
National Technical University of Athens

School of Mechanical Engineering

Fluids Section

Laboratory of Thermal Turbomachines

Parallel CFD & Optimization Unit

Implementation of the Boundary Representations of

CAD Geometries in Gradient-based Optimization

PhD Thesis

Marios G. Damigos

Supervisor: Kyriakos C. Giannakoglou,

Professor NTUA

Athens, 2023

ii

National Technical University of Athens

School of Mechanical Engineering

Fluids Section

Laboratory of Thermal Turbomachines

Parallel CFD & Optimization Unit

Implementation of the Boundary Representations of CAD

Geometries in Gradient-based Optimization

PhD Thesis

Marios G. Damigos

Examination Committee:

1. K. Giannakoglou (Supervisor)
∗

Professor, NTUA, School of Mechanical Engineering

2. S. Voutsinas
∗

Professor, NTUA, School of Mechanical Engineering

3. K. Mathioudakis
∗

Professor, NTUA, School of Mechanical Engineering

4. J. Nikolos

Professor, Technical University of Crete, School of Production Engineering

& Management

5. G. Papadakis

Assistant Professor, NTUA, School of Naval Architecture and Marine Engi-

neering

6. G. Vosniakos

Professor, NTUA, School of Mechanical Engineering

7. V. Riziotis

Associate Professor, NTUA, School of Mechanical Engineering

∗
Member of the Advisory Committee.

Athens, 2023

iv

v

Part of this work has been conducted within the IODA ITN on "Industrial

Optimal Design using Adjoint CFD"

http://ioda.sems.qmul.ac.uk

IODA has received funding from the European Union’s HORIZON 2020 Research

and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement

No. 642959.

http://ioda.sems.qmul.ac.uk

vi

vii

Abstract

This PhD thesis deals with the coupling of CAD-parameterized geometries with

adjoint-based shape optimization. The mathematical formulation of methods for

the inclusion of a CAD design in the optimization loop are shown and tested in

applications in aerodynamics. The computation of the derivatives of various aero-

dynamic objective functions with respect to (w.r.t.) the CAD design variables is

performed based on continuous adjoint running in the OpenFOAM environment.

CAD geometries may have two parameterizations: (a) a feature tree param-

eterization which is practically the definition of geometric relations in the 3D

space and also the native parameterization of CAD packages that generate them

and (b) a surface parameterization which is defined and transferred by the stan-

dard Boundary Representation (BRep) format. The latter is simply a collection of

surface patches that define the CAD model, defined by standard mathematical

forms (mainly NURBS). In this thesis, BRep is used to express the CAD geome-

try because its standardized open-source format allows its direct coupling with

Computational Fluid Dynamics (CFD) software and, also, its differentiation which

is necessary in gradient-based optimization. The feature tree parameterization

is almost never accessible via open formats which makes its direct linking to

optimization impossible.

The first step is the generation of a quality triangulation of the surface of the

CAD model. This is because, in order to insert the CAD model into the optimiza-

tion loop, it is necessary to mesh the 3D space around (or inside) it. The boundary

of the domain to be meshed, in a tesselated (most commonly triangulated) form

is the input to the meshing software. The triangulation process is subdivided

into three main tasks: shape healing which is a process overcoming possible (but

quite common) CAD model defects, size map computation which pre-computes

the optimal size of the triangulation on a background grid and, finally, the sur-

face triangulation itself. Shape healing handles the topological and geometric

holes that commonly exist in a CAD model which is transferred via a standard

file (STEP, IGES, etc.). The topological holes are fixed by performing vicinity tests,

and the geometric holes are fixed by performing a sewing algorithm based on

Plate Energy Minimization. Then, on the "healed" CAD model, the size map is

computed using two dimensionless parameters, one controlling the triangle size

based on local curvature, and the other controlling the triangle size gradation.

Both parameters produce the size map on a coarse background grid computed

via Delaunay triangulation. Finally, the triangulation is performed on each CAD

patch separately, by using a version of the Advancing Front technique adapted to

parametric surfaces.

The second step in this thesis is the establishment of the shape parameter-

ization scheme which will provide a robust method to deform the shape. This

is necessary because CAD designs are strongly related to their source parame-

terization which is defined via feature trees and cannot be accessed via external

viii

software. CAD packages (commercial or not) have different source parameteriza-

tions and their vendors are very sensitive about them. The CAD models must,

therefore, be parameterized via their surface representation which is available via

the BRep format and transferred by standard files. The surfaces comprising a

CAD model are trimmed parametric patches that exist as autonomous entities

which makes them unfit as shape deformation tools. This is because, displacing

them would create C0 and C1 discontinuities in the CAD model. To tackle this

challenge, all parametric patches are converted to NURBS and a method that im-

poses desired continuity constraints on their trimming curves is developed. Based

on this method, a new parameterization is defined which inherently satisfies these

constraints by computing the Kernel of the Jacobian of all constraints.

Apart from continuity constraints, the imposition of various other geometric

constraints can be a key factor in CAD-based optimization. Constraints can nat-

urally be defined in a CAD model via the feature trees. However, as mentioned

above, the feature trees cannot be accessed and used to deform the shape. There-

fore, constraints must be defined on the surfaces of the CAD model. In this thesis,

a method is developed to make possible the imposition of multi-node constraints

on NURBS patches. Depending on the type of constraints and the complexity

of the CAD surfaces, the number of node-wise constraints may become huge.

Traditional constrained optimization techniques (i.e. SQP or Gradient projection)

assume a priori that the number of constraints is less than or equal to the number

of design variables. In the case of NURBS-based optimization, this can become

problematic as the design variables are the control point coordinates which are

vastly outnumbered by the number of boundary mesh nodes on the design sur-

face. For this reason, all constraints are cast into a single equality constraint.

Nodal constraint violations are penalized based on a quartic function that returns

a positive value if the constraint is violated and zero otherwise. The penalties are

then summed up to create a single constraint. The effectiveness of the single con-

straint is tested by constraining surface curvature, and enclosing constraints (i.e.

constraints that demand that the model moves within a given space). For com-

pleteness, the inequality constraint of the volume of a given model is presented,

to demonstrate a way of handling non-node wise constraints.

The developed software is applied to the design/optimization of test cases such

as passenger cars, automotive cooling and intake ducts, diffusers and turboma-

chinery blades.

Key words: Computational Fluid Dynamics, Computer Aided Design Continu-

ous Adjoint Methods, Boundary Representation of Surfaces, Shape Optimization,

Non-Uniform Rational B-Splines, Constraints

ix

Περίληψη

Η διδακτορική αυτή διατριβή ασχολείται µε την εισαγωγή γεωµετριών, παραµε-

τροποιηµένων µε CAD σχήµατα, στη ϐελτιστοποίηση µορφής ϐασισµένη στη µέθοδο

των συζυγών µεταβλητών. Παρουσιάζονται η µαθηµατική διατύπωση και υλοποίη-

ση µεθόδων που καθιστούν εφικτή την εισαγωγή του CAD σχεδιασµού σε ϐρόχο

ϐελτιστοποίησης καθώς και ο έλεγχος των µεθόδων αυτών σε εφαρµογές της αερο-

δυναµικής. Ο υπολογισµός των παραγώγων ευαισθησίας διαφόρων αεροδυναµικών

συναρτήσεων-στόχων ως προς τις µεταβλητές σχεδιασµού του CAD γίνεται µε τη συ-

νεχή συζυγή µέθοδο.

Οι γεωµετρίες CAD µπορεί να έχουν δύο ειδών παραµετροποιήσεις : (α) την πα-

ϱαµετροποίηση δέντρου στοιχείων που ορίζει γεωµετρικές σχέσεις µεταξύ στοιχείων

σχεδιασµού και είναι η ϕυσική παραµετροποίηση των CAD πακέτων και (ϐ) την ε-

πιφανειακή παραµετροποίηση που περιγράφεται και µεταφέρεται από το πρότυπο

της Συνοριακής Περιγραφής. Η Συνοριακή Περιγραφή (Boundary Representation

- BRep) αποτελείται από µία συλλογή επιφανειών που ορίζουν ένα CAD µοντέλο

και ορίζονται από πρότυπες µαθηµατικές περιγραφές (κυρίως NURBS). Σε αυτήν τη

διατριβή, η BRep χρησιµοποιείται ως µέσο περιγραφής των CAD γεωµετριών καθώς

η προτυποποιηµένη, ανοιχτού κώδικα µορφή της, επιτρέπει τη σύνδεση των γεω-

µετριών µε λογισµικά Υπολογιστικής Ρευστοδυναµικής (ΥΡ∆) καθώς και τη χωρική

διαφόρισή τους, που είναι χρήσιµη κατά τη διάρκεια της ϐελτιστοποίησης. Η πα-

ϱαµετροποίηση δέντρου, είναι σπανίως διαθέσιµη σε ανοιχτή µορφή, πράγµα που

κάνει τη σύνδεσή της µε τη ϐελτιστοποίηση αδύνατη.

Το πρώτο ϐήµα της διατριβής είναι η γένεση ενός ποιοτικού πλέγµατος µε τρι-

γωνικά στοιχεία στις επιφάνειες του CAD µοντέλου. Αυτό συµβαίνει καθώς, για να

εισαχθεί το CAD στο ϐρόχο ϐελτιστοποίησης είναι απαραίτητη η πλεγµατοποίηση

του 3∆ χώρου γύρω (ή εντός) της γεωµετρίας του. Στα λογισµικά πλεγµατοποίη-

σης, συνήθως, παρέχεται το όριο του χωρίου που ϑα πλεγµατοποιηθεί σε διακριτή

(πιο συχνά τριγωνοποιηµένη) µορφή. Η διαδικασία τριγωνοποίησης χωρίζεται σε

τρία ϐήµατα: (α) επισκευή µοντέλου, που είναι µια διαδικασία που επιλύει αρκετά

συνήθη γεωµετρικά και τοπολογικά σφάλµατα CAD γεωµετριών που εµπεριέχονται

σε πρότυπα αρχεία (STEP, IGES κλπ.) (ϐ) υπολογισµός µίας χαρτογράφησης του

ϐέλτιστου µεγέθους τριγώνων σε ένα δευτερεύον πλέγµα και (γ) διαδικασία ϐελτιστο-

ποίησης. Τα τοπολογικά κενά, επιλύονται µε ελέγχους εγγύτητας και τα γεωµετρικά

κενά µε έναν αλγόριθµο ¨ραφής¨ που ϐασίζεται στην τεχνική Ελαχιστοποίησης Ενέρ-

γειας Επιφανειακών Πλακών. ΄Επειτα, στο ¨επισκευασµένο¨ µοντέλο, υπολογίζονται

τα ϐέλτιστα µεγέθη τριγωνοποίησης µε χρήση δύο αδιάστατων παραµέτρων, οι ο-

ποίες ελέγχουν το µέγεθος και τη µέγιστη επιτρεπόµενη µεταβολή µεγέθους. Ο

συνδυασµός των δύο παράγει ένα χάρτη µεγέθους πλεγµατικών στοιχείων πάνω σε

ένα δευτερεύον (ϐοηθητικό) πλέγµα που κατασκευάζεται µε τη µέθοδο Delaunay.

Τέλος, πραγµατοποιείται τριγωνοποίηση σε κάθε επιφάνεια ξεχωριστά µε χρήση της

µεθόδου Προελαύνοντος Μετώπου, προσαρµοσµένης σε παραµετρικές επιφάνειες.

x

Το δεύτερο ϐήµα είναι η δηµιουργία ενός σχήµατος παραµετροποίησης το οποίο

ϑα παράσχει µία στιβαρή µέθοδο µορφοποίησης του µοντέλου. Το ϐήµα αυτό είναι

αναγκαίο καθώς τα µοντέλα CAD συνδέονται ισχυρώς µε τις πηγαίες παραµετροποι-

ήσεις τους οι οποίες ορίζονται µέσω δέντρων στοιχείων και δεν είναι προσβάσιµα από

εξωτερικά λογισµικά. ∆ιαφορετικά πακέτα CAD χρησιµοποιούν διαφορετικές παρα-

µετροποιήσεις και οι διανοµείς τους δεν τις κάνουν γνωστές. Συνεπώς, τα µοντέλα

CAD που ϑα υποστούν ϐελτιστοποίηση πρέπει να παραµετροποιηθούν µέσω της επι-

ϕανειακής περιγραφής τους που είναι προσβάσιµη µέσω της BRep και µεταφέρεται

µεταξύ λογισµικών µέσω πρότυπων αρχείων. Οι επιφάνειες που συντελούν ένα CAD

µοντέλο είναι κοµµένες παραµετρικές επιφάνειες και είναι αυτόνοµες ως οντότητες

σε ένα λογισµικό µορφοποίησης. Αυτό τις κάνει ακατάλληλες για εργαλεία µορφο-

ποίησης καθώς, µετατοπίζοντάς τες, ϑα δηµιουργούνταν ασυνέχειες γεωµετρίας και

οµαλότητας στο µοντέλο. Για να αντιµετωπιστεί αυτό το πρόβληµα, όλες οι παραµε-

τρικές επιφάνειες µετατρέπονται σε NURBS και επιβάλλονται περιορισµοί συνέχειας

στα σύνορα µεταξύ των επιφανειών. Στη συνέχεια, ορίζεται µία νέα παραµετροποίηση

που ικανοποιεί τους ανωτέρω περιορισµούς εκ ϕύσεως, υπολογίζοντας τον µηδενικό

χώρο του Ιακωβιανού µητρώου των περιορισµών.

΄Ενας παράγοντας κλειδί για τη ϐασισµένη-σε-CAD ϐελτιστοποίηση είναι η ε-

πιβολή γεωµετρικών περιορισµών. Οι περιορισµοί µπορούν µε ϕυσικό τρόπο να

ορισθούν µέσω των δέντρων στοιχείων. Ωστόσο, όπως αναφέρθηκε πιο πάνω, τα

δέντρα στοιχείων δεν είναι προσβάσιµα και δεν µπορούν να χρησιµοποιηθούν ως

µέσο µορφοποίηση των µοντέλων. Οι περιορισµοί πρέπει, συνεπώς, να ορισθούν

στις επιφάνειες του CAD µοντέλου. Ανάλογα µε τον τύπο του περιορισµού και την

πολυπλοκότητα των επιφανειών του CAD, ο αριθµός των περιορισµών που πρέπει

να επιβληθούν, µπορεί να είναι πολύ µεγάλος. Για αυτόν το λόγο, παρουσιάζεται

µία µέθοδος για τη µείωση του αριθµού των περιορισµών. Με τη µέθοδο αυτή, η

παραβίαση του περιορισµού σε κάποιο κόµβο περνά από µία συνάρτηση ποινής η

οποία επιστρέφει ϑετική τιµή σε περίπτωση που υφίσταται παραβίαση και µηδέν σε

περίπτωση που όχι. ΄Επειτα, οι συναρτήσεις ποινής αθροίζονται σε κάθε κόµβο της

προς σχεδιασµό επιφάνειας. Η αποτελεσµατικότητα της επιβολής των περιορισµών

κατ΄ αυτόν τον τρόπο ελέγχεται επιβάλλοντας περιορισµούς καµπυλότητας και πε-

ϱιορισµούς εγκλεισµού. Για να καλυφθεί και η επιβολή απλούστερων περιορισµών

σε NURBS, δείχνεται και διαφορίζεται ο περιορισµός του όγκου.

Το ανεπτυγµένο λογισµικό εφαρµόζεται στο σχεδιασµό / ϐελτιστοποίηση δια-

ϕόρων αντικειµένων όπως επιβατικά αυτοκίνητα, εισαγωγές κινητήρων, πτερύγια

συµπιεστών, αγωγοί ψύξης και εισαγωγής οχηµάτων και αγωγοί ψύξης πτερυγίων

στροβιλοµηχανών.

Λέξεις κλειδιά: Υπολογιστική Ρευστο-∆υναµική, Σχεδιασµός µε τη ϐοήθεια Υ-

πολογιστή, Συνεχής Συζυγής Μέθοδος, Συνοριακή Περιγραφή Επιφανειών, Βελτι-

στοποίηση Μορφής, NURBS, Περιορισµοί

xi

Acronyms

AD Automatic Differentiation

ADOL-C A Package for Automatic Differentiation of Algorithms Written in C / C++

ALM Augmented Lagrangian Method

BFGS Broyden Fletcher Goldfarb Shanno

BREP Boundary Representation

CAD Computer Aided Design

CFD Computational Fluid Dynamics

CPU Central Processing Unit

CV Complex Variables

DD Direct Differentiation

EA Evolutionary Algorithm

EFS Equivalent Flow Solution

E-SI Enhanced Severed Integral

FD Finite Differences

FFD Free Form Deformation

FI Field Integral (Adjoint Method)

GDM Grid Displacement Method

HVAC Heat Ventilation and Air Conditioning

IGES Initial Graphics Exchange Specification

IODA Industrial Optimal Design using Adjoint CFD

ITN Innovative Training Network

KKT Karush Kuhn Tucker

MOO Multi Objective Optimization

NTUA National Technical University of Athens

NURBS Non-Uniform Rational Basis Splines

OCCT OpenCascade Technology

OPENFOAM Open Field Operation and Manipulation

PC Personal Computer

PCOpt Parallel CFD & Optimization Unit

PDE Partial Differential Equation

RANS Reynolds Averaged Navier Stokes

RBF Radial Basis Functions

SD Sensitivity Derivatives

SI Severed Integral

SIMPLE Semi Implicit Method for Pressure Linked Equations

SOO Single Objective Optimization

STEP Standard for Exchange of Product Data

STL Stereolithography

SQP Sequential Quadratic Programming

SVD Singular Value Decomposition

xii

Acknowledgments

I would like to thank all those who have contributed to the completion of this

PhD thesis. First of all, I would like to sincerely thank my thesis advisor, Kyriakos

Giannakoglou, Professor NTUA, for entrusting to me a challenging thesis topic,

for his constant investment in time and effort along the duration of the thesis, our

frequent and meaningful scientific conversations and the assiduous proofreading

of this text. Our collaboration during my Diploma thesis inspired me to pursue a

PhD and his personal guidance led to its completion.

I would also like to express my gratitude towards my industrial advisors, Dr.

Eugene de Villiers and Paolo Geremia of Engys Ltd. and Engys Srl. respectively,

for the supervision of the work conducted during my time at Engys. Their con-

stant investment in time and effort from day one was of great importance for the

completion of this thesis.

I would also like to thank Dr. Spyros Voutsinas, Professor NTUA and Dr.

Konstantinos Mathioudakis, Professor NTUA, for their comments on the thesis

presentation and their participation in the advisory committee of my thesis.

I would like to express my sincere thanks to the entirety of the IODA ITN,

Research Fellowship Programme funded by the European Commission under

Marie Skłodowska-Curie Actions, for funding the first 3 years of this work and

all the participants, advisors and research fellows for the collaboration during

the project. The unique experience of conducting research towards aligned di-

rections in such a scientific community will remain unforgettable to me. Special

thanks to Dr. Herve Legrand, Project Manager at OpenCascade Paris and Julien

Jomier, Chief Executive Officer at Kitware Lyon for kindly hosting me during my

secondments at OCC and Kitware.

I am deeply grateful to the members of the research group of the Parallel

CFD & Optimization Unit, NTUA (PCOpt), for their collaboration and the friendly

environment during my secondment at NTUA. Especially, I would like to offer my

sincerest gratitude to Dr. Evangelos M. Papoutsis-Kiachagias for the the scientific

cooperation during our joint publication and the invaluable advice that was offered

to me during the entirety of my stay with the group. Special thanks goes to

Dr. Varvara Asouti for the administration of the computational infrastructure at

PCOpt and the technical support that was provided to me when requested.

Finally, I would like to express the deepest gratitude to my family and close

friends, all of whom supported me morally during the toughest times and were

there for me throughout this journey.

xiii

To my family for their endless love and encouragement.

To my friends for the joyful distractions.

To Eleftheria for her advice, her patience and her faith in me.

Learn something once,
and it’s yours for life.

But first you have
to be a dreamer.

xiv

Contents

Contents i

1 Introduction 1

1.1 CFD and Optimization . 2

1.2 CAD Into the Optimization Loop . 4

1.2.1 Feature Tree Parameterization 6

1.2.2 BRep and NURBS Geometry 7

1.2.3 Trimmed Patches . 9

1.3 Mesh-to-CAD Literature Review . 10

1.3.1 Surface Segmentation Techniques 10

1.3.2 Surface Fitting Techniques 13

1.4 Objectives of this Thesis . 14

1.5 Thesis Outline . 15

2 The Adjoint Method 17

2.1 The State Equations . 17

2.2 The Discrete Adjoint Technique . 19

2.3 The Continuous Adjoint Technique 20

3 CAD-to-Surface Grid 27

3.1 Literature Survey of Surface Grid Generation Techniques 27

3.1.1 Structured Surface Grids . 28

3.1.2 Unstructured Surface Grids 28

i

ii Contents

3.2 The Proposed Method . 30

3.2.1 Shape Healing . 30

3.2.1.1 Octree Search for Topological Relations 32

3.2.1.2 The Geometric Tests for Hanging Edges 33

3.2.1.3 Sewing Neighbouring Patches 35

3.2.2 The Background Grid and the Size Map 39

3.2.2.1 The Delaunay Algorithm for the Background Grid . . 39

3.2.2.2 The Size Map . 43

3.2.3 The Advancing Front Algorithm 47

3.3 Applications . 53

3.3.1 The Drivaer Passenger Car . 54

3.3.2 A Ship’s Propeller Blade . 55

3.3.3 The S-Bend Climate Duct . 57

3.4 Remarks . 57

4 The Geometry Morphing Technique 59

4.1 Literature Review of Parameterization Methods 59

4.1.1 CAD-free Methods . 60

4.1.2 CAD-based Methods . 62

4.1.3 The Proposed Method . 64

4.2 Formulating the new Parameterization by imposing C0 and C1 Con-

straints . 65

4.2.1 Imposing C0 Continuity Constraints 65

4.2.2 Imposing C1 Continuity Constraints 70

4.2.3 Constraining Multi-Patch Models 71

4.2.4 Practical Computation of a Null Space 74

4.2.5 The Optimization Process . 76

4.3 Applications . 76

4.3.1 Optimization of the Mid-Section of a 3D Duct 77

Contents iii

4.3.2 Optimization of the DrivAer Car Model 82

4.4 Remarks . 88

5 Constraining the NURBS-based Adjoint Optimization 89

5.1 Literature Survey of Constraint Imposition 90

5.2 The Proposed Method . 91

5.3 Constraint Imposition . 92

5.3.1 The Bounding Surface Constraint 92

5.3.2 The Curvature Constraint . 94

5.3.3 Transforming Node-wise Constraints to a Single Equality Con-

straint . 96

5.3.4 The Volume Constraint . 99

5.4 Applications . 100

5.4.1 Optimization of a Double-Outlet Duct 100

5.4.2 Optimization of a 3D U-Bend Duct 104

5.4.3 Optimization of the Side Mirror of the DrivAer Car Model . . . 109

5.4.4 Optimization of the S–bend Duct 115

5.4.5 Optimization of the Extruded NACA0012 Airfoil 117

5.5 Remarks . 118

6 Applications 119

6.1 The Compressor Stator of Technical University of Berlin 119

6.1.1 Generating the CFD Mesh . 122

6.1.2 Setting up the Parameterization 124

6.1.3 Flow Conditions and Optimization Targets 126

6.1.4 Unconstrained Optimization 128

6.1.5 Constrained Optimization . 129

6.1.6 Remarks . 131

6.2 The Concept Intake Manifold . 132

iv Contents

6.2.1 Generating the CAD Geometry &the CFD Mesh 133

6.2.2 Setting Up the Optimization 135

6.2.3 The Optimization Run . 135

6.3 The ERCOFTAC UFR 4-06 Diffuser 136

6.3.1 The CFD Mesh . 137

6.3.2 Setting up the Parameterization 138

6.3.3 Flow Conditions and Optimization Targets 139

6.3.4 Minimizing Total Pressure Losses 140

6.3.5 Maximizing the Static Pressure Gain 141

6.3.6 Weighted Single Objective Optimization 143

7 Conclusions 145

7.1 Novel Contributions . 147

7.2 Suggestions for Future Work . 148

APPENDICES 149

A The Watson-Lawson Algorithm 151

B Advancing Front Validity Tests 153

C Point Inversion in Curve, Surface and Volume NURBS 155

Chapter 1

Introduction

In the last decades, aerodynamic simulations and design optimization have been

subjects of broad research in both academia and industries. Computational Fluid

Dynamics (CFD) simulations now play an immense role in aerodynamic product

designs as they allow the testing of various shapes without the necessity to actu-

ally manufacture them. In the same direction, aerodynamic shape optimization is

a simulation-driven design process which allows for reaching various optimality

conditions (minimization, maximization of various aerodynamically-related objec-

tive functions).

CFD and aerodynamic optimization allow for a more cost-effective implemen-

tation of product design chain. However, they are not a panacea, as they require

considerable amounts of time and expertise in order to properly function and

produce results. Improperly setting up a simulation test case can reduce the

accuracy of results and not selecting a parameterization that captures the initial

design intent, can have severe consequences from the designer point of view. The

design intent can include manufacturability criteria and various geometric con-

straints. Furthermore, it is a common requirement in industrial environments

that an optimized shape is further fine-tuned by engineers. For that reason, re-

searchers have attempted to include optimization in the design chain as much as

possible, by introducing elements of Computer Aided Design (CAD) in the opti-

mization loop. Keeping a link to the industrial design framework "alive" generates

the possibilities for an optimization to deliver a geometry in CAD format.

This PhD thesis focuses on keeping aerodynamic shape optimization connected

to the CAD framework and in specific (a) connecting a CAD shape to the surface

grid and, in turn, to the surrounding computational mesh, (b) establishing an

open-format CAD-based parameterization and (c) imposing geometric constraints

while optimizing the shape.

1

2 1. Introduction

1.1 CFD and Optimization

CFD techniques were developed over the years and were constantly refined using

many validation and assessment procedures. A first major example of numeri-

cal solutions to a fluid mechanics problem was [?], that compiled massive tables

of flows over sharp cones by numerically solving the governing differential equa-

tions [?]. These solutions were carried out on a primitive digital computer at the

Massachusetts Institute of Technology. However, the first generation of CFD so-

lutions appeared during the 1950s and early 1960s, spurred by the simultaneous

advent of computers and the need to solve the high velocity, high-temperature

re-entry body problem. Such physical phenomena generally cannot be solved an-

alytically, even for the simplest flow geometry. Therefore, numerical solutions of

the governing equations on a digital computer were an absolute necessity. Exam-

ples of these first generation computations are [?,?,?,?], all of them for inviscid

flows.

More recently, CFD techniques are applied in a much broader scientific spec-

trum like HVAC (Heat-Ventilation and Air Conditioning) [?], nanofluid physics [?],

biology-related fluid mechanics [?] and industrial cases and optimization [?, ?].

Moreover, they portray a crucial role in astrophysics, oceanography, oil recovery,

architecture, and meteorology. Various numerical algorithms and software have

been developed to perform CFD analysis. Due to the recent advancements in com-

puter technology, numerical simulation for physically and geometrically complex

systems can also be evaluated using PC clusters. Large scale simulations even

in multi-flow problems on meshes with millions and billions of elements can be

achieved within a few hours via super-computers. However, it is completely in-

correct to think that CFD describes a mature technology, as there are numerous

open questions related to heat transfer, combustion modeling, turbulence, and

efficient solution methods or discretization methods, etc.

Optimizing the geometry of a shape subject to some parameterization, pertains

to the adjustment of said parameters (design variables) so that an objective func-

tion is minimized / maximized. Examples of objective functions are lift and/or

drag (coefficients) of a geometry and the total pressure losses between the inlet(s)

and outlet(s) of a flow domain. Optimization methods are classified based on the

strategy used to update the design variables.

Stochastic optimization methods [?,?,?] mimic natural procedures (including

but not limited to evolutionary techniques) in order to update the design variables.

The CFD software that evaluates the objective function is treated by the optimiza-

tion algorithms as a "black box", simply to assess all candidate solutions. The

main examples of such algorithms are Evolutionary Algorithms (EAs) [?], Sim-

ulated Annealing [?] and Particle Swarm Optimization [?]. Their non-intrusive

nature makes the application of stochastic methods to any problem easy and

straightforward. Furthermore, constraint imposition comes naturally and these

1.1. CFD and Optimization 3

methods can identify global minima / maxima if left to run for an adequate num-

ber of evaluations [?]. Their disadvantage is that they are overly time consuming

as they require many objective function evaluations. Considering that each eval-

uation requires a full CFD solution, makes it apparent how impractical they can

become. Quite a few remedies to this problem [?,?] have been proposed but their

further discussion is beyond the thesis’ scope.

On the other hand, deterministic (gradient-based) optimization methods [?,?,

?,?] denote all algorithms that follow a rigorous mathematical approach to pursue

optima. A common term to describe this field is mathematical programming

and is divided into two main categories: line-search [?,?] and trust-region [?,?].

Gradient-based methods rely most commonly on the gradient of the objective

function w.r.t. the design variables of the optimization (sensitivity derivatives).

In cases of more sophisticated methods, second derivatives can also be required.

For this reason, the exact or approximate Hessian matrix [?, ?] is computed.

Gradient-based methods are in general much faster than stochastic methods as

they require less evaluations of the objective function. However, they can stall by

becoming trapped in local optima.

In cases of aerodynamic shape optimization, major changes in baseline ge-

ometries are seldom desired. Therefore, optimization methods that compute local

optima are often sufficient. That, in conjunction with the lower computational

cost of gradient-based methods, makes them ideal for cases shown in this thesis.

The key to a successful implementation of a gradient-based optimization method

is the computation of the gradient of an objective function J w.r.t. a design vari-

ables vector b⃗ of size N (∇J = (dJ/db1, · · · dJ/dbN)). In CFD-based optimization,

the analytical computation of J or ∇J is not feasible and, therefore, numerical

approaches must be pursued [?].

The first and easiest method to compute a gradient is by finite differences

(FD) [?]. The idea is to perturb each design variable bi by a small value ϵ and

evaluate J for the initial and perturbed variables. In such a case, the derivative

is given by

dJ

dbi
=
J(b1, b2, · · · , bi + ϵ, · · · , bN)− J(b1, b2, · · · , bi, · · · , bN)

ϵ

which is a first-order (forward difference) scheme. A second-order scheme (central

differences)

dJ

dbi
=
J(b1, b2, · · · , bi + ϵ, · · · , bN)− J(b1, b2, · · · , bi − ϵ, · · · , bN)

2ϵ

can be used instead, at a higher though computational cost.

An immediately obvious disadvantage of this method is that, in order to com-

pute ∇J , one must evaluate J , N times. This is impractical as, in industrial

cases, N is usually a large number. A second disadvantage of this method is that

4 1. Introduction

the accuracy of dJ/dbi depends greatly on the choice of ϵ. Too large ϵ values lead

to low accuracy in the derivatives whereas too small values can create round-off

errors due to the division of two "almost zero" numbers. In practice, for each

variable bi a trial and error approach must be followed in order to compute a good

enough value for ϵ (which obviously adds to the tally of CFD evaluations).

Another gradient computation method is the complex variables (CV) method

[?]. The idea behind this method is to pertub each bi in the complex plane by iϵ
(where i =

√
−1 is the imaginary basis). It can be shown that [?]

dJ

dbi
=
Imag [J(b1, b2, · · · , bi + iϵ, · · · , bN)]

ϵ

provides the derivative, where the Imag operator denotes the imaginary part of the

expression inside the parenthesis. Computing a derivative with the CV method

overcomes the ϵ-related accuracy issue of FD. However, it does not change the fact

the number of CFD evaluations are still proportional to N . Furthermore, the CV

method requires that the solver and its accompanying utilities must be changed

to accommodate complex, rather than real, variables.

The most efficient method for computing ∇J is the method of adjoint variables

[?,?,?,?,?,?,?,?,?]. This method treats the optimization problem as constrained

by the primal (or state) equations and, by doing so, is able to compute ∇J with

a computational cost that is independent of the number of design variables. The

continuous adjoint method is used in all cases shown in this PhD thesis. An

overview of adjoint methods is presented in Chapter 2.

1.2 CAD Into the Optimization Loop

For CFD-based shape optimization problems, the selection of an appropriate

shape parameterization technique is of utmost importance since it determines

the quality of the optimal solution. It is responsible for translating a set of design

variables into a shape, which is ultimately defined by a set of grid nodes lying

on the boundary of the CFD domain. The parameterization highly affects the

shapes generated throughout the optimization and, consequently, impacts the

convergence rate of the whole process as well as the quality of the optimal design.

In gradient-based methods, an important aspect is the differentiation of the

parameterization tool used. This allows for the computation of the δxk/δbn terms

(see Eq. 2.12, later on) along the parameterized region SWp, and (depending on

the type of parameterization) even inside Ω.

A detailed survey of shape parameterization techniques for CFD-based (and

also structural) optimization is presented in [?]. Broadly speaking, they can be

classified in CAD-free and CAD-based techniques. CAD-free parameterizations,

1.2. CAD Into the Optimization Loop 5

such as node-based ones, control the CFD boundary mesh nodes and, therefore,

usually lead to very rich design spaces. Their main drawback is that they result

in an optimized grid, which then has to be imported back to CAD in order to

obtain the optimized geometry for further analysis or manufacturing. This mesh-

to-CAD step is a non-trivial task and may require extensive user intervention as

well as approximations that can impair the quality of the computed shape. A brief

overview of mesh-to-CAD approaches is shown in Sec. 1.3. Moreover, it is usually

challenging to impose geometric constraints when using a CAD-free approach.

On the other hand, CAD-based parameterizations use either the native CAD

model parameters or the control points of Non-Uniform Rational B-Splines (NURBS)

[?] patches. The great advantage of incorporating the CAD software into the op-

timization loop is that, at each design cycle, the best-so-far shape is available in

a CAD format. In addition, it is more straightforward to incorporate geometric

constraints within a CAD framework and sometimes their imposition can a-priori

be guaranteed through the parameterization of the CAD model. On the other

hand, differentiating the CAD model’s parameterization to obtain δxk/δbn can

even be impossible, especially within an industrial environment, where commer-

cial (closed-source) CAD tools are often used.

This is mitigated when using NURBS, as these are a compromise that keeps the

geometry in a CAD-compatible format while being a surface-based parameteriza-

tion. Generally, they belong to a category of polynomial/spline parameterization

techniques which are widely used in the optimization of 2D aerodynamic shapes,

such as ducts, airfoils and turbomachinery blade sections. They allow for dif-

ferent levels of shape complexity, based on the number of control points used

as design variables and/or the polynomial degree, with direct control over the

shape’s continuity/smoothness. Moreover, geometric sensitivities of NURBS can

straightforwardly be obtained by differentiating their underlying rational polyno-

mial expression. Due to the generic BRep format (to be covered in Sec. 1.2.2) all

CAD models originating from any CAD package can be transferred via standard

files, such as STEP or IGES. BRep, which is described as a set of trimmed NURBS

patches, can be considered as a CAD-based parameterization. It is a common

practice to generate a CAD model via a native CAD parameterization and, then,

transform it to BRep. The BRep models used for the cases shown in this thesis

are all generated this way.

Recent research, in the literature, has been focused on how to effectively incor-

porate CAD-based parameterizations into adjoint-based optimization loops, and

various promising approaches have been investigated within the IODA ITN [?],

funded by the European Commission under Marie Skłodowska-Curie Actions. For

example, [?,?] computed geometric sensitivities (also referred to as design veloci-

ties) in commercial CAD packages through the application of FD between discrete

representations (i.e. surface triangulations) of the geometry before and after a

parameter perturbation. In [?], the CAD kernel developed at the von Karman

6 1. Introduction

Institute for turbomachinery design [?] was differentiated, using AD (ADOL-C)

in forward mode. ADOL-C was also applied by [?] for the differentiation of the

Open CASCADE Technology (OCCT) CAD kernel, which was used to perform the

CAD-based shape optimization of a U-bend cooling duct and a compressor stator

blade [?].

1.2.1 Feature Tree Parameterization

In a feature-based CAD modelling system, a model part is comprised of individual

features which are combined to represent an overall shape. Examples of such

features could be pads, pockets, holes, fillets, chamfers etc. These are mainly

defined via sketched features or dress-ups. Sketched features are created by

drawing 2D profiles and creating a 3D feature by extruding, rotating, sweeping

or lofting the sketch. Dress-ups are features like fillets and chamfers, which

are created directly on the solid model. Parameters controlling the generation of

these features are mainly real variables that control intuitively a shape (lengths,

angles, etc.) When creating a model within a CAD modelling system, relations

between existing features are created so that the value of one parameter is a

function of the values of other parameters of the model. These relations define the

design intent of the model and, once applied, the parameters cannot be controlled

independently. In the process of model generation, the CAD system automatically

creates a series of parameters and relationships in the background. The number

of such parameters can range from hundreds to thousands, depending on the

model complexity.

Figure 1.1: Example CAD model controlled via a feature tree. Features are generated

in a top-down manner, meaning that more descriptive features of the model are

generated first. [?].

The relationship between the top-level (user defined parameters) and the bot-

tom level (CAD system defined parameters) is called the feature tree. Parameteriz-

1.2. CAD Into the Optimization Loop 7

ing a geometry directly via the feature tree can be advantageous w.r.t. the capture

of the design intent but disadvantageous w.r.t. its coupling with the adjoint tech-

nique. This is because, the source parameterization that a CAD package uses is

closed-source and hardly accessible.

1.2.2 BRep and NURBS Geometry

BRep [?, ?] is a method for representing shapes in solid modeling. A solid is

represented by the BRep format using surface elements defining the interface

between solid and non-solid volumes. The BRep format is composed of two parts:

topological data and geometry. The topology of a BRep is created using vertices,

edges, faces, shells and, finally, solids. Regarding their underlying geometry:

1. Vertices: A vertex is merely a point in space.

2. Edges: Edges are represented by curves bounded by the points describing

their boundary vertices. In the general case, the geometry of an edge is only

a segment of its underlying curve, since the topological bounds of an edge

and the geometrical bounds of a curve are not strictly identical.

3. Faces: Faces are represented by surfaces bounded by a closed loop of edges.

Similarly to edges, the geometry of faces is, in general, a part of its underlying

surface, since its boundary loop of edges does not coincide with the natural

bounds of the surface.

4. Shells: A shell is composed of multiple faces connected to each other via

their bounding edges and has no particular underlying geometry.

5. Solids: Similarly to a shell, a solid does not have an underlying geometry

and is, practically, the volume bounded by a collection of shells.

The mathematical description of curve and surface elements of a BRep model

could vary. Elementary curves or surfaces such as circular arcs, planes or cylin-

ders etc., could be stored explicitly. However, more complex elements are stored in

parametric form, most commonly NURBS. The conversion from elementary curves

or surfaces to NURBS is trivial, thus the BRep geometry will always be handled

as NURBS geometry for uniformity.

NURBS geometry is a generalization of B-spline geometry. B-splines basis

functions are defined according to the recursive formula [?]

8 1. Introduction

Np
i (u) =

u− ui
ui+p − ui

Np−1
i (u) +

ui+p+1 − u

ui+p+1 − ui+1

Np−1
i+1

N1
i (u) =

{
1 ui ≤ u ≤ ui+1

0 otherwise
(1.1)

where p is the user-defined degree of the functions, i is the basis index, u is the

parameter and the indexed u variables are the knots taken from a non-decreasing

knot vector of length s: U =
[
u1 u2 · · · us−1 us

]T
. The B-spline basis func-

tions can be used to interpolate a number of control values n (i ∈ [1, n]), with

s = n+ p+ 1.

In the following chapters, NURBS shapes consist of multiple faces bounded by

edges. Points on the edges are expressed in terms of a parametric coordinate u
as:

C⃗(u) =

∑n
i=1N

p
i (u)wiP⃗i∑n

k=1N
p
k (u)wk

=
n∑

i=1

Rp
i (u)P⃗i (1.2)

where n is the number of control points P⃗i of each curve and wi the respective

weights.

Figure 1.2: A single NURBS patch along with its 4 × 4 control polygon in red. The

patch is created with nu = nv = 4, pu = pv = 3.

Similarly, points on the surfaces which represent faces are expressed in terms

1.2. CAD Into the Optimization Loop 9

of a pair of parametric coordinates (u, v) as:

S⃗(u, v) =

∑nu

i=1

∑nv

j=1N
pu
i (u)Npv

j (v)wi,jP⃗i,j∑nu

k=1

∑nv

l=1N
pu
k (u)Npv

l (v)wk,l

=
nu∑
i=1

nv∑
j=1

Ri,j(u, v)P⃗i,j (1.3)

where nu, nv denote the number of control points P⃗i,j and pu, pv the bases’ degrees

per parametric direction. wi,j denote the control point weights.

For the NURBS surfaces used in Chapter 4, Eq. 1.3 will be written with a

single instead of a double sum after setting m = j + (i− 1)nv,m ∈ [1, nunv].

S⃗(u, v) =
n∑

m=1

Rm(u, v)P⃗m (1.4)

where n = nunv (not to be confused with variable n of Eq. 1.2).

1.2.3 Trimmed Patches

Trimmed NURBS patches enable the representation of a much higher variety of

shapes with less complex surfaces. The trimming procedure involves the creation

of a closed wire of curves lying on the the surface.

Figure 1.3: Creation of a circular disk using a rectangular planar surface and a

circular curve. Top-left: The original surface defined by four co-planar control points,

one at each corner. Top-right: The original surface along with the circular curve which

lies on it. Bottom: The outcome of the trimming process.

The surface is then trimmed along this wire which becomes the new surface

10 1. Introduction

bound. The number of curves the wire consists of is arbitrary and, thus, a multi-

sided patch can be created using a single NURBS surface. A simple example of

the trimming process is shown in Fig. 1.3. where the goal is to create a circular

disk using a planar surface with pu = pv = 1.

1.3 Mesh-to-CAD Literature Review

In cases where a CAD-free approach is used, the geometry described by the op-

timal shape’s boundary mesh has to be approximated with high fidelity by a

high-order geometric standard that is also CAD-compatible. The mesh-to-CAD

conversion deals with this challenge by approximating the boundary mesh using

NURBS patches. The mesh-to-CAD conversion belongs to the family of shape

reverse engineering methods. These methods mainly consist of three phases.

1. Surface segmentation: In general, one could try to fit a surface mesh

over the whole surface. However, the continuously growing complexity of

aerodynamic shapes will make a high fidelity representation impossible.

Moreover, a robust global parameterization of the shape would require a

3D (x, y, z) to 2D (u, v) mapping of every point of the cloud, that would

maintain the connectivity of the external surface grid (no elements should

be inverted during the mapping). In order to avoid these drawbacks of global

fitting, the segmentation of the surface is pursued. The resulting smaller

and flatter surfaces (patches) enable faster and easier parameterization. It

is obvious that the more complex an object is, the more patches are required

and more continuity conditions (1st, 2nd derivatives etc.) must apply along

the borderlines.

2. Surface fitting: The process of surface fitting includes two sub-steps.

Firstly, each point of the patch should be mapped onto 2D, in order to

acquire its corresponding parameters. Secondly, these parameters should

be used as a starting point to compute the remaining NURBS requisites

(knots, weights, control point coordinates).

3. CAD model creation: The last step involves the use of standard STEP or

IGES file writers to produce the final CAD-compatible object.

1.3.1 Surface Segmentation Techniques

Segmenting a discrete surface (represented by the boundary of a mesh) can be

a non-trivial task. It requires a very effective application of feature detecting,

through sharp vertex or edge identification. In [?], a segmentation technique is

applied to arbitrary triangular grids. The approach is based on two steps: a

1.3. Mesh-to-CAD Literature Review 11

boundary based region segmentation and a boundary rectification. During the

first step, a pre-processor identifies sharp edges and vertices and the curvature

tensor is calculated for each vertex. Then, vertices are grouped into clusters

using K-means clustering, according to their principal curvature values κ1 and

κ2. A region growing algorithm is then used to generate triangles into connected

labelled regions according to vertex clusters. Finally, a region adjacency graph

is processed and reduced in order to merge similar regions according to several

criteria such as curvature similarity, size and common perimeter. During the

second step, boundary edges are extracted from the previous region segmentation

step. Then, for each of them, a metric is computed which notifies a degree of

correctness. The angles between a boundary edge and the minimum curvature

directions of its vertices represent a good boundary score. According to this score,

estimated correct boundary edges are marked and used in a contour tracking

algorithm to complete the final correct boundaries of the object. The contour

tracking algorithm makes sure that each surface patch consists of closed edges.

Resulting patches can be parameterized by projecting their points onto a base

surface.

In [?], a hybrid approach is used. The method is applied to triangular grids and

uses two algorithms in conjunction: a vertex classification method and a feature-

edge identification method. The vertex-based algorithm works by assigning a

scalar quantity λ to each vertex and, then, by grouping vertices with similar (with

some tolerance) λ into patches. A suitable choice for this quantity could be the

local curvature. The feature-edge based algorithm involves the computation of the

normal vector of all triangular faces and, then, the edges between faces the normal

vectors of which form angles greater than a given threshold are considered as

feature edges. Those edges are, in turn, the boundaries of a patch. After defining

the feature edges and vertices, the method applies the segmentation algorithm

based on the computed λ values.

The segmentation method proposed in [?] is based on the concept that any

primitive object can be constructed as a sweep of a parametric surface (cross-

section) on a 3D-space curve. The method is, therefore, divided into two parts: (a)

identification of primitives "hugged" by 3D surfaces and (b) identification of the

3D curves and the respective sweeping surfaces (skeletonization).

One of the most popular surface segmentation techniques is the watershed

method which has best been described by [?]. The watershed algorithm calculates

a height function for every vertex of a boundary mesh. The function could be

(for a 3D case) the curvature at each vertex or the geodesic distance from some

already defined feature edge. In more complex surface combinations, different

geometric functions are preferred. Now, considering that every surface could be

transformed into a 2D object (planar) without any violation of topology, then every

vertex on that surface requires two parametric coordinates to be located: u and

v. The height function h changes at each surface location, thus, h = f(u, v). The

12 1. Introduction

visualization of h in 3D would be similar to the one shown in Fig. 1.4. This gives

some insight to the naming of the method: local minima of the height function and

the regions surrounding them form catchment basins, while continuous iso−h
lines form plateaus. Plateaus could be thought as the waterlines that appear if the

basins are flooded. Maxima of h define watershed lines or (watershed plateaus)

that create segmentation boundaries. After defining the regions that surround

local minima and maxima, a labelling process with adjacency tree creation is

initiated. The vertices of the surface are, then, grouped based on which basin

they belong to.

Figure 1.4: A visualized height function (red) along with a watershed line. [?].

Based on the watershed algorithm, many methods have been devised. A prime

example is the fast marching watershed algorithm shown in [?]. The coupling

of the classic watershed method with the Fast Marching algorithm [?] allows for

computing the shortest geodesic paths from a point of a mesh to specified feature.

There are three steps in the algorithm: (a) use of a hill-climbing algorithm to wa-

tershed segment a triangular grid, (b) definition of a height map appropriate for the

minima rule using local principal curvatures and (c) application of morphological

operations to improve the connectivity of the resulting segmentation.

Other algorithms introduce similarity parameters such as slippage [?]. Such

algorithms aim to reconstruct a design feature tree (similar to a CAD package’s)

by trying to match regions of the grid with primitive objects and splines. Slippage

is the deviation of the point cloud from these primitives.

The above mentioned methods can work well on their own. However, for more

complex shapes, coupling with auxiliary methods may, sometimes, be necessary.

For instance, [?] applied a set of tests to the points of the boundary of a mesh

which defined the geometry of an object. Those tests can indicate if the points

at a neighbourhood of the boundary mesh can form primitives. The tests are

based on indicators which must be computed at each point at a given part of a

1.3. Mesh-to-CAD Literature Review 13

grid. The indicators could be geometric, similarity or error metrics. Geometric

indicators could be normal vectors, curvatures, best fitting axis of revolution etc.

Error indicators could be normalized errors of least-squares fitting. Similarity

indicators result from the deviation of geometric and error indicators within a

region. After computing indicators, some statistical tests take place to define if

the measured indicators and the primitive they point to is acceptable and within

a statistical trust region.

In [?], the target is to segment a surface and achieve the easiest possible

mapping from 3D to 2D. It involves genus reduction and feature identifications

through Reeb graphs.

1.3.2 Surface Fitting Techniques

Surface fitting is the main step of a shape reverse engineering algorithm. Generally

speaking, the fitting process consists of two steps: (a) parameterization of the

points to be fitted i.e. a 3D to 2D mapping of all the points and (b) the computation

of the surface. Surface fitting can be case-specific (applied to a specific type of

geometry) or more generalized. In the latter case, the fitting algorithm must almost

always be coupled with a surface segmentation method.

An example of a case-specific fitting technique is shown in [?]. This fitting

technique was used for representing wings and airfoils. It requires no segmenta-

tion of the grid as it utilizes a geometric processing of the grid points to acquire

a global parameterization. Then, a NURBS surface is computed in two steps:

Firstly, the weights of the control points are set equal to each other making the

NURBS surface a B-splines surface. The latter must interpolate the grid points for

the corresponding parameterization which gives a linear equation for calculating

initial control point positions. Secondly, starting from the computed initializa-

tions, the control point positions and the weights are optimized with a chosen

gradient-based method.

The method in [?] is another case-specific method that works best with objects

that can easily be described in spherical or cylindrical coordinates (i.e. surfaces

of revolution etc.). The method is best coupled with segmentation methods that

produce such primitive objects. Firstly, the coordinates of the points to be fitted

are transformed from cartesian to spherical or cylindrical coordinates. Then, a

base sphere or cylinder is defined which is used to compute the parameters that

correspond to each point. Finally, a NURBS surface is computed.

Another case-specific method is shown in [?] and it tackles fitting of human

bones. This application is not related to CFD but for the sake of completeness

it was deemed as a necessary addition. In this case, a voxel model is extracted

from the base surface to generate a rectangular net of curves. This is done by

projecting the exterior faces of the extracted voxels onto the base implicit surface.

After generating the interior points and tangential vectors along the boundaries

14 1. Introduction

in each rectangular region, a B-spline surface is reconstructed by interpolating

the rectangular array of points as well as the boundary derivatives.

Another algorithm, [?], comes from a more general mesh to NURBS technique

and it requires the segmentation of a given object. For each surface segment,

an initial base surface is computed and, on that surface, each point is projected

in order to acquire the parameterization. The base surface is itself a NURBS

surface that is computed with some of the grid nodes as control points. After the

parameterization is done, the NURBS control points and weights are computed

through a least squares fitting scheme.

None of the above mentioned methods (or any other in the literature) have

however been coupled with an adjoint tool for optimization. Furthermore, com-

mercial mesh to CAD exists but is not being considered since it would be difficult

to connect to the optimization framework. Coupling the display of adjoint sen-

sitivities with the CAD parameterisation and constraint definition interface can,

therefore, provide the opportunity for informed control of the optimization sys-

tem. Significant efficiency can also be realised by limiting parameter adjustments

to regions where significant benefits are likely to be realised. Thus, the use of a

commercial package for mesh-to-NURBS conversion is not an option, since there

is no connection with optimization tools.

It is obvious that, in order to pass from CAD-free to CAD-based optimization,

not only the mesh-to-CAD conversion, but also a methodology to define optimiza-

tion parameters (and constraints) on a CAD model, is required. Optimization

parameters however need to be adjusted before the optimization cycle starts. It is

thus logical to start the development of the methodology with the implementation

of the CAD based systems and the constraints definition interface.

1.4 Objectives of this Thesis

The work of this thesis aims to contribute to three main CAD-related topics, all

used in conjunction with adjoint-based optimization: (a) The CAD-to-Surface Grid

topic where a CAD model is automatically discretized while maintaining the link

of its discrete form to the CAD. (b) The CAD-based parameterization topic, where

a new CAD-based parameterization scheme is created to enable the inclusion

of standard CAD files into the optimization loop and, finally, (c) the constraint

definition topic, where the handling of various geometric constraints is shown.

In all topics, the geometry is assumed to be available via a standard file de-

sciption that contains the BRep described by NURBS patches. The geometry

contained in such files is then handled for each topic, separately. Initially, it is

discretized leading to the generation of a computational mesh around it. Then,

it is differentiated in a way that ensures watertightness and smoothness during

optimization. Finally, geometric constraints are imposed.

1.5. Thesis Outline 15

1.5 Thesis Outline

This PhD thesis consists of 9 chapters, including the current one. If necessary,

each chapter includes an individual literature review that covers its relevant top-

ics.

Chapter 2 presents a literature review on adjoint techniques (both discrete

and continuous) and briefly presents the continuous adjoint formulation that

was used in this PhD thesis.

Chapter 3 presents the development of a method for triangulating CAD mod-

els. A shape healing algorithm that solves geometric and topological defects is

developed. Mainly, a triangulation method based on an adapted Advancing Front

algorithm is described and developed. Various CAD geometries are then trian-

gulated to show the effectiveness of the algorithm and the programmed software.

The triangulated grids coming off CAD models can then be used as a basis to

mesh the space around (or inside of) them.

In chapter 4, the next step of an optimization is shown. In specific, a method to

parameterize a given BRep geometry is developed as the BRep itself is unsuitable

for optimization purposes. This stems from the fact that the trimmed patches of a

BRep must, firstly, be constrained because a potential pertubation of the NURBS

control points would generate geometric holes in the geometry. For this reason,

a method to constrain the control point displacement is proposed and tested in

various cases.

Chapter 5 is concerned with the imposition of geometric constraints. All con-

straints shown are imposed using surface definitions, thus making them ideal to

be coupled with the BRep format. In specific, packaging constraints are portrayed

along with maximum surface curvature and shape volume.

In chapter 6, the methods presented in chapters. 3 - 5 are all tested in var-

ious cases. In specific, in sec. 6.1 the methods are tested in the optimization

process of the stator case of the Technical University of Berlin. In sec. 6.2, all

the methods presented are tested in the case of a concept intake manifold duct.

Finally, in sec. 6.3, the methods of this thesis are tested by performing a Multi

Objective Optimization (MOO) on the well studied (from a simulation point of view)

ERCOFTAC UFR 4-06 diffuser case.

In the last chapter, conclusions are drawn and suggestions for future work are

made.

The author has used both the HELYX Open-Source CFD for Enterprise [?]

developed by ENGYS Srl and the OpenFOAM distribution developed by the PCOp-

t/LTT. In addition, the adjoint codes of both these CFD codes have been utilized

while performing optimization runs. All the methods and algorithms presented

in chapters. 3-5, are developed within the open-source CFD toolbox OpenFOAM,

version 2.3.1, the open-source CAD Kernel OpenCascade Technology version 7 [?]

and the SALOME platform version 8 [?].

16 1. Introduction

Chapter 2

The Adjoint Method

There is a long history of the use of adjoint equations in optimal control theory [?].

In CFD, the first use of adjoint equations for design was by [?], but within the

field of CFD in aeronautics, the adjoint was firstly used in [?,?,?,?,?,?] where

the adjoint approach for potential flow, the Euler equations and the Navier-Stokes

equations was developed. The complexity of the applications within these papers

also progressed from 2D airfoil optimization to 3D wing design and, finally, to

complete aircraft configurations. An overview of recent developments in adjoint-

based design methods is provided in [?]. Other relevant works can be seen in

[?, ?, ?, ?] on unstructured grids using discrete adjoint, and in [?, ?] in using

automatic differentiation software to create the adjoint code from an original CFD

code.

The pioneering works of PCOpt/NTUA have employed the constinuous adjoint

method in various real-world applications, in both aeronautical [?] and automotive

industries [?], [?], [?]. In [?] the steady continuous adjoint method was derived

for both inviscid and viscous flows while [?] addressed the unsteady continu-

ous adjoint method assisted by the proper generalized decomposition method.

Turbulent flows are tackled by [?] and [?] for both steady and unsteady flows

while [?] includes the cut-cell method with mesh adaptation in the adjoint code.

Further development of the cut-cell method allows for the handling of cavitating

flows in [?]. Topology optimization is handled by [?] while the handling of grid

sensitivities is shown in [?].

2.1 The State Equations

The adjoint method treats the optimization problem as constrained by the pri-

mal (or state) equations. For the incompressible, turbulent steady flows studied

here, these are the Reynolds-Averaged Navier-Stokes (RANS) equations. In order

to account for the turbulence, the Spalart-Allmaras [?] turbulence model is addi-

tionally solved and differentiated in a work firstly shown by PCOpt [?]. This is done

17

18 2. The Adjoint Method

in order to avoid making the "frozen turbulence" assumption [?] when computing

the SDs as, by doing so, their accuracy could significantly be damaged [?, ?].

Altogether, the state equations are

Rp = −∂vi
∂xi

= 0 (2.1)

Rv
i = vj

∂vi
∂xj

+
∂p

∂xi
− ∂τij
∂xj

= 0, i = 1, 2, 3 (2.2)

Rν̃ = vj
∂ν̃

xj
− ∂

∂xj

[(
ν + ν̃

σ

)
∂ν̃

∂xj

]
− cb2

σ

(
∂ν̃

∂xj

)2

− ν̃P(ν̃) + ν̃D(ν̃) = 0 (2.3)

R∆ =
∂(cj∆)

∂xj
−∆

∂2∆

∂x2j
− 1 = 0, cj =

∂∆

∂xj
(2.4)

and they correspond to the continuity, momentum, turbulence (Spalart-Allmaras)

and Hamilton-Jacobi equations. The Hamilton-Jacobi equation (Eq. 2.4) is solved

for the field ∆ which denotes the distance of cell centres from the nearest wall and

is required by the Spalart-Allmaras model. p, vi, τij denote the static pressure

divided by the density, the Cartesian velocity components and the stress tensor

components (τij = (ν + νt)
(

∂vi
∂xj

+
∂vj
∂xi

)
) respectively. Turbulent viscosity νt is

expressed in terms of ν̃ as follows

νt = ν̃fv1 (2.5)

The production and dissipation terms are given by

P(ν̃) = cb1Ỹ , D(ν̃) = cw1fw(Ỹ)
ν̃

∆2
(2.6)

where Ỹ is computed as

Ỹ = Y fv3 +
ν̃

∆2κ2
fv2 (2.7)

with Y =
∣∣∣eijk ∂vk

∂xj

∣∣∣ being the vorticity magnitude. The turbulence model functions

read

fv1 =
χ3

χ3 + c3v1
, fv2 =

1(
1 + χ

cv2

)3

2.2. The Discrete Adjoint Technique 19

fv3 =
(1 + χfv1)

cv2

[
3

(
1 +

χ

cv2

)
+

(
χ

cv2

)2
](

1 +
χ

cv2

)−3

χ =
ν̃

ν
, fw = g

(
1 + c6w3

g6 + c6w3

)1/6

g = r + cw2(r
6 − r) , r =

ν̃

Ỹ κ2∆2

and the constant values are as in table 2.1 [?]. Finally, eijk is the Levi-Civita

symbol.

Constant cb1 cb2 κ σ cw1 cw2 cw3 cv1 cv2
Value 0.1355 0.622 0.41 2/3 cb1

κ2 + 1+cb2
σ

0.3 2 7.1 5

Table 2.1: Values of constants used by the Spalart-Allmaras turbulence model.

Both primal and adjoint solvers were implemented within the open-source CFD

toolbox OpenFOAM. The PDEs given by Eqs. 2.1-2.4 and their adjoint counter-

parts (later derived in Eqs. 2.14-2.17), are discretized and solved on unstructured

grids using the cell-centered, collocated, finite-volume infrastructure provided by

OpenFOAM. The pressure equations for the aforementioned sets of PDEs are for-

mulated using a SIMPLE-like algorithm [?]. All convection terms are discretized

using second-order upwind schemes, central schemes are used for the diffusion

fluxes including a correction for non-orthogonality and the Gauss divergence

scheme is used for the computation of spatial gradients, with a linear interpo-

lation of the differentiated field values from the cell-centers to the cell-faces.

2.2 The Discrete Adjoint Technique

For the sake of completeness and due to its simpler expressions the Discrete Ad-

joint technique is firstly shown. After discretization, a vector of state equations

R⃗(U⃗ (⃗b), b⃗), that containts the residuals of Eqs.2.1-2.4 at every cell, becomes avail-

able. U⃗ denotes the vector containing all the state variables p, vi, νt and ∆ at every

cell.

By doing so, the following Lagrangian is formed

L(U⃗ (⃗b), b⃗) = J(U⃗ (⃗b), b⃗) + ψ⃗T R⃗(U⃗ (⃗b), b⃗)

where ψ⃗ denotes Lagrange multipliers (or adjoint variables). Differentiating the

Lagrangian w.r.t. b⃗ yields

20 2. The Adjoint Method

dL

d⃗b
=
∂J

∂b⃗
+
∂J

∂U⃗

dU⃗

d⃗b
+ ψ⃗T

(
∂R⃗

∂b⃗
+
∂R⃗

∂U⃗

dU⃗

d⃗b

)

=

(
∂J

∂b⃗
+ ψ⃗T ∂R⃗

∂b⃗

)
+

(
∂J

∂U⃗
+ ψ⃗T ∂R⃗

∂U⃗

)
dU⃗

d⃗b

In the expression above, the term dU⃗/d⃗b is both computationally expensive and

memory intensive regarding storage. Therefore, ψ⃗ is computed so as to nullify the

multiplier of dU⃗/d⃗b, namely

∂R⃗

∂U⃗

T

ψ⃗ = − ∂J

∂U⃗

T

which stand for the discrete adjoint equations. The computation of ψ⃗ is, practi-

cally, as expensive as the flow solution which makes apparent the strength of this

method: The time required to compute N derivatives is independent of N . The

sensitivity derivatives (SDs) are then given by

dL

d⃗b
=
dJ

d⃗b
=
∂J

∂b⃗
+ ψ⃗T ∂R⃗

∂b⃗

2.3 The Continuous Adjoint Technique

Contrary to the discrete adjoint, the continuous adjoint method, derives the ad-

joint equations in differential form prior to discretization of the state ones. The FI

continuous adjoint method is derived for the state equations (2.1 - 2.4) as shown

in the works of PCOpt [?,?,?,?,?,?,?,?]. This abbreviation is due to the presence

of Field Integrals in the final expression of the SDs. Different methods to handle

the grid sensitivities in the interior of the domain lead to different adjoint formu-

lations. The mathematical development of the FI adjoint, that is briefly presented

herein, makes use of the total variations of all differentiated quantities Φ, w.r.t.

to a design variable bn
δΦ

δbn
=
∂Φ

∂bn
+
∂Φ

∂xk

δxk
δbn

(2.8)

The first term on the right hand side (r.h.s) of Eq. 2.8 pertains to the Φ variations

caused by the update of the design variables at the same location. The second

2.3. The Continuous Adjoint Technique 21

term pertains to the deformation of space, i.e. the displacement of the boundary

and internal grid nodes (in the discrete sense).

Generally, J may consist of two integrals, a surface one JS and a volume one

JΩ [?,?,?,?,?,?]:

J = JS + JΩ =

∫
S

jSi
nidS +

∫
Ω

jΩdΩ (2.9)

where jS and jΩ are the integrands (defined along the boundary S and the volume

Ω of the computational domain). ni denotes components of the outward looking

normal vector n⃗ defined along the boundary S. or the objective functions used in

this thesis, the inclusion of the sub-integral JΩ is unnecessary and, therefore, all

JΩ related terms are omitted. Differentiating J = JS w.r.t to a design variable bn
gives [?,?,?,?,?,?]

δJ

δbn
=

∫
S

(
∂jSk

∂vi
nk + jvS,i

)
δvi
δbn

dS +

∫
S

(
∂jSi

∂p
ni + jpS

)
δp

δbn
dS +

∫
S

∂jSi

∂τkj
ni
δτkj
δbn

dS

+

∫
S

j ν̃S
δν̃

δbn
dS +

∫
SWp

jgSi,k

δxk
δbn

nidS +

∫
SWp

jSi

δni

δbn
dS +

∫
SWp

jSi
ni
δ(dS)

δbn
(2.10)

where jΦS accounts for terms multiplying δΦ/δbn inside surface integrals. Term

jgS accounts for the dependencies of jS on the boundary geometry and SWp de-

notes the parameterized parts of the wall regions of S. This distinction is made

as δxk/δbn = δni/δbn = δ(dS)/δbn = 0, along the non-parameterized (non-

displaceable) parts of S.

Next step is to define the augmented (Lagrangian) objective function. L as

L = J +

∫
Ω

qRpdΩ +

∫
Ω

uiR
v
i dΩ +

∫
Ω

ν̃αR
ν̃dΩ +

∫
Ω

∆αR∆dΩ (2.11)

where q, ui, ν̃α, ∆α
denote the adjoint pressure, velocity, the adjoint to the tur-

bulence model variable and distance from the wall, respectively. Differentiating L
w.r.t. bn yields

δL

δbn
=
δJ

δbn
+

∫
Ω

q
δRp

δbn
dΩ +

∫
Ω

ui
δRv

i

δbn
dΩ +

∫
Ω

ν̃α
δRν̃

δbn
dΩ +

∫
Ω

∆α δR
∆

δbn
dΩ (2.12)

Since the residuals of all the Partial Differential Equations (PDEs) are equal to

zero (before and after any design variables’ update), the gradient of the objective

function can be given by δL/δbn instead of δJ/δbn. In order to compute δL/δbn, the

differentiated terms inside the integrals of Eq. 2.12 are developed. This yields [?]

22 2. The Adjoint Method

δL

δbn
=

∫
S

(
uivjnj + ταijnj − qni + ν̃αν̃

CY

Y
ejql

∂vl
∂xq

ejkink +
∂jSk

∂vi
nk + jvS,i

)
δvi
δbn

dS

+

∫
S

(
uini +

∂jSi

∂p
ni + jpS

)
δp

δbn
dS +

∫
S

(
−uinj +

∂jSk

∂τij
nk

)
δτij
δbn

dS

+

∫
S

[
ν̃αvjnj −

ν̃α
σ

∂ν̃

∂n
+
∂ν̃α
∂n

(
ν + ν̃

σ

)
− 2ν̃α

cb2
σ

∂ν̃

∂n
+ j ν̃S

]
δν̃

δbn
dS

−
∫
S

ν̃αnj

(
ν + ν̃

σ

)
δ

δbn

(
∂ν̃

∂xj

)
dS +

∫
S

(
∆α∂∆

∂n
+∆αcjnj

)
δ∆

δbn
dS

+

∫
Ω

[
uj
∂vj
∂xi

− ∂(uivj)

∂xj
−
∂ταij
∂xj

+
∂q

∂xi
+ ν̃α

∂ν̃

∂xi
− ∂

∂xl

(
ν̃αν̃

CY

Y
emjk

∂vk
∂xj

emli

)]
δvi
δbn

dΩ

+

∫
Ω

{
−∂(vj ν̃α)

∂xj
− ∂

∂xj

[(
ν + ν̃

σ

)
∂ν̃α
∂xj

]
+

1

σ

∂ν̃α
∂xj

∂ν̃

∂xj
+ 2

cb2
σ

∂

∂xj

(
ν̃α
∂ν̃

∂xj

)
+ ν̃αν̃Cν̃ − (P −D) ν̃α +

∂ui
∂xj

(
∂vi
∂xj

+
∂vj
∂xi

)
δνt
δν̃

}
δν̃

δbn
dΩ−

∫
Ω

∂ui
∂xi

δp

δbn
dΩ

+

∫
Ω

[
−2

∂

∂xj

(
∆α ∂∆

∂xj

)
+ ν̃ν̃αC∆

]
δ∆

δbn
dΩ +

∫
Ω

(
−uivj

∂vi
∂xk

− uj
∂p

∂xk
− ταij

∂vi
∂xk

+ ui
∂τij
∂xk

+ q
∂vj
∂xk

+Θjk

)
∂

∂xj

(
δxk
δbn

)
dΩ +

∫
SWP

jSg
i,k

δxk
δbn

nidS +

∫
SWP

jS,i
δ(nidS)

δbn

(2.13)

where Θjk is defined as

Θjk = −ν̃αvj + ν̃α
∂

∂xj

[(
ν + ν̃

σ

)
∂ν̃

∂xj

]
−
(
ν + ν̃

σ

)
∂ν̃α
∂xj

∂ν̃

∂xk

− ν̃αν̃
CY

Y
eiql

∂vl
∂xq

eijλ
∂vλ
∂xk

+ 2ν̃α
cb2
σ

ν̃

∂xj

∂ν̃

∂xk
− 2∆α ∂∆

∂xj

∂∆

∂xk

The additional degrees of freedom introduced to Eq. 2.11 in the form of the adjoint

variables are used to nullify the dependence of Eq. 2.13 on the variations of the

primal variables. Otherwise, the derivatives of the state variables w.r.t. the design

variables would have to be computed through Direct Differentiation (DD) [?] of

the state equations (Eq. 2.1 - 2.4) at a cost equal to N Equivalent Flow Solu-

tions (EFS). An EFS stands for the computational cost of a CFD simulation. The

elimination of the expressions multiplying the derivatives of the primal variables

results to as many adjoint PDEs as the primal ones per objective function, along

with the corresponding boundary conditions and the SD expression. Solving the

adjoint PDEs has almost the same cost as the solution of the primal PDEs (1 EFS).

2.3. The Continuous Adjoint Technique 23

Thus, by using the adjoint method during each optimization cycle, the cost (apart

from the primal solution cost) of computing the derivatives of all the objective

functions is equal to M EFS, where M is the number of objective functions. An

in-depth analysis of the derivation of the adjoint PDEs can be seen in PCOpt’s

works of [?,?,?]; their final expressions are:

Rq = −∂ui
∂xi

= 0 (2.14)

Ru
i = uj

∂vj
∂xi

− ∂(vjui)

∂xj
−
∂ταij
∂xj

+
∂q

∂xi
+ ν̃α

∂ν̃

∂xi
− ∂

∂xl

(
ν̃αν̃

CY

Y
emjk

∂vk
∂xj

emli

)
= 0 , i = 1, 2, 3 (2.15)

Rν̃α = −∂(vj ν̃α)
∂xj

− ∂

∂xj

[(
ν + ν̃

σ

)
∂ν̃α
∂xj

]
+

1

σ

∂ν̃α
∂xj

∂ν̃

∂xj
+ 2

cb2
σ

∂

∂xj

(
ν̃α
∂ν̃

∂xj

)
+ ν̃ανCν̃ − (P −D)ν̃α +

∂ui
∂xj

(
∂vi
∂xj

+
∂vj
∂xi

)
δνt
δν̃

= 0 (2.16)

R∆α = −2
∂

∂xj

(
∆α ∂∆

∂xj

)
+ ν̃ν̃αC∆ = 0 (2.17)

After satisfying the field adjoint equations of Eqs. 2.14-2.17 there are still a

few remaining terms in Eq. 2.13 that contain the variations of the state variables

along the boundaries S (inlets, outlets, symmetry planes), parameterized walls

SWp and non-parameterized walls SWnp. Nullifying these expressions gives rise to

the adjoint boundary conditions [?]. Along the inlet boundaries SI , SWp and SWnp

ujnj = u⟨n⟩ = −∂jSI ,i

∂p
ni − jpSi

uI⟨t⟩ =
∂jSI ,k

∂τij
nkt

I
inj +

∂jSI ,k

∂τij
nkt

I
jni

uII⟨t⟩ =
∂jSI ,k

∂τij
nkt

II
i nj +

∂jSI ,k

∂τij
nkt

II
j ni

where tIi , t
II
i denote the components of the Frenet tangent to the boundary unit

vectors, u⟨n⟩ the projection of the velocity vector onto the unit nornal to the bound-

ary and uI⟨t⟩ and uII⟨t⟩ the tangential velocity components to the boundary. Also,

∂q/∂n = 0 and ν̃α = 0. Regarding ∆α
, along SI , ∆

α = 0 and SWnp and SWp a zero

Neumann condition is imposed. Along the outlet boundaries SO, for the normal

component of the adjoint velocity the condition ∂u⟨n⟩/∂n = 0 is imposed and the

tangential components are given by

24 2. The Adjoint Method

v⟨n⟩u
l
⟨t⟩ + (ν + νt)

(
∂ul⟨t⟩
∂n

+
∂u⟨n⟩
∂tl

)
+ ν̃αν̃

CY

Y
ejql

∂vl
∂xq

ejkinkt
l
i +

∂jSO,k

∂vi
nkt

l
i + jSO,it

l
i = 0

Regarding ν̃α,

ν̃αvjnj +
∂ν̃α
∂n

(
ν + ν̃

σ

)
+ j ν̃S = 0

and q = ∆α = 0. On the symmetry planes SS, u⟨n⟩ = 0, ∂ul⟨t⟩/∂n = 0, ∆α = 0 and

for q and ν̃α, zero Neumann conditions are imposed.

After satisfying the primal and adjoint equations along with the adjoint bound-

ary conditions, the final expression of the SD arises

δL

δbn
=

∫
Ω

(
−uivj

∂vi
∂xk

− uj
∂p

∂xk
− ταij

∂vi
∂xk

+ ui
∂τij
∂xk

+ q
∂vj
∂xk

+Θjk

)
∂

∂xj

(
δxk
δbn

)
dΩ

+

∫
SWp

jgSi,k

δxk
δbn

nidS +

∫
SWp

jS,i
δ(nidS)

δbn

−
∫
SWp

[
∂jSWp,k

∂τlm
nkt

I
l t

I
mτij

δ(tIi t
I
j)

δbn

]
dS −

∫
SWp

[
∂jSWp,k

∂τlm
nkt

II
l t

II
m τij

δ(tIIi t
II
j)

δbn

]
dS

−
∫
SWp

[(
u⟨n⟩ +

∂jSWp,k

∂∂τlm
nknlnm

)
τij
δ(ninj)

δbn

]
dS

−
∫
SWp

[(
∂jSWp,k

∂τlm
nk(t

II
l t

I
m + tIl t

II
m)

)
τij
δ(tIIi t

I
j)

δbn

]
dS (2.18)

Due to the presence of Field Integrals on the r.h.s. of Eq. 2.18, this adjoint

method is abbreviated as the FI adjoint [?]. The first term on the r.h.s. of this

equation requires the computation of grid sensitivities at the internal grid nodes.

This is conducted after differentiating the equations of the Grid Displacement

Model (GDM) w.r.t. bn. This results in expressions which are similar to the GDM

equations and have to be evaluated N times. Thus, the computation of grid

sensitivities increases the cost of the FI adjoint.

To overcome the need of computing δxk/δbn in the interior of Ω and to reduce,

even further, the cost of computing the adjoint sensitivities, alternatives have

been considered. In [?,?], the proposed method avoids considering internal grid

displacement, giving rise to the Surface Integral (Severed SI) adjoint. In PCOpt’s

pioneering works of [?,?], a different approach is followed. To consider the internal

2.3. The Continuous Adjoint Technique 25

grid displacement but avoid at the same time the expensive computation of grid

sensitivities, the adjoint to the GDM equations was derived giving rise to the

Enhanced Surface Integral (E-SI) adjoint.

The objective functions this thesis is dealing with, are: (a) the total pressure

losses between inlet(s) and outlet(s) denoted by JPt (min.), (b) the drag forces

exerted on an object along a direction r⃗ (that of the far-field velocity) denoted by

JCD
(min.) and (c) the mean static pressure rise between inlet(s) and outlet(s) JCp

(max.). These objectives are given by

JPt = −
∫
SI

(
p+

1

2
v2j

)
vinidS −

∫
SO

(
p+

1

2
v2j

)
vinidS (2.19)

JCD
= 2

∫
SW

(
−τij + pδji

)
njridS

ArefU2
ref

(2.20)

JCp =

∫
SO
pdS

SO

−
∫
SI
pdS

SI

(2.21)

where Aref and Uref are the reference area and far field velocity magnitude (both

fixed), respectively and δji is the Kronecker delta. SO and SI denote the surface

areas of the inlet(s) and outlet(s), respectively.

26 2. The Adjoint Method

Chapter 3

CAD-to-Surface Grid

In this thesis, the first step to beginning a CAD-based optimization, is to establish

an ’early’ link to CAD. This is done by connecting the available CAD parameters

to the 3D computational mesh which will be used for the simulations (i.e. the

solution to the primal and adjoint equations), which is necessary for both the

computation of the sensitivity derivatives and the mesh displacement method

that will be employed during the optimization. In what follows, the terms mesh

and grid will be used. The former will refer to the 3D computational mesh used

for the CFD solution and the latter will refer to a surface grid (generated on CAD

surfaces). In case the 3D mesh exists, then it has to be mapped onto the CAD

surfaces (patches) which will provide the aforementioned connection. For this

reason, a surface grid of the CAD patches will be necessary. In case it does not

exist, then it must be generated inside or around the CAD model and its patches.

In order to do that, mesh generators use surface grids to define the boundary of

the computational domain.

In both cases, there is the requirement for a surface grid and, in this chapter,

after a literature survey of surface grid generation methods is presented, a new

method is proposed to generate a surface grid on the CAD (BRep) patches. The

input to its accompanying software will be a STEP or an IGES file containing the

CAD geometry. The output will be an STL file containing the triangular grid.

3.1 Literature Survey of Surface Grid Generation Techniques

High quality surface grid generation is a subject that has been studied quite

extensively and various methods have been proposed over the years. The grids can

be either structured [?,?] or unstructured [?,?,?] depending on the requirements

of the applications that they are used for and the software that they are used with.

27

28 3. CAD-to-Surface Grid

3.1.1 Structured Surface Grids

Structured grid generation methods are mainly used to generate grids on (or

around) regular geometries, which are geometries that can be mapped onto unit

squares or cubes (i.e. any four-sided region of a 2D grid), and are called topo-

logical squares or cubes. Mathematical transformations are, then, used to map

an orthonormal grid generated on that unit square on the simulation domain. As

expected, when the simulation domain does not have this property, this task be-

comes highly non-trivial [?]. In mainstream structured grid applications [?,?,?,?],

complex domains should be subdivided into simple blocks which are topological

squares. From a algoritmhic perspective, the techniques used for such a division

deal with similar issues as unstructured grid generation techniques. The gener-

ation of structured grids in such domains can be done either with Algebraic or

Partial Differential Equation (PDE)-based Methods.

Algebraic Methods [?,?,?,?], use blending techniques to combine curves and

this can be done via transfinite interpolations.

Similarly to algebraic methods, PDE-based methods generate a mapping be-

tween the parametric domain (ξ, η) and the simulation domain (x, y, z) by solving

PDEs. The PDEs are solved on a reference background grid to generate the struc-

tured grid. Depending on the type of the PDEs, these methods are usually clas-

sified in (a) Elliptic [?,?,?] which use Laplace operators [?,?] and (b) Hyperbolic

Methods [?,?,?].

3.1.2 Unstructured Surface Grids

Unstructured grids [?] are ideal for discretizing irregular domains. This, makes

them very useful for the discretization of CAD surfaces which are usually arbi-

trarily trimmed patches. Unstructured grid generation methods can be classified

as (a) Advancing Front methods [?,?,?] and (b) Delaunay methods [?,?] as well

as some hybrid approaches [?,?].

The Advancing Front method generates a grid by progressively adding ele-

ments, starting from the boundaries. This results in the propagation of a front

standing for the interface between the triangulated and the yet untriangulated

subdomains. It allows for generating elements of good quality as it always aims

at the generation of equilateral triangles or isosceles which are almost equilateral.

The method tends to produce elements of inferior quality at regions where the

sides of the front meet.

Another advantage of the Advancing Front method is that it can naturally

preserve the boundary curves of a BRep patch and it is highly robust. Its disad-

vantage is that it requires geometric tests during the computation of every new

element to ensure that the front merging is done correctly. These geometric tests

can, at times, slow down the process.

3.1. Literature Survey of Surface Grid Generation Techniques 29

Figure 3.1: A time stamp of the propagation of two Advancing Fronts from two

trimming curves – an internal and an external.

Delaunay triangulation methods consist of two main tasks. Initially, there is

the so-called grid topography which includes the placement of the grid points.

Then, there is the grid topology which includes the computation of a set of trian-

gles which is unique based on the Delaunay criterion [?]. The Delaunay criterion

states that the circumcircles of all triangles in the resulting grid should not con-

tain any other grid points. The grid topography can be done either entirely in one

go or incrementally. In applications in which a grid is generated directly from CAD

surfaces [?], the grid points that lay on the trimming curves are initially inserted

and a first triangulation is computed. Internal nodes are inserted in a second

step.

Figure 3.2: Steps of a Delaunay triangulation. Top-Left: All grid points and the

domain, on which a grid is generated, are initially enclosed by two large triangles.

Generally, the process of generating a Delaunay triangulation starts off by

generating one or two large triangles (as in Fig. 3.2) containing all grid points.

30 3. CAD-to-Surface Grid

Then, it continues by utilizing a point insertion algorithm to insert all the grid

points in the triangulation. Such an algorithm could be, for instance, the Watson-

Lawson [?] and Bowyer-Watson [?] algorithms.

An advantage of Delaunay triangulation is that it is fast, it is mathematically

proven that it always converges and is very inexpensive from a computational

point of view. However, the quality of the Delaunay triangles is decreased if

the topography phase is not done carefully and can sometimes become skinny

triangles which affect the final grid quality.

3.2 The Proposed Method

A method to triangulate the surfaces of BRep models, which are contained in

standard files, is shown and developed. The method uses elements of both the

Advancing Front and the Delaunay algorithms at different stages. The Advancing

Front is used as the main algorithm because it produces high quality triangu-

lations and, also, respects the trimming bounds of CAD patches. Delaunay, on

the other hand, is used because it is much faster and can, thus, be a reliable

background grid generation technique. The aforementioned background grid can

be created with a few grid points and, therefore, be a coarse, low quality grid

computed on the CAD model, which is utilized for computing size metrics. The

method consists of three steps:

� Shape healing is initially performed. For each solid that comprises a CAD

model, defects in geometry and topology are identified and fixed.

� The background grid is generated using Delaunay triangulation and a size

map is computed on that background grid.

� The Advancing Front Algorithm is used for each surface of the solid models.

It makes use of the generated size map to compute each triangle. The

outcome is a high quality grid that covers the entirety of a CAD model.

This method also allows for the inclusion of the CAD model into the optimiza-

tion loop as it allows for a fast adaptation of the grid on the CAD model surfaces.

The computational mesh that is generated by using the triangulated surfaces, is

differentiated w.r.t. the CAD surface parameters which enables the shape sensi-

tivity computation.

3.2.1 Shape Healing

When a surface grid generation algorithm is performed on a CAD model, certain

assumptions about its geometric and topological integrity are made. However,

the assumptions do not always hold as CAD models can originate from various

3.2. The Proposed Method 31

commercial (or not) packages with different rules about geometric tolerance and

topological storage. These rules are not always conveyed fully in standard CAD

files and this results in defects in geometry and topology. A geometric hole appears

if two neighbouring patches do not touch along their boundaries. A topological

hole appears if two neighbouring patches are not identified as such in the CAD

topological tree. These defects are usually caused when a model is underdefined

during its generation from a CAD package. This could either be due to inconcis-

tencies of transfer data or at some rare cases on the designer. Both these defects

are quite common and can lead to a bad quality surface grid.

An example of geometric defects can be seen in the Drivaer concept car model (

https://www.mw.tum.de/en/aer/research-groups/automotive/drivaer/
) which was designed by the Technical University of Munich, Fig. 3.3.

Figure 3.3: The CAD geometry of the Drivaer concept car.

Looking closer at certain areas on the car’s surface, the geometric defect be-

comes apparent (Fig. 3.4).

Figure 3.4: Perspective of the Drivaer’s back left window. Holes between neighbour-

ing CAD patches can be seen.

https://www.mw.tum.de/en/aer/research-groups/automotive/drivaer/

32 3. CAD-to-Surface Grid

An example of a topological defect can be seen in Fig. 3.5. Topological defects

may not be visible in a CAD viewer but they can seriously affect the quality of

the resulting triangulation. For this reason, in the example of Fig. 3.5, the

triangulations of the same two surfaces are shown, firstly topologically impaired

and, then, repaired.

Figure 3.5: Top: Two CAD patches (a semi-cylindrical and a planar-rectangular)

connected along their trimming edges. Bottom-Left: Resulting triangulation if the two

patches are also connected topologically. Bottom-Right: The resulting triangulation

in the opposite case.

When two CAD patches are geometrically, though not topologically connected,

abrupt size jumps occur in the resulting triangulation. The reason behind this is

that the triangulation of each patch is performed based exclusively on geometric

criteria, in order to create the highest quality grid (quality elements that capture

the details of the geometry as accurately as possible) with as few triangles as

necessary. To avoid the existence of defects in the triangulation related to (any or

both of) the above mentioned issues, a shape healing algorithm is necessary.

3.2.1.1 Octree Search for Topological Relations

An Octree search algorithm is developed to accommodate search routines useful

for CAD models. Initially, when the Octree search starts, the entire CAD model is

scanned and existing topological relations are identified. Edges that belong solely

on one face (hanging) are checked and geometric tests are performed with other

hanging edges in their vicinity. For example, all the edges of the Drivaer CAD

3.2. The Proposed Method 33

model shown in Fig. 3.6 are hanging, meaning that they belong to only one face.

The tests which are mentioned compute the minimum and maximum distances

between two hanging edges. Depending on the results of these tests, duplicate

edges can be found which are removed and the topology of the model is updated.

Figure 3.6: Part of the Drivaer CAD model shown in Fig. 3.3. Hanging edges are

colored in pink.

The first step for this part is to generate an Octree [?] in the space around

the CAD model. An Octree is a tree data structure in which various geometric

data can be stored so that search routines become faster and less intensive from

a computational point of view. The data which is classified in the Octree’s nodes

are the CAD trimming curves (edges). For this reason, the root octant is identical

to the bounding box of the entire CAD model. A CAD edge is inserted in the Octree

via its own bounding box, by recursively subdividing each branch, as long as the

edge does not fit in one of the respective offspring octants. All hanging edges are

classified in the Octree and tested against each other for being duplicates. The

performed geometric tests check whether two edges are identical so that the extra

one can be removed from the Octree and, eventually, from the CAD model. The

faces that the two edges belong to are then defined as topological neighbours.

3.2.1.2 The Geometric Tests for Hanging Edges

As mentioned before, the hanging edges that are classified into the octree are

tested for possible matching with others. The tests are explained below.

For each of the hanging edges of a CAD model that are classified into an Octree,

a search radius equal to 0.8d is defined where d is the length of the diagonal of the

34 3. CAD-to-Surface Grid

bounding box of the hanging edge under concern. The Octree returns the hanging

edges that are within this radius and they are then sorted on a closest-first basis.

The tested edge is then compared with the edges in the sorted list until a match

is found. If not, the edge is considered to be the border of the shell.

Let us assume that the parametric expression of the curve of the tested edge

is h⃗(t) and the one of an edge off the sorted list is c⃗(u) (where t and u are para-

metric coordinates). For h⃗(t) and c⃗(u) to match, multiple points on them must be

identical. Therefore, on h⃗(t), points are placed based on curvature and each of

them is then checked for proximity with c⃗(u). The curvature at each parametric

coordinate t is computed by [?]

κ(t) =
||⃗h′(t)× h⃗′′(t)||

||⃗h′(t)||3
(3.1)

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

� �

�

�

Figure 3.7: Stages of the discretization process of a 3D curve starting from left to

right. Starting from both the first and the last vertex of h⃗(t), new points are placed

along its length.

The discretization of h⃗(t) is done as follows: Assuming that t ∈ [ti, tf] and that

n vertices are produced, then the first vertex P⃗1 = h⃗(ti) and the last vertex P⃗n =

h⃗(tf). Then, two more vertices are generated on h⃗(t) such that ||P⃗2− h⃗(ti)|| = s(ti)

and ||P⃗n−1 − h⃗(tf)|| = s(tf). s(t)=min(θ/κ(t), L) is the ideal distance between a

point on the curve at t and the next to be placed where L is the length of h⃗(t) and

θ is a real, user-defined constant that controls the point density along the curve.

The process is repeated for the new vertices until all of h⃗(t) is discretized. 0 All

P⃗i(i ∈ [1, n]) that result from the discretization are then projected onto c⃗(u). This

projection is performed by solving

dc⃗(u)

du
· (c⃗(u)− P⃗i) = 0 (3.2)

for u. Eq. 3.2 is solved (using the Newton-Raphson [?] method) instead of a simple

distance equation because it behaves much better when searching for solutions

inside the parametric domain of u. If multiple solutions exist, the final solution

3.2. The Proposed Method 35

u∗ is the one minimizing ||⃗c(u) − P⃗i||. The above procedure is repeated for every

point P⃗i and if ||⃗c(u)− P⃗i|| ≤ ϵ for all i, then h⃗(t) and c⃗(u) are considered identical.

The choice of ϵ varies depending on the CAD model. Commonly, a CAD package

defines a distance tolerance ϵ relative to the size of the model when generating its

geometry.

3.2.1.3 Sewing Neighbouring Patches

The above mentioned process functions properly as a means to resolve topological

defects. To solve the geometric defects (patches not touching at the interface

between them), a slightly different approach must be followed. The same Octree

search and geometric tests are repeated as above. The first difference is that the

tolerance ϵ is set to a higher value so as to identify topological neighbours even

with the existence of geometric gaps. Secondly, for the two surfaces around each

geometric gap, a stitching algorithm is performed that requires that they touch at

a number of points along their trimming edges.

This stitching is done by moving one of the two surfaces to touch the other by

solving a minimization problem that takes point and normal vector constraints

into account. The minimization problem is the Thin Plate Energy [?] algorithm Its

physical analogy is that, when deforming a thin sheet of metal (stretching, bend-

ing etc), it minimizes its internal energy and, thus, it keeps its general properties

due to its rigidity. In other words, if the Thin Plate Energy of a surface during

the stitching process remains roughly the same, then its properties remain the

same as well. This is achieved by minimizing the Thin Plate Energy of the sur-

face perturbation while satisfying multiple point constraints and normal vector

constraints.

For any parametric surface S⃗(u, v), the Thin Plate Energy is defined as

E(S⃗) =

∫∫
D

(S⃗uu · S⃗uu + 2S⃗uv · S⃗uv + S⃗vv · S⃗vv)dudv (3.3)

where D is the parametric domain of the surface. Indices u, v indicate partial

differentiation of S⃗ along a parametric direction. Eq. 3.3 is a linear approximation

of the exact Plate Energy which is equal to the integral of the squares of the

principal curvatures on S⃗.

In order to modify and stitch a surface S⃗ to a target curve-on-surface and make

it have a certain normal orientation, E(δ⃗S) must be minimized while imposing a

number nc of point and normal vector constraints.

Assuming that S⃗ is a NURBS surface (as is the case for BRep), its expression

is given by (Eq. 1.3)

S⃗(u, v) =
n∑

i=1

m∑
j=1

Ri,j(u, v)P⃗i,j (3.4)

36 3. CAD-to-Surface Grid

and its partial derivatives w.r.t. the parametric coordinates are given by

S⃗uu =
n∑

i=1

m∑
j=1

∂2Ri,j(u, v)

∂u2
P⃗i,j

S⃗vv =
n∑

i=1

m∑
j=1

∂2Ri,j(u, v)

∂v2
P⃗i,j

S⃗uv =
n∑

i=1

m∑
j=1

∂2Ri,j(u, v)

∂u∂v
P⃗i,j

Any NURBS surface pertubation that produces a surface S⃗T (u, v) from a source

surface S⃗(u, v) can be expressed as

δS⃗(u, v) = S⃗T (u, v)− S⃗(u, v) =
n∑

i=1

m∑
j=1

Ri,j(u, v)δP⃗i,j (3.5)

A point constraint is imposed at a certain parametric pair (u, v), by demand-

ing that the target surface touches a target point P⃗t. This creates an equality

constraint

c⃗ = δ⃗S + S⃗ − P⃗t = 0 (3.6)

Another pair of equality constraints that are imposed are normal vector con-

straints. This means that S⃗T must have a specified normal vector n⃗ at a parametric

point (u, v). This can be imposed by satisfying two equations:

t1 = (S⃗u + δS⃗u) · n⃗ = 0

t2 = (S⃗v + δS⃗v) · n⃗ = 0 (3.7)

Thus, the following constrained minimization problem is generated

Min E(δS⃗)

s.t. ||⃗ci|| = 0 (3.8)

and t1i = 0 , t2i = 0 , i ∈ [1, nc]

where nc is the total number of constraints. The order of nc depends on the

3.2. The Proposed Method 37

complexity of the curves and the surfaces that are stitched. Further analysis of

E(δS⃗) leads to the following expression

E(δS⃗) =
n∑

i=1

m∑
j=1

n∑
g=1

m∑
h=1

δP⃗i,j · δP⃗g,h(Lijgh + 2Mijgh +Nijgh) (3.9)

where

Lijgh =

∫∫
D

∂2Ri,j(u, v)

∂u2
∂2Rg,h(u, v)

∂u2
dudv

Mijgh =

∫∫
D

∂2Ri,j(u, v)

∂u∂v

∂2Rg,h(u, v)

∂u∂v
dudv

Nijgh =

∫∫
D

∂2Ri,j(u, v)

∂v2
∂2Rg,h(u, v)

∂v2
dudv

Ultimately, the Thin Plate Energy problem is solved by using the Augmented

Lagrangian Method [?] with

L = E(δS⃗)−
nc∑
i=1

λi||⃗ci|| −
nc∑
i=1

κ1i t
1
i −

nc∑
i=1

κ2i t
2
i +

µ

2

nc∑
i=1

(||⃗ci||2 + t1i
2
+ t2i

2
) (3.10)

where λi, κ
1
i , κ

2
i are the Lagrange multipliers and µ is the penalty parameter.

The choice of the Energy quantity is made as it portrays the curvature proper-

ties of the parametric surface. Ideally, the properties of the source and the target

surfaces should be almost identical and this is achieved by minimizing the Energy

of the perturbation of the surface. The result is a less warped perturbed surface.

Two examples are used to demonstrate this (Figs. 3.8, 3.9). In the first ex-

ample, the sewing algorithm is used on two planar rectangular surfaces that are

placed apart vertically to each other. In the second (and more challenging) exam-

ple two highly curved, trimmed surfaces are placed apart. In both examples, the

Thin Plate Energy minimization resulted in a perfect stitching of the patches.

Applying both the topological and sewing algorithms to the CAD model of Fig.

3.6 results in a perfectly defined CAD model ready to undergo triangulation (Fig.

3.10).

38 3. CAD-to-Surface Grid

Figure 3.8: Two rectangular surfaces with a geometric gap. Top: Initial positions.

Bottom: The resulting position where both the initial surfaces are visible (grey) as

well as the final displaced surface (red region covering the hole).

Figure 3.9: Two trimmed curved patches. Top: Initial position. Bottom: Final

position.

3.2. The Proposed Method 39

Figure 3.10: The Drivaer model of Fig. 3.6 after the shape healing process ended.

The only hanging edges remaining (in pink) are located at the boundary of the shell.

3.2.2 The Background Grid and the Size Map

The background grid is required to store the size metrics at various points on

the CAD model. Its generation should be fast and easy and the grid itself should

be as coarse as the geometry allows. Quality is not a prerequisite here and the

simple requirement is to capture the geometry with as few triangles as possible.

As mentioned already, Delaunay triangulation [?] is used.

3.2.2.1 The Delaunay Algorithm for the Background Grid

The Delaunay algorithm always converges for a set point cloud in 2D, so the tri-

angulation is performed in each face’s parametric space. Initially, the edges of the

entire CAD model are discretized in a manner similar to the one shown in section

3.2.1. Then, Delaunay triangulation is performed in the 2D parametric domains

of each face by using features of both Lawson [?] and Watson [?] processes. The

Watson and Lawson synergy is explained in Appendix A. During the generation of

the background grid, the size of its elements is computed based on the deflection

from the actual geometry. A deflection parameter that imposes a maximum al-

lowed distance between the centres of the edges of the resulting polygons and the

actual edge curve is defined. The same parameter imposes a maximum allowed

distance from the barycenters of the resulting triangles to the CAD surface.

The points that are generated while discretizing the edges of a CAD surface,

have parametric coordinates on the surface as well. For instance, in Figs. 3.11

and 3.12, a surface with discretized edges and the parametric coordinates of the

40 3. CAD-to-Surface Grid

generated points can be seen. Then, discretization is done based on curvature

and, thus, edges that are straight lines are described by just two points.

Figure 3.11: A parametric CAD surface (light blue) and the discrete points (red) that

are generated on its edges.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

V

U

Figure 3.12: The u, v coordinates of the points shown if Fig. 3.11.

Starting from a 2D polygon as in Fig. 3.12, the first Delaunay triangles are

computed by introducing one point at a time. The algorithm starts by creating a

supertriangle that encloses the entire point cloud. When a new point P is inserted

into the triangulation, an existing triangle that encloses P is identified and three

new triangles are created by connecting P to its vertices. During this step, the

original enclosing triangle is deleted, thus making the net gain of triangles equal

to two. After the new point has been inserted, the triangulation is updated to

Delaunay by using the Lawson [?] algorithm. During this process, all triangles

3.2. The Proposed Method 41

that are adjacent to edges opposite P are placed in a ’last in, first out’ list. Then,

a triangle is removed from the list and a check is made to determine if P belongs

to its circumcircle and if this is the case, then this triangle and its adjacent,

form a quadrilateral with the diagonal placed in the wrong direction. A swap is,

therefore, made and this creates two new triangles that replace the two old ones.

The two new triangles are placed in the list and the whole process is repeated

until the list is empty. Once this process is finished, the initial vertices of the

supertriangle are removed along with any triangles that are associated with them.

Furthermore, triangles that are placed out of the closed domain defined by the

trimming curves, are removed. This results in a Delaunay triangulation that is

constrained to have matching boundaries with the discretized trimming edges.

The computed triangles are, then, transformed to the 3D space by connecting the

relevant 3D points (Fig. 3.13).

Figure 3.13: A parametric CAD surface (light blue) and the triangulation (red) that

is the result of the Constrained Delaunay Method.

For all the created triangles, a check is made to determine their deflection

from the actual CAD surface. For a triangle, this deflection is computed as the

distance from its barycenter to its projection on the surface. If this deflection is

larger than a threshold value, a new point P is inserted at the barycenter of the

2D triangle this corresponds to. When no more triangles need to be created, the

algorithm terminates.

42 3. CAD-to-Surface Grid

Figure 3.14: The Delaunay Triangulation of the CAD model of the Drivaer car shown

in Fig. 3.10.

This algorithm avoids heavy computations and searches and is, thus, very fast.

Furthermore, assuming that the shape healing algorithm described in section

3.2.1 has been completed successfuly, then the resulting triangulation of the

CAD model will be watertight and with as few triangles as possible. This can

lead to a smooth size map that will store the desired sizes at the vertices of the

background grid.

During the execution of the Advancing Front grid generation algorithm, the

size information of background grid triangles will have to be accessed multiple

times. The reason behind this is that when generating a grid on a CAD face or

an edge on that face, the algorithm asks for the required size at some point with

face parameters (u, v). Therefore, two things are required: (a) a method to quickly

identify a few background grid triangles in the vicinity of the given (u, v) and (b) a

method to identify in which triangle the point with these coordinates lie. The first

point is easily solved with a Quadtree structure. The Quadtree is identical to the

Octree shown in section 3.2.1, with the only difference being that it is employed

in 2D. The second point is solved by computing the barycentric coordinates of the

parametric pair (u, v) for each triangle that is returned by the Quadtree until the

correct triangle is pinpointed. Assuming a triangle with vertices with parametric

coordinates (uA, vA), (uB, vB) and (uC , vC), the barycentric coordinates of a point

on the plane in which the triangle lies, with coordinates (u, v) are computed by

[
α
β

]
=

[
uA − uC uB − uC
vA − vC vB − vC

]−1

·
[
u− uC
v − vC

]
γ = 1− α− β (3.11)

3.2. The Proposed Method 43

If 0 ≤ (α, β, γ) ≤ 1, then and only then does (u, v) belong to the triangle.

When the correct triangle is pinpointed, the requested size value at (u, v) is

interpolated as su,v = αsA + βsB + γsC where the indexed s variables denote the

size values at the three vertices.

3.2.2.2 The Size Map

When generating a grid with triangular elements on CAD surfaces, it is very impor-

tant to have a pre-computed size map on the geometry. Computing it beforehand

allows for easier optimal size computation as well as gradation control. The sizes

are computed on the vertices of the background grid and the gradation is con-

trolled via the connectivity. In this method, two dimensionless input parameters

control the above mentioned outputs: (a) a curvature-based size parameter d and

(b) a triangle growth ratio gR. The choice of dimensionless parameters is made so

that the process does not depend on the units of measurement of the model, but

rather on the geometry itself.

As mentioned before, the parameter d is used to generate an optimal grid tri-

angle size based on the model’s local curvature. At each vertex of the background

grid, which belongs to surface σ⃗ at parameters (u, v), the size s1(u, v) is computed

by

s1(u, v) = K(u, v)d (3.12)

where

K(u, v) =
1

max(|κ1(u, v)|, |κ2(u, v)|)
(3.13)

where κ1(u, v), κ2(u, v) are the two principal curvatures [?] of σ⃗(u, v). To compute

the principal curvatures, the two fundamental form coefficients [?] of the surface

must firstly be computed at (u, v):

F1 =

[
σ⃗u · σ⃗u σ⃗u · σ⃗v
σ⃗v · σ⃗u σ⃗v · σ⃗v

]
=

[
E F
F G

]
F2 =

[
σ⃗uu · n⃗ σ⃗uv · n⃗
σ⃗vu · n⃗ σ⃗vv · n⃗

]
=

[
L M
M N

]
(3.14)

where n⃗= σ⃗u×σ⃗v

||σ⃗u×σ⃗v || is the local unit normal vector.

The two principal curvatures of a surface are computed after solving

det(F2 − κF1) = 0 for κ. In case a surface is locally planar (κ1 = κ2 =0), K is set

equal to the length of the diagonal of the surface bounding box. Such a surface

must be covered with as few triangles as possible but without creating abrupt

size changes and this is something that the size gradation algorithm handles (see

44 3. CAD-to-Surface Grid

further below).

If a vertex lies on one of the trimming curves of the surface, then it probably

lies also on a second surface σ⃗2(ξ, η). Then, three size values can be computed:

(a) s1(u, v) based on the curvature of the first surface, (b) s2(ξ, η) based on the

curvature of the second surface and (c) s3(t) based on the curvature of the trim-

ming curve. If h⃗(t) is the expression of the trimming curve, then its curvature

κ(t) is computed using Eq. 3.1 at parameter t at which σ⃗1(u, v) = σ⃗2(ξ, η) = h⃗(t).
Then

s3(t) = min

(
1

|κ(t)|
, L

)
(3.15)

where L is the length of h⃗(t) given by

L =

∫ 1

0

√(
dhx(t)

dt

)2

+

(
dhy(t)

dt

)2

+

(
dhz(t)

dt

)2

dt (3.16)

The introduction of L in Eq. 3.15 is done in order to capture the correct size of

potentially small trimming edges that are straight or almost straight. In order to

correctly capture the geometry, the smaller size requirements must be respected.

Therefore, the final size s is given by

s =

{
s1(u, v) , if a vertex lies simply on a surface

min(s1(u, v), s2(ξ, η), s3(t)) , if a vertex lies on a trimming edge
(3.17)

After the value of s has been computed at all vertices of the background grid,

a gradation algorithm must be performed to smoothen the size map on the model.

It is not uncommnon that CAD patches do not maintain C2 uniformity inside

their parametric domain. Furthermore, neighbouring patches will certainly be C0

continuous but C1 is not guaranteed. These facts can lead to abrupt size changes

on the CAD model which can in turn create convergence and quality problems at

the final triangulation. In this work, the bounded H-Variation control, proposed

by [?], is used as a gradation technique. The H-Variation between the sizes sP ,

sQ which are defined at the connected vertices P⃗ and Q⃗ of the background grid,

is given by

v(P⃗Q) =
sQ − sP

||P⃗Q||
(3.18)

which is the gradient of s on the surface of the CAD model. The input parameter

gR is used to define an upper bound to the H-Variation of all background grid

3.2. The Proposed Method 45

edges and if this upper bound is not met, a correction is performed. For an edge

P⃗Q, the following check is made: If |v(P⃗Q)| ≤ gR, then the sizes are not corrected.

In case |v(P⃗Q)| > gR, then the larger of the two sizes is reduced by setting:

sP = sQ + gR · ||P⃗Q|| , if sP > sQ

sQ = sP + gR · ||P⃗Q|| , if sP < sQ (3.19)

The above check is made for all the edges of the background grid. When a cor-

rection is performed to a vertex, all edges that are adjacent to that vertex are

re-checked. When no more corrections are made, the algorithm terminates.

With the size computation and gradation algorithms finished, a uniform map

is available for the main grid generation algorithm to use. Relations with neigh-

bouring surfaces and local size requirements are taken into account at this point

and, therefore, the grid generation can be performed at each edge and each face

independently while ensuring the smoothness of the final triangulation.

An example is shown in Fig. 3.15 to demonstrate the effect of the two input

parameters on the size map (and the final trianglation). Initially, the growth ratio

is set to gR = 0.1 and various values of d are applied. The curvature on the

straight outer lines is zero and, therefore, there is no geometric requirement for

a triangle size smaller than their length. However, the discretization of the inner

circular curve must become finer as d becomes smaller and the gradation of the

size map leads to a fine discretization of the straight curves. Then, the value of the

deflection is set to d = 5o and various values for gR are applied. The discretization

of the inner circular curve is identical in all cases (as expected). The value of gR
which controls the gradation leads to a coarser and coarser discretization away

from the inner curve as its values gets higher.

46 3. CAD-to-Surface Grid

(a) d = 2o, gR = 0.1 (b) d = 10o, gR = 0.1 (c) d = 20o, gR = 0.1

(d) d = 5o, gR = 0.02 (e) d = 5o, gR = 0.05 (f) d = 5o, gR = 0.08

Figure 3.15: The final triangulation of the same CAD surface, with 6 different sets

of input parameters.

Another example is demonstrated in Fig. 3.16 where an axial stator blade and

its triangulations are shown. Six different surface grids are generated with six

different pairs of input parameters. The effect of the parameters can be seen on

the leading edge and the suction side. Surfaces near both the leading and the

trailing edge are semi cylinders, which means that they have considerably higher

curvature than the pressure and suction sides. Therefore, one can, firstly, see

the effect of d on the grid of the leading edge’s surface and, secondly, the effect of

gR on the grid, moving farther from high curvature areas.

3.2. The Proposed Method 47

Figure 3.16: Six different triangulations of an axial stator blade. Center: The CAD

model of the blade. Left: Focus on the leading edge for three different values of d. As

d increases, the grid becomes coarser. Right: The suction side of the blade for three

different values of gR. As gR increases, the gradation of the grid increases.

3.2.3 The Advancing Front Algorithm

The grid generation algorithm initiates by performing the discretization of every

edge of the CAD model. An edge will belong to a primary and/or a secondary

surface. On both surfaces its 3D expression h⃗(t) will be connected one-to-one

with a parametric curve h⃗p(t) such that

h⃗p(t) =

(
u(t)
v(t)

)
, with h⃗(t) = σ(u(t), v(t)) (3.20)

While the discretization of the edge takes place, the required size value at t is

returned by the background grid on the primary face at h⃗p(t). Using these sizes,

the process shown in Fig. 3.7 is performed. When the discretization of an edge is

finished, the parametric coordinates on both primary and secondary surfaces are

stored in different lists in order to be accessed later during the triangulation.

When the discretization of the edges is complete, the grid generation at each

individual face begins by building the initial advancing front. Buidling the initial

front includes sorting and orientating the grid points placed during edge dis-

cretization. Before tackling the initial front, it is important to introduce two data

structures: (a) the Front Point and (b) the Front Edge. The Front Point is a struc-

ture that holds information about the parametric coordinates of the 3D point it

corresponds to and, also, about the Front Edges that touch it. The Front Edge

48 3. CAD-to-Surface Grid

holds information regarding its first and last Front Points and, also, the next and

previous Front Edges. The notation of next and previous edges comes in handy

for defining the front topology. The Advancing Front data structure holds lists of

all Front Points and Front Edges as well as a Quadtree for fast querying.

Firstly, the list of the Front Points is assembled by retrieving the (u, v) paramet-

ric pairs of all the discretized CAD edges that lie on the surface. The parametric

pairs are ordered to form a counterclockwise loop of points if they belong to an

external wire of edges and a clockwise loop of points if they belong to an internal

wire of edges (Fig. 3.17). With this ordering, a new triangle will always be placed

such that its normal vector has an outward orientation w.r.t. the CAD solid. For

every pair of consecutive points that creates a Front Edge, the topology of the both

Front Edges and Front Points is updated.

Figure 3.17: Discretization of the boundary of a CAD model’s face that creates an

initial front. Discrete points are visible in both 3D an 2D parametric spaces (https:
//www.ljll.math.upmc.fr/perronnet/mit/mit.html).

The triangulation then initiates by selecting a Front Edge from the list and

calculating a so-called optimal point for the generation of a new triangle. If this

was a simple 2D triangulation, the generated triangle would be isosceles with the

selected Front Edge as its basis and with a height equal to the value returned

from the size map. However, this is not the case as an isosceles triangle in the

parametric space is not necessarily transformed to an isosceles triangle in the

3D space. Furthermore, the size returned from the size map, which corresponds

https://www.ljll.math.upmc.fr/perronnet/mit/mit.html
https://www.ljll.math.upmc.fr/perronnet/mit/mit.html

3.2. The Proposed Method 49

to the height of a triangle, must be adapted to the parametric domain. Let us

assume a Front Edge between Front Points A⃗, B⃗, their parametric midpoint M⃗
(with uM = (uA + uB)/2, vM = (vA + vB)/2) and the new created point P⃗ . Two

values can be computed for the required size at A (sA) and B (sB). The optimal

size of the element s is computed as s = (sA + sB)/2. The condition to be met is

s = sM⃗P . If E(u, v), F (u, v), G(u, v) are the components of the first fundamental

form of the face at (u, v), then

sM⃗P =

∫ P⃗

M⃗

√
E(u, v)du2 + 2F (u, v)dudv +G(u, v)dv2 (3.21)

which can be computed by substituting

u = uM + t(uP − uM)

v = vM + t(vP − vM) (3.22)

0 ≤ t ≤ 1

which leads to

sM⃗P =

∫ 1

0

√
(uP − uM)2E(t) + 2(uP − uM)(vP − vM)F (t) + (vP − vM)2G(t)dt

(3.23)

The required condition is satisfied by approximating an initial set of uP , vP and

recursively correcting them based on the computation of Eq. 3.23.

The first approximation to (uP , vP) is computed by

(
uP
vP

)
=

(
uM
vM

)
+ s2D

(
vA − vB
uB − uA

)
(3.24)

where s2D is an approximation to the element size in the parametric space, com-

puted by

s2D =
s√

(vA − vB)2E(uM , vM) + 2(vA − vB)((uB − uA)F (uM , vM) + (uB − uA)2G(uM , vM)

The approximation of Eq. 3.24 creates a point P⃗ whose parametric coordinates

create an isosceles triangle with the Front Edge in 2D.

P⃗ is updated by computing two new points P⃗1 and P⃗2, with

50 3. CAD-to-Surface Grid

(
uP1

vP1

)
=

(
uA
vA

)
+

s

sM⃗P

(
uP − uA
vP − vA

)
(
uP2

vP2

)
=

(
uB
vB

)
+

s

sM⃗P

(
uP − uB
vP − vB

)
(3.25)

and, finally, the new point is updated by(
uP
vP

)
=

(
(uP1 + uP2)/2
(vP1 + vP2)/2

)
(3.26)

When sM⃗P tends to become equal to s, then both P⃗1 and P⃗2 tend to coincide. This

creates an isosceles triangle in 3D with a height equal to s.
Next step is to define a search radius in the 2D space that will be used to iden-

tify neighbouring Front Points with which triangle formation will be investigated.

The radius is defined as

R = (1.5÷ 2.5) ·max(
√

(uB − uA)2 + (vB − vA)2,
√

(uP − uM)2 + (vP − vM)2)
(3.27)

P⃗

A⃗ B⃗

sM⃗P

Figure 3.18: The advancing front during the placement of a new Front Point. Black

lines indicate the Front Edges while the red circle marks the search area of radius R.

The Quadtree then returns a list of Front Points that have a distance from

(uP , vP) which is less than R and, then, the triangle formation routine is initiated.

The steps that are followed are:

1. Check whether the selected Front Edge A⃗B is part of a closed triangle.

Namely check if the first point of the previous edge is the same as the last

point of the next edge.

3.2. The Proposed Method 51

2. Loop over the list of the neighbouring Front Points and assess if the 3D

distance between a point of the list and P⃗ is less than 0.8s. Once such a

point is found, perform triangle feasibility tests and create the triangle if it

is valid.

3. If the entire list of neighbouring points is checked and no triangle can be

created, then perform a triangle feasibility test for triangle creation with the

new computed Front Point P⃗ .

4. If triangle formation with P⃗ is also not possible, then attempt to create a

triangle with the Front Points of the neighbouring points list not checked in

step 2.

5. Finally, if none of the above steps has successfully created a triangle, per-

form a brute force technique by investigating if a triangle can be created

with any Front Point in the advancing front list. If this final step fails, the

algorithm terminates without completing the triangulation.

The triangle formation tests, mentioned in the list above, check a candidate

triangle for three possible failures: (a) zero area, (b) Front Point in triangle and (c)

triangle with Front Edge intersection. For a triangle to be formed, all three tests

must be passed. Analysis on how the tests are made can be seen in Appendix B.

During the triangle creation routine, the advancing front can be updated in

two ways: (a) by introducting the new Front Point P⃗ and (b) by updating the Front

with one of the existing Front Points.

When the algorithm opts for a triangle generation with a new point, then the

configuration of the front is as in Fig. 3.19.

A⃗B
E⃗prev E⃗next

E⃗1
new E⃗2

new

Figure 3.19: An advancing front configuration during the formation of a triangle with

a new Front Point. Black lines indicate the unchanged Front Edges, blue lines the

newly created Front Edges, and the red line the deleted Front Edge.

The selected Front Edge A⃗B is deleted and two new Edges are introduced to

connect to the new Front Point (E⃗1
new, E⃗2

new). The two new edges are placed at the

end of the Front Edge list in order for them to be processed after all the already

placed ones. The topology pointers are updated and the new Front Point is added

to the Front Point list as well as the Quadtree.

52 3. CAD-to-Surface Grid

When the algorithm opts for a triangle generation with the use of an existing

point (P⃗exist), then topology of all the neighbouring edges must be checked. This

is because the triangle could potentially be created with more than one existing

Front Edges. The four configurations that could be identified are seen in Fig.

3.20.

(a) (b)

(c) (d)

Figure 3.20: Four different advancing front configurations that could be encountered

by the algorithm when forming a new triangle with an existing point. In all figures,

red lines indicate the Front Edges that will eventually be deleted and blue lines the

ones that will be created. Black lines are those that remain unchanged.

Firstly, the Front Edges E⃗prev and E⃗next are checked. If P⃗exist belongs to E⃗prev,

then both the base A⃗B and E⃗next are removed from the front and a new Front

Edge connecting A⃗ to P⃗exist is created. Front Point B⃗ is removed from both the

Front Point List and the Quadtree. The topology of the neighbouring Front Edges

is then updated to account for the new edge. Similarly, if P⃗exist belongs to E⃗prev,

this edge and the base are removed and a Front Edge connecting B⃗ to P⃗exist is

created. Point A⃗ is permanently removed and topology is updated. These two

configurations can be seen in Figs. 3.20a, 3.20b.

Then, a check must be made for whether A⃗B is part of a closed loop of three

Front Edges, thus creating a triangle. If this is the case, then all three edges

are removed. If the associated Front Points are not connected to any more Front

Edges, these are removed as well (both from the list and the Quadtree). The

configuration can be seen in Fig. 3.20c.

The final case is when P⃗exist belongs to other Front Edges opposite of A⃗B (Fig.

3.20d). In order to create this triangle, two new Front Edges are generated. This

results in the division of the current advancing front structure to two sub-fronts.

3.3. Applications 53

The topology of the Front Edges is such that both sub-fronts create counterclock-

wise loops. The Front Edge A⃗B is removed. The procedure above is repeated for

all Front Edges (existing and newly created ones). Once the list of Front Edges

becomes emptied, the process terminates.

3.3 Applications

In order to showcase the progress of the triangulation of the CAD surfaces, various

stages of the advancing front method applied to a cylinder is shown (Figs. 3.21,

3.22).

Figure 3.21: Stages of the triangulation of a cylindrical surface (transparent grey).

From left to right, the first 100 triangles, 500 triangles and the full triangulation (1400
triangles) can be seen.

Figure 3.22: Stages of the triangulation of a circular surface (grey). From left to

right, the first 36 triangles, 144 triangles and the full triangulation (220 triangles) can

be seen.

Further to this simple example, a few industrial-like CAD models are triangu-

lated.

54 3. CAD-to-Surface Grid

3.3.1 The Drivaer Passenger Car

Initially, the triangulation of the CAD model of the DrivAer fastback car is shown.

The model, which is provided via a STEP file, is seen in Fig. 3.3.

Then, the triangulation algorithm starts. The background grid is the one seen

in Fig. 3.14 and using that background grid, the Advancing Front method is

executed. Timestamps of the process of the algorithm can be seen in Fig. 3.23.

Figure 3.23: The triangulated surface of the Drivaer car model in 3 instances: Top-

Left: 282K triangles. Top-Right: 462K triangles. Bottom: 663K triangles.

Zoomed images of the final triangulation are shown in Figs. 3.24 and 3.25. In

the former, parts of the surface that comprises the car body are shown. In the

latter, one can see the side mirror and the wheel and rim configuration.

3.3. Applications 55

Figure 3.24: The triangulated surface of the DrivAer CAD model (bottom) along with

zoomed images of the back left passenger window (top-left) and the windshield-hood

interface (top-right).

Figure 3.25: The triangulated surfaces of one of the side mirrors (left) and of one of

the wheels (right) of the DrivAer CAD model.

A total of 663K triangles are generated using d = 10o and gR = 0.1. The

completion time is 578 seconds, averaging at a computational speed of 1147

triangles per second.

3.3.2 A Ship’s Propeller Blade

Then next application of the method is for a ship’s propeller (blades and shaft

incuded). The CAD model (transferred via a STEP file) can be seen in Fig. 3.26a.

The triangulation generated using d = 10o and gR = 0.1 is seen in Fig. 3.26b.

56 3. CAD-to-Surface Grid

(a) (b)

Figure 3.26: The triangulated surface of a ship propeller. The CAD model can be

seen on the left while the triangulated model on the right.

Instances of the process can be seen in Fig. 3.27.

Figure 3.27: The triangulated surface of the propeller model in 3 timestamps: Top-

Left: 744 triangles. Top-Right: 2184 triangles. Bottom: 3972 triangles.

A total of 3972 triangles are generated and the completion time is 3.4 seconds,

averaging at a computational speed of 1200 triangles per second on 8 Intel Core

i7-6700HQ processors.

3.4. Remarks 57

3.3.3 The S-Bend Climate Duct

Finally, the full body of a climate duct used in automotive is triangulated. The

duct consists of a middle S-section and two straight inlet and outlet parts. The

CAD model comes via a STEP file here as well and can be seen in Fig. 3.28. The

final triangulation is visible in Fig. 3.29 and a few instances can be seen in Fig.

3.30.

Figure 3.28: The CAD surface of an automotive climate duct.

Figure 3.29: The triangulated surface of an automotive climate duct.

The total of 47.2K triangles are generated in 21.6 seconds averaging at ≈2200

triangles per second on 8 Intel Core i7-6700HQ processors.

3.4 Remarks

In order to check the quality of the produced triangular surface grids, the aspect

ratio is computed for each element and then some statistics are shown. The aspect

ratio in this case is defined as the quotient of the maximum side of a triangle over

the minimum side. Obviously, a perfect equilateral triangle will have aspect ratio

equal to 1. On the other hand, the higher the average aspect ratio, the worst the

quality of the grid. The results for the cases of Sec. 3.3 are shown in table 3.1.

58 3. CAD-to-Surface Grid

Average Value Min. Value Max. Value Std. Deviation

Cylinder Case 1.108 1.000 1.872 0.205
Drivaer Car 1.199 1.000 247.4 0.853

Propeller Blade 1.270 1.000 7.905 0.350
S-Bend Duct 1.048 1.000 4.411 0.149

Table 3.1: Aspect ratio for the grids produced for the applications of Sec. 3.3.

Figure 3.30: The triangulated surface of the S-bend model in 3 timestamps: Top-

Left: 7.8K triangles. Top-Right: 16.1K triangles. Bottom: 47.2K triangles.

It is obvious that all of the grids are close to equilateral with average aspect

ratio values very close to 1. However, some extreme values are also visible, espe-

cially for the Drivaer model. These are due to small, warped surfaces on the car

geometry that do not allow the algorithm to produce elements of higher quality.

All the resulting grids can be exported in STL format, which is the main input

to 3D meshers such as snappyHexMesh, and are of high quality (equilateral or al-

most equilateral for the most part). Furthermore, at all grid points, the associated

CAD parameters were computed, which will be very useful when the optimization

starts.

Chapter 4

The Geometry Morphing Technique

One of the cornerstones of performing shape optimization is the shape and/or

mesh deformation technique [?,?]. The shape and mesh perturbations are closely

related to the chosen parameterization, which can greatly affect the progress of

the aerodynamic optimization. Depending on the nature of the chosen parameter-

ization, the shape deformation techniques can be categorized as: (a) CAD-free [?]

or (b) CAD-based [?] methods, as also mentioned in Chapter 1. The choice of the

parameterization technique depends on various factors which are analyzed below.

Ideally, the preferred method would have to ensure a rich-enough design space

and, at the same time, maintain the link to the industrial design framework. As

stated before, the native CAD parameterization is almost never accessible due

to the closed-source nature of CAD packages. Therefore, after triangulating the

CAD model and generating a computational mesh around it, the next step is to

select a parameterization scheme for the upcoming optimization. In this chapter,

a parameterization scheme based on the NURBS patches of the BRep format is

proposed.

4.1 Literature Review of Parameterization Methods

The choice of shape parameterization schemes can vary depending on the design

requirements for the optimization results. CAD-free methods are preferred when

a rich design space is needed and when the link to CAD can be sacrificed. On the

other hand, if an optimization related to the geometry of the model which would

easily be manageable in an industrial design environment is required (as in this

thesis), then CAD-based methods are preferred. For completeness, a review of

both CAD-free and CAD-based methods follows.

59

60 4. The Geometry Morphing Technique

4.1.1 CAD-free Methods

When performing optimization, the usage of the design parameterization can be

a constraint that is, sometimes, very limiting. As a solution, the link to the CAD

parameterization can be severed and parameterizations which are specific to the

case can be introduced.

The primary and simplest example of CAD-free parameterizations is the node-

based ones [?, ?, ?]. In this parameterization, the nodes of the boundary mesh

(that lie on the wall of the optimized geometry) are used to change the shape.

The sensitivity derivatives are computed w.r.t. the normal displacement of the

boundary nodes [?]. The displacement of the boundary mesh is then propagated

towards the interior of the computational mesh via various methods such as linear

elasticity [?], linear and torsional spring analogies [?], Laplacian methods [?] and

algebraic dampening (i.e inverse distance) [?]. It is common that, due to a noisy

sensitivity map, the node displacements that emerge from such a process, create a

non-smooth, wrinkly surface. Apart from the obvious design flaws this can cause

(i.e. reduced manufacturability), the propagation of such displacements towards

the inner domain can greatly distort the mesh which can result in high numerical

errors. For this reason, a common strategy is to smooth the sensitivities before the

extrapolation and their propagation towards the interior. This can be done either

implicitly [?,?,?] or explicitly [?,?]. Implicit smoothing means that the updated

field of sensitivities is computed by the solution of a PDE while explicit smoothing

that the sensitivities are smoothed by taking into account the sensitivities of the

neighbouring nodes. For instance, [?] performed a Sobolev gradient projection

[?] in order to smooth the sensitivities (implicitly) while [?] performed iterative

sensitivity averaging by using the immediate and second neighbours of each node

(explicit smoothing).

Figure 4.1: The sensitivity derivatives of total pressure losses on the surface of a

cooling duct. Sensitivities, computed via the continuous adjoint technique have been

smoothed implicitly via Sobolev gradient projection. Smoothed sensitivities are seen

on the left while raw ones on the right. [?]

4.1. Literature Review of Parameterization Methods 61

Apart from pure node-based parameterization, the CAD-free methods also in-

clude control point-based parameterizations such as point-based or lattice-based

interpolations. A widely known representative of point-based interpolations is Ra-

dial Basis Functions (RBF) [?,?]. A standard RBF interpolation problem assumes

N points (x⃗1, . . . , x⃗N) that are associated withN function values (f(x⃗1), . . . , f(x⃗N)).
The aim is to generate a continuous function R(x⃗) that interpolates the given val-

ues at (x⃗1, . . . , x⃗N). Such a function is given by [?,?]

R(x⃗) =
N∑
i=1

ciϕ(||x⃗− x⃗i||) (4.1)

where ϕ(·) are the basis functions and ci are linear coefficients. The choice of

ϕ(·) ranges from Gaussians, to Matèrn functions and multiquadratics and ci is

computed by enforcing that R(x⃗j)=f(x⃗j). Returning to the subject of parameter-

ization, the RBF method becomes a shape and mesh deformation tool when for

specific (user-defined) nodes of the boundary mesh (x⃗i), the functions f(x⃗i) are

the prescribed displacements due to the sensitivity derivatives. After the com-

putation of ci, R(x⃗i) can provide a smooth displacement field for all nodes of the

boundary mesh and the inner domain.

Lattice-based deformation [?,?,?] is the pilar of Free-Form Deformation (FFD)

techniques [?]. FFD is based on the idea of enclosing a mesh in a hull object (a

cube for instance) and deform it as the hull object deforms. The hull is based

on the concept of hyper-patches which are 3D analogues of parametric curves or

surfaces such as B-splines or NURBS. In this manner, it is highly convenient to

select the coordinates of the lattice points as the design variables. In the case

of B-splines, any node of the mesh (x1, x2, x3) can be evaluated by a trivariate

parametric equation

V⃗ (u, v, w) =
nu∑
i=1

nv∑
j=1

nw∑
k=1

Npu
i (u)Npv

j (v)Npw
k (w)P⃗i,j,k = (x1, x2, x3) (4.2)

Eq. 4.2 is the 3D analogue of the B-splines equations shown in Sec. 1.2.2. u, v, w
are the parametric coordinates, Npu

i (u)Npv
j (v)Npw

k (w) are the b-splines basis func-

tions and P⃗i,j,k are the position vectors of the lattice points (or control points). For

any (x1, x2, x3), the parameters u, v, w can be computed as shown in Appendix C,

so that V⃗ (u, v, w) = (x1, x2, x3). The grid sensitivities w.r.t. the coordinates of any

control point can easily be computed by

62 4. The Geometry Morphing Technique


∂x1

∂Px
i,j,k

∂x1

∂P y
i,j,k

∂x1

∂P z
i,j,k

∂x2

∂Px
i,j,k

∂x2

∂P y
i,j,k

∂x2

∂P z
i,j,k

∂x3

∂Px
i,j,k

∂x3

∂P y
i,j,k

∂x3

∂P z
i,j,k

 =

Ri,j,k 0 0
0 Ri,j,k 0
0 0 Ri,j,k

 (4.3)

where Ri,j,k is the product of the B-spline bases shown in Eq. 4.2. Using grid

sensitivities, relevant perturbations can be computed for the control points which

can displace the nodes via Eq. 4.2. An example of an FFD application is shown

in Fig. 4.2.

(a) (b)

Figure 4.2: The body of an automotive side mirror provided by Trabant (www.
trabant-nt.de/). The initial body is seen on the left while the deformed body

resulting from a 30o rotation of the near control points around the y−axis on the

right.

4.1.2 CAD-based Methods

In industrial applications, where gradient-based optimization and, especially, low-

cost approaches based on the adjoint method are in widespread use, the necessity

for maintaining a link to CAD is paramount. The optimal aerodynamic shapes

generated by the optimization loop cannot be manipulated in a CAD package un-

less a connection between the CAD design variables and the computational mesh

is established. As solutions, either the CAD software (which could be commercial)

can be a part of the gradient-based optimization loop, which means that it has

to be differentiated, or the optimal geometry could be approximated by a CAD-

compatible parameterization (return to CAD [?]). The work in this section focuses

on the former and overcomes the closed-source nature of most CAD packages,

by introducing an open-source, transferable parameterization based on standard

www.trabant-nt.de/
www.trabant-nt.de/

4.1. Literature Review of Parameterization Methods 63

CAD geometry (elemental geometry and NURBS [?]) which is widespread in for-

mats like IGES, STEP, etc. The connection of this parameterization to the com-

putational mesh is conducted via the proposed surface grid generation method

(Chap. 3).

CAD-based and especially NURBS-based optimization has been a well known

practice for quite some time. The field has flourished in various CFD-related [?,?]

and structural related isogeometric analysis applications [?,?].

Modern CAD systems like SIEMENS NX [?], CATIA V5 [?], SOLIDWORKS [?]

and AUTOCAD [?] use feature trees to model a geometry. From a design per-

spective, this is an optimal choice as it enables a user to define various geomet-

ric relations (constraints) which is inherently satisfied. However, the process of

an aerodynamic opimization includes the change of the design variables which

creates two difficulties: (a) the shape derivatives must be computed and (b) topo-

logical discontinuities must be overcome. The first difficulty stems from the fact

that most CAD packages are closed-source in nature and their vendors are very

sensitive regarding source-parameterizations. An example of an open source CAD

package that was included in the optimization loop was given by [?]. Shape opti-

mization was performed on CAD models by differentiating an entire CAD Kernel.

In particular, algorithmic differentiation was applied to the open-source Open-

Cascade Technology [?] Kernel. Unless an open-source CAD package is used,

the only way to compute shape derivatives is by finite differences [?]. For in-

stance, [?] performed shape optimization of the heat shield of a re-entry capsule

by using discrete adjoint. The model geometry of the capsule was designed using

a commercial CAD package and the sensitivities of the model surface nodes with

respect to (w.r.t.) the CAD design variables were computed using finite difference

approximations. Such methods can become computationally expensive and can

hinder the speed of the optimization process. The second difficulty stems from

the fact that the resulting CAD model must be coupled with the computational

mesh. However, a CAD-feature tree with an updated parametric input can poten-

tially generate different CAD faces and edges both in number and in topological

relations. This means that, on the one hand, the computational mesh must be

projected onto the CAD model at each optimization cycle and, on the other hand,

that grid sensitivities produce discontinuities. This has a negative impact on the

computation of sensitivity derivatives and the optimization itself. For these facts,

strict CAD-based optimization is most commonly used with stochastic optimiza-

tion methods [?].

NURBS have often been used as an alternate parameterization which is CAD-

compatible and can overcome the above mentioned drawbacks. NURBS is the

geometric standard for various CAD formats which are open source and can eas-

ily be distributed even among commercial packages. The geometry that is com-

puted in any CAD package is parametric and is either NURBS geometry or can be

transformed to a NURBS geometry in a straightforward manner. NURBS patches

64 4. The Geometry Morphing Technique

that are contained in the boundary representation of a model define the surface

boundary between solid and non-solid regions. Therefore, the boundary of a com-

putational mesh can easily be projected on that representation without worrying

about topology discontinuities. Furthermore, the derivatives of the NURBS control

points w.r.t. any boundary mesh node can be computed analytically.

NURBS-based optimization has been performed in various applications rang-

ing from 2D to 3D. The applications of NURBS in the optimization of airfoils [?,?],

turbomachinery blades [?] and 3D wings [?, ?] have been extensive. However,

there has been an absence of literature for generalized NURBS usage in 3D design

optimization. For instance, [?] employed NURBS surfaces with natural paramet-

ric boundaries as the parameterization tool. The differentiation of the NURBS

was done through AD techniques [?, ?, ?]. Similarly, [?, ?] performed NURBS-

based shape optimization with continuity constraints imposed between adjacent

patches. Both control points and weights were used for parameterizing the shape

and the AD tool TAPENADE [?] was used for computing the derivatives. Both

methods proved promising but did not overcome continuity issues due to the

trimmed patches. Attempts to address such continuity issues and the coupling

of NURBS patches have been identified in structural isogeometric analysis ap-

plications. For instance, [?] used trimmed NURBS surfaces to perform topology

optimization of shell structures. In [?], a method was presented for coupling

non-conforming NURBS patches in isogeometric frameworks via a master-slave

configuration and examples of imposed C0 and C1 continutiy were shown. In [?],

design and isogeometric analysis was performed on trimmed multi-patch BRep

models of structural membranes while in [?], isogeometric analysis of the BRep

was performed while handling trimmed NURBS patches. This was achieved by

including computational solvers at the CAD design level. Finally, in [?], isogeo-

metric analysis of thin shells was performed by using the STEP-format inherent

parametric curves and blending functions.

4.1.3 The Proposed Method

In this section, a parameterization scheme is developed, which uses the NURBS

patches contained in the BRep of standard files, to perform aerodynamic shape

optimization. The main drive of this work, is to perform CAD-based adjoint op-

timization, in any 3D shape, irrespectively of CAD packages and without using

finite differences or AD to compute shape derivatives. Taking the requirements

and the pros and cons of the above mentioned methods into account, NURBS-

based optimization is chosen as a go-to method if the link to CAD must be main-

tained. The NURBS patches have a rich design space which can be enriched

even further should there be a requirement. Furthermore, NURBS can be saved

in standard CAD formats which means that both the initial and final geometries

can be processed in a CAD viewer. Therefore, a new NURBS-based parameter-

4.2. Formulating the new Parameterization by imposing C0 and C1 Constraints 65

ization is proposed. The differentiation of the NURBS shapes is included in the

proposed parameterization scheme which is, then, seamlessly coupled with the

adjoint method. Furthermore, the proposed method adequately handles arbi-

trary trims in NURBS surfaces which (in more complex shapes) are very common

while similar methods make the assumption of natural parametric boundaries.

The NURBS surfaces contained in standard CAD files are firstly triangulated and,

then, used to parameterize the shape. Initially, the boundary mesh nodes are pro-

jected onto the NURBS patches, thus creating a map between the boundary mesh

and parametric spaces of different patches. Then, the control points are used as

a means of updating the shape undergoing optimization (both its CAD geometry

and its boundary mesh). The NURBS geometry contained in standard CAD files

consists, mainly, of trimmed patches. The trims are generally arbitrary and in-

dependent of the patches they connect. A potential shape update can, therefore,

create C0 (geometric) and C1 (smoothness) continuity issues, unless the control

points of neighbouring patches are constrained to move in accordance. The pro-

posed method imposes point-wise geometric and/or smoothness constraints along

the trimming lines of neighbouring patches. Then, the orthonormal basis of the

Null Space [?] of the constraints’ Jacobian is computed and used to project the

control points’ displacements on that basis.

4.2 Formulating the new Parameterization by imposing C0 and

C1 Constraints

The shape parameterization consists of trimmed 3D NURBS patches which must

be constrained by imposing continuity and smoothness constraints between the

neighbouring ones.

4.2.1 Imposing C0 Continuity Constraints

During NURBS-based optimization, the natural choice for the design variables b⃗ is

that of the control point coordinates. However, when handling trimmed patches,

the control points must be constrained to move in coordination, to ensure water-

tightness. In what follows, two surfaces in contact along an arbitrary trimming

curve (Fig. 4.3), being watertight along it, are assumed.

66 4. The Geometry Morphing Technique

Surface 1

Surface 2

S⃗1(u, v)= S⃗2(ξ, η)

∂S⃗1(u,v)
∂u

∂S⃗1(u,v)
∂v

∂S⃗2(ξ,η)
∂ξ

∂S⃗2(ξ,η)
∂η

Figure 4.3: A trimming curve between two surfaces (in red) along with a node on

it. Black arrows show the partial derivatives of each surface on the node, w.r.t. the

parametric coordinates.

Both are NURBS surfaces the points of which are computed in 3D by equations

similar to Eq. 1.4 (denoted as S⃗1(u, v) and S⃗2(ξ, η) respectively). This means

that for any point along the trimming curve, which corresponds to parametric

coordinates (u, v) and (ξ, η), the two surface equations evaluate the same 3D

coordinates.

S⃗1(u, v)− S⃗2(ξ, η) = 0⃗ ⇔
n1∑

m1=1

R1
m1

(u, v)P⃗ 1
m1

−
n2∑

m2=1

R2
m2

(ξ, η)P⃗ 2
m2

= 0⃗ (4.4)

The three equations (one per cartesian direction) represented by Eq. 4.4 can be

written as

[
0 0 0

]
=
[Basis functions of Surf. 1︷ ︸︸ ︷
R1

1 R1
2 · · · R1

n1

Basis functions of Surf. 2︷ ︸︸ ︷
−R2

1 −R2
2 · · · −R2

n2

]
·



X1
1 Y 1

1 Z1
1

X1
2 Y 1

2 Z1
2

.

.

.
.
.
.

.

.

.

X1
n1

Y 1
n1

Z1
n1

X2
1 Y 2

1 Z2
1

X2
2 Y 2

2 Z2
2

.

.

.
.
.
.

.

.

.

X2
n2

Y 2
n2

Z2
n2


(4.5)

4.2. Formulating the new Parameterization by imposing C0 and C1 Constraints 67

where Xj
i , Y

j
i , Z

j
i denote the 3D coordinates of the ith control point of the jth

surface. Eqs. 4.4 and 4.5 can be written for any number of different points along

the trimming curve. The parameters (u, v) and (ξ, η) are different for each point,

which means that the row matrix of Eq. 4.5 is also different as it contains the basis

functions. Assuming that κ points along the trimming curve are used to generate

that many equations and B1, B2, · · · , Bκ denote the different row matrices, Eq.

4.5 can be written κ times yielding


0 0 0
0 0 0
0 0 0
.
.
.

.

.

.
.
.
.

0 0 0

 =


B1

B2

B3

.

.

.

Bκ

 ·



X1
1 Y 1

1 Z1
1

X1
2 Y 1

2 Z1
2

X1
3 Y 1

3 Z1
3

.

.

.
.
.
.

.

.

.

X1
n1

Y 1
n1

Z1
n1

X2
1 Y 2

1 Z2
1

X2
2 Y 2

2 Z2
2

X2
3 Y 2

3 Z2
3

.

.

.
.
.
.

.

.

.

X2
n2

Y 2
n2

Z2
n2


=

 B

 ·

X Y Z



(4.6)

where B is a matrix containing NURBS basis functions and X, Y, Z are column

matrices containing the 3 coordinates of the control points of both sufaces. Eq.

4.6 can be re-written in block-matrix form as

B 0 0
0 B 0
0 0 B

 ·

XY
Z

 = C ·

XY
Z

 =

0...
0

 (4.7)

which holds for the initial control point coordinates. Since NURBS are rational

polynomials, C0 continuity can be ensured by satisfying Eq. 4.7 if κ is large

enough. Eq. 4.7 can also be differentiated w.r.t. the control point coordinates

yielding

C ·

δXδY
δZ

 =

0...
0

 (4.8)

Solving Eqs. 4.7, 4.8, can lead to a homogenous solution (zero vector) which, of

68 4. The Geometry Morphing Technique

course, is of no interest. Their non-zero solutions lie in the null space
1

[?] of

matrix C. Therefore, the next step in this process is to calculate the orthonor-

mal basis (Kernel(C)) of that null space and use it to express the control point

positions as well as their derivatives.

The null space of matrix C is the subspace of its domain that containts all

vectors V⃗ such that C · V⃗ = 0⃗. The image of C is isomorphic to the quotient of V⃗
by the null space which implies the rank-nullity theorem:

dim(NullSpace(C)) + rank = dim(V) (4.9)

where rank denotes the dimension of the image of C. This implies that for a

null space that contains more than the zero vector, matrix C must have a rank

smaller than the length of its row vectors. The product C · V⃗ can be written as a

dot product of its row vectors

C · V⃗ =


C⃗1 · V⃗
C⃗2 · V⃗

.

.

.

C⃗3κ · V⃗

 (4.10)

For V⃗ to belong to the null space, it must be orthogonal to each row Ci and if such

a non-zero vector exists, then matrix C has non-homogenous solutions. In this

case, it is clear from Eq. 4.7 that there exists such a non-zero vector for matrix C,

due to the existence of the non-homogenous solutions. Therefore, the following

conditions hold:

� If V⃗ belongs to the null space of C, any vector αV⃗ belongs to the same null

space, since C(αV⃗) = αCV⃗ = α · 0⃗ = 0⃗.

� If two vectors V⃗1, V⃗2 belong to the null space of C, then V⃗ = V⃗1 + V⃗2 also

belongs to the same null space, as CV⃗ = C(V⃗1 + V⃗2) = CV⃗1 + CV⃗2 = 0⃗

The dimension of the null space or, in other words, the reduction of the rank is

indicated by the number of the right singular values of C that are zero. If for a

singular value σi=0, the corresponding singular vector is U⃗i, then it holds that

CU⃗i = σiU⃗i = 0⃗ (4.11)

The orthonormal basis of the null space of matrix C, can, therefore, be computed

by using singular value / vector analysis [?]. Based on the conditions that stem

1
The null space of any matrix A consists of all the vectors B such that AB = 0 and B is

not zero. The size of the null space of A provides us with the number of linear relations among

attributes.

4.2. Formulating the new Parameterization by imposing C0 and C1 Constraints 69

from the non-homogenity of matrix C (listed above), any linear combination of all

U⃗i that belong to that null space, also lies in the same null space. This conclusion

provides an option to express any vector V⃗ that lies in the null space in terms of

Kernel(C):

V⃗ =
L∑
i=1

αiU⃗i =

U⃗1 U⃗2 · · · U⃗L

 ·


a1
a2
.
.
.

aL

 = Kernel(C) · α⃗ (4.12)

where L is the number of values σi=0, U⃗i are the corresponding singular vectors

and αi are the null space basis coordinates. One can ensure that the vector of

control point coordinates belongs to the null space of C by settingXY
Z

 = Kernel(C) · α⃗ (4.13)

The initial value of α⃗ can be computed via a least-square pseudo-inversion

α⃗ =
(
Kernel(C)TKernel(C)

)−1
Kernel(C)T

XY
Z

 (4.14)

By differentiating both Eqs. 4.13 and 4.14, bidirectional relations between the

control point positions and the null space coordinates become availableδXδY
δZ

 = Kernel(C) · δα⃗

δα⃗ =
(
Kernel(C)TKernel(C)

)−1
Kernel(C)T

δXδY
δZ

 (4.15)

Eq. 4.15 will be used when performing optimization. The null space coordinates

α⃗ will, eventually, be used as some of the design variables and the relations with

the control point coordinates will be used when applying the chain rule and when

updating the shape.

70 4. The Geometry Morphing Technique

4.2.2 Imposing C1 Continuity Constraints

If the two neigbouring surfaces of Fig. 4.3 are C1 continuous, then their normal

vectors on points along the trimming curve are parallel. Therefore, (assuming that

they are also C0 continuous) their tangent planes must be the same. This means

that the vectors denoted by the parametric derivatives of each surface must lie on

that same plane. That can be expressed as

∂S⃗1(u, v)

∂u
− a

∂S⃗2(ξ, η)

∂ξ
− b

∂S⃗2(ξ, η)

∂η
= 0

∂S⃗1(u, v)

∂v
− c

∂S⃗2(ξ, η)

∂ξ
− d

∂S⃗2(ξ, η)

∂η
= 0 (4.16)

Coefficients a, b, c, d are computed by solving

M

[
a
b

]
=

[
∂S⃗1(u,v)

∂u
· ∂S⃗2(ξ,η)

∂ξ
∂S⃗1(u,v)

∂u
· ∂S⃗2(ξ,η)

∂η

]
(4.17)

M

[
c
d

]
=

[
∂S⃗1(u,v)

∂v
· ∂S⃗2(ξ,η)

∂ξ
∂S⃗1(u,v)

∂v
· ∂S⃗2(ξ,η)

∂η

]
(4.18)

where

M =

[
∂S⃗2(ξ,η)

∂ξ
· ∂S⃗2(ξ,η)

∂ξ
∂S⃗2(ξ,η)

∂ξ
· ∂S⃗2(ξ,η)

∂η
∂S⃗2(ξ,η)

∂η
· ∂S⃗2(ξ,η)

∂ξ
∂S⃗2(ξ,η)

∂η
· ∂S⃗2(ξ,η)

∂η

]

Writing Eqs. 4.16 in matrix form yields

[Basis functions of surf. 1︷ ︸︸ ︷
∂R1

1

∂u
· · · ∂R1

n1

∂u

Basis functions of surf. 2︷ ︸︸ ︷
(−a∂R2

1

∂u
− b

∂R2
1

∂v
) · · · (−a∂R2

n2

∂ξ
− b

∂R2
n2

∂η
)

∂R1
1

∂v
· · · ∂R1

n1

∂v
(−c∂R

2
1

∂ξ
− d

∂R2
1

∂η
) · · · (−c∂R

2
n2

∂ξ
− d

∂R2
n2

∂η
)

]
·

X Y Z


=

[
0 0 0
0 0 0

]
(4.19)

which holds if the two surfaces are C1 continuous. The two equations of 4.19

are written κ times for the same points on the trimming curve as described in

subsection 4.2.1. Then, matrix B of Eq. 4.6 is created by taking into account

both C0 (Eq. 4.5) and C1 constraints (Eq. 4.19). Matrix B has 3κ rows. Matrices

4.2. Formulating the new Parameterization by imposing C0 and C1 Constraints 71

C and Kernel(C) are generated as in Eqs. 4.7-4.13 for the larger B matrix and

the update of the control points is calculated as in Eq. 4.15.

4.2.3 Constraining Multi-Patch Models

In subsections 4.2.1 and 4.2.2, a method to constrain two neighbouring trimmed

patches was shown. More patches can be constrained to move in coordination

if the proposed method is applied to every pair of neighbouring patches. In this

respect, displaceable or non-displaceable patches can be defined as allowed or not

allowed to be deformed during the optimization, respectively. Non-displaceable

patches can also be defined and constrained to maintain up to C1 continuity with

their displaceable neighbours. When such a patch pair is defined, the constraints

are defined only on the displaceable surface. For C0 constraints, Eq. 4.5 is

formulated so that the displacement of the displaceable surface is zero along the

trimming edge. If S⃗1 is considered displaceable and S⃗2 non-displaceable Eq. 4.5

becomes

S⃗2(ξ, η) =
[
R1

1 R1
2 R1

3 · · · R1
n1

0 0 0 · · · 0
]
·

X Y Z

 (4.20)

and by differentiating it

[
0 0 0

]
=
[
R1

1 R1
2 R1

3 · · · R1
n1

0 0 0 · · · 0
]
·

δX δY δZ

 (4.21)

Similarly to the C0 constraints, C1 constraints between a displaceable and a non-

displaceable surface are formulated as

[
a∂S⃗2(ξ,η)

∂ξ
+ b∂S⃗2(ξ,η)

∂η

c∂S⃗2(ξ,η)
∂ξ

+ d∂S⃗2(ξ,η)
∂η

]
=

[
∂R1

1

∂u

∂R1
2

∂u

∂R1
3

∂u
· · · ∂R1

n1

∂u
0 0 0 · · · 0

∂R1
1

∂v

∂R1
2

∂v

∂R1
3

∂v
· · · ∂R1

n1

∂v
0 0 0 · · · 0

]
·

X Y Z


(4.22)

72 4. The Geometry Morphing Technique

and by differentiating it

[
0 0 0
0 0 0

]
=

[
∂R1

1

∂u

∂R1
2

∂u

∂R1
3

∂u
· · · ∂R1

n1

∂u
0 0 0 · · · 0

∂R1
1

∂v

∂R1
2

∂v

∂R1
3

∂v
· · · ∂R1

n1

∂v
0 0 0 · · · 0

]
·

δX δY δZ


(4.23)

Due to the existence of non-displaceable patches and the locality property of

NURBS, matrix B is sparse. The columns of matrix B that correspond to control

points of non-displaceable patches is filled with zeros. Furthermore, the same

applies to control points of displaceable patches that are away from the trims

and, practically, do not influence the constraints. These columns of B and the

corresponding rows of X, Y, Z are removed and are not taken into account while

computing Kernel(C). On the one hand, the displacements of the control points

on non-displaceable patches are manually set to zero. On the other hand, the

displacements of the control points of displaceable patches that are away from

the trims are left unconstrained.

To summarize, to fully constrain a CAD model and prepare it for optimization,

the following steps are followed:

1. Define the displaceable and non-displaceable patches of the model.

2. For each pair of neighbouring patches that is either displaceable-displaceable

or non displaceable-displaceable, impose C0 and (where required) C1 con-

straints on κ points along the trimming curve. The size of κ depends on the

geometric complexity of the trimming curve. In all cases shown in this the-

sis, for trimming curves of degree p and of λ distinctive knots, κ = λ(p+ 1).

3. Using all the formulated constraints for all trimming curves, assemble ma-

trix B. The columns of B are as many as the total number of control points

of all the constrained patch pairs minus the number of unconstrained and

non-displaceable control points.

4. Formulate matrix C and compute Kernel(C).

The above mentioned process is performed once in the beginning of the opti-

mization loop. Considering that the coordinates of a node (x1, x2, x3) which lies

on any of the surfaces can be expressed in terms of the control point coordinates

4.2. Formulating the new Parameterization by imposing C0 and C1 Constraints 73

(Eq. 1.4), they can also be expressed in terms of α⃗:x1x2
x3

 = Quncon

XY
Z


uncon

+Qcon

XY
Z


con

= Quncon

XY
Z


uncon

+QconKernel(C)α⃗

(4.24)

where the Q matrices contain the basis functions of the surface on which, node

(x1, x2, x3) belongs. The parametric coordinates of each node (x1, x2, x3) used to

compute the basis function and the matrices Q, are acquired by interpolating the

(u, v) parametric coordinates of the triangulated grid of Chap. 3. Differentiating

Eq. 4.24 leads toδx1/δXuncon δx1/δYuncon δx1/δZuncon

δx2/δXuncon δx2/δYuncon δx2/δZuncon

δx3/δXuncon δx3/δYuncon δx3/δZuncon

 = Qunconδx1/δα1 δx1/δα2 · · · δx1/δαL

δx2/δα1 δx2/δα2 · · · δx2/δαL

δx3/δα1 δx3/δα2 · · · δx3/δαL

 = Qcon ·Kernel(C) (4.25)

Eqs. 4.24 and 4.25 create a parameterization scheme based on NURBS which

inherently satisfies C0 and C1 continuity (where necessary). Matrices Q and

Kernel(C) are constant which makes this parameterization linear w. r. t. αi

and the unconstrained control point coordinates. The design variables b⃗ are set

equal to α⃗ and Xuncon, Yuncon, Zuncon.

In Fig. 4.4, a simple example of a cylinder is portrayed. The cylinder consists

of 3 patches: 2 planar circular disks identical to the one portrayed in Fig. 1.3 and

a cylindrical side surface. The bottom circular disk is constrained to stay fixed

while the top disk and the side surface are allowed to change. All three patches

are C0 constrained. In total, the top and side surfaces consist of (7 × 2 + 2 × 2)

control points (54 degrees of freedom). The orthonormal basis of the null space

consists of 24 parameters αi (8 controlling each cartesian direction).

74 4. The Geometry Morphing Technique

Figure 4.4: CAD model of a cylinder (left) whose patches are constrained to move

in coordination. The result of the displacements of two different αi parameters are

shown in the center and right figures.

The control points of the side surface which are near the bottom disk remain

fixed regardless of any δαi applied. The control points of the top disk as well as

those of the side surface near the top, move as a unit, so that both surfaces remain

attached to each oher. In the example, two parameters which are controlling the z
coordinates of all the control points, are used to change the shape of the cylinder.

The final shape retains its watertightness.

4.2.4 Practical Computation of a Null Space

The most widely used methods for the computation of the rank or the nullity of

a M × N matrix C is the Singular Value Decomposition (SVD) [?] and the QR

factorization [?]. The SVD is usually considered more accurate in computing the

singular values and the corresponding vectors. However, the QR factorization has

always been the most efficient method with also sufficient accuracy.

In cases of large sparse matrices, both these methods (in their standard forms)

can become quite inefficient. This happens, firstly, due to inability to take advan-

tage of the sparsity pattern and, secondly, because less accuracy can compromise

the rank-revealing capabilities. For this reason, it is necessary to define the con-

cept of ϵ−nullity. Since, in numerical applications, there exist roundoff errors and

approximations, it is understandable that the singular values of C that produce

null space vectors, are not always strictly zero. Therefore, a small constant ϵ is

defined that acts as a threshold, below which, the singular values are considered

numerically zero. Assuming that M > N (as is the case in our applications) an

4.2. Formulating the new Parameterization by imposing C0 and C1 Constraints 75

SVD would factorize C as C = UDV T
where D would be an M × N diagonal

matrix, and U, V would be M ×M and N × N orthogonal matrices respectively.

The entries of matrix D would contain (in decreasing order) the true singular

values of C. ϵ−nullity is defined as the number L of the true singular values

σ1 ≤ σ2 ≤ · · · ≤ σL, such that σL+1 > ϵ. In this case, the rank of C would be

equal to N −L and for the right singular vectors v1, v2, · · · vL it would be true that

||Cvi||2
||vi||2

≤ ϵ

A value of ϵ that works well in practice is [?]

ϵ = 20(N +M)10−16 ·max(||eT1C||,||eT2C||2, ||eTMC||2)

where e1, e2, · · · , eM are the standard orthonormal basis vectors of RM
. To com-

pute the singular vectors that correspond to singular values less than or equal to

ϵ the process of [?] is followed. Typically, this process is split into two phases:

Firstly, matrix C must be analyzed and re-ordered based on its non-zero pattern

and, secondly, the factorization must take place.

As proposed in [?], a QR factorization of C is written as

CP = QR = Q

(
R1

0

)
= Q

(
R11 R12

0 0

)
(4.26)

where P is an N × N permutation matrix and Q, R are the approximations for

the requested factors with M ×M and M ×N sizes respectively. Matrix R1 is an

(N−L)×N right trapezoidal matrix that can be divided into two blocks: R11 which

is an (N − L) × (N − L) triangular matrix and R12 which has size (N − L) × L.

It is proven that all sub-matrices related to R maintain their sparsity pattern

which is also related to the upper Cholesky factor of CTC [?]. Furthermore,

matrix Q is never saved as a whole but rather as a set of elementary Householder

transformations. The permutation P which is used is based on the Column

Approximate Minimum Degree method proposed by [?]. If C is well-conditioned,

then R11 is full rank and non-singular. In that case, the null space of CT
is

computed as

Kernel(CT) = Q

(
0

IL×L

)
(4.27)

If the matrix C is ill-conditioned, then the rank of R11 is equal to (N − L − K),
K = 1, 2. . . . N − L and has also a null space. In this case, the left singular

vectors of R11 are estimated by subspace iteration techniques [?] and are stored

in a matrix U . The K rightmost columns of U contain the Kernel(RT
11) wized

76 4. The Geometry Morphing Technique

N − L×K. Then, Eq. 4.27 becomes

Kernel(CT) = Q

(
Kernel(RT

11) 0
0 IL×L

)
(4.28)

In order to compute the Kernel(C), the same process must be apllied on CT

which was the target in order to use the parameterization of this Chapter.

4.2.5 The Optimization Process

The optimization loop starts by importing the BRep of a CAD model from a stan-

dard CAD file. After performing the necessary triangulation with which, the

boundary meshed is generated and/or mapped on the BRep surfaces, displaceable

and non-displaceable patches are defined on the model as well as the required

continuity between them. Using this information, the process shown in sub-

sections 4.2.1-4.2.3 is followed which leads to the computation of matrices B and

C. Then, the rank revealing QR decomposition described in sub-section 4.2.4 is

used to compute the singular values and vectors of matrix C. Kernel(C) is then

computed through Eq. 4.12. The nodes of the boundary mesh are projected onto

the BRep by using point inversion [?] which is further described in Appendix C.

This projection is used to identify the surface on which the node belongs and also

compute its parametric coordinates on that surface. Using Eq. 4.25, δxk/δbn is

computed for every node of the boundary mesh.

At each optimization cycle, the primal system of equations and their adjoint

counterparts are solved to provide the sensitivity derivatives δJ/δbn. The CAD

model is updated through the NURBS control points and Eq. 4.15.

The NURBS surfaces and curves were implemented within OpenFOAM along

with the primal and adjoint equations (subsection [ref]). All matrices and vec-

tors described in subsections 4.2.1-4.2.4 were handled using the Eigen [?] open-

source library. The QR decomposition along with the null space basis computa-

tions were done using the SparseQR module within Eigen and the SuiteSparse [?]

module.

4.3 Applications

The effectiveness of the proposed parameterization in maintaining the continuity

constraints while minimizing an objective function is demonstrated in two aerody-

namic shape optimization problems. The first case is a 3D duct with a middle S-

section and the aim is to minimize the total pressure losses between the inlet and

the outlet. The second case is the tail surface of a benchmark car model, in which

the aim is to minimize the drag coefficient. The last case corresponds to Case 4

4.3. Applications 77

of the CFD optimization benchmark of the 11th ASMO UK/ISSMO/NOED2016:

International Conference on Numerical Optimisation Methods for Engineering De-

sign (see http://www.asmo-uk.com/11th_asmo_uk_conference/html/
menu_page.html).

4.3.1 Optimization of the Mid-Section of a 3D Duct

The first case shown, is that of a duct which corresponds to a part of a cooling

system used in automotive applications. The geometry consists of straight inlet

and outlet ducts which have different cross-sections and different locations and

orientations in the 3D space. To connect the inlet and the outlet, an S-section is

designed (Fig. 4.5) with 24 NURBS patches. The optimization aims at minimizing

the total pressure losses JPt (Eq. 2.19) by perturbing the shape of just the S-

section. C0 and C1 continuity is imposed between all patches that are allowed to

be displaced and all their neighbours.

Figure 4.5: S-Section Duct: The CAD geometry of the duct (as loaded from a STEP

file) with the displaceable middle S-section in red shading.

The computational mesh consists of approximately 73K hexahedral cells. The

total number of control points of the displaceable patches is 1594 and these are

allowed to move in all directions. The flow through the duct is laminar (Re ≈ 400).

The inlet velocity is 0.1m/s and the outlet has a zero pressure condition imposed

on it. The flow streamlines for the initial geometry can be seen in Fig. 4.6. The

sensitivity map on the initial geometry can be seen in Fig. 4.7 and the mesh

displacement after the first update of b⃗ in Fig. 4.8.

http://www.asmo-uk.com/11th_asmo_uk_conference/html/menu_page.html
http://www.asmo-uk.com/11th_asmo_uk_conference/html/menu_page.html

78 4. The Geometry Morphing Technique

Figure 4.6: S-Section Duct: Computed flow streamlines produced in the initial ge-

ometry. Color coding indicates the velocity magnitude field.

Figure 4.7: S-Section Duct: The sensitivity map plotted on the initial geometry of

the duct (i.e. the derivative of JPt w.r.t. the normal displacement of the design wall

nodes). Positive and negative sensitivities indicate that the geometry must be pushed

in and pulled out, respectively, in order to reduce the objective function.

4.3. Applications 79

Figure 4.8: S-Section Duct: Normal mesh displacement after the first update of b⃗.

Using the proposed parameterization, with steepest descent, the objective

function has reduced by 13.6% after 20 optimization cycles (Fig. 4.9).

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 2 4 6 8 10 12 14 16 18 20

J
p
t
/
J
p
t,
 i
n
it

Optimization Cycle

Figure 4.9: S-Section Duct: The convergence history of the optimization.

The resulting shape is easily exported in standardized STEP format which is

compatible with any CAD package (commercial or not). The CAD model as well

as comparisons with the initial can be seen in Fig. 4.10, 4.11. The resulting CAD

shape has no holes where the trimming edges are located and is smooth along

those edges. The shape can be exported as any standard CAD file and can be

further manipulated in a CAD package for purposes of industrial design. In this

case, the shape is exported as a STEP file. The comparisons shown below are

between the CAD models of two STEP files - the one with the initial and the one

with the final shape of the duct.

80 4. The Geometry Morphing Technique

Figure 4.10: S-Section Duct: The CAD model of the final shape of the duct after 20

optimization cycles. The rendering is that of a STEP file which is loaded in an external

CAD package.

(a) (b)

(c) (d)

Figure 4.11: S-Section Duct: Comparison of the initial shape (red shading) and

the final shape (transparent grey) of the S-section of the duct. Top-Left: Overall

perspective of the comparison. Top-Right: Close-up view of the patches connecting

the inlet to the S-section. Bottom-Left: Close-up view of the patches connecting the

outlet to the S-section. Bottom-Right: Perspective view from under the S-section

which best portrays the lateral deformations.

4.3. Applications 81

To further showcase the importance of the imposition of C0 and C1 constraints

on the model, a single unconstrained shape update is performed with the shape

sensitivities of the first optimization cycle. The results shown in Fig. 4.12 demon-

strate two issues. Firstly, the discontinuities along the stitches between displace-

able and non-displaceable patches and secondly, the multiple holes created be-

tween neighbouring trimmed patches. Both of these issues are handled effectively

by the proposed method.

Figure 4.12: S-Section Duct: The updated shape without imposing C0 and C1 con-

straints. Top: Discontinuity between moving (red) and non-moving (grey) patches.

Bottom: Holes between two moving trimmed patches.

The S-Section 3D duct is a well studied benchmark case used in several op-

timization runs coupled with various parameterizations. Therefore, this opportu-

nity is taken to compare the proposed parameterization with others on the same

geometry.

Firstly, a contribution that employs a CAD-based parameterization is chosen

as proposed by Agarwal et al. [?], that includes design velocities and a study of

parametric effectiveness. The case as well as the flow conditions and the Reynolds

number are identical. Furthermore, the aerodynamic optimization is performed

by means of the continuous adjoint technique. The parameterization is based

82 4. The Geometry Morphing Technique

on feature modelling which means that the shape derivatives must be computed

through finite differences. The parametric effectiveness study identifies the most

effective design variables and uses them with priority. This approach is purely

CAD-based and allows for an in-depth manipulation of the optimal shape. How-

ever, it is strictly tied to the originating CAD package. Furthermore, the inclusion

of the feature tree inside the optimization loop can over-constrain the optimiza-

tion. The optimization achieved a reduction of 10.72% in total pressure losses.

Secondly, a contribution that employs a CAD-free parameterization is chosen.

Alexias et al. [?] optimized the S-Section duct by applying a node-based parame-

terization. The continuous adjoint method was employed to compute the gradient

of the objective function and the same boundary conditions were employed as in

this work. Implicit smoothing was used to even the transition from displaceable to

non-displaceable regions of the mesh. This purely CAD-free approach allows for

the richest design space which can consequently result in a greater minimization

of the objective function. However, the link to CAD is severed which means that

the final shape cannot be manipulated in a CAD framework. Re-establishing that

link requires mesh-to-CAD procedures. The optimization achieved a reduction of

17.10% in power losses.

The proposed method achieves a middle ground solution by retaining a con-

nection to CAD by means of the BRep while not being connected to the feature tree

of any particular CAD package. This leads to a better optimization performance

than a pure CAD-based method. At the same time, the optimization performance

is worst than that of a pure CAD-free method but the connection to CAD allows

for further manipulation of the optimal shape.

4.3.2 Optimization of the DrivAer Car Model

The second case chosen for testing the effectiveness of the parameterization is that

of the DrivAer concept car (Fig. 5.19a). The configuration used in this study is the

fast-back car model with a smooth underbody, with both mirrors and stationary

wheels. The target is to minimize the drag coefficient (JcD) of the whole car, by

modifying parts of the tail of the car. The study is performed on the half of the

car by employing symmetry conditions. The CFD mesh consists of approximately

5.3M hexahedra with an average y+=75 of the barycenters of the first cells off the

wall and the Spalart-Allmaras turbulence model is used (Eq. 2.3).

4.3. Applications 83

Figure 4.13: DrivAer: Computed pressure field on the surface of the car.

The model is subjected to a far-field longitudinal velocity of 38.89m/s, with

a Reynolds number of Re ≈ 2.6 × 106 (based on the car width). The proposed

parameterization is applied to the rear end of the trunk lid, its sides and the

back windshield (Fig. 4.14). The 62 selected trimmed NURBS surfaces consist of

5580 control points. C0 and C1 continuity is imposed between all displaceable-

displaceable and non-displaceable-displaceable patch pairs.

Figure 4.14: DrivAer: The CAD model of the car, as loaded directly from a STEP file.

The displaceable trimmed faces are shown in red shading, while the non-displaceable

ones are shown in grey.

The sensitivity map on the initial geometry can be seen in Fig. 4.15 and the

mesh displacement after the first update of b⃗ along the X and Z axes (where the

displacement is the most dominant) can be seen in Fig. 4.16.

84 4. The Geometry Morphing Technique

Figure 4.15: DrivAer: The sensitivity map plotted on the initial geometry of the car

(i.e. the derivative of JCD
w.r.t. the normal displacement of the design wall nodes).

Positive and negative sensitivities indicate that the body surface must be pushed in

and pulled out respectively, in order to reduce the objective function.

Figure 4.16: DrivAer: The mesh displacement generated after the first optimization

cycle along the X axis (top) and the Z axis (bottom).

4.3. Applications 85

Using the proposed parameterization, with steepest descent, the objective

function has reduced by almost 1.3% after 24 optimization cycles (Fig. 4.17).

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 5 10 15 20

J
C

D
 /
 J

C
D

,
in

it

Optimization Cycle

Figure 4.17: DrivAer: The convergence history of the optimization.

Similarly to the first case, the proposed parameterization allows for an easy

export in CAD compatible format and further manipulation in a CAD environment.

The CAD model as well as comparisons with the initial, can be seen in Fig. 4.18,

4.19. The resulting CAD shape is smooth and continuous and this makes the

export as a STEP file possible.

Figure 4.18: DrivAer: The CAD model of the final shape of the car after 24 optimiza-

tion cycles.

Similarly to the previous case, the first update of the CAD model is shown

without imposing any constraint. The resulting shape can be seen in Fig. 4.20

where holes in the geometry are visible. The proposed method overcomes this

issue by producing watertight and smooth geometries.

86 4. The Geometry Morphing Technique

Figure 4.19: DrivAer: Comparison of the initial shape (red shading) and the final

shape (transparent grey) of the displaceable part. Top: An overall perspective of the

comparison. Bottom: Side view which best portrays the displacement of the trunk

lid.

4.3. Applications 87

Figure 4.20: DrivAer: The updated shape without imposing C0 and C1 continuity

constraints. The separation of adjacent patches is visible. Top: Top view of the

displaceable patches (red shading). Bottom: a back view of the displaceable patches.

88 4. The Geometry Morphing Technique

Similarly to the S-Section duct case, the DrivAer concept car is also a very well

documented case. Thus, the proposed method can be compared with different

parameterization methods.

Firstly, a lattice based approach is examined. Liatsikouras et al. [?] performed

optimization of the rear end of the trunk lid of the car by means of a volumetric

b-splines lattice. The link to CAD is not retained which means that the optimal

shape cannot be manipulated in a CAD framework. The car was subjected to a

flow under the same boundary conditions as in this work and the optimization

achieved a 5% drop in the drag coefficient.

Finally, a pure CAD-free approach is examined. Alexias et al. [?] performed

node-based optimization on the DrivAer model. The parameterized region of the

car was the rear end of the trunk lid and the boundary conditions were the same

as in this work. A 2.1% reduction was achieved in the drag coefficient.

As mentioned in the previous case, the proposed method overcomes the set-

backs of CAD-free optimization by including the BRep in the optimization loop.

4.4 Remarks

In this chapter, a method to perform shape optimization using standard CAD

geometries (BRep) was shown. The developed algorithm accurately imposes C0

and C1 continuity constraints between the multiple NURBS patches in the BRep

of a model. The cases shown range from academic to industrial-like to fully test

the method’s capabilities. This method proved reliable in keeping the link to

the CAD geometry and using that geometry for optimization. The time required

for the generation of matrix C and the computation of Kernel(C) through QR
factorization is negligible in comparison to the time required to solve the primal

and adjoint problems as it must be done once at the beginning of the optimization

loop. The time required for the update of the CAD shape and the export of the

STEP files is also very small.

The presented algorithm utilizes standard CAD files and by doing so, allows

for the cooperation of continuous (or even discrete) adjoint with any CAD package

(commercial or not). After the computation of the Null Space Basis, the shape

derivatives are computed in a direct way which makes the algorithm fast and

automated. Furthermore, return to CAD is not required as the CAD is updated at

each optimization cycle and it can be ultimately exported in a standard CAD file.

Chapter 5

Constraining the NURBS-based Adjoint

Optimization

In this chapter, algorithms for imposing geometric constraints during shape de-

formations in NURBS-based optimizations are presented. Firstly, the geometry

is imported (triangulated and handled) as shown in Chap. 3. Secondly, the

constraints are imposed in a way that any number of design variables can be

handled.

There are three constraints that are developed and shown in this chapter.

Curvature, bounding surface and volume constraints are investigated. The first

two are node-based constraints, i.e. constraints that must be applied on many

points of a NURBS surface and the last one is surface-based i.e. it is computed

based on the position of the NURBS patches.

Node-based constraints would require the satisfaction of as many constraints

as the nodes of the boundary mesh on the surface of the constrained NURBS

patches. For instance, the requirement that a surface retains a curvature lower

than a threshold must be applied at all nodes of that surface. The same applies

for the bounding surface constraints which impose a distance constraint from a

NURBS patch to another given surface. For such constraints, which can very

likely outnumber the number of design variables, a special treatment must be

introduced as conventional constrained optimization algorithms cannot handle

them.

Surface-based constraints are imposed on a defined geometric shape as a

whole. Thus, they do not require their imposition on multiple nodes and the rela-

tion between the constraints and the NURBS design variables must be computed

and differentiated.

89

90 5. Constraining the NURBS-based Adjoint Optimization

5.1 Literature Survey of Constraint Imposition

In industrial applications, the necessity for efficiently imposing geometric con-

straints is paramount. A family of geometric constraints with high practical sig-

nificance are those which do not allow the shape to be designed to penetrate user-

defined bounding surfaces (open or closed). These are also known as bounding

constraints and play a crucial role in industrial design since most components

must be designed within a given bounding space. For instance, in Heat, Ven-

tilation and Air-Conditioning (HVAC) automotive applications, vents and cooling

channels must be designed within enclosed spaces with various obstacles bound-

ing their deformations or displacements during optimization. Another example is

that of aircraft wings with enclosed fuel tanks (wet wings); minimizing the drag

of the wing may reduce its thickness resulting to a wing surface that penetrates

the tank. The user-defined set of bounding surfaces gives rise to a bounded or

semi-bounded space of feasible solutions. Working with bounded spaces, the

terms "packaging" or "enclosure" constraints can be used, in the sense that the

feasible sub-space is a topological sphere. To impose these constraints, [?] used

gradient projection [?] along with a vertex morphing technique [?] to perform

shape changes. The constraints were formulated based on signed distances [?]

computed for every surface grid node. The gradient of the objective function was

projected onto the Null Space [?] of the Jacobian of the constraints (the matrix

including the first derivatives of the constraints w.r.t. each design variable) in

order to find an update that minimizes the objective function without violating

the constraints. [?] handled bounding constraints with two metrics: (a) the length

of the intersection curve(s) between the shape to be designed and the bounding

surfaces and (b) the aggregated (by means of a Kreisselmeier-Steinhauser func-

tion [?]) minimum distances between the two shapes. [?] performed shape opti-

mizations of constrained duct geometries by explicitly imposing no-displacement

conditions on shape nodes that tend to violate the no-intersection criteria. [?]

presented a morphing algorithm in the context of layout problems dealing with

the placement of solid components in 3D space by avoiding to penetrate each

other. The method used signed distance fields to identify constraint violation and

retracted each violating node onto the surface of the constraint objects. Similar

layout problems are addressed by [?, ?]. [?] use a level set function to impose

no-intersection constraints among a number of objects, in the form of a unified

integral facilitating the use of gradient-based methods and allowing extension to

other geometric constraints [?].

Geometric constraints, other than bounding ones, have been addressed in a

similar node-wise manner. For instance, [?] presented a method to control the

curvature of the boundaries of 2D domains during the optimization loop. Node-

based parameterization of the boundaries was used and curvature was controlled

at certain user-defined nodes. The Augmented Lagrangian Method (ALM) was

5.2. The Proposed Method 91

used to satisfy the curvature constraints, the values of which were computed

after locally parameterizing the boundaries using three approaches: quadratic

polynomials, NURBS curves and generalized arc-length. Thickness has also been

controlled in a similar manner; [?] proposed a method to constrain shape thick-

ness extrema by using the level set [?] method to compute them and the ALM

to impose them. Finally, using the notion of signed distance, which will be ad-

dressed in this chapter, [?] optimized thickness by constraining stress during

shell fabrication.

5.2 The Proposed Method

In this chapter, the mentioned constraints are imposed during aerodynamic shape

optimization. Flow problems governed by the Navier–Stokes equations for incom-

pressible fluids are tackled and the gradient of the objective function J w.r.t.

the design variables controlling the shape to be designed is computed using the

continuous adjoint method.

For the bounding constraints, the bounding surfaces are defined in discrete

(triangulated) form. The constraint values from all boundary mesh nodes are

aggregated into a single constraint function which is used to avoid intersection

of the surface to be designed with the bounding one(s). This method’s efficiency

must not be jeopardized by the possibly high number of constraints, especially

when the parameterization is not node-based (which could lead to a much smaller

number of design variables). The constraint function identifies whether the design

and bounding surfaces intersect; this is done in a node-wise manner. For each

node on the shape, a signed distance to the bounding surface is computed. This

distance is negative for nodes lying in the feasible space and positive otherwise.

An inequality constraint is, therefore, formulated for each node, requiring that

the corresponding signed distance remains non-positive. Hence, the number of

geometric constraints is equal to the number of nodes on the shape and this

may become problematic, depending on the number of design variables and the

method used to update them.

For the curvature constraints, the same method is applied. During NURBS-

based optimization, the geometry of the patches can sometimes be warped (mean-

ing that the control point grid is not uniformly distributed along the surface). This

can lead to a finer control point grid at certain areas and a coarser elsewhere. In

areas with a high concentration of control points, the perturbed surface can be-

come wrinkly (with high curvature regions). For this reason, for each and every

node of the boundary mesh, a maximum curvature constraint must be applied.

Similar to the bounding surface constraints, this can lead to numerical difficul-

ties. For instance, working with the Sequential Quadratic Programming (SQP) [?]

and the active set method [?], the constraints seen by the method are only the ac-

tive (violated) ones. Depending on the case, the number of active constraints can

92 5. Constraining the NURBS-based Adjoint Optimization

become larger than the number of design variables, especially when the shape is

parameterized with a relatively small number of design variables. This is a degen-

erate problem [?], as the systems in which the standard SQP and gradient pro-

jection methods result, become singular. In such a case, Augmented Lagrangian

or penalty methods must preferably be used. On the other hand, these methods

often misbehave for a high number of constraints, since a good enough initial-

ization of the penalty factors or the Lagrange multipliers can hardly be obtained.

Thus, it is desirable to avoid handling such a large number of constraints and a

method to reduce them is proposed.

The main drive here is to efficiently solve optimization problems with bound-

ing constraints, even if the number of the latter is large and the design vari-

ables number is relatively small (i.e. the parameterization is not node-based),

which, as stated before, can become numerically unstable. The proposed method

transforms a number of inequality constraints to a single equality constraint by

summing all nodal constraint values (filtered by a penalty function) for the sur-

face to be designed. This step allows handling a potentially very large number of

constraints with a single Lagrange multiplier and/or penalty value. This single

constraint is, then, differentiated w.r.t. the design variables. In order to show-

case the benefits of the proposed constraint aggregation, a study is performed

in one of the cases. Initially, constrained optimization is performed using the

ALM method and node-wise constraints with slack variables. The optimization

is repeated using the ALM and the proposed single constraint and, finally, using

SQP. The design variables are the control points of both NURBS and Volumetric

B-splines, though any other parameterization scheme could have been used.

Apart from these two types of constraints, a minimum allowed volume con-

straint is studied. The volume is computed and differentiated w.r.t. the NURBS

control points.

5.3 Constraint Imposition

The target is to solve an aerodynamic shape optimization problem, the solution

of which minimizes a flow related objective function and satisfied a number of

constraints. The optimization is gradient-based and the derivatives of the objective

function are computed using continuous adjoint.

5.3.1 The Bounding Surface Constraint

In what follows, two shapes are available in each optimization cycle, i.e. the cur-

rent solution to the optimization problem and the bounding surface that defines

the boundary between two spaces: that in which the shape to be designed is

allowed to reside (feasible space) and the infeasible space (Fig. 5.1).

5.3. Constraint Imposition 93

X⃗i

X⃗p,i

n⃗p,i

Bounding Surface

Shape to be designed

Feasible Space

Infeasible Space

Figure 5.1: Bounding surface and the shape to be designed, sketched as 2D curves.

X⃗i denotes the coordinates of the i − th node on the shape to be designed. X⃗p,i

and n⃗p,i denote the projected point of X⃗i to the bounding surface and the bounding

surface’s normal at that point, respectively. The normal vector is pointing toward the

feasible space.

In order to impose the bounding surface constraints, the first course of action

is to compute the closest projection of every node of the current solution (shape)

onto the bounding surface. Since this projection is repeated in each optimization

cycle, it should be fast. Initially, the bounding surface is triangulated and a

dynamic octree structure is built around it, in order to facilitate fast and reliable

point-to-triangle search routines. Therefore, the discrete geometry is stored in STL

format and each triangle is classified in an octree leaf. At the beginning of each

optimization cycle, an octree search is made for each design surface node X⃗i =
[xi,1, xi,2, xi,3]

T
. This returns a list of triangles from the STL lying within a user-

defined fixed radius from X⃗i. For each of these triangles, a projection algorithm is

performed. This algorithm [?] projects X⃗i onto the plane that each triangle belongs

to and, then, computes the barycentric coordinates of the projection (denoted as

X⃗∗
i). In case X⃗∗

i lies inside the triangle, this is considered to be a valid projection.

Let T⃗1, T⃗2 and T⃗3 be the position vectors of the three vertices of such a triangle,

then the barycentric coordinates (α, β, γ) of the projection are

γ =
(u⃗× w⃗) · n⃗

|n⃗|2
, β =

(w⃗ × v⃗) · n⃗
|n⃗|2

, α = 1− β − γ (5.1)

where u⃗ = T⃗2 − T⃗1, v⃗ = T⃗3 − T⃗1, w⃗ = X⃗i − T⃗1, n⃗ = u⃗ × v⃗. The projection is valid if

0 ≤ α, β, γ ≤ 1 and, in such a case, X⃗∗
i = αT⃗1 + βT⃗2 + γT⃗3. The above procedure

is repeated for all the triangles returned from the octree list. From all the valid

projection points X⃗∗
i , the nearest to X⃗i is its projection (X⃗p,i) to the bounding

surface. The normal vector at X⃗p,i pointing towards the feasible space is denoted

as n⃗p,i. In cases with sharp corners and np,i is chosen to be the one that forms the

94 5. Constraining the NURBS-based Adjoint Optimization

smallest angle with the normal to the boundary mesh at X⃗i. The signed distance

gi(⃗b) = −n⃗p,i · (X⃗i(⃗b)− X⃗p,i) (5.2)

is then computed and this determines if X⃗i(⃗b) remains in the feasible space w.r.t.

the bounding surface. b⃗ at this stage could be arbitrary. If gi(⃗b) ≤ 0, then X⃗i(⃗b)
lies inside the feasible space (Fig. 5.1). If this condition holds for all nodes, then

(assuming that the discretization of the design surface is much finer than that

of the bounding surface) the design surface will reside entirely in the acceptable

space. The derivative of the signed distance function w.r.t. bn is

δgi(⃗b)

δbn
= −n⃗p,i ·

δX⃗i(⃗b)

δbn
(5.3)

and can be computed analytically based on the parameterization.

Let M be the number of nodes on the shape to be designed. Then, the con-

strained optimization problem is defined as follows:

min J (⃗b), b⃗ = [b1, b2, ..., bN]

subject to gi(⃗b) ≤ 0, i = 1, 2, ...,M (5.4)

cj ≤ 0, j = 1, 2, ..., K

where cj represents other geometric or flow constraints which could potentially

exist in the same problem.

5.3.2 The Curvature Constraint

In the attempt to constrain the curvature field on a surface, a prerequisite is the

selection of the curvature metric (among principal curvatures, mean or Gaussian

curvatures or functions of all the above), which the constraint should be imposed

to. Based on this, an inequality constraint must be imposed at all points on that

surface. The curvature at each point of a surface can be computed using the

coefficients of its first and second fundamental forms, defining tensors F1 and F2

respectively. At each point, the principal curvatures κ1, κ2 are computed after

solving det(F2−κF1) = 0 for κ (Chap. 3). Through them, the mean and Gaussian

curvatures

κmean =
κ1 + κ2

2

5.3. Constraint Imposition 95

κGauss = κ1κ2 (5.5)

can be defined. As stated in Sec. 3.2.2.2, the principal curvatures represent

the curvature values on perpendicular parametric directions and, therefore, by

constraining them to have an absolute value less than a threshold, local "flatness"

of the surface can be achieved. Therefore, the expression chosen to be constrained

is

κ =
1

2
(κ21 + κ22) ≤ κthres (5.6)

where κthres is an upper bound value for κ. In order to compute and, then,

differentiate Eq. 5.6 w.r.t. the design variables b⃗, its dependence upon the surface

expression must firstly be computed. According to [?], Eq. 5.6 can further be

rewritten as

κ =
1

2
(κ21 + κ22) =

1

2

(
(κmean + C)2 + (κmean − C)2

)
= κ2mean + C2

=

(
GL− 2FM + EN

2(EG− F 2)

)2

+

(
L(EG− 2F 2) + 2EFM − E2N

2E(EG− F 2)

)2

+

(
EM − FL

E
√
EG− F 2

)2

(5.7)

where E,F,G and L,M,N are the coefficients of the first and second fundamental

forms respectively. Using the chain rule, the derivative of κ w.r.t. a design variable

bn can be computed. δκ/δbn depends on the following quantities:

δE

δbn
= 2

δσ⃗u
δbn

· σ⃗u

δG

δbn
= 2

δσ⃗v
δbn

· σ⃗v

δF

δbn
=
δσ⃗u
δbn

· σ⃗v + σ⃗u ·
δσ⃗v
δbn

δL

δbn
=
δσ⃗uu
δbn

· n⃗+ σ⃗uu ·
δn⃗

δbn
δM

δbn
=
δσ⃗uv
δbn

· n⃗+ σ⃗uv ·
δn⃗

δbn
δN

δbn
=
δσ⃗vv
δbn

· n⃗+ σ⃗vv ·
δn⃗

δbn

which directly depend on the surface expressions. Again, if M is the number of

nodes on the shape to be designed, then the constrained optimization problem

can be defined as follows:

96 5. Constraining the NURBS-based Adjoint Optimization

min J (⃗b), b⃗ = [b1, b2, ..., bN]

subject to κi(⃗b) ≤ κthres, i = 1, 2, ...,M (5.8)

cj ≤ 0, j = 1, 2, ..., K

where cj represents other geometric or flow constraints which could potentially

exist in the same problem.

5.3.3 Transforming Node-wise Constraints to a Single Equality

Constraint

The large number of constraints gi(⃗b) or κi(⃗b) in such a formulation can cause

numerical problems if certain optimization methods are used. Constrained op-

timization algorithms, such as the SQP or gradient projection, assume a priori

that the number of constraints is less than the number of design variables. Both

need to compute and factor or invert matrices containing the Jacobian of the con-

straints. These matrices become rank-deficient if there are more equality and ac-

tive inequality constraints than design variables and, therefore, the computation

of a suitable update for b⃗ poses numerical difficulties. As a result, ALM methods

are preferably used. However, it is not desirable to solve constrained optimization

problems with a great number of constraints as this can cause severe conver-

gence issues (see section 5.4.1). Thus, an alternative approach is pursued which

can accommodate most optimization methods and lead to a faster convergence of

the optimization problem. The constraint function values are summed up after

passing through a penalty function which penalizes nodal constraint violations.

The penalty function has the following form:

Fp(ci) =


0 , ci < cm

α(ci − cm)
4 + β(ci − cm)

3 , cm ≤ ci < cs

ci + (ys − cs) , ci ≥ cs

(5.9)

Terms involved in Eq. 5.9 can be seen in Table 5.1 and are chosen to achieve first

and second-order continuity. cm is the threshold value and cs is the value above

which the penalty function increases linearly. cs is mainly related to the size of

the case and the units of the constraint functions.

It is understandable that the values of cs and cm change depending on the

upper threshold defined by the problem. For instance, for the bounding surface

constraints, cm = 0 and Fp(gi) is plotted in Fig. 5.2 for various cs values.

5.3. Constraint Imposition 97

Table 5.1: Quantities in eq. 5.9.

Variable Value

cm Constraint upper bound

cs A value greater than cm over which Fp(ci) increases linearly

α − 1
2(cs−cm)3

β −2α(cs − cm)

ys α(cs − cm)
4 + β(cs − cm)

3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-0.1 0 0.1 0.2 0.3 0.4 0.5

F
p
(g

i)

gi

Cs=0.1
Cs=0.2
Cs=0.3
Cs=0.4

Figure 5.2: The penalty function for cm = 0 and various values of cs.

The penalty function returns positive values only for the violated constraints.

The returned penalties are then weighted with the boundary face areas Si at the

respective nodes and are normalized with the total design surface area, in order

to make the constraint value resolution–independent. The summation of all the

penalty values over the design surface yields:

Cf (⃗b) =

∑M
i Fp(ci(⃗b))Si∑M

i Si

=
M∑
i

Fp(ci(⃗b))wi (5.10)

The value of Cf for various boundary mesh resolutions for the case of section

98 5. Constraining the NURBS-based Adjoint Optimization

5.4.1 is depicted in figure 5.3;

 0.039

 0.0395

 0.04

 0.0405

 0.041

 0.0415

 20 40 60 80 100 120 140

C
f

Mesh size / 1000

Figure 5.3: Double-Outlet Duct: Cf values plotted for various mesh sizes.

Nullifying Eq. 5.10 means that none of the nodes on the design shape violate

its nodal constraints. To facilitate the convergence of the optimization problem,

this condition can be transformed into an inequality constraint by relaxing it with

a small positive value ϵ, i.e. imposing Cf ≤ ϵ. The derivative of Cf w.r.t. bn is

δCf

δbn
=

M∑
i

[
∂Fp(ci(⃗b))

∂ci(⃗b)

δci(⃗b)

δbn
wi + Fp(ci(⃗b))

δwi

δbn

]
(5.11)

The constrained optimization problem defined in Eqs. 5.4, 5.8, becomes

min J (⃗b), b⃗ = [b1, b2, ..., bN]

subject to Cf = 0, (5.12)

cj ≤ 0, j = 1, 2, ..., K

A simple example is portrayed below, using the proposed formulation for the

curvature constraints on a NURBS semi-cylinder. The radius of the semi-cylinder

is r = 0.5 which leads to a uniform κi = 2 at all of its surface nodes. Eq. 5.12 is

formulated for three different values of cm and equation Cf = 0 is solved iteratively

by selecting the control point positions. For all three cases, cs = cm+0.1 has been

set for consistency. Solving Cf = 0, leads the curvature metric of each surface

node to become less than cm. The resulting shapes as well as the convergence

history of all three cases, are shown in Fig 5.4.

5.3. Constraint Imposition 99

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30

 C
1

Iterations

Figure 5.4: Left: The initial cross–section of a semi–cylindrical surface (blue) and

the cross–sections resulting from the solution of Cf = 0 for cm = 1.5 (red), cm = 1.0
(black) and cm = 0.5 (green). Right: The convergence history of the three iterative

procedures leading to the results presented on the left. Curves for cm = 1.5 (red),

cm = 1.0 (black) and cm = 0.5 (green) are shown.

5.3.4 The Volume Constraint

For a watertight solid model, its volume can be computed using only the nodal

coordinates of its boundary patches. Assume such a model and let V be its

volume and S its total surface area. From the Gauss divergence theorem, it is

known that the volume of a watertight shell of surface S can be computed using

its boundary surfaces. It is obvious that the total surface of a solid is a union of

all its trimmed patches σ⃗i and, therefore, the volume is given by

V =
1

3

∑
i

∫
u

∫
v

σ⃗i(u, v) · n⃗(u, v) ∥σ⃗u(u, v)× σ⃗v(u, v)∥ dudv (5.13)

The volume constraint is an inequality that enforces the volume to be lower (in

case a model must fit inside an assembly) or greater (in case an assembly must fit

inside a model) than a threshold. For the latter case, the constraint is expressed

as

Cv = V − Vmin ≥ 0 (5.14)

This constraint is handled using slack variables within the Augmented La-

grangian Method (ALM) algorithm [?].

Similarly to the flow and adjoint solvers, all the constraints shown here were

implemented within OpenFOAM.

100 5. Constraining the NURBS-based Adjoint Optimization

5.4 Applications

The imposition of the shown constraints is demonstrated in five problems. All of

them stand for aerodynamic shape optimization problems, constrained either by

the presence of bounding surfaces or with the surface curvature or the volume.

The first case is a 2D duct and the aim is to minimize the total pressure losses

between the inlet and the two outlets. The second case is a 3D U-Bend duct and,

similarly to the first case, the aim is to minimize the total pressure losses. The

third case is the shape optimization of the side mirror of a benchmark car model

for minimum drag coefficient. The fourth case is a 3D automotive cooling duct

and the aim is to minimize the total pressure losses between its inlet and outlet.

The final case is an extruded NACA0012 airfoil and the aim is to minimize the

drag coefficient. In the first three cases, the bounding surface constraints are

imposed while, in the fourth and fifth, the curvature and volume constraints are

tested respectively.

Cases 2 and 3 in this Chapter, correspond to Cases 1 and 4 of the CFD op-

timization benchmark conducted during the 11th ASMO UK/ISSMO/NOED2016

International Conference on Numerical Optimisation Methods for Engineering De-

sign (see http://www.asmo-uk.com/11th_asmo_uk_conference/html/
menu_page.html).

5.4.1 Optimization of a Double-Outlet Duct

This case was initially shown by Koch et al. (2017) [?], in an article dealing

with topology optimization in fluid mechanics, without involving the bounding

box constraints. The duct geometry is described by B-spline control points. The

initial duct is the one shown in Fig. 5.5. The optimization aims at minimizing

total pressure losses (Eq. 2.19) and the bounding box happens to cross the initial

duct geometry. This bounding box consists of two narrow regions which restrict

the flow passage and the duct must be redesigned in order to make it lie inside

them. The constrained optimization starts from an infeasible solution w.r.t. the

bounding box constraint. The three straight ducts which are linked directly to the

inlet and the outlets cannot be deformed while the rest of the duct can.

http://www.asmo-uk.com/11th_asmo_uk_conference/html/menu_page.html
http://www.asmo-uk.com/11th_asmo_uk_conference/html/menu_page.html

5.4. Applications 101

Figure 5.5: Double-Outlet Duct: The initial duct geometry colored based on the

sensitivity map, i.e. the derivative of JPt w.r.t. the normal displacement of the design

wall nodes, and the bounding surface in red. For the parts of the surface with negative

/ positive sensitivities, the duct walls must be pulled out / in to reduce the objective

function value.

The computational domain is 2D (pseudo-3D with one cell depth) and consists

of approximately 85K hexahedral cells. To parameterize the duct walls, multiple

2D curves extruded along the depth direction are used.

A total of 35 control points are used to parameterize the duct walls. All of them

are allowed to move in both directions with the exception of the two first control

points after each inlet and outlet wall. Therefore, the total number of free control

points is 23, giving rise to N=46 design variables. The flow is laminar (Re = 200).

Initially, a mesh independence study is performed in order to justify the res-

olution of the mesh. The primal equations are solved for various mesh sizes and

the corresponding objective function (Jpt) values are plotted in Fig. 5.6. Based

on this study, a mesh of approximately 85K cells appears to be adequate and this

is used hereafter. On this mesh, the adjoint equations are solved to compute the

sensitivity map of Fig. 5.5. It can be observed that the thickness of the duct

cross-section should be increased along the largest part of the left design wall.

102 5. Constraining the NURBS-based Adjoint Optimization

 0.0307

 0.0308

 0.0309

 0.031

 0.0311

 0.0312

 0.0313

 20 40 60 80 100 120 140

J
p
t

Mesh size / 1000

Figure 5.6: Double-Outlet Duct: Jpt values for different mesh sizes expressed by the

number of cells.

The solution of the constrained optimization problem of the double-outlet duct

is tried using three approaches. Firstly, the no-penetration constraints are im-

posed in a node-wise manner using the ALM method. The design patches of the

duct consist of a total of 2618 boundary nodes, making it difficult to initialize λi
and µi for such a high number of constraints. Many different initializations were

tried, leading however to an impasse. At the start of the optimization, the ALM

method tends to ignore the constraints, until the penalty values µi become suf-

ficiently large. However, increasing µi makes the solution highly unstable, as λi
values do not converge. Thus, computing the optimal set of Lagrange multipliers

proved very challenging and this problem was turned into the development of an

extremely sophisticated ALM method. However, even that would require a good

enough initialization to work. Secondly, the same problem is solved by using the

same ALM method as before, but with the single equality constraint formed for

cm = 0, cs=0.001. The constraint makes the duct shrink to move into the feasible

space. The optimized solution gives an objective value which is by 21.5% greater

than the initial. The optimization converges within 8 optimization cycles.

Finally, the same problem is solved using the SQP and the single constraint.

The SQP computes a different local optimum which leads to a 9.6% increase in

the objective function. The convergence of the objective function and the residual

of the KKT equations are plotted in Fig. 5.7. This study showcased that the

combination of the single, aggregated constraint and the SQP is the most efficient

technique, in this case at least. Hence, this combination will also be utilized for

the cases that follow.

5.4. Applications 103

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 2 4 6 8 10 12 14
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

J
p

t
/
J

p
t,

 i
n

it

||
 K

K
T

 R
e
s
id

u
a
l
||

2

Optimization Cycle

Jpt / Jpt, init | SQP
KKT residuals | SQP

Jpt / Jpt, init | ALM
KKT residuals | ALM

Figure 5.7: Double-Outlet Duct: Convergence history of the objective function and

the residuals of the KKT equations for the constrained optimization using the ALM

and the SQP. The objective function values are read on the left whereas the KKT

residuals on the right. The quantities to which the graphs values refer are shown in

the legend.

(a) (b) (c)

Figure 5.8: Double-Outlet Duct: Initial (left) and optimized shapes resulting from

the constrained optimization with the ALM (center) and the SQP (right) methods.

Shrinking parts of the duct makes the fluid traverse the narrow passages at

a higher speed compared to that of the initial geometry (Fig. 5.9). Thus, the

optimized geometry has higher friction forces and higher total pressure losses.

104 5. Constraining the NURBS-based Adjoint Optimization

Figure 5.9: Double-Outlet Duct: Velocity magnitude iso-areas plotted on the initial

(left) and the optimized via the SQP (right) geometries of the duct.

5.4.2 Optimization of a 3D U-Bend Duct

The second case is the optimization of a 3D U-Bend duct [?, ?]. This geometry

mimics part of the serpentine type internal cooling channel of turbine blades (Fig.

5.10a). The aim is to minimize the total pressure losses by deforming the U-turn;

pure 3D deformations are allowed. The computational mesh has approximately

870K cells with an average y+=1.8 of the first cell barycenters off the wall.

(a) (b)

Figure 5.10: U-Bend Duct: Initial shape. Left: perspective view of the whole duct.

Right: parameterized part of the duct along with the control points of the volumetric

splines control box. Red control points are allowed to move while the blue are fixed.

5.4. Applications 105

Figure 5.11: U-Bend Duct: Velocity field plotted on the initial duct geometry.

Figure 5.12: U-Bend Duct: Total pressure losses sensitivity map. Color map as in

Fig. 5.5.

The inlet normal velocity is 8.4m/s, the hydraulic diameter is 0.075m and the

flow Reynolds number based on the above quantities is Re ≈ 43, 800. The initial

velocity field is plotted in Fig. 5.11. The parameterization of the U-turn of the

duct is performed with volumetric B-splines. The control box used can be seen in

Fig. 5.10b. The total number of moveable control points is 18 and, since they are

allowed to move in all directions, this leads to N =54. The initial direction of the

deformations can be seen by the computed surface sensitivities, Fig. 5.12.

Using this parameterization, an unconstrained optimization with the BFGS

method leads to a 42.5% drop in Jpt (Fig. 5.14b). The final shape (Fig. 5.13a) is

inflated w.r.t. the initial one in certain areas which can lead to violations of manu-

facturability criteria. For instance, the shape could tend to form a zero-thickness

geometry with the surface of a neighbouring part and, therefore, containment of

106 5. Constraining the NURBS-based Adjoint Optimization

the optimized geometry within certain boundaries should be imposed. Therefore,

a bounding box constraint is imposed as in Fig. 5.13b.

(a) (b)

Figure 5.13: U-Bend Duct: Final shape resulting from the unconstrained optimiza-

tion (left) and the same shape along with the bounding box (transparent red) used in

the constrained optimization (right).

The constrained optimization starts with the initial geometry and aims at pre-

venting the shape from intersecting with the bounding box. A value of cs=0.001
is used to set the penalty function. The constrained optimization leads to a 29%
reduction in total pressure losses. The convergence history of both the objective

function and the residual of the KKT equations can be seen in Fig. 5.14a and

the final shape which lies completely inside the bounding box in Fig. 5.15a. In

Fig. 5.16, the cumulative normal displacements, resulting from the constrained

and unconstrained optimizations, are compared. In the unconstrained case, the

total pressure losses are minimized by deforming (’inflating’) the outer walls of the

U-turn. In the constrained case, since the outer walls are not given much space to

deform, the objective function is minimized by reshaping mainly the inner walls.

Because of this, the large recirculation bubble which appears in the initial duct

geometry (along the inner walls and towards the outlet), Fig. 5.17a, is not entirely

suppressed. As seen in Fig. 5.18, for the duct which has been optimized under

constraints, the difference between the total pressure and an average inlet total

pressure is much smaller towards the outlet compared to the initial geometry.

5.4. Applications 107

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 2 4 6 8 10 12 14 16 18 20

10
-8

10
-6

10
-4

10
-2

10
0

J
p
t
/

J
p
t,
 i
n
it

||
 K

K
T

 R
e

s
id

u
a

l
||

2

Optimization Cycle

(a)

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5 6 7 8 9 10

J
p
t
/

J
p
t,
 i
n
it

Optimization Cycle

(b)

Figure 5.14: U-Bend Duct: Convergence history of the constrained (left) and uncon-

strained (right) optimization. For the former, the convergence history of the objective

(purple) and the residual of the KKT equations (blue) are plotted.

(a) (b)

Figure 5.15: U-Bend Duct: Two perspective views of the final shape resulting from

the constrained optimization. The duct is in blue while the bounding box in trans-

parent red.

108 5. Constraining the NURBS-based Adjoint Optimization

Figure 5.16: U-Bend Duct: Comparison of the cumulative normal displacements re-

sulting from the constrained (left) and the unconstrained (right) optimizations, plotted

on the initial shape. Areas with positive values correspond to outward displacements

and areas with negative values to inward.

(a) (b)

(c) (d)

Figure 5.17: U-Bend Duct: Flow velocity field plotted on the half-span slices of the

initial and optimized (under constraints) geometries. Arrows stand for the velocity

vectors. Top-Left: Initial geometry. Top-Right: Optimized geometry (under con-

straints). Bottom-Left: Close-up view of the right leg at the inner walls of the initial

geometry (circled area in (a)). Bottom-Right: Same view of the right leg at the inner

walls of the optimized (under constraints) geometry (circled area in (b)).

5.4. Applications 109

Figure 5.18: U-Bend Duct: Difference between the total pressure field and an average

total pressure at the inlet, plotted on half-span slices of the initial (left) and the

optimized (right) geometries.

5.4.3 Optimization of the Side Mirror of the DrivAer Car Model

The third case chosen for testing the effectiveness of the method is that of the

DrivAer concept car (Fig. 5.19a), designed by the Technical University of Munich

(TUM). The configuration used in this study is the fast-back car model with a

smooth underbody, with both mirrors and stationary wheels. The target is to

minimize the drag coefficient (cD) of the whole car, by exclusively modifying the

shape of the side mirrors. The study is performed on half of the car by employing

symmetry conditions. The computational mesh consists of approximately 5.3M

hexahedra with an average y+=75 of the barycenters of the first cells off the wall.

The model is subjected to a far-field longitudinal velocity of 38.89m/s, with a

Reynolds number of Re ≈ 2, 6 × 106 (based on the car width). The side mirror

is parameterized in two ways: (a) with volumetric splines and a control box with

8 × 8 × 8 control points (Fig. 5.19b) and (b) using the BRep model of the side

mirror. With the volumetric spline configuration, C0 and C1 continuity between

the free-to-move regions of the mesh and those which are fixed, is ensured by

freezing certain control points, thus leaving 6× 5× 6 free-to-move control points

(N = 540). With BRep configuration, C0 and C1 constraints are imposed via the

method of Chap. 4 on all patches for which the constraints are already true.

110 5. Constraining the NURBS-based Adjoint Optimization

(a) (b)

Figure 5.19: DrivAer Side Mirror: The full CAD model of the car (left) and the control

box used for the surface and mesh parameterization (right). Red control points are

allowed to move while blue points are fixed.

The first step of this study is to perform an unconstrained optimization and

observe the optimized side mirror’s shape. Design variables of the splines volume

are updated using BFGS and the initial sensitivity map can be seen if Fig. 5.20.

As expected, the mirror tends to shrink so as to reduce its frontal area. However,

parts of the mirror become distorted and unusable. For instance, the surface of

the mirror cover folds and the reflector glass twists (Fig. 5.21). Because of this,

two bounding surfaces are placed as in Figs. 5.22a, 5.22b to block the distortion

of the mirror’s shape. These are placed in front of and behind the reflector, in

close proximity to the glass, in order to block potential twisting and are shaped

after the protruding parts of the mirror so as to block potential over-shrinking.

The distance of each bounding surface to the mirror’s reflector glass is 0.0025m
and the constraint is setup for Cs=0.001.

Figure 5.20: DrivAer Side Mirror: Drag sensitivity map. Color map as in Fig. 5.5.

5.4. Applications 111

(a) (b)

Figure 5.21: DrivAer Side Mirror: Front (left) and side view (right) of the mirror

resulting from the unconstrained optimization for the selected parameterization.

(a) (b)

Figure 5.22: DrivAer Side Mirror: Left: Front view of the mirror. Right: Side view

(with a transparent mirror body). The triangulated bounding surfaces are shown in

red.

The constrained optimization is, then, performed and the drag coefficient is

reduced by 0.8% (Fig. 5.23). The optimized shape is shown in Fig. 5.24. The

reflector glass of the mirror remains between the bounding surfaces and at the

same time, the cover of the mirror shrinks slightly without high distortions. Fi-

nally, the comparison of the cumulative normal displacements resulting from the

constrained and unconstrained optimizations are shown in Fig. 5.25 .

According to this figure, for the constrained optimization, the displacement of

the reflector glass in the normal direction is less than 0.0025m. The parts with the

greatest displacement are located near the protruding parts of the mirror, where

the shape almost touches the bounding surfaces, and on the back of the mirror’s

shell. While that distance is smaller than the offset of the bounding surfaces

defined, the curvature of the reflector glass must be checked as it indicates local

flatness. The curvature is, therefore, evaluated according to the algorithm in [?]

for three shapes: (a) the initial mirror shape, (b) the shape resulting from the con-

strained optimization and (c) that resulting from the unconstrained optimization.

112 5. Constraining the NURBS-based Adjoint Optimization

The curvature values, plotted on each shape, can be seen in Fig. 5.26. The re-

flector glass is practically flat as the curvature values on it (for the shape resulted

from the constrained optimization) range between 0 and 0.4 which is practically

zero in this scale.

 0.991

 0.992

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 4 8 12 16 20 24

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

J
C

D
 /

 J
C

D
,

in
it

||
 K

K
T

 R
e

s
id

u
a

l
||

2

Optimization Cycle

Figure 5.23: DrivAer Side Mirror: Convergence histories of the objective function

(purple) and the residual of the KKT equations (blue).

(a) (b)

Figure 5.24: DrivAer Side Mirror: Optimized shape (light blue) resulting from the

constrained optimization along with the two bounding surfaces in triangulated form

(red). Left: Front view. Right: Lateral cross section of the mirror.

Finally, for the constrained optimization case, it is interesting to see how such

small displacements affect the force exerted on the surface of the car by the flow.

Thus, the local forces (i.e. integrand of Eq. 2.20) are computed on the entire car

for two geometries; the initial and the optimized under constraints. The difference

between these paired forces is plotted in Fig. 5.27.

5.4. Applications 113

Figure 5.25: DrivAer Side Mirror: Comparison of the cumulative normal displace-

ments resulting from the constrained and the unconstrained optimizations plotted

on the initial shape. Positive / negative displacements indicate that the surface is

’pushed in / out’. Top-Left: Front view of the mirror for the constrained optimiza-

tion. Top-Right: Front view of the mirror optimized without imposing constraints.

Bottom-Left: Back view of the mirror resulting from the constrained optimization.

Bottom-Right: Back view of the mirror resulting from the unconstrained optimiza-

tion.

Figure 5.26: DrivAer Side Mirror: Curvature values plotted on the initial mirror

(left), the shape resulted from the constrained (middle) and unconstrained (right)

optimization.

114 5. Constraining the NURBS-based Adjoint Optimization

(a) (b)

Figure 5.27: DrivAer Side Mirror: Difference between the local forces exerted by the

flow on the surface of the car for the constrained optimized and the initial geometries.

Negative (positive) force difference means positive (negative) effect on the drag coeffi-

cient reduction.

The constrained optimization is then repeated by using the BRep configuration

(Fig. 5.28), with the same two bounding surfaces.

Figure 5.28: DrivAer Side Mirror: BRep model of the side mirror.

SQP is also used and the constrained optimization converges after 10 cycles

producing a drop in the objective function equal to 0.82%. The initial along with

the updated shapes can be seen in Fig. 5.29.

It can be noted that with this configuration, apart from the top of the mirror’s

shell, its side is also shrinked towards the side of the car, thus resulting in a

slightly better performance.

5.4. Applications 115

(a) (b)

Figure 5.29: DrivAer Side Mirror: The initial (transparent grey) and the final (red)

shapes of the side mirror’s BRep. The side (left) and the front (right) views of the

mirror are visible.

Figure 5.30: The S–bend climate duct.

5.4.4 Optimization of the S–bend Duct

The S–bend climate duct is a test case provided by VolksWagen AG. The goal is to

minimize the pressure losses Jpt (Eq. 2.19) of the flow subject to the deformation

of the S–section of the duct. The objective function has the following form.

The geometry consists of 46 trimmed NURBS patches, among which 28 belong

to the S–section. These 28 patches are high–degree surfaces and this results to a

total number of 5830 control points (17490 degrees of freedom) on the S-section.

The flow analysis is done using a mesh of 700,000 cells. The flow is laminar with

Re ≈ 400. The parameterization method includes CAD into the loop as shown in

Chap. 4.

Initially, an unconstrained optimization is performed on the duct that leads

to a total pressure losses drop of 9.1 % after 40 cycles. However, the resulting

shape, due to the high number of control points, becomes wavy with areas of very

high curvature (fig. 5.31). Then, a constrained optimization with the curvature

constraint is performed with cm = 106. Using the constrained optimization, a drop

of 3.9 % is achieved.

116 5. Constraining the NURBS-based Adjoint Optimization

Figure 5.31: Curvature iso-areas on the optimal shape resulting from the uncon-

strained (left) and the constrained optimization (right) of the S–bend duct.

 5.1

 5.15

 5.2

 5.25

 5.3

 5.35

 0 5 10 15 20 25 30 35 40 45 50
 0

 0.036

 0.072

 0.108

 0.144

 0.18

V
is

c
o
u
s
 l
o
s
s
e
s
 [
W

 /
1
0

6
]

||
 C

1
 |
|

Optimization cycles

Figure 5.32: The convergence history of the viscous losses objective function (blue)

and the curvature constraint (red) for the S–bend duct.

Figure 5.33: Comparison of the optimal shape resulting from the constrained (right)

and the unconstrained (left) optimization of the S–bend duct.

The curvature map on the optimal solution of the constrained and uncon-

strained optimization are shown in figure 5.31 and the final CAD surfaces are

shown in fig. 5.33. From the curvature map, one may see that the shape at-

tempts to form the wavy surface but the constraint does not allow this to happen.

Finally, the convergence history of the objective function and constraint can be

seen in fig. 5.32.

5.4. Applications 117

5.4.5 Optimization of the Extruded NACA0012 Airfoil

A NACA0012 airfoil which lies on the X − Y plane is fitted by a NURBS curve.

This NURBS curve is then extruded along the Z axis to create a wing (Fig. 5.34).

Figure 5.34: The NACA0012 extruded wing (light blue) and its NURBS control grid

(black wireframe).

The volume of the wing spanning between the planes at Z = 0m and Z = 0.5m
is Vinit = 0.0412m3

. The flow analysis around the wing is performed using a 2D

mesh of approximately 250, 000 cells. The flow is turbulent (Re = 106) with a

free stream velocity U = 60m/s and an angle of attack at 0o. The target of the

constrained optimization is to reduce the drag force on the wing while making

sure that V ≥ Vmin = 0.8Vinit = 0.033. As shown in fig. 5.35, the optimization

procedure starts with the objective function dominating the constraint but, as the

penalty factor of the constraint increases, the optimization converges to a 4.3%
drop in drag.

 8.2

 8.4

 8.6

 8.8

 9

 9.2

 9.4

 9.6

 9.8

 0 20 40 60 80 100
 0.014

 0.018

 0.022

 0.026

 0.03

 0.034

 0.038

 0.042

 0.046

D
ra

g
 F

o
rc

e
 [
N

]

V
o
lu

m
e

Optimization cycles

Figure 5.35: The convergence history of the drag objective function (blue) and the

volume constraint function (red) for the NACA0012 wing.

118 5. Constraining the NURBS-based Adjoint Optimization

5.5 Remarks

In this chapter, the imposition of constraints during NURBS-based shape opti-

mization is presented. Algorithms have been developed for accurately imposing

constraints on multiple mesh nodes on a shape to be designed. The cases shown,

range from academic to industrial-like ones to fully test the algorithms’ capabili-

ties. The methods proved reliable and the time required for the quantification of

the constraints (in all cases, including evaluation and differentiation) is negligible

in comparison to the time required to solve the primal and adjoint problems.

The proposed algorithm addresses spline-based parameterizations but, defi-

nitely, does not depend on the parameterization scheme.

For the bounding constraints, two types of bounding surfaces were used to

constrain the shape’s deformation: surfaces that lie inside the shape to be de-

signed (surface behind the mirror of the car) and surfaces that lie outside of the

shape to be designed and / or enclose it. The proposed method was able to handle

both cases reliably. For the curvature constraints, smoothness was imposed on

a wrinkled NURBS shape that restored manufacturability.

This study can be the motivation to address many interesting topics related to

point-wise and NURBS-based constraints in general. One example could be drag

minimization for airfoils which tends to make them thinner. Optimizing a ship’s

hull can be another example since in certain areas the hull must (to an extent)

retain its shape.

Lastly, the implicit integration of inequality constraints, by means of a penalty

function, to generate a single equality constraint has proven to be successful

and can be used in various other geometric constraints such as thickness after

formulating them as point-wise inequalities.

Chapter 6

Applications

6.1 The Compressor Stator of Technical University of Berlin

The "TurboLab Stator" was measured rig at the Technical University of Berlin [?]

in the TurboLab at the Chair for Aero Engines. A photo-realistic CAD model of the

stator assembly with 15 blades is shown in Fig. 6.1. In this chapter, this will be

used as a test case in which the developments shown in Chap. 3-5 are applied.

Figure 6.1: The TurboLab stator in full assembly with 15 blades and mounting holes.

The case has been designed based on a representative stator geometry as used

in modern jet engine compressors. This initial geometry (Fig. 6.2) has to be

optimized to reduce the total pressure losses JPt over the incidence range given

in table 6.1. The BRep model of the CFD domain with just one blade included is

provided in STEP format. Its trimmed and untrimmed states can be seen in Figs.

6.3 and 6.4, respectively.

119

120 6. Applications

Figure 6.2: CAD geometry of the TurboLab stator with dimensions. The computa-

tional domain is portrayed as a hollow cylinder of length equal to 720 mm.

Description Value

Inner Radius 147.5 mm
Outer Radius 297.5 mm
Inlet Axial Position −180.0 mm
Outlet Axial Position 540.0 mm

Table 6.1: Geometric characteristics of the computational domain for the TurboLab

stator.

6.1. The Compressor Stator of Technical University of Berlin 121

Figure 6.3: The BRep geometry of the TurboLab stator in transparent grey.

Figure 6.4: The BRep geometry of the TurboLab stator in its untrimmed form.

The entire model (blade, inlet, outlet, hub and shroud), consists of a total of

10 NURBS patches and 1716 NURBS control points. The two cylindrical surfaces

consist of 7 × 2 control points each, while the inlet and the outlet are planar

surfaces consisting of 2 × 2 control points each. The surface of the stator blade

consists of 6 patches in total: 2 patches with 25× 23 control points, two patches

with 8 × 23 control points and two patches with 9 × 9. These patches along with

the control points can be seen in Fig. 6.5.

122 6. Applications

Figure 6.5: The BRep geometry of the TurboLab stator blade. The control points of

the NURBS patches that correspond to the pressure and suction sides can be seen in

orange.

6.1.1 Generating the CFD Mesh

The mesh of the CFD domain, bounded by the BRep of the stator and the casing,

must, firstly, be generated. For that to happen, the BRep model is triangulated

(Fig. 6.7). As seen in Fig. 6.4, the radial span of the blade must be reduced as it

exceeds the outer casing. After this, the Shape Healing algorithm is used to snap

the newly created blade on the surfaces of the inner and outer casing (cylinders).

The background mesh (Fig. 6.6) is, then, generated and the size map on it, for

parameters d= 10 and gR = 0.05, is computed. The Advancing Front method is,

then, used for the above mentioned parameters to create the surface grid of Fig.

6.7. These parameters were chosen as they produced the highest quality surface

grid.

The entire process required ≈ 90 secs on 8 Intel Core i7-6700HQ (2.60 GHz)

CPUs and produced ≈ 120K triangles averaging at approximately 1350 tris/sec.
This was run in parallel using the OpenMP [?] shared memory parallel program-

ming. Job partitioning among processors was done patch-wise, meaning that the

total number of patches to be triangulated was equally divided over the available

processors.

6.1. The Compressor Stator of Technical University of Berlin 123

Figure 6.6: The background grid of the BRep model. Left: The entire domain. Right:

The domain cut to make the blade visible.

Figure 6.7: The triangulated BRep model using the method proposed in Chapter 3.

Top-Left: The entire domain. Top-Right: Close-up view of the leading edge region of

the outer cylindrical casing. Bottom-Left: The stator blade. Bottom-Right: Close-up

view of the trailing edge region.

124 6. Applications

The CFD simulation is carried out using a single blade passage and periodic

boundary conditions. The cylindrical domain is a 24o sector of the domain. The

interfaces are also triangulated surfaces generated based on the blade geometry.

The mesh was, then, generated based on the defined triangulated boundary sur-

faces (Fig. 6.8). The mesh consists of two periodic boundaries, one patch for

the shroud, and one for the hub, two patches on the blade (pressure and suction

sides), an inlet and an outlet.

Figure 6.8: The CFD domain for the test case with each CFD patch colored differently.

In this figure, the outer cylindrical patch is seen in blue, the outlet in dark green, one

of the periodic boundaries in red and the blade surface in light green.

6.1.2 Setting up the Parameterization

In order to determine the characteristics of the parameterization, a few manu-

facturing constraints have to be taken into account. In order not to jeopardize

the capacity of the cylindrical domain for 15 blades, a constraint is imposed that

the blade geometry does not penetrate the 24o interfaces. Secondly, the axial

chord of the blade must remain unchanged. For that reason, the control points of

the NURBS patches near the leading and trailing edges remain fixed. Thirdly, the

thickness of the blade must be such that the leading and trailing edge circles’ radii

are at least 1 mm. Furthermore, the thickness must be enough that two mount-

ing holes of diameter equal to 5 mm each must fit into the blade profile both at

shroud and hub (Fig. 6.9). The length of the holes must be equal to 20 mm. The

thickness constraints are all imposed using the packaging constraints that are

developed in Chapter 5. Finally, the blade must completely touch the hub and

the shround surfaces (which are not part of the deformable domain).

6.1. The Compressor Stator of Technical University of Berlin 125

Figure 6.9: The blade geometry with two mounting holes visible. Two mirroring holes

are also required on the opposite side.

Taking the manufacturing requirements stated above into account, only the

NURBS patches that correspond to the blade can be displaced (Fig. 6.10). From

these patches, the control points shown in Fig. 6.10 are fixed in place to impose

the axial chord constraint. Using the method proposed and developed in Chapter

4, continuity constraints are imposed between all the surfaces belonging to the

stator blade as well as the surfaces of the casing.

Figure 6.10: The BRep geometry of the stator. The deformable patches are seen in

red, while the non-deformable patches are seen in transparent grey.

For all pairs of interconnected deformable NURBS patches, up to C1 conti-

nuity is imposed. For pairs with a non-deformable patch, the condition that

the deformable patch keeps touching the common edge, without a change in the

orientation of its normal vector, is imposed. Taking all these into account, the

126 6. Applications

number of free-to-move control points is reduced to 1266, while the number of

constrained control points via the Geometry Morphing method is 252. In Fig.

6.11, the control points of the blade are shown with different colors denoting the

status of the design variables related to each control point.

Figure 6.11: The control points of the 4 patches that correspond to the blade ge-

ometry. Unconstrained control points are seen in green while fixed-in-place control

points in red. Control points constrained by the Geometry Morphing method are seen

in blue.

6.1.3 Flow Conditions and Optimization Targets

The boundary conditions of the flow simulation are constant for the entire radial

span. For the pressure field, at the outlet, a zero Dirichlet condition is imposed

while at the inlet and all wall patches zero Neumann conditions are imposed.

At the inlet, the whirl angle is 42o and the pitch angle is 0o. The inlet velocity

magnitude is computed so that a massflow of 9.0 kg/sec is achieved. At the

outlet, a zero Neumann condition is imposed on the velocity components and at

the wall patches, no-slip conditions are imposed. For the turbulence, the Spalart-

Allmaras model along with the boundary conditions shown in Sec. 2.3 and [?], is

used.

Based on these flow conditions, a CFD simulation on the baseline geometry

was run. The target of this test case is to minimize pressure losses JPt between

the inlet and the outlet (Eq. 2.19). JPt is differentiated for the parameters of the

Geometry Morphing method. The surface sensitivities (i.e. the derivative of JPt

w.r.t. the normal displacement of the design wall nodes) that is generated is seen

in Fig. 6.12.

6.1. The Compressor Stator of Technical University of Berlin 127

Figure 6.12: The surface sensitivities generated after the differentiation of the ob-

jective function with adjoint method, on the suction (left) and pressure side (right).

Positive (negative) sensitivities indicate that the blade must be pulled out (pushed in)

to reduce the objective function. In both figures, the trailing edge is at the top and

leading edge at the bottom.

Apart from the objective function, there are also manufacturing constraints

which must be respected during the optimization. These concern the mounting

holes to the hub and shround (4 in total) and the minimum allowed radius of the

trailing and leading edge circles (not less that 1 mm). Both these constraints are

imposed via the no-intersection constraints shown in Chapter 5.

Figure 6.13: The stator blade (in transparent grey) along with the constrained sur-

faces (red). Left: Isometric view of the blade along with all the surfaces. Right: A

close-up view of the leading edge of the blade. A surface created from a 2 mm radius

circle, swept along the profile of the blade, is created.

In these cases, the bounding surfaces are cylinders of 5 mm diameter and

128 6. Applications

20 mm height for the mounting holes and 2 mm diameter and height equal to the

radial span of the blade for the leading and trailing edges. The formation of these

constrained surfaces are shown in Fig. 6.13.

6.1.4 Unconstrained Optimization

Initially, an optimization run is performed without taking the bounding surface

constraints into account. This is a necessary step in order to check how the

shape is perturbed and verify that the bounding surface constraints will affect

the result. To update the design variables as formed by the Geometry Morph-

ing method, steepest descent is used [?]. After 10 optimization cycles, steepest

descent converges to a solution with total pressure losses reduced by 6.6 % (Fig.

6.14).

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1 2 3 4 5 6 7 8 9 10

J
P

t
/

J
P

t,
 i
n

it

Optimization Cycle

Figure 6.14: Convergence history of the unconstrained run for the TurboLab stator.

The final shape produced by the unconstrained optimization can be seen in

Figs. 6.15, 6.16. It is clear from the resulting shape that the bounding surfaces

that correspond to the mounting holes are penetrated by the optimal design.

Therefore, a constrained optimization follows in order to take the STL surfaces

corresponding to these holes into account.

6.1. The Compressor Stator of Technical University of Berlin 129

Figure 6.15: The cumulative normal displacement of the boundary mesh on the

blade, resulting from the unconstrained optimization after 10 cycles. The normal

displacement is the dot product of the displacement and boundary mesh face normals

vector fields. Positive (negative) normal displacement means that the blade is pulled

out (pushed in). The orientation is as in Fig. 6.12.

Figure 6.16: The final CAD model of the TurboLab stator resulted from the uncon-

strained optimization. Left: The baseline model in transparent grey with the bounding

surfaces in blue. Right: The baseline model and the bounding surfaces as on the left,

along with the optimized shape of the CAD model in red.

6.1.5 Constrained Optimization

The distance of the bounding surfaces to the initial geometry is of the order of

millimiters, therefore, cs=0.001 is chosen. The constrained optimization method

chosen is the ALM [?]. This is because of the high number of design variables

which ruled out the possibility to use an SQP here. The constrained optimization

run achieved a ≈ 3.5 % drop in the objective function (Fig. 6.17).

130 6. Applications

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1 2 3 4 5 6 7 8 9 10
 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

J
p

t
/

J
p

t,
 i
n

it

C
f

Optimization Cycle

Figure 6.17: Convergence history of the objective (blue) and constraint (purple) func-

tions.

Similarly to the unconstrained case, the signed cumulative displacement pro-

jected on the normal to each baseline face vector is portrayed in Fig. 6.18.

Figure 6.18: The cumulative normal displacement of the boundary mesh on the

blade, resulting from the constrained optimization after 10 cycles. Positive (negative)

normal displacement means that the blade is pulled out (pushed in).

The final CAD model as exported from the constrained optimization (along with

the bounding surfaces is seen in Fig. 6.19.

6.1. The Compressor Stator of Technical University of Berlin 131

Figure 6.19: The final CAD model of the TurboLab stator resulted from the con-

strained optimization. The baseline model is seen in transparent grey with the bound-

ing surfaces in blue and the optimized model in red. Isometric views of the pressure

side (right) and the suction side (left) are shown.

6.1.6 Remarks

In this chapter, the developments of Chap. 3-5 are combined to perform a full-

scale CAD-based optimization. The geometry of the TurboLab stator is provided in

the standardized Step format and all algorithms are run based on that geometry.

The final optimized geometry is then exported in Step format as well. The blade

can now be inserted in any CAD package for post-processing or in a CAM package

for manufacturing. It can also be exported in STL format for rapid prototyping

which would make for a huge advantage in a supply chain.

Figure 6.20: The stator optimized geometry along with all 15 blades. The entire CAD

Graphical User Interface is shown in order to portray the process of revolving the

optimized blade (pink).

The optimization of the TUB stator geometry subject to a number of flow ob-

jectives has been tried in various PhD theses accomplished in PCOpt/NTUA.

Vasilopoulos [?] performed both CAD-free and CAD-based optimizations of the

same stator. In the CAD-free one, multi-objective optimization (MOO) was per-

132 6. Applications

formed that aimed to decrease both the total pressure losses and the exit flow

angle. MOO was turned into a single objective optimization (SOO) by using the

weighted sum of the objectives. The parameterization was node-based and the

sensitivities were smoothed implicitly as shown in [?]. The resulting optimized

geometry produced slightly increased JPt by 0.15 % due to the fact that the sensi-

tivities for the second objective were dominant. In the CAD-based case, MOO was

also performed as well as multi-point optimization. The chosen CAD parameteri-

zation is that of the in-house Rolls-Royce Deutschland (RRD) tool Parablading [?].

Since, it is in-house, its differentiation was possible. The CAD-based optimization,

resulted in a decrease in JPt by 0.2 %.

Gagliardi [?] performed CAD-based optimization using RBF-morphing, a method

that was developed in [?]. This method uses RBF parameterization as a means

to displace the NURBS control points of a model. Then, it follows a continuity

recovery step that ensures watertightness and/or smoothness of the model were

required. Here, too, an decrease in JPt by 0.2 % was the result.

In this thesis the objective function in the constrained run was improved by

≈ 3.5%. The reason behind the better performance is due to the factors that this

is a SOO and that the nature of the parameterization made the design space richer

than the other methods.

6.2 The Concept Intake Manifold

For the further testing of the methods and algorithms developed in this thesis,

a test case which resembles an automotive intake manifold is designed. The

manifold consists of one circular inlet and four circular outlets of same diameters

(Fig. 6.21).

Figure 6.21: The CAD model of the intake manifold designed along with mounting

flanges.

6.2. The Concept Intake Manifold 133

6.2.1 Generating the CAD Geometry & the CFD Mesh

The geometry of the manifold is designed in the open-source CAD software SA-

LOME which is based on the OpenCascade Technology CAD Kernel. The desing

is done by generating the inlet circular disk sketch and extruding it along four

different 3D paths that lead to the outlets. The diameter of the circular disks

is equal to 70mm. The normal to the inlet is paraller to the Y−axis while the

normals to the outlets are parallel to the Z−axis. The CAD model (without the

mounting flanges) consists of 34 patches with a total of 356 control points and

can be seen in Fig. 6.22.

Figure 6.22: The CAD model of the intake manifold without the mounting flanges.

By using the method proposed in Chap. 3, and input parameters d = 10 and

gR = 0.05 the surface mesh of Fig. 6.23 is obtained.

134 6. Applications

Figure 6.23: The surface mesh of the intake manifold.

The surface grid is then divided into three parts: The inlet grid, the outlet grid

and the walls grid. These three different (but coherent) grids are then given to the

snappyHexMesh tool of OpenFOAM to produce the computational mesh shown in

Fig. 6.24.

Figure 6.24: The mesh of the intake manifold.

6.2. The Concept Intake Manifold 135

6.2.2 Setting Up the Optimization

The boundary condition of the pressure field at the inlet and all wall patches is

a zero Neumann condition. At the outlet, a zero Dirichlet condition is imposed.

For the velocity, zero Neumann condition is imposed at the outlet, while at the

wall patches, no-slip conditions are imposed. At the inlet, the velocity distribution

is computed in order to have enough massflow to accommodate a four-cylinder

internal combustion engine of 1.4L of volume running at 2400RPM . This results

in a velocity (normal to the inlet) with magnitude equal to approximately 15m/s
and a Reynolds number of 70K. For the turbulence, the Spalart-Allmaras model

(as described in Sec. 2.3 and [?]) is used.

The target of this test case is to minimize the total pressure losses JPt between

the inlet and the outlets (Eq. 2.19). Therefore, the relevant adjoint equations are

solved.

6.2.3 The Optimization Run

The Geometry Morphing method is setup so that all adjacent patches retain C1

continuity at their trimming curves with the exception of the curves at the inlet

and the outlets. There, C0 continuity is imposed and, moreover, the condition

that their adjacent patches remain perpendicular to the circular disks should be

met.

By doing so, an optimization run of 20 cycles is performed which produces a

drop of 1.9% in the objective function (Fig. 6.25).

 0.98

 0.982

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 2 4 6 8 10 12 14 16 18 20

J
p

t
/

J
p

t,
 i
n

it

Optimization Cycle

Figure 6.25: Convergence history of the optimization run.

The comparison of the initial and optimized CAD shapes can be seen in Fig.

6.26. The developments of Chap. 3-5 of this thesis were combined to perform

136 6. Applications

a full-scale CAD-based optimization. The input geometry was designed by the

author and was provided in STEP format while, the optimal geometry was also

made available in STEP format. Due to being self-designed, there are no other

works done on this case with which one can compare the results. However, this

case can serve as an excellent benchmark to show that the coupling of CAD to

CFD and optimization can be performed automatically.

Figure 6.26: The initial (top) and the final (bottom) CAD shape after 20 optimization

cycles. The front (left) and the rear (right) view of the manifold can be seen. Mainly,

the displacement of the model is located at the two middle ducts leading to the

corresponding outlets.

6.3 The ERCOFTAC UFR 4-06 Diffuser

The ERCOFTAC Conical Diffuser test case is a swirling boundary layer circular

pipe, developing in a conical diffuser. A description of the measurements made by

Clausen, Koh and Wood is available in [?]. The experimental set-up is such that

the inlet swirl prevents boundary layer separation, without though recirculation in

the core of the flow. Experimental results are available in the ERCOFTAC Classic

database [?]. The test case was included in the ERCOFTAC Workshop on Data

Bases and Testing of Calculation Methods for Turbulent Flows held in Karlsruhe

in 1995 [?].

6.3. The ERCOFTAC UFR 4-06 Diffuser 137

Figure 6.27: The CAD geometry of ERCOFTAC Conical Diffuser in STEP format.

Fig. 6.27 shows a 3D view of the CAD geometry. The inlet is located at the be-

ginning of the small cylindrical section. In the experiments, an extended version

of the inlet pipe was used to generate a plug flow with a solid body rotation/swirl.

Several 2D and 3D flow computations were submitted to the ERCOFTAC Work-

shop from 1995 to 1997 [?, ?, ?]. More recently, results were presented using

OpenFOAM [?]. Computations reflecting more the experimental set-up were pre-

sented in 2006 [?]. Remarks on the work of this case study were presented

by [?, ?]. However, no optimization cases have been reported (to the author’s

knowledge) thus far.

6.3.1 The CFD Mesh

Despite the simplicity of the domain of the ERCOFTAC Diffuser, it is important

to have fine-enough boundary layers due to the swirl of the inlet velocity. The

triangulation algorithm of Chap. 3 is run on the BRep geometry of Fig. 6.27. In

this case, there is no necessity for a Shape Healing algorithm. The background

grid is generated on the geometry using the Delaunay method and the result is

shown in Fig. 6.28.

The size map is then computed for parameters d = 10 and gR = 0.1. The

Advancing Front method generates the surface grid (Fig. 6.29). The process re-

quires ≈ 1.5 secs on 8 Intel Core i7-6700HQ (2.60 GHz) CPUs and produced 1, 870
triangles averaging at ≈ 1300 tris/sec. Similarly to Chap. 6.1, the process was

run in parallel using the OpenMP shared memory parallel programming protocol.

The computational mesh is, then, defined based on the triangulated boundary.

138 6. Applications

Figure 6.28: The coarse background grid generated on the ERCOFTAC Diffuser CAD

geometry (Fig. 6.27).

Figure 6.29: The triangulated ERCOFTAC Diffuser.

6.3.2 Setting up the Parameterization

In order to determine the parameterization, a few constraints must be taken into

account. Firstly, in the exprerimental setup, the swirl is generated via a rotating

honeycomb formation placed prior to the diffuser inlet. Thus, the inlet diameter

must not be changed. Moreover, the assumption is made that the diffuser outlet is

attached on a certain layout which would benefit from the gained static pressure.

6.3. The ERCOFTAC UFR 4-06 Diffuser 139

Therefore, the outlet’s diameter must not be changed either. Taking this into

consideration, a choice is made to parameterize only the part of the wall that

corresponds to the conical surface. The relevant NURBS patch along with its

control points can be seen in Fig. 6.30 together with the NURBS basis functions

corresponding to control point (4, 2), computed for boundary mesh nodes in its

vicinity.

Figure 6.30: The ERCOFTAC Diffuser’s along with the control point grid. The color

coding is done for the NURBS basis functions of boundary mesh nodes for control

point (4, 2).

6.3.3 Flow Conditions and Optimization Targets

At the inlet, the average axial velocity is Uz ≈ 11.6m/s leading to a Reynolds

number of Re ≈ 202, 000. According to the experimental data, the inlet is placed

at coordinate x = −25mm, which is 75mm downstream of the swirl generator

and 25mm upstream of the diffuser entrance. At this location the swirl is close to

solid-body rotation with a nearly uniform axial velocity in the core region outside

the boundary layers. The swirl number is Wmax/U0 = 0.59 where Wmax is the

maximal circumferential velocity. The velocity profile at the inlet is shown in Fig.

6.31.

140 6. Applications

Figure 6.31: The velocity profile at the inlet from two perspectives: a side view (left)

and normal to the inlet (right).

For the other boundary conditions, a zero Neumann condition is imposed for

the velocity at the outlet, while for the pressure, there is a zero Neumann inlet

condition and zero Dirichlet outlet condition.

Initially, a run is made with the target to minimize the total pressure losses

Jpt (Eq. 2.19). Then, a second run is made with the target to maximize the static

pressure gain JCp between the inlet and the outlet (Eq. 2.21). Finally, a weighted

(SOO) is run where the target is to maximize JCp without allowing an increase in

Jpt greater than 10%.

6.3.4 Minimizing Total Pressure Losses

Initially, an optimization run with the target to minimize the total pressure losses

is made. This is done in order to assess the displacement of the shape and

compare it to the one resulting from the pressure recovery minimization. To

update the design variables as formed by the Geometry Morphing method (Chap.

4), the steepest descent method is used. After 20 optimization cycles, steepest

descent converges to a solution with total pressure losses reduced by 8.6 % (Fig.

6.32). The updated CAD surfaces resulting from this optimization can be seen in

Fig. 6.33.

6.3. The ERCOFTAC UFR 4-06 Diffuser 141

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 2 4 6 8 10 12 14 16 18 20

J
p

t
/
J

p
t,
 i
n

it

Optimization Cycle

Figure 6.32: The convergence history of the total pressure losses minimization.

Figure 6.33: Isometric view of the diffuser CAD model. The original CAD model

along with the non-displaceable surfaces can be seen in transparent grey and those

resulting from the optimization can be seen in red.

6.3.5 Maximizing the Static Pressure Gain

The main objective of a diffuser is to make the flow gain in static pressure between

inlet and outlet. An optimization is, therefore, run with the target to maximize

that static pressure gain. Similarly to before, to update the design variables,

steepest descent is used. After 20 optimization cycles, steepest descent converges

to a solution with a static pressure gain approximately equal to 1.2 % (Fig. 6.34).

142 6. Applications

 1

 1.002

 1.004

 1.006

 1.008

 1.01

 1.012

 1.014

 2 4 6 8 10 12 14 16 18 20

J
C

p
 /
 J

C
p

,
in

it

Optimization Cycle

Figure 6.34: The convergence history of the static pressure gain maximization.

The updated CAD surfaces resulting from this optimization can be seen in Fig.

6.35. It is obvious that, for both optimization runs, the design update acts on

the geometry near the inlet. In the case of total pressure losses minimization, the

conical surface tends to shrink, while in the case of static pressure maximization,

the conical surface tends to inflate.

Figure 6.35: Isometric view of the diffuser CAD model. THe original CAD model along

with the non-displaceable surfaces can be seen in grey and the surfaces resulting from

the optimization in transparent red.

6.3. The ERCOFTAC UFR 4-06 Diffuser 143

Figure 6.36: Side view of the diffuser CAD model. Coloring as in Fig. 6.35.

6.3.6 Weighted Single Objective Optimization

In this section, a run with both objectives is made. As shown in the previous

sections, the design updates that result from the optimization of each objective,

are of opposite directions. Therefore, a weighted SOO is used. The target here is

to maximize the static pressure gain without allowing a drop in the total pressure

losses which is greater than 10 %. In order to achieve that, the weights are

regulated accordingly. The weighted SOO becomes:

JSOO = w1JCp + w2JPt (6.1)

At each optimization cycle, two adjoint equations are solved to provide two

sensitivity derivatives
δJCp

δbn
and

δJPt

δbn
. Then, the SOO sensitivity derivatives are

δJSOO

δbn
= w1

δJCp

δbn
+ w2

δJPt

δbn
(6.2)

where the weights chosen are w1 = −5 and w2 = 1.

The pressure gain increased by 0.87 % while the increase in the total pressure

losses was 9.86 %. The decrease in the w-SOO objective was equal to 0.83%. The

convergence history can be seen in 6.37.

144 6. Applications

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 2 4 6 8 10 12 14 16 18 20

P
e
rc

e
n
ti
le

 C
h

a
n
g
e

Optimization Cycle

JCp / JCp, init
JPt / JPt, init

JMOO / JMOO, init

Figure 6.37: The convergence history of the MOO.

As expected, the optimal geometry tends to approach the one resulting from

the run in Sec. 6.3.5, even though the resulting shape is much closer to the

initial geometry (Fig. 6.38). All the geometries of the ERCOFTAC diffuser are in

the standardized Step format (input geometry and the results of the runs). The

CFD simulations performed are in agreement with the experimental data provided.

Figure 6.38: Isometric view of the diffuser CAD model. The baseline CAD model

along with the non-moveable surfaces can be seen in grey and the surfaces resulting

from the optimization can be seen in transparent red.

Chapter 7

Conclusions

This PhD thesis aimed at the development of methods and tools to integrate CAD

within aerodynamic shape optimization workflows through their Boundary Rep-

resentation format. With the methods and algorithms developed in this thesis,

the CAD geometry of a shape to be designed can completely remain inside the

optimization loop. To this end, a discretization method was developed to gen-

erate a grid with triangular elements on the surfaces of CAD models, a method

to parameterize said models by using their BRep and removing any dependency

on any CAD package and, finally, methods to constrain CAD models via their

BRep surfaces. Henceforth, the main remarks and conclusions drawn during this

development are discussed below.

The triangulation tool was developed from scratch by the author in an attempt

to make it completely independent on any CAD package. The prerequisite is

that the geometry of a CAD model becomes available through standard CAD files.

The BRep in these files is treated with caution and a Shape Healing algorithm

is performed to ensure that the model is geometrically and topologically intact.

After Shape Healing, a fast Delaunay triangulation algorithm is used to compute

a coarse (and low quality) background grid and, on it, optimal triangle size met-

rics are computed based on the model’s curvature. Finally, an Advancing Front

algorithm is proposed and programmed to be used in the parametric domain of

each surface to compute the final triangulation which is ultmately differentiated

w.r.t. the BRep design parameters (mostly NURBS control points). Most CAD-to-

surface triangulation algorithms are implemented within commercial CAD pack-

ages which enables them to exploit the underlying parameterization and produce

high quality triangulations. However, the possibility to connect these algorithms

to the adjoint optimization is severed by the fact that the internal parameteriza-

tions of CAD packages are closed-source and, therefore, non-differentiable. The

proposed method overcomes these setbacks and generates high quality triangula-

tions. The triangulation speed is generally high averaging at 1000 to 1500 triangles

per second for the entire process at Intel Core i7-6700HQ CPUs. This includes

145

146 7. Conclusions

both the background grid / size map computation and the Shape Healing. Fur-

thermore, it also includes the parsing of the standard CAD files. The background

grid / size map computation is done analytically and is, therefore, fast. However,

the Shape Healing can become very demanding from a computational point of

view as a low quality CAD model may require the application of the Plate En-

ergy Minimization algorithm multiple times. For this reason, the average speeds

mentioned above are highly satisfactory. Ultimately, a CAD-to-surface grid tool of

adequate quality can become the cornerstone of the entire optimization process

by serving as the foundation on which the computational mesh and the relation

of its boundary to the parameterization are built.

The Geometry Morphing method was developed in order to serve as a reliable

parameterization scheme adapted for gradient-based optimization. CAD-based

parameterizations (commercial or not) are not built to inherently serve shape per-

turbations. Internal CAD parameterizations re-compute the boundary surfaces of

the CAD model when a parameter is changed which created topological disconti-

nuities at a CAD model. BRep on the other hand is comprised by NURBS patches

with trimmed boundaries. These patches are not "aware" of one another (at a geo-

metric level) and their control points must be constrained to move in concert. The

Geometry Morphing method tackles this challenge by imposing C0 and C1 conti-

nuity constraints between the NURBS patches of a model. The Jacobian matrix

of all the imposed constraints is then analyzed in order to compute its Null Space

basis which would produce vectors of design variables perturbations that would

satisfy all the constraints. The analysis is done via Singular Vector / Value anal-

ysis. The QR decomposition technique is used for that analysis and is adapted to

this process by including rank-revealing properties to it. The analysis reveals a

number of control points which are constrained by the Null Space basis and some

that are not. Ultimately, the parameters that are used for the shape perturbation

are the unconstrained control points positions and the the Null Space basis pa-

rameters together. This proposed method requires a negligible amount of time to

be employed. In all cases shown in this thesis, the time required to compute the

parameterization along with the exports of the final STEP files ranged anywhere

between 0.3 % to 0.5 % of the runtime for a single optimization cycle (solution

of both primal & adjoint systems). With Geometry Morphing, the CAD can en-

ter the optimization loop through the BRep format. In that sense, the Geometry

Morphing overcomes two major setbacks: (a) The closed-source nature of CAD

packages and (b) the surface continuity issues that would become apparent if the

optimization was standard NURBS.

Both the triangulation method and the Geometry Morphing method can be

used, in a broader spectrum, to accommodate different optimization-related ne-

cessities. For instance, the triangulation tool can serve strictly as a CFD mesh

generation auxilliary tool. The Geometry Morphing method and the usage of the

Null Space projection, can be used in the family of gradient projection methods

7.1. Novel Contributions 147

as a more general way to impose constraints. It suffices to say that even if, in this

thesis, the method is implemented for linear constraints, it can also be general-

ized for non-linear ones. Furthermore, the developed software provides a way to

re-define the number of NURBS patches that can move (either decrease them by

defining non-moveable patches or increase them by breaking down a patch into

multiple ones).

A key element of CAD-based parameterization is the imposition of constraints.

Internal CAD parameterizations can accommodate constraints naturally. How-

ever, with BRep, the constraints must be imposed using the surface representa-

tions. Global constraints such as minimum (maximum) volume constraints are

tested and perform adequately. However, point-wise constraints pose problems

as the number of points to which the constraints are imposed become smaller

than the number of design variables. For this reason, a method is proposed to

deduce the number of constraints.

The developed algorithm accurately imposes no-penetration and curvature

constraints for each point on a shape to be designed. The method’s capabilli-

ties are fully tested in cases that range from academic to industrial. This method

proved reliable even in cases where the initial solution does not satisfy the con-

straints (which is a requirement for constraint optimization algorithms such as

SQP). The time required for the quantification of the single resulting constraint

(evaluation and differentiation) is negligible in comparison to the time required to

solve the primal and adjoint problems. The presented algorithm can be used with

any parameterization regardless of the number of design variables. Spline-based

parameterizations have been tested in the form of Volumetric NURBS control

boxes as well as the Geometry Morphing method. In the context of bounding

surface constraints, two types of bounding surfaces were used as constraints:

surfaces that lie inside the shape to be designed and surfaces that lie outside of

the shape to be designed and / or enclose it. The proposed method was able to

handle both cases reliably. This study can be the motivation to address many in-

teresting topics related to bounding surface, curvature or point-wise constraints

in general. One example of using this method is drag minimization for airfoils

which tends to make them thinner. Optimizing a ship’s hull can be another ex-

ample since in certain areas the hull must (to an extent) retain its shape. Lastly,

the implicit integration of inequality constraints, by means of a penalty function,

to generate a single equality constraint has proven to be successful and can be

used in various other geometric constraint formulations such as curvature and

thickness after formulating them as point-wise inequalities.

7.1 Novel Contributions

The novelties presented in this thesis are summarized below:

148 7. Conclusions

� The development of a surface triangulation tool that can be connected di-

rectly and seamlessly to gradient-based optimization is novel. Most trian-

gulation tools either exploit internal CAD parameterizations or do not keep

a link to CAD parameters for optimization purposes.

� A solution to the challenging task of incorporating CAD-based parameteri-

zations within gradient-based optimization workflows is given in this work.

The Geometry Morphing method is a novel approach to handling the BRep

of the models. It is fast and reliable and can be applied to virtually any

geometry.

� The imposition of point-wise constraints during CAD-based optimization is

another novelty of this thesis. The proposed method manages, by means of a

penalty function, to solve constrained optimization problems with more con-

straints than design variables. Traditional constrained optimization meth-

ods assume a priori that the number of design variables are less than the

number of constraints. This would limit the possibility to use control boxes

or NURBS as the number of control points would be much smaller than the

number of imposed constraints.

7.2 Suggestions for Future Work

Some suggestions are made for the extension of the, thus far, presented develop-

ments.

� The triangulation tool can become even faster by improving the paralleliza-

tion scheme. The shared memory scheme that is used means that each

processor is charged with the triangulation of a number of patches, without

taking the complexity of each patch into account. This can result in situ-

ations where some processors finish their jobs faster and then remain idle

while the rest of the processors keep on computing.

� In terms of the Geometry Morphing method, the method for computing the

rank revealing QR decomposition can be improved. In its current state, it is

reliable but can sometimes suffer from numerical inaccuracies.

� Optimization under more point-wise constraints can be done by using the

presented method. Examples can be the thickness of a CAD model at certain

regions and other geometric constraints such the imposition of cylindricality

or parallelism w.r.t. given objects.

� Investigate the imposition of more intuitive constraints like flatness, cylin-

dricity etc. Such constraints are very closely related to a CAD package’s

parameterization. In that sense, it would be very interesting to attempt to

impose such constraints.

7.2. Suggestions for Future Work 149

Publications

The publications that resulted from the research conducted in this thesis are

listed below:

Journal Papers:

� M. G. Damigos, E. M. Papoutsis-Kiachagias, and K. C. Giannakoglou. Ad-

joint variable-based shape optimization with bounding surface constraints.

International Journal for Numerical Methods in Fluids, 93(3):590-609, 2021

� M. G. Damigos and E. De Villiers. Imposing C0 and C1 continuity constraints

during cad-based adjoint optimization. International Journal for Numerical

Methods in Fluids, 93(8):2468-2485, 2021

Conference Papers:

� M. G. Damigos, K. C. Giannakoglou, and E. De Villiers. Geometric constraint

imposition on trimmed nurbs patches for adjoint optimization. In Proceed-

ings of the 2018 6th European Conference on Computational Mechanics

(Solids, Structures and Coupled Problems)(ECCM 6), 7th European Confer-

ence on Computational Fluid Dynamics (ECFD 7), 2018.

Chapters in Books:

� M. G. Damigos and E. De Villiers. Adjoint shape optimisation using model

boundary representation. In Evolutionary and Deterministic Methods for

Design Optimization and Control With Applications to Industrial and Soci-

etal Problems, pages 19-33. Springer, 2019.

� M. G. Damigos and E. De Villiers. CAD-based parameterization for adjoint

optimization. In OpenFOAM. Selected Papers of the 11th Workshop, pages

23-38. Springer, 2019

Conference Talks:

� M. G. Damigos, E. De Villiers, P. Geremia. CAD based parameterization and

constraints for Adjoint optimization. VII European Congress on Compu-

tational Methods in Applied Sciences and Engineering (ECCOMAS), Crete,

Greece. Zenodo: https://doi.org/10.5281/zenodo.322869.

150 7. Conclusions

Appendix A

The Watson-Lawson Algorithm

In this appendix, the algorithm of computing a Delaunay triangulation is pre-

sented. The algorithm combines features of both Watson [?] and Lawson [?]

procedures. The Watson procedure introduced the removal of triangles and re-

triangulating the regions where nodes were inserted. On the other hand, the

Lawson procedure introduced edge-flipping. The Delaunay triangulation is cre-

ated by introducing each point (one at a time) into an existing triangulation which

is, then, updated.

The process starts by creating a "supertriangle" i.e. triangle that encloses all

the data points P⃗i which are assumed to be available prior to the triangulation. In

the case of parametric domain triangulation, the "supertriangle" must enclose the

entire parametric domain. When a new point P⃗i is inserted into the triangulation,

the triangle in which it belongs to is identified and three new triangles are created

by connecting its vertices to P⃗i. The original triangle is, then, deleted from the

triangle list which means that the net gain of triangles is two. After the insertion of

P⃗ and the creation of the new triangles, the triangulation is updated to Delaunay

by using a swapping algorithm. In this, all the triangles which are adjacent to

the edges opposite P⃗ are placed in a last-in, first-out stack. Each triangle is then

unstacked, one at a time, and a check is made to determine if P⃗ lies inside its

circumcircle. Should this be the case, then the triangle containing P as a vertex

and the adjacent triangle form a convex quadrilateral with the diagonal drawn in

the wrong direction, which must be replaced by the alternate diagonal to preserve

the structure of the Delaunay triangulation. The swapping procedure replaces

two old triangles with two new triangles with no net gain in the triangle list. Once

the swap is completed, any triangles which are now opposite P⃗ are added to the

stack. The next triangle is then unstacked and the whole process is repeated until

the stack is empty and this results in a new Delaunay triangulation containing

the point P⃗ . An illustration of the swapping procedure is shown in Fig. A.1.

151

152 A. The Watson-Lawson Algorithm

Figure A.1: The swapping procedure

Note that if P⃗ lies outside (or on) the circumcircle of a stacked triangle, then

no action is taken and the triangle is skipped. It has been shown by Lawson that

this iterative algorithm must result in a Delaunay triangulation and will always

terminate after a finite number of swaps. Typically, only a few levels of swaps

are necessary for each edge which is initially opposite P⃗ and the process is thus

efficient. After all necessary points have been added to the triangulation, the final

Delaunay triangulation is obtained by removing all of the triangles that contain

one or more of the "supertriangle" vertices. Any vertex which appears in these

deleted triangles, but is not a supertriangle vertex, must lie on the boundary of

the triangulation. Since the insertion of each new point into the triangulation

creates two new triangles, the final number of triangles, including those formed

with the vertices of the supertriangle, is 2N + 1, where N is the total number of

vertices.

Appendix B

Advancing Front Validity Tests

During the Advancing Front algorithm and the creation of a new triangle, in order

to ensure the quality and the convergence of the triangulation, the new triangle

must pass certain geometric tests. In this appendix, the three tests to which a

new triangle is subjected, are examined.

Assume a Front Edge e with first Front Point A⃗ and final Front Point B⃗. Fur-

thermore, assume that a triangle creation is attempted using e and a third Front

Point P⃗ .The first test that is made, is the zero area test. This test ensures that the

triangle is not too skinny or inverted which in turn ensures that the Advancing

Front orientation will be proper. For this test, the area of the potential triangle

ÂBP is computed in the parametric space as

a =

∣∣∣∣uB − uA uP − uA
vB − vA vP − vA

∣∣∣∣ (B.1)

If a ≤ 10−12s (where s is the optimal size of the triangulation at the midpoint of

A⃗B), then either a is almost zero or a is negative. In the first case, the triangle

will be degenerate and in the second it will be inverted. Therefore, the first test is

a > 10−12s.

The second test is to check if neighbouring points of triangle ÂBP are enclosed

by it or lie on it (Fig. B.1). To perform this test, the list of neighbouring points

acquired during the main triangulation algorithm of Chap. 3 is used. If none of

these points are in the triangle or close to its bounds, then test is passed. The

check is done by computing the barycentric coordinates (α, β, γ) of a point C⃗ of

the said list w.r.t. ÂBP . αβ
γ

 =

 1 1 1
uA uB uP
vA vB vP

−1  1
uC
vC

 (B.2)

153

154 B. Advancing Front Validity Tests

The strict form of the test is 0 ≤ (α, β, γ) ≤ 1. In our case it is relaxed for quality

purposes by making it −ϵ ≤ (α, β, γ) ≤ 1 + ϵ for some small value of ϵ. In all the

cases shown in this thesis, ϵ = 10−5
.

Figure B.1: A situation where the second test would fail: The new potential triangle

(blue) encloses at least one Front Point. The triangle is therefore invalid.

The third test is performed in order to identify potential intersections of the

new triangle with neighbouring Front Edges (Fig. B.2). This is necessary to

identify invalidities during which, a Front Edge intersects with two sides of the

new triangle (meaning that the second test will not identify them). The edges

touching the Front Points of the list mentioned above are tested by performing

an edge-to-edge intersection check between them and M⃗P (M⃗ is the midpoint

between A⃗ and B⃗). Assuming that the tested edge is C⃗D, the following quantities

are computed [
λ1
λ2

]
=

[
uP − uM uC − uD
vP − vM vC − vD

]−1 [
uC − uA
vC − vA

]
(B.3)

If 0 ≤ (λ1, λ2) ≤ 1, then the two segments intersect. Therefore, for every tested

edge C⃗D, it must be true that λi ≥ 1 and λi ≤ 0. Similarly to the second test, these

two conditions are relaxed by a small value ϵ = 10−5
and they become λi ≥ 1− ϵ

and λi ≤ ϵ.

Figure B.2: A situation where the third test would fail: The new potential triangle

(blue) is not valid because its median line intersects with a Front Edge (both in red).

Appendix C

Point Inversion in Curve, Surface and

Volume NURBS

In various instances throughout this thesis, a 3D point P⃗ must be projected to

the parametric domain of a piece of geometry. This can be a surface, a curve or

a 3D hull object during an FFD process. This process is called point inversion

and is basically the minimization of a distance function from the specific piece of

geometry to P⃗ .

Assuming that the parametric equations of curves, surfaces and volumes are

given by C⃗(u), S⃗(u, v) and V⃗ (u, v, w) respectively, then the equations to be solved

are

(C⃗(u)− P⃗) · C⃗u(u) = 0 (C.1)

for curves,

(S⃗(u, v)− P⃗) · S⃗u(u, v) = 0 (C.2)

(S⃗(u, v)− P⃗) · S⃗v(u, v) = 0 (C.3)

for surfaces and

V⃗ (u, v, w)− P⃗ = 0⃗ (C.4)

for volumes. In all three cases, u and/or v and/or w denote the parametric coor-

dinates. Similarly to throughout this thesis, u, v, w indexing, denotes parametric

differentiation.

For the cases of curves and surfaces, the dot products with tangent vectors

exist so as to enable easier solution of the equations when P⃗ is not directly on

155

156 C. Point Inversion in Curve, Surface and Volume NURBS

the geometry. For the case of volumes, this is not necessary because the points

projected are usually part of the hull object.

All three equations are solved using the Newton-Raphson method [?] after

appropriate initialization u0, v0, w0. For Eq. C.1:

un+1 = un − ηn
(C⃗(un)− P⃗) · C⃗u(un)

(C⃗(un)− P⃗) · C⃗uu(un) + C⃗u(un) · C⃗u(un)
(C.5)

where ηn denotes a line search step and n is the previous iteration number.

Similarly, for surfaces:

[
u
v

]
n+1

=

[
u
v

]
n

− ηnM(un, vn)
−1

[
(S⃗(un, vn)− P⃗) · S⃗u(un, vn)

(S⃗(un, vn)− P⃗) · S⃗v(un, vn)

]
(C.6)

where

M(un, vn) =

[
(S⃗(un, vn)− P⃗) · S⃗uu(un, vn) + En (S⃗(un, vn)− P⃗) · S⃗uv(un, vn) + Fn

(S⃗(un, vn)− P⃗) · S⃗uv(un, vn) + Fn (S⃗(un, vn)− P⃗) · S⃗vv(un, vn) +Gn

]

En, Fn, Gn are the coefficients of the first fundamental form of the surface at the

parametric coordinates (un, vn). Finally, for volumes:

uv
w


n+1

=

uv
w


n

− ηn

V x
u (un, vn, wn) V x

u (un, vn, wn) V z
u (un, vn, wn)

V x
v (un, vn, wn) V y

v (un, vn, wn) V z
v (un, vn, wn)

V x
w (un, vn, wn) V y

w (un, vn, wn) V z
w(un, vn, wn)

−1 V x(un, vn, wn)− P x

V y(un, vn, wn)− P y

V z(un, vn, wn)− P z


(C.7)

where the exponents x, y, z denote the cartesian directions.

	Contents
	Introduction
	CFD and Optimization
	CAD Into the Optimization Loop
	Feature Tree Parameterization
	BRep and NURBS Geometry
	Trimmed Patches

	Mesh-to-CAD Literature Review
	Surface Segmentation Techniques
	Surface Fitting Techniques

	Objectives of this Thesis
	Thesis Outline

	The Adjoint Method
	The State Equations
	The Discrete Adjoint Technique
	The Continuous Adjoint Technique

	CAD-to-Surface Grid
	Literature Survey of Surface Grid Generation Techniques
	Structured Surface Grids
	Unstructured Surface Grids

	The Proposed Method
	Shape Healing
	Octree Search for Topological Relations
	The Geometric Tests for Hanging Edges
	Sewing Neighbouring Patches

	The Background Grid and the Size Map
	The Delaunay Algorithm for the Background Grid
	The Size Map

	The Advancing Front Algorithm

	Applications
	The Drivaer Passenger Car
	A Ship's Propeller Blade
	The S-Bend Climate Duct

	Remarks

	The Geometry Morphing Technique
	Literature Review of Parameterization Methods
	CAD-free Methods
	CAD-based Methods
	The Proposed Method

	Formulating the new Parameterization by imposing C0 and C1 Constraints
	Imposing C0 Continuity Constraints
	Imposing C1 Continuity Constraints
	Constraining Multi-Patch Models
	Practical Computation of a Null Space
	The Optimization Process

	Applications
	Optimization of the Mid-Section of a 3D Duct
	Optimization of the DrivAer Car Model

	Remarks

	Constraining the NURBS-based Adjoint Optimization
	Literature Survey of Constraint Imposition
	The Proposed Method
	Constraint Imposition
	The Bounding Surface Constraint
	The Curvature Constraint
	Transforming Node-wise Constraints to a Single Equality Constraint
	The Volume Constraint

	Applications
	Optimization of a Double-Outlet Duct
	Optimization of a 3D U-Bend Duct
	Optimization of the Side Mirror of the DrivAer Car Model
	Optimization of the S–bend Duct
	Optimization of the Extruded NACA0012 Airfoil

	Remarks

	Applications
	The Compressor Stator of Technical University of Berlin
	Generating the CFD Mesh
	Setting up the Parameterization
	Flow Conditions and Optimization Targets
	Unconstrained Optimization
	Constrained Optimization
	Remarks

	The Concept Intake Manifold
	Generating the CAD Geometry & the CFD Mesh
	Setting Up the Optimization
	The Optimization Run

	The ERCOFTAC UFR 4-06 Diffuser
	The CFD Mesh
	Setting up the Parameterization
	Flow Conditions and Optimization Targets
	Minimizing Total Pressure Losses
	Maximizing the Static Pressure Gain
	Weighted Single Objective Optimization

	Conclusions
	Novel Contributions
	Suggestions for Future Work

	APPENDICES
	The Watson-Lawson Algorithm
	Advancing Front Validity Tests
	Point Inversion in Curve, Surface and Volume NURBS

