in Figure 6.18. The
profiles were derived as functions of the plate-plate distance (abscissa) and the distance from the left wall (ordinate)
in reduced units. Red/blue colors correspond to regions with high density (¢, = 1) of ¢ = g, g* chains. White
corresponds to vacuum. Grey denotes regions which lie outside the modeled domain or have not been evaluated at
all. Labels in brackets denote o (in nm™?) and N,

A more detailed picture can be unveiled by inspecting the evolution of individual

contributions to the energy terms, which are shown in Figure 6.20 below.
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Figure 6.20 Free energy partial contributions to the potential of mean force of two approaching grafted surfaces
exposed to vacuum. Grafting density, o; = 0.2 nm and length of grafred chains, Ng = 192 skeletal bonds. (a)
cohesive interactions, (b) solid/polymer interactions, (c) entropic contribution from grafted chains, (d) density-field
interactions, (e) stretching contribution from grafted chains, (f) total grand potential. The vertical lines denote plate-
plate distances where the reduced density exceeds unity. The horizontal dotted line in (f) depicts

_0.5(767" +7/"G* ) The insets in (f) depict grafted chain configurations across the 1%, 2" and 3" regime. Bands

denote scale changes along the axes.

The thermodynamics of the merger seems to be dominated by cohesive interactions among

chain segments. According to Figure 6.20a, below some critical distance, the abrupt drop of the

cohesive term ()/C(E)XG) indicates the enthalpic gain upon film merging. At the same time, the more

positive solid/polymer interactions in Figure 6.20b (}fVG) indicate the enthalpic penalty due to
the departure of a large portion of the brushes from the solid surfaces.

The term associated with the entropy of the grafted chains (7gGVG) in Figure 6.20c is of
particular interest. At a first glance, it does not quite reflect the entropic penalty due to the

GVG

stretching of grafted chains. However, this can be attributed to that 7, itself does not reflect

the total conformational contribution to the grand potential, since it is evaluated in presence of

the field.* The conformational component of the grafted chains can be retrieved as follows:**

GVG GVG GVG

Vocont =79 1 Vg fietd 6.10

with y;f\{e(fd being the field experienced by the grafted chains:
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VoS ==J 00 {( 2, () £, 0w (0] 6.11

Indeed, as indicated in Figure 6.20e, the conformational entropy of the grafted chains

increases abruptly below a critical distance (entropic penalty due to stretching) and then
decreases with decreasing ﬁss , as the film becomes more compact and the grafted chains

become less stretched. In summary, the manifestation of the phase transition depends on an
interplay among three dominant factors:

e An enthalpic gain due to the lower surface area of the merged brushes, which increases
with increasing surface tension, i.e., higher energy cost of grafted chain segments being
exposed to vacuum.

e An enthalpic loss due to detachment of the grafted film from the solid surfaces that
depends on the strength of solid/polymer interactions.

e A conformational penalty associated with chain stretching.

As far as the equilibrium plate-to-plate distance (after the merger) is concerned, for low o seq

products, this is on the order of 1.5 ﬁss ,or0.75 (hg+ +h, ) . This means that the two silica plates

come considerably closer to each other than the sum of the individual root-mean-squared brush
thickness, since the brushes lie in the mushroom regime and can readily interpenetrate each
other. On the other hand, for the case of high oy seq, the brushes are more compact, and hence,
one could make meaningful predictions using Alexander’s model for incompressible brushes

(Appendix A)."*'?" Indeed, the denser brushes investigated here become compact (p > pseg buik)

at separation distances on the order of ﬁss ~ 2«/5 ~ 3.4, e.g., compare with the vertical line in the

bottom-right panel of Figure 6.18.

Overall, the effect of asymmetry on the equilibrium distance is expected to be minor. Indeed,
according to Figure 6.18, brushes with equal oqseq become compact at similar distances. For
example, compare the case (gg, Ng) = (0.4 nm 2, 48) with (0.1 nm2, 192) and the case (0.4 nm?,
192) with (0.1 nm 2, 768).

6.2.6. Concluding remarks
All of the above results regarding the potential of mean force between two planar surfaces (or
equivalently of particles with radius large in relation to the chain dimensions) imply some

design rules that one can be guided by when addressing such nanostructured systems.
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As mentioned earlier, addressing the system of bare solid surfaces can give us an insight on
what happens in the limit of very low grafting density. At moderate distances, the behavior of
the PMF depends on an interplay between the strength of the solid/polymer, polymer/polymer
and solid/solid interactions, as quantified by the wetting/spreading phenomena taking place at a
single solid/polymer interface.

Fow low wetting conditions (6 > 90°), the PMF becomes weakly repulsive from distances on
the order of 3.5-10 nm, but the polymer film is metastable with respect to the chains evacuating
the gap and the solid surfaces snapping into direct contact with each other. The spontaneous
manifestation of cavities can lead to eventual collapse of the surfaces, leading to agglomeration.
This is a manifestation of the allophobic dewetting phenomenon observed in the low wetting
condition examined here. On the contrary, for high (¢ < 90°) and perfect (imaginary ) wetting
conditions, the PMF is practically zero at large distances and starts rising steeply below ca. 2
nm. A free energy barrier on the order of 20-80 mJ/m? has to be overcome for the solid surfaces
to come into direct contact. The system is stabilized in terms of the solid surfaces sticking to
each other, and is trapped in a potential whose depth is on the order of ca. 20 mJ/m? with respect
to a melt-free system, e.g., with respect to the dotted lines shown in Figure 6.8. Matrix chains
adhering to the solid surfaces resist compression and screen the solid/solid attractive
interactions, as if they were grafted. The PMF between bare solid surfaces does not depend
strongly on the length of matrix chains; therefore, varying the molecular weight of matrix chains
does not have a significant effect on the stability of the system.

In the case of low wetting, the presence of grafted chains is imperative for the solid surfaces
to be stabilized. In particular, when the grafted chain lengths and grafting densities are
sufficiently high (see Figure 6.17), the grafted chains effectively screen the solid/solid
interactions, preventing the two plates from approaching each other at a distance where they
would experience the full depth of the plate-plate distance. In many cases, the PMF can become
strictly repulsive, but a prerequisite for this is that the grafted chains be longer than those of the
matrix. The longer the grafted chains in comparison to the matrix chains, the steeper the
repulsive PMF that develops and the longer the range over which it manifests itself. Short matrix
chains are able to penetrate the brush of long grafted chains and swell it, increasing the range of
the repulsive interaction. In this case, the most important design rule that has to be met, as

already reported in experimental studies,*®%%2%3!

is that the grafted chains need to be longer than
the matrix chains, Nm/Ng < 1. On the other hand, when the matrix chains start becoming larger

than the grafted, then immediately an attractive well is exhibited in the PMF (autophobic
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dewetting); solvent conditions become worse for the grafted chains. Moreover, this behavior is
intensified at high surface grafting densities. In these cases, the density of grafted chain
segments near the interface is so high, that matrix chains are not able to penetrate into the region
occupied by the grafted chains, even if matrix chains have lower molecular weight. Thus, the use
of excessive grafting densities is to be avoided for the purpose of steric stabilization, even if Ng
> Np,.

For the asymmetric cases, where the grafting density or the molecular weight of grafted
chains differs on each silica plate, it seems that the introduction of asymmetries does not give

rise to a minimum in the PMF, as long as deviations from the symmetric case are small, and the
effective ratio N, / N; (see eq 6.9) is kept constant. Individually, adjusting the asymmetry on

the grafting density or on the molecular weight of grafted chains does not alter significantly the
PMF, with the former having a stronger influence. This implies that,when experimentalists are
trying to achieve the dispersion of two slabs (or large grafted particles) inside a polymer melt,
there is some room for deviation from symmetry, especially as regards the molecular weight of
grafted chains. Nonetheless, when there are large discrepancies between both the grafting
densities and the molecular weight ratios, then the system will eventually exhibit an attractive
well. Again, this phenomenon is more pronounced when the molecular weight of matrix chains
increases.

FCOMGC reflect the “softness” of the brush as well as

The characteristics of the well-depth of PM
the associated tendency to penetrate into each other.”> Wrapping together all the parameters
which influence the attractive well of the PMF®M® between the two plates, one can generate
empirical design rules regarding the prediction of stable configurations of opposing plates
(membranes or fine particles) as a function of the mean grafting density, the chain length of

grafted chains and the chain length of matrix chains.

According to Hasegawa et al.,”® PMF is expected to become repulsive for o, <b, *N, ™, with

N, = N.C, .. /b’ being the number of Kuhn segments that comprise a chain. In addition, as

has been demonstrated in Section 6.2.4 of the present thesis, PMF®M® becomes more attractive

when the length of matrix chains increases with respect to the effective length of grafted chains,
N, /Ny (or Ny, /N, 5 in Kuhn units). Note that the effective ratio, N, / N, takes account of

the asymmetry in both the grafting density and the chain length in the two plates. Putting all

these together, it would be instructive to present the depth of the attractive well as a function of
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the dimensionless quantity ob’N, [N, /N_], or o N "N, for simplicity. Such

comparisons are shown in the master plot of Figure 6.21 below, against all the data gathered
here for both the symmetric and asymmetric surfaces.
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Figure 6.21 Well-depth of PMF®M® as a function of all design degrees of freedom of the interfacial systems of two
plates. The degrees of freedom are combined in the dimensionless quantity: ngksz@*MNk,m. Green/red shades

illustrate regime with repulsive/attractive interactions between the opposing plates. The vertical dashed line is a
guide to the eye.

According to Figure 6.21 presented above, the attractive interactions become negligible for
ogbksz@’”szn <5, therefore for such combinations, the surfaces are expected to stabilize. For

larger values, on the other hand, in most cases the plates tend to stick to each other
(aggregation). Furthermore, we must take into account that in the limit of very small average
grafting density, the system will be led towards the case of bare solid plates in contact with
vacuum, thus the melt is expected to evacuate the gap and the plates will spontaneously come in

contact to each other, According to our calculations, the polystyrene melt remains stable even

for low grafting densites, on the order of 0.1 nm™ (~0.33b, ), thus for these systems, the region

of stability could be traced along the range 0.33< o b’ <5N, **N, . Our findings conform with

22,30,31 18,29,30

experimental studies concerning systems of the same or similar chemical

constitution and with theoretical investigations,>%?

whilst accounting for the effect of
asymmetry as well.
6.3. Spherical Surfaces

6.3.1. Background

The ability to efficiently disperse inorganic NPs inside polymer matrices is essential for the
design and manufacturing of well-behaving nanocomposite materials.”**!%2** The mechanical

and viscoelastic properties of polymeric materials are enhanced when hosting well dispersed

215



Chapter 6. Calculations involving two particles/surfaces

42196235231 There is plenty of experimental studies where the structural,

nano-sized particles.
dynamic and mechanical properties of PGNs are investigated.'**642#+8L138 £y rthermore, it is of
high interest to the academic community and industrial practice to investigate the properties of
PGNs when they are isolated from any polymer melt or solvent,**199226227.238 Tha |atter systems
are particularly important for the design of state-of-the-art separation membranes.*">020:229

The interactions between two particles which are embedded in polymer melt or a solvent are
strongly dependent on the NP size.?*** Spherical NPs with small radius are easier to disperse,
because their shape and increased curvature offer more space to the grafted chains to adopt a
variety of conformations; hence the NPs are prevented from collapsing together.?**?*° Martin et
al.'*® have performed a detailed investigation of the PGN interactions in the case of dissimilar
chemistry between grafted and matrix chains, giving insights on the role of enthalpic
interactions on the potential of mean force and stabilization of the system. Ghanbari et al.?*°
have studied the dependence of the dynamics of matrix and grafted chains on the grafting
density and molecular weight of matrix chains via coarse-grained molecular dynamics

simulations.

6.3.2. PMF between two grafted silica nanoparticles

For the case of two interacting silica NPs in polymer melt, the geometry and discretization of the
considered domain is presented in Figure 6.22. The two NPs have the same radius, Rs = 2 nm,
which is kept constant in all PMF calculations. As shown by the orientation of axes in Figure

6.22, the surface-to-surface distane, hss, between the two particles is varied along the x-axis.
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Figure 6.22 Meshing illustration of two NPs with Rs = 2 nm inside a box with dimensions 30 x 22 x 22 nm°. (a)
Perspective view showing the mesh at the periodic (edge) and Dirichlet (solid) boundaries. (b) An xy-slice passing
through the centers of the NPs (created with the Slice operation of the Paraview software). For the calculation of the
PMF, the distance between the two NPs is varied along the x-axis. The inset depicts an enlarged view of the
solid/polymer interface; the solid red line corresponds to the distance of grafting points from the solid surface, while

the dotted magenta line corresponds to the thickness of the fine-mesh region.

The grafting distributions we have addressed are illustrated in Figure 6.23 below and they
correspond to: equidistant grafting with density o4 = 0.8 nm 2 corresponding to 40 grafted chains
per NP (“E40-E40”), equidistant grafting with density o4 = 0.3 nm 2 corresponding to 15 grafted
chains per NP (“E15-E15), and nonequidistantly grafted chains where the relative orientation of
grafting of the two NPs is: parallel to each other and parallel to the x-axis (“H15-H15”, for
parameters of grafting see third row of Table 6-2), parallel to each other and perpendicular to the
x-axis (“V15-V15~, for parameters of grafting see fourth row of Table 6-2) and perpendicular to
each other (“H15-V15”, for parameters of grafting see fifth row of Table 6-2).
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Table 6-2. Parameters for distributing grafting points on the surface of two spherical NPs. Two equidistant and
three non-equidistant cases are examined: equidistant grafting with density 0.8 nm (E40-E40), equidistant grafting
with density 0.3 nm? (E15-E15), horizontal parallel orientation (H15-H15), vertical parallel orientation (V15-V15)
and perpendicular orientation (H15-V15). The radius of the two NPs is Rg = 2 nm.

Distribution NP, NP,
(Particle radius, Rs = 2 Pole; Pole; Pole; Pole;
nm) @, 9) @, 9) (0, 9) (0, 9)
Algorithm of ref 103 for generation of 40 grafting
E40-E40
points on the surface of each NP
Algorithm of ref 103 for generation of 15 grafting
E15-E15
points on the surface of each NP
H15-H15 (0.0, 0.0) (7, 0.0) (0.0, 0.0) (7, 0.0)
V15-V15 (+7/2,0.0) | (-=/2,0.0) | (+#/2,0.0) | (-=/2,0.0)
H15-V15 (0.0, 0.0) (z,0.0) | (+n/2,0.0) | (-=/2,0.0)

In the equidistant grafting cases, E40-E40 and E15-E15, we have implemented the
algorithm of ref 1% to generate 40 and 15 chains per NP, respectively. In Figure 6.24, we present
the density profiles of grafted chain segments in the three-dimensional space for surface-to-
surface distance equal to hss = {2.20, 6.12, 12.09} nm and for all different grafting orientations
of the NPs. In this figure, the length of matrix chains is equal to that of grafted chains, N, = Ng =

96 skeletal carbon bonds.
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Figure 6.23 VMD representation of distributions of grafting points for PMF calculation between two spherical
particles. Two equidistant and three non-equidistant cases are examined: equidistant grafting with density 0.8 nm?
(E40-E40), equidistant grafting with density 0.3 nm (E15-E15), horizontal parallel orientation (H15-H15), vertical
parallel orientation (V15-V15) and perpendicular orientation (H15-V15). The radius of the two NPs is Rg =2 nm.
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h /nm =
SS

E40-E40

E15-E15

Figure 6.24 Three-dimensional density profiles of polystyrene chains grafted on the surfaces of two silica NPs. The
brush of the left NP is plotted with red color, while that one of the right NP is plotted with green color. Five
different grafting cases are considered: equidistant grafting with 40 grafted chains per NP (E40-E40), equidistant
grafting with 15 grafted chains per NP (E15-E15), and three non-equidistant cases with 15 grafted chains per NP:
H15-H15, V15-V15 and H15-V15).

In Figure 6.25 and Figure 6.26, we plot the PMF between for equidistant and non-equidistant
grafting, respectively, and for varying matrix-to-grafted chain length ratio. On the x-axis, we
vary the surface-to-surface NP distance, which assumes the values hss = {2.20, 2.80, 3.46, 4.12,
4.80, 5.46, 6.12, 12.09, 12.76, 13.42, 14.08} nm. In the last four distances, the brushes of the
two NPs do not interact with each other (e.g., see the third column of Figure 6.24, so the average
free energy density of the system in these distances is equivalent to the energy of the particles
when they are at infinite distance from each other. All energies are expressed with reference to
the free energy of the two grafted particles at infinite distance. On the y-axis, we report this
(relative) free energy in kJ/mol. In Table 6-3, Table 6-4 and Table 6-5, we report the values of
the PMF for different values of the Niw/Ng ratio and varying the grafting distribution. These data
are also illustrated in the master plot of Figure 6.28. In all cases, we have taken into account the
Hamaker interaction between the silica-silica surfaces, which in the distances of interest is

negligible compared to the PMF of the system. Nonetheless, it is interesting to observe that the
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grafted chains prevent the particles from getting closer than 2.2 nm, where they could potentially
collapse easier due to the well of the silica-silica interaction. One could certainly argue that this
Hamaker potential concerns bare particles and therefore if they were grafted (as in our case), the
entropic factors associated with grafted chains would counterbalance this attraction of the
particles. This is totally reasonable, nonetheless, the logic behind our calculations and distance
sampling is that, if the particles are not even allowed (due to the presence of grafted chains) to
come at distance where their Hamaker attraction would be a factor promoting destabilization,
then there is absolutely no way that the thermodynamics will allow them to coagulate. The
Hamaker potential between two bare silica particles with Rs = 2 nm is depicted in the following
Figure 6.27. The absolute values of the potential for surface-to-surface distances larger than 2.2
nm (which is the minimum distance for PMF calculations with SCFT, see dashed line in Figure
6.27) are lower than 0.2 kJ/mol.
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Figure 6.25 Potential of mean force between two silica NPs equidistantly grafted with polystyrene chains. The two
NPs are embedded in a matrix of polystyrene chains and the matrix to grafted chain length ratio assumes the values
Nm/Ng = {0.25: red, 1.0: blue: 4.0: green}. The x-axis represents the surface-to-surface distance between the two
NPs. In the left panel, each NP is grafted with 40 polystyrene chains, while in the right panel, each NP is grafted
with 15 polystyrene chains. The radius of the particles is equal to Rs =2 nm.
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Figure 6.26 Potential of mean force between two silica NPs non-equidistantly grafted with polystyrene chains. The
two NPs are embedded in a matrix of polystyrene chains and the matrix to grafted chain length ratio assumes the
values N/Ng = {0.25: red, 1.0: blue, 4.0: green}. The x-axis represents the surface-to-surface distance between the
two NPs. In the left/middle/right panel, the two NPs are grafted according to H15-H15, H15-V15 and V15-V15
orientations, respectively (see Table 6-2 and Figure 6.23). The radius of the particles is equal to Rs =2 nm.
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Figure 6.27 Hamaker interaction between two bare silica NPs with radius Rs = 2 nm. Blue color corresponds to the
attractive term, red color to the repulsive term, and the final potential is depicted with green color. The depth of this
potential is equal to —18.7 kJ/mol and the width of the potential is approximately 1.5 nm (after this distance the
potential assumes absolute values lower than 0.2 kJ/mol).

Table 6-3 Potential of mean force between silica NPs embedded in polystyrene matrix of length N, = 24 skeletal
bonds. The radius of the NPs is equal to Rs = 2 nm and the length of grafted chains is equal to Ny = 96 skeletal
bonds. The PMF is reported for all grafting distributions that we have investigated. The values of the present table
are plotted in the left panel of Figure 6.28.

hss E40-E40 | E15-E15 | H15-H15 | V15-V15 | H15-V15
(nm) (kJ/moal) | (kd/mol) | (kd/mol) | (kJ/mol) | (kJ/mol)
2.20 80.56 12.53 43.30 9.83 19.42
2.80 77.53 11.90 24.48 3.98 14.31
3.46 55.33 8.73 19.01 4.81 7.86
4,12 41.02 5.75 18.31 5.38 13.23
Ny, =24 4.80 29.66 3.49 10.43 3.15 7.90
5.46 17.00 5.38 6.91 2.38 6.35
6.12 14.26 -1.45 5.82 0.00 3.26
12.09 3.01 1.16 0.99 1.31 1.21
12.76 -1.57 -1.08 1.38 0.45 -1.46
13.42 1.37 1.04 -1.38 -1.61 3.65
14.08 -2.81 -1.12 -0.99 0.87 -3.40
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Table 6-4 Potential of mean force between silica NPs embedded in polystyrene matrix of length N, = 96 skeletal
bonds. The radius of the NPs is equal to Rs = 2 nm and the length of grafted chains is equal to Ny = 96 skeletal
bonds. The PMF is reported for all grafting distributions that we have investigated. The values of the present table
are plotted in the middle panel of Figure 6.28.

hss | E40-E40 | E15-E15 | H15-H15 | V15-V15 | H15-V15
(nm) | (kImol) | (kI/mol) | (kI/mol) | (kI/mol) | (kI/mol)
220 | 2967 2.60 18.84 1.38 7.70
280 | 2532 1.92 9.36 3,52 4.67
346 | 13.89 0.12 5.42 0.76 0.33
412 | 1185 0.33 7.43 0.30 4.09

N =96 | 4.80 7.16 ~2.20 3.60 -0.39 2.13
5.46 2.22 1.14 0.30 0.21 0.84
612 | -0.43 ~4.66 0.24 -1.92 -0.53
12.09 | 2.08 0.75 1.29 1.32 0.67
12.76 | -1.99 ~0.59 0.73 -0.78 -0.98
1342 | 121 0.21 185 177 3.39
14.08 | -1.30 0.37 017 1.22 -3.08

Table 6-5 Potential of mean force between silica NPs embedded in polystyrene matrix of length N,,, = 384 skeletal
bonds. The radius of the NPs is equal to Rs = 2 nm and the length of grafted chains is equal to Ny = 96 skeletal
bonds. The PMF is reported for all grafting distributions that we have investigated. The values of the present table
are plotted in the right panel of Figure 6.28.

hss | E40-E40 | E15-E15 | H15-H15 | V15-V15 | H15-V15

(nm) | (kJ/moal) | (kd/mol) | (kd/mol) | (kJ/mol) | (kJ/mol)
2.20 13.25 -0.32 11.64 -1.21 4.13
2.80 8.65 -0.90 4.63 -5.33 1.91
3.46 0.88 -2.40 1.17 -2.48 -1.91
4.12 2.74 -1.16 4.15 -1.08 161
N, =384 | 480 0.43 -3.69 1.38 -1.37 0.65
5.46 -2.11 0.00 -2.56 -0.20 -0.61
6.12 -4.46 -5.49 -2.08 -2.52 -1.44
12.09 1.99 0.67 1.31 1.35 0.61
12.76 | -2.00 -0.41 0.49 -1.14 -0.81
13.42 1.15 0.01 -1.97 -1.51 3.36
14.08 -1.14 -0.26 0.17 1.30 -3.17
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Figure 6.28 Potential of mean force between two grafted silica NPs embedded in polystyrene matrix. The matrix to
grafted chain length ratio assumes the values N/Ng = {0.25: left panel (Table 6-3), 1.0: middle panel (Table 6-4),
4.0: right panel (Table 6-5)}. In each panel, we vary the grafting orientation on the surfaces of the two NPs: {E40-
E40: red, E15-E15: blue, H15-H15: green, H15-V15: purple, V15-V15: yellow}. The x-axis represents the surface-
to-surface distance between the two NPs. The radius of the particles is equal to Rs =2 nm.

Looking at Figure 6.25 and Figure 6.26, we observe that when N, < Ng, the PMF increases
with decreasing surface-to-surface NP distance. This is totally expected, since the smaller matrix
chains can interpenetrate into the brushes and swell them towards the bulk, increasing the
conformational cost associated with their conformations. The error in the estimated free energy
is a consequence of the randomness of the mesh of elements that is used for the solution of
Edwards in each case, which is directly related to the delta function and initial condition
assigned in the propagator of each grafting chain.

We can qualitatively compare our plot with the black line of Figure 5 of ref 206 and see the
satisfying agreement between the two plots. It would not be of essence to quantitatively compare
the two plots, because in the case of Munao et al.,*® a hybrid particle-field methodology is
implemented and furthermore, there are some differences in the parametrization of the system.
For example, the description bonded and nonbonded interactions, and therefore the
compressibility of the polymer, between the two models may be quite different which is directly
related to density deviations and their impact on the energy of the system.

In Figure 6.28, we can clearly see the impact of the matrix-to-grafted chain length ratio
(increasing from left panel to the right) on the stability of the system. When the length of matrix
chains becomes equal to that of grafted chains (middle panel), then only the E40-E40 and H15-
H15 distributions are able to maintain the stability of the system. Furthermore, when N = 4N,
having 15 chains grafted per particle in H15-H15 distribution (green line), becomes equivalent

to having 40 chains equidistanly distributed on each particle (red line).
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6.3.3. Concluding Remarks

In this last chapter of the thesis, we have presented thorough calculations regarding the
interactions of two spherical silica nanoparticles which are grafted with polystyrene chains and
they are embedded inside polystyrene melt. These calculations are quite valuable because they
provide with information on how the particles tend to behave under conditions of
thermodynamic equilibrium.

Since the two particles are quite small, having a radius equal to 2 nm, these calculations can
be considered as the opposite end of the extreme case where the particles are infinitely large, i.e.,
solid planar surfaces (Section 6.2). To investigate this system, we had to perform three-
dimensional calculations where the distance of the two particles is varied and the energy of the
system at each distance is measured resulting in the so-called potential of mean force. The
entropy of grafted chains when the two particles get closer to each other decreases, since there is
less available space and therefore the number of available conformations also decreases. This
results in a free energy rise which prevents the system from coagulating.

We have derived the potential of mean of mean force of the system and the ability of grafted
chains to stabilize the nanocomposite system, for different matrix-to-grafted chain length and
most importantly, for different distribution of the grafting points on the surfaces of the two
particles. We found that, when the relative grafting orientation results in extreme crowding of
grafted chain segments, then the free energy rises more than the case of equidistant grafting. In
other words, keeping all other parameters of the system constant, including the number of
grafted chains, the grafting distribution plays a decisive role in the dispersion of the particles.
This is a rather novel finding, especially in the context of a field-based method, since it proves
that experimentalists can indeed tune the dispersion of chains on the solid surfaces to alter its

equilibrium tendencies.
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. SCIENTIFIC AND METHODOLOGICAL

ADVANCES

The current section summarizes all the methodological advances and computational tools

developed by the author and collaborators.

e We have compiled a thorough and generalized Self-Consistent Field Theory mathematical
formulation for addressing gas/polymer and solid/polymer interfaces, where the latter involve
chains grafted on the solid surface.

e We have developed a Self-Consistent Field-based thermodynamic formulation for calculating
the solvation free energy of a grafted particle inside a polymer matrix. This formalism serves
as the basis for quantitative and fast calculation of the solvation free energy and the free
energy of transferring one or more nanoparticles between different melt or solvent
environments. Moreover, to more accurately perform these calculations, we have devised a
curvature-dependent Hamaker potential to address solid/polymer interactions. This potential
takes into account the loss of interacting sites when the radius of the particle decreases.

e Regarding the potential of mean force between two opposing solid surfaces, the solid/polymer
and solid/solid interactions are described by means of a Hamaker potential in conjunction
with a ramp potential. We built thermodynamic reference by examining the free energy of
single surfaces, either bare or grafted, under various wetting conditions in terms of the
corresponding contact angles and macroscopic wetting functions (i.e., work of cohesion,
adhesion, spreading and immersion). Subsequently, the potential of mean force between bare
and grafted plates is derived. These calculations provide us with design rules for the steric
stabilization of (fine) grafted particles under various conditions.

e We devised a numerical scheme which is based on the broadly used Finite Element Method

and combines the virtues of three-dimensional calculations, an explicit Helmholtz energy
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density functional describing the nonbonded interactions among polymer segments and strict
mathematical representation of chains grafted on solid surfaces.

e The three-dimensional code offers the possibility to model grafted polymer chains on the
solid surfaces according to irregular grafting distributions. For this purpose, we have written a
python script which performs a Monte Carlo sampling on the surface of the particle and grafts
polymer chains according to a certain probability distribution. The same script also handles
the generation of equidistant grafting points.

e At a post-processing level, our code gives the ability to calculate the density profiles of
segments belonging to individual grafted chains and illustrate it in 3D plots.

e Since we wanted our code to address systems of more than two nanoparticles, we have also
developed the feature of periodic boundary conditions in the solution of the Edwards
diffusion equation by the Finite Element Method. This type of boundary conditions requires
an association between the nodes of the element which find themselves in opposing faces of
the periodic box, so that proper modification of the stiffness matrix can be applied.
Furthermore, a lot of refactoring was necessary for the code to execute these additional steps
with minimum overhead.

e Using the aforementioned feature of periodic boundary conditions and the mathematical and
numerical formalism developed in the context of this thesis, one can perform SCFT based
theoretical calculations with multiple polymer-grafted nanoparticles (of any shape) which

may be embedded in polymer melt or exposed to vacuum (i.e., particle solids).
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Appendix A Brush Height of Constant Density: Alexander Model

It is instructive to compare the brush height predictions of SCFT with the predictions of a
simpler brush model such as that of incompressible Alexander brushes. Let hedge be the edge of
a brush comprising ng grafted chains of length Ng, emanating from a NP with radius, Rs, such as
the one shown in Figure A.la.

For simplicity let us assume that the segment density is constant and equal to psegpuik across

the region occupied by the brush of grafted chains, [Rs,Rs+h ] which are terminated at

edge
hedge; Figure A.1c presents the corresponding density profile for this model. Consequently, the
volume occupied by the brush can be calculated as the number of the brush segments in this

region, divided by its segment density, as show in the following eq Al.

2
nyN, 20'9471'RS N,

V= Al

pseg,bulk pseg,bulk

where o, =N, /(47zR.?) is the grafting density. Alternatively, the volume of a brush of constant

density that terminates at distance hegge Can be calculated via eq A2.

Vzgﬁ[(Rs-l-hedge)s—RSSj' A2

Combining egs Al and A2 and solving with respect to hegge, We get the following expression:

30N 3
Negge _( g 9 R52+R53J -R, A3

seg,bulk
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p.seg

RS RS +hcdgc

Figure A.1 (a) A nanoparticle with grafted chains forming a brush of height hegge. (b) In the limit Rg — oo, the
surface of the NP becomes flat. (c) The segment density profile of a brush with constant segmental density, pseg puik-

With hegge known and given that the density profiles are uniform, hgge, can be calculated as

follows:

=0.99h,,_+R,

h99% edge

Similarly, the mean brush thickness (h,2)"* can be obtained by eq A5.

1/2

hedge

[ 2 p(hydh NN
1 ’ he e
<h92>1/2 _ ?]Edge _ [_ j thhj — j%

J‘p(h)dh edge 0
0
1
1(30Ng oo o5’ R
=— RE+RS | ——
\/g Psegbulk ° ° \/§
g,

In the limit of very large NPs (flat surfaces), (h,2)"* becomes:
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N
lim (h?)" =—20 _ % jim h A6

Ryp =0

Thus, for this model, appears to be proportional to g4 and Ny in the limit of large NPs/flat
surfaces (i.e., see Figure A.1b).
The thermodynamics of these brushes can be described by a total free energy given by the

following eq A7:

Atotal = Acoh + Atretch AT

where Acn IS the contribution from the cohesive interactions described by the free energy

density (i.e., Acon = Qcon from eq 2.39), while Aspetch is the entropic contribution from the
stretched grafted chains. Given that the grafted chains are terminated at the edge of the brush,
and assuming that they can be described as Gaussian strings, the contribution of the brushes to

the free energy due to stretching can be approximated by the following eq A8.

3k, T
&tretch = Ssolidag —82 hedgez A8
2 < Rend,g >

Combining egs A3 and A8, the stretching free energy per unit area as a function of Rs is given
by eq A9.

1

30N 3

A%tretch :o_g 3kBT2 g g RSZ + RS3] _RS Ag
SS 2<Rend,g > pseg,bulk
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Appendix B Grand canonical partition function and Hamiltonian

We consider a polymer melt within an arbitrarily shaped three-dimensional region ® of volume
V at temperature T. The region ® is not necessarily convex. It is partly bounded by one or
multiple solid surfaces, which exert an external potential us(r) per polymer segment at each
position r € ® The boundary of the domain ® will be referred to as 0®, Part of O® may be
defined by solid surfaces, while the rest of o® will be characterized by zero-flux Neumann
boundary conditions.

The polymer consists of matrix chains of length N, skeletal bonds each. In addition, there
are chains terminally grafted on the solid surfaces, the length of each grafted chain being N
segments. Both matrix and grafted chains are assumed to be monodisperse, but matrix chains
can have different chain length from grafted chains. In the context of the present work, matrix
and grafted chains are of the same chemical composition; hence the potential energy field per
segment, us(r), is applicable to both.

We use the symbols n, and ng to denote the numbers of matrix and grafted chains,
respectively. The number ng will be fixed. The number ny, is free to fluctuate, subject to the
condition that the matrix chains in the interfacial region are in equilibrium with a bulk polymer
phase at temperature T, whose density, in segments per unit volume, is psegpux. OF course,
Psegbulk Can be determined from the temperature T and the pressure P of the bulk polymer phase
through an appropriate equation of state. From the same equation of state one can determine the
chemical potential um per chain segment in the bulk polymer.

In general, the mean segment density of polymer in the considered interfacial region,
n,N, +n,N

Vv

be at equilibrium; the chemical potential /., of matrix chain segments in ® is the same as in a

,5369 = : , will be different from pseqpui. The interfacial region and the bulk one will

bulk phase of matrix chains.

The unperturbed mean square radii of gyration of matrix and grafted chains will be

denoted as (Rs,*) and (Rs,,>), respectively. The grafting points (starts of the grafted chains)

will be denoted by Iy; , ig=1, 2, ..., ng. They all lie on solid surfaces which belong to o® . In

g

practice, the grafting point is located at a finite distance from the solid surface. Technically

speaking, it is not possible to attach the end of the chain exactly on the surface, because this
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would result in a conflict between the grafted chains initial condition and the Dirichlet boundary
conditions imposed on the solid boundaries.

The matrix chains in the interfacial region of volume V at temperature T and chemical
potential umNm follow the probability distribution of the grand canonical ensemble. Treating all

chains as Gaussian strings and describing the nonbonded interactions by an equation of state in

conjunction with a gradient term, f [ﬁ(r),v,b(r)], we can write the grand partition function

for the polymer contained in ® as:

0

== nzzoﬁeXp[ﬂﬂmNmnm]ﬂQ”ﬂgngfilnm_[l@Rim (¥R, ()]

Bl
[ToR, (3[R, (-) lexp {(~A[ (115D VAII+u, (D)5 ]

where g = 1/(kgT), j@Rim () symbolizes a functional integral over all paths Rim(N),

0<N<N,,, of a matrix chain i, (1<1,<n,) and j(DRQ (+) symbolizes a functional integral

over all paths R; (N), 0<SN<N, of a grafted chain ig (1<i, <n,). A, A;are normalizing

factors per matrix and per grafted chain, respectively, appearing in the path integral formulation.
They must be the same between the interfacial system and the bulk polymer and render the

grand partition function, =, dimensionless.

The functional f [A(r),VA(r)] is the Helmholtz energy density (Helmholtz energy per unit

volume) describing the nonbonded interactions between polymer segments, obtainable from an
appropriate equation of state. Herein we identify f with an excess Helmholtz energy, i.e., the
Helmholtz energy of a real polymer fluid consisting of a certain number of chains in a given
volume minus the Helmholtz energy of an equal number of noninteracting (ideal gas) chains
occupying the same volume. us(r) is the total potential energy exerted by the solid on a polymer
segment as a function of the position r of that segment.

In the absence of a field, the probability density distribution (statistical weight) of a matrix

chain conformation/path, Rim (N ) , and the corresponding one of a grafted chain, Rig (N ) are

given by eqs B2 and B3, respectively, in the context of the Gaussian chain model.

2[R, (.)]—exp{_m-(tm2 T(dj\;m} dN} B2
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N

7[R, (-)]exp[4Rl |

G.g

[ddi;g ] dN]é[R.g ©-r, |=5[R,()]s[R,©-r, | B3

The reduced segment density operators @, (r), @,(r) are defined as shown in egs B4 and

B5 respectively.

Ny Np

> j s(r-R; (N))dN

@m (r) = /Sm (r) — in=1 0 B4
seg,bulk pseg,bulk
ng Ng
) ja(r—Ri (N))dN
N _ pg (r) ig:l 0 ¢
P, (r) = = B5
pseg,bulk pseg,bulk

and we set the total reduced segment density operator as @(r) =@, (r) +@,(r). Next, we wish to

re-express the Boltzmann factor on the right-hand side of eq B1 in terms of a density field, p(r),
and a chemical potential field, w(r). To begin with, this term can be written as presented in the

following eq B6.”

exp{=B[(F1A(r), VAM1+u,(NAr)Xr| = [Dp(r) sTp(r) - A1 exp{=B[(F1o(r), Vo(r)]+u,(r)p(r) Xr |
B6

Next, we write the Dirac-delta functional as the inverse Fourier transform of eq B7, which

involves the two aforementioned fields.

SIp(r)— p(r)] = C [ o[ pw(r)]exp{i [ drpw(r)Lo(r) - A(N)]} B
with C being a normalization constant.®

Combining eqgs B6 and B7, the following expression is obtained for the Boltzmann factor of
the grand partition function of the system.

oxp [~ (1L VA -1, ()A(r) | -
=cJoem) [olpun]ew i arpulo(r) - SOl exe (-] (fLo0),Vo(r) +u,(r)o(r) |
B8

Within the functional integral of the right-hand side of eq B8, there is a term

incorporating the density operator, p(r), which is the sum of 5 (r) and p,(r). Introducing the
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definitions for these operators, eqs B4 and B5 respectively, that term can be written as in the

following eq B9.

n, N N

exp(ijdrﬂw(r)b(r)):exp{ijdrﬁw(r) Z fa(r—Rim(N))dN +if§(rRig(N))dN]]

ig=1 0

= exp{—i]dr}m dNS(r—R, (N))ipw(r) -exp{—ijdrﬁdNé(r— R, (N))iﬁw(r)}
=_]n_m[e><p(—fder dNS(r-R;. (N))iﬂW(r)J-ﬁexp(—IdrfdN5(r— R, (N))iﬁw(r)j

= f_m[exp(—iﬂ f dNw(R; (N))J-ln_g[exp{—iﬁj‘g dNw(R; (N))J

B9
Combining eqgs B1, B8 and B9 the following equation is obtained for the grand partition

function.
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[1]

-C 3, e[ mN,n, L4 47 [[ToR, (R, ()]

x1n_g[ DR, (-)%'[Rig (.)M@p(r) I(D[ﬂw(r)]exp {ij'drﬁw(r)[p(f) —ﬁ(r)]}
xexp{ [ (11p(r). V(D] + 4, (1) p(r) |
=C i %exp[ﬂumNmnm]ﬂrTﬂSg

nm:O m*

x[Dp(r) [ w(r)]explifdrpw(r)o(r)jexp|~B]( fLo(r). Vo(r)]+u,(r)p(r) dr |
(TToR, (2[R, (-)]ln_m[exp(—iﬁ [ dNw(r, (N))]

xﬁ@Rig (-)T’g'[Rig (.)Jf[exp(—iﬂf dNw(R; (N))}

0 1 N n
=C> Fexp[ﬁ,umNmnm]ﬂmm/’flgg

nm:O m*"

x[Dp(r) [ pw(r)]exp{i[drpw(no(r)|exp {=B[ (fo(0),Vo(r)]+u () p(n)r|
xﬁI@Rim (-2, [Rim (.)]ﬁexp[—iﬂ j dNw(R,_ (N))]

ny Ny Ng
1] 2R, (-}, [Rig (.)]5[&9 0)-r,, ]Hexp[—iﬁj dNw(R; (N))J
ig=1 ig=1 0
B10
The next step is to define the single chain partition functions (or functionals to be
technically accurate) of a matrix and a grafted chain, Q,[iw(r)] and Qg[l’gyig ;Iw(r)] respectively,

in the field iw(r) by the following eqs B11 and B12.

[orR, ()[R, (.)]exp{-i ﬁij dNw(R; (N))}
I@Rim ()@m [Rim ()]

Quliw(r)] = B11

I@Rig (-}, [Rig (.)]5[&9 0)-r,, ]exp{—iﬁNf dNw(R, (N))}
[oR, ()2, [Rig (.)]5[&9 (0)—rg,ig]

B12

Qylr, , ;iw(n)] =
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where, I@Rim ()2, [Rim ()] =7,V isthe configurational integral of a field-free matrix chain
and [oR, (-} [R, (-)]6[R, (0 -r,, |=Z,. is the configuration integral of a field-free

grafted chain. Qm[iW(r)] is the configurational integral or partition function of a single matrix

chain of length N, whose segments are subject to the field iw(r), relative to the corresponding
partition function of a field-free chain (i.e., Gaussian string performing a random-walk) and is

dimensionless by definition. In like manner, Q/[r,; ;iw(r)] is the partition function of a grafted

i
g

chain of length Ny, which starts at Iy

g

and whose segments are subject to the field iw(r), relative

to the partition function of a field-free chain of the same length starting at N, - It is

dimensionless as well.

Combining egs B10, B11 and B12 the grand partition function becomes:

0

1 noon
=C2—exp[pu,N,n, ]ay A

n_ =0
m

[1]

-

x[op(r) [0 pwir)]exp{i[ drpw(r)o(r)}exp{-B[ (1[p(r), Vo(r)]+u,(r) p(r) Xr |
%(2,,v )" (Q, W) 20, (]‘[ Qr,, iw(r)]j

=c[op(r) [0 pw(r)]exp{i[ drpw(r)o(r)} exp{-A[ (fo(r), Vo()]+u,(r)p(r) r]

1 n . n n . n
xy —exp[Au,N.n 1(A,2,.. V)" (QLwn])" (4,2,..)" (Qliwr)])"
noh ! B13

=c[op(r) [o[pwr)]exp( [ drs {iwr)p(r) - FLo(r), Vo(r)]-u,(r)p(n)})

xexp{exp[Au, N, 14,2 vQ [iw(r)]} H( ZoeQulTy, iw(r)])

We set the grand partition function to be equal to:
= =C[o[pn)][ o[ pw(r)]exp(-BH[p(r), Vo(r), w(r)]) B14
where the Hamiltonian of the system, H, is a functional of the segment density, p(r), of its

spatial gradient, and of the chemical potential field, w(r). Finally, using eqs B13 and B14, the

general form of the Hamiltonian is given by eq B15.
H [o(r), Vo(r),w(r)] = jdr {=iw(r) p(r) + f[(r), Vo(n)] +u,(r) p(r) }

1 . 1% ] Bl5
RN, A,Z,, VO, ] - > n(4,2,,.Q,Ir,, :w(r)])
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Appendix C Saddle point approximation

In the context of Self-Consistent Field Theory, we need to replace the functional integral of eq
B15 with its dominant term, i.e., the density and field configurations which have the highest
probability and thus the maximum contribution to the Hamiltonian of the system. In order to
determine those configurations, we need to perform a so-called saddle-point approximation, i.e.,
find the stationary point of the Hamiltonian functional with respect to p(r) and w(r). To this end,
we first set the functional derivative of the Hamiltonian with respect to w(r) equal to zero, as

shown in eq C1.

oH . 1
— =0 —Ip(r) - eXp(ﬂ,um)/qum,freeV
SW s

SQuIM(N)] 1 $-ONQUy, WO oy
ow B ig=1 ow

Following eq B11, we write:
N Ny,
s, lwir) Jor, ()[R, (-)](—iﬁ{ dNS(r-R, (N»jexp{—j dr I dNS(r-R,_ (N))iﬂW(r)}
Sw [or, ()2, [R, ()]
Np Np
[or, (2[R, (.)][ | dNé(r—Rim(N))jexp{—jdrI dN&(r—Rim(N))iﬂw(r)}

= —iQ, liw(r)] -
[or, (2[R, (.)]exp[-jdr[ dN5(r—le(N))iﬂw(r)}

Nm
S —ﬂiQm[iw(r)]< [dNs(r-R, (N))>

m

AP Q] [ 5

nm pseg,bulk m m

M:\

Nl‘ﬂ
[ dNs(r-R, (N))

PP Qu [IW(r)] (6.(r) - BP0 Qe [IW(T)] o (1)

C2

Likewise, following equation B12, we can write:
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snQr, Siw(r)] 1 5QIr ;iw(r)]
ow  Qlr iwn]  ow
. j@R‘g (.)(PQ'I:R‘Q (.)](iﬁf dNS(r-R, (N))Jexp {j drf dNS(r - R, (N))iﬁw(r):l
QIr,, iw()] for (2[R ()]
N, N, C3
[or, (.)@:[R‘g (.)](j dNG(r R (N))jexp[jdrj' dNG(r - R, (N))iﬁw(r):l
=—fi : N :
j@ng (.)@g'[ng (.)]exp I:IdrIdN(S(r -R. (N))iﬁw(r):|
= pi <j dNS(r-R, (N))>
and thus
n 5InQ,[r,, ;iw(r)] _ ; I dNS(r - Rig (N)) _ ) _
Z 5\,\; = _ﬂlpseg,bulk ° p = _ﬁlpseg,bulk <¢g (r)> = _ﬂlpseg,bulk(DQ (r) C4
ip=1 seg,bulk
Combining egs C1, C2 and C4, the following eq C5 is obtained for the density field, p(r).
Q. [iw(r
p(r) = exp(ﬂ:um)/qmszreev [ ( )] pseg bulk(pm (r) + pseg bulk¢g (r) C5

ITI

The saddle point approximation requires that the functional derivative of the Hamiltonian

with respect to the density field, p(r), be also equal to zero:

=0

p=p(r)

ﬁ-O@ —iw(r) +u, (r)J{i—V i}
op(r) op oVp

of of
< w(r) = {[ap -V. avp} . + us(r)}

After the saddle point approximation, the Hamiltonian of the system, from eq B15, is given

by eq C7.
of }
\4 p=p(r) C7

+p(NV.-—
p=p(r) 0 P

_ of
H= jdr{ f [p(r),Vo(r)]-p(r)—
op

1 1
= (A A,Z,, N Q, (] - > n(4,2,,.Qr,, :iw(r)])
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Appendix D Free energy terms

According to the saddle point approximation considerations which were developed in the
previous section, the grand potential of our interfacial polymer system, occupying volume V at
temperature T and chain chemical potential xmNm is given by eq D1.

Q(ym,ng,v,T):-%lnaz—%ln[exp(—ﬂﬁ)]: A D1

Any multiplicative factor arising in Z upon introduction of the saddle point approximation
contributes an additive constant to ©, which will cancel upon referring Q to an equal amount of
polymer in the bulk. Q is an extensive—system size-dependent—thermodynamic property. It is
convenient to express the system thermodynamics with reference to a bulk phase of matrix
chains occupying volume V at temperature T and chemical potential zmNm, a set of ng isolated
end-pinned unperturbed chains of length Ng at temperature T, and an isolated bare nanoparticle,
as described below.

The grand potential of an amount of bulk polymer occupying volume V at temperature T and

chemical potential Nz is:

1. _
Qo (1, T) = _E INZ,, = Hyu D2

with 7 _  being the effective Hamiltonian of eq C6 applied to bulk polymer:

bulk

H_bulk ZJdr{f[p,O]—p%}

1 .
_E exp(ﬂlum)-ﬂmzm,freeVQm[IWbulk] D3

P=Pseg,bulk

of
Note that, for all forms of the local free energy density f considered here, 87:0 in the
P

bulk polymer phase.
Application of eq C5 for the density to the bulk polymer gives:

H _ pseg,bulkv
pseg,bulk g eXp(ﬂlle )-/qmzm,freeVQm [IWbqu] - N—

m,bulk m

iw,
Psegbulk = EXp(ﬁ,um )ﬂmZm’freeV M

D4
Combining egs D3 and D4,
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af pse bquV
dri f[p,0 T D5
Hyu = _[ { [P ] p@p} ) BN
p*pseg,bulk
In the bulk melt, the self-consistent field from eq C6 becomes:
Wouik :_ia_ 7 D6
p*pseg,bulk
and thus the matrix chain partition function from eq B11 takes the form
. of
Qn [IWbqu] =exp| =N, W D7

P=Pseg,bulk

On the other hand, for a set of isolated end-pinned unperturbed chains of length Ng at
temperature T, which are identical in length and chemical composition to our grafted chains, the

total Helmholtz energy in the context of our model is given by eq D8.

A;SOI (T N ) = Z In ( gfree I:rg,ig ; inqu :|) D8
Subtracting egs D5 and D8 from eq C7:
AQ=Q(uV, T)=Qp (1,V,T) - A;:SOI (T,ny)

+p(r)V-——

; }
p p=p(r)

ov

=] dr{ [P(F). V()] (D)2

—Idr{ f [p,O]—pﬂ}
ap P=Pseg,bulk

+pse;;:"k (1 Qn [W(I’) Wbulk])

——ZInQ [ i ,W(r)—wk'm,k]

p=p(r)

In eq D9, we have made the following substitution:

iw(r) =w'(r), areal field. D10
The second integral in eq D9, referring to a homogeneous bulk phase of matrix chains, can

be performed immediately, yielding a factor of V times the integrand.
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By expressing eq C6 in terms of the real field from egq D10,
of [op=w'(r)+V-of /oVp—u,(r), and by substituting it to eq D9, the latter can be expressed as

follows:

AQ = [dr{ £ [p(1),Vp(0)]= f [ g O}
_J'dr p(NW(r) - pseg,bulkwt’lu'k}
+[dr {p(r)u, ()} -

Pseﬂgli;nk (1 Q, [W’(r)—Wéulk])

——ZInQ [ i ,W’(r)—w{m,k]

wherein the first term is the contribution of the cohesive interactions, the second term is the
interaction energy between the density field and the chemical potential field, the third term
describes the polymer-solid interactions, the fourth term describes the translational and
conformational entropy (relative to the bulk melt) of the matrix chains, and the fifth term is

associated with the conformational entropy of the ng grafted chains subject to the field w'.
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Appendix E Derivation of Segment Balance Equations

To deal with the grafted and the matrix chains in the presence of the field w’, we introduce the

propagator G(rsan, I, S) following Edwards®*:

R(Tr @[R(.)]@[R(.)]exp{—ﬁTde'(R(N'))}

G(r r, N) — R (0)=gtart 0 El

start !

far | o[RE)e[R()]

G(rq.rN) has dimensions of inverse volume. It is proportional to the conditional

probability that a chain, which has started at I, and is subject to the field w’(r) on its segments,

finds itself at position r at contour length N, as depicted in Fig. S1. The denominator in eq E1 is
a partition function for a field-free chain, represented as a Gaussian string, which has started at

I and may end anywhere in the system. The denominator is independent of I, and I ; it

depends only on N.

N!
N'=0 = R(N")

Fstart

N'=N
r

Figure S1. Schematic representation of a Gaussian string startingat N’ =0 and endingat N'= N .

We also define the restricted partition function of a matrix chain in the presence of the field

w’'(r) by the following eq E2.
Un (r,N) z_[drstanG(rstanvr’ N) E2
\%
This quantity is dimensionless and proportional to the probability that the segment at contour
length N of a matrix chain subject to the field finds itself at position r, regardless of where in the

system the particular matrix chain may have started. It is reduced by the corresponding
probability of a field-free chain. Thus, it equals unity for a field-free chain. The partition
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function of a matrix chain, Qpn, is related to the corresponding restricted one by the equation:
Q. [W’(r)]:\%jdr g, (r,N_). It is also dimensionless and normalized such that it would be
unity for a field-free chain in volume V.

The partition function, Qg, of a chain which is grafted at rg, relative to a field-free chain of

equal length, is given by eq E3.

Qg[rg;w’(r)]:fdr G(r,,r,Ny) E3
But, by definition, G(r,,r,N,)=G(r,r,,N,), so:
Qg[rg;w'(r)]:fdr G(r,r,,Ny)=0q,(r,,N,) E4

Following eq E1, the propagator of a grafted chain, whose grafted end lies at coordinates rg,

can be written as:
j@[R'(.)]q:[R'(.)]a(R'(O) —r,)8(R'(N) - r)exp{—ﬂTdN w'(R'(N '))}
[o[R'()]2[R' ()]s (RO)-r,)
[o[R'(:)]e[R'(-)]6(R(©) -1, )5 (R'(N) - r)exp{—ﬁTdN W (R'(N ’))}
_ HolR(elR ()

So far, we denote by R’(-) the curve in three-dimensional space, which is followed by a

G(r,,r,N) =

ES

Gaussian thread of length N. At this point, we introduce the symbol R"(:), which represents the

curve in three-dimensional space, which is followed by a Gaussian thread of length Ng—N. Using
these definitions and combining egs E1 and E2, the restricted partition function of a matrix

chain can be written as follows.

j j [R"(:)]e[R"(:)]6(R"(0)-r,. )5 (R"(N, ~N) )exp{—ﬂN]NdNW'(R"(N'))}
= [o[R"()]2[R"(-)]

qm(r,Ng—N)z

E6
Next, we consider the product G(r,,r,N) q,(r,N,—N). By eqgs E5 and E6, the numerator

of this product will be equal to the following expression.
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numer =j(D[R'(.)](P[R'(.)]&(R'(O)—rg)§(R'(N)—r)exp{—ﬂTdN W(R’(N'))}

x IdrstartI@[R”(.)](P[R”(.)]§(R”(0)—rstan)ﬁ(R”(Ng—N)—r)exp{—ﬂ j dNW(R”(N’))}

E7

Changing the integration variable from N’ to Ng — N’ in the second line, eq E7 is modified to:
N
numer :I(D[R'(.)]@[R'(.)]a(R'(O)—rg)5(R'(N)—r)exp{—ﬁde’w’[R’(N’)]}
0

X derMj@[R"(.)]@[R"(.)]5(R"(Ng) T )5 (R'(N) =T )exp {—ﬂNf dN ‘W [R"(N ')]}

:\%I@[R(.)}@[R(.)]é(R(O) —1,)8(R(N) - r)exp{ﬂNf dN ’W’[R(N')]}

ES8
where now the functional integration is performed over all paths R(+) of an Nq segment-long

(grafted) chain.
On the other hand, the denominator of the product G(r,,r,N) g, (r, N, —N) becomes:

denom =2 [o[R ()]2[R (][ o[R* ()e[R" ()] = & [o[R(]e[R()]  E9

Dividing eq E8 with E9, we obtain:

J@[R(-)]@[R(-)]6(R(0)—g)é(R(N)—r)exp{—ﬁTdN'w’[R(N’)]}

G(r,r,N)g (r,N -N)=

CJolROIZ[R()]

E10
Combining egs E3 and E5, we can write the following eq E11 for the partition function of a

grafted chain.
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Jar Jo[RO]2[R()]5(RO) —rg)O“(R(NQ)—rm)exp{—ﬂNde' w’(R(M)}
Q[riw(m]=- :

L o[R(OIP[R()]
V
I@[R(-)]@[R(-)V(R(O)—VQ)exp{—ﬂ}dNW(R(N'))}

S IoROIP[RO)]
Ell

Dividing eq E10 with E11, we obtain the following expression:

1

Nfd'\' I@[R(-)J@[R(-)}5(R(O)—fg)ﬂR(N)—r)exp{—ﬂNfdNW(R(N'))}

J@[R(-)]@[R(~)]5(R(0>—rg)exp{—ﬂNdeW(R(N'))}

j@[R(.)]@[R(.)ja(R(O)—rg)NjgdN'é(R(N’) —r)exp{—ﬂ}g dN W(R(N'))}

j@[R(.)]@[R(.)]a(R(O)—rg)exp{—ﬂNf dN ’\N'(R(N'))}
=<Nde'5(R(N')—r)>

R(O):rg
Field w'
E12
Using the definition eq B5, we can write:
N
1 j AN'G(r,, 1 N") 0y (1 Ny = N') = Dy (83 (D) D01, = Prgiuncs (1) = 2 (1)
Q1w ] ’ Field " |
E13

where ¢, (r) is the reduced density and p,(r) the segment density contributed by the considered

grafted chain, at position r.

Taking into account eq E4, which relates the partition function of a grafted chain to the

restricted partition function of a matrix chain, we rewrite eq E13 for a specific grafted chain, ig,
as:

246



Appendices

Ng

)ld ’Gr r,N) q,(r,N, =N’ E14

¢, (r)=

9

Peq bulkqm( i

The total reduced density due to all grafted chains will be:

ng 1 ng 1
2y(N)= ¢, (1) = > de G(r,,r,N") g, (r,Ny = N") =
ig=1 Pseg,bulk i;=1 q,, (r| N )
. n ) E15
j G(r,,r,N') g, (r,Ng —N’)
0 ig 1psegbulkqm (rl N )
Let us set
ng N
g (rN)=>" . G(r,,r,N) E16
ig=1 pseg,bulkqm (rlg ' NQ)
With this definition,
N
1 g
#,(1) =~ [ AN 6,(r,N) 6, (r, N, = N) E17
g o0
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Appendix F Solution of Edwards in 1D spherical coordinates

In spherical polar coordinates the Laplacian is written as follows:

Vi =

+ =
ox* ey* oz r or*  r*sind o6

ou ou o 10°(ru) 1 a( auj 1 o
+ =— + + F1

sind— —
06 ) r’sin®6 o0¢°

2

o'u
In the planar surface case, u=u(z,t), — =0 and 52;1 _ o With z being the direction normal

OX oy
to the surface. Therefore, the Edwards diffusion equation in Cartesian coordinates assumes the

one-dimensional form:

ou(z,t) . o%u(zt)
-D >
ot 0z

with t corresponding to the contour length along a chain, u being a restricted partition function

+au(z,t)=0 F2

(propagator), D determined by the conformational stiffness, and a by the self-consistent field
(compare eg 1 in main text).

In the case of a spherical nanoparticle with uniformly smeared grafting points on its surface,
there is spherical symmetry. There is no dependence on the polar and azimuthal angles,

u=u(r,t) and the Edwards diffusion equation in spherical polar coordinates simplifies to:

2
Z—l:— DFﬁa(rzu)}rau =0 or
r or F3
2
o(r) D 0 (rzu) +a(ru)=0
ot or
If we set
w(r,t)=ru(r,t) F4
eq F3 becomes
2
op(rt) 50 szf(r,t)+au//(r’t):0 -

ot or?
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Appendix G Derivation of the density gradient term from the square

gradient and the Laplacian

The general expression of the gradient term of the free energy in three dimensions is the

following:

Qusr =x [ [Vo(r)] dr G1
q{3

with p(r) being the local segment density and « the influence parameter. The corresponding free

energy function used in our calculations is
f[p(r), V()] = T [p(),0]+ fuer (Vo(r)) = T [p(r),0]+ < [Vp(n)] G2

with f[p(r),0] being the Helmholtz energy density of a homogeneous polymer fluid of segment

density p(r) at the considered temperature, calculated from an equation of state. In many cases,
the gradient term Esgr can be calculated instead from the Laplacian of the density, as will be
shown below.

In planar geometries one can take advantage of the homogeneity along the planar (x, y)
directions (i.e., cylindrical symmetry). Since 5,0/5)(:5,0/8)’:0, the gradient term can be

written as follows:
dp ’
Quer/S=x[| L | dh G3
bt dh

with h being the segment-surface distance and § the considered surface area. Alternatively, the

gradient term can be written in terms of the Laplacian as follows:

“dp dp dp - cd?p G4
O 15 =1[22CL gh= | 2 | - dh
seT K! dh dh K[dh pl K! dn? ©

Either p = 0 at the Dirichlet boundaries (g = 0) or dp/dz=0 at the Neumann boundaries
(dg/dz=0); thus, eq G4 becomes:

L 42
(@R :—KI (;hfp dh G5
0
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In systems with spherical homogeneity with respect to the center of the nanoparticle one can

express eq G1 as follows:
R d 2
Qqer = K‘J‘[—pj 4A7r?dr G6

with r being the distance between the center of the spherical nanoparticle and the polymer

segment. The gradient term can be written in terms of the Laplacian as follows:

Qg = KJ.(;'L:C;'D Arridr=x {dpf(dp 4 r’zjdr} —K‘J. J.(dp 4r r’zdrjd
0

) G7
2
- I(J‘d P (dp Arr r'zdrjdr
0
However,
0 dp 12 r__ ner2 ] 0 4 ! r__ i 4 ! !
4”!@ r2dr’ = 4z p(r')r ]O—8ﬂ!p(r) r'dr ——8ﬂ£p(r) r'dr
Thus, eq G7 becomes:
R dzp r
Q.. =8 r) r'dr’ dr G8
SGT 77’(_([ dr? ?[p( )
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Appendix H

(@ 275
27.4
27.3

27.2

E o (MJ/m®)

27.1

27

—~
=2
N

27.5
27.4
27.3

27.2

E o (MJ/m?)

27.1

27

Space and contour discretization benchmarks in RuSseL.1D
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Figure H.1 Evaluations of the grand potential from systems with matrix (m) (a, b) and with matrix and grafted
(m+g) (c, d), for various degrees of spatial (Ah) and chain contour (AN) discretization and integration methods. (a),
(c) and (b), (d) panels correspond to evaluations of the convolution integrals with the Simpson and rectangle
integration methods, respectively. These evaluations were performed in planar geometries, for molecular weights of
grafted and matrix chains My = M, = 5.2 kg/mol, grafting density o4 = 0.5 nm 2 (when grafted chains are present)
and in absence of any solid/polymer interactions.
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Figure H.2 Evaluations of the mean brush thickness for various degrees of spatial and chain-contour
discretizations. (a) and (b) panels correspond to evaluations of the convolution integrals with the Simpson and
rectangle integration methods, respectively. These evaluations were performed in planar geometries, for molecular
weights of grafted and matrix chains My = My, = 5.2 kg/mol, grafting density o, = 0.5 nm* (when grafted chains are
present) and in absence of any solid/polymer interactions.

Figure H.1 and Figure H.2 illustrate a sensitivity analysis of the grand potential and the
mean brush thickness on the degree of spatial (Ah) and chain-contour discretization using either
the Simpson or the rectangle integration method for the evaluation of convolution integrals.
Overall, Simpson’s rule has slightly better performance in terms of accuracy than the rectangle
method. It is noteworthy that in presence of grafted chains, the solution becomes more sensitive
to AN with decreasing Ah. This can be attributed to that smaller Ah values lead to sharper delta
funtions, A(h) ~ Ah™; hence, much smaller AN steps are required.

An advantage of the rectangle method is that it results in slightly more accurate prediction of
the grafting density via the segment balance equation; in detail, the error with the Simpson and
the rectangle method is in the order of ~10 and ~10°, respectively. In addition, it offers the
possibility to compute the gradient energy term via both the square gradient and the Laplacian of
the segment density (see Appendix G above). This probably has to do with that Simpson’s rule
does not weight all the points evenly; e.g., in Simpson % rule, the weitghts on the first and last
poin is ¥4, while the weight of the remaining points alternates between 4/3 and 2/3.
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Appendix | Field mixing fraction benchmarks in RuSseLL1D

Figure 1.1a and c presents the number of steps to achieve field convergence as a function of the
field mixing fraction (fmix). The number of steps for convergence is inversely proportional to fyx.
Figure 1.1b and d depict the optimum values of amix as a function of the molar mass of the
grafted chains. Slightly larger anmix value than those depicted in Figure 1.1 (right) can critically
affect the stability of the iterative scheme. According to our tests, three different situations may

arise for large amix values and in the context of the Sanchez-Lacombe equation of state: (i) the

/max

field equilibration procedure diverges, (ii) Aw. ** oscillates indefinitely around a value that is

rtol

larger than the accepted tolerance, Aw;. , (see Figure 1.2b) or (iii) the field converges to an

unphysical solution (e.g., the matrix chains or part of them become extinct, as shown in Figure
1.2c).
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Figure 1.1 (a, ¢c) Number of steps to achieve field convergence (AWi'frcnaX < 10°kgT) for various chain molecular

weights. (b, d) Optimal field mixing fraction, amix, versus chain molar mass, M. In (a,b), the Sanchez-Lacombe
EoS was used in conjunction with the square gradient theory term, while in (c,d) the Helfand free energy density
was used. In all cases, the molecular weight of matrix chains is equal to that of grafted chains, My = My,,. The radius
of the particle is equal to Rs = 8 nm and the grafting density is equal to oy = 0.8 nm?.
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Appendix J Instructions for compiling RuSseLL.3D and its dependencies

GCC-5.1.0
Before performing the steps shown below, it is highly recommended to
execute the following command:
Sunset LIBRARY PATH CPATH C INCLUDE PATH PKG _CONFIG PATH
CPLUS INCLUDE PATH INCLUDE LD LIBRARY PATH
After downloading gcc-5.1.0.tar.gz from https://ftp.gnu.org/gnu/gcc/,
you can follow the instructions presented below:
e Star xzf gcc-5.1.0.tar.gz
e Scd gcec-5.1.0
e S$./contrib/download prerequisites
e Scd ../
e Smkdir objdir
e Scd objdir
e Spwd/../gcc-5.1.0/configure —-prefix=$HOME/GCC-5.1.0 —-disable-
multilib
e Smake -7 6
e Smake install -j 6
e Go to home (~) directory and open the .bashrc (hidden) file:
Svi .bashrc
and add the following snippets:
alias gfortran=/pathToGCC/bin/gfortran
alias gcc=/pathToGCC/bin/gcc
alias g++=/pathToGCC/bin/g++
export LD LIBRARY PATH=/pathToGCC/lib64
In order for the changes of the .bashrc file to be activated, you
must 1issue the following command (obviously while in the home
directory) :
Ssource .bashrc

OPENMPI-4.0.5

We need to connect openmpi wrapper compilers with the gcc compilers
that we have already installed. Before doing so, the openmpi requires
for some reason that all *.la static libraries are removed from
gcc/lib directory (at least that was the case when I tried to install
it myself).

Scd pathToGCC/1lib

Srm *.la

Be careful not to remove the *.a files as well! Otherwise the gcc
compilers must be recompiled to retrieve those static libraries.
Download openmpi-5.2.1.tar.gz using the link https://www.open-—
mpi.org/software/ompi/v4.0/ and then issue the following:

e Star xzf openmpi-4.0.5.tar.gz

e S./configure —-prefix=pathToOpenmpi/openmpi --disable-mca-dso
CC=pathToGCC/bin/gcc CXX=pathToGCC/bin/g++ FC=pathToGCC
/bin/gfortran

e Smake -j 6 all install

255



Appendices

e Go to home (~) directory and open the .bashrc (hidden) file:
Svi .bashrc
and add the following snippets:
export LD LIBRARY PATH=/pathToOpenmpi/lib
export OPAL PREFIX=/pathToOpenmpi
alias mpicc=/pathToOpenmpi/bin/mpicc
alias mpifort=/pathToOpenmpi/bin/mpifort
alias mpirun=/pathToOpenmpi/bin/mpirun -mca btl vader,self
In order for the changes of the .bashrc file to be activated, you
must issue the following command (obviously while 1in the home
directory ©):
Ssource .bashrc
e When running the application with mpirun, you might deal with a
message saying that the library libmpi.so.l was not found or does
not exist. You can bypass this problem by performing the following:
o S$cd pathToOpenmpi/lib
o S$ln -s libmpi.so limpi.so.l
Most likely the application will run without issues this time.
MAKE SURE THAT OPENMPI HAS BEEN COMPILED WITH THE NON-DEFAULT GNU
COMPILER!

OPENBLAS-0.3.7
Download openblas-0.3.7.tar.gz from https://www.openblas.net/ and then
issue the following:

e Star xzf openblas-0.3.7.tar.gz

e Smake -7 6 FC=/pathToGCC/bin/gfortran CC=/pathToGCC/bin/gcc
PREFIX=/pathToInstall
e Smake -3 6 FC=/pathToGCC/bin/gfortran CC=/pathToGCC/bin/gcc

PREFIX=/pathToInstall install
e Go to home (~) directory and open the .bashrc (hidden) file:

Svi .bashrc

and add the following snippets:

export LD LIBRARY PATH=/pathToOpenblas/lib
MAKE SURE THAT OPENBLAS HAS BEEN COMPILED WITH THE NON-DEFAULT GNU
COMPILER!

PARMETIS-4.0.2

Download parmetis-4.0.2.tar.gz using the link
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/download and then
issue the following:

e Star xzf parmetis-4.0.2.tar.gz
e Smkdir parmetis

e Smkdir metis

e Scd parmetis-4.0.2/

e Smake -3 6 config cc=/pathToOpenmpi/bin/mpicc
cxx=/pathToOpenmpi/bin/mpicxx prefix=~/pathToParmetis/parmetis
shared=1

e Smake —-j 6 install
e Scd ../parmetis-4.0.2/metis

256



Appendices

Smake -7 6 config cc=/pathToOpenmpi/bin/mpicc
cxx=/pathToOpenmpi/bin/mpicxx prefix=~/pathToMetis/metis shared=1
Smake -j 6 install
Scp metis/include/metis.h parmetis/include
Svi parmetis/include/parmetis.h
replace: #include <metis.h> with: #include “metis.h”
replace: #include <mpi.h> with: #include
/pathToOpenmpi/include/mpi.h
Go to home (~) directory and open the .bashrc (hidden) file:
Svi .bashrc
and append the following library paths in LD LIBRARY PATH variable:
export LD LIBRARY PATH=..:/pathToParmetis/lib
export LD LIBRARY PATH=..:/pathToMetis/lib
In order for the changes of the .bashrc file to be activated, you
must 1issue the following command (obviously while in the home
directory):
Ssource .bashrc
Create a file named test.cpp in the pathToParmetis directory:
Svi test.cpp
And copy-paste the following code snippet:
#include <iostream>
#include “metis/include/metis.h”
#include “parmetis/include/parmetis.h”

int main () {
std::cout << “Test!” << std::endl;
return O;

Smpic++ test.cpp

Smpirun a.out

If you get “Test!” on your screen, then everything is ok!
(probably)

MAKE SURE THAT PARMETIS HAS BEEN COMPILED WITH THE NON-DEFAULT MPI
COMPILER!

LAPACK-3.9.0
Download lapack-3.9.0.tar.gz from http://www.netlib.org/lapack/ and
then issue the following:

Star xzf lapack-3.9.0.tar.gz
Scp make.inc.example make.inc

Svi make.inc
Set gcc and gfortran compiler paths.
In the end of the file, link with openblas.

make —-j 6

FOR THE SERIAL MUMPS COMPILATION, LAPACK DOES NOT NEED TO BE INSTALLED
BECAUSE OPENBLAS CONTAINS ITS OWN SERIAL LAPACK LIBRARY.
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SCALAPACK-2.0.2
Download scalapack-2.0.2.tar.gz from http://www.netlib.org/scalapack/
and then issue the following:
e Star xzf scalapack-2.0.2.tar.gz
e Scp SLmake.inc.example SLmake.inc
e Svi SL.make.inc
Set FCFLAGS, FFFLAGS compiler/cpu optimization variables:
FC=/pathToOpenmpi/bin/mpifort
CC=/pathToOpenmpi/bin/mpicc
FCFLAGS=-03 -msse?2
CCFLAGS=-03 -msse?2
BLASLIB=-L/pathToOpenblas -lopenblas
LAPACKLIB=-L/pathToOpenblas -lopenblas
(openblas library contains both lapack and blas)
e make —-j 6
e Go to home (~) directory and open the .bashrc (hidden) file:
Svi .bashrc
and add the following snippets:
export LD LIBRARY PATH=/pathToScalapack

MAKE SURE THAT SCALAPACK HAS BEEN COMPILED WITH THE NON-DEFAULT MPI
COMPILER!

MUMPS-5.2.1

Download mumps-5.2.1.tar.gz using the link
http://mumps.enseeiht.fr/index.php?page=dwnld (you will actually have
to send a request and then receive the source code via email) and then
issue the following:

e Star xzf mumps-5.2.1.tar.gz

e S$vi pathToMumps/Makefile.inc
If the serial version of mumps is to be compiled:
CC=pathToGCC/bin/gcc
FC=pathToGCC/bin/gfortran
FL=pathToGCC/bin/gfortran
LAPACK=-L/pathToScalapack/ -1llapack

If the parallel version of mumps is to be compiled:
CC=pathToOpenmpi/bin/mpicc
FC=pathToOpenmpi/bin/mpifort
FL=pathToOpenmpi/bin/mpifort
LAPACK=-L/pathToScalapack/ -lscalapack
SCALAP=-1L/pathToScalapack/ -lscalapack

OPTEF=-03 -msse2 (or fma, avx: depends on compiler and cpu)
OPTL=-03 -msse2?2 (or fma, avx: depends on compiler and cpu)
OPTC=-03 -msse2?2 (or fma, avx: depends on compiler and cpu)

e Smake —-j 6
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