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Abstract

Geodesy has greatly advanced since the introduction of artificial, Earth orbiting
satellites. A new era has emerged, where satellite-based data dominate the field,
providing results for a wide range of geodesy-related fields. The use of artificial
satellites in geosciences however requires a comprehensive knowledge of the satel-
lite motion under the influence of all acting forces as well as the description of the
satellite trajectory in suitable reference frames. Thus exploitation of satellite-based
observations is inherently coupled with the complex problem of orbit determina-
tion, a problem that lies in the core of satellite geodesy since its inception.

To-date, Precise Orbit Determination (POD) is dominated by three space
geodetic techniques, namely Satellite Laser Ranging (SLR), Global Navigation
Satellite System (GNSS) and Détermination d’Orbite et Radiopositionnement In-
tégré par Satellite (Doppler Orbitography and Radiopositioning Integrated by
Satellite) (DORIS), which additionally, via the corresponding Technique Centers,
provide the input data time series of station positions and Earth Orientation Pa-
rameters (EOP) for the realization of the International Terrestrial Reference Frame
(ITRF).

Despite its prominence and significance in the field of satellite geodesy, DORIS
has failed to allure a dedicated scientific audience comparable in size to the other
techniques. The shortage of dedicated IDS analysis centers, is indicative of the
limited availability of dedicated software solutions designed to handle DORIS data,
particularly for the purpose of orbit determination.

In the framework of the current Thesis, the scarcity of dedicated DORIS analy-
sis tools for orbit determination is targeted, with the aim of creating a high quality,
scientific software solution. Specifically, the software package is non-proprietary
and open-source, adaptable and extensible to meet the demands of scientific com-
munity, implements state-of-the-art algorithms and methodologies and is designed
using modern programming patterns and paradigms.
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The software is built in a modular fashion. The various components are or-
ganized in different, independent, moderate-sized libraries, targeting well defined
problems. Various different implementations are put to the test and robust al-
gorithmic approaches are constructed based on criteria of accuracy and efficiency
(computing speed and resources).

Given the complexity of the problem and the inherent limitations of a thesis,
both in terms of time and resources, the objective of the current study is not to
attain the highest possible accuracy achievable by the IDS Analysis Centers. In-
stead, the focus is on developing a brand-new toolset from scratch, which can serve
as a foundational component towards achieving that goal. The envisioned toolset,
with some additional fine refinements, has the potential to form the backbone of
a state-of-the-art, DORIS POD analysis pipeline.

Using the toolset developed, an orbit determination analysis scheme was de-
signed and tested using the Joint Altimetry Satellite Oceanography Network (JA-
SON)-3 satellite mission, using a high quality reference orbit for validation. Posi-
tion differences range within a few meters for one day, while velocity discrepancies
are in the order of a few millimeters per second.

These results show that the software package developed can serve as a building
block for a high quality DORIS analysis software solution. Conclusions and recom-
mendations for further enhancements and refinements are supplied to eventually
reach the goal set.
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Περίληψη

Η επιστήμη της Γεωδαισίας έχει κάνει μεγάλα άλματα προόδου μετά την εισαγωγή

των τεχνητών δορυφόρων που βρίσκονται σε τροχιά γύρω από τη Γη. Σε αυτή

τη ’νέα εποχή’, τα δεδομένα που προέρχονται από δορυφορικές αποστολές παίζουν

σημαίνοντα ρόλο στο ευρύτερο γνωστικό πεδίο, προσφέροντας σημαντικά αποτελέσ-

ματα σε ένα ευρύ φάσμα γεωεπιστημών. Η χρήση όμως τέτοιων δεδομένων, είναι

συχνά συνυφασμένη με την περιγραφή της δορυφορικής κίνησης και των δυνάμεων

που την επηρεάζουν, σε κατάλληλα, υψηλής ακρίβειας χωρικά και χρονικά συστήματα

αναφοράς. Συνεπώς, η εκτίμηση των δορυφορικών τροχιών αποτελεί ένα θεμελιώδες

πρόβλημα στην σύγχρονη γεωδαισία.

Η εκτίμηση υψηλής ακρίβειας δορυφορικών τροχιών, γίνεται κυρίως με χρήση

τριών συστημάτων και συγκεκριμένα του SLR, τουGNSS και τουDORIS. Οι τεχνικές

αυτές, συμβάλουν καταλυτικά και στην υλοποίηση των σύγχρονων παγκόσμιων συστη-

μάτων αναφοράς (π.χ. ITRF).

Παρά τη σημαντική συμβολή και την εξέχουσα θέση που καταλαμβάνει τις τελευ-

ταίες δεκαετίες, το σύστημα DORIS δεν έχει έως τώρα προσελκύσει το ανάλογο

επιστημονικό κοινό και συνεπώς μια κατάλληλη υπολογιστική πλατφόρμα λογισμικού

για την εκμετάλλευση των δυνατοτήτων που μπορεί να προσφέρει. Ενδεικτικός είναι

ο μικρός αριθμός εξειδικευμένων κέντρων ανάλυσης, ειδικά σε σχέση με τις λοιπές

τεχνικές προσδιορισμού τροχιών.

Με αφορμή την έλλειψη αυτή, στο πλαίσιο της παρούσας Διδακτορικής Διατριβής,

επιχειρείται ο σχεδιασμός και η ανάπτυξη μια δέσμης λογισμικών εργαλείων επιστη-

μονικής ποιότητας, για την επεξεργασία δεδομένων DORIS και δη για τη χρήση

δεδομένων καταγραφής του συστήματος για την εκτίμηση δορυφορικών τροχιών.

Τα υπολογιστκά εργαλεία που αναπτύχθηκαν είναι ελεύθερα διαθέσιμα στην επιστη-

μονική κοινότητα, ακολουθώντας την πολιτική του ’ανοιχτού κώδικα’, προσαρμόσιμα

και επεκτάσιμα για να ανταποκρίνονται σε ερευνητικές απαιτήσεις υψηλής ακρίβειας,

περιλαμβάνοντας τους πλέον σύγχρονους αλγορίθμους και μεθοδολογίες. Ο σχεδι-
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ασμός και η υλοποίηση ακολουθεί και υιοθετεί σύγχρονα προγραμματιστικά πρότυπα.

Η διάρθρωση της εργαλειοθήκης που αναπτύχθηκε, αποτελείται από ανεξάρτητα

’πακέτα’ (ή βιβλιοθήκες), καθένα εκ των οποίων έχει σαφώς καθορισμένη στόχευση.

Με τον τρόπο αυτό, τα ξεχωριστά κομμάτια συγκρατούνται σε εύκολα διαχειρίσιμα

μεγέθη, καθιστώντας το πακέτο ιδανικό για χρήση από την επιστημονική κοινότητα

σε ένα ευρύ φάσμα εφαρμογών.

Τα τρέχοντα διεθνή, υψηλής ακρίβειας πρότυπα μοντελοποίησης έχουν ακολου-

θηθεί αυστηρά, σε μία σειρά προβλημάτων που αφορούν ενδεικτικά: τις δυνάμεις που

επιδρούν σε τεχνητούς δορυφόρους γύρω από τη γη, την ίδια κίνηση της γης, τα

χωρικά και χρονικά συστήματα αναφοράς, την αριθμητική επίλυση διαφορικών εξ-

ισώσεων. ΄Οπου χρειάστηκε, δοκιμάστηκαν και αξιολογήθηκαν διαφορετικές μέθοδοι

και εν συνεχεία προσαρμόστηκαν και επεκτάθηκαν με βάση κριτήρια ακριβείας και υπ-

ολογιστικού φόρτου. Αξίζει να σημειωθεί ότι το λογισμικό εστιάζει σε μία μοντέρνα,

καινοφανή προσέγγιση επεξεργασίας δεδομένων DORIS υποστηρίζοντας τις τελευ-

ταίες εξελίξεις τις τεχνικής όπως π.χ. η υιοθέτηση του μορφότυπου ανταλλαγής δε-

δομένων DORIS RINEX, η διαχείριση δεδομένων φέροντος κύματος (carrier phase)
καθώς και η δυνατότητα επεξεργασίας δεδομένων σε σχεδόν πραγματικό χρόνο.

Δεδομένης της πολυπλοκότητας του προβλήματος και των περιορισμών που τί-

θενται σε μία Διδακτορική Διατριβή, ο σκοπός της παρούσας δεν είναι η ανάπτυξη

ενός λογισμικού που θα φτάσει τα επίπεδα ποιότητας που αυτή τη στιγμή πετυχαίνουν

κέντρα ανάλυσης εγνωσμένης αξίας, με δεκαετίες εμπειρίας και μεγάλες ερευνητικές

ομάδες υποστήριξης (IDS). Ο στόχος που τέθηκε είναι η δημιουργία μιας καινούριας,

σύγχρονης εργαλειοθήκης που θα μπορεί να παίξει το ρόλο του θεμελιώδους δομικού

στοιχείου για την επίτευξη τέτοιων ακριβειών στο άμεσο μέλλον. Με μικρές, σαφώς

ορισμένες βελτιώσεις, εκτιμάται ότι το πακέτο που σχεδιάστηκε για την παρούσα

Διατριβή μπορεί να υπηρετήσει το ρόλο αυτό.

Για τον έλεγχο της ποιότητας του πακέτου που σχεδιάστηκε, αναπτύχθηκε ένα

πρόγραμμα για τον προσδιορισμό της τροχιάς της δορυφορικής αποστολής JASON-

3. Οι εκτιμήσεις θέσης και ταχύτητας του δορυφόρου που προέκυψαν, για μία η-

μέρα ενδεικτικά, συγκρίθηκαν με αντίστοιχα αποτελέσματα της υψηλότερης δυνατής

ακρίβειας από την CNES/SSALTO. Οι διαφορές που προέκυψαν είναι της τάξης των

λίγων μέτρων και των λίγων χιλιοστών ανά μέτρο για την θέση και την ταχύτητα

αντίστοιχα.

Τα αποτελέσματα υποδεικνύουν ότι η εργαλειοθήκη που σχεδιάστηκε και αναπ-

τύχθηκε μπορεί να αποτελέσει το κύριο δομικό στοιχείο ενός προγράμματος επεξερ-

γασίας δεδομένων doris, ποιότητας εφάμιλλης των κέντρων ανάλυσης της τεχνικής.
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Chapter 1

Introduction

1.1 Review and Motivation

Geodesy has greatly advanced since the introduction of artificial, Earth orbiting
satellites. A new era has emerged, where satellite-based data dominate the field,
providing results for a wide range of geodesy-related fields, including but not lim-
ited to positioning, reference frames, altimetry and gravity field determination.
Nowadays, space geodetic techniques, provide a unique opportunity to monitor
and, therefore, understand the processes and feedback mechanisms of the Earth
system with unparalleled precision and resolution.

The use of artificial satellites in geosciences has some prerequisites though;
these are basically a comprehensive knowledge of the satellite motion under the
influence of all acting forces as well as the description of the satellite trajectory
and ground stations in suitable reference frames, both spatial and temporal. Thus
exploitation of satellite-based observations is inherently coupled with the complex
problem of orbit determination, a problem that lies in the core of satellite geodesy
since its inception.

Satellite orbit determination is the process by which knowledge of the satellite’s
motion relative to the center of mass of the Earth in a specified coordinate system
can be obtained (Tapley et al. 2004b). Its contribution can be broadly grouped in
a twofold role:

As a product (i.e. tabulated satellite coordinates and/or velocity) it is needed
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for most spaced-based applications. Knowledge of satellite position (or state)
is a prerequisite for most applications and in general dictates the quality of
the application’s outcome. It should be noted that despite the extended
demand for accurate satellite coordinates in recent years (mainly due to
GNSS), the product list is by no means exhausted here; several other esti-
mates constitute orbit determination products, as are e.g. earth orientation
parameters, crucial for reference frame studies.

As a field of study , it enables the testing, validation and improvement of mod-
els and theoretical aspects for various scientific disciplines, geodesy being the
first and foremost beneficiary.

Orbit determination is by no means a homogeneous, non-deviating pattern;
satellite dynamics, orbit characteristics, parameter quality and product latency as
well as observation method/system, all play a significant role in making key strate-
gic choices. On top of that, one must make optimal decisions between models and
methodologies, design and implementation, in an ever-upgrading, multi-discipline
field.

To-date, POD is dominated by three space geodetic techniques, namely SLR,
GNSS and DORIS, which additionally, via the corresponding Technique Centers,
provide the input data time series of station positions and EOP for the realiza-
tion of the ITRF 1. Along with Very Long Baseline Interferometry (VLBI), these
techniques constitute the fundamental pillars of modern satellite geodesy.

DORIS is a technique whereby satellites receive the broadcasted signal trans-
mitted by ground beacons. Using the measured Doppler shift, DORIS can accu-
rately determine the orbit of the satellite, Earth rotation and station coordinates
that can be used in different geodetic applications (e.g. Lemoine et al. 2016, Gam-
bis 2006 and Kur et al. 2022). State-of-the-art POD analysis, can deliver accuracies
in the centimeter level in the radial direction (Rudenko et al. 2023).

DORIS has played a crucial role in expanding geodetic knowledge and enhanc-
ing our understanding of the Earth’s dynamics since its introduction in the late
1980s. The technique is anticipated to continue to enhance its significant role in the
field of satellite geodesy through endeavors such as the Surface Water and Ocean
Topography (SWOT) and GENERIS missions. The SWOT mission, launched in
December 2022, aims to carry out the first-ever global survey of Earth’s surface
water (Biancamaria et al. 2016). Additionally, the GENESIS platform, employ-
ing "space-ties," is expected to solve inconsistencies and biases between different

1ITRF2020, https://itrf.ign.fr/en/solutions/ITRF2020
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geodetic techniques, ultimately improving TRF accuracy and stability (Delva et
al. 2023).

1.2 Problem Statement and Objective

Despite the DORIS prominence and significance in the field of satellite geodesy,
it has failed to allure a dedicated scientific audience comparable in size to the
other two techniques. For the most recent realization of ITRF, the International
Laser Ranging Service (ILRS) contributed data from 7 Analysis Centers (Pavlis
et al. 2023), International GNSS Service (IGS) from 10 (Rebischung 2021), while
at the same time the IDS’s contribution was derived from only 4 Analysis Centers
(Moreaux et al. 2022). This shortage of dedicated IDS analysis centers, is indicative
of the limited availability of dedicated software solutions designed to handle DORIS
data, particularly for the purpose of orbit determination.

POD is a very challenging task, requiring multi-scientific expertise, coupled
with efficient engineering. Building a software tool to perform POD matching
the highest accuracy levels assumes expertise, a dedicated scientific group and
years of development. Most, if not all, of the currently available software packages
to perform POD using DORIS data (e.g. GEODYN (Beal 2015, GINS (CNES
2013) and Bernese (Štěpánek et al. 2010)) have evolved over decades of continuous
development. Important issues though come into play:

• These packages are either not free and/or not open souce; hence it is not
easy, if possible at all, for the scientific community to use them.

• They are not easily adaptable and/or extensible to meet user needs (e.g. due
to not being open source, or due to their sheer codebase size).

• They do not comply with modern programming patterns and paradigms.
Maturity often comes at a price, and in this case this is having to comply
with legacy codebase.

In the framework of the current Thesis, the scarcity of dedicated DORIS analy-
sis tools for orbit determination is targeted, with the aim of creating a high quality,
scientific software solution. Designing for extensibility, reusability and adaptabil-
ity, and adhering to a free and open source policy, an as large as possible impact is
sought for in the scientific community. Coupled with recent advancements in the
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technique (e.g. adoption of the RINEX format, dissemination of non-preprocessed
data including carrier phase observables, introduction of next generation receivers
and beacons) all of which are incorporated in the software built, we hope to spur
further, renewed interest in this fundamental area of satellite geodesy.

Given the complexity of the problem and the inherent limitations of a thesis,
both in terms of time and resources, the objective of the current study is not to
attain the highest possible accuracy achievable by the IDS Analysis Centers. In-
stead, the focus is on developing a brand-new toolset from scratch, which can serve
as a foundational component towards achieving that goal. The envisioned toolset,
with some additional fine refinements, has the potential to form the backbone of
a state-of-the-art, DORIS POD analysis pipeline.

Since DORIS receivers are on-board Low Earth Orbit (LEO) satellites (e.g.
altimetry oriented missions), focus is placed in implementing models and method-
ologies targeted towards LEO satellites. However, care is taken to not place un-
needed constraints on the software, so that later enhancements can easily broaden
the application range to other trajectories.

Furthermore, the software should be designed in a manner that could easily
accommodate a near-real-time processing scheme, since it is currently possible to
to acquire DORIS data with a latency of a few hours2 (see e.g. Wang et al. 2022).
Hence, algorithmic design and implementation, as well as efficiency and resource
awareness are all topics to be considered.

1.3 Methodology and Implementation

To accomplish the Thesis objectives, a brand new software toolset was designed and
implemented from scratch. The software is built in a modular fashion. The vari-
ous components are organized in different, independent, moderate-sized libraries,
targeting well defined problems. This scheme allows for extensive and thorough
testing and validation of the different parts of the package, a vital part of modern
software design (e.g. Oberkampf and Roy 2010, Meyer 2008). Additionally, it en-
ables customization according to user needs and accommodates extensibility and
maintainability. The aforementioned attributes are crucial when targeting an anal-
ysis tool that meets the demanding accuracy requirements of IDS, as such software
packages are constantly evolving to incorporate the most recent and cutting-edge

2IDS Working Group “NRT DORIS data” https://ids-doris.org/organization/
working-group-nrt-doris-data.html
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scientific advancements.

In practical terms, this design approach facilitates the development of straight-
forward, customizable, and easy to reason about source code, tailored to the spe-
cific application requirements, without necessitating a comprehensive understand-
ing of the entire codebase’s intricacies. For example, the source code for orbit
determination using daily RINEX files for JASON-3 presented in section 6.6, is
only a few hundreds of lines long. Adapting the scheme to process data from a
different LEO satellite would only consist in adding the respective macromodel
and attitude determination options.

Changing the Earth’s gravity model, e.g. for testing or validation purposes,
would only incur a change in the respective line of the configuration file (given that
a corresponding data file is available via International Centre for Global Earth
Models (ICGEM), a condition met by all modern models).

State-of-the-art models and methodologies are used, adhering to the latest
standards and recommendations (e.g. International DORIS Service 2020, Petit
and Luzum 2010). Extensions and modifications are derived and applied where
needed. Various different implementations are put to the test and robust algo-
rithmic approaches are constructed based on criteria of accuracy and efficiency
(computing speed and resources).

Implementing sophisticated and complex models poses a significant challenge,
requiring a rigorous comprehension of the theoretical implications on one hand, and
robust engineering practices on the other. The path taken here, is to follow mod-
ern software design patterns, including principles of data-oriented design (Fabian
2018), coupled with the well established object-oriented pattern, while also taking
advantage of modern features such as generic programming via template metapro-
gramming (e.g. Gawlik et al. 2018). Given that most scientific software packages
were built a few decades back, this design constitutes a novel approach in software
tools for the given problem set.

Multi-threading and parallel processing techniques are used, taking advantage
of “standard libraries”, hence no external tool is needed, minimizing dependencies,
third-party limitations and compliance constraints.

Near-real-time processing capabilities are embedded into the software through
meticulous design. To accommodate such possibility, care is taken during the
design and implementation phases to proceed in an iterative fashion, and not
consume any resources further than the ones needed at the current step. Data
pre-processing requirements are limited down to minimum. Data files, which pose
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a serious challenge due to their size, are incrementally mapped to memory (resem-
bling in essence a streaming process) so that only the information relating to the
current time interval is needed at each step.

1.4 Significance and Novelties

This Thesis addresses a fundamental problem in satellite geodesy that is crucial
for utilizing Earth-orbiting satellites to study the Earth system. In doing so, it
introduces novel approaches and validates state-of-the-art methodologies. Accu-
rate knowledge of satellite position is critical for space-based applications, making
orbit determination a problem of utmost significance.

Building a software tool for a fundamental yet not too popular amongst the
scientific community technique such as DORIS, the aim is to create a brand new,
modern toolset, to spur further interest and explore further the system’s capabili-
ties and limitations. The prominence of the technique is evident by its involvement
in some of the most ambitious space geodesy missions to come (e.g. SWOT and
GENESIS), thus dedicated analysis packages will play a major role in years to
come.

Adopting a free and open-source policy, can create a new, extended, high-
expertise user base, which in turn will push for further technique enhancements.

Focal points addressed and novelties introduced in this Thesis, are the follow-
ing:

• Processing of the newly established DORIS RINEX data. This new for-
mat replaces the older doris.v2.2 file format, enabling the dissemination of
new observation types and products. Effort has been made to accommo-
date the complete parsing of all available observation types. Additionally,
linear combinations and corresponding antenna reference point eccentrici-
ties are (optionally) constructed and used for the formulation of observation
equations. This generic design (in which no certain linear combination and
reference point is hard-coded within the software) enables user flexibility and
accommodates novel processing approaches.

• Capability of processing carrier phase measurements (instead of the current
practice in which only Doppler counts are used). Currently, this constitutes
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an experimental approach within the DORIS technique (e.g. Mercier et al.
2010).

• A modern view on software design and software engineering principles ap-
plied. This includes the emerging, so called data-oriented design paradigm,
usage of generic template metaprogramming techniques, and adoption of well
established programming tools in the scientific community, including the C++
and Python3 programming languages (e.g. also adopted for the development
of GipsyX/RTGx, see Bertiger et al. 2020).

• Capacity to process DORIS data in a near-real-time fashion. To the author’s
best knowledge, no Analysis Center is currently performing near-real-time
analysis (except for the operational on-board receiver systems).

• Implementation of in-house strategies and techniques to tackle intricate is-
sues and methodologies. Two examples are orbit integration (section 3.4),
where state-of-the-art methods were adapted and rigorously implemented
to fit current needs and computation of Earth’s gravity acceleration (sec-
tion 2.2.3), where numeric and analytic derivations were performed to im-
plement an efficient yet accurate computation algorithm.

• Adoption of a free and open-source policy, developing source code in the
public domain and making it instantly and unambiguously available to any
interested party.

1.5 Organization of the Thesis

The layout of the Thesis, includes seven chapters. The second chapter (chapter 2)
serves to introduce fundamental concepts in astrodynamics that are necessary for
understanding the subject matter. Perturbed satellite motion is discussed and
state-of-the-art approaches for modeling perturbation forces acting on Earth or-
biting satellites are presented along with implementation details. Spatial and tem-
poral reference frames are then introduced, to efficiently describe orbital motion.

Chapter three (chapter 3), provides a comprehensive review on orbit integration
, focusing on numerical integration of orbital motion using the special perturbations
approach. An efficient yet robust integrator is derived, to be used in a POD
analysis scheme.

In Chapter four (chapter 4), an overview of POD concepts is given, with special
attention on the Extended Kalman Filter and the linearization of the (non-linear)
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perturbed orbital trajectory model. Consequently, efficient representation and
formulation of the variational equation system is discussed, a fundamental yet
complex problem for high accuracy orbit determination.

The DORIS technique is introduced in Chapter five (chapter 5). The tech-
nique’s principle is presented, along with the instrumentation used and details on
the ground segment, including the tracking network. Derivation of the observa-
tion equation model, theoretical implications, error sources and mitigation are also
discussed. Implementation details and considerations conclude this chapter.

Chapter six (chapter 6) commences by outlining the software developed specif-
ically for this Thesis. The subsequent sections of the chapter detail the rigorous
testing and validation process undertaken for the tools constructed, utilizing ac-
tual DORIS data collected during the JASON-3 satellite mission over a duration
of one day. Results obtained are checked against high-quality reference results.
Differences with respect to the reference solution are thoroughly examined and
reasoned about.

The last Chapter (chapter 7) of the Thesis discusses conclusions drawn from
the work performed and recommendations for further research activities and re-
finements of the software tools built.

The Thesis also includes two appendices; the first discusses a formulation of
the system of variational equations, while the second provides a short introduction
in the concept of quaternions focused on their usage for attitude representation.
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Chapter 2

Fundamental Astrodynamics

2.1 Introduction

Orbital motion for Earth orbiting satellites, is dominated by the Earth’s attraction
on the space vehicle. In the absence of all other forces, and assuming point-like
gravitational attraction the trajectory would follow a Keplerian orbit. While this
approximation is the starting point for orbital mechanics, it does not suffice for
modern requirements of POD.

The complex force model acting on satellites must be efficiently modeled to
derive robust results required for geodetic studies. The growing number of satel-
lite missions, the technological advance coupled with an ever increasing quantity
and quality of data sets available, and the quest for understanding complicated
dynamics and underlying processes (e.g. density variations in high atmosphere)
affecting and describing satellite motion, have resulted in sophisticated, high ac-
curacy models.

Describing (in mathematical terms) and computing trajectories assumes the
introduction of spatial and temporal reference systems, ones that are defined and
realized in a precision level appropriate to accommodate modern day POD analysis.
Transforming back and forth between such frames to fit computation and modeling
requirements is frequent within a POD analysis chain, hence such transformation
should be efficient and precise.

In an effective POD analysis, such models have to be carefully considered and
implemented, a task that raises both analytical and engineering challenges.
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2.1.1 Goals of the Chapter

In this chapter the fundamental concepts of celestial mechanics are presented, in
an approach oriented towards POD for LEO satellites. Starting from fundamental
Keplerian motion, orbital perturbations are introduced, as well as the underlying
perturbing forces. State-of-the-art models for computing induced accelerations
are discussed and their design, implementation and validation are given in detail.
Through a thorough examination of the perturbing forces, especially those relevant
to geodesy (e.g. Earth’s gravity field, Earth tides, etc) recent developments in the
field are reviewed as well as their weaknesses, limitations and strengths.

The goal of this discussion, is to derive efficient and robust algorithms, for com-
puting perturbing accelerations, using the most recent models, altering, adapting
and re-formulating on the way according to application needs and problem con-
straints.

A presentation of the spatial and temporal reference systems and their real-
izations follows, based on the most recent, international standards. Since orbital
motion has to be expressed in an inertial reference frame, but a number of mod-
eling techniques (e.g. spherical harmonics expansions) usually assume a reference
system co-rotating with the Earth, transforming between systems is customary
in POD. The latest International Astronomical Union (IAU) standards for such
transformations are presented, with the aim of deriving algorithmic implementa-
tions serving efficiency and robustness.

2.2 Orbital Mechanics

2.2.1 The Two-Body Problem

The main features of the motion of artificial satellites can be described by a reason-
ably simple approximation, due to the fact that the force induced by the Earth’s
gravity field outrules all other forces by several orders of magnitude. Assume that
the masses are spherically symmetrical, thus acting like point masses, and isolated,
so the only force acting is gravitational attraction along the line joining the centers.
The problem of predicting the orbit of the masses, given the described setup, is
usually referred to as the Two-Body Problem (or Kepler Problem since the attract-
ing force is gravity) and lies in the core of celestial mechanics. The solution can
be expressed as a Kepler orbit, using six orbital elements (see subsection 2.2.2).
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In the case of an Earth orbiting satellite, it can safely be assumed that the mass
of the satellite m, is insignificant compared to Earth’s mass MC, i.e. m ! MC,
(thus considering what is often called a central-force problem). The acceleration
of the satellite :r is given by Newton’s law of gravitational attraction

:r � �GMC

r3
r (2.1)

A full treatment of the Two-Body Problem is beyond the scope of this Thesis
and well documented in e.g. Curtis 2014 and Chobotov 2002. It can be shown that
the path of the satellite, relative to the Earth, is a conic section (ellipse) whose
shape is determined by the eccentricity. Using the laws of conservation of angular
momentum and energy, the period of the elliptic orbit can also be deduced (see
e.g. Curtis 2014).

The Two-Body Problem results in what is called the Keplerian orbit. In this
ideal case, a set of six parameters is required to uniquely identify a specific orbit.
This parameter set in not unique (there are different ways to mathematically
describe the same orbit), but the most oftenly used set is the Keplerian elements
(see subsection 2.2.2).

2.2.2 Orbital Elements

A total of six independent parameters are needed to unambiguously define an
arbitrary and unperturbed orbit at some instant t in time. Two parameters, ec-
centricity e and angular momentum h (or alternatively the semi-major axis, α)
define the form of the orbit. To locate a point on the orbit we need a third
parameter, the true anomaly θ. Describing the orientation of the orbit in three
dimensions requires three additional parameters, inclination i, argument of perigee
ω and right ascension of the ascending node, Ω. These six parameters are called
the orbital or Keplerian elements1 (see Figure 2.1 and Figure 2.2).

α : the semi-major axis (sometimes h, the specific angular momentum is
used instead),

i : inclination,

Ω : right ascension of the ascending node,
1There exist alternate sets of (six) parameters that can uniquely define the orbit, but this

set is by far the most widely used in celestial mechanics.
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Figure 2.1: Geometry of orbital elements.

e : eccentricity,

ω : argument of perigee,

θ 2.: true anomaly (sometimes M , the mean anomaly is used instead)

Ω, ω and i, which define the orientation of the orbit in space, are sometimes
called Euler angles. Given these six elements, it is always possible to uniquely
calculate the state vector, that is the three spatial dimensions defining the position�
x y z

�
in a Cartesian coordinate system, and their corresponding velocities�

9x 9y 9z
�
.

A real orbit and its elements change over time due to various perturbations (see
subsection 2.2.3). A Kepler orbit is an idealized, mathematical approximation
of the orbit at a particular time. To avoid confusion, we are going to adopt
the distinction of orbital elements sets proposed by Vallado 2001 and distinguish
between the following cases:

two-body elements are the elements derived from or used with the two-body equa-
tions of motion,

2True anomaly is often designated with the letter ν of f , but here we are following the
notation θ
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Figure 2.2: Orbital Elements Ω, ω and i

osculating elements are the instantaneous elements, under the influence of per-
turbations, and

mean elements are the elements obtained when averaging the effect of perturba-
tions over a specified time interval

Mathematical formulae to transform between state vector and orbital elements
can be found in relevant literature. In the software developed for this Thesis,
the methodology described in Montenbruck and Gill 2000 is adopted and imple-
mented.

2.2.3 Perturbed Motion

The Two-Body problem (subsection 2.2.1) is the basis for most trajectory prob-
lems, due to (Hintz 2016):

1. the relative two-body problem can be solved analytically,

2. it is often a good approximation to the real solution (central body gravita-
tional force is dominant compared to perturbing forces),

3. provides a clear and illustrative picture of the situation, and

4. it can be used as a reference trajectory for precise orbit determination tech-
niques
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In real world, a satellite orbiting the Earth departs from the Two-Body problem
scenario; neither is the system isolated, acting only on mutual gravitational attrac-
tion, nor can the gravitational attraction of the Earth be attributed to a point-like
mass. The force field acting on the satellite in this case, has to be augmented
to account for forces other than the ones considered in the Two-Body problem.
As a result, satellite orbits are perturbed away from Keplerian orbits, making the
actual motion follow a complex, “disturbed” trajectory. In POD, effects other than
a spherical Earth central gravitational attraction are treated as perturbations of
the hypothetical unperturbed motion of the satellite around the Earth.

A perturbing force can either be conservative (e.g. third body attraction)
or non-conservative (e.g. atmospheric drag). Systems driven by conservative
forces have a constant total energy (kinetic and potential), whereas in the non-
conservative case, energy may be gained or lost mainly through heat exchange
(friction) or external sources (thrust). Conservative forces are derivable from a
scalar function

F � �∇Uprq (2.2)

a fact that will be used later on, when dealing with perturbing forces.

The fundamental problem in perturbation analysis is orbit propagation. Unlike
the Two-Body case, the most accurate way to analyze perturbations is numerically
(Vallado 2001). In general, solution techniques for the perturbation problem fall
into two categories

Special perturbation techniques where numerical integration of the equations
of motion is performed, including all necessary perturbing accelerations, and

General perturbation techniques where analytical approximation and inte-
gration s considered, over some time interval

In this Thesis, the problem of perturbed orbit motion will be approximated
using special perturbation techniques. This approach is more recent (compared
to the general perturbation approach), since it requires significant computational
power. To-date, with the limitations on computing power pretty much raised, a
new era in analyzing perturbations has emerged. A drawback of this technique, is
its specificity; new data means new integration, which can add lengthy computing
times. Additionally, as most numerical methods, it suffers from errors that build
up with truncation and round-off due to floating point arithmetic. These errors
build up with the lengthening of integration intervals, and can cause a degradation
of the solution accuracy. Even so however, they offer significantly better accuracy
than the analytical approach. A nice overview of both approaches is given in ibid.
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In the following, the Force Model acting on an Earth orbiting satellite is dis-
cussed, departing from the Two-Body problem.

Geopotential

In the two-body problem (subsection 2.2.1) a radially symmetric gravity force was
assumed, acting like a point mass. For POD however, this assumption needs to be
replaced by a model closer to a real world scenario. As known, the Earth is not a
perfect sphere, but rather resembles an oblate spheroid, with different equatorial
and polar diameter. To derive a more realistic model, it is convenient to use
an equivalent representation involving the gradient of the corresponding gravity
potential U (Montenbruck and Gill 2000):

:r � ∇U where U � GMC

1

r
(2.3)

so that F � �BUBx BU
By

BU
Bz
�
This formulation enables the replacement of the three

components of the vector F by a single function U , thus simplifying notation
and further developments. The geopotential is widely used in geodesy (see e.g.
Hofmann-Wellenhof et al. 2005).

Given an arbitrary mass distribution, the individual elementary mass contri-
butions dm � ρpsqd3s can be summed, and thus the potential be expressed as:

U � G

»
ρpsq

‖r � s‖ d
3s (2.4)

where r is the vector from the mass center to the attracted body (i.e. satellite)
and s is the geocentric vector the elementary mass dm.

For any point r outside the mass, r ¡ s, the inverse of the distance can be
expanded using a series of Legendre polynomials, as

1

‖r � s‖ �
1

r

8̧

n�0

�s
r

	n
Pnpcos γq (2.5)

where cos γ � r�s
rs

(the angle between r and s) and Pnpuq is the Legendre poly-
nomial of degree n. Making use of the addition theorem of Legendre polynomials
(Montenbruck and Gill 2000):

Pnpcos γq �
ņ

m�0

p2� δ0mqPnmpsinφqPnmpsinφ1q cosm pλ� λ1q (2.6)
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with Pnm the associated Legendre polynomials of degree n and order m and
�
φ λ

�
and

�
φ1 λ1

�
being the longitude and geocentric latitudes of points r and s respec-

tively.

The Earth’s gravity potential can now be written as:

Upr, φ, λq � GMC

r

8̧

n�0

ņ

m�0

�
RC

r


n
Pnmpsinφq pCnm cosmλ� Snm sinmλq (2.7)

with coefficients:

Cnm � 2� δ0m

MC

pn�mq!
pn�mq!

» �
s

RC


n
Pnmpsinφ1q cosmλ1ρpsq d3s

Snm � 2� δ0m

MC

pn�mq!
pn�mq!

» �
s

RC


n
Pnmpsinφ1q sinmλ1ρpsq d3s

(2.8)

which describe the dependence on the Earth’s internal mass distribution. In geode-
tic applications, the normalized geopotential coefficients C̄nm and S̄nm, are most
often used, and defined as"

C̄nm
S̄nm

*
�
d

pn�mq!
p2� δ0mq p2n� 1q pn�mq!

"
Cnm
Snm

*
(2.9)

which are much more uniform in magnitude, thus helping reduce round-off errors.
Note that the coefficients Cnm and Snm are often called Stokes’ coefficients, e.g.
Barthelmes 2018.

The acceleration due to the Earth’s gravity potential can now be written as
(Montenbruck and Gill 2000)

:rpr, φ, λq � ∇GMC

r

8̧

n�0

ņ

m�0

�
RC

r


n
P̄nmpsinφq

�
C̄nm cosmλ� S̄nm sinmλ

�
(2.10)

where the normalized associated Legendre functions are used

P̄nm �
d
p2� δ0mq p2n� 1q pn�mq!

pn�mq! Pnm (2.11)

Gravity Models Earth gravity models, contain the potential coefficients C̄nm
and S̄nm up to a given degree n and orderm (withm ¤ n) and the parametersGMC

and RC via which one can compute the geopotential or the induced acceleration
on an orbiting satellite, given its position vector r. Gravity models are derived
from:
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Satellite data , making use of the fact that the Earth’s gravity field can produce
perturbations “seen” in satellite orbits via POD. It is worth noting that since
GRACE (Tapley et al. 2004a) was launched in March 2002, satellite gravime-
try has brought a new era of studying global mass variation and redistribu-
tion through measuring the time-variable gravity field with unprecedented
accuracy (see e.g. Chen et al. 2022 and Jäggi et al. 2023). This progress was
further enhanced with the launch of Gravity Field and Steady-State Ocean
Circulation Explorer (GOCE) (Johannessen et al. 2003) in 2009.

Terrestrial observations (surface gravimetry), providing precise local and re-
gional (short-wavelength) information on the gravity field. Due to their
inhomogeneous distribution though, deriving a global gravity model is quite
challenging.

Altimeter data , which provide detailed information about the form of the geoid,
which may in turn be used to derive geopotential coefficients.

Combinations of the above methods/data.

Recent advantages in gravity models and estimation, have enabled temporal
modeling of the geopotential coefficients. Thus, the parameters C̄nm and S̄nm are
not constant but slightly varying with time. Most often, the parametrization of
the coefficients consists of two parts,

• a linear part, including terms for a “bias” and a drift coefficient, pertaining
to a given validity interval; normally, the bias and drift are in general coher-
ent so that the result is a piece wise linear function, except in the case of
earthquakes. E.g., for the case of CNES/GRGS RL04 (Lemoine et al. 2019),
three major earthquakes have been introduced in the modelling: Sumatra on
2004/12/26, Concepcion on 2010/02/27 and Sendai on 2011/03/11.

• a harmonic part, usually including two annual and two semi-annual coeffi-
cients for each year (in- and out-of-phase).

In these Time Variable Gravity (TVG) models, the normalized Stoke’s coeffi-
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cients are given by:

C̄nmptq � C̄nm|t0,k � VC̄nm,k � pt� t0q �
Ņ

j�0

�
AC̄nm,j sin

�
2π

T
δt



�BC̄nm,j cos

�
2π

T
δt





S̄nmptq � S̄nm|t0,k � VS̄nm,k � pt� t0q �
Ņ

j�0

�
AS̄nm,j sin

�
2π

T
δt



�BS̄nm,j cos

�
2π

T
δt




(2.12)

for each validity interval k valid within the period tstart, tend, where tstart   t   tend
and

C̄nm|t0 and S̄nm|t0 are the constant, “bias” terms for the given interval and de-
gree/order coefficient pn,mq,

VC̄nm
and VS̄nm

are the drift terms for the given interval and degree/order coeffi-
cient pn,mq,

j is the number of harmonics signals (frequencies) included in the model,

AC̄nm,j and AS̄nm,j are the in-phase amplitudes of the frequency j, for the de-
gree/order coefficient pn,mq coefficient,

BC̄nm,j and BS̄nm,j are the out-of-phase amplitudes of the frequency j, for the
degree/order coefficient pn,mq coefficient,

t0 is the reference epoch for the given validity interval,

δt is the difference between the epoch t and the start of the current year (in years)

The ICGEM ICGEM (Sinem et al. 2019) is one of five services coordinated by
the International Gravity Field Service (IGFS) of the International Association of
Geodesy (IAG). Among other services, ICGEM collects and archives all existing
global gravity field models and provides a web interface for getting access to them.

Gravity models are published in what is called the ICGEM-format (Barthelmes
and Förste 2011), an effort to standardize the distribution of such models, that
is gaining evermore attention in recent years. This format offers great advantages
since it is standardized, well documented, generic and can be used to publish
and/or parse (with slight extensions) coefficients other than gravity models (e.g.
ocean tides).
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Implementation For the purposes of the current Thesis, software has been
designed and developed to handle the modeling of the Earth’s gravity models.
Highlights of the software are:

• Handling (parsing) of gravity models published in the ICGEM-format (see
section 2.2.3). This approach enables genericity, since any (recently pub-
lished) gravity model can be used as input to compute satellite acceleration
(see e.g. the listed models published in the ICGEM site http://icgem.
gfz-potsdam.de/tom_longtime). This important feature, makes the soft-
ware highly suitable for scientific studies.

• Handling of both static and TVG models; for the latter, the formulation
Equation 2.12 is used, to account for temporal modelling of the Stoke’s co-
efficients.

• Efficient memory handling and introduction of special data structures to
store and retrieve coefficients, directly targeting and exploiting their intrinsic
characteristics (e.g. S̄0m are not stored).

• Direct retrieval and usage of the data structures to compute acceleration, as
well as partials (i.e. B:r

Br ), in one step.

• Algorithmic design to account for efficiency, yet with as close as possible
minimal loss of precision due to truncation errors (e.g. employ a Kahan
summation algorithm, Klein 2006).

In the current Thesis, two gravity models are used, namely EIGEN-6C4 (Förste
et al. 2014) and CNES/GRGS RL04. The former is mainly used for validation
purposes (see section 2.2.3). The latter is the most recent recommendation of the
IDS (see Lemoine and Štěpánek 2019, Štěpánek et al. 2022) used in the latest
processing campaign for ITRF2020. Note though, that the software is designed in
a generic way, allowing the introduction of any gravity field model structured in
the ICGEM-format.

Computing Gravity Acceleration

The acceleration of an Earth orbiting satellite due to the Earth’s gravity field, can
be computed using the potential U (see Equation 2.3)

:r � �:x :y :z
� � ∇U (2.13)
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The classical formulation of the gravitational acceleration derived from the
spherical harmonics expansion (see Equation 2.10) employs the geocentric spherical
coordinate representation. This approach can result in singularities at the north
and south poles (Atallah et al. 2022). To avoid this problem, the implementation
adopted for this Thesis employs a computation algorithm based on a development
using Cartesian components, which is singularity-free. The method was introduced
by Cunningham 1970 and also presented in Montenbruck and Gill 2000. The
derivation and results described therein use the un-normalized form; an equivalent,
normalized form was derived and implemented, taking into account Atallah et al.
2022. In the following, the algorithmic approach adopted in the design of the
software built for the current Thesis is derived.

Defining

V̄nm � M̄nm � iW̄nm �
�
RC

r


n�1

P̄nmpsinφq pcospmλq � i sinpmλqq (2.14)

the potential (see Equation 2.7) can be written as

U � <

�
GMC

RC

8̧

n�0

ņ

m�0

�
C̄nm � iS̄nm

�
V̄nm

�
(2.15)

using normalized coefficients, so that the acceleration is given by

:r � <

�
GMC

RC

8̧

n�0

ņ

m�0

�
C̄nm � iS̄nm

�
∇V̄nm

�
(2.16)

Omitting intermediate results (see e.g. ibid.), the recurrence relations can be
written as:

V̄nm � Bnm
z

r

RC

r
V̄n�1,m � pn�m� 1q Bnm

Bn�1,m

�
RC

r


2

V̄n�2,m

M̄nm � Bnm
zRC

r2
M̄n�1,m � Bnm

Bn�1,m

�
RC

r


2

M̄n�2,m

W̄nm � Bnm
zRC

r2
W̄n�1,m � Bnm

Bn�1,m

�
RC

r


2

W̄n�2,m

(2.17)

where

Bnm �
d
p2n� 1qp2n� 1q
pn�mqpn�mq (2.18)

20



and for the n � m cases, we have

V̄mm �
c

2m� 1

2m

px� iyq
r2

V̄m�1,m�1

M̄mm �
c

2m� 1

2m

�
xRC

r2
M̄m�1,m�1 � yRC

r2
W̄m�1,m�1




W̄mm �
c

2m� 1

2m

�
xRC

r2
W̄m�1,m�1 � yRC

r2
M̄m�1,m�1



(2.19)

The recurrence starts with initial conditions

M̄00 � RC

r
and M̄10 �

?
3
z

r2
M̄00

W̄00 � 0 and W̄10 � 0
(2.20)

M̄nm and W̄nm can now be used to compute the Cartesian acceleration compo-
nents via

:x �
8̧

n�0

ņ

m�0

:xnm

:y �
8̧

n�0

ņ

m�0

:ynm

:z �
8̧

n�0

ņ

m�0

:znm

(2.21)

where for m � 0

:xn0 � �GMC

R2
C

Nn,0

Nn�1,1

C̄n0M̄n�1,1

:yn0 � �GMC

R2
C

Nn,0

Nn�1,1

C̄n0W̄n�1,1

:zn0 � �GMC

R2
C

Nn,0

Nn�1,1

pn� 1q C̄n0M̄n�1,0

(2.22)
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and for m ¡ 0

:xnm � GMC

2R2
C

� Nn,m

Nn�1,m�1

��C̄n,mM̄n�1,m�1 � S̄n,mW̄n�1,m�1

�
� pn�m� 2q!

pn�mq!
Nn,m

Nn�1,m�1

��C̄n,mM̄n�1,m�1 � S̄n,mW̄n�1,m�1

�	

:ynm � GMC

2R2
C

� Nn,m

Nn�1,m�1

��C̄n,mW̄n�1,m�1 � S̄n,mM̄n�1,m�1

�
� pn�m� 2q!

pn�mq!
Nn,m

Nn�1,m�1

��C̄n,mW̄n�1,m�1 � S̄n,mM̄n�1,m�1
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:znm � GMC

R2
C

Nn,m

Nn�1,m

�pn�m� 1q ��C̄n,mW̄n�1,m�1 � S̄n,mM̄n�1,m�1

��

(2.23)

where Nnm is the normalization factor for degree n and order m

Nnm �
d
pn�mq!p2n� 1qp2� δ0mq

pn�mq! (2.24)

Derivative of Acceleration Partial derivatives of the acceleration need to be
computed, with respect to the satellite state vector, B:r

Br for the variational equa-
tions. For the central term

:r � �GMC

r3
r (2.25)

and using the relation

Brn
Br � B px2 � y2 � z2q

Br � n � rn�2 � rT (2.26)

if follows that

B:r
Br � �GMC

B
Br
�
r

1

r3



� �GMC

�
1

r3
I3�3 � 3r

rT

r5




� �GMC

r5

�
�3x2 � r2 3xy 3xz

3yx 3y2 � r2 3yz
3zx 3zy 3z2 � r2

�
 (2.27)

which shows that the gravity gradient is symmetric and with a zero trace. The
same result can be deduced considering Earth’s gravitational potential expressed
as Equation 2.4 (see Montenbruck and Gill 2000). The two properties reduce the
number of independent components that have to be considered in the computation
from nine to five.
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Deriving the partials is quite tedious and requires analytical work. For the
derivation of the formulae, the development presented in section 2.2.3 can act as
reference, following a normalized version of the algorithm presented in Cunning-
ham 1970 and Montenbruck and Gill 2000. The partials B:xnm

Bx , B:xnm

By , B:xnm

Bz , B:ynm

Bz
and B:znm

Bz are needed to compute B:r
Br , taking into account the symmetric nature and

zero trace of the matrix.

Earth Rotation Formulae presented in the current section, section 2.2.3, are
valid in an ECEF frame, that is ignoring Earth’s rotation (aka r is the satellite’s
position vector in ECEF coordinates). Letting ref � r and introducing rsf to
denote the corresponding celestial, “space-fixed” vector, with

ref � R � rsf (2.28)

where R is the terrestrial-to-celestial transformation matrix (see subsection 2.3.3).
The partial derivatives B:r

Br is the “space-fixed” frame, would then be given by�B:r
Br


sf

� RT

�B:r
Br


ef

R (2.29)

and for the acceleration
:rsf � RT � :ref (2.30)

Validation The acceleration induced to an earth orbiting satellite by the Earth’s
gravity field, is by far the largest in magnitude, hence it should be computed
with utmost precision. To test the implementation, results obtained were checked
against the COST-G benchmark test. Input data for the test is a one-day orbital
arc of GRACE, paired with the earth gravity model EIGEN-6C4. Acceleration is
evaluated from degree and order 2 to 180 (i.e. leaving out the largest in magnitude
central term). According to Lasser 2023, accelerations should be consistent to
at least 1� 10�12 m{s2. The discrepancies between our implementation and the
benchmark test are depicted in Figure 2.3 and Table 2.1. It is clear that results
obtained lie within the accuracy demands of the benchmark test.

Third Body Attraction

The presence of other bodies in the gravitational field exerted by a main central
body (Earth), makes the problem of orbit determination a N -body problem, which
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Figure 2.3: Earth gravity acceleration discrepancies against the COST-G benchmark
test. Gravity model is EIGEN-6C4 from degree and order 2 to 180. Comparing
results for a one-day orbit arc of GRACE in ITRF.

Component Min Max Mean Std. Deviation
m{s2

:x -1.28e-15 +1.79e-15 -1.00e-18 2.64e-16
:y -1.52e-15 +1.32e-15 -3.43e-18 2.58e-16
:z -1.14e-15 +1.00e-15 -5.81e-18 2.19e-16

Table 2.1: Earth gravity acceleration discrepancies against the COST-G benchmark
test.
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however, as known, cannot be solved analytically. In the case of artificial satellites
orbiting the Earth at low altitudes, the gravitational force due to the Earth is by
far larger than those exerted by the Moon, Sun or planets. Therefore, the problem
can be solved by using the methods of perturbation theory. In this approach, the
computation of the perturbing acceleration can be simplified when considering the
third or perturbing body as a point mass. Third body perturbing acceleration from
Sun and Moon, are often called Direct Tides.

Introducing vectors r and s, to describe the geocentric coordinates of the satel-
lite and the third-body respectively, then according to Newton’s law, the acceler-
ation of the satellite by the third-body (or perturbing body), considered as a point
mass, is (the subscript pb denotes the perturbing body)

:r � GMpb
s� r

‖s� r‖3
(2.31)

where Earth’s acceleration due to the perturbing body should also be account for,
hence

:r � GMpb

�
s� r

‖s� r‖3
� s

‖s‖3



(2.32)

For the current Thesis, third body perturbations from Moon and Sun are con-
sidered. In a similar fashion using the software developed, third body attraction
can be computed for all planets, though their effect can be safely neglected for
LEO satellites.

Jet Propulsion Laboratory (JPL) Ephemerides To compute third body
perturbations, as evident from Equation 2.32, coordinates of the perturbing bodies
at a given instant t need to be known. For high precision applications, Sun, Moon
and planetary ephemerides are used and interpolated for the requested epoch.

JPL Development Ephemeris (abbreviated JPL DE(number)) designates one
of a series of mathematical models of the Solar System produced at the JPL
for use in spacecraft navigation and astronomy. The models consist of numeric
representations of positions, velocities and accelerations of major Solar System
bodies, tabulated at equally spaced intervals of time, covering a specified span
of years. Further information and a description of available ephemerides, can be
found at the JPL Planetary and Lunar Ephemerides website.

For the purposes of this Thesis, software was developed to interact with the
JPL DE files, generic enough to handle all versions of the ephemerides. An inter-
face to the JPL-provided Observation Geometry System for Space Science Missions
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Figure 2.4: Third body acceleration from Moon on GRACE for a one-day arc
in ICRF. GRACE orbit is extracted from the COST-G benchmark test. Moon
ephemerides extracted from DE421.

(SPICE) software library 3 was designed to extract Sun, Moon and planet coor-
dinates, and respective constants. Tests and validation are performed using the
DE421 ephemerides (Folkner et al. 2009).

Partial Derivatives of Third Body Perturbations As can be shown from
Equation 2.32, the partial derivative of the third body perturbation w.r.t to the
satellite state vector x � �r v

�T is given by

B:r
Br � �GMpb

�
1

‖r � s‖3
I3�3 � 3 pr � sq pr � sq

T

‖r � s‖5

�

B:r
Bv � 0

(2.33)

Validation To test the implementation, results were checked against the COST-G
benchmark test, considering third body perturbing accelerations both from Moon
and Sun. Input data for the test is a one-day orbit arc of GRACE in ICRF and

3Based on the C version of the Navigation and Ancillary Information Facilty (NAIF)
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Component Min Max Mean Std. Deviation
m{s2

:xMoon -1.72e-16 +1.80e-16 -1.02e-18 7.20e-17
:yMoon -2.25e-16 +2.45e-16 4.14e-18 1.31e-16
:zMoon -1.27e-16 +1.39e-16 2.32e-18 7.17e-17
:xSun -5.34e-18 +4.59e-18 3.95e-20 2.03e-18
:xSun -9.95e-18 +1.05e-17 2.39e-20 3.65e-18
:xSun -4.21e-18 +4.70e-18 8.50e-21 1.59e-18

Table 2.2: Moon & Sun direct tide acceleration differences against the COST-G
benchmark test.

the DE ephemeris file DE421 (see section 2.2.3). The differences are depicted in
Figure 2.5 and Figure 2.6 and information is tabulated in Table 2.2. Figure 2.5
and Figure 2.6 reveal a harmonic behavior of the differences, but since the values
are close to machine precision, no safe conclusion can be drawn.

Solid Earth Tide

Apart from the direct force third bodies (Moon and Sun) induce on earth orbiting
satellites (see section 2.2.3), they also have an effect on the body of the Earth,
resulting in tidal phenomena. The latter produce small periodic deformations of
the solid body of the Earth called earth tides or solid earth tides, which lead to
periodic variations in the Earth’s gravity field. These tidal perturbations have to
be addressed in the case of POD. Note that his section is centered on the effect of
solid Earth tides on the geopotential; tidal forces though, via the deformation they
cause on the Earth’s crust, result in site displacements (e.g. on instrumentation
sites) that often have to be addressed when processing observations from Earth to
satellites.

Solid earth tide effects, include the direct attraction of the tide generating
potential, as well as deformations and associated geopotential changes arising from
oceanic loading (which cause a loading of the crust) and wobbles of the mantle and
the core regions (causing incremental centrifugal potentials). More information on
tidal theory can be found in Wilhelm et al. 1997, Petit and Luzum 2010 and
references therein.

The perturbations of satellite orbits from the lunisolar solid Earth tides are
derived by an expansion of the tidal-induced gravity potential using spherical har-
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Figure 2.5: Third body acceleration induced by Moon on GRACE; descripancies
against the COST-G benchmark test. Moon ephemerides extracted from DE421.
Comparing results for a one day orbit arc of GRACE in ICRF.

Figure 2.6: Third body acceleration induced by Sun on GRACE; descripancies
against the COST-G benchmark test. Sun ephemerides extracted from DE421. Com-
paring results for a one-day orbit arc of GRACE in ICRF.
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monics in a similar way as for the “static” gravity field of the Earth (Montenbruck
and Gill 2000). The contributions ∆Cnm and ∆Snm from the tides are expressible
in terms of the Love number k (two k parameters are needed for n � 2 namely
k
p0q
nm and kp�qnm , while three such parameters are needed for n � 2, namely kp0qnm, kp�qnm

and k
p�q
nm , the latter being 0 in the case of n � 2). These parameters include a

small imaginary part, due to the mantle’s anelasticity (reflecting a phase lag in
the deformational response of the Earth to tidal forces) Petit and Luzum 2010.

Hereafter, the treatment of earth tides as described in ibid. is adopted. Prac-
tically, the computation of the tidal contributions to the geopotential coefficients
is most efficiently done by a three-step procedure. In the following, a summary of
the process for computing the contributions ∆Cnm and ∆Snm, as performed in the
software developed for this Thesis is presented; further information can be found
in ibid. Results for a one-day arc of GRACE are given in Figure 2.7; dataset was
chosen to match the COST-G benchmark test.

Step 1 Corrections In Step 1, the p2mq part of the tidal potential is evaluated
in the time domain for each m using lunar and solar ephemerides, and the cor-
responding changes ∆C̄2m and ∆S̄2m are computed using frequency independent
nominal values k2m for the respective kp0q2m. The contributions of the degree 3 tides
to C̄3m and S̄3m through k

p0q
3m and also of those of the degree 2 tides to C̄4m and

S̄4m through kp�q2m may be computed by a similar procedure.

With frequency-independent values knm, changes induced by the pnmq part of
the Tide Generating Potential (TGP) in the normalized geopotentials coefficients
of the same degree and order pnmq, are given in the time domain by (ibid.):

∆C̄nm � i∆S̄nm � knm
2n� 1

3̧

j�2

GMj

GMC

�
Re

rj


n�1

P̄nm psin Φjq e�imλj (2.34)

where:

knm
4 is the nominal Love number for degree n and order m,

4Tables of relevant Love numbers are listed in Petit and Luzum 2010, Table 6.3. Note that in
the n � 2 case, k2m have a non-zero imaginary part k2m � <pk2mq�i=pk2mq, hence Equation 2.34
expands to

"
∆C̄nm

∆S̄nm

*
�

1

5

GMj

GMC

�
Re

rj


3

P̄2m

"
<pk2mq cosmλj � =pk2mq sinmλj
<pk2mq sinmλj � =pk2mq cosmλj

*
(2.35)
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Re and GMC are the equatorial radius and the gravitational parameter of the
Earth,

GMj is the gravitational parameter of the Moon and Sun, for j � 2 and j � 3
respectively,

Φj is the body-fixed geocentric latitude of the Moon and Sun (j indexes as above),
and

λj is the body-fixed (east) longitude of the Moon and Sun (j indexes as above)

For n � 4, formula Equation 2.34 becomes (Petit and Luzum 2010):

∆C̄4m� i∆S̄4m � knm
5

3̧

j�2

GMj

GMC

�
Re

rj


3

P̄2m psin Φjq e�imλj for m � 0, 1, 2 (2.36)

to account for the changes in the degree 4 coefficients produced by the degree 2
tides.

In summary, via Step 1, corrections for

∆C̄nm,∆S̄nm for

$'&
'%
n � 2 m � 0, 1, 2

n � 3 m � 0, 1, 2, 3

n � 4 m � 0, 1, 2

(2.37)

are computed.

Step 2 Corrections In Step 2, corrections for the deviations of the kp0q21 from the
constant nominal value k21 assumed (for this band) in the first step are computed.
Similar corrections need to be applied to a few of the constituents of the other two
bands also.

The contribution to ∆C̄20 from the long period tidal constituents, each with a
frequency f , can be computed by (ibid.):

<
! ¸
fp2,0q

pA0δkfHf qeiθf
)
�
¸
fp2,0q

��
A0Hhδk

<
f

�
cos θf �

�
A0Hhδk

=
f

�
sin θf

�
(2.38)

Furthermore, computation of the contribution for pnmq � p21q from the diurnal
tidal constituents and to p22q from the semidiurnal can be computed using (ibid.):

∆C̄2m � i∆C̄2m � ηm �
¸

fp2,mq
pAmδkfHf q eiθf for m � 1, 2 (2.39)
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where

δkf � δk<f �iδk=f is the difference between kf defined as kp0q2m at frequency f and the
nominal value (kf � k2m), plus a contribution from ocean loading. Values of
the imaginary and real part, δk<f and δk=f respectively, can be found in ibid.,
Tables 6.5a through 6.5c. Note however, that in the computation we use the
amplitude values for the in-phase and out-of-phase components (Ain�phase ��
AmHfδk

<
f

�
and Aout�of�phase �

�
AmHfδk

=
f

�
) directly, recorded in the same

tables.

Hf is the amplitude (in meters) of the term at frequency f

θf is given by

θf � m � pθg � πq �
5̧

j�1

NjFj (2.40)

where θg is the Greenwich Mean Sidereal Time (GMST) expressed in angle
units. Here we use the expression based on the expansion using the Fun-
damental Arguments. For alternate formulations, e.g. using the Doodson
arguments, see ibid., Sec. 6.2.1.

The terms ηm and Am, are given by:

ηm �
#
�i,m � 1

1,m � 2
(2.41)

and

Am �
#

1
RC

?
4π
,m � 0

p�1qm
RC

?
8π
,m � 0

(2.42)

As with the δk<f and δk=f terms explicit computation of Am is not needed if
the amplitude terms Ain�phase and Aout�of�phase are used from ibid. Tables
6.5a through 6.5c.

Steps 1 and 2 can be used to compute the total tidal contribution, including
the time independent (permanent) contribution to the geopotential coefficient C̄20,
which is adequate for a “conventional tide free” model. When using a “zero tide”
model, this permanent part should not be counted twice.
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Figure 2.7: Acceleration due to solid Earth tide computed on a one-day arc of
GRACE.

Implementation & Validation The above described procedure was imple-
mented in the software build for this Thesis. It is clear from the above, that
the computations involved are rather complicated and cumbersome; the problem
is further perplexed by the fact that the magnitude of the computed geopotential
coefficient corrections is very small, while computations involve values spanning a
wide range of orders of magnitude, thus making the computations susceptible to
round-off errors.

To test the implementation developed for this Thesis, results were checked
against the COST-G benchmark test. Input data for the test is a one-day orbit arc of
GRACE along with the Sun and Moon ephemerides, extracted from DE 421. The
discrepancies between our implementation and the benchmark test are depicted
in Figure 2.8 and Table 2.3. It should be noted here that the benchmark test
considered, involves a number of steps in which different software implementations
can produce slightly different results, as are e.g. computation of Sun and Moon
position, handling of datetimes and ICRF-to- ITRF transformations.
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Figure 2.8: Discrepancies with the COST-G benchmark test for the acceleration due
to solid Earth tide, computed on a one-day arc of GRACE.

Component Min Max Mean Std. Deviation
m{s2

:x -5.36e-13 +5.45e-13 3.51e+00 2.71e-13
:y -5.56e-13 +5.56e-13 -4.58e+00 3.39e-13
:z -5.43e-13 +5.47e-13 -9.51e-01 3.39e-13

Table 2.3: Earth tide acceleration discrepancies against the COST-G benchmark
test.
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Ocean Tide

As in the case of Earth tides (see section 2.2.3), the dynamical effects of ocean tides
can be modeled as periodic variations in the Stoke’s coefficients ∆C̄nm and ∆S̄nm
(for degree n and order m). To compute these values, the prograde and retrograde
geopotential harmonic amplitudes C� and S� for C and S respectively are needed,
for each tidal constituent f involved. Adopting the development presented in Petit
and Luzum 2010, we can compute the variations from

�
∆C̄nm � i∆S̄nm

� ptq �¸
f

�̧

�

�
C�f,nm 	 S�

f,nm

�
e�iθf ptq (2.43)

where

f is a given tidal constituent,

θf ptq is the argument of the constituent f at epoch t, and

C�f,nm and S�
f,nm are the geopotential harmonic amplitudes

Note that not all of the available ocean loading models are published in the
form of C�f,nm and S�

f,nm coefficients Typically, most are developed and distributed
as gridded maps of tide height amplitudes. These models provide in-phase and
quadrature amplitudes of tide heights for selected, main tidal frequencies (or main
tidal waves), on a variable grid spacing over the oceans (ibid.). However, using
spherical harmonic decomposition and with the use of an Earth loading model, the
maps of ocean tide height amplitudes have been converted to spherical harmonic
coefficients for use in Equation 2.43. The procedure is outlined in e.g. ibid.

Typically, ocean tide models provide maps for only the largest tides or “main
waves”. Interpolation from the main waves to the smaller, “secondary waves”
can be performed, using an assumption of linear variation of tidal admittance
between closely spaced tidal frequencies. Through this method, the spectrum of
tidal geopotential perturbations can be completed to the requested degree. For a
secondary wave f , the needed coefficients can be computed as

C�f,nm �
9θf � 9θ1

9θ2 � 9θ1

Hf

H2

C�2,nm �
9θ2 � 9θf
9θ2 � 9θ1

Hf

H1

C�1,nm

S�
f,nm �

9θf � 9θ1

9θ2 � 9θ1

Hf

H2

S�
2,nm �

9θ2 � 9θf
9θ2 � 9θ1

Hf

H1

S�
1,nm

(2.44)
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Coefficients to compute variations in normalized Stokes coefficients (unit = 10^-11)
Ocean tide model: FES2014b up to (180,180)
Doodson Darw l m DelC+ DelS+ DelC- DelS-
055.565 om1 1 0 -0.84987 0.00000 -0.84987 0.00000
055.565 om1 2 0 2.55417 -0.00000 2.55417 -0.00000
055.565 om1 3 0 0.02827 -0.00000 0.02827 -0.00000
055.565 om1 4 0 -0.25307 0.00000 -0.25307 0.00000
055.565 om1 5 0 0.34383 -0.00000 0.34383 -0.00000
...
055.575 om2 1 0 0.00830 0.00000 0.00830 0.00000
055.575 om2 2 0 -0.02493 0.00000 -0.02493 0.00000
055.575 om2 3 0 -0.00028 0.00000 -0.00028 0.00000
055.575 om2 4 0 0.00247 0.00000 0.00247 0.00000
055.575 om2 5 0 -0.00336 0.00000 -0.00336 0.00000

Figure 2.9: Part of FES2014b geopotential harmonic amplitudes C�f,nm and S�
f,nm for

tidal constituents 055.565 and 055.575. File retrieved from the COST-G benchmark
test repository, ftp://ftp.tugraz.at/outgoing/ITSG/COST-G/.

where the subscript 1 and 2 denote the two nearby main lines, or pivot waves and
H is the astronomic amplitude of the considered wave.

As in the case of solid Earth tides (section 2.2.3), ocean loading can induce
deformation on the Earth’s crust and thus displacements on instrumentation sites.

Ocean Tide Models Ocean tide models are defined using an underlying tide
height model, and further include the maximum degree and order of the expansion
and identification of the main, pivot waves. Since the mid-1990s, a series of FES
(finite element solution) global ocean tidal atlases has been produced and released
with the primary objective to provide altimetry missions with tidal de-aliasing
correction at the best possible accuracy. In this Thesis, the latest model in this
series, labeled FES2014 (Lyard et al. 2021) is used, since it is the one suggested
from the IDS for the ITRF2020 processing campaign. Table 2.4 lists the tidal
constituents contained within the aforementioned data file.

Implementation Design and implementation of the procedure outlined above
for the computation of variations in the Stoke’s coefficients ∆C̄nm and ∆S̄nm, poses
a series of challenges. First off, a decision must be made to allow for the distinction
between different tidal waves. This allows for efficiency, adaptability, extensibility
and ease of use. To that end, a generic class was designed to represent different
waves, based on the Doodson number; this approach offers several advantages,
as well as the ability to compute arguments of the tide constituents (e.g. θ in
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Doodson Number Darwin Symbol Description
055.565 Ω1 Lunar Saros
055.575 Ω2

056.554 Sa Solar annual
057.555 Ssa Solar semiannual
065.455 Mm Lunar monthly
075.555 Mf Lunisolar fortnightly
085.455 Mtm

093.555 Msqm

135.655 Q1 Larger lunar elliptic diurnal
145.555 O1 Principal lunar declinational
163.555 P1 Principal solar declination
164.555
165.555 K1 Lunisolar diurnal
175.455 J1 Smaller lunar elliptic diurnal
227.655 ε2
235.755 2N2 Lunar elliptical semidiurnal second-order
237.555 µ2 Variational
245.655 N2 Larger lunar elliptic semidiurnal
247.455 ν2 Larger lunar evectional
255.555 M2 Principal lunar semidiurnal
263.655 λ2 Smaller lunar evectional
265.455 L2 Smaller lunar elliptic semidiurnal
272.556 T2

273.555 S2 Principal solar semidiurnal
274.554 R2

275.555 K2 Lunisolar semidiurnal
355.555 M3 Lunar terdiurnal
435.755
445.655 MN4 Shallow water quarter diurnal
455.555 M4 Shallow water overtides of principal lunar
473.555 Ms4 Shallow water quarter diurnal
491.555 S4 Shallow water overtides of principal solar
655.555 M6 Shallow water overtides of principal lunar
855.555 M8 Shallow water eighth diurnal

Table 2.4: List of “main” tidal constituents contained listed in FES2014b; published
file via COST-G. Description is extracted from Beauducel 2023.
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Equation 2.43), via the Doodson multipliers, which are in turn obtained through
the computation of the fundamental arguments of nutation theory or Delaunay
variables l, l0, F , D and Ω, augmented by the GMST. These values are computed
using the latest formulations (Petit and Luzum 2010).

Next, efficient mapping/loading of the coefficients C�f,nm and S�
f,nm must be de-

veloped. Note that four such coefficients per tidal wave, and for every combination
of degree and order pn,mq have to be considered; as can be seen in Figure 2.9, the
maximum degree and order in this case is 180; that amounts to a huge number of
floating point numerics that need to be stored and loaded to/from memory. The
software developed, uses efficient data structures and contiguous memory chunks
to speed-up computations and only allocate the memory needed.

Computation of ∆C̄nm and ∆S̄nm values follows Equation 2.43. When needed,
interpolation through tidal admittance (see Equation 2.44) is also handled in the
software, per user/application needs.

Atmospheric Drag

For LEO satellites, the largest non-gravitational force is the atmospheric drag.
Despite its significance though, accurate modeling of aerodynamic forces is a very
complex problem, requiring knowledge of the physical properties of the (upper)
atmosphere, interaction of neutral gas and charged particles with the satellite’s
surfaces and precise knowledge of attitude with respect to atmospheric particle
flux (Montenbruck and Gill 2000).

Drag is a decelerating force, directed opposite to the velocity of the satellite
with respect to atmospheric flux. Minor contributions, including lift and binormal
forces, can be safely ignored. A simple derivation of the acceleration induced to a
satellite due to atmospheric drag can be found in ibid.; following this formulation,
drag induced acceleration can be computed from

:r � �1

2
Cd
A

m
ρv2

r êv (2.45)

where

ρ is the atmospheric density at the location of the satellite,

A is the satellite’s cross-sectional area,

vr is the velocity of the satellite relative to the atmosphere,
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êv � vr{‖vr‖ is the unit vector in the direction of vr

Cd is the drag coefficient, a dimensionless quantity describing the interaction
of the atmosphere with the satellite’s surface material. This parameter is
normally estimated during POD procedure.

With the assumption that the atmosphere co-rotates with the Earth (thus
partly ignoring the complex atmosphere dynamics), the relative velocity of the
satellite with respect to the atmosphere, vr, is given by

vr � v � ωC � r (2.46)

which is a very good approximation even for POD applications. According to Mon-
tenbruck and Gill 2000, the maximum observed deviations from this assumption
lead to uncertainties in the drag force of less than 5%. v and r are the inertial
satellite velocity and position vectors, while ωC is the Earth’s angular velocity
vector.

In the ideal case of a spherical spacecraft, the projected area A would not
change. For all other shapes however, A needs to be computed using the space
vehicle’s attitude. It is typical to model such complex geometries using a collection
of flat plates (macromodel), each with an area Ai and outward normal unit vector
n̂i, expressed in the spacecraft body-fixed coordinate system.

The inclination of the ith plate to the relative velocity vr, is given by:

cos θi �
�
RT n̂i

�T � vr
‖vr‖



(2.47)

where R is the attitude matrix that rotates the GCRF frame to the spacecraft
body-fixed frame. Using this formulation, the projected area A can be computed
as the collection of the N macromodel plates, i.e.

A �
Ņ

i�1

Ai �
#

cos θi, if cos θi ¡ 0 or
0, if cos θi   0

(2.48)

Partial Derivatives Differentiation of Equation 2.45 with respect to the Cd
parameter, yields

B:r
BCd � �1

2

A

m
ρ‖vr‖vr (2.49)
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From Equation 2.45 and Equation 2.46, one can analytically derive the partials
of the acceleration with respect to the satellite velocity vector

B:r
Bv � �1

2
Cd
A

m
ρ

�
vrv

T
r

‖vr‖
� ‖vr‖ � I3�3



(2.50)

Correspondingly, the partial of the acceleration with respect to the satellite
position vector, is given by

B:r
Br � �1

2
Cd
A

m
‖vr‖vr

Bρ
Br �

1

2
Cd
A

m
ρ

�
vrv

T
r

‖vr‖
� ‖vr‖ � I3�3


 Bvr
Br

� �1

2
Cd
A

m
ρ‖vr‖vr

Bρ
Br �

B:r
Bvω

(2.51)

In Equation 2.51, the Bρ
Br term describes the dependence of atmospheric den-

sity on satellite position. Analytical derivation of this term is nearly impossible,
due to the complexity of the atmospheric model used. Therefore, a numerical
approach is followed to derive the density gradient, using the Difference Quotient
Approximation. Thus, the formula

Bρ
Br pr, tq �

ρpr � δr, tq
δr

�
�
ρpr�δrxq
‖δrx‖

ρpr�δryq
‖δry‖

ρpr�δrzq
‖δrz‖

	T (2.52)

is used, where δrx, δry and δrz are vectors along the x, y and z axis respectively,
and r is the satellite’s position vector at instant t. The values of the vector
components along the three axis, should be small enough to approximate the
derivative (or more precisely the gradient) at the given point. Using unit vectors
(of length 1 m per component, i.e δrx � x̂), should yield realistic results; this is
the default value used in our implementation. It should be noted that here it is
implicitly assumed that the density function ρ is differentiable within the given
interval. In reality this means that no “abrupt” changes should occur within the
spatial/temporal span considered.

Atmospheric Models The most challenging term in Equation 2.45, is the at-
mospheric density ρ (at the location of satellite). This requires the modeling of
complex properties and dynamics of the Earth’s atmosphere. The latter is a highly
demanding task, and a number of models have been introduced (often including
empirical data) to target the question. In the upper atmosphere (¡ 100 km), apart

39



from spatial and temporal variances, the density also depends on solar soft x-ray
and extreme ultraviolet (EUV) output, as well as the geomagnetic activity. Hence,
the density is considered as a function of altitude, solar ten-centimetre flux (F10.7)
and the geomagnetic activity index (Ap).

Different (upper) atmospheric models are available (for comparison and overview,
see e.g. Doornbos et al. 2009, Yang et al. 2022 and Vallado and Finkleman 2014)
varying in methodology, input data, application criteria and demands, complexity
and efficiency. In this Thesis, two atmospheric models were implemented, namely:

NRLMSISE-00 model (Picone et al. 2002), which is an empirical atmospheric
model that extends from the ground to the exobase and describes the average
observed behavior of temperature, various species densities, and mass density
via a parametric analytic formulation. The model inputs are location, date
and time, solar activity, and geomagnetic activity. It was developed by
researchers in the US Naval Research Laboratory.

DTM-2020 model (Bruinsma and Boniface 2021), a semi-empirical Drag Tem-
perature Model (DTM) to predict the Earth’s thermosphere’s temperature,
density, and composition, especially for orbit computation purposes. This
model comes in two variations, the “operational” version, driven by the
trusted and established F10.7 and Ap indices for solar and geomagnetic
activity and the “research” alternative which is based on space weather ob-
servations not yet accredited operationally. Hence, in the Thesis, the first,
“operational” version is used.

In order to use the NRLMSISE-00 and DTM-2020 models, space weather data is
needed, including an 81-day average of F10.7 flux5 (centered on day), daily F10.7
solar flux for previous day and daily magnetic index. This data can be obtained
via the “Space Weather Data” records archived by CelesTrack (Vallado and Kelso
2013).

Implementation Implementing the atmospheric density models described above,
is a challenging task. Not only due to model complexity and the large number of
computations involved, but also because it needs to be paired with space weather

5The solar radio flux at 10.7 cm (2800 MHz) is an excellent indicator of solar activity. Often
called the F10.7 index, it is one of the longest running records of solar activity, reported in
“solar flux units”. The F10.7 Index has proven very valuable in specifying and forecasting space
weather, and tracks well with Extreme UltraViolet (EUV) emissions that impact the ionosphere
and modify the upper atmosphere
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data spanning various time intervals (e.g. an 81-day average of F10.7 is needed
at each epoch, as well as values of Ap per 3-hour intervals). Obviously, the com-
plete scheme must be efficient and robust, since computing atmospheric density is
performed hundreds of times in a POD process spanning considerable arcs.

Source code for implementing the above has been designed and implemented
from scratch, for the purpose of this Thesis. It has undergone extensive testing
for correctness and efficiency. The final design, is one that allows the incremental
parsing of needed data, via a “hunting process” (i.e. storing current stream posi-
tions and using indexes for searching onward) and a one-time mapping of input
file streams.

Acceleration (see Equation 2.45 and Equation 2.46) and derivatives (see dis-
cussion in section 2.2.3) with respect to the parameters considered are also imple-
mented in source code.

Solar Radiation Pressure

An Earth orbiting satellite exposed to solar radiation, experiences a small force
arising from the absorption or reflection of photons. The effect depends on the
satellite’s mass and surface area. The primary radiation source to be considered
in satellite geodesy is the Sun. The radiation pressure due to the direct solar
radiation is also referred to as direct radiation pressure. Other sources of radiation
are the Earth, which reflects and/or re-emits the radiation received by the Sun,
or to a much lesser extent, the Moon, reflecting the solar radiation. Radiation
pressure is the dominating non-gravitational perturbation above heights of about
600 km (Beutler 2005).

The radiation field due to the direct solar radiation may be considered as
parallel to the direction Sun Ñ Satellite. This implies that for the computation
of solar radiation pressure, the surface of the cross section of the satellite normal
to the direction SunÑ Satellite needs to be known.

Assuming rotational symmetry of the satellite w.r.t. the axis SunÑ Satellite,
the acceleration due to the direct solar radiation may be written as (ibid.)

:r � �P@CRA
m

r � r@
‖r � r@‖3

1 au2 (2.53)

where:
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P@ is the Sun’s solar flux at a distance of 1 au, P@ � 4.56� 10�6 N{m2

CR is the radiation pressure coefficient depending on the refractivity ε of the
satellite,

r is the geocentric position vector of the satellite,

r@ is the geocentric position vector of the Sun,

au is the Astronomical Unit,

m is the mass of the satellite, and

A is the cross section of the satellite normal to the direction SunÑ Satellite

CR is usually estimated during a POD process. While Equation 2.53 constitutes a
good approximation, more sophisticated methods are often used in a POD process
to obtain more accurate estimates of solar radiation pressure, if detailed knowl-
edge of the vehicle is available. In such a case, the total force (or acceleration)
is decomposed into contributions due to specular reflection, diffuse reflection ab-
sorption and emission, modeling the spacecraft’s surface as a collection of N flat
plates, each of area Ai.

To use such complex model, the spacecraft’s attitude must be known at each
request epoch. Using R as the attitude matrix that rotates the GCRF frame to
the spacecraft body-fixed frame and ê@ to denote the unit vector directed from
the space vehicle to the center of the Sun, the inclination of the ith plate to the
spacecraft-to-Sun vector is given by:

cos θi �
�
RT n̂i

�T
ê@ (2.54)

where n̂i is the outward normal of the ith plate, expressed in the spacecraft body-
fixed coordinate system.

The individual contribution of each plate can now be be expressed as (Markley
and Crassidis 2019)

Ņ

i�1

Ai cos θi

�
2

�
Rdiff
i

3
�Rspec

i cos θi

��
RT n̂i

�T � p1�Rspec
i q ê@

�
(2.55)

where the summation is performed on all plates for which cos θi ¡ 0 holds, and

Rdiff
i is the diffuse reflection coefficient for the ith plate, and
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Rspec
i is the specular reflection coefficient for the ith plate,

Equation 2.55 is used in this Thesis to compute individual plate contributions.
It should be noted that albedo effects, i.e. radiation pressure from reflected light
from the Earth and/or Moon, is not considered here, as is the force of thermal
radiation emitted from the spacecraft.

Partial Derivatives Starting from 2.53, the acceleration due to solar radiation
pressure varies with the satellite position in the same way as the gravitational
attraction of the Sun, with derivatives given by:

B:r
Br � P@C

A

m
AU2

�
1

‖r � r@‖3
I3�3 � 3 pr � r@q pr � r@q

T

‖r � r@‖5

�
(2.56)

Due to the fact that the radiation pressure coefficient C is usually estimated
during orbit determination, the derivative of the acceleration w.r.t C must be
calculated. The respective partials are:

B:r
BC � 1

C
:r � �P@A

m

r � r@
‖r � r@‖3

AU2 (2.57)

required to compute the influence of variations in the radiation pressure coefficient
on the satellite trajectory.

Radiation pressure obviously is “turned off” if the radiation is blocked by an
“obstacle”, i.e the Moon or Earth, between the Sun and the satellite.

Satellite Eclispes and Earth Shadow Satellites routinely enter eclipse peri-
ods during their orbits, resulting in fluctuations in the experienced solar radiation
pressure. When a satellite enters the umbra or the penumbra area of an occulting
body (e.g., the Earth or the Moon), a satellite shadow function model is used to
estimate the occultation degree. For the purposes of this Thesis, the so called
conical model is used (R. Zhang et al. 2019) to compute occulatation factor.

For the conical model and using the Earth as an occulting body, the following
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angles are defined:

θC � arcsin

�
RC

‖r‖



(2.58)

θ@ � arcsin

�
R@

‖r@ � r‖



(2.59)

θ � arccos

��rT pr@ � rq
‖r‖‖r@ � r‖



(2.60)

When θ ¥ θC � θ@ occultation does not take place. If θ ¤ θC � θ@ occultation is
total. Partial occultation takes place if ‖θC � θ@‖   θ   θC � θ@. In this latter
case, an occultation factor is computed, as

F � 1� S

πθ2
@

(2.61)

where S is the occulted area. Shadow models considering the Earth’s oblateness
and the atmospheric effec can be found in e.g. Y. Zhang et al. 2022.

2.3 The Celestial Reference Frame

2.3.1 International Celestial Reference Frame

A reference system is a theoretical concept of coordinates, and includes the time
and the standards necessary to specify the bases for giving positions and motions
in the system (Gurfil and Seidelmann 2018). There are celestial and terrestrial
reference systems.

The International Celestial Reference System (ICRS) is based on the theory of
relativity, observations of distant extragalactic radio sources, and a fixed origin,
thus it is essentially “fixed” in space (since there is no apparent motion of distant
sources). Two distinct systems are defined, the Barycentric Celestial Reference
System (BCRS), centered at the barycenter of the solar system and the GCRS,
centered at the geocenter. The GCRS is defined such that its spatial coordinates
are not kinematically rotating with respect to the BCRS (ibid.). The axes of
the GCRS are considered non-rotating in the Newtonian absolute sense, but the
geocenter is accelerated within the solar system, thus this system is in reallity a
“quasi-inertial” system.
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The ICRS is materialized by a celestial reference frame called the ICRF, con-
sisting of the precise coordinates of extragalactic objects, mostly quasars. The
necessity of keeping the reference directions fixed and the continuing improvement
in the source coordinates requires regular maintenance of the frame.

The IERS Earth Orientation Parameters provide the permanent tie of the
ICRF to the ITRF. They describe the orientation of the Celestial Intermediate
Pole (CIP) in the terrestrial system and in the celestial system (polar coordinates
x, y; celestial pole offsets δψ, δε) and the orientation of the Earth around this axis
(UT1-UTC), as a function of time (Petit and Luzum 2010). This tie is available
daily with an accuracy of �0.1 mas in the IERS publications.

2.3.2 Kinematics of the Earth

Earth attitude is complicated by earth kinematics, including precession and nuta-
tion of the axes of rotation, the motion of the pole of rotation within the Earth
(polar motion), and the variability of the rate of rotation of the Earth (resulting
in variations in the length of day). While the first two phenomena (precession and
nutation) can be predicted quite accurately, the latter two have to be observed.
To connect observations performed on the Earth’s surface in a local coordinate
system to a celestial system, these effects have to be considered.

Precession, which consists of the precession of the equator and precession of
the ecliptic, is the motion of the equator with respect to the ecliptic. Nutation
is the oscillations in the motion of the Earth’s pole due to torques from external
gravitational forces, limited to motions with periods longer than two days (Gurfil
and Seidelmann 2018). Polar Motion is the motion of the Earth’s pole of rotation
with respect to the Earth’s solid body, that is the angular excursion of the CIP
from the ITRS z-axis.

Earth kinematics, including all the aforementioned phenomena, plays a crucial
role in relating the ICRF and ITRF, a task needed in POD since the equations
of motions of an Earth orbiting satellite need to be formulated in an inertial
frame. Description of these variations and the related adopted models can be
found in detail in e.g. ibid. and Urban and Seidelmann 2013. In this thesis, the
nomenclature and resolutions adopted in the framework of the IAU 2000/2006
resolutions (see Petit and Luzum 2010 and references therein) will be used.
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2.3.3 Terrestrial to Celestial Transformation

The definition of the GCRS and ITRS and the procedures for the ITRS to GCRS
transformation that are provided in this section comply with the IAU 2000/2006
resolutions (see Capitaine et al. 2006 and IAU Division 1 Working Group n.d.). It
should be noted that this section is not an extensive study or presentation of the
concepts and models involved to relate terrestrial and celestial reference systems
(and/or frames). It is rather meant to act as a guideline for the work performed in
the framework of the current Thesis, centered on the design patterns, algorithms
and methodologies adopted for the implementation of relevant software.

The transformation used to relate the ITRS to the GCRS at the date t of an
observation can be written as (Petit and Luzum 2010)

rgcrs � QptqRptqW ptqritrs (2.62)

where

Qptq is the transformation matrix due to the motion of the celestial pole in the
celestial reference system

Rptq is the transformation matrix due to the rotation of the Earth around the
axis associated with the pole, and

W ptq is the transformation matrix due to polar motion

t is the time parameter in the Terestrial Time (TT) time-scale, and given by:

t � pTT� 2000 January 1d 12h TTqd{36525 (2.63)

involving J2000.0, defined at the geocenter and at the date 2000 January 1.5
TT = Julian Date 2451545.0 TT.

Note that Equation 2.62 uses the theoretical formulation of a reference “system”.
In reality, it should be clear that the numerical implementation of this formula
involves the IAU/International Union of Geodesy and Geophysics (IUGG) adopted
realization of those reference systems, i.e. the ITRF and ICRF.

Equation 2.62 can be implemented in two distinct procedures, differing only
on the adopted origin of the CIP equator, i.e. either using the equinox, thus
resulting in an equinox based transformation, or the CIO, which in turn results
in the so-called CIO based transformation. In both cases, the matrix W ptq is
identical, while Qptq and Rptq will differ. The CIO based procedure, contrary to
the equinox based, is in agreement with IAU 2000 Resolution B1.8, which:
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requires the use of the “non-rotating origin” in both the GCRS and the
ITRS as well as the position of the CIP in the GCRS and in the ITRS

(ibid.). Hence, for this Thesis we have adopted the CIO based implementation of
the transformation Equation 2.62.

Schematically, the CIO-based procedure, implies (see also Figure 2.10):

• realization of the Terrestrial Intermediate Reference System (TIRS) via ap-
plying matrixW ptq on an ITRS vector r; the TIRS uses the CIP as its z-axis
and the Terrestrial Intermediate Origin (TIO) as its x-axis

• realization of the Celestial Intermediate Reference System (CIRS), that uses
the CIP as its z-axis and the CIO as its x-axis, via the rotation matrix R
with the Earth Rotation Angle (ERA) as its argument, and the matrix Q
using the two coordinates of the CIP. Note that the position of the CIP both
in the ITRS and GCRS is provided by the x and y components of the CIP
unit vector. These components are called “coordinates”, and their numerical
expressions are multiplied by the factor 129 600 0002{2π in order to represent
the approximate values in arcseconds of the corresponding “angles” (strictly
their sines) with respect to the z-axis of the reference system (ibid.).

Polar Motion Matrix W ptq The rotation of the Earth is represented by the
diurnal rotation around a reference axis, called the CIP. The CIP does not coincide
with the axis of figure of the Earth, but slowly moves (in a terrestrial reference
frame) (Urban and Seidelmann 2013). This motion of the terrestrial reference
frame with respect to the CIP is known as polar motion. Note that the CIP is not
the instantaneous axis of rotation but the axis around which the diurnal rotation
of earth is applied (in the celestial to terrestrial transformation). Polar motion is
typically determined from VLBI observation, as except from the principal periods
of 365 days (annual wobble) and 428 days (Chandler wobble), it is also affected
by unpredictable geophysical forces.

According to IAU 2006 Resolution B2, the system at date t as realized from
the ITRS by applying the transformationW ptq is the TIRS. It uses the CIP as its
z-axis and the TIO as its x-axis (Petit and Luzum 2010). This matrix gives the
position of the terrestrial reference frame with respect to the TIO.

The W matrix can be expressed as (ibid.):

W ptq � Rzp�s1q �Rypxpq �Rpypq (2.64)
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Interpolate IERS C04 file to get xp, yp, ∆UT , δX and δY at given t, see 2.12

Geocentric Celestial Reference System (GCRS)

compute IAU 2006/2000A X, Y from series (2.71 and 2.72)
compute s

apply corrections δX and δY
compute & apply matrix Qptq, see 2.3.3

Celestial Intermediate Reference System (CIRS)

apply matrix Rptq, using the ERA and ∆UT
Rptq � R3pERAq, see 2.3.3

Terrestrial Intermediate Reference System (TIRS)

compute s1 and use xp and yp to
apply matrix W ptq, see 2.3.3

International Terrestrial Reference System (ITRS)

Figure 2.10: Schematic representation of the “CIO-based” procedure to transform
between the GCRS and ITRS.
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where s1 is the “TIO locator” and xp, yp are the “polar coordinates” of the CIP in
the ITRS. The latter values, if not estimated, should be the ones published by the
IERS, corrected for the effect of ocean tides and forced terms (aka “libration”), with
periods less than two days in space (Petit and Luzum 2010), see subsection 2.3.4.

The TIO locator s1, positioning the TIO on the equator of the CIP, is necessary
to provide an exact realization of the “instantaneous prime meridian”, designated
by “TIO meridian” (ibid.). s1 is obtained from polar motion observations by nu-
merical integration, and so is in essence unpredictable. However, it is dominated
by a secular drift of about 47 µas{century. The latter is used to actually compute
s1 in Equation 2.64. using the function:

s1 � �47 µas � t (2.65)

obtained from C04 data (Lambert and Bizouard 2002).

Earth Rotation Matrix Rptq The rotation of the Earth around the axis of the
CIP (i.e. relating TIRS and CIRS), can be expressed as (Petit and Luzum 2010):

Rptq � Rzp�ERAq (2.66)

where ERA is the ERA between the CIO and the TIO at date t on the equator
of the CIP, which is the rigorous definition of the sidereal rotation of the Earth.
Working with respect to the CIO (rather than the equinox) sweeps away sidereal
time’s complexities and opportunities for error. The Earth rotation angle, the CIO
based counterpart of Greenwich Sidereal Time (GST), is simply a conventional
linear transformation of Universal Time (UT1) (IAU SOFA Board 2021c):

ERApTuq � 2πpUT1 Julian day fraction
� 0.7790572732640� 0.00273781191135448 � Tuq

(2.67)

where Tu � pJulian UT1 date � 2451545.0q and UT1 � UTC � pUT1� UTCq.

Similarly to polar motion, additional components should be added to the values
published by IERS for ∆UT to account for the effects of ocean tides and libration,
see subsection 2.3.4.

Celestial Motion Matrix Qptq The CIO based transformation matrix arising
from the motion of the CIP in the GCRS (i.e. relating CIRS and GCRS), can be
expressed as (Petit and Luzum 2010):

Qptq � Rzp�Eq �Ryp�dq �RzpEq �RZpsq (2.68)
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where s is the “CIO locator” and E and d being such that the coordinates of the
CIP in the GCRS are:

X � sin d cosE

Y � sin d sinE

Z � cos d

(2.69)

Equation 2.68 can be given in an equivalent form directly involving X and Y as
(Petit and Luzum 2010):

Qptq �
�
�1� αX2 �αXY X
�αXY 1� αY 2 Y
�X �Y 1� αpX2 � Y 2q

�
�RZpsq (2.70)

with α � 1{p1 � cos dq , which can also be written, with an accuracy of 1 µas as
α � 1{2� 1{8pX2 � Y 2q.

X and Y coordinates can be given by developments as function of time in the
µas level, based on the IAU 2006 precession and IAU 2000A nutation (Capitaine
and Wallace 2006). The IAU 2006/2000A developments are as follows (Petit and
Luzum 2010):

X � �0.016 617 002 � 2004.191 898 002t� 0.429 782 9002t2

� 0.198 618 340 02t3 � 0.000 007 578 002t4 � 0.000 005 928 5002t5

�
¸
i

rpas,0qi sin θ � pac,0qi cos θs

�
¸
i

rpas,1qit sin θ � pac,1qit cos θs

�
¸
i

�pas,2qit2 sin θ � pac,2qit2 cos θ
�

� � � �

(2.71)

and

Y � �0.006 951 002 � 0.025 896 002t� 22.407 274 7002t2

� 0.001 900 590 02t3 � 0.001 112 526 002t4 � 0.000 000 135 8002t5

�
¸
i

rpbs,0qi sin θ � pbc,0qi cos θs

�
¸
i

rpbs,1qit sin θ � pbc,1qit cos θs

�
¸
i

�pbs,2qit2 sin θ � pbc,2qit2 cos θ
�

� � � �

(2.72)
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where θ is a function of the fundamental lunisolar and planetary arguments.
Further information and computation formulas for the fundamental arguments, can
be found in ibid. Complete list of coefficients for Equation 2.71 and Equation 2.72
is provided by IERS.

VLBI observations have shown that there are deficiencies in the IAU 2006/2000A
precession-nutation model of the order of 0.2 mas, mainly due to the fact that the
free core nutation (Free Core Nutation (FCN)) is not part of the model, IERS pub-
lish observed estimates of the corrections to the IAU precession-nutation model.
The observed differences with respect to the conventional celestial pole position
defined by the models are monitored and reported by the IERSas “celestial pole
offsets”. Such time-dependent offsets from the direction of the pole of the GCRS
must be provided as corrections δX and δY to the X and Y coordinates (ibid.).
Using these offsets, the corrected celestial position of the CIP is given by (ibid.):

X � XIAU 2006/2000 � δX

Y � YIAU 2006/2000 � δY
(2.73)

thus enabling to re-write Equation 2.70 as:

Q̃ptq �
�
� 1 0 δX

0 1 δY
�δX �δY 1

�
�QIAU (2.74)

where QIAU represents the Qptq matrix based on the IAU 2006/2000 precession-
nutation model.

The “CIO locator” s, providing the position of the CIO in the GCRS can also
be computed using a development described in Capitaine et al. 2003.

2.3.4 Earth Orientation Parameters Information And Inter-
polation

EOP information for formulating the Celestial-to-Terrestrial transformation ma-
trix, is extracted from the IERS C04 files (Bizouard et al. 2019). These files contain
tabulated EOP values (xp, yp, δUT1, LOD and the celestial pole offsets δX and
δY ) at 0h Coordinated Universal Time (UTC). LOD and celestial pole offsets con-
tain the most dramatic variation over time, while the pole coordinates and time
offset parameters exhibit much smoother variations.

In general, the tabulated pole coordinates, δUT1 and LOD values must first
be interpolated to the appropriate time and then corrected for ocean tide and
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libration effects. The ocean tide corrections, include diurnal and semi-diurnal
variations caused by ocean tides for polar motion, δUT1 and LOD. Libration
effects, include diurnal and semi-diurnal nutations that originate from the direct
effect of the external (mainly luni-solar) torque on the non-axisymmetric part
of the Earth (Petit and Luzum 2010 and references therein) and like ocean tide
corrections, have an effect on pole coordinates as well as δUT1 and LOD. The
variations of these effects have to be accounted for when using the published values
for EOP parameters.

Especially for δUT1 and LOD, according to Bradley et al. 2016, prior to their
interpolation, “the tabulated values should be smoothed through regularization to
enhance the interpolation accuracy”. Regularization is the removal of zonal tidal
variations with frequencies ranging from 5 days to 18.6 years. This “regularization”
is implemented in the EOP interpolation process.

For the current Thesis, the process described above was designed and imple-
mented, for extracting EOP information from C04 files, storing values in efficiently
designed data structures, and performing the interpolation along with the correc-
tions described above. A schematic representation is given in Figure 2.12. As
shown in Figure 2.11, including the ocean tide and libration effects, allows for the
introduction of diurnal and semi-diurnal signals.

For the polar motion EOP, xp and yp,�
xp yp

� � �x y
�
IERS

� �∆x ∆y
�
ocean tides

� �∆x ∆y
�
libration

(2.75)

where
�
∆x ∆y

�
ocean tides

and
�
∆x ∆y

�
libration

are computed as outlined in Petit
and Luzum 2010; the former is achieved by a software routine designed on the
basis of the ORTHO_EOP6 to compute the diurnal and semidiurnal variations in the
Earth orientation, while the latter is based on PMSDNUT27 to compute the diurnal
lunisolar effect on polar motion, see Figure 2.12.

Similarly, for the δUT1 and LOD values,�
δUT1 LOD

� � �x y
�
IERS

� �δUT1 LOD
�
ocean tides

� �δUT1 LOD
�
libration
(2.76)

where again
�
δUT1 LOD

�
ocean tides

are computed using the same procedure as
above, while

�
δUT1 LOD

�
libration

are computed using a software routine designed

6Available from the IERS Conventions Centre at https://iers-conventions.obspm.fr/
content/chapter8/software/ORTHO_EOP.F, provided by R. Eanes.

7Available from the IERS Conventions Centre at https://iers-conventions.obspm.fr/
content/chapter5/software/PMSDNUT2.F, provided by A. Brzezinski.
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Figure 2.11: Interpolation of EOP parameters xp, yp, δUT1 and LOD performed by
the software developed, following 2.12. Red crosses represent the input, reference
EOP values.

on the basis of the IERS-published UTLIBR8 to account for the subdiurnal libra-
tions.

The linear interpolation is based on a Lagrangian interpolation scheme, generic
enough to perform interpolation of any order (given enough data). For POD, a
5-order interpolation procedure is performed, based on results from Bradley et al.
2016.

Optionally, users can perform the “regularization” of δUT1 and LOD values.
In this case, prior to the interpolation the tabulated values are smoothed through
regularization to enhance the interpolation accuracy. After regularization and in-
terpolation, the zonal tide value should be added back at the time of interpolation.
At this point, the ocean tide corrections should be computed and added to the
interpolated values. The zonal tide effects are based on models recommended by
the IERS Conventions and the distributed RG_ZONT2

8Available from the IERS Conventions Centre at https://iers-conventions.obspm.fr/
content/chapter5/software/UTLIBR.F, provided by A. Brzezinski.
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EOP C04 (published by IERS)

• “regularize”a

• UTC to TT
a(remove zonal Earth tide effect in ∆UT and

LOD via RG_ZONT2)

EopLookUpTable

• Lagrangian inmterpolation (5th order)

• compute effects of zonal Earth tides & add
to ∆UT and LOD (via RG_ZONT2)

• add effect of ocean tides to
xp, yp,∆UT, LOD

• add libration effects to xp, yp

Interpolate

Figure 2.12: Extracting EOP information from IERS C04 data files.
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2.4 Time Systems and Scales

2.4.1 A Short Introduction to Time Scales

This section only touches upon the fundamentals of time scales used in Satellite
Geodesy (see Table 2.5) and relevant transformation algorithms, as applied in the
software designed for the purposes of this Thesis. An extensive discussion on the
subject can be found in i.e. Urban and Seidelmann 2013 and IAU SOFA Board
2021b.

Historically, solar time was the basis of time keeping, based on the diurnal
rotation of the Earth. However, with the discovery of the variability of the rate
of rotation of the Earth and later on the development of atomic clocks, ans the SI
second different time systems and scales have been introduced to match the ever
growing precision demands.

Time Scale Usage Type
International Atomic Time (TAI) the official timekeeping

standard
Atomic

UTC the basis of civil time Atomic/Solar
hy-
brid

UT1 based on Earth rotation Solar
TT used for solar system

ephemeris look-up
Dynamical

Geocentric Coordinate Time (TCG) used for calculations cen-
tered on the Earth in space

Dynamical

Barycentric Coordinate Time (TCB) used for calculations beyond
Earth orbit

Dynamical

Barycentric Dynamical Time (TDB) a scaled form of TCB that
keeps in step with TT on
the average

Dynamical

Table 2.5: Fundamental time scales used in Geodesy and Astronomy.

TAI The unit of TAI is the SI second, defined as “the duration of 9,192,631,770
periods of the radiation corresponding to the transition between the two hyperfine
levels of the ground state of the caesium 133 atom”. TAI is a laboratory time scale,
independent of astronomical phenomena apart from having been synchronized to
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solar time when first introduced. It is realized via a weighted average of a number
of high-precision atomic clocks held around the world. It is close to proper time for
an observer on the geoid, and is an appropriate choice for terrestrial applications
(IAU SOFA Board 2021b).

UTC UTC is a compromise between the demands of precise timekeeping and
the desire to maintain the current relationship between civil time and daylight.
Until 1972, rate changes were introduced to keep UTC roughly in step with UT1;
since then, adjustments have been made by occasionally inserting a whole second,
called a leap second, a procedure that can be thought of as stopping the UTC
clock for a second to let the Earth catch up (ibid.). Leap seconds are introduced
as necessary to keep UT1-UTC in the range �0.9 s. The difference between UT1
and UTC is usually designated as ∆AT .

UT1 UT1 is the modern equivalent of mean solar time. In a physical sense, it
is an angle rather than actual time, and is defined through its relationship with
Earth rotation angle. Because of the variability of Earth’s rotation, UT1 second
is not precisely matched to the SI second. The difference between UT1 and TT is
normally designated as ∆T , and can be written out as

∆T � TT � UT1 � 32.184 s�∆AT �∆UT1 (2.77)

The Dynamical Time Scales TCG, TCB & TDB The coordinate time
scales TCG, TCB and TDB are the independent variable in General Relativity
based theories which describe the motions of bodies in the vicinity of the Earth
(TCG) and in the solar system (TCB, TDB). TT and TDB are close to each other
(less than 2 ms) and run at the same rate as TAI (exactly in the case of TT).
TCG and TCB, used in theoretical work, run at different rates and so have long
term drifts relative to TAI (ibid.). TCG and TCB are the time coordinates of two
IAU spacetime metrics called, respectively, the geocentric and barycentric celestial
reference systems (GCRS and BCRS). TCG, is appropriate for theoretical studies
of geocentric ephemerides. Its relationship with TT is this conventional linear
transformation:

TCG � TT � LG � pJDTT � TT0q (2.78)

where TT0 � 2443144.5003725 (i.e. TT at 1977 January 1.0 TAI) and LG �
6.969290134 � 10 � 10. The rate change LG means that TCG gains about 2.2 s
per century with respect to TT or TAI; this represents the combined effect on the
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terrestrial clock of the gravitational potential from the Earth and the observatory’s
diurnal speed (ibid.).

TT TT, is the theoretical time scale for clocks at sea-level (on the geoid): for
practical purposes it is tied to TAI through

TT � TAI � 32.184 s (2.79)

Note that UTC has to be expressed as hours, minutes and seconds (or at least
in seconds in a given day) if leap seconds are to be taken into account in the correct
manner. In particular, it is inappropriate to express UTC as a Julian Date, because
there will be an ambiguity during a leap second—so that for example 1994 June
30 23h 59m 60s.0 and 1994 July 1 00h 00m 00s.0 would both come out as MJD
49534.00000—and because subtracting two such JDs would not yield the correct
interval in cases that contain leap seconds.

2.4.2 Implementing Time Scales

Designing and implementing software for handling dates, time scales and related
transformations is a rather challenging task. The complexity is evident, consider-
ing:

• The long list of different time-scales involved in Satellite Geodesy and As-
tronomy (see 2.4.1)

• The different representation conventions (e.g. Julian Date (JD), Modified
Julian Date (MJD), year/month/day and hour/minute/seconds)

• The accuracy required when transforming between different time scales

• The heavy usage of dates and time in a POD process (i.e. efficiency)

All of the above must be taken into account in software design, making the
“datetime” problem a field of continuous investigation. Despite the fact that there
are a few datetime libraries, (some languages have even relevant implementations
in their standard libraries), none complies with the accuracy and complexity in-
volved in Satellite Geodesy. The exception is the official IAU implementation of
Fundamental Astronomy, i.e. the Standards Of Fundamental Astronomy (SOFA)
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library (IAU SOFA Board 2021a). However, SOFA is implemented in the FOR-
TRAN (and C) programming languages and has to reserve a level of “backwards
compatibility”, thus its design paradigm is rather outdated (e.g. no Object Ori-
ented Design). Additionally, the package provides core functionality, hence one
should implement various utility functions (e.g. parsers) to interact with this
functions.

For all the above, a decision was taken to design and implement a new soft-
ware library, from scratch, to address the “datetime” problem. The design follows
recent developments and paradigms in Software Engineering, such as Template
Metaprogramming (Vandevoorde et al. 2017). The library is open and free for any
interested user.

A “datetime” or epoch within the library is represented as an MJD, where the
integral and fractional part of day are stored separately, to preserve precision. In
the special case of UTC dates, the epoch can be stored in the Year Month Date plus
Hours Minutes Seconds (YMD/HMS) format. Depending on the user/application
needs, the fractional part of the day can be stored as either a floating point numeric
value, or the accumulated number of s, ms, µs or ns, since the beginning of the day.
Both implementations are supported by individual “classes”; the latter is achieved
via heavy template usage.

While storing the fractional part of day as a floating point number is intuitive
and straightforward, it suffers from roundoff errors. This is avoided in the case
where the fraction of day is stored as an integer numeric value (i.e. accumulated
second submultiple); however, in this case, precision is limited by the chosen sub-
multiple and non-integer division will also introduce truncation. It is up to the
user to choose the suitable representation to meet application demands.

The components of the library have been extensively tested using the SOFA
results as reference, as well as the relevant (limited) standard library functions.
The software is developed as a stand-alone library, complying with the latest C++
standards (C++17 & C++20) and include �5000 lines of source code (including
test suits).

58



Chapter 3

Orbit Integration

3.1 Introduction

The equations of motion governing the orbital path followed by an Earth orbit-
ing satellite, constitute a system of Ordinary Differential Equations (ODEs). To
“propagate” the orbit, we need to solve this system, using a reference trajectory
at a given instant t � t0 as initial conditions. The high accuracy that is nowadays
required for POD applications, can only be achieved via numerical methods (Mon-
tenbruck and Gill 2000). Although there are many types of numerical integrators
developed for solving ODE problems, only a few of them are suitable for POD due
to their limited numerical precision and stability (Nie et al. 2020).

A variety of methods have been successfully applied to the problem of orbit
propagation, each with its own drawbacks, limitations and advantages (see e.g.
Somodi and Földváry 2011 and Atallah et al. 2020.) Thus, in general, it is not
possible to simply select one method as best suited for the prediction of satellite
motion.

In this Thesis, two different techniques of numerical integration are investi-
gated, namely:

Runge—Kutta methods, that have the advantage of being well established and
easy to implement, and

multistep methods, that a high efficiency and accuracy at a cost of increased
implementation complexity
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Both of these techniques, are further subdivided into more specialized algorithms,
depending on problem constraints, choice of parameters and algorithmic approach.
Typically, application needs indicate the appropriate methodology.

A comparisson of different integration techniques considering a simple, Kep-
lerian orbit is discussed in Montenbruck 1992, where the highly flexible, variable
order and step size multistep methods are shown to be ideal candidates for use
in general satellite orbit prediction and determination systems. A more realistic
scenario is studied in Somodi and Földváry 2011, where again the efficiency and
robustness of the Adams methods is shown. Papanikolaou and Tsoulis 2016, com-
pare integration techniques (including direct 2nd-order integrators such as Gauss-
Jackson methods) in the frame of the GRACE and GOCE satellite missions; the
efficiency of the Adams PECE algorithm compared to Runge-Kutta methods is
evident, even though only constant-step implementations are considered. A com-
prehensive study of the precision and efficiency of different Runge-Kutta methods
(among others) is presented in Atallah et al. 2020.

It should be noted that the equations of motions considered, constitute a system
of ODEs of seconds degree. Even though methods for direct integration of such
equations exist, they will not be considered here, since such methods assume that
forces acting on a satellite do not depend on its velocity (an assumption not fulfilled
in the POD case considered here, see e.g. section 2.2.3). For a more detailed and
general discussion on numerical methods for ODEs, see Hairer et al. 2009 and
Hairer and Wanner 2010.

A first order system of ODEs can always be obtained from a respective second
order, by combining the position r and velocity 9r vectors into the 6-dimensional
state vector y

y �
�
r
9r



(3.1)

with

9y � fpt,yq �
�

9r
apt, r, 9rq



(3.2)

so that the original system

:r � apt, r, 9rq (3.3)

can be written in the general form

9y � fpt,yq, with y, 9y,f P < (3.4)
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3.1.1 Goals of Current Chapter

Orbit integration plays a major role in POD as it can be used to “connect” the tra-
jectory between observation epochs. Nowadays, the increasingly enhanced ground
and space-borne geodetic observation techniques have put forward even higher re-
quirements on the precision of numerical orbit integration. Efficiency constraints
and computational resources have to be thoroughly considered in such an integra-
tion process, as the computational burden it incurs is significant.

In this chapter a quick overview of the most widely used ODE solution tech-
niques, as applied to the orbit determination problem, is presented. Focus is
placed on multistep methods, and more specifically the Adams PECE family of
algorithms, as they represent state-of-the-art integration schemes.

Unfortunately, there is a lack of relevant software or software availability; well
established, scientific packages performing POD are mostly either not freely avail-
able or not open-source. Hence, the decision was made to design and implement
an efficient, robust integrator from scratch within the framework of this Thesis.
The Adams PECE method was adopted as the algorithm of choice, due to the
advantages it offers both in terms of precision and efficiency. The implemented
scheme follows a variable step, variable order approach, based on the theoretical
groundwork laid by Shampine and Gordon 1975.

The implementation details of the software built to address orbit integration,
are discussed in section 3.4. Elaborate mathematical formulations are employed
to allow for as much efficiency as possible; variable, but not rapidly changing
step sizes and orders of the integrator are seeked for in every individual step, to
accommodate robustness and precision and limit computational burden.

The integrator constitutes a big part of the software package built for this
Thesis. As such, it pertains to the overall philosophy of free and open-source
software, adopting a modern, generic design and accommodating reusability and
adaptability (see subsection 3.4.4).

3.2 Runge-Kutta Methods

In the Runge-Kutta methods, a weighted average of the slopes (f) of the solution
computed at nearby points is used to determine the solution at t � tn�1 from that
at t � tn. Typically, Runge-Kutta methods are further divided in explicit and
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implicit methods; the latter are more complicated but allow for higher order and
improved stability (see Griffiths and Higham 2010).

The general s-stage Runge-Kutta methods, may be written in the form

yn�1 � yn � h
ş

i�1

biki (3.5)

where the ki terms can be computed from the function f

ki � f

�
tn � cih, yn � h

ş

j�1

ai,jkj

�
with i � 1, 2, . . . s (3.6)

Typically, we impose the condition

ci �
ş

j�1

ai,j (3.7)

Thus, given a value of s, the method depends on s2 � s parameters ai,j and bj.
These can be conveniently displayed in a tableau known as the Butcher array (see
e.g. Butcher 2016).

c1 a1,1 a1,2 . . . a1,s

c2 a2,1 a2,2 . . . a2,s
...

...
...

...
cs as,1 as,2 . . . as,s

b1 b2 . . . bs

Table 3.1: The Butcher array for
a full (implicit) RK method

0 0 0 . . . 0 0
c2 a2,1 0 . . . 0 0
c3 a3,1 a3,2 . . . 0 0
...

...
... . . . 0 0

cs as,1 as,2 . . . as,s�1 0
b1 b2 . . . bs�1 bs

Table 3.2: The Butcher array for
an explicit RK method. Zeros
are often omitted.

Equation 3.6 constitutes a nonlinear equation system of size s, that can be
used to determine ki; once found, they can be substituted into Equation 3.5 to
determine yn�1. Thus, a general Runge-Kutta method is implicit (Griffiths and
Higham 2010). The form of the Butcher array for an implicit Runge-Kutta method
is shown in Equation 3.2. Although early studies were devoted entirely to explicit
Runge-Kutta methods, interest has now moved to include implicit methods, which
have become recognized as appropriate for the solution of stiff differential equations
(Butcher 2016).

62



If the coefficients ai,j can be placed in a lower triangular matrix, i.e. ai,j � 0
for all j ¥ i, the ki terms can be computed directly (from Equation 3.6) without
the need to solve any nonlinear equations. These are the methods most often used,
and are called explicit. In this case, the general form of the associated Butcher
array is depicted in Table 3.2.

The Local Truncation Error of a Runge-Kutta method Tn�1, is defined to be
the difference between the exact and the numerical solution at t � tn�1 (Griffiths
and Higham 2010)

Tn�1 � xptn�1q � xn�1 (3.8)

with yn � yptnq. If Tn�1 � Ophp�1qpp ¡ 0q the method is said to be of order
p. In practice, two related Runge-Kutta methods are used, one of order p and
another of order p � 1, to approximate the value of the local truncation error
via Tn�1 � yp�1

n�1 � ypn�1, where the Tn�1 estimate is for the lowest order method
p. To perform the calculation in an efficient way, the values of ks for the lowest
degree method, are chosen so that they are a subset of the higher degree method
coefficients. Such methods of neighboring orders are often called embedded Runge-
Kutta methods.

While for s   4 there are always Runge-Kutta methods where s � q, this is not
the case for methods of stages higher than four. The number of stages necessary
for a given order is known up to order 8, but there are no precise results for higher
orders (ibid.).

3.2.1 Adaptive Step Size

The step size h is a crucial parameter in the integration methods; it dictates the
number of steps required to integrate over a given interval, and the accuracy of the
results obtained. Small step sizes (in general) improve accuracy but comes with
an efficiency cost. To that end, step size control can be used, to compute a value
hn for step n, to obtain the same accuracy with fewer steps or better accuracy
with the same number of steps. In adaptive step size control, the step size in each
step is adapted to local conditions, so as to take short steps when the solution
varies rapidly and longer steps when there is relatively little activity. Obviously,
computing such variable step sizes, should be automatic and inexpensive. A thor-
ough discussion on implementing sophisticated adaptive step size control, fit for
computer programs, is given in the classic text by Shampine and Gordon 1975.
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3.3 Multistep Methods

3.3.1 Adams Method(s)

Each step in the integration process in the Runge-Kutta method (see section 3.2)
is completely independent and is discarded once used for computation (this is why
they are often referred to as single-step methods). To cut down on the number
of function calls multi-step methods have been introduced to allow for efficiency.
These store previous step values and reuse them in the subsequent steps, so that
to generate an approximation for the next step, the previously computed y and 9y
values computed at the previous k steps are combined.

In general, starting with the ODE 9y � fpt,yq, and integrating both sides for
the interval ti to ti�j the following expression is obtained

ypti�1q � yptiq �
» ti�1

ti

fpt,yptqq dt (3.9)

In multistep methods, the integrand is replaced by a polynomial pptq, that inter-
polates a subset of the already available approximate values ηj of the solutions
yptjq, such that

fj � fptj,ηjq (3.10)

Hence, if ηi�1 is the approximate solution at the next step to be taken,

ηi�1 � ηi �
» ti�h

ti

pptq dt (3.11)

and the increment function of a multistep method is therefore given by

Φ � 1

h

» ti�h

ti

pptq dt (3.12)

Finally, the solution approximation at t � ti�1 can be approximated by

ypti�1q � yptiq � h pb1fi � b2fi�1 � � � � � bkfi�k�1q (3.13)

Methods of this form are known as Adams-Bashforth methods. Coefficients for
the representation Equation 3.13 for up to 4th degree are available in e.g. Butcher
2016.

Multistep methods are typically derived by using an interpolating polynomial
in either of two ways. The first is to use an interpolating polynomial through
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ti, ti�1, . . . , ti�k�1 for fpt,ηq and then integrate the equation (as discussed above).
The second method consists in using an interpolating polynomial (again through
ti, ti�1, . . . , ti�k�1) to approximate yptq and then differentiate it, evaluate at ti�1

for an implicit method and set it equal to the given slope (fpt,ηq) at that point
to obtain the difference equation. This gives rise to a family of implicit methods
called backward difference formulas. In the latter case, the polynomial is given by
the expression (Montenbruck and Gill 2000)

pimptq � pimpti � σhq �
m�1̧

j�0

p�1qj
��σ
j



∇jfi (3.14)

where the binomial coefficient is used
��σ
j



�
# p�σqp�σ�1q...p�σ�j�1q

j!
, if j ¡ 0 and

1 , if j � 0
(3.15)

The ∇i operator here denotes the backward difference operator, which is recur-
sively defined by (see Table 3.3)

∇0fi � fi
∇1fi � fi � fi�1

∇nfi � ∇n�1fi �∇n�1fi�1

(3.16)

Using Equation 3.12 the increment function of the mth-order Adams-Bashforth
methods, can be written as

Φ � 1

h

» ti�h

ti

pimptq dt �
m�1̧

j�0

γj∇jfi (3.17)

with

γj � p�1qj
» 1

0

��σ
j



dσ (3.18)

γj coefficients can be found in e.g. Butcher 2016 up to 7th order.

The local truncation error of the Adams-Bashforth method decreases with the
order m and may be estimated by comparing two methods of order m and m� 1
(Montenbruck and Gill 2000)

Tm � ‖ypti � hq � ηm‖ � ‖ηm�1 � ηm‖ � h‖γm∇mfi‖ (3.19)
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fi�4 . . .
×

fi�3 Ñ ∇1fi�3 . . .
× ×

fi�2 Ñ ∇1fi�2 Ñ ∇2fi�2 . . .
× × ×

fi�1 Ñ ∇1fi�1 Ñ ∇2fi�1 Ñ ∇3fi�1 . . .
× × × ×

fi Ñ ∇1fi Ñ ∇2fi Ñ ∇3fi Ñ ∇4fi . . .

Table 3.3: Schematic representation of backward differences for polynomial inter-
polation, Montenbruck and Gill 2000.

which can be approximated by

Tm � hm�1‖γmf pmqi ‖ � hm�1‖γmypm�1q
i ‖ (3.20)

which shows that the order of the Adams-Bashforth method is equal to the number
m of nodes ti�m�1, . . . , ti.

The method of backward differences has two major advantages:

1. it allows a straightforward estimation of the local truncation error, and

2. the order can be changed in-between integration steps

Note that the polynomial p (Equation 3.13) is defined by m function values, up
to and including fi at time ti, but the integration Equation 3.12 is performed over
the subsequent interval ti, . . . , ti�1. Instead of Equation 3.13, a slightly different
polynomial can be chosen

ypti�1q � yptiq � h pb0fi�1b1fi � b2fi�1 � � � � � bkfi�k�1q (3.21)

(that is, include a term for the ti�1), which leads to the Adams-Moulton method.
For order m in this case, the interpolating polynomial is (compare to Equa-
tion 3.14)

pi�1
m ptq � pi�1

m pti � σhq �
m�1̧

j�0

p�1qj
��σ � 1

j



∇jfi�1 (3.22)

which yields the increment function

Φ � 1

h

» ti�h

ti

pi�1
m ptq dt �

m�1̧

j�0

γ̄j∇jfi�1 (3.23)
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with coefficients

γ̄j � p�1qj
» 1

0

��σ � 1
j



dσ (3.24)

The local truncation error in this case, is given by (Montenbruck and Gill 2000)

Tm � hm�1‖γ̂mypm�1q
i ‖ (3.25)

and since in general γ̂m   γm, it is smaller that the respective Tm value for an
Adams-Bashforth method of equal size.

3.3.2 Predictor-Corrector Method

Since the increment function Equation 3.23 depends on fi�1 � fpti�1,ηi�1q, it is
not possible to calculate an explicit solution at ti�1 from Equation 3.21, making
this method an implicit method. To surpass this difficulty, a combination of the
Adams-Bashforth and Adams-Moulton methods can be used, in what is called
a PECE scheme (Figure 3.1). At a first step, an Adams-Bashforth of order m is
used to compute an approximate solution ηppqti�1

, using the already computed values
fi,fi�1, . . . ,fi�m�1. This predicted value (ηppqti�1

), can then be used to obtain a
predicted function value at ti�1, f

ppq
i�1pti�1,η

ppq
ti�1

q and proceed to the corrector step,
where an updated, improved solution ηti�1

is computed, via an Adams-Moulton
method of order m or m � 1. The “final” function value at ti�1, f

ppq
i�1pti�1,η

ppq
ti�1

q
can be evaluated for the next integration step.

Even though the PECE algorithms are complicated and difficult to implement,
they offer increased stability, especially at large stepsizes (ibid.). Low-order meth-
ods are generally more stable even for large stepsizes.

3.4 Integrator implementation

In this section a brief outline of the integrator designed and implemented for
the current Thesis is given. The method used, is a variable step, variable order
Adams-Bashforth-Moulton PECE algorithm. The implementation is based on the
developments of Shampine and Gordon 1975, which up to date constitute one
of the most robust ODE solvers solvers, given the problem constraints (non stiff
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Predictor compute initial estimate
of the solution at ti�1 using the

(explicit) Adams-Bashforth formula (see Equation 3.13)
η
ppq
i�1 � ηi � h � ΦAB

Use the result obtained in the Predictor
step to compute the function value at ti�1 (see Equation 3.10),

f
ppq
i�1 � fpti�1,η

ppq
i�1q

Corrector compute an improved approximate
value ηi�1 using the Adams-Moulton method (see Equation 3.21),

ηi�1 � ηi � h � ΦAM

Evaluate the updated function value
fi�1 � fpti�1,ηi�1q

and use for nest integration step

Figure 3.1: Schematic representation of the Predictor-Corrector algorithm using
the Adams-Bashforth and Adams-Moulton methods.
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ODE systems of 1st order). An overview of the implemented schema is depicted
in Figure 3.2.

According to Shampine and Gordon 1975, use of Adams methods are most
advantageous for problems in which:

• function evaluations are expensive,

• moderate to high accuracy is requested,

• many output points are required

In the case of POD, at least the first two points above hold; function evaluations
are expensive in terms of computational time and resources. Computation of
the force model (see subsection 2.2.3) and respective accelerations are resource
demanding tasks, especially in view of the high accuracy standards expected to be
met in a POD process.

It is worth noting that major scientific software packages used for POD, such as
GINS, developed by CNES and Groupe de Recherche en Géodésie Spatiale (GRGS)
(CNES 2013) and GEODYN developed by Goddard Space Flight Center (GSFC)
(Beal 2015) use multi-step methods for the numerical integration. The algorithm
implementation was written from scratch requiring many difficult steps, as ex-
plained in the preceding sections. Exisiting libraries were not preferred (when
available) as were developed with reduced analytical capabilities for modern com-
puting systems. An overview of the integrator designed for this Thesis, is given in
Figure 3.2.

In POD, the cost of calling the derivative function fpt,yptqq is quite heavy
and repeated calls can make the integrator inefficient. Hence, care must be taken
to limit such computations. The Adams methods, when carefully used, are more
efficient in this respect than any other method being used today to solve general
ODE (Shampine and Gordon 1975). This incurs an additional overhead, however,
because making such decisions necessitates estimating the errors that are, or would
be, incurred for various step sizes and orders. To address this issue, most steps
are performed in groups with constant step size and order.

For a varying step size, a wise choice of stored variables and coefficients should
be made to accommodate efficiency. Since, the algorithm will be using divided
and backward differences, this choice includes the variables
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Integration request,
y0, f , t0, tn

Initialize and check parameters

Compute formulae coefficients

Prediction and estimation
of local errors

Restore input, select new
order and/or step size

Correction and selection of
new order and/or step size

Error, return control OK, return control

Reached tn ?

User Interface

Class Interface

Failed Step Successful step

Step size too small

Return yptnq

Take new step

Figure 3.2: Flow chart of the implemented PECE integrator, based on Shampine
and Gordon 1975.

hi � xi � xi�1, (3.26)

s � x� xn
hn�1

, (3.27)

ψipn� 1q � hn�1 � hn � � � � � hn�2�i i ¥ 1, (3.28)

αipn� 1q � hn�1

ψipn� 1q i ¥ 1, (3.29)

β1pn� 1q � 1, (3.30)

βipn� 1q � ψ1pn� 1qψ2pn� 1q . . . ψi�1pn� 1q
ψ1pnqψ2pnq . . . ψi�1pnq i ¡ 1, (3.31)

φ1pnq � f rxns � fn, (3.32)
φipnq � ψ1pnqψ2pnq . . . ψi�1pnqf rxn, xn�1, . . . , xn�i�1s, i ¡ 1 (3.33)

where hi are the step size, ψipn�1q � hn�1�hn�� � ��hn�2�i � xn�1�xn� 1� i
are the sums of the step sizes, φipnq are the modified divided differences (which
reduce to backward differences for constant step sizes), s is a normalized variable
taking value in the range r0, 1s as x runs from xn to xn�1 and αi and βi are
intermediate coefficients used for the computations.
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Through Equation 3.26 to Equation 3.33, a change from value n to n � 1 can
be performed via the recursion for i � 2, 3, . . .

ψipn� 1q � ψi�1pnq � hn�1

βipn� 1q � βi�1pn� 1qψi�1pn� 1q
ψi�1pnq

(3.34)

with initial conditions for i � 1

ψ1pn� 1q � hn�1

β1pn� 1q � 1
(3.35)

It is worth noting that if the step size is constant, Equation 3.26 through
Equation 3.33 are simplified to

s � x� xn
hn�1

, (3.36)

ψipn� 1q � ih (3.37)

αipn� 1q � 1

i
(3.38)

βipn� 1q � 1 (3.39)
φipnq � ∇i�1fn, (3.40)

The expression of the polynomial Pk,npxq in Equation 3.52 and Equation 3.53
can be written as

Pk,nptq �
ķ

i�1

ci,npsqφ�i pnq (3.41)

where

ci,npsq �

$''&
''%

1 i � 1
shn�1

ψ1pn�1q � s i � 2�
shn�1

ψ1pn�1q

	�
shn�1�ψ1pnq
ψ2pn�1q

	
. . .
�
shn�1�ψi�2pnq
ψi�1pn�1q

	
i ¥ 3

(3.42)

φ�i pnq � βipn� 1qφipnq (3.43)

The derivative in Equation 3.53, is then

Pk,nptn�1q � p1n�1 �
ķ

i�1

φ�i pnq (3.44)
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and the (approximate) solution at tn�1, Equation 3.52 is

pn�1 � yn � hn�1

ķ

i�1

φ�i pnq
» 1

0

ci,npsq ds (3.45)

As already shown, for constant step size h, Equation 3.45 reduces to

pn�1 � yn � h
ķ

i�1

γi�1∇i�1fn (3.46)

To compute the integral in Equation 3.45, the quantity gi,q is introduced, defined
as gi,q � pq � 1q!cp�qqi,n p1q. According to Shampine and Gordon 1975, the integral
can now be evaluated via the formula» 1

0

ci,npsq ds �
ķ

i�1

gi,1φ
�
i pnq (3.47)

so that Equation 3.45 can be numerically computed from

pn�1 � yn � hn�1

ķ

i�1

gi,1φ
�
i pnq (3.48)

The coefficients gi,q follow the recursion formulas

gi,q �

$'&
'%

1
q

i � 1
1

qpq�1q i � 2

gi�1,q � αi�1pn� 1qgi�1,q�1 i ¥ 3

(3.49)

In the formulas presented here, a series of simplifications can be made if a
constant step size h is considered. These are implemented in the source code for
the integrator. The interested reader can find details in ibid.

3.4.1 The Predictor

The predictor part of the PECE integrator follows the Adams-Bashforth method
(see subsection 3.3.1). In general, a kth order Adams-Bashforth predictor at tn is
defined by the expression

yn �
» t
tn

Pk,nptq dt (3.50)
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where Pk,nptq satisfies the interpolation conditions

Pk,nptn�1�jq � fn�1�j for j � 1, . . . , k (3.51)

Equation 3.50 is used to predict both the solution and its derivative at tn�1

pn�1 � yn �
» tn�1

tn

Pk,nptq dt (3.52)

p1n�1 � Pn,kptn�1q (3.53)

The implementation computes the above values using Equation 3.48 and Equa-
tion 3.44 using a series of intermediate variables and coefficients ( as described
in section 3.4). To promote efficiency, these coefficients are stacked in contiguous
memory, divided in blocks based on their usage in the algorithm, to minimize as
much as possible cache misses.

3.4.2 The Corrector

The corrector part of the PECE integrator is based on the Adams-Moulton al-
gorithm. In this step, pn�1 is “corrected” and all relevant values needed for the
next step are computed and stored. The corrector implemented here, is one order
higher than the predictor. In general, the solution and its derivative, using an
Adams-Moulton method, is given by

yn�1 � yn �
» tn�1

tn

P �
k�1,nptq dt (3.54)

and
fn�1 � fptn�1, yn�1q (3.55)

where

P �
k�1,nptn�1�jq � fn�1�j for j � 1, 2, . . . , k (3.56)
P �
k�1,nptn�1q � fpn�1 � fptn�1, pn�1q (3.57)

The corrector polynomial interpolates the same set of values as the predictor, plus
the additional value fpn�1. Using the divided differences formulation, P �

k�1,n can
be computed from Pk,n using one extra term. Using the notation introduced in
section 3.4, the polynomial can be given by

P �
k�1,nptq � Pn,kptq � ck�1,npsqφpk�1pn� 1q (3.58)
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and after integration, the solution and derivative function can be shown to be
(Shampine and Gordon 1975)

yn�1 � pn�1 � hn�1gk�1,1φ
p
k�1pn� 1q (3.59)

fn�1 � fptn�1, yn�1q (3.60)

Equation 3.59 allows the computation of the “corrected” solution using the work
done at the corrector phase, plus the term gk�1,1; the latter is computed along with
the gi,1, needed in the prediction (see Equation 3.48). Note also that changing the
term gk�1,1 to gk,1, yields the solution of order k (ibid.), a fact used to assist the
estimation of the error (here the notation yn�1pkq is used to distinguish between
the order k and solution the order k � 1 as given in Equation 3.59)

yn�1pkq � pn�1 � hn�1gk,1φ
p
k�1pn� 1q (3.61)

In the case of constant step size h, Equation 3.59 and Equation 3.61 reduce to

yn�1 � pn�1 � hγk∇kfpn�1 (3.62)
yn�1pkq � pn�1 � hγk�1∇kfpn�1 (3.63)

The terms φpi pn� 1q and φipn� 1q can be computed via recursion, given that the
divided difference approach is followed, from (ibid.)

φpi�1pn� 1q � φpi pn� 1q � φ�i pnq for i � 1, 2, . . . , k (3.64)
φi�1pn� 1q � φipn� 1q � φ�i pnq for i � 1, 2, . . . , k (3.65)

with initial conditions

φp1pn� 1q � fpn�1 (3.66)
φ1pn� 1q � fn�1 (3.67)

According to ibid., despite the straightforwardness of these recursive relations, they
lack storage efficiency. This can be corrected using an alternate way to compute
these terms. Introducing the modified divided differences φei , that make us of the
value p1n�1 at tn�1 (that is extend the differences φipnq based on the sequence
xn, xn�1, . . . to the values at xn�1, xn, xn�1 . . . )

φei pn� 1q � φei�1pn� 1q � φ�i pnq (3.68)

which can be used to generate the φei pn�1q terms in the sequence i � k, k�1, . . . , 1.
Now, Equation 3.64 and Equation 3.65 can be written as

φpi pn� 1q � φei pn� 1q � �fpn�1 � φe1pn� 1q� (3.69)
φipn� 1q � φei pn� 1q � �fpn�1 � φe1pn� 1q� (3.70)

The combined predictor-corrector step phase is depicted in Figure 3.3.
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Compute gi,1 for i � 1, 2, . . . , k � 1, see Equation 3.49

Prediction Step
compute φ�i pnq via Equation 3.43, for i � 1, 2, . . . , k

compute pn�1 via Equation 3.48
set φek�1pn� 1q � 0

compute φei pn� 1q via Equation 3.68, for i � k, k � 1, . . . , 1

Evaluation Step
compute fpn�1 � fpxn�1, pn�1q

Correction Step
compute yn�1 � pn�1 � hn�1gk�1,1

�
fpn�1 � φe1pn� 1q�

Evaluation Step
compute fn�1 � fpxn�1, yn�1q

compute φk�1pn� 1q � fn�1 � φe1pn� 1q and
compute φipn� 1q � φei pn� 1q � φk�1pn� 1q for i � k, k � 1, . . . , 1

Figure 3.3: Schematic representation of the Adams PECE integrator, based on
Shampine and Gordon 1975.
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3.4.3 Error Estimation, Order and Step Size

Error estimation in the integration process plays a crucial role, since it allows the
algorithm to adjust the step size and order accordingly, so as to preserve efficiency
and accuracy. Local error can be computed before the final step of the PECE
algorithm, aka after the corrector, for orders k � 2, k � 1, k and k � 1. Hence, if
the step is unsuccessful, the final evaluation is not performed, and a change of the
order is examined.

In the source code the quantity ERK is used to make decisions on the step
size. This quantity was introduced by Shampine and Gordon 1975 and is given by

ERK � ‖h pgk�1,1 � gk,1qσk�1pn� 1qφpk�1pn� 1q‖ (3.71)

In reality, ERK estimates what the local error at xn�1 would have been, had the
preceding steps been of constant size h. Given a successful step, the next step
(to xn�2) of size rh, will have a local error of rk�1ERK. If on contrary the step
were to be repeated with a step size of rh, then again its error estimate would be
rk�1ERK.

For order selection, three further quantities are introduced, based on ibid.

ERKM1 � ‖h pgk�1,1 � gk,1qσkpn� 1qφpkpn� 1q‖ (3.72)
ERKM2 � ‖h pgk�1,1 � gk,1qσk�1pn� 1qφpk�1pn� 1q‖ (3.73)
ERKP1 � ‖h pgk�1,1 � gk,1qφk�2pn� 1q‖ (3.74)

The first two, estimate what the local error would have been at xn�1 had these
steps be taken with an order of k�1 and k�2 respectively. ERKP1 is an estimate
of the local error at xn�2. All of the estimates assume a step size h. The philosophy
of the order selection is to change the order only if the predicted error is reduced
and if there is a trend in the terms. In general, lower order formulas have better
stability properties (ibid.), and the algorithm is so designed as to prefer lower
orders. The maximum order limit within the algorithm is 12.

After the order selection, the algorithm tries to select the optimal step size rh.
The value of r is initially estimated by

r �
�

0.5ε

ERK


 1
k�1

(3.75)

and restrict increase of r to factors of two. Hence, if the inequality 0.5ε ¥
2k�1ERK, holds, the step size is doubled. If this is not possible, then the in-
equality 0.5ε ¥ ERK is checked, to see if a constant step size can be retained.
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Keeping a constant step size (when a factor of two increase is not feasible) offers
efficiency, simplicity, stability and a more realistic error estimation. If however the
latter inequality demands so, a decrease of step size is performed by a factor in
between 0.5 to 0.9, computed via Equation 3.75. The value of ε is user defined.

3.4.4 Design Considerations

An efficient and precise solution of the orbit integration problem plays a key role in
POD applications. The algorithm described above is a state-of-the-art integrator,
which allows for a robust treatment of the problem at hand. A few design consid-
eration are discussed here, which enable further enhancements of the algorithm’s
efficiency based on its architectural design.

The whole algorithm is encapsulated in an object-oriented design; this provides
easy and user-friendly interaction with the integration process and eliminates in
as much as possible errors incurred by user misusage. One additional benefit is
that the user (or the user application) does not need to know the very complex
background and methods that are implemented within the algorithm. One only
needs to specify the initial conditions of the ODE and if needed the tolerance
values (see subsection 3.4.3). The algorithm will then seek for the optimal way
(i.e. stepsize and order) to handle the problem.

Additionally, the object oriented design implemented enables the integrator
instance (i.e. a data structure of integrator type) to have state. Users can query
this state and find out information about the process, a fact that enables a clear
and unambiguous interaction between the instance and the caller.

Memory allocations are handled using the Resource Acquisition Is Initialization
(RAII) programming technique (https://en.cppreference.com/w/cpp/language/
raii) and users are free of any obligation regarding allocating/freeing memory.
Special care is taken so that only no excess memory is allocated and most im-
portantly, that memory blocks are allocated in a contiguous manner, minimizing
cache misses.

Part of the source code uses the eigen (Guennebaud and Jacob 2010) library,
which supports vectorization (Single Instruction, Multiple Data (SIMD) instruc-
tions) including the widely used Advanced Vector Extensions AVX, AVX2 and
AVX512.
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3.4.5 Integrator Validation

Checking and validating integrator results is not a straight-forward process, since
the computation of the complex force field acting on the satellite is required (see
subsection 2.2.3). Some of these forces further depend on satellite-specific charac-
teristics (e.g. atmospheric drag, solar radiation pressure). Additionally, validation
of trajectory extrapolation requires a “reference” orbit (i.e. reference state results),
which may have been computed using a non identical set of models, reference
frames and algorithms.

To test the integrator designed and implemented for this Thesis, IDS-published
(Willis et al. 2016b) sp3 files were acquired and used as “reference” orbits. These
orbits are the accumulated results for the satellite state, tabulated at equidistant
epochs, of the individual analysis centers contributing to the service. Hence, they
represent state-of-the-art POD results using the DORIS satellite system.

The test devised to check the integrator proceed as follows:

1. Read a state vector off from the sp3 file for an epoch t

2. Extrapolate the state to a later time ti (prior to the end of sp3 records)

3. Read the state off from the sp3 file for the epoch ti and compare with the
results obtained from the integrator. Go to (1) and repeat the process.

The force model used within the integrator, does not contain contributions of
the solar radiation pressure and atmospheric drag. Ocean tidal loading effects
on the geopotential, are limited to the 11 major tides. All other contributions,
are computed as described in subsection 2.2.3. Handling of the transformation
between the ITRF and GCRF is described in section 2.3.

The validation test is performed for a time interval of approximately one week,
starting on 26/08/2022. The satellite mission picked for the test is Jason-3 (Ban-
noura et al. 2011), since this is the mission used later on, to test the integrated
POD process.

Normally, in a POD process using the DORIS system, there is no need to ex-
trapolate an orbit further than some seconds, after it has been adjusted by the
inclusion of observations (see chapter 4). Two distinct measurements are made
every 10 sec and the ground network is dense enough so that at least one ground
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Figure 3.4: Integration results of satellite state compared to respective IDS-
distributed sp3 file records. Extrapolation is performed for an interval of 1 min.

stations is nearly always visible by any DORIS-equipped satellite. For the val-
idation process, extrapolation is tested up to time intervals of 15 min to gain a
thorough view on the robustness of the implemented algorithm (Figure 3.4).

Figure 3.4 depicts the differences in the state vector y � �
r v

�T between
the reference values obtained by the sp3 file and the ones computed using the
integrator with an extrapolation interval of 1 min. Differences in the position
range between �2 to 2 mm while for the velocity components the differences are
within �1� 10�5 to 1� 10�5 m{s. A diurnal signal seems to be present in the
latter case, which could be due to unmodeled effects of

• (remaining) ocean tidal constituents,

• solid earth pole tides and ocean pole tides,

• solar radiation pressure acting on the satellite,

• atmospheric drag

Figure 3.5 depicts the differences in the state vector when the integration in-
terval is expanded to 3 min. Differences in position range between �5 to 5 mm
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Figure 3.5: Integration results of satellite state compared to respective IDS-
distributed sp3 file records. Extrapolation is performed for an interval of 3 min.

while for the velocity components the differences are within �2� 10�5 to 2� 10�5

m{s. As in the case of 1 min extrapolation (see Figure 3.4), velocity differences are
dominated by a harmonic, diurnal signal and the same can be told for the position
discrepancies.

Differences when extrapolating for an interval of 15 min are depicted in Fig-
ure 3.6. In this case, differences in position range between �5 to 5 cm while for
the velocity components the range is �0.1 to 0.1 mm{s

In general, due to the very small magnitude in the discrepancies computed for
the extrapolated vs the “reference” state (see Figure 3.4, Figure 3.5 and Figure 3.6),
the design of the algorithm and its implementation seem to be robust, while the
discrepancies are attributed to either mismodelled, or unmodelled effects.
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Figure 3.6: Integration results of satellite state compared to respective IDS-
distributed sp3 file records. Extrapolation is performed for an interval of 15 min.
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Chapter 4

Precise Orbit Determination

4.1 Introduction

Orbit determination of artificial satellites began in essence in the 1960s. However,
it was not until the 1980s that great advancements were made, facilitated by a bet-
ter modeling of the Earth’s gravity field and its variations (e.g. tides) and the large
increase in computing capabilities. This enabled orbit determination accuracy to
increase to the tens-of-centimeter level. This improvement was motivated and fur-
ther pushed by the ever-increasing demands of scientists in the oceanographic and
geodetic communities, in search for centimeter-level accuracy in global ocean to-
pography obtained from altimetric satellites (Tapley et al. 2004b). To-date, POD
can yield results in the few-centimeter level.

Orbit determination can be viewed as a special case of a parameter estima-
tion problem, where the parameters characterizing the orbit of an Earth orbiting
satellite have to be determined from observations. Observations are themselfes
values of nonlinear functions (the so-called observed functions, Beutler 2005), thus
for the solution of the problem, initial approximate parameter values are needed
(a problem often called initial orbit determination). Such approximate starting
values can be obtained in a number of ways (see e.g. Vallado 2001), including
published values of preliminary solutions, and will not be considered here. Hence,
the POD process is in essence an orbit improvement problem.

Apart from the orbital elements or equivalently the state vector, a number of
different parameters have to be considered in a POD problem, including
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• dynamical parameters characterizing the force model, necessary to describe
the orbital motion of the satellites,

• coordinates of the observing sites in an ECEF system,

• motion of the observing sites (e.g. crustal deformation),

• Earth rotation and Earth orientation parameters,

• atmosphere parameters defining the tropospheric refraction correction,

• parameters defining the ionospheric refraction correction,

• technique-specific, hardware and (possibly site-specific) instrumentation bias
parameters

All of these parameters have to be considered and dealt-with (either estimated or
introduced) in a POD analysis scheme. In this Thesis, a “restricted” problem is
addressed, often labeled pure orbit determination, where coordinates of reference
observation sites are assumed to known (via their ECEF position vector).

It is not always possible to describe the entire time period covered by obser-
vations by one set of initial conditions and dynamic parameters (Beutler 2005).
Thus, the period can be split into consecutive orbital arcs ; an orbital arc is thought
of as contiguous, limited part of the satellite’s trajectory, described by exactly one
initial state vector and the dynamical parameters. Using short arcs, modeling
deficiencies can be mitigated (absorbed by the initial state vectors), but rapidly
increases the number of arc-specific parameters, a fact that could lead to a consid-
erably weakened solution (ibid.). To overcome this problem, an alternate method
can be used, in which stochastic accelerations are introduced (added to the pa-
rameter list), with known mean values and variance-covariance matrices. Not only
observation noise but also system noise has to be introduced, and each determin-
istic parameter is replaced by a stochastic process (see e.g. Jäggi et al. 2005b and
Jäggi et al. 2005a for a least-squares approach).

4.1.1 Goals of Current Chapter

In this section the fundamentals of orbit determination are discussed, focusing on
two of the most crucial problems:
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• the derivation, computation and solution of the so called variational equa-
tions, and

• efficient, robust and precise parameter estimation via a variation of the
Kalman filter, labeled Extended Kalman Filter

Variational equations are a set of differential equations that describe how small
changes (i.e. perturbations) in initial conditions propagate over time and thus play
a important role in predicting the satellite’s trajectory. For the derivation of these
equations, a linearization of the (non-linear) equations of motion is needed. So-
lution of the variational equations is coupled with the computation of the state
transition matrix, which relates the perturbed state at one epoch to a perturbed
state at a later time and can be used to propagate the covariance matrix. Prop-
agating the latter forward in time, a prediction can be made of the evolution of
uncertainty in the estimate of the satellite’s state. Formulae and numerical recipes
for the linearization, as well as the differential equations of the state transition ma-
trix and variational equations are presented. The discussion focuses on a hands-on
approach, limiting analytical derivations which can be found in relevant litera-
ture. Equations are presented in matrix form, to enable an as much as possible
easy translation to source code, and special care is taken to single out and exploit
features, equations and particularities that can be used to derive a more efficient
and/or robust algorithmic design.

Subsequently, the problem of parameter estimation is considered. There are two
major methodologies that come into play in POD problems, the method of Least
Squares and the extended family of filters called Kalman filters and variations.
For the current thesis, the latter methodology was used and more specifically the
Extended Kalman filter to derive a robust estimator. Computational aspects of
the methodology and the implementation are discussed, as well as advantages and
shortcomings.

Since a discussion on the input data for the POD problem considered in this
Thesis is not yet touched upon, the computation of observation equations (needed
in the estimation process) is not thoroughly presented here; this issue will be revis-
ited once the basics of the DORIS system are presented (see chapter chapter 5).

4.2 Linearization

In a POD problem, both the dynamics and the measurements involve significant
nonlinear relationships. For both the trajectory and the observation models, a
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large number of partial derivatives have to be computed for a rigorous linearization.
These, according to Montenbruck and Gill 2000 can be divided into four different
categories:

The State Transition Matrix Φpt, t0q, which maps deviations in the state vec-
tor from an epoch t0 to a later time t, and is given by

Φpt, t0q �
� Byptq
Bypt0q



p6�6q

(4.1)

The Sensitivity Matrix Sptq, which describes the dependence of the orbit on
the dynamical parameters pi with i � 1, 2, . . . , np and is formed by the
respective partial derivatives of the state with respect to the force model,

Sptq �
�Byptq

Bp


p6�npq

�

�
���������

Bxptq
Bp1

Bxptq
Bp2 . . . Bxptq

BpnByptq
Bp1

Byptq
Bp2 . . . Byptq

BpnBzptq
Bp1

Bzptq
Bp2 . . . Bzptq

BpnB 9xptq
Bp1

B 9xptq
Bp2 . . . B 9xptq

BpnB 9yptq
Bp1

B 9yptq
Bp2 . . . B 9yptq

BpnB 9zptq
Bp1

B 9zptq
Bp2 . . . B 9zptq

Bpn

�
��������

(4.2)

Partials of the measurements with respect to the state vector , which given
an observation z at some instant t, is given by� Bz

Byptq


p1�6q

(4.3)

, and

Partials with respect to measurement model parameters , which given the
observation model parameters qi for i � 1, 2, . . . , nq, given by�Bz

Bq


p1�nqq

(4.4)

Note that from Equation 4.1, the dependence of an individual observation z on
the initial state ypt0q is

Bz
Bypt0q �

Bz
Byptq

Byptq
Bypt0q �

Bz
ByptqΦpt, t0q (4.5)
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and from Equation 4.2
Bz
Bp �

Bz
Byptq

Byptq
Bp � Bz

ByptqSptq (4.6)

Analytical computation of the partial derivatives is tedious, cumbersome and
an error prone procedure. However, it constitutes an essential part of orbit determi-
nation and have a noticeable impact on the achieved performance and convergence
speed (Montenbruck and Gill 2000).

The orbit determination problem, can in the general case be described by the 1st

order ODE system for the dynamics accompanied with the observation functions
9Y � F pt,Y q (4.7)
Zi � Gpti,Yiq � εi (4.8)

where y is the state vector and zi is a p�dimensional set of observations, for
i � 1, 2, . . . , l. If a sufficiently precise reference (initial) trajectory y� is available,
then the actual, “true” trajector y can be expanded in a Taylor series about this
reference trajectory at each point in time. Truncating higher order terms, the
deviation in state from the reference trajectory can be described by a set of linear
differential equations with time-dependent coefficients. The same procedure can be
used in Equation 4.8 to obtain a linear relation between the observation deviation
and the state deviation. In this way, the original, non-linear orbit determination
problem is transformed to a linear problem, in which the deviation from some
reference solution must be determined. If y denotes the state deviation vector and
z the observation deviation vector, then

δyptq � yptq � y�ptq
δzptq � zptq � z�ptq (4.9)

so that
9δyptq � 9yptq � 9y�ptq (4.10)

Expanding Equation 4.7 and Equation 4.8 in a Taylor’s series about the reference
trajectory, leads to (Tapley et al. 2004b)

9yptq � fpt,yq
� fpt,y�q � Bfpt,yq

By�ptq pyptq � y�ptqq �O pyptq � y�ptqq (4.11)

and
zi � gpti,yiq � εi

� gpt,y�i , tiq �
Bg
By� |i pyptiq � y

�ptiqq �O pyptiq � y�ptiqq � εi
(4.12)
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where the partials are evaluated on the reference solution, y�ptq can be obtained by
integrating Equation 4.7 andO indicate terms containing products of the difference
yptq�y�ptq higher than the first term. Given that these terms are sufficiently small
to be neglecting and using 9y� � fpt,y�q, Equation 4.11 and Equation 4.12 can be
written as

9δyptq � Aptqδyptq (4.13)
δzi � Hiδyi � εi (4.14)

where
Aptq � Bfptq

Byptq |y� and Hi � Bg
By |y�i (4.15)

Hence the original non-linear problem describe by the equations Equation 4.7 and
Equation 4.8 is replaced by the linear Equation 4.13 and Equation 4.14.

4.2.1 State Transition Matrix

Equation 4.13 represents a system of linear differential equations with time-dependent
coefficients (notice that the matrix A in Equation 4.15 is derived from a particular
solution of 9y � fpt,yq, generated with the initial conditions ypt0q � y�0 ). The
general solution for this system can be expressed as

δyptq � Φpt, tkqδyk (4.16)

with δyk � δyptkq Differentiating Equation 4.16 and noting that δyk is constant,
gives

δ 9yptq � 9Φpt, tkqδyk (4.17)

and using Equation 4.13 and Equation 4.16, the ODE system

9Φpt, tkq � AptqΦpt, tkq
Φptk, tkq � I

(4.18)

The great advantage of this formulation, is that it allows the solution δyptq to be
expressed in terms of the unknown initial state δyk. Hence, the state transition
matrix enables relating observations made at different times.

The ODE system for the state transition matrix Equation 4.17 is prefered
against a direct solution of δyptq from the system Equation 4.13 for computational
reasons, ibid.
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Montenbruck and Gill 2000 give the formulae for forming the state transition
matrix using orbital elements and the associated partials with respect to the state
vector. Battin 1999 uses the fact that Φ is a sympletic matrix, to obtain an
analyticaly its inverse.

4.2.2 The Observation Equations

Equation 4.14 involves an unknown state vector δyi related to the observation set
zi. The state transition matrix can be used to relate all observation with the state
at a single epoch. For each set, Equation 4.14 (δzi � Hiδyi � εi) can be written
as

δzi � HiΦpti, tkqδyk � εi (4.19)

where Equation 4.16 was used, and subsequently in matrix form

δz � H̄δyk � ε (4.20)

with

δz �

�
����
δz1

δz2
...
δzl

�
��� , H̄ �

�
����
H1Φpt1, tkq
H2Φpt2, tkq

...
HlΦptl, tkq

�
��� and δz �

�
����
ε1

ε2
...
εl

�
��� (4.21)

4.3 The Kalman Filter

In this section, the sequential estimation algorithm referred to as the Kalman filter
is discussed, with emphasis on its application on the orbit determination problem.
A more thorough discussion on the sequential estimation techniques can be found
at Gelb et al. 1974, while Montenbruck and Gill 2000 and Tapley et al. 2004b
describe the filter’s application and variations thereof for POD. One important
advantage of the Kalman filter is that the matrix to be inverted will be of the same
dimension as the observation vector, which means that given that the observations
can be processed one at a time, only scalar divisions will be required to obtain the
estimate of δyptkq. For the rest of this section, the notation yk will be used to
denote the value δyptkq to reduce complexity and follow relevant literature in the
field.
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Given that an estimate ŷj and the associated covariance matrix Pj are available
at a given epoch tj, the state and its variance-covariance matrix can be propagated
according to

ȳk � φptk, tjqŷj
P̄k � φptk, tjqPjφT ptk, tjq

(4.22)

This step of the algorithm, is often called the time update step. Assuming that an
observation is available at tk

zk � H̃kyk � εk (4.23)

with Erεks � 0 and ErεkεTk s � Rkδkj, it can be shown (see ibid.) that:

Kk � P̄kH̃T
k

�
H̃kP̄kH̃

T
k �Rk

	�1

(4.24)

Pk �
�
I �KkH̃k

	
P̄k (4.25)

ŷk � ȳk �Kk

�
zk � H̃kȳk

	
(4.26)

Equation 4.24, Equation 4.25 and Equation 4.26 are collectively labeled the mea-
surement update step. The matrix K is called the (Kalman) gain matrix. The
above equations can be used in a recursive fashion to compute the estimate of
ŷk, incorporating the observation zk. A flowchart of the process is depicted in
Figure 4.1.

Note that the differential equations for the state transition matrix are reini-
tialized at each observation epoch. If observations are introduced as scalars, and
more than one measurements are available at each epoch, Φpti, tiq would be set to
the unity matrix Φpti, tiq � I after processing the first observation in the epoch,
and P and ŷ would only be time updated at the next observation epoch i� 1.

4.3.1 Filter Shortcomings

One disadvantage of the sequential algorithm presented here, lies in the fact that if
the true state and the reference state are not close together then the linearization
assumption leading to Equation 4.13 may not be valid and the estimation pro-
cess may diverge (ibid.). To overcome this problem, the Extended Kalman Filter
algorithm (section 4.4) was used in this Thesis.

Yet another disadvantage is that the state estimation error covariance matrix
may approach zero as the number as the number of observations becomes large.
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Figure 4.1: Flowchart of the Kalman filter algorithm for orbit determination.
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As Pk Ñ 0, gain also approaches zero K Ñ 0, and the estimation procedure
will become insensitive to further observations. Consequently, the estimate will
diverge due to either errors introduced in the linearization procedure, computa-
tional errors, or errors due to an incomplete mathematical model. To overcome this
problem, process noise often is added to the state propagation equations (Tapley
et al. 2004b).

In addition to these two problems, the Kalman filter may diverge because of
numerical difficulties associated with the covariance measurement update, given
by Equation 4.25 (ibid.). This can be the case if the covariance matrix loses its
properties of symmetry and become non-positive definite due to roundoff error
(this pitfall is especially possible when a large a-priori covariance is reduced by
the incorporation of very accurate observation data). An alternative equation to
Equation 4.25 is to use the more numerically stable formula introduced by Bucy
and Joseph, which reads

Pk �
�
I �KkH̃

	
P̄k

�
I �KkH̃

	T
�KkRkK

T
k (4.27)

More information and a detailed discussion on the stability of relevant approaches
can be found in Bierman 1977.

4.4 The Extended Kalman Filter

To address the problem of growing the errors due to higher order terms that are
ignored in the sequential Kalman filter (see subsection 4.3.1), an extended form of
the algorithm can be used, labeled the Extended Kalman Filter. The advantage of
this approach is that convergence (to the best estimate) is accelerated because of
the reduced linearization errors. The major disadvantage of the extended sequen-
tial algorithm is that the differential equations for the reference trajectory must be
reinitialized after each observation is processed. The concept of this filter involves
the notion that the true state is sufficiently close to the estimated state (Markley
and Crassidis 2019). A flowchart of the algorithm is depicted in Figure 4.2.

The primary difference between the classic formulation and the extended al-
gorithm is that the reference trajectory for the extended Kalman filter is updated
after each observation to reflect the best estimate of the true trajectory. E.g., after
processing the kth observation, the computed best estimate is used to provide a
new initial condition for the reference orbit,

y�k,new � ŷk � y�k � δ̂yk (4.28)
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Note that using ŷk as the reference orbit, implies that δ̂yk � 0 and thus
δ̄yk�1 � 0. The integration for the reference trajectory and the state transition
matrix is reinitialized at each observation epoch, and the equations are integrated
forward from tk to tk�1. After the time update step, the best estimate can be
computed as

δ̂yk�1 � Kk�1yk�1 (4.29)

withKk�1 and yk�1 computed based on the updated reference orbit. The process of
incorporating the estimate at each observation point into the reference trajectory
for propagating to the next observation epoch leads to the reference trajectory
being the prediction of the estimate of the nonlinear state (Tapley et al. 2004b),
e.g. y�t � ŷptq.

When implementing the extended Kalman filter for applications demanding
high accuracy, care must be taken when updating the reference orbit at the begin-
ning of the processing. Often, the update is omitted for the first few observations,
especially if these contain significant noise. After a few observations have been
processed, the estimates of δ̂y will stabilize, and the trajectory update step can
be added to the process (ibid.).

4.5 Variational Equations

For application with high accuracy demands, the state transition matrix should
include terms at least the major perturbations. That is, the initial value prob-
lem should be expanded to include differential equations to account for perturbed
motion. An analytical solution of this problem is close to impossible, thus this
extended formulation should be solved for numerically. The added differential
equations (to the state transition matrix system) are labeled variational equa-
tions. Aside from the increased accuracy that may be obtained by accounting for
perturbations, the concept of the variational equations offers the advantage that
it is not limited to the computation of the state transition matrix, but may also
be extended to the treatment of partial derivatives with respect to force model
parameters (Montenbruck and Gill 2000).

4.5.1 Differential Equations for the State Transition Matrix

Denoting the state vector as yptq � �rptq vptq�T , the differential equation, which
describes the change of the state transition matrix with time in a first-order ODE
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Figure 4.2: Flowchart of the Extended Kalman filter algorithm for orbit determi-
nation.
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dyptq
dt

� fpt,yptqq �
�

vptq
apt, r,vq



(4.30)

An differentiating with respect to ypt0q gives
B

Bypt0q
�
dyptq
dt



� Bfpt,yptqq

Bypt0q � Bfpt,yptqq
Byptq

Byptq
Bypt0q (4.31)

Since the state transition matrix Φpt, t0q is given by

Φpt, t0q � Byptq
Bypt0q (4.32)

its derivative can be computed from

d

dt
Φpt, t0q � Bfpt,yptqq

Byptq Φpt, t0q

�
� Bvpt,r,vq

Brptq
Bvpt,r,vq
Bvptq

Bapt,r,vq
Brptq

Bapt,r,vq
Bvptq

�
Φpt, t0q

�
�

03�3 I3�3
Bapt,r,vq
Brptq

Bapt,r,vq
Bvptq

�
Φpt, t0q

(4.33)

Paired with the initial condition Φpt0, t0q � I6�6, Equation 4.33 can be solved for
as an initial value problem, using numerical integration.

4.5.2 Differential Equations for the Sensitivity Matrix

To form the variational equations, the partial derivatives of the state with respect
to the np dynamical, or force model parameters pi are needed. Taking the time
derivatives

d

dt

Byptq
Bp � Bfpt,yptq,pq

Byptq
Byptq
Bp � Bfpt,yptq,pq

Bp (4.34)

and hence using the sensitivity matrix defined in section 4.2,

d

dt
Sptq �

�
03�3 I3�3

Bapt,r,v,pq
Brptq

Bapt,r,v,pq
Bvptq

�
6�6

Sptq �
�

03�np

Bapt,r,v,pq
Bp



6�np

(4.35)

The initial condition for the above system is Spt0q � 0, since the state vector at
t0 does not depend on the force model parameters.
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4.5.3 Solving the Variational Equations

Combining the differential equation systems formed above for the state transition
matrix (subsection 4.5.1) and the sensitivity matrix (subsection 4.5.2), the full
system of variational equations is formed, which reads

d

dt

�
Φ S

� �� �03�3 I3�3
Ba
Br

Ba
Bv



6�6

�
Φ S

�� �03�6 03�np

03�6
Ba
Bp



6�np

(4.36)

Given also the initial conditions (described in subsection 4.5.1 and subsec-
tion 4.5.2) �

Φpt0, t0q6�6 Spt0q
� �
I6�6 06�np

�
(4.37)

an initial value problem of 1st degree is formed, which can be solved for by methods
of numerical integration (see chapter 3). A slightly different approach is presented
in section A, starting from the state-space representation.

It is important to note that the variational equations have to be integrated
simultaneously with the state vector. Otherwise the position and velocity of the
satellite, which are required to evaluate the acceleration partials (right-hand side
of the variational equations), would be unknown.

4.6 Implementation

4.6.1 Solution of Variational Equations

The computation of the differential equation system comprisig the variational equa-
tions and its subsequent solution is a demading task in POD, posing challenges
both in efficiency and in precision. A large number of computations must be per-
formed, mainly including evaluation of partial derivatives. Analytic formulas for
the latter are rather complicated making their implementation error prone.

Unfortunately, testing and validation of software designed to tackle this prob-
lem is cumbersome, and based on trial-and-error. To test the implemetation, a
large number of tests was performed, starting from a simple, two-body formula-
tion and gradually increasing complexity, checking each step with respect to the
previously estimated solution. The gradual increase of complexity was expected
to be paired with a increase in solution accuracy.
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The solution of the variational equations is based on numeric integration, via an
Adams-Bashforth-Moulton PECE algorithm, with varying step size and order. The
fundametals and implementation of this method is already discussed in section 3.3
and section 3.4.

4.6.2 Exteded Kalman Filter Implementation

For the purposes of the current Thesis, a software package was designed and im-
plemented to perform orbit determination using the Extended Kalman Filter al-
gorithm (see section 4.4). This algorithm was chosen due to a number of factors,
including

• robust and efficient estimation algorithm,

• the filter’s ability to utilize state models for dynamic processing,

• compensation for dynamic model inaccuracy (process noise),

• estimation of varying state and easily adaptable to (near) real-time scenarios;
Zhou et al. 2020 use an extended Kalman filterig algorithm to determine in
real time the orbit of the HY2A LEO, using DORIS and spaceborne Global
Positioning System (GPS) observations

• adaptability and fine tuning of statistical properties of process noise, and
measurement error to design an “optimal” filter,

• widely used across various engineering fields and under growing progress

To address the issue raised in subsection 4.3.1, concerning the possible diver-
gence of the estimates due to numerical instabilities, the Bucy and Joseph formula
(Equation 4.27) is adopted.

Kalman filtering offers great verstility in handling stochastic and statistical
properties of parameters, state and system dynamics. Special care was taken in
order to preserve this versatility and transfer it to the user, through the control
of relevant options by means of (user) input. Fundamental stochastic properties
of the analysis are set via a user-friendly configuration file, including but not
limited to a-priori sigmas (standard deviation) for all parameters considered and
observation statistics. Numerous tests have been performed with combinations of
different values to derive sensible defaults, an option alsoprovided to the user.
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The implementation processes one observation at a time, so as to take full
advantage of the scalar computations of various formulas included in the previous
chapters. This makes the algorithm more efficient and less demading on memory
resources.

Filter design is as generic as possible, so as to allow (except from varying
user input descussed above) reusage in different parts of the software package,
to perform different tasks. E.g. a variant of the same algorithm performs linear
regression to estimate relative frequency offsets biases (see chapter 5).

It is worth noting that most state-of-the-art software packages for POD using
DORIS observations, use the method of least squares for parameter estimation.
This is true e.g. for the Bernese GNSS Software (Dach 2015), GINS (CNES 2013)
and GEODYN (Beal 2015), all of which are packages used by Aalysis Centers
actively contributing to the IDS. This choice has to do with the fact that at the
time these packages were first developed, Least Squares was the prevailing method
for parameter estimation, while Kalman filtering had miimum intrusion into the
geodetic community. Nevertheless, using alternate but equally robust techniques
can provide insight and drive further research and progress both within the DORIS
community (via the combination of Analysis Centers individual results) and in the
scientific world in general.
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Chapter 5

DORIS

5.1 Introduction

Individual components of POD analysis have been discussed in the preceding sec-
tions, including the force model, orbit integration, and parameter estimation. This
chapter focuses on the one crucial component that is still missing: actual data.

The most widely used satellite observation techniques in geodesy, are SLR,
GNSS and DORIS. In this Thesis the latter technique is considered. Since its
inception in the late 1980s, DORIS has been constantly evolving, and it is now
of critical importance for geodesy, with applications spanning a wide range of
related elds, including reference frame maintenance. There is currently an effort
underway to deploy 4th generation ground beacons, securing and strengthening the
technique’s performance and thus its future.

To date, orbital accuracies achieved using DORIS data, can reach the few-
centimeter level (see e.g. Rudenko et al. 2023 and Kong et al. 2017), and since
most altimetry satellite missions are equipped with onboard DORIS receivers, the
technique plays a crucial role in the study of sea level changes and hence, indirectly,
in the monitoring of the Earth’s climate.

Currently DORIS is not as popular as other satellite geodetic techniques (e.g.
GNSS), for a variety of reasons, including the technique’s complexity and its lim-
ited (if any) commercial usage. This is evident by the number of Analysis Centers
contributing to the IDS (according to Moreaux et al. 2022, four Analysis Centers
were involved in IDS’s contribution to ITRF2020). The current Thesis work aims
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to lay the groundwork for a new, state-of-the-art software package that will allow
DORIS data analysis in accordance with IDS quality standards.

5.1.1 Goals of Current Chapter

In this chapter emphasis is given on the DORIS satellite system. A short intro-
duction of the system’s origins and technological advancements is given first, and
a short description of its operation principle follows. Two pillars of the system are
introduced:

• the IDS, a service dedicated to facilitating access to DORIS data and prod-
ucts to the scientific community, while at the same time deriving products
of the utmost quality to all interested parties, and

• the DORIS network, i.e. the transmitting ground beacons, scattered around
the globe in a homogeneous spatial distribution, which along with the in-
strumentation stability is a key factor in the technique’s precision

Subsequently, the geometry of the ground stations is discussed. In applications
with high accuracy demands, the signal path between emitter and receiver needs
to be referred to the appropriate, yet virtual, exact point of transmission (and
reception respectively). Hence, beacon geometry, reference points and related
offsets and variations (PCO and Phase Center Variations (PCV)) are presented
and discussed, as well as the reductions involved in data analysis.

The theoretical investigation of the measurements obtained via the DORIS
technique, namely the relative velocity between the transmitter and the receiver,
follows (via Doppler counts). It is crucial to gain a clear view on both the observa-
tion model and the measurement conduction by the receiver electronics, to be able
to identify discrepancies, error sources and ambiguities that enter the model, mea-
surements and computations. An observation model is developed and extensively
discussed in order to match the acquired measurements as precisely as possible.
Basic formulas involved, along with theoretical implications are also presented.

Last but not least, a thorough discussion on the implementation of the ob-
servation equations, obtained via the DORIS system, follows. Starting from the
theoretical background (discussed previously), implementation details and prac-
tical aspects of the computations involved are presented, following a hands-on
approach. Given that analysis of DORIS observations is not as popular and not as
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Figure 5.1: DORIS System Description

“standardized” as other techniques (e.g. GNSS), especially since the new, extended
DORIS RINEX format was introduced, this section is key in designing a robust
processing pipeline.

5.2 Fundamentals of DORIS System

In the late 1980s, CNES, in conjunction with the Institut Géographique National
(IGN) and GRGS developed a new geodetic tracking system called DORIS for
precise orbit determination of LEO satellites for oceanographic missions. Since
then, DORIS has made huge leaps forward, and proved to be an invaluable tool to
the scientific community, greatly expanding its application range and significance.
This process lead in 2003 to the creation of IDS (Willis et al. 2016b), part of the
Global Geodetic Observation System (GGOS) within the IAG (Willis et al. 2006).

DORIS (Barlier 2005) originated during the design phase of the US-French
TOPEX/Poseidon mission (Fu et al. 1994), and constitutes a Doppler up-link
system, optimized for orbit determination (both in real-time and post-processed).
Radio signals are generated from a ground-tracking network, and Doppler measure-
ments are performed on-board the satellite. Since its initialization, the system’s
technology has greatly improved, and its applications have gradually and logi-
cally expanded from orbit determination to gravity-field determination, terrestrial
reference frame maintenance and geodynamics. Since TOPEX/Poseidon, an ever-
increasing number of LEO satellite missions are equipped with on-board DORIS
receivers. Figure 5.2 depicts past, current and future DORIS-equipped satellite
missions.
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Figure 5.2: DORIS-ecquiped satellites; image courtesy of IDS, source https://
ids-doris.org/doris-system/satellites.html

DORIS is based on the accurate measurement of the Doppler shift of radio
frequency signals transmitted from ground beacons and received on board the
satellite(s) (Figure 5.1). Roughly every 10 s, the on-board receiver accurately
measures the Doppler shift of radio-frequencies signals continuously transmitted
from beacons at two frequencies: at 2.036 25 GHz for precise Doppler measurement
and at 401.25 MHz for correction of the propagation delay trough the ionosphere.
The two channels are also used for time-tagging measurements and auxiliary data
transmission (Auriol and Tourain 2010).

5.2.1 The DORIS Tracking Network

The tracking network is a key factor in the success of the DORIS system. IGN
established and actively maintains this network, which currently (February 2023)
has 59 sites (Figure 5.3). It is global, dense and homogeneous, and thus unique
among the different techniques that contribute to ITRF. Since its establishment,
very few changes of sites and/or instrumentation have been performed, thus en-
forcing network stability. Furthermore, it is (spatially) dense and well distributed
geographically (especially between the Northern and Southern hemispheres). This
spatial balance along with several collocations with other space-geodetic tech-
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niques (Figure 5.4), make the DORIS system an integral part of reference frame
maintenance (Moreaux et al. 2022).

Figure 5.3: The DORIS Network (as of Nov. 2020); image courtesy of IDS, source
https://ids-doris.org/doris-system/tracking-network/maps.html

The strengths and advantages of the DORIS tracking network, can be summa-
rized by (Soudarin et al. 2019)

Centralized control and management of the network deployment and evolu-
tion, including site instrumentation.

Long operation time ; time-series of current stations span a 21 year period in
average, with a median of 26.4 years.

Homogeneous spatial distribution ; half of the stations are located on islands
or coastal areas and the network is well balanced between the Northern and
Southern hemispheres (Figure 5.3).

Large number of co-locations ; 48 stations are co-located with other tech-
niques (GNSS: 47, SLR: 10, VLBI: 7), plus 28 are co-located with tide gauges
(Figure 5.4)
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Figure 5.4: DORIS stations co-located with other space-geodetic techniques and
tide-gauges (as of Nov. 2020); image courtesy of IDS.

5.2.2 The International DORIS Service

The IDS was established in 2003, with the mission to (ibid.)

• provide support to research activities in geodesy and geophysics, based on
DORIS data and derived products, and

• give access to data, products and documents related to the DORIS system

The service is based on international cooperation on a volunteer basis and just
like its geodetic counterparts (i.e. IGS, ILRS and International VLBI Service for
Geodesy and Astronomy (IVS) for GNSS, SLR and VLBI respectively) plays a
crucial role in the development of the technique and most importantly drives and
facilitates its usage from the scientific community. Major products published by
IDS include times series of the DORIS tracking stations, along with their positions
and velocities and time series of geocenter motion and Earth orientation param-
eters. IDS also coordinates the technique’s contribution to the ITRF (see e.g.
Moreaux et al. 2022).

IDS’s organization chart, includes a Governing Board and a Central Bureau.
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The Analysis Centers process the DORIS data available at the IDS Data Centers
and generate products with the assistance of the Analysis Center Coordinator. The
IDS Combination Center provides regular combination of products of the Analysis
Centers and is also in charge of the realization of the so-called DPOD (DORIS
extension to the current ITRF for POD) which contains update mean positions
and velocities of all the DORIS stations. Last but not least, the IDS Combination
Center produces the technique’s contribution the ITRF.

5.3 DORIS Ground Segment

Estimation of precise coordinates of both DORIS-equipped satellites and DORIS
beacons relies on accurate modeling of the signal path from the ground antenna
to the space antenna. It is thus important to have a clear view of the geometry of
the respective antennae and reference points of signal transmission and reception.
Note that these reference points depend on the frequency (or linear combination
of frequencies) used to perform a measurement.

5.3.1 Geometry of Ground Antennae

DORIS observations are referred to the electronic reference points (RP) of the
antenna, the points where the DORIS observations are acquired. However, these
points are “virtual” and for example may change while using another antenna
type, hence they lack the accuracy required for geodetic studies. Observations
must therefore be referred to the conventional RP which is defined according to
the geometry of the antenna and account for the distance between the electronic
RP and the conventional RP of the antenna (Tourain et al. 2016). The ability
to get accurate DORIS data relies for one part on the capability of providing
accurate models to connect the electronic RP (or electronic phase center) and
the conventional RP, as well as, PCVs as a function of the elevation angle to the
tracking satellite.

Three antenna types are used in the DORIS tracking network, namely ALCATEL,
STAREC-B and STAREC-C (Saunier et al. 2016). Table 5.1 records antenna gains
per type. ALCATEL is the oldest antenna type, installed throughout the DORIS
network at the time of its establishment. These antennas were later replaced by the
STAREC-B model, a long-standing effort that ended in 2007 with the replacement
of the last station in Toulouse (TLHA) (Štěpánek and Filler 2022).
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Zenith Distance ALCATEL (dBi) STAREC (dBi)
401.25 MHz 2036.25 MHz 401.25 MHz 2036.25 MHz

0° 3.2 2.1 3.5 0
10° 3.5 2.6 3.6 0.4
20° 4 2 3.7 0.5
30° 4.4 4 3.8 1.5
40° 4.6 4.4 3.7 3.2
50° 4.2 4.6 3.2 3.9
60° 2.7 2.7 2.5 4
70° 0.6 -0.1 1 3.2
80° -2.7 -3.3 -1.3 0.2
90° -6 -7 -4.2 -5.6

Table 5.1: DORIS ground antennae gains, source: DORIS System Ground Segment
Models, (Issue 1.3), https://ids-doris.org/documents/BC/stations/DORIS_
System_Ground_Segment_Models.pdf

The type of antenna installed at a particular station, is identified by the 4th

character of the beacon mnemonic: letter “A” for the Alcatel type; letter “B” or
letter “C” for the Starec B or C type respectively. That is, in the DORIS RINEX
field “STATION REFERENCE”, the last character of the second column (aka “4-
character station code”), defines the ground beacon antenna type; e.g.

51 # OF STATIONS
D01 BEMB BELGRANO 66018S002 3 0 STATION REFERENCE
D02 ADHC TERRE ADELIE 91501S005 3 0 STATION REFERENCE
D03 SYQB SYOWA 66006S005 3 0 STATION REFERENCE
D04 CRQC CROZET 91301S004 4 0 STATION REFERENCE
D05 DIOB DIONYSOS 12602S012 3 0 STATION REFERENCE

Phase Center Offsets

Depending on the antenna type, appropriate PCOs need to be applied to the
observed quantities for the reduction of the observation vector to the Reference
Point (from the respective “virtual” phase center) of the antenna. Table 5.2 lists
PCO values for the two fundamental frequencies of the DORIS system per antenna
type.

When a linear combination of the observed quantities is used, a respective PCO
needs to be computed and applied. E.g., for the case of the ionospheric-free linear
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Antenna Type ALCATEL STAREC-B & STAREC-C
∆h in mm for 2 GHz 510 mm 487 mm

∆h in mm for 400 MHz 335 mm 0 mm

Table 5.2: DORIS ground antennae PCOs, source: DORIS System Ground Seg-
ment Models, (Issue 1.3), https://ids-doris.org/documents/BC/stations/
DORIS_System_Ground_Segment_Models.pdf.

combination, the respective PCO is:

~r2GHz,iono�free � ~r400MHz,2GHz

γ � 1
(5.1)

where ~r2GHz,iono�free is the vector from the 2 GHz phase center to the iono-free
phase center and ~r400MHz,2GHz is the vector from the 400 MHz to the 2 GHz phase
center. Table 5.2 lists the PCO per antenna type.

The geometry of the DORIS ALCATEL Antenna is depicted in Figure 5.5,
with the reference points of interest.

STAREC antennae B and C are identical in terms of design and specification,
the difference being about the error budget in phase center position. For STAREC-
C, manufacturing process and error budget have been improved (DORIS System
Ground Segment Models, (Issue 1.3)). The geometry of these antennae is depicted
in Figure 5.6.

Phase Center Variations

According to Tourain et al. 2016, in order to check the consistency of the theoretical
characteristics of the STAREC antennae, a measurement campaign was performed
by the CNES at the Compact Antenna Test Range (CATR). The CATR is a
dedicated facility consisting of an anechoic chamber equipped with several specific
devices allowing significant measurement for satellite characterization.

As a result of the campaign, a phase law was established by averaging the
estimated phase law values obtained during the CATR characterization. The re-
sulting couple phase center position to phase law correction is provided to the
DORIS users in Antenna Exchange Format (ANTEX) (Rothacher and Schmid
2010) format, and made available by IDS (see Figure 5.7).

A similar approach was eventually followed for the ALCATEL antenna type
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Figure 5.5: Geometry of Alcatel DORIS Ground Antenna/Beacon
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Figure 5.6: Geometry of Alcatel STAREC Ground Antenna/Beacon
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Figure 5.7: DORIS Antennae Phase Law

leading to an elevation-dependent PCV model (see Figure 5.7), conventionally
called PCV2.0. Štěpánek and Filler 2022 report systematic differences in the esti-
mated station heights of about 15 mm when this model is adopted in the analysis,
compared to older PCV values. Note that both PCV models (for ALCATEL and
STAREC) do not consider azimuth dependency and have an elevation step of 5°.

5.4 DORIS RINEX

With the adoption of the DORIS DGXX receivers, first installed onboard the
Jason-2 satellite, signal tracking on seven different channels simultaneously became
possible, with synchronous dual frequency phase and pseudo-range measurements
(Mercier et al. 2010). This development made it possible for DORIS data to be
described in a manner similar to GNSS data, and hence an extension of the RINEX
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3.0 format (Romero 2020) was defined and adopted for DORIS observations to be
recorded and published in. One major advantage of these new measurement data
is that they are available with a very short latency (older data needed to be pre-
processed before published). The new data exchange format is expected to further
aid analysis development, since it allows each analysis center to be independent
from CNES data preprocessing, as users have access to synchronous phase and
pseudorange measurements (Cerri and Mercier 2011).

5.4.1 General Format Description

The DORIS RINEX format consists of one ASCII file containing both space based
and meteorological data collected at DORIS stations and relayed by satellites.
It bears close resemblance to the GNSS RINEX Version 3 (Romero 2020); data
files consist of a header section and a data section. The first contains global
information for the entire file, while the latter contains the actual observations
and a date tag, keeping strict chronological order. Observation types recorded in
the DORIS RINEX files are the given in Table 5.3.

DORIS is basically running on its own proper time which is constantly linked to
TAI. Time tags are given in instrument time, and clock offset values are provided
between instrument time and TAI.

Descriptor Observation Type Units
L carrier phase observation cycles
C pseudo-range observation m
W power level received at each frequency dBm

F relative frequency offset of the receiver’s oscillator f�f0
f0

10�11

P ground pressure at the station 100 Pa (mbar)
T ground temperature at the station °C
H ground humidity at the station %

Table 5.3: DORIS RINEX observation types.

A detailed description of the data files, can be found in Lourme et al. 2010.

5.5 DORIS Observation Equation
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5.5.1 Theoretical Model of Doppler Observations

A detailed derivation of the Doppler observation equation, as implemented by
means of the DORIS system, can be found in Lemoine et al. 2016, including a
thorough theoretical discussion. A brief overview is given here, with focus on the
measurement model implementation.

To gain a clear view on the model of the measurements, a rigorous distinction
of events must be made; four different events can be identified:

beginning of emission of the 1st cycle by the emitter, τe1 in the proper time
scale of the emitter and t1 in the coordinate time

beginning of reception of the 1st cycle by the receiver, τr11 in the proper time
scale of the receiver and t11 in the coordinate time

end of emission of the Nth cycle by the emitter, τe2 in the proper time scale of
the emitter and t2 in the coordinate time

end of reception of the Nth cycle by the receiver, τr12 in the proper time scale of
the receiver and t21 in the coordinate time

During the proper time interval ∆τr � τr21 � τr11 , the receiver has received the
Ne cycles sent by the emitter, with Ne � fe∆τe, fe being the proper frequency
of the emitter. The receiver is also equipped with an oscillator and during the
proper time interval ∆τr has generated a number Nr � fr∆τr of cycles, fr being
the proper frequency of the receiver.

The Doppler measurement is the count, by the receiver electronics, of the
number of cycles of difference between Ne and Nr:

NDOP � Ne �Nr

� fe∆τe � fr∆τr
(5.2)

In the RINEX files, this Doppler count is the difference between two phase
measurements done at different time tags in the proper time-scale of the receiver.

After a series of assumptions and simplifications, theoretical formula for the
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Doppler count can be written as (Lemoine et al. 2016):

c

fe∆τr
NDOP � c

fe � fr
fe

� p1� Ue
c2
� Ve

2

2c2
qρ2 � ρ1

∆τr

� 1

c
pUr � Ue � Vr

2 � Ve
2

2
q

� 2µ

c2∆τr
rln pR1 �R11 � ρ1

R1 �R11 � ρ1

q � ln pR2 �R21 � ρ2

R2 �R21 � ρ2

qs

(5.3)

where

c is the velocity of light in vacuum,

fe and fr are the emitter’s and receiver’s proper frequencies,

Ue and Ur are the gravitational potential at the emitter and receiver,

Ve and Vr is the velocity of the clock at the emitter and receiver (in the coordinate
reference frame),

ρi is the curvlinear trajectory (of the photon(s)) at the event i,

Ri is the geometric distance between the beacon and the satellite at event i

The above equation can be conveniently split into two parts, one containing
the “measured” quantities and one with the “theoretical” terms, as

vmeasured � c

fe
pfe � fr � NDOP

∆τr
q �∆uREL (5.4a)

vtheo � ρ2 � ρ1

∆τr
p1� Ue

c2
� Ve

2

2c2
q (5.4b)

with

∆vREL � 1

c
pUr � Ue � Vr

2 � Ve
2

2
q

� 2µ

c2∆τr
rln pR1 �R11 � ρ1

R1 �R11 � ρ1

q � ln pR2 �R21 � ρ2

R2 �R21 � ρ2

qs
(5.5)

It is well known that signals transmitted through the Earth’s atmosphere are
affected by it (delayed); let ∆vIONO and ∆vTROPO, be the propagation corrections
of the radio electric signal through the ionosphere and troposphere respectively.
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Additionally, in the actual case (measurements), the nominal frequencies fe
and fr are not the “true” ones; hence, a relative correction needs to be applied
e.g. for the emitter feT � feN p1� ∆fe

feN
q, where the subscript T denotes the “True”

frequency and N the nominal one. Thus in Equation 5.4 the terms fe and fr need
to be substituted by feT and frT respectively.

∆vIONO and ∆vREL, which do not involve adjusted parameters, can be placed
on the “measured” part of Equation 5.4 and ∆vTROPO and ∆fe

feN
on the “theoretical”

part. Furthermore, since ∆fe{feN ! 1 all terms including ∆fe{f 2
eN

and p∆fe{feN q2
can be safely neglected and Equation 5.4 can be rewritten as:

vmeasured � c

feN
pfeN � frT �

NDOP

∆τr
q �∆uREL �∆uIONO (5.6a)

vtheo � ρ2 � ρ1

∆τr
p1� Ue

c2
� Ve

2

2c2
q �∆uTROPO �

cpNDOP

∆τr
� frT q

feN

∆fe
feN

(5.6b)

where

vmeasured is the measured relative velocity between the emitter and the receiver
between the events 1’ and 2’, based on the Doppler count NDOP , corrected
for the ionospheric and relativistic effects.

vtheo is the theoretical (computed) emitter/receiver relative velocity between the
events 1’ and 2’, corrected for the tropospheric effect and for a solved-for
frequency bias ∆fe

feN
of the emitter. frT � frN p1 � ∆fr

frN
q is an estimate of the

proper frequency of the receiver.

∆vREL � ∆vRELc �∆vRELr is the relativistic correction, composed of two parts:
the clock correction ∆vRELc and the travel correction ∆vRELr

∆vRELc �
1

c
pUr � Ue � Vr

2 � Ve
2

2
q (5.7a)

∆vRELr �
2µ

c2∆τr

�
ln pR1 �R11 � ρ1

R1 �R11 � ρ1

q � ln pR2 �R21 � ρ2

R2 �R21 � ρ2

q
�

(5.7b)

Note that Equation 5.6a and Equation 5.6b can be further simplified to Equa-
tion 5.8a and Equation 5.8b respectively, by omitting small terms (section 5.5.2).
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5.5.2 Computational Aspects

Small Terms

In Equation 5.6a and Equation 5.6a, the smallest terms are �Ue{c2 � Ve
2{2c2

and ∆vRELT
; in the case of DORIS they amount to 11.0 and 6.0 10� 10�6 m{s

respectively (Lemoine et al. 2016). Furthermore, since the emitters are located
on the ground, the term �Ue{c2 � Ve

2{2c2 is constant per station. This small
relativistic offset is absorbed by the adjustment of ∆fe{feN . So it is possibly to
further simplify Equation 5.6a and Equation 5.6b to:

vmeasured � c

feN
pfeN � frT �

NDOP

∆τr
q �∆uRELC

�∆uIONO (5.8a)

vtheo � ρ2 � ρ1

∆τr
�∆uTROPO �

cpNDOP

∆τr
� frT q

feN

∆fe
feN

(5.8b)

Correction of Aberration

In Equation 5.6b (or Equation 5.8b), ρi is the geometrical distance between the
emitter at time ti and the receiver at time ti1 (with i � 1, 2). The measurements
are made by the receiver electronics, hence the instance ti is actually unknown. In
order to compute accurately ti and thus the position of the emitter at this instant
in time, a correction of aberration (ibid.) has to be performed. This correction can
be evaluated in an iterative manner: an approximate value of the emitter-receiver
distance ρ�i is first computed, by evaluating the position of the beacon at time
ti1 . Subsequently, ti can be found via ti � ti1 � ρ�i {c. In practice, one iteration is
enough.

Geopotential

For a station on the geoid, the potential at the level of the station is the sum of the
gravitational potential and the centrifugal potential due to the Earth’s rotation:
UGEO � Ue � Ve2

2
, which is a constant. For a station not located on the geoid, the

quantity Ue � Ve2

2
will only depend on the height of the beacon above the geoid.

For the computation of the gravitational potential for LEO satellites, the po-
tential Ur cannot be restricted to the central term only (GMC{r) and the Earth’s
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oblateness (J2) effect should also be considered (Larson et al. 2007). Hence, the
equation used for computing the potential for a given satellite, reads (Lemoine
et al. 2016)

Ur � �GMC

r

�
1�

�
RC

r


2

J2
3sin2pφq � 1

2

�
(5.9)

or in Cartesian coordinates (Larson et al. 2007)

Ur � �GMC

r

�
1�

�
RC

r


2

J2
3z2 � r2

2r2

�
(5.10)

with RC the equatorial radius of the earth, r radial distance of the satellite (to the
Earth’s center), φ latitude of the satellite and J2 � 1.0826359 910�3 in the zero-tide
system (Petit and Luzum 2010).

Nominal Receiver and Emitter Frequencies

In the observation equation model Equation 5.6a and Equation 5.6b, a distinction
is made between nominal and true receiver/emitter frequencies, to account for the
fact that in “real world” these two are not actually equal.

Emitter (Beacon) Nominal Frequencies, feN RINEX file headers, contain
values of the station frequency shift factor k for each of the beacons involved
(Lourme et al. 2010, Sec. 6.16). These are used to compute the “nominal” fre-
quencies of the beacon/emitter (usually, this shift factor is just 0, but it can be an
integer k � 0). The frequencies are computed as (ibid., Sec. 6.16):

L2GHz � 543 � F0

�
3

4
� 87 � k

5 � 226




L400MHz � 107 � F0

�
3

4
� 87 � k

5 � 226


 (5.11)

where F0 � 5e6 Hz the Ultra Stable Oscillator (USO) frequency. These value, are
the ones labelled as feN in Equation 5.6a and Equation 5.6b.

The true proper frequency of the emitter feT , can be computed (if needed)
from:

feT � feN �
�

1� ∆fe
feN



(5.12)
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but the quantity ∆fe{feN is not known a-priori and has to be estimated during
the processing.

The quantity ∆fe{feN can be estimated either as a constant term (bias), or
using a linear model (bias ad drift). In the latter case (followed in this Thesis),
the model can be written as:

∆fe
feN

|τ�τi � α � β � δτ (5.13)

For the estimation, the partials of the observation equation Equation 5.6b are
needed, with respect to α and β parameters, which are:

Bvtheo
Bα � cpNDOP

∆τr
� frT q

feN

Bvtheo
Bβ � cpNDOP

∆τr
� frT q

feN
� δτ

(5.14)

Receiver True Proper Frequency frT In Equation 5.6a and Equation 5.6b,
frT is the true proper frequency of the receiver, computed as

frT � frN �
�

1� ∆fr
frN



(5.15)

where frN is the “nominal” frequency value. The value of the quantity ∆fr{frN ,
called the relative frequency offset of the receiver, can be extracted from the RINEX
file, estimated or computed, in one of the following ways (Lemoine et al. 2016)

1. Via the field “F” recorded for every single measurement in the DORIS RINEX
file (see section 5.4); not that this estimation is not very smooth, as noticed
by Gao et al. 2015 and it is advisable, before using it in Equation 5.6, to
perform a linear (or polynomial) regression of these estimates over one or a
few days.

2. Obtained from a polynomial regression over the frequency offsets estimated
during the passes over the master beacons

3. Estimated as a by-product during a re-computation of the “timetagging”
polynomial (see Mercier et al. 2010)
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Relative frequency offset values, ∆fr
frN

, are reported in the RINEX files for each
epoch (under the observable tagged F). Note that these values are scaled to 10�11

(Lourme et al. 2010, Sec. 6.11), so that for a given epoch ti, the true frequency is

frT |t�ti � frN �
�
1� Fti � 10�11

�
(5.16)

where Fti is the relative frequency offset value recovered from the RINEX file.

5.5.3 Ionospheric Correction

The basic observation equation Equation 5.6a and Equation 5.6b, is formed for
the 2 GHz carrier. For each measurement, the ionospheric path delay has to be
corrected for, by computing a correction (in cycles) as (Lemoine et al. 2016, Sec.
2.5.7):

δION r2 GHz cycless � L2 GHz �?
γ � L400 MHz

γ � 1
(5.17)

which is added to the 2 GHz measurement at time t � ti (obtained by the RINEX
file). Thus, the corrected observation is:

L2 GHz,IF r2 GHz cycless � L2 GHz � δION (5.18)

Note that after applying Equation 5.18, the measurement is referred to the
“Iono-Free” geometrical endpoints of the signal path (and not the 2 GHz endpoints).
This means that the respective phase center corrections (i.e. PCO and PCV) both
at the satellite and at the beacon have to be applied.

5.6 Implementation of the DORIS Observation Equa-
tion

The observation equation formed to process the DORIS data, is based on Equa-
tion 5.8a and Equation 5.8b. Consequently, two parts are computed, vmeasured
which represents the “observed” or “measured” relative velocity between the re-
ceiver and the transmitter, and vtheo which is the “computed” or “theoretical”
counterpart. In this way, during the processing phase, all quantities that do not
need adjustment can be placed on the “measured” side of the equation (ibid.). A
short discussion follows, describing the implementation of the DORIS observation
equation in the software designed for this Thesis.
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5.6.1 Coordinate and Proper Time

TAI is used as coordinate time; to transform RINEX observation time (given in
proper time τ) to coordinate time t, the receiver clock offset values are used,
extracted from the RINEX file (one value per observation block).

Hence, if an observation block is tagged at proper time τi at the RINEX file,
and the receiver clock offset for this block is ∆τi (again from RINEX), then the
coordinate time of the event in TAI is computed as

tTAIi � τi �∆τi (5.19)

According to Lemoine et al. 2016 however, there is no need to make a time conver-
sion for the time interval of the Doppler count, i.e. the term ∆τr in Equation 5.8a
and Equation 5.8b, due to the time-tagging method used in DORIS RINEX.

5.6.2 Receiver Emitter Geometric Distance

The geometric distances between the emitter and the receiver, ρ1 and ρ2, when
computed, are corrected for the aberration effect, i.e. the slight displacement of
the emitter due to Earth’s rotation between signal emission and signal reception
at the receiver. The algorithm for this correction is described in section 5.5.2. It
is worth noting that the checks performed have confirmed that multiple iterations
are practically redundant.

5.6.3 Relativistic Correction

Equation 5.8a contains a relativistic correction term, ∆uREL. This correction is
split into two parts, ∆uRELc the part containing the clock correction and ∆uRELr ,
containing the effect of the travel path (see Equation 5.7a and Equation 5.7b). In
the implementation followed for this Thesis, only the ∆uRELc part is considered
(Equation 5.7a).

For the receiver part (with subscripts r), the respective quantities in Equa-
tion 5.7a are given by

V 2
r � ‖vecef‖2

Ur � µC
‖recef‖

�
�

1�
�

α

‖recef‖


2

� J2 � 3 � sin2 φ� 1

2

�
(5.20)
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where recef and vecef are the position and velocity of the satellite at the given
instant, in the terrestrial reference frame, aka ITRF. Note that the Earth’s oblate-
ness cannot be ignored here (see discussion in section 5.5.2).

For the emitter, potential computation is further simplified. Since Ve � 0, the
potential is computed as

Ue � µC
‖recef‖

(5.21)

where recef is the position vector of the beacon in ITRF.

In Equation 5.8a, relativistic corrections must be “differentiated” between two
consecutive epochs (used for the Doppler count)

∆vREL � 1

c

��
Ur � Ue � V 2

r � V 2
e

2

�
|t�ti �

�
Ur � Ue � V 2

r � V 2
e

2

�
|t�ti�1




� 1

c
�
�
Ur|ti � Ur|ti�1

� Vr|ti � Vr|ti�1

2



m{s

(5.22)

5.6.4 Receiver Proper Frequency frT

In the implementation, “smoothed” values of RINEX-provided ∆fr{frN estimates
are used to compute the receiver’s proper frequency, given by Equation 5.16. In
a first RINEX pass, Fti are used to estimate a linear model spanning the whole
RINEX time span. These smoothed values are then used to compute relative
frequency offsets at the observation epochs (see discussion in section 5.5.2).

5.6.5 Ionospheric Correction

For each observation in the RINEX file, the ionospheric correction is computed
and applied to the 2 GHz measurement (as described in section 5.6.5), thus trans-
forming it to an “iono-free” measurement.

When applied to Equation 5.8a, “differenciation” of the ionospheric delays com-
puted from 5.17 must be performed, affecting two observations (the same ones used
to derive the Doppler count). Hence, the term ∆vIONO appearing in Equation 5.8a
is

∆vIONOrm{ss � c

feN
�
δION

��
t�ti�1

� δION
��
t�ti

∆τ
(5.23)
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2GHz and Iono-Free Phase Center

When using the transformed, “iono-free” phase measurement, a geometric correc-
tion has to be applied to get to the respective beacon (and satellite antenna) phase
center. This offset is computed as

riono�free � r2 GHz � r2 GHz � r400 MHz

γ � 1
(5.24)

where r2 GHz and r400 MHz are the eccentricities for the 2 GHz and the 400 MHz car-
riers respectively from the beacon antenna phase center (given at DORIS System
Ground Segment Models, (Issue 1.3), Sec. 5.2.1).

Note that in Equation 5.24, the eccentricity vector riono�free is in a topocentric
reference frame. Hence, to compute the ECEF coordinates of the iono-free phase
center, given the (cartesian) ECEF coordinates of the beacon’s Antenna Reference
Point (ARP) rarp

recefiono�free � rarp �RT � riono�free (5.25)

where R is the cartesian-to-topocentric rotation matrix, computed at rarp.

In accordance to the beacons, a similar geometric reduction must be applied
at the satellite’s end, to correct for the discrepancy between the 2 GHz and the
“iono-free” phase center

rsatfiono�free � rsatf2 GHz �
rsatf2 GHz � rsatf400 MHz

γ � 1
(5.26)

where the superscript satf denotes the satellite-fixed body/reference frame. On-
board satellite antenna phase center offset values can be found in Cerri et al. 2022.

5.6.6 Tropospheric Correction

The GPT3/VMF3 (Landskron and Böhm 2018) model is used to handle tropo-
spheric refraction. The hydrostatic zenith delay zdhydrostatic, is computed via the
“refined” Saastamoinen model (Davis et al. 1985 and Saastamoinen 1972). The
corresponding value for the wet delay, zdwet is estimated during the analysis, per
beacon and per pass, using an initial value provided by Askne and Nordius 1987.

Using the mapping function and the zenith delay, the tropospheric delay for
an observation at t � ti is given by

δTROrms � zdhydrostatic �mfhydrostatic � zdwet|t�ti �mfwet (5.27)
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The tropospheric correction term in Equation 5.8b, is actually the “time-differenced”
tropospheric delay between two measurements (the same ones used to derive the
Doppler count), given in m{s. That is:

∆vTROPOrm{ss �
�
δTRO|t�ti�1

� δTRO|t�ti
� {∆τ

�
��
zdh �mfh � zdw|t�ti�1

�mfw
� ��
t�ti �

�
zdh �mfh � zdw|t�ti�1

�mfw
� ��
t�ti�1

	
∆τ

(5.28)

Note that in the above equation the same value zdw|t�ti�1
for the wet part of

the zenith delay is used, that is the best estimate prior to incorporating the (new)
measurement at t � ti.

The parameter zdw is estimated using no constraints and a simple white noise
model (no process noise). Since it is an estimated parameter, the (partial) deriva-
tive of the observation equation w.r.t to this parameter, is required

Bvtheo
Bzdw �

mfw
��
t�ti �mfw

��
t�ti�1

∆τ
(5.29)

5.7 Implementation

In the framework of the current Thesis, a software package was designed to analyze
DORIS measurements for POD. The practical implementation of the observation
equation model is already discussed in section 5.6. In this section, general issues
of the algorithmic design are presented.

The first issue that arises when attempting to process DORIS data is the
parsing of input files. The decision was made for the software to adhere to the new
RINEX format (section 5.4), as suggested by the IDS. For the software created, the
decision was made to stick to the new RINEX format (section 5.4), as suggested by
the IDS. This decision provides for a wider range of analysis options (compared to
the older data format), regarding both the data types available and the subsequent
processing options and scheme (e.g. it is possible to parse and process pseudorange
measurements). The drawback though, is the complexity of the RINEX format.

A dedicated module of the software package is thus designed to handle parsing
of the RINEX files, in a generic way, so that users can extract the observables and
meta-data needed for the processing scheme they decide on. Note that recent stud-
ies have shown that the phase measurements themselves can be used (instead of
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Doppler counts) to effectively process data (see e.g. Mercier et al. 2010, Dettmer-
ing et al. 2014 and Zhou et al. 2020), although this method is not yet widely
used.

Ground beacon geometry, including PCO and PCV (see section 5.3) informa-
tion, is hard-coded in the software library. The implementation is based on a
type-safe, meta-programming paradigm (Vandevoorde et al. 2017), so that users
can request eccentricities and corrections for any DORIS frequency, including their
linear combinations. This design pattern allows for efficiency, safety and versatility.

Site eccentricities are read from the respective log files, per beacon. IDS main-
tains updates log-files for each of the ground beacons included in the DORIS net-
work (see https://ids-doris.org/doris-system/tracking-network/site-logs.
html). To that end, a Python module has been created that can handle the ac-
quisition, validation and parsing of relevant information off from the site-specific
log file. Eccentricities can thus be extracted and sourced into the main processing
module. This design was preferred (e.g. to harcoding eccentricity information),
as it accommodates an easier adoption of site changes (e.g. instrumentation, of
installation).

Once all of the above components are in place, the software can implement the
observation model, as described in section 5.6. The processing algorithm applies
observation-specific corrections to the extracted measurements, and keeps track
(in chronological order) of the previous observations encountered. Thus, it can
compute Doppler counts at every new epoch. All available observations can be
taken into account, assuming they comply to a number of user-defined criteria:

Observation flags : every observation in a RINEX file is followed by a list of
flags, denoting the instrumentation status (see Lourme et al. 2010). Users
can define selection criteria based on these flags.

Minimum Elevation : measurements performed on low elevation angles include
an increased error budget. Users can define an elevation cut-off angle, under
which observations are removed for analysis.

Time Offset : to compute the Doppler count between two consecutive observa-
tions, a time distance criterion is set. If the measurements are performed
within a time period larger that this interval, then the Doppler count is rest.

Running Statistics : while processing observations, the software computes “run-
ning” statistic values (e.g. average and standard deviation). Users can set
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boundary values for accepting observations based on these statistics (e.g. a
3-σ statistical test).

The whole analysis can be performed in two “passes” of the RINEX file: the first
is performed to model the receiver’s proper frequency frT (see subsection 5.6.4).
In a second pass, the “core” part of the analysis is performed, including parameter
estimation. Details on the latter are given in chapter 6.
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Chapter 6

Orbit Determination Using DORIS

6.1 Introduction

With the introduction of the DORIS system and the observation model discussed
in chapter 5, and using the developments presented earlier in the Thesis, a full
orbit determination process can now be put together. The theoretical background
and implementation details of the fundamental building blocks of the analysis
(discussed above), include:

Astrodynamics and the effective modelling of the perturbed motion of an artifi-
cial earth orbiting satellite (see section 2.2)

Spatial and Temporal Reference Systems where the equations of motion can
be described in, as well as the transformation mechanisms between their re-
alizations (see section 2.3 and section 2.4)

Earth’s Attitude , i.e. modelling the Earth’s variable rotation and dynamics
(see subsection 2.3.2)

Orbit integration for the efficient and precise extrapolation of the satellite’s
trajectory (see chapter 3),

Orbit estimation or orbit improvement, where data are processed in a robust
fashion to produce estimates for the satellite’s state vector or equivalently
orbital elements (see chapter 4)
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Data analysis where measurements obtained using the DORIS system are pro-
cessed using the observation model described in chapter 5, to obtain precise
relative velocity values between the emitter and the receiver

6.1.1 Goals of The Current Chapter

In this chapter a software tool to perform DORIS-data analysis is presented, using
the models, methods and algorithms already discussed in the previous sections.
The program is designed to tackle a “pure orbit determination” problem, or more
specifically orbit improvement; that is, given an initial, reference state at some
initial epoch, process DORIS observations (in an iterative manner) to compute
the “best” estimate of the satellite state.

The problem is labelled “pure” in the sense that it does not consider improve-
ments or estimates for other parameters, as e.g. site coordinates. However, a
number of parameters must be included in the filtering process (e.g. drag and
radiation coefficients, Cd and Cr respectively, relative frequency offsets for the
beacons, ∆fe{feN , and wet zenith tropospheric delay zdwet). The theoretical im-
plications and algorithmic design of the DORIS observation equation has already
been discussed in section 5.6 and will be used here to analyze the DORIS mea-
surements.

To test the validity of the estimates, the results are checked against CNES/SSALTO
computed trajectories, given in sp3 files. The latter have been computed using a
multi-technique approach, using both DORIS and GPS measurements. Differ-
ences in the force model and various processing options also exist between the two
analysis procedures, that introduce further inconsistencies. However, these sp3
files were the only available in the Crustal Dynamics Data Information System
(CDDIS) archive.

6.2 The Software

In the framework of the Thesis, a software package was designed and implemented,
to perform orbit determination using the DORIS satellite system. The software
was built from scratch, with minimum (external) dependencies. The purpose of the
package is to act as the fundamental building block of a state-of-the-art scientific
software toolset, utilizing DORIS observations for a wide range of geodetic studies,
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including but not limited to POD, reference frame maintenance, earth dynamics
and atmospheric studies. A first, imminent step towards this direction, would be
for the software to reach IDS standards, a goal not too far-fetched, since the bulk
of the work has already been done.

Writing scientific software to meet such high accuracy and efficiency standards
is a challenging task. This is evident by the limited number of packages delivering
such robust products. A deep understanding of the underlying scientific notions
is a prerequisite (including e.g. celestial mechanics, spatial/Temporal reference
frames, geodesy and estimation theory) coupled with software engineering skills
to match the high volume and high calibre of work needed (about 100000 lines of
source code were written for this Thesis, Table 6.11).

Library Language Lines of Code Comment

doris
C++ 18286 Including source code

for executablesPython 2068

iers2010
C++ 50000 Python & Fortran

mainly used for unit
testing

C 1801
Python &
Fortran

17120

sp3 C++ 1287
sinex C++ 1392

datetime
C++ 4432 Mostly header files
C 136

geodesy
C++ 3755
Python 120

Total 100397

Table 6.1: Software components of the package designed and implemented for the
Thesis.

6.2.1 Policy And Software Philosophy

The software is hosted and developed on the public domain, adopting a free and
open-source policy. Any interested party is free to use and/or adapt the source
code, fitting individual needs. It is a strong belief that adhering to such an open-
development, open-access paradigm, can prove to be highly beneficial both for

1Lines of Code counted using tokei (https://github.com/XAMPPRocky/tokei) excluding
blank and comment lines.
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Executables

bin

Libraries & Dependencies

dorisyaml-cpp

cspicesinexiers2010sp3

geodesy

eigendatetime

eop (C04)satellite
macromodel

space
weather

gravity
model

Configuration File

User Input and Models

Figure 6.1: Overview of the software structure, dependencies and hierarchy.
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the scientific community and for the development team. Already individual mod-
ules/libraries built for the Thesis have been “forked” from different users.

6.2.2 Architecture

The general architectural approach followed in designing the software is that of
modular software development, emphasizing on building simple, compact, clear,
modular, and extensible code that can be easily maintained and repurposed by
developers other than its creators. This approach favors composability, an at-
tribute greatly valued in scientific programming since it accommodates ease of
adoption and expansion. Since the aim of the package is to act as a fundamental
building block for an analysis tool matching the highest standards, this design
pattern is crucial to its development and further success.

A mixture of the well established object-oriented design (OOP) and the newer
approach of data-oriented design (Fabian 2018) (DOP) is used throughout the
codebase. In coarse terms, the former favors code clarity and encapsulation while
the latter promotes efficiency. Depending on the problem at hand, the constraints
imposed and the abstraction level used, the technique better matching the chal-
lenge was chosen.

The language of choice for code development is C++, while minor parts are
written in C and Python (see Table 6.1). C++ is a language supporting OOP,
renowned for its speed and efficiency. Via its versatility (especially in handling
memory resources) and closeness to the hardware, this programming language is
fit for problems posing constraints on computational resources and speed (such
as a POD analysis procedure). The source code employs generic programming
techniques and makes heavy usage of the emerging technique of template metapro-
gramming (Estérie et al. 2014, Gawlik et al. 2018), to get the highest possible
performance gains.

The source code is split into different modules/libraries, where each collection
serves a well established, individual goal (see Table 6.2). This division favors
the overall modularity of the package. Note that the individual repositories can
be found online by adding the name at the static path https://github.com/
xanthospap/
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Library Purpose Repository
Name

libdatetime A library to handle datetime instances. Includes
data structures, operators and transformations
between different scales, systems and represen-
tations. Facilitates the parsing, formatting and
writing of instances in different formats.

datetime

libgeodesy A library implementing fundamental geodetic
concepts and computations. Includes handling of
reference systems, reference ellipsoids, and asso-
ciated geometric operations, as well as transfor-
mations between systems and frames.

geodesy

libsp3 Faciliatate the parsing and data extraction and
manipulation (e.g. indexing and iterating) of sp3
data files (Hilla 2010).

sp3

libiers2010 Implementation of the IERS-2010 standards,
based on Petit and Luzum 2010. Additional ma-
terial is added (where needed) to handle the con-
vention’s updates. To-date model updates are
also included, as well as source code to handle
data resources in various formats, often encoun-
tered when implementing the standards.

iers2010

libsinex Facilitate the parsing and data extraction and
manipulation of SINEX files (“Solution (Soft-
ware/technique) INdependent EXchange Format
Version 2.02” 2006) including additional blocks
used by the IDS, see Moreaux 2023. Utilities in-
clude reference frame realization, reductions be-
tween site and reference points (via eccentricity
vectors) and inspection of time interval validity.

sinex

libdoris A library focused on the DORIS satellite system;
includes relevant data handling, implementation
of the observation equation model (chapter 5) and
its application in POD. Facilitates data retrieval
from a wide range of different formats, for various
steps of a DORIS data analysis scheme.

libdoris

Table 6.2: Individual libraries (modules) of the package designed and implemented
for the Thesis.

129



6.2.3 External Dependencies

An effort was made while developing the source code, to strive for minimal external
dependencies. As a consequence, only three external components are used to build
the whole package, namely,

The SPICE Toolkit (Acton et al. 2018), release January 3, 2022. This is National
Aeronautics and Space Administration (NASA)’s Observation Geometry Sys-
tem for Space Science Missions, developed by the Navigation and Ancillary
Information Facility (NAIF). This is a multi-purpose toolkit, with a wide
range of functionalities, available via a list of dedicated APIs. For the soft-
ware implemented for this Thesis, SPICE is only used to retrieve planetary
and lunar ephemeris records. More information on the toolkit are provided
in https://naif.jpl.nasa.gov/naif/index.html.

The eigen Library (Guennebaud and Jacob 2010), release 3.4. This is an open-
source C++ library for linear algebra, matrix and vector operations, geo-
metrical transformations, numerical solvers and related algorithms. The
main use of eigen within the implemented software, is to perform ma-
trix/vector operations. More information on the library can be found at
http://eigen.tuxfamily.org/.

The yaml-cpp Library , developed by Jesse Beder. This is an open-source li-
brary, hosted at https://github.com/jbeder/yaml-cpp, that enables effi-
cient parsing of YAML (https://yaml.org/) files. This library is only used
by the executables (i.e. not needed for any of the libraries) to parse the
configuration file(s).

6.3 The COST-G Benchmark Test

The International Combination Service for Time-variable Gravity Fields (COST-
G)2 is a product center of the International Gravity Field Service (IGFS) and
is dedicated to the combination of monthly global gravity field models. In the
framework of COST-G, gravity field solutions from different analysis centres are
combined to provide a consolidated solution of improved quality and robustness
to users. To achieve its goal, the individual products must be of utmost accuracy,
using state-of-the-art models.

2https://cost-g.org/
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In order to assess the consistency level of the implemented, underlying models
from the contributing analysis centers, a benchmark test was devised. A com-
prehensive dataset containing commonly used forces in orbit and gravity field
modeling, such as Earth’s gravity field and tides, was compiled and evaluated over
a one-day orbit arc of GRACE. Supplementary data were also included to facili-
tate straightforward comparisons. This benchmark test is intended to be used as
a reference data set and provide the opportunity to test the implementation of
these models at various institutions involved in orbit and gravity field determina-
tion from satellite tracking data. The benchmark test is described in Lasser et al.
2020.

This benchmark test is used throughout this document, to evaluate the im-
plementation of various models and forces used both here and in the analysis
performed to derive COST-G products by a series of high quality scientific soft-
ware packages. Validation of results aimed to comply with the highest standards
is hard to achieve, and such tests can provide crucial feedback and help identify
and mitigate error and bug that would otherwise pass unnoticed.

6.4 The Jason-3 Satellite Mission

JASON-3 is an international cooperative mission between National Oceanic and
Atmospheric Administration (NOAA) CNES, European Organisation for the Ex-
ploitation of Meteorological Satellites (EUMETSAT), and NASA. The objective of
the mission is to provide a continuation of the TOPEX/Poseidon, JASON-1 and
JASON-2 missions and their collection of high accuracy radar altimetry measure-
ments for global ocean circulation and sea surface studies, without any data gaps
(Couderc and Zaouche 2015). JASON-3 follows a near-circular and frozen orbit
that follows an exact repeating ground track every 127 revolutions in a little less
that ten days (see Table 6.3).

Mass and Center of Gravity: Initial values of mass and center of gravity
coordinates in satellite reference frame are given in Table 6.4. Actual values of
the satellite mass and center of gravity coordinates are obtained by adding the
offsets published by the IDS at the dedicated mass & Center of gravity history
file3. Direction of the body-fixed reference frame axis are shown in Figure 6.2 for
JASON-1; JASON-3 follows a very similar design (same PROTEUS platform).

3Available at ftp://ftp.ids-doris.org/pub/ids/satellites/ja3mass.txt

131

ftp://ftp.ids-doris.org/pub/ids/satellites/ja3mass.txt


Parameter Value

Semi-major axis (α) 7 714 431 m
Eccentricity (e) 9.5� 10�5

Inclination (i) 66.038 309°
Argument of periapsis 90°

Reference equatorial altitude 1336 km
Cycle duration 9.915 64 d

Number of revolution in a cycle 127 orbits

Table 6.3: Characteristics of JASON-3 orbit, Couderc and Zaouche 2015

Mass X Y Z
kg m

509.6 1.0023 0.0000 -0.0021

Table 6.4: Mass and Center of Gravity coordinates in the SV-fixed reference frame
for JASON-3, Cerri et al. 2022

DORIS Receiver Phase Center: The position of the 2 GHz and 400 MHz
receiver phase centers in the spacecraft-fixed reference frame, are given in Table 6.5.

Frequency X Y Z
m

2 GHz 2.4128 -0.1325 0.9235
400 MHz 2.4128 -0.1325 0.7555

Table 6.5: DORIS receiver phase center coordinates in the body-fixed reference
frame for JASON-3, Cerri et al. 2022

JASON-3 MacroModel: Macromodel parameters to be used for computing
the solar radiation effect (see section 2.2.3) are published by the IDS (Cerri et al.
2022). Details of the macromodel are shown in Table 6.6.
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Figure 6.2: Image of JASON-1 satellite including the body frame, Cerri et al. 2022.

Surface m2 Normal in body RF Optical Properties Infrared Properties
X Y Z spec diff abs spec diff abs

0.783 -1 0 0 0.3410 0.6460 0.0130 0.0000 0.9870 0.0130
0.783 1 0 0 0.1490 0.8510 0.0000 0.0000 1.0000 0.0000
2.040 0 -1 0 0.5730 0.3840 0.0430 0.1040 0.5690 0.3280
2.040 0 1 0 0.5390 0.4240 0.0370 0.0890 0.6270 0.2830
3.105 0 0 -1 0.2460 0.7520 0.0020 0.0050 0.9770 0.0170
3.105 0 0 1 0.2130 0.4530 0.3340 0.0370 0.2870 0.6760

Solar Array
9.800 1 0 0 0.0600 0.4070 0.5330 0.0970 0.0980 0.8030
9.800 -1 0 0 0.0040 0.2980 0.6970 0.0350 0.0350 0.9310

Table 6.6: Satellite Macromodel for JASON-3, Cerri et al. 2022.

6.4.1 JASON-3 Attitude

The spacecraft’s attitude is needed for various steps in the POD processing pipeline
(including e.g. the computation of atmospheric drag (see section 2.2.3) and solar
radiation pressure (see section 2.2.3)). Satellite attitude refers to the orientation of
the satellite body system in a reference frame, specifically, the coordinate transfor-
mation matrix between the latter frame and an Earth-fixed or inertial system. The
IDS strongly recommends the use of measure attitude if available (International
DORIS Service 2020).

To describe the orientation of a satellite in space, a body-fixed reference frame
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RBF needs to be defined (see Figure 6.3). This frame is permanently tied to the
mechanical structure of the satellite and enables the specification of antenna and
coordinates relative to the Center of Gravity. The body-fixed frame is likewise
required to describe the position and alignment of individual surface elements
(Montenbruck et al. 2015). For the JASON-3 satellite, the origin of the body
reference system is the center of the launcher interface ring. The X�axis points
along the satellite’s main direction towards the radiometer antenna and the axis
Z�axis is oriented towards the Earth (nadir pointing). Y�axis is parallel to the
rotation axis of the solar panels, positively towards the right solar panel (Zeitlhöfler
2019).

The transformation between the body-fixed reference frame and the GCRF is
given by the equation:

rBF � RrGCRS (6.1)

The transformation denoted here by R can be represented in different forms (e.g.
Euler Axis/Angle), one of which is the quaternion representation. This way of
transforming between the body-fixed and the GCRF frames is adopted and im-
plemented in the software designed for the current Thesis. The quaternion rep-
resentation expresses the attitude matrix as a homogeneous quadratic function of
the elements of the quaternion, requiring no trigonometric or other transcendental
function evaluations. Quaternions are more efficient for specifying rotations than
the attitude matrix itself, having only four components (instead of nine) and obey-
ing only one constraint, namely that their norm is equal to unity (Markley and
Crassidis 2019). Discussions on the use of quaternions for attitude determination
and underlying algebraic concepts can be found in Yang 2012 and Markley and
Crassidis 2019.

In the case of JASON-3, measured attitude is published by CNES in dedicated
data files (Ferrage 2020) by means of quaternions, covering a period of 28 hours (2
overlapping hours between two consecutive files). Data records are retrieved from
these files to relate the body-fixed reference frame to the GCRF. Since quater-
nions are provided in distinct epochs, an interpolation algorithm must be used
to estimate the quaternions at the epoch of request. In this Thesis, the spherical
linear interpolation method (often called Slerp in computer graphics) introduced
by Shoemake 1985 is used. According to Dam et al. 2000, Slerp is the optimal
interpolation curve between two rotations.

Respective solar panel files are also distributed by CNES, containing the an-
gular positions of the solar arrays.
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(a) Body-fixed frame (b) Surfaces for �Z and �Y

Figure 6.3: JASON-3 images depicting the satellite and the embeded, body-fixed
reference frame, Couderc and Zaouche 2015

6.5 The South Atlantic Anomaly (SAA)

The Van Allen radiation belts are toroidal zones around the Earth where high
energy particles coming mostly from the solar wind are trapped. Because the
inner belt is not symmetrically centered on the Earth, it comes closer to the Earth
surface in a region located above South America (Jalabert and Mercier 2018). The
SAA is a region of reduced magnetic intensity, where the inner Van Allen radiation
belt makes its closest approach to the Earth’s surface. This region is centered in
southeast South America (see Figure 6.4). Because of the weakened magnetic
field, inner radiation belt particles can mirror at lower altitudes increasing the
local particle flux. It is thus the region where the inner radiation belt makes
its closest approach to the Earth’s surface (Anderson et al. 2018). Satellites in
low-Earth orbit pass though the SAA periodically, thus being exposed to several
minutes of strong radiation each time, creating problems for scientific instruments
on-board satellites.

DORIS measurement processing assumes a stable oscillator frequency over the
duration of each pass. It also assumes a smooth (i.e. low degree polynomial)
evolution of the instrument frequency for both the receiver and the transmitter.
The oscillator in the on-board DORIS instrument is an USO which is designed to
meet these stability requirements (Jalabert and Mercier 2018). The high radiation
level dominating SAA impacts the behavior of on-board oscillators: a rapid change
in the frequency can be observed when the satellites fly across this area. This effect
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Figure 6.4: JASON-1 exposure to SAA effects, measured on 200-2004 period
using the DORIS ultra-stable oscillator. (Credits CNES/CLS, source Aviso
https://www.aviso.altimetry.fr/en/news/image-of-the-month/2007/
oct-2007-south-atlantic-anomaly-as-seen-by-doris.html)

causes precision degradation in POD and positioning results.

SAA effects on satellites carying DORIS payload have been identified for JA-
SON-1 Willis et al. 2003, JASON-2 Willis et al. 2016a, SPOT-5 Štěpánek et al.
2013 and Sentinel-3A Jalabert and Mercier 2018. Capdeville et al. 2016a, show
that the JASON-3 satellite is also affected by SAA, evident both in POD and sta-
tion positioning results. Although corrective models exist for some cases (e.g. for
JASON-1 Lemoine and Capdeville 2006 and Capdeville et al. 2016b for SPOT-5),
no such model exists in the case of JASON-3. Other possibilities for mitigating the
impact include the improved model of the USO frequency to correct the data and
the attenuation of the side-effects of the changes in the USO by downweighting or
eliminating measurements from beacons placed within the region covered SAA. In
this Thesis, the latter method is used.
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6.6 Software Tests And Orbit Determination

Using the software designed and implemented in the framework of this Thesis,
a fundamental orbit determination processing pipeline was setup, to analyze JA-
SON-3 DORIS measurements. The different, individual parts put together to
achieve this task have already been discussed in the previous chapters, includ-
ing both theoretical implications and implementation details. Table 6.7 lists the
models and parameters used for the test suite.

Tacking advantage of the modular design of the software package, made up
of different libraries, it is trivial to implement a program targeting a pure orbit
determination problem using DORIS observables, fitting specific user needs.

JASON-3 was chosen to act as the test bed since it is an on-going, modern
satellite mission, extensively documented, and its attitude determination can be
performed via quaternions (see subsection 6.4.1). A drawback however, is its USO
susceptibility to SAA-induced effects (see section 6.5).
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---
data:

doris-rinex: data/Jason-3/ja3rx22248.001
sp3: data/Jason-3/ssaja320.b22238.e22258.DG_.sp3.001

reference-frame:
station-coordinates: data/dpod2020_01.snx

eop-info:
eop-file: data/eopc0420.1962-now

gravity:
model: data/gfc/EIGEN-GRGS.RL04.MEAN-FIELD.gfc2
degree: 120
order: 120

troposphere:
vmf3:

grid: data/2022248.v3gr_d
force-model:

atmospheric-drag:
density-model: nrlmsise00
atmo-data-csv: data/SW-All.csv
Cd-apriori: 2e0

srp:
Cr-apriori: 1.5e0

...

Table 6.8: Configuration file example.

The large number of data and product files to be processed, along with the
complexity of the models, corresponding input parameters and user options needed
to properly determine the analysis procedure, poses a challenging task. An efficient
but on the same time user-friendly way of setting such input parameters must be
devised. The solution adopted for the software package described here, is to archive
such parameters in configuration files using the YAML (https://yaml.org/) format
and “feed” them to the program to drive the analysis scheme. YAML is a data
serialization language with the important advantage of being human-friendly. An
example of such a file is depicted in Table 6.6.

Results of orbit determination are depicted in Figure 6.5, where the state is
given in the dpod2020_01 (Moreaux 2023) ECEF reference frame. This frame is
suggested by the IDS for POD applications.

The total number of observations per beacon are depicted in Figure 6.6. It is
worth noting that:

• observations to beacons ARFB (AREQUIPA, located at Peru) and CADB (CA-
CHOEIRA PAULISTA, located at Brazil) were not used, since the corre-
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sponding measurements were found to be largely affected by SAA (see sec-
tion 6.5), giving large residual values

• observations to beacon HOFC (HOFN, installed in Iceland) were not used;
this site was installed in September 2020, and no available data based on
operational Numerical Weather Model (NWM) were found at the VMF Data
Server (VM-Data-Server 2020)
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Figure 6.5: Satellite state (in ECEF RF) estimated for one day of JASON-3 orbit

Figure 6.7 depicts the computed acceleration components for the force model
considered. Atmospheric drag forces are not included since they are well beyond
the targeted precision. For the altitude of JASON-3, solar radiation pressure is
several orders of magnitude larger than atmospheric drag, a fact usually inverted
for LEO satellites of lower altitude. Identification of dominant accelerations and
thereby forces, is crucial for further enhancements of the software since it enables
prioritization of further development.
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Figure 6.6: Number of measurements performed by the on-board JASON-3 DORIS
receiver per ground beacon.

To validate and check the results obtained for the satellite state estimates,
JASON-3 sp3 files were retrieved from CDDIS (Noll 2010), recording state (in
cartesian components) for the day of interest, with a sampling rate of 1 s. These so-
lutions are computed by CNES’s new-generation ground segment called SSALTO5

and are produced using DORIS and GPS observations. Documentation for the
data analysis procedure and the models used therein, is available at ftp://ftp.
ids-doris.org/pub/ids/data/POD_configuration_POEF.pdf. Note that accord-
ing to the POD specifications used by SSALTO, a large number of models and op-
tions are different from the ones used in the test-suite program listed in Table 6.7.
These sp3 files record satellite state of the spacecraft’s center of gravity, in ITRF.

Despite the fact that inclusion of GPS data may introduce inconsistencies when
compared to a DORIS-only solution, the high sampling rate of these product
files makes extrapolation of reference trajectories trivial and only introduces small
errors (see subsection 3.4.5). The procedure for computing reference solutions
(state estimates) included the following steps:

5https://www.aviso.altimetry.fr/en/newsletter07/ssalto-a-new-ground-segment-for-a-new-
generation-of-altimetry-satellites.html
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Figure 6.7: Computed accelerations for one day of JASON-3 orbit; y�axis in
logarithmic scale.

1. get (next) epoch t for which the test-suite has produced a state estimate

2. find the record in the reference sp3 file closest to t, t0

3. extrapolate the state from t0 to t; go to item 1 and repeat until a reference
state is computed for all t

Results of the comparison are depicted in Figure 6.8 using an ECEF reference
frame, and in Figure 6.9 using the celestial GCRF frame. For the latter case, the
retrieved sp3 state records were first transformed to the GCRF frame, and then
compared to the estimated state.

A description of the differences in the ECEF frame is recorded in Table 6.9.
For the position estimates, it is evident that the x and y components are in better
agreement with the reference results, with max discrepancies in the order of 2 m (in
absolute value). For the z component, max difference reaches a value of 3.5 m (in
absolute value). All three component differences seem to be dominated by periodic
signal(s), while for the z component case, a trend is also evident, correlating the
“worsening” of results with time.

Velocity differences range between �2.2 to 2.3 mm{ sec and, as is the case for
position estimates, are worse in the z component direction (see Table 6.9).

Transforming the state estimates and respective reference results to the GCRF
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Figure 6.8: Discrepancies of estimated state against the orbits estimated at
CNES/AALTO for one day of JASON-3 orbit (in ECEF RF).

Component Mean Std. deviation Max Value Min Value Units
x +0.17 � 0.64 2.09 -1.59 m
y +0.00 � 0.57 1.33 -2.01 m
z +0.86 � 0.72 3.52 -0.17 m
vx -0.03 � 0.58 2.19 -1.48 mm{s
vy +0.01 � 0.44 1.11 -1.09 mm{s
vz +0.03 � 0.65 2.29 -2.22 mm{s

Table 6.9: Details of discrepancies between estimated state against the orbits
estimated at CNES/AALTO for one day of JASON-3 orbit, depicted in Figure 6.8.

reference frame, absolute values of differences remain the same, though a trend
in the y and z directions is more evident, with values of �0.91 m{d and 1.66 m{d
respectively. A degradation of velocity estimates with time is also clear in this
case (see Figure 6.9).
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The evident degradation of results over time is a clear indicator of unmodeled
effects in the force model applied (e.g. polar tides). This causes the solution of the
equations of motion, coupled with the variational equation system, to depart from
the “true” state. In turn, this deviation in the results is re-injected into the system
of differential equations by means of initial conditions, hence ultimately causing
an accumulation of errors. Even though the filtering process adjusts the state
according to observation data, this adjustment is not large enough to alleviate
shortcomings of the force model.
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Figure 6.9: Discrepancies of estimated state against the orbits estimated at
CNES/AALTO for one day of JASON-3 orbit (in GCRF).

Since both the GCRF and ECEF state differences seem to include harmonic
signals, an analysis of the underlying dominant frequencies was performed to iden-
tify the spectral densities of the signal. For this purpose, the Lomb–Scargle peri-
odogram (Scargle 1982) was used; this method enables the efficient computation
of periodograms for unevenly spaced samples. Since the state differences cover
a time span of one day with a sampling rate of � 1 sec, the spectral range was
chosen to span the periods 0.1 to 6 h, avoiding aliasing effects (see e.g. VanderPlas
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2018). Results are depicted in Figure 6.10 for differences computed in the ECEF
reference frame and Figure 6.11 for the GCRF reference frame respectively.
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Figure 6.10: Lomb-Scargle periodogram for the differences between estimated and
reference results for satellite state in ECEF.

The estimated periodograms show a clear prevalence of two harmonics with
periods of � 1 h and � 2 h. Position estimates are dominated by the second fre-
quency, while velocity estimates by the first. Note that JASON-3 completes a
revolution around the Earth in 112.4 min or � 1.9 h. This frequency coincides
with the findings of the periodogram for the case of position estimates. The ex-
istence of such periodic signals is often attributed to mismodeled radiation forces
(e.g. Xia et al. 2022). Given the fact that the force model used does not take into
consideration albedo effects and satellite emitted thermal radiation, mismodeled
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radiation forces could explain the observed behavior. Apart from modeling en-
hancements, empirical, once-per-revolution acceleration components can be used
to mitigate such effects.

To gain a clearer view on the satellite position differences, discrepancies are
often transformed to an “orbital frame”, defined by the radial and velocity vectors.
The x�axis of this frame is the radial axis, directed from the unit vector of satellite
position. The y�axis, labelled in-track axis, is in the direction of motion, while
the z�axis called cross-track is directed from the unit vector of normal orbit
(Kim et al. 2019). Position differences between estimates and reference results
are depicted in Figure 6.12, transformed to the radial, across-track and in-track
frame. The in-track component is very smooth, and in good agreement with
the reference solution; the maximum difference in this case is � 0.17 m. The
radial component is dominated by a periodic harmonic of � 2 h, with a growing
amplitude. Max discrepancies in this case are � 1.5 m, at the end of the day.
The cross-track component presents the largest fluctuations, and apart from the
identified harmonic of � 2 h seems to follow a parabolic pattern. Details are given
in Table 6.10.

Component Mean Std. deviation Max Value Min Value Units
radial -0.03 � 0.57 1.26 -1.46 m
in track +0.00 � 0.06 0.17 -0.15 m

cross track -0.19 � 1.29 3.99 -2.11 m

Table 6.10: Details of discrepancies between estimated state against the orbits
estimated at CNES/AALTO for one day of JASON-3 orbit, depicted in Figure 6.12.

Figure 6.13 depicts the residuals of the analysis, i.e. the Observed - Computed
values. Residuals are higher at the beginning of the analysis interval, but quickly
converge to smaller values. This effect is due to the unknown a-priori values mainly
of the beacon relative frequency offsets (see subsection 5.5.2).

A more enlightening view of the residuals can be obtained in Figure 6.14 and
Figure 6.15, where the large starting values are filtered out. The first plot depicts
the computed residuals with respect to time, while the latter with respect to
elevation angle.

From Figure 6.15 it can be seen that observations at elevation angles that ap-
proach the cut-off angle of 10°, have larger residual values, a fact to be expected.
There also seems to be a systematic offset of � 8 mm{s between the computed
and the observed values. To check whether this offset has to do with a specific
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(ground) antenna type, residual values with respect to antenna type are depicted in
Figure 6.16. For the epoch under study, DORIS beacons were equipped with two
different antennae, namely STAREC-B and STAREC-C, which share geometric
characteristics (see section 5.3). No evident dependence of residual values on an-
tenna type though could be found. Hence, the systematic offset can be attributed
to either

• mismodeling of the geometric characteristics of ground antennae (e.g. an-
tenna reference point(s), PCO)

• mismodeling or non-mitigated errors in the observation equation model

Apart from satellite state and beacon-specific parameters, the orbit determina-
tion process involves estimation of a number of dynamic orbit parameters. For the
setup used here, these are the solar radiation pressure coefficient, Cr and the atmo-
spheric drag coefficient Cd. Estimated values for these parameters are depicted in
Figure 6.17. While solar radiation pressure coefficient, Cr is stable throughout the
time interval analyzed, the atmospheric drag coefficient shows larger discrepancies.
This can be attributed to

• an erroneous a-priori value, and

• an “absorption” of mismodeled or remaining errors of the analysis

Since the Cr term is estimated once per revolution, while Cd is estimated for the
whole time interval, it is easier for the first to “absorb” remaining errors.
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Figure 6.11: Lomb-Scargle periodogram for the differences between estimated and
reference results for satellite state in GCRF.
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Figure 6.12: Discrepancies of estimated state against the orbits estimated at
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Figure 6.13: DORIS residuals computed from one day of JASON-3 orbit determi-
nation.
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Figure 6.14: DORIS residuals computed from one day of JASON-3 orbit determi-
nation.
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Figure 6.15: DORIS residuals w.r.t. elevation angle computed from one day of
JASON-3 orbit determination.
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Figure 6.16: DORIS residuals w.r.t. elevation angle computed from one day of
JASON-3 orbit determination.
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Figure 6.17: Estimated dynamic orbit parameters (drag and solar radiation pres-
sure coefficients, Cd and Cr), for one day of JASON-3 orbit determination.
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Chapter 7

Conclusions And Recommendations

7.1 Conclusions

DORIS is a fundamental technique in Satellite Geodesy that has been steadily con-
tributing significant results, products, and insights in a wide range of geosciences
and related fields since the early 1990s. It has played a crucial role in expanding
the geodetic knowledgebase and enhancing our understanding of the Earth’s dy-
namics. Together with GNSS, SLR, and VLBI, DORIS forms a fundamental pillar
of reference frame maintenance. However, despite its importance, the scientific au-
dience for DORIS is disproportionately limited, as evidenced by the small number
of dedicated Analysis Centers compared to other space geodetic techniques. This
lack of dedicated scientific software tools for a prominent space geodetic technique
is a significant challenge that needs to be addressed. The absence of specialized,
scientific software tools for a significant space geodetic method like DORIS served
as the primary objective and motivation for this Thesis.

This Thesis presents the development and implementation of a software package
that serves as a fundamental building block for a dedicated analysis tool to process
DORIS observations at an IDS level. The software package was designed with two
main principles in mind: efficiency and genericity/modularity. This architectural
approach is expected to attract new users by promoting reusability, maintenance,
and repurposing. The software package is free and open-source, aimed at fostering
growth in the user community and stimulating interest in the DORIS technique
for further development.

The software built amounts to approximately 100000 lines of source code, di-
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vided into different modules/libraries (section 6.2). Using this design, it is trivial
to create a DORIS analysis program to perform orbit determination (section 6.6),
since all required functionality is delivered via the different modules. Adding yet
another satellite in the processing chain, would only require the development of
a dedicated attitude model (as e.g. done for JASON-3, subsection 6.4.1) and
accommodating for the new state parameters in the filter.

As shown in earlier chapters, modeling of the fundamental conservative forces,
i.e. Earth’s gravity (c.f. section 2.2.3), third-body perturbations (computed here
for Sun and Moon, c.f. section 2.2.3), solid earth tides (c.f. section 2.2.3) and
ocean tides (c.f. section 2.2.3) is in close agreement with state-of-the-art scientific
software (section 6.3). Additionally, given the accuracy of the results and valida-
tion tests obtained both in chapter 2 and section 6.6, intermediate but fundamen-
tal computations such as EOP interpolation (see subsection 2.3.4) and reference
frames and time-scales transformations (see section 2.3 and section 2.4) seem to
comply to high accuracy standards.

The results obtained from orbit determination using the JASON-3 satellite
reveal average discrepancies, with position discrepancies amounting to a few meters
and velocity estimates differing by a few millimeters per second compared to the
CNES/SSALTO (multitechnique) solution. While these outcomes fall short of a
POD result conforming to IDS quality standards, limitations of the current analysis
pipeline are well recognized and easily surmountable:

• Limitations in the force model, including:

– Currently only a few major ocean tidal constituents are considered.
More can be added since the capacity is already there.

– Account for earth pole tides and ocean pole tides. These tidal effects are
less pronounced than the earth and ocean loading effects and simpler
to model.

– Apply more complex Earth radiation modeling (e.g. include albedo and
empirical models)

– Add dealiasing products (some gravity models were determined using
this model)

– Account for atmospheric loading effects

• Handle displacement of reference points (effects of tides on crustal deforma-
tion)
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• Implement a more robust treatment of proper time (currently estimates ex-
tracted from RINEX)

• Discriminate between zero tide and tide free models and adopt a unified
approach

Yet the most important step towards a more precise estimation process, would
be the adoption of a more robust filtering design. Currently the Extended Kalman
Filter algorithm is used as estimator (section 4.4). The more efficient and rigor-
ous formulation of the Square Root Information Filtering (SRIF) algorithm could
replace the current implementation. More crucially though, the introduction of
stochastic properties via process noise. Currently, no process noise is introduced
in the filter, meaning that the force model is considered “errorless”, and the esti-
mation is not allowed to deviate and account for mismodeled or even unmodeled
effects. Process noise needs to be included in the model also due to modeling
approximations and model integration errors. In a least squares sense, such effects
are treated using stochastic accelerations.

It is noteworthy that the aforementioned improvements pertain to the enhance-
ment of an existing software package. The majority of the work, aimed at achieving
a state-of-the-art, scientific software tool, has already been accomplished and is
now available to all interested parties through this Thesis. The majority of this
tool has been implemented, extensively documented, and rigorously tested. Given
that the limited number of software packages available for accurate processing of
DORIS observations are either not free and/or not open-source, the tools presented
in this Thesis represent a new and innovative alternative.

7.2 Recommendations

As discussed before, the software tools presented in this Thesis constitute a fun-
damental infrastructure for a state-of-the-art DORIS analysis software package.
Incorporation of a few refinements (outlined in section 7.1) can result to analysis
results meeting the highest standards. The basis of further development, should
evolve around the following considerations:

• Adherence to a free and open source policy; this policy results in attraction
of new users, which will pose new scientific questions, explore limitations and
drawbacks, and eventually drive the development forward to meet new, wider
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and higher demands. This cycle will in turn promote scientific knowledge
and push for technological advance of the technique itself.

• Adherence to a modular design paradigm, favoring genericity and efficiency.
Given that the software aims to be used by the scientific community, which
by large is familiar with concepts such as programming, these two attributes
should be preferred over e.g. user-friendliness.

• Upgrade the filtering process to a more robust estimator including the intro-
duction of process noise (stochastic properties).

• Incorporate more space geodetic techniques. As said, most scientific software
packages of high caliber, are not limited to one technique. This happens be-
cause once the groundwork is laid, the introduction of a new space geodetic
technique is a matter of efficiently handling the corresponding observation
equation model. Complex earth dynamics, reference and time frame trans-
formations, filtering and adjustment, integration and linear algebra are all
already in place. Additionally, the introduction other techniques, allows for
validation and can further provide crucial scientific results and insight.

• Enhance the package to meet IDS standards and contribute to the commu-
nity. This will require meeting high-precision demands while simultaneously
drive updateting and refining, since it will necessitate adoption of the latest
developments in geodesy.
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Appendices

A Variational Equations Differential Equations

A slightly different but enlighting approach is presented here for the formation
and solution of the variational equation system of differential equations. The
developments presented here can be found in Tapley et al. 2004b. The Φ matrix
here will contain the combined state transition matrix and the sensitivity matrix
Sptq, see subsection 4.5.2.

The differential equation for the variational equations can be written in the
form

9Φpt, t0q � AptqΦpt, t0q, with (1)
Φpt0, t0q � I (2)

The state transition matrix can be split in the following way

Φpt, t0q � Byptq
By0

�
�
�φ1pt, t0q
φ2pt, t0q
φ3pt, t0q

�
�

�
��

Brptq
By0Bvptq
By0Bpptq
By0

�
� (3)

where
φ3pt, t0q �

�
0np�6 Inp�np

�
(4)

By differentiating Equation 3, Equation 1 in terms of a second order differential
equation,

9Φpt, t0q � B 9yptq
By0

�
�
� 9φ1pt, t0q

9φ2pt, t0q
9φ3pt, t0q

�
�

�
��

B 9rptq
By0B 9vptq
By0

0np�6

�
��

�
��

B 9rptq
Byptq
B 9vptq
Byptq

0np�6

�
�ByptqBy0

(5)
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Note that 9φ2 � :φ1.

The second order differential equation could be solved to obtain Φpt, t0q

:φ1pt, t0q � B:rptq
By0

� B:rptq
Byptq

B :yptq
By0

�
�
B:rptq
Brptq

B:rptq
Bvptq

B:rptq
Bp

	���
Brptq
By0B 9rptq
By0Bp
By0

�
� (6)

which reduces to

:φ1pt, t0q � B:rptq
Brptqφ1pt, t0q � B:rptq

Bvptq
9φ1pt, t0q � B:rptq

Bp φ3pt, t0q (7)

with initial conditions

φ1pt0, t0q �
�
I 0

�
(8)

9φ1pt0, t0q � φ2pt0, t0q �
�
0 I 0

�
(9)

This second order ODE system can be transformed to a n � n first-order system
(if the solution of first order ODE is preffered)

9φ1pt, t0q � φ2pt, t0q
9φ2pt, t0q � B:rptq

Brptqφ1pt, t0q � B:rptq
Bvptqφ2pt, t0q � B:rptq

Bp φ3pt, t0q
9φ3pt, t0q � 0

(10)

or 9Φpt, t0q � AptqΦpt, t0q, or
�
� 9φ1pt, t0q

9φ2pt, t0q
9φ3pt, t0q

�

n�n

�

�
��

03�3 I3�3 03�m�
B:rptq
Brptq

	�
3�3

�
B:rptq
Bvptq

	�
3�3

�
B:rptq
Bp

	�
3�m

0m�3 0m�3 0m�m

�
�
n�n

�
�φ1pt, t0q
φ2pt, t0q
φ3pt, t0q

�

n�n

(11)
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B Short Introduction to Quaternion Algebra

This chapter is only a very short introduction to quaternions, focused on essential
definitions required to use the quaternion as a representation of the attitude of
an object. A more detailed review of the matter can be found in Markley and
Crassidis 2019 and Diebel 2006.

A quaternion q consists of four elements q0, q1, q2, q3 and is defined as:

q � q0 � iq0 � jq1 � kq2 (12)

where i, j and k are imaginary numbers satisfying following conditions

i2 � j2 � k2 � �1

ij � �ji � k

jk � �kj � i

ki � �ik � j

(13)

q may be represented as a vector,

q � �q0 q1 q2 q3

� � � q0

q1:3



(14)

where the component q0 P R represents the scalar (real) part and q1:3 P R3 the
vector (imaginary) part. The four components of a quaternion can hold the axis
e and angle θ of a rotation. In this case,

q0 � cos
θ

2

q1 �e1 sin
θ

2

q2 �e2 sin
θ

2

q3 �e3 sin
θ

2

(15)

The following properties of a quaternion q are defined:

• The conjugate of a quaternion is:

q̄ �
�

q0

�q1:3



(16)
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• The norm of a quaternion is:

‖q‖ �
b
q2

0 � q2
1 � q2

2 � q2
3 (17)

• The normalized conjugate or inverse of a quaternion is:

q�1 � q̄

‖q‖
(18)

• Multiplication of q with another quaternion p is defined as

q � pd q �
�

p0q0 � p1:3 � q1:3

p0 � q1:3 � q0 � p1:3 � p1:3 � q1:3



(19)

A rotation of a vector r from a coordinate system A to a system B can be
expressed using quaternions as (Zeitlhöfler 2019):

r�B � q̂ d r�A d q (20)

where r�B and r�A are the vectors rB and rA expressed as quaternions with a sclar
part (q0) equal to zero.
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