
National Technical University of Athens
School of Electrical & Computer Engineering

Division of Communication, Electronic and Information Engineering

Hardware Acceleration Techniques for
Computation and Data Intensive Machine
Learning and Bioinformatic Applications

Ph.D. Thesis

Konstantina I. Koliogeorgi

Athens, May 2023

This Ph.D. thesis was cofinanced by the E.C. funded projects H2020 AEGLE and H2020
EVOLVE.

The content of this Ph.D. Thesis does not reflect the official opinion of the National
Technical University of Athens. Responsibility for the information and views expressed
in this thesis lies entirely with the author.

Content that is reused from publications that the author has (co-)authored (excerpts,
figures, tables, etc.) is under copyright with the respective paper publishers (IEEE, ACM,
Springer etc) and is cited accordingly in the current text. Content that is reused from
third-party publications appears with the appropriate copyright note. Reuse of any such
content by any interested party requires the publishers’ prior consent, according to the
applicable copyright policies. Content that has not been published before is copyrighted
jointly as follows:

Copyright c©Konstantina K. Koliogeorgi, 2023
Electrical & Computer Engineer N.T.U.A.
All rights reserved

National Technical University of Athens
School of Electrical & Computer Engineering
Division of Communication, Electronic and
Information Engineering
Microprocessors and Digital Systems Lab

Hardware Acceleration Techniques for Computation and Data
Intensive Machine Learning and Bioinformatic Applications

Ph.D. Thesis
of

Konstantina I.Koliogeorgi

Supervisor: Prof. Dimitrios Soudris

Submitted in School of Electrical & Computer Engineering of National Technical
University of Athens

Athens, May 2023

National Technical University of Athens
School of Electrical & Computer Engineering
Division of Communication, Electronic and
Information Engineering
Microprocessors and Digital Systems Lab

Hardware Acceleration Techniques for Computation and Data
Intensive Machine Learning and Bioinformatic Applications

Ph.D. Thesis
of

Konstantina I. Koliogeorgi

Supervising Committee: Dimitrios Soudris
Kiamal Pekmestzi
Georgi Gaydadjiev

Approved by the advisory committee on May 2, 2023.

. .
Dimitrios Soudris Kiamal Pekmestzi Georgi Gaydadjiev
Professor N.T.U.A Professor N.T.U.A Professor TU Delft

. .
Sotirios Xydis Dionisios Pnevmatikatos

Asst. Professor N.T.U.A Professor N.T.U.A

. .
Leonidas Alexopoulos Onur Mutlu
Professor N.T.U.A Professor E.T.H.Z

Athens, May 2023

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών

& Μηχανικών Υπολογιστών

Τομέας Επικοινωνιών, Ηλεκτρονικής και

Συστημάτων Πληροφορικής

Εργατήριο Μικροϋπολογιστών

Τεχνικές Επιτάχυνσης σε Hardware για εφαρμογές Τεχνητής
Νοημοσύνης και Βιοπληροφορικής απαιτητικές σε Υπολογισμούς

και Δεδομένα

Διδακτορική Διατριβή

της

Κωνσταντίνας Ι. Κολιογεώργη

Επιβλέπων: Καθ. Δημήτριος Σούντρης

Υποβλήθηκε στη Σχολή Ηλεκτρολόγων Μηχανικών

& Μηχανικών Υπολογιστών
του Εθνικού Μετσόβιου Πολυτεχνείου

Αθήνα, Μάιος 2023

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών

& Μηχανικών Υπολογιστών

Τομέας Επικοινωνιών, Ηλεκτρονικής και

Συστημάτων Πληροφορικής

Εργατήριο Μικροϋπολογιστών

Τεχνικές Επιτάχυνσης σε Hardware για εφαρμογές Τεχνητής
Νοημοσύνης και Βιοπληροφορικής απαιτητικές σε Υπολογισμούς

και Δεδομένα

Διδακτορική Διατριβή

της

Κωνσταντίνας Ι. Κολιογεώργη

Συμβουλευτική Επιτροπή: Δημήτριος Σούντρης

Κιαμάλ Πεκμεστζή

Georgi Gaydadjiev

Εγκρίθηκε από την επταμελή εξεταστική επιτροπή την 2
η
Μαΐου 2022.

. .

Δημήτριος Σούντρης Κιαμάλ Πεκμεστζή Georgi Gaydajiev
Καθηγητής ΕΜΠ Καθηγητής ΕΜΠ Professor TU Delft

. .

Σωτήριος Ξύδης Διονύσιος Πνευματικάτος

Επ.Καθηγητής Ε.Μ.Π. Καθηγητής Ε.Μ.Π.

. .

Λεωνίδας Αλεξόπουλος Onur Mutlu
Καθηγητής Ε.Μ.Π Professor ETHZ

Αθήνα, Μάιος 2023

..................

Κωνσταντίνα Ι. Κολιογεώργη

Διδάκτωρ Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright c©Κωνσταντίνα Ι. Κολιογεώργη, 2023.

Με επιφύλαξη παντώς δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου

ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανο-

μή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση

να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που α-

φορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον

συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγ-

γραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού

Μετσόβιου Πολυτεχνείου.

x

Abstract

In this thesis, we focus on the hardware acceleration of two representative applications
of modern healthcare: a ML-based prediction analysis and Read Alignment of genomic
data. Both fields experience an intense growth in the latest decades and generate an
immense amount of raw data. Creating value and making decisions based on these data
have proved to be a challenging task as both the datasets as well as the computational
intensity of the algorithms continue to escalate. To cope with this issue, High Perfor-
mance techniques such as hardware acceleration have been examined. There is a great
surge of works that leverage different programming models and frameworks to develop
efficient FPGA-based accelerators, thanks to the bit-level customization capabilities of
the devices. However, the frameworks available for programming such devices cannot
always straightforwardly fully exploit the acceleration prospects of the applications. Fur-
thermore, in complex applications existing solutions are characterized by a narrow view
on real integration aspects, such as system wide communication and accelerator call
overheads. In the current research work, the core contribution is based on the delivery
of efficient solutions through strategic exploration of the design space and the synergy
of hardware and software code modifications. The first application that this thesis ex-
amines is efficient hardware acceleration of Support Vector Machine (SVM) classifiers.
SVMs have played a crucial role in providing data fusion and high accuracy classification
solutions for various, complex, non-linear problems. In this thesis, we explore an applica-
tion that SVM hardware co-processors perform classification for ECG signal arrhythmia
detection. The proposed methodology for accelerating the SVM has been implemented
as a framework on top of the state-of-art Vivado High-Level Synthesis (HLS) tool. We
propose a systematic two-level approach for SVM acceleration, which first optimizes the
global structure of the original SVM’s behavioral description to assist the tool in infering
the inherent data- and instruction-level parallelism of the algorithm. The second level of
optimization further refines the design through a targeted design exploration that matches
the accelerator’s memory architecture to its computation and memory access patterns.
In the second part of the thesis, we study the effect of acceleration techniques on one of
the major bottlenecks of a typical genomic pipeline, which is short read alignment. In
our study we perform extensive profiling on a popular aligner and identify the bottleneck
within alignment as the string-matching algorithm Smith-Waterman. Our approach is
to provide a dataflow implementation for this task that targets FPGA devices by tak-
ing into account the implications of integrating the accelerator in the original software
tool. We therefore present GANDAFL, a novel genome alignment dataflow architec-
ture for Smith-Waterman Matrix-fill and Traceback stages to perform high throughput

xi

short-read alignment on Next Generation Sequencing data. We then propose a radical
software restructuring to widely-used Bowtie2 aligner that implements an aggregation-
batching strategy and feeds the accelerator in high-throughput streaming fashion with
minimized transfer and call overheads. The standalone solution delivers up to ×116 and
×2 speedup over state-of-the-art software and hardware accelerators respectively and
GANDAFL-enhanced Bowtie2 aligner delivers a ×1.9 speedup. We also examine an al-
ternative approach to accelerating short read alignment. We introduce a high throughput
alignment system that combines Banded SmithWaterman accelerators and pre-filtering
for alignment optimization by introducing a profile-driven accelerator methdology. Ex-
tensive profiling of genomic datasets reveals low edit thresholds that can be leveraged by
a heuristic of SmithWaterman, i.e. Banded SmithWaterman, to create resource-efficient
accelerators that are customized to the edit profile of the input. We therefore design and
deliver a highly optimized dataflow implementation for Banded Smith-Waterman seed-
extension targeting FPGA devices, which is leveraged within a multi-dataflow accelerated
system. The multi-dataflow system covers the full range of edits and therefore achieves
both high throughput as well as high accuracy alignments. The evaluation shows that
the proposed Banded Smith-Waterman accelerator delivers a ×34 speedup over state-
of-the-art software aligners and ×1.53 and ×3 over state-of-the-art dataflow and RTL
SmithWaterman accelerators respectively. The multi-dataflow system delivers average
speedups of ×1.8 over state-of-art multi-accelerator FPGA solutions that employ generic
and input-agnostic accelerators.

Keywords: FPGA Acceleration, High Level Synthesis, Design Space Exploration, Code
transformation, Machine Learning, Next-Generation Sequencing, Short Read Alignment,
SW/HW Co-design, Dataflow computing

xii

Περίληψη

Σε αυτή τη διατριβή επικεντρωνόμαστε στην υλοποίηση υλικού επιτάχυνσης για δύο α-

ντιπροσωπευτικές εφαρμογές του σύγχρονου τομέα της υγείας: μια ανάλυση πρόβλεψης

που βασίζεται στη μηχανική μάθηση και η ευθυγράμμιση ανάγνωσης γονιδιωματικών δεδο-

μένων. Και οι δύο τομείς βιώνουν έντονη ανάπτυξη τις τελευταίες δεκαετίες και παράγουν

έναν τεράστιο όγκο ακατέργαστων δεδομένων, πλούσιο σε πληροφορία. Η ερμηνεία και

η λήψη αποφάσεων βασισμένων σε αυτά τα δεδομένα έχουν αποδειχθεί δύσκολες εργα-

σίες καθώς τα δεδομένα και η υπολογιστική πολυπλοκότητα των αλγορίθμων αυξάνονται

εκθετικά. Για να αντιμετωπιστεί αυτό το πρόβλημα, έχουν εξεταστεί τεχνικές υψηλής α-

πόδοσης όπως η επιτάχυνση σε hardware. Υπάρχει μια πληθώρα ερευνητικών εργασιών που

αξιοποιούν διαφορετικά μοντέλα προγραμματισμού για να αναπτύξουν αποτελεσματικούς ε-

πιταχυντές βασισμένους σε FPGA, χάρη στην ευελιξία προγραμματισμού τους σε επίπεδο

βιτ. Ωστόσο, τα διαθέσιμα μοντέλα προγραμματισμού για την προγραμματισμό τέτοιων

συσκευών δεν μπορούν πάντα να εκμεταλλευτούν πλήρως τις προοπτικές επιτάχυνσης των

εφαρμογών με απλό τρόπο. Επιπλέον, σε πολύπλοκες εφαρμογές, οι υπάρχουσες λύσεις

χαρακτηρίζονται από μια περιορισμένη οπτική στην ενσωμάτωση των επιταχυντών σε ένα

ρεαλιστικό σύστημα, όπως η επικοινωνία σε επίπεδο συστήματος και οι πρόσθετοι χρόνοι

κλήσης των επιταχυντών. Στο τρέχον διδακτορικό, η κύρια συνεισφορά βασίζεται στην πα-

ροχή αποτελεσματικών λύσεων μέσω της στρατηγικής εξερεύνησης του χώρου σχεδιασμού

και της συνέργιας βελτιστοποιήσεων του κώδικα τόσο σε επίπεδο υλικού όσο και λογισμι-

κού.

Η πρώτη εφαρμογή που εξετάζεται σε αυτή τη διατριβή είναι η αποδοτική επιτάχυνση υλικού

των ταξινομητών Συππορτ ἕςτορ Μαςηινε (SVM). Σε αυτήν τη διατριβή, εξετάζουμε μια

εφαρμογή στην οποία οι επιταχυντές υλικού SVM εκτελούν ταξινόμηση για την ανίχνευ-

ση αρρυθμιών σήματος ECG. Η προτεινόμενη μεθοδολογία για την επιτάχυνση του SVM
έχει υλοποιηθεί χρησιμοποιώντας το εργαλείο Vivado High-Level Synthesis (HLS). Προ-

τείνουμε μια συστηματική προσέγγιση δύο επιπέδων για την επιτάχυνση του SVM, η οποία

πρώτα βελτιστοποιεί τη γενική δομή της αρχικής περιγραφής συμπεριφοράς του SVM για

να βοηθήσει το εργαλείο να αναγνωρίσει τον εγγενμή παραλληλισμό σε επίπεδο δεδομένων

και εντολών του αλγορίθμου. Το δεύτερο επίπεδο βελτιστοποίησης βελτιώνει επιπρόσθε-

τα το σχεδιασμό μέσω μιας στρατηγικής εξερεύνησης του χώρου σχεδιασμού που σχεδι-

άζει τη μνήμη του επιταχυντή βάσει των μοτίβων υπολογισμού και πρόσβασης στη μνήμη

του.

Στο δεύτερο μέρος της διπλωματικής εργασίας, μελετάμε την επίδραση των τεχνικών ε-

xiii

πιτάχυνσης σε ένα από τα πιο υπολογιστικά απαιτητικά κομμάτια της επεξεργασίας γονι-

διώματος, που είναι η ευθυγράμμιση ακολουθιών ΔΝΑ στο ανθρώπινο γονιδίωμα. Εκτε-

λούμε ανάλυση της απόδοσης ενός εργαλείου αλληλούχισης (το Bowtie2) και εντοπίζουμε

τον αλγόριθμο Smith-Waterman ως το πιο χρονοβόρο κομμάτι. Η προσέγγισή μας είναι

να παρέχουμε μια υλοποίηση ροής δεδομένων που στοχεύει συσκευές FPGA λαμβάνοντας

υπόψη τις συνέπειες της ενσωμάτωσης του επιταχυντή στο εργαλείο αλληλούχισης και ε-

πομένως σε ένα πραγματικό σύστημα. Προτείνουμε το GANDAFL, μια νέα αρχιτεκτονική

ροής δεδομένων ευθυγράμμισης γονιδιώματος για τον Smith-Waterman για την εκτέλεση

ευθυγράμμισης υψηλής απόδοσης σε δεδομένα αλληλουχίας επόμενης γενιάς. Στη συνέχεια,

προτείνουμε μια ριζική αναδιάρθρωση του κώδικα του Bowtie2 η οποία ομαδοποιεί πολλά

μεμονωμένα αιτήματα αλληλούχισης και τα τροφοδοτεί στον επιταχυντή με υψηλής ρυθμό α-

πόδοσης ελαχιστοποιώντας έξοδα μεταφοράς και κλήσεων. Ο επιταχυντής προσφέρει έως και

116 και 2 φορές επιτάχυνση αντίστοιχα σε σύγκριση με πρόσφατους επιταχυντές λογισμικού

και υλικού, αντίστοιχα, και η βελτιωμένη με GANDAFL ευθυγράμμιση Bowtie2 προσφέρει

επιτάχυνση 1,9 επί του συνολικού συστήματος. Τέλος εξετάζουμε μια εναλλακτική προ-

σέγγιση, η οποία συνδυάζει μια ευριστική υλοποίηση του Smith-Waterman και ένα στάδιο

φιλτραρίσματος των αρχικών δεδομένων. Μελέτη των δεδομένων εισόδου υποδεικνύει ότι η

αλληλούχιση συνήθως είναι ακριβής και εντοπίζεται μικρός αριθμός διαφοροποιήσεων από το

ανθρώπινο γονιδίωμα. Αυτό μειώνει το χώρο αναζήτησης των λύσεων και μας επιτρέπει να

χρησιμοποιήσουμε τον ευριστικό Banded Smith Waterman ο οποίος επιτελεί την ίδια λει-

τουργία, εντοπίζει λιγότερες διαφοροποιήσεις και καταναλώνει λιγότερους πόρους στο υλικό.

Προτείνουμε λοιπόν ένα σύστημα που πλέον αποτελείται από πολλούς επιταχυντές και κα-

λύπτει έως έναν αριθμό διαφοροποιήσεων ενώ εντοπίζει πλέον τις αλληλουχίσεις με ταχύτερο

ρυθμό. Το προτεινόμενο σύστημα αποδίδει επιτάχυνση έως 34 φορές σε σχέση με λογισμικά

ενώ είναι έως 3 φορές ταχύτερο από σύγχρονους επιταχυντές.

Λέξεις Κλειδιά: Επιτάχυνση Υλικού, Γλώσσες Σύνθεσης Υψηλού Επιπέδου, Μετασχη-

ματισμός Κώδικα, Διερεύνηση Χώρου Σχεδίασης, Μηχανική μάθηση, Αλληλούχιση γο-

νιδιώματος, Next-Generation Sequencing, Short Read Alignment, SW/HW Co-design,
Dataflow computing

xiv

Acknowledgements

This section of my thesis is dedicated to expressing my gratitude to all people that have
contributed to my efforts and completion of my Ph.D. studies. It is very challenging to
capture the thoughts and feelings that occur upon reflecting over the past years. I can
only hope that the next words, despite their simplicity and lack of originality, convey the
sincerity and depth of my gratitude.

To begin with, I would like to express my graditude for being a member of the Micropro-
cessors and Digital Systems Lab (MicroLab) of N.T.U.A.. First and foremost, I would
like to thank my advisor Professor Dimitrios Soudris for trusting me and offering me the
opportunity to pursue my Ph.D. degree in such an inspiring and productive environment
as is MicroLab. His constant technical and moral support and genuine interest has en-
couraged me and guided me through all steps of my studies. The lessons learned during
this mentorship will stay close to me and continue to help me cope with the new challenges
in my life. Next I would like to specially acknowledge the contribution of Sotirios Xydis,
with whom I closely collaborated since my diploma thesis. His insightful remarks on my
research and our intriguing discussions were inspiring and crucial for the completion of
my thesis. Hopefully his love for research and work ethics are reflected on my work from
now on.

My Ph.D. studies would not be the same without the Ph.D. candidates, researchers and
administrative staff that comprise MicroLab. I would like to thank all of them for being
part of one of the most challenging accomplishments of my life and some of my fondest
memories. I consider them my friends and they have trully made MicroLab feel like a sec-
ond home. With that said, I would like to specially thank Dimosthenis Masouros, Geor-
gios Zervakis, Giannis Stratakos, Haris Marantos, Vasilis Leon, Manolis Katsaragakis,
Giannis Oroutzoglou, Achilleas Tzenetopoulos, Aggelos Ferikoglou, Christos Lamprakos,
George Armeniakos, George Lentaris and Zefi Skini.

I could not omit to thank all of my friends that stood by me throughout these years.
They have patiently supported me through hard work and deadlines, encouraged me to
reach my goals and filled my life outside Microlab with beautiful moments. I am sorry
for missing out on some of them and grateful for your understanding and love. A special
thanks to Anastasia, Katerina, Christos, Konstantina M, Konstantina S, Sotiria Fytraki,
Sotiria Filandra, Rania and Rafailia.

xv

Finally, I would like to thank my parents, Ioannis and Matoula, and my sister, Roza, for
their unconditional love and support. They are the ones that were closest to me during
this venture, offering me their support and never losing faith in me. Without them, I
would not have the perseverance to fulfil my goals.

Μαμά, Μπαμπά και Ρόζα,

Σας ευχαριστώ για όλα. Ελπίζω να σας δίνω χαρές και να στέκομαι δίπλα σας όπως εσείς

σε εμένα.

Κωνσταντίνα

xvi

Contents

Abstract xi

Abstract in Greek xiii

Acknowledgements xv

List of Figures xxi

List of Tables xxv

1. Introduction 1
1.1. Big Data Overview and Challenges . 1
1.2. Machine Learning and Bioinformatics in Healthcare 6
1.3. Thesis Scope and Organization . 11

2. Thesis Contribution 15
2.1. Challenges in HLS optimization techniques and Thesis Contributions . . . 16
2.2. Challenges in Short read alignment and Thesis Contributions 19

3. Theoritical Background 25
3.1. High Level Synthesis on Reconfigurable platforms 25

3.1.1. Basic Principles of High Level Synthesis 25
3.1.2. Programming Models for Reconfigurable devices 27

3.2. Bioinformatic Applications . 30
3.2.1. DNA sequencing and Genomic Analysis 30
3.2.2. Short read alignment . 31

4. An Exploration Framework for Efficient High-Level Synthesis of Support Vec-
tor Machines: Case Study on ECG Arrhythmia Detection for Xilinx Zynq SoC 35
4.1. Introduction . 36
4.2. Related Work . 39
4.3. Support Vectors Machines based Classifier 41

4.3.1. Analysis of SVM classifier . 41
4.3.2. Use Case: ECG-based Arrhythmia Detection 42

4.4. Design exploration for accelerated SVM classifier 45
4.4.1. Optimization Level 1: Code restructuring for HLS 46

xvii

Contents

4.4.2. Optimization Level 2: Design Space Exploration of HLS Directives 55
4.5. Design Methodology for Approximate SVM 64

4.5.1. Approximate Techniques . 64
4.5.2. Approximation and Optimization Methodology 66

4.6. Experimental Results . 67
4.6.1. Experimental Set-up . 67
4.6.2. Efficiency evaluation of the proposed DSE methodology 69
4.6.3. Evaluating derived SVM accelerators classifier at scale 70
4.6.4. SVM based ECG arrhythmia detection 72
4.6.5. Performance Evaluation of Approximate SVM 74

5. GANDAFL: Dataflow Acceleration for Short Read Alignment on NGS data 77
5.1. Introduction . 78
5.2. Related Work . 80
5.3. Theoretical Background . 82

5.3.1. NGS genomics pipeline . 82
5.3.2. Bowtie2 Alignment Algorithm . 83
5.3.3. Smith-Waterman Algorithm . 84

5.4. Design of the Accelerator System . 86
5.4.1. Dataflow Smith-Waterman & Traceback Engine 86
5.4.2. Streaming Optimizations . 90
5.4.3. Control and Data Flow of Engines 93
5.4.4. Analytical Performance Model of the Accelerator 96
5.4.5. Scalability of Design . 98

5.5. Accelerator Integration with Bowtie2 Aligner 102
5.5.1. Alleviating Integration Implications 102
5.5.2. Proposed Co-designed Bowtie2 . 104

5.6. Experimental Results . 107
5.6.1. Experimental Setup . 107
5.6.2. Accelerator Evaluation . 108
5.6.3. Integrated Architecture Evaluation 109

6. Profile-Driven Banded Smith-Waterman acceleration for Short Read Alignment117
6.1. Introduction . 118
6.2. Profile-driven Genomic Architecture Optimization 120
6.3. Design of Dataflow Genomic Accelerator 124
6.4. Experimental Results . 126

6.4.1. Experimental Setup . 126
6.4.2. Banded Smith-Waterman Evaluation 126
6.4.3. Multi-Dataflow System Evaluation 129

7. Conclusions 131
7.1. Summary of Ph.D. Thesis . 131
7.2. Future Extensions . 133

xviii

Contents

8. Brief Description of the Proposed Frameworks in Greek 137

Greek Glossary 165

Publications 169

Bibliography 173

A. Appendix: FPGA Acceleration of Multi-Temporal Change Detection on High
Resolution Images 193
A.1. Introduction and Background Information 193
A.2. Multi-temporal Prediction on High Resolution Images 196

A.2.1. Change Detection on Sentinel-2 Satellite images 196
A.2.2. Pre-processing and Prediction Model architecture 197
A.2.3. Pre-processing and Prediction as an OpenCL kernel 198

A.3. Hierarchical Optimization Strategy of Model Architecture 199
A.3.1. Optimizing Baseline Architecture 199
A.3.2. Optimizing horizontal and vertical scaling 203

A.4. Experimental Evaluation . 205
A.4.1. Experimental Setup . 205
A.4.2. Performance evaluation . 205

xix

Contents

xx

List of Figures

1.1. Annual Size of the Global Datasphere. Source: Data Age 2025, sponsored
by Seagate withdata from IDC Global Datasphere. 2

1.2. Global Big data analytics market share distribution,2020. Source: Fortune
Business Insights. 3

1.3. Storage of massive amount of data from various sources and Big data
Analytics in the Healthcare domain [1]. 4

1.4. Estimation for Genomics Market Size in upcoming years. 9

2.1. Thesis Scope and Contribution within Healthcare HPC Domain. 16

3.1. Example of an Alignment between a reference and read sequence. It in-
cludes all possible types of mismatches among DNA bases. 31

3.2. Typical Genomic Pipeline stages. Sequencing generates short reads from
a DNA sample and is followed by aligning them to a reference and calling
variants. 32

3.3. Example of an Alignment between a reference and read sequence. It in-
cludes all possible types of mismatches among DNA bases. 32

4.1. Utilized ECG analysis flow . 44
4.2. Average CPU utilization per heart beat processing (a) SVMmodels of mod-

erate computational requirements, (b) SVM models of high computational
requirements . 44

4.3. Proposed HLS based HW design methodology 46
4.4. Data-level parallelism in SVM. 48
4.5. Performance and utilization for increasing number of partitions (automatic) 50
4.6. Speedup gain comparison (automatic vs manual) 51
4.7. Tree based computations for manual unrolling and HLS scheduling 54
4.8. Impact of directives on SVM kernel source code 56
4.9. Full and Pruned Design Space . 60
4.10. Impact of loop unroll directive in loop_j 61
4.11. DSE options provided by the proposed framework 63
4.12. Target Zynq based system HW/SW overview 68
4.13. Average Distance from Optimal Design for Different Optimizers 70
4.14. Speedup of proposed techniques remains the same with scaling N_sv . . . 71
4.15. Gain of proposed techniques remains the same with scaling D_sv 71
4.16. Average execution time per beat . 72

xxi

List of Figures

4.17. Pareto Front for Accuracy and Speedup Metrics 74
4.18. Speedup for Fastest SVM of each technique. 75
4.19. Resources Evaluation for Fastest SVM of each technique. 75

5.1. Typical Variant Discovery Workflow. 82
5.2. Matrix Fill Dependencies and Traceback example for simplified Smith-

Waterman with linear gap penalty scheme. 86
5.3. Architecture of Dataflow Engines on Chip. 87
5.4. Example of computation of H matrix by PE array unfolded in time for

sequence lengths n = 4,m = 5. 88
5.5. Schematic diagram of PE architecture and flow of Data between consecu-

tive PEs. 89
5.6. Flow of data from Matrix Fill to Traceback phase. 90
5.7. Cumulative distribution of edits for all utilized datasets. 91
5.8. Example of interleaving technique for L=2, reflected in both input and

output buffers. 92
5.9. Alternate READ/WRITE operations based on Double Buffering technique

for consecutive batch alignment tasks. 93
5.10. Control (marked blue) and Data Flow (marked green) within the pipeline.

The state of each module for aligning 2 batches with L = 2, n = 4,m = 5
at time {batch_cnt, row_cnt, pair_cnt} = {1, 2, 1} is illustrated. 94

5.11. Address generation and matrix indexing applied on double buffers 96
5.12. Accuracy of Performance Model based on static timing analysis. 98
5.13. PE utilization in time. 99
5.14. Performance and Area utilization for Various Lengths of Read. 99
5.15. Multiplexing multiple input batches into one batch for multi-instance design.100
5.16. Architecture of Multiple Instances Design. 101
5.17. Performance scaling for Various Configurations {#instances, #FPGAs}

for dataflow engines for scaling number of reads (4K to 60 million in loga-
rithmic scale), (MF=MatrixFill,Tr=Traceback). 103

5.18. Study of Bowtie2 software for different datasets. 104
5.19. Restructured Bowtie2 Three-phase Algorithm. For simplicity, only a single

batch of L reads is illustrated. 106
5.20. Impact of input buffer size on accelerator-call overhead and thus execution

latency. 107
5.21. Throughput evaluation of aligners. 110
5.22. Distribution of the rank of tries that delivers the reported alignment across

reads. 111
5.23. Tradeoff of Alignment success rate and performance for scaling number of

candidates per read. 112
5.24. caption . 112
5.25. Performance of Bowtie2 integrated accelerator with max_tries = 8. . . . 114
5.26. Comparison performance for scaling number of threads while sharing two

accelerators. 114

xxii

List of Figures

6.1. Distribution of number of edits for alignments for three different datasets. 121
6.2. Banded SmithWaterman example for edit threshold 2. 121
6.3. Calculation of execution time when applying K generic accelerators as

opposed to applying k1, k2, k3 smaller accelerators fit to an edit distribution
of 70− 20− 10. 122

6.4. Example of applying generic accelerators as opposed to employing smaller
accelerators fit to the input edit profile. 122

6.5. Overview of profile-driven acceleration strategy and system architecture
for a distribution of 60-20-10-10%. 123

6.6. PE computation of score matrices and BRAM allocation of band elements. 125
6.7. Logic Diagram of Traceback Dataflow implementation. 126
6.8. Alignment success when using SneakySnake pre-filtering and the proposed

Banded Smith-Waterman accelerator for seed extension. 127
6.9. Throughput comparison between Proposed Banded 10-edit threshold ac-

celerator and state-of-the-art SW aligners. 128
6.10. Throughput and Resource utilization efficiency evaluation for HW Smith-

Waterman accelerators. 128
6.11. Performance and accuracy evaluation of proposed customized accelerated

system. 129

A.5. Speedup and Resources utilization when applying unroll for various factors. 201
A.6. Decrease both in kernel and interconnect logic when utilizing private mem-

ory for intermediate operations. 207

xxiii

List of Figures

xxiv

List of Tables

3.1. Basic HLS Optimization Directives . 28

4.1. Declaration of variables in Listing 1 . 43
4.2. Utilized SVM model parameters . 45
4.3. HLS directives [2] . 47
4.4. Evaluated metrics for automatic vs manual unrolling 53
4.5. Applied directives and their parameters 57
4.6. Impact of Loop Perforation on SVM Accuracy. 65
4.7. Fixed point Data types Initial Configuration in Bits 66

5.1. Input, Output and Intermediate data in the Dataflow Engines. 91
5.2. Formulas for Modeling Time Analysis. 96
5.3. Resource Utilization and Clock Frequency for Multiple-Instances Architec-

ture. 102
5.4. Accuracy comparison Bowtie2 vs Proposed. 111

6.1. Hardware Accelerators Configurations for throughput comparison. 129
6.2. Multi-Dataflow Configurations customized to the edit profiles of input

datasets. 130

xxv

List of Tables

xxvi

Chapter 1.

Introduction

1.1. Big Data Overview and Challenges

Technological advancements and novelties have led to an exponential growth of data
availability and have signaled the start of the Information or Digital age1. As technology
evolved, the aggregated data initially originated from newspapers, radio and television
and in later years by computers, Internet and mobile phones [3–5]. What has dramatically
accelerated the establishment of this new era is the speed of data transmission and ease
of accessibility by all humans thanks to new technologies.

As the capacity of computer systems and devices to generate data continued to grow, the
term of Big Data was gradually adopted. It is not possible to define Big Data by the size
of data it refers to, as this is relative to the storage and processing power of computer
systems. As the data production and availability grows exponentially, computing sys-
tems evolve and adapt to accommodate the data curation and processing requirements.
Therefore, what was once considered to be Big data, could not possibly fall into that
category nowadays, that we have entered the so-called Zettabyte Era. A zettabyte is a
measure of storage capacity, which equals 10007 (1,000,000,000,000,000,000,000 bytes),
which is equal to a thousand exabytes or a trillion gigabytes. Fig.1.1 illustrates the ex-
ponential data growth starting from 2010 and including estimates until 2025. In 1999,
the total size of available data was 1.5 exabytes and reached 160 exabytes within seven
years. Therefore, between the late 1990s and early 2000s, a dataset of size 1GB would
qualify as big data. Total data storage capacity in 2019 reached almost 50 zettabytes
and it is estimated to come close to 200 zettabytes by 2025 2. Interestingly, 90% of the
data has been created only since 2016. The size of big data is therefore so fluid and
quickly redefined, that a possible definition could be that of information that’s so exten-
sive or complex that it’s difficult or impossible to process using traditional methods and
technology 3.

1Information Age
2How Big is Big Data
3What is Big Data

1

https://en.wikipedia.org/wiki/Information_Age
https://towardsdatascience.com/how-big-is-big-data-3fb14d5351ba
https://itchronicles.com/what-is-big-data/

Introduction

0

20

40

60

80

100

120

140

160

180

200

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Ze
tt
ab
yt
es

175ZB

Figure 1.1.: Annual Size of the Global Datasphere. Source: Data Age 2025, sponsored by
Seagate withdata from IDC Global Datasphere.

Big Data Domains: The onslaught of information and data has been so fierce that it
has managed to define modern societies and cause a major shift in the dynamics of global
economy, as an increasing number of businesses has to handle big data or has been created
with this purpose. Companies with activity in this market typically need some kind of
software, i.e. Big Data analytics. Depending on the customer, these analytics could
be a prediction model, risk analysis or visualization components. Apart from software,
users also need to acquire special hardware and equipment to efficiently participate in the
Big Data analysis chain such as connected devices, network equipment, mobile devices.
Such matters demonstrate such complexity that led to the establishment of consultation
companies that assist others in managing big data, building a big data infrastructure
e.t.c.. These activities add up to a very prosperous market that was worth 206.95 USD
billion in 2020. As the big data growth trend does not show any signs of slowing down,
there are projections that estimate the market growth to reach 549.73 billion USD by
20284.

Big Data are generated from various aspects of human activities. Fields like education,
banking, retail, agriculture, healthcare, IT and telecommunications have been generating
data exponentially and therefore require big data solutions for efficient processing. For
example in agriculture, data from sensors, GPS-equipped tractors, satellites, soil sensors
can be leveraged to perform risk assessments, crops optimization and prediction e.t.c.. In
the social sciences, there is an enormous volume of data to evaluate coming from social
media platforms (Facebook, Instagram), chat applications (WhatsApp), and services such
as Youtube. The BFSI (Banking, Financial Services and Insurance) domain has leveraged
big data analytics to improve the quality of customer service5 (e.g. tracking their activ-
ity to provide for resources when required) as well as the decision-making system, risk
management processes, retention strategies6 in order to maximise gains. In the telecom-
munication and media domain, big data analytics are leveraged to optimize the network,

4Big Data Analytics Market Report, 2021-2028, Fortune Business Insight.
5Big data as a tool to improve customer experience.
6Your Go-to Guide to Big Data Analytics in Banking.

2

https://www.fortunebusinessinsights.com/big-data-analytics-market-106179
https://www.fintechnews.org/big-data-in-banking-all-that-you-should-know/
https://global.hitachi-solutions.com/blog/big-data-banking/

1.1. Big Data Overview and Challenges
2017 2018 2019 2020 2021

Manufacturing

IT & Telecom

Healthcare & Life Sciences

Others

175ZB

Market Size Breakdown

BFSI
Automotive
Media
Healthcare
Retail
Energy
Others

7%

Figure 1.2.: Global Big data analytics market share distribution,2020. Source: Fortune Business
Insights.

perform preventive diagnostics, prevent fraud7 e.t.c..

Big Data in Healthcare: Fig.1.2 represents a distribution percentage for the fields
that hold the larger shares in the market, as those were estimated in 2020. Healthcare
holds a considerable portion of the market share as big data analytics are required to
cope with the recent fast data growth. Until recently, all form of medical data (such as
patient history, clinical data, results of exams) were stored in a paper file system. The
digitization of all clinical exams and medical records and the advent of new technologies
has led to a data abundance and has also created great potential for improved healthcare
services and flourishing of research activities.

Fig.1.3 depicts the major types of data in the healthcare big-data repository as well as the
main type of analyses that rely on these data. The Public Health Records and Electronic
Health Records (EHRs) are an electronic version of the medical history of a patient and
is available to public health providers in order to optimize the procedure of diagnosis and
therapy of a patient. It includes demographic data, past diagnoses, medicines, allergies,
immunizations and treatment plans [6]. Clinical data refer to both administrative data
as well as data created during clinical practice. Data generated during clinical practice
are mainly signal-based signals, i.e. time series, that are essential for monitoring e.g.
ECG,EEG,ventilator signals, ICU data etc. A large part of these data also come from
IoT devices, i.e. mainly health-tracking wearable devices, biosensors, clinical devices
for monitoring vital signs, and others types of devices or clinical instruments. Clinical
data also include images such as X-ray and CT scans, MRI, fMRI. Both signal-based
and imaging data can assist in monitoring, warning of critical situations, diagnosis, drug
development e.t.c. They are utilized both for diagnosis as well as health surveys and
clinical trials.

Apart from data generated and utilized in the clinical practice, there is a huge part of
health data also come from the study of diseases and human on a biological level. Genes,
transcripts, proteins, metabolites, and other macro/ micro molecules systematically col-

7how telecom companies use big data analytics-Top 10 use cases.

3

https://appinventiv.com/blog/big-data-analytics-for-telecom-industry/

Introduction

Figure 1.3.: Storage of massive amount of data from various sources and Big data Analytics in
the Healthcare domain [1].

laborate to perform complex cellular processes. The advent of whole-genome sequencing
and other high-throughput experimental technologies have created the data rich disci-
plines of genomics, transcriptomics, epigenomics, proteomics, metabolomics, phenomics
e.t.c. These immense data sets make up the omics data [7]. Multi-omics data generated
for the same samples can be combined to provide useful insights into the flow of biological
information at multiple levels and thus can help in unraveling the mechanisms underly-
ing the biological condition of interest. Therefore the study of omics straightforwardly
affects biological research on a cellular level. However, the insights have had a impact on
clinical applications too and have paved the way to drug-development applications and,
ultimately, into personalized genomic medicine [8–11].

Healthcare big data analytics are developed to extract value out of this immense and
diverse amount of data [12]. These analytics require experts that come from interdis-
ciplinary fields such as biology, information technology, statistics and mathematics and
work in synergy to provide meaningful analytics and improve healthcare services and
treatments. There is a wide range of analytics developed with the intent to assist in
the clinical practice as well as in the diagnosis and formation of the therapeutic schema.
For example, descriptive analytics are leveraged to present data in an understandable
manner and make it easy to detect patterns. Applications such as medical imaging are
an integral part of medical practice and diagnosis. Predictive analytics have also been
developed to guide the medical staff in making a diagnosis and choosing the most effective
treatments based on previous experience and results. This can lead to accurate diagnosis
and limit the number of redundant and expensive clinical exams. Therefore, the inte-
gration of big data in the healthcare shows promise for improving health outcomes while
preserving a low cost per medical case.

Computational Challenges and Solutions: Handling and storing such an enormous
size of big data poses a challenge in healthcare analytics, as does in the case of big data

4

1.1. Big Data Overview and Challenges

analytics in general. In terms of computational performance, the enormous datasets
and the computational intensity of these analytics stress the limits of modern comput-
ing power. As data continue to grow exponentially, systems and algorithms should be
constantly updated and improved to provide the computational power to solve big data
problems.

An initial approach to big data challenges was to create Big data infrastructures that
are essential for meeting the storage and computational requirements. Until recently,
big data processing challenges were solved by ecosystems such as Hadoop [13–16] and
Spark [17, 18]. Applications were also altered to run within MapReduce [19–22], which
is a parallel programming model was developed to run applications with high scalability
and fault tolerance on top of HDFS systems. To mitigate however learning curve and
tedious problem-solving related with these technologies, most enterprises have migrated
big data to the cloud. Cloud computing offers virtualized storage technologies and pro-
vides services with high reliability, scalability and autonomy. Several cloud environments
have been set up to support the execution of big data analytics in healthcare e.t.c [23–25].
AWS, Microsoft Azure, and Google Cloud Platform offer pay-as-you-go services and al-
low companies to run data-intensive operations without the installation overhead and
with unlimited scalability. A striking example is the deployment of powerful DRAGEN-
IT platform on AWS and Azure to analyze next-generation sequencing data [26]. This
trend is expected to continue and further develop into hybrid environments (i.e. both local
premises and cloud access) and multi-cloud environments 8.

A more recent approach involves adoption of techniques from the High Performance
Computing world. HPC systems have been dealing with complex data and compute
intensive applications. The size of the data that HPC applications handle though follow
the trend of the Big Data era. This leads to a convergence between the HPC and Big Data
ecosystems, creating High Performance Data Analytics (HPDA) and platforms suitable
for their execution [27–30]. In this convergence HPC brings approaches such as Message
Passing Interface (MPI) [31] and OpenMP [32], possibly combined with accelerators, such
as Graphics Processing Units (GPUs) or Field Programmable Gate Arrays (FPGAs). For
example, several works have leveraged such programming models [33,34] and co-processors
[35–37] to deliver accelerated tools in the genomics domain.

Big data analyitcs in healthcare face the additional challenge of handling heterogeneous
and unstructured data as well as operating in a clinical setting that calls for quick and
efficient decisions. In this context, machine learning has been extensively leveraged to
cope with the unstructured raw data utilized and assist in finding patterns within them.
Many decision making analyses rely on ML and AI to detect complex relationships and
assist in the diagnosis procedure. The most common use of ML in medicine is in pre-
dictive analytics to detect potential abnormalities and assist physicians in making better
clinical decisions. The extensive use of ML and AI in the medical domain is reviewed and

8The future of big data: 5 predictions from experts for 2020-2025

5

https://www.itransition.com/blog/the-future-of-big-data

Introduction

motivated in several works [38–41].

In the next paragraphs, we focus on two important categories of healthcare analytics
that cope with an enormous set of data and face performance bottlenecks, i.e. ML-based
predictive analytics and genomics. We first elaborate on the importance and impact
of Machine Learning and Genomics in healthcare and motivate the need for employing
optimization techniques from the HPC world to alleviate the introduced challenges in
two separate use cases.

1.2. Machine Learning and Bioinformatics in Healthcare

Machine Learning in HealthCare: Challenges and Trends

The inherent purpose and characteristic of machine learning is the ability to process data
in order to discover underlying patterns, relationships between different entities as well as
insights within human activities and behavior. As such, machine learning has an essential
role in the big data processing chain and analytics [42]. In fact, the data deluge of the last
decades as well as the variety and complexity of big data has spurred on an impressive
growth in the machine learning domain. Since healthcare has proved to be one of the
most flourishing big data domains, machine learning has been established as an essential
tool in health data manipulation and analysis. Machine learning solutions fit both the
big data nature of healthcare data as well as the need of healthcare to find patterns and
correlations within unstructured raw medical data.

The size of the datasets in combination with the computational complexity of uncovering
relations within such volume has truly challenged the capabilities of machine learning
techniques and has led to the development of new approaches and algorithms [43] in
order to meet the requirements and successfully extract patterns and build predictive
models. Databases, data mining, information retrieval, machine learning, deep learning,
AI are only a few of the fields that created opportunity for ML to flourish9. The use
of AI and ML in healthcare however also encounters challenges specific to the field and
use cases [38]. From a technical perspective, it is challenging to integrate data from
different sources (i.e. healthcare units) and account for the heterogeneity and potential
bias/noise in each one. Similarly, it is not feasible to require a golden standard as it
should be acquired from the general population and reviewed by medical practitioners.
Problems also arise when integrating machine learning models in a medical environment,
as the results cannot be translated effectively in a way understandable by health staff.
Developing a big data infrastructure or cloud services for sharing data among different
healthcare centers is still challenging as they need to adhere to a universal standard

9When Machine Learning meets Big Data

6

https://towardsdatascience.com/when-machine-learning-meets-big-data-4923091ba140

1.2. Machine Learning and Bioinformatics in Healthcare

representation of data and privacy regulations. Lastly, the adoption of proposed ML
solutions requires validation and improvement through clinical trials and studies to lead
to successful adoption in the medical world.

Despite the difficulties, there are on-going and promising works that leverage ML for
solving healthcare problems. One of the primary areas of applying machine learning in
healthcare is information extraction. AI programs and tools such as NLP [44] or character
recognition were leveraged from the start to extract information from free text or speech
and assist in digitization of medical data. Machine learning has been extensively leveraged
for prediction tasks in application where real-time processing of signals and decision-
making are critical. A representative example is the framework described in [45], which
trains an ML model with time-series signals (e.g. heart rate, systolic BP,respiratory
rate etc) to provide a real-time early warning for septic shock. Similarly, the authors
in [46] develop a real-time system for timely detection of heart disease based on streaming
signals originating from IoT and wearable devices. ML has also been established for
detection or prediction tasks where real-time processing is not essential. For example, it
is leveraged in image analytics to detect abnormalities in high resolution medical images
(e.g. CT, MRI, fMRI, EEG) [47]. Therefore, it can prove very useful to the diagnosis
process even at a consultation level or as a measure of precaution to avoid misdiagnosis
[1].

Overall, the importance of incorporating ML analytics in healthcare is highlighted by the
magnitude and critical nature of diagnostic and prognostic applications. Epileptic seizure
prediction [48], breast cancer diagnosis [49, 50], heart disease diagnosis [51], research for
brain diseases [52] are only a few of the prominent use cases that leverage ML and
AI to improve the quality of healthcare services. However, due to the big data nature
of medical records and signals, the need to identify complex patterns within the data
and often the real-time requirements, ML-healthcare analytics have intense memory and
computational requirements. As a result, there is rich literature that studies machine
learning techniques applied in healthcare from the scope of optimization and performance
enhancement.

In general, machine learning methods used in healthcare analytics share the same op-
timization techniques with ML solutions for big data analytics. A common practice to
achieve scalability and data parallelism [43], is to employ big data frameworks such as
Hadoop [53] and Spark [54]. Another approach requires implementation of ML mod-
els to run through the MapReduce programming model [55–60]. Cloud computing is
also extensively used to deliver efficient healthcare services [61, 62]. Apart from spe-
cialized big data techniques and cloud computing, optimization solutions also leverage
the parallelism and scalability of High Performance Computing and specifically of pow-
erful hardware resources. Hardware optimizations are examined on architecture level,
mixed-signal circuits and advanced technologies such as efficient memories e.t.c. [63].
As far as platforms are concerned, GPUs, FPGAs and ASICs devices are targeted by
several works [64]. Increased interest has been also attracted by hybrid solutions that

7

Introduction

incorporate GPU or FPGA accelerators for ML models in data centers and at the
edge [65,66].

Bioinformatics: Challenges and Trends

Bioinformatics is an interdisciplinary field focusing on the application of statistical and
computational methodologies to manage and interpret biological data [67]. An essen-
tial part of bioinformatics is the study of DNA sequences for research or therapeutical
purposes. Recent technological advances in high throughput technologies has led to an
unprecedented wealth of genomic sequence data. The low cost of data generation has
created an enormous amount of data, signaling the establishment of genomic data as a
new unique type of big data [68].

This new era of genomic data deluge commenced with the completion of the Human
Genome project, which for the first time generated an accurate sequence of 3 billion
DNA bases covering 99% of the gene-containing regions10. Since then, many projects
have been conducted to further understand areas of interest within the human genome
e.g. the Cancer Genome Atlas and the Encyclopedia of DNA Elements which identify
somatic mutations, mRNA expressions, histology slides for approximately 7000 human
tumors11 [68]. The enormous size of genomic and transcriptomic data is obvious, if we take
into account that sequencing a single whole genome generates more than 100 gigabytes
of data. Specifically, depending on the read length and coverage (i.e. the average number
of times each base is read), when sampling a human individual the original file of reads
in FASTQ is approximately 250 GB, the BAM file can be approximately 100 GB, the
VCF file can be about 1 GB, and the annotated files can be approximately 1 GB as
well [69]. The size escalates when millions of individuals are sequenced. The advent
of mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy has come to
add another source of big data, by generating proteomic and metabolomic data, and
establishing the term of omics data.

Omics studies have since established a significant role in the healthcare domain in the field
of understanding, prevention as well as treatment of diseases. In fact, the integration and
correlation among genomics, proteomics, metabolomics e.t.c., i.e. multi-omics analysis,
paves the way for personalized medicine [70]. Genomic workflows are at the heart of omics
analysis and involve a wide range of applications. Whole-genome sequencing (WGS) [71]
is the basis of all genomic analysis and allows detection of common as well as rare genetic
variants across the genome. Joint variant detection and genotyping [72] are developed
to study genetic variants across a large population or even a wider society. Functional
interpretation [73] of the molecular effects of genetic variants is also necessary in order to
infer if a variant is expressed in the phenotype and responsible for a specific disease [74].

10Human Genome Project Results
11National Cancer Institute

8

https://www.genome.gov/human-genome-project/results
http:// cancergenome.nih.gov

1.2. Machine Learning and Bioinformatics in Healthcare

An outstanding example of how genomics has impacted healthcare, is the integration
of genomic data in cancer studies in order to understand the biological dynamics of
cancers and identify risk factors, as well as predict therapeutic outcomes and prognosis
[75].

The impact of shift towards personalized medicines and treatments has naturally led
to a wider adoption of genomics technology. The capabilities of genomics have been
further underlined by the COVID-19 outburst as the genome sequence of the virus is
critical for developing effective vaccines and treatments12. This has strengthened the
lead players in the market of genomics such as Illumina Inc.,Thermo Fisher Scientific
Inc., Agilent Technologies13 e.t.c. but it has also increased government funded projects
and the establishment of many start-up businesses. This is reflected in Fig.1.4 in the
trend for the genomics market in North America, which is expected to hold the highest
market share. A similar trend is expected in the global market, whose size will grow from
23.11 billion USD in 2020 to 94.65 billion USD in 2028. A more modest estimate reports
an expected market size of 84.57 billion USD by 203114.

0

10

20

30

40

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

North America Genomics Market Size
2017-2029 (USD billion)

Figure 1.4.: Estimation for Genomics Market Size in upcoming years.

Challenges: This economic growth and need for new services requires the development
of novel and efficient analytics to extract useful information from genomic data both for
the research and industry domains. However, attributes of genomic data and workflows
introduce several challenges that need to be overcome to efficiently process and analyse
large genomic data sets [76, 77]. Firstly, the dramatic data growth calls for enormous
databases to store data and share them across the research community. The challenge
however does not solely lie on the data volume but also on the heterogeneity of data
and lack of structure. An inherent trait of most genomic analyses is the need to discover
patterns and an underlying structure within the raw data. This leads to sparse data
structures, lack of data locality, irregular memory accesses and asynchronous updates to
shared structures [78].

12Genomics Market Research Report 2021-2028, Fortune Business Insights.
13Grand View Research Genomics Market Size.
14Bloomberg Global Genomics Industry Update.

9

https://www.fortunebusinessinsights.com/industry-reports/genomics-market-100941
https://www.grandviewresearch.com/industry-analysis/genomics-market
https://www.bloomberg.com/press-releases/2021-12-09/genomics-market-size-worth-usd-84-57-billion-by-2031-global-genomics-industry-updates-leading-players-share-size-future

Introduction

Trends: These challenges have yet to intensify as the sequencing cost further decreases
and more complex analyses are required. The challenges can only be surpassed by lever-
aging high-end computing solutions and large-scale computational platforms to meet the
memory and computational requirements of most genomic analyses. Several approaches
have been pursued and different technologies leveraged to achieve quick and accurate
results from genomic analytics. Mitigating bioinformatics analytics to Big Data infras-
tructures can greatly benefit the analysis of genomic data. Firstly, it is a very convenient
solution as it can aggregate data from various different sources and store the data in vir-
tualized storage technologies. A cloud computing system is also convenient and flexible
as it can support different software libraries, development environments and visualization
tools available as pre-installed software tools or containerized services. Cloud comput-
ing systems are also suitable candidates for genome analysis thanks to their distribution
and scalability capabilities. A typical example of a distributed framework utilized in
genomics analytics in the cloud is Hadoop [79] (HDFS - Hadoop Distributed Filesystem)
, which separates the data into small fragments, distributes them across many cluster
nodes, performs the computation on each node so that they are processed in parallel, and
aggregates the results. The parallel processing of many small pieces of data is secured
by MapReduce [80] programming model. A typical example of genomic analysis that
leverages Hadoop is drug development using genomic and proteomic data [1]. Several
other works deploy genomic frameworks on cloud infrastuctures as reviewed in the lit-
erature [81–85]. A recent example is Genesis framework, that provides an interface for
performing SQL-like queries for data manipulation and an integrated hardware library
of various genomic analysis stages [86]. Last but not least, cloud computing is also a
cost efficient solution. In fact, cloud providers offer a pay-as-you-go policy that allows
users to benefit from distributed computing and parallel programming without bearing
the cost of building their own infrastructure. However, even these platforms have some
adverse impacts, i.e. multi-core solutions increase the energy consumption whereas cloud
solutions raise data privacy and ethics issues [87].

Despite the lack of regular accesses and data locality across the span of genomic analyses,
each stage of a genomic pipeline usually leverages certain types of algorithms and therefore
optimization HPC techniques for efficient execution. For the indexing stage, typical
approaches are optimizing the data structure for storing the genome index as well as the
search algorithm for locating seeds through this index, e.g. FM-index [88,89]. Hash-tables
are also utilized to accelerate search operations in genome assembly and k-mer counting as
well as graph theory techniques for efficient graph traversal within genome assembly [78].
The pre-alignment filtering stage is usually accelerated by proposing efficient algorithms
that come from the HPC world and can deliver a quick and accurate prediction for
redundant alignments. Such examples are the pigeonhole principle [90], q-gram filtering
[91] and sparse dynamic programming [92].

The alignment stage holds the primary focus of most accelerating efforts targeting ge-
nomic pipelines as it usually forms a major bottleck. Extensive studies review the trends
in proposed optimized systems such as specialized architectures, hardware accelerators

10

1.3. Thesis Scope and Organization

and heuristic approaches [93]. Hardware-accelerated solutions specifically is one of the
most popular HPC optimization for genomics. A plethora of works exist targeting dif-
ferent architectures from heterogeneous devices, e.g. FPGAs, to many-core accelerators
such as GPUs and the Intel Xeon Phi. These devices are usually leveraged as a co-
processor to off-load bottlenecks, but can also be utilized for end-to-end accelerated solu-
tions that perform the same functionality as software genomic tools. Lately, in-memory
computing has also been proposed for optimizing all genomic stages including the align-
ment [94–96].

1.3. Thesis Scope and Organization

The thesis scope is fully aligned with the trends described in Section 1.2 and aims to
enrich the state of the art works that develop powerful co-processors. The goal is to
examine offloading the bottlenecks to reprogrammable devices, i.e. FPGAs, through the
meticulous design of efficient accelerators that exploit the existing parallelism and op-
timize communication with the overall system. The resulting accelerators can then be
leveraged on local environments or can be deployed on large-scale cloud infrastructures
to explore the results of the synergy of hardware acceleration and cloud computing tech-
nologies.

In this thesis, we focus on the hardware acceleration of two representative applications of
modern healthcare: a ML-based prediction analysis using ECG signals and Read Align-
ment of genomic data. The basic HPC tool we utilize to deliver efficient solutions is
High Level Synthesis programming targeting FPGA devices. With the proposed im-
plementations, we aim to build upon existing solutions and suggest potential improve-
ments.

We explore different aspects of optimization techniques regarding a single accelerator and
leverage the inherent tools’ capabilities to increase both instruction level and data level
parallelism. In this context, we look for an efficient exploration of built-in optimization
directives and strategy for applying them on the accelerator. However we do not limit our
search by the tools straightforward solutions but rather find its inefficiencies and guide it
in exploiting parallelism through manual source modifications. For complex applications,
we do not restrict our efforts on a single module microarchitecture while ignoring the
interaction with its environment. On the contrary, we adopt an holistic approach and
view the design as part of a greater system. We prove that being mindful of integration
implications is necessary for efficient architectural decisions as part of software-hardware
co-design process. We propose techniques that are in tune with these objectives and
apply them selectively to two major use cases, one from each domain. We also leverage
more than one HLS frameworks and programming models in order to fully evaluate
the capabilities of the available tools and demonstrate that the architectural decisions,

11

Introduction

instruction level parallelism and memory configuration schemas we apply can be agnostic
of the selected vendor and software by a large part.

Based on these principles, we develop three accelerators using High Level Synthesis for
the Machine Learning and Genomics domains. The thesis unfolds in two major direc-
tions:

An Exploration Framework for Efficient High-Level Synthesis of Support Vec-
tor Machines:Case Study on ECG Arrhythmia Detection for Xilinx Zynq SoC.
A methodology for accelerating an SVM classifier has been implemented as a frame-
work on top of the state-of-art Vivado High-Level Synthesis (HLS) tool. Our proposed
SVM accelerator and methodology is validated for a healthcare usecase that performs
classification for arrhythmia detection in ECG signals. We propose a systematic two-
level approach that first optimizes the global structure of the original SVM’s behavioral
description to exploit the data- and instruction-level parallelism and then further re-
fine it through a targeted design exploration of the tool’s automatic optimization tech-
nique.

Acceleration of Short Read Alignment. The thesis presents two different approaches
on accelerating the short read alignment problem. First, we present GANDAFL, a novel
genome alignment dataflow architecture for Smith-Waterman Matrix-fill and Traceback
stages to perform high throughput short-read alignment on NGS data. The implemen-
tation of Traceback on hardware is combined with a radical software restructuring of
Bowtie2 aligner, that implements a batching aggregation strategy, diminishes data trans-
fer and accelerator call overheads and allows for efficient integration of the accelerator
within the aligner to deliver an end-to-end speedup. We then introduce a high throughput
alignment system that combines Banded SmithWaterman accelerators and pre-filtering
for alignment optimization by introducing a profile-driven accelerator methdology. The
proposed system includes multiple accelerators with edit thresholds indicated by the in-
put edit threshold distribution and leverages pre-filtering to guide candidate alignments
to the appropriate accelerator. The adoption of these profile-driven upper limits and
resource-efficient Banded SmithWaterman accelerators enables the provision of a highly
parallel Banded Smith-Waterman system that accelerates read alignment while preserving
the accuracy.

The rest of this thesis is organized as follows:

• Chapter 2 presents prior art of the examined fields and highlights the contributions
of the Thesis.

• Chapter 3 provides a theoritical background on the domains discussed throughout
the thesis. It presents the fundamental concepts and principles of the applications
and introduces the basic capabilities of the utilized tools and frameworks.

12

1.3. Thesis Scope and Organization

• Chapter 4 presents the work conducted to accelerate the SVM for arrythmia detec-
tion based on an optimization strategy that leverages both source code optimiza-
tions and built-in tuning knobs of Vivado HLS tool.

• Chapter 5 presents a novel genome alignment architecture for Smith Waterman
algorithm and the integration with popular Bowtie2 aligner.

• Chapter 6 presents a high throughput alignment system that is based on a profile-
driven methodology and leverages multiple Banded SmithWaterman accelerators of
different edit thresholds to deliver speedup while preserving alignment accuracy.

• Chapter 7 concludes this thesis by summarizing the presented results and discusses
the future extensions of this work.

13

Introduction

14

Chapter 2.

Thesis Contribution

In this thesis, we focus on two different healthcare applications and employ hardware ac-
celeration techniques from the HPC domain for optimization purposes. Fig.2.1 presents a
non-comprehensive taxonomy of applications in the convergence of the HPC and health-
care domain from the thesis perspective. We examine two major categories of healthcare
data modalities and the respective analyses required to extract biological and clinical
insights.

Omics data are generated by raw DNA samples or molecules through technologies such
as sequencing and mass spectrometry. Each omics data, i.e. genomics, transcriptomics,
proteomics, metabolomics etc, provide necessary and valuable information on mechanisms
on multiple molecular levels. A hierarchy of data processing and analyses is required
to extract this information from the initial samples. Multi-omics analysis is a popular
bioinformatics approach that combines information from cellular up to metabolic level in
order to understand the underlying mechanisms and leverage this knowledge for research
and clinical purposes. This thesis scopes lies within the secondary analysis of genomic
data, which performs alignment of DNA fragments in order to provide the full sequence
for a sample and subsequently determine genetic variants.

Data generated from medical equipment during everyday clinical practice are another
major category of healthcare data. They are signals that provide information for human
vital signs as well as images that depict physiological and functional characteristics of
internal organs and tissues. From the perspective of the HPC domain, they could be
divided in time-series signals as well as images. Typical examples of time-series signals
are the ECG and EEG signals, that are records of the electrical activity of the heart and
brain respectively. Xrays, CTs, MRIs, fMRIs, SPECT are only a few of different views
of human organs and their functionalities. Both these type of data require advanced
signal and image processing techniques to perform tasks that assist in disease diagnosis
and treatment plans as well as research and clinical trials. Most common tasks include
pattern recognition and classification of findings within the signals and images as well
as prediction of outcomes. This thesis focuses on a single classification application that
processes ECG signals and detects all instances of arrhythmia and therefore abnormal

15

Thesis Contribution

Healthcare - HPC

Sequencing &
Molecular Technologies

Medical Devices
Technology/

Devices

Data
Modalities

Analysis
 Type

Omics

ProteomeGenome Transcriptome Metabolome

Time signals Images

ECG EEG MRI SPECT

Tertiary Analysis

Bioinformatics Workflows

Secondary Analysis

DNA Seq RNA Seq

Signal & Image Processing
Computer Vision

Pattern Recognition
Classification Prediction

Research, Diagnosis, Treatment

Hardware Acceleration

Figure 2.1.: Thesis Scope and Contribution within Healthcare HPC Domain.

heartbeats.

The scope of the thesis is to employ techniques from the High Performance Computing
domain in order to optimize the target applications. The basic tool we utilize to deliver
efficient solutions is High Level Synthesis programming targeting FPGA devices. In the
next paragraphs, we present a high-level overview of the challenges encountered by related
works and the solutions leveraged to address them. Based on this analysis, we propose our
own implementations, that aim to build upon the existing solutions and suggest potential
improvements. For each application, we present open problems of prior art and enumerate
the contributions of each of the proposed frameworks.

2.1. Challenges in HLS optimization techniques and Thesis
Contributions

The first part of the thesis examines hardware acceleration of an ECG arrhythmia detec-
tion application performed through a machine learning model. This section presents the
most common challenges that designers encounter when leveraging High Level Synthesis
tools for FPGA acceleration of compute-intensive applications such as machine learn-
ing models. Applying optimization techniques that target memory and efficient design

16

2.1. Challenges in HLS optimization techniques and Thesis Contributions

space exploration have been broadly leveraged thanks to their high impact in perfor-
mance.

Memory optimization techniques: An effective strategy for optimizing an application
in HLS tools is leveraging the memory access patterns of the algorithms and tuning the
memory layout and hierarchy to efficiently support them. Towards this goal, there are
several works that either propose a generic framework or a custom solution for a specific
algorithm.

In [97] a methodology for automated memory partitioning is presented enabling parallel
computation units to efficiently access multiple independent memory banks. The Z-
polyhedral model for program analysis is used to address bank mapping and minimization
of the total amount of memory required for the partitioned banks. In [98], authors perform
memory profiling of various applications and split a single data structure into different
memory banks for data parallelism to address the memory bottleneck problem. In [99],
authors develop a micro-architecture with multiple memory systems, each one customized
to allow parallel access to elements of one array. These systems manipulate an incoming
stream of array elements so that those corresponding to parallel array references are led
to different memory banks of the computation kernel.

In [100], [101] an exploration algorithm pinpoints the partitioning of an array so that
elements accessed in parallel are assigned to different array partitions. Memory parti-
tioning is combined with memory access scheduling in a cycle-accurate way. Authors
in [102] target computational kernels at which parallel access to coefficient matrix takes
place. They propose that reusable data can be cached to on-chip registers which are
organized as chains to enable data caching with no need of extra control logic. Mem-
ory partitioning is then performed on the non-reusable data employing a padding tech-
nique which minimizes storage overheads when zeros are present in the partitioned vec-
tors.

Design space exploration on HLS tools built-in optimization techniques: De-
spite its potential and ease of use, utilizing HLS in a straightforward manner usually
delivers highly sub-optimal design solutions mainly due to the extremely large parame-
ter space that has to be explored. Several researchers have identified these HLS ineffi-
ciencies [103–106], proposing the usage of design space exploration techniques to better
guide accelerator synthesis. In [103] the authors exploit response surface models (RSMs)
and spectral analysis for predicting the quality of the design points without resorting
to costly architectural synthesis procedures whereas in [106] they combine compiler- and
architectural-level transformations to create a solution space and guide the search using a
gradient-based heuristic pruning technique. Authors in [105] propose a method to acceler-
ate the Design Space Exploration (DSE) of behavioral descriptions for high-level synthesis
based on a divide and conquer method whereas authors in [104] leverage learning-based
methods. Most of these works do not take into account the structure of the targeted
algorithmic description as opposed to a recent shift of attention to more targeted HLS

17

Thesis Contribution

optimization techniques tailored to the specific structural characteristics of the algorith-
mic descriptions, e.g. stencil computations [99–101].

Loop transformation optimization techniques: In [107], authors extract parallelism
from Iterative Stencil Loop algorithms by performing data analysis and then design space
exploration regarding different architectures. The main block of these architectures is a
computational unit that computes all values of a selected data region at an iteration,
taking into account data dependencies from the analysis and utilizing data values from a
variable depth of proceeding iterations. An architecture instance comprises of many such
units, each one working on a different data segment of the initial domain at the same
time. In [108], authors extend an existing partitioning and scheduling algorithm [100] to
also allow concurrent access to memory references across different loop iterations. Nested
loops are also targeted in [109], where the unroll factor of each loop and the presence or
lack of dataflow directive is determined to optimize the throughput vs area tradeoff of the
produced accelerator. When the dataflow directive is applied, it enables the concurrent
execution of the loops and the authors focus on minimizing the initiation interval of the
kernel by iteratively optimizing the longest loop through exploration of various unroll
factors.

In [110] the authors propose a technique to optimize on-chip memory allocation using
loop transformations. Data reuse buffers are used to save data accessed by consecu-
tive memory references. Loop transformation is used to reduce the buffer size by im-
proving data locality of array accesses. Authors in [111] examine the adverse effects
of typical memory partitioning techniques and especially bank switching and propose
an exploration of loop unrolling to identify an unroll factor that alleviates the prob-
lem.

Thesis contributions: In this work we leverage the aforementioned types of techniques
and combine them into a novel approach to accelerate an SVM classifier. The proposed
optimization strategy combines custom source code rewriting techniques and automatic
knobs of the HLS tool, and applies them in a stratified manner to deliver efficient delay-
area SVM design solutions. In addition to this, the framework also proposes a design
space exploration and pruning methodology to quickly pinpoint the pareto front. This
results to very efficient SVM accelerator implementations, reporting 98.78% latency gains
in comparison to design solutions derived by only leveraging the tools’ capabilities, and
to a co-designed ECG analysis and arrhythmia detection system deployed on Zynq SoC
with a speedup of up to 43× in respect to a pure software implementation on an ARM
processor.

The major contributions of our work are:

• We demonstrate the inefficiency of HLS tools’ to fully exploit the available paral-
lelism on its own and present source code structure optimizations that guide the tool
to discover both data- and instruction- level parallelism. The source code structure

18

2.2. Challenges in Short read alignment and Thesis Contributions

in the first case assists the compiler to leverage coarse-grained parallelism. The sec-
ond source code structure addresses inefficiencies regarding fine-grained parallelism,
i.e. exploiting pipeline and parallelism within a single block of code.

• We implement an HLS exploration framework that thoroughly investigates the au-
tomatically available tuning knobs and quantifies the impact of each one. Based on
this exploration, we deduce a set of pruning criteria that match the accelerator’s
memory architecture to its computation and memory access patterns. The explo-
ration generates a highly compact design space that lies on the same delay-area
Pareto- front as the exhaustive design space.

• The proposed framework is developed in a modular manner, i.e. not integrated
within the HLS engine, in order to enable compatibility and portability with other
HLS tools in a smoother manner.

• We further enhance the framework, by incorporating a steepest decent meta- heuris-
tic optimizer that delivers a single highly optimised SVM design solution in a time
efficient manner. This is often preferable by the end-user in order to avoid the
evaluation of an entire albeit small search space to select a single configuration.

• We evaluate the framework over approximate instances of the SVM classifier, that
leverage loop perforation and precision scaling approximation techniques. Thus we
combine both manual source code optimizations and built-in tuning knobs of the
HLS tool with approximate techniques.

2.2. Challenges in Short read alignment and Thesis
Contributions

High performance computing techniques have been greatly leveraged for optimizing and
accelerating genomic analysis. Secondary analysis of sequencing data, i.e. read alignment,
is a crucial step for subsequent workflows, as it reconstructs the sample genome and
compares it to the reference genome for variant detection. Several software aligners have
emerged for efficient execution of this stage, such as BWAMEM [112], Bowtie2 [113],
Edlib [114], WFA [115] and KWS2 [116]. Most aligners [112, 113, 117] adopt a seed-and-
extend strategy to find possible matches of the read on the reference genome. Seeding
fragments each read into even shorter pieces called seeds that align exactly on the reference
genome and creates a pool of candidates for valid alignments. In the seed extension, each
seed is extended into a gapped alignment, i.e. allowing mismatches or edits. In modern
aligners, the extension step is most frequently implemented based on Smith-Waterman
[118] dynamic programming algorithm for string matching.

19

Thesis Contribution

The ever increasing size of input datasets and the computational intensity of the alignment
step however exceeds the power of modern systems. Research efforts are opting to find ef-
fective acceleration techniques to meet the time requirements and increase the throughput
of the alignment. The optimization efforts could be broadly categorized into two distinct
trends based on the target of the optimization. The first approach includes solutions that
operate in fact on the pre-alignment stage whereas the second one target the alignment
stage itself. A common technique leveraged in both cases is offloading computations to
powerful devices and co-processors. A plethora of works exploit hardware acceleration
targeting different architectures, ranging from heterogeneous devices, e.g. FPGAs, to
many-core accelerators such as GPUs or the Intel Xeon Phi. In this work, the focus lies
primarily on accelerated designs that target FPGA devices.

Pre-alignment Optimizations: The major pre-alignment step is seeding, which re-
quires the use of an index of the reference genome. Taking into account the size of the
reference genome as well as the number of seeds, searching the genome needs to be im-
plemented in an efficient manner. Typical approaches are optimizing the data structure
for storing the genome index as well as the search algorithm for locating seeds through
this index, e.g. FM-index [88, 89]. This guarantees that seed exact matches are found
efficiently in terms of time and memory requirements. However, the volume of the seed
matches that need to be extended remains. This leads to the creation of pre-filtering
algorithms that aim at decreasing the vast amount of seed extension tasks, by discarding
candidate alignments based on a predefined threshold for the edit distance. These candi-
dates would most likely result in a prohibitive number of edits and would be eliminated.
Several pre-filtering algorithms [90, 95, 119] have now been developed that have noted
significant improvement in accuracy and performance since early efforts. Apart from
the algorithmic innovation of these filters, most of them have also been implemented in
hardware to accelerate the filtering time.

Alignment Optimizations: Despite the efforts made in the pre-alignment stage, the
alignment itself remains at the centre of research interest. Most works focus on accelerat-
ing the core computation of alignment, which is a string matching algorithm. SmithWa-
terman [120] is one of the most popular ones. It is a dynamic programming algorithm that
consists of two phases: (i) filling a similarity matrix and (ii) tracing back the similarity ma-
trix to find the optimal alignment between the two sequences.

Custom reconfigurable processors for Smith-Waterman acceleration is an active field of
research with several implementation solutions proposed [121]. Most Smith-Waterman
accelerators [122], [123], [124], [125], [126] compute the similarity matrix based on a
wavefront approach through a pipeline of PEs that forms a systolic array and computes a
matrix anti-diagonal per time step. The authors in [124] provide a very detailed architec-
ture as such, that implements a multistage-PE design, and optimize each stage in terms
of resources utilization and delay. Similarly in [127], the authors propose a reconfigurable
accelerator that implements a modified equation to improve mapping efficiency of a single
PE, and a special floor plan to cut down the interface components routing delay. The

20

2.2. Challenges in Short read alignment and Thesis Contributions

authors in [128] employ a pipeline of PEs to calculate the similarity matrix but recalcu-
late the matrices for traceback in software for highest-score alignments to avoid memory
contention.

Although each of these publications suggest optimization techniques on Matrix-Fill, they
do not provide a Traceback implementation. There are only a few works of accelerated
sequence alignment based on Smith-Waterman with Traceback. The authors in [129]
present an alignment engine that performs the traceback in parallel with the matrix fill
stage with restrictions on sequence length due to on-chip memory bottleneck. On the
contrary, the authors in [130] propose an alignment architecture that accelerates both
the forward scan and traceback priotitizing space efficiency for variable reference lengths.
The traceback procedure is implemented in software and the host initiates a full traceback
by request. The traceback procedure is guided by the host by scheduling multiple partial
traceback executions on hardware. Although this accommodates aligning sequences of
variable length, it hinders integration with third-party aligners. Both accelerators are
tailored for long sequence alignment with sequence lengths ranging from 50 to 16000 bases.
These sequences are more than an order of magnitude longer compared to those required
in short read alignment tasks. Although these works provide the traceback functionality
under certain circumstances, they are not designed to cope with a high throughput input
rate of short reads generated by an NGS platform.

There are also works that target acceleration of widely-used aligners or develop end-to-end
hardware implementations of custom aligners from scratch. Authors in [131] emulate the
Smith Waterman implemented in BWA-MEM for short-read alignment. The achieved
acceleration is extracted from task-level parallelism rather than inner-task parallelism
and the focus lies on the scheduling of parallel alignment tasks rather than the specifics
of the integration and the handling of traceback intricacies. The work in [132] designs
a hardware aligner from scratch based on the algorithm used by BFAST [133]. The
implementation requires storing at least 20GB of memory for the genome and a table
containing the candidate locations. No information is provided for the implementation
of traceback stage.

Recently, Darwin [36] has proposed an end-to-end hardware acceleration for 3rd genera-
tion sequencing, implementing accelerators for both seed extract and extend phases and
highlighting the importance of including the traceback step on chip so as not to undermine
the benefits of hardware acceleration. For the extend phase, the authors introduce GACT
algorithm which implements a modified SmithWaterman for arbitrarily long senquence-
sand is implemented in both ASIC and FPGA. The authors in GenAx [134] propose a
highly efficient ASIC accelerator for both seeding and extension step that supports trace-
back and is based on a finite state automata instead of SmW. The same authors later
propose SeedEx [135], an FPGA accelerator for the seed-extension step that targets a
cloud FPGA and is also integrated in BWA-MEM aligner. GenASM [136] accelerator
is an ASIC accelerator that performs the seed extension step based on Bitap algorithm
and accelerates both short and long reads. The authors in [137] also present the ASAP

21

Thesis Contribution

FPGA accelerator for short read alignment. ASAP introduces several modifications to
the alignment procedure, that need extra validation before its adoption on existing NGS
frameworks, e.g. it utilizes the Levenshtein distance computation rather than SmithWa-
terman. The latency of ASAP also is dependent on the number of mismatches between
the short read and the reference and supports a simpler constant gap penalty model for
the scoring scheme.

Thesis contributions: This thesis focuses on delivering a highly-efficient SmithWater-
man accelerator that is optimized to accommodate integration within a realistic system.
For that purpose we leverage dataflow computing to develop the accelerated design taking
into account aspects such as system wide communication and accelerator call overheads
which are often neglected. The proposed design methodology allows for integration into a
widely-used open-source aligner and delivers up to ×2 end-to-end speedup. We then fur-
ther improve upon the design and leverage characteristics of the input dataset to deliver
a resource efficient Banded SmithWaterman accelerator and a multi-dataflow accelerated
system. The Banded Smitherwaterman accelerator achieves a speedup of ×1.53 over
the initial accelerator and ×3 over state-of-the-art aligners whereas the multi-dataflow
system delivers average speedups of ×1.8 over the multi-instances version of the initial
design.

In more detail, the major novelties and contributions of our work can be summarized as
follows:

• We propose GANDAFL, a novel genome alignment architecture for SmithWaterman
that is based on the dataflow computing model.

• We extend prior designs by implementing the complete Smith-Waterman algorithm
along with the Traceback procedure, enriching current literature which is currently
lacking in variety of detailed traceback descriptions.

• Within this architecture we propose a innovative data interleaving technique in
order to further increase task-level parallelism and maximize the throughput via
high utilization of the underlying FPGA.

• We integrate our accelerator in a real aligner by taking into account integration
implications from the start and relying on a synergy of software/hardware co-design:

– We diminish the data transfer overhead of integration by making the decision
to move more computation on chip, i.e. implementing Traceback on hardware.

– We diminish the accelerator call overhead by applying a radical software re-
structuring on the aligner source code that implements an aggregation-batching
strategy in order to reduce the number of accelerator calls.

22

2.2. Challenges in Short read alignment and Thesis Contributions

• We adopt a heuristic of Smith-Waterman, i.e. Banded Smith-Waterman, that only
examines alignments with an upper limit for edits and exploit the inherent attributes
to design a highly optimized dataflow implementation targeting FPGA devices.

• We bridge hardware acceleration and pre-filtering for alignment optimization by in-
troducing a profile-driven design methodology leveraging the Banded Smith-Waterman
accelerator. The methodology highlights the advantages of leveraging input-specific
constraints to design resource-efficient accelerators that make up a highly parallel
accelerated system.

• We implement a dataset-specific multi-dataflow system that significantly acceler-
ates pre-filtering seed-extension alignment with negligible accuracy loss. The pre-
filtering step classifies the input reads based on a lower limit for the number of edits
and the seed-extension tasks are assigned to the suitable Banded Smith-Waterman
accelerator based on the input edit threshold distribution.

23

Thesis Contribution

24

Chapter 3.

Theoritical Background

In this chapter we present a theoritical background to the domains and tools discussed
throughout the thesis. We explain the working principles and capabilities of the utilized
tools so as to justify their selection and facilitate the understanding of our implemen-
tations. We also describe the basic concepts of the Genomics domain and present the
structure and goal of typical pipelines of the field. The focus lies in providing details for
short read alignment.

3.1. High Level Synthesis on Reconfigurable platforms

3.1.1. Basic Principles of High Level Synthesis

FPGA-based accelerators for computationally instensive algorithms are a popular and
effective approach for optimizing and accelerating applications. Typically, FPGAs are
programmed using Hardware Description Languages (HDL), which model the behavior
and structure of logic circuits, e.g. VHDL and Verilog. Despite the immense capabilities
of these languages, their use also translates into a great learning curve, inefficient develop-
ment time and tiresome validation and verification procedures.

An alternative to programming in HDL is using High Level Synthesis tools (HLS) [138,
139]. A High Level Synthesis (HLS) tool is a design tool for generating application-specific
IP from algorithmic C specification and thus allowing the designer to work at a higher level
of abstraction, while creating high-performance hardware. It provides software developers
with an easy way to accelerate the computationally intensive parts of their algorithms
on a new compilation target, a Field Programmable Gate Array (FPGA). The FPGA
provides a massively paralleled architecture with benefits in performance, cost and power
over traditional processors. The main part of the application thus, is executed on the
system’s processor while a part of it is transformed into a Register Transfer Level (RTL)
implementation that synthesizes into a FPGA.

25

Theoritical Background

The first step is to develop an algorithm usign a sofware language such as C, C++, Sys-
temC, OpenCL. HLS then provides the ability of verification, which allows designers to
validate the functional correctness of the algorithm faster than doing so in traditional
hardware description languages. The next step is the synthesis of the software imple-
mentation into an RTL design. HLS offers the ability to control the synthesis process
through optimization directives allowing the creation of specific high-performance hard-
ware implementations. It performs some optimizations by default and also allows the
user to impose directives and constraints of his own choice. The primary output is gen-
erated at the synthesis step and it is the implementation in RTL format. The RTL can
be synthesized into a gate-level implementation and an FPGA bitstream file by logic
synthesis. The RTL output is usually provided in the industry standard Hardware De-
scription Language (HDL) formats of Verilog and VHDL. The RTL implementation can
be packaged into an IP, so that it can be integrated into the selected hardware sys-
tem [140].

HLS always begins with the compilation of the functional specification. This step trans-
forms the input description into a formal model that exhibits the data and control depen-
dencies through a Control and Data Flow Graph (CDFG) [141–143]. Allocation, schedul-
ing and binding are the steps that follow and are the processes at the heart of High-Level
Synthesis. Allocation defines the type and the number of hardware resources needed.
Components can be added during the scheduling or the binding phase. During the
scheduling process it is determined which operations will occur in which operation cycles.
These operations can take place within one or several clock cycles, they can be chained or
they can execute in parallel. The scheduling phase takes into account design, timing and
user defined constraints. Binding is the process used that determines which hardware
resource implements each scheduled operation. The decisions taken in the binding and
allocation process influence the scheduling of the operations, thus resulting in these steps
to be intertwined rather than happening in a serial fashion.

There are several tools and vendors that are based on these principles to create an opti-
mized RTL implementation starting from a high level software language. Intel SDK Pro
for OpenCL [144] is an Intel tool that transforms OpenCL source code into RTL descrip-
tions targeting Intel FPGAs. Xilinx has developed throughout the years several tools from
Vivado HLS [145] to Vitis HLS [146]. Legup [147] is also a very popular open-source high-
level synthesis tool for FPGA-based processor/accelerator systems. The following para-
graphs briefly present the frameworks utilized in this thesis.

26

3.1. High Level Synthesis on Reconfigurable platforms

3.1.2. Programming Models for Reconfigurable devices

Xilinx Vivado HLS

Vivado HLS allows the programmer to implement the algorithm in C, C++, SystemC,
OpenCL. Once the code is written and the functional correctness is certified, the synthesis
process takes place. The synthesis output is the RTL implementation of the algorithm.
The RTL output is provided in the industry standard Hardware Description Language
(HDL) formats of Verilog and VHDL. After synthesis, verification of the RTL implemen-
tation is possible, to ensure that the same results with the software implementation are
being generated.

Vivado HLS can compile the C code into an implementation of high performance while
maintaining an efficient resource usage through the HLS-defined pragma (directives),
that are taken into account during the scheduling and binding process and result in an
optimized IP block. High-Level Synthesis creates the most optimum implementation
based on its own default behavior, the constraints, and the directives that the users
specify. These optimization directives are selected so that the architecture created satisfies
the desired performance and area goals. When synthesis completes, a synthesis report
is generated. This report contains details on the performance metrics. After analyzing
the report, optimization directives can be used to refine the implementation towards
the desired outcome. In order to do that effectively, it is important to understand the
metrics used to measure performance in a design created by HLS. The main ones are
area, latency and initiation interval. The directives available from HLS aim at optimizing
performance and area utilization. They can be applied on functions, loops, arrays and
regions containing one or more of the above [2]:

• Functions: Directives applied to functions mainly aim at enabling two or more
functions to execute concurrently and at removing function hierarchy in order to
reduce function call overhead and examine logic optimization.

• Loops: Directives applied to loops can reduce the cost of transition cycles between
different loops and between iterations of the same loop, improve latency, reduce
resources and allow the parallel execution of multiple loops within a function.

• Arrays: Arrays are the basic construct to express memory in HLS and are imple-
mented using block-RAMS. A block-RAM can be at most dual-port, which means
that maximum 2 elements of the same array can be accessed at the same time.
This introduces a bottleneck and prevents effective parallelization. The directives
that are applied to arrays mainly address this issue. They change array layout by
reshaping or partitioning to remove bottlenecks without requiring changes to the
original code. There are also directives that map arrays together in order to reduce

27

Theoritical Background

Table 3.1.: Basic HLS Optimization Directives

Directive Description
PIPELINE Reduces the initiation interval

by allowing the concurrent
execution of operations within a loop or function.

DIRECTIVE Enables task level pipelining,
allowing functions and loops

to execute concurrently. Used to minimize interval.
INLINE Inlines a function, removing all function hierarchy.

Used to enable logic optimization across function boundaries
and improve latency/interval by reducing function call overhead.

ARRAY PARTITION Partitions large arrays
into multiple smaller arrays or

into individual registers, to improve access to data
and remove block-RAM bottlenecks.

ARRAY MAP Combines multiple smaller arrays
into a single large array

to help reduce block-RAM resources.
ARRAY RESHAPE Reshape an array

from one with many elements
to one with greater word-width. Useful for

improving block-RAM accesses
without using more block-RAM.

area.

In Table 3.1 some of the basic HLS directives are briefly descripted. These directives are
the base for the design space exploration performed in Chapter 4.

Maxeler Dataflow Computing Model

A recent approach to programming FPGAs through High Level Synthesis tools has been
introduced through the Maxeler Dataflow Computing Model. Maxeler has developed a
programming language, called MaxJ, which is based on the dataflow computing model
[148]. This language can describe the hardware that implements an initial software app-
plication and transform it to RTL through MaxCompiler.

An elaborate presentation of the maxeler dataflow model and the ideas introduced by
dataflow computing can be found in [149]. The fundamental principles of the dataflow
computing paradigm are different to the ones of the typical processors. In an instruction
processor, instructions and data are read from memory into the processor core, which

28

3.1. High Level Synthesis on Reconfigurable platforms

performs operations before returning the results to memory. If the result is required for
the subsequent operation, it must be reloaded from memory, computed, and then written
back to memory. The operating model is inherently sequential, and its performance is
limited by the speed with which data can move round this path from memory, through
an operation, and back to memory.

On the other hand in dataflow computing, the programmer constructs a circuit that
comprises of functional units and represents the initial software application. Data is
streamed from memory, onto the chip, and propagated from one unit to another. The data
are not written on off-chip memory until the computation is finished. They are always
on chip, available in FIFOs if needed for longer times. Unlike the CPU where operations
are executed in subsequent points in time on the same hardware part, in dataflow the
computation is laid out spatially on the chip. There are no instructions, instruction
decode logic or branches. As data flows through the units, some tight dependencies are
lifted, allowing for deep pipelines and high throughput.

The programmer writes code in the MaxJ language, which is a Java meta-program that
describes the structure of the dataflow engine that should be created. The dataflow
engine is the Maxeler naming adopted for the accelerator/kernel. The computationally
intensive components of the application can be offloaded to one or more FPGA dataflow
engines and the remaining application still runs on the conventional CPU unchanged.
To create the dataflow engine for a particular application the programmer creates one
or more Kernels and a Manager. The kernels contain the computation portion of the
application. The Manager describes how the Kernel inputs and outputs are connected to
the outside world and to other kernels.

Once the development is complete, the bitstream creation process follows the typical pro-
cedure of synthesis, placement and routing. MaxCompiler translates the Java into HDL
language and then builds the bitstream by invoking typical vendor software depending
on the target platform. For example, if the target is Intel FPGAs, MaxCompiler invokes
the Intel/Altera flow whereas if the target is Xilinx FPGAs the Xilinx flow. The output
of the building process is a chip configuration file (the .max file) that contains the bit-
stream to configure the FPGA device and also meta-information enabling it to be easily
incorporated into a full application. The programmer then exchanges data between the
software program and the dataflow engine using the MaxCompilerRT run-time library
API.

29

Theoritical Background

3.2. Bioinformatic Applications

3.2.1. DNA sequencing and Genomic Analysis

The Human Genome project [150] was an international joined research effort to deter-
mine the order of bases in the human genome DNA and create maps of the location of
genes. Upon its successful completion, a reference genome for the human was available
for the first time. This fact combined with advances in sequencing technologies [151] that
produced millions of nucleotide sequences of an individual’s DNA have paved the way for
the high-throughput sequencing era and the establishment of the field of bioinformatics.
Bioinformatics [152] is an interdisciplinary field as it requires the expertise of multiple
domains such as biology, physics, computer science and mathematics. The essential in-
centive and goal of the field is to provide a management scheme and storage for reference
genome data as well as new entries. Efficient data curation accommodates achieving the
second goal, which is to develop tools and frameworks that analyse data and annotate
the results of the analysis with biological meaning.

The principal type of data handled by bioinformatics application is raw genome/DNA
data. A genome is essentially a long string of nucleotide bases: adenine, cytosine, guanine
and thymine (A, C, G and T respectively). An organism’s complete set of genetic instruc-
tions and information is enclosed in regions of the genome, called genes. Fig.3.1 illustrates
the DNA structure and how this comprises of coding regions (i.e. regions that are trans-
lated in protein sequences and determine cellular functions) and non-coding regions (i.e.
non translatable repetitive sequences). Advances in sequencing technologies [153] have
achieved a significant decrease in the cost and time required to sequence the DNA sample
of an individual, which has led in an explosion in available sequenced data. The output
of sequencing consists of sets of relatively short genomic sequences, usually referred to
as reads. Examples of short reads that have originated from a DNA sample can be seen
in Fig.3.1. As the technologies for sequencing evolve, so does important parameters such
as read throughput, length and error rates. Sequencing technologies evolved from First
to Second and lastly Next Generation [154]. First generation platforms produced reads
with average read length 400-900 bases and a very low throughput per run [155]. Second
generation sequencing platforms [156] (eg Illumina/Solexa, SOLiD [157], [158],) generate
many millions of nucleotide short reads, with lengths that range primarily between 50 to
300 bp (base pairs). The error rate ranges from 0.1 to 1% thanks to short length and high
coverage. The latest technologies (eg Pac Bio, Oxford Nanopore [159], [160]) generate
long reads (thousand of bases long), as it has been discovered that they assist to discover
previously undetectable structural variants. This however comes at the cost of high error
rates, up to 20%. Depending on the end goal of each study, the most suitable platform
and type of reads are selected.

The reads generated by sequencing platforms can then be used as input to several clinical

30

3.2. Bioinformatic Applications

coding regions

non coding region

A

T
G

C

TTAGATAAAGGATACT

AAAAGATAAGGATA

AGCTAA

TAGGC

CAGCGCAT

short reads FASTQ format

Figure 3.1.: Example of an Alignment between a reference and read sequence. It includes all
possible types of mismatches among DNA bases.

applications that leverage bioinformatics frameworks. Genotyping [161] is one of the most
popular genomics application, that allows scientists to explore genetic variants such as
single nucleotide variants, copy number variants, and large structural changes in DNA.
Different expression of genes among individuals create the genetic diversity and lead to
a variety of phenotypes. Genome study is essential to discover the mechanisms that
lead to this diversity and is of great value to emerging fields like personalized medicine
and research for various often incurable genetic diseases. Genome applications that fulfil
this purpose are variant calling [162], differential gene expression [163], phylogeny creation
[164] etc. Gene Expression and Transcriptome Analysis [165] are also critical applications
that allow scientists to study the mechanisms of translating genes and gain a deeper
understanding of biology. Apart from genetic studies, genomic tools also accommodate
the epigenetics study [166], which examines how environmental factors can alter how
genes work.

3.2.2. Short read alignment

This work focuses on applications that stem primarily from the genotyping subdomain
using Second generation sequencing technology. Fig.3.2 illustrates a typical variant-
discovery workflow and the most important steps of the workflow. The first step focuses on
the generation of the data required for these workflows. A selected sequencing technology
reads the sequence of nucleotide bases in a DNA molecule of an individual and converts
these raw signals into short fragments of bases, called short reads. During the generation
of short reads, unique sequencing errors and biases are introduced and therefore quality
checks are required to identify and correct them. The resulted short reads data are saved
in FASTQ format [167] (also illustrated in Fig.3.1).

The next steps. i.e. short read alignment and variant calling, facilitate the reconstruction
of the genome of the sample and comparing it to the reference genome of the organism.
Short read alignment performs the mapping of the short reads generated in the first step

31

Theoritical Background

FASTQFASTQ

FASTQFASTQ

raw
reads

filtered reads

Sequencing

Quality control

Alignment

FASTQSAM

FASTQSAM

Post-alignment processing
FASTQ

VCF

Variant Calling

raw mapped reads

filtered
mapped

reads

Figure 3.2.: Typical Genomic Pipeline stages. Sequencing generates short reads from a DNA
sample and is followed by aligning them to a reference and calling variants.

to a location in the reference genome that is most likely its origin. Both reference and
read sequences are encoded using numerical values, as illustrated in Fig.3.3. The short
read alignment process results in alignments that can be either perfect matches to the
corresponding reference location or include mismatches. Fig.3.3 depicts an example of an
alignment between a reference and read DNA sequence and demonstrates some of the most
frequent variants in the sequence of bases that can potentially lead to genetic mutations.
Gaps are used to account for insertions or deletions in the sequence, i.e. reference gap
and read gap respectively. After aligning, a Sequence Alignment Map (SAM) file is
produced, which includes information on the alignments of reads [168]. A post-alignment
processing step is also invoked to correct technical biases, and the corrected alignments
are ready for variant calling analysis. Finally the variant calling step identifies differences
between the sequencing reads and the reference genome. It is worth mentioning that,
localized realignment is also performed during the variant calling stage to correct artifacts
introduced during the alignment phase. The pinpointed variations are reported in an
output file in the Variant Call Format (VCF) [169].

tctctatta - atta g gagtttgc g tta

tctctatta t atta c gagtttgc - tta

reference:

read:

substitution

insertion deletion

313130330 - 0330 2 20233321 2 330

313130330 3 0330 1 20233321 - 330

encoding:
0

A

1

C

2

G

3

T

4

N

Figure 3.3.: Example of an Alignment between a reference and read sequence. It includes all
possible types of mismatches among DNA bases.

As shown, short read alignment is at the heart of the genomic pipelines. Several software
tools have been developed therefore to perform alignment of shorts reads to the reference
genome. Bowtie [170,171], Bowtie2 [113], Soap2 [172], BWA-MEM [112] are some of the
widely used ones. An exhaustive review and categorization of available aligners has been
reported here [173]. A first categorization takes place based on the type of index used to
perform quick and efficient queries on the genome reference. The efficiency is based on
the principle of producing a minimal memory footprint by storing the redundant subse-
quences of the reference genome only once. Each aligner creates a pre-built index from
the reference genome that allows for quick search of substrings across its chromosomes.

32

3.2. Bioinformatic Applications

The most popular indexing technique is hashing, thanks to easy implementation, small
indexing time and fast seed query speed [173]. The second most popular index is the
suffix-tree-based index. Due to difficulties in implemented the suffix tree, most aligner
tools rely on the BWT transform [174] and the FM-index [88], to emulate the suffix-tree
traversal.

The aligners operate on a set of sequencing read files in FASTQ format and output a
set of alignments in SAM format [168]. For each read, they apply a specific alignment
strategy to determine the minimum number of differences between the sequences, the type
of differences and their exact location on the DNA strands. There are two major types
of algorithms that perform this task, Dynamic Programming (DP) based ones and non-
DP based ones. The latter ones are represented mainly by the Hamming distance [175]
and the Rabin-Karp algorithm [176]. However the DP-based ones are the most popular
and mainly include the Smith-Waterman [120] and the Needleman-Wunsch [177] string-
matching algorithms.

Each resulting alignment has a score that represents the probability for the read to orig-
inate from the corresponding reference’s location in the genome. The alignment result
reported follows a specific format when reported, e.g. CIGAR [168], that contains infor-
mation on the read sequence, which strand of reference genome aligns against, alignment
score, number of differences, type of differences, location of differences on the reference
sequence etc. Each aligner usually provides a plethora of reporting protocols for the
found alignment (e.g. report highest score, report k first alignments, report all align-
ments etc) and allows the user to specifically select the suitable one for the current
needs.

33

Theoritical Background

34

Chapter 4.

An Exploration Framework for Efficient
High-Level Synthesis of Support Vector
Machines: Case Study on ECG Arrhythmia
Detection for Xilinx Zynq SoC

In recent years, Support Vector Machine (SVM) classifiers have played a crucial role in
providing data fusion and high accuracy classification solutions for various, complex, non-
linear problems. Its popularity accompanied by the ever-increasing need of implementing
it on computationally weak, portable or even wearable systems has refuelled the effort to
accelerate its execution. In this chapter, we explore FPGA-based acceleration to produce
efficient SVM hardware co-processors. We propose a systematic two-level approach for
SVM acceleration, which first optimizes the global structure of the original SVM’s behav-
ioral description to exploit the data- and instruction-level parallelism and then further
refines it through a targeted design exploration that matches the accelerator’s memory ar-
chitecture to its computation and memory access patterns. The proposed methodology has
been implemented as a framework on top of the state-of-art Vivado High-Level Synthesis
(HLS) tool. We evaluate the effectiveness of the methodology through a rich set of analy-
sis and validation results which show that its adoption delivers SVM accelerator designs
achieving latency gains of up to 98.78% in respect to Vivado-HLS default optimized solu-
tion. Finally, using as a case study an ECG analysis and Arrhythmia detection system
we show that a target Zynq programmable SoC utilizing the optimized SVM accelerator
design outperforms pure software implementations in numerous single or dual core target
platforms, achieving speedups which range from ×10 up to ×78. This chapter is based
on our publications in [178, 179]. The work is the result of collaboration and is also in-
cluded in Ph.D. Thesis "Design Methodologies for Resource Management of Many-core
Embedded Systems" [180]. The author in [180] contributed with the software part of the
application, through the development of the ECG Analysis Flow and the software evalu-
ation on several embedded devices. The author of the current thesis developed the SVM
hardware accelerators through Vivado HLS as well as the optimization methodology and
guidelines for efficient design and synthesis.

35

ECG-SVM

4.1. Introduction

Computer systems have nowadays dominated numerous aspects of human life and in the
advent of Internet of Things era, the vision is that a wave of portable sensor based devices
will constantly sense and monitor user and environmental activities. This new architec-
tural paradigm is inherently in need of a fast and efficient way to process the acquired
data both on site and remotely in order to produce knowledge that will aid the actions of
the user. Towards this direction, machine learning tools are in the spotlight for providing
the necessary algorithmic infrastructure that will meet the data fusion requirements of
this new architecture. Nevertheless, the envisaged applications are also bound by execu-
tion latency requirements since they operate under real-time constraints. Consequently,
there is an emerging need for accelerated execution of various machine learning based
computation kernels. Taking all these into account, this work aims at providing a design
methodology for the acceleration of Support Vector Machine classifiers using High Level
Synthesis and targeting FPGA based systems.

SVM-based classifiers [181] have grown very popular as the key element of machine learn-
ing based applications due to their capability of accurate predictions. They have been
utilized in fields such as text recognition [182, 183], bio-medical applications [184, 185],
image processing [186–188] and more recently activity recognition in mobile devices [189]
and deep learning [190]. The popularity of these classifiers is twofold. On the one hand
they provide very high classification accuracy even in problems which exhibit complex
non-linear distribution in their extracted features space. On the other hand, their struc-
ture, based on stencil computation operations forms a promising candidate for applying
acceleration techniques [191,192].

In this paper, we focus on FPGA-based SVM acceleration and to showcase the effective-
ness of our derived accelerators we utilize an ECG-based arrhythmia detection flow as a
case study. In [193], where Electrocardiogram analysis is performed, it has been shown
that when the classification problem becomes very complex, i.e. the computational re-
quirements of the SVM classifier are increased, hardware acceleration can be the key for
meeting the time constraints of the application and result to power gains.is of paramount
importance Approximate computing can also be leveraged to accomplish this goal. Ap-
proximate computing, exploits the inherent error resilience of many application domains
to trade accuracy for gains in other metrics (e.g., performance, energy) and manages to
be established as an alternative for efficient systems design [194]. Driven by this high
potential for performance and utilization efficiency, designing approximate circuits has
attracted significant research interest. In hardware design, algorithmic and logic approxi-
mations are applied [194–200]. Considering that signal/image processing applications and
neural networks (such as classifiers) are perfect candidates for both FPGA design and
approximation, we examine the individual as well as combined impact of hardware and
approximation techniques to accelerate SVM classifiers.

36

4.1. Introduction

SVM accelerators are implemented utilizing Vivado-HLS, a state-of-art HLS solution of
industrial strength, that enables fast exploration and prototyping of different architectural
design decisions. Despite its high productivity, utilizing HLS in a straightforward manner
usually delivers highly sub-optimal design solutions mainly due to the extremely large
parameter space that has to be explored. Several researchers have identified these HLS in-
efficiencies [103–106], proposing the usage of design space exploration techniques to better
guide accelerator synthesis. Similarly, there is research potential in the approximate com-
puting field. Approximate design mainly targets arithmetic units (e.g., adders [194, 195]
and multipliers [197, 198]), but their efficient application in complex accelerator circuits
is not comprehensively analyzed and remains arguable. Despite significant results for
approximate accelerators, e.g., [199–201], research activities on approximate FPGA ac-
celerators are still limited.

Within this context, we propose a two-level systematic design framework for HLS which
aims at providing optimized SVM HW accelerator design implemented on FPGA based
systems. Followingly, we further apply this strategy on approximate instances of the
utilized SVM. In brief, the main contributions of this work are summarised as fol-
lows:

• We present HLS source code structure optimization techniques to fully exploit the
data- and instruction-level parallelism of the SVM classifier (1st Level of Framework
Optimization). We show even mature HLS tools fail at fully exploiting the inherent
parallelization features of the algorithm and provide comparative results against
the proposed technique.

• We extensively investigate and quantify the impact of HLS directives on design
objectives/metrics of the resulted SVM HW accelerator. This analysis is translated
to a set of design space pruning guidelines which are experimentally validated to
provide a highly compact design space which lies on the same delay-area Pareto-
front as the full one.

• We incorporate the pruning guidelines as the key element of the automated HLS
directives exploration tool that matches the accelerator’s memory architecture to
its computation and memory access patterns (2nd Level of Framework optimiza-
tion). We further enhance the framework, by incorporating a steepest decent meta-
heuristic optimizer that delivers a highly optimised SVM design solution in a time
efficient manner.

• We show that the HW accelerator derived by our two-level optimization strategy
manages to outperform a large number of other SVM implementations including
high-end dual-core embedded systems.

• Lastly, we present an approximate FPGA-based SVM accelerator developed in Vi-
vado HLS that is further enhanced by applying the aforementioned framework.

37

ECG-SVM

In more detail, extensive experimentation shows that the adoption of the proposed HLS
design methodology leads to very efficient SVM accelerator implementations, report-
ing 98.78% and 89.26% latency gains in comparison to the design solutions derived by
Vivado-HLS and advanced optimization meta-heuristics, respectively. The derived de-
sign configurations have been further evaluated on SVM with very large support vector
sizes, showing the sustainability of the resulted design configurations for SVM accel-
erators at scale. Finally, the derived SVM accelerator has been successfully incorpo-
rated in a co-designed ECG analysis and arrhythmia detection system deployed on Zynq
SoC, delivering speedups of up to 43× and 78× in respect to a pure software imple-
mentation on ARM processor and a co-designed solution utilizing SVM accelerator de-
rived directly by Vivado-HLS. The approximate computing approach also shows great
promise with the classification accuracy ranging from 90% to 99% and speedup from 1×
to 18×.

The rest of the paper is organised as follows. Section 4.2 provides a literature review
on FPGA-based ECG analysis acceleration as well as a short overview of HLS design
exploration and optimization techniques. Section 4.3 introduces the structure of the
SVM classifier and describes the characteristics of the ECG based case study applica-
tion. Section 4.4 summarizes the key points of the proposed design exploration and
optimization methodology for efficient SVM accelerator synthesis as well as presents the
synergy of this methodology with approximation techniques. Section 4.6 describes the
experimental setup and provides the experimental results regarding the efficiency of the
exploration strategy and the derived HW designs while Section ?? concludes the pa-
per.

38

4.2. Related Work

4.2. Related Work

High Level Synthesis provides a transparent synthesis flow for designing hardware from
abstract algorithmic descriptions. It enables designers to perform fast RTL prototyp-
ing and architectural exploration of their design solutions and it is extensively utilized
for providing acceleration of computationally intensive kernels such as stencil computa-
tions. Stencil computations are found in several applications’ algorithmic descriptions,
e.g. SVM classifiers, exhibiting memory bottlenecks since they require the simultaneous
manipulation of multiple elements of the same array thus failing to meet the throughput
demands.

Several research works have proposed general design exploration strategies for HLS-based
architectural optimization, to alleviate such problems. The proposed exploration frame-
work forms an automated tool-flow solution already fully integrated with Vivado-HLS.
Implementing the exploration framework in modular manner, i.e. not integrating the ex-
ploration engine inside the HLS engine (in any case not possible with Vivado-HLS which is
not an open source tool) is strategic design decision that enables the proposed framework
to be retargeted and integrated with other HLS tools in a smoother manner. This type
of modularity, i.e. treating the HLS engine as an external tool, has also been adopted by
other state-of-art design space exploration frameworks [103–106, 193] targeting the HLS
domain. Most of these works have proposed exploration strategies without however taking
into account the structure of the targeted algorithmic description [103–106]. Recently, a
lot of attention has been shifted towards more targeted HLS optimization techniques tai-
lored to the specific structural characteristics of the algorithmic descriptions, e.g. stencil
computations [99–101].

In [97] a methodology for automated memory partitioning is presented enabling parallel
computation units to efficiently access multiple independent memory banks. The Z-
polyhedral model for program analysis is used to address bank mapping and minimization
of the total amount of memory required for the partitioned banks. In [98], authors perform
memory profiling of various applications and split a single data structure into different
memory banks for data parallelism to address the memory bottleneck problem. In [99],
authors develop a micro-architecture with multiple memory systems, each one customized
to allow parallel access to elements of one array. These systems manipulate an incoming
stream of array elements so that those corresponding to parallel array references are led
to different memory banks of the computation kernel. Similar to this principle, we focus
on one computation kernel and partition or reshape arrays according to the access pattern
of the algorithm so that the number of memory banks or their width is sufficient for the
required parallelism.

In [100], [101] an exploration algorithm pinpoints the partitioning of an array so that ele-
ments accessed in parallel are assigned to different array partitions. Memory partitioning
is combined with memory access scheduling in a cycle-accurate way. Authors in [102]

39

ECG-SVM

target computational kernels at which parallel access to coefficient matrix takes place.
They propose that reusable data can be cached to on-chip registers which are organized
as chains to enable data caching with no need of extra control logic. Memory partitioning
is then performed on the non-reusable data employing a padding technique which mini-
mizes storage overheads when zeros are present in the partitioned vectors. Our proposed
techniques are closer to these approaches, since we also partition each array according
to the access pattern in each loop iteration to allow concurrent access. We further ex-
amine grouping these elements in elements of greater word-width and also combine the
two techniques. As opposed to utilizing one-dimensional arrays and perfect loop nests,
we apply our methodology to both one and two-dimensional arrays and on an imperfect
loop nest.

In [107], authors extract parallelism from Iterative Stencil Loop algorithms by performing
data analysis and then design space exploration regarding different architectures. The
main block of these architectures is basically a computational unit that computes all
values of a selected data region at an iteration, taking into account data dependencies
from the analysis and utilizing data values from a variable depth of proceeding iterations.
An architecture instance comprises of many such units, each one working on a different
data segment of the initial domain at the same time. In [108], authors extend an existing
partitioning and scheduling algorithm [100] to also allow concurrent access to memory
references across different loop iterations. Similar to this idea, we utilize partitioning
of the initial data set to enable parallel execution of our computational kernel on the
segments of the initial set and thus allow concurrent execution of loop iterations. Nested
loops are also targeted in [109], where the unroll factor of each loop and the presence or
lack of dataflow directive is determined to optimize the throughput vs area tradeoff of the
produced accelerator. When the dataflow directive is applied, it enables the concurrent
execution of the loops and the authors focus on minimizing the initiation interval of the
kernel by iteratively optimizing the longest loop through exploration of various unroll
factors. We also apply the dataflow directive to allow instances of the SVM kernel,
which are basically nested loops, to execute in parallel. The instances are optimized
using our proposed design space exploration, that includes extensive research of loop
unrolling.

In [110] the authors propose a technique to optimize on-chip memory allocation using
loop transformations. Data reuse buffers are used to save data accessed by consecutive
memory references. Loop transformation is used to reduce the buffer size by improving
data locality of array accesses. Authors in [111] examine the adverse effects of typical
memory partitioning techniques and especially bank switching and propose an exploration
of loop unrolling to identify an unroll factor that alleviates the problem. Loop unrolling
technique is extensively utilized in our work and is combined with partitioning techniques
in order to match the array layout to the algorithm access pattern and address memory
burst issues and bottlenecks.

Therefore, in this work we propose a novel optimization strategy, implemented on top of

40

4.3. Support Vectors Machines based Classifier

the state-of-art Vivado-HLS tool, that combines data-, instruction-level parallelism and
memory architecture customization to deliver efficient delay-area SVM design solutions.
An additional value to our work is attributed to the fact that we do not only apply manual
restructuring techniques and partitioning but further enhance these results by exploring
the tuning knobs of the employed tools.

4.3. Support Vectors Machines based Classifier

4.3.1. Analysis of SVM classifier

Support Vector Machines (SVMs) are supervised machine learning models used for data-
driven modelling and classification. The classifier is trained against a set of feature vectors
composed of attributes of the points under classification accompanied by their respective
class labels. Without loss of generality, for the context of this work we will consider the
possible classes to be identified by 1,-1. The training phase of the algorithm is performed
offline and is usually a computationally intensive task.

The outcome of the training phase is a set of support vectors, i.e. critical points of
the different classes that define the classification hyper-planes. A new input vector is
classified according to its distance from the support vectors. A kernel function K is used
to map input vectors to a space where different classes are linearly separable. In total,
having trained an SVM model of N_sv support vectors, the function for classifying an
input feature vector x is of the following form:

Class = sgn(
N_sv∑
i=1

(yi ∗ ai ∗K(x, sup_vectori))− b) (4.1)

where K is the kernel function, sup_vectori is the i-th support vector and yi, ai are
values derived from the training process. Coefficient b is a bias value, also a result of the
training process and is constant over all support vectors.

The kernel function is very important for the accurate prediction of input data. In this
work, Radial Basis Function (RBF) is the chosen kernel since biomedical applications
have proved to perform poorly when linear kernels are used, since medical data are char-
acterized by non linear relations of their attributes. The advantage of the RBF kernel over
other non linear kernels is that RBF has fewer parameters and fewer numerical difficulties.
The RBF kernel for two vectors a and b is defined as:

K(a,b) = exp(−γ||a− b||2) (4.2)

41

ECG-SVM

Listing 4.1: SVM original prediction code
const f loat sv_coef [N_sv] ;
const f loat sup_vectors [D_sv] [N_sv] ;

void SVM_predict (f loat t e s t_vector [D_sv] ,
int ∗ y) {

loop_i : for (i =0; i<N_sv ; i++){
loop_j : for (j =0; j<D_sv ; j++){

d i f f=te s t_vector [j]− sup_vectors [j] [i] ;
norma = norma + d i f f ∗ d i f f ;

}
sum = sum + exp(−gamma∗norma)∗ sv_coef [i] ;
norma=0;

}

sum = sum − b ;

i f (sum<0)
∗y = −1;

else
∗y = 1 ;

}

Listing 4.1, introduces the C-language based implementation of equation 4.1 and this code
will be used as the basis for the implementation of our HLS based HW accelerator. The
input of the code is a new feature vector to be classified and its outcome is a label of -1,1
which classifies the input vector in one of the two available classes. Table 4.7 describes
all variables declared in Listing 4.1 and what they stand for. The number of the support
vectors N_sv and the length of the feature vector D_sv along with the kernel selected
have great impact on the complexity of the classifier.

4.3.2. Use Case: ECG-based Arrhythmia Detection

Electrocardiogram (ECG) is a fundamental biological signal for health status monitoring
and assessment due to its inherent relation to heart physiology [202]. Consequently, its
analysis and interpretation has been established as an important field in modern medicine
and this has spawned various inter-disciplinary studies towards its digital processing.
Recently, machine learning techniques have dominated ECG analysis given the complexity
to derive accurate models in the effort of assessing and predicting the state of the heart
[203,204].

42

4.3. Support Vectors Machines based Classifier

Table 4.1.: Declaration of variables in Listing 1

variable description
N_sv number of support vectors
D_sv dimension/features of support vector
sv_coef array of coefficients for each support vector

sup_vectors array of support vectors
test_vector feature vector of heartbeat

diff difference between elements of vectors
norma squared euclidean distance of vectors

gamma, b parameters γ and b of RBF kernel
product of y_i, α_i of equation 4.1

sum accumulator for contribution of
each support vector

y pointer to classification result

Arrhythmia, i.e irregular heartbeat, is considered as one of the most commonly encoun-
tered heart malfunctions. Due to this critical condition the field of detecting signs of
arrhythmia is very important and automated diagnosis flows are a valuable tool in the
hands of medical experts. In this work, we use as a case study arrhythmia detection
based on ECG signal analysis. Detection is performed through SVM-based classifica-
tion, which has been shown to exhibit high accuracy in detecting problematic beat pat-
terns [193,203].

Feature vectors are extracted from a heart beat and its produced classification label
indicates whether the beat is normal or abnormal in terms of arrhythmia signs. To train
and test the SVM prediction model, we utilized MIT-BIH Arrhythmia Database [205], a
combined effort of MIT and Beth Israel Deaconess Medical Center - which is composed
of 48 fully annotated half-hour two-lead ECG signals with the collaboration of patients
with different medical files and physiology characteristics.

Fig. 4.1 depicts an overview of the process of analysing an ECG signal. The main
processing stages are:

• Noise removal that filters the signal using a band-pass filter to remove artifacts
resulting from patient breathing and movement or noise imported by the power
line.

• R peak detection and heart beat segmentation that detects a heart beat
inside the acquired ECG signal data. If an R peak is detected then a new heart
beat has been located and its data are segmented for further processing.

• Feature extraction process is imposed on the heart beat in order to extract its

43

ECG-SVM

Band pass
Filtering
process

ECG related
information

extraction (QRS
peaks…)

Discrete Wavelet
Transform

ECG signal
classification –

Abnormal heart
beat detection

Diagnosis

Band pass
Filtering
process

R peak
detection

Discrete
Wavelet

Transform

Heart beat
diagnosis
classifier

Diagnosis –
Normal /
Abnormal

Figure 4.1.: Utilized ECG analysis flow
Sheet2

Page 1

filtering
(20.55%)
R peaks
(0.46%)
DWT
(0.57%)
SVM
(78.43%)

filtering
(8.25%)
R peaks
(0.18%)
DWT
(0.23%)
SVM
(91.34%)

(a)

Sheet2

Page 1

filtering
(20.55%)
R peaks
(0.46%)
DWT
(0.57%)
SVM
(78.43%)

filtering
(8.25%)
R peaks
(0.18%)
DWT
(0.23%)
SVM
(91.34%)

(b)

Figure 4.2.: Average CPU utilization per heart beat processing (a) SVM models of moderate
computational requirements, (b) SVM models of high computational requirements

characteristics. In this work, we utilize Discrete Wavelet Transformation [203] as
the core of the feature extraction process.

• Diagnosis classification: that performs the actual detection using SVM classifier
and concludes whether the heart beat exhibits arrhythmia signs or not.

Fig. 4.2 illustrates the average CPU utilization per heart beat processing for the different
processing stages of the ECG analysis flow executed on an Intel Quark SoC [206]. Differ-
ent models of SVM classifiers, with increasing computational requirements (in terms of
number of support vectors and input vector size) were used during the profiling phase. In
all cases the inputs of the device are signals derived from MIT-BIH arrhythmia database.
Fig. 4.2a shows that even for moderate complexity SVM models, execution of the classi-
fier dominates the required CPU time. This is emphasized in the case of high complexity
SVM models (Fig. 4.2b) where SVM execution takes up in average more than 90% of the
CPU time needed for detecting arrhythmia in a single beat.

In this paper, a HW/SW co-design paradigm is used, to instantiate the ECG analysis flow
in a combined CPU-FPGA system. The CPU is occupied with system management and
pre-diagnosis ECG processing while the actual diagnosis is executed on a HW accelerator
instantiated on the FPGA fabric. The SVM model used in the exploration process was
selected according to the methodology presented in [207] so that it provides the highest
classification accuracy. Additionally, its size is sufficient enough to allow all HLS opti-
mizations to be applied on it and still have enough FPGA resources to instantiate the
accelerator on a Zedboard [208].

44

4.4. Design exploration for accelerated SVM classifier

Table 4.2.: Utilized SVM model parameters

parameter meaning value
N_sv number of support vectors 1274
D_sv dimension/features of each support vector 18

The parameters of the chosen SVM model are stated in Table 8.1. It exhibits over 99%
accuracy, sensitivity and specificity. We do not examine the impact of differing arithmetic
precision on how well the final SVM accelerator fares at these metrics. Although the
proposed methodology is applicable in a straightforward manner in SVM implementations
of differing arithmetic accuracy, we consider this decision to be a priori taken by the
application designer.

4.4. Design exploration for accelerated SVM classifier

Fig. 4.3 depicts the proposed High Level Synthesis based design methodology for op-
timizing the architecture of SVM accelerators. The input of the flow is the C source
code of the algorithmic description of SVM classifier. The methodology targets FPGA
based programmable System-on-Chip platforms, i.e. Zynq [209] which provides an ARM
Cortex-A9 and FPGA fabric.

All levels of accelerator optimization are performed using Vivado-HLS tool. Vivado-HLS
enables user control over the synthesis process through the usage of directives. It performs
some optimizations by default and also allows the user to impose directives and constraints
of his own choice. The directives available from HLS aim at performance and area op-
timization and can be applied on functions, loops, arrays and regions containing one or
more of the above. Table 4.3 summarizes the HLS directives that have been incorporated
in the design exploration described in the following sections.

Regarding the proposed methodology, in the beginning the input source code is par-
titioned to the SVM kernel function to be accelerated and its wrapper logic which
utilizes the kernel function as part of the bigger program. The SVM kernel is then
optimized through the proposed two-level design optimization strategy. In parallel,
the wrapper logic is tailored to the communication interface of the co-designed sys-
tem.

At the first level of optimization, the SVM’s source code is restructured to expose higher
data- and instruction-level parallelism than the one exploited by Vivado-HLS. At the
second level, the restructured code is further automatically explored over a very com-
pact design space of memory related directives under designer and device specific con-
straints, e.g. maximum latency, FPGA resource utilization etc. The compact design

45

ECG-SVM

Kernel specific Kernel specific Kernel specific Kernel specific

Analysis on HLS Analysis on HLS Analysis on HLS Analysis on HLS

DirectivesDirectivesDirectivesDirectives

Level Level Level Level 2222: : : : Design Space Design Space Design Space Design Space

Exploration on HLS Exploration on HLS Exploration on HLS Exploration on HLS

DirectivesDirectivesDirectivesDirectives

Original

C

 Source Code

Memory architecture Memory architecture Memory architecture Memory architecture

optimization guidelinesoptimization guidelinesoptimization guidelinesoptimization guidelines

Instantiation of Instantiation of Instantiation of Instantiation of

Zynq based system Zynq based system Zynq based system Zynq based system

Kernel under

acceleration C

 Source Code

ACC. Kernel

Wrappers

Level Level Level Level 1111: : : : Source code Source code Source code Source code

restructuringrestructuringrestructuringrestructuring

Loop and

memory

partitioning

Arithmetic

operations

reshaping

Restructured

C Source

Codes

HWHWHWHW////SW SW SW SW

cocococo----design design design design

interface interface interface interface

instantiationinstantiationinstantiationinstantiation

Designer Designer Designer Designer &&&&

Device Device Device Device

specific specific specific specific

constraintsconstraintsconstraintsconstraints

AreaAreaAreaArea////delay delay delay delay

product product product product

optimization optimization optimization optimization

Final

C

 Source Code

HLS

knowledge

database

ACC HW

IP

Figure 4.3.: Proposed HLS based HW design methodology

space is defined through a set of pruning guidelines derived and validated based on ex-
tensive analysis on the impact of different HLS directives on the systems metrics and
design objectives. The aforementioned analysis takes place offline and can be reused as a
pre-existing knowledge database that guides the fitting of the pruning guidelines to the
specific kernel instance. The proposed pruning guidelines enable optimization search to
be performed in a reduced solution space enabling fast extraction of high quality design
solutions.

4.4.1. Optimization Level 1: Code restructuring for HLS

We emphasize on two code restructuring strategies which if employed assist the tool to
produce much more efficient HW accelerators in terms of enhanced data- and instruction-
parallel accelerator implementations.

46

4.4. Design exploration for accelerated SVM classifier

Table 4.3.: HLS directives [2]

Directive Description
PIPELINE Reduces the initiation interval by concurrent

execution of operations within a loop or function.
DATAFLOW Task level pipelining. Functions and loops

are executed concurrently. Used to minimize interval.
INLINE Inlines a function, removing all function hierarchy.

Used to enable logic optimization across function boundaries and
improve latency/interval by reducing function call overhead.

UNROLL Unrolls for-loops to create multiple independent
operations rather than serial executed ones.

ARRAY_PARTITION Partitions large arrays into multiple smaller arrays
or into individual registers

to improve access to data and remove block-RAM bottlenecks.
ARRAY_MAP Combines multiple smaller arrays

into a single large array to help reduce block-RAM resources.
ARRAY_RESHAPE Reshape an array from one with many elements

to one with greater word-width.
Useful for improving block-RAM accesses without using more block-RAM.

Advancing Data-Level Parallelism in HLS Through Loop and Memory Partitioning

The squared euclidean distance of the test_vector and each sup_vector is computed and
used as input to the SVM kernel function. These values are weighted with a coefficient of
the corresponding support vector and then accumulated in one variable to produce the
classification result.

The contribution of each support vector to the total sum is irrelevant to the contribution
of the others since there are no data dependencies in the computations performed between
the test vector and each column of the support vector array. As a result, these compu-
tations can be performed simultaneously. This is illustrated in Fig. 4.4 where the use of
different colours indicates that the computations performed between each coloured col-
umn and the test vector can be executed in parallel. Towards this goal, array sup_vectors
can be partitioned into smaller arrays, each one containing fewer support vectors. These
arrays will have the same number of rows, since the number of attributes is constant,
but fewer columns. Each array will contribute a partial sum to the total sum used for
classification and partial sums can be calculated in parallel. In other words, the initial
problem is divided into smaller ones, which are solved concurrently. We implement data-
parallel SVM kernels by first modifying the structure of the code and then utilizing HLS
directives to enable parallel execution. Listing 4.2 shows the modified source code in
the case that sup_vectors array is partitioned in two. The part of the code responsible
for computing the total sum is implemented as a separate function called by the main
function as many times as many array partitions exist. Each instance of this function is
assigned to a different partition of the sup_vectors and sv_coef arrays and computes
its partial sum. Eventually, partial sums of all partitions are aggregated by the main

47

ECG-SVM

∑

-
-

-
-

-
-

-
-

◦² ◦² ◦² ◦² ◦² ◦² ◦² ◦²

∑ exp(-γ*sum)*coef

support
vectors

test vector

sum

Figure 4.4.: Data-level parallelism in SVM.

function in order to produce the classification decision.

On this modified source code, we apply HLS directive array_partition (Table 4.3) in
Vivado-HLS, for automatic array partitioning. An array in HLS is implemented using
block RAMs which can have at most two read ports. In this case, simultaneous compu-
tation among all array partitions wouldn’t be possible since all functions would require
access to the same array at the same time. HLS would address this problem by cre-
ating a replicate for each function instance, thus leading to memory burst. By using
the array_partition directive instead, we resolve this inefficiency since different read
ports for each partition are created and parallelization is possible without any adverse
effects. Array_partition directive is applied on sup_vectors and sv_coef arrays. Array
sv_coef is one-dimensional, thus it is partitioned across its elements. Each partition
contains consecutive elements. Array sup_vectors is two-dimensional and is partitioned
across its column dimension into a varying number of partitions. Each one of the parti-
tions contains consecutive columns.

In the main function we invoke the computing function once for each array partition. Its
arguments include the pointers to the arrays, a value indicating the size of each partition
in columns, an offset to identify the exact location of the partition in the initial array and a

48

4.4. Design exploration for accelerated SVM classifier

pointer to the address of the partial sum to be computed. Then the dataflow Vivado-HLS
directive (Table 4.3) is applied on the main function to allow functions within its scope
to operate in parallel. HLS automatically detects that function calls can be executed
simultaneously and synthesis is performed accordingly.

This technique is evaluated for array partitioning of factor 2,3,4,8 and 16. The results for
latency gain and resources utilization are depicted in Fig. 4.5. Latency is assessed in terms
of gain, in comparison to the latency of the original code. Memory and area are presented
in utilization percentages over the initial available resources.

Listing 4.2: Partitioned version of the original code
#define gamma 8

void SVM_partial_predict (int width , f loat ∗sum ,
f loat t e s t_vector [D_sv] , f loat sv_coef [N_sv/2] ,
f loat sup_vectors [D_sv] [N_sv/2]) {
int i , j ;
f loat d i f f , norma=0;
∗sum=0;

loop_i : for (i =0; i<width ; i++){
loop_j : for (j =0; j<D_sv ; j++){
d i f f=te s t_vector [j]− sup_vectors [j] [i+o f f s e t] ;
norma = norma + d i f f ∗ d i f f ;

}
∗sum = ∗sum + exp(−gamma∗norma)∗ sv_coef [i+o f f s e t] ;
norma=0;

}
}

void SVM_predict (int ∗ y){
const f loat coe f 1 [N_sv / 2] ;
const f loat coe f 2 [N_sv / 2] ;
const f loat sv1 [D_sv] [N_sv / 2] ;
const f loat sv2 [D_sv] [N_sv / 2] ;
const f loat t e s t_vector [D_sv] ;
f loat d i f f , sum1 , sum2 , sum ;

SVM_partial_predict (N_sv/2,&sum1 , test_vector , coe f1 , sv1) ;
SVM_partial_predict (N_sv/2,&sum2 , test_vector , coe f2 , sv2) ;
sum = sum1 + sum2 − b ;

i f (sum<0) ∗y = −1;
else ∗y = 1 ;

49

ECG-SVM

}

We observe that as the number of partitions increases, the latency of the design is reduced
accordingly. In fact, the speedup of execution time is very close to the ideal speed-up
value, which is equal to the number of array partitions being used. For a partition factor
of two, this translates into a speedup of 2×, while a partition factor of sixteen results in a
speed-up close to 16×. There is a clear trade-off regarding reduced latency and increased
resources utilization. For each instance of the parallel executed function the logic used
for the function body is replicated. This explains the increase in DSP, Flip Flop and
LUT utilization. For example, the loop body requires 45 DSP units for all the operations
to be scheduled the way they are in the original code. This number remains the same
for each independent instance but the total number is multiplied by a factor equal to the
number of instances or partitions used. This explains why values over 100% utilization
are presented for a large partition factor, meaning that resource availability of the target
platform has been exceeded. The same principle applies for the utilization of Flip Flops
and LUTs.

Figure 4.5.: Performance and utilization for increasing number of partitions (automatic)

An interesting parameter is the utilization of BRAM for array implementation. By using
the partitioning directive we have managed to avoid the replication of the arrays for
each instance. Each function requires as many BRAMs as are needed to implement its
partition of the array. This leads to an almost constant total number of used BRAMs
in all cases except for the one of partition factor 16. In that case HLS demonstrates an

50

4.4. Design exploration for accelerated SVM classifier

inconsistency and replicates of the arrays are created, resulting in a burst in memory
usage.

In order to avoid this memory burst, manual array partitioning is applied by allocating
several, smaller arrays from the beginning instead of declaring one large array and then
partitioning it into smaller ones using the corresponding directive. Now in each function
call, a different array pointer is passed pointing to one of the array partitions. This
means that the programmer must manually split the array containing the support vectors
and the array of their coefficients into smaller arrays containing fewer support vectors.
As expected, the increase in area resources (DSPs,Flip Flops and LUTs) remains the
same, in both cases. However, the burst in number of BRAMs when partitioning for
a factor of 16 is now eliminated and BRAM utilization remains practically the same
regardless of the number of partitions. The gain in latency of automatic vs manual array
partitioning is presented in Fig. 4.6. We observe that the proposed manual partitioning
is more effective than the automatic one, giving a speed-up practically equal to the ideal
one.

Figure 4.6.: Speedup gain comparison (automatic vs manual)

51

ECG-SVM

Advancing Instruction Level Parallelism through arithmetic operation reshaping

While data-parallel optimization enables different support vectors to be calculated simul-
taneously, instruction-level parallelism targets at optimizing the performance of compu-
tations required for calculating the contribution of one support vector to the classification
result. This contribution requires the computation of the squared euclidean distance be-
tween the current support vector and the test vector, performed in the inner loop, i.e.
loop_j. The loop iterates over the elements of the two vectors, computes their differ-
ence, multiplies it with itself and accumulates this squared difference to a variable that
holds the squared euclidean distance when the iterations end. Applying the loop unroll
directive (Table 4.3) to this loop should increase ILP since the computations regarding
each element of the vectors can be performed independently of each other and thus in
parallel.

Automatic loop unrolling of the inner loop using the HLS loop unroll directive leads to
a reduction of the accelerator latency, as it can be seen in Table 4.4. The result however
is not the one anticipated. Careful inspection of the scheduling reports generated by the
tool showed that it does not fully exploit the available parallelism. The subtractions and
multiplications of different elements are not scheduled simultaneously and additions are
scheduled in a serial manner even though there is no true data dependency between the
added values.

Inspired by several works in computer arithmetic [210–212], we propose a more efficient
implementation of this loop unrolling by modifying the structure of the addition and
transforming it into a tree-based computation of the final result. In this way, HLS can
schedule the independent calculations in parallel by allocating more hardware resources,
if needed. The structure of the tree based data calculations is depicted in Fig. A.8
for an unroll factor of value 6. The number of loop iterations is reduced to 3. In the
internals of the third iteration, it is shown how input_vector and support_vector are
subtracted, squared and finally added in different levels of a tree-like structure. Oper-
ations in each level can be executed in parallel. To produce the final result of a full
loop_j execution, the outcome values of each iteration have to be accumulated in one
variable. This is also performed in a tree-like way and thus it does not introduce any
more latency to the hardware. In the proposed framework, tree-base code restructur-
ing is automatically performed through a custom source-to-source transformation script
that generates the tree reconstructed SVM source code according to the level of the loop
unrolling factor.

The proposed manual unrolling technique was examined for unrolling the inner loop
of the SVM code 3, 6 and 18 times, respectively. Table 4.4 reports the difference in
performance and resources utilization when applying the unroll directive on the inner
loop versus manually unrolling it while using a tree-based expression balancing struc-
ture for the computations. Significant improvement in latency gain is observed when

52

4.4. Design exploration for accelerated SVM classifier

Table 4.4.: Evaluated metrics for automatic vs manual unrolling

Version Unroll factor Automatic Unroll using directives Manual Unroll using tree structure
latency BRAM DSP FF LUT latency BRAM DSP FF LUT
(cycles) (%) (%) (%) (%) (cycles) (%) (%) (%) (%)

initial - 412783 24 20 3 11 412783 24 20 3 11
unrolled 3 252259 24 21 3 11 214039 47 26 4 14
unrolled 6 206395 24 23 3 11 149065 70 34 5 18
unrolled 18 173271 27 20 3 11 90461 27 50 8 29

applying manual instead of automatic unrolling. The greater the unroll factor is, the
higher the performance gap of the two methods is. The reason is that the tree based
structure of performing computations allows data independent operations to be executed
in parallel, thus significantly reducing inner loop latency and subsequently total design
latency.

The expected trade-off of the proposed technique is increase in resources utilization and
specifically in DSPs, FFs and LUTs. The implicit declaration of parallel subtractions
and multiplications as well as of the parallel additions of the tree structure results to an
increase in the number of computational instances required to achieve instruction level
parallelism. In other words, the HLS tool identifies the available parallelism and allocates
more logic to exploit it.

Listing 4.3: Unrolled version of the original code
#define gamma 8

const f loat sv_coef [N_sv] ;
const f loat sup_vectors [D_sv] [N_sv] ;

void SVM_predict (int ∗y ,
f loat t e s t_vector [D_sv]) {

loop_i : for (i =0; i<N_sv ; i++) {
loop_j : for (j =0; j<D_sv ; j=j+6) {

d1=tes t_vector [j]− sup_vectors [j] [i] ;
d2=tes t_vector [j+1]−sup_vectors [j +1] [i] ;
d3=tes t_vector [j+2]−sup_vectors [j +2] [i] ;
d4=tes t_vector [j+3]−sup_vectors [j +3] [i] ;
d5=tes t_vector [j+4]−sup_vectors [j +4] [i] ;
d6=tes t_vector [j+5]−sup_vectors [j +5] [i] ;

sq_prod1=d1∗d1 ;
sq_prod2=d2∗d2 ;
sq_prod3=d3∗d3 ;

53

ECG-SVM

******** * * * * * * * * * * * * * * * *

3
rd

 iteration of loop_ j

(inner loop of the unrolled version)

tmp_sum1 tmp_sum2

tmp_sum3
tmp_sum4

** * *

+ +

+ +

+

* *

+

Result derived from the first iteration of

the inner loop of the unrolled version.

tmp_sum1 tmp_sum2tmp_sum3

tmp_sum4+

+ ++

+ +

1
st

iteration of

loop_ j

2
nd

iteration of

loop_ j

support_vectorsᵢ (i)input_vector(i)

Calculated result of

loop_ j (inner loop)

support_vectorsᵢ (i)input_vector(i)

Calculated result

of inner loop

result of 1st iteration

of loop_j

result of 2nd iteration

of loop_j

Calculated

result of 1
st

iteration

Calculated

result of 2
nd

iteration

Figure 4.7.: Tree based computations for manual unrolling and HLS scheduling

sq_prod4=d4∗d4 ;
sq_prod5=d5∗d5 ;
sq_prod6=d6∗d6 ;

tmp_sum1=sq_prod1+sq_prod2 ;
tmp_sum2=sq_prod3+sq_prod4 ;
tmp_sum3=sq_prod5+sq_prod6 ;

tmp_sum4=tmp_sum1+tmp_sum2 ;
norma = norma + tmp_sum3 ;
norma = norma + tmp_sum4 ;

}

sum = sum + exp(−gamma∗norma)∗ sv_coef [i] ;
norma=0;

}

sum = sum − b ;
i f (sum<0) ∗y = −1;

54

4.4. Design exploration for accelerated SVM classifier

else ∗y = 1 ;
}

An adverse and unexpected effect of manual loop unrolling regards BRAM utilization. For
an unroll factor of 3, three accesses to support vectors array are required simultaneously
but the BRAM has at most two read ports. To achieve the reading of three elements, HLS
creates a copy of the array and implements both copies using dual port RAMs to provide
four reading ports. As a result, there is a gain in parallelism and latency but BRAM
utilization doubles, i.e. 128 allocated BRAMs instead of 64. In the case of unroll factor
of 6, three copies of the same array implemented with dual port BRAMs are required
thus BRAM utilization triples. Similarly, when fully unrolling the loop we would expect
nine copies of the array to be created in order for 18 elements of the same array to be
read concurrently. However, HLS automatically partitions the array in 18 rows, each
one being implemented as dual port BRAM, thus allowing simultaneous access without
memory increase. Consequently, HLS behaves in an inefficient and inconsistent manner.
To tackle this issue and generate efficient IPs both in terms of performance and resources
utilization, array partition directives can be applied to the arrays which is fully examined
in section 4.4.2.

4.4.2. Optimization Level 2: Design Space Exploration of HLS Directives

In this section, we focus on the exploration of HLS knobs exposed as Vivado-HLS direc-
tives to enable further SVM accelerator tuning. Analysis of the impact of directives is
performed using Vivado which is an industrial strength HLS tool and also automates the
instantiation process of a Zynq based co-designed system. However, any other HLS tool
which uses annotation of the input source code like LegUp [213] could be incorporated in
our proposed framework and derive an analysis similar to the one presented in following
sections.

Analysing impact of directives in SVM classifier

In previous sections, techniques based on structural modifications of the C code were
developed to create effective RTL architectures. These formed a first level of optimiza-
tion that brings to RTL the required efficiency. The performance though can be further
improved by meticulously tuning the available HLS directives. In this section we are
going to explore the impact of the chosen directives on the efficiency of the accelera-
tor.

The directives applied on the classifier are Loop pipeline, Loop unroll, Array par-
tition and Array reshape (Table 4.3) [145]. A short description of these directives is

55

ECG-SVM

(a) Impact of pipeline directive in
loop_i

(b) Impact of loop unroll directive in
loop_i

(c) Impact of pipeline directive in
loop_j

(d) Impact of loop unroll directive in
loop_j

(e) Impact of array partition cyclic di-
rective in sup_vectors

(f) Impact of array reshape cyclic di-
rective in sup_vectors

Figure 4.8.: Impact of directives on SVM kernel source code

56

4.4. Design exploration for accelerated SVM classifier

Table 4.5.: Applied directives and their parameters

directive variable factor dimension
pipeline loop_i on,off -

loop_j on,off -
loop unroll loop_i 0,2,7 -

loop_j 0,2,3,4,6,9,18 -
partition sup_vectors 0,2,3,4,6,9,18 rows (dim 1)

test_vector 0,2,3,4,6,9,18 -
sv_coef 0,2,7 -

reshape sup_vectors 0,2,3,4,6,9,18 rows (dim 1)
test_vector 0,2,3,4,6,9,18 -
sv_coef 0,2,7 -

available on Table 4.3. They were selected with the intent of increasing the parallelism in
the computation of the squared euclidean norma in the inner loop. The loop is unrolled
and directives partition and reshape are applied to the accessed arrays, to increase the
number of their ports or their word-width respectively and allow simultaneous access to
their elements. In the same manner, these directives can also be applied to the outer loop
and the arrays referenced by its iterator.

Table 4.5 includes the directives applied to each variable in the SVM code in Listing 4.1.
In the column named "factor", the different possible values for each directive are presented.
An exploration has been performed to analyse the impact of these directives on the SVM
classifier code. The full search space consists of all valid combinations of these directives
for all values of their parameters included in Table 4.5.

This would lead to an immense search space, that can however be reduced. The configu-
rations including partitioning and/or reshaping array sv_coef are excluded since initial
profiling did not indicate paramount effects. Furthermore, some of the combinations are
excluded from the search space because they lead to equivalent design configurations or
contain incompatible directives. More specifically:

• Pipeline directive causes automatic unrolling of all loops down its hi-
erarchy. This behaviour leads to two constraints that significantly reduce the
exploration space. When the outer loop is pipelined, there is no point in unrolling
the inner loop by any factor less than the one corresponding to a fully unrolled
loop. When the outer loop is pipelined, there is no point in pipelining the inner
loop since it no longer exists as one.

• Fully unrolling the inner loop leads to automatic fully partitioning of the
support vector into separate rows and of the test vector into registers.
When the inner loop is fully unrolled, there is no point in partitioning or reshaping
the arrays referenced inside the loop by a factor less than the one corresponding to

57

ECG-SVM

fully partitioning or fully reshaping.

The result is a full search space consisting of 86580 configurations. Some of them cannot
be synthesized while others are synthesized but exceed time constraints. This leads to a
full space of 70962 configurations. For each one of them latency and area utilization in-
formation are available after synthesis results are acquired.

Box-plots of Figures 4.8a to 4.8f summarize the results of exploration regarding the impact
of each directive on latency gain, BRAM, DSP ,FF and LUT utilization. Each diagram
in Fig. 4.8 corresponds to an assessment of the effects of a single directive. For each
metric, the left box-plot groups together all configurations that include the directive
under assessment. The right box-plot includes the rest of the configurations. Outliers
have not been included.

In Fig. 4.8a applying pipeline directive on the outer loop (loop_i) is examined. Pipelin-
ing the outer loop leads to unrolling all loops down its hierarchy and therefore the inner
loop. When this directive is applied, latency gain reaches 99%. Its side-effect is slightly
increased BRAM utilization due to the automatic unrolling of the inner loop, which
in turn causes the automatic partitioning of the arrays referenced inside it. DSP, Flip
Flop and LUT utilization change significantly, exhibiting greater median and range val-
ues. This is attributed to the automatic unrolling of the inner loop which replicates
logic.

Fig. 4.8b depicts the results of outer loop unrolling (loop_i). This does not seem to be
crucial in the improvement of the design in terms of latency since the range of values
extends from negative values to 65% in both cases. BRAM utilization is not greatly
affected by the directive. The median value is the same in both cases and equal to the
original one. As far as DSPs, FFs and LUTs utilization is concerned their value range
is wider and their median value is greater when the directive is applied. This is again
anticipated, since unrolling a loop in HLS duplicates the loop body and thus the utilized
area is increased.

When applying the pipeline directive to the inner loop (loop_j), latency gain ranges
between higher values and has a median value of 60% as shown in Fig. 4.8c. FPGA
resources utilization exhibits narrower range with smaller median values. Parallelism is
increased by using all resources and not by replicating hardware. Operations are sched-
uled when the required resources and data are available and not necessarily sequentially.
This increases instruction level parallelism and reduces the initiation interval by allowing
the concurrent execution of operations within the loop leading to improvement in latency
gain.

Unrolling the inner loop has a positive impact on latency. It limits considerably the
range of values of latency gain and the median value is greater. This is illustrated in

58

4.4. Design exploration for accelerated SVM classifier

Fig. 4.8d. BRAM utilization remains constant and equal to the initial utilization when
no directives are applied. Additionally, when the inner loop is unrolled DSP, FF and
LUT utilization range is wider and in a higher region. This is again due to the fact
that unrolling a loop leads to replicating the loop body and thus to more logic and
area.

Partitioning an array aims at implementing each partition in different BRAMs thus cre-
ating more read ports and allowing higher parallelism. As shown in Fig. 4.8e, this
higher parallelism results indeed in increased BRAM utilization, when partitioning of
sup_vectors array is applied. The directive does not have great effect on latency or
DSP and FF utilization. LUT utilization seems significantly greater when the partition-
ing is not applied but this cannot be fully justified due to the noise in measurements
inserted by other directives. Similar conclusions can be drawn for the application of
the reshape directive presented in Fig.4.8f. BRAM utilization in that case is worth
mentioning as it decreases both in range and median value since the reshape directive
re-combines the elements created by partitioning into a single block-RAM with wider
data ports.

HLS directives design space pruning guidelines

Although an exhaustive search of the directives related exploration space guarantees the
discovery of optimal configurations, it requires extremely long run-times, thus forming an
impractical solution. A more targeted space exploration disposed of suboptimal design
configurations, is highly desired in designing complex accelerator architectures in order
to locate optimal configurations in less time.

In this section, we define and analyse three pruning guidelines which by effectively par-
allelizing the inner loop of the algorithm (loop_j) succeed to exclude suboptimal design
points of high execution latency from the search space. The proposed guidelines are
based on the observations of HLS directives impact analysis provided in Section 4.4.2. In
next section, we quantitatively validate their effectiveness in respect to their optimization
potential. The design space pruning guidelines follow the principle of customizing the
accelerator’s memory architecture to its computation and memory access patterns. The
only prerequisite for applying them is that the elements which need to be accessed concur-
rently each time, maintain their offset in the initial array. They are summarized as follows:

PG1. When the inner loop is unrolled by a factor, if the arrays referenced by the loop
iterator are partitioned, the partition factor should be equal to the unroll factor.

PG2. When the inner loop is unrolled by a factor, if the arrays referenced by the loop
iterator are reshaped, the reshape factor should be equal to the unroll factor.

59

ECG-SVM

(a) Combined Full and Pruned search space
(b) Pareto points of Full and Pruned search

space

Figure 4.9.: Full and Pruned Design Space

PG3. When the inner loop is unrolled by a factor, if the arrays referenced by the loop
iterator are both partitioned and reshaped, the product of partition and reshape factor
should be equal to the unroll factor.

The above rules address two main issues that arise when unrolling the inner loop. First,
unrolling a loop implies that multiple elements of arrays referenced inside it, need to
be manipulated in parallel. Each array is implemented as BRAM with two read ports
at most, thus a memory bottleneck is observed that limits potential performance gain
despite the large parallelism potential. Array partitioning leads to memory partitioning
into several banks thus allowing simultaneous access to multiple elements of the same
array. Array reshaping recombines the elements of array partitions into a single BRAM
that has wider data ports, allowing access to multiple elements of the initial array with
a single read. The combination of the two directives also allows simultaneous access to
multiple elements. In total, to fully exploit the inherent parallelism, array restructuring
must allow simultaneous access to at least as many elements as are referenced by the loop
iterator, i.e. equal to the unroll factor.

On the other hand, partitioning or reshaping an array by a factor greater than required
can have adverse effects. Since automatic partitioning and reshaping does not change the
source code of the accelerator, array references are still tuned for the initial array. As a
consequence the HLS tool compiler adds modulo operations to determine to which array
partition the elements referenced in each iteration belong and a significant overhead to the
total accelerator latency is introduced. The greater the partition factor is, the greater the
overhead gets. Similarly, when reshaping an array, packing more elements than required
in a single element of wider word width, introduces overhead to segment the part of
the word that is actually required. Therefore, packing all the elements required with no
inclusion of redundant elements is more efficient.

60

4.4. Design exploration for accelerated SVM classifier

Validation of the proposed pruning guidelines

The intuitive guidelines of the previous section need to be validated in a more robust
way. Therefore, it is necessary to study the set of all possible configurations created by
combining inner loop unrolling with partitioning and/or reshaping the arrays referenced
inside the loop. No other directives are included in the exploration, to ensure that results
are not distorted.

Figure 4.10.: Impact of loop unroll directive in loop_j

The guidelines are applied on this set. This creates a pruned set that only contains
the configurations of minimum latency. The left box-plot of Fig. 4.10 (Latency - Con-
straint on) contains these configurations while the right box-plot (Latency - Constraint
off) the discarded ones. The effectiveness of the pruning guidelines is proven by ob-
serving that the vast majority of low latency design points are included in the pruned
set.

The pruning guidelines can now be applied on the full search space. The resulting
pruned space should be evaluated in terms of its efficiency to locate the optimal points.
For that purpose, a Pareto analysis is performed on both spaces. This Pareto anal-
ysis considers the trade-off between delay and area utilization. The area utilization
metric combines BRAM, DSP, Flip Flop and LUT utilization percentage as shown in
4.31.

1The values are provided as percentages in HLS reports. To get their average value, their sum is
divided by 400 instead of 4

61

ECG-SVM

Areautil = BRAMutil +DSPutil + FFutil + LUTutil

400 (4.3)

Fig. 4.9a depicts the mapping of the pruned space (black ’x’ symbols) on the full space
(blue ’+’ symbols) and Fig. 4.9b includes the Pareto points of the two design spaces.
Although full search space exploration is very time consuming2, it was performed to
enable validation of the efficiency of our approach. We do not consider that this full
search is practical under realistic design time requirements especially when numerous
SVM models need to be optimized.

Statistical data are necessary for a fair comparison between full and pruned space. The
full design space for the SVM classifier includes 70962 configurations from which 30
distinct Pareto points are identified (Fig. 4.9a). The pruned space is composed of merely
2212 configurations, i.e. around 3.1% of the initial solution space including 13 Pareto
points. 10 of them are included in the pareto points of the full space, resulting in Pareto
coverage of 33%. Therefore the proposed pruning guidelines deliver an extremely reduced
design space spreading across the delay-area optimality region of SVM accelerator design
solutions.

Delay-Area Product Optimization

As shown in the previous section, the proposed pruning guidelines result in a signifi-
cant reduction, around 97.44%, of the original solution space that concentrates on the
Pareto optimal region considering the delay-area metrics (Fig.4.9). Although feasible,
an exhaustive evaluation based on exhaustive search optimization of the pruned solu-
tion space remains quite impractical, requiring around 5 hours of execution time. In
addition, the derivation of a Pareto-front as the main output of the exploration pro-
cedure enables a more deep analysis on the delay-area trade-offs, however it leaves to
the designer the final decision on which SVM design configuration should be selected
and implemented, i.e. the more the Pareto points the more difficult the decision pro-
cess.

In order to enable a faster and thus more practical optimization procedure than full
search as well as to provide to the designer a single optimized design solution, we imple-
mented a single-objective optimization framework, as the final stage of our methodology,
that receives as input the pruned design space, D, and solves the following optimization
problem:

min
x∈D

[
Delay(x)×Areautil(x)

]
∈ R2 (4.4)

2Approximately 15 days on an Intel Xeon CPU E5-2650 v2@2.6 GHz, 64 GB RAM

62

4.4. Design exploration for accelerated SVM classifier

subject to: 
BRAMutil(x)
DSPutil(x)
LUTutil(x)
FFutil(x)

 ≤


100%
100%
100%
100%

 (4.5)

The optimization goal is to find the configuration vector, x, that minimizes the delay-
area product in a solution space. A new possible design point is evaluated in terms of the
optimization objective and then filtered according to all inequalities of Eq. 4.5. Given the
compact solution space, we employ discrete steepest decent greedy optimizer to solve the
aforementioned optimization problem. Given an initial set of randomly selected points
from the pruned design space, it starts to greedily move within the design space towards
a local minimum following the negative of the gradient.

DDDD....SSSS. . . . Pruning Pruning Pruning Pruning

guidelinesguidelinesguidelinesguidelines

Exhaustive Exhaustive Exhaustive Exhaustive

searchsearchsearchsearch

Exhaustive Exhaustive Exhaustive Exhaustive

searchsearchsearchsearch

DDDD....SSSS. . . . Pruning Pruning Pruning Pruning

guidelinesguidelinesguidelinesguidelines

Optimizer Optimizer Optimizer Optimizer

based based based based

searchsearchsearchsearch

Pruned design space Pruned design space

Original design

space

Original Design Space

Exhaustive

search

D.S. Pruning

guidelines

D.S. Pruning

guidelines

Optimizer

based search

pruned design spacepruned design space

Exhaustive

search

Option B

Original Design Space

Exhaustive

search

D.S. Pruning

guidelines

D.S. Pruning

guidelines

Optimizer

based search

pruned design spacepruned design space

Exhaustive

search

Option B

Figure 4.11.: DSE options provided by the proposed framework

In total, Fig. 4.11 illustrates and summarizes the three different options provided to a
designer utilizing the presented framework given an input design space which consists of
a source code description of the function to be accelerated and a set of HLS directives
which can be applied on this code. In Option A, the framework is instructed to perform an
exhaustive exploration of all the design space. It is the most time consuming option (15
days for the case study) and its outcome is considered optimal since the input design space

63

ECG-SVM

is fully explored. In Option B, the previously described design space pruning guidelines
are enforced on the input design space to produce a reduced design space which is then
exhaustively explored. It is a medium case regarding time consumption (5 hours for the
case study) and is able to produce a sufficient number of optimal design points. Last
but not least, in Option C the input design space undergoes pruning but instead of an
exhaustive traversal of the pruned space, an optimizer is employed providing the designer
a single design point within a limited time frame (a few minutes for the case study),
which optimizes a single objective.

4.5. Design Methodology for Approximate SVM

In this section we describe the methodology followed to create an efficient approximate
SVM kernel that performs arrythmia detection on ECG signals. First, we present the ex-
ploited approximation techniques and then we apply the proposed framework of Section
4.4.2. Considering the data dependencies of the kernel and the complexity of the per-
formed computations, we apply approximate techniques, that reduce both the number
and complexity of the performed operations, as well as high level synthesis optimiza-
tion techniques that boost performance. For the rest of the section, the accuracy of the
approximate SVMs refers to the percentage of correct classifications in a set of heart
beats.

4.5.1. Approximate Techniques

Loop Perforation

The first approximate technique that we examine is loop perforation [214], i.e., omitting
loop iterations. Loop perforation was introduced in software approximation, but since
it is an algorithmic technique it can be equivalently applied in HLS. Although it can
be applied to any algorithm, its optimal tuning is application-specific. In this case, the
data dependencies of the SVM accommodate loop perforation. As seen in Listing 4.1,
the squared euclidean distance of a single test_vector and each sup_vector is computed
(norma), filtered through the RBF kenrel and eventually accumulated to a variable that
defines the classification result. The contribution of each support vector to the total sum
is irrelevant to the contribution of the others. Hence, loop perforation appears to be a
very promising approximation candidate for SVM that allows us to eliminate operations
(and thus the total latency of the kernel), as well as the area footprint, at a small accuracy
loss.

In order to efficiently apply loop perforation, we utilize a greedy approach to identify the

64

4.5. Design Methodology for Approximate SVM

Table 4.6.: Impact of Loop Perforation on SVM Accuracy.

Perforation % Accuracy% Speedup
2% 98.02% 1.41
4% 97.12% 1.45
6% 96.27% 1.47
8% 92.85% 1.51
10% 90.43% 1.54

support vectors to be omitted. In this study, we consider loop perforation ranging from
2% up to 10% with step 2%. Given a target of p% perforation, our greedy algorithm
implements an iterative procedure. In each iteration, we perforate an additional support
vector. The iterations terminate when p% perforation is reached. Given the support
vector matrix of the previous iteration, we evaluate the classification accuracy when also
perforating each one of the remaining support vectors. Then we perforate the respective
vector that achieves the highest accuracy. Table 4.6, presents the accuracy and speedup
over the exact-SVM, of the SVMs produced by our greedy approach. The attained ac-
curacy ranges from 98.0% for 2% perforation target to 90.4% for 10% perforation target.
The respective speedups range from 1.41× to 1.54×. As it can be seen, in the latter
case extra perforation comes at a significant accuracy loss without compensating with
significant additional speedup. Further perforation is not of interest in this application
due to lower accuracy rates.

Precision Scaling

Vivado HLS provides fixed-point precision data types for C/C++ kernels. We can
leverage this feature to apply precision scaling, i.e., implement the SVM kernel with
smaller bit-widths. This will result in smaller hardware operators and thus faster cir-
cuit.

Migrating from standard C types to arbitrary precision types is not trivial in terms of
maintaining the correctness. For that reason, we perform an exploration to refine the
utilized data types to their optimal size. Six different data types are defined for variables
test_vector, sup_vectors, sv_coef , diff , norma, sum of Listing 4.1. We use fixed
point representation for each data type and examine varying precision for the decimal
part that ranges from 12 up to 22 bits. In our exploration we evaluate all the possible
combinations with respect to the data type and its precision. For example Table 4.7 shows
the precision assigned to each data type for the most accurate configuration resulted by
this exploration. The accuracy of this configuration is 99.82% and its attained speedup
is 2× with respect to the exact implementation.

65

ECG-SVM

Table 4.7.: Fixed point Data types Initial Configuration in Bits

Variable Bit-Width Integer Bits Decimal Bits
test_vector 24 2 22
sup_vectors 24 2 22
sv_coef 32 10 22
diff 25 3 22
norma 31 9 22
sum 32 10 22

4.5.2. Approximation and Optimization Methodology

The techniques described so far should be combined in a synergetic and strategic manner
to deliver a highly optimized approximate SVM classifier. The non-linear and nontrivial
inference effects between the applied approximation techniques as well as the HLS op-
timization directives regarding both performance as well as accuracy require the use of
heuristic algorithms in practice. A brute-force evaluation of all possible combinations of
the examined techniques, would lead to an enormous design space. In order to avoid an
exponentially growing search space, we propose a framework that incrementally exploits
each technique and gradually builds up to the implementation of an efficient FPGA SVM
classifier, accelerated through both approximate and high level synthesis optimization
techniques.

As a first step, we apply loop perforation, carefully adjusted to the kernel’s requirements.
Specifically, loop perforation technique is applied to the exact SVM classifier, using the
greedy algorithm in Section 4.4.2. This step results in constructing five approximate
SVM classifiers, each one exhibiting a perforation percentage of 2%,4%,6%,8% and 10%
respectively and an initial boost in performance.

As a second level of optimization, we explore the performance enhancement that can be
extracted by meticulously tuning the in-build optimization knobs of HLS tool with respect
to the previously conducted approximations. To avoid an exhaustive design space explo-
ration, we utilize the framework proposed in [178], which elegantly prunes the design space
and efficiently converges towards the Pareto front. The basis of the proposed pruning
strategies lies in customizing the memory architecture according to the computation and
memory access patterns of the algorithm. Since different perforation percentages result in
different memory layouts and thus different optimal configurations of HLS directives, each
approximate-perforated SVM should be evaluated separately. Therefore, we perform an
efficient design space exploration and acquire a resource utilization-speedup Pareto-front
for each approximate SVM resulted by loop perforation. Note that all design points within
the same Pareto exhibit the same classification accuracy.

On the last optimization level, we further boost the performance by applying preci-

66

4.6. Experimental Results

sion scaling. For each Pareto point, an exploration is performed to refine the utilized
data types to their optimal precision. We evaluate all the possible combinations (Sec-
tion 4.5.1), and a new Pareto Front is extracted. The approximate designs in this
Pareto front, apply both loop perforation and precision scaling, as well as HLS opti-
mization.

4.6. Experimental Results

In this section, the efficiency of the proposed design methodology is experimentally eval-
uated. We provide three different evaluation analyses regarding i) the efficiency of the
proposed design exploration to deliver delay-area optimized designs compared typical
exploration approaches, ii) the efficiency and robust behavior of the derived SVM ac-
celerator design configurations at scale, i.e. for SVM configurations exposing increased
computational complexities, iii) the effectiveness of the proposed approach for co-designed
ECG analysis flows and iv) applying the proposed framework to an approximate SVM
kernel.

4.6.1. Experimental Set-up

The primary target FPGA board in this work is Zedboard Zynq Development Kit xc7z020clg484-
1 [208]. It provides a complete ARM based Processing System (PS) featuring a Dual ARM
Cortex-A9 MPCore with integrated memory controllers, floating point operations sup-
port and full Linux OS compatibility. The PS side of the board is tightly integrated with
the Programmable Logic (PL). The FPGA resources provided by the target board are
adequate to support all proposed HW optimizations on the utilized SVM model. This
model itself is constrained in its parameters size due to the fact that it has been pro-
duced via a structure/accuracy optimization search process [207]. In general, available
FPGA resources are a major constraint of the HW optimization process and this has
also been reflected in Section 4.4.2. However, providing that resources are available, the
proposed framework can maintain efficiency of the derived HW accelerators when SVM
model parameters are scaled (Section 4.6.3).

Xilinx Vivado-HLS (v2015.2) [145] has been used to derive all SVM accelerators men-
tioned in the experimental evaluation. The same tool was also utilized to instantiate the
HW/SW co-designed ECG analysis system on the target board. To achieve communica-
tion of the PS system with the HW accelerators implemented on PL side, ARM AXI inter-
faces are used. AXI is part of Advanced Microcontroller Bus Architecture (AMBA). There
are different types of AXI interfaces available for the target Zynq board. In this work
AXI4 Lite interface is utilized, which is a subset of AXI4 Memory Mapped Interfaces. The
Processing System implements the Master Interface of the AXI4 bus while the IP the Slave

67

ECG-SVM

Interface, which is controlled by the Master through block level signals. The AXI4 Slave
Lite Interface is added to the IP that will configure the PL.

AXI-Lite Interconnect

SVM accelerator

FPGA Logic

Processing System SW stack

Userspace

 ECG signal analysis

Device Tree:

/dev/svm0
sysfs

Interface

Device drivers

– open, mmap

Kernel

functions

Linux kernel

Accelerator

BSP

Dual ARM

core

Processing system

Processing System SW stack

Userspace

 ECG signal analysis

Device Tree:

/dev/svm0
sysfs

Interface

Device drivers
 open, mmap

Kernel

functions
Linux kernel

Accelerator

BSP

Dual ARM

core
Processing system

AXI-Lite

Interconnect

SVM

accelerator

FPGA Logic

Figure 4.12.: Target Zynq based system HW/SW overview

The overview of the HW and SW parts of the co-designed system is illustrated in Fig.
4.12. The software is developed in Xilinx SDK 2014.4 and is executed on the ARM
Cores of the PS side. The ARM cores run Linux OS developed using Petalinux 2014.4
tool. Petalinux uses hardware configuration files generated by Vivado to build a Linux
distribution that includes all drivers necessary for the communication between the PS and
PL, including the custom IP. The IP is included in the Linux file system as a userspace
I/O device and is mapped to memory via mmap system call. The software application
uses this device as a common file and accesses it through a pointer to the corresponding
mapped memory range. The accelerator Board Support Package provided by Vivado,
encloses the information of the memory mapping of the registers of the IP to the ARM
CPU. Using this mapping, the CPU feeds the accelerator IP with data which in turn
returns the classification result to the CPU.

68

4.6. Experimental Results

4.6.2. Efficiency evaluation of the proposed DSE methodology

In this section, we evaluate the efficiency of the proposed pruning based design exploration
strategy for SVM accelerator optimization in comparison to exhaustively traversing the
original design space.

To quantify the efficiency of the proposed exploration strategy, we make use of two opti-
mization meta-heuristics to search for design points inside the full and the pruned design
space. These two optimization meta-heuristics are i) steepest descent (Section 4.4.2) and
ii) a genetic optimizer3. All exploration strategies has been executed 50 times to account
for the unpredictability imposed by the optimization procedure.

We compare the three exploration alternatives in terms of i) optimality of results through
the distance metric with respect to the optimal solutions (the lower the better) derived
by the exhaustive design space exploration and (ii) number of synthesized solutions that
indicates exploration’s run-time efficiency. Fig. 4.13 shows the distance from the optimal
delay-area design point, by varying the number of synthesized designs for each exploration
strategy.

As shown, the efficiency of each exploration strategy is layered in different ranging zones.
It is clear that the zone of the proposed methodology dominates almost completely both
optimization meta-heuristics applied on the full design space variants. For the same
or smaller number of synthesized configurations, the proposed exploration delivers de-
sign solutions that are closer to the optimal SVM designs, delivering an average dis-
tance error 0.001 with a standard deviation of 0.14. The respective average distance
values for the steepest descent on the full design space has been calculated to 2.83
(standard deviation: 2.37), while for the genetic optimizer to 4 (standard deviation:
2.47).

It is important to stress out that the two-phase exploration strategy presented in Section
4.4.2 and validated here is successful because the optimizer is able to search for design
points within a greatly compact space which includes very effective solutions. In other
words, it is the combined effect of the pruning guidelines and the optimizer that derive an
efficient SVM accelerator. The discrete steepest descent greedy optimizer was utilized as
an example meta-heuristic in order to convey that even a simple optimizer is able to locate
near optimal design points within the compact design space.

69

ECG-SVM

Figure 4.13.: Average Distance from Optimal Design for Different Optimizers

4.6.3. Evaluating derived SVM accelerators classifier at scale

Analysis of our proposed SVM classifier HW acceleration techniques has been presented
using a specific SVM model. However, it is important to validate that the proposed
work-flow retains its efficiency for SVM classifiers with different characteristics in terms
of support vectors number and input feature vector size.

The effectiveness of data level parallelization technique (Section 4.4.1) that partitions
the support vector array is tested using support vectors that scale from 1000 to 100000
with fixed feature dimension. Fig. 4.14a shows that speedup remains constant and equal
to the number of parallelly executing functional blocks. Scaling is also evaluated in the
combination of data-level and instruction-level parallelization technique using an unroll
factor of 3. The speedup in that case is doubled and remains constant over different
number of support vectors (Fig.4.14b).

Similarly, the effectiveness of the instruction-parallel optimization technique (Section
4.4.1) is tested against support vectors with dimensions scaling from 10 to 1000. It can

3The genetic optimizer has been configured with the following parameters: population size: 20, gen-
erations: 4

70

4.6. Experimental Results

(a) Speedup of tiling technique
(b) Speedup of tiling combined with tree reduc-

tion of unroll factor 3

Figure 4.14.: Speedup of proposed techniques remains the same with scaling N_sv

(a) Speedup of tree reduction technique
(b) Speedup of tree reduction technique com-

bined with tiling of 2

Figure 4.15.: Gain of proposed techniques remains the same with scaling D_sv

71

ECG-SVM

be seen in Fig.4.15a that speedup increases until a maximum value is reached and then
remains almost constant. The tree reduction technique is also investigated in combination
with data level parallelism of a factor of 2. The speedup trend is maintained but its values
are almost doubled (Fig.4.15b). This leads to the conclusion that there is no interference
in the combination of the two techniques in scaled up versions of the SVM classifier.
In total, results indicate that our proposed methodology retains high latency gains when
applied to scaled up SVM classifier models taking into account both increased number of
support vector machines number and feature vector size. To achieve that, resource uti-
lization is significantly increased to support the computational requirement of the bigger
model. Inevitably, for high values of the SVM parameters, the utilization exceeds the
available resources of the selected target development board. However, this is not a lim-
itation of the proposed methodology but a target HW induced one which is overcome
using a larger FPGA in terms of available resources.

4.6.4. SVM based ECG arrhythmia detection

Figure 4.16.: Average execution time per beat

In this section, we evaluate the efficiency of the optimized SVM classifier HW accelerator
using a HW/SW co-designed version of ECG based Arrhythmia detection application. A

72

4.6. Experimental Results

comparison of the diagnosis part of the application is performed, implemented on various
target HW platforms with focus on the execution latency of each implementation. The
communication latency of providing new input data to the classifier is negligible (ranging
from 10x to 900x less than computation time) since its input feature vector consists of
only 18 points (Section 4.3.2). For fairness purposes all systems operate on top of a Linux
based Operating System and have been compiled using O3 flags of gcc. More specifically
the utilized target platforms are:

1. Intel Quark SoC [206] operating at 400 MHz.

2. ARM Cortex A8 [215] operating at 600 MHz.

3. ARM Cortex A9 with 2 processing cores (Zynq Processing System) operating at
667 MHz.

4. ARM Cortex A57 [216] which is a 64-bit CPU with 2 processing cores operating at
1.4 GHz.

5. A Zedboard based HW/SW co-designed system. Its HW IP is derived from Vivado
HLS with input SVM source code with no structural modifications or optimization
directives applied to it (Maximum Clock Frequency at 100 MHz).

6. A Zedboard based HW/SW co-designed system. Its HW IP is of optimal configura-
tion in terms of execution latency derived from the Pareto optimal points provided
by our proposed DSE (Maximum Clock Frequency at 25 MHz).

The testing set is composed of 52291 test vectors, which correspond to feature vectors
extracted from heart beats of the MIT-BIH ECG signals. These are provided as input
to the different SVM classifier implementations and the average execution latency of
the diagnosis stage for all different implementations of the classifier is presented in Fig.
4.16. We observe a correlation between CPU competency and reduced execution latency.
In addition, in cases where two processing cores are available, the parallel version of
SVM classifier is effective in reducing execution latency. We did not examine the case of
more than two workers since the processing cores were fully utilized and thus introducing
more working threads could be an overhead. Regarding the co-designed systems, the
naive implementation of HLS based SVM HW IP is in most cases not efficient even in
comparison to CPUs. On the contrary, the optimized version of the HW IP, is in every
case much more efficient compared to all other design alternatives. The achieved speedup
compared to the unoptimized version reaches up to 78×. Interestingly, the expected
speedup values derived from the HLS tool reports is 79.81× which validates that the tool
is a trustworthy guide for the designer. The optimized HW IP is also almost 10× faster
in comparison to the dual core 64-bit ARM based system.

73

ECG-SVM

0

2

4

6

8

10

12

14

16

18

20

89 90 91 92 93 94 95 96 97 98 99

Sp
ee

d
u

p

Accuracy %

Figure 4.17.: Pareto Front for Accuracy and Speedup Metrics

4.6.5. Performance Evaluation of Approximate SVM

In this section only, the target FPGA and tools differ. Xilinx Vivado-HLS(v2018.2) and
the Zynq7 ZC706 Evaluation Board are used to implement all SVM accelerators. The re-
sults are based on simulation reports generated by Vivado HLS.

Fig. 4.17 depicts the Pareto Front, which is the output of our methodology. This study
explores the trade-off between speedup and classification accuracy when all optimization
levels have been applied. Accuracy ranges from 90% to 99% and speedup from 1× to
18×. The highest speedup is achieved for aggressive approximation, i.e. 10% perfora-
tion and significant precision scaling. The trade-off of course is reduced accuracy, which
is crucial for an application such as arrhythia detection. Fig.4.18 presents the speedup
achieved for the fastest configuration resulting by each technique with a target accu-
racy of 95%. Perforation technique satisfies this constraint for 6% perforation, 1.47×
speedup and 96.27% accuracy, whereas precision scaling delivers a configuration with 4×
speedup and 97.32% accuracy. Our proposed methodology, delivers a configuration that
combines 2% perforation, precision scaling and HLS optimization techniques and outper-
forms them by delivering 15× speedup and 96.7% accuracy. Finally, Fig. 4.19 presents
the resources utilization for the corresponding SVMs. The precision scaling technique is
the most efficient one in resources utilization, since reducing the bit width leads to fewer
BRAMS for storing the support vectors and smaller-width operators. The small decrease
in resources utilization due to perforation, is attributed to storing less support vectors at
BRAMS. Our proposed technique shows greater utilization, due to the HLS directives,
that require more resources to increase parallelism and dominate over the resources sav-
ings achieved by perforation and precision scaling. This increase is compensated by the
greater speedup.

74

4.6. Experimental Results

0

2

4

6

8

10

12

14

16

exact perforation precision scaling proposed

Sp
e

e
d

u
p

SVM Approximate Classifiers

Figure 4.18.: Speedup for Fastest SVM of each technique.

0

5

10

15

20

25

30

BRAM DSP FF LUT

U
ti

liz
at

io
n

 %

Type of Resource

exact SVM

perforation

precision scaling

proposed

Figure 4.19.: Resources Evaluation for Fastest SVM of each technique.

75

ECG-SVM

76

Chapter 5.

GANDAFL: Dataflow Acceleration for Short
Read Alignment on NGS data

Next Generation Sequencing (NGS) technologies have revolutionised genome study through
rapid generation of genomics data at low cost. Any genome analysis usually starts with
DNA read alignment, employing string-matching algorithms such as Smith-Waterman
to compare DNA sequences. The inherent computational intensity and the vast amount
of NGS input data the algorithm operates on, create a bottleneck in the workflow. Ac-
celerated reconfigurable computing has been extensively leveraged to alleviate this bot-
tleneck, focusing mostly on high-performance albeit standalone implementations, i.e ne-
glecting the implications of integrating the accelerated functions within the sequencing
tools. In existing accelerated solutions effective co-design of the NGS short-read align-
ment still remains an open issue, mainly due to narrow view on real integration aspects,
such as system wide communication and accelerator call overheads. In this chapter, we
address the aforementioned inefficiencies and propose GANDAFL, a novel Genome
AligNment DAta-FLow architecture for SmW Matrix-fill and Traceback stages to per-
form high throughput short-read alignment on NGS data. We then propose a radical soft-
ware restructuring to widely-used Bowtie2 aligner that allows read alignment by batches
to expose acceleration capabilities. Batch alignment minimizes calling overhead of the
accelerators whereas moving both Matrix-fill and Traceback on chip extinguishes the com-
munication data overheads. The standalone solution delivers up to ×116 and ×2 speedup
over state-of-the-art software and hardware accelerators respectively and GANDAFL-
enhanced Bowtie2 aligner delivers a ×1.9 speedup. This chapter is based on our pub-
lications in [217,218].

77

GANDAFL

5.1. Introduction

The development of next-generation sequencing (NGS) technologies has dramatically
changed the landscape of human genetics research [219]. Advances in the field of DNA
and RNA sequencing have led to effective genome mapping and have paved the way to
personalized genomic medicine [220]. NGS platforms [26] have now the capacity to gen-
erate billions of short fragments of DNA in a matter of hours. These small pieces of
DNA, called reads, are the input to various types of genomic analysis such as variant
calling [221] and differential gene expression [222]. The first step in any genomic anal-
ysis pipeline however is short read alignment, which entails finding a specific location
on the reference human genome where a short read is best mapped. The vast amount
of sequencing data and the excessive time requirements for this step to execute, have
put considerable strain on the computing systems used for genome analysis. Since the
throughput of NGS technologies does not cease its exponential growth [223], there is
an ever-present need for identifying bottlenecks and proposing accelerated solutions for
popular aligner tools.

Several aligners such as BLAST [117], BWA-MEM [112], Bowtie2 [113], Novoalign [224]
and CUSHAW2 [225] have been developed that rely on a seed-and-extend model for
aligning the short reads. According to this model, in the seeding step, each short read
is further fragmented in short pieces, called seeds, that align exactly on the reference
genome. In the seed-extension step each seed is extended so that the whole short read
aligns with the reference, allowing mismatches. Most of the state-of-the-art aligners
implement variations of the Smith-Waterman string matching algorithm [118] to perform
the seed-extension step. Smith-Waterman is a dynamic programming algorithm that
operates in two stages; the matrix-fill stage fills a two-dimensional similarity matrix with
score values. Starting at a predefined matrix cell, the traceback stage traverses the matrix
backwards until it constructs a valid alignment path.

The seed-extension step forms a severe bottleneck in modern sequencing frameworks
[226, 227]. Bowtie2 aligner first performs the seeding stage for each read, and then
extends the seeds through SmW, i.e. matrix-fill and traceback Quantitative analysis
and detailed profiling of different datasets indicates that the Matrix-Fill stage of Smith-
Waterman dominates the execution time of Bowtie2 aligner. Depending on the dataset,
SmW can take up to 50% of Bowtie2 execution time (see Section 5.5.1 and Fig.5.18a
for more details). However this time is actually distributed among independent Smith-
Waterman tasks spanning across all reads. Furthermore, each read alignment can invoke
a different number of Matrix-Fill tasks, each one followed by a Traceback task. An
initial naive approach would target Matrix-Fill for hardware acceleration to tackle the
alignment bottleneck. A straightforward integration of an accelerated Matrix-Fill phase
of Smith-Waterman though [122], [123], [124] would introduce a huge overhead, due to
both the immense amount of the accelerator calls and the transferring of the matrices
to the CPU for the traceback stage. In fact, taking into account the time overhead

78

5.1. Introduction

provisioned by each call to the accelerator and the accelerator-CPU transfer time for
each matrix, the overall execution time of the aligner can actually be increased. A
challenge as such has also been noted by [228] regarding JVM-FPGA communication
overhead.

Existing works either propose standalone Matrix-Fill Smith-Waterman acceleration ig-
noring the traceback stage [122–124] and thus the communication overhead in a real
system, or provide an end-to-end hardware implementation of both seed and extend
phases [229, 230]. Recently, authors in [231] and [232] have implemented such systems
based on the workflow principles incorporated in Bowtie2 and Bowtie respectively. Such
systems constitute new tools that introduce a learning curve for experts (e.g. new for-
mat, new functionality) and come at the expense of safe-to-use results and advanced
visualization analyses provided by well-known and defacto sequencing frameworks such
as Bowtie2 [113], BWA-MEM [112]. Accelerating existing NGS alignment frameworks
exposes several challenges that can be only highlighted by holistically and carefully pro-
filing and modeling the behavior of both the software and hardware coefficients of the
co-desinged sequencer. Up to now, there are only a few software/hardware co-design
acceleration works for short-read alignment [233, 234]. Therefore, effective co-design of
the NGS short-read alignment still remains an open issue, mainly due to narrow view on
real integration provided by existing solutions.

In this paper, (i) we identify the communication overhead that typical co-design ap-
proaches introduce and propose an architecture, i.e., GANDAFL that alleviates this
problem by moving more computation on chip and restructuring the software code to
minimize accelerator calls. (ii) We provide a new dataflow implementation of Matrix-
Fill and Traceback, that enables high-throughput processing of an unbound number of
streaming short reads to cope efficiently with the exponential growth in NGS data. Task-
level parallelism, implemented through an interleaving execution pattern, maximizes the
throughput via high utilization of the underlying FPGA. (iii) Through effective param-
eterization of the proposed architecture, we provide an analytical timing model of the
accelerator, which is further evaluated and tuned to minimize prediction error for per-
formance. (iv) Finally, we present a Bowtie2 code restructuring that implements an
aggregation-batching strategy and feeds the accelerator in high-throughput streaming
fashion with minimized transfer and call overheads. To the best of our knowledge, this is
the first work that integrates a hardware accelerator into Bowtie2 rather than building an
equivalent aligner from scratch. An additional value of our work is that GANDAFL can
be incorporated in any short read mapper that relies on the same seed-and-extend mech-
anism as Bowtie2 (e.g. BWA-MEM) as long as the necessary source code restructuring
takes place.

We evaluate GANDAFL, the proposed accelerator, in a two-fold manner, i.e. as a stan-
dalone component and integrated in Bowtie2 restructured aligner. As a standalone com-
ponent, GANDAFL is compared against a baseline dataflow implementation [235] from
Maxeler, an optimized x86 SSE Bowtie2 implementation [113], and state-of-the-art FPGA

79

GANDAFL

accelerator GACT in Darwin [36] and achieves ×9.5, ×116 and ×2.13 speedup respec-
tively over the latter solutions. For the evaluation we consider datasets of different error
rates and quality. The results show that the integration of the GANDAFL with the re-
structured Bowtie2 source code preserves the accuracy and manages to deliver up to ×2
speedup depending on the dataset.

The remainder of the chapter is organized as following: Section 5.3 presents the theo-
retical background of short read alignment in genomic pipelines and focuses on popular
Bowtie2 aligner and Smith-Waterman algorithm. Section 5.4 extensively describes the
implemented architecture and the flow of data through the pipeline while Section 5.5
presents the insights and modifications of Bowtie2 software architecture to accommodate
efficient integration of the accelerator. Section A.4 provides a performance and accu-
racy evaluation of the dataflow engines and the integrated design and finally Section ??
concludes the paper.

5.2. Related Work

Acceleration of short read alignment has been greatly explored by software solutions such
as Edlib [114], WFA [115], and KWS2 [116], which utilize SmW or a similar string com-
parison algorithm. Custom reconfigurable processors for Smith-Waterman acceleration
is an active field of research with several implementation solutions proposed [121]. Most
Smith-Waterman accelerators [122], [123], [124], [125], [126] compute the similarity ma-
trix based on a wavefront approach through a pipeline of PEs that forms a systolic array
and computes a matrix anti-diagonal per time step. The authors in [124] provide a very
detailed architecture as such, that implements a multistage-PE design, and optimize each
stage in terms of resources utilization and delay. Similarly in [127], the authors propose
a reconfigurable accelerator that implements a modified equation to improve mapping
efficiency of a single PE, and a special floor plan to cut down the interface components
routing delay. The authors in [128] employ a pipeline of PEs to calculate the similarity
matrix but recalculate the matrices for traceback in software for highest-score alignments
to avoid memory contention. Although each of these publications suggest optimization
techniques on Matrix-Fill, they do not provide a Traceback implementation. In this pa-
per, we extend these designs by implementing the complete Smith-Waterman algorithm
along with the Traceback procedure, enriching current literature which is currently lack-
ing in variety of detailed traceback descriptions. In our final high-throughput real system,
on-chip traceback diminishes matrix transfer overhead cost and thus enables efficient in-
tegration.

There are only a few works of accelerated sequence alignment based on Smith-Waterman
with Traceback. The authors in [129] present an alignment engine that performs the
traceback in parallel with the matrix fill stage with restrictions on sequence length due

80

5.2. Related Work

to on-chip memory bottleneck. On the contrary, the authors in [130] propose an align-
ment architecture that accelerates both the forward scan and traceback priotitizing space
efficiency for variable reference lengths. The traceback procedure is guided by the host
by scheduling multiple partial traceback executions on hardware. Although this accom-
modates aligning sequences of variable length, it hinders integration with third-party
aligners. In contrast to the current work, both accelerators are tailored for long sequence
alignment with sequence lengths ranging from 50 to 16000 bases. These sequences are
more than an order of magnitude longer compared to those required in short read align-
ment tasks. Although these works provide the traceback functionality under certain
circumstances, they are not designed to cope with a high throughput input rate of short
reads generated by an NGS platform. In this work, we attempt to provide an accelerator
that continuously accepts new short-reads for alignment and complies with the trends set
by latest NGS platforms and state-of-the-art sequencers.

There are also works that target acceleration of widely-used aligners or develop end-to-end
hardware implementations of custom aligners from scratch. Authors in [131] emulate the
Smith Waterman implemented in BWA-MEM for short-read alignment. The achieved
acceleration is extracted from task-level parallelism rather than inner-task parallelism
and the focus lies on the scheduling of parallel alignment tasks rather than the specifics
of the integration and the handling of traceback intricacies. The work in [132] designs
a hardware aligner from scratch based on the algorithm used by BFAST [133]. The
implementation requires storing at least 20GB of memory for the genome and a table
containing the candidate locations. No information is provided for the implementation
of traceback stage.

Recently, Darwin [36] has proposed an end-to-end hardware acceleration for 3rd gen-
eration sequencing, implementing accelerators for both seed extract and extend phases
and highlighting the importance of including the traceback step on chip so as not to
undermine the benefits of hardware acceleration. For the extend phase, the authors in-
troduce GACT algorithm which implements a modified SmithWaterman for arbitrarily
long senquencesand is implemented in both ASIC and FPGA. The authors in GenAx [134]
propose a highly efficient ASIC accelerator for both seeding and extension step that sup-
ports traceback and is based on a finite state automata instead of SmW. The same
authors later propose SeedEx [135], an FPGA accelerator for the seed-extension step
that targets a cloud FPGA and is also integrated in BWA-MEM aligner. GenASM [136]
accelerator is an ASIC accelerator that performs the seed extension step based on Bitap
algorithm and accelerates both short and long reads. The authors in [137] also present
the ASAP FPGA accelerator for short read alignment. ASAP introduces several mod-
ifications to the alignment procedure, that need extra validation before its adoption on
existing NGS frameworks, e.g. it utilizes the Levenshtein distance computation rather
than SmithWaterman. The latency of ASAP also is dependent on the the number of
mismatches between the short read and the reference and supports a simpler constant
gap penalty model for the scoring scheme. Our work allows up to 17 edits, higher than
the acceptable mismatch rate for most alignments, and handles the affine-gap penalty

81

GANDAFL

FASTQFASTQ

FASTQFASTQ

raw
reads

filtered reads

Sequencing

Quality control

Alignment

FASTQSAM

FASTQSAM

Post-alignment processing FASTQ
VCF

Variant Calling

raw mapped reads

filtered mapped reads

@SEQ_ID
GATTTGGGG
+
!''*((((*

FASTQ format

19:20389:F 99 1 17644 0 37M = 17919 314
TAT...CAT >>>...:<9 RG:Z:UM0098:1
XT:A:R NM:i:0 SM:i:0 AM:i:0 X0:i:4
X1:i:0 XM:i:0 XO:i:0 XG:i:0 MD:Z:37

SAM format

20 14370 rs6054257 G A 29
PASS NS=3;DP=14;AF=0.5;DB;H2
GT:GQ:DP:HQ 0|0:48:1:51,51
1|0:48:8:51,51 1/1:43:5

VCF format

Figure 5.1.: Typical Variant Discovery Workflow.

model.

5.3. Theoretical Background

5.3.1. NGS genomics pipeline

A genome is an organism’s complete set of genetic instructions and information. This
information is enclosed in regions of the genome, called genes. A genome is essentially
a long string of nucleotide bases: adenine, cytosine, guanine and thymine (A, C, G
and T respectively). Within a species, the vast majority of nucleotides are identical
between individuals. Different expression of genes among individuals create the genetic
diversity and lead to a variety of phenotypes. Genome study is essential to discover
the mechanisms that lead to this diversity and is of great value to emerging fields like
personalized medicine and research for various often incurable genetic diseases. Genome
applications that fulfil this purpose are variant calling [162], differential gene expression
[163], phylogeny creation [164] etc.

Fig.5.1 illustrates a typical variant-discovery workflow and the most important steps of
the workflow. The first step focuses on the generation of the data required for these
workflows. The ever evolving genome sequencing technology enables the reading of the
sequence of nucleotide bases in a DNA molecule of an individual. This procedure converts
raw signals from individuals into short fragments of bases, called short reads. Second
generation sequencing platforms [156] generate many millions of nucleotide short reads,
with lengths that range between 50 to 300 bp (base pairs). During the generation of short
reads, unique sequencing errors and biases are introduced and therefore quality checks
are required to identify and correct them. The resulted short reads data are saved in
FASTQ format [167].

82

5.3. Theoretical Background

The next steps. i.e. short read alignment and variant calling, facilitate the reconstruction
of the genome of the sample and comparing it to the reference genome of the organism.
Short read alignment performs the mapping of the short reads generated in the first step
to a location in the reference genome that is most likely its origin. Both reference and read
sequences are encoded using numerical values. The short read alignment process results
in alignments that can be either perfect matches to the corresponding reference location
or include mismatches. Single nucleotide substitutions (SNV), insertion or deletion of a
base (indels) are some of the most frequent variants in the sequence of bases that can
potentially lead to genetic mutations. Gaps are used to account for insertions or deletions
in the sequence, i.e. reference gap and read gap respectively. These variants are called
edits. After aligning, a Sequence Alignment Map (SAM) file is produced, which includes
information on the alignments of reads [168]. A post-alignment processing step is also
invoked to correct technical biases, and the corrected alignments are ready for variant
calling analysis.

Finally the variant calling step identifies differences between the sequencing reads and the
reference genome. It is worth mentioning that, localized realignment is also performed
during the variant calling stage to correct artifacts introduced during the alignment phase.
The pinpointed variations are reported in an output file in the Variant Call Format
(VCF) [169].

5.3.2. Bowtie2 Alignment Algorithm

As shown, short read alignment is at the heart of the genomic pipelines. Several software
tools have been developed therefore to perform alignment of shorts reads to the reference
genome. Bowtie [170,171], Bowtie2 [113], Soap2 [172], BWA-MEM [112] are some of the
widely used ones. Most aligners adopt a seed-and-extend alignment model to perform
the aligment of reads. According to such a model, the seeding phase searches the refer-
ence genome for perfect matches of small substrings in the short read, i.e. seeds. This
search is sped up through the indexing of the reference genome with various techniques.
The exact matches that occur from this search are the candidate positions for the final
alignments. The next phase extends the candidates so that the short read aligns against
the genome allowing mismatches. The extend step uses dynamic programming to com-
pute score-matrices and construct possible alignments, such as Needleman-Wunsch [177],
SmithWaterman [120] and approximate string matching algorithm for Levenstein Dis-
tance [236].

Bowtie2 [113] utilizes a pre-built index of the reference genome, which is based on FM-
index [88] and BWT transform [174]. The aligner operates on a set of sequencing read
files in FASTQ format [168] and outputs a set of alignments in SAM format. Bowtie2
iterates sequentially across the reads of the FASTQ file and aligns each one based on
the seed-and-extend model. In the seed phase, each read is fragmented into seeds, whose

83

GANDAFL

length and interval can be defined by the user [237]. In our implementation seed length
is 22 and seed interval is defined by function lengthseed = 1 + 1.15 * sqrt(lengthread).
The seeds are prioritized in descending order based on their probability to deliver a valid
alignment and create the set of candidates for full-alignment of the initial read allowing
edits.

In the extend phase, a designated function iterates over the seed hits and initiates Matrix-
Fill tasks. Once a seed is selected for further exploration, it is extended into full alignment
by performing SIMD-accelerated dynamic programming, i.e. SmithWaterman: Matrix-
Fill followed by Traceback. Algorithm 1 presents a simplified version of the complex
control that drives the attempts for extending candidate seeds. Multiple conditions be-
tween iterations of candidate seeds (line 4) determine if the search for alignments should
be continued and if yes, which candidate seeds should be examined. For example, seeds
that lay on a location that has already been tested through a previous iteration (i.e.
overlapping) will lead to the same alignment and are therefore skipped. Similarly, if sev-
eral alignments have been found for the read and all the remaining ones are expected to
be suboptimal, the search is successfully completed. However, if no successful tries have
been made and a limit of failed attempts has been reached, the search terminates. This
algorithmic structure spawns an unbound number of alignment tasks per read, each one
depending on the previous seed-extension alignment task. Therefore the alignment of a
single read is in fact a chain of seed-extend alignments. However, neither the order nor
the number of examined seeds can be known a priori.

Each alignment has a score that represents the probability for the read to originate from
the corresponding reference’s location in the genome. This is an educated guess and
Bowtie2 does not guarantee to find the best possible alignment. The found alignment
results are sorted based on the alignment score and by default the highest-ranking align-
ment is reported. The alignment result reported is formed during traceback and includes
information about the position of the alignment in the reference genome as well as a list
of edits that occur.

5.3.3. Smith-Waterman Algorithm

Smith-Waterman [118] (SmW) is a dynamic programming algorithm for performing local
sequence alignment and determining similar regions between two nucleic sequences. The
algorithm mainly consists of two phases: (i) filling a similarity matrix and (ii) tracing
back the similarity matrix to find the optimal alignment between the two sequences. Let
Q, |Q| = n be the read sequence that aligns against reference sequence S, |S| = m. Q and
S constitute a read-reference pair and alignment task. SmW performs alignment by filling
similarity matrix H according to Eq.8.3. In this equation, q and r stand for gap extend
and gap open penalties respectively, while sc stands for the substitution matrix that
assigns each pair of bases a score for match or mismatch. An alignment score quantifies

84

5.3. Theoretical Background

Algorithm 1: Bowtie2 Seed&Extend Model
1 while not eof in FASTQ do
2 rd = next_read()
3 seed_list = searchAllSeeds(rd)
4 ranked_seeds = rankSeedHits(seed_list)
5 while not done do
6 seed = next_seed(ranked_seeds)
7 (rd,rf) = form_extension(seed)
8 (E,F,H,start) = MatrixFill(rd,rf)
9 if successfull then

10 alignment = Traceback(E,F,H,start)
11 result_list = add(alignment)

12 ranked_res = rank(result_list)
13 report(ranked_res[0])

how similar the read sequence is to the reference sequence aligned to. It is calculated by
subtracting penalties for each difference (mismatch, gap, etc.) and, in local alignment
mode, adding bonuses for each match.

Ei,j = max{Ei−1,j , Hi−1,j − q} − r
Fi,j = max{Fi,j−1, Hi,j−1 − q} − r

Hi,j = max{Hi−1,j−1 + sc[Q[i], S[j]], Ei,j , Fi,j , 0}
(5.1)

SmW then identifies the highest score in H matrix. Starting at this position, a traceback
function traverses the matrices backwards until it reaches a zero-score element and thus
acquires the optimal alignment path.

SmW Data dependencies: Fig.5.2 illustrates an alignment example utilizing a simplified
linear gap penalty scheme. The match and mismatch bonuses and penalties are defined
in the substitution matrix. On the left, Fig.5.2 presents an intermediate snapshot of the
calculations whereas on the right the final results. Each cell in the matrix H requires
the values from the up cells of matrices E,F,H (indicated by blue boxes), the left cells
of E,F,H (green boxes) and the upleft cell (red box) of H. Therefore all elements in
a single anti-diagonal can be computed in parallel and are dependent only on values
from the previous two anti-diagonals. The proposed architecture exploits this property
to extract parallelism and thus fills H,F ,E matrices per anti-diagonal in n + m -1 steps
(details in Section 5.4.1).

85

GANDAFL

C G C T A

0 0 0 0 0 0

C 0 2 1 2 1 0

C 0 2 1 3 2 1

T 0 1 1 2 5 4

A 0 0 0 1 4 7

C G C T A

0 0 0 0 0 0

C 0 0 0 0 0 0

C 0 1 0 1 0 0

T 0 1 0

A 0 0 0

C G C T A

0 0 0 0 0 0

C 0 0 1 0 1 0

C 0 0 1 0 2 1

T 0 0 0

A 0 0 0

C G C T A

0 0 0 0 0 0

C 0 2 1 2 1 0

C 0 2 1 3 2 1

T 0 1 1 2 5

A 0

F matrix

E matrix

H matrix

H final matrixReference

Q
u

e
ry

Alignment
C G C T A
C - C T A

𝐿𝑖𝑛𝑒𝑎𝑟 𝑔𝑎𝑝 = −1

up

left

upleft

1
st

ro
w

𝑛

𝑚

anti-diagonal

nth antidiagonal

A C G T N

A 2 -1 -1 -1 -1

C -1 2 -1 -1 -1

G -1 -1 2 -1 -1

T -1 -1 -1 2 -1

N -1 -1 -1 -1 2

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥,

𝑆𝑚𝑖𝑡ℎ𝑊𝑎𝑡𝑒𝑟𝑚𝑎𝑛

Figure 5.2.: Matrix Fill Dependencies and Traceback example for simplified Smith-Waterman
with linear gap penalty scheme.

5.4. Design of the Accelerator System

This work proposes GANDAFL, an architecture of an accelerator system that can be
seamlessly integrated into Bowtie2 aligner. Therefore, the input and output interface as
well as the alphabet and scoring schema are in compliance with Bowtie2. GANDAFL
implements a linear systolic scheme. It includes an additional module that implements
the traceback stage of the SmW algorithm (Section 5.4.1), and is enhanced with a series
of design optimizations (Section 5.4.2). A detailed description of the optimizations and
the synchronization and flow of data through the modules is presented (Section 5.4.3).
We also devise an analytical performance model for GANDAFL (Section 5.4.4) and we
further discuss its scalability (Section ??).

5.4.1. Dataflow Smith-Waterman & Traceback Engine

A high-level description of the on-chip architecture is depicted in Fig.A.3. The proposed
architecture includes two dataflow modules, each one implementing a phase of SmithWa-
terman, the Matrix-Fill and Traceback components. Matrix-fill kernel receives as input
the read-reference pairs to be aligned. This kernel calculates the matrices H, F , E and
the starting point of the traceback procedure through an array of Processing elements.
The substitution matrix that defines the match and mismatch penalties is implemented
as a Read-Only Memory on chip. The Traceback kernel needs to traverse the data gener-
ated by Matrix-Fill in reverse order, starting from the aforementioned position. For that

86

5.4. Design of the Accelerator System

 . . .

PE0

PE1

PEn

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0

1

3

1

0

1

3

1

Traceb
ack

0

1

3

1

L interleaved
rd-ref
pairs

reference

read

R
O

M

substitution
 matrix

double
buffering

READenableWRITEenable

 interleaved
output

Figure 5.3.: Architecture of Dataflow Engines on Chip.

reason, the matrices are stored on on-chip memory for subsequent use from Traceback.
Traceback traverses the stored matrices, finds the alignment for each read-reference pair
and fills in buffer with information necessary to the host program to reconstruct the
alignment. Detailed description of these kernels and enhancements depicted in Fig.A.3
will be explained elaborately throughout this section.

Matrix Fill

Matrix-fill input. MatrixFill kernel receives as input the read-reference pairs to be aligned.
Each pair consists of a read sequence and a reference sequence, which is a candidate
fragment of the genome against which the read sequence aligns. Each element in the input
sequences represents a single nucleic base of the sequence. The kernel receives a number
of read-reference pairs, i.e. a read-reference pair batch. The different read sequences are
arranged consecutively in the read input stream. The corresponding reference sequences
are placed in the same order in the reference input stream.

Processing Elements array: The architecture is built on an array of Processing Elements
(PEs), equal to the length n of Q read sequence. Each PEi holds a single base character of
the read sequence and computes the ith row of E,F,H matrices, as reference sequence S
of length m is streamed through it. Fig.5.4 illustrates matrix H computation for the pair
of sequences {Q1, S1} of lengths n = 4 and m = 5 respectively. Each time step L in the
time axis of the figure corresponds to the time required for the computation of a single cell
value and therefore an antidiagonal. The PEs operate in parallel and each one computes

87

GANDAFL

PE3

PE2

PE1

PE0 q0s0 q0s1

q1s0

q0s2

q1s1

q2s0

q0s3

q1s2

q2s1

q3s0

q0s4

q1s3

q2s2

q3s1

q1s4

q2s3

q3s2

q2s4

q3s3 q3s4

q0

q1

q2

q3

antidiagonal/time axis
x

n+m-1

1st row

read-reference pair {Q1,S1} next pair {Q2,S2}

x x

m=5n=4

L

fixed Q1=q0q1q2q3

streaming S1=s0s1s2s3s4

s4
L

 s0

 s1

s2

 s3

0 1 2 3

Figure 5.4.: Example of computation of H matrix by PE array unfolded in time for sequence
lengths n = 4,m = 5.

an element of the current antidiagonal. Each PEi starts receiving reference bases at time
i. A new si base arrives every L cycles. For example, by time t = n = 4 base s0 has passed
through all PEs, bases s1, s2, s3 have reached PE2, PE1, PE0 respectively and s4 has not
yet entered the pipeline. In time step t = m = 5, all reference bases have passed through
PE0 and therefore row0 of matrix H has been computed. Similarly, the rest of the rows
are computed by other PEs. When all S bases stream through all PEs (after n+m− 1
steps), all values of similarity matrices are computed.

Fig. 5.5 depicts the schematic diagram of the architecture inside a single PE. The
schematic implements equation 8.3 as a chain of comparators, which propagate the max-
imum value of their inputs until Hi,j is computed. Each PEi is assigned with a base
character qi of the query sequence. This value is retained until all reference characters
sk are streamed from PEi−1 through PEi and into PEi+1. Characters qi, sk are used
to index a ROM (scoring matrix) and fetch their match or edit score. The computation
of an Hi,j cell takes L cycles according to circuit timing. Values of Ei,j−1, Hi,j−1 were
last computed by the same PEi and therefore they are stored for L cycles before being
fed back into the same PE for Hi,j generation. Values Fi−1,j , Hi−1,j were computed by
the previous PE, PEi−1, and are stored for use by PEi for L cycles after their genera-
tion. Similarly, Hi−1,j−1 is computed by PEi−1, L cycles before Hi−1,j , so it is stored
for 2 ∗ L cycles before being consumed by PEi. Fig. 5.5 includes buffers of length L
to illustrate the delay and storing of values until each is ready for consumption. The
last PE runs additional logic to locate the cell with the maximum score in the final
row.

MatrixFill output. Due to anti-diagonal dependencies, matrix elements are stored per
antidiagonal as soon as they are computed, and not per row as expected. This leads to the

88

5.4. Design of the Accelerator System

Fi,j

L

L

L

L

qi

+

L

m
ax

m
ax

m
ax

m
ax

scoremax

position

Ei,j

scoring matrix

Hi-1,j -open

Fi-1,j -extend

Hi-1,j-1

Hi,j

Hi,j-1 -open

Ei,j-1 -extend

L
Hi-1,j

sk, k e[0,m-1]

i-1
j-1

i-1
j

i
j-1

ij

i-1,j-1 i-1,j

i,j-1 ijL

L2*L

original

skewed

Fi-1,j Hi-1,j

Ei,j-1 Hi,j-1

Hi-1,j-1

PEi-1

PEi

fr
o

m
 P

E i
-1

L
2*L

to
 P

E i
+1

PEi

Figure 5.5.: Schematic diagram of PE architecture and flow of Data between consecutive PEs.

skewed matrix pattern depicted in Fig.5.4. Each row of the skewed matrix is implemented
as a vector of n elements, so that all PEs can write simultaneously the cell values generated
per time step. The row dimension is naturally equal to the number of antidiagonals, i.e.
the time steps required for filling the matrix. Therefore the buffer is implemented as a two-
dimensional matrix with n+m− 1 rows and n row-length.

Traceback

Traceback module reconstructs the alignment path by traversing the H matrix in reverse
order, as depicted earlier in Fig.5.2(b). Matrix fill streams the position of the maximum
score to the Traceback module and buffers out E,F,H column-vectors, i.e. antidiagonals,
in reverse order from the n+m−1th to the 1st one. The maximum score can be any of the
elements of the nth row of H matrix, and therefore it is not necessarily found on the first
antidiagonal received by Traceback. For that reason, the alignment path computation
begins when the anti-diagonal containing the starting point arrives. Based on the values
of E,F,H received, bases {q, s} and the scoring scheme, the backwards step is resolved
and it could either be the up, left neighbor of any of H,F ,E matrices, or the upleft
element of matrix H.

Fig.5.6 demonstrates how Traceback receives one column, and thus an anti-diagonal, of

89

GANDAFL

0

1 1

2 1 3

2 1 2 1

2 1 3 6 4

1 2 2 1 4 3 2 1

1 0 2 1 0 0 0 2

0 2 1 0 0 0 2 2

2 1 3 6 4

1 2 2 1 4 3 2 1

1 0 2 1 0 0 0 2

0 2 1 0 0 0 2 2

0 0 1 4 7

1 1 2 5 4

2 1 3 2 1

2 1 2 1 0

0

2

2

0

1

5

1 7

4

4

Trace
b

ack
Current Matrix-Fill Previous Matrix-Fill

double buffering

0

1 1

2 1 3

2 1 2 1

0

1 1

2 1 3

2 1 2 1

0

2

2

0

0

2

2

0

1

5

1

1

5

1
4

4

4

4 77

up, left elements:
current checks

upleft element:
next check

not yet
computed

past
checks

𝑃𝐸0

𝑃𝐸1

𝑃𝐸2

𝑃𝐸3

reference
stream

𝑛 + 𝑚 − 1

𝑛

1st row

nth antidiagonal

Figure 5.6.: Flow of data from Matrix Fill to Traceback phase.

each matrix per L cycles for n = 4,m = 5. At this time, Traceback has received 3 antidi-
agonals and resolved the first backwards step. Based on the current cell of the 3rd antidi-
agonal, Traceback deduces that it has to move to the upleft cell, which is 2 antidiagonals
away and therefore has to wait for 2 ∗L cycles to receive it.

As the traceback progresses, potential edits, between the two sequences occur. Each edit
is fully described by its type, the position it occurs on the reference sequence, and the
bases of the sequences at this position qbase, sbase. The types of edits can be one of the:
substition, read gap, reference gap and are encoded as an integer number. Our design
adopts an upper limit of edits, i.e. 17 MAXEDITS, which is in compliance with the
range of edits for short reads generated by modern sequencers [238]. This is verified in
Fig.5.7, which shows that 99.99% of Bowtie2 found alignments (reported and not) for our
utilized datasets (see Section 5.6.1) have less than 18 edits.

Traceback output. The output of Traceback is constructed in compliance with the data
required by Bowtie2 to allow for seamless integration and reporting of alignments. Such
data are a flag indicating success or failure, the alignment score, the cell with the
max score, the number of edits and the start of the alignment on the two sequences
(pos1, pos2). For each alignment pair, these values are streamed to the host along with
a list of the edits (type, position, qbase, sbase). Table 5.1 summarizes the input, output
and intermediate data of the dataflow engines.

5.4.2. Streaming Optimizations

In order to minimize stalls in the dataflow pipeline due to intra- and inter-data dependen-
cies, the following streaming optimizations have been adopted:

90

5.4. Design of the Accelerator System

30

40

50

60

70

80

90

100

1 2 5 10 17 31

P
er

ce
n

ta
ge

 o
f

al
ig

n
m

en
ts

number of edits

S10 total alignments
S10 reported alignments
NEAT 50 total alignments
NEAT 50 reported alignments
NEAT 100 total alignments
NEAT 100 reported alignments
NEAT 150 total alignments
NEAT 150 reported alignments

99.99%

Figure 5.7.: Cumulative distribution of edits for all utilized datasets.

Interleaving Data Scheme

The computation of a cell value from each PE introduces a latency of L clock cy-
cles between the computation of consecutive anti-diagonals. To avoid idle clock cycles
due to this intra-data dependencies, the computation of L read-reference pairs is inter-
leaved.

Input sequences interleaving: According to this technique elements of subsequent read-
reference pairs are interleaved into a single sequence. Fig.5.8 illustrates the interleaving
scheme for L = 2 read-reference pairs. Reference sequences S1, S2 are combined in a single
input buffer that contains double the elements than each sequence on its own. The bases of
the original sequences are placed in the buffer in a round robin manner, i.e. alternately in
the case of L = 2. Between consecutive elements of a sequence Si there is an offset of L−1
elements of other reference sequences. For L = 2 this offset equals 1. The interleaving of
the read sequences is implemented in the same way.

Output buffers interleaving: The interleaving processing also affects the layout of all in-
termediate and final output buffers, i.e. E,F,H matrices and Traceback results. E,F,H

Table 5.1.: Input, Output and Intermediate data in the Dataflow Engines.

MatrixFill Traceback
input intermediate output
S(char) E(vector(n)) fail, score, subs, gaps(char)
Q(char) F (vector(n)) rpos, qpos(char)

H(vector(n)) rposini(int16)
positions(uint16) editpos, edittype(char)

S(char) editqchr, editchr(char)
Q(char)

91

GANDAFL

3
2
1
0

4
3
2
1

5
4
3
2

6
5
4
3

7
6
5
4

input format
skewed pattern

interleaving

Q1

Q2

S1

S2

antidiagonal index:
(0 .. n+m-1)

(0..L-1)
pair index:

antidiagonal
index:

(0 .. n+m-1)

output format

0 1 2 3 4 5 6 7

 0 1 2 3 4 5 6 7

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

3
2
1
0

4
3
2
1

5
4
3
2

6
5
4
3

7
6
5
4

interleaving S1,S2

interleaving Q1,Q2

0 1 2 3 4

0 1 0 1 0 1 0 1 0 1
 0 1 2 3 4

0 1 2 3 4 5 6 7

Figure 5.8.: Example of interleaving technique for L=2, reflected in both input and output
buffers.

matrices follow a skewed pattern due to antidiagonal dependencies as explained in Sec-
tion 5.4.1. Fig.5.8 demonstrates how the final matrix layout is generated when applying
interleaving on skewed matrices of independent alignment pairs {S1, Q1} and {S2, Q2}.
MatrixFill first computes and writes data for the first antidiagonal of pair {S1, Q1} and
then moves on to the "first" antidiagonal of pair {S2, Q2}. The rest antidiagonals follow
in the same manner. Therefore, the final matrix is arranged in groups of antidiagonals
of the same order, each from a different task. The groups can be accessed through the
antidiagonal − index in Fig.5.8. Within a group, the offset of the antidiagonal of a
specific pair can be accessed through the pair − index. This can be generalized for L
interleaved pairs. Interleaving technique allows the computation of L anti-diagonals per
L cycles, instead of 1 per L clock cycles and therefore greatly improves the throughput
of the design.

Taking into account the interleaving optimization technique, the final buffer size is final-
ized and described in the following equation.

matrixdim = ((n+m− 1) ∗ L) ∗ n

The interleaving technique is also reflected in a straightforward manner in the output
buffers of Traceback, where the output of each independent pair can be extracted utilizing
the double index addressing scheme.

92

5.4. Design of the Accelerator System

Double Buffering Technique

Traceback starts operating on the last values generated by Matrix-Fill. Therefore, Trace-
back module has to wait for Matrix-Fill module to complete writing the matrices. Sim-
ilarly, Matrix-Fill has to wait for Traceback to read all required values from the matri-
ces before aligning the next batch of L read-reference pairs and writing over the data.
To avoid halting Matrix-Fill’s operation while streaming data to Traceback, the double
buffering technique is employed.

Implementing the double buffering: This technique is applied to all matrices E,F,H.
Two copies are allocated for each matrix and Matrix-Fill and Traceback write and read
data, respectively, alternating between the two on-chip instances of each matrix. Fig.5.9
demonstrates the parallel read and write operations performed on the two instances of
each matrix during the alignment of a single L-batch. A control signal is utilized as
the selector in a multiplexer and defines which of the two allocated memories is being
written by Matrix-Fill. The complement of this signal is the selector of a multiplexer that
decides from which memory to fetch the data read by Traceback. The write and read
enable signals swap values for the aligment of the next L-batch. The two states depicted
in the figure are alternated until all bathes are aligned.

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0

1

3

1

0

1

3

1

E,F,H

READenableWRITEenable

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0

1

3

1

0

1

3

1

E,F,H

READenableWRITEenable

L-batch next L-batch

0 1 1 0

Figure 5.9.: Alternate READ/WRITE operations based on Double Buffering technique for con-
secutive batch alignment tasks.

5.4.3. Control and Data Flow of Engines

Matrix-Fill and Traceback engines are carefully synced and orchestrated to operate in
a pipelined manner. The end-to-end pipeline is build on set of modules, synchronized
through a set of event-driven counters that are a mathematical expression of the clock
cycles. These counters schedule the flow of data so that they pass through modules in

93

GANDAFL

0

1

3

1

0

1

3

1

.

.

0

1

2

n

PEs
Module

0

1

3

1

w
ri

te

re
a

d

.

.

.

Double buffering
Module

E,F,H matrices

E,F,H vector

q0

q1

q2

qn-1

Read-Input
Module

Control Module

Address
 Generator

Module

row_cntpair_cnt

read
address

write address

query-read Q reference S

s0

s1

s2

1 0
q3

q2

T
raceb

ack
read_enable swap batch_cnt

Figure 5.10.: Control (marked blue) and Data Flow (marked green) within the pipeline. The
state of each module for aligning 2 batches with L = 2, n = 4,m = 5 at time
{batch_cnt, row_cnt, pair_cnt} = {1, 2, 1} is illustrated.

designated time intervals in order to generate the final results. Fig.5.10 illustrates the
pipeline of modules and the flow of data when aligning two batches of read-reference pairs
with L = 2, n = 4,m = 5.

There are three basic counters, the pair_cnt, the row_cnt and the batch_cnt, respec-
tively. The pair_cnt is a modulo counter that counts the cycles required for the com-
putation of a single antidiagonal. Its maximum value is equal to L and it essentially
counts the pairs interleaved. In Fig.5.10 this counter has reached its maximum value 1,
indicating that an antidiagonal of the second pair is being computed. When this counter
wraps, it triggers an increase in the value of the row_cnt, which corresponds to the index
of the anti-diagonal being computed until all n+m− 1 of them are ready. For example,
current row_cnt value in the figure is equal to 2, therefore the third antidiagonal is under
computation. ach time the row_cnt overflows, the batch_cnt increases and signals the
alignment of a new batch of L reads. Fig.5.10 has batch_cnt equal to 1, hence it depicts
the alignment of the second batch.

These counters formulate control signals read_q, read_s for the Read Input module,
which is responsible for feeding read and reference sequences into the PEs module within
the time frame of an alignment task of a single L-read batch. Every L cycles, in case of
Fig.5.10 every 2 cycles, a new reference character of a single pair is propagated through
the array of PEs. In the meantime, reference characters of other pairs stream through.
Fig.5.10 showcases that by this time s0 of the second pair has reached PE2 whereas s3, s4
have not entered the PEs array. Characters of the first pair are held in intermediate

94

5.4. Design of the Accelerator System

buffers for use in the next cycle. Similarly, the read sequences pass through the array of
PEs. However, each character is assigned to a single PE and its value is retained until
the read’s paired reference sequence passes and a row of the matrix is computed. For
example, in Fig.5.10 PE2 updates its qi value with q2 while PE1 holds on to q1 and
ignores streaming value q3.

The operation of PEs module is also driven by the counters. Each PE computes L
elements every L cycles and completes L alignment tasks when row_cnt overflows. The
PEs module depending on the value of the respective counters computes the elements of
the row_cnt+ 1th E,F,H anti-diagonal of the pair_cnt+ 1th read of the batch_cnt+ 1th

L-read batch. For example, in Fig.5.10 the 3rd antidiagonal of the 2nd pair of the 2nd

batch is being computed.

PEs Module writes on one copy of the matrices and streams out the second one to
Traceback. The Double Buffering Module defines which matrix is being written by
the PEs during each batch alignment task through the swap signal. The "swap" signal
alternates between values 0 and 1, triggered by a new batch of L interleaved pairs. In
other words, when the row_cnt overflows, it signals the beginning of a new alignment
and triggers the complement of the swap value.

The matrices read/write operation alternate for each batch but they share the same layout
and addressing schema. The address generator module constructs the addresses for
matrices E,F,H based on the values of the counters. Fig.5.11 illustrates the addressing
schema described in the following equations, applied in combination with the double
buffering technique for each matrix.

write_address = row_cnt ∗ L+ pair_cnt

read_address = ((n+m− 1) ∗ L− 1)− row_cnt ∗ L+ pair_cnt

The write address indicates which row of each matrix is currently being written. Sim-
ilarly, a read address is generated, that indicates which row of a matrix is streamed to
Traceback. Fig.5.11 on the left shows the values of write address while the matrix is
filled in from top to bottom for L = 2, n = 4,m = 5. At the same time, the alternate
matrix is read in reverse order from bottom to top. Fig. 5.10 also illustrates which row
is written at the given time instance and which row of the alternate matrix is streamed
out.

The Traceback module constructs the alignments of an L − batch and identifies the
edits. Traceback receives row by row the matrix written during the previous batch
alignment and decides which aligment path is the optimal one. In Fig.5.10 addresses
{15 down to 13, and 11} have already been received by Traceback and address 12 is cur-

95

GANDAFL

Table 5.2.: Formulas for Modeling Time Analysis.

Cycles Latency
Matrix Fill (MF) (n+m− 1) ∗ (batches+ 1) ∗ L cyclesMF /f

Traceback (Tr) (n+m− 1) ∗ (batches+ 1) ∗ L cyclesT r/f

+MAXEDITS ∗ L
Tcomp max(tMF , tT r) = tT r

Bytes Latency
Input data bS + bQ = bytesin/BW

(n+m) ∗ batches ∗ L
Output data beditfeats

+ balignmentfeats
= bytesout/BW

4 ∗MAXEDITS ∗ batches ∗ L
+10 ∗ batches ∗ L

Tcomm max(tinput, toutput) = tinput

Texec = max(Tcomp, Tcomm) = Tcomp

rently being streamed. Within Traceback, three rows {15, 13, 11} of pair 1 have been
processed, whereas only pair 2 is waiting for its third one.

from PEs

to
 t

ra
ce

b
ac

k

n

L

start:
(row,l)=(0,1)
addr=1

current:
(row,l)=(2,1)
addr=5

end:
(row,l)=(n+m-1,1)
addr=17

start:
(row,l)=(0,1)
addr=16

current:
(row,l)=(2,1)
addr=12

end:
(row,l)=(n+m-1,1)
addr=1

Figure 5.11.: Address generation and matrix indexing applied on double buffers .

5.4.4. Analytical Performance Model of the Accelerator

The parameters describing the system can be used to formulate a timing model. The
dataflow computing model allows the programmer to create signals that control the flow of
data through the instantiated hardware. As described in Section 5.4.3, the control signals
count clock cycles and their overflow value represents the depth of the pipeline. Therefore
the programmer can compute the latency of the pipeline as a function of the dimensions of
the input dataset, the size of the input and the clock frequency. This function computes

96

5.4. Design of the Accelerator System

the exact number of cycles required for the engines to run.

In the streaming dataflow model implemented in this case, the computation is overlapped
with the transfer of data between the host and FPGA. In the dataflow engine, the com-
putation starts as data start streaming in the accelerator and when the first results are
ready, they are streamed out. Hence, the stages "sending input data", "computation" and
"sending output data" are executed in a pipelined manner. Therefore, the total execution
time is the maximum of the computation time (Tcomp) and the data transfer time, i.e. the
communication time between host and FPGA (Tcomm). The communication time can be
calculated as the maximum data size transferred in either direction divided by the band-
width. The bandwidth depends on the physical interconnect, i.e. in this case PCIe. The
computation time is equal to the maximum of the execution latency of dataflow kernels
MatrixF ill and Traceback. Table 5.2 includes the formulas that estimate the time steps
required for each operation.

Tcomm = max(tinputdata, toutputdata)
Tcomp = max(tMatF ill, tT r)
Texec = max(Tcomp, Tcomm)

MatrixFill & Traceback: A single MatrixF ill task runs for (n + m − 1) ∗ L cycles.
MatrixF ill executes as many times as the number of batches for alignment and (n +
m− 1) ∗ L extra cycles for sending data to Traceback, i.e. (n+m− 1) ∗ L × (batches+
1) cycles. Traceback also runs for extra (n + m − 1) ∗ L cycles in the beginning to
store S,Q sequences and for extra MAXEDITS ∗ L cycles in the end to send back
data to the host. Therefore it dominates over MatrixF ill and determines the Tcomp

time.

Input & Output data:

The data send into the FPGA are the read and reference sequences of lengths n and m
respectively. The output data include the information on the location and the type of the
found alignment (10∗batches∗L bytes) and the potential edits (4∗MAXEDITS∗batches∗
L bytes) of each alignment. The transfer time is calculated as the fraction of the bytes
and the bandwidth. The input data bytes are more than the output bytes based on the
equations and the parameters value, therefore the time to stream input data dominates.
Similarly, the computation time dominates over the communication time and therefore
the final estimated execution time is defined by Tcomp.

The estimated execution time is compared to actual measurements on the FPGA with
dataset input size scaling from 30 to 100 million input reads. As illustrated in Fig.5.12,
the initial model follows the trend of the real measurements, however the deviation is
great and the root mean squared error is 13.5 seconds. This deviation is due to neglect-
ing the delay for data transfer to and from the FPGA. To tackle this, we perform a
linear regression on the measured error values and generate a linear model for the er-

97

GANDAFL

40

90

140

30 40 50 60 70 80 90 100

Ex
ec

u
ti

o
n

ti

m
e(

se
c)

reads (GB)

Real data
Tuned Model
Initial Model

Figure 5.12.: Accuracy of Performance Model based on static timing analysis.

ror prediction. Adding this correction term to the initial model, delivers a tuned model
with minimized deviation, root mean squared error of 3.7 and mean absolute error of 2.5
seconds.

Efficiency in terms of PE utilization: As shown in Table 5.2, execution time of the
accelerator, i.e. Tcomp, has a linear relationship to the number of batches × the length of
a single batch L. Therefore, in order to examine the utilization percentage of a PE, we
focus on a single batch run. Based on the timing model presented in Section 5.4.4, each
PE is active as long as a reference sequence passes through it. Assuming as n the length
of the read sequence and as m the length of the reference sequence, the percentage of time
a single PE is active is described by the following formula:

m

n+m− 1 ∗ 100%

This formula can be easily extracted from Fig.5.13. For read length n = 100 and
reference length m = 160, this percentage translates to 61.8%. With minor changes
to our architecture and scheduling scheme (e.g. adding extra memory for matrices E,F,H
and changing the start and ending values of the counters presented in Section 5.4.3) we
could also pipeline the execution of batches. This way we could achieve almost 100% uti-
lization for each PE. However, this comes at the expense of more BRAM utilization, as two
MatrixFill modules would overlap for several cycles and require write access to the same
E,F,H instance. A third copy for part of matrices E,F,H would therefore be required
to resolve "read after write" dependencies As BRAM utilization is the critical resource in
our design, we did not pursue this implementation.

5.4.5. Scalability of Design

GANDAFL can scale in two directions to exploit the full extent of platform capabilities.
First, we explore the increase of the depth of the pipeline to address short read alignment
problems of different sizes. Secondly, we explore horizontal scalability, i.e. we replicate

98

5.4. Design of the Accelerator System

0

20

40

60

80

100

120

p
e

rc
e

n
ta

ge
 o

f
P

Es
 u

ti
liz

e
d

alignment time of single batch
0 n+m-1m

100% PE utilization

n

61.8% PEi utilization

Figure 5.13.: PE utilization in time.

181

61.3

26.7

80

43.1
20.9

49
25.6 15.3

37
11.9 9.7

0

50

100

150

200

time(sec) BRAM % Logic %

50 100

150 200

Figure 5.14.: Performance and Area utilization for Various Lengths of Read.

the single instance of the design and map it multiple times until we reach the limit
of available resources within a single device or use up all available connected FPGA
devices.

Variable Sequence Lengths

Depending on the sequencing technology and application, the length of the short reads can
vary. For example, for Illumina sequencing, length ranges from 50bp to 300bp. Based on
the equations presented in Section 5.4.4, the design of the engine is fully parameterizable
and therefore supports various alignment problems. The length of read and reference
sequences are both parameters in the accelerators design, both required in compile time.
Read length defines the length of the PE array. Both read and reference length define
the depth of the implemented BRAMs.

Fig.5.14 includes utilization results and execution latency for varying read lengths. Fig.5.14
indicates that BRAM resources increase almost linearly with the increase in read length
as opposed to execution time. When scaling input length from 50 to 100 bp the increase in
latency for 30 million reads is ×1.34 whereas from 50 to 150 bp is ×2.17. Latency escalates
for 200bp length, due a drop in frequency from 200 to 100MHz.

99

GANDAFL

+

bitwidth

batch3 batch2 batch1 batch0
L length

L length

 << 0

 << 1*bitwidth << 2*bitwidth

 << 3*bitwidth

Figure 5.15.: Multiplexing multiple input batches into one batch for multi-instance design.

Multiple Instances - Single Device

Given an alignment task with fixed lengths for read-reference pairs, multiple Matrix-
Fill & Traceback engines can be instantiated in order to fully exploit available resources
within a single FPGA board and enable parallel processing of read-reference pair batches.
Multiple read-reference batches are combined into a single batch by merging the input
and output streams. For that purpose, the elements of each input stream have a wider
bit-width, equal to an integral multiple of the bitwidth of the respective stream of the
single-instance design. This integral multiple equals the number of engine instances.
Therefore, each element now contains multiple nucleic bases, as many as the instances,
each belonging to a different sequence pair. The initialization of these streams takes place
on the CPU. Fig.5.15 illustrates how n-bit-wide input read sequences from 4 batches are
multiplexed into a single 4 ∗ n-bit-wide stream.

Each input stream is subsequently decoupled in as many streams as the number of in-
stances. The resulting streams are of equal length and their elements have the bit-length
of the respective stream of the single-instance design. The decoupling is performed by
an additional demux kernel instantiated on hardware. The demux kernel receives as
input the multiplexed streams, decouples each element utilizing bitwise-operations and
propagates them to the corresponding instance. The instances operate in parallel and
the results of each one are multiplexed into streams of wider bit-width by a respective
concat kernel. This kernel shifts the individual result of each instance into the respective
bits and concatenates all of them into a single result.

Table 5.3 presents resources utilization and achieved clock frequency when implementing
only MatrixFill and MatrixFill & Traceback engines. The number of instances imple-
mented in both cases is restricted by BRAM utilization. Fig. 5.17 presents scaling of

100

5.4. Design of the Accelerator System

d
em

u
x

SmW &
Traceback

co
n

cat

SmW &
Traceback

SmW &
Traceback

SmW &
Traceback

P
C

IE

P
CI

E

FPGAhost - CPU

stream = input.slice
(offset,
bitwidth)

output = out4.cat(out3)
.cat(out2)
.cat(out1)

host - CPU

Figure 5.16.: Architecture of Multiple Instances Design.

execution time for Matrix-Fill as well as Matrix-Fill & Traceback when the input dataset
ranges from 4K reads to 64 million reads for various number of instances. When dou-
bling the number of parallel instances execution time is reduced by 50% as expected.
However, when the clock frequency drops significantly, performance does no longer in-
crease linearly. This occurs for designs with BRAM utilization greater that 80%, which
leads to routing congestion to access remote BRAMs and therefore to an increase in
critical path delay. For example, in Fig. 5.17a, performance for 4 instances is actually
worse than the one for 2 instances, albeit greater than the one of the single instance
case.

Multiple Devices

The above design description refers to configuring a single FPGA device. The over-
all architecture can scale in a straightforward manner by utilizing all devices accessible
from a system. The available system is connected to Maxeler’s MAX5C platform which
incorporates two XilinxVU9P Ultrascale FPGAs. Each of these FPGAs can be config-
ured by multiple instances of the above engines depending on the alignment problem at
hand and the need for parallelism. As expected, the execution time is reduced in half
when utilizing both FPGAs for a single instance of the full Matrix-Fill and Traceback
engine.

Fig. 5.17b represents the scaling of the full design for different configurations of the
number of devices and instances leveraged. In terms of performance, the combination
of 2 FPGAs running 3 instances of the Matrix-Fill and Traceback module each, is the
most favorable one, achieving a ×3.6 speedup, and even outperforms configurations with

101

GANDAFL

Table 5.3.: Resource Utilization and Clock Frequency for Multiple-Instances Architecture.

Configuration Utilization Clock
Engine Instances BRAM18 DSP Logic (MHz)
SmW 1 8.73% 0.04% 6.24% 200

(Matrix Fill) 2 14.49% 0.09% 11.46% 200
4 26.04% 0.18% 21.7% 200
8 49.24% 0.35% 42.24% 200
12 72.99% 0.53% 63.04% 200

SmW & 1 24.75% 0.10% 8.68% 200
(Matrix-Fill& 2 45.25% 0.20% 15.70% 200
Traceback) 3 65.53% 0.31% 22.62% 200

4 85.79% 0.41% 29.55% 65

greater total number of instances.

5.5. Accelerator Integration with Bowtie2 Aligner

This section describes the integration of the dataflow engines in Bowtie2 aligner. An ex-
tensive profiling study of Bowtie2 presents data supporting of the architectural decisions
both on hardware and software level. The profiling is followed by a detailed description of
the software restructuring that implements the aforementioned decisions.

5.5.1. Alleviating Integration Implications

According to the Bowtie2 algorithm described in the Section 5.3.2 each read invokes a
different number of SmithWaterman tasks whose order and number are decided in the
runtime. Profiling short read datasets of real patients (CLL) and simulated ones (NEAT)
(see more in SectionA.4) provides a detailed overview of the number of tries attempted for
each read in the dataset. Fig.5.18a demonstrates that depending on the dataset, Matrix-
Fill and Traceback consume up to 48% of total Bowtie2 execution time. Fig.5.18b however
highlights that depending on the dataset each read can invoke 1 to 170 tries, i.e. Matrix-
Fill tasks. This is equivalent to 500 and 158 million tries in total for the NEAT and CLL
dataset respectively. A decision to target only the major bottleneck, i.e. Matrix-Fill and
integrate a Matrix-Fill accelerator into Bowtie2 would introduce two major types of over-
head. This dictates important architectural decisions for the proposed design that manage
to avoid the overheads and allow for hardware acceleration.

102

5.5. Accelerator Integration with Bowtie2 Aligner

0

20

40

60

80

100

400000 4000000 40000000

Ti
m

e
(s

ec
)

Number of reads

1 instance

2 instances

4 instances

8 instances

12 instances

(a) MF:Many instances-Single FPGA.

0

20

40

60

80

100

120

10000 100000 1000000 10000000

Ti
m

e
(s

ec
)

Number of Reads

1 FPGA - 1 instance 1 FPGA - 2 instances

1 FPGA - 3 instances 1 FPGA - 4 instances

2 FPGA - 1 instance 2 FPGA - 2 instances

2 FPGA - 3 instances 2 FPGA - 4 instances

(b) MF&Tr:Many instances-Many FPGA.

Figure 5.17.: Performance scaling for Various Configurations {#instances, #FPGAs} for
dataflow engines for scaling number of reads (4K to 60 million in logarithmic
scale), (MF=MatrixFill,Tr=Traceback).

The data transfer overhead is attributed to the cost of sending the matrices E,F,H back
to the CPU for Traceback. For CLL and NEAT, this translates to sending back 186 and
54 Terabytes respectively. To eliminate this overhead, the Traceback computation is also
implemented on hardware. Therefore, even though the data sent to hardware remains the
same, only the final alignment information is sent back to CPU. This adds up to 5Gb of
data for both datasets, which corresponds to a compression rate of ×38189 and ×11124
for CLL and NEAT, respectively.

The second overhead is due to the accelerator invoking cost and is dependent on the
utilized target platform for acceleration. The technology targeted in this work introduces
a 1ms overhead when calling the accelerator. For the immense number of Matrix-Fill
tasks reported in the profiling under study, the total overhead actually aggregates to
days of execution time for a straightforward integration of accelerator logic. This leads
to a prohibitive slowdown, regardless of any speedup acquired from the pure matrix-
fill computation. This observation is also supported by [228], which integrates FPGA
accelerators for SmithWaterman in Apache Spark. The authors stress that JVM-to-host
data copy and host-to-FPGA data transfer aggregates for all SmithWaterman invocations

103

GANDAFL

and lead to a slowdown of ×1000. In order to tackle this similar implication, this design
proposes a major Bowtie2 software restructuring to constrain the number of acceleration
calls and thus avoid the calling overhead.

0

10000

20000

30000

NEAT CLL

Ex
ec

u
ti

o
n

 t
im

e

Dataset

Other

Traceback

Matrix-Fill

(a) Breakdown of execution time per task in Bowtie2.

0

20

40

60

80

100

NEAT CLL

%
 o

f
re

ad
s

<9 tries

<17 tries

<51 tries

<127 tries

< 170 tries

(b) Distribution of tries per read for NEAT and CLL datasets.

Figure 5.18.: Study of Bowtie2 software for different datasets.

5.5.2. Proposed Co-designed Bowtie2

The proposed design rearranges the original Bowtie2 software with the intent of cre-
ating batches of candidate alignments, which get aligned on hardware during a single
accelerator call. The proposed restructuring splits the original algorithm in three sep-
arate phases; a data-gathering phase, a hardware execution phase and lastly a data-
distribution phase. Algorithm 2 includes a high level description of the modified algo-
rithm.

In the data-gathering phase, instead of running Bowtie2 from start to end for each single
read, we iterate over N reads and construct a batch of candidate alignment pairs for all
of them (line 3 Alg.2). For each of the N reads, seed extraction and prioritization are
performed. As opposed to normal execution, which decides on run-time on the number
of tries for seed extension based on alignment results of previous seeds, the proposed
design formulates a-priori up to max_tries (line 7) candidate pairs and includes them
into the accelerator input. Both values N and max_tries are configurable. Once the
input is constructed, the accelerator is invoked for the execution phase, that includes the

104

5.5. Accelerator Integration with Bowtie2 Aligner

Algorithm 2: Bowtie2 Modified
1 while not eof in FASTQ do
2 //gathering phase
3 for 1 to N do
4 rd = next_read()
5 seed_list = searchAllSeeds(rd)
6 ranked_seeds = rankSeedHits(seed_list)
7 for 1 to max tries do
8 seed = next_seed(ranked_seeds)
9 (rd,rf) = form_extension(seed)

10 fpga_input = add(rd,rf)

11 //HW execution phase
12 fpga_output = accelerator(fpga_input)
13 //data distribution phase
14 for 1 to N do
15 result_list = distribute(fpga_output)
16 ranked_res = rank(result_list)
17 report(ranked_res[0])

matrix-fill and traceback modules running on hardware (line 12). The data-distribution
phase is executed on software. During this phase, a loop iterates over the output streams
to construct a valid alignment result and insert it in a list of all alignments for the given
read. Subsequently, the alignments of each read are ranked and the highest-ranking
one is reported. Fig. 5.19 illustrates the three-phase restructured Bowtie2, assuming
maxtries = 8 and interleaving factor L = 2. A single acceleration call receives as input
N ∗ maxtries candidate read-reference pairs. In order to seamlessly invoke the accel-
erator and exploit all the parallelism it provides, the construction of the input streams
is compliant with the data interleaving technique explained in Section 5.4. Fig.5.19 il-
lustrates that maxtries pairs per read are examined and that the interleaving schema
takes place across candidates of the same priority that belong to subsequent reads, i.e.
circled candidates. The interleaved groups of reads make up the overall input to the
accelerator.

Once the input is constructed, the accelerator is invoked for the execution phase, that
includes the matrix-fill and traceback modules running on hardware (line 12). The data-
distribution phase is executed on software. During this phase, a loop iterates over the
output streams to assess the result of the alignments and distributes the data to data
structures read by I/O Bowtie2 functions. For each seed alignment result, the list of edit
operations is traversed in order to construct a valid alignment result and insert it in a
list of all alignments for the given read. Subsequently, the alignments of each read are
ranked and the optimal is reported.

105

GANDAFL

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

1

2

 . . .

N

read_cnt

PCIe

FP
G

A
 a

cc
el

er
a

to
r

PCIe

1

2

 . . .

L

Alignments

C-CTACC

ACGT--CG

ACGTGCC

chain of seed-extend alignments

L

L

Sm
W

Sm
W

L

max_tries1 . . .

Data
gathering

HW run
Data

distribution

Figure 5.19.: Restructured Bowtie2 Three-phase Algorithm. For simplicity, only a single batch
of L reads is illustrated.

The modified algorithm can be configured based on the input dataset to meet both
time and accuracy requirements. An exploration for N , maxtries is required to identify
their optimal values. A detailed analysis on the accuracy vs. performance sensitivity of
max_tries is provided in Section 5.6.3.

Input buffer size sensitivity: The three-stage algorithm is executed iteratively in batches
of N until the input reads are exhausted (for loop in Line 3 nested inside outer while
loop). The value of N determines both the total number of acceleration calls as well as
the amount of data stored required for the data-distribution phase for output reporting.
Depending on the size of the input dataset and the memory specifications of the platform,
there is a value for N which minimizes the total accelerator call overhead and constraints
the memory requirements. An exploration is performed to identify this value for N . For
that purpose, 30 million reads are aligned in total for scaling values ofN . Fig.5.20 presents
the results and indicates that for too small N value the execution severely slows down
and can be worse that the software execution utilized by Bowtie2 due to the accelerator
overhead call. On the other hand, N does not seem to deteriorate the performance for
value greater than 64K reads. Thus, depending on the input dataset size, there is a value
for N for which the acceleration call overhead is negligible.

Limit for alignment attempts:The order and number of seed-extension alignments ex-
amined within each single read alignment is decided in run-time, causing an inherent
irregularity among alignment of different reads. The proposed architecture takes into
account this variability and allows for the number of seeds examined per read to be con-
figured depending on the input dataset requirements. This is configured by substituting

106

5.6. Experimental Results

0

1000

2000

3000

4000
Ex

ec
u

ti
o

n
 t

im
e

 in
 s

e
c

buffer size (reads)

FPGA SW

Bowtie2 SIMD SW

Figure 5.20.: Impact of input buffer size on accelerator-call overhead and thus execution latency.

the while loop in the original algorithm with a for loop with fixed upper limit in line 7
of the modified algorithm. The quality of the input reads defines the value of the upper
limits so that the alignment accuracy is preserved. An evaluation of this parameter for
different datasets is provided in Section A.4.

5.6. Experimental Results

5.6.1. Experimental Setup

We evaluated GANDAFL on a high-end architectural prototype consisting of a Maxeler’s
MAX5C DFE (dataflow engine) with Xilinx VU9P Ultrascale FPGAs, integrated through
PCIe with a dual socket Intel Xeon E5-2658A (v3) CPU operating at 2.2GHz with 128GB
DDR4 DRAM clocked at 2133MHz. Each DFE consists of a large capacity arithmetic
chip, x8 PCIe Gen 2 connectivity and 38 MB on-chip SRAM. GANDAFL was imple-
mented using the MaxJ dataflow computing model [239]. MaxCompiler version 2018.1
and Vivado 2017.4 were used for synthesis. Bowtie2 version 2.2.3 is invoked through Seq-
Mule [240] for automated human genome/exome variant detection.

All experiments perform alignment against GRCH38 (hg38) human genome assembly,
indexed by Bowtie2 software and are executed on real hardware. For testing, we create
three different datasets of length 50, 100 and 150bp based on popular NEAT simula-
tor [241], which inserts errors and mutations based on a sequencing error model. We
selected ×20 coverage and error rate 0.01% to match the trend in modern sequencers
for short-reads [242], [238]. We also leverage CLL dataset, a 60 million short-read in-
put dataset of read length 100bp with coverage ×30 and error rate 0.01%, collected
as part of EU healthcare project AEGLE [243] for research for Chronic Lymphocytic
Leukemia [244].

107

GANDAFL

5.6.2. Accelerator Evaluation

At first we evaluate the efficiency of GANDAFL as a standalone component. This type of
alignment acceleration is essential for researchers to perform various tasks, such as species
identification or comparison based on a single gene. In favor of fast execution, researchers
do not employ SmithWaterman but rely on algorithms (such as BLAST [117]) which trade
some hard-to-find hits for speed. However, a hardware accelerated SmithWaterman, that
guarantees better accuracy, would show great potential.

We consider a comparative study of GANDAFL with respect to other software and hard-
ware high performance implementations: i) Edlib [114], a C/C++ library for fast, exact
sequence alignment using edit distance, (ii) WFA [115], a wavefront alignment for exact
gap-affine pairwise alignment, (iii) KSW2 [116], a C library to align a pair of biological
sequences based on dynamic programming, (iv) the SSE-vectorized heuristic SmW soft-
ware implementation utilized in the SIMD optimized Bowtie2 [113], (v) GenASM (soft-
ware version) [136], an approximate string matching (ASM) acceleration framework for
genome sequence analysis, vi) the open-source SmW dataflow implementation available
on Maxeler AppGallery [235] and vii) the state-of-the-art open-source Darwin sequenc-
ing accelerator [36]. The Maxeler Dataflow accelerator does not include the traceback
stage, but simply produces the maximum score and the respective position for each align-
ment. It includes 512 PEs and operates on 150MHz. Darwin includes and provides an
open-source RTL accelerator, i.e. GACT, that implements the Matrix-Fill & Traceback
operations and can be synthesized for 250MHz. The GACT array in Darwin was sim-
ulated for 128 PEs, since it achieved slightly better results than the 64-PEs optimal
architecture reported in the respective paper. For GANDAFL, the achieved frequency is
200MHz.

Fig.5.21a shows the comparative results in terms of accelerator throughput (aligns/sec)
for three NEAT datasets of dominant/representative read lengths [?] utilized in NGS anal-
ysis. This comparison utilizes a single-instance of the SmithWaterman accelerator for all
designs and targets Xilinx VU9P Ultrascale FPGA board for the FPGA accelerated ones.
All software implementations are executed on an Intel Xeon Gold 5218 which is based
on 14nm technology to match the technology of the targeted Xilinx VU9P Ultrascale
FPGA. As shown in Fig.5.21a, GANDAFL outperforms WFA and software GenASM by
two orders of magnitude, KSW2 by ×59, Bowtie2 by ×98.42 and Edlib by ×22 for 100bp
reads. Edlib is in fact the fastest software aligner. GANDAFL outperforms Maxeler
dataflow by ×9.5 and Darwin GACT by ×2.13. The throughput for all designs follows a
downward trend when the length of the read sequences increases, even by 50bp. However,
the accelerators preserve their relative throughput. GANDAFL retains its speedup over
state-of-the-art Darwin accelerator, showing in fact a marginal increase for increased read
length.

Chip-to-chip: In order to evaluate how efficiently each design exploits the underlying re-

108

5.6. Experimental Results

sources, we perform a chip-to-chip comparison for hardware accelerators, i.e. we evaluate
the performance of the examined accelerator designs under the scenario that each one
configures the entire FPGA with as many instances as possible, thus enabling parallel ac-
celeration through maximal resource utilization. For all designs we target the same board
(Xilinx VU9P Ultrascale), consider the same PCIe 3.0 interface. We perform an iterative
exploration for each design up to bitstream generation (synthesis and place route) to find
the optimal configuration in terms of #ParallelAccelerators × Fclk. We then evaluate the
throughput achieved by each design for a real-world scenario that aligns the CLL dataset
of 100bp long reads. For each many-accelerator design, we account for both processing as
well as data transfers. The critical resource for all designs is the BRAM. We examine con-
figurations that utilize up to 80-85% of the available BRAMs, as these were able to meet
timing constraints. For GANDAFL, we utilize the second to last configuration of Table
5.3, as it represents the maximum instances with high frequency, i.e. 3 instances clocked
at 200MHz. The Maxeler accelerator can fit ×14 onto the FPGA while preserving its Fclk

to 150MHz. For the GACT accelerator, we leverage a 128-PE design that fits ×25 on
the FPGA and operates at 150MHz. The comparative throughput results are presented
in the Fig.5.21b As shown, in this chip-to-chip comparative study, the proposed solution
outperforms both Maxeler and GATC many-accelerators. In comparison to the GACT,
GANDAFL delivers a ×5.5 gain in throughput, showing the effectiveness of dataflow de-
sign. While GANDAFL overlaps the data transfer with the computation, GACT operates
on batches of 25 reads per accelerator invocation, thus adding a significant data transfer
overhead. In comparison with the Maxeler many-accelerator design, GANDAFL delivers
a ×8.99 gain in achieved throughput showing the effectiveness of the employed optimized
dataflow implementation, which enables deeper and higher clock frequency pipeline with
higher utilization efficiency due to extensive interleaving.

5.6.3. Integrated Architecture Evaluation

GANDAFL is also evaluated as part of an end-to-end aligner, that receives input reads
in FASTQ format and produces the output in BAM format. The end-to-end aligner is
evaluated both in terms of accuracy and performance. We utilize the CLL and NEAT
100-bases long datasets to evaluate the impact of the quality of reads on these met-
rics.

Accuracy Loss Study: Biomedical applications introduce strict accuracy constraints. In
order to ensure the correctness of our design, we performed validation of all components
and intermediate results. Given a read-reference candidate pair to align, the dataflow ac-
celerator is guaranteed to deliver exactly the same results as Bowtie2. In the integrated
version with Bowtie2, the proposed solution relaxes the constraints regarding the number
of seed extensions examined when aligning a read (Section 5.5.2).

In order to evaluate the potential impact of this relaxation, we performed an extensive

109

GANDAFL

Read Length

0

200000

400000

600000

800000

1000000

50 100 150

A
lig

n
m

en
ts

/s
ec

read length

GenASM WFA Bowtie2 KSW2 Edlib Maxeler GACT Darwin GANDAFL

x1.97

x1.99
x2.13

x7.7

x9.5 x7.9

x14.6

x42
x288

(a) Throughput comparison for different read lengths among GenASM, Edlib, WFA, KSW2,
Bowtie2 SmW, Maxeler(only MatrixFill), GACT Darwin, GANDAFL.

0

200000

400000

600000

800000

Maxeler GACT GANDAFL

al
ig
n
m
en

ts
/s
ec

x5.5x8.99

(b) Chip-to-chip comparison of throughput for hardware aligners Maxeler(MatrixFill), GACT
and GANDAFL.

Figure 5.21.: Throughput evaluation of aligners.

profiling and verification study on the NEAT and CLL datasets. The above analysis, as
depicted in Fig.5.18b shows that 95% of the reads of CLL dataset and 75% of the reads
of the NEAT dataset are aligned within examination of 8 seed-extension candidate pairs.
In both datasets, 99% of the reads require up to 50 tries whereas a negligible number of
reads can examine up to 160 candidates. It is also worth mentioning that constraining the
number of tries per read does not necessarily decrease the accuracy, as the candidate seed
read-reference pairs are not randomly examined. Bowtie2 ranks them so that the most
probable matches are tried first. Fig.5.22 shows that the read-reference candidate that
delivers the reported alignment is in fact the first one examined for 94.31% and 86.92%
of the reads for NEAT and CLL datasets respectively. Furthermore, if an alignment has
not been found within the first tries, it is less probable that this read aligns at all. Table
5.4 includes the alignment rates for the two datasets when inflicting an upper limit of 8
for the tries per read. The loss in successful alignments is less than 1.2%. Furthermore,
a small percentage of reads, ranging from 0.83 to 2%, is included in the reads that align
only once instead of multiple times. However, the reported alignment in these cases is
the same.

Depending on the dataset, constraining the number of tries per read does not greatly
impact the accuracy, but can yield time savings. An analysis has been conducted to
quantify the trade-off between total alignment success rate and performance degrada-
tion. Fig. 5.23 illustrates that the accuracy increases slower for greater number of
checks as opposed to the increase in the execution time. Therefore although our de-
sign sacrifices accuracy, it exhibits great resilience and tolerance to significant accuracy

110

5.6. Experimental Results

0

50

100

1 2 [3-8] [9-14]

%
 o

f
re

ad
s

rank of try

NEAT

CLL

Figure 5.22.: Distribution of the rank of tries that delivers the reported alignment across reads.

Table 5.4.: Accuracy comparison Bowtie2 vs Proposed.

Bowtie2 Proposed
times 0 1 >1 0 1 >1
aligned
NEAT 0.36% 87.48% 12.16% 1.62% 89.5% 8.88%

99.64% 98.38%
CLL 0.73% 69.70% 29.57% 1.32% 70.53% 28.15%

99.27% 98.68%

losses.

Assessing the Number of Edits Constraint: The accuracy of the results can also be affected
from the number of edits identified by our design for a single alignment. The minimal
loss in accuracy of our design is also attributed to efficient handling of edit constraints.
Our design is fully parametric and can be configured to support any number of edits
during compile time, i.e. we statically allocate memory resources in order to store any
potential edits and send them back to CPU for alignment reconstruction and reporting
purposes. Therefore, the number of edits explored is a design decision rather than a
design limitation.

With that being said, it would be of value to examine if such a limit in the number
of edits can support alignment in real-world problems. Elaborate studies1,2 show that
2nd and 3rd Generation sequencing platforms produce short reads with error rate less
than 1%. This means that most occurrences in alignment are matches and a margin of
17 edits for up to 150 base-long reads is sufficient. From a practical point of view too,
our hardware implementation cannot reconfigure the size of edits memory on runtime.
We have to set an upper limit for the expected edits per alignment. Extensive profil-
ing was conducted for the available datasets to pinpoint an upper limit without greatly

1Glenn TC. Field guide to next-generation DNA sequencers. Mol Ecol Resour. 2011 Sep;11(5):759-69.
doi: 10.1111/j.1755-0998.2011.03024.x. Epub 2011 May 19. PMID: 21592312

2Ross, M.G., Russ, C., Costello, M. et al. Characterizing and measuring bias in sequence data.
Genome Biol 14, R51 (2013). https://doi.org/10.1186/gb-2013-14-5-r51

111

GANDAFL

89

91

93

95

97

99

101

150 1500

A
lig

n
m

en
t

sc
o

re
 %

time(sec)

ΝΕΑΤ

CLL

Figure 5.23.: Tradeoff of Alignment success rate and performance for scaling number of candi-
dates per read.

0

20

40

60

80

100

1 2 5 10 17 31

%
 o

f
al

ig
n

m
en

ts

number of edits

all alignments reported alignments

0

20

40

60

80

100

1 2 5 10 17 31

%
 o

f
al

ig
n

m
en

ts

number of edits

all alignments reported alignments

(a) CLL dataset of length 100 (b) NEAT 50-length dataset

0

20

40

60

80

100

1 2 5 10 17 31

%
 o

f
al

ig
n

m
en

ts

number of edits

all alignments reported alignments

0

20

40

60

80

100

1 2 5 10 17 31

%
 o

f
al

ig
n

m
en

ts

number of edits

all alignments reported alignments

(c) NEAT 100-length dataset (d) NEAT 150-length dataset

Figure 5.24.: caption

sacrificing accuracy. Fig.5.24 presents an histogram of the number of edits for all align-
ments found for each dataset. This is also compared with the equivalent histogram that
only takes into account the edits found in alignments that get reported. As a general
trend, the reported alignments include fewer edits. For all datasets, the 99.99% of align-
ments contain fewer than 18 edits. Therefore, we decide to use this upper limit for our
design.

The works in relevant literature apply similar constraints in the number of edits exam-
ined. Maxeler SmW accelerator in particular, only implements the Matrix Fill stage on
hardware and performs the traceback on the CPU, therefore the number of edits are
not relevant in this implementation. GACT accelerator on the other hand handles long
reads, which exhibit greater error rates by definition. The datasets constructed in this
case have error rates that range from 15 to 40%. Taking into account this fact, the
blocking scheme implemented and the lack of special reference to the topic, it is safe
to deduce that GACT does not limit the number of edits discovered. However, this is

112

5.6. Experimental Results

not a realistic scenario in short read alignment, as presented by the trend in error pro-
files in [238], [242]. A striking example of this fact is that ASAP architecture relies on
the small error rate (<1%) of short reads to boost the performance of the alignment.
In particular, it is assumed that most comparison between bases are matches and they
correspond to zero-delay. Increasing the number of mismatches, increases the latency of
the alignment. Although a limit for the number of edits is not provided, the authors
utilize a representative paradigm of their architecture with a maximum edit distance (i.e.
number of edits) of 6 and mention that the maximum tolerable edit distance is based on
the application.

Single-thread Integration efficiency: We evaluate the performance enhancement, when
integrating a single instance of GANDAFL of 100 PEs, clocked at 200MHz in a single-
thread Bowtie2 examining 8 candidates/read.

Fig.5.25 presents the acquired speedup considering CLL and NEAT datasets. Fig.5.25a
focuses only on the SmithWaterman operations that are accelerated on hardware. For
each dataset, the first two bars stand for the number of Matrix-Fill&Traceback tasks
examined by Bowtie2 and the proposed design, respectively. For the NEAT dataset
the proposed design examines less candidates, i.e. the ratio is 0.95, whereas for the
CLL dataset the respective ratio is 3. The number of candidates tried appears to be
correlated with the quality of the generated reads. In this case, the CLL dataset was
meticulously generated by experts, which led to a dataset of high precision and low error
rate. This in turn translates to fewer matching positions in the genome. Specifically, as
reported in Fig.5.18b, 95% of the reads invoke less than 9 tries and in fact 90% of the
reads require only 3 tries. This leads to the proposed design performing ×3 more tasks.
Nevertheless, there is still a speedup of ×6.5. In the case of the NEAT dataset, which was
generated with a moderate coverage percentage and higher error model, the number of
candidates is similar to the pure software Bowtie2, leading to a more impressive speedup
of ×30.

Fig.5.25b depicts the impact of the latter speedup to end-to-end performance. For the
NEAT dataset, the results are very close to the Amdhal’s law optimal speedup. The
SmithWaterman operations take up 49% of the total execution latency in the original
Bowtie2. Even if the hardware acceleration annihilates this time, the maximum speedup
that can be achieved is ×1.96. The proposed design achieves ×1.92 speedup. The devi-
ation from the optimal speedup is greater for the CLL dataset. In this case, SmithWa-
terman takes up 40% of the execution time of Bowtie2, which corresponds to an upper
limit of ×1.67 speedup. The proposed design manages to deliver a ×1.26 speedup. This
is attributed to a 22% increase in the pure software execution time, due to handling ×3
more data than the original Bowtie2. Therefore, the performance gains are dependent on
the initial bottleneck and the quality of the read dataset.

Integration efficiency in an accelerator sharing scenario: In order to exploit the full capa-
bilities of our available computing resources and perform a fair comparison between a SW-

113

GANDAFL

29.7

6.5

0

10

20

30

40

50

60

NEAT CLLDataset

Bowtie2 tries (x10^7)

GANDAFL-Bowtie2 tries
(x10^7)

Speedup

(a) Comparison between original and GANDAFL-Bowtie2.

0

5000

10000

15000

20000

25000

Bowtie2 NEAT GANDAFL-Bowtie2 NEAT Bowtie2 CLL GANDAFL-Bowtie2 CLL

Ex
ec

u
ti

o
n

 t
im

e
(s

ec
) MatrixFill & Traceback other

x1.26

x1.92

(b) End-to-end speedup of GANDAFL-Bowtie2.

Figure 5.25.: Performance of Bowtie2 integrated accelerator with max_tries = 8.

400

1 2 3 4 6 8 10 12 14 16 24 32 48

ex
ec

u
ti

o
n

 t
im

e
(s

ec
)

Number of parallel threads

SW only Bowtie2

GANDAFL-Bowtie2

23000

Figure 5.26.: Comparison performance for scaling number of threads while sharing two acceler-
ators.

only and the proposed SW/HW accelerated Bowtie2 (GANDAFL-Bowtie2), we perform
a study that leverages all available software threads and FPGAs through accelerator shar-
ing. In particular, we examine how the proposed accelerated Bowtie2 leveraging the two
FPGA devices scales its performance when we increase the number of software threads.
Since the #threads > #FPGAs, the deployed FPGA accelerators are shared. Therefore,
we examine how efficient the accelerator sharing can be among multiple threads and if
it can boost the overall performance w.r.t. the pure software multi-threaded Bowtie2
deployments.

Each FPGA is configured with a single instance of our accelerator and a First-Come-First-
Served (FCFS) allocation/sharing mechanism is implemented. The results in Fig.5.26
show that sharing the two FPGA accelerators among multiple threads is always more ef-
ficient than pure software multi-threaded execution, delivering speedups ranging between

114

5.6. Experimental Results

×1.73 up to×3 for 48 threads. The efficiency of the accelerator sharing is attributed to the
scheduling of consecutive smaller alignment tasks rather than a single immense one that
balances and overlaps the wait time across threads. As a result, multiple threads can lock
the FPGA and any potential wait time is not prohibitive.

115

GANDAFL

116

Chapter 6.

Profile-Driven Banded Smith-Waterman
acceleration for Short Read Alignment

Short read alignment is a critical step in genomic pipelines that requires optimization due
to the enormous input size and complexity of SmithWaterman string matching. Several
optimization techniques have been examined, such as hardware acceleration, heuristics
and pre-filtering. This work combines these approaches into a single powerful solution
that leverages the low edit rate of reads and the principles of Banded SmithWaterman, to
highlight the value of creating accelerators customized to the input accuracy requirements.
Extensive profiling of genomic datasets reveals low edit thresholds that can be leveraged by
Banded SmithWaterman to create resource-efficient accelerators that are customized to the
edit profile of the input. We first design and deliver a highly optimized dataflow FPGA-
based implementation for Banded Smith-Waterman seed-extension, which can perform
alignments given an upper edit threshold. A multi-dataflow system is then configured
with multiple Banded accelerators covering the full range of edits to achieve both high
throughput as well as high accuracy alignment. The result is a dataset-specific multi-
dataflow design that leverages pre-filtering to guide the alignments to the suitable Banded
SmithWaterman instance and meets the demands of the datasets in both throughput and
accuracy. This work was accepted for publication in the Design Automation Conference
2023.

117

Profile-Driven Banded SmW

6.1. Introduction

Genomics is a fast-evolving research domain, that allows scientists to understand the
mechanisms responsible for the genetic diversity. The growth in the field has been facil-
itated by advances in sequencing technologies, that have brought about the generation
of billions of short fragments of DNA at low cost and increased quality, with error rates
as low as 0.01% [242]. The nucleotide short reads generated by sequencing platforms
are utilized to reconstruct the sample genome and compare it to the reference genome
as part of various analyses such as variant calling and epigenetics [245]. Such analyses
reveal differences between the genomes, attributed either to sequencing errors or inherent
genetic variations. The genome reconstruction is achieved through short read alignment,
that maps the short reads to a location in the reference genome that is most likely its
origin. Most aligners [112, 113, 117] adopt a seed-and-extend strategy to find possible
matches of the read on the reference genome. Seeding fragments each read into even
shorter pieces called seeds that align exactly on the reference genome and creates a pool
of candidates for valid alignments. In the seed extension, each seed is extended into a
gapped alignment, i.e. allowing mismatches or edits.

In modern aligners, the extension step is most frequently implemented based on Smith-
Waterman [118] dynamic programming algorithm for string matching that operates in two
stages. Matrix Fill fills a similarity score matrix between a read and reference sequence.
The fewer the gaps and mismatches between the sequences, the higher the score of each
alignment is and therefore the similarity of the two sequences. Traceback stage starts
from the cell in the similarity matrix with the highest score, and traverses the matrix
backwards until it reaches a zero-score cell, i.e. the first match point of the two sequences.
During backtracing, it identifies all potential edits and thus reconstructs the alignment
path. The excessive time requirements and computational intensity of this step however
forms a major bottleneck and the need for optimization is imperative. As mentioned
in [173], performance optimization efforts follow two different approaches: i) the first one
targets optimization of a single alignment task [36,123], whereas ii) the alternative focus
on decreasing the volume of alignment tasks [119].

Hardware acceleration of alignment tasks: The first category can be further distinguished
into solutions that leverage hardware acceleration and solutions that employ heuristic
techniques or a combination of the two. Hardware accelerations for SmithWaterman have
been developed for a variety of devices such as GPUs, ASICs and FPGAs. Due to their
bit-level customization capabilities, FPGAs have emerged as promising Smith-Waterman
accelerators both for industry [26] and academia [36, 246]. Most of them, [123], [124]
are based on a wavefront approach that implements a pipeline of PEs as a systolic ar-
ray. The majority of them focus on providing a highly optimized accelerator for the
first stage, however they do not provide a Traceback implementation, which excludes
them from integration into commonly-used software aligners. Edlib [114] software aligner
implements the alignment by using vectorized operations and replacing SmithWaterman

118

6.1. Introduction

with a simpler algorithm that calculates the Levehnstein distance instead. Other soft-
ware aligners rely mainly on heuristic techniques to improve performance. For example,
Bowtie2 [113] utilizes a heuristic of SmithWaterman that ignores selected dependencies in
order to leverage SIMD instructions and adds a correction step to account for any errors.
Another common heuristic is Banded SmithWaterman [247], which only looks for align-
ments that adhere to an edit threshold, i.e. around the diagonal of the matrix. Recent
works target Banded SmithWaterman for accelerating either long reads alignment [248]
or sequencing datasets of high sequencing error rates [249].

Seed-extension pre-filtering: The second category is represented by pre-filtering algo-
rithms that aim at decreasing the vast amount of seed extension tasks, by discarding
candidate alignments based on a predefined threshold for the edit distance. These can-
didates would most likely result in a prohibitive number of edits and would be elimi-
nated. Several pre-filtering algorithms [90, 95, 119] have now been developed that have
noted significant improvement in accuracy and performance since early efforts. SneakyS-
nake [119] is a state-of-the-art pre-filtering algorithm, as it achieves higher accuracy
alignment results through a highly efficient decision technique to discard unnecessary
extensions.

Despite the promising results on genomics efficiency, the above research categories are
still evolving in isolation, thus limiting the potential gains of a cooperative optimization
approach. This is attributed to the fundamentally different scope of each category. On
one hand, genomic hardware acceleration is driven by data-agnostic decisions that built
accelerators able to perform accurate seed extension on generic datasets. On the other
hand, pre-filtering optimization is a fully data-aware procedure that delivers best results
when customized to the underlying dataset.

In this paper, we bridge hardware acceleration and pre-filtering for alignment optimiza-
tion by introducing a profile-driven Smith-Waterman accelerator design. We leverage
the edit profile of genomic datasets to pinpoint dominant edit thresholds in the align-
ments and exploit them to configure different Banded SmithWaterman accelerators. The
adoption of these profile-driven upper limits and resource-efficient Banded SmithWa-
terman accelerators enables the provision of a highly parallel Banded Smith-Waterman
accelerated system. We design an heterogeneous system, with different accelerators
supporting the full range of edit thresholds and employ a pre-filtering algorithm to
guide candidate alignments to an accelerator that supports the expected edit thresh-
old, thus delivering a high throughput alignment system without compromising accu-
racy.

Our main innovations are summarized as follows: (i) we introduce a profile-driven de-
sign methodology leveraging Banded Smith-Waterman for seed-extension acceleration
customized to the input edit threshold distribution, (ii) we design and deliver a highly
optimized dataflow implementation for Banded Smith-Waterman seed-extension targeting
FPGA devices and (iii) we implement a dataset-specific multi-dataflow system that sig-

119

Profile-Driven Banded SmW

nificantly accelerates pre-filtering seed-extension alignment with negligible accuracy loss.
Through an extensive experimental campaign, we evaluate the efficiency of both the newly
introduced Banded Smith-Waterman accelerator as well as the delivered profile-driven
multi-dataflow system against a rich set of state-of-the-art alignment solutions. The
evaluation shows that the proposed Banded Smith-Waterman accelerator delivers a ×34
speedup over state-of-the-art software aligner and ×1.53 over state-of-the-art dataflow
SmithWaterman accelerator [246] and ×3 over GACT RTL accelerator [36]. Moreover,
the proposed multi-dataflow system delivers average speedups of ×1.8 over state-of-art
multi-accelerator FPGA solutions [246] that employ generic and input-agnostic accelera-
tors, further validating the efficiency of the proposed profile-driven approach for acceler-
ators’ parallelism customization.

The rest of the paper is organized as follows: we first motivate and sketch the basic
concepts of the proposed profile-driven customization methodology in Section 6.2. In
Section 6.3, we design and detail the micro-architectural decisions of the introduced multi-
dataflow accelerared system. Section A.4 provides a thorough and in-depth evaluation and
comparative analysis of the proposed solution w.r.t. state-of-the-art.

6.2. Profile-driven Genomic Architecture Optimization

In this work, we propose to leverage the edit profile of modern short read datasets in
order to create a high-throughput accelerated system fit to the accuracy needs of the
input.

Profiling insights: In order to evaluate the impact of the edit profile on the architecture,
we meticulously study the behavior and results during alignment of three different input
datasets: (i) a simulated dataset of 60 million 100-base long reads created by NEAT [241]
simulator, (ii) 60 million reads of often-used sample NA12878 (ERR194147_1) provided
by 1000 Genomes Project Release3 [250] and (iii) CLL, a real-patient dataset assembled as
part of research for Chronic Lymphocytic Leukemia. Fig.6.1 presents a histogram of the
number of edits for all alignments found for each dataset. The selected edit thresholds
in the histograms, i.e. 2, 5, 10, 18, 30 edits, correspond to critical values for which a
significant increase in the number of aligned reads occurs. For the simulated dataset,
70.8% of the examined aligments include at most a single edit. The same percentage
is equal to 74.4% and 82% for the NA12878 and CLL dataset. The number of reads
that align for a given edit threshold, increases rapidly (by 5-10%) for threshold ranging
from 1 to 8. However, for values greater than 10 the incremental changes is in the
order of 0.01%. In fact, for all datasets the 99.99% of alignments contain fewer than 18
edits.

Banded Smith-Waterman: The first valuable insight of the profiling is the potential impact

120

6.2. Profile-driven Genomic Architecture Optimization

65

75

85

95

1 2 5 8 10 18 30

%
 o

f
al

ig
n

m
en

ts

Edit threshold

Simulated NA12878 CLL

Figure 6.1.: Distribution of number of edits for alignments for three different datasets.

seed hit original matrix

1 5

2 6

3 7

4

band length
2*edit threshold+3

edit
threshold

up

left

seed diagonal
upper/lower

seed diagonals

 halo
gapped alignment

seed diagonal
upper/lower

seed diagonals

 halo
gapped alignment

Figure 6.2.: Banded SmithWaterman example for edit threshold 2.

of the low edit number on the accelerator architecture. Fig.6.2 illustrates the placement
of an exact as well as a gapped alignment on the score matrix. Both alignments start
from the seed hit, i.e. the first match point, however the gapped alignment deviates from
the seed diagonal as it includes an edit. The smaller the edit distance, the narrower the
band of the matrix that the alignment spans. This is by definition exploited by Banded
Smith-Waterman [247], that is based on the observation that the max score in the matrix
appears around the seed diagonal at a maximum distance equal to the number of edits.
Therefore, for a given edit threshold, Banded Smith-Waterman focuses on the respective
band within the matrix and eliminates the need for storing and searching the entire
score matrices. Fig.6.2 demonstrates the band of interest within the complete matrix,
after taking the edit threshold into consideration. The final alignment will be found
within the area marked by the seed diagonal, the edit threshold upper seed diagonals
and the edit threshold lower seed diagonals. As Traceback also checks the neighboring
cells forming the halo area of Fig.6.2, the band of interest has band_length equal to
2 ∗ edit_threshold+ 3. Therefore, studying the edit profile of the input dataset can help
us avoid overprovisioning of resources and design more resource efficient seed-extension
accelerators.

121

Profile-Driven Banded SmW

t

t1 t2 t3

t/K

t1/k1 t2/k2 t3/k3

max{t1/k1,t2/k2,t3/k3}

K-accel.

k1-k2-k3
accel.

time axis

Figure 6.3.: Calculation of execution time when applying K generic accelerators as opposed to
applying k1, k2, k3 smaller accelerators fit to an edit distribution of 70− 20− 10.

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60 70 80 90 100

Ex
ec

u
ti

o
n

 t
im

e

Resource utilization %

K-points

k1-k2-k3 pointsK=4, speedup=4.5

k1,k2,k3=6,2,1
speedup=12.8

x3

Figure 6.4.: Example of applying generic accelerators as opposed to employing smaller acceler-
ators fit to the input edit profile.

Profile-driven genomic accelerator architecture optimization: The second important in-
sight does not concern the low edit threshold itself but rather the frequency in which
each threshold occurs. The distribution per edit threshold straightforwardly translates
into a similar distribution of the time taken up by each type of alignment, i.e. alignments
with 0-1 edits take up at least 70% of the total dataset alignment time. This heterogene-
ity suggests that the overall performance could benefit more if we instantiated multiple
smaller-sized accelerators and assigned them to the corresponding alignment types in a
similar distribution.

Let as assume a system of K generic parallel accelerators that take up the acceleration
of the alignment of a given dataset. We claim that there is a configuration of k1, k2..kl

edit-customized accelerators that 1) follow the edit distribution of the dataset and 2)
satisfy the inequality

∑l
i=1 ki > K, so that they achieve a greater overall speedup than

K for equal resources utilization.

Let us assume a realistic scenario with an edit threshold distribution 70-20-10% for cor-
responding thresholds of 1, 5, 15 edits, respectively. We also assume Banded SW ac-

122

6.2. Profile-driven Genomic Architecture Optimization

celerators i) with area occupation equal to a fraction of the area of the single general
accelerator , and ii) with equal execution latencies for all band sizes, e.g. 1.5× faster
than the software. Based on this assumptions, we formulate a model that calculates the
execution time of the system for a compact search space of different configurations for
K, k1, k2, k3. Fig.6.3 demonstrates the calculation of the total execution time. If we take
into account the edit distribution and the Amdahl Law, the total time is distributed to
each threshold category proportionally to the edit distribution. Then, in the generic case
K accelerators accelerate time t, whereas in the proposed strategy k1, k2, k3 accelerate
time periods t1, t2, t3 respectively.

Under the above assumptions, Fig.6.4 depicts exploration results for differentK, k1, k2, k3
accelerator allocations, in terms of latency and resources utilization. As shown, configu-
ration points of k1, k2, k3 fluctuate lower than the corresponding K points for the same
resource utilization percentage. For example, K = 4 generic accelerators take up 45% of
hardware resources and achieve a speedup of×4.5, where k1, k2, k3 = 6, 2, 1 customized ac-
celerators take up as much hardware resources for a speedup of×12.8.

We leverage the above insights to create a system with multiple dataflow accelerators, i.e.
multi-dataflow system, customized to the dataset specifications in terms of edit threshold.
As shown in Fig.6.5 this can be achieved by first profiling the input dataset to extract the
edit distribution and pinpoint the edit thresholds for which there is a spike in the number
of aligned reads. The number of thresholds indicates the number of different types of
edit-customized Banded Smith-Waterman accelerators. Each type can support up to a
predefined number of edits, equal to the found thresholds. The number of accelerators
allocated for each type follows the same distribution as the edit thresholds. Followingly,
SneakySnake [119] pre-filtering algorithm classifies input candidate alignments into the
respective edit threshold category and assigns each alignment to the corresponding ac-
celerator.

th
re

sh
o

ld
s

Create Edit
Distribution

Profiling Pre-filtering

tatat
taatt
gagtt
gagta

tatat
taatt
gagtt
gagta

60%

Accelerated Extension
BSmW

BSmW

B
SmW

B
SmW

B
SmW

20%
10% 10%

SneakySnakeSneakySnake
e1 e2 e3 e4

FPGA

BSmW

BSmW

B
SmW

B
SmW

B
SmW e2

e4e3

e1

Figure 6.5.: Overview of profile-driven acceleration strategy and system architecture for a dis-
tribution of 60-20-10-10%.

123

Profile-Driven Banded SmW

6.3. Design of Dataflow Genomic Accelerator

The proposed multi-dataflow design includes multiple single Banded Smith-Waterman
accelerators, which have been developed utilizing dataflow computing. Each one is con-
figured with an edit threshold selected at profiling based on the proposed methodology.
The single Banded Smith-Waterman accelerator includes two computing units, one for
each of SmithWaterman stages, i.e. Matrix-Fill and Traceback. Matrix Fill receives
read-reference pairs as alignment candidates and computes the matrices E,F,H. Once the
matrices are ready, they are traversed in reverse order by Traceback to identify edits.
At any time, they execute in parallel and in pipeline manner, i.e. as Matrix Fill op-
erates on an alignment pair, Traceback processes the matrices created for the previous
pair.

Matrix Fill Banded Design: Fig.6.2 ilustrates the dependencies and parallelism of Banded
Smith-Waterman. The computation of matrices E,F,H by Matrix Fill is characterized by
anti-diagonal dependencies, as each cell value depends on the left, up and diagonal neigh-
bours. All cells within the same antidiagonal can be computed in parallel forming a
wavefront. A parallel Matrix Fill implementation is based on this wavefront approach to
fill the matrices. Banded Matrix Fill is implemented as a typical systolic array architec-
ture of Processing Elements (PEs) equal in number to the length of the read sequence.
Each PE is responsible for computing a single row of the matrix in Fig.6.2. All PEs op-
erate in parallel and compute all cells within the same antidiagonal per wavefront. As a
result, the computed cells should be stored per antidiagonal rather than per row. Fig.6.6
depicts the PE array computations and the matrix required to store all antidiagonals.
Each row in this matrix corresponds to a row of the original matrix and each column
to an antidiagonal. Each one includes as many elements as the length of the longest
antidiagonal, i.e. the read length.

Storing Optimization Scheme: Fig.6.6 also illustrates how the band elements are stored
in a smaller matrix. PEs temporarily store each anti-diagonal in a read-length vec-
tor. Each antidiagonal includes at most bandLength/2 + 1 cells that belong to the
banded area. Therefore we need to allocate a matrix of vectors, i.e.bandV ectors, of
length bandLength/2 + 1 rather than bandLength to store all band cells. A mask of
length bandLength/2 + 1 shifts through the read-length vector written by the PEs, se-
lects the band cells and stores them in memory. Note that storing the bandRow vec-
tors in a BRAM changes the relative position of some neighbor cells by an offset of
1.

Traceback Banded Design: Traceback receives these bandV ectors in reverse order and
constructs the alignment path by keeping track of the first and last matching characters
of the sequences and all potential edits in between. Fig.6.7 illustrates an abstract diagram
of the logic implemented by Traceback. Traceback encodes each backward step in the
alignment as one of the available distinct states: i) initial state ii) H-up, iii) H-left, iv)

124

6.3. Design of Dataflow Genomic Accelerator

antidiagonals

1

2

3

4

5

6

7

PEn

PE1

PE0

PE array

.

.

.

bandVectorlength=
bandlength/2+1

1

2

3

4

5

6

7

shifted by 1

unshifted
neighbours

unshifted
neighbours

shifted
neighbours

ro
w

s

read length
vector

m
as

k
m

as
k

row0

rown

Figure 6.6.: PE computation of score matrices and BRAM allocation of band elements.

F-up, v) E-left, vi) H-diagonal, vi) waiting state and vii) finished state. In order to enable
Traceback to decide its next state, i.e. the next hop of the backward path, we check all
possible origins from neighboring cells in the two subsequent antidiagonals. These checks
are taking place in parallel and result in setting a single bit of an 8-bit vector, i.e. one bit
allocated for each possible state. This 8-bit vector then is leveraged as a selector signal in
a set of parallel one-hot-multiplexers. Each one-hot-multiplexer links to each one of the
internal Traceback variables, which actually define the Traceback’s state space. Thus,
the selector signal is utilized to update all identifiers of the next state such as the type
of cell (E,F or H), the index within the read/reference sequence and the index within the
bandRow vector.

Special attention is required with indexing when accessing the neighboring cells within
the two subsequent vectors, as bandRow vectors have been shifted to be stored in BRAM.
Since the two subsequent vectors are shifted by one position at most, we add a correction
offset of value 1 when necessary.

125

Profile-Driven Banded SmW

matrixnext

H

E
F

E
F

Current
State

Check all origins

Hup Fup Hdiag

Hleft Eleft

Check all origins

Hup Fup Hdiag

Hleft Eleft

Next
State
Next
State

Update State

rdnext

rfnext

bRindexnext

se
le

ct
o

r

matrix

rdindex

rfindex

bandindex

matrix
bandindex

rdindex

rfindex

Figure 6.7.: Logic Diagram of Traceback Dataflow implementation.

6.4. Experimental Results

6.4.1. Experimental Setup

The experimental setup includes a dual socket Intel Xeon Gold 6138 (2.0GHz, 14nm) with
128GB DDR4 DRAM (2133MHz) that is connected through PCIe 2.0 with Maxeler’s
MAX5C platform. The specific MAX5C provides two MAX5 dataflow engines, i.e. two
Xilinx VU9P Ultrascale FPGAs. Accelerators have been developed using MaxJ dataflow
language [239] and compiled with MaxCompiler 2018.3 that invokes Vivado 2017.4 for
place and route purposes.

6.4.2. Banded Smith-Waterman Evaluation

Accuracy Evaluation

The adoption of Banded SmithWaterman reduces the accuracy of the alignment by de-
fault, as it eradicates alignments that do not meet the edit threshold. This section eval-
uates the accuracy of short read alignment when applying pre-filtering and leveraging
the proposed Banded SmithWaterman implementation for the respective edit threshold.
As a reference, we utilize the results of Bowtie2 aligner. Bowtie2 aligner by default con-
siders 150 as a maximum limit for number of edits, which is equivalent to a no-limit
alignment strategy for the 100-base length of the given datasets. Pre-filtering is imple-
mented by SneakySnake, that discards all candidates with more edits than the specified

126

6.4. Experimental Results

70

75

80

85

90

95

100

1 2 4 6 8 10 18 Ref. 1 2 4 6 8 10 18 Ref. 1 2 4 6 8 10 18 Ref.

R
ea

d
s

al
ig

n
ed

 %

Edit threshold

91.6

98.9
95.2

99.27

Simulated NA12878 CLL

82.39

99.64

Figure 6.8.: Alignment success when using SneakySnake pre-filtering and the proposed Banded
Smith-Waterman accelerator for seed extension.

edit threshold. We consider edit thresholds that vary from 1 up to almost 20% of the
read length of 100. We evaluate the accuracy on the three datasets described in Sec-
tion 6.2. The comparison is illustrated in Fig.6.8. The results are in accordance with
the edit distribution findings, as for most datasets the alignment rate converges to the
optimal one for an edit threshold greater than 10, which includes most of the align-
ments.

Performance Evaluation

The performance of the proposed accelerator is compared against both software and
hardware state-of-the-art alignment implementations. The comparison is based on the
throughput of all implementations, i.e. the number of computed alignments per seconds.
We first consider a single-instance comparison strategy, which employs a single thread
for the software aligners and a single acceleration instance for the proposed aligner. We
utilize the following state-of-the-art software aligners: (i) Edlib [114], a C/C++ aligner
that implements exact sequence alignment using the Levehnstein edit distance for seed
extension, (ii) WFA [115], a software aligner that performs exact alignment based on a
gap-affine scoring scheme and optimized with the wavefront parallelism approach, (iii)
KSW2 [116], a C library that aligns pairs of biological sequences based on dynamic pro-
gramming, (iv) the vectorized SSE2-based SmithWaterman implementation utilized in
Bowtie2 that adopts a heuristic to support vectorization with 8 SIMD lanes [113], (v) the
open-source software implementation of GenASM [136], an approximate string match-
ing acceleration framework for genome sequence analysis. The single-instance proposed
Banded SmithWaterman accelerator includes an 100-PE array and is built with a clock
frequency of 400MHz. Since edit threshold only affects the resource utilization of the
single-instance design, all edit threshold designs can be utilized to measure the perfor-
mance. We utilize the Simulated dataset of 100-base long reads for execution. The results
are found in Fig.6.9. The proposed Banded design acquires a speedup of ×34 over the
fastest software implementation, which is Edlib.

127

Profile-Driven Banded SmW

1.E+00

1.E+03

1.E+06

GENASM WFA BWT2 KSW2 Edlib Proposed

A
lig
n
m
en

ts
/s
ec x625 x34

Figure 6.9.: Throughput comparison between Proposed Banded 10-edit threshold accelerator
and state-of-the-art SW aligners.

0.0

0.5

1.0

GACT GANDAFL Proposed

A
lig
n
m
en

ts
/s
ec

(x
1
0
6
)

x1.53

x1.99

(a) Throughput comparison among single-
instance designs.

0.0

1.0

2.0

3.0

GACT GANDAFL Proposed

A
lig
n
m
en

ts
/s
ec

(x
1
0
6
) x4.77

x5.52

(b) Throughput comparison among multi-
instance designs.

Figure 6.10.: Throughput and Resource utilization efficiency evaluation for HW Smith-
Waterman accelerators.

We also compare our design with two state-of-the-art hardware accelerators, GACT [36]
and GANDAFL [246]. GACT accelerator is part of Darwin short read aligner and im-
plements an RTL PE-based design of SmithWaterman MatrixFill and Traceback. We
utilize the open-source implementation of GACT and implement the hardware using Vi-
vado HLS 2018.3. We developed an in-house implementation of GANDAFL, which is
a dataflow MatrixFill and Traceback FPGA implementation that also targets Maxeler
MAX5C workstation. We utilize MaxCompiler 2018.3 for development and synthesis
purposes. We examine two different scenarios for a rounded comparison. The first one
compares the throughput of a single instance of each accelerator, to evaluate the capabil-
ity of the design to deliver a single alignment result faster than state-of-the-art solutions.
The second one compares multi-accelerator designs that leverage the maximum capacity
of the same target FPGA device. We utilize the FPGA included within MAX5C platform,
i.e. Xilinx VU9P and assume that all designs share the same PCIe connection. Table 6.1
summarizes the optimal configurations (that minimize the Area × Delay product metric)
selected for each accelerator for the examined scenarios. As seen in Fig.6.10, the Pro-
posed Banded implementation achieves a ×1.53 speedup over GANDAFL dataflow and a
×3 speedup over GACT single instance designs. Thanks to efficient resource utilization,
the proposed multi-dataflow design fits 8 accelerators on the FPGA and achieves a ×4.77
speedup over the 3-dataflow instances of GANDAFL accelerator. The dataflow comput-
ing model and efficient resource utilization secure a ×26.35 speedup over a 12-instance
design of GACT.

128

6.4. Experimental Results

Table 6.1.: Hardware Accelerators Configurations for throughput comparison.

Configuration Utilization Clock
Accelerator Instances PEs BRAM18 DSP Logic (MHz)
GACT 1 128 3.10% 0.0% 2.39% 250

25 128 77.55% 0.0% 60.71% 150
GANDAFL 1 100 24.75% 0.10% 8.68% 200

3 100 65.53% 0.31% 22.62% 200
Proposed 1 100 11.78% 0.10% 7.60% 400
18 edits 8 100 53.94% 1.4% 55.44% 250

249.41 228.84

88.02

440 372

159

0

100

200

300

400

Simulated NA12878 CLLSp
ee

d
u

p
 o

ve
r

B
o

w
ti

e2

Datasets

Bowtie2 GANDAFL-3 Proposed-customized

x1.8

x1.77
99.64

98.9

99.27

98.5

99

99.5

100

Simulated NA12878 CLL

A
lig

n
m

en
t

ra
te

 %

Datasets

Figure 6.11.: Performance and accuracy evaluation of proposed customized accelerated system.

6.4.3. Multi-Dataflow System Evaluation

Based on the proposed methodology, we evaluate the performance of customized acceler-
ated systems on the Simulated, NA12878 and CLL datasets. First we leverage the edit
profiles and build the respective multi-dataflow designs for a clock of 250MHz. Table
6.2 summarizes the configurations and the percentage of alignments covered within each
threshold selected. We compare these designs with our GANDAFL in-house implemen-
tation that includes 3 accelerator instances that allow up to 17 edits and is clocked at
200MHz. Both designs are also compared with Bowtie2 aligner, which generates the input
alignments and serves as a reference for the alignment rate. SneakySnake pre-filtering
has been leveraged to classify the candidate alignments and assign them to the respec-
tive dataflow accelerator based on the edit threshold. As seen in Fig.6.11, the proposed
approach delivers a speedup up to ×440 over Bowtie2 aligner and ×1.8 over GANDAFL
conventional accelerated approach. Note that this speedup does not come at the expense
of alignment rate as the alignment rate has converged to the reference one for the selected
thresholds.

129

Profile-Driven Banded SmW

Table 6.2.: Multi-Dataflow Configurations customized to the edit profiles of input datasets.

Dataset Configuration
Edit threshold Instances Alignments covered

Simulated 1-2-10-18 5-1-1-1 70.8-81.4-99.7-99.9%
NA127828 1-2-5-18 5-1-1-1 74.4-87.3-99.6-99.9%

CLL 1-5-18 6-1-1 82.5-93.51-99.9%

130

Chapter 7.

Conclusions

This chapter briefly summarizes the novelties and results of our proposed implementations
and discusses the conclusions derived from the Ph.D. Thesis. We then present potential
improvements and future extensions based on the current trends and requirements of the
fields.

7.1. Summary of Ph.D. Thesis

Technological advancements and novelties in the last decade have led to an exponential
growth of data and signaled the start of the Big Data Era. This onslaught of infor-
mation and data and the need to extract value from raw data in order to provide new
services has created great business opportunity and has led to the rising of the big data
market. Healthcare holds a considerable portion of the market share as big data analyt-
ics are required to cope with an exponential data growth attributed to the digitization
of healthcare data and the advent of new technologies. A major source of healthcare
data area generated during clinical practice (e.g. ECG,EEG, X-ray, CT scans, MRI,
SPECT) as well as from IoT devices, e.g. health-tracking wearable devices e.t.c. A huge
part of health data also come from the advent of whole-genome sequencing and other
high-throughput molecular technologies that have created the data rich disciplines of ge-
nomics, transcriptomics, epigenomics, proteomics, metabolomics, phenomics e.t.c., i.e.
omics data.

A wide range of healthcare big data analytics are developed to extract value out of
this immense and diverse amount of data. When handling signals and images, advanced
signal and image processing techniques are required that stem from the fields of computer
vision and pattern recognition. Machine learning techniques and AI are also efficiently
incorporated in workflows to perform detection and prediction tasks, thanks to their
ability to discover patterns and correlations within complex data. This has led to a broad
development of predictive analytics, that guide the medical staff in making a diagnosis
and choosing effective treatments based on previous experience and results. Complex

131

Conclusions

computational and statistical methodologies are also leveraged to manage omics data
and understand complex mechanisms on a cellular or even metabolic level. Genome
analysis is at the heart of omics workflows as it is an essential tool to understand how
DNA variants are expressed and alter phenotypes. Read alignment is performed in the
beginning of genomic pipelines to reconstruct the genome of a sample and compare it to
the reference genome for variant discovery using some kind of string matching algorithm
(e.g. SmithWaterman). The output of genome analysis can be combined with other omics
studies, generating knowledge that can be used for research and clinical purposes, paving
the way to personalized medicine.

The size of this data however is continuously growing, as is the complexity of the algo-
rithms developed to handle them. This stress the limits of current systems and highlights
the need for optimization. An initial approach for addressing this challenge was the de-
velopment of big data infrastructures and frameworks for distributed computation (e.g.
HDFS, MapReduce). More recently, the execution of healthcare analytics have also mit-
igated to the cloud which provides virtualized services, scalability and reliability at low
cost. However, it is not always possible to upload data to the cloud, as often ethics and
privacy matters occur especially in the healthcare domain. Hardware acceleration is an
effective alternative to cope with the data and compute intensive applications of the field.
GPUs, FPGAs and powerful co-processors in general have been employed for building
accelerated systems for both machine learning prediction models and DNA aligners in
genomic workflows.

In this thesis, we present our efforts at creating efficient accelerators for a Support Vector
Machine classifier for ECG arrhythmia detection and Short Read Alignment on Next
Generation Sequencing data, leveraging High Level Synthesis Techniques and targeting
FPGA devices.

An Exploration Framework for Efficient High-Level Synthesis of Support
Vector Machines: In this work we present a methodology for creating efficient HLS
based HW accelerators targeting Support Vector Machine based classifiers. The pro-
posed methodology relies on two levels. The first level optimizes the original code under
acceleration in order to assist the HLS tool to maximize the parallelization of the com-
putational parts of the algorithm and infer data- as well as instruction- level parallelism.
The second level relies on the built-in HLS directives and evaluates combinations that
lead to efficient architectures. In order to avoid an exhaustive search of the search space,
we propose pruning guidelines that are based on the algorithmic structure and memory
access patterns of the SVM and generate a space whose pareto front is close to the original
one.

GANDAFL: Dataflow Acceleration for Short Read Alignment on NGS data:
This work focuses on accelerating the short read alignment of Next Generation sequenc-
ing data which is a major bottelneck in genomic pipelines. Accelerated reconfigurable
computing has been extensively leveraged to alleviate this bottleneck, focusing mostly

132

7.2. Future Extensions

on high-performance implementations that do not take into account the implications of
integrating the accelerated part of an aligner within the sequencing tool. As a result, as-
pects such as system wide communication and accelerator call overheads are neglected. In
this work, we address the aforementioned inefficiencies and propose GANDAFL, a novel
genome alignment dataflow architecture for SmW Matrix-fill and Traceback stages to per-
form high throughput short-read alignment on NGS data. We then propose a radical soft-
ware restructuring to widely-used Bowtie2 aligner that allows read alignment by batches
to expose acceleration capabilities. Batch alignment minimizes calling overhead of the
accelerators whereas moving both Matrix-fill and Traceback on chip extinguishes the com-
munication data overheads. The standalone solution delivers up to ×116 and ×2 speedup
over state-of-the-art software and hardware accelerators respectively and GANDAFL-
enhanced Bowtie2 aligner delivers a ×1.9 speedup.

Profile-Driven Banded Smith-Waterman acceleration for Short Read Align-
ment: In this work, we employ hardware acceleration and pre-filtering methods to present
a profile-driven Smith-Waterman accelerated design for short read alignment. Extensive
profiling of genomic datasets reveals low edit thresholds that can be leveraged by Banded
SmithWaterman to create resource-efficient accelerators that are customized to the edit
profile of the input. We therefore design and deliver a highly optimized dataflow imple-
mentation for Banded Smith-Waterman seed-extension targeting FPGA devices, which
is leveraged within a multi-dataflow accelerated system. This system is configured with
multiple Banded accelerators covering the full range of edits to achieve both high through-
put as well as high accuracy alignment. The evaluation shows that the proposed Banded
Smith-Waterman accelerator delivers a ×34 speedup over state-of-the-art software aligner
and ×1.53 over state-of-the-art dataflow SmithWaterman accelerator [246] and ×3 over
GACT RTL accelerator [36]. Moreover, the proposed multi-dataflow system delivers
average speedups of ×1.8 over state-of-art multi-accelerator FPGA solutions [246] that
employ generic and input-agnostic accelerators.

7.2. Future Extensions

The ever-growing healthcare data size and the increasing complexity of ML-healthcare
and Genomic applications have led to many open problems and call for constant con-
tributions and optimizations. Within the context of this thesis, we could pursue several
directions that are expected to bring promising results:

• Further optimization of GANDAFL: GANDAFL is a highly optimized accu-
rate version of the SmithWaterman string matching algorithm. The integration
with Bowtie2 however is constrained in terms of end to end speedup by the Amdhal
law. An alternative course would be to extend the part of the aligner implemented
on hardware and also implement in dataflow the seeding step of Bowtie2 aligner.

133

Conclusions

This would avoid the integration implications and lead to a hardware-only aligner
design that is no longer bounded by Amdahl-law for speedup gains. An important
challenge in this approach is to maintain the compatibility with the CIGAR format
and reported output of Bowtie2 aligner.

• Optimization of Genomic Pipeline in Cloud environment: A genomic
pipeline comprises of many data and compute intensive steps. For example, after
read alignment, typically follows the variant calling stage. In fact, multiple variant
callers are often utilized within a single workflow. As the cloud environment has
proved an efficient solution for big data applications, there is increased interest in
extensively exploring how the resources of a cloud environment could improve the
performance of an entire genomic pipeline. The exploration could also leverage
the power of GPUs and FPGAs (i.e. the existing accelerator and any open-source
available ones) and generate guidelines and insights for efficient execution.

• Serverless Genomics: In the context of optimizing an end-to-end genomic pipeline,
it would be interesting to achieve this goal using the serverless computing model.
In this new computing and scheduling model, large applications are transformed
into more structured ones with smaller execution units. Each of these smaller tasks
is scheduled to servers and assigned resources depending on the availability and re-
quirements. Deployment of tasks is decided by the framework upon a user request
for a workflow execution. Once deployed, the tasks communicate with each other
in an event-driven manner, without needless interactions with the framework. A
genomic pipeline could be broken into multiple such smaller tasks and execute on
a cloud platform, leveraging all available computing resources including FPGA or
GPU accelerators.

• Leveraging Machine Learning in Genomics Workflows: This thesis indi-
vidually examines a healthcare application that relies on a machine learning model
and a genomic application, i.e. short read alignment. There is however great poten-
tial in a synergetic approach that leverages Machine learning within the genomics
domain. This is supported by an elaborate review of the use of deep learning in
genomics [251]. The authors in [251] argue that the use of deep learning in genomics
has multiple advantages: (i) it can replace multiple time-consuming pre-processing
steps with a single model thanks to its inherent ability to discover patterns within
complex data, (ii) it can handle heterogeneous data of different origin and type effec-
tively (e.g. RNA and image data), (iii) it is ideal for the detection of spatial patterns
and (iv) it provides an abstraction layer over complex statistic and mathematical
formulation, and therefore it can increase productivity. There is already a wide use
of deep learning in various genomics applications, coming from supervised, multi-
modal, transfer as well as unsupervised learning domains and applied to tasks such
as gene expression profile prediction [252], prediction of noncoding variants [253],
base-calling [254] e.t.c. As the application of deep learning continues to expand
across multiple omics data types and gradually becomes part of everyday clinical

134

7.2. Future Extensions

practice, the research interest in new models is expected to spike. This increase
in applications and the continuous growth of omics data will be most definitely
accompanied with the adoption of numerous High Performance optimization tech-
niques. The authors in [255] present an extensive list of deep learning optimization
frameworks that will be most likely leveraged in the genomics fields. Recent works
also align with this trend, e.g. authors in [256] present a deep convolutional neural
network toolkit for epigenomics that have been trained on GPUs whereas the work
in [257] delivers a hardware-optimized deep-learning-based genomic basecaller.

135

Conclusions

136

Chapter 8.

Συνοπτική Περιγραφή των

Προτεινόμενων Μεθοδολογιών

στα Ελληνικά

Σε αυτή τη διατριβή επικεντρωνόμαστε στην υλοποίηση υλικού επιτάχυνσης για δύο α-

ντιπροσωπευτικές εφαρμογές του σύγχρονου τομέα της υγείας: μια ανάλυση πρόβλεψης

που βασίζεται στη μηχανική μάθηση και η ευθυγράμμιση ανάγνωσης γονιδιωματικών δεδο-

μένων. Και οι δύο τομείς βιώνουν έντονη ανάπτυξη τις τελευταίες δεκαετίες και παράγουν

έναν τεράστιο όγκο ακατέργαστων δεδομένων, πλούσιο σε πληροφορία. Η ερμηνεία και

η λήψη αποφάσεων βασισμένων σε αυτά τα δεδομένα έχουν αποδειχθεί δύσκολες εργα-

σίες καθώς τα δεδομένα και η υπολογιστική πολυπλοκότητα των αλγορίθμων αυξάνονται

εκθετικά. Για να αντιμετωπιστεί αυτό το πρόβλημα, έχουν εξεταστεί τεχνικές υψηλής α-

πόδοσης όπως η επιτάχυνση σε ηαρδωαρε. Υπάρχει μια πληθώρα ερευνητικών εργασιών που

αξιοποιούν διαφορετικά μοντέλα προγραμματισμού για να αναπτύξουν αποτελεσματικούς ε-

πιταχυντές βασισμένους σε FPGA, χάρη στην ευελιξία προγραμματισμού τους σε επίπεδο

βιτ. Ωστόσο, τα διαθέσιμα μοντέλα προγραμματισμού για την προγραμματισμό τέτοιων

συσκευών δεν μπορούν πάντα να εκμεταλλευτούν πλήρως τις προοπτικές επιτάχυνσης των

εφαρμογών με απλό τρόπο. Επιπλέον, σε πολύπλοκες εφαρμογές, οι υπάρχουσες λύσεις

χαρακτηρίζονται από μια περιορισμένη οπτική στην ενσωμάτωση των επιταχυντών σε ένα

ρεαλιστικό σύστημα, όπως η επικοινωνία σε επίπεδο συστήματος και οι πρόσθετοι χρόνοι

κλήσης των επιταχυντών. Στο τρέχον διδακτορικό, η κύρια συνεισφορά βασίζεται στην πα-

ροχή αποτελεσματικών λύσεων μέσω της στρατηγικής εξερεύνησης του χώρου σχεδιασμού

και της συνέργιας βελτιστοποιήσεων του κώδικα τόσο σε επίπεδο υλικού όσο και λογισμι-

κού.

Η πρώτη εφαρμογή που εξετάζεται σε αυτή τη διατριβή είναι η αποδοτική επιτάχυνση υλικού

των ταξινομητών Συππορτ ἕςτορ Μαςηινε (SVM). Σε αυτήν τη διατριβή, εξετάζουμε μια

εφαρμογή στην οποία οι επιταχυντές υλικού SVM εκτελούν ταξινόμηση για την ανίχνευ-

ση αρρυθμιών σήματος ECG. Η προτεινόμενη μεθοδολογία για την επιτάχυνση του SVM
έχει υλοποιηθεί χρησιμοποιώντας το εργαλείο Vivado High-Level Synthesis (HLS). Προ-

τείνουμε μια συστηματική προσέγγιση δύο επιπέδων για την επιτάχυνση του SVM, η οποία

137

Brief Description of the Proposed Frameworks in Greek

πρώτα βελτιστοποιεί τη γενική δομή της αρχικής περιγραφής συμπεριφοράς του SVM για

να βοηθήσει το εργαλείο να αναγνωρίσει τον εγγενμή παραλληλισμό σε επίπεδο δεδομένων

και εντολών του αλγορίθμου. Το δεύτερο επίπεδο βελτιστοποίησης βελτιώνει επιπρόσθε-

τα το σχεδιασμό μέσω μιας στρατηγικής εξερεύνησης του χώρου σχεδιασμού που σχεδι-

άζει τη μνήμη του επιταχυντή βάσει των μοτίβων υπολογισμού και πρόσβασης στη μνήμη

του.

Στο δεύτερο μέρος της διπλωματικής εργασίας, μελετάμε την επίδραση των τεχνικών ε-

πιτάχυνσης σε ένα από τα πιο υπολογιστικά απαιτητικά κομμάτια της επεξεργασίας γονι-

διώματος, που είναι η ευθυγράμμιση ακολουθιών ΔΝΑ στο ανθρώπινο γονιδίωμα. Εκτε-

λούμε ανάλυση της απόδοσης ενός εργαλείου αλληλούχισης (το Bowtie2) και εντοπίζουμε

τον αλγόριθμο Smith-Waterman ως το πιο χρονοβόρο κομμάτι. Η προσέγγισή μας είναι

να παρέχουμε μια υλοποίηση ροής δεδομένων που στοχεύει συσκευές FPGA λαμβάνοντας

υπόψη τις συνέπειες της ενσωμάτωσης του επιταχυντή στο εργαλείο αλληλούχισης και ε-

πομένως σε ένα πραγματικό σύστημα. Προτείνουμε το GANDAFL, μια νέα αρχιτεκτονική

ροής δεδομένων ευθυγράμμισης γονιδιώματος για τον Smith-Waterman για την εκτέλεση

ευθυγράμμισης υψηλής απόδοσης σε δεδομένα αλληλουχίας επόμενης γενιάς. Στη συνέχεια,

προτείνουμε μια ριζική αναδιάρθρωση του κώδικα του Bowtie2 η οποία ομαδοποιεί πολλά

μεμονωμένα αιτήματα αλληλούχισης και τα τροφοδοτεί στον επιταχυντή με υψηλής ρυθμό

απόδοσης ελαχιστοποιώντας έξοδα μεταφοράς και κλήσεων. Ο επιταχυντής προσφέρει έως

και 116 και 2 φορές επιτάχυνση αντίστοιχα σε σύγκριση με πρόσφατους επιταχυντές λο-

γισμικού και υλικού, αντίστοιχα, και η βελτιωμένη με GANDAFL ευθυγράμμιση Bowtie2
προσφέρει επιτάχυνση 1,9 επί του συνολικού συστήματος. Τέλος εξετάζουμε μια εναλλα-

κτική προσέγγιση, η οποία συνδυάζει μια ευριστική υλοποίηση του Smith-Waterman και

ένα στάδιο φιλτραρίσματος των αρχικών δεδομένων. Μελέτη των δεδομένων εισόδου υπο-

δεικνύει ότι η αλληλούχιση συνήθως είναι ακριβής και εντοπίζεται μικρός αριθμός διαφορο-

ποιήσεων από το ανθρώπινο γονιδίωμα. Αυτό μειώνει το χώρο αναζήτησης των λύσεων και

μας επιτρέπει να χρησιμοποιήσουμε τον ευριστικό Banded Smith Waterman ο οποίος επι-

τελεί την ίδια λειτουργία, εντοπίζει λιγότερες διαφοροποιήσεις και καταναλώνει λιγότερους

πόρους στο υλικό. Προτείνουμε λοιπόν ένα σύστημα που πλέον αποτελείται από πολλούς

επιταχυντές και καλύπτει έως έναν αριθμό διαφοροποιήσεων ενώ εντοπίζει πλέον τις αλ-

ληλουχίσεις με ταχύτερο ρυθμό. Το προτεινόμενο σύστημα αποδίδει επιτάχυνση έως 34

φορές σε σχέση με λογισμικά ενώ είναι έως 3 φορές γρηγορότερο από σχετικούς επιταχυ-

ντές.

8.1. Μέθοδος διερεύνησης χώρου λύσεων για Αποδοτική

Υψηλού Επιπέδου Σύνθεση Support Vector Machine
Η ενότητα αυτή βασίζεται στη δημοσίευση μας [180].

Στόχος αυτού του κεφαλαίου είναι η αξιοποίηση των δυνατοτήτων του HLS για τη δημιουρ-

138

8.1. SVM

γία αποδοτικών SVM ως επιταχυντές σε υλικό. Μελετάται ο εντοπισμός αρρυθμιών στο

ηλεκτροκαρδιογράφημα ΗΚΓ χρησιμοποιώντας ως βάση δεδομένων μια βάση δεδομένων για

ΗΚΓ που έχει αναπτυχθεί μέσω κοινής συνεργασίας των πανεπιστημίων MIT και BIH. Σε

πρώτο επίπεδο ο αρχικός κώδικας αναδομείται με κριτήριο την επιτάχυνση ώστε να δημιουρ-

γηθεί αποδοτικός επιταχυντής. Σε δεύτερο επίπεδο εξερευνώνται οι τεχνικές βελτιστο-

ποίησης του εργαλείου HLS οι οποίες εφαρμόζονται στον αρχικό και στον τροποποιημένο

κώδικα για περαιτέρω βελτίωση του ως προς μετρικές επίδοσης και χρησιμοποίησης πόρων.

Προτείνεται στρατηγική αποδοτικής εξερεύνησης του χώρου λύσεων ώστε να δοθούν στο

σχεδιαστή τα βέλτιστα σημεία κατά Pareto με βάση τα οποία μπορεί να επιλέξει μια υ-

λοποίηση ανάλογα με τις απαιτήσεις της εκάστοτε εφαρμογής σε ταχύτητα εκτέλεσης και

χρησιμοποίηση πόρων.

Εφαρμογή Εντοπισμού Αρρυθμίας σε Ηλεκτροκαρδιογράφημα με χρήση

Support Vector Machine Η μορφή του ΗΚΓ και ο καρδιακός ρυθμός που εξάγεται από

το ΗΚΓ είναι δηλωτικά της κατάστασης της καρδιάς. Στην ουσία το ΗΚΓ αποτυπώνει διαδο-

χικούς καρδιακούς κύκλους. Ο καρδιακός κύκλος (διαστολή, συστολή, ηρεμία) συντονίζεται

από ηλεκτρικά σήματα που παράγονται από κατάλληλα κέντρα διέγερσης της καρδιάς. Υπάρ-

χουν τρία βασικά ηλεκτρικά σήματα που εμφανίζονται στο ΗΚΓ: το έπαρμα P, το σύμπλεγμα

QRS που αποτελείται από τις κορυφές Q,R,S και το έπαρμα T. Αυτά τα σήματα είναι στην

πραγματικότητα μεταβολές του ηλεκτρικού δυναμικού διαφόρων περιοχών της καρδιάς και

άρα το ΗΚΓ απεικονίζει την ηλεκτρική δραστηριότητα της καρδιάς. Τα επάρματα αυτά και

οι αποστάσεις μεταξύ τους έχουν συγκεκριμένη χρονική διάρκεια και μορφολογία. Οποια-

δήποτε παρέκκλιση από τη φυσιολογική μορφολογία τους πρέπει να μελετηθεί καθώς μπορεί

να είναι δείγμα παθολογικής βλάβης. Η καρδιακή αρρυθμία είναι η πιο συνηθισμένη καρ-

διακή βλάβη και είναι η διαταραχή του καρδιακού ρυθμού. Η αρρυθμία μπορεί να είναι από

ασυμπτωματική μέχρι κρίσιμη για την ανθρώπινη ζωή. Για αυτό το λόγο κρίνεται απαρα-

ίτητη η μελέτη του ΗΚΓ, ως μέσο διάγνωσης αρρυθμιών. Οι αρρυθμίες είναι μεμονωμένα

περιστατικά που εκδηλώνονται σε τυχαίες χρονικές στιγμές. Επομένως είναι αναγκαία η

μελέτη του ΗΚΓ μεγάλων χρονικών διαστημάτων. Ο μεγάλος όγκος δεδομένων προς με-

λέτη καθιστά απαραίτητη τη χρήση τεχνικών μηχανικής μάθησης για την επεξεργασία του.

Ταξινομητές βασίζονται σε τεχνικές μηχανικής μάθησης για την εκπαίδευσή τους με αυτό το

μεγάλο σύνολο δεδομένων ώστε τελικά να μπορούν να διαγνώσουν σωστά την ύπαρξη ή μη

αρρυθμίας σε ένα νέο σύνολο δεδομένων ΗΚΓ. Στη συγκεκριμένη εργασία χρησιμοποιείται η

βάση δεδομένων αρρυθμίας MIT-BIH Arrhythmia Database, η οποία περιλαμβάνει παλμούς

για τους οποίους έχει γίνει διάγνωση από καρδιολόγους. Η διαδικασία επεξεργασίας και

ανάλυσης του ΗΚΓ για την εξαγωγή των επιμέρους παλμών και των χαρακτηριστικών τους

ώστε τελικά να γίνει η διάγνωση χρησιμοποιώντας μοντέλα τεχνικής μηχανικής μάθησης

παρουσιάζεται ακολούθως και απεικονίζεται στο Σχ.8.1.

Ως ταξινομητής επιλέγονται οι Μηχανές Διανυσμάτων Υποστήριξης (Support Vector Ma-
chines -SVM). Τα SVM είναι μοντέλα επιβλεπόμενης μάθησης που εκπαιδεύονται με ένα

μεγάλο σύνολο δεδομένων και είναι κατάλληλη για την ταξινόμηση των νέων εισόδων σε

δύο υποψήφιες κλάσεις συμπληρωματικές μεταξύ τους. Το σύνολο εκπαίδευσης αποτελείται

από διανύσματα με συγκεκριμένα χαρακτηριστικά καθένα από τα οποία διαθέται μια ετικέτα

139

Brief Description of the Proposed Frameworks in Greek

Band pass
Filtering
process

ECG related
information

extraction (QRS
peaks…)

Discrete Wavelet
Transform

ECG signal
classification –

Abnormal heart
beat detection

Diagnosis

Band pass
Filtering
process

R peak
detection

Discrete
Wavelet

Transform

Heart beat
diagnosis
classifier

Diagnosis –
Normal /
Abnormal

Σχήμα 8.1.: Ροή Ανάλυσης Ηλεκτροκαρδιογραφήματος.

δηλωτικής της κλάσης στην οποία ανήκει. ΄Ενα σύνολο από άλλα διανύσματα με τα ίδια

χαρακτηριστικά και γνωστές τις ετικέτες χρησιμοποιείται για να ελεχθεί η ακρίβεια της

πρόβλεψης.

Τα SVM εφαρμόζουν αρχικά μια συνάρτηση πυρήνα που ανάγει τα διανύσματα σε ένα χώρο

περισσότερων διαστάσεων, όπου είναι πιο εύκολος ο διαχωρισμός τους. Στο χώρο αυτό

βρίσκουν ένα υπερεπίπεδο το οποίο αποτελείται από τα διανύσματα που απέχουν μέγιστα

από τα διανύσματα που ανήκουν σε κάθε κλάση. Κάθε νέο διάνυσμα ανάγεται σε αυτόν το

χώρο, υπολογίζεται η απόσταση του από το υπερεπίπεδο και άρα με βάση τη θέση του σε

σχέση με αυτό ταξινομείται στην αντίστοιχη κλάση. Η συνάρτηση πυρήνα είναι καθοριστική

για την ακρίβεια και την πολυπλοκότητα του μοντέλου. Λόγω των μη γραμμικών σχέσεων

μεταξύ των χαρακτηριστικών του διανύσματος κάθε παλμού χρησιμοποιούμε μη γραμμική

συνάρτηση πυρήνα και συγκεκριμένα εκθετικής φύσης.

Ακολουθεί η μαθηματική εξίσωση που περιγράφει τον υπολογιστικό πυρήνα του ταξινομητή

και ο αντίστοιχος κώδικας C που την υλοποιεί:

Class = sgn(
N sv∑
i=1

(yi ∗ ai ∗ exp(−γ||x− sup vectori||2))− b) (8.1)

Το σχήμα 8.2 απεικονίζει τη μέση χρήση της CPU ανά επεξεργασία καρδιακού παλμού για τα

διαφορετικά στάδια επεξεργασίας της ροής ανάλυσης ΗΚΓ που εκτελείται σε ένα Intel Quark
SoC. Διαφορετικά μοντέλα ταξινομητών SVM, με αυξανόμενες υπολογιστικές απαιτήσεις

(όσον αφορά τον αριθμό των διανυσμάτων υποστήριξης και το μέγεθος του διανύσματος

εισόδου) χρησιμοποιήθηκαν κατά το profiling της εφαρμογής. Σε όλες τις περιπτώσεις οι

είσοδοι της συσκευής είναι σήματα που προέρχονται από τη βάση δεδομένων αρρυθμιώνMIT-
BIH. Το Σχ.8.2αʹ δείχνει ότι ακόμη και για μοντέλα SVM μέτριας πολυπλοκότητας, η εκτέλε-

ση του ταξινομητή κυριαρχεί στον απαιτούμενο χρόνο CPU.

Ο στόχος αυτής της δουλειάς είναι η δημιουργία ενός SW/HW συστήματος που εκτελεί την

εφραμογή εντοπισμού αρρυθμιών πιο αποδοτικά υλοποιώντας την ταξινόμηση με το SVM
σε έναν επιταχυντή σε FPGA. Τα χαρακτηριστικά του SVM που θα χρησιμοποιηθεί για

140

8.1. SVM
Sheet2

Page 1

filtering
(20.55%)
R peaks
(0.46%)
DWT
(0.57%)
SVM
(78.43%)

filtering
(8.25%)
R peaks
(0.18%)
DWT
(0.23%)
SVM
(91.34%)

(αʹ)

Sheet2

Page 1

filtering
(20.55%)
R peaks
(0.46%)
DWT
(0.57%)
SVM
(78.43%)

filtering
(8.25%)
R peaks
(0.18%)
DWT
(0.23%)
SVM
(91.34%)

(βʹ)

Σχήμα 8.2.: Μέση χρήση της CPU ανά επεξεργασία καρδιακού παλμού για (α) SVM μοντέλα

μέτριων υπολογιστικών απαιτήσεων, (β) SVM μοντέλα υψηλών υπολογιστικών απαι-

τήσεων.

Πίνακας 8.1.: Παράμετροι του μοντέλου.

parameter meaning value
N_sv number of support vectors 1274

D_sv dimension/features of each support vector 18

την παρουσίαση της προτεινόμενης μεθοδολίας υλοποίησης αποδοτικών SVM σε FPGA
περιλαμβάνονται στον Πίνακα 8.1.

Το Σχ.8.3 απεικονίζει την προτεινόμενη μεθοδολογία που στηρίζεται σε δύο επίπεδα βελτι-

στοποίησης. Στο πρώτο επίπεδο ο αρχικός κώδικας αναδομείται με κριτήριο την επιτάχυνση

ώστε να διευκολύνει το εργαλείο HLS να εντοπίσει και να αξιοποιήσει τον υπάρχοντα πα-

ραλληλισμό. Στο δεύτερο επίπεδο εξερευνώνται οι τεχνικές βελτιστοποίησης του εργαλείου

HLS οι οποίες εφαρμόζονται στον αρχικό και στον τροποποιημένο κώδικα για περαιτέρω βελ-

τίωση του ως προς μετρικές επίδοσης και χρησιμοποίησης πόρων. Συγκεκριμένα, προτείνεται

στρατηγική αποδοτικής εξερεύνησης του χώρου λύσεων ώστε να δοθούν στο σχεδιαστή τα

βέλτιστα σημεία κατά Pareto με βάση τα οποία μπορεί να επιλέξει μια υλοποίηση ανάλο-

γα με τις απαιτήσεις της εκάστοτε εφαρμογής σε ταχύτητα εκτέλεσης και χρησιμοποίηση

πόρων.

Επίπεδο Βελτιστοποίησης 1: Αναδόμηση του HLS κώδικα.

Ανάπτυξη Παραλληλισμού σε Επίπεδο Μπλοκ: Αρχικά επιδιώκουμε την εξαγω-

γή παραλληλισμού σε επίπεδο συνάρτησης. Για να το επιτύχουμε αυτό εκμεταλλευόμαστε

τον εγγενή παραλληλισμό του αλγορίθμου. Το διάνυσμα εισόδου του τρέχοντος παλμού

υλοποιείται ως ένας πίνακας-γραμμή με 18 στοιχεία-χαρακτηριστικά. Τα διανύσματα υπο-

στήριξης υλοποιούνται ως ένας δισδιάστατος πίνακας με τόσες στήλες όσο το πλήθος των

διανυσμάτων υποστήριξης ενώ κάθε στήλη έχει τόσα στοιχεία όσα είναι τα χαρακτηριστι-

κά που μελετώνται. Για κάθε διάνυσμα εισόδου προς ταξινόμηση, υπολογίζεται η ευκλείδια

απόστασή του από κάθε διάνυσμα υποστήριξης και υψώνεται στο τετράγωνο. Στη συ-

141

Brief Description of the Proposed Frameworks in Greek

Kernel specific Kernel specific Kernel specific Kernel specific

Analysis on HLS Analysis on HLS Analysis on HLS Analysis on HLS

DirectivesDirectivesDirectivesDirectives

Level Level Level Level 2222: : : : Design Space Design Space Design Space Design Space

Exploration on HLS Exploration on HLS Exploration on HLS Exploration on HLS

DirectivesDirectivesDirectivesDirectives

Original

C

 Source Code

Memory architecture Memory architecture Memory architecture Memory architecture

optimization guidelinesoptimization guidelinesoptimization guidelinesoptimization guidelines

Instantiation of Instantiation of Instantiation of Instantiation of

Zynq based system Zynq based system Zynq based system Zynq based system

Kernel under

acceleration C

 Source Code

ACC. Kernel

Wrappers

Level Level Level Level 1111: : : : Source code Source code Source code Source code

restructuringrestructuringrestructuringrestructuring

Loop and

memory

partitioning

Arithmetic

operations

reshaping

Restructured

C Source

Codes

HWHWHWHW////SW SW SW SW

cocococo----design design design design

interface interface interface interface

instantiationinstantiationinstantiationinstantiation

Designer Designer Designer Designer &&&&

Device Device Device Device

specific specific specific specific

constraintsconstraintsconstraintsconstraints

AreaAreaAreaArea////delay delay delay delay

product product product product

optimization optimization optimization optimization

Final

C

 Source Code

HLS

knowledge

database

ACC HW

IP

Σχήμα 8.3.: Προτεινόμενη ροή σχεδίασης HLS επιταχυντών για HW.

νέχεια εφαρμόζεται σε αυτή τη τιμή η συνάρτηση πυρήνα και η νέα τιμή που προκύπτει

πολλαπλασιάζεται με τον αντίστοιχο παράγοντα κάθε διανύσματος υποστήριξης. Οι τιμές

που προκύπτουν από τους υπολογισμούς με κάθε διάνυσμα υποστήριξης αθροίζονται και

το τελικό αποτέλεσμα συγκρίνεται με τη τιμή βιας για την ταξινόμηση σε μια από τις δύο

κλάσεις. Οι πράξεις που απαιτούνται μεταξύ του διανύσματος εισόδου και κάθε διανύσματος

υποστήριξης είναι ανεξάρτητες μεταξύ τους. Μπορούν λοιπόν να εκτελούνται παράλληλα.

Σε αυτή την έμφυτη παραλληλία βασίζεται η προτεινόμενη τεχνική. Ο πίνακας των δια-

νυσμάτων υποστήριξης μπορεί να επιμεριστεί σε μικρότερους πίνακες, καθένας από τους

οποίους περιέχει λιγότερα διανύσματα υποστήριξης. Οι πράξεις για τον υπολογισμό του

μερικού αθροίσματος με το οποίο συνεισφέρει το κάθε κομμάτι πίνακα στο τελικό άθροισμα

εκτελούνται παράλληλα. Επιτύχαμε λοιπόν την εκτέλεση του ίδιου υπολογιστικού πυρήνα

πολλές φορές παράλληλα μόνο που κάθε μία από αυτές δρα σε μικρότερο σύνολο δεδο-

μένων.

Η υλοποίηση της παραπάνω ιδέας απαιτεί αλλαγές στον κώδικα σε δομικό επίπεδο αλλά

και τη χρήση των τεχνικών βελτιστοποίησης που προσφέρει το HLS. Συγκεκριμένα ο υ-

142

8.1. SVM

πολογιστικός πυρήνας του ταξινομητή υλοποιείται ως συνάρτηση η οποία καλείται από την

κύρια συνάρτηση τόσες φορές όσες φορές έχει επιμεριστεί ο πίνακας. Ο πίνακας των διανυ-

σμάτων υποστήριξης και ο πίνακας των παραγόντων τους επιμερίζονται επίσης σε υποπίνακες

με χρήση των κατάλληλων αυτόματων τεχνικών που παρέχει το εργαλείο. Σε διαφορετι-

κή περίπτωση θα δημιουργούνταν αντίτυπα των πινάκων για να είναι εφικτή η πρόσβαση

σε πάνω από δύο στοιχεία του κάθε πίνακα τη φορά, περιορισμός που επιβάλλεται λόγω

της υλοποίησης των πινάκων ως BRAM με δύο θύρες ανάγνωσης. Κάθε στιγμιότυπο

της συνάρτησης έχει πρόσβαση στα στοιχεία μόνο ενός μέρους του επιμερισμένου πίνα-

κα.

Αυτή η ιδέα υλοποιήθηκε για επιμερισμό του πίνακα σε 2,3,4,8 και 16 μέρη. Η βελτίω-

ση του latency ήταν η αναμενόμενη, δηλαδή ο χρόνος εκτέλεσης διαιρέθηκε σχεδόν κατά

έναν παράγοντα 2,3,4,8 και 16. Η χρησιμοποίηση σε DSP πολλαπλασιάστηκε κατά αυτόν

τον παράγοντα ενώ υπήρχε σταδιακή αύξηση και στη χρησιμοποίηση LUT και Flip Flop.
Η μνήμη παρέμεινε σταθερή εκτός από την τελευταία περίπτωση όπου σημειώθηκε μια α-

πότομη αύξηση. Δοκιμάζοντας να χωρίσουμε τους πίνακες με το χέρι, δηλώνοντας τους

εξαρχής χωριστά, πετύχαμε ακόμα μεγαλύτερη επιτάχυνση (ακόμα πιο κοντά στον ιδανικό

παράγοντα 2,3,4,8,16 αντιστοίχως) και εξαλείφθηκε το πρόβλημα με την απότομη αύξηση σε

BRAM.

Ανάπτυξη Παραλληλισμού σε Επίπεδο Εντολών μέσω μετασχηματισμού

αριθμητικών υπολογισμών

Σε αυτό το κομμάτι θα εξετάσουμε την παραλληλοποίηση σε επίπεδο εντολών. Συγκεκριμένα

θα ασχοληθούμε με την παραλληλοποίηση του εσωτερικού βρόχου του ταξινομητή. Αυτός

ο βρόχος είναι υπεύθυνος για τον υπολογισμό της ευκλείδειας απόστασης του διανύσματος

από ένα διάνυσμα υποστήριξης υψωμένης στο τετράγωνο. Σε κάθε επανάληψη υπολογίζεται

η διαφορά μεταξύ των αντίστοιχων χαρακτηριστικών των δύο διανυσμάτων και υψώνεται στο

τετράγωνο. Αντί να υπολογίζεται κάθε φορά μία μόνο διαφορά θα μπορούσαν να υπολο-

γίζονται περισσότερες και να αθροίζονται σταδιακά σε μια μεταβλητή η οποία στο τέλος του

βρόχου θα περιέχει την τετραγωνισμένη νόρμα. Η άθροιση όμως πολλών αριθμών κινητής

υποδιαστολής συνεπάγεται μεγάλο κρίσιμο μονοπάτι επειδή οι προσθέσεις γίνονται σειριακά

αν και δεν υπάρχει εξάρτηση μεταξύ των προσθετέων. Η πρόσθεση μπορεί να υλοποιηθεί

αποδοτικά αν χρησιμοποιηθεί μια δενδρική μορφή. Ο εσωτερικός βρόχος εκτυλίσσεται τόσες

φορές όσες διαφορές θα υπολογιστούν ταυτόχρονα. Οι διαφορές υπολογίζονται παράλληλα

μεταξύ τους όπως και οι υψώσεις των διαφορών στο τετράγωνο. Στη συνέχεια οι διαθέσι-

μες τιμές προστίθενται ανά δύο και τα αποτελέσματα κρατώνται σε προσωρινές μεταβλητές.

Αυτές προστίθενται και πάλι ανά δύο κ.ο.κ. μέχρι τον υπολογισμό της ολικής νόρμας στο

τετράγωνο.

Η παραπάνω ιδέα υλοποιήθηκε για εκτύλιξη του εσωτερικού βρόχου 3,6 και 18 φορές που

αντιστοιχεί σε πλήρη εκτύλιξη. Τα αποτελέσματα συγκεντρώνονται στ ΞΞΞ, όπου πραγ-

ματοποιείται σύγκριση μεταξύ εκτύλιξης του βρόχου με το χέρι, χρησιμοποιώντας δενδρική

δομή και εκτύλιξης του βρόχου με τις αυτόματες τεχνικές του εργαλείου. Παρατηρείται

143

Brief Description of the Proposed Frameworks in Greek

σημαντική βελτίωση στο latency όταν η εκτύλιξη γίνεται με το χέρι και μάλιστα η διαφορά

μεγαλώνει όσο μεγαλώνει και ο παράγοντας της εκτύλιξης. Η χρησιμοποίηση των DSP,
LUTs και Flip Flop αυξάνεται καθώς η αντιγραφή του σώματος του εσωτερικού βρόχου

οδηγεί στην δέσμευση περισσότερων πόρων προκειμένου οι πράξεις να δρομολογηθούν ταυ-

τόχρονα.

Επίπεδο Βελτιστοποίησης 2: Διερεύνηση του Χώρου Σχεδιασμόυ των

Αυτόματων HLS Τεχνικών Βελτιστοποίησης.

Η απόδοση μπορεί να βελτιωθεί περαιτέρω από το συνδυασμό των προηγούμενων τεχνικών

με τις ενσωματωμένες αυτόματες τεχνικές βελτιστοποίησης που παρέχει το HLS και ονο-

μάζονται directives. Η επιλογή αυτών εξαρτάται από την εγγενή παραλληλία του αλγορίθμου

και τον τρόπο με τον οποίο αυτή μπορεί να αξιοποιηθεί. Στον συγκεκριμένο ταξινομητή ε-

πιλέγονται τεχνικές που στοχεύουν στην παραλληλοποίηση των βρόχων και της πρόσβασηα

σε πίνακες στο εσωτερικό των βρόχων:

Pipeline: Αυτή η τεχνική εφαρμόζεται σε όλους τους βρόχους. Οι πράξεις των επανα-

λήψεων εκτελούνται παράλληλα κι όχι σειριακά χρησιμοποιώντας όλους τους πόρους κάθε

χρονική στιγμή.

Εκτύλιξη βρόχου: Εφαρμόζεται σε όλους τους βρόχους. Δημιουργούνται αντίγραφα του

σώματος του βρόχου ενώ μειώνεται ο αριθμός εκτελέσεων.

Διαίρεση Πίνακα: Εφαρμόζεται στους πίνακες sup_vector και sv_coef arrays. Διαιρεί

τους πίνακες σε πίνακες μικρότερου μεγέθους κι άρα αυξάνεται ο αριθμός των θυρών ανάγνω-

σης. Η διαίρεση γίνεται κυκλικά (ανά κάποιο παράγοντα τα στοιχεία ανήκουν στην ίδια υπο-

διαίρεση πίνακα) ώστε να είναι δυνατή η ταυτόχρονη πρόσβαση σε διαδοχικά στοιχεία του αρ-

χικού πίνακα με τη σειρά που αυτά χρειάζονται και στο βρόχο.

Μορφοποίηση Πίνακα: Εφαρμόζεται στους ίδιους πίνακες με την προηγούμενη τεχνική

και για τον ίδιο σκοπό. Η διαφορά είναι ότι οι μικρότεροι πίνακες ενώνονται και πάλι σε έναν

πίνακα ώστε ένα στοιχείου του νέου πίνακα να αποτελείται από όλα τα αντίστοιχα στοιχεία

των μικρότερων πινάκων.

Η διερεύνηση όλων των συνδυασμών των επιλεγμένων τεχνικών οδηγεί σε έναν τεράστιο

σχεδιαστικό χώρο και η εξαντλητική αξιολόγηση των λύσεων του δεν είναι εφικτή εντός

εύλογου χρονικού διαστήματος. Προτείνουμε μια μεθοδολογία ώστε να έχουμε στη διάθεσή

μας έναν μικρότερο σχεδιαστικό χώρο εντοπισμένο στις καλύτερες λύσεις του αρχικού εξα-

ντλητικού χώρου. Αυτό επιτυγχάνεται μέσω τριών κανόνων μείωσης του χώρου διερεύνησης

που στηρίζονται στην ιδέα ότι οι πιο αποδοτικές αρχιτεκτονικές είναι αυτές στις οποίες η

144

8.1. SVM

ιεραρχία και διάταξη της μνήμης έχει προσαρμοστεί στο αλγοριθμικο μοτίβο πρόσβασης της

μνήμης. Οι κανόνες είναι οι εξής:

Κανόνας 1. Ο παράγοντας διαίρεσης ενός πίνακα πρέπει να ίσος με τον παράγοντα εκτύλι-

ξης του βρόχου μέσα στον οποίο γίνεται η πρόσβαση στον πίνακα.

Κανόνας 2. Ο παράγοντας μορφοποίησης ενός πίνακα πρέπει να ίσος με τον παράγοντα ε-

κτύλιξης του βρόχου μέσα στον οποίο γίνεται η πρόσβαση στον πίνακα.

Κανόνας 3. Το γινόμενο του παράγοντα μορφοποίησης και διαίρεσης ενός πίνακα πρέπει

να ίσος με τον παράγοντα εκτύλιξης του βρόχου μέσα στον οποίο γίνεται η πρόσβαση στον

πίνακα.

Οι κανόνες αυτοί επιβεβαιώνονται πειραματικά αν απομονώσουμε μόνο τα configuration που

συνδυάζουν τις παραπάνω τεχνικές και τα χωρίσουμε σε δύο υποσύνολα: το ένα υποσύνολο

υπακούει στους κανόνες και το άλλο όχι. Είναι εμφανές από το Σχ.8.4 ότι οι κανόνες

απομονώνουν τις πιο αποδοτικές λύσεις. Εφαρμόζοντας τους κανόνες σε όλο τον χώρο

σχεδίασης προκύπτει ένας μικρότερος χώρος, ο περικομμένος. Απεικονίζουμε και τους δύο

χώρους στο Σχ.8.5 και πραγματοποιούμε και στους δύο ανάλυση Pareto, η οποία παρέχει τα

βέλτιστα σημεία ως προς τον χρόνο εκτέλεσης και χρησιμοποίησης πόρων. Το συμπέρασμα

είναι ότι ο χώρος σχεδίασης μειώθηκε από 70962 λύσεις σε 2212, 3% του αρχικού χώρου.

΄Ενα ποσοστό 33% των βέλτιστων σημείων κατά Pareto του αρχικού χώρου περιλαμβάνεται

και στον περικομμένο.

Σχήμα 8.4.: Επαλήθευση των κανόνων μείωσης του σχεδιαστικού χώρου.

Η μείωση του χώρου λύσεων μεταφράζεται σε μείωση του χρόνου αξιολόγησης των λύσεων.

Εξαντλητική αξιολόγηση του περικομμένου χώρου είναι απαραίτητη προκειμένου να επιλεχθεί

145

Brief Description of the Proposed Frameworks in Greek

(αʹ) Πλήρης και περικομμένος χώρος σχεδίασης.

(βʹ) Βέλτιστα σημεία κατά Pareto του πλήρους

και περικομμένου χώρου σχεδίασης.

Σχήμα 8.5.: Σύγκριση του πλήρους και περικομμένου χώρου σχεδίασης.

μία μεμονωμένη λύση. Αυτός ο χρόνος έχει μειωθεί από 15 μέρες σε 5 ώρες. Αν και

εφικτό, στόχος μας είναι να προτείνουμε μια ενιαία μεθοδολογία που παραδίδει μία μόνο

λύση στο χρήστη και τον απαλλάσει από το φόρτο χειρωνακτικής αξιολόγησης και εύρεσης

λύσης. Για αυτό το σκοπό χρησιμοποιούμε έναν discrete steepest decent greedy optimizer
ο οποίος ξεκινά από τυχαίες λύσεις του περικομμένου χώρου και καταλήγει σε μια λύση

βελτιστοποιώντας την παρακάτω εξίσωση:

min
x∈D

[
Delay(x)×Areautil(x)

]
∈ R2

(8.2)

Οι τρεις διαφορετικές προσεγγίσεις διερεύνησης του χώρου λύσεων απεικονίζονται στο

Σχ.;;.

Σε αυτό το σημείο αξιολογούμε την αποτελεσματικότητα της προτεινόμενης στρατηγικής

εξερεύνησης σχεδιασμού για βελτιστοποίηση των SVM σε σύγκριση με την εξαντλητική

διέλευση του αρχικού σχεδιαστικού χώρου. Για να ποσοτικοποιήσουμε την αποτελεσμα-

τικότητα της προτεινόμενης στρατηγικής εξερεύνησης, χρησιμοποιούμε δύο μετα-ευρετικές

μεθόδους βελτιστοποίησης για την αναζήτηση σημείων σχεδίασης εντός του πλήρους και

του περικομμένου σχεδιαστικού χώρου. Αυτά τα δύο μετα-ευρετικά βελτιστοποίησης είναι:

1) steepest descent και 2) ένας γενετικός optimizer με πληθυσμό 20 και 4 γενιές. Συ-

γκρίνουμε τις τρεις εναλλακτικές λύσεις εξερεύνησης ως προς ι) τη βελτιστοποίηση των

αποτελεσμάτων μέσω της μετρικής απόστασης σε σχέση με τις βέλτιστες λύσεις (όσο χαμη-

λότερη τόσο καλύτερα) που προκύπτουν από την εξαντλητική εξερεύνηση χώρου σχεδιασμού

και (ιι) τον αριθμό των συνθετικών λύσεων που υποδεικνύει τη διεξαγωγή της εξερεύνησης-

αποτελεσματικότητα χρόνου. Το Σχ.8.6 δείχνει την απόσταση από το σημείο σχεδίασης

βέλτιστης περιοχής καθυστέρησης, μεταβάλλοντας τον αριθμό των συνθετικών σχεδίων για

146

8.1. SVM

κάθε στρατηγική εξερεύνησης.

΄Οπως φαίνεται, η αποτελεσματικότητα κάθε στρατηγικής εξερεύνησης οργανώνεται σε δια-

φορετικές ζώνες εμβέλειας. Είναι σαφές ότι η ζώνη της προτεινόμενης μεθοδολογίας κυ-

ριαρχεί σχεδόν πλήρως και στα δύο μετα-ευρετικά βελτιστοποίησης που εφαρμόζονται στις

παραλλαγές πλήρους σχεδιαστικού χώρου. Για τον ίδιο ή μικρότερο αριθμό configuration,
η προτεινόμενη εξερεύνηση παρέχει σχεδιαστικές λύσεις που είναι πιο κοντά στα βέλτιστα

σχέδια Σ῞Μ, παρέχοντας ένα μέσο σφάλμα απόστασης 0,001 με τυπική απόκλιση 0,14. Οι α-

ντίστοιχες μέσες τιμές απόστασης για την πιο απότομη κάθοδο στον πλήρη χώρο σχεδιασμού

έχουν υπολογιστεί σε 2,83 (τυπική απόκλιση: 2,37), ενώ για το γενετικό βελτιστοποιητή σε

4 (τυπική απόκλιση: 2,47). Είναι σημαντικό να τονίσουμε ότι η στρατηγική εξερεύνησης δύο

φάσεων που παρουσιάζεται και επικυρώνεται εδώ είναι επιτυχής, επειδή ο βελτιστοποιητής

μπορεί να αναζητήσει σημεία σχεδίασης σε έναν εξαιρετικά συμπαγή χώρο που περιλαμβάνει

πολύ αποτελεσματικές λύσεις.

Σχήμα 8.6.: Μέση απόσταση από βέλτιστα σημεία για διαφορετικούς βελτιστοποιητές.

Τέλος, αξιολογούμε την αποτελεσματικότητα του βελτιστοποιημένου HW SVM χρησιμο-

ποιώντας μια συν-σχεδιασμένη έκδοση HW/SW της εφαρμογής ανίχνευσης αρρυθμίας που

βασίζεται στο ΗΚΓ. Το κομμάτι της ταξινόμησης υλοποιείται σε διαφορετική πλατφόρμα

HW και τα αποτελέσματα συγκρίνονται μεταξύ τους. Η καθυστέρηση επικοινωνίας της

παροχής νέων δεδομένων εισόδου στον ταξινομητή είναι αμελητέα (που κυμαίνεται από 10

έως 900 φορές λιγότερο από τον χρόνο υπολογισμού) αφού το διάνυσμα χαρακτηριστικών

εισόδου αποτελείται από μόνο 18 σημεία. ΄Ολα τα συστήματα λειτουργούν πάνω από ένα

λειτουργικό σύστημα που βασίζεται σε Λινυξ και έχουν μεταγλωττιστεί χρησιμοποιώντας

σημαίες O3 της gcc. Πιο συγκεκριμένα οι πλατφόρμες στόχου που χρησιμοποιούνται ε-

ίναι:

147

Brief Description of the Proposed Frameworks in Greek

1. Intel Quark SoC 400 MHz.

2. ARM Cortex A8 600 MHz.

3. ARM Cortex A9 (Zynq Processing System) 667 MHz.

4. ARM Cortex A57 64-bit CPU 1.4 GHz.

5. Zedboard HW/SW co-designed system.

Το σετ δοκιμών αποτελείται από 52291 διανύσματα δοκιμής, τα οποία αντιστοιχούν σε δια-

νύσματα που εξάγονται από καρδιακούς παλμούς των σημάτων ΗΚΓ. Αυτά παρέχονται ως

είσοδος στις διαφορετικές υλοποιήσεις ταξινομητή SVM και η μέση καθυστέρηση εκτέλεσης

του σταδίου διάγνωσης για όλες τις διαφορετικές υλοποιήσεις του ταξινομητή παρουσιάζεται

στο Σχ.8.7. Παρατηρούμε μια συσχέτιση μεταξύ της ικανότητας της ;; και της μειωμένης

καθυστέρησης εκτέλεσης. Η απλή HLS υλοποίηση στις περισσότερες περιπτώσεις δεν ε-

ίναι αποτελεσματική ακόμη και σε σύγκριση με τις CPU. Αντίθετα, η η βελτιστοποιημένη

έκδοση του HW IP είναι σε κάθε περίπτωση πολύ πιο αποτελεσματική σε σύγκριση με
όλες τις άλλες εναλλακτικές σχεδιάσεις. Η επιτυγχανόμενη επιτάχυνση σε σύγκριση με

την μη βελτιστοποιημένη έκδοση φτάνει έως και 78 φορές. Η βελτιστοποιημένη λύση ε-

ίναι επίσης σχεδόν 10 φορές ταχύτερη σε σύγκριση με το σύστημα διπλού πυρήνα 64-bit
ARM.

8.2. GANDAFL:Επιτάχυνση της αλληλούχισης μικρών
τμημάτων DNA με χρήση dataflow HW επιταχυντή

Η ενόητα αυτή βασίζεται στη δημοσίευση μας [218].

Οι τεχνολογίες της αλληλουχίας επόμενης γενιάς (NGS) έχουν φέρει επανάσταση στη με-

λέτη του γονιδιώματος μέσω της ταχείας παραγωγής δεδομένων γονιδιωματικής με χαμηλό

κόστος. Οποιαδήποτε ανάλυση γονιδιώματος συνήθως ξεκινά με ευθυγράμμιση ανάγνω-

σης DNA, χρησιμοποιώντας αλγόριθμους αντιστοίχισης συμβολοσειρών όπως ο Smith-
Waterman για τη σύγκριση αλληλουχιών DNA. Η εγγενής υπολογιστική ένταση και η

τεράστια ποσότητα δεδομένων εισόδου NGS που χειρίζεται ο αλγόριθμος καθυστερούν

την ολοκλήρωση της εφαρμογής. Οι επαναπρογραμματιζόμενες υπολογιστικές συσκευές

(FPGA) έχουν αξιοποιηθεί εκτενώς για την άμβλυνση αυτής της συμφόρησης, εστιάζοντας

κυρίως σε υψηλής απόδοσης αν και αυτόνομες υλοποιήσεις, δηλαδή παραβλέποντας τις επι-

πτώσεις της ενσωμάτωσης των επιταχυνόμενων συναρτήσεων στα εργαλεία αλληλούχισης.

Στις υπάρχουσες λύσεις επιτάχυνσης, ο αποτελεσματικός συν-σχεδιασμός της ευθυγράμ-

μισης εξακολουθεί να παραμένει ανοιχτό ζήτημα, κυρίως λόγω της αμέλησης δυσκολιών

της ενσωμάτωσης σε εργαλεία όπως το κόστος μεταφοράς δεδομένων μεταξύ λογισμικού

148

8.2. GANDAFL

Σχήμα 8.7.: Μέσος χρόνος εκτέλεσης ανά παλμό.

και επιταχυντή και του κόστους κλήσης του επιταχυντή. Σε αυτό το κεφάλαιο, αντιμετω-

πίζουμε τις προαναφερθείσες αναποτελεσματικότητες και προτείνουμε τον GANDAFL, μια
νέα αρχιτεκτονική για τα στάδια SmW Matrix-fill,Traceback της ευθυγράμμισης μικρών α-

κολουθιών DNA που προέρχονται από τεχνολογίες NGS. Στη συνέχεια, προτείνουμε μια

ριζική αναδιάρθρωση του εργαλείου αλληλούχισης Βοωτιε2 που επιτρέπει την ευθυγράμμιση

ανάγνωσης ομαδοποιημένων αλληλουχιών. Αυτή η αναδιάρθωση είναι καθοριστική για την

αξιοποίηση της διαθέσιμης παραλληλίας και την επίτευξης της επιτάχυνσης. Η αλληλούχιση

μεγάλων μπλοκ ακολουθιών αντί μεμονωμένων ελαχιστοποιεί την επιβάρυνση των κλήσεων

των επιταχυντών, ενώ η μετακίνηση τόσο του Matrix-fill όσο και του Traceback στο τσιπ

ελαχιστοποιεί το κόστος μεταφοράς δεδομένων. Ο επιταχυντής προσφέρει έως και ×116 και

×2 επιτάχυνση σε σχέση με σύγχρονους επιταχυντές λογισμικού και υλικού, αντίστοιχα,

και ο Bowtie2 με ενσωματωμένο τον GANDAFL προσφέρει επιτάχυνση ×1,9 σε σχέση με

τον αρχικό.

Το Σχ.8.8 απεικονίζει μια τυπική ροή εντοπισμού παραλλαγών στο DNA. Το πρώτο βήμα

εστιάζει στη δημιουργία των δεδομένων που απαιτούνται, τα οποία είναι μικρές ακολουθίες

DNA και αποκαλούνται short reads. Τα μήκη τους κυμαίνονται από 50 έως 300 bp (ζεύγη

βάσεων). Τα επόμενα βήματα, δηλαδή η αλληλούχιση και ο εντοπισμός παραλλαγών στο

149

Brief Description of the Proposed Frameworks in Greek

DNA, διευκολύνουν την ανακατασκευή του γονιδιώματος του δείγματος και τη σύγκρισή

του με το γονιδίωμα αναφοράς του οργανισμού. Η αλληλούχιση έχει ως στόχο να εντο-

πίσει μια θέση στο γονιδίωμα αναφοράς που είναι πιθανότατα η προέλευσή των short read.
Τόσο οι αλληλουχίες αναφοράς όσο και οι ακολουθίες ανάγνωσης κωδικοποιούνται χρη-

σιμοποιώντας αριθμητικές τιμές. Η αλληλούχιση έχει ως αποτέλεσμα ευθυγραμμίσεις που

μπορούν είτε να ταιριάζουν τέλεια με την αντίστοιχη θέση αναφοράς είτε να περιλαμβάνουν

αναντιστοιχίες. Συχνές παραλλαγές στην αλληλουχία των βάσεων που μπορεί δυνητικά να

οδηγήσουν σε γενετικές μεταλλάξεις είναι οι εισαγωγές ή οι διαγραφές ή αντικαταστάσεις.

Αυτές οι παραλλαγές ονομάζονται edits.

FASTQFASTQ

FASTQFASTQ

raw
reads

filtered reads

Sequencing

Quality control

Alignment

FASTQSAM

FASTQSAM

Post-alignment processing FASTQ
VCF

Variant Calling

raw mapped reads

filtered mapped reads

@SEQ_ID
GATTTGGGG
+
!''*((((*

FASTQ format

19:20389:F 99 1 17644 0 37M = 17919 314
TAT...CAT >>>...:<9 RG:Z:UM0098:1
XT:A:R NM:i:0 SM:i:0 AM:i:0 X0:i:4
X1:i:0 XM:i:0 XO:i:0 XG:i:0 MD:Z:37

SAM format

20 14370 rs6054257 G A 29
PASS NS=3;DP=14;AF=0.5;DB;H2
GT:GQ:DP:HQ 0|0:48:1:51,51
1|0:48:8:51,51 1/1:43:5

VCF format

Σχήμα 8.8.: Τυπική ροή εργαλείων για εντοπισμό παραλλαγών στο DNA.

Σε αυτή τη δουλειά θα επικεντρωθούμε στο εργαλείο αλληλούχισης Bowtie2 το οποίο βα-

σίζεται στο αλγοριθμικό μοντέλο λειτουργίας seed-and-extend. Σύμφωνα με αυτό, κάθε

short read διαιρείται σε ακόμη μικρότερα τμήματα που λέγονται seeds για τα οποία εντοπίζο-

νται αλληλουχίσεις στο γονιδίωμα αναφοράς που δεν εμφανίζουν καμία παραλλαγή. Κάθε

ένα απο αυτά στη συνέχεια μπορεί να επεκταθεί σε μια πλήρη αλληλούχιση του αρχικού

short read η οποία μπορεί να περιέχει και παραλλαγές. Κατά την αναζήτηση της πιο πιθανής

προέλευσης, ελέγχονται με σειρά προτέραιοτητας τα seeds. Ωστόσο, η σειρά που ελέγχονται

και το συνολικό πλήθος δοκιμών δεν είναι γνωστά εκ των προτέρων και διαφέρει για κάθε

short read.

Το δεύτερο στάδιο της επέκτασης του seed γίνεται με χρήση του αλγορίθμου δυναμικού

προγραμματισμού Smith-Waterman, ο οποίος εντοπίζει τις ομοιότητες μεταξλύ δύο ακο-

λουθιών, του short read και του αντίστοιχου reference sequence. Αποτελείται από δύα

στάδια. Το Matrix-Fill στάδιο συμπληρώνει έναν πίνακα ομοιότητας με σκορ με βάση τις

ακόλουθες εξισώσεις:

Ei,j = max{Ei−1,j , Hi−1,j − q} − r
Fi,j = max{Fi,j−1, Hi,j−1 − q} − r

Hi,j = max{Hi−1,j−1 + sc[Q[i], S[j]], Ei,j , Fi,j , 0}
(8.3)

150

8.2. GANDAFL

C G C T A

0 0 0 0 0 0

C 0 2 1 2 1 0

C 0 2 1 3 2 1

T 0 1 1 2 5 4

A 0 0 0 1 4 7

C G C T A

0 0 0 0 0 0

C 0 0 0 0 0 0

C 0 1 0 1 0 0

T 0 1 0

A 0 0 0

C G C T A

0 0 0 0 0 0

C 0 0 1 0 1 0

C 0 0 1 0 2 1

T 0 0 0

A 0 0 0

C G C T A

0 0 0 0 0 0

C 0 2 1 2 1 0

C 0 2 1 3 2 1

T 0 1 1 2 5

A 0

F matrix

E matrix

H matrix

H final matrixReference

Q
u

e
ry

Alignment
C G C T A
C - C T A

𝐿𝑖𝑛𝑒𝑎𝑟 𝑔𝑎𝑝 = −1

up

left

upleft

1
st

ro
w

𝑛

𝑚

anti-diagonal

nth antidiagonal

A C G T N

A 2 -1 -1 -1 -1

C -1 2 -1 -1 -1

G -1 -1 2 -1 -1

T -1 -1 -1 2 -1

N -1 -1 -1 -1 2

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥,

𝑆𝑚𝑖𝑡ℎ𝑊𝑎𝑡𝑒𝑟𝑚𝑎𝑛

Σχήμα 8.9.: Εξαρτήσεις Δεδομένων στο Matrix Fill στάδιο και παράδειγμα Traceback για απλο-

ποιημένο Smith-Waterman με γραμμικό μοντέλο για τα σκορ.

΄Οπως φαίνεται στο Σχ.8.9 η συμπλήρωση ενός κελιού εξαρτάται από το κελί στα αριστερά,

από πάνω και διαγώνια. Αυτό σημαίνει ότι τα στοιχεία που ανήκουν στην ίδια διαγώνιο

μπορούν να υπολογιστούν ταυτόχρονα και επομένως ο πίνακας να συμπληρωθεί σε τόσα

βήματα όσες είναι και οι διαγώνιοι. Μόλις συμπληρωθεί, η Traceback ξεκινά από το κε-

λί με το υψηλότερο σκορ και διατρέχει τον πίνακα ανάστροφα ώστε να φτιάξει την ακριβή

αλληλούχιση με όλες τις δυνητικές παραλλαγές στις ακολουθίες. Η έξοδος της Trace-
back είναι το σκορ, η θέση της αλληλούχισης, οι θέσεις των παραλλαγών και ο τύπος

τους.

Αρχιτεκτονική των Επιταχυντών

Στόχος αυτής της δουλειάς είναι η υλοποίηση FPGA επιταχυντή για τον Smith-Waterman.
Υλοποιούμε δύο υπολογιστικές μονάδες, μία για κάθε στάδιο του αλγορίθμου. Οι δύο

μονάδες δέχονται διαδοχικά ομάδες από short read προς αλληλούχιση. Η Matrix-Fill συ-
μπληρώνει τον πίνακα για την πρώτη ομάδα και έπειτα στέλνει τα δεδομένα στην Traceback
με αντίστροφη σειρά. Οι δύο μονάδες λειτουργούν σαν ένα pipeline. Η Matrix-Fill έχει

υλοποιηθεί σαν ένας συστολικός πίνακας απο επεξεργαστικά στοιχεία. Καθένα από αυτά

αναλαμβάνει να υπολογίσε μια γραμμή του πίνακα. Τα επεξεργαστικά στοιχεία λειτουργούν

παράλληλα και μπορούν να υπολογίζουν έτσι παράλληλα κελιά του πίνακα τηρώντας τις εξαρ-

τήσεις δεδομένων. ΄Ετσι μπορούν και υπολογίζουν παράλληλα τα κελιά των διαγωνίων. Η

εκμετάλλευση αυτής της παραλληλίας οδηγεί σε μια σειρά υπολογισμού των κελιών η οποία

αντικατοπτρίζεται στη διάταξη του πίνακα στη μνήμη στον οποίο αποθηκεύονται οι τιμές.

Αυτός ο πίνακας αντί να ακολουθεί τη διάταξη των στοιχείων ανά γραμμή, ακολουθεί δι-

άταξη ανά διαγώνιο επομένως δημιουργείται ένα στρεβλομένο μοτίβο το οποίο απεικονίζεται

151

Brief Description of the Proposed Frameworks in Greek

PE3

PE2

PE1

PE0 q0s0 q0s1

q1s0

q0s2

q1s1

q2s0

q0s3

q1s2

q2s1

q3s0

q0s4

q1s3

q2s2

q3s1

q1s4

q2s3

q3s2

q2s4

q3s3 q3s4

q0

q1

q2

q3

antidiagonal/time axis
x

n+m-1

1st row

read-reference pair {Q1,S1} next pair {Q2,S2}

x x

m=5n=4

L

fixed Q1=q0q1q2q3

streaming S1=s0s1s2s3s4

s4
L

 s0

 s1

s2

 s3

0 1 2 3

Σχήμα 8.10.: Παράδειγμα συμπλήρωσης του πίνακα H από τη συστοιχία PE στον άξονα του

χρόνου για μήκη ακολουθιών n = 4,m = 5.

στο Σχ.8.10.

Η αρχιτεκτονική βελτιστοποιείται περαιτέρω με τη χρήση δύο τεχνικών. Η πρώτη αποσκοπεί

στην εξάλειψη άεργων κύκλων ρολογιού στο εσωτερικό των επεξεργαστικών στοχείων. Ο

χρόνος υπολογισμού ενός κελιού αποτελείται από πολλούς κύκλους ρολογιού. Εμείς παρεμ-

βάλλουμε δεδομένα από άλλα ζεύγη ακολουθιών προκειμένου να υπολογίζονται τα αντίστοιχα

κελιά τα οποία δεν έχουν εξάρτηση δεδομένων από τους τρέχοντες υπογισμούς. Για αυτό

το σκοπό οργανώνουμε την είσοδο τοποθετώντας στους ίδιους πίνακες εισόδου κυκλικά τα

στοιχεία ακολουθιών διαφορετικών ζευγών. Αυτή η αναδιάρθρωση στοιχείων μεταφέρεται

και στα ενδιάμεσα και τελικά αποτελέσματα όπως φαίνεται στο Σχ.8.11. Η δεύτερη τεχνι-

κή εξασφαλίζει ότι οι δύο μονάδες λειτουργούν ταυτόχρονα και σε pipeline, δηλαδή όσο η

Matrix-Fill συμπληρώνει τους πίνακες μιας ομάδας ακολουθιών, η Traceback να μπορεί να

διαβάζει τους πίνακες της προηγούμενης. Αυτό υλοποιείται με τη χρήση δύο αντιγράφων των

πινάκων ώστε η Matrix-Fill να μην αναμένει την Traceback αλλά να προχωρά στην επόμενη

ομάδα. Αυτή η τεχνική απεικονίζεται σχηματικά στο Σχ.8.12.

Διερευνούμε περαιτέρω την αποτελεσματικότητα της αρχιτεκτονικής αλλάζοντας τα μεγέθη

εισόδου και υλοποιώντας πολλαπλά αντίτυπα του επιταχυντή στη συσκευή. Στην πρώτη

περίπτωση, αυξάνονται τα μήκη των ακολουθιών. Αυτό έχει ως συνέπεια να αυξάνονται οι

πόροι καθώς χρειάζονται τόσα επεξεργαστικά στοιχεία όσο είναι το μήκος της ακολουθίας.

Ο χρόνος εκτέλεσης δεν αυξάνεται ωστόσο γραμμικά. Μεγάλη αύξηση του χρόνου εκτέλε-

σης παρατηρείται για μεγάλα μήκη ακολουθιών λόγω αυξημένης χρησιμοποίησης πόρων η

οποία προκαλεί πτώση στο ρολόι. Εξετάζουμε επίσης το σενάριο αξιοποίησης όλων των

διαθέσιμων συσκευών και πόρων και ελέγχουμε διάφορους συνδυασμούς αριθμού συσκευών

και αριθμού επιταχυντών. Παρατηρούμε γραμμική επιτάχυνση εφόσον το ρολόι παραμένει

υψηλό. Ο καλύτερος συνδυασμός προκύπτει με δύο επιταχυντές σε καθένα από τα δύο

152

8.2. GANDAFL

3
2
1
0

4
3
2
1

5
4
3
2

6
5
4
3

7
6
5
4

input format
skewed pattern

interleaving

Q1

Q2

S1

S2

antidiagonal index:
(0 .. n+m-1)

(0..L-1)
pair index:

antidiagonal
index:

(0 .. n+m-1)

output format

0 1 2 3 4 5 6 7

 0 1 2 3 4 5 6 7

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

3
2
1
0

4
3
2
1

5
4
3
2

6
5
4
3

7
6
5
4

interleaving S1,S2

interleaving Q1,Q2

0 1 2 3 4

0 1 0 1 0 1 0 1 0 1
 0 1 2 3 4

0 1 2 3 4 5 6 7

Σχήμα 8.11.: Παράδειγμα τεχνικής σύμπλεξης δεδομένων για L=2, όπως επηρεάζει τη δομή της

μνήμης για δεδομένα εισόδου και εξόδου.

FPGA.

Αρχιτεκτονική του Ενσωματωμένου Συστήματος

Η ενσωμάτωση του επιταχυντή στο εργαλείο αλληλούχισης ενέχει κάποιους κινδύνους. Αυ-

τοί πηγάζουν από το γεγονός ότι κάθε short read δημιουργεί διαφορετικό αριθμό από αλλη-

λουχίσεις που πρέπει να ελεγχθούν ώστε να βρεθεί η πιο πιθανή τοποθεσία. Το Σχ.8.15αʹ

φανερώνει ότι αναλόγως την είσοδο, το Matrix-Fill μπορεί να απαιτεί το 48% του χρόνου

αλλά αυτός ο χρόνος κατανέμεται σε πολλές προσπάθειες, 1 έως 170 για κάθε short read
όπως μετρήθηκαν στο Σχ.8.15βʹ. Σε περίπτωση υλοποίησης μόνο αυτού ως επιταχυντή κι

όχι όλου του SmW, αυτό ισοδυναμεί σε έως 500 εκατομμύρια μεταφορές των πινάκων που

διαβάζει η Traceback κι άρα 186 terabytes. Η υλοποίηση της Traceback ως επιταχυντή, ελα-

χιστοποιεί αυτό το κόστος μεταφοράς σε 5 gigabytes. Οι προσπάθειες αλληλούχισης όμως

παραμένουν πολλές και έχουν σαν αποτέλεσμα την κλήση των επιταχυντών εκατομμύρια φο-

ρές το οποίο επιβραδύνει την εκτέλεση έως 1000 φορές. Προκειμένου να αποφευχθεί αυτό,

πρέπει να ομαδοποιηθούν οι αλληλουχίσεις και να εκτελούνται με λιγότερες κλήσεις στον

επιταχυντή.

Αυτό επιτυγχάνεται αναγκαστικά με αναδιάρθρωση του κώδικα. Χωρίζουμε τον αλγόριθμο

σε 3 φάσεις οι οποίες επαναλαμβάνονται κυκλικά μέχρι να εξαντληθούν/αλληλουχιστούν

όλες οι ακολουθίες εισόδου. Κάθε εκτέλεση των 3 φάσεων αλληλουχεί μια ομάδα από α-

κολουθίες και καλεί τον επιταχυντή μία φορά. Στην πρώτη φάση κάθε εκτέλεσης βρίσκουμε

τις πιθανές θέσεις αλληλούχισης για όλες τις ακολουθίες της ομάδας. Επιτρέπουμε έως

8 υποψηφίους για κάθε ακολουθία και διατάσουμε τα δεδομένα εισόδου τηρώντας την τε-

χνική εναλλάξ τοποθέτησης τους. Στη δεύτερη φάση καλούμε τον επιταχυντή και γίνε-

ται η αλληλούχιση αυτών των δεδομένων ενώ στην τρίτη φάση κατανέμουμε και κατα-

γράφουμε τα αποτελέσματα. Το Σχ.8.16 απεικονίζει την προτεινόμενη οργάνωση του κώδι-

153

Brief Description of the Proposed Frameworks in Greek

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0

1

3

1

0

1

3

1

E,F,H

READenableWRITEenable

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0

1

3

1

0

1

3

1

E,F,H

READenableWRITEenable

L-batch next L-batch

0 1 1 0

Σχήμα 8.12.: Εναλλαγή των δικαιωμάτων Γραφής και Ανάγνωσης στα δύο αντίγραφα των πινάκων

βάσει της τεχνικής Διπλής Αποθήκευσης.

181

61.3

26.7

80

43.1
20.9

49
25.6 15.3

37
11.9 9.7

0

50

100

150

200

time(sec) BRAM % Logic %

50 100

150 200

Σχήμα 8.13.: Χρόνος εκτέλεσης και χρησιμοποίηση πόρων για διάφορα μήκη ακολουθιών.

κα.

Πειραματική Αξιολόγηση του Επιταχυντή και του Συστήματος.

Η αξιολόγηση της προτεινόμενης αρχιτεκτονικής γίνεται και σε επίπεδο επιταχυντή αλλά και

σε επίπεδο ενσωματωμένου συστήματος. Το υπολογιστικό σύστημα στο οποίο εκτελούμε τα

πειράματα αποτελείται από έναν επεξεργαστή Intel Xeon E5-2658A που συνδέεται μέσω PCIe
Gen 2 με την πλατφόρμαMaxeler’s MAX5 που περιέχει δύο Xilinx VU9P Ultrascale FPGA.

Τα δεδομένου εισόδου που χρησιμοποιούμε είναι: (1) τρία σύνολα που έχουν παραχθεί μέσω

προσομοιωτή NEAT50,100,150 και (2) ένα σύνολο από πραγματικούς ασθενείς που νοσούν

από CLL.

Αρχικά συγκρίνουμε τον επιταχυντή με άλλα εργαλεία αλληλούχισης υλοποιημένα σε soft-
ware ή harware. Συγκεκριμένα συγκρίνουμε με τα εργαλεία: Edlib [114],WFA [115],KSW2
[116],Bowtie2 SIMD SmW [113],software GenASM [136],open-source Maxeler SmW [235]

και Darwin GACT [36]. Η σύγκριση γίνεται για τρία διαφορετικά μήκη ακολουθιών και όλες

154

8.2. GANDAFL

0

20

40

60

80

100

120

10000 100000 1000000 10000000

Ti
m

e
(s

ec
)

Number of Reads

1 FPGA - 1 instance 1 FPGA - 2 instances

1 FPGA - 3 instances 1 FPGA - 4 instances

2 FPGA - 1 instance 2 FPGA - 2 instances

2 FPGA - 3 instances 2 FPGA - 4 instances

Σχήμα 8.14.: Απόδοση για διαφορετικό αριθμό επιταχυντών και συσκευών και αυξανόμενο μέγε-

θος εισόδου.

οι μετρήσεις σε software και hardware είναι σε τεχνολογία 18nm. Η υλοποίηση μας έχει

98.42 φορές μεγαλύτερο througphut σε σχέση με την ταχύτερη software υλοποίηση, δηλαδή

την Edlib και 2.13 φορές από το ταχύτερο GACT hardware εργαλείο αλληλούχισης όπως

φαίνεται στο Σχ.8.17αʹ. Για δίκαιη σύγκριση, επαναλάβαμε το πείραμα μόνο για τις hardware
αρχιτεκτονικές χρησιμοποιώντας το 80% των διαθέσιμων πόρων του ίδιου FPGA με πολλα-

πλές μονάδες του κάθε εργαλείου αλληλούχισης. Και πάλι, όπως παρουσιάζεται στο Σχ.8.17,

η προτεινόμενη υλοποίηση έχει μεγαλύτερο throughput.

Κατόπιν ελέγχουμε την επιτάχυνση όταν ενσωματώνουμε τον επιταχυντή στον Bowtie2. Αν

και περιορίζουμε τις υποψήφιες αλληλουχίσεις για κάθε ακολουθία σε 8, η ακρίβεια των

αποτελεσμάτων έχει ελάχιστη απώλεια καθώς στην πλειοψηφία των ακολουθιών οι πρώτες

δοκιμές είναι και οι επικρατούσες. Η επιτάχυνση επίσης φτάνει το θεωρητικό βέλτιστο, 1.92

αντί 1.96 φορές, για ένα ρεαλιστικό σύνολο εισόδου. Αγγίζει μόνο το 1.26 με θεωρητικά

βέλτιστο το 1.67 για ένα σύνολο για το οποίο η υλοποίησή μας κάνει υπερεκτίμηση του

αριθμού των δοκιμών που απαιτούνται και έχει αυξημένο κόστος χειρισμού και αλληλούχισης

αυτών των δεδομένων (3 φορές περισσότερα δεδομένα). Τα ακριβή στατιστικά και το κέρδος

φαίνονται στο Σχ.8.18.

Η προηγούμενη σύγκριση αφορά την περίπτωση που έχουμε ένα CPU thread στον Bowtie2.
Ωστόσο το εργαλείο αυτό υποστηρίζει και εκτέλεση με πολλαπλά thread. Το σύστημά όμως

διαθέτει πρόσβαση σε περιορισμένο πλήθος FPGA. Επομένως στο σενάριο εκτέλεσης που ε-

ξετάζουμε πολλαπλά thread θα πρέπει να διαμοιράζονται τους επιταχυντές. Χρησιμοποιούμε

και τα δύο FPGA και σε καθένα από αυτά τοποθετούμε έναν επιταχυντή. Παρατηρούμε ότι

η εκδοχή με τη χρήση επιταχυντών είναι πάντα ταχύτερη από την απλή και μάλιστα το κέρδος

στο χρόνο εκτέλεσης φτάνει και τις 3 φορές για το μεγαλύτερο αριθμό thread που υποστη-

ρίζει το σύστημά μας. Τα αποτελέσματα για αυξανόμενο αριθμό thread απεικονίζονται στο

Σχ.8.19.

155

Brief Description of the Proposed Frameworks in Greek

0

10000

20000

30000

NEAT CLL

Ex
ec

u
ti

o
n

 t
im

e

Dataset

Other

Traceback

Matrix-Fill

(αʹ) Διαμερισμός του χρόνου εκτέλεσης κάθε λειτουργίας εντός του Bowtie2.

0

20

40

60

80

100

NEAT CLL

%
 o

f
re

ad
s

<9 tries

<17 tries

<51 tries

<127 tries

< 170 tries

(βʹ) Κατανομή των δοκιμών αλληλούχισης για κάθε ακολουθία των χρησιμοποιούμενων δεδομένων

εισόδου.

Σχήμα 8.15.: Μελέτη του Bowtie2 για διαφορετικά δεδομένα εισόδου.

8.3. GANDAFL:Επιτάχυνση του αλγορίθμου Banded
Smith-Waterman για την αλληλούχιση μικρών
τμημάτων DNA βασιζόμενη στο προφίλ των δεδομένων
εισόδου

Η δουλειά αυτή παρουσιάζεται σε άρθρο μας που έχει γίνει δεκτό για δημοσίευση στο συνέδριο

Design Automation Conference (DAC) 2023.

Σε αυτό το κομμάτι εξετάζουμε μια εναλλακτική προσέγγιση, η οποία συνδυάζει μια ευριστική

υλοποίηση του Smith-Waterman και ένα στάδιο φιλτραρίσματος των αρχικών δεδομένων.

Μελέτη των δεδομένων εισόδου υποδεικνύει ότι η αλληλούχιση συνήθως είναι ακριβής και

εντοπίζεται μικρός αριθμός διαφοροποιήσεων από το ανθρώπινο γονιδίωμα. Αυτό μειώνει το

χώρο αναζήτησης των λύσεων και μας επιτρέπει να χρησιμοποιήσουμε τον ευριστικό Banded
Smith Waterman ο οποίος επιτελεί την ίδια λειτουργία, εντοπίζει λιγότερες διαφοροποιήσεις

και καταναλώνει λιγότερους πόρους στο υλικό. Προτείνουμε λοιπόν ένα σύστημα που πλέον

αποτελείται από πολλούς επιταχυντές και καλύπτει έως έναν αριθμό διαφοροποιήσεων ενώ

εντοπίζει πλέον τις αλληλουχίσεις με ταχύτερο ρυθμό.

Ιδέα και Αρχιτεκτονική του Συστήματος

156

8.3. bandedsmw

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

1

2

 . . .

N

read_cnt

PCIe

FP
G

A
 a

cc
el

er
a

to
r

PCIe

1

2

 . . .

L

Alignments

C-CTACC

ACGT--CG

ACGTGCC

chain of seed-extend alignments

L

L

Sm
W

Sm
W

L

max_tries1 . . .

Data
gathering

HW run
Data

distribution

Σχήμα 8.16.: Αναδιάρθρωση του κώδικα του Bowtie2.

Για να αξιολογήσουμε την επίδραση της επεξεργασίας του προφίλ εισόδου στην αρχιτεκτονι-

κή, μελετούμε προσεκτικά τη συμπεριφορά και τα αποτελέσματα κατά την αλληλούχιση τριών

διαφορετικών συνόλων δεδομένων εισόδου: ένα προσομοιωμένο σύνολο δεδομένων από 60

εκατομμύρια δείγματα μήκους 100 βάσεων που δημιουργήθηκαν από το προσομοιωτή NEAT
, 60 εκατομμύρια δείγματα από το συχνά χρησιμοποιούμενο δείγμα NA12878 και το CLL,
ένα πραγματικό σύνολο δεδομένων από ασθενείς που πάσχουν από χρόνια λεμφοκυτταρική

λευχαιμία. Η Εικ. 8.20 παρουσιάζει ένα ιστόγραμμα του αριθμού των edits για όλες τις

αλληλουχίσεις που βρέθηκαν για κάθε σύνολο δεδομένων. Οι επιλεγμένες τιμές ορίου edits
στα ιστογράμματα, δηλαδή 2, 5, 10, 18, 30 , αντιστοιχούν σε κρίσιμες τιμές για τις οποίες

σημειώνεται σημαντική αύξηση του αριθμού των ευθυγραμμίσεων. Για το προσομοιωμένο

σύνολο δεδομένων, το 70.8% των εξετασθέντων ευθυγραμμίσεων περιλαμβάνει το πολύ ένα

edit. Το ίδιο ποσοστό είναι ίσο με 74.4% και 82% για τα σύνολα δεδομένων NA12878 και

CLL. Ο αριθμός των αναγνώσεων που αλληλουχίζονται επιτυχώς αυξάνεται γρήγορα (κατά

5-10%) για edits που κυμαίνονται από 1 έως 8. Ωστόσο, για τιμές μεγαλύτερες από 10,

οι αυξητικές αλλαγές είναι της τάξης 0.01%. Πράγματι, για όλα τα σύνολα δεδομένων, το

99.99% των ευθυγραμμίσεων περιέχει λιγότερες από 18 edits.

Το πρώτο σημαντικό εύρημα της διερεύνησης είναι η πιθανή επίδραση του χαμηλού αριθμού

επεξεργασιών στην αρχιτεκτονική του επιταχυντή. Η Εικ. 8.21 απεικονίζει την τοποθέτηση

μιας ακριβούς ευθυγράμμισης καθώς και μιας ευθυγράμμισης με edits. Και οι δύο ευθυ-

γραμμίσεις ξεκινούν από το seed hit, δηλαδή το πρώτο σημείο αντιστοίχισης, ωστόσο η

ευθυγράμμιση με edits αποκλίνει από την ¨κύρια διαγώνιο¨. ΄Οσο λιγότερα είναι τα edit, τόσο
στενότερη είναι η ζώνη του πίνακα που καλύπτει η ευθυγράμμιση. Αυτό αξιοποιείται από τον

Banded Smith-Waterman [247], που βασίζεται στην παρατήρηση ότι το μέγιστο σκορ στον

πίνακα εμφανίζεται γύρω από την ¨κύρια διαγώνιο’ σε μέγιστη απόσταση ίση με τον αριθμό

157

Brief Description of the Proposed Frameworks in Greek

Read Length

0

200000

400000

600000

800000

1000000

50 100 150

A
lig

n
m

en
ts

/s
ec

read length

GenASM WFA Bowtie2 KSW2 Edlib Maxeler GACT Darwin GANDAFL

x1.97

x1.99
x2.13

x7.7

x9.5 x7.9

x14.6

x42
x288

(αʹ) Throughput σύγκριση για διαφορετικά μήκη ακολουθιών για τους GenASM, Edlib, WFA,
KSW2, Bowtie2 SmW, Maxeler(only MatrixFill), GACT Darwin, GANDAFL.

0

200000

400000

600000

800000

Maxeler GACT GANDAFL

al
ig
n
m
en

ts
/s
ec

x5.5x8.99

(βʹ) Chip-to-chip throughput σύγκριση για τα Maxeler(MatrixFill), GACT, GANDAFL.

Σχήμα 8.17.: Σύγκριση του τηρουγηπυτ για διαφορετικά εργαλεία αλληλούχισης.

των edit.

Επομένως, για ένα όριο edit, ο Banded Smith-Waterman επικεντρώνεται στην αντίστοιχη

ζώνη εντός του πίνακα και εξαλείφει την ανάγκη αποθήκευσης και αναζήτησης ολόκλη-

ρων των πινάκων σκορ. Η Εικ. 8.21 δείχνει τη σχετική ζώνη εντός του πλήρους πίνακα,

λαμβάνοντας υπόψη το όριο edit. Η τελική ευθυγράμμιση θα βρεθεί εντός της περιοχής

που σημειώνεται από την ¨κύρια διαγώνιο¨, τις ανώτερες διαγωνίους και τις κατώτερες δια-

γωνίους γύρω από την ¨κύρια διαγώνιο’ με όριο edit. Επομένως, η μελέτη του του συ-

νόλου δεδομένων εισόδου μπορεί να μας βοηθήσει να αποφύγουμε την υπερβολική παροχή

πόρων.

Το δεύτερο σημαντικό εύρημα δεν αφορά το χαμηλό όριο edit αυτό καθαυτό, αλλά τη συ-

χνότητα με την οποία εμφανίζεται κάθε όριο. Η κατανομή ανά όριο edit μεταφράζεται σε

αντίστοιχη κατανομή του χρόνου που απαιτείται από κάθε τύπο ευθυγράμμισης, δηλαδή οι

ευθυγραμμίσεις με 0-1 edit καταλαμβάνουν τουλάχιστον το 70% του συνολικού χρόνου ευθυ-

γράμμισης του συνόλου δεδομένων. Αυτή η ομοιογένεια υποδηλώνει ότι η συνολική απόδοση

θα μπορούσε να επωφεληθεί περισσότερο εάν δημιουργήσουμε πολλαπλούς επιταχυντές μι-

κρότερου μεγέθους και τους αναθέσουμε στους αντίστοιχους τύπους ευθυγράμμισης με μια

παρόμοια κατανομή.

Αξιοποιούμε τα παραπάνω ευρήματα για να δημιουργήσουμε ένα σύστημα με πολλαπλο-

ύς επιταχυντές, δηλαδή ένα πολυεπεξεργαστικό σύστημα δεδομένων, προσαρμοσμένο στις

προδιαγραφές του συνόλου δεδομένων όσον αφορά το όριο edit. ΄Οπως φαίνεται στην Εικ.

8.22, αυτό μπορεί να επιτευχθεί αρχικά με τον προσδιορισμό του προφίλ του συνόλου δεδο-

158

8.3. bandedsmw

29.7

6.5

0

10

20

30

40

50

60

NEAT CLLDataset

Bowtie2 tries (x10^7)

GANDAFL-Bowtie2 tries
(x10^7)

Speedup

(αʹ) Σύγκριση στατιστικών αλληλούχισης και χρόνου εκτέλεσης αλληλούχισης μεταξύ αρχικού

Bowtie2 και GANDAFL-Bowtie2.

0

5000

10000

15000

20000

25000

Bowtie2 NEAT GANDAFL-Bowtie2 NEAT Bowtie2 CLL GANDAFL-Bowtie2 CLL

Ex
ec

u
ti

o
n

 t
im

e
(s

ec
) MatrixFill & Traceback other

x1.26

x1.92

(βʹ) Επιτευχθείσα επιτάχυνση του GANDAFL-Bowtie2.

Σχήμα 8.18.: Αξιολόγηση του Bowtie2 με ενσωματωμένο τον προτεινόμενο επιταχυντή.

400

1 2 3 4 6 8 10 12 14 16 24 32 48

ex
ec

u
ti

o
n

 t
im

e
(s

ec
)

Number of parallel threads

SW only Bowtie2

GANDAFL-Bowtie2

23000

Σχήμα 8.19.: Σύγκριση της απόδοσης των συστημάτων για χρήση πολλών τηρεαδ και διαμοιρασμό

δύο επιταχυντών.

μένων εισόδου για την εξαγωγή της κατανομής των edit και τον εντοπισμό των ορίων edit
για τα οποία υπάρχει αισθητή άνοδος στον αριθμό των επιτυχών αλληλουχίσεων. Ο αριθ-

μός των ορίων edit υποδηλώνει τον αριθμό των διαφορετικών τύπων επιταχυντών Banded
Smith-Waterman προσαρμοσμένων στα edit. Κάθε τύπος μπορεί να υποστηρίξει έως ένα

προκαθορισμένο αριθμό edit, ίσο με τα εντοπισμένα όρια. Ο αριθμός των επιταχυντών που

εκχωρούνται για κάθε τύπο ακολουθεί την ίδια κατανομή με τα όρια επεξεργασίας. Στη

συνέχεια, ο αλγόριθμος φιλτραρίσματος SneakySnake [119] κατηγοριοποιεί τις υποψήφιες

ευθυγραμμίσεις εισόδου στην αντίστοιχη κατηγορία όριου edit και αναθέτει κάθε ευθυγράμ-

μιση στον αντίστοιχο επιταχυντή.

Η προτεινόμενη αρχιτεκτονική πολυεπεξεργαστικής ροής δεδομένων περιλαμβάνει πολλούς

μονάδες επιτάχυνσης Banded Smith-Waterman, οι οποίες έχουν αναπτυχθεί χρησιμοποι-

159

Brief Description of the Proposed Frameworks in Greek

65

75

85

95

1 2 5 8 10 18 30

%
 o

f
al

ig
n

m
en

ts

Edit threshold

Simulated NA12878 CLL

Σχήμα 8.20.: Κατανομή των edits για τις αλληλουχίσεις τριών διαφορετικών συνόλων δεδομένων.

seed hit original matrix

1 5

2 6

3 7

4

band length
2*edit threshold+3

edit
threshold

up

left

seed diagonal
upper/lower

seed diagonals

 halo
gapped alignment

seed diagonal
upper/lower

seed diagonals

 halo
gapped alignment

Σχήμα 8.21.: Παράδειγμα Banded SmithWaterman για αριθμό edit 2.

ώντας την τεχνολογία της πολυεπεξεργαστικής ροής δεδομένων. Κάθε μονάδα ρυθμίζεται με

ένα όριο edit που επιλέγεται κατά τη μελέτη των δεδομένων εισόδων με βάση τη μεθοδολογία

που προτείνεται. Ο Banded Smith-Waterman περιλαμβάνει δύο υπομονάδες υπολογισμού,

μία για κάθε στάδιο του, δηλαδή Matrix-Fill και Traceback. Η Matrix-Fill λαμβάνει ζευ-
γάρια αναγνωσμάτων-αναφοράς ως υποψήφιες ευθυγραμμίσεις και υπολογίζει τουςς πίνακες

E, F, H. Μόλις οι πίνακες είναι έτοιμοι, η Traceback τους διατρέχει ανάποδα για τον εντο-

πισμό των επεξεργασιών. Κάθε στιγμή, οι δύο υπομονάδες εκτελούνται παράλληλα και με

τη μέθοδο του pipeline, δηλαδή καθώς η Matrix-Fill εκτελείται σε ένα ζευγάρι ευθυγραμ-

μίσεων, η Traceback επεξεργάζεται τους πίνακες που δημιουργήθηκαν για το προηγούμενο

ζευγάρι.

Η Εικόνα 8.23 απεικονίζει επίσης τον τρόπο με τον οποίο τα στοιχεία της ¨ζώνης’ απο-

θηκεύονται σε έναν μικρότερο πίνακα. Μόνο τα στοιχεία που αντιστοιχούν σε κελιά ε-

ντός της ζώνης ενδιαφέροντος αποθηκεύονται στην BRAM. Σημειώστε ότι η αποθήκευ-

ση των διαγωνίων σε μια BRAM αλλάζει τη σχετική θέση ορισμένων γειτονικών κελι-

ών.

160

8.3. bandedsmw

Πειραματική Αξιολόγηση του Επιταχυντή και του Συστήματος.

Σε αυτήν την ενότητα αξιολογείται η ακρίβεια της αλληλούχισης σύντομων αναγνώσματος

κατά την εφαρμογή φιλτραρίσματος και αλληλούχισης μέσω της προτεινόμενης υλοποίησης

Banded SmithWaterman για το αντίστοιχο όριο edit. Ως σύγκριση, χρησιμοποιούνται τα

αποτελέσματα του ευθυγραμμιστή Bowtie2. Η προ-διαλογή υλοποιείται από το SneakyS-
nake, το οποίο απορρίπτει τους υποψήφιους ευθυγραμμισμούς με περισσότερα edit από το

καθορισμένο όριο edit. Λαμβάνονται υπόψη όρια edit που κυμαίνονται από 1 έως σχεδόν

το 20% του μήκους του αναγνώσματος (100). Η σύγκριση της ακρίβειας παρουσιάζεται

στο Σχήμα 8.24 για 3 σύνολα δεδομένων. Τα αποτελέσματα είναι σύμφωνα με τα ευρήματα

της κατανομής των επεξεργασιών, καθώς για τα περισσότερα σύνολα δεδομένων ο ρυθ-

μός ευθυγράμμισης συγκλίνει στον βέλτιστο όταν το όριο edit είναι μεγαλύτερο ή ίσο του

10.

Επίσης, συγκρίνουμε τον σχεδιασμό μας με δύο προηγμένους επιταχυντές υλικού, το GACT
[36] και το GANDAFL [246]. Εξετάζουμε δύο διαφορετικά σενάρια για μια δίκαιη σύγκριση.

Το πρώτο σενάριο συγκρίνει το ρυθμό αλληλούχισης μιας μονάδας του κάθε επιταχυντή,

για να αξιολογήσουμε τη δυνατότητα του σχεδιασμού να παράγει μια αλληλούχιση ταχύτε-

ρα από τις προηγμένες λύσεις. Το δεύτερο σενάριο συγκρίνει σχεδιασμούς με πολλαπλούς

επιταχυντές που αξιοποιούν τη μέγιστη χωρητικότητα της ίδιας συσκευής FPGA. ΄Οπως

φαίνεται στο Σχήμα 8.25, ο προτεινόμενος υλοποιημένος σχεδιασμός επιτυγχάνει μια επι-

τάχυνση ×1.53 σε σχέση με τον GANDAFL dataflow και μια επιτάχυνση ×3 σε σχέση με

τον GACT μονάδας επιταχυντή. Χάρη στην αποτελεσματική χρήση πόρων, ο προτεινόμε-

νος σχεδιασμός πολυεπεξεργαστικής ροής δεδομένων χωράει 8 επιταχυντές στο FPGA και

επιτυγχάνει μια επιτάχυνση ×4.77 σε σχέση με τις 3 πολυεπεξεργαστικές ροές δεδομένων

του επιταχυντή GANDAFL. Το μοντέλο υπολογισμού με πολλαπλές ροές δεδομένων και

η αποτελεσματική χρήση πόρων εξασφαλίζουν μια επιτάχυνση ×26.35 σε σχέση με έναν

σχεδιασμό του GACT με 12 μονάδες.

Βασιζόμενοι στην προτεινόμενη μεθοδολογία για πολυεπεξεργαστικά συστήματα, αξιοποιο-

ύμε τα προφίλ επεξεργασίας και κατασκευάζουμε τους αντίστοιχους σχεδιασμούς πολλαπλής

ροής δεδομένων για ένα ρολόι 250MHz. Ο πίνακας 8.2 περιλαμβάνει τα διαφορετικά con-

th
re

sh
o

ld
s

Create Edit
Distribution

Profiling Pre-filtering

tatat
taatt
gagtt
gagta

tatat
taatt
gagtt
gagta

60%

Accelerated Extension
BSmW

BSmW

B
SmW

B
SmW

B
SmW

20%
10% 10%

SneakySnakeSneakySnake
e1 e2 e3 e4

FPGA

BSmW

BSmW

B
SmW

B
SmW

B
SmW e2

e4e3

e1

Σχήμα 8.22.: Επισκόπηση της στρατηγικής και αρχιτεκτονικής για επιτάχυνση βασισμένη σε εν-

δεικτική κατανομή edit της εισόδου σε ποσοστά 60-20-10-10%.

161

Brief Description of the Proposed Frameworks in Greek

antidiagonals

1

2

3

4

5

6

7

PEn

PE1

PE0

PE array

.

.

.

bandVectorlength=
bandlength/2+1

1

2

3

4

5

6

7

shifted by 1

unshifted
neighbours

unshifted
neighbours

shifted
neighbours

ro
w

s

read length
vector

m
as

k
m

as
k

row0

rown

Σχήμα 8.23.: Υπολογισμός των πινάκων και βελτιστοποιημένο σχήμα χρησιμοποίησης πόρων

μνήμης.

figuration για κάθε σύνολο δεδομένων. Συγκρίνουμε αυτούς τους σχεδιασμούς με τον

GANDAFL, ο οποίος περιλαμβάνει 3 μονάδες που επιτρέπουν έως 17 edit και έχει ρολόι

200MHz.

Και οι δύο σχεδιασμοί συγκρίνονται επίσης με τον ευθυγραμμιστή Bowtie2, ο οποίος δη-

μιουργεί τις ευθυγραμμίσεις εισόδου και λειτουργεί ως αναφορά για τον ρυθμό ευθυγράμμι-

σης. Ο αλγόριθμος προ-φιλτραρίσματος SneakySnake χρησιμοποιήθηκε για να ταξινομήσει

τις υποψήφιες ευθυγραμμίσεις και να τις αναθέσει στον αντίστοιχο επιταχυντή ροής δεδο-

μένων με βάση το όριο edit. ΄Οπως φαίνεται στο Σχήμα 8.26, η προτεινόμενη προσέγγιση

παρέχει επιτάχυνση έως και ×440 σε σχέση με τον Bowtie2 και ×1.8 σε σχέση με τη συμ-

βατική προσέγγιση επιτάχυνσης του GANDAFL. Σημειώνεται ότι αυτή η επιτάχυνση δεν

συνοδεύεται από μείωση της ακρίβειας ευθυγράμμισης, καθώς αυτός έχει συγκλίνει στον

αναφορικό για τα επιλεγμένα edit.

162

8.3. bandedsmw

70

75

80

85

90

95

100

1 2 4 6 8 10 18 Ref. 1 2 4 6 8 10 18 Ref. 1 2 4 6 8 10 18 Ref.

R
ea

d
s

al
ig

n
ed

 %

Edit threshold

91.6

98.9
95.2

99.27

Simulated NA12878 CLL

82.39

99.64

Σχήμα 8.24.: Ακρίβεια αλληλούχισης με χρήση του SneakySnake φίλτρου και του προτεινόμενου

Banded Smith-Waterman επιταχυντή.

0.0

0.5

1.0

GACT GANDAFL Proposed

A
lig
n
m
en

ts
/s
ec

(x
1
0
6
)

x1.53

x1.99

(αʹ) Σύγκριση throughput μεταξύ των επι-

ταχυντών.

0.0

1.0

2.0

3.0

GACT GANDAFL Proposed

A
lig
n
m
en

ts
/s
ec

(x
1
0
6
) x4.77

x5.52

(βʹ) Σύγκριση throughput μεταξύ πολλών

μονάδων των επιταχυντών.

Σχήμα 8.25.: Σύγκριση throughput μεταξύ διαφορετικών HW επιταχυντών.

Πίνακας 8.2.: Multi-Dataflow Configurations customized to the edit profiles of input datasets.

Dataset Configuration
Edit threshold Instances Alignments covered

Simulated 1-2-10-18 5-1-1-1 70.8-81.4-99.7-99.9%

NA127828 1-2-5-18 5-1-1-1 74.4-87.3-99.6-99.9%

CLL 1-5-18 6-1-1 82.5-93.51-99.9%

249.41 228.84

88.02

440 372

159

0

100

200

300

400

Simulated NA12878 CLLSp
ee

d
u

p
 o

ve
r

B
o

w
ti

e2

Datasets

Bowtie2 GANDAFL-3 Proposed-customized

x1.8

x1.77
99.64

98.9

99.27

98.5

99

99.5

100

Simulated NA12878 CLL

A
lig

n
m

en
t

ra
te

 %

Datasets

Σχήμα 8.26.: Αξιολογηση της απόδοσης και ακρίβειας του προτεινόμενου συστήματος πολυ-

επεξεργαστών.

163

Brief Description of the Proposed Frameworks in Greek

164

Γλωσσάρι

Behavioral Description Περιγραφή κυκλώματος σε επίπεδο συμπεριφοράς.

Behavioral Synthesis Σύνθεση κυκλώματος περιγραμμένο σε επίπεδο συμπεριφοράς.

Critical Path Delay Καθυστέρηση κρίσιμου μονοπατιού του κυκλώματος.

Data Flow Graph
(DFG)

Γράφος Ροής Δεδομένων.

Design Space
Exploration (DSE)

Εξερεύνηση του χώρου σχεδίασης.

Dataflow computing Προγραμματιστικό Μοντέλο περιγραφής αλγορίθμων. Προ-

διαγράφει την αρχιτεκτονική και επιμέρους μονάδες ενός συ-

στήματος και στηρίζεται στη σωστή και συγχρονισμένη ροή

δεδομένων μέσα από το hardware για την παραγωγή σωστών

αποτελεσμάτων.

Deoxyribonucleic acid
(DNA)

Το DNA είναι ένα μακρομόριο που αποτελεί το γενετικό υ-

λικό όλων των οργανισμών. Διαμορφώνεται ως ένα μεγάλο

μόριο που αποτελείται από δύο επιμήκεις αλυσίδες, οι οποίες

συστρέφονται ελικοειδώς μεταξύ τους και συγκρατούνται με-

ταξύ τους με δεσμούς υδρογόνου. Κάθε αλυσίδα αποτελείται

μια συστοιχία αζωτούχων βάσεων, συμπληρωματικών με τις

βάσεις της άλλης αλυσίδας.

ECG ΗΚΓ ή Ηλεκτροκαρδιογράφημα είναι μια απλή κλινική εξέταση

η οποία καταγράφει την ηλεκτρική δραστηριότητα των μυών της

καρδιάς και απεικονίζει στον άξονα του χρόνου τη μεταβολή

του ηλεκτρικού δυναμικού.

165

Greek Glossary

Gate-level Description Περιγραφή κυκλώματος σε Επίπεδο Λογικών Πυλών. Η πε-

ριγραφή αυτή μπορεί να παραχθεί με την σύνθεση της RTL
περιγραφής ενός κυκλώματος για μια δεδομένη τεχνολογική

βιβλιοθήκη.

Hardware Accelerator Κύκλωμα ειδικού σκοπού/συνεπεξεργαστής υλικού που σχε-

διάζεται/χρησιμοποιείται για την επιτάχυνση μιας εφαρμο-

γής/διαδικασίας.

HLS High Level Synthesis. Σύνθεση κυκλώματος από υψηλά επίπε-

δα σχεδιαστικής αφαίρεσης.

Linear Regression Απλή γραμμική παλινδρόμηση.

Mean Error Distance
(MED)

Μέση Απόλυτη Απόσταση. Είναι η μέση τιμή της απόλυτης

απόστασης (ED) για την εξεταζόμενη κατανομή εισόδου και

ορίζεται ως MED = 1
M

∑M
i=1 |Pi − P ′i |, όπου Pi είναι το ορ-

θό αποτέλεσμα, P ′i το προσεγγιστικό αποτέλεσμα, και M το

πλήθος των αποτελεσμάτων.

Next Generation
Sequencing (NGS)

Μέθοδος Αλληλούχισης DNA Νέας Γενιάς. Είναι μια τεχνο-

λογία που χρησιμοποιείται για τον προσδιορισμό αλληλουχιών

DNA και την ανίχνευση μεταλλάξεων.

Pareto front Μέτωπο Pareto. Σε προβλήματα βελτιστοποίησης με πολλαπλά

κριτήρια, οι Pareto βέλτιστες λύσεις είναι αυτές για τις όποιες

η βελτιστοποίηση του ενός κριτηρίου μπορεί να επιτευχθεί μόνο

αν χειροτερεύσει τουλάχιστον ένα άλλο κριτήριο.

Register Transfer Level
(RTL) Description

Περιγραφή κυκλώματος σε Επίπεδο Μεταφοράς Καταχωρητών.

Seed hit Σημείο στο γονιδίωμα αναφοράς στο οποίο τμήμα του short
read ευθυγραμμίζεται χωρίς κανένα κενό

Short Reads Αλληλουχία βάσεων DNA με μήκος 50 έως 300 βάσεων συ-

νήθως. Παράγονται από ένα δείγμα DNA κατά την αλληλούχι-

ση με Next Generation Sequencing technologies.

Smith-Waterman
(SmW)

Αλγόριθμος ευθυγράμμισης ζευγαριών αλληλουχιών βάσεων

που βασίζεται στον Δυναμικό Προγραμματισμό.

166

Greek Glossary

Support Vector
Machines (SVM)

Μηχανές Διανυσμάτων Υποστήριξης για ταξινόμηση δεδο-

μένων σε κλάσεις.

167

Greek Glossary

168

Publications

Journals

1. Koliogeorgi, K., Xydis, S., Gaydadjiev, G., & Soudris, D. J. (2022). Dataflow Accel-
eration for Short Read Alignment on NGS data. IEEE Transactions on Computers.

2. Iliakis, K., Koliogeorgi, K., Litke, A., Varvarigou, T., & Soudris, D. (2022). GPU
accelerated blockchain over key-value database transactions. IET Blockchain, 2(1),
1-12.

3. Leon, V., Mouselinos, S., Koliogeorgi, K., et al. (2020) “A TensorFlow Exten-
sion Framework for Optimized Generation of Hardware CNN Inference Engines”
Technologies, 8(1), 6.

4. Zervakis, G., Koliogeorgi, K., et al. (2019). VADER: voltage-driven netlist pruning
for cross-layer approximate arithmetic circuits. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 27(6), 1460-1464.

5. Tsoutsouras, V., Koliogeorgi, K., et al. (2017). An exploration framework for
efficient high-level synthesis of support vector machines: case study on ECG ar-
rhythmia detection for Xilinx Zynq SoC. Journal of Signal Processing Systems,
88(2), 127-147.

Conferences

1. Koliogeorgi, K., Soudris, D., Xydis, S.. Profile-Driven Banded Smith-Waterman
acceleration for Short Read Alignment. Accepted in Design Automation Conference
2023.

2. Koliogeorgi, K., Mylonakis, D., Xydis, S., & Soudris, D. (2022, October). High
Level Synthesis Acceleration of Change Detection in Multi-Temporal High Resolu-
tion Sentinel-2 Satellite Images. In 2022 IFIP/IEEE 30th International Conference

169

Publications

on Very Large Scale Integration (VLSI-SoC) (pp. 1-6). IEEE.

3. Koliogeorgi, K., Keddous, F. E., Masouros, D., Chazapis, A., Aubrun, M., Xydis, S.
& Soudris, D. (2021, August). FPGA acceleration in EVOLVE’s Converged Cloud-
HPC Infrastructure. In 2021 31st International Conference on Field-Programmable
Logic and Applications (FPL) (pp. 376-377). IEEE.

4. Koliogeorgi, K., Xydis, S., & Soudris, D. (2021, June). FPGA Acceleration of Short
Read Alignment. In Proceedings of the 11th International Symposium on Highly
Efficient Accelerators and Reconfigurable Technologies (pp. 1-2).

5. Oroutzoglou, I., Masouros, D., Koliogeorgi, K., Xydis, S., & Soudris, D. (2020,
May). Exploration of GPU sharing policies under GEMM workloads. In Proceed-
ings of the 23th International Workshop on Software and Compilers for Embedded
Systems (pp. 66-69).

6. Koliogeorgi, K., et al. "Dataflow Acceleration of Smith-Waterman with Traceback
for High Throughput Next Generation Sequencing." 2019 29th International Con-
ference on Field Programmable Logic and Applications (FPL). IEEE, 2019

7. Koliogeorgi, Konstantina, et al. "Optimizing SVM Classifier Through Approximate
and High Level Synthesis Techniques." 2019 8th International Conference on Mod-
ern Circuits and Systems Technologies (MOCAST). IEEE, 2019.

8. Zompakis, N., Anagnostos, D., Koliogeorgi, K., Zervakis, G., & Siozios, K. (2019,
May). A Design Flow Framework for Fully-Connected Neural Networks Rapid Pro-
totyping. In Proceedings of the International Conference on Omni-Layer Intelligent
Systems (pp. 44-49).

9. Masouros, D., Koliogeorgi, et al. (2019, March). Co-design Implications of Cost-
effective On-demand Acceleration for Cloud Healthcare Analytics: The AEGLE
approach. In 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE) (pp. 622-625). IEEE.

10. Konstantina Koliogeorgi, Dimosthenis Masouros, Georgios Zervakis, Sotirios Xydis,
Tobias Becker, Georgi Gaydadjiev, Dimitrios Soudris: AEGLE’s Cloud Infrastruc-
ture for Resource Monitoring and Containerized Accelerated Analytics. ISVLSI
2017: 362-367

170

Publications

Workshops

1. Tsoutsouras, V., Koliogeorgi, K., Xydis, S., & Soudris, D. (2016). HLS code trans-
formation strategies and directives exploration for FPGA accelerated ECG analysis.
In Workshop in Reconfigurable Computing, Prague.

171

Publications

172

Bibliography

[1] S. Dash, S. K. Shakyawar, M. Sharma, and S. Kaushik, “Big data in healthcare:
management, analysis and future prospects,” Journal of Big Data, vol. 6, no. 1,
pp. 1–25, 2019.

[2] Xilinx, “Vivado design suite user guide: High-level synthesis, v2014.1.”
[3] M. Goodarzi, A. A. Fahimifar, and E. Shakeri Daryani, “New media and ideology:

A critical perspective,” Journal of Cyberspace Studies, vol. 5, no. 2, pp. 121–140,
2021.

[4] X. Wang and Z. Yang, “Research on the youth group’s expectations for the future
development of self-media while in the digital economy,” Frontiers in Business,
Economics and Management, vol. 3, no. 3, pp. 43–48, 2022.

[5] J. Code, R. Ralph, and K. Forde, “A disorienting dilemma: teaching and learning
in technology education during a time of crisis,” Canadian Journal of Science,
Mathematics and Technology Education, vol. 22, no. 1, pp. 170–189, 2022.

[6] https://www.cancer.gov/publications/dictionaries/cancer-terms/def/electronic-
medical record, “Electronic medical record by nih,”

[7] I. Subramanian, S. Verma, S. Kumar, A. Jere, and K. Anamika, “Multi-omics
data integration, interpretation, and its application,” Bioinformatics and biology
insights, vol. 14, p. 1177932219899051, 2020.

[8] A. R. Joyce and B. Ø. Palsson, “The model organism as a system: integrating’omics’
data sets,” Nature reviews Molecular cell biology, vol. 7, no. 3, pp. 198–210, 2006.

[9] J. K. Jansson and E. S. Baker, “A multi-omic future for microbiome studies,” Nature
microbiology, vol. 1, no. 5, pp. 1–3, 2016.

[10] M. R. Bendre and V. R. Thool, “Analytics, challenges and applications in big
data environment: a survey,” Journal of Management Analytics, vol. 3, no. 3,
pp. 206–239, 2016.

[11] R. Ibrahim, M. Pasic, and G. M. Yousef, “Omics for personalized medicine: defining
the current we swim in,” Expert review of molecular diagnostics, vol. 16, no. 7,
pp. 719–722, 2016.

[12] K. Shameer, M. A. Badgeley, R. Miotto, B. S. Glicksberg, J. W. Morgan, and J. T.
Dudley, “Translational bioinformatics in the era of real-time biomedical, health
care and wellness data streams,” Briefings in bioinformatics, vol. 18, no. 1,
pp. 105–124, 2017.

[13] Apache Software Foundation, “Hadoop.”
[14] W. Wu, W. Lin, C.-H. Hsu, and L. He, “Energy-efficient hadoop for big data

analytics and computing: A systematic review and research insights,” Future

173

Bibliography

Generation Computer Systems, vol. 86, pp. 1351–1367, 2018.
[15] S. Allam, “Usage of hadoop and microsoft cloud in big data analytics: An

exploratory study,” Sudhir Allam.(2018). USAGE OF HADOOP AND MI-
CROSOFT CLOUD IN BIG DATA ANALYTICS: AN EXPLORATORY
STUDY. International Journal of Innovations in Engineering Research and
Technology, vol. 5, no. 10, pp. 27–32, 2018.

[16] N. Dasgupta, Practical big data analytics: Hands-on techniques to implement en-
terprise analytics and machine learning using Hadoop, Spark, NoSQL and R.

Packt Publishing Ltd, 2018.
[17] B. Chambers and M. Zaharia, Spark: The definitive guide: Big data processing

made simple.
" O’Reilly Media, Inc.", 2018.

[18] S. Alotaibi, R. Mehmood, I. Katib, O. Rana, and A. Albeshri, “Sehaa: A big data
analytics tool for healthcare symptoms and diseases detection using twitter,
apache spark, and machine learning,” Applied Sciences, vol. 10, no. 4, p. 1398,
2020.

[19] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clus-
ters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[20] N. Verma, D. Malhotra, and J. Singh, “Big data analytics for retail industry using
mapreduce-apriori framework,” Journal of Management Analytics, vol. 7, no. 3,
pp. 424–442, 2020.

[21] Z. Lu, N. Wang, J. Wu, and M. Qiu, “Iotdem: An iot big data-oriented mapreduce
performance prediction extended model in multiple edge clouds,” Journal of
Parallel and Distributed Computing, vol. 118, pp. 316–327, 2018.

[22] S. Ramírez-Gallego, A. Fernández, S. García, M. Chen, and F. Herrera, “Big data:
Tutorial and guidelines on information and process fusion for analytics algo-
rithms with mapreduce,” Information Fusion, vol. 42, pp. 51–61, 2018.

[23] S. P. Ahuja, S. Mani, and J. Zambrano, “A survey of the state of cloud computing
in healthcare,” Network and Communication Technologies, vol. 1, no. 2, p. 12,
2012.

[24] N. Sultan, “Making use of cloud computing for healthcare provision: Opportunities
and challenges,” International Journal of Information Management, vol. 34,
no. 2, pp. 177–184, 2014.

[25] P. K. Sahoo, S. K. Mohapatra, and S.-L. Wu, “Sla based healthcare big data analysis
and computing in cloud network,” Journal of Parallel and Distributed Comput-
ing, vol. 119, pp. 121–135, 2018.

[26] https://www.illumina.com/products/by-type/informatics-products/dragen-bio-it
platform.html, “Illumina dragen bio-it platform,”

[27] H. Asaadi, D. Khaldi, and B. Chapman, “A comparative survey of the hpc and
big data paradigms: Analysis and experiments,” in 2016 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 423–432, IEEE, 2016.

[28] M. Anderson, S. Smith, N. Sundaram, M. Capotă, Z. Zhao, S. Dulloor, N. Satish,
and T. L. Willke, “Bridging the gap between hpc and big data frameworks,”
Proceedings of the VLDB Endowment, vol. 10, no. 8, pp. 901–912, 2017.

174

Bibliography

[29] S. Usman, R. Mehmood, and I. Katib, “Big data and hpc convergence: The cutting
edge and outlook,” in International Conference on Smart Cities, Infrastructure,
Technologies and Applications, pp. 11–26, Springer, 2017.

[30] D. Elia, S. Fiore, and G. Aloisio, “Towards hpc and big data analytics convergence:
Design and experimental evaluation of a hpda framework for escience at scale,”
IEEE Access, vol. 9, pp. 73307–73326, 2021.

[31] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres,
V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, et al., “Open mpi: Goals,
concept, and design of a next generation mpi implementation,” in European Par-
allel Virtual Machine/Message Passing Interface Users’ Group Meeting, pp. 97–
104, Springer, 2004.

[32] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-memory
programming,” IEEE computational science and engineering, vol. 5, no. 1,
pp. 46–55, 1998.

[33] E. Rucci, C. Garcia, G. Botella, A. De Giusti, M. Naiouf, and M. Prieto-Matias,
“Swifold: Smith-waterman implementation on fpga with opencl for long dna
sequences,” BMC systems biology, vol. 12, no. 5, pp. 43–53, 2018.

[34] Y. Liu, A. Wirawan, and B. Schmidt, “Cudasw++ 3.0: accelerating smith-
waterman protein database search by coupling cpu and gpu simd instructions,”
BMC bioinformatics, vol. 14, no. 1, pp. 1–10, 2013.

[35] Y. Liu, T.-T. Tran, F. Lauenroth, and B. Schmidt, “Swaphi-ls: Smith-waterman
algorithm on xeon phi coprocessors for long dna sequences,” in 2014 IEEE In-
ternational Conference on Cluster Computing (CLUSTER), pp. 257–265, IEEE,
2014.

[36] Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A genomics co-processor pro-
vides up to 15,000 x acceleration on long read assembly,” in Proceedings of the
Twenty-Third International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 199–213, ACM, 2018.

[37] NVIDIA, “Nvidia clara parabricks: Accelerate genome sequencing analysis,”
https://www.nvidia.com/en-us/clara/genomics/.

[38] K.-H. Yu, A. L. Beam, and I. S. Kohane, “Artificial intelligence in healthcare,”
Nature biomedical engineering, vol. 2, no. 10, pp. 719–731, 2018.

[39] G. Rong, A. Mendez, E. B. Assi, B. Zhao, and M. Sawan, “Artificial intelligence
in healthcare: review and prediction case studies,” Engineering, vol. 6, no. 3,
pp. 291–301, 2020.

[40] K. Shailaja, B. Seetharamulu, and M. Jabbar, “Machine learning in healthcare: A
review,” in 2018 Second international conference on electronics, communication
and aerospace technology (ICECA), pp. 910–914, IEEE, 2018.

[41] A. Qayyum, J. Qadir, M. Bilal, and A. Al-Fuqaha, “Secure and robust machine
learning for healthcare: A survey,” IEEE Reviews in Biomedical Engineering,
vol. 14, pp. 156–180, 2020.

[42] C.-W. Tsai, C.-F. Lai, H.-C. Chao, and A. V. Vasilakos, “Big data analytics: a
survey,” Journal of Big data, vol. 2, no. 1, pp. 1–32, 2015.

[43] L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, “Machine learning on big data:

175

Bibliography

Opportunities and challenges,” Neurocomputing, vol. 237, pp. 350–361, 2017.
[44] A. B. Abacha and P. Zweigenbaum, “Means: A medical question-answering system

combining nlp techniques and semantic web technologies,” Information process-
ing & management, vol. 51, no. 5, pp. 570–594, 2015.

[45] K. E. Henry, D. N. Hager, P. J. Pronovost, and S. Saria, “A targeted real-time
early warning score (trewscore) for septic shock,” Science translational medicine,
vol. 7, no. 299, pp. 299ra122–299ra122, 2015.

[46] A. Ed-Daoudy and K. Maalmi, “Real-time machine learning for early detection
of heart disease using big data approach,” in 2019 international conference on
wireless technologies, embedded and intelligent systems (WITS), pp. 1–5, IEEE,
2019.

[47] J. Stoitsis, I. Valavanis, S. G. Mougiakakou, S. Golemati, A. Nikita, and K. S.
Nikita, “Computer aided diagnosis based on medical image processing and ar-
tificial intelligence methods,” Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment, vol. 569, no. 2, pp. 591–595, 2006.

[48] I. Kiral-Kornek, S. Roy, E. Nurse, B. Mashford, P. Karoly, T. Carroll, D. Payne,
S. Saha, S. Baldassano, T. O’Brien, et al., “Epileptic seizure prediction using
big data and deep learning: toward a mobile system,” EBioMedicine, vol. 27,
pp. 103–111, 2018.

[49] A. Rodríguez-Ruiz, E. Krupinski, J.-J. Mordang, K. Schilling, S. H. Heywang-
Köbrunner, I. Sechopoulos, and R. M. Mann, “Detection of breast cancer with
mammography: effect of an artificial intelligence support system,” Radiology,
vol. 290, no. 2, pp. 305–314, 2019.

[50] I. Sechopoulos, J. Teuwen, and R. Mann, “Artificial intelligence for breast cancer
detection in mammography and digital breast tomosynthesis: State of the art,”
in Seminars in Cancer Biology, vol. 72, pp. 214–225, Elsevier, 2021.

[51] S. Safdar, S. Zafar, N. Zafar, and N. F. Khan, “Machine learning based decision sup-
port systems (dss) for heart disease diagnosis: a review,” Artificial Intelligence
Review, vol. 50, no. 4, pp. 597–623, 2018.

[52] K. Sakai and K. Yamada, “Machine learning studies on major brain diseases: 5-year
trends of 2014–2018,” Japanese journal of radiology, vol. 37, no. 1, pp. 34–72,
2019.

[53] S. Landset, T. M. Khoshgoftaar, A. N. Richter, and T. Hasanin, “A survey of
open source tools for machine learning with big data in the hadoop ecosystem,”
Journal of Big Data, vol. 2, no. 1, pp. 1–36, 2015.

[54] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman,
D. Tsai, M. Amde, S. Owen, et al., “Mllib: Machine learning in apache spark,”
The Journal of Machine Learning Research, vol. 17, no. 1, pp. 1235–1241, 2016.

[55] D. Gillick, A. Faria, and J. DeNero, “Mapreduce: Distributed computing for ma-
chine learning,” Berkley, Dec, vol. 18, 2006.

[56] K. Yue, H. Wu, X. Fu, J. Xu, Z. Yin, and W. Liu, “A data-intensive approach
for discovering user similarities in social behavioral interactions based on the
bayesian network,” Neurocomputing, vol. 219, pp. 364–375, 2017.

176

Bibliography

[57] J. Wang, Y. Tang, M. Nguyen, and I. Altintas, “A scalable data science workflow
approach for big data bayesian network learning,” in 2014 IEEE/ACM Inter-
national Symposium on Big Data Computing, pp. 16–25, IEEE, 2014.

[58] C.-T. Chu, S. Kim, Y.-A. Lin, Y. Yu, G. Bradski, K. Olukotun, and A. Ng, “Map-
reduce for machine learning on multicore,” Advances in neural information pro-
cessing systems, vol. 19, 2006.

[59] D. Luo, C. Ding, and H. Huang, “Parallelization with multiplicative algorithms for
big data mining,” in 2012 IEEE 12th International Conference on Data Mining,
pp. 489–498, IEEE, 2012.

[60] I. Triguero, D. Peralta, J. Bacardit, S. García, and F. Herrera, “Mrpr: a mapreduce
solution for prototype reduction in big data classification,” neurocomputing,
vol. 150, pp. 331–345, 2015.

[61] A. Abdelaziz, M. Elhoseny, A. S. Salama, and A. Riad, “A machine learning model
for improving healthcare services on cloud computing environment,” Measure-
ment, vol. 119, pp. 117–128, 2018.

[62] F. Desai, D. Chowdhury, R. Kaur, M. Peeters, R. C. Arya, G. S. Wander, S. S.
Gill, and R. Buyya, “Healthcloud: A system for monitoring health status of
heart patients using machine learning and cloud computing,” Internet of Things,
vol. 17, p. 100485, 2022.

[63] V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z. Zhang, “Hardware for machine
learning: Challenges and opportunities,” in 2017 IEEE Custom Integrated Cir-
cuits Conference (CICC), pp. 1–8, IEEE, 2017.

[64] E. Nurvitadhi, J. Sim, D. Sheffield, A. Mishra, S. Krishnan, and D. Marr, “Acceler-
ating recurrent neural networks in analytics servers: Comparison of fpga, cpu,
gpu, and asic,” in 2016 26th International Conference on Field Programmable
Logic and Applications (FPL), pp. 1–4, IEEE, 2016.

[65] L. Du and Y. Du, “Hardware accelerator design for machine learning,” Machine
Learning—Advanced Techniques and Emerging Applications, 2018.

[66] M. Shepovalov and V. Akella, “Fpga and gpu-based acceleration of ml workloads
on amazon cloud-a case study using gradient boosted decision tree library,”
Integration, vol. 70, pp. 1–9, 2020.

[67] K. Nagaraj, G. Sharvani, and A. Sridhar, “Emerging trend of big data analytics
in bioinformatics: a literature review,” International Journal of Bioinformatics
Research and Applications, vol. 14, no. 1-2, pp. 144–205, 2018.

[68] C. S. Greene, J. Tan, M. Ung, J. H. Moore, and C. Cheng, “Big data bioinformat-
ics,” Journal of cellular physiology, vol. 229, no. 12, pp. 1896–1900, 2014.

[69] K. Y. He, D. Ge, and M. M. He, “Big data analytics for genomic medicine,” Inter-
national journal of molecular sciences, vol. 18, no. 2, p. 412, 2017.

[70] M. A. Hamburg and F. S. Collins, “The path to personalized medicine,” New Eng-
land Journal of Medicine, vol. 363, no. 4, pp. 301–304, 2010.

[71] P. C. Ng and E. F. Kirkness, “Whole genome sequencing,” Genetic variation,
pp. 215–226, 2010.

[72] G. C. Kennedy, H. Matsuzaki, S. Dong, W.-m. Liu, J. Huang, G. Liu, X. Su,
M. Cao, W. Chen, J. Zhang, et al., “Large-scale genotyping of complex dna,”

177

Bibliography

Nature biotechnology, vol. 21, no. 10, pp. 1233–1237, 2003.
[73] L. M. Starita, N. Ahituv, M. J. Dunham, J. O. Kitzman, F. P. Roth, G. Seelig,

J. Shendure, and D. M. Fowler, “Variant interpretation: functional assays to the
rescue,” The American Journal of Human Genetics, vol. 101, no. 3, pp. 315–325,
2017.

[74] T. Lappalainen, A. J. Scott, M. Brandt, and I. M. Hall, “Genomic analysis in the
age of human genome sequencing,” Cell, vol. 177, no. 1, pp. 70–84, 2019.

[75] V. N. Kristensen, O. C. Lingjærde, H. G. Russnes, H. K. M. Vollan, A. Frigessi, and
A.-L. Børresen-Dale, “Principles and methods of integrative genomic analyses
in cancer,” Nature Reviews Cancer, vol. 14, no. 5, pp. 299–313, 2014.

[76] A. O’Driscoll, J. Daugelaite, and R. D. Sleator, “‘big data’, hadoop and cloud com-
puting in genomics,” Journal of biomedical informatics, vol. 46, no. 5, pp. 774–
781, 2013.

[77] R. Gullapalli, M. Lyons-Weiler, P. Petrosko, R. Dhir, M. Becich, and W. LaFram-
boise, “Clinical integration of next-generation sequencing technology,” Clinics
in laboratory medicine, vol. 32, no. 4, pp. 585–599, 2012.

[78] K. Yelick, A. Buluç, M. Awan, A. Azad, B. Brock, R. Egan, S. Ekanayake, M. El-
lis, E. Georganas, G. Guidi, et al., “The parallelism motifs of genomic data
analysis,” Philosophical Transactions of the Royal Society A, vol. 378, no. 2166,
p. 20190394, 2020.

[79] R. C. Taylor, “An overview of the hadoop/mapreduce/hbase framework and its
current applications in bioinformatics,” BMC bioinformatics, vol. 11, no. 12,
pp. 1–6, 2010.

[80] Q. Zou, X.-B. Li, W.-R. Jiang, Z.-Y. Lin, G.-L. Li, and K. Chen, “Survey of mapre-
duce frame operation in bioinformatics,” Briefings in bioinformatics, vol. 15,
no. 4, pp. 637–647, 2014.

[81] Q. B. Baker, W. Al-Rashdan, and Y. Jararweh, “Cloud-based tools for next-
generation sequencing data analysis,” in 2018 fifth international conference
on social networks analysis, management and security (SNAMS), pp. 99–105,
IEEE, 2018.

[82] B. Calabrese and M. Cannataro, “Cloud computing in bioinformatics: current so-
lutions and challenges,” 2016.

[83] E. Afgan, C. Sloggett, N. Goonasekera, I. Makunin, D. Benson, M. Crowe, S. Glad-
man, Y. Kowsar, M. Pheasant, R. Horst, et al., “Genomics virtual laboratory:
a practical bioinformatics workbench for the cloud,” PloS one, vol. 10, no. 10,
p. e0140829, 2015.

[84] B. Liu, R. K. Madduri, B. Sotomayor, K. Chard, L. Lacinski, U. J. Dave, J. Li,
C. Liu, and I. T. Foster, “Cloud-based bioinformatics workflow platform for
large-scale next-generation sequencing analyses,” Journal of biomedical infor-
matics, vol. 49, pp. 119–133, 2014.

[85] L. Dai, X. Gao, Y. Guo, J. Xiao, and Z. Zhang, “Bioinformatics clouds for big data
manipulation,” Biology direct, vol. 7, no. 1, pp. 1–7, 2012.

[86] T. J. Ham, D. Bruns-Smith, B. Sweeney, Y. Lee, S. H. Seo, U. G. Song, Y. H. Oh,
K. Asanovic, J. W. Lee, and L. W. Wills, “Genesis: a hardware acceleration

178

Bibliography

framework for genomic data analysis,” in 2020 ACM/IEEE 47th Annual In-
ternational Symposium on Computer Architecture (ISCA), pp. 254–267, IEEE,
2020.

[87] B. Langmead and A. Nellore, “Cloud computing for genomic data analysis and
collaboration,” Nature Reviews Genetics, vol. 19, no. 4, pp. 208–219, 2018.

[88] E. Fernandez, W. Najjar, and S. Lonardi, “String matching in hardware using
the fm-index,” in 2011 IEEE 19th Annual International Symposium on Field-
Programmable Custom Computing Machines, pp. 218–225, IEEE, 2011.

[89] R. Langarita, A. Armejach, J. Setoain, P. Ibanez-Marin, J. Alastruey-Benedé, and
M. Moretó, “Compressed sparse fm-index: Fast sequence alignment using large
k-steps,” IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics, vol. 19, no. 1, pp. 355–368, 2020.

[90] M. Alser, H. Hassan, A. Kumar, O. Mutlu, and C. Alkan, “Shouji: a fast and
efficient pre-alignment filter for sequence alignment,” Bioinformatics, vol. 35,
no. 21, pp. 4255–4263, 2019.

[91] F. Hach, I. Sarrafi, F. Hormozdiari, C. Alkan, E. E. Eichler, and S. C. Sahinalp,
“mrsfast-ultra: a compact, snp-aware mapper for high performance sequencing
applications,” Nucleic acids research, vol. 42, no. W1, pp. W494–W500, 2014.

[92] B. Liu, D. Guan, M. Teng, and Y. Wang, “rhat: fast alignment of noisy long reads
with regional hashing,” Bioinformatics, vol. 32, no. 11, pp. 1625–1631, 2016.

[93] M. Alser, Z. Bingöl, D. S. Cali, J. Kim, S. Ghose, C. Alkan, and O. Mutlu, “Accel-
erating genome analysis: A primer on an ongoing journey,” IEEE Micro, vol. 40,
no. 5, pp. 65–75, 2020.

[94] W. Huangfu, S. Li, X. Hu, and Y. Xie, “Radar: a 3d-reram based dna alignment
accelerator architecture,” in Proceedings of the 55th Annual Design Automation
Conference, pp. 1–6, 2018.

[95] J. S. Kim, D. Senol Cali, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan, O. Ergin,
C. Alkan, and O. Mutlu, “Grim-filter: Fast seed location filtering in dna read
mapping using processing-in-memory technologies,” BMC genomics, vol. 19,
no. 2, pp. 23–40, 2018.

[96] S. Gupta, M. Imani, B. Khaleghi, V. Kumar, and T. Rosing, “Rapid: A
reram processing in-memory architecture for dna sequence alignment,” in 2019
IEEE/ACM International Symposium on Low Power Electronics and Design
(ISLPED), pp. 1–6, IEEE, 2019.

[97] A. Cilardo and L. Gallo, “Improving multibank memory access parallelism with
lattice-based partitioning,” ACM Transactions on Architecture and Code Opti-
mization (TACO), vol. 11, no. 4, p. 45, 2015.

[98] Y. Ben-Asher and N. Rotem, “Automatic memory partitioning: increasing mem-
ory parallelism via data structure partitioning,” in Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software codesign and
system synthesis, pp. 155–162, ACM, 2010.

[99] J. Cong, P. Li, B. Xiao, and P. Zhang, “An optimal microarchitecture for sten-
cil computation acceleration based on non-uniform partitioning of data reuse
buffers,” in Proceedings of the 51st Annual Design Automation Conference,

179

Bibliography

pp. 1–6, ACM, 2014.
[100] J. Cong, W. Jiang, B. Liu, and Y. Zou, “Automatic memory partitioning and

scheduling for throughput and power optimization,” ACM Transactions on De-
sign Automation of Electronic Systems (TODAES), vol. 16, no. 2, p. 15, 2011.

[101] Y. Wang, P. Zhang, X. Cheng, and J. Cong, “An integrated and automated memory
optimization flow for fpga behavioral synthesis,” in Design Automation Confer-
ence (ASP-DAC), 2012 17th Asia and South Pacific, pp. 257–262, IEEE, 2012.

[102] J. Su, F. Yang, X. Zeng, and D. Zhou, “Efficient memory partitioning for parallel
data access via data reuse,” in Proceedings of the 2016 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays, pp. 138–147, ACM,
2016.

[103] S. Xydis, G. Palermo, V. Zaccaria, and C. Silvano, “SPIRIT: spectral-aware pareto
iterative refinement optimization for supervised high-level synthesis,” IEEE
Trans. on CAD of Integrated Circuits and Systems, vol. 34, no. 1, pp. 155–159,
2015.

[104] H. Liu and L. P. Carloni, “On learning-based methods for design-space exploration
with high-level synthesis,” in The 50th Annual Design Automation Conference
2013, DAC ’13, Austin, TX, USA, May 29 - June 07, 2013, pp. 50:1–50:7, 2013.

[105] B. C. Schäfer and K. Wakabayashi, “Divide and conquer high-level synthesis design
space exploration,” ACM Trans. Design Autom. Electr. Syst., vol. 17, no. 3,
p. 29, 2012.

[106] S. Xydis, K. Z. Pekmestzi, D. Soudris, and G. Economakos, “Compiler-in-the-loop
exploration during datapath synthesis for higher quality delay-area trade-offs,”
ACM Trans. Design Autom. Electr. Syst., vol. 18, no. 1, p. 11, 2012.

[107] A. A. Nacci, V. Rana, F. Bruschi, D. Sciuto, I. Beretta, and D. Atienza, “A high-
level synthesis flow for the implementation of iterative stencil loop algorithms on
fpga devices,” in Proceedings of the 50th Annual Design Automation Conference,
p. 52, ACM, 2013.

[108] P. Li, Y. Wang, P. Zhang, G. Luo, T. Wang, and J. Cong, “Memory partitioning
and scheduling co-optimization in behavioral synthesis,” in Proceedings of the
International Conference on Computer-Aided Design, pp. 488–495, ACM, 2012.

[109] G. Zhong, V. Venkataramani, Y. Liang, T. Mitra, and S. Niar, “Design space explo-
ration of multiple loops on fpgas using high level synthesis,” in 2014 IEEE 32nd
International Conference on Computer Design (ICCD), pp. 456–463, IEEE,
2014.

[110] J. Cong, P. Zhang, and Y. Zou, “Optimizing memory hierarchy allocation with
loop transformations for high-level synthesis,” in Proceedings of the 49th Annual
Design Automation Conference, pp. 1233–1238, ACM, 2012.

[111] A. Cilardo and L. Gallo, “Interplay of loop unrolling and multidimensional memory
partitioning in hls,” in 2015 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 163–168, IEEE, 2015.

[112] H. Li, “Aligning sequence reads, clone sequences and assembly contigs with bwa-
mem,” arXiv preprint arXiv:1303.3997, 2013.

[113] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with bowtie 2,”

180

Bibliography

Nature methods, vol. 9, no. 4, p. 357, 2012.
[114] M. Šošić and M. Šikić, “Edlib: a c/c++ library for fast, exact sequence alignment

using edit distance,” Bioinformatics, vol. 33, no. 9, pp. 1394–1395, 2017.
[115] S. Marco-Sola, J. C. Moure, M. Moreto, and A. Espinosa, “Fast gap-affine pair-

wise alignment using the wavefront algorithm,” Bioinformatics, vol. 37, no. 4,
pp. 456–463, 2021.

[116] H. Suzuki and M. Kasahara, “Introducing difference recurrence relations for faster
semi-global alignment of long sequences,” BMC bioinformatics, vol. 19, no. 1,
pp. 33–47, 2018.

[117] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local
alignment search tool,” Journal of molecular biology, vol. 215, no. 3, pp. 403–
410, 1990.

[118] S. B. Needleman and C. D. Wunsch, “A general method applicable to the search for
similarities in the amino acid sequence of two proteins,” Journal of molecular
biology, vol. 48, no. 3, pp. 443–453, 1970.

[119] M. Alser, T. Shahroodi, J. Gómez-Luna, C. Alkan, and O. Mutlu, “Sneakysnake:
a fast and accurate universal genome pre-alignment filter for cpus, gpus and
fpgas,” Bioinformatics, vol. 36, no. 22-23, pp. 5282–5290, 2020.

[120] W. R. Pearson, “Searching protein sequence libraries: comparison of the sensitivity
and selectivity of the smith-waterman and fasta algorithms,” Genomics, vol. 11,
no. 3, pp. 635–650, 1991.

[121] H.-C. Ng, S. Liu, and W. Luk, “Reconfigurable acceleration of genetic sequence
alignment: A survey of two decades of efforts,” in Field Programmable Logic
and Applications (FPL), 2017 27th International Conference on, pp. 1–8, IEEE,
2017.

[122] K. Puttegowda, W. Worek, N. Pappas, A. Dandapani, P. Athanas, and A. Dick-
erman, “A run-time reconfigurable system for gene-sequence searching,” in
VLSI Design, 2003. Proceedings. 16th International Conference on, pp. 561–
566, IEEE, 2003.

[123] M. Gok and C. Yilmaz, “Efficient cell designs for systolic smith-waterman im-
plementations,” in Field Programmable Logic and Applications, 2006. FPL’06.
International Conference on, pp. 1–4, IEEE, 2006.

[124] P. Zhang, G. Tan, and G. R. Gao, “Implementation of the smith-waterman algo-
rithm on a reconfigurable supercomputing platform,” in Proceedings of the 1st
international workshop on High-performance reconfigurable computing technol-
ogy and applications: held in conjunction with SC07, pp. 39–48, ACM, 2007.

[125] S. A. Guccione and E. Keller, “Gene matching using jbits,” in International Confer-
ence on Field Programmable Logic and Applications, pp. 1168–1171, Springer,
2002.

[126] P. Faes, B. Minnaert, M. Christiaens, E. Bonnet, Y. Saeys, D. Stroobandt, and
Y. Van de Peer, “Scalable hardware accelerator for comparing dna and pro-
tein sequences,” in Proceedings of the 1st international conference on Scalable
information systems, pp. 33–es, 2006.

[127] X. Jiang, X. Liu, L. Xu, P. Zhang, and N. Sun, “A reconfigurable accelerator for

181

Bibliography

smith–waterman algorithm,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 54, no. 12, pp. 1077–1081, 2007.

[128] K. Benkrid, Y. Liu, and A. Benkrid, “A highly parameterized and efficient fpga-
based skeleton for pairwise biological sequence alignment,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 4, pp. 561–570,
2009.

[129] Z. Nawaz, M. Nadeem, H. van Someren, and K. Bertels, “A parallel fpga design
of the smith-waterman traceback,” in 2010 International Conference on Field-
Programmable Technology, pp. 454–459, IEEE, 2010.

[130] S. Lloyd and Q. O. Snell, “Hardware accelerated sequence alignment with trace-
back,” International Journal of Reconfigurable Computing, vol. 2009, p. 9, 2009.

[131] Y.-T. Chen, J. Cong, J. Lei, and P. Wei, “A novel high-throughput acceleration
engine for read alignment,” in 2015 IEEE 23rd Annual International Symposium
on Field-Programmable Custom Computing Machines, pp. 199–202, IEEE, 2015.

[132] C. B. Olson, M. Kim, C. Clauson, B. Kogon, C. Ebeling, S. Hauck, and W. L.
Ruzzo, “Hardware acceleration of short read mapping,” in 2012 IEEE 20th In-
ternational Symposium on Field-Programmable Custom Computing Machines,
pp. 161–168, IEEE, 2012.

[133] N. Homer, B. Merriman, and S. F. Nelson, “Bfast: an alignment tool for large scale
genome resequencing,” PloS one, vol. 4, no. 11, p. e7767, 2009.

[134] D. Fujiki, A. Subramaniyan, T. Zhang, Y. Zeng, R. Das, D. Blaauw, and
S. Narayanasamy, “Genax: A genome sequencing accelerator,” in 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA), pp. 69–82, IEEE, 2018.

[135] D. Fujiki, S. Wu, N. Ozog, K. Goliya, D. Blaauw, S. Narayanasamy, and R. Das,
“Seedex: A genome sequencing accelerator for optimal alignments in subminimal
space,” in 2020 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pp. 937–950, IEEE, 2020.

[136] D. S. Cali, G. S. Kalsi, Z. Bingöl, C. Firtina, L. Subramanian, J. S. Kim,
R. Ausavarungnirun, M. Alser, J. Gomez-Luna, A. Boroumand, et al., “Genasm:
A high-performance, low-power approximate string matching acceleration
framework for genome sequence analysis,” in 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 951–966, IEEE,
2020.

[137] S. S. Banerjee, M. El-Hadedy, J. B. Lim, Z. T. Kalbarczyk, D. Chen, S. S. Lumetta,
and R. K. Iyer, “Asap: Accelerated short-read alignment on programmable
hardware,” IEEE Transactions on Computers, vol. 68, no. 3, pp. 331–346, 2018.

[138] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao,
S. Brown, F. Ferrandi, et al., “A survey and evaluation of fpga high-level synthe-
sis tools,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 35, no. 10, pp. 1591–1604, 2015.

[139] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang, “High-
level synthesis for fpgas: From prototyping to deployment,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 4,

182

Bibliography

pp. 473–491, 2011.
[140] K. Koliogeorgi, “Optimizing ecg signal analysis by building fpga-based accelerators

using high level synthesis,” 2016.
[141] S. Soldavini, S. L. Alarcón, and M. Łukowiak, “Using reduced graphs for efficient hls

scheduling,” in 2020 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1–5, IEEE, 2020.

[142] J. Jung and T. Kim, “Scheduling and resource binding algorithm considering timing
variation,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 19, no. 2, pp. 205–216, 2009.

[143] P. Kollig and B. Al-Hashimi, “Simultaneous scheduling, allocation and binding in
high level synthesis,” Electronics Letters, vol. 33, no. 18, pp. 1516–1518, 1997.

[144] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming standard
for heterogeneous computing systems,” Computing in science & engineering,
vol. 12, no. 3, p. 66, 2010.

[145] T. Feist, “Vivado design suite,” White Paper, vol. 5, 2012.
[146] V. Kathail, “Xilinx vitis unified software platform,” in Proceedings of the 2020

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pp. 173–174, 2020.

[147] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. Brown,
and T. Czajkowski, “Legup: high-level synthesis for fpga-based processor/accel-
erator systems,” in Proceedings of the 19th ACM/SIGDA international sympo-
sium on Field programmable gate arrays, pp. 33–36, 2011.

[148] T. J. Todman, G. A. Constantinides, S. J. Wilton, O. Mencer, W. Luk, and P. Y.
Cheung, “Reconfigurable computing: architectures and design methods,” IEE
Proceedings-Computers and Digital Techniques, vol. 152, no. 2, pp. 193–207,
2005.

[149] O. Pell and O. Mencer, “Surviving the end of frequency scaling with reconfigurable
dataflow computing,” ACM SIGARCH Computer Architecture News, vol. 39,
no. 4, pp. 60–65, 2011.

[150] J. D. Watson, “The human genome project: past, present, and future,” Science,
vol. 248, no. 4951, pp. 44–49, 1990.

[151] M. L. Metzker, “Sequencing technologies—the next generation,” Nature reviews
genetics, vol. 11, no. 1, pp. 31–46, 2010.

[152] N. M. Luscombe, D. Greenbaum, and M. Gerstein, “What is bioinformatics? a pro-
posed definition and overview of the field,” Methods of information in medicine,
vol. 40, no. 04, pp. 346–358, 2001.

[153] S. Goodwin, J. D. McPherson, and W. R. McCombie, “Coming of age: ten years
of next-generation sequencing technologies,” Nature Reviews Genetics, vol. 17,
no. 6, pp. 333–351, 2016.

[154] M. Kchouk, J.-F. Gibrat, and M. Elloumi, “Generations of sequencing technologies:
from first to next generation,” Biology and Medicine, vol. 9, no. 3, 2017.

[155] F. Sanger, S. Nicklen, and A. R. Coulson, “Dna sequencing with chain-terminating
inhibitors,” Proceedings of the national academy of sciences, vol. 74, no. 12,
pp. 5463–5467, 1977.

183

Bibliography

[156] J. K. Kulski, “Next-generation sequencing—an overview of the history, tools, and
“omic” applications,” Next Generation Sequencing–Advances, Applications and
Challenges, pp. 3–60, 2016.

[157] J. Shendure and H. Ji, “Next-generation dna sequencing,” Nature biotechnology,
vol. 26, no. 10, pp. 1135–1145, 2008.

[158] S. Balasubramanian, “Solexa sequencing: Decoding genomes on a population scale,”
Clinical chemistry, vol. 61, no. 1, pp. 21–24, 2015.

[159] A. Rhoads and K. F. Au, “Pacbio sequencing and its applications,” Genomics,
proteomics & bioinformatics, vol. 13, no. 5, pp. 278–289, 2015.

[160] A. S. Mikheyev and M. M. Tin, “A first look at the oxford nanopore minion se-
quencer,” Molecular ecology resources, vol. 14, no. 6, pp. 1097–1102, 2014.

[161] C. Alkan, B. P. Coe, and E. E. Eichler, “Genome structural variation discovery and
genotyping,” Nature reviews genetics, vol. 12, no. 5, pp. 363–376, 2011.

[162] H. Li, “Toward better understanding of artifacts in variant calling from high-
coverage samples,” Bioinformatics, vol. 30, no. 20, pp. 2843–2851, 2014.

[163] J. P. Carulli, M. Artinger, P. M. Swain, C. D. Root, L. Chee, C. Tulig, J. Guerin,
M. Osborne, G. Stein, J. Lian, et al., “High throughput analysis of differential
gene expression,” Journal of Cellular Biochemistry, vol. 72, no. S30–31, pp. 286–
296, 1998.

[164] S. J. Gould, Ontogeny and phylogeny.
Harvard University Press, 1977.

[165] O. Morozova, M. Hirst, and M. A. Marra, “Applications of new sequencing tech-
nologies for transcriptome analysis,” Annual review of genomics and human
genetics, vol. 10, pp. 135–151, 2009.

[166] A. Bird, “Perceptions of epigenetics,” Nature, vol. 447, no. 7143, p. 396, 2007.
[167] P. J. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice, “The sanger

fastq file format for sequences with quality scores, and the solexa/illumina fastq
variants,” Nucleic acids research, vol. 38, no. 6, pp. 1767–1771, 2010.

[168] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,
G. Abecasis, and R. Durbin, “The sequence alignment/map format and sam-
tools,” Bioinformatics, vol. 25, no. 16, pp. 2078–2079, 2009.

[169] O. U. Sezerman, E. Ulgen, N. Seymen, and I. M. Durasi, “Bioinformatics workflows
for genomic variant discovery, interpretation and prioritization,” in Bioinfor-
matics Tools for Detection and Clinical Interpretation of Genomic Variations,
IntechOpen, 2019.

[170] H. Li and R. Durbin, “Fast and accurate short read alignment with burrows–wheeler
transform,” bioinformatics, vol. 25, no. 14, pp. 1754–1760, 2009.

[171] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast and memory-
efficient alignment of short dna sequences to the human genome,” Genome bi-
ology, vol. 10, no. 3, p. R25, 2009.

[172] R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansen, and J. Wang, “Soap2:
an improved ultrafast tool for short read alignment,” Bioinformatics, vol. 25,
no. 15, pp. 1966–1967, 2009.

[173] M. Alser, J. Rotman, D. Deshpande, K. Taraszka, H. Shi, P. I. Baykal, H. T. Yang,

184

Bibliography

V. Xue, S. Knyazev, B. D. Singer, et al., “Technology dictates algorithms: recent
developments in read alignment,” Genome biology, vol. 22, no. 1, pp. 1–34, 2021.

[174] G. Manzini, “An analysis of the burrows—wheeler transform,” Journal of the ACM
(JACM), vol. 48, no. 3, pp. 407–430, 2001.

[175] R. W. Hamming, “Error detecting and error correcting codes,” The Bell system
technical journal, vol. 29, no. 2, pp. 147–160, 1950.

[176] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching algorithms,”
IBM journal of research and development, vol. 31, no. 2, pp. 249–260, 1987.

[177] V. Likic, “The needleman-wunsch algorithm for sequence alignment,” Lecture given
at the 7th Melbourne Bioinformatics Course, Bi021 Molecular Science and
Biotechnology Institute, University of Melbourne, pp. 1–46, 2008.

[178] V. Tsoutsouras, K. Koliogeorgi, S. Xydis, and D. Soudris, “An exploration frame-
work for efficient high-level synthesis of support vector machines: Case study
on ecg arrhythmia detection for xilinx zynq soc,” Journal of Signal Processing
Systems, vol. 88, no. 2, pp. 127–147, 2017.

[179] K. Koliogeorgi, G. Zervakis, D. Anagnostos, N. Zompakis, and K. Siozios, “Opti-
mizing svm classifier through approximate and high level synthesis techniques,”
in 2019 8th International Conference on Modern Circuits and Systems Tech-
nologies (MOCAST), pp. 1–4, IEEE, 2019.

[180] V. Tsoutsouras, “Design methodologies for resource management of many-core em-
bedded systems,” 2018.

[181] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,
no. 3, pp. 273–297, 1995.

[182] S. Tong and D. Koller, “Support vector machine active learning with applications
to text classification,” Journal of machine learning research, vol. 2, no. Nov,
pp. 45–66, 2001.

[183] C. H. Wan, L. H. Lee, R. Rajkumar, and D. Isa, “A hybrid text classification
approach with low dependency on parameter by integrating k-nearest neighbor
and support vector machine,” Expert Systems with Applications, vol. 39, no. 15,
pp. 11880–11888, 2012.

[184] T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and D. Haus-
sler, “Support vector machine classification and validation of cancer tissue sam-
ples using microarray expression data,” Bioinformatics, vol. 16, no. 10, pp. 906–
914, 2000.

[185] G. Orrù, W. Pettersson-Yeo, A. F. Marquand, G. Sartori, and A. Mechelli, “Us-
ing support vector machine to identify imaging biomarkers of neurological and
psychiatric disease: a critical review,” Neuroscience & Biobehavioral Reviews,
vol. 36, no. 4, pp. 1140–1152, 2012.

[186] S. Tong and E. Chang, “Support vector machine active learning for image re-
trieval,” in Proceedings of the ninth ACM international conference on Multi-
media, pp. 107–118, ACM, 2001.

[187] M. Volpi, D. Tuia, F. Bovolo, M. Kanevski, and L. Bruzzone, “Supervised change
detection in vhr images using contextual information and support vector ma-
chines,” International Journal of Applied Earth Observation and Geoinforma-

185

Bibliography

tion, vol. 20, pp. 77–85, 2013.
[188] Y. Zhang, S. Wang, G. Ji, and Z. Dong, “An mr brain images classifier system via

particle swarm optimization and kernel support vector machine,” The Scientific
World Journal, vol. 2013, 2013.

[189] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Human activity
recognition on smartphones using a multiclass hardware-friendly support vector
machine,” in International Workshop on Ambient Assisted Living, pp. 216–223,
Springer, 2012.

[190] Y. Tang, “Deep learning using linear support vector machines,” arXiv preprint
arXiv:1306.0239, 2013.

[191] M. Papadonikolakis and C.-S. Bouganis, “A novel fpga-based svm classifier,”
in Field-Programmable Technology (FPT), 2010 International Conference on,
pp. 283–286, IEEE, 2010.

[192] S. Cadambi, I. Durdanovic, V. Jakkula, M. Sankaradass, E. Cosatto, S. Chakrad-
har, and H. P. Graf, “A massively parallel fpga-based coprocessor for support
vector machines,” in Field Programmable Custom Computing Machines, 2009.
FCCM’09. 17th IEEE Symposium on, pp. 115–122, IEEE, 2009.

[193] M. Shoaib, N. K. Jha, and N. Verma, “Algorithm-driven architectural design space
exploration of domain-specific medical-sensor processors,” Very Large Scale In-
tegration (VLSI) Systems, IEEE Transactions on, vol. 21, no. 10, pp. 1849–1862,
2013.

[194] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, “A low latency generic accuracy
configurable adder,” in Design Automation Conf., June 2015.

[195] H. A. F. Almurib, T. N. Kumar, and F. Lombardi, “Inexact designs for approximate
low power addition by cell replacement,” in Design, Automation Test in Europe,
2016.

[196] G. Zervakis, S. Xydis, K. Tsoumanis, D. Soudris, and K. Pekmestzi, “Hybrid ap-
proximate multiplier architectures for improved power-accuracy trade-offs,” in
International Symposium on Low Power Electronics and Design, pp. 79–84, July
2015.

[197] W. Liu, L. Qian, C. Wang, H. Jiang, J. Han, and F. Lombardi, “Design of ap-
proximate radix-4 booth multipliers for error-tolerant computing,” IEEE Trans.
Comput., vol. 66, pp. 1435–1441, Aug 2017.

[198] G. Zervakis, K. Tsoumanis, S. Xydis, D. Soudris, and K. Pekmestzi, “Design-
efficient approximate multiplication circuits through partial product perfora-
tion,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 24, pp. 3105–3117, Oct 2016.

[199] A. Lingamneni, C. Enz, K. Palem, and C. Piguet, “Synthesizing parsimonious in-
exact circuits through probabilistic design techniques,” ACM Trans. Embed.
Comput. Syst., vol. 12, pp. 93:1–93:26, May 2013.

[200] C. Li, W. Luo, S. S. Sapatnekar, and J. Hu, “Joint precision optimization and high
level synthesis for approximate computing,” in Design Automation Conference,
pp. 104:1–104:6, 2015.

[201] G. Zervakis, S. Xydis, D. Soudris, and K. Pekmestzi, “Multi-level approximate

186

Bibliography

accelerator synthesis under voltage island constraints,” IEEE Trans. Circuits
Syst. II, pp. 1–1, 2018.

[202] R. M. Rangayyan and N. P. Reddy, “Biomedical signal analysis: a case-study ap-
proach,” Annals of Biomedical Engineering, vol. 30, no. 7, pp. 983–983, 2002.

[203] E. D. Übeyli, “Ecg beats classification using multiclass support vector machines
with error correcting output codes,” Digital Signal Processing, vol. 17, no. 3,
pp. 675–684, 2007.

[204] H. Zhang and L.-Q. Zhang, “Ecg analysis based on pca and support vector ma-
chines,” in Neural Networks and Brain, 2005. ICNN&B’05. International Con-
ference on, vol. 2, pp. 743–747, IEEE, 2005.

[205] G. B. Moody and R. G. Mark, “The impact of the mit-bih arrhythmia database,”
Engineering in Medicine and Biology Magazine, IEEE, vol. 20, no. 3, pp. 45–50,
2001.

[206] M. C. Ramon, “Intel galileo and intel galileo gen 2,” in Intel R© Galileo and Intel R©
Galileo Gen 2, pp. 1–33, Springer, 2014.

[207] D. Azariadi, V. Tsoutsouras, S. Xydis, and D. Soudris, “Ecg signal analysis and
arrhythmia detection on iot wearable medical devices,” in Modern Circuits and
Systems Technologies (MOCAST), 2016 5th International Conference on, pp. 1–
4, IEEE, 2016.

[208] F. Digilent’s ZedBoard Zynq, “Dev. board documentation.”
[209] X. Zynq, “7000 all programmable soc zc702 evaluation kit,” 2015.
[210] S. Xydis, G. Economakos, D. Soudris, and K. Z. Pekmestzi, “High performance

and area efficient flexible DSP datapath synthesis,” IEEE Trans. VLSI Syst.,
vol. 19, no. 3, pp. 429–442, 2011.

[211] S. Xydis, I. S. Triantafyllou, G. Economakos, and K. Z. Pekmestzi, “Flexible
datapath synthesis through arithmetically optimized operation chaining,” in
NASA/ESA Conference on Adaptive Hardware and Systems, AHS 2009, San
Francisco, California, USA, July 29 - August 1, 2009, pp. 407–414, 2009.

[212] H. Parandeh-Afshar, A. K. Verma, P. Brisk, and P. Ienne, “Improving FPGA per-
formance for carry-save arithmetic,” IEEE Trans. VLSI Syst., vol. 18, no. 4,
pp. 578–590, 2010.

[213] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski, S. D.
Brown, and J. H. Anderson, “Legup: An open-source high-level synthesis tool
for fpga-based processor/accelerator systems,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 13, no. 2, p. 24, 2013.

[214] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard, “Managing
performance vs. accuracy trade-offs with loop perforation,” in Proc. 19th ACM
SIGSOFT Symp. 13th Eur. Conf. Found. Softw. Eng. (ESEC/FSE), 2011.

[215] G. Coley, “Beagleboard system reference manual,” BeagleBoard. org, December,
p. 81, 2009.

[216] Z. J. Xu, “Ls2085/8a freescale’s new qorlq layerscape communications processor,”
in Hot Chips 27 Symposium (HCS), 2015 IEEE, pp. 1–25, IEEE, 2015.

[217] K. Koliogeorgi, N. Voss, S. Fytraki, S. Xydis, G. Gaydadjiev, and D. Soudris,
“Dataflow acceleration of smith-waterman with traceback for high throughput

187

Bibliography

next generation sequencing,” in 2019 29th International Conference on Field
Programmable Logic and Applications (FPL), pp. 74–80, IEEE, 2019.

[218] K. Koliogeorgi, S. Xydis, G. Gaydadjiev, and D. J. Soudris, “Dataflow acceleration
for short read alignment on ngs data,” IEEE Transactions on Computers, 2022.

[219] S. T. Park and J. Kim, “Trends in next-generation sequencing and a new era
for whole genome sequencing,” International neurourology journal, vol. 20,
no. Suppl 2, p. S76, 2016.

[220] S. J. Bielinski, J. E. Olson, J. Pathak, R. M. Weinshilboum, L. Wang, K. J. Lyke,
E. Ryu, P. V. Targonski, M. D. Van Norstrand, M. A. Hathcock, et al., “Pre-
emptive genotyping for personalized medicine: design of the right drug, right
dose, right time—using genomic data to individualize treatment protocol,” in
Mayo Clinic Proceedings, vol. 89, pp. 25–33, Elsevier, 2014.

[221] M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl,
A. A. Philippakis, G. Del Angel, M. A. Rivas, M. Hanna, et al., “A framework
for variation discovery and genotyping using next-generation dna sequencing
data,” Nature genetics, vol. 43, no. 5, p. 491, 2011.

[222] M. D. Robinson, D. J. McCarthy, and G. K. Smyth, “edger: a bioconductor package
for differential expression analysis of digital gene expression data,” Bioinformat-
ics, vol. 26, no. 1, pp. 139–140, 2010.

[223] B. Schmidt and A. Hildebrandt, “Next-generation sequencing: big data meets high
performance computing,” Drug discovery today, vol. 22, no. 4, pp. 712–717,
2017.

[224] http://www.novocraft.com/products/novoalign/
[225] Y. Liu and B. Schmidt, “Long read alignment based on maximal exact match seeds,”

Bioinformatics, vol. 28, no. 18, pp. i318–i324, 2012.
[226] H. Ye, J. Meehan, W. Tong, and H. Hong, “Alignment of short reads: a crucial

step for application of next-generation sequencing data in precision medicine,”
Pharmaceutics, vol. 7, no. 4, pp. 523–541, 2015.

[227] N. Ahmed, K. Bertels, and Z. Al-Ars, “A comparison of seed-and-extend tech-
niques in modern dna read alignment algorithms,” in 2016 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pp. 1421–1428, IEEE,
2016.

[228] Y.-T. Chen, J. Cong, Z. Fang, J. Lei, and P. Wei, “When apache spark meets
fpgas: a case study for next-generation dna sequencing acceleration,” in The 8th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16), 2016.

[229] J. Arram, K. H. Tsoi, W. Luk, and P. Jiang, “Reconfigurable acceleration of short
read mapping,” in 2013 IEEE 21st Annual International Symposium on Field-
Programmable Custom Computing Machines, pp. 210–217, IEEE, 2013.

[230] J. Arram, K. H. Tsoi, W. Luk, and P. Jiang, “Hardware acceleration of genetic se-
quence alignment,” in International Symposium on Applied Reconfigurable Com-
puting, pp. 13–24, Springer, 2013.

[231] H.-C. Ng, S. Liu, I. Coleman, R. S. Chu, M.-C. Yue, and W. Luk, “Acceleration
of short read alignment with runtime reconfiguration,” in 2020 International
Conference on Field-Programmable Technology (ICFPT), pp. 256–262, 2020.

188

Bibliography

[232] H.-C. Ng, I. Coleman, S. Liu, and W. Luk, “Reconfigurable acceleration of short
read mapping with biological consideration,” in The 2021 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays, pp. 229–239, 2021.

[233] W. Tang, W. Wang, B. Duan, C. Zhang, G. Tan, P. Zhang, and N. Sun, “Accelerat-
ing millions of short reads mapping on a heterogeneous architecture with fpga ac-
celerator,” in Field-Programmable Custom Computing Machines (FCCM), 2012
IEEE 20th Annual International Symposium on, pp. 184–187, IEEE, 2012.

[234] E. J. Houtgast, V.-M. Sima, K. Bertels, and Z. Al-Ars, “An fpga-based systolic
array to accelerate the bwa-mem genomic mapping algorithm,” in Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS), 2015
International Conference on, pp. 221–227, IEEE, 2015.

[235] https://github.com/maxeler/Smith-Waterman, “Smithwaterman demo on maxeler
github,”

[236] L. Yujian and L. Bo, “A normalized levenshtein distance metric,” IEEE transactions
on pattern analysis and machine intelligence, vol. 29, no. 6, pp. 1091–1095, 2007.

[237] http://bowtie-bio.sourceforge.net/bowtie2/manual.shtmlmain arguments,
“Bowtie2 manual for alignment configuration,”

[238] T. C. Glenn, “Field guide to next-generation dna sequencers,” Molecular ecology
resources, vol. 11, no. 5, pp. 759–769, 2011.

[239] N. Trifunovic, V. Milutinovic, N. Korolija, and G. Gaydadjiev, “An appgallery for
dataflow computing,” Journal of Big Data, vol. 3, no. 1, pp. 1–30, 2016.

[240] Y. Guo, X. Ding, Y. Shen, G. J. Lyon, and K. Wang, “Seqmule: automated pipeline
for analysis of human exome/genome sequencing data,” Scientific reports, vol. 5,
p. 14283, 2015.

[241] Z. D. Stephens, M. E. Hudson, L. S. Mainzer, M. Taschuk, M. R. Weber, and R. K.
Iyer, “Simulating next-generation sequencing datasets from empirical mutation
and sequencing models,” PloS one, vol. 11, no. 11, p. e0167047, 2016.

[242] M. G. Ross, C. Russ, M. Costello, A. Hollinger, N. J. Lennon, R. Hegarty, C. Nus-
baum, and D. B. Jaffe, “Characterizing and measuring bias in sequence data,”
Genome biology, vol. 14, no. 5, pp. 1–20, 2013.

[243] http://www.aegle uhealth.eu/en/, “Aegle: An analytics framework for integrated
and personalized healthcare services in europe,”

[244] P. Baliakas, A. Hadzidimitriou, L. A. Sutton, D. Rossi, E. Minga, N. Villamor,
M. Larrayoz, J. Kmínková, A. Agathangelidis, Z. Davis, et al., “Recurrent mu-
tations refine prognosis in chronic lymphocytic leukemia,” Leukemia, vol. 29,
no. 2, pp. 329–336, 2015.

[245] C. L. Richards, O. Bossdorf, and K. J. Verhoeven, “Understanding natural epige-
netic variation,” The New Phytologist, vol. 187, no. 3, pp. 562–564, 2010.

[246] K. Koliogeorgi, S. Xydis, G. Gaydadjiev, and D. Soudris, “Gandafl: Dataflow accel-
eration for short read alignment on ngs data,” IEEE Transactions on Computers,
vol. 71, no. 11, pp. 3018–3031, 2022.

[247] K.-M. Chao, W. R. Pearson, and W. Miller, “Aligning two sequences within a
specified diagonal band,” Bioinformatics, vol. 8, no. 5, pp. 481–487, 1992.

[248] Y.-L. Liao, Y.-C. Li, N.-C. Chen, and Y.-C. Lu, “Adaptively banded smith-

189

Bibliography

waterman algorithm for long reads and its hardware accelerator,” in 2018 IEEE
29th International Conference on Application-specific Systems, Architectures
and Processors (ASAP), pp. 1–9, IEEE, 2018.

[249] H. Suzuki and M. Kasahara, “Acceleration of nucleotide semi-global alignment with
adaptive banded dynamic programming,” BioRxiv, p. 130633, 2017.

[250] M. A. Eberle, E. Fritzilas, P. Krusche, M. Källberg, B. L. Moore, M. A. Bekritsky,
Z. Iqbal, H.-Y. Chuang, S. J. Humphray, A. L. Halpern, et al., “A reference data
set of 5.4 million phased human variants validated by genetic inheritance from
sequencing a three-generation 17-member pedigree,” Genome research, vol. 27,
no. 1, pp. 157–164, 2017.

[251] G. Eraslan, Ž. Avsec, J. Gagneur, and F. J. Theis, “Deep learning: new compu-
tational modelling techniques for genomics,” Nature Reviews Genetics, vol. 20,
no. 7, pp. 389–403, 2019.

[252] T. A. Liu, H. Zhu, H. Chen, J. F. Arevalo, F. K. Hui, H. Y. Paul, J. Wei, M. Un-
berath, and Z. M. Correa, “Gene expression profile prediction in uveal melanoma
using deep learning: a pilot study for the development of an alternative survival
prediction tool,” Ophthalmology Retina, vol. 4, no. 12, pp. 1213–1215, 2020.

[253] J. Zhou and O. G. Troyanskaya, “Predicting effects of noncoding variants with deep
learning–based sequence model,” Nature methods, vol. 12, no. 10, pp. 931–934,
2015.

[254] V. Boža, B. Brejová, and T. Vinař, “Deepnano: deep recurrent neural networks for
base calling in minion nanopore reads,” PloS one, vol. 12, no. 6, p. e0178751,
2017.

[255] J. Zou, M. Huss, A. Abid, P. Mohammadi, A. Torkamani, and A. Telenti, “A primer
on deep learning in genomics,” Nature genetics, vol. 51, no. 1, pp. 12–18, 2019.

[256] A. Lal, Z. D. Chiang, N. Yakovenko, F. M. Duarte, J. Israeli, and J. D. Buenrostro,
“Atacworks: A deep convolutional neural network toolkit for epigenomics,”
bioRxiv, p. 829481, 2020.

[257] G. Singh, M. Alser, A. Khodamoradi, K. Denolf, C. Firtina, M. B. Cavlak, H. Cor-
poraal, and O. Mutlu, “A framework for designing efficient deep learning-based
genomic basecallers,” bioRxiv, 2022.

[258] K. Koliogeorgi, D. Mylonakis, S. Xydis, and D. Soudris, “High level synthesis accel-
eration of change detection in multi-temporal high resolution sentinel-2 satellite
images,” in 2022 IFIP/IEEE 30th International Conference on Very Large Scale
Integration (VLSI-SoC), pp. 1–6, IEEE, 2022.

[259] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and
prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.

[260] K. Siau and W. Wang, “Building trust in artificial intelligence, machine learning,
and robotics,” Cutter business technology journal, vol. 31, no. 2, pp. 47–53, 2018.

[261] T. Panch, P. Szolovits, and R. Atun, “Artificial intelligence, machine learning and
health systems,” Journal of global health, vol. 8, no. 2, 2018.

[262] E. Brynjolfsson, T. Mitchell, and D. Rock, “What can machines learn, and what
does it mean for occupations and the economy?,” in AEA Papers and Proceed-
ings, vol. 108, pp. 43–47, 2018.

190

Bibliography

[263] A. Y. Sun and B. R. Scanlon, “How can big data and machine learning benefit
environment and water management: a survey of methods, applications, and
future directions,” Environmental Research Letters, vol. 14, no. 7, p. 073001,
2019.

[264] C. Gómez, J. C. White, and M. A. Wulder, “Optical remotely sensed time series
data for land cover classification: A review,” ISPRS Journal of Photogrammetry
and Remote Sensing, vol. 116, pp. 55–72, 2016.

[265] J. Verbesselt, R. Hyndman, A. Zeileis, and D. Culvenor, “Phenological change
detection while accounting for abrupt and gradual trends in satellite image time
series,” Remote Sensing of Environment, vol. 114, no. 12, pp. 2970–2980, 2010.

[266] L. Wu, Z. Zhang, Y. Wang, and Q. Liu, “A segmentation based change detection
method for high resolution remote sensing image,” in Chinese Conference on
Pattern Recognition, pp. 314–324, Springer, 2014.

[267] S. Saha, F. Bovolo, and L. Bruzzone, “Unsupervised deep change vector analysis
for multiple-change detection in vhr images,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 57, no. 6, pp. 3677–3693, 2019.

[268] T. Celik, “Multiscale change detection in multitemporal satellite images,” IEEE
Geoscience and Remote Sensing Letters, vol. 6, no. 4, pp. 820–824, 2009.

[269] P. Nevavuori, N. Narra, P. Linna, and T. Lipping, “Crop yield prediction using
multitemporal uav data and spatio-temporal deep learning models,” Remote
Sensing, vol. 12, no. 23, p. 4000, 2020.

[270] Y. Guo, X. Jia, and D. Paull, “Effective sequential classifier training for svm-
based multitemporal remote sensing image classification,” IEEE Transactions
on Image Processing, vol. 27, no. 6, pp. 3036–3048, 2018.

[271] S. Saha, L. Mou, C. Qiu, X. X. Zhu, F. Bovolo, and L. Bruzzone, “Unsupervised
deep joint segmentation of multitemporal high-resolution images,” IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 58, no. 12, pp. 8780–8792, 2020.

[272] D. Ghimire, D. Kil, and S.-h. Kim, “A survey on efficient convolutional neural
networks and hardware acceleration,” Electronics, vol. 11, no. 6, p. 945, 2022.

[273] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient re-
configurable accelerator for deep convolutional neural networks,” IEEE journal
of solid-state circuits, vol. 52, no. 1, pp. 127–138, 2016.

[274] D. Wang, K. Xu, and D. Jiang, “Pipecnn: An opencl-based open-source fpga ac-
celerator for convolution neural networks,” in 2017 International Conference on
Field Programmable Technology (ICFPT), pp. 279–282, IEEE, 2017.

[275] X. Xu and B. Liu, “Fclnn: A flexible framework for fast cnn prototyping on fpga
with opencl and caffe,” in 2018 International Conference on Field-Programmable
Technology (FPT), pp. 238–241, IEEE, 2018.

191

Appendix A.

Appendix: FPGA Acceleration of
Multi-Temporal Change Detection on High
Resolution Images

Machine learning tools are at the spotlight of research and human scientific activities that
perform image processing and object detection. The Earth observation domain in particu-
lar heavily relies on change detection on images employing image segmentation techniques
and a variety of prediction models. The computational intensity in this case lies in per-
forming consecutive predictions for a huge incoming number of input samples. In this
paper, we focus on such an application, that performs change detection on multi-temporal
Sentinel-2 satellite images. The goal of this work is to explore High Level Synthesis ca-
pabilities of Intel OpenCL SDK to produce an efficient architecture for accelerating the
applications focusing on optimization of a single prediction while taking into account the
fragmentation of the problem. Our two-level approach first employs built-in optimization
techniques to impact microarchitectural attributes and then scales this baseline to leverage
coarse-grain and fine-grained parallelism. The result for the fastest implementation we
acquire is a speedup of ×7.14 over the Python-TF2 implementation. This work has been
published in [258].

A.1. Introduction and Background Information

In recent years, machine learning has been established as one of the most promising
research domains leading to constant advances and developments. Machine learning
frameworks and neural models have been successfully applied to fields such as medicine,
biology, commerce, robotics etc [259], [260], performing mainly tasks of image classifica-
tion and object detection. These applications are critical for the environmental, health,
social and economic domain [261], [262], [263] and therefore, scientists and researchers
from both industry and academia make great efforts to develop efficient approaches and
techniques for their implementation.

193

Appendix: FPGA Acceleration of Multi-Temporal Change Detection on High Resolution Images

A special category of machine learning applications that has recently showed great progress
is multi-temporal prediction on segmented images. This specifically applies to the Earth
Observation domain as the need arises to locate changes, classify and detect objects
on images of a certain geographical area. Thanks to advancements in the technol-
ogy for remote sensing data it is now possible to acquire images of the same field
of view in different chronological points in time and extract information for possible
changes [264], [265]. For example, sensors such as Sentinel-2, Pleiades, Quickbird, and
Gaofen-2 were recently launched and caused an explosion in the availability of high/very-
high-resolution images. This has naturally led to a fast-developing research area that
develops techniques and approaches to efficiently extract value out of the spatial data.
Several studies of those stand out, as they indicate that it is highly effective to per-
form segmentation to the available images before applying a neural network for infer-
ence [266], [267].

There are multiple works that leverage the segmentation technique to perform change
detection on spatial images. Depending on the type of image and the requirements of
the application, each one is based on a different type of neural network operating on the
image segments. The authors in [268] present a framework that performs change detec-
tion in multi-temporal satellite images. The framework generates the difference image
between two time-consecutive images and decomposes it into scales using the Undeci-
mated Discrete Wavelet Transform in order to extract feature vectors. These vectors are
then assigned to a class based on k-means clustering algorithm. The authors in [269] on
the other hand merge CNNs and LSTMs into a custom CNN-LSTM that helps predict
crop yield based on RGB images acquired by Unmanned aerial vehicles in combination
with weather data. The CNN-LSTM operates on smaller frames of the original images,
aiding to better model intra-field yield variability. In [270], the proposed framework
operates on a subset of the available pixels and leverages an SVM classifier which is
then fine-tuned by the subsequent images. Lastly, [271] propose a deep unsupervised
multitemporal segmentation method which also leverages adding semantic label to each
pixel.

As a result of the segmentation process, these applications perform an immense number
of inference tasks, which stem from the segmentation of high resolution images. This
stresses the compute systems and delays the response time for a time series of images.
The computational bottleneck is due to accumulative prediction operations rather than
the complexity of a single inference task. A straightforward approach would target opti-
mization of the core inference task. The application could of course benefit overall from
such an optimization, however exhausting the resources in that direction could lead to
a suboptimal solution. The problem requires a more holistic and synergetic approach
that optimizes the neural network while taking into account the design architecture and
parallelism across the multiple tasks.

The acceleration of the machine learning models that will be the base of our effort for
acceleration is a well documented and explored domain. Survey [272] covers a wide

194

A.1. Introduction and Background Information

range of accelerators targeting GPU,FPGA and ASIC devices. FPGAs in particular
bring forward attributes such as low power consumption, reconfigurability and an inher-
ent suitability for implementing efficiently multiply-and-accumulate (MAC) operations,
which are dominant in both fully connected and convolution layers. The available accel-
erators could be categorized in three major types based on the programming model they
follow. HDL accelerators are usually based on systolic array architectures that com-
prise of Processing elements. For example, Eyeriss [273] framework proposes a spatial
architecture that consists of processing elements arranged in a way that exploits data
reuse of filter weights and feature map and minimizes data movement of partial sums.
Highl Level synthesis accelerators are developed in a language such as C,C++ and
translated to RTL using a framework like Vivado HLS, Legup, OpenCL etc. and built-in
optimization directives of the tools. In [274] the authors propose PipeCNN, a framework
to accelerate neural networks by providing templated implementations of various layers
of a typical NN such as pooling, convolutional and fully connected written in OpenCL.
In [275], authors propose a co-design solution that integrates templated convolutional en-
gines within Caffe. Their OpenCL implementation is based on a streaming architecture
combined with a novel slicing strategy while on-chip and off-chip communication is also
optimized.

In this work, we study an application of multi-temporal prediction on the Earth observa-
tion domain. The examined workflow observes changes of a designated area over a period
of time by performing change detection on segmented pairs of time-consecutive Sentinel-2
data products. The generated output of the workflow is a map that includes the points
where changes have occured. The main objective is to deliver an optimized solution for
the application based on a stratified approach. The first level of optimization is achieved
through automatic OpenCL tuning knobs and manual algorithmic changes targeting the
single task of prediction on one image segment. The second level of optimization ex-
plores coarse-grained and fine-grained architectural optimizations when scaling out the
design to accommodate for efficient prediction on the overall volume of incoming inference
tasks. The result for the fastest implementation we acquire is a speedup of ×7.14 over
the Python-TF2 implementation.

The rest of the paper continues with a description of the change detection workflow
and how it is implemented within the context of the OpenCL execution model (Sec-
tion A.2). Section A.3 presents the hierarchical optimization approach to the problem
and Section A.4 demonstrates the evaluation of the design and comparison with other
works.

195

Appendix: FPGA Acceleration of Multi-Temporal Change Detection on High Resolution Images

A.2. Multi-temporal Prediction on High Resolution Images

A.2.1. Change Detection on Sentinel-2 Satellite images

Change Detection Analysis Workflow: The examined workflow performs multi-temporal
change detection on satellite images. Fig.A.1 illustrates the stages of the workflow. Each
time the workflow executes, it operates on two consecutive satellite images stored in
four-channel RGBA format. In the first step, the images are loaded and reshaped (step
1: image load and extraction) from a 4x10996x10996 to a 100x10976x10976 layout.
The 100-length row corresponds to a 5x5x4 tile of the initial image. Each image is di-
vided into batches and all subsequent processing is performed on slices of batch − size.
Each slice comprises of multiple 100 length arrays, i.e. tiles. The next step is a pre-
processing step (step 2: pre− processing) that performs normalization on each tile, i.e.
subtracts the mean value from each element and divides with the standard deviation
of the new values. This is the input format to the Neural Network model that per-
forms prediction on both tiles of the two images (step 3: prediction). The outputs of
the two predictions are then subtracted per-element and contribute to the final change
detection map. The resulting change detection map is the same size with the input
images. Output pixel values however range between 0 and 1, representing the probabil-
ity that a change has occurred between the acquisition time of the two images (step 4:
write output).

100
Image 1

100

100
10996

100
1097610976

10996

Image Load & Extraction

single

batch

batch size
Pre-processing & Prediction

25

N
or

m
al

iz
at

io
n

Pr
ed

ic
tio

n

4

Figure A.1.: Stages of Change Detection Workflow.

Workflow Profiling: The number of high-resolution images that the workflow operates
on, combined with the nature of the workflow that performs an immense number of in-
ferences per pair of images, highlight the need for optimization and improved response
time. In order to develop an efficient and effective strategy to achieve this, we first per-
form an elaborate profiling of the workflow. Fig.A.2 presents the distribution of execution
time among distinct stages of the workflow. The image load and extraction as well as
write output stages consume 26% of total time combined. The majority of execution
time i.e. 74%, is taken up by the pre− processing and prediction stages. Further anal-

196

A.2. Multi-temporal Prediction on High Resolution Images

ysis within these stages shows that the time is shared mainly between the normalization
and prediction, with normalization being the major bottleneck. The normalization in-
volves addition operations as well as floating point division whereas prediction includes
additions and multiplications (see Section A.2.2. The division is more time consum-
ing operation that multiplication and therefore normalization dominates the execution
time.

reshaping 5%

prediction 23%

normalization 72%
Mean Reduction

26%

Standard Deviation
60%

Pre-processing &
prediction breakdown

Image load, extraction &
Output Write

74%

Figure A.2.: Profiling of Change Detection and breakdown of Pre-processing stage.

A.2.2. Pre-processing and Prediction Model architecture

The functionality and computational complexity of the pre− processing and prediction
stages are explained in Listing 3 and are also illustrated in Fig.A.3. In pre− processing,
the mean reduction is implemented through two sequential for-loops: i) the first one
aggregates all elements into a single variable and ii) the second one subtracts this value
from each element. Standard deviation division requires three loops that traverse the
input array: i) the first one calculates the new mean value, ii) the second one computes
the standard deviation , i.e. the squared root of the sum of the squared differences of
each element and the mean value divided by the number of elements and iii) the last
one divides all elements with standard deviation. Once the pre-processing of the tile
is finished, a prediction model operates on the normalized data. Fig.A.3 depicts the
architecture, i.e. the layers, of the utilized prediction model. As mentioned, the image
tiles are already flattened into arrays of length 100. A Dense layer receives this input and
outputs a vector of length 25. The Dense layer has a weights matrix that comprises of 25
rows of 100 elements. Each element of the output vector is the result of a dot-product
operation between the sample vector of length 100 and a row of the weight matrix. This
matrix has 25 rows of length 100. A bias value is added to each output element and an
activation function is applied on it, i.e. Leaky ReLU. Lastly, a L2−normalization layer
operates on the output vector by dividing each element with the squared root of the sum
of the squared elements.

197

Appendix: FPGA Acceleration of Multi-Temporal Change Detection on High Resolution Images

x
x

x
x

x

weight matrix

25

dot product

input tile

bias

Le
ak

y
R

eL
U

output

100

Figure A.3.: Architecture of Prediction Model for Change Detection

Algorithm 3: Normalization and Prediction of Tile
1 const N = 100; const M = 25; //Mean reduction
2 subtract_mean_value() //2*O(N)
3 //Divide with standard deviation
4 compute_std_deviation() //2*O(N)
5 divide_with_std_deviation() //O(N)
6 //Dense Layer O(M*N)
7 for 1 to M do
8 for 1 to N do
9 dot_product()

10 add_bias()
11 Leaky_ReLU()
12 //L2 Normalization
13 sqrt = sqrt_of_sum_of_squared_elements() //O(N)
14 divide_with_sqrt //O(N)

A.2.3. Pre-processing and Prediction as an OpenCL kernel

The pre − processing and prediction stages as described in Listing 3 constitute the
major bottleneck and are going to be implemented as an FPGA accelerator through
the OpenCL programming model. OpenCLs’ main component is the kernel. A kernel
is issued through a host code and scheduled to execute within a command queue that
is necessary for host-device interaction. The source code described within the kernel
corresponds to a single work − item. Upon runtime, the host code can request for a
specific number of work − items to execute, i.e. global size. The programmer can also
specify the local size, which is the number of work− items that should be grouped into a
work−group. Depending on the OpenCL implementation the work−items within a single
work − group could execute concurrently but in most cases they execute sequentially.

198

A.3. Hierarchical Optimization Strategy of Model Architecture

Work − groups can execute concurrently based on the number of compute units in the
device. In any case for a global size and local size of 1, the configuration is equivalent to
a single work group that includes only one work item that executes the source code inside
the kernel. In our case, the pre − processing and prediction stage are described within
the same OpenCL kernel. Therefore, a single work− item implements the normalization
and prediction of a tile of an image reshaped into an array of length 100. Increasing the
global size leads to normalization and prediction of more tiles, i.e. a larger image part.
This straightforward implementation corresponds to an unoptimized accelerator that does
not include any OpenCL tuning knobs and adopts the default memory configuration, e.g.
all read-write operations access the global memory.

A.3. Hierarchical Optimization Strategy of Model Architecture

This section describes the optimization methodology that is adopted in order to effectively
examine the available design space and generate efficient architectures for change detec-
tion in multi-temporal images. First, we explore the native OpenCL capabilities to tune
the design on a micro-architectural and memory hierarchy level and derive an efficient
baseline architecture. Followingly, we build upon this architecture and leverage the coarse
grain parallelism available through the OpenCL computing model tofurther enhance the
design for execution on multiple image segments. Simultaneously, we explore alternative
architectures that focus on fine-grained parallelism.

A.3.1. Optimizing Baseline Architecture

This section elaborates on the techniques that secure an initial performance enhancement
of the single-task kernel. The goal is to reach the optimized architecture illustrated in
Fig.A.4, which exploits parallelism within each computational core of pre-processing and
prediction stages and benefits from optimized data transfer and memory interconnec-
tions.

OpenCL native tuning knobs

A first level of optimization can be achieved through meticulous tuning of OpenCL built-in
directives. The most efficient and commonly used directive in HLS tools is loop unrolling.
In OpenCL loop unroll is indicated by including #pragma unroll followed by an unroll
factor (partial or full) on top of the for loop in the source code. In our case, loop unrolling
can be applied on all loops. For mean reduction, standard deviation and L2-normalization

199

Appendix: FPGA Acceleration of Multi-Temporal Change Detection on High Resolution Images

PRIVATE MEMORY

GLOBAL MEMORY

work item

Standard
Deviation

Mean
Reduction

Dense
Layer

L2-norm

Figure A.4.: Overview of Design with Microarchitectural Optimizations.

each operation operate on individual elements and there are no data dependencies trans-
fered across iterations. Regarding the Dense layer, unrolling can be applied on both the
inner and outer loop. For the inner loop, unrolling parallelizes the dot product opera-
tions, i.e. the multiplications illustrated in Fig.A.3, as there are no read after write
dependencies. For the outer loop, unrolling paralellizes the dot product computation of
the same input with different rows of the weight matrix.

Fig.A.6 illustrates how unrollingmean reduction, standard deviation, L2−normalization
and the dot− product loops by the same factor impacts the latency and resources of the
design. The logic utilization reduces as unrolling a loop extinguishes the loop control
overheads. DSP utilization escalates as more operations can now be scheduled in par-
allel. For smaller unroll factors, the speedup scales linearly and proportionally to the
unroll factor. However, for full unroll the speedup does not follow the linear trend and is
restricted to a ×25 speedup for an unroll factor of 100. This fact in combination with the
considerable increase in BRAM utilization, especially for the case of full unroll, indicates
that the memory configuration may cause a bottleneck. We examine this scenario in the
next Section.

Memory architecture optimization in OpenCL

Memory architecture can be optimized both in terms of hierarchy and data layout and it
greatly impacts the overall performance.

Memory hierarchy configuration: Memory hierarchy configuration is critical for gener-
ating an efficient RTL architecture, as it affects global interconnections. In our imple-

200

A.3. Hierarchical Optimization Strategy of Model Architecture

0

10

20

30

0 2 4 100

Sp
ee

d
u

p

unroll factor
(a) Speedup for unroll factors 2,4 and fully unroll.

0

10

20

30

40

50

LUT FF BRAM DSP

u
ti

liz
at

io
n

 %

resource type
(b) Area utilization for unroll factors 2,4 and fully unroll.

Figure A.5.: Speedup and Resources utilization when applying unroll for various factors.

mentation, the weight matrix and bias array are implemented as constant variables and
are therefore hardcoded , whereas the input and output arrays (length 100 and 25 re-
spectively) as arguments are by default implemented as buffers on global memory. All
intermediate operations are executed on the input array and therefore all read-write
operations have to access the global memory. In particular, a total of 12 global inter-
connections are formed: i) two for reading and one storing the mean-reducted data, ii)
four for the deviation-division part, iii) two for reading the data and weights in dense
layer and one storing back, and lastly iv) two for reading and normalizing the output
values.

However, high global interconnections result in increased resource usage and lower per-
formance. In order to alleviate this overhead, we utilize the private address space. This
is realised by copying the input array into an array declared as __private. The compiler
implements this as registers whenever possible and this leads to very efficient hardware,
performance and resource-wise. Eradicating global interconnections by moving the com-

201

Appendix: FPGA Acceleration of Multi-Temporal Change Detection on High Resolution Images

putation on the private memory as shown in Fig.A.4, improves the performance and most
importantly drops resources utilization in half (Fig.??).

Memory layout: Memory layout and data placement can increase ports and locality and
in turn increase performance. In this section, we will examine two different memory parti-
tioning schemes and their impact in the overall design efficiency.

Cyclic Partitioning: Cyclic partitioning transforms a single array into multiple smaller
arrays so that each partition contains consecutive elements of the initial arrays allowing
concurrent access to them. In our case, this scenario takes places when unrolling the
for-loops as described in Section A.3.1. We will demonstrate cyclic partitioning on the
inner loop of the Dense layer that computes the dot product between two arrays. As it is
illustrated in Fig.A.3, the elements of the input array are multiplied with the same order
elements of a single row of the weight matrix. These multiplications are independent from
each other and can execute in parallel. Unrolling the loop allows for parallel execution
of the multiplications, however this is hindered by the limited read ports available in
both arrays (i.e. 2 ports per BRAM). OpenCL however does not provide directives that
perform memory partitioning and reshaping automatically. To mitigate this, we declare
multiple partitions both for the input array and weight-matrix and manually unroll the
loop so that in each iteration the different partitions are explicitly accessed. The number
of partitions depend on the unroll factor. Fig.A.7 shows the positioning of the elements
in the correct partitions to facilitate parallel access.

TThis code restructuring is further customized and tuned to explicitly guide the com-
piler to perform the accumulation of the products in a tree-like manner. For that pur-
pose we utilize temporary variables in order to store intermediate sums. This explicit
coding style helps the compiler infer the need to allocate more hardware resources, i.e.
adders, multipliers. The use of command line flag -fp-relaxed allows the compiler to
schedule the independent operations in parallel, so that they exploit the extra hard-
ware, and transform the graph of the operations in the tree-like structure depicted in
Fig.A.8.

BUS Bandwidth Optimization: An alternative approach is to explore potential ad-
vantages to increasing the data locality and bus width instead of the memory ports. For
that purpose, we reshape the matrix so that sequential elements that get accessed within
the same iteration of the unrolled loop are grouped together in a single struct. The array
is declared as an array of structs and each struct contains an array of unroll − factor
elements. Fig.A.7 illustrates the new data struct and the placement of the original data
in the expected order. As a result of this layout, the data bus width is greater and
the elements that are required in parallel are fetched together. This behavior emulates
the memory reshaping technique that groups multiple elements in a single element with
greater bitwidth.

202

A.3. Hierarchical Optimization Strategy of Model Architecture

Arithmetic and Low-level microarchitectural tuning

Careful study of the OpenCL generated reports revealed high area utilization due to
division operations in the source code. Multiplication on the other hand consumes less
resources. Therefore, we modify the source code and replace all division operations with
value with multiplication with the reverse 1

value . Specifically, this code optimization has
been applied to the division operation of the input with the standard deviation value and
to the L2 Normalization on the output array. A profiling has been implemented to ensure
that the propagation of the different floating point value in the pipeline does not decrease
the accuracy of the final results. The results show a reduction in LUT utilization by 75%
and a minor performance improvement by a 2.4%. This reduction in area utilization
is crucial when scaling a design and perform other optimization techniques to increase
performance.

As a last insight, it is interesting to show how the storing of weight matrix impacts the
design. Instead of declaring the weights as a kernel parameter, we opt instead to declare
the matrix as a constant and therefore statically allocate the matrix. BRAM utilization
increases from 29 to 58% whereas DSP and FF utilization are not affected. The execution
time however improves by 22%.

A.3.2. Optimizing horizontal and vertical scaling

In Section A.3.1 we examined ways to optimize the work of a single work-item. The
performance can be further improved by scaling the design. In this section we explore
two options for achieving that, horizontallly and vertically.

Latency-Optimized Architecture

The first architectural approach explores horizontal scaling, as it replicates the hardware
instantiated to ensure parallel execution of the kernel. This is essentially based on the
principle of coarse-grained parallelism, i.e. distributing the workload to multiple workers,
each one performing the same task and all of them working in parallel. OpenCL provides
two alternatives to achieve this, i) replicating the compute kernels on hardware and ii)
kernel vectorization.

The first approach is implemented through the num_compute_units directive which
specifies the number of times that the kernel is replicated inside the device. It is included
in the source code above the kernel of interest. Each kernel compute unit can execute
multiple work-groups/items simultaneously. During the run-time the OpenCL environ-
ment dynamically distributes the work groups/items across the compute units. Fig.A.9

203

Appendix: FPGA Acceleration of Multi-Temporal Change Detection on High Resolution Images

illustrates an example of how multiple work groups get scheduled to execute on each of
the four allocated kernels on the device.

An alternative directive that instantiates more hardware is num_simd_work_items.
This directive increases the number of operations executed per work-item by vectorizing
the kernel. Kernel vectorization allows multiple work-items to execute in a single instruc-
tion multiple data (SIMD) manner. Each work item now performs more work that scales
linearly with the number of SIMD lanes. This architectural approach is illustrated in
Fig.A.10 for a 4-lane SIMD architecture. The dashed schema shows the combination of the
two approaches for two compute units and 4-SIMD lanes.

Throughput-Optimized Architecture

In contrast with Section A.3.2, the technique described in this section focuses on vertical
scaling, by creating a pipeline and therefore an efficient fine-grained architecture. The
goal is to break down the workflow into distinct smaller tasks that can operate in parallel
and communicate or share results with each other when necessary. Such an architecture
consumes less resources and optimizes throughput rather than the latency of generating
a single output.

The mechanism which provides the ability for data to be shared among various kernels
is using OpenCL Channels. The first step in applying this technique is to break down
the initial kernel in multiple smaller kernels. Channels are FIFO buffers, that allow the
smaller kernels to communicate directly with each other with high efficiency and low
latency, following a producer − consumer relationship. In our case we transform the
pre − processing and prediction so that it follows a pipelined execution model. The
pipeline is comprised of the following stages: i) mean reduction, ii) standard deviation
division, iii) dense layer and iv) L2 normalization. Each one of these stages is declared
as a separate kernel. Each distinct kernel calculates a part of the pipeline and writes the
results to a buffer-channel. The channel is then read by the next kernel, and so on, up
to the point where data are written back to memory.

Initial profiling reveals that latency is not equally distributed across the stages, causing
a bottleneck. Specifically, mean reduction kernel is slower due to loading the images
from global memory rather than a channel. To alleviate this latency overhead, we add
an read − input kernel as well as a buffer, as depicted in the single − pipe buffered
architecture in Fig.A.11. The input kernel reads data from global memory and writes
them to a channel whereas the buffer kernel propagates them further on. This way the
wait time is absorbed and the mean reduction kernel reads and produces data with the
same rate as the other kernels.

Similar to the latency-optimized architecture, this fine-grained architecture can be scaled

204

A.4. Experimental Evaluation

horizontally. By default, OpenCL does not support the employment of channels and ker-
nel vectorization at the same time. To mitigitate this issue we explicitly replicate all ker-
nels and channels to reach FPGA capacity and create therefore a double−pipe buffered
architecture.

A.4. Experimental Evaluation

A.4.1. Experimental Setup

The proposed accelerator runs inside a docker container that is set up with all necessary
software requirements and python libraries of the original Change Detection tool. The
host machine is a 14-core Intel Xeon Gold 6132 with 132GB of DDR4 memory that is
connected through PCIe with an Intel Stratix 10 FPGA device. The utilized data are
real Satellite Sentinel-2 images.

A.4.2. Performance evaluation

This section studies the impact of various parameters in the performance of the scaled
architectures presented in Section A.3.2. The coarse-grained and fine-grained architec-
tures described are build upon one of the baseline optimized microarchitectures presented
in Section A.3.1. The selected configuration is a result of a greedy approach that iter-
atively applies each optimization technique and in every step chooses the configuration
that boosts performance and keeps utilization relatively low. It includes: i) utilization
of private memory, ii) loops (except the outer loop of dense layer) are manually un-
rolled by a factor of 4 and arrays sequentially partitioned by the same factor, iii) each
loop is further annotated with the pragmaunroll directive, iv) division operations are
replaced with multiplications, v) -fp-relaxed option is enabled to assist in the balancing
of the operations and vi) the weight matrix is declared as a constant matrix for static
allocation.

Latency-optimized designs

Fig.A.12 present the performance and resources utilization of designs with multiple com-
pute units of the baseline optimized kernel for an increasing number of global size. This
translates to more work items being scheduled, each one operating on a single tile of the
image. For 2 compute units and as the problem size grows, the execution time drops in
half. This is not the case for compute units 3 and 4, as their performance stays close

205

Appendix: FPGA Acceleration of Multi-Temporal Change Detection on High Resolution Images

to that of 2 compute units. The reason for that is that kernel replication leads to a
linear scaling in global interconnects and increased wiring utilization and finally a drop
in maximum possible frequency. Indeed, for four compute units, there is 39% drop in
frequency of the kernels.

The corresponding results for the Single Instruction Multiple Data method are presented
in Fig.A.13. In this case, increased wiring leads to a drop in frequency from 295MHz for
two-lane SIMD to 219MHz for four-lane SIMD. Therefore the ×2 speedup acquired for
two-lanes, is not doubled when moving to four-lanes but enhanced by a mere additional
10%.

Throughput-optimized designs

The three fine grained architectures presented in Section A.3.2 are also evaluated in terms
of performance and resource utilization for an increasing number of input tiles. As seen in
Fig.A.14 the single−pipebuffered architecture speeds up the design by about 35% with-
out consuming more resources, whereas the double − pipebuffered architecture results
in a 65% increase in performance. Comparison with Latency-optimized builds, indicates
latency optimized designs score higher performance for a small number of threads, how-
ever as thread size increases, throughput based architectures are gradually closing the
gap and even outperform the latency optimized ones.

Comparison with software

In this part, we will compare the fastest implementation that resulted from each one of the
coarse-grained and fine-grained architectures to the python pre-processing and the built-in
predict method that is utilized in Tensorflow v2. The fastest coarse-grained architecture
includes three compute units and the fastest fine-grained architecture is arranged in a
double−pipe buffered pipeline. The predict method of Tensorflow internally is also opti-
mized for prediction in batch mode. Fig.A.15 shows that the coarse-grained architecture
is ×7.14 faster than the software implementation whereas the speedup for the fine-grained
is ×5.79 when the input is a single satellite image of 12GB.

206

A.4. Experimental Evaluation

0.9

1

1.1

1.2

1.3

global private

Sp
ee

d
u

p

type of memory
(a) Speedup acquired when utilizing private memory for intermediate operations.

0

2

4

6

global private

N
o

rm
al

iz
ed

 A
re

a
%

type of memory

Kernel circuit

Global interconnect

(b) Area utilization for unroll factors 2,4 and fully unroll.

Figure A.6.: Decrease both in kernel and interconnect logic when utilizing private memory for
intermediate operations.

207

Appendix: FPGA Acceleration of Multi-Temporal Change Detection on High Resolution Images

0 1 2 3 4 5 6 7 0 4 1 5 2 6 3 7

 partitionsoriginal array

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

BW-optimized layout

Figure A.7.: Memory optimization schemes for parallel access to data: i) Cyclic partitioning
for unroll factor 4. ii) Sequential partitioning and bus BW optimization for unroll
factor 4.

Code snippet

for (int i=0;i<25;i++){

 product1 +=in1[i]*w1[row][i]

 product2 +=in2[i]*w2[row][i]

 product3 +=in3[i]*w3[row][i]

 product4 +=in4[i]*w4[row][i]

}

temp1=product1+product2

temp2=product3+product4

dotproduct=temp1+temp2

in1 w1

p1

x in2 w2

p2

x in3 w3

p3

x in4 w4

p4

x

+ +

+

partial products

Figure A.8.: Graph for Tree-balanced operations in unrolled dot-product loop.

208

A.4. Experimental Evaluation

GLOBAL MEMORY

num_compute_units(4)

single-lane bus

Kernel

Compute Unit

1

Kernel

Compute Unit

2

Kernel

Compute Unit

3

Kernel

Compute Unit

4

WG1

WG7

WG2 WG4

WG6 WG5work-group queue

Figure A.9.: Kernel replication with 4 kernel instances. Work-groups are scheduled onto the
available compute units.

GLOBAL MEMORY

x4 SIMD Kernel

Compute Unit 1

x4 SIMD Kernel

Compute Unit 2

num_compute_units(2)num_simd_work_items(4)

4-lane bus

Figure A.10.: Kernel vectorization by a factor of 4. The technique can be combined with mul-
tiple compute units, e.g. 2.

209

Appendix: FPGA Acceleration of Multi-Temporal Change Detection on High Resolution Images

GLOBAL MEMORY

Standard
Deviation

Mean
Reduction L2-norm

FIFO

buffers

Dense
Layer

Read
Input Buffer

Figure A.11.: Extended pipeline with input and buffer stages to balance the latency of each
stage.

0

20

40

60

1000 10000 100000 1000000

Ti
m

e
(m

s)

Number of tiles

1 CU 2 CUs

(a) Execution time for multiple compute
units and increasing dataset.

0

20

40

60

80

LUT FF BRAM DSP

U
ti

liz
at

io
n

 %

Type of resource

1 CU 2 CUs 3 CUs 4 CUs

(b) Resources utilization for multiple com-
pute units.

Figure A.12.: Scaling the design with multiple compute units.

Number of tiles

0

20

40

60

1000 10000 100000 1000000

Tm
e

(m
s)

Number of tiles

no SIMD 2-lane SIMD

(a) Execution time for increased vectoriza-
tion factor and increasing dataset.

0

50

100

LUT FF BRAM DSP

U
ti

liz
at

io
n

 %

Type of resource

no SIMD 2-lane SIMD

(b) Resources utilization for increased vec-
torization factor.

Figure A.13.: Scaling the design through vectorization.

210

A.4. Experimental Evaluation

0

10

20

30

1000 10000 100000 1000000

Ti
m

e
(m

s)

Number of tiles

Single Pipe Single Buffered Pipe Double Buffered Pipe

Figure A.14.: Execution time for examined fine-grained architectures.

0

20

40

60

Python+TF2 2 pipes optimized 3 Cus optimized

Ti
m

e
(m

s)

Pre-processing and Prediction implementation

x5.69 x7.14

Figure A.15.: Comparison of execution between best coarse and fine-grained accelerators and
Python-TF2 implementation.

211

	Abstract
	Abstract in Greek
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Big Data Overview and Challenges
	Machine Learning and Bioinformatics in Healthcare
	Thesis Scope and Organization

	Thesis Contribution
	Challenges in HLS optimization techniques and Thesis Contributions
	Challenges in Short read alignment and Thesis Contributions

	Theoritical Background
	High Level Synthesis on Reconfigurable platforms
	Basic Principles of High Level Synthesis
	Programming Models for Reconfigurable devices

	Bioinformatic Applications
	DNA sequencing and Genomic Analysis
	Short read alignment

	An Exploration Framework for Efficient High-Level Synthesis of Support Vector Machines: Case Study on ECG Arrhythmia Detection for Xilinx Zynq SoC
	Introduction
	Related Work
	Support Vectors Machines based Classifier
	Analysis of SVM classifier
	Use Case: ECG-based Arrhythmia Detection

	Design exploration for accelerated SVM classifier
	Optimization Level 1: Code restructuring for HLS
	Optimization Level 2: Design Space Exploration of HLS Directives

	Design Methodology for Approximate SVM
	Approximate Techniques
	Approximation and Optimization Methodology

	Experimental Results
	Experimental Set-up
	Efficiency evaluation of the proposed DSE methodology
	Evaluating derived SVM accelerators classifier at scale
	SVM based ECG arrhythmia detection
	Performance Evaluation of Approximate SVM

	GANDAFL: Dataflow Acceleration for Short Read Alignment on NGS data
	Introduction
	Related Work
	Theoretical Background
	NGS genomics pipeline
	Bowtie2 Alignment Algorithm
	Smith-Waterman Algorithm

	Design of the Accelerator System
	Dataflow Smith-Waterman & Traceback Engine
	Streaming Optimizations
	Control and Data Flow of Engines
	Analytical Performance Model of the Accelerator
	Scalability of Design

	Accelerator Integration with Bowtie2 Aligner
	Alleviating Integration Implications
	Proposed Co-designed Bowtie2

	Experimental Results
	Experimental Setup
	Accelerator Evaluation
	Integrated Architecture Evaluation

	Profile-Driven Banded Smith-Waterman acceleration for Short Read Alignment
	Introduction
	Profile-driven Genomic Architecture Optimization
	Design of Dataflow Genomic Accelerator
	Experimental Results
	Experimental Setup
	Banded Smith-Waterman Evaluation
	Multi-Dataflow System Evaluation

	Conclusions
	Summary of Ph.D. Thesis
	Future Extensions

	Brief Description of the Proposed Frameworks in Greek
	Greek Glossary
	Publications
	Bibliography
	Appendix: FPGA Acceleration of Multi-Temporal Change Detection on High Resolution Images
	Introduction and Background Information
	Multi-temporal Prediction on High Resolution Images
	Change Detection on Sentinel-2 Satellite images
	Pre-processing and Prediction Model architecture
	Pre-processing and Prediction as an OpenCL kernel

	Hierarchical Optimization Strategy of Model Architecture
	Optimizing Baseline Architecture
	Optimizing horizontal and vertical scaling

	Experimental Evaluation
	Experimental Setup
	Performance evaluation

