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Abstract

This PhD thesis deals with the coupling of CAD-parameterized geometries with
adjoint-based shape optimization. The mathematical formulation of methods for
the inclusion of a CAD design in the optimization loop are shown and tested in
applications in aerodynamics. The computation of the derivatives of various aero-
dynamic objective functions with respect to (w.r.t.) the CAD design variables is
performed based on continuous adjoint running in the OpenFOAM environment.

CAD geometries may have two parameterizations: (a) a feature tree param-
eterization which is practically the definition of geometric relations in the 3D
space and also the native parameterization of CAD packages that generate them
and (b) a surface parameterization which is defined and transferred by the stan-
dard Boundary Representation (BRep) format. The latter is simply a collection of
surface patches that define the CAD model, defined by standard mathematical
forms (mainly NURBS). In this thesis, BRep is used to express the CAD geome-
try because its standardized open-source format allows its direct coupling with
Computational Fluid Dynamics (CFD) software and, also, its differentiation which
is necessary in gradient-based optimization. The feature tree parameterization
is almost never accessible via open formats which makes its direct linking to
optimization impossible.

The first step is the generation of a quality triangulation of the surface of the
CAD model. This is because, in order to insert the CAD model into the optimiza-
tion loop, it is necessary to mesh the 3D space around (or inside) it. The boundary
of the domain to be meshed, in a tesselated (most commonly triangulated) form
is the input to the meshing software. The triangulation process is subdivided
into three main tasks: shape healing which is a process overcoming possible (but
quite common) CAD model defects, size map computation which pre-computes
the optimal size of the triangulation on a background grid and, finally, the sur-
face triangulation itself. Shape healing handles the topological and geometric
holes that commonly exist in a CAD model which is transferred via a standard
file (STEP, IGES, etc.). The topological holes are fixed by performing vicinity tests,
and the geometric holes are fixed by performing a sewing algorithm based on
Plate Energy Minimization. Then, on the "healed" CAD model, the size map is
computed using two dimensionless parameters, one controlling the triangle size
based on local curvature, and the other controlling the triangle size gradation.
Both parameters produce the size map on a coarse background grid computed
via Delaunay triangulation. Finally, the triangulation is performed on each CAD
patch separately, by using a version of the Advancing Front technique adapted to
parametric surfaces.

The second step in this thesis is the establishment of the shape parameter-
ization scheme which will provide a robust method to deform the shape. This
is necessary because CAD designs are strongly related to their source parame-
terization which is defined via feature trees and cannot be accessed via external
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software. CAD packages (commercial or not) have different source parameteriza-
tions and their vendors are very sensitive about them. The CAD models must,
therefore, be parameterized via their surface representation which is available via
the BRep format and transferred by standard files. The surfaces comprising a
CAD model are trimmed parametric patches that exist as autonomous entities
which makes them unfit as shape deformation tools. This is because, displacing
them would create C; and ('} discontinuities in the CAD model. To tackle this
challenge, all parametric patches are converted to NURBS and a method that im-
poses desired continuity constraints on their trimming curves is developed. Based
on this method, a new parameterization is defined which inherently satisfies these
constraints by computing the Kernel of the Jacobian of all constraints.

Apart from continuity constraints, the imposition of various other geometric
constraints can be a key factor in CAD-based optimization. Constraints can nat-
urally be defined in a CAD model via the feature trees. However, as mentioned
above, the feature trees cannot be accessed and used to deform the shape. There-
fore, constraints must be defined on the surfaces of the CAD model. In this thesis,
a method is developed to make possible the imposition of multi-node constraints
on NURBS patches. Depending on the type of constraints and the complexity
of the CAD surfaces, the number of node-wise constraints may become huge.
Traditional constrained optimization techniques (i.e. SQP or Gradient projection)
assume a priori that the number of constraints is less than or equal to the number
of design variables. In the case of NURBS-based optimization, this can become
problematic as the design variables are the control point coordinates which are
vastly outnumbered by the number of boundary mesh nodes on the design sur-
face. For this reason, all constraints are cast into a single equality constraint.
Nodal constraint violations are penalized based on a quartic function that returns
a positive value if the constraint is violated and zero otherwise. The penalties are
then summed up to create a single constraint. The effectiveness of the single con-
straint is tested by constraining surface curvature, and enclosing constraints (i.e.
constraints that demand that the model moves within a given space). For com-
pleteness, the inequality constraint of the volume of a given model is presented,
to demonstrate a way of handling non-node wise constraints.

The developed software is applied to the design/optimization of test cases such
as passenger cars, automotive cooling and intake ducts, diffusers and turboma-
chinery blades.

Key words: Computational Fluid Dynamics, Computer Aided Design Continu-
ous Adjoint Methods, Boundary Representation of Surfaces, Shape Optimization,
Non-Uniform Rational B-Splines, Constraints
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MepiAnyn

H 618aktopikn autn) 61atpiBr) acyoAeital pe v £10ay®yr) YEOHEIPLOV, ITapape-
tporopévav pe CAD oxnpata, otn BeAtiotornoinon popeng Baoctopévn otn pébodo
TV ouduywv petaBAntov. ITapouoiddovial n pabnpatkn H1atuneorn Katl UAOIoin-
on pebodav mou kabiotouv ekt v ewoaynyn tou CAD oxediaopou os Bpoxo
BeAtiotornoinong kKabwg Kat o €AeyX0g TV PeBOOWV aut®v oe ePAPHOYES TG AEPO-
duvapikng. O UTIOAOY1010G TV MAPAYOY®V euatodnoiag diadpopwv agpoduvapikov
OUVAPTHOE®V-0TOX®V ®G TTPOg T1§ PetaBAnteg oxediaopou tou CAD yivetat pe ) ou-
vexn] ouduyn pébodo.

O1 yewpetrpieg CAD pmnopet va €xouv U0 160V tapaperpornomjoeis: (a) v mna-
PAPETPOITOINOT GEVIPOU OTOIXEIDV TTIOU 0Pilel YEDUETIPIKEG OXEOEIS PETASU OTOXEIDV
oxedlaopou Kat €ivatl np QUOIKN napapetportoinon twv CAD nakétov kat (B) v e-
IMPAVEIAKT] TIAPAPETPOTTOINO0 TIOU MEPIYPAPETAL KAl PETAPEPETAL ATIO TO ITIPOTUITO
g Zuvoplakrng Iepiypapng. H Zuvoplaky) Ieprypagr) (Boundary Representation
- BRep) armoteAeitatl amno pia cuAddoyn emgaveiwv rou opiouv éva CAD poviédo
Kat optdovrat ano mpotureg pabnuatikég neptypadés (kuping NURBS). Ze autrv 1
datpiBr), n BRep xpnowponoteitat og péoo neptypadng twv CAD yeoperptov Kabng
1 TIPOTUITOITONEVT], AVOIXTOU K®OIKA POPPn] NG, EIMITPEIEL T OUVOEOT] TV YE®-
BETpv pe Aoylopikda Yrodoyloukng Peuotoduvapikrg (YPA) kaBag kat 1 X®piKkr)
dlapopion toug, TOU eival Xprowyn katd i 6idpkela g PeAtiorornoinong. H ma-
papetporioinon dévipou, eival onaving S1abéoun oe avoiyxir popdr], PAYHdA TToU
KAVel T ouvleot g Ye 1 BeAtiotornoinon aduvarn.

To mpato Pripa g SiatpBng eivatl n yéveorn €vog MOIOTIKOU MAEYHATOS HE TP1-
yovika otoixeia otig ermugaveieg tou CAD poviédou. Autd oupbaivel kabwg, yia va
eloayxBei 1o CAD oto Bpoxo PBeAtiotornoinong sivat amapaitntn n MAEypATONOinon
tou 3A Xopou YUpw (1] eviog) NG yewperpiag Tou. Xta AOYIOPIKA MAEYHATOION)-
ong, ouvnOwg, mapéxetal To 0pto Tou X®wpiou rmou Sa mieypatoronBei oe drarpttr)
(o ouyva tprywvortoupévn) popdn. H dwabikaoia tpryevoroinong yxwpidetat oe
pla Prypata: (a) emokeurn poviédou, 10U eivatl pia 6iadikaoia mou ermAUEl APKETA
ouvnOn YEOUETPIKA KAl Tortodoyikd opdadpata CAD ye@PETPIOV TIOU EPTIEPIEXOVTAL
oe nipoturnia apyeia (STEP, IGES kAm.) () urtodoylopog piag xaptoypddnong tou
BéATiotou peyeboug Tptydvav oe éva deutepevov mAéypa kat (y) dadikaoia BeAtioto-
rnoinong. Ta toroAoyika Kevd, ermAvovial pe eAEyX0Ug eyyUTNTAg KAl Td YEDUETPIKA
Keva e évav adyopibpo “padng” ou Baocidetal onv texvikr EAayiotonoinong Evép-
yvelwag Emgaveliakov ITAakov. 'Enetta, oto “"semokeuaopévo” poviédo, urnoAdoyidoviat
1a BéAtiota peyebn tprywvoroinong pe xprion 6uo adidctatewv mapapeérpey, ol O-
roieg eAéyxouv 1o peyebog Katl ) PEylotn erutpenopevn petaBoAr peyeboug. O
ouviuaopog v dU0 mapdyet va xaptn Peyeboug MAEYPATIKOV OTOIXEI®V AV O
éva deutepevov (Bondntiko) mAéypa mou kataokeuddetatl pe ) pebodo Delaunay.
TéAOG, MPAYHATOIIOLEITAL TPIYWVOITOINOon 08 KABE erudAvela SEX®PLOTA Pe P10 NG
pebodou [Mposdauvoviog Metwmou, POcaPOCHEVNG O TIAPAPETPIKEG ETPAVELES.



To 6evtepo Pripa eival n dnuoupyia evog oXNHATOG TAPAPETPOIIOINONG TO OTT010
9a mapdoyet pia otBapr) péBodo popdoroinong tou poviedou. To Pripa auto sivat
avaykaio kabwg ta poviéda CAD ouvdéovial 10XUpng e Tig I yaieg mapapeTpoIot-
101G TOUG 01 0T101eg Opidovial peow HEVIPp®Y oTolXeimv Kat dev eivat mpooBaoipia ano
eCRTEPIKA AoylopikdA. Aladopetikd rakéta CAD Xpnotornolouv S1apopetikeg rapda-
HETPOTIOOEIG KAl 01 H1avopeig Toug Hev TI§ KAVOUV YVROTEG. LUVETIRG, TAd HOVIEAQ
CAD 1ou 9a urtootouv BeAtiotornoinon mpérnet va rmapaperpoItofovyv pHEow g ett-
(PAVEIAKNG TIEPLYPAPNS TOUG TToU eivatl pooBdaoin péowm tng BRep kat petagépetat
HETASU AOYIOPIKOV PEOK TPOTUTIRV apXeiwv. Ot eruddveieg rou ouviedouv éva CAD
POVTEAO £lval KOPHEVEG TIAPAPEIPIKES EMPAVEIEG KAl £1vAl AUTOVOHEG MG OVIOTINTEG
o€ £éva AOY1O0P1KO pop¢oroinong. Auto Tig Kavel akatdAAnleg yla spyaleia popgo-
roinong kabwg, petatorntidoviag 1eg, da Sn1oUPyouVIav AoUVEXEIEG YEMHETPIAg Katl
opaAdtntag oto poviedo. a va aviipetemotel auto 1o poBAnua, 0Aeg ol mapape-
Tp1KkEG erudaveleg petarpénovial oe NURBS kat ermBaAAovial eplopiopiol OUVEXELAG
ota ouvopa PETady ToV ErmPAVEIDV. LT OUVEXELd, opiletal pia véa mapapETpoIoinon
TTOU 1KAVOTIOLEL TOUG AVATEP® MEPIOPIOPOUG €K PUOERG, UTToAoyidoviag Tov Pndeviko
X®po 10U lakmBiavou PNnTpwou 1OV MEPIOPITH®YV.

'Evag napayoviag kAedi yia m Paoiopévn-oe-CAD BeAtiotornoinon etvat n e-
IMBOAN YEDUETPIKOV IMEPLOPIOPDV. Ol IEPLOPIoPO0l PITOPOUV PE PUOIKO TPOTTIO va
0p1000UV PE0® TV OEVIpOV oTolXelwv. Qotoco, Onwg avapeépbnke mo nave, ta
6évipa otoixeiwv 6ev eival mpooBacipa Kat dev Pmopouv va XP1notporoinfouv ©g
H€oo pop@doroinon v Poviedav. Ot meploplopiol TPETEL, OUVEN®G, va oplobouv
otig eruddaveleg tou CAD poviédou. Avdadoya pe Tov TUITO TOU ITEPLOPLOHPO0U KAl TV
MOAUTIAOKOTNTA TRV erudpaveldv tou CAD, o aplBpog tov IeEPLOPIOP®OV TOU ITPETTEL
va ermBAnBouv, propet va eivat moAu peydlog. Ia autov to Adyo, mapouctddetat
pia pébodog yla n peiwon tou aplbpou v neploptopev. Me ) pébodo autr, 1
rapaBiaon Tou MEPIOPICHPOU O KATIO0 KOPBO TepvA Ao [ia ouvaptnon TOvig 1)
ortoila ermoTPEPel YeTIKI) T O MEPUTIOOT ToU udiotatat mapabiaon kat pndev oe
nepintoon nou oxt. 'Emetta, o1 ouvaptrjoeig rtowng abpoidovial oe kabe kKopBo g
pog oxedtaopo srudavelag. H arnotedeopatkonta g emBoAng 1@V MmePLOPIOPR®OV
KAt autov Tov TPOTo eAfyxetal ermBaAloviag mePloplopous KAPMuUAoTnTag Kat Iie-
ploplopoug eykAsiopou. I'a va kaAupBei kat 1 emBoAr] anmAoUoTeEP®OV TTEPIOPIOI®V
oe NURBS, 6eiyxvetat kat dradopidetat o reploptopog tou oyKou.

To avermtuypévo Aoyiopiko sdpappodetatl oto oxediaopod / BeAtioronoinon dia-
POPHV AVIIKEIPEVOV OTIOG EIMBATIKA AUTOKIVNTA, €10aY®YEG KIVNTHP®V, ITtepuyla
OUNITIEOT®OV, Ay®yol Pudng Katl £10ay®yng OXNHUATOV KAl ay®yol Yyuing Imepuyiov
otpoBldopnxavev.

A&gerg KAe1d1a: Yrodoyilouikyy Peuoto-Auvapiky), £xedlaopog pe m Bonbeia Y-
roloytotr), Xuvexng Xuduyng Mébodog, Zuvopilakn Ileprypadr Emeaveidv, BeAt-
otortoinon Mopgng, NURBS, IIeplopiopot
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Chapter 1

Introduction

In the last decades, aerodynamic simulations and design optimization have been
subjects of broad research in both academia and industries. Computational Fluid
Dynamics (CFD) simulations now play an immense role in aerodynamic product
designs as they allow the testing of various shapes without the necessity to actu-
ally manufacture them. In the same direction, aerodynamic shape optimization is
a simulation-driven design process which allows for reaching various optimality
conditions (minimization, maximization of various aerodynamically-related objec-
tive functions).

CFD and aerodynamic optimization allow for a more cost-effective implemen-
tation of product design chain. However, they are not a panacea, as they require
considerable amounts of time and expertise in order to properly function and
produce results. Improperly setting up a simulation test case can reduce the
accuracy of results and not selecting a parameterization that captures the initial
design intent, can have severe consequences from the designer point of view. The
design intent can include manufacturability criteria and various geometric con-
straints. Furthermore, it is a common requirement in industrial environments
that an optimized shape is further fine-tuned by engineers. For that reason, re-
searchers have attempted to include optimization in the design chain as much as
possible, by introducing elements of Computer Aided Design (CAD) in the opti-
mization loop. Keeping a link to the industrial design framework "alive" generates
the possibilities for an optimization to deliver a geometry in CAD format.

This PhD thesis focuses on keeping aerodynamic shape optimization connected
to the CAD framework and in specific (a) connecting a CAD shape to the surface
grid and, in turn, to the surrounding computational mesh, (b) establishing an
open-format CAD-based parameterization and (c) imposing geometric constraints
while optimizing the shape.
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1.1 CFD and Optimization

CFD techniques were developed over the years and were constantly refined using
many validation and assessment procedures. A first major example of numeri-
cal solutions to a fluid mechanics problem was [?], that compiled massive tables
of flows over sharp cones by numerically solving the governing differential equa-
tions [?]. These solutions were carried out on a primitive digital computer at the
Massachusetts Institute of Technology. However, the first generation of CFD so-
lutions appeared during the 1950s and early 1960s, spurred by the simultaneous
advent of computers and the need to solve the high velocity, high-temperature
re-entry body problem. Such physical phenomena generally cannot be solved an-
alytically, even for the simplest flow geometry. Therefore, numerical solutions of
the governing equations on a digital computer were an absolute necessity. Exam-
ples of these first generation computations are [?, ?,?,?], all of them for inviscid
flows.

More recently, CFD techniques are applied in a much broader scientific spec-
trum like HVAC (Heat-Ventilation and Air Conditioning) [?], nanofluid physics [?],
biology-related fluid mechanics [?] and industrial cases and optimization [?, ?].
Moreover, they portray a crucial role in astrophysics, oceanography, oil recovery,
architecture, and meteorology. Various numerical algorithms and software have
been developed to perform CFD analysis. Due to the recent advancements in com-
puter technology, numerical simulation for physically and geometrically complex
systems can also be evaluated using PC clusters. Large scale simulations even
in multi-flow problems on meshes with millions and billions of elements can be
achieved within a few hours via super-computers. However, it is completely in-
correct to think that CFD describes a mature technology, as there are numerous
open questions related to heat transfer, combustion modeling, turbulence, and
efficient solution methods or discretization methods, etc.

Optimizing the geometry of a shape subject to some parameterization, pertains
to the adjustment of said parameters (design variables) so that an objective func-
tion is minimized / maximized. Examples of objective functions are lift and/or
drag (coefficients) of a geometry and the total pressure losses between the inlet(s)
and outlet(s) of a flow domain. Optimization methods are classified based on the
strategy used to update the design variables.

Stochastic optimization methods [?, ?, ?] mimic natural procedures (including
but not limited to evolutionary techniques) in order to update the design variables.
The CFD software that evaluates the objective function is treated by the optimiza-
tion algorithms as a "black box", simply to assess all candidate solutions. The
main examples of such algorithms are Evolutionary Algorithms (EAs) [?], Sim-
ulated Annealing [?] and Particle Swarm Optimization [?]. Their non-intrusive
nature makes the application of stochastic methods to any problem easy and
straightforward. Furthermore, constraint imposition comes naturally and these
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methods can identify global minima / maxima if left to run for an adequate num-
ber of evaluations [?]. Their disadvantage is that they are overly time consuming
as they require many objective function evaluations. Considering that each eval-
uation requires a full CFD solution, makes it apparent how impractical they can
become. Quite a few remedies to this problem [?, ?] have been proposed but their
further discussion is beyond the thesis’ scope.

On the other hand, deterministic (gradient-based) optimization methods [?, ?,
?,?] denote all algorithms that follow a rigorous mathematical approach to pursue
optima. A common term to describe this field is mathematical programming
and is divided into two main categories: line-search [?, ?] and trust-region [?, ?].
Gradient-based methods rely most commonly on the gradient of the objective
function w.r.t. the design variables of the optimization (sensitivity derivatives).
In cases of more sophisticated methods, second derivatives can also be required.
For this reason, the exact or approximate Hessian matrix [?, ?] is computed.
Gradient-based methods are in general much faster than stochastic methods as
they require less evaluations of the objective function. However, they can stall by
becoming trapped in local optima.

In cases of aerodynamic shape optimization, major changes in baseline ge-
ometries are seldom desired. Therefore, optimization methods that compute local
optima are often sufficient. That, in conjunction with the lower computational
cost of gradient-based methods, makes them ideal for cases shown in this thesis.

The key to a successful implementation of a gradient-based optimization method
is the computation of the gradient of an objective function J w.r.t. a design vari-
ables vector b of size N (V.J = (dJ/dby, - --dJ/dby)). In CFD-based optimization,
the analytical computation of J or V.J is not feasible and, therefore, numerical
approaches must be pursued [?].

The first and easiest method to compute a gradient is by finite differences
(FD) [?]. The idea is to perturb each design variable b; by a small value ¢ and
evaluate J for the initial and perturbed variables. In such a case, the derivative
is given by

ﬁ_ J(b17b27"' >bi+€7"' >bN)_J(b17b27"' 7bi7"' 7bN)
db; €

which is a first-order (forward difference) scheme. A second-order scheme (central
differences)

ﬂ_ J(b17627"' >bi+€7"' >bN)_'](bl7b27"' 7bi_67"' 7bN)
dbl_ 2€

can be used instead, at a higher though computational cost.

An immediately obvious disadvantage of this method is that, in order to com-
pute V.J, one must evaluate J, N times. This is impractical as, in industrial
cases, [V is usually a large number. A second disadvantage of this method is that
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the accuracy of d.J/db; depends greatly on the choice of €. Too large € values lead
to low accuracy in the derivatives whereas too small values can create round-off
errors due to the division of two "almost zero" numbers. In practice, for each
variable b; a trial and error approach must be followed in order to compute a good
enough value for ¢ (which obviously adds to the tally of CFD evaluations).

Another gradient computation method is the complex variables (CV) method
[?]. The idea behind this method is to pertub each b; in the complex plane by ie
(where 1 = \/—_1 is the imaginary basis). It can be shown that [?]

ﬂ o [mag[‘](blab%”' 7bi+i€7”' JbN>]
db; ¢

provides the derivative, where the /mag operator denotes the imaginary part of the
expression inside the parenthesis. Computing a derivative with the CV method
overcomes the e-related accuracy issue of FD. However, it does not change the fact
the number of CFD evaluations are still proportional to /N. Furthermore, the CV
method requires that the solver and its accompanying utilities must be changed
to accommodate complex, rather than real, variables.

The most efficient method for computing VJ is the method of adjoint variables
[?,2,2,2,2,2,2,?,?]. This method treats the optimization problem as constrained
by the primal (or state) equations and, by doing so, is able to compute V.J with
a computational cost that is independent of the number of design variables. The
continuous adjoint method is used in all cases shown in this PhD thesis. An
overview of adjoint methods is presented in Chapter 2.

1.2 CAD Into the Optimization Loop

For CFD-based shape optimization problems, the selection of an appropriate
shape parameterization technique is of utmost importance since it determines
the quality of the optimal solution. It is responsible for translating a set of design
variables into a shape, which is ultimately defined by a set of grid nodes lying
on the boundary of the CFD domain. The parameterization highly affects the
shapes generated throughout the optimization and, consequently, impacts the
convergence rate of the whole process as well as the quality of the optimal design.

In gradient-based methods, an important aspect is the differentiation of the
parameterization tool used. This allows for the computation of the dz/db,, terms
(see Eq. 2.12, later on) along the parameterized region Sy, and (depending on
the type of parameterization) even inside ().

A detailed survey of shape parameterization techniques for CFD-based (and
also structural) optimization is presented in [?]. Broadly speaking, they can be
classified in CAD-free and CAD-based techniques. CAD-free parameterizations,
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such as node-based ones, control the CFD boundary mesh nodes and, therefore,
usually lead to very rich design spaces. Their main drawback is that they result
in an optimized grid, which then has to be imported back to CAD in order to
obtain the optimized geometry for further analysis or manufacturing. This mesh-
to-CAD step is a non-trivial task and may require extensive user intervention as
well as approximations that can impair the quality of the computed shape. A brief
overview of mesh-to-CAD approaches is shown in Sec. 1.3. Moreover, it is usually
challenging to impose geometric constraints when using a CAD-free approach.

On the other hand, CAD-based parameterizations use either the native CAD
model parameters or the control points of Non-Uniform Rational B-Splines (NURBS)
[?] patches. The great advantage of incorporating the CAD software into the op-
timization loop is that, at each design cycle, the best-so-far shape is available in
a CAD format. In addition, it is more straightforward to incorporate geometric
constraints within a CAD framework and sometimes their imposition can a-priori
be guaranteed through the parameterization of the CAD model. On the other
hand, differentiating the CAD model’s parameterization to obtain dz/db, can
even be impossible, especially within an industrial environment, where commer-
cial (closed-source) CAD tools are often used.

This is mitigated when using NURBS, as these are a compromise that keeps the
geometry in a CAD-compatible format while being a surface-based parameteriza-
tion. Generally, they belong to a category of polynomial/spline parameterization
techniques which are widely used in the optimization of 2D aerodynamic shapes,
such as ducts, airfoils and turbomachinery blade sections. They allow for dif-
ferent levels of shape complexity, based on the number of control points used
as design variables and/or the polynomial degree, with direct control over the
shape’s continuity/smoothness. Moreover, geometric sensitivities of NURBS can
straightforwardly be obtained by differentiating their underlying rational polyno-
mial expression. Due to the generic BRep format (to be covered in Sec. 1.2.2) all
CAD models originating from any CAD package can be transferred via standard
files, such as STEP or IGES. BRep, which is described as a set of trimmed NURBS
patches, can be considered as a CAD-based parameterization. It is a common
practice to generate a CAD model via a native CAD parameterization and, then,
transform it to BRep. The BRep models used for the cases shown in this thesis
are all generated this way.

Recent research, in the literature, has been focused on how to effectively incor-
porate CAD-based parameterizations into adjoint-based optimization loops, and
various promising approaches have been investigated within the IODA ITN [?],
funded by the European Commission under Marie Sklodowska-Curie Actions. For
example, [?,?] computed geometric sensitivities (also referred to as design veloci-
ties) in commercial CAD packages through the application of FD between discrete
representations (i.e. surface triangulations) of the geometry before and after a
parameter perturbation. In [?], the CAD kernel developed at the von Karman
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Institute for turbomachinery design [?] was differentiated, using AD (ADOL-C)
in forward mode. ADOL-C was also applied by [?] for the differentiation of the
Open CASCADE Technology (OCCT) CAD kernel, which was used to perform the
CAD-based shape optimization of a U-bend cooling duct and a compressor stator
blade [?].

1.2.1 Feature Tree Parameterization

In a feature-based CAD modelling system, a model part is comprised of individual
features which are combined to represent an overall shape. Examples of such
features could be pads, pockets, holes, fillets, chamfers etc. These are mainly
defined via sketched features or dress-ups. Sketched features are created by
drawing 2D profiles and creating a 3D feature by extruding, rotating, sweeping
or lofting the sketch. Dress-ups are features like fillets and chamfers, which
are created directly on the solid model. Parameters controlling the generation of
these features are mainly real variables that control intuitively a shape (lengths,
angles, etc.) When creating a model within a CAD modelling system, relations
between existing features are created so that the value of one parameter is a
function of the values of other parameters of the model. These relations define the
design intent of the model and, once applied, the parameters cannot be controlled
independently. In the process of model generation, the CAD system automatically
creates a series of parameters and relationships in the background. The number
of such parameters can range from hundreds to thousands, depending on the
model complexity.

Data-CAM Tree Manager a8

R /

Figure 1.1: Example CAD model controlled via a feature tree. Features are generated
in a top-down manner, meaning that more descriptive features of the model are
generated first. [?].

The relationship between the top-level (user defined parameters) and the bot-
tom level (CAD system defined parameters) is called the feature tree. Parameteriz-
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ing a geometry directly via the feature tree can be advantageous w.r.t. the capture
of the design intent but disadvantageous w.r.t. its coupling with the adjoint tech-
nique. This is because, the source parameterization that a CAD package uses is
closed-source and hardly accessible.

1.2.2 BRep and NURBS Geometry

BRep [?, ?] is a method for representing shapes in solid modeling. A solid is
represented by the BRep format using surface elements defining the interface
between solid and non-solid volumes. The BRep format is composed of two parts:
topological data and geometry. The topology of a BRep is created using vertices,
edges, faces, shells and, finally, solids. Regarding their underlying geometry:

1. Vertices: A vertex is merely a point in space.

2. Edges: Edges are represented by curves bounded by the points describing
their boundary vertices. In the general case, the geometry of an edge is only
a segment of its underlying curve, since the topological bounds of an edge
and the geometrical bounds of a curve are not strictly identical.

3. Faces: Faces are represented by surfaces bounded by a closed loop of edges.
Similarly to edges, the geometry of faces is, in general, a part of its underlying
surface, since its boundary loop of edges does not coincide with the natural
bounds of the surface.

4. Shells: A shell is composed of multiple faces connected to each other via
their bounding edges and has no particular underlying geometry.

5. Solids: Similarly to a shell, a solid does not have an underlying geometry
and is, practically, the volume bounded by a collection of shells.

The mathematical description of curve and surface elements of a BRep model
could vary. Elementary curves or surfaces such as circular arcs, planes or cylin-
ders etc., could be stored explicitly. However, more complex elements are stored in
parametric form, most commonly NURBS. The conversion from elementary curves
or surfaces to NURBS is trivial, thus the BRep geometry will always be handled
as NURBS geometry for uniformity.

NURBS geometry is a generalization of B-spline geometry. B-splines basis
functions are defined according to the recursive formula [?]
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where p is the user-defined degree of the functions, 7 is the basis index, u is the
parameter and the indexed u variables are the knots taken from a non-decreasing
knot vector of length s: U = [ul Uy =+ Ug_1 us}T. The B-spline basis func-
tions can be used to interpolate a number of control values n (i € [1,n]), with
s=n+p+1.

In the following chapters, NURBS shapes consist of multiple faces bounded by
edges. Points on the edges are expressed in terms of a parametric coordinate u
as:

P
Clu) = %kl Ni( ZRP (1.2)
1 ‘

where n is the number of control points ]31 of each curve and w; the respective
weights.

Figure 1.2: A single NURBS patch along with its 4 x 4 control polygon in red. The
patch is created with n, = n, =4, py, = py, = 3.

Similarly, points on the surfaces which represent faces are expressed in terms
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of a pair of parametric coordinates (u, v) as:

5 Dot 2oty Nt (u) Ny (U)wijﬁij O 5
Slu,v) = S = R; j(u,v)P;; (1.3)
r 22y Ny (W) NP (v)wiey ZZI ]Zl ’ ’

where n,,, n, denote the number of control points ]3” and p,, p, the bases’ degrees
per parametric direction. w; ; denote the control point weights.

For the NURBS surfaces used in Chapter 4, Eq. 1.3 will be written with a
single instead of a double sum after setting m = j + (i — 1)n,,m € [1, n,n,|.

g(u,v) = Z Rm(u,v)ﬁm (1.4)
m=1

where n = n,n, (not to be confused with variable n of Eq. 1.2).

1.2.3 Trimmed Patches

Trimmed NURBS patches enable the representation of a much higher variety of
shapes with less complex surfaces. The trimming procedure involves the creation
of a closed wire of curves lying on the the surface.

2
S

Figure 1.3: Creation of a circular disk using a rectangular planar surface and a
circular curve. Top-left: The original surface defined by four co-planar control points,
one at each corner. Top-right: The original surface along with the circular curve which
lies on it. Bottom: The outcome of the trimming process.

The surface is then trimmed along this wire which becomes the new surface
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bound. The number of curves the wire consists of is arbitrary and, thus, a multi-
sided patch can be created using a single NURBS surface. A simple example of
the trimming process is shown in Fig. 1.3. where the goal is to create a circular
disk using a planar surface with p, = p, = 1.

1.3 Mesh-to-CAD Literature Review

In cases where a CAD-free approach is used, the geometry described by the op-
timal shape’s boundary mesh has to be approximated with high fidelity by a
high-order geometric standard that is also CAD-compatible. The mesh-to-CAD
conversion deals with this challenge by approximating the boundary mesh using
NURBS patches. The mesh-to-CAD conversion belongs to the family of shape
reverse engineering methods. These methods mainly consist of three phases.

1. Surface segmentation: In general, one could try to fit a surface mesh
over the whole surface. However, the continuously growing complexity of
aerodynamic shapes will make a high fidelity representation impossible.
Moreover, a robust global parameterization of the shape would require a
3D (x, y, z) to 2D (u, v) mapping of every point of the cloud, that would
maintain the connectivity of the external surface grid (no elements should
be inverted during the mapping). In order to avoid these drawbacks of global
fitting, the segmentation of the surface is pursued. The resulting smaller
and flatter surfaces (patches) enable faster and easier parameterization. It
is obvious that the more complex an object is, the more patches are required
and more continuity conditions (1%, 2"¢ derivatives etc.) must apply along
the borderlines.

2. Surface fitting: The process of surface fitting includes two sub-steps.
Firstly, each point of the patch should be mapped onto 2D, in order to
acquire its corresponding parameters. Secondly, these parameters should
be used as a starting point to compute the remaining NURBS requisites
(knots, weights, control point coordinates).

3. CAD model creation: The last step involves the use of standard STEP or
IGES file writers to produce the final CAD-compatible object.

1.3.1 Surface Segmentation Techniques

Segmenting a discrete surface (represented by the boundary of a mesh) can be
a non-trivial task. It requires a very effective application of feature detecting,
through sharp vertex or edge identification. In [?], a segmentation technique is
applied to arbitrary triangular grids. The approach is based on two steps: a
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boundary based region segmentation and a boundary rectification. During the
first step, a pre-processor identifies sharp edges and vertices and the curvature
tensor is calculated for each vertex. Then, vertices are grouped into clusters
using K-means clustering, according to their principal curvature values «; and
Ko. A region growing algorithm is then used to generate triangles into connected
labelled regions according to vertex clusters. Finally, a region adjacency graph
is processed and reduced in order to merge similar regions according to several
criteria such as curvature similarity, size and common perimeter. During the
second step, boundary edges are extracted from the previous region segmentation
step. Then, for each of them, a metric is computed which notifies a degree of
correctness. The angles between a boundary edge and the minimum curvature
directions of its vertices represent a good boundary score. According to this score,
estimated correct boundary edges are marked and used in a contour tracking
algorithm to complete the final correct boundaries of the object. The contour
tracking algorithm makes sure that each surface patch consists of closed edges.
Resulting patches can be parameterized by projecting their points onto a base
surface.

In [?], a hybrid approach is used. The method is applied to triangular grids and
uses two algorithms in conjunction: a vertex classification method and a feature-
edge identification method. The vertex-based algorithm works by assigning a
scalar quantity A to each vertex and, then, by grouping vertices with similar (with
some tolerance) ) into patches. A suitable choice for this quantity could be the
local curvature. The feature-edge based algorithm involves the computation of the
normal vector of all triangular faces and, then, the edges between faces the normal
vectors of which form angles greater than a given threshold are considered as
feature edges. Those edges are, in turn, the boundaries of a patch. After defining
the feature edges and vertices, the method applies the segmentation algorithm
based on the computed A values.

The segmentation method proposed in [?] is based on the concept that any
primitive object can be constructed as a sweep of a parametric surface (cross-
section) on a 3D-space curve. The method is, therefore, divided into two parts: (a)
identification of primitives "hugged" by 3D surfaces and (b) identification of the
3D curves and the respective sweeping surfaces (skeletonization).

One of the most popular surface segmentation techniques is the watershed
method which has best been described by [?]. The watershed algorithm calculates
a height function for every vertex of a boundary mesh. The function could be
(for a 3D case) the curvature at each vertex or the geodesic distance from some
already defined feature edge. In more complex surface combinations, different
geometric functions are preferred. Now, considering that every surface could be
transformed into a 2D object (planar) without any violation of topology, then every
vertex on that surface requires two parametric coordinates to be located: u and
v. The height function h changes at each surface location, thus, h = f(u,v). The



12 1. Introduction

visualization of h in 3D would be similar to the one shown in Fig. 1.4. This gives
some insight to the naming of the method: local minima of the height function and
the regions surrounding them form catchment basins, while continuous iso—h
lines form plateaus. Plateaus could be thought as the waterlines that appear if the
basins are flooded. Maxima of h define watershed lines or (watershed plateaus)
that create segmentation boundaries. After defining the regions that surround
local minima and maxima, a labelling process with adjacency tree creation is
initiated. The vertices of the surface are, then, grouped based on which basin
they belong to.

Watershed line Catchment basins

Figure 1.4: A visualized height function (red) along with a watershed line. [?].

Based on the watershed algorithm, many methods have been devised. A prime
example is the fast marching watershed algorithm shown in [?]. The coupling
of the classic watershed method with the Fast Marching algorithm [?] allows for
computing the shortest geodesic paths from a point of a mesh to specified feature.
There are three steps in the algorithm: (a) use of a hill-climbing algorithm to wa-
tershed segment a triangular grid, (b) definition of a height map appropriate for the
minima rule using local principal curvatures and (c) application of morphological
operations to improve the connectivity of the resulting segmentation.

Other algorithms introduce similarity parameters such as slippage [?]. Such
algorithms aim to reconstruct a design feature tree (similar to a CAD package’s)
by trying to match regions of the grid with primitive objects and splines. Slippage
is the deviation of the point cloud from these primitives.

The above mentioned methods can work well on their own. However, for more
complex shapes, coupling with auxiliary methods may, sometimes, be necessary.
For instance, [?] applied a set of tests to the points of the boundary of a mesh
which defined the geometry of an object. Those tests can indicate if the points
at a neighbourhood of the boundary mesh can form primitives. The tests are
based on indicators which must be computed at each point at a given part of a
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grid. The indicators could be geometric, similarity or error metrics. Geometric
indicators could be normal vectors, curvatures, best fitting axis of revolution etc.
Error indicators could be normalized errors of least-squares fitting. Similarity
indicators result from the deviation of geometric and error indicators within a
region. After computing indicators, some statistical tests take place to define if
the measured indicators and the primitive they point to is acceptable and within
a statistical trust region.

In [?], the target is to segment a surface and achieve the easiest possible
mapping from 3D to 2D. It involves genus reduction and feature identifications
through Reeb graphs.

1.3.2 Surface Fitting Techniques

Surface fitting is the main step of a shape reverse engineering algorithm. Generally
speaking, the fitting process consists of two steps: (a) parameterization of the
points to be fitted i.e. a 3D to 2D mapping of all the points and (b) the computation
of the surface. Surface fitting can be case-specific (applied to a specific type of
geometry) or more generalized. In the latter case, the fitting algorithm must almost
always be coupled with a surface segmentation method.

An example of a case-specific fitting technique is shown in [?]. This fitting
technique was used for representing wings and airfoils. It requires no segmenta-
tion of the grid as it utilizes a geometric processing of the grid points to acquire
a global parameterization. Then, a NURBS surface is computed in two steps:
Firstly, the weights of the control points are set equal to each other making the
NURBS surface a B-splines surface. The latter must interpolate the grid points for
the corresponding parameterization which gives a linear equation for calculating
initial control point positions. Secondly, starting from the computed initializa-
tions, the control point positions and the weights are optimized with a chosen
gradient-based method.

The method in [?] is another case-specific method that works best with objects
that can easily be described in spherical or cylindrical coordinates (i.e. surfaces
of revolution etc.). The method is best coupled with segmentation methods that
produce such primitive objects. Firstly, the coordinates of the points to be fitted
are transformed from cartesian to spherical or cylindrical coordinates. Then, a
base sphere or cylinder is defined which is used to compute the parameters that
correspond to each point. Finally, a NURBS surface is computed.

Another case-specific method is shown in [?] and it tackles fitting of human
bones. This application is not related to CFD but for the sake of completeness
it was deemed as a necessary addition. In this case, a voxel model is extracted
from the base surface to generate a rectangular net of curves. This is done by
projecting the exterior faces of the extracted voxels onto the base implicit surface.
After generating the interior points and tangential vectors along the boundaries
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in each rectangular region, a B-spline surface is reconstructed by interpolating
the rectangular array of points as well as the boundary derivatives.

Another algorithm, [?], comes from a more general mesh to NURBS technique
and it requires the segmentation of a given object. For each surface segment,
an initial base surface is computed and, on that surface, each point is projected
in order to acquire the parameterization. The base surface is itself a NURBS
surface that is computed with some of the grid nodes as control points. After the
parameterization is done, the NURBS control points and weights are computed
through a least squares fitting scheme.

None of the above mentioned methods (or any other in the literature) have
however been coupled with an adjoint tool for optimization. Furthermore, com-
mercial mesh to CAD exists but is not being considered since it would be difficult
to connect to the optimization framework. Coupling the display of adjoint sen-
sitivities with the CAD parameterisation and constraint definition interface can,
therefore, provide the opportunity for informed control of the optimization sys-
tem. Significant efficiency can also be realised by limiting parameter adjustments
to regions where significant benefits are likely to be realised. Thus, the use of a
commercial package for mesh-to-NURBS conversion is not an option, since there
is no connection with optimization tools.

It is obvious that, in order to pass from CAD-free to CAD-based optimization,
not only the mesh-to-CAD conversion, but also a methodology to define optimiza-
tion parameters (and constraints) on a CAD model, is required. Optimization
parameters however need to be adjusted before the optimization cycle starts. It is
thus logical to start the development of the methodology with the implementation
of the CAD based systems and the constraints definition interface.

1.4 Objectives of this Thesis

The work of this thesis aims to contribute to three main CAD-related topics, all
used in conjunction with adjoint-based optimization: (a) The CAD-to-Surface Grid
topic where a CAD model is automatically discretized while maintaining the link
of its discrete form to the CAD. (b) The CAD-based parameterization topic, where
a new CAD-based parameterization scheme is created to enable the inclusion
of standard CAD files into the optimization loop and, finally, (c) the constraint
definition topic, where the handling of various geometric constraints is shown.

In all topics, the geometry is assumed to be available via a standard file de-
sciption that contains the BRep described by NURBS patches. The geometry
contained in such files is then handled for each topic, separately. Initially, it is
discretized leading to the generation of a computational mesh around it. Then,
it is differentiated in a way that ensures watertightness and smoothness during
optimization. Finally, geometric constraints are imposed.
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1.5 Thesis Outline

This PhD thesis consists of 9 chapters, including the current one. If necessary,
each chapter includes an individual literature review that covers its relevant top-
ics.

Chapter 2 presents a literature review on adjoint techniques (both discrete
and continuous) and briefly presents the continuous adjoint formulation that
was used in this PhD thesis.

Chapter 3 presents the development of a method for triangulating CAD mod-
els. A shape healing algorithm that solves geometric and topological defects is
developed. Mainly, a triangulation method based on an adapted Advancing Front
algorithm is described and developed. Various CAD geometries are then trian-
gulated to show the effectiveness of the algorithm and the programmed software.
The triangulated grids coming off CAD models can then be used as a basis to
mesh the space around (or inside of) them.

In chapter 4, the next step of an optimization is shown. In specific, a method to
parameterize a given BRep geometry is developed as the BRep itself is unsuitable
for optimization purposes. This stems from the fact that the trimmed patches of a
BRep must, firstly, be constrained because a potential pertubation of the NURBS
control points would generate geometric holes in the geometry. For this reason,
a method to constrain the control point displacement is proposed and tested in
various cases.

Chapter 5 is concerned with the imposition of geometric constraints. All con-
straints shown are imposed using surface definitions, thus making them ideal to
be coupled with the BRep format. In specific, packaging constraints are portrayed
along with maximum surface curvature and shape volume.

In chapter 6, the methods presented in chapters. 3 - 5 are all tested in var-
ious cases. In specific, in sec. 6.1 the methods are tested in the optimization
process of the stator case of the Technical University of Berlin. In sec. 6.2, all
the methods presented are tested in the case of a concept intake manifold duct.
Finally, in sec. 6.3, the methods of this thesis are tested by performing a Multi
Objective Optimization (MOO) on the well studied (from a simulation point of view)
ERCOFTAC UFR 4-06 diffuser case.

In the last chapter, conclusions are drawn and suggestions for future work are
made.

The author has used both the HELYX Open-Source CFD for Enterprise [?]
developed by ENGYS Srl and the OpenFOAM distribution developed by the PCOp-
t/LTT. In addition, the adjoint codes of both these CFD codes have been utilized
while performing optimization runs. All the methods and algorithms presented
in chapters. 3-5, are developed within the open-source CFD toolbox OpenFOAM,
version 2.3.1, the open-source CAD Kernel OpenCascade Technology version 7 [?]
and the SALOME platform version 8 [?].
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Chapter 2

The Adjoint Method

There is a long history of the use of adjoint equations in optimal control theory [?].
In CFD, the first use of adjoint equations for design was by [?], but within the
field of CFD in aeronautics, the adjoint was firstly used in [?, ?, ?, ?, ?, ?] where
the adjoint approach for potential flow, the Euler equations and the Navier-Stokes
equations was developed. The complexity of the applications within these papers
also progressed from 2D airfoil optimization to 3D wing design and, finally, to
complete aircraft configurations. An overview of recent developments in adjoint-
based design methods is provided in [?]. Other relevant works can be seen in
[?,?,?,?] on unstructured grids using discrete adjoint, and in [?, ?] in using
automatic differentiation software to create the adjoint code from an original CFD
code.

The pioneering works of PCOpt/NTUA have employed the constinuous adjoint
method in various real-world applications, in both aeronautical [?] and automotive
industries [?], [?], [?]. In [?] the steady continuous adjoint method was derived
for both inviscid and viscous flows while [?] addressed the unsteady continu-
ous adjoint method assisted by the proper generalized decomposition method.
Turbulent flows are tackled by [?] and [?] for both steady and unsteady flows
while [?] includes the cut-cell method with mesh adaptation in the adjoint code.
Further development of the cut-cell method allows for the handling of cavitating
flows in [?]. Topology optimization is handled by [?] while the handling of grid
sensitivities is shown in [?].

2.1 The State Equations

The adjoint method treats the optimization problem as constrained by the pri-
mal (or state) equations. For the incompressible, turbulent steady flows studied
here, these are the Reynolds-Averaged Navier-Stokes (RANS) equations. In order
to account for the turbulence, the Spalart-Allmaras [?] turbulence model is addi-
tionally solved and differentiated in a work firstly shown by PCOpt [?]. This is done

17
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in order to avoid making the "frozen turbulence" assumption [?] when computing
the SDs as, by doing so, their accuracy could significantly be damaged [?, ?].
Altogether, the state equations are

ov;
RP=_——2 =0 2.1
Bz, (2.1)
Ri= o O 0Ty 9 2.2)

L= D, — =
i J
8xj sz 8xj

~ ~ ~ ~\ 2
R =y 2 K”+”) 8”} —@<Q> —PP(B) + D) =0 2.3

r; Ox; o Oz, o \ Oz,
d(c;A) 0?A O0A
A J — _— e L= —
R~ = oz, Aasz 1=0,¢ oz, (2.4)

and they correspond to the continuity, momentum, turbulence (Spalart-Allmaras)
and Hamilton-Jacobi equations. The Hamilton-Jacobi equation (Eq. 2.4) is solved
for the field A which denotes the distance of cell centres from the nearest wall and
is required by the Spalart-Allmaras model. p, v;, 7;; denote the static pressure

divided by the density, the Cartesian velocity components and the stress tensor
v,

aﬂ)] respectively. Turbulent viscosity v, is

components (1;; = (v + 1) (27”2 +

expressed in terms of v as follows
v = Vfu (2.5)

The production and dissipation terms are given by

v

P() =cnY ., D) = cwlfw(ff)P (2.6)
where Y is computed as B
~ 1%
Y=Yfs+ mfw (2.7)
with Y = eijk% being the vorticity magnitude. The turbulence model functions
J
read

3
X 1
fvlzmyfv2:—3
o1 (1+L>



2.2. The Discrete Adjoint Technique 19

1 ; 2 -3
fp = LFXf0) 3<1+1) N (1) <1+1>
Cy2 Cy2 Cy2 Cv2
% 14+, \"°
X_;’fw_g(g6+633)
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and the constant values are as in table 2.1 [?]. Finally, ¢;;, is the Levi-Civita
symbol.

Constant Cp1 Cp2 K o Cwl Cw2 | Cws | Co1 | Coy2
Value || 0.1355[0.622 [ 041 [ 2/3 [ 4+ 22 [ 03] 2 [71] 5

K2

Table 2.1: Values of constants used by the Spalart-Allmaras turbulence model.

Both primal and adjoint solvers were implemented within the open-source CFD
toolbox OpenFOAM. The PDEs given by Eqgs. 2.1-2.4 and their adjoint counter-
parts (later derived in Egs. 2.14-2.17), are discretized and solved on unstructured
grids using the cell-centered, collocated, finite-volume infrastructure provided by
OpenFOAM. The pressure equations for the aforementioned sets of PDEs are for-
mulated using a SIMPLE-like algorithm [?]. All convection terms are discretized
using second-order upwind schemes, central schemes are used for the diffusion
fluxes including a correction for non-orthogonality and the Gauss divergence
scheme is used for the computation of spatial gradients, with a linear interpo-
lation of the differentiated field values from the cell-centers to the cell-faces.

2.2 The Discrete Adjoint Technique

For the sake of completeness and due to its simpler expressions the Discrete Ad-
joint technique is firstly shown. After discretization, a vector of state equations
R(U(b),b), that containts the residuals of Eqs.2.1-2.4 at every cell, becomes avail-
able. U denotes the vector containing all the state variables p, v;, ; and A at every
cell.

By doing so, the following Lagrangian is formed

- = - =

L(U(b),b) = J(U(b),b) + ¢" R(U(

- =

);b)

where QE denotes Lagrange multipliers (or adjoint variables). Differentiating the
Lagrangian w.r.t. b yields
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b db AU db ob  oU db
8J - OR 0J | -~ OR\ dU
=|=+d"= |+ | = +v" =
b b oU ou | db

In the expression above, the term dU / db is both computationally expensive and
memory intensive regarding storage. Therefore, 1) is computed so as to nullify the
multiplier of dU /db, namely

dL  8J  9JdU JT(aR az%z?)

which stand for the discrete adjoint equations. The computation of J is, practi-
cally, as expensive as the flow solution which makes apparent the strength of this
method: The time required to compute N derivatives is independent of N. The
sensitivity derivatives (SDs) are then given by

—

_ A _ 9 ok
db db Ob ob

AL _ds_oJ

2.3 The Continuous Adjoint Technique

Contrary to the discrete adjoint, the continuous adjoint method, derives the ad-
joint equations in differential form prior to discretization of the state ones. The FI
continuous adjoint method is derived for the state equations (2.1 - 2.4) as shown
in the works of PCOpt [?,?,?,?,?,?,?,?]. This abbreviation is due to the presence
of Field Integrals in the final expression of the SDs. Different methods to handle
the grid sensitivities in the interior of the domain lead to different adjoint formu-
lations. The mathematical development of the FI adjoint, that is briefly presented
herein, makes use of the total variations of all differentiated quantities ¢, w.r.t.
to a design variable b,

0000 0% in
§b, Ob, Oz &b,

The first term on the right hand side (r.h.s) of Eq. 2.8 pertains to the ® variations
caused by the update of the design variables at the same location. The second

(2.8)
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term pertains to the deformation of space, i.e. the displacement of the boundary
and internal grid nodes (in the discrete sense).

Generally, J may consist of two integrals, a surface one Jg and a volume one
Ja [?2,2,2,2,2,2]:

J=Js+ Jg = /jsinids + / JadS2 (2.9)
S Q

where jg and jq are the integrands (defined along the boundary S and the volume
(2 of the computational domain). n; denotes components of the outward looking
normal vector 77 defined along the boundary S. or the objective functions used in
this thesis, the inclusion of the sub-integral Jg, is unnecessary and, therefore, all
Jq related terms are omitted. Differentiating J = Jg w.r.t to a design variable b,
gives [?2,?2,?,?,?2,7?]

oJ ajsk (51)Z / 8]5 . 5]9 / 8]5 5Tk
R — d Lo P d Jd
3b, /S<avz ’“HSZ) 50,0 J \op s ) 5, T ) o, e,

ov 0xy, on; . 0(dS)
+/ EdSnL/SW SkébndS—i—/ jgéb dS—I—/SijSinZW (2.10)

where j¢ accounts for terms multiplying 6®/6b, inside surface integrals. Term
j% accounts for the dependencies of js on the boundary geometry and Sy, de-
notes the parameterized parts of the wall regions of S. This distinction is made
as 0xy/ob, = o0n;/ob, = (dS)/éb, = 0, along the non-parameterized (non-
displaceable) parts of S.

Next step is to define the augmented (Lagrangian) objective function. L as

L:J+/qudQ—k/uindQ—k/ﬁaR”dQJr/AO‘RAdQ (2.11)
Q Q Q Q

where ¢, u;, V,, A® denote the adjoint pressure, velocity, the adjoint to the tur-
bulence model variable and distance from the wall, respectively. Differentiating L
w.r.t. b, yields

5L 8J SRY SR .
e de”/g S+ /Va "a0 4 /A 2.12)

Since the residuals of all the Partial Differential Equations (PDEs) are equal to
zero (before and after any design variables’ update), the gradient of the objective
function can be given by 6 L/db,, instead of 0.J/db,,. In order to compute §L/0b,, the
differentiated terms inside the integrals of Eq. 2.12 are developed. This yields [?]
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where O, is defined as

O = —pv 4 0 v+rv\ Ov (vt v, OV
gk = Vel “axj o 0z o Oz Oz,
- . Cy c%l 82))\ - Cbz v ov 0A OA
_ Y T, TP 9 N T
Vel Cidl Oz, €A oxy, T o o 8% 8xk Oz Oxy,

The additional degrees of freedom introduced to Eq. 2.11 in the form of the adjoint
variables are used to nullify the dependence of Eq. 2.13 on the variations of the
primal variables. Otherwise, the derivatives of the state variables w.r.t. the design
variables would have to be computed through Direct Differentiation (DD) [?] of
the state equations (Eq. 2.1 - 2.4) at a cost equal to N Equivalent Flow Solu-
tions (EFS). An EFS stands for the computational cost of a CFD simulation. The
elimination of the expressions multiplying the derivatives of the primal variables
results to as many adjoint PDEs as the primal ones per objective function, along
with the corresponding boundary conditions and the SD expression. Solving the
adjoint PDEs has almost the same cost as the solution of the primal PDEs (1 EFS).

s
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Thus, by using the adjoint method during each optimization cycle, the cost (apart
from the primal solution cost) of computing the derivatives of all the objective
functions is equal to M EFS, where M is the number of objective functions. An
in-depth analysis of the derivation of the adjoint PDEs can be seen in PCOpt’s
works of [?,?,?]; their final expressions are:

poo 9 (2.14)
ax,-
W Ov; Ovju) 0T Oq O o (. _Cy O,
B =y o0x; Oz Oz * o0x; t e ox; Ox; Yl Y emjkﬁxj Cmli
—0,i=1,2,3 (2.15)
e _Oi) 9 [<u+ﬁ> 8%} 100 00 an D (ﬁaﬁ)
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~ - 8uz 8Ui an 5Vt -
+I/al/Cg—(,P—D)l/a—|-a—$j (8.1'3 + axl) (S_ﬁ =0 (2.16]
RAe = —2i (AO‘%) +ov,Car =0 (2.17)
836]- aﬂfj

After satisfying the field adjoint equations of Eqs. 2.14-2.17 there are still a
few remaining terms in Eq. 2.13 that contain the variations of the state variables
along the boundaries S (inlets, outlets, symmetry planes), parameterized walls
Swyp and non-parameterized walls Sy ,,,. Nullifying these expressions gives rise to
the adjoint boundary conditions [?]. Along the inlet boundaries S7, Sy, and Sy,

Uin; = Uy = —%m — 5
773 ap i
0js; k 0Js; .k
I I I 1 I
Uy = “nit:n; + —nit.n;
& 87'@- kET 87’1‘]' R
dj dj
U&I) = jS”knktZHnj -+ jSLk kthJ i
sz aTij

where t!, t// denote the components of the Frenet tangent to the boundary unit
vectors, u(,, the projection of the velocity vector onto the unit nornal to the bound-
ary and Ué) and u{tg the tangential velocity components to the boundary. Also,
dq/0n = 0 and 7, = 0. Regarding A%, along S;, A* = 0 and Sy, and Sy, a zero
Neumann condition is imposed. Along the outlet boundaries Sy, for the normal
component of the adjoint velocity the condition Ou /On = 0 is imposed and the

tangential components are given by
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and ¢ = A* = 0. On the symmetry planes S, 1) = 0, 8ul<t>/8n =0, A* =0 and
for ¢ and v,, zero Neumann conditions are imposed.

After satisfying the primal and adjoint equations along with the adjoint bound-
ary conditions, the final expression of the SD arises
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Due to the presence of Field Integrals on the r.h.s. of Eq. 2.18, this adjoint
method is abbreviated as the FI adjoint [?]. The first term on the r.h.s. of this
equation requires the computation of grid sensitivities at the internal grid nodes.
This is conducted after differentiating the equations of the Grid Displacement
Model (GDM) w.r.t. b,. This results in expressions which are similar to the GDM
equations and have to be evaluated N times. Thus, the computation of grid
sensitivities increases the cost of the FI adjoint.

To overcome the need of computing dxy/db, in the interior of ) and to reduce,
even further, the cost of computing the adjoint sensitivities, alternatives have
been considered. In [?, ?], the proposed method avoids considering internal grid
displacement, giving rise to the Surface Integral (Severed SI) adjoint. In PCOpt’s
pioneering works of [?,?], a different approach is followed. To consider the internal
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grid displacement but avoid at the same time the expensive computation of grid
sensitivities, the adjoint to the GDM equations was derived giving rise to the
Enhanced Surface Integral (E-SI) adjoint.

The objective functions this thesis is dealing with, are: (a) the total pressure
losses between inlet(s) and outlet(s) denoted by Jp, (min.), (b) the drag forces
exerted on an object along a direction 7 (that of the far-field velocity) denoted by
Je,, (min.) and (c) the mean static pressure rise between inlet(s) and outlet(s) J(;p
(max.). These objectives are given by

1 1
th = —/ (p + —U?) Uﬂlzds — (p + —1)]2.) 'UznzdS (2.19)
Sr 2 So 2
S (=75 + péf) nr;dS
= QW 2.20
Jop Arerfef ( )
Js pdS  [g pdS
7. — 5P s 2.21
‘) = < ( )

where A,.; and U, are the reference area and far field velocity magnitude (both
fixed), respectively and 51? is the Kronecker delta. Sp and S; denote the surface
areas of the inlet(s) and outlet(s), respectively.
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Chapter 3

CAD-to-Surface Grid

In this thesis, the first step to beginning a CAD-based optimization, is to establish
an ’early’ link to CAD. This is done by connecting the available CAD parameters
to the 3D computational mesh which will be used for the simulations (i.e. the
solution to the primal and adjoint equations), which is necessary for both the
computation of the sensitivity derivatives and the mesh displacement method
that will be employed during the optimization. In what follows, the terms mesh
and grid will be used. The former will refer to the 3D computational mesh used
for the CFD solution and the latter will refer to a surface grid (generated on CAD
surfaces). In case the 3D mesh exists, then it has to be mapped onto the CAD
surfaces (patches) which will provide the aforementioned connection. For this
reason, a surface grid of the CAD patches will be necessary. In case it does not
exist, then it must be generated inside or around the CAD model and its patches.
In order to do that, mesh generators use surface grids to define the boundary of
the computational domain.

In both cases, there is the requirement for a surface grid and, in this chapter,
after a literature survey of surface grid generation methods is presented, a new
method is proposed to generate a surface grid on the CAD (BRep) patches. The
input to its accompanying software will be a STEP or an IGES file containing the
CAD geometry. The output will be an STL file containing the triangular grid.

3.1 Literature Survey of Surface Grid Generation Techniques

High quality surface grid generation is a subject that has been studied quite
extensively and various methods have been proposed over the years. The grids can
be either structured [?, ?] or unstructured [?,?, ?] depending on the requirements
of the applications that they are used for and the software that they are used with.

27
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3.1.1 Structured Surface Grids

Structured grid generation methods are mainly used to generate grids on (or
around) regular geometries, which are geometries that can be mapped onto unit
squares or cubes (i.e. any four-sided region of a 2D grid), and are called topo-
logical squares or cubes. Mathematical transformations are, then, used to map
an orthonormal grid generated on that unit square on the simulation domain. As
expected, when the simulation domain does not have this property, this task be-
comes highly non-trivial [?]. In mainstream structured grid applications [?,?,?,?],
complex domains should be subdivided into simple blocks which are topological
squares. From a algoritmhic perspective, the techniques used for such a division
deal with similar issues as unstructured grid generation techniques. The gener-
ation of structured grids in such domains can be done either with Algebraic or
Partial Differential Equation (PDE)-based Methods.

Algebraic Methods [?,?, ?, ?], use blending techniques to combine curves and
this can be done via transfinite interpolations.

Similarly to algebraic methods, PDE-based methods generate a mapping be-
tween the parametric domain (¢, ) and the simulation domain (z, y, z) by solving
PDEs. The PDEs are solved on a reference background grid to generate the struc-
tured grid. Depending on the type of the PDEs, these methods are usually clas-
sified in (a) Elliptic [?, ?, ?] which use Laplace operators [?,?] and (b) Hyperbolic
Methods [?,?,?].

3.1.2 Unstructured Surface Grids

Unstructured grids [?] are ideal for discretizing irregular domains. This, makes
them very useful for the discretization of CAD surfaces which are usually arbi-
trarily trimmed patches. Unstructured grid generation methods can be classified
as (a) Advancing Front methods [?,?,?] and (b) Delaunay methods [?, ?] as well
as some hybrid approaches [?, ?].

The Advancing Front method generates a grid by progressively adding ele-
ments, starting from the boundaries. This results in the propagation of a front
standing for the interface between the triangulated and the yet untriangulated
subdomains. It allows for generating elements of good quality as it always aims
at the generation of equilateral triangles or isosceles which are almost equilateral.
The method tends to produce elements of inferior quality at regions where the
sides of the front meet.

Another advantage of the Advancing Front method is that it can naturally
preserve the boundary curves of a BRep patch and it is highly robust. Its disad-
vantage is that it requires geometric tests during the computation of every new
element to ensure that the front merging is done correctly. These geometric tests
can, at times, slow down the process.
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Advancing
r-—--_

Figure 3.1: A time stamp of the propagation of two Advancing Fronts from two
trimming curves - an internal and an external.

Delaunay triangulation methods consist of two main tasks. Initially, there is
the so-called grid topography which includes the placement of the grid points.
Then, there is the grid topology which includes the computation of a set of trian-
gles which is unique based on the Delaunay criterion [?]. The Delaunay criterion
states that the circumcircles of all triangles in the resulting grid should not con-
tain any other grid points. The grid topography can be done either entirely in one
go or incrementally. In applications in which a grid is generated directly from CAD
surfaces [?], the grid points that lay on the trimming curves are initially inserted
and a first triangulation is computed. Internal nodes are inserted in a second
step.

Recovering Triangulation

Figure 3.2: Steps of a Delaunay triangulation. Top-Left: All grid points and the
domain, on which a grid is generated, are initially enclosed by two large triangles.

Generally, the process of generating a Delaunay triangulation starts off by
generating one or two large triangles (as in Fig. 3.2) containing all grid points.
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Then, it continues by utilizing a point insertion algorithm to insert all the grid
points in the triangulation. Such an algorithm could be, for instance, the Watson-
Lawson [?] and Bowyer-Watson [?] algorithms.

An advantage of Delaunay triangulation is that it is fast, it is mathematically
proven that it always converges and is very inexpensive from a computational
point of view. However, the quality of the Delaunay triangles is decreased if
the topography phase is not done carefully and can sometimes become skinny
triangles which affect the final grid quality.

3.2 The Proposed Method

A method to triangulate the surfaces of BRep models, which are contained in
standard files, is shown and developed. The method uses elements of both the
Advancing Front and the Delaunay algorithms at different stages. The Advancing
Front is used as the main algorithm because it produces high quality triangu-
lations and, also, respects the trimming bounds of CAD patches. Delaunay, on
the other hand, is used because it is much faster and can, thus, be a reliable
background grid generation technique. The aforementioned background grid can
be created with a few grid points and, therefore, be a coarse, low quality grid
computed on the CAD model, which is utilized for computing size metrics. The
method consists of three steps:

e Shape healing is initially performed. For each solid that comprises a CAD
model, defects in geometry and topology are identified and fixed.

e The background grid is generated using Delaunay triangulation and a size
map is computed on that background grid.

e The Advancing Front Algorithm is used for each surface of the solid models.
It makes use of the generated size map to compute each triangle. The
outcome is a high quality grid that covers the entirety of a CAD model.

This method also allows for the inclusion of the CAD model into the optimiza-
tion loop as it allows for a fast adaptation of the grid on the CAD model surfaces.
The computational mesh that is generated by using the triangulated surfaces, is
differentiated w.r.t. the CAD surface parameters which enables the shape sensi-
tivity computation.

3.2.1 Shape Healing

When a surface grid generation algorithm is performed on a CAD model, certain
assumptions about its geometric and topological integrity are made. However,
the assumptions do not always hold as CAD models can originate from various
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commercial (or not) packages with different rules about geometric tolerance and
topological storage. These rules are not always conveyed fully in standard CAD
files and this results in defects in geometry and topology. A geometric hole appears
if two neighbouring patches do not touch along their boundaries. A topological
hole appears if two neighbouring patches are not identified as such in the CAD
topological tree. These defects are usually caused when a model is underdefined
during its generation from a CAD package. This could either be due to inconcis-
tencies of transfer data or at some rare cases on the designer. Both these defects
are quite common and can lead to a bad quality surface grid.

An example of geometric defects can be seen in the Drivaer concept car model (
https://www.mw.tum.de/en/aer/research—-groups/automotive/drivaer/
) which was designed by the Technical University of Munich, Fig. 3.3.

Figure 3.3: The CAD geometry of the Drivaer concept car.

Looking closer at certain areas on the car’s surface, the geometric defect be-
comes apparent (Fig. 3.4).

Figure 3.4: Perspective of the Drivaer’s back left window. Holes between neighbour-
ing CAD patches can be seen.


https://www.mw.tum.de/en/aer/research-groups/automotive/drivaer/
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An example of a topological defect can be seen in Fig. 3.5. Topological defects
may not be visible in a CAD viewer but they can seriously affect the quality of
the resulting triangulation. For this reason, in the example of Fig. 3.5, the
triangulations of the same two surfaces are shown, firstly topologically impaired
and, then, repaired.

Figure 3.5: Top: Two CAD patches (a semi-cylindrical and a planar-rectangular)
connected along their trimming edges. Bottom-Left: Resulting triangulation if the two
patches are also connected topologically. Bottom-Right: The resulting triangulation
in the opposite case.

When two CAD patches are geometrically, though not topologically connected,
abrupt size jumps occur in the resulting triangulation. The reason behind this is
that the triangulation of each patch is performed based exclusively on geometric
criteria, in order to create the highest quality grid (quality elements that capture
the details of the geometry as accurately as possible) with as few triangles as
necessary. To avoid the existence of defects in the triangulation related to (any or
both of) the above mentioned issues, a shape healing algorithm is necessary.

3.2.1.1 Octree Search for Topological Relations

An Octree search algorithm is developed to accommodate search routines useful
for CAD models. Initially, when the Octree search starts, the entire CAD model is
scanned and existing topological relations are identified. Edges that belong solely
on one face (hanging) are checked and geometric tests are performed with other
hanging edges in their vicinity. For example, all the edges of the Drivaer CAD
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model shown in Fig. 3.6 are hanging, meaning that they belong to only one face.
The tests which are mentioned compute the minimum and maximum distances
between two hanging edges. Depending on the results of these tests, duplicate
edges can be found which are removed and the topology of the model is updated.

Figure 3.6: Part of the Drivaer CAD model shown in Fig. 3.3. Hanging edges are
colored in pink.

The first step for this part is to generate an Octree [?] in the space around
the CAD model. An Octree is a tree data structure in which various geometric
data can be stored so that search routines become faster and less intensive from
a computational point of view. The data which is classified in the Octree’s nodes
are the CAD trimming curves (edges). For this reason, the root octant is identical
to the bounding box of the entire CAD model. A CAD edge is inserted in the Octree
via its own bounding box, by recursively subdividing each branch, as long as the
edge does not fit in one of the respective offspring octants. All hanging edges are
classified in the Octree and tested against each other for being duplicates. The
performed geometric tests check whether two edges are identical so that the extra
one can be removed from the Octree and, eventually, from the CAD model. The
faces that the two edges belong to are then defined as topological neighbours.

3.2.1.2 The Geometric Tests for Hanging Edges

As mentioned before, the hanging edges that are classified into the octree are
tested for possible matching with others. The tests are explained below.

For each of the hanging edges of a CAD model that are classified into an Octree,
a search radius equal to 0.8d is defined where d is the length of the diagonal of the
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bounding box of the hanging edge under concern. The Octree returns the hanging
edges that are within this radius and they are then sorted on a closest-first basis.
The tested edge is then compared with the edges in the sorted list until a match
is found. If not, the edge is considered to be the border of the shell.

Let us assume that the parametric expression of the curve of the tested edge
is h(t) and the one of an edge off the sorted list is &(u) (where ¢ and u are para-
metric coordinates). For /(t) and &(u) to match, multiple points on them must be
identical. Therefore, on ﬁ(t) points are placed based on curvature and each of
them is then checked for proximity with ¢(u). The curvature at each parametric
coordinate ¢ is computed by [?]

[17(t) x 1" (1)

. (3.1)
ol

K(t) =

Figure 3.7: Stages of the discretization process of a 3D curve starting from left to
right. Starting from both the first and the last vertex of h(t), new points are placed
along its length.

The discretization of /(t) is done as follows: Assuming that ¢ € [t;, ¢ 7] and that
n vertices are produced, then the first vertex 151 = ﬁ(tz) and the last vertex ]3” =
h(t 7). Then, two more vertices are generated on h(t) such that || P — h(t;)|| = s(t;)
and ||P,_ ; — ﬁ(tf)|| = s(ts). s(t)=min(0/k(t), L) is the ideal distance between a
point on the curve at ¢ and the next to be placed where L is the length of fz(t) and
f is a real, user-defined constant that controls the point gensity along the curve.
The process is repeated for the new vertices until all of h(¢) is discretized. 0 All
P,(i € [1,n]) that result from the discretization are then projected onto &(u). This
projection is performed by solving
dfj(;) (@u)—PB) =0 (3.2)
for u. Eq. 3.2 is solved (using the Newton-Raphson [?] method) instead of a simple

distance equation because it behaves much better when searching for solutions
inside the parametric domain of u. If multiple solutions exist, the final solution
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u* is the one minimizing ||¢(u) — P;|| The above procedure is repeated for every
point P, and if ||d(u) — P;|| < ¢ for all 4, then h(t) and &(u) are considered identical.
The choice of € varies depending on the CAD model. Commonly, a CAD package
defines a distance tolerance ¢ relative to the size of the model when generating its
geometry.

3.2.1.3 Sewing Neighbouring Patches

The above mentioned process functions properly as a means to resolve topological
defects. To solve the geometric defects (patches not touching at the interface
between them), a slightly different approach must be followed. The same Octree
search and geometric tests are repeated as above. The first difference is that the
tolerance ¢ is set to a higher value so as to identify topological neighbours even
with the existence of geometric gaps. Secondly, for the two surfaces around each
geometric gap, a stitching algorithm is performed that requires that they touch at
a number of points along their trimming edges.

This stitching is done by moving one of the two surfaces to touch the other by
solving a minimization problem that takes point and normal vector constraints
into account. The minimization problem is the Thin Plate Energy [?] algorithm Its
physical analogy is that, when deforming a thin sheet of metal (stretching, bend-
ing etc), it minimizes its internal energy and, thus, it keeps its general properties
due to its rigidity. In other words, if the Thin Plate Energy of a surface during
the stitching process remains roughly the same, then its properties remain the
same as well. This is achieved by minimizing the Thin Plate Energy of the sur-
face perturbation while satisfying multiple point constraints and normal vector
constraints.

For any parametric surface S (u,v), the Thin Plate Energy is defined as

—

D

where D is the parametric domain of the surface. Indices u,v indicate partial
differentiation of S along a parametric direction. Eq. 3.3 is a linear approximation
of the exact Plate Energy which is equal to the integral of the squares of the
principal curvatures on S.

In order to modify and stitch a surface Stoa target curve-on-surface and make
it have a certain normal orientation, E((S_S) must be minimized while imposing a
number nc of point and normal vector constraints.

Assuming that S is a NURBS surface (as is the case for BRep), its expression
is given by (Eq. 1.3)

S(u,v) = Z Z R; j(u, U)ﬁi,j (3.4)

i=1 j=1
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and its partial derivatives w.r.t. the parametric coordinates are given by

n m aQRZ (u, .
=23 TR

i=1 j=1

n m 82RZ (u, .
:E:Z}—7%?QEJ
i=1 j—l
R,
E:EZ &bﬁv "

i=1 j=1

Any NURBS surface pertubation that produces a surface S_} (u,v) from a source
surface S(u,v) can be expressed as

—

65 (u,v) = Sp(u,v) — S(u,v) = Z Z R; j(u, v)éﬁm (3.5)

i=1 j=1

A point constraint is imposed at a certain parametric pair (u,v), by demand-
ing that the target surface touches a target point F,. This creates an equality
constraint

c=68+S5— DB =0 (3.6)

Another pair of equality constraints that are imposed are normal vector con-
straints. This means that ST must have a specified normal vector 77 at a parametric
point (u,v). This can be imposed by satisfying two equations:

t'= (S, +05,)-7=0
2= (S, +65,)-7=0 3.7)
Thus, the following constrained minimization problem is generated
st. ||g] =0 (3.8)

andt} =0,t2 =0, € [l,nc|

where nc is the total number of constraints. The order of nc depends on the
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complexity of the curves and the surfaces that are stitched. Further analysis of
E(4S) leads to the following expression

i=1 j=1 g=1
O?R; j(u,v) O*Ry p(u,v)

’ngh — // ] ga]QlLQ dudv
O*R; j(u,v) O*Ry p(u,v)

Misgn = / / (‘9u8v Oudv dudv
O?R; j(u,v) 0*Ry p(u,v)

'ngh // 81}2 981}2 dudv

Ultimately, the Thin Plate Energy problem is solved by using the Augmented
Lagrangian Method [?] with

n

Z 5Pz g zggh + 2Mz]gh + Nzggh) (39]

n m
h=1

where

ZAHqH—Zm ZK 5D (lElP ¢ +£7) 310
i=1

where \;, k|, k? are the Lagrange multipliers and y is the penalty parameter.

The choice of the Energy quantity is made as it portrays the curvature proper-
ties of the parametric surface. Ideally, the properties of the source and the target
surfaces should be almost identical and this is achieved by minimizing the Energy
of the perturbation of the surface. The result is a less warped perturbed surface.

Two examples are used to demonstrate this (Figs. 3.8, 3.9). In the first ex-
ample, the sewing algorithm is used on two planar rectangular surfaces that are
placed apart vertically to each other. In the second (and more challenging) exam-
ple two highly curved, trimmed surfaces are placed apart. In both examples, the
Thin Plate Energy minimization resulted in a perfect stitching of the patches.

Applying both the topological and sewing algorithms to the CAD model of Fig.
3.6 results in a perfectly defined CAD model ready to undergo triangulation (Fig.
3.10).
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Figure 3.8: Two rectangular surfaces with a geometric gap. Top: Initial positions.
Bottom: The resulting position where both the initial surfaces are visible (grey) as
well as the final displaced surface (red region covering the hole).

Figure 3.9: Two trimmed curved patches. Top: Initial position. Bottom: Final
position.
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Figure 3.10: The Drivaer model of Fig. 3.6 after the shape healing process ended.
The only hanging edges remaining (in pink) are located at the boundary of the shell.

3.2.2 The Background Grid and the Size Map

The background grid is required to store the size metrics at various points on
the CAD model. Its generation should be fast and easy and the grid itself should
be as coarse as the geometry allows. Quality is not a prerequisite here and the
simple requirement is to capture the geometry with as few triangles as possible.
As mentioned already, Delaunay triangulation [?] is used.

3.2.2.1 The Delaunay Algorithm for the Background Grid

The Delaunay algorithm always converges for a set point cloud in 2D, so the tri-
angulation is performed in each face’s parametric space. Initially, the edges of the
entire CAD model are discretized in a manner similar to the one shown in section
3.2.1. Then, Delaunay triangulation is performed in the 2D parametric domains
of each face by using features of both Lawson [?] and Watson [?] processes. The
Watson and Lawson synergy is explained in Appendix A. During the generation of
the background grid, the size of its elements is computed based on the deflection
from the actual geometry. A deflection parameter that imposes a maximum al-
lowed distance between the centres of the edges of the resulting polygons and the
actual edge curve is defined. The same parameter imposes a maximum allowed
distance from the barycenters of the resulting triangles to the CAD surface.

The points that are generated while discretizing the edges of a CAD surface,
have parametric coordinates on the surface as well. For instance, in Figs. 3.11
and 3.12, a surface with discretized edges and the parametric coordinates of the
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generated points can be seen. Then, discretization is done based on curvature
and, thus, edges that are straight lines are described by just two points.

Figure 3.11: A parametric CAD surface (light blue) and the discrete points (red) that
are generated on its edges.
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Figure 3.12: The u, v coordinates of the points shown if Fig. 3.11.

Starting from a 2D polygon as in Fig. 3.12, the first Delaunay triangles are
computed by introducing one point at a time. The algorithm starts by creating a
supertriangle that encloses the entire point cloud. When a new point P is inserted
into the triangulation, an existing triangle that encloses P is identified and three
new triangles are created by connecting P to its vertices. During this step, the
original enclosing triangle is deleted, thus making the net gain of triangles equal
to two. After the new point has been inserted, the triangulation is updated to
Delaunay by using the Lawson [?] algorithm. During this process, all triangles
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that are adjacent to edges opposite P are placed in a last in, first out’ list. Then,
a triangle is removed from the list and a check is made to determine if P belongs
to its circumcircle and if this is the case, then this triangle and its adjacent,
form a quadrilateral with the diagonal placed in the wrong direction. A swap is,
therefore, made and this creates two new triangles that replace the two old ones.
The two new triangles are placed in the list and the whole process is repeated
until the list is empty. Once this process is finished, the initial vertices of the
supertriangle are removed along with any triangles that are associated with them.
Furthermore, triangles that are placed out of the closed domain defined by the
trimming curves, are removed. This results in a Delaunay triangulation that is
constrained to have matching boundaries with the discretized trimming edges.
The computed triangles are, then, transformed to the 3D space by connecting the
relevant 3D points (Fig. 3.13).

Figure 3.13: A parametric CAD surface (light blue) and the triangulation (red) that
is the result of the Constrained Delaunay Method.

For all the created triangles, a check is made to determine their deflection
from the actual CAD surface. For a triangle, this deflection is computed as the
distance from its barycenter to its projection on the surface. If this deflection is
larger than a threshold value, a new point P is inserted at the barycenter of the
2D triangle this corresponds to. When no more triangles need to be created, the
algorithm terminates.
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Figure 3.14: The Delaunay Triangulation of the CAD model of the Drivaer car shown
in Fig. 3.10.

This algorithm avoids heavy computations and searches and is, thus, very fast.
Furthermore, assuming that the shape healing algorithm described in section
3.2.1 has been completed successfuly, then the resulting triangulation of the
CAD model will be watertight and with as few triangles as possible. This can
lead to a smooth size map that will store the desired sizes at the vertices of the
background grid.

During the execution of the Advancing Front grid generation algorithm, the
size information of background grid triangles will have to be accessed multiple
times. The reason behind this is that when generating a grid on a CAD face or
an edge on that face, the algorithm asks for the required size at some point with
face parameters (u,v). Therefore, two things are required: (a) a method to quickly
identify a few background grid triangles in the vicinity of the given (u,v) and (b) a
method to identify in which triangle the point with these coordinates lie. The first
point is easily solved with a Quadtree structure. The Quadtree is identical to the
Octree shown in section 3.2.1, with the only difference being that it is employed
in 2D. The second point is solved by computing the barycentric coordinates of the
parametric pair (u, v) for each triangle that is returned by the Quadtree until the
correct triangle is pinpointed. Assuming a triangle with vertices with parametric
coordinates (u4,v4), (up,vp) and (uc, ve), the barycentric coordinates of a point
on the plane in which the triangle lies, with coordinates (u,v) are computed by

o Us —Uc uUup — Uc u — uc
B VA —Vc VUp — Uc v = V¢
y=1—a-p (3.11)
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If0 < (a, 8,7) <1, then and only then does (u, v) belong to the triangle.

When the correct triangle is pinpointed, the requested size value at (u,v) is
interpolated as s,, = asa + sp + 7sc where the indexed s variables denote the
size values at the three vertices.

3.2.2.2 The Size Map

When generating a grid with triangular elements on CAD surfaces, it is very impor-
tant to have a pre-computed size map on the geometry. Computing it beforehand
allows for easier optimal size computation as well as gradation control. The sizes
are computed on the vertices of the background grid and the gradation is con-
trolled via the connectivity. In this method, two dimensionless input parameters
control the above mentioned outputs: (a) a curvature-based size parameter d and
(b) a triangle growth ratio gz. The choice of dimensionless parameters is made so
that the process does not depend on the units of measurement of the model, but
rather on the geometry itself.

As mentioned before, the parameter d is used to generate an optimal grid tri-
angle size based on the model’s local curvature. At each vertex of the background
grid, which belongs to surface ¢ at parameters (u, v), the size s;(u,v) is computed

by
s1(u,v) = K(u,v)d (3.12)

where 1
K(u,v) = (3.13)

maz(|k1(u, v)|, [k (u,v)])

where x4 (u, v), k2(u, v) are the two principal curvatures [?] of 7(u, v). To compute
the principal curvatures, the two fundamental form coefficients [?] of the surface
must firstly be computed at (u, v):

- Oy Oy Oy Oy _ E F
! Oy Oy Oy Oy F G
Cuu " T Oyp - 10 L M
= — — — — = . 14
72 [UW N Oy - n} {M N ] (8.14)
where 71 = nging is the local unit normal vector.

The two principal curvatures of a surface are computed after solving
det(Fy — kJF1) =0 for k. In case a surface is locally planar (k; = k2 =0), K is set
equal to the length of the diagonal of the surface bounding box. Such a surface
must be covered with as few triangles as possible but without creating abrupt
size changes and this is something that the size gradation algorithm handles (see
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further below).

If a vertex lies on one of the trimming curves of the surface, then it probably
lies also on a second surface 5(¢, 7). Then, three size values can be computed:
(@) s1(u,v) based on the curvature of the first surface, (b) s2(£,7) based on the
curvature of the second surface and (c) s3(t) based on the curvature of the trim-
ming curve. If Fz(t) is the expression of the trimming curve, then its curvature
k(t) is computed using Eq. 3.1 at parameter ¢ at which &7 (u, v) = &(&, n) = h(t).
Then

s3(t) = min (ﬁ L) (3.15)

where L is the length of /() given by

b [ (1) (Y (Y

The introduction of L in Eq. 3.15 is done in order to capture the correct size of
potentially small trimming edges that are straight or almost straight. In order to
correctly capture the geometry, the smaller size requirements must be respected.
Therefore, the final size s is given by

(3.17)

. s1(u,v) , if a vertex lies simply on a surface
| min(si(u,v),s2(&,1m), s3(t)) , if a vertex lies on a trimming edge

After the value of s has been computed at all vertices of the background grid,
a gradation algorithm must be performed to smoothen the size map on the model.
It is not uncommnon that CAD patches do not maintain C5 uniformity inside
their parametric domain. Furthermore, neighbouring patches will certainly be ()
continuous but (] is not guaranteed. These facts can lead to abrupt size changes
on the CAD model which can in turn create convergence and quality problems at
the final triangulation. In this work, the bounded H-Variation control, proposed
by [?], is used as a gradation technique. The H-Variation between the sizes sp,
s which are defined at the connected vertices P and @ of the background grid,
is given by

v(PQ) = 2428

=2_r (3.18)
1PQ]

which is the gradient of s on the surface of the CAD model. The input parameter
gr is used to define an upper bound to the H-Variation of all background grid
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edges and if this upper bound is not met, a correction is performed. For an edge
PQ), the following check is made: If |v(PQ)| < gg, then the sizes are not corrected.
In case [v(PQ)| > gg, then the larger of the two sizes is reduced by setting:

sPZSQ—i—gR-HPQ if sp > s

5Q23p+gR-||P@ Jif sp < s (3.19)
The above check is made for all the edges of the background grid. When a cor-
rection is performed to a vertex, all edges that are adjacent to that vertex are
re-checked. When no more corrections are made, the algorithm terminates.

With the size computation and gradation algorithms finished, a uniform map
is available for the main grid generation algorithm to use. Relations with neigh-
bouring surfaces and local size requirements are taken into account at this point
and, therefore, the grid generation can be performed at each edge and each face
independently while ensuring the smoothness of the final triangulation.

An example is shown in Fig. 3.15 to demonstrate the effect of the two input
parameters on the size map (and the final trianglation). Initially, the growth ratio
is set to g = 0.1 and various values of d are applied. The curvature on the
straight outer lines is zero and, therefore, there is no geometric requirement for
a triangle size smaller than their length. However, the discretization of the inner
circular curve must become finer as d becomes smaller and the gradation of the
size map leads to a fine discretization of the straight curves. Then, the value of the
deflection is set to d = 5° and various values for gy are applied. The discretization
of the inner circular curve is identical in all cases (as expected). The value of ggr
which controls the gradation leads to a coarser and coarser discretization away
from the inner curve as its values gets higher.
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@d=2° gp=0.1 (b) d = 10°, gp = 0.1 (c) d = 20°, gp = 0.1
(d) d = 5° gr = 0.02 (&) d = 5° gr = 0.05 6 d=5° gr = 0.08

Figure 3.15: The final triangulation of the same CAD surface, with 6 different sets
of input parameters.

Another example is demonstrated in Fig. 3.16 where an axial stator blade and
its triangulations are shown. Six different surface grids are generated with six
different pairs of input parameters. The effect of the parameters can be seen on
the leading edge and the suction side. Surfaces near both the leading and the
trailing edge are semi cylinders, which means that they have considerably higher
curvature than the pressure and suction sides. Therefore, one can, firstly, see
the effect of d on the grid of the leading edge’s surface and, secondly, the effect of
gr on the grid, moving farther from high curvature areas.
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Figure 3.16: Six different triangulations of an axial stator blade. Center: The CAD
model of the blade. Left: Focus on the leading edge for three different values of d. As
d increases, the grid becomes coarser. Right: The suction side of the blade for three
different values of gp. As gr increases, the gradation of the grid increases.

3.2.3 The Advancing Front Algorithm

The grid generation algorithm initiates by performing the discretization of every
edge of the CAD model. An edge will belong to a primary and/or a secondary
surface. On both surfaces its 3D expression ﬁ(t) will be connected one-to-one
with a parametric curve f_ip(t) such that

i (t) = (Z‘E;;) with Bi(t) = o (u(t), v(t)) 3.20)

While the discretization of the edge takes place, the required size value at ¢ is
returned by the background grid on the primary face at flp(t). Using these sizes,
the process shown in Fig. 3.7 is performed. When the discretization of an edge is
finished, the parametric coordinates on both primary and secondary surfaces are
stored in different lists in order to be accessed later during the triangulation.
When the discretization of the edges is complete, the grid generation at each
individual face begins by building the initial advancing front. Buidling the initial
front includes sorting and orientating the grid points placed during edge dis-
cretization. Before tackling the initial front, it is important to introduce two data
structures: (a) the Front Point and (b) the Front Edge. The Front Point is a struc-
ture that holds information about the parametric coordinates of the 3D point it
corresponds to and, also, about the Front Edges that touch it. The Front Edge
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holds information regarding its first and last Front Points and, also, the next and
previous Front Edges. The notation of next and previous edges comes in handy
for defining the front topology. The Advancing Front data structure holds lists of
all Front Points and Front Edges as well as a Quadtree for fast querying.

Firstly, the list of the Front Points is assembled by retrieving the (u, v) paramet-
ric pairs of all the discretized CAD edges that lie on the surface. The parametric
pairs are ordered to form a counterclockwise loop of points if they belong to an
external wire of edges and a clockwise loop of points if they belong to an internal
wire of edges (Fig. 3.17). With this ordering, a new triangle will always be placed
such that its normal vector has an outward orientation w.r.t. the CAD solid. For
every pair of consecutive points that creates a Front Edge, the topology of the both
Front Edges and Front Points is updated.

Figure 3.17: Discretization of the boundary of a CAD model’s face that creates an
initial front. Discrete points are visible in both 3D an 2D parametric spaces (https:
//www.1l31l1l.math.upmc.fr/perronnet/mit/mit.html).

The triangulation then initiates by selecting a Front Edge from the list and
calculating a so-called optimal point for the generation of a new triangle. If this
was a simple 2D triangulation, the generated triangle would be isosceles with the
selected Front Edge as its basis and with a height equal to the value returned
from the size map. However, this is not the case as an isosceles triangle in the
parametric space is not necessarily transformed to an isosceles triangle in the
3D space. Furthermore, the size returned from the size map, which corresponds
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to the height of a triangle, must be adapted to the parametric domain. Let us
assume a Front Edge between Front Points A B their parametric mldpomt M
(with up, = (ug 4 up)/2, var = (v4 + vg)/2) and the new created point P. Two
values can be computed for the required size at A (s4) and B (sg). The optimal
size of the element s is computed as s = (s4 + sp)/2. The condition to be met is
s = s,pp. If E(u,v), F(u,v), G(u,v) are the components of the first fundamental
form of the face at (u,v), then

B
= /ﬁ VE(u,v)du? + 2F (u,v)dudv + G (u, v)duv? (3.21)
by

which can be computed by substituting
u=up + t(up — up)
v=uvy + t(vp — vy) (3.22)

0<t<1

which leads to

= /0 \/(UP — UM)2E(t) + Q(UP — UM)(’UP — UM>F<t) + (UP — UM)ZG(t)dt
(3.23)

The required condition is satisfied by approximating an initial set of up,vp and
recursively correcting them based on the computation of Eq. 3.23.

The first approximation to (up, vp) is computed by

u u VA — U
(P>=(M)+52D<A B) (3.24)
Up Unm Up — Up
where s;p is an approximation to the element size in the parametric space, com-

puted by

S

e vV (va —vE)?E(un, vm) + 2(va — vp)((up — wa) F(unr, vnr) + (up — wa)?G (unr, var)

The approximation of Eq. 3.24 creates a point P whose parametric coordinates
create an isosceles triangle with the Front Edge in 2D.

Pis updated by computing two new points ﬁl and ]32, with
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up,\ _ [Uua + S [up—uyp
Up, VA Spip \UP — U4
up, _ up + S Up —Up (3.25)
Up, UB Spip \UP — UB

and, finally, the new point is updated by
up (uPl +Up2)/2
= 3.26
(UP) ((UP1 + UP2)/2 ( )

When s, tends to become equal to s, then both 151 and }32 tend to coincide. This
creates an isosceles triangle in 3D with a height equal to s.

Next step is to define a search radius in the 2D space that will be used to iden-
tify neighbouring Front Points with which triangle formation will be investigated.
The radius is defined as

R=(1.5+25) -max(\/(up —ua)?® + (v — va)% / (up — upr)? + (vp — var)?

Figure 3.18: The advancing front during the placement of a new Front Point. Black
lines indicate the Front Edges while the red circle marks the search area of radius R.

The Quadtree then returns a list of Front Points that have a distance from
(up,vp) which is less than R and, then, the triangle formation routine is initiated.
The steps that are followed are:

1. Check whether the selected Front Edge AB is part of a closed triangle.
Namely check if the first point of the previous edge is the same as the last
point of the next edge.
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2. Loop over the list of the neighbouring Front Points and assess if the 3D
distance between a point of the list and P is less than 0.8s. Once such a
point is found, perform triangle feasibility tests and create the triangle if it
is valid.

3. If the entire list of neighbouring points is checked and no triangle can be
created, then perform a triangle feasibility test for triangle creation with the
new computed Front Point P.

4. If triangle formation with P is also not possible, then attempt to create a
triangle with the Front Points of the neighbouring points list not checked in
step 2.

5. Finally, if none of the above steps has successfully created a triangle, per-
form a brute force technique by investigating if a triangle can be created
with any Front Point in the advancing front list. If this final step fails, the
algorithm terminates without completing the triangulation.

The triangle formation tests, mentioned in the list above, check a candidate
triangle for three possible failures: (a) zero area, (b) Front Point in triangle and (c)
triangle with Front Edge intersection. For a triangle to be formed, all three tests
must be passed. Analysis on how the tests are made can be seen in Appendix B.

During the triangle creation routine, the advancing front can be updated in
two ways: (a) by introducting the new Front Point P and (b) by updating the Front
with one of the existing Front Points.

When the algorithm opts for a triangle generation with a new point, then the
configuration of the front is as in Fig. 3.19.

El E?

new new
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—

Eprev Ene:ct

Figure 3.19: An advancing front configuration during the formation of a triangle with
a new Front Point. Black lines indicate the unchanged Front Edges, blue lines the
newly created Front Edges, and the red line the deleted Front Edge.

The selected Front Edge AB is deleted and two new Edges are introduced to
connect to the new Front Point (E}ew Eﬁew). The two new edges are placed at the
end of the Front Edge list in order for them to be processed after all the already
placed ones. The topology pointers are updated and the new Front Point is added

to the Front Point list as well as the Quadtree.
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When the algorithm opts for a triangle generation with the use of an existing
point (F..;s), then topology of all the neighbouring edges must be checked. This
is because the triangle could potentially be created with more than one existing
Front Edges. The four configurations that could be identified are seen in Fig.
3.20.

() (b)

() (d)
Figure 3.20: Four different advancing front configurations that could be encountered
by the algorithm when forming a new triangle with an existing point. In all figures,

red lines indicate the Front Edges that will eventually be deleted and blue lines the
ones that will be created. Black lines are those that remain unchanged.

Firstly, the Front Edges Ep,.ev and Enemt are checked. If ﬁemist belongs to Ep'r‘evs
then both the base AB and Enewt are removed from the front and a new Front
Edge connecting A to ﬁmst is created. Front Point B is removed from both the
Front Point List and the Quadtree. The topology of the neighbouring Front Edges
is then updated to account for the new edge. Similarly, if ﬁemt belongs to Epmj,
this edge and the base are removed and a Front Edge connecting B to ﬁemt is
created. Point A is permanently removed and topology is updated. These two
configurations can be seen in Figs. 3.20a, 3.20Db.

Then, a check must be made for whether AB is part of a closed loop of three
Front Edges, thus creating a triangle. If this is the case, then all three edges
are removed. If the associated Front Points are not connected to any more Front
Edges, these are removed as well (both from the list and the Quadtree). The
configuration can be seen in Fig. 3.20c.

The final case is when ﬁemt belongs to other Front Edges opposite of AB (Fig.
3.20d). In order to create this triangle, two new Front Edges are generated. This
results in the division of the current advancing front structure to two sub-fronts.
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The topology of the Front Edges is such that both sub-fronts create counterclock-
wise loops. The Front Edge AB is removed. The procedure above is repeated for
all Front Edges (existing and newly created ones). Once the list of Front Edges
becomes emptied, the process terminates.

3.3 Applications

In order to showcase the progress of the triangulation of the CAD surfaces, various
stages of the advancing front method applied to a cylinder is shown (Figs. 3.21,
3.22).

Figure 3.21: Stages of the triangulation of a cylindrical surface (transparent grey).

From left to right, the first 100 triangles, 500 triangles and the full triangulation (1400
triangles) can be seen.
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Figure 3.22: Stages of the triangulation of a circular surface (grey). From left to
right, the first 36 triangles, 144 triangles and the full triangulation (220 triangles) can
be seen.

Further to this simple example, a few industrial-like CAD models are triangu-
lated.
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3.3.1 The Drivaer Passenger Car

Initially, the triangulation of the CAD model of the DrivAer fastback car is shown.
The model, which is provided via a STEP file, is seen in Fig. 3.3.

Then, the triangulation algorithm starts. The background grid is the one seen
in Fig. 3.14 and using that background grid, the Advancing Front method is
executed. Timestamps of the process of the algorithm can be seen in Fig. 3.23.

Figure 3.23: The triangulated surface of the Drivaer car model in 3 instances: Top-
Left: 282K triangles. Top-Right: 462K triangles. Bottom: 663K triangles.

Zoomed images of the final triangulation are shown in Figs. 3.24 and 3.25. In
the former, parts of the surface that comprises the car body are shown. In the
latter, one can see the side mirror and the wheel and rim configuration.
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Figure 3.24: The triangulated surface of the DrivAer CAD model (bottom) along with
zoomed images of the back left passenger window (top-left) and the windshield-hood

interface (top-right).
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Figure 3.25: The triangulated surfaces of one of the side mirrors (left) and of one of

the wheels (right) of the DrivAer CAD model.

A total of 663K triangles are generated using d = 10° and gg = 0.1. The
completion time is 578 seconds, averaging at a computational speed of 1147

triangles per second.

3.3.2 A Ship’s Propeller Blade
Then next application of the method is for a ship’s propeller (blades and shaft
incuded). The CAD model (transferred via a STEP file) can be seen in Fig. 3.26a.
The triangulation generated using d = 10° and g = 0.1 is seen in Fig. 3.26b.
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(a) (b)

Figure 3.26: The triangulated surface of a ship propeller. The CAD model can be
seen on the left while the triangulated model on the right.

Instances of the process can be seen in Fig. 3.27.

Figure 3.27: The triangulated surface of the propeller model in 3 timestamps: Top-
Left: 744 triangles. Top-Right: 2184 triangles. Bottom: 3972 triangles.

A total of 3972 triangles are generated and the completion time is 3.4 seconds,
averaging at a computational speed of 1200 triangles per second on 8 Intel Core
i7-6700HQ processors.
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3.3.3 The S-Bend Climate Duct

Finally, the full body of a climate duct used in automotive is triangulated. The
duct consists of a middle S-section and two straight inlet and outlet parts. The
CAD model comes via a STEP file here as well and can be seen in Fig. 3.28. The
final triangulation is visible in Fig. 3.29 and a few instances can be seen in Fig.
3.30.

Figure 3.28: The CAD surface of an automotive climate duct.

Figure 3.29: The triangulated surface of an automotive climate duct.

The total of 47.2K triangles are generated in 21.6 seconds averaging at ~2200
triangles per second on 8 Intel Core i7-6700HQ processors.

3.4 Remarks

In order to check the quality of the produced triangular surface grids, the aspect
ratio is computed for each element and then some statistics are shown. The aspect
ratio in this case is defined as the quotient of the maximum side of a triangle over
the minimum side. Obviously, a perfect equilateral triangle will have aspect ratio
equal to 1. On the other hand, the higher the average aspect ratio, the worst the
quality of the grid. The results for the cases of Sec. 3.3 are shown in table 3.1.
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H Average Value | Min. Value | Max. Value | Std. Deviation H

Cylinder Case 1.108 1.000 1.872 0.205
Drivaer Car 1.199 1.000 247.4 0.853
Propeller Blade 1.270 1.000 7.905 0.350
S-Bend Duct 1.048 1.000 4.411 0.149

Table 3.1: Aspect ratio for the grids produced for the applications of Sec. 3.3.

Figure 3.30: The triangulated surface of the S-bend model in 3 timestamps: Top-
Left: 7.8K triangles. Top-Right: 16.1K triangles. Bottom: 47.2K triangles.

It is obvious that all of the grids are close to equilateral with average aspect
ratio values very close to 1. However, some extreme values are also visible, espe-
cially for the Drivaer model. These are due to small, warped surfaces on the car
geometry that do not allow the algorithm to produce elements of higher quality.

All the resulting grids can be exported in STL format, which is the main input
to 3D meshers such as snappyHexMesh, and are of high quality (equilateral or al-
most equilateral for the most part). Furthermore, at all grid points, the associated
CAD parameters were computed, which will be very useful when the optimization
starts.



Chapter 4

The Geometry Morphing Technique

One of the cornerstones of performing shape optimization is the shape and/or
mesh deformation technique [?,?]. The shape and mesh perturbations are closely
related to the chosen parameterization, which can greatly affect the progress of
the aerodynamic optimization. Depending on the nature of the chosen parameter-
ization, the shape deformation techniques can be categorized as: (a) CAD-free [?]
or (b) CAD-based [?] methods, as also mentioned in Chapter 1. The choice of the
parameterization technique depends on various factors which are analyzed below.
Ideally, the preferred method would have to ensure a rich-enough design space
and, at the same time, maintain the link to the industrial design framework. As
stated before, the native CAD parameterization is almost never accessible due
to the closed-source nature of CAD packages. Therefore, after triangulating the
CAD model and generating a computational mesh around it, the next step is to
select a parameterization scheme for the upcoming optimization. In this chapter,
a parameterization scheme based on the NURBS patches of the BRep format is
proposed.

4.1 Literature Review of Parameterization Methods

The choice of shape parameterization schemes can vary depending on the design
requirements for the optimization results. CAD-free methods are preferred when
a rich design space is needed and when the link to CAD can be sacrificed. On the
other hand, if an optimization related to the geometry of the model which would
easily be manageable in an industrial design environment is required (as in this
thesis), then CAD-based methods are preferred. For completeness, a review of
both CAD-free and CAD-based methods follows.

59
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4.1.1 CAD-free Methods

When performing optimization, the usage of the design parameterization can be
a constraint that is, sometimes, very limiting. As a solution, the link to the CAD
parameterization can be severed and parameterizations which are specific to the
case can be introduced.

The primary and simplest example of CAD-free parameterizations is the node-
based ones [?,?,?]. In this parameterization, the nodes of the boundary mesh
(that lie on the wall of the optimized geometry) are used to change the shape.
The sensitivity derivatives are computed w.r.t. the normal displacement of the
boundary nodes [?]. The displacement of the boundary mesh is then propagated
towards the interior of the computational mesh via various methods such as linear
elasticity [?], linear and torsional spring analogies [?], Laplacian methods [?] and
algebraic dampening (i.e inverse distance) [?]. It is common that, due to a noisy
sensitivity map, the node displacements that emerge from such a process, create a
non-smooth, wrinkly surface. Apart from the obvious design flaws this can cause
(i.e. reduced manufacturability), the propagation of such displacements towards
the inner domain can greatly distort the mesh which can result in high numerical
errors. For this reason, a common strategy is to smooth the sensitivities before the
extrapolation and their propagation towards the interior. This can be done either
implicitly [?, ?, ?] or explicitly [?, ?]. Implicit smoothing means that the updated
field of sensitivities is computed by the solution of a PDE while explicit smoothing
that the sensitivities are smoothed by taking into account the sensitivities of the
neighbouring nodes. For instance, [?] performed a Sobolev gradient projection
[?] in order to smooth the sensitivities (implicitly) while [?] performed iterative
sensitivity averaging by using the immediate and second neighbours of each node
(explicit smoothing).

Figure 4.1: The sensitivity derivatives of total pressure losses on the surface of a
cooling duct. Sensitivities, computed via the continuous adjoint technique have been
smoothed implicitly via Sobolev gradient projection. Smoothed sensitivities are seen
on the left while raw ones on the right. [?]
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Apart from pure node-based parameterization, the CAD-free methods also in-
clude control point-based parameterizations such as point-based or lattice-based
interpolations. A widely known representative of point-based interpolations is Ra-
dial Basis Functions (RBF) [?,?]. A standard RBF interpolation problem assumes

N points (71, . . ., Zy) that are associated with N function values (f (1), ..., f(Zn)).
The aim is to generate a continuous function R(Z) that interpolates the given val-
ues at (71, ..., Zy). Such a function is given by [?, ?]
N
R(@) =Y co(||7 - @) @.1)
i=1

where ¢(-) are the basis functions and ¢; are linear coefficients. The choice of
¢(-) ranges from Gaussians, to Matérn functions and multiquadratics and ¢; is
computed by enforcing that R(Z;) = f(Z;). Returning to the subject of parameter-
ization, the RBF method becomes a shape and mesh deformation tool when for
specific (user-defined) nodes of the boundary mesh (%), the functions f (fz) are
the prescribed displacements due to the sensitivity derivatives. After the com-
putation of ¢;, R(Z;) can provide a smooth displacement field for all nodes of the
boundary mesh and the inner domain.

Lattice-based deformation [?,?,?] is the pilar of Free-Form Deformation (FFD)
techniques [?]. FFD is based on the idea of enclosing a mesh in a hull object (a
cube for instance) and deform it as the hull object deforms. The hull is based
on the concept of hyper-patches which are 3D analogues of parametric curves or
surfaces such as B-splines or NURBS. In this manner, it is highly convenient to
select the coordinates of the lattice points as the design variables. In the case
of B-splines, any node of the mesh (1,2, 23) can be evaluated by a trivariate
parametric equation

Ny Nw

Vi(u,v,w) ZZZNP“ NP (0)NE* (w) P i = (1, 22, 3) 4.2)

i=1 j=1 k=1

Eq. 4.2 is the 3D analogue of the B-splines equations shown in Sec. 1.2.2. u, v, w
are the parametric coordinates, N/*(u) N;*(v) Nj* (w) are the b-splines basis func-
tions and P ;. are the position vectors of the lattice points (or control points). For
any (1, 2, :L‘3), the parameters u, v, w can be computed as shown in Appendix C,
so that V (u, v, w) = (z1, 2, 23). The grid sensitivities w.r.t. the coordinates of any
control point can easily be computed by
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where R, ;. is the product of the B-spline bases shown in Eq. 4.2. Using grid
sensitivities, relevant perturbations can be computed for the control points which
can displace the nodes via Eq. 4.2. An example of an FFD application is shown
in Fig. 4.2.

(@) (b)

Figure 4.2: The body of an automotive side mirror provided by Trabant (www .
trabant-nt.de/). The initial body is seen on the left while the deformed body
resulting from a 30° rotation of the near control points around the y—axis on the
right.

4.1.2 CAD-based Methods

In industrial applications, where gradient-based optimization and, especially, low-
cost approaches based on the adjoint method are in widespread use, the necessity
for maintaining a link to CAD is paramount. The optimal aerodynamic shapes
generated by the optimization loop cannot be manipulated in a CAD package un-
less a connection between the CAD design variables and the computational mesh
is established. As solutions, either the CAD software (which could be commercial)
can be a part of the gradient-based optimization loop, which means that it has
to be differentiated, or the optimal geometry could be approximated by a CAD-
compatible parameterization (return to CAD [?]). The work in this section focuses
on the former and overcomes the closed-source nature of most CAD packages,
by introducing an open-source, transferable parameterization based on standard


www.trabant-nt.de/
www.trabant-nt.de/

4.1. Literature Review of Parameterization Methods 63

CAD geometry (elemental geometry and NURBS [?]) which is widespread in for-
mats like IGES, STEP, etc. The connection of this parameterization to the com-
putational mesh is conducted via the proposed surface grid generation method
(Chap. 3).

CAD-based and especially NURBS-based optimization has been a well known
practice for quite some time. The field has flourished in various CFD-related [?, ?]
and structural related isogeometric analysis applications [?, ?].

Modern CAD systems like SIEMENS NX [?], CATIA V5 [?], SOLIDWORKS [?]
and AUTOCAD [?] use feature trees to model a geometry. From a design per-
spective, this is an optimal choice as it enables a user to define various geomet-
ric relations (constraints) which is inherently satisfied. However, the process of
an aerodynamic opimization includes the change of the design variables which
creates two difficulties: (a) the shape derivatives must be computed and (b) topo-
logical discontinuities must be overcome. The first difficulty stems from the fact
that most CAD packages are closed-source in nature and their vendors are very
sensitive regarding source-parameterizations. An example of an open source CAD
package that was included in the optimization loop was given by [?]. Shape opti-
mization was performed on CAD models by differentiating an entire CAD Kernel.
In particular, algorithmic differentiation was applied to the open-source Open-
Cascade Technology [?] Kernel. Unless an open-source CAD package is used,
the only way to compute shape derivatives is by finite differences [?]. For in-
stance, [?] performed shape optimization of the heat shield of a re-entry capsule
by using discrete adjoint. The model geometry of the capsule was designed using
a commercial CAD package and the sensitivities of the model surface nodes with
respect to (w.r.t.) the CAD design variables were computed using finite difference
approximations. Such methods can become computationally expensive and can
hinder the speed of the optimization process. The second difficulty stems from
the fact that the resulting CAD model must be coupled with the computational
mesh. However, a CAD-feature tree with an updated parametric input can poten-
tially generate different CAD faces and edges both in number and in topological
relations. This means that, on the one hand, the computational mesh must be
projected onto the CAD model at each optimization cycle and, on the other hand,
that grid sensitivities produce discontinuities. This has a negative impact on the
computation of sensitivity derivatives and the optimization itself. For these facts,
strict CAD-based optimization is most commonly used with stochastic optimiza-
tion methods [?].

NURBS have often been used as an alternate parameterization which is CAD-
compatible and can overcome the above mentioned drawbacks. NURBS is the
geometric standard for various CAD formats which are open source and can eas-
ily be distributed even among commercial packages. The geometry that is com-
puted in any CAD package is parametric and is either NURBS geometry or can be
transformed to a NURBS geometry in a straightforward manner. NURBS patches
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that are contained in the boundary representation of a model define the surface
boundary between solid and non-solid regions. Therefore, the boundary of a com-
putational mesh can easily be projected on that representation without worrying
about topology discontinuities. Furthermore, the derivatives of the NURBS control
points w.r.t. any boundary mesh node can be computed analytically.

NURBS-based optimization has been performed in various applications rang-
ing from 2D to 3D. The applications of NURBS in the optimization of airfoils [?, ?],
turbomachinery blades [?] and 3D wings [?, ?] have been extensive. However,
there has been an absence of literature for generalized NURBS usage in 3D design
optimization. For instance, [?] employed NURBS surfaces with natural paramet-
ric boundaries as the parameterization tool. The differentiation of the NURBS
was done through AD techniques [?,?,?]. Similarly, [?, ?] performed NURBS-
based shape optimization with continuity constraints imposed between adjacent
patches. Both control points and weights were used for parameterizing the shape
and the AD tool TAPENADE [?] was used for computing the derivatives. Both
methods proved promising but did not overcome continuity issues due to the
trimmed patches. Attempts to address such continuity issues and the coupling
of NURBS patches have been identified in structural isogeometric analysis ap-
plications. For instance, [?] used trimmed NURBS surfaces to perform topology
optimization of shell structures. In [?], a method was presented for coupling
non-conforming NURBS patches in isogeometric frameworks via a master-slave
configuration and examples of imposed Cy and (' continutiy were shown. In [?],
design and isogeometric analysis was performed on trimmed multi-patch BRep
models of structural membranes while in [?], isogeometric analysis of the BRep
was performed while handling trimmed NURBS patches. This was achieved by
including computational solvers at the CAD design level. Finally, in [?], isogeo-
metric analysis of thin shells was performed by using the STEP-format inherent
parametric curves and blending functions.

4.1.3 The Proposed Method

In this section, a parameterization scheme is developed, which uses the NURBS
patches contained in the BRep of standard files, to perform aerodynamic shape
optimization. The main drive of this work, is to perform CAD-based adjoint op-
timization, in any 3D shape, irrespectively of CAD packages and without using
finite differences or AD to compute shape derivatives. Taking the requirements
and the pros and cons of the above mentioned methods into account, NURBS-
based optimization is chosen as a go-to method if the link to CAD must be main-
tained. The NURBS patches have a rich design space which can be enriched
even further should there be a requirement. Furthermore, NURBS can be saved
in standard CAD formats which means that both the initial and final geometries
can be processed in a CAD viewer. Therefore, a new NURBS-based parameter-
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ization is proposed. The differentiation of the NURBS shapes is included in the
proposed parameterization scheme which is, then, seamlessly coupled with the
adjoint method. Furthermore, the proposed method adequately handles arbi-
trary trims in NURBS surfaces which (in more complex shapes) are very common
while similar methods make the assumption of natural parametric boundaries.
The NURBS surfaces contained in standard CAD files are firstly triangulated and,
then, used to parameterize the shape. Initially, the boundary mesh nodes are pro-
jected onto the NURBS patches, thus creating a map between the boundary mesh
and parametric spaces of different patches. Then, the control points are used as
a means of updating the shape undergoing optimization (both its CAD geometry
and its boundary mesh). The NURBS geometry contained in standard CAD files
consists, mainly, of trimmed patches. The trims are generally arbitrary and in-
dependent of the patches they connect. A potential shape update can, therefore,
create Cy (geometric) and (' (smoothness) continuity issues, unless the control
points of neighbouring patches are constrained to move in accordance. The pro-
posed method imposes point-wise geometric and/or smoothness constraints along
the trimming lines of neighbouring patches. Then, the orthonormal basis of the
Null Space [?] of the constraints’ Jacobian is computed and used to project the
control points’ displacements on that basis.

4.2 Formulating the new Parameterization by imposing (|, and

(' Constraints

The shape parameterization consists of trimmed 3D NURBS patches which must
be constrained by imposing continuity and smoothness constraints between the
neighbouring ones.

4.2.1 Imposing () Continuity Constraints

During NURBS-based optimization, the natural choice for the design variables bis
that of the control point coordinates. However, when handling trimmed patches,
the control points must be constrained to move in coordination, to ensure water-
tightness. In what follows, two surfaces in contact along an arbitrary trimming
curve (Fig. 4.3), being watertight along it, are assumed.
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Figure 4.3: A trimming curve between two surfaces (in red) along with a node on
it. Black arrows show the partial derivatives of each surface on the node, w.r.t. the

parametric coordinates.

Both are NURBS surfaces the points of which are computed in 3D by equations
similar to Eq. 1.4 (denoted as Si(u,v) and S,(£,7) respectively). This means
that for any point along the trimming curve, which corresponds to parametric
coordinates (u,v) and (£,7), the two surface equations evaluate the same 3D

coordinates.

5’1(u v) = 52(5 n=0s

ZR (u,v) P, ZR 2 =0 (4.4)

myi=1 mo=1

The three equations (one per cartesian direction) represented by Eq. 4.4 can be
written as
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where Xij , Yij , Zij denote the 3D coordinates of the i*" control point of the ;"
surface. Egs. 4.4 and 4.5 can be written for any number of different points along
the trimming curve. The parameters (u,v) and (£, n) are different for each point,
which means that the row matrix of Eq. 4.5 is also different as it contains the basis
functions. Assuming that x points along the trimming curve are used to generate
that many equations and B, Bs, - - - , B,; denote the different row matrices, Eq.
4.5 can be written « times yielding

X Y 24T
X, Y5 7,
0 0 0] [ B I
0 00 By X.l Y.l Z.l
00 0| = B: &y Yy | .
)0t s PCIRL B X|Y|z
000 X5 YP 73
. 4L B. 11Xx3 v Z
X2, Y2 Z2 ]

(4.6)

where B is a matrix containing NURBS basis functions and X, Y, Z are column
matrices containing the 3 coordinates of the control points of both sufaces. Eq.
4.6 can be re-written in block-matrix form as

Blo|0] [X X 0
0o/Blo| -|Y|=C-|Y]|=]: 4.7)
ojo|B] |z A 0

which holds for the initial control point coordinates. Since NURBS are rational
polynomials, Cj continuity can be ensured by satisfying Eq. 4.7 if s is large
enough. Eq. 4.7 can also be differentiated w.r.t. the control point coordinates
yielding

50X 0
C- Y| =|: (4.8)
0z 0

Solving Egs. 4.7, 4.8, can lead to a homogenous solution (zero vector) which, of
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course, is of no interest. Their non-zero solutions lie in the null space 1[?] of
matrix C'. Therefore, the next step in this process is to calculate the orthonor-
mal basis (Kernel(C)) of that null space and use it to express the control point
positions as well as their derivatives.

The null space of matrix C' is the subspace of its domain that containts all
vectors V such that C'- V = 0. The image of C' is isomorphic to the quotient of 1%
by the null space which implies the rank-nullity theorem:

dim(NullSpace(C)) 4+ rank = dim(V) (4.9)

where rank denotes the dimension of the image of C'. This implies that for a
null space that contains more than the zero vector, matrix C' must have a rank
smaller than the length of its row vectors. The product C - V can be written as a
dot product of its row vectors

Cy-V

L |GV
C.-V= _ (4.10)

Ca - V

For V to belong to the null space, it must be orthogonal to each row C; and if such
a non-zero vector exists, then matrix C' has non-homogenous solutions. In this
case, it is clear from Eq. 4.7 that there exists such a non-zero vector for matrix C,
due to the existence of the non-homogenous solutions. Therefore, the following
conditions hold:

o IfV belongs to the null space of C', any vector oV belongs to the same null
space, since C(aV) =aCV =a-0=0.

e If two vectors 171 ‘_/é belong to the null space of C, then V = 171 + ‘72 also
belongs to the same null space, as CV = C(V; +V5) =CV; +CV, =0

The dimension of the null space or, in other words, the reduction of the rank is
indicated by the number of the right singular values of C' that are zero. If for a
singular value o; =0, the corresponding singular vector is U;, then it holds that

The orthonormal basis of the null space of matrix ', can, therefore, be computed
by using singular value / vector analysis [?]. Based on the conditions that stem

!The null space of any matrix A consists of all the vectors B such that AB = 0 and B is
not zero. The size of the null space of A provides us with the number of linear relations among
attributes.
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from the non-homogenity of matrix C' (listed above), any linear combination of all
(72- that belong to that null space, also lies in the same null space. This conclusion
provides an option to express any vector V that lies in the null space in terms of
Kernel(C):

a1
L
. . L. . a
VZZO% = U, Uy --- Up . :2 = Kernel(C) - d (4.12)
i=1 :
ar

where L is the number of values o; =0, (jz are the corresponding singular vectors
and «; are the null space basis coordinates. One can ensure that the vector of
control point coordinates belongs to the null space of C' by setting

X
Y| = Kernel(C) -a (4.13)
A

The initial value of @ can be computed via a least-square pseudo-inversion
X

a= (Kernel(C)TKernel(C'))_1 Kernel(C)" |Y (4.14)
A

By differentiating both Eqgs. 4.13 and 4.14, bidirectional relations between the
control point positions and the null space coordinates become available

0X
0Y | = Kernel(O) - 6a
0z
. 0X
6d = (Kernel(C)"'Kernel(C))  Kernel(C)" | §Y (4.15)
0z

Eq. 4.15 will be used when performing optimization. The null space coordinates
a will, eventually, be used as some of the design variables and the relations with
the control point coordinates will be used when applying the chain rule and when
updating the shape.
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4.2.2 Imposing (| Continuity Constraints

If the two neigbouring surfaces of Fig. 4.3 are (', continuous, then their normal
vectors on points along the trimming curve are parallel. Therefore, (assuming that
they are also (), continuous) their tangent planes must be the same. This means
that the vectors denoted by the parametric derivatives of each surface must lie on
that same plane. That can be expressed as

0Si(wv)  0S(&m) 05(En) _
ou o0& on
05 5. aS.
ov o0& on
Coefficients a, b, ¢, d are computed by solving
a ’aﬁla(w) ] a§28(§,n)‘
M M = | 851(wo) | 85a(Em) (4.17)
L Ou on
c _8§§u,v) . (95'28(5777)_
_ _Ov _0¢
M M = | 081 (we) | 95a(m) (4.18)
L Ov on

where

_0¢ _0¢ _0¢ _on
aSQ (6777) . 852 (57"7) 852(6777) . 852 (5777)
o 23 an on

9% (&m)  9Sa(&m)  9Sa(&m)  9S5a(Em)
M _

Writing Egs. 4.16 in matrix form yields

Basis functions of surf. 1 Basis functions of surf. 2

o1 Ay ate 2 2 2 2
orRy . OBn (_G%_bapﬂ) s (= %_baR’Q)

ou ou ou v o] 62 X1y lz
L N VI L1 S QL S i

ED £ C ¢ an Co¢ an

1000 (4.19)
0 00 '

which holds if the two surfaces are ('; continuous. The two equations of 4.19
are written x times for the same points on the trimming curve as described in
subsection 4.2.1. Then, matrix B of Eq. 4.6 is created by taking into account
both Cy (Eq. 4.5) and (] constraints (Eq. 4.19). Matrix B has 3x rows. Matrices
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C and Kernel(C) are generated as in Eqs. 4.7-4.13 for the larger B matrix and
the update of the control points is calculated as in Eq. 4.15.

4.2.3 Constraining Multi-Patch Models

In subsections 4.2.1 and 4.2.2, a method to constrain two neighbouring trimmed
patches was shown. More patches can be constrained to move in coordination
if the proposed method is applied to every pair of neighbouring patches. In this
respect, displaceable or non-displaceable patches can be defined as allowed or not
allowed to be deformed during the optimization, respectively. Non-displaceable
patches can also be defined and constrained to maintain up to C'; continuity with
their displaceable neighbours. When such a patch pair is defined, the constraints
are defined only on the displaceable surface. For () constraints, Eq. 4.5 is
formulated so that the displacement of the displaceable surface is zero along the
trimming edge. If 5’1 is considered displaceable and §2 non-displaceable Eq. 4.5
becomes

So(ém)=[RI Ry Ry -~ RL, 000 --- 0-|X|V|Z (4.20)

ni

and by differentiating it

0 0 0J=[Rf R} R}y -+ R, 0 0 0 --- 0]-|6X|0Y |0Z| (4.21)

Similarly to the () constraints, (', constraints between a displaceable and a non-
displaceable surface are formulated as

aa§2(£:n) + 6352(5777) 8R% 8R% aRé .. 6R}ll . O

ik otk | = | B S S o X\v|z
2SN 2(S,M n

o T d n o o o 0 s 000 -0

(4.22)
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and by differentiating it

b0 o[ m oo ]|
0 0 0| |orl oRL &R} oRL 0 X |0Y |62
e -
(4.23)

Due to the existence of non-displaceable patches and the locality property of
NURBS, matrix B is sparse. The columns of matrix B that correspond to control
points of non-displaceable patches is filled with zeros. Furthermore, the same
applies to control points of displaceable patches that are away from the trims
and, practically, do not influence the constraints. These columns of B and the
corresponding rows of X, Y, Z are removed and are not taken into account while
computing Kernel(C). On the one hand, the displacements of the control points
on non-displaceable patches are manually set to zero. On the other hand, the
displacements of the control points of displaceable patches that are away from
the trims are left unconstrained.

To summarize, to fully constrain a CAD model and prepare it for optimization,
the following steps are followed:

1. Define the displaceable and non-displaceable patches of the model.

2. For each pair of neighbouring patches that is either displaceable-displaceable
or non displaceable-displaceable, impose Cj and (where required) C; con-
straints on x points along the trimming curve. The size of x depends on the
geometric complexity of the trimming curve. In all cases shown in this the-
sis, for trimming curves of degree p and of A distinctive knots, k = A(p + 1).

3. Using all the formulated constraints for all trimming curves, assemble ma-
trix B. The columns of B are as many as the total number of control points
of all the constrained patch pairs minus the number of unconstrained and
non-displaceable control points.

4. Formulate matrix C' and compute Kernel(C).

The above mentioned process is performed once in the beginning of the opti-
mization loop. Considering that the coordinates of a node (1, x2, z3) which lies
on any of the surfaces can be expressed in terms of the control point coordinates
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(Eq. 1.4), they can also be expressed in terms of a:

1 X X X
To| = Quncon Y + Qcon Y = Quncon Y + QconKeTnel(C)o_Z
L3 Z uncon Z con uncon

(4.24)

where the () matrices contain the basis functions of the surface on which, node
(21, 22, x3) belongs. The parametric coordinates of each node (1, z2, z3) used to
compute the basis function and the matrices (), are acquired by interpolating the
(u,v) parametric coordinates of the triangulated grid of Chap. 3. Differentiating
Eq. 4.24 leads to

(51’1 /5Xuncon 5:C1 /5Yuncon 6x1/6Zuncon

6x2/5Xuncon 5$2/6Yuncon 6m2/5Zuncon = Quncon
6I3/5Xuncon 5$3/5Yuncon 6x3/5zuncan

dx1 /6y dxy/day -+ dx1/day
dxa/0ay dxo/day -+ dxafdar| = Qeon - Kernel(C) (4.25)
(51’3/5(1/1 (51’3/5012 61‘3/505L

Eqgs. 4.24 and 4.25 create a parameterization scheme based on NURBS which
inherently satisfies C; and (' continuity (where necessary). Matrices () and
Kernel(C) are constant which makes this parameterization linear w. r. t. «;
and the unconstrained control point coordinates. The design variables b are set
equal to @ and Xy ,con, Yuncons Zuncon-

In Fig. 4.4, a simple example of a cylinder is portrayed. The cylinder consists
of 3 patches: 2 planar circular disks identical to the one portrayed in Fig. 1.3 and
a cylindrical side surface. The bottom circular disk is constrained to stay fixed
while the top disk and the side surface are allowed to change. All three patches
are C, constrained. In total, the top and side surfaces consist of (7 X 2 + 2 x 2)
control points (54 degrees of freedom). The orthonormal basis of the null space
consists of 24 parameters «; (8 controlling each cartesian direction).
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Figure 4.4: CAD model of a cylinder (left) whose patches are constrained to move
in coordination. The result of the displacements of two different «; parameters are
shown in the center and right figures.

The control points of the side surface which are near the bottom disk remain
fixed regardless of any d«; applied. The control points of the top disk as well as
those of the side surface near the top, move as a unit, so that both surfaces remain
attached to each oher. In the example, two parameters which are controlling the z
coordinates of all the control points, are used to change the shape of the cylinder.
The final shape retains its watertightness.

4.2.4 Practical Computation of a Null Space

The most widely used methods for the computation of the rank or the nullity of
a M x N matrix C is the Singular Value Decomposition (SVD) [?] and the QR
factorization [?]. The SVD is usually considered more accurate in computing the
singular values and the corresponding vectors. However, the QR factorization has
always been the most efficient method with also sufficient accuracy.

In cases of large sparse matrices, both these methods (in their standard forms)
can become quite inefficient. This happens, firstly, due to inability to take advan-
tage of the sparsity pattern and, secondly, because less accuracy can compromise
the rank-revealing capabilities. For this reason, it is necessary to define the con-
cept of e—nullity. Since, in numerical applications, there exist roundoff errors and
approximations, it is understandable that the singular values of C' that produce
null space vectors, are not always strictly zero. Therefore, a small constant € is
defined that acts as a threshold, below which, the singular values are considered
numerically zero. Assuming that M/ > N (as is the case in our applications) an
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SVD would factorize C' as C' = UDV?T where D would be an M x N diagonal
matrix, and U,V would be M x M and N x N orthogonal matrices respectively.
The entries of matrix D would contain (in decreasing order) the true singular
values of (. e—nullity is defined as the number L of the true singular values

o1 < 0y < --- < oy, such that 07,1 > €. In this case, the rank of C' would be
equal to N — L and for the right singular vectors vy, vo, - - - vy, it would be true that
Cv;
ICulle _
||vi]|2

A value of € that works well in practice is [?]
€ = 20(N + M)107'% - maz(||e C|| I|e5 Cll2, |le3,C2)

where e, €5, - , ey are the standard orthonormal basis vectors of R”. To com-
pute the singular vectors that correspond to singular values less than or equal to
e the process of [?] is followed. Typically, this process is split into two phases:
Firstly, matrix C' must be analyzed and re-ordered based on its non-zero pattern
and, secondly, the factorization must take place.

As proposed in [?], a QR factorization of C' is written as
CP=QR=Q (%1> = Q (RO“ RO”) (4.26)

where P is an N x N permutation matrix and (), R are the approximations for
the requested factors with M x M and M x N sizes respectively. Matrix R; is an
(N —L) x N right trapezoidal matrix that can be divided into two blocks: R;; which
isan (N — L) x (N — L) triangular matrix and R;, which has size (N — L) x L.
It is proven that all sub-matrices related to R maintain their sparsity pattern
which is also related to the upper Cholesky factor of CTC [?]. Furthermore,
matrix () is never saved as a whole but rather as a set of elementary Householder
transformations. The permutation P which is used is based on the Column
Approximate Minimum Degree method proposed by [?]. If C' is well-conditioned,
then R;; is full rank and non-singular. In that case, the null space of C7T is
computed as

Kernel(CT) = Q (I 0 ) 4.27)

LxL

If the matrix C is ill-conditioned, then the rank of Rj; is equal to (N — L — K),
K =1,2....N — L and has also a null space. In this case, the left singular
vectors of R, are estimated by subspace iteration techniques [?] and are stored
in a matrix U. The K rightmost columns of U contain the Kernel(Rl}) wized
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N — L x K. Then, Eq. 4.27 becomes

(4.28)

Kernel(RY) 0 )
[L><L

Kernel(CT) = Q ( 0

In order to compute the Kernel(C'), the same process must be apllied on CcT
which was the target in order to use the parameterization of this Chapter.

4.2.5 The Optimization Process

The optimization loop starts by importing the BRep of a CAD model from a stan-
dard CAD file. After performing the necessary triangulation with which, the
boundary meshed is generated and/or mapped on the BRep surfaces, displaceable
and non-displaceable patches are defined on the model as well as the required
continuity between them. Using this information, the process shown in sub-
sections 4.2.1-4.2.3 is followed which leads to the computation of matrices B and
C. Then, the rank revealing QR decomposition described in sub-section 4.2.4 is
used to compute the singular values and vectors of matrix C. Kernel(C') is then
computed through Eq. 4.12. The nodes of the boundary mesh are projected onto
the BRep by using point inversion [?] which is further described in Appendix C.
This projection is used to identify the surface on which the node belongs and also
compute its parametric coordinates on that surface. Using Eq. 4.25, dxy/d0b,, is
computed for every node of the boundary mesh.

At each optimization cycle, the primal system of equations and their adjoint
counterparts are solved to provide the sensitivity derivatives 6.J/0b,,. The CAD
model is updated through the NURBS control points and Eq. 4.15.

The NURBS surfaces and curves were implemented within OpenFOAM along
with the primal and adjoint equations (subsection [ref]). All matrices and vec-
tors described in subsections 4.2.1-4.2.4 were handled using the Eigen [?] open-
source library. The QR decomposition along with the null space basis computa-
tions were done using the Sparse@QR module within Eigen and the SuiteSparse [?]
module.

4.3 Applications

The effectiveness of the proposed parameterization in maintaining the continuity
constraints while minimizing an objective function is demonstrated in two aerody-
namic shape optimization problems. The first case is a 3D duct with a middle S-
section and the aim is to minimize the total pressure losses between the inlet and
the outlet. The second case is the tail surface of a benchmark car model, in which
the aim is to minimize the drag coefficient. The last case corresponds to Case 4
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of the CFD optimization benchmark of the 11th ASMO UK/ISSMO/NOED2016:
International Conference on Numerical Optimisation Methods for Engineering De-
sign (see http://www.asmo-uk.com/11th_asmo_uk_conference/html/
menu_page.html).

4.3.1 Optimization of the Mid-Section of a 3D Duct

The first case shown, is that of a duct which corresponds to a part of a cooling
system used in automotive applications. The geometry consists of straight inlet
and outlet ducts which have different cross-sections and different locations and
orientations in the 3D space. To connect the inlet and the outlet, an S-section is
designed (Fig. 4.5) with 24 NURBS patches. The optimization aims at minimizing
the total pressure losses Jp; (Eq. 2.19) by perturbing the shape of just the S-
section. Cjy and ('} continuity is imposed between all patches that are allowed to
be displaced and all their neighbours.

Figure 4.5: S-Section Duct: The CAD geometry of the duct (as loaded from a STEP
file) with the displaceable middle S-section in red shading.

The computational mesh consists of approximately 73K hexahedral cells. The
total number of control points of the displaceable patches is 1594 and these are
allowed to move in all directions. The flow through the duct is laminar (Re ~ 400).
The inlet velocity is 0.1m/s and the outlet has a zero pressure condition imposed
on it. The flow streamlines for the initial geometry can be seen in Fig. 4.6. The
sensitivity map on the initial geometry can be seen in Fig. 4.7 and the mesh
displacement after the first update of b in Fig. 4.8.


http://www.asmo-uk.com/11th_asmo_uk_conference/html/menu_page.html
http://www.asmo-uk.com/11th_asmo_uk_conference/html/menu_page.html

78 4. The Geometry Morphing Technique
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Figure 4.6: S-Section Duct: Computed flow streamlines produced in the initial ge-
ometry. Color coding indicates the velocity magnitude field.
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Figure 4.7: S-Section Duct: The sensitivity map plotted on the initial geometry of
the duct (i.e. the derivative of Jp; w.r.t. the normal displacement of the design wall
nodes). Positive and negative sensitivities indicate that the geometry must be pushed
in and pulled out, respectively, in order to reduce the objective function.
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Figure 4.8: S-Section Duct: Normal mesh displacement after the first update of b.
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Using the proposed parameterization, with steepest descent, the objective
function has reduced by 13.6% after 20 optimization cycles (Fig. 4.9).
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Figure 4.9: S-Section Duct: The convergence history of the optimization.
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The resulting shape is easily exported in standardized STEP format which is
compatible with any CAD package (commercial or not). The CAD model as well
as comparisons with the initial can be seen in Fig. 4.10, 4.11. The resulting CAD
shape has no holes where the trimming edges are located and is smooth along
those edges. The shape can be exported as any standard CAD file and can be
further manipulated in a CAD package for purposes of industrial design. In this
case, the shape is exported as a STEP file. The comparisons shown below are
between the CAD models of two STEP files - the one with the initial and the one
with the final shape of the duct.
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Figure 4.10: S-Section Duct: The CAD model of the final shape of the duct after 20
optimization cycles. The rendering is that of a STEP file which is loaded in an external
CAD package.

(a)

(c) (d)

Figure 4.11: S-Section Duct: Comparison of the initial shape (red shading) and
the final shape (transparent grey) of the S-section of the duct. Top-Left: Overall
perspective of the comparison. Top-Right: Close-up view of the patches connecting
the inlet to the S-section. Bottom-Left: Close-up view of the patches connecting the
outlet to the S-section. Bottom-Right: Perspective view from under the S-section
which best portrays the lateral deformations.
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To further showcase the importance of the imposition of Cjy and (' constraints
on the model, a single unconstrained shape update is performed with the shape
sensitivities of the first optimization cycle. The results shown in Fig. 4.12 demon-
strate two issues. Firstly, the discontinuities along the stitches between displace-
able and non-displaceable patches and secondly, the multiple holes created be-
tween neighbouring trimmed patches. Both of these issues are handled effectively
by the proposed method.

Figure 4.12: S-Section Duct: The updated shape without imposing Cy and C] con-
straints. Top: Discontinuity between moving (red) and non-moving (grey) patches.
Bottom: Holes between two moving trimmed patches.

The S-Section 3D duct is a well studied benchmark case used in several op-
timization runs coupled with various parameterizations. Therefore, this opportu-
nity is taken to compare the proposed parameterization with others on the same
geometry.

Firstly, a contribution that employs a CAD-based parameterization is chosen
as proposed by Agarwal et al. [?], that includes design velocities and a study of
parametric effectiveness. The case as well as the flow conditions and the Reynolds
number are identical. Furthermore, the aerodynamic optimization is performed
by means of the continuous adjoint technique. The parameterization is based
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on feature modelling which means that the shape derivatives must be computed
through finite differences. The parametric effectiveness study identifies the most
effective design variables and uses them with priority. This approach is purely
CAD-based and allows for an in-depth manipulation of the optimal shape. How-
ever, it is strictly tied to the originating CAD package. Furthermore, the inclusion
of the feature tree inside the optimization loop can over-constrain the optimiza-
tion. The optimization achieved a reduction of 10.72% in total pressure losses.

Secondly, a contribution that employs a CAD-free parameterization is chosen.
Alexias et al. [?] optimized the S-Section duct by applying a node-based parame-
terization. The continuous adjoint method was employed to compute the gradient
of the objective function and the same boundary conditions were employed as in
this work. Implicit smoothing was used to even the transition from displaceable to
non-displaceable regions of the mesh. This purely CAD-free approach allows for
the richest design space which can consequently result in a greater minimization
of the objective function. However, the link to CAD is severed which means that
the final shape cannot be manipulated in a CAD framework. Re-establishing that
link requires mesh-to-CAD procedures. The optimization achieved a reduction of
17.10% in power losses.

The proposed method achieves a middle ground solution by retaining a con-
nection to CAD by means of the BRep while not being connected to the feature tree
of any particular CAD package. This leads to a better optimization performance
than a pure CAD-based method. At the same time, the optimization performance
is worst than that of a pure CAD-free method but the connection to CAD allows
for further manipulation of the optimal shape.

4.3.2 Optimization of the DrivAer Car Model

The second case chosen for testing the effectiveness of the parameterization is that
of the DrivAer concept car (Fig. 5.19a). The configuration used in this study is the
fast-back car model with a smooth underbody, with both mirrors and stationary
wheels. The target is to minimize the drag coefficient (J.,) of the whole car, by
modifying parts of the tail of the car. The study is performed on the half of the
car by employing symmetry conditions. The CFD mesh consists of approximately
5.3M hexahedra with an average y™ =75 of the barycenters of the first cells off the
wall and the Spalart-Allmaras turbulence model is used (Eq. 2.3).
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Figure 4.13: DrivAer: Computed pressure field on the surface of the car.

The model is subjected to a far-field longitudinal velocity of 38.89m /s, with
a Reynolds number of Re ~ 2.6 X 10% (based on the car width). The proposed
parameterization is applied to the rear end of the trunk lid, its sides and the
back windshield (Fig. 4.14). The 62 selected trimmed NURBS surfaces consist of
5580 control points. Cj and C; continuity is imposed between all displaceable-
displaceable and non-displaceable-displaceable patch pairs.

Figure 4.14: DrivAer: The CAD model of the car, as loaded directly from a STEP file.
The displaceable trimmed faces are shown in red shading, while the non-displaceable
ones are shown in grey.

The sensitivity map on the initial geometry can be seen in Fig. 4.15 and the
mesh displacement after the first update of b along the X and Z axes (where the
displacement is the most dominant) can be seen in Fig. 4.16.
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Figure 4.15: DrivAer: The sensitivity map plotted on the initial geometry of the car
(i.e. the derivative of Jo,, w.r.t. the normal displacement of the design wall nodes).
Positive and negative sensitivities indicate that the body surface must be pushed in
and pulled out respectively, in order to reduce the objective function.
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Figure 4.16: DrivAer: The mesh displacement generated after the first optimization
cycle along the X axis (top) and the Z axis (bottom).
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Using the proposed parameterization, with steepest descent, the objective
function has reduced by almost 1.3% after 24 optimization cycles (Fig. 4.17).
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Figure 4.17: DrivAer: The convergence history of the optimization.

Similarly to the first case, the proposed parameterization allows for an easy
export in CAD compatible format and further manipulation in a CAD environment.
The CAD model as well as comparisons with the initial, can be seen in Fig. 4.18,

4.19. The resulting CAD shape is smooth and continuous and this makes the
export as a STEP file possible.

Figure 4.18: DrivAer: The CAD model of the final shape of the car after 24 optimiza-
tion cycles.

Similarly to the previous case, the first update of the CAD model is shown
without imposing any constraint. The resulting shape can be seen in Fig. 4.20
where holes in the geometry are visible. The proposed method overcomes this
issue by producing watertight and smooth geometries.
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Figure 4.19: DrivAer: Comparison of the initial shape (red shading) and the final
shape (transparent grey) of the displaceable part. Top: An overall perspective of the

comparison. Bottom: Side view which best portrays the displacement of the trunk
lid.
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Figure 4.20: DrivAer: The updated shape without imposing Cy and (' continuity
constraints. The separation of adjacent patches is visible. Top: Top view of the
displaceable patches (red shading). Bottom: a back view of the displaceable patches.
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Similarly to the S-Section duct case, the DrivAer concept car is also a very well
documented case. Thus, the proposed method can be compared with different
parameterization methods.

Firstly, a lattice based approach is examined. Liatsikouras et al. [?] performed
optimization of the rear end of the trunk lid of the car by means of a volumetric
b-splines lattice. The link to CAD is not retained which means that the optimal
shape cannot be manipulated in a CAD framework. The car was subjected to a
flow under the same boundary conditions as in this work and the optimization
achieved a 5% drop in the drag coefficient.

Finally, a pure CAD-free approach is examined. Alexias et al. [?] performed
node-based optimization on the DrivAer model. The parameterized region of the
car was the rear end of the trunk lid and the boundary conditions were the same
as in this work. A 2.1% reduction was achieved in the drag coefficient.

As mentioned in the previous case, the proposed method overcomes the set-
backs of CAD-free optimization by including the BRep in the optimization loop.

4.4 Remarks

In this chapter, a method to perform shape optimization using standard CAD
geometries (BRep) was shown. The developed algorithm accurately imposes ()
and (' continuity constraints between the multiple NURBS patches in the BRep
of a model. The cases shown range from academic to industrial-like to fully test
the method’s capabilities. This method proved reliable in keeping the link to
the CAD geometry and using that geometry for optimization. The time required
for the generation of matrix C' and the computation of Kernel(C') through QR
factorization is negligible in comparison to the time required to solve the primal
and adjoint problems as it must be done once at the beginning of the optimization
loop. The time required for the update of the CAD shape and the export of the
STEP files is also very small.

The presented algorithm utilizes standard CAD files and by doing so, allows
for the cooperation of continuous (or even discrete) adjoint with any CAD package
(commercial or not). After the computation of the Null Space Basis, the shape
derivatives are computed in a direct way which makes the algorithm fast and
automated. Furthermore, return to CAD is not required as the CAD is updated at
each optimization cycle and it can be ultimately exported in a standard CAD file.



Chapter 5

Constraining the NURBS-based Adjoint
Optimization

In this chapter, algorithms for imposing geometric constraints during shape de-
formations in NURBS-based optimizations are presented. Firstly, the geometry
is imported (triangulated and handled) as shown in Chap. 3. Secondly, the
constraints are imposed in a way that any number of design variables can be
handled.

There are three constraints that are developed and shown in this chapter.
Curvature, bounding surface and volume constraints are investigated. The first
two are node-based constraints, i.e. constraints that must be applied on many
points of a NURBS surface and the last one is surface-based i.e. it is computed
based on the position of the NURBS patches.

Node-based constraints would require the satisfaction of as many constraints
as the nodes of the boundary mesh on the surface of the constrained NURBS
patches. For instance, the requirement that a surface retains a curvature lower
than a threshold must be applied at all nodes of that surface. The same applies
for the bounding surface constraints which impose a distance constraint from a
NURBS patch to another given surface. For such constraints, which can very
likely outnumber the number of design variables, a special treatment must be
introduced as conventional constrained optimization algorithms cannot handle
them.

Surface-based constraints are imposed on a defined geometric shape as a
whole. Thus, they do not require their imposition on multiple nodes and the rela-
tion between the constraints and the NURBS design variables must be computed
and differentiated.

89



90 5. Constraining the NURBS-based Adjoint Optimization

5.1 Literature Survey of Constraint Imposition

In industrial applications, the necessity for efficiently imposing geometric con-
straints is paramount. A family of geometric constraints with high practical sig-
nificance are those which do not allow the shape to be designed to penetrate user-
defined bounding surfaces (open or closed). These are also known as bounding
constraints and play a crucial role in industrial design since most components
must be designed within a given bounding space. For instance, in Heat, Ven-
tilation and Air-Conditioning (HVAC) automotive applications, vents and cooling
channels must be designed within enclosed spaces with various obstacles bound-
ing their deformations or displacements during optimization. Another example is
that of aircraft wings with enclosed fuel tanks (wet wings); minimizing the drag
of the wing may reduce its thickness resulting to a wing surface that penetrates
the tank. The user-defined set of bounding surfaces gives rise to a bounded or
semi-bounded space of feasible solutions. Working with bounded spaces, the
terms "packaging" or "enclosure" constraints can be used, in the sense that the
feasible sub-space is a topological sphere. To impose these constraints, [?] used
gradient projection [?] along with a vertex morphing technique [?] to perform
shape changes. The constraints were formulated based on signed distances [?]
computed for every surface grid node. The gradient of the objective function was
projected onto the Null Space [?] of the Jacobian of the constraints (the matrix
including the first derivatives of the constraints w.r.t. each design variable) in
order to find an update that minimizes the objective function without violating
the constraints. [?] handled bounding constraints with two metrics: (a) the length
of the intersection curve(s) between the shape to be designed and the bounding
surfaces and (b) the aggregated (by means of a Kreisselmeier-Steinhauser func-
tion [?]) minimum distances between the two shapes. [?] performed shape opti-
mizations of constrained duct geometries by explicitly imposing no-displacement
conditions on shape nodes that tend to violate the no-intersection criteria. [?]
presented a morphing algorithm in the context of layout problems dealing with
the placement of solid components in 3D space by avoiding to penetrate each
other. The method used signed distance fields to identify constraint violation and
retracted each violating node onto the surface of the constraint objects. Similar
layout problems are addressed by [?, ?]. [?] use a level set function to impose
no-intersection constraints among a number of objects, in the form of a unified
integral facilitating the use of gradient-based methods and allowing extension to
other geometric constraints [?].

Geometric constraints, other than bounding ones, have been addressed in a
similar node-wise manner. For instance, [?] presented a method to control the
curvature of the boundaries of 2D domains during the optimization loop. Node-
based parameterization of the boundaries was used and curvature was controlled
at certain user-defined nodes. The Augmented Lagrangian Method (ALM) was
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used to satisfy the curvature constraints, the values of which were computed
after locally parameterizing the boundaries using three approaches: quadratic
polynomials, NURBS curves and generalized arc-length. Thickness has also been
controlled in a similar manner; [?] proposed a method to constrain shape thick-
ness extrema by using the level set [?] method to compute them and the ALM
to impose them. Finally, using the notion of signed distance, which will be ad-
dressed in this chapter, [?] optimized thickness by constraining stress during
shell fabrication.

5.2 The Proposed Method

In this chapter, the mentioned constraints are imposed during aerodynamic shape
optimization. Flow problems governed by the Navier-Stokes equations for incom-
pressible fluids are tackled and the gradient of the objective function J w.r.t.
the design variables controlling the shape to be designed is computed using the
continuous adjoint method.

For the bounding constraints, the bounding surfaces are defined in discrete
(triangulated) form. The constraint values from all boundary mesh nodes are
aggregated into a single constraint function which is used to avoid intersection
of the surface to be designed with the bounding one(s). This method’s efficiency
must not be jeopardized by the possibly high number of constraints, especially
when the parameterization is not node-based (which could lead to a much smaller
number of design variables). The constraint function identifies whether the design
and bounding surfaces intersect; this is done in a node-wise manner. For each
node on the shape, a signed distance to the bounding surface is computed. This
distance is negative for nodes lying in the feasible space and positive otherwise.
An inequality constraint is, therefore, formulated for each node, requiring that
the corresponding signed distance remains non-positive. Hence, the number of
geometric constraints is equal to the number of nodes on the shape and this
may become problematic, depending on the number of design variables and the
method used to update them.

For the curvature constraints, the same method is applied. During NURBS-
based optimization, the geometry of the patches can sometimes be warped (mean-
ing that the control point grid is not uniformly distributed along the surface). This
can lead to a finer control point grid at certain areas and a coarser elsewhere. In
areas with a high concentration of control points, the perturbed surface can be-
come wrinkly (with high curvature regions). For this reason, for each and every
node of the boundary mesh, a maximum curvature constraint must be applied.
Similar to the bounding surface constraints, this can lead to numerical difficul-
ties. For instance, working with the Sequential Quadratic Programming (SQP) [?]
and the active set method [?], the constraints seen by the method are only the ac-
tive (violated) ones. Depending on the case, the number of active constraints can
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become larger than the number of design variables, especially when the shape is
parameterized with a relatively small number of design variables. This is a degen-
erate problem [?], as the systems in which the standard SQP and gradient pro-
jection methods result, become singular. In such a case, Augmented Lagrangian
or penalty methods must preferably be used. On the other hand, these methods
often misbehave for a high number of constraints, since a good enough initial-
ization of the penalty factors or the Lagrange multipliers can hardly be obtained.
Thus, it is desirable to avoid handling such a large number of constraints and a
method to reduce them is proposed.

The main drive here is to efficiently solve optimization problems with bound-
ing constraints, even if the number of the latter is large and the design vari-
ables number is relatively small (i.e. the parameterization is not node-based),
which, as stated before, can become numerically unstable. The proposed method
transforms a number of inequality constraints to a single equality constraint by
summing all nodal constraint values (filtered by a penalty function) for the sur-
face to be designed. This step allows handling a potentially very large number of
constraints with a single Lagrange multiplier and/or penalty value. This single
constraint is, then, differentiated w.r.t. the design variables. In order to show-
case the benefits of the proposed constraint aggregation, a study is performed
in one of the cases. Initially, constrained optimization is performed using the
ALM method and node-wise constraints with slack variables. The optimization
is repeated using the ALM and the proposed single constraint and, finally, using
SQP. The design variables are the control points of both NURBS and Volumetric
B-splines, though any other parameterization scheme could have been used.

Apart from these two types of constraints, a minimum allowed volume con-
straint is studied. The volume is computed and differentiated w.r.t. the NURBS
control points.

5.3 Constraint Imposition

The target is to solve an aerodynamic shape optimization problem, the solution
of which minimizes a flow related objective function and satisfied a number of
constraints. The optimization is gradient-based and the derivatives of the objective
function are computed using continuous adjoint.

5.3.1 The Bounding Surface Constraint

In what follows, two shapes are available in each optimization cycle, i.e. the cur-
rent solution to the optimization problem and the bounding surface that defines
the boundary between two spaces: that in which the shape to be designed is
allowed to reside (feasible space) and the infeasible space (Fig. 5.1).
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Bounding Surface

P

pi Infeasible Space

Shape to be designe

Feasible Space

Flgure 5.1: Bounding surface and the shape to be designed, sketched as 2D curves.
X, denotes the coordinates of the i — th node on the shape to be designed. Xpl
and 7i,; denote the projected point of XZ to the bounding surface and the bounding
surface’s normal at that point, respectively. The normal vector is pointing toward the
feasible space.

In order to impose the bounding surface constraints, the first course of action
is to compute the closest projection of every node of the current solution (shape)
onto the bounding surface. Since this projection is repeated in each optimization
cycle, it should be fast. Initially, the bounding surface is triangulated and a
dynamic octree structure is built around it, in order to facilitate fast and reliable
point-to-triangle search routines. Therefore, the discrete geometry is stored in STL
format and each triangle is classified in an octree leaf. At the beginning of each
optimization cycle, an octree search is made for each design surface node XZ =
[%‘,1, T2, [L'i73]T. This returns a list of triangles from the STL lying within a user-
defined fixed radius from X;. For each of these triangles, a projection algorithm is
performed. This algorithm [?] projects X ; onto the plane that each triangle belongs
to and, then, computes the barycentric coordinates of the projection (denoted as
X 7). In case X * lies inside the triangle, this is considered to be a valid projection.
Let T 1, T, and T3 be the position vectors of the three vertices of such a triangle,
then the barycentric coordinates (o, 3, ) of the projection are

U X W) -1 WX V)7
7_( _;2) : ﬂ:%v azl_ﬁ—f‘y (5.1)
|7 7]

where i = T2 Tl,v = T3 — Tl,w = X Tl,n = u X U. The projection is valid if
0 < a,B,v <1 and, in such a case, X * =T 1+ /BTQ + 7T3 The above procedure
is repeated for all the triangles returned from the octree 11st From all the valid
projection points X 7, the nearest to X is its projection ( pl) to the bounding
surface. The normal vector at Xm pointing towards the feasible space is denoted
as 7, ;. In cases with sharp corners and n,; is chosen to be the one that forms the
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smallest angle with the normal to the boundary mesh at XZ The signed distance

- —,

g9i(b) = —Tip,; - (X< ) — Xm) (5.2)

is then computed and this determines if )?Z(l;) remains in the feasible space w.r.t.
the bounding surface. b at this stage could be arbitrary. If ¢;(b) < 0, then X;(b)
lies inside the feasible space (Fig. 5.1). If this condition holds for all nodes, then
(assuming that the discretization of the design surface is much finer than that
of the bounding surface) the design surface will reside entirely in the acceptable
space. The derivative of the signed distance function w.r.t. b, is

= i (5.3)

and can be computed analytically based on the parameterization.
Let M be the number of nodes on the shape to be designed. Then, the con-
strained optimization problem is defined as follows:

min J(b), b = [b1, by, ..., by]
subject to gz(g) <0,i=1,2,....M (5.4)
¢;<0,7=12 ... K

where c; represents other geometric or flow constraints which could potentially
exist in the same problem.

5.3.2 The Curvature Constraint

In the attempt to constrain the curvature field on a surface, a prerequisite is the
selection of the curvature metric (among principal curvatures, mean or Gaussian
curvatures or functions of all the above), which the constraint should be imposed
to. Based on this, an inequality constraint must be imposed at all points on that
surface. The curvature at each point of a surface can be computed using the
coefficients of its first and second fundamental forms, defining tensors F; and F>
respectively. At each point, the principal curvatures k1, ko are computed after
solving det(F, — kF1) = 0 for £ (Chap. 3). Through them, the mean and Gaussian
curvatures

K1+ Kg
Rmean = 9




5.3. Constraint Imposition 95

RGauss = R1KR2 (5.5)

can be defined. As stated in Sec. 3.2.2.2, the principal curvatures represent
the curvature values on perpendicular parametric directions and, therefore, by
constraining them to have an absolute value less than a threshold, local "flatness"
of the surface can be achieved. Therefore, the expression chosen to be constrained
is 1

k= 5 (K1 + K3) < Finres (5.6)

where K. 1S an upper bound value for k. In order to compute and, then,
differentiate Eq. 5.6 w.r.t. the design variables l; its dependence upon the surface
expression must firstly be computed. According to [?], Eq. 5.6 can further be
rewritten as

1 1
K= 5(’{% + “g) = 9 ((”mean + 0)2 + (Kmean — 0)2) = H?nean +C?

(GL—QFM+EN)2 (L(EG—2F2)+2EFM—E2N>2+( EM — FL )2

2(EG — F?) 2E(EG — F?) EVEG — F?
(5.7)

where I/, F',G and L, M, N are the coefficients of the first and second fundamental
forms respectively. Using the chain rule, the derivative of K w.r.t. a design variable
b, can be computed. §x/db, depends on the following quantities:

L L
0by, ob,
0G _50% 4
0by, ob, "
) S Yo A Yo
5, ob, 7T G,
oL 6. - . on
5, b, 75,
oM 6G,., . . 0n
E: (5()” “N o+ O E
ON 00y, . . O
3b,  ob, T G,

which directly depend on the surface expressions. Again, if M is the number of
nodes on the shape to be designed, then the constrained optimization problem
can be defined as follows:
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min J(b), b= [b1, by, ..., by]

b
subject to k;(b) < Kyppes, @ = 1,2, ..., M (5.8)
¢;<0,j=1,2..K

where ¢; represents other geometric or flow constraints which could potentially
exist in the same problem.

5.3.3 Transforming Node-wise Constraints to a Single Equality

Constraint

The large number of constraints g;(b) or ;(b) in such a formulation can cause
numerical problems if certain optimization methods are used. Constrained op-
timization algorithms, such as the SQP or gradient projection, assume a priori
that the number of constraints is less than the number of design variables. Both
need to compute and factor or invert matrices containing the Jacobian of the con-
straints. These matrices become rank-deficient if there are more equality and ac-
tive inequality constraints than design variables and, therefore, the computation
of a suitable update for b poses numerical difficulties. As a result, ALM methods
are preferably used. However, it is not desirable to solve constrained optimization
problems with a great number of constraints as this can cause severe conver-
gence issues (see section 5.4.1). Thus, an alternative approach is pursued which
can accommodate most optimization methods and lead to a faster convergence of
the optimization problem. The constraint function values are summed up after
passing through a penalty function which penalizes nodal constraint violations.
The penalty function has the following form:

0 ,C < Cm
Fy(ci) = qale;—cn) + B(ci —cm)®  som < ¢ < ¢ (5.9)
¢+ (ys — ¢s) ,Ci > Cq

Terms involved in Eq. 5.9 can be seen in Table 5.1 and are chosen to achieve first
and second-order continuity. c,, is the threshold value and c, is the value above
which the penalty function increases linearly. c, is mainly related to the size of
the case and the units of the constraint functions.

It is understandable that the values of ¢, and c¢,, change depending on the
upper threshold defined by the problem. For instance, for the bounding surface
constraints, ¢,, = 0 and F),(g;) is plotted in Fig. 5.2 for various ¢, values.
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Table 5.1: Quantities in eq. 5.9.

Variable Value
Cm Constraint upper bound
Cy A value greater than c,, over which Fp(ci) increases linearly
1

o 2(cs—cm )3

—2a(cs — ¢)

Ys a(es = em)t + Bles — cm)’
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Figure 5.2: The penalty function for ¢,, = 0 and various values of c;.

The penalty function returns positive values only for the violated constraints.
The returned penalties are then weighted with the boundary face areas 5; at the
respective nodes and are normalized with the total design surface area, in order
to make the constraint value resolution-independent. The summation of all the
penalty values over the design surface yields:

O (b) = = ; Cig ZF ci(b (5.10)

The value of C; for various boundary mesh resolutions for the case of section
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5.4.1 is depicted in figure 5.3;
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Figure 5.3: Double-Outlet Duct: Cy values plotted for various mesh sizes.

Nullifying Eq. 5.10 means that none of the nodes on the design shape violate
its nodal constraints. To facilitate the convergence of the optimization problem,
this condition can be transformed into an inequality constraint by relaxing it with
a small positive value ¢, i.e. imposing C; < €. The derivative of C; w.r.t. b, is

M -, -,

5 => 2e@ b, wi + Fy(ei(0)) - (5.11)

The constrained optimization problem defined in Eqs. 5.4, 5.8, becomes

- -

min J(b), b= [bl,b27...7b]\]]
subject to Cy = 0, (5.12)
¢;<0,5=12,.. K

A simple example is portrayed below, using the proposed formulation for the
curvature constraints on a NURBS semi-cylinder. The radius of the semi-cylinder
is r = 0.5 which leads to a uniform x; = 2 at all of its surface nodes. Eq. 5.12 is
formulated for three different values of ¢,, and equation C'y = 0 is solved iteratively
by selecting the control point positions. For all three cases, ¢ = ¢,,, +0.1 has been
set for consistency. Solving C'y = 0, leads the curvature metric of each surface
node to become less than c¢,,. The resulting shapes as well as the convergence
history of all three cases, are shown in Fig 5.4.
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Figure 5.4: Left: The initial cross-section of a semi-cylindrical surface (blue) and
the cross-sections resulting from the solution of Cy = 0 for ¢,, = 1.5 (red), ¢,, = 1.0
(black) and ¢, = 0.5 (green). Right: The convergence history of the three iterative
procedures leading to the results presented on the left. Curves for c,, = 1.5 (red),
cm = 1.0 (black) and ¢, = 0.5 (green) are shown.

5.3.4 The Volume Constraint

For a watertight solid model, its volume can be computed using only the nodal
coordinates of its boundary patches. Assume such a model and let V' be its
volume and S its total surface area. From the Gauss divergence theorem, it is
known that the volume of a watertight shell of surface S can be computed using
its boundary surfaces. It is obvious that the total surface of a solid is a union of
all its trimmed patches &; and, therefore, the volume is given by

1 ~ — — —
V= g ;L\/pgi(u?v) ’ n(u,v) ||O'u(U,U) X Uv(“,U)H dudv (513)

The volume constraint is an inequality that enforces the volume to be lower (in
case a model must fit inside an assembly) or greater (in case an assembly must fit
inside a model) than a threshold. For the latter case, the constraint is expressed
as

This constraint is handled using slack variables within the Augmented La-
grangian Method (ALM) algorithm [?].

Similarly to the flow and adjoint solvers, all the constraints shown here were
implemented within OpenFOAM.
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5.4 Applications

The imposition of the shown constraints is demonstrated in five problems. All of
them stand for aerodynamic shape optimization problems, constrained either by
the presence of bounding surfaces or with the surface curvature or the volume.
The first case is a 2D duct and the aim is to minimize the total pressure losses
between the inlet and the two outlets. The second case is a 3D U-Bend duct and,
similarly to the first case, the aim is to minimize the total pressure losses. The
third case is the shape optimization of the side mirror of a benchmark car model
for minimum drag coefficient. The fourth case is a 3D automotive cooling duct
and the aim is to minimize the total pressure losses between its inlet and outlet.
The final case is an extruded NACAOO12 airfoil and the aim is to minimize the
drag coefficient. In the first three cases, the bounding surface constraints are
imposed while, in the fourth and fifth, the curvature and volume constraints are
tested respectively.

Cases 2 and 3 in this Chapter, correspond to Cases 1 and 4 of the CFD op-
timization benchmark conducted during the 11th ASMO UK/ISSMO/NOED2016
International Conference on Numerical Optimisation Methods for Engineering De-
sign (see http://www.asmo-uk.com/11th_asmo_uk_conference/html/
menu_page.html).

5.4.1 Optimization of a Double-Outlet Duct

This case was initially shown by Koch et al. (2017) [?], in an article dealing
with topology optimization in fluid mechanics, without involving the bounding
box constraints. The duct geometry is described by B-spline control points. The
initial duct is the one shown in Fig. 5.5. The optimization aims at minimizing
total pressure losses (Eq. 2.19) and the bounding box happens to cross the initial
duct geometry. This bounding box consists of two narrow regions which restrict
the flow passage and the duct must be redesigned in order to make it lie inside
them. The constrained optimization starts from an infeasible solution w.r.t. the
bounding box constraint. The three straight ducts which are linked directly to the
inlet and the outlets cannot be deformed while the rest of the duct can.


http://www.asmo-uk.com/11th_asmo_uk_conference/html/menu_page.html
http://www.asmo-uk.com/11th_asmo_uk_conference/html/menu_page.html
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Figure 5.5: Double-Outlet Duct: The initial duct geometry colored based on the
sensitivity map, i.e. the derivative of Jp; w.r.t. the normal displacement of the design
wall nodes, and the bounding surface in red. For the parts of the surface with negative
/ positive sensitivities, the duct walls must be pulled out / in to reduce the objective
function value.

The computational domain is 2D (pseudo-3D with one cell depth) and consists
of approximately 85K hexahedral cells. To parameterize the duct walls, multiple
2D curves extruded along the depth direction are used.

A total of 35 control points are used to parameterize the duct walls. All of them
are allowed to move in both directions with the exception of the two first control
points after each inlet and outlet wall. Therefore, the total number of free control
points is 23, giving rise to N =46 design variables. The flow is laminar (Re = 200).

Initially, a mesh independence study is performed in order to justify the res-
olution of the mesh. The primal equations are solved for various mesh sizes and
the corresponding objective function (.J,;) values are plotted in Fig. 5.6. Based
on this study, a mesh of approximately 85K cells appears to be adequate and this
is used hereafter. On this mesh, the adjoint equations are solved to compute the
sensitivity map of Fig. 5.5. It can be observed that the thickness of the duct
cross-section should be increased along the largest part of the left design wall.
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Figure 5.6: Double-Outlet Duct: J,; values for different mesh sizes expressed by the
number of cells.

The solution of the constrained optimization problem of the double-outlet duct
is tried using three approaches. Firstly, the no-penetration constraints are im-
posed in a node-wise manner using the ALM method. The design patches of the
duct consist of a total of 2618 boundary nodes, making it difficult to initialize );
and p; for such a high number of constraints. Many different initializations were
tried, leading however to an impasse. At the start of the optimization, the ALM
method tends to ignore the constraints, until the penalty values p; become suf-
ficiently large. However, increasing j; makes the solution highly unstable, as \;
values do not converge. Thus, computing the optimal set of Lagrange multipliers
proved very challenging and this problem was turned into the development of an
extremely sophisticated ALM method. However, even that would require a good
enough initialization to work. Secondly, the same problem is solved by using the
same ALM method as before, but with the single equality constraint formed for
cm = 0, ¢,=0.001. The constraint makes the duct shrink to move into the feasible
space. The optimized solution gives an objective value which is by 21.5% greater
than the initial. The optimization converges within 8 optimization cycles.

Finally, the same problem is solved using the SQP and the single constraint.
The SQP computes a different local optimum which leads to a 9.6% increase in
the objective function. The convergence of the objective function and the residual
of the KKT equations are plotted in Fig. 5.7. This study showcased that the
combination of the single, aggregated constraint and the SQP is the most efficient
technique, in this case at least. Hence, this combination will also be utilized for
the cases that follow.
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Figure 5.7: Double-Outlet Duct: Convergence history of the objective function and
the residuals of the KKT equations for the constrained optimization using the ALM
and the SQP. The objective function values are read on the left whereas the KKT
residuals on the right. The quantities to which the graphs values refer are shown in
the legend.
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Figure 5.8: Double-Outlet Duct: Initial (left) and optimized shapes resulting from
the constrained optimization with the ALM (center) and the SQP (right) methods.

Shrinking parts of the duct makes the fluid traverse the narrow passages at
a higher speed compared to that of the initial geometry (Fig. 5.9). Thus, the
optimized geometry has higher friction forces and higher total pressure losses.
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Figure 5.9: Double-Outlet Duct: Velocity magnitude iso-areas plotted on the initial
(left) and the optimized via the SQP (right) geometries of the duct.

5.4.2 Optimization of a 3D U-Bend Duct

The second case is the optimization of a 3D U-Bend duct [?,?]. This geometry
mimics part of the serpentine type internal cooling channel of turbine blades (Fig.
5.10a). The aim is to minimize the total pressure losses by deforming the U-turn;
pure 3D deformations are allowed. The computational mesh has approximately
870K cells with an average y™ =1.8 of the first cell barycenters off the wall.

\\ ‘ﬁ ’
(@) (b)

Figure 5.10: U-Bend Duct: Initial shape. Left: perspective view of the whole duct.
Right: parameterized part of the duct along with the control points of the volumetric
splines control box. Red control points are allowed to move while the blue are fixed.
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Figure 5.11: U-Bend Duct: Velocity field plotted on the initial duct geometry.
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Figure 5.12: U-Bend Duct: Total pressure losses sensitivity map. Color map as in
Fig. 5.5.

The inlet normal velocity is 8.4m/s, the hydraulic diameter is 0.075m and the
flow Reynolds number based on the above quantities is Re ~ 43,800. The initial
velocity field is plotted in Fig. 5.11. The parameterization of the U-turn of the
duct is performed with volumetric B-splines. The control box used can be seen in
Fig. 5.10b. The total number of moveable control points is 18 and, since they are
allowed to move in all directions, this leads to /N =54. The initial direction of the
deformations can be seen by the computed surface sensitivities, Fig. 5.12.

Using this parameterization, an unconstrained optimization with the BFGS
method leads to a 42.5% drop in Jpt (Fig. 5.14b). The final shape (Fig. 5.13a) is
inflated w.r.t. the initial one in certain areas which can lead to violations of manu-
facturability criteria. For instance, the shape could tend to form a zero-thickness
geometry with the surface of a neighbouring part and, therefore, containment of
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the optimized geometry within certain boundaries should be imposed. Therefore,
a bounding box constraint is imposed as in Fig. 5.13b.

(@) (b)

Figure 5.13: U-Bend Duct: Final shape resulting from the unconstrained optimiza-
tion (left) and the same shape along with the bounding box (transparent red) used in
the constrained optimization (right).

The constrained optimization starts with the initial geometry and aims at pre-
venting the shape from intersecting with the bounding box. A value of ¢;=0.001
is used to set the penalty function. The constrained optimization leads to a 29%
reduction in total pressure losses. The convergence history of both the objective
function and the residual of the KKT equations can be seen in Fig. 5.14a and
the final shape which lies completely inside the bounding box in Fig. 5.15a. In
Fig. 5.16, the cumulative normal displacements, resulting from the constrained
and unconstrained optimizations, are compared. In the unconstrained case, the
total pressure losses are minimized by deforming (‘inflating’) the outer walls of the
U-turn. In the constrained case, since the outer walls are not given much space to
deform, the objective function is minimized by reshaping mainly the inner walls.
Because of this, the large recirculation bubble which appears in the initial duct
geometry (along the inner walls and towards the outlet), Fig. 5.17a, is not entirely
suppressed. As seen in Fig. 5.18, for the duct which has been optimized under
constraints, the difference between the total pressure and an average inlet total
pressure is much smaller towards the outlet compared to the initial geometry.
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Figure 5.14: U-Bend Duct: Convergence history of the constrained (left) and uncon-
strained (right) optimization. For the former, the convergence history of the objective
(purple) and the residual of the KKT equations (blue) are plotted.

(@) (b)

Figure 5.15: U-Bend Duct: Two perspective views of the final shape resulting from
the constrained optimization. The duct is in blue while the bounding box in trans-
parent red.
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Figure 5.16: U-Bend Duct: Comparison of the cumulative normal displacements re-
sulting from the constrained (left) and the unconstrained (right) optimizations, plotted
on the initial shape. Areas with positive values correspond to outward displacements
and areas with negative values to inward.

(c) (d)

Figure 5.17: U-Bend Duct: Flow velocity field plotted on the half-span slices of the
initial and optimized (under constraints) geometries. Arrows stand for the velocity
vectors. Top-Left: Initial geometry. Top-Right: Optimized geometry (under con-
straints). Bottom-Left: Close-up view of the right leg at the inner walls of the initial
geometry (circled area in (a)). Bottom-Right: Same view of the right leg at the inner
walls of the optimized (under constraints) geometry (circled area in (b)).
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Figure 5.18: U-Bend Duct: Difference between the total pressure field and an average
total pressure at the inlet, plotted on half-span slices of the initial (left) and the
optimized (right) geometries.

5.4.3 Optimization of the Side Mirror of the DrivAer Car Model

The third case chosen for testing the effectiveness of the method is that of the
DrivAer concept car (Fig. 5.19a), designed by the Technical University of Munich
(TUM). The configuration used in this study is the fast-back car model with a
smooth underbody, with both mirrors and stationary wheels. The target is to
minimize the drag coefficient (cp) of the whole car, by exclusively modifying the
shape of the side mirrors. The study is performed on half of the car by employing
symmetry conditions. The computational mesh consists of approximately 5.3M
hexahedra with an average y* =75 of the barycenters of the first cells off the wall.
The model is subjected to a far-field longitudinal velocity of 38.89m/s, with a
Reynolds number of Re ~ 2,6 X 10% (based on the car width). The side mirror
is parameterized in two ways: (a) with volumetric splines and a control box with
8 x 8 x 8 control points (Fig. 5.19b) and (b) using the BRep model of the side
mirror. With the volumetric spline configuration, Cy and C; continuity between
the free-to-move regions of the mesh and those which are fixed, is ensured by
freezing certain control points, thus leaving 6 x 5 x 6 free-to-move control points
(N = 540). With BRep configuration, C; and C constraints are imposed via the
method of Chap. 4 on all patches for which the constraints are already true.
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Figure 5.19: DrivAer Side Mirror: The full CAD model of the car (left) and the control
box used for the surface and mesh parameterization (right). Red control points are
allowed to move while blue points are fixed.

The first step of this study is to perform an unconstrained optimization and
observe the optimized side mirror’s shape. Design variables of the splines volume
are updated using BFGS and the initial sensitivity map can be seen if Fig. 5.20.
As expected, the mirror tends to shrink so as to reduce its frontal area. However,
parts of the mirror become distorted and unusable. For instance, the surface of
the mirror cover folds and the reflector glass twists (Fig. 5.21). Because of this,
two bounding surfaces are placed as in Figs. 5.22a, 5.22b to block the distortion
of the mirror’s shape. These are placed in front of and behind the reflector, in
close proximity to the glass, in order to block potential twisting and are shaped
after the protruding parts of the mirror so as to block potential over-shrinking.
The distance of each bounding surface to the mirror’s reflector glass is 0.0025m
and the constraint is setup for C'; =0.001.
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Figure 5.20: DrivAer Side Mirror: Drag sensitivity map. Color map as in Fig. 5.5.
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Figure 5.21: DrivAer Side Mirror: Front (left) and side view (right) of the mirror
resulting from the unconstrained optimization for the selected parameterization.
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Figure 5.22: DrivAer Side Mirror: Left: Front view of the mirror. Right: Side view
(with a transparent mirror body). The triangulated bounding surfaces are shown in
red.

The constrained optimization is, then, performed and the drag coeflicient is
reduced by 0.8% (Fig. 5.23). The optimized shape is shown in Fig. 5.24. The
reflector glass of the mirror remains between the bounding surfaces and at the
same time, the cover of the mirror shrinks slightly without high distortions. Fi-
nally, the comparison of the cumulative normal displacements resulting from the
constrained and unconstrained optimizations are shown in Fig. 5.25 .

According to this figure, for the constrained optimization, the displacement of
the reflector glass in the normal direction is less than 0.0025m. The parts with the
greatest displacement are located near the protruding parts of the mirror, where
the shape almost touches the bounding surfaces, and on the back of the mirror’s
shell. While that distance is smaller than the offset of the bounding surfaces
defined, the curvature of the reflector glass must be checked as it indicates local
flatness. The curvature is, therefore, evaluated according to the algorithm in [?]
for three shapes: (a) the initial mirror shape, (b) the shape resulting from the con-
strained optimization and (c) that resulting from the unconstrained optimization.
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The curvature values, plotted on each shape, can be seen in Fig. 5.26. The re-
flector glass is practically flat as the curvature values on it (for the shape resulted
from the constrained optimization) range between 0 and 0.4 which is practically
zero in this scale.

1 ‘ : : ‘ ‘ 3 10°
0.999 | 1 | | | |
0.998 {10
o
5 0997 l10¢ 3
& 0.9 ] g
~_ 099 {10°
O E ;
70994 & 2
{108 =
0.993
0.992 : ' F 10710
4 8 12 16 20 24

Optimization Cycle

Figure 5.23: DrivAer Side Mirror: Convergence histories of the objective function
(purple) and the residual of the KKT equations (blue).

(@) (b)

Figure 5.24: DrivAer Side Mirror: Optimized shape (light blue) resulting from the
constrained optimization along with the two bounding surfaces in triangulated form
(red). Left: Front view. Right: Lateral cross section of the mirror.

Finally, for the constrained optimization case, it is interesting to see how such
small displacements affect the force exerted on the surface of the car by the flow.
Thus, the local forces (i.e. integrand of Eq. 2.20) are computed on the entire car
for two geometries; the initial and the optimized under constraints. The difference
between these paired forces is plotted in Fig. 5.27.
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Figure 5.25: DrivAer Side Mirror: Comparison of the cumulative normal displace-
ments resulting from the constrained and the unconstrained optimizations plotted
on the initial shape. Positive / negative displacements indicate that the surface is
’pushed in / out’. Top-Left: Front view of the mirror for the constrained optimiza-
tion. Top-Right: Front view of the mirror optimized without imposing constraints.
Bottom-Left: Back view of the mirror resulting from the constrained optimization.
Bottom-Right: Back view of the mirror resulting from the unconstrained optimiza-
tion.
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Figure 5.26: DrivAer Side Mirror: Curvature values plotted on the initial mirror
(left), the shape resulted from the constrained (middle) and unconstrained (right)
optimization.
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(a) (b)

Figure 5.27: DrivAer Side Mirror: Difference between the local forces exerted by the
flow on the surface of the car for the constrained optimized and the initial geometries.
Negative (positive) force difference means positive (negative) effect on the drag coeffi-
cient reduction.

The constrained optimization is then repeated by using the BRep configuration
(Fig. 5.28), with the same two bounding surfaces.

Figure 5.28: DrivAer Side Mirror: BRep model of the side mirror.

SQP is also used and the constrained optimization converges after 10 cycles
producing a drop in the objective function equal to 0.82%. The initial along with
the updated shapes can be seen in Fig. 5.29.

It can be noted that with this configuration, apart from the top of the mirror’s
shell, its side is also shrinked towards the side of the car, thus resulting in a
slightly better performance.
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(a) (b)

Figure 5.29: DrivAer Side Mirror: The initial (transparent grey) and the final (red)
shapes of the side mirror’s BRep. The side (left) and the front (right) views of the
mirror are visible.

Figure 5.30: The S-bend climate duct.

5.4.4 Optimization of the S-bend Duct

The S-bend climate duct is a test case provided by VolksWagen AG. The goal is to
minimize the pressure losses J,; (Eq. 2.19) of the flow subject to the deformation
of the S-section of the duct. The objective function has the following form.

The geometry consists of 46 trimmed NURBS patches, among which 28 belong
to the S-section. These 28 patches are high-degree surfaces and this results to a
total number of 5830 control points (17490 degrees of freedom) on the S-section.
The flow analysis is done using a mesh of 700,000 cells. The flow is laminar with
Re ~ 400. The parameterization method includes CAD into the loop as shown in
Chap. 4.

Initially, an unconstrained optimization is performed on the duct that leads
to a total pressure losses drop of 9.1 % after 40 cycles. However, the resulting
shape, due to the high number of control points, becomes wavy with areas of very
high curvature (fig. 5.31). Then, a constrained optimization with the curvature
constraint is performed with ¢,, = 10°. Using the constrained optimization, a drop
of 3.9 % is achieved.
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Figure 5.31: Curvature iso-areas on the optimal shape resulting from the uncon-
strained (left) and the constrained optimization (right) of the S-bend duct.
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Figure 5.32: The convergence history of the viscous losses objective function (blue)
and the curvature constraint (red) for the S-bend duct.

Figure 5.33: Comparison of the optimal shape resulting from the constrained (right)
and the unconstrained (left) optimization of the S-bend duct.

The curvature map on the optimal solution of the constrained and uncon-
strained optimization are shown in figure 5.31 and the final CAD surfaces are
shown in fig. 5.33. From the curvature map, one may see that the shape at-
tempts to form the wavy surface but the constraint does not allow this to happen.

Finally, the convergence history of the objective function and constraint can be
seen in fig. 5.32.
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5.4.5 Optimization of the Extruded NACA0012 Airfoil

A NACAO0O12 airfoil which lies on the X — Y plane is fitted by a NURBS curve.
This NURBS curve is then extruded along the Z axis to create a wing (Fig. 5.34).

Figure 5.34: The NACAOO12 extruded wing (light blue) and its NURBS control grid
(black wireframe).

The volume of the wing spanning between the planes at Z = Om and Z = 0.5m
is Vinie = 0.0412m3. The flow analysis around the wing is performed using a 2D
mesh of approximately 250,000 cells. The flow is turbulent (Re = 10°) with a
free stream velocity U = 60m/s and an angle of attack at 0°. The target of the
constrained optimization is to reduce the drag force on the wing while making
sure that V' > V,,,;, = 0.8Vj,;; = 0.033. As shown in fig. 5.35, the optimization
procedure starts with the objective function dominating the constraint but, as the
penalty factor of the constraint increases, the optimization converges to a 4.3%
drop in drag.
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Figure 5.35: The convergence history of the drag objective function (blue) and the
volume constraint function (red) for the NACAOO12 wing.
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5.5 Remarks

In this chapter, the imposition of constraints during NURBS-based shape opti-
mization is presented. Algorithms have been developed for accurately imposing
constraints on multiple mesh nodes on a shape to be designed. The cases shown,
range from academic to industrial-like ones to fully test the algorithms’ capabili-
ties. The methods proved reliable and the time required for the quantification of
the constraints (in all cases, including evaluation and differentiation) is negligible
in comparison to the time required to solve the primal and adjoint problems.

The proposed algorithm addresses spline-based parameterizations but, defi-
nitely, does not depend on the parameterization scheme.

For the bounding constraints, two types of bounding surfaces were used to
constrain the shape’s deformation: surfaces that lie inside the shape to be de-
signed (surface behind the mirror of the car) and surfaces that lie outside of the
shape to be designed and / or enclose it. The proposed method was able to handle
both cases reliably. For the curvature constraints, smoothness was imposed on
a wrinkled NURBS shape that restored manufacturability.

This study can be the motivation to address many interesting topics related to
point-wise and NURBS-based constraints in general. One example could be drag
minimization for airfoils which tends to make them thinner. Optimizing a ship’s
hull can be another example since in certain areas the hull must (to an extent)
retain its shape.

Lastly, the implicit integration of inequality constraints, by means of a penalty
function, to generate a single equality constraint has proven to be successful
and can be used in various other geometric constraints such as thickness after
formulating them as point-wise inequalities.



Chapter 6

Applications

6.1 The Compressor Stator of Technical University of Berlin

The "TurboLab Stator" was measured rig at the Technical University of Berlin [?]
in the TurboLab at the Chair for Aero Engines. A photo-realistic CAD model of the
stator assembly with 15 blades is shown in Fig. 6.1. In this chapter, this will be
used as a test case in which the developments shown in Chap. 3-5 are applied.

Figure 6.1: The TurboLab stator in full assembly with 15 blades and mounting holes.

The case has been designed based on a representative stator geometry as used
in modern jet engine compressors. This initial geometry (Fig. 6.2) has to be
optimized to reduce the total pressure losses .Jp; over the incidence range given
in table 6.1. The BRep model of the CFD domain with just one blade included is
provided in STEP format. Its trimmed and untrimmed states can be seen in Figs.
6.3 and 6.4, respectively.

119



120

6. Applications

595.0mm
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Figure 6.2: CAD geometry of the TurboLab stator with dimensions. The computa-
tional domain is portrayed as a hollow cylinder of length equal to 720 mm.

Description Value
Inner Radius 147.5 mm
Outer Radius 297.5 mm
Inlet Axial Position —180.0 mm
Outlet Axial Position 540.0 mm

Table 6.1: Geometric characteristics of the computational domain for the TurboLab

stator.



6.1. The Compressor Stator of Technical University of Berlin 121

Figure 6.3: The BRep geometry of the TurboLab stator in transparent grey.

Figure 6.4: The BRep geometry of the TurboLab stator in its untrimmed form.

The entire model (blade, inlet, outlet, hub and shroud), consists of a total of
10 NURBS patches and 1716 NURBS control points. The two cylindrical surfaces
consist of 7 X 2 control points each, while the inlet and the outlet are planar
surfaces consisting of 2 X 2 control points each. The surface of the stator blade
consists of 6 patches in total: 2 patches with 25 x 23 control points, two patches
with 8 X 23 control points and two patches with 9 x 9. These patches along with

the control points can be seen in Fig. 6.5.
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Figure 6.5: The BRep geometry of the TurboLab stator blade. The control points of
the NURBS patches that correspond to the pressure and suction sides can be seen in
orange.

6.1.1 Generating the CFD Mesh

The mesh of the CFD domain, bounded by the BRep of the stator and the casing,
must, firstly, be generated. For that to happen, the BRep model is triangulated
(Fig. 6.7). As seen in Fig. 6.4, the radial span of the blade must be reduced as it
exceeds the outer casing. After this, the Shape Healing algorithm is used to snap
the newly created blade on the surfaces of the inner and outer casing (cylinders).
The background mesh (Fig. 6.6) is, then, generated and the size map on it, for
parameters d = 10 and gr = 0.05, is computed. The Advancing Front method is,
then, used for the above mentioned parameters to create the surface grid of Fig.
6.7. These parameters were chosen as they produced the highest quality surface
grid.

The entire process required ~ 90 secs on 8 Intel Core i7-6700HQ (2.60 GHz)
CPUs and produced ~ 120K triangles averaging at approximately 1350 tris/sec.
This was run in parallel using the OpenMP [?] shared memory parallel program-
ming. Job partitioning among processors was done patch-wise, meaning that the
total number of patches to be triangulated was equally divided over the available
processors.
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Figure 6.6: The background grid of the BRep model. Left: The entire domain. Right:
The domain cut to make the blade visible.
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Figure 6.7: The triangulated BRep model using the method proposed in Chapter 3.
Top-Left: The entire domain. Top-Right: Close-up view of the leading edge region of

the outer cylindrical casing. Bottom-Left: The stator blade. Bottom-Right: Close-up
view of the trailing edge region.
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The CFD simulation is carried out using a single blade passage and periodic
boundary conditions. The cylindrical domain is a 24° sector of the domain. The
interfaces are also triangulated surfaces generated based on the blade geometry.
The mesh was, then, generated based on the defined triangulated boundary sur-
faces (Fig. 6.8). The mesh consists of two periodic boundaries, one patch for
the shroud, and one for the hub, two patches on the blade (pressure and suction
sides), an inlet and an outlet.

Figure 6.8: The CFD domain for the test case with each CFD patch colored differently.
In this figure, the outer cylindrical patch is seen in blue, the outlet in dark green, one
of the periodic boundaries in red and the blade surface in light green.

6.1.2 Setting up the Parameterization

In order to determine the characteristics of the parameterization, a few manu-
facturing constraints have to be taken into account. In order not to jeopardize
the capacity of the cylindrical domain for 15 blades, a constraint is imposed that
the blade geometry does not penetrate the 24° interfaces. Secondly, the axial
chord of the blade must remain unchanged. For that reason, the control points of
the NURBS patches near the leading and trailing edges remain fixed. Thirdly, the
thickness of the blade must be such that the leading and trailing edge circles’ radii
are at least 1 mm. Furthermore, the thickness must be enough that two mount-
ing holes of diameter equal to 5 mm each must fit into the blade profile both at
shroud and hub (Fig. 6.9). The length of the holes must be equal to 20 mm. The
thickness constraints are all imposed using the packaging constraints that are
developed in Chapter 5. Finally, the blade must completely touch the hub and
the shround surfaces (which are not part of the deformable domain).
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Figure 6.9: The blade geometry with two mounting holes visible. Two mirroring holes
are also required on the opposite side.

Taking the manufacturing requirements stated above into account, only the
NURBS patches that correspond to the blade can be displaced (Fig. 6.10). From
these patches, the control points shown in Fig. 6.10 are fixed in place to impose
the axial chord constraint. Using the method proposed and developed in Chapter
4, continuity constraints are imposed between all the surfaces belonging to the
stator blade as well as the surfaces of the casing.

Figure 6.10: The BRep geometry of the stator. The deformable patches are seen in
red, while the non-deformable patches are seen in transparent grey.

For all pairs of interconnected deformable NURBS patches, up to | conti-
nuity is imposed. For pairs with a non-deformable patch, the condition that
the deformable patch keeps touching the common edge, without a change in the
orientation of its normal vector, is imposed. Taking all these into account, the
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number of free-to-move control points is reduced to 1266, while the number of
constrained control points via the Geometry Morphing method is 252. In Fig.
6.11, the control points of the blade are shown with different colors denoting the
status of the design variables related to each control point.

Figure 6.11: The control points of the 4 patches that correspond to the blade ge-
ometry. Unconstrained control points are seen in green while fixed-in-place control
points in red. Control points constrained by the Geometry Morphing method are seen
in blue.

6.1.3 Flow Conditions and Optimization Targets

The boundary conditions of the flow simulation are constant for the entire radial
span. For the pressure field, at the outlet, a zero Dirichlet condition is imposed
while at the inlet and all wall patches zero Neumann conditions are imposed.
At the inlet, the whirl angle is 42° and the pitch angle is 0°. The inlet velocity
magnitude is computed so that a massflow of 9.0 kg/sec is achieved. At the
outlet, a zero Neumann condition is imposed on the velocity components and at
the wall patches, no-slip conditions are imposed. For the turbulence, the Spalart-
Allmaras model along with the boundary conditions shown in Sec. 2.3 and [?], is
used.

Based on these flow conditions, a CFD simulation on the baseline geometry
was run. The target of this test case is to minimize pressure losses .Jp; between
the inlet and the outlet (Eq. 2.19). Jp, is differentiated for the parameters of the
Geometry Morphing method. The surface sensitivities (i.e. the derivative of Jp;
w.r.t. the normal displacement of the design wall nodes) that is generated is seen
in Fig. 6.12.
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Figure 6.12: The surface sensitivities generated after the differentiation of the ob-
jective function with adjoint method, on the suction (left) and pressure side (right).
Positive (negative) sensitivities indicate that the blade must be pulled out (pushed in)
to reduce the objective function. In both figures, the trailing edge is at the top and
leading edge at the bottom.

Apart from the objective function, there are also manufacturing constraints
which must be respected during the optimization. These concern the mounting
holes to the hub and shround (4 in total) and the minimum allowed radius of the
trailing and leading edge circles (not less that 1 mm). Both these constraints are
imposed via the no-intersection constraints shown in Chapter 5.

S °

Figure 6.13: The stator blade (in transparent grey) along with the constrained sur-
faces (red). Left: Isometric view of the blade along with all the surfaces. Right: A
close-up view of the leading edge of the blade. A surface created from a 2 mm radius
circle, swept along the profile of the blade, is created.

In these cases, the bounding surfaces are cylinders of 5 mm diameter and
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20 mm height for the mounting holes and 2 mm diameter and height equal to the
radial span of the blade for the leading and trailing edges. The formation of these
constrained surfaces are shown in Fig. 6.13.

6.1.4 Unconstrained Optimization

Initially, an optimization run is performed without taking the bounding surface
constraints into account. This is a necessary step in order to check how the
shape is perturbed and verify that the bounding surface constraints will affect
the result. To update the design variables as formed by the Geometry Morph-
ing method, steepest descent is used [?]. After 10 optimization cycles, steepest
descent converges to a solution with total pressure losses reduced by 6.6 % (Fig.
6.14).
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Figure 6.14: Convergence history of the unconstrained run for the TurboLab stator.

The final shape produced by the unconstrained optimization can be seen in
Figs. 6.15, 6.16. It is clear from the resulting shape that the bounding surfaces
that correspond to the mounting holes are penetrated by the optimal design.
Therefore, a constrained optimization follows in order to take the STL surfaces
corresponding to these holes into account.



6.1. The Compressor Stator of Technical University of Berlin 129

normalDisplacement

Hi)lm Nt ?\\\H\\\Uiu\u\?\\m 0o
-0.005 0.005

Figure 6.15: The cumulative normal displacement of the boundary mesh on the
blade, resulting from the unconstrained optimization after 10 cycles. The normal
displacement is the dot product of the displacement and boundary mesh face normals
vector fields. Positive (negative) normal displacement means that the blade is pulled
out (pushed in). The orientation is as in Fig. 6.12.

Figure 6.16: The final CAD model of the TurboLab stator resulted from the uncon-
strained optimization. Left: The baseline model in transparent grey with the bounding
surfaces in blue. Right: The baseline model and the bounding surfaces as on the left,
along with the optimized shape of the CAD model in red.

6.1.5 Constrained Optimization

The distance of the bounding surfaces to the initial geometry is of the order of
millimiters, therefore, c;=0.001 is chosen. The constrained optimization method
chosen is the ALM [?]. This is because of the high number of design variables
which ruled out the possibility to use an SQP here. The constrained optimization
run achieved a ~ 3.5 % drop in the objective function (Fig. 6.17).
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Figure 6.17: Convergence history of the objective (blue) and constraint (purple) func-
tions.

Similarly to the unconstrained case, the signed cumulative displacement pro-
jected on the normal to each baseline face vector is portrayed in Fig. 6.18.
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Figure 6.18: The cumulative normal displacement of the boundary mesh on the
blade, resulting from the constrained optimization after 10 cycles. Positive (negative)
normal displacement means that the blade is pulled out (pushed in).

The final CAD model as exported from the constrained optimization (along with
the bounding surfaces is seen in Fig. 6.19.
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Figure 6.19: The final CAD model of the TurboLab stator resulted from the con-
strained optimization. The baseline model is seen in transparent grey with the bound-
ing surfaces in blue and the optimized model in red. Isometric views of the pressure
side (right) and the suction side (left) are shown.

6.1.6 Remarks

In this chapter, the developments of Chap. 3-5 are combined to perform a full-
scale CAD-based optimization. The geometry of the TurboLab stator is provided in
the standardized Step format and all algorithms are run based on that geometry.
The final optimized geometry is then exported in Step format as well. The blade
can now be inserted in any CAD package for post-processing or in a CAM package
for manufacturing. It can also be exported in STL format for rapid prototyping
which would make for a huge advantage in a supply chain.
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Figure 6.20: The stator optimized geometry along with all 15 blades. The entire CAD
Graphical User Interface is shown in order to portray the process of revolving the
optimized blade (pink).

The optimization of the TUB stator geometry subject to a number of flow ob-
jectives has been tried in various PhD theses accomplished in PCOpt/NTUA.

Vasilopoulos [?] performed both CAD-free and CAD-based optimizations of the
same stator. In the CAD-free one, multi-objective optimization (MOO) was per-
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formed that aimed to decrease both the total pressure losses and the exit flow
angle. MOO was turned into a single objective optimization (SOO) by using the
weighted sum of the objectives. The parameterization was node-based and the
sensitivities were smoothed implicitly as shown in [?]. The resulting optimized
geometry produced slightly increased Jp; by 0.15 % due to the fact that the sensi-
tivities for the second objective were dominant. In the CAD-based case, MOO was
also performed as well as multi-point optimization. The chosen CAD parameteri-
zation is that of the in-house Rolls-Royce Deutschland (RRD) tool Parablading [?].
Since, it is in-house, its differentiation was possible. The CAD-based optimization,
resulted in a decrease in Jp; by 0.2 %.

Gagliardi [?] performed CAD-based optimization using RBF-morphing, a method
that was developed in [?]. This method uses RBF parameterization as a means
to displace the NURBS control points of a model. Then, it follows a continuity
recovery step that ensures watertightness and/or smoothness of the model were
required. Here, too, an decrease in Jp; by 0.2 % was the result.

In this thesis the objective function in the constrained run was improved by
~ 3.5%. The reason behind the better performance is due to the factors that this
is a SOO and that the nature of the parameterization made the design space richer
than the other methods.

6.2 The Concept Intake Manifold

For the further testing of the methods and algorithms developed in this thesis,
a test case which resembles an automotive intake manifold is designed. The
manifold consists of one circular inlet and four circular outlets of same diameters
(Fig. 6.21).

Figure 6.21: The CAD model of the intake manifold designed along with mounting
flanges.
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6.2.1 Generating the CAD Geometry & the CFD Mesh

The geometry of the manifold is designed in the open-source CAD software SA-
LOME which is based on the OpenCascade Technology CAD Kernel. The desing
is done by generating the inlet circular disk sketch and extruding it along four
different 3D paths that lead to the outlets. The diameter of the circular disks
is equal to 70mm. The normal to the inlet is paraller to the Y —axis while the
normals to the outlets are parallel to the Z—axis. The CAD model (without the
mounting flanges) consists of 34 patches with a total of 356 control points and
can be seen in Fig. 6.22.

Figure 6.22: The CAD model of the intake manifold without the mounting flanges.

By using the method proposed in Chap. 3, and input parameters d = 10 and
gr = 0.05 the surface mesh of Fig. 6.23 is obtained.
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The surface grid is then divided into three parts
and the walls grid. These three different (but coherent) grids are then given to the

snappyHexMesh tool of OpenFOAM to produce the computational mesh shown in

Fig. 6.24.
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6.2.2 Setting Up the Optimization

The boundary condition of the pressure field at the inlet and all wall patches is
a zero Neumann condition. At the outlet, a zero Dirichlet condition is imposed.
For the velocity, zero Neumann condition is imposed at the outlet, while at the
wall patches, no-slip conditions are imposed. At the inlet, the velocity distribution
is computed in order to have enough massflow to accommodate a four-cylinder
internal combustion engine of 1.4L of volume running at 2400RP M. This results
in a velocity (normal to the inlet) with magnitude equal to approximately 15m/s
and a Reynolds number of 70K . For the turbulence, the Spalart-Allmaras model
(as described in Sec. 2.3 and [?]) is used.

The target of this test case is to minimize the total pressure losses .Jp; between
the inlet and the outlets (Eq. 2.19). Therefore, the relevant adjoint equations are
solved.

6.2.3 The Optimization Run

The Geometry Morphing method is setup so that all adjacent patches retain C}
continuity at their trimming curves with the exception of the curves at the inlet
and the outlets. There, Cj; continuity is imposed and, moreover, the condition
that their adjacent patches remain perpendicular to the circular disks should be
met.

By doing so, an optimization run of 20 cycles is performed which produces a
drop of 1.9% in the objective function (Fig. 6.25).
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Figure 6.25: Convergence history of the optimization run.

The comparison of the initial and optimized CAD shapes can be seen in Fig.
6.26. The developments of Chap. 3-5 of this thesis were combined to perform
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a full-scale CAD-based optimization. The input geometry was designed by the
author and was provided in STEP format while, the optimal geometry was also
made available in STEP format. Due to being self-designed, there are no other
works done on this case with which one can compare the results. However, this
case can serve as an excellent benchmark to show that the coupling of CAD to
CFD and optimization can be performed automatically.

Figure 6.26: The initial (top) and the final (bottom) CAD shape after 20 optimization
cycles. The front (left) and the rear (right) view of the manifold can be seen. Mainly,
the displacement of the model is located at the two middle ducts leading to the
corresponding outlets.

6.3 The ERCOFTAC UFR 4-06 Diffuser

The ERCOFTAC Conical Diffuser test case is a swirling boundary layer circular
pipe, developing in a conical diffuser. A description of the measurements made by
Clausen, Koh and Wood is available in [?]. The experimental set-up is such that
the inlet swirl prevents boundary layer separation, without though recirculation in
the core of the flow. Experimental results are available in the ERCOFTAC Classic
database [?]. The test case was included in the ERCOFTAC Workshop on Data
Bases and Testing of Calculation Methods for Turbulent Flows held in Karlsruhe
in 1995 [?].
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Figure 6.27: The CAD geometry of ERCOFTAC Conical Diffuser in STEP format.

Fig. 6.27 shows a 3D view of the CAD geometry. The inlet is located at the be-
ginning of the small cylindrical section. In the experiments, an extended version
of the inlet pipe was used to generate a plug flow with a solid body rotation/swirl.
Several 2D and 3D flow computations were submitted to the ERCOFTAC Work-
shop from 1995 to 1997 [?, ?, ?]. More recently, results were presented using
OpenFOAM [?]. Computations reflecting more the experimental set-up were pre-
sented in 2006 [?]. Remarks on the work of this case study were presented
by [?,?]. However, no optimization cases have been reported (to the author’s
knowledge) thus far.

6.3.1 The CFD Mesh

Despite the simplicity of the domain of the ERCOFTAC Diffuser, it is important
to have fine-enough boundary layers due to the swirl of the inlet velocity. The
triangulation algorithm of Chap. 3 is run on the BRep geometry of Fig. 6.27. In
this case, there is no necessity for a Shape Healing algorithm. The background
grid is generated on the geometry using the Delaunay method and the result is
shown in Fig. 6.28.

The size map is then computed for parameters d = 10 and g = 0.1. The
Advancing Front method generates the surface grid (Fig. 6.29). The process re-
quires ~ 1.5 secs on 8 Intel Core i7-6700HQ (2.60 GHz) CPUs and produced 1, 870
triangles averaging at ~ 1300 tris/sec. Similarly to Chap. 6.1, the process was
run in parallel using the OpenMP shared memory parallel programming protocol.
The computational mesh is, then, defined based on the triangulated boundary.
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Figure 6.28: The coarse background grid generated on the ERCOFTAC Diffuser CAD
geometry (Fig. 6.27).
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Figure 6.29: The triangulated ERCOFTAC Diffuser.

6.3.2 Setting up the Parameterization

In order to determine the parameterization, a few constraints must be taken into
account. Firstly, in the exprerimental setup, the swirl is generated via a rotating
honeycomb formation placed prior to the diffuser inlet. Thus, the inlet diameter
must not be changed. Moreover, the assumption is made that the diffuser outlet is
attached on a certain layout which would benefit from the gained static pressure.
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Therefore, the outlet’s diameter must not be changed either. Taking this into
consideration, a choice is made to parameterize only the part of the wall that
corresponds to the conical surface. The relevant NURBS patch along with its
control points can be seen in Fig. 6.30 together with the NURBS basis functions
corresponding to control point (4,2), computed for boundary mesh nodes in its
vicinity.

N(U.v)_{4.2}
0.14 5

Figure 6.30: The ERCOFTAC Diffuser’s along with the control point grid. The color
coding is done for the NURBS basis functions of boundary mesh nodes for control
point (4, 2).

6.3.3 Flow Conditions and Optimization Targets

At the inlet, the average axial velocity is U, ~ 11.6m/s leading to a Reynolds
number of Re ~ 202, 000. According to the experimental data, the inlet is placed
at coordinate x = —25mm, which is 75mm downstream of the swirl generator
and 25mm upstream of the diffuser entrance. At this location the swirl is close to
solid-body rotation with a nearly uniform axial velocity in the core region outside
the boundary layers. The swirl number is W,,,,/Uy = 0.59 where W,,,, is the
maximal circumferential velocity. The velocity profile at the inlet is shown in Fig.
6.31.
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Figure 6.31: The velocity profile at the inlet from two perspectives: a side view (left)
and normal to the inlet (right).

For the other boundary conditions, a zero Neumann condition is imposed for
the velocity at the outlet, while for the pressure, there is a zero Neumann inlet
condition and zero Dirichlet outlet condition.

Initially, a run is made with the target to minimize the total pressure losses
Jpt (Eq. 2.19). Then, a second run is made with the target to maximize the static
pressure gain Jcp between the inlet and the outlet (Eq. 2.21). Finally, a weighted
(SOO0) is run where the target is to maximize .J¢, without allowing an increase in
Jpt greater than 10%.

6.3.4 Minimizing Total Pressure Losses

Initially, an optimization run with the target to minimize the total pressure losses
is made. This is done in order to assess the displacement of the shape and
compare it to the one resulting from the pressure recovery minimization. To
update the design variables as formed by the Geometry Morphing method (Chap.
4), the steepest descent method is used. After 20 optimization cycles, steepest
descent converges to a solution with total pressure losses reduced by 8.6 % (Fig.

6.32). The updated CAD surfaces resulting from this optimization can be seen in
Fig. 6.33.
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Figure 6.32: The convergence history of the total pressure losses minimization.

Figure 6.33: Isometric view of the diffuser CAD model. The original CAD model
along with the non-displaceable surfaces can be seen in transparent grey and those
resulting from the optimization can be seen in red.

6.3.5 Maximizing the Static Pressure Gain

The main objective of a diffuser is to make the flow gain in static pressure between
inlet and outlet. An optimization is, therefore, run with the target to maximize
that static pressure gain. Similarly to before, to update the design variables,
steepest descent is used. After 20 optimization cycles, steepest descent converges
to a solution with a static pressure gain approximately equal to 1.2 % (Fig. 6.34).
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Figure 6.34: The convergence history of the static pressure gain maximization.

The updated CAD surfaces resulting from this optimization can be seen in Fig.
6.35. It is obvious that, for both optimization runs, the design update acts on
the geometry near the inlet. In the case of total pressure losses minimization, the
conical surface tends to shrink, while in the case of static pressure maximization,
the conical surface tends to inflate.

Figure 6.35: Isometric view of the diffuser CAD model. THe original CAD model along
with the non-displaceable surfaces can be seen in grey and the surfaces resulting from
the optimization in transparent red.
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Figure 6.36: Side view of the diffuser CAD model. Coloring as in Fig. 6.35.

6.3.6 Weighted Single Objective Optimization

In this section, a run with both objectives is made. As shown in the previous
sections, the design updates that result from the optimization of each objective,
are of opposite directions. Therefore, a weighted SOO is used. The target here is
to maximize the static pressure gain without allowing a drop in the total pressure
losses which is greater than 10 %. In order to achieve that, the weights are
regulated accordingly. The weighted SOO becomes:

Jsoo = wiJc, + waJpy (6.1)

At each optimization cycle, two adjoint equations are solved to provide two

dJc E)

5 and (;2” t. Then, the SOO sensitivity derivatives are

sensitivity derivatives

dJsoo w dJc, L 0Jpy
ob, b,  °db,

where the weights chosen are w; = —5 and ws = 1.

The pressure gain increased by 0.87 % while the increase in the total pressure
losses was 9.86 %. The decrease in the w-SOO objective was equal to 0.83%. The
convergence history can be seen in 6.37.

(6.2)
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Figure 6.37: The convergence history of the MOO.

As expected, the optimal geometry tends to approach the one resulting from
the run in Sec. 6.3.5, even though the resulting shape is much closer to the
initial geometry (Fig. 6.38). All the geometries of the ERCOFTAC diffuser are in
the standardized Step format (input geometry and the results of the runs). The
CFD simulations performed are in agreement with the experimental data provided.

Figure 6.38: Isometric view of the diffuser CAD model. The baseline CAD model
along with the non-moveable surfaces can be seen in grey and the surfaces resulting
from the optimization can be seen in transparent red.



Chapter 7

Conclusions

This PhD thesis aimed at the development of methods and tools to integrate CAD
within aerodynamic shape optimization workflows through their Boundary Rep-
resentation format. With the methods and algorithms developed in this thesis,
the CAD geometry of a shape to be designed can completely remain inside the
optimization loop. To this end, a discretization method was developed to gen-
erate a grid with triangular elements on the surfaces of CAD models, a method
to parameterize said models by using their BRep and removing any dependency
on any CAD package and, finally, methods to constrain CAD models via their
BRep surfaces. Henceforth, the main remarks and conclusions drawn during this
development are discussed below.

The triangulation tool was developed from scratch by the author in an attempt
to make it completely independent on any CAD package. The prerequisite is
that the geometry of a CAD model becomes available through standard CAD files.
The BRep in these files is treated with caution and a Shape Healing algorithm
is performed to ensure that the model is geometrically and topologically intact.
After Shape Healing, a fast Delaunay triangulation algorithm is used to compute
a coarse (and low quality) background grid and, on it, optimal triangle size met-
rics are computed based on the model’s curvature. Finally, an Advancing Front
algorithm is proposed and programmed to be used in the parametric domain of
each surface to compute the final triangulation which is ultmately differentiated
w.r.t. the BRep design parameters (mostly NURBS control points). Most CAD-to-
surface triangulation algorithms are implemented within commercial CAD pack-
ages which enables them to exploit the underlying parameterization and produce
high quality triangulations. However, the possibility to connect these algorithms
to the adjoint optimization is severed by the fact that the internal parameteriza-
tions of CAD packages are closed-source and, therefore, non-differentiable. The
proposed method overcomes these setbacks and generates high quality triangula-
tions. The triangulation speed is generally high averaging at 1000 to 1500 triangles
per second for the entire process at Intel Core i7-6700HQ CPUs. This includes

145
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both the background grid / size map computation and the Shape Healing. Fur-
thermore, it also includes the parsing of the standard CAD files. The background
grid / size map computation is done analytically and is, therefore, fast. However,
the Shape Healing can become very demanding from a computational point of
view as a low quality CAD model may require the application of the Plate En-
ergy Minimization algorithm multiple times. For this reason, the average speeds
mentioned above are highly satisfactory. Ultimately, a CAD-to-surface grid tool of
adequate quality can become the cornerstone of the entire optimization process
by serving as the foundation on which the computational mesh and the relation
of its boundary to the parameterization are built.

The Geometry Morphing method was developed in order to serve as a reliable
parameterization scheme adapted for gradient-based optimization. CAD-based
parameterizations (commercial or not) are not built to inherently serve shape per-
turbations. Internal CAD parameterizations re-compute the boundary surfaces of
the CAD model when a parameter is changed which created topological disconti-
nuities at a CAD model. BRep on the other hand is comprised by NURBS patches
with trimmed boundaries. These patches are not "aware" of one another (at a geo-
metric level) and their control points must be constrained to move in concert. The
Geometry Morphing method tackles this challenge by imposing Cy and C; conti-
nuity constraints between the NURBS patches of a model. The Jacobian matrix
of all the imposed constraints is then analyzed in order to compute its Null Space
basis which would produce vectors of design variables perturbations that would
satisfy all the constraints. The analysis is done via Singular Vector / Value anal-
ysis. The QR decomposition technique is used for that analysis and is adapted to
this process by including rank-revealing properties to it. The analysis reveals a
number of control points which are constrained by the Null Space basis and some
that are not. Ultimately, the parameters that are used for the shape perturbation
are the unconstrained control points positions and the the Null Space basis pa-
rameters together. This proposed method requires a negligible amount of time to
be employed. In all cases shown in this thesis, the time required to compute the
parameterization along with the exports of the final STEP files ranged anywhere
between 0.3 % to 0.5 % of the runtime for a single optimization cycle (solution
of both primal & adjoint systems). With Geometry Morphing, the CAD can en-
ter the optimization loop through the BRep format. In that sense, the Geometry
Morphing overcomes two major setbacks: (a) The closed-source nature of CAD
packages and (b) the surface continuity issues that would become apparent if the
optimization was standard NURBS.

Both the triangulation method and the Geometry Morphing method can be
used, in a broader spectrum, to accommodate different optimization-related ne-
cessities. For instance, the triangulation tool can serve strictly as a CFD mesh
generation auxilliary tool. The Geometry Morphing method and the usage of the
Null Space projection, can be used in the family of gradient projection methods
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as a more general way to impose constraints. It suffices to say that even if, in this
thesis, the method is implemented for linear constraints, it can also be general-
ized for non-linear ones. Furthermore, the developed software provides a way to
re-define the number of NURBS patches that can move (either decrease them by
defining non-moveable patches or increase them by breaking down a patch into
multiple ones).

A key element of CAD-based parameterization is the imposition of constraints.
Internal CAD parameterizations can accommodate constraints naturally. How-
ever, with BRep, the constraints must be imposed using the surface representa-
tions. Global constraints such as minimum (maximum) volume constraints are
tested and perform adequately. However, point-wise constraints pose problems
as the number of points to which the constraints are imposed become smaller
than the number of design variables. For this reason, a method is proposed to
deduce the number of constraints.

The developed algorithm accurately imposes no-penetration and curvature
constraints for each point on a shape to be designed. The method’s capabilli-
ties are fully tested in cases that range from academic to industrial. This method
proved reliable even in cases where the initial solution does not satisfy the con-
straints (which is a requirement for constraint optimization algorithms such as
S@P). The time required for the quantification of the single resulting constraint
(evaluation and differentiation) is negligible in comparison to the time required to
solve the primal and adjoint problems. The presented algorithm can be used with
any parameterization regardless of the number of design variables. Spline-based
parameterizations have been tested in the form of Volumetric NURBS control
boxes as well as the Geometry Morphing method. In the context of bounding
surface constraints, two types of bounding surfaces were used as constraints:
surfaces that lie inside the shape to be designed and surfaces that lie outside of
the shape to be designed and / or enclose it. The proposed method was able to
handle both cases reliably. This study can be the motivation to address many in-
teresting topics related to bounding surface, curvature or point-wise constraints
in general. One example of using this method is drag minimization for airfoils
which tends to make them thinner. Optimizing a ship’s hull can be another ex-
ample since in certain areas the hull must (to an extent) retain its shape. Lastly,
the implicit integration of inequality constraints, by means of a penalty function,
to generate a single equality constraint has proven to be successful and can be
used in various other geometric constraint formulations such as curvature and
thickness after formulating them as point-wise inequalities.

7.1 Novel Contributions

The novelties presented in this thesis are summarized below:
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e The development of a surface triangulation tool that can be connected di-
rectly and seamlessly to gradient-based optimization is novel. Most trian-
gulation tools either exploit internal CAD parameterizations or do not keep
a link to CAD parameters for optimization purposes.

e A solution to the challenging task of incorporating CAD-based parameteri-
zations within gradient-based optimization workflows is given in this work.
The Geometry Morphing method is a novel approach to handling the BRep
of the models. It is fast and reliable and can be applied to virtually any
geometry.

e The imposition of point-wise constraints during CAD-based optimization is
another novelty of this thesis. The proposed method manages, by means of a
penalty function, to solve constrained optimization problems with more con-
straints than design variables. Traditional constrained optimization meth-
ods assume a priori that the number of design variables are less than the
number of constraints. This would limit the possibility to use control boxes
or NURBS as the number of control points would be much smaller than the
number of imposed constraints.

7.2 Suggestions for Future Work

Some suggestions are made for the extension of the, thus far, presented develop-
ments.

e The triangulation tool can become even faster by improving the paralleliza-
tion scheme. The shared memory scheme that is used means that each
processor is charged with the triangulation of a number of patches, without
taking the complexity of each patch into account. This can result in situ-
ations where some processors finish their jobs faster and then remain idle
while the rest of the processors keep on computing.

e In terms of the Geometry Morphing method, the method for computing the
rank revealing QR decomposition can be improved. In its current state, it is
reliable but can sometimes suffer from numerical inaccuracies.

e Optimization under more point-wise constraints can be done by using the
presented method. Examples can be the thickness of a CAD model at certain
regions and other geometric constraints such the imposition of cylindricality
or parallelism w.r.t. given objects.

e Investigate the imposition of more intuitive constraints like flatness, cylin-
dricity etc. Such constraints are very closely related to a CAD package’s
parameterization. In that sense, it would be very interesting to attempt to
impose such constraints.
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Appendix A

The Watson-Lawson Algorithm

In this appendix, the algorithm of computing a Delaunay triangulation is pre-
sented. The algorithm combines features of both Watson [?] and Lawson [?]
procedures. The Watson procedure introduced the removal of triangles and re-
triangulating the regions where nodes were inserted. On the other hand, the
Lawson procedure introduced edge-flipping. The Delaunay triangulation is cre-
ated by introducing each point (one at a time) into an existing triangulation which
is, then, updated.

The process starts by creating a "supertriangle" i.e. triangle that encloses all
the data points ]5; which are assumed to be available prior to the triangulation. In
the case of parametric domain triangulation, the "supertriangle" must enclose the
entire parametric domain. When a new point ]5; is inserted into the triangulation,
the triangle in which it belongs to is identified and three new triangles are created
by connecting its vertices to é The original triangle is, then, deleted from the
triangle list which means that the net gain of triangles is two. After the insertion of
P and the creation of the new triangles, the triangulation is updated to Delaunay
by using a swapping algorithm. In this, all the triangles which are adjacent to
the edges opposite P are placed in a last-in, first-out stack. Each triangle is then
unstacked, one at a time, and a check is made to determine if P lies inside its
circumcircle. Should this be the case, then the triangle containing P as a vertex
and the adjacent triangle form a convex quadrilateral with the diagonal drawn in
the wrong direction, which must be replaced by the alternate diagonal to preserve
the structure of the Delaunay triangulation. The swapping procedure replaces
two old triangles with two new triangles with no net gain in the triangle list. Once
the swap is completed, any triangles which are now opposite P are added to the
stack. The next triangle is then unstacked and the whole process is repeated until
the stack is empty and this results in a new Delaunay triangulation containing
the point P. An illustration of the swapping procedure is shown in Fig. A.1.
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edge opposite P edges opposite P

adjacent
triangles

/ci‘rcumr;lrclo for

adjacent triangle

Figure A.1: The swapping procedure

Note that if P lies outside (or on) the circumcircle of a stacked triangle, then
no action is taken and the triangle is skipped. It has been shown by Lawson that
this iterative algorithm must result in a Delaunay triangulation and will always
terminate after a finite number of swaps. Typically, only a few levels of swaps
are necessary for each edge which is initially opposite P and the process is thus
efficient. After all necessary points have been added to the triangulation, the final
Delaunay triangulation is obtained by removing all of the triangles that contain
one or more of the "supertriangle" vertices. Any vertex which appears in these
deleted triangles, but is not a supertriangle vertex, must lie on the boundary of
the triangulation. Since the insertion of each new point into the triangulation
creates two new triangles, the final number of triangles, including those formed
with the vertices of the supertriangle, is 2N + 1, where N is the total number of
vertices.



Appendix B

Advancing Front Validity Tests

During the Advancing Front algorithm and the creation of a new triangle, in order
to ensure the quality and the convergence of the triangulation, the new triangle
must pass certain geometric tests. In this appendix, the three tests to which a
new triangle is subjected, are examined.

Assume a Front Edge e with first Front Point A and final Front Point B. Fur-
thermore, assume that a triangle creation is attempted using e and a third Front
Point P .The first test that is made, is the zero area test. This test ensures that the
triangle is not too skinny or inverted which in turn ensures that the Advancing
Front orientation will be proper. For this test, the area of the potential triangle

ABP is computed in the parametric space as

uUup —uUags Up —UA
a = B.1)
VB — VA Up — Vg

If a < 10725 (where s is the optimal size of the triangulation at the midpoint of
AB), then either a is almost zero or a is negative. In the first case, the triangle

will be degenerate and in the second it will be inverted. Therefore, the first test is
a> 10712,

The second test is to check if neighbouring points of triangle ABP are enclosed
by it or lie on it (Fig. B.1). To perform this test, the list of neighbouring points
acquired during the main triangulation algorithm of Chap. 3 is used. If none of
these points are in the triangle or close to its bounds, then test is passed. The
check is done by computing the barycentric coordinates («, [3,7) of a point C' of

the said list w.r.t. A/ED

Q 1 1 1 1
Bl = |ua up up uc (B.2)
Y V4 UB Up (Yo
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The strict form of the test is 0 < (a,
purposes by making it —e < («, 3,7
cases shown in this thesis, ¢ = 107°.

B,7) < 1. In our case it is relaxed for quality
) < 1+ € for some small value of €. In all the

/ \.

Figure B.1: A situation where the second test would fail: The new potential triangle
(blue) encloses at least one Front Point. The triangle is therefore invalid.

The third test is performed in order to identify potential intersections of the
new triangle with neighbouring Front Edges (Fig. B.2). This is necessary to
identify invalidities during which, a Front Edge intersects with two sides of the
new triangle (meaning that the second test will not identify them). The edges
touching the Front Points of the list mentioned above are tested by performing
an edge-to-edge intersection check between them and MP (M is the midpoint
between A and E]. Assuming that the tested edge is CD, the following quantities
are computed

-1
{M} _ |:UP —Uupy Uc — UD:| [uc - UA] (B.3)

Ao Up — Uy Vo — Up Vo — Vg

If 0 < (A, A2) < 1, then the two segments intersect. Therefore, for every tested
edge C'D, it must be true that A; > land \; < 0. Similarly to the second test, these
two conditions are relaxed by a small value ¢ = 107° and they become )\; > 1 — ¢
and \; <e.

/ \.

Figure B.2: A situation where the third test would fail: The new potential triangle
(blue) is not valid because its median line intersects with a Front Edge (both in red).



Appendix C

Point Inversion in Curve, Surface and
Volume NURBS

In various instances throughout this thesis, a 3D point P must be projected to
the parametric domain of a piece of geometry. This can be a surface, a curve or
a 3D hull object during an FFD process. This process is called point inversion
and is basically the minimization of a distance function from the specific piece of
geometry to P.

Assuming that the parametric equations of curves, surfaces and volumes are
given by C'(u), S(u,v) and V (u, v, w) respectively, then the equations to be solved
are

(C(u) = P) - Cy(u) =0 (C.1)
for curves,
(S(u,v) — P) - Sy(u,v) =0 (C.2)
(S(u,v) — P) - Sy(u,v) =0 (C.3)
for surfaces and
Viu,v,w)—P=0 (C.4)

for volumes. In all three cases, © and/or v and/or w denote the parametric coor-
dinates. Similarly to throughout this thesis, u, v, w indexing, denotes parametric
differentiation.

For the cases of curves and surfaces, the dot products with tangent vectors
exist so as to enable easier solution of the equations when P is not directly on
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the geometry. For the case of volumes, this is not necessary because the points
projected are usually part of the hull object.

All three equations are solved using the Newton-Raphson method [?] after
appropriate initialization ug, vy, wy. For Eq. C.1:

Un+1 = Up — Nin—"=

where 7, denotes a line search step and n is the previous iteration number.
Similarly, for surfaces:

where

) vn) + B, (S(

guu(un7 g
Suv(una vn) + Fn (S(

~—

_ (g(un’ Un) -
M, ) = [<§<un,vn> -

\':gl ]l

Up,, Un
un7vn> -

E,. F,, G, are the coefficients of the first fundamental form of the surface at the
parametric coordinates (uy,, v,). Finally, for volumes:

-1

u U Vux(una Un; wn) Vux(una Unu wn) VuZ('u’nu Un; wn) Vx (un> UTL? wn) - Pa:
v == v —77n va(umvmwn) ‘/;;y(u’rwvn»wn) ‘/;}Z(’U,n,l)n,wn) Vy(un7vn7wn) - Py
w n+1 w n Vug;c(unavnawn) Vu%’(un7vn7wn) qu(unavnawn) VZ(Un,Un,U)n) — P

(C.7)

where the exponents x, y, z denote the cartesian directions.
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